Research Article

Monitoring System of Key Technical Features of Male Tennis Players Based on Internet of Things Security Technology

Guodong Wu

Faculty of Arts and Sciences, Science and Technology College of Nanchang Hangkong University, Jiujiang, 332020 Jiangxi, China

Correspondence should be addressed to Guodong Wu; tennis0528@163.com

Received 20 April 2021; Revised 13 May 2021; Accepted 20 May 2021; Published 29 May 2021

Academic Editor: Wenqing Wu

Copyright © 2021 Guodong Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nowadays, the development and innovation of tennis have basically been integrated with the Internet, and the penetration of big data is accelerating the development of tennis. Collect data and statistics about tennis matches, analyze the key winning factors of the game, assign players’ gains and losses, and assign points. Fully understand the game’s tactics and various key technical functions of the player and enhance the influence of the game’s attention. Therefore, as the era of the Internet of Things is about to come, the development of sports events in my country should seize the opportunity of innovation in the application of Internet of Things technology, accelerate the process of upgrading informatization and intelligence, and achieve leapfrog development. This article is aimed at studying the use of the Internet of Things security technology, research, and design a monitoring system for the key technical characteristics of male tennis players. This paper proposes to develop a novel real-time video semantic analysis prototype system for tennis matches, taking the video from the monitoring perspective of tennis matches as the analysis object. The experimental results in this article show that from Wimbledon to the Australian Open, the Australian Open is very slow, and finally, to the French Open, the speed of the ball slows down and improves the accuracy of the tennis crisis system. The average level and the correct answer rate are 61.37%. Eventually, it rose from the highest 86.13% to 86.92%, and the highest was the lowest. It seems that a monitoring system for the basic technical characteristics of male tennis players is more feasible.

1. Introduction

1.1. Background. With the holding of large-scale sports events such as the Olympic Games and the World Cup, people are becoming more and more obsessed with sports. Tennis is a very popular ball sport, and every tennis enthusiast will pay attention to the four major open tennis tournaments. As well as business forms, there is still a lot of room for improvement and transformation. The Internet of Things industry is an emerging strategic industry that my country is focusing on developing. Based on this environment, the application of the Internet of Things has great potential and space. In recent years, the Internet of Things technology has gradually matured, focusing on sensors, software, etc., and at the same time, in terms of supporting equipment for the Internet of Things, especially the rapid development of basic equipment such as smart circuits and transmission networks. As far as the current situation is concerned, my country’s Internet of Things has a relatively wide range of applications, involving my country’s industry, commerce, agriculture, and service industries [1, 2]. It plays an extremely important role in urban construction, environmental protection, urban safety, and intelligent transportation. This has also brought new development opportunities and challenges to various fields, especially in the sports industry. The use of advanced technologies of the Internet of Things can bring huge technological innovations to the research and development of sports events and comprehensively promote the development of sports events.

1.2. Significance. In a modern tennis game, key points are of the utmost importance to every player. Athletes often face great psychological pressure during key points. Losing key points means losing a game, a set, or even the entire game. In 2018, the global Internet of Things market will exceed 100 billion U.S. dollars, and 26 billion devices will be connected to the Internet of Things by 2020. This huge number will bring huge growth space for the development of the
sports industry. As an important part of the sports industry, sports events also show that people have the spirit of continuous innovation and challenge. Modern sports events are one of the important signs of current social progress, civilized development, and economic strength. In today's social life, the process of economic integration and the rapid development of information technology make the combination of the Internet of Things and sport an important development direction for the development of the sports industry. "Internet +" sports continue to ferment, big data, VR, artificial intelligence, etc. [3] and will be deeply integrated with sports. Making full use of the Internet of Things technology in the operation of large-scale sports events is an important reality for further improving the level of sports events in Japan and promoting progress in game management, information management, and venue management. Promote the construction of industry and sports culture. There are relatively few researches on the application of the Internet of Things technology in the management of sports events, and the application of the Internet of Things in this field is still blank. This time, the research on the application of the Internet of Things technology in sports events has brought theoretical results and has special theoretical importance, filling the gaps in our research in this area.

