Analysis of ambient airborne mycoflora around Curzon hall campus, University of Dhaka, Bangladesh

Md. Nazim Uddin¹, Gulshan Ara Latifa¹, Ahmad Kamruzzaman Majumder¹*, Shamim Shams² and Abdullah Al Nayeem¹

¹Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh, Dhaka-1209, Bangladesh
²University of Dhaka, Bangladesh

Received 22 November 2019/Accepted 20 December 2019

The indoor and outdoor air is an important source of aeroallergens and pathogens. Monthly samplings were recorded during September to November 2018 to investigate the airborne mycoflora concentration in Curzon hall campus, University of Dhaka. The fungal colonies developed in Potato Dextrose Agar (PDA) media were isolated from four different locations in the morning, noon and evening in monthly intervals. A total number of counted fungal colonies were 2,681 in which 924, 928 and 829 colonies were found in the morning, noon and evening time, respectively. Among the identified fungi, *Aspergillus* spp. was one of the most predominant genera in all the stations over the study period followed by *Penicillium* spp., *Alternaria* spp., *Curvularia* spp., *Fusarium* spp., *Rhizopus* spp. and *Trichoderma*. The identified fungi belonged to eight genera under the class Ascomycetes, Zygomycetes and Deuteromycetes. Among the fungal isolates, *Alternaria* spp., *Aspergillus* spp., *Curvularia* spp., *Fusarium* spp., *Penicillium* spp. and *Rhizopus* spp. were previously reported as pathogenic to plants and/or humans and strongly allergenic to human being.

Keywords: Mycoflora, Airborne pathogens, Genera, Meteorology.

INTRODUCTION

Airborne particles are found everywhere in nature (1). The atmosphere of earth contains airborne viruses, bacteria, protozoa, pollen grains, different propagules and vegetative cells of algae, fungi, lichens, bryophytes and pteridophytes. Microbial quality and quantity of air depends on seasons, time and locations (2). Fungal spores play a significant role in childhood asthma, allergies, mycotoxicity and infections in human and animals (3, 4). About 20% of human population is easily sensitized by normal concentrations fungal spore (up to \(10^6\) spores/m³) and all fungal spores should be regarded as potentially allergenic (5). Airborne fungi are considered as one of the indicators of atmospheric bio-pollution (6). Numerous plant diseases such as rusts, smuts, mildews, leaf spots, etc. are also caused by airborne fungi (7-9).

Occurrence of fungal spores in the air fluctuate in different seasons with the variations in the weather conditions. Warm and dry weather favors the development, sporulation and dispersal of conidia of *Cladosporium* spp., *Epicoccum* spp. and *Alternaria* spp. The highest concentration of conidia of those genera usually occurs at noon and afternoon (2). It can vary with vegetation types. Excessive concentrations of *Alternaria* spp. spores were noted at the harvesting seasons (10, 11). Surveys on these aspects have been made in different countries of the world following impaction or sedimentation method (12-15). The sedimentation method is still quite popular in India and some other countries as it is cheap, simple and recommended by Polish Standards (15-17). Nowadays, people are more concerned about the gaseous and particulate pollution in the atmosphere. But, microbial pollutants are also important as they have severe impacts on human health.

The present investigation has therefore, been undertaken to study the monthly distribution pattern of mycoflora in the air of the Curzon hall campus, University of Dhaka, Bangladesh.

MATERIALS AND METHODS

Sampling areas. Four locations of Curzon hall campus area, University of Dhaka were selected for the sampling of air borne fungal spores from

Corresponding Author: Mailing address, Dr. Ahmad Kamruzzaman Majumder, Professor, Department of Environmental Science, Stamford University Bangladesh, Dhaka-1209, Bangladesh; E-mail: kamrul SUB@hotmail.com.

32
The further developmental studies on the culture media were counted. The isolation was done by transferring a bit or a single spore into the sterile Petri plates containing PDA medium. Pure culture of each fungal isolates was done by dilution plate method and single spore culture technique. Pure cultures were stored at 4°C in slant medium for further studies. The fungal colonies developed on the culture media were examined under microscope and identified based on their morphological structure. Percentage of abundance and frequency distribution of the fungal colonies were calculated by adopting the formula of Pathak (18).

