Human Replication Factor C Stimulates Flap Endonuclease 1

Flap endonuclease 1 (FEN1) is the enzyme responsible for specifically removing the flap structure produced during DNA replication, repair, and recombination. Here we report that the human replication factor C (RFC) complex stimulates the nuclease activity of human FEN1 in an ATP-independent manner. Although proliferating cell nuclear antigen is also known to stimulate FEN1, less RFC was required for comparable FEN1 stimulation. Kinetic analyses indicate that the mechanism by which RFC stimulates FEN1 is distinct from that by proliferating cell nuclear antigen. Heat-denatured RFC or its subunit retained, fully or partially, the ability to stimulate FEN1. Via systematic deletion analyses, we have defined three specific retained, fully or partially, the ability to stimulate FEN1. Via

From the 4Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and the 5Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Flap endonuclease 1 (FEN1) is the enzyme responsible for specifically removing the flap structure produced during DNA replication, repair, and recombination. Here we report that the human replication factor C (RFC) complex stimulates the nuclease activity of human FEN1 in an ATP-independent manner. Although proliferating cell nuclear antigen is also known to stimulate FEN1, less RFC was required for comparable FEN1 stimulation. Kinetic analyses indicate that the mechanism by which RFC stimulates FEN1 is distinct from that by proliferating cell nuclear antigen. Heat-denatured RFC or its subunit retained, fully or partially, the ability to stimulate FEN1. Via systematic deletion analyses, we have defined three specific retained, fully or partially, the ability to stimulate FEN1. Via systematic deletion analyses, we have defined three specific

Faithful genome maintenance is fundamental to the preservation of life. DNA replication, repair, and recombination function together to maintain genome integrity; they are interdependent and share many proteins that interplay in a well orchestrated manner (1–3).

Flap endonuclease 1 (FEN1) is an enzyme that functions in all three processes in eukaryotes and contains structure-specific endonuclease activity that processes flap-structured DNA (4, 5). Inactivation of the RAD27 gene, which encodes Rad27 (yeast FEN1), led to many anomalies in DNA metabolism. For example, deletion of RAD27 in Saccharomyces cerevisiae produces a temperature-sensitive growth phenotype with a variety of chromosomal instabilities (6–12). Although homozygous FEN1 knock-out is embryonic lethal (13), heterozygotes are prone to develop tumors because of chromosomal instability caused by hpol-insufficiency of FEN1 (14). Genetic and biochemical studies from yeasts and mammals together confirmed that FEN1 has roles in virtually every aspect of major DNA transactions.

For example, FEN1 participates in the maturation of Okazaki fragments by cleaving the flap structure generated by polymerase (pol) δ-catalyzed displacement of DNA synthesis (15, 16). FEN1 is also required for long-patch base excision and nucleotide excision repair because transient short flaps are generated during gap filling (17–19). In nonhomologous end-joining, two single strand DNA ends from resected double strand breaks, upon annealing to each other using micro-homology, can generate 5′ flaps that can be removed by FEN1 (20). The preferred substrate for FEN1 is a double-flap structure containing a 1-nucleotide (nt) 3′ flap in addition to the 5′ flap that is cleaved (21). This double-flap substrate is believed to be a physiological substrate (22). Based upon its enzymatic properties in vitro, the primary role of FEN1 in vivo is likely the creation of ligatable nicks by removing flap structures generated in vivo. The failure to do so is likely to lead to chromosomal instability. Recently, it was reported that FEN1 had gap endonuclease (GEN) activity, which is implicated in restarting stalled replication forks and in apoptotic DNA fragmentation (11, 23).

FEN1 interacts with other proteins to achieve its function more effectively (24, 25). For example, FEN1 is stimulated by proliferating cell nuclear antigen (PCNA) through protein–protein interaction (26–30). A mutation in the PCNA interaction domain of Rad27 decreases stimulation by PCNA, resulting in replication and repair defects in vivo (28). There are two Rad27-binding sites in PCNA that are differentially accessible to Rad27 for stimulation, depending upon the binding status of PCNA to substrate DNA. Both Werner syndrome protein (WRN) and Bloom syndrome protein (BLM), members of RecQ helicase family, stimulate FEN1 through physical interaction. The stimulation was independent of ATPase/helicase activity (12, 31–36). A fragment WRN (949–1092) (144 amino acids) was necessary and sufficient to interact and stimulate human FEN1 (31). Thus, WRN and BLM are likely to prevent genome instability by collaborating with FEN1. Recently, it was reported that the human Rad9-Rad1-Hus1 (9-1-1) checkpoint complex, which resembles PCNA in structure, interacted and stimulated FEN1 (37). They proposed that the 9-1-1 complex serves as a binding platform for FEN1 in DNA repair.

Our findings and the findings of others that several genetic suppressors, which rescued defects of dna2, stimulated FEN1 (34, 38, 39) prompted us to examine enzymes or proteins involved in lagging strand synthesis for their ability to stimulate
FEN1 activity. For this purpose, we tested the influence of the human RFC complex on catalytic activity of human FEN1, and we found that it stimulated markedly FEN1 activity via multiple stimulatory motifs per molecule. RFC acts as a loading factor of PCNA and consists of five subunits as follows: RFC1 (140 kDa), RFC2 (40 kDa), RFC3 (38 kDa), RFC4 (37 kDa), and RFC5 (36 kDa). All its subunits share significant homology in seven regions referred to as RFC boxes (box II–VIII) (40). ATP hydrolysis by RFC is required to load PCNA onto a primer-template junction (41–45).

Our findings that RFC has several stimulatory motifs and strongly activates FEN1, has several stimulatory motifs and strongly activates FEN1, indicating that RFC is a critical partner for FEN1 to remove flap structures arising from DNA metabolism, including processing of eukaryotic Okazaki fragments.

MATERIALS AND METHODS

Enzymes and Nucleotides—The oligonucleotides used in this study were commercially synthesized from Genotech (Daejeon, Korea), and their sequences are listed in Table 1. [\(\gamma-^{32}\)P]ATP (3,000 Ci/mmol) was purchased from Amersham Biosciences and Izotop (Budapest, Hungary). Restriction enzymes and T4 polynucleotide kinase were purchased from PerkinElmer Life Sciences and Enzymomics\(^\text{TM}\) (Daejeon, Korea). Adenosine triphosphate and ATP/S were obtained from Roche Applied Science. Rad27, yeast FEN1, was purified as described previously (49, 50).