1.3. Related Work. Zhang proposed a table tennis human body recognition scheme based on commercial smart watches. We have developed a data acquisition system based on the Internet of Things architecture to obtain data on the acceleration, angular velocity, and magnetic induction of the watch. According to the characteristics of the extracted data, experiments were carried out using main machine learning classification algorithms such as k-nearest neighbors, support vector machines, Naive Bayes, logistic regression, decision trees, and random forests. The results show that the random forest has the highest recognition rate, reaching 97.80%. In addition, Zhang designed a simple convolutional neural network to compare its performance on this issue. The network consists of two convolutional layers, two pooling layers, and two fully connected layers and uses data without extracted features. The results show that the accuracy of this method is 87.55%. This research can provide training aids for amateur table tennis players [4]. Although the recognition rate of random forest is very high, reaching 97.80%, there is still a certain gap. Wang uses a wireless wearable sensor device (WSD) based on MEMS (MicroElectro-Mechanical System) motion sensors to identify the different strokes of different badminton players and classify their technical level. The system includes custom sensor nodes for data collection, mobile applications, and cloud-based data processing units. Compared with the video-based badminton shot analysis method, the WSD method has the advantages of low cost, convenient use, and high computational efficiency. It provides the advantage of dynamically monitoring multiple players in indoor and outdoor environments [5]. Although WSD has many advantages, there are still certain errors. Fu recently discovered that following a consensus statement in 2009 requiring standardized literature and tennis-related injury analysis, several studies have been published describing the incidence of longitudinal injuries in the Grand Slam and Davis Cup. Recent research by ATP has further clarified the pattern of damage in tourism. Recently, there have also been some high-quality studies on the injury trend of college students and outstanding young tennis players, drawing attention to the musculoskeletal injuries and systemic diseases that young tennis players may be vulnerable to. Recent ATP and junior and junior level injury monitoring work has highlighted injury trends, which will help guide injury prevention strategies in different levels of competition [6]. Although certain results have been achieved, there is still room for improvement.

1.4. Innovation. The innovations of this paper include the following: (1) introduced the design and implementation of a prototype system for real-time semantic analysis of tennis match video and conducted a comprehensive analysis of various performance indicators of the entire system through experiments. (2) The semantic analysis part of tennis player's motion. First of all, because in the tennis match video frame from the monitoring perspective, both people and tennis belong to for small targets, and we propose a video small target detection algorithm based on the YOLO v3 algorithm. (3) A real-time semantic analysis algorithm for tennis match video based on deep learning is proposed.

2. Introduction to Related Technologies

The key to the world's outstanding male tennis players is to distribute the ball, whether they are leading or lagging, through a wide angle outside corner serve and a short flat and fast inside corner serve. The scoring rate is high, the loss rate is low, and the serve effect is significant. The score is high, and the serving effect is poor. Real-time video semantic analysis of tennis matches includes many specific technologies. This article mainly focuses on target tracking, target tracking, 2D human pose estimation, and lightweight MobileNet network. At the same time, due to the background of the special application of this article, the realization of related technologies is also inseparable from tennis. The preliminary knowledge of sports is also introduced here. In the research process, combined with prior knowledge, each technique was improved for various challenges, and so the original algorithm is more suitable for the specific sports scene of the tennis match. This article mainly focuses on the semantic analysis of the two major sports objects in the tennis match—athletes and tennis. The output semantic information includes the athlete's movement type, movement distance, movement speed, and tennis landing area.

2.1. Target Monitoring Technology. The Faster-RCNN algorithm is one of the main representatives of the deep learning target detection algorithm. This method combines the CNN classification of the candidate regions that have been separated to form an end-to-end target detection network, which is good in terms of speed and accuracy effect. However, Faster R-CNN obtains the candidate regions in advance, and then the strategy of classifying each candidate region leads to a large amount of calculation and cannot achieve real-
time results [7, 8]. The emergence of the YOLO series of algorithms has improved the speed of the target detection method. It regards the detection task as a regression problem, which greatly accelerates the speed of the algorithm [9, 10].

