STAT3 Expression and Activity are Up-Regulated in Diffuse Large B Cell Lymphoma of Dogs

A.L.F.V. Assumpção*, P.C. Jark*, C.C. Hong, Z. Lu, H.M. Ruetten, C.M. Heaton, M.E. Pinkerton, and X. Pan

Background: The Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathways play important roles in the pathogenesis of diffuse large B cell lymphoma (DLBCL) in humans, and up-regulated STAT3 expression and activity are associated with worse clinical outcome in humans. No studies have evaluated the JAK-STAT signaling pathway in DLBCL of dogs.

Hypothesis: STAT3 pathway is deregulated in DLBCL in dogs. We aim to assess the expression, activation, and cellular localization of STAT3 and mitogen-activated protein kinase ERK1/2 in DLBCL of dogs.

Animals: Forty-three client-owned dogs diagnosed with DLBCL by histopathology.

Methods: Retrospective analysis of DLBCL in dogs, including patient characteristics and treatment, immunohistochemistry, and protein expressions by Western blot.

Results: A higher percentage of STAT3 and p-STAT3 immunolabelled cells were observed in DLBCL of dogs when compared to normal canine lymph nodes. In STAT3 immunolabelled cells, STAT3 has higher nuclear expression in lymphoma samples than in normal or reactive lymph nodes. In addition to up-regulated STAT3 expression and activation, mitogen-activated kinase ERK1/2 activation is up-regulated in DLBCL of dogs.

Conclusion and Clinical Importance: Compared with the normal canine lymph node, DLBCL of dogs has up-regulated STAT3 pathway. Our results support future investigation of JAK inhibitors in the treatment of DLBCL in dogs.

Key words: DLBCL; p-ERK1/2; p-STAT3.

Lymphoma comprises 83% of all hematopoietic malignancies in dogs and approximately 24% of all cancers in dogs. Similar to non-Hodgkin lymphoma (NHL) in humans, most lymphomas in dogs arise from a malignant B cell lineage.¹ The most common form of lymphoma in dogs is diffuse large B cell lymphoma (DLBCL). Dogs with DLBCL typically present with generalized peripheral lymphadenopathy, with stage III to V disease as classified by the World Health Organization (WHO) staging system for domestic animals.² Also, similar to NHL in humans, the drugs most effective for treating DLBCL in dogs are the drugs comprising cyclophosphamide-doxorubicin-vincristine-prednisone (CHOP)-based chemotherapy protocols.² Although >80% of canine patients with DLBCL initially respond to CHOP-based chemotherapy, the duration of response is relatively short, with a median survival time of approximately 10 months.³,⁴ Although many CHOP variations and other chemotherapy protocols have been assessed, overall clinical outcome remains unchanged.²,³ Hence, CHOP-based chemotherapy remains the standard of care for dogs with DLBCL, and there is a substantial need for identifying new therapeutic targets for treating canine patients with DLBCL.

The Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathways
Fine needle aspirates, cell lysate preparation and Western blot

