Scattering of instantons, monopoles and vortices in higher dimensions

Tatiana A. Ivanova

Bogoliubov Laboratory of Theoretical Physics, JINR
141980 Dubna, Moscow Region, Russia
Email: ita@theor.jinr.ru

Abstract

We consider Yang-Mills theory on manifolds $\mathbb{R} \times X$ with a d-dimensional Riemannian manifold X of special holonomy admitting gauge instanton equations. Instantons are considered as particle-like solutions in $d+1$ dimensions whose static configurations are concentrated on X. We study how they evolve in time when considered as solutions of the Yang-Mills equations on $\mathbb{R} \times X$ with moduli depending on time $t \in \mathbb{R}$. It is shown that in the adiabatic limit, when the metric in the X direction is scaled down, the classical dynamics of slowly moving instantons corresponds to a geodesic motion in the moduli space \mathcal{M} of gauge instantons on X. Similar results about geodesic motion in the moduli space of monopoles and vortices in higher dimensions are briefly discussed.
1 Introduction and summary

Instantons in four dimensions are nonperturbative Bogomolny-Prasad-Sommerfield (BPS) configurations solving first-order anti-self-duality equations for gauge fields which imply the full Yang-Mills equations [1]. If one makes the assumption that the non-abelian gauge potential is independent of one coordinate on \mathbb{R}^4 then the anti-self-duality equations are reduced to Bogomolny equations on \mathbb{R}^3 describing non-abelian monopoles [2]. Furthermore, considering anti-self-dual Yang-Mills equations on a four-manifold $\Sigma_2 \times S^2$ and imposing SO(3)-equivariance condition on gauge fields, one obtains vortex equations on a two-dimensional Riemannian manifold Σ_2 (see e.g. [2, 3] and references therein). Vortices, monopoles and instantons are important objects in modern field theories describing nonperturbative physics [4]-[7].

Non-abelian monopoles are also particle-like static solutions of Yang-Mills-Higgs equations in Minkowski space $\mathbb{R}^{3,1}$ [1]. Vortices can also be obtained as static solutions of Yang-Mills-Higgs equations in $2 + 1$ dimensions [4]-[7]. Similarly instantons can be considered as solitons in $4 + 1$ dimensional Yang-Mills theory. One can ask about the dynamics of all these solitons which can evolve according to the second-order field equations of Yang-Mills-Higgs or Yang-Mills theory. In the seminal paper [8] Manton suggested that in the “slow motion limit” the monopole dynamics can be described in terms of geodesics in the moduli space of static multi-monopole solutions. These geodesics are defined via a metric on the multi-monopole moduli space [8]. This heuristic approach was extended to vortices in 2+1 dimensions [9], domain walls in 3+1 dimensions [10] and instantons in 4+1 dimensions (see e.g. [11]). Higher derivative corrections to the lowest-order (adiabatic) results were considered in [12]. The Manton approach was rigorously justified both for monopoles and vortices by Stuart [13]. However, we are not aware about such a justification for scattering instantons in 4+1 dimensions. Here we provide a derivation of motion of instantons along geodesics in the multi-instanton moduli space by using the adiabatic approach. Generalizing [11], we will consider this approach for instantons not only in four but also in higher dimensions.

Instanton equations on a d-dimensional Riemannian manifold X can be introduced as follows [14]-[16]. Suppose there exists a 4-form Q on X. Then there exists a $(d-4)$-form $\Sigma := *Q$, where $*$ is the Hodge operator on X defined with the help of a metric g on X. Let A be a connection on a rank-k vector bundle E over X with the curvature $F_X = dA + A \wedge A$. For simplicity we choose SU(k) as our gauge group and therefore both A and F_X take values in the Lie algebra $\text{su}(k)$. The generalized anti-self-duality (instanton) equation on the gauge field F_X is [16]

\[*F_X + \Sigma \wedge F_X = 0 \, . \tag{1.1} \]

