Introduction

Multiple-primary cancers are defined as primary malignant tumours of different histological origins in a single patient. Recently, there has been an increase in the number of patients diagnosed with multiple-primary cancers; attributed to improved diagnostic techniques and prolonged life span of patients with malignancy. Now we are aware that most multiple primary cancers are double primary cancers [1-2-3].

The incidence of Multiple-Primary Malignancies has been common among cancer patients [4]. One of the earliest statistical analyses of Double-Primary Malignancies was carried out by Bugher in 1934, he derived an equation for the probability of death from cancer during a specified period of age with a coincidental Second Malignancy [5]. According to the definition used, the overall reported frequency of Multiple-Primary Cancers ranges from 2% to 7% [6].

The criteria used for the diagnosis of Double-Primary
malignancies has been primarily given by Warren and Gates [7]. While, the two most commonly used definitions were provided by the SEER Program (Surveillance, Epidemiology, and End Results) and the IACR/IARC (International Association of Cancer Registries and International Agency for Research on Cancer) [8]. The SEER database considers single tumours at different sites in the same organ (e.g., colon) as multiple sites. The IACR/IARC rules are more limited; only one tumour is recorded for an organ, regardless of time, unless there are histologic differences. Additionally, The SEER database advocates the use of a 2-month period to distinguish between Synchronous and Metachronous Multiple-Primaries, whereas IARC recommends a 6-month period [9-10]. The theory regarding the origin of the majority of Multiple-Primary cancers is that they arise due to random chance, but different mechanisms have been suggested to be involved in Multiple-Primary Cancers, such as the family history, immunologic, genetic defects, exposure to carcinogens, radiation, chemotherapy, and field cancerization [11]. Germline mutations in mismatch repair genes can produce susceptibility to cancers of the colorectum, ovary, stomach, small bowel, upper uroepithelial tract, hepatobiliary tract, and brain. Li-Fraumeni syndrome (LFS), an autosomal- dominant disorder, features the occurrence of breast cancer in young women and of soft tissue sarcomas, osteosarcomas, brain tumours, acute leukaemia, and adrenocortical tumours in children and young adults [12]. Germline mutations in the p53 tumour suppressor gene (also known as TP53) have been identified in approximately one-half of LFS families in the literature [13] and cigarette smoking that affects the risk of several cancer types. All the information about double malignancy came from case reports with very few centers reporting their experience and none from our region. We needed to collect our experience in treating those cases. Collecting information will aid us in expecting the impact of prior therapies and teach us how to best treat them. This is a retrospective study with a single medical facility’s experience with Multiple-Primary cancer cases. This study aims to report cases of Double-Primary Malignancy in our society and see if we have a special predilection of certain Double-Primary cancers based on different geographic and environmental risk factors.

Materials and Methods

This was a retrospective observational study carried out at King Abdullah Medical City, Makka, Saudi Arabia, from January 2012 to December 2019. All Patients with malignant tumors of different histological origins were defined as histologically confirmed Multiple-Primary Malignancy cases. Patients were identified through a retrospective review of medical records excluding patients with insufficient histopathological data. The data collected were the patients’ characteristics, pathological data, and outcome information. Moreover, this research protocol was approved by the Institutional Review Board Committee. Since the study performed is retrospective, we obtained a waiver of informed consent from IRB.

Results

We collected 53 cases of Multiple-Primary malignancies 26 were synchronous (48%) and 27 were metachronous (52%). Out of 53 patients, 29 (60%) were females and 14 (40%) were males. The most common sites for synchronous, Table 1, are breast and endometrial cancer. Metastasis at diagnosis was present in 7 patients (23%). The median age of diagnosis for synchronous tumours was 61 years (range: 27 to 83 years), 4 patients were male (26%). CT scan for staging workup resulted in the detection of a second tumour in 21 patients 5 patients of which was diagnosed during pathological examination. Curative treatment could be offered in 19 patients (73%). For metachronous tumours, Table 2, the median age of diagnosis for the second primary neoplasm was 54years (range: 34 to 82years) 3 patients of which where male. The median interval of six years was observed, the most common sites of a primary tumour were breast, the most common second malignancy was colorectal cancer and Metastasis at diagnosis were present in 7 patients (25%). Curative treatment could be offered in 15 patients (53%).

