Nearly General Septic Functional Equation

Ick-Soon Chang,¹ Yang-Hi Lee,² and Jaiok Roh³

¹Department of Mathematics, Chungnam National University, Daejeon 34134, Republic of Korea
²Department of Mathematics Education, Gongju National University of Education, Gongju 32553, Republic of Korea
³Ilsong College of Liberal Arts, Hallym University, Chuncheon 24252, Republic of Korea

Correspondence should be addressed to Jaiok Roh; joroh@hallym.ac.kr

Received 23 April 2021; Revised 31 May 2021; Accepted 31 May 2021; Published 13 December 2021

Academic Editor: Alexander Meskhi

If a mapping can be expressed by sum of a septic mapping, a sextic mapping, a quintic mapping, a quartic mapping, a cubic mapping, a quadratic mapping, an additive mapping, and a constant mapping, we say that it is a general septic mapping. A functional equation is said to be a general septic functional equation provided that each solution of that equation is a general septic mapping. In fact, there are a lot of ways to show the stability of functional equations, but by using the method of Găvruta, we examine the stability of general septic functional equation \(\sum_{i=0}^{8} C_i (-1)^{8-i} f(x + (i-4)y) = 0 \) which considered. The method of Găvruta as just mentioned was given in the reference Gavruta (1994).

1. Introduction

The concept of stability for a functional equation arising when replacing the functional equation by an inequality which acts as a perturbation of the equation. Ulam [1] posed the question concerning the stability of group homomorphisms. Hyers [2] gave the first partial affirmative answer to the question of Ulam, which states that if \(\delta > 0 \) and \(f : \mathcal{X} \to \mathcal{Y} \) is a mapping with \(\mathcal{X} \) a normed space, \(\mathcal{Y} \) a Banach space such that

\[
\| f(x + y) - f(x) - f(y) \| \leq \delta \text{ for all } x, y \in \mathcal{X},
\]

then there exists a unique additive mapping \(T : \mathcal{X} \to \mathcal{Y} \) such that

\[
\| f(x) - T(x) \| \leq \delta \text{ for all } x \in \mathcal{X}.
\]

We, meanwhile, call the functional equation

\[
\sum_{i=0}^{n} C_i (-1)^{n-i} f(x + iy) - n! f(y) = 0,
\]
we say that each solution of the previous equation is additive, quadratic, cubic, quartic, quintic, sextic, and septic mapping, respectively. The function $f : R \rightarrow R$ defined by $f(x) = ax^n$ is a particular solution of the n-monomial functional equation. Quite recently, Lee [6] showed the stability of the n-monomial functional equation in the sense of Găvruța.

The following functional equation is called

$$
\sum_{i=0}^{n} a_i \cdot f(x+i) = 0,
$$

(7)

as Jensen, general quadratic, general cubic, general quartic, general quintic, general sextic, and general septic functional equation, respectively, for $n = 2, 3, 4, 5, 6, 7, 8$. The solution of the general septic functional equation is said to be a general septic mapping. The function $f : R \rightarrow R$ given by $f(x) = \sum_{i=0}^{n} a_i x^i$ is a particular solution of the general septic mapping. More detailed term for the concept of a general septic mapping can be found in Baker’s paper [10] by the term generalized polynomial mapping of degree at most 7.

For a number of years now, many interesting results of the stability problems to several functional equations (or involving the range from additive functional equation to sextic functional equation) have been investigated; see, e.g., [11–26].

Our principal purpose is to consider the following general septic functional equation

$$
\sum_{i=0}^{8} a_i \cdot f(x+(i-4)y) = 0,
$$

(8)

and then we are going to obtain the stability theorems of the functional equation (8) in the spirit of Găvruța approach.

