INTRODUCTION

Chronic rhinosinusitis (CRS) is one of the most common diseases of adults in the United States, resulting in 18 to 22 million office visits to physicians each year. Currently, the etiology of CRS remains elusive, limiting treatment options for patients. The role of fungi in CRS remains controversial. Many differences in experimental details have added to this controversy, including multiple methods of sample collection, anatomical differences in sampling locations, varying antifungal agents tested, and variable methods for administration and concentrations of antifungal agents. One observation most researchers agree on is that fungi can be cultured from nasal samples of most people, ill or not. But culturing does not provide quantitative information about the population of each fungus.

Researchers at the US Environmental Protection Agency developed a DNA-based method of fungal analysis that is both specific and quantitative. This method was used to quantify the populations of 36 common and widespread fungi in the sinus and patients' home dust samples. Of the 36 fungi, there are 26 group 1 fungi that indicate water damage and 10 group 2 species that are often found in homes even without water damage, which primarily come from outdoors.

Home-exposure estimates to fungi were based on a scale called the Environmental Relative Moldiness Index (ERMI), which uses a mathematical formula to convert the concentrations of the 36 fungi into a single number, its ERMI value. This ERMI value describes the water damage and fungal growth in homes based on a comparison with a random national sampling of homes.

The aim of this study was to measure and compare the quantity of 36 fungi in patients' sinuses and vacuum cleaner bag dust samples from the homes of these same individuals. In addition, the antifungal susceptibility of seven potentially relevant fungi was evaluated using Etest antifungal strips.

MATERIALS AND METHODS

The protocol for the study was approved by the Committee on Human Research. Patients were recruited for the study...
during routine care appointments in an outpatient clinical practice devoted to rhinology and general otolaryngology. Subjects were recruited for the study in two broad groups: patients with CRS and control subjects without CRS. Patients with CRS had a history of chronic sinusitis symptoms for >3 months. All patients had nasal endoscopic evidence of CRS or nasal polyposis on physical examination. All patients with sinusitis had evidence of CRS on computed tomography examination. Patients, therefore, met criteria for defining the diagnosis of chronic rhinosinusitis based on 2007 American Academy of Otolaryngology—Head and Neck Surgery published guidelines as well as other consensus recommendations.16,17 Control subjects were undergoing nasal endoscopy as part of a general otolaryngology examination and had no complaints pertaining to acute rhinosinusitis or CRS. All patients in the control group had other clinical complaints that warranted fiberoptic examination of the nose and throat. Their nasal endoscopy showed no evidence of sinus disease. Four of the patients who underwent surgery for their CRS volunteered to have their sinuses resampled about 6 months to 2 years after their first sampling.

Patients were given 0.5% phenylephrine aerosolized spray and 21% tetracaine aerosolized spray to allow comfort during the initial endoscopic examination. Interdental brushes (Aclean; Henry Schein Inc., Melville, NY) were steam sterilized and used for specimen collection. Brush samples were collected by any of the three physicians listed as the first three authors. A 30° Hopkins rod attached to a camera and light source were used to guide the brush into the middle meatus under direct visualization. After swabbing the middle meatus mucosa and removing mucous from this area, the brush was placed in a 2 mL conical bottom, screw cap tube (PGC Scientifics, Gaithersburg, MD). The specimen was then refrigerated and used to guide the brush into the middle meatus under direct visualization. After swabbing the middle meatus mucosa and removing mucous from this area, the brush was placed in a 2 mL conical bottom, screw cap tube (PGC Scientifics, Gaithersburg, MD). The specimen was then refrigerated and transported to the laboratory on ice packs.

Patients were asked to submit their vacuum cleaner bag or vacuum cleaner contents in a Ziploc bag. Each patient confirmed that the vacuum cleaner had only been used in their home. These samples representing the home environment were also transported to the laboratory for analysis.

