Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids

Valery M. Dembitsky 1,*, Tatyana A. Gloriozova 2 and Vladimir V. Poroikov 2

1 Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
2 Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; tatyana.gloriozova@ibmc.msk.ru (T.A.G.); vladimir.poroikov@ibmc.msk.ru (V.V.P.)
* Correspondence: valery.dembitsky@lethbridgecollege.ca

Abstract: This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.

Keywords: carbon-bridged steroids; cyclopropane; cyclobutane; cyclopentane; cyclohexane; triterpenoids; pharmacology; antitumor; marine invertebrates; green and red algae; fungi

1. Introduction

In both natural and synthetic steroids, when an additional ring is formed within the steroid skeleton, through a direct bond between any two carbon atoms (or more) of the steroid ring system or an attached side chain, such steroids (or triterpenoids) are called carbon-bridged steroids [1,2]. Analyzing the literature data from 1920, we concluded that the first mention of cyclopropane-containing hormones appeared in the mid-1930s of the twentieth century [2–4]. Steroids containing a cyclopropane ring in the side chain, such as gorgosterol, were first isolated from marine organisms in the early 1940s [4–6], and other 22,23-cyclopropyl sterols, such as dimethyl-gorgosterol, acanthasterol, demethyl-lacanthasterol, acanthastanol, and 9,11-seco-gorgosterol, all of which have 22R, 23R and 24R configurations, have been isolated from marine sources [7–12]. Natural triterpenes containing a cyclopropane ring, and called cycloartanes, were first found in the early 1950s [13–15].
Natural carbon-bridged steroids predominantly contain an additional cyclopropane ring, and to a lesser extent cyclobutane, cyclopentane, cyclohexane or cycloheptane, although synthetic CBS can contain a wide variety of additional rings. It was found that all these groups of CBS exhibit a wide range of biological activities [16–21].

Over the past 30–40 years, scientists have made great efforts to search for antitumor agents, among both natural and synthetic compounds, for use in practical and experimental medicine [22–46]. In our opinion, natural and synthetic carbon-bridged steroids or similar triterpenoids can be excellent anticancer agents, as they exhibit a wide range of biological activities and, predominantly, antitumor activity.

Our review focuses on this topic, and we consider about 300 natural, semi-, and synthetic carbon-bridged steroids and similar triterpenoids, many of which show pronounced antitumor activity.

2. Cyclopropane Containing Steroids and Triterpenoids

A unique steroid containing a 5,19-cycloergostane skeleton, \((3\beta,5\beta,6\beta,7\alpha,22\alpha,24\xi,25\xi)-5,19\text{-cycloergost-22-ene-3,6,7-triol}\), named hatomasterol (1) was found in the extracts of the Okinawan sponge *Stylissa* sp., and an isolated compound demonstrated cytotoxicity against HeLa cells in vitro [47]. Chemical structures 1–18 are shown in Figure 1, and their biological activity is shown in Table 1.

Cycloartane derivatives are widely distributed in terrestrial plants, but only a few were obtained from the seaweeds and marine invertebrates. Thus, cycloartane triterpene 3-hydroxy-cycloarta-23,25-dien-28-oic acid (2) was found in the red alga *Galaxaura* sp. [48]. Cycloartenol (3), 24-methylene cycloartenol (4), and cycloartanol (5) have been detected in brown alga *Fucus spiralis* and *F. krishnae* (Phaeophyceae) [49,50], in the marine green algae *Enteromorpha intestinalis* and *Ulva lactuca* [51], in the subarctic moss *Dicranum elongatum* [54]. Cycloartenol (3) was also found in a single-cell green alga *Chlamydomonas reinhardtii* [55], a single-celled green algae *Chlorella ellipsoidea* [56], and cycloartenol is found in a ubiquitous green alga *Prototheca wickerhamii* in [57], in the marine alga *Aurantiochytrium* sp. [58], and in the red seaweed *Laurencia dendroidea* [59].

Interestingly, cycloartenol (3) is the sterol precursor in photosynthetic organisms such as amoebae *Naegleria lovanisiensis*, *N. gruberi* and the soil amoeba *Acanthamoeba polyphaga* using \([l-\text{14C}]\text{acetate}\) in the biosynthesis of all steroids in the genus *Amoeba* [60,61]. In addition to cycloartenol, 24-methylene cycloartenol (4), cycloartanol (5), and 31-norcycloartenol (34) were also identified using NMR spectra in *Naegleria lovanisiensis*, *N. gruberi* (Milankovic 2017) [62], and *Acanthamoeba polyphaga* [63], and cycloartenol was found in the amoeba *Dictyostelium discoideum* [57].

The crude aqueous and ETOAc extracts of tropical Atlantic green alga *Penicillus capitatus* (Bryopsidales) showed potent inhibition of the ubiquitous marine fungal pathogen *Lindra thallasiae*. The authors studied the lipid composition and found two sulphate esters named capisterones A (6) and B (7) [64]. The MeOH extract of the green alga *Tuemoya* sp. showed inhibitory activity against Herpes Zoster protease, and the extract yielded two steroids, cycloartane-3,28-disulfate-23-ol (8) and cycloart-24-en-23-one-28-sulfate-3-ol (9). Both compounds demonstrated activity against both VZV and CMV protease in the 4–7 µM range [65]. Three cycloartenol sulfates (8, 10, and 11) that inhibit protein tyrosine kinase pp60v-src were isolated from a tropical deep-water siphonaceous green alga *Tydemania expeditions* [66].
Figure 1. Bioactive steroids containing an additional 3-membered ring in molecule.
Table 1. Biological activities of cyclopropane-containing carbon-bridged steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
1	Antineoplastic (0.915)	Anti-hypercholesterolemic (0.900)	Anti-osteoporotic (0.861)
	Apoptosis agonist (0.892)	Hypolipemic (0.897)	Anti-eczematic (0.850)
	Antineoplastic (liver cancer) (0.822)	Atherosclerosis treatment (0.690)	Immunosuppressant (0.744)
	Chemopreventive (0.776)		Anti-parkinsonian, rigidity relieving (0.720)
	Cytoprotectant (0.611)		Anti-inflammatory (0.706)
	Prostate cancer treatment (0.557)		
	Antimetastatic (0.528)		
2	Chemopreventive (0.968)	Hypolipemic (0.874)	Anti-eczematic (0.889)
	Apoptosis agonist (0.879)	Anti-hypercholesterolemic (0.649)	Anti-inflammatory (0.860)
	Antineoplastic (0.867)	Cholesterol synthesis inhibitor (0.614)	Anti-fungal (0.821)
	Cytoprotectant (0.645)	Lipid metabolism regulator (0.598)	Immunosuppressant (0.742)
	Antimetastatic (0.578)	Atherosclerosis treatment (0.594)	Anti-psoriatic (0.720)
3	Chemopreventive (0.923)	Anti-hypercholesterolemic (0.847)	Anti-eczematic (0.900)
	Antineoplastic (0.863)	Cholesterol synthesis inhibitor (0.705)	Anti-inflammatory (0.843)
	Cytoprotectant (0.704)	Atherosclerosis treatment (0.674)	Anti-fungal (0.819)
	Antimetastatic (0.635)		Anti-psoriatic (0.744)
	Antineoplastic (liver cancer) (0.608)		Anti-osteoporotic (0.716)
	Anticarcinogenic (0.553)		
	Proliferative diseases treatment (0.551)		
	Antineoplastic (pancreatic cancer) (0.544)		
4	Chemopreventive (0.857)	Anti-hypercholesterolemic (0.739)	Anti-eczematic (0.871)
	Antineoplastic (0.839)	Cholesterol synthesis inhibitor (0.731)	Anti-fungal (0.823)
	Apoptosis agonist (0.799)	Atherosclerosis treatment (0.665)	Anti-inflammatory (0.805)
	Cytoprotectant (0.646)		Anti-osteoporotic (0.707)
	Antimetastatic (0.623)		Anti-psoriatic (0.683)
	Antineoplastic (pancreatic cancer) (0.514)		
5	Chemopreventive (0.842)	Anti-hypercholesterolemic (0.788)	Anti-eczematic (0.880)
	Antineoplastic (0.840)	Cholesterol synthesis inhibitor (0.697)	Anti-inflammatory (0.808)
	Cytoprotectant (0.680)	Atherosclerosis treatment (0.663)	Anti-fungal (0.781)
	Antimetastatic (0.647)		Anti-psoriatic (0.719)
	Proliferative diseases treatment (0.555)		
	Prostatic (benign) hyperplasia treatment (0.540)		
	Antineoplastic (pancreatic cancer) (0.528)		
6	Chemopreventive (0.866)	Hypolipemic (0.703)	Anti-fungal (0.878)
	Antineoplastic (0.715)	Cholesterol synthesis inhibitor (0.521)	Anti-inflammatory (0.771)
7	Chemopreventive (0.849)	Hypolipemic (0.676)	Anti-fungal (0.836)
	Antineoplastic (0.766)	Cholesterol synthesis inhibitor (0.554)	Anti-inflammatory (0.737)
8	Chemopreventive (0.713)	Hypolipemic (0.742)	Anti-fungal (0.850)
	Antineoplastic (0.690)	Atherosclerosis treatment (0.644)	Anti-inflammatory (0.759)
	Apoptosis agonist (0.584)	Cholesterol synthesis inhibitor (0.593)	Anti-fungal (0.859)
9	Chemopreventive (0.949)	Hypolipemic (0.788)	Anti-inflammatory (0.814)
	Apoptosis agonist (0.822)	Cholesterol synthesis inhibitor (0.572)	Anti-inflammatory (0.814)
	Antineoplastic (0.801)	Atherosclerosis treatment (0.508)	
	Antimetastatic (0.558)		
10	Chemopreventive (0.765)	Hypolipemic (0.711)	Anti-eczematic (0.701)
	Antineoplastic (0.701)	Cholesterol synthesis inhibitor (0.571)	Anti-psoriatic (0.719)
11	Chemopreventive (0.836)	Hypolipemic (0.744)	Anti-eczematic (0.701)
	Apoptosis agonist (0.763)	Cholesterol synthesis inhibitor (0.546)	Anti-inflammatory (0.704)
	Antineoplastic (0.755)	Atherosclerosis treatment (0.511)	
Table 1. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
12	Chemopreventive (0.938)	Apoptosis agonist (0.623)	Hepatoprotectant (0.900)
	Antineoplastic (0.804)	Atherosclerosis treatment (0.641)	
		Cholesterol synthesis inhibitor (0.575)	
13	Chemopreventive (0.928)	Apoptosis agonist (0.763)	Hepatoprotectant (0.861)
	Antineoplastic (0.812)	Atherosclerosis treatment (0.609)	
		Cholesterol synthesis inhibitor (0.532)	
14	Chemopreventive (0.956)	Apoptosis agonist (0.832)	Hepatic disorders treatment (0.898)
	Antineoplastic (0.825)	Atherosclerosis treatment (0.657)	
		Cholesterol synthesis inhibitor (0.568)	
15	Chemopreventive (0.935)	Apoptosis agonist (0.821)	Hepatoprotectant (0.823)
	Antineoplastic (0.789)	Atherosclerosis treatment (0.623)	
		Cholesterol synthesis inhibitor (0.618)	
16	Apoptosis agonist (0.864)	Antineoplastic (0.841)	Anti-inflammatory (0.823)
	Antineoplastic (0.824)	Anticarcinogenic (0.628)	
	Chemopreventive (0.944)	Atherosclerosis treatment (0.623)	
	Antineoplastic (0.795)	Cholesterol synthesis inhibitor (0.714)	
	Antineoplastic (melanoma) (0.570)	Atherosclerosis treatment (0.708)	
	Proliferative diseases treatment (0.537)		
	Bone diseases treatment (0.529)		
	Antineoplastic (pancreatic cancer) (0.516)		
17	Antineoplastic (0.590)		Anti-eczematic (0.865)
	Anti-inflammatory (0.823)		
	Chemopreventive (0.824)	Atherosclerosis treatment (0.665)	
	Antineoplastic (melanoma) (0.570)	Cholesterol synthesis inhibitor (0.579)	
	Proliferative diseases treatment (0.537)		
	Bone diseases treatment (0.529)		
	Antineoplastic (pancreatic cancer) (0.516)		
18	Chemopreventive (0.909)	Apoptosis agonist (0.873)	Hepatic disorders treatment (0.842)
	Antineoplastic (0.847)	Atherosclerosis treatment (0.670)	
	Antimetastatic (0.629)	Cholesterol synthesis inhibitor (0.625)	
		Anti-hypercholesterolemic (0.622)	
		Anti-eczematic (0.831)	
		Anti-inflammatory (0.839)	
		Anti-fungal (0.809)	

* Only activities with Pa > 0.5 are shown.

Four steroids, 3β-methyl-25-dihydroxy-cycloart-23-en-29-oate (12), 3β-methyl-hydroxy-25-methoxycycloart-23-en-29-oate 3-sulfate (13), 3β-hydroxy-25-methoxycycloart-23-ene 3-sulfate (14) and (3β-hydroxy)cycloart-24-en-23-one 3-sulfate (15) were isolated from Vietnamese red alga Tricleocarpa fragilis. All isolated steroids showed potent inhibitory activity against yeast α-glucosidase with IC₅₀ values of 16.6, 36.3, 30.2 and 6.5 µM, respectively [67]. The Far Eastern sea cucumber Eupentacta fraudatrix (Class Holothuroidea) are sedentary and feed on plankton, algae, and organic debris extracted from bottom silt and sand that is passed through the alimentary canal. Sulfated cycloartane (16), which was found in sea cucumber extract, appears to be a metabolite of algae origin [68]. Two cycloartane-type triterpenoids, 3-epicyclomusalenol (17), and cyclosadol (18) were isolated from brown algae Kjellmaniella crassifolia. Both compounds have been reported to have moderate chemopreventive effects [69,70]. Six cycloartanes, 24-hydroperoxycycloart-25-en-3β-ol (19), chemical structures 19–36 are shown in Figure 2, and their biological activity is shown in Table 2, cycloart-25-en-3β24-diol (20), 25-hydroperoxycycloart-23-en-3β-ol (21), cycloart-23-en-3β,25-diol (22), cycloart-23,25-dien-3β-ol (23), and cycloart-24-en-3β-ol (24) were isolated from ethanol extract of marine green alga Cladophora fascicularis [71]. The small, floating plant Spirodela punctata (or Landoltia punctata, also known as dotted duckmeat) is widespread in the Hawaiian Islands, Southern and Eastern United States, and synthesized cycloartane glycoside (25). The biological activity of this glycoside has not been studied [72].
Figure 2. Bioactive steroids containing an additional 3-membered ring in the steroid molecule.
No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
19	Chemopreventive (0.858)	Hyopolipemic (0.863)	Anti-eczematic (0.809)
	Antineoplastic (0.815)	Cholesterol synthesis inhibitor (0.536)	Anti-ulcerative (0.765)
	Apoptosis agonist (0.811)		
	Antimetastatic (0.620)		
20	Chemopreventive (0.923)	Hyopolipemic (0.861)	Anti-eczematic (0.837)
	Apoptosis agonist (0.847)	Atherosclerosis treatment (0.624)	Antiinflammatory (0.833)
	Antineoplastic (0.837)	Cholesterol synthesis inhibitor (0.613)	Anti-fungal (0.829)
	Cytoprotectant (0.652)		
	Antimetastatic (0.634)		
21	Antineoplastic (0.894)	Hyopolipemic (0.867)	Anti-eczematic (0.850)
	Chemopreventive (0.851)	Atherosclerosis treatment (0.512)	Anti-inflammatory (0.755)
	Apoptosis agonist (0.810)		
	Antimetastatic (0.589)		
	Cytoprotectant (0.576)		
22	Chemopreventive (0.959)	Hyopolipemic (0.877)	Hepatic disorders treatment (0.921)
	Antineoplastic (0.886)	Atherosclerosis treatment (0.676)	Anti-eczematic (0.877)
	Apoptosis agonist (0.858)	Anti-hypercholesterolemic (0.609)	Anti-inflammatory (0.872)
	Cytoprotectant (0.701)	Cholesterol synthesis inhibitor (0.568)	Anti-psoriatic (0.808)
	Antimetastatic (0.607)	Lipid metabolism regulator (0.553)	
	Proliferative diseases treatment		
	(0.554)		
	Prostate cancer treatment		
	(0.510)		
23	Chemopreventive (0.967)	Hyopolipemic (0.881)	Anti-eczematic (0.888)
	Antineoplastic (0.884)	Atherosclerosis treatment (0.654)	Anti-inflammatory (0.827)
	Apoptosis agonist (0.881)	Cholesterol synthesis inhibitor (0.568)	Antifungal (0.800)
	Cytoprotectant (0.638)	Lipid metabolism regulator (0.544)	Anti-psoriatic (0.739)
	Antimetastatic (0.615)		
24	Chemopreventive (0.952)	Hyopolipemic (0.900)	Anti-eczematic (0.879)
	Apoptosis agonist (0.897)	Atherosclerosis treatment (0.689)	Anti-psoriatic (0.709)
	Antineoplastic (0.857)	Cholesterol synthesis inhibitor (0.671)	
	Cytoprotectant (0.677)	Anti-hypercholesterolemic (0.662)	
	Antimetastatic (0.657)	Lipid metabolism regulator (0.529)	
	Anticarcinogenic (0.561)		
	Antineoplastic (liver cancer)		
	(0.552)		
	Proliferative diseases treatment		
	(0.538)		
25	Chemopreventive (0.991)	Hyopolipemic (0.825)	Hepatoprotectant (0.987)
	Antineoplastic (0.915)	Anti-hypercholesterolemic (0.816)	Anti-fungal (0.893)
	Apoptosis agonist (0.879)	Atherosclerosis treatment (0.669)	Anti-inflammatory (0.882)
	Anticarcinogenic (0.787)		
	Proliferative diseases treatment		
	(0.735)		
	Antimetastatic (0.579)		
	Antineoplastic (sarcoma)		
	(0.533)		

Table 2. Biological activities of carbon-bridged steroids.
No.	Antitumor & Related Activity, (Pa)	Lipid Metabolism Regulators, (Pa)	Additional Predicted Activity, (Pa)
26	Chemopreventive (0.881)	Hypolipemic (0.833)	Antifungal (0.867)
	Antineoplastic (0.854)	Cholesterol synthesis inhibitor (0.821)	Anti-eczematic (0.830)
	Apoptosis agonist (0.825)	Anti-hypercholesterolemic (0.791)	Anti-inflammatory (0.804)
	Antimetastatic (0.544)	Lipoprotein disorders treatment (0.717)	
27	Antineoplastic (0.867)	Hypolipemic (0.698)	Antieczematic (0.886)
	Apoptosis agonist (0.742)	Atherosclerosis treatment (0.594)	Hepatoprotectant (0.861)
	Chemopreventive (0.707)	Anti-hypercholesterolemic (0.550)	Antipsoriatic (0.714)
	Proliferative diseases treatment (0.606)	Cholesterol synthesis inhibitor (0.521)	
	Antimetastatic (0.565)		
	Chemoprotective (0.558)		
	Antineoplastic (pancreatic cancer) (0.544)		
	Anticarcinogenic (0.541)		
28	Antineoplastic (0.875)	Anti-hypercholesterolemic (0.738)	Anti-eczematic (0.898)
	Chemopreventive (0.780)	Hypolipemic (0.707)	Hepatoprotectant (0.866)
	Apoptosis agonist (0.768)	Cholesterol synthesis inhibitor (0.559)	
	Proliferative diseases treatment (0.687)	Atherosclerosis treatment (0.539)	
	Cytoprotectant (0.685)		
	Anticarcinogenic (0.639)		
	Antimetastatic (0.590)		
	Antineoplastic (pancreatic cancer) (0.549)		
	Anti-inflammatory (0.566)		
	Anticarcinogenic (0.657)		
	Cytoprotectant (0.627)		
	Chemoprotective (0.565)		
	Antimetastatic (0.559)		
	Antineoplastic (pancreatic cancer) (0.547)		
30	Antineoplastic (0.814)	Hypolipemic (0.830)	Anti-eczematic (0.847)
	Apoptosis agonist (0.801)	Cholesterol synthesis inhibitor (0.679)	
	Chemopreventive (0.782)	Anti-hypercholesterolemic (0.618)	Antiinflammatory (0.794)
	Cytoprotectant (0.604)	Atherosclerosis treatment (0.546)	Antifungal (0.789)
	Antineoplastic (pancreatic cancer) (0.565)	Antiinflammatory (0.733)	Antimusculoskeletal (0.727)
	Antimetastatic (0.526)		
31	Antineoplastic (0.797)	Hypolipemic (0.742)	Anti-eczematic (0.831)
	Apoptosis agonist (0.766)	Cholesterol synthesis inhibitor (0.583)	
	Chemopreventive (0.762)		
	Cytoprotectant (0.585)		
	Antineoplastic (pancreatic cancer) (0.559)		
	Prostatic (benign) hyperplasia treatment (0.519)		
	Antimetastatic (0.516)		
Table 2. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
32	Antineoplastic (0.803)		Erythropoiesis stimulant (0.743)
	Apoptosis agonist (0.719)		Diuretic (0.629)
	Chemopreventive (0.696)		Anesthetic general (0.611)
	Prostatic (benign) hyperplasia		
	treatment (0.599)		
	Antineoplastic (pancreatic cancer)		
	(0.538)		
33	Chemopreventive (0.889)		Hypolipemic (0.752)
	Antineoplastic (0.837)		Anti-hypercholesterolemic (0.669)
	Apoptosis agonist (0.751)		Cholesterol synthesis inhibitor (0.607)
	Cytoprotectant (0.720)		Atherosclerosis treatment (0.527)
	Antineoplastic (pancreatic cancer)		
	(0.563)		
	Antineoplastic enhancer (0.558)		
	Antimetastatic (0.543)		
34	Apoptosis agonist (0.854)		Hypolipemic (0.875)
	Antineoplastic (0.846)		Anti-hypercholesterolemic (0.681)
	Chemopreventive (0.831)		Atherosclerosis treatment (0.639)
	Cytoprotectant (0.687)		Cholesterol synthesis inhibitor (0.599)
	Antimetastatic (0.635)		Anti-eczematic (0.900)
	Proliferative diseases treatment		
	(0.577)		
	Antineoplastic (pancreatic cancer)		
	(0.559)		
35	Antineoplastic (0.816)		Hypolipemic (0.852)
	Apoptosis agonist (0.799)		Atherosclerosis treatment (0.623)
	Chemopreventive (0.738)		Anti-hypercholesterolemic (0.594)
	Cytoprotectant (0.661)		Cholesterol synthesis inhibitor (0.592)
	Antimetastatic (0.624)		Anti-eczematic (0.880)
	Proliferative diseases treatment		
	(0.580)		
	Antineoplastic (pancreatic cancer)		
	(0.547)		
36	Antineoplastic (0.886)		Hypolipemic (0.795)
	Chemopreventive (0.819)		Diabetic neuropathy treatment (0.884)
	Apoptosis agonist (0.769)		Antidiabetic symptomatic (0.778)
	Antimetastatic (0.630)		
	Antineoplastic (renal cancer)		
	(0.593)		
	Antineoplastic (lymphocytic leukemia)		
	(0.525)		
	Prostate cancer treatment (0.511)		

* Only activities with Pa > 0.5 are shown.