2. Stability of the General Septic Functional Equation (8)

In this section, we let Y and V be a real Banach space and a real vector space, respectively. For a given mapping $f : V \rightarrow Y$ and all $x, y \in V$, we use the following abbreviations

$$
\begin{align*}
J_n f(x) &= \frac{f(x) - f(-x)}{2}, \\
J_n f(x) &= \frac{f(x) + f(-x)}{2}, \\
Df(x, y) &= \sum_{i=0}^{8} a_i \cdot f(x+(i-4)y), \\
\Gamma(x) &= Df_o(8x, 2x) + 8Df_o(6x, 2x) + 36Df_o(4x, 2x) \\
&+ 120Df_o(2x, 2x) + 160Df_o(4x, x) + 1280Df_o(3x, x) \\
&+ 4032Df_o(2x, x) + 5376Df_o(x, x), \\
\Delta f(x) &= Df_e(4x, x) + 8Df_e(3x, x) + 36Df_e(2x, x) \\
&+ 120Df_e(x, x) + 123Df_e(0, x).
\end{align*}
$$

(9)

On the other hand, if \tilde{f} is a mapping defined by $\tilde{f}(x) = f(x) - f(0)$, we know that

$$
D\tilde{f}(x, y) = Df(x, y) \quad \text{and} \quad \tilde{f}(0) = 0.
$$

(10)

In addition, through tedious computation, we then get the following expressions

$$
\begin{align*}
\Delta f(x) &= f_o(8x) - 84f_o(4x) + 1344f_o(2x) - 4096f_e(x), \\
\Gamma f(x) &= f_o(16x) - 170f_o(8x) + 5712f_o(4x) - 43520f_o(2x) \\
&+ 65536f_o(x),
\end{align*}
$$

(11)

for all $x \in V$.

Lemma 1. Let $f : V \rightarrow Y$ be a mapping with $f(0) = 0$. Suppose that $J_n f : V \rightarrow Y$ and $J'_n f : V \rightarrow Y$ are mappings given by

$$
\begin{align*}
J_n f(x) &= \frac{4^n - 20 \cdot 16^n + 64 \cdot 64^n}{45} \cdot f_o\left(\frac{x}{2^n}\right) \\
&- \frac{80(4^n - 17 \cdot 16^n + 16 \cdot 64^n)}{45} \cdot f\left(\frac{x}{2^{n+1}}\right) \\
&+ \frac{1024(4^n - 5 \cdot 16^n + 4 \cdot 64^n)}{45} \cdot f\left(\frac{x}{2^{n+2}}\right) \\
&- \frac{2^n - 8 \cdot 8^n + 1344 \cdot 32^n - 4096 \cdot 128^n}{2835} \cdot f_o\left(\frac{x}{2^n}\right) \\
&+ \frac{168(2^n - 81 \cdot 8^n + 1104 \cdot 32^n - 1024 \cdot 128^n)}{2835} \cdot f\left(\frac{x}{2^{n+1}}\right) \\
&- \frac{5376(2^n - 69 \cdot 8^n + 324 \cdot 32^n - 256 \cdot 128^n)}{2835} \cdot f\left(\frac{x}{2^{n+2}}\right) \\
&+ \frac{32768(2^n - 21 \cdot 8^n + 84 \cdot 32^n - 64 \cdot 128^n)}{2835} \cdot f\left(\frac{x}{2^{n+3}}\right),
\end{align*}
$$

(12)

for all $x \in V$ and all integers $n \geq 0$ and

$$
\begin{align*}
J'_n f(x) &= -\left(\frac{1}{128^n} - \frac{84}{32^n} + \frac{1344}{8^n} - \frac{4096}{2^n}\right) \cdot f_o(2^n x) \\
&+ \left(\frac{1}{128^n} - \frac{81}{32^n} + \frac{1104}{8^n} - \frac{1024}{2^n}\right) \cdot f_o(2^{n+1} x) \\
&- \left(\frac{1}{128^n} - \frac{69}{32^n} + \frac{324}{8^n} - \frac{256}{2^n}\right) \cdot f_o(2^{n+2} x) \\
&+ \left(\frac{1}{128^n} - \frac{21}{32^n} + \frac{84}{8^n} - \frac{64}{2^n}\right) \cdot f_o(2^{n+3} x) \\
&+ \left(\frac{1}{64^n} - \frac{5}{16^n} + \frac{4}{4^n}\right) \cdot f_e(2^{n+3} x) \\
&- \left(\frac{20}{64^n} - \frac{340}{16^n} + \frac{320}{4^n}\right) \cdot f_e(2^{n+1} x) \\
&+ \frac{64}{64^n} - \frac{1280}{16^n} + \frac{4096}{4^n} \cdot f_e(2^n x),
\end{align*}
$$

