Protection against neurodegeneration with low-dose methylene blue and near-infrared light

F. Gonzalez-Lima* and Allison Auchter

Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA

Keywords: mitochondrial respiration, near-infrared light, methylene blue, neuroprotection, neurotherapeutic potential

Neurons are metabolically protected against degeneration using low-level methylene blue and near-infrared light interventions. Both of these novel interventions act by a cellular mechanism involving enhancement of the electron transport chain in mitochondria, which promotes energy metabolism and neuronal survival (Gonzalez-Lima et al., 2014). Methylene blue preferentially enters neuronal mitochondria after systemic administration, and at low-doses forms an electron cycling redox complex that donates electrons to the mitochondrial electron transport chain. Low-level near-infrared light applied transcranially delivers photons to cortical neurons that are accepted by cytochrome oxidase, which causes increased cell respiration and cerebral blood flow. Breakthrough in vivo studies with these interventions suggest that targeting mitochondrial respiration may be beneficial for protection against different types of neurodegenerative disorders.

The purpose of this paper is to provide an update on the cellular mechanisms mediating the neuroprotective effects of low doses of methylene blue and near-infrared light, and to argue that the neurotherapeutic benefits of these two different interventions share the same cellular mechanism of action based on stimulation of mitochondrial respiration. Presented first is the explanation of the biochemical redox action of low-dose methylene blue as an electron cycler on the mitochondrial electron transport. Presented second is the explanation of the biophysical action of near-infrared light as a photon donor to cytochrome oxidase that also serves to stimulate mitochondrial electron transport. We finish with a comparison of these two interventions and how they share a common cellular mechanism with similar properties such as energy transfer, low-dose hormetic dose-responses, and enhanced capacity for oxidative metabolic energy production, which serve to protect nervous tissue from degeneration.

Methylene Blue as Electron Donor

Low-dose methylene blue stimulates mitochondrial respiration by donating electrons to the electron transport chain. This is possible by a unique auto oxidizing redox chemical property. Methylene blue is unique among chemicals for several important reasons. Foremost is the auto oxidizing property that allows methylene blue at low concentrations to form a redox equilibrium by cycling electrons (i.e., serving as both an electron donor and acceptor). This property permits the cycling of electrons from chemicals inside the mitochondrial matrix to electron transport proteins in mitochondria. These transport proteins act as acceptors for electrons donated by methylene blue in mitochondria. The final acceptor of electrons in the respiratory chain is oxygen, which is obtained from oxyhemoglobin transported in the circulation. Molecular oxygen becomes reduced to water in a reaction catalyzed by the
mitochondrial enzyme cytochrome oxidase (Complex IV, cytochrome c oxidase). The electron transport chain is coupled with the biochemical process of oxidative phosphorylation, which leads to increased oxygen consumption and the formation of ATP from ADP (Figure 1). Under normal physiological conditions the electrons that enter the electron transport chain come from electron donor molecules such as NADH and FADH$_2$. These molecules derive from the Krebs cycle conversion of the food we eat. Methylene blue at low concentrations serves as another source of electrons for the electron transport chain that is part of mitochondrial respiration, leading to increased cytochrome oxidase activity and oxygen consumption (Riha et al., 2005; Wen et al., 2011; Rojas et al., 2012a; Rodriguez et al., 2014).

In addition, recent functional magnetic resonance imaging (fMRI) studies show that systemically administered low-dose methylene blue can directly reduce oxygen to water and support cerebral metabolic rate of oxygen consumption and metabolic energy production in normoxic and hypoxic conditions in vivo (Huang et al., 2013). Since rapid activation of oxygen consumption leads to a local transient hypoxia, cytochrome oxidase changes from reducing oxygen to catalyzing the formation of nitric oxide (Poyton and Ball, 2011). This in turns leads to a hemodynamic vasodilation response that increases cerebral blood flow and brain glucose uptake in vivo (Lin et al., 2012). This metabolic cascade promotes bigenomic regulation of mitochondrial and nuclear genes whose expression up-regulate cytochrome oxidase protein subunits and holoenzyme levels in nervous tissue (Rojas et al., 2012a).