The uncommon 24-homo-30-nor-cycloartane (26), produced by the endophytic fungus *Mycoleptodiscus indicus* FT1137, which was isolated from the Hawaiian *Stenocereus* sp. (family Cactaceae). Obtained compound demonstrated cytotoxic activity against human ovarian cancer cell line A2780 [73]. An endophytic fungus *Trichoderma harzianum* which isolated from *Kadsura angustifolia* produce 3,4-secocycloart-4(28),24-(Z)-diene-3,26-dioic acid named nigranoic acid (27) and its highly oxygenated derivatives [74], and another endophytic fungus *Umelopsis dimorpha* transformed the triterpene nigranoic acid into its derivatives (28) and (29) [75]. A steroid called cycloeucalenone (30) was isolated from an unidentified fungus collected from New Jersey [76]. Akihisa and co-workers reported that the fungus *Glomerella fusarioides* transformed cycloartenol (4) to cycloartenol-3,24-dione (31), rare 4α,4β,14α-trimethyl-9β,19-cyclopregnane-3,20-dione (32) and 24,25-dihydroxy-cycloartan-3-one (33) [77].
31-Norcycloartenol (34) and cycloartenol (5) are found in a fern oil from the family Polypodiaceae, *Polypodium vulgare* [78], and 29-nor-cycloartanol (35) and cycloartenol (5) was detected in a flowering plant in the spurge family Euphorbiaceae, *Euphorbia balsamifera* [79].

The *Parthenium argentatum* (commonly known as guayule) extract contained a cytotoxic steroid named argentatin A (36), which showed a cytotoxic effect against the human colon cancer cell lines (HCT15, HCT116, and SW620) and normal epidermal keratinocytes cell line [80].

The triterpenoids named xuetonglactones E (37, chemical structures 37–52 are shown in Figure 3, and their biological activity is shown in Table 3) and F (38) were isolated from the stems of an evergreen climbing shrub *Kadsura heteroclita*. Both compounds showed potent cytotoxic activities against human cervical cancer cell lines (HeLa) and human gastric cancer cells (BGC 823) [81]. The rare ring-A seco-cycloartane carbon skeleton, coronalolide methyl ester (39), and methyl coronalolate acetate (40) were isolated from the leaves and stems of *Gardenia coronaria*. Both compounds showed broad cytotoxic activity when evaluated against a panel of human cancer cell lines [82]. Cytotoxic cycloartane triterpenoid, 25-O-acetyl-7,8-didehydrocimigenol-3-O-β-D-(2-acetyl)-xylopyranoside (41) was found from *Cimicifuga foetida* [83]. This compound demonstrated antitumor activity against cancerous MCF-7, HepG2/ADM, HepG2 and HELA cell lines. A medicinal plant *Schisandra chinensis* contains two triterpenoids, kadsuphilactone B (42), and schinalactone D (43), which showed anti-HIV-1 activity and antitumor effects [84].

Cycloartane derivatives, cimyunnin A (44) with an unusual fused cyclopentenone ring G, together with cimyunnin D (45), possessing a highly rearranged c-lactone ring F, were found in the fruit of *Cimicifuga yunnanensis* and their structures were determined using physical-chemical methods [85]. 3,4-Seco-cycloartane triterpenoid, which had rearranged 5/6 consecutive carbocycle rings C/D, named ananosins A (46), was isolated from the stems of *Kadsura ananosma* [86].

Cycloartenol triterpene saponin, 7,8-didehydro-24S-O-acetylhydroshengmanol-3-O-β-D-galactopyranoside named shengmaxinside C (47) has been isolated from the ethyl acetate soluble fraction of an ethanol extract of *Cimicifuga simplex* roots [87]. A 24-methylene-cycloartane-3β,16β,23β-triol, named longitriol (48) was isolated from ethanolic extract of the leaves of *Polyalthia longifolia var. pendula*, and shown cytotoxic effects against four human cancer cell lines and found to be most active against cervical carcinoma cell lines [88].
Figure 3. Bioactive steroids containing an additional 3-membered ring in the steroid molecule.
Table 3. Biological activities of carbon-bridged steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
37	Antineoplastic (0.877)		Spasmolytic, urinary (0.696)
	Antiparasitic (0.631)		
	Chemopreventive (0.629)		
	Antimetastatic (0.577)		
38	Antineoplastic (0.852)		Spasmolytic, urinary (0.671)
	Apoptosis agonist (0.785)		
	Chemopreventive (0.665)		
	Antimetastatic (0.578)		
39	Antineoplastic (0.898)		Hypolipemic (0.581)
	Chemopreventive (0.849)		
	Apoptosis agonist (0.823)		
	Antimetastatic (0.554)		
40	Antineoplastic (0.785)		Hypolipemic (0.556)
	Chemopreventive (0.715)		
	Apoptosis agonist (0.588)		
41	Chemopreventive (0.994)	Hypolipemic (0.651)	
	Antineoplastic (0.910)		
	Apoptosis agonist (0.826)		
42	Antineoplastic (0.775)		Alzheimer’s disease treatment (0.831)
	Apoptosis agonist (0.716)		Neurodegenerative diseases treatment (0.818)
	Chemopreventive (0.626)		Antiparkinsonian (0.556)
	Antimetastatic (0.583)		
43	Antineoplastic (0.842)		
	Apoptosis agonist (0.575)		
	Antimetastatic (0.505)		
44	Antineoplastic (0.860)		Hypolipemic (0.809)
	Apoptosis agonist (0.851)		
	Chemopreventive (0.797)		
	Antimetastatic (0.585)		
	Antineoplastic enhancer (0.571)		
	Antineoplastic (sarcoma) (0.548)		
45	Antineoplastic (0.857)		Hypolipemic (0.787)
	Chemopreventive (0.731)		
	Apoptosis agonist (0.702)		
	Antimetastatic (0.589)		
46	Antineoplastic (0.921)		Hypolipemic (0.590)
	Apoptosis agonist (0.822)		Cholesterol synthesis inhibitor (0.525)
	Chemopreventive (0.748)		
	Antimetastatic (0.607)		
	Antineoplastic (renal cancer) (0.538)		
47	Chemopreventive (0.910)		Hyalolipemic (0.626)
	Antineoplastic (0.892)		Antithrombotic (0.689)
	Antiparasitic (0.887)		Alzheimer’s disease treatment (0.540)
	Antineoplastic (sarcoma) (0.554)		
	Antineoplastic (pancreatic cancer) (0.543)		
Table 3. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
48	Antineoplastic (0.844)	Hypolipemic (0.825)	Antiviral (HIV) (0.520)
	Apoptosis agonist (0.814)		
	Chemopreventive (0.790)	Cholesterol synthesis inhibitor (0.622)	
	Antimetastatic (0.662)	Atherosclerosis treatment (0.576)	
	Antineoplastic (lymphocytic leukemia) (0.524)		
	Cholesterol synthesis inhibitor (0.622)		
	Hypolipemic (0.782)	Diabetic neuropathy treatment (0.696)	Antidiabetic (0.610)
	Antimetastatic (0.555)		
51	Antineoplastic (0.848)	Hypolipemic (0.847)	Antiprotozoal (Plasmodium) (0.629)
	Apoptosis agonist (0.767)		
	Chemopreventive (0.607)		
	Antimetastatic (0.587)		
52	Antineoplastic (0.820)	Anti-hypercholesterolemic (0.614)	
	Chemopreventive (0.735)	Atherosclerosis treatment (0.589)	
	Cytoprotectant (0.629)	Cholesterol synthesis inhibitor (0.581)	
	Apoptosis agonist (0.598)		

* Only activities with Pa > 0.5 are shown.

The aerial parts of *Cimicifuga heracleifolia* contained a 9,19-cycloartane-type triterpene, cimiheraclein A (49) and showed weak activity against human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480) [89]. The rhizomes of *Beesia calthifolia* resulted in the isolation of cycloartane derivative (50) [90], and *Abies faxoniana* is the source of cycloartane derivative (51) with spiro-side chain [91]. The 3,4-seco-cycloartane, macrocoussaric acid F (52) has been isolated from *Coussarea macrophylla* [92]. Unique steroids, 4,4,8β-Trimethyl-7α-hydroxy-13α, 14α-methano-18-nor-5α-androst-1-ene-3,17-dione, named malabanone A (53) and 3,3,8β-Trimethyl-7α-hydroxy-13α,14α-methano-A (4),18-dinor-5α-androstane-2,17-dione named malabanone B (54), which incorporate a unique tricyclo [4.3.1.01,6] decane unit in the structures, were isolated from the stem bark of *Ailanthus malabarica*. The authors suggest that both steroids are biosynthesized from ailenhol (55, (23R,245)-4,4,8β-Trimethyl-13α,14α-methano-21,23:24,25-diepox-18-nor-5α-cholesta-20-ene-3α,7α-diol), which was also isolated from this plant [93]. Chemical structures 53–65 are shown in Figure 4, and their biological activity is shown in Table 4.
Figure 4. Bioactive steroids containing an additional 3-membered ring in the steroid molecule.
Table 4. Biological activities of carbon-bridged steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
53	Apoptosis agonist (0.768)		Antiprotozoal (Plasmodium) (0.755)
	Antineoplastic (0.759)		
	Chemopreventive (0.574)		
	Antimetastatic (0.514)		
	Antineoplastic (pancreatic cancer)		
	(0.509)		
54	Apoptosis agonist (0.778)		
	Antineoplastic (0.770)		
	Chemopreventive (0.634)		
	Antineoplastic (pancreatic cancer)		
	(0.562)		
	Antineoplastic (sarcoma)		
	(0.555)		
	Antimetastatic (0.547)		
55	Antineoplastic (0.881)		
	Apoptosis agonist (0.692)	Hypolipemic (0.775)	Cardiotonic (0.691)
	Antimetastatic (0.602)		
56	Antineoplastic (0.752)		
	Apoptosis agonist (0.698)		
	Chemopreventive (0.619)		
57	Antineoplastic (0.752)		
	Apoptosis agonist (0.698)		
58	Antineoplastic (0.825)		
	Apoptosis agonist (0.690)		
59	Antineoplastic (0.881)		
	Apoptosis agonist (0.728)	Hypolipemic (0.805)	
	Chemopreventive (0.709)		
	Antineoplastic (gentitourinary cancer)	(0.594)	
	Antimetastatic (0.546)		
	Antineoplastic (sarcoma)		
	(0.532)		
	Antineoplastic (pancreatic cancer)		
	(0.503)		
60	Antineoplastic (0.804)	Hypolipemic (0.693)	Alzheimer’s disease treatment (0.571)
	Chemopreventive (0.700)	Lipid metabolism regulator (0.525)	
	Apoptosis agonist (0.669)		
	Antineoplastic (sarcoma)		
	(0.521)		
	Antineoplastic (renal cancer)		
	(0.512)		
61	Antineoplastic (0.888)		
	Chemopreventive (0.864)	Hypolipemic (0.827)	
	Anticarcinogenic (0.569)		
	Antimetastatic (0.559)		
62	Antineoplastic (0.869)		
	Chemopreventive (0.862)	Hypolipemic (0.815)	Antithrombotic (0.608)
	Antimetastatic (0.560)	Lipid metabolism regulator (0.520)	
	Antineoplastic (sarcoma)		
	(0.503)		
63	Antineoplastic (0.811)		
	Chemopreventive (0.790)	Hypolipemic (0.503)	Genital warts treatment (0.759)
	Apoptosis agonist (0.774)		
	Antineoplastic (pancreatic cancer)		
	(0.551)		
	Antimetastatic (0.518)		
Table 4. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
64	Antineoplastic (0.837)		
	Apoptosis agonist (0.803)		
	Chemopreventive (0.748)	Hypolipemic (0.708)	
	Antineoplastic (myeloid leukemia)	Lipid metabolism regulator (0.501)	
	(0.704)		Immunosuppressant (0.632)
65	Chemopreventive (0.895)		
	Antineoplastic (0.875)	Hypolipemic (0.733)	
	Antineoplastic (myeloid leukemia)		
	(0.677)		

* Only activities with Pa > 0.5 are shown.

Several steroids with an incorporated cyclopropane unit at positions 14 and 18 named ailanthusins A (56), B (57) and D (58) have been found and isolated from the CH$_2$Cl$_2$ extracts of Thailand rainforest tree *Ailanthus triphysa* [94]. The dichloromethane extract of the air-dried leaves of *Dysoxylum mollissimum* afforded two glabretal-type triterpenoids (59 and 60) [95]. Cytotoxic glabretal triterpene, pancastatin B (61) was detected in the immature fruits of *Poncirus trifoliata*. This compound exhibited selective cytotoxicity against PANC-1 pancreatic cancer cells under low-glucose stress conditions [96]. Another glabretal-type triterpenoid named dictabretol D (62) was isolated by activity-guided fractionation from the root bark of *Dictamnus dasycarpus* (Rutaceae). This triterpenoid demonstrated inhibition of proliferation of activated T cells [97]. A CH$_3$Cl-MeOH extract of the bark of *Aglaia crassinervia* collected in Indonesia led to the isolation of aglaiaglabretols A (63) and C (64) [98], and derivative (65) of aglaiaglabretols A was found in the stems of *Spathelia excelsa* (Rutaceae) [99], and it exhibited larvicidal properties with LC$_{50}$ of 4.8 µg/mL against yellow fever mosquito, *Aedes aegypti*.

Series of antitumor triterpene glucosides, named cumingianosides A (66), chemical structures 66–77 are shown in Figure 5, and their biological activity is shown in Table 5, D (67), E (68), M (69), I (70) and N (71) containing a 14,18-cycloapotirucallane-type skeleton were isolated from a cytotoxic fraction of the leaves of *Dysoxylum mollissimum* afforded two glabretal-type triterpenoids (59 and 60) [95]. Cytotoxic glabretal triterpene, pancastatin B (61) was detected in the immature fruits of *Poncirus trifoliata*. This compound exhibited selective cytotoxicity against PANC-1 pancreatic cancer cells under low-glucose stress conditions [96]. Another glabretal-type triterpenoid named dictabretol D (62) was isolated by activity-guided fractionation from the root bark of *Dictamnus dasycarpus* (Rutaceae). This triterpenoid demonstrated inhibition of proliferation of activated T cells [97]. A CH$_3$Cl-MeOH extract of the bark of *Aglaia crassinervia* collected in Indonesia led to the isolation of aglaiaglabretols A (63) and C (64) [98], and derivative (65) of aglaiaglabretols A was found in the stems of *Spathelia excelsa* (Rutaceae) [99], and it exhibited larvicidal properties with LC$_{50}$ of 4.8 µg/mL against yellow fever mosquito, *Aedes aegypti*.

A hexane extract of the wood of *Dysoxylum muelleri* has yielded triterpenoid called dysoxin 3b (72), and dysoxylic acid A (73) was isolated from the hexane extract of the wood and bark of *Dysoxylum petitgrewianum* [102,103]. Dichapetalins are a small group of triterpenoids found primarily in the Dichapetalaceae and Euphorbiaceae. Thus, bioactive dichapetalins A (74), C (75), E (76), and G (77) were found in extracts of the roots of *Dichapetalum madagascariense*, and dichapetalin A (74) showed a strong and selective cytotoxic activity [104,105]. The aerial parts of *Phyllanthus acutissima* contained in CH$_2$Cl$_2$ extracts of several dichapetalin-type triterpenoids, acutissimatriterpenes A (78), chemical structures 78–89 are shown in Figure 6, and their biological activity is shown in Table 6, B (79), C (80), D (81), and E (82). The obtained compounds were demonstrated cytotoxic and anti-HIV-1 activities [106]. The 90% MeOH-soluble fraction of the leaves of *Dysoxylum cunningianum* led to the isolation of triterpenoids (84 and 85), which showed significant enhanced cytotoxicity in the presence of colchicine, indicating that they might have some MDR-reversal effect [107].
Figure 5. Bioactive steroids containing an additional 3-membered ring in the steroid molecule.
Table 5. Biological activities of carbon-bridged steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
66	Chemopreventive (0.950)	Anti-hypercholesterolemic (0.769)	Hepatoprotectant (0.912)
	Antineoplastic (0.846)	Hypolipemic (0.752)	
	Proliferative diseases treatment	Lipid metabolism regulator (0.730)	
	(0.745)	Atherosclerosis treatment (0.532)	
	Anticarcinogenic (0.743)		
	Apoptosis agonist (0.701)		
	Antimetastatic (0.570)		
	Antineoplastic (myeloid leukemia)		
	(0.557)		
	Antineoplastic (pancreatic cancer)		
	(0.505)		
67	Chemopreventive (0.948)	Hypolipemic (0.744)	Hepatoprotectant (0.903)
	Antineoplastic (0.861)	Anti-hypercholesterolemic (0.650)	
	Anticarcinogenic (0.757)	Lipid metabolism regulator (0.649)	
	Apoptosis agonist (0.740)		
	Proliferative diseases treatment		
	(0.712)		
	Antimetastatic (0.576)		
	Antineoplastic (myeloid leukemia)		
	(0.550)		
	Antineoplastic (lymphocytic		
	leukemia) (0.520)		
68	Chemopreventive (0.954)	Hypolipemic (0.773)	Hepatoprotectant (0.866)
	Antineoplastic (0.869)	Lipid metabolism regulator (0.758)	
	Apoptosis agonist (0.803)	Anti-hypercholesterolemic (0.751)	
	Anticarcinogenic (0.706)		
69	Chemopreventive (0.943)	Anti-hypercholesterolemic (0.798)	Hepatoprotectant (0.834)
	Antineoplastic (0.835)	Hypolipemic (0.675)	
	Proliferative diseases treatment	Lipid metabolism regulator (0.513)	
	(0.719)		
	Apoptosis agonist (0.690)		
	Anticarcinogenic (0.656)		
	Antineoplastic (pancreatic cancer)		
	(0.549)		
	Antimetastatic (0.544)		
	Antineoplastic (sarcoma)		
	(0.505)		
70	Chemopreventive (0.958)	Hypolipemic (0.754)	Anti-eczematic (0.955)
	Antineoplastic (0.859)	Anti-hypercholesterolemic (0.606)	
	Apoptosis agonist (0.713)	Lipid metabolism regulator (0.511)	
	Anticarcinogenic (0.634)	Anti-psoriatic (0.592)	
	Proliferative diseases treatment		
	(0.597)		
	Antimetastatic (0.562)		
	Antineoplastic (sarcoma)		
	(0.535)		
	Antineoplastic (myeloid leukemia)		
	(0.531)		
Table 5. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
71	Chemopreventive (0.974)	Lipid metabolism regulator (0.599)	Respiratory analeptic (0.894)
	Antineoplastic (0.844)	Anti-hypercholesterolemic (0.519)	
	Anticarcinogenic (0.782)		
	Proliferative diseases treatment		
	(0.718)		
	Antimetastatic (0.567)		
	Antineoplastic (myeloid leukemia)		
	(0.560)		
	Antineoplastic (lymphocytic leukemia) (0.540)		
72	Chemopreventive (0.808)	Lipid metabolism regulator (0.662)	
	Antineoplastic (0.782)	Hypolipemic (0.652)	
	Apoptosis agonist (0.683)		
73	Antineoplastic (0.789)	Lipid metabolism regulator (0.843)	Antithrombotic (0.638)
	Chemopreventive (0.787)	Hypolipemic (0.798)	
	Apoptosis agonist (0.761)	Cholesterol synthesis inhibitor (0.635)	
	Antimetastatic (0.576)	Anti-hypercholesterolemic (0.628)	
	Proliferative diseases treatment		
	(0.568)		
	Antineoplastic (myeloid leukemia)		
	(0.552)		
	Cytoprotectant (0.509)		
	Anticarcinogenic (0.503)		
74	Antineoplastic (0.790)	Hypolipemic (0.597)	Genital warts treatment (0.831)
	Apoptosis agonist (0.736)		
	Antineoplastic (liver cancer) (0.640)		
75	Antineoplastic (0.764)	Hypolipemic (0.679)	Genital warts treatment (0.630)
	Chemopreventive (0.677)		
	Antineoplastic (liver cancer) (0.571)		
	Apoptosis agonist (0.531)		
76	Antineoplastic (0.688)	Hypolipemic (0.553)	Genital warts treatment (0.635)
77	Antineoplastic (0.867)	Hypolipemic (0.590)	Genital warts treatment (0.635)
	Apoptosis agonist (0.820)		
	Antineoplastic (liver cancer) (0.561)		

* Only activities with Pa > 0.5 are shown.
Figure 6. Bioactive cyclopropane-containing steroids and meroterpenoids.
Natural ecdysteroids are found in marine invertebrates, insects, or plants, and they provide a remarkable resource of insect hormone analogues that influence insect development and metamorphosis and thus play a significant role in the chemical interactions between some marine invertebrates and insects [108]. Rare 14-deoxy-14,18-cyclo-20-hydroxyecdysone (86) was obtained by photochemical transformation of 20-hydroxyecdysone [109].

Cinanthrenol A (87), an estrogenic aromatic steroid containing a phenanthrene and a spiro[2,4]heptane systems has been isolated from a marine sponge Cinachyrella sp. [110]. Preschisanartanin (88) possessing a complex nortriterpenoid skeleton, was isolated from Schisandra chinensis, and demonstrated anti-HIV-1 activity with an EC50 value of 13.8 µg/mL [111–113], and lancolide A (89), highly oxygenated Schisandra nortriterpenoid was detected in the Schisandra lancifolia. This compound exhibited specific antiplatelet aggregation induced by platelet-activating factor [114].