(13)
for all \(x \in V \) and all integers \(n \geq 0 \). Then,

\[
J_n f(x) - J_{n+1} f(x) = \left(\frac{4^n}{45} - \frac{20 - 16^n}{45} + \frac{64 - 64^n}{45} \right) \Delta f \left(\frac{x}{2^{n+1}} \right) \\
- \frac{2^n - 8^n \cdot 8^n + 1344 \cdot 32^n - 4096 \cdot 128^n}{2835} I f \left(\frac{x}{2^{n+1}} \right),
\]

holds for all \(x \in V \) and all integers \(n \geq 0 \) and

\[
J_n^i f(x) - J_{n+1}^i f(x) = \left(\frac{4^n}{45} - \frac{5}{16^{n+1}} + \frac{1}{64^{n+1}} \right) \Delta f \left(2^n x \right) \\
- \frac{1}{128^{n+1}} \frac{21}{32^{n+1}} + \frac{84}{8^n} - \frac{64}{2^{n+1}} \right) I f \left(2^n x \right),
\]

is fulfilled for all \(x \in V \) and all integers \(n \geq 0 \).

Proof. By using (11) and the definitions of \(J_n f \) and \(J_n^i f \), we can obtain the result after tedious calculations. Therefore, the proof will be omitted here. \(\square \)

Lemma 2. Assume that \(f : V \rightarrow Y \) is a mapping with \(f(0) = 0 \) subject to the equation

\[
Df(x, y) = 0,
\]

for all \(x, y \in V \). Then, we have

\[
J_n f(x) = f(x) \quad \text{and} \quad J_n^i f(x) = f(x),
\]

for all \(x \in V \) and all positive integers \(n \).

Proof. We have by the definitions of \(\Delta f(x) \) and \(I f(x) \) that

\[
\Delta f(x) = 0 \quad \text{and} \quad I f(x) = 0 \quad \text{for all} \quad x \in V.
\]

So, we figure out

\[
f(x) - J_n f(x) = \sum_{i=0}^{n-1} \left(J_i f(x) - J_{i+1} f(x) \right) \\
= \sum_{i=0}^{n-1} \left(\left(\frac{4^i}{45} - \frac{20 - 16^i}{45} + \frac{64 - 64^i}{45} \right) \Delta f \left(\frac{x}{2^{i+1}} \right) \\
- \frac{2^i - 8^i \cdot 8^i + 1344 \cdot 32^i - 4096 \cdot 128^i}{2835} I f \left(\frac{x}{2^{i+1}} \right) \right) \\
= 0,
\]

which implies \(J_n f(x) = f(x) \) for all \(x \in V \) and all positive integers \(n \). Similarly, we get the equality \(J_n^i f(x) = f(x) \) for all \(x \in V \) and all positive integers \(n \). \(\square \)

We are now in a position to prove the following theorem.