Two normal canine peripheral lymph nodes, 1 reactive lymph node and 6 canine DLBCLs, were aspirated by standard trephination technique using 20 gauge needles. The aspirated cells were flushed into C10 medium containing Roswell Park Memorial Institute (RPMI) 1640 with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% nonessential amino acids, 1% L-glutamine, 1 mM sodium pyruvate, and 1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). Cells were centrifuged at 1.5 × 10^6 revolutions per minute (RPM) for 5 minutes at 4°C and were resuspended in ammonium-chloride-potassium lysing buffer for red blood cell (RBC) lysis. After RBC lysis, cells were washed once with 1× PBS and lysed by prechilled radioimmunoprecipitation assay (RIPA) buffer (Tris-HCL 25 mM, NaCl 150 mM, nonyl phenoxypolyethoxylethanol (NP)-40 1%, sodium dodecyl sulfate 0.1%, and sodium deoxycholate 1%) with 1× phenylmethysulfonyl fluoride (PMSF), 1× Halt protease inhibitor cocktail (Thermo Fisher) and 1× Halt™ phosphatase inhibitor cocktail (Thermo Fisher) and incubated on ice for 20 minutes. The supernatant was collected after full-speed centrifugation for 15 minutes at 4°C. The protein concentrations were checked by a standard bicinchoninic acid assay (BCA) method (Pierce™ BCA Protein Assay Kit). Total cell lysates were mixed with 4× Laemmli sample buffer (Bio-rad™) and 30 μg protein was loaded for each sample. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and peroxidase-based chemiluminescent detection were performed according to standard laboratory protocols. Antibodies used for blotting were as follows: mouse anti-STAT3 (1:1,000, Cell Signaling Technology), 124H6), rabbit anti-p-STAT3 (1:500, Cell Signaling Technology), Y705 D3A7) in a humidified chamber overnight at 4°C. Signal Stain™ Boost IHC Reagents (horse/radish peroxidase, mouse or rabbit) were used as secondary antibodies. Slides then were rinsed in phosphate-buffered saline (PBS) and stained with 3, 3'-diaminobenzidine (DAB, Cell Signaling Technology) for 1 minute at room temperature. Slides were rinsed with distilled water and dehydrated through graded alcohols and xylene. Sections were counterstained with Mayer’s hematoxylin solution. A simple canine mammary carcinoma was used as a positive control for STAT3 and p-STAT3 (Fig S1) as previously described. Negative control was achieved by incubating samples with 1% goat serum without anti-STAT3 or anti-p-STAT3 antibody (Fig S1). Immunolabeling for STAT3 and p-STAT3 was evaluated by light microscopy to determine the percentage of positive immunolabelled cells. Five representative fields of each sample were evaluated at 60× high power field. The mean percentage of positive cells per sample was calculated by averaging the percentage of positive cells/total cells counted in each of the 5 representative fields.

To evaluate cytoplasmic versus nuclear localizations of STAT3 and p-STAT3, a minimum of 100 STAT3 or p-STAT3 positively stained cells were evaluated per 1× high power field, and a total of 5 representative fields of each sample was assessed. Staining patterns were classified as nuclear, cytoplasmic, or both. All immunohistochemical samples were evaluated and quantified by a board-certified veterinary pathologist with Image software.

Statistical analysis

All Cox proportional hazard survival models were fit using the coxph function, and included only main effects of stage (III, IV, V),
substage (a or b), and dichotomized STAT3 or p-STAT3. High values of STAT3 and p-STAT3 were defined as \(\geq 0.76 \) for STAT3, or \(\geq 0.15 \) for p-STAT3. Statistical analyses in IHC staining were conducted by using GraphPad Prism v6.05 (GraphPad Software g). One-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test was used to compare STAT3 and p-STAT3 expression in the different canine tissues. \(P \) values \(\leq 0.05 \) were considered significant.

Results

Patient demographics

All 43 canine patients with DLBCL were followed at the University of Wisconsin-Madison Veterinary Teaching Hospital. The median age of patients was 8.1 years (range, 0.6–13.3 years). The mean weight of the patients was 27.8 kg (range, 3.9 kg–50.5 kg). The majority of patients were either female spayed or male castrated (Table 1). Forty-two of 43 patients had complete or partial lymphoma staging performed at the initial diagnosis. Of the 42 patients, all had CBC and biochemistry profile performed, 27 had urinalyses, 37 had thoracic radiographs, 10 had abdominal ultrasound examination, and 15 had bone marrow aspirates collected (Table 2). Other staging tests included multidrug-resistant (MDR) mutation screening (2 patients), PCR of antigen rearrangement (1 patient), electrocardiogram (ECG) (1 patient) and prothrombin time (PT) and partial thromboplastin time (PTT) (1 patient). Most laboratory test results were normal. The most common abnormal CBC findings were as follows: low-grade anemia (5/42), thrombocytopenia (4/42), and atypical mononuclear cells (6/42). The most common abnormal biochemistry findings were increased ALT and ALP activity (5/42) and low serum albumin concentration (3/42). Of the 37 patients that had thoracic radiographs, 10 had normal results. Nineteen had sternal, mediastinal or tracheobronchial lymphadenopathy, 3 patients had radiographic evidence of lymphoma infiltration into the lung, and 2 patients had pleural effusion. Other abnormal thoracic radiographic findings included hepatomegaly (4/37), pulmonary fibrosis (1/37), chronic rib fractures (3/37), cardiomegaly (2/37), and peritoneal effusion (1/37). Of the 10 patients that had abdominal ultrasound examination, 7 had abdominal lymphadenopathy and 5 had infiltrative lesions in the spleen. Other abnormal findings on abdominal ultrasound examination included hepatomegaly (2/10), adrenal mass (1/10), and nephrolithiasis (1/10). Of the 15 patients that had bone marrow aspirates performed, 13 had normal results, 1 patient had lymphoma infiltration into the bone marrow, and 1 patient had mild plasma cell hyperplasia. Twenty-seven dogs were classified as stage III, and 5 dogs as stage V. Of the 43 dogs, 38 were substage a, and remaining 5 were substage b. Three patients had 1 other type of tumor histology in addition to lymphoma and those included mixed mammary adenoma, jejunal adenocarcinoma, and splenic leiomyosarcoma (Table 1).