Discussion

Multiple primaries [14] are more than one tumour arising in different sites and or of different histology either synchronous or metachronous depends on the duration between them, 2-month according to SEER data [15] and 6 months according to IARC. In our study, we used the definition of IARC. The burden of multiple tumours is expected to increase due to the use of accurate imaging techniques. In a single facility in Saudi Arabia, we collected 54 cases over 7 years. Multiple-Primary did not always signify a bad prognosis as we treated all non-metastatic cases with curative intent. It is most imperative to diagnose it early before the patient reaches the metastatic stage. This means that we should have a high degree of suspicion. The role of the radiologist is crucial as usually, radiologists are first to flag for suspicion of multiple tumours. In our study, most of the synchronous tumours were detected initially by CT scan then confirmed pathologically. Examples from our study as CT scan done for a patient with ovarian cancer showed a breast mass or CT scan showed a speculated lung lesion in a patient with breast cancer or showed renal mass in a patient with nasopharyngeal cancer. The response to therapy is always an alarm for the physician to review his pathology by repeating the biopsy of the metastatic disease. In our study a patient with breast cancer who developed lung nodules treated with chemotherapy as. Metastatic breast then the poor response to chemotherapy urged us to biopsy the largest metastatic nodule and to our surprise came to be second primary.
Age At diagnosis	sex	Primary	Secondary	Detected by	Treatment	Metastasis at presentation	State of last follow up	Outcome /duration from diagnosis to death
79	F	Stage II breast cancer	Stage IV ovarian cancers	CT scan	Mastectomy and chemotherapy	yes	dead	Refused surgery for the ovary then received paclitaxel weekly then palliative care
68	F	Right breast IDC 11/2017	Stage IIIC high grade serous cancer	CT scan	TAH & BSO Omentectomy. Adjuvant Carboplatin/ Paclitaxel	No	Alive	Under follow up
61	F	Right breast IDC stage IIIB	Stage IIA colon cancer	CT scan	BCS ALND Chemotherapy FEC/ Docetaxel Sigmoidectomy letrozole	No	free	Under follow up
44	F	Right breast cancer IDC	Appendicular mucinous adenocarcinoma stage IV	CT scan	MRM Tamoxifen	yes	dead	5 months
52	F	Left breast stage IIIA IDC	Stage IA endometrioid adenocarcinoma of the uterus	CT scan	TAH & BSO omentectomy PLND Left MRM Chemotherapy FEC/docetaxel Radiotherapy Letrozole	No	free	Positive family history of ovarian cancer BRCA mutation positive Under follow-up
63	F	Breast IDC	Endometrial endometrioid adenocarcinoma	CT scan	Neoadjuvant with dual anti-HER 2 therapy. Followed by surgery for both	No	Alive	The patient currently under adjuvant therapy
63	F	Triple negative left breast IDC	Hormone receptor positive right breast cancer	Path exam	Neoadjuvant AC/ docetaxel Bilateral MRM	No	Alive	Currently under adjuvant hormonal therapy
65	F	Right breast IDC	Stage IV Rectal adenocarcinoma	CT scan	Right MRM Chemotherapy for rectal cancer	yes / Yes liver		Still under chemotherapy
75	F	Stage IVB endometrioid adenocarcinoma	Stage I mucinous carcinoma of the breast	CT scan	Carboplatin paclitaxel. But Refused surgery	yes	Dead	Refused surgery for the endometrium after very good response to chemotherapy
49	F	Stage IA endometrial endometrioid adenocarcinoma	Stage IA mucinous borderline tumour	Path exam	TAH & BSO infracolic omentectomy	No	free	Under follow up
36	F	Stage IA endometrial adenocarcinoma	Papillary thyroid cancer	CT scan	TAH & BSO Total thyroidectomy	No	free	Under follow up
64*	F	Stage IA endometrial endometrioid adenocarcinoma NSCLC stage T1bN0	Cancer rectum	CT scan	TAH & BSO Omentectomy + Cholecystectomy Right lung lobectomy and hilar lymph node excision LAR	No	free	Under follow up
56	F	Stage I Uterine leiomyosarcoma	Stage IA Ovarian endometrioid borderline tumour	Path exam	TAH & BSO Omentectomy 7/2018	No	alive	Under follow up
72	F	Stage IA carcinosarcoma of the uterus	Stage I mucinous carcinoma of the breast	CT scan	TAH & BSO Followed by Adjuvant carboplatin/paclitaxel, Radiotherapy External pelvic Right MRM Adjuvant Letrozole	No	free	Relapsed 6 years later with metastatic carcinosarcoma shifted to palliative care after two cycles of chemotherapy
Lung Cancer.
Cancer patients who survive their primary tumour always have a high risk to develop a second primary and this is due to many reasons like genetic predisposition as one of our patients who has Double Synchronous Primary Breast Cancer and Endometrial Cancer gave a strong family history of ovarian cancer and her BRCA genetic testing came to be positive.
Cancer treatment is carcinogenic. We are reporting leukaemia in ovarian cancer patients treated with chemotherapy, breast cancer patients treated for DLBCL, and breast and thyroid cancer in Hodgkin’s lymphoma patients treated at a young age.

