Compactification of the Bruhat-Tits building of PGL by seminorms

Annette Werner
Mathematisches Institut, Universität Münster, Einsteinstr. 62, D - 48149 Münster
e-mail: werner@math.uni-muenster.de

Abstract
We construct a compactification \overline{X} of the Bruhat-Tits building X associated to the group $PGL(V)$ which can be identified with the space of homothety classes of seminorms on V endowed with the topology of pointwise convergence. Then we define a continuous map from the projective space to \overline{X} which extends the reduction map from Drinfeld’s p-adic symmetric domain to the building X.

2000 MSC: 20E42, 20G25

Introduction

It is well-known that the Bruhat-Tits building X of $PGL(V)$ can be identified with the set of homothety classes of norms on V. It can also be described with lattices of full rank in V. In [We] we constructed a compactification of X which takes into account lattices of arbitrary rank in V.

The goal of the present paper is to describe a related compactification \overline{X}, which is more adapted to the description of the building in terms of norms. It is in some sense dual to the construction given in [We]. Whereas there the boundary of X consists of all buildings corresponding to subspaces of V, here we attach the buildings corresponding to quotient spaces of V. We prove that our construction leads to a compact, contractible space \overline{X}, and that $PGL(V)$ acts continuously on \overline{X}.

A nice feature of this new construction is that it has a very natural description: Namely, \overline{X} can be identified with the set of homothety classes of seminorms, endowed with the topology of pointwise convergence.

In the final section, we use the compactification \overline{X} in order to show that the reduction map $r : \Omega^m \to X$ from the Berkovich analytic space corresponding to Drinfeld’s p-adic symmetric domain to the building X has a natural extension to a continuous,
$PGL(V)$-equivariant map

$$r : \mathbb{P}(V)^{an} \rightarrow \overline{X},$$

where $\mathbb{P}(V)^{an}$ is the Berkovich analytic space induced by the projective space. Besides we show that r has a continuous section $j : \overline{X} \rightarrow \mathbb{P}(V)^{an}$, which induces a homeomorphism between \overline{X} and a closed subset of $\mathbb{P}(V)^{an}$.

We hope that the compactification \overline{X} can be used to construct a kind of Satake compactification for Bruhat-Tits buildings associated to arbitrary reductive groups.

Acknowledgements: I am much indebted to Matthias Strauch for some very fruitful discussions. In fact, the idea to modify the construction in [We] in order to extend the reduction map from Drinfeld’s symmetric domain to the building was born during one of them. Besides, it is a pleasure to thank Vladimir Berkovich for some useful conversations about his analytic spaces.

1 Notation and conventions

Throughout this paper we denote by K a non-archimedean local field, by R its valuation ring and by k the residue class field. Besides, v is the valuation map, normalized so that it maps a prime element to 1, q is the number of elements in the residue field and $|x| = q^{-v(x)}$ the absolute value on K.

We adopt the convention that “\subset” always means strict subset, whereas we write “\subseteq”, if equality is permitted.

Let V be an n-dimensional vector space over K, and let G be the algebraic group $PGL(V)$.

2 Seminorms

We call a map $\gamma : V \rightarrow \mathbb{R}_{\geq 0}$ a seminorm, if γ is not identically zero, and satisfies

i) $\gamma(\lambda v) = |\lambda|\gamma(v)$ for all $\lambda \in K$ and $v \in V$, and

ii) $\gamma(v + w) \leq \sup\{\gamma(v), \gamma(w)\}$ for all v, w in V.

We call γ canonical with respect to a basis v_1, \ldots, v_n of V, if

$$\gamma(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \sup\{|\lambda_1|\gamma(v_1), \ldots, |\lambda_n|\gamma(v_n)\}$$

for all $\lambda_1, \ldots, \lambda_n$ in K.

2
A seminorm γ satisfying

iii) $\gamma(x) > 0$ for all $x \neq 0$,

is a norm on V.

A seminorm γ on V induces in a natural way a norm on the quotient space $V/\ker\gamma$. By [Go-I], Proposition 3.1, for any norm γ there exists a basis with respect to which γ is canonical. Looking at the norms induced on a quotient, we find that the same holds for seminorms.

Two norms or seminorms γ_1 and γ_2 on V are called equivalent, iff there is a positive real constant c such that $\gamma_1 = c\gamma_2$.

3 Compactification of one apartment

We fix a basis v_1, \ldots, v_n of V, which defines a maximal K-split torus T in G, induced by the torus T^\sim of diagonal matrices in $GL(V)$ with respect to v_1, \ldots, v_n. We denote by χ_i the character of T^\sim mapping a diagonal matrix to its i-th entry. Then all χ_i/χ_j define a character a_{ij} of T.

Let N be the normalizer of T in G. We denote by $T = T(K), N = N(K)$ and $G = G(K)$ the groups of rational points. Then $W = N/T$ is the Weyl group of the root system $\Phi = \{a_{ij} : i \neq j\}$ corresponding to T. We can identify W in a natural way with the group of permutations of $\{1, \ldots, n\}$. By embedding W as the group of permutation matrices in N, we find that N is the semidirect product of T and W.

By $X_*(T)$ respectively $X^*(T)$ we denote the cocharacter respectively the character group of T. Let A be the \mathbb{R}-vector space $A = X_*(T) \otimes_{\mathbb{Z}} \mathbb{R}$. We take A as our fundamental apartment in the definition of the Bruhat-Tits building associated to G.

Let $\eta_i : \mathbb{G}_m \to T$ be the cocharacter induced by mapping x to the diagonal matrix with diagonal entries d_1, \ldots, d_n such that $d_k = 1$ for $k \neq i$ and $d_i = x$. Then $\eta_1 + \ldots + \eta_n = 0$, and $\eta_1, \ldots, \eta_{n-1}$ is an \mathbb{R}-basis of A. If $t \in T$ is induced by the diagonal matrix with entries d_1, \ldots, d_n, we define a point $\nu(t) \in A$ by $\nu(t) = -v(d_1)\eta_1 - \ldots - v(d_n)\eta_n$.

Every $t \in T$ acts on A as translation by $\nu(t)$, Besides, W acts as a group of reflections on A. Since N is the semidirect product of T and W, we can define an action of N on A by affine bijections.

