A FAMILY OF ANISOTROPIC INTEGRAL OPERATORS AND BEHAVIOUR OF ITS MAXIMAL EIGENVALUE

B.S. MITYAGIN, A.V. SOBOLEV

Abstract. We study the family of compact integral operators K_{β} in $L^2(\mathbb{R})$ with the kernel

$$K_{\beta}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \Theta(x, y)},$$

depending on the parameter $\beta > 0$, where $\Theta(x, y)$ is a symmetric non-negative homogeneous function of degree $\gamma \geq 1$. The main result is the following asymptotic formula for the maximal eigenvalue M_{β} of K_{β}:

$$M_{\beta} = 1 - \lambda_1 \beta^{\frac{2}{\gamma + 1}} + o(\beta^{\frac{2}{\gamma + 1}}), \beta \to 0,$$

where λ_1 is the lowest eigenvalue of the operator $A = |d/dx| + \frac{1}{2} \Theta(x, x)$. A central role in the proof is played by the fact that $K_{\beta}, \beta > 0$, is positivity improving. The case $\Theta(x, y) = (x^2 + y^2)^2$ has been studied earlier in the literature as a simplified model of high-temperature superconductivity.

1. Introduction and the main result

1.1. Introduction. The object of the study is the following family of integral operators on $L^2(\mathbb{R})$:

$$(1) \quad K_{\beta}u(x) = \int K_{\beta}(x, y)u(y)dy,$$

(here and below we omit the domain of integration if it is the entire real line \mathbb{R}) with the kernel

$$(2) \quad K_{\beta}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \Theta(x, y)},$$

where $\beta > 0$ is a small parameter, and the function $\Theta = \Theta(x, y)$ is a homogeneous non-negative function of x and y such that

$$(3) \quad \Theta(tx, ty) = t^{\gamma} \Theta(x, y), \; \gamma > 0,$$

2010 Mathematics Subject Classification. Primary 45C05; Secondary 47A75.
Key words and phrases. Eigenvalues, asymptotics, positivity improving integral operators, pseudodifferential operators, superconductivity.
for all \(x, y \in \mathbb{R} \) and \(t > 0 \), and the following conditions are satisfied:

\[
\begin{cases}
 c \leq \Theta(x, y) \leq C, & |x|^2 + |y|^2 = 1, \\
 \Theta(x, y) = \Theta(y, x), & x, y \in \mathbb{R}.
\end{cases}
\]

By \(C \) or \(c \) (with or without indices) we denote various positive constants whose value is of no importance. The conditions (3) and (4) guarantee that the operator \(K_\beta \) is self-adjoint and compact.

Such an operator, with \(\Theta(x, y) = (x^2 + y^2)^2 \) was suggested by P. Krotkov and A. Chubukov in [6] and [7] as a simplified model of high-temperature superconductivity. The analysis in [6], [7] reduces to the asymptotics of the top eigenvalue \(M_\beta \) of the operator \(K_\beta \) as \(\beta \to 0 \). Heuristics in [6] and [7] suggest that \(M_\beta \) should behave as \(1 - w \beta^2 + o(\beta^2) \) with some positive constant \(w \). A mathematically rigorous argument given by B. S. Mityagin in [9] produced a two-sided bound supporting this formula. The aim of the present paper is to find and justify an appropriate two-term asymptotic formula for \(M_\beta \) as \(\beta \to 0 \) for a homogeneous function \(\Theta \) satisfying (3), (4) and some additional smoothness conditions (see (8)).

As \(\beta \to 0 \), the operator \(K_\beta \) converges strongly to the positive-definite operator \(K_0 \), which is no longer compact. The norm of \(K_0 \) is easily found using the Fourier transform

\[
\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int e^{-ix\xi} f(x) dx,
\]

which is unitary on \(L^2(\mathbb{R}) \). Then one checks directly that

\[
\text{(5) the Fourier transform of } m_t(x) = \frac{1}{\pi t^2 + x^2}, \quad t > 0, \quad \text{equals } \hat{m}_t(\xi) = \frac{1}{\sqrt{2\pi}} e^{-|\xi|},
\]

and hence the operator \(K_0 \) is unitarily equivalent to the multiplication by the function \(e^{-|\xi|} \), which means that \(\|K_0\| = 1 \).

1.2. The main result. For the maximal eigenvalue \(M_\beta \) of the operator \(K_\beta \) denote by \(\Psi_\beta \) the corresponding normalized eigenfunction. Note that the operator \(K_\beta \) is positivity improving, i.e. for any non-negative non-zero function \(u \) the function \(K_\beta u \) is positive a.a. \(x \in \mathbb{R} \) (see [12], Chapter XIII.12). Thus, by [12], Theorem XIII.43 (or by [3], Theorem 13.3.6), the eigenvalue \(M_\beta \) is non-degenerate and the eigenfunction \(\Psi_\beta \) can be assumed to be positive a.a. \(x \in \mathbb{R} \). From now on we always choose \(\Psi_\beta \) in this way. The behaviour of \(M_\beta \) as \(\beta \to 0 \), is governed by the model operator

\[
(Au)(x) = |D_x|u(x) + 2^{-1}\theta(x)u(x),
\]

where

\[
\theta(x) = \Theta(x, x) = \begin{cases}
 |x|^\gamma \Theta(1, 1), & x \geq 0; \\
 |x|^\gamma \Theta(-1, -1), & x < 0.
\end{cases}
\]
This operator is understood as the pseudo-differential operator $\text{Op}(a)$ with the symbol
\begin{equation}
a(x, \xi) = |\xi| + 2^{-1} \theta(x).
\end{equation}

For the sake of completeness recall that $P = \text{Op}(p)$ is a pseudo-differential operator with the symbol $p = p(x, \xi)$ if
\begin{equation}
(Pu)(x) = \frac{1}{2\pi} \int \int e^{i(x-y)\xi} p(x, \xi) u(y) dy d\xi
\end{equation}
for any Schwartz class function u. The operator A is essentially self-adjoint on $C_0(\mathbb{R})$, and has a purely discrete spectrum (see e.g. [14], Theorems 26.2, 26.3). Using the von Neumann Theorem (see e.g. [11], Theorem X.25), one can see that A is self-adjoint on $D(A) = D(|D_x|^\gamma) \cap D(|x|^{2\gamma})$, i.e. $D(A) = H^1(\mathbb{R}) \cap L^2(\mathbb{R}, |x|^{2\gamma})$. Denote by $\lambda_{l} > 0$, $l = 1, 2, \ldots$ the eigenvalues of A arranged in ascending order, and by ϕ_{l} a set of corresponding normalized eigenfunctions. As shown in Lemma 2, the lowest eigenvalue λ_{1} is non-degenerate and its eigenfunction ϕ_{1} can be chosen to be non-negative a.a. $x \in \mathbb{R}$. From now on we always choose ϕ_{1} in this way.