For $d > 4$ these equations can be defined on manifolds X with special holonomy, i.e. such that the holonomy group G^h of the Levi-Civita connection on the tangent bundle TX is a subgroup in SO(d). Solutions of (1.1) satisfy the Yang-Mills equations

\[D_\mu F_X^{\mu \nu} := \frac{1}{\sqrt{\det g}} \partial_\mu (\sqrt{\det g} F_X^{\mu \nu}) + [A_\mu, F_X^{\mu \nu}] = 0 \, , \tag{1.2} \]

where the derivatives $\partial_\mu := \partial/\partial x^\mu$ are taken with respect to local coordinates x^μ on X and $g = g_{\mu \nu} dx^\mu dx^\nu$, $\mu, \nu, \ldots = 1, \ldots, d$. The instanton equations are also well defined on manifolds X with non-integrable G^h-structures, i.e. when $d\Sigma \neq 0$. In this case (1.1) imply the Yang-Mills equations with (3-form) torsion $T := *d\Sigma$, as is discussed e.g. in [17]-[20]. Such torsionful Yang-Mills equations naturally appear in heterotic string compactifications with H-flux.
We extend the manifold X by the time axis \mathbb{R} and introduce on the Lorentzian manifold $M = \mathbb{R} \times X$ a metric
\[\hat{g}_\varepsilon = -dt^2 + \varepsilon^2 g , \] (1.3)
where $t = x^0$ is a coordinate on \mathbb{R} and ε is a real parameter. Denoting by $\{x^\mu\} = \{x^0, x^\mu\}$ local coordinates on $M = \mathbb{R} \times X$, we introduce the Yang-Mills equations on M,
\[\hat{D}_\mu \hat{F}^{\mu\nu} := \frac{1}{\sqrt{\det g}} \partial_\mu (\sqrt{\det g} \hat{F}^{\mu\nu}) + [\hat{A}_\mu, \hat{F}^{\mu\nu}] = 0 , \] (1.4)
where we used the fact that $|\det \hat{g}_\varepsilon| = \varepsilon^{2d} \det g$.

It is not easy to construct non-trivial time-dependent solutions of the Yang-Mills equations (1.4). The adiabatic limit method, based on Manton's idea, provides a useful and powerful tool for describing such solutions. The adiabatic limit refers to the geometric process of shrinking the metric (1.3) in the X direction by taking the limit $\varepsilon \to 0$. We will show that solutions of the Yang-Mills equations (1.4) in the limit $\varepsilon \to 0$ for the metric (1.3) converge to the solutions of one-dimensional sigma-model describing a map from \mathbb{R} into the moduli space of gauge instantons on X. For connections A not depending on one coordinate of X we will get geodesics in the moduli space of (generalized) monopoles on a $(d-1)$-dimensional submanifold of X. Similar reductions to geodesic in moduli space of (generalized) vortices on $(d-2)$-dimensional submanifolds of X will also be described.

2 Moduli space of instantons in $d \geq 4$

Moduli space of connections. Let X be an oriented smooth manifold of dimension d, G a semisimple compact Lie group, \mathfrak{g} its Lie algebra, P a principal G-bundle over X, A a connection 1-form on P and $\hat{F}_X = dA + A \wedge A$ its curvature. We consider also the bundle of groups $\text{Int} P = P \times_G G$ (G acts on itself by internal automorphisms: $h \mapsto ghg^{-1}$, $h, g \in G$) associated with P, the bundle of Lie algebras $\text{Ad} P = P \times_G \mathfrak{g}$ and a complex vector bundle $E = P \times_G V$, where V is the space of some irreducible representation of G. All these associated bundles inherit their connection A from P. For the simplicity one can consider $G = \text{SU}(k)$, $\mathfrak{g} = \text{su}(k)$ and $V = \mathbb{C}^k$.