Theorem 3. Suppose that a function \(\varphi : V^2 \rightarrow [0, \infty) \) satisfies the condition

\[
\sum_{n=0}^{\infty} 128^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) < \infty,
\]

for all \(x, y \in V \). Assume that \(f : V \rightarrow Y \) is a mapping subject to the inequality

\[
||Df(x, y)|| \leq \varphi(x, y),
\]

for all \(x, y \in V \). Then, there exists a unique general septic mapping \(F \) with \(F(0) = 0 \) such that

\[
||f(x) - f(0) - F(x)|| \leq \sum_{n=0}^{\infty} \left(\frac{4^n}{45} - \frac{20 - 16^n}{45} + \frac{64 - 64^n}{45} \right) \phi \left(\frac{x}{2^{n+1}} \right) \\
+ \frac{2^n - 8^n \cdot 8^n + 1344 \cdot 32^n - 4096 \cdot 128^n}{2835} \phi \left(\frac{x}{2^{n+1}} \right),
\]

for all \(x \in V \), where \(\varphi(x, y) : V^2 \rightarrow [0, \infty) \) and \(\Phi, \Phi' : V \rightarrow [0, \infty) \) are functions defined by

\[
\varphi(x, y) = \frac{\varphi(x, y) + \varphi(-x, -y)}{2},
\]

\[
\Phi(x) = \varphi(4x, x) + 8\varphi(3x, x) + 36\varphi(2x, x) + 120\varphi(x, x) + 123\varphi(0, x),
\]

\[
\Phi'(x) = \varphi(8x, 2x) + 8\varphi(6x, 2x) + 36\varphi(4x, 2x) + 120\varphi(x, 2x) + 160\varphi(4x, x) + 1280\varphi(3x, x) + 4032\varphi(2x, x) + 5376\varphi(x, x).
\]

Proof. Considering a mapping \(\tilde{f} \) defined by \(\tilde{f}(x) = f(x) - f(0) \), we see that \(\tilde{f} \) satisfies the properties

\[
D\tilde{f}(x, y) = Df(x, y) \quad \text{and} \quad \tilde{f}(0) = 0.
\]

Then, by (11) and the definitions of \(I f \) and \(\Delta f \), we obtain that

\[
\|I f(x)\| = \|Df(4x, 2x) + 8Df(6x, 2x) + 36Df(4x, 2x) + 120Df'(2x, 2x) + 160Df'(4x, x) + 1280Df'(3x, x) + 4032Df'(2x, x) + 5376Df'(x, x)\| \leq \Phi'(x),
\]

\[
\|\Delta f(x)\| = \|Df(4x, x) + 8Df(3x, x) + 36Df(2x, x) + 120Df(4x, x) + 123Df(0, x)\| \leq \Phi(x),
\]
hold for all $x \in V$. It follows from (15) and (26) that
\[
\|J_n f(x) - J_{n+1} f(x)\| = \left\| \frac{4^n}{45} \left(\frac{20 \cdot 16^n}{45} + 64 \cdot 4^n \right) \Delta f \left(\frac{x}{2^{2n+3}} \right) - 2^n - 8 \cdot 8^n + 1344 \cdot 32^n - 4096 \cdot 128^n \right\|_{2^{2n+3}} \leq \frac{4^n}{45} \left(\frac{20 \cdot 16^n}{45} + 64 \cdot 4^n \right) \| \Phi \left(\frac{x}{2^{2n+3}} \right) \| + 2^n + 8 \cdot 8^n - 1344 \cdot 32^n + 4096 \cdot 128^n \| \Phi' \left(\frac{x}{2^{2n+3}} \right) \|.
\tag{28}
\]
for all $x \in V$. This gives that
\[
\|J_n f(x) - J_{n+1} f(x)\| \leq \sum_{i=n}^{\infty} \left(\frac{4^n}{45} \left(\frac{20 \cdot 16^n}{45} + 64 \cdot 4^n \right) \| \Phi \left(\frac{x}{2^{2n+3}} \right) \| + 2^n + 8 \cdot 8^n - 1344 \cdot 32^n + 4096 \cdot 128^n \| \Phi' \left(\frac{x}{2^{2n+3}} \right) \| \right).
\tag{29}
\]
for all $x \in V$ and all nonnegative integers n and m. By the definition of Φ and Φ' together with (21) and (29), the sequence $\{J_n f(x)\}$ is Cauchy in Y. And since Y is complete, the sequence $\{J_n f(x)\}$ converges. Therefore, we can define a mapping $F : V \to Y$ by
\[
F(x) = \lim_{n \to \infty} J_n f(x) \text{ for all } x \in V.
\tag{30}
\]
Note that $J_0 f(x) = f(x) - f(0)$ and $F(0) = 0$ follow from $f(0) = 0$. Furthermore, by letting $n = 0$ and passing the limit as $m \to \infty$ in (29), we arrive at the inequality (23). On the other hand, from (21) and the definition of F, we yield the following inequality
\[
\|DF(x, y)\| = \lim_{n \to \infty} \|Df_n(x, y)\| \leq \frac{64^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{20 \cdot 16^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{64^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{20 \cdot 16^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{1344 - 128^n + 1}{2835} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{128^n + 1}{2835} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{20 \cdot 16^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{64^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{20 \cdot 16^n + 1}{45} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{1344 - 128^n + 1}{2835} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| + \frac{128^n + 1}{2835} \| \Phi \left(\frac{x}{2^{2n+1}} \right) \| = 0.
\tag{31}
\]
for all $x, y \in V$.

