Novel strategy for manufacturing autologous dendritic cell / allogeneic tumor lysate vaccines for glioblastoma

Ian F. Parney1,2, Michael P. Gustafson3, Mary Solseth4, Peggy Bulur4, Timothy E. Peterson1, James B. Smadbeck5, Sarah H. Johnson6, Stephen J. Murphy5, George Vasmatzis6, Allan B. Dietz2,4

1. Department of Neurological Surgery
2. Department of Immunology
3. Human Cell Therapy Lab, Mayo Clinic Scottsdale
4. Immune Progenitor and Cellular Therapy (IMPACT) Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester
5. Division of Genetics and Bioinformatics
6. Center for Individualized Medicine

Correspondence to be directed to Dr. I.F. Parney or Dr. A.B. Dietz, Mayo Clinic, 200 First Street SW, Rochester, MN, USA, 55902, Phone: 507-284-4871; Fax: 507-284-5206; email: parney.ian@mayo.edu or dietz.allan@mayo.edu

Funding: Ben and Catherine Ivy Foundation and the Mayo Clinic SPORE in Brain Cancer (P50 CA108961)

Conflict of Interest: MPG and ABD are inventors of technology related to establishing cell lines used in this manuscript. The technology has been licensed to Mill Creek Lifesciences; Mayo Clinic and the inventors have contractual rights to receive royalties from the licensing of this technology. In addition, Mayo Clinic and ABD hold equity in the company to which the technology is licensed. This conflict is managed according to policies and procedures regarding conflict of interest at Mayo Clinic.

Authorship:
- Study conception / design: IFP, ABD
- Data acquisition: all authors
- Data analysis / interpretation: IFP, MPG, TEP, SJM, GV, ABD
- Manuscript drafting / editing / approval: all authors

© The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Background: Glioblastoma, the most common primary malignant brain tumor, is nearly universally fatal by five years. Dendritic cell vaccines are promising but often limited clinically by antigen choice, dendritic cell potency, and/or manufacturing yield. We optimized vaccine manufacture, generating potent mature autologous dendritic cells pulsed with allogeneic glioblastoma lysates.

Methods: Platelet lysate-based supplement was used establishing human glioblastoma cell lines. Phenotype and genotype were assessed. An improved culture technique to generate mature dendritic cells from glioblastoma patients’ monocytes was developed. The ability of T cells stimulated with autologous dendritic cells pulsed with allogeneic glioblastoma cell lysate to kill HLA-A2-matched glioblastoma cells was assessed.

Results: Glioblastoma cell lines established with platelet-lysate supplement grew faster and expressed more stem-like markers than lines grown in neural stem cell media or in the presence of serum. They expressed a variety of glioma-associated antigens and had genomic abnormalities characteristic of glioblastoma stable up to 15 doublings. Unlike standard culture techniques, our optimized technique produced high levels of mature dendritic cells from glioblastoma patients’ monocytes. Autologous T cells stimulated with mature dendritic cells pulsed with allogeneic glioblastoma cell line lysate briskly killed HLA-A2-matched glioblastoma cells.

Conclusions: Our glioblastoma culture method provides a renewable source for a broad spectrum glioblastoma neoantigens while our dendritic cell culture technique results in more mature dendritic cells in glioblastoma patients than standard techniques. This broadly applicable strategy could be easily integrated into patient care.

Key Words: dendritic cell, vaccine, glioblastoma, manufacturing
Key Points:

- Current DC vaccine manufacture is not ideal due to need for fresh tumor and reliance on immature DCs.

- GBM cell lines with platelet-lysate supplement provide a diverse renewable antigen source.

- Culture techniques must be optimized with GBM patients’ monocytes to generate mature DCs.

Importance of the Study: Immunotherapy is revolutionizing cancer treatment but results for glioblastoma (GBM) have lagged behind. Dendritic cell (DC) vaccines have been promising experimentally for nearly two decades but have yet to be widely adopted. Most GBM DC vaccines use individual patients’ fresh tumor as an antigen source. This limited resource does not facilitate antigen-specific response testing. Furthermore, most GBM DC vaccines use culture techniques without maturation steps or maturation steps optimized with healthy donor monocytes that are not effective for GBM patients due to enrichment with immunosuppressive cells. Only mature DCs are fully immunostimulatory while immature DCs induce T cell anergy. We report important progress addressing these issues. A bank of clinical grade human GBM cell lines was established with novel technology as a renewable, diverse antigen source. Culture techniques were optimized to generate mature DCs from GBM patients’ monocytes. These manufacturing advances yield a potent and widely applicable GBM DC vaccine.
Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor. Median overall survival (OS) with surgical resection, radiation, and temozolomide chemotherapy is 14.6 months. GBM vaccines have been promising in small clinical trials but have demonstrated less efficacy or been subject to large scale drop-out between screening and treatment due to a variety of reasons in larger, randomized studies. In part, this may reflect antigen choice, vaccine potency, and/or manufacturing obstacles.