We denote by \mathcal{A}' the space of connections on P and by \mathcal{G}' the infinite-dimensional group of gauge transformations (automorphisms of P which induce the identity transformation of X),
\[A \mapsto A^g = g^{-1}Ag + g^{-1}dg , \] (2.1)
which can be identified with the space $\Gamma(X, \text{Int} P)$ of global sections of the bundle $\text{Int} P$. Correspondingly, the infinitesimal action of \mathcal{G}' is defined by global sections χ of the bundle $\text{Ad} P$,
\[A \mapsto \delta_\chi A = d\chi + [A, \chi] =: D_A\chi \] (2.2)
with $\chi \in \text{Lie} \mathcal{G}' = \Gamma(X, \text{Ad} P)$.

We restrict ourselves to the subspace $\mathcal{A} \subset \mathcal{A}'$ of irreducible connections and to the subgroup $\mathcal{G} = \mathcal{G}' / Z(\mathcal{G}')$ of \mathcal{G}' which acts freely on \mathcal{A}. Then the moduli space of irreducible connections on P

\[1\text{In this section we follow the discussion of [21].}\]
(and on E) is defined as the quotient \mathbb{A}/G. Classes of gauge equivalent connections are points $[A]$ in \mathbb{A}/G.

Since \mathbb{A} is an affine space, for each $A \in \mathbb{A}$ we have a canonical identification between the tangent space $T_A\mathbb{A}$ and the space $\Lambda^1(X, \text{Ad}P)$ of 1-forms on X with values in the vector bundle $\text{Ad}P$. Our $\mathfrak{g} = \text{su}(k)$ is a matrix Lie algebra, with the metric defined by the trace. The metrics on X and on the Lie algebra $\text{su}(k)$ induce an inner product on $\Lambda^1(X, \text{Ad}P)$.

\[
\langle \xi_1, \xi_2 \rangle = \int_X \text{tr} (\xi_1 \wedge \ast \xi_2) \quad \text{for} \quad \xi_1, \xi_2 \in \Lambda^1(X, \text{Ad}P) .
\]

This inner product is transferred to $T_A\mathbb{A}$ by the canonical identification. It is invariant under the G-action on \mathbb{A}, whence we get a metric (2.3) on the moduli space \mathbb{A}/G.

Instanton connections. Suppose there exists a $(d-4)$-form Σ on X which allows us to introduce the instanton equation

\[
\ast F_X + \Sigma \wedge F_X = 0
\]
discussed in Section 1. We denote by $\mathcal{N} \subset \mathbb{A}$ the space of irreducible connections subject to (2.4) on the rank-k complex vector bundle $E \rightarrow X$. This space \mathcal{N} of instanton solutions on X is a subspace of the affine space \mathbb{A}, and we define the moduli space \mathcal{M} of instantons as the quotient space

\[
\mathcal{M} = \mathcal{N}/G
\]
together with a projection

\[
\pi : \mathcal{N} \overset{G}{\rightarrow} \mathcal{M} .
\]

According to the bundle structure (2.6), at any point $A \in \mathcal{N}$, the tangent bundle $T_A\mathcal{N} \rightarrow \mathcal{N}$ splits into the direct sum

\[
T_A\mathcal{N} = \pi^*T_{[A]}\mathcal{M} \oplus T_A\mathcal{G} .
\]

In other words,

\[
T_A\mathcal{N} \ni \tilde{\xi} = \xi + D_A\chi \quad \text{with} \quad \xi \in \pi^*T_{[A]}\mathcal{M} \quad \text{and} \quad D_A\chi \in T_A\mathcal{G} ,
\]

where $\tilde{\xi}, \xi \in \Lambda^1(X, \text{Ad}P)$ and $\chi \in \Lambda^0(X, \text{Ad}P) = \Gamma(X, \text{Ad}P)$. The choice of ξ corresponds to a local fixing of a gauge. We denote by ξ_α a local basis of vector fields on \mathcal{M} (sections of the tangent bundle TM) with $\alpha = 1, \ldots, \dim\mathcal{M}$. Restricting the metric (2.3) on \mathbb{A}/G to the subspace \mathcal{M} provides a metric $G = (G_{\alpha\beta})$ on the instanton moduli space,

\[
G_{\alpha\beta} = \int_X \text{tr} (\xi_\alpha \wedge \ast \xi_\beta) .
\]

