Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition

Article (Published Version)

Miller, Victoria, Webb, Patrick, Micha, Renata, Mozaffarian, Dariush, Memon, Anjum and Global Dietary Database, (2020) Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition. Lancet Planet Health, 4 (8). e352-e370. ISSN 2542-5196

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/110570/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition

Victoria Miller, Patrick Webb, Renata Micha, Dariush Mozaffarian, on behalf of the Global Dietary Database

Achieving most of the UN Sustainable Development Goals requires a strong focus on addressing the double burden of malnutrition, which includes both diet-related maternal and child health (MCH) and non-communicable diseases (NCDs). Although, the most optimal dietary metric for assessing malnutrition remains unclear. Our aim was to review available global dietary quality metrics (hereafter referred to as dietary metrics) and evidence for their validity to assess MCH and NCD outcomes, both separately and together. A systematic search of PubMed was done to identify meta-analyses or narrative reviews evaluating validity of diet metrics in relation to nutrient adequacy or health outcomes. We identified seven dietary metrics aiming to address MCH and 12 for NCDs, no dietary metrics addressed both together. Four NCD dietary metrics (Mediterranean Diet Score, Alternative Healthy Eating Index, Healthy Eating Index, and Dietary Approaches to Stop Hypertension) had convincing evidence of protective associations with specific NCD outcomes, mainly mortality, cardiovascular disease, type 2 diabetes, and total cancer. The remaining NCD dietary metrics and all MCH dietary metrics were not convincingly validated against MCH or NCD health outcomes. None of the dietary metrics had been validated against both MCH and NCD outcomes. These findings highlight major gaps in assessing and addressing diet to achieve global targets and effective policy action.

Introduction

Poor diet quality is a leading and preventable cause of adverse health globally, which includes both maternal and child health (MCH) and non-communicable diseases (NCDs). The UN Sustainable Development Goals (SDGs) outline global consensus on social, economic, and health targets to be met by 2030, with most goals concerned with nutrition including one goal to end malnutrition. Yet rates of progress toward achieving the SDGs have been slow, and accelerated momentum is needed. To develop sound strategies and monitor progress toward these goals, the assessment of global dietary quality is essential.

Although a variety of dietary metrics have been developed and used to summarise various components of a diet (eg, adequacy, quality, diversity), there remains an absence of widely used, validated metrics to define the double burden of malnutrition, and to compare effectively across country settings. This absence at least partly relates to a historical distinction between global nutrition efforts for MCH versus NCDs. Malnutrition for MCH has traditionally been considered as insufficient caloric or other nutrient intake leading to insufficient physical growth (stunting), rapid weight loss or failure to gain weight (wasting), cognitive impairment, exacerbation of anaemia and blindness, or weakening of the immune system resulting in increased risk of infectious diseases and mortality. Malnutrition for NCDs has historically been considered as excess consumption of certain nutrients such as fat, sugar, and salt as well as calories. Yet, malnutrition for MCH and NCDs are frequently coexisting consequences of poor diet quality within populations, households, or individuals across the lifespan. A unified global dietary quality metric (hereafter referred to as dietary metric) would aid in policy and programme decision making around improving diet in which components that contribute to both MCH and NCDs would be represented in the same assessments, and that the relative contributions of malnutrition for MCH and NCDs could be characterised and compared across settings in a standardised way.

The optimal dietary metric for assessing malnutrition for both MCH and NCDs remains uncertain. Previous reviews have described the development and characteristics of dietary metrics. Some reviews qualitatively summarised the evidence for dietary metrics in relation to a single health outcome (eg, type 2 diabetes, obesity) and others focused on several MCH or NCD outcomes. However, to our knowledge, the comprehensive reviews of dietary metrics in relation to several MCH or NCD outcomes were done more than a decade ago, and no review has focused on both MCH and NCD outcomes.

Key messages

- Many global efforts are focused on tackling the double burden of malnutrition including the UN Sustainable Development Goals. However, these targets might not be achieved without a practical and valid dietary metric to reduce malnutrition across global contexts.
- We identified 19 dietary metrics, including seven developed for maternal and child health (MCH), 12 developed for non-communicable diseases (NCDs) and none developed or applied for both.
- All MCH dietary metrics used foods only, while most NCD metrics included foods and nutrients. The most frequent components for both MCH and NCD dietary metrics were vegetables, fruits, grains, roots, and tubers.
- When the validity was assessed, we found that four NCD metrics had convincing evidence of protective associations with specific NCD outcomes, primarily mortality, cardiovascular disease, type 2 diabetes, and total cancer. The remaining eight NCD dietary metrics and all seven MCH dietary metrics did not.
- We found that few dietary metrics have been validated against MCH or NCD health outcomes, and none for both indicators. More work is needed to validate existing and novel dietary metrics for MCH and NCD, an approach that is likely critical to the achievement of global nutrition and health targets.
NCD outcomes together. To understand whether any existing dietary metrics are validated against MCH or NCDs, or both, and what researchers and health organisations are using to measure various aspects of the dietary contribution to MCH and NCDs, we extensively reviewed and assessed the validity of existing multinational dietary metrics for MCH and NCD health outcomes.

Dietary metric definition and inclusion

We defined a dietary metric as a metric derived from nutrients or food or food groups, or both, with the aim of measuring dietary diversity (number of different foods consumed), or nutrient adequacy (achievement of recommended intakes of energy or essential nutrients).10 We included dietary metrics with the reported intended use of relating diet to MCH (micronutrient adequacy, mortality in children <5 years, maternal mortality, underweight, stunting, wasting, infectious diseases, diarrhoeal disease) and NCD health outcomes (all-cause mortality, cardiovascular disease, type 2 diabetes, gestational diabetes; total cancer and subtypes, and anthropometrics in adults and children), and that quantified the level of intake of foods or nutrients consumed or the achievement of recommended intakes. A detailed description of the health outcomes is shown in the appendix (p 1). We selected the health outcomes in accordance with WHO’s categories of malnutrition.11 Given the interest in dietary metrics that can be used globally, we included dietary metrics that were used for this purpose in at least three countries. We did not include dietary metrics that included non-dietary factors as a core component, that only summarised a single nutrient or food, or that were developed with a primary focus on non-health outcomes (eg, sustainability). We did not include dietary metrics derived primarily from statistical data clustering approaches, such as cluster or factor analysis, because these are often not generalisable.12 We also did not include dietary metrics at the population level (eg, food supply) because we were interested in individual-level and household-level dietary metrics.

Literature searches

Given the abundance of potential dietary metrics, we did not systematically identify all possible metrics. First, we compiled a list of dietary metrics through expert contacts, who were faculty members at the Friedman School of Nutrition Science, Tufts University, with expertise in food policy, agriculture, economics, international nutrition programming, humanitarian emergency relief, clinical nutrition, and epidemiology. This initial list was then used to search PubMed and Google to identify studies and development reports from government agencies, health organisations, and non-profit organisations up until Sept 21, 2018, that included these dietary metrics, met our inclusion criteria, and were published in English. These searches were complemented by hand-searching of the citations of all identified articles and reports to identify additional potential dietary metrics. We documented all identified dietary metrics that both did and did not meet the scope of our inclusion criteria (appendix p 5).

To assess validity of each relevant dietary metric, we systematically searched PubMed from Oct 11, 2000, to April 17, 2020, to identify meta-analyses or narrative reviews (including systematic reviews without a meta-analysis, but not umbrella reviews) evaluating these dietary metrics in relation to MCH and NCD health outcomes. The search terms and restrictions are described in full in the appendix (pp 2–4).

Data extraction

VM did the literature searches, assessed titles and abstracts of all identified studies and reviewed and extracted relevant data by hand using a standardised electronic spreadsheet. The intended purpose, food and nutrient components, scoring, reference period, validity, and reliability was tabulated on each dietary metric. For each published meta-analysis or narrative review, data were extracted on the number of studies included, pooled relative risks and corresponding uncertainty, sample sizes, number of events, follow-up durations, unit of exposures, and population characteristics. In most cases, the total number of participants was not reported in the original meta-analyses and was computed from summary tables of the individual studies. Because narrative reviews do not provide pooled estimates, the extractions were done for each individual study included in the narrative review. When more than one meta-analysis or narrative review was identified for each dietary metric-health outcome relationship, we included all published meta-analyses or narrative reviews. Questions or uncertainties related to article screening and extraction were resolved by discussion with another investigator (DM).

Assessment and grading of validity

Two investigators (VM and then either PW, RM, or DM), independently and in duplicate, used the most comprehensive (with the greatest number of participants and studies) or recent meta-analysis when available, followed by the most comprehensive (with the greatest number of participants and studies) or recent narrative review to assess and grade the evidence for validity of dietary metrics in relation to MCH and NCD health outcomes. In cases in which the most recent meta-analysis or narrative review was not the most comprehensive, we selected the most comprehensive. Each assessor extracted data on the number of studies and the direction of effects across studies (positive association, null association, negative association). If the number of studies with null associations was equal or greater to the number of studies with positive or negative associations, the relationship was classified as no association. For both meta-analyses and narrative reviews, we considered the direction of effects from each included individual study. The validity of each dietary metric was
assessed using two criteria: first, the number of studies, and second, the consistency of evidence from meta-analyses and narrative reviews of prospective cohort studies or randomised controlled trials. Consistency was defined as the association is repeatedly observed in different populations and circumstances. For a consistent relationship, at least half of the associations were in the same direction and for an inconsistent relationship, fewer

