General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model

John M. McBride,*,† Jean-Pierre Eckmann,*‡ and Tsvi Tlusty*,†,‡

1Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
2Département de Physique Théorique and Section de Mathématiques, University of Geneva, Geneva, Switzerland
3Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea

*Corresponding authors: E-mails: jmmcbride@protonmail.com; Jean-Pierre.Eckmann@unige.ch; tsvitlusty@gmail.com.
Associate editor: Julian Echave

Abstract

Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein–ligand interactions. The model shows that there are many routes to achieving molecular discrimination—by varying degrees of flexibility and shape/chemistry complementarity—but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of “why are proteins so big?” A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.

Key words: molecular recognition, binding specificity, conformational changes, protein evolution, tRNA synthetase.

Introduction

Proteins are the main molecular workforce inside cells, and the tasks they perform invariably rely on specific, short-range interactions. The cell is filled with thousands of molecular species, some differing by only a single atom. Yet somehow, most proteins can specifically bind to only a few select species (Nam et al. 2012; Piazza et al. 2018; Copley 2020). Despite knowing much about pairwise binding (Miller and Dill 1997; McCammon 1998; Ma et al. 1999; Gohlke and Klebe 2002; Mobley and Dill 2009; Kastritis and Bonvin 2013; Wang, Zhang, et al. 2013; Weikl and Paul 2014; Stank et al. 2016; Plattner et al. 2017; Wan et al. 2020), we understand much less the many-body problem of how proteins selectively bind to targets while avoiding interactions with similar, but noncognate, molecules (Kastritis and Bonvin 2013). Such undesirable interactions can, at best, lead to inefficiencies through inhibition (Goldstein 1944) and, at worst, result in aggregation (Mahler et al. 2009), inaccurate translation, or cross-talk between signals (Olson and Marais 2000).

Unwanted interactions can be minimized by designing mismatch between ligands and binding pockets (Rohs et al. 2010; Sergeeva et al. 2020), such that the energetic cost of deformation allows the protein to sift the target from similar, noncognate ligands—a form of “conformational proofreading” (Savir and Tlusty 2007, 2013). Recent work has suggested that residues not directly involved in binding may play a role in discrimination via allostery (Dutta et al. 2018; Eckmann et al. 2019; Rivoire 2019; Wankowicz et al. 2022). Here, taking inspiration from the many experimental examinations of molecular discrimination by proteins, such as enzymes, tRNA synthetases, transcription factors, and antibodies (Sundberg and Mariuzza 2002; Elias et al. 2012; Nam et al. 2012; Huang et al. 2015; Jankowsky and Harris 2015; Martinez-Martinez et al. 2018; Piazza et al. 2018; Biswas and Thattai 2020; Lite et al. 2020; Tawfik and Gruic-Sovulj 2020), we propose a simple yet general theory of specific binding.

We study the evolution of discrimination by proteins using a genetic-mechano-chemical model of binding. We find that, although the discrimination problem is in general difficult, it has many possible solutions: Shape mismatch, chemical complementarity, and flexibility can all be manipulated in various ways to tune interaction specificity. The important common thread is that it requires precision and coordination—for example, just the right amount of shape mismatch to fit a given flexibility. We show that residues distant from the binding site enable this fine-tuning of mechanical deformation upon binding—demonstrating that discrimination is the outcome of
concerted, collective interactions throughout the protein. Thus, larger proteins benefit from having more degrees of freedom, allowing them to solve harder discrimination challenges. Furthermore, larger proteins are more evolvable and robust since their set of possible functional sequences is larger and more connected. We further explain the mechanisms through which affinity and specificity can be tuned independently and discuss the role of flexibility and entropy. Altogether, this simple model shines light on the difficult problem of how proteins achieve such superlative molecular discrimination. At the same time, by linking protein size to a property as ubiquitous as binding, we offer a possible answer to the question, “why are proteins so big?” (Payens 1983; Srere 1984).

Results

The Models

We introduce three protein models, starting with a barebones model and then adding archetypal protein features, so that we achieve a graduated understanding of how proteins evolve molecular discrimination. We first introduce the basic mechano-chemical protein model (MeCh), a homogeneous spring network with chemical binding sites that bind to a ligand (fig. 1A). This basic model shows how specific binding depends on an interplay of: shape (mis)match between ligands and the protein binding pocket, protein flexibility, chemical binding strength, and entropy. In the second, genetic model (G-MeCh), we introduce a protein sequence that determines the stiffness of individual springs and the chemical binding strength of binding sites. This allows us to study how specific binding is achieved in a model where discrete changes occur via sequence mutations. In the final variant of the model (G-MeCh-S), we allow the equilibrium structure of the protein to change as a function of sequence, and we examine proteins of different sizes. This model facilitates the study of protein evolution, and the effect of protein size, via quantification of evolvability and mutational robustness.

Mechano-chemical (MeCh) Model of Molecular Recognition

The basic mechano-chemical model is a two-dimensional elastic network (Tirion 1996; Chennubhotla et al. 2005; López-Blanco and Chacón 2016), with n_a amino acids, a, arranged on a hexagonal lattice, and $n_B = 3$ chemical binding sites, each with binding energy constant ϵ (fig. 1A). In this coarse-grained representation, one may envision the nodes as groups of tightly connected amino acids that have highly correlated motion (Halabi et al. 2009). Likewise, the binding sites can be thought of as a subdivision of a binding site into the three most salient units of amino acids and functional groups (Richard 2019).

The protein has a Λ-shaped binding pocket, described by an angle of $\theta_0 = 60^\circ$; opposite the protein is a set of Λ-shaped ligands with three binding sites, which are uniquely described by an angle in the range $5^\circ \leq \theta \leq 175^\circ$. Shape mismatch is, thus, a function of only the ligand shape and varies along a single dimension, $\Delta \theta = \theta - \theta_0$. Regarding ligands, we use the following terminology: Ligands that do not fit in the binding pocket ($\theta > 60^\circ$) are called “fat,” otherwise “thin.” When comparing two ligands, the larger one is denoted ligand $L_1 (\theta_1)$, and the smaller one is denoted ligand $S (\theta_3)$. Similarly, we refer to the cognate ligand (θ_C, i.e., the target) and the noncognate ligand(s) (θ_{NC}, the functionally undesirable one).

For each protein–ligand pair, we calculate the free energy of binding ΔG (i.e., the binding affinity) as the sum over three contributions: The deformation energy \hat{E}, the
chemical energy C, and the change in entropy upon binding ΔS,

$$\Delta G = \mathcal{E} + C - T\Delta S,$$

(1)

where T is the temperature. Deformation energy is calculated as

$$\mathcal{E} = \frac{1}{2} \sum_{\langle i,j \rangle} K_{ij} (\Delta r_{ij} - \ell_j)^2,$$

(2)

where the summation $\langle i, j \rangle$ is over all ordered pairs of amino acids a_i and a_j connected by a bond, K_{ij} is the spring constant of the bond, Δr_{ij} is its length, and ℓ_j its equilibrium length. The initial configuration is not deformed, $\mathcal{E} = 0$, since all distances are equal to the equilibrium bond lengths, $\Delta r_{ij} = \ell_j$. In the MeCh model, all bonds have identical lengths, $\ell_j = \ell = 1$ nm, and spring constants, $K_{ij} = K$.

The chemical binding energy is given by

$$C = -\sum_{i=1}^{n_b} \epsilon_i e^{-r^2_i - r^2_\ell / \sigma^2},$$

(3)

where ϵ_i is the energy scale of binding locus i of the ligand, r^2_i and r^2_ℓ are the positions, respectively, of the amino acids a_i at the binding pocket and the ligand binding locus i, and we set the length scale of the interaction at $\sigma = 0.3$ nm; interaction sites are uniquely paired, so the energy is summed only over the $n_b = 3$ binding pairs. In the MeCh model, the energy scale is the same for all binding sites, $\epsilon_i = \epsilon$.

