Effects of sulfonylurea treatment on blood plasminogen activator inhibitor-1 levels in patients with type 2 diabetes mellitus: A network meta-analysis

Satoshi Ida*, Kazuya Murata and Ryutaro Kaneko

Department of Diabetes and Metabolism, Ise Red Cross Hospital, Mie, Japan.

Abstract

Background: To compare the effects of three types of sulfonylureas (glibenclamide, gliclazide, and glimepiride) on blood plasminogen activator inhibitor-1 levels in patients with type 2 diabetes mellitus, a network meta-analysis of randomized controlled trials was performed.

Methods: A literature search using MEDLINE, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov was conducted. Randomized controlled trials in which the effects of sulfonylureas on blood plasminogen activator inhibitor-1 levels in patients with type 2 diabetes mellitus were evaluated were included. Outcome assessment included standardized mean differences and 95% confidence intervals.

Results: Twelve randomized controlled trials (1,050 subjects) met the inclusion criteria and were included in the network meta-analysis. No significant difference was observed in blood plasminogen activator inhibitor-1 levels after using a placebo compared with those after using glibenclamide, gliclazide, and glimepiride. Blood plasminogen activator inhibitor-1 levels were significantly lower after using gliclazide than after using glimepiride (standardized mean difference: -0.52; 95% confidence interval: -0.99%–0.44%). However, no significant difference was observed in blood plasminogen activator inhibitor-1 levels after using glibenclamide compared with those after using gliclazide and glimepiride.

Conclusions: Regarding the use of sulfonylureas for treating patients with type 2 diabetes mellitus, gliclazide may be preferable because of low blood plasminogen activator inhibitor-1 levels after its use. However, few studies have been published on the use of gliclazide, and the quality of these studies has been generally poor; thus, the results of this study should be interpreted with caution.

Keywords: Plasminogen, network meta-analysis, randomized controlled trial, type 2 diabetes mellitus

Introduction

Type 2 diabetes mellitus is associated with cardiovascular disease and cardiac death [1]. Therefore, in patients with type 2 diabetes mellitus, an important treatment goal is the prevention of cardiovascular disease. These patients are also prone to thrombosis, and plasminogen activator inhibitor-1 (PAI-1) levels, which determine fibrinolytic activity in the fibrinolytic system, are considered informative [2]. A previous study has reported that elevated blood PAI-1 levels are associated with arteriosclerosis and cardiovascular disease onset [3]. In patients with type 2 diabetes, presumably blood PAI-1 levels are elevated [4], and factors controlling blood PAI-1 levels comprise insulin resistance, hyperglycemia, inflammatory cytokines, oxidative stress, and so on [5-7]. Apparently, these factors are not only induced by elevated blood PAI-1 levels, but also associated with the promotion of the thrombus formation and myocardial fibrosis [5-7]. Probably, these mechanisms are involved in the correlation between elevated blood PAI-1 levels and cardiovascular disease.

Sulfonylureas, such as glibenclamide, gliclazide, and glimepiride, are pharmacotherapeutic agents that are widely used for treating type 2 diabetes mellitus. These three sulfonylureas may
have different effects on the metabolic system. For example, gliclazide has been demonstrated to directly improve oxidative stress and inflammatory cytokine levels [8,9], whereas glimepiride reportedly promotes glucose uptake at the peripheral tissue level and improves insulin resistance [10]. In other words, presumably sulfonylureas probably lower blood PAI-1 levels by suppressing inflammatory cytokines, oxidative stress, and insulin resistance; however, we hypothesized that the effect of these three sulfonylureas on blood PAI-1 levels could differ depending on the drug (drug-effect). Previously, only a few randomized controlled trials (RCTs) have reported the effect of sulfonylurea administration on blood PAI-1 levels; thus, we believe that it is challenging to compare the difference in the effects of different drugs. Hence, this study aimed to compare the effect of three different sulfonylureas on blood PAI-1 levels in patients with type 2 diabetes by using a network meta-analysis capable of indirectly estimating a difference in the drug-effect on the basis of RCTs.