The main result of this paper is contained in the next theorem.

Theorem 1. Let K_{β} be an integral operator defined by (1) with $\gamma \geq 1$. Suppose that the function Θ satisfies conditions (3), (4) and the following Lipshitz conditions:
\begin{equation}
\begin{cases}
|\Theta(t, 1) - \Theta(1, 1)| \leq C|t - 1|, & t \in (1 - \epsilon, 1 + \epsilon),
|\Theta(t, -1) - \Theta(-1, -1)| \leq C|t + 1|, & t \in (-1 - \epsilon, -1 + \epsilon),
\end{cases}
\end{equation}
with some $\epsilon > 0$. Let M_{β} be the largest eigenvalue of the operator K_{β} and Ψ_{β} be the corresponding eigenfunction. Then
\begin{equation}
\lim_{\beta \to 0} \beta^{-\frac{2}{2\sigma+1}} (1 - M_{\beta}) = \lambda_{1}.
\end{equation}
Moreover, the rescaled eigenfunctions $\alpha^{-\frac{1}{2}} \Psi_{\beta}(\alpha^{-1} \cdot)$, $\alpha = \beta^{\frac{1}{2\sigma+1}}$, converge in norm to ϕ_{1} as $\beta \to 0$.

The top eigenvalue of K_{β} was studied by B. Mityagin in [9] for $\Theta(x, y) = (x^2 + y^2)\sigma$, $\sigma > 0$. It was conjectured that $\lim_{\beta \to 0} \beta^{-\frac{2}{2\sigma+1}} (1 - M_{\beta}) = L$ with some $L > 0$, but only the two-sided bound
\begin{equation}
c\beta^{\frac{2}{2\sigma+1}} \leq 1 - M_{\beta} \leq C\beta^{\frac{2}{2\sigma+1}},
\end{equation}
with some constants $0 < c \leq C$ was proved. It was also conjectured that in the case $\sigma = 2$ the constant L should coincide with the lowest eigenvalue of the operator $|D_x| + 4x^4$. Note that for this case the corresponding operator (6) is in fact $|D_x| + 2x^4$. J. Adduci found an approximate numerical value $\lambda_{1} = 0.978\ldots$ in this case, see [1].

Similar eigenvalue asymptotics were investigated by H. Widom in [15] for integral operators with difference kernels. Some ideas of this paper are used in the proof of Theorem 1.

Let us now establish the non-degeneracy of the eigenvalue λ_{1}.
Lemma 2. Let A be as defined in (6). Then

1. The semigroup e^{-tA} is positivity improving for all $t > 0$,
2. The lowest eigenvalue λ_1 is non-degenerate, and the corresponding eigenfunction ϕ_1 can be chosen to be positive a.a. $x \in \mathbb{R}$.

Proof. The non-degeneracy of λ_1 and positivity of the eigenfunction ϕ_1 would follow from the fact that e^{-tA} is positivity improving for all $t > 0$, see [12], Theorem XIII.44.

The proof of this fact is done by comparing the semigroups for the operators A and $A_0 = |D_x|$. Using (5) it is straightforward to find the integral kernel of e^{-tA_0}:

$$m_t(x - y) = \frac{1}{\pi t^2 + (x - y)^2}, t > 0,$$

which shows that e^{-tA_0} is positivity improving. To extend the same conclusion to e^{-tA} let

$$V_\alpha(x) = \begin{cases}
2^{-1} \theta(x), & |x| \leq n, \\
2^{-1} \theta(\pm n), & \pm x > n,
\end{cases} \quad n = 1, 2, \ldots.$$

Since $(A_0 + V_n)f \to Af$ and $(A - V_n)f \to A_0f$ as $n \to \infty$ for any $f \in C_0^\infty(\mathbb{R})$, by [10], Theorem VIII.25a the operators $A_0 + V_n$ and $A - V_n$ converge to A and A_0 resp. in the strong resolvent sense as $n \to \infty$. Thus by [12], Theorem XIII.45, the semigroup e^{-tA} is also positivity improving for all $t > 0$, as required. \hfill \Box

1.3. Rescaling. As a rule, instead of K_β it is more convenient to work with the operator obtained by rescaling $x \to \alpha^{-1}x$ with $\alpha > 0$. Precisely, let U_α be the unitary operator on $L^2(\mathbb{R})$ defined as $(U_\alpha f)(x) = \alpha^{-\frac{1}{2}} f(\alpha^{-1}x)$. Then $U_\alpha K_\beta U_\alpha^*$ is the integral operator with the kernel

$$B_\alpha(x, y) = \frac{1}{\pi \alpha^2 + (x - y)^2 + 2 \alpha^{-\gamma} \Theta(x, y)}.$$

Under the assumption $\beta^2 = \alpha^{\gamma + 1}$, this kernel becomes

$$B_\alpha(x, y) = \frac{\alpha}{\pi \alpha^2 + (x - y)^2 + \alpha^{3\gamma} \Theta(x, y)}.$$

Thus, denoting the corresponding integral operator by B_α, we get

$$K_\beta = U_\alpha^* B_\alpha U_\alpha, \quad \alpha = \beta^{\frac{1}{\gamma + 1}}.$$

Henceforth the value of α is always chosen as in this formula.

Denote by μ_α the maximal eigenvalue of the operator B_α, and by ψ_α – the corresponding normalized eigenfunction. By the same token as for the operator K_β, the eigenvalue μ_α is non-degenerate and the choice of the corresponding eigenfunction ψ_α is determined uniquely by the requirement that $\psi_\alpha > 0$ a.e.. Moreover,

$$\mu_\alpha = M_\beta, \quad \psi_\alpha(x) = (U_\alpha \Psi_\beta)(x) = \alpha^{-\frac{1}{2}} \Psi_\beta(\alpha^{-1}x), \quad \alpha = \beta^{\frac{1}{\gamma + 1}}.$$

This rescaling allows one to rewrite Theorem 1 in a somewhat more compact form:
Theorem 3. Let $\gamma \geq 1$ and suppose that the function Θ satisfies conditions (3), (4) and (8). Then
\[
\lim_{\alpha \to 0} \alpha^{-1}(1 - \mu_\alpha) = \lambda_1.
\]
Moreover, the eigenfunctions ψ_α, converge in norm to ϕ_1 as $\alpha \to 0$.