The entropy change by binding ΔS in equation (1) is the logarithm of the relative change in the volume of the configuration space accessible by thermal fluctuations of the protein. Thus, a reduction in the magnitude of thermal motion results in entropy loss. We decompose the binding entropy into two terms, $\Delta S = \Delta S_{\text{conf}} + \Delta S_0$, where ΔS_{conf} is the change in conformational entropy (Frederick et al. 2007; Tzeng and Kalodimos 2012; Sun et al. 2017), which depends on the elastic network topology and spring stiffness, and ΔS_0 accounts for other contributions to entropy that are not captured directly by the model (e.g., release of frustrated solvent, ligand conformational change, protein entropy change due to plastic deformation) (Quiocho et al. 1989; Michel et al. 2009; Fenley et al. 2012; Dragan et al. 2017; Keul et al. 2018; Peccati and Jiménez-Osés 2021; Wankowicz et al. 2022).

We calculate ΔS_{conf} for the elastic network by creating stiff bonds of strength K_n between the protein and ligand binding sites (see Methods). Standard normal mode analysis shows that the resulting entropy change is the sum over the variation in the logarithms of the mode energies λ_n before and after binding,

$$\Delta S_{\text{conf}} = -\frac{1}{2} \sum_n \Delta \ln \lambda_n.$$

By constraining the motion, stiffening typically increases the mode energies, $\Delta \lambda_n \geq 0$, and binding, therefore, induces entropy loss, $\Delta S_{\text{conf}} \leq 0$. For a homogeneous spring network ($K_n = K$), this entropy change is well approximated as $\Delta S_{\text{conf}} \approx -2 \ln (K/\lambda) + 1.5$ (supplementary fig. S1, Supplementary Material online).

We compute the minimum binding free energy using a gradient descent algorithm with some relevant physical constraints. Calculating this binding free energy for multiple ligands gives us the binding free energy gap between any pair of two ligands, L and S, $\Delta \Delta G_{LS} = \Delta G_L - \Delta G_S$ (or between cognate and noncognate ligands, $\Delta \Delta G = \Delta G_{NC} - \Delta G_C$), which we use as a measure of molecular discrimination and specificity.

Recognition via Lock-and-Key Binding

As a starting point, we examine the limiting case of a completely rigid protein (i.e., $K = \infty$), which corresponds to lock-and-key binding (Fischer 1894). As no deformation occurs upon binding and no conformational entropy is lost (if we set $\Delta S_0 = 0$), the binding free energy only depends on the mismatch $\Delta \theta = \theta - \theta_0$ of the shape of the wedge and the ligand,

$$\Delta G_{\text{rigid}}(r) = \begin{cases} -\epsilon & \text{if } \theta > \theta_0, \\ -\epsilon(2 + e^{-r^2/\sigma^2}) & \text{if } \theta \leq \theta_0, \end{cases}$$

where $r = 2 \ell \sin \frac{1}{2} \Delta \theta_0 \approx \ell \Delta \theta_0$ is the gap between the third interacting pair of the binding site and the ligand. This is because fat ligands can only interact via one site, and thin ligands minimize binding energy by fully binding to two sites, and partially binding to the third.

In this limiting case, the best binding gap, $\Delta \Delta G = 2 \epsilon$, is achieved via steric exclusion: When one ligand is a perfect match for the binding site ($\theta_0 - \theta_0 = 0$), and the other ligand is fat, for any $\Delta \theta_0 = \theta_0 - \theta_0$ (fig. 1B). If both ligands are thin, the largest binding gap is much lower ($\Delta \Delta G = \epsilon$) (Tawfik and Gruic-Sovulj 2020) and can only be obtained for sufficiently dissimilar ligands ($\Delta \theta_0 \geq 40^\circ$). If the two thin ligands are similar, the optimal binding gap is only achievable with some mismatch between the cognate ligand and the protein ($\theta_0 < \theta_0$).

We, thus, see that binding with a rigid protein is in principle a feasible strategy for molecular discrimination. However, even in this hypothetical case, shape mismatch is often necessary to promote binding of the cognate ligand while avoiding binding of the noncognate.

Preferential Binding by Flexible Proteins Exploits Ligand–Protein Shape Mismatch

Rigidity in proteins is limited by the nature of the noncovalent bonds holding them together. To explore the effect of rigidity on discrimination, we first set wide bounds on the spring constants ($10^4 kT/nm^2$) and later narrow these to more biologically plausible values of spring constants (Atiglan et al. 2001; Hinsen 2007; Riccardi et al. 2009). When K is low, binding is not very specific as the protein can perfectly match any ligand with little deformation energy (fig. 1C). As K increases, specificity improves,
until the protein is so rigid that neither cognate nor non-
cognate ligands can induce the protein to deform. The maximum binding free energy gap for fat ligands (ΔΔG = 0.84εc, ΔθiS = 5°, K = 10^4 kT/nm^2) is considerably lower than what can be achieved by rigid lock-and-key binding (ΔΔG = 2εc).

For thin ligands, on the other hand, the maximum gap (ΔΔG = 0.49εc, ΔθiS = 5°, K ~ 3 x 10^4 kT/nm^2) is double (fig. 1C) of what can be achieved by a completely rigid protein (ΔΔG = 0.24εc, ΔθiS = 5°). In general, higher specificity is still achieved with greater rigidity across biologically relevant values of K; however, this requires ever-greater shape match between the protein and the cognate ligand, as ΔΔG becomes a steeper function of ligand shape (fig. 1D). This coupling between flexibility and shape mismatch highlights the need for precise concerted control over both protein structure and dynamics.

Discrimination is More Difficult than Recognition

The binding energy gap is a key determinant of molecular discrimination, but binding will only occur spontaneously if the corresponding free energy change ΔG is negative, which depends on binding entropy (Frederick et al. 2007; Tzeng and Kalodimos 2012). Taking this into account, we now formally define molecular discrimination: “Loose” discrimination is defined by ΔΔG ≥ 2 kT, and ΔGc < 0 kT; we use 2 kT as a reasonable threshold that corresponds to a sevenfold difference in binding affinity; “strict” discrimination is defined by further requiring ΔGNC > 0 kT.

In figure 2A, we replot the data from figure 1C and D in terms of discrimination, finding that specific binding is substantially more difficult than recognition alone. Even for our permissive threshold of 2 kT, only a fraction of cases result in discrimination. The disparity between the ability to distinguish between sets of fat (ΔGc < ΔG; upper left) versus thin (ΔGc < ΔG; bottom right) ligands illustrates the utility of steric exclusion as a discrimination mechanism (discrimination is possible over a large range of ΔSNC for fat ligands, but if the ligands are thin then it is difficult to achieve discrimination).

Affinity and Specificity are Correlated

To understand the role of mechanical and chemical binding energy in discrimination, we now vary the chemical energy constant so that the chemical binding energy is within a reasonable biological range (1 ≤ c ≤ 25 kT) (Schapira et al. 1999; Barratt et al. 2005; Gallicchio et al. 2010; Moal et al. 2011; Huang and Liu 2013). Once again, increasing K aids specificity, up until a point where the protein is too rigid to accommodate either ligand (fig. 2B). Beyond this point, increases in K must also be accompanied by higher c, so that there is sufficient chemical driving force for mechanical deformation. c sets an upper bound on specificity (ΔΔG), which is achieved at some optimal K, and this optimal K is proportional to c. As a result, affinity (ΔGc) and specificity (ΔΔG) are naturally correlated within the parameter space (fig. 2D, Pearson’s r = 0.38, p < 0.05).

Entropy can be Used to Modulate Affinity

Binding entropy is a key determinant of molecular discrimination (fig. 2C) (Barratt et al. 2005; Grünberg et al. 2006; Chang et al. 2007; Huang and Liu 2013; Sun et al. 2017). For the same discrimination task as in figure 2B, only loose discrimination is possible for −TΔS0 = 0 kT since both ligands bind to the protein; for this particular case, in the region with a large binding energy gap, 3 < −TΔS > 10 kT, is too low to avoid binding to the noncognate ligand. As we increase the entropy cost −TΔS0, loose discrimination becomes more difficult since stronger chemical bonds are needed for binding. However, increasing −TΔS0 also enables strict discrimination, eventually to the point where the entropic cost is too high for any ligand to bind. Since we have assumed that entropic cost applies equally to cognate and noncognate ligands, it does not affect ΔΔG; tuning entropy, thus, offers a way to decouple affinity and specificity (fig. 2D).

