IN SILICO DESIGN OF POTENTIAL 1,5-BENZOTHIAZEPINE DERIVATIVES AS AN ANTI-CONVULSANT AGENT BY MOLECULAR DOCKING STUDIES

Ms. Parjane Smita¹, Dr. Kunkulol Rahul², Dr. Nandal Dattatray²

¹Pravara Rural College of Pharmacy, Loni BK Tal., Rahata Dist., Ahmednagar, Maharashtra.
²Department of Pharmacology, Pravara Institute of Medical Sciences, Deemed University, Loni, Ahmednagar, Maharashtra, India.

ABSTRACT

Epilepsy is characterized by the presence of recurrent seizures. A seizure can be defined as “an episodic disturbance of movement, feeling, or consciousness caused by sudden synchronous, inappropriate, and excessive electrical discharges in the cerebral cortex”. One in every three patients with epilepsy is probable to be severely disabled. It is continuing this scenario as an attempt to develop potent and nontoxic anti-convulsant agents. Recently discovery of benzothiazepine derivatives as an anticonvulsant agent is significant area for research in medicinal chemistry as it is free from all side effects which is shown by a developed as an anticonvulsant agent. In this paper, we have presented results of 2D, and 3D docking poses studies of a series of 300 (Three series) molecules containing 1,5-benzothiazepine pharmacophore as anti-convulsant agents. Docking analysis was utilized to predict the mechanism of action of the designed derivatives for anticonvulsant potential. All the molecules exhibited binding score in the range of -82.61 to -118.25 kcal/mol. Most active molecules from Series 1, 2 and 3 exhibited hydrogen bond interactions with LEU282B, LEU282B and LEU282B. Also for the selected standard sodium phenytoin showed the hydrogen bond interaction with LYS637A. It was noted that the docking score of 1a to 10a, 101b to 110b and 201c to 210c was almost same as that of selected standard sodium phenytoin. Protein showed hydrogen bonding with all synthesized compound showed potential against the epilepsy with GABAergic mechanism.

Keywords: Anti-convulsant; 1,5-benzothiazepine; V-Life MDS 4.3.

INTRODUCTION

Epilepsy is characterized by the presence of recurrent seizures. A seizure can be defined as “an episodic disturbance of movement, feeling, or consciousness caused by sudden synchronous, inappropriate, and excessive electrical discharges in the cerebral cortex” [1]. Epileptic convulsions are expected to have negative consequences on the patient’s psychological and social life such as relationships, education and employment. Uncontrolled seizures are associated with physical and psychosocial morbidity, dependent behaviour, poor quality of life and an increased risk of sudden unexpected death. Therefore, it is often recommended to begin treatment of epilepsy with antiepileptic drugs (AEDs) as soon as the patient has reported more than one documented or witnessed seizure bearing in mind that the goal of treatment should be to maintain as normal a life style through complete seizure control with no or minimal side effects [2].

Anti-convulsant drugs are widely used in the treatment of various central nervous system diseases like bipolar disorder, antispsychotic, impulsive aggression, borderline personality disorder etc. Benzothiazepine is the most vital class of series origin of benzodiazepine pharmacophore. They are differ only in place of sulphur and nitrogen element in the heterocyclic ring system. Particularly benzothiazepines used as a cardiovascular-related diseases vix coronary vasodilation, hypertension etc. Recently it has been used as a anti-convulsant, antipsychotic activity, anti-HIV activity, antimicrobial activity etc. There are various benzothiazepines which have been synthesized and tested for their biological activities (3-6). 1,5 benzothiazepine is a calcium channel blocker also known as Diltiazem [3]. Diltiazem is a non-diarylpyridine (DHP) member of the group of drugs known as benzothiazepine.

Medicinal chemists today are facing many complicated challenges. The most demanding and perhaps the most rewarding one is the rational design of new therapeutic agents for treating human diseases. The definition currently accepted of what molecular modelling can be stated as “molecular modelling is anything that requires the use of a computer to paint, describe or evaluate any aspect of the properties of the structure of a molecule”. Methods used in the molecular modelling are regarding automatic structure generation, analysis of three-dimensional (3D) databases and construction of protein models by techniques based on sequence homology, diversity analysis, docking of ligand. Molecular modelling has widened the horizons of pharmaceutical research by providing tools for finding new leads.

