Proteolysis-targeting chimeras (PROTACs) in cancer therapy

Xinyi Li1,2†, Wenchen Pu1†, Qingquan Zheng1, Min Ai1, Song Chen2* and Yong Peng1*

Abstract
Proteolysis-targeting chimeras (PROTACs) are engineered techniques for targeted protein degradation. A bifunctional PROTAC molecule with two covalently-linked ligands recruits target protein and E3 ubiquitin ligase together to trigger proteasomal degradation of target protein by the ubiquitin-proteasome system. PROTAC has emerged as a promising approach for targeted therapy in various diseases, particularly in cancers. In this review, we introduce the principle and development of PROTAC technology, as well as the advantages of PROTACs over traditional anti-cancer therapies. Moreover, we summarize the application of PROTACs in targeting critical oncoproteins, provide the guidelines for the molecular design of PROTACs and discuss the challenges in the targeted degradation by PROTACs.

Keywords: PROTAC, Targeted cancer therapy, Ubiquitin-proteasome system, Protein degradation

Introduction
Targeted cancer therapies aim to target cancer-associated biomolecules (such as oncoproteins) and interfere with their oncogenic cellular processes in cancer tissues. In the past several decades, targeted therapies have achieved remarkable advances in cancers and become a powerful treatment strategy for cancer patients. For example, small molecular inhibitors or monoclonal antibodies have been successfully developed to target overexpressed or over-activated proteins in cancer [1]. However, due to limited therapeutic benefit, drug resistance and off-target effect of these targeted therapies, researchers are still seeking more effective and specific strategy to target cancer-related oncoproteins.

Inspired by the fact that cells employ the ubiquitin-proteasome system (UPS) to maintain intracellular protein homeostasis, Deshaies laboratory designed and synthesized the functional molecule Protac-1 to induce the degradation of methionine aminopeptidase-2 (MetAP-2) via recruiting UPS in 2001. Protac-1 consists of three covalently-linked segments: a domain containing the IkBα phosphopeptide that is recognized by Skp1-Cullin-F-box complex (SCF, an E3 ligase to initiate protein ubiquitination and degradation by UPS), a domain having ovalicin (MetAP-2 inhibitor), and a linker connecting these two domains [2]. This work proposed the initial concept of proteolysis-targeting chimeras (PROTACs), an engineered technique that induces degradation of protein of interest (POI) via UPS in living cells. Subsequently, researchers developed different peptide-based PROTACs to eliminate the disease-promoting proteins, such as androgen receptor (AR), estrogen receptor (ER), FK506 binding protein (FKBP12) and aryl hydrocarbon receptor (AHR) [3–6]. Because the peptide backbones have low lipophilicity (unfavorable to cross cell membrane) and are easily hydrolyzed by digestive enzymes, these peptide-based PROTACs have poor cell permeability and low stability, limiting their application.

Given that some small chemical molecules exhibit stronger lipophilicity, Crews’ group developed the first small-molecule based PROTAC in 2008 to effectively...
degrade AR in cancer cells. This cell permeable PROTAC comprises the chemical nutlin (the E3 ligase MDM2 inhibitor) and a non-steroidal AR ligand (SARM), connected by a PEG-based linker [7]. In 2010, Itoh et al. utilized the chemical methyl bestatin to synthesize another PROTAC molecule, thus recruiting the E3 ligase inhibitor-of-apoptosis-protein (IAP) to degrade POI [8]. To increase potency and target selectivity, small molecules with high affinity and specificity, such as phthalimides recruiting the E3 ligase cerebelon (CRBN) [9–14] or VHL-1 recognizing the E3 ligase Von Hippel-Lindau (VHL) [15–17], were introduced into PROTACs to downregulate numerous cancer targets, such as Ikaros family zinc finger protein 1/3 (IKZF1/3) and estrogen-related receptor alpha (ERRα). The breakthroughs of small molecule-based PROTACs pave the way for PROTACs as therapeutic anticancer strategies.

Recently, a series of novel PROTACs have been developed to expand their applications with more advantages, such as RNA-PROTAC for degrading undruggable RNA-binding proteins [18], PhotoPROTAC for optical control of protein degradation [19–25], and CLIPTAC for increasing bioavailability [26]. Importantly, PROTAC is a highly promising technology for clinical applications, given that Arvinas Therapeutics Company has initiated the first-in-human trial in 2019 (i.e., PROTAC ARV-110 targeting AR for the treatment of prostate cancer), and at least 15 targeted degraders are expected to enter clinical trials by the end of 2021 [27].

In this review, we introduce the principle and development of PROTAC technology and summarize the application of PROTACs in targeting crucial oncoproteins. Furthermore, we discuss the challenges in PROTAC realm and propose the guidelines to design excellent PROTACs for targeted cancer therapy.

Principle of PROTACs

PROTACs hijack the ubiquitin-proteasome system (UPS)

UPS is a highly conserved mechanism for degradation of both normal and misfolded proteins in eukaryotic cells, thus keeping intracellular protein homeostasis [28–30]. In UPS, proteins to be degraded are covalently tagged with ubiquitin (Ub, a 76-amino acid protein), and this tagging process is catalyzed by three enzymes known as Ub-activating enzyme (E1), Ub-conjugating enzyme (E2) and Ub-ligase (E3): free Ub is activated by E1 and then attached to the cysteine residue (Cys) of E1 to form a thioester bond via an ATP-dependent reaction; the Ub-tagged E1 transfers its Ub to the Cys of E2 through a trans-thioesterification reaction; E3 recruits Ub-tagged E2 and E3 substrate to label the ubiquitin at the lysine residue (Lys) of the substrate. Such repeated ubiquitination processes generate a poly-Ub chain (mainly linked through Lys48 of Ub) on the target protein, which guides the substrate to 26S proteasome for degradation [31, 32] (Fig. 1). In human proteome, there are two E1s, about forty E2s and more than 600 E3s. Among them, the E3 ligases are responsible for specifically recognizing substrates.

Inspired by UPS, researchers designed PROTACs to hijack the UPS and degrade POI. PROTAC molecule consists of three covalently-bonded moieties: a ligand to bind POI (POI ligand), another ligand to recognize E3 ligase (E3 ligand) and a linker to conjugate the two ligands. PROTAC simultaneously recruits E3 ligase and POI, forming the “E3-PROTAC-POI” ternary complex. Gadd et al. solved the crystal structure of bromodomain-containing protein 4 (BRD4) PROTAC MZ1 in complex with human VHL and BRD4 bromodomain, supporting the formation of the ternary complex [33]. This complex potentiates the substrate recognition by E3 ligase and promotes the transfer of Ub to POI, accelerating the poly-ubiquitination and subsequent proteasome-mediated degradation of POI [34] (Fig. 1).

Hook effect of PROTAC

The bifunctional molecule (“B”) interacts with its two substrates (“A” and “C”), forming “A-B-C” ternary complex to exert its biological functions. When the concentration of “B” exceeds a certain range, “B” prefers to form “A-B” and “B-C” binary complexes, instead of “A-B-C” ternary complex, thus reducing the activity of “B”. This phenomenon is termed as the “hook effect” [35]. As a bifunctional molecule, high-dose of PROTAC tends to form “PROTAC-POI” and/or “PROTAC-E3” complexes rather than “POI-PROTAC-E3” ternary complex (required for POI degradation), thus reducing its degradation potency [36–39]. Hook effect exists in most known PROTACs, thereby this effect is available to check whether the synthesized PROTAC is bifunctional.

To avoid hook effect, a wide range of PROTAC concentrations should be tested in cellular activity assays to determine the maximal concentration without hook effect [40]. Unfortunately, the research on hook effect of PROTACs in vivo is lacking, so it’s hard to choose an appropriate concentration of PROTAC in in vivo application [41, 42]. Intriguingly, some PROTACs could trigger the positive cooperative assembly of ternary complexes by inducing “neocontacts” between E3 and POI (e.g., “neocontacts” between VHL and BRD4 caused by PROTAC MZ1). These “neocontacts” stabilize “POI-PROTAC-E3” ternary complex and increase the threshold for triggering the hook effect [33]. Therefore, optimizing the PROTAC structure to enhance this “neocontacts” is a potential method to avoid hook effect to some extent.
Advantages and disadvantages of PROTAC

Diverse therapeutic strategies, such as small-molecule inhibitor, monoclonal antibody, RNA interference and CRISPR/Cas9, have been developed to treat human cancers [43–46]. The unique chemical and biological features of PROTAC endow it with advantages and disadvantages in cancer therapy (Table 1).

Advantages of PROTAC

Event-driven mechanism The activity of small molecule drugs, especially the FDA-approved inhibitors, is usually driven by occupancy of target (called “occupancy-driven mechanism”), while PROTACs act as catalysts to initiate degradation event of target protein in a repeatable manner (called “event-driven mechanism”) [36]. Thus, one equivalent of PROTAC could degrade multiple equivalents of POI, allowing the dosage, administration frequency and toxicity of PROTACs lower than those of small-molecule drugs. Additionally, due to the catalytic behavior of PROTAC, transient or low-abundance ternary complexes are sufficient to achieve target degradation. Therefore, ligands with lower POI/E3 affinity and high selectivity are favorable for PROTAC activity, enabling the rapid assembly/disassembly of functional ternary complex. Moreover, PROTACs eliminate the whole

Requirement of active sites	PROTAC	CRISPR/Cas9	RNA interfering	small-molecule inhibitor	monoclonal antibody
Elimination of pathogenic proteins	No	Yes	Yes	Yes	Yes
Undruggable targets	Yes	Yes	Yes	No	Yes
Tissue penetration	Moderate	Poor	Poor	Yes	Poor
Intracellular targets	Yes	Yes	Yes	Yes	No
Systemic delivery	Yes	Poor	No	Yes	Yes
Catalytic mechanism of action	Yes	Yes	Yes	No	No
Route of administration	PO/IV/SC	IV	IV/SC	PO/IV/SC	IV/SC

Note: IV intravenous injection, PO peros, SC Subcutaneous injection
functions of targets, overcoming the therapeutic challenges (commonly occurred in the treatment by small-molecule inhibitors) caused by the non-catalytic functions or gain/loss-of-function mutations of POIs [47].