Sequence-dependent Model (G-MeCh)

We have so far ignored the quintessential feature of proteins—proteins are heteropolymers, composed of distinct amino acids whose sequence is encoded in genes that are subject to evolution. We now expand our model to include these two important components—heterogeneity in flexibility, and change via discrete mutations—by coupling the mechanics and chemistry to the protein sequence.

Thus, we examine a model protein consisting of nA = 13 amino acid letters, and nB = 3 binding letters, using a two-letter alphabet for each (fig. 3A). Amino acids are either w or s, and the elastic bond between each pair of neighbors, ai, aj, depends on their identities Kij(ai, aj); Bonds are either strong (s−s, with spring constant Ks), medium (s−w or w−s, Km), or weak (w−w, Kw). Similarly, chemical binding strength is determined by the letters w and s, respectively, resulting in weak (εw) and strong bonds (εs). The change in conformational entropy is typically greater for more flexible proteins and is incorporated in the model by comparing the conformational entropy of the spring network before and after binding (Methods).

Sequence Variation Reveals Epistasis

For a representative set of parameters, we calculate the binding free energy ΔG for all possible 2^nA+nB = 2^16 = 65,536 sequences and identify those sequences that result in discrimination. On average, there is no bias toward a particular amino acid at any position (supplementary fig. S2, Supplementary Material online), with the exception of strong chemical binding at the tip of the Λ-shaped binding pocket (position 15). However, detailed examination of sequence correlation (Methods) reveals substantial, nonrandom patterns of epistasis (fig. 3B). There are positive correlations between the chemical binding sites and the central amino acids in rows 2 and 3—increasing
the stiffness of the intramolecular bonds made by these amino acids allows for stronger chemical binding. One could anticipate this, given the correlations between e, K, and $\Delta \Delta G$ found in figure 2B. Thus, the subset of solutions with $\Delta \Delta G > 3.6 \text{ kT}$ (fig. 3C) contains only those sequences that have taken advantage of this positive correlation—all sequences have strong chemical bonds, and the central amino acids typically have strong bonds (supplementary fig. S2, Supplementary Material online).

Far-away Residues Enable Fine-tuning of Protein Binding

All epistasis visible in figure 3C is the outcome of negative correlations in the sequence. For two positions that negatively covary, when one position goes from weak to strong (or vice versa), the other position tends to do the opposite. In this way, protein flexibility is fine-tuned to achieve a nearly optimal amount of deformation at the binding site. This is most apparent in the correlation between all of the central seven amino acids. This can be explained by the existence of many different sequences that can encode the same open-close motion at the binding site (supplementary fig. S3, Supplementary Material online). Note, however, that this effective fine-tuning of the protein mechanics is not limited to the binding site and is evident throughout the full length of the protein, between pairs of residues at distances up to 2.5 nm (fig. 3D and E).

Structural Perturbation Model (G-MeCh-S)

Residues far from the binding site give the protein extra degrees of freedom that can be used to fine-tune binding.

![Fig. 2.](image)

Fig. 2. Effect of energy and entropy on binding and discrimination in the MeCh model. (A) Binding free energy for ligand L versus ligand S; $\epsilon = 8 \text{ kT}, -T \Delta S_0 = 10 \text{ kT}, K_s = 10^5 \text{ kT/nm}^2$. Colored regions indicate “loose discrimination” ($\Delta \Delta G_C < 0$ and $\Delta \Delta G > 2 \text{ kT}$) or “strict discrimination” ($\Delta \Delta G < 0, \Delta \Delta G_{NC} > 0$, and $\Delta \Delta G \geq 2 \text{ kT}$). Binding free energy is shown for the proteins from figure 1C and D (Fig. 3C). (B) Binding free energy gap as a function of spring constant K and chemical energy constant e; $K_s = 10^5 \text{ kT/nm}^2, \theta_c = 95^\circ, \theta_{NC} = 100^\circ$. Optimal K for a given ϵ is indicated by the orange dashed line. (C) Regions that satisfy the conditions for loose and strict discrimination for different values of $-T \Delta S_0$. (D) Affinity (ΔG) versus specificity ($\Delta \Delta G$) for the parameter space sampled in (B and C).

We, thus, study how these degrees of freedom are related to the ability to evolve functional sequences that are robust to mutations, by modeling proteins of different size (fig. 4A). To study protein evolution, we map genotype to fitness via a simple measure F of binding specificity (Savir and Tlusty 2013),

$$F = \frac{e^{-\Delta G_C} - \sum_i e^{-\Delta G_{NC,i}}}{1 + e^{-\Delta G_C} + \sum_i e^{-\Delta G_{NC,i}}},$$

where ΔG_C is the binding energy of the cognate ligand, and the noncognate ligands have binding energies $\Delta G_{NC,i}$ (all energies are in kT units). The performance measure, $-1 \leq F \leq 1$, is the difference between the binding probability of the cognate ligand and the sum of probabilities to bind any other competitor, and sequences are considered fit if $F > 0$.

The structure of real proteins varies with their sequence, generating elaborately rugged fitness landscapes, with numerous maxima and basins of attraction (Hietpas et al. 2011; de Visser and Krug 2014). While the G-MeCh model generates many fitness maxima, they are rather shallow, forming large basins of nearly-optimal configurations. This is because the shape of the G-MeCh protein is sequence-independent, rendering the fitness landscape unrealistically smooth. Therefore, we introduce the G-MeCh-S model, where the protein equilibrium structure is allowed to change depending on sequence variation—a more realistic approximation. The resulting affinity, specificity, and fitness landscapes become much more rugged, containing multiple basins of attraction (supplementary material online).
Larger Proteins are More Evolvable and Robust

We quantify evolvability as the maximum number of mutations a fit protein can undergo while still remaining fit ($F \geq 0$). Conversely, we quantify robustness as the minimum number of mutations a fit protein can undergo before it becomes unfit. We find that larger proteins are able to solve discrimination tasks for a greater range of cognate ligands, and longer sequences are more evolvable and robust (Levin et al. 2009; Tawfik and Dan 2010; Wagner 2013), even after controlling for sequence length (fig. 4C, Methods). Increasing protein size gives diminishing returns which eventually saturate, indicating that finite degrees of freedom are sufficient to achieve a maximally evolvable and robust protein. For more difficult tasks, proteins of different size exhibit a larger difference in evolvability and robustness, and larger proteins are needed to reach the saturation point (fig. 4C and D, supplementary fig. S5, Supplementary Material online). Thus, the required degrees of freedom depend on the difficulty of the discrimination problem.

Tuning Affinity and Specificity via the Interplay of Energy, Entropy, and Shape

Proteins have an optimal affinity range for cognate ligand(s) (Popp et al. 2020) and require some degree of specificity for functionality. The MeCh model explains how these can be controlled by varying protein flexibility, shape, chemistry, and entropy; this is illustrated in a phase diagram of affinity and specificity (fig. 5A and B). We study a smaller parameter space for the G-MeCh model and find qualitatively similar results (supplementary fig. S6, Supplementary Material online).

Affinity (ΔG) depends nonlinearly on chemical bond strength, shape mismatch, pocket geometry (open/closed), flexibility, and entropy (fig. 5A). The number and strength of potential chemical bonds (represented in the model by ϵ) set an upper limit to affinity (if $-\Delta S_{0} \geq 0$;
The G-MeCh-S model. (A) Protein models of different size. (B) Protein sequence is mapped to perturbations in the protein structure according to an interaction matrix. If the interaction is positive, neighboring amino acids experience an attractive force with displacement magnitude $\delta r = 0.1$ nm and vice versa (black arrows); the overall displacement is the average of the interactions with all neighboring amino acids. The open black circles are the original positions, and the colored circles show both the identities of the amino acids and the new equilibrium configuration. (C,D) Evolvability (C) and robustness (D) (both normalized by sequence length) as a function of the angle of the cognate ligand, θ_c, for easy, medium, and hard discrimination tasks. Colors indicate protein models of different size. Green circles are large to highlight that they overlap with purple circles. Symbols are only shown for ligands for which solutions were found. Parameters are: $K_s = 10^5$, $K_m = 400$, $K_w = 100$, $K_A = 10^4$ kT/nm2; $\ell = 6$, $\epsilon_w = 3.88$ kT; $T\Delta S_0 = 0$ kT.

see “Limitations” section for counter-examples not covered here), which is attained when a ligand fits perfectly into a rigid protein pocket. For rigid proteins, shape mismatch sharply reduces affinity but still results in zero-deformation partial binding, which is stronger in proteins with open binding pockets. Flexibility can both increase and decrease affinity: Flexible proteins have higher conformational entropy, which may result in higher binding entropy cost and weaker affinity (Cao et al. 2016); however, if there is some shape mismatch between the ligand and the binding pocket, flexibility increases affinity by enabling the protein to adopt an optimal conformation for binding, as clearly demonstrated by our model (fig. 5A).

