Data Article

Interaction analysis data of simulation gaming events using the serious game Aqua Republica

Steven Jean a,*, Wietske Medema a, Jan Adamowski a, Chengzi Chew b, Patrick Delaney b, Arjen Wals c

a Department of Bioresource Engineering, McGill University, Ste Anne de Bellevue, Quebec, Canada
b DHI Canada, 336 Eagle Street North, Unit 1A2, Cambridge, ON, Canada N3H 1C2
c Department of Social Sciences, Education and Competence Studies, Wageningen University, Wageningen, The Netherlands

ARTICLE INFO

Article history:
Received 10 May 2018
Received in revised form 6 June 2018
Accepted 15 June 2018
Available online 27 June 2018

ABSTRACT

The data presented in this article is related to the research article entitled ‘Serious games as a catalyst for boundary crossing, collaboration and knowledge co-creation in a watershed governance context’ (Jean et al., In press) [1]. Understanding the team dynamics related to serious game simulations is critical for understanding the potential uses and functions of these simulations for knowledge co-creation (Medema et al., 2016) [2]. The data was obtained from four independent serious game simulation events and consists of n = 40 participants. Participants were divided into small teams and were then recorded playing the serious game Aqua Republica (http://aquarepublica.com/). Interactions were tallied and interaction maps created using the visualization software GEPHI (https://gephi.org/). The interaction maps allow for a visual representation of the progression of interactions over the course of four subsequent phases of gameplay (Jordan and Henderson, 1995) [3].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.jenvman.2018.05.021
* Corresponding author.
E-mail address: steven.jean@mail.mcgill.ca (S. Jean).

https://doi.org/10.1016/j.dib.2018.06.031
2352-2409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Water resource management, social sciences, learning sciences
More specific subject area	Serious game simulations
Type of data	Table, figures
How data was acquired	Audiovisual recordings then transformed using GEPHI visualization software
Data format	Raw, analyzed and descriptive data
Experimental factors	• Sample consisted of a variety of stakeholders working in the field of watershed management
	• Teams were recorded playing the serious game Aqua Republica
	• Number of interactions of players in each team were tallied
Experimental features	Tallied interactions were used to create interaction maps
Data source location	Montreal, Canada; Ottawa, Canada; Moncton, Canada; Halifax, Canada.
Data accessibility	Data is included in this article
Related research article	Jean S, Medema W, Adamowski J, Chew C, Delaney P, and Wals A. Serious games as a catalyst for boundary crossing, collaboration and knowledge co-creation in a watershed governance context. (in press)

Value of the data

- Data presented in this Data in Brief transform interactions between participants into interaction maps that allow for a quick visual understanding of interaction dynamics.
- A visual understanding of the interaction data allows for trends to be spotted that may not be obvious using only numerical data.
- Data and methods included can be used for a variety of different fields and are not limited to serious game simulations or a watershed governance context.
- All studies on team and group dynamics can find value in this data and the methods used to visualize team interactions (Figs. 1–3).

1. Data

Audiovisual recordings were used in order to obtain the raw data. Interactions between players were tallied and classified as either (a) directed interactions (between two individuals) or (b) team interactions (broader statements shared with the team) [3–5]. Team interactions were documented over four phases of gameplay for each game simulation event, for each team (11 teams total). Each of the four phases of gameplay consists of a ten-minute period and is separated from the next phase by another ten-minute period. These four phases are selected over the course of each game simulation event as follows: phase 1 (0–10 min); phase 2 (20–30 min); phase 3 (40–50 min); and phase 4 (60–70 minutes). By dividing the game simulation events into these smaller phases; interactions can be tallied and displayed graphically to provide a visual overview of how team interactions evolve over time [6]. The legend for all the figures included in this Data in Brief is provided in Fig. 4 in the research article entitled ‘Serious games as a catalyst for boundary crossing, collaboration and knowledge co-creation in a watershed governance context’ [1]. Each of the following Tables and Figures (interaction maps) corresponds to one of
the eleven teams. Some of the interaction maps for certain teams and specific phases of the game simulation events have been left out of this Data in Brief (i.e. Moncton Team 2 Phases 1 and 3, Ottawa Team 2 Phases 1 and 2, Ottawa Team 3 Phases 1 and 2, and McGill Team 2 Phases 1 and 3) while they have already been provided in the above mentioned research article [1].

Table 1
Interaction data Moncton Team 1.

Moncton Team #1	Phase 1	Phase 2	Phase 3	Phase 4
	Team	Team	Team	Team
	P1	P2	P3	P1
P1	X	7	5	X
P2	4	X	3	2
P3	5	7	X	5
	P1	P2	P3	P1
Phase 1	15	21	10	17
Phase 2	20	24	26	24
Phase 3	20	24	18	
Phase 4	20	24	18	

Fig. 1. Interaction maps Moncton Team 1 Phase 1–4.
Table 2
Interaction data Moncton Team 2.

