Constraints on dark radiation from cosmological probes

Graziano Rossi,1 Christophe Yèche,2 Nathalie Palanque-Delabrouille,2 and Julien Lesgourgues3,4

1Department of Astronomy and Space Science, Sejong University, Seoul, 143-747, Korea
2CEA, Centre de Saclay, Irfa/SPP, F-91191 Gif-sur-Yvette, France
3CERN, Theory Division, CH-1211 Geneva 23, Switzerland
4LAPTh, Univ. de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941, France

(Dated: December 23, 2014)

We present joint constraints on the number of effective neutrino species \(N_{\text{eff}}\) and the sum of neutrino masses \(\sum m_\nu\), based on a technique which exploits the full information contained in the one-dimensional Lyman-\(\alpha\) forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain \(N_{\text{eff}} = 2.91^{+0.21}_{-0.22}\) (95% CL) and \(\sum m_\nu < 0.15\) eV (95% CL) when we combine BOSS Lyman-\(\alpha\) forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and \(N_{\text{eff}} = 2.88 \pm 0.20\) (95% CL) and \(\sum m_\nu < 0.14\) eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide evidence for the Cosmic Neutrino Background from \(N_{\text{eff}} \approx 3\) (\(N_{\text{eff}} = 0\) is rejected at more than 14 \(\sigma\)), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., \(N_{\text{eff}} = 4\)) – or more generally any decoupled relativistic relic with \(\Delta N_{\text{eff}} \approx 1\) – at a significance of over 5 \(\sigma\), the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance \(\Lambda\)CDM model.

PACS numbers: CERN-PH-TH-2014-267

The Standard Model of particle physics predicts that there are exactly three active neutrinos, one for each of the three charged leptons, and that neutrinos are all left-handed and with zero mass \([1]\). However, from experimental results on solar and atmospheric neutrino oscillations we now know that neutrinos are massive, with at least two species being non-relativistic today \([2, 3]\). The distinctness of the three flavors, and the difference between neutrinos and antineutrinos depend critically on the condition of being massless. Therefore, the discovery that neutrinos have non-zero mass calls also into question the number of neutrino species. All these issues have triggered an intense research activity in neutrino science over the last few years, with a remarkable interplay and synergy between cosmology and particle physics. The measurement of the absolute neutrino mass scale remains the greatest challenge for both disciplines. However, while particle physics experiments are capable of determining two of the squared mass differences, along with the number of active neutrino families, their mixing angles, and one of the complex phases \([4]\), a combination of cosmological state-of-the-art datasets allows one to place more competitive upper limits on the total neutrino mass (summed over the three families) as opposed to beta-decay experiments – leading to the strongest upper bound to date \([5]\). Knowledge of the total mass and type of hierarchy will complete the understanding of the neutrino sector, and shed light into several critical issues in particle physics – such as leptogenesis or baryogenesis.

Cosmological measurements are also capable of constraining the properties of relic neutrinos, and possibly of other light relic particles. In particular, the density of radiation \(\rho_R\) in the Universe (which includes photons and additional species) is usually parameterized by the effective number of neutrino species \(N_{\text{eff}}\), and the neutrino contribution to the total radiation content is expressed in terms of \(N_{\text{eff}}\) via the relation

\[\rho_R = \rho_\gamma + \rho_\nu = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_\gamma, \]

where \(\rho_\gamma\) and \(\rho_\nu\) are the energy density of photons and neutrinos, respectively \([6]\). This relation is valid when neutrino decoupling is complete, and holds as long as all neutrinos are relativistic. In the Standard Model, \(N_{\text{eff}} = 3.046\) due to non instantaneous decoupling corrections, and therefore any departure from this value would indicate non-standard neutrino features or an extra contribution from other relativistic relics. Recently, there has been some mild preference for \(N_{\text{eff}} > 3.046\) from cosmic microwave background (CMB) anisotropy measurements \([7, 8]\); an excess from the expected standard number could be produced by sterile neutrinos, a neutrino/antineutrino asymmetry or any other light relics in the Universe. Constraints from Planck (2013) data in scenarios where the extra relativistic degrees of freedom are either massless or massive tend to disfavor \(N_{\text{eff}} = 4\), but only at the \(\sim 2\ \sigma\) level (except when data on direct \(H_0\) measurements are included), leaving still room for dark radiation \([5]\).