STAT 3 and p-STAT3 are up-regulated in DLBCL of dogs

To determine STAT3 and its active form p-STAT3 expressions, 43 naïve canine DLBCL primary tumors from 38 popliteal, 2 submandibular, 2 prescapular, and 1 inguinal lymph nodes were evaluated by immunohistochemistry. Ten normal canine lymph nodes and 10

Parameters	High STAT3 (n = 26)	Low STAT3 (n = 17)	High p-STAT3 (n = 18)	Low p-STAT3 (n = 25)	Total
Thoracic radiograph	88% (23/26)	82% (14/17)	78% (14/18)	92% (23/25)	86% (37/43)
Abdominal ultrasound	23% (6/26)	23% (4/17)	5% (1/18)	36% (9/25)	23% (10/43)
Bone marrow aspiration	38% (10/26)	29% (5/17)	22% (4/18)	44% (11/25)	35% (15/43)
CBC	100% (26/26)	94% (16/17)	94% (17/18)	100% (25/25)	97% (42/43)
Chemistry profile	100% (26/26)	94% (16/17)	94% (17/18)	100% (25/25)	97% (42/43)
Urinalysis	69% (18/26)	52% (9/17)	61% (11/18)	64% (16/25)	63% (27/43)

Table 1. Demographic characteristics for the overall 43 canine patients with DLBCL.

Age at Diagnosis (years)	Mean	Median	Range
	8.2	8.1	0.6–13.3

Sex	MN	FS	MI
	19	19	5

Breed	Golden retriever	Labrador retriever	Other pure bredd**	Mixed breed
	5	6	12	9

Weight (KG)	Mean	Median	Range
	27.8	29	3.9–50.5

Stage	III	IV	V
	27	12	4

Substage	a	b
	38	5

Table 2. Summary of staging diagnostic tests for high STAT3, low STAT3, high p-STAT3 and low p-STAT3 and all canine patients with DLBCL.

JAK-STAT Pathway in Lymphoma
reactive lymph nodes were used as controls. For internal staining control, simple mammary carcinoma was used as a positive control as previously described, and normal canine lymph node tissue stained without STAT3 or p-STAT3 primary antibodies was used as negative control (Fig S1). In canine DLBCL, 76% and 15% of cells stained positive for STAT3 and p-STAT3, respectively. In contrast, only 49% and 3.9% of cells stained positive for STAT3 and p-STAT3 in normal canine lymph nodes (Table 3). In reactive lymph nodes, 64% and 11.5% of cells stained positive for STAT3 and p-STAT3, respectively. A statistically significant increase of both STAT3 ($P = 0.0057$) and p-STAT3 ($P = 0.006$)-positive cells was identified in DLBCL when compared with normal canine lymph nodes. No statistically significant difference was observed between the DLBCL and reactive lymph nodes (STAT3, $P = 0.3142$; p-STAT3, $P = 0.5373$), although the absolute percentages of positively stained cells were higher in DLBCLs than in reactive lymph nodes (Fig 1). The 43 lymphoma patients were further divided into 4 cohorts based on high STAT3, low STAT3, high p-STAT3, or low p-STAT3 expression. In the canine DLBCL samples tested, STAT3 was expressed in a mean of 76% of the cells, and p-STAT3 was expressed in a mean of 15% of the cells. The cut-off of high versus low expression was based on the mean percentage of cells expressing STAT3 (76%) and p-STAT3 (15%) in canine DLBCL samples (Table 3). No significant differences in age, sex, breed, weight, stage, or substage were found between high versus low STAT3 or p-STAT3 cohorts (Tables 4, 5). Our data showed a higher percentage of STAT3 and p-STAT3 immunolabelled cells in canine DLBCL compared with normal canine lymph nodes, and the mean percentage of STAT3 or p-STAT3 was not associated with age, sex, breed, clinical stage, or substage.

