Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms

Nicholas R. Thomas,† Niels Kjærgaard,‡ Paul S. Julienne,§ and Andrew C. Wilson

†Department of Physics, University of Otago, Dunedin, New Zealand
‡National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland, 20899-8423 USA

(Dated: March 22, 2022)

We report on the direct imaging of s and d partial-wave interference in cold collisions of atoms. Two ultracold clouds of 87Rb atoms were accelerated by magnetic fields to collide at energies near a d-wave shape resonance. The resulting halos of scattered particles were imaged using laser absorption. By scanning across the resonance we observed a marked evolution of the scattering patterns due to the energy dependent phase shifts for the interfering s and d waves. Since only two partial wave states are involved in the collision process the scattering yield and angular distributions have a simple interpretation in terms of a theoretical model.

PACS numbers: 34.50.-s, 03.65.Nk, 32.80.Pj, 39.25.+k

Collisions of atoms is a classic discipline of quantum mechanics [1,2]. With the advent of laser cooling [3], confining and cooling various atomic species to submillikelvin temperatures became possible and gave rise to a wealth of experiments in which quantum effects in collisions at very low energies — cold collisions — were observed [4]. Knowledge about cold collision properties paved the way for exciting new developments in experimental atomic physics. It played a crucial role in achieving Bose-Einstein condensation [5] and Fermi degeneracy [6] in dilute atomic vapors by mediating thermalization during evaporative cooling and accounting for stability [7]. For atoms at temperatures associated with the quantum degenerate regime the essential interaction properties are determined by a single atomic parameter, the scattering length, because all elastic scattering has an isotropic (s-wave) nature at such low energies. The scattering length may exhibit a pronounced dependency on external magnetic fields giving rise to so-called Feshbach resonances [8] which have recently been exploited to create ultracold molecules and molecular Bose-Einstein condensates (BECs) [9,10,11,12,13].

To date, most experiments on cold collisions of atoms have been carried out using magneto-optical traps (MOTs) or magnetic traps which suffer from the disadvantages that no collision axis is singled out or the collision energy cannot be varied over a wide range [4,14]. If no fixed collision axis is present, anisotropic scattering, as occurs for collision energies above the s-wave regime, will be obscured by spatial averaging. One solution to this problem was provided in the “juggling” MOT experiment [15], where a cloud of cesium atoms was laser cooled to 3 μK and ejected vertically from a trap to collide with a previously launched cloud at energies up to 160 μK. Scattered atoms were detected using a spectroscopic technique revealing interference between s and p partial waves. In experiments on BECs, a collision axis was also selected using Bragg scattering to accelerate part of the atomic cloud, and pure s-wave scattering halos were directly imaged [16].

In this Letter, we report experiments on the collision of two bosonic atomic clouds, initially confined in a magnetic double-well potential and evaporatively cooled to a temperature just above the phase transition for Bose-Einstein condensation. Collisions at a selectable energy occur when the trapping potential is continuously modified to a single-well configuration. The atomic clouds accelerate from the sides of the harmonic potential and collide at the center of the well. The resulting scattering is equivalent to cold collisions of counter-propagating ultracold pulsed atomic beams. Angular resolved detection of scattered atoms is obtained using laser absorption imaging. Specifically, we consider atomic clouds of doubly spin-polarized 87Rb which are cooled to a temperature of ~ 225 μK and accelerated to collide with energies in the range from 87 to 553 μK as measured in units of Boltzmann’s constant k_B. In this energy interval a d-wave shape resonance is known to occur [17]. We observe scattering patterns evolving from s-wave-like to d-wave-like distributions via intermediate $s + d$ interfering scattering states which expose the quantum mechanical origin of the process.

FIG. 1: (Color online) Illustration of the process of using absorption imaging for the detection of scattered particles. We present the case of pure d-wave scattering occurring at the origin for particles coming in along the z-axis. Scattered particles will be situated on an expanding sphere and distributed according the d-wave angular emission pattern $|f(\theta)|^2$. Absorption imaging along the x-axis projects this distribution onto the yz-plane.
Quantum scattering of two particles under our conditions is conveniently described in the partial wave formalism. The wave function for the relative motion is written \(\psi = e^{ikz} + f(\theta)e^{ikr}/r \), where \(k \) is the magnitude of the relative wave-vector of the colliding particles. The first term of this sum represents an incoming plane wave travelling along the \(z \)-axis, while the second term represents a radially outgoing scattered wave with an amplitude which depends on the angle \(\theta \) to the \(z \)-axis, (see, e.g., [13]). Using a partial wave expansion of \(\psi \), the scattering amplitude for identical bosons is expressed as

