Search for New Physics in the B^0_s mixing phase at CDF

D. Tonelli, (for the CDF collaboration)
Fermilab, Batavia, P.O. Box 500, IL 60510-5011, USA

The Collider Detector at Fermilab (CDF) experiment performed the first measurement of the time-evolution of the B^0_s mixing phase, which decays, which probes m_e-induced CP-violation in the B^0_s sector. Any sizable deviation from zero of the phase $\phi_{B^0_s}$, accessible through interference of the $b \rightarrow c$ heavy quark-level process accompanied or not by $B^0_s \rightarrow B^0_s$ mixing, would be an unambiguous indication of physics beyond the Standard Model. I report CDF results obtained in 1.8 fb^{-1}, a recent extension to a larger dataset corresponding to 2.8 fb^{-1}, and future projections.

1. INTRODUCTION

Many precise results from several years of successful B (factories') running disfavor significant CP-violating contributions from "New Physics" (NP) in tree-dominated $b\rightarrow m_e$ decays. A recent work with the Standard Model (SM) is also found in higher-order processes such as $K^0 \rightarrow K^0$ or $B^0 \rightarrow B^0$ transitions due to second-order weak interactions (mixing) that involve virtual massive particles and may receive contributions from NP. A less clear picture is available for the B^0_s system. The strength of NP contributions in $B^0_s \rightarrow B^0_s$ mixing is constrained by the precise measurement of the oscillation frequency Ω, which disfavors large magnitudes of NP amplitudes. However, knowledge of only the frequency leaves the phase of the mixing amplitude unconstrained. Indeed, possible large NP phases are currently not excluded. The mixing phase is accessible through the time-evolution of $B^0_s \rightarrow J=0$ decays, which is sensitive to the relative phase between the mixing and the $b \rightarrow c$ heavy quark-level transition, $\phi_{B^0_s} = \phi_{SM} + \phi_{NP}$. This phase is responsible for CP-violation and is $\phi_{SM} = \arg(\, V_{td}^* V_{tb} V_{ts}^* V_{cb}) = 0.02$ in the SM; any sizable deviation from this value would be unambiguous evidence of NP. If NP contributes a phase (ϕ_{NP}), this would also enter $\phi_{B^0_s}$, which is the phase difference between mixing and decay into final states common to B^0_s and B^0, and is tiny in the SM. However, $\phi_{B^0_s}$ plays a role in $B^0_s \rightarrow J=0$ decays. Since the SM values for $\phi_{B^0_s}$ cannot be resolved with the resolution of current experiments, the following approximation is used: $\phi_{B^0_s} = \phi_{NP} + \phi_{SM}$, which holds in case of sizable NP contributions.

This measurement of $\phi_{B^0_s}$ is analogous to the determination of the phase ϕ_{K^0} in $\phi_{K^0} = \arg(\, V_{td}^* V_{tb} V_{ts}^* V_{cb}) = 0.04$ in the SM. $J=0$ decays, except for a few additional complications: the oscillation frequency is about 35 times higher in B^0_s than in B^0 mesons, requiring excellent decay-time resolution; the decay of a pseudoscalar meson (B^0_s) into two vector mesons ($J=0$) produces two CP-even states (orbital angular momentum $L=0$) and one CP-odd state ($L=1$), which should be separated for maximum sensitivity; and the value of the SM expectation for $\phi_{B^0_s}$ is approximately 30 times smaller than the known SM value.