2.2. Target Tracking Technology. Target tracking, as the name implies, is the continuous tracking of the target. It is an indispensable link in our tennis match video semantic analysis system, because we need to continuously track the target athlete to facilitate the semantic analysis of the athlete’s movement [11, 12]. The degree of motion matching refers to the use of the Mahalanobis distance between the detection result and the tracking result at the position predicted by the Kalman filter to describe the degree of motion matching [13, 14].

\[
d_i(i, j) = (d_i - y_i)^T S_i^{-1} (d_i - y_i).
\] (1)

Among them, \(y_i\) is the predicted observation of the trajectory at the current moment, \(d_i\) is the state of the \(j\)th detection result, and \(S_i\) is the covariance matrix of the observation space at the current moment predicted by the trajectory by the Kalman filter [15, 16].

Apparent matching degree refers to serious situations such as ID deformation caused by using Mahalanobis distance alone as a matching degree metric. Especially when the camera is moving, the Mahalanobis distance measurement may be invalid; so, at this time, the apparent matching degree should be used to remedy [17, 18]. The system only calculates the minimum cosine distance of the detection result within the latest \(L = 100\) of the trajectory [19, 20].

\[
d_i(i, j) = \min \left(1 - r_i^T r_k^T s_i^{-1} r_k \right).
\] (2)

The fusion of the two metrics refers to the weighted average \(c_{ij} = \gamma d_i(i, j) + (1 - \gamma) d_i(i, j)\), where \(\gamma\) is hyperparameters that are used to adjust the weights of different items [21].

2.3. Two-Dimensional Human Posture Recognition. From the perspective of computer vision, the best way to recognize an action gesture is to find out its action characteristics. These characteristics can include many aspects, such as the human body’s stride frequency, stride length, facial features, gestures, body posture, walking trajectory, and shaking degree. Relying only on computer vision algorithms is often not good, usually combined with some hardware devices [22, 23]. In addition to the combination with hardware, it is a good method to perform human body action recognition and human body posture estimation by obtaining the skeleton and key points of the human body [24, 25].

3. Real-Time Video Semantic Analysis for Tennis Matches

In the research process of real-time video semantic analysis for tennis matches, the semantics we need to analyze are divided into two aspects from the perspective of the target object. One is the semantics of the athlete’s action type and sports information, and the other is the semantics of the tennis landing area. YOLO-V3 uses a single network structure to predict the category and location of the object while generating the candidate area and does not need to be divided into two stages to complete the detection task [26, 27].

3.1. Monitoring for Small Target Athletes. In the tennis game video scene, target detection is mainly to find some targets on the sports field, namely, people and tennis. Since our application is in the video surveillance scene of a tennis court, the distance between the camera and the sports field is very long, resulting in relatively small players and tennis balls in the video, which brings challenges to our detection algorithm. We have compared and analyzed a series of mature target detections that currently exist and concluded that the YOLO v3 algorithm is superior to other algorithms in the detection accuracy of small targets under the premise of ensuring the detection speed. In response to the above challenges and conclusions, we have made corresponding improvements to the YOLO v3 algorithm to make it more suitable for small target detection tasks in our specific scenarios. Calculate the parameters according to formula (1), obtain the width conversion parameter \(\theta_{i1}\) and the height conversion parameter \(\theta_{j1}\), and finally convert the original \(w_0, h_0\) to \(w_1, h_1\),

\[
\theta_{i1} = \frac{1}{2} \sum_{n=1}^{n} \left(\frac{2w_0}{w_{n1} + w_{n2}} \right), \theta_{j1} = \frac{1}{2} \sum_{n=1}^{n} \left(\frac{2h_0}{h_{n1} + h_{n2}} \right) (n = 2).
\]

\[
w_1 = \theta_{i1} \times w_0, h_1 = \theta_{j1} \times h_0.
\] (3)

According to the above theoretical method, we obtained the conversion coefficient of the original bounding box size width and height after performing statistics through experiments. The experimental results include three groups, corresponding to three different levels of size, and each group contains the width conversion parameter \(\theta_{i1}\) and the height conversion parameter \(\theta_{j1}\). The results are shown in Table 1:

Combined with the conclusion of the conversion coefficient in Table 1, we modified the corresponding model configuration file of the detection algorithm YOLO v3 and put the original convolutional neural network model of YOLO v3 disclosed by the original author on the professional graphics processing server 24G of the M40 model, and the purpose of retraining under GPU is to make the trained model more suitable for the detection of small targets in our tennis match scene. In this training process, we have conducted more than 70,000 trainings on the end-to-end target detection network model YOLOv3. The experiment is mainly based on the tensor flow of mainstream deep learning frameworks and can be easily monitored through the training process that supports tensor tools. The figure below shows that the model was lost during training. Here, you can see that the loss has been reduced to 0.7, and the test mapping has reached 95% [28, 29].

3.2. Prediction of Tennis Movement and Impact Area Based on Prior Knowledge. Because the high-speed tennis ball is almost invisible to the naked eye in some video frames, in
fact, we can only detect it in a few discrete video frames, and we need to restore it from being thrown to landing. The entire movement process requires a certain prior knowledge. As we all know, tennis is an oblique throwing motion, and its trajectory satisfies the quadratic parabolic equation, but we cannot know the third dimension of its height, but we know that tennis moves at a uniform speed in the horizontal direction; so, we need to find the tennis ball detecting the projected coordinate relationship between the coordinates and the real position on the horizontal plane, and then calculating, we can analyze the moving speed and direction of the tennis ball in the horizontal direction.

Knowing the occurrence time \(t_0 \) and location \((x_0, y_0)\) of the first dashed ball, and the occurrence time \(t_1 \) and location \((x_1, y_1)\) of the dashed ball in a later frame, the tennis ball can be calculated according to the following formula to get the horizontal plane the movement speed on the \(x\)-axis direction \(v_x\) and the \(y\)-axis direction movement speed \(v_y\).

\[
\begin{align*}
v_x &= \frac{x_1 - x_0}{t_1 - t_0}, \\
v_y &= \frac{y_1 - y_0}{t_1 - t_0},
\end{align*}
\]

(4)

According to the time stamp \(t \), the horizontal movement distance is \(x_t \), the vertical movement distance is \(y_t \), and the horizontal plane movement trajectory is shown in the figure. The calculation result is as follows:

\[
\begin{align*}
x_t &= x_0 + v_x \times t, \\
y_t &= y_0 + v_y \times t,
\end{align*}
\]

(5)

After obtaining \(x_t \) and \(y_t \) in this way, it is necessary to further determine the area of the tennis ball according to the real resolution of the tennis match video frame.

4. System Performance Evaluation

In order to verify the performance of the tennis match video semantic analysis system proposed in this article, experiments are carried out in the abovementioned data set and experimental environment introduced in this section, and the experimental results are analyzed and evaluated in terms of real-time and accuracy, and at the end, a comprehensive analysis of the influencing factors of the system is given in this section.

4.1. System Real-Time Analysis

From the perspective of system speed, the following content tests the real-time system performance under four conditions. The performance of the real-time system is affected by many factors, such as the game scene environment, the complexity of the server algorithm, the operating environment of the system, and the running time. In this experiment, we will test four tennis scenes separately to see if the control algorithm can achieve the system’s processing frame rate (fps) in real time while maintaining the same operating time.

Perform comprehensive statistics on the test results of these 20 videos and draw a columnar line chart, as shown in Figure 1.

It can be seen from Figure 1 that although the speed of each operation is slightly different, the operating speed of the system is roughly maintained at a constant level. It shows that the running speed of the system is not affected by different game scenes and has universality in different scenes. The experimental results also prove that the system meets the real-time requirements.

4.2. System Accuracy Analysis

In testing the accuracy of the server-side algorithm of the test system, we conducted 6 sets of experiments. In each set of experiments, we randomly selected 1 video from each of the 4 game scenes in the database. In this experiment, 24 videos were shared, and the distribution in the control videos was even. Because the output result of the system includes the semantic part of the athlete’s action discrimination, the accuracy test also needs to be carried out from this aspect.

