Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J_1–J_2–J_3 ferromagnets

R Zinke¹, J Richter¹ and S-L Drechsler²

¹ Institut für Theoretische Physik, Otto-von-Guericke-Universität Magdeburg, PO Box 4120, D-39016 Magdeburg, Germany
² Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, PO Box 270116, D-01171 Dresden, Germany

Received 2 August 2010, in final form 22 September 2010
Published 22 October 2010
Online at stacks.iop.org/JPhysCM/22/446002

Abstract

We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J_3 on the ground state of the spin-1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J_1 and frustrating antiferromagnetic next-nearest-neighbor interaction J_2. A third-neighbor exchange J_3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO₄ or LiCu₂O₂. In particular, we calculate the critical point J_c^2 as a function of J_3, where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J_3 the ferro–spiral transition is always continuous and the critical values J_c^2 of the classical and the quantum model coincide. On the other hand, for ferromagnetic $J_3 \lesssim -(0.01 \cdots 0.02)|J_1|$ the critical value J_c^2 of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro–spiral transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent observation of spiral (helical) magnetic ground states in several chain cuprates, such as LiVCuO₄, LiCu₂O₂, NaCu₂O₂, Li₂ZrCuO₄, and Li₂CuO₂ [1–11], which were identified as quasi-one-dimensional (1D) frustrated spin-1/2 magnets with ferromagnetic (FM) nearest-neighbor (NN) in-chain J_1 and antiferromagnetic (AFM) next-nearest-neighbor (NNN) in-chain interactions J_2 has stimulated intensive investigations of frustrated 1D Heisenberg ferromagnets, see e.g. [12–21]. The 1D J_1–J_2 model considered in most theoretical papers may serve only as the minimal model to describe the magnetic properties of these materials. Several extensions, such as exchange anisotropy [16, 21] or interchain coupling [19, 22–25] might be relevant to explain experiments. In addition to the NN and NNN exchange integrals, J_1 and J_2, also an exchange coupling to third neighbors, i.e. J_3, or even couplings to farther distant neighbors could play a role in real materials. One mechanism to induce such exchange interactions is strong spin–phonon interaction for frustrated chains within the anti-adiabatic limit [26]. Even if these additional couplings are small, their influence on the spiral ground state (GS) correlations might be noticeable. In particular, there is a significant influence of J_3 on the critical frustration J_c^2 at which the FM GS gives way for the spiral GS (see below). Except for the possible relevance of the J_1–J_2–J_3 model for real materials, the consideration of such a model is interesting in its own right as a basic model to study frustration effects in 1D quantum spin systems. Moreover, very recently it has been argued that the magnetic properties of the kagome-like mineral volborthite Cu₃V₂O₇(OH)₂·2H₂O can be described by an effective chain model with farther distant frustrating exchange couplings [27]. The corresponding general Heisenberg Hamiltonian H with NN exchange J_1, NNN exchange J_2, and farther in-chain exchange interactions J_n reads

$$H = \sum_n J_1 s_n s_{n+1} + J_2 s_n s_{n+2} + J_3 s_n s_{n+3} + \cdots .$$ (1)
Motivated by the experiments on the edge-sharing chain cuprates we focus on the spin-1/2 J_1–J_2–J_3 model with FM J_1 and frustrating AFM $J_2 \geq 0$. To the best of our knowledge this model has been investigated so far only in an early paper of Pimpinelli et al [12] using spin-wave theory.

Here we use the coupled cluster method (CCM) for infinite chains complemented by exact diagonalization (ED) of finite chains (periodic boundary conditions imposed) to investigate spiral GS correlations. Both methods have been successfully applied to study the spiral ordering of the J_1–J_2 model [13, 19, 28]. In [13, 19] it was demonstrated that the CCM results are in good agreement with the density matrix renormalization group (DMRG) data. However, in order to take into account the J_3 bonds properly, we go beyond the so-called SUB2-3 approximation used in [13, 19] and consider an improved approximation, namely the LSUB4 approximation (see below).

The paper is organized as follows. In section 2 we discuss briefly the classical GS. In section 3 we provide a brief illustration of the CCM and describe its application to the considered model. In section 4 our results for the FM–spiral phase transition and for the pitch angle in the spiral phase are presented and discussed. In section 5 we summarize our findings.