A pentacyclic 3α,5α-cyclopregnane-type framework steroids represent a small group of natural lipids related to carbon-bridged steroids. These steroids have been found in both marine invertebrates and some terrestrial species. Two cytotoxic steroids, vladimuliecin A (90) and B (91), were isolated from the rhizome of Vladimiria muliensis. Both steroids demonstrated the cytotoxicity against cancer cell lines, including human leukemia cell (HL-60), human hepatoma cell (SMMC-7721), and human cervical carcinoma cell (HeLa) lines [115]. Chemical structures 90–102 are shown in Figure 7, and their biological activity is shown in Table 7.
Figure 7. Bioactive cyclopropane-containing steroids.
Table 7. Biological activities of carbon-bridged steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
90	Antineoplastic (0.715)		Immunosuppressant (0.770) Cardiotonic (0.726)
91	Antineoplastic (0.744)		Immunosuppressant (0.735) Cardiotonic (0.688)
92	Antineoplastic (0.901) Apoptosis agonist (0.818) Chemopreventive (0.732) Cytostatic (0.606) Antimetastatic (0.581) Anticarcinogenic (0.546) Antineoplastic (breast cancer) (0.539)	Anti-hypercholesterolemic (0.625) Hypolipemic (0.617)	Respiratory analeptic (0.902) Antidepressant (0.776)
93	Antineoplastic (0.839) Proliferative diseases treatment (0.804) Chemopreventive (0.792) Anticarcinogenic (0.722) Apoptosis agonist (0.701) Antineoplastic (sarcoma) (0.567) Antimetastatic (0.503)	Lipoprotein disorders treatment (0.800) Anti-hypercholesterolemic (0.677)	Antidiabetic (0.902) Spasmolytic (0.705) Cardiotonic (0.682)
94	Antineoplastic (0.877) Chemopreventive (0.709) Apoptosis agonist (0.707) Antineoplastic (sarcoma) (0.673) Proliferative diseases treatment (0.630) Antineoplastic (lymphocytic leukemia) (0.560) Prostate disorders treatment (0.557) Cytostatic (0.557) Anticarcinogenic (0.556) Antineoplastic (pancreatic cancer) (0.538) Antineoplastic (breast cancer) (0.522) Antimetastatic (0.505)	Anti-hypercholesterolemic (0.862) Lipid metabolism regulator (0.549) Hypolipemic (0.532)	Respiratory analeptic (0.950)
95	Antineoplastic (0.856) Chemopreventive (0.701) Antineoplastic (sarcoma) (0.688) Proliferative diseases treatment (0.640) Apoptosis agonist (0.615) Anticarcinogenic (0.588) Cytostatic (0.584) Antineoplastic (lymphocytic leukemia) (0.569) Antineoplastic (pancreatic cancer) (0.534) Antineoplastic (renal cancer) (0.531) Antimetastatic (0.512)	Anti-hypercholesterolemic (0.806) Lipid metabolism regulator (0.539)	Respiratory analeptic (0.953) Hepatoprotectant (0.901)
An unusual steroid, named withawrightolide (*92*), was detected and isolated from the aerial parts of *Datura wrightii* (family Solanaceae). Isolated steroid showed antiproliferative activities against human glioblastoma (U251 and U87), head and neck squamous cell carcinoma (MDA-1986), and normal fetal lung fibroblast (MRC-5) cancer cell lines [116].
Glycoside, 6β-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]-20S,22R-14α,17β,20-trihydroxy-18-acetoxy-3α,5α-cyclo-1-oxowitha-24-enolide, named physacoztolide F (93), was found in the CH₂Cl₂/MeOH extract of the aerial parts of Physalis coztomatl (family Solanaceae) [117]. Withanolide-type steroids named cilistols P (94), PM (95) and U (96) were isolated from the leaves of Solanum cilistum [118]. Psychotropic agent, 6β-hydroxy-3:5-cyclopregn-20-one (97) also known as cyclopregnol was developed in the 1950s [119].

The physalins are a group of 13,14-seco-16,24-cycloergostane triterpenoids, which are produced by the Physalis species [120], and physalin S (98), isolated from the Physalis alkekengi var. francheti, had a 6β-hydroxy-3,5-cyclo arrangement, a common acid rearrangement product of 3-hydroxy-D5 steroids [121]. Steroidal compounds contained in Dracaena surculosa (family Agavaceae) led to the isolation of two 3,5-cyclopirostanol saponins (99 and 100) and 3,5-cyclofurostanol saponin (101) [122].

Ganolearic acid A (102), a 3,4-seco-hexanortriterpenoid featuring, a rare 3/5/6/5 tetracyclic system with anti-inflammatory activity, was obtained in trace amounts from Ganoderma cochlear [123].

3. Sterols and Triterpenoids with Cyclopropane Ring in the Side Chain

A cytotoxic steroid, aragusterol A (103, chemical structures 103–117 are shown in Figure 8, and their biological activity is shown in Table 8), which possessing potent antitumor activity, was isolated from the Okinawan sponge of the genus Xestospongia. The compound strongly inhibited the cell proliferation of KB, HeLaS3, P388, and LoVo cells in vitro, and showed potent in vivo antitumor activity toward P388 in mice and L1210 in mice [124]. Additionally, 26,27-cyclosterols aragusterols B (104), C (105), and D (106) have been identified and isolated from the Okinawan marine sponge of the genus Xestospongia [124,125]. Steroids, aragusterol A (103), petrosterol (107), orthoesterol B (108), and other cyclopropyl containing steroids (109 and 110) were isolated from the marine sponge Petrosia weinbergi [126]. In additional, 24,28-Methylenestigmast-5-en-3-ol (109) was detected in extracts of the marine chrysophyte alga, and pelagophtic alga Pulvinaria sp. [127,128].
Figure 8. Bioactive sterols and triterpenoids with cyclopropane ring in the side chain.
No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
103	Antineoplastic (0.911) Apoptosis agonist (0.677) Chemopreventive (0.658) Cytoprotectant (0.630) Antineoplastic (sarcoma) (0.558)	Anti-hypercholesterolemic (0.791) Hypolipemic (0.789)	Choleretic (0.885)
104	Antineoplastic (0.822) Proliferative diseases treatment (0.668) Cytoprotectant (0.635) Chemopreventive (0.557) Apoptosis agonist (0.536) Antineoplastic (sarcoma) (0.530) Antimetastatic (0.518)	Anti-hypercholesterolemic (0.862) Hypolipemic (0.757) Cholesterol synthesis inhibitor (0.517)	Anti-ischemic, cerebral (0.952) Choleretic (0.935)
105	Antineoplastic (0.934) Proliferative diseases treatment (0.644) Prostate cancer treatment (0.585) Antineoplastic (sarcoma) (0.575) Cytoprotectant (0.544) Antineoplastic (renal cancer) (0.520) Apoptosis agonist (0.517)	Anti-hypercholesterolemic (0.828) Hypolipemic (0.709)	Choleretic (0.879) Anti-ischemic, cerebral (0.674)
106	Antineoplastic (0.839) Chemopreventive (0.697) Cytoprotectant (0.670) Proliferative diseases treatment (0.642) Apoptosis agonist (0.607) Prostatic (benign) hyperplasia treatment (0.520) Antimetastatic (0.515) Antineoplastic (renal cancer) (0.513)	Anti-hypercholesterolemic (0.850) Hypolipemic (0.728)	Choleretic (0.910)
107	Antineoplastic (0.849) Chemopreventive (0.789) Proliferative diseases treatment (0.785) Apoptosis agonist (0.750) Cytoprotectant (0.717) Anticarcinogenic (0.658) Prostate cancer treatment (0.601) Antimetastatic (0.584) Antineoplastic (sarcoma) (0.578) Antineoplastic (pancreatic cancer) (0.547)	Anti-hypercholesterolemic (0.964) Hypolipemic (0.849) Anti-hyperlipoproteinemic (0.801) Cholesterol synthesis inhibitor (0.671) Atherosclerosis treatment (0.610)	Respiratory analeptic (0.964) Choleretic (0.856)
108	Antineoplastic (0.861) Antimetastatic (0.552)		Angiogenesis inhibitor (0.928)
109	Antineoplastic (0.821) Chemopreventive (0.743) Prostatic (benign) hyperplasia treatment (0.663) Cytoprotectant (0.660) Proliferative diseases treatment (0.648) Apoptosis agonist (0.594) Antimetastatic (0.550) Prostate cancer treatment (0.538)	Anti-hypercholesterolemic (0.923) Hypolipemic (0.732) Atherosclerosis treatment (0.643) Cholesterol synthesis inhibitor (0.640)	Respiratory analeptic (0.844) Anesthetic general (0.834)
Table 8. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
110	Antineoplastic (0.821) Chemopreventive (0.743) Prostatic (benign) hyperplasia treatment (0.663) Cytoprotectant (0.660) Proliferative diseases treatment (0.648) Apoptosis agonist (0.594) Antimetastatic (0.550) Prostate cancer treatment (0.538)	Anti-hypercholesterolemic (0.923) Hypolipemic (0.732) Atherosclerosis treatment (0.643) Cholesterol synthesis inhibitor (0.640)	
111	Antineoplastic (0.898) Apoptosis agonist (0.586) Cytoprotectant (0.553) Antineoplastic (sarcoma) (0.516)	Hypolipemic (0.778) Anti-hypercholesterolemic (0.520) Choleretic (0.711) Antiprotozoal (Plasmodium) (0.640)	
112	Antineoplastic (0.922) Prostate disorders treatment (0.553) Proliferative diseases treatment (0.545) Antineoplastic (sarcoma) (0.536)	Hypolipemic (0.692) Anti-hypercholesterolemic (0.578) Choleretic (0.707)	
113	Antineoplastic (0.845) Chemopreventive (0.734) Cytoprotectant (0.730) Proliferative diseases treatment (0.700) Antimetastatic (0.634) Anticarcinogenic (0.607) Prostate cancer treatment (0.533)	Anti-hypercholesterolemic (0.909) Hypolipemic (0.872) Atherosclerosis treatment (0.639) Cholesterol synthesis inhibitor (0.584) Choleretic (0.962)	
114	Antineoplastic (0.832) Cytoprotectant (0.668) Proliferative diseases treatment (0.659) Chemopreventive (0.611) Antineoplastic (sarcoma) (0.555) Prostatic (benign) hyperplasia treatment (0.500)	Anti-hypercholesterolemic (0.865) Hypolipemic (0.743) Atherosclerosis treatment (0.553) Cholesterol synthesis inhibitor (0.514) Choleretic (0.934) Respiratory analeptic (0.897)	
115	Antineoplastic (0.858) Cytoprotectant (0.699) Antineoplastic (sarcoma) (0.685) Antimetastatic (0.591) Antineoplastic (renal cancer) (0.585) Prostate disorders treatment (0.578) Proliferative diseases treatment (0.554) Apoptosis agonist (0.549) Antineoplastic (pancreatic cancer) (0.531) Chemopreventive (0.522) Antineoplastic (genitourinary cancer) (0.506)	Hypolipemic (0.713) Immunosuppressant (0.780)	
116	Antineoplastic (0.682) Prostate disorders treatment (0.670) Apoptosis agonist (0.613) Chemopreventive (0.604) Cytoprotectant (0.566) Prostatic (benign) hyperplasia treatment (0.532) Antimetastatic (0.527)	Anti-hypercholesterolemic (0.836) Cholesterol synthesis inhibitor (0.587) Hypolipemic (0.563)	
Table 8. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
117	Antineoplastic (0.706)	Hytoplipemic (0.587)	Immunosuppressant (0.720)
	Prostate disorders treatment (0.630)	Cholesterol synthesis inhibitor (0.509)	
	Cytoprotectant (0.600)		
	Antimetastatic (0.555)		
	Prostatic (benign) hyperplasia		
	treatment (0.510)		

* Only activities with Pa > 0.5 are shown.

Marine steroids having dimethylketal structure and named aragusteroketals A (111) and C (112) with cytotoxic activity have been isolated from an Okinawan marine sponge of *Xestospongia* sp. [125]. Many steroids have been found in the marine sponge *Petrosia (Strongylophora)* sp. collected from the Similan Island (Thailand). In addition to the already known steroids aragusterol A (103), petrosterol (107), and aragusteroketals A (111), compounds 113 and 114 were additionally identified [129]. Experimental data showed that aragusterol A (103) exhibited weak to moderate cytotoxicity, with the IC\textsubscript{50} values in the range of 11–103 µM. The most potent was cytotoxic, with the IC\textsubscript{50} values of 7.1 and 6.1 µM against HepG-2 and HeLa cell lines, respectively, while exhibiting moderate cytotoxicity with the IC\textsubscript{50} values of 12.8, 37.9, 37.5, and 18.0 µM against the other four cancer cell lines, MOLT-3, A549, HuCCA-1, and MDA-MB-231, respectively. In addition, this compound showed broad-spectrum anti-proliferative activity against a panel of 14 human cancer cell lines (IC\textsubscript{50} = 0.01–1.6 µM) [130]. A cyclopropane-containing hydroxy sterol, phrygiasterol (115), was isolated from starfish *Hipperaster phrygiana* [131], and an extract of the crown-of-thorns starfish *Acanthaster planci* contained cyclopropane-containing sterol (116) [132].

The steroid, (3\(\beta\),4\(\alpha\),5\(\alpha\))-4-methylgorgostan-3-ol (117), is synthesized by marine algae and invertebrates, and it has been found in dinoflagellates *Peridinium folicaceum* and *Glenodinium foliaceum*, corky sea finger *Briareum asbestinum*, rough leather coral *Sarcophyton glaucum*, and soft coral *Lobophytum sp.* [133–135]. Steroidal saponins named poecillastroside E (118) and G (119), an oxidized methyl at C-18, into a primary alcohol or a carboxylic acid, have been found in extracts of the Mediterranean deep-sea sponge *Poecillastrea compressa*. Poecillastroside E (118, chemical structures 118–130 are shown in Figure 9, and their biological activity is shown in Table 9), bearing a carboxylic acid at C-18, showed antifungal activity against *Aspergillus fumigatus* [136].

A 5\(\alpha\),8\(\alpha\)-epidioxy steroid (120) obtained from MeOH extracts of the sponge *Tethya* sp. possessing a cyclopropyl ring at C-24 of the sidechain [137]. Sterol ester, 24,26-cyclo-5\(\alpha\)-cholest-(22\(E\))-en-3\(\beta\)-4,8\(\alpha\)-trimethyltridecanoate (121), has been isolated from a deepwater marine sponge, *Xestospongia* sp. [138]. The steroid, (3\(\beta\),24\(\alpha\),28\(\alpha\))-29-methyl-24,28-methylenestigmast-5-en-3-ol (122) was found in the sponge *Pseudaxinyssa* sp. [139], and another steroid, 25,28-cycloergost-5-en-3-ol, named sormosterol (123), was found in the sponge *Lissodendoryx topsenti* [140].

Three steroids, 5,6,11-trihydroxy-33-norgorgost-2-en-1-one (124), 1,3,11-trihydroxy-23-norgorgoster-5-en-13-ol (125), and 3,11,24-Trihydroxy-9,11-secogorgost-5-en-9-one (126) were isolated from the soft corals *Clavularia viridis*, *Simularia dissecta*, and *Pseudopterogorgia* sp., respectively [141–143]. Two steroids, klyflaccisteroids K (127) and L (128), were isolated from a soft coral *Klyxum flaccidum*. Klyflaccisteroid K is a rare 9,11-secosteroid with a 5,8-epidioxy-9-ene functional group, and klyflaccisteroid L has an unusual 11-norsteroid skeleton and is the first example of 11-oxasteroid isolated from natural sources. The compound (127) possessed moderate to weak cytotoxicity against multiple cancer cells [144].

A rare steroid named calysterol (129), the minor sterol component of the sponge *Calyx nicaenasis* and *Petrosia ficiformis*, possessing the unique feature of a cyclopropene ring bridging C23,24 [145–147], and isocalyysterol (130), was detected in the same sponge [148].
Figure 9. Bioactive sterols and triterpenoids with cyclopropane ring in the side chain.
Table 9. Biological activities of sterols and triterpenoids with cyclopropane ring in the side chain.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
118	Chemopreventive (0.963) Proliferative diseases treatment (0.931) Antineoplastic (0.885) Anticarcinogenic (0.861) Apoptosis agonist (0.790) Antineoplastic (sarcoma) (0.624) Antimetastatic (0.569) Antineoplastic (liver cancer) (0.529) Antineoplastic (lymphocytic leukemia) (0.516) Antineoplastic (pancreatic cancer) (0.502)	Anti-hypercholesterolemic (0.953) Lipid metabolism regulator (0.674) Atherosclerosis treatment (0.513)	Respiratory analeptic (0.982) Hepatoprotectant (0.979)
119	Chemopreventive (0.960) Proliferative diseases treatment (0.921) Antineoplastic (0.904) Anticarcinogenic (0.851) Apoptosis agonist (0.824) Antineoplastic (sarcoma) (0.633) Antimetastatic (0.569) Prostate disorders treatment (0.548) Antineoplastic (liver cancer) (0.543)	Anti-hypercholesterolemic (0.939) Hypolipemic (0.746) Lipid metabolism regulator (0.599)	Respiratory analeptic (0.987) Hepatoprotectant (0.984) Antiprotozoal (Leishmania) (0.880)
120	Apoptosis agonist (0.975) Chemopreventive (0.916) Antineoplastic (0.845) Prostate disorders treatment (0.615) Cytoprotectant (0.611) Antimetastatic (0.543)	Atherosclerosis treatment (0.731) Hypolipemic (0.632)	Antiprotozoal (Plasmodium) (0.768)
121	Antineoplastic (0.845) Chemopreventive (0.832) Apoptosis agonist (0.822) Proliferative diseases treatment (0.818) Prostate cancer treatment (0.584) Antimetastatic (0.537) Antineoplastic (sarcoma) (0.531)	Anti-hypercholesterolemic (0.969) Hypolipemic (0.810) Lipid metabolism regulator (0.716) Cholesterol synthesis inhibitor (0.707) Atherosclerosis treatment (0.586)	Wound healing agent (0.916) Respiratory analeptic (0.902)
122	Antineoplastic (0.818) Chemopreventive (0.742) Apoptosis agonist (0.690) Prostatic (benign) hyperplasia treatment (0.660) Cytoprotectant (0.642) Proliferative diseases treatment (0.622) Antimetastatic (0.556) Prostate cancer treatment (0.541)	Anti-hypercholesterolemic (0.903) Hypolipemic (0.709) Atherosclerosis treatment (0.613) Cholesterol synthesis inhibitor (0.595)	Anesthetic general (0.884) Respiratory analeptic (0.876)
Table 9. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
123	Chemopreventive (0.857)	Anti-hypercholesterolemic (0.961)	Respiratory analeptic (0.901)
	Antineoplastic (0.850)	Hypolipemic (0.755)	
	Apoptosis agonist (0.759)	Atherosclerosis treatment (0.690)	
	Cytoprotectant (0.723)	Cholesterol synthesis inhibitor (0.652)	
	Prostatic (benign) hyperplasia	Anti-hyperlipoproteinemic (0.607)	
	treatment (0.685)	Lipid metabolism regulator (0.572)	
	Proliferative diseases treatment		
	(0.671)		
	Antimetastatic (0.568)		
	Prostate cancer treatment (0.557)		
	Antineoplastic (pancreatic cancer)		
	(0.530)		
	Anticarcinogenic (0.517)		
	Antineoplastic (breast cancer)		
	(0.516)		
124	Antineoplastic (0.753)	Anti-hypercholesterolemic (0.555)	
	Apoptosis agonist (0.677)	Cholesterol synthesis inhibitor (0.504)	
	Prostate disorders treatment (0.584)		
125	Antineoplastic (0.791)	Anti-hypercholesterolemic (0.704)	Anti-inflammatory (0.833)
	Prostate disorders treatment (0.613)	Hypolipemic (0.556)	
	Proliferative diseases treatment	Cholesterol synthesis inhibitor (0.530)	
	(0.556)		
126	Antineoplastic (0.697)	Anti-hypercholesterolemic (0.571)	
	Apoptosis agonist (0.756)	Hypolipemic (0.546)	
	Antineoplastic (0.660)		
127	Apoptosis agonist (0.756)	Anti-hypercholesterolemic (0.571)	Antiprotozoal (Plasmodium) (0.687)
	Antineoplastic (0.660)	Hypolipemic (0.546)	
128	Antineoplastic (0.731)	Anti-hypercholesterolemic (0.935)	Anti-eczematic (0.961)
	Apoptosis agonist (0.599)	Hypolipemic (0.731)	Respiratory analeptic (0.904)
	Antineoplastic (0.824)	Anti-hyperlipoproteinemic (0.689)	
	Chemopreventive (0.726)	Cholesterol synthesis inhibitor (0.600)	
	Proliferative diseases treatment	Anti-eczematic (0.961)	
	(0.657)	Respiratory analeptic (0.904)	
	Prostatic (benign) hyperplasia		
	treatment (0.656)		
	Cytoprotectant (0.654)		
	Apoptosis agonist (0.637)		
	Antimetastatic (0.539)		
	Prostate cancer treatment (0.538)		
	Antineoplastic (sarcoma) (0.537)		
	Antineoplastic (breast cancer)		
	(0.507)		
129	Antineoplastic (0.813)	Anti-hypercholesterolemic (0.908)	
	Chemopreventive (0.717)	Hypolipemic (0.726)	
	Proliferative diseases treatment	Anti-hyperlipoproteinemic (0.587)	
	(0.695)	Cholesterol synthesis inhibitor (0.589)	
	Cytoprotectant (0.670)	Anti-eczematic (0.960)	Respiratory analeptic (0.905)
	Prostatic (benign) hyperplasia		
	treatment (0.649)		
	Antineoplastic (sarcoma) (0.628)		
	Apoptosis agonist (0.608)		
	Prostate cancer treatment (0.559)		
	Anticarcinogenic (0.556)		
	Antineoplastic (pancreatic cancer)		
	(0.550)		
	Antineoplastic (breast cancer)		
	(0.524)		
	Antimetastatic (0.528)		
	Antineoplastic (renal cancer)		
	(0.514)		

* Only activities with Pa > 0.5 are shown.
The dichloromethane-2-propanol (1:1) extract of the Indonesian marine sponge *Strepsichordaia aliena* yielded 20,24-bishomoscalarane sesterterpenes named honulactones A (131), B (132), E (133), F (134), and G (135). Honulactones A and B exhibited cytotoxicity against P-388, A-549, HT-29, and MEL-28 (at IC$_{50}$ 1 µg/mL) human tumor cell lines [149], and honu‘enone (136) [150]. Chemical structures 131–142 are shown in Figure 10, and their biological activity is shown in Table 10.

