Isolation and in silico characterization of full-length cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis in Neolamarckia cadamba

Boon-Ling Tchin¹, Wei-Seng Ho¹*, Shek-Ling Pang²

¹Forest Genomics and Informatics Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia, ²Applied Forest Science and Industry Development Unit, Sarawak Forestry Corporation, 93250 Kuching, Sarawak, Malaysia.

1. INTRODUCTION

Lignin is the second most abundant organic compound found in wood, especially in supporting and conducting tissue of the plants such as fibers and tracheary elements. It represents approximately 20–30% of the plant biomass. Cinnamyl alcohol dehydrogenase (CAD) is one of the lignin biosynthesis genes with a major function in catalyzing the dehydrogenative polymerization of these monolignols will give rise to the formation of lignin molecule in plant [2]. Lignin provides mechanical and structural supports to the plants. It allows transportation of water become smoother in tracheids and vessels. Moreover, lignin is very resistant to degradation in nature, and thus, it plays a significant protective function against pathogen or decaying fungi [3].

CAD is recognized as one of the regulating enzymes which control the formation of guaiacyl and syringyl lignin. According to a study carried out by Kutsuki et al. [4], angiosperm CADs reduce both coniferyl and sinapyl aldehydes to their corresponding alcohols almost equally, but the gymnosperm CADs were extraordinarily specific for the reduction of coniferyl aldehyde. CAD displays distinct characteristics between gymnosperms and angiosperms [5]. CAD in gymnosperm is encoded by a single gene which is responsible for the biosynthesis of mainly guaiacyl lignin, and it has been characterized from various gymnosperms species [6,7]. In contrast, multiple CAD isoforms as well as the putative CAD sequences have been purified and isolated from many angiosperms [8-10].

Many studies had shown that any up- or down-regulation of CAD gene resulted in altered lignin production [11]. CAD gene has been widely used for the association genetic study, and it showed significant correlations with lignin composition, C6 sugar, and S: G ratio in black cottonwood [12]. Meanwhile, single nucleotide variation detected in CAD gene also showed significant associations with several wood properties traits such as wood density of loblolly pine [13], Acacia mangium [14], and Neolamarckia cadamba [15] as well as earlywood specific gravity and lignin composition in Pinus taeda [16]. Such significant genetic association reflects the importance of CAD gene toward phenotypic characteristics of plants.

N. cadamba or locally known as Kelampayan is one of the indigenous plantation tree species with high productivity and short rotation time [17-20]. It poses various purposes to the timber users including certain pharmacological values [21-24]. Here, we present the newly
isolated full-length cDNA sequence of \textit{NcCAD} gene from \textit{N. cadamba} with the aid of \textit{N. cadamba} EST database [17,18]. This full-length \textit{NcCAD} gene can serve as a good candidate gene for further insight into the wood properties of \textit{N. cadamba} through association genetics study.

2. MATERIALS AND METHODS

2.1. \textit{CAD} EST Data Analysis

A full-length \textit{CAD} gene was predicted through contig mapping approach based on the ESTs obtained from the transcriptome database (NcdBST) [17,18]. The database is generated by sequencing of 5' end of cDNA clones derived from developing xylem tissues of a 2-year-old \textit{N. cadamba} tree. The hypothetical full-length \textit{CAD} gene was constructed by combining four EST singletons (i.e., Ncdn040G11; Ncdn086G07; Ncdn036G07; and Ncdn049H04) which have 100% sequence similarity at the overlapping regions. It contains open reading frame, start and stop codon, 5'-untranslated region (UTR), 3'-UTR, and a poly (A) tail at the end of 3' sequence. A specific primer pair was designed using the Primer Premier 5 (Biosoft International, USA) based on the hypothetical full-length \textit{CAD} gene. The oligonucleotide primers used for amplifying full-length cDNA were FL-NcCAD-F (5'-TTTTCCCTCTGCTCCTTGC-3') and FL-NcCAD-R (5'-GCCACAGGGCATACGAGAC-3').

2.2. RNA Isolation, PCR, Cloning, and Sequencing of Full-length cDNA

Total RNA isolation, cloning, and sequencing were based on the procedures as described in Tiong et al. [25,26]. Total RNA was isolated from the developing xylem tissues of a 4-year-old \textit{N. cadamba} tree. The PCR amplification was performed using a Veriti™ Thermal Cycler (Applied Biosystems, USA) using the PCR profile as described in Tehin et al. [15].

2.3. In Silico Sequence Analysis of Full-length CAD cDNA

The vector sequences were trimmed off using the Chromas version 2.33 (Technelysium, AU). The edited sequences were subjected to homology search using the BLASTn database. The hypothetical full-length \textit{CAD} gene was predicted through contig mapping approach. The highlighted sequences indicate start and stop codon. The boxed sequences indicate the position where the full-length primers being designed.