Extraction and Purification of Fungal DNA from Brush and Vacuum Bag Dust Samples

Once the brush samples were received in the laboratory, 0.3 g of 0.7 mm zirconia/silica beads (GeneRite, North Brunswick, NJ) was added to each tube. The dust retrieved from the patient’s vacuum cleaner was sieved through a 300-m-pore size nylon mesh screen (Gilson, Lewis Center, OH). A total of 5 mg of sieved dust was placed into a sterile 2-mL screw-capped extraction tube loaded with 0.3 g of 0.7 mm zirconia/silica beads. Each brush or dust sample was spiked with 1 × 10⁶ conidia of Geotrichum candidum as an external reference. Each extraction tube was shaken in the bead beater (Biospec Products, Bartlesville, OK) for 1 minute and the DNA purified using the DNA-EZ extraction kit (GeneRite).

Fungal Analysis

Methods and assays have been reported previously for performing quantitative polymerase chain reaction (QPCR).18,19 Briefly, the standard reaction assays contained 12.5 μL of Universal Master Mix (Applied Biosystems Inc., Foster City, CA), 1 μL of a mixture of forward and reverse primers at 25 μM each, 2.5 μL of a 400 nM TaqMan probe (Applied Biosystems Inc.), 2.5 μL of 2 mg/mL fraction V bovine serum albumin (Sigma Chemical, St. Louis, MO), and 2.5 μL of DNA-free water (Cepheid, Sunnyvale, CA). To this mix was added 5 μL of the DNA extract from the sample. All primer and probe sequences used in the assays as well as known species comprising the assay groups are at the website: http://www.epa.gov/nerrlwww/moldtech.htm. Primers and probes were synthesized commercially (Applied Biosystems Inc.).

Reactions were performed with thermal cycling conditions consisting of 2 minutes at 50°C, 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95°C for template denaturation, and 1 minute at 60°C for probe and primer annealing and primer extension. The cycle threshold determinations were automatically performed by the instrument using default parameters. Assays for each target species and the internal reference (G. candidum) were performed in separate tubes of the 96-well plate format.

Antifungal Susceptibility Testing

Antifungal susceptibility of Penicillium brevicompactum, Penicillium crustosum, Penicillium chrysogenum type 2, Alternaria alternata, Cladosporium cladosporioides types 1 and 2, and Cladosporium herbarum was evaluated using Etest strips (Biomerieux, Marcy l’Etoile, France) according to the manufacturer’s instructions. Conidial suspensions were prepared in sterile distilled water and adjusted to 1 × 10⁶ conidia/mL. A total of 1 mL of the conidia suspension was then spread evenly onto the surface of a 150-mm plate of RPMI (Roswell Park Memorial Institute) 1640 with 3-(N-morpholino)propanesulfonic acid (MOPS) and 2% glucose (Remel, Lenexa, KS), using a glass spreader and aseptic techniques. The inoculated surface was allowed to dry completely before Etest strips containing amphotericin B, anidulafungin, caspofungin, fluconazole, and voriconazole were applied.

The plates were then incubated at 30°C for 72 hours or until a confluent lawn of growth was clearly visible, before being photographed. The minimum inhibitory concentrations were read as the lowest drug concentrations at which the border of the elliptical inhibition zone intercepted the scale on the Etest antifungal strip. The analysis was performed in triplicate.

RESULTS

The average ERMI value from the CRS patients’ homes was not significantly different from the average ERMI value found in the non-CRS patient’s homes (4.0 and 5.0, respectively) (data not shown). The rate of detection of only four species (C cladosporioides types 1 and 2, C herbarum, and Aureobasidium pullulans) were significantly correlated (by Fischer exact test) in the home dust and brush samples (Table I). However, many (13 of the 36) fungi were either never detected or only detected once in the brush samples. For the rest of the fungi, the rates of detection were very similar for brush samples from CRS and non-CRS patients (Table I).

Wilcoxon rank sum analysis of the average concentrations of each of the fungi in CRS versus non-CRS brush samples suggested that two species, A alternata and C cladosporioides type 2, were in statistically higher concentrations (P < .05). However, these differences were not significantly different when a Holmes test was applied to correct for multiple comparisons.

Five additional fungi had concentration averages in CRS patients’ brush samples from 100 to 10,000 times higher than the average in the non-CRS brush samples (Table II). Based on the finding that specific fungi occurred at much higher concentrations in some CRS patients, the CRS patients were subdivided into two
Patients with one or more of these seven fungi at 1,000 times the concentration of the average non-CRS patient's brush sample were placed in a category called high-fungal CRS (n = 16), while the remaining patients were designated low-fungal CRS (n = 57).