Using this metric on \mathcal{M}, we can introduce Christoffel symbols

\[
\Gamma^\gamma_{\alpha\beta} = \frac{1}{2} G^{\gamma\kappa} (\partial_\alpha G_{\beta\kappa} + \partial_\beta G_{\alpha\kappa} - \partial_\kappa G_{\alpha\beta}) ,
\]

where the derivatives $\partial_\alpha := \partial/\partial \phi^\alpha$ are taken with respect to local coordinates ϕ^α on \mathcal{M} in which $G = G_{\alpha\beta} d\phi^\alpha d\phi^\beta$. One can also introduce Riemannian tensor, Ricci tensor etc.
3 Adiabatic limit for the Yang-Mills equations in $d \geq 4$

Splitting of the Yang-Mills equations. So, we consider the manifold

$$M = \mathbb{R} \times X$$

with a metric

$$\hat{g}_\varepsilon = -dt^2 + \varepsilon^2 g = -dt^2 + \varepsilon^2 g_{\mu\nu} dx^\mu dx^\nu,$$

and rank-k complex vector bundle $E \to M$ with an $\text{su}(k)$-valued connection A as well as the curvature 2-form

$$\hat{F} = \frac{1}{2} F_{\hat{\mu}\hat{\nu}} dx^\hat{\mu} \wedge dx^\hat{\nu} = F_{0\mu} dx^0 \wedge dx^\mu + \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu.$$ \hspace{1cm} (3.3)

Recall that we assume that the second part in (3.3),

$$F_X = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu,$$

satisfies the instanton equation (2.4) and for the connection \hat{A} on $E \to \mathbb{R} \times X$ we have

$$\hat{A} = A_\mu dx^\mu = A_0 dx^0 + A_\mu dx^\mu = A_0 dt + A$$ \hspace{1cm} (3.5)

where A has components only along X but depends on all coordinates (t, x^μ) on M.

We assume that A satisfies the instanton equation (2.4) for any t and depend on t only via moduli ϕ^α (collective coordinates) described in Section 2. On the other hand, the full Yang-Mills equations (1.4) impose restrictions on dynamics of $\phi^\alpha(t)$. In order to find them we note that for the metric (3.2) we have

$$\hat{F}_\nu^{\mu_0} = \hat{g}^{00} \hat{g}^{\mu\nu} F_{0\nu} = \varepsilon^{-2} F^{0\nu}, \quad \hat{F}^{\mu\nu} = \varepsilon^{-4} F^{\mu\nu},$$ \hspace{1cm} (3.6)

where in $F^{0\mu}$ and $F^{\mu\nu}$ indices are raised by g^{00} and $g^{\mu\nu}$. After substitution of (3.6) into (1.4) we obtain the equations

$$D_\mu F^{0\nu} = g^{\mu\nu} D_\mu F_{0\nu} = 0,$$

$$g^{\mu\nu} D_0 F_{\nu\mu} = 0,$$ \hspace{1cm} (3.7) \hspace{1cm} (3.8)

where we used that $D_\mu F^{\mu\nu} = 0$ since A_μ is an instanton on X.

Projection on M. For $t \in \mathbb{R}$ varying, the connection $A = A(\phi^\alpha(t), x^\mu)$ on the bundle $E \to \{t\} \times X$ defines a map

$$\phi : \mathbb{R} \to \mathcal{M} \quad \text{with} \quad \phi(t) = \{\phi^\alpha(t)\},$$ \hspace{1cm} (3.9)

where ϕ^α with $\alpha = 1, \ldots, \dim_{\mathbb{R}} \mathcal{M}$ are local coordinates on \mathcal{M}. This map is not free - it is constrained by the equations (3.7)-(3.8). Since A belongs to the solution space \mathcal{N} of the instanton equation (2.4), its derivative $\partial_0 A$ is a solution of the linearized form of (2.4) around A, i.e. $\partial_0 A$ belongs to the vector space $T_A \mathcal{N}$. Using (2.7), one can decompose $\partial_0 A_\mu$ into two parts,

