Optimization as Estimation with Gaussian Processes in Bandit Settings

Zi Wang, Bolei Zhou, Stefanie Jegelka

ziw, bzhou, stefje@csail.mit.edu

May 9, 2016
Black-box function optimization in the bandit setting

\[
\text{maximize } \quad f(x)
\]

\[
\text{subject to } \quad x \in \mathcal{X}
\]

Function f is expensive to evaluate.

Sequential queries.

At round t,

Choose x_t;

Observe $y_t = f(x_t) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$;

Goal: Minimize cumulative regret $R_T = \sum_{t=1}^{T} (\max_{x \in \mathcal{X}} f(x) - f(x_t))$.

Zi Wang (MIT CSAIL)

Optimization as Estimation

May 9, 2016
Black-box function optimization in the bandit setting

\[\text{maximize } f(x) \quad \forall x \in X \]

- \(f \) is expensive to evaluate.

\[f \text{ is expensive to evaluate.} \]
Black-box function optimization in the bandit setting

\[
\begin{align*}
\text{maximize} & \quad f(x) \\
\text{subject to} & \quad x \in \mathcal{X}
\end{align*}
\]

- \(f \) is expensive to evaluate.
- Sequential queries.

\[
\begin{align*}
\text{INPUT } x \\
\text{FUNCTION } f: \\
\text{NOISY OUTPUT } y
\end{align*}
\]
Black-box function optimization in the bandit setting

\[\max_{x \in X} f(x) \]

- \(f \) is expensive to evaluate.
- Sequential queries.

At round \(t \),

\[f(x) \]

\[x \]
Black-box function optimization in the bandit setting

\[
\text{maximize} \quad f(x) \\
\text{s.t.} \quad x \in X
\]

- \(f \) is expensive to evaluate.
- Sequential queries.

At round \(t \),
- Choose \(x_t \);

\[
\text{Goal: Minimize cumulative regret } R_T = \sum_{t=1}^{T} (\max_{x \in X} f(x) - f(x_t))
\]
Black-box function optimization in the bandit setting

\[
\text{maximize } \quad f(x) \quad \text{for } x \in \mathcal{X}
\]

- \(f \) is expensive to evaluate.
- Sequential queries.

At round \(t \),

- Choose \(x_t \);
- Observe \(y_t = f(x_t) + \epsilon \), where \(\epsilon \sim \mathcal{N}(0, \sigma^2) \);
Black-box function optimization in the bandit setting

maximize $f(x)$

- f is expensive to evaluate.
- Sequential queries.

At round t,

- Choose x_t;
- Observe $y_t = f(x_t) + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$;

Goal: Minimize cumulative regret $R_T = \sum_{t=1}^{T} (\max_{x \in \mathcal{X}} f(x) - f(x_t))$
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

Prior distribution
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$

Prior distribution

Posterior distribution

Examples:
- $\text{PI}(x) = \text{Pr}[f(x) > \theta]$
 (Kushner, 1964)
- $\text{EI}(x) = E[(f(x) - \theta)^+]$
 (Mo˘ckus, 1974)
- $\text{UCB}(x) = \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$
 (Srinivas et al., 2010)
Gaussian process optimization

Assume \(f \sim GP(\mu, k) \).

At round \(t \),
- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t

Examples:
- PI$(x) = \Pr[f(x) > \theta_t]$ (Kushner, 1964)
- EI$(x) = E[(f(x) - \theta_t)^+]$ (Mo˘ckus, 1974)
- UCB$(x) = \mu_{t-1}(x) + \lambda_t \sigma^2_{t-1}(x)$ (Srinivas et al., 2010)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,

- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- PI(x) = $\Pr[f(x) > \theta_t]$ (Kushner, 1964)
- EI(x) = $E[(f(x) - \theta_t)^+]$ (Mo˘ckus, 1974)
- UCB(x) = $\mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$ (Srinivas et al., 2010)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- PI$(x) = \Pr[f(x) > \theta_t]$ (Kushner, 1964)
- EI$(x) = E[(f(x) - \theta_t)_{+}]$ (Mo˘ckus, 1974)
- UCB$(x) = \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$ (Srinivas et al., 2010)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- $\text{PI}(x) = \Pr[f(x) > \theta_t]$ (Kushner, 1964)

Prior distribution

Posterior distribution
Gaussian process optimization

Assume \(f \sim \text{GP}(\mu, k) \).

