Learning about Voice Search for Spoken Dialogue Systems

Rebecca J. Passonneau¹, Susan L. Epstein²,³, Tiziana Ligorio², Joshua B. Gordon⁴, Pravin Bhutada⁴

¹Center for Computational Learning Systems, Columbia University
²Department of Computer Science, Hunter College of The City University of New York
³Department of Computer Science, The Graduate Center of The City University of New York
⁴Department of Computer Science, Columbia University
Outline

• Introduction: CheckItOut domain
 – Why voice search?

• Motivation
 – A single turn exchange
 – High accuracy to avoid re-prompting

• Experimental infrastructure
 – Wizard ablation method and architecture
 – Experimental design: 4200 book title requests

• Results: Learned models of individual wizards’ actions

• Conclusion
 – What we learned about voice search for SDS
 – Current and future work
CheckItOut Domain

- Andrew Heiskell Braille & Talking Book Library
 - Branch of New York City Public Library, and Library of Congress
 - One of first users of Kurzweil reading mach.
- Book transactions by phone
 - Patrons order books by telephone
 - Book orders sent/returned by U.S.P.O.
- CheckItOut dialog system
 - Based on 82 recorded patron/librarian calls
 - Replica of Heiskell Library catalogue (N=71,166)
 - Mockup of patron data for 5,028 active patrons
Why Voice Search?

Voice search: query the backend catalogue with ASR string

- Minimal speech engineering
 - WSJ read speech acoustic models
 - Adaptation with ~12 hours of spontaneous speech
 - 0.49 WER in recent tests

- Take advantage of the domain knowledge to recover from poor WER, especially for book titles

Roll Dwell	Cromwell	0.67
	Robert Lowell	0.61
	Road to Wealth	0.50
High Accuracy Voice Search

• Minimize non-understandings/misunderstandings
 – User corrections in both contexts lead to poorer speech recognition (Litman et al., 2006)
 – Users seem to prefer system initiative with explicit confirmation (Litman & Pan, 1999)
 – Usability studies show a preference for mixed-initiative only in lab contexts; in real-world situations mixed-initiative is not sufficiently robust (Turunen et al., 2006)

• Wizard studies with simulated ASR, under high WER
 – High rate of misunderstandings (Williams & Young, 2004)
 – High rate of clarification requests (Rieser et al., 2005)
Challenges for SLU

• Grammar
 – 4,000 titles (cf. LREC 2010)
 – ~6,000 words in all sub-grammars (titles, authors, etc.)

• Long utterances: 9.1 words on average
 – Average title length: 4.5 words
 – Maximum title length: 40 words

• Full database: 71,600 titles

• Confusability of:
 – Between authors/titles
 – Among medium length titles
A Single Turn Exchange

• User requests books by title
 – Reads book synopses, orders the list of 20 books
 – Rates correctness of each wizard book offer
 – Rates wizard questions (e.g., answerable?)

• Wizard sees ASR, results of voice search
 – Can offer one of the voice search returns
 – Or, ask a question
 – Or give up

• Query: Ratcliffe-Obershelf string similarity
 – |Matching characters| / |Total characters|
 – Recursively find longest common subsequence
Wizard Ablation

• Wizard sees/manipulates modified system data
 – ASR in greyscale reflecting acoustic confidence
 – Three types of db return
 • Singleton list (matches in **dark bold**): RO \(\geq 0.85 \)
 • Ambiguous list, 2-5 titles (matches in **dark bold**):
 \(0.85 > RO \geq 0.55 \)
 • Noisy list, 6-10 titles (matches in **greyscale bold**):
 \(0.55 > RO \geq 0.40 \)

• Machine learning methods to learn wizard actions
 – Linear regression
 – Logistic regression
 – Decision trees
Olympus/RavenClaw Architecture

