Analysis of BER for optical transmission link using commercial fibers with and without dispersion compensation

Kuldeep Singh¹, Dhruv Aditya Mittal², Priyamvada²
¹Guru Jambheshwar University of Science and Technology, Hisar Haryana, India
²BML Munjal University, Gurugram, Haryana, India.
kuldeep.elect@gmail.com¹, dhruvadityamittal@gmail.com², priyamvadamittal9@gmail.com²

Abstract: In this paper, an optical transmission link at 10 Gb/s is experimented with Non -Return to -Zero (NRZ) modulated input source with the help of OptSim-software. The performance of the system has been measured in terms of BER for optical link developed using various types-of-fibers at reference loss and wavelength of 1550 nm along with dispersion and nonlinearities whose tolerances have been assessed up to 400 kms. Results have been obtained and compared by considering the impact of second and third order dispersion terms with and without dispersion compensation for different fibers. It has been observed that DS_Anomalous (DSA) fiber shows the best practical results with 10⁻¹⁰ BER value at 246 kms of transmission -distance without dispersion compensation and 340 kms with dispersion compensation.

Keywords: Fibers, Dispersion Compensating Fiber (DCF), Fiber non-linearities and BER.

1. Introduction:

The optical-fiber-systems have massive opportunities in terms of bandwidth up to 50 THz and low loss at 1550 nm central wavelength in communications. The large- bandwidth creates the possibilities of many signals transmission on single line for far distance locations practically. The various design issues and challenges of optical-system for WDM, fiber nonlinearities; dispersion etc. have been explained in [1–3]. To improve the performance of optical system, there can be a need of single-mode -fiber (SMF) along with dispersion shifted fiber to obtain better results. From the long past it has been acknowledged that light-wave communication systems are progressive towards longer transmission distances with big -data transmission capabilities [4]. For the deployment of systems to acquire these features, there is a need of high bit -rates and wavelength division multiplexing for the transmission of multiple signals with maximum power and tolerable receiver sensitivity. In an optical system inclusive -limitations is attenuation in fiber -link which is due to dispersion of signal pulses and nonlinear interaction between light- waves and fiber -medium [5–6]. These limitations may be observed in the performance of system in different signal impairments and fading. (Kuldeep Singh et al, 2017) demonstrated the system evaluation of a 1024 DWDM channels for BER, Eye diagrams and Q-factor with a channel spacing of 25 GHz on simulative model. A transmissible signal has been recovered with upright quality in S, C, L, U-optical bands optical spectra [7]. (Takayuki Kobayashi et al, 2019) explained the needs and applications of high speed networks for bulky data that may be utilized for futuristic IOT network [8]. (Kuldeep Singh et al, 2018) examined the impact of the signal- to crosstalk –ratio (SXR) on the performance of WDM system for radio-over-Fiber (ROF) applications [9].

In this paper, case study of various fiber types for BER values in optical transmission link carried at a central wavelength of 1550 nm along with fiber non-linearities and dispersion in OptSim simulator with dispersion compensation. After presentation of the scheme in section 1, the section 2 presents the system description. The results have been discussed in Sections 3 and Section 4 concludes the paper.
2. System Description

An optical communication system model employing various fibers as shown in fig. 1 has been simulated and analyzed and is set to verify the results with specified system parameters listed in table 1.

![Optical Transmission system under simulation](image)

Table 1. System design parameters

Block	Parameter	Value	Units
Transmitter	Data rate	10	Gb/s
	Samples per bits	31	
	Random sequence generator size	2^7-1	
	Laser source power	6	dBm
	Laser line width	10	FWHM
	Laser phase mode	Random	
	Laser Noise bandwidth (BW)	Ideal	Hz
	Bessel filter’s poles	5	
	Bessel filter’s loss	-3	dB
	Bessel filter’s bandwidth (BW)	10	GHz
	MZ modulator offset voltage	2.5	V
	MZ modulator extinction ratio	Ideal	
	MZ modulator chirp factor	0	
	MZ modulator average power reduction	3	dB
	Amplifier small signal gain	35	dB
Receiver	Band pass filter bandwidth (BW)	60	GHz
	PIN diode quantum efficiency	0.7	
	PIN diode dark current	0.1	nA
	Bessel filter’s poles	5	
	Bessel filter’s loss	-3	dB
	Bessel filter’s bandwidth (BW)	8	GHz
The basic standard properties and parameters of different SMFs used to carry out the analysis of optical transmission system are listed in tables 2, 3 and 4. The fibers declared in the tables have varied dispersion profiles spectra and are counterfeited to evaluate the BER values for optical link in two case studies with and without dispersion compensation. In each case, the fiber transmission length varied from zero to 400 kms for reference wavelength of 1550 nm. The dispersion in optical fibers leads to broadening of pulses and as a result the various spectral components of pulse travel at different group velocities; which results in group -velocity -dispersion (GVD). The optical fiber dispersive model is expressed in terms of standard components D, D’, β₂, β₃, and polarization mode (PM) dispersion. Where D is the standard dispersion parameter used to derive dispersion slope and offset values. β₂ and β₃ are second and third order dispersion parameters whose values for various fibers types are given in tables 3&4. Single -mode fibers with very low losses (~0.2 dB/km) are mainly used in DWDM telecommunication system for high -transmission capacity [3].