Foods or nutrients and reference period	Scoring and cutoffs				
Item list	Reference period	Calculation	Range	Cutoffs or classification	
DDS^{33,34}	Dairy; meat; grain; fruit; vegetable	24 h	Count of food groups consumed	0 to 5	No cutoff
Metric focuses on the mean number of major food groups consumed; the original DDS was developed using data from the National Health and Nutrition Examination Survey; multiple versions of the DDS have been used, including adaptations for children³⁵					

| **FCS**^{36–38} | Main staples (cereals and cereal products, roots and tubers); pulses; vegetables; fruit; meat or fish; milk; sugar; oil | 7 days | Frequency-weighted score calculated using the frequency of consumption of food groups consumed by a household during reference period; data on food frequency are grouped into food groups and the consumption frequencies for each food items within a group are summed to yield a score for the food group; any food group score >7 is truncated at 7; values obtained for each food group are multiplied by weights (weights range from 0·5 to 4·0 and are based on nutrient density) to create weighted food group scores; the weights for each food group are sugar and oil (0·5), vegetables and fruit (1·0), staples (2·0), pulses (3·0), and meat or fish and milk (4·0); the weights are summed | 0 to 112 | Usual cutoffs are 0 to 21 (poor), 21·5 to 35·0 (borderline), and >35 (acceptable); cutoff for locations where oil and sugar are consumed daily are 0 to 28 (poor), 28·5 to 42·0 (borderline), and >42 (acceptable) |
| Metric focuses on predicting adequate food quantity or calorie consumption per capita in households from low-income and middle-income countries |

| **FVS**^{35,39,40} | Not applicable | 24 h | Count of food groups consumed | Not applicable | Not specified |
| Metric focuses on the number of unique foods consumed during the reference period; commonly used among children ≤5 years as a measure of dietary diversity |

| **HDDS**^{41–43} | Cereals; roots and tubers; legumes, nuts, and seeds; dairy; meat; fish; eggs; vegetables; fruit; oils and fats; sweets; spices, condiments, and beverages (Food and Nutrition Technical Assistance Project); and cereals; white roots and tubers; legumes, nuts, and seeds; milk and milk products; organ meat; flesh meat; fish and seafood; eggs; vitamin A-rich vegetables and tubers; dark green leafy vegetables; other vegetables; vitamin A-rich fruits; other fruits; oils and fats; sweets; spices, condiments, and beverages (Food and Agriculture Organization) | 24 h | Count of food groups consumed | 0 to 12 | Not specified |
| Metric focuses on whether the number of unique foods consumed over a given period is a good measure of household food access in urban and rural areas; HDDS is typically measured in the person primarily responsible for food preparation in the household |

| **IYCMD**^{44,45} | Grains, roots, and tubers; legumes and nuts; dairy; flesh foods (meat, fish, poultry and liver or organ meats); eggs; vitamin A-rich fruits and vegetables; other fruits and vegetables | 24 h | Count of food groups consumed | 0 to 7 | WHO guidelines on infant and young child feeding practices defines minimum dietary diversity as 4 food groups consumed |
| Metric focuses on dietary diversity as a marker of micronutrient adequacy for ten nutrients (thiamin, riboflavin, vitamin B-6, folate, vitamin C, vitamin A, calcium, zinc, iron, and without iron separately) in children aged 6 to 23 months (both breastfed and non-breastfed) in low-income and middle-income countries; WHO recommended metric of infant and young child feeding practices |

(Table 1 continues on next page)
The modifications and adaptations to dietary metrics noted are not exhaustive. DDS=Dietary Diversity Score. FCS=World Food Programme’s Food Consumption Score. FVS=Food Variety Score. HDDS=Household Dietary Diversity Score. IYCMDD=Infant and Young Child Minimum Dietary Diversity. MDD-W=Minimum Dietary Diversity for Women. WDDS=Women’s Dietary Diversity Score. IDDS=Individual Dietary Diversity Score. *The DDS was classified as a metric for maternal and child health because it has primarily been used for this purpose despite being originally developed for chronic diseases.

Table 1: Dietary metrics used for assessing maternal and child health

Foods or nutrients and reference period	Scoring and cutoffs	Calculation	Range	Cutoffs or classification	
Metric focuses on dietary diversity as a marker of micronutrient adequacy for 11 nutrients (thiamin, riboflavin, niacin, vitamin B-6, folate, vitamin B-12, vitamin C, vitamin A, calcium, iron, zinc) in women of reproductive age (15 to 49 years; both non-pregnant non-lactating and lactating women) in low-income and middle-income countries	Gains, white roots and tubers, and plantains; pulses, nuts and seeds; dairy; meat, poultry, and fish; eggs; dark green leafy vegetables; other vitamin A-rich fruits and vegetables; other vegetables; other fruits	24 h	Count of food groups consumed	0 to 10	Recommendation is ≥5 food groups consumed
Metric focuses on the probability of micronutrient density in the diet of women of reproductive age (15 to 49 years; WDDS) and most commonly used in children aged 6–23 months (IDDS) in low-income and middle-income countries	Cereals; white roots and tubers; legumes, nuts, and seeds; dairy; organ meat; flesh meat; fish; eggs; vitamin A-rich vegetables and tubers; dark green leafy vegetables; other vegetables; vitamin A-rich fruits; other fruits; oil and fats; sweets; condiments that are aggregated into the following food groups of starchy staples; legumes, nuts, and seeds; milk and milk products; organ meat; meat and fish; eggs; dark green leafy vegetables; other vitamin A-rich fruits and vegetables; other fruits and vegetables	24 h	Count of food groups consumed	0 to 9 or 0 to 16 depending on whether further aggregation occurs	No universal cutoff; Recommendation is to use mean value or distribution to identify cutoff for the specific population
patterns (AHEI, DASH, KIDMED, MED), or foods associated with chronic disease risk (DQI-I, PURE). One NCD dietary metric was designed to measure inflammatory potential (DII).

Included food and nutrient components

The foods and nutrients included in each dietary metric is shown in figure 1. The median number of included food groups or nutrients per dietary metric is 9.5 (IQR 7.25–12.0). The MCH dietary metrics (8.5, IQR 7.25–9.75) included fewer food groups or nutrients compared with the NCD dietary metrics (11.5, IQR 7.75–20.25). All MCH dietary metrics (excluding the FVS which counts the number of unique foods eaten without specifying food groups or nutrients) used only food groups. Alternatively, six NCD dietary metrics used food groups only, and six used foods and nutrients. None of the identified dietary metrics used only nutrients.

Among all dietary metrics (excluding the FVS), the most frequent foods or nutrients included were vegetables (18 metrics); fruits (17 metrics); dairy products (15 metrics); and grains, roots, and tubers (14 metrics). Among MCH

Item list	Reference period	Scoring and cutoffs				
Foods or nutrients and reference period	Calculation	Range	Cutoffs or classification			
AHEI-2010^a	Metric is an alternative version of the HEI that focuses on adherence to a dietary pattern associated with chronic disease risk; the AHEI was revised in 2010 to incorporate new scientific evidence on diet and health and is based on a comprehensive literature review and expert discussions to identify foods and nutrients robustly associated with low risk of chronic diseases	Vegetables; fruit; whole grains; sugar-sweetened beverages; nuts and legumes; red and processed meat; trans fat; long-chain (n-3) fats (eicosapentaenoic acid and docosahexaenoic acid); polyunsaturated fat; sodium; alcohol	Food frequency questionnaire	Components are scored from 0 (worst) to 10 (best) based on specified recommended intake for each component; the scoring for intermediate intake is not well described, recommended intake was determined a priori using the HEI recommendations, upper range of dietary guidelines (US and American Heart Association), and population distributions	0 to 110	Not specified
DASH^b	Metric developed to measure adherence to the DASH diet, a dietary pattern used in randomised controlled feeding trials to lower blood pressure in people with hypertension; multiple variations of the DASH score have been used in the literature and the DASH score described by Fung et al (2008)^c is the most commonly used in the literature among US populations^e	Fruits; vegetables; nuts and legumes; low-fat dairy products; whole grains; sodium; sugar-sweetened beverages; red and processed meats (2008 version)	Food frequency questionnaire	For each component, sex-specific intake quintiles (Q) are computed, and a component score is assigned for each quintile, for fruits, vegetables, nuts and legumes, low-fat dairy products, and whole grains Q1 is assigned a value of 1, Q2 a value of 2, Q3 a value of 3, Q4 a value of 4, and Q5 a value of 5, alternatively for sodium, red and processed meats, and sugar-sweetened beverages Q1 is assigned a value of 1, Q2 a value of 2, Q3 a value of 3, Q4 a value of 4, Q5 a value of 5; the component scores are summed (2008 version)	5 to 40	Not specified
DGAI^d	Metric describes adherence to the key dietary recommendations in the 2005 Dietary Guidelines for Americans except for two recommendations for special populations (eg, individuals who should not consume alcohol)	Dark green vegetable; orange vegetable; legume; starchy vegetable; other vegetable; fruit; variety of fruits and vegetables; meat and legume; milk and milk products; grain; discretionary energy (food intake subscore); whole grain; fibre; low-fat choices; total fat; saturated fat; trans-fat; cholesterol; alcohol; sodium (healthy choice subscore)	Food frequency questionnaire	A score of 1 is assigned when intake meets the recommendation, 0.5 for intake >33% of the recommendation, and 0 for intake <33% of the recommendation	0 to 20	Not specified
DIF^f	Metric classifies an individuals’ diet from pro-inflammatory to anti-inflammatory based on six inflammatory markers (IL-1β, IL-6, IL-10, TNF-α, CRP)	Alcohol; vitamin B12; vitamin B6; β-carotene; caffeine; carbohydrate; cholesterol; energy; eugenol; total fat; fibre; folic acid; garlic; ginger; iron; magnesium; monounsaturated fat; niacin; n-3 fatty acids; n-6 fatty acids; onion; protein; polyunsaturated fat; riboflavin; saffron; saturated fat; selenium; thiamin; trans-fat; turmeric; vitamin A; vitamin C; vitamin D; vitamin E; zinc; green or black tea; flavan-3-ol; flavones; flavonones; anthocyanidins; isoflavones; pepper; thyme or oregano; rosemary	Food frequency questionnaire or 24 h	Dietary data are linked to the globally representative world database and the mean and standard deviation for each component are used as multipliers; the standard global mean is subtracted from each individual’s reported amount, divided by the standard deviation and converted to a centred percentile score; the centred percentile score for each component for each individual is multiplied by the respective food parameter effect score (obtained from a literature review) to obtain a food parameter-specific score, which are summed to create an overall score; more negative scores represent anti-inflammatory diet, whereas more positive score represent pro-inflammatory diet	Approximate 0 to 10	Not specified