2. SIGNAL SELECTION

The CDF experiment at the Fermilab Tevatron performed the first measurement of the time-evolution of B^0_s decays, which probes m_e-induced CP-violation in the B^0_s sector. These were reconstructed in $p\bar{p}$ collision data corresponding to a time-integrated luminosity of 1.35 fb^{-1}. Events enriched in $J=0$ decays are selected by a trigger that requires the spatial matching between a pair of two-dimensional, oppositely-curved, tracks in the multi-wire drift chamber (coverage $|\eta|<1$) and their extrapolation outward to track-segment reconstruction in the muon detectors (drift chambers and scintillating fibers). In the offline analysis, a kinematic fit to a common space point is applied between the candidate $J=0$ and another pair of tracks consistent with being kaons originated from a B^0_s meson decay. The measurement of specific energy loss by ionization in the drift chamber (dE/dx) provides 1.5 separation between
charged kaons and pions with m cm ena p > 2 G eV/c. A t lowerm cm ena, scintillators bars surrounding the cham ber m easure arrival times of charged particles (time-of-flight, TOF) with approximately 110 ps resolution, providing separation between kaons and pions in excess of 2 . An artif i al neural network trained on simulated data (to identify signal, S) and B^0 mass sidebands (for background, B) is used for an unbiased optimization of the selection. The quantity $S= S + B$ is maximized using kinematic and particle identification (PID) information. Attempts of using the average statistical resolution on J^P observed in ensembles of pseudoexperiments as a guide of merit were inconclusive because of irregularities of the likelihood (see below). Discriminating observables include kaon-likelihood, from the combination of dE-dx and TOF information; transverse momentum of the B^0 and mesons; the $K'K$ mass; and the quality of the vertex t. The n sample contains approximately 2000 signal events over a comparable background (g(a)). Seven layers of silicon sensors extending radially up to 22 cm, and the drift chamber that provides 96 mm esurements between 30 and 140 cm, all m essed in the 1.4 T axial magnetic e Eld, provides a mass resolution of approximately 10 M eV/c2 on the B^0 ! J^P peak.

3. FITTING THE TIME EVOLUTION

The sensitivity to the mixing phase is enhanced if the evolution of CP-even eigenstates, CP-odd eigenstates, and their interference is separated. CDF uses the angular distributions of final state particles to statistically determine the CP-com position of the signal. The angular distributions are studied in the transversity basis, which allows a convenient separation between CP-odd and CP-even terms in the equations of the time-evolution.

Sensitivity to the phase increases if the evolutions of bottom-strange mesons produced as B^0_s or \bar{B}^0_s are studied independently. The time development of avor-tagged decays contains terms proportional to $\sin(2 J^P_s)$, reducing the ambiguity with respect to the untagged case ($\sqrt{2} J^P_s$). Building on techniques used in the B^0 mixing frequency measurement (b), the production avor is inferred using two classes of algorithm s. Opposite-side tags exploit bb pair production, the dominant source of b hadrons at the Tevatron, and estimate the production avor...
from the charge of decay products (e, , or jet) of the b(hadron) produced from the other b(quark) in the event. Some side tags rely on the charges of associated particles produced in the fragmentation of the b(quark) that hadronizes into the candidate B^0_s meson. The tagging power, D = 45%, is the product of an efficiency, f, the fraction of candidates with a tag, and the square of the dilution D = (1 - w)^2, where w is the m tag probability. Multiple tags, if any, are combined as independent. The proper time of the decay and its resolution are known on a per-candidate basis from the position of the decay vertex, which is determined with an average resolution of approximately 27 m (90 fs^-1) in B^0_s. J = decays, owing to the first layer of the silicon detector at 1.6 cm radius from the beam.

Information on B^0_s candidate mass and its uncertainty, angles between normal state particles' trajectories (to extract the CP-com position), production armor, and decay length and its resolution are used as observables in a multivariate unbinned likelihood of the time evolution that accounts for direct decay amplitudes, mixing followed by the decay, and their interference. Direct CP-violation is expected to be small and is not considered. The direct CP-violation is determined in the phase J = 0, decay-width difference, and 25 other 'nuisance' parameters (k). These include the mean B^0_s decay-width (= (L + B) /2), the squared magnitudes of linear polarization amplitudes (f_0, f_3, f_4, f_2), the CP-conserving ('strong') phases (k = arg(A_0 A_0), = arg(A_0 A_0)), and others. The acceptance of the detector is calculated from a Monte Carlo simulation and found to be consistent with observed angular distributions of random combinations of four tracks in data; the angular-mass-lifetime model was validated by measuring lifetime and polarization amplitudes in 7800 B^0_s decays, which show angular features similar to the B^0_s sample: c(B^0_s) = 456 ± 6 (stat.) ± 6 (syst.) m, f_3 = 0.569 ± 0.009 (stat.) ± 0.009 (syst.), f_4 = 0.211 ± 0.012 (stat.) ± 0.026 (syst.) and = 2.97 ± 0.06 (stat.) ± 0.01 (syst.). The results, consistent and competitive with most recent B factories results [3], support the reliability of the model. Additional confidence is provided by the precise measurement of lifetime and width differences in untagged B^0_s decays [4].

