ORIGINAL ARTICLE

Genetic differentiation in *Pyrenophora teres* f. *teres* populations from Syria and Tunisia as assessed by AFLP markers

A. Bouajila¹, N. Zoghlami¹, S. Murad², M. Baum², A. Ghorbel¹ and K. Nazari²

¹ Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
² International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria

Significance and Impact of the study: The study represents a comparative analysis of the genetic diversity in *P. teres* isolates from two countries spanning two continents and also shows that several distinct *P. teres* genotypes may be found in a given environment. The implications of these findings for *Pyrenophora teres* f. *teres* evolutionary potential and net blotch-resistance breeding in Syria and Tunisia were also discussed.

Keywords
AFLP, Barley, genetic diversity, net blotch, *Pyrenophora teres* f. *teres*, Syria, Tunisia.

Abstract
To investigate the level of genetic differentiation and diversity among *Pyrenophora teres* isolate populations originating from different agro-ecological areas of Syria and Tunisia and to determine the potential of AFLP profiling in genotyping *Pyrenophora teres* f. *teres*. In this study, AFLP markers have been employed to identify patterns of population structure in 20 *Pyrenophora teres* f. *teres* populations from Syria and Tunisia. Ninety-four isolates were studied by the use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes EcoRI and MseI. Based on 401 amplified polymorphic DNA markers (AFLP), variance analyses indicated that most of the variation was partitioned within rather than between populations. Genotypic diversity (GD) was high for populations from Rihane, local landraces and different agro-ecological zones (GD = 0.75–0.86). There was high genetic differentiation among pathogen populations from different host populations in Syria (Gst = 0.31, hst = 0.190) and Tunisia (Gst = 0.39, hst = 0.263), which may be partly explained by the low gene flow around the areas sampled. A phenetic tree revealed three groups with high bootstrap values (55, 68, 76) and reflected the grouping of isolates based on host, or agro-ecological areas. AFLP profiling is an effective method for typing the genetically diverse pathogen *Pyrenophora teres* f. *teres*.

Introduction
Pyrenophora teres Drechs. [anamorph: Drechslera teres (Sacc.) Shoemaker], is a haploid ascomycete that causes net blotch in barley (Smedegaard-Petersen 1971). This persistent disease is common in all barley-growing regions of the world and occurs typically in cool and humid areas. However, it is a serious disease in the dry areas of North Africa, the Middle East and Australia, and may cause up to 40% loss in grain yield (Hovmoller et al. 2000; Jayasena 2007; Jebbouj and El Yousfi 2010) in susceptible barley cultivars under epidemic conditions (McLean et al. 2009). Two forms of the disease, the net form (*P. teres* f. *teres*) and the spot form (*P. teres* f. *maculata*), were described based on the symptoms in barley (Smedegaard-Petersen 1971; McLean et al. 2009). The net form (*P. teres* f. *teres*) is more common in North Africa and the Middle East (Harrabi and Kamel 1990; Arabi et al. 2003).
Croissant fertile and North Africa are primary centres of barley diversity; however, a few improved varieties are currently replacing a wide range of genetically heterogeneous barley landraces across the region. Some of these varieties, for example Rihane, are susceptible to net blotch, and high infection levels have been observed across the region (Yahyaoui 2004). Reduction in yield due to barley net blotch can be as high as 40%, and the disease is currently one of the major constraints to barley production in Syria and Tunisia (Yahyaoui 2004). This can be attributed to the increasingly intensive production, large monocultures of a few varieties and the environmental conditions that are conducive for disease development (Yahyaoui 2004). Resistant barley cultivars could potentially form the basis of sustainable management strategies for net blotch; however, knowledge of *P. teres* population genetics is needed to understand disease epidemiology, and to effectively breed and use resistant cultivars (McDonald and Linde 2002; McLean *et al.* 2009).

Pyrenophora teres is known for its high level of pathogenic variation in several countries (Afanasenko and Levitin 1979; Tekauz 1990; Steffenson and Webster 1992; Gupta and Loughman 2001; Cromey and Parkes 2003; Wu *et al.* 2003; Broccatelli *et al.* 2008; Silvar et al. 2009), including Syria and Tunisia (Harrabi and Kamel 1990; Arabi *et al.* 2003). Studies of *P. teres* populations using colony colour, isozymes, restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) revealed high genetic diversity within field populations of the pathogen (Rau *et al.* 2003, 2005; Wu *et al.* 2003; Sereinius 2006; Grewal *et al.* 2008; Silvar *et al.* 2009). Genotypic diversity ranged from 0.63 to 0.75 (population 3, population 7). Across all 20 populations, the number of polymorphic loci at each population ranged from 63 (population 5) to 239 (population 12) and with a percentage of polymorphic loci 15-71-59.60%, respectively (Table 4). Average genotypic diversity across Syrian and Tunisian populations ranged from 0.104 (population 5) to 0.261 (population 8) (Table 4).

Information on the dispersal (gene flow) and mode of reproduction of *P. teres* could influence current management strategies for barley net blotch in Syria and Tunisia. AFLP markers are well suited for studies that focus on the role of selectively neutral evolutionary processes such as mating system, genetic drift and gene flow (McDonald and Linde 2002). A more complete understanding of the genetic structure of *P. teres* populations in Syria and Tunisia necessitates hierarchical sampling of a relatively large number of isolates on different geographical and spatial scales (Wu *et al.* 2003).

Genetic differentiation of geographically separated pathogen populations has important implications for the identification and deployment of disease resistance genes. Barley is cultivated in Syria and Tunisia in widely varying agro-ecological zones ranging from subhumid to semiarid, and one hypothesis is that *P. teres* populations in these areas are genetically differentiated. The objectives of this study were, to (i) characterize the amount and distribution of genetic variation within and among populations of *P. teres* sampled in different barley-growing areas of Syria and Tunisia and (ii) use this information to infer the role of different evolutionary forces on the pathogen population in the two countries.

