Groundwater exploration by magnetotelluric method within the birimian rocks of Mankessim, Ghana

Victor Ofori Agyemang

Received: 10 February 2021 / Accepted: 21 January 2022 / Published online: 7 February 2022
© The Author(s) 2022

Abstract
The Magnetotelluric (MT) geophysical method has successfully been applied in groundwater exploration within the Birimian rocks of Mankessim. The technique has provided information on the rocks and structural relationships within the investigative depth of up to 300 m for hydrogeological purposes. The method provides information on the aquiferous zone and the general depth of burial. The study revealed that the resistivity of the subsurface materials within the study area ranges from 0.1 Ωm to 4.0 Ωm. The study shows that the groundwater occurrence in the area is mainly controlled by fractured and weathered zones. It is highly possible to encounter groundwater at the saprock zone. This zone is fractured and weathered zones sandwiched by the overburden and the bedrock. The static water level of the study area is about 25 m. This shallow depth makes the groundwater resource prone to contamination through anthropogenic activities such as the application of agrochemicals and the use of pit latrine which are common practices in the study area. The MT method is effective in the exploration of groundwater within the sedimentary environment.

Keywords Magnetotelluric · Birimian rocks · Ghana · Groundwater · Exploration

Introduction
The increasing population growth, advances in technology in agriculture, mining, road construction, etc. are continuously increasing the water demand. This calls for effective groundwater resource development of which groundwater exploration and characterization play major roles. Therefore, there is the need for the invention and application of new geophysical techniques. In the last two decades, there has been great advancement in the application of geophysical tools in groundwater exploration. The geophysical method that has gained much popularity is the resistivity method which measures the resistivity of the ground and it is very useful in studying pore fluid salinity and effective porosity (Archie 1942). Even though the Electrical Geophysical Methods are commonly used in groundwater investigations, the current study aimed to apply the Magnetotelluric (MT) method in the searching for suitable points for drilling prolific boreholes for community water supply. This method was chosen because the Electrical Tomography cannot achieve deeper targets and the Electrical Vertical Sounding cannot ensure complete and dense space coverage but the Magnetotelluric method can be used for great depths of investigation, good space sampling, as well as differentiate between salt-saturated water and freshwater layers. The use of this method in groundwater studies and other geoscience investigation is common globally as they are well documented in the literature (Tinlin et al. 1988; Brasse 1989; Bernard et al. 1990; Bartel 1991; Chouteau et al. 1994; Nichols et al. 1994; Bourgeois et al. 1994; Dennis et al. 2011; Chave and Jones 2012; Nittinger and Becken 2016; Amjadi et al. 2020; Muttaqien and Nurjaman 2021). MT is a passive induction-based electromagnetic method that uses the naturally occurring electromagnetic field in detecting resistivity variations within the earth's materials (Simpson and Bahr 2005). Archie’s law shows the relationship between the porosity of rock materials and their electric conductivity which is very helpful in the application of MT in groundwater exploration especially in areas where groundwater occurrence depends on fractures and weathering (Archie 1942). The short periodic signal originates from global lightning activity, while the long periodic signal is produced from the fluctuations in the intensity of the solar wind. The released
electromagnetic energy in discharge propagates over a large
distance with slight attenuation in a wave-guide between
the ionosphere and Earth’s surface. When the energy trav-
els through a far distance from the source it is a plane wave
with a frequency range of about 10^{-5}–10^5 Hz. According to
Telford et al. (1990), the MT fields are capable of inducing
telluric currents in the subsurface after penetrating through
the earth’s surface. This study aimed to assess the poten-
tial of the 2D MT method for the detection of fractures and
weathered zones serving as groundwater reservoirs within
the Birimian rocks in the study area.