Degrading “undruggable” targets Many proteins, such as DNA-binding proteins (DBPs, e.g. transcriptional factor c-myc) and RNA-binding proteins (RBPs, e.g. IGF2BPs), play important roles in cancer initiation and progression and are regarded as high-value therapeutic targets. But these proteins generally lack targetable pockets (orthosteric and allosteric sites), so they are deemed “undruggable” by small-molecule inhibitors. PROTACs could use the low-affinity small-molecule ligands (transiently associated with the possible binding site of POI) or the oligonucleotides as protein decoys to release the dependence on the well-defined targetable pockets, providing opportunities to degrade “undruggable” proteins [48].

Avoiding compensatory protein expression Targeted therapies, such as small-molecule inhibitors, may trigger compensatory protein expression after administration, which decreases drug efficacy and increases side effects [49]. For instance, treatment with statin, HMG-CoA reductase (HMGCR) inhibitor, increased HMGCR level by enhancing gene transcription and retarding protein degradation, thus attenuating statin’s activity to treat cardiovascular diseases [50]. PROTAC can potently down-regulate POI protein level through accelerating UPS-mediated degradation, thus offering a pathway to prevent compensatory protein expression of POI. Moreover, genetical interference with short hairpin RNA might induce a secondary cellular response (e.g., by triggering the compensatory mechanism) to maintain cell homeostasis, so it is difficult to disclose the _bona fide_ function of proteins. Because of acute and reversible depletion of protein, PROTAC could be a molecular tool to dissect protein function [40].

Disadvantages of PROTAC PROTAC needs to enter cells to mobilize intracellular UPS, so its membrane permeability is the key to PROTAC’s function. Currently, the penetration mechanism of PROTAC has not yet been elucidated. Most known PROTACs have the molecular weights (M.W.) of 1000–2000 Da [51, 52], so they penetrate cell membrane mainly through passive diffusion and active transport. Nevertheless, large M.W. and large exposed polar surface area of PROTACs makes their cell/tissue permeability worse than small molecules. Various strategies have been employed to limit the cell permeability of PROTACs. The common ways are to limit its M.W. below 1000Da [53] or to split the molecule into two smaller precursors and generate mature PROTAC in cells (CLIP-TAC) [26]. Additionally, the cell permeability of PROTAC could be increased by introducing long flexible linkers to form intramolecular hydrogen bonds that partially reduce polarity [54], or attaching cell-permeable peptides (such as poly-D-arginine sequence) to E3 ligands [3]. Except for modifying PROTAC itself, application of nanoparticles such as liposomes to deliver PROTAC also significantly enhanced the cellular uptake of PROTACs [55].

Currently, the design of PROTACs needs known POI/E3 ligands as protein decoys, so PROTAC development largely depends on the discovery and optimization of these ligands. Moreover, some known POI/E3 ligands exhibit low specificity, making such PROTACs have off-target effects [34]. Therefore, identifying highly specific POI/E3 ligands is critical for developing good PROTACs.

Development of PROTAC technology** Classification of PROTAC** According to the chemical structure of POI ligands, PROTACs could be divided into peptide-based, small molecule-based and nucleotide-based ones. Peptide-based PROTACs contain peptidic POI ligands mimicking the sequences of native POI-binding proteins. For example, Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor and its hyperactivation is tightly associated with cancer initiation and progression [56]. SI-109, a peptide stemmed from the STAT3-binding motif of the protein gp130, was utilized to develop a peptide-based PROTAC termed as SD-36, which achieved potent STAT3 degradation and inhibited leukemia and lymphoma _in vitro_ and _in vivo_ [57]. Peptide-based PROTACs have advantages in binding affinity, target specificity and chemical synthesis, while they suffer from limited membrane permeability and digestive intolerance [58]. Thus, peptide-based PROTAC is usually intravenously injected and especially suitable for the membrane proteins or the treatment of hematological diseases.

Small molecules, especially FDA-approved anticancer inhibitors, could be used as the POI ligands to build small molecule-based PROTACs. For instance, BRAF^V600E_ (a mutant of RAF kinase) prevalently occurs in melanoma and colorectal cancer, driving oncogenic ERK signaling even in the absence of activated RAS [59]. Posternak et al. introduced the small-molecule BRAF^V600E inhibitor B1882370 as POI ligand and pomalidomide as the E3 ligand for CRBN. The obtained PROTAC P4B exhibited effective BRAF degradation to inhibit melanoma and colon cancer harboring BRAF mutation [60]. Compared with peptide-based PROTAC, small molecule-based one displays improved cell permeability and resistance to digestion, thus allowing more manners of administration and expanded target scope. Notably, small-molecule ligands usually have poor target specificity [58], so more
concerns should be given to this point when selecting or optimizing small-molecule POI ligands.

Recently, nucleotide-based PROTACs have been developed, which use oligonucleotides as POI ligands. Numerous RBPs (e.g. Lin28, IGF2BPs and Musashi-1/2) and DBPs (e.g. NF-κB, c-myc and STAT3) are overexpressed and/or overactivated in human cancers, promoting tumorigenesis and cancer development. But discovery of RBP/DBP-targeted drugs is challenging due to the lack of targetable binding pockets within RBPs/DBPs. For instance, Lin28 is a highly conserved RBP that promotes tumorigenesis by interacting with let-7 precursor (pre-let-7) to inhibit the biogenesis of let-7, a tumor suppressive microRNA [61]. But Lin28 doesn’t have well-defined targetable pockets for small-molecule intervention. Guidini et al. utilized the Lin28-binding oligoribonucleotides derived from pre-let-7 as POI ligand to synthesize a nucleotide-based PROTAC termed RNA-PROTAC. This PROTAC accomplished remarkable Lin28 degradation in leukemia cells with high selectivity and negligible toxicity [18]. In addition, Samarasinge et al. developed DNA-based PROTAC (termed TRAFTAC), which used DNA sequence as POI ligand to recognize the transcription factor NF-κB for targeted degradation [62]. These nucleotide-based PROTACs expand the concept of PROTACs and provide a novel strategy for cancer treatment.

New concepts of PROTAC technologies
PhotoPROTAC

Through optically-controlled generation or release of active small-molecule modulators, light with high spatiotemporal resolution has been widely used in biomedical research and disease treatment [63]. Some moieties (e.g. azobenzene) within molecules could be reversibly or irreversibly changed under light stimulation, altering the spatial configuration and the physical/chemical/biological properties of molecules. This concept inspired the development of PhotoPROTAC, which utilized the photoswitches [64] or the photocages [65] to realize the spatiotemporal control of PROTAC function (Fig. 2a).

Photoswitchable PROTACs optically control protein degradation in a reversible manner by using a photoswitchable moiety (e.g. azobenzene) on linker or E3 ligand. Without light irradiation, PROTAC maintains the inactive conformation that is unable to form a stable ternary complex. Upon light exposure at the designed wavelength, PROTAC switches to the active conformation, forming a functional ternary complex to degrade target [19–21]. For example, Reynders et al. designed PHOTACs involving azobenzene moiety on the linker to degrade BET family proteins and suppress acute lymphoblastic leukemia (ALL) cells in the presence of 390 nm UV light [21]. Notably, with appropriate light exposure (e.g. 500 nm for azobenzene-containing PROTAC), target degradation could be halted by converting the PROTAC into an inactive conformation [19–21].

Photocaged PROTACs irreversibly accomplish protein degradation by incorporating photolabile blocking groups (e.g. nitroveratryloxycarbonyl group, NVOC). Without light stimulation, the photocaging group labeling to the E3 ligand impairs the binding between PROTAC and E3 ligase. Upon light exposure, the photocaging...
group is released from PROTAC, benefiting the formation of POI-PROTAC-E3 ternary complex [22–25]. For instance, Liu et al. used NVOC on CRBN ligand to synthesize photocaged PROTACs. These obtained opto-PROTACs were able to degrade IKZF1/3, BRDs or ALK fusion protein (using corresponding POI ligands) upon 365 nm UV irradiation, inhibiting cancer cell proliferation in an optical-controlled manner [22].

CLIPTAC

PROTACs usually have large M.W., limiting their solubility, pharmacokinetics and bioavailability, thus how to reduce the M.W. of PROTACs is critical. Click chemistry, coined by Sharpless group, is used to describe chemical reactions with the advantages of benign reaction condition, high yielding, high selectivity as well as wide scope [66]. To date, click chemistry has developed as a fundamental technology to covalently modify biomolecules under physiological conditions, which is particularly suitable for building conjugated skeletons from two small precursors in cells [67, 68]. Inspired by the concept of click chemistry, Lebraud et al. prepared a tetrazine-tagged E3 ligand and a trans-cyclooctene-tagged POI ligand as the precursors. Via the click reaction between tetrizine and trans-cyclooctene, generating a covalent six-membered ring moiety, these two precursors formed integrated PROTACs (termed as CLIPTAC) in cells (Fig. 2b) that successfully degraded oncogenic BRD4 or ERK1/2 [26]. Therefore, the CLIPTAC has become an attractive solution for reducing the M.W. of PROTACs.

Tag-based PROTAC

The *ab initio* development of PROTAC is a time-consuming and multistep process, including molecular design, chemical synthesis and cell-/-animal-based evaluation [51]. The selection of appropriate E3 ligase/E3 ligand system is crucial for the progress of PROTAC research. However, there are more than 600 E3 ligases in human proteome and the atlas for POI-E3 ligase interactions is far from clear. Thus, researchers have established the tag-based PROTAC systems, in which the tag-POI fusion protein was expressed in cells and the universal PROTAC molecule was administrated to recruit the candidate E3 ligase and the tag of tag-POI protein. Measuring the abundance of tag-POI protein was able to verify whether the candidate E3 ligase could initiate POI degradation. The most widely-used tag-based PROTACs are Halo-PROTAC and dTAG (Fig. 2c) [69–72]. These tag-based PROTACs suggest promising molecular tools to check a candidate E3 ligase/E3 ligand system is suitable for PROTAC, but they could not be used as the therapeutics for disease treatment.