Results

AFLP analysis

Combined analysis of AFLP data. A total of 401 discernible and polymorphic AFLP bands were generated with six primer combinations selected across the 94 isolates of 20 Syrian and Tunisian populations of *Pyrenophora teres* f. *teres* (Table 2). Primers varied in their ability to detect variation at both within and between populations. The within-populations *H*_w varied from 0.127 for E11XM50 primer to 0.195 for E11XM47 primer (Table 2).

On average over all primers, the *Pyrenophora teres* population from Attayet (Siliana, Tunisia) was the most diverse based on several indices (Table 4). While the level of within-population genetic diversity was lower among the samples of population 5 (mean *H*_w = 0.104). Even the genetic diversity between Syrian populations ranged from 0.128 to 0.220 (Tables 1 and 4).

Genotypic diversity ranged from 0.75 to 0.00 (population 3, population 7, population 8, population 14, population 15) to a maximum of 0.86 that was recorded at seven of the twenty sites surveyed, indicating that at these sites, every strain represented a distinct genotype.

The variance components of within and between populations detected with AMOVA were 72-76 and 27-24% of the total variance, respectively, which were both significant at *P* < 0.001 (Table 3). This was in approximate agreement with results derived from *H*_o index, in which within- and between-population variations were 56-61 and 43-39%, respectively. It seems clear that while most of the variation is partitioned within populations, there is still considerable variation between populations.

Across all 20 populations, the number of polymorphic loci at each population ranged from 63 to 239 (population 5) to 239 (population 12) and with a percentage of polymorphic loci 15-71-59.60%, respectively (Table 4). Average gene diversity across Syrian and Tunisian populations ranged from 0.104 (population 5) to 0.261 (population 8) (Table 4).

Touiref (population 5) samples were the least variable based on differences between isolates and Shannon’s information index (Tables 1 and 4).

A matrix of pairwise *F*_{st} values is presented in Table 5. Values of *F*_{st} ranged from −0.0053 (between populations 16 and 17) to 0.637 (between populations 5 and 15). Genetic differentiation was not significant only between Tunisian populations: Barrage Meleg, Touiref and Hammouzina samples (−0.021, −0.0031, −0.0053, respectively).
Table 1 List of *Pyrenophora teres* f. *teres* isolates used on this study collected from Syria and Tunisia

Code	Reference/site	Populations code/collection site (district)	Geographic position	Host/Rainfall type/year collection
1	T1B1/TUN1	Popl/Testour 1 (Beja) HR, NW	Rihane/6R/2009	
2	T1D1/TUN2	Popl/Testour 1 (Beja) HR, NW	Rihane/6R/2009	
3	T1F1/TUN3	Popl/Testour 1 (Beja) HR, NW	Rihane/6R/2009	
4	T1C1/TUN71	Popl/Testour 1 (Beja) HR, NW	Rihane/6R/2009	
5	T1C2/TUN72	Popl/Testour 1 (Beja) HR, NW	Rihane/6R/2009	
6	T3C1/TUN4	Pop2/Teboursek 1 (Beja) HR, NW	Rihane/6R/2009	
7	T3F1/TUN5	Pop2/Teboursek 1 (Beja) HR, NW	Rihane/6R/2009	
8	T3H1/TUN6	Pop2/Teboursek 1 (Beja) HR, NW	Rihane/6R/2009	
9	T6A1/TUN7	Pop3/Bahra (Kef) MR, NW	Local barley landrace/6R/2009	
10	T6E1/TUN8	Pop3/Bahra (Kef) MR, NW	Local barley landrace/6R/2009	
11	T6G1/TUN9	Pop3/Bahra (Kef) MR, NW	Local barley landrace/6R/2009	
12	T6H1/TUN10	Pop3/Bahra (Kef) MR, NW	Local barley landrace/6R/2009	
13	T9A1/TUN11	Pop4/Barrage Maleg (Kef) MR, NW	Local barley landrace/6R/2009	
14	T9C1/TUN12	Pop4/Barrage Maleg (Kef) MR, NW	Local barley landrace/6R/2009	
15	T9D1/TUN13	Pop4/Barrage Maleg (Kef) MR, NW	Local barley landrace/6R/2009	
16	T9E1/TUN14	Pop4/Barrage Maleg (Kef) MR, NW	Local barley landrace/6R/2009	
17	T9H1/TUN15	Pop4/Barrage Maleg (Kef) MR, NW	Local barley landrace/6R/2009	
18	T14B1/TUN16	Pop5/Touiref (Kef) MR, NW	Local barley landrace/6R/2009	
19	T14B2/TUN17	Pop5/Touiref (Kef) MR, NW	Local barley landrace/6R/2009	
20	T14G1/TUN18	Pop5/Touiref (Kef) MR, NW	Local barley landrace/6R/2009	
21	T15F1/TUN19	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
22	T15G1/TUN20	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
23	T15G2/TUN21	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
24	T15B1/TUN59	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
25	T15D1/TUN60	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
26	T15C1/TUN61	Pop6/Gboulat (Siliana) MR, NW	Local barley landrace/6R/2009	
27	T16A1/TUN22	Pop7/Mosrata (Siliana) MR, NW	Rihane/6R/2009	
28	T16B1/TUN23	Pop7/Mosrata (Siliana) MR, NW	Rihane/6R/2009	
29	T16E1/TUN24	Pop7/Mosrata (Siliana) MR, NW	Rihane/6R/2009	
30	T16H1/TUN25	Pop7/Mosrata (Siliana) MR, NW	Rihane/6R/2009	
31	T17C1/TUN26	Pop8/Attayet (Siliana) MR, NW	Rihane/6R/2009	
32	T17E1/TUN27	Pop8/Attayet (Siliana) MR, NW	Rihane/6R/2009	
33	T17F3/TUN28	Pop8/Attayet (Siliana) MR, NW	Rihane/6R/2009	
34	T17H1/TUN29	Pop8/Attayet (Siliana) MR, NW	Rihane/6R/2009	
35	T19A1/TUN30	Pop9/Sers (Kef) MR, NW	Local barley landrace/6R/2009	
36	T19B1/TUN31	Pop9/Sers (Kef) MR, NW	Local barley landrace/6R/2009	
37	T19E1/TUN32	Pop9/Sers (Kef) MR, NW	Local barley landrace/6R/2009	
38	T25A1/TUN33	Popl/O/Sidi Mfr, Bouficha (Sousse) LR, C	Local barley landrace/6R/2009	
39	T25B2/TUN34	Popl/O/Sidi Mfr, Bouficha (Sousse) LR, C	Local barley landrace/6R/2009	
40	T25C3/TUN62	Popl/O/Sidi Mfr, Bouficha (Sousse) LR, C	Local barley landrace/6R/2009	
41	T28G1/TUN35	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
42	T28H1/TUN36	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
43	T28A1/TUN73	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
44	T28D1/TUN74	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
45	T28D2/TUN75	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
46	T28F1/TUN76	Pop 1/Hinchia (Silax) LR, S	Local barley landrace/6R/2009	
47	T51E2/TUN37	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
48	T51C2/TUN63	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
49	T51A2/TUN65	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
50	T51F2/TUN66	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
51	T51C1/TUN67	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
52	T51D2/TUN68	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
53	T51H1/TUN69	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
54	T51H2/TUN70	Popl/2ir Mcharaga (Zaghouan) MR, NE	Rihane/6R/2009	
The rest of values were all significant at $P < 0.001$. This indicates that all populations may be considered different from each other, with population 5 being the most different from the others and populations 1, 4, 9 and 16 being the most similar. The overall F_{st} across all the populations was 0.27.