Study area

The study area is located between latitudes 05°15'45.108 N
& 05°15'40.248 N and longitudes 0°58'46.488 W &
0°58'59.880 W and geology is predominantly the Middle
Precambrian Birimian and Tarkwaian Formations (Fig. 1).
The Birimian formation contains metamorphosed volcanic
and sedimentary rocks which have been folded, metamor-
phosed under the greenschist-facies condition, and invaded
by granitoids during the Eburnean (Junner 1935; Kesse
1985; Leube et al. 1990). The structures such as folds,
foliations, faults, and joints of the Birimian formation
enhance the permeability for groundwater storage, and
transmission in the rocks Junner (1935). The contact zone
between the Birimian rocks and the intruded granitoids are
highly sheared and show foliations oriented North–South.
Quartz and pegmatite veins aligned parallel to the plane of
shearing. The Birimian formation is made of isoclinally
folded, steeply dipping, alternating phyllites, schistose
greywackes, sheared conglomerates, slates, and argil-
laceous beds with some tuffaceous schist and lava. The
Dixcove granite (G2) consists of soda-rich hornblende,
biotite granite, or granodiorites which grade into quartz
diorite and hornblende diorite and are commonly tonalitic
in composition intrudes into the Birimian metavolcanic.
Rocks in the study area include greywackes, phyllites,
slates, schists, tuffs, conglomerate, mudstone, siltstones,
granite, and sandstones. Hence, common minerals in the
area include orthoclase, plagioclase, quartz, biotite, mus-
covite, amphibole, hornblende, calcite, silica, and chlorite.
The Eburnean granitoids contain well foliated magmatic,
potash-rich rocks and come in the form of muscovite–bio-
tite granite, granodiorites, porphyroblastic biotite gneiss,
aplites, and pegmatites some of which are medium-grained
(Kesse 1985; Leube et al. 1990). The Granitoids are char-
acterized by the presence of many enclaves of schists and
gneisses, which are generally associated with Birimian
meta-sedimentary rocks and their internal structures, are
always concordant with those of their host rocks (Taylor
et al. 1992). The Tarkwaian Group contains different kinds
of sandstones, conglomerates, argillites, and it is subdi-
vided into four major units, which are, from the base to
the top: the Kawere Group; the Banket Series; the Tarkwa
Phyllite; and the Huni Sandstone (Griffis et al. 2002). The
hydraulic properties of the Birimian and Tarkwaian For-
mations are enhanced by the extensive weathering, avail-
ability of quartz vein, and presence of buried river chan-
nel (Dickson and Benneh 1995; Kortatsi 1994; CSIR-WRI
Database; 2007).

![Fig. 1 Geological map of the study area (Modified after GSD 2009)](image-url)
Magnetotelluric data acquisition and processing

Terrain assessment was done to select suitable points for the geophysical survey data collection. The static water level of the available hand-dug well was measured to be 25 m. Three profile lines of length 50 m, 50 m, and 100 m for profiles A, B, C, respectively, were selected at interline space of 25 m (Fig. 1). Data were taken at MT soundings stations along the profile lines at 5 m intervals using the GMS-06 Metronix Inc multichannel geophysical measurement system. The collected field data were processed and inverted using Mapros and ZondMT2D softwares to obtain the Edi file and subsurface resistivity model, respectively, at a frequency range of 32–288 Hz. The Fast Fourier Transform technique was applied to transform the MT time series data into apparent resistivity and phase-amplitude after noises on E and H time series were removed. Data of field coherencies greater than 0.7 and apparent resistivity that showed errors less than 10% were used for the investigation. Generation of the 2D resistivity subsurface structures from the Edi files was done using ZondMT2D software, and the output of the inversion is the profile earth subsurface structure which displays the resistivity model (ρ) (Ωm) as depth function Z (m) as seen in Fig. 2A, B, C.

Results and discussion

The 2D MT model reveals a conductive nature of the study area with varying resistivity values of 0.1–4.0 Ωm across the three profiles. The three traverses (A, B, C) showed the lowest resistivity values at depths 170–190 m & 260 m-below, 20–120 m & 160 m-below, and 20–120 m & 140 m-below, respectively. In general, the low resistivity nature of the subsurface materials can be explained with various subsurface mechanisms, such as the presence of fluids within interconnected pore spaces (Hyndman and Shearer 1989); fluids in high permeability zones associated with faults; and conductive mineral phases of interconnected graphite, sulfides, or oxides (Glover and Vine 1992; Pommier 2014). For example, the plagioclase in the Birimian rocks may have altered to clay minerals like ilite, smectite, etc., and/or the developed primary/secondary porosity and permeability may have increased the conductivity anomaly due to the increased interconnected pore space in the bulk rock (Schill et al. 2010). According to Okrah et al. (2012), the Birimian formation contains laterite, clay, sandy-clay, and bedrocks which are made of either partly weathered or fresh phyllite and granite (Table 1). The presence of the clay material may account for the general low resistivity of the subsurface materials within the study area. However, the areas of lowest resistivity values on the three profiles are located at a particular point of the study area at depths of 170–190 m & 260 m-below, 20–120 m & 160 m-below, and 20–120 m & 140 m-below, for profile A, B, and C, respectively. The point of lowest resistivity is the end of profile A around where profiles B and C began (Fig. 1). Hence, a localization of a conductive anomaly on a fractured zone could be established. Okrah et al. (2012) observed that both the Vertical Electronic Sounding method and the borehole logs revealed the same aquiferous zones within the range of 17.0–39.0 m (Table 2). This occurrence is common within the Birimian as the structural features such as faults, folds, foliations, and joints enhance the permeability for groundwater, storage, and transmission in the rocks (Junner 1935). Also, the observation of the lowest resistivity value at a particular locality from 20 to 300 m deep revealed the presence of possible contact zones between the Birimian rocks and granitoids which also promote the occurrence of groundwater within the Birimian (Abouchami 1990). The mode of groundwater occurrence is also linked with the nature and thickness of the decomposed zone, rock fracture, joints, quartz veins, and pegmatites (Yidana et al. 2014). Most of the quartz veins and pegmatites are fractured and to some extent brecciated as a result of brittle deformation as a consequence of Proterozoic Eburnean orogenic activities that affected them (Kesse 1985). The aquiferous zone of the Birimian rocks is the lower part of the saprolite and the upper part of the saprock which usually complement each other in terms of permeability and storage (Junner 1935; Dapaah-Siakwan and Gyau-Boakye 2000; Carrier et al. 2008). Coffey (2007) noted that the aquifers of the Birimian formation have limited areal extent, low storage capacities, an average transmissivity of 2.98 m2/d, static water level range of 1.7—23.3 m with a mean of 9.16 m, while the observed static water level of available hand-dug well in this study was 25 m which agrees with the observation made by WRRI (1990).

