Underestimated cyanobacterial diversity: trends and perspectives of research in tropical environments

Petr Dvořák1, Petr Hašler1, Dale A. Casamatta2* & Aloisie Poulíčková1

1 Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtelů 27, CZ–783 71 Olomouc, Czech Republic
2 University of North Florida, Department of Biology, University of North Florida, Jacksonville, Florida, USA; *Corresponding author: dcasamat@unf.edu

Abstract: Cyanobacteria are photo–oxygenic prokaryotes present in nearly all ecosystems, where they are important in global oxygen, carbon, and nitrogen cycles. They are often recognized as the harbingers of eutrophication in freshwater systems and are increasingly being noted as nuisance species in marine ecosystems such as coral reefs. In recent years, cyanobacteria have been intensely studied due to their toxicity, harmful bloom formation, and because their distribution and abundance are expected to increase with climate change. Nevertheless, for all of their importance, many gaps in our knowledge of cyanobacteria remain: the distribution, dispersal, and biogeography of these microorganisms are still not understood. Until 1994 little attention was paid to tropical cyanobacteria and their diversity, despite some harmful invasive species having their putative origins in tropical habitats. However, more practiced articulation and research has recently uncovered previously undescribed biodiversity, and in turn changed our knowledge of the evolutionary relationships within the Cyanobacteria. The purpose of this paper is to describe the challenges of working with the cyanobacteria and to review what we know of them from tropical habitats.

Key words: cyanobacteria, diversity, tropical environment, biogeography, new genera

INTRODUCTION

Cyanobacteria are a diverse group of photo–oxygenic bacteria that contain chlorophyll a and are found in myriad habitats. Amongst the oldest known bacterial lineages, fossil records date back to 3.5 BYA (SCHOPF 2000). The most recent study based on a combination of genetics and fossil evidence suggest their origin to mid–Archean, long before the Great Oxidation Event (2.5–2.3 Ga), with multicellularity evolving towards the end of the Archean (SCHIRRMESTER et al. 2015). The earliest lineages of cyanobacteria likely inhabited the benthos of freshwater ecosystems (UYEDA et al. 2016). Cyanobacteria are common components of nearly all ecosystems and range from oceans, freshwaters, soils and extreme habitats (for review see WHITTON & POTTS 2000; WARREN–RHODES et al. 2006). They are also important members of symbiotic relationships with lichens, plants, and other phototrophs (e.g., RAT et al. 2002; USHER et al. 2007; VILLANUEVA et al. 2019). Not merely relegated to aquatic habitats, cyanobacteria are also common terrestrial pioneers and form the basis of cryptogamic crusts (JOHANSEN 1993; BÜDEL et al. 2002; NGUYEN et al. 2017). Cyanobacteria are also important global ecosystem level engineers and their total biomass is estimated at ca. 3.0 × 1014 g C (GARCIA–PICHEL et al. 2003), and may constitute up to 50% of oceanic primary productivity (FALKOWSKI 2012). Although diatoms have been generally considered the standard algal bioindicators, routine cyanobacterial monitoring, especially in freshwater habitats, is increasing (MATEO et al. 2015; MONTEGUARDO 2016). Non–toxic cyanobacteria are sources of food for many organisms, forming the base of the food web in aquatic ecosystems (NWEZE 2009). Moreover, Nostoc and Arthrospira have been considered delicacies for centuries (Mexico, Peru, Lake Chad region of Africa and China; reviewed by NWEZE 2009).

Cyanobacteria have other significant ecological roles, including global oxygen production (KASTING & SIEFERT 2002; LYONS et al. 2014) and carbon flux (CHARPY et al. 2012). In nitrogen–limited tropical ecosystems, they may be the primary source of nitrogen fixation (HOFFMANN 1999; ABEDE et al. 2006; CHARPY et al. 2010). Marine cyanobacteria are responsible for ca. 50% of the global biological nitrogen fixation (GRUBER et al. 2008). While the filamentous, planktonic genus Trichodesmium represents a major marine nitrogen source (HOFFMANN
Cyanobacteria were traditionally, broadly organized into four major lineages based on type of cell division and the presence of specialized cells. However, this system needs revision and no currently proposed taxonomic schemes are universally accepted (e.g., Komárek 2010, 2011, 2018; Komárek et al. 2014). Taxonomic classification is confounded by the fact that cyanobacteria fall under both the International Code of Nomenclature of algae, fungi and plants and International Code of Nomenclature of Bacteria (Oren 2011; Oren & Ventura 2017). While the most commonly employed scheme was introduced by Rippka et al. (1979) and modified by Castenholz et al. (2001), we, and most researchers now, employ the botanical approach and scheme set forth by Komárek et al. (2014).

Traditionally, cyanobacteria have been extensively studied in temperate zones due to the prevalence of researchers associated with these habitats. Since 1994, an increasing attention has been paid to tropical cyanobacteria and their diversity (Fig. 1). However, the number of all species (Fig. 2) and newly described genera (Table 1) reflect unequal effort in respect to different tropical countries. Recent evidence suggests that the cyanobacteria as a whole possess much greater molecular diversity than is evidenced in morphology (e.g., Casamatta et al. 2003; Häslér et al. 2011, 2012, 2014a,b; Sili et al. 2011; Vaccarino & Johansen 2011; Palinska et al. 2012; Dvořák et al. 2012, 2014, 2015b; Hauser et al. 2013; Komárek et al. 2013a,b; Komárekova et al. 2013; Krienitz et al. 2013; Engene et al. 2018). Questions still remain as to whether true tropical taxa even exist, or if cyanobacteria are ecologically ubiquitous in permissive habitats. Explanation will need more sequence data in public databases and higher accuracy in their identification, because many sequences refer only to cyanobacterial genera, or left unresolved as “uncultured” (Dvořák et al. 2018). The purpose of this paper is to explore the state of tropical cyanobacterial diversity, ecological roles and putative evolutionary patterns. For the purposes of this paper, we define tropics as a region between subtropical high–pressure regions between 30–35 North and South latitudes (Henry 2005).

Cyanobacterial species concepts and definitions

Inherent to any discussion of biodiversity are two main questions: i) what is a species and ii) how does cryptic diversity influence our notions about diversity? While cyanobacteria are technically bacteria, they have traditionally been regarded as “algae”, and are governed by both the Botanical and Bacteriological Codes of Nomenclature. Although discussions of species concepts are not new (Castenholz & Norris 2005; Oren & Garrity 2014; Palinska & Surosz 2014), cyanobacteria represent an especially problematic lineage. Komárek (2010, 2011, 2018, 2020) published critical comments on some problematic aspects of cyanobacterial species designations. The author pointed out the necessity to
study both natural populations and cultivated material in order to accurately account for phenotypic plasticity (for a review of potential issues arising from such plasticity see discussions by Drouet 1968, 1973). While traditionally organized based on major morphological features (e.g., presence or absence of specialized cells, types of cell division, mechanisms of reproduction, etc.), the currently accepted metric for species delineations is analysis of 16S rRNA gene (e.g. Nübel et al. 2008; Iteman et al. 2000) similar to bacteria (Caro–Quintero & Konstantinidis 2012). Unfortunately, the 16S rRNA gene itself does not provide sufficient resolution for species level designations in cyanobacteria (Johansen & Casamatta 2005; Casamatta et al. 2005), and thus may miss critical cryptic diversity (Casamatta et al. 2003). Moreover, multiple ribosomal operons are often present in the cyanobacterial genomes. While they are almost identical in most cases, Scytonema hyalinum possesses two types of highly diverged operons with 7.3–9.0% of difference between them (Johansen et al. 2017).

Researchers are increasingly also employing 16S–23S ITS secondary folding structures as phylogenetically informative characters, as this region easily undergoes changes more than the conservative 16S rRNA gene. In addition, resolution on the species or infraspecific level is very high (Lukešová et al. 2009; Perkerson et al. 2011; Osorio–Santos et al. 2014) and so the ITS secondary structures represent another effective tool of modern taxonomy of cyanobacteria (e.g. Boyer et al. 2001; Casamatta et al. 2006; Siegesmund et al. 2008). To avoid the problems associated with single–gene phylogenies, multilocus and phylogenomics datasets are also being utilized (Ahlgren et al. 2012; Mazard et al. 2012; Komárek et al. 2014; Schirrmieister et al. 2015; Alvarenga et al. 2017; Mareš 2018). Another method with a sufficient resolution to recognize cryptic lineages is peptide/protein profiles (intact cell MALDI–TOF – matrix assisted laser desorption ionization–time of flight mass spectrometric analysis). While this method seems to have higher sensitivity than analysis of 16S rRNA gene, while being both cheaper and simpler than genomic analysis (Šebela et al. 2018), few researchers employ this method at present.

Current classification of cyanobacteria employs a polyphasic approach, using study of natural populations and cultures, a detailed evaluation of morphological variability, ecology of species, ultrastructure and molecular analysis (Komárek 2018, 2020). Current estimates indicate that there exist >6000 species of cyanobacteria (Nabout et al. 2013), but this estimate is highly conservative and probably will be shattered as more habitats are sampled. Further, with an advent of next generation sequencing, it has become obvious that the ITS patterns can only provide limited insights into diversity. Phylogenomic analyses (phylogenies based on a whole genome data) reveal that there appear cryptic species (taxa, ecotypes),

Fig. 1. Cyanobacterial diversity in the tropical countries. The color gradient represents the number of species found per country. All accession numbers from tropical countries were downloaded for the whole world from AlgeaBase (12 February 2020, https://www.algaebase.org/search/distribution/). The number of species found in a particular country was drawn using R (R Core Team 2020), package rworldmap 1.3–6 (https://cran.r-project.org/web/packages/rworldmap/index.html).
which might be identified only using whole genome data (e.g., ROCAP et al. 2003). While 411,496 complete or draft genomes are available for bacteria, only 1,842 cyanobacterial draft or complete genomes are available in NCBI (22nd February 2021). Thus, cyanobacteria are still behind with data in comparison to other prokaryotes (ANARENGA et al. 2017). DVOŘÁK et al. (2020) showed that whole-genome of cyanobacterial herbarium specimens can be sequenced. Herbarium specimens may provide a unique source of reference data for the phylogenomic analyses and taxonomic revisions.

Recent research suggests that tropical cyanobacterial biodiversity is likely extremely high. The actual elucidation of this diversity is confounded by morphological similarity with species from temperate zones and cryptic diversity, which requires the use of sensitive phylogenetic methods. Further, a dearth of specialized modern keys from the tropics leads to more difficulties. The most comprehensive key books on tropical cyanobacteria were published by GARDNER (1927), FRÉMY (1930) and DESIKACHARY (1959). The three recently published monographs of the Süsswasserflora von Mitteleuropa keys (KOMÁREK & ANAGNOSTIDIS 1999, 2005; KOMÁREK 2013) are the most employed cyanobacterial keys throughout the world. Unfortunately, these books focus almost exclusively on European flora, while taxa occurring in the tropical regions are mentioned without keys to their identification. The expected occurrence of cosmopolitan species and number of tropical species in the aforementioned recent and classical monographs enable their common use as the basic source of knowledge for studying diversity of tropical cyanobacteria.