![Figure 10. Bioactive cyclopropane-containing steroids and triterpenoids.](image-url)
Table 10. Biological activities of cyclopropane-containing steroids and triterpenoids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *	
131	Antineoplastic (0.780)	Hypolipemic (0.577)	Lipid metabolism regulator (0.567)	
	Apoptosis agonist (0.559)			
	Antimestatic (0.549)			
	Antineoplastic (myeloid leukemia) (0.537)			
132	Antineoplastic (0.780)	Hypolipemic (0.577)	Lipid metabolism regulator (0.567)	
	Apoptosis agonist (0.559)			
	Antimestatic (0.549)			
	Antineoplastic (myeloid leukemia) (0.537)			
133	Antineoplastic (0.769)	Hypolipemic (0.660)	Lipid metabolism regulator (0.604)	
	Apoptosis agonist (0.576)			
	Antimestatic (0.547)			
134	Antineoplastic (0.769)	Hypolipemic (0.660)	Lipid metabolism regulator (0.604)	
	Apoptosis agonist (0.576)			
	Antimestatic (0.547)			
135	Antineoplastic (0.811)	Hypolipemic (0.629)	Lipid metabolism regulator (0.544)	
	Apoptosis agonist (0.639)			
	Chemopreventive (0.560)			
	Antimestatic (0.545)			
	Antineoplastic (myeloid leukemia) (0.545)			
136	Antineoplastic (0.795)	Hypolipemic (0.597)	Lipid metabolism regulator (0.537)	Hepatoprotectant (0.791)
	Apoptosis agonist (0.625)			
	Prostate disorders treatment (0.605)			
	Antineoplastic (sarcoma) (0.574)			
	Chemopreventive (0.573)			
	Antineoplastic (myeloid leukemia) (0.538)			
137	Antineoplastic (0.758)	Anti-hypercholesterolemic (0.895)	Anti-eczematic (0.849)	
	Chemopreventive (0.661)	Hyperlipemic (0.707)	Anti-psoriatic (0.691)	
	Prostate disorders treatment (0.654)	Cholesterol synthesis inhibitor (0.549)		
	Apoptosis agonist (0.643)	Atherosclerosis treatment (0.533)		
	Cytoprotectant (0.621)			
	Proliferative diseases treatment (0.590)			
	Antimestatic (0.588)			
	Prostatic (benign) hyperplasia treatment (0.512)			
138	Antineoplastic (0.758)	Anti-hypercholesterolemic (0.895)	Anti-eczematic (0.849)	
	Chemopreventive (0.661)	Cholesterol synthesis inhibitor (0.549)	Anti-psoriatic (0.691)	
	Prostate disorders treatment (0.654)	Atherosclerosis treatment (0.533)		
	Apoptosis agonist (0.643)			
	Cytoprotectant (0.621)			
Table 10. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
139	Antineoplastic (0.809)	Anti-hypercholesterolemic (0.797)	Anti-eczematic (0.921)
	Cytoprotectant (0.681)	Hypolipemic (0.709)	Anti-psoriatic (0.780)
	Chemopreventive (0.670)	Cholesterol synthesis inhibitor (0.557)	
	Apoptosis agonist (0.647)		
	Antimetastatic (0.635)		
	Proliferative diseases treatment (0.635)		
	Prostate disorders treatment (0.632)		
	Antineoplastic (pancreatic cancer) (0.509)		
140	Antineoplastic (0.724)		
	Antimetastatic (0.695)		
	Apoptosis agonist (0.626)		
141	Antineoplastic (0.855)		
	Apoptosis agonist (0.637)		
	Antimetastatic (0.504)		
142	Antineoplastic (0.688)	Apoptosis agonist (0.908)	
	Antineoplastic (renal cancer) (0.524)		
	Chemopreventive (0.857)	Antineoplastic (0.804)	
143	Apoptosis agonist (0.908)	Hypolipemic (0.788)	Anti-eczematic (0.828)
	Antineoplastic (0.857)	Atherosclerosis treatment (0.625)	
	Chemopreventive (0.804)	Cholesterol synthesis inhibitor (0.548)	
	Antineoplastic (liver cancer) (0.797)		
	Proliferative diseases treatment (0.587)		
	Prostate cancer treatment (0.507)		
144	Antineoplastic (0.812)	Hypolipemic (0.701)	Anti-inflammatory (0.862)
	Chemopreventive (0.619)		
	Cytoprotectant (0.558)		
	Antimetastatic (0.521)		
145	Apoptosis agonist (0.870)	Hypolipemic (0.710)	Anti-inflammatory (0.801)
	Antineoplastic (0.824)		
	Chemopreventive (0.647)		
146	Chemopreventive (0.987)	Atherosclerosis treatment (0.640)	Hepatoprotectant (0.993)
	Antineoplastic (0.858)	Anti-hypercholesterolemic (0.635)	Wound healing agent (0.872)
	Anticarcinogenic (0.815)	Hypolipemic (0.511)	
	Apoptosis agonist (0.802)		
	Proliferative diseases treatment (0.660)		
147	Chemopreventive (0.980)	Atherosclerosis treatment (0.645)	Hepatoprotectant (0.988)
	Antineoplastic (0.852)	Anti-hypercholesterolemic (0.640)	Wound healing agent (0.925)
	Anticarcinogenic (0.792)	Hypolipemic (0.539)	
	Apoptosis agonist (0.787)		
	Proliferative diseases treatment (0.631)		
148	Chemopreventive (0.969)	Atherosclerosis treatment (0.663)	Hepatoprotectant (0.987)
	Antineoplastic (0.867)	Anti-hypercholesterolemic (0.611)	Wound healing agent (0.949)
	Apoptosis agonist (0.801)	Hypolipemic (0.539)	
	Anticarcinogenic (0.775)		
	Proliferative diseases treatment (0.625)		

* Only activities with Pa > 0.5 are shown.
It is known that human skin is responsible for the production of vitamin D. When exposed to ultraviolet radiation, which penetrates the epidermis and photolysis provitamin D3 to previtamin D3, and is photolyzed to 5,6-transvitamin D3 and two cyclopropane-containing derivatives of vitamin D3, suprasterol I (137) and suprasterol II (138). The resulting photolysis products are used for the treatment and prevention of psoriasis [151]. Mushrooms are a rich source of ergosterol, which is a precursor to vitamin D2. Wild-grown mushrooms have been shown to contain small amounts of vitamin D2. In addition, it is known that the content of vitamin D2 and its derivatives such as suprasterol I and II in cultivated mushrooms increases when exposed to artificial ultraviolet radiation. In addition, vitamin D2 and its derivatives suprasterol I and II have been found in mushrooms Agaricus bisporus, Pleurotus ostreatus, and Lentinula edodes, as well as several mushroom powders, Pleurotus eryngii, and Agaricus bisporus [152]. When studying the photosynthesis of vitamin D, using the modelling of non-adiabatic molecular dynamics, another cyclopropane-containing metabolite (139) was identified [153].

A limonoid named hortiolide D (140) was found in CH₂Cl₂ and MeOH extracts from the stem of Hortia oreatica [154]. The stem bark of Cedrelopsis gracilis (Ptaeroxylaceae) has yielded pentanortriterpenoid, cedkathryn A (141) [155]. Phragmalinin-type limonoid, velutabularin F (142) was isolated from the stem bark of Chukrasia tabularis var. velutina [156]. Rare cytotoxic metabolite, 3-oxo-cycloart-22Z,24E-dien-26-oic acid (143) isolated from propolis collected in Myanmar, showed the most potent cytotoxicity against B16-BL6 cell, colon 26-L5, LLC A549, and HeLa HT-1080 cancer cell lines [157]. Chemical structures 143–148 are shown in Figure 11, and their biological activity is shown in Table 10.

![Chemical Structures](image_url)
Two cyclopropanic oleanane triterpenoids named donellanic acid B (144) and C (145) were obtained from *Donella ubangiensis*, and its compounds showed cytotoxic and antimicrobial activities [158]. Rare triterpenoid saponins possessing the unique 15,27-cyclooleanane skeleton with different aromatic acyl moieties named verbesinosides A (146), C, (147) and F (148) were isolated from the leaves and flowers of *Verbesina virginica* [159].

It is known that carbon-bridged steroids are a rare group of synthetic lipids that are interesting, both in the beauty of the chemical structure, and show a wide range of biological activities. We have selected several carbon-bridged steroids containing a cyclopropane ring in the molecule that are not found in nature (149–164, chemical structures 149–164 are shown in Figure 12, and their biological activity is shown in Table 11). This is done to compare the biological activities of natural and synthetic steroids [18].

![Figure 12. Bioactive synthetic cyclopropane-containing steroids.](image-url)
Table 11. Biological activities of synthetic cyclopropane-containing steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
149	Antineoplastic (0.891) Apoptosis agonist (0.665)		Antidepressant (0.954) Psychotropic (0.919)
150	Antineoplastic (0.871) Apoptosis agonist (0.814) Prostate disorders treatment (0.699) Cytoprotectant (0.670)		Antidepressant (0.961) Psychotropic (0.953)
151	Antineoplastic (0.845)	Atherosclerosis treatment (0.600)	Cardiovascular analeptic (0.828)
152	Prostate disorders treatment (0.723) Prostatic (benign) hyperplasia treatment (0.619)	Anti-hypercholesterolemic (0.642)	Anti-seborrheic (0.905)
153	Antineoplastic (0.877) Apoptosis agonist (0.611)		Anti-seborrheic (0.849)
154	Antineoplastic (0.864) Prostate disorders treatment (0.731) Prostatic (benign) hyperplasia treatment (0.652) Prostate cancer treatment (0.564)		Anti-seborrheic (0.844)
155	Prostate disorders treatment (0.742) Prostatic (benign) hyperplasia treatment (0.621)		Anti-seborrheic (0.823)
156	Antineoplastic (0.791) Cytoprotectant (0.713) Proliferative diseases treatment (0.662)	Anti-hypercholesterolemic (0.881) Hypolipemic (0.735) Cholesterol synthesis inhibitor (0.641)	Anti-eczematic (0.850)
157	Prostate disorders treatment (0.677) Cytoprotectant (0.653) Prostatic (benign) hyperplasia treatment (0.589)	Anti-hypercholesterolemic (0.873) Hypolipemic (0.789) Cholesterol synthesis inhibitor (0.619)	Respiratory analeptic (0.898)
158	Antineoplastic (0.851) Apoptosis agonist (0.634) Prostate cancer treatment (0.613) Prostatic (benign) hyperplasia treatment (0.592)	Aldosterone antagonist (0.842) Anti-hyperaldosteronism (0.842)	Diuretic (0.973) Mineralocorticoid antagonist (0.956) Antihypertensive (0.802)
159	Antineoplastic (0.841) Prostatic (benign) hyperplasia treatment (0.636) Cytoprotectant (0.620)		Anti-seborrheic (0.892)
160	Antineoplastic (0.749) Prostate disorders treatment (0.737) Prostatic (benign) hyperplasia treatment (0.603)	Anti-hypercholesterolemic (0.580)	Respiratory analeptic (0.765) Cardiovascular analeptic (0.745)
161	Antineoplastic (0.792) Prostate disorders treatment (0.742) Prostatic (benign) hyperplasia treatment (0.657)	Anti-hypercholesterolemic (0.909) Hypolipemic (0.602)	
162	Prostate disorders treatment (0.733) Prostatic (benign) hyperplasia treatment (0.665)	Anti-hypercholesterolemic (0.666)	Erythropoiesis stimulant (0.816)
Table 11. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
163	Antineoplastic (0.849)	Anti-hypercholesterolemic (0.964)	Respiratory analeptic (0.964)
	Apoptosis agonist (0.750)	Atherosclerosis treatment (0.610)	Anesthetic general (0.898)
	Prostate disorders treatment (0.744)		
	Prostate cancer treatment (0.601)		
164	Antineoplastic (0.714)	Hypolipemic (0.689)	Respiratory analeptic (0.863)
	Cytoprotectant (0.710)	Anti-hypercholesterolemic (0.625)	Erythropoiesis stimulant (0.784)
	Prostate disorders treatment (0.619)		

* Only activities with Pa > 0.5 are shown.

Thus, \(\beta \)-hydroxy-3\(\beta \),5-cyclo-5\(\alpha \)-androstan-17-one (149), and other analogues (150, 151, and 158) were synthesized as steroidal blood pressure-lowering hormones [160,161]. Cyclosteroids (152 and 153), which show an anabolic effect, were synthesized from 19-nor steroids, and would be of great interest for sports medicine as representatives of anabolic steroids [162,163], although other cyclosteroids (154–157) were synthesized as potential agents with antitumor properties [164–166].

A series of cyclopropane containing carbon-bridges steroids (159–164) have been synthesized in various laboratories, but the biological activity of these lipid molecules has not been determined [160,161,167,168].

4. Cyclobutane Containing Steroids and Triterpenoids

The cyclobutane unit is found as a basic structural element in a wide range of naturally occurring compounds in bacteria, fungi, plants, and marine invertebrates [18,19,169–174]. The chemistry and biochemistry of cyclobutanes is widely described in the scientific literature and is of great interest to chemists and pharmacologists, since many representatives of this class of compounds demonstrate a wide range of biological activities [18,19,73,175–178].

Unusual triterpenoids with an unprecedented skeleton named belamandinanes A (165), C (166), and D (167) were isolated from the seeds of *Belamcanda chinensis*. These belamandinanes feature a 4/6/6/6/5 polycyclic system, in which a four-membered carbocyclic ring bridges the C-1 and C-11 positions of a classical triterpenoid framework. Experimental studies showed that 165–167 dose-dependently protect age-related renal fibrosis in vitro [179]. Chemical structures 165–183 are shown in Figure 13, and their biological activity is shown in Table 12.
A potent inhibitor of aromatase [206,207], 2,19-Methano-androstenedione (213) was synthesized, and the steroid (214) has a 3,9-carbon bridge like that of the steroid, trichoside B [208]. Two 6,19-cycloprogesterones (215 and 216) were synthesized from 11,19-epithiopregnane, and the end products showed increased affinity for glucocorticoid receptors [209]. Steroids (218–221), with a cyclobutane moiety anywhere in the steroid molecule, have been synthesized with the aim of finding bioactive anticancer agents [160,167,168,210]. Chemical structures 213–221 are shown in Figure 16, and their biological activity is shown in Table 15.

Figure 13. Bioactive cyclobutane-containing steroids and triterpenoids.
Table 12. Biological activities of cyclobutane-containing steroids and triterpenoids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
165	Antineoplastic (0.754) Chemopreventive (0.703) Cytoprotectant (0.609) Apoptosis agonist (0.602) Antineoplastic (pancreatic cancer) (0.532) Antimetastatic (0.523) Prostate disorders treatment (0.505)	Hypolipemic (0.541)	Anti-eczematic (0.905) Anti-psoriatic (0.650)
166	Antineoplastic (0.730) Chemopreventive (0.693) Cytoprotectant (0.608) Apoptosis agonist (0.572) Antimetastatic (0.517) Antineoplastic (pancreatic cancer) (0.512)	Hypolipemic (0.571)	Anti-eczematic (0.899) Anti-psoriatic (0.650)
167	Antineoplastic (0.744) Chemopreventive (0.706) Cytoprotectant (0.627) Apoptosis agonist (0.526) Antimetastatic (0.510) Antineoplastic (pancreatic cancer) (0.503)	Hypolipemic (0.515)	Anti-eczematic (0.895) Anti-psoriatic (0.656)
168	Antineoplastic (0.796) Apoptosis agonist (0.667) Cytoprotectant (0.621) Chemopreventive (0.599)	Hypolipemic (0.588)	Atherosclerosis treatment (0.528)
169	Antineoplastic (0.768) Chemopreventive (0.628) Apoptosis agonist (0.574)	Hypolipemic (0.638)	
170	Antineoplastic (0.780) Apoptosis agonist (0.675) Cytoprotectant (0.602) Chemopreventive (0.599)	Hypolipemic (0.560)	
171	Antineoplastic (0.821) Apoptosis agonist (0.740) Chemopreventive (0.726) Cytoprotectant (0.707) Proliferative diseases treatment (0.553) Prostate cancer treatment (0.551) Antineoplastic (pancreatic cancer) (0.538)	Lipid metabolism regulator (0.794) Anti-hypercholesterolemic (0.738) Hypolipemic (0.709) Cholesterol synthesis inhibitor (0.574)	Anti-secretoric (0.823)
172	Antineoplastic (0.847) Antineoplastic (myeloid leukemia) (0.624)		
173	Antineoplastic (0.786) Apoptosis agonist (0.725) Antineoplastic (sarcoma) (0.643) Antimetastatic (0.580) Antineoplastic (renal cancer) (0.500)	Hypolipemic (0.543)	
174	Antineoplastic (0.781) Apoptosis agonist (0.722) Antineoplastic (sarcoma) (0.635) Antimetastatic (0.572)	Hypolipemic (0.534)	
Table 12. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
175	Antineoplastic (0.897)		Hypolipemic (0.663)
	Chemopreventive (0.718)		
	Apoptosis agonist (0.658)		
	Antimetastatic (0.649)		
	Antineoplastic (renal cancer) (0.611)	Hypolipemic (0.567)	Anti-inflammatory (0.902)
	Prostate cancer treatment (0.595)		Choleretic (0.726)
	Antineoplastic (pancreatic cancer)		
	(0.547)		
176	Antineoplastic (0.850)		
	Chemopreventive (0.847)		
	Apoptosis agonist (0.829)		
	Cytoprotectant (0.665)		
	Antimetastatic (0.604)		
	Antineoplastic (pancreatic cancer)		
	(0.539)		
177	Antineoplastic (0.819)		Antiviral (Influenza) (0.647)
	Apoptosis agonist (0.746)		
178	Antineoplastic (0.820)		Hypolipemic (0.592)
	Apoptosis agonist (0.795)		Anti-inflammatory (0.826)
	Chemopreventive (0.601)		
	Cytoprotectant (0.594)		
	Antimetastatic (0.533)		
179	Antineoplastic (0.820)		Hypolipemic (0.592)
	Apoptosis agonist (0.795)		Anti-inflammatory (0.826)
	Chemopreventive (0.601)		
	Cytoprotectant (0.594)		
	Antimetastatic (0.533)		
180	Antineoplastic (0.853)		Hypolipemic (0.616)
	Apoptosis agonist (0.848)		Anti-inflammatory (0.757)
	Chemopreventive (0.717)		
	Cytoprotectant (0.636)		
	Antimetastatic (0.543)		
	Antineoplastic (myeloid leukemia)		
	(0.523)		
181	Antineoplastic (0.853)		Hypolipemic (0.616)
	Apoptosis agonist (0.848)		Anti-inflammatory (0.757)
	Chemopreventive (0.717)		
	Cytoprotectant (0.636)		
	Antimetastatic (0.543)		
	Antineoplastic (myeloid leukemia)		
	(0.523)		
182	Antineoplastic (pancreatic cancer)		Hypolipemic (0.765)
	(0.589)		Anti-inflammatory (0.855)
	Antineoplastic (multiple myeloma)		
	(0.631)		
	Antineoplastic (carcinoma) (0.571)		
	Antineoplastic (squamous cell carcinoma) (0.571)	Hypolipemic (0.765)	Anti-inflammatory (0.855)
	Antimetastatic (0.565)		
Table 12. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
183	Antineoplastic (0.774) Apoptosis agonist (0.730) Cytoprotectant (0.597) Antineoplastic (pancreatic cancer) (0.573) Antineoplastic (multiple myeloma) (0.565) Antineoplastic (carcinoma) (0.559) Antineoplastic (squamous cell carcinoma) (0.559) Antimetastatic (0.510) Lipid metabolism regulator (0.571) Hypolipemic (0.797)	Hypolipemic (0.797) Lipid metabolism regulator (0.571)	Anti-inflammatory (0.851)

* Only activities with Pa > 0.5 are shown.

Three triterpenoids, with an unusual four-membered ring skeleton, produced by a bond across C-1 to C-11, ganosinensic acid A (168), B (169), and methyl ganosinensate A (170) were isolated from the fruiting body of *Ganoderma sinense* [180]. A protolimonoid named capulin (171), containing a four membered ring in its side chain, was isolated from stem barks of *Capuronianthus mafalenfis* (family Meliaceae), endemic to Madagascar [181].

Triterpenoid steroid, named solanoeclepin A (172), as a cyst nematode-hatching stimulant, was isolated from potato roots [182].

A rare limonoid named entanutilin A (173) was identified from the stem barks of *Entandrophragma utile* collected in Ghana (Africa). This limonoid possessing a cyclobutanyl ring, incorporating C-19 and a cycloheptanyl ring C, including C-30 [183], and the hexane extract of the bark of *Entandrophragma delevoyi* has yielded tetranortriterpenoid, delevoyin C (174) with similar skeleton [184].

Unusual two malabaricane type triterpenes, (14S,17S,20S,24R)-25-hydroxy-14,17-cyclo-20,24-epoxy-malabarican-3-one (175) and (14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cyclo-malabarican-3-one (176) were isolated from the oleoresin of the wounded trunk, *Ailanthus malabarica* [185]. Unusual triterpenoid bearing a monoterpene unit at C-16 (177) has been identified from *Croton limae* (Euphorbiaceae) [186].

Triterpenoids, 12α-acetoxy-13β,18β-cyclobutane-24-methyl-24-oxoscalar-16-en-25-ol (178, α-OH, and 179, β-OH) was detected in the marine sponge *Phyllospongia papyracea*, collected in Ghana New Guinea [187]. Compound (179) has also been isolated from the marine Australian sponge *Strepischororia lendenfeldi* from Great Barrier Reef [188]. The dichloromethane fraction of the marine sponge *Phyllospongia lamellosa*, collected from the Red Sea, resulted in the isolation and characterization of two scalarane-type compounds, 12α-acetoxy-13β,18β-cyclobutane-24-methyl-24-oxoscalar-16-en-25β-ol (180, phyllospong D) and 12α-acetoxy-13β,18β-cyclobutane-24-methyl-24-oxoscalar-16-en-25x-ol (181, phyllospong E) [189]. The 12α-acetoxy-23,25-cyclo-16β,25-dihydroxy-20,24-dimethyl-24-oxoscalarane (182) was isolated from the Neo Guinean sponge *Carteriospongia foliascens* [190–192], and similar cyclobutanol-containing metabolite is the related ester, 12α-acetoxy-16β-(3′-hydroxy-butanoyloxy)-13β,18β-cyclobutan-20,24-dimethyl-24-oxosca-laran-25β-ol (183) was found in extracts of the Australian sponge *Strepischororia lendenfeldi* collected at the Great Barrier Reef [188].

Scalarane sesterterpenoids 20,24-bishomoscalaranes, carteriofenones E (184), F (185), G (186), and H (187) were obtained from the marine sponge *Carteriospongia foliascens*, collected from the South China Sea. These compounds represented rare, naturally occurring scalaranes with a cyclobutane ring [193]. Chemical structures 184–196 are shown in Figure 14, and their biological activity is shown in Table 13.
Figure 14. Bioactive cyclobutane-containing steroids and triterpenoids.
Table 13. Biological activities of cyclobutane-containing steroids and triterpenoids.