In this Letter, we present a method to obtain joint constraints on \(N_{\text{eff}}\) and the total neutrino mass \(\sum m_\nu\) using the information contained in the one-dimensional Lyman-\(\alpha\) (Ly\(\alpha\)) forest flux power spectrum, complemented by other cosmological probes. In particular, we show how this technique is able to rule out the presence of an additional sterile neutrino thermalized with three active neutrinos (i.e., \(N_{\text{eff}} = 4\)) – or more generally any dark radiation – at a significance of over 5 \(\sigma\), and
provide strong evidence (greater than 14 σ) for the Cosmic Neutrino Background (CNB) from $N_{\text{eff}} \sim 3$. Hence, our results have important implications in cosmology and particle physics, especially suggesting that there is no indication for extra relativistic degrees of freedom, and that the minimal ΛCDM model does not need to be extended further to accommodate non-standard dark radiation.

Datasets – The joint constraints on N_{eff} and $\sum m_\nu$ presented in this work are obtained from a combination of large-scale structure (LSS) and CMB measurements. As LSS probes, we used the one-dimensional Lyα forest flux power spectrum derived from the Data Release 9 (DR9) of the Baryon Acoustic Spectroscopic Survey (BOSS) quasar data [10], combined with the measurement of the Baryon Acoustic Oscillation (BAO) scale in the clustering of galaxies from the BOSS Data Release 11 (DR11) [11]. BOSS [12] is the cosmological counterpart of the third generation of the Sloan Digital Sky Survey (SDSS), the leading ground-based astronomical survey designed to explore the large-scale distribution of galaxies and quasars by using a dedicated 2.5m telescope at Apache Point Observatory [13]. Specifically for the Lyα forest, our data consist of 13 821 quasar spectra, carefully selected according to their high quality, signal-to-noise ratio and spectral resolution, to bring systematic uncertainties at the same level of the statistical uncertainties. The Lyα forest flux power spectrum is measured in twelve redshift bins, from $\langle z \rangle = 2.2$ to 4.4, in intervals of $\Delta z = 0.2$, and spans thirty-five wave numbers in the k range [0.001 – 0.02], with k expressed in (km/s)$^{-1}$. Correlations between different redshift bins were neglected, and the Lyα forest region was divided into up to three distinct z-sectors to minimize their impact. Noise, spectrograph resolution, metal contaminations and other systematic uncertainties were carefully subtracted out or accounted for in the modeling. As CMB probes, we adopted a combination of datasets collectively termed ‘CMB’, which includes Planck (2013) temperature data from the March 2013 public release (both high-ℓ and low-ℓ) [14], the high-ℓ public likelihoods from the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16] experiments, and some low-ℓ WMAP polarization data [17].

Methodology – To derive joint constraints on N_{eff} and $\sum m_\nu$, we adopted a procedure similar to the one applied in [3], properly extended by using a simple analytic approximation to include non-standard dark radiation models in the Lyα likelihood. The main goal is to construct a multidimensional likelihood L, which is the product of individual likelihoods defining the various cosmological probes considered (LSS and CMB), i.e., $L = L^{\text{LSS}}L^{\text{CMB}} = L^{\text{Lyα BAO}} L^{\text{Planck}} L^{\text{ACT}} L^{\text{SPT}} L^{\text{WMAP}}$. The global L is then interpreted in the context of the frequentist or classical confidence level method [18], and its analysis allows one to obtain joint or individual parameter constraints. We approximated L^{CMB} by a multivariate Gaussian, and assumed the best-fit and covariance matrix directly from the Planck results [14] in the case of a ΛCDM model extended to massive neutrinos and an arbitrary number of massless extra degrees of freedom, while we used the correlation matrix with a posterior based on BAOs from the official Planck (2013) chains to account for L^{BAO}. We then constructed the Lyα forest likelihood with an elaborated procedure briefly described as follows – but see [3, 19] for all the numerical and data-oriented aspects. In more detail, for a model M defined by three categories of parameters – cosmological (α), astrophysical (β), nuisance (γ) – globally indicated with the multidimensional vector $\Theta = (\alpha, \beta, \gamma)$, and for a $N_k \times N_z$ dataset X of power spectra $P(k, z_j)$ measured in N_k bins in k and N_z bins in redshift with experimental Gaussian errors σ_{ij}, with $\sigma = \{\sigma_{ij}\}, i = 1, N_k$ and $j = 1, N_z$, the Lyα likelihood is written as:

$$L^{\text{Lyα}}(X, \sigma; \Theta) = \frac{\exp[-(\Delta^T C^{-1} \Delta)/2]}{(2\pi)^{N_k N_z} / \sqrt{|C|}} L^{\text{Lyα prior}}(\gamma)$$

where Δ is a $N_k \times N_z$ matrix with elements $\Delta(k_i, z_j) = P(k_i, z_j) - P^{\text{th}}(k_i, z_j), P^{\text{th}}(k_i, z_j)$ is the predicted theoretical value of the power spectrum for the bin k_i and redshift z_j given the parameters (α, β) and computed from simulations [10], C is the sum of the data and simulation covariance matrices, and $L^{\text{Lyα prior}}(\gamma)$ accounts for the nuisance parameters, a subset of the parameters Θ. Specifically, for the baseline model we considered five cosmological parameters α in the context of the ΛCDM paradigm assuming flatness, i.e. $\alpha = \{n_s, \sigma_8, \Omega_m, H_0, \sum m_\nu\}$, four astrophysical parameters β related to the state of the intergalactic medium (IGM) – two for the effective optical depth of the gas assuming a power law evolution, and two related to the heating rate of the IGM – and 12 nuisance parameters γ to account for imperfections in the measurements and in the modeling, plus two additional parameters for the correlated absorption of Lyα and either Si-III or Si-II. The global theoretical Lyα power spectrum $P^{\text{th}}(k_i, z_j)$, as a function of α and β, is obtained via a second-order Taylor expansion around a central model chosen to be in agreement with Planck (2013) cosmological results. We devised a novel suite of hydrodynamical cosmological simulations which include massive neutrinos [19] to map the parameter space around the central reference model on a regularly-spaced grid, and used those simulations to compute first and second-order derivatives in the Taylor expansion of the Lyα forest flux. For each individual simulation, 100 000 skewers were drawn with random origin and direction, and the one-dimensional power spectrum computed at different redshifts. The final theoretical power spectrum is an average obtained from all the individual skewers, for any given model.

To account for non-standard dark radiation scenarios in $L^{\text{Lyα}}$, we should extend the parameter space Θ to include models with sterile neutrinos or more generic
It is easy to prove that the previous condition is realized if \mathcal{M} and \mathcal{M} have the same values of z_{eq}, Ω_m, ω_b/ω_c and f_ν, with Ω_m the matter density, $\omega = \Omega h^2$, and $f_\nu = \omega_\nu/\omega_m$ -- where the labels m, b, c, ν stand for total matter, baryons, cold dark matter, and neutrinos -- respectively. This is true up to small differences in the scale of BAO peaks, but the fact that the location of BAOs slightly differs in the two cases is unimportant for the Lyα likelihood. In particular, the condition on f_ν guarantees that both the small-scale suppression in the matter power spectrum and the small-scale linear growth factor are identical in \mathcal{M} and $\hat{\mathcal{M}}$. Based on these requirements, the following two models will have nearly the same total linear matter power spectrum:

$$\mathcal{M} = \{\omega_b, \omega_c, H_0, N_{\text{eff}}, f_\nu\}$$

$$\hat{\mathcal{M}} = \{\hat{\omega}_b, \hat{\omega}_c, \hat{H}_0, \hat{N}_{\text{eff}}, \hat{f}_\nu\}$$

$$= \{\eta^2 \omega_b, \eta^2 \omega_c, \eta H_0, N_{\text{eff}} + \Delta N_{\text{eff}}, \eta^2 f_\nu\}$$

with

$$\eta^2 = [1 + 0.2271(N_{\text{eff}} + \Delta N_{\text{eff}})]/[1 + 0.2271 N_{\text{eff}}]$$

and $\hat{M}_\nu = \hat{M}_\nu^{\nu} + \hat{M}_\nu^s = \eta^2 M_\nu$ -- where in the last passage we distinguish between the active and sterile contributions to the total mass (if the sterile neutrino has non-zero mass), and $M_\nu = \sum m_\nu$. Figure 1 shows that the previous approximation is accurate within 1% in the regime of interest (i.e., BOSS Lyα forest region, shaded cyan area in the left panel), which is comparable with