At round \(t \),

- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \) by optimizing an acquisition function

Examples:

- \(\text{PI}(x) = \Pr[f(x) > \theta_t] \) (Kushner, 1964)
- \(\text{EI}(x) = \mathbb{E}[(f(x) - \theta_t)_+] \) (Močkus, 1974)
Assume $f \sim \text{GP}(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- $\text{PI}(x) = \Pr[f(x) > \theta_t]$ (Kushner, 1964)
- $\text{EI}(x) = \mathbb{E}[(f(x) - \theta_t)_+]$ (Močkus, 1974)
- $\text{UCB}(x) = \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$ (Srinivas et al., 2010)
Existing acquisition functions

Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

\[x_t = \arg \max_{x \in \mathcal{X}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \]

Can set \(\lambda_t \) that guarantees high-probability sub-linear regret in theory.
Existing acquisition functions

Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

$$x_t = \arg \max_{x \in X} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$$

Can set λ_t that guarantees high-probability sub-linear regret in theory.
Existing acquisition functions

Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

\[x_t = \arg \max_{x \in X} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \]

Can set \(\lambda_t \) that guarantees high-probability sub-linear regret in theory.
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?

Notice that, for any $x \in \mathcal{X}$, $f(x)$ has a Gaussian distribution.
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?

Notice that, for any $x \in \mathcal{X}$, $f(x)$ has a Gaussian distribution.
EST: estimate the arg max of the function f.
EST: estimate the arg max of the function f.

1. What is the function maximum?
EST: estimate the arg max of the function f.

1. What is the function maximum?
2. How likely is $f(\mathbf{x})$ the maximum?
Step 1: Estimate the function maximum

1. What is the function maximum?
Step 1: Estimate the function maximum

What is the function maximum?
Consider discrete \mathcal{X} and negligible noise,

$$\hat{m} = \mathbb{E}_{x \in \mathcal{X}}[\max f(x)] = \max_{\tau \in [1, t-1]} y_{\tau} + \int_{\max_{\tau \in [1, t-1]} y_{\tau}}^{\infty} \Pr_{x \in \mathcal{X}}[\max f(x) > w] \, dw$$
Step 1: Estimate the function maximum

1. What is the function maximum?
 Consider discrete \mathcal{X} and negligible noise,

 $$\hat{m} = \mathbb{E}[\max_{x \in \mathcal{X}} f(x)] = \max_{\tau \in [1, t-1]} y_{\tau} + \int_{\max_{\tau \in [1, t-1]} y_{\tau}}^{\infty} \Pr[\max_{x \in \mathcal{X}} f(x) > w] dw$$

 - Approximate the joint Gaussian with independent Gaussians

 $$g(w) = 1 - \Pr[f(x) \leq w, \forall x \in \mathcal{X}] \approx 1 - \prod_{x \in \mathcal{X}} \Phi\left(\frac{w - \mu(x)}{\sigma(x)}\right)$$
Step 1: Estimate the function maximum

What is the function maximum?
Consider discrete \mathcal{X} and negligible noise,

$$
\hat{m} = \mathbb{E}[\max_{x \in \mathcal{X}} f(x)] = \max_{\tau \in [1, t-1]} y_\tau + \int_{\max_{\tau \in [1, t-1]} y_\tau}^\infty \Pr[\max_{x \in \mathcal{X}} f(x) > w] \, dw
$$

- Approximate the joint Gaussian with independent Gaussians

$$
g(w) = 1 - \Pr[f(x) \leq w, \forall x \in \mathcal{X}] \approx 1 - \prod_{x \in \mathcal{X}} \Phi\left(\frac{w - \mu(x)}{\sigma(x)}\right)
$$

- Integrate numerically (ESTn) or approximately (ESTa)
Step 2: calculate the probability that \(x \) is the arg max