Many GBM vaccine strategies have focused on bulk antigens derived from patients’ tumors. While highly personalized and providing a large library of antigens, fresh tumor tissue is a limited resource that is not always accessible. Even when available, it can be challenging to generate enough vaccine to administer more than a few doses and antigen-specific response testing is not possible as every patient’s vaccine contains different antigens. Alternatively, some vaccines rely on specific antigen(s) known to be expressed by some GBM’s. This facilitates vaccine production and antigen-specific response testing. However, many peptide vaccines in this category are limited to specific HLA haplotypes and targeting a handful of antigens provides an inherent pathway for treatment resistance through immunoeediting or loss of expression of these antigens by the tumor.

Dendritic cell (DC) vaccines are an attractive platform for cancer immunotherapy. DC’s are potent antigen presenting cells critical to initiating adaptive immune responses. They are generated from CD14+ monocytes in vitro through a series of culture steps to yield immature DC’s followed by mature DC’s. This last transition (accompanied by CD83 up-regulation) is key as only mature DC’s are fully immunostimulatory. Immature DC’s may actually induce T cell anergy following
antigen presentation in the absence of appropriate co-stimulation\textsuperscript{13}. Most culture techniques generating DC’s for cancer vaccine trials have been optimized using healthy donor monocytes \textsuperscript{14,15}. Unfortunately, cancer patients (including GBM patients) have circulating monocyte populations that are enriched for immunosuppressive variants such as myeloid-derived suppressor cells \textsuperscript{16,17}. It is not clear that standard culture techniques generate similar mature DC yields from GBM patients’ monocytes.

To address these issues, we developed a novel autologous mature DC / allogeneic GBM lysate vaccine strategy.
METHODS

Patient Samples

All blood and glioblastoma tissue samples were obtained intra-operatively in adult recurrent or biopsy-proven glioblastoma patients undergoing surgery for clinical indications. This was reviewed and approved by the Mayo Clinic Institutional Review Board (IRB#06-002617, IRB#13-000808). After written, informed consent, patients were tested for eligibility as a tissue donor including completion of a donor questionnaire and infectious disease blood tests to confirm eligibility as a cGMP tissue donor (cGMP; current Good Manufacturing Practices; guidelines issued by the FDA required to allow tissues and cells to be used for clinical therapy). Patients with positive responses to this questionnaire were excluded. Healthy volunteer peripheral blood mononuclear cells were obtained from discarded anonymous leukoreduction system chambers processed in the Mayo Clinic Blood Bank 18.

Establishing cGMP Human Glioblastoma Cell Lines

Patients underwent craniotomy and resection with a single surgeon (IFP). After intra-operative pathological confirmation of malignant glioma, staff from the Mayo Immune Progenitor and Cell Therapy (IMPACT) Laboratory transported fresh, sterile glioblastoma tissue from the OR to the lab for manufacturing. Tumor tissue was processed via a BD Medimachine (San Jose, CA) and equivalent volumes of digested tumor placed into culture into one of three medias. Mayo cGMP media (AIM-V, Thermo-Fisher, Waltham, MA; 5% PLTMax, MillCreek LifeSciences, Rochester, MN; 2 units/ml heparin, APP Pharmaceuticals, Schaumburg, IL; and Pen/Strep) contains cGMP-compatible human platelet lysate (PLTMax) as a key supplement that contains a natural repair proteome supporting growth of many cell types 19. Neural Stem Cell Media (NSC) contains Neurobasal-A media with N2
and B27 (void of vitamin A) supplements (Invitrogen), 50 ngs/ml recombinant EGF and FGF (R&D Systems, Minneapolis, MN), antibiotic (Pen/Strep) and glutamine (Invitrogen). Standard fetal bovine serum-based media (FBS) is DMEM/F12 (Invitrogen, Grand Island, NY) supplemented with 10% fetal bovine serum, penicillin/streptomycin, and glutamine.

**Growth and Expression Patterns of cGMP Human Glioblastoma Cell Lines**

For those lines with sufficient growth in each condition to allow, cells were used to evaluate the CD133 expression by flow cytometry using standard staining and analysis methods. Immunofluorescence staining was performed for primitive (nestin, SOX-2) and mature (GFAP, ephrin A2) glioneuronal markers. Western blot was performed for common glioblastoma-associated antigens (EGFR, EGFR-VIII, erb-B2, gp100, MAGE-A3, IL13Rα2, p53) selected based on predetermined criteria for evaluation in tumor immunotherapy studies. Cultured cells were lysed in buffer containing (in mmol/l) 50 NaCl, 50 NaF, 50 sodium pyrophosphate, 5 EDTA, 5 EGTA, and 2 Na3VO4 and 1% Triton X-100, 0.5 mmol/l PMSF, 10 μg/ml leupeptin, and 10 mmol/l HEPES, pH 7.4. Cell lysates were sonicated for 3 seconds prior to protein content analysis using the Bradford protein assay (Bio-Rad). Soluble protein extracts (20 μg) were loaded into 12.5% polyacrylamide gels and transferred onto PVDF membranes. Membranes were incubated (1 hour) in blocking buffer followed by incubation (1 hour) with primary antibody. After 1 hour incubation with secondary antibody, membranes were visualized by enhanced chemiluminescence (Pierce). The source and clones for all antibodies used in this manuscript are detailed in **Supplementary Table 1**.
Mate pair sequencing (MPseq) provides a whole genome based structural variance analysis within a genome utilizing a specialized library preparation designed to tile the genome with large 2-5kb genomic fragments \(^{21-23}\). In addition to copy number variation (CNV), MPseq defines breakpoints of discordant genomic junctions from rearrangements that frequently drive tumor phenotypes with specialized bioinformatics that reduces false positives. MPseq enables accurate genome profiling to determine whole and partial chromosome gains/losses, loss of heterozygosity, single and biallelic gene losses and precise structures of recombinant DNA junctions and the impact on genes, including fusions, truncations or promoter losses.