The rest of the paper is devoted to the proof of Theorem 3, which immediately implies Theorem 1.

2. “De-symmetrization” of K_β and B_α

First we de-symmetrize the operator K_β. Denote
\[
K_\beta^{(l)} u(x) = \int K_\beta^{(l)}(x, y) u(y) dy,
\]
with the kernel
\[
K_\beta^{(l)}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x-y)^2 + \beta^2 \theta(x)}.
\]

Lemma 4. Let $\beta \leq 1$ and $\gamma \geq 1$. Suppose that the conditions (3), (4) and (8) are satisfied. Then
\[
\|K_\beta^{(l)} - K_\beta\| \leq C q \beta^2.
\]

Proof. Due to (3) and (4),
\[
c(|t| + 1)^\gamma \leq \Theta(t, \pm 1) \leq C(|t| + 1)^\gamma, \quad t \in \mathbb{R}.
\]
Also,
\[
\begin{cases}
|\Theta(t, 1) - \Theta(1, 1)| \leq C(|t| + 1)^{\gamma-1}|t - 1|, \\
|\Theta(t, -1) - \Theta(-1, -1)| \leq C(|t| + 1)^{\gamma-1}|t + 1|,
\end{cases}
\]
for all $t \in \mathbb{R}$. Indeed, (8) leads to the first inequality (14) for $|t - 1| < \epsilon$. For $|t - 1| \geq \epsilon$ it follows from (13) that
\[
|\Theta(t, 1) - \Theta(1, 1)| \leq C(|t| + 1)^\gamma \leq C' \epsilon^{-1}(|t| + 1)^{\gamma-1}|t - 1|.
\]
The second bound in (14) is checked similarly.

Now we can estimate the difference of the kernels
\[
K_\beta(x, y) - K_\beta^{(l)}(x, y)
\]
\[
= \frac{1}{\pi} \frac{\beta^2(\Theta(x, x) - \Theta(x, y))}{(1 + (x-y)^2 + \beta^2 \Theta(x, x))(1 + (x-y)^2 + \beta^2 \Theta(x, x))}.
\]
It follows from (14) with $t = y|x|^{-1}$ that
\[
|\Theta(x, x) - \Theta(y, x)| \leq C(|x| + |y|)^{\gamma-1}|x - y|.
\]
Substituting into (15), we get

\[|K_\beta(x, y) - K_\beta^{(l)}(x, y)| \leq C \frac{|x - y|}{(1 + (x - y)^2)^{2-\delta}} \frac{\beta^2(|x| + |y|)^{\gamma-1}}{(1 + \beta^2(|x| + |y|)^{\gamma})^{\delta}}, \]

for any \(\delta \in (0, 1) \). The second factor on the right-hand side does not exceed

\[\beta^2 \max_{t \geq 0} \frac{t^{\gamma-1}}{(1 + t^2)^{\delta}}, \]

which is bounded by \(C \beta^{2/\gamma} \) under the assumption that \(\delta \geq 1 - \gamma^{-1} \). Therefore

\[|K_\beta(x, y) - K_\beta^{(l)}(x, y)| \leq C \beta^2 \frac{|x - y|}{(1 + (x - y)^2)^{2-\delta}}. \]

For any \(\delta \in (0, 1) \) the right hand side is integrable in \(x \) (or \(y \)). Now, estimating the norm using the standard Schur Test, see Proposition 15, we conclude that

\[\|K_\beta - K_\beta^{(l)}\| \leq C \beta^2 \int \frac{|t|}{(1 + t^2)^{2-\delta}} dt \leq C' \beta^2, \]

which is the required bound. \(\square \)

Similarly to the operator \(K_\beta \), it is readily checked by scaling that the operator \(K_\beta^{(l)} \) is unitarily equivalent to the operator \(B_\alpha^{(l)} \) with the kernel

\[B_\alpha^{(l)}(x, y) = \frac{\alpha}{\pi \alpha^2 + (x - y)^2 + \alpha^2 \theta(x)}. \]

Thus the bound (12) ensures that

\[\|B_\alpha - B_\alpha^{(l)}\| = \|K_\beta - K_\beta^{(l)}\| \leq C \alpha^{1+\frac{1}{\gamma}}, \alpha \leq 1, \]

see (10) for the definition of \(\alpha \).

3. Approximation for \(B_\alpha^{(l)} \)

3.1. Symbol of \(B_\alpha^{(l)} \). Now our aim is to show that the operator \(I - \alpha A \) is an approximation of the operator \(B_\alpha^{(l)} \), defined above. To this end we need to represent \(B_\alpha^{(l)} \) as a pseudo-differential operator. Rewriting the kernel (16) as

\[B_\alpha^{(l)}(x, y) = t^{-1} m_\alpha t(x - y), \ t = g_\alpha(x), \]

with

\[g_\alpha(x) = \sqrt{1 + \alpha \theta(x)}, \]

and using (5), we can write for any Schwartz class function \(u \):

\[(B_\alpha^{(l)}u)(x) = \frac{1}{2\pi} \int \int e^{i(x-y)\xi} b_\alpha^{(l)}(x, \xi) u(y) dy d\xi, \]
where
\[b^{(l)}_\alpha(x, \xi) = \frac{1}{g_\alpha(x)} e^{-\alpha|\xi|g_\alpha(x)}. \]
Thus \(B^{(l)}_\alpha = \text{Op}(b^{(l)}_\alpha) \).

