vein-to-azygos vein connection: a new logical approach. J Thorac Cardiovasc Surg. 2005;129(4):949-950.
4. Doty DB, Knott HW. Hypoplastic left heart syndrome. Experience with an operation to establish functionally normal circulation. J Thorac Cardiovasc Surg. 1977;74(4):624-630.
5. Hannan RL, Rossi AF, Nykanen DG, et al. The fenestrated Kawashima operation for single ventricle with interrupted inferior vena cava. Ann Thorac Surg. 2003;75(1):271-273.
6. Turkoz R, Omay O, Ayabakan C, et al. Fenestration between the left atrial appendage and left superior vena cava in Kawashima operation. Ann Thorac Surg. 2008;86(6):2000-2001.

Bentall Endocarditis by C. Lusitaniae After COVID-19: The Finger Covers The Moon

Andrea Giulio Quarti, MD1, Gabriele Egydi Assenza, PhD2, Valeria Francesca Mangerini, MD1, Francesco Dimitri Pietridis, PhD3, Domenico D’Amario, PhD3, Lucio Careddu, PhD1, Emanuela Angeli, PhD3, and Gaetano Domenico Gargiulo, PhD1
1 Pediatric and Adult Congenital Cardiac Surgery, University Hospital Policlinico di Sant’Orsola IRCCS, Bologna, Italy
2 Pediatric Cardiology and Adult Congenital Heart Program, University Hospital Policlinico di Sant’Orsola IRCCS, Bologna, Italy
3 Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy

DOI: 10.1177/21501351221083991

Abstract
We report a case of endocarditis months after a Bentall procedure. This was caused by Candida Lusitaniae, in an immunocompetent patient with a recent SARS-CoV-2 infection. The patient underwent a new Bentall procedure. SARS-CoV-2 has been associated with co-infection by Candida species since the beginning of the pandemic, nevertheless, Candida Lusitaniae remains a very uncommon causative agent of prosthetic endocarditis. We suggest a possible role of the SARS-CoV-2, which may have delayed the diagnosis of endocarditis and the appropriate therapy.

Introduction
Fungal co-infection could be associated with SARS-CoV-2 viremia.1 Few articles in the literature describe bacterial endocarditis following SARS-CoV-2 disease, however, there are no reports of fungal endocarditis. Furthermore, Candida Lusitaniae, first described as a human pathogen in 1979,2 is an exceptionally rare cause of prosthesis valve endocarditis (PVE).3,4 The mortality rate of Candida endocarditis is greater than 50%,3,6 but in cases where C. Lusitaniae has been isolated, it reaches 100%.3,4 We report the case of a boy with a C. Lusitaniae PVE diagnosed soon after a SARS-CoV-2 infection, who underwent a mechanical Bentall procedure with a good early clinical outcome.

Case Report
A 21-year-old boy with regurgitant unicuspid aortic valve underwent a mechanical Bentall procedure. The postoperative course was uneventful. Eight months later he was febrile and diagnosed with COVID-19 disease. The clinical course of this infection was not atypical and resolved with no apparent complications. A month later, he suffered febrile relapse, initially attributed to SARS-CoV-2 infection and he went to the Emergency Room. On physical examination, the patient was febrile (temperature 38.5°C) and hemodynamically stable. Laboratory results showed leukopenia (white blood cell count 3.1 x 10^3/mm^3) with absolute neutropenia (48%) and a C-reactive Protein of 23 mg/dL. Chest X-ray was normal. A diagnostic work-up for PVE was initiated and a transthoracic echocardiography showed normal left ventricular function, normal movement of the prosthetic valve discs and a large mobile vegetation (>1cm) located between the left main coronary trunk and the prosthetic valve ring. A subsequent transesophageal echocardiography confirmed these findings (Figure 1). Endocarditis was diagnosed and blood culture samples tested positive for Candida Lusitaniae. According to the antibiogram, anti-fungal therapy with Caspofungin was instituted. To complete the diagnostic process, a total body contrast CT scan was performed. A hypodense mass was evident at the aortic level (Figure 2) adhering to the aortic graft. The spleen was enlarged and an ischemic image was highlighted. We speculated that this was likely related to a possible embolic event. A complete lymphocyte typing was performed and results were within normal limits. The patient reported no recreational drug abuse and tested negative for HIV. He had not received any steroid therapy in the past three months. Although the patient was on Caspofungin for only 6 days, as the vegetation was voluminous, of fungal origin, and as there had been a presumed embolic event, surgery was deemed necessary. The patient was operated on and a redo Bentall aortic root replacement procedure was performed using a new composite mechanical valve/graft. The infected valve prosthesis showed a 1.5 cm yellowish friable vegetation located between the left main coronary trunk and the prosthetic valve ring. The original prosthesis tested positive for Candida Lusitaniae. The postoperative course was uneventful. On the 16th postoperative day, antifungal therapy was changed from Caspofungin to Fluconazole, which was discontinued four weeks later. He was eventually discharged home and is currently in follow-up.