Near-infrared Light as Photon Donor

Near-infrared light from low-power lasers and light-emitting diodes (LEDs) stimulates mitochondrial respiration by donating photons that are absorbed by cytochrome oxidase, a bioenergetics process called photoneuromodulation in nervous tissue (Rojas and Gonzalez-Lima, 2013). Photons are packets of luminous energy from electromagnetic waves. The amount of energy delivered by a photon depends on the light wave frequency. Photons in the red-to-near-infrared frequency range of approximately 620–1150 nm penetrate to the brain and intersect with the absorption spectrum of cytochrome oxidase (Rojas and Gonzalez-Lima, 2011). The absorption of luminous energy by the enzyme results in increased brain cytochrome oxidase enzymatic activity and oxygen consumption (Rojas et al., 2012b).

Since the enzymatic reaction catalyzed by cytochrome oxidase is the reduction of oxygen to water, acceleration of cytochrome oxidase catalytic activity directly causes an increase in cellular oxygen consumption. Because increased oxygen consumption by nerve cells is coupled to oxidative phosphorylation, ATP production increases as a consequence of the metabolic action of near-infrared light. This type of luminous energy can enter brain mitochondria transcranially, and—indepedently of the electrons derived from food substrates—it can directly photostimulate cytochrome oxidase activity.

Red-to-near-infrared light not only stimulates mitochondrial respiration and brain oxygen consumption when light is on. Light also has a longer lasting effect on metabolic capacity because its acceleration of cytochrome oxidase activity causes enzymatic induction, a process dependent on gene expression and protein synthesis that up-regulates the levels of cytochrome oxidase (Hayworth et al., 2010). For example, 1 day after a single session of photoneuromodulation, there are significantly higher levels of cytochrome oxidase enzyme in the rat brain (Rojas et al., 2012b). Indeed, behavioral effects in humans can still be observed at 2 and 4 weeks after a single transcranial near-infrared light treatment (Barrett and Gonzalez-Lima, 2013). This enzymatic induction provides a long-term mechanism for increasing the oxidative metabolic capacity of neurons, which is manifested in vivo by increases in cerebral rates of oxygen consumption and blood flow to the brain (Uozumi et al., 2010; Rojas et al., 2012b).

Cellular Mechanisms of Neuroprotection

While low-dose methylene blue and low-level near-infrared light may produce different pleiotropic cellular effects, both interventions cause a similar up-regulation of mitochondrial respiration with similar benefits to protect nerve cells against degeneration. First, both interventions increase the expression of brain cytochrome oxidase in vivo (Gonzalez-Lima et al., 2014). Methylene blue accomplishes this by supporting the electron transport chain, while near-infrared light does it by directly energizing cytochrome oxidase via photon absorption (Figure 1). Still, their primary cellular mechanism of action is the same: enhancement of mitochondrial respiration.

Second, both interventions share high bioavailability. Methylene blue readily crosses the blood-brain barrier, builds
up inside neurons, and resides inside respiring mitochondria. Indeed, methylene blue injected to live animals was first used as a supravital stain of nervous tissue by Paul Ehrlich and Ramon y Cajal in the 1890s. In the modern case of near-infrared lasers used transcranially, the degree of penetration increases with longer wavelengths and pulse durations within the effective near-infrared spectrum range. For example, approximately 8–10% of luminous energy reaches the rat cerebral cortex and 1.7–2% reaches the human cerebral cortex (Gonzalez-Lima and Barrett, 2014).