Methods
Study selection
We conducted an literature search using MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed), the Cochrane Central Register of Controlled Trials (http://www.cochranelibrary.com/), and ClinicalTrials.gov (https://clinicaltrials.gov/) (accessed May 1, 2017). The search strategy included “[gliclazide or glibenclamide or glimepiride or sulfonylurea] and [diabetes or NIDDM or non-insulin-dependent or type 2 diabetes mellitus] and [randomized controlled trial or controlled clinical trial or randomized or randomised or placebo or randomly]”. Trials were eligible for inclusion if they compared sulfonylureas with placebos or oral antidiabetic drugs other than sulfonylureas, irrespective of diet and exercise therapies. Studies that were not RCTs, that featured animal experiments, that included patients with gestational diabetes, that contained insufficient data for analysis, or that were duplicates were excluded. Two authors (SI and RK) independently assessed whether each article satisfied the inclusion criteria. When the interpretations of the two authors were inconsistent, a third reviewer (KM) was consulted.

Data extraction and quality assessment
We created a data extraction form containing trial characteristics (key author’s name, publication year, study location, sample size, patient’s baseline information, basic treatment, and treatment duration). Regarding blood PAI-1 levels, we recorded mean values, standard deviation, standard error, or 95% confidence intervals (CIs). In the event that study compared a control group with two or more intervention groups, it was treated as two or more studies sharing a control group. Two authors (SI and RK) independently assessed the quality of the included trials. Quality was assessed using the Cochrane risk of bias tool [11]. Six domains (random sequence generation, allocation concealment, blinding of personnel and participants, blinding of outcome assessors, incomplete data, and selective reporting) were categorized as conferring a low, moderate, or high risk of bias.

Statistical analysis
The blood PAI-1 level was considered as a continuous variable and was recorded using different units in each study; therefore, we analyzed this variable using standardized mean differences (SMDs) and 95% CIs. Therapeutic effect was considered as the difference among groups in the degree of change in blood PAI-1 levels before and after treatment. When only standard error or P-values were recorded, we calculated the standard deviation according to the method of Altman and Bland [12]. When standard deviation was not recorded, it was calculated from 95% CIs, t-values, or P-values [13].

First, as a direct comparison, we conducted standard pairwise meta-analysis using a random effects model. Next, as an indirect comparison, we performed a network meta-analysis. The random effects network meta-analysis was performed using the multivariate meta-analysis (mvmeta) routine in the statistical software STATA 13 (StataCorp LLC, College Station, TX, USA) [14,15], and the results of direct and indirect comparisons were integrated. Furthermore, we examined treatment hierarchy using the surface under the cumulative ranking curve (SUCRA). The SUCRA is an indicator of the efficacy of treatment for outcomes as a ranked percentage [16]. A SUCRA value closer to 100 indicates a more effective treatment, whereas a SUCRA value closer to 0 indicates a less effective treatment.

We examined inconsistency in the direct and indirect comparisons using the following methods. First, we examined the presence or absence of local inconsistency by comparing the therapeutic effect in the direct and indirect comparisons for all closed loops on the network (loop-specific test) [16]. Next, with regard to the presence or absence of global inconsistency, we examined inconsistency in the overall network by evaluating consistency in evidence obtained from different treatment designs (design-by-treatment interaction model) [17]. When the testing results for local and global inconsistencies yielded a P-value of >0.05, no inconsistency was deemed in the results of the direct and indirect comparisons.

Results
Description of included studies
Our literature search identified 4,021 articles, of which 12 RCTs (1,050 subjects) complied with the inclusion criteria and were therefore included in the meta-analysis (Figure 1) [18-29].

Table 1 shows the characteristics of the 12 trials, and Figure 2 shows the network map. The mean age of the participants was 57.8 years; 47.7% participants were women. The mean diabetes duration was 5.7 years, and the mean trial duration was 23.3 weeks. Ten oral antidiabetic drugs (glibenclamide, gliclazide, glimepiride, metformin, nateglinide, pioglitazone, linagliptin, repaglinide, rosiglitazone, and troglitazone) and
Two reviewers independently screened titles and abstracts of the studies retrieved and examined each potentially eligible study by reading full texts.

PAI-1, Plasminogen activator inhibitor-1.

Figure 1. Study flow diagram.

Figure 2. Network of clinical trials on sulfonylurea and other hypoglycemic drugs or placebos in patients with type 2 diabetes.

Lines connect the interventions that have been studied in head-to-head comparisons in the eligible randomized controlled trials (RCTs). The widths of the lines represent the total number of RCTs for each pairwise comparison. Node sizes are proportional to the number of randomized participants.
Table 1. Characteristics of studies included in the network meta-analysis.