It is well-known that A can be identified with the set N_c of equivalence classes of those norms on V which are canonical with respect to the basis v_1, \ldots, v_n, cf. [Br-T]. To be more explicit, define a map

$$\varphi : A \longrightarrow N_c$$
by mapping \(x = x_1\eta_1 + \ldots + x_n\eta_n \) in \(A \) to the class of norms represented by

\[
\gamma(\lambda_1v_1 + \ldots + \lambda_nv_n) = \sup\{|\lambda_1|q^{-x_1}, \ldots, |\lambda_n|q^{-x_n}|.
\]

It is easily seen that \(\varphi \) is well-defined, bijective and \(N \)-equivariant, if we let \(N \) act on the class of equivalence classes of norms by \(\gamma \mapsto \gamma \circ n^{-1} \).

Let us denote by \(S'_c \) the set of all seminorms on \(V \) which are canonical with respect to \(v_1, \ldots, v_n \), and by \(S_c \) the quotient of \(S'_c \) by the equivalence relation on seminorms defined above. We will now define a compactification \(\overline{A} \) of \(A \) so that \(\varphi \) can be extended to a homeomorphism from \(\overline{A} \) to \(S_c \).

We write \(n \) for the set \(\{1, \ldots, n\} \). Let \(J \) be a non-empty subset of \(n \), and let \(V_J \) be the subspace of \(V \) generated by the \(v_i \) for \(i \in J \). We write \(G^V_J \) for the subgroup of \(G = PGL(V) \) consisting of the elements leaving the subspace \(V_J \) invariant, and \(G_J \) for the algebraic group \(PGL(V_J) \). Then we have a natural restriction map \(\rho_J : G^V_J \to G_J \).

The torus \(T \) is contained in \(G^V_J \), and its image under \(\rho_J \) is a maximal \(K \)-split torus \(T_J \) in \(G_J \), namely the torus induced by the diagonal matrices with respect to the base \(\{v_i : i \in J\} \) of \(V_J \).

Besides, we have the quotient map \(q_J : V \to V/V_J \). There is a natural homomorphism

\[
\sigma_{\varnothing \setminus J} : G^V_J \to PGL(V/V_J).
\]

Then for all subsets \(I \subset n \) the homomorphism \(\sigma_I \) maps \(T \) to a split torus \(T_I \) in \(PGL(V/V_{\varnothing \setminus I}) \). Put \(T_I = T_I(K) \). Besides, we put

\[
A_I = X_\ast(T_I) \otimes \mathbb{R}.
\]

Then \(\sigma_I \) induces a surjective homomorphism

\[
s_I : A \to A_I,
\]

mapping the cocharacter \(\eta_i \) to zero, if \(i \) is not contained in \(I \), and to the induced cocharacter \(\overline{\eta}_i \) of \(T_I \), if \(i \) is contained in \(I \). Then \(A_I \) is generated by the cocharacters \(\overline{\eta}_i \) for \(i \in I \), subject to the relation \(\sum_{i \in I} \overline{\eta}_i = 0 \).

Besides, we define a homomorphism \(\nu_I : T_I \to A_I \) by \(\nu_I(t) = \sum_{i \in I} -v(d_i)\overline{\eta}_i \), if \(t \) is induced by the matrix with diagonal entries \(d_i \) for all \(i \in I \). Obviously, \(\nu_I \circ \sigma_I = s_I \circ \nu \) on \(T \).

Now put

\[
\overline{A} = A \cup \bigcup_{\emptyset \neq I \subseteq n} A_I = \bigcup_{\emptyset \neq I \subseteq n} A_I.
\]

Here of course \(A_{\emptyset} = A \) and \(s_\emptyset \) is the identity.
Let us denote by $S_c'(I)$ the set of all seminorms on V which are canonical with respect to v_1, \ldots, v_n, and whose kernel is equal to $V_{n,I}$, and by $S_c(I)$ the corresponding quotient space with respect to equivalence of norms. Then we define a map

$$\varphi : A_I \rightarrow S_c(I)$$

by associating to the point $x = \sum_{i \in I} x_i \eta_i$ in A_I the seminorm represented by

$$\gamma(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \sup\{ |\lambda_i| q^{-x_i} : i \in I \}$$

Obviously, $\varphi : A_I \rightarrow S_c(I)$ is bijective.

Combining all these maps yields a bijection $\varphi : \overline{A} \rightarrow S_c$.

Now we want to define an action of N on \overline{A}. First of all, we use the homomorphism $\nu_I \circ \sigma_I = s_I \circ \nu : T \rightarrow A_I$ to define an action of T on A_I by affine transformations. For $w \in W$ we denote the induced permutation of the set n also by w, i.e. we abuse notation so that $w(v_i) = v_{w(i)}$. Now define an action of w on \overline{A} by putting together the maps

$$w : A_I \rightarrow A_{w(I)},$$

sending η_i^I to $\eta_{w(I)}^{w(I)}$. Note that it is compatible with the action of w on A, i.e. we have

$$w \circ s_I = s_{w(I)} \circ w$$

on A. These two actions give rise to an action of $N = T \times W$ on \overline{A}, which we denote by ν. If N acts in the usual way on S_c, i.e. by $\gamma \mapsto \gamma \circ n^{-1}$, it can easily be checked that the bijection φ is N-equivariant.

Let us now define a topology on \overline{A}. For all $I \subset n$ we put

$$\Delta_I = \sum_{i \notin I} \mathbb{R}_{\geq 0} \eta_i \subset A.$$

For all open and bounded subsets $U \subset A$ we define

$$\Gamma_U^I = (U + \Delta_I) \cup \bigcup_{I \subset J \subset n} s_J(U + \Delta_I).$$

We take as a base of our topology on \overline{A} the open subsets of A together with these sets Γ_U^I for all non-empty $I \subset n$ and all open bounded subsets U of A.

Note that every point $x \in \overline{A}$ has a countable fundamental system of neighbourhoods. This is clear for $x \in A$. If x is in A_I for some $I \subset n$, then choose some $z \in A$
with $s_I z = x$, and choose a countable decreasing fundamental system of bounded open neighbourhoods $(V_k)_{k \geq 1}$ of z in A. Put $U_k = V_k + \sum_{i \in I} k \eta_i$. This is an open neighbourhood of $z + k \sum_{i \in I} \eta_i$. Then $(V_{U_k})_{k \geq 1}$ is a fundamental system of open neighbourhoods of x.

Our next goal is to compare the previous construction to the compactification of the apartment A which was used in [We]. Denote by V^* the dual vector space corresponding to V. The map $g \mapsto g^{-1}$ induces an isomorphism $\alpha : PGL(V^*) \to PGL(V)$, which maps the torus T', given by the diagonal matrices with respect to the dual basis v_1^*, \ldots, v_n^*, to the torus T. This defines an isomorphism of the cocharacter groups

$$\alpha_* : X_*(T') \to X_*(T).$$

Note that α_* introduces a sign, i.e., if η'_i is given by the map sending x to the diagonal matrix with i-th entry x_i and entries 1 at the other places, then α_* maps η'_i to the cocharacter $-\eta_i$. If we denote by Λ' the apartment in the building of $PGL(V^*)$ given by the torus T', the map α_* induces an isomorphism of \mathbb{R}-vector spaces $\beta : \Lambda' \to A$.

