Baseline diabetes as a way to predict CV outcomes in a lipid-modifying trial: a meta-analysis of 330,376 patients from 47 landmark studies

Michel P. Hermans¹*, Evariste Bouenizabila², Daniel K. Amoussou-guenou³, Sylvie A. Ahn⁴ and Michel F. Rousseau⁴

Abstract

Background: Diabetes is a major cardiovascular risk factor. However, its influence on the rate of occurrence of cardiovascular (CV) events during a clinical trial that included a diabetes subgroup has not yet been quantified.

Aims: To establish equations relating baseline diabetes prevalence and incident CV events, based on comparator arms data of major lipid-modifying trials.

Methods: Meta-analysis of primary outcomes (PO) rates of key prospective trials, for which the baseline proportion of diabetics was reported, including studies having specifically reported CV outcomes within their diabetic subgroups.

Results: 47 studies, representing 330,376 patients (among whom 124,115 diabetics), were analyzed as regards the relationship between CV outcomes rates (including CHD) and the number of diabetics enrolled. Altogether, a total of 18,445 and 16,156 events occurred in the comparator and treatment arms, respectively. There were significant linear relationships between diabetes prevalence and both PO and CHD rates (%/year): y = 0.0299*x + 3.12 [PO] (p = 0.0128); and y = 0.0531*x + 1.54 [CHD] (p = 0.0094), baseline diabetes predicting PO rates between 3.12 %/year (no diabetic included) and 6.11 %/year (all patients diabetic); and CHD rates between 1.54 %/year (no diabetic) and 6.85 %/year (all patients diabetic). The slopes of the equations did not differ according to whether they were derived from primary or secondary prevention trials.

Conclusions: Absolute and relative CV risk associated with diabetes at inclusion can be readily predicted using linear equations relating diabetes prevalence to primary outcomes or CHD rates.

Keywords: Diabetes, Cardiovascular, Coronary heart disease, Clinical trial, Residual risk, Lipids

Introduction

Key prospective trials have demonstrated the effectiveness of long-term control of conventional risk factors (RFs) to prevent cardiovascular (CV) events. Next to decreasing tobacco use and physical inactivity, indisputable gains were achieved by targeting hypertension and hypercholesterolemia. Nevertheless, there remained a high residual risk of incident CV events in control and comparator arms of these trials, even in patients receiving appropriate standard of care [1–4]. This residual risk is driven by non-modifiable RFs (age; gender; familial or genetic features; and diabetes) and by modifiable conventional or emerging RFs (eg. atherogenic dyslipidemia; remnant lipoproteins; hyperglycaemia; hyperinsulinaemia; metabolic syndrome; subclinical inflammation; and chronic kidney disease).

Based on epidemiology and prospective studies, type 2 diabetes mellitus (T2DM) significantly increases the absolute risk of developing coronary heart disease (CHD), and confers a higher residual risk of large and small vessel damage. In the microcirculation, such risk is directly related to hyperglycaemia, whereas in large vessels, this residual risk is linked to hypertension, low-density lipoproteins (LDL); non-LDL dyslipidemias; and other metabolic comorbidities [5–10]. As a result, having T2DM, either individually or at
a sub-group level (within a cohort or population) increases residual CV risk to an extent that needs to be determined. Since residual risk varies considerably from one study to another, such an evaluation would require going beyond comparing CV outcomes rates in diabetic vs. non-diabetic subgroups of individual trials.

The aim of this work was to establish equations relating baseline diabetes prevalence and incident CV events, based on comparator arms data of major clinical trials having investigated the potential CV benefit of various pharmacological or dietary interventions targeting, in the vast majority, lipids and lipoproteins. We performed a systematic meta-analysis of CV outcomes rates of those key prospective studies, for which the baseline proportion of diabetics was reported and, where available, studies having reported CV outcomes of diabetic subgroups [11–90] (Table 1).

Patients and methods

To be selected for inclusion, major clinical trials with CV outcomes had to meet three requirements: (i) the main purpose of the trial was to study the effect on CHD of a pharmacological or dietary intervention targeting lipids or lipoproteins, with CHD rates as sole primary outcome (PO), or with a major adverse CV event (MACE) composite PO comprising CHD; (ii) to focus exclusively on diabetic patients, or (iii) to report data on a sufficient number of diabetic patients from pre-/post-hoc analyses of DM subgroups of the main trial. Among studies conducted non-exclusively in DM patients, eligible trials had to comply with ≥1 of the following criteria: (i) the main trial had a subgroup of patients already diagnosed with DM at baseline, whose proportion was deemed sufficiently representative (≥15 %); or (ii) the trial enrolled at least 100 DM patients, regardless of on-study new-onset diabetes.

For each study, the following items were analyzed: CV risk category at baseline (primary prevention [PP], secondary prevention [SP] or mixed [PP-SP]); number of patients included; number and proportion of patients with DM at baseline; number of patients in the active or comparator arms; duration of follow-up; age at inclusion; number of males; DM type and duration; HbA1c; total cholesterol (TC); low-density lipoprotein cholesterol (LDL-C); high-density lipoprotein cholesterol (HDL-C); non-HDL-cholesterol (non-HDL-C); apolipoprotein B (apoB); triglycerides (TG); type of pharmacological or dietary intervention; primary trial outcome; CHD outcomes (see Table 2 for CV outcomes categories); and CV events number and rates for each trial.

Results

Forty-seven studies were selected based on the criteria defined above [11–90]. They accounted for a total of 330,376 patients. The median year of publication for all studies was 2005. Table 1 describes, for each study, the acronym’s definition; the CV prevention category; the cohort size and the number or proportion of diabetic at baseline; the number of patients randomized in the active or comparator arms; the follow-up duration; and publication year. For all studies, mean age (ISD) was 61.7 (6.4) years, and the proportion of males was 74 (17 %). Regarding ethnicity, the majority of patients studied were Caucasian (median 86.5 % [between-study range (BSR 0 %)–99.2 %] Three studies [JELIS; MEGA; and PROFIT-J] included only Japanese patients [59, 66, 74]. Among studies, 8 of 47 (17 %; n = 42,279) enrolled patients in PP at baseline; 17 of 47 (36 %; n = 131,425) included populations whose CV risk was a mix of PP and SP; and 22 of 47 (47 %; n = 156,672) were SP trials. Lipid values at baseline were (mg/dL): 209 (34) [TC]; 126 (32) [LDL-C]; 44 (7) [HDL-C]; 161 (32) [non-HDL-C]; 99 (19) [apoB] and 162 (27) [TG]. In total, these studies have included 124,115 diabetic patients, representing 42.1 % [BSR 2.3 %–100 %] of the population studied. For studies that reported diabetes duration, it averaged 7.5 (4.9) years, whereas metabolic control assessed by Hba1c was 7.49 (0.68) % (Table 3). The trials investigated the following interventions over a mean (ISD) duration of 4.4 (1.9) years [BSR: 1.0–13.3 years]: statins (42 trials); fibrates (9 trials); n-3 fatty acids and/or traditional Mediterranean diet (5 trials); niacin (4 trials); CETP-inhibitor (2 trials); PPAR-γ agonist (2 trials); ezetimibe (1 trial); PPAR-α/γ agonist (1 trial); and Lp-PLA2 inhibitor (1 trial) (Table 4).