	Phase 1		Phase 2						
	P1	P2	P3	Team	P1	P2	P3	Team	
P1	X	9	5	21	P1	X	6	3	21
P2	14	X	1	8	P2	7	X	0	17
P3	8	0	X	5	P3	2	0	X	13

	Phase 3		Phase 4						
	P1	P2	P3	Team	P1	P2	P3	Team	
P1	X	4	3	26	P1	X	7	5	22
P2	4	X	1	12	P2	15	X	1	20
P3	2	1	X	11	P3	5	1	X	7

Fig. 2. Interaction maps Moncton Team 2 Phase 2 and 4.

Table 3
Interaction data Halifax Team 1.

	Phase 1		Phase 2						
	P1	P2	P3	Team	P1	P2	P3	Team	
P1	X	4	2	17	P1	X	0	4	16
P2	6	X	2	5	P2	0	X	0	8
P3	5	1	X	3	P3	3	0	X	13

	Phase 3		Phase 4						
	P1	P2	P3	Team	P1	P2	P3	Team	
P1	X	3	4	26	P1	X	1	4	14
P2	3	X	2	18	P2	3	X	2	6
P3	4	2	X	20	P3	4	3	X	7
Table 4
Interaction data Halifax Team 2.

Halifax Team #2	Phase 1	Phase 2	Phase 3	Phase 4
P1 X 3 2 2 15	P1 X 3 2 3 26			
P2 4 X 0 0 8	P2 3 X 1 1 17			
P3 4 0 X 0 9	P3 3 1 X 1 17			
P4 4 2 0 X 7	P4 3 0 0 X 11			
P1 X 3 4 3 23	P1 X 2 2 3 14			
P2 3 X 0 0 15	P2 3 X 2 2 6			
P3 4 0 X 0 21	P3 3 2 X 3 9			
P4 3 0 0 X 18	P4 3 1 3 X 5			
Fig. 4. Interaction maps Halifax Team 2 Phases 1–4.

Table 5
Interaction data Ottawa Team 1.

Ottawa Team #1		
	Phase 1	Phase 2
	P1 P2 P3 Team	P1 P2 P3 Team
P1	X 9 0 9 Team	P1 X 9 3 13
P2	10 X 6 8 Team	P2 8 X 8 14
P3	0 6 X 5 Team	P3 2 5 X 12

	Phase 3	Phase 4
	P1 P2 P3 Team	P1 P2 P3 Team
P1	X 4 1 12 Team	P1 X 4 4 13
P2	4 X 6 15 Team	P2 7 X 4 17
P3	1 4 X 14 Team	P3 4 5 X 13
Fig. 5. Interaction maps Ottawa Team 1 Phases 1–4.

Table 6
Interaction data Ottawa Team 2.

Ottawa Team #2											
						P1	P2	P3	P4	Team	
Phase 1											
P1	X	5	2	0	12	P1	X	1	2	0	10
P2	5	X	3	0	10	P2	1	X	6	0	19
P3	1	3	X	6	18	P3	1	X	6	0	20
P4	0	0	6	X	9	P4	0	1	3	X	14
Phase 2											
P1	X	5	2	0	9	P1	X	2	0	0	9
P2	3	X	2	0	18	P2	3	X	3	1	16
P3	0	4	X	6	21	P3	0	3	X	7	19
P4	0	1	6	X	16	P4	0	1	5	X	17

S. Jean et al. / Data in Brief 19 (2018) 2315–2328 2321
Table 7

Interaction data Ottawa Team 3.

Ottawa Team #3
Phase 1
P1
X
X
X

Phase 3	**Phase 4**						
P1	P2	P3	Team	P1	P2	P3	Team
X	2	17	P1	X	5	3	19
X	5	17	P2	X	3	4	20
X	5	14	P3	3	4	X	18

Fig. 6. Interaction maps Ottawa Team 2 Phase 3 and 4.

Fig. 7. Interaction maps Ottawa Team 3 Phase 3 and 4.
Table 8
Interaction data McGill Team 1.

Phase 1	Phase 2												
P1	P2	P3	P4	P5	Team	P1	P2	P3	P4	P5	Team		
P1	X	1	2	1	1	3	P1	X	1	0	0	0	1
P2	1	X	1	2	0	8	P2	1	X	3	1	1	17
P3	1	1	X	5	4	14	P3	0	2	X	4	1	16
P4	0	2	4	X	2	12	P4	0	2	4	X	0	15
P5	1	1	5	2	X	12	P5	0	1	2	0	X	12

Phase 3	Phase 4												
P1	P2	P3	P4	P5	Team	P1	P2	P3	P4	P5	Team		
P1	X	1	0	0	0	4	P1	X	0	0	0	0	3
P2	1	X	3	0	2	19	P2	0	X	1	2	2	14
P3	0	3	X	1	0	16	P3	0	0	X	1	1	22
P4	0	0	1	X	0	16	P4	0	2	1	X	0	20
P5	0	2	0	0	X	14	P5	1	0	1	0	X	19

Fig. 8. Interaction maps McGill Team 1 Phases 1–4.
Table 9
Interaction data McGill Team 2.