Wilcoxon rank sum analysis of the average concentrations of each of the fungi showed that these seven fungi were in significantly higher concentrations (P < .05) in high-fungal CRS versus low-CRS brush samples (Table III). However, only four fungi (P. crustosum, P. chrysogenum type 2, C. cladosporioides type 1, and C. herbarum) were significantly different when a Holmes correction was applied to adjust for multiple comparisons.

Four of the high-fungal CRS patients underwent surgery during the study period. All four surgical cases were revision sinus surgical procedures for patients who had many years of chronic sinusitis signs and symptoms refractory to saline irrigation, antibiotic therapy, and topical and oral corticosteroid treatment. This small

Fungi	All Dust, % Detected	All Brush, % Detected	Fisher Exact Test P Values*	CRS Brush, % Detected	Non-CRS Brush, % Detected	Fisher Exact Test P Values*
Group 1						
Aspergillus flavus	52	1		0	6	
Aspergillus fumigatus	87	7		6	6	<.05
Aspergillus niger	98	9		8	6	<.05
Aspergillus ochraceus	32	3		0	13	
Aspergillus penicillioides	99	33		34	25	<.05
Aspergillus restrictus	41	0		0	0	
Aspergillus sclerotiorum	10	0		0	0	
Aspergillus sydowii	38	6		3	19	
Aspergillus unquis	12	0		0	0	
Aspergillus versicolor	78	0		0	0	
Aureobasidium pullulans	99	50	<.05	42	69	<.05
Chaetomium globosum	54	1		1	0	
Cladosporium sphaerospermum	94	13		10	19	<.05
Eurotium amstelodami	97	24		14	56	
Paecilomyces variotii	64	2		1	0	
Penicillium brevicompactum	99	20		21	6	<.05
Penicillium corylophillum	71	1		1	0	
Penicillium crustosum	79	7		6	19	
Penicillium purpureogen	48	1		1	0	
Penicillium spinulosum	62	3		4	0	
Penicillium variabile	70	10		7	19	<.05
Scopulariopsis brevicaulis	47	1		1	0	
Scopulariopsis chartarum	73	1		8	0	
Stachybotrys chartarum	76	0		0	0	
Trichoderma viride	63	0		0	0	
Wallenia sebi	93	8		6	13	<.05
Group 2						
Acremonium strictum	53	2		1	6	
Alternaria alternata	98	19		12	44	
Aspergillus ustus	58	0		0	0	
Cladosporium cladosporioides 1	100	88	<.05	81	100	<.05
Cladosporium cladosporioides 2	100	52	<.05	42	75	<.05
Cladosporium herbarum	100	48	<.05	37	69	<.05
Epicoccum nigrum	99	18		14	19	<.05
Mucor group	96	9		8	6	<.05
Penicillium chrysogenum type 2	97	17		16	13	<.05
Rhizopus stolonifer	78	7		7	6	<.05

The rate of detection of each fungus in the CRS and non-CRS brush samples is given. *P values are for any significant association of the specific mold in the dust and brush samples.

CRS = chronic rhinosinusitis.
A cohort had multiple years of sinus treatment and yet persisted in having chronic rhinosinusitis. Postoperative brush samples were obtained, and the follow-up sample showed much lower fungal concentrations for the species that had previously been high (Table IV). However, not all fungi were eliminated after surgery. In fact, some species not previously detected were now detected at low concentrations. For example, *Wallemia sebi* was detected in CRS patient 2, *Aspergillus niger* in CRS patient 3, and *Paecilomyces variotii* in CRS patient 4 (Table IV).

Antifungal susceptibility testing was performed on the seven fungi of interest (*A. alternata*, *C. cladosporioides* types 1 and 2, *C. herbarum*, *P. brevicompactum*, *P. crustosum*, and *P. chrysogenum* type 2) using Etest strips containing a concentration gradient of amphotericin B, anidulafungin, caspofungin, fluconazole, and voriconazole. Results are shown in Figure 1.