Preparation of Substrates—The oligonucleotide-based partial duplex substrates were prepared essentially as described previously (15) using the synthetic oligonucleotides listed in Table 1. Oligonucleotides used as substrates, the position of radioactive label in the substrates, and substrate structures are indicated in each figure. Briefly, an oligonucleotide was first labeled at its 5′-end by incorporating [\(\gamma-^{32}\)P]ATP with T4 polynucleotide kinase and was followed by annealing with upstream and template oligonucleotides in a molar ratio of 1:4:2 (5′-labeled downstream/upstream/template oligonucleotides, respectively). The annealing reaction was performed by using PCR machine (95 °C, 5 min; 65 °C, 30 min; −1 °C/min). An equilibrating flap substrate was prepared as described previously (22) with the following modifications. A downstream oligonucleotide was first labeled at its 5′-end with [\(\gamma-^{32}\)P]ATP by T4 polynucleotide kinase, and the labeled oligonucleotide was then annealed to a template oligonucleotide along with an upstream oligonucleotide in a molar ratio of 1:3:10, respectively, as described above. The resulting equilibrating flap substrate was gel-purified prior to use.

TABLE 1

Oligonucleotides used to construct DNA substrates in this study

No.	Nucleotide sequences (length in nucleotides)
1.	GAAAACATTTATTTAGCGCTTGCTGACCTAGCCAGGCTACGCTAAACGG (50)
2.	GTCTGACAGCCATTAATTAGTTTTC (26)
3.	TTTTTTTTTTTTTCGCTCCGCCATTAAATTGTTTTC (38)
4.	TTTGCTCGACGCCATTAAATTGTTTTC (79)
5.	CCGTGGAGCAGTTGGCCTTGGCCTTAG (26)
6.	GCGTGGAGCAGTTGGCCTTGGCCTTAGAACCCTACTGGAAGTCGAGCTAGGCACAAGGCGAACTGCTAACGG (90)
7.	TCTCTTGCGGAAAGCATGCCTAGCAATCATCTGGTGATCACCTCCAGGCTGCCACCGTGAGCCCCA (60)
Stimulation of FEN1 by RFC

Human RFC stimulates the activity of FEN1 on a double-flap substrate. A, SDS-PAGE analysis of human FEN1 and RFC complex. Purified proteins were subjected to 10% SDS-PAGE, and the gel was stained with Coomassie Brilliant Blue R-250. The sizes of molecular mass markers are as indicated in kDa. B, FEN1 endonuclease assays were performed as described under "Materials and Methods" with indicated amounts of FEN1 and RFC in the presence of increasing concentrations of Mg$^{2+}$. The double-flap substrate shown at the top of the gel was prepared as described under "Materials and Methods" and contains a 27-nt 5' flap and a 1-nt 3' flap. The double-flap substrate is separated in a 10% polyacrylamide gel, and quantified as described under "Materials and Methods." The amount of cleavage products is indicated at the bottom of the gel. The asterisk in the substrate indicates the position of 32P-radioactive label. C, amount of cleavage products formed in reactions described in B was plotted against Mg$^{2+}$ concentrations. The amount of RFC used is as indicated. D, RFC allows FEN1 to overcome the inhibitory effects of high Mg$^{2+}$ concentrations. FEN1 endonuclease assays were performed in the standard reaction mixtures with a fixed amount (0.5 fmol) of FEN1 and varying levels of RFC in the presence of increasing concentrations of Mg$^{2+}$. The amount of cleavage products formed in reactions was plotted against Mg$^{2+}$ concentrations.

Determination of Kinetic Parameters—To measure kinetic parameters, kinetic analyses were repeated in triplicate using increasing amounts (0, 20, 40, and 80 fmol) of a double-flap substrate; the substrate was prepared with oligonucleotides 1, 7, and 5 (upstream primer, template, and labeled downstream primer, respectively). Reaction conditions were as described above. Reactions were carried out with 1 fmol of FEN1 and saturating levels (40 fmol) of RFC per reaction, and under these reaction conditions we were able to obtain reliable amounts of products at the early time point of incubation. Reaction mixtures (120 μl) were assembled on ice, followed by preincubation at 37°C for 5 min, and initiated by the addition of 4 mM MgCl$_2$. Aliquots (20 μl) were withdrawn at 1, 2, 4, and 8 min after incubation and transferred to a tube containing 4 μl of 6X stop buffer. The amounts of products were analyzed as described above. Kinetic parameters were obtained based on the Michaelis-Menten equation.

\[
\text{V} = \frac{d[P]}{dt}, \quad \text{where} \quad [P] \text{ is the amount of products in nm.}
\]

The concentration of [P] was calculated using the equation,

\[
[P] = \frac{I_{\text{cleaved}}}{I_{\text{uncleaved}} + I_{\text{cleaved}}} \times [S], \quad \text{where} \quad [S] \text{ is the concentration of substrate used, and} \quad I_{\text{cleaved}} \text{ and} \quad I_{\text{uncleaved}} \text{ are band intensities of products and substrate left, respectively.}
\]

The initial velocity was plotted against [S], and the values V_{\max} and K_m were calculated by nonlinear regression using SigmaPlot.
Stimulation of FEN1 by RFC

(Systat Software Inc.) to avoid distortion of the experimental errors, which can occur during reciprocal transformation of the data.

RESULTS

Human RFC Stimulates Human FEN1 on Double-flap Substrate—To test the influence of the human RFC complex on catalytic activity of human FEN1, we purified both enzymes to near homogeneity as shown in Fig. 1A. The RFC complex purified contained the N-terminally deleted version of RFC1, which supported DNA pol δ in vitro as efficiently as wild type (42, 54). We found that the RFC complex markedly stimulated FEN1 activity (Fig. 1B) with a double-flap DNA substrate containing a 5’ 27-nt and a 3’ 1-nt flap, a physiological form of substrate (22). We refer to this double-flap substrate as standard substrate in this study. Unless otherwise stated, this double-flap substrate was used to measure FEN1 endonuclease activity. Additions of 5 or 20 fmol (Fig. 1B, lanes 8–13 and 14–19, respectively) of RFC to reaction mixtures containing 1 fmol of FEN1 resulted in a significant (5–10-fold) stimulation of FEN1-catalyzed cleavage of the 5’ flap in response to concentrations of Mg^{2+} used (Fig. 1B). Increase in Mg^{2+} concentrations resulted in a

FIGURE 2. RFC accelerates FEN1 activity in an ATP-independent manner. A, endonuclease activity of FEN1 measured in the standard reaction mixtures in the presence of low levels of FEN1 and saturating levels of RFC. The amount of substrate cleaved is indicated at the bottom of the gel. B, graph of the data obtained in A, C, a time course experiment in the presence of varying amounts of RFC. Five sets of standard reaction mixtures (160 μl each) containing 8 fmol of FEN1, 120 fmol of the standard double-flap substrate, and varying levels of RFC, as indicated in the graph, were assembled on ice and prewarmed at 37 °C for 5 min, and reactions were initiated by adding Mg^{2+} to 4 mM (final concentration). Aliquots (20 μl) were withdrawn at times indicated after initiation of reaction. D, rates of FEN1 endonuclease activity in the absence or presence of 1 mM ATP or ATPγS. The amount of FEN1 and RFC used is as indicated.