Comment
In the case we describe, the previously immunocompetent patient did not report any drug abuse or other high-risk behavior. Few cases of bacterial endocarditis following SARS-CoV-2 infection have been

Submitted August 27, 2021; Accepted February 6, 2022.

Corresponding Author:
Andrea Giulio Quarti, Department of Pediatric and Congenital Cardiac Surgery, Azienda Ospedaliero Universitaria di Bologna, Policlinico di Sant’Orsola, IRCCS, Via Massarenti 9, 40138 Bologna, Italy. Email: quarti.andrea@gmail.com
reported during this pandemic event. However, SARS-CoV-2 has been associated with immune dysregulation and candidiasis.

We hypothesize that the previous COVID-19 disease may have triggered a transient immunodeficiency that predisposed the patient to this unusual infection. As a matter of fact, there are recent reports suggesting a possible role of the SARS-CoV-2 virus in the predisposition of patients to infective endocarditis. In the case we report, the patient had a SARS-CoV-2 infection whose course was almost uneventful, with the exception of fever, and which did not require the use of steroids. It may be possible that during this period there was a latent co-infection related to \textit{C. Lusitaniae}. We cannot exclude the possibility that the history of recent SARS-CoV-2 infection contributed to a delay in the diagnosis of this complication, as has been described by others in cases of infective endocarditis. We recognize that the endocarditis, which occurred in the first year after surgery, could be directly related to the previous surgical procedure. However, in the two cases previously described, the clinical onset of the infection occurred within a few weeks/months of surgery.

In our opinion, the best treatment for overcoming fungal infection on prosthetic material is surgery. The facts that the patient was young, that he had already undergone two previous surgeries and he was approaching his second Bentall, that it was possible to remove all the prosthetic material, and that the native annulus was apparently not involved in the infectious process, convinced us that a new mechanical Bentall would be a reasonable and safe strategy for this patient. Taking down a previous Bentall to perform a new Bentall operation posed obviously surgical difficulties.

Our case reinforces the importance of active alertness and low diagnostic thresholds for endocarditis in any febrile patient with a prosthetic valve. Clinical presentation is often atypical and the diagnosis is difficult, so persistent fever should trigger suspicion of PVE, even in the setting of current or recent COVID-19 infection.

\textbf{Declaration of Conflicting Interests}

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or Publication of this article.

\textbf{Funding}

The author(s) received no financial support for the research, authorship, and/or publication of this article.

\textbf{Author's Statement}

This case report is submitted for publication with the consent of the subject patient.
Tracheobronchial Release for Left Bronchus Compression After Aortic Arch Repair

Yuki Nakamura, MD1, Randall Schwartz, MD2, Arshid Mir, MD3, and Harold M. Burkhart, MD1

1 Division of Cardiovascular and Thoracic Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
2 Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
3 Section of Pediatric Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

DOI: 10.1177/21501351221084303

Abstract
Narrowing of the retroaortic space after repair of common arterial trunk (CAT) with interrupted aortic arch (IAA) is a well-known issue. We present a newborn with CAT, IAA, and functionally univentricular heart (tricuspid atresia) who underwent repair of CAT, IAA, and left ventricle-to-pulmonary artery (LV-to-PA) conduit placement with the Lecompte maneuver. The patient suffered from left bronchus compression postoperatively, which was relieved by tracheobronchial release.

Introduction
Narrowing of the retroaortic space after repair of common arterial trunk (CAT) with interrupted aortic arch (IAA) is well known. Here, we describe a rare patient with CAT, IAA, and functionally univentricular heart who underwent CAT/IAA repair and left ventricle-to-pulmonary artery (LV-to-PA) conduit placement with the Lecompte maneuver. Postoperatively, the patient developed left bronchial compression necessitating a novel approach for relief.