Apollo
Audio and Interaction Manager

PocketSphinx
Automated Speech Recognition

Kalliope
Text-to-Speech Synthesizer

Phoenix
Semantic Parser
Natural Language Understanding

Helios
Confidence Annotator

RavenClaw
Dialogue Manager

Domain Reasoner

BE_1

BE_2
Olympus/RavenClaw Architecture
Experimental Design

• 7 participants = 21 distinct pairs
• 20 titles per session
• Participants asked to maximize a session score
 – Winner awarded a prize
 – Wizard: +1 if correct, -1 if incorrect, 0.5 for good quest.
 – User: +0.5 for each correct title
• Two sessions per trial
 – Wizard/user rotate after first session
 – Rotation to encourage cooperation
• 5 trials per pair
• 5 x 2 x 20 x 21 = 4200 title cycles
User GUI

- **Titles list**
 - Green: correct offer
 - Red: incorrect offer
 - Yellow: in progress

- **Responses to wizard questions**
 - Can answer
 - Cannot answer
 - Undecided
 - Problem
Wizard GUI

- Display Types
 - Singleton
 - AmbiguousList
 - NoisyList
- Actions
 - Confident offer
 - Tentative offer
 - Question
 - Give up
Learned Models

• 60 initial features curated to 28 (cross-correlation)
 – GUI display type
 – Session features
 – Characteristics of or comparison of ASR and candidates and full DB
 – Recognition/NLU scores

• Models
 – Union of all wizards
 – Subset representing each wizard

• Supervised attribute selection reduced feature set to 8-12 features per decision tree
	Feature		Feature
1	Display type	15	Avg. edit distance candidates
2	Requests to repeat	16	Num. ASR words in db
3	Title of 20	17	Num. db titles with ASR words
4	Titles correct	18	Ratio of feat. 9 to feat. 10
5	Recent titles correct	19	Acoustic model score
6	ASR length (words)	20	Helios confidence score
7	Avg. candidate length	21	Phoenix parse score
8	Avg. ASR word rarity	22	Language model score
9	Avg. edit distance	23	Num. frames in ASR
10	Avg. word matches	24	Avg. num. gaps in parse
11	Length longest match	25	Speaking rate in frames/word
12	Location longest match	26	Total number of parses
13	Max. gap size btw. matches	27	Num. words in parse
14	Number of candidates	28	Avg. words per parse slot
Distribution of Correct Actions

Correct Action	N	%	
Return 1	2722	65.2445	
Return 2	126	3.0201	
Return 3	56	1.3423	
Return 4	46	1.1026	
Return 5	26	0.6232	
Return 7	7	0.1678	
Return 8	1	0.0002	
Return 9	2	0.0005	
Speak	Giveup	1186	28.4276
Total	4172	1.0000	
Correct Offers vs. Accuracy

Particip.	Cycles	Session Score	Acc.	Offered Return 1	Correct Non-Offers
W4	600	0.7585	0.8550	0.70	0.64
W5	600	0.7584	0.8133	0.76	0.43
W7	599	0.6971	0.7346	0.76	0.14
W1	593	0.6936	0.7319	0.79	0.16
W2	599	0.6703	0.7212	0.74	0.10
W3	581	0.6648	0.6954	0.81	0.20
W6	600	0.6103	0.6950	0.86	0.03

June 2-4, 2010 NAACL, Los Angeles
Characteristics of Decision Trees

• Larger trees for more accurate wizards: 55 nodes for W4 [best], 7 nodes for W1 [worst]

• 5 features most often in top-level nodes of all trees
 – DisplayType
 – RecentSuccess
 – ContiguousWordMatch (averaged across candidates)
 – NumberOfCandidates
 – Helios confidence score

• Additional important features for W4
 – Number of frames in ASR
 – Acoustic Model Score
Conclusions

• Voice search can lead to high accuracy interpretations of book title requests
• Learning from embedded wizards makes it possible to model wizard actions using system features (e.g., AM score, speech rate, parse features, NLU confidence)
• Dialogue management can profit from more fine-grained representation of *spoken language understanding* results
• Machine learners should be selective about who to learn from (e.g., W4 and W5)
Current and Future Work

• Same methodology applied to full dialogues
• Focus on feature selection methods tailored to learning dialogue strategies
 – Replace filter method for feature selection with wrapper method
 – Combine heuristic selection with subset selection methods
• Assume DM has access to any level of representation Spoken Language Understanding