Thus, today, molecular modelling is regarded as a field concerned with the use of all sort of different strategies to model and to deduce information of a system at the

DOI: 10.31878/ijcbr.2019.53.6

eISSN: 2395-0471
plISSN: 2521-0394

Correspondence: Parjane Smita, Pravara Rural College of Pharmacy, Loni BK Tal. Rahata Dist. Ahmednagar, Maharashtra, India. Email: parjanesmita23@gmail.com

© Authors; 2019. International Journal of Clinical and Biomedical Research, Sumathi Publications.
This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited. (CC BY-NC-SA 4.0)
atomic level. On the other hand, this discipline includes all methodologies used in computational chemistry, like computation of the energy of a molecular system, energy minimisation Monte Carlo methods or molecular dynamics. In other words, it is possible to conclude that computational chemistry is the nucleus of molecular modelling. Identification of bio-molecular moieties involved in the interaction with a specific receptor permits to understand the molecular mechanism responsible of its particular biological activity. In turn, this knowledge is aimed at designing new active molecules that can be successfully used as drugs. Because simulation accuracy is limited to the precision of the constructed models, when it is possible, computational simulations have to be compared with experimental results to confirm model accuracy and to modify them if necessary, in order to obtain better representations of the system [4-6].

The developments of new anti-convulsant therapeutic agents are one of the fundamental goals in medicinal chemistry. In recent years there has been concerned search for the discovery and development of potent and selective anti-convulsant agents. Heterocyclic compounds comprise the dominant family of organic compounds. These are enormously essential with a wide range of synthetic, pharmaceutical and industrial applications and are famous for their biological activities. There is an extensive spectrum of biological activities shown by many compounds containing five-membered heterocyclic rings in their structure.

Therefore we attempt to identify the potential molecule for the synthesis of 1,5-benzothiazepine as an anti-convulsant using V-Life MDS 4.3 software for the execution of synthesis of selected moiety. From the present work, we find out the physicochemical and interactive parameters responsible for the anti-convulsant action of new 1,5-benzothiazepine as anti-convulsant agents from the docking studies.

MATERIAL AND METHODOLOGY

Equipments: All computational studies were performed using V-Life Molecular Design Software Version 4.3. Docking study were generated using a training set of 300 molecules.

Molecular docking studies: V Life MDS version 4.3 software was employed to assess the structure of the enzyme-inhibitor complex. In our study, three series of 1,5 benzothiazepine were selected for docking studies (Figure 1a, 1b and 1c) Three hundred structure of 1,5-benzothiazepine expected derivatives were tested and also shown in Table 1, 2 and 3. VLifeMDS version 4.3 expected binding free energies of enzyme-inhibitor complexes and the binding energies of both the bound and unbound states using semi-empirical free energy force field. The 3D structures of following PDBs were acquired from RCSB Protein Data Bank. The PDB id is, 3IP9 (Structure of Atu2422-GABA receptor in complex with GABA) [7]. The 3D structures of selected 1,5-benzothiazepine derivatives were drawn in ACD-Chemsketch and converted into 3D mol. format. The automated docking model was generated using VLife MDS Tool. The co-crystallized ligand was used to generate the grid box for catalytic inhibition mode. The selected grid box size was 60×60×60.

Results

Docking Study: Molecular docking approach was utilize to guess the enzyme inhibitor interaction geometrics for the selected compounds. The docking scores for 1,5-benzothiazepine derivatives (selected 300 substituents on 1,5-benzothiazepine moieties) with interacting 3IP9 (Structure of Atu2422-GABA receptor in complex with GABA) residues including hydrogen bond, van der Waals and hydrophobic interacting residues. Sodium Phenytin moiety was choose as a standard drug for the docking study.