No.	Antitumor & Related Activity, (Pa)*	Lipid Metabolism Regulators, (Pa)*	Additional Predicted Activity, (Pa)*
184	Antineoplastic (0.805)		
Apoptosis agonist (0.787)			
Chemopreventive (0.603)			
Cytoprotectant (0.586)			
Antimetastatic (0.533)	Hypolipemic (0.615)		
Lipid metabolism regulator (0.511)			
Anti-hypercholesterolemic (0.503)	Anti-inflammatory (0.817)		
Choleretic (0.771)			
185	Antineoplastic (0.805)		
Apoptosis agonist (0.787)			
Chemopreventive (0.603)			
Cytoprotectant (0.586)			
Antimetastatic (0.533)	Hypolipemic (0.615)		
Lipid metabolism regulator (0.511)			
Anti-hypercholesterolemic (0.503)	Anti-inflammatory (0.817)		
Choleretic (0.771)			
186	Antineoplastic (0.802)		
Apoptosis agonist (0.782)			
Chemopreventive (0.636)			
Antimetastatic (0.547)	Hypolipemic (0.598)		
Anti-hypercholesterolemic (0.515)	Anti-inflammatory (0.803)		
Choleretic (0.706)			
187	Antineoplastic (0.802)		
Apoptosis agonist (0.782)			
Chemopreventive (0.636)			
Antimetastatic (0.547)	Hypolipemic (0.598)		
Anti-hypercholesterolemic (0.515)	Anti-inflammatory (0.803)		
Choleretic (0.706)			
188	Antineoplastic (0.866)		
Apoptosis agonist (0.671)		Genital warts treatment (0.744)	
189	Antineoplastic (0.863)		
Apoptosis agonist (0.584)		Genital warts treatment (0.736)	
190	Antineoplastic (0.846)		
Apoptosis agonist (0.553)		Genital warts treatment (0.745)	
191	Antineoplastic (0.850)		
Apoptosis agonist (0.577)		Genital warts treatment (0.675)	
192	Antineoplastic (0.847)		Genital warts treatment (0.671)
193	Antineoplastic (0.844)		Genital warts treatment (0.664)
194	Apoptosis agonist (0.684)		Genital warts treatment (0.707)
195	Antineoplastic (0.845)		Genital warts treatment (0.682)
196	Antineoplastic (0.863)		Genital warts treatment (0.736)

* Only activities with Pa > 0.5 are shown.

The shrub *Phyllanthus hainanensis*, which is endemic to the island of Hainan province of China, has been used in traditional Chinese medicine for over 1000 years, has great pharmaceutical potential to treat diseases such as cancer and diabetes, and is also used to prevent, and treat, chronic hepatitis B virus infection [194,195]. Several highly modified triterpenoids, with a new carbon skeleton by incorporating two unique motifs of a 4,5- and a 5,5-spirocyclic systems and containing cyclopropane and cyclobutene fragments, named phainanoids A (188), B (189), C (190), D (191), E (192), F (193), G (194), H (195), and I (196), have been determined in the extracts of the *Phyllanthus hainanensis* [196,197]. All compounds exhibited exceptionally potent immunosuppressive activities in vitro against the proliferation of T and B lymphocytes. The most potent one, phainanoid F, showed activities against the proliferation of T cells with IC$_{50}$ value of 2 nM (positive control CsA = 14 nM) and B cells with IC$_{50}$ value of <1.6 nM (CsA = 352.8 nM), which is about 7 and 221 times as active as CsA, respectively.

Trichoside B (197, chemical structures 197–212 are shown in Figure 15, and their biological activity is shown in Table 14), withanolide glucoside, has been isolated from the n-butanolic fraction of the 75% methanolic extract of aerial parts of *Tricholepis eburnea* [198], and other unusual cyclobutene, containing secosteroid (198), was detected in oil from a pineal tropical plant *Sida cordata* (family Malvaceae), which is used to treat various diseases.
and ailments in many complementary and alternative medicine systems [199]. Studying the photoproducts obtained by photochemical processes of vitamin D, cyclobutane, containing vitamin D (199), was identified [200]. Toxisterol (200), as a minor transformation product of vitamin D2, has been found in various mushrooms [152].

Figure 15. Bioactive natural and synthetic cyclobutane-containing steroids and triterpenoids.
No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
197	Antineoplastic (0.929)	Anti-hypercholesterolemic (0.696)	Anti-seborrheic (0.907)
	Prostatic (benign) hyperplasia	Imunnosuppressant (0.672)	
	treatment (0.663)	Lipid metabolism regulator (0.604)	
	Prostate cancer treatment (0.570)		
198	Antineoplastic (0.784)	Anti-hypercholesterolemic (0.724)	Anesthetic (0.921)
	Apoptosis agonist (0.627)	Hypolipemic (0.645)	Neuroprotector (0.880)
	Cytoprotectant (0.558)		Psychostimulant (0.675)
	Chemopreventive (0.542)		
199	Antineoplastic (0.889)	Anti-hypercholesterolemic (0.902)	Anti-eczematic (0.911)
	Proliferative diseases treatment	Hypolipemic (0.721)	Choleretic (0.839)
	(0.676)		
	Prostate disorders treatment (0.628)		
	Apoptosis agonist (0.614)	Anti-hypercholesterolemic (0.932)	Anti-eczematic (0.871)
	Chemopreventive (0.606)	Hypolipemic (0.695)	Choleretic (0.791)
	Antineoplastic (pancreatic cancer)	Cholesterol synthesis inhibitor (0.534)	
	(0.530)		
200	Antineoplastic (0.801)	Anti-hypercholesterolemic (0.740)	Anti-seborrheic (0.946)
	Apoptosis agonist (0.706)	Lipid metabolism regulator (0.643)	Anti-eczematic (0.723)
	Proliferative diseases treatment	Hypolipemic (0.613)	
	(0.667)		
	Chemopreventive (0.665)	Anti-hypercholesterolemic (0.701)	
	Cytoprotectant (0.616)	Anti-seborrheic (0.871)	
	Antimetastatic (0.598)	Cardiotonic (0.841)	
	Prostatic (benign) hyperplasia	Apoptosis agonist (0.541)	Psychosexual dysfunction treatment
	treatment (0.528)	Anti-eczematic (0.818)	(0.575)
201	Antineoplastic (0.865)	Anti-hypercholesterolemic (0.616)	Anti-seborrheic (0.917)
	Cytoprotectant (0.669)	Lipid metabolism regulator (0.565)	Anti-secretoric (0.908)
	Antineoplastic (breast cancer)	Hypolipemic (0.546)	
	(0.662)	Anti-hypercholesterolemic (0.616)	
	Antineoplastic (renal cancer)	Lipid metabolism regulator (0.565)	
	(0.602)	Hypolipemic (0.546)	
	Apoptosis agonist (0.588)	Anti-hypercholesterolemic (0.616)	
	Antineoplastic (sarcoma)	Lipid metabolism regulator (0.565)	
	(0.557)	Hypolipemic (0.546)	
	Prostate cancer treatment (0.557)	Anti-hypercholesterolemic (0.616)	
	Proliferative diseases treatment	Lipid metabolism regulator (0.565)	
	(0.548)	Hypolipemic (0.546)	
202	Antineoplastic (0.757)	Anti-hypercholesterolemic (0.616)	Anti-seborrheic (0.917)
	Prostate disorders treatment (0.652)	Lipid metabolism regulator (0.565)	Anti-secretoric (0.908)
	Antineoplastic (breast cancer)	Anti-hypercholesterolemic (0.616)	
	(0.637)	Lipid metabolism regulator (0.565)	
	Apoptosis agonist (0.541)	Anti-hypercholesterolemic (0.616)	
203	Antineoplastic (0.719)	Lipid metabolism regulator (0.565)	Anti-seborrheic (0.917)
	Antineoplastic (breast cancer)	Anti-hypercholesterolemic (0.616)	Anti-secretoric (0.908)
	(0.540)	Lipid metabolism regulator (0.565)	
	Hypolipemic (0.810)	Anti-hypercholesterolemic (0.616)	
	Anti-seborrheic (0.818)	Lipid metabolism regulator (0.565)	
	Cardiotonic (0.691)	Anti-hypercholesterolemic (0.616)	
204	Antineoplastic (0.872)	Lipid metabolism regulator (0.565)	Anti-seborrheic (0.917)
	Antineoplastic (sarcoma)	Anti-hypercholesterolemic (0.616)	Anti-secretoric (0.908)
	Antineoplastic (breast cancer)	Lipid metabolism regulator (0.565)	
	(0.683)	Hypolipemic (0.546)	
	Antineoplastic (breast cancer)	Anti-hypercholesterolemic (0.616)	
	(0.625)	Lipid metabolism regulator (0.565)	
	Apoptosis agonist (0.621)	Anti-hypercholesterolemic (0.616)	
	Antineoplastic (renal cancer)	Lipid metabolism regulator (0.565)	
	(0.605)	Hypolipemic (0.546)	
	Prostate cancer treatment (0.548)	Anti-hypercholesterolemic (0.616)	
	Antineoplastic (pancreatic cancer)	Lipid metabolism regulator (0.565)	
	(0.546)	Anti-hypercholesterolemic (0.616)	
No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
-----	-----------------------------------	---------------------------------	---------------------------------
205	Antineoplastic (0.778) Prostate disorders treatment (0.737) Prostatic (benign) hyperplasia treatment (0.617) Cytoprotectant (0.616) Antimetastatic (0.571) Proliferative diseases treatment (0.527)	Anti-hypercholesterolemic (0.638) Hypolipemic (0.542) Cholesterol synthesis inhibitor (0.535)	Anti-eczematic (0.831) Anti-osteoporotic (0.799)
206	Antineoplastic (0.908) Prostate disorders treatment (0.703) Antineoplastic (breast cancer) (0.635) Antineoplastic (renal cancer) (0.596) Antineoplastic (sarcoma) (0.567) Prostate cancer treatment (0.553) Apoptosis agonist (0.536)		Anti-seborrheic (0.884) Anti-osteoporotic (0.848)
207	Antineoplastic (0.785) Prostate disorders treatment (0.758) Prostatic (benign) hyperplasia treatment (0.673) Cytoprotectant (0.656) Antineoplastic (sarcoma) (0.568) Antimetastatic (0.565) Apoptosis agonist (0.563) Proliferative diseases treatment (0.540) Antineoplastic (pancreatic cancer) (0.520) Antineoplastic (breast cancer) (0.518)	Anti-hypercholesterolemic (0.813) Hypolipemic (0.648) Cholesterol synthesis inhibitor (0.578)	Anesthetic general (0.901) Choleretic (0.725)
208	Antineoplastic (0.832) Prostate disorders treatment (0.740) Apoptosis agonist (0.711) Cytoprotectant (0.697) Chemopreventive (0.677) Proliferative diseases treatment (0.651) Prostate cancer treatment (0.613) Antineoplastic (breast cancer) (0.608) Antineoplastic (renal cancer) (0.552) Antineoplastic (pancreatic cancer) (0.525)	Anti-hypercholesterolemic (0.886) Lipid metabolism regulator (0.837) Hypolipemic (0.709) Cholesterol synthesis inhibitor (0.605) Atherosclerosis treatment (0.523)	Respiratory analeptic (0.969) Neuroprotector (0.924) Psychostimulant (0.707)
209	Antineoplastic (0.839) Chemopreventive (0.781) Apoptosis agonist (0.722) Proliferative diseases treatment (0.714) Cytoprotectant (0.654) Prostate disorders treatment (0.636) Antimetastatic (0.391)	Anti-hypercholesterolemic (0.782) Hypolipemic (0.702) Cholesterol synthesis inhibitor (0.604)	Respiratory analeptic (0.949)
210	Antineoplastic (0.878) Prostate disorders treatment (0.807) Prostate cancer treatment (0.721) Antineoplastic (sarcoma) (0.719) Antineoplastic (breast cancer) (0.701) Cytoprotectant (0.631) Apoptosis agonist (0.599)	Anti-hypercholesterolemic (0.538)	Cardiovascular analeptic (0.862)
Table 14. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
211	Antineoplastic (0.845)	Hypolipemic (0.929)	Anti-seborrheic (0.902)
	Prostate disorders treatment (0.648)	Lipoprotein disorders treatment (0.687)	
	Antineoplastic (myeloid leukemia)		
	(0.645)		
	Antineoplastic (sarcoma) (0.626)		
	Cytoprotectant (0.585)		
	Antineoplastic (breast cancer) (0.580)		
	Antineoplastic (renal cancer) (0.561)		
	Antineoplastic (carcinoma) (0.521)		
	Antineoplastic (squamous cell carcinoma) (0.521)		
212	Antineoplastic (0.804)	Anti-hypercholesterolemic (0.832)	Anesthetic general (0.931)
	Cytoprotectant (0.719)	Hypolipemic (0.820)	Respiratory analeptic (0.888)
	Chemopreventive (0.678)	Cholesterol synthesis inhibitor (0.627)	
	Proliferative diseases treatment (0.622)		
	Prostate disorders treatment (0.614)		
	Antimetastatic (0.596)		

* Only activities with Pa > 0.5 are shown.

A unique non-olefinic product containing a cyclobutane fragment (201) was obtained from 5,10-seco steroid containing Δ\(^{1(10)}\)–and Δ\(^{5(6)}\)–double bonds in the AB ring during photochemical transformation [201]. The steroid altrenogest, a progestin of the 19-nortestosterone group, which is widely used in veterinary medicine to suppress or synchronize estrus in horses and pigs, using photolysis experiments gives two photoproducts: (202) and (203) [202].

In the chemistry of steroid hormones, the modification of the skeleton of natural steroids is used to obtain compounds with a narrower and more targeted spectrum of biological action, which makes it possible for their practical application. Among the many types of such transformed steroids, compounds containing an additional carbocycle are of great interest [203–205].

Photochemical [2 + 2]-cycloaddition is a common method for the construction of pentacyclic steroids and, in contrast to dark reactions, allows the introduction of a cyclobutane moiety anywhere in the steroid molecule. Several pentacyclic steroids, with an additional four-membered cycle (204–212), have been synthesized using various photochemical methods, while the biological activity of synthetic steroids has not been studied [18,204,205].

As a potent inhibitor of aromatase [206,207], 2,19-Methano-androstenedione (213) was synthesized, and the steroid (214) has a 3,9-carbon bridge like that of the steroid, trichoside B [208]. Two 6,19-cycloprogesterones (215 and 216) were synthesized from 11,19-epithiopregnane, and the end products showed increased affinity for glucocorticoid receptors [209]. Steroids (218–221), with a cyclobutane moiety anywhere in the steroid molecule, have been synthesized with the aim of finding bioactive anticancer agents [160,167,168,210]. Chemical structures 213–221 are shown in Figure 16, and their biological activity is shown in Table 15.
Figure 15. Bioactive natural and synthetic cyclobutane-containing steroids and triterpenoids.

Figure 16. Bioactive synthetic steroids containing an additional 4-membered ring in the steroid molecule.

Table 15. Biological activities of synthetic cyclobutane-containing steroids.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
213	Antineoplastic (0.891)		Male reproductive dysfunction treatment (0.923)
			Aromatase inhibitor (0.717)
214	Antineoplastic (0.909)	Anti-hypercholesterolemic (0.696)	Anti-seborrheic (0.914)
	Prostatic (benign) hyperplasia	Lipid metabolism regulator (0.604)	Respiratory analeptic (0.756)
	treatment (0.663)		
	Prostate cancer treatment (0.570)		
215	Antineoplastic (0.860)		Ovulation inhibitor (0.794)
	Prostate disorders treatment (0.717)		Neuroprotector (0.716)
	Prostatic (benign) hyperplasia		
	treatment (0.621)		
216	Antineoplastic (0.805)	Hepatic disorders treatment (0.601)	Respiratory analeptic (0.871)
	Prostatic (benign) hyperplasia	Anti-hypercholesterolemic (0.589)	Anti-inflammatory (0.837)
	treatment (0.591)		
217	Antineoplastic (0.805)	Anti-hypercholesterolemic (0.592)	Respiratory analeptic (0.874)
	Prostatic (benign) hyperplasia		Anti-inflammatory (0.839)
	treatment (0.591)		
218	Antineoplastic (0.736)	Anti-hypercholesterolemic (0.582)	Anti-seborrheic (0.915)
	Prostate disorders treatment (0.589)	Atherosclerosis treatment (0.534)	Alopecia treatment (0.893)
219	Antineoplastic (0.750)	Anti-hypercholesterolemic (0.917)	Anti-osteoporotic (0.904)
	Prostate disorders treatment (0.713)		
	Prostatic (benign) hyperplasia	Anti-eczematic (0.814)	
	treatment (0.501)	Anti-osteoporotic (0.657)	
220	Antineoplastic (0.786)		Anti-seborrheic (0.924)
	Apoptosis agonist (0.567)		Anti-osteoporotic (0.752)
221	Antineoplastic (0.854)		
	Proliferative diseases treatment (0.588)		
	Antimetastatic (0.552)		

* Only activities with Pa > 0.5 are shown.
5. Miscellaneous Cyclosteroids and Triterpenoids Derived from Marine and Terrestrial Sources

Two unique pentacyclic polyhydroxylated sterols (23S-16/S,23-cyclo-3α,6α,7α,8,23-tetrahydroxy-5α,14α,19-cholestan-15-one, named xestobergsterol A (222), and 23S-16/3,23-cyclo-1/8,2/3,3α,6α,7α,8,23-hexahydroxy-5α,14/3-cholestan-15-one, named xestobergsterol B (223)) have been found and identified from marine sponge *Xestospongia bergquistia* [211], and xestobergsterol C (224) was detected in the Okinawan marine sponge *Ircinia* sp. [212]. Chemical structures 222–235 are shown in Figure 17, and their biological activity is shown in Table 16.

![Chemical structures of bioactive steroids](image-url)

Figure 17. Bioactive steroids containing an additional 5- or 6-membered ring in molecule.
Table 16. Biological activities of steroids containing additional 5-membered ring in molecule.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
222	Antineoplastic (0.783)	Hypolipemic (0.551)	Anti-inflammatory (0.778)
	Prostate disorders treatment (0.679)		
	Cytotoxic (0.622)		
	Apoptosis agonist (0.607)		
	Antineoplastic (sarcoma) (0.603)		
	Prostatic (benign) hyperplasia		
	treatment (0.519)		
	Antimetastatic (0.514)		
	Antineoplastic (pancreatic cancer)		
	(0.509)		
223	Antineoplastic (0.813)		Anti-inflammatory (0.775)
	Apoptosis agonist (0.683)		Antiprotozoal (Plasmodium) (0.622)
	Prostate disorders treatment (0.654)		
	Antineoplastic (sarcoma) (0.593)		
	Antineoplastic (pancreatic cancer)		
	(0.541)		
224	Antineoplastic (0.787)		Anti-inflammatory (0.829)
	Prostate disorders treatment (0.685)		Antiprotozoal (Plasmodium) (0.625)
	Apoptosis agonist (0.629)		
	Antineoplastic (sarcoma) (0.589)		
	Prostatic (benign) hyperplasia		
	treatment (0.550)		
	Antineoplastic (pancreatic cancer)		
	(0.506)		
225	Antineoplastic (0.931)		Cardiotonic (0.763)
	Apoptosis agonist (0.899)		Immunosuppressant (0.683)
	Antineoplastic enhancer (0.537)		
	Cytostatic (0.519)		
	Antineoplastic (genitourinary cancer)		
	(0.512)		
226	Apoptosis agonist (0.876)		Inflammatory Bowel disease treatment
	Antineoplastic (0.873)		(0.704)
	Antineoplastic (genitourinary cancer)		Immunosuppressant (0.681)
	(0.530)		
227	Antineoplastic (0.885)		Cardiotonic (0.698)
	Apoptosis agonist (0.824)		
	Antineoplastic (genitourinary cancer)		
	(0.550)		
	Antimetastatic (0.513)		
228	Antineoplastic (0.878)	Anti-hypercholesterolemic (0.808)	Immunosuppressant (0.813)
	Apoptosis agonist (0.861)	Hypolipemic (0.788)	
	Chemopreventive (0.717)	Atherosclerosis treatment (0.534)	
	Proliferative diseases treatment		
	(0.581)		
229	Antineoplastic (0.668)		Respiratory analeptic (0.874)
230	Antineoplastic (0.735)		Anti-inflammatory (0.604)
	Apoptosis agonist (0.545)		
231	Antineoplastic (0.846)		Hepatic disorders treatment (0.977)
	Cytostatic (0.771)		Macular degeneration treatment
	Apoptosis agonist (0.613)		(0.882)
	Antineoplastic (sarcoma) (0.526)		
232	Antineoplastic (0.788)		Hepatic disorders treatment (0.937)
	Apoptosis agonist (0.645)		Antiprotozoal (Plasmodium) (0.820)
233	Antineoplastic (0.709)		Anti-eczematic (0.636)
	Apoptosis agonist (0.632)		
Carbon-bridged steroids which were isolated from *Jaborosa bergii* presented a norbornane-type structure in ring D of the steroid nucleus \(225-227\), resulting from a carbon—carbon bond between C-15 and C-21. Jaborosalactols 18 \(225\) and 22 \(227\) have a 14α-hydroxy group while jaborosalactol 20 \(226\) contains 8,14-double bond \[213\].

The unusual cytotoxic steroid named gymnasterones A \(228\) was isolated from the microscopical fungus *Gynmascella dankaliensis*, associated with the sponge *Halichondria japonica* \[214\].

A steroidal alkaloid with a C-C linkage between C-16 and C-23, 3β-amino-16,23-cyclo-23β-hydroxy-5α,16γ,25β-22,26-epiminocholestan-17(20),22(N)-diene named solanocastrine \(229\) has been identified from extracts of the leaves of *Solanum capsicastrum* \[215\].

The spiranoïd-γ-lactone steroid series have been found in lipid extracts in the genus *Jaborosa*. Interestingly, the first triterpenoid with a spiranoïd-γ-lactone side chain was jaborosalactone P \(230\), which was collected over 30 years ago in extracts of *Jaborosa odonelliana* collected in Argentina \[216\]. Other related metabolites, such as jaborosalactone 12 \(231\), jaborosalactone 15 \(232\), and jaborosalactone 31 \(233\), were isolated from *Jaborosa odonelliana*, and jaborosalactone P was the major component in all samples collected in both spring and summer. In addition, jaborosalactone 31 \(230\) was found in extracts of all species studied, *J. rotacea*, *J. odonelliana*, *J. runcinata*, and *J. araucana* \[217–219\]. The triterpenes, named vannusals A \(234\) and B \(235\), with unusual skeletons, were obtained from the marine ciliate *Euplotes vannus* \[220–225\], and both compounds showed strong cytotoxic activity. Unusual 2,3-secoferane triterpenoid, alstonic acid B \(236\) has been isolated from *Alsonia scholaris* \[226\].

Several steroids \(237–264\), containing an additional 5- or 6-membered ring (s) in the steroid molecule, have been synthesized in various laboratories and demonstrate a wide range of biological activities \[18,160,161,164,167,168,210,227–232\], and their structures are shown in Figures 18 and 19. Their pharmacological profile is presented in Tables 16 and 17.