Third, similar conditions affect their neural effects, such as the redox and activation status of the target tissue and the dose-response. Hormesis has been documented for the dose-responses of both methylene blue (Bruchey and Gonzalez-Lima, 2008) and near-infrared light (Huang et al., 2011). This phenomenon means that low doses produce opposite effects than high doses, and that intermediate doses may be ineffective. For example, while low doses of methylene blue are used to treat methemoglobinimia, high doses cause methemoglobinimia (Bruchey and Gonzalez-Lima, 2008). Hence it does not make sense to refer to methylene blue without specifying the dose level, as different doses produce opposite effects. For example, while high doses may inhibit tau aggregation and nitric oxide formation in vitro, they are toxic in vivo (Riha et al., 2005; O’Leary et al., 2010). But systemic low-doses (0.5–4 mg/kg) of methylene blue that stimulate mitochondrial respiration in vivo are safe and effective in both animals and humans (Rojas et al., 2012a). Similarly, only low-level near-infrared light is beneficial because higher doses become ineffective or produce opposite effects. The dosing for transcranial near-infrared light depends on multiple parameters besides wavelength, such as transmission, fluency, irradiance, number of fractions, pulsing, etc. (Huang et al., 2011). For example, forehead transcranial stimulation of the human cerebral cortex has been done effectively with a continuous wave 1064 nm laser at 60 J/cm² (fluence), 250 mW/cm² (irradiance) for 4 min, which corresponds to about 1.2 J/cm² energy density reaching the cortical surface with a 2% transmission (Barrett and Gonzalez-Lima, 2013).

An effective mechanism of stimulation of mitochondrial respiration protects against neurodegeneration by increasing the oxidative metabolic energy capacity of neurons and reducing oxidative damage (Wen et al., 2011). With increases in the capacity to produce ATP by up-regulation of cytochrome oxidase, multiple secondary benefits accrue such as enhancement of neuronal metabolic energy and bigenomic responses, antiapoptotic signaling, DNA repair, mitogenic signaling, axonal sprouting, synaptogenesis and brain-derived neurotrophic factor (Martijn and Wiklund, 2010; Gomes et al., 2012; Poteet et al., 2012; Rojas and Gonzalez-Lima, 2013; Xuan et al., 2014). Low-doses of methylene blue and near-infrared light that up-regulate mitochondrial respiration in vivo have similar neuroprotective effects in multiple model systems featuring neurodegeneration. These include models of neurotoxicity (Zhang et al., 2006; Rojas et al., 2008, 2009a), ischemia (Yip et al., 2011; Watts et al., 2013; Aucrter et al., 2014; Rodriguez et al., 2014), neurotrauma (Bittner et al., 2012; Rodrigue...
Wen, Y., Li, W., Poteet, E. C., Xie, L., Tan, C., Yan, L. J., et al. (2011). Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. *J. Biol. Chem.*, 286, 16504–16515. doi: 10.1074/jbc.M110.208447

Wrubel, K. M., Barrett, D., Shumake, J., Johnson, S. E., and Gonzalez-Lima, F. (2007b). Methylene blue facilitates the extinction of fear in an animal model of susceptibility to learned helplessness. *Neurobiol. Learn. Mem.*, 87, 289–217. doi: 10.1016/j.nlm.2006.08.009

Wrubel, K. M., Riha, P. D., Maldonado, M. A., McCollum, D., and Gonzalez-Lima, F. (2007a). The brain metabolic enhancer methylene blue improves discrimination learning in rats. *Pharmacol. Biochem. Behav.*, 86, 712–717. doi: 10.1016/j.pbb.2007.02.018

Xuan, W., Agrawal, T., Huang, L., Gupta, G. K., and Hamblin, M. R. (2014). Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. *J. Biophotonics* 8, 9999. doi: 10.1002/jbio.201400069

Xuan, W., Vatansever, F., Huang, L., Wu, Q., Xuan, Y., Dai, T., et al. (2013). Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. *PLoS ONE* 8:e53454. doi: 10.1371/journal.pone.0053454

Yip, K. K., Lo, S. C., Leung, M. C., So, K. F., Tang, C. Y., and Poon, D. M. (2011). The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia. *Neuroscience* 190, 301–306. doi: 10.1016/j.neuroscience.2011.06.022

Zhang, Q., Zhou, C., Hamblin, M. R., and Wu, M. X. (2014). Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. *J. Cereb. Blood Flow Metab.* 34, 1391–1401. doi: 10.1038/jcbfm.2014.95

Zhang, X., Rojas, J. C., and Gonzalez-Lima, F. (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. *Neurotox. Res.* 9, 47–57. doi: 10.1007/BF03033307

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Gonzalez-Lima and Auchter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.