One microgram of DNA was applied to MPseq library preparation using the Nextera Mate-Pair Kit (Illumina, CA,) following the manufacturer’s instructions. Libraries were sequenced on the Illumina HiSeq4000 platform at a depth of four libraries per lane. For mate pair sequencing data, the BIMA (binary indexing mapping algorithm) developed by the Biomarker Discovery Lab at Mayo Clinic specifically for MPseq data, simultaneously maps both reads in a fragment to the GRCh38 reference genome\(^ {24}\). Structural variants were detected using SVAtools, a suite of algorithms also developed by the Biomarker Discovery Lab at Mayo Clinic\(^ {21}\). SVAtools specifically detects discordant fragments supporting a common junction (supporting-fragments) with powerful masks and filters to remove false-positive junctions. CNV detection is performed using the read count of concordant fragments within non-overlapping bins\(^ {23}\). This algorithm uses both a sliding window statistical method to determine likely copy number edges from read depth, as well as using breakpoint locations determined in the junction detection stage to more accurately place these edges. Once the genome was segmented into likely copy number regions, the normalized read depth (NRD) for a region was calculated as two times the read depth within a region divided by the expected read depth for normal diploid level for the sample. Chromosomal copy levels and discordant mapping junctions are
visualized on interactive software for genome plots. Z-scores were calculated from supporting-read numbers normalized for overall total fragments yielded from the MPseq. Average and standard deviation for supporting read levels were detected for each junction. Z-score was calculated using the formula \[ \frac{\text{normalized supporting-read value} - \text{mean supporting-read value}}{\text{standard deviation of mean}}. \]

**Generating Mature Dendritic Cell**

All dendritic cell culture starts with either whole blood or fluid bed cell collection. Mononuclear cells were isolated by density centrifugation and CD14+ cells were collected by immunomagnetic selection (Mitenyi Biotec, Bergisch Gladbach, Germany.) GM-CSF was either pharmaceutical grade (Leukine; Partner Therapeutics, Lexington, MA) or R&D Systems (Minneapolis MN). All other cytokines were from R&D systems. Chemicals were from Sigma (St. Louis, MO). Viable cells were plated on one of the following conditions:

**M1**: RPMI1640+10% human AB serum (HABS), GM-CSF (1000 IU/mL), IL-4 (500 IU/mL) for 7 days.

**M2**: RPMI1640+2%HABS, GM-CSF (1000 IU/ml), IL-4 (500 IU/mL) for 24 hours, then the same plus TNF-a (1100 IU/ml), PGE$_2$ (1ug/ml), IL-1b (10ng/mL), IL-6 (10ng/mL) for 24 hours.

**M3**: X-Vivo 15+1%HABS, GM-CSF (1000 IU/ml), IL-4 (500 IU/mL) for three days, then the same plus TNF-a (1100 IU/ml) and PGE$_2$ (1ug/ml) for 2 days.
**M4:** Sigma Stemline DC media+GM-CSF (1000 IU/ml), IL-4 (500 IU/mL) for three days, then the same plus TNF-α (1100 IU/ml), PGE₂ (1ug/ml) for 2 days.

**M5:** DC-OPT1: Sigma Stemline DC media+GM-CSF (1000 IU/ml), IL-4 (500 IU/mL) for three days then the same plus TNF-α (1100 IU/ml), PGE₂ (1ug/ml), poly I:C for 2 days.

**M6:** Proprietary

**M7:** Proprietary

Cells were collected and surface marker expression (CD83, CD80, CD86, HLA-DR, CCR7) were determined by flow cytometry.

*Generating Antigen-Primed Dendritic Cells*

Tumor lysate was prepared from two cGMP human glioblastoma cell lines by sonication and five freeze/thaw cycles. DC’s generated using method M7 (optimized for generating mature CD83+ DC’s from GBM patients’ monocytes) were pulsed with 0.1 mg/mL of tumor lysate (approximately 15 mg) and incubated for 18 +/- 6 hrs.

*In vitro stimulation of T cells with autologous DC or DC-Tumor Lysate (TL)*

Frozen autologous CD3, DC-TL and DC were used as source material for this assay. CD3 cells were stimulated with autologous DC-TL (tumor lysate-pulsed DC) or DC alone (CD3:DC = 5:1) in in
AIM-V with 1% HABS, 1% Penicillin/Streptomycin, 25ng/ml IL-7. Culture media (1 mL) was removed and replaced with 1ml AIM-V media supplemented with 2.5% PLTMax on days 3 and 5 of culture plus IL-2 (100U/ml on day 3, 50U/ml on day 5). CD3 cells cultured alone with designated IL-7 and IL-2 cytokines served as controls. On day 7, T cells (CD3-cytokine, CD3-DC, CD3-DCTL) were harvested and replated for a second round of stimulation following the same stimulation procedure. After 14 days in culture, expanded CD3 from each stimulation/expansion condition were harvested and used in CTL killing assay of an HLA-A2+, GFP-labeled Mayo cGMP human GBM cell line.