Discussion

Epilepsy is an associated with physical and psychosocial morbidity, dependent behavior, poor quality of life and an increased risk of sudden unexpected death, therefore it an urgent social need to discover a new potential derivative for the treatment of epilepsy. Henceforth we have planned to synthesized new derivative from the class of 1,5 benzothiazepine. Generally we have drawn the three series for the synthesis of 1,5 benzothiazepine moiety to get higher potential moiety. Three hundred substituents of the selected series were fixed and were screened to get better activity against the epilepsy. As per the discussion in introduction part molecular modeling study is the best option to get the idea about potency of
Simta et al. Silico design of potential 1,5-benzothiazepine derivatives as an anti-convulsant agent.

Int. j. clin. biomed. res. 2019;5(3):29-36.
Simta et al. Silico design of potential 1,5-benzothiazepine derivatives as an anti-convulsant agent.

Table 1. Proposed chemical structure (1-100) for docking study

Compound Code	R1	R2	R3	Compound Code	R1	R2	R3
1	H	OH	H	51	I	Br	CH3
2	H	OCH3	H	52	I	Cl	CH3
3	H	Cl	H	53	I	NO2	CH3
4	H	F	H	54	I	NH2	CH3
5	H	Br	H	55	I	NH2	CH3
6	OH	Br	H	56	I	NH2	F
7	OH	Br	OH	57	I	NH2	Br
8	H	NO2	H	58	I	NH2	NO2
9	Cl	H	H	59	I	NH2	NH2
10	F	H	H	60	F	NH2	F
11	Br	H	H	61	F	NO2	F
12	OH	H	H	62	F	I	F
13	OH	I	H	63	F	Cl	F
14	OH	Cl	H	64	F	Br	F
15	OH	F	H	65	F	NH-CH3	F
16	H	NO2	H	66	I	NH-CH3	F
17	Br	NO2	H	67	Br	NH-CH3	F
18	F	NO2	H	68	H	NH-CH3	F
19	NO2	NO2	H	69	H	NH-CH3	H
20	OH	NO2	H	70	H	NH-CH3	OH
21	OH	NO2	Cl	71	H	NH-CH3	CH3
22	OH	NO2	F	72	H	NH-CH3	I
23	OH	NO2	Br	73	H	NH-CH3	Cl
24	OH	NO2	NO2	74	H	NH-CH3	Br
25	OH	NO2	I	75	NO2	NH-CH3	Br
26	OH	H	H	76	NO2	NH-CH3	F
27	H	H	H	77	NO2	CH2-CH3	CH3
28	OH	CH3	CH3	78	NH2	CH2-CH3	CH3
29	CH3	H	H	79	F	CH2-CH3	CH3
30	CH3	H	Br	80	I	CH2-CH3	CH3
31	CH3	H	F	81	I	NO2	CH3
32	CH3	H	Cl	82	Cl	-H-CH3	CH3
33	CH3	H	CH3	83	NO2	-H-CH3	CH3
34	CH3	Cl	CH3	84	NH2	-H-CH3	CH3
35	CH3	Br	CH3	85	NH2	-H-CH3	F
36	CH3	F	CH3	86	NH2	-H-CH3	CH3
37	CH3	NO2	CH3	87	Cl	C=O	H
38	CH3	NO2	H	88	H	C=O	H
39	CH3	NO2	Cl	89	Br	C=O	H
40	CH3	NO2	F	90	OH	C=O	H
41	CH3	NO2	Br	91	I	C=O	H
42	CH3	CH3	H	92	NO2	C=O	H
43	CH3	CH3	CH3	93	F	C=O	H
44	Cl	CH3	CH3	94	NH2	C=O	H
45	Br	CH3	CH3	95	NH2	-H-CH3	I
46	F	CH3	CH3	96	NH2	-H-CH3	NO2
47	NO2	CH3	CH3	97	NO2	-H-CH3	I
48	I	CH3	CH3	98	NO2	-H-CH3	Br
49	I	I	CH3	99	NO2	-H-CH3	NH2
50	I	F	CH3	100	NO2	-H-CH3	NO2
Table 2. Proposed chemical structure (101-200) for docking study