Let I be a non-empty subset of \underline{n}, and let $(V^*)_I$ be the subspace of V^* generated by all v_i^* for $i \in I$. Then $(V^*)_I \simeq (V/V_{\underline{n}\setminus I})^*$. Hence α induces an isomorphism $\alpha_I : PGL((V^*)_I) \to PGL(V/V_{\underline{n}\setminus I})$ making the following diagram commutative

$$\begin{array}{ccc}
PGL(V^*)(V^*)_I & \longrightarrow & PGL(V)^{V_{\underline{n}\setminus I}} \\
\rho_I \downarrow & & \downarrow \sigma_I \\
PGL((V^*)_I) & \longrightarrow & PGL(V/V_{\underline{n}\setminus I})
\end{array}$$

Restricting α_I to the torus T'_I induced by the diagonal matrices with respect to v_i^* for $i \in I$, we get an isomorphism $T'_I \to T_I$. This induces an isomorphism

$$(\alpha_I)_* : X_*(T'_I) \to X_*(T_I).$$

If η_i' denotes the cocharacter induced by mapping x to the diagonal matrix with entry x at the place i, and with entry 1 at the places $j \neq i$ in I, we have $\alpha_*(\eta_i') = -\eta_i'$. Again we put $\Lambda'_I = X_*(T'_I) \otimes \mathbb{R}$. Then $(\alpha_I)_*$ induces an \mathbb{R}-linear isomorphism $\beta : \Lambda'_I \to A_I$.

Now we put as in [We], section 3, $\overline{\Lambda} = \Lambda' \cup \bigcup_{\emptyset \neq I \subset \underline{n}} \Lambda'_I$. Then we have defined a bijection

$$\beta : \overline{\Lambda} \to \overline{\Lambda}.$$

Note that by definition β is a homeomorphism, if $\overline{\Lambda}$ is endowed with the topology of $[\overline{\Lambda}$, section 3. Besides, in [We], section 3, we defined an action ν' of N' on $\overline{\Lambda}$, where N' is the normalizer of T'. Via the isomorphism $\alpha : N \to N'$, this is compatible with the N-action on $\overline{\Lambda}$ defined above.

Hence we can deduce
Theorem 3.1 i) The topological space \overline{A} is compact and contractible, and A is an open, dense subset of \overline{A}.

ii) The action $\nu : N \times \overline{A} \rightarrow \overline{A}$ is continuous.

Proof: This follows immediately from [We], Theorem 3.4 and Lemma 3.5.

We can endow the space S_c' of canonical seminorms with the topology of pointwise convergence, i.e. with the coarsest topology such that for all $v \in V$ the map $\gamma \mapsto \gamma(v)$ from S_c' to $\mathbb{R}_{\geq 0}$ is continuous. On S_c we have the quotient topology. Both S_c' and S_c are Hausdorff. We will now show that the bijection φ defined above is in fact a homeomorphism.

Proposition 3.2 The N-equivariant bijection $\varphi : \overline{A} \rightarrow S_c$ is a homeomorphism.

Proof: Note that it is enough to show that φ is continuous, since a continuous bijection from a compact space to a Hausdorff space is automatically a homeomorphism.

Let $x = \sum_{i \in I} x_i \eta_i$ be a point in A_I, and assume that $x_{i_0} = 0$ for some $i_0 \in I$. We want to show that φ is continuous in x. If γ is the seminorm $\gamma(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \sup\{|\lambda_i| q^{-x_i+\lambda_i} : i \in I\}$, then $\varphi(x)$ is represented by γ.

If U is an open neighbourhood of $\varphi(x) = \{\gamma\}$, then it contains a set of the form

$$\{\{\beta\} \in S_c : |\beta(v_i) - \gamma(v_i)| < \varepsilon \text{ for all } i = 1, \ldots, n\}.$$

We find an open and bounded subset V of A so that all $\sum_{i=1}^n y_i \eta_i \in V$ satisfy

$$|q^{-y_i+y_{i_0}} - q^{-x_i}| < \varepsilon \quad \text{for all } i \in I \text{ and}$$

$$|q^{-y_i+y_{i_0}}| < \varepsilon \quad \text{for all } i \notin I.$$

Then $\Gamma_V = (V + \Delta_I) \cup \bigcup_{I \subseteq J \subseteq N} s_J(V + \Delta_I)$ is an open neighbourhood of x in \overline{A}. Let us show that $\varphi(\Gamma_V)$ is contained in U. If y is a point in Γ_V, say $y = s_J(z)$ for some $I \subseteq J$ and some $z = \sum_{i=1}^n z_i \eta_i \in V + \Delta_I$, then $\varphi(y)$ is represented by the seminorm β with $\beta(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \sup\{|\lambda_i| q^{-z_i+\lambda_i}+z_{i_0} : i \in J\}$. Hence $|\beta(v_i) - \gamma(v_i)| < \varepsilon$ for all $i = 1, \ldots, n$, so that $\varphi(y) \in U$. Therefore φ is indeed continuous.

4 Compactification of the whole building

Let us first recall the construction of the Bruhat-Tits building X corresponding to G. For every root $a = a_{ij}$ we denote by U_a the root group in G, i.e. the group of matrices
$U = (u_{kl})_{k,l}$ such that the diagonal elements u_{kk} are equal to one, and all the other entries apart from u_{ij} are zero. Then we have a homomorphism

$$\psi_a : U_a \rightarrow \mathbb{Z} \cup \{\infty\}$$

by mapping the matrix $U = (u_{kl})_{k,l}$ to $v(u_{ij})$. Put for all $l \in \mathbb{Z}$

$$U_{a,l} = \{u \in U_a : \psi_a(u) \geq l\}.$$

We also define $U_{a,\infty} = \{1\}$, and $U_{a,-\infty} = U_a$. For all $x \in A$ let now U_x be the group generated by $U_{a,-a(x)} = \{u \in U_a : \psi_a(u) \geq -a(x)\}$ for all $a \in \Phi$. Besides, put $N_x = \{n \in N : \nu(n)x = x\}$, and

$$P_x = U_xN_x = N_xU_x.$$

Then the building $X = X(\text{PGL}(V))$ is given as

$$X = G \times A/\sim,$$

where the equivalence relation \sim is defined as follows:

$$(g, x) \sim (h, y), \quad \text{iff there exists an element } n \in N \text{ such that } \nu(n)x = y \text{ and } g^{-1}hn \in P_x.$$

There is a continuous action of G on X via left multiplication on the first factor, which extends the N-action on A. For all $x \in A$ the group P_x is in fact the stabilizer of x.