3.2. **Approximation for \(B^{(l)}_\alpha \).** Let the operator \(A \) and the symbol \(a(x, \xi) \) be as defined in (6) and (7). Our first objective is to check that the error
\[r^{(l)}_\alpha(x, \xi) := b^{(l)}_\alpha(x, \xi) - (1 - \alpha a(x, \xi)) \]
is small in a certain sense. The condition \(\gamma \geq 1 \) will allow us to use standard norm estimates for pseudo-differential operators. Using the formula
\[e^{-\alpha y} = 1 - \alpha y + \alpha \int_0^y (1 - e^{-\alpha t}) dt, \quad y > 0, \]
we can split the error as follows:
\[r^{(l)}_\alpha(x, \xi) = r^{(1)}_\alpha(x) + r^{(2)}_\alpha(x, \xi), \]
\[r^{(1)}_\alpha(x) = \frac{1}{g(x)} + \alpha 2^{-1} \theta(x) - 1, \]
\[r^{(2)}_\alpha(x, \xi) = \frac{\alpha}{g(x)} \int_0^{||\xi||g(x)} (1 - e^{-\alpha t}) dt, \]
where we have used the notation \(g(x) = g_\alpha(x) \) with \(g_\alpha \) defined in (18). Since \(\gamma \geq 1 \), we have
\[|g'(x)| \leq C g(x), \quad C = C(\gamma), \quad x \neq 0, \]
for all \(\alpha \leq 1 \). Introduce also the function \(\zeta \in C^\infty(\mathbb{R}_+) \) such that
\[\zeta'(x) \geq 0, \quad \zeta(x) = \begin{cases} x, & 0 \leq x \leq 1; \\ 2, & x \geq 2. \end{cases} \]
Note that
\[\zeta(x_1 x_2) \leq 2 \zeta(x_1) x_2, \quad x_1 \geq 0, x_2 \geq 1. \]
We study the above components \(r^{(1)}, r^{(2)} \) separately and introduce the function
\[e^{(1)}_\alpha(x) = \frac{1}{\langle x \rangle^{\gamma} (\alpha \langle x \rangle)^{\gamma}} r^{(1)}_\alpha(x), \]
and the symbol
\[e^{(2)}_\alpha(x, \xi) = g_\alpha(x)^{-\kappa} \left(\zeta(\langle \alpha \langle \xi \rangle \rangle^{\kappa}) \langle \xi \rangle \right)^{-1} r^{(2)}_\alpha(x, \xi), \]
where \(\kappa \in (0, 1] \) is a fixed number. To avoid cumbersome notation the dependence of \(e^{(2)}_\alpha \) on \(\kappa \) is not reflected in the notation. We denote the operators \(\text{Op}(r_\alpha) \) and \(\text{Op}(e_\alpha) \) by \(R_\alpha \) and \(E_\alpha \) respectively (with or without superscripts).
Lemma 5. Let $\gamma \geq 1$. Then for all $\alpha > 0$,
$$\|e^{(1)}_\alpha\|_{L_\infty} \leq C\alpha.$$

Proof. Estimate the function $r^{(1)}_\alpha$:
$$|r^{(1)}_\alpha(x)| \leq \begin{cases} \frac{C\alpha^2|x|^{2\gamma}}{\alpha\theta(x) \leq 1/2}, \\
C\alpha|x|^{\gamma}, \alpha\theta(x) > 1/2, \end{cases}$$
with a constant C independent of x. The second estimate is immediate, and the first one follows from the Taylor’s formula
$$\frac{1}{\sqrt{1 + t}} = 1 - \frac{t}{2} + O(t^2), \ 0 \leq t \leq \frac{1}{2}.$$
Thus
$$|r^{(1)}_\alpha(x)| \leq C\alpha|x|^{\gamma}(\alpha|x|^{\gamma}).$$
This leads to the proclaimed estimate for $e^{(1)}_\alpha$. \qed

Lemma 6. Let $\gamma \geq 1$. Then for all $\alpha > 0$ and any $\kappa \in (0,1]$,
$$\|E^{(2)}_\alpha\| \leq C_\kappa\alpha.$$

Proof. To estimate the norm of $\text{Op}(e^{(2)}_\alpha)$ we use Proposition 16. It is clear that the distributional derivatives $\partial_x, \partial_\xi, \partial_x\partial_\xi$ of the symbol $e^{(2)}_\alpha(x,\xi)$ exist and are given by
$$\partial_x r^{(2)}_\alpha(x,\xi) = -\frac{\alpha}{g^2} g' \int_0^{\xi|g|} (1 - e^{-\alpha t}) dt + \frac{\alpha}{g} |\xi| g'(1 - e^{-\alpha|\xi|g}),$$
$$\partial_\xi r^{(2)}_\alpha(x,\xi) = \alpha \text{ sign } \xi (1 - e^{-\alpha|\xi|g}),$$
$$\partial_x\partial_\xi r^{(2)}_\alpha(x,\xi) = \alpha^2 \xi e^{-\alpha|\xi|g},$$
for all $x \neq 0, \xi \neq 0$. For any $\kappa \in (0,1]$ the elementary bounds hold:
$$\int_0^{\xi|g|} (1 - e^{-\alpha t}) dt \leq |\xi| g \zeta((\alpha|\xi|g)^\kappa) \leq 2|\xi| g^{1+\kappa} \zeta((\alpha|\xi|g)^\kappa),$$
$$|1 - e^{-\alpha|\xi|g}| \leq \zeta((\alpha|\xi|g)^\kappa) \leq 2g^{\kappa} \zeta((\alpha|\xi|g)^\kappa),$$
$$\alpha|\xi| g e^{-\alpha|\xi|g} \leq \zeta((\alpha|\xi|g)^\kappa) \leq 2g^{\kappa} \zeta((\alpha|\xi|g)^\kappa).$$
Here we have used (20). Thus, in view of (19),
$$|r^{(2)}_\alpha(x,\xi)| + |\partial_\xi r^{(2)}_\alpha(x,\xi)| + |\partial_x r^{(2)}_\alpha(x,\xi)| \leq C\alpha \xi g \zeta((\alpha|\xi|g)^\kappa).$$
Also,
$$|\partial_x\partial_\xi r^{(2)}_\alpha(x,\xi)| \leq \alpha \frac{|g'|}{g} (\alpha|\xi| g e^{-\alpha|\xi|g}) \leq C\alpha |g|^{\kappa} \zeta((\alpha|\xi|g)^\kappa).$$
Now estimate the derivatives of the weights:

\[|\partial_x g^{-\varkappa}| = \varkappa g^{-\varkappa - 1} g' \leq C g^{-\varkappa}, \quad x \neq 0, \]

\[|\partial_\xi (\langle \xi \rangle \zeta ((\alpha \langle \xi \rangle)^\varkappa))^{-1}| \leq C \frac{1}{\langle \xi \rangle^2 \zeta ((\alpha \langle \xi \rangle)^\varkappa)}, \xi \in \mathbb{R}. \]

Thus the symbol \(e^{(2)}(x, \xi) \) as well as its derivatives \(\partial_x, \partial_\xi, \partial_x \partial_\xi \) are bounded by \(C\alpha \) for all \(\alpha > 0 \) uniformly in \(x, \xi \). Now the required estimate follows from Proposition 16. \(\square \)

We make a useful observation:

Corollary 7. Let \(\gamma \geq 1 \) and \(\varkappa \in (0, 1] \). Then for any function \(f \in D(A) \),

\[\alpha^{-1} \| R^{(1)}_\alpha f \| \to 0, \quad \alpha \to 0, \quad (23) \]

\[\alpha^{-1} \| E^{(2)}_\alpha (D_x) \zeta ((\alpha \langle D_x \rangle)^\varkappa) f \| \to 0, \quad \alpha \to 0. \quad (24) \]

Proof. Rewrite:

\[\| R^{(1)}_\alpha f \| = \| E^{(1)}_\alpha \langle x \rangle^{\gamma \zeta (\alpha \langle x \rangle)^\gamma} f \| \leq \| E^{(1)}_\alpha \| \| \langle x \rangle^{\gamma \zeta (\alpha \langle x \rangle)^\gamma} f \|. \]

By Lemma 5 the norm of \(E^{(1)}_\alpha \) on the right-hand side is bounded by \(C\alpha \). The function \(\langle x \rangle^{\gamma \zeta (\alpha \langle x \rangle)^\gamma} f \) tends to zero as \(\alpha \to 0 \) a.a. \(x \in \mathbb{R} \), and it is uniformly bounded by the function \(\langle x \rangle^{\gamma} |f| \), which belongs to \(L^2 \), since \(f \in D(A) \). Thus the second factor in (25) tends to zero as \(\alpha \to 0 \) by the Dominated Convergence Theorem. This proves (23).

Proof of (24). Estimate:

\[\| E^{(2)}_\alpha (D_x) \zeta ((\alpha \langle D_x \rangle)^\varkappa) f \| \leq \| E^{(2)}_\alpha \| \| \langle \xi \rangle^{\zeta (\alpha \langle \xi \rangle)^\gamma} \hat{f} \|. \]

By Lemma 6 the norm of the first factor on the right-hand side is bounded by \(C\alpha \). The second factor tends to zero as \(\alpha \to 0 \) for the same reason as in the proof of (23). \(\square \)

4. Norm-convergence of the extremal eigenfunction

Recall that the maximal positive eigenvalue \(\mu_\alpha \) of the operator \(B_\alpha \) is non-degenerate, and the corresponding (normalized) eigenfunction \(\psi_\alpha \) is positive a.a. \(x \in \mathbb{R} \).

The principal goal of this section is to prove that any infinite subset of the family \(\psi_\alpha, \alpha \leq 1 \) contains a norm-convergent sequence. We begin with an upper bound for \(1 - \mu_\alpha \) which will be crucial for our argument.

Lemma 8. If \(\gamma \geq 1 \), then

\[\limsup_{\alpha \to 0} \alpha^{-1}(1 - \mu_\alpha) \leq \lambda_1. \quad (26) \]
Proof. Denote $\phi := \phi_1$. By a straightforward variational argument it follows that

$$\mu_\alpha \geq (B_\alpha \phi, \phi) \geq |(B^{(l)}_\alpha \phi, \phi)| - \|B_\alpha - B^{(l)}_\alpha\|$$

$$\geq ((I - \alpha A)\phi, \phi) - |(R_\alpha \phi, \phi)| + o(\alpha)$$

$$= 1 - \alpha \lambda_1 - |(R_\alpha \phi, \phi)| + o(\alpha),$$

where we have also used (17). By definitions (21) and (22),

$$|(R_\alpha \phi, \phi)| \leq \|R^{(1)}_\alpha \phi\| + \|E^{(2)}_\alpha (D_x)\zeta((\alpha(D_x))^\varkappa)\phi\| \|g^{\varkappa}_\alpha \phi\|,$$

where $\varkappa \in (0, 1]$. It is clear that $g^{\varkappa}_\alpha \phi \in L^2$ and its norm is bounded uniformly in $\alpha \leq 1$. The remaining terms on the right-hand side are of order $o(\alpha)$ due to Corollary 7. This leads to (26). \(^\square\)

The established upper bound leads to the following property.

Lemma 9. For any $\varkappa \in (0, 1)$,

$$\|g^{\varkappa}_\alpha \psi_\alpha\| \leq C$$

uniformly in $\alpha \leq 1$.

Proof. By definition of ψ_α,

$$g^{\varkappa}_\alpha \psi_\alpha = \mu_\alpha^{-1} g^{\varkappa}_\alpha B_\alpha \psi_\alpha.$$

In view of (4), by definition (18) we have $\Theta(x, y) \geq C|x|^\gamma \geq c\theta(x)$, so that the kernel $B_\alpha(x, y)$ is bounded from above by

$$B_\alpha(x, y) \leq \frac{\alpha}{\pi} \frac{C}{(x - y)^2 + \alpha^2 g_\alpha(x^2)},$$

and thus the kernel $\tilde{B}_\alpha(x, y) = g_\alpha(x)^\varkappa B_\alpha(x, y)$ satisfies the estimate

$$\tilde{B}_\alpha(x, y) \leq \frac{C}{\pi \alpha} \frac{1}{(1 + \alpha^{-2}(x - y)^2)^{1-\frac{\varkappa}{2}}}.$$

Since $\varkappa < 1$, by Proposition 15 this kernel defines a bounded operator with the norm uniformly bounded in $\alpha > 0$. Thus

$$\|g^{\varkappa}_\alpha \psi_\alpha\| \leq C \mu_\alpha^{-1} \|\psi_\alpha\| \leq C \mu_\alpha^{-1}.$$

It remains to observe that by Lemma 8 the eigenvalue μ_α is separated from zero uniformly in $\alpha \leq 1$. \(^\square\)

Now we obtain more delicate estimates for ψ_α. For a number $h \geq 0$ introduce the function

$$S_\alpha(t; h) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + t^2 + h^2}, t \in \mathbb{R},$$

and denote by $S_\alpha(h)$ the integral operator with the kernel $S_\alpha(x - y; h)$. Along with $S_\alpha(h)$ we also consider the operator

$$T_\alpha(h) = S_\alpha(0) - S_\alpha(h).$$
Due to (5) the Fourier transform of $S_\alpha(t; h)$ is
\begin{equation}
\hat{S}_\alpha(\xi; h) = \frac{\alpha}{\sqrt{2\pi\sqrt{\alpha^2 + h}}} e^{-|\xi|\sqrt{\alpha^2 + h}}, \xi \in \mathbb{R},
\end{equation}
so that
\begin{equation}
\|S_\alpha(h)\| = \frac{\alpha}{\sqrt{\alpha^2 + h}}, \|T_\alpha(h)\| = 1 - \frac{\alpha}{\sqrt{\alpha^2 + h}}.
\end{equation}
Denote by χ_R the characteristic function of the interval $(-R, R)$.