Case Report
The male patient was born at 39 weeks with a birth weight of 3150 g. A transthoracic echocardiogram confirmed the diagnosis of tricuspid atresia, CAT of Collett and Edwards type 2, and IAA type A. A chest computed tomography (CT) scan revealed a patent tracheobronchial tree. On day of life 12, he underwent the first operation, comprising CAT/IAA repair, atrial septectomy, and LV-to-PA conduit placement. Under deep hypothermia with antegrade cerebral perfusion, the truncal root was transected just above the sinutubular junction. Branch PAs were disconnected en bloc. The posterior aspect of the ascending aorta and truncal root were anastomosed directly. The left lateral aspect of the ascending aorta was incised from the transection line. The aortic arch, neck vessels, and descending aorta were fully mobilized. The aortic arch was reconstructed by direct anastomosis between the proximal descending aorta and incised distal ascending aorta posteriorly. A pulmonary homograft patch was used to augment the aortic arch anteriorly (Figure 1). The Lecompte maneuver was performed, and an LV-to-PA conduit consisting of a 5 mm ringed polytetrafluoroethylene graft was implanted in the manner of a “Sano shunt” using proximal and distal dunk techniques.1,2 The cardiopulmonary bypass and aortic cross-clamp times were 114 and 58 minutes, respectively. The chest was left open electively. The acute postoperative course was complicated by hypoxia and persistent left upper lobe collapse, needing a fraction of inspired oxygen of 1.0 and inhaled nitric oxide. A flexible bronchoscopy on postoperative day 3 showed complete obliteration of the left main bronchus 1 cm distal to the carina. A chest CT on postoperative day 3 revealed left main bronchus compression by the aortic arch (Figure 2). On postoperative day 4, tracheobronchial release and delayed sternal closure were performed. The anterior trachea was mobilized from above the innominate vein to the carina with blunt dissection. Additionally, posterior blunt dissection was performed taking care to preserve the lateral blood supply. The anterior azygos plane of the left mainstem bronchus was developed, which enabled further blunt dissection of the left main bronchus off the aortic arch. Thereafter the stenum was closed. A chest CT on postoperative day 10 showed a significant improvement of the compression (Figure 3). The patient was successfully extubated on postoperative day 13. The patient had left vocal cord dysfunction but was discharged on postoperative day 37 taking all feedings by mouth and is awaiting a bidirectional Glenn shunt.

References
1. Song G, Liang G, Liu W. Fungal co-infections associated with global COVID-19 pandemic: a clinical and diagnostic perspective from China. Mycopathologia. 2020;185(4):599-606.
2. Holzschu DL, Plesley HL, Miranda M, Phaff HJ. Identification of Candida Lusitaniae as an opportunistic yeast in humans. J Clin Microbiol. 1979;10(2):202-205.
3. Michel RG, Kinasewitz GT, Drevets DA, Levin GH, Warden DW. Prosthetic valve endocarditis caused by Candida Lusitaniae, an uncommon pathogen: a case report. J Med Case Rep. 2009;3:761.
4. Wendt B, Hagland L, Razavi A, Rath R. Candida Lusitaniae an uncommon cause of valve endocarditis. Clin Infec Dis. 1998;26(3):769-770.
5. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European society of cardiology (ESC). Eur Heart J. 2015;36(44):3075-3128.
6. Arastehfar A, Carvalho A, Nguyen MH, et al. COVID-19-Associated candidiasis (CAC): an underestimated complication in the absence of immunological predispositions? J Fungi. 2020;6(4):211.
7. Hayes DE, Rhee DW, Hisamoto K, et al. Two cases of acute endocarditis misdiagnosed as COVID-19 infection. Echocardiography. 2021;38(5):798-804.
8. Cosyns B, Motoc A, Arregle F, Habib G. A plea not to forget infective endocarditis in COVID-19 era. JACC: Cardiovasc Imaging. 2020;13(11):2470-2471.

Submitted October 1, 2021; Accepted February 14, 2022.

Corresponding Author:
Yuki Nakamura, Division of Cardiovascular and Thoracic Surgery, University of Oklahoma Health Sciences Center 800 Stanton L. Young Blvd. Suite 9000, Oklahoma City, OK 73104, USA.
Emails: Yuki-Nakamura@ouhsc.edu, yukicvs@gmail.com