The specificity $\Delta \Delta G$ for a pair of cognate and noncognate ligands differing by $\Delta H_L = 5^\circ$ is depicted in figure 5B. Maximum specificity for a given ϵ is achieved by matching flexibility and shape mismatch (fig. 5B), so that deformation energy is maximized (supplementary fig. S7, Supplementary Material online) (Richard 2019). Proteins need to be just flexible enough for the cognate ligand to bind but not the noncognate ligand. Too much flexibility (reduces deformation energy) and both will bind (Gade et al. 2021); too rigid and both will partially bind with negligible deformation. The optimal deformation for a given flexibility is found to scale linearly with the chemical binding energy ϵ (fig. 5C), such that the overall shape of the specificity phase diagram is not affected by changes to ϵ (supplementary fig. S8, Supplementary Material online). We will later demonstrate how these findings can be recapitulated by a simplified phenomenological model.

The model predicts how entropy may affect affinity and specificity: The primary effect of entropy in the MeCh-model is to modulate affinity via changes in conformational entropy ΔS_{conf} as the flexibility varies (fig. 5A). This stiffening effect will be similar for competing ligands and thereby will impact specificity only weakly (although for sufficiently dissimilar ligands, this contribution of entropy to specificity may be more significant). Thus, by selectively tuning entropy, one can modulate affinity almost independently of specificity (fig. 2D). In practice, this might be difficult; for example, flexibility simultaneously affects binding energy and conformational entropy (Grünberg et al. 2006). There is more potential for independent control via the other components to binding entropy, ΔS_0. Examples of this include the use of intrinsically disordered regions: through coupled folding and binding (Wang, Chu, et al. 2013; Yang et al. 2019) or through a disordered region far from the binding site, which is affected allosterically (Keul et al. 2018). Other routes to decoupling specificity and affinity include control over oligomeric complexation (Scheidt et al. 2021), or interactions with solvent (Quiocio et al. 1989; Michel et al. 2009).

Phenomenological Model

The general nature of the specificity can be illustrated by a simple phenomenological model (Methods): The free energy is taken as a function of a single coordinate r, which represents the gap between a pair of interacting loci of the binding site and the ligand. The initial gap r_0, before the protein deforms, is proportional to the mismatch, $r_0 \approx \ell \Delta \theta_0$. The elastic energy is a function of the deformation $u = r_0 - r$, while the chemical energy is a function of
the gap \(r \), to which we add binding entropy to obtain the free energy (eq. 1), \(\Delta G(r, r_0) = \mathcal{E}(u) + \mathcal{C}(r) - T \Delta S \). This protein–ligand system reaches an equilibrium configuration, \(r = r^\ast \) when the elastic and chemical forces counterbalance each other \(-\mathcal{C}'(u) + \mathcal{C}'(r) = 0 \) (where \(' \) is the derivative).

The specificity \(\Delta \Delta G \) in discriminating between a cognate ligand and a competitor, whose initial gaps differ by \(\delta r_0 \), is the change in \(\Delta G \) along the equilibrium line, \(\frac{\partial}{\partial \delta r_0} \). Analysis shows that the specificity is proportional to the forces, \(D = \Delta \Delta G/\delta r_0 \approx \mathcal{C}'(u) \approx \mathcal{C}'(r) \) (where \(D \) is the “specific specificity” or specificity per unit of difference between ligands). Therefore, maximal specificity is obtained exactly for the mismatch \(r_0^\ast \) and gap \(r^\ast \) at which the opposing elastic and chemical forces are both maximal, at the inflection point, \(\mathcal{C}'(r) = 0 \), where the system is most sensitive to small shape differences (see details in Methods). This simple result explains why the line of optimal specificity follows the line of maximal deformation energy in our model (supplementary fig. S7, Supplementary Material online).

We apply this general theory to the MeCh model and consider the standard Hookean elastic energy \(\mathcal{E}(u) = \frac{1}{2} K_{\text{eff}} u^2 \) (eq. 2). The whole protein is expected to be softer than a single bond, with an effective spring constant \(K_{\text{eff}} = k_\alpha \alpha K \) (\(\alpha \leq 1 \)). As for the chemical energy (eq. 3), we assume that two loci of the A-shaped ligand are in contact with the (open) binding pocket and contribute \(-2\epsilon \) to the free energy, which together with the energy of the third locus gives \(\mathcal{C}(r) = -2 + e^{-r^\ast/\sigma} \). The inflection point of this chemical energy is located at \(r^\ast = \sigma / \sqrt{2} \) such that the optimal mismatch is

\[
\frac{r_0^\ast}{\sigma} = 2^{-1} + \left(\frac{2}{\epsilon K_{\text{eff}} \alpha^2} \right) \approx 0.71 + \frac{0.85}{\alpha} \left(\frac{\epsilon}{K_{\text{eff}} \alpha} \right) ,
\]

with an optimal "specific specificity", \(D^\ast = \Delta \Delta G^\ast / \delta r_0 \approx 0.85 (\epsilon / \sigma) \).

We fit equation (5) to the MeCh model predictions for the optimal mismatch (fig. 5C). For the case of an open binding pocket (\(\Delta \theta_0 > 0 \)), we find an intercept of 0.5–0.6 and effective softening 0.57 < \(\alpha < 0.71 \), in broad agreement with the phenomenological model. For a narrow pocket, we find qualitatively similar behavior: Due to steric exclusion, less mismatch is needed for a maximally rigid protein (i.e., the intercept is closer to zero); the slope of the \(r_0^\ast / \sigma \) line is approximately double in this case, since the reduction in affinity due to steric exclusion is roughly twofold (2\(\epsilon \)) compared to the open pocket case (fig. 1B).

The phenomenological model (eq. 5) elucidates two findings of the detailed protein models: (i) Mismatch is needed even for extremely rigid proteins (fig. 5B). (ii) The optimal mismatch depends on a tradeoff between chemical binding energy and mechanical energy, as demonstrated in

Fig. 5. Phase diagram of affinity and specificity for the MeCh model. (A,B) Binding affinity (A) and specificity (B) as a function of protein flexibility, and shape mismatch between cognate ligand and binding pocket (\(\epsilon = 8 \text{ kT} \), \(|\Delta \theta| = 10^\circ \), \(-T \Delta S_0 = 0, K_A = 10^4 \text{ kT/nm}^2 \)). In the top plot (B), the cognate ligand is smaller than the noncognate, and the binding pocket is open to the ligand; in the bottom plot (B), the cognate ligand is larger than the noncognate, and the binding pocket is narrow compared to the ligand. The optimal mismatch for a given flexibility is shown by the black line. Cyan arrows (A) indicate proposed experimental trajectories of antibodies during affinity maturation (Ovchinnikov et al. 2018). Purple arrows (B) indicate proposed experimental trajectories of enzyme evolution (top—esterase, bottom—cytochrome P450), and red arrows indicate predicted trajectories of suggested experiments (Martínez-Martínez et al. 2018; Nutschel et al. 2021). (C) Scaling of optimal mismatch \(r^\ast \) with chemical energy \(\epsilon \) and stiffness \(K \). Fits (lines) to model results (symbols) are shown for open (top) and closed (bottom) binding pockets, and for \(\epsilon = 2 \) and 20 kT. Symbols tend to overlap.
Where optimal specificity is achieved at a constant ratio c/K. In principle, this simple fit will also apply to the G-Mech model, but there $K_{eq}(K_0)$ has to be extracted for each protein (supplementary fig. S6, Supplementary Material online).