(Table 2 continues on next page)
Foods or nutrients and reference period

Item list	Reference period
Meat, poultry, fish, or egg; dairy or beans; grains; fruits and vegetables (variety food groups); meat; poultry; fish; dairy; beans; eggs (variety protein sources); vegetables; fruit; grain; fibre; protein; iron; calcium and vitamin A (adequacy); total fat; saturated fat; cholesterol; sodium; empty calorie foods (moderation); macronutrient ratio; fatty acid ratio (overall balance)	**DQI**
Variety is scored from 0 to 20, a score of 20 is allocated if at least one serving of food per day from all five food groups is consumed, if any of the food groups are not consumed, each food group consumed is scored 3 points each, maximum score of 15, adequacy is scored based on the percentage attainment of recommended intakes of eight components on a continuous scale, scoring ranges from 0 points for 0% to 5 points for 100% for each component, score range of 0 to 40, moderation is scored from 0 to 30 with a maximum of 6 points for each of the five components, intake of the components is scored as tiers with 0 points for the bottom tier, 3 points for the middle tier and 6 points for the highest tier, overall balance is scored from 0 to 10 and consists of macronutrient ratio, which is scored from 0 to 6 points based on four tiers in 2-point increments	
HEI-2010 ^26–90	Metric describes adherence to the 2010 Dietary Guidelines for Americans; Other variations are HEI-2005 and HEI-2015 based on the corresponding year of US Dietary Guidelines, Chinese HEI, and HEI-Canada
Total fruit (includes fruit juice); whole fruit (includes all forms except juice); total vegetables; greens and beans; whole grains; refined grains; dairy; total protein foods; seafood and plant proteins; fatty acids (polyunsaturated, monounsaturated, and saturated); sodium; empty calories (energy from solid fats, alcohol, and added sugar)	Maximum 5 points for total fruit, whole fruit, total vegetables, greens and beans, total protein foods, seafood and plant protein; maximum 10 points for whole grains, dairy, fatty acids, refined grains, sodium; maximum 20 points for empty calories; maximum score for each component is based on 2010 US dietary guidelines; the component scores are summed
KIDMED ^26–77	Metric describes adherence to the Mediterranean diet pattern in adolescents
Components grouped into favourable and non-favourable; favourable components are daily fruit or fruit juice, eats second fruit serving daily, one daily serving of fresh or cooked vegetables, >1 daily serving of fresh or cooked vegetables, fish (2 to 3/week), legumes consumed >1/week, pasta or rice >1/week, cereals or grains consumed for breakfast, nuts >2 to 3/week, uses olive oil at home, dairy for breakfast (eg, yoghurt, milk), or ≥2 daily yoghurt or cheese (40 g); non-favourable components are fast food consumed >1/week, skips breakfast, commercial baked goods or pastries for breakfast, and sweets and candy several times per day	Beneficial items are assigned a value of 1 when met or 0 when not met, and non-beneficial items are assigned a value of -1 when met and 0 when not met; the component scores are summed
MED ^26–81	Metric describes adherence to the Mediterranean diet pattern in adults; variations of the MED (MDS [an alternative published abbreviation for MED], rMED, MDSPS, aMEDS) exist and have been used in populations including Denmark, France, Germany, UK, Spain, Netherlands, Norway, Sweden, Italy, Switzerland, Belgium, Portugal, Hungary, Canada, USA, Japan, China and Australia ^26–81
Fruits, vegetables, legumes, cereals, meat and meat products, dairy, monounsaturated fatty acids-saturated fatty acids (MUFA-SFA) ratio, and alcohol (1999 version); fruits and nuts, vegetables, legumes, cereals, meat and meat products, dairy, MUFA-SFA ratio, alcohol, and fish (2003 version)	Scoring not described; for 1999 version; for the 2003 version calculate sex-specific medians; intake below the median for beneficial components (vegetables, legumes, fruits and nuts, cereal, and fish) are assigned a value of 0, and intake above or at the median is assigned a value of 1, components assumed to be detrimental (meat, poultry, and dairy products) intake below the median is assigned a value of 1 and at or above the median a value of 0; for ethanol, a value of 1 is assigned to men who consume between 10 and 50 g per day and to women who consume between 5 and 25 g per day; for MUFA-SFA ratio intake at or above the median is assigned a value of 1 and 0 for below the median

Scoring and cutoffs

Calculation	Range	Cutoffs or classification
Usual diet measured through multiple 24 h reference periods or food frequency questionnaire, or both	0 to 100	No cutoff
Maximum 5 points for total fruit, whole fruit, total vegetables, greens and beans, total protein foods, seafood and plant protein; maximum 10 points for whole grains, dairy, fatty acids, refined grains, sodium; maximum 20 points for empty calories; maximum score for each component is based on 2010 US dietary guidelines; the component scores are summed	0 to 100	Not specified
Beneficial items are assigned a value of 1 when met or 0 when not met, and non-beneficial items are assigned a value of -1 when met and 0 when not met; the component scores are summed	0 to 12	Poor adherence is 0 to 3, average adherence is 4 to 7, and good adherence is 8 to 12
Scoring not described; for 1999 version; for the 2003 version calculate sex-specific medians; intake below the median for beneficial components (vegetables, legumes, fruits and nuts, cereal, and fish) are assigned a value of 0, and intake above or at the median is assigned a value of 1, components assumed to be detrimental (meat, poultry, and dairy products) intake below the median is assigned a value of 1 and at or above the median a value of 0; for ethanol, a value of 1 is assigned to men who consume between 10 and 50 g per day and to women who consume between 5 and 25 g per day; for MUFA-SFA ratio intake at or above the median is assigned a value of 1 and 0 for below the median	0 to 9	Not specified

(Table 2 continues on next page)
Metric	Foods or nutrients and reference period	Scoring and cutoffs
PURE	Fruits; vegetables; legumes; nuts; dairy, unprocessed red meat; fish	For each component, intake quintiles are computed, and a component score is assigned for each quintile; Q1 is assigned a value of 1, Q2 a value of 2, Q3 a value of 3, Q4 a value of 4, and Q5 a value of 5; the component scores are summed
RFS	Apples, pears, oranges; cantaloupe; orange juice; grapefruit juice; grapefruit; other fruit juices; dried beans; tomatoes; broccoli; spinach; mustard, turnip, collard greens; carrots, mixed vegetables with carrots; green salad; sweet potatoes, yams; other potatoes; baked or stewed chicken or turkey; baked or broiled fish; dark breads (eg, whole wheat, rye, pumpernickel); cornbread, tortillas, grits; high-fibre cereals (eg, bran, granola, shredded wheat); cooked cereals; 2% milk and beverages with 2% milk	For each component, 1 point is allocated if consumed at least once per week; the component scores are summed
WHO-HDI	Saturated fatty acids; polyunsaturated fatty acids; protein; complex carbohydrates; dietary fibre; fruits and vegetables; pulses, nuts, seeds, monosaccharides and disaccharides, cholesterol (WHO 1990 guidelines); saturated fatty acids; monosaccharides and disaccharides, cholesterol; protein; total dietary fibre; fruits and vegetables; n3-polyunsaturated fatty acids; n6-polyunsaturated fatty acids; trans fatty acids; sodium (WHO 2003 guidelines); saturated fatty acids; free sugar; total fat; total dietary fibre; fruits and vegetables; polyunsaturated fatty acids; potassium (WHO 2015 guidelines)	For each component, a value of 1 is assigned if intake is in the recommended range and a value of 0 if not in the recommended range; the components are summed
WCRF-AICR	Limit consumption of energy-dense foods and sugary drinks; eat mostly foods of plant origin; limit red meat intake and avoid processed meat; limit alcoholic drinks; recommendation to limit consumption of salt and avoid mouldy cereals (grains) or pulses (legumes) was not included	Each component is scored with 1 point for complete adherence, 0.5 for moderate adherence, and 0 for non-adherence for each recommendation specific cutoff; the component scores are summed

The modifications and adaptations to dietary metrics noted are not exhaustive. AHEI=Alternative Healthy Eating Index. AMDS=Alternative Mediterranean Diet Score. Aussie-DQI=Australian Diet Quality Index. C-DQI=Children’s Diet Quality Index. DASH=Dietary Approaches to Stop Hypertension. DGAI=Dietary Guidelines for Americans Adherence Index. DII=Dietary Inflammatory Index. DQI-CH=Dietary Quality Index for Children and Teenagers. DQI-CH=Dietary Quality Index for Children and Teenagers. DQI-I=Diet Quality Index-International. DQI-K=Diet Quality Index for Koreans. HEI=Healthy Eating Index. HDI=Healthy Diet Indicator. KIDMED=Mediterranean Diet Quality Index for Children and Teenagers. Med-DQI=Mediterranean Diet Quality Index. MSDPS=Mediterranean-Style Dietary Pattern Score. RFS=Recommended Foods Score._rc-DQI=Revised Mediterranean Diet Quality Index. rMED=Revised Mediterranean Diet Score. WHO-HDI=WHO Healthy Diet Indicator. WCRF-AICR=World Cancer Research Fund and American Institute for Cancer Research.

Table 2: Dietary metrics used for assessing non-communicable disease risk

dietary metrics, grains, roots, and tubers, fruits, vegetables, dairy products, and meat and fish were included in all dietary metrics; other frequent foods were legumes and nuts (five metrics), and eggs (four metrics). The most common foods in NCD dietary metrics were vegetables (12 metrics) and fruits (11 metrics), followed by dairy products (nine metrics), grains, roots, and tubers (eight metrics), legumes and nuts (eight metrics), and meat (eight metrics). Uncommon food groups included spices, condiments, and beverages; fast foods; and sugar-sweetened beverages. Unhealthy food groups (eg, sugar-sweetened beverages, sugar, sweets, candy, fast food, or empty calorie foods) were included in two MCH dietary metrics (FCS, HDDS) and six NCD dietary metrics (DASH, AHEI, DQI, HEI, KIDMED, WCRF-AICR).
Variable	Meta-analysis search date	Study included	Source	Number of participants	Countries	Unit of exposure*	Relative risk (95% CI)	I²	p value for heterogeneity
AHEI									
All-cause mortality	May 15, 2017	7	Schwingshackl et al (2018)	975,639	USA, China, UK	High vs low	0.76 (0.74 to 0.79)	71%	0.003
All-cause mortality among cancer survivors	May 15, 2017	3	Schwingshackl et al (2018)	9508	USA	High vs low	0.85 (0.70 to 1.03)	65%	0.03
Cardiovascular disease	May 15, 2017	13	Schwingshackl et al (2018)	1,296,276	USA, China, UK	High vs low	0.75 (0.72 to 0.77)	39%	0.05
Cardiovascular mortality	Dec 14, 2015	7	Onvani et al (2017)	820,778	USA, China, UK	High vs low	0.74 (0.71 to 0.78)	NR	NR
Type 2 diabetes	May 15, 2017	9	Schwingshackl et al (2018)	605,077	USA, Denmark, France, Germany, Italy, Spain, Sweden, UK, Netherlands	High vs low	0.80 (0.74 to 0.86)	76%	<0.001
Cancer	May 15, 2017	18	Schwingshackl et al (2018)	3,013,168	USA, Great Britain, China, Australia	High vs low	0.88 (0.85 to 0.91)	54%	0.001
Cancer mortality	June 2017	9	Milajerdi et al (2018)	964,740	USA, England	High vs low	0.90 (0.85 to 0.95)	62%	0.003
Cancer mortality among cancer survivors	May 15, 2017	3	Schwingshackl et al (2018)	9508	USA	High vs low	0.95 (0.79 to 1.13)	20%	0.29
DASH									
All-cause mortality	May 15, 2017	8	Schwingshackl et al (2018)	1,353,039	USA, China, Denmark, France, Germany, Greece, Italy, Netherlands, Spain, Sweden, Norway, UK	High vs low	0.80 (0.79 to 0.82)	9%	0.36
All-cause mortality among cancer survivors	May 15, 2017	3	Schwingshackl et al (2018)	9508	USA	High vs low	0.94 (0.82 to 1.08)	27%	0.25
Cardiovascular disease	May 15, 2017	18	Schwingshackl et al (2018)	1,745,815	USA, Taiwan, China, UK, Denmark, France, Germany, Italy, Netherlands, Spain, Sweden and Norway	High vs low	0.80 (0.77 to 0.84)	49%	0.006
Coronary heart disease	January 2012	3	Salehi-Abargouei et al (2013)	144,337	USA	High vs low	0.79 (0.71 to 0.88)	0%	0.583
Coronary artery disease	June 2019	7	Yang et al (2019)	377,725	USA, UK, Netherlands	High vs low	0.82 (0.78 to 0.87)	0%	0.53
Total stroke	May 2018	11	Feng et al (2018)	474,228	USA, Hong Kong, Taiwan, Italy, Sweden, Germany, UK, Netherlands	High vs low	0.88 (0.82 to 0.93)	4%	NR
Type 2 diabetes	May 15, 2017	8	Schwingshackl et al (2018)	258,893	USA, Denmark, France, Germany, Italy, Spain, Sweden, UK, Netherlands	High vs low	0.80 (0.74 to 0.86)	61%	0.01
Cancer	May 15, 2017	14	Schwingshackl et al (2018)	2,987,645	USA, Sweden, China, Denmark, France, German, Greece, Italy, Netherlands, Spain, Norway, UK	High vs low	0.82 (0.80 to 0.86)	48%	0.007
Cancer mortality	July 2018	9	Ali Mohsenpour et al (2019)	1,414,944	USA, China, Denmark, France, Germany, Italy, Netherlands, Norway, Spain, UK, Sweden, Singapore	High vs low	0.84 (0.81 to 0.86)	13%	0.323
Cancer mortality among cancer survivors	May 15, 2017	3	Schwingshackl et al (2018)	9508	USA	High vs low	0.93 (0.79 to 1.10)	0%	0.73
Colorectal cancer	April 2019	6	Mohseni et al (2020)	8,36,218	USA, Canada	High vs low	0.81 (0.75 to 0.88)	54%	0.017
Colon cancer	July 2018	2	Ali Mohsenpour et al (2019)	624,587	USA	High vs low	0.80 (0.74 to 0.87)	0%	0.922
Rectal cancer	July 2018	2	Ali Mohsenpour et al (2019)	624,287	USA	High vs low	0.84 (0.74 to 0.96)	16%	0.274
Weight loss in adults, kg	December 2015	10	Soltani et al (2016)	1,291	USA, Australia, Iran	DASH diet vs control diet	-1.42 (-2.03 to -0.82)	71%	<0.001
Body-mass index in adults, kg²/m²	December 2015	6	Soltani et al (2016)	1,157	USA, Iran and China	DASH diet vs control diet	-0.42 (-0.64 to -0.20)	82%	0.01
Waist circumference in adults, cm	December 2015	2	Soltani et al (2016)	511	USA, Iran	DASH diet vs control diet	-1.05 (-1.61 to -0.49)	80%	<0.001