\[
f(\theta) = \sum_{l=0}^{\infty} c_{2l+1}(1 + 1)c_{2l+1}/ik, \]

\[
= \sum_{l=0}^{\infty} \left(\frac{2l+1}{(2l+1)!} \right) (3 \cos^2 \theta - 1)/2/ik,
\]

and the differential cross section \(d\sigma/d\Omega = |f(\theta)|^2 \) has an angular pattern which depends crucially on the quantum mechanical interference between the partial wave states as dictated by the phase shifts. Assuming the collisions to occur in free space, scattered particles observed in the center of mass frame will be distributed over a ballistically expanding sphere (the so-called Newton sphere) according to the differential cross section. If the scattered particles are detected using absorption imaging, the distribution on this sphere will be projected onto a plane by the Abel transformation [20]. Figure 1 illustrates this in the case of pure \(d \)-wave scattering and imaging along a direction perpendicular to the collision axis.

In our experiment, \(^{87}\)Rb atoms collected in a MOT were optically pumped into the \(|F = 2, M = 2 \rangle \) hyperfine substate and loaded into a Ioffe-Pritchard magnetic trap in the quadrupole-Ioffe-configuration [21]. The trapping potential is cylindrically symmetric and harmonic, characterized by radial and axial oscillation frequencies of \(\omega_r/2\pi = 275 \) Hz and \(\omega_z/2\pi = 16 \) Hz, respectively. After radio-frequency evaporative cooling to a temperature of \(12 \) \(\mu \)K, the trap was adiabatically transformed to a double-well configuration [22], splitting the atomic cloud in half along its long dimension (\(z \)) by raising a potential barrier. The \(z \)-axis is horizontal so that the influence from gravity is unimportant. An additional rotating bias field of \(0.5 \) mT is applied just before forming the double-well to avoid Majorana spin-flip atom loss at the trap minima, where the magnetic field would otherwise become zero. When fully separated the two clouds were 4.3 mm apart and the trap frequencies were \(\omega_r/2\pi = 60 \) Hz and \(\omega_z/2\pi = 14 \) Hz near the well minima. Further evaporative cooling lowered the temperature to \(225 \) nK in each well (as compared to the BEC transition temperature of \(100 \) nK), and the total number of remaining atoms was \(4 \times 10^5 \). There is a slight difference between the properties of the two clouds due to a small residual tilt in the potential. Subsequently the separation of the clouds was adiabatically adjusted to select the potential energy gained when the trap is rapidly converted back to a single-well. To increase the cloud densities the rotating bias field was reduced to \(0.2 \) mT. The collision is initiated by rapidly ramping from a double to a single well configuration, accelerating the clouds towards the potential minimum positioned between them. The trapping configuration for the collision has frequencies \(\omega_r/2\pi = 155 \) Hz and \(\omega_z/2\pi = 12 \) Hz, and remains unchanged until the end of the experiment. After the collision we waited for one quarter of the radial trap period, so that atoms were at maximum radial extension, before acquiring an absorption image [23] by pulsing a resonant laser beam onto the atoms. The 3D distribution of scattered particles is projected onto a plane giving the column density distribution. We calculated the cloud velocities from positions measured before and after the collision in additional experimental runs, and find the collision energy, expressed in temperature units, using \(T = \mu v^2/2k_B \), where \(\mu \) is the reduced mass of the particles and \(v \) is the relative velocity of the two clouds.

Figure 2 shows absorption images of scattering acquired at collision temperatures in the range from \(87 \) \(\mu \)K to \(348 \) \(\mu \)K. Scattering halos of particles with an elliptical envelope are clearly visible as are the outgoing clouds of unscattered atoms. The major and minor semiaxes of the former, and the distance between the latter, increase linearly with \(\sqrt{T} \) due to the fixed time of acquisition after collision. The total number of scattered particles \(N_{sc} \) was determined by integrating the column density over the image frame and using a suitable interpolation to bridge the areas hidden by the outgoing clouds of unscattered atoms.