Discussion

Through analysis of a conceptually simple, yet multifaceted model of molecular discrimination, we start to understand the mechanisms, and evolution, of molecular discrimination.

How Difficult is Molecular Discrimination?

It depends on the context. For example, proteins that bind to nucleic acids or lipids must find their target out of a dizzying gallery of lookalikes (Contreras et al. 2012; Jankowsky and Harris 2015; Kribelbauer et al. 2019).

Enzymes need to be able to release their product after careful fine-tune structure and dynamics at the binding site, since mutations at distal residues can have small yet significant effects. In principle, the difficulty, Ψ, can be expressed as a function of the set of ligands, $\{\Lambda\}$ and the required degree of specificity,

$$\Psi[\Lambda^C, \Delta G_C, \Lambda^NC_1, \Delta \Delta G_i, \ldots, \Lambda^NC_i, \Delta \Delta G_i],$$

where ΔG_C is the optimum binding affinity of the cognate ligand, and $\Delta \Delta G_i$ is the required minimum binding energy gap between the cognate ligand Λ^C and noncognate ligand i, Λ^NC_i; the degree of specificity required for each noncognate ligand depends on the in vivo concentration (Gade et al. 2021), and the cost of incorrect binding.

The difficulty Ψ is a nonlinear function, which we expect to generally increase with: The required specificity ($\Delta \Delta G$), the number of similar, noncognate ligands Λ^NC_i, and how easy it is to distinguish them from the cognate ligand Λ^C. It is easier to distinguish: If the cognate ligand is smaller than the noncognate, as it allows steric exclusion of the larger ligand (fig. 1B); if the cognate ligand can form more energetic bonds (e.g., an extra hydroxyl group effectively increases c) (Peracchi 2018) or has distinct chemical differences (e.g., positive versus negative charge) to the noncognate ligands (Barrozo et al. 2015). We lack a general, robust method of quantifying Ψ; creating a metric of ligand discriminability (not the same as similarity, Stephenson and Freeland 2013; Rácz et al. 2018) would be immensely useful for, e.g., predicting sites for specific inhibition of proteins. For now, we propose that an ad hoc approximation for Ψ could be taken to be the degrees of freedom needed to achieve functional discrimination (fig. 6A).

Molecular Discrimination by a Hypothetical Mechano-chemical Machine

Lock-and-key binding is most specific but only under very strict conditions (fig. 1B): The noncognate ligands must be larger than the cognate ligand (steric exclusion), the cognate ligand must perfectly match the binding site, and both protein and ligand must be rigid. Otherwise, some mismatch between cognate ligand and binding site is always needed to optimize specificity (fig. 1D)—such “conformational proofreading” (i.e., an energetic penalty) minimizes binding to the noncognate ligand(s) (Savir and Tlusty 2007, 2010, 2013; De Vlaminck et al. 2012). The path to better discrimination still lies with higher rigidity, but increasing control over shape mismatch is needed, since deviations from the optimal mismatch are tolerated less and less as rigidity increases (fig. 1D). Ultimately, the key feature of good discrimination is precision: The right amount of flexibility, coupled with the right shape, results in optimal deformation.

Molecular Discrimination by Proteins

Proteins, as genetic-mechano-chemical machines, have some inherent features that strongly constrain their molecular discrimination ability (Sikosek and Chan 2014; Peracchi 2018). Most interactions between amino acids are noncovalent, so proteins cannot be very rigid. Moreover, protein geometry is limited to the topology of a folding chain, composed of discrete units (amino acids) of approximately 1 nm in size, so perfect shape match is practically impossible. Finally, evolution advances in discrete steps, mutation, deletions, and insertions—not via continuous tuning.

In light of these constraints, mutations very close to a binding site are bound to have a large effect on the flexibility and geometry of the binding site (Lopes et al. 2010). On the other hand, mutations further from the binding site can have ever smaller effects (Adams et al. 2019; Wang et al. 2020), enabling fine-tuning of mechanics (fig. 3) (Koenig et al. 2017; Otten et al. 2018; Modi et al. 2021; Ray et al. 2021; Karamitros et al. 2022; Ose et al. 2022), and structure (Aditham et al. 2021; Markin et al. 2021). For example, in a
separate recent study of ours, we studied the effect of single mutations on structure (using proteins in the protein data bank and AlphaFold), finding that structural perturbations are felt up to 2 nm away from the mutated residue (McBride et al. 2022). This is consistent with our assertion that far-away mutations can influence molecular discrimination.

These observations, taken together with the finding that good discrimination necessitates precision, lead us to propose that larger proteins—as they have more degrees of freedom (potential mutations)—can achieve better discrimination through finer control over protein dynamics and structure at the binding site (fig. 6B). For a given discrimination task, there is a minimum protein size (fig. 4C and D), but such an efficient protein may be difficult to evolve. As protein size grows beyond the bare minimum, there are ever more sequences capable of solving the problem, which results in sequences that are evolvable and robust (fig. 4C and D). The proposed theory, thus, predicts that proteins have a lower bound on the size required to achieve discrimination and that they will be larger than this in order to be evolvable (fig. 6A). It is not clear how close proteins get to this minimum, but it would be more likely in prokaryotes since they have greater efficiency requirements.

Examining and Predicting Experimental Trends
Affinity and specificity vary nonmonotonically with $\Delta\theta_{LS}$, K, and ϵ, so there are no general, unidirectional trends. Still, we can discuss trends found in the experimental literature in the context of figure 5A and B and offer explanations that are consistent with our model and lead to testable predictions.

Many studies report that germline antibodies are flexible and become more rigid in a process known as affinity maturation (Van Regenmortel 2014; Mishra and Mariuzza 2018). A recent in silico directed evolution study corroborated this and also showed that some antibodies first become more flexible, before later becoming more rigid (Ovchinnikov et al. 2018). According to our model (cyan arrows, fig. 5A), the former case should occur when antibodies have close to optimal shape mismatch (low $|\Delta\theta_{LS}|$); the latter case should occur when antibodies have high shape mismatch (high $|\Delta\theta_{LS}|$). This prediction can be tested by measuring shape (and chemistry; note we operationalized mismatch through shape, but shape and chemistry are inseparable in real molecules) mismatch: One can use measures based on static structure (Chen and Weng 2003; Chen and Honig 2010; Yan and Huang 2019), but for better results, one should calculate how often the optimal binding configuration is sampled in the free antibody, using molecular dynamics simulations (Karplus and McCammon 2002; Münz et al. 2012; Pabon and Camacho 2017; Kamenik et al. 2021).

Our model supports the notion that ancestral enzymes were both flexible and promiscuous (Petrović et al. 2018), as flexibility is often anti-correlated with specificity in our model. However, we find that the correlation between flexibility and specificity depends on shape and chemical binding energy (fig. 5B). This can be illustrated by two case studies that relate conflicting accounts of the role of flexibility in enzyme promiscuity: Flexibility and promiscuity are correlated in a group of 57 human cytochrome P450 (CYT) enzymes (Becker et al. 2021), while the opposite trend is observed in a group of 147 esterases (Nutschel et al. 2021). In the case of CYT, we know that the binding pocket is quite small ($\Delta\theta_{LS} < 0$), so we can infer that the proteins fall to the right of the optimal line (bottom purple arrow, fig. 5B). Thus, our model predicts that as rigidity increases, both specificity and affinity will eventually decrease as the protein will be too stiff to deform (bottom red arrow, fig. 5B). This can be tested by increasing CYT stiffness via directed evolution (Hill et al. 2016). In contrast to CYT, the esterases have open active sites ($\Delta\theta_{LS} > 0$), and we know that promiscuity is correlated with the volume of the active site (Barrozo et al. 2015; Martínez-Martínez et al. 2018), so we can infer that the proteins fall to the left of the optimal line (top purple arrow, fig. 5B). In this case, further increasing esterase flexibility via directed evolution should reveal that there is an optimal range of flexibility where specificity is maximized (top red arrow, fig. 5B).