In vitro GBM Cell Line Beta-GFP cytotoxicity assay.

Beta-GFP labeled GBM cells were seeded at 5000 cells/well in 96 well flat bottom tissue culture plates in AIM V with 5% PLTMax, 1% GlutaMAX, 1% Penicillin/Streptomycin and 2U/ml Heparin. After 24 hour incubation for cells to attach, media was removed and 50,000 culture expanded T Cells (CD3-cytokine, CD3:DC/TL, or CD3:DC) in AIM V media plus 1% HABS in final volume of 200μL were layered over the attached GBM cells. Baseline GBM cell count imaging scan was acquired prior to removal of GBM cell line base media and every 4 hours after the addition of T cells using the IncuCyte Zoom (Essen BioScience, Ann Arbor MI).

Statistical Analysis

Where applicable, the Mann-Whitney test, Wilcoxon test, correlation, or T tests were performed by GraphPad Prism version 7.0e for Mac OSX, GraphPad Software, (La Jolla California USA, www.graphpad.com).
Results

*Mayo cGMP Media is More Efficient for Establishing/Expanding Human Glioblastoma Cell Cultures Than NSC or FBS Media*

Sixteen operative glioblastoma specimens were brought into tissue culture. Mayo cGMP was more effective for establishing cultures (15/16; 94%) similar to NSC (13/16; 81%) but more effective than FBS (7/16; 44%; p=0.03 Chi Square) (*Figure 1A*). Similarly, GBM cultures in Mayo cGMP media grew faster (mean doublings/day = 0.12; mean doubling time = 8.3 days) than NSC (mean doublings/day = 0.07; mean doubling time = 14 days; P < 0.05) or FBS (mean doublings/day = 0.06; mean doubling time = 17 days; P < 0.002). Efficient doubling (defined as one doubling/week) occurred in 44% of Mayo cGMP cultures compared with 13% for both NSC and FBS. Finally, doubling times remained relatively constant among efficiently growing Mayo cGMP cultures up to 10 passages (suggesting an absence of additional mutations over time causing instability).

*Mayo cGMP Human Glioblastoma Cell Lines Express Stem-Like Markers and Tumor-Associated Antigens*

Mayo cGMP human glioblastoma cell lines generally expressed the putative glioma stem cell marker CD133\textsuperscript{25,26} more frequently than matched NSC or FBS cell lines, though with variability between individual matched cell lines (*Figure 1B*). Confocal immunostaining demonstrates immature glioneuronal marker expression (nestin and SOX2; *Figure 1B*) as well as mature glioneuronal markers (GFAP and the tumor-associated antigen ephrin A2). Western blot confirms expression of multiple tumor-associated antigens, though with substantial variation between cell lines (*Figure 1C*).
Mate pair sequencing (MPSeq) was used to assess three representative Mayo cGMP human GBM cell lines. All three have distinct structural variance (Figure 2A). Each tumor predicts a tetraploid genome with genome doubling and additional gains/losses of chromosomes. Totals of 43, 86 and 54 junctions were detected in the initial clones for these three lines, respectively. The first two lines presented with significant numbers of inter-chromosomal translocations but all events in the third line were intra-chromosomal. Consistent karyotypic abnormalities (e.g. gain of chromosome 7, loss of chromosomes 10 and 22) characteristic of glioblastoma\textsuperscript{27, 28} were observed in all three lines (Figure 2A, B). Furthermore, despite the significant variation between the three tumors, each presented with chromothryptic events on chromosome 9p, with resulting homozygous deletion of \textit{CDKN2A}. This is also characteristic of glioblastoma (particularly its epitheloid variant)\textsuperscript{29}. Complex rearrangements were common but, despite the common hit on chromosome 9, additional events were distinct across the genome (line 1, chromoplectic event 9q-5q and chromothryptic event 12q; line 2, chromoplectic events 9q-21 and 11-17-20; line 3, distinct chromothryptic events on 8p, 9q, 16 and 19). High resolution of the classic GBM p16 deletion for two of the cell lines is shown in 2B (the start of which is indicated by and arrow), with a corresponding chromothryptic event seen in the right panel.

The third cell line is very stable through propagation to 15 passages and no new copy number changes in chromosomes are predicted (Figure 2C). In order to assess variance in potential sub-clonal populations, absolute Z-scores were calculated for variance in the number of supporting-reads detected in four subclones from different time points (passages 0, 5, 10, and 15) for the 54 commonly detected events (Figure 2D). Supporting reads were initially corrected for total number of fragments mapping across the sequenced samples. Absolute Z-scores varying >2 indicate significant variance from the norm. Just 0.7% (2 of 270 measurements of variance [54 junctions x 5 samples]) and 2.8% (20 of 702 measurements of variance [54 junctions x 13 samples]) presented with a significant
absolute Z-scores >2 for mean values from the four sub-clones or all samples individually, respectively. The majority of supporting-reads detected (98.1% or 88.0%) had absolute Z-scores <1.5 for propagated lines or all samples, respectively. These results indicate only minor deviance from the norm of sub-clonal populations within the clones, suggesting very stable clonal populations.