Compound Code	R1	R2	R3	R4	Compound Code	R1	R2	R3	R4
101	H	OH	OH		151	H	F	CH₃	NH₂
102	H	OCH₃	OH		152	H	Cl	CH₃	NH₂
103	H	Cl	OH		153	H	Br	CH₂	NH₂
104	H	I	OH		154	H	NO₂	CH₂	NH₂
105	H	F	OH		155	H	NH₂	CH₂	NH₂
106	H	-CH₂-CH₃	OH	156	H	CH₃	CH₂	NH₂	
107	H	Br	OH		157	H	CH₂-CH₃	CH₂	NH₂
108	H	NO₂	OH		158	OH	NH-CH₂	CH₂	NH₂
109	H	NH₂	OH		159	H	NH-CH₂	CH₂	NH₂
110	H	CH₃	OH		160	OH	NH-I	CH₂	NH₂
111	OH	Cl	OH		161	OH	NH-F	CH₂	NH₂
112	H	CH₂	Br		162	OH	NH-Br	CH₂	NH₂
113	H	NH₂	Br	NH₂	163	OH	I	NH₂	NH₂
114	H	NO₂	Br	NH₂	164	OH	F	NH₂	NH₂
115	H	Br	Br	NH₂	165	OH	Cl	NH₂	NH₂
116	H	Cl	Br	NH₂	166	OH	Br	NH₂	NH₂
117	H	F	Br	NH₂	167	OH	CH₂	NH₂	NH₂
118	H	I	Br	NH₂	168	OH	NO₂	NH₂	NH₂
119	H	I	NO₂	NH₂	169	OH	NH₂	NH₂	NO₂
120	H	F	NO₂	NH₂	170	OH	NH-CH₂	NH₂	NO₂
121	H	Cl	NO₂	NH₂	171	OH	NH-CH₂	NO₂	NO₂
122	H	Br	NO₂	NH₂	172	OH	CH₂-CH₂	NO₂	NO₂
123	H	CH₃	Cl	NH₂	173	OH	CH₂	NH₂	NO₂
124	H	NH₂	Cl	NH₂	174	OH	NH₂	NO₂	NO₂
125	H	NO₂	Cl	NH₂	175	OH	NO₂	NO₂	NO₂
126	H	Br	Cl	NH₂	176	OH	CH₂	H	
127	H	Cl	Cl	NH₂	177	OH	H		
128	H	F	Cl	NH₂	178	OH	-CH₂-CH₃	H	
129	H	I	Cl	NH₂	179	OH	-CH₂-NH₂	H	
130	H	I	F	NH₂	180	OH	NH-CH₂	NH₂	
131	H	F	F	NH₂	181	OH	NH₂	H	
132	H	Cl	F	NH₂	182	OH	Br	H	
133	H	Br	F	NH₂	183	OH	Cl	H	
134	H	NO₂	F	NH₂	184	OH	F	H	
135	H	NH₂	F	NH₂	185	OH	I	H	
136	H	CH₃	F	NH₂	186	OH	I	NH₂	
137	H	-CH₂-CH₃	I	NH₂	187	NH₂	I	H	H
138	H	CH₃	I	NH₂	188	NH₂	F	H	H
139	H	NO₂	I	NH₂	189	NH₂	NH₂	H	
140	H	NH₂	I	NH₂	190	H	NH-CH₂	NH₂	
141	H	Br	I	NH₂	191	CH₂	NH₂	NH₂	
142	H	Cl	I	NH₂	192	CH₂	NH-CH₂	H	NH₂
143	H	F	I	NH₂	193	CH₂	NH-CH₂	CH₂	NH₂
144	H	CH₂I	I	NH₂	194	CH₂	NH-CH₂	CH₂Cl	NH₂
145	H	CH₂I	OH		195	CH₂	NH-CH₂	CH₂Br	NH₂
146	H	CH₂F	OH		196	CH₂	NH-CH₂	CH₂F	NH₂
147	H	CH₂Cl	OH		197	CH₂	NH-CH₂	CH₂NH₂	NH₂
148	H	CH₂Br	OH		198	CH₂	NH-CH₂	CH₂NO₂	NH₂
149	H	CH₂NO₂	OH	NH₂	199	Cl	NH₂	H	NH₂
150	H	CH₂NH₂	OH	NH₂	200	Cl	NH-NH₂	CH₂	NH₂
Table 3. Proposed chemical structure (201-300) for docking study