(Table 3 continues on next page)
Meta-analysis search date	Studies included	Source	Number of participants	Countries	Unit of exposure*	Relative risk (95% CI)	I² †	p value for heterogeneity			
DDS											
Cancer mortality	June 2017	2	Milajerdi et al (2018)**	100	12 080	USA, Taiwan	1.03	(0.59 to 1.82)	63%	0.068	
DII											
All-cause mortality	NR	5	Shivappa et al (2017)**	99 147	12 080	UK, USA, Sweden, France	1.04	(1.03 to 1.05)	53%	0.074	
Cardiovascular mortality	NR	4	Shivappa et al (2017)**	91 260	12 080	UK, USA, Sweden	1.05	(1.02 to 1.07)	15%	0.319	
All-cause mortality	NR	5	Shivappa et al (2017)**	99 142	12 080	UK, USA, Sweden, France	1.06	(1.03 to 1.07)	30%	0.22	
Breast cancer	February 2017	5	Zahedi et al (2018)**	279 402	12 080	USA, Sweden, France	1.04	(0.98 to 1.10)	31%	0.218	
Gastric cancer	December 2018	3	Du et al (2019)**	211	12 080	Italy, Korea, Iran	2.11	(1.41 to 3.15)	41%	0.19	
DQI											
Cancer mortality	June 2017	5	Milajerdi et al (2018)**	100	599 041	Sweden, USA, Spain, England	0.91	(0.89 to 0.93)	2%	0.420	
HEI											
All-cause mortality	May 15, 2017	8	Schwingshackl et al (2018)**	1 328 413	12 080	USA, Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Spain, Sweden, UK	0.78	(0.76 to 0.80)	37%	0.11	
All-cause mortality	May 15, 2017	5	Schwingshackl et al (2018)**	12 040	12 080	USA	0.85	(0.75 to 0.96)	26%	0.24	
Cardiovascular disease	May 15, 2017	11	Schwingshackl et al (2018)**	1 600 121	12 080	USA, Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Spain, Sweden, UK	0.79	(0.72 to 0.82)	16%	0.28	
Cardiovascular mortality	Dec 14, 2015	5	Onvani et al (2017)**	740 455	12 080	USA	0.79	(0.72 to 0.82)	NR	NR	
Type 2 diabetes	May 15, 2017	3	Schwingshackl et al (2018)**	303 213	12 080	USA	0.87	(0.82 to 0.93)	61%	0.05	
Cancer	May 15, 2017	21	Schwingshackl et al (2018)**	5 048 954	12 080	USA, Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Spain, Sweden, UK	0.83	(0.79 to 0.87)	73%	<0.001	
Cancer mortality	Dec 14, 2015	6	Onvani et al (2017)**	741 091	12 080	USA, China	0.80	(0.76 to 0.83)	NR	NR	
Cancer mortality	May 15, 2017	5	Schwingshackl et al (2018)**	12 040	12 080	USA	0.84	(0.73 to 0.97)	18%	0.30	
IYCMDD											
Stunting†	November 2017	5	Berhe et al (2019)**	NR	11 738	Ethiopia	<4 score vs >4 score	3.95	(2.31 to 2.92)	72%	0.006
MED											
All-cause mortality	NR	7	Bonacnio et al (2018)**	11 738	11 738	Australia, Greece, Sweden, UK, Italy, Belgium, Denmark, France, Netherlands, Portugal, Spain, Switzerland	1-point increase	0.95	(0.93 to 0.96)	0%	0.47
Cardiovascular disease	August 2016	11	Rosato et al (2017)**	758 280	11 738	USA, Spain, Sweden, UK, Netherlands, Finland	0.81	(0.74 to 0.88)	80%	<0.0001	
Cardiovascular mortality	May 7, 2018	21	Becerra-Tomas et al (2019)**	883 878	11 738	USA, UK, Denmark, Spain, Switzerland, Italy, Australia, Sweden	0.79	(0.72 to 0.82)	0%	0.64	
Coronary heart disease	August 2016	11	Rosato et al (2017)**	379 473	11 738	USA, Spain, Sweden, Netherlands, Greece, Italy, Finland	0.70	(0.62 to 0.80)	45%	0.06	
Coronary heart disease	May 7, 2018	6	Becerra-Tomas et al (2019)**	270 565	11 738	USA, UK, Australia, Sweden	0.73	(0.59 to 0.89)	63%	0.02	
Myocardial infarction	June 2014	3	Grosso et al (2017)**	44 428	11 738	USA, Germany, Sweden	0.67	(0.54 to 0.81)	NR	NR	

(Continued from previous page)

(Table 3 continues on next page)
DASH, DGAI, DII, DQI-I, HEI, MED, WHO-HDI), the most frequent nutrients were sodium (six of eight metrics), total fat, saturated fat, and fibre (four of each each).

Reference period, scoring, and cutoffs

All dietary metrics were intended to assess habitual diet, five MCH dietary metrics asked about intake in the past 24 hours, and all NCD dietary metrics asked about diet over an extended period, often the past year.

Methods of scoring varied considerably. Five MCH dietary metrics (FVS, HDDS, IYCMD, MDD-W, and WDDS and IDDS) and four NCD dietary metrics (DDS, KIDMED, RFS, WHO-HDI) assigned a binary value if the foods or nutrients were consumed during the reference period or recommended intakes were met. Several other NCD dietary metrics (AHEI, DGAI, WCRF-AICR) scored with more than two categories. To identify scoring thresholds, three NCD dietary metrics (MED, DASH, PURE) used the intake distributions in the population in which the metric was being used (ie, using medians and quintiles). One MCH (FCS) and three NCD dietary metrics (DII, DQI-I, HEI) used complex, component-specific scoring.

Positive value only scores were used by all MCH dietary metrics and most NCD dietary metrics, except the KIDMED and DII. Four NCD dietary metrics (DASH, KIDMED, MED, PURE) assigned scores based on the perceived directional benefit of the foods or nutrients, or both, with both lower intake of unhealthy items and greater intake of healthy items receiving higher scores. Unequal scoring weights were used by one MCH dietary metric (FVS) and three NCD dietary metrics (DII, DQI-I, HEI) based on the perceived directional benefit of the foods or nutrients, or both.

Dietary metric reliability and validity

Reliability, defined as repeated measure validity, was assessed for only two NCD dietary metrics (appendix pp 6–13). The HEI metric showed reasonable reliability for all components except sodium and dairy. The

| Table 3: Estimates of aetiologic effects of dietary metrics and risk of health outcomes |
|--|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Meta-analysis | Studies included | Source | Number of participants | Countries | Unit of exposure* | Relative risk (95% CI) | p† p value for heterogeneity |
| search date | | | | | | | |
| (Continued from previous page) | | | | | | | |
| Total stroke§ | August 2016 | 6 | Rosato et al (2017) | USA, China, Netherlands, Greece, Italy, Australia | High vs low | 0.73 (0.59 to 0.91) | 46% 0.10 |
| Ischaemic stroke | August 2016 | 5 | Rosato et al (2017) | USA, Sweden, Italy | High vs low | 0.82 (0.73 to 0.92) | 0% 0.46 |
| Haemorrhagic stroke | August 2016 | 4 | Rosato et al (2017) | USA, Sweden, Italy | High vs low | 1.01 (0.74 to 1.27) | 36% 0.20 |
| Stroke mortality | May 7, 2018 | 4 | Becerra-Tomas et al (2019) | Greece, USA, UK, Denmark, Sweden | High vs low | 0.87 (0.80 to 0.96) | 0% 0.74 |
| Type 2 diabetes | Dec 31, 2015 | 6 | Jannasch et al (2017) | USA, Spain, Greece, Denmark, France, Germany, Italy, Sweden, UK, Netherlands | High vs low | 0.87 (0.82 to 0.93) | 26% 0.24 |
| Cancer mortality | June 2017 | 6 | Milajerdi et al (2018) | USA | High vs low | 0.81 (0.78 to 0.83) | 2% 0.420 |
| Breast cancer | August 2016 | 5 | Van den Brandt et al (2017) | USA, UK, Sweden, Netherlands, Denmark, France, Germany, Italy, Norway, Spain | High vs low | 0.94 (0.88 to 1.01) | 13% 0.33 |
| Gastric cancer | December 2018 | 2 | Du et al (2019) | USA, Denmark, UK, France, Sweden, Norway, Greece, Italy, Spain, Netherlands | High vs low | 0.89 (0.68 to 1.17) | 52% 0.10 |
| Weight loss in adults, kg | June 2010 | 12 | Esposito et al (2011) | Italy, USA, France, Israel, Greece, Spain, Germany, Netherlands | MED diet vs control diet | -1.25 (-2.86 to -0.64) | 95% 0.001 |
| Body-mass index in adults, kg/m² | June 2010 | 15 | Esposito et al (2011) | Italy, USA, France, Israel, Greece, Spain, Germany, Netherlands | MED diet vs control diet | -0.57 (-0.93 to -0.21) | 92% 0.001 |
| Waist circumference in adults, cm | Feb 9, 2016 | 29 | Garcia et al (2016) | Canada, Algeria, Netherlands, UK, Spain, USA, Greece, Chile, Sweden, Australia, Romania, South Africa | MED diet vs control diet | -0.44 (-0.48 to -0.41) | 96% <0.0001 |