Now we define for all non-empty subsets Σ of \mathbb{A} and all roots $a \in \Phi$

$$f_{\Sigma}(a) = \inf\{t : \Sigma \subseteq \{z \in A : a(z) \geq -t\}\}$$

$$= -\sup\{t : \Sigma \subseteq \{z \in \Lambda : a(z) \geq t\}\}$$

Here we put $\inf\emptyset = \sup\mathbb{R} = \infty$ and $\inf\mathbb{R} = \sup\emptyset = -\infty$. Obviously, $f_x(a) = -a(x)$, if x is contained in A.

We define a subgroup

$$U_{a,\Sigma} = U_{a,f_{\Sigma}(a)} = \{u \in U_a : \psi_a(u) \geq f_{\Sigma}(a)\}$$

of U_a, where $U_{a,\infty} = 1$ and $U_{a,-\infty} = U_a$. By U_Σ we denote the subgroup of G generated by all the $U_{a,\Sigma}$ for roots $a \in \Phi$.

Recall from the previous section that the isomorphism $\alpha : \text{PGL}(V^*) \rightarrow \text{PGL}(V)$ induces a homeomorphism $\beta : \overline{\Lambda} \rightarrow \overline{\Lambda}$. Besides, α induces a bijection between the root systems $\alpha^* : \Phi = \Phi(T) \rightarrow \Phi(T')$. Let us define as in [We], section 4, for all non-empty subsets Ω of $\overline{\Lambda}$ and all roots $a \in \Phi(T')$ the subgroup $U_{a,\Omega}$ of the group $\text{PGL}(V^*)$ as $\{u \in U_a : \psi_a(u) \geq f_{\Omega}(a)\}$ for $f_{\Omega}(a) = \inf\{t : \Omega \subseteq \{z \in \Lambda' : a(z) \geq -t\}\}$. Besides,
let U_Ω be the subgroup of $PGL(V^*)$ generated by all $U_{a,\Omega}$, and put $P_\Omega = N_\Omega U_\Omega$. Then $f_\Omega(\alpha^*(a)) = f_\beta(\Omega)(a)$, and hence $\alpha(U_{\alpha^*(a),\Omega}) = U_{a,\beta(\Omega)}$ for all roots $a \in \Phi$, which implies

$$\alpha(U_\Omega) = U_{\beta(\Omega)}.$$

Besides, we define for all non-empty $\Sigma \subseteq \overline{A}$ the group $N_\Sigma = \{ n \in N : \nu(n)x = x \text{ for all } x \in \Sigma \}$, and

$$P_\Sigma = U_\Sigma N_\Sigma = N_\Sigma U_\Sigma.$$

Since N_Σ normalizes U_Σ, which can be shown as in $[\text{We}], 4.4$, this set is indeed a group. Besides, we have

$$\alpha(P_\Omega) = P_{\beta(\Omega)}.$$

Now denote by $Z \subset T$ the kernel of the map $\nu : T \to A$. We fix the point $0 \in A$. The group $U_0^\wedge = U_0Z$ is compact and open in G, see $[\text{La}], 12.12$. We define the compactification \overline{X} of the building X as

$$\overline{X} = U_0^\wedge \times \overline{A} / \sim,$$

where the equivalence relation \sim is defined as follows:

$$(g, x) \sim (h, y), \text{ iff there exists an element } n \in N \text{ such that } \nu(n)x = y \text{ and } g^{-1}hn \in P_x.$$

Since $[\text{We}], 4.4$ implies that $nP_xn^{-1} = P_{\nu(n)x}$ for all $n \in N$ and $x \in \overline{A}$, it is easy to check that \sim is indeed an equivalence relation. We equip \overline{X} with the quotient topology. Hence X is open and dense in \overline{X}. In $[\text{We}],$ section 4, we gave a similar definition of a compactification \overline{X}' of the building X' corresponding to the group $PGL(V^*)$, using the groups P_x for $x \in \overline{A}$ recalled above, and the group $(U_0^\wedge)' = U_0Z'$ for $Z' = \ker(\nu' : T' \to \Lambda')$ and $0 \in \Lambda'$. Since $\alpha(P_x) = P_{\beta(x)}$, the homeomorphism

$$(\alpha, \beta) : (U_0^\wedge)' \times \overline{\Lambda'} \longrightarrow U_0^\wedge \times \overline{A}$$

induces a homeomorphism

$$\overline{X}' \longrightarrow \overline{X}.$$

Therefore we can use the results of $[\text{We}]$ to deduce

Theorem 4.1 \overline{X} is a compact and contractible topological space, containing the building X as an open, dense subset.
Claim: Assume for the moment that we have proven the following claim:

Since U converges in \mathbb{A} to some subsequence of it) converges to μ in \mathbb{A}. Hence it suffices to show that every $g \in G$ acts continuously on \mathbb{A}. Let us denote the quotient map $\pi : \mathbb{A} \to \mathbb{A}$, defined by $\mu_g(u,x) = \pi(v, \nu(n)x)$, if $gu = vnh$ is a decomposition according to $G = U_0^\wedge NP_x$, is continuous.

Assume that u_k is a sequence in U_0^\wedge converging to $u \in U_0^\wedge$, and that x_k is a sequence in \mathbb{A} converging to $x \in \mathbb{A}$. Then we have to show that $\mu_g(u_k, x_k)$ (or at least a subsequence of it) converges to $\mu_g(u, x)$. Write $gu_k = v_k \gamma_k$ for $v_k \in U_0^\wedge$ and $\gamma_k \in NP_x$.

Since U_0^\wedge is compact, we can pass to a subsequence of the (u_k, x_k) and assume that v_k converges in U_0^\wedge to some element $v \in U_0^\wedge$. Then the sequence γ_k converges in G.

Assume for the moment that we have proven the following claim:

Claim: If x_k is a sequence in \mathbb{A} converging to $x \in \mathbb{A}$, and γ_k is a sequence in NP_x, converging to some $\gamma \in G$, then (after possibly passing to a subsequence of x_k) we can
write $\gamma_k = n_k h_k$ with $n_k \in N$ and $h_k \in P_{x_k}$ such that n_k converges to some $n \in N$, and h_k converges to some $h \in P_x$. In particular, γ lies in NP_x.