FIGURE 3. RFC stimulates FEN1 activity in a manner distinct from PCNA. A, influence of RFC and PCNA on the nuclease activity of FEN1. Standard endonuclease assays were carried out with amount of enzymes as indicated. B, quantitation of products formed in A. C, experiment described in A was repeated with elevated levels of PCNA. The amount of PCNA added was considerably greater than that added in A. D, results of quantification of cleavage products formed in C.
linear increase in cleavage of flap DNA by FEN1 in the absence of RFC (Fig. 1, B, lanes 2–7, and C, gray circles). The addition of RFC (5 fmol) increased FEN1-catalyzed cleavage of flap dramatically at all Mg2+ concentrations tested (Fig. 1B, compare lanes 2–7 with lanes 8–13), reaching a plateau at 4 mM of Mg2+ (Fig. 1C, open circles). The addition of more (20 fmol) RFC did not further increase the stimulation (Fig. 1B, compare lanes 8–13 with 14–19). Thus, increases in Mg2+ concentrations not only enhance FEN1 activity but also increase the extent of FEN1 stimulation by RFC. With RFC (20 fmol) alone, no cleavage products were detected (Fig. 1B, lane 20). We next decided to determine optimal concentration of Mg2+ for stimulation of FEN1 by RFC. For this purpose, we tested effects of increasing concentrations (2, 5, 10, 15, and 20 mM) of Mg2+ on FEN1 activity in the presence of increasing levels (0, 5, and 20 fmol) of RFC (Fig. 1D). In this experiment, we reduced the amount of FEN1 to 0.5 fmol. We found that higher concentrations (>10 mM) of Mg2+ were inhibitory to FEN1 activity. In addition, lower levels (5 fmol) of RFC stimulated FEN1 activity, most effectively in Mg2+ concentrations less than 10 mM (Fig. 1D).

The addition of 20 fmol of RFC resulted in robust stimulation of FEN1 in Mg2+ concentrations at 10 mM or above, indicating that RFC allows FEN1 to overcome the inhibitory effect of high concentrations of Mg2+ (Fig. 1D). Based upon these findings, we decided to use 4 mM of Mg2+ in all subsequent reactions.

RFC Accelerates FEN1 Activity in an ATP-independent Manner—Next, we examined whether RFC could stimulate FEN1 in its low concentrations. To this end, we used a very low level (0.1 fmol) of FEN1 and excess RFC (20 fmol). As shown in Fig. 2A, the amounts of products formed were barely detectable (~0.3 fmol) after 30 min of incubation in the absence of RFC. In the presence of RFC, however, the amounts of products formed were 9.3 fmol (~30-fold more than in its absence) after 30 min of incubation (Fig. 2, A and B). We also investigated the influence of RFC concentration on FEN1 activity in a time course experiment, and we found that increasing concentrations (0, 1, 2.5, 5, 20 fmol) of RFC increased the rate of FEN1-catalyzed cleavage (Fig. 2C). This kinetic analysis revealed that the increase in RFC concentrations enhanced markedly (>5-fold) the rate of substrate cleavage by FEN1 (Fig. 2C). In the absence of RFC, the FEN1-alone reaction continued to accumulate cleavage products up to 1 h at 37 °C, indicating that FEN1 was not inactivated during the incubation period (Fig. 2C). However, the substrate cleavage rate increased proportionally to the amount of RFC added (Fig. 2C). Thus, we concluded that RFC accelerates the FEN1-catalyzed cleavage reaction. These results indicate that the increase in FEN1 activity is because of RFC stimulation of FEN1, not because of stabilization of the FEN1 protein.

Because RFC is a weak DNA-dependent ATPase (53), we examined whether ATP binding or ATP hydrolysis could alter the ability of RFC to stimulate FEN1. Neither ATP nor its nonhydrolyzable analog, ATPγS (1 mM, each), affected the stimulation of FEN1 activity by RFC (Fig. 2D), indicating that FEN1 stimulation by RFC requires neither ATP binding nor hydrolysis.

RFC Stimulates FEN1 Activity in a Manner Distinct from PCNA—Because FEN1 and RFC interact with PCNA, we performed mixing experiments to determine whether stimulation of FEN1 by RFC and PCNA is mutually exclusive (Fig. 3). First, we used the same concentrations (0–20 fmol; 0–1 nM) of RFC and PCNA in the presence of a fixed amount (0.5 fmol) of FEN1 as shown in Fig. 3A. The addition of increasing concentrations of RFC (Fig. 3, A, lanes 3–7, and B, closed circles) resulted in significant stimulation, whereas the addition of PCNA

V_{max}	K_m	K_{cat}	K_{cat}/K_m
<i>10</i><sup>-7</i>	10⁻¹	10⁻⁵	
FEN1 alone	6.35 ± 1.1	7.28 ± 1.2	1.27 ± 0.22
FEN1 + RFC	27.00 ± 2.0	6.48 ± 0.47	5.40 ± 0.39

FIGURE 4. RFC stimulates FEN1 at physiologic salt concentrations. A, FEN1 stimulation activity of RFC was examined in a standard reaction condition in the presence of increasing concentrations (25, 50, 100, and 150 mM) of NaCl. Note that different amounts of FEN1 were used because of inhibitory effect of high salt concentrations. The amount of cleavage products is indicated at the bottom of the gel. B, amount of each products formed in A was measured and normalized with respect to that obtained in the absence of RFC. Fold stimulation observed in the presence of increasing amounts (0, 1, 5, and 20 fmol) of RFC is shown in the bar graph. The amount of RFC used is indicated in the graph. C, time course experiment was performed with FEN1 in stoichiometric amount of substrate DNA in the presence of 100 mM NaCl. Two sets of reaction mixtures (160 μl each) containing 120 fmol of FEN1 and 120 fmol of the standard double-flap substrate in the absence and presence of 120 fmol of RFC were assembled on ice and prewarmed at 37 °C for 5 min, and reactions were initiated by adding Mg2+ to 4 mM (final concentration). Aliquots (20 μl) were withdrawn at times indicated after initiation of reaction. The amount of substrate cleaved is shown at the bottom of figure. D, amount of cleavage products formed in C was plotted against incubation time.
equivalent to RFC failed to give rise to any detectable stimulation (Fig. 3, A, lanes 9–13, and B, gray circles). We then determined concentrations of PCNA required to stimulate FEN1 activity to that comparable with RFC (data not shown), and we found that ~200-fold more PCNA was required than RFC to obtain comparable stimulation (Fig. 3C, compare lanes 3–7 with 9–13, and D, closed and gray circles). Amounts of products formed in the presence of both RFC and PCNA (Fig. 3C, lanes 15–19) were close to the combined amounts of products formed in the presence of PCNA or RFC alone (Fig. 3D). Our results suggest that the mechanisms by which FEN1 is stimulated by RFC and PCNA are different. We also investigated whether ATP could affect stimulation of FEN1 by RFC in the presence of PCNA, but we found that it did not affect the stimulation extent (data not shown). This result indicates that stimulation of FEN1 by RFC occurs independently of the RFC loading function of PCNA.

