Abstract. For a real number k, define $\pi_k(x) = \sum_{p \leq x} p^k$. When $k > 0$, we prove that

$$\pi_k(x) - \pi(x^{k+1}) = \Omega_{\pm} \left(\frac{x^{\frac{k}{k+1}+k}}{\log x \log \log \log x} \right)$$

as $x \to \infty$, and we prove a similar result when $-1 < k < 0$. This strengthens a result in a paper by J. Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that $\pi_k(x) - \pi(x^{k+1})$ is usually negative when $k > 0$ and usually positive when $-1 < k < 0$.

For a real number k, define

$$\pi_k(x) = \sum_{p \leq x} p^k, \quad \psi_k(x) = \sum_{n \leq x} \Lambda(n)n^k,$$

where the first sum runs over prime numbers and $\Lambda(n) = \log p$ if $n = p^m$ (with $m \geq 1$) is a prime power, and $\Lambda(n) = 0$ otherwise. Then $\pi_0(x) = \pi(x)$, the number of primes less than or equal to x, and $\psi_0(x) = \psi(x)$ is the Chebyshev function (Note: There are other uses of the notation ψ_k in the literature that are different from the present one). As usual, we use the notation $f(x) = \Omega_{\pm}(g(x))$ to indicate that there exists a constant $c > 0$ such that $f(x) > cg(x)$ for a sequence of $x \to \infty$ and $f(x) < -cg(x)$ for a sequence of $x \to \infty$. Our goal is to prove the following:

Theorem 1. Let θ_0 be the supremum of the real parts of the zeros of $\zeta(s)$, and let $\epsilon > 0$. As $x \to \infty$,

$$\pi_k(x) - \pi(x^{k+1}) = \begin{cases} \Omega_{\pm}(x^{\theta_0+k-\epsilon}) & \text{if } k > 0, \\ \Omega_{\pm}(x^{(k+1)(\theta_0-\epsilon)}) & \text{if } -1 < k < 0 \text{ and } \theta_0 < 1. \end{cases}$$

2010 Mathematics Subject Classification. Primary: 11N05, Secondary: 11M26.
Key words and phrases. Oscillations, Riemann Hypothesis.
If the Riemann Hypothesis is true,

\[
\pi_k(x) - \pi(x^{k+1}) = \begin{cases}
\Omega \left(\frac{x^{k+\frac{1}{2}} \log \log \log x}{\log x} \right) & \text{if } k > 0, \\
\Omega \left(\frac{x^{1/2} \log \log x}{\log x} \right) & \text{if } k < 0.
\end{cases}
\]

We are not able to treat the case where \(\theta_0 = 1 \) and \(k < 0 \).

A paper of J. Gerard and the author [2] showed that \(\pi_k(x) \) is asymptotic to \(\pi(x^{k+1}) \) (see also [4] and [8]) and proved the first half of the theorem. Unfortunately, this proof was based on an incorrect formula. When the correct formula is used, the proof in [2] is valid only when the Riemann Hypothesis is false. The main work of the present paper uses a technique of Littlewood to establish the second half of the theorem, namely under the assumption that the Riemann Hypothesis is true. The second half implies the first half when \(\theta_0 = 1/2 \).

In [2], a heuristic explanation was given for why \(\pi_k(x) - \pi(x^{k+1}) \) is usually negative when \(k > 0 \) and usually positive when \(-1 < k < 0 \). In Sections 2 and 3 of the present paper, the following more quantitative results are proved. The methods in these sections were inspired by [5].

Theorem 2.

\[
\int_1^\infty \frac{\pi_k(t) - \pi(t^{k+1})}{t^{k+2}} dt = -\frac{1}{k+1} \log(k+1) \begin{cases}
< 0 & \text{if } k > 0, \\
> 0 & \text{if } -1 < k < 0.
\end{cases}
\]

Theorem 3. Let \(0 < k \leq 10.32 \). The following are equivalent:

(1) The Riemann Hypothesis.