Table 16. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
234	Antineoplastic (0.840) Apoptosis agonist (0.749)		Cardiotonic (0.572)
235	Antineoplastic (0.840) Apoptosis agonist (0.749)		Anti-inflammatory (0.637)
236	Apoptosis agonist (0.814) Antineoplastic (0.647) Cytoprotectant (0.613) Chemopreventive (0.564)	Anti-hypercholesterolemic (0.578) Hypolipemic (0.546) Cholesterol synthesis inhibitor (0.534)	Anti-inflammatory (0.716) Prostate disorders treatment (0.564)

* Only activities with Pa > 0.5 are shown.
Figure 18. Bioactive cyclopentane- and cyclohexane-containing steroids.
Figure 19. Bioactive synthetic steroids containing an additional 5- or 6-membered ring in molecule.
| No. | Antitumor & Related Activity, (Pa) * | Lipid Metabolism Regulators, (Pa) * | Additional Predicted Activity, (Pa) * | |
|---|---|---|---|---|
| 237 | Antineoplastic (0.761) | Anti-hypercholesterolemic (0.829) | Anesthetic general (0.901) |
| | Prostate disorders treatment (0.755)| Hypolipemic (0.756) | Respiratory analeptic (0.884) |
| | Prostatic (benign) hyperplasia | Atherosclerosis treatment (0.632) | |
| | treatment (0.683) | | |
| 238 | Antineoplastic (0.830) | | |
| | Prostatic (benign) hyperplasia | Antiprotozoal (0.781) | |
| | treatment (0.532) | Cardiotonic (0.773) | |
| 239 | Antineoplastic (0.820) | | |
| | Prostate disorders treatment (0.784)| | Cardiovascular analeptic (0.913) |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.684) | | |
| | Prostate cancer treatment (0.627) | | |
| 240 | Antineoplastic (0.910) | | |
| | Apoptosis agonist (0.765) | | |
| | Cytoprotectant (0.593) | | |
| | Prostate cancer treatment (0.538) | | Cardiovascular analeptic (0.888) |
| 241 | Antineoplastic (0.765) | Anti-hypercholesterolemic (0.824) | Anti-eczematic (0.862) |
| | Prostatic (benign) hyperplasia | Hypolipemic (0.686) | Anti-osteoporotic (0.826) |
| | treatment (0.653) | Atherosclerosis treatment (0.629) | Antiparkinsonian, rigidity relieving|
| | Cytoprotectant (0.641) | | (0.625) |
| 242 | Antineoplastic (0.803) | | |
| | Prostatic (benign) hyperplasia | Neurodegenerative diseases | Anti-osteoporotic (0.972) |
| | treatment (0.617) | treatment (0.642) | Anti-psoriatic (0.884) |
| | Prostate cancer treatment (0.518) | | |
| 243 | Antineoplastic (0.797) | | |
| | Prostate disorders treatment (0.680)| | |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.551) | | |
| 244 | Antineoplastic (0.775) | Anti-hypercholesterolemic (0.772) | Anti-eczematic (0.846) |
| | Prostate disorders treatment (0.706)| Hypolipemic (0.617) | Anti-osteoporotic (0.787) |
| | Cytoprotectant (0.638) | | |
| | Prostatic (benign) hyperplasia | Anti-hypercholesterolemic (0.866) | |
| | treatment (0.624) | Hypolipemic (0.705) | |
| | Apoptosis agonist (0.620) | Cholesterol synthesis inhibitor | Anti-eczematic (0.840) |
| | | (0.588) | Anti-osteoporotic (0.792) |
| 245 | Antineoplastic (0.777) | Anti-hypercholesterolemic (0.674) | Anti-eczematic (0.907) |
| | Cytoprotectant (0.689) | Hypolipemic (0.622) | |
| | Prostate disorders treatment (0.677)| | |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.581) | | |
| 246 | Antineoplastic (0.918) | Anti-hypercholesterolemic (0.674) | Anti-eczematic (0.907) |
| | Aromatase inhibitor (0.903) | Hypolipemic (0.622) | |
| | Apoptosis agonist (0.894) | | |
| 247 | Antineoplastic (0.943) | | Neuroprotector (0.734) |
| | Prostate disorders treatment (0.705)| | Immunosuppressant (0.650) |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.601) | | |
| | Apoptosis agonist (0.596) | | |
| No. | Antitumor & Related Activity, (Pa) * | Lipid Metabolism Regulators, (Pa) * | Additional Predicted Activity, (Pa) * |
|-----|------------------------------------|-------------------------------------|-------------------------------------|
| 248 | Antineoplastic (0.937) | | |
| | Aromatase inhibitor (0.903) | | Neuroprotector (0.735) |
| | Prostate disorders treatment (0.697)| | Immunosuppressant (0.654) |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.591) | | |
| 249 | Antineoplastic (0.902) | | |
| | Prostate disorders treatment (0.740)| | Cardiovascular analeptic (0.854) |
| | Prostatic (benign) hyperplasia | | Anesthetic (0.698) |
| | treatment (0.662) | | Cardiotonic (0.605) |
| | Prostate cancer treatment (0.569) | | |
| 250 | Antineoplastic (0.892) | | |
| | Apoptosis agonist (0.710) | | Anti-osteoporotic (0.972) |
| | Prostate disorders treatment (0.662)| | |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.541) | | |
| 251 | Antineoplastic (0.742) | | |
| | Prostate disorders treatment (0.726)| | Anti-hypercholesterolemic (0.622) |
| | Prostatic (benign) hyperplasia | | Neuroprotector (0.734) |
| | treatment (0.662) | | Immunosuppressant (0.705) |
| 252 | Antineoplastic (0.769) | | |
| | Prostate disorders treatment (0.753)| | Anticonvulsant (0.733) |
| | Prostatic (benign) hyperplasia | | Neuroprotector (0.727) |
| | treatment (0.663) | | |
| 253 | Antineoplastic (0.810) | | |
| | Prostate disorders treatment (0.726)| | Anti-hypercholesterolemic (0.705) |
| | Prostatic (benign) hyperplasia | | Immunosuppressant (0.764) |
| | treatment (0.647) | | Neuroprotector (0.749) |
| 254 | Antineoplastic (0.754) | | |
| | | | Antiprotein (Plasmodium) (0.648) |
| 255 | Antineoplastic (0.774) | | |
| | Cytoprotectant (0.633) | | |
| | Prostate disorders treatment (0.572)| | |
| | | Hypolipemic (0.766) | |
| | | Anti-hypercholesterolemic (0.652) | |
| | | Cholesterol synthesis inhibitor (0.615)| |
| 256 | Antineoplastic (0.858) | | |
| | Proliferative diseases treatment | | |
| | (0.604) | | |
| | Apoptosis agonist (0.583) | | Hypolipemic (0.838) |
| | Cytoprotectant (0.561) | | Anti-hypercholesterolemic (0.611) |
| | Antimetastatic (0.549) | | Cholesterol synthesis inhibitor (0.601)| |
| | Prostate disorders treatment (0.535)| | |
| 257 | Antineoplastic (0.694) | | |
| | Prostate disorders treatment (0.621)| | Anti-seborrheic (0.928) |
| | Antineoplastic (breast cancer) | | Cardiovascular analeptic (0.674) |
| | (0.572) | | |
| 258 | Antineoplastic (0.854) | | |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.621) | | |
| | Anti-hypercholesterolemic (0.682) | | |
| | | Neuroprotector (0.756) | |
| | | Acute neurologic disorders treatment| |
| | | (0.741) | |
| 259 | Antineoplastic (0.845) | | |
| | Apoptosis agonist (0.654) | | Hypolipemic (0.548) |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.585) | | |
| | | Cardiotonic (0.917) | |
| | | Antiarrhythmic (0.809) | |
| 260 | Antineoplastic (0.823) | | |
| | Prostate disorders treatment (0.746)| | |
| | Prostatic (benign) hyperplasia | | |
| | treatment (0.615) | | Anesthetic general (0.841) |
Carbon-bridged steroids, called taccalonolides (265–271), are a class of microtubule-stabilizing agents that exhibit selective cancer-fighting properties [233]. Tacca species are known to contain highly oxygenated ixocarpalactone-type steroids, with an additional ring formed by a carbon–carbon bond between C-16 and C-24, taccalonolide A being the first example of these compounds [120]. Chemical structures 265–272 are shown in Figure 20, and their biological activity is shown in Table 18. Carbon-bridged steroids, related to taccalonolide A, were isolated from *Tacca plantaginea*, *Tacca subflaellata*, and the Vietnamese plant *Tacca paxiana* [234–238]. Taccalonolides AF (272) and AJ (273), showing antiproliferative properties, were isolated from a fraction of an ethanol extract of *T. plantaginea* [239], and a carbon-bridged steroid, named physanolide A (274), with an unprecedented skeleton containing a seven-membered ring was isolated from *Physalis angulate* [240].

Trinor-cycloartenol glycosides, 15α-hydroxy-16-dehydroxy-16(24)-en-foetidinol-3-0-β-D-xylopyranoside (275) and 28-hydroxy-foetidinol-3-O-β-D-xylopyranoside (276) were isolated from the butanol fraction of the roots of *Cimicifuga foetida* [241]. Chemical structures 273–276 are shown in Figure 21, and their biological activity is shown in Table 18.
Figure 20. Bioactive steroids containing additional 6-membered ring in molecule.
Table 18. Bioactive synthetic steroids containing an additional 5- or 6-membered ring in molecule.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
265	Antineoplastic (0.933)		Antimitotic (0.843)
	Apoptosis agonist (0.667)		
266	Antineoplastic (0.942)		Antimitotic (0.848)
	Apoptosis agonist (0.619)		
	Antineoplastic (sarcoma) (0.510)		
267	Antineoplastic (0.934)	Apoptosis agonist (0.890)	Antimitotic (0.829)
	Cytostatic (0.688)		Antiprotozoal (Plasmodium) (0.650)
	Antineoplastic (sarcoma) (0.647)	T cell inhibitor (0.608)	
	Prostate disorders treatment (0.606)		
	Antineoplastic (pancreatic cancer)	(0.573)	
268	Antineoplastic (0.936)	Apoptosis agonist (0.720)	Antimitotic (0.849)
	Antimetastatic (0.515)		
	Antineoplastic (pancreatic cancer)	(0.504)	
269	Antineoplastic (0.922)	Apoptosis agonist (0.641)	Antimitotic (0.819)
	Antimetastatic (0.513)		Antiprotozoal (Plasmodium) (0.694)
270	Antineoplastic (0.929)	Apoptosis agonist (0.669)	Antimitotic (0.853)
	Antineoplastic (renal cancer) (0.570)		
271	Antineoplastic (0.930)	Apoptosis agonist (0.753)	Antimitotic (0.776)
	Cytostatic (0.735)		Immunosuppressant (0.665)
	Antineoplastic (renal cancer) (0.603)		
	Antineoplastic (sarcoma) (0.602)		
	Antineoplastic (pancreatic cancer)	(0.551)	
	Antineoplastic (lymphocytic leukemia) (0.548)		
	Antineoplastic (myeloid leukemia)	(0.529)	
	Antineoplastic (genitourinary cancer)	(0.523)	
272	Antineoplastic (0.933)	Apoptosis agonist (0.805)	Antimitotic (0.808)
	Antimetastatic (0.535)		Immunosuppressant (0.745)
	Antineoplastic (pancreatic cancer)	(0.524)	
273	Antineoplastic (0.934)	Apoptosis agonist (0.805)	Antimitotic (0.804)
	Antineoplastic (sarcoma) (0.530)		Antiprotozoal (Plasmodium) (0.731)
	Antineoplastic (pancreatic cancer)	(0.524)	Immunosuppressant (0.668)
Table 18. Cont.

No.	Antitumor & Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Predicted Activity, (Pa) *
274	Antineoplastic (0.875)	Anti-hypercholesterolemic (0.858)	Anti-ischemic, cerebral (0.932)
	Apoptosis agonist (0.728)	Hypolipemic (0.767)	Antiprotozoal (Leishmania) (0.559)
	Chemopreventive (0.693)	Cholesterol synthesis inhibitor (0.608)	
	Prostate disorders treatment (0.670)	Atherosclerosis treatment (0.600)	
	Proliferative diseases treatment (0.659)	Lipid metabolism regulator (0.590)	
	Anticarcinogenic (0.630)		
	Antineoplastic (breast cancer) (0.551)		
	Antineoplastic (pancreatic cancer) (0.540)		
	Prostatic (benign) hyperplasia treatment (0.526)		
	Antineoplastic (sarcoma) (0.517)		
275	Chemopreventive (0.966)	Hypolipemic (0.575)	
	Apoptosis agonist (0.896)		
	Antineoplastic (0.866)		
276	Chemopreventive (0.958)	Hypolipemic (0.540)	
	Apoptosis agonist (0.842)		
	T cell inhibitor (0.620)		

* Only activities with Pa > 0.5 are shown.

Figure 20. Bioactive steroids containing additional 6-membered ring in molecule.

Figure 21. Bioactive steroids containing additional 6- or 7-membered ring in molecule.

6. Comparison of Biological Activities of Natural and Synthetic CBS and Triterpenoids

It is known that the chemical structure of both natural and synthetic molecules predetermines biological activity, which makes it possible to analyze the structure-activity relationships (SAR). Such a wise idea was first proposed by Brown and Fraser more than 150 years ago, in 1868 [242]; although, according to other sources, SAR originates from the field of toxicology, according to which Cros, in 1863, determined the relationship between the toxicity of primary aliphatic alcohols and their solubility in water [243]. More
than 30 years later, Richet in 1893 [244], Meyer in 1899 [245], and Overton in 1901 [246] separately found a linear correlation between lipophilicity and biological effects. By 1935, Hammett [247,248] presented a method of accounting for the effect of substituents on reaction mechanisms using an equation that considered two parameters, namely the substituent constant and the reaction constant. Complementing Hammett’s model, Taft proposed, in 1956, an approach for separating the polar, steric, and resonance effects of substituents in aliphatic compounds [249]. Combining all previous developments, Hansch and Fujita laid out the mechanistic basis for the development of the QSAR method [250], and the linear Hansch equation, and Hammett’s electronic constants, are detailed in the book by Hansch and Leo published in 1995 [251].

Some well-known computer programs can, with some degree of reliability, estimate the pharmacological activity of organic molecules isolated from natural sources or synthesized compounds [252–254]. It is known that classical SAR methods are based on the analysis of (quantitative) structure-activity relationships for one or more biological activities, using organic compounds belonging to the same chemical series as the training set [255].

Computer program PASS, which has been continuously updating and improving for the past thirty years [256], is based on the analysis of a heterogeneous training set included information about more than 1.3 million known biologically active compounds with data on ca. 10,000 biological activities [257,258]. Chemical descriptors implemented in PASS, which reflect the peculiarities of ligand-target interactions, and the original realization of the Bayesian approach for elucidation of structure-activity relationships provides the average accuracy, and predictivity, for several thousand biological activities equal to about 96% [259,260]. In several comparative studies, it was shown that PASS outperforms, in predictivity, some other recently developed methods for the estimation of biological activity profiles [261–263]. Freely available via the Internet, PASS Online web-service [264] is used by more than thirty thousand researchers from almost a hundred countries to determine the most promising biological activities for both natural and synthetic compounds [258–260,265]. To reveal the hidden pharmacological potential of the natural substances, we are successfully using PASS for the past fifteen years [266–270].

In the current study, we obtained PASS predictions for about three hundred steroids and triterpenoids produced by different living organisms. PASS estimates are presented as Pa values, which correspond to the probability of belonging to a class of “actives” for each predicted biological activity. The higher the Pa value is, the higher the confidence that the experiment will confirm the predicted biological activity [260].

6.1. Antitumor Activity of Cyclopropane-Containing CBS and Triterpenoids

Analyzing the data obtained using the PASS of natural cyclopropane containing steroids and triterpenoids, it can be stated that, out of 102 lipid molecules (1–102, see Figures 1–7 and Tables 1–7), only 27 showed antitumor activity with a reliability of more than 90 percent, with two steroidal glycosides, (25) and (41), showed antitumor activity with more than 99% confidence. Thus, PASS has confirmed the cytotoxic properties of these steroids, which have been determined experimentally. Other sterols and triterpenoids, with a cyclopropane ring, demonstrated weak to moderate antitumor activity with 70 to 90 percent confidence.

Among sterols and triterpenoids with a cyclopropane ring in the side chain, compounds were also found that demonstrate antitumor activity with a confidence level of more than 90 percent. These are steroids (103, 91.1%), (105, 93.4%), (112, 92.2%), (118, 96.3%), (119, 96.0%), and (120, 97.5%), which were isolated from the marine sponges Petrosia weinbergi, Xestospongia sp., Pocillastra compressa, and Tethya sp. A 3D graph of the predicted antitumor and related activities is shown in Figure 22.
Among sterols and triterpenoids with a cyclopropane ring in the side chain, compounds were also found that demonstrate antitumor activity with a confidence level of more than 90 percent. These are steroids (103, 91.1%), (105, 93.4%), (112, 92.2%), (118, 96.3%), (119, 96.0%), and (120, 97.5%), which were isolated from the marine sponges *Petrosia weinbergi*, *Xestospongia* sp., *Poecillastra compressa*, and *Tethya* sp. A 3D graph of the predicted antitumor and related activities is shown in Figure 22.

Figure 22. The 3D graph (X and Y views) shows the predicted and calculated antitumor activity of carbon-bridged steroids (CBS) with a cyclopropane ring in the side chain (compound numbers: 103, 105, 112, 118, 119 and 120) showing the highest degree of confidence, more than 91%. These steroids derived from marine sponges *Petrosia weinbergi*, *Xestospongia* sp., *Poecillastra compressa*, and *Tethya* sp., and can be used in clinical medicine as potential agents with strong antitumor activity.

Triterpenoid saponins, (146, 98.7%), (147, 98.0%), and (148, 96.9%), containing the cyclopropane ring at position 15:27, were isolated from the leaves and flowers extracts of *Verbesina virginica*, demonstrating the highest degree of confidence—more than 96%. A 3D graph of the predicted antitumor and related activities is shown in Figure 23.

Figure 23. The 3D graph shows the predicted and calculated antitumor and related activities of cyclopropane-containing triterpenoid saponins (compound numbers: 146, 147, and 148) showing the highest degree of confidence, more than 96%, which were isolated from the leaves and flowers extracts of *Verbesina virginica*, and can be used in clinical medicine as potential agents with strong antitumor activity.

6.2. Antitumor Activity of Cyclobutane-Containing CBS and Triterpenoids

Cyclobutane containing steroids and triterpenoids (165–221), isolated from natural sources as well as semi- and synthetic compounds, were also analyzed using PASS. Most of these lipid molecules showed moderate antitumor activity with 70 to 90 percent confidence, and only three, (197, 92.9%), (206, 90.8%), and (214, 90.9%), steroids showed antitumor activity with more than 90% confidence. A 3D graph of the predicted antitumor and related activities is shown in Figure 24.
6.2. Antitumor Activity of Cyclobutane-Containing CBS and Triterpenoids

Cyclobutane containing steroids and triterpenoids (165–221), isolated from natural sources as well as semi- and synthetic compounds, were also analyzed using PASS. Most of these lipid molecules showed moderate antitumor activity with 70 to 90 percent confidence, and only three, (197, 92.9%), (206, 90.8%), and (214, 90.9%), steroids showed antitumor activity with more than 90% confidence. A 3D graph of the predicted antitumor and related activities is shown in Figure 24.

Figure 24. The 3D graph shows the predicted and calculated antitumor and related activities of cyclobutane-containing steroids (compound numbers: 197, 206, and 214) showing the highest degree of confidence, more than 90%.

The withanolide glucoside named trichoside B (197) is of type A-nor-sterols, and was isolated from the methanolic extract of aerial parts of *Tricholepis eburnea*, which is native to Afghanistan, compound (206) is a testosterone derivative dimer, and the steroid (214) contains a cyclobutane ring in ring A of the steroid.

6.3. Miscellaneous Cyclosteroids and Triterpenoids

Miscellaneous cyclosteroids and triterpenoids (222–276, see Figures 17–21, and Tables 16–18) make up one-fifth of all compounds presented in this work. Two-thirds of lipid molecules demonstrate moderate activity, and seventeen compounds show strong antitumor activity with a confidence level of more than 90%, and the triterpenoid called taccalonolide Q (271) has the widest spectrum of biological activities among antitumor agents. A 3D graph of the predicted antitumor activities is shown in Figure 25. The data we obtained using PASS are supported by the data just published by Peng and colleagues, which shows a wide range of biological activities of taccalonolides [271].
Figure 25. The 3D graph shows the predicted and calculated pharmacological activities of taccalonolide Q (271). Taccalonolide Q, similar to other taccalonolides, is a class of highly acetoxylated pentacyclic steroids containing 28 carbons, known microtubule stabilizing cytotoxic agents isolated from the genus Tacca that have selective anti-cancer properties. Taccalonolide Q has a C2–C3 epoxide group and an enol-γ-lactone fused with the unique E ring. In addition to total antineoplastic activity with a high confidence level of 93%, taccalonolide Q demonstrates selective activity against renal cancer, sarcoma, pancreatic cancer, lymphocytic leukemia, myeloid leukemia, and genitourinary cancer.

7. Conclusions

This review focuses on a rare group of carbon-bridged steroids (CBS) and triterpenoids found in lipid extracts from various natural sources such as green, yellow-green, and red algae, sea sponges, soft corals, ascidians, starfish, and other marine invertebrates. These compounds are also found in amoebas, fungi, fungal endophytes, and plants. There are 276 steroids and triterpenoids presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. This review summarizes biological activities as experimentally obtained and published in the open press, as well as by using the extensive PASS program. We must state that two-thirds of carbon-bridged steroids and triterpenoids show moderate activity levels with 70 to 90% confidence, and only one-third of these lipids show strong antitumor activity with more than 90% confidence. All lipid material presented is divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane moiety; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane moiety; (d) CBS and triterpenoids containing cyclopentane, cyclohexane, or cycloheptane moieties. The most important conclusion shows that some CBS and triterpenoids from different lipid groups demonstrate selective action on different types of tumor cells, such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with different degree of reliability.

Author Contributions: Conceptualization, V.M.D. and V.V.P.; methodology, V.M.D.; software, T.A.G.; validation, V.M.D. and V.V.P.; formal analysis, V.V.P.; investigation, V.M.D.; data curation, V.V.P.; writing—original draft preparation, V.M.D. and V.V.P.; writing—review and editing, V.M.D. and V.V.P.; visualization, V.V.P.; supervision, V.M.D.; project administration, V.M.D.; funding acquisition, V.V.P. and T.A.G. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.