Compound Code	R1	R2	R3	Compound Code	R1	R2	R3	
201	OCH₁	H	H	251	CH₁	H	NH₂	
202	OCH₁	OCH₁	H	252	CH₁	H	CH₁	
203	OCH₁	NO₂	H	253	CH₁	H	CH₂-NH₂	
204	H	I	H	254	CH₁	H	CH₂-NO₂	
205	H	F	H	255	CH₁	H	CH₂-NH₂	
206	H	Br	H	256	CH₁	H	H	
207	H	NO₂	H	257	CH₁	H	OH	
208	H	NH₂	H	258	CH₁	H	NH₂	
209	H	CH₁	H	259	H	H	CH₁	
210	H	CH₂-C-H₁	H	260	OH	H	CH₁	
211	I	CH₃-C	H	261	CH₁	H	NH₂	H
212	I	CH₁	H	262	CH₁	H	NO₂	H
213	I	NO₂	H	263	CH₁	H	Br	H
214	I	NH₂	H	264	CH₁	H	Cl	H
215	I	Br	H	265	CH₁	H	F	H
216	I	Cl	H	266	CH₁	H	I	H
217	I	F	H	267	CH₁	H	I	H
218	I	I	H	268	CH₁	H	Br	H
219	F	I	H	269	CH₁	H	F	H
220	F	F	H	270	CH₁	H	NO₂	H
221	F	Cl	H	271	NH₂	NO₂	H	
222	F	Br	H	272	NH₂	NH₂	H	
223	F	NO₂	H	273	NH₂	CH₁	H	
224	F	NH₂	H	274	NH₂	CH₂-C-H₁	H	
225	F	CH₁	H	275	NH₂	CH₂-NH₂	H	
226	F	CH₂-C-H₁	H	276	NH₂	CH₂-NO₂	H	
227	Cl	CH₂-C-H₁	H	277	CH₁	CH₂-NH₂	H	
228	Cl	CH₂-NH₂	H	278	CH₁	CH₂-NH₂	H	
229	Cl	CH₁	H	279	CH₁	CH₂-C-H₂-NH₂	H	
230	Cl	NH₂	H	280	CH₁	CH₁	H	
231	Cl	NO₂	H	281	NO₂	I	H	
232	Cl	Br	H	282	NO₂	F	H	
233	Cl	Cl	H	283	NO₂	Cl	H	
234	Cl	F	H	284	NO₂	Br	H	
235	Cl	I	H	285	NO₂	NH₂	H	
236	Br	I	H	286	NO₂	NO₂	H	
237	Br	F	H	287	NH₂	I	CH₁	
238	Br	NH₂	H	288	NH₂	F	CH₁	
239	Br	Cl	H	289	NH₂	Cl	CH₁	
240	Br	Br	H	290	NH₂	Br	CH₁	
241	Br	NO₂	H	291	Br	CH₂-NO₂	CH₁	
242	Br	OCH₁	H	292	Br	CH₂-NH₂	CH₁	
243	Br	CH₂-C-H₁	H	293	NO₂	CH₂-NO₂	CH₁	
244	OCH₁	CH₂-C-H₁	H	294	NO₂	CH₂-NH₂	CH₁	
245	OCH₁	NO₂	H	295	NO₂	CH₃	CH₁	
246	OCH₁	CH₁	H	296	NO₂	CH₂-C-H₂-NH₂	CH₁	
247	OCH₁	F	H	297	Br	CH₂-C-H₁	CH₁	
248	OCH₁	I	H	298	Br	CH₁	CH₁	
249	OCH₁	Cl	H	299	Br	NH₂	CH₁	
250	OCH₁	H	H	300	Br	NO₂	CH₁	
A conserved mechanism of GABA binding and antagonism is revealed by Structure-Function Analysis of the periplasmic binding protein Atu2422 [7]. Bacterial periplasmic binding proteins (PBPs) and eukaryotic PBP-like domains (also called as Venus flytrap modules) of G-protein-coupled receptors are involved in extracellular GABA perception (8). Gamma - Aminobutyric acids (GABA), the prime inhibitory neurotransmitter in the cerebral cortex, sustain the inhibitory tenor that counterbalance neuronal excitation.
Docking analysis was utilized to understand the mechanism of action of the designed derivatives for anticonvulsant potential. All the molecules exhibited binding score in the range of -82.61 to -118.25 kcal/mol. Most active molecules from Series 1, 2 and 3 exhibited hydrogen bond interactions with LEU282B, LEU282B and LEU282B respectively. Also for the selected standard sodium phenytoin showed the hydrogen bond interaction with LYS637A. The series 1 showed hydrophobic bonding interactions with VAL290B, VAL290B, GLY421B, LEU282B etc. and Vander Waals interactions with LEU282B, LEU282B, GLY283B, PHE287B, PHE420B (Figure 3). The series 2 compound showed hydrophobic interactions with GLY421B, PHE420B, VAL 290B, LYS 309B and also Van der Waals interactions with LYS439B, PHE287B, GLY283B, LEU282B, GLY515B (Figure 4). The compound from series 3 showed hydrophobic interaction with VAL291B, VAL295B, GLY427B, LEU280B and Van der Waals interactions with LEU284B, LEU285B, GLY280B, PHE207B and PHE421B (Figure 5). Whereas standard sodium phenytoin exhibited hydrophobic interaction with ALA549A (4.675), ASP593A (2.987), LYS647A (2.638) and Van der Waals interactions with SER528A (1.675), THR652A (3.293) and ASN555AA 2.105.