(2)

\[
\int_1^x \left(\pi_k(t) - \pi(t^{k+1}) \right) dt < 0 \quad \text{for all } x \text{ sufficiently large.}
\]

1. **Proof of Theorem 1**

Proof. When \(k < 0 \) and \(\theta_0 < 1 \), the result was proved in [2, p. 174]. It was also proved that

\[
\pi_k(x) - \pi(x^{k+1}) = -E(x^{k+1}) + x^k E(x) - k \int_2^x t^{k-1} E(t) dt + O(1),
\]

where \(E(x) = \pi(x) - \text{li}(x) \). When the Riemann Hypothesis holds, the estimate \(E(y) = O(y^{1/2} \log y) \) (see [6, Theorem 13.1]), combined with Littlewood’s oscillation result (see below, or [6, p. 479]), yields the
stronger statement given in the second half of the theorem:

\[
\pi_k(x) - \pi(x^{k+1}) = \Omega_\pm \left(\frac{x^{k+1} \log \log x}{\log x} \right) + x^k O \left(x^{1/2} \log x \right) \\
+ O \left(\int_2^x t^{k-1/2} \log t \, dt \right) + O(1) \\
= \Omega_\pm \left(\frac{x^{k+1} \log \log x}{\log x} \right),
\]

since \((k + 1)/2 > k + \frac{1}{2}\) when \(k < 0\).

In the above, we have used the following well-known lemma. Since we also use it several times in the following, we state it explicitly.

Lemma 1. Let \(r\) be a real number (positive or negative) and let \(\ell > -1\). Then

\[
\int_2^x t^\ell \log^r \! t \, dt = \frac{1}{\ell + 1} x^{\ell+1} \log^r x + O \left(x^{\ell+1} \log^{r-1} x \right)
\]

as \(x \to \infty\).

Proof.

\[
\int_2^x t^\ell \log^r \! t \, dt = \frac{1}{\ell + 1} x^{\ell+1} \log^r x + O(1) - \frac{1}{\ell + 1} \int_2^x r t^\ell \log^{r-1} \! t \, dt.
\]

When \(\ell > 0\) and \(t\) is sufficiently large, \(t^\ell \log^{r-1} \! t\) is increasing, so

\[
\int_2^x t^\ell \log^{r-1} \! t \, dt \leq x^{\ell+1} \log^{r-1} \! x,
\]

for large \(x\).

Now suppose \(-1 < \ell \leq 0\). Choose \(0 < \alpha < 1\) and choose \(\epsilon\) with \(0 < \epsilon < (\ell + 1)(1 - \alpha)/\alpha\). Then \(\alpha(\ell + 1 + \epsilon) < \ell + 1\), so when \(x\) is sufficiently large,

\[
\int_2^x t^\ell \log^{r-1} \! t \, dt = \int_2^{x^\alpha} t^\ell \log^{r-1} \! t \, dt + \int_{x^\alpha}^x t^\ell \log^{r-1} \! t \, dt \\
= O \left(\int_2^{x^\alpha} t^{\ell+\epsilon} \, dt \right) + O \left((\log^{r-1} \! x) \int_{x^\alpha}^x t^\ell \, dt \right) \\
= O \left(x^{\alpha(\ell+1+\epsilon)} \right) + O \left(x^{\ell+1} \log^{r-1} \! x \right) \\
= O \left(x^{\ell+1} \log^{r-1} \! x \right).
\]

\(\square\)
For the remainder of this section, we are interested in \(k > 0 \), although we state the lemmas in forms that hold for \(k > -1 \).

Let

\[
\begin{align*}
(1) \quad \Pi_k(x) &= \pi_k(x) + \frac{1}{2} \pi_{2k}(x^{1/2}) + \frac{1}{3} \pi_{3k}(x^{1/3}) + \frac{1}{4} \pi_{4k}(x^{1/4}) + \cdots \\
(2) \quad &= \sum_{n \leq x} \frac{\Lambda(n)n^k}{\log n}.
\end{align*}
\]

In [2], the formula (1) was given incorrectly (it used \(\pi_k(x^{1/2}), \pi_k(x^{1/3}), \) etc. instead of \(\pi_{2k}(x^{1/2}), \pi_{3k}(x^{1/3}), \) etc.).