Summary of the meta-analyses finding used for grading the evidence for associations: AHEI=Alternative Healthy Eating Index. DASH=Dietary Approaches to Stop Hypertension. DDS=Dietary Diversity Score. DII=Dietary Inflammatory Index. DQI-I=Diet Quality Index-International. HEI=Healthy Eating Index. IYCMDD=Infant and Young Child Minimum Dietary Diversity. MED=Mediterranean Diet Score. NR=not reported. *High versus low dietary metrics (categorical), point increase in score (continuous), or trial experimental and control groups. †Values are rounded to the nearest whole number. I² odds ratio and 95% CI reported. §Unspecified stroke considered total stroke.
Dietary metrics for the assessment of maternal and child health

Dietary component	DDS
Grains, roots, and tubers	FCS
Refined grains	FCS
Legumes and nuts	HDDS
Legumes	HDDS
Nuts and seeds	HDDS
Dairy products	AHEI
Meat and fish	DASH
Eggs	DGAI
Dark green leafy vegetables	DII
Vegetables	DQI-I
Fruits	HEI
Vitamin A-rich fruits and vegetables	KIDMED
Sugar-sweetened beverages	MED
Sugar, sweets, and candy	PURE
Oils and fats	RFS
Fast food	WHO-HDI
Spices, condiments, and beverages	WCRF-AICR
Empty calorie foods	
Alcohol	

Dietary metrics for the assessment of non-communicable disease risk

Dietary component	DDS
Grains, roots, and tubers	FCS
Refined grains	FCS
Legumes and nuts	HDDS
Legumes	HDDS
Nuts and seeds	HDDS
Dairy products	AHEI
Meat and fish	DASH
Eggs	DGAI
Dark green leafy vegetables	DII
Vegetables	DQI-I
Fruits	HEI
Vitamin A-rich fruits and vegetables	KIDMED
Sugar-sweetened beverages	MED
Sugar, sweets, and candy	PURE
Oils and fats	RFS
Fast food	WHO-HDI
Spices, condiments, and beverages	WCRF-AICR
Empty calorie foods	
Alcohol	

Figure 1: Foods and nutrients included in the dietary metrics

Shading indicates that the food or nutrient is included in the dietary metric (appendix pp 22–23). DDS=World Food Programme’s Food Consumption Score. FCS=World Food Programme’s Food Consumption Score. FVS=Food Variety Score. HDDS=Household Dietary Diversity Score. FVCMD=Infant and Young Child Minimum Dietary Diversity. MDD-W=Minimum Dietary Diversity for Women. WDDS=Women’s Dietary Diversity Score. IDDS=Individual Dietary Diversity Score. AHEI=Alternative Healthy Eating Index. DASH=Dietary Approaches to Stop Hypertension. DGAI=Dietary Guidelines for Americans Adherence Index. DII=Dietary Inflammatory Index. DQI-I=Diet Quality Index - International. HEI=Healthy Eating Index. KIDMED=Mediterranean Diet Quality Index for Children and Teenagers. MED=Mediterranean Diet Score. PURE=Prospective Urban Rural Epidemiology Diet Score. RFS=Recommended Foods Score. WHO-HDI=WHO Healthy Diet Indicator. WCRF-AICR World Cancer Research Fund and American Institute for Cancer Research.
KIDMED metric showed moderate to excellent test-retest reliability.

From their development reports, three MCH dietary metrics were validated against foods or nutrients (IYCMDD, MDD-W, and WDDS and IDDS) and two MCH metrics against other non-dietary metrics (FCS, HDDS; appendix pp 6–13). Three NCD dietary metrics were validated against foods or nutrients (HEI, DGAI) or biomarkers (DII).

Our systematic search identified 48 meta-analyses or narrative reviews that assessed validity of these dietary metrics against health outcomes (figure 2). These reports included 126 dietary metric-health outcome relationships for 13 of the 19 dietary metrics. Nearly all dietary metric-health outcome relationships were for NCD dietary metrics, with only ten for MCH dietary metrics. Table 3 describes the identified associations of each dietary metric and MCH and NCD health outcome relationship from published meta-analyses, and the evidence for associations based on both meta-analyses and narrative reviews is shown in figure 3.

The most commonly studied NCD dietary metrics were the MED (29 dietary metric-relationships), DASH (19 dietary metric-relationships), HEI (18 dietary metric-relationships), and AHEI (17 dietary metric-relationships). The most frequently studied outcomes were cancer (53 relationships), anthropometrics in children (21 relationships), cardiovascular disease (18 relationships), and anthropometrics in adults (13 relationships). Among our outcomes of interest, we did not find meta-analyses or narrative reviews of any of the dietary metrics in relation to major MCH outcomes including micronutrient adequacy, maternal mortality, wasting, or infectious diseases. We also did not find any identified meta-analyses or narrative reviews evaluating any dietary metric against both MCH and NCD outcomes.

Evidence synthesis and grading for dietary metrics

Four of the MCH dietary metrics (FCS, HHDS, MDD-W, and WDDS and IDDS) did not have any identified meta-analyses or narrative reviews assessing their relationship with MCH or NCD health outcomes (figure 3). We found little evidence from few studies for the DDS and stunting and diarrhea, the IYCMDD and stunting, and the FVS and child underweight.

Four of the NCD dietary metrics had consistent evidence for associations with NCD health outcomes (figure 3). The MED was found to be inversely associated with all-cause mortality, cardiovascular disease, cardiovascular disease mortality, coronary health disease, total and ischaemic stroke, type 2 diabetes, and cancer mortality. Both AHEI and HEI were associated with lower risk of all-cause mortality, cardiovascular disease, cardiovascular disease mortality, and cancer mortality, while DASH was inversely associated with all-cause mortality, cardiovascular disease, type 2 diabetes, cancer, cancer mortality, body-mass index (BMI), and weight loss in adults.

We found inconsistent evidence for MED and cancer, BMI, waist circumference, and weight loss in adults; for KIDMED and BMI, waist circumference and overweight or obesity in children; and for HEI and colorectal cancer. Six NCD dietary metrics (AHEI, DASH, DQI-I, WHO-HDI, HEI, RFS) had little evidence for associations with breast cancer. For two NCD dietary metrics (DGAI, PURE), no meta-analyses or narrative reviews were identified of relationships with MCH or NCD health outcomes.

Several dietary metrics had evidence (consistent or inconsistent) showing no association with NCD health outcomes including: DASH with total stroke; DII with breast cancer; HEI with BMI in adults and children; KIDMED with BMI, waist circumference, and overweight or obesity in children; and MED with breast cancer (figure 3).

When we looked at what characteristics of the dietary metrics might be more predictive of validity of health outcomes we found that the four NCD metrics (AHEI, DASH, HEI, MED) with consistent evidence of associations were developed to describe adherence to dietary guidelines or diet patterns, consisted of food and nutrient components, all included healthy plant foods (fruits, vegetables, whole grains, nuts and legumes) and dairy, and most included red and processed meat, or sodium.

Discussion

In this comprehensive review of dietary metrics for assessing diet quality globally, we identified 19 dietary...
Figure 3: Grading of evidence for associations of dietary metrics with maternal and child health (MCH) and non-communicable diseases (NCDs) based on meta-analyses and narrative reviews

Dark shading indicates a meta-analysis, light shading indicates a narrative review, and no shading indicates that no review was identified. One plus sign indicates little evidence from few studies (<5), two plus signs indicate inconsistent results from a moderate number of studies (≥5), and three plus signs indicate consistent evidence from multiple high-quality studies (≥5). The relationship between a higher dietary metric and the health outcome was protective, unless stated otherwise.

AHEI=Alternative Healthy Eating Index. DASH=Dietary Approaches to Stop Hypertension. DDS=Dietary Diversity Score. DII=Dietary Inflammatory Index. DQI-I=Diet Quality Index-International. FVS=Food Variety Score. WHO-HDI=WHO Healthy Diet Indicator. HEI=Healthy Eating Index. IYCMDD=Infant and Young Child Minimum Dietary Diversity. KIDMED=Mediterranean Diet Quality Index for Children and Teenagers. MED=Mediterranean Diet Score. RFS=Recommended Foods Score. WCRF-AICR World Cancer Research Fund and American Institute for Cancer Research.
metrics, including seven for MCH and 12 for NCD outcomes; and none developed or applied for both. The dietary metrics varied substantially in their composition and scoring, with MCH dietary metrics generally focused on a few key foods (grains, fruits, vegetables, dairy products, meat, and fish) and NCD dietary metrics incorporating a more diverse mix of foods and nutrients, or both. Importantly, most of these dietary metrics were not validated against health outcomes in meta-analyses or narrative reviews. Only four NCD dietary metrics (MED, AHEI, HEI, DASH) had convincing evidence of protective associations, mainly for all-cause mortality, cardiovascular diseases, type 2 diabetes, total cancer, and cancer mortality. These four dietary metrics had little evidence of associations for anthropometrics in adults or children, and were not validated against MCH outcomes (micronutrient adequacy, mortality in children younger than 5 years, stunting, wasting, and infectious and diarrhoeal disease) in published meta-analyses or narrative reviews. The remaining eight NCD dietary metrics and all seven MCH dietary metrics were either not convincingly validated against most MCH and NCD health outcomes or published meta-analyses and narrative reviews assessing their validity were not identified. Additionally, our findings show that no dietary metrics currently exist designed or validated to characterise the double burden of malnutrition. To our knowledge, these findings provide the most current and extensive synthesis of specific multinational dietary metrics for risk of MCH and NCDs.