Table 3. The mean percentage of STAT3 or p-STAT3 immunolabelled cells in canine DLBCL, normal canine lymph nodes, or reactive lymph nodes.

Sample	STAT3	p-STAT3
Normal lymph node (n = 10)	49.16%	3.91%
Reactive lymph node (n = 10)	63.97%	11.58%
DLBCL (n = 43)	76.31%	15.42%

![Fig 1. STAT3 and phosphorylated STAT3 (p-STAT3) are up-regulated in canine DLBCL. Immunohistochemistry was conducted to evaluate expression of STAT3 (A-C) and p-STAT3 (D-F) proteins in canine normal lymph nodes (A, D), canine reactive lymph nodes (B, E), and canine DLBCL (C, F). Scale bars correspond to 20 μm. (G, H) Mean (±SD) percentage of STAT3 and p-STAT3 immunolabelled cells. Compared with normal canine lymph nodes, there was a statistical increase in STAT3 and p-STAT3 immunolabelled cells in canine DLBCL. Normal lymph nodes (n = 10), reactive lymph nodes (n = 10) and DLBCL (n = 43) (**P < 0.01).](image-url)
Canine DLBCL has higher STAT3 nuclear expression compared with normal or reactive lymph nodes

Because STAT3 is activated by phosphorylation at Tyr705, which induces STAT3 dimerization, nuclear localization of STAT3 is an indicator of activated STAT3 pathway. We further evaluated STAT3 and p-STAT3 nuclear versus cytoplasmic expression in canine DLBCL. Although p-STAT3 expression was exclusively nuclear in all canine DLBCL, reactive lymph node and normal lymph node samples, total STAT3 was expressed either exclusively in the cytoplasm or within both the cytoplasm and nucleus (Fig 2). Furthermore, canine DLBCL had significantly higher nuclear STAT3 staining compared with normal lymph node (Fig 2 G). In canine DLBCL, 98% of STAT3 immunolabelled cells showed both a cytoplasmic and nuclear staining pattern and 2% of cells only showed cytoplasmic staining. In contrast, 70% of STAT3 immunolabelled cells in normal canine lymph node showed both cytoplasmic and nuclear staining, and 30% of cells were stained exclusively in the cytoplasm (Table 6). Canine DLBCL had significantly higher STAT3 nuclear expression compared with normal lymph node (P < 0.0001) or reactive lymph node (P < 0.0001; Fig 2G).

Mitogen-activated protein kinase ERK1/2 is up-regulated in canine DLBCL

Because STAT3 transcriptional activation also can be regulated by phosphorylation at Ser727 by the mitogen-activated protein kinase (MAPK) pathway, we evaluated the p44/42 MAPK (Erk1/2) signaling pathway in primary canine DLBCL. Cells from 6 cytologically diagnosed canine DLBCL (Fig 3, samples 4–9), 2 normal canine lymph nodes (Fig 3, samples 1 and 2), and 1 reactive lymph node (Fig 3, sample 3) were obtained by fine needle aspiration. Immunophenotype of B cell origin was confirmed either by flow cytometry or immunocytochemistry using CD3 and CD20 markers. Western blot analyses were conducted with primary antibodies against total STAT3, p-STAT3, total ERK1/2, or p-ERK1/2. Phosphorylated ERK1/2 (p-ERK1/2) was up-regulated in 5 of 6 canine lymphoma samples (Fig 3, samples 4–7 and 9) compared with normal lymph node (samples 1–2) or reactive lymph node controls (sample 3). In addition, 4 of 6 lymphoma samples (Fig 3, samples 4–6 and 9) showed higher total ERK expression compared with normal lymph node controls (samples 1–2). Consistent with the IHC results (Fig 1), p-STAT3 was expressed at a higher level in most of the lymphoma samples (Fig 3, samples