Lemma 2. Let \(k > -1 \). Then

\[
\Pi_k(x) = \pi_k(x) + \frac{1}{2} \pi_{2k}(x^{1/2}) + O(x^{k+\frac{1}{2}}) + O(\log x)
\]

and

\[
\Pi_k(x) = \pi_k(x) + O\left(\frac{x^{k+\frac{1}{2}}}{\log x}\right) + O(\log x).
\]

Proof. There are \(O(\log x) \) positive integers \(\ell \) such that \(x^{1/\ell} \geq 2 \), so the sum in (1) has \(O(\log x) \) nonzero terms. When \(k \geq 0 \), we have

\[
\pi_k(y) \leq \pi(y)y^k \leq 1.3 \frac{y^{k+1}}{\log y}
\]

(the first inequality is the trivial estimate and the second is in [7]). Therefore,

\[
\frac{1}{3} \pi_{3k}(x^{1/3}) + \frac{1}{4} \pi_{4k}(x^{1/4}) + \cdots = O\left(\frac{x^{k+\frac{1}{2}}}{\log x}\log x\right) = O(x^{k+\frac{1}{2}}).
\]

Now suppose \(-1 < k < 0 \). Let \(n \) be the largest positive integer such that \(nk \geq -1 \). Since \((n+1)k < -1 \), we have \(\pi_{mk}(y) \leq \pi_{(n+1)k}(y) = O(1) \) for all \(m \geq n+1 \), and at most \(O(\log x) \) terms in (1) are nonzero.
Moreover, \(\pi_{2k}(y) \sim \pi(y^{2k+1}) \), from which it follows that
\[
\Pi_k(x) = \pi_k(x) + \frac{1}{2} \pi_{2k}(x^{1/2}) + \frac{x^{k+\frac{1}{3}}}{(3k+1) \log(x)} + o\left(\frac{x^{k+\frac{1}{3}}}{(3k+1) \log(x)}\right)
\]
\[
+ \cdots + \frac{x^{k+\frac{1}{n}}}{(nk+1) \log(x)} + o\left(\frac{x^{k+\frac{1}{n}}}{(nk+1) \log(x)}\right) + O(\log x)
\]
\[
= \pi_k(x) + \frac{1}{2} \pi_{2k}(x^{1/2}) + O\left(\frac{x^{k+\frac{1}{2}}}{\log x}\right) + O(\log x),
\]
as desired (the implied constants depend on \(k \), but not on \(x \)).

The second equality of the lemma follows from the first equality and the fact that \(\pi_{2k}(y) \sim \pi(y^{2k+1}) \). □

In [2], it was proved that \(\Pi_k(x) - \Pi_0(x^{k+1}) = \Omega_{\pm}(x^\theta_{0+k-\epsilon}) \). When \(k > 0 \), Lemma 2 allows us to change \(\Pi_k(x) \) and \(\Pi_0(x^{k+1}) \) to \(\pi_k(x) \) and \(\pi(x^{k+1}) \) with errors of \(o(x^{k+\frac{1}{2}}) \) and \(o(x^{\frac{k+1}{2}}) \), respectively. These are dominated by the oscillation term if the Riemann Hypothesis is false.

Henceforth, we assume the Riemann Hypothesis (RH) is true and deduce Theorem 1 in this case.

Lemma 3. Let \(k \) be a real number and let \(c > k+1 \). If \(x > 0 \), then
\[
\int_2^x \psi_k(t) \, dt = \frac{-1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\zeta'(s-k)}{\zeta(s-k)} \frac{x^{s+1} ds}{s(s+1)}.
\]

Proof. The proof is identical to the proof in [3, pp. 31-32]. □

Lemma 4. Assume RH. Let
\[
A = \text{Res}_{s=0} \left(\frac{\zeta'(s-k)}{\zeta(s-k)} \right) \left(\frac{s}{s+1} \right), \quad B = \text{Res}_{s=-1} \left(\frac{\zeta'(s-k)}{\zeta(s-k)} \right) \left(\frac{s}{s+1} \right).
\]

If \(k > -1 \), then
\[
\int_2^x \psi_k(t) \, dt = \frac{x^{k+2}}{(k+1)(k+2)} - \sum_{\rho} \frac{x^{\rho+k+1}}{(\rho+k)(\rho+k+1)} - Ax + B + O(x^{k-1})
\]
as \(x \to \infty \). The sum is over the zeros \(\rho \) of \(\zeta(s) \) with \(\text{Re}(\rho) = 1/2 \), counted with multiplicity.