Among MCH dietary metrics, the IYCMD is the most widely used and is routinely collected in studies in low-income and middle-income countries, such as the Demographic and Health Surveys and UNICEF Multiple Indicator Cluster Surveys, as a component of the WHO’s Minimum Acceptable Diet for children aged 6–23 months. Despite its frequent use, we identified one meta-analysis assessing the association of the IYCMD with one MCH health outcome, and no meta-analyses or narrative reviews with NCD outcomes. We are aware of selected individual studies that have reported beneficial associations of IYCMD with child growth outcomes (eg, stunting, wasting, height-for-age Z score, and weight-for-height Z score). However, such evidence has not been systematically reviewed nor summarised. The IYCMD assesses binary recall of seven broad food groups over the previous 24 hours. Although data collection is quick and undemanding for research staff and participants, the simplicity of the IYCMD is also a potential limiting factor in predicting health outcomes. Ironically, the existing widespread use of the IYCMD could impede development and validation of new metrics for MCH or the double burden of malnutrition, because a substantial proportion of available dietary data in low-income and middle-income countries is restricted to IYCMD’s broad food groups. Our findings show that much work is needed to validate the IYCMD for uses other than its intended purpose of measuring micronutrient adequacy. In the absence of robust validation of the IYCMD against health outcomes, studies and organisations should consider more rigorously validated questions on diet quality.

Among the other MCH dietary metrics, we identified only two narrative reviews for the DDS, and four for the FVS. No meta-analyses or narrative reviews were identified for the remaining MCH dietary metrics (FCS, HDDS, MDD-W, and WDDS and IDDS). We expect that individual studies will have assessed the relationship between these dietary metrics and MCH outcomes, and our findings highlight the need to pool and synthesise available individual studies of these dietary metrics in relation to both MCH and NCD outcomes in adults and children.

Our investigation also found that although numerous dietary metrics are used to assess the dietary risks of NCDs, most do not have convincing evidence of associations that have been summarised in published narrative reviews or meta-analyses. Only four metrics (MED, AHEI, HEI, DASH) had generally consistent evidence of associations with specific NCD outcomes. For outcomes such as anthropometrics and certain cancer subtypes, further validation is needed. Additionally, none of these four NCD dietary metrics have been assessed in meta-analyses or systematic reviews of important MCH outcomes.

Previous reviews of dietary metrics have focused solely on describing dietary metric features and dietary metric development, or the evidence for dietary metrics in relation to a single disease. Other reviews looked more broadly at dietary metrics and MCH or NCDs, but these are more than a decade old and did not also consider both MCH and NCDs together. Consistent with our findings, these previous studies generally found that MCH dietary metrics were not validated against MCH or NCD health outcomes, and that only a modest number of NCD dietary metrics predicted some chronic diseases. Our findings build upon and greatly extend these previous reviews by providing the most extensive contemporary summary of the evidence for associations of dietary metrics with both MCH and NCD outcomes.

Future studies should consider analyses to validate existing dietary metrics with both MCH and NCD outcomes. Additionally, our findings suggest the need for development of novel dietary metrics designed from the start to assess and monitor both MCH and NCDs. Novel dietary metrics could be entirely new, or adaptations of existing dietary metrics and should be developed with several key considerations. First, comprehensive reviews of existing dietary metrics and health outcome relationships can be used to inform the features of new metrics (eg, foods or nutrients, scoring, cutoffs). We found that the four NCD dietary metrics with convincing evidence for associations were comprised of food and nutrient components, included healthy plant foods and dairy,
and often included red and processed meat, or sodium. This finding might suggest that these components are important aspects of dietary metrics. However, the validity of most remaining dietary metrics has not been assessed against health outcomes, and it is not known whether dietary metrics without these components are less predictive of validity than those with these components. Second, systematic evaluations to summarise the aetiologic effects and optimal levels of dietary factors for MCH outcomes might provide hypotheses to inform the selection of foods and nutrients in new dietary metrics. In the past 10 years the growing availability of standardised, global dietary data has provided greater clarity on actual food and nutrient intakes, and the relationships between foods and nutrients, and cardiovascular disease, type 2 diabetes, and cancer are well documented, but similar associations for many MCH outcomes have not been systematically assessed. Third, new dietary metrics need to acknowledge and reconcile potentially opposing effects of some foods and nutrients on MCH and NCD outcomes. For example, animal source foods (eg, meat, fish, eggs, dairy) have been shown to have beneficial effects on micronutrient deficiencies, child growth outcomes, and cognitive function, but some of these foods, such as processed meats, are negatively associated with NCDs. Although we did not include sustainability metrics in our Review, an important consideration for future dietary metric development is the incorporation of the measurable effect of different food production systems on the environment in dietary metrics. Lastly, an influential consideration for the widespread adoption of existing dietary metrics by health agencies and governments is likely dependent on cultural appropriateness and ease of collecting and scoring these dietary metrics.

Several challenges have likely limited validation of dietary metrics against both MCH and NCD. Ideally, prospective cohort studies with detailed and accurately measured data on both dietary habits and health outcomes should be leveraged. However, populations with MCH outcomes often do not have strong dietary assessment methods and longitudinal data. Most studies on MCH dietary metrics collect information on dietary intake over the previous 24 hour period because the priority is on identifying trends, comparisons, and rankings of outcomes within and between groups, which is generally of interest in setting and evaluating programme targets, and a longer reference period is not necessarily appropriate for these purposes and might be more difficult to operationalise. Moreover, these studies frequently assess diet qualitatively and the absence of quantitative data limit opportunities to construct and validate existing NCD dietary metrics. Ecological analyses are an alternative study design, which bring their own limitations but could address both MCH and NCD across low-income, middle-income, and high-income countries. In addition to these practical data challenges, one of the most important limitations of previous work might have been the general segregation of diet related MCH versus NCD research and policy.

Our Review has several strengths. We did systematic searches for meta-analyses and narrative reviews of validation against health outcomes, making it less likely that we missed any existing syntheses of dietary metric and health outcome relationships. We included a broad range of health outcomes for MCH and NCDs, informing the modern priorities for the double burden of malnutrition. We evaluated the evidence for health associations independently and in duplicate, including the grading of consistency, reducing the potential for bias.

Limitations should be considered. First, we focused on major MCH and NCD health outcomes, and there might be other relevant health outcomes that were not included, such as cognitive function, bone and joint disorders, and NCD risk factors (hypertension, dyslipidaemia, and glucose control). Second, our systematic reviews for each dietary metric in relation to MCH and NCD health outcomes was limited to published meta-analyses and narrative reviews and did not separately assess individual studies. However, meta-analyses and narrative review are more likely to provide accurate and reliable conclusions compared to single studies, minimising publication bias. Lastly, the evidence for validity came mostly from observational studies and some trials, and these are subject to residual confounding, which could overestimate associations, and measurement error in both diet assessment methods and outcome ascertainment, which might result in an underestimation of the relationships

Search strategy and selection criteria
We searched PubMed for articles published between Oct 11, 2000, and April 17, 2020, using the terms “diet quality”, “diet metric”, or “diet score” with “malnutrition”, “undernutrition”, “maternal health”, “child health”, “stunting”, “wasting”, “mortality”, “non-communicable disease”, “chronic disease”, “cardiovascular disease”, “diabetes”, “cancer”, or “obesity” with “meta-analysis”, “systematic review”, or “narrative review”. We used search terms in English but did not apply any language restrictions. We screened articles by title and abstract to identify full-text reports that were relevant to the study aims. We also screened citation lists for these full-text reports to identify other relevant articles. Articles were considered relevant if they reported the relation between dietary metrics and malnutrition. Several previous reviews qualitatively summarised the evidence for dietary metrics in relation to a single health outcome, and other reviews focused on several maternal and child health (MCH) or non-communicable disease (NCD) health outcomes. A few comprehensive reviews of dietary metrics in relation to several MCH or NCD outcomes were completed more than a decade ago, and no review has focused on both MCH and NCD outcomes.
between the dietary metrics and MCH and NCD health outcomes.

In summary, we identified seven international dietary metrics for MCH, none of which have been validated against health outcomes in meta-analyses or narrative reviews, and 12 dietary metrics for NCDs, of which only four have convincing evidence for validation against specific NCD outcomes. These findings highlight important gaps and major opportunities in global analyses of diet quality relating to malnutrition, which are highly relevant to the achievement of the SDGs, other global nutrition targets, and corresponding effective policy actions.

Contributors
VM, PW, and DM conceived of the study and designed the methods. VM did the article screening, data extraction, and data synthesis. All authors graded the evidence for associations. VM, PW, and DM wrote the first and subsequent drafts of the manuscript. RM reviewed and edited the manuscript.

Declaration of interests
VM reports a grant from the American Heart Association, outside the submitted work. PW reports research grants and contracts from the United States Agency for International Development and UNICEF and personal fees from the Global Panel on Agriculture and Food Systems for Nutrition, outside the submitted work. RM reports grants from the National Institute of Health, Nestle, Danone, and personal fees from Bunge and Development Initiatives, outside the submitted work. DM reports research funding from the National Institutes of Health and the Bill & Melinda Gates Foundation; personal fees from GOED, Bunge, Indigo Agriculture, Motif FoodWorks, Amarin, Acasti Pharma, Cleveland Clinic Foundation, America’s Test Kitchen, and Danone; scientific advisory board member for Brightseed, DayTwo, Elysium Health, Filtricine, HumanCo, and Tiny Organics; and chapter royalties from UpToDate, all outside the submitted work.

Acknowledgments
This study was funded by The Bill & Melinda Gates Foundation. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