Our model explains how affinity and specificity can be either positively (Eaton et al. 1995; Gao et al. 2021) or negatively (Greenspan 2010) correlated within a set of proteins, depending on how they differ in shape mismatch and flexibility (supplementary fig. S7, Supplementary Material online). For example, affinity and specificity are positively correlated in two cases: When proteins differ along optimal line (black line, fig. 5A and B) or orthogonal to the optimal line. In the former case, deformation energy decreases when affinity and specificity increase; in the latter case, deformation energy increases when affinity and specificity increase (supplementary fig. S7, Supplementary Material online). This prediction may be tested by studying the transcription factor Pho4, where increased binding affinity of the cognate CACGTG nucleotide sequence was found to improve discrimination of the cognate over the noncognate CACGTT sequence in 210 variants (Aditham et al. 2021). These variants can be studied using molecular dynamics simulations, where deformation energy in our model is analogous to the change in internal energy of a protein upon binding (Reyes and Kollman 2000; Kankaninen et al. 2004; Park et al. 2016).

A challenge in testing these predictions is the vast amount of data that is needed, since one needs to measure multiple dimensions for a combination of proteins and ligands. However, multiple methods can characterize shape mismatch, flexibility, chemical bond energy, deformation energy, and entropy. We advocate combining molecular dynamics simulations (which can characterize flexibility and calculate deformation energy) with high-throughput experiments (which can measure binding kinetics) and to develop methods to control for orthogonal effects such as differences in protein stability or foldability (Markin et al. 2021). Existing public data sets from previous
experiments present a facile opportunity in this regard (Nam et al. 2012; Huang et al. 2015; Martinez-Martínez et al. 2018; Piazza et al. 2018; Becker et al. 2021).

Molecular Discrimination by Aminoacyl-tRNA Synthetases

To evaluate the theory that protein size depends on task difficulty, we need to know both the relevant noncognate ligands and necessary binding specificity. In the case of aminoacyl-tRNA synthetases (ARSs), we know the relevant ligands (the 20–30 proteogenic and nonproteogenic amino acids present in cells) and that they have similar in vivo concentrations and similar costs associated with missense mutations. This presents a natural control, such that task difficulty is reduced to a question of discriminability between cognate and noncognate ligands. This is still difficult to evaluate, but we can start by using the available experimental data on pairwise binding specificity of ARSs. We can rationalize that one out of a pair is easier to recognize if it is smaller by a methyl group (steric exclusion) or has an extra hydroxyl group (can form more high energy bonds). Thus, it is difficult to discriminate: threonine from serine (minus one methyl), isoleucine from valine (minus one methyl), phenylalanine from tyrosine (plus one hydroxyl), and alanine from serine (plus one hydroxyl) (Tawfik and Gruic-Sovulj 2020).

Comparing ARSs of these pairs, we find that the ARS of the easier-to-recognize ligand has greater specificity and, with the exception of Val-Ile, they are also smaller (fig. 7). This exception may be due to the difficulty in general in distinguishing between many aliphatic amino acids, a point illustrated by the fact that these ARSs all have post-transfer editing domains (Perona and Hadd 2012). Furthermore, when we compare ARS enzymes to non-ARS enzymes that also act on amino acids (but with lower specificity requirements), the non-ARS enzymes tend to be considerably smaller than ARSs (supplementary fig. S9, Supplementary Material online) (Tawfik and Gruic-Sovulj 2020). These findings support the theory that the protein size is related to the difficulty of the discrimination task. We expect that ARSs are an exemplary class with which to further evaluate theories on protein specificity.

Limitations and Extensions

By focusing on binding energy gap, we have posed the molecular discrimination as a thermodynamic problem. It is not immediately clear whether a kinetics-focused approach would lead to the same conclusions. For example, we find that increasing rigidity can increase specificity, but from a kinetics point of view, one might expect the opposite. There is evidence to suggest that flexibility aids formation of initial encounter complexes, which reduces the rate of futile encounters (Wang, Zhang, et al. 2013; Bar-Even et al. 2015; Plattner et al. 2017). Understanding the role of kinetics in molecular discrimination warrants a separate, focused study.

We treat chemical binding strength and mismatch (encoded in shape) as separable components in our model. This is useful for studying their relative contributions to molecular discrimination, but molecules cannot be deconstructed in this way. It may be possible, however, to describe the differences in interactions between a protein and several ligands using some type of principal components or reduced dimensions. In this way, one may relate the model results to discrimination of real molecules. In a similar vein, we have simplified our model by assuming that ligands are rigid. We speculate that if ligands were allowed to move, this would produce results consistent with a rigid ligand and a more flexible protein. This is consistent with our finding (via the phenomenological model) that many spring constants can be reduced to one effective spring constant. Additionally, if one ligand is more flexible than another, it may be captured by an “effective mismatch” term that takes into account a ligand’s ability to change shape. In general, protein function is typically governed by a small number of effective parameters, as

![Fig. 7. Pairwise selectivity—ratio of cognate vs noncognate K_M/K_{cat}—of aminoacyl-tRNA synthetases (ARSs), and ARS complex size, of pairs of similar amino acid ligands, where in each pair the labels are colored according to whether it should be easier (black) or more difficult (red) to discern. Ligands differ by one methyl group (left, ligand with additional –CH$_3$ in red) or one hydroxyl group (right, additional –OH in black). Differences are highlighted in diagrams (top) with dotted circles.](https://doi.org/10.1093/molbev/msac217)
manifested by drastic dimensional reduction in genotype-to-phenotype map (Eckmann and Tlusty 2021). Our simple model demonstrates that specificity is a function of the effective flexibility, shape mismatch, and local chemical interaction, but further work on more detailed models is needed to understand how many effective dimensions are needed to describe specificity.

Our model treats deformations as elastic, so it may not generalize well to proteins that undergo plastic deformations upon binding. In fact, the restructuring of intramolecular bonds can result in a gain in entropy (Fenley et al. 2012; Wankowicz et al. 2022) or an increase in internal enthalpy (Ferroir et al. 2007). Furthermore, a simplifying assumption in elastic network models is that bonds are at their equilibrium lengths in the ensemble-average protein structure. However, proteins are noncrystalline matter where many bonds are “prestressed” due to geometrical frustration (the inability to achieve equilibrium length in all bonds simultaneously) (Pande et al. 1997; Ferreiro et al. 2014). The frustration gives rise to a rugged energy landscape with myriad of local minima. The model can be easily extended to incorporate frustration by modeling a network with heterogeneous equilibrium lengths \(\ell_{ij} \) and considering a thermal ensemble of configurations. Accounting for the role of plasticity and intrinsic disorder in biomolecular discrimination will require a more complex model.

Why are Proteins so Big?

Proteins are large macromolecules. Large proteins require large genomes and, thus, slow transcription and translation. Prokaryotic proteins, which prioritize small genomes and fast replication, should benefit immensely from smaller proteins. We do see that proteins are on average smaller in prokaryotes (312 residues) than in eukaryotes (441 residues) (Consortium 2018), but they are still quite large. Thus, there is some indispensable functional reason for protein size. We have here proposed that the difficulty of evolving proteins that can discriminate necessitates proteins of a certain size. We now discuss some alternative factors affecting protein size.

Stability is typically a base requisite for a functional protein (Srere 1984), but most proteins are marginally stable — i.e., stability is not maximized, but rather an acceptable level is reached (Sikosek and Chan 2014). Longer proteins can more easily fulfill these requirements (Bastolla and Demetrius 2005), but short sequences are often sufficiently stable (Davidson et al. 1995). Catalytic activity in enzymes is extremely important, but comparable activity levels can be found in much smaller organic catalysts (Maugh 1983; MacMillan 2008). Large surface area may be needed to make multiple interaction sites, whether for a single molecule (Henley et al. 2020) or multiple molecules (Payens 1983; Srere 1984; Van Regenmortel 2014). While we propose that size is determined by the difficulty of molecular discrimination, all of the above constraints may also be relevant factors.