Proof. The proof proceeds by moving the line of integration to the left. The details are the same as in [3, pp. 73-74], where the proof is given when \(k = 0 \). □
Lemma 5. Assume RH and let \(k > -1 \). Then

\[
\int_2^x \psi_k(t) \, dt = \sum_{n \leq x} (x - n) \Lambda(n) n^k = \frac{x^{k+2}}{(k+1)(k+2)} + O(x^{k+\frac{3}{2}}) + O(x).
\]

Proof. The first equality is proved by integration by parts:

\[
\int_2^x \psi_k(t) \, dt = x \psi_k(x) - \int_2^x t \, d\psi_k(t) = x \sum_{n \leq x} \Lambda(n) n^k - \sum_{n \leq x} n^{k+1} \Lambda(n),
\]

which yields the result.

The second equality follows from Lemma 4 and the absolute convergence of \(\sum 1/\rho^2 \).

Lemma 6. Assume RH and let \(k > -1 \). Then

\[
\pi_k(x) - \pi(x^{k+1}) = \psi_k(x) - \frac{x^{k+1}}{1 + k} + O(x^{k+\frac{3}{2}} \log x) + O\left(\frac{x^{k+\frac{3}{2}}}{\log x}\right).
\]

Proof. We first prove the lemma with \(\Pi_k(x) \) in place of \(\pi_k(x) \):

\[
\Pi_k(x) = \int_2^x \frac{d\psi_k(t)}{\log t} = \psi_k(x) - x \log x + \int_2^x \psi_k(t) \, dt - \frac{t^{k+1}}{k+1} \left(1 + \frac{2}{\log t} \right) dt
\]

Integation by parts yields

\[
I_1 = \frac{\sum_{n \leq x} (x - n) \Lambda(n) n^k}{x \log^2 x} + O(1)
\]

\[
+ \int_2^x \frac{\sum_{n \leq t} (t - n) \Lambda(n) n^k}{t^2 \log^2 t} \left(1 + \frac{2}{\log t} \right) \, dt
\]

\[
= O\left(\frac{x^{k+\frac{3}{2}}}{\log^2 x}\right) + O(1) + \int_2^x \frac{O(t^{k+\frac{3}{2}})}{t^2 \log^2 t} + O(t) \, dt \quad \text{(by Lemma 5)}
\]

\[
= O\left(\frac{x^{k+\frac{3}{2}}}{\log^2 x}\right) + O(1).
\]
Integration by parts also yields
\[I_2 = \frac{1}{k+1} \int_{x/2}^{x} \frac{t^{k+1}}{t \log^2 t} dt \]
\[= -\frac{x^{k+1}}{(k+1) \log x} + \int_{x/2}^{x} \frac{t^k}{\log t} dt + O(1) \]
\[= -\frac{x^{k+1}}{(k+1) \log x} + \int_{x/2}^{x} \frac{du}{\log u} + O(1) \quad \text{(substitute } u = t^{k+1}) \]
\[= -\frac{x^{k+1}}{(k+1) \log x} + \pi(x^{k+1}) + O \left(x^{k+1/2} \log x \right). \]

In the last equality, we have used the fact [6, Theorem 13.1] that the Riemann Hypothesis implies \(\pi(y) = Li(y) + O(y^{1/2} \log y) \). Putting everything together yields
\[\Pi_k(x) = \frac{\psi_k(x) - \frac{x^{k+1}}{k+1}}{\log x} + \pi(x^{k+1}) + O \left(x^{k+1/2} \log x \right) + O \left(\frac{x^{k+1/2}}{\log x} \right). \]

Since Lemma 2 tells us that
\[\Pi_k(x) = \pi_k(x) + O \left(\frac{x^{k+1/2}}{\log x} \right) + O(\log x), \]
the result of the lemma follows. \(\square \)

Lemma 6 translates oscillations of \(\psi_k(x) \) into oscillations of \(\pi_k(x) - \pi(x^{k+1}) \). We now use a method of Littlewood, as modified by Ingham, to produce oscillations in \(\psi_k(x) \). The following lemma allows us to look at \(\psi_k(x) \) averaged over a small interval.