$$T_A \mathcal{N} = \pi^* T_{[A]} \mathcal{M} \oplus T_A \mathcal{G} \quad \Leftrightarrow \quad \partial_0 A_\mu = (\partial_0 \phi^\alpha) \xi_{\alpha\mu} + D_\mu \epsilon_0,$$ \hspace{1cm} (3.10)
where $\xi_\alpha = \xi_{\alpha\mu} dx^\mu$ is a local basis of vector fields on \mathcal{M} and ϵ_0 is an su(k)-valued gauge parameter which is determined by the gauge-fixing equations
\begin{equation}
 g^{\mu \nu} D_\mu \xi_{\alpha \nu} = 0 \tag{3.11}
\end{equation}
and therefore from (3.10) and (3.11) we get
\begin{equation}
 g^{\mu \nu} D_\mu \partial_0 A_\nu = g^{\mu \nu} D_\mu \epsilon_0 . \tag{3.12}
\end{equation}
Note that
\begin{equation}
 F_{\nu 0} = D_\nu A_0 - D_0 A_\nu . \tag{3.13}
\end{equation}
Let us fix the gauge of the Yang-Mills fields on $\mathbb{R} \times X$ by choosing
\begin{equation}
 A_0 := \epsilon_0 . \tag{3.14}
\end{equation}
Then from (3.10) we obtain
\begin{equation}
 F_{\nu 0} = - \dot{\phi}^\alpha \xi_{\alpha \nu} , \tag{3.15}
\end{equation}
where we denoted by dot the derivative with respect to time t. From (3.11) and (3.15) we see that the equations (3.7) are satisfied. Furthermore, since
\begin{equation}
 \partial_0 A_\mu = \dot{\phi}^\alpha \frac{\partial A_\mu}{\partial \phi^\alpha} , \tag{3.16}
\end{equation}
we get from (3.12) that
\begin{equation}
 A_0 = \epsilon_0 = \dot{\phi}^\alpha \epsilon_\alpha , \tag{3.17}
\end{equation}
where the gauge parameters ϵ_α can be obtained as solutions of the equations
\begin{equation}
 g^{\mu \nu} D_\mu D_\nu \epsilon_\alpha = g^{\mu \nu} D_\mu \frac{\partial A_\nu}{\partial \phi^\alpha} , \tag{3.18}
\end{equation}
which follow from (3.12),(3.16) and (3.17). Notice that $F_{0 \mu}$, given in (3.15), is the projection of $\partial_0 A_\mu$ from $T_\mathcal{A} N$ to $T_{[\mathcal{A}]} \mathcal{M}$ (cf. [8]):
\begin{equation}
 \pi_\alpha \partial_0 A_\mu = F_{0 \mu} = \dot{\phi}^\alpha \xi_{\alpha \mu} . \tag{3.19}
\end{equation}

Geodesics. Although the evolution of the gauge fields does not exactly follow a trajectory $\phi^\alpha(t)$ in the set of exact static solutions (moduli space \mathcal{M} of instantons on X in our case), it does a good approximation. Following [22], we will show that in the adiabatic limit $\varepsilon \to 0$ the approximation becomes exact and $\phi(t)$ is a geodesic motion on \mathcal{M}. To show this, we substitute (3.15) in the remaining unsolved equations (3.8) and obtain
\begin{equation}
 g^{\mu \nu} \frac{d}{dt} \epsilon_\beta \xi_{\beta \nu} = g^{\mu \nu} \dot{\phi}^\beta \xi_{\beta \nu} , \tag{3.20}
\end{equation}
Now let us multiply these equations on $\dot{\phi}^\alpha \xi_{\alpha \mu}$, take trace tr over su($k$) and integrate over X. We get the equations\footnote{The right hand side of (3.20) vanishes since $g^{\mu \nu} \dot{\phi}^\alpha \dot{\phi}^\beta \xi_{\alpha \mu}, \xi_{\beta \nu}$ tr due to converting symmetric and antisymmetric in ($\alpha \beta$) parts.}
\begin{equation}
 \frac{d}{dt} \left(G_{\alpha \beta} \dot{\phi}^\alpha \dot{\phi}^\beta \right) = 0 . \tag{3.21}
\end{equation}
on the moduli space \mathcal{M}. In deriving (3.21) we identify t with the affine parameter s entering in definition of the metric