For all 47 studies, a total of 18,445 and 16,156 events occurred in the comparator and treatment arms, respectively. On an annual basis, this was equivalent to an average rate of occurrence for the primary CV outcome of 3.6 (2.4) %/year [BSR 0.5–11.8] (comparator) and 3.0 (1.9)%/year [BSR 0.3–9.1] (treatment), respectively (Table 4). The slopes of the equations relating PO rates (y) to diabetes prevalence (x) did not differ according to whether they were derived from PP or SP trials: thus, for PP trials y = 0.0208 x + 0.53 (R2 = 0.6369; p = 0.0058), whereas y = 0.0267 x +3.76 (R2 = 0.1436; p = 0.0464) for SP trials.

When comparing PO rates from the comparator arms of studies published prior to 2005 vs. those published ≥2005, average PO incidence decreased from 3.7 %/year [<2005] to 2.7 %/year [≥2005] for non-diabetic patients, ie. absolute and relative reductions of 1 % and 28 % (NS). For diabetic patients, the event rate decreased from 5.0 %/year [<2005] to 4.2 %/year [≥2005] (p = 0.007).
Table 1: Overview of 47 landmark prospective clinical trials with CV outcomes having included a substantial number and/or proportion of diabetic patients at baseline

CV prevention Patients	Diabetes Patients	Diabetes proportion	Active arm Patients	Comparator arm Patients	Follow-up years	Publication year	Reference
n	n	%	n	n			
4D PP-SP	1255	100	619	636	4.0	2005	[11]
4S SP	4444	2	2221	2223	5.4	1994	[12–14]
diabetes substudy SP	202	100	105	97	5.4	1997	[14]
ACCORD-Lipid PP-SP	5518	100	2766	2753	4.7	2010	[15, 16]
ADDITION-Europe PP-SP	3055	100	1678	1377	5.3	2011	[17, 18]
AFCAPS/TexCAPS PP	6605	5	3304	3301	5.2	1998	[19, 20]
AIM-HIGH SP	3414	34	1718	1696	3.0	2011	[21, 22]
AleCardio SP	7226	100	3616	3610	2.0	2014	[23, 24]
ALERT PP-SP	2102	19	1050	1052	5.1	2003	[25]
ALLHAT-LLT PP-SP	10355	35	5170	5185	4.8	2002	[26]
Alpha-Omega SP	4837	36	2404	2433	3.4	2010	[27]
ASCOT-LLA PP	10305	25	5168	5137	3.3	2003	[28, 29]
diabetes substudy PP	2532	100	1258	1274	3.3	2005	[29]
ASPEN SP	2410	1211	1199	4.0	2006	[30]	
AURORA PP-SP	2773	1389	1384	3.8	2009	[31, 32]	
diabetes substudy PP	731	388	343	2.8	2011	[32]	
BIP SP	3090	1548	1542	6.2	2000	[33, 34]	
CARDS PP	2838	1428	1410	3.9	2004	[35]	
CARE SP	4159	2081	2078	5.0	1998	[36–38]	
diabetes substudy SP	586	282	304	5.0	1998	[38]	
CDP (clofibrate) SP	3892	1103	2789	6.2	1975	[39, 40]	
CDP (niacin) SP	3908	1119	2789	6.2	1975	[39, 40]	
dal-OUTCOMES SP	15871	7938	7933	2.6	2012	[41, 42]	
DIS PP	761	379	382	5.0	1991	[43]	
FIELD PP-SP	9795	4895	4900	5.0	2005	[44–46]	
GISSI-Prevenzione SP	4271	2138	2133	2.0	2000	[47]	
GREACE SP	1600	880	720	3.0	2002	[48, 49]	
diabetes substudy SP	313	161	152	3.0	2003	[49]	
HATS SP	107	73	34	3.0	2001	[50]	
HHS PP	4081	2051	2030	5.0	1987	[51, 52]	
diabetes substudy PP	135	59	76	5.0	1992	[52]	
HPS - MRC/BHF PP-SP	20536	10269	10267	5.0	2002	[53, 54]	
diabetes substudy PP	5963	2978	2985	4.8	2003	[54]	
HPS2-THRIVE SP	25673	12835	12835	3.9	2013	[55]	
IDEAL SP	8888	4449	4449	4.8	2005	[56, 57]	
ILLUMINATE PP-SP	15067	7533	7534	1.0	2007	[58]	
JELIS PP-SP	18645	9326	9319	4.6	2007	[59]	
LEADER PP-SP	1568	783	785	4.6	2002	[60, 61]	
LIPID SP	9014	4512	4502	6.1	1998	[62–64]	
LIPS SP	1677	844	833	3.9	2002	[65]	
MEGA PP	7832	3866	3966	5.3	2006	[66]	
Among these, 33 trials, totaling 259,151 patients, are described below as *predominantly non-diabetes studies* [12–14, 19–22, 25–29, 31–34, 36–42, 47–66, 68–70, 75, 78–80, 82–90] (Table 1). The mean age was 61.4 (5.5) years [BSR 47.0–75.0], and the proportion of males was 78.6 (17.8) % [BSR 31.4–100]. Among *predominantly non-diabetes studies*, 4 of 33 (12 %) enrolled patients who were in PP at baseline; 9 of 33 (27 %) included mixed populations whose CV risk was either PP or SP; and 20 of 33 (61 %) were clinical trials in SP only. Lipid values at baseline were (mg/dL): 212 (38) [TC]; 129 (36) [LDL-C]; 44 (7) [HDL-C]; 165 (36) [non-HDL-C]; 98 (21) [apoB] and 160 (25) [TG]. In total, these studies have included 63.189 diabetic patients, representing 21.3 % [BSR 2.3 %–44.2 %] of the population studied (Table 1; Table 3). These *predominantly non-diabetes studies* investigated the following interventions over a mean (1SD) duration of 4.3 (1.5) years [BSR: 1.0–7.5 years]: statins (19 trials); fibrates (6 trials); n-3 fatty acids (2 trials); niacin (4 trials); CETP-inhibitor (2 trials); ezetimibe (1 trial); and Lp-PLA2 inhibitor (1 trial) (Table 4).

Table 1 Overview of 47 landmark prospective clinical trials with CV outcomes having included a substantial number and/or proportion of diabetic patients at baseline (Continued)

Study	Type	Total (n)	Mean age	Mean (1SD) duration	Proportion of diabetic patients at baseline	Proportion of males at baseline	Mean (%a)	10-year CV risk reduction	R	Mean difference in %	SD	95% CI
ORIGIN	PP-SP	12536	61.4	4.3 (1.5)	3.2	65.0	3.2	10.4	2.3	-0.7	1.7	-2.7 to -0.2
PERFORM	SP	19120	61.4	4.3 (1.5)	3.2	65.0	3.2	10.4	2.3	-0.7	1.7	-2.7 to -0.2
Post-CABG	SP	1501	61.4	4.3 (1.5)	3.2	65.0	3.2	10.4	2.3	-0.7	1.7	-2.7 to -0.2