PROTACs in targeted cancer therapy

Cancer initiation and progression is a complex process characterized by sustaining proliferative signaling, evading growth suppressors, resisting cell death, inducing angiogenesis, activating invasion and metastasis [73]. Compelling evidence has demonstrated that some overexpressed and/or overactivated proteins play crucial roles in tumorigenesis and act as potential therapeutic targets. Here we summarize the applications of PROTACs in targeted cancer therapy.

Targeting cancer cell proliferation

The growth-promoting signals, including RAS-RAF-MEK-ERK pathway, are frequently hyperactivated in tumors, eliciting cell cycle progression to induce the uncontrolled cell proliferation [74, 75] (Fig. 3). PROTAC technology has been applied to target the overexpressed, overactivated or mutated proteins involved in cell cycle regulation (Table 2).

BRD4

BRD4, a member of the bromodomains and extraterminal (BET) family, is an epigenetic reader of histone acetylation, triggering the transcription of pro-proliferative genes, such as c-myc [135]. Small-molecule BRD4 inhibitors including JQ1 and BETi-211 can downregulate c-myc level and induce potent anti-proliferative response [136]. However, high dose of BRD4 inhibitors is required to ensure sufficient BRD4 inhibition [39] and their antitumor efficacy might be unsatisfactory only by disrupting the bromodomains of BRD4 [12].

In 2015, Bradner’s group used JQ1 and thalidomide (a ligand for CRBN E3 ligase) to develop the BRD4-targeting PROTAC dBET1 with a DC50 value of 430 nM, attenuating tumor progression in *vitro* and *in vivo* by reducing the expression of BRD4 and c-myc [12]. To improve the degradation potency, Hines et al. synthesized the nitrile-derivatized PROTAC A1874 to recruit MDM2 E3 ligase to effectively degrade BRD4 with DC50 of 32 nM [90]. Moreover, by utilizing VHL ligand and replacing the “(CH2CH2O)3” moiety of A1874 linker with “CH3CH2OCH2CH2CH2O”, the new PROTAC ARV-771 exhibited rapid BRD4 degradation (DC50 value < 1 nM) and potent antitumor effects in castration-resistant prostate cancer [76]. JQ1’s optimized analogue OTX015 was also applied to PROTAC ARV-825 to obtain a DC50 value of < 1 nM, leading to prolonged c-myc loss and enhanced anti-proliferative effects in Burkitt’s lymphoma cells [39].

As JQ1 and OTX015 were non-selective BRD4 inhibitors, dBET1 and ARV-825 also caused the degradation of both BRD2 and BRD3. Intriguingly, Zengerle et al. described a JQ1-based PROTAC MZ1, choosing VH032 as VHL ligand, exhibiting preferential degradation of
BRD4 over BRD2/3 in cervical cancer cells [91]. This evidence indicated that PROTAC might gain selectivity, even starting with non-selective ligands. Recently, Gadd et al. resolved the crystal structure of BRD4-MZ1-VHL ternary complex, which suggested a BRD4-VHL “neocontacts” resulted from the MZ1-induced cooperative recognition [33]. Nowak et al. demonstrated that such “neocontacts” were plastic and generated several distinct BRD4-VHL conformations. Suitable length of PROTAC linker could reinforce the cooperative interaction between BRD4 and VHL, thereby conferring PROTAC the selectivity toward BRD4. This finding guided the development of BRD4-selective PROTAC ZXH-3-26 by adjusting the length and modification site of linker to generate a favorable BRD4-CRBN binding conformation [93]. Besides, a number of other BRD4-based PROTACs have also been developed for cancer therapy [89, 92, 94–98, 100, 137–140].

CDK4/CDK6

Cyclin-dependent kinases (CDKs) control cell cycle progression in response to extracellular pro-proliferative signals. Among them, CDK4/6 phosphorylate retinoblastoma protein (Rb) and activate the transcription factor E2F to promote gene transcription, mediating the G1 to S phase transition [141]. In cancer cells, CDK4/6 are usually overactivated by their upstream oncogenes (e.g. c-myc) and serve as potential targets for cancer therapies [142, 143].

In 2019, Zhao et al. exploited the CRBN ligand and palbociclib (a CDK4/6 inhibitor) to synthesize the PROTAC Pal-pom that degraded CDK4/6 with DC_{50} values of 20–50 nM, thus preventing Rb phosphorylation and inducing cell cycle arrest in triple negative breast cancer (TNBC) cells [104]. Subsequently, Jiang et al. obtained the new PROTAC BSJ-02-162 based on Pal-pom by introducing a shorter alkyl chain and removing the
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
BRD4	ARV-825		BL	[39]	BRD4	SNIPER(BRD4)-1			BC	[89]
BRD4	dBET1		AML	[12]	BRD4	A1874			CRC, M, BL, et al.	[90]
BRD4	MZ1		CC	[33, 91]	BRD4	CLIPTAC-BRD4			CC, M, CRC	[26]
BRD4	dBET6		T-ALL	[92]	BRD4	opto-dBE T1			MM, PC, ALCL, et al.	[22]
BRD4	ZXH-3-26		MM	[93]	BRD4	PROTAC4			BC, PC	[23]
BRD4	ARV-771		PC	[76]	BRD4	pc-PROTAC1			BL, HCC	[25]
BRD4	macroPROTAC-1		PC, AML	[94]	BRD4	PHOTAC-1-3			ALL	[21]
BRD4	BETd-246		TNBC	[95]	BRD4	photoPROTAC-1			BL	[20]

Table 2 The structures of PROTAC molecules targeting cell proliferation in cancers. (red: POI ligand; yellow: E3 ligand)
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
BRD4	BETd-260	![image](brd4_betd-260.png)	AML, ALL	[96]	BRD4	PROTAC3	![image](brd4_protac3.png)	CC	[24]	
BRD4	KB02-JQ1	/	![image](brd4_kb02_jq1.png)	EGFR compound 1	OC, CC	[79]				
BRD4	XH2	![image](brd4_xh2.png)	BC	[98]	BRD4	![image](brd4_xh2_protac.png)	NSCLC	[99]		
BRD4	DP1	![image](brd4_dp1.png)	DLBCL	[100]	BRD4	EGFR compound P3	LC	[101]		
CDK4/6	BSJ-03-123	![image](cdk4_bsj03_123.png)	AML	[102]	CDK4/6	![image](cdk4_bsj03_123_protac.png)	EGFR MS154	LC	[103]	
CDK4/6	pal-pom	![image](cdk4_pal-pom.png)	TNBC	[104]	CDK4/6	![image](cdk4_pal-pom_protac.png)	EGFR DDC-01-163	LC	[80]	
CDK4/6	BSJ-02-162	![image](cdk4_bsj02_162.png)	MCL	[77]	CDK4/6	![image](cdk4_bsj02_162_protac.png)	AURORA-A, JB170	AML, OS, NB, HCC	[81]	
CDK4/6	BSJ-04-132	![image](cdk4_bsj04_132.png)	T-ALL	[77]	CDK4/6	![image](cdk4_bsj04_132_protac.png)	RAF P4B	M, CRC	[60]	
CDK4/6	YX-2-107	![image](cdk4_yx2_107.png)	ALL	[78]	CDK4/6	![image](cdk4_yx2_107_protac.png)	AR, PROTAC 14	CC	[7]	
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
-----------	----------	------------------	--------	------	-----------	----------	------------------	--------	------	
CDK4/6	compound 11	![Compound 11](image)	M [105]	AR	ARCC-4	![ARCC-4](image)	PC	[106]		
CDK4/6	PROTAC 34	![PROTAC 34](image)	ALL, AML, MM, TNBC	[107]	AR	TD-802	![TD-802](image)	PC	[108]	
AR	MTX-23	![MTX-23](image)	PC [109]	BRD7/9	ACBi1	![ACBi1](image)	AML, M, NSCLC	[83]		
AR	ARD-69	![ARD-69](image)	PC [110]	CDK2/S	TMX-2172	![TMX-2172](image)	OC	[84]		
AR	SNIPER(AR)-51	![SNIPER(AR)-51](image)	PC [111]	CDK8	JH-XI-10-02	![JH-XI-10-02](image)	T-ALL	[112]		
ALK	MS4077	![MS4077](image)	NSCLC, ALC	[113]	CDK9	PROTAC 3	![PROTAC 3](image)	CRC	[114]	
ALK	TL13–12	![TL13–12](image)	ALC, NB, NSCLC	[52]	CDK9	THAL-SNS-032	![THAL-SNS-032](image)	T-ALL	[38]	
ALK	opto-dALK	![opto-dALK](image)	NSCLC, ALC	[22]	CDK9	B03	![B03](image)	AML	[115]	
ALK	SIAIS117	![SIAIS117](image)	NSCLC, ALC	[116]	CDK9	compound F3	![compound F3](image)	PC	[117]	
BLK	PROTAC 7	![PROTAC 7](image)	CML	[118]	Gdc20	CPSV	![CPSV](image)	BC	[119]	
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
----------	----------	------------------	--------	------	----------	----------	------------------	--------	------	
BRD7/9	dBrd9		AML	[82]	c-Met	PROTAC 7				
BRD7/9	VZ1 85		MRT	[120]	CREPT	PRTC				
CYP1B1	compound 6C		PC	[122]	MEK1/2	MS432				
DHODH	probe 10		PaC	[123]	Ras	LC-2				
ER	ERD-308		BC	[124]	GSPT1	CC-885				
ER	compound I-6		BC	[126]	PLK1	HBL-4				
ER	TD-PROTAC		BC	[128]	SLC9A1	d9A-2				
ER	SNIPER(ERI-87)		BC	[89]	TACC3	SNIPER(TACC3)-1				
ERK1/2	ERK-CLIPTAC		CC, M, CRC	[26]	TRIM 24	dTRIM24				
FLT-3	FLT-3 PROTAC		AML	[132]	TRKA/C	CG416				

Table 2 (continued)
Table 2 (continued)

Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref
HER2	PROTAC 1	![HER2 PROTAC 1](image1.png)	OC, BC	[79]	Wee1	ZNL-02-096	![Wee1 ZNL-02-096](image2.png)	OC, T-ALL	[88]
MEK1/2	compound 3	![MEK1/2 compound 3](image3.png)	M	[85]	α1A-AR	α1 A-AR	![α1A-AR α1 A-AR](image4.png)	PC	[134]
1,2,3-triazole moiety, which degraded both CDK4/6 and IKZF1/3 to exhibit increased anti-proliferative function in mantle cell lymphoma cells [77]. Another CDK inhibitor ribociclib was used into the first orally bioavailable prodrug of PROTAC, which degraded CDK 2/4/6 in vivo [105].