No.	Reference	Year	Region	No. of patients	Age (years)	Women (%)	BMI (kg/m²)	Body weight (kg)	Duration of DM (years)	HbA1c (%)	Comparison	Sulfonylurea dose (mg/day)	Basic treatment	Study duration (weeks)	PAI-1 (ng/mL)
1	Britton et al.	1998	England	29	61.1	41.3	27.7	NR	8.5	9.4	glimepiride vs. glibenclamide	glimepiride, >1; glibenclamide, >2.5	diet	4	28.8 (µg/L)
2	Kubo et al.	1998	Japan	21	63.1	61.9	24.9	NR	NR	8.9	gliclazide vs. troglitazone	gliclazide, 40	diet + exercise	12	81.9
3	Kato et al.	2000	Japan	47	52.5	56.5	21.5	NR	9.3	8.6	glibenclamide vs. troglitazone	glibenclamide, 2.5	diet	4	46.8 (µmol/L)
4	Luis Bautista et al.	2003	Mexico	70	48.4	43.8	NR	83.3	4.2	10	glimepiride vs. placebo	glimepiride, >1 diet	14	NR	
5	Derosa et al.	2003	Italy	124	54	51.6	26.4	77.1	NR	7.8	gliclazide vs. repagliride	gliclazide, >1 diet	48	42	
6	Derosa et al.	2004	Italy	148	56	53	27.6	NR	NR	8.5	glimepiride vs. metformin	glimepiride, >1 diet	48	38	
7	Rizzo et al.	2005	Italy	14	NR	35.7	25.7	NR	NR	6.7	glimepiride vs. repagliride	glimepiride, >1 diet	4	55.2	
8	Derosa et al.	2005	Italy	95	52	51	26.8	NR	4	7.9	glimepiride vs. rosiglitazone	glimepiride, 2 metformin	48	38.7	
9	Pfützner et al.	2005	Germany	173	63	38	31.8	NR	6.9	7.4	glimepiride vs. pioglitazone	glimepiride, >1 oral anti-diabetic drugs	26	46.3	
10	Derosa et al.	2007	Italy	233	56	49.1	26.5	NR	4	8.2	glibenclamide vs. nateglinide	glibenclamide, >7.5 diet	48	43.9	
11	Erem et al.	2014	Turkey	57	55	68.4	32.7	90.6	NR	8.2	gliclazide vs. pioglitazone vs. metformin	gliclazide, 60–120 diet	12	67.3	
12	Forst et al.	2014	Germany	39	63	30.7	95.1	8	7.4		glimepiride vs. linagliptin	glimepiride, 1–4 metformin	12	NR	

Unless indicated otherwise, data are expressed as mean values.
DM, Type 2 diabetes mellitus; BMI, body mass index; PAI-1, plasminogen activator inhibitor-1; NR, not reported
Inconsistency between direct and indirect evidence
No local inconsistency was observed, except for one closed loop (quadratic loop: gliclazide–glimepiride–metformin–pioglitazone). The loop-specific test revealed no significant difference. The presence or absence of global inconsistency in the design of RCTs was not assessed.

Network meta-analysis
Table 2 presents the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 shows the results of the network meta-analysis. No significant difference was found in blood PAI-1 levels among glibenclamide, gliclazide, and glimepiride compared with those after using the placebo. Glimepiride achieved significantly lower blood PAI-1 levels compared with other oral antidiabetic drugs, and no significant difference was found among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Direct pairwise meta-analysis
Table 2 presents the results of the direct pairwise meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 shows the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 presents the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 presents the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 presents the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).

Network meta-analysis
Table 2 presents the results of the network meta-analysis. Among glibenclamide, gliclazide, and glimepiride, the only drug that was compared with a placebo was glimepiride, and no significant difference in blood PAI-1 levels was evident among the drugs (SMD: $-0.03; 95\% CI: -0.54\%–0.47\%$).