2. How likely is \(f(x) \) the maximum?
How likely is $f(x)$ the maximum?

$$
\text{Pr}[f(x) \text{ is the maximum} | \hat{m}] \approx Q \left(\frac{\hat{m} - \mu(x)}{\sigma(x)} \right) \prod_{x' \neq x} \Phi \left(\frac{\hat{m} - \mu(x')}{\sigma(x')} \right)
$$
Step 2: calculate the probability that \mathbf{x} is the arg max

2 How likely is $f(\mathbf{x})$ the maximum?

$$\Pr[f(\mathbf{x}) \text{ is the maximum}| \hat{m}] \approx Q\left(\frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right) \prod_{\mathbf{x}' \neq \mathbf{x}} \Phi\left(\frac{\hat{m} - \mu(\mathbf{x}')}{\sigma(\mathbf{x}')}\right)$$
Step 2: calculate the probability that x is the arg max

2. How likely is $f(x)$ the maximum?

$$\Pr[f(x) \text{ is the maximum} \mid \hat{m}] \approx \Pr[f(x) \geq \hat{m}]$$

$$Q\left(\frac{\hat{m} - \mu(x)}{\sigma(x)} \right) \prod_{x' \neq x} \Phi\left(\frac{\hat{m} - \mu(x')}{\sigma(x')} \right) \Pr[\forall x' \neq x, f(x') < \hat{m}]$$
Step 2: calculate the probability that x is the arg max

- How likely is $f(x)$ the maximum?

\[
\Pr[f(x) \text{ is the maximum} | \hat{m}] \approx \frac{\Pr[f(x) \geq \hat{m}]}{Q\left(\frac{\hat{m} - \mu(x)}{\sigma(x)}\right)} \prod_{x' \neq x} \Phi\left(\frac{\hat{m} - \mu(x')}{\sigma(x')}\right)
\]

\[
\Pr[\forall x' \neq x, f(x') < \hat{m}]
\]

arg max $x \in X$ $\Pr[f(x) \text{ is the maximum} | \hat{m}] = \arg \min x \in X \frac{\hat{m} - \mu(x)}{\sigma(x)}$
Connections to GP-UCB and PI

\[\text{EST} \]

\[\Pr[x = \arg \max f(x)|\hat{m}] \]
Connections to GP-UCB and PI

EST

\[\Pr[x = \arg \max f(x) | \hat{m}] \]

\[\theta = \hat{m} \]

PI

\[\text{PI}(x) = \Pr[f(x) > \theta] \]
Connections to GP-UCB and PI

GP-UCB

$$\text{UCB}(x) = \mu(x) + \lambda \sigma(x)$$

$$\lambda = \min_x \frac{\hat{m} - \mu(x)}{\sigma(x)}$$

EST

$$\Pr[x = \arg \max_x f(x) | \hat{m}]$$

PI

$$\text{PI}(x) = \Pr[f(x) > \theta]$$
Connections to GP-UCB and PI

GP-UCB

$$\text{UCB}(x) = \mu(x) + \lambda \sigma(x)$$

$$\lambda = \min_{x \in X} \frac{\hat{m} - \mu(x)}{\sigma(x)}$$

$$\theta = \max_{x \in X} \mu(x) + \lambda \sigma(x)$$

EST

$$\text{Pr}[x = \arg \max f(x) | \hat{m}]$$

$$\theta = \hat{m}$$

PI

$$\text{PI}(x) = \text{Pr}[f(x) > \theta]$$
At round t, pick the input that is most likely to reach a target value.

\[
\hat{m}_t = \begin{cases}
\max_{x \in \mathcal{X}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) & \text{GP-UCB} \\
\theta_t & \text{PI} \\
\mathbb{E} [\max_{x \in \mathcal{X}} f(x)] & \text{EST}
\end{cases}
\]

\[
x_t \leftarrow \arg \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)}
\]
Theorem (Regret bounds for EST)

Assume \(\hat{m}_t \geq \max_{x \in \mathcal{X}} f(x), \forall t \in [1, T] \). Then,

\[
\mathbb{E}[R_T] \leq \nu_t^* \sqrt{CT \gamma_T}.
\]