Lemma 10. For sufficiently small $\alpha > 0$ and $\alpha R \leq 1$,
\begin{equation}
\|\hat{\psi}_\alpha \chi_R\|^2 \geq 1 - \frac{4\lambda_1}{R}.
\end{equation}

Proof. Since $B_\alpha(x, y) < S_\alpha(x - y; 0)$ (see (9) and (27)) and $\psi_\alpha \geq 0$, we can write, using (28):
\begin{align*}
\mu_\alpha &= (B_\alpha \psi_\alpha, \psi_\alpha) < \int_{\mathbb{R}} \int_{\mathbb{R}} S_\alpha(x - y; 0) \psi_\alpha(x) \psi_\alpha(y) dxdy = \int_{\mathbb{R}} e^{-\alpha|\xi|} |\hat{\psi}_\alpha(\xi)|^2 d\xi \\
&\leq \int_{|\xi| \leq R} |\hat{\psi}_\alpha(\xi)|^2 d\xi + e^{-\alpha R} \int_{|\xi| > R} |\hat{\psi}_\alpha(\xi)|^2 d\xi \\
&= (1 - e^{-\alpha R}) \int_{|\xi| \leq R} |\hat{\psi}_\alpha(\xi)|^2 d\xi + e^{-\alpha R}.
\end{align*}
Due to (26), $\mu_\alpha \geq 1 - 2\alpha \lambda_1$ for sufficiently small α, so
\[1 - e^{-\alpha R} - 2\alpha \lambda_1 \leq (1 - e^{-\alpha R}) \|\hat{\psi}_\alpha \chi_R\|^2,
\] which implies that
\[\|\hat{\psi}_\alpha \chi_R\|^2 \geq 1 - \frac{2\alpha \lambda_1}{1 - e^{-\alpha R}}.
\] Since $e^{-s} \leq (1 + s)^{-1}$ for all $s \geq 0$, we get $(1 - e^{-s})^{-1} \leq 2s^{-1}$ for $0 < s \leq 1$, which entails (30) for $\alpha R \leq 1$. \qed

Lemma 11. For sufficiently small $\alpha > 0$ and any $R > 0$,
\begin{equation}
\|\psi_\alpha \chi_R\| \geq 1 - 4\alpha \lambda_1 - \frac{C}{R^7},
\end{equation}
with some constant $C > 0$ independent of α and R.

Proof. It follows from (4) that $\Theta(x, y) \geq c|x|^\gamma$, so that the kernel $B_\alpha(x, y)$ satisfies the bound
\[B_\alpha(x, y) \leq S_\alpha(x - y; c\alpha^3 R^7), \text{ for } |x| \geq R > 0.
\]
Since $\psi_\alpha \geq 0$,
\[
\mu_\alpha = (B_\alpha \psi_\alpha, \psi_\alpha) \leq (S_\alpha(0) \psi_\alpha, \psi_\alpha) + (S_\alpha(\alpha^3 R^\gamma) \psi_\alpha, \psi_\alpha(1 - \chi_R))
\]
\[
= (T_\alpha(\alpha^3 R^\gamma) \psi_\alpha, \psi_\alpha) + (S_\alpha(\alpha^3 R^\gamma) \psi_\alpha, \psi_\alpha).
\]
In view of (29),
\[
\mu_\alpha \leq \|T_\alpha(\alpha^3 R^\gamma)\| \|\psi_\alpha \chi_R\| + \|S_\alpha(\alpha^3 R^\gamma)\|.
\]
Using, as in the proof of the previous lemma, the bound (26), we obtain that
\[
1 - \frac{1}{\sqrt{1 + \alpha R^\gamma}} - 2\alpha \lambda_1 \leq \left(1 - \frac{1}{\sqrt{1 + \alpha R^\gamma}}\right) \|\psi_\alpha \chi_R\|
\]
so
\[
1 - \frac{4\lambda_1 (1 + \alpha R^\gamma)}{c R^\gamma} \leq \|\psi_\alpha \chi_R\|.
\]
This entails (31). \Box

Now we show that any sequence from the family ψ_α contains a norm-convergent subsequence. The proof is inspired by [15], Lemma 7. We precede it with the following elementary result.

Lemma 12. Let $f_j \in L^2(\mathbb{R})$ be a sequence such that $\|f_j\| \leq C$ uniformly in $j = 1, 2, \ldots$, and $f_j(x) = 0$ for all $|x| \geq \rho > 0$ and all $j = 1, 2, \ldots$. Suppose that f_j converges weakly to $f \in L^2(\mathbb{R})$ as $j \to \infty$, and that for some constant $A > 0$, and all $R \geq R_0 > 0$,
\[
\|\hat{f}_\chi_R\| \geq A - CR^{-\kappa}, \quad \kappa > 0,
\]
uniformly in j. Then $\|f\| \geq A$.

Proof. Since f_j are uniformly compactly supported, the Fourier transforms $\hat{f}_j(\xi)$ converge to $\hat{f}(\xi)$ a.a. $\xi \in \mathbb{R}^d$ as $j \to \infty$. Moreover, the sequence $\hat{f}_j(\xi)$ is uniformly bounded, so $\hat{f}_j \chi_R \to \hat{f} \chi_R$, $j \to \infty$ in $L^2(\mathbb{R})$ for any $R > 0$. Therefore (32) implies that
\[
\|\hat{f} \chi_R\| \geq A - CR^{-\kappa}.
\]
Since R is arbitrary, we have $\|f\| = \|\hat{f}\| \geq A$, as claimed. \Box

Lemma 13. For any sequence $\alpha_n \to 0, n \to \infty$, there exists a subsequence $\alpha_{n_k} \to 0, k \to \infty$, such that the eigenfunctions $\psi_{\alpha_{n_k}}$ converge in norm as $k \to \infty$.

Proof. Since the functions $\psi_\alpha, \alpha \geq 0$ are normalized, there is a subsequence $\psi_{\alpha_{n_k}}$ which converges weakly. Denote the limit by ψ. From now on we write ψ_k instead of $\psi_{\alpha_{n_k}}$ to avoid cumbersome notation. In view of the relations
\[
\|\psi_k - \psi\|^2 = 1 + \|\psi\|^2 - 2 \text{Re}(\psi_k, \psi) \to 1 - \|\psi\|^2, k \to \infty,
\]
it suffices to show that \(\| \psi \| = 1 \).