$$ds^2 = G_{\alpha\beta} \, d\phi^\alpha \, d\phi^\beta$$

(3.22)
on the moduli space \mathcal{M}, where the metric components $G_{\alpha\beta}$ were introduced in (2.3):

$$G_{\alpha\beta} = \int g_{\mu\nu} \, tr(\xi_\alpha^\mu \wedge * \xi_\beta^\nu)$$

(3.23)
with the Hodge operator $*$ on X.

Equation (3.21) defines geodesics on \mathcal{M}. To see them in more standard form, with Christoffel symbols

$$\Gamma^\alpha_{\beta\gamma} = G^{\alpha\lambda} \left(\frac{\partial}{\partial \phi^\gamma} G_{\beta\lambda} + \frac{\partial}{\partial \phi^\beta} G_{\alpha\lambda} - \frac{\partial}{\partial \phi^\lambda} G_{\alpha\beta} \right),$$

(3.24)
we consider the action functional

$$\tilde{S} = \int dt \, G_{\alpha\beta} \dot{\phi}^\alpha \dot{\phi}^\beta.$$

(3.25)
The Euler-Lagrange equations for (3.25) are

$$\ddot{\phi}^\alpha + \Gamma^\alpha_{\beta\gamma} \dot{\phi}^\beta \dot{\phi}^\gamma - \dot{\phi}^\alpha \frac{d}{dt} \ln(G_{\beta\gamma} \dot{\phi}^\beta \dot{\phi}^\gamma) = 0 \quad (3.21) \quad \ddot{\phi}^\alpha + \Gamma^\alpha_{\beta\gamma} \dot{\phi}^\beta \dot{\phi}^\gamma = 0$$

(3.26)
In other words, (3.20)-(3.21) yield equations (3.26) of geodesics on the moduli space \mathcal{M} of instantons on X. This also reflects the well-known (classical) equivalence of the action functional (3.25) and the functional

$$S = \int dt \, G_{\alpha\beta} \dot{\phi}^\alpha \dot{\phi}^\beta$$

(3.27)
for which (3.26) are the Euler-Lagrange equations. Note that (3.27) is the effective action for the standard Yang-Mills action functional on $\mathbb{R} \times X$ in the limit $\varepsilon \to 0$. It stems from the term

$$\int_M d\text{vol} \, tr(F_{0\mu} F^{0\mu})$$

(3.28)
Finally, note that the pair $(A_0(\phi(t)), A_\mu(\phi(t), x))$ can be understood as a connection on $\mathbb{R} \times X$ which obeys part of the Yang-Mills equations and in the neighbourhood of (A_0, A_μ) there is a solution of the full Yang-Mills equations with $\varepsilon \neq 0$ at least for ε sufficiently small (cf. [8, 13, 7]). This follows from the implicit function theorem and means also the bijectivity of moduli space of the time-dependent solutions for $\varepsilon = 0$ and small $\varepsilon \neq 0$ (cf. [13, 7]).

Monopoles and vortices. It is well known that instanton equations on X^d can be reduced to monopole equations on a submanifold X^{d-1} in X^d and similarly (generalized) vortex equations can be obtained by a reduction on a submanifold X^{d-n} with $n \geq 2$. That is why we will be brief and mention only some examples.

Canonical example is given by the case $d = 4$. Considering $X^4 = \mathbb{R}^4$ and imposing translation invariance with respect to the fourth coordinate x^4 on \mathbb{R}^4 one sees that anti-self-dual Yang-Mills equations on \mathbb{R}^4 are reduced to the Yang-Mills-Higgs Bogomolny equations on \mathbb{R}^3 describing non-abelian monopoles [1, 2, 5, 6]. Then our consideration produces geodesics on the monopole moduli
space reproducing Manton’s result [8]. In principle, the same can be done for $d > 4$. For example, monopoles on G_2-holonomy manifolds X^7 can be obtained from Spin(7)-instantons on X^8 as in [23].