In order to prove the uniqueness of F, we suppose that $F' : V \to Y$ is another general septic mapping satisfying (23) and $F'(0) = 0$. However, it is also possible to show uniqueness by replacing condition (23) with weaker condition. So, we want to prove that there is a unique mapping satisfying the weaker condition
\[
\|f(x) - F(x)\| = \sum_{i=0}^{\infty} 128 \| \Phi \left(\frac{x}{2^{2i+3}} \right) + \Phi' \left(\frac{x}{2^{2i+3}} \right) \|.
\tag{32}
\]
for all $x \in V$. According to Lemma 2, we get $F'(x) = J_n F'(x)$ for all positive integers n. Thus, by using the condition (32) and the definition of J_n, after tedious calculations, we have
\[
\|J_n f(x) - F'(x)\| = \left\| J_n f(x) - J_n F'(x) \right\| \leq \sum_{i=0}^{\infty} 128 \| \Phi \left(\frac{x}{2^{2i+3}} \right) + \Phi' \left(\frac{x}{2^{2i+3}} \right) \|.
\tag{33}
\]
for all $x \in V$ and all positive integer n. Taking the limit as $n \to \infty$ in the last inequality, we then have
\[
F'(x) = \lim_{n \to \infty} J_n f(x) \text{ for all } x \in V.
\tag{34}
\]
This implies that $F = F'$.

Theorem 4. Suppose that a function $\phi : V^2 \to [0, \infty)$ satisfies the condition
\[
\sum_{n=0}^{\infty} 2^n \phi(2^n x, 2^n y) < \infty,
\tag{35}
\]
for all $x, y \in V$. Assume that $f : V \to Y$ is a mapping subject to the inequality
\[
\|Df(x, y)\| \leq \phi(x, y),
\tag{36}
\]
for all $x, y \in V$. Then, there exists a unique general septic mapping F with $F(0) = 0$ such that
\[
\|f(x) - f(0) - F(x)\| \leq \sum_{n=0}^{\infty} \left(\frac{4 \cdot 2^n - 5 \cdot 2^{3n} + 1}{16 \cdot 2^n} \| \Phi \left(2^n x \right) \| \right) + \left(\frac{64 \cdot 2^n + 8 \cdot 2^{3n} + 21}{128 \cdot 2^n - 128 \cdot 2^{3n}} \| \Phi' \left(2^n x \right) \| \right)
\tag{37}
\]
for all $x \in V$, where ϕ_x, Φ and Φ' are the functions in Theorem 3.