Lemma 7. Assume RH and let \(k > -1 \). Then, uniformly for \(x \geq 4 \) and \(\frac{1}{2x} \leq \delta \leq \frac{1}{2} \),
\[\frac{1}{(e^\delta - e^{-\delta})x} \int_{e^{-\delta}x}^{e^\delta x} \left(\psi_k(u) - \frac{u^{k+1}}{k+1} \right) du \]
\[= -2x^{k+\frac{1}{2}} \sum_{\gamma > 0} \frac{\sin(\gamma \delta) \sin(\gamma \log x)}{\gamma} + O(x^{\frac{3}{2} + k}). \]

Proof. The proof follows from Lemma 4, as in the proof of [6, Lemma 15.9]. \(\square \)

Finally, the proof of Theorem 1 can now be completed using a Diophantine approximation argument, as in the proof of [6, Theorem 15.11]. In particular, suitable large values of \(x \) coupled with small
values δ can be found to show that the sum of the right side of the formula in Lemma 7 is $\Omega_\pm (\log \log \log x)$. Since the left side is the average over an interval, we find that

$$\psi_k(x) - \frac{x^{k+1}}{k+1} = \Omega_\pm \left(x^{k+\frac{1}{2}} \log \log \log x \right).$$

When $k > 0$ in Lemma 6, the oscillation term dominates. This yields the desired result for $\pi_k(x) - \pi(x^{k+1})$ and completes the proof of Theorem 1.

\[\square\]

2. PROOF OF THEOREM 2

Proof. Recall that

$$\sum_{p \leq x} \frac{1}{p} = \log \log x + B + o(1),$$

where $B = 0.261497 \ldots$ is a constant [7].

The substitution $u = t^{k+1}$ yields

$$\int_1^x \frac{\pi(t^{k+1})}{t^{k+2}} dt = \frac{1}{k+1} \int_1^{x^{k+1}} \frac{\pi(u)}{u^2} du$$

$$= -\frac{1}{k+1} \frac{\pi(x^{k+1})}{x^{k+1}} + \frac{1}{k+1} \int_1^{x^{k+1}} \frac{1}{u} d\pi(u)$$

$$= -\frac{1}{k+1} \frac{\pi(x^{k+1})}{x^{k+1}} + \frac{1}{k+1} \sum_{p \leq x^{k+1}} \frac{1}{p}$$

$$= \frac{1}{k+1} \log \log x^{k+1} + \frac{B}{k+1} + o(1).$$

Similarly,

$$\int_1^x \frac{\pi_k(t)}{t^{k+2}} dt = -\frac{1}{k+1} \frac{\pi_k(x)}{x^{k+1}} + \frac{1}{k+1} \int_1^x \frac{1}{t^{k+1}} d\pi_k(t)$$

$$= -\frac{1}{k+1} \frac{\pi_k(x)}{x^{k+1}} + \frac{1}{k+1} \sum_{p \leq x^{k+1}} \frac{1}{p}$$

$$= \frac{1}{k+1} \log \log x + \frac{B}{k+1} + o(1).$$

Therefore,

$$\int_1^x \frac{\pi_k(t) - \pi(t^{k+1})}{t^{k+2}} dt = -\frac{1}{k+1} \log (k+1) + o(1).$$

This yields the theorem. \[\square\]
3. Proof of Theorem 3

Proof. Assume the Riemann Hypothesis is true. We need the following technical result:

Lemma 8. Assume RH and let \(k > 0 \). Then

\[
\left| \int_2^x \frac{\psi_k(t) - \frac{t^{k+1}}{(k+1)}}{\log t} \, dt \right| < 0.04621 \frac{x^{k+\frac{3}{2}}}{\log x}
\]

for all sufficiently large \(x \).

