Melatonin’s Effect in Febrile Seizures and Epilepsy

Abstract

Objective

Recognition of risk factors for febrile seizures (FS) and epilepsy is essential. Studies regarding the role of melatonin in these convulsive disorders are limited. This study determines the relationship between serum melatonin levels and FS and epilepsy in children.

Materials & Methods

A population of 111 children with simple FS, complex FS, and epilepsy (37 children per group, respectively) were included as case groups. In addition, 37 febrile children without seizures comprised the control group. Serum melatonin levels were measured and compared between all groups.

Results

The serum melatonin levels in the simple, complex FSs, and epilepsy groups were 2, 2.4, and 2 pg/ml, respectively. The serum melatonin level in the control group was 2.1 pg/ml.

Moreover, there were no significant differences observed while comparing the case groups.

Conclusion

The present study reveals that there is no association between serum melatonin level and simple or complex FS and epilepsy. It appears that melatonin plays no significant role in these convulsive disorders.

Keywords: Melatonin; Simple febrile seizures; Complex febrile seizures; Epilepsy

Introduction

Febrile seizures (FS) and epilepsy are the most common causes of seizures in children (1). The incidence of FS is 2–9% (2, 3). According to the definitions provided by the National Institutes of Health (NIH) in 1980 and the International League Against Epilepsy (ILAE) in 1993, FS refers to a seizure that occurs following an increase in body temperature (typically over 38°C). In addition, these patients have no central system infection or electrolyte imbalance (2–5). Epilepsy is considered present when 2 or more unprovoked seizures occur at an interval greater than 24h apart. The cumulative lifetime incidence of epilepsy is 3% with more than half of cases beginning in childhood. Epileptic children have no fever or central nervous system infection (6–9). Despite numerous studies, the actual causes of these convulsive disorders remain unknown (10, 11). Interestingly, Guo and Yao reported that serum melatonin levels decreased significantly in children with complex FS.
and epilepsy (12). Melatonin is a tryptophan-derived hormone that is primarily secreted from the pineal gland (13,14). The present study investigates the relationship between serum melatonin levels and simple or complex FS and epilepsy in children.

Materials & Methods
This case-controlled study was conducted at Qazvin Children’s Hospital, affiliated with Qazvin University of Medical Sciences (Iran) in 2010. Qazvin Children’s Hospital is the only referral hospital for children in Qazvin province. Case groups (111 total patients) were selected consecutively among children who were admitted to the hospital following simple or complex FS and epileptic seizures (37 patients per group, respectively). The control group was comprised of 37 febrile children without seizures. The age of all patients was 6-months–5-years of age. The Sample size was calculated according to the following:

\[\alpha = 0.05; \beta = 0.01; \mu_2 = 23.93 \text{ ng}/1\mu_1 = 20.72 \text{ ng}/1; \delta_1 = 2.54; \delta_2 = 2.01 \] (12). Inclusion criteria for the FS groups were as follows: 1) fever ≥38°C; 2) the occurrence of seizures meeting the criteria for simple FS (generalized seizure and lasting less than 15 min); and 3) the occurrence of seizure meeting the complex FS criteria (focal, lasting more than 15 min, and repeated more than once within 24 h). Epilepsy was considered to be present when 2 or more unprovoked seizures occurred at an interval greater than 24 h apart (16,7). Patients with central nervous system infections (such as meningitis or encephalitis), electrolyte imbalances, or neurological deficits were excluded. The control group included healthy children without seizures who visited the hospital clinic due to mild febrile illness without any intervention. Children in all groups were matched in terms of age, gender, weight, height, head circumference, and fever severity. Weight, height, head circumference, and body temperature (axillary) were measured according to standard methods (6). All patients lived in Qazvin City and were permanent residents. The study was approved by the ethical committee of the Research Department in the Qazvin University of Medical Sciences (Project No. 232). All parents were provided information regarding the research method in simple language. The children were included in the study after their parents agreed and signed the informed consent form. In all groups, 6 mL of blood was drawn from the peripheral vessels and centrifuged. The serum was then poured into an acid-washed tube and kept in the refrigerator at a controlled temperature (-20°C). All melatonin samples were collected within 24 h after clinical seizures. All conditions such as postural conditions and environmental lighting were the same for all groups during blood sampling (15).

Measurement of serum melatonin was performed by enzyme-linked immunosorbent assay (ELISA) with a kit (IBL International, Hamburg, Germany, and LotNo. EME151). To improve accuracy, all samples were measured in duplicate. For statistical analysis, analysis of variance (ANOVA) was used to compare variables between the case and control groups; the Mann-Whitney test was used for comparisons of serum melatonin levels. SPSS version 11.5 was used for data analysis. A P-value of <0.05 was considered statistically significant.