Effect of RFC on the Kinetic Parameters for FEN1 Cleavage—We next determined the reaction kinetic parameters, K_m and V_{max}, as described under “Materials and Methods.” The addition of RFC results in significant increase (>4-fold) in V_{max} (and thus K_{cat}), although hardly affecting K_m (Table 2). This result indicates that the addition of RFC increases K_{cat}/K_m, the catalytic efficiency of FEN1 (~4.8-fold (Table 2). The results of our kinetic analysis indicate that RFC increases catalytic power by increasing the turnover rate of FEN1. The two kinetic parameters also support the idea that the mechanism by which RFC stimulates FEN1 is distinct from that of PCNA, which increased V_{max} 2-fold, but decreased K_m ~12-fold (29). It has been suggested that the direct physical interaction of PCNA with FEN1 results in tethering FEN1 at the cleavage site, contributing to the increased affinity of FEN1 for DNA substrates (29). These findings are in support of our conclusion above that RFC stimulates FEN1 activity in a manner distinct from PCNA (Fig. 3).

RFC Stimulates FEN1 at Physiological Salt Concentrations—Because we wondered why stimulation of FEN1 by RFC was not noticed before by others, we compared other reaction conditions. The other reaction conditions were not significantly different from ours (see Refs. 4, 10, 11, 26–32, 36, 37, 51, 56). Briefly, they used either 50 mM Tris-Cl, pH 8.0, or 30 mM Hepes-KOH, pH 7.5, as buffer, salt concentrations were less than 50 mM NaCl or KCl and Mg$^{2+}$ from 8 to 10 mM. When 30 mM Hepes-KOH, pH 7.5, was used, 40 mM KCl was added. To establish stimulation of FEN1 by RFC in a condition closer to a physiological one, we examined whether RFC could stimulate FEN1 at higher salt concentrations. For this purpose, we examined the ability of RFC to stimulate FEN1 in the presence of increasing concentrations (25, 50, 100, and 150 mM) of NaCl. As shown in Fig. 4A, we found that the increase in salt concentrations resulted in the inhibition of FEN1 activity (compare lanes 2, 6, 10, and 14). For this reason, we used increased amounts of NaCl, which did not affect the stimulation of FEN1 by RFC.
found that RFC was still able to stimulate FEN1 activity under this condition (Fig. 4, C and D). Therefore, this result indicates that RFC is capable of stimulating FEN1 in a single catalytic cycle. Because RFC stimulation of FEN1 decreased in the presence of high salt and/or in the presence of excess amounts of FEN1, we cannot formally exclude the possibility that RFC could stimulate FEN1 by a nonspecific mechanism under these conditions. For example, RFC could stimulate FEN1 by dissociating FEN1 from the cleavage products using the nonspecific DNA binding activity of RFC, and thereby recycling it. However, we prefer the possibility that RFC stimulates FEN1 activity in a specific manner under physiological conditions because of the presence of specific stimulatory motifs in RFC required for FEN1 stimulation (see below).

RFC Supports FEN1 to Utilize a Variety of Known Substrates—The 9-1-1 complex and PCNA were both reported to stimulate FEN1 irrespective of flap length (29, 37).

To determine stimulation activity of RFC in this regard, FEN1 endonuclease assays were performed with a number of substrates (Fig. 5). We first tested double-flap substrates with varying flap lengths (1–54 nt) (Fig. 5A, lanes 1–20). All single strand DNA flaps contained homo- geneous oligo(dt) to prevent, as their length increases, the formation of secondary structure that may interfere with FEN1 activity. As shown in Fig. 5A, flap length did not cause any noticeable difference in the extent of FEN1 stimulation by RFC. We obtained 8–12-fold stimulation in the presence of 20 fmol of RFC (Fig. 5A, lanes 1–20). Like the 9-1-1 complex and PCNA, stimulation of FEN1 by RFC was not affected by flap length. Like the double-flap substrates, an equilibrating flap substrate, in which the double flaps compete with each other to anneal to the template, was more efficiently cleaved by FEN1 in the presence of RFC (Fig. 5A, lanes 21–25). Note that we used low levels (1 fmol) of FEN1 for the double-flap (lanes 1–20) and equilibrating flap substrates (Fig. 5A, lanes 21–25) as they are efficiently cleaved by FEN1.

We also tested nicked duplex substrate (lanes 26–31) as shown in Fig. 5A. Consistent with previous reports (22, 56), the level of FEN1 required to obtain the same level of cleavage with these substrates was greater (20-fold) than with either double-flap or equilibrating substrates. The 5′–3′-exonuclease activity...
Stimulation of FEN1 by RFC

of FEN1 was markedly stimulated (up to 9-fold) by RFC (Fig. 5, A, lanes 26–31, and B). This result, taken together with the results above, indicates that RFC potentiates catalytic activities tested of FEN1.

Bulk Single-stranded DNA Interferes with RFC Stimulation of FEN1—Previously, the ability of PCNA to stimulate FEN1 was investigated with an oligonucleotide-based substrate in the presence and absence of RFC (26). In this study, however, the
influence of RFC alone on FEN1 activity was not examined. Another study showed that RFC did not stimulate FEN1 activity with a flap substrate containing bulk single-stranded DNA (51). The substrate used in this study was prepared by annealing two oligonucleotides to a single-stranded circular (ssc) DNA. We repeated this experiment by preparing an M13sscDNA-based substrate. As shown in Fig. 6A, the addition of increasing amounts of RFC hardly stimulated FEN1-catalyzed cleavage of flap structure in this substrate. To assess the influence of bulk single strand DNA on stimulation of FEN1 by RFC, we performed a challenge experiment in which cold M13sscDNA was added to standard reaction mixtures. As expected, the addition of RFC stimulated FEN1 activity (Fig. 6B, lanes 2 and 3). However, addition of increasing amounts of M13sscDNA resulted in marked decrease in product formation (Fig. 6B, lanes 4–6). For example, the addition of 10 fmol of M13sscDNA reduced cleavage products to the level of FEN1 alone (Fig. 6B, lanes 2 and 5).