Table II: Average Concentration of Each Fungus in Brush Samples From Chronic Rhinosinusitis Patients and Non-Chronic Rhinosinusitis Patients Compared Using Wilcoxon Rank Sum Test.

	CRS All, n = 73	Non-CRS All, n = 16	Wilcoxon Rank Sum P Values*	High-Fungal CRS, n = 16	Low-Fungal CRS, n = 57	Wilcoxon Rank Sum P Values*
Group 1						
Aspergillus flavus	0	0	NS	0	0	NS
Aspergillus fumigatus	3	1	NS	0	4	NS
Aspergillus niger	16	0	NS	10	17	NS
Aspergillus ochraceus	0	3	NS	0	0	NS
Aspergillus penicillioides	3	1	NS	3	4	NS
Aspergillus restrictus	0	0	NS	0	0	NS
Aspergillus sclerotiorum	0	0	NS	0	0	NS
Aspergillus sydowii	0	3	NS	1	0	NS
Aspergillus unquis	0	0	NS	0	0	NS
Aspergillus versicolor	0	0	NS	0	0	NS
Aureobasidium pullulans	48	39	NS	16	56	NS
Chaetomium globosum	0	0	NS	0	0	NS
Cladosporium sphaerospermum	1	1	NS	0	1	NS
Eurotium amstelodami	0	1	NS	0	1	NS
Paecilomyces variotii	0	0	NS	0	0	NS
Penicillium brevicompactum	118,839	1	NS	578,117	60	.0064
Penicillium corylophilum	0	0	NS	1	0	NS
Penicillium crustosum	424,001	37	NS	2,063,471	0	<.001
Penicillium purpurogenum	0	0	NS	0	0	NS
Penicillium spinulosum	2	0	NS	8	0	NS
Penicillium variabile	5	6	NS	19	1	NS
Scopulariopsis brevicaulis	0	0	NS	0	0	NS
Scopulariopsis chartarum	1	0	NS	0	1	NS
Stachybotrys chartarum	0	0	NS	0	0	NS
Trichoderma viride	0	0	NS	0	0	NS
Wallemia sebi	2	4	NS	0	3	NS
Group 2						
Acremonium strictum	0	0	NS	0	0	NS
Alternaria alternata	298	2	.006	1,451	0	.007
Aspergillus ustus	0	0	NS	0	0	NS
Cladosporium cladosporioides 1	167,060	54	NS	812,810	55	<.001
Cladosporium cladosporioides 2	74,803	10	.039	363,987	14	.003
Cladosporium herbarum	296,923	78	NS	1,444,891	34	<.001
Epicoccum nigrum	83	1	NS	494	0	NS
Mucor group	1	0	NS	1	0	NS
Penicillium chrysogenum 2	589,283	2	NS	2,867,839	1	<.001
Rhizopus stolonifer	0	0	NS	1	0	NS

*P values listed are based on pairwise comparisons. Based on the Holmes test, only those P values < .001 are statistically significant at an experiment-wise α error rate of .05.

CRS = chronic rhinosinusitis; NS = not significant.
very effective against all of the fungi except *C. herbarum*, which was unaffected. Caspofungin was moderately effective against all of the fungi. Fluconazole had no effect against most of these fungi and only moderate effect against *A. cladosporioides* type 2 and *A. alternata*. Voriconazole was very effective against *A. cladosporioides* type 2 but only moderately effective against the other fungi tested.

DISCUSSION

The fungal exposures, based on ERMI values in the homes, were very similar for both CRS and non-CRS patients. In addition, the average concentration of many species was similar in the dust samples from CRS and non-CRS patients. Taken together, these results suggest that the exposures to these 36 fungi appear to have been similar in the home environment. However, differences based on exposures in other environments cannot be ruled out.

The rate of detection of each of the 36 fungi in the dust samples was generally higher than the rate of detection in the brush samples (Table I). There are many possible reasons for differences in detection rates. These differences might have been a function of the

TABLE III.
Comparison of Average Species Concentrations in Dust Samples.