Believing this result for a moment we can write $\gamma_k = n_k h_k$ with $n_k \to n \in N$ and $h_k \to h \in P_x$. As $g u_k = v_k n_k h_k \in U_0^\wedge NP_{x_k}$ converges to $gu = vh \in U_0^\wedge NP_x$, the continuity of the N-action on \bar{A} implies that $\mu_y(u_k, x_k) = \pi(v_k, \nu(n) x_k)$ converges to $\pi(v, \nu(n) x) = \mu_y(u, x)$.

Hence it remains to prove the claim. As a first step, we will prove it under the condition that the sequence x_k is contained in A. The limit point x lies in some component A_I for $I \subseteq n$. We fix an index $i_0 \in I$, and write $x_k = \sum_i x_{k,i} \eta_i$ with $x_{k,i_0} = 0$, and $x = \sum_{i \in I} x_i \eta_i$ with $x_{i_0} = 0$. The convergence $x_k \to x$ translates into

$$
x_{k,i} \to x_i, \quad \text{if } i \in I \quad \text{and} \quad x_{k,i} \to \infty, \quad \text{if } i \notin I.
$$

By the pigeon-hole principle there must be one ordering $i_1 \prec i_2 \prec \ldots \prec i_r$ of the set $n \setminus I = \{i_1, \ldots, i_r\}$ such that infinitely many members of the sequence x_k satisfy

$$
x_{k,i_1} \geq x_{k,i_2} \geq \ldots \geq x_{k,i_r}.
$$

We replace x_k by the subsequence of all x_k satisfying these inequalities. Now we choose any ordering \prec of the set I and define a linear ordering \prec on the whole of n by combining the orderings on I and $n \setminus I$ subject to the condition $i \prec j$, if $i \notin I$ and $j \in I$. Then $\Phi^+ = \{a_{ij} : i \prec j\}$ is the set of positive roots with respect to a suitable chamber corresponding to Φ (cf. [Bou], chapter V and VI).

If a_{ij} is contained in the set Φ^- of negative roots, i.e. we have $j \prec i$, then

$$
f_{x_k}(a_{ij}) = -a_{ij}(x_k) = x_{k,j} - x_{k,i} \begin{cases} \geq 0, & \text{if } i, j \notin I \\ \to \infty, & \text{if } i \in I, j \notin I \\ \to x_j - x_i, & \text{if } i, j \in I.
\end{cases}
$$

Hence there is a real constant C such that $f_{x_k}(a) \geq C$ for all x_k and all $a \in \Phi^-$.

Now let us denote by U_{Φ^+}, respectively U_{Φ^-} the corresponding subgroup of G (see [Bo] 21.9), and by U_{Φ^+}, respectively U_{Φ^-}, their K-rational points. For all $y \in A$ we put

$$
U^+_y = U_{\Phi^+} \cap U_y \quad \text{and} \quad U^-_y = U_{\Phi^-} \cap U_y.
$$

It follows from [We], Theorem 4.7, that the multiplication map induces a bijection $\prod_{a \in \Phi^\pm} U_{a,y} \to U^\pm_y$, where the product on the left hand side may be taken in arbitrary order. Hence the fact that for all $a \in \Phi^-$ the numbers $f_{x_k}(a)$ are bounded from below implies that all $U^-_{x_k}$ are in fact contained in a compact subset of $U^-_{\Phi^-}$.
It follows from [We], Corollary 4.8, that the group P_y can be written as

$$P_y = U_y^- U_y^+ N_y = N_y U_y^+ U_y^-.$$

Therefore the element $\gamma_k \in NP_{x_k}$ has a product decomposition as $\gamma_k = n_k u_k^+ u_k^-$ with $n_k \in N$, $u_k^+ \in U_{x_k}^+$, and $u_k^- \in U_{x_k}^-$. Since all u_k^- are contained in a compact subset of U_{Φ^-}, we can pass to a subsequence and assume that u_k^- converges to some element $u^- \in U_{\Phi^-}$. By [We], Lemma 4.3 and Theorem 4.7, we find that u^- lies in U_x^-. Besides, after passing to a suitable subsequence of γ_k, all $n_k \in N$ lie in the same coset modulo T, i.e. $n_k = mt_k$ for some $m \in N$. Then $t_k u_k^+$ is a converging sequence in the Borel group TU_{Φ^+}. Hence t_k converges to some $t \in T$, and that u_k^+ converges to some $u^+ \in U_{\Phi^+}$. Again we deduce from [We], 4.3 and 4.7, that u^+ lies in fact in U_x^+. Hence $\gamma_k = mt_k u_k^+ u_k^- = n_k h_k$ for $n_k = mt_k \in N$ and $h_k = u_k^+ u_k^- \in P_{x_k}$, and we have shown that n_k converges to $mt \in N$ and that h_k converges to $u^+ u^- \in P_x$. Therefore our claim holds if the x_k are contained in A.

In the general case we denote again by A_I the piece of \overline{A} containing x. After passing to a subsequence of x_k we can assume that all x_k lie in the same piece A_J. Then I must be contained in J. Besides, after passing to a subsequence of γ_k we find some $m_0 \in N$ such that $m_0 \gamma_k$ is contained in TP_{x_k} for all k.

Now recall the commutative diagram

$$\begin{array}{ccc}
PGL(V^*)^{(V^*)_J} & \overset{\alpha}{\longrightarrow} & PGL(V)^{V_{\overline{\Delta}}^J} \\
\rho_J \downarrow & & \sigma_J \downarrow \\
PGL((V^*)_J) & \overset{\alpha_J}{\longrightarrow} & PGL(V/V_{\overline{\Delta}}^J)
\end{array}$$

from section 3. From the proof of [We], Theorem 5.7, we know that for all $y' \in A'_J$ the map ρ_J induces a surjection $\rho_J : P_{y'} \to P_{y_J'}$, where $P_{y_J'}$ is defined in the same way as P_y, replacing $PGL(V^*)$ by $PGL((V^*)_J)$ and the appartment A' by A'_J. Besides, $P_{y'}$ is the full preimage of $P_{y_J'}$ under ρ_J. We know that for $y = \beta(y')$ the equality $\alpha(P_{y'}) = P_y$ holds, and it is easily checked that also $\alpha_J(P_{y_J'}) = \overline{\mathcal{P}}_{y_J'}$, where for every point $y \in A_J$ the group $\overline{\mathcal{P}}_{y_J'}$ is the subgroup of $PGL(V/V_{\overline{\Delta}}^J)$ defined in the same way as P_y, replacing the group $PGL(V)$ by $PGL(V/V_{\overline{\Delta}}^J)$, and the appartment A by A_J. Hence it follows that σ_J induces a surjection $\sigma_J : P_y \to \overline{\mathcal{P}}_{y_J}$, and that P_y is the full preimage of $\overline{\mathcal{P}}_{y_J}$.