Another caveat in an identification of the tropical cyanobacteria lies in the frequent polyphyly within almost all cyanobacterial genera. For example, cosmopolitan genera such as Phormidium, Leptolyngbya, Microcoleus, and Synechococcus are composed of several lineages without common origin but with a coherent morphology. The most recent and complex review is given in KOMÁREK et al. (2014), who proposed to call these polyphyletic conglomerates “cryptogenera”. In some cases, such morphological coherence may mask a geographical origin. For example, Pseudanabaena galeata frequently occurs in the plankton of fresh-water lakes in the temperate zone. Recently, a morphologically indistinguishable morphospecies has been isolated from the plankton of tropical fresh-water bodies. However, phylogenetic analyses of 16S rRNA regions has revealed the tropical morphospecies actually belong to another lineage distantly related to P. galeata, Pinocchia polymorpha (DVOŘÁK et al. 2015a). In many cases, genetic differences are quite extensive. For example, two newly identified genera Ammassolinea (HAŠLER et al. 2014b) and Jacksonvillea (HAŠLER et al. 2017) found in Florida showed that they were ~10% different from other cyanobacteria 16S rRNA sequences stored at GenBank. A survey of the GenBank 16S rRNA sequences by DVOŘÁK et al. (2018) revealed that only 21% of species stored there are correctly identified, further emphasizing potential problems arising from the cryptogenera.

Although the trend to erect new taxa is robust (see Table 1), most of the studies are based on one or two strains, perhaps leading to spurious results as additional strains are sequenced. To articulate this issue, PIETRASIAK et al. (2019) studied Myxacorys gen. nov. from desert soil crusts. They isolated 42 strains and proposed a new genus with two new species Myxacorys californica and M. chilensis on the basis of 16S rRNA.

Fig. 2. Number of papers from Web of Science (to date 22 February 2021) which dealt with the tropical diversity of cyanobacteria each year employing the terms: cyanobacteria, diversity, tropics, and a particular year.
gene sequences. But they also found distinct 16S–23S ITS sequence variability within species, with three distinct lineages within *M. californica* and five within *M. chilensis*. They articulated this surprising result with the question: “what is the line between species, or, put differently, when is it justified to describe a cyanobacterial species?” (PIETRASIAK et al. 2019).

Pioneer morphological studies

Little attention has been paid to tropical cyanobacteria and their diversity. The most important and comprehensive first monographs on tropical cyanobacteria were published by Frémy (1930) and DESIKACHARY (1959), who studied diversity across Paleotropical regions. Both authors classified cyanobacteria employing a traditional botanical approach. Frémy reported 227 species of cyanobacteria from equatorial Africa, representing 57.9% of the total cyanobacterial diversity in Africa (392 species). The author distinguished three groups of species: i) cosmopolitan or species occurring across the world, ii) exclusively tropical species, and iii) those taxa which occurred only in equatorial Africa (most likely endemic species). Frémy collected cyanobacterial samples from diverse habitats, including dry rocks, wet soils and wet bark, leaves, and mosses. Aquatic habitats elicited a higher diversity of cyanobacteria. Numerous taxa were found as periphyton on submerged trees, plants, stones, etc. or free-floating, including many traditional temperate genera.

DESIKACHARY (1959) reported 85 genera and 750 species of cyanobacteria in India and surroundings regions. Approximately 145 species were designated as cosmopolitan and 31% of species corresponded to European records. A similar situation described KOMÁREK (1985) who recorded 45% rate of endemism from Cuba. GARDNER (1927) described 216 species of neotropical flora in the monograph New Myxophyceae from Puerto Rico, among which *Lyngbyopsis willei* (a monotypic genus) represents an endemic cyanobacterium of the Caribbean region. Floristic research from the other countries in Central America (Mexico, Belize) showed a high diversity of cyanobacteria and numerous new species or genera were found in various habitats. Historical records indicate that tropical habitats contain both autochthonous tropical flora as well as cosmopolitan species. Tropical cyanobacteria can be pantropical or restricted to narrow, geographically limited regions.

GARDNER (1927) described many genera commonly encountered in temperate regions, but with high intrageneric diversity. For example, Scyttonema included 22 species and varieties, of which the majority represents species found only in Puerto Rico. However, it must be noted that recent molecular analyses have erected new genera to encompass many of these taxa, such as *Chakia* (KOMÁRKOVÁ et al. 2013; formerly *Sc. catenulum, Sc. evansescens*) or *Brasilinema* (*Sc. lyngbyoides*). Similarly, the genus *Stigonema* showed a high intrageneric diversity (15 species and varieties), the majority of which have only been found in Puerto Rico (*St. hormoides* var. *constrictum, var. rigidum, var. *lineare*), potentially representing new taxa.

Modern polyphasic studies

Recently, researchers have greatly expanded our knowledge of cyanobacterial diversity in tropical habitats (Table 1, Fig. 1, FiORE et al. 2007; SANT’ANNA et al. 2010, 2011; RAMÍREZ et al. 2011; SANT’ANNA et al. 2011; LEMES–DA–SILVA et al. 2012; JAHODÁROVÁ et al. 2017, 2018). The reasons for such increase can be found in general globalization – accessibility of traveling, increasing use of molecular methods, and expansion of polyphasic studies. The description of new genera in Table 1 has been achieved using a polyphasic approach supported by International Association for Cyanophyte Research (IAC) (KOMÁREK 2011).

First, it may be argued that the prevalence of tropical cyanobacterial diversity may be increasing in both terms of abundance and distribution. For example, migratory birds to Europe or across America can introduce tropical species such as *Raphidiopsis raciborskii*, which may be successfully established due to global climate change (DYBLE et al. 2002; MEHNERT et al. 2010; SUKENIK et al. 2012). CELLAMARE et al. (2013) have pointed out that cyanobacterial dispersal along the Aquitaine region of France is due to birds migrating from Africa. In general, planktic species are expected to have wider, easier dispersion than benthic taxa (NASELLI–FLORES & PADISÁK 2016).

Second, the pioneering works examining tropical cyanobacterial diversity were based solely on light microscopy (LM) studies. However, the limited resolution of LM, coupled with simple cyanobacterial morphology, subtle apomorphies, and potentially widespread cryptic diversity represent the limitations of taxonomy in the 19th and 20th centuries (CASAMATTA et al. 2003; SHERWOOD et al. 2015; ENGNE et al. 2018). The lack of keys to tropical taxa led to further confusion, with many temperate taxa described from tropical areas due to an overreliance on morphological assessments. For example, ENGNE et al. (2011, 2012, 2013a, 2013b, 2018) focused on the ubiquitous tropical marine genus “Lynghya”. Using molecular, morphological, and chemotaxonomic characters, they have clearly demonstrated vast phylogenetic diversity in what has traditionally been considered a species depauperate clade. In contrast, the genus *Sphaerocavum*, which co–occurs with *Microcystis* in eutrophic Brazilian lakes, was initially described as a separate genus based on morphology (AZEVEDO & SANT’ANNA 2003), but later phylogenetic analyses revealed this to be mere phenotypic plasticity (RIGONATO et al. 2018).

One of the most–studied tropical areas is Central and Southern America. Specialists have begun to investigate freshwater, subaerophytic, and aerophytic populations of cyanobacteria from Cuba, Mexico, Belize and Brazil, which has resulted in numerous new taxa (Fig. 2, Table 1, e.g. KOMÁREK & HINDÁK 1975; MONTEJANO
Genus	References	Habitat	Taxonomic lineage	Area
Aliterella	Rigonato et al. 2016	Marine	Chroococcidiopsidales	Brazil
Aliiostoc	Bagchi et al. 2017	Benthic	Nostocales	India
Alkalinema	Vieira Vaz et al. 2015	Saline wetland	Synechococcales	Brazil
Amazoninema	Genuário et al. 2020	Stream	Synechococcales	Brazil
Amphiheterocystum	Sánt'Anna et al. 2019	Planktic	Nostocales	Brazil
Ancylothrix	Martins et al. 2016	Stream benthos	Oscillatoriales	Brazil
Caldora	Engene et al. 2015	Marine	Oscillatoriales	Florida
Capilliphycus	Caires et al. 2019	Marine	Oscillatoriales	Brazil
Cephalothrix	Malone et al. 2015	Lake	Oscillatoriales	Brazil
Crocosphaera	Marés et al. 2019	Marine	Chroococcales	Brazil
Cryptococcus	Gama et al. 2019	Terrestrial	Chroococcales	Brazil
Dapis	Engene et al. 2018	Marine	Oscillatoriales	Florida
Dapisostemon	Hentschke et al. 2016	Epidendric	Nostocales	Brazil
Desikacharya	Saraf et al. 2019a	Freshwater	Nostocales	India
Dicytophorn	Komárek et al. 2017	Bentic	Nostocales	Brazil
Dulcicalothrix	Saraf et al. 2019b	Oligotrophic lake	Nostocales	India
Elainella	Jahodára et al. 2018	Planktic	Synechococcales	Vietnam
Eurhynalinema	Chakraborty et al. 2019	Soil	Synechococcales	India
Evmania	McGregor & Sendall 2017a	Thermal springs	Nostocales	Australia
Foliisarcina	Alvarenga et al. 2016	Aerophytic	Pleurocapsales	Brazil
Golter	Miscoe et al. 2016	Cave wall	Nostocales	Hawaii
Gloeomargarita	Moreira et al. 2017	Lake biofilm	Gloeomargaritales	Mexico
Halotia	Genuário et al. 2015	Mangrove soil	Nostocales	Brazil
Chamaethrix	Dvořák et al. 2017	Soil crust	Synechococcales	Florida
Chroakoilemma	Becerra–Absolón et al. 2018	Desert soil	Synechococcales	Mexico
Inacoccus	Gama et al. 2019	Terrestrial	Chroococcales	Brazil
Iningainema	McGregor & Sendall 2017b	Spring	Nostocales	Australia
Jacksonvillea	Hašler et al. 2017	Bentic	Oscillatoriales	Florida
Komarekietta	Hentschke et al. 2017	Aerophytic	Nostocales	Brazil
Komarkovavea	Mai et al. 2018	Waterfalls	Synechococcales	Puerto Rico
Kovackia	Miscoe & Johansen 2016	Cave wall	Synechococcales	Hawaii
Kryptousia	Alvarenga et al. 2017	Aerophytic	Nostocales	Brazil
Lagosinema	Akaghi et al. 2019	Brackish	Synechococcales	Nigeria
Leptoelongatus	Chakraborty et al. 2019	Soil	Synechococcales	India
Macrochaeete	Berrendero et al. 2016	Soil crust	Nostocales	Brazil, Spain
Marileptolyngbya	Zhou et al. 2018	Marine	Synechococcales	China
Minunostoc	Cat et al. 2019	Epilithic	Nostocales	China
Myxacorys	Pietraslak et al. 2019	Soil crust	Synechococcales	Chile
Neolyngbya	Caires et al. 2017/18	Bentic marine	Oscillatoriales	Brazil
Neowollea	Tawong et al. 2019	Freshwater	Nostocales	Thailand
Nunduva	González–Resendiz et al. 2018	Marine	Nostocales	Mexico
Onodrimia	Jahodára et al. 2017	Epixylon	Synechococcales	Java, Indonesia
Pantanalinema	Vieira Vaz et al. 2015	Saline wetland	Synechococcales	Brazil
Pelatocladus	Miscoe et al. 2016	Cave wall	Nostocales	Hawaii
Perforajulium	Zimba et al. 2020	Hypersaline	Oscillatoriales	Texas
et al. 1993, 1997; GOLD–MORGAN et al. 1994; Komárek & Komářková–Legnerová 2002, 2007; SANT’ANNA et al. 2010; FIORE et al. 2007).