Fungal ID	CRS Dust All, Average	CRS High Only, Average	CRS Not High, Average	
Group 1	Non-CRS Dust, Average			
Aspergillus flavus	4	2	2	
Aspergillus fumigatus	14	45	19	50
Aspergillus niger	106	102	134	92
Aspergillus ochraceus	7	10	3	12
Aspergillus penicillioides	13	123	26	143
Aspergillus restrictus	125	251	36	298
Aspergillus sclerotiorum	1	1	3	0
Aspergillus sydowii	11	8	1	10
Aspergillus unquis	0	75	1	90
Aspergillus versicolor	2	15	11	16
Aureobasidium pullulans	46,355	13,813	27,698	10,077
Chaetomium globosum	6	39	172	5
Cladosporium sphaerospermum	87	51	44	51
Eurotium amstelodami	38	24	31	22
Paecilomyces variotii	4	8	4	8
Penicillium brevicompactum	374	551	752	486
Penicillium corylophilum	16	23	14	25
Penicillium crustosum	58	186	89	203
Penicillium purpureogenum	9	51	2	62
Penicillium spinulosum	2	7	4	8
Penicillium variabile	17	271	21	323
Scopulariopsis brevicaulis	3	3	1	3
Scopulariopsis chartarum	9	5	9	4
Stachybotrys chartarum	28	8	7	8
Trichoderma viride	18	9	17	6
Wallemia sebi	978	241	59	278

Group 2	Non-CRS Dust, Average			
Acremonium strictum	3	3	5	2
Alternaria alternata	252	158	298	123
Aspergillus ustus	21	23	6	27
Cladosporium cladosporioides 1	10,833	4,322	6,492	3,833
Cladosporium cladosporioides 2	285	262	258	266
Cladosporium herbarum	5,453	2,248	4,406	1,725
Epicoccum nigrum	1,111	854	662	887
Mucor group	349	169	112	177
Penicillium chrysogenum 2	192	304	372	281
Rhizopus stolonifer	395	100	17	117

CRS = chronic rhinosinusitis.

Laryngoscope 122: July 2012

Murr et al.: Fungi in Sinuses of CRS Patients

1442
sample type itself (i.e., brush vs. 5 mg of dust). Variations in inhalation or clearance rates might have created these differences. Our hypothesis is that the differences might rest with the ability of some species to colonize the sinuses of some people.

In 16 of 73 CRS patients (22%), one or more of seven fungi were detected at very high concentrations relative to the other samples. This finding suggested that the population of CRS patients may be divided into two subgroups, high- or low-fungal CRS patients.

If the concentration of one or more of these seven species was at least 1,000-fold greater than in the non-CRS patients, then that CRS patient was placed into the high-fungal CRS category. The disproportionately high concentrations of certain fungi in a subpopulation of CRS patients’ sinonasal samples supports the hypothesis that specific fungi have the ability to grow or amplify in the sinuses of susceptible people. Surgical alteration of the sinonasal environment of the four high-fungal CRS patients may explain the reduction in the fungal populations.

TABLE IV.
Results of the Initial and Repeat Nasal Brush Sampling of Four Volunteer High-Fungal Chronic Rhinosinusitis Category Patients.

Sample Dates	Oct 1, 2007	Jun 29, 2009	Jun 30, 2008	Jun 8, 2009	Dec 8, 2008	June 1, 2009	Dec 19, 2008	Jun 8, 2009
	1A	1B	2A	2B	3A	3B	4A	4B
Group 1								
Aspergillus flavus	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus fumigatus	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus niger	ND	ND	ND	ND	ND	5	ND	ND
Aspergillus ochraceus	ND	ND	ND	ND	7	ND	ND	ND
Aspergillus penicillioides	9	ND	ND	ND	ND	3	ND	ND
Aspergillus restrictus	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus sclerotiorum	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus sydowii	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus unquis	ND	ND	ND	ND	ND	ND	ND	ND
Aspergillus versicolor	ND	ND	ND	ND	ND	ND	ND	ND
Aureobasidium pullulans	8	ND	170	ND	ND	340	5	ND
Chaetomium globosum	ND	ND	ND	ND	ND	ND	ND	ND
Cladosporium sphaerospermum	ND	ND	ND	ND	ND	ND	ND	ND
Eurotium amstelodami	1	ND	ND	ND	ND	22	2	15
Paecilomyces variotii	ND	ND	ND	ND	ND	ND	ND	8
Penicillium brevicompactum	ND	ND	ND	ND	120	21	71,000	ND
Penicillium coryliphilum	ND	ND	ND	ND	ND	ND	ND	ND
Penicillium crustosum	ND	ND	ND	ND	ND	4,900,000	ND	59
Penicillium purpureogenum	ND	ND	ND	ND	ND	2	ND	ND
Penicillium spinulosum	ND	ND	ND	ND	ND	ND	ND	ND
Penicillium variabile	ND	ND	ND	ND	ND	ND	ND	ND
Scopulariopsis brevicaulis	ND	ND	ND	ND	ND	ND	ND	ND
Scopulariopsis chartarum	6	ND	ND	ND	ND	ND	ND	ND
Stachybotrys chartarum	ND	ND	ND	ND	ND	ND	ND	ND
Trichoderma viride	ND	ND	ND	ND	ND	ND	ND	ND
Wallemia sebi	ND	ND	27	ND	ND	2	ND	ND