2. The classical model

First we discuss the GS of the classical model (spin quantum number $s \to \infty$). For the usual J_1–J_2 model, i.e. the model with $J_2 = 0$, $n \geq 3$, studied in many papers, the critical frustration J_2 is $J_2^c = |J_1|/4$. For $J_2 \geq J_2^c$ there is a spiral GS with a canting angle between NN (pitch angle) γ given by $\cos \gamma = |J_1|/(4J_2)$. This helix interpolates between an FM chain at $0 < J_2 < J_2^c$ and two decoupled AFM chains at $J_2/|J_1| = \infty$. Notably, J_2^c is unaffected by quantum effects, see e.g. [12, 13, 15, 19].

If farther AFM couplings J_n $(n \geq 3)$ are relevant, the destabilization of the FM GS sets in for smaller values of J_2. Extending the classical model including arbitrary $J_n \neq 0$ $(n \geq 3)$ one finds for the critical NN exchange

$$J_2^c = \frac{1}{4} \left(|J_1| - \sum_{n=3}^{\infty} n^2 J_n \right).$$

(2)

This expression has been derived assuming a continuous transition between the FM and the spiral GSs. It holds for arbitrary AFM long-range couplings J_n with $n \geq 3$. In the case where some of the exchange couplings are FM, i.e. $J_n < 0$ for certain $n \geq 3$, equation (2) holds only if the AFM couplings dominate. Assuming $J_2 > 0$ we find as the criterion for the validity of equation (2)

$$J_2 \geq -\frac{1}{2} \sum_{n=3}^{\infty} n^2 (n^2 - 1) J_n,$$

(3)

or equivalently

$$|J_1| \geq -\frac{1}{4} \sum_{n=3}^{\infty} n^2 (n^2 - 4) J_n.$$

(4)

If this condition is violated, in crossing the FM–spiral phase boundary, the spiral GS ‘jumps’ from a finite pitch angle $\gamma_T \neq 0$ to $\gamma = 0$ in the FM GS. For the simplest case $J_3 = 0$ and $J_n = 0$ ($n > 3$) the classical model was considered by Pimpinelli et al [12]. They found for the critical frustration J_2 in the case of continuous transition that $J_2^c = (|J_1| - 9J_3)/4$ in accordance with the general expression (2).

The classical pitch angle in the spiral phase is given by $\cos \gamma = -J_2 + \sqrt{J_2^2 + 3J_3(|J_1| + |J_1|)/6J_3}$. According to the general equations (3) and (4) for the J_1–J_2–J_3 model, the classical FM–spiral transition is discontinuous at $J_3 < -\frac{|J_1|}{12}$ or equivalently at $J_3 < -\frac{J_2}{6}$.

For $J_3 < 0$ and $J_n = 0$, $n > 3$, the height of the jump of the pitch angle γ_T at the transition is given by [12]

$$\cos \gamma_T = -J_1 \left(2J_3 + \sqrt{4J_3^2 + 4J_3 J_1} \right)^{-1} - \frac{1}{2},$$

(5)

or equivalently

$$\cos \gamma_T = -\frac{J_2}{4J_3} - \frac{1}{2}.$$

(6)

Considering other simplified classical models with a single FM long-range coupling J_n $(n \geq 3)$, i.e. a model with $J_1 < 0$, $J_2 = 0$, $J_n < 0$, $J_n = 0$ ($n > 2$ and $n = n_0$), the classical discontinuous FM–spiral transitions occur according to equations (3) and (4) at $-J_{n_0} > 12J_2/(n_0^2(n_0^2 - 1))$ (or equivalently at $-J_{n_0} > 3|J_1|/(n_0^2(n_0^2 - 4)))$. In other words, even a tiny but fairly long-range ferromagnetic coupling may introduce a discontinuous behavior at the critical point.

3. The coupled cluster method (CCM)

For the sake of brevity, we will outline only some important features of the CCM that are relevant for the model under consideration. The interested reader can find more details concerning the application of the CCM on the frustrated Heisenberg magnets with non-collinear GSs in [13, 19, 29–37].

For more general aspects of the methodology of the CCM, see e.g. [38–40].