Compared to temperate regions, the tropics span a larger continuous geographic area. Coupled with relatively low seasonality and high humidity, this may enable many species to coexist (MITTELBACH et al. 2007). For example, subaerial microalgae have higher diversity in tropical/subtropical, subaerial habitats compared to temperate ecosystems (ELDRIDGE 2001; ORTEGA–MORALES et al. 2006; NEUSTUPA & ŠKALOUDA 2008; KEHORE & ADHIKARY 2014; SHERWOOD et al. 2015; NGUYEN et al. 2017). Moreover, cyanobacteria were found to be the second most abundant group of algae in these habitats, particularly in open spaces with higher light intensities (NEUSTUPA & ŠKALOUDA 2008). Cyanobacteria possess several advantages (e.g., sheath production, accessory pigments, baecocytes, etc.) that may allow them to thrive in these high light habitats (VILLANUEVA et al. 2019a,b).

Cyanobacterial adaptability

Cyanobacteria are unique by the wide range of adaptations to environmental conditions. Tropical zones include habitats from deserts to rainforests covering gradients of temperature, light, water and nutrient availability. Sheath/mucilage production in cyanobacteria represent an adaptation to water content fluctuation and is especially important in developing the structure of soil biological crusts (BELNAP et al. 2001; PIETRASIAK et al. 2019). Sheaths contain UV protective molecules like scytonemin or gloeocapsin (FLECHTNER et al. 2007), and this mucilage is responsible for the gliding motility of cyanobacteria (HOITZKY 2000). Cyanobacteria excel at elevated temperatures (SINETOVA et al. 2017; PEDERSEN & MILLER 2017). N–fixation capacities of cyanobacteria comprise an advantage in nutrient limited tropical environments (CHARPY et al. 2010; MAREŠ et al. 2019). Lastly, the unrivalled capacity for extensive chromatic adaptation allows tolerance of both low and high light conditions. Phycobilins allow photon capture between the blue and red regions of the spectrum that are not efficiently trapped by chlorophyll (KEHORE 2010). If the environment proves too inhospitable, cyanobacteria can also produce resting cells (akinetes).

Endemic vs. cosmopolitan taxa

There is currently much debate pertaining to the notion of endemic vs. cosmopolitan microbes in general (e.g., FINLAY 2002; Dvořáková et al. 2012). Echoing this debate, cyanobacterial researchers are increasingly willing to erect new genera based on putatively endemic organisms (e.g., FLECHTNER et al. 2002; CASAMATTA et al. 2006). For example, the genus Brazilianonema, originally described from Brazil (FOIRE et al. 2007), has been found to have wider distribution (BECERRA–ABSAISON et al. 2013; VACCARINO & JOHANSEN 2012; VILLANUEVA et al. 2019a; BARBOSA et al. 2021). Moreover, studies show that the distribution pattern may rather be taxa specific and any general pattern cannot be drawn among the cyanobacteria.

Conversely, the ubiquitous cyanobacteria Synechococcus and Prochlorococcus have traditionally been considered global and cosmopolitan in marine habitats, yet recent evidence has challenged this notion. Molecular evidence points to several distinct genetic lineages of both genera, indicating more habitat preferences than previously assumed (ZWIRGLMAIER et al. 2007, 2008; AHGLREN & ROCAP 2012; MAZARD et al. 2012). DVOŘÁK et al. (2012) point out that the cosmopolitan mat–forming...
\textit{Microcoleus vaginatus} exhibits episodic genetic isolation which mimics a perceived biogeographic pattern. Even when a taxon evolves in a tropical habitat, it may expand its range as the environment changes. For example, the common planktonic cyanobacterium, \textit{Raphidiopsis raciborskii}, was initially considered a strict tropical taxon. Yet as climate changes and temperatures increase, it has been considered to be a microbial invader throughout North America (Guggjer et al. 2005; Kling 2009) and the temperate zone (Aguilera et al. 2018). This increased geographical range may be the result of environment changes (Briand et al. 2004; Dvořák & Hašler 2007; Bonila et al. 2016), a result of allelopathic potential (Brando & Senna 1994; Antunes et al. 2015), or innate ecophysiological tolerances (Padišák 1997; Antunes et al. 2015). The great degree of genetic divergence within this lineage (Moreira et al. 2011; Wood et al. 2014) also revealed that radiation within continents is more probable than the recent exchange between continents (Haandri et al. 2008; Ribeiro et al. 2020). Thus still, it is not certain whether the expansion of \textit{Raphidiopsis raciborskii} from tropical habitats is a result of enormous ecophysiological range or existence of ecologically differentiated ecotypes (Antunes et al. 2015). Likewise, the putatively tropical genus \textit{Komarekiella} was described from Brazil and Hawaii (Hentschke et al. 2017), but was morphologically indistinguishable to \textit{Chlorogloeopsis}, with vast cultural phenotypic plasticity. However, this genus has subsequently been recovered from additional habitats in Florida, so the distribution may be more limited by researcher’s ability to culture and identify it, rather than eco–physiological constraints (Brown et al. 2021).

Patterns of distribution may be difficult to articulate, as evidenced by the common, cosmopolitan, taxon \textit{Microcystis aeruginosa}. Van Grembergh et al. (2011) and Ribeiro et al. (2020) did not find any morphological or genetic diversity in \textit{Microcystis aeruginosa} using single gene analyses. However, studies based on a concatenated set of four loci revealed some genetic diversity in this species (Moreira et al. 2014). They proposed an early origin of \textit{M. aeruginosa} in the African continent, with subsequent European populations having a cosmopolitan distribution. However, Capelli et al. (2017) found significant genetic differences (including differences in capability to synthesize microcystins) among another global, cosmopolitan taxon, \textit{Dolichospermum lemmermannii}, isolates.

Some level of endemism may be expected in “island environments”, such as hot geothermal springs (Papke et al. 2003, Whittaker et al. 2003). Indeed, the occurrence of both endemic and cosmopolitan species (with respect to temperature) from other thermal environments has been witnessed in Zerka Ma’in hot springs (Ionescu et al. 2010). The “island effect” may also be common in other unusual habitats, such as hypogean, subterranean, and cave systems. For example, while \textit{Albertania sikiophila} has been described as endemic to Maltese hypogea (Zammit 2018), the biodiversity of these environments is poorly known, and thus additional research of caves and catacombs is necessary (Lamprou et al. 2013; Miscoe et al. 2016).

\textbf{Undersampling of tropical cyanobacteria}

One possible reason for the lack of perceived tropical diversity could be attributed to sampling efforts (sensu Finlay 2002). The vast majority of described cyanobacterial taxa have been from temperate regions; not coincidentally, this is where the majority of cyanobacterial researchers reside. To illustrate this bias, we present a map of a number of identified cyanobacteria in the tropical countries (Fig. 1). We found that only Cuba, Mexico, Brazil and Argentina have high number of identified species in South and Central America. As a whole, the African continent seems to be less studied. Most of the countries have unknown diversity, with the most studied being Ethiopia, Ghana, Republic of the Congo, and Sierra Leone. The best studied regions in Asia were India, Nepal, Myanmar, Bangladesh, China, and Vietnam. Australia has well–studied cyanobacterial diversity as well, likely due to the presence of researchers and concerns about eutrophication.

However, recent works by researchers from tropical habitats have begun to greatly expand our knowledge of diversity (see references elsewhere). In a review of Web of Science papers from February 22, 2021, we note that 5,771 papers pertain to the “diversity of cyanobacteria”, while a mere 394 deal with “tropical diversity of cyanobacteria”, most of which are limited floristic studies based solely on morphological examination of samples (see problems with cryptic diversity above). There were no such papers indexed at Web of Science dealing with a tropical diversity of cyanobacteria until 1994. Since 1995, however, interest has rapidly increased, nearing 40 papers per year in 2020 (Fig. 2).

Another potential reason for the dearth in tropical sampling is that not all cyanobacteria are equally “important” to human endeavors. For example, \textit{Microcystis aeruginosa} is very commonly encountered as a toxic taxon and thus is often sequenced. Further, planktonic taxa are commonly sequenced due to their prevalence, ubiquity, and visibility to researchers (Pouličková et al. 2014). Conversely, many other cyanobacterial taxa may not be sequenced enough (for example, those from unusual habitats or those not typically considered “nuisance” taxa). In the end, it may be that questions pertaining to tropical diversity are intimately related to the phylogenetic markers employed (see above). Thus, it appears that the question of tropical cyanobacterial endemism and biogeographical patterns in general depends on the level of resolution and markers employed.

\textbf{Driving factors of microbial diversity}

Lattitudinal gradients are considered primary factors in the distribution and diversity of plants and animals (for a review see Mittelbach et al. 2007). Species diversity
increases as one travels closer to the equator (Hillebrandt 2004), although some lineages exhibit inverse latitudinal gradients (Kindlmann et al. 2007). Using fossil records, Mannion et al. (2014) noted that peaks in tropical species diversity seem to be restricted to intervals of the Palaeozoic and the past 30 million years. Bromham & Cardillo (2003) suggest that rates of mutagenesis and evolutionary divergence increase closer to the equator; although this work was from macroscopic eukaryotes, and the application to microbes remains unknown. Conversely, Passy (2010) has reported an exception to this general pattern in her study of continental lotic water diatoms from the U.S., which exhibit a U-shaped latitudinal distribution of richness. Wright et al. (2006) calculated a doubling rate of nucleotide substitutions in the tropics, but no one has calculated such a rate using cyanobacteria. Evolutionary scenarios might explain this phenomenon. First, diverse resources may support more specialized organisms, which in turn may foster greater amounts of productivity (Bromham & Cardillo 2003). Second, biological processes (e.g. reproduction, speciation) are faster in elevated temperatures because of faster kinetics of biological processes (Evans et al. 2005; Gillooly et al. 2005).