Conclusion

The Magnetotelluric (MT) geophysical method has successfully been applied in groundwater exploration within the Birimian rocks of Mankessim. The technique has provided information on the rocks and structural relationships within the investigative depth of up to 300 m for hydrogeological purposes. The method provides information on the aquiferous zone and the general depth of burial. The study revealed that the resistivity of the subsurface materials within the study area ranges from 0.1 Ωm to 4.0 Ωm. The study shows that the
Fig. 2 2D-Apparent Geo-Electrical Resistivity Pseudo-sections of the surface at the study area underlain by the Birimian rocks (A, B, C)
The groundwater occurrence in the area is mainly controlled by fractured and weathered zones. It is highly possible to encounter groundwater at the saprock zone. This zone is fractured and weathered zones sandwiched by the overburden and the bedrock. The static water level of the study area is about 25 m. This shallow depth makes the groundwater resource prone to contamination through anthropogenic activities such as the application of agrochemicals and the use of pit latrine which are common practices in the study area. The MT method is effective in the exploration of groundwater within the sedimentary environment. The method is effective and relatively cheaper in investigating great depths with dense space sampling as compared to deep electrical sounding even though it is very sensitive to the surface and urban noises due to the level of urbanization of the study area.

Table 1 Correlating lithology deduced from geophysics with the drilling results (Okrah et al. 2012)

Lithology	Geophysics
Sandy-clay and gravel	147.7
Sandy-clay	2.7
Sandy-clay and gravel	286.8
Rusty weathered phyllite	57.7
Weathered granite	–
Fresh granite	–

Table 2 Comparison between drilling and geophysical results (Okrah et al. 2012)

Community	VES Point	Aquifer horizon (m)	Geophysical interpretation (estimated)	Borehole drilling
Buabinso	B30	40.0–50.0	25.0–36.0	
Buabinso	C100	20.0–40.0	32.0–39.0	
Congo No.1	B80	15.0–40.0	17.0–23.0	
Zion No.1	A40	40.0–60.0	31.0–40.0	
Achiase	B100	10.4-extended	20.0–38.0	

References

Abouchami W, Boher M, Michard A, Albarede F (1990) A major 2.1 Ga events of magmatism in West Africa: an early stage of crustal accretion. J Geophys Res 95:17605–17629

Amjadi AA, Takalu M, Namvaran M, Kushki M (2020) An application of magnetotelluric data inversion in a stratovolcano region. Phys Astron Int J 4(6):2576–4543

Archie CE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. J Petrol Technol, 5

Bartel LC (1991) Results from a controlled-source audio frequency magnetotelluric survey to characterize an aquifer. In: Ward, S.H. (Ed.), Geotechnical and Environmental Geophysics. Vol. 5 of Investigations in Geophysics, SEG, pp. 219–233

Bernard J, Vachette C, Valle P (1990) Deep groundwater survey with audio magnetotelluric soundings. In: Proceedings of the SEC, 60th Annu. Int. Meeting, 60, pp 528–531

Bourgeois B, Mathieu F, Vachette C, Vaubourg P (1994) AMT measurements compared with gravimetry and magnetometry for structural study of a sedimentary basin: Lethakheng-Bothalapatlou groundwater project. Botswana J Appl Geophys 3:17–25

Brasse H (1989) Audio magnetotelluric investigations of hydrogeological and tectonic problems in the eastern Sahara. In: M. Gadsden (Ed.), Proc. of the 6th Scientific Assembly of the Int. Assoc. of Geomagnetism and Aeronomy, vol. 53 of IAGA Bulletin. p 165

Carrier MA, Lefebre R, Racicot J, Asare EB (2008) Groundwater recharge assessment in northern Ghana using soil moisture balance and chloride mass balance. GeoEdmonton 8:1437–1444