Age At diagnosis	Sex	Primary Diagnosis	Secondary Diagnosis	Detected by	Treatment	Metastasis at presentation	State of last follow up	Outcome /duration from diagnosis to death
27	F	Left foot leiomyosarcoma	CT scan	Surgery for both	No free	Under follow up		
39	F	Low grade brain glioma large infiltrative mass	CT scan	Bilateral V/P shunt	No	dead	21 months	
78	M	Stage IV nasopharyngeal cancer undifferentiated	Hepatocellular carcinoma Cirrhosis, LCF	CT scan	Radiotherapy incomplete course	yes	dead	6 months
47	F	Colon cancer high grade adenocarcinoma	Hodgkin’s disease classical type stage IV	CT scan	ABVD	yes	dead	9 months
83	M	Rectal moderately differentiated cancer	Metastatic Prostate cancer GS4+4	CT scan	Goserelin / bicalutamide	yes	dead	8 months
69	M	Sigmoid adenocarcinoma T2N1	stageIIB Lung adenocarcinoma Lung carcinoid tumour low grade	CT scan	Surgery for both then adjuvant chemotherapy for lung carboplatin/ pemetrexed	no	Alive	Under follow up
60	F	Gastric adenocarcinoma T4N3M0	Lung mucinous adenocarcinoma	CT scan	Neoadjuvant chemotherapy ECF for gastric cancer, Gastrectomy then Lung lobectomy	N0	Dead	13 months
78	M	Prostate cancer undifferentiated Sarcoma left femur	CT scan	Orchiectomy radiotherapy	no	Alive	Lost follow up	
59	M	Renal cell carcinoma	Metastatic nasopharyngeal cancer	CT scan	Target therapy plus chemotherapy	yes	Alive	localized RCC refused surgery received pazopanib changed to sunitinib metastatic NPC received gemcitabine 10 cycles then start 2nd line docetaxel
68	F	Stage I gastric leiomyosarcoma	Stage I ovarian serous cancer	CT scan	Partial gastrectomy, ovarian cystectomy then Neoadjuvant carboplatin/paclitaxel then debulking surgery	no	free	Under follow up
34	F	stage IA high grade ovarian mucinous cancer	Stage IA endometrioid adenocarcinoma	Path exam	TAH&BSO and omentectomy. Chemotherapy carboplatin/paclitaxel	no	free	Under follow up
45	F	Stage IC mucinous ovarian cancer	Stage IB endometrioid adenocarcinoma	Path exam	TAH&BSO and omentectomy. Chemotherapy carboplatin/paclitaxel Followed by radiotherapy	no	free	Under follow up
For patients with breast cancer, the incidence of second primaries studied and has been reported to range from 4.1% to 16.4% [15-16]. An excess risk of endometrial cancer is reported with the use of Tamoxifen [17]. Genetic factors as BRCA1 BRCA2 mutations are well-known risk factors for Multiple-Primary [18]. In this study, we reported 7 cases of the Synchronous Second-Primary with breast cancer, 3 cases with ovarian cancer. Also, we reported endometrial cancer in patients with hormone receptor-positive breast cancer with BRCA mutation. AML can be triggered during the first 2 years after radiation therapy and it is also a late effect of chemotherapy. For metachronous tumour in patients with breast cancer, We reported two cases of AML which may be chemotherapy related.

Patients with prostate cancer who received external beam radiotherapy are at increased risk of bladder cancer, rectal cancer and sarcomas within the radiation field after being disease-free for at least 5 years [19]. Second primaries can also occur in patients with prostate cancer owing to genetic factors, especially BRCA mutation [20]. In our study, we reported prostate cancer, rectal cancer, and prostate cancer and sarcoma synchronously.