The factors that influence bacterial latitudinal diversity are subject to intensive debate in the literature. For example, in a review and meta-analysis of 111 studies by Lozupone & Knight (2007), they conclude that it is salinity, and not extremes of temperature, pH, or other physical and chemical parameters, that is the most important parameter structuring bacterial communities. Conversely, in a review by Horner-Devine et al. (2004), the authors note that bacterial biodiversity follows the same patterns observed in plants and animals. When examining marine bacterioplankton, Fuhrman et al. (2008) showed that latitudinal patterns are similar in plants and animals, with temperature being a driving factor. Marine bacterioplankton exhibit significantly increased numbers of detected genotypes towards the equator. A meta-analysis of 3502 sampling experiments performed by Tamames et al. (2010) revealed salinity, temperature, and animal tissue type as the most important selective environmental characteristics. Soininen (2012) echoed this latitudinal pattern in a review of macroecology of unicellular organisms. Stump et al. (2011) posited that strong latitudinal, longitudinal and altitudinal gradients all impact the diversity and distribution of phytoplankton from 540 lakes across North America. Thus, it appears that the factors most important for distribution and biodiversity of microbes in general, and cyanobacteria in particular, appear to be difficult to untangle and perhaps subject to myriad forces not always evident to researchers.

Trends and perspectives

Several potential future endeavors will greatly expand our knowledge of tropical cyanobacterial diversity. First, more extensive, comprehensive floristic surveys in these habitats need undertaking. Identification keys from tropical regions should be expanded and updated. Further, attention to seldom sampled geographic regions, countries, and habitats (e.g., subaerial, benthic, endolithic) needs to be increased (Neustupa & Škaloud 2008; Poulíčková et al. 2014). Second, more attention to molecular markers for taxonomic identification is of great importance. This will help ameliorate issues arising from cryptic diversity. However, it must be noted that sequences from GenBank may be misidentified or inaccurate, so a better method of validating sequences and taxonomic assignments will be warranted. Third, hypotheses relating to elevated rates of evolution (i.e., via increased substitution rates) can be explored and tested by researchers. Fourth, biogeographic patterns can be elucidated by more nuanced approaches (e.g., genomic analyses, molecular markers), rather than relying merely upon morphological examinations.

ACKNOWLEDGEMENTS

This work was supported by project ESF CZ.1.07/2.3.00/30.0041, Grant Agency of the Czech Republic No. 19–12994V, and the Internal Grant Agency of the Palacký University Prf–2021–001.

Author contributions

P. Dvořák: original concept, drafting; P. Hašler: taxonomy, editing; A. Poulíčková: literature search, manuscript editing, formatting; D. Casamatta: drafting, editing, English and style unification

REFERENCES

Abed, R.M.M.; Palinska, K.A.; Camoin, G. & Golubic, S. (2006): Common evolutionary origin of planktonic and benthic nitrogen fixing oscillatoriacean cyanobacteria from tropical oceans. – FEMS Microbiology Letters 260: 171–177.

Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique R.O. & Salerno G.L. (2018): The polyphasic analysis of two native Raphidioptis isolates supports the unification of the genera Raphidioptis and Cylindropermopsis (Nostocales, Cyanobacteria). – Psychologia 57: 130–146.

Ahlgren, N.A. & Rocap, G. (2012): Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. – Frontiers in Microbiology 3: 213.

Akagina, S.C.; Johansen, J.R.; Nwankwo, D.I. & Yin, K. (2019): Lagosinema tenuis gen. et sp. nov. (Prochlorotrichaceae, Cyanobacteria): a new brackish water genus from Tropical Africa. – Fottea 19: 1–12.

Alvarenga, D.O.; Andreote, A.P.D.; Branco, L.H.Z. & Fiori, M.F. (2017): Kryptosia macrocena gen. nov., sp. nov. and Kryptosia microlepis sp. nov. (Nostocales, Cyanobacteria) isolated from phyllophores. – International Journal of Systematic and Evolutionary Microbiology 67: 3301–3309.

Alvarenga, D.O.; Fiore, M.F. & Varani, A.M. (2017): A metagenomics approach to cyanobacterial genomics. – Frontiers in Microbiology 8: e809.

Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z.; Melo, I.S. & Fiore, M.F. (2016): Phyllonema avicennicola gen. nov., sp. nov. and Folisarcina bertigens gen. nov., sp. nov., epiphylic cyanobacteria associated...
with *Avicennia schaueriana* leaves. – International Journal of Systematic and Evolutionary Microbiology 66: 689–700.

Antunes, J.T.; Leão, P.N. & Vasconcelos, V.M. (2015): *Cylindropermopsis raciborskii*: review of the distribution, phylogeny, and ecophysiology of a global invasive species. – Frontiers in Microbiology 6: 473

Azevedo, M.T.P. & Sant’Anna, C.L. (2003): *SphaeroCCavum* a new genus of planktic Cyanobacteria from continental water bodies in Brazil. – Algological Studies 79: 79–92.

Bagchi, S.N.; Dubej, N. & Singh, P. (2017): Phylogenetically distant clade of *Nostoc*-like taxa with the description of *Aliinostoc* gen. nov. and *Aliinostoc morphoplasticum* sp. nov. – International Journal of Systematic and Evolutionary Microbiology 67: 3329–3338

Becerra–Absalón, I.; Johansen, J.R.; Muñoz–Martín, M.A. & Montejano, G. (2018): *Chroocolemma* gen. nov. (Leptolyngbyaceae, Cyanobacteria) from soil biocrusts in the semi–desert Central Region of Mexico. – Phytotaxa 367: 201–218.

Becerra–Absalón, I.; Rodarte, B.; Osorio, K.; Alba–Lois, L.; Segal–Kischinevzky, D. & Montejano, G. (2013): A new species of *Brasilonema* (Scytonemataceae, Cyanobacteria) from Tolantongo, Hidalgo, Central Mexico. – Fottea 13: 25–38.

Belnap, J.; Kaltenecker, J.H.; Rosenentreer, R.; Williams, J.; Leonard, S. & Eldridge, D.J. (2001): Biological Soil Salts: Ecology and Management. – Springer: 1730–1732. 2 US Department of the Interior Denver, CO. 110 pp.

Bergman, B. (2001): Nitrogen–fixing cyanobacteria in tropical oceans, with emphasis on the Western Indian Ocean. – South African Journal of Botany 67: 426–432.

Berrendero Gómez, E.B.; Johansen, J.R.; Kaštovský, J.; Bergman, B.; Aubriot, L. & Grobbelaar, V.L.M.; Becker, V.; Somma, A.; Marinho, M.M.; Bohunická, M. & Čapková, K. (2016): *Macrochaete* gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from *Calothrix*. – Journal of Phycology: 52: 638–655.

Bláha, L.; Babica, P. & Maršílek, B. (2009): Toxins produced in cyanobacteria water blooms – toxicity and risks. – Interdisciplinary Toxicology 2: 36–41.

Bonilla, S.; González–Piana, M.; Soares, M.C.S.; Huszar, V.L.M.; Becker, V.; Somma, A.; Marinho, M.M.; Kokociński, M.; Dokuli, M.; Antoniades, D. & Aubriot, L. (2016): The success of the cyanobacterium *Cylindropermopsis raciborskii* in freshwater is enhanced by the combined effects of light intensity and temperature. – Journal of Limnology 75: 606–617.

Boyer, S.L.; Flechtnere, V.R. & Johansen, J.R. (2001): Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. – Molecular Biology and Evolution 18: 1057–1069.

Branco, C.W.C. & Sena, P.A.C. (1994): Factors influencing the development of *Cylindropermopsis raciborskii* and *Microcystis aeruginosa* in the Paraná reservoir, Brasilia, Brazil. – Algological Studies 75: 85–96.

Breinlinger, S.; Phillips, T.J.; Haram, B.N.; Mareš, J.; Martínez Yerena, J.A.; Hrouzek, P.; Sobotka, R.; Henderson, W.M.; Schmieder, P.; Williams, S.M.; Lauderdale, J.D.; Wilde, H.D.; Gerrin, W.; Kust, A.; Washington, J.W.; Wagner, C.; Geier, B.; Liebeke, M.; Enke, H.; Niedermeier, T.H. & Wilde, S.B. (2021): Hunting the eagle killer: A cyanobacterial neurotoxin causes vacular myelinopathy. – Science 371, eaax9050

Briand, J.F.; Lefebvouler, C.; Humbert, J.F.; Bernard, C. & Dufour, P. (2004): *Cylindropermopsis raciborskii* (Cyanobacteria) invasion at mid–latitudes: selection, wide physiological tolerance, or global warming? – Journal of Phycology 40: 231–238.

Brohman, L. & Cardillo, M. (2003): Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. – Journal of Evolutionary Biology, 16: 200–207.

Brown, A.; Romanis, C.; Daošiková, P.; Foss, A.J.; Gibson, Q.A.; Villanueva, C.D.; Durden, W.N.; Garvey, A.D.; Jenkins, P.; Hašler, P.; Johansen, J.R.; Neilan, B.A.; Casamatta, D.A. (2017): A cryptic and potentially toxigenic cyanobacterium isolated from the epidermis of a benthicenose dolphin and as a bioaerosol. – Phycologia (submitted).

Büdel, B.; Weber, B.; Kühn, M.; Pezin, H.; Sültemeyer, D. & Wessels, D. (2002): Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. – Geobiology 2: 261–268.

Cai, F.; Li, X.; Geng, R.; Peng, Z. & Li, R. (2019): Phylogenetically distant clade of *Nostoc*-like taxa with the description of *Minunostoc* gen. nov. and *Minunostoc cylindricum* sp. nov. – Fottea 19: 13–24.

Cai, F.F.; Li, R.H.; Li, F. (2020a): *Purpurogenostoc*, a new name for a recently described genus of *Nostoc*-like cyanobacteria. – Fottea 20: 111–122.

Cai, F.; Peng, X. & Li, R. (2020b): *Violetonostoc minutum* gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. – Algae 35: 1–15.

Caires, T.A.; Sant’Anna, C.L. & Nunes, J.M. (2019): *Capillipilicus* gen. nov.; validation of “Capilluls T.A.Caires, Sant’Anna & J.M.Nunes,” inval. (Oscillatoriaceae, Cyanobacteria). – Notulae Algarum 95: 1–2.

Caires, T.A.; Lyra, G.M.; Hentschke, G.S.; Pedrini, A.G.; Sant’Anna, C.L. & Nunes, J.M.C. (2018): *Neolyngbya* gen. nov. (Cyanobacteria, Oscillatoriaceae): A new filamentous benthic marine taxon widely distributed along the Brazilian coast. – Molecular Phylogenetics and Evolution 120: 196–211.

Capelli, C.; Ballot, A.; Cerasino, L.; Papini, A. & Salmaso, N. (2017): Biogeography of bloom–forming microcystin producing and non–toxigenic populations of *Dolichospermum* Lemmermannii (Cyanobacteria). – Harmful Algae 67: 1–12.

Capone, D.G.; Burns, J.A.; Montoya, J.P.; Subramaniam, A.; Mahaffey, A.C.; Gunderson, T.; Michaels, A.F. & Carpenter, E.J. (2005): Nitrogen fixation by *Trichodesmium* spp. an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. – Global Biogeochemical Cycles 19: GB2024.