Chave AD, Jones AG (2012) The Magnetotelluric Method Theory and Practice. Cambridge University Press

Chouteau M, Krivochieva S, Rodriguez R, Gonnelz T, Jouanne V (1994) Study of the Santa Catarina aquifer system (Mexico basin) using magnetotelluric soundings. J Appl Geophys 3(1–4):85–106

Coffey Mining Pty Ltd (2007) Ayanfuri Tailings Water Balance (unpublished spreadsheet)

Dapaah-Siakwan S, Gyau-Boakye P (2000) Hydrogeological framework and borehole yields in Ghana. Hydrogeol J 8(4):400–416

CSIR-WRI Database (2007). Existing Boreholes in Upper Denkyira District.

Dennis ZR, Moore DH, Cull JP (2011) Magnetotelluric survey for undercover structural mapping: central Victoria. Aust J Earth Sci 58:33–47
Dickson KB, Benneh G (1995) A New Geography of Ghana, 3rd edn. Longman Group Ltd, Essex, England

Geological Survey Department, G (2009) Geological Map of Ghana 1:000 000. Geological Map of Ghana, Geological Survey Department, GSD

Glover PWJ, Vine FJ (1992) Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures. Nature 360(6406):723–726. https://doi.org/10.1038/360723a0

Griffis RJ, Barning K, Agezo FL, Akosah FK (2002). Gold deposits of Ghana. Minerals Commission Report

Hyndman RD, Shearer PM (1989) Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophys J Int 98(2):343–365

Junner NR (1935) Gold in the Gold Coast: Gold Coast Geological Survey Memoir No. 4, 67 pp.

Kesse GO (1985) The mineral and rock resources of Ghana. A. A. Balkema. Rotterdam. Pp. 25–26.

Kortatsi BK (1994). Groundwater utilization in Ghana, In: Proceedings of the Helsinki Conference, IAHS Publ. No. 222.

Leube A, Hirdes W, Mauer R, Kesse GO (1990) The Early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precambrian Res 46(1-2):139–165

Muttaqien I, Nurjaman J (2021) Two-dimensional inversion modeling of magnetotelluric (MT) synthetic data of a graben structure using SimPEG. Riset Geologi Dan Pertambangan Indonesia J Geol Mining 31(1):1–12. https://doi.org/10.14203/risetgeotam2021.v31.1121

Nichols EA, Morrison HF, Lee S (1994) Controlled-source magnetotelluric for groundwater. In: Proceedings of the SEG, 64th Annu. Int. Meeting, pp 553–554

Nittinger CG (2016) Becken M (2016) Inversion of magnetotelluric data in a sparse model domain. Geophys J Int 206:1398–1409. https://doi.org/10.1093/gji/ggw222

Okrah C, Danuor SK, Dapaah-Siakwan S (2012) Geophysical investigations for groundwater in the middle Precambrian province of Upper Denkyira District using electromagnetic and electrical resistivity methods. J Ghana Sci Assoc 14(1):103

Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35:41–84

Schill E, Geiermann J, Kummritz J (2010) 2-D Magnetotellurics and gravity at the geothermal site at Soultz-sous-Fore’ts. In: Proceedings World Geothermal Congress. Bali, Indonesia 25–29 April 2010. Schuhmacher, M.E., 2002. Upper Rhine Graben: the role of pre-existing structures during rift evolution. Tectonics 21

Simpson F, Bahr K (2005) Practical Magnetotellurics. Cambridge University Press, Cambridge

Taylor PN, Moorbath S, Leube A, Hirdes W (1992) Early Proterozoic crustal evolution in the Birimian of Ghana—Constraints from geochronology and isotope geology. Precamb Res 56:97–111

Telford WM, Geldart LP, Sheriff RE (1990) Applied Geophysics, 2nd edn. Cambridge University Press, Cambridge

Tinlin RM, Hughes LJ, Anzzolin AR (1988) The use of controlled source audio magnetotellurics (CSAHT) to delineate zones of groundwater contamination: a case history. In: Collins, A.G., Johnson. A.I. (Eds.). Groundwater contamination field methods. vol. 963 of ASTM Spec. Tech. Publ. American Society for Testing and Materials, pp. I O I - I I S.

Water Resources Research Institute (1990) Draft Proposals for Groundwater Monitoring Networks in Ghana. I.R., Accra, Ghana, Water Resources Research Institute, C.S

Yidana SM, Fynn OF, Chegelehe LP, Loh Y, Obeng MA (2014) Analysis of recharge and groundwater flow in parts of a weathered aquifer system in Northern Ghana. J Appl Water Eng Res. https://doi.org/10.1080/23249676.2014.954009

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.