METHODS

Calculating Binding Entropy

Binding will typically involve loss of entropy due to constraining the internal fluctuations of the protein. To calculate this change in conformational entropy upon binding, one starts by analyzing the elastic energy of a spring network. It is given by \(\mathcal{E} = \frac{1}{2} (u | H | u) \), where \(| u \rangle \) is the displacement vector (of size \(d \cdot n_u \), where \(d \) is the dimension) and \(H \) is the elasticity matrix (for details, see Dutta et al. 2018; Eckmann et al. 2019). Spectral decomposition of \(H \) gives \(H = \sum_n \lambda_n | u_n \rangle \langle u_n | \), where \(| u_n \rangle \) are the normal modes and \(\lambda_n \) are the eigenvalues. There are \(\frac{d(d + 1)}{2} \) zero energy modes of translation and rotation without deformation that we ignore. We can then express the energy in normal mode coordinates, \(\mathcal{E} = \sum_n \lambda_n \xi_n^2 \).

To estimate the entropy, we consider the partition function of the elastic deformations, \(Z = \int d | u \rangle e^{-\beta \mathcal{E}} \), where \(\beta = 1/(kT) \) is the inverse temperature. Expressed in normal coordinates, we get \(Z = \sum_n \left(\int d \xi_n \exp(-\beta \lambda_n \xi_n^2/2) \right) = \sum_n \left(2\pi / (\beta \lambda_n) \right)^{1/2} \), where the product is taken over the modes for which \(\lambda_n \neq 0 \). Entropy \(S \) is obtained from the relation \(S = \ln Z - \partial \ln Z / \partial \ln \beta \), so that \(S = \frac{1}{2} \sum_n \left(\ln (2\pi e) - \ln (\beta \lambda_n) \right) \). When the protein binds, the modes and their eigenvalues will change. The resulting entropy change is the sum over the changes in the logarithms of the elastic mode energies before and after binding.

\[\Delta S = S_{\text{bound}} - S_{\text{unbound}} = -\frac{1}{2} \sum_n \Delta \ln \lambda_n. \]

Typically, the mode energies \(\lambda_n \) increase or stay unchanged upon binding since the motion is more constrained, and, therefore, the entropy is reduced, \(\Delta S < 0 \), as the protein–ligand complex stiffens (Richard 2019). This effect is calculated as follows: We add a new bond at the bottom of the \(\Lambda \) (opening of the binding site) and make the three bonds between the amino acids of the binding site very rigid by increasing them to \(K_\Lambda = 10^4 \text{ kT/nm}^2 \).

In the model of entropy used in this work, entropy decreases upon binding, and flexible proteins lose more conformational entropy than rigid proteins. This results from our choice of binding stiffness, assuming that binding stiffens the pocket, \(K_\Lambda = 1000 \geq K \) and that \(K_\Lambda \) is practically constant for all proteins. In reality, flexible proteins will of course have more entropy and, thus, more to lose. Proteins are most often found to lose entropy upon binding, but many proteins instead gain entropy due to allosteric conformational change (Fenley et al. 2012). Moreover, there are other contributions to entropy, such as solvent entropy and ligand entropy (Savir and Tlusty 2008; Dragan et al. 2017; Peccati and Jiménez-Osés 2021), that are not treated in our model (e.g., contributions of translational and rotational entropy do not depend on the internal degrees of freedom and can be excluded).
Phenomenological Model
Consider a free energy ΔG, which is a function of r, the remaining gap in the binding site (see text), and the initial gap $r_0 \approx \equiv \Delta\theta$. The elastic energy is a function of the deformation $u = r - r_0$, while the chemical energy is a function of the gap r, such that the overall free energy is $\Delta G(r; r_0) = E(u) + C(r) - T\Delta S$, with the entropy change ΔS. For a given mismatch r_0, the protein equilibrates at a gap $r = \bar{r}$ when the elastic and chemical forces are equal in magnitude and opposite, $(\partial \Delta G / \partial r)_{r_0} = -E'(u) + C'(r) = 0$. This condition defines an equilibrium line in the (r, r_0)-plane, $M(r, r_0) = 0$. Taking the differential of the line, $\delta M = -E'(u)\delta r_0 + (E''(u) + C''(r))\delta r = 0$, we obtain its slope, $\delta r_0 / \delta r = 1 + C''(r)/E''(u)$. The binding free energy is the equilibrium value along the line $\Delta G(r_0) = \Delta G(\bar{r}, r_0)$.

The specificity is the free energy difference between a cognate ligand and a competitor, $\Delta \Delta G = \Delta G(\bar{r}) - \Delta G(0) - \Delta G(r_0) \approx D \cdot \delta r_0$, where the “specificity” (or “discriminability”) is the specificity per shape difference, $D \equiv \partial \Delta G / \partial r_0$. Hence, the specificity is exactly the elastic force, $D = (\partial \Delta G / \partial r_0) = E'(u)$ (since along the equilibrium, $(\partial \Delta G / \partial r_0)_{r_0} = 0$). Maximal specificity is, therefore, obtained for the mismatch $r_0^* \approx (\delta \Delta G / \delta \delta r_0)_{r_0} = \delta r / \delta r_0 = E''(u)(1 - \delta r / \delta r_0) = 0$. It follows that maximal specificity is achieved when the slope of the equilibrium curve is $\delta r_0 / \delta r = 1$. From the equation of the equilibrium line, we find that this optimum is the inflection point of the chemical energy, $C''(r) = 0$, where the chemical attractive force is also maximal. For chemical energies that lack an inflection point, one searches for a global maximum of $C(r)$. There are also cases with multiple equilibrium points and discontinuities, which need to be considered separately. In the text, we apply this general result to the MeCh-model and obtain the manifold of optimal r_0^* mismatch as a function of model parameters K, and ϵ.

Calculating Sequence Covariance and Correlation
We follow the standard procedure: One takes a set of n_S sequences S, of length $n_A + n_B$, represented as vectors of ones (s) and zeros (w) and subtracts from each the average sequence vector $S \rightarrow S - \bar{S}$ (all entries of S are between 0 and 1). The resulting sequences are the rows of an $n_S \times (n_A + n_B)$ matrix, M. The covariance matrix is then $Q = (n_S - 1)^{-1}M^T M$. Finally, the matrix P of the Pearson correlation coefficients between pairs of positions in the sequence (the “correlation matrix”) is $P = dg Q^{-1/2}Q dg Q^{-1/2}$, where $dg Q$ is the matrix of the diagonal elements of Q (i.e., the variances).

Connecting Genes to Structure
We allow neighboring w and s amino acids to interact such that they either attract, repel, or neither: attraction (repulsion) between two amino acids results in their equilibrium positions moving closer together (further apart) by $\delta r = \alpha (\delta \bar{r} = -\alpha)$. We generate interaction tables $\alpha(a_i, a_j)$ such that $w - w, w - s / s - w$, and $s - s$ bonds, respectively result in one of the three possible interactions. Thus, we can generate up to 15 unique interaction tables (reduced from a total of $3^4 = 81$ possible tables, by accounting for symmetries). We show results for one set in fig. 4; we verified that the results do not depend on a particular set and show results for another set in supplementary figure S10, Supplementary Material online. The new equilibrium position r_i of each amino acid is then determined by the original equilibrium position \bar{r}_i, plus the average over the displacements induced by its N_j neighbors,

$$r_i = \bar{r}_i + \frac{1}{N_j} \sum_{j} \alpha(a_i, a_j) \delta \bar{r}_j,$$

where j is the index of a bonded neighbor and $\delta \bar{r}_j = (\bar{r}_j - \bar{r}_i) / \bar{r}_i$ is a unit vector pointing from \bar{r}_j to \bar{r}_i. The equilibrium lengths of the springs are then set to $\ell_{ij} = |r_i - r_j|$. An alternative approach is to model mutational deformations as the response to linear perturbations of the network’s Hamiltonian (Julián 2008; Marcos and Echave 2020), as there is mounting evidence of correlations between protein mechanics and structural evolution (Eckmann et al. 2019; Tang and Kaneko 2021).

The Optimization Algorithm
For fixed coupling constants, we find a configuration that optimizes energy. After moving the protein close to the ligand, we use the L-BFGS method (Byrd et al. 1995) to find a minimum. To model steric repulsion, we restrict the positions of the amino acids so that they are outside the sector defined by the ligand position and angle θ. Two postprocessing checks precede the analysis: We require that the orientation of each triangle in the protein maintains its orientation, i.e., that the surface is not flipped, and the minimized energy must be at least as low as that obtained by a completely rigid protein. We discard any results that do not pass these tests.