Fix a number \(\rho > 0 \), and split \(\psi_k \) in the following way:

\[
\psi_k(x) = \psi_{k,\rho}^{(1)}(x) + \psi_{k,\rho}^{(2)}(x), \quad \psi_{k,\rho}^{(1)}(x) = \psi_k(x)\chi_{\rho}(x).
\]

Clearly, \(\psi_{k,\rho}^{(1)} \) converges weakly to \(\psi_\rho = \psi\chi_\rho \) as \(k \to \infty \). Assume that \(\alpha_{n_k} \leq \rho^{-\gamma} \), so that by (31),

\[
\| \psi_{k,\rho}^{(1)} \|_2^2 \geq 1 - C\rho^{-\gamma}, \quad \| \psi_{k,\rho}^{(2)} \|_2^2 \leq C\rho^{-\gamma}.
\]

Therefore, for any \(R > 0 \),

\[
\| \hat{\psi}_{k,\rho}^{(1)} \chi_R \| \geq \| \hat{\psi}_k \chi_R \| - \| \psi_{k,\rho}^{(2)} \| \geq 1 - 4\lambda_1 R^{-1} - C\rho^{-\frac{2}{\gamma}},
\]

where we have used (30). By Lemma 12,

\[
\| \psi_\rho \| \geq 1 - C\rho^{-\frac{2}{\gamma}}.
\]

Since \(\rho \) is arbitrary, \(\| \psi \| \geq 1 \), and hence \(\| \psi \| = 1 \). As a consequence, the sequence \(\psi_k \) converges in norm, as claimed.

\[\square\]

5. Asymptotics of \(\mu_\alpha, \alpha \to 0 \): proof of Theorem 1

As before, by \(\lambda_l, l = 1, 2, \ldots \) we denote the eigenvalues of \(A \) arranged in ascending order, and by \(\phi_l \) a set of corresponding normalized eigenfunctions. Recall that the lowest eigenvalue \(\lambda_1 \) of the model operator \(A \) is non-degenerate and its (normalized) eigenfunction \(\phi_1 \) is chosen to be positive a.e. \(x \in \mathbb{R} \). We begin with proving Theorem 3.

Proof of Theorem 3. The proof essentially follows the plan of [15]. It suffices to show that for any sequence \(\alpha_n \to 0, n \to \infty \), one can find a subsequence \(\alpha_{n_k} \to 0, k \to \infty \) such that

\[
\lim_{k \to \infty} \alpha_{n_k}^{-1}(1 - \mu_{\alpha_{n_k}}) = \lambda_1,
\]

and \(\psi_{\alpha_{n_k}} \) converges in norm to \(\phi_1 \) as \(k \to \infty \). By Lemma 13 one can pick a subsequence \(\alpha_{n_k} \) such that \(\psi_{\alpha_{n_k}} \) converges in norm as \(k \to \infty \). As in the proof of Lemma 13 denote by \(\psi \) the limit, so \(\| \psi \| = 1 \) and \(\psi \geq 0 \) a.e.. For simplicity we write \(\psi_\alpha \) instead of \(\psi_{\alpha_{n_k}} \).

For an arbitrary function \(f \in D(A) \) write

\[
\mu_\alpha(\psi_\alpha, f) = (B_\alpha \psi_\alpha, f) = (\psi_\alpha, B_\alpha^{(l)} f) + (\psi_\alpha, (B_\alpha - B_\alpha^{(l)}) f)
\]

\[
= (\psi_\alpha, f) - \alpha(\psi_\alpha, A f) + (\psi_\alpha, R_\alpha f) + (\psi_\alpha, (B_\alpha - B_\alpha^{(l)}) f).
\]

This implies that

\[
\alpha^{-1}(1 - \mu_\alpha)(\psi_\alpha, f) = (\psi_\alpha, A f) - \alpha^{-1}(\psi_\alpha, R_\alpha f) - \alpha^{-1}(\psi_\alpha, (B_\alpha - B_\alpha^{(l)}) f).
\]

(33)
In view of (17) the last term on the right-hand side tends to zero as \(\alpha \to 0 \). The first term trivially tends to \((\psi, Af)\). Consider the second term:

\[
|\langle \psi_\alpha, R_\alpha f \rangle| = \langle \psi_\alpha, R_\alpha^{(1)} f \rangle + \langle g_\alpha^\kappa \psi_\alpha, E_\alpha^{(2)} \langle D_x \rangle \zeta(\langle \alpha \langle D_x \rangle \rangle^\kappa) f \rangle \leq \|R_\alpha^{(1)} f\| + \|g_\alpha^\kappa \psi_\alpha\| \|E_\alpha^{(2)} \langle D_x \rangle \zeta(\langle \alpha \langle D_x \rangle \rangle^\kappa) f\|.
\]

Assume now that \(\kappa < 1 \). By Corollary 7 and Lemma 9, the right-hand side is of order \(o(\alpha) \), and hence, if \((\psi, f) \neq 0\), then passing to the limit in (33) we get

\[
\lim_{\alpha \to 0} \alpha^{-1}(1 - \mu_\alpha) = \frac{\langle \psi, Af \rangle}{\langle \psi, f \rangle}.
\]

Let \(f = \phi_l \) with some \(l \), so that \((\psi, Af) = \lambda_l(\psi, \phi_l)\). Suppose that \((\psi, \phi_l) \neq 0\), so that

\[
\lim_{\alpha \to 0} \alpha^{-1}(1 - \mu_\alpha) = \lambda_l.
\]

By the uniqueness of the above limit, \((\psi, \phi_j) = 0\) for all \(j \)'s such that \(\lambda_j \neq \lambda_k \). Thus, by completeness of the system \(\{\phi_k\} \), the function \(\psi \) is an eigenfunction of \(A \) with the eigenvalue \(\lambda_l \). In view of (26), \(\lambda_l \leq \lambda_1 \). Since the eigenvalues \(\lambda_j \) are labeled in ascending order we conclude that \(\lambda_l = \lambda_1 \). As this eigenvalue is non-degenerate and the corresponding eigenfunction \(\phi_1 \) is positive a.e., we observe that \(\psi = \phi_1 \). \(\square \)

Proof of Theorem 1. Theorem 1 follows from Theorem 3 due to the relations (11). \(\square \)

6. Miscellaneous

In this short section we collect some open questions related to the spectrum of the operator (1).

6.1. Theorems 1 and 3 give information on the largest eigenvalue \(M_\beta \) of the operator \(K_\beta \) defined in (1), (2). Let

\[
M_\beta \equiv M_{1,\beta} \geq M_{2,\beta} \geq \ldots
\]

be the sequence of all positive eigenvalues of \(K_\beta \) arranged in descending order. The following conjecture is a natural extension of Theorem 1.