FIG. 1: Testing the accuracy of our analytic approximation to include non-standard dark radiation models. [Left] Linear matter power spectra for a series of models \mathcal{M} having $\Delta N_{\text{eff}} = 1$ at $z = 0$, normalized by the baseline model \mathcal{M} with $N_{\text{eff}} = 3.046$ and three active neutrinos of degenerate mass, when $M_\nu = 0.3$ eV. See the main text for more details. [Right] Corresponding CMB temperature power spectra for the same models. Both panels show small differences in the scale of BAO and CMB peaks, but they do not affect the Lyα likelihood.
our expected uncertainties from hydrodynamical simulations. Specifically, the left panel shows linear power spectra computed with CAMB \cite{21} for different dark radiation models \(M \) having \(\Delta N_{\text{eff}} = 1 \) at \(z = 0 \), normalized by the baseline model \(\tilde{M} \) which has \(N_{\text{eff}} = 3.046 \) and assumes three active neutrinos of degenerate mass – when \(M_\nu = 0.3 \) eV. In particular, model A1 – characterized by a massless sterile neutrino thermalized with three active neutrinos of degenerate mass – is the main focus of this study, while in the other models the sterile neutrino is massive, thermalized, and shares the same mass as the three active species (B1), or has a different mass (C1); in the latter case, the mass fraction of the sterile neutrino is \((1 - \eta^{-2}) \) of the total neutrino mass of the baseline model. The right panel shows the CMB power spectra for the same models, which are significantly different – unlike the linear matter power spectra. Note that at higher redshift and up to the time of radiation-to-matter equality, the difference between the various linear power spectra is as small as at \(z = 0 \). Our goal is to use this analytic approximation only in the Lyman-\(\alpha \) likelihood; for the CMB and BAO scale likelihoods, we always assume the full exact models.

Results – The accuracy of our analytic approximation has also been tested in the nonlinear regime, by performing cosmological hydrodynamical simulations with non-standard \(N_{\text{eff}} \) values and verifying the robustness of our fitting procedure – along with the correct recovery of the nonlinear matter and Ly\(\alpha \) flux power spectra. For example, we run a simulation based on a model \(\tilde{M} \) with \(N_{\text{eff}} = 4 \) and \(M_\nu = 0.4 \) eV, where an additional massless sterile neutrino is assumed to be in thermal equilibrium with three degenerate active massive neutrinos; we also run the corresponding baseline model \(M \) having \(N_{\text{eff}} = 3 \) and \(M_\nu = M_\nu / \eta^2 = 0.35 \) eV – where the cosmological parameters are determined according to \cite{3} and \cite{3}. In particular, Figure 2 shows the ratios of synthetic Ly\(\alpha \) forest flux power spectra extracted at different redshifts from those two models: even in the nonlinear regime, we find that deviations in the power spectra of \(\tilde{M} \) and \(M \) are within 1% for all the \(z \)-intervals of interest.

Having fully validated our analytic approximation, we implemented the extension to dark radiation models in the procedure applied in \cite{2} and previously described. The global likelihood \(\mathcal{L} \) obtained with this method is finally interpreted in the context of the frequentist approach \cite{18}. This is done by minimizing the quantity \(\chi^2(X, \sigma(\Theta)) = -2 \ln(\mathcal{L}(X, \sigma(\Theta))) \) for data measurements \(X \) with experimental Gaussian errors \(\sigma \). In particular, first we compute the global minimum \(\chi^2_0 \), leaving all the \(N \) cosmological parameters free. We then set confidence levels (CL) on a chosen parameter \(\alpha_i \) by performing the minimization for a series of fixed values of
Table 1: Values of the main cosmological parameters obtained from a frequentist analysis of the likelihood \mathcal{L}, as explained in the main text, for the two combinations of datasets considered in this work – CMB+Lyα or CMB+Lyα+BAO.

Parameter	CMB+Lyα	CMB+Lyα+BAO
n_s	0.950 ± 0.008	0.949 ± 0.007
H_0 [km/s/Mpc]	67.0 ± 1.3	66.8 ± 1.3
$\sum m_{\nu}$ [eV]	< 0.15 (95%)	< 0.14 (95%)
σ_8	$0.831_{-0.013}^{+0.015}$	$0.834_{-0.020}^{+0.015}$
Ω_{m}	0.308 ± 0.015	0.311 ± 0.009
N_{eff}	$2.91_{-0.22}^{+0.21}$	2.88 ± 0.20