RESULTS AND DISCUSSION

Incidence and percent frequency distribution of fungi during the morning between September 2018 and

Fungal Genera	No. of fungal colonies in PDA medium from different locations	(%) Frequency	Mean	Standard Deviation
Alternaria	A 33, B 23, C 36, D 40, Total 132	14.2	33	7.2
Aspergillus	A 74, B 87, C 54, D 41, Total 256	27.7	64	20.5
Curvularia	A 22, B 32, C 23, D 13, Total 90	9.7	22.5	7.7
Fusarium	A 18, B 27, C 22, D 20, Total 87	9.4	21.8	3.8
Penicillum	A 46, B 58, C 55, D 61, Total 220	23.1	55	6.4
Rhizopus	A 18, B 20, C 16, D 16, Total 70	7.8	17.5	1.9
Sterile mycelium	A 8, B 7, C 5, D 13, Total 33	3.7	8.2	3.4
Trichoderma	A 6, B 9, C 7, D 14, Total 36	3.1	9	3.5
Total	225, 263, 218, 218, 924	100	28.8	6.8

Sites, A: Zoology department side, B: Fishery department side, C: Dr. Muhammad Shahidullah hall side, D: Fazlul Huq Muslim hall mosque side
November 2018 is presented in Table 1. The table showed that a total of 924 fungal colonies were isolated in the morning out of which the highest number of colonies were Aspergillus spp. (256) followed by Penicillium spp. (220) and Alternaria spp. (132). The lowest numbers of fungal colonies were recorded for sterile mycelium (33).

Table 2 showed the results of fungal isolates at noon. A study in Tehran shows the predominant genus Alternaria, Aspergillus and Penicillium were found in the month of October (Table 4). It was observed that spore contents were allergenic, bad physical condition, tiredness, headaches, vertigo, decrease of concentration, memory and intellectual work ability and so on (17).

Present study revealed that maximum fungal colonies were found in the month of October (Table 4). It was observed that spore contents were

Table 3. Incidence and percent frequency distribution of fungal genera in PDA medium collected in the evening from different locations during September to November 2018

Fungal Colonies	No. of fungal colonies in PDA medium from different locations	Frequency (%)	Mean	Standard Deviation				
	A	B	C	D	Total			
Alternaria	32	21	41	41	135	16	34	9.5
Aspergillus	42	29	18	17	85	10	21	5.4
Curvularia	19	27	22	19	87	10	22	3.7
Fusarium	17	19	13	13	62	7.5	16	3
Rhizopus	8	5	7	15	35	4.2	8.8	4.3
Sterile mycelium	6	6	6	12	30	3.6	7.5	3
Total	191	211	208	219	829	100	26.1	5.4

Sites, A: Zoology department side, B: Fishery department side, C: Dr. Muhammad Shahidullah hall side, D: Fazlul Huq Muslim hall mosque side.

Table 4. Climate factors and total number of fungal colonies

Month	Temperature (°C)	Relative Humidity (%)	Total Fungal Colony							
	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Morning	Noon	Evening	
September	32.7	25.3	29	83.4	52.9	68.15	255	269	248	
October	32.6	24.6	28.6	70.7	49.7	60.2	135	341	367	368
November	28.8	18.6	23.7	74.6	47.1	60.85	25	297	292	213

A total of 928 fungal colonies were recorded from four different locations. Out of 928, the highest number was recorded in case of Aspergillus spp. (239) followed by Penicillium spp. (221) and Alternaria spp. (146). Moreover, Trichoderma spp. (29) was the lowermost in number of colonies.

Table 3 showed the frequency of fungal isolates found in the evening. A total of 829 fungal colonies were recorded from four selected locations. Out of 829, the highest number was recorded in case of Penicillium spp. (207), followed by Aspergillus spp. (188) and Alternaria spp. (135). Here, Trichoderma spp. (30) was the lowest in number of colonies.

Abdullah et al., (2019) shows that, at Malnicherra tea estate of Sylhet district, Aspergillus fumigatus showed the maximum percentage followed by Aspergillus flavus, Curvularia interseminata, Aspergillus niger (19). A study in Tehran shows the predominant genus identified in air was Penicillium (34.88 % of total airborne fungi) during the study period (20). Epidemiological studies showed that high concentration of microorganisms in the air can causes comparatively less in the month of September. It might be due to high temperature and humidity. In addition, high rainfall leads to decrease the fungal colony as continuous waterfall usually washes out the spores. Another study revealed that, Alternaria, Aspergillus and Penicillium were found in higher concentration during dry winter seasons (21). Vegetation types, warm and dry weather always attribute to development, sporulation and dispersal of fungal colonies in the ambient air. The identified fungi belonged to eight genera under the classes of Ascomycetes, Zygomycetes and Deuteromycetes. Among the different genera of fungi, Alternaria, Aspergillus, Curvularia, Fusarium, Penicillium and Rhizopus were reported as pathogenic to plants and/or humans and were proved to be strong allergen to human being.