Acknowledgments: The work (GTA and PVV) was done in the framework of the Russian Federation fundamental research program for the long-term period for 2021–2030.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moss, G.P. The nomenclature of steroids. *Eur. J. Biochem.* 1989, 186, 429–458.
2. Burger, A. Cyclopropane compounds of biological interest. *Prog. Drug Res.* 1971, 15, 227–270.
3. Schoenheimer, R.; Evans, E.A., Jr. The chemistry of the steroids. *Ann. Rev. Biochem.* 1937, 6, 139–162. [CrossRef]
4. Ruhlig, W. The chemistry of the steroids. *Ann. Rev. Biochem.* 1945, 14, 225–262. [CrossRef]
5. Bergmann, W.; McLean, M.J.; Lester, D. Contributions to the study of marine products. XIII. Sterols from various marine invertebrates. *J. Org. Chem.* 1943, 8, 271–282. [CrossRef]
6. Koch, F.C. The steroids. *Ann. Rev. Biochem.* 1944, 13, 263–294. [CrossRef]
7. Kokke, W.C.M.C.; Epsteing, S.; Lookll, S.A.; Raull, G.H.; Fenicall, W.; Djerassi, C. On the origin of terpenes in symbiotic associations between marine invertebrates and algae (Zooxanthellae). *J. Biol. Chem.* 1984, 259, 8168–8173. [CrossRef]
8. Ermolenko, E.V.; Imbs, A.B.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Chemical diversity of soft coral steroids and their pharmacological activities. *Mar. Drugs* 2020, 18, 613. [CrossRef] [PubMed]
9. Ciereszko, L.S. Sterol and diterpenoid production by zooxanthellae in coral reefs: A review. *Biol. Oceanograph.* 1989, 6, 363–374.
10. Kanazawa, A. Sterols in marine invertebrates. *Fisheries Sci.* 2001, 67, 997–1007. [CrossRef]
11. Sato, S.; Ikekawa, N.; Kanazawa, A.; Ando, T. Identification of 23-demethylacanthasterol in an asteroid, Acanthaster planci and its synthesis. *Steroids* 1980, 36, 65–71.
12. Lopanik, N.B. Chemical defensive symbioses in the marine environment. *Func. Ecol.* 2014, 28, 328–340. [CrossRef]
13. Gascoigne, R.M.; Simes, J.J.H. The tetracyclic triterpenes. *Quarterly Rev. Chem. Soc.* 1955, 9, 328–361. [CrossRef]
14. Henry, J.A. Chemistry of Cycloartenol and Cyclolaudenol. Ph.D. Theses, Glasgow University, Glasgow, UK, June 1954.
15. Djerassi, C.; McCrindle, R. Terpenoids. Part LI. The isolation of some new cyclopropane-containing triterpenes from Spanish moss (*Tillandsia usneoides*, L.). *J. Chem. Soc.* 1962, 4034–4039. [CrossRef]
16. De Meijere, A. Introduction: Cyclopropanes and related rings. *Chem. Rev.* 2003, 103, 931–932. [CrossRef]
17. Wessjohann, L.A.; Brandt, W.; Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. *Chem. Rev.* 2003, 103, 1625–1648. [CrossRef]
18. Dembitsky, V.M.; Gloriozova, T.A. Astonishing diversity of carbon-bridged steroids and their biological activities: A brief review. *Eur. J. Biotechnol. Biosci.* 2018, 6, 6–23.
19. Fan, Y.Y.; Gao, X.H.; Yue, J.M. Attractive natural products with strained cyclopropane and/or cyclobutane ring systems. *Sci. China Chem.* 2016, 59, 1126–1141. [CrossRef]
20. Wang, M.; Lu, P. Catalytic approaches to assemble cyclobutane motifs in natural product synthesis. *Org. Chem. Front.* 2018, 5, 254–259. [CrossRef]
21. Namyslo, J.C.; Dieter, E. Kaufmann. The application of cyclobutane derivatives in organic synthesis. *Chem. Rev.* 2003, 103, 1485–1537. [CrossRef] [PubMed]
22. Kilimnik, A.; Dembitsky, V.M. Anti-melanoma agents derived from fungal species. *Matheus J. Pharm. Sci.* 2016, 1, 002.
23. Levitsky, D.O.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Naturally occurring isocyno/isothiocyanato compounds: Their pharmacological and SAR activities. *Matheus J. Pharm. Sci.* 2016, 1, 003.
24. Kuklev, D.V.; Dembitsky, V.M. Chemistry, origin, antitumor and other activities of fungal homo-dimeric alkaloids. *Matheus J. Pharm. Sci.* 2016, 1, 004.
25. Kilimnik, A.; Kuklev, D.V.; Dembitsky, V.M. Antitumor acetylenic lipids. *Matheus J. Pharm. Sci.* 2016, 1, 005.
26. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological and predicted activities of natural azo compounds. *Nat. Prod. Bioprospect.* 2017, 6, 1–19. [CrossRef]
27. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Biological activities of nitro steroids. *J. Pharm. Res. Intern.* 2017, 18, 1–19. [CrossRef]
28. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological and predicted activities of natural azo compounds. *Nat. Prod. Bioprospect.* 2017, 7, 151–169. [CrossRef]
29. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological activities of epithio steroids. *J. Pharm. Res. Intern.* 2017, 18, 1–19. [CrossRef]
30. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Biological activities of organometalloid (As, At, B, Ge, Si, Se, Te) steroids. *J. Appl. Pharm. Sci.* 2017, 7, 184–202.
31. Dembitsky, V.M.; Savidov, N.; Poroikov, V.V.; Gloriozova, T.A.; Imbs, A.B. Naturally occurring aromatic steroids and their biological activities. *Appl. Microbiol. Biotech.* 2018, 102, 4663–4674. [CrossRef] [PubMed]
32. Dembitsky, V.M.; Gloriozova, T.A.; Savidov, N. Steroid phosphate esters and phosphonosteroids and their biological activities. *Appl. Microbiol. Biotech.* 2018, 102, 7679–7692. [CrossRef] [PubMed]
33. Vil, V.A.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Antitumor and hepatoprotective activity of natural and synthetic neo sterols. *Prog. Lipid Res.* 2020, 79, 101048. [CrossRef][PubMed]

34. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Naturally occurring α, β-epoxy steroids: Origin and biological activities. *Prog. Lipid Res.* 2019, 70, 63–70. [CrossRef][PubMed]

35. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Naturally occurring marine a, b-epoxy steroids: Origin and biological activities. *Prog. Lipid Res.* 2018, 76–87. [CrossRef]

36. Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Hydroperoxides derived from terrestrial and aquatic sources: Origin, structures and biological activities. *Prog. Lipid Res.* 2020, 2020, 529, 1225–1241. [CrossRef][PubMed]

37. Vill, V.; Terent’ev, A.O.; Al Quntar, A.A.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Oxetane-containing metabolites: Origin, structures and biological activities. *Prog. Lipid Res.* 2018, 103, 2449–2467. [CrossRef][PubMed]

38. Vil, V.A.; Gloriozova, T.A.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. *Steroids* 2018, 140, 114–124. [CrossRef]

39. Vil, V.; Terent’ev, A.O.; Al Quntar, A.A.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Oxetane-containing metabolites: Origin, structures and biological activities. *Prog. Lipid Res.* 2019, 103, 1627–1642. [CrossRef][PubMed]

40. Vil, V.A.; Gloriozova, T.A.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Hydroperoxides derived from marine sources: Origin and biological activities. *Prog. Lipid Res.* 2019, 103, 3249–3264. [CrossRef][PubMed]

41. Vil, V.A.; Gloriozova, T.A.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Hydroperoxides and triterpenoids derived from plant and fungi: Origin, structures and biological activities. *J. Steroid Biochem. Mol. Biol.* 2019, 190, 76–87. [CrossRef]

42. Dembitsky, V.M.; Gloriozova, T.A.; Terent’ev, A.O.; Zhukova, N.V.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from terrestrial and aquatic sources: Origin, structures and biological activities. *Vietnam. J. Chem.* 2019, 57, 1–15. [CrossRef]

43. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Naturally occurring α, β-diepoxide-containing compounds: Origin, structures, and biological activities. *Prog. Lipid Res.* 2019, 103, 3249–3264. [CrossRef][PubMed]

44. Vill, V.; Terent’ev, A.O.; Al Quntar, A.A.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Oxetane-containing metabolites: Origin, structures and biological activities. *Prog. Lipid Res.* 2018, 103, 2449–2467. [CrossRef][PubMed]

45. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V.; D’yakonov, D. Natural and synthetic drugs used for the treatment of the neurodegenerative diseases. *Biochem. Biophys. Res. Commun.* 2020, 58, 273–280. [CrossRef][PubMed]

46. Dyslohoj, S.A.; Honecker, H. Marine compounds and cancer: Updates 2020. *Mar. Drugs* 2020, 18, 643. [CrossRef]

47. Mitomo, H.; Shirato, N.; Hoshino, A.; Miyaoa, H.; Yamada, Y.; Yamada, Y.; Van Soest, R.W.M. New polyhydroxylated sterols from Ficus krishnae. *PLoS ONE* 2019, 14, 439–443. [CrossRef]

48. Zhang, W.H.; Zhong, H.M.; Che, C.T. Cycloartanes from the red alga Galaxaura sp. *J. Asian Nat. Prod. Res.* 2005, 7, 99–65. [CrossRef]

49. Goad, L.J.; Goodwin, T.W. Studies in phytosterol biosynthesis: Observations on the biosynthesis of fucosterol in the marine brown alga Fucus spiralis. *Eur. J. Biochem.* 1969, 7, 502–508. [CrossRef][PubMed]

50. Thyagarajan, S.; Johnson, A.J. Antidiabetes constituents, cycloartenol and 24-methyl-encycloartanol, from Ficus krishnae. *PLoS ONE* 2020, 15, e0235221. [CrossRef][PubMed]

51. Gibbons, G.F.; Goad, L.J.; Goodwin, T.W. The identification of 28-isofucosterol in the marine green alga Enteromorpha intestinalis and Ulva lactuca. *Phytochemistry* 1968, 7, 983–988. [CrossRef]

52. Anding, C.; Brandt, R.D.; Ourisson, G. Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown *Euglena gracilis* Z. *Eur. J. Biochem.* 1971, 24, 259–263. [CrossRef][PubMed]

53. Mercer, E.I.; Harries, W.B. The mechanism of alkylolation at C-24 during clionasterol biosynthesis in *Monodus subterraneus*. *Phytochemistry* 1975, 14, 439–443. [CrossRef]

54. Karunen, P.; Nikola, H.; Ekman, R. Separation and analysis of sterol and wax esters from *Dicranum elongatum*. *Physiol. Plantarum* 1980, 49, 351–353. [CrossRef]

55. Miller, M.B.; Haubrich, B.A.; Wang, Q.; Snell, W.J.; Nes, W.D. Evolutionarily conserved 25(27) -olefin ergosterol biosynthesis pathway in the alga *Chlamydomonas reinhardtii*. *J. Lipid Res.* 2012, 53, 1636–1645. [CrossRef][PubMed]

56. Tsai, L.B.; Patterson, G.W. The metabolism of cycloartenol, lanosterol, 24-methylene-cholesterol and fucosterol in Chlorella ellipsoidea. *Phytochemistry* 1976, 15, 1131–1133. [CrossRef]

57. Nes, W.D.; Norton, R.A.; Crumley, F.G.; Madigan, S.J.; Katz, E.R. Sterol phylogenics and algal evolution. *Proc. Natl. Acad. Sci. USA* 1990, 87, 7565–7569. [CrossRef][PubMed]

58. Yoshida, M.; Ioki, M.; Matsuura, H.; Hashimoto, A.; Hashimoto, A.; Kaya, K.; Nobuyoshi, N. Diverse steroidogenic pathways in the marine alga *Aurantiochytrium* J. *Appl. Phycol.* 2020, 32, 1631–1642. [CrossRef]

59. Calegario, G.; Pollier, J.; Arendt, P.; de Oliveira, L.S.; Thompson, C.; Soares, A.R. Cloning and functional characterization of cycloartenyl synthase from the red seaweed *Laurencia dendroides*. *PLoS ONE* 2016, 11, e0165954. [CrossRef]

60. Raederstorff, D.; Rohmer, M. Sterols of the unicellular algae Nematoclados rossofis and *Chrysothamnella lamellosa*: Isolation of (24E)-24-n-propyldienecholesterol and 24-n-propylcholesterol. *Phytochemistry* 1984, 298, 631–634. [CrossRef]
61. Raederstorff, D.; Rohmer, M. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoebae Naegleria louniænisis and Naegleria gruberi. Eur. J. Biochem. 1987, 164, 427–434. [CrossRef]

62. Milankovic, M. Probing Sterol Biosynthesis Checkpoint Enzymes in Naegleria gruberi for Treatment of Amoeba Diseases. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, May 2017.

63. Raederstorff, D.; Rohmer, M. Sterol biosynthesis de novo via cycloartenol by the soil amoeba Acanthamoeba polyphaga. Biochem. J. 1985, 231, 609–615. [CrossRef]

64. Puglisi, M.F.; Tan, L.T.; Jensen, P.R.; Fenical, W. Capisterones A and B from the tropical green alga Penicillus capitatus: Unexpected anti-fungal defenses targeting the marine pathogen Limnra thalassiae. Tetrahedron 2004, 60, 7035–7039. [CrossRef]

65. Patil, A.D.; Freyer, A.J.; Killmer, L.; Breen, A.; Johnson, R.K. A new cycloartenol sulfate from the green alga Tuemaya sp.: An inhibitor of VZV protease. Nat. Prod. Lett. 1997, 9, 209–215. [CrossRef]

66. Govindan, M.; Abbas, S.A.; Schmitz, F.J.; Lee, R.H.; Papkoff, J.S.; Slate, D.L. New cycloartenol sulfates from the alga Tydeleana expeditionis: Inhibitors of the protein tyrosine kinase pp60-src. J. Nat. Prod. 1994, 57, 74–78. [CrossRef] [PubMed]

67. Tran, T.V.A.; Nguyen, V.M.; Nguyen, T.A.N.; Nguyen, D.H.T.; Tran, D.H.; Bui, T.P.T.; Pham, V.T.; Nguyen, T.N. New triterpene sulfates from Vietnamese red alga Tricleocarpa fragilis and their α-glucosidase inhibitory activity. J. Asian Nat. Prod. Res. 2020. [CrossRef] [PubMed]

68. Makarieva, T.N.; Stonik, V.A.; Kapustina, I.I.; Boguslavsky, V.M.; Dmitrenoik, A.S.; Kalinin, V.I.; Cordeiro, M.L.; Djerassi, C. A new cycloartenol sulfate from the green alga Kjellmaniella crassifolia. Chem. Nat. Compd. 2012, 48, 158–160. [CrossRef]

69. Wu, Z.H.; Liu, T.; Gu, C.X. Steroids and triterpenoids from the brown alga Kjellmaniella crassifolia. Chin. J. Ocean. Limnol. 2006, 24, 443–448. [CrossRef]

70. Wang, N.; Xu, G.; Fang, Y.; Yang, T.; Zhao, H.; Li, G. New flavanoid and cycloartenol glucosides from Landoltia punctata. Molecules 2014, 19, 6623–6634. [CrossRef]

71. Li, C.; Wang, F.; Wu, X.; Cao, S. A new 24-homo-30-nor-cycloartenol triterpenoid from a Hawaiian endophytic fungal strain. Tetrahedron Lett. 2020, 61, 151508. [CrossRef] [PubMed]

72. Han, M.J.; Qin, D.; Ye, T.T.; Yan, X.; Wang, J.Q.; Duan, X.X. An endophytic fungus from Trichoderma harzianum SWUKD.1610 that produces nigranoic acid and its analogues. Nat. Prod. Res. 2019, 33, 2079–2087. [CrossRef] [PubMed]

73. Wang, L.; Qin, D.; Zhang, K.; Huang, Q.; Liu, S.; Han, M.J.; Dong, J.Y. Metabolites from the co-culture of nigranoic acid and its analogues and related triterpenoids in in vitro and in vivo models. J. Nat. Prod. 2017, 80, 1003–1006. [CrossRef] [PubMed]

74. Han, M.J.; Qin, D.; Ye, T.T.; Yan, X.; Wang, J.Q.; Duan, X.X. An endophytic fungus from Trichoderma harzianum SWUKD.1610 that produces nigranoic acid and its analogues. Nat. Prod. Res. 2019, 33, 2079–2087. [CrossRef] [PubMed]

75. Wang, L.; Qin, D.; Zhang, K.; Huang, Q.; Liu, S.; Han, M.J.; Dong, J.Y. Metabolites from the co-culture of nigranoic acid and its analogues. Nat. Prod. Res. 2017, 31, 1414–1421. [CrossRef] [PubMed]

76. Wang, L.; Qin, D.; Zhang, K.; Huang, Q.; Liu, S.; Han, M.J.; Dong, J.Y. Metabolites from the co-culture of nigranoic acid and its analogues. Nat. Prod. Res. 2017, 31, 1414–1421. [CrossRef] [PubMed]

77. Akihisa, T.; Watanabe, K.; Yoneima, K.; Suzuki, T.; Kimura, Y. Biotransformation of cycloartane-type triterpenes by the fungus Penicillus capitatus: Unexpected anti-fungal defenses targeting the marine pathogen Limnra thalassiae. Tetrahedron 2004, 60, 7035–7039. [CrossRef]

78. Berti, G.; Bottari, F.; Marsili, A.; Morelli, I.; Polvani, M.; Mandelbaum, A. 30-Nor-cycloartenol and cycloartenol from Polypodium vulgare. Tetrahedron Lett. 1967, 8, 125–130. [CrossRef]

79. Aljubiri, S.M.; Mahgou, S.A.; Almansour, A.I.; Shaaban, M.; Shaker, K.H. Isolation of diverse bioactive compounds from Euphorbia balsamifera: Cytotoxicity and antibacterial activity studies. Saudi J. Biol. Sci. 2021, 28, 417–426. [CrossRef]

80. Tavarez-Santamaría, Z.T.; Jacobo-Herrera, N.J.; Rocha-Zavaleta, L.; Zentella-Dehesa, A.; del Carmen Couder-García, B.; Martinez-Vázquez, M. A higher frequency administration of the nontoxic cycloartane-type triterpene argentatin A improved its anti-tumor activity. Molecules 2020, 25, 1780. [CrossRef]

81. Shetha, N.; Li, B.; Cao, L.; Zhao, J.; Jian, Y.; Daniya, M. Xuetonglactones A–F: Highly oxidized lanostane and cycloartenol triterpenoids from Kadsura heteroclitca Roxb. Crainb. Front. Chem. 2020, 7, 935. [CrossRef]

82. Silva, C.J.; Djerassi, C. Isolation, stereochemistry, and biosynthesis of Šormosterol, a novel cyclopropane-containing sponge sterol. Coll. Czech. Chem. Comm. 1991, 56, 1093–1105. [CrossRef]

83. Sun, H.; Liu, B.; Hu, J. Novel cycloartenol triterpenoid from Cimicifuga foetida (Sheng ma) induces mitochondrial apoptosis via inhibiting Raf/MEK/ERK pathway and Akt phosphorylation in human breast carcinoma MCF-7 cells. Chin. Med. 2016, 11, 1. [CrossRef] [PubMed]

84. Qiu, F.; Liu, H.; Duan, H.; Chen, P.; Lu, S.J.; Yang, G.Z.; Lei, X.X. Isolation, structural elucidation of three new triterpenoids from the stems and leaves of Schisandra chinensis (Turcz) Baill. Molecules 2018, 23, 1624. [CrossRef] [PubMed]

85. Nian, Y.; Yang, J.; Liu, T.T.; Luo, Y.; Zhang, J.H.; Qiu, M.H. New anti-angiogenic leading structure discovered in the fruit of Cimicifuga yuananensis. Scient. Rep. 2015, 5, 9026. [CrossRef]

86. Yang, J.H.; Pu, J.X.; Wen, J.; Li, X.N.; He, F.; Su, J.; Li, Y.; Sun, H.D. Unusual cycloartenol triterpenoids from Kadsura ananassa. Phytochemistry 2015, 109, 36–42. [CrossRef]

87. Kuang, H.; Su, Y.; Yang, B.; Xia, Y.; Wang, Q.; Wang, Z.; Yu, Z. Three new cycloartenol triterpenoid saponins from the roots of Cimicifuga simplex Wormsk. Molecules 2011, 16, 4348–4357. [CrossRef] [PubMed]
115. Chen, J.J.; Li, Z.M.; Gao, K.; Chang, J.; Yao, X.J. Vladimuliecin A and B: Cytotoxic pentacyclic pregnanols from Vladimiria muriensis. J. Nat. Prod. 2009, 72, 1128–1132. [CrossRef] [PubMed]

116. Zhang, H.; Bazell, J.; Gallagher, R.J.; Subramanian, C.; Grogan, P.T.; Day, V.W.; Kindscher, K.; Cohen, M.S.; Timmermann, B.N. Antiproliferative withanolides from Datura wrightii. J. Nat. Prod. 2013, 76, 445–449. [CrossRef] [PubMed]

117. Zhang, H.; Cao, C.M.; Gallagher, R.J.; Day, V.W.; Kindscher, K.; Timmermann, B.N. Withanolides from Physalis coztomatl. Phytochemistry 2015, 109, 147–153. [CrossRef] [PubMed]

118. Zhu, X.H.; Ando, J.; Takagi, M.; Ikeda, T.; Yoshimitsu, A.; Nohara, T. Four novel withanolide-type steroids from the leaves of Solanum cistum. Chem. Pharm. Bull. 2003, 19, 1440–1443. [CrossRef]

119. Patel, D.K.; Petrow, V.; Stuart-Webb, I.A. Minor and trace sterols in marine invertebrates 52. isolation, structure elucidation and partial synthesis of Poecilliastrosides, steroidal saponins from the Mediterranean deep-sea sponge Peridinium foliaceum. Mar. Drugs 2001, 49, 682–690. [CrossRef]

120. Misico, R.I.; Nicotra, V.E.; Oberbit, J.C.; Barboza, G.; Gil, R.R.; Burton, G. Withanolides and related steroids. Prog. Chem. Org. Nat. Prod. 2011, 94. [CrossRef]

121. Makino, B.; Kawai, M.; Kito, K.; Yamamura, H.; Butsugan, Y. New Physalis possessing an additional carbon-carbon bond from Physalis alkekengi var. franchetii. Tetrahedron 1995, 51, 12529. [CrossRef]

122. Yokosuka, A.; Mimaki, Y.; Sashida, Y. Four new 3,5-cyclosteroidal saponins from Dracaena surculosa. Chem. Pharm. Bull. 2002, 50, 992–995. [CrossRef] [PubMed]

123. Peng, X.-R.; Huang, Y.-J.; Lu, S.-Y.; Yang, J.; Qiu, M.-H. Ganolearic acid A, a hexanorlanostane triterpenoid with a 3/5/6/5-fused tetra cyclic skeleton from Ganoderma conchile. J. Org. Chem. 1998, 83, 13178. [CrossRef] [PubMed]

124. Iguchi, K.; Fujita, M.; Nagaoka, H.; Mitome, H.; Yamada, Y. Aragusterol A: A potent antitumor marine steroid from the okinawan marine sponge of the genus Xestospongia. Tetrahedron Lett. 1993, 34, 6677–6680. [CrossRef]

125. Iguchi, K.; Shimura, H.; Ibara, T.; Yokoo, C.; Matsumoto, K.; Yamada, Y. Aragusterol B and D, new 26,27-cyclosterols from the Okinawan marine sponge of the genus Xestospongia. J. Org. Chem. 1994, 59, 7499–7502. [CrossRef]

126. Giner, J.-L.; Gunasekera, S.P.; Pomponi, S.A. Synthesis of (24R,28R)-and (24S,28S)-24,28-methylene-5-stigmasten-3β-ol and their cytotoxicity. J. Org. Chem. 1984, 49, 3742–3752. [CrossRef]