First we mention that the CCM approach yields results in the thermodynamic limit $N \to \infty$. The starting point for a CCM calculation is the choice of a normalized reference (or model) state $|\Phi\rangle$. Related to this reference state we then define a set of mutually commuting multispin creation operators C^+_I, which are themselves defined over a complete set of many-body configurations I. For the considered frustrated spin system we choose a spiral reference state with spiral spin orientations along the chains (i.e. pictorially $|\Phi\rangle = |\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \cdots \rangle$) characterized by a pitch angle γ, i.e. $|\Phi\rangle = |\Phi(\gamma)\rangle$). Such states include the FM state ($\gamma = 0$) as well as the Néel state ($\gamma = \pi$). Next, we perform a rotation of the local axis of the spins such that all spins in the reference state align along the negative z axis. This rotation by an appropriate local angle δ_γ of the spin on lattice site i is equivalent to the spin-operator transformation

$$s^x_i = \cos \delta_\gamma \tilde{s}^x_i + \sin \delta_\gamma \tilde{s}^z_i; \quad s^y_i = \tilde{s}^z_i; \quad s^z_i = -\sin \delta_\gamma \tilde{s}^x_i + \cos \delta_\gamma \tilde{s}^z_i.$$

(7)
where \(\hat{s}^+_n, \hat{s}^-_n, \hat{s}_n^z \) are the spin operators in the rotated coordinate frame. The local rotation angle \(\delta_n \) is related to the pitch angle \(\gamma \) of the spiral reference state by \(\delta_n = n \gamma \). In this new set of local spin coordinates the reference state and the corresponding multispin creation operators \(C^+_I \) are given by

\[
\{\Phi\} = \{\down\down\down\cdots\}; \quad C^+_I = \hat{s}^+_n, \hat{s}^+_m \hat{s}^-_m \hat{s}^+_k, \cdots, \quad (8)
\]

where the indices \(n, m, k, \ldots \) denote arbitrary lattice sites. In the rotated coordinate frame the Hamiltonian becomes dependent on the pitch angle \(\gamma \). It reads

\[
H = \sum_{n=1}^{N_d} \frac{J_m}{4} \sum_n \{\cos(mx) + 1\} [\hat{s}^+_n \hat{s}^-_{n+m} + \hat{s}_n^z \hat{s}_{n+m}^z] + [\cos(my) - 1] [\hat{s}^+_n \hat{s}^-_{n+m} + \hat{s}_n^z \hat{s}_{n+m}^z] + 2 \sin(mx) [\hat{s}^+_n \hat{s}^-_{n+m} - \hat{s}_n^z \hat{s}_{n+m}^z] + 4 \cos(my) \hat{s}_n^z \hat{s}_{n+m}^z,
\]

where \(\hat{s}_n^\pm = \frac{\hat{s}^+_n + \hat{s}^-_n}{\sqrt{2}}, \hat{s}_n^z = \frac{\hat{s}_n^z}{\sqrt{2}} \).

With the set \(\{|\Phi\}, C^+_I \) the CCM parametrization of the exact ket GS eigenvector \(|\Psi\rangle\) of the many-body system is given by

\[
|\Psi\rangle = e^S|\Phi\rangle, \quad S = \sum_{I \neq 0} a_IC^+_I. \quad (10)
\]

The CCM correlation operator \(S \) contains the correlation coefficients \(a_I \), which can be determined by the so-called set of the CCM ket state equations

\[
\{\Phi\} e^{-\hat{H}} e^{\hat{S}} |\Phi\rangle = 0; \quad \forall I \neq 0, \quad (11)
\]

where \(\hat{C}_I = (C^+_I)^\dagger \). Each ket state equation belongs to a specific creation operator \(\hat{C}_I \), i.e. it corresponds to a specific set (configuration) of lattice sites \(n, m, k, \ldots \). By using the Schrödinger equation, \(\hat{H} |\Psi\rangle = E |\Psi\rangle \), we write the GS energy as \(E = \langle \Phi | e^{-\hat{H}} e^{\hat{S}} |\Phi\rangle = E(\gamma) \), which depends (in a certain CCM approximation, see below) on the pitch angle \(\gamma \).

In the quantum model the pitch angle may be different from the corresponding classical value \(\gamma_{cl} \). Therefore, we do not choose the classical result for the pitch angle in the quantum model, rather, we consider \(\gamma \) as a free parameter in the CCM calculation, which has to be determined by minimization of the CCM GS energy \(E(\gamma) \), i.e. \(dE/d\gamma|_{\gamma=\gamma_{cl}} = 0 \).