CONCLUSION

Among the eight identified fungi, Aspergillus was one of the most prevalent genera in all the four locations over the study period. Presence of fungal
spores in the air varied from month to month because of the variation of weather elements. This study contributes to our understanding of airborne spores and their distribution pattern in the Dhaka University campus. Regular monitoring of airborne fungi can be helpful in the prevention of fungal allergic diseases and related complications especially in over-crowded area in Dhaka city.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Botany, University of Dhaka for providing all laboratory facilities for carrying out the present study and obliged to Md. Sarowar Hosen, Lecturer, Department of Botany, University of Dhaka for his kind assistance during this work. The authors express their cordial appreciations to Taniya Sultalana, Tahera khatun, Abdullah Arpon, Dr. Abdullah Al Noman and junior research fellows of the laboratory for their dedicated help, encourgement and co-operation.

REFERENCES

1. Pavan R and Manjunuth K. 2014. Qualitative analysis of indoor and outdoor airborne fungi in Cowshed. J. Mycol. 2 014: Article ID 985921, 8 pages.
2. Lighthart B. 2000. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16:7–16.
3. Burge HA. 1985. Fungus allergens. Clin. Rev. Allergy Immunol. 3:319-329.
4. Aminianda V, Bayrz J, Bozza S, Kniemeier O and Perruccio K. 2010. Clever cloak prevents immune recognition of air borne fungal spores. 4th advances against Aspergillosis, Asp. Newsl. 460:1117-1123.
5. Burge HA. 2001. Fungi: toxic killers or unavoidable nuisances? Ann. Allergy. Asthma. Immunol. 87:52–56.
6. Kakde UB, Kakde UH and Saju AA. 2001. Seasonal variation of fungal propagules in a fruit market environment, Nagpur (India). Aerobiologia 17:177-182.
7. Kendrick B. 2000. The fifth kingdom. 3rd ed. Focus Publishing, R. Pullins Co. Newburyport MA 01950, USA. pp. XI+373.
8. Cvetnić Z and Pelipeljnik S. 1997. Distribution and mycotoxin-producing ability of some fungal isolates from the air. Atmos. Environ. 31:491-495.
9. Black PN, Udy AA and Brodie SM. 2000. Sensitivity to fungal allergens is a risk factor for life-threatening asthma. Allergy 55:501-504.
10. Chakraborty PS, Gupta-Bhattacharya and Chanda S. 2003. Aeromycoflora of an agricultural farm in West Bengal, India. A five year study. Grana 42:248-254.
11. Kasprzyk I. 2008. Aeromycology- main research fields of interest during the last 25 years. Ann. Agric. Environ. Med. 15:1-7.
12. Li De-Wei and Kendrick B. 1995. A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87:190-195.
13. Khan ZU, Khan MAY, Chudy R and Sharma PN. 1999. Aspergillus and other moulds in the air of Kuwait. Mycopathologia 146:35-32.
14. Ianovici N and Tudorica D. 2009. Aeromycoflora in outdoor environment of Timisoara City (Romania). Not. Sci. Biol. 1:21-28.
15. Sharma K. 2011. Comparative study of aeromycoflora in relation to soil mycoflora of Darjeeling tea garden. India. Recent Res. Sci. Technol. 3:84-86.
16. Fleischer RM, Bober-Gheek B, Bortkiewicz O and Rusiecka-Ziołkowska J. 2006. Microbiological control of airborne contamination in hospitals. Indoor and Built Environ. 15:53-56.
17. Sekulska M, Stryjakowska, Piotra and Nowicki Pajak A, Szyłszka A, Nowicki M and Filipak M. 2007. Microbiological quality of indoor air in university room. Pol. J. Environ. Stud. 16:623-632.
18. Pathak K. 2012. An extramural aeromycological investigation of dental college hospital associated environment. Int. J. Environ. Sci. 2:1952-1961.
19. Abdullah SM, Iftekhar A, Mohammad OU, Rayhan U, Rahman WU, R. Ara et al. 2019. Studies on Aeromycoflora in Different Tea Estates of Sylhet. Int. Adv. Res. J. Sci.Eng. Technol. 6: 1-7.
20. Hoseini M, Jabbari H, Nadafi K, Namzadeh R, Rabbar M, Yunesian M et al. 2013. Concentration and distribution characteristics of airborne fungi in indoor and outdoor air of Tehran subway stations. Aerobiologia. 29:355-63.
21. Jugul A, Hossain KS and Bashar MA. 2013. Aeromycoflora of the Dhaka University campus. Bangladesh J. Bot. 42:273-278.