Caro–Quintero, A. & Konstantinidis, K.T. (2012): Bacterial species may exist, metagenomics reveal. – Environmental Microbiology 14: 347–355.

Casamatta, D.A. & Vis, M.L. & Sheath, R.G. (2003): Cryptic species in cyanobacterial systematics: a case study of *Phormidium retzii* (Oscillatoriaceae) using 16S rDNA and RAPD analyses. – Aquatic Botany 77: 295–309.
Casamatta, D.A.; Johansen, J.R.; Vis, M.L. & Broadwater, S.T. (2005): Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriaceae (Cyanobacteria). – Journal of Phycology 41: 421–438.

Casamatta, D.A.; Gomez, S.R. & Johansen, J.R. (2006): *Rexia erecta* gen. et sp. nov. and *Capsoistra lowei* sp. nov., two newly described cyanobacteria taxa form the Great Smoky Mountains National Park (USA). – Hydrobiologia 561: 13–26.

Casamatta, D.A.; Stanéč, D.; Gantar, M. & Richardson, L.L. (2012): Characterization of *Roseonema reptotextum* (Oscillatoriaceae, Cyanobacteria) gen. et sp. nov. isolated from Caribbean black band disease. – Phycologia 51: 489–499.

Casamatta, D.A.; Villanueva, C.D.; Garvey, A.D.; Stocks, H.S.; Vaccarino, M.; Dvorák, P.; Hášler, P. & Johansen, J.R. (2020): *Reptodigitius chapmani* (Nostocales, Hapalosiphonaceae) gen. nov.: A unique nostocalean (Cyanobacteria) genus based on polyphasic approach. – Journal of Phycology 56: 425–436.

Castenholz, R.W. (2001): General characteristics of the Cyanobacteria. – In: Boone, D.R. & Castenholz, R.W. (eds): Bergey’s Manual of Systematic Bacteriology, vol. 1. – pp. 474–487, Springer, New York.

Castenholz, R.W. & Norris, T.B. (2005): Revisionary concepts of species in the Cyanobacteria and their applications. – Archiv für Hydrobiologie Supplement 139: 53–69.

Cellamare, M.; de Tezanos, P.P.; Leboulanger, C.; Ader, M. & Bernard, C. (2019): Using functional approaches to study phytoplankton communities in a temperate region exposed to tropical species dispersal. – Hydrobiologia 799: 267–282.

Charpy, L.; Palinska, K.A.; Casarero, B.E.; Langlade, M.J.; Suzuki, Y.; Abed, R.M.M. & Golubic, S. (2010): Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems. – Microbial Ecology 59: 174–186.

Chakraborty, S.; Maruthanayagam, V.; Achari, A.; Pramanik, A.; Parasuraman, J. & Mukherjee, J. (2019): *Euryhalinema mangrovei* gen. nov., sp. nov. and *Leptolyngbya littoralis* gen. nov., sp. nov. (Leptolyngbyaceae) isolated from an Indian mangrove forest. – Phytotaxa 422: 58–74

Charpy, L.; Casarero, B.E.; Langlade, M.J. & Suzuki, Y. (2012): Cyanobacteria in coral reef ecosystems: a review. – Journal of Marine Biology, ID 259571:1–9.

Cellamare, M.; Duval, C.; Drelin, Y.; Dediát, C.; Toibi, N.; Agogué, H.; Leroulanger, C.;ader, M. & Bernard, C. (2018): Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline–alkaline crater–lake Dziain Dzha (Mayotte, Indian Ocean). – FEMS Microbiology Ecology 94: 1–25.

Dadheech, P.K.; Casamatta, D.A.; Casper, P. & Krienitz, L. (2013): A novel cyanobacterium *Phormidium etoshii* sp. nov. (Oscillatoriaceae) from the Etosha Pan, Namibia, based on morphological, molecular and ecological features. – Fottea 13: 235–244.

Desikachary, T.V. (1959): *Cyanophyta*. – In: Randhawa, M.S. (ed.): Monographs on Algae. – 686pp., I.C.A.R. Indian Council of Agricultural Research, New Delhi.

Diez, B.; Bauer, K. & Bergman, B. (2007): Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy. – Applied and Environmental Microbiology 73: 3656–3668.

Dittmann, E.; Fewer, D.P. & Neilan, B.A. (2013): Cyanobacterial toxins: biosynthetic routes and evolutionary roots. – FEMS Microbiology Reviews 37: 23–43.

Drouet, F. (1968): Revision of the classification of the Oscillatoriaceae. – 370 pp., Monographs of the Academy of Natural Sciences, Philadelphia.

Drouet, F. (1973). Revision of the Nostocaceae with cylindrical trichomes. – 292 pp., Hafner Press. New York, USA.

Dvořák, P.; Casamatta, D.A.; Hášler, P. & Onőře, V.; Pouličková, A. & Šandr, R. (2014): *Synecochoccus*: 3 billion years of global dominance. – Molecular Ecology 23: 5538–5551.

Dvořák, P. & Hášler, P. (2007): Occurrence and morphological variability of *Cyanodrosporium raciborskii* (Wolosz.) Seenayya et Subba Raju (Cyanophyta, Nostocales) near Olomouc in 2006. – Fottea 7: 39–42.

Dvořák, P.; Hášler, P. & Pouličková, A. (2012): Phylogeography of the *Microcoleus vaginitus* (cyanobacteria) from three continents – a spatial and temporal characterization. – PLoS ONE 7: e041053.

Dvořák, P.; Jahodárová, E.; Casamatta, D.A.; Hášler, P. & Pouličková, A. (2018): Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. – Fottea 18:130–136.

Dvořák, P.; Jahodárová, E.; Hášler, P.; Gusev, E. & Pouličková, A. (2015a): A new tropical cyanobacterium *Pinocchia polymorpha* gen. et sp. nov. derived from genus *Pseudanabaena*. – Fottea 15: 113–120.

Dvořák, P.; Pouličková, A.; Hášler, P.; Belli, M.; Casamatta, D.A. & Papini, A. (2015b): Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. – Biodiversity and Conservation 24: 739–757.

Dvořák, P.; Hášler, P.; Pitelková, P.; Taráková, P.; Casamatta, D.A. & Pouličková, A. (2017): A new cyanobacterium from the Everglades, Florida – *Chamaethrix* gen. nov. – Fottea 17: 269–276.

Dvořák, P.; Hášler, P. & Pouličková, A. (2020): New insights into the genomic evolution of cyanobacteria using herbarium exsiccates. – European Journal of Phycology 55: 30–38.

Dyble, J.; Paerl, H.W. & Neilan, B. (2002): Genetic characterization of *Cylindrospermopsis raciborskii* (Cyanobacteria) isolates from diverse geographical origins based on nifH and cpeBA–IGS nucleotide sequence analysis. – Applied and Environmental Microbiology 68: 2567–2571.

Eldridge, D.J. (2001): Biological soil crust of Australia. – In: Belnap, J., Lange, O.L. (eds): Biological Soil Crusts: Structure, Function and Management. – pp. 119–131, Springer: Berlin.

Engene, N.; Choi, H.; Esquenazi, E.; Rottacker, E.C.; Ellisman, M.H.; Dorrestein, P.C. & Gerwick, W.H. (2011): Underestimated biodiversity as a major explanation for the perceived prolific secondary metabolite capacity of the cyanobacterial genus *Synechocystis*. – Environmental Microbiology 13: 1601–1610.

Engene, N.; Rottacker, E.C.; Choi, H.; Byrum, T.; Kasovský, J.H.; Komárek, J.; Ellisman, M.H. & Gerwick, W.H. (2012): *Moorea producta* gen. nov., sp. nov. and *Moorea bouillonii* comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. – International Journal of Systematic and Evolutionary Microbiology
62: 1172–1179.
Engene, N.; Gunasekera, S.P.; Gerwick, W.H. & Paul, V.J. (2013a): Phylogenetic inferences reveal large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. – Applied and Environmental Microbiology 79: 1882–1888.
Engene, N.; Byrum, T.; Thor, A.; Ellisman, M.H.; Gerwick, W.H. & Paul, V.J. (2013b): Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanobacteria). – Journal of Phycology 49: 1095–1106.
Engene, N.; Tronholm, A.; Salvador-Reyes, L.A.; Luesch, H. & Paul, V.J. (2015): Calastra penicillata gen nov., sp. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. – Journal of Phycology 51: 670–681.
Engene, N.; Tronholm, A. & Paul, V.J. (2018): Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). – Journal of Phycology 54: 435–446.
Evans, K.L.; Warren, P.H. & Gaston, K.J. (2005): Species–energy relationships at the macroecological scale: a review of the mechanisms. – Biological Reviews 80: 1–25.
Falkowski, P. (2012): The power of plankton. Do tiny floating microorganisms in the ocean’s surface waters play a massive role in controlling the global climate? – Nature 483: 17–20.
Finlay, B.J. (2002): Global dispersal of free–living microbial eukaryote species. – Science 296: 1061–1063.
Fiore, M.F.; Sant’Anna, C.L.; Azevedo, M.T.P.; Komárek, J.; Kaštovský, J.; Sulek, J. & Lorenzi, A.S. (2007): The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotypic evaluation. – Journal of Phycology 43: 789–98.
Flechtnner, V.R.; Boyer, S.L.; Johansen, J.R. & DeNoble, M. (2002): Spirorestris rafaelensis gen et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. – Nova Hedwigia 74: 1–24.
Fleming, E.D. & Castenholz, R.W. (2007): Effects of periodic desiccation on the synthesis of the UV–screening compounds, scytonemin, in cyanobacteria. – Environmental Microbiology 9: 1448–1455.
Flechtner, V.R.; Belnar, J.; Neuer, S. & Schanz, F. (2003): Estimates of global cyanobacterial biomass and its distribution. – Algalogical Studies 109: 213–237.
Gardner, N.L. (1927): New Myxophycées de l´Afrique équatoriale française. – Archives de Botanique 2: 1–508.
Dapis
Frémy, P. (1930): Les Myxophycées de l´Afrique équatoriale française. – Archives de Botanique 2: 1–508.
Genuário, D.B.; Vieira Vaz, M.G.M.; Hentschke, G.S.; Sant’Anna, C.L. & Fiore, M.F. (2015): Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. – International Journal of Systematic and Evolutionary Microbiology 65: 663–675.
Gillooly, J.F.; Allen, A.P.; West, B.G. & Brown, J.H. (2005): The rate of DNA evolution: effects of body size and temperature on the molecular clock. – Proceedings of the National Academy of Sciences of the United States of America 102: 140–145.
Gold–Moran, M.; Montano, T.; Ballot, A. & Komárek, J. (1994): Fresh–Water epiphytic cyanoprokaryotes form central Mexico. 2. Heterogeneity of the genus Xenococcus. – Archiv fur Protistenkunde 143: 237–247.
González–Resendiz, L.; Johansen, J.R.; Alba–Lois, L.; Segal–Kischnevzky, C.; Escobar–Sámche, V.; Jiménez–García, L.F.; Huaer, T. & León–Tejera, H. (2018): Nunduva, a new marine genus of Rivulariaceae (Nostocales, Cyanobacteria) from marine rocky shores. – Fottea 18: 86–105.
Gruber, N. (2008): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Guggen, M.; Mónica, R.; Le Berre, B.; Dufour, P.; Bernard, D. & Humbert, J.F. (2005): Genetic diversity of Cyanobacteria. – Environmental Microbiology 71: 1097–1100.
Haanze, S.; Rohlack, T.; Ballot, A.; Roberg, K.; Skulberg, R.; Beck, M.; Wedner, C. (2008): Genetic characterization of Cyanobacteria. – European Journal of Phycology 54: 105: 7774–7778.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2015): A new genus of Rivulariaceae, a new cyanobacterial genus form central Mexico. – Archives of Phycological Research 65: 663–675.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2013): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2013): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2013): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2013): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Hauer, T.; Bohunická, M. & Mühlsteinová, R. (2013): The marine nitrogen cycle: overview and challenges. – In: Capone, D.G., Carpenter, E.J., Bronk, D.A. & Mulholland, M.R. (eds): Nitrogen in the Marine Environment. – 49 pp., Academic Press and Elsevier, Burlington.
Calochaete gen. nov. (Cyanobacteria, Nostoccales)
a new cyanobacterial taxon from the “páramo” zone in
Costa Rica. – Phytotaxa 109: 36–44.