Figure 2 shows the results of six sets of experiments used to distinguish action types in the system. You can see that the accuracy of system action recognition varies greatly between 50% and 100%, but it is not affected by scene changes. At the same time, experiments show that the system is less accurate in the crisis of swing sports. The reason is that in some video frames, the main point of the backrest and the point of the target player’s arm to the camera are severely blocked, and the main point cannot be detected, which affects the judgment of the swing action.

4.3. Comprehensive Performance Index Evaluation

We further carried out a comparative experiment, adjusted the resolution of the video frame to different sizes under the same GPU environment, and evaluated the speed and intensive reading. The results are shown in Table 2.

According to the results in Table 2, in the same GPU server environment, the higher the image resolution, the higher the detection accuracy mAP, but the slower the processing speed, that is, the lower the frame rate.

5. Conclusions

The application of Internet of Things technology has greatly improved the management level and efficiency of sports events in my country. The application of IoT technology in sports management, event information management, and
venue management has created digital management systems and organizations. It improves the management level of sports events, meets the needs of sports spectators, and provides athletes and coaches with more accurate information and data to achieve a higher level of stadium performance.

The Internet of Things technology is a revolutionary change in the management of sports events in my country and is of great significance to the management and modernization of sports events in my country.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

There is no potential conflict of interest in our paper, and all authors have seen the manuscript and approved to submit to your journal. We confirm that the content of the manuscript has not been published or submitted for publication elsewhere.

References

[1] S. Wan, L. Qi, X. Xu, C. Tong, and Z. Gu, "Deep learning models for real-time human activity recognition with smartphones," Mobile Networks and Applications, vol. 1-13, 2019.
[2] M. Elhoseny, "Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems," *Circuits, Systems, and Signal Processing, First Online*, vol. 39, pp. 611–630, 2019.

[3] Z. Lv, R. Lou, A. K. Singh, and Q. Wang, "Transfer Learning-powered resource optimization for green computing in 5G-Aided Industrial Internet of Things," *ACM Transactions on Internet Technology (TOIT)*, 2020.

[4] H. Zhang, Z. Fu, and K. I. Shu, "Recognizing ping-pong motions using inertial data based on machine learning classification algorithms," *IEEE Access*, vol. 7, pp. 167055–167064, 2019.

[5] Y. Wang, M. Chen, X. Wang, R. H. M. Chan, and W. J. Li, "IoT for next-generation racket sports training," *IEEE Internet of Things Journal*, vol. 5, no. 6, pp. 4558–4566, 2018.

[6] M. C. Fu, T. S. Ellenbecker, P. A. Renstrom, G. S. Windler, and D. M. Dines, "Epidemiology of injuries in tennis players," *Current Reviews in Musculoskeletal Medicine*, vol. 11, no. 1, pp. 1–5, 2018.

[7] X. Lyu, W. Ni, H. Tian et al., "Optimal schedule of mobile edge computing for internet of things using partial information," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 11, pp. 2606–2615, 2017.

[8] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, "Urban planning and building smart cities based on the internet of things using big data analytics," *Computer Networks the International Journal of Computer & Telecommunications Networking*, vol. 101, no. C, pp. 63–80, 2016.

[9] M. Ma, "Certificateless searchable public key encryption scheme for industrial internet of things," *IEEE Transactions on Industrial Informatics*, vol. 14, no. 2, pp. 759–767, 2018.

[10] V. Scuotto, A. Ferraris, and S. Bresciani, "Internet of Things," *Business Process Management Journal*, vol. 22, no. 2, pp. 357–367, 2016.

[11] S. R. Chandra and Y. Wang, "Cloud things construction-the integration of Internet of Things and cloud computing," *Future Generation Computer Systems*, vol. 56, no. C, pp. 684–700, 2016.

[12] A. Augustin, J. Yi, T. H. Clausen, and W. Townsley, "A study of LoRa: long range & low power networks for the Internet of Things," *Sensors*, vol. 16, no. 9, article 1466, 2016.