Group 2

Acremonium strictum	ND	ND	ND	ND	ND	2	ND	ND
Alternaria alternata	6	ND	ND	ND	ND	21,000	28	
Aspergillus ustus	ND	ND	ND	ND	ND	ND	ND	ND
Cladosporium cladosporioides 1	580	44	170	94	610,000	ND	1,200,000	1,600
Cladosporium cladosporioides 2	24,000	17	ND	12	4,000	ND	33,000	68
Cladosporium herbarum	57,000	46	1,700,000	190	92,000	100	1,100,000	2,000
Epicoccum nigrum	4	ND	ND	1	ND	ND	650	17
Mucor Group	17	ND	ND	1	ND	ND	ND	8
Penicillium chrysogenum type 2	ND	ND	14	ND	260	ND	2	ND
Rhizopus stolonifer	ND	ND	ND	ND	ND	ND	10	ND

ND = not detected.
Many of these seven fungi are generated from outdoor sources like plants and soil (therefore called group 2), and avoidance would be nearly impossible. Therefore, treatment with antifungal agents might be an alternative approach to controlling fungal growth for some CRS patients.

Previous studies using antifungal agents in the treatment of CRS have reported some beneficial effects and others little to none. Our data provide possible explanations regarding the variable results of clinical trials evaluating antifungal agents. If only some cases of CRS were associated with fungi, then any benefits to that fraction might have been lost in the larger population of CRS patients. It is also possible that the antifungal treatment regime used in these trials was inadequate to control the fungal growth. If these fungi are not invasive or disseminating in the tissues, such as typical fungal pathogens (e.g., Aspergillus fumigatus), then amplification in sinuses as colonizers may present a more difficult target to penetrate with antifungal agents.

No antifungal agent tested in vitro was able to suppress the growth of all of these potentially relevant fungi. Amphotericin B, which has been used in many of the clinical trials against CRS, had no measurable effect on the growth of C. herbarum. Fluconazole was generally the least effective of the agents in inhibiting growth.

Published clinical trials also failed to monitor the treatment to determine if the concentrations of fungi in the sinuses were controlled. Our results suggest that future clinical trials should screen for high-fungal CRS patients and combine multiple antifungal agents with an evaluation as to whether the treatment actually reduced the fungal populations.

This study has a number of limitations. First, only 36 fungi were monitored, and there are perhaps hundreds of other potentially relevant fungi. Additional microorganisms, most prominently bacteria, and immune dysfunction have also been implicated in the etiology of CRS. Our study did not evaluate either of these factors. Finally, our data led to the division of CRS patients into high- and low-fungal categories, which diminished the power of the statistical analysis. When the results were corrected for multiple comparisons, some of the species data failed statistical significance. However, the results do provide guidance for future studies.

CONCLUSION

Identification of the pathophysiology of CRS may be complicated by the presence of multiple and distinct etiologies. If fungi are involved in some cases, QPCR analysis may be helpful in identifying the role of specific fungi in a portion of CRS patients. Our results also suggest a more targeted approach to treatment of selected patients with multiple antifungal agents might be desirable.

Acknowledgments

The authors would like to thank Wendy Ma, BA, for her coordination of this study and for helping to retain and report data.