Proof. From [1, Corollary 1], with the standard notation \(\rho = \frac{1}{2} + i\gamma \) for zeros of \(\zeta(s) \) in the critical strip, we know that

\[
\sum_{\rho} \frac{1}{(\rho + k)(\rho + k + 1)} < \sum_{\rho} \frac{1}{\gamma^2} < 0.04620999.
\]

Let \(D(x) = \psi_k(x) - \frac{x^{k+1}}{(k+1)} \). Integration by parts yields

\[
\int_2^x \frac{D(t)}{\log t} \, dt = \int_2^x \frac{D(t) \, dt}{t} + \int_2^x \frac{D(u) \, du}{t \log^2 t} \, dt
\]

\[
< 0.04620999 \frac{x^{k+\frac{3}{2}}}{\log x} + 0.04620999 \int_2^x \frac{t^{k+\frac{1}{2}}}{\log^2 t} \, dt + o(x) + o(x^{k-1})
\]

(from Lemma 8)

\[
< 0.04621 \frac{x^{k+\frac{3}{2}}}{\log x}
\]

when \(x \) is large.

We know that

\[
\Pi_k(x) = \pi_k(x) + \frac{x^{k+\frac{1}{2}}}{(2k+1) \log x} + o \left(\frac{x^{k+\frac{1}{2}}}{\log x} \right),
\]

which implies that

\[
\int_1^x (\Pi_k(t) - \pi_k(t)) \, dt = \int_2^x \frac{t^{k+\frac{1}{2}}}{(2k+1) \log t} + o \left(\int_2^x \frac{t^{k+\frac{1}{2}}}{\log t} \, dt \right)
\]

\[
= (1 + o(1)) \frac{x^{k+\frac{3}{2}}}{(k + \frac{3}{2})(2k + 1) \log x}
\]

as \(x \to \infty \). From Lemma 8 and (3),

\[
\int_1^x (\Pi_k(t) - \pi(t^{k+1})) \, dt \leq (0.04621 + o(1)) \frac{x^{k+\frac{3}{2}}}{(k + \frac{3}{2}) \log x}
\]
for x sufficiently large. Therefore,

$$\int_1^x (\pi_k(t) - \pi(t^{k+1})) \, dt \leq \left(0.04621 - \frac{1}{2k+1} + o(1) \right) \frac{x^{k+\frac{3}{2}}}{(k+\frac{3}{2}) \log x} < 0$$

for x sufficiently large, when $k \leq 10.32$.

Remark. It would be possible to improve the upper bound 10.32 slightly by using knowledge of the first several values of γ to estimate the early terms of $\sum 1/(\rho+k)(\rho+k+1)$, but it follows from a theorem of Lehman (see [1]) that this sum is approximately a constant times $\log(k)/k$, hence is larger than $1/(2k+1)$ for large k.

Now suppose the Riemann Hypothesis is false. Then $\theta_0 = \sup\{\Re(\rho) : \zeta(\rho) = 0\} > \frac{1}{2}$. Let $0 < \epsilon < \theta_0 - \frac{1}{2}$ and let

$$F(x) = \int_1^x (\Pi_k(t) - \Pi_0(t^{k+1})) \, dt.$$

Then $F(x) = o\left(x^{k+2}\right)$ as $x \to \infty$. Let $s \in \mathbb{C}$ with $\Re(s) > k+1$. Then

$$G(s) := \int_1^\infty \left(\frac{F(t) - t^{\theta_0+k+1-\epsilon}}{t^{s+2}} \right) dt = -\frac{F(t)}{(s+1)t^{s+1}} \bigg|_1^\infty + \frac{1}{s+1} \int_1^\infty \frac{\Pi_k(t) - \Pi_0(t^{k+1})}{t^{s+1}} dt + \frac{1}{\theta_0 + k - s - \epsilon} \left(\log \zeta(s-k) - \log \zeta\left(\frac{s}{k+1}\right) \right) + \frac{1}{\theta_0 + k - s - \epsilon}.$$

The last equality follows from a second integration by parts plus a change of variables in the second part of the integral; see [2, p. 173]. The last line represents a function that is analytic for all real numbers $s > \theta_0 + k - \epsilon$.