Joint constraints on the number of effective neutrino species and the total neutrino mass are also in general model-dependent. In this study, to derive our limits on N_{eff} and $\sum m_\nu$, we assumed that the three active neutrinos share a mass of $\sum m_{\nu}/3$, where $m_{\nu,3} < 0.6$ eV, and may coexist with massless extra species contributing to N_{eff} as ΔN_{eff}. Based on these assumptions, the main conclusions of our analysis are as follows: (1) the possibility of a sterile neutrino thermalized with active neutrinos – or more generally of any decoupled relativistic relic with $\Delta N_{\text{eff}} \simeq 1$ – is ruled out at a significance of over 5σ, the strongest bound to date; (2) as in [5], our results on $\sum m_\nu$ favor the normal hierarchy scenario for the masses of the active neutrino species, and represent the strongest upper bound to date on the total neutrino mass; (3) by rejecting $N_{\text{eff}} = 0$ at more than 14σ, our constraints provide the strongest evidence for the CNB from $N_{\text{eff}} \sim 3$. These results have several important implications in particle physics and cosmology. In particular, the effective number of neutrino-like relativistic degrees of freedom is found compatible with the canonical value of 3.046 at high-confidence, suggesting that the minimal ΛCDM model – along with its thermal history – is strongly favored over extensions with non-standard neutrino properties or with extra-light degrees of freedom, and the measured energy density is composed of standard model neutrinos. Hence, no new neutrino physics nor new particles are required, and the theoretical assumptions going into the standard cosmology theory are correct. In addition, along with [2], our bounds on $\sum m_\nu$ favor the normal hierarchy scenario, and suggest interesting complementarity with future particle physics direct measurements of the effective electron neutrino mass [3]. Finally, our conclusions on the CNB will nicely complement upcoming results from Planck, which is expected...
to detect the free-streaming nature of the species responsible for $N_{\text{eff}} \sim 3$ with high significance. We expect that our constraints on N_{eff} will be improved by a factor of 2 by including eBOSS measurements, while DESI should improve these constraints even further [22].

This work is supported by the faculty research fund of Sejong University in 2014, and by the National Research Foundation of Korea (NRF) through NRF-SGER 2014055950 funded by the Korea government (MOE). We acknowledge PRACE for awarding us access to resource Curie-thin nodes based in France at TGCC. N.P.-D., G.R. and Ch.Y. acknowledge support from grant ANR-11-JS04-011-01 of Agence Nationale de la Recherche.

* Electronic address: graziano@sejong.ac.kr

[1] Beringer, J., Arguin, J.-F., Barnett, R. M., et al. 2012, Phys. Rev. D , 86, 010001
[2] Lesgourgues, J., & Pastor, S. 2006, Phys. Rep., 429, 307
[3] Lesgourgues, J., Mangano, G., Miele, G., & Pastor, S. 2013, Neutrino Cosmology, by Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge, UK: Cambridge University Press, 2013.
[4] Capozzi, F., Fogli, G. L., Lisi, E., et al. 2014, Phys. Rev. D , 89, 093018
[5] Palanque-Delabrouille, N., Yèche, C., Lesgourgues, J., et al. 2014, ArXiv:1410.7244
[6] Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
[7] Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19
[8] Hou, Z., Reichardt, C. L., Story, K. T., et al. 2014, Astrophys. J. , 782, 74
[9] Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, AA16
[10] Palanque-Delabrouille, N., Yèche, C., Borde, A., et al. 2013, A&A, 559, A85
[11] Anderson, L., Aubourg, É., Bailey, S., et al. 2014, MN-RAS, 441, 2
[12] Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10
[13] York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
[14] Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 567, AA79
[15] Das, S., Louis, T., Nolta, M. R., et al. 2014, JCAP, 4, 014
[16] Reichardt, C. L., Shaw, L., Zahn, O., et al. 2012, Astrophys. J. , 755, 70
[17] Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20
[18] Neyman, J. 1937, Royal Society of London Philosophical Transactions Series A, 236, 333
[19] Rossi, G., Palanque-Delabrouille, N., Borde, A., et al. 2014, A&A, 567, AA79
[20] Borde, A., Palanque-Delabrouille, N., Rossi, G., et al. 2014, JCAP, 7, 005
[21] Lewis, A., Challinor, A., & Lasenby, A. 2000, Astrophys. J. , 538, 473
[22] Abazajian, K. N., Arnold, K., Austermann, J., et al. 2015, Astroparticle Physics, 63, 66