Phase 1	Phase 2								
P1	P2	P3	P4	Team	P1	P2	P3	P4	Team
X	6	3	2	14	X	2	3	1	27
4	X	8	4	13	P2	2	X	5	1
3	10	X	3	10	P3	3	5	X	4
2	4	X	15	P4	1	0	3	X	19

Phase 3

Phase 4
P1
X
7
6
3

Fig. 9. Interaction maps McGill Team 2 Phase 2 and 4.

Table 10
Interaction data McGill Team 3.

Phase 1	Phase 2						
P1	P2	P3	Team	P1	P2	P3	Team
X	6	2	7	X	2	1	13
6	X	9	14	P2	2	X	7
2	10	X	13	P3	1	7	X

Phase 3

Phase 4
P1
X
2
2
Fig. 10. Interaction maps McGill Team 3 Phases 1–4.

Table 11
Interaction data McGill Team 4.

McGill Team #4
Phase 1
P1 P2 P3 P4 P5 Team
P1 X 1 0 0 0 0
P2 2 X 0 1 1 22
P3 0 0 X 0 4 4
P4 0 1 0 X 2 18
P5 1 1 0 0 X 22

Phase 3	Phase 4	
P1 X 0 0 0 0 0	24	P1 X 2 0 0 0 0 6
P2 0 X 0 0 0 35	P2 2 X 0 0 0 16	
P3 0 0 X 0 0 0	P3 0 X 0 0 0 0	
P4 0 0 0 X 0 29	P4 0 0 0 X 4 14	
P5 1 0 0 0 X 23	P5 1 0 0 4 X 15	
2. Experimental design, materials, and methods

2.1. Study area and participants

As part of this data [1], four game simulation events were organized in Quebec, Ontario and the Maritimes. In Quebec, an event was organized with students from the Integrated Water Resource Management (IWRM) master’s program at McGill University in Montreal as part of one of their required courses, this particular event was divided into two sessions with two cohorts of students. Two events took place in the Maritimes in association with two local watershed organizations acting as intermediaries for diverse stakeholder teams in their watershed territories, the Petitcodiac Watershed Alliance (PWA) in Moncton and the Sackville River Association (SRA) in Halifax. Both events involved participants from academia, local government, non-profit organizations and conservation authorities. The fourth event was organized in Ontario with the Rideau Valley Conservation Authority (RVCA) in Ottawa, involving employees, stakeholders and members of the board of directors. In total, over the course of the four events, 40 individuals participated in this data. The following table shows a breakdown of the events and the corresponding teams formed from them: (Figs. 5–11, Table 12).
2.2. Materials

For each event laptops were used in order to run the Aqua Republica simulations. Furthermore, camcorders were set up in front of each team in order to obtain audio-visual information for the entire time of gameplay (Tables 1–12).

2.3. Experimental design and methods

Participants for each event were randomly divided into teams and given the chance to play the Aqua Republica serious game. Participants had no say in which team they were a part of. Participants were recorded while playing the game. The recordings were then analyzed and interactions from all participants were tallied and then transformed into interaction maps divided into four 10-min phases (see data section for information on how phases were divided).

Acknowledgments

This study was funded by a Social Sciences and Humanities Research Council of Canada (SSHRC 890-2014-0056) Partnership Development Grant held by Prof. Jan Adamowski and contributed to by Prof. Nguyen from the McGill University Brace Centre for Water Resources Management.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.06.031.

References

[1] S. Jean, W. Medema, J. Adamowski, C. Chew, P. Delaney, A. Wals, Serious games as a catalyst for boundary crossing, collaboration and knowledge co-creation in a watershed governance context, J. Environ. Manag., 2018, (In Press).
[2] W. Medema, A. Furber, J. Adamowski, Q. Zhou, I. Mayer, Exploring the potential impact of serious games on social learning and stakeholder collaborations for transboundary watershed management of the St. Lawrence River Basin, Water 8 (5) (2016) 175. http://dx.doi.org/10.3390/w8050175.
[3] B. Jordan, A. Henderson, Interaction analysis: foundations and practice, J. Learn. Sci. 4 (1) (1995) 39–103.
[4] I. Nonaka, N. Konno, The concept of “ba”: building a foundation for knowledge creation, Calif. Manag. Rev. 40 (3) (1998) 40–54.

[5] W. Medema, J. Adamowski, C. Orr, A. Furber, A. Wals, N. Milot, Building a foundation for knowledge co-creation in collaborative water governance: dimensions of stakeholder networks facilitated through bridging organizations, Water 9 (1) (2017) 60.

[6] J. Wang, D. Huffaker, J. Treem, L. Fullerton, Focused on the prize: characteristics of experts in massive multiplayer online games, First Monday 16 (8) (2011), http://dx.doi.org/10.5210/fm.v16i8.3672.