CV: cardiovascular; PP and SP: primary and secondary prevention. Acronyms: 4D: Die Deutsche Diabetes Dialyse studie; 4S: Scandinavian Simvastatin Survival Study; ACCORD-Lipid: Action to Control Cardiovascular Risk in Diabetes - Lipid arm; ADDITION-Europe: Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen Detected Diabetes in Primary Care; AFCAPS/TexCAPS: Air Force/Texas Coronary Atherosclerosis Prevention Study; AIM-HIGH: Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes; ALECardio: A Safety and Efficacy Study to Evaluate the Potential of Aleglitazar to Reduce CV Risk in CHD Patients with a Recent ACS and T2DM; ALERT: Assessment of Lescol in Renal Transplantation; ALLHAT-LLT: Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial; ASCOT-LLA: Anglo-Scandinavian Cardiac Outcomes Trial - Lipid Lowering Arm; ASPEN: Atorvastatin as Prevention of CHD Endpoints in Patients with Non-insulin dependent diabetes mellitus; AURORA: A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis: an Assessment of Survival and Cardiovascular Events; BIP: Bezafibrate Infarction Prevention; CARDS: Collaborative Atorvastatin Diabetes Study; CARE: Cholesterol and Recurrent Events; CDP: Coronary Drug Project; dal-OUTCOMES: Efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome; DEI: Diabetes Intervention Study; FIELD: Fenofibrate Intervention and Event Lowering in Diabetes; GISSI-Prevenzione: Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico - Prevenzione; GREACE: Greek Atorvastatin and Coronary-heart-disease Evaluation; HAT5: HDL-Atherosclerosis Treatment Study; HHS: Helsinki Heart Study; HPS: MRC/BHF: Medical Research Council and British Heart Foundation Heart Protection Study; HP52-THRIVE: Heart Protection Study - Treatment of HDL to Reduce the Incidence of Vascular Events; IDEAL: Incremental Decrease in End Points Through Aggressive Lipid Lowering Trial; ILLUMINATE: Investigation of Lipid Level Management to Understand its Impact in Atherosclerosis Events; JELIS: Japan EPA Lipid Intervention Study; LEADER: Lower Extremity Arterial Disease Event Reduction; LIPID: Long-term Intervention with Pravastatin in Ischaemic Disease; LIPS: Lescol Intervention Prevention Study; MEGA: Primary Prevention of Cardiovascular Disease with Pravastatin in Japan; ORIGIN: Outcome Reduction with an Initial Glargine Intervention; PERFORM: Prevention of cerebrovascular and cardiovascular Events of Ischaemic origin with telmisartan in patients with a history of ischaemic stroke or transient ischaemic attack; Post-CABG (FU): Post Coronary Artery Bypass Graft Trial (follow-up); PREDMED: Prevenzione con Dieta Mediterranea; PROACTIVE: PROspective pioglitAzone Clinical Trial In macrovascular Events; PROFIT-3: Primary Prevention on High risk Type 2 diabetes in Japan; PROSPER: Prospective Study of Pravastatin in the Elderly at Risk; RPS: Risk and Prevention Study; SHARP: Study of Heart and Renal Protection; STABILITY: STAbilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY; STENO-2: STENO-2 Study; TNT: Treating to New Targets; VA C: Veterans Affairs Cooperators Study of Atherosclerosis; VA HIT: Veterans Affairs High-Density Lipoprotein Intervention Trial; VA-HIT: Veterans Affairs High-Density Lipoprotein Intervention Trial; VA Cooperative Study: VA Cooperative Study of Atherosclerosis, Neurology Section; VA-HIT: Veterans Affairs High-Density Lipoprotein Intervention Trial.
Within DSS, 2 of 9 (22%) enrolled patients who were in PP at baseline; 2 of 9 (22%) included mixed populations whose CV risk was either PP or SP; and 5 of 9 (56%) were clinical trials in SP only. Lipid values at baseline were (mg/dL): 200 (19) [TC]; 118 (16) [LDL-C]; 46 (6) [HDL-C]; 154 (19) [non-HDL-C]; and 165 (32) [TG] (Table 3). The DSS have investigated the following interventions over a mean (1SD) duration of 4.8 (2.7) years [BSR: 1.8–13.3 years]: statins (5 trials); fibrates (4 trials); n-3 fatty acids and/or traditional Mediterranean diet (3 trials); PPAR-γ agonist (2 trials) and PPAR-α/γ agonist (1 trial) (Table 4).

Among the 33 predominantly non-diabetic studies, a total of 14,732 and 12,604 events occurred in the comparator and treatment arms, respectively. On an annual basis, this was equivalent to an average rate of occurrence for the primary CV outcome of 3.8 (2.4) %/year [BSR 0.5–11.8] (comparator) and 3.1 (1.8) %/year [BSR 0.3–7.5] (treatment), respectively.

Amongst the 9 DSS, a total of 1,469 and 1,119 events occurred in the comparator and treatment arms, respectively. On an annual basis, this was equivalent to an average rate of occurrence for the primary CV outcome of 6.1 (3.0) %/year [BSR 2.1–10.8] (comparator) and 4.0 (2.1) %/year [BSR 0.7–7.8] (treatment), respectively.

Among the 14 studies focusing on diabetes, a total of 3,713 and 3,552 events occurred in the comparator and treatment arms, respectively. On an annual basis, this was equivalent to an average rate of occurrence for the primary CV outcome of 3.3 (2.5) %/year [BSR 1.1–9.6] (comparator) and 2.9 (2.4) %/year [BSR 0.8–9.1] (treatment), respectively.

In addition to PO rates, which include de facto CHD, we also examined CHD rate as a separate outcome [Table 4 and Fig. 1 left panels]. Rates of CHD were issued for 21 trials and DSS for comparator and treatment arms, and amounted to [%/year]: 11.1 and 7.2 [4S-DSS]; 1.3 and 0.9 [ACFAPPS/TexCAPS]; 1.5 and 1.0 [ASCOT-LLA]; 5.1 and 4.9 [AURORA]; 5.8 and 5.4 [BIP]; 12.0 and 9.3 [CARE-DSS]; 4.9 and 4.5 [CDP (clofibrate)]; 4.9 and 4.1 [CDP (niacin)]; 2.4 and 1.7 [HPS - MRC/BHF]; 2.6 and 2.0 [HPS - MRC/BHF-DSS]; 1.4 and 1.3 [HPS2-THRIVE]; 5.0 and 4.2 [IDEAL]; 2.0 and 2.4 [ILLUMINATE]; 0.8 and 0.6 [JELIS]; 3.1 and 2.5 [LEADER]; 0.5 and 0.3 [MEGA]; 1.0 and 0.9 [SHARP]; 4.3 and 4.0 [STABILITY]; 1.7 and 1.4 [TNT]; 2.6 and 2.1 [TNT-DSS]; and 1.9 and 1.7 [VA Cooperative Study] (Fig. 1; right panels).