Heidari, F.; Zima, J. Jr.; Riahi, H. & Hauer, T. (2018):
New simple trichal cyanobacterial taxa isolated from
radioactive thermal springs. – Fottea 18: 137–149.

Johansen, J.R.; Jahodářová, E.; Dvořák, P.; Hašler, P. & Poulíčková, A.
(eds): Süswasserflora von Mitteleuropa, Vol. 19/2. – 759 pp.,
Elsevier/Spektrum, Heidelberg.

Hentschke, G.S.; Johansen, J.R.; Pietrasak, N.; Fiore, M. de E.; Rigonato, J.; Sant’Anna, C.L. & Komárek, J. (2016): Phylogenetic placement of Dipsisostemon gen. nov. and Streptosolen, two tropical heterocystous genera (Cyanobacteria). – Phytotaxa 245: 129–143.

Hentschke, G.S.; Johansen, J.R.; Pietrasak, N.; Rigonato, J.; Fiore, M.F.; Sant’Anna, C.L. (2017): Komarekellia atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and
Kauai, Hawaii. – Fottea 17: 178–190.

Hillebrand, H. (2004): On the generality of the latitudinal diversity gradient. – American Naturalist 163: 192–211.

Hoffmann, L. (1999): Marine cyanobacteria in tropical regions: diversity and ecology. – European Journal of Phycology 34: 371–379.

Hoiczyk, E. (2000): Glimpse motility in cyanobacteria: observations and possible explanations. – Archiv für Microbiologie 174: 11–17.

Horner–Devine, M.C.; Carney, K.M. & Bohannan, B.J.M. (2000): Gliding motility in cyanobacteria: a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. – Fottea 17: 178–190.

Huisman, J.; Matthijs, H.C.P. & Visser, P.M. (2014): Several rare cyanobacterial taxa from the Zerka Ma’in hot springs (Jordan). – FEMS Microbiology 172: 103–113.

Iriarte, D.; Zimm, J.; Sant’Anna, C.L.; Komárek, J. & Komárková–Legnerová, J. (2017): Contribution to the knowledge of planktic cyanoprokaryotes from the Atlantic Rainforest and Kauai, Hawaii. – Fottea 17: 178–190.

Iuculani, I.; Rippka, R.; Tandeau de Marsac, N. & Herdman, M. (2000): Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. – Microbiology 146: 1275–1286.

Johansen, J.R.; Sant’Anna, C.L. & Komárek, J. (2010): Chromatic adaptation and the evolution of light color sensing in cyanobacteria. – Proceedings of the National Academy of Sciences of the United States of America 107: 9029–9030.

Keshari, N. & Adhikary, S.P. (2014): Diversity of cyanobacteria on stone monuments and building facades of India and their phylogenetic analysis. – International Biodeterioration & Biodegradation 90: 45–51.

Kindelmann, P.; Schödelbauerová, I. & Dixon, A.G. (2007): Inverse latitudinal gradients in species diversity. – In: Storch, D.; Marquet, P.A. & Brown, J.H. (eds): Scaling Biodiversity. – pp. 246–257, Cambridge University Press, Cambridge.

Kling, H.J. (2009): Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): A brief historic overview and recent discovery in the Assiniboine River (Canada). – Fottea 9: 45–47.

Komárek, J. (1985): Do all cyanophytes have a cosmopolitan distribution? Survey of the freshwater cyanophyte flora of Cuba. – Algological Studies 38/39: 359–386.

Komárek, J. (2010): Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). – Hydobiologia 639: 245–259.

Komárek, J. (2011): Introduction to the 18th IAC Symposium in České Budějovice 2010, Czech Republic. Some current problems of modern cyanobacterial taxonomy. – Fottea 11: 1–7.

Komárek, J. (2013): Cyano prokaryota. 3. Heterocytous genera. – In: Büdel, B.; Gärtner, G.; Krienitz, L. & Schagerl, M. (eds): Süßwasserflora von Mitteleuropa/Freshwater flora of Central Europe, Vol. 19/3. – 1130 pp., Springer SpektrumBerlín, Heidelberg.

Komárek, J. (2018): Several problems of the polyphasic approach in the modern cyanobacterial system. – Hydrobiologia 811: 7–17.

Kehoe, D.M. (2010): Chromatic adaptation and the evolution of light color sensing in cyanobacteria. – Proceedings of the National Academy of Sciences of the United States of America 107: 9029–9030.
E. & Rejmánková, E. (2017): Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 3. Diversity of heterotrophic genera. – Nova Hedwigia 105: 445–486.

Komárek, J.; Zapomělová, E.; Smarda, J.; Rejmánková, E.; Woodhouse, J.; Neilan, B.A. & Komárek, J. (2013a): Polyphasic evaluation of Limnophis robusta, a water–bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnophis gen. nov. – Fottea 13: 39–52.

Komárek, J.; Sant'Anna, C.; Bohunická, M.; Mareš, J.; Hentschke, G.S.; Rigonato, J. & Fiore, M. (2013b): Phytodiversity and phylogeny of selected Synechococcus–species from SE Brazil. – Fottea 13: 173–200.

Komárek, J.; Zapomělová, E. & Komárek, J. (2013): Chakia (cyanobacteria), a new heteroecytic genus from Belizean marshes identified on the basis of the 16S rRNA gene. – Fottea 13: 227–233.

Krienitz, L.; Dadheech, P.K. & Kotut, K. (2013): Mass developments of a small sized ecotype of Arthrospira fusiformis in Lake Oloiden, Kenya, a new feeding ground for lesser flamingos in East Africa. – Fottea 13: 215–225.

Lampinou, V.; Hernández–Maríné, M.; Pachiadaki, M.G.; Komárek, J.; Sant’Anna, C.; Bohunická, M.; Mareš, J.; Šmarda, J., Rejmánková, E. & Komárek, J. (2013): Corticolous cyanobacteria from tropical forest remnants isolated caves (Greece). – Fottea 13: 15–23.

Lemes-da–Silva, N.M.; Branco, L.H. & Necchi, Jr. O. (2012): New findings on the true–branched monotypic genus Ipinue (Cyanobacteria) from geographically isolated caves (Greece). – Fottea 13: 15–23.

Lesser, M.P.; Mazel, Ch.H.; Gorbunov, M.Y. & Falkowski, P.G. (2004): Discovery of symbiotic nitrogen–fixing cyanobacteria in corals. – Science 305: 997–1000.

Li, Z. (2009): Advances in marine symbiotic cyanobacteria. – In: Gaul, P.M. & Marler, H.J. (eds): Handbook on Cyanobacteria. – pp. 463–472, Nova Science Publisher, Hauppauge.

Lozupone, C.A. & Knight, R. (2007): Global patterns in bacterial diversity. – Proceedings of the National Academy of Sciences of the United States of America 104: 11436–11440.

Lukšová, A.; Johansen, J.R.; Martin, M. & Casamata, D.A. (2009): Aulosohemis prenovae sp. nov.: Further uncertainty at the base of the Nostocales (Cyanobacteria). – Phycologia 48: 118–129.

Lyons, T.W.; Reinhard, C.T. & Planas, N.I. (2014): The rise of oxygen in Earth’s early ocean and atmosphere. – Nature 506: 307–315.

Maí, T.; Johansen, J.R.; Pietrasjak, N.; Bohunická, M. & Martin, M.P. (2018): Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oscillatoriaceae fam. nov. and Trichococcales fam. nov. and six new genera containing 14 species. – Phytotaxa 365: 1–59.

Malone, C.F.S.; Rigonato, J.; Laughinghouse, H.D.; Schmidt, É.C.; Bouzon, Z.L.; Wilmotte, A.; Fiore, M.F. & Sant’Anna, C.L. (2015): Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. – International Journal of Systematic and Evolutionary Microbiology 65: 2993–3007.

Mannon, P.D.; Upchurch, P.; Benson, R.B.J. & Goswami, A. (2014): The latitudinal biodiversity gradient through deep time. – Trends in Ecology and Evolution 29: 42–50.

Maré, J. (2018): Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. – Hydrobiologia 811:19–34.

Maré, J.; Johansen, J.R.; Hauser, T.; Zima, J.; Ventura, S.; Cuzma, O.; Tiribili, B. & Kátsóvský, J. (2019): Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeotrichia and three new genera Crocosphaera, Rippkaea and Zehria. – Journal of Phycology 55: 578–610.

Martins, M.D. & Branco, L.H.Z. (2016): Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a taxonomically and ecologically coherent cyanobacterial genus. – International Journal of Systematic and Evolutionary Microbiology 66: 3632–3641.

Martins, M.D.; Rigonato, J.; Taboga, S.R.; Branco, L.H.Z. (2018): Proposal of Anyclothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. – International Journal of Systematic and Evolutionary Microbiology 66: 2396–2405.

Mattheo, P.; Legane’s, F.; Perona, E. & Loza, V. (2015): Cyanobacteria as biindicators and bioreporters of environmental analysis in aquatic ecosystems. – Biodiversity and Conservation 24: 909–948.

Mazard, S.; Ostrowski, M.; Partensky, F.; Scanian, D.J. (2012): Multi–locus sequence analysis for synechococcus resolution and biogeography of marine Synechococcus. – Environmental Microbiology 14: 372–386.

Mazard, S.; Pensesvan, A.; Ostrowski, M.; Paulsen, I.T. & Egan, S. (2016): Tiny Microbes with a big impact: The role of cyanobacteria and their metabolites in shaping our future. – Marine Drugs 14: 97.

Meehs, J.C. (1998): Symbiosis between nitrogen–fixing cyanobacteria and plants. – BioScience 48: 266–276.

Mehnert, G.; Leunert, F.; Cleirós, S.; Johnk, K.D.; Rücker, J.; Nixdorf, B. & Wiedner, C. (2010): Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. – Journal of Plankton Research 32: 1009–1021.