We noted that the addition of M13sscDNA also inhibited FEN1 activity significantly (Fig. 6B, lanes 2 and 7). This inhibition was relieved by the addition of 20 fmol of RFC (Fig. 6B, lanes 6 and 7), most likely through stimulation of FEN1. Consistent with this, we found that excess RFC (>0.1 pmol) was required to obtain 5-fold stimulation of FEN1 activity with M13sscDNA-based substrates (data not shown). Therefore, we conclude that the amount of RFC required to stimulate FEN1 activity varies depending on types of substrate used.

Multiple Stimulatory Motifs in RFC4—As an initial attempt to define which subunit of RFC has FEN1 stimulation activity, we purified the subunits and found that all five were capable of stimulating FEN1 activity (data not shown). We first isolated the full-length RFC4 subunit to near homogeneity because this subunit was well expressed in soluble form in *E. coli* (Fig. 6C). We compared its ability to stimulate FEN1 activity with that of the five subunit RFC complex. Interestingly, we discovered that the amount of RFC4 required for comparable stimulation was ~5-fold greater than that of the full RFC complex (Fig. 6D, compare lanes 3–5 and 8–10).

Unexpectedly, we found that RFC and RFC4 did not completely lose FEN1 stimulation activity even after being boiled for 5 min (Fig. 6D, lanes 6 and 11). Although the RFC complex, upon heat treatment, lost approximately two-thirds of its stimulatory activity and all subunits contain the box VII motif, we reasoned that the main stimulatory activity of RFC4 resides in the amino acid positions), the central RFC4-(198–269), and the C-terminal RFC4-(267–363) fragments. We found that the N-terminal RFC4-(1–202) (numbers in parentheses indicate the amino acid positions), the central RFC4-(198–269), and the C-terminal RFC4-(267–363) domains lost any stimulatory activity (Fig. 7A). The C-terminal fragment RFC4-(267–363) (Fig. 7B, lane 1) weakly stimulated FEN1 activity at low protein levels (<0.1 pmol) (Fig. 7C, lanes 18–20) but greatly stimulated FEN1 activity at high protein levels (~1 pmol) (Fig. 7C, lane 21). In contrast, RFC4-(316–363) (Fig. 7B, lane 2) did not stimulate FEN1 at either low (25–100 fmol; Fig. 7C, lanes 11–13) or high (500 fmol, Fig. 7C, lane 17) protein levels. RFC4-(1–202) was further fragmented into RFC4-(1–114) (Fig. 7B, lane 3) and RFC4-(115–202) (Fig. 7B, lane 4). RFC4-(1–114) lacked any stimulatory activity (Fig. 7C, lanes 3–5), but RFC4-(115–202) activity (Fig. 7D, lanes 8–10) was comparable with full-length RFC4 (Fig. 7D, lanes 3–5). Unlike RFC4-(1–114) that did not stimulate FEN1 activity at any protein levels (Fig. 7C, lanes 3–5 and 15), RFC4-(67–114) (Fig. 7B, lane 5), although not stimulatory at low protein levels (Fig. 7C, lanes 7–9) was stimulatory at high protein levels (500 fmol; Fig. 7C, lane 16). This finding suggests that RFC4-(1–66) inhibits or interferes with the interaction of RFC4-(67–114) and FEN1. Further deletion analyses of RFC4-(115–202) led to the finding that RFC4-(170–194) (Fig. 7B, lane 6), the region comprising RFC box VII, retained strong FEN1 stimulation activity (Fig. 7D, lanes 18–21), whereas fragment RFC4-(115–173), which contains RFC box V and VI, had no stimulatory activity (Fig. 7B, lane 7, and D, lanes 13–16). FEN1 stimulation activities of RFC4-(115–202) and RFC4-(170–194) were not abolished by heat denaturation (Fig. 7D, lanes 11 and 21, respectively) like full-length RFC4 (Fig. 7D, lane 6). Thus, the main stimulatory activity of RFC4 resides in the RFC4-(170–194) fragment.

Mapping of Amino Acid Residues Critical for FEN1 Stimulation—Because all five RFC subunits have FEN1 stimulation activity and all subunits contain the box VII motif, we expressed and purified the truncated forms (corresponding to RFC4-(115–202)) of the four subunits (RFC1–3 and -5). The truncated forms of each subunit all were capable of stimulating FEN1, confirming our mapping results (data not shown).

FIGURE 7. Multiple stimulatory motifs in RFC4. A, RFC4 and its derivatives, prepared as described under “Materials and Methods,” were schematically shown with the location of RFC homology boxes indicated in roman numerals in each derivative. Arabic numbers indicate the position of amino acids at the beginning and end of each derivative. The FEN1 stimulation by the different RFC4 derivatives is indicated on the right. The values are presented as follows: +++, stimulation equivalent to wild type RFC4; +, stimulation observed in the presence of 3–5-fold excess of proteins; −, no detectable stimulation. The positions of the three stimulatory motifs in RFC4 are shown at the bottom of the figure (see text for details). B, purity of RFC4 derivatives used for experiments described in C and D. The purified proteins were analyzed in 16% Tricine/SDS-PAGE, and the gel was stained with Coomassie Brilliant Blue R-250. Prior to use, the concentration of the small proteins were estimated by comparing their band intensities with BSA controls. C, FEN1 endonuclease assays were carried out in the presence of increasing concentrations of RFC4 derivatives; RFC4-(1–114), RFC4-(67–114), RFC4-(316–363), and RFC4-(267–363). The amount of substrate cleaved is presented at the bottom of the gel. D, standard endonuclease assays were carried out with RFC4-(115–202), RFC4-(115–173), and RFC4-(170–194) as well as full-length RFC4. The amount of substrate cleaved is shown at the bottom of the gel. The superscript B indicates heat treatment of protein as described in Fig. 6D.
Stimulation of FEN1 by RFC

We next used site-directed mutagenesis to further confirm that motif VII of RFC4 is responsible for its FEN1 stimulation activity. For this purpose, we performed alanine substitution from amino acids 181–192 of RFC4-(170–194). The mutant polypeptides were expressed and purified from E. coli (data not shown). All polypeptides contained a His$_6$ tag and a 24-amino acid linker fused to the stimulatory motif of RFC4-(170–194) to facilitate purification. The protein bands of each purified polypeptide were quantified with a BSA standard. As shown in Fig. 8A, we found that the change of four amino acids, Tyr-182, GLU-188, Pro-189, and Ser-192, into alanine affected FEN1 stimulation by RFC. The change of Tyr-182 into alanine resulted in partial loss of stimulation activity. These results are summarized in Fig. 8B. The finding that a single amino acid change in RFC4-(170–194) resulted in loss of stimulatory activity clearly demonstrates that RFC4-(170–194) contains a definable FEN1 stimulation motif.