The relationship between proportion of diabetic patients at inclusion and PO or CHD rates was inferred on
Study	Age (years)	Males (%)	Diabetes type & duration (years)	HbA1c (%)	TC (mg/dL)	LDL-C (mg/dL)	HDL-C (mg/dL)	Non-HDL-C (mg/dL)	apoB (mg/dL)	TG (mg/dL)	
4D	66	54	T2DM	18	6.7	218	125	36	182	~	261
4S	59	81	~		260	188	46	214	~	132	
diabetes substudy	60	78	~		259	186	43	216	~	150	
ACCORD-Lipid	62	69	T2DM	10	8.3	175	100	38	137	~	164
ADDITION-Europe	60.3	58	T2DM	0	7	214	133	46	168	~	146
AFCAPS/TexCAPS	58	85	T1DM; T2DM			221	150	37	184	~	158
AIM-HIGH	64	85	~		6.7	146	74	35	111	83	168
AleCardio	60.8	73	T2DM	8.6	7.8	152	79	42	110	~	152
ALERT	50	66	~			247	158	50	197	~	195
ALLHAT-LLT	66	51	T2DM			224	146	48	176	~	152
Alpha-Omega	69	78	~			183	100	50	133	~	146
ASCOT-LLA	63	81	~			212	131	50	162	~	150
diabetes substudy	63.6	76	T2DM			205	128	46	159	~	168
ASPEN	61	66	T2DM	8	7.8	194	113	47	147	~	147
AURORA	64	62	~			176	100	45	131	82	157
diabetes substudy	65	66	~			174	97	43	131	~	168
BIP	60	91	T2DM			212	148	35	177	~	145
CARDS	62	68	T2DM	8	7.9	207	117	54	153	117	173
CARE	59	86	~			209	139	39	170	~	156
diabetes substudy	61	80	~			206	136	38	168	~	164
CDP (clofibrate)	100	~	~		~	~	~	~	~	183	
CDP (niacin)	100	~	~		~	~	~	~	~	183	
dal-OUTCOMES	60.2	81	~			145	76	42	103	81	134
DIS	46	56	T2DM	0		218	~	~	~	~	157
FIELD	62	63	T2DM	5	6.9	195	119	43	152	97	173
GISSI-Prevenzione	60	86	T2DM (79 %) T1DM (21 %)			229	152	46	183	~	166
GREACE	79	~	~			264	193	39	225	~	159
diabetes substudy	55	56	T2DM (92 %) T1DM (8 %)	10.5	7.5	271	189	35	236	~	221
HATS	53	87	~			200	128	30	170	119	219
HHS	47	100	~			270	189	47	223	~	175
diabetes substudy	49	100	T2DM	4.5		292	200	46	246	~	214
HPS - MRC/BHF	75	~	~			228	131	41	187	114	186
diabetes substudy	62.1	70	T2DM (90 %) T1DM (10 %)	27	7	220	124	41	179	110	204
HPS2-THRIVE	64.9	82.7	~			128	63	44	84	68	127
IDEAL	62	81	~			197	122	46	151	119	151
ILLUMINATE	61.3	77.8	T2DM			157	80	49	108	73	127
JELIS	61	31.4	~			275	181	59	216	~	153
LEADER	68	100	~			218	131	46	172	~	213
LIPID	62	83	~			218	150	36	182	133	142
LIPS	60	84	T2DM; T1DM			200	131	38	162	~	160
MEGA	58.3	32	~			242	157	58	184	~	128
the basis of the comparator and treatment arms data from the 33 predominantly non-diabetic studies, including where appropriate the rates for the corresponding DSS, i.e. 259,151 patients. Both for PO and CHD, there was a highly significant linear relationship between the proportion of diabetics enrolled and events rates, both in comparator arms (p = 0.0128 [PO] and p = 0.0094 [CHD]; Fig. 1; upper panels) and active arms (p = 0.0470 [PO] and p = 0.0272 [CHD]; Fig. 1; lower panels). When comparing the slopes of the equations between PO and the proportion of diabetes at baseline in the comparator arm of studies published < 2005 and from 2005 to 2014, they rose from 0.0129 to 0.0162, i.e. a relative increase of 26 % (not shown). Such relationships were more pronounced as regards CHD events, exhibiting steeper gradients than those of PO rates, with slope coefficients higher by a relative 78 % [comparator arms] and 110 % [treatment arms].

Vis-à-vis the comparator arms, the slopes of the relationships between proportions of diabetics and events rates in the treatment arms of the same studies were attenuated, by a relative 45 % [PO rates] and 34 % [CHD events] (Fig. 1; lower panels).

By relating incidence rates of PO and CHD in the treatment arms, it appears that the proportion of diabetics at inclusion predicts PO rates ranging from 2.65 %/year (no diabetic included) to 4.31 %/year (all patients diabetic). Predicted CHD rates based on diabetes prevalence ranged from 1.64 %/year (no diabetic included) to 5.13 %/year (all patients diabetic). It follows that a cohort exclusively composed of diabetic patients would present an on-treatment PO rate increased by an absolute 1.7 %/year solely due to the presence of DM at baseline. Such an absolute increase in events rate due to diabetes would further increase to 3.5 %/year for incident CHD risk (Fig. 1; lower panels).

The comparison of these equations linking the proportion of diabetics and outcome rates in comparator vs. treatment arms allows for determining whether being diabetic (apart from the observation that it increases the absolute rate of occurrence of CV events) is associated with an idiosyncratic on-treatment clinical response. As for PO and CHD, diabetic patients were characterized by a clinical response that was better than that calculated for a non-diabetic population that would have been subject to the same therapeutic interventions. Thus, residual CV risk
Study	Intervention	Primary; secondary CV outcomes	Events (n) treatment	Events (%) treatment	Rate (%.year-1) treatment	Events (n) control	Events (%) control	Rate (%.year-1) control	HR 95 % CI for HR	P
4D	statin C; D + J	226	36.5	9.13	243	38.2	9.55	0.96	0.77-1.1	0.37
4S	statin A	182	8.2	1.52	256	11.5	2.13	0.71	0.58-0.85	0.0003
diabetes substudy	statin A	15	14.3	2.65	24	24.7	4.58	0.58	NR	0.087
ACCORD-Lipid	statin C; J + D	291	10.5	2.24	310	11.3	2.40	0.93	0.79-1.08	0.32
ADDITION-Europe	statin/other B; D + J + M + Z	121	7.2	1.36	117	8.5	1.60	0.85	0.65-1.05	0.12
AFCAPS/TexCAPS	statin C; E	116	3.5	0.68	183	5.5	1.07	0.63	0.50-0.79	<0.001
AIM-HIGH	niacin C; G + J + H + M	282	16.4	5.47	274	16.2	5.39	1.02	0.87-1.21	0.8
AleCardio	PPAR-α/γ C; D + J	344	9.5	4.76	360	10.0	4.99	0.95	0.83-1.11	0.57
ALERT	statin C; G + J + M	112	10.7	2.09	134	12.7	2.50	0.84	0.64-1.06	0.14
ALLHAT-LLT	statin A	631	12.2	2.54	641	12.4	2.58	0.99	0.89-1.11	0.88
Alpha-Omega n-3 fatty acids	B	336	14.0	4.11	335	13.8	4.05	1.02	0.87-1.17	0.93
ASCOT-LLA	statin J + G	100	1.9	0.59	154	3.0	0.91	0.65	0.50-0.83	0.0005
diabetes substudy	statin B	116	9.2	2.79	151	11.9	3.59	0.78	0.61-0.98	0.04
ASPEN	statin C; D + J + M + O + L	166	13.7	3.43	180	15.0	3.75	0.91	0.73-1.12	0.34
AURORA	statin C; J + D	396	28.5	7.50	408	29.5	7.76	0.97	0.84-1.11	0.59
diabetes substudy	statin C; G + J	85	21.9	7.82	104	30.3	10.83	0.72	0.51-0.90	0.008
BIP	fibrate C; K + J + P	211	13.6	2.20	232	15.0	2.43	0.91	NR	0.26
CARDS	statin C; H + M + T	83	5.8	1.49	127	9.0	2.31	0.65	0.48-0.83	0.001
CARE	statin G + J	212	10.2	2.04	274	13.2	2.64	0.77	0.09-0.36	0.003
diabetes substudy	statin G + J + M	81	28.7	5.74	112	36.8	7.37	0.78	NR	<0.0001
CDP (clofibrate)	fibrate A	281	25.5	4.11	709	25.4	4.10	1.00	0.89-1.0	0.09
CDP (niacin)	niacin A	273	24.4	3.93	709	25.4	4.10	0.96	0.85-1.08	0.005
dal-OUTCOMES CETP inhibitor	C; G + J + L + O	656	8.3	3.20	633	8.0	3.09	1.04	0.93-1.16	0.52
DIS	fibrate E	32	8.4	1.69	31	8.1	1.62	1.04	NR	NR
FIELD	fibrate C; B + D + I + M	256	5.2	1.05	288	5.9	1.18	0.89	0.75-1.05	0.16
GISSI-Prevenzione	statin C; A + I	120	5.6	2.77	136	6.4	3.15	0.88	0.71-1.15	0.41
GREACE	statin C; A + J + L + Q + M	112	12.7	4.24	180	25.0	8.33	0.51	<0.0001	
diabetes substudy	statin C; A + J + L + Q + M	20	12.4	4.14	46	30.3	10.09	0.41	NR	<0.0001
HATS	statin + niacin	7	9.6	3.20	12	35.3	11.76	0.27	NR	0.02
HHS	fibrate C; K + J + G	56	2.7	0.55	84	4.1	0.83	0.66	0.08-0.53	<0.02
diabetes substudy	fibrate C; K + J + G	2	3.4	0.68	8	10.5	2.11	0.32	NR	0.19
HPS - MRC/BHF	statin C; A + G	1328	12.9	2.59	1507	14.7	2.94	0.88	0.81-0.94	0.0003
diabetes substudy	statin E + B	601	20.2	4.20	748	25.1	5.22	0.81	0.19-0.30	<0.0001
HPS2-THRIVE	niacin C; G + M	1696	13.2	3.39	1758	13.7	3.51	0.96	0.90-1.03	0.29
Persisting after treatment was further reduced in case of diabetes, in a relative proportion of 14.4% [PO] and 31.2% [CHD], respectively (Fig. 1; upper and lower panels).