McGregor, G.B. & Sendall, B.C. (2017a): Evamania thermalis gen. et sp. nov. (Cyanobacteria, Synechomataceae), a new cyanobacterium from Talaroo thermal springs, north–eastern Australia. – Australian Systematic Botany 30: 38–47.

McGregor, G.B. & Sendall, B.C. (2017b): Iningaimena pulvinus gen. nov., sp nov. (Cyanobacteria, Synechomataceae) a new nodularin producer from Edgbaston Reserve, north–eastern Australia. – Harmful Algae 62: 10–19.

McGregor, G.B. & Sendall, B.C. (2019): Potamospiron australiensis gen. nov., sp nov. (Oscillatoriales), a new filamentous cyanobacterium from subtropical north–eastern Australia. – Phytotaxa 387: 77–93.

Miscone, L.H.; Johansen, J.R.; Kocielek, J.P.; Lowe, R.L.; Vaccarino, M.A.; Pietrasjak, N. & Sherwood, A.R. (2016): The diatom flora and cyanobacteria from caves on Kauai, Hawai. – In: Kies, L. & Schenett, R. (eds): Bibliotheca Phycologica 120. – 152 pp., J. Cramer in
Borntraeger Science Publishers, Stuttgart.

Miscoe, L.H.; Johansen, J.R.; Vaccarino, M.A.; Pietrasiak, N. & Sherwood, A.R. (2016): The diatom flora and cyanobacteria from caves on Kauai, Hawaii. II. Novel cyanobacteria from caves on Kauai, Hawaii. – In: Kies, L. & Schnetter, R. (eds): Bibliotheca Phycologica 123. – pp. 75–152, J. Cramer in Borntraeger Science Publishers, Stuttgart.

Mittelbach, G.G.; Schiemer, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M.; Bush, M.B.; Harriss, S.P.; Hurlbert, A.H.; Knowlton, N.; Lessios, H.A.; McCann, C.M.; McCune, A.R.; McDade, L.A.; McPeek, M.A.; Near, T.J.; Price, T.D.; Rickles, R.E.; Kasturi, R.; Sax, D.F.; Schulte, D.; Sobel, J.M. & Turelli, M. (2007): Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. – Ecology Letters 10: 325–331.

Moisander, P.H.; Beinart, R.A.; Hewson, I.; White, A.E.; Johnson, K.S.; Carlsson, C.A.; Montoya, J.P. & Zehr, J.P. (2010): Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. – Science 327: 1512–1514.

Monteguardo, J.L.M. (2016): Benthic freshwater cyanobacteria as indicators of anthropogenic pressures. – Ecological Indicators 67: 693–702.

Montejoano, G.; Gold, M. & Komárek, J. (1993): Freshwater epiphytic cyanoprokaryotes from Central Mexico I. Cyanocysts and Xenococcus. – Archiv für Protistenkunde 143: 237–247.

Montejoano, G.; Gold–Morgan, M. & Komárek, J. (1997): Epiphytic Chroococcales (cyanoprokaryota) of the central region of Mexico. – Phycologia 36: 73.

Moreira, C.; Fathali, A.; Vasconcelos, V. & Antunes, A. (2011): Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii. – Current Microbiology 62: 1590–1595.

Moreira, C.; Spillane, C.H.; Fathali, A.; Vasconcelos, V. & Antunes, A. (2014): African Origin and Europe–Mediated Global Dispersal of the cyanobacterium Microcystis aeruginosa. – Current Microbiology 69: 628–633.

Moreira, D.; Tavares R.; Benzerara, K.; Skouri–Panet, F.; Couradeau, E.; Lousert Fonta, C.; Novelo, E.; Zivanovc, Y. & López–García, P. (2017): Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid–bearing basal–branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. – International Journal of Systematic and Evolutionary Microbiology 67: 653–658.

Moreira, C.; Vasconcelos, V. & Antunes, A. (2013): Phylogeny and Biogeography of Cyanobacteria and their produced toxins. – Marine Drugs II: 350–4369.

Mowe, M.A.D.; Mitrovic, S.M.; Lim, R.P.; Furey, A. & Yeo, D.C.J. (2015): Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. – Journal of Limnology 74: 205–224.

Nabout, J.C.; da Silva Rocha, B.; Carnebro, F.M. & Sant'Anna, C.L. (2013): How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. – Biodiversity and Conservation 22: 2907–2918.

Naselli–Flores, L. & Páskás, J. (2016): Blowing in the wind: how many roads can a phytoplankton walk down? A synthesis on phytoplankton biogeography and spatial processes. – Hydrobiologia 764: 303–313.

Neustupa, J. & Škaloud, P. (2008): Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. – Biologia 63: 806–812.

Nguyen, X.H.; Sumimoto, S. & Suda, S. (2017): Unexpected high diversity of terrestrial cyanobacteria from the campus of the University of the Ryukyus, Okinawa, Japan. – Microorganisms 5: 69.

Nowicka–Krawczyk, P.; Mühlesteinová, R. & Hauser, T. (2019): Detailed characterization of the Arthrosira type species separating commercially grown taxa into the new genus Limnosira (Cyanobacteria). – Scientific Reports 9: 1–11.

Nübel, U.; García–Pichel, F. & Muyzer, G. (2008): PCR primers to amplify SS rRNA genes form cyanobacteria. – Applied and Environmental Microbiology 63: 3327–3332.

Nweze, N.O. (2009): Ecological implications and roles of cyanobacteria (Cyanophyta) in food security – a review. – Plant Product Research Journal 13: 8–14.

Oren, A. (2011): Naming Cyanophyta/Cyanobacteria—a bacteriologist’s view. – Fottea 11: 9–16.

Oren, A. & Garrity, G.M. (2014): Proposal to change general consideration 5 and principle 2 of the international code of nomenclature of prokaryotes. – International Journal of Systematic and Evolutionary Microbiology 64: 309–310.

Oren, A. & Ventura, S. (2017): The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. – Antonie van Leeuwenhoek 110: 1257–1269.

Ortega–Morales, B.O.; Novelo, E.; Ramírez, M. & Gaylarde, C.C. (2006): Cyanobacterial diversity and ecology on historic monuments in Latin America. – Revista Latinoamericana de Microbiología 48: 88–195.

Osorio–Santos, K.; Pietrasiak, N.; Bobunická, M.; Miscoe, L.H.; Kováčik, L.; Martin, M.P. & Johansen, J.R. (2014): Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). – European Journal of Phycology 49: 450–470.

Páskás, J. (1997): Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. – Archiv für Hydrobiologie Supplement 107: 563–93.

Palińska, K.A.; Abed, R.M.M.; Wendt, K.; Charpy, L.; Lotocka, M. & Golubić, S. (2012): Opportunistic cyanobacteria in benthic microbial mats of a tropical lagoon, Tikehau Atoll, Tuamotu Archipelago: minor in natural populations, major in cultures. – Fottea 12: 127–140.

Palinska, K.A. & Suda, S. (2014): Cyanobacteria: a contribution to consensus approach. – Hydrobiologia 740: 1–11.

Papke, R.T.; Rasmussen, N.; Bateson, M.M. & Ward, D.M. (2003): Geographical isolation in hot spring cyanobacteria. – Environmental Microbiology 5: 650–659.

Passy, S.J. (2010): A distinct latitudinal gradient of diatom diversity is linked to resource supply. – Ecology 91: 36–41.

Pearl, H.W. & Huisman, J. (2009): Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. – Environmental Microbiology Reports 1: 27–37.

Pearl, H.W. & Paul, V.J. (2012): Climate change: links to global expansion of harmful cyanobacteria. – Water Research 46: 1349–1363.

Pearl, H. (2017): The cyanobacterial nitrogen fixation paradox...
in natural waters. –F1000Research 6:244.

Pedersen, D. & Miller, S.R. (2017): Photosynthetic temperature adaptation during niche diversification of the thermophilic cyanobacterium Synechococcus A/B clade. – ISME Journal 11: 1053–1057.

Perkerson, R.B.; Johansen, J.R.; Kováčik, L.; Brand, J.; Kaštovský, J. & Casamatta, D.A. (2011): A unique Pseudanabaenalean (Cyanobacteria) genus Nodosillinea gen. nov. based on morphological and molecular data. – Journal of Phycology 47: 1397–1412.

Pietrasiak, N.; Osorio–Santos, K.; Shalygin, S.; Martin, M.P. & Johansen, J.R. (2019): When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcaceae: Cyanobacteria) With the description of two new species from the Americas. – Journal of Phycology 55: 976–996.

Pouličková, A.; Dvořák, P.; Mazalová, P. & Həšler, P. (2014): Epipelic microphototrophs: an overlooked assemblage in lake ecosystems. – Freshwater Science 33: 513–523.

Pouličková, A.; Həšler, P. & Kitner, M. (2004): Annual cycle of Planktothrix agardhii (Gom.) Anagn. & Kom. nature population. – International Review of Hydrobiology 89:278–288.

Quiblier, C.; Wood, S.; Echenique–Subiaire, I.; Heath, M.; Villedeneuve, A. & Humbert, J.F. (2013): A review of current knowledge on toxic benthic freshwater cyanobacteria – ecology, toxin production and risk management. – Water Research 47: 5464–5479.

Ramírez, M.; Hernández–Marín, M.; Mateo, P.; Berrendero, E. & Roldán, M. (2011): Polyphasic approach and adaptive strategies of Nostoc cl. commune (Nostocales, Nostocaceae) on Mayan monuments. – Fottea 11: 73–86.

Rai, A.N.; Bergman, B. & Rasmussen, U. (2002): Cyanobacteria in symbiosis. – 355 pp., Kluwer Academic Publishers, Boston.

R Core Team (2020): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R–project.org/

Ribeiro, K.F.; Ferrero, A.P.; Duarte, L.; Turcietto–Zólet, A.C. & Crosetti, L.O. (2020): Comparative phylogeography of two free–living cosmopolitan cyanobacteria: insights on biogeography and latitudinal distribution. – Journal of Biogeography 47: 1106–1118.

Rigonato, J.; Arantes Gama, W.; Oliveira, D.; Zanini Ribeiro, K.F.; Ferrero, A.P.; Duarte, L.; Turchetto–Zolet, R. Core Team; Boston.

Rigolato, J.; Sant’Anna, C.L.; Azevedo, T.M.P.; Kaštovský, J. & Komárk, J. (2010): Two form–genera of aerobic heterocytous cyanobacteria from Brazilian rainforest ‘Mata Atlântica’. – Fottea 10: 217–228.

SCHIRRMÜßER, B.E. & GUGGER, M. & DONOGHUE, P.C.J. (2015): Cyanobacteria and the great oxidation event: Evidence from genes and fossils. – Paleontology 58: 769–785.

Schoep, J.W. (2000): The fossil record: tracing the roots of the cyanobacterial lineages. – In: WITTON, B.A. & POTT, M. (eds): The ecology of cyanobacteria: Their diversity in time and space. – pp. 13–35, Springer, Berlin.