With probability at least \(1 - \delta \),

\[
R_T \leq (\nu_t^* + \zeta_T) \sqrt{CT \gamma_T},
\]

where

- \(\nu_t = \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)} \), \(t^* = \arg \max_t \nu_t \).
- \(C = \frac{2}{\log(1 + \sigma^{-2})} \), \(\nu_t \triangleq \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)} \), \(t^* = \arg \max_t \nu_t \).
- \(k(x, x') \leq 1 \), \(\gamma_T = \max_{A \subseteq \mathcal{X}, |A| \leq T} I(y_A, f_A) \), \(\zeta_T = (2 \log(\frac{T}{2\delta}))^{\frac{1}{2}} \).
Regret bounds

Theorem (Regret bounds for EST)

Assume \(\hat{m}_t \geq \max_{x \in \mathcal{X}} f(x), \forall t \in [1, T] \). Then,

\[
\mathbb{E}[R_T] \leq \nu_t^* \sqrt{CT \gamma_T}.
\]

With probability at least \(1 - \delta \),

\[
R_T \leq (\nu_t^* + \zeta_T) \sqrt{CT \gamma_T},
\]

\[C = \frac{2}{\log(1+\sigma^{-2})}, \quad \nu_t \triangleq \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)}, \quad t^* = \arg \max_t \nu_t.\]

\[k(x, x') \leq 1, \quad \gamma_T = \max_{A \subseteq \mathcal{X}, |A| \leq T} l(y_A, f_A), \quad \zeta_T = (2 \log(\frac{T}{2\delta}))^{\frac{1}{2}}.\]
Slepian’s Comparison Lemma (Slepian, 1962; Massart, 2007)

Let \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \) be two multivariate Gaussian random vectors with the same mean and variance, such that

\[
\mathbb{E}[\mathbf{v}_i \mathbf{v}_j] \leq \mathbb{E}[\mathbf{u}_i \mathbf{u}_j], \forall i, j.
\]

Then,

\[
\mathbb{E}[\sup_{i \in [1,n]} \mathbf{v}_i] \geq \mathbb{E}[\sup_{i \in [1,n]} \mathbf{u}_i].
\]
Estimating an upper bound on the function maximum

Slepian’s Comparison Lemma (Slepian, 1962; Massart, 2007)

Let \(u, v \in \mathbb{R}^n \) be two multivariate Gaussian random vectors with the same mean and variance, such that

\[
\mathbb{E}[v_i v_j] \leq \mathbb{E}[u_i u_j], \quad \forall i, j.
\]

Then,

\[
\mathbb{E}[\sup_{i \in [1,n]} v_i] \geq \mathbb{E}[\sup_{i \in [1,n]} u_i].
\]

Ignoring positive covariance gives higher expected maximum.
Experiments

accuracy on val set

Caltech101
SUN397

More results at Session 2 Poster 47
Zi Wang (MIT CSAIL)

Optimization as Estimation
May 9, 2016
Experiments

More results at Session 2 Poster 47
Summary: Optimization as Estimation

A new BO strategy from the viewpoint of estimating arg max. Adaptively tuning λ and θ in GP-UCB and PI. Sub-linear regret bounds and good empirical results.

Source code: https://github.com/zi-w/GP-EST
Summary: Optimization as Estimation

- A new BO strategy from the viewpoint of estimating arg max.
- Adaptively tuning λ and θ in GP-UCB and PI.
A new BO strategy from the viewpoint of estimating arg max.
Adaptively tuning λ and θ in GP-UCB and PI.
Sub-linear regret bounds and good empirical results.
A new BO strategy from the viewpoint of estimating arg max.
Adaptively tuning λ and θ in GP-UCB and PI.
Sub-linear regret bounds and good empirical results.
Source code: https://github.com/zi-w/GP-EST
A new BO strategy from the viewpoint of estimating arg max.
Adaptively tuning λ and θ in GP-UCB and PI.
Sub-linear regret bounds and good empirical results.
Source code: https://github.com/zi-w/GP-EST