Novel Culture Methods are Required to Generate Mature Dendritic Cells from Glioblastoma Patient’s CD14+ Monocytes

Peripheral blood CD14+ monocytes from healthy volunteers and glioblastoma patients were cultured with a variety of dendritic cell culture techniques and frequency of mature CD83+ dendritic cells was determined (Figure 3A). Note that this analysis was over a relatively long period of time as new methods were successively developed and then discarded due to poor yield with glioblastoma patients. Thus, the patients in each condition varied in number and clinical scenario (newly diagnosed vs. recurrent), though all patients were off therapy at the time of processing. A technique analogous to that used to generate dendritic cells without a dedicated maturation step in many glioblastoma vaccine clinical trials 2,6,30,31 (M1) had low levels of CD83+ cells, as expected (20.7% +/- 2.9%). Another technique incorporating a maturation step analogous to a different but commonly used technique in glioblastoma dendritic cell vaccine clinical trials 32-35 (M2) efficiently generated CD83+ mature dendritic cells from healthy volunteer monocytes (84.5% +/- 9.8%) but not from glioblastoma patients (70.9% +/- 19.3%; P< 0.05). We then empirically assessed five additional variations on culture techniques to generate mature dendritic cells from glioblastoma patient and/or healthy volunteer monocytes before achieving success with a technique (M6) that generated mature CD83+ dendritic cells at frequencies (85.4% +/- 7.2%) that were no longer significantly different from mature CD83+ DC frequency from healthy volunteer monocytes using optimized techniques. Finally, further minor variation to this technique (M7) resulted in even higher frequency of CD83+ dendritic cells (91.5% +/- 4.4%) from GBM patients’ monocytes enrolled in a pilot clinical trial.
To confirm generation of mature dendritic cells in a more controlled patient population, we then used our optimized technique to generate mature dendritic cells from 22 recently diagnosed adult glioblastoma patients who had already undergone surgical resection as well as radiation with concurrent temozolomide but had not yet initiated adjuvant temozolomide (Figure 3B). These patients underwent apheresis to acquire peripheral blood mononuclear cells as part of potential enrollment in a clinical trial of dendritic cell vaccination in newly diagnosed glioblastoma, the full results of which that will be reported separately. In keeping with being mature dendritic cells, expression of CD80 (98.2%+/−3.0%), CD86 (92.3%+/−8.9%), HLA-DR (97.5%+/−8.0%) were also high and CCR7 was positive for a portion of the cells (13.6%+/−7.4%). Finally, overall DC yield was good (3.4 x 10^8+/−5.5 x 10^7 cells) (Figure 3C). This represents an efficiency of about 21% mature DC generation from the purified population of CD14+ cells (1.6 x 10^9+/−8.8 x 10^8). This manufacturing protocol yields enough mature dendritic cells to produce an average of >13 doses of vaccines (approximately 2.5 x 10^7 cells/dose) from a single apheresis in a glioblastoma patient.

*T cells Stimulated with Autologous Mature Dendritic Cells Pulsed with Allogeneic Glioblastoma Cell Line Lysate Kill HLA-A2-Matched Glioblastoma Cells.*

Using mature DC’s generated with our M7 protocol, our fluorescent killing assay shows that autologous T cells stimulated with DC’s pulsed with Mayo cGMP glioblastoma cell line lysate robustly kill HLA-A2-matched glioblastoma cells (Figure 4A). No killing is seen with unstimulated T cells. T cells stimulated with mature but naïve (i.e. not pulsed with tumor lysate) DC’s show very mild tumor killing, but much less than those stimulated with tumor lysate-pulsed DC’s, suggesting some degree of non-antigen-specific T cell stimulation (Figure 4B).
Discussion

Although dendritic cell vaccines for glioblastoma have been in clinical trials for nearly two decades \textsuperscript{36} and have shown considerable promise\textsuperscript{2,6,30-35}, they have yet to be FDA approved or widely adopted in clinical practice. There are multiple potential reasons for this, but issues related to antigen choice, dendritic cell potency, and manufacturing feasibility may be important contributors. In this manuscript, we have outlined a novel allogeneic glioma cell / autologous dendritic cell platform that addresses these issues.