The high sequence similarity of CDK4 and CDK6 near their active sites makes them difficult to be distinguished by current CDK inhibitors. Interestingly, increasing evidence demonstrates that PROTAC exhibits its good substrate selectivity after its optimization or molecule modifications. For example, Gray’s group optimized linkers to successfully develop the CDK6-selective degrader BSJ-03-123 based on palbociclib [102] and the CDK4-selective degrader BSJ-04-132 based on ribociclib [77]. This selectivity might be caused by the cooperative CDK-CRBN interactions as described in the “neocounters” of BRD4-based PROTACs [33, 93]. Additionally, through adding oxygen or nitrogen atom to the linker of BSJ-02-162, PROTACs CP-10 and YX-2-107 can selectively degrade CDK6 [78, 144]. Notably, CDK6 exerts its functions in both kinase-dependent and independent manners, and only its kinase-independent function is required for the growth of Philadelphia-positive acute lymphoblastic leukemia (Ph⁺-ALL). PROTAC YX-2-107 was demonstrated to inhibit CDK6’s kinase-independent function, thus more efficiently suppressing Ph⁺-ALL cells compared to palbociclib (inactive to CDK6’s kinase-independent function) [78]. Except for CRBN, Steinebach et al. found that VHL also had the potential to selectively degrade CDK6 in leukemia, myeloma and breast cancer cells [107].

AURORA-A

Aurora kinase A (AURORA-A) drives centrosome separation to induce cell cycle progression from G2 to M phase. Overexpressed AURORA-A could transform normal epithelial cells to cancer cells in mouse models, highlighting AURORA-A as a prior cancer target [145]. The potent AURORA-A inhibitor alisertib is in multiple clinical trials. Besides the catalytic activity, AURORA-A has additional non-catalytic functions that are difficult to target by conventional small molecules, which may explain why some trials exhibit low therapeutic efficacy [146, 147]. To overcome this problem, Adhikari et al. developed a potent AURORA-A degrader JB170 by connecting alisertib to VHL ligand, which induced rapid, durable and highly-specific degradation of AURORA-A in leukemia and neuroblastoma cells [81]. Moreover, AURORA-A degradation by JB170 arrested S-phase progression and this effect was not observed upon kinase inhibition, further supporting the important non-catalytic function of AURORA-A during DNA replication [81].

EGFR

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that activates several oncogenic signals, promoting cell proliferation and differentiation. Overactivation or gain-of-function mutation of EGFR are prevalent in a variety of epithelial cancers (e.g. breast and lung cancers) [75, 148]. EGFR inhibitors, such as gefitinib, lapatinib and afatinib, have been approved to treat cancers, but severe drug resistance of EGFR inhibitors leads to low clinical response, which may be caused by drug-induced EGFR mutations (e.g. EGFR^L858R, EGFR^T790M or EGFR^C797S) [149].

Based on lapatinib, gefitinib and afatinib, PROTACs compound 1/3/4 were respectively developed by linking VHL ligands, exhibiting anti-proliferative activity against breast cancer and lung cancer cells [79]. These PROTACs were selective for different EGFRs: compound 1 degraded wild-type or exon-20 insertion EGFRs; compound 2 preferred exon-19 deletion or L858R EGFRs; compound 3 degraded L858R/T790M dual mutant EGFR [79]. Novel EGFR^L858R/T790M selective inhibitors XTF-262 and EGFR^T790M/C797S selective inhibitors EA1001 were also utilized to synthesis PROTAC 14o and DDC-01-163, respectively, which exhibited anti-proliferative activities in lung cancer cells with corresponding EGFR-mutations [80, 99]. Overall, the selectivity of EGFR inhibitor-based PROTACs was consistent with that of their parental inhibitors [79, 80, 99, 101, 103, 150], so it’s necessary to conduct molecular typing of EGFR before PROTAC treatment.

BRAF

The RAF family kinases are key regulators of RAS-RAF-MEK-ERK pathway, transmitting oncogenic signals to promote cell proliferation [75]. Gain-of-function mutations in RAF (e.g. BRAF^V600E) act as potent drivers of human cancers [151]. BRAF^V600E inhibitors have shown great efficacy in cancer therapy, but long-term effectiveness is limited by RTKs and/or Ras activation or by secondary BRAF mutations [152, 153]. PROTAC provides an alternative strategy to therapeutically constrain oncogenic BRAF [60, 154]. Posterna et al. conjugated BRAF inhibitor BI-882370 and CRBN ligand to synthesize the PROTAC P4B, which specifically suppressed melanoma and colorectal cancer cells harboring BRAF^V600E or other BRAF mutations [60].

Except for these targets, the following proteins related to cancer cell proliferation could also be targeted by PROATCs: AR [7, 106, 108–111, 155, 156], ALK [22, 52, 113, 116, 157], BLK [118], BRD7/9 [82, 83, 120, 158], CDK2/5 [84], CDK8 [112], CDK9 [38, 114, 115, 117, 159], Cdc20 [119], c-Met [79], CREPT [121], CYPIB1 [122], DHODH [123], ER [89, 124, 126, 128, 160], ERK1/2
[26], FLT-3 [132, 161], HER2 [79], MEK1/2 [85, 86, 162], KRAS [87, 163], GSPT1 [125], PLK1 [127], SLC9A1 [129], TACC3 [130], TRIM24 [131], TRKA/C [133, 164], Wee1 [88], α1A-AR [134].

Targeting cancer apoptosis

Apoptosis (or programmed cell death) is an evolutionarily conserved process that maintains tissue homeostasis upon the simulation by cellular stress, DNA damage and immune surveillance. However, cancer cells upregulate anti-apoptotic proteins (e.g., Bcl-2 and Bcl-xL) or downregulate pro-apoptotic factors (e.g., Puma, Bax) to evade apoptosis, supporting their abnormal survival, therapeutic resistance and cancer recurrence [165, 166]. Therefore, targeting apoptosis could initiate programmed cell death of cancer cells and improve their response to anticancer drugs (Fig. 4) (Table 3).

Bcl-xL

Bcl-xL inactivates the intrinsic apoptotic pathway to promote cell survival. Overexpression of Bcl-xL occurs in many tumor cells and is highly correlated with the resistance to cancer therapy, so Bcl-xL is a well-validated cancer target [165]. However, the low target engagement and dose-limiting thrombocytopenia limits the use of Bcl-xL inhibitors (e.g. ABT263 and A-1155463) as safe and effective anticancer agents [205].

Zhou and his coworkers linked ABT263 to VHL ligand to develop the PROTAC DT2216, which effectively degraded Bcl-xL and suppressed Bcl-xL-dependent leukemia cells in vitro and in vivo, without causing thrombocytopenia due to the poor expression of VHL in platelets [167]. Since CRBN is poorly expressed in platelets, they designed another PROTAC XZ739 containing CRBN ligand and ABT263, treating T cell acute lymphoblastic leukemia (T-ALL) with less toxicity to platelets [184]. Because VHL and CRBN expressions are extremely low in cutaneous T-cell lymphoma (CTCL) cells, the activity of VHL- and CRBN-based Bcl-xL PROTACs against CTCL were unfavorable. Zhou group further designed PROTAC 8a involving the ligand of IAP E3 ligase (with high level in CTCL) to efficiently degrade Bcl-xL in CTCL cells [185]. The selective Bcl-xL inhibitor A-1155463 was also utilized to develop XZ424 and PROTAC 6, showing...
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
Bcl-xL	DT2216		T-ALL	[167]	BCR-ABL	DAS-6-2-2-6-CRBN	CRBN		OML	[171]
Bcl-xL	XZ739		T-ALL	[184]	BCR-ABL	Azo-PROTAC-4C	CRBN		OML	[19]
Bcl-xL	compound 8a		TL	[185]	BCR-ABL	SNIPER(AVL)-38	CRBN		OML	[89]
Bcl-xL	XZ424		T-ALL	[168]	BCR-ABL	compound 19	CRBN		OML	[186]
Bcl-xL	PROTAC 6		AML	[187]	BCR-ABL	GMB-475	CRBN		OML	[172]
PARP1	compound 2		CRC	[188]	BCR-ABL	GMB-805	CRBN		OML	[189]
PARP1	iRucaparib-AP5		CC, RCC, BC, PC	[170]	BCR-ABL	SIAIS178	CRBN		OML	[190]
PARP1	compound 3		TNBC	[191]	BCR-ABL	BT1	CRBN		OML	[192]
PARP1	SK-575		BC, CRC, PC, PaC	[169]	AKT	INY-03-041	CRBN		BC	[173]
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
--------------	-------------	------------------	-------------------------	-------	--------------	-------------	------------------	-------------------------	-------	
Bcl-2	C5	![Image](image1)	CC, CML, NSCLC	[174]	eIF4E	PROTAC 2.3a	![Image](image2)	TNBC, CML	[176]	
Bcl-6	PROTAC 15	![Image](image3)	DLBCL	[193]	HDAC1/2/3	PROTAC 4	![Image](image4)	CRC	[194]	
c-IAP	compound 6	![Image](image5)	FS	[175]	HDAC1/2/3	X29002	![Image](image6)	TNBC	[195]	
CK2	PROTAC 2	![Image](image7)	TNBC, NSCLC	[196]	HDAC6	PROTAC 4	![Image](image8)	OSCC, GB	[197]	
CRABP V/II	compound 4b	![Image](image9)	NB	[8]	HDAC6	degrader 12d	![Image](image10)	MM	[198]	
CRABP V/II	compound 6	![Image](image11)	FS	[175]	HDAC6	NP8	![Image](image12)	MM, CC	[199]	
CRABP V/II	β-NF-ATRA	![Image](image13)	BC, NB	[140]	HDAC6	NH2	![Image](image14)	MM, CC	[200]	
eEF2K	compound 11l	![Image](image15)	BC	[201]	HDAC6	P1	![Image](image16)	MM	[202]	
HDAC6	compound 3j	![Image](image17)	MM	[203]	CBP/p300	dCBP-1	![Image](image18)	MM	[181]	
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref	
--------	---------	------------------	--------	-----	--------	---------	------------------	--------	-----	
Mcl-1	dMCL1-2		MM	[177]	RIPK2	PROTAC_RIPK2		BC, AML	[17]	
Mcl-1	C3		CC, CML, NSCLC	[174]	SGK3	SGK3-PROTAC1		BC	[204]	
MDM2	MD-224		ALL, AML	[179]	SirT2	PROTAC 12		CC	[182]	
MDM2	degrader 32		ALL	[178]	VEGFR2	PROTAC-5		/	[183]	
PI3K	compound D		HCC	[180]						
increased selectivity in Bcl-xL-dependent T-ALL cells [168, 187].