Discussion
This meta-analysis shows that the presence of diabetics in a lipid-modifying trial is a determinant of CV events rate, the impact of which can be accurately assessed once known the proportion of diabetics enrolled, regardless of the CV risk category at baseline. Thus, the linear equations derived from this meta-analysis can be used to determine the absolute and relative enhancement of CV risk related to the inclusion of diabetics in a trial. Conversely, these algorithms can be used to estimate the proportion of diabetics to be included when designing a prospective study, in order to achieve a given number of CV events.

Major guidelines recognize a higher risk of CHD in DM patients, even in situations of primary prevention, as compared to non-diabetic subjects. The events rates in the comparator arms of randomized controlled trials and the meta-analyses of key statin trials show that CHD risk from hypercholesterolemia in non-diabetic

Table 4 Primary CV outcome rates in the active (treatment) and control (comparator/placebo) arms (Continued)

Study	Intervention	Group	Total (n)	Mean	95% CI	p-value					
IDEAL	statin	C; G + J + O	411	9.3	1.93	463	10.4	2.17	0.89	0.78-1.01	0.07
ILLUMINATE	CETP inhibitor	C; G + J + L	464	6.2	6.16	373	5.0	4.95	1.24	1.09-1.44	0.001
JELIS	n-3 fatty acids	E; P; I; L; M; A	262	2.8	0.61	324	3.5	0.76	0.81	0.69-0.95	0.01
LEADER	fibrate	E	150	19.2	4.95	160	20.4	5.20	0.95	0.76-1.21	0.72
LIPID	statin	G	287	6.4	1.04	373	8.3	1.36	0.77	0.12-0.35	<0.001
LIPS	statin	C; G + J + M	181	21.4	5.50	222	26.7	6.83	0.80	0.64-0.95	0.01
MEGA	statin	C; I + L + M + P	66	1.7	0.32	101	2.5	0.48	0.67	0.49-0.91	0.01
ORIGIN	n-3 fatty acids	D; D + J + U; A; T; M + W; Q; L; Z	574	9.1	1.47	581	9.3	1.50	0.98	0.87-1.10	0.72
PERFORM	antiplatelet	D; I	1091	11.4	4.83	1062	11.1	4.71	1.03	0.94-1.12	NS
Post-CABG	statin	C; D + J + M	207	30.6	4.08	271	40.1	5.35	0.76	NR	0.04
PREDIMED	TMD	C; D + I	179	3.6	0.80	109	4.4	1.12	0.71		
PROACTIVE	glitazone	C; A + J + H + M	514	19.7	6.80	572	21.7	7.49	0.91	0.80-1.02	0.1
PROFIT-J	glitazone	C; A + J	9	3.8	2.09	10	4.0	2.20	0.95	0.427-2.593	0.91
PROSPER	statin	C; G + J	408	14.1	4.41	473	16.2	5.07	0.87	0.74-0.97	0.01
RPS	n-3 fatty acids	D	733	11.7	2.35	745	11.9	2.38	0.99	0.88-1.08	0.64
SHARP	statin/ezetimibe	C; J + G + M	526	11.3	2.31	619	13.4	2.73	0.84	0.74-0.94	0.0021
STABILITY	Lp-PLA2-inhibitor	C; D + J + U	769	9.7	2.62	819	10.4	2.80	0.94	0.85-1.03	0.2
STENO-2	statin/fibrate	A	24	30.0	2.26	40	50.0	3.76	0.60	0.32-0.89	0.02
TNT	statin	C; G + J + O + T	434	8.7	1.77	548	10.9	2.23	0.79	0.69-0.89	<0.001
diabetes substudy	statin	C; G + J + O + T	103	13.7	2.79	135	18.0	3.68	0.76	0.58-0.97	0.026
VA Cooperative Study	fibrate	A + B	22	8.2	4.56	30	11.4	6.31	0.72	0.43-1.22	NR
VA-HIT	fibrate	C; J + G	219	17.3	3.40	275	21.7	4.26	0.80	0.07-0.35	0.006
diabetes substudy	fibrate	C; J + G	96	25.5	4.99	141	36.0	7.05	0.71	0.53-0.88	0.004
Total (n)	16156	18445									
Mean	12.2	3.0		14.8	3.6	0.85					

*: see legend to Table 1 for study acronyms definition; §§: see Table 2 for CV outcomes definition; §§§: ±antioxidants; CETP: cholesteryl ester transfer protein; CI: confidence interval; CV: cardiovascular; HR: hazard ratio; LpPLA2: lipoprotein-associated phospholipase A2; NR: not reported; NS: non significant; PPAR: peroxisome proliferator-activated receptor; TMD: traditional Mediterranean diet.
patients is proportional to baseline LDL-C level. This is also the case for type 2 DM patients, with the additional aggravating fact that this linear relationship was shifted upward compared to non-diabetics. This underlies current recommendations for effective lowering of LDL-C as the major modifiable lipid risk factor for CHD in diabetic patients.