Let ρ be the zero of $\zeta(s)$ with $\Re(\rho) > \theta_0 - \epsilon$ with smallest positive imaginary part. Then $\log \zeta(s-k)$ is not analytic at $\rho+k$. Since $\theta_0 \leq 1$,

$$\theta_0 - \epsilon < \Re(\rho) \leq \Re\left(\frac{\rho + k}{k + 1}\right).$$

Since the imaginary part of $(\rho + k)/(k + 1)$ is less than the imaginary part of ρ, the choice of ρ implies that $\zeta((\rho + k)/(k + 1)) \neq 0$ and therefore does not cancel the singularity at $\rho + k$. Therefore, $G(s)$ is not analytic at $\rho + k$.

If \(F(x) - x^{\theta_0 + k + 1 - \epsilon} \leq 0 \) for all sufficiently large \(x \), Landau’s Theorem (see, for example, [2] or [3]) implies that \(G(s) \) is analytic for all \(s \in \mathbb{C} \) with \(\text{Re}(s) > \theta_0 + k - \epsilon \). Since
\[
\text{Re}(\rho + k) > \theta_0 + k - \epsilon,
\]
this is a contradiction. Therefore, there is a sequence of \(x \to \infty \) with
\[
\int_1^x (\Pi_k(t) - \Pi_0(t^{k+1})) \, dt > x^{\theta_0 + k + 1 - \epsilon}.
\]

We now need to change from \(\Pi_k \) to \(\pi_k \). Since
\[
\Pi_k(t) = \pi_k(t) + O(t^{k+1/2} / \log x)
\]
and
\[
\Pi_0(t^{k+1}) = \pi(t^{k+1}) + O(t^{k+1/2} / \log t),
\]
we have
\[
\left| \int_1^x (\Pi_k(t) - \Pi_0(t^{k+1})) \, dt - \int_1^x (\pi_k(t) - \pi_0(t^{k+1})) \, dt \right| = O(x^{k+3/2} / \log x).
\]
Since \(\theta_0 + k + 1 - \epsilon > k + 3/2 \), we find that there exists a sequence of \(x \to \infty \) such that
\[
\int_1^x (\pi_k(t) - \pi_0(t^{k+1})) \, dt > 0.
\]

\[\square\]

We note that the proof of “(2) \implies (1)” in Theorem 3 works for all \(k > 0 \).

Acknowledgement.

Many thanks to Rusen Li for pointing out the mistake in [2].

REFERENCES

[1] R. Brent, D. Platt, and T. Trudgian, Accurate estimation of sums over zeros of the Riemann zeta-function., *Math. Comp.* 90 (2021), no. 332, 2923–2935.

[2] J. Gerard and L. C. Washington, Sums of powers of primes, *Ramanujan J.* 45 (2018), no. 1, 171–180.

[3] A. E. Ingham, *The Distribution of Prime Numbers*, Cambridge University Press, 1990.

[4] R. Jakimczuk, Desigualdades y formulas asintóticas para sumas de potencias de primos, *Bol. Soc. Mat. Mexicana* (3) 11 (2005), no. 1, 5–10.

[5] D. Johnston, On the average value of \(\pi(t) - li(t) \), *Canadian Math. Bulletin*, 2022.

[6] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I: Classical Theory*, Cambridge University Press, 2007.

[7] B. Rosser and L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, *Illinois J. Math.* 6 (1962), 64–94.

[8] T. Šalát and Š Znám, On sums of the prime powers, *Acta Fac. Rerum Natur. Univ. Comenian. Math.* 21 (1968), 21–24 (1969).
DEPT. OF MATHEMATICS, UNIV. OF MARYLAND, COLLEGE PARK, MD, 20742 USA

Email address: lcw@umd.edu