PARP1
Poly(ADP-ribose) polymerase 1 (PARP1) participates in DNA damage repair to maintain genomic stability, and is overexpressed in human cancers to evade apoptosis [166]. Small-molecule PARP1 inhibitors, such as niraparib, rucaparib and olaparib, have been developed to treat cancers [206]. However, these inhibitors prevent PARP1 from dissociating DNA lesions to block DNA replication, leading to high cytotoxicity to normal cells [206].

In 2019, by connecting niraparib and the MDM2 ligand nutlin-3, Zhao et al. synthesized the PARP1-targeting PROTAC compound 3 to induce significant apoptosis of TNBC cells without cytotoxicity against normal cells [191]. Olaparib was also used to design CRBN-recruiting PROTACs to trigger apoptosis in multiple cancers [169, 188]. To improve selectivity, Wang et al. utilized rucaparib (a selective PARP1 inhibitor) and CRBN ligand to develop PARP1 degrader iRucaparib-AP5, which exerted highly specific PARP1 degradation in cervical, breast, renal and prostate cancer cells [170].

BCR-ABL
The oncogenic fusion kinase BCR-ABL activates the anti-apoptotic protein Bcl-2 to protect mitochondria from DNA-damaged signals and prevent apoptosis in chronic myelogenous leukemia (CML) [207, 208]. BCR-ABL inhibitors (e.g. dasatinib, ponatinib and imatinib) have successfully treated CML patients. But lifelong drug administration is required due to the persistent CML stem cells that rely on BCR-ABL's kinase-independent function for survival [171, 209]. Moreover, BCR-ABL mutations can also cause drug resistance [210].

Lai et al. synthesized the BCR-ABL degrader DAS-6-2-2-6-CRBN containing dasatinib and CRBN ligand, which showed potent degradation of BCR-ABL and growth inhibition in CML cells [171]. Other E3 ligases including IAP, VHL and RNF114 were also recruited by dasatinib-based PROTACs that achieved effective BCR-ABL degradation to suppress CML cells [89, 190, 192]. Ponatinib and two novel BCR-ABL inhibitors (GNF5 and ABL001) were utilized into PROTACs development, and the obtained degraders showed increased degradation ability and better selectivity with less adverse effects [172, 186, 189].

Targeting cancer angiogenesis
Tumors require neovascularature, generated by angiogenesis, to supply nutrients and oxygen as well as to evacuate metabolic wastes and carbon dioxide [73]. Angiogenesis is triggered by hypoxia that activates the expression of multiple growth factors, such as vascular endothelial growth factor (VEGF), a pivotal growth factor that specifically recognizes vascular endothelial growth factor receptor (VEGFR) to induce the formation of neovascularature (Fig. 4) [211]. The blockade of VEGF/VEGFR signaling to suppress angiogenesis has been developed for cancer therapy (Fig. 4, Table 3).

VEGFR-2 is the main VEGFRs to mediate proliferation and angiogenesis of vascular endothelial cells, and targeting VEGFR2 is a promising strategy for cancer treatment. Based on the VEGFR-2 inhibitor S7, Shan et al. developed PROTAC-2 and PROTAC-5 to exhibit potent VEGFR-2 elimination and anti-proliferative activity in human umbilical vein endothelial cells. Moreover, these PROTACs had low cytotoxicity to HEK-293 cells (human embryonic kidney cells, VEGFR-2 negative), displaying excellent safety to VEGF-2 negative cells [183].

Targeting cancer immunity and inflammation
To sustain cell survival, cancer cells induce inflammation and immune evasion by reprogramming tumor microenvironment that involves regulatory cells (e.g., regulatory T cells), B-cell receptor (BCR) signaling and T-cell receptor (TCR) signaling [212–214] (Fig. 5).

Immunotherapies by the immune-checkpoint inhibitors are new therapeutics that relieve immunosuppression and enable immune-mediated tumor clearance [224]. However, some patients have innate or acquired resistance to immunotherapies. To overcome these problems, PROTACs targeting immunity and inflammation have been developed (Table 4).

PD-L1
Programmed death-ligand 1 (PD-L1) is frequently overexpressed in cancer cells. The binding of PD-L1 on cancer cells to its receptor programmed death 1 (PD-1) on T cells counteracts T cell-activating signals, inhibiting anti-tumor immunity and promoting immune escape [239]. Chen group used BMS-1198 (a small-molecule PD-L1 inhibitor) and pomalidomide (a CRBN ligand) to synthesize PROTAC P22, which moderately degraded PD-L1 in lung and breast cancer cells [215]. Thus, it’s possible to develop PD-L1-targeting PROTAC based on small-molecule PD-L1 inhibitors. However, due to the hydrophobic and flat binding pocket of PD-L1, there are few known small-molecule PD-L1 inhibitors, so it’s challenging to develop effective PD-L1 PROTAC currently.

BTK
Bruton’s tyrosine kinase (BTK) is a non-receptor tyrosine kinase, playing pivotal roles in B-cell development and immune responses. BTK inhibitors (e.g. ibrutinib) have been developed to treat chronic lymphocytic leukemia
(CLL) and mantle cell lymphoma (MCL) by blocking BCR signaling and regulating innate/adaptive immunity [240]. But many patients exhibit drug resistance due to BTK mutations in the ibrutinib binding site (BTKC481S).

Based on ibrutinib and CRBN ligand, Rao group developed PROTACs P13I and L18I, two irreversible covalent PROTACs, to degrade wild-type and C481S-mutant BTKs and suppress diffuse large B cell lymphoma (DLBCL) and MCL cells [216, 241]. As P13I and L18I formed irreversible covalent bonds with BTK, so they did not follow “event-driven mechanism”, even though they used the PROTAC-like structure. To solve this problem, another two groups designed PROTACs RC-1 and RC-3 using cyano-acrylamide moiety to shape up reversible covalent bonds with BTK, exhibiting enhanced selectivity and efficacy over irreversible PROTACs [217, 227]. Additionally, a new generation of non-covalent BTK inhibitors (e.g., RN486 and CGI1746) was utilized to develop PROTACs (e.g., DD-04-015 and DD-03-171) that efficiently degraded BTKs and inhibited cancer cell growth [161, 218]. Intriguingly, Calabrese group found that alleviation of steric clashes between BTK and CRBN by adjusting PROTAC linker length allowed potent BTK degradation in the absence of thermodynamic cooperativity [228], indicating increased BTK-PROTAC-IAP ternary complex stability was not always related to increased degradation efficiency [219]. However, its underlying mechanism remains obscure.

Targeting cancer metastasis

Tumor cells extravasate, disseminate and successfully colonize distant organs from the primary focus via circulatory systems to achieve metastasis, causing ~90% of cancer deaths worldwide [242, 243]. Epithelial-to-mesenchymal transition (EMT) is a key step during metastasis and can be activated by several upstream cellular signaling pathways including Integrin/FAK/P13K/AKT axis (Fig. 6) [243–245]. In the past decades, PROTACs targeting EMT-related proteins have been developed to manage cancer metastasis (Table 5).
Table 4: The structures of PROTAC molecules targeting cancer immune evasion or inflammation. (red: POI ligand; yellow: E3 ligand)

Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref
PD-L1	P22	![PD-L1 PROTAC](image1)	NSCLC, TNBC, M	[215]	FKBP12	dFKBP-1	![FKBP12 dFKBP-1](image2)	AML	[12]
BTK	DD-04-015	![BTK DD-04-015 PROTAC](image3)	DLBCL	[161]	FKBP12	dTAG-13	![FKBP12 dTAG-13](image4)	AML	[225]
BTK	P13I	![BTK P13I PROTAC](image5)	BL, DLBCL, MCL	[216]	FKBP12	RC32	![FKBP12 RC32](image6)	T-ALL, BL, PC, BC, CC	[226]
BTK	RC-3	![BTK RC-3 PROTAC](image7)	BL, MCL, CML	[217]	FKBP12	KB02-SLF	![FKBP12 KB02-SLF](image8)	/	[97]
BTK	RC-1	![BTK RC-1 PROTAC](image9)	AML, MCL	[227]	HPK1	SS44	![HPK1 SS44](image10)	BL, MM, CML, et al	[220]
BTK	BC5P	![BTK BC5P PROTAC](image11)	AML	[219]	IDO1	degrader 2c	![IDO1 degrader 2c](image12)	CC	[221]
BTK	DD-03-171	![BTK DD-03-171 PROTAC](image13)	MCL, DLBCL	[218]	IKZF1/3	DD-03-171	![IKZF1/3 DD-03-171](image14)	MCL, DLBCL	[218]
BTK	compound 10	![BTK compound 10 PROTAC](image15)	BL, AML	[228]	IRAK4	degrader-5	![IRAK4 degrader-5](image16)	DLBCL	[229]
BTK	PROTAC 7	![BTK PROTAC 7 PROTAC](image17)	BL, CML	[118]	ITK	TL12-186	![ITK TL12-186](image18)	AML, T-ALL	[161]
STAT3	SD-36	![STAT3 SD-36 PROTAC](image19)	AML, ALCI	[57]	JAK	JP-6	![JAK JP-6](image20)	AML	[222]
Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref
---------	------------	------------------	--------	------	---------	------------	------------------	--------	------
CD147	compound 6a		M	[230]	Lin28	ORN3P1		CML	[18]
PDE4	SNIPER(PDE4)-9		FS	[89]	PRC2	PROTAC 1		DLCBL	[231]
PDEδ	compound 17f		CRC	[232]	PRMT5	MS4322		BC	[233]
PDEδ	PROTAC 3		T-ALL, PaC, CC	[234]	Rpn13	WL-40		MM	[235]
Pirin	CCT367766		OC	[236]	SHP2	SHP2-D26		EC, AML	[223]
PRC2	UNC6852		CC, DLCBL	[237]	TBK1	PROTAC 3i		NSCLC	[238]
FAK

Focal adhesion kinase (FAK) is one of the most prominent effectors of integrin signaling. Overexpressed FAK, correlating with poor clinical outcome, drives cancer invasion and migration through exerting both kinase-dependent and independent functions [258–260]. Several FAK kinase inhibitors have been developed, such as defactinib, BI-4464 and PF-562271 [261]. Nevertheless, the critical kinase-independent scaffolding function of FAK is beyond the ability of current inhibitors [262].