BIBLIOGRAPHY

1. Benson V, Marano M. Current Estimates from the National Health Interview Survey, 1995. Hyattsville, MD: National Center for Health Statistics, 1998, Series 10, No. 198.
2. Benninger MS, Ferguson BJ, Hadley JA, et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 2003;129 (suppl):S1–S32.
3. Rank MA, Adolphson CR, Kita H. Antifungal therapy for chronic rhinosinusitis: the controversy persists. Curr Opin Allergy Clin Immunol 2009; 9:67–72.
4. Ponikau JU, Sherris DA, Kern EB. Immunologic response to fungus is not universally associated with chronic rhinosinusitis. Otolaryngol Head Neck Surg 2010;143:607–610.
5. Orlandi RR, Marple BF. The role of fungus in chronic rhinosinusitis. Otolaryngol Clin North Am 2010;43:531–537.
6. Ragab A, Clement P, Vincen W. Bacterial cultures of the middle meatus and bronchoalveolar lavage in chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec 2007;69:85–91.
7. Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc 1999;74:877–884.
8. Murr AH, Goldberg AN, Vesper SJ. Fungal speciation using quantitative polymerase chain reaction (QPCR) in patients with and without chronic rhinosinusitis. *Laryngoscope* 2006;116:1342–1348.

9. Ebens PA, Scadding GK, Badia L, et al. Amphotericin B nasal lavages: not a solution for patients with chronic rhinosinusitis. *J Allergy Clin Immunol* 2006;118:1149–1156.

10. Kern EB, Sherris D, Stergiou AM, et al. Diagnosis and treatment of chronic rhinosinusitis: focus on intranasal Amphotericin B. *Thor Clin Risk Manag* 2007;3:319–325.

11. Shirazi MA, Stankiewicz JA, Kammeyer P. Activity of nasal amphotericin B irrigation against fungal organisms in vitro. *Am J Rhinol* 2007;21:145–148.

12. Lackner A, Stammburger H, Bazina W, et al. Fungi: a normal content of human nasal mucus. *Am J Rhinol* 2005;19:125–129.

13. Haugland R, Vesper S. Identification and quantification of specific fungi and bacteria. US patent 6,387,652. May 14, 2002.

14. Vesper SJ, Wakefield J, Ashley P, et al. Geographic distribution of Environmental Relative Moldiness Index (ERMI) molds in U.S. homes. *J Environ Public Health* 2011;2011:242457.

15. Vesper SJ, McKinstry C, Haugland RA, et al. Development of an environmental relative moldiness index for homes in the U.S. *J Occup Environ Med* 2007;49:829–833.

16. Rosenfeld RM, Andes D, Bhattacharyya N, Cheung D, et al. Clinical practice guideline: adult sinusitis. *Otolaryngol Head Neck Surg* 2007;137 suppl:S1–S31.

17. Moltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. *J Allergy Clin Immunol* 2004;114 (6 suppl):155–212.

18. Haugland RA, Brinkman NE, Vesper SJ. Evaluation of rapid DNA extraction methods for the quantitative detection of fungal cells using real-time PCR analysis. *J Microbiol Meth* 2002;50:319–323.

19. Haugland RA, Varma M, Wymer LJ, Vesper SJ. Quantitative PCR of selected *Aspergillus*, *Penicillium* and *Paecilomyces* species. *Sys App Micro* 2004;27:198–210.

20. Ponikau JU, Sherris DA, Weaver A, Kita H. Treatment of chronic rhinosinusitis with intranasal amphotericin B: a randomized, placebo-controlled, double-blind pilot trial. *J Allergy Clin Immunol* 2005;115:125–131.

21. Stankiewicz JA, Musgrave BK, Scianna JM. Nasal amphotericin irrigation in chronic rhinosinusitis. *Curr Opin Otolaryngol Head Neck Surg* 2008;16:44–46.

22. Bhattacharyya N. Antimicrobial therapy in chronic rhinosinusitis. *Curr Allergy Asthma Rep* 2009;9:221–226.

23. Lal D, Stankiewicz JA. Antifungal treatment and chronic rhinosinusitis. *Curr Allergy Asthma Rep* 2009;9:227–231.