Similarly, as was mentioned in the Introduction, the anti-self-dual Yang-Mills equations on the manifold $X^4 = \Sigma_2 \times S^2$ are reduced by imposing SO(3)-symmetry to vortex equations on a Riemannian 2-manifold Σ_2 (see e.g. [2, 3] and references therein). In other words, vortices on Σ_2 can be considered as SO(3)-symmetric instantons on $\Sigma_2 \times S^2$. Then the adiabatic approach to the Yang-Mills equations on $\mathbb{R} \times \Sigma_2 \times S^2$ yields to geodesics on vortex moduli space. The same reduction from instantons to vortices can be done for $d > 4$ (see e.g. [24, 25]) for $X^d = X^{2p} \times X^{2q}$. Then one obtains generalized vortex equations (see e.g. [24, 25]) on X^{2p} and the adiabatic approach will describe slowly moving vortices via geodesics on moduli space of vortices on X^{2p} or symmetric instantons on $X^{2p} \times X^{2q}$.

Acknowledgements

This work was partially supported by the Heisenberg-Landau Program.

References

[1] R. Rajaraman, *Solitons and instantons*, North-Holland, Amsterdam, 1984.
[2] A.M. Jaffe and C.H. Taubes, *Vortices and monopoles*, Birkhaeuser, Boston, 1980.
[3] A.D. Popov, “Integrability of vortex equations on Riemann surfaces,” Nucl. Phys. B 821 (2009) 452 [arXiv:0712.1756 [hep-th]];
 A.D. Popov, “Non-Abelian vortices on Riemann surfaces: an integrable case,” Lett. Math. Phys. 84 (2008) 139 [arXiv:0801.0808 [hep-th]].
[4] A.G. Sergeev, *Vortices and Seiberg-Witten equations*, Nagoya Univ. Math. Lectures, Nagoya, 2002.
[5] N.S. Manton and P. Sutcliffe, *Topological solitons*, Cambridge University Press, Cambridge, 2004.
[6] E.J. Weinberg, *Classical solutions in quantum field theory*, Cambridge University Press, Cambridge, 2012.
[7] A.G. Sergeev, “Adiabatic limit in the Ginzburg-Landau and Seiberg-Witten equations”, Proc. Steklov Math. Inst. 289 (2015) 227.
[8] N.S. Manton, “A remark on the scattering of BPS monopoles,” Phys. Lett. B 110 (1982) 54.
[9] A.G. Sergeev and S.V. Chechin, “Scattering of slowly moving vortices in the Abelian (2+1)-dimensional Higgs model,” Theor. Math. Phys. 85 (1990) 1289.
[10] M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Ohashi and N. Sakai, “Dynamics of domain wall networks,” Phys. Rev. D 76 (2007) 125025 [arXiv:0707.3267 [hep-th]].
[11] K. Peeters and M. Zamaklar, “Motion on moduli spaces with potentials,” JHEP 12 (2001) 032 [hep-th/0107164];
 J.P. Allen and D.J. Smith, “The low energy dynamics of charge two dyonic instantons,” JHEP 02 (2013) 113 [arXiv:1210.3208 [hep-th]].
[12] M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, “Higher derivative corrections to non-Abelian vortex effective theory,” Prog. Theor. Phys. 128 (2012) 67 [arXiv:1204.0773 [hep-th]].

[13] D. Stuart, “Dynamics of Abelian Higgs vortices in the near-Bogomolny regime,” Commun. Math. Phys. 159 (1994) 51;
D. Stuart, “The geodesic approximation for the Yang-Mills-Higgs equations,” Commun. Math. Phys. 166 (1994) 149.