Human RFC Stimulates Yeast Rad27 as Well as Human FEN1—FEN1 is structurally and functionally conserved from yeast to humans. It was reported that expression of human FEN1 in S. cerevisiae complemented several RAD27-deletion phenotypes as follows: allowing rad27Δ mutant cells (i) to grow at restrictive temperature (37 °C), (ii) to restore sensitivity to DNA damaging agents, and (iii) to suppress synthetic lethality of rad27 with rad51 or pol3-01 (7, 11, 57). For this reason, it is expected that human RFC should stimulate Rad27, yeast FEN1. To confirm this, we purified yeast Rad27 to near homogeneity as shown in Fig. 9A and examined cross-species FEN1 stimulation by human RFC. Not surprisingly, human RFC significantly stimulated Rad27 (Fig. 9B, lanes 8–12), although less efficiently than it stimulated human FEN1 (compare lanes 2–5 to 8–11). Heat-denatured human RFC retained the ability to stimulate both human FEN1 and yeast Rad27 (Fig. 9B, lanes 6 and 12). For both human FEN1 and yeast Rad27, heat denaturation of RFC (20 fmol) reduced stimulation to the level obtainable with 5 fmol of RFC (Fig. 9B, compare lanes 4 and 6, for example). Yeast Rad27 was also stimulated by the human RFC4 subunit (data not shown), suggesting that the stimulatory motifs present in RFC4 also function to stimulate yeast Rad27. It is worthwhile to mention that the human RFC complex did not stimulate yeast Dna2 endonuclease activity under conditions used for FEN1 stimulation (data not shown).

C-terminal Region of FEN1 Is Essential for Stimulation by RFC—Although FEN1 is evolutionarily well conserved from archaea to mammals, eukaryotic FEN1 has an extended and unstructured C terminus, known to be involved in nuclear localization, substrate binding, and protein-protein interaction (51, 58). Recently, it was shown that the interaction of WRN with the C terminus of FEN1 stimulated FEN1 activity (58). To discover how RFC stimulates FEN1, we purified a FEN1 C-terminal deletion mutant FEN1-(ΔC337–380) (Fig. 10A). As shown in Fig. 10B, we found that C-terminal deletion of FEN1 results in lower (5-fold) activity compared with full-length FEN1 (Fig. 10B, compare lanes 2–5) with C, lanes 8–13). This is likely due to the loss of the substrate binding domain (51). Thus, we used 5-fold more FEN1-(ΔC337–380) than wild type FEN1 to assess the stimulatory effect of RFC on FEN1-(ΔC337–380) endonuclease activity. Wild type FEN1 was dramatically enhanced by RFC (Fig. 10B, lanes 15–18), whereas FEN1-(ΔC337–380) was not stimulated at all (Fig. 10B, lanes 19–22, and D). The RFC4 subunit also failed to stimulate FEN1-(ΔC337–380) (data not shown). Therefore, we concluded that the stimulatory effect of RFC is mediated through the C-terminal region of FEN1.
DISCUSSION

In this study, we report for the first time that the human RFC complex markedly stimulates human FEN1 via its multiple stimulatory motifs per subunit, thus empowering FEN1 to cleave more efficiently all its known substrates. RFC1 stimulation by RFC is independent of ATP binding and hydrolysis, suggesting that this function of RFC is novel and separable from ATP-dependent PCNA loading to primer ends. Our findings demonstrate that RFC is involved throughout lagging strand metabolism, playing roles not only in loading PCNA but also in generating ligatable nicks through FEN1 stimulation.

Our efforts to define the stimulatory domain of RFC revealed that RFC4-(170–194) was able to stimulate FEN1 activity and that the four amino acid residues Tyr-182, Glu-188, Pro-189, and Ser-192 were critical for FEN1 stimulation. According to the three-dimensional structure of yeast RFC, the side chains of these four conserved amino acid residues are located on the exterior of the 5th α-helix of yeast RFC4 (46), and thus are accessible for interaction with FEN1. Unexpectedly, RFC4 carrying the deletion of RFC4-(170–194) retains approximately 2/3 of stimulation activity when compared with wild type RFC4, allowing us to find the two additional weak stimulatory motifs located near the N and C termini (Fig. 7). These two weak motifs may function when the strong RFC4-(170–194) motif is unavailable, particularly due to conformational changes. It is also possible that inactivation of one strong motif may lead to activation of the other weak motifs so that FEN1 stimulation is possible under all circumstances.

The fate of RFC after PCNA loading is still controversial. Fanning and co-workers (59) showed that RFC disengaged from DNA after PCNA loading. In contrast, others reported that RFC remained attached to the primer terminus throughout elongation and behaved as a processive factor (60, 61). One possible explanation for this discrepancy is a difference in the RFC preparations: when a mutant RFC1 subunit lacking the first 273 amino acid N-terminal domain was used, the complex disengaged after PCNA loading (59), whereas full-length RFC moved along DNA with PCNA and pol β (60, 61). The 273-amino acid N-terminal region of RFC1 was not required for interaction with PCNA or DNA replication in vitro (54), but its non-specific DNA binding activity may prevent RFC from dissociating after PCNA loading. Even if RFC is not an integral part of the DNA synthesis machinery, RFC could stimulate FEN1 as it moves between Okazaki fragments. Despite this, our finding that RFC is a potent stimulator of FEN1 better supports the scenario that RFC moves along with PCNA and pol δ, so that RFC is available to stimulate FEN1 to cleave flap structures. In this way, RFC could contribute to more rapid formation of ligatable nicks as an integral part of the replication machinery. The multiple stimulatory motifs present in one molecule of RFC may account for why much less (∼200-fold) RFC is required than PCNA for a comparable level of FEN1 stimulation. The fact that RFC is intrinsically more potent than PCNA in stimulating FEN1 makes it likely that RFC is a more physiologically relevant stimulator of FEN1. It is important to note the difficulty of demonstrating that FEN1 stimula-
Stimulation of FEN1 by RFC

tory function of RFC is essential for Okazaki fragment maturation in vivo, because (i) there are at least five stimulatory motifs in the RFC complex, and (ii) all subunits of RFC are essential. Thus, it will be difficult to obtain mutant RFC free of FEN1 stimulatory activity without affecting DNA replication.