First, human glioblastoma cell lines established with our platelet lysate-based Mayo cGMP protocol have many features that could make them ideal antigen sources for dendritic cell vaccines (Figure 1). They grow quickly – faster than matched human glioblastoma cells grown in either neural stem cell conditions or standard serum-containing conditions. This underscores the feasibility of using these cell lines as an antigen source. They appear to have a mixture of stem-like and more differentiated markers. Expression of the putative stem-like marker CD133\textsuperscript{37} is actually higher in these cell lines than in matched lines established with stem cell media. However, they grow in monolayers and express a spectrum of common glioma-associated antigens and mature glioneuronal markers more typically associated with differentiated glioma cells, suggesting that they may represent a mix of these phenotypes. This is particularly attractive as an antigen source for glioma vaccines which would ideally target both stem-like and differentiated cells. Finally, the established presence of these common glioma-associated antigens in a renewable antigen source could allow antigen-specific response testing in the context of clinical trials that cannot be accomplished in patient-derived bulk antigen vaccines\textsuperscript{6,7}.
The cell lines established with our Mayo cGMP protocol appear stable over time, highlighting their utility as a renewable bulk antigen source. Although the cell lines grow quickly, their growth does not appear to accelerate much over time up to 15 passages (Figure 1A). Furthermore, mate pair sequencing over time also shows stability (Figure 2). However, it should be noted that a sub-group of events not detected in every specimen consisted of events with lower numbers of supporting-reads, which fall below the reporting threshold for MPseq data. Hence, the majority were detectable to the level of at least one supporting-read in the majority of specimens. Increasing the sequencing depth would be expected to report these events at higher confidence. Therefore, while whole genome-based sequencing techniques may not provide the greatest sensitivity for detecting new variant clones in a passaged specimen, they are well-suited for predicting overall clonal stability. New variations would be expected to initially occur in 1 single cell, which would take time to preferentially expand to a level which can be detected by a lower sensitivity whole genome based technique. The number of supporting reads crossing a breakpoint junction provides clues as to the frequency of such an event in a cell line as a whole. Ideally in a pure 100% tumor cell line, the number of supporting reads of a single occurring junction (i.e. no copy gain) should equal half the allelic bridged coverage (at 50X genome coverage, the average event supporting-read coverage should be approximately 25). However, significant variance of these values from the ideal is frequently observed. Tumor heterogeneity results in lower numbers of supporting reads for lower represented clones. Repetitive genome regions challenge MPseq mapping because a single sequence could be mapped to multiple sites. MPseq is often able to span over these repetitive regions, but the total number of mapping events can be reduced. In total 90 somatic junctions (3 or more supporting reads) were detected in one cell line in the founding day 0 colony and 12 additional clones from 5, 10 and 15 passages of four independent clonal lines. Of these 90 junctions, 54 (60%) were detected in every clone. The remaining 36 events presented with lower supporting reads across clones’ indicative of potential sub-clonal populations in the cell lines or events lying in repetitive regions of the genome difficult to assess by mate pair. However, in total, 83 of the 90 events (92.2%) presented evidence in at least one clone from the four independent clonal lines. Just 2 events, both with 3 supporting reads, presented evidence in just one clone, each within early passage 5 clones. Taken together, this method appears to
produce primary tumor lines at high frequency, with stable genetics, under cGMP conditions suitable for therapeutic use.

Dendritic cell culture techniques that do not incorporate maturation steps (e.g. technique M1) do not result in significant numbers of CD83+ cells even with healthy donor monocytes (Figure 3A). Standard culture techniques for generating mature dendritic cells (e.g. technique M2) produce many CD83+ cells when performed with healthy donors’ monocytes but not when using glioblastoma patients’ monocytes. We suspect that this reflects the high frequency of immunosuppressive monocytic cells such as myeloid-derived suppressor cells within glioblastoma patients’ CD14+ monocytes16,17. Through empiric modification, we were able to develop a culture method that results in high levels of CD83+ mature dendritic cells (technique M7). These cells express high levels of other dendritic cell markers including HLA-DR, CD80, and CD86 (Figure 3B). The efficiency of this method to generate mature CD83+ dendritic cells from CD14+ precursors was about as expected, that is, on average 3.4 x 10^8 per patient (Figure 3C). This would correspond to more than 13 doses of vaccine at 2.5 x 10^7 cells/dose. Thus, this is a highly feasible method for vaccine manufacture.

Putting this all together, T cells stimulated with autologous dendritic cells generated with our optimized technique (M7) and pulsed with our allogeneic glioblastoma cell lysate show potent killing ability against HLA-A2-matched glioblastoma cell lines (Figure 4). This is much more marked than the moderate increase in glioblastoma cell killing by T cells stimulated with dendritic cells that were not pulsed with glioblastoma cell line lysate, though the presence of this killing suggests some degree of non-antigen-specific T cell activation (Figure 4B). No glioblastoma cell killing at all was seen for unstimulated T cells.
Thus, we have outlined a novel method for manufacturing dendritic cell vaccines for glioblastoma that addresses several deficiencies in standard approaches. Our Mayo cGMP protocol generates stable human glioblastoma cell lines that represent a stable and self-renewing source of glioblastoma-associated antigens. This obviates the need for tumor tissue derived from individual patients for vaccine manufacture and would allow antigen-specific response testing in the context of clinical trials. Our dendritic cell culture technique is a highly efficient and feasible method for generating large numbers of mature dendritic cells from CD14+ monocytes derived from a single apheresis in glioblastoma patients. Finally, the combination of these dendritic cells pulsed with our glioblastoma cell line lysate stimulates T cells that potently kill HLA-A2-matched glioblastoma cells. This vaccine platform is, therefore, both highly feasible for manufacture and highly potent. It is necessary to test the safety and feasibility of this approach in glioblastoma patients as a next step. Therefore, we have initiated clinical trials of this vaccine platform in both newly diagnosed (in combination with temozolomide chemotherapy; NCT01957956) and recurrent glioblastoma (as a single agent; NCT03360708) patients.
Acknowledgements