4. STATISTICAL ISSUES

Tests of the null hypothesis on simulated samples show biased, non-Gaussian distributions of estimates and multiple maxima, because the likelihood is invariant under the transformation where T = (J = 0) / 2, J = 2, k = (J = 3) / 2, and the resolution on J = 0 was found to depend crucially on the true values of J = 0 and . CDF quotes therefore a frequentist confidence region in the (J = 0, J = 3) plane rather than point estimates for these parameters. Obtaining a correct and meaningful region from a multidimensional likelihood is challenging: one should construct the full 27-dimensional region, a difficult task computationally, and project it onto the (J = 0, J = 3) plane. The choice of the ordering algorithm is critical to prevent the projection from covering most of the (J = 0, J = 3) space, yielding a severely informative result. A common approach in employing a method is to replace the likelihood, L(J = 0, J = 3), with the pseudo-likelihood, L_p(J = 0, J = 3). For every point in the (J = 0, J = 3) plane, are the values of nuisance parameter estimates that maximize the likelihood. Then 2 ln(L_p) is typically used as a variable to derive confidence regions in the two-dimensional space (J = 0, J = 3). However, the simulation shows that in the present case the approximation fails: the resulting regions contain the true values with lower probability than the nominal confidence level (C.L.), because the 2 ln(L_p) distribution has longer tails than a 2, and is not even independent of the true values of the nuisance parameters (g(b)). A full confidence region construction is therefore needed, using simulation of a large number of pseudo-experiments to derive the actual distribution of 2 ln(L_p), with a potential for an excessive weakening of the results from systematic uncertainties. However, in a full confidence region construction, the use of 2 ln(L_p) as ordering function is close to optimal for limiting the impact of systematic uncertainties [11]. With this method, CDF is able to rigorously account for the effect of systematic uncertainties just by randomly sampling a limited number of points in the space of all nuisance parameter estimates: a specific value (J = 0, J = 3) is excluded only if it can be excluded for any assumed value of the nuisance parameter estimates within 5 of their estimate on data. The result is a (J = 0, J = 3) contour that is the truly two-dimensional projection of the full, 27-dimensional confidence region.
5. RESULTS

The results on 1.35 fb^{-1} show a 1.5 deviation with respect to the SM values. Considering as an additional nuisance parameter, the 68% C.L. allowed region for the mixing phase is $0.16 < \Delta \phi > 1.41$, which restricts to $\Delta \phi = 2 \times [0.12; 0.48] \times [0.89; 1.45]$ assuming no NP contributions in $J = 1$. This result has been confirmed by the D Collaboration, which observed a consistent oscillation in an analysis where the two-fold symmetry of the likelihood is removed by assuming an additional theoretical constraint between strong phases of B^0_s! $J = 1$ and B^0_s! $J = K^0$ decays. After removing this assumption, CDF and D results can be combined yielding a 2.2 deviation with respect to the SM and the following 68% C.L. range: $\Delta \phi = 2 \times [0.24; 0.57] \times [0.99; 1.33]$. CDF has reported at this conference a partial extension of the analysis to a larger sample, corresponding to 2.8 fb^{-1}. This is approximately equivalent to 2.0 fb^{-1} effective luminosity, because the calibration of dE/dx and TOF was unavailable for the whole sample and PID information is not used in the selection, nor in favor tagging for the second half of the dataset. More than 3200 decays are reconstructed, but approximately 4000 are expected when PID will be available in the selection. Figure 2 (a) shows the results. The two regions symmetric with respect to the $(0, 0)$ point reflect the symmetry of the likelihood, which cannot determine from data if $\cos (\Delta \phi) < 0$ and $\cos (\Delta \phi) > 0$ (corresponding to the < 0 solution) or vice versa (< 0). The deviation with respect to the SM is confirmed and strengthened, reaching the 1.5 level. The updated analysis restricts the allowed regions for the phase to the range $0.28 < \Delta \phi < 1.29$ at the 68% C.L.