Determination of kinetic parameters, including V_{max} and K_m^act, revealed that RFC increased V_{max} 4-fold without affecting K_m. This change resulted in a significant increase in the catalytic efficiency ($K_m^\text{act}/V_{\text{max}}$) of FEN1 (Table 2). Like RFC, the addition of WRN increased V_{max} 6-fold compared with that of FEN1 alone, but it did not affect K_m (32). These kinetic results suggest that stimulation mechanisms by which RFC and WRN are similar, but distinct from that of PCNA, increased V_{max} 2-fold and decreased K_m 12-fold (29). PCNA physically interacts with FEN1 in two distinct modes depending on its interaction status with DNA (28). The direct physical interaction of PCNA with FEN1 may result in tethering FEN1 at the cleavage site, effectively increasing FEN1 substrate affinity (28). In contrast, our finding that RFC did not alter K_m, but increased V_{max} suggests that RFC promotes the formation of the FEN1-substrate complexes, their turnover, or both. This may be achieved by conformational changes in FEN1 induced by its transient interaction with RFC or WRN. Although kinetic parameters have not been determined with BLM, we believe that BLM may also stimulate FEN1 in a similar way.

Physical interactions of WRN and BLM with FEN1 were demonstrated (31, 35), but we failed to detect any physical interaction in vitro using purified proteins (data not shown). Consistent with this, genome-wide analyses did not reveal any evidence that yeast Rad27 physically interact with components of the RFC complex. Therefore, we believe that there is weak and transient interaction between FEN1 and RFC that allows rapid catalytic action of FEN1. The interaction between the box VII motif in each RFC subunit and the C terminus of FEN1 may induce a conformational change in FEN1 that increases its catalytic efficiency.

The stimulation of FEN1 by RFC may provide cells with an effective means of preemptively removing DNA flaps before they grow too long. Excessively long flaps are likely to form secondary structure that would inevitably require additional enzymatic activities to resolve. Long flaps can form even higher ordered structure or bind to replication protein A, both of which inhibit FEN1 activity.

We also found that RFC could stimulate FEN1-catalyzed cleavage of a hairpin-containing flap or a flap containing a partial duplex at its 5’-end (data not shown). In other words, RFC can stimulate the GEN activity of FEN1. Thus, RFC might have other biological importance during Okazaki fragment processing. Repeat-induced secondary flap structures might be more effectively processed by the GEN activity of FEN1 in the presence of RFC than by the Dna2 pathway. If this is the case, FEN1 together with RFC may contribute to stabilizing repeat sequences. Alternatively, the GEN activity of FEN1, when assisted by RFC, may be more effective at resolving stalled replication forks.

There is a growing list of proteins, all involved in DNA metabolism, that can stimulate FEN1 activity. These include WRN, BLM, Mgs1, PCNA, and Mph1 (62). The acquisition of FEN1 stimulation activity by these proteins may have conferred evolutionary benefits, because such an ability may permit faster generation and sealing of DNA nicks. If this is the case, the stimulation of FEN1 by RFC and other proteins reflects the importance of the generation and sealing of ligatable nick. This may act as the first line of defense in the preservation of genome integrity.

Acknowledgment—We are grateful for Dr. Walton Jones for critical reading of the manuscript.