Since $m_0 \gamma_k$ lies in $PGL(V)^{V_{\overline{\Delta}}^J}$, we can apply σ_J to this sequence and get a converging sequence in $PGL(V/V_{\overline{\Delta}}^J)$. Since x_k is a sequence in A_J, we can apply the case of our claim already proven, this time working in the building corresponding to $PGL(V/V_{\overline{\Delta}}^J)$.

It follows that $\sigma_J(m_0 \gamma_k)$ can be written as $\sigma_J(m_0 \gamma_k) = \tilde{m}_k \tilde{h}_k$ with $\tilde{m}_k \in N(\overline{T}_J)$ converging to some \tilde{m} in $N(\overline{T}_J)$ and $\tilde{h}_k \in \overline{T}_{x_J}$, converging to some \tilde{h} in \overline{T}_x.

12
After passing to a subsequence, we find elements m_k in N projecting to \tilde{m}_k under σ_J such that m_k converges to some $m \in N$ with $\sigma_J(m) = \tilde{m}$. Then σ_J maps $m_k^{-1}m_0\gamma_k$ to the element $\tilde{h}_k \in \mathcal{P}_x$. Hence $m_k^{-1}m_0\gamma_k$ lies in P_{x_k}. Besides, $m_k^{-1}m_0\gamma_k$ converges to $m^{-1}m_0\gamma$, and this projects via σ_J to \tilde{h}. Now \tilde{h} lies in \mathcal{P}_x for the limit point $x \in A_I$, and it is easily checked that $\sigma_J^{-1}(\mathcal{P}_x)$ is contained in $\sigma_I^{-1}(\mathcal{P}_x)$, which is equal to P_x. Hence $m^{-1}m_0\gamma \in P_x$. Therefore we can put $n_k = m_k^{-1}m_k$ and $h_k = m_k^{-1}m_0\gamma_k$ to obtain the desired decomposition of γ_k. The sequence n_k converges to $n = m_0m^{-1}$ in N, and the sequence h_k converges to $m^{-1}m_0\gamma$ in P_x.

This finishes the proof of the theorem.

5 \mathcal{X} as the space of seminorms on V

We want to extend the homeomorphism $\varphi : \mathcal{A} \rightarrow \mathcal{S}_c$, where \mathcal{S}_c is the space of equivalence classes of canonical seminorms with respect to v_1, \ldots, v_n, to the whole compactified building \mathcal{X}. Let \mathcal{S}' denote the set of all seminorms on V, and denote by \mathcal{S} the quotient of \mathcal{S}' with respect to the equivalence relation on seminorms. On \mathcal{S}' we have the topology of pointwise convergence, i.e. the coarsest topology such that for all $v \in V$ the map $\gamma \mapsto \gamma(v)$ is continuous. The quotient space \mathcal{S} is equipped with the quotient topology. Both \mathcal{S}' and \mathcal{S} are Hausdorff. Note that \mathcal{S}' carries a natural $GL(V)$-action given by $\gamma \mapsto g(\gamma) = \gamma \circ g^{-1}$. This induces a $G = PGL(V)$-action on the quotient space \mathcal{S}.

Theorem 5.1 The map $G \times \mathcal{A} \rightarrow \mathcal{S}$, which associates to $(g, x) \in G \times \mathcal{A}$ the point $g(\varphi(x)) \in \mathcal{S}$, induces a G-equivariant homeomorphism

$$\varphi : \mathcal{X} \rightarrow \mathcal{S}.$$

Proof: In order to show that φ is well-defined we have to check that for all $x \in \mathcal{A}$ the group P_x stabilizes the seminorm class $\varphi(x)$. We have $P_x = U_xN_x$. Since φ is N-equivariant on \mathcal{A}, the group N_x stabilizes $\varphi(x)$. It remains to show that for all $a \in \Phi$ the group $U_{a,x}$ fixes $\varphi(x)$. Let A_I be the piece of \mathcal{A} containing x. Let us first assume that $i \notin I$. Every $u \in U_{a_{ij}}$ leaves the vectors v_l for $l \neq j$ invariant and maps v_j to $v_j + \omega v_i$ for some $\omega \in K$. If γ is a seminorm representing $\varphi(x)$, then $\gamma \circ u^{-1}(v_j) = \gamma(v_j - \omega v_i) = \gamma(v_j)$, as $\gamma(v_i) = 0$. Hence every $u \in U_{a_{ij}}$ stabilizes γ. If $i \in I$ and $j \notin I$, then $U_{a_{ij},x} = 1$, and there is nothing to prove. It remains to treat the case that both i and j are contained in I. If $x = \sum_{i \in I} x_i \mathcal{P}_x$, then every $u \in U_{a_{ij},x}$ maps v_j to $v_j + \omega v_i$ for some $\omega \in K$ satisfying $\nu(\omega) > \nu((a_{ij}) = x_j - x_i$. For the usual seminorm γ representing $\varphi(x)$ we can calculate

$$\gamma(u^{-1}(v_j)) = \gamma(v_j - \omega v_i) = \sup \{q^{-x_j}, |\omega|q^{-x_j}\} = q^{-x_j} = \gamma(v_j).$$
As u leaves the other v_i invariant, the group $U_{\alpha_{ij},x}$ fixes $\varphi(x)$.

The map φ is obviously G-equivariant. Since every seminorm on V is canonical with respect to a suitable basis, φ is surjective.

Let us now show that φ is injective. If $g(\varphi(x))$ coincides with $h(\varphi(y))$, it is easy to see that there exists some $n \in N$ satisfying $n(\varphi(x)) = \varphi(y)$. Since φ is N-equivariant and injective on A, this implies $\nu(n)x = y$. Now $g^{-1}hn$ is contained in the stabilizer of $\varphi(x)$. Hence it remains to show that this stabilizer is equal to P_x. If x is contained in A, we have the Bruhat decomposition $G = P_xNP_x$. Hence every g stabilizing $\varphi(x)$ can be written as $g = pmq$ with p and q in P_x. We already know that P_x is contained in the stabilizer of $\varphi(x)$, hence it follows that n stabilizes $\varphi(x)$. Since $\varphi : A \to S_c$ is N-equivariant and injective, this implies that n, and hence also g, is contained in P_x.