Although the observed deviations are not yet significant, the pattern of independent results showing consistent oscillations in the same direction is promising in view of the analysis of the full dataset, expected to reach approximately 6 fb^{-1} by year 2009, or 8 fb^{-1} by 2010, if Run II of the Tevatron will be extended. Figure 2 (b) shows the probability of a 5 deviation exclusion of the SM at CDF as a function of the value of $\Delta \phi$ in these two scenarios and assuming $\Delta \phi = 0$. This extrapolation, which assumes no external constraints and no improvement in the analysis, is conservative: CDF is improving the analysis, with significantly increased tagging power, a 50% additional
signal collected by other triggers, and the possibility to resolve the strong-phases ambiguity using data [14]; tight external constraints (e.g., on the B^0_s lifetime) can be applied, and CDF and D results will be combined for maximum Tevatron sensitivity. As happened in the past, deviations from expectations in measurements of lower-energy processes may indicate NP prior to direct discovery of new resonances, as those expected in the forthcoming run of the Large Hadron Collider [15].

Acknowledgments

I would like to thank my CDF colleagues, who provided valuable suggestions during the preparation of this manuscript, and M. Gronau for spotting an error in the definition of the strong phases.

References

[1] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006), arXiv:hep-ex/0609040.
[2] J. Charles et al. (CKM fitter Group), Eur. Phys. J. C 41, 1 (2005), arXiv:hep-ph/0406184 and web updates at http://ckmfitter.in2p3.fr; M. Bona et al. (UT Collaboration), J. High Energy Phys. 10, 81 (2006), arXiv:hep-ph/0606167 and web updates at www.utfit.org.
[3] See, for instance, I.D unbietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63, 114015 (2001), arXiv:hep-ph/0012219.
[4] A. Lenz and U. Nierste, J. High Energy Phys. 06, 72 (2007), arXiv:hep-ph/0612167.
[5] I.Y. Bigi and A.I. Sanda, Nucl. Phys. B 193, 85 (1981).
[6] E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:0808.1297 [hep-ex].
[7] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 161802 (2008), arXiv:0712.2397 [hep-ex].
[8] A. S. Dighe et al., Phys. Lett. B 369, 144 (1996), arXiv:hep-ph/9511363; A. S. Dighe, I. D unbietz, and R. Fleischer, Eur. Phys. J. C 6, 147 (1999), arXiv:hep-ph/9804253.
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 031102 (2007), arXiv:0704.0522 [hep-ex].
[10] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 121803 (2008), arXiv:0712.2348 [hep-ex] and Sin and M. Farrington, these proceedings arXiv:0810.3566 [hep-ex].
[11] K. S. Cranmer, published in Stanford 2003, Statistical problems in particle physics, astrophysics and cosmology, arXiv:physics/0310108; G. Punzi, published in Oxford 2005, Statistical problems in particle physics, astrophysics and cosmology, arXiv:physics/0511202.
[12] V. M. Abazov et al. (D Collaboration), arXiv:0802.2255 [hep-ex] and John Ellison, these proceedings, arXiv:0810.1041 [hep-ex].
[13] The most recent paper supporting this assumption is M. Gronau and J.L. Rosner, arXiv:0808.3761 [hep-ph].
[14] Possible feasible strategies at CDF are S. Nandi and U. Nierste, Phys. Rev. D 77, 054010 (2008), arXiv:0801.0143 [hep-ph], or searching for S- and P-waves amplitudes interference near the K^+K^- peak, analogously to B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 032005 (2005), arXiv:hep-ex/0411016.
[15] See, for instance, G W. S. Hou, these proceedings, arXiv:0810.3398 [hep-ph]; M. Blanke, A. J. Buras, S. Reck-siegel, and C. Tarantino, arXiv:0805.4393 [hep-ph]; A. Soni et al., arXiv:0807.1971 [hep-ph]; F. J. Botella, G. L. Branco, and M. Nefot, arXiv:0805.3995 [hep-ph]; B. Dutta and Y. M. in ura, Phys. Rev. D 78, 071702 (2008), arXiv:0805.2988 [hep-ph]; J. K. Parry and H. H. Zhang, Nucl. Phys. B 802, 63 (2008), arXiv:0710.5443 [hep-ph].