Most of the optical-fibers with standard and modified properties make them most appropriate for convinced applications. The uses of fibers in certain applications are selected up on the standard defined parameters like mode field diameter, effective mode area, dispersion parameters, dispersion slope, and nonlinearity coefficient, attenuation (α₀, α₁, and α₂) [10-11].

Fiber-optics technology is changing very fast. For updated knowledge in this field one has to follow the market leaders and their products with every timelines. World manufacturer for the optical-fiber cables are Alcatel-Lucent, Corning, Furukawa Electric Group, and Pirelli Telecom. Alcatel & Lucent optical -fibers are designed for a variety of applications e.g. telecom, media, entertainment and community access television up to range in metropolitan, and terrestrial long-haul and ultra-long-haul transmission worldwide [12-14]. The Corning LEAF Non-Zero Dispersion-Shifted fiber (NZDSF) is single mode fiber which is the industry leader in polarization mode dispersion (PMD) specifications everywhere [15]. Furukawa optical-fibers have the specialty for business development in FTTx, FTTH, Telecommunications [16]. Pirelli Telecom corporate provides complete solutions for the development of nationwide high-speed IP networks optical system for Submarine technology [17].

Table 2. Standard Properties and Parameters of Different Fibers

Fiber Name	Fiber nonlinearity coefficient [1/W/Km]	Raman Profile Reference frequency (THz)	Raman constant	First Raman time constant (fs)	Second Raman time constant (fs)
DS_Normal (DSN)	1.842	299.79	0.18	12.2	32
DS_Anomalous (DSA)	1.842	299.79	0.18	12.2	32
Alcatel SMF (ALS)	1.240	299.79	0.18	12.2	32
Alcatel Teralight (ALT)	1.559	299.79	0.18	12.2	32
Corning LEAF (CLEAF)	1.407	206.04	0.22	12.1	31.70
Corning SMF 28e (CSMF28E)	1.192	299.79	0.18	12.2	32
Corning SMF 28 (CSMF28)	1.192	299.79	0.18	12.2	32
Furukawa SM332 (FKSM332)	1.172	299.79	0.18	12.2	32
Lucent Truewave (LTW)	1.843	206.04	0.20	12.1	31.70
Pirelli FreeLight (PFL)	1.408	299.79	0.18	12.2	32
Pirelli Widelight (PWL)	1.987	299.79	0.18	12.2	32
Sumitomo Z Plus (STZP)	1.032	299.79	0.18	12.2	32
Sumitomo Z (STZ)	1.419	299.79	0.18	12.2	32
3. Results & Discussion

A comparative case study has been developed of BER for an optical transmission link with several types of fibers along with a variable transmission distance of 0 to 400 kms for each case. The plotted results for BER versus fiber length with dispersion compensation, reference loss and dispersion wavelength has been presented.

Table 3. Standard Parameters of different Fibers

Fiber Name	α_0 (dB/km)	α_1 (dB/km/THz)	α_2 (dB/km/THz^2)	D (ps/nm/km)	D' (ps/nm^2/km)	β_2 (ps^2/km)	β_3 (ps^3/km)
DS-Normal (DSN)	0.2	0	0	-2	0.07	2.551	0.110
DS-Anomalous (DSA)	0.2	0	0	2	0.07	-2.551	0.118
Dispersion Compensated Fiber (DCF)	0.55	0	0	-80	0.19	102.3	0.141
Alcatel-SMF (ALS)	0.2	0	0	16	0.086	-20.407	0.173
Alcatel Teralight (ALT)	0.205	0	0	8	0.058	-10.204	0.111
Corning-LEAF (CLEAF)	0.2	0	0	4	0.108	-5.102	0.184
Corning SMF28e (CSMF28E)	0.206	0.001	1.10 e-04	16	0.086	-20.408	0.173
Corning-SMF28 (CSMF28)	0.235	0.002	9.95 e-05	16	0.086	-20.407	0.173
Furukawa SM332 (FKSM332)	0.211	0.012	1.06 e-04	18	0.092	-22.958	0.187
Lucent-Truewave (LTW)	0.2	0	0	4.5	0.045	-5.740	0.083
Pirelli-Free-light (PFL)	0.23	0	0	4.3	0.114	-5.484	0.194
Pirelli-Widelight (PWL)	0.24	0	0	-6.85	0.157	8.737	0.241
Sumitomo-Z-PLUS (STZP)	0.168	0	0	20.5	0.059	-26.147	0.139
Sumitomo-Z (STZ)	0.17	0	0	18.5	0.056	-23.596	0.130