If x is a boundary point, i.e. $x \in A_I$ for some $I \subset n_\circ$, then $\varphi(x)$ induces an equivalence class of norms on the quotient space $V/V_{n_\circ I}$. Every element g stabilizing $\varphi(x)$ leaves $V_{n_\circ I}$ invariant, so that we can apply $\sigma_I : PGL(V)^{V_{n_\circ I}} \to PGL(V/V_{n_\circ I})$ to g. By the first case, applied to the apartment A_I in the building associated to $PGL(V/V_{n_\circ I})$, we find that $\sigma_I(g)$ lies in the group \overline{P}_x, i.e. the subgroup of $PGL(V/V_{n_\circ I})$ defined in the same way as P_x, replacing $PGL(V)$ by $PGL(V/V_{n_\circ I})$ and A by A_I. We have seen in the proof of 4.2 that $\sigma_I^{-1}(\overline{P}_x) = P_x$, so that g lies indeed in P_x.

Let us now show that φ is continuous. Since φ is induced by the composition

$$G \times \overline{A} \xrightarrow{\text{id} \times \varphi} G \times S_c \to S,$$

we have to show that the second map is continuous. Hence we have to check that the action $GL(V) \times S'_c \to S'$ is continuous, which amounts to checking that for all $v \in V$ the map $\psi_v : GL(V) \times S'_c \to \mathbb{R}$, given by $(g, \gamma) \mapsto \gamma(g^{-1}v)$ is continuous.

We claim that for all $v \in V$, $\gamma_0 \in S'_c$ and $\varepsilon > 0$ there exists an open neighbourhood W of v in V and an open neighbourhood Γ of γ_0 in S'_c such that for all $w \in W$ and all $\gamma \in \Gamma$ we have $|\gamma(w) - \gamma_0(w)| < \varepsilon$.

Let us believe the claim for a second. Then we find for $v \in V$ and γ_0 in S'_c and for every $\varepsilon > 0$ open neighbourhoods H of 1 in $GL(V)$ and Γ of γ_0 in S'_c such that for all $h \in H$ and all $\gamma \in \Gamma$ the estimate $|\gamma(h^{-1}v) - \gamma_0(h^{-1}v)| < \varepsilon$ holds. Besides, we can make H so small that all $h \in H$ satisfy $|\gamma_0(h^{-1}v) - \gamma_0(v)| < \varepsilon$. Hence

$$|\gamma(h^{-1}v) - \gamma_0(v)| \leq |\gamma(h^{-1}v) - \gamma_0(h^{-1}v)| + |\gamma_0(h^{-1}v) - \gamma_0(v)| < 2\varepsilon.$$

This shows that ψ_v is continuous in $(1, \gamma_0)$, hence everywhere.

It remains to show the claim. Let $v = \sum_{i=1}^n \mu_i v_i$. Let us first assume that $\gamma_0(v) \neq 0$. Choose some $0 < \delta < \min\{1, |\mu_i| : \mu_i \neq 0\}$ such that $\delta \gamma_0(v_i) \leq \gamma_0(v)$ for all $i = 1, \ldots, n$.

Then we put $W = \{w = \sum_i \lambda_i v_i : |\lambda_i - \mu_i| < \delta\}$. For all $w = \sum_i \lambda_i v_i \in W$ the
conditions on \(\delta \) imply that \(|\lambda_i| = |\mu_i| \) for all \(i \) such that \(\mu_i \neq 0 \). If on the other hand \(\mu_i = 0 \), then \(|\lambda_i| < \delta \), which implies \(|\lambda_i| \gamma_0(v_i) \leq \gamma_0(v) \). Hence for all \(w \in W \)

\[
\gamma_0(w) = \sup \{|\lambda_1| \gamma_0(v_1), \ldots, |\lambda_n| \gamma_0(v_n)\} = \gamma_0(v)
\]

and

\[
\gamma(w) = \sup \{|\lambda| \gamma(v) : \mu_i = 0\}.
\]

Let us denote by \(\Gamma \) the open neighbourhood of \(\gamma_0 \) in \(S_\epsilon' \) consisting of all \(\gamma \) satisfying \(|\gamma(v) - \gamma_0(v)| < \epsilon \) and \(|\gamma(v_i) - \gamma_0(v_i)| < \epsilon \) for \(i = 1, \ldots, n \).

If \(\gamma \in \Gamma \) satisfies \(\gamma(w) = |\lambda_i| \gamma(v_i)| \) for some \(i \) with \(\mu_i = 0 \), then

\[
\gamma(v) \leq |\lambda_i| \gamma(v_i) \leq |\lambda_i| (\gamma_0(v_i) + \epsilon) \leq \gamma_0(v) + \epsilon
\]

\[
< \gamma(v) + 2\epsilon,
\]

which implies

\[
|\gamma(w) - \gamma_0(w)| = |\lambda_i| \gamma(v_i) - \gamma_0(v)|
\]

\[
\leq |\lambda_i| |\gamma(v_i) - \gamma(v)| + |\gamma(v) - \gamma_0(v)|
\]

\[
< 3\epsilon.
\]

If \(\gamma(w) = \gamma(v) \), this estimate holds trivially, so that our claim follows.

Now we treat the case that \(\gamma_0(v) = 0 \), i.e. we have \(\gamma_0(v_i) = 0 \) for all \(i \) such that \(\mu_i \neq 0 \). Choose some \(0 < \delta < \min\{1, |\mu_i| : \mu_i \neq 0\} \), put \(W = \{w = \sum \lambda_i v_i : |\lambda_i - \mu_i| < \delta\} \), and let \(\Gamma \) be the open neighbourhood of \(\gamma_0 \) consisting of all \(\gamma \) satisfying \(|\gamma(v)| < \epsilon \) and \(|\gamma(v_i) - \gamma_0(v_i)| < \epsilon \) for all \(i = 1, \ldots, n \). As above, we have for all \(w \in W \)

\[
\gamma(w) = \sup \{|\lambda| \gamma(v) : \mu_i = 0\}.
\]

If \(\gamma \in \Gamma \) satisfies \(\gamma(w) = \gamma(v) \), then for all \(i \) such that \(\mu_i = 0 \) the estimate \(|\lambda_i| \gamma(v_i) \leq \gamma(v) < \epsilon \) holds. Since \(\gamma_0(w) = |\lambda_i| \gamma_0(v_i) \) for some \(i \) satisfying \(\mu_i = 0 \), this implies that

\[
|\gamma(w) - \gamma_0(w)| = |\gamma(v) - |\lambda| \gamma_0(v)|
\]

\[
\leq |\gamma(v) - |\lambda| \gamma(v_i)| + |\lambda| |\gamma(v_i) - \gamma_0(v_i)| < 2\epsilon.
\]