Table 4. Demographic characteristics of canine DLBCL patients with high versus low percentage of STAT3.	Table 5. Demographic characteristics of canine DLBCL patients with high versus low percentage of p-STAT3.					
Variables	High STAT3 (n = 26)	Low STAT3 (n = 17)	P value	High p-STAT3 (n = 18)	Low p-STAT3 (n = 25)	P value
Age at diagnosis (years)	Mean 8.4	7.9	0.5944	Mean 8.6	7.9	0.4241
Median 8.5	8.1		Median 9.1	8.1		
Range 3.4–13.3	0.6–12.2		Range 3.8–12.0	0.6–13.3		
Sex	MN 11	8	0.6366	MN 6	13	0.2008
FS 11	8		FS 8	9		
MI 4	1		MI 0	3		
Breed	Golden retriever 1	4	0.1873	Golden retriever 1	3	0.6414
Labrador retriever 6	0		Labrador retriever 5	4		
Beagle 2	1		Other pure bred** 8	15		
Other pure bred** 13	7		Other pure bred** 8	15		
Mixed breed 4	5		Mixed breed 4	3		
Weight (KG)	Mean 28.8	26.3	0.5039	Mean 26.5	28.4	0.5944
Median 30.7	29		Median 29	31.2		
Range 6.8–43	3.9–50.5		Range 7.8–50.5	3.9–46.8		
Stage	III 16	11	0.1603	I–III 11	16	0.9304
IV 9	3		IV 5	7		
V 1	3		V 2	2		
Substage	a 25	14	0.2862	a 16	23	0.2829
b 1	3		b 2	2		
**Other pure-bred dogs included 3 beagles, 2 border collies, 2 standard poodles, 2 vizslas, 2 West Highland white terriers, and 1 each American foxhound, Boston terrier, Briard, Brittany, Bernese mountain dog, dalmatian, doberman pinscher, German shepherd, Irish setter, papillon, and pit bull terrier	**Other pure-bred dogs included 3 beagles, 2 border collies, 2 standard poodles, 2 vizslas, 2 West Highland white terriers, and 1 each American foxhound, Boston terrier, Briard, Brittany, Bernese mountain dog, dalmatian, doberman pinscher, German shepherd, Irish setter, papillon, and pit bull terrier					
4, 6, 7 and 9) when compared with the normal lymph nodes (samples 1–2), but not when compared with the reactive lymph node (sample 3).

Discussion

Although the JAK/STAT pathway has been shown to play a critical role in cancer biology in humans, this pathway has not been well studied in veterinary patients with naturally occurring cancers. Earlier veterinary studies have evaluated the expression of STAT3 and p-STAT3 in malignant neoplasia of dogs.\(^\text{15–17}\) p-STAT3 expression is significantly higher in canine metastatic mammary tumors compared with nonmetastatic tumors.\(^\text{15}\) STAT3 activation contributes to survival and proliferation of canine osteosarcoma cell lines in vitro.\(^\text{16}\) STAT3 also is overexpressed in canine hemangiosarcomas compared with canine hemangiomas.\(^\text{17}\) Our study shows that the percentage of total STAT3 and p-STAT3 immunolabelled cells was significantly higher in canine DLBCL patients compared with normal
malignancies.18,19,21 The activated STAT3 pathway is evident in many solid tumors and hematopoietic inflammation, immunity, and cancer development is microvascular density in people.23 Blockage of the JAK1/2 inhibitor, AZD1480 with cediranib (vascular endothelial growth factor inhibitor) was demonstrated to significantly decrease glioma tumor volume and metastasis.12 A correlation has been observed between p-STAT3 and the antia apoptotic protein survivin in DLBCL of humans, and p-STAT3 and survivin expression both are important prognostic factors. In a cohort of patients negative for p-STAT3, median survival time (MST) was 163.5 months compared with a MST of 22.2 months in patients positive for p-STAT3.24 p-STAT3 expression also is more commonly observed in ABC-DLBCL and is associated with more advanced clinical stage, involvement of multiple extranodal sites, and unfavorable prognosis.13 Our study shows that STAT3 and p-STAT3 expression in canine DLBCL is up-regulated and can be variable. It will be informative to further evaluate the impact of STAT3 and p-STAT3 expression on clinical outcome. High STAT3 and p-STAT3 expression may be associated with poor prognosis and shorter median survival time. A prospective analysis of larger patient cohorts with standardized treatment protocols will be necessary to answer this question.