This study was funded from the Ben and Catherine Ivy Foundation with contributions from the Mayo Clinic SPORE in Brain Cancer (P50 CA108961).
1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *N Engl J Med.* 2005; 352(10):987-996.
2. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. *Clin Cancer Res.* 2005; 11(15):5515-5525.
3. Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. *J Clin Oncol.* 2010; 28(31):4722-4729.
4. Bloch O, Crane CA, Fuks Y, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. *Neuro Oncol.* 2014; 16(2):274-279.
5. Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet Oncol.* 2017; 18(10):1373-1385.
6. Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. *J Transl Med.* 2018; 16(1):142.
7. Bloch O, Shi Q, Anderson SK, et al. Alliance A071101: A Phase II Randomized Trial Comparing the Efficacy of Heat Shock Protein Peptide Complex-96 (Hsppc-96) Vaccine Given with Bevacizumab Versus Bevacizumab Alone in the Treatment of Surgically Resectable Recurrent Glioblastoma. *Neuro-Oncology.* 2017; 19:29-29.
8. Okada H, Kalinski P, Ueda R, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. *J Clin Oncol.* 2011; 29(3):330-336.
9. Pollack IF, Jakacki RI, Butterfield LH, et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. *J Clin Oncol.* 2014; 32(19):2050-2058.
10. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. *Trends Immunol.* 2017; 38(8):577-593.
11. Spisek R, Bretaudeau L, Barbieux I, Meflah K, Gregoire M. Standardized generation of fully mature p70 IL-12 secreting monocyte-derived dendritic cells for clinical use. *Cancer Immunol Immunother.* 2001; 50(8):417-427.
12. Trepiakas R, Pedersen AE, Met O, Hansen MH, Berntsen A, Svane IM. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. *Vaccine.* 2008; 26(23):2824-2832.
13. Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. *Front Immunol.* 2017; 8:327.

14. Kiertschler SM, Roth MD. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. *J Leukoc Biol.* 1996; 59(2):208-218.

15. Czerniecki BJ, Cohen PA, Faires M, Xu S, Roros JG, Bedrosian I. Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. *Crit Rev Immunol.* 2001; 21(1-3):157-178.

16. Gustafson MP, Lin Y, New KC, et al. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. *Neuro Oncol.* 2010; 10:631-644.

17. Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. *Neuro Oncol.* 2010; 12(4):351-365.

18. Dietz AB, Bulur PA, Emery RL, et al. A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. *Transfusion.* 2006; 46(12):2083-2089.

19. Crespo-Diaz R, Behfar A, Butler GW, et al. Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. *Cell Transplant.* 2011; 20(6):797-811.

20. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. *Clin Cancer Res.* 2009; 15(17):5323-5337.

21. Johnson SH, Smadbeck JB, Smoley SA, et al. SVAtools for junction detection of genome-wide chromosomal rearrangements by mate-pair sequencing (MPseq). *Cancer Genet.* 2018; 221:1-18.

22. Gaitatzes A, Johnson SH, Smadbeck JB, Vasmatzis G. Genome U-Plot: a whole genome visualization. *Bioinformatics.* 2018; 34(10):1629-1634.

23. Smadbeck JB, Johnson SH, Smoley SA, et al. Copy number variant analysis using genome-wide mate-pair sequencing. *Genes Chromosomes Cancer.* 2018; 57(9):459-470.

24. Drucker TM, Johnson SH, Murphy SJ, Cradic KW, Therneau TM, Vasmatzis G. BIMA V3: an aligner customized for mate pair library sequencing. *Bioinformatics.* 2014; 30(11):1627-1629.

25. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. *Nature.* 2004; 432(7015):396-401.

26. Venere M, Fine HA, Dirks PB, Rich JN. Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer's hierarchy. *Glia.* 2011; 59(8):1148-1154.

27. Crespo I, Vital AL, Nieto AB, et al. Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. *J Mol Diagn.* 2011; 13(6):634-647.

28. Diaz de Stahl T, Hartmann C, de Bustos C, et al. Chromosome 22 tiling-path array-CGH analysis identifies germ-line- and tumor-specific aberrations in patients with glioblastoma multiforme. *Genes Chromosomes Cancer.* 2005; 44(2):161-169.

29. Nakajima N, Nobusawa S, Nakata S, et al. BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. *Brain Pathol.* 2018; 28(5):663-673.
30. Prins RM, Cloughesy TF, Liau LM. Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. *N Engl J Med.* 2008; 359(5):539-541.

31. Prins RM, Soto H, Konkankit V, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. *Clin Cancer Res.* 2011; 17(6):1603-1615.

32. Mitchell DA, Batich KA, Gunn MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. *Nature.* 2015; 519(7543):366-369.

33. Reap EA, Suryadevara CM, Batich KA, et al. Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. *Cancer Res.* 2018; 78(1):256-264.

34. Sampson JH, Archer GE, Mitchell DA, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. *Mol Cancer Ther.* 2009; 8(10):2773-2779.

35. Thurner B, Roder C, Dieckmann D, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. *J Immunol Methods.* 1999; 223(1):1-15.

36. Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. *Cancer Res.* 2001; 61(3):842-847.

37. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. *Cancer Res.* 2003; 63(18):5821-5828.
Figure 1: Novel method of cGMP tumor cell growth. Human glioblastoma cell lines were established either using FBS, NSC cultures or Mayo cGMP condition. A) Growth kinetics of sixteen lines (doublings/day) in each condition. Dashed line: doubling cell count per week (~1.4 doublings/day). One line was split into four subcultured over 10 passages (doublings/day over time). B) CD133 expression in five lines. C) Confocal micrographs from a representative cell line showing nestin (red) and SOX2, GFAP, and EphA2 (green) expression. Blue = DAPI. D) Western blot (seven lines) showing glioma-associated antigen expression.