From the series 1, ten derivatives are selected for the synthesis of 1,5 benzothiazepine class namely 1a to 10a. It was observed that the good docking score (Table 4). The docking posses with 3D picture are depicted in Figure 5. Whereas series 2 have also selected 10 derivative to synthesize the compounds namely 100a, 101b, 102c to 300c and Sodium Phenytoin against 3IP9 in silico design of potential 1,5 benzothiazepine derivatives as an anti-convulsant agent.

CONCLUSION

In this present investigation, it was found that all projected moiety were statistically significant, therefore from above 2D/3D models it could be concluded that 1,5 benzothiazepine derivatives are used to synthesize as anti-convulsant drugs. It was found that 1a-10a, 101b -110b and 201c-210c having good docking score for synthesizing the derivatives. It was noted that the docking score of 1a to 10a, 101b to 110b and 201c to 230c was almost same as that of selected standard sodium phenytoin. Protein showed hydrogen bonding with all synthesized compound showed potential against the epilepsy with GABAergic mechanism.

Acknowledgment: The authors would like to thank the Director of the Diya Laboratory (Mumbai, India) for the tests of FT-IR, NMR, and Mass Spectra. We are also grateful to Pravara Institute of Medical Sciences-Deemed University (PIMS-Deemed university), Pravara Rural College of Pharmacy, Lonij BK Tal. Rahata, District- Ahmednagar (India)-413736 & Dr.V.V.P.F’s, college of Pharmacy, Vilad Ghat, Ahmednagar -414111 for providing research facilities and constant encouragement.

Conflict of Interest: Declared none

REFERENCES

[1] Kwan P, Brodie MJ. Effectiveness of First antiepileptic Drugs. Epilepsia. 2001;42(10): 1255-60

[2] Brodie MJ. Medical therapy of epilepsy: When to initiate treatment and when to combine? Journal of Neurology. 2005; 252:125-30

[3] Pandeya SN, Kumar D, Verma PK. Newer Applications of 1,5-Benzothiazepines & their anticonvulsant activity. Der Pharma Chemica. 2012;4(5):1853-5

[4] Sarro GD, Ferreri G, Gareri P, Russo E, Sarro AD, Gitto R, Chimirri A. Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacology Biochemistry and Behavior. 2003; 74(3):595-602

[5] Fukinaga M, Ishizawa K, Kamei C. Anticonvulsant properties of 1,4-benzodiazepine derivatives in amygdaloid-kindled seizures and their chemical structure-related anticonvulsant action. Pharmacology. 1998; 57(5): 233-41

[6] Planamente S, Vigouroux A, Mondy S, Nicaise M, Faure D, Morera S. A conserved mechanism of action of some 2,3-benzodiazepine derivatives in rodents. Pharmacology Biochemistry and Behavior. 2003; 74(3):595-602

[7] Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of proteinligand binding sites. Bioinformatics. 2005; 21: 1908-16.

[8] Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001; 42(3): 8-12.