REFERENCES

1. Waga, S., and Stillman, B. (1998) Annu. Rev. Biochem. 67, 721–751
2. Sancar, A., Lindsey-Bolz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Annu. Rev. Biochem. 73, 39–85
3. Johnson, A., and O’Donnell, M. (2005) Annu. Rev. Biochem. 74, 283–315
4. Harrington, J. J., and Lieber, M. R. (1994) EMBO J. 13, 1235–1246
5. DeMott, M. S., Shen, B., Park, M. S., Barbamara, R. A., and Zigan, S. M. (1996) J. Biol. Chem. 271, 30068–30076
6. Sommers, C. H., Miller, E. J., Djoun, B., Prakash, S., and Prakash, L. (1995) J. Biol. Chem. 270, 4193–4196
7. Greene, A. L., Snipe, J. R., Gordenin, D. A., and Resnick, M. A. (1999) Hum. Mol. Genet. 8, 2263–2273
8. Wu, X., and Wang, Z. (1999) Nucleic Acids Res. 27, 956–962
9. Xie, Y., Liu, Y., Argueso, J. L., Henrickson, L. A., Kao, H. I., Bambara, R. A., and Alani, E. (2001) Mol. Cell. Biol. 21, 4889–4899
10. Storici, F., Henneke, G., Ferrari, E., Gordenin, D. A., Hubsher, U., and Resnick, M. A. (2002) EMBO J. 21, 5930–5942
11. Zheng, L., Zhou, M., Chai, Q., Parrish, J., Jue, D., Patrick, S. M., Turchi, J. I., Yannone, S. M., Chen, D., and Shenn, B. (2005) EMBO Rep. 6, 83–89
12. Liu, R., Qiu, J., Finger, L. D., Zheng, L., and Shenn, B. (2006) Nucleic Acids Res. 34, 1772–1784
13. Larsen, E., Gran, C., Saether, B. E., seeberg, E., and Kungland, A. (2003) Mol. Cell. Biol. 23, 5346–5353
14. Kucherlapati, M., Yang, K., Kuraguchi, M., Zhao, J., Lia, M., Heyer, J., Kane, M. F., Fan, K., Russell, R., Brown, A. M., Kneitz, B., Edelmann, W., Kolodner, R. D., Lipkin, M., and Kucherlapati, R. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 9924–9929
15. Bae, S. H., Bae, K. H., Kim, J. A., and Soo, Y. S. (2001) Nature 412, 456–461
16. Gar, P., Stith, C. M., Sabourin, N., Johansson, E., and Burgers, P. M. (2004) Genes Dev. 18, 2764–2773
17. Reigan, M. S., Pittenger, C., Siede, W., and Friedberg, E. C. (1995) J. Bacteriol. 177, 364–371
18. Kim, K., Biade, S., and Matsumoto, Y. (1998) J. Biol. Chem. 273, 8842–8848
19. Prasad, R., Dianov, G. L., Bohr, V. A., and Wilson, S. H. (2000) J. Biol. Chem. 275, 4460–4466
20. Wu, X., Wilson, T. E., and Lieber, M. R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1303–1308
21. Harrington, J. J., and Lieber, M. R. (1995) J. Biol. Chem. 270, 4503–4508
22. Kao, H. I., Henrickson, L. A., Liu, Y., and Barbamara, R. A. (2002) J. Biol. Chem. 277, 14379–14389
23. Parrish, J. Z., Yang, C., Shen, B., and Xue, D. (2003) EMBO J. 22, 3451–3460
24. Liu, Y., Kao, H. I., and Barbamara, R. A. (2004) Annu. Rev. Biochem. 73, 589–615
25. Shen, B., Singh, P., Liu, R., Qiu, J., Zheng, L., Finger, L. D., and Alas, S. (2005) BioEssays 27, 717–729
26. Li, X., Li, J., Harrington, J., Lieber, M. R., and Burgers, P. M. (1995) J. Biol. Chem. 270, 22109–22112
27. Wu, X., Li, J., Li, X., Hsieh, C. I., Burgers, P. M., and Lieber, M. R. (1996) Nucleic Acids Res. 24, 2036–2043
28. Gomes, X. V., and Burgers, P. M. (2000) EMBO J. 19, 3811–3821
29. Tom, S., Henrickson, L. A., and Barbamara, R. A. (2000) J. Biol. Chem. 275, 10498–10505
30. Frank, G., Qiu, J., Zheng, L., and Shen, B. (2001) J. Biol. Chem. 276, 36295–36302
31. Brosh, R. M., Jr., von Kobbe, C., Sommers, J. A., Karmakar, P., Opresko, P. L., Piotrowski, J., Dianova, I., Dianov, G. L., and Bohr, V. A. (2001) EMBO J. 20, 5791–5801
32. Brosh, R. M., Jr., Driscoll, H. C., Dianov, G. L., and Sommers, J. A. (2002) Biochemistry 41, 12204–12216
33. Sharma, S., Otterlei, M., Sommers, J. A., Driscoll, H. C., Dianov, G. L., Kao, H. I., Bambara, R. A., and Brosh, R. M., Jr. (2004) Mol. Biol. Cell 15, 734–750
34. Sharma, S., Sommers, J. A., and Brosh, R. M., Jr. (2004) Hum. Mol. Genet. 13, 2247–2261
35. Sharma, S., Sommers, J. A., Wu, L., Bohr, V. A., Hickson, I. D., and Brosh, R. M., Jr. (2004) J. Biol. Chem. 279, 9847–9856
36. Wang, W., and Bambara, R. A. (2005) J. Biol. Chem. 280, 5391–5399
37. Wang, W., Brandt, P., Rossi, M. L., Lindsey-Boltz, L., Podust, V., Fanning, E., Sancar, A., and Bambara, R. A. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 16762–16767
38. Imamura, O., and Campbell, J. L. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 8193–8198
39. Kim, J. H., Kang, Y. H., Kang, H. I., Kim, D. H., Ryu, G. H., Kang, M. J., and Seo, Y. S. (2005) Nucleic Acids Res. 33, 6137–6150
40. Cullmann, G., Fien, K., Kobayashi, R., and Stillman, B. (1995) Mol. Cell. Biol. 15, 4661–4671
41. Cai, J., Yao, N., Gibbs, E., Finkelstein, J., Phillips, B., O'Donnell, M., and Hurwitz, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 11607–11612
42. Gomes, X. V., and Burgers, P. M. (2001) J. Biol. Chem. 276, 34768–34775
43. Gomes, X. V., Schmidt, S. L., and Burgers, P. M. (2001) J. Biol. Chem. 276, 34776–34783
44. Schmidt, S. L., Gomes, X. V., and Burgers, P. M. (2001) J. Biol. Chem. 276, 34784–34791
45. Schmidt, S. L., Pautz, A. L., and Burgers, P. M. (2001) J. Biol. Chem. 276, 34792–34800
46. Bowman, G. D., O'Donnell, M., and Kuriyan, J. (2004) Nature 429, 724–730
47. Miyata, T., Oyama, T., Mayanagi, K., Ishino, S., Ishino, Y., and Morikawa, K. (2004) Nat. Struct. Mol. Biol. 11, 632–636
48. Indiani, C., and O'Donnell, M. (2006) Nat. Rev. Mol. Cell Biol. 7, 751–761
49. Henricksen, L. A., Umbricht, C. B., and Wold, M. S. (1994) J. Biol. Chem. 269, 11121–11132
50. Ayagari, R., Impellizzeri, K. J., Yoder, B. L., Gary, S. L., and Burgers, P. M. (1995) Mol. Cell. Biol. 15, 4420–4429
51. Stucki, M., Jonsson, Z. O., and Hubscher, U. (2001) J. Biol. Chem. 276, 7843–7849
52. Bae, S. H., and Seo, Y. S. (2000) J. Biol. Chem. 275, 38022–38031
53. Cai, J., Uhlmann, F., Gibbs, E., Flores-Rozas, H., Lee, C. G., Phillips, B., Finkelstein, J., Yao, N., O'Donnell, M., and Hurwitz, J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12896–12901
54. Uhlmann, F., Cai, J., Gibbs, E., O'Donnell, M., and Hurwitz, J. (1997) J. Biol. Chem. 272, 10058–10064
55. Schagger, H. (2006) Nat. Protoc. 1, 16–22
56. Singh, P., Zheng, L., Chavez, V., Qiu, J., and Shen, B. (2007) J. Biol. Chem. 282, 3465–3477
57. Negritto, M. C., Qiu, J., Ratay, D. O., Shen, B., and Bailsis, A. M. (2001) Mol. Cell. Biol. 21, 2349–2358
58. Guo, Z., Chavez, V., Singh, P., Finger, L. D., Hang, H., Hegde, M. L., and Shen, B. (2008) J. Mol. Biol. 377, 679–690
59. Podust, V. N., Tiwari, N., Stephan, S., and Fanning, E. (1998) J. Biol. Chem. 273, 31992–31999
60. Yuzhakov, A., Kelman, Z., Hurwitz, J., and O'Donnell, M. (1999) EMBO J. 18, 6189–6199
61. Masuda, Y., Suzuki, M., Piao, J., Gu, Y., Tsurimoto, T., and Kamiya, K. (2007) Nucleic Acids Res. 35, 6904–6916
62. Kang, Y. H., Kang, M. J., Kim, J. H., Lee, C. H., Cho, I. T., Hurwitz, J., and Seo, Y. S. (2009) J. Biol. Chem. 284, 10376–10386