Multiple small molecule JAK inhibitors currently are under investigation in clinical trials for treating myeloproliferative disease and leukemia in humans.25-28 In veterinary medicine, the JAK1/2 inhibitor oclacitinib (Apoquel®) was approved by the Food and Drug Administration in 2013 for treating dogs with atopic dermatitis.25,29-31 Our finding that the STAT3 pathway is up-regulated in canine DLBCL is encouraging because it supports further exploration of the potential therapeutic effect of JAK2 inhibitors in canine patients with DLBCL. Like most small molecule inhibitors, JAK inhibitors may achieve maximum therapeutic effects when combined with cytotoxic chemotherapy drugs. Future phase I/II clinical trials for cytotoxic chemotherapy combined with JAK2 inhibitors are warranted.

Conclusions

Our results show that a higher percentage of STAT3 and p-STAT3 immunolabelled cells in canine DLBCL compared with canine normal lymph node. Although p-STAT3 expression is exclusively nuclear, canine DLBCL has higher nuclear expression of total STAT3 than normal or reactive lymph nodes. In addition to up-regulated p-STAT3 expression, canine DLBCL expresses higher amounts of p-ERK1/2. Therefore, we conclude that the JAK/STAT pathway is up-regulated in dogs with DLBCL. Our data support further investigations into the use of JAK inhibitors to treat dogs with DLBCL and may provide a new therapeutic direction for treating this common hematologic malignancy of dogs.
Footnotes

a Cell Signaling Technology, Danvers, MA
b NIH Image, Bethesda, MA
c Thermo Scientific Pierce Protein Biology, Madison, WI
d Thermo Fisher Scientific, Madison, WI
e Bio-Rad Laboratories, Hercules, CA
f Sigma-Aldrich Corporation, St. Louis, Missouri
g GraphPad Software, La Jolla, CA
h Zoetis, Parsippany-Troy Hills, NJ

Acknowledgments

The work was conducted at the University of Wisconsin-Madison, and was supported by start-up funds from UW-Madison, and NIH grants K01OD020153-01A1 and T35OD11078. We thank the University of Wisconsin Carbone Comprehensive Cancer Center (UWCCC) for use of its Shared Services (Histology Lab and Biostatistics center) to complete this research. The data were presented in part as a research abstract at the 2016 ACVIM Forum, Denver, CO.

Conflict of Interest Declaration: Authors declare no conflict of interest.

Off-label Antimicrobial Declaration: Authors declare no off-label use of antimicrobials.