The significant differentiation between populations was also revealed in the clustering analysis (Fig. 1) and reflected in the estimates of gene flow (N_m) (Table 2). Values of N_m ranged from a moderate value of 0.84 to a high value of 1.18, averaging 0.653, which indicated that *Pyrenophora teres* populations tend to differentiate between the twenty studied populations.

The total variation among *Pyrenophora teres* was further tested based on geographic countries (Syria, Tunisia) (Table 2). Most of the total variation (68.55%) was identified within Syrian populations, 40% was identified among Tunisian populations. Although, genetic differentiation was significant between countries (F_{st} ranging from 0.126 to 0.572), results show that the isolates of *P. teres* are genetically more distinct across a wide geographical area. Moderate gene flow was found in...
Table 2 Genetic diversity identified by six AFLP primers combinations in 94 isolates from Syria and Tunisia

AFLP primer combinations	H_t	H_s	G_{ST}	N_m
E11X M47	0.295	0.194	0.404	0.985
E11X M50	0.218	0.127	0.340	1.180
E17X M7	0.320	0.172	0.441	0.866
E17X M50	0.262	0.147	0.399	0.845
E15X M47	0.296	0.169	0.371	1.085
E15 X M50	0.266	0.157	0.382	1.052
TUN pop 1 (17pop, 78 isolates)	0.263	0.158	0.398	0.756
Syrian pop 20 (3pop, 16 isolates)	0.190	0.130	0.314	1.092
All populations (20pop, 94 isolates)	0.272	0.154	0.433	0.653

H_t, Gene diversity totalled among populations; H_s, Gene diversity within populations; G_{ST}, Genetic differentiation between populations; N_m, Number of migrants.

Table 3 AMOVA analysis for the Pyrenophora teres f. teres populations using 401 AFLP bands

Source of variation	df	Sum of squares	Variance components	Variation (%)
Among populations	19	2134.373	15.290***	27.24
Within populations	74	3022.808	40.848***	72.76
Total	93	5157.181	56.139	

***p < 0.001.

Tunisian populations $N_m < 0.756$, while $N_m = 1$ in Syrian populations.

Cluster polymorphism. The genetic distance among field populations was estimated using Nei’s unbiased measure of genetic distance (Nei 1978).

Cluster analysis based on UPGMA allowed a graphical representation of genetic similarity among 94 isolates from different sampling sites of Syria and Tunisia. Pyrenophora teres populations were grouped onto three main clusters that were genetically very distant from each other with bootstrap 55, 68, 76 (Fig. 1). Bootstrap values were generally high, in 47 cases were the values >50 (Fig. 1). There were two main clusters at the linkage distance level of 0.37 that were well supported by bootstrap values of 100%. The first cluster contained two isolates ICAPtr 16 and ICAPtr 17 from Syrian populations Hama and Tartous with bootstrap 76. The second cluster comprised 13 isolates from Aleppo, Hama and Tartous in Syria with only three isolates from two areas of Tunisia namely TUNPtr 59, 60, 76 (Gbourat, Siliana, NW), (Hincha, Sfax, SE) (Table 1). The third cluster comprised most of the Tunisian isolates (76 isolates) with only two isolates from Syria (Hama) ICAPtr 12 and 13 (Fig. 1, Table 1).