127. Giner, J.L.; Zimmerman, M.P.; Djerassi, C. Mechanism of action of aragusterol a (YTA0040), a potent anti-tumor marine steroid targeting the G1 phase of the cell cycle. Int. J. Cancer 2000, 88, 810–819. [CrossRef]

128. Levina, E.V.; Kalinovsky, A.I.; Andriyashchenko, P.V.; Dmitrenok, P.S.; Aminin, D.L.; Stonik, V.A. Phrygiasterol, a cytotoxic 6,8-Hydroxy-3,5-cyclopregnan-20-one and some related compounds. J. Org. Chem. 1995, 59, 7499–7503. [CrossRef] [PubMed]

129. Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Sterols from Thai marine sponge Poecillastra compressa. J. Org. Chem. 1994, 68, 1541–1544. [CrossRef] [PubMed]

130. Chen, J.J.; Li, Z.M.; Gao, K.; Chang, J.; Yao, X.J. Vladimuliecin A and B: Cytotoxic pentacyclic pregnanols from Vladimiria muriensis. J. Nat. Prod. 2009, 72, 1128–1132. [CrossRef] [PubMed]

131. Sheikh, Y.M.; Djerassi, C.; Tursch, B.M. AcansteroI: A cyclopropane-containing marine sterol from Acanthaster planci. J. Chem. Soc. 1971, 2, 217–218. [CrossRef]

132. Alam, M.; Martin, G.E.; Ray, S.M. Dinoflagellate sterols. 2. Isolation and structure of 4-methylgorgostanol from the dinoflagellate Glenodinium fowleri. J. Chem. Soc. 1979, 44, 466–467. [CrossRef]

133. Withers, N.W.; Kokke, W.C.M.C.; Rohmer, M.; Fenical, W.H.; Djerassi, C. Isolation of sterols with cyclopropyl-containing side chains from the cultured marine alga Peridinium fowleri. Tetrahedron Lett. 1979, 19, 3605–3609. [CrossRef]

134. Kobayashi, M.; Ishizaka, T.; Mitsuhashi, H. Marine sterols X. Minor constituents of the sterols of the soft coral Sarcophyton glaucum. Steroids 1982, 40, 209–221. [CrossRef]

135. Calabro, K.; Kalahroodi, E.L.; Rodrigues, D.; Diaz, C.; de la Cruz, M.; Cauvin, B.; Laville, R.; Reyes, F.; Perez, T.; Soussi, B.; et al. Pocellastrosides, steroid saponins from the Mediterranean deep-sea sponge Poccillastra compressa (Bowerbank, 1866). Mar. Drugs 2017, 15, 199. [CrossRef] [PubMed]

136. Lee, K.; Lee, Y.; Cho, S.; Shin, J. Isolation of epoxyoxygenides from a sponge of the genus Tethya. Bull. Korean Chem. Soc. 1997, 18, 631–635. [CrossRef] [PubMed]

137. Gunasekera, S.P.; Crannick, S.; Pomponi, S.A. New sterol ester from a deep-water marine sponge, Xestospongia sp. J. Nat. Prod. 1991, 54, 1119–1122. [CrossRef]

138. Ha, T.B.; Djerassi, C. Minor and trace sterols in marine invertebrates 52. isolation, structure elucidation and partial synthesis of 24-propyl-24, 28-methylenecholest-5-en-3β-ol. Tetrahedron Lett. 1985, 26, 4031–4034. [CrossRef]

139. Giner, J.L.; Djerassi, C. Biosynthetic studies of marine lipids. 40. Generation of the cyclopropane ring of soroasterol. Acta Chem. Scand. 1992, 46, 678–679. [CrossRef] [PubMed]

140. Iwashima, M.; Nara, K.; Iguchi, K. New marine steroids, yonarasterols, isolated from the Okinawan soft coral, Clavularia viridis. Steroids 2000, 65, 130–137. [CrossRef]
174. Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. *Phytomediticine* **2014**, *21*, 1599–1581. [CrossRef] [PubMed]

175. Zimmerman, N.B.; Vitousek, P.M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 13022–13027. [CrossRef]

176. Li, J.; Gao, K.; Bian, M.; Ding, H. Recent advances in the total synthesis of cyclobutane-containing natural products. *Org. Chem. Front.* **2020**, *7*, 136–154. [CrossRef]

177. Dembitsky, V.M.; Rezanka, T. Metabolites produced by nitrogen fixing Nostoc species. *Folia Microbiol.* **2005**, *50*, 363–391. [PubMed]

178. Rezanka, T.; Dembitsky, V.M. Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. *Folia Microbiol.* **2006**, *51*, 159–182. [CrossRef] [PubMed]

179. Song, Y.Y.; Miao, J.H.; Qin, F.Y.; Yan, Y.M.; Yang, J.; Cheng, Y.X. Belamchianines A–D from *Belamcanda chinensis*: Triterpenoids with an unprecedented carbon skeleton and their activity against age-related renal fibrosis. *Org. Lett.* **2018**, *20*, 5506–5509. [CrossRef] [PubMed]

180. Wang, C.F.; Liu, J.Q.; Yan, Y.X.; Chen, J.C.; Lu, Y.; Guo, Y.H.; Qiu, M.H. Three new triterpenoids containing four-membered ring from the fruiting body of *Ganoedera sinense*. *Org. Lett.* **2010**, *12*, 1656–1659. [CrossRef]

181. Fossen, T.; Rasoanaivo, P.; Manjovelo, C.S.; Raharinjato, H.F.; Sviatlana Yahorava, S.; Yahorau, A.; Wikberg, J.E.S. A new protolimonoid from *Capuromanius mahafalensis*. *Fitoterapia* **2012**, *83*, 901–906. [CrossRef] [PubMed]

182. Schenk, H.; Driessen, R.A.J.; de Gelder, R.; Goubitz, K. Elucidation of the structure of solanocelepín A, a natural hatching factor of tomato and potato cyst nematodes, by single-crystal x-ray diffraction. *Croat. Chem. Acta* **1999**, *72*, 593–606.

183. Luo, J.; Tian, X.; Zhang, H.; Zhou, M.; Li, J.; Kong, L. Two rare limonoids from the stem barks of *Entandrophragma utile*. *Tetrahedron Lett.* **2016**, *57*, 5334–5337. [CrossRef]

184. Mulholland, D.A.; Schwickard, S.L.; Sandor, P.; Nuzillard, J.M. *Delevoyin C*, a tetranortriterpenoid from *Croton limae* (Euphorbiaceae). *J. Braz. Chem. Soc.* **2015**, *26*, 1565–1572.

185. Li, H.-J.; Amagata, T.; Tenny, K.; Crews, P. Additional scalarane sesterterpenes from the sponge *Phyllospongia papyracea*. *J. Nat. Prod.* **2007**, *70*, 802. [CrossRef]

186. Jahn, T.; König, G.M.; Wright, A.D. Three new scalarane-based sesterterpenes from the tropical marine sponge *Strepsiodora* *lendenfeldi*. *J. Nat. Prod.* **1999**, *62*, 375–377. [CrossRef]

187. Hassan, M.H.A.; Rateb, M.E.; Hetta, M.; Abdelaziz, T.A.; Sielem, M.A.; Jaspars, M.; Mohammed, R. Scalarane sesterterpenes from the Egyptian Red Sea sponge *Carteriospongia foliascens*. *Tetrahedron* **2015**, *71*, 577–583. [CrossRef]

188. Braekman, J.C.; Daloze, D.; Kaisin, M.; Moussiaux, B. Ichthyotoxic sesterterpenoids from the neo guinean sponge *Carteriospongia foliascens*. *Tetrahedron* **1985**, *41*, 4603–4614. [CrossRef]

189. Braekman, J.C.; Daloze, D.; Kaisin, M.; Moussiaux, B. Erratum: Ichthyotoxic sesterterpenoids from the neo guinean sponge *Carteriospongia foliascens*. *Tetrahedron* **1986**, *42*, 445–448. [CrossRef]

190. Braekman, J.C.; Daloze, D. Chemical defence in sponges. *Pure Appl. Chem.* **1986**, *58*, 357–364. [CrossRef]

191. Cao, F.; Wu, Z.H.; Shao, C.L.; Pang, S.; Liang, X.Y.; de Voogd, N.J.; Wang, C.Y. Cytotoxic scalarane sesterterpenoids from the Egyptian Red Sea sponge *Carteriospongia lamellosa*. *Tetrahedron* **2015**, *71*, 4580–4583. [CrossRef]

192. Hoffmann, P.; Kathiriarachchi, H.S.; Wurdack, K.J. A phylogenetic classification of phyllanthaceae. *Kew Bulletin.* **2006**, *61*, 37–53.

193. Xia, Y.; Luo, H.; Liu, J.P.; Glaud, C. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection. *Cochrane Database Syst. Rev.* **2013**, *4*, CD009004. [CrossRef] [PubMed]

194. Fan, Y.Y.; Zhang, H.; Zhou, Y.; Liu, H.B.; Tang, W.; Zhou, B.; Zuo, J.P.; Yue, J.M. Phainanolides A–F, a new class of potent immunosuppressive triterpenes with an unprecedented carbon skeleton from *Phyllanthus hainanensis*. *J. Nat. Chem.* **2015**, *137*, 138–141. [CrossRef]

195. Fan, Y.Y.; Gan, L.S.; Liu, H.C.; Li, H.; Xu, C.H.; Zuo, J.P.; Ding, J.; Yue, J.M. Phainanolide A, highly modified and oxygenated triterpenoid from *Phyllanthus hainanensis*. *Org. Lett.* **2017**, *19*, 4580–4583. [CrossRef]

196. Mahler, S.; Rasool, S.; Mehmdood, R.; Perveen, S.; Tareen, R.B. Trichosides A and B, new withanolide glucosides from *Tricholepis eburnea*. *Nat. Prod. Res.* **2018**, *32*, 1–6. [CrossRef]

197. Ganesh, M.; Mohankumar, M. Extraction and identification of bioactive components in *Sida cordata* (Burm.f.) using gas chromatography–mass spectrometry. *J. Food Sci. Technol.* **2017**, *54*, 3082–3091. [CrossRef]

198. Jacobs, H.J.C. Photochemistry of conjugated trienes: Vitamin D revisited. *Pure Appl. Chem.* **1995**, *67*, 63–70. [CrossRef]

199. Khripacha, V.A.; Zhabinskii, V.N.; Fando, G.P.; Kuchto, A.I.; Khripacha, N.B.; Groen, M.B.; van der Louw, J.; de Groot, A. A new type of steroids with a cyclobutane fragment in the AB-ring moiety. *Stereoids* **2006**, *71*, 445–449. [CrossRef] [PubMed]

200. Wammer, K.H.; Anderson, K.C.; Erickson, P.R.; Kliegman, S.; Moffatt, M.E.; Berg, S.M.; Heitzman, J.A. Environmental photochemistry of altrenogest: Photosimerization to a bioactive product with increased environmental persistence via reversible photohydration. *Environ. Sci. Technol.* **2016**, *50*, 7480–7488. [CrossRef]
203. Yan, P.; Zhou, Q.; Chen, J.; Lu, P. Controllable skeleton rearrangement of 3-substituted cyclobutanones under basic conditions. *Chin. J. Chem.* 2020, **38**, 1103–1106. [CrossRef]

204. Kamernitskii, A.V.; Ignatov, V.N.; Levina, I.S. Photochemical methods for the construction of an additional four-membered carbocycle in steroids. *Russ. Chem. Rev.* 1988, **57**, 270–282. [CrossRef]

205. Muller, E. *Methoden der Organischen Chemie (Houben-Weyl)*; G. Thieme Verlag: Stuttgart, Germany, 1971.

206. Peet, N.P.; Johnston, J.O.; Burkhart, J.P.; Wright, C.L. A-ring bridged steroids as potent inhibitors of aromatase. *J. Steroid Biochem. Mol. Biol.* 1993, **44**, 409–420. [CrossRef]

207. Cross, A.D. Process for Conversion of 2,19-cyclo-steroids into 10 alpha-Stereoids. U.S. Patent 3,139,426, 30 June 1964.

208. Nagata, W.; Narisada, M.; Wakabashi, T.; Hayase, Y.; Murakami, M. Synthesis of bridged steroids. VI. B-norsteroids having a gibbane B-C-D ring system. Synthesis of 5-cyano-B-norsteroids via hydrocyanation. *Chem. Pharm. Bull.* 1971, **19**, 1567–1581. [CrossRef]

209. Di Chenna, P.H.; Veleiro, A.S.; Sonego, J.M.; Ceballos, N.R.; Garland, M.T.; Baggiod, R.F.; Burton, B. Synthesis of 6,19-cyclopregnanes. Constrained analogues of steroid hormones. *Org. Biomol. Chem.* 2007, **5**, 2453–2457. [CrossRef]

210. Johnston, J.O.; Wright, C.L.; Burkhart, J.P.; Peet, N.P. Biological characterization of A-ring steroids. *J. Steroid Biochem. Mol. Biol.* 1993, **44**, 623–631. [CrossRef]

211. Shoji, N.; Umeayama, A.; Shin, K.; Takeda, K.; Arihara, S.; Kobayashi, J.; Takei, M. Two unique pentacyclic steroids with cis C/D ring junction from Xestospongia bergquistia Fromont, powerful inhibitors of histamine release. *J. Org. Chem.* 1992, **57**, 2996–2997. [CrossRef]

212. Kobayashi, J.; Shinonaga, H.; Shigemori, H.; Umeyama, A.; Shoji, N.; Arihara, S. Xestobergsterol C, a new pentacyclic steroid from the Okinawan marine sponge *Ircinia* sp. and absolute stereochemistry of xestobergsterol A. *J. Nat. Prod.* 1995, **58**, 312–318. [CrossRef]

213. Nicotra, V.E.; Gil, R.R.; Vaccarini, C.; Oberti, J.C.; Burton, G. 15,21-Cyclowithanolides from *Jaborosa bergii*. *J. Nat. Prod.* 2003, **66**, 1471–1479. [CrossRef]

214. Amagata, T.; Minoura, K.; Numata, A. Gymnasterones, novel cytotoxic metabolites produced by a fungal strain from a sponge. *Tetrahedron Lett.* 1998, **39**, 3773. [CrossRef]

215. Chakravarty, A.K.; Pakrashi, S.C. Solanocastine, a unique 16,23-cyclo-22,26-epiminocholestane from *Solanum capsicastrum*. *Tetrahedron Lett.* 1987, **28**, 4753–4756. [CrossRef]

216. Monteagudo, E.S.; Oberti, J.C.; Gros, E.G.; Burton, G. A spiranic withanolide from *Jaborosa odorantiana*. *Phytochemistry* 1990, **29**, 933–939. [CrossRef]

217. Ciriglano, A.M.; Veleiro, A.S.; Bonetto, G.M.; Oberti, J.C.; Burton, G. Spiranoid withanolides from *Jaborosa runcinata* and *Jaborosa arucana*. *J. Nat. Prod.* 1996, **59**, 717–724. [CrossRef]

218. Ciriglano, A.M.; Veleiro, A.S.; Oberti, J.C.; Burton, G. Spiranoid withanolides from *Jaborosa odorantiana*. *J. Nat. Prod.* 2002, **65**, 1049–1052. [CrossRef] [PubMed]

219. Ciriglano, A.M.; Misico, R.I. Spiranoid withanolides from *Jaborosa odorantiana* and *Jaborosa runcinata*. *Z. Nat. B Chem. Sci.* 2005, **60**, 867–871. [CrossRef]

220. Guella, G.; Dini, F.; Pietra, F. Metabolites with a novel C30 backbone from marine ciliates. *Angew. Chem. Int. Ed.* 1999, **38**, 1134–1136. [CrossRef]

221. Nicolau, K.C.; Zhang, H.; Ortiz, A.; Daganeau, P. Total synthesis of the originally assigned structure of vannusal B. *Angew. Chem. Int. Ed.* 2008, **47**, 8605–8610. [CrossRef] [PubMed]

222. Nicolau, K.C.; Zhang, H.; Ortiz, A. The true structures of the vannusals, part 1: Initial forays into suspected and intelligence gathering. *Angew. Chem. Int. Ed.* 2009, **48**, 5642–5647. [CrossRef]

223. Nicolau, K.C.; Ortiz, A.; Zhang, H. The true structures of the vannusals, part 2: Total synthesis and revised structure of vannusal B. *Angew. Chem. Int. Ed.* 2009, **48**, 5648–5652. [CrossRef] [PubMed]

224. Nicolau, K.C.; Ortiz, A.; Zhang, H.; Daganeau, P.; Lanver, A.; Jennings, M.P.; Arseniyadis, S.; Faraoni, R.; Lizos, D.E. Total synthesis and structural revision of vannusals A and B: Synthesis of the originally assigned structure of vannusal B. *J. Am. Chem. Soc.* 2010, **132**, 7138–7152. [CrossRef]

225. Nicolau, K.C.; Ortiz, A.; Zhang, H.; Guella, G. Total synthesis and structural revision of vannusals A and B: Synthesis of the true structures of vannusals A and B. *J. Am. Chem. Soc.* 2010, **132**, 7153–7176. [CrossRef] [PubMed]

226. Wang, F.; Ren, F.C.; Liu, J.-K. Alstonic acids A and B, unusual 2, 3-secoferane triterpenoids from *Alstonia scholaris*. *Phytochemistry* 2009, **70**, 650–654. [CrossRef] [PubMed]

227. Yates, P.; Douglas, S.P.; Datta, S.K.; Sawyer, J.F. Bridged-ring steroids. V. The total synthesis of 1,4-methano steroids by a modified Torgov sequence. *Can. J. Chem.* 1988, **66**, 2268–2278. [CrossRef]

228. Yates, P.; Walliser, F.M. The reaction of steroid 2, 4-dienes with acetylenes. *J. Chem.* 1976, **54**, 3508–3516. [CrossRef]

229. Hanson, J.R. Steroids: Partial synthesis in medicinal chemistry. *Nat. Prod. Rep.* 2010, **27**, 887–899. [CrossRef]

230. Douglas, S.P.; Sawyer, J.F.; Yates, P. (±)-14[b]-Hydroxy-1[b], 4[b]-methano-5[b], 8[a],9[b]-androstan-7, 17-dione. *Acta Crystal.* 1987, **C43**, 1372–1375. [CrossRef]
246. Overton, C.E.

247. Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Poroikov, V.V. Online resources for the estimation of drug-target residence times by molecular dynamics simulations.

248. Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D. Estimation of drug-target residence times by molecular dynamics simulations. *J. Chem. Theor. Comput.* 2018, 14, 3859–3869. [CrossRef]

249. Meyer, H. Zur Theorie der Alcoholnarkose. *Arch. Exp. Path. Pharm.* 1899, 42, 109–118. [CrossRef]

250. Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. *J. Am. Chem. Soc.* 1964, 86, 1616–1626. [CrossRef]

251. Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. *Beilstein J. Org. Chem.* 2016, 12, 2694–2718. [CrossRef]

252. Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. *J. Chem. Theor. Comput.* 2018, 14, 3859–3869. [CrossRef]

253. Cherkasov, A.M.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J. QSAR modeling: Where have you been? Where are you going to? *J. Med. Chem.* 2014, 57, 4977–5010. [CrossRef]

254. Burov, Y.V.; Poroikov, V.V.; Korolchenko, L.V. National system for registration and biological testing of chemical compounds: Facilities for new drugs search. *Bull. Natl. Center Biol. Act. Comp.* 1990, 1, 4–25. [CrossRef]

255. Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.; Filimonov, D.; Poroikov, V.; Oprea, T. QSAR without borders. *Chem. Soc. Rev.* 2020, 49, 3525–3564. [CrossRef]

256. Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Rudik, A.V. Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. *Russ. Chem. Bull.* 2019, 68, 2143–2154. [CrossRef]

257. Filimonov, D.A.; Druzhilovskiy, D.S.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Dmitriev, A.V.; Pogodin, P.V.; Poroikov, V.V. Computer-aided prediction of biological activity spectra for chemical compounds: Opportunities and limitations. *Biom. Chem. Res. Method* 2018, 1, e00004. [CrossRef]

258. Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskiy, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. *Chem. Heterocycl. Compd.* 2014, 50, 444–457. [CrossRef]

259. Anusevicius, K.; Mickevicius, V.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavets, O.; Novikov, V.; Tarasova, O.; Gloriozova, T.; Poroikov, V. Design, synthesis, in vitro antimicrobial activity evaluation and computational studies of new N-(4-iodophenyl)—Alanine derivatives. *Res. Chem. Intermed.* 2015, 41, 7517–7540. [CrossRef]

260. Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Poroikov, V.V. Online resources for the prediction of biological activity of organic compounds. *Russ. Chem. Bull.* 2016, 65, 384–393. [CrossRef]

261. Murtazalieva, K.A.; Druzhilovskiy, D.S.; Goel, R.K.; Sastry, G.N.; Poroikov, V.V. How good are publicly available web services that predict bioactivity profiles for drug repurposing? *SAR QSAR Environ. Res.* 2017, 28, 843–862. [CrossRef]
264. PASS Online URL. Available online: http://www.way2drug.com/passonline/ (accessed on 29 April 2021).

265. Lagunin, A.A.; Goel, R.K.; Gawande, D.Y.; Priynka, P.; Gloriozova, T.A.; Dmitriev, A.V.; Ivanov, S.M.; Rudik, A.V.; Konova, V.I.; Pogodin, P.V. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Nat. Prod. Rep. 2014, 31, 1585–1611. [CrossRef]

266. Goel, R.K.; Poroikov, V.; Gawande, D.; Lagunin, A.; Randhawa, P.; Mishra, A. Revealing medicinal plants useful for comprehensive management of epilepsy and associated co-morbidities through in silico mining of their phytochemical diversity. Planta Med. 2015, 81, 495–506.

267. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Naturally occurring plant isoquinoline N-oxide alkaloids: Their pharmacological and SAR activities. Phytomedicine 2015, 22, 183–202. [CrossRef] [PubMed]

268. Gawande, D.Y.; Druzhilovsky, D.; Gupta, R.C.; Poroikov, V.; Goel, R.K. Anticonvulsant activity and acute neurotoxic profile of Achyranthes aspera Linn. J. Ethnopharmacol. 2017, 202, 97–102. [CrossRef] [PubMed]

269. Pounina, T.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Sulfated and sulfur-containing steroids and their pharmacological profile. Mar. Drugs 2021, 19, 240. [CrossRef] [PubMed]

270. Lagunin, A.; Povydysh, M.; Ivkin, D.; Luzhanin, V.; Krasnova, M.; Okovityi, S.; Nosov, A.; Titova, M.; Tomilova, S.; Filimonov, D.; et al. Antihypoxic action of Panax japonicus, Tribulus terrestris and Dioscorea deltoidea cell cultures: In silico and animal studies. Mol. Inform. 2020, 39, 2000093. [CrossRef] [PubMed]

271. Chen, X.; Winstead, A.; Yu, H.; Peng, J. Taccalonolides: A novel class of microtubule-stabilizing anticancer agents. Cancers 2021, 13, 920. [CrossRef] [PubMed]