References

1. Valli VE, San Myint M, Barthel A, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol 2011;48:198–211.
2. Hosoya K, Kisseberth WC, Lord LK, et al. Comparison of COAP and UW-19 protocols for dogs with multicentric lymphoma. J Vet Intern Med 2007;21:1355–1363.
3. Valerius KD, Ogilvie GK, Mallinckrodt CH, et al. Doxorubicin alone or in combination with asparaginase, followed by cyclophosphamide, vincristine, and prednisone for treatment of multicentric lymphoma in dogs. 121 cases (1987-1995). J Am Vet Med Assoc 1997;210:512–516.
4. Keller ET, MacEwen EG, Rosenthal RC, et al. Evaluation of prognostic factors and sequential combination chemotherapy with doxorubicin for canine lymphoma. J Vet Intern Med 1993;7:289–295.
5. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003;9:316–326.
6. Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene 2004;23:5426–5434.
7. Ding BB, Yu JJ, Yu RY, et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 2008;111:1515–1523.
8. Weinberg RA. Cytoplasmic Signaling Circuitry Programs Many of the Traits of Cancer. Biology of Cancer, 2nd ed. 2014:175–229.
9. Kralovic R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. New Engl J Med 2005;352:1779–1790.
10. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–1061.
11. Scott LM, Gandhi MK. Deregulated JAK/STAT signalling in lymphomagenesis, and its implications for the development of new targeted therapies. Blood Rev 2015;29:405–415.
12. Wu ZL, Song YQ, Shi YF, et al. High nuclear expression of STAT3 is associated with unfavorable prognosis in diffuse large B-cell lymphoma. J Hematol Oncol 2011;4:31.
13. Ok CY, Chen J, Xu-Monette ZY, et al. Clinical implications of phosphorylated STAT3 expression in De Novo diffuse large B-cell lymphoma. Clin Cancer Res 2014;20:5113–5123.
14. Teng SP, Hsu WL, Chiu CY, et al. Overexpression of P-glycoprotein, STAT3, phospho-STAT3 and KIT in spontaneous canine cutaneous mast cell tumours before and after prednisolone treatment. Vet J 2012;193:551–556.
15. Krol M, Pawlowski KM, Dolka I, et al. Density of Gr1-positive myeloid precursor cells, p-STAT3 expression and gene expression pattern in canine mammary cancer metastasis. Vet Res Commun 2011;35:409–423.
16. Fossey SL, Bear MD, Kisseberth WC, et al. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011;11:125.
17. Petterino C, Rossetti E, Drigo M. Immunodetection of the signal transducer and activator of transcription-3 in canine hemangiomata and haemangiosarcoma. Res Vet Sci 2006;80:186–188.
18. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798–809.
19. O’Shea JJ, Holland SM, Staumd LM. Jakks and Statss in immunity, immunodeficiency, and cancer. N Engl J Med 2013;368:161–170.
20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.
21. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 2011;21:159–168.
22. Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005;11:1314–1321.
23. de Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3:1036–1048.
24. Sung J-Y, Lin S-J, Kim YW, et al. Prognostic significance of pSTAT3 and Survivin expression in diffuse large B-cell lymphoma. Basic Appl Pathol 2010;3:7–13.
25. Cook AM, Li L, Ho Y, et al. Role of altered growth factor receptor-mediated Jak2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Blood 2014;123:2826–2837.
26. Rutgen BC, Hammer SE, Gerner W, et al. Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma. Leuk Res 2010;34:932–938.
27. Telfer A, Pardanani A. Jak inhibitors in myeloproliferative neoplasms: rationale, current data and perspective. Blood Rev 2011;25:229–237.
28. Pardanani A, Laborde RR, Lasho TL, et al. Safety and efficacy of cyt387, a jak1 and jak2 inhibitor, in myelofibrosis. Leukemia 2013;27:1322–1327.
29. Gadeyne C, Little P, King VL, et al. Efficacy of ocalcitinib (Apoquel(R)) compared with prednisolone for the control of pruritus and clinical signs associated with allergic dermatitis in client-owned dogs in Australia. Vet Dermatol 2014;25:512–518, e586.
30. Cosgrove SB, Wren JA, Cleaver DM, et al. A blinded, randomized, placebo-controlled trial of the efficacy and safety of the Janus kinase inhibitor ocalcitinib (Apoquel(R)) in client-owned dogs with atopic dermatitis. Vet Dermatol 2015;24:587–597, e141–582.
31. Gonzales AJ, Bowman JW, Fici GJ, et al. Oclacitinib (APQUQUEL(R)) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther 2014;37:317–324.

Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Figure S1. Immunohistochemistry was conducted to evaluate the expression of STAT3 (A, B) and p-STAT3 (C, D) in canine simple mammary carcinoma. Scale bars correspond to 20 μm. Simple canine mammary carcinoma was used as a positive control for STAT3 and p-STAT3. Negative control was achieved by incubating samples with 1% goat serum without anti-STAT3 or anti-p-STAT3 antibody.