References
1 Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923–94.
2 Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393: 1958–72.
3 United Nations Statistical Commission. Report of the inter-agency and expert group on Sustainable Development Goals Indicators. New York, NY: UN Statistical Commission, 2017.
4 Fullman N, Barber RM, Sabahibor AA, et al. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 2017; 390: 1423–39.
5 Sachs J, Schmidt-Traub G, Kroll C, Durand-Delacre D, Tsekos K. SDG index and dashboards report 2017. New York, NY: Bertelsmann Stiftung and Sustainable Development Solutions Network, 2017.
6 WHO. World health statistics 2017: monitoring health for the SDGs. Geneva, Switzerland: World Health Organization, 2017.
7 WHO. World health statistics 2018: monitoring health for the SDGs, sustainable development goals. Geneva, Switzerland: WHO, 2018.
8 World Bank. Atlas of the Sustainable Development Goals 2017: from the World Development Indicators. Washington, D.C.: World Bank, 2017.
9 Gil Á, Martinez de Victoria E, Olza J. Indicators for the evaluation of diet quality. Nutr Hosp 2015; 31 (suppl 3): 128–44.
10 Ruel MT. Operationalizing dietary diversity: a review of measurement issues and research priorities. J Nutr 2003; 133 (suppl 2): 391–265.
11 Mozaffarian D, Angell SY, Lang T, Rivera JA. Role of government policy in nutrition barriers to and opportunities for healthier eating. BMJ 2018; 361: k2426.
12 Mozaffarian D, Rosenberg I, Uauy R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ 2018; 361: k2392.
13 Hawkes C, Ruel MT, Sahn L, Sinclair B, Branca F. Double-duty actions: seizing programme and policy opportunities to address malnutrition in all its forms. Lancet 2020; 395: 142–55.
14 Caulfield LE, Richard SA, Rivera RJ, Musgrove P, Black RE. Stunting, wasting, and micronutrient deficiency disorders. In: Jamison DT, Breman JG, Measham AR, et al, eds. Disease Control Priorities in Developing Countries, 2nd edn. Washington, DC: World Bank and Oxford University Press, 2006: 551–67.
15 Davis C, Saloto E. Dietary recommendations and how they have changed over time. America’s eating habits: changes and consequences. 1999. https://www.ers.usda.gov/webdocs/publications/42215/23518_abhidoc_1_${}.pdf (accessed June 25, 2020).
16 Shrimpton R, Roks C. The double burden of malnutrition: a review of global evidence. Washington, DC: World Bank’s Human Development Network, 2012.
17 Rommies I, Dossus L, Barquera S, et al. Energy balance and obesity: what are the main drivers? Cancer Causes Control 2017; 28: 247–58.
18 Arvaniti F, Paragiotakos DB. Healthy indexes in public health practice and research: a review. Crit Rev Food Sci Nutr 2008; 48: 317–27.
19 Mertens E, Van’t Veer P, Hiddink GJ, Steijns M, Kuijsten A. Operationalising the health aspects of sustainable diets: a review. Public Health Nutr 2017; 20: 739–57.
20 Kant AK. Indexes of overall diet quality: a review. J Am Diet Assoc 1996; 96: 785–91.
21 Fransen HP, Ocké MC. Indices of diet quality. Curr Opin Clin Nutr Metab Care 2008; 11: 559–65.
22 Alkerwi A. Diet quality concept. Nutrition 2014; 30: 613–18.
23 Zaragoza-Martí M, Calabétero-Martínez MJ, Hurtado-Sánchez JA, Laguna-Pérez A, Ferrer-Cascalles R. Evaluation of Mediterranean diet adherence scores: a systematic review. BMJ Open 2018; 8: e019033.
24 Smithers LG, Golley RK, Brazioni L, Lynch J. WH Charactirising and food policy. BMJ 2018; 361: k2426.
25 Wajirs PM, Feskenis EJ, Ocké MC. A review of predefined diet quality scores. Br J Nutr 2007; 97: 219–31.
26 Wirt A, Collins CE. Diet quality—what is it and does it matter? Public Health Nutr 2009; 12: 2473–92.
27 Jannasch F, Kröger J, Schulze MB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective Studies. J Nutr 2017; 147: 1174–82.
28 Aghani G, Mirrizen P, Yubashian E, Azizi F. A systematic review of diet quality indices in relation to obesity. Br J Nutr 2017; 117: 1055–65.
29 Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc 2004; 104: 615–35.
30 Wajirs PM, Feskenis EJ, Ocké MC. A review of predefined diet quality scores. Br J Nutr 2007; 97: 219–31.
31 Wirt A, Collins CE. Diet quality—what is it and does it matter? Public Health Nutr 2009; 12: 2473–92.
32 WHO. Malnutrition. 2018. https://www.who.int/news-room/factsheets/detail/malnutrition (accessed June 26, 2020).
33 Laguña-Pérez A, Ferrer-Cascalles R. Evaluation of Mediterranean diet adherence scores: a systematic review. BMJ Open 2018; 8: e019033.
34 Smithers LG, Golley RK, Brazioni L, Lynch J. WH Charactirising whole diets of young children from developed countries and the association between diet and health: a systematic review. Nutr Rev 2011; 69: 449–62.
35 Jannasch F, Kröger J, Schulze MB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective Studies. J Nutr 2017; 147: 1174–82.
36 Aghani G, Mirrizen P, Yubashian E, Azizi F. A systematic review of diet quality indices in relation to obesity. Br J Nutr 2017; 117: 1055–65.
37 Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc 2004; 104: 615–35.
38 Wajirs PM, Feskenis EJ, Ocké MC. A critical review of predefined diet quality scores. Br J Nutr 2007; 97: 219–31.
39 Wirt A, Collins CE. Diet quality—what is it and does it matter? Public Health Nutr 2009; 12: 2473–92.
40 Kourlaba G, Panagiotakos DB. Dietary quality indices and human health: a review. Maturitas 2009; 62: 1–8.
41 WHO. Malnutrition. 2018. https://www.who.int/news-room/factsheets/detail/malnutrition (accessed June 26, 2020).
42 Edefonti V, De Vito R, Dalmantello M, Patel L, Salvatori A, Ferraroni M. Reproducibility and validity of a posteriori dietary patterns: a systematic review. Adv Nutr 2020; 11: 293–326.
43 Kant AK, Schatzkin A, Ziegler RG. Dietary diversity and subsequent cause-specific mortality in the NHEANES I epidemiologic follow-up study. J Am Coll Nutr 1995; 14: 233–38.
44 Kant AK, Schatzkin A, Harris TB, Ziegler RG, Block G. Dietary diversity and subsequent mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 1993; 57: 434–40.
45 Hatley A, Torheim LE, Oshaug A. Food variety - a good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. Eur J Clin Nutr 1998; 52: 891–98.
Dietary Guidelines for Americans and mortality risk in a diverse population: Tehran Lipid and Glucose Study. *Nutrients* 2016; 8(12): 1397–406.

Mohseni-Takalloo S, Hosseini-Esfahani F, Mirmiran P, Azizi F. Associations of pre-defined dietary patterns with obesity associated with insulin resistance in the Framingham Offspring Cohort. *Ann Intern Med* 2015; 163: 470–82.

Fogli-Cawley JJ, Dwyer JT, Saltzman E, et al. The 2005 Dietary Guidelines for Americans and risk of the metabolic syndrome. *Arch Intern Med* 2007; 167: 713–20.

Li AS, Chen J, Sotheran R, et al. Validity of the 2005 dietary guidelines for American adolescents. *J Adolesc Health* 2016; 59(2): 183–92.

Jensen M, Too LS, Haile-Rawle S, et al. A randomized controlled trial of a Mediterranean diet intervention on depression and overall health-related quality of life in patients with major depressive disorder. *J Am Coll Nutr* 2016; 35(5): 535–43.

Fogli-Cawley JJ, Dwyer JT, Saltzman E, et al. The 2005 Dietary Guidelines for Americans and risk of the metabolic syndrome. *Arch Intern Med* 2007; 167: 713–20.

Li AS, Chen J, Sotheran R, et al. Validity of the 2005 dietary guidelines for American adolescents. *J Adolesc Health* 2016; 59(2): 183–92.

Jensen M, Too LS, Haile-Rawle S, et al. A randomized controlled trial of a Mediterranean diet intervention on depression and overall health-related quality of life in patients with major depressive disorder. *J Am Coll Nutr* 2016; 35(5): 535–43.

...
81 Buckland G, González CA, Agudo A, et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am J Epidemiol 2009; 170: 1518–29.

82 Sofi F, Druu M, Pagliai G, Marcucci R, Casini A. Validation of a literature-based adherence score to Mediterranean diet: the MEDI-LITE score. Int J Food Sci Nutr 2017; 68: 757–62.

83 Sofi F, Macchi C, Abrahams R, Gennini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr 2014; 17: 2679–82.

84 Mente A. Association of dietary quality and risk of cardiovascular disease and mortality in 238,000 people from over 50 countries. 2018. https://www.acc.org/-/media/Clinical/PDF-Files/Approved-PDFs/2018-08/21-ESC-2018-Slides/Aug28-Tue/S15anETPURE.pdf (accessed June 26, 2020).

85 Kant AK, Schatzkin A, Graubard BI, Schairer C. A prospective study of diet quality and longevity. JAMA 2017; 318: 1191–1091–105.

86 Collins CE, Burrows TL, Rollo ME, et al. The comparative validity and reproducibility of a diet quality index for adults: the Australian Recommended Food Score. Nutrients 2015; 7: 785–98.

87 Burrows TL, Collins K, Watson J, et al. Validity of the Australian Recommended Food Score as a diet quality index for Pre-schoolers. Nutr J 2014; 13: 87.

88 Marshall S, Watson J, Burrows T, Guest M, Collins CE. The development and evaluation of the Australian child and adolescent recommended food score: a cross-sectional study. Nutr J 2012; 11: 96.

89 Kaluza J, Håkansson N, Brzozowska A, Wolk A. Diet quality and mortality: a population-based prospective study of men. Eur J Clin Nutr 2007; 61: 451–57.

90 Huurbregts P, Penninks E, Räisänen-Lilja L, et al. Dietary pattern and 20 year mortality in elderly men in Finland, Italy, and The Netherlands: longitudinal cohort study. BMJ 1997; 315: 11–17.

91 Stefer D, Pikhart H, Jankovic N, et al. Healthy diet indicator and mortality in Eastern European populations: prospective evidence from the HAPIEE cohort. Eur J Clin Nutr 2014; 68: 1346–52.

92 Jankovic N, Geelen A, Streppel MT, et al. WHO guidelines for a healthy diet and mortality from cardiovascular disease in European and American elderly: the CHANCES project. Am J Clin Nutr 2015; 102: 745–56.

93 Jennings A, Welch A, van Sluijs EM, Griffin SJ, Cassidy A. Diet quality is independently associated with weight status in children aged 9–10 years. J Nutr 2011; 141: 451–59.

94 Haveman-Nies A, Tucker KL, Wilson PW, van Staveren WA. Evaluation of dietary quality in relationship to nutritional and lifestyle factors in elderly people of the US Framingham Heart Study and the European SENECA study. Eur J Clin Nutr 2005; 59: 85–90.

95 Jankovic N, Geelen A, Winkels RM, et al. Adherence to the WCRF/AICR dietary recommendations for cancer prevention and risk of cancer in elderly from Europe and the United States: a meta-analysis within the CHANCES project. Cancer Epidemiol Biomarkers Prev 2017; 26: 136–44.

96 Romaguera D, Vergnaud AC, Peeters PH, et al. Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am J Clin Nutr 2012; 96: 385–95.

97 Vergnaud AC, Romaguera D, Peeters PH, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study. Am J Clin Nutr 2013; 97: 1107–20.

98 Schwingshackl L, Bogensberger B, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Diet 2018; 118: 74–100.e11.

99 Orvani S, Haghighatdoost F, Surkan PJ, Larjani B, Azadbakht L. Adherence to the Healthy Eating Index and Alternative Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: a meta-analysis of observational studies. J Hum Nutr Diet 2017; 30: 216–26.

100 Milajerdi A, Namazi N, Larjani B, Azadbakht L. The association of dietary quality indices and cancer mortality: a systematic review and meta-analysis of cohort studies. Nutr Cancer 2018; 70: 1091–105.

101 Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH) style diet on fatal or nonfatal cardiovascular diseases: incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition 2013; 29: 611–18.

102 Yang ZQ, Yang Z, Duan ML. Dietary approach to stop hypertension diet and risk of coronary artery disease: a systematic review of prospective cohort studies. Int J Food Sci Nutr 2019; 70: 668–74.

103 Feng Q, Fan S, Wu Y, et al. Adherence to the dietary approaches to stop hypertension diet and risk of stroke: A meta-analysis of prospective studies. Medicine (Baltimore) 2018; 97: e12450.