Proof. We first define a mapping \hat{f} by $\hat{f}(x) = f(x) - f(0)$. Then, we find that
\[
D\hat{f}(x, y) = Df(x, y) \text{ and } \hat{f}(0) = 0.
\tag{38}
\]
With help of the definitions of I_f and Δf, the relations (16), (26), and (36) guarantee that
\[
\left\| J'_n f(x) - J'_n,0 f(x) \right\| \leq \left(\frac{4}{4^{1/n}} - \frac{5}{16^{1/n}} + \frac{1}{64} \right) \Phi'(2^n x) + (2^{8/3} - 84/32^{1/n} + 1/128) \Phi'(2^n x) \Phi(2^n x) + 512 \cdot 2835,
\]
for all $x \in V$, which leads to the inequality
\[
\left\| J'_n f(x) - J'_n,0 f(x) \right\| \leq \sum_{i=0}^{n-1} \left[\left(\frac{4}{4^{1/n}} - \frac{5}{16^{1/n}} + \frac{1}{64} \right) \Phi'(2^n x) + (2^{8/3} - 84/32^{1/n} + 1/128) \Phi'(2^n x) \right]
\]
for all $x \in V$, which leads to the inequality
\[
\left\| J'_n f(x) - J'_n,0 f(x) \right\| \leq \sum_{i=0}^{n-1} \left[\left(\frac{4}{4^{1/n}} - \frac{5}{16^{1/n}} + \frac{1}{64} \right) \Phi'(2^n x) + (2^{8/3} - 84/32^{1/n} + 1/128) \Phi'(2^n x) \right]
\]
for all $x \in V$. Taking the limit as $n \to \infty$, we get the inequality
\[
\left\| J'_n f(x) - J'_n,0 f(x) \right\| \leq \sum_{i=0}^{n-1} \left[\left(\frac{4}{4^{1/n}} - \frac{5}{16^{1/n}} + \frac{1}{64} \right) \Phi'(2^n x) + (2^{8/3} - 84/32^{1/n} + 1/128) \Phi'(2^n x) \right]
\]
for all $x \in V$ and all nonnegative integers n and m. In view of (35) and (40), the sequence $\{J'_n f(x)\}$ is Cauchy in $x \in Y$. By completeness of Y, the sequence $\{J'_n f(x)\}$ converges. Thereby, we can define a mapping $F : V \to Y$ by
\[
F(x) = \lim_{n \to \infty} J'_n f(x) \text{ for all } x \in V.
\]
Since $\tilde{f}(x) = 0$, we have $F(0) = 0$. Note that $\tilde{f}'(0)(x) = f(x) - f(0)$ for all $x \in V$. Letting $n = 0$ and sending the limit in (40) as $m \to \infty$, we obtain the desired result (37).

But, we intend to claim that $DF(x,y) = 0$. The expression (35) and the definition of F provide that
\[
\left\| DF(x,y) \right\| = \lim_{n \to \infty} \left\| DF'_n f(x,y) \right\| \leq \lim_{n \to \infty} \left(\frac{2\Phi(2^n x) + \Phi(2^n x)}{4^n} \right) = 0, \text{ for all } x, y \in V.
\]

To show the aforementioned uniqueness, let us assume that $F' : V \to Y$ is another general septic mapping with (37) and $F'(0) = 0$. Then, this proof is analogous to that of Theorem 3. That is, instead of the condition (37), it suffices to prove that there is a unique mapping satisfying the weaker condition
\[
\left| \tilde{f}(x) - F(x) \right| \leq \sum_{i=0}^{n-1} \Phi(2^n x) + \Phi'(2^n x),
\]
for all $x \in V$. From Lemma 2, the equality $F'(x) = J'_n F'(x)$ holds for all positive integer n. So, we have by (43) that
\[
\left| \tilde{f}'(x) - F'(x) \right| = \left| \tilde{f}'(x) - J'_n f'(x) \right|
\]
for all $x \in V$ and all positive integer n. Taking the limit as $n \to \infty$ in the previous inequality, we get the relation
\[
F'(x) = \lim_{n \to \infty} J'_n f'(x) \text{ for all } x \in V,
\]
which means that $F = F'$.