Conversely, the obtained dendrogram revealed no apparent association between geographical distance or
Table 5 Genetic differentiation between *Pyrenophora teres* f. teres populations from Syria and Tunisia

| TUN/Syr pop | TUN pop1 | TUN pop2 | TUN pop3 | TUN pop4 | TUN pop5 | TUN pop6 | TUN pop7 | TUN pop8 | TUN pop9 | TUN pop10 | TUN pop11 | TUN pop12 | TUN pop13 | TUN pop14 | TUN pop15 | TUN pop16 | TUN pop17 | TUN pop18 | TUN pop19 |
|-------------|
| TUN pop2 | 0.152 | | | | | | | | | | | | | | | | | | |
| TUN pop3 | 0.316 | 0.260 | | | | | | | | | | | | | | | | | |
| TUN pop4 | 0.380 | 0.333 | (−0.003) | | | | | | | | | | | | | | | | |
| TUN pop5 | 0.539 | 0.511 | 0.115 | | | | | | | | | | | | | | | | |
| TUN pop6 | 0.150 | 0.158 | 0.145 | 0.194 | | | | | | | | | | | | | | | |
| TUN pop7 | 0.155 | 0.077 | 0.074 | 0.153 | 0.286 | | | | | | | | | | | | | | |
| TUN pop8 | 0.084 | 0.073 | 0.297 | | | | | | | | | | | | | | | | |
| TUN pop9 | 0.146 | 0.136 | 0.188 | 0.249 | 0.420 | | | | | | | | | | | | | | |
| TUN pop10 | 0.206 | 0.202 | 0.084 | 0.109 | 0.302 | | | | | | | | | | | | | | |
| TUN pop11 | 0.206 | 0.144 | 0.278 | 0.330 | 0.468 | | | | | | | | | | | | | | |
| TUN pop12 | 0.078 | 0.201 | 0.320 | 0.384 | 0.501 | | | | | | | | | | | | | | |
| TUN pop13 | 0.152 | 0.124 | 0.280 | 0.340 | 0.461 | | | | | | | | | | | | | | |
| TUN pop14 | 0.158 | 0.225 | 0.374 | 0.443 | 0.629 | | | | | | | | | | | | | | |
| TUN pop15 | 0.213 | 0.304 | 0.392 | 0.362 | 0.637 | | | | | | | | | | | | | | |
| TUN pop16 | 0.109 | 0.198 | 0.325 | 0.396 | 0.538 | | | | | | | | | | | | | | |
| TUN pop17 | 0.121 | 0.220 | 0.394 | 0.423 | 0.575 | | | | | | | | | | | | | | |
| TUN pop18 | 0.484 | 0.458 | 0.351 | 0.416 | 0.590 | | | | | | | | | | | | | | |
| TUN pop19 | 0.510 | 0.503 | 0.383 | 0.411 | 0.512 | | | | | | | | | | | | | | |
| TUN pop20 | 0.262 | 0.212 | 0.203 | 0.269 | 0.380 | | | | | | | | | | | | | | |

Significant pairwise ($P < 0.05$), Abbreviations as in Table 1.
regional affiliation and the genetic distance between the populations. Indeed, *P. teres* f. *teres* isolates obtained from different sampling sites in the same area or country did not cluster together (Fig. 2). The mean genetic distance of each of the 20 populations from all others ranged from 0·027 to 0·325. The least genetic distance (0·027) was recorded between populations Bahra (Kef, NW Tunisia) and Barrage Meleg (Kef, NW Tunisia), while populations Touiref (Kef, NW Tunisia) and Hamrounia (Bizerte, NN Tunisia) were the most genetically distant (0·325). The 20 *P. teres* populations were grouped into two main clusters that were genetically very distant from each other. The cluster I was composed only by the Tunisian populations from 14 locations corresponding to different agro-ecological zones (Béja, Siliana, Kef, Zaghouan, Bizerte, Sousse, Sfax). The cluster II contained, however, apart from region Kef (Northwest Tunisia) that was represented by a three field populations (Bahra, Barrage Meleg and Touiref) and all Syrian populations (Fig. 2). None of the individualized subclusters comprised field populations from a single area, indicating considerable gene flow between regional populations (e.g. populations T8, T11, T12).

![Figure 1](image1.png) **Figure 1** UPGMA phenogram of *Pyrenophora teres* f. *teres* based on the AFLP data. Numbers on branches are bootstrap values. The isolates are designated by alphanumeric represent the origin (ICAPtr: blue color represent isolates collected from Syria; TUNPtr: represent isolates sampled from Tunisia), followed by the host (the red color, for cv.Rihane and black one for a landrace cultivar).

![Figure 2](image2.png) **Figure 2** UPGMA dendrogram of twenty *Pyrenophora teres* f. *teres* populations from Syria and Tunisia based on the AFLP data. The populations are designated by numerics (see Table 1). From P1 to P20: Tunisian and Syrian net blotch populations were represented on black and red, respectively. Cluster I Tunisian populations: 1(P1), 2(P2), 6(P6), 7(P7), 8(P8), 9(P9), 10(P10), 11(P11), 12(P12), 13(P13), 14(P14), 15(P15), 16(P16), and Cluster II Syrian and Tunisian populations: 17(P17), 18(P18), 19(P19), 20(P20), 3(P3), 4(P4), 5(P5).
T13 and T14; T6, T7, T9 and T10; T15 and T11) (Fig. 2, Table 1).

Discussion

Croissant fertile and North Africa are primary centres of barley diversity, and many barley growers in Syria and Tunisia still rely on genetically heterogeneous landraces, some of which are derived from the seeds that were transferred from generation to generation (Ceccarelli et al. 1987; Zoghlami et al. 2011). If pathogenicity on barley was acquired by a large number of genetically distinct strains, then *P. teres* populations in Syria and Tunisia have coevolved with many barley genotypes over a long period of time, resulting in a diverse pathogen population. It is, therefore, not surprising that all populations exhibited a high degree of genotype diversity (0.8) within a spatial scale of 1 m².

In this study, the marker technology has been employed to detect genetic variation and population structure of *Pyrenophora teres* f. *teres* from Syria and Tunisia and has once again demonstrated its usefulness in gaining information quickly and usefully in breeding programmes.