The observed scattering yield is interpreted in terms of a coupled-channels theoretical model that includes the ground state singlet and triplet potentials and all spin-dependent interactions. The triplet potential has a van der Waals \(C_6 \) constant of \(4707 \) atomic units (1 atomic unit = \(9.5734 \times 10^{-26} \) J nm\(^6\)) and a scattering length of \(98.96 \) atomic units (1 atomic unit = \(0.052918 \) nm) [24]. Figure 3(a) presents the partial wave phase shifts for the \(l = 0 \) and 2 channels with total projection quantum number \(M = 4 \) when two \(|F = 2, M = 2 \rangle \) atoms collide in a total magnetic field of \(0.22 \) mT, the bias field of this experiment (there is negligible difference at zero field). Using Eq. (1) these phase shifts give the \(s \)-wave, \(d \)-wave and total cross sections shown in Fig. 3(b). In Fig. 3(c) we present the fraction of scattered atoms \(N_{sc}/N_{tot} \) versus the collision temperature as measured in our experiments. Since \(N_{sc}/N_{tot} > 20\% \) for all \(T \) (i.e., large depletion), the number of scattered particles is not proportional to the total elastic cross section \(\sigma(T) \). As a result, the observed \(d \)-wave resonance peak is not very pronounced even though the total cross section grows by a factor of \(\sim 4 \) with respect to the zero temperature limit. However, when the effect of depletion is included [25] we obtain good agreement between the experimental and theoretical scattering fractions [Fig. 3(c)].
FIG. 2: (Color online) Absorption images acquired at a quarter of a radial trap period after the collision of two doubly spin polarized Rb clouds (visible as dark ellipses) for various collision temperatures. The halos of scattered particles have elliptical envelopes since they are evolving in an anisotropic harmonic trap which is weakest in the horizontal direction (z-direction). At the selected time of acquisition the scattering halos have the maximum radial excursion in the trap.

As is obvious from Fig. 2, the scattered particles are emitted in spatial patterns which depend on the collision temperature. It is possible to relate these patterns to the differential cross section when the effects on the particle distribution of the harmonic potential and the projection onto the imaging plane are accounted for. As a result of the scattered particles expanding in an anisotropic harmonic potential, the projected halos seen in Fig. 2 have elliptical envelopes rather than the circle expected for a free-space Newton sphere as shown in Fig. 1. However, due to the cylindrical symmetry about the collision axis (which is perpendicular to the optical axis of our imaging system), full 3D tomographical information on the scattering can be extracted from the 2D absorption images via the inverse Abel transform \[20, 26\]. Applying Abel inversion to the absorption images gives us the angular particle distribution in the trap at the time of image acquisition, to which the distribution at the time of collision (the free space distribution) is related in a straightforward manner \[27\].

In Fig. 4(a) we show polar plots of the probability density $n_{sc}(\theta, T) \propto d\sigma/d\Omega$ for a scattered particle to be emitted at the polar angle θ as determined from the absorption images in Fig. 2. The angular distributions for different temperatures have been normalized with respect to each other such that $\int n_{sc}(\theta, T) d\Omega = 1$ for all T, and were determined from the Abel inverted images by counting the particles within angular bins at a unit sphere transformed to the quarter period ellipsoid via the relation in Ref. \[27\].

For comparison we present in Fig. 4(b) the temperature development of the normalized differential cross section as predicted by Eq. (1) using the partial wave shifts from the previously described model. The scattering patterns of Fig. 4(a) and Fig. 4(b) show the same behavior and the minor discrepancies between the experimental and theoretical distributions may be attributed to broadening effects from the finite sizes of the colliding clouds and a small departure from an ideal scattering geometry, both of which are not included in our analysis method \[28\].

For low temperatures the scattering is s-wave dominated and isotropic. However, at the onset of the d-wave scattering resonance the s and d partial wave amplitudes interfere constructively in the radial direction and destructively in the axial direction. Above the d-wave resonance the scattering pattern is d-wave dominated, but non-vanishing s-wave scattering gives rise to destructive interference in the radial direction and constructive interference in the axial direction. It is possible to evoke analogies to Young’s well-known double slit experiment. In the present experiment the s and d state each act as a slit and the distributions in Fig. 4 are effectively fringe patterns resulting from

FIG. 3: Dependence on collision temperature. (a) The s (dotted line) and d (dashed line) partial wave phase shifts from a simple theoretical model. (b) The s-wave (dotted line), d-wave (dashed line) and total (solid line) cross sections calculated from the model partial wave phase shifts. (c) The measured scattered fraction of atoms N_{sc}/N_{tot} (filled circles). The black curve shows the fraction as given by the model cross section when depletion of the colliding atom clouds is accounted for.
the absence of which-way-information.

In conclusion, we have reported direct imaging of the scattered atoms in cold collisions of doubly spin-polarized 87Rb. The emission patterns and the measured number of scattered atoms as a function of collision energy are described well by a simple theoretical model. The present experiment demonstrates in particular the quantum mechanical nature of the scattering of atoms. The underlying quantum mechanics reveals itself strikingly through the appearance of one of its most prominent features — interference — and as only two states are involved in the scattering, the interpretation becomes particularly simple. On a more subtle level the extended version of Pauli’s exclusion principle gives rise to the absence of odd partial waves since the scattering particles are identified as predicted by Eq. (1) using the partial wave shifts from our theoretical model.