Figure 2: Stable GBM-associated cGMP tumor cell karyotypic abnormalities. A) Mate pair sequencing of three lines showing chromosome seven gain, partial loss of 9, 10, and 22, and homozygous p16 deletion. B) High resolution p16. Homozygous deletion is indicated by an arrow. Chromothrypsis in Q36721 can be seen in right panel. C) Long-term genetic stability. Four subclones of Q36279 were grown for up to 15 doublings. Samples were submitted for mate pair sequencing and each line is shown. D) Z scores indicate very limited genetic drift during the course of expansion.

Figure 3: Optimized generation of mature dendritic cells for clinical grade production. A) Efficient mature DC (CD83+) generation. Various culture conditions (M1 – M7) were tested in healthy volunteers (HV; Black) or GBM patients (red). B) M7 was used in clinical scale cGMP manufacturing of 22 newly diagnosed GBM patients for enrollment in a pilot vaccine trial. Five markers (CD83, CD80, CD86, HLA-DR, CCR7) describing the purity and potency of the cells are
indicated. The mean percent positive for each marker is shown. Note: same patients as M7 in 3A. C) Cell number after apheresis, isolation of CD14+ cells, and mature dendritic cell (mDC) culture with M7. D) Culture conditions for DC culture M1 – M7.

**Figure 4: Autologous dendritic cell / allogeneic tumor lysate directed killing.** Representative fluorescent micrographs (A) and time plots (B) showing reduced glioblastoma cells (green) after adding HLA-A2-matched CD3+ T cells stimulated with autologous DC pulsed with tumor lysate (+DC/TL Stim CD3; red line) compared to CD3 stimulated with autologous DC without tumor lysate (+DC Stim CD3; blue line), unstimulated CD3 (+Unstim CD3; green line) or controls (GBM alone; black line). Mean+/−SD; n=4. Representative results from one of two separate experiments are shown.
Figure 1

A. 

B. 

C. 

D. 

| Cell Line | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------|---|---|---|---|---|---|---|
| EGFR      |   |   |   |   |   |   |   |
| EGFR-VIII |   |   |   |   |   |   |   |
| Erb-B2    |   |   |   |   |   |   |   |
| GP-100    |   |   |   |   |   |   |   |
| Mage-A3   |   |   |   |   |   |   |   |
| IL13R-2ζ  |   |   |   |   |   |   |   |
| p53       |   |   |   |   |   |   |   |
Figure 2

A.

62-84, XXXX, -1, -2, -3, -4, -5, -6, +7, +7, +add(7)(q11.2)x2,t(7;18),
(p13;p11.2)x2,-8,-9,-10,-10, -11, (p11.2;p13)x3,-13,-13,-14,-14,-15,
-15,-16,-17,-17,-18,-18,-18,+19, +0-3
mar[cp20]

46,XY,der(6)(t6;10),
(q13;q11.2), +inv(7)(p22q32),
add(9)(p22), add(9)(p13),
-10, t(11;17)

86-99, XXY, +1[5], +2[8], -4, -4[6],
+6[13], +7, +7[15], add(8) p21x2,
del(9)(p22)x2, -10, -10, +11[9],
-12[6], +14[7], -15[6], +15[5],
-16[13], -18[5], +19[9], +20,
+20[19], +20[13], -22[19], -22[5]
[cp20]

B.

C.

D. Z-Scores across Clonal Lines

- Founding Culture
- Passage 5
- Passage 10
- Passage 15

Downloaded from https://academic.oup.com/noa/advance-article/doi/10.1093/noajnl/vdaa105/5897132 by guest on 08 September 2020
Figure 3

A. nDC purity (percent CD86 positive) vs CD3 expression.

B. Surface Marker: 91.5% CD86, 99.9% CD90, 92.3% CD86, 97.5% HLA-DR, 13.7% CCR7.

C. Total cells: 1.1E10 Apheresis, 3.4E8 TNC, 1E10 CD14+ Cells, 3.4E8 mDCs.

D. Conditions:

| Media       | Serum   | Initial Conditions | Maturation Conditions |
|-------------|---------|--------------------|-----------------------|
| M1 RPMI1640 | 10% HABs| GM-CSF, IL-4 x 7 days | None                  |
| M2 RPMI1640 | 2% HABs | GM-CSF, IL-4 x 1 day | Add TNFα, PGE2, IL-1β, IL-6 x 1 day |
| M3 X-Vivo15 | 1% HABs | GM-CSF, IL-4 x 3 days | Add TNFα, PGE2 x 2 days |
| M4 Sigma   | None    | GM-CSF, IL-4 x 3 days | Add TNFα, PGE2 x 2 days |
| M5 Sigma   | None    | GM-CSF, IL-4 x 3 days | Add TNFα, PGE2, polyICLC x 2 days |
| M6 PROPRIETARY | PROPRIETARY | PROPRIETARY | PROPRIETARY |
| M7 PROPRIETARY | PROPRIETARY | PROPRIETARY | PROPRIETARY |
Figure 4

A.  
Baseline

36 Hours

GBM

CD3

DC-TL + CD3

B.  
Number of Cells

Time (hr)

GBM Alone

+ Unstim CD3

+ DC Stim CD3

+ DC/TL Stim CD3

Add CD3