Ethics
The ethics committee of the research department in the Qazvin University of Medical Sciences (Project No. 232) approved the study. All parents were provided information regarding the research method in simple language. The children were included in the study after their parents agreed and signed the informed consent form.

Results
The simple FS group was comprised of 19 male patients and 18 female patients. The complex FS and epilepsy groups were comprised of 15 males and 22 females, and 21 males and 16 females, respectively. In the control group, 16 patients were male and 21 were female (p = 0.43). The minimum and maximum ages in the case and control groups were 6- and 60-months old, respectively. There were no statistically significant differences between the groups in terms of age, weight, height, head circumference, and body temperature (p>0.05; Table 1). The serum melatonin levels of the simple and complex FS and epilepsy groups were 2, 2.4, and 2 pg/ml, respectively. The serum melatonin level of the control group was 2.1 pg/ml. There were no significant differences in serum melatonin levels between patients with simple FS (p=0.433), complex FS (p=0.485), and
indicated that melatonin has anticonvulsant properties (17). Another study showed that melatonin levels were low in patients with nocturnal and diurnal complex partial epilepsy relative to controls (18). A separate study conducted by Molina-Carballo et al. in 54 children with convulsive crisis (febrile and epileptic) showed that serum melatonin levels increased during seizure attacks and returned to normal values 1 h later. They further concluded that excitation of melatonin generation by a convulsive crisis may represent the body’s response to seizures and is aimed at achieving homeostasis (25). Similar results were found in another previous study (26). However, a study reported by Schapel et al. in 30 patients with untreated active epilepsy and 19 healthy controls showed that the excretion rates of urinary 6-sulfatoxymelatonin (a hepatic metabolite of melatonin) in patients with active epilepsy were greater than for healthy controls. They further concluded that melatonin generation is increased in untreated patients with active epilepsy and has a circadian model with phase differences relative to controls (19). In contrast, Rao et al. reported that during seizures and 2 h afterwards, serum melatonin levels did not change and remained within the normal limits of healthy populations (27). Furthermore, a separate study demonstrated that there were no significant differences in salivary melatonin levels between FS and epileptic patients relative to control individuals. They also concluded that the anticonvulsant effect of melatonin in epilepsy and FS is not significant (15). However, Fauteck showed that single evening dose of 5–10 mg melatonin could reduce the occurrence of epileptic attacks in children. This study further suggested that melatonin could be a useful antiepileptic drug (28).

The antiepileptic effect of melatonin was confirmed by Peled, who indicated that the anticonvulsant properties of melatonin are due to antioxidant activity, increases of brain gamma-aminobutyric acid (GABA) concentration, inhibition of calcium influx into neurons, and decreased neuronal nitric oxide generation (29).

The present study revealed that there are no associations between serum melatonin levels and simple or complex FS and epilepsy. It appears that melatonin plays no role in these convulsive disorders.
Acknowledgements
This research was registered in the research department of Qazvin University of Medical Sciences (Qazvin, Iran) (Project No.232). Our thanks and best regards goes to the research department of Qazvin University of Medical Sciences, parents of the children for their participation in this study, and Mrs. Shiva Esmaily.

Conflict of interest and funding
The authors have no conflict of interest and funding.

Table 1. Comparison of Variables in Case and Control Groups

Variables	Case groups	Control group (Mean ±SD)	P- Value		
	Simple FS (Mean ±SD)	Complex FS (Mean ±SD)	Epilepsy (Mean ±SD)		
Age (month)	23.75 ±14.59	31.41±1602	28.21 ± 15.17	24.20±14.46	0.1
Weight (kg)	12.57±2.46	13.22±2.26	13.40±2.40	12.14±2.14	0.09
Height (cm)	84.63±10.05	89.58 ±11.34	87.91±11.35	84.44±10.78	0.07
Head circumference (cm)	47.68± 1.93	48.54±2.07	48.22±1.97	47.66 ±1.83	0.1
Temperature °C	38.40± 0.36	38.42±0.42	38.25 ±0.39	1	

Table 2. Comparison of Serum Melatonin between Groups

Groups Serum melatonin (median pg/ml)	Groups Serum melatonin (median pg/ml)	P-Values
Control (2.1)	Simple FS (2)	0.43
	Complex FS (2.4)	0.48
	Epilepsy (2)	0.19
Simple FS (2)	Complex FS (2.4)	0.92
	Epilepsy (2)	0.4
Complex FS (2.4)	Epilepsy (2)	0.24