![Polar plots of the normalized angular scattering probability density for different collision temperatures in μK. (a) Experimental results from the absorption images of Fig. 2 after Abel inversion and a transformation from trap to free space. (b) Characteristic patterns as predicted by Eq. (1) using the partial wave shifts from our theoretical model.](image)

* Electronic address: nk@physics.otago.ac.nz

[1] H. Faxén, J. Holtsmark, Z. Phys. 45, 307 (1927).
[2] E. U. Condon, P. M. Morse, Rev. Mod. Phys. 3, 43 (1931); P. M. Morse, Rev. Mod. Phys. 4, 577 (1932).
[3] S. Chu, Rev. Mod. Phys. 70, 685 (1998); C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998); W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).
[4] J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Science 269, 198 (1995); K. B. Davis, et al., Phys. Rev. Lett. 75, 3969 (1995).
[6] B. DeMarco, D. S. Jin, Science 285, 1703 (1999).
[7] J. M. Gerton, D. Strekalov, I. Prodan, R. G. Hulet, Nature 408, 692 (2000).
[8] S. Inouye, et al., Nature 392, 151 (1998).
[9] E. A. Donley, N. R. Claussen, S. T. Thompson, C. E. Wieman, Nature 417, 529 (2002).
[10] C. A. Regal, C. Ticknor, J. L. Bohn, D. S. Jin, Nature 424, 47 (2003).
[11] J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nägerl, R. Grimm, Science 301, 1510 (2003).
[12] M. Greiner, C. A. Regal, D. S. Jin, Nature 426, 537 (2003).
[13] M. W. Zwierlein, et al., Phys. Rev. Lett. 92, 120403 (2004).
[14] H. R. Torschheim, Y. Wang, J. Weiner, Phys. Rev. A 41, 2873 (1990).
[15] R. Legere, K. Gibble, Phys. Rev. Lett 81, 5780 (1998).
[16] A. P. Chikkatur, et al., Phys. Rev. Lett. 85, 483 (2000).
[17] H. M. J. Moesten, C. C. Tsai, J. R. Gardner, D. J. Heinzen, B. J. Verhaar, Phys. Rev. A 55, 636 (1997).
[18] S. Geltman, Topics in Atomic Collision Theory (Academic Press, New York, 1969).
[19] $l = \{1, 3, 5, \ldots\}$ terms are strictly forbidden and $l = \{4, 6, 8, \ldots\}$ terms (g-waves and higher order) have been calculated to be completely negligible for the energy interval of interest.
[20] R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, Singapore, 2000), third edn.
[21] T. Esslinger, I. Bloch, T. W. Hänsch, Phys. Rev. A 58, R2664 (1998).
[22] R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, Singapore, 2000), third edn.
[23] N. R. Thomas, A. C. Wilson, C. J. Foot, Phys. Rev. A 65, 063406 (2002).
[24] W. Ketterle, D. S. Durfee, D. M. Stamper-Kurn, in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico Fermi”, M. Inguscio, S. Stringari, C. E. Wieman, Eds. (IOS Press, 1999), p. 67.
[25] A. Marte, et al., Phys. Rev. Lett. 89, 283202 (2002).
[26] During collision the densities n_i of the clouds labeled by $i = 1, 2$ are governed by the two coupled nonlinear partial differential equations $\partial_t n_i(x,y,z,t) = v_i \partial_x n_i(x,y,z,t) - |v_i| \sigma(T) n_1(x,y,z,t) n_2(x,y,z,t)$ for $i = 1, 2$. Assuming the clouds to have initially Gaussian density distributions in all directions, this system was solved numerically to calculate the fraction of scattered particles and assess the scaling with the coupling parameter $\sigma(T)$. Due to the prolate cloud shapes we neglect multiple scattering events.
[27] V. Dribinski, A. Ossadch, V. A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
[28] A particle emitted in the polar angle θ_0 at time $t = 0$ from the center of the trap follows a trajectory so that $\tan(\theta(t) = \tan(\theta_0) \omega \sin(\omega t) / \omega \sin(\omega t)$.
[29] The broadening implies that some of the scattered atoms will reach their maximum radial excursion point before the time of image acquisition. This effectively transfers them to angular bins closer to the collision axis. The slight left-right pattern asymmetry observable for some collision temperatures is a combined result of the clouds having slightly different speeds in the observation frame and a small offset on the z-axis between collision and trap centers.
[30] B. DeMarco and J. L. Bohn, J. P. Burke, Jr., M. Holland, D. S. Jin, Phys. Rev. Lett. 82, 4208 (1999).