For the many-body quantum system under consideration it is necessary to use approximation schemes in order to truncate the expansions of \(S \) in equation (10) in a practical calculation. In [13] and [19] it has been demonstrated that for the \(J_1-J_2 \) model the so-called SUB2-3 approximation leads to results of comparable accuracy to those obtained using the DMRG method [41]. In this approximation all configurations are included that span a range of no more than three contiguous sites and contain only two or fewer spins. Taking into account the \(J_3 \) bond we have to extend this approximation in order to take into account configurations including a range of four contiguous sites. The corresponding approximation is the so-called LSUB4 approximation, see e.g. [35, 39, 40]. Within this approximation multispin creation operators of one, two, three, or four spins distributed on clusters of four contiguous lattice sites are included.

In addition, for the determination of the quantum tricritical point we have also used higher LSUB4n approximations, see section 4. However, the numerical complexity increases tremendously, since (i) the number of ket state equations (11) increases exponentially with \(n \), (ii) there are two free parameters \(J_2, J_3 \) which have to be varied by very small increments to find the transition points, and (iii) the determination of the quantum pitch angle \(\gamma_{tr} \) itself requires the iterative minimization of the ground state energy for each set of \(J_2, J_3 \). Hence, except for the determination of the quantum tricritical point, we have restricted our CCM calculations to the CCM-LSUB4 approximation.

4. Results for the spin-1/2 quantum model

In what follows we set \(J_1 = -1 \) if not stated otherwise explicitly. The phase diagram of the \(J_1-J_2-J_3 \) Heisenberg chain with FM \(J_1 = -1 \) obtained by the CCM and by the ED is shown in figure 1. For the classical as well as for the quantum model the transition from the FM to the spiral GS can be second \((J_3 > J_2^c) \) or first order \((J_3 < J_2^c) \), i.e. the pitch angle \(\gamma \) does (first order) or does not (second order) jump from \(\gamma = 0 \) to a finite value \(\gamma > \gamma_T \) at the transition. The tricritical point \(T_n = (J_2^c, J_3^c) \), i.e. that point at the transition line where the second-order transition goes over in a first-order transition is \(T_n = (J_2^c, J_3^c) = (\frac{\pi}{6}, \frac{\pi}{12}) \) for the classical model [12], see the black square in figure 1. Due to quantum fluctuations this point is shifted to smaller values of \(|J_3| \). The LSUB4-CCM estimate for the quantum tricritical point is \(T_{\text{qua}} = (J_2^c, J_3^c) = (0.283, -0.013) \), see the red square in figure 1. This result is quite close to the spin-wave result [12] \(T_{\text{quw}} = (J_2^c, J_3^c) = (0.25, 0) \). We
have determined the quantum tricritical point also using higher CCM-LSUBn approximations, namely LSUB6, LSUB8, and LSUB10. The corresponding results are $(J_2^{LSUB6}_w , J_3^{LSUB6}_w) = (0.274, -0.011)$, $(J_2^{LSUB8}_w , J_3^{LSUB8}_w) = (0.268, -0.009)$, and $(J_2^{LSUB10}_w , J_3^{LSUB10}_w) = (0.266, -0.007)$. Obviously, these values are quite close to each other, and there is a slight shift towards $(J_2^{LSUB}_w , J_3^{LSUB}_w)$ of [12] when increasing the order of the CCM approximation.

The CCM results for the quantum pitch angle γ_{qu} in dependence on J_2 for various values of J_3. For comparison we also show the classical pitch angle γ_{cl}. Note that for $J_3 = -0.08$ (quantum and classical model) and for $J_3 = -0.04$ (quantum model only) the pitch angle jumps from zero to a finite value γ_T at the transition point. These jumps are indicated by filled circles (quantum model) or a filled square (classical model).

To illustrate the quantum tricritical point in more detail, we show in figure 2 the CCM results for the pitch angle versus J_2 for various values of J_3 around J_3^{LSUBns}. For comparison we show also the classic pitch angle γ_{cl}. It can be clearly seen how the continuous behavior of the pitch angle γ goes over into a discontinuous one. Interestingly, at a particular value of $J_3 = J_3^*$ the curves cross each other, i.e. the pitch angle is independent of J_3. For the classical model the crossing point is at $J_3^* = 1/2$ and the corresponding pitch angle is $\gamma_{cl} = \pi/3$. For the quantum model the curves do not cross exactly in a point, rather they approach each other very closely at $J_3^* = 0.335$. The pitch angle at that point is $\gamma_{qu} = 0.32\pi$. Furthermore the quantum pitch angle γ_{qu} approaches the limiting value $\lim_{J_2\to\infty} \gamma_{qu}$ for much smaller values of J_2 than the classical one.