Melatonin in FC and Epilepsy
Melatonin in FC and Epilepsy

Fig 1. Comparison of serum melatonin level in case and control groups

References

1. Banerjee TK, Hazra A, Biswas A, Ray Jet al. Neurological disorders in children and adolescents. Indian J Pediatr2009; 76:139-46.
2. Salehi Omran MR, Khalilian E, Mehdipour E, Ghabeli JA. Febrile seizures in North Iranian children: Epidemiology and clinical feature, Journal of Pediatric Neurology2008, 6: 39-43.
3. Shinmar S, O’Dell C. Febrile Seizures, Pediatr Ann 2004, 33: 394-402.
4. Millar JS. The child with febrile seizure, Pediatrics for parents 2006.24:12-14.
5. Fetvei A. Assessment of febrile seizures in children, Eur J Pediatr2008, 167:17-27.
6. Mikati MA. Seizures in Childhood In: Kliegman RM, Stanton BF, Schor NF, St. Gme III JW, Behrman RE. Nelson textbook of pediatrics. 19th ed. Phila: Saunders, 2011:2013-2039.
7. Camfield PR, Canfield CS. Epilepsy. In: Swaiman KF, Ashwal S, Ferriero DM, editors. Pediatric neurology: principles and practice. 4th ed. Philadelphia: Mosby, 2006:981-8.
8. Chang BS, Lowenstein DH. Epilepsy, N Eng J Med 2003, 13:1257-1266.
9. Aydin A, Ergor A, Ergor G, Dirik E. The prevalence of epilepsy amongst school children in Izmir, Turkey, Seizure 2002; 11: 392–396.
10. 10.Jan MM, Girvin JP. Febrile seizures. Update and controversies. Neurosciences (Riyadh) 2004; 9:235-42.
11. French JA. Febrile seizures: possible outcomes. Neurology2012; 28; 79:e80-2.
12. Guo JF,Yao JF. Serum melatonin levels in children with epilepsy or FS, Zhongguo Dang Dai Er Ke Za Zhi2009, 11:288-90 (Medline).
13. Reiter RJ. Melatonin: clinical relevance, Best Pract. Res Clin Endocrinol Metab 2003, 17: 273-285.
14. Seithikurippu R, Perumal P, Trakh I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, Cardinali DP. Physiological effects of melatonin Role of melatonin receptors and signal transduction pathways, Prog Neurobiol 85, 2008: 335-353.
15. Ardura J, Andres J, Garmendia JR, Ardura F. Melatonin in epilepsy and FS.J Child Neurol 2010; 25:888-91.
16. Ganesh R, Janakiraman L, Meenakshi B. Serum zinc levels are low in children with simple FS compared with those in children with epileptic seizures and controls.Ann Trop Paediatr 2011; 31:345-9.
17. Bazil CW, Short D, Crispin D, Zheng W. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology 2000; 55:1746-8.
18. Yalyn O, Arman F, Erdogan F, Kula M. A comparison
of the circadian rhythms and the levels of melatonin in patients with diurnal and nocturnal complex partial seizures. Epilepsy Behav 2006;8:542-6.

19. Schapel GJ, Beran RG, Kennaway DL, McLoughney J, Matthews CD. Melatonin response in active epilepsy. Epilepsia 1995; 36:75-8.

20. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance, Biomedicine and Pharmacotherapy 2006;60: 97-108.

21. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, et al. Melatonin: a hormone, a tissue factor, an autacoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003; 34:75-8.

22. Allegra M, Reiter RJ, Tan DX, Gentile C, et al. The chemistry of melatonin’s interaction with reactive species. J Pineal Res 2003; 34:1-10.

23. Rodriguez C, Mayo JC, Sainz RM, Antolin I, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36:1-9.

24. Tan DX, Reiter RJ, Manchester LC, Yan M.T et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger, Curr Top Med Chem 2002, 2: 181-197.

25. Molina-Carballo A, Munoz-Hoyos A, Sanchez-Forte M, Uberos-Fernandez J, Moreno-Madrid F, Cuna-Castroviejo D. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations, Neuropediatrics 2007; 38:122–5.

26. Molina-Carballo A, Acuña-Castroviejo D, Rodriguez-Cabezas T, Muñoz-Hoyos A. Effects of febrile and epileptic convulsions on daily variations in plasma melatonin concentration in children. J Pineal Res 1994; 16: 1-9.

27. Rao ML, Stefan H, Bauer J. Epileptic but not psychogenic seizures are accompanied by simultaneous elevation of serum pituitary hormones and cortisol levels. Neuroendocrinology 1989; 49:33-9.

28. Fauteck J, Schmidt H, Lerchl A, Kurlemann G, Wittkowski W. Melatonin in epilepsy: first results of replacement therapy and first clinical results. Biol Signals Recept 1999; 8:105–10.

29. Peled N, Shorer Z, Peled E, Pillar G. Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia 2001; 42:1208–10.

30. Coppola G, Iervolino G, Mastrosimone M, La TG, et al. Melatonin in wake-sleep disorders in children, adolescents and young adults with mental retardation with or without epilepsy: a double-blind, cross-over, placebo-controlled trial. Brain Dev 2004; 26:373-6.