It should be noted that mean PO rate in studies focusing on diabetes was considerably lower (~46%) than the risk that would be determined for diabetics if included,
as a subgroup, in a clinical trial not focusing on diabetes. This follows from the fact that studies focusing on diabetes had a lower CV risk at inclusion, as well as lesser PO or CHD events during the study. As a result, the impact of DM on CV events must be qualified according to whether it is evaluated from diabetic subgroups of cohorts followed in cardiology (mostly in a macrovascular setting), or whether it is obtained in patients from clinical trials focusing on nutrition or diabetes (usually dealing with glycemic control or microvascular risk reduction). In addition, variation in residual risk related to T2DM in key trials may result from inhomogeneity in inclusion criteria; varying baseline CV risk; individual differences in diabetes duration or severity; and heterogeneous RFs exposure among diabetics.

As opposed to what occurs in microvessels, and unlike a widely held view about it, residual risk targeting large vessels is related to a limited extent only by hyperglycaemia in (pre)diabetes states. Rather, the accrued macrovascular risk is associated with the common form of T2DM (that is to say the one that expresses a MetS phenotype, including insulin resistance and hyperinsulinemia). The common pathogenic factors underlying the observed association between hyperglycaemia and CHD are involved either (i) at the onset of diabetes (promoting B-cell decompensation or altering one or two variable(s) of the hyperbolic product between insulin secretion and insulin sensitivity), and/or (ii) because they embody cardiometabolic comorbidities that increase the macrovascular risk regardless of glucose levels.

It should be noted that the slopes of the relationships between CV events and percentage of included diabetics were less marked when it came to comparing PO vs. CHD events rates, both in comparator and treatment arms, on one hand, or when it came to comparing PO or CHD events rates in treated arms vs. comparator arms, on the other hand. These observations suggest (i) that the presence of diabetes at baseline has less adverse effect on the occurrence of certain constituents of the PO, such as all-cause deaths or coronary revascularization; and (ii) that diabetic patients derive more benefits from the different treatment approaches studied than non-diabetic patients as regards the occurrence of macrovascular events [91]. In this meta-analysis, we have not distinguished between studies on the basis of pharmacological or nutritional interventions, since we based our findings on patients from comparator arms, usually receiving a placebo or standard care. When comparing less recent (published <2005) and more contemporary studies (published ≥2005), a decrease in absolute and relative events rates was observed (~28 % and -1 % respectively), suggestive of a reduction in exposure to CV RFs over time and/or of improved overall CV management. Such changes were however not significant and further, diabetic patients benefited less from this trend, reducing the absolute and relative rates by only -14 % and -0.7 %. It seemed therefore appropriate to include all studies in this analysis regardless of publication year.

It is noteworthy that the increased risk of CV events due to the presence of a subgroup of diabetics had a pretty similar slope, whatever the CV risk category at baseline. It follows that the excess CV risk associated with the inclusion of people with diabetes in a lipid-modifying trial is relatively independent of study design, expanding the applicability of equations derived from this meta-analysis. There exists a positive relationship between biomarkers and occurrence of CV events [92]; our meta-analysis suggests that documenting the frequency of enlisted T2DM patients can also be used as surrogate biomarker predicting a non-modifiable component of residual CV risk. Considering that our analysis focused on populations enrolled in the comparator arms of mostly LMT studies, it would be interesting to determine the impact on residual risk arising from enlistment of diabetics in clinical trials testing several interventions in primary care [93].

This study has several limitations. Firstly, the risk estimates attributed to DM were not adjusted for age or other CV RFs comorbid to T2DM and, as in all systematic collection of published data, there is always a potential bias related to publications [94]. Secondly, the adequacy of these equations to predict CV outcomes has not been independently validated in a prospective context. Thirdly, for reasons related to the design and reporting of individual studies, it was not feasible to derive specific equations applicable to T1DM vs. T2DM subgroups, or to newly-diagnosed vs. long-standing T2DM patients [95]. We were not able to analyze the potential influence of glycaemic control in diabetic subgroups at baseline, due to the low reporting rate of HbA1c values [96]. Finally, we did not examine, for reasons of brevity, the relationship between diabetes prevalence and non-CHD outcomes, such as HF, which will require dedicated meta-analyses [97].

Conclusion
This study attempted to quantify the impact of diabetes on the occurrence of CV events during a lipid-modifying trial, based on the proportion of known diabetics included. The component of absolute and relative residual CV risk associated with diabetes can be measured from linear equations relating diabetes prevalence to primary outcomes or CHD rates. Such calculations may help clinical study designers when selecting inclusion criteria; cohort size; and planned diabetics’ enrollment, so as to achieve sufficient CV events over time.

Abbreviations
apoB: apolipoprotein B100; BSR: Between-study range; CETP: Cholesteryl ester transfer protein; CHD: Coronary heart disease; CV: Cardiovascular; DM: Diabetes mellitus; DSS: Diabetes substudy; HbA1c: glycated hemoglobin;
HDLC: High-density lipoprotein; HDL-C: High-density lipoprotein cholesterol; LDL-L: Low-density lipoproteins; LDL-C: Low-density lipoprotein cholesterol; Lp-PLA2: Lipoprotein-associated phospholipase A2; non-HDL-C: non-high-density lipoprotein cholesterol; NS: Non-significant; PO: Primary outcome; PP: Primary prevention; PPAR: Peroxisome proliferator-activated receptor; RF: Risk factor; SD: Standard deviation; SP: Secondary prevention; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; TG: Triglycerides (triacylglycerols).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript. M.P.H., S.A.A. and M.F.R. designed the study, set up and manage the database, and performed the statistical analyses. E.B. and K.D.A. participated in study design development and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study received no financial support.

Author details
1Division of Endocrinology & Nutrition, Cliniques universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IRÉC), Université catholique de Louvain, Brussels, Belgium. 2Service de Maladies Météoboliques et Endocrininennes, Centre Hospitalier et Universitaire de Brazzaville, Brazzaville, Congo. 3Service d’Endocrinologie et Métébolisme, CNHU HKM Cotonou, Université d’Abomey-Calavi, Abomey-Calavi, Bénin. 4Division of Cardiology, Cliniques universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique (IRÉC), Université catholique de Louvain, Brussels, Belgium.