Cromm et al. used the clinical candidate defactinib as the FAK ligand and (S,R,S)-AHPC as the VHL ligand to prepare a selective FAK degrader PROTAC-3. PROTAC-3 dramatically suppressed FAK signaling as well as FAK-mediated cell migration and invasion in TNBC and prostate cancer cells [256]. Based on small-molecule FAK inhibitor BI-4464 and CRBN ligand pomalidomide, Popow et al. presented a highly selective PROTAC BI-3663 to hijack UPS for FAK degradation, showing a DC50 of 30 nM in a panel of hepatocellular carcinoma cell lines [246]. In addition, FAK inhibitor PF562271 was also included in PROTAC study, leading to the establishment of PROTAC FC-11 that exhibited rapid FAK degradation with picomolar DC50 in several cancer cells [247].

Guidelines for PROTAC design

Developing anticancer PROTAC aims to improve the effectiveness and precision of targeted cancer therapy. In the molecular design of PROTACs, many critical issues about POI ligand, E3 ligand and linker should be comprehensively considered, such as specificity, solubility, stability, drug safety and bioavailability.

For POI/E3 ligands, the known ligands as well as the newly designed ligands based on 3D structure of POI/E3 could be used in PROTAC design. Notably, the ligand with high target affinity is not favorable, because this makes the ligand difficult to dissociate from target protein and is more likely to exert “occupancy-driven mechanism” instead of “event-driven mechanism” [250, 263].
Table 5 The structures of PROTAC molecules targeting cancer metastasis. (red: POI ligand; yellow: E3 ligand)

Target	PROTAC	PROTAC structure	Cancer	Ref	Target	PROTAC	PROTAC structure	Cancer	Ref
FAK (PTK2)	PROTAC-3		TNBC, PC	[256]	p38	NR-7h		BC, CRC, CC	[257]
FAK (PTK2)	BI-0319		HCC	[246]	Smad3	PROTAC_Smad3		RCC	[251]
FAK (PTK2)	BI-3663		HCC	[246]	Src	ND1-YL2		TNBC	[252]
FAK (PTK2)	FC-11		OC, BC, PC, BL	[247]	Src	12b		BC, NSCLC	[248]
IGF-1R	12b	Compound C	BC, NSCLC	[248]	TCF	ARV771		DLBCL	[253]
p38	SJFα	p38	BC, CC	[249]	TGF-β1	DT-6		HCC, BC, NSCLC	[254]
p38	PROTAC 1		BC, CC	[250]	β-catenin	xStAx-VHLL		CRC	[255]
A transient or low-abundance “POI-PROTAC-E3” ternary complex is enough to achieve adequate degradation, thus the ligand with low target affinity without affecting the assembly of ternary complex is acceptable. Moreover, selective inhibitors could be utilized to increase the precision of PROTACs, while the multitargeted inhibitors are also useful to develop PROTAC degraders that exert anticancer activities by simultaneously degrading multiple proteins [161]. Besides, there are ~600 E3 ligases in human and their expressions usually exhibit tissue-/tumor-specific, so selecting appropriate E3 ligase/E3 ligand system should consider the cellular context of tumors to increase the efficacy and reduce the toxicity [27, 36].

For the linker, the first issue is to define the ligand site that binds to the linker. The protein- or cell-based biological assays should be performed to test the activity of ligands with chemical modifications at different sites, aiming to find the promising sites that maintain the ligand’s function. Secondly, since the physical and chemical properties of linkers affect PROTAC’s selectivity and efficiency via adjusting the POI-E3 interface, a series of linkers with different lengths and chemical compositions should be designed, simulated (e.g., by structural modelling or molecular simulation), synthesized and biologically evaluated. Importantly, for the convenience in preparation and purification of PROTACs, the hydrophilicity/liposolubility of linker needs to match the properties of POI ligand and E3 ligand.

In addition, since PROTACs with high M.W. may influence their bioavailability, the idea of CLIPTACs that design a pair of smaller precursors is feasible to increase cell permeability [26]. It’s also recommended to use computer-aided drug design (CADD) software (e.g. Discovery Studio or Schrodinger Suites) to in silico predict the solubility and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties of molecules before PROTAC design.

Conclusions and prospects

From the establishment of the PROTAC concept in 2001, extensive efforts have been devoted to improving the efficacy, expanding the target scope and overcoming the disadvantages of PROTAC. Therefore, PROTAC has become an attractive technique for cancer treatment. Until now, many PROTACs have been developed to control cancer progression, exhibiting clinical potential in cancer therapy. However, there is still a demand to accelerate the development of PROTACs.

Expanding the POI spectrum is urgent for cancer therapy. Currently, although inhibitors of some proteins (e.g. kinases) have been successfully developed, there are many oncogenic proteins (e.g. RBPs and DBPs) that can’t be targeted by small molecules. Interestingly, taking advantage of the fact that RBPs and DBPs bind to specific nucleotide sequences, researchers utilized oligonucleotides as POI ligands to develop the RNA-PROTAC and TF-PROTAC that induced the degradation of RBPs and DBPs [18, 55]. Therefore, these techniques open up a new direction for targeting undruggable pathogenic proteins. In future, the design and optimization of these oligonucleotide-based PROTACs, targeting oncogenic RBPs (e.g. IGF2BP and YBX1) and DBPs (e.g. c-myc and STAT3), should be extensively investigated for targeted cancer therapy.

Less than 10 of ~600 E3 ligases have been utilized in PROTAC so far, other E3 ligases could be considered to develop new PROTACs. For example, Cotton et al. established antibody-based PROTACs (AbTACs) that the recombinant bispecific antibodies recruit the membrane-bound E3 ligase RNF43 for the degradation of the cell-surface protein PD-L1 [264]. Moreover, the proteasome-independent protein degradation systems (including endosome, lysosome or autophagosome systems) have been harnessed to develop novel targeted degradation techniques, such as lysosome-targeting chimera (LYTAC), autophagy-targeting chimera (AUTAC) and autophagosome-tethering compound (ATTEC) [265–267], providing different strategies for targeted cancer therapy. Additionally, the ribonuclease targeting chimera (RIBOTAC) used RNA-targeting small molecules and RNase L to accomplish the degradation of intracellular RNAs [268, 269], suggesting a new idea for the degradation of oncogenic RNAs for cancer therapy. Therefore, PROTAC and related degradation techniques are powerful tools for specifically degrading oncogenic proteins or RNA molecules and will be used clinically for cancer therapy.

Abbreviations

ALCL: Anaplastic large cell lymphoma; ALL: Acute lymphoblastic leukemia; AML: Acute myeloid leukemia; BC: Breast cancer; Bl: Burkitt’s lymphoma; BRD4: Bromodomain-containing protein 4; BT: Bruton’s tyrosine kinase; CC: Cervical cancer; CDK: Cyclin-dependent kinase; CML: Chronic myelogenous leukemia; CRBN: Cerebrom; CRC: Colorectal cancer; DLBCL: Diffuse large B cell lymphoma; EC: Esophageal cancer; EGFR: Epidermal growth factor receptor; FAK: Focal adhesion kinase; FS: Fibrosarcoma; GB: Glioblastoma; GC: Gastric cancer; HCC: Hepatocellular cancer; IAP: Inhibitor-of-apoptosis-protein; LC: Lung cancer; M: Melanoma; MCL: Mantle cell lymphoma; MM: Multiple myeloma; MRT: Malignant rhabdoid tumor; NB: Neuroblastoma; NSCLC: Non-small cell lung cancer; OC: Ovarian cancer; OS: Osteosarcoma; OSCC: Oral squamous cell carcinoma; PaC: Pancreatic cancer; PARP1: Poly(ADP-ribose) polymerase 1; PC: Prostate cancer; PD-L1: Programmed death-ligand 1; POI: Protein of interest; PROTAC: Proteolysis-targeting chimeras; RCC: Renal cell cancer; SS: Synovial sarcoma; T-ALL: T cell acute lymphoblastic leukemia; TL: T-cell lymphoma; TNBC: Triple negative breast cancer; Ub: Ubiquitin; UPS: Ubiquitin-proteasome system; VEGFRI: Vascular endothelial growth factor receptor; WHL: Von Hippel-Lindau.

Acknowledgements

We’d like to thank Dr. Jiao Li for her discussion during manuscript preparation.
Authors’ contributions
YP and SC conceived the structure of manuscript and revised the manuscript; XL, WP, QZ and MA drafted the initial manuscript and revised it. All authors read and approved the final manuscript.