2.4. Phylogenetic Analysis and Three-dimensional (3D) Protein Structure Prediction of Full-length CAD Genes

Phylogenetic trees were also constructed for the full-length \textit{CAD} gene using MEGA 5 software [30]. The tertiary structures of \textit{CAD} were predicted using Phyre2 software [31]. The Jmol (http://www.jmol.org/) program was used for the graphical representation of tertiary protein structure. The predicted tertiary structures were compared with the protein crystal structures available in the Protein Data Bank using Dali Server [32] for searching the structure homology.

3. RESULTS AND DISCUSSION

3.1. PCR Amplification and Cloning of CAD cDNA

A full-length \textit{CAD} gene was successfully predicted from the \textit{N. cadamba} EST database through a contig mapping approach. The hypothetical full-length \textit{CAD} gene (1,478 bp) contains open reading frame, start and stop codon, 5' UTR, and 3' UTR. According to the hypothetical full-length \textit{CAD} sequence, full-length primer pair was synthesized and then used for PCR amplifications (Fig. 1). An expected bright band was observed after analyzed on a 1.5% agarose gel. The purified PCR product was then cloned and sequenced.

3.2. Full-length \textit{NcCAD} CDNA Sequence

Full-length \textit{CAD} cDNA is 1240 bp long with a 1086 bp open reading frame, a 68 bp 5'-UTR, and a 86 bp 3'-UTR. The NCBI BLASTn result indicated that the full-length \textit{CAD} cDNA shared 68-72% of identities with other known \textit{CAD} genes from \textit{Populus trichocarpa}, \textit{Populus tremuloides}, \textit{Fragaria × ananassa}, and \textit{Arabidopsis thaliana} (Table 1). This result indicated that the isolated gene was encoded for \textit{CAD}. The annotated sequence was then designated as \textit{NcCAD} (GenBank accession number: JQ946326). The \textit{NcCAD} cDNA encodes a 38.563 kDa protein with 361 amino acids and an isoelectric point of 7.14.

3.3. Sequence Analysis of \textit{NcCAD} Gene

The motif domains of \textit{NcCAD} gene were detected using two independent programs, namely, PROSITE (http://prosite.expasy.org/) and CDD (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). From the analysis, a zinc-containing alcohol dehydrogenase signature (GHEIVGEYVEGSKV) was detected in the deduced \textit{NcCAD} amino acid sequence from position 72 to 86 using PROSITE search engine. Meanwhile, an NADP-binding domain motif (GLGGGLG) was identified at amino acid position 192 to 197 using CDD search engine. In addition, three catalytic zinc binding sites (His-73, Cys-51, and Cys-167) and four structural zinc binding sites (Cys-104, Cys-110, and Cys-118) were also detected in \textit{NcCAD} amino acid sequence (Fig. 2).

3.4. 3D Structure Prediction of \textit{NcCAD} Protein

The 3D secondary protein structures of \textit{NcCAD} protein (Fig. 3) were predicted using the Phyre2 [31]. The result showed that \textit{NcCAD} is a globular protein which contains alpha-domain and beta-domain. Furthermore, the structure comparison against PDB database using the
Table 1: The BLASTn output for full-length NcCAD cDNA sequence discovered from N. cadamba.

Accession No.	Species	Query coverage (%)	E value	Maximum identity (%)
XM 002322786.1	P. trichocarpa SAD	86	1e-172	72
EU603305.1	P. trichocarpa CAD2	86	1e-172	72
AY850131.1	P. tremula × P. tremuloides SAD	86	5e-172	72
AF273256.1	P. tremuloides SAD	86	2e-170	72
XM 002299914.1	P. trichocarpa CAD like	87	4e-154	71
U63534.1	Fragaria × ananassa CAD	84	1e-135	70
AY050931.1	A. thaliana CAD	84	7e-113	68

* N. cadamba: Neolamarckia cadamba, A. thaliana: Arabidopsis thaliana, P. trichocarpa: Populus trichocarpa, P. tremuloides: Populus tremuloides, P. tremula: Populus tremula.

Table 2: Comparison of NcCAD protein structure against structures in PDB using Dali server.

PDB	Description	Z-score	% Identity
1yqx	P. tremuloides sinapyl alcohol dehydrogenase	66.3	77
2cf5	Arabidopsis cinnamyl alcohol dehydrogenase	49.8	51
1piw	S. cerevisiae cinnamyl alcohol dehydrogenase	48.6	36

P. tremuloides: Populus tremuloides, S. cerevisiae: Saccharomyces cerevisiae.

Dali server revealed that the modelled NcCAD protein structure shares similarity to SAD of P. tremuloides (77%), CAD of Arabidopsis (51%), and CAD of Saccharomyces cerevisiae (36%), with z-score values in between 48.6 and 66.3 (Table 2).