Among the sulfonylureas, the effects of only glibenclamide and glimepiride on blood PAI-1 levels were compared, and no significant difference was found among the drugs (SMD: $-0.23; 95\% CI: -0.75\%–0.29\%$).
Ca2+ channels. This increases the intracellular Ca2+ concentration and low-density lipoprotein-type hyperlipoproteinemia. A significant correlation exists between elevated PAI-1 levels, arteriosclerosis, and cardiovascular disease onset [3]. Elevated blood PAI-1 levels are caused by tumor necrosis factor-α (TNF-α), oxidative stress, and low-density lipoprotein-type hyperlipoproteinemia and are correlated with insulin resistance, triacylglycerol levels, and very low-density lipoprotein levels [5-7]. This control of these factors is thought to play an important role in the maintenance of low blood PAI-1 levels.

Presently, sulfonylureas available for routine medical practice include glibenclamide, gliclazide, and glimepiride. When sulfonylureas bind to adenosine triphosphate-sensitive K+ channels found in the pancreatic β-cell membrane, they depolarize it, leading to the opening of voltage-dependent Ca2+ channels. This increases the intracellular Ca2+ concentration via extra cellular Ca2+ influx and causes insulin secretion [31]. Reportedly, sulfonylureas exhibit hypoglycemic effects through the potent stimulation of insulin secretion and extra pancreatic effects. Gliclazide exhibits a potent antioxidant effect through the azabicyclo-octyl ring in its structure. Lowering oxidative stress improves intravascular function and has an anti-arteriosclerotic effect [9]. Glimepiride promotes glucose uptake in peripheral tissues by promoting adiponectin production and improves insulin resistance [10]. However, few reports have examined the extra pancreatic effects of glibenclamide. Despite the similarities between these sulfonylureas, they have different extra pancreatic effects and may have different effects on cardiovascular disease. However, their effects on cardiovascular disease remain unclear [32].

Because glibenclamide, gliclazide, and glimepiride have different extra pancreatic effects, we hypothesized that their effects on blood PAI-1 levels would differ. We then investigated these differences using the network meta-analysis method. Our results revealed that gliclazide achieved significantly lower PAI-1 levels than glimepiride. Gliclazide exerts an oxidative stress-lowering effect, which is considered to be stronger than that of glibenclamide or glimepiride [33]. Furthermore, gliclazide therapy reportedly lowers TNF-α and increases adiponectin levels [8]. Reduced TNF-α and elevated adiponectin levels correlate with improved insulin resistance, which is thought to be associated with low blood PAI-1 levels [34,35]. Furthermore, glibenclamide and glimepiride carry a higher risk of hypoglycemia than gliclazide [36]. Low blood glucose levels increase blood PAI-1 levels [37], which may be another reason why blood PAI-1 levels are lower after using gliclazide than after using glimepiride. However, in this study, we did not observe that blood PAI-1 levels were lowered more significantly by gliclazide than by the placebo. As a whole, the observation periods of the RCT included in our present study were short, with substantial discrepancy in patient background between each study. Further examination is warranted for ascertaining whether gliclazide exerts a blood PAI-1-lowering action, considering these problems, and with larger sample size.

In contrast, blood PAI-1 levels were significantly lower after using gliclazide than after using metformin. Reportedly, metformin lowers blood PAI-1 levels, which is thought to be associated with improvement in insulin resistance [38]. However, in reports on the ability of metformin to lower blood PAI-1 levels, observation periods varied from short to long [38,39]. Few reports have directly compared the effects of gliclazide and metformin on blood PAI-1 levels, and we believe that this issue requires further examination in the future. In the present study, of the agents examined, rosiglitazone achieved the greatest reduction in blood PAI-1 levels. Thiazolidine derivatives, including rosiglitazone, act on the nuclear receptor peroxisome proliferator-activated receptor-y in target organs, such as the skeletal muscles and liver, to improve insulin resistance. Furthermore, thiazolidine derivatives exhibit hypoglycemic effects by increasing adiponectin levels and improving insulin resistance in peripheral tissues. However, the use of rosiglitazone has been discontinued, and it cannot be used in routine medical practice at present.

Although it remains unclear whether the administration of sulfonylureas impedes cardiovascular disease onset, which is the endpoint [32], the outcomes of the present study, i.e., blood PAI-1 levels, could serve as a surrogate marker for cardiovascular disease onset [3]. In the present study, glib-
enclamide, gliclazide, and glimepiride were compared with the placebo, and no significant decrease in blood PAI-1 levels was observed after using the agents. However, on comparing the three agents, blood PAI-1 levels were significantly lower after using gliclazide than after using glimepiride. Apriori study reported that glicazide administration to patients with type 2 diabetes reduced the rate of cardiovascular deaths [40]. From the perspective of blood PAI-1 levels, when using sulfonylureas in patients with type 2 diabetes mellitus, we believe that the use of gliclazidemay be preferable.