Funding
This work was supported by National Natural Science Foundation of China (81772966, 81821002 and 82073319), Science and Technology Foundation of Sichuan Province, China (2022YFS006), the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZY1C18030 and ZYGD20008).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 June 2021 Accepted: 21 September 2021 Published online: 11 April 2022

References
1. Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2016;13(4):209–27.
2. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98(15):8554–9.
3. Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc. 2004;126(12):3748–54.
4. Rodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews C, Deshaies R, et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene. 2008;27(57):7201–11.
5. Lee H, Puppala D, Choi EY, Swanson H, Kim KB. Targeted degradation of the asyl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. Chembiochem. 2007;8(17):2058–62.
6. Sakamoto KM, Kim KB, Verma R, Ranisch A, Stein B, Crews CM, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics. 2003;2(12):1350–8.
7. Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc. 2012;134(10):4465–8.
8. Buckley DL, Gustafson JL, Van Molle I, Roth AG, Crews CM, Deshaies RJ. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF-1α. Angew Chem Int Ed Engl. 2012;51(46):11463–7.
9. Bondeson DP, Mares A, Smith IED, Ko E, Crews CM. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.
10. Ghibril A, Clery A, Halloy F, Allain FH, Hall J. RNA- PROTACs: degraders of RNA-binding proteins. Angew Chem Int Ed Engl. 2021;60(6):3163–9.
11. Jia YH, Lu MC, Wang Y, Shan W, Wang XJ, You QD, et al. Azoo- PROTAC: novel light-controlled small-molecule tool for protein knockdown. J Med Chem. 2020;63(9):4644–54.
12. Pfaff P, Samarasinghe KT, Crews CM, Carreira EM. Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs. ACS Cent Sci. 2019;5(10):1682–90.
13. Reymers M, Matsuura BS, Bérouti M, Simonescu D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6(8):eaya5064.
14. Liu J, Chen H, Ma L, He Z, Wang D, Liu Y, et al. Light-induced control of protein destruction by opto- PROTAC. Sci Adv. 2020;6(8):eaya5154.
15. Naro Y, Darraha K, Deiters A. Optical control of small-molecule-induced protein degradation. J Am Chem Soc. 2020;142(5):2193–9.
16. Kounde C, Shchepinova MV, Saunders CN, Muelbaier M, Rackham MD, Harling JD, et al. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chem Commun. 2020;56(41):5532–5.
17. Xue G, Wang K, Zhou D, Zhong H, Pan Z. Light-induced protein degradation with photocaged PROTACs. J Am Chem Soc. 2019;141(46):18370–4.
18. Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016;2(12):927–34.
19. Mullard A. Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov. 2021;20(4):247–50.
20. Bard JA, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697–724.
21. Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin–proteasome system. Trends Cell Biol. 2014;24(6):352–9.
22. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):S14–21.
23. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–14.
24. Miles LE, Lipschitz DA, Bieber CP, Cook JD. Measurement of serum ferritin by a 2-site immunoradiometric assay. Anal Biochem. 1974;61(1):209–24.
25. Schapira M, Calabrese MF, Bullock AN, Crews CM. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18(7):101–15.
26. Verma R, Mohl D, Deshaies RJ. Harnessing the power of proteolysis for targeted protein inactivation. Mol Cell. 2020;77(3):446–60.
27. Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–70.
28. Lu J, Qian Y, Altiere M, Dong H, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015;22(6):755–63.
40. Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–14.

41. Chamberlain PP, Hamann LG. Development of targeted protein degradation therapeutics. Nat Chem Biol. 2019;15(10):957–44.

42. Edmondson SD, Yang B, Fallan C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’chemical space: recent progress and future challenges. Bioorg Med Chem Lett. 2019;29(13):1555–64.

43. Bedard PL, Hyman DM, Davids MS, Siu LL. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet. 2020;395(10229):1078–88.

44. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2018;17(7):509–27.

45. Lu H, Xue Y, Yu GK, Arias C, Lin J, Fong S, et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. Elife. 2015;4:e06535.

46. Jin J, Wu Y, Chen J, Shen Y, Zhang L, Zhang H, et al. The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics. 2020;10(22):10141–53.

47. Poulikakos PI, Rosen N. Mutant BRAF melanomas-dependence and future challenges. Bioorg Med Chem Lett. 2019;29(13):1555–64.

48. Matsson P, Kihlberg J. How big is too big for cell permeability? J Med Chem. 2018;61(9):4249–55.

49. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bonde J, et al. CRISPR-engineered T cells in patients with refractory cancer. Nat Biotechnol. 2019;37(9):953–63.

50. Poulikakos PI, Rosen N. Mutant BRAF melanomas-dependence and future challenges. Bioorg Med Chem Lett. 2019;29(13):1555–64.
simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 2019;79(1):251–62.

91. Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol. 2015;10(8):1770–7.

92. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell. 2017;67(1):5–18. e9.

93. Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA, An J, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol. 2018;14(7):706–14.

94. Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed Engl. 2020;59(4):1727–34.

95. Bai L, Zhou B, Yang CY, Ji J, McEachern D, Przybranowski S, et al. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res. 2017;77(9):2476–87.

96. Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. 2018;61(2):462–81.

97. Zhang X, Crowley WM, Wucherpfennig TG, Dix MM, Gravatt BF. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat Chem Biol. 2019;15(7):737–46.

98. Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD, Ou L, et al. Harnessing the anti-cancer natural product nimbinol for targeted protein degradation. Nat Chem Biol. 2019;15(7):747–55.

99. Zhao HY, Yang XY, Lei H, Xi XX, Lu SM, Zhang JJ, et al. Discovery of highly potent and selective steroidal inhibitors and degradation of CDK8. ACS Med Chem Lett. 2018;9(6):540–5.

100. Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteinase targeting chimera (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem. 2018;151:304–14.

101. Robb CM, Contreras JL, Kour S, Taylor MA, Abid M, Sonawane YA, et al. Chemically induced degradation of CD9 by a proteinase targeting chimera (PROTAC). Chem Commun. 2017;53(54):7577–80.

102. Xu Q, Li Y, Yu B, Ren J, Huang H, Wang M, et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem. 2021;211:113091.

103. Sun N, Ren C, Kong Y, Zhong H, Chen J, Li Y, et al. Development of a Brinibagin degrader (SAS151.7) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem. 2020;193:112190.

104. Zhou F, Chen L, Cao C, Yu J, Luo X, Zhou P, et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem. 2020;187:112199.

105. Zhao B, Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun. 2019;55(18):2704–7.

106. Wei M, Zhao R, Cao Y, Wei Y, Li M, Dong Z, et al. Iterative design and optimization of initially inactive proteinase targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2018;62(2):699–726.

107. Ma D, Zou Y, Chuy C, Liu Z, Liu G, Chu J, et al. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT efficiently inhibits pancreatic cancer. Theranostics. 2020;10(8):3708.

108. Zhou L, Chen W, Cao C, Shi Y, Ye W, Hu J, et al. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP) 1B1-mediated drug resistance via targeted CYP1B1 degraga.

109. Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, et al. Discovery of ERD-308 as a highly potent proteinase targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem. 2019;62(3):1420–42.

110. Madak JT, Cuthbertson CR, Chen W, Showalter HD, Neamati N. Design, synthesis, and characterization of biquinar conjugates as probes to study DHODH inhibition. Chemistry (Easton). 2017;23(56):13875–8.

111. Hu J, Hu B, Wang M, Xu F, Deng L, Fong CY, et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem. 2020;187:112199.

112. Hatcher JM, Wang ES, Johannessen L, Kwiatkowskii N, Sim T, Gray NS. Development of highly potent and selective steroid inhibitors and degraders of CDK8. ACS Med Chem Lett. 2018;9(6):540–5.

113. Robb CM, Contreras JL, Kour S, Taylor MA, Abid M, Sonawane YA, et al. Chemically induced degradation of CD9 by a proteinase targeting chimera (PROTAC). Chem Commun. 2017;53(54):7577–80.

114. Zhou X, Li Y, Yu B, Ren J, Huang H, Wang M, et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem. 2021;211:113091.

115. Sun N, Ren C, Kong Y, Zhong H, Chen J, Li Y, et al. Development of a Brinibagin degrader (SAS151.7) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem. 2020;193:112190.

116. Zhou F, Chen L, Cao C, Yu J, Luo X, Zhou P, et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem. 2020;187:112199.

117. Zhao B, Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun. 2019;55(18):2704–7.

118. Wei M, Zhao R, Cao Y, Wei Y, Li M, Dong Z, et al. Iterative design and optimization of initially inactive proteinase targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2018;62(2):699–726.

119. Ma D, Zou Y, Chuy C, Liu Z, Liu G, Chu J, et al. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT efficiently inhibits pancreatic cancer. Theranostics. 2020;10(8):3708.

120. Zhou L, Chen W, Cao C, Shi Y, Ye W, Hu J, et al. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP) 1B1-mediated drug resistance via targeted CYP1B1 degraga.

121. Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, et al. Discovery of ERD-308 as a highly potent proteinase targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem. 2019;62(3):1420–42.

122. Madak JT, Cuthbertson CR, Chen W, Showalter HD, Neamati N. Design, synthesis, and characterization of biquinar conjugates as probes to study DHODH inhibition. Chemistry (Easton). 2017;23(56):13875–8.

123. Hu J, Hu B, Wang M, Xu F, Deng L, Fong CY, et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem. 2020;187:112199.
133. Chen L, Chen Y, Zhang C, Jiao B, Liang S, Tan Q, et al. Discovery of first-in-class potent and selective tropomyosin receptor kinase degraders. J Med Chem. 2020;63(23):14562–75.

134. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12(7):465–77.

135. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73.

136. Qi J, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al. Discovery of QC5A70 as an exceptionally potent and efficacious proteolytic targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018;61(15):6865–704.

137. Zhang J, Chen P, Zhu P, Zheng P, Wang T, Wang L, et al. Development of small-molecule BRD4 degraders based on pyrroolidinone derivative. Bioorg. Med Chem. 2020;99:103817.

141. O’leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nature. 2020;574(7778):417–30.

145. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2015;16(5):281–98.

146. O’Connor OA, Özcan M, Jacobsen ED, Roncero JM, Trotman J, Demeter O, et al. Selective inhibition of BET bromodomains. Nature. 2018;558(7709):397–8.

148. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.

153. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. Discovery of novel PROTACs for G protein-coupled receptors: inducing α (1A)-adrenergic receptor degradation. Acta Pharm Sin B. 2020;10(9):1669–79.

155. Han X, Zhao L, Xiang W, Qin C, Miao B, Xu T, et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J Med Chem. 2019;62(17):8152–63.