Received: 2 March 2015 Accepted: 6 May 2015
Published online: 21 May 2015

References
1. Hermans MP, Ahn SA, Rousseau MF. Effect of lipid management on coronary heart disease risk in patients with diabetes. In: McGuire DK, Nikolaus M, editors. Diabetes in Cardiovascular Disease. A Companion to Braunwald’s Heart Disease. Philadelphia: Elsevier Saunders; 2015. p. 181–202.
2. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.
3. Justinåmen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Type 2 diabetes as a ‘coronary heart disease equivalent’. An 18-year prospective population-based study in Finnish subjects. Diabetes Care. 2005;28:2901–7.
4. Buyken AE, von Eckardstein A, Schulte H, Cullen P, Assmann G. Type 2 diabetes mellitus and risk of coronary heart disease: results of the 10-year follow-up of the PROCAM study. Eur J Cardiovasc Prev Rehabil. 2007;14:230–6.
5. CTT-Cholesterol treatment trialists’ (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2003;371:117–25.
6. Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371:1800–9.
7. Schramm TK, Gislon GH, Kaber L, Rasmussen S, Rasmussen JN, Abdilstrom SZ, et al. Diabetes patients requiring glucose-lowering therapy and non-diabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008;117:1945–54.
8. Frucht JC, Sacks FM, Hermans MP, Assmann G, Brown WW, Ceska R, et al. Residual Risk Reduction Initiative (R3I). The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidemic patient. Diab Vasc Dis Res. 2006;3:319–35.
9. Hermans MP, Ahn SA, Rousseau MF. Residual vascular risk in T2DM: the next frontier. In: Mark B, editor. Recent Advances in the Pathogenesis, Prevention and Management of Type 2 Diabetes and its Complications. Croatia: Zimering, Intech, Rijeka; 2011. p. 45–66.
10. Frucht JC, Davignon J, Hermans MP, Al-Rubeaan K, Amarenco P, Assmann G, et al. Residual Risk Reduction Initiative (R3I). Residual macrovascular risk in 2013: what have we learned? Cardiovasc Diabetol. 2014;13:26.
11. Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:2328–34.
12. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9.
13. Kjekshus J, Pedersen TR, For the Scandinavian Simvastatin Survival Study Group. Reducing the risk of coronary events: Evidence from the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol. 1995;76:64C–8.
14. Pyorala K, Pedersen TR, Kjekshus J, Faergeman O, Olsson AG, Thorgersson G. The 4S Study Group: Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care. 1997;20:614–20.
15. The ACCORD Study Group. Action to control cardiovascular risk in diabetes (ACCORD) trial: Design and Methods. Am J Cardiol. 2007;99(1):33.
16. The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.
17. Griffin SJ, Borch-Johnsen K, Davies MJ, Ruther RT, Sandbaek A, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet. 2011;378:1566–77.
18. Van Den Donk Van Den Donk M, Griffin SJ, Stellato RK, Simmons RK, Sandbaek A, Lausten T, et al. Effect of early intensive multifactorial therapy compared with routine care on self-reported health status, general well-being, diabetes-specific quality of life and treatment satisfaction in screen-detected type 2 diabetes mellitus patients (ADDITION-Europe): a cluster-randomised trial. Diabetologia. 2011;54:2367–77.
19. Downs JR, Beere PA, Whitney E, Cleftiread M, Wells S, Ruchon J, et al. Design & rationale of the Air Force/Texas coronary atherosclerosis prevention study (AFCAP/TexCAPS). Am J Cardiol. 1997;80:287–93.
20. Downs JR, Cleftiread M, Wells S, Whitney E, Shapiro DR, Beere PA, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results from AFCAPS/TexCAPS. JAMA. 1998;279:1615–22.
21. The AIM-HIGH Investigators. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol: Baseline characteristics of study participants. The atherothrombosis intervention in metabolic syndrome with low HDL/high triglycerides: Impact on global health outcomes (AIM-HIGH) trial. Am Heart J. 2011;161:538–43.
22. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chairman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:255–67.
23. Lincoff AM, Tardif JC, Neil B, Nichols SJ, Ryden L, Schwartz GG, et al. Evaluation of the dual peroxisome proliferator-activated receptor α/γ agonist alagazitaz to reduce cardiovascular events in patients with acute coronary syndrome and type 2 diabetes mellitus: rationale and design of the AleCardio trial. Am Heart J. 2013;166:429–34.
24. Lincoff AM, Tardif JC, Schwartz GG, Nichols SJ, Ryden L, Neil B, et al. Effect of alelagitaz on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA. 2014;311:1515–25.
25. Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361:2034–31.
26. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT-LTT). JAMA. 2002;288:2998–3007.
27. Normhoudt D, Gitray EJ, Geleijnse JM, Alpha Omega Trial Group, n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.
28. Sever PS, Dahlof B, Poulter NR, Wedel H, Breslau G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.
29. Sever PS, Poulter NR, Dahlof B, Wedel H, Collins R, Beevers G, et al. Reduction in cardiovascular events with atorvastatin in 2532 patients with type 2 diabetes. Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA). Diabetes Care. 2005;28:1151–7.

30. Knopp RH, D’Emden M, Smidte KG, Pocock SJ, The ASPEN Study Group. Efficacy and safety of atorvastatin in the prevention of cardiovascular disease events in subjects with type 2 diabetes. The atorvastatin study for prevention of coro

31. Felström BC, Jardine AG, Schmede RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:415–27.

32. Holdaas H, Holme I, Schmede RE, Jardine AG, Zannad F, Norby GE, et al. Rosuvastatin in diabetic hemodialysis patients. J Am Soc Nephrol. 2011;22:1335–41.

33. The BIP, Group S. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. The Bezafibrate Infraction Prevention (BIP) Study. Circulation. 2000;102:21–7.

34. Goldberg RB, Mellies MJ, Sacks FM, Moyé LA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multi-centre randomised placebo-controlled trial. Lancet. 2004;364:685–96.

35. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in patients with type 2 diabetes: the Collaborative Atorvastatin Diabetes Study (CARDS): multienrique randomised placebo-controlled trial. Lancet. 1999;353:1586–91.

36. Lewis SJ, Sacks FM, Mitchell JS, East C, Glasser S, Kell S, et al. Effect of pravastatin on cardiovascular events in women after myocardial infarction: The Cholesterol and Recurrent Events (CARE) Trial. J Am Coll Cardiol. 1998;32:140–6.

37. Goldberg RB, Mellies MJ, Sacks FM, Moyé LA, Howard BV, Howard WJ, et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels. Subgroup analyses in the Cholesterol And Recurrent Events (CARE) Trial. Circulation. 1998;98:2513–9.

38. The Coronary Drug Project Research Group. Clofibrate and niacin in type 2 diabetes and various components of the metabolic syndrome. The Coronary Drug Project. JAMA. 1975;231:360.

39. Goldenberg I, Boyko V, Tennenbaum A, Tanne D, Behar S, Guetta V. Long-term benefit of high-density lipoprotein cholesterol-raising therapy with bezafibrate: 16-year mortality follow-up of the Bezafibrate Infraction Prevention Trial. Arch Intern Med. 2005;169:508–14.

40. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Rosuvastatin and cardiovascular events in patients with coronary heart disease and diabetes mellitus (ASPEN). Diabetes Care. 2006;29:1478–85.

41. Schwartz GG, Olsson AG, Ballantyne CM, Barter PJ, Holme IM, Kallend D, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2008;360:1395–407.

42. The FIELD Study Investigators. Fenofibrate intervention and event lowering in diabetes (FIELD) study: baseline characteristics and short-term effects of fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetes Care. 2004;27:2089–99.

43. Hanefeld M, Fischer S, Schmehel H, Rothe G, Schulte J, Dude H, et al. Diabetes Intervention Study. Multi-Intervention Trial in newly diagnosed type 2 diabetes patients (JELIS): Results of the low-dose (20 mg) pravastatin JELIS Prevenzione trial in 4271 patients with recent myocardial infarction; do stopped trials contribute to overall knowledge? Ital Heart J. 2000;1:810–20.