Evolvability and Robustness
Evolvability is the ability of a population of organisms to evolve new phenotypes. We measure this as the maximum number of mutations a fit sequence can accumulate without having fitness less than zero. Robustness is the ability of a sequence to mutate while retaining its original function. We measure robustness as the minimum number of mutations needed for a fit sequence to become nonfit. In practice, we calculated the edit distance between fit sequences and clustered them using a density-based clustering algorithm (DBSCAN, implemented in the sklearn python module; eps $= 1$, min_samples $= 10$) (Pedregosa et al. 2011). Evolvability of a sequence is then the maximum distance within a cluster, while robustness is the minimum distance within a cluster. For both measures, we averaged over all fit sequences (according to eq. 4) and normalized by dividing by the genome size.
Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.

Acknowledgements

We thank Jacques Rougemont for discussions. This work was supported by the Institute for Basic Science, Project Code IBS-R2020-D1. J.P.E. was partially supported by the Fonds National Suisse Swissmap.

Data Availability

All codes (models, analysis, figures) and some data are available at https://github.com/jomimc/RecProtgithub.com/jomimc/RecProt. Additional data can be shared upon reasonable request.

References

Consortium, The UniProt. 2018. Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. 47(D1):D506–D515.

Adsams RM, Kinney JB, Walczak AM, Mora T. 2019. Epistasis in a fitness landscape defined by antibody-antigen binding free energy. Cell Syst. 8(1):86–93.e3.

Aditham AK, Markin CJ, Mokhtari DA, Del Rosso N, Fordyce PM. 2021. High-throughput affinity measurements of transcription factor and DNA mutations reveal affinity and specificity determinants. Cell Syst. 12(2):112–127.e11.

Atigian AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. 2001. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J. 80(1):505–515.

Bar-Even A, Milo R, Noor E, Tawfik DS. 2015. The moderately efficient. Nature 481(7382):525–529.

Copley SD. 2020. The physical basis and practical consequences of biological promiscuity. Phys Biol. 17(5):051001.

Davidson AR, Lumb KJ, Sauer RT. 1995. Cooperatively folded proteins in random sequence libraries. Nat Struct Biol. 2(10):856–864.

de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 15(7):480–490.

De Vlamink I, van Lohouht MTJ, Zweifel L, den Blanken J, Hooning K, Hage S, Kerssemakers J, Dekker C. 2012. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol Cell. 46(5):616–624.

Dragan AI, Read CM, Crane-Robinson C. 2017. Enthalpy–entropy compensation: the role of solvation. Eur Biophys J. 46(4):301–308.

Dutta S, Eckmann JP, Libchaber A, Tlusty T. 2018. Green function of correlated genes in a minimal mechanical model of protein evolution. Proc Natl Acad Sci USA. 115(20):E4559–E4568.

Eaton BE, Gold L, Zichy DA. 1995. Let’s get specific: the relationship between specificity and affinity. Chem Biol. 2(10):633–638.

Eckmann JP, Rougemont J, Tlusty T. 2019. Colloquium: proteins: the physics of amorphous elastic matter. Rev Mod Phys. 91(3):031001.

Eckmann JP, Tlusty T. 2021. Dimensional reduction in complex living systems: where, why, and how. Bioessays 43(9):2001006.

Elia M, Willner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb T, Tawfik DS. 2012. The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 491(7422):134–137.

Fenley AT, Muddanna HS, Gilson MK. 2012. Entropy–enthalpy transduction caused by conformational shifts can obscure the forces driving protein–ligand binding. Proc Natl Acad Sci USA. 109(49):20006–20011.

Ferreiro DU, Hegler JA, Komives EA, Wolynes PG. 2007. Localizing frustration in native proteins and protein assemblies. Proc Natl Acad Sci USA. 104(50):19819–19824.

Ferreiro DU, Komives EA, Wolynes PG. 2014. Frustration in biomolecules. Q Rev Biophys. 47(4):285–363.

Fischer E. 1894. Einfluß der konfiguration auf die wirkung der enz.

Ber Dtsch Chem Ges. 27(3):2985–2993.

Frederick KK, Marlow MS, Valentine KG, Wand AJ. 2007. Conformational entropy in molecular recognition by proteins. Nature 448(7151):325–329.

Gade M, Tan LL, Damoy AV, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. 2021. Substrate dynamics contribute to enzymatic specificity in human and bacterial methionine adenosyltransferases. JACS Au. 1(12):2349–2360.

Gallicchio E, Lapelosa M, Levy RM. 2010. Binding energy distribution analysis method (BEDAM) for estimation of protein-ligand binding affinities. J Chem Theory Comput. 6(9):2961–2977.

Gao F, Glaser J, Glotzer SC. 2021. The role of complementary shape in protein dimerization. Soft Matter. 17:7376–7383.

Gohlke H, Klebe G. 2002. Approaches to the description and prediction of protein-ligand binding specificity. Proteins 51(3):397–408.
Perona JJ, Hadd A. 2012. Structural diversity and protein engineering. Trends Biochem Sci. 37(2):82–86.

Pedrović D, Petrović SCL, Sanchez-Ruiz JM (2018). Conformational dynamics and enzyme evolution. J R Soc Interface. 15(144):20180330.

Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Savir Y, Tlusty T. 2008. Optimal design of a molecular recognizer: Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. J Mol Recognit. 12(3):177–190.

Scheidt T, Caroza JA, Kolbe CC, Aprile FA, Tkachenko O, Bellaiche MMJ, Meisl G, Peter QAE, Herling TW, Ness S, et al. 2021. The binding of the small heat-shock protein b-crystallin to fibrils of a-synuclein is driven by entropic forces. Proc Natl Acad Sci USA. 118(38):e2018790118. 10.1073/pnas.2018790118.

Sergeeva AP, Katsamba PS, Cosmanescu F, Brewer JJ, Ahlsen G, Mannepalli S, Shapiro L, Honig B. 2020. DIP/DRP interactions and the evolutionary design of specificity in protein families. Nat Commun. 11(1):2125.

Stephenson JD, Freeland SJ. 2013. Unearthing the root of amino acid similarity. J Mol Evol. 77(4):149–169.

Sun Z, Yan YN, Yang M, Zhang JZ. 2017. Interaction entropy for protein-protein binding. J Chem Phys. 146(12):124124.

Sundberg EJ, Mariuzza RA. 2002. Molecular recognition in antibody-antigen complexes. In: Janin J, Wodak SJ, editors. Protein modules and protein–protein interaction. Vol. 61. Amsterdam: Academic Press. p. 119–160.

Tang QY, Kneiko K. 2021. Dynamic evolution correspondence in protein structures. Phys Rev Lett. 127:098103.

Tawfik OK, Dan S. 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 79(1):471–505.

Tawfik DS, Gruic-Sovulj I. 2020. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J. 287(7):1284–1305.

Tirion MM. 1996. Large amplitude elastic motions in proteins from a hierarchical point of view. J Chem Phys. 105(12):124124.

Van Regenmortel MHV. 2014. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit. 27(11):627–639.

Wagner A. 2013. Robustness and evolvability in living systems. Princeton, NJ: Princeton University Press.

Wans ES, Bhati AP, Zasada SJ, Cowey PV. 2020. Rapid, accurate, precise and reproducible ligand&x2026;protein binding free energy prediction. Interface Focus. 10(6):20200007.

Wang M, Cang Z, Wei GW. 2020. A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation. Nat Mach Intell. 2(2):116–123.

Wang Y, Chu X, Longhi S, Roche P, Han W, Wang E, Wang J. 2013. Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proc Natl Acad Sci USA. 110(40):E3743–E3752.

Wang Q, Zhang P, Hoffman L, Tripathi S, Homouz D, Liu Y, Waxham MN, Cheung MS. 2013. Protein recognition and selection through conformational and mutually induced fit. Proc Natl Acad Sci USA. 110(51):20545–20550.

Weikl TR, Paul F. 2014. Conformational selection in protein binding and function. Protein Sci. 23(11):1508–1518.

Yan Y, Huang SY. 2019. Pushing the accuracy limit of shape complementarity for protein-protein docking. BMC Bioinform. 20(255):696.

Yang J, Gao M, Xiong J, Su Z, Huang Y. 2019. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci. 28(11):1952–1965.