[14] E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, “First order equations for gauge fields in spaces of dimension greater than four,” Nucl. Phys. B 214 (1983) 452.

[15] S.K. Donaldson and R.P. Thomas, “Gauge theory in higher dimensions,” in: The Geometric Universe, Oxford University Press, Oxford, 1998.

[16] G. Tian, “Gauge theory and calibrated geometry,” Ann. Math. 151 (2000) 193 [arXiv:math/0001015 [math.DG]].

[17] D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, “Yang-Mills flows on nearly Kähler manifolds and G_2-instantons,” Commun.Math.Phys. 300 (2010) 185 [arXiv:0909.2730[hep-th]];
K.-P. Gemmer, O. Lechtenfeld, C. Nölle and A.D. Popov, “Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds,” JHEP 09 (2011) 103 [arXiv:1108.3951 [hep-th]].

[18] D. Harland and A.D. Popov, “Yang-Mills flows in flux compactifications on homogeneous manifolds with SU(4)-structure,” JHEP 02 (2012) 107 [arXiv:1005.2837 [hep-th]];
A.D. Popov and R.J. Szabo, “Double quiver gauge theory and nearly Kähler flux compactifications,” JHEP 02 (2012) 033 [arXiv:1009.3208 [hep-th]].

[19] D. Harland and C. Nölle, “Instantons and Killing spinors,” JHEP 03 (2012) 082 [arXiv:1109.3552 [hep-th]];
T.A. Ivanova and A.D. Popov, “Instantons on special holonomy manifolds,” Phys. Rev. D 85 (2012) 105012 [arXiv:1203.2657 [hep-th]].

[20] S. Bunk, T.A. Ivanova, O. Lechtenfeld, A.D. Popov and M. Sperling, “Instantons on sine-cones over Sasakian manifolds,” Phys. Rev. D 90 (2014) 065028 [arXiv:1407.2948 [hep-th]];
S. Bunk, O. Lechtenfeld, A.D. Popov and M. Sperling, “Instantons on conical half-flat 6-manifolds,” JHEP 01 (2015) 030 [arXiv:1409.0030 [hep-th]].

[21] A. Deser, O. Lechtenfeld and A.D. Popov, “Sigma-model limit of Yang-Mills instantons in higher dimensions,” Nucl. Phys. B 894 (2015) 361 [arXiv:1412.4258 [hep-th]].

[22] O. Lechtenfeld and A.D. Popov, “Yang-Mills moduli space in the adiabatic limit,” J. Phys. A 48 (2015) 425401 [arXiv:1505.05448 [hep-th]].

[23] G. Oliveira, “Monopoles on the Bryant-Salamon G_2-manifolds,” J. Geom. Phys. 86 (2014) 599 [arXiv:1310.7392 [math.DG]];
S.A. Cherkis, “Octonions, monopoles, and knots,” Lett. Math. Phys. 105 (2015) 641 [arXiv:1403.6836 [hep-th]].

[24] O. García-Prada, “Invariant connections and vortices,” Commun.Math.Phys. 156 (1993) 527;
L. Álvarez-Cónsul and O. García-Prada, “Dimensional reduction, SL(2,C)-equivariant bundles and stable holomorphic chains,” Int. J. Math. 12 (2001) 159 [math/0112159 [math-dg]].
L. Álvarez-Cónsul and O. García-Prada, “Dimensional reduction and quiver bundles,” J. Reine Angew. Math. 556 (2003) 1 [math/0112160 [math-dg]].
[25] A.D. Popov and R.J. Szabo, “Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions,” J. Math. Phys. 47 (2006) 012306 [hep-th/0504025];

O. Lechtenfeld, A.D. Popov and R.J. Szabo, “Rank two quiver gauge theory, graded connections and noncommutative vortices,” JHEP 09 (2006) 054 [hep-th/0603232].

O. Lechtenfeld, A.D. Popov and R.J. Szabo, “SU(3)-equivariant quiver gauge theories and nonabelian vortices,” JHEP 08 (2008) 093 [arXiv:0806.2791 [hep-th]].