3.5. Phylogenetic Analysis of NcCAD Gene

A phylogenetic analysis was performed for deduced NcCAD amino acid sequence to investigate the evolutionary relationships of the NcCAD gene with other plant species. The partial or full-length sequences of the CAD gene from different plant species were retrieved from NCBI database to include in the analysis. From the neighbor joining tree generated using MEGA 5 software [30], two clusters were observed. NcCAD was grouped in the cluster containing both CAD and SAD genes, but with more close distribution to Populus SAD (Fig. 4).

As indicated by Barakat et al. [10], both CAD and SAD genes were involved in lignin biosynthesis in the xylem of P. trichocarpa and P. tremuloides. SAD is essential for the biosynthesis of syringyl lignin in angiosperms [33]. Although SAD maintains the highest specificity for the substrate sinapaldehyde, it also catalyzes the reduction of coniferaldehyde [34]. Therefore, the NcCAD cDNA discovered in this study may pose intermediate characteristics of both CAD and SAD genes. However, further structural and biochemical studies are needed to identify the specific function for NcCAD gene.

CAD proteins are encoded by a gene family in plants such as A. thaliana [35], Oryza sativa [36], and Populus [10]. According to Barakat et al. [10], the CAD gene family in woody plants could...
be classified into three main classes based on the differences in gene structure and function. The Class I is CAD sequences from gymnosperms and angiosperms. Meanwhile, the Class II and III are dominated by sequences only from angiosperms. They further suggested that the Class I and II CAD genes are involved in wood development, and some other CAD genes from Class II and Class III may function in plant tissues under biotic stresses. In this classification, NcCAD was grouped into Class II CAD (Fig. 5). Based on the close distribution of NcCAD to P. tremuloides SAD and P. trichocarpa CAD10, it is further suggested that the NcCAD gene is involved in lignin biosynthesis.

We hope that this newly isolated and characterized CAD gene in N. cadamba could be used as one of the candidate genes for association mapping study aiming at the production of high-value planted forests in Malaysia [14,15,19,37,38]. For example, a significant association was detected in two lignin biosynthesis genes of A. mangium superbulk [14] and N. cadamba [15,38] with the basic wood density (P < 0.05). Furthermore, the detailed understanding on the regulation of CAD gene could pave the way for a better understanding of lignin biosynthesis mechanism in this species. This will provide a greater impact on the design of advanced tree improvement programs of N. cadamba.

4. CONCLUSION

To the best of our knowledge, this is the first report on the assembly of a full-length CAD sequence (NCBI accession number: JQ946326) from N. cadamba using singletons of CAD from the kelampayan tree transcriptome database (NcdbEST) through a contig mapping approach. In silico analyses showed that NcCAD may pose intermediate characteristics of both CAD and SAD genes, in which both genes are involved in lignin biosynthesis. Further, phylogenetic analysis also predicted that NcCAD gene is involved in lignin biosynthesis.

5. ACKNOWLEDGMENTS

This work was supported by the Sarawak Timber Association (STA) [Grant No. GL(F07)/06/2013/STA-UNIMAS(06)] and the Ministry of Higher Education, Malaysia [Grant No. RACE/a(2)/884/2012(02)]. Assistance in collection of samples by the officers from the Sarawak Forestry Corporation (SFC) is also acknowledged.

6. REFERENCES

1. Lewis NG. A 20th century roller coaster ride: A short account of lignification. Curr Opin Plant Biol 1999;2:153-62.
2. Brett C, Waldron K. Physiology and Biochemistry of Plant Cell Walls. London: Unwin Hyman; 1990.
3. Higuchi T. Biochemistry and Molecular Biology of Wood. New York: Springer; 1997.
4. Kutsuki H, Shimada M, Higuchi T. Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 1982;21:19-23.
5. Ma QH. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot 2010;61:2735-44.
6. O’malley DM, Porter S, Sederoff RR. Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol 1992;98:1364-71.
7. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H Jr., Ernst D, et al. Molecular cloning, sequence analysis and elicitor-ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 1993;23:145-56.
8. Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, et al. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from eucalyptus xylem. Planta 1992;188:48-53.
9. Kim SJ, Kim MR, Bedgar DL, Moinuddin SG, Cardenas CL, Davin LB, et al. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in arabidopsis. Proc Natl Acad Sci U S A 2004;101:1455-60.
10. Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, Dioreto DS, Yellanki P, et al. The cinnamyl alcohol dehydrogenase gene family in populus: Phylogeny, organization, and expression. BMC Plant Biol 2009;9:26.
11. Baucher M, Halpin C, Petit-Conil M, Boerjan W. Lignin: Genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 2003;38:305-50.
12. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, et al. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, salicaceae) secondary xylem. New Phytol 2010;188:515-32.
Association of the cad-n1 allele with increased stem growth and wood density in full-sib families of loblolly pine. Tree Genomes 2006;2:98-108.