To our knowledge, this is the first study to examine the effects of sulfonylureas on blood PAI-1 levels using network meta-analysis. Because trials with direct comparisons (head-to-head clinical trials) of drug effects are limited, the differences in drug effects to be evaluated are often unclear. Network meta-analysis enables differences in drug effects to be estimated on the basis of trials with direct comparisons and is a method that enables the most effective drugs to be ranked. In the RCTs included in the present study, direct comparison was performed only for glibenclamide and glimepiride. Indirect comparison by network meta-analysis enabled differences in the effects of the three agents examined.

This study has several limitations. First, we included relatively few RCTs, which may have resulted in weak statistical power. Furthermore, we included a few RCTs and could not perform subgroup analyses according to the age and the presence or absence of obesity, thereby restricting us from conducting a detailed analysis. Second, we cannot exclude the possibility that the literature in databases that we did not search could have affected our results. Third, there were largevariations between RCTs included in this study in terms of the observation period and drug doses used. Accordingly, caution should be exercised when interpreting and generalizing our results. Fourth, while we compared the effect of sulfonylureas on blood PAI-1 levels, we could not elucidate the underlying mechanism (such as whether an improvement in the insulin resistance and oxidative stress were involved). Last, the quality of included RCTs was generally poor, which casts doubt on the validity of our results.

Conclusions
We examined differences in the effects of glibenclamide, gliclazide, and glimepiride on blood PAI-1 levels. Our results revealed that blood PAI-1 levels were not significantly lower after using these agents than after using the placebo. However, blood PAI-1 levels were significantly lower after using gliclazide than after using glimepiride. From the perspective of blood PAI-1 levels, when using sulfonylureas in patients with type 2 diabetes mellitus, we believe that the use of gliclazide is preferable. However, few studies were included in the present analysis, and their quality was generally poor; therefore, we feel that caution should be exercised when interpreting our results. Further analyses should be performed that take into account the limitations of our study to determine the effects of sulfonylureas on serum PAI-1 levels in patients with type 2 diabetes mellitus.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	SI	KM	RK
Research concept and design	✓	✓	✓
Collection and/or assembly of data	✓	✓	✓
Data analysis and interpretation	✓	✓	✓
Writing the article	✓	✓	✓
Critical revision of the article	✓	✓	✓
Final approval of article	✓	✓	✓
Statistical analysis	✓	✓	✓

Acknowledgments and Funding
The authors would like to thank the staff members of the Department of Metabolic Diseases at the Ise Red Cross Hospital, Ise, Japan, for their cooperation in this study. This study received no funding.

Publication history
Editor: Geoffrey Burnstock, University College London, UK.
Received: 02-Feb-2018 Final Revised: 27-April-2018
Accepted: 01-May-2018 Published: 12-May-2018

References
1. Mannucci E, Monami M, Lamanna C, Gori F and Marchionni N. Prevention of cardiovascular disease through glycemic control in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2009; 19:604-12. | Article | PubMed
2. Hoekstra T, Geleijnse JM, Schouten EG and Kluft C. Plasminogen activator inhibitor-type 1: its plasma determinants and relation with cardiovascular risk. Thromb Haemost. 2004; 91:861-72. | Article | PubMed
3. Erem C, Hachhasanoglu A, Celik S, Ovalli E, Ersoz HO, Ukkinc K, Deger O and Telatar M. Coagulation and fibrinolysis parameters in type 2 diabetic patients with and without diabetic vascular complications. Med Princ Pract. 2005; 14:22-30. | Article | PubMed
4. Elasson M, Asplund K, Evrin PE, Lindahl B and Lundblad D. Hyperinsulinemia predicts low tissue plasminogen activator activity in a healthy population: the Northern Sweden MONICA Study. Metabolism. 1994; 43:1579-86. | Article | PubMed
5. Ghosh AK and Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012; 227:493-507. | Article | PubMed Abstract | PubMed FullText
6. Rohla M and Weiss TW. Metabolic syndrome, inflammation and atherothrombosis. Hamostaseologie. 2013; 33:283-94. | Article | PubMed
7. D’Elsa JA, Bayliss G, Gleeson RE and Weinrauch LA. Cardiovascular-renal complications and the possible role of plasminogen activator inhibitor: a review. Clin Kidney J. 2016; 9:705-12. | Article | PubMed Abstract | PubMed FullText
8. Drzewoski J and Zurawska-Klis M. Effect of gliclazide modified release on adiponectin, interleukin-6, and tumor necrosis factor-alpha plasma levels in individuals with type 2 diabetes mellitus. Curr Med Res Opin. 2006; 22:1921-26. | Article | PubMed
9. Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metabolism. 2000; 49:17-20. | Article | PubMed
10. Tsunekawa T, Hayashi T, Suzuki Y, Matsui-Hirai H, Kano H, Fukatsu A, Nomura N, Miyazaki A and Iguchi A. Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects. Diabetes Care. 2003; 26:285-9. | Article | PubMed
Comparison of effects of glitazolide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014; 122:295-302. | Article | PubMed