44. The FIELD Study Investigators. Fenofibrate intervention and event lowering in diabetes (FIELD) study: baseline characteristics and short-term effects of fenofibrate [IRCTN76478348]. Cardiovasc Diabetol. 2005;4:13.

45. Schwartz GG, Olsson AG, Ballantyne CM, Barter PJ, Holme IM, Kallend D, et al. dal-OUTCOMES Investigators. Rationale and design of the dal-OUTCOMES trial: efficacy and safety of dalteparin in patients with recent acute coronary syndrome. Am Heart J. 2009;158:896–901.

46. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. dal-OUTCOMES Investigators. Effects of dalteparin in patients with a recent acute coronary syndrome. New Engl J Med. 2012;367:2089–99.

47. Hanseloff M, Fischer S, Schmehel H, Rothe G, Schulte J, Dude H, et al. Diabetes Intervention Study. Multi-Intervention Trial in newly diagnosed NIDDM. Diabetes Care. 1991;14:308–11.

48. The Lipid Study Group. Design and baseline characteristics of the LIPID (Long-Term Intervention With Pravastatin in Ischemic Disease) Study, a randomized trial in patients with previous acute myocardial infarction and/or unstable angina pectoris. Am J Cardiol. 1995;76:474–9.

49. The Lipid Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349–57.

50. The Lipid Study Group. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: the LIPID trial follow-up. Lancet. 2002;359:1379–87.

51. The Lipid Study Group. Pravastatin for preventing cardiovascular events following successful first percutaneous coronary intervention. A randomized controlled trial. JAMA. 2002;287:3215–22.

52. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006;368:1155–63.
67. Bosch J, Gerstein HC, Dagenais GR, Diaz R, Dyal L, Jung H, et al. For the ORIGIN Trial Investigators. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18.

68. Bousser MG, Amarenco P, Chamorro A, Fisher M, Ford I, Fox KM, et al. PERFORM Study Investigators. Tenecteplase versus aspirin in patients with cerebral ischemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet. 2011;377:2013–22.

69. The Post Coronary Artery Bypass Graft Trial Investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. N Engl J Med. 1997;336:153–62.

70. Knatterud GL, Rosenberg Y, Campeau L, Geller NL, Hunninghake DB, Forman SA, et al. Long-term effects on clinical outcomes of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation in the Post Coronary Artery Bypass Graft Trial. Circulation. 2000;102:157–65.

71. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. PREVÉMID Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

72. Charbonnel B, Dormandy J, Edmond J, Massi-Benedetti M, Skene A, The PROActive Study Group. The Prospective Pioglitazone Clinical Trial in Macrovascular Events (PROActive). Diabetes Care. 2004;27:1647–53.

73. Dormandy JA, Charbonnel B, Eckland DJA, Edmond J, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROActive Study (PROspective pioglitAzone Clinical Trial in macro Vascular Events): a randomised controlled trial. Lancet. 2005;366:1263–20.

74. Yoshi H, Onuma T, Yamazaki T, Watada H, Matsuishi M, Matsumoto M, et al. Effects of pioglitazone on macrovascular events in patients with type 2 diabetes mellitus at high risk of stroke: the PROFIT-J study. J Atheroscler Thromb. 2014;21:563–73.

75. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

76. Rischo and Prevenzione Investigators. Efficacy of n-3 polyunsaturated fatty acids and feasibility of optimizing preventive strategies in patients at high cardiovascular risk: rationale, design and baseline characteristics of the Rischo and Prevenzione study, a large randomised trial in general practice. Trials. 2010;11:68.

77. Risk and Prevention Study Collaborative Group, Roncaglioni MC, Tombesi M, Avasani F, Bafleta S, Cairns V, et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368:1800–8.

78. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–93.

79. White H, Held C, Stewart R, Watson D, Harrington R, Budaj A, et al. Study design and rationale for the clinical outcomes of the STABILITY Trial (Stabilization of Atherosclerotic plaque by Initiation of darapLadIb TherapY) comparing darapladib versus placebo in patients with coronary heart disease. Am Heart J. 2010;160:655–61.

80. STABILITY Investigators, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11.

81. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effects of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:850–91.

82. Waters DD, Guyton JR, Herrington DM, McGowan MP, Wenger NK, Shear C, et al. Treating to new targets (TNT) study: Does lowering low-density lipoprotein cholesterol levels below currently recommended guidelines yield incremental clinical benefit? Am J Cardiol. 2004;93:46–8.

83. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;353:2145–35.

84. Shepherd J, Kastelein JJP, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: The Treating to New Targets (TNT) Study. Clin J Am Soc Nephrol. 2007;2:1131–9.

85. Barter P, Gotta AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357:1301–10.

86. Shepherd J, Barter P, Carmena R, Deedwania P, Frucht JC, Haffner S, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes. The Treating to New Targets (TNT) Study. Diabetes Care. 2006;29:1220–6.

87. The Veterans Administration Cooperative Study Group. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis. Neurology Section. Stroke. 1973;4:684–93.

88. Rubins HB, Rubins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med. 1999;341:140–8.

89. Rubins SJ, Collins D, Wittes JT, Papademetriou V, Deedwania PC, Schaefer EJ, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events. VA-HIT: a randomised controlled trial. JAMA. 2001;285:1985–91.

90. Rubins HB, Rubins SJ, Collins D, Nelson DB, Elam MB, Schaefer EJ, et al. Diabetes, plasma insulin, and cardiovascular disease. Subgroup analysis from the Department of Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT). Arch Intern Med. 2002;162:2597–604.

91. Costa J, Borges M, David C, Vaz Carneiro A. Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomised controlled trials. BMJ. 2006;332:1115–8.

92. Ofstad AP, Gullestad L, Onvik E, Aakhus S, Endresen K, Ueland T, et al. Interleukin-6 and activin A are independently associated with cardiovascular events and mortality in type 2 diabetes: the prospective Askle and Baerum Cardiovascular Diabetes (ABCDO) cohort study. Cardiovasc Diabetol. 2013;12:126.

93. Jiao FF, Fung CS, Wong CK, Wan YF, Dai D, Kwok R, et al. Effects of the Multidisciplinary Risk Assessment and Management Program for Patients with Diabetes Mellitus (RAMP-DM) on biomedical outcomes, observed cardiovascular events and cardiovascular risks in primary care: a longitudinal comparative study. Cardiovasc Diabetol. 2014;13:127.

94. Wang Y, Lammi-Keefe CJ, Hou L, Hu Y. Impact of low-density lipoprotein cholesterol on cardiovascular outcomes in people with type 2 diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2013;102:65–75.

95. Rouas TA, Pappy RM, Chen AY, Roe MT, Saucedo JF. Impact of diabetes mellitus on clinical characteristics, management, and in-hospital outcomes in patients with acute myocardial infarction (from the NCDR). Am J Cardiol. 2014;114:1316–44.

96. Fatemi O, Yuriditsky E, Tsiosufs C, Tsachis D, Morgan T, Basile J, et al. Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study). Am J Cardiol. 2014;114:1217–22.

97. Sarma S, Mintz RJ, Kwaviy MJ, Fought AJ, Huffman M, Subacius H, et al. EVEREST investigators. Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: findings from the EVEREST trial. Eur J Heart Fail. 2013;15:194–202.