[13] V. Pande, C. Marlecha, and S. Kayte, "A review-fog computing and its role in the Internet of Things," *International Journal of Engineering Research and Applications*, vol. 6, no. 10, pp. 2248–96227, 2016.

[14] A. V. Dastjerdi and R. Buyya, "Fog computing: helping the Internet of Things realize its potential," *Computer*, vol. 49, no. 8, pp. 112–116, 2016.

[15] C. Perera, C. H. Liu, and S. Jayawardena, "The emerging Internet of Things marketplace from an industrial perspective: a survey," *IEEE Transactions on Emerging Topics in Computing*, vol. 3, no. 4, pp. 585–598, 2017.

[16] A. Kamilaris and A. Pitsillides, "Mobile phone computing and the Internet of Things: a survey," *IEEE Internet of Things Journal*, vol. 3, no. 6, pp. 885–898, 2017.

[17] J. C. Balda, A. Mantooth, R. Blum, and P. Tenti, "Cybersecurity and power electronics: addressing the security vulnerabilities of the Internet of Things," *IEEE Power Electronics Magazine*, vol. 4, no. 4, pp. 37–43, 2017.

[18] N. Abuzeinab, W. Saad, C. S. Hong, and H. V. Poor, "Cognitive hierarchy theory for distributed resource allocation in the Internet of Things," *IEEE Transactions on Wireless Communications*, vol. 16, no. 12, pp. 7687–7702, 2017.

[19] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, "Learning Internet-of-Things security "hands-on",” *Security & Privacy, IEEE*, vol. 14, no. 1, pp. 37–46, 2016.

[20] C. Chang, S. N. Srirama, and R. Buyya, "Indie fog: an efficient fog-computing infrastructure for the Internet of Things," *Computer*, vol. 50, no. 9, pp. 92–98, 2017.

[21] K. Kazuhiro, Y. Ushiyama, and M. Oba, "A fundamental study for incorporating game rules and developmental processes of techniques of tennis, table tennis, and badminton into beginner coaching,” *The Japan Journal of Coaching Studies*, vol. 31, no. 1, pp. 67–80, 2017.

[22] Y. Chen, J. Zhou, and M. Guo, "A context-aware search system for Internet of Things based on hierarchical context model," *Telecommunication Systems*, vol. 62, no. 1, pp. 77–91, 2016.

[23] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, "Learning Internet-of-Things security "hands-on",” *Security & Privacy, IEEE*, vol. 14, no. 1, pp. 37–46, 2016.

[24] C. Chang, S. N. Srirama, and R. Buyya, "Indie fog: an efficient fog-computing infrastructure for the Internet of Things," *Computer*, vol. 50, no. 9, pp. 92–98, 2017.

[25] K. Kazuhiro, Y. Ushiyama, and M. Oba, "A fundamental study for incorporating game rules and developmental processes of techniques of tennis, table tennis, and badminton into beginner coaching: from the founding of international games federation onward,” *The Japan Journal of Coaching Studies*, vol. 31, no. 1, pp. 67–80, 2017.

[26] J. Yang, J. Zhang, and H. Wang, "Urban traffic control in software defined Internet of Things via a multi-agent deep reinforcement learning approach," *IEEE Transactions on Intelligent Transportation Systems*, pp. 1–13, 2020.

[27] J. Yang, J. Wen, Y. Wang, B. Jiang, H. Wang, and H. Song, "Fog-based marine environmental information monitoring toward Ocean of Things," *IEEE Internet of Things Journal*, vol. 7, no. 5, pp. 4238–4247, 2020.

[28] O. H. Alhazmi and K. S. Aloufi, "Performance analysis of the hybrid MQTT/UMA and restful IoT security model," *Advances in Internet of Things*, vol. 11, no. 1, pp. 26–41, 2021.

[29] J. Y. Lee and J. Lee, "Current research trends in IoT security: a systematic mapping study,” *Mobile Information Systems*, vol. 2021, Article ID 8847099, 25 pages, 2021.