AFLP markers, along with appropriate statistical procedures are suitable for genetic variation analyses at both intra- and interpopulation levels (Serénius et al. 2007; Bentata et al. 2011).

The level of genetic diversity at AFLP markers detected here (*Hsp* = 0.276) is comparable to or higher than, diversity levels reported for pathogen when using biochemical and molecular markers (Jonsson et al. 2000; Zaki and Al-Masry 2008).

The genetic variation was maintained within rather than between the studied populations (58-33%) as detected with *amova*. Similarly, Serénius et al. (2007) found that in Russian *P. teres* f. *teres* 20 and 80% of the total variation was partitioned among and within populations, respectively. Leisova et al. (2005a,b) showed that 98-1% of genetic variance occurred within local populations and 1-9% was found among populations. However, Bentata et al. (2011) revealed a high genetic variability between the studied isolates in Morocco. The Syrian and Tunisian isolates were highly variable and contributed 27-24% of the total variation observed among all isolates using *amova* analysis. *Amova* analysis revealed significant differences among populations and among samples within population (*P* < 0.001) (Table 3).

Conversely, high genetic variability at population level was detected. Indeed, a high number of polymorphic markers was produced by the Tunisian population no. 12 (239 markers) and the Syrian population no. 20 (197 markers), respectively, with a percentage of polymorphic loci 52 and 49% (Table 4). Also, 87 different haplotypes were identified among the 94 isolates studied. In other words, 87 isolates have specific genotypes, suggesting that there is more genetic recombination, which may have played a major role in genetic diversity of Syrian and Tunisian *Pyrenophora teres* f. *teres*. In addition, the high diversity might be either a result of a high mutation rate, large population size or retrotransposons, which can all contribute to diversity in asexually reproducing populations (McDonald and Linde 2002; Taylor et al. 2004).

These findings also indicated significant genetic subdivision of the Syrian and Tunisian *P. teres* populations according to *F*_{st} values (*F*_{st} = 0.27, *P* < 0.001). The *F*_{st} estimate is considered to be more biased than *Φ*_{ST} for the evaluation of differentiation coefficient for dominant marker data and may suggest that the *P. teres* populations analysed are moderately differentiated according to Wright's interpretation of *F*_{ST} values (Wright 1978).

As Syria is the primary centre of origin of *Hordeum* species, it can therefore shelter old pathogen populations, where mutation events occurring over a long period of time have increased pathogen population diversity. This was supported by the *F*_{ST} value (Table 4) that identified Syria to have most of the variation identified elsewhere. High diversity has also been observed in *Fusarium graminearum* Schwabe [teleomorph (Gibberella zeae) (Schw.-eins.)] in West Asia and Southern Russia, which was suggested to be the origin of *F. graminearum*, whereas the Finnish *F. graminearum* isolates were significantly less variable (Gagkaeva and Yli-Mattila 2004).

In the present study, genetic differentiation among the 20 field populations (sample size of 3–8 isolates) was high (*G*_{ST} = 0.398) but dropped to 0.31 when Syrian field populations were grouped together, and increase to 0.40 in Tunisian field populations (Table 2). In fact, cereal pathogen populations are relatively old in Syria (Burdon and Silk 1997; Khan and Tekauz 1982), and were likely established by relatively few isolates. Migration via seed to intra- and interareas in Syria, and therefore the diversity, has remained comparatively high.

A moderate level of genetic differentiation was found between the pathogen population from Tunisia and Syria based on Nei’s genetic distances, high *G*_{ST} values with *N*_{ST} = 0.653. Although, evidence for differentiation was found in pairwise comparisons involving populations from all other areas (*F*_{ST} = 0.11–0.63), suggesting that the ‘geographic populations’ in this study are evolving independently and hence may be considered not a part of the same ‘genetic population’. The moderate differentiation observed may have resulted from the rather small number of isolates sampled in populations (8, 20) although bootstrap tests of significance enabled us to estimate indices of population differentiation with a reasonable degree of...
confidence (Grünwald et al. 2003). This differentiation may indicate local adaptation of *P. teres* to the high rainfall conditions of different areas in Syria and Tunisia compared with the moderate or low rainfall conditions in the more arid regions. Assuming that our AFLP data accurately reflect the differentiation between these populations in Syria and Tunisia, they indicate that the identification and deployment of net blotch-resistant varieties would need to take into consideration these two different regional populations. However, detailed analysis of gene flow between areas using larger sample sizes and codominant markers is warranted to corroborate the moderate population differentiation observed in this study. Knowledge of pathotype distribution will also help determine whether *P. teres* pathotypes in the country are geographically circumscribed (Bouajila et al. 2011).

The most probable explanation for the high genotype diversity, moderate gene flow and high genetic differentiation of the pathogen population in Syria and Tunisia is sexual reproduction and air dispersal of ascospores. Forcefully discharged ascospores become airborne and may serve as primary inoculum over considerable distances (Trail et al., 2002). Wind dispersal of ascospores enables the migration of new genotypes into barley fields and may facilitate the rapid dissemination of virulent mutants across entire areas. Many studies showed the identification of the telemorph and detection of sexual recombination in natural populations of *P. teres* (McLean et al. 2009).

The importance of genetic diversity and the potential consequences associated with narrowing the genetic base of cultivated barley has long been recognized by plant pathologists and plant breeders. The potential for severe net blotch epidemics has increased with the production of modern homogenous, genetically uniform barley varieties with specific genes for resistance to barley net blotch. The high genetic diversity, the high gene flow and the potential for sexual recombination in Syria and Tunisian populations of *P. teres* mean that reliance on major gene resistance is unlikely to be an appropriate breeding strategy (McDonald and Linde 2002).