3. Discussion

In this paper, we investigated the stability of general septic functional equation by using the method of Gavruta. In Theorem 3, we proved that if the function $f : V \to Y$ satisfies the inequality
\[
\left\| DF(x,y) \right\| = \sum_{i=0}^{n-1} \left(\frac{2\Phi(2^n x) + \Phi(2^n x)}{4^n} \right) \leq \Phi(x,y),
\]
where a function $\phi : V^2 \to [0,\infty)$ satisfies the condition
\[
\sum_{n=0}^{\infty} 128^n \phi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) < \infty,
\]
for all $x, y \in V$, then there exists a unique general septic mapping F near the function f.

And in Theorem 4, we proved similar result when the function \(\phi : V^2 \rightarrow [0, \infty) \) satisfies the condition
\[
\sum_{n=0}^{\infty} 2^{-n} \phi(2^n x, 2^n y) < \infty, \text{ for all } x, y \in V.
\]

Lee [27] proved the stability of the general sextic functional equation for the mapping \(f \) such that
\[
Df(x, y) = \sum_{i=0}^{7} C_i (-1)^{7-i} f(x + iy) \leq \theta(\|x\|^4 + \|y\|^4).
\]

For the future work, we want to see if we can get similar results for the general septic functional equation. And by using our results, we want to know what we can say for the stability of the general octic functional equation.

Also, by fixed point theorem, Roh et al. [24] showed the stability of the general sextic functional equation for the mapping \(f \) such that
\[
Df(x, y) = \sum_{i=0}^{7} C_i (-1)^{7-i} f(x + iy) \leq \phi(x, y),
\]

where \(\phi : V^2 \rightarrow [0, \infty) \) is a function for which there exists a constant \(0 < L < 1 \) such that
\[
\phi(2x, 2y) \leq \left(4\sqrt{21} \cos \theta - 14 \right) L \phi(x, y),
\]

for all \(x, y \in V \), and \(\theta \) is a real constant such that \(0 < \theta < \pi/4 \) and \(\cos (3\theta) = -17/21 \sqrt{21} \). In fact, for the stability of the septic functional equation, we first tried this method, but we failed to get the good result. The calculation became complicated because it resulted in a quadratic equation problem. So, we leave this problem as an open problem.

Data Availability

For the manuscript, there is no data we need.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Authors’ Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to thank the referee for his/her time and efforts. This work was supported by the Hallym University Research Fund (HRF-202011-012), and Jaiock Roh was partially supported by the Data Science Convergence Research Center of Hallym University.