104 Ali Mohsenpour M, Fallah-Moshki R, Ghiasvand R, et al. Adherence to dietary approaches to stop hypertension (DASH) style diet and the risk of cancer: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr 2019; 38: 513–25.

105 Mohseni J, R Mohseni F, Alizadeh S, Abbassi S. The association of dietary approaches to stop hypertension (DASH) diet with the risk of colorectal cancer: a meta-analysis of observational studies. Nutr Cancer 2020; 72: 778–90.

106 Soltanai S, Shirani F, Chitsaz M, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical obes. Obes Rev 2016; 17: 442–54.

107 Zahedi H, Djalalínia S, Sadeghi O, et al. Dietary inflammatory potential score and risk of breast cancer: a systematic review and meta-analysis. Clin Breast Cancer 2018; 18: e651–70.

108 Du S, Li Y, Su Z, et al. Index-based dietary patterns in relation to gastric cancer risk: a systematic review and meta-analysis. Br J Nutr 2019; published online Nov 26 DOI:10.1017/S0007114519002976.

109 Berhe K, Kidanemariam A, Gebremariam G, Gebremariam A. Prevalence and associated factors of adolescent undernutrition in Ethiopia: a systematic review and meta-analysis. BMC Nutr 2019; 5: 49.

110 Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Mediterranean diet and mortality in the elderly: a prospective cohort study and a meta-analysis. Br J Nutr 2018; 120: 841–54.

111 Rosato V, Temple NJ, La Vecchia C, Castellan G, Tavani A, Guercio V. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr 2019; 58: 173–91.

112 Becerra-Tomás N, Blanco Mejía S, Vigilóoukis E, et al. Mediterranean diet, cardiovascular disease and mortality in diabetes: a systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit Rev Food Sci Nutr 2020; 60: 1207–22.

113 Grosso G, Marventano S, Yang J, et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr 2017; 57: 3218–32.

114 van den Brandt PA, Schulpen M. Mediterranean diet adherence and risk of postmenopausal breast cancer: results of a cohort study and meta-analysis. Int J Cancer 2017; 140: 2220–31.

115 Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord 2011; 9: 1–12.

116 Garcia M, Bousnina KD, Shook J, Kenny A, Kerstetter J, Huedo-Medina TB. The effect of the traditional Mediterranean-style diet on metabolic risk factors: a meta-analysis. Nutrients 2016; 8: 168.

117 Schwingshackl L, Misbach B, König J, Hoffmann G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr 2015; 18: 1292–99.

118 Potter J, Brown L, Williams RL, Byles J, Collins CE. Diet quality and cancer outcomes in adults: a systematic review of epidemiological studies. Int J Mol Sci 2016; 17: e1052.

119 Steck SE, Guinter M, Zheng J, Thomson CA. Index-based dietary patterns and colorectal cancer risk: a systematic review. Adv Nutr 2015; 6: 763–73.

120 Anton SD, Hida A, Heenik K, et al. Effects of popular diets without specific calorie targets on weight loss outcomes: systematic review of findings from clinical trials. Nutrients 2017; 9: E822.

121 Iaccarino Idrislon P, Scala L, Valerio G. Adherence to the Mediterranean Diet in children and adolescents: a systematic review. Nutr Metab Cardiovasc Dis 2017; 27: 283–99.
122 Ajefreze N, Almed F. Association between dietary pattern and risk of cardiovascular disease among adults in the Middle East and North Africa region: a systematic review. Food Nutr Res 2015; 59: 27486.

123 Marshall S, Burrows T, Collins CE. Systematic review of diet quality indices and their associations with health-related outcomes in children and adolescents. J Hum Nutr Diet 2014; 27: 577–98.

124 Aljadjani HMAMSD, Patterson AP, Sibbitt DP, Collins CEP. The association between dietary patterns and weight change in adults over time: a systematic review of studies with follow up. JBI Database Syst Rev Implement Reports 2013; 11: 272–316.

125 Mijatovic-Vukas J, Capling L, Cheng S, et al. Associations of diet and physical activity with risk for gestational diabetes mellitus: a systematic review and meta-analysis. Nutrients 2018; 10: E698.

126 Zheng J, Guiter MA, Merchant AT, et al. Dietary patterns and risk of pancreatic cancer: a systematic review. Nutr Rev 2017; 75: 883–908.

127 Schwedhelm C, Boeing H, Hoffmann G, Aleksandrova K, Schwinghügel L. Effect of diet on mortality and cancer recurrence among cancer survivors: a systematic review and meta-analysis of cohort studies. Nutr Rev 2016; 74: 737–48.

128 Pouta AM, Heinonen M, Kajander K, Ronsivalle N, et al. Healthy eating index/alternative healthy eating index and breast cancer mortality and survival: a systematic review and meta-analysis. Asia Pac J Oncol Nurs 2016; 3: 297–305.

129 Kontogianni MD, Panagiotakos DB. Dietary patterns and stroke: a systematic review and re-meta-analysis. Maturation 2014; 79: 41–47.

130 Sherzai A, Heim LT, Boothby C, Sherzai AD. Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev 2012; 70: 423–35.

131 Yusof AS, Isa ZM, Shah SA. Dietary patterns and risk of colorectal cancer: a systematic review of cohort studies (2000–2011). Asian Pac J Cancer Prev 2012; 13: 4713–17.

132 Maghsoudi Z, Aazadlakhit H. How dietary patterns could have a role in prevention, progression, or management of diabetes mellitus? Review on the current evidence. J Res Med Sci 2012; 17: 694–709.

133 Foroughi M, Bakhchazian M, Moghaddam Z, Ghiasvand R, Khoshvash F, Askari G. Stroke and nutrition: a review of studies. Int J Prev Med 2013; 4: Suppl 2: S165–79.

134 Godot J, Bolla F, Torrisi A, Sciaccia S, Galvano F, Grosso G. Dietary patterns and risk of colorectal adenoma: a systematic review and meta-analysis of observational studies. J Hum Nutr Diet 2016; 29: 757–67.

135 Espósito K, Chioldini P, Maiorino MI, Bellastella G, Panagiotakos D, Giugliano D. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine 2014; 47: 107–16.

136 Ge L, Sadeghirad B, Ball GDC, et al. Comparison of dietary macronutrient intake of 14 named popular dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 2020; 369: m696.

137 Tangestani H, Salari-Moghaddam A, Ghahandari H, Emam H. Adherence to the Dietary Approaches to Stop Hypertension (DASH) dietary pattern reduces the risk of colorectal cancer: a systematic review and meta-analysis. Clin Nutr 2020; published online Febr 7; DOI:10.1016/j.clnu.2020.02.002.

138 Coletta AM, Peterson SK, Gatus LA, et al. Diet, weight management, physical activity and ovarian & breast cancer risk in women with BRCA1/2 pathogenic Germline gene variants: systematic review. Hered Cancer Clin Pract 2020; 18: 5.

139 Paula Bricarello L, Poltronieri F, Fernandes R, Retondario A, Heredia Cancer Clin Pract 2020; 18: 5.

140 Paul MC, Wai J, Molnar JS, et al. Summary of key findings from the report addressing the state of clinical and policy research on the emerging field of diet and breast cancer: a systematic review of literature. J Hum Nutr Diet 2015; 28: 297–305.

141 Esposito K, Chiodini P, Maiorino MI, Bellastella G, Panagiotakos DB. Dietary patterns and colorectal cancer risk: a review of 17 years of evidence (2000–2016). Curr Colorectal Cancer Rep 2017; 13: 440–54.

142 Demographic and Health Survey Programme. Demographic and Health Survey. https://dhsprogram.com/data/available-datasets.cfm (accessed July 20, 2020).

143 UNICEF. Multiple Indicator Cluster Survey. 2014. https://www.unicef.org/statistics/index_24302.html (accessed June 26, 2020).

144 WHO. Indicators for assessing infant and young child feeding practices (Part 1 definitions). Geneva, Switzerland: World Health Organization, 2008.

145 WHO. Indicators for assessing infant and young child feeding practices (Part 2 measurement). Geneva, Switzerland: World Health Organization, 2010.

146 WHO. Global nutrition monitoring framework: operational guidance for tracking progress in meeting targets for 2015. Geneva, Switzerland: World Health Organization, 2017.

147 Jones AD, Ickes SB, Smith LE, et al. World Health Organization infant and young child feeding indicators and their associations with child anthropometry: a synthesis of recent findings. Maternal Child Nutr 2014; 10: 1–17.

148 Krasevec J, An X, Kumapley R, Begin F, Frongillo EA. Diet quality and risk of stunting among infants and young children in low- and middle-income countries. Matern Child Nutr 2017; 13 (suppl 2): e2430.

149 Mallard SR, Houghton LA, Filetou S, et al. Dietary diversity at 6 months of age is associated with subsequent growth and mediates the effect of maternal education on infant growth in urban Zambia. J Nutr 2014; 144: 1818–25.

150 Marriott BP, White A, Hadden L, Davies JC, Wallingford JC. World Health Organization (WHO) infant and young child feeding indicators: associations with growth measures in 14 low-income countries. Matern Child Nutr 2012; 8: 354–70.

151 Zongrone A, Winskill K, Menon P. Infant and young child feeding practices and child undernutrition in Bangladesh: insights from nationally representative data. Public Health Nutr 2012; 15: 1697–704.

152 Saaka M, Wernakor A, Abizari AR, Aryee P. How well do WHO complementary feeding indicators relate to nutritional status of children aged 6–23 months in rural northern Ghana? BMC Public Health 2015; 15: 1357.

153 Menon P, Bameza A, Subandoro A, Ayoya MA, Agayo VM. Age-appropriate infant and young child feeding practices are associated with child nutrition in India: insights from nationally representative data. Matern Child Nutr 2015; 11: 73–87.

154 Hedikamp RA, Ayoya MA, Teta IN, Stoltzfus RJ, Marl鸿ne JP. Complementary feeding practices and child growth outcomes in Haiti: an analysis of data from Demographic and Health Surveys. Matern Child Nutr 2015; 11: 815–28.

155 Kamesha P, Liu E, Hertzmark E, et al. Nutritional status and complementary feeding among HIV-exposed infants: a prospective cohort study. Matern Child Nutr 2017; 13: e12358.

156 Micha R, Khlatizadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015; 5: e008705.

157 Singh GM, Micha R, Khlatizadeh S, et al. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries. PLoS One 2015; 10: e0124845.

158 Micha R, Shulkin ML, Peñalvo JL, et al. Eutrophic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149.

159 WCRF/AICR. Diet, nutrition, physical activity and cancer: a global perspective. 2018. https://www.wcrf.org/dietandcancer (accessed June 26, 2020).

160 Drier DK, Allen LH. The importance of milk and other animal-source foods for children in low-income countries. Food Nutr Bull 2013; 32: 227–43.

161 Heady D, Hirvonen K, Hoddinott J. Animal source foods and child stunting. Am J Agric Econ 2018; 100: 1302–19.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.