156. Kregel S, Wang C, Han X, Xiao L, Fernandez-Salas E, Bavo P, et al. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia. 2020;22(2):111–9.

157. Yan G, Zhong X, Yue L, Pu C, Shan H, Lan S, et al. Discovery of a PROTAC targeting ALK with in vivo activity. Eur J Med Chem. 2021;212:113150.
180. Li W, Gao C, Zhao L, Yuan Z, Chen Y, Jiang Y. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem. 2018;151:237–47.

181. Vanam R, Sayilgan O, Ojeda S, Karakyikou B, Hu E, Kreuzer J, et al. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chem Biol. 2021;28(4):503–14.e2.

182. Schiedel M, Herp D, Hammelmann SR, Swyter SR, Lehotzky A, Robaa D, et al. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SiriReals). J Med Chem. 2018;61(2):482–91.

183. Shan Y, Si R, Wang J, Zhang Q, Li J, Ma Y, et al. Discovery of novel antiangiogenic agents. Part 1: Development of PROTACs based on active molecules with potency of promoting vascular normalization. Eur J Med Chem. 2020;205:112654.

184. Zhang X, Thummuni D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.

185. Zhang X, He Y, Zhang P, Budamagunta V, Li D, Thummuni D, et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem. 2020;199:112397.

186. Yang Y, Gao H, Sun X, Sun Y, Qiu Y, Weng Q, et al. Global PROTAC toolbox for degrading CBR-ABL overcome drug-resistant mutants and adverse effects. J Med Chem. 2020;63(15):8567–83.

187. Chung OW, DB, Fernandez E, Timworth CP, Churcher I, Cryan J, et al. Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem Biol. 2020;15(9):2316–23.

188. Zhang Z, Chang X, Zhang C, Zeng S, Liang M, Ma Z, et al. Identification of probe-quality degraders for poly (ADP-ribose) polymerase-1 (PARP-1). J Enzyme Inhib Med Chem. 2020;35(1):1606–15.

189. Burslem GM, Bondeson DP, Cheng CM. Scaffold hopping enables direct access to more potent PROTACs with in vivo activity. Chem Commun. 2020;56(50):6890–2.

190. Zhao Q, Ren C, Liu L, Chen J, Shao Y, Sun N, et al. Discovery of SIA5178 as an effective CBR-ABL degrader by recruiting von Hippel-Lindau (VHL) E3 ubiquitin ligase. J Med Chem. 2019;62(20):9281–98.

191. Zhao Q, Lan T, Su S, Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun. 2019;55(3):369–72.

192. Tong B, Spradlin JN, Novales LF, Zhang E, Zhang P, Budamagunta V, et al. Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to access to more potent PROTACs with in vivo activity. Chem Commun. 2020;56(50):6890–2.

193. Vinay DS, Ryan EP, Pavelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:5185–598.

194. Cheng B, Ren Y, Cao H, Chen J. Discovery of novel sorosiniphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur J Med Chem. 2020;199:112377.

195. Sun Y, Zhao X, Ding N, Gao H, Hu Y, Yang Y, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018;28(7):779–81.

196. Gabizon R, Shraga A, Gehrtz P, Livnah E, Shorer Y, Gurwicz N, et al. Efficient targeted degradation via reversible and irreversible covalent PROTACs. J Am Chem Soc. 2020;142(27):11734–42.

197. Dobrovolsky D, Wang ES, Morrow S, Leahy C, Faust T, Nowak RP, et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood. 2019;133(9):952–61.

198. Schiemer J, Horst R, Meng Y, Montgomery J, Xu Y, Feng X, et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol. 2020;16(1):102–5.

199. Schiemer J, Horst R, Meng Y, Montgomery J, Xu Y, Feng X, et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol. 2020;16(1):102–5.
225. Erb MA, Scott TG, Li BE, Xie H, Paulk J, Sea HS, et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature. 2017;543(7644):270–4.

226. Sun X, Wang J, Yao X, Zheng W, Mao Y, Lan T, et al. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov. 2019;5(1):1–13.

228. Zorba A, Xu Y, Zorba A, Xu Y, Zorba A, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Nat Protoc. 2018;13(5):738–92.

229. Zhang J, Li, S., B., Li, S., B., et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation. Cell Chem Biol. 2020;27(12):5870–91.

230. Zhou Z, Long J, Yang Y, Yang Y, Yang Y, et al. Targeted degradation of CD147 proteins in melanoma. Bioorg. Chem. 2020;105:104453.

233. Hsu JHR, Rasmusson T, Robinson J, Pachl F, Read J, Kawatkar S, et al. Degradation of transcription cofactors by PROTACs. Cell Chem Biol. 2020;27(1):47–56. e15.

235. Song Y, Park PM, Wu L, Ray A, Picaud S, Li D, et al. Development and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem. 2019;62(3):918–33.

236. Chessum NE, Sharp SY, Caldwell JJ, Pasqua AE, Wilding B, Colombano G, et al. Demonstrating in-cell target engagement using a prin protein degradase probe (CCT376766). J Med Chem. 2018;61(3):918–33.

239. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the E3 ubiquitin ligase VCP. J Cell Sci. 2013;126(4):610–21.

240. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.

241. Sun Y, Ding N, Song Y, Liu W, Zhu J, et al. Degradation of Bruton’s tyrosine kinase (BTK) target with an EED-targeted bivalent chemical degrader. Cell Chem Biol. 2020;27(7):989–905.

243. Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2018;18(9):533–48.

246. Popow J, Arnhof H, Bader G, Berger H, Ciulli A, Covini D, et al. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase (FAK) signalling, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.

248. Cooper J, Giancotti FG. Integrin signalling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.

249. Cotton AD, Nguyen DP, Gramespacher JA, Seiple IB, Wells JA. Development of a PDEδ-targeting PROTAC that impair lipid metabolism. Angew Chem Int Ed Engl. 2020;59(14):5595–601.

250. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25(1):78–87. e5.

252. Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, et al. Targeted degradation of transcription coactivator CRC-1 through the N-degron pathway: Angew Chem Int Ed Engl. 2020;132(40):17701–8.

255. Liao H, Li X, Zhao L, Wang Y, Wu Y, et al. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 2020;6(1):1–12.

258. Cooper J, Giancotti FG. Integrin signalling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.

260. Fujii T, Koshikawa K, Nomoto S, Otsuki O, Kaneko T, Inoue S, et al. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem Biol. 2020;27(1):41–56. e17.

263. Banik S, Pedram K, Wisnovsky S, Riley N, Bertozzi C. Lysosome-targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem. 2019;62(3):918–33.

264. Cotton AD, Nguyen DP, Gramespacher JA, Seiple IB, Wells JA. Development of a PDEδ-targeting PROTAC that impair lipid metabolism. Angew Chem Int Ed Engl. 2020;59(14):5595–601.

265. Banik S, Pedram K, Wisnovsky S, Riley N, Bertozzi C. Lysosome-targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem. 2019;62(3):918–33.

268. Liu X, Haniff HS, Childs-Disney JL, Shuster A, Aikawa H, Adibekian A, et al. Targeting of antibody-based PROTACs for the degradation of the cell-surface ribonuclease targeting chimera (RIBOTAC) degraders for the treatment of KRAS mutant colorectal cancer. J Med Chem. 2020;63(17):9977–90.

270. Liu X, Haniff HS, Childs-Disney JL, Shuster A, Aikawa H, Adibekian A, et al. Targeting of antibody-based PROTACs for the degradation of the cell-surface ribonuclease targeting chimera (RIBOTAC) degraders for the treatment of KRAS mutant colorectal cancer. J Med Chem. 2020;63(17):9977–90.

272. Haniff HS, Tong Y, Liu X, Wu Y, et al. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 2020;6(1):1–12.

274. Feng Y, Su H, Li Y, Luo C, Xu H, Wang Y, et al. Degradation of intracellular TGF-β1 by PROTACs efficiently reverses M2 macrophage induced malignant pathological events. Chem Commun. 2020;56(19):2881–4.

275. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25(1):78–87. e5.

276. Wang X, Feng S, Fan J, Li X, Wen Q, Luo N. New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation. Biochem Pharmacol. 2020;161:200–9.

277. Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, et al. Targeted degradation of transcription coactivator CRC-1 through the N-degron pathway: Angew Chem Int Ed Engl. 2020;132(40):17701–8.

278. Jain N, Hartert K, Tadros S, Fiskus W, Havranek O, Ma M, et al. Targetable genetic alterations of TCF4 (E2–2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med. 2019;11(497):eaav5599.

279. Zorba A, Xu Y, Zorba A, Xu Y, Zorba A, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Nat Protoc. 2018;13(5):738–92.

280. Zorba A, Xu Y, Zorba A, Xu Y, Zorba A, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Nat Protoc. 2018;13(5):738–92.

281. Hsu JHR, Rasmusson T, Robinson J, Pachl F, Read J, Kawatkar S, et al. Degradation of transcription cofactors by PROTACs. Cell Chem Biol. 2020;27(1):47–56. e15.

282. Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, et al. Targeted degradation of transcription coactivator CRC-1 through the N-degron pathway: Angew Chem Int Ed Engl. 2020;132(40):17701–8.

283. Jain N, Hartert K, Tadros S, Fiskus W, Havranek O, Ma M, et al. Targetable genetic alterations of TCF4 (E2–2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med. 2019;11(497):eaav5599.

284. Feng Y, Su H, Li Y, Luo C, Xu H, Wang Y, et al. Degradation of intracellular TGF-β1 by PROTACs efficiently reverses M2 macrophage induced malignant pathological events. Chem Commun. 2020;56(19):2881–4.

285. Liao H, Li X, Zhao L, Wang Y, Wu Y, et al. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 2020;6(1):1–12.

286. Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, et al. Targeted degradation of transcription coactivator CRC-1 through the N-degron pathway: Angew Chem Int Ed Engl. 2020;132(40):17701–8.

287. Jain N, Hartert K, Tadros S, Fiskus W, Havranek O, Ma M, et al. Targetable genetic alterations of TCF4 (E2–2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med. 2019;11(497):eaav5599.