Siegesmund, M.A.; Johansen, J.R.; Karsten, U. & Friedl, A.S.; Tolonen, A.; Shaw, S.L.; Steglich, C.; Sullivan, M.B.; Ting, L.; Post, A.F.; Regala, W.; Shah, M.; Shaw, S.L.; Steglich, C.; Sullivan, M.B.; Ting, C.S.; Tolonen, A.; Webb, E.A.; Zinser, E.R. & Chisholm, S.W. (2003): Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. – Nature 424: 1042–1047.

Saha, R.; Verseput, A.T.; Berla, B.M.; Mueller, T.J. & Pkaras, H.B. (2012): Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanohsets sp. ATCC 51142 and Synechocysts sp. PCC 6803. – PLoS ONE 7: e48285. doi:10.1371/journal.pone.0482825.

SANT’Anna, C.L.; Gama, W.A.; Rigonato, J.; Correa, G. & Mariño, M.M. (2018 (‘2019’): Phylogenetic connection among close genera of Aphaniizomeneaceae (Cyanobacteria): Amphiheterocystum gen. nov., Cylindrospornopsis and Sphaeroespermpsis. – Algal Research 37: 205–214.

SANT’Anna, C.L.; Azevedo, T.M.P.; Kaštovský, J. & Komárk, J. (2010): Two form–genera of aerobic heterocytous cyanobacteria from Brazilian rainforest ‘Mata Atlântica’. – Fottea 10: 217–228.

SANT’Anna, C.L.; Watson, A.G.Jr.; Azevedo, M.T.P. & Komárk, J. (2011): New morphospecies of Chamaesiphon (Cyanobacteria) from Atlantic rainforest Brazil. – Fottea 11: 25–30.

SARAF, A.G.; DAWDA, H.G. & Singh, P. (2010): Validation of the genus Desikacharya gen. nov. (Nostocaceae, Cyanobacteria) and three included species. – Notulae Algarum 107: 1–3.

SARAF, A.; Suradkar, A.; DAWDA, H.G.; GYSINA, L.A.; GBIDULLIN, Y.; Kumat, A.; BEHERE, I.; KOTULKAR, M.; BATULE, P. & SINGH, P. (2019b): Phylogenetic complexity of the members of Rivulariaceae with the re–creation of the family Calothricaceae and description of Dulicalothrix necridiformans gen. nov., sp nov., and reclassification of Calothrix desertica. – FEBS Microbiology Letters 366: fnz219.

SEBELOW, M.; JAHODAŘOVÁ, E.; RAUS, M.; LENOREL, R. & HESLER, P. (2018): Intact cell MALDI–TOF mass spectrometric analysis of Chroococcidiopsis cyanobacteria for classification purposes and identification of possible marker proteins. – PloS One 13: e202875.

Shalygin, S.; Huang, I.–S.; Allen, E.; H.; BURKHOLDER, J. M., & ZIMBA, P. V. (2019): Odorea benthonica gen. & sp. nov. (Pleurocapsales, Cyanobacteria): an odor and prolific toxin producer isolated from a California aqueduct. – Journal of Phycology 55: 509–520.

Sherwood, A.R.; CARILE, A.L.; Vaccario, M.A. & Johansen, J.R. (2015): Characterization of Hawaiian freshwater and terrestrial cyanobacteria reveals high diversity and numerous putative endemics. – Phylogenetical Research 63: 85–92.
Sinovac, M.A.; Bolkatkan, K.; Sidorov, R.A.; Mironov, K.S.; Skrypnik, A.N.; Kupriyanova, E.V.; Zayadan, B.K.; Shumskaia, M. & Los, D.A. (2017): Polyphasic characterization of the thermotolerant cyanobacterium Desertifilum sp. Strain IPPAS B–1220. – FEMS Microbiology Letters 364: fix027

Singh, R.K.; Tiwari, S.P.; Ashwani, K.R. & Mohapatra, T.M. (2011): Cyanobacteria: an emerging source for drug discovery. – Journal of Antibiotics 64: 401–412.

Soininen, J. (2012): Macroculture of unicellular organisms – patterns and processes. – Environmental Microbiology Reports 4: 10–22.

Spiller, H. & Shankugam, K.T. (1987): Physiological conditions for nitrogen fixation in a unicellular marine cyanobacterium, Synechococcus, strain SF1. – Journal of Bacteriology 169: 5379–5384.

Stanic, D.; Oehrihe, S.; Gantzar, M. & Richardson, L.L. (2010): Microcystin production and ecological physiology of Caribbean black band disease cyanobacteria. – Environmental Microbiology 13: 900–910.

Stomp, M.; Huisman, J.; Mittelbach, G.G.; Litchman, E. & Klausmeier, C.A. (2011): Large–scale biodiversity patterns in freshwater phytoplankton. – Ecology 92: 2096–2107.

Sukenik, A.; Hadas, O.; Kaplan, A. & Quesada, A. (2012): Invasion of Nostocales (Cyanobacteria) to subtropical and temperate freshwater lakes– Physiological, regional and global driving forces. – Frontiers in Microbiology 3: 86.

Tamura, J.; Abelela, J.J.; Pignatelli, M.; Camacho, A. & Moya, A. (2010): Environmental distribution of prokaryotic taxa. – BMC Microbiology 10: 85.

Tawong, W.; Pongcharoen, P.; Pongpadung, P. & Ponza, S. (2019): Nostocaceae gen. & sp. nov. (Nostocales, Cyanobacteria), a novel geosmin producer isolated from Thailand. – Phytotaxa 421: 1–17.

Usher, K.M.; Bergman, B. & Raven, J.A. (2007): Exploring cyanobacterial mutualisms. – Annual Review of Ecology, Evolution and Systematics 38: 255–73.

Uyeda, J.C.; Harmon, L.J. & Blank, C.E. (2016): A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. – PLoS ONE 11: e0162539

Vaccaro, M.A. & Johansen, J.R. (2011): Syctonematopsis contorta sp. nov. (Nostocales), a new species from Hawaiian Islands. – Fottea 11: 149–161.

Vaccaro, M.A. & Johansen, J.R. (2012): Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterial species from the Hawaiian Islands. – Journal of Phycology 48: 1178–1186.

Van Grembergen, L.; Leliäert, F.; Mergeay, J.; Vanormelingen, P.; Van der Gucht, K.; Debeer, A.; Lacerot, G.; De Meester, L. & Vervaecken, W. (2011): Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. – PLoS ONE 6: e195651. DOI: 10.1371/journal.pone.0019561.

Vieira Vaz, M.G.; Gentário, D.B.; Andreote, A.P.; Malone, C.F.; Sant’anna C.L.; Barberro, L. & Fiore, M.F. (2015): Pantanalinema gen. nov. and Alkaligena gen. nov.: novel pseudanaebacceae genera (Cyanobacteria) isolated from saline–alkaline lakes. – International Journal of Systematic and Evolutionary Microbiology 65: 298–308.

Villanueva, C.D.; Garvey, A.; Hašler, P.; Dvořák, P.; Pouličková, A.; Norwich, A.R. & Casamatta, D.A. (2019a): Descriptions of Brasilonema geniculatum and Calothrix dumas (Nostocales, Cyanobacteria): two new taxa isolated from cemetery tombstones. – Phytotaxa 387: 1–20.

Villanueva, C.D.; Hašler, P.; Dvořák, P.; Pouličková, A. & Casamatta, D.A. (2019b): Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. – Journal of Phycology 54: 224–233.

Wang, Y.; Cai, F.; Jia, N. & Li, R. (2019): Description of a novel coccoïd cyanobacterial genus and species Sinocapsa zengienensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsideae. – Phytotaxa, 409: 146–160.

Wilde, S. B.; Johansen, J. R.; Wilde, H. D.; Jiang, P.; Bartelme, B. A. & Haynie, R. S. (2014): Aetokthonos hydrllicilica gen. et sp. nov.: ephiphytic cyanobacteria on invasive aquatic plants implicated in Avian Vacular Myelinopathy. – Phytotaxa 181: 243–60.

Whitaker, R.J.; Grogan, D.W. & Taylor, J.W. (2003): Geographic barriers isolate endemic populations of hyperthermophilic archaea. – Science 301: 976–978.

Whitton, B.A. & Potts, M. (eds) (2000): The ecology of cyanobacteria: their diversity in time and space. – 669 pp., Springer, Berlin.

Wilk–Woźniak, E.; Solzar, W.; Najberek, K. & Pociecha, A. (2016): Alien cyanobacteria: an unsolved part of the “expansion and evolution” jigsaw puzzle? – Hydrobiologia 764: 65–79.

Wood, S.A.; Pochon, X.; Luttringer–Plu, L.; Vant, B.N.; Warren–Rhodes, K.A.; Rhodes, K.L.; Pointing, S.B.; Ewing, S.A.; Lacar, D.C.; Gómez–Silva, B.; Amundson, R.; Friedmann, E.L. & McKay, C.H.P. (2006): Hypothetical cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. – Microbial Ecology 52: 389–398.

Zammit, G. (2018): Systematics and biogeography of sciphilous cyanobacteria; an ecological and molecular description of Albertana skiophila (Leptolyngbyaceae) gen. & sp. nov. – Phycologia 57: 481–491.

Zanchett, G. & Oliveira–Filho, E. (2017): Polyphasic study of Scytonematopsis sp. Strain IPPAS B–1220. – FEMS Microbiology 409: 146–160.

Zhang, Y.; Lin, X.; Zhang, Y.Y.; Ling, J. & Dong, J.D. (2013): Hugiaia tongolensis sp. nov.: a novel coccoid cyanobacterial genus and species isolated from a tripartite lichen of headstones. – Phytotaxa 181: 243–60.
Zimba, P.V.; Huang, I.S.; Foley, J.E. & Linton, E.W. (2017): Identification of a new–to–science cyanobacterium, *Toxifilum mysidocida* gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae). – *Journal of Phycology* 53: 188–197.

Zimba, P.V.; Shalygin, S.; Huang, I.-S.; Momčilović, M. & Abdula, H. (2020): A new boring toxin producer – *Perforafilum tunnelli* gen. & sp. nov. (Oscillatoriales, Cyanobacteria) isolated from Laguna Madre, Texas, USA. – *Phycologia* 60: 10–24.

Zwirglmaier, K.; Heywood, J.L.; Chamberlain, K.; Woodward, E.M.S.; Zubkov, M.V. & Scanlan, D.J. (2007): Basin scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. – *Environmental Microbiology* 9: 1278–1290.

Zwirglmaier, K.; Jardillier, L.; Ostrowski, M.; Mazar, S.; Garczarek, L.; Vaulot, D.; Not, F.; Massana, R.; Ulloa, O. & Scanlan, D.J. (2008): Global phylogeography of marine *Synechococcus* and *Prochlorococcus* reveals a distinct partitioning of lineages among oceanic biomes. – *Environmental Microbiology* 10: 147–161.

© Czech Phycological Society (2021)

Received April 27, 2021
Accepted May 6, 2021