In conclusion, the existence of genetic variability observed, can be explained by inter-regional and intraregional gene flow between the Syrian and Tunisia isolates. However, the durability of specific resistance genes may be increased by the use of multiline cultivars, by combining (‘pyramiding’) different resistance genes. Syria includes in Middle East, which is the centre of origin and earliest knowledge of domestication for many cereal crops. Increased knowledge of the population biology of *P. teres* is likely to lead to better management of disease in agricultural ecosystems. Recently, *P. teres* f. *teres* isolates were differentially pathogenic. CI09214 and CI05401 cultivars were released as the most effective sources of resistance in Syria and Tunisia (Bouajila et al. 2011) and combined (pyramided) into elite varieties and by deploying many cultivars with different resistance genes in space or time.

Materials and methods

Collection of *P. teres* isolates

In this study, 94 *P. teres* f. *teres* isolates were sampled from barley-infected leaves from 20 locations (17 populations from Tunisia and three populations from Syria) throughout the major barley-growing areas in Syria and Tunisia (Table 1).

For the Tunisian isolates, leaf samples were collected from naturally infected fields during the 2009 season using the hierarchical sampling method described by McDonald et al. (1999): one field population was sampled at each location, drawing a composite sample from eight circular spots of 1 m diameter each located along two parallel transects (with four spots per transect). The two transects and the collection sites (spots) along the transects were separated from the adjacent members by 10 m. This field design allowed a total sampling area of 408 m² (12 × 34 m). Ten infected leaves were sampled from different plants or tillers in a circular sweep of each sampling spot. Most collections were made from the northern subhumid to semi-arid region (69 isolates), which is the largest barley-growing area in Tunisia, and the rest from the central (three isolates) and the southern regions (six isolates) of the country.

Sixteen Syrian net blotch infected leaf samples were collected from three locations covering the major barley-growing areas in the northern subhumid to the semi-arid region in North Western (three isolates), and Western (13 isolates) Syria (Table 1) in springs of 1998, 2003, 2006, 2007 and 2009. Fields were sampled randomly along major roads in the principal barley productions areas in Syria (three populations).

Leaf samples were placed in paper envelopes, air-dried at room temperature for 48 h and stored at 6°C until required.

Single-spore isolation and inoculum production

Leaves showing typical net blotch symptoms were cut into discs 5–10 mm in diameter, surface-sterilized in 90% ethanol for 10 s and in 1% NaCl for 60 s, rinsed twice in sterile deionized water for 1 min each time, blotted, dried and aseptically transferred to Potato dextrose agar (PDA) plates. The plates were incubated at 20°C for several days under alternating cycles of 12 h of near-ultraviolet (NUV)
light and 12 h of darkness. After 3–5 days, single conidia were transferred with a needle, while looking through a microscope, to fresh PDA plates and incubated for 2 weeks to induce growth of mycelia.

DNA extraction

Approximately 0.05 g of the freeze-dried fungal tissue was ground into a fine powder in a 2-ml microfuge tube using a mixer-mill. Total DNA from each fungal isolate was extracted using a modified hexadecyltrimethylammonium bromide (CTAB) extraction procedure (Bouajila et al. 2007). Extracted DNA was resuspended in Tris-EDTA buffer (10 mmol l\(^{-1}\)) and stored at −20°C. DNA concentrations were estimated by spectrophotometry and/or agarose gel electrophoresis. DNAs were run in a 0.8% agarose gel to verify the quality and the concentration.

AFLP analysis

The AFLP procedure was performed with minor modifications according to the protocol of Vos et al. (1995). Approximately 40-ng DNA was digested simultaneously with EcoRI and MseI at 37°C for 4 h. The digested samples were incubated at 70°C for 15 min to inactivate the restriction endonucleases. EcoRI and MseI adapters were ligated to the digested samples at 20°C for 4 h. This was performed to generate template DNA for amplification. Pre-amplification was carried out with +1-primers each carrying one selective nucleotide (EcoRI + A and MseI + C) in a thermocycler for 30 cycles (94, 56 and 72°C/30 s). The amplification products were stored at −20°C. Selective amplification was carried out with EcoRI + 1 and 2-primers and MseI + 3-primers and 5 μl of the diluted PCR products from the pre-amplification. Six primer pair combinations were employed in this study (Table 2). The PCR amplification was performed as follows: 12 cycles at 94°C for 30 s, 56°C for 30 s and 72°C for 60 s, with annealing temperature lowered by 0.7°C every cycle. This was followed by 23 cycles at 94°C for 30 s, 56°C for 30 s and 72°C for 60 s.

Gel analysis

The reaction products were mixed with equal volumes of formamide loading buffer (95% formamide, 10 mmol l\(^{-1}\) EDTA, bromophenol blue and xylene cyanol), denatured by incubating at 95°C for 5 min and quickly cooled on ice. The products were analysed on 6% denaturing polyacrylamide gels. The gel was run at constant power (50–55 W) until the dye was about 2/3 down the length of the gel. AFLP bands were visualized by silver staining.

Data analysis

For AFLP analysis, bands were scored as 1 denoting presence or 0 denoting absence, and a matrix of AFLP phenotypes was then assembled across all individuals and populations. For each primer, the total number of bands and the polymorphic ones were calculated.

The index of phenotypic diversity (\(H_p\)), the average diversity over all populations (\(H_p/\text{pop}\)) and the mean diversity at species level (\(H_p/\text{sp}\)) were estimated as described by Yeh and Boyle (1997). The component of within-population diversity was estimated as \(H_p/\text{pop}\) and that of between-population diversity as \(1 − H_p/\text{pop}/H_p/\text{sp}\). All the above calculations were undertaken by POPGENE 1.32 (Yeh and Boyle 1997).