If \(\gamma \in \Gamma \) satisfies \(\gamma(w) = |\lambda_i| \gamma(v_i) \) for some \(i \) with \(\mu_i = 0 \), then we have for all \(j \) such that \(\mu_j = 0 \):

\[
|\lambda_j| \gamma_0(v_j) \leq |\lambda_j| \gamma(v_j) + \epsilon
\]

\[
\leq |\lambda_i| \gamma(v_i) + \epsilon \leq |\lambda_i| \gamma_0(v_i) + 2\epsilon.
\]
If $\gamma_0(w) = |\lambda_j|\gamma_0(v_j)$, we also have $|\lambda_i|\gamma_0(v_i) \leq |\lambda_j|\gamma_0(v_j)$, whence

$$|\gamma(w) - \gamma_0(w)| = ||\lambda_i|\gamma(v_i) - |\lambda_j|\gamma_0(v_j)|| \leq \varepsilon.$$

Hence the claim is proven.

Therefore φ is a continuous bijection from a compact space to a Hausdorff space, hence it is a homeomorphism.

6 The reduction map from Drinfeld’s symmetric domain

Let $\mathbb{P}(V) = \text{Proj} \text{Sym} V$ be the projective space corresponding to V, i.e. points in $\mathbb{P}(V)$ correspond to lines in the dual space of V. Drinfeld’s p-adic symmetric domain Ω is the complement in $\mathbb{P}(V)$ of the union of all K-rational hyperplanes. Ω carries the structure of a rigid analytic variety. There is a reduction map $r : \Omega \rightarrow X$ from Ω onto the building X, see [Dr], §6, which is defined as follows: Every \overline{K}-rational point x in Ω induces a line in the dual space of $(V \otimes \overline{K})$. For every element $z \neq 0$ on this line, the map $v \mapsto |z(v)|_{\overline{K}}$ defines a norm on V. Then $r(x)$ is the point in X associated to this norm via the bijection φ discussed in the previous section.

We want to extend this reduction map to a map from the whole projective space to our compactification \overline{X} of the building. In the following, we identify \overline{X} with the set of equivalence classes of seminorms on V without specifying the homeomorphism φ any longer.

Also we consider Berkovich spaces instead of rigid analytic varieties. Namely, let $\mathbb{P}(V)^{an}$ and Ω^{an} be the analytic spaces in the sense of [Be1] corresponding to the projective space and the p-adic symmetric domain. Then $\mathbb{P}(V)^{an}$ can be identified with the set of equivalence classes of multiplicative seminorms on the polynomial ring $\text{Sym} V$ extending the absolute value on K, which do not vanish identically on V. Here two such seminorms α and β are equivalent, iff there exists a constant $c > 0$ such that for all homogeneous polynomials f of degree d we have $\alpha(f) = c^d \beta(f)$, see [Be2].

In [Be2], Berkovich defines a continuous, $\text{PGL}(V)$-equivariant reduction map $r : \Omega^{an} \rightarrow X$, and a right-inverse $j : X \rightarrow \Omega^{an}$, which identifies X homeomorphically with a closed subset of Ω^{an}.

We can now generalize these results to the compactifications $\mathbb{P}(V)^{an}$ and \overline{X} by using almost verbatim the same constructions for r and j as in [Be2].

For every point in $\mathbb{P}(V)^{an}$ represented by the seminorm α on the polynomial ring $\text{Sym} V$, the restriction of α to V induces a seminorm on V, hence a point in \overline{X}. This
induces a $PGL(V)$-equivariant map

$$r: \mathbb{P}(V)^{an} \rightarrow \overline{X}.$$

On the other hand, let x be a point in \overline{X}, corresponding to the class of seminorms on V represented by γ. Then γ is canonical with respect to a basis w_1, \ldots, w_n of V. If $f = \sum_{\nu=(\nu_1, \ldots, \nu_n)} a_\nu w_1^{\nu_1} \ldots w_n^{\nu_n}$ is a polynomial in $\text{Sym} V$, we put

$$\alpha(f) = \sup \left\{ |a_\nu| \gamma(w_1)^{\nu_1} \ldots \gamma(w_n)^{\nu_n} \right\}.$$

Then α is a multiplicative seminorm on $\text{Sym} V$ extending the absolute value of K, hence it induces a point in $\mathbb{P}(V)^{an}$.

This defines a $PGL(V)$-equivariant map

$$j: \overline{X} \rightarrow \mathbb{P}(V)^{an}.$$

Proposition 6.1 The maps $r: \mathbb{P}(V)^{an} \rightarrow \overline{X}$ and $j: \overline{X} \rightarrow \mathbb{P}(V)^{an}$ are continuous and satisfy $r \circ j = \text{id}_{\overline{X}}$. Besides, j is a homeomorphism from \overline{X} to its image $j(\overline{X})$, which is a closed subset of $\mathbb{P}(V)^{an}$.

Proof: The continuity of r follows immediately from the definitions. Since j is obviously continuous on \overline{A} and $PGL(V)$-equivariant, it is continuous on the whole of \overline{X}. By construction, we have $r \circ j = \text{id}_{\overline{X}}$, so that j is a homeomorphism onto its image, which is a closed subset of $\mathbb{P}(V)^{an}$, since \overline{X} is compact and $\mathbb{P}(V)^{an}$ is Hausdorff.

References

[Be1] V. G. Berkovich: Spectral theory and analytic geometry over non-archimedean fields. Math Surveys Monographs 33. American Mathematical Society 1990.

[Be2] V. G. Berkovich: The automorphism group of the Drinfeld upper half-plane. C.R. Acad. Sci. Paris 321, Série I (1995) 1127-1132.

[Bo] A. Borel: Linear Algebraic Groups. Second edition. Springer 1991.

[Bou] N. Bourbaki: Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Herrmann 1968.

[Br-Ti] F. Bruhat, J. Tits: Schémas en groupes et immeubles des groupes classiques sur un corps local. Bull. Soc. math. France 112 (1984) 259-301.

[Dr] V. G. Drinfeld: Elliptic modules. Math USSR Sbornik 23 (1974) 561-592.
[Go-I] O. Goldman, N. Iwahori: *The space of p-adic norms*. Acta math. **109** (1963) 137-177.

[La] E. Landvogt: A compactification of the Bruhat-Tits building. Lecture Notes in Mathematics **1619**. Springer 1996.

[We] A. Werner: *Compactification of the Bruhat-Tits building of PGL by lattices of smaller rank*. Documenta Math. **6** (2001) 315-342.