29. Forst T, Anastassiadis E, Diesell S, Lofffer A and Pfutzner A. Effect of linagliptin compared with glimepiride on postprandial glucose metabolism, islet cell function and vascular function parameters in patients with type 2 diabetes mellitus receiving ongoing metformin treatment. Diabetes Metab Res Rev. 2014; 30:582-9. | Article | PubMed

30. Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol. 2014; 220:T47-59. | Article | PubMed Abstract | PubMed FullText

31. Sturgess NC, Ashford ML, Cook DL and Hales CN. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985; 2:474-5. | Article | PubMed

32. Phung OJ, Schwartzman E, Allen RW, Engell SS and Rajpathak SN. Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013; 30:1160-71. | Article | PubMed

33. O’Brien RC, Luo M, Balazs N and Mercuri J. In vitro and in vivo antioxidant properties of glitazide. J Diabetes Complications. 2000; 14:201-6. | Article | PubMed

34. Lyon CJ and Hsueh WA. Effect of plasminogen activator inhibitor-1 in patients with diabetes mellitus and cardiovascular disease. Am J Med. 2003; 115 Suppl 8A:625-685. | Article | PubMed

35. Kobayashi J, Kusunoki M, Murase Y, Kawashiri M, Higashikata T, Miwa K, Katsuda S, Takata M, Asano A, Nozara A, Inazu A and Matubuchi H. Relationship of lipoprotein lipase and hepatic triglyceridemic lipase activity to serum adiponectin levels in Japanese hyperlipidemic patients. Horm Metab Res. 2005; 37:505-9. | Article | PubMed

36. Landman GW, de Bock GH, van Hateren KJ, van Dijk PR, Groenier KH, Gans RO, Houweling ST, Bilo HJ and Kleeftsnra N. Safety and efficacy of glitazolide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PLoS One. 2014; 9:e82880. | Article | PubMed

37. Joy NG, Mikeldadze M, Younk LM, Tate DB and Davis SN. Effects of equivalent sympathetic activation during hypoglycaemia on endothelial function and pro-atherothrombotic balance in healthy individuals and obese standard treated type 2 diabetes. Metabolism. 2016; 65:1695-1705. | Article | PubMed Abstract | PubMed FullText

38. de Jager J, Kooy A, van Dolk LM, de Jong FA, Hoekstra NB, Buijs RO, Struijker-Boudier HA, Larner AJ and Stehouwer CD. Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med. 2014; 275:59-70. | Article | PubMed

39. Eriksson A, Attvall S, Bonnier M, Eriksson JW, Rosander B and Karlsson MG, Donker AJ and Stehouwer CD. Short-term effects of metformin in type 2 diabetes. Diabetes Obes Metab. 2007; 9:483-9. | Article | PubMed

40. Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbol EL, Kober L, Norgaard ML, Madsen M, Hansen PR and Torp-Pedersen C. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011; 32:1900-8. | Article | PubMed

Citation:
Ida S, Murata K and Kaneko R. Effects of sulphonylurea treatment on blood plasminogen activator inhibitor-1 levels in patients with type 2 diabetes mellitus: A network meta-analysis. J Diab Res Clin Met. 2018; 7:1. http://dx.doi.org/10.7243/2050-0866-7-1