A pairwise Euclidean distance matrix was generated with the computer package AMOVA-PREP 1-01 (Miller 1998) and was then used as input for WINAMOVA 1.55 for AMOVA analysis (Excoffier et al. 1992) to test whether populations had differing amounts of AFLP variation.

The gene flow (\(N_m\), number of migrants per generation) (Whitlock and McCauley 1999) was approximated as: \(N_m = (1/4) [(1/F_{st}) - 1]\), where \(F_{st}\) (inbreeding index) values were available from a matrix of pairwise combinations produced by WINAMOVA.

The Shannon information index (\(H_i\)), which is commonly used to characterize populations’ diversity in a community and accounts for both abundance and evenness of the populations that are present. It was calculated using Poppgene v1.31 software (Yeh et al. 1999) according to the formula:

\[
H = -\sum_{i=1}^{n} p_i \ln p_i
\]

where \((p_i)\) represents the proportion of a population \(i\) relative to the total number of the populations analysed at AFLP markers.

A dendrogram among the populations was constructed with software Darwin (Version 5.0-148) (http://darwin.cirad.fr/darwin) using the matrix of pairwise \(F_{st}\) values and the unweighted pair-group method with arithmetical averages (UPGMA) (Sneath and Sokal 1973) algorithm.

Acknowledgements

This investigation was cosponsored by ICARDA and the Ministry of Higher Education and Scientific Research in Tunisia.

References

Afanasenko, O.S. and Levitin, M.M. (1979) Population structure of causal agent of barley net blotch. Race identification. Mycol Phytopathol 13, 230–234.
Arabi, M.I.E., Al-Safadi, B. and Charbaji, T. (2003) Pathogenic variation among isolates of Pyrenophora teres, the causal agent of barley net blotch. *J Phytopathol* **151**, 376–382.

Bentata, F., Labhilili, M., El Aissami, A., Bary, S., Yeslem, C.H. and Ibijibien, J. (2011) Analysis of diversity genetic of Moroccan net blotch populations using amplified fragment length polymorphism (AFLP) markers. *Afr J Biotechnol* **10**, 7548–7554.

Bouajila, A., Abang, M., Haouas, S., Udupa, S., Rezgui, S., Baum, M. and Yahyaoui, A. (2007) Genetic diversity of *Rhynchosporium secalis* in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. *Mycopathologia* **163**, 281–294.

Bouajila, A., Zoghlimi, N., Al-Ahmed, M., Baum, M., Ghorbel, A. and Nazari, K. (2011) Comparative virulence of *Pyrenophora teres f. teres* from Syria and Tunisia and screening for resistance sources in barley: implications for breeding. *Lett Appl Microbiol* **53**, 489–502.

Burdon, J.J. and Silk, J. (1997) Sources and patterns of diversity in plant pathogenic fungi. *Phytopathology* **87**, 664–669.

Ceccarelli, S., Grando, S. and van Leur, J.A.G. (1987) Genetic diversity in barley landraces from Syria and Jordan. *Euphytica* **36**, 389–405.

Cromey, M.G. and Parkes, R.A. (2003) Pathogenic variation in *Drechslera teres* in New Zealand. *N Z Plant Prot* **56**, 251–256.

Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondria DNA restriction sites. *Genetics* **131**, 479–491.

Gagkaeva, T.Y. and Yli-Mattila, T. (2004) Genetic diversity of *Fusarium graminearum* in Europe and Asia. *Eur J Plant Pathol* **110**, 551–562.

Grewal, T.S., Roessnagel, B.G. and Scoles, G.J. (2008) The utility of molecular markers for net blotch resistance across geographic regions. *Crop Sci* **48**, 2321–2333.

Grünwald, N.J., Goodwin, S.B., Milgroom, M.G. and Fry, W.E. (2003) Analysis of genotypic diversity data for populations of microorganisms. *Phytopathology* **93**, 738–746.

Gupta, S. and Loughman, R. (2001) Current virulence of *Pyrenophora teres* on barley in Western Australia. *Plant Dis* **85**, 960–966.

Harrabi, M. and Kamel, A. (1990) Virulence spectrum to barley in some isolates of *Pyrenophora teres* from the Mediterranean region. *Plant Dis* **74**, 230–232.

Hovmoller, M.S., Caftier, V., Jalli, M., Andersen, O., Besenhoffer, G., Czembor, J.H., Dreiseitl, A., Felsenstein, F. *et al.* (2000) The European barley powdery mildew virulence survey and disease nursery 1993–1999. *Agronomie* **20**, 729–743.

Jayasena, K.W., Van Burgel, A., Tanaka, K., Majewski, J. and Loughman, R. (2007) Yield reduction in barley in relation to spot-type net blotch. *Australas Plant Pathol* **36**, 429–433.

Jebbouj, R. and El Yousfi, B. (2010) An integrated multivariate approach to net blotch of barley: virulence quantification, pathotyping and a breeding strategy for disease resistance. *Eur J Plant Pathol* **127**, 521–544.

Jonsson, R., Sail, T. and Bryngholm, T. (2000) Genetic diversity for random amplified polymorphic DNA (RAPD) markers in two Swedish populations of *Pyrenophora teres*. *Can J Plant Pathol* **22**, 258–264.

Keiper, F.J., Capio, E., Grcic, M. and Wallwork, H. (2007) Development of sequence-tagged microsatellites for the barley net blotch pathogen, *Pyrenophora teres*. *Mol Ecol Notes* **7**, 664–666.

Khan, T.N. and Tekauz, A. (1982) Occurrence and pathogenicity of *Drechslera teres* isolates causing spot-type symptoms on barley in Western Australia. *Plant Dis* **66**, 423–425.

Leisova, L., Minarikova, V., Kucera, L. and Ovesna, J. (2005a) AFLP-based PCR markers that differentiate spot and Net forms of *Pyrenophora teres*. *Seed Pathol* **54**, 66–73.