References

[1] S. M. Ulam, *A Collection of Mathematical Problems*, Interscience, New York, 1960.
[2] D. H. Hyers, “On the stability of the linear functional equation,” *Proceedings of the National Academy of Sciences*, vol. 27, no. 4, pp. 222–224, 1941.
[3] Z. Gajda, “On stability of additive mappings,” *International Journal of Mathematics and Mathematical Sciences*, vol. 14, no. 3, p. 434, 1991.
[4] G. Isac and T. M. Rassias, “On the Hyers-Ulam stability of \(\psi \)-additive mappings,” *Journal of Approximation Theory*, vol. 72, no. 2, pp. 131–137, 1993.
[5] S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings,” *Journal of Mathematical Analysis and Applications*, vol. 204, no. 1, pp. 221–226, 1996.
[6] Y.-H. Lee, “Stability of a monomial functional equation on a restricted domain,” *Mathematics*, vol. 5, no. 4, p. 53, 2017.
[7] Y.-H. Lee and K. W. Jun, “On the stability of approximately additive mappings,” *Proceedings of the American Mathematical Society*, vol. 128, no. 5, pp. 1361–1369, 2000.
[8] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” *Proceedings of the American Mathematical Society*, vol. 72, no. 2, pp. 297–300, 1978.
[9] P. Gavruta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” *Journal of Mathematical Analysis and Applications*, vol. 184, no. 3, pp. 431–436, 1994.
[10] J. Baker, “A general functional equation and its stability,” *Proceedings of the National Academy of Sciences*, vol. 133, no. 6, pp. 1657–1664, 2005.
[11] S. Alshybani, S. M. Vaezpour, and R. Saadati, “Generalized Hyers-Ulam stability of sextic functional equation in random normed spaces,” *Journal of Computational Analysis and Applications*, vol. 24, no. 2, pp. 370–381, 2018.
[12] Y. J. Cho, M. B. Ghaemi, M. Choubin, and M. E. Gordji, “On the Hyers-Ulam stability of sextic functional equations in \(\beta \)-homogeneous probabilistic modular spaces,” *Mathematical Inequalities & Applications*, vol. 16, no. 4, pp. 1097–1114, 2013.
[13] L.-I. EL-Fassi, “New stability results for the radical sextic functional equation related to quadratic mappings in \((2, \beta) \)-Banach spaces,” *Journal of Fixed Point Theory and Applications*, vol. 20, no. 4, pp. 1–17, 2018.
[14] S. Y. Jang and R. Saadati, “Approximation of an additive \((\rho_1, \rho_2) \)-random operator inequality,” *Journal of Function Spaces*, vol. 2020, Article ID 7540303, 5 pages, 2020.
[15] K.-W. Jun and H.-M. Kim, “On the Hyers-Ulam-Rassias stability of a general cubic functional equation,” *Mathematical Inequalities & Applications*, vol. 6, pp. 289–302, 1998.
[16] B. Keltouma, E. Elhoucien, T. M. Rassias, and R. Ahmed, “Superstability of Kannappan’s and Van Vleck’s functional equations,” *JNSA*, vol. 11, no. 7, pp. 894–915, 2018.
[17] Y.-H. Lee, “On the Hyers-Ulam-Rassias stability of a general quartic functional equation,” *East Asian Mathematical Journal*, vol. 35, no. 3, pp. 351–356, 2019.
[18] S. Muthaiah, D. Baleanu, and N. G. Thangaraj, “Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations,” *AIMS Mathematics*, vol. 6, no. 1, pp. 168–194, 2021.
[19] R. Saadati and C. Park, “Approximation of derivations and the superstability in random Banach *-algebras,” *Advances in Difference Equations*, vol. 2018, no. 1, p. 12, 2018.

[20] A. G. M. Selvam, D. Baleanu, J. Alzabut, D. Vignesh, and S. Abbas, “On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum,” *Advances in Difference Equations*, vol. 2020, no. 1, p. 15, 2020.

[21] D. K. Singh and S. Grover, “On the stability of a sum form functional equation related to entropies of type (α,β),” *Journal of Nonlinear Sciences & Applications*, vol. 14, no. 3, pp. 168–180, 2020.

[22] D. K. Singh and S. Grover, “On the stability of a sum form functional equation related to nonadditive entropies,” *Journal of Mathematics and Computer Science*, vol. 23, no. 4, pp. 328–340, 2021.

[23] T. Xu, J. Rassias, M. Rassias, and W. Xu, “A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces,” *Journal of Inequalities and Applications*, vol. 2010, no. 1, Article ID 423231, p. 23, 2010.

[24] J. Roh, Y. H. Lee, and S. M. Jung, “The stability of a general sextic functional equation by fixed point theory,” *Journal of Function Spaces*, vol. 2020, Article ID 6497408, 8 pages, 2020.

[25] H. Whitney, “On functions with bounded n-th differences,” *Journal de Mathématiques Pures et Appliquées*, vol. 36, no. 9, pp. 67–95, 1957.

[26] A. Najati and C. Park, “Fixed points and stability of a generalized quadratic functional equation,” *Journal of Inequalities and Applications*, vol. 2009, no. 1, Article ID 193035, p. 19, 2009.

[27] Y.-H. Lee, “On the Hyers-Ulam-Rassias stability of a general quintic functional equation and a general sextic functional equation,” *Mathematics*, vol. 7, no. 6, p. 510, 2019.