14. Tchin BL, Ho WS, Pang SL, Ismail J. Gene-associated single nucleotide polymorphism (SNP) in cinnamate-4-hydroxylase (C4H) and cinnamyl alcohol dehydrogenase (CAD) genes from Acacia mangium superbulk trees. Biotechnology 2011;10:303-15.

15. Tchin BL, Ho WS, Pang SL, Ismail J. Association genetics of the cinnamyl alcohol dehydrogenase (CAD) and cinnamate 4-hydroxylase (C4H) genes with basic wood density in Neolamarckia cadamba. Biotechnology 2012;11:307-17.

16. González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I. Wood property traits. Genetics 2007;175:399-409.

17. Ho WS, Pang SL, Abdullah J. Identification and analysis of expressed sequence tags present in xylem tissues of kelampayan (Neolamarckia cadamba (Roxb.) bosser). Physiol Mol Biol Plants 2014;20:393-7.

18. Pang SL, Ho WS, Mat-Isa MN, Julaihi A. Gene discovery in the developing xylem tissue of a tropical timber tree species: Neolamarckia cadamba (Roxb.) Bosser (Kelampayan). Tree Gen Genomes 2015;11:47.

19. Tiong SY, Chew SF, Ho WS, Pang SL. Genetic diversity of Neolamarckia cadamba using dominant DNA markers based on inter-simple sequence repeats (ISSRs) in Sarawak. Adv Appl Sci Res 2014;5:458-63.

20. Phui SL, Ho WS, Julaihi A. Development and polymorphism of simple sequence repeats (SSRs) in Neolamarckia cadamba-Rubiaceae using ISSR suppression method. Arch Appl Sci Res 2014;6:209-18.

21. Zaky ZM, Zaki MA, Fashihuddin BA, Ho WS, Pang SL. Comparison of mimosine content and nutritive values of Neolamarckia cadamba and Leucaena leucocephala with Medicago sativa as forage quality index. Int J Sci Technol Res 2014;3:146-50.

22. Jøker D. Neolamarckia Cadamba. Seed Leaflet No. 17. Danida Forest Seed Centre; 2000. Available from: http://www.curis.ku.dk/ws/files/20648324/neolamarckia_cadamba_int.pdf. [Last accessed on 2017 Mar 18].

23. Patel D, Kumar V. Pharmacognostical studies of Neolamarckia cadamba (roxb.) Bosser leaf. Int J Green Pharm 2008;2:26-7.

24. Zaky ZM, Fashihuddin BA, Ho WS, Pang SL. GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. Int J Pharm Pharm Sci 2014;6:123-7.

25. Tiong SY, Ho WS, Pang SL, Ismail J. In silico analysis of cellulose synthase gene (NcCesA1) in developing xylem tissues of Neolamarckia cadamba. Am J Bioinform 2014;3:30-44.

26. Tiong SY, Ho WS, Pang SL, Ismail J. Bioinformatics analysis of xyloglucan endotransglycosylase/hydrolase (XTH) gene from developing xylem of a tropical timber tree Neolamarckia cadamba. Am J Bioinform 2014;3:1-16.

27. Alpschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-10.

28. Sigrist CJ, Cerutti L, Castro ED, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 2010;38:D161-6.

29. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: A Conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011;39:D225-9.

30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9.

31. Kelley LA, Sternberg MJ. Protein structure prediction on the web: A case study using the Phyre server. Nat Protoc 2009;4:363-71.

32. Holm L, Rosenström P. Dali server: Conservation mapping in 3D. Nucleic Acids Res 2010;38:W545-9.

33. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. The last step of syringyl monolignol biosynthesis in angiosperm is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 2001;13:1567-85.

34. Bomati EK, Noel JP. Structural and kinetic basis for substrate selectivity in populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 2005;17:1598-611.

35. Raes J, Rohde A, Christensen JH, Peer YV, Boerjan W. Genome-wide characterization of the lignifications toolbox in Arabidopsis. Plant Physiol 2003;133:1051-71.

36. Tobias CM, Chow EK. Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 2005;220:678-88.

37. Ho WS, Pang SL, Lau P, Ismail J. Sequence variation in the mother trees. J Trop Agric Sci 2011;34:323-9.

38. Tiong SY, Ho WS, Pang SL, Ismail J. Nucleotide diversity and association genetics of xyloglucan endotransglycosylase/hydrolase (XTH) and cellulose synthase (CesA) genes in Neolamarckia cadamba. J Biol Sci 2014;14:267-75.

How to cite this article:
Tchin, BL, Ho WS, Pang SL. Isolation and in silico characterization of full-length cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis in Neolamarckia cadamba. J App Biol Biotech. 2018;6(2):1-5. DOI: 10.7324/JABB.2018.60201