Table 4. Standard Parameters of different Fibers

Fiber Name	Core Effective Area ($\times 10^{-12}$ m^2)	Nonlinear Refractive Index ($\times 10^{-20}$ m^2/W)	PM (ps/√km)
DS_Normal	55	2.5	0.1
DS_Anomalous	55	2.5	0.1
Alcatel SMF	81.7	2.5	0.1
Alcatel Teralight	65	2.5	0.1
Corning LEAF	72	2.5	0.1
Corning SMF28e	85	2.5	0.1
Corning SMF 28	85	2.5	0.1
Furukawa SM332	86.5	2.5	0.5
Lucent Truewave	55	2.5	0.1
Pirelli-Free-light	72	2.5	0.1
Pirelli-Widelight	51	2.5	0.1
Sumitomo Z Plus	110	2.8	0.1
Sumitomo Z	80	2.8	0.1
The comparison of optical communication system with ALS and ALT fibers has been shown in fig. 2 (a). The plotted results state that optical fiber link using ALT fiber has lesser system BER than ALS fiber and it is found that estimated BER is within 10^{-10} for the transmission distance of 279 kms in ALT and 234 kms in ALS. Fig. 2 (b) expresses the evaluation of system using CLEAF, CSMF28e and CSMF28 fibers relatively. The relative observations show that the BER versus length characteristics of optical system with CSMF28e_1550 fiber and CSMF28_1550 fiber look like each other. Moreover, the CLEAF fiber is the most suitable contender for submarine applications up to a transmission distance of 319 kms with dispersion compensation and up to a distance of 242 kms without dispersion compensation by keeping BER value stable at 10^{-10}. Fig. 2 (c) shows a comparison between optical communication system using STZP and STZ fibers and the observations reveal that at distances approximately 210 kms the characteristics of system for two fibers overlap and past this transmission distance reference the performance of system with STZ fiber improves relative to STZP fiber. However, Sumitomo Z shows very bad performance without dispersion compensation and may only be able to use up to 97 kms. Further, STZP fiber depicts very good performance with dispersion compensation and gives BER 10^{-10} at a transmission distance of 234 kms. However, without dispersion compensation the optical link using STZP fiber has the transmission distance limits to value 78 kms only. Fig. 2 (d) illustrates the comparison between light system employing PFL and PWL fibers with dispersion compensation. The results illustrate that fiber family give almost equal performance up to fiber length of 279 kms. However, without dispersion compensation optical communication system using PFL fiber shows better performance and has BER of 10^{-10} at a transmission distance of 210 kms. Moreover, PWL demonstrates very good performance with compensation and depicts BER of 10^{-10} at a transmission distance of 234 kms, whereas without dispersion compensation it shows very poor performance and gives a BER of 10^{-10} at a transmission distance of merely 78 kms. Further, Fig. 2 (e) demonstrates the comparison between fiber links using DSA and DSN fibers with dispersion compensation. The plots show that DSA has better characteristics employing the link up to a fiber length of 340 kms. Moreover, without dispersion compensation the transmission distance is only 246 kms for a BER of 10^{-10}. Whereas the link with DSN fiber shows a BER of 10^{-10} at a distance of 319 kms with dispersion compensation while without dispersion compensation transmission distance limits to 156 kms only. Fig. 2 (f) illustrates the comparison between optical communication system using FKSM and LTW fibers with dispersion compensation. The figure demonstrates that Lucent_Truewave fiber has better performance and has BER of 10^{-10} at a distance of 314 kms. Further, Furukawa_1550 fiber also shows very good performance with dispersion compensation and has BER of 10^{-10} at a distance of 240 kms. However, without dispersion compensation it shows a very poor system performance of merely 93 kms. The relative performance of optical communication system for variety of fibers with and without dispersion compensation at 10^{-10} BER is demonstrated in table 5.
Table 5. Comparative Analysis of results

Fiber Name	Transmission Length in kms for BER value of 10^{-10} (Without Dispersion compensation)	Transmission Length in kms for BER value of 10^{-10} (With compensation)
DSN	156	319
DSA	246	340
ALS	204	234
ALT	242	279
CLEAF	242	319
CSMF28e	103	240
Corning-SMF28	93	240
FKSM332	133	240
LTW	208	314
PFL	155	279
PWL	78	278
STZP	97	234
STZ	97	239