Leisova, L., Minarikova, V., Kucera, L. and Ovesna, J. (2005b) Genetic Diversity of *Pyrenophora teres* isolates have detected by AFLP Analysis. *Phytopathol J* **153**, 569–578.

McDonald, B.A. and Linde, C. (2002) Pathogen population genetics, evolutionary potential and durable resistance. *Annu Rev Phytopathol* **40**, 349–379.

McDonald, B.A., Zhan, J. and Burdon, J.I. (1999) Genetic structure of *Rhynchosporium secalis* in Australia. *Phytopathology* **89**, 639–645.

McLean, M.S., Barbara, J.H. and Hollaway, G.J. (2009) Epidemiology and control of spot form of net blotch (*Pyrenophora teres* *Esp. maculata*) of barley: a review. *Crop Past Sci* **60**, 303–315.

Miller, M.P. (1998) AMOVA-PREP 1.01: a program for the preparation of AMOVA input files from dominant-markers raw data. Northern Arizona University, Flagstaff, AZ.

Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of samples. *Genetics* **89**, 583–90.

Rau, D., Brown, A.H.D. and Brubaker, C. (2003) Population genetic structure of *Pyrenophora teres* Drechs. The causal agent of Net blotch in Sardinian landraces of barley (Hordeum vulgare L.). *Theor Appl Genet* **106**, 947–959.

Rau, D., Maier, F.J., Papa, R., Brown, A.H.D., Balmas, V., Saba, E., Schaefer, W. and Attene, G. (2005) Isolation and characterization of the mating-type locus of the barley pathogen *Pyrenophora teres* and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces. *Genome* **48**, 855–869.

Serenius, M. (2006) *Population Structure of Pyrenophora teres*, the Causal Agent of Net Blotch of Barley, PhD Thesis. Finland: MTI Agrifood Research Finland.

Serenius, M., Manninen, O., Wallwork, H. and Williams, K. (2007) Genetic differentiation in *Pyrenophora teres* populations measured with AFLP markers. *Mycol Res* **111**, 213–223.

Silvar, C., Casas, A.M., Kopahnke, D., Habekub, A., Schweizer, G., Gracia, M.P., Lasa, J.M., Ciudad, F.J. *et al.* (2009)
Genetic diversity of *Pyrenophora teres* f. *teres*

A. Bouajila et al.

Screening the Spanish Barley Core Collection for disease resistance. *Plant Breed* **129**, 45–52.

Smedegaard-Petersen, V. (1971) *Pyrenophora teres* f.sp. *maculata* f.sp. nov. and *Pyrenophora teres* f.sp. *teres* on barley in Denmark. Yearbook of the Royal Veterinary and Agricultural University. Copenhagen, Denmark: Royal Veterinary and Agricultural University, pp. 124–144.

Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy*, Freeman, San Francisco.

Steffenson, B.J. and Webster, R.K. (1992) Pathotype diversity of *Pyrenophora teres* f. *teres* on barley. *Phytopathology* **82**, 170–177.

Taylor, E.J.A., Konstantinova, P., Leigh, F., Bates, J.A. and Lee, D. (2004) Gypsylike retrotransposons in *Pyrenophora*: an abundant and informative class of molecular markers. *Genome* **47**, 519–525.

Tekauz, A. (1990) Characterization and distribution of pathogenic variation in *Pyrenophora teres* f. *teres* and *P. teres* f. *maculata* from western Canada. *Can J Plant Pathol* **12**, 141–148.

Trail, F., Xu, H., Loranger, R. and Gadoury, D. (2002) Physiological and environmental aspects of ascospore discharge in *Gibberella zeae* (anamorph *Fusarium graminearum*). *Mycologia* **94**, 181–189.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van der Lee, T., Hornes, M., Frijters, A., Pot, J. *et al.* (1995) AFLP: a new technique for DNA fingerprinting. *Nucleic Acids Res* **23**, 4407–4414.

Whitlock, M. and McCauley, D.E. (1999) Indirect measures of gene flow and migration: *F*st ≠ 1 (4Nm + 1). *Heredity* **82**, 117–125.

Wright, S. (1978) *Evolution and the Genetic of Populations Variability Within and Among Natural Populations*, Vol. 4. Chicago: University of Chicago Press.

Wu, H.L., Steffenson, B.J., Oleson, A.E. and Zhong, S. (2003) Genetic variation for virulence and RFLP markers in *Pyrenophora teres*. *Can J Plant Pathol* **25**, 82–90.

Yahyaoui, A.H. (2004) Occurrence of barley leaf blights in Central Western Asia and North Africa. In Meeting the challenges of barley blights. Proc 2nd Intern Workshop on Barley Leaf Blights 7–11 April 2002, ed. Yahyaoui, A.H., Brader, L., Tekauz, A., Wallwork, H. and Steffenson, B. pp. 13–18. Aleppo, Syria: ICARDA.

Yeh, F.C. and Boyle, T.J.B. (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. *Belg J Bot* **129**, 157.

Yeh, F.C., Yang, R.C. and Boyle, T. (1999) *Popgene version 1.31*. Microsoft Window-based Freeware for Population Genetic Analysis. Distributed by F. Yeh. University of Alberta, Edmonton, Canada.

Zaki, K.I. and Al-Masry, A.I.S. (2008) Detection of biochemical genetic markers for net blotch disease resistance and barley grain yield. *Egypt J Phytopathol* **36**, 1–17.

Zoghlami, N., Bouagila, A., Lamine, M., Hajri, H. and Ghorbel, A. (2011) Population genetic structure analysis in endangered *Hordeum vulgare* landraces from Tunisia: conservation strategies. *Afr J Biotechnol* **10**, 10344–10351.