Conjecture 14. For any \(j = 1, 2, \ldots \)

\[
\lim_{\beta \to 0} \beta^{-\frac{2}{\gamma+1}}(1 - M_{j,\beta}) = \lambda_j,
\]

where \(\lambda_1 < \lambda_2 \leq \ldots \) are eigenvalues of the operator \(A \) defined in (6), arranged in ascending order.

For the case \(\Theta(x, y) = (x^2 + y^2)^2 \) the formula (35) was conjectured in [9], Section 7.1, but without specifying what the values \(\lambda_j \) are. As in [9], the formula (35) is prompted by the paper [15] where asymptotics of the form (35) were found for an integral operator with a difference kernel.
6.2. Although the operator K_β converges strongly to the positive-definite operator K_0 as $\beta \to 0$, we can’t say whether or not K_β, $\beta > 0$, has negative eigenvalues.

6.3. Suppose that the function $\Theta(x, y)$ in (2) is even, i.e. $\Theta(-x, -y) = \Theta(x, y)$, $x, y \in \mathbb{R}$. Then the subspaces H^e and H^o in $L^2(\mathbb{R})$ of even and odd functions are invariant for $K = K_\beta$. Consider restriction operators $K^e = K \upharpoonright H^e$ and $K^o = K \upharpoonright H^o$ and their positive eigenvalues λ^e_j and λ^o_j, $j = 1, 2, \ldots$, arranged in descending order. Remembering that the top eigenvalue of K is non-degenerate and its eigenfunction is positive a.e., one easily concludes that $\lambda^e_1 > \lambda^o_1$. Are there similar inequalities for the pairs λ^e_j, λ^o_j with $j > 1$?

7. Appendix. Boundedness of integral and pseudo-differential operators

In this Appendix, for the reader’s convenience we remind (without proofs) simple tests of boundedness for integral and pseudo-differential operators acting on $L^2(\mathbb{R}^d)$, $d \geq 1$. Consider the integral operator

$$(36) \quad (Ku)(x) = \int_{\mathbb{R}^d} K(x, y)u(y)dy,$$

with the kernel $K(x, y)$, and the pseudo-differential operator

$$(37) \quad (Op(a)u)(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i(x-y)\cdot \xi}a(x, \xi)u(y)dyd\xi,$$

with the symbol $a(x, \xi)$.

The following classical result is known as the Schur Test and it can be found, even in a more general form, in [4], Theorem 5.2.

Proposition 15. Suppose that the kernel K satisfies the conditions

$$M_1 = \sup_x \int_{\mathbb{R}^d} |K(x, y)|dy < \infty, \quad M_2 = \sup_y \int_{\mathbb{R}^d} |K(x, y)|dx < \infty.$$

Then the operator (36) is bounded on $L^2(\mathbb{R}^d)$ and $\|K\| \leq \sqrt{M_1 M_2}$.

For pseudo-differential operators on $L^2(\mathbb{R}^d)$ we use the test of boundedness found by H.O.Cordes in [2], Theorem B'_1.

Proposition 16. Let $a(x, \xi), x, \xi \in \mathbb{R}^d, d \geq 1$, be a function such that its distributional derivatives of the form $\nabla^n_x \nabla^m_\xi a$ are L^∞-functions for all $0 \leq n, m \leq r$, where

$$r = \left\lceil \frac{d}{2} \right\rceil + 1.$$

Then the operator (37) is bounded on $L^2(\mathbb{R}^d)$ and

$$\|Op(a)\| \leq C \max_{0 \leq n, m \leq r} \|\nabla^n_x \nabla^m_\xi a\|_{L^\infty},$$

with a constant C depending only on d.

It is important for us that for \(d = 1 \) the above test requires the boundedness of derivatives \(\partial_x^n \partial_\xi^m a \) with \(n, m \in \{0, 1\} \) only. This result is extended to arbitrary dimensions by M. Ruzhansky and M. Sugimoto, see [13] Corollary 2.4. Recall that the classical Calderón-Vaillancourt theorem needs more derivatives with respect to each variable, see [2] and [13] for discussion. A short prove of Proposition 16 was given by I.L. Hwang in [5], Theorem 2 (see also [8], Lemma 2.3.2 for a somewhat simplified version).

REFERENCES

1. J. Adduci, *Perturbations of self-adjoint operators with discrete spectrum, Ph. D. Thesis*, the Ohio State University, Columbus, Ohio, 2011.
2. H.O. Cordes, *On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators*, J. Funct. Anal. **18** (1975), 115–131.
3. E. B. Davies, *Linear operators and their spectra (Cambridge studies in advanced mathematics)*, Cambridge University Press, 2007.
4. P.R. Halmos, V.Sh. Sunder, *Bounded integral operators on \(L^2 \) spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978.
5. I.L. Hwang, *The \(L_2 \)-boundedness of pseudo-differential operators*, Trans. AMS **302** (1987), pp. 55-76.
6. P. Krotkov, A. Chubukov, *Non-Fermi liquid and pairing in electron-doped cuprates*, Physical Review Letters **96**, Issue 10 (March 17, 2006), pp. 107002 - 107005.
7. P. Krotkov, A. Chubukov, *Theory of non-Fermi liquid and pairing in electron-doped cuprates*, Physical Review B **74**, Issue 1 (July 01, 2006), pp. 014509 - 014524.
8. N. Lerner, *Some facts about the Wick calculus. Pseudo-differential operators*, 135–174, Lecture Notes in Math., 1949, Springer, Berlin, 2008.
9. B. Mityagin, *An anisotropic integral operator in high temperature superconductivity*, Israel J Math **181**, No. 1 (2011), 1–28.
10. M. Reed M. and B. Simon, *Methods of Modern Mathematical Physics, I*, Academic Press, New York, 1980.
11. M. Reed M. and B. Simon, *Methods of Modern Mathematical Physics, II*, Academic Press, New York, 1975.
12. M. Reed M. and B. Simon, *Methods of Modern Mathematical Physics, IV*, Academic Press, New York, 1978.
13. M. Ruzhansky, M. Sugimoto, *Global \(L^2 \)-boundedness theorems for a class of Fourier integral operators*, Comm. Part. Diff. Eq. **31** (2006), 547 –569.
14. M. A. Schubin, *Pseudodifferential Operators and Spectral Theory*, Springer, 2001.
15. H. Widom, *Extreme eigenvalues of translation kernels*, Trans. Amer. Math. Soc. **100** 1961, 252–262.