In figure 3 we present the height of the jump γ_T at the transition point in dependence on J_3. For the classical model γ_T is given by equation (5) for $J_3 < -1/15$. For the quantum model the $\gamma_T(J_3)$ curve is characterized by two nearly linear regimes, one regime (near the quantum tricritical point) with a steep increase of γ_T and a second, almost flat one, for $J_3 \lesssim -0.2$. This scenario is confirmed by the ED results for the NN spin–spin correlation function shown in figure 4 which may serve as a finite-chain analog of the infinite-chain pitch angle.

Finally, let us discuss the pitch angle which appears in the limits of large J_2 or large $|J_3|$. This limiting value of γ is the maximal pitch angle and it is monotonously approached from below, increasing the corresponding bond J_2 or $|J_3|$ while fixing the other one. For $J_2 \to \infty$ (and finite $|J_3|$) the pitch angle approaches $\gamma = \pi/2$. In this limit the system splits into two decoupled AFM chains with coupling strength J_2.

For $J_3 \to \infty$ (and finite J_3) the pitch angle approaches $\gamma = \pi/3$, i.e. only acute pitch angles appear. For $J_3 \to -\infty$ (and finite J_3) the pitch angle approaches $\gamma = 2\pi/3$, i.e. by contrast to the pure J_1-J_2 model also obtuse pitch angles.
the classical one. For an FM coupling however, the quantum pitch angle significantly deviates from that of the classical model, and it is always continuous.

Using the CCM and the Lanczos ED technique we have studied the influence of a third-neighbor exchange J_3 on the GS of the spin-$\frac{1}{2}$ Heisenberg chain with FM NN interaction J_1 and frustrating AFM NNN interaction J_2. In particular, we have analyzed the transition from the FM GS (present for dominating J_1) to a singlet GS with incommensurate short-range spiral correlations. The results obtained by these two different approximations agree well. Moreover, the finite-size effects inherent in the ED study appeared to be small.

We have found that in the case of an AFM coupling J_1 the FM–spiral transition point J_3^{χ} of the quantum model coincides with that of the classical model, and it is always continuous. However, the quantum pitch angle significantly deviates from the classical one. For an FM coupling J_1 quantum fluctuations shift the FM–spiral transition point J_3^γ to smaller values and the transition becomes discontinuous.

5. Summary

See also a recent critical discussions of the set of main exchange integrals given there in Drechsler S-L, Nishimoto S, Kuzian R, Mälek J, Richter J, van den Brink J, Schmitt M and Rosner H 2010 Phys. Rev. Lett. submitted Drechsler S-L, Nishimoto S, Kuzian R, Mälek J, Richter J, von der Brink J, Schmitt M and Rosner H 2010

J Phys: Condens Matter 316 306

This appears already for quite moderate values of J_2 larger than 1 might be realized also in real materials, e.g. in NaCu$_2$O$_2$ [6].

4.1. J. Phys.: Condens. Matter 22 (2010) 446002

5. Acknowledgments

We thank the DFG for financial support (grants DR269/3-1 and Ri1615/16-1). For the exact diagonalization J Schulenburg’s spinpack was used.

References

[1] Gibson B J, Kremer R K, Prokofiev A V, Assmus W and McIntyre G J 2004 Physica B 350 E253

[2] Matsuda T, Zheludev A, Bush A, Markinka M and Vasiliev A 2004 Phys. Rev. Lett. 92 177201

[3] Gippius A A, Morozova E N, Moskvin A S, Zalesky A V, Bush A A, Baenitz M, Rosner H and Drechsler S-L 2004 Phys. Rev. B 70 020406(R)

[4] Enderle M, Mukherjee C, Fak B, Kremer R K, Broto J-M, Rosner H, Drechsler S-L, Richter J, Mälek J, Prokofiev A, Assmus W, Pujol S, Ragagioni J-L, Rakato H, Rheinstädtler M and Ronnow H M 2005 Europhys. Lett. 70 237

[5] Masuda T, Zheludev A, Bush A, Markinka M and Vasiliev A 2004 Phys. Rev. Lett. 92 177201

[6] Drechsler S-L, Richter J, Gippius A A, Vasiliev A, Moskvin A S, Mälek J, Prots Y, Schnelle W and Rosner H 2006 Europhys. Lett. 73 83