![Graph showing BER at optimal decision threshold](image)
4. Conclusions

The BER for optical communication system has been estimated by employing variety of fibers with and without dispersion compensation for the fiber transmission length varying from 0 to 400 kms. From the demonstrated case studies of optical system link with variety of fibers, it has been observed that for a target BER of 10^{-10} DSA fiber shows the finest system services up to a fiber length of 246 and 340 kms without and with dispersion compensation respectively. Further, it has been investigated that CLEAF and DSN may be used up to fiber length of 319 kms with dispersion compensation. Moreover, optical fiber communication system with dispersion compensation LTW fiber is suitable for transmission distance of 280 kms to achieve BER of 10^{-10}. Further it has been investigated that all the PFL and PWL show equal performance and have BER of 10^{-10} at a distance of nearly 279 kms with dispersion compensation. In all the system links, it found that the characteristic of system expressively improves by compensating the dispersion. Further based upon the results reported in this paper it is concluded that for the optimistic system design a fiber selection with suitable properties is most significant to implement an optical communication system in order to keep BER of 10^{-10} for a suitable transmission distance with and without dispersion compensation.
References:

[1] X Y Zou, M I Hayee, S Hwang and A E Willner 1996 Limitations in 10 Gb/s WDM optical-fiber transmission when using a variety of fiber types to manage dispersion and nonlinearities J. of Lightwave Technology vol. 14 no. 6 pp. 1144-52 doi: 10.1109/50.511616

[2] Eli Kapon, Paul L Kelley, Ivan P Kaminov, and G P Agarwal 1999 Semiconductor Lasers I: Fundamentals (Academic Press San Diego)

[3] G P Agrawal 1995 Nonlinear Fiber Optics 2nd edition (Academic Press San Diego)

[4] National Research Council 1998 Harnessing Light: Optical Science and Engineering for the 21st Century Washington DC: The National Academies Press https://doi.org/10.17226/5954

[5] F Koyama and K Iga 1988 Frequency Chirping in External Modulators J. Lightwave Technology vol. 6 no.1 pp. 27-33

[6] User Manual 2017 OptSim Simulation Tool v2017 Synopsys https://www.synopsys.com/photonic-solutions/soft-system-design-tools/system-network-optsim.html

[7] Kuldeep Singh and Arya S K 2017 Design of 10.24 Tbit/s DWDM System Using NRZ Modulation Format with Narrow Channel Spacing In: Singh R Choudhury S (Eds) Proceeding of International Conference on Intelligent Communication, Control and Devices Advances in Intelligent Systems and Computing vol 479 Springer Singapore

[8] Takayuki Kobayashi, Fukutaro Hamaoka, Masanori Nakamura, Hiroshi Yamazaki, Munehiko Nagatani, and Yutaka Miyamoto 2019 Ultrahigh-speed Optical Communications Technology Combining Digital Signal Processing and Circuit Technology NTT Technical Review Vol. 17 No. 5 12-19

[9] Kuldeep Singh and Sandeep K. Arya 2018 Estimation of Signal-to-Cross Talk Ratio of Stimulated-Raman-Scattering-Induced Cross Talk in Wavelength-Division-Multiplexing-Based Radio-over-Fiber Links J. Opt. Commun. https://doi.org/10.1515/joc-2018-0039

[10] Satish Addanki, I S Amirib and P Yupapin 2018 Review of optical fibers-introduction and applications in fiber lasers Results in Physics 10 0743–50. https://doi.org/10.1016/j.rinp.2018.07.028

[11] Agrell E et. al 2016 Roadmap of optical communications J. Opt. 18:063002.

[12] TeraLight Singlemode Fiber 1999 Fiber Optic Product Line Issue date: 08/99. http://www.ic72.com/pdf_file/a/33966.pdf

[13] Draka Communications 2010 Single-Mode Fiber, TeraLightTM Optical Fiber Issue date: 08/10. https://www.prysmiangroup.com/sites/default/files/business_markets/markets/downloads/datasheets/SMF-—TeraLight-Optical-Fiber.pdf

[14] Bigo S Idler and Wilfried 2003 Multi-terabit/s transmission over Alcatel TeraLight fiber. Alcatel Telecommunications Review 288-296.

[15] Corning Optical fiber 2019 Product Information. Issued date: 09/19 https://www.corning.com/media/worldwide/coe/documents/Fiber/product-information-sheets/PI-1107-AEN.pdf

[16] Furukawa Broadband System 2019 Complete solutions for optical communication networks Furukawa Electric Group http://www.furukawa.co.th/lan/support_download/FBS_Catalog_2019.pdf

[17] Kevin Edward Riddett 2000 PIRELLI TELECOM CABLES AND SYSTEMS http://www.pirelli.com/mediaObject/corporate/documents/common/investors/archive/internet_telecom/original.pdf