[7] Drechsler S-L, Volkova O, Vasiliev A N, Tristan N, Richter J, Schmitt M, Rosner H, Mälek J, Klingeler R, Zvyaganin A and Bünchner B 2007 Phys. Rev. Lett. 98 077202

[8] Drechsler S-L, Richter J, Kuzian R, Mälek J, Tristan N, Bünchner B, Moskvina A S, Gippius A A, Vasiliev A, Volkova O, Prokofiev A, Rakato H, Broto J-M, Schnelle W, Schmitt M, Ormeci A, Loison C and Rosner H 2007 J. Magn. Magn. Mater. 316 306

[9] Park S, Choi Y J, Zhang C L and Cheong S-W 2007 Phys. Rev. Lett. 98 057601

[10] Mälek J, Drechsler S-L, Nitzsche U, Rosner H and Eschrig H 2008 Phys. Rev. B 78 060508

[11] Tarui Y, Kobayashi Y and Sato M 2008 J. Phys. Soc. Japan 77 043703

[12] Pimpinelli A, Rastelli E and Tassi A 1989 J. Phys.: Condens. Matter 1 7941

[13] Bursill R, Gehring G A, Farnell D J J, Parkinson J B, Ueda H and Totsuka K 2009 Phys. Rev. B 80 014404

[14] Dmitriev D V, Krivnov V Ya and Richter J 2007 Phys. Rev. B 75 014424

[15] Dmitriev D V and Krivnov V Ya 2008 Phys. Rev. B 77 024401

[16] Hikihara T, Momoi T, Furusaki A and Kawamura H 2008 Phys. Rev. B 78 144404

[17] Härte1 M, Richter J, Ille D and Drechsler S-L 2008 Phys. Rev. B 78 174412

[19] Zinke R, Drechsler S-L and Richter J 2009 Phys. Rev. B 79 094425

[20] Sudar J, Luscher A and Laeuchli A 2009 Phys. Rev. B 80 140402(R)

[21] Sirker J 2010 Phys. Rev. B 81 014419

[22] Ueda H and Totsuka K 2009 Phys. Rev. B 80 014417

[23] Zhitomirsky M and Tsunetsugu H 2010 arXiv:1003.4906

[24] Nishimoto S, Drechsler S-L, Kuzian R, Lorenz W E A, Klingeler R, Büchner B and Richter J 2010 arXiv:1004.3300

[25] Nishimoto S, Drechsler S-L, Kuzian R and Richter J 2010 arXiv:1005.5505

[26] Weisse A, Wellein G and Fehske H 1999 Phys. Rev. B 60 6566

[27] Janson O, Richter J, Sindzingre P and Rosner H 2010 Phys. Rev. B 82 104434

[28] Aligia A A, Batista C D and Ellfer F H L 2000 Phys. Rev. B 62 3259
[29] Krüger S E, Richter J, Schulenburg J and Farnell D J J 2000 Phys. Rev. B 61 14607
[30] Krüger S E and Richter J 2001 Phys. Rev. B 64 024433
[31] Farnell D J J, Gernoth K A and Bishop R F 2001 Phys. Rev. B 63 220402
[32] Ivanov N B, Richter J and Farnell D J J 2002 Phys. Rev. B 66 014421
[33] Darradi R, Richter J and Farnell D J J 2005 Phys. Rev. B 72 104425
[34] Krüger S E, Darradi R, Richter J and Farnell D J J 2006 Phys. Rev. B 73 094404
[35] Darradi R, Derzhko O, Zinke R, Schulenburg J, Krüger S E and Richter J 2008 Phys. Rev. B 78 214415
[36] Bishop R F, Li P H Y, Farnell D J J and Campbell C E 2009 Phys. Rev. B 79 174405
[37] Farnell D J J, Zinke R, Schulenburg J and Richter J 2009 J. Phys.: Condens. Matter 21 406002
[38] Zeng C, Farnell D J J and Bishop R F 1998 J. Stat. Phys. 90 327
[39] Bishop R F, Farnell D J J, Krüger S E and Parkinson J B 2000 J. Phys.: Condens. Matter 12 6887
[40] Farnell D J J and Bishop R F 2004 Quantum Magnetism (Lecture Notes in Physics vol 645) ed U Schollwöck, J Richter, D J J Farnell and R F Bishop (Berlin: Springer) p 307
[41] White S R and Affleck I 1996 Phys. Rev. B 54 9862