The most important cause of mortality in Hodgkin’s lymphoma is a Second-Primary cancer [21]. We reported a case of colon cancer synchronously with Hodgkin’s lymphoma and thyroid cancer. Also, breast cancer that occurred 12 years after ABVD for Hodgkin’s lymphoma.

Smoking is an important risk factor not only for lung cancer but also for a Second-Primary Cancer. A 7.9% of lung cancer cases who acquire a second primary have

Age	Sex	Primary	Treatment	Secondary	Treatment	Metastasis at presentation	Interval between primary and secondary	Recurrence	
53	F	Stage I Breast IDC	Surgery hormonal letrozole	Stage II Colon cancer	Surgery, FOLFOX	No	7 y		
50	F	Stage III Breast IDC	Neoadjuvant chemotherapy EC/T Surgery, radiotherapy	Colon cancer T4N1M0	SURGERGY	Capectabine / Oxaliplatin	NO	14 Y	Colon cancer recurrence and received chemotherapy HIPEC and on chemotherapy
64	F	Stage II triple negative breast IDC	Surgery chemotherapy radiotherapy	Stage IV pancreatic cancer	Palliative care	yes	6 y	Died after 3 months	
39	F	Breast IDC stage II	Surgery FAC Tamoxifen	Endometrium	Surgery radiotherapy	no	11 y		
44	F	Stage II breast IDC	Surgery TEC radiotherapy Tam /letrozole	Stage III Uterine carcinosarcoma	surgery carbo/paclitaxel		6 y		
42	F	STAGE IIA BREAST IDC	RT MRM TEC radiotherapy Tamoxifen	APL M5	ATRA	no	2 y	In CR Under follow up on Tamoxifen	
35	F	Stage II breast IDC	Surgery FEC/ Docetaxel Radiotherapy tamoxifen	AML	FLAG then IDC.	no	5 y	In CR Under FU	
51	F	Stage IIIA Breast cancer IDC Her2neu positive disease	Surgery chemotherapy Radiotherapy	Lung squamous cell lung cancer	Chemotherapy	no	2 y	Still under chemotherapy	
47	F	ER+ breast cancer	Surgery and adjuvant chemo. Hormonal and radiotherapy	Stage IIA triple negative breast cancer	Surgery and chemotherapy	Yes	8 y	Under follow up	

45 F Papillary thyroid cancer | Surgery total thyroidectomy, radioactive iodine | Stage III Follicular lymphoma | FCR | 3 y | Under follow up |

41 F Papillary Thyroid Cancer | Surgery radiotherapy | Stage IC Ovarian serous cancer | Debulking surgery Adjuvant chemotherapy | no | 9 y | dead |

72 M Papillary Thyroid cancer | Thyroid surgery and ablation on replacement | Stage IV NSCLC | Chemotherapy and palliative radiotherapy | yes | 20 y | dead |

59 F CML chronic phase | TKI Imatinib, desatinib | Colon cancer | Chemotherapy, Radiotherapy | 9 y | Dead |
Age	Sex	Primary Tumour	Treatment at Presentation	Secondary Tumour	Treatment	Metastasis at Presentation	Interval between primary and secondary	Recurrence
35	F	CML	TKI	Tracheal adenocarcinoma	Surgery radiotherapy	no	15 y	In MMR Under follow up
70	F	Colon cancer	Surgery, XELOX	Breast	Docetaxel trastuzumab	yes	5 y	dead
68*	F	Stage II adenocarcinoma Colon cancer	Surgery radiotherapy chemotherapy	CML Then developed thyroid cancer	TKI Chemotherapy for colon	No	2 y	dead
80	F	HCC	HA Chemoembolization	Breast cancer stage IV liver bone Mets	Trastuzumab Hormonal treatment	yes	2y	dead
70	F	Stage IV adenocarcinoma of the gall bladder	Surgery then gemcitabine	Stage colon cancer	Surgery chemotherapy FOLFOX / bevacizumab	yes	1y	dead
66	F	Stage endometrial endometrioid adenocarcinoma	Surgery	Breast DCIS	Surgery Tamoxifen	No	3 y	free
41	F	Stage II granulosa cell tumour of the ovary	Surgery chemotherapy VAC	Stage IV Carcinoid tumour of the pancreas	octreotide	yes	10 y	Under octreotide
82	F	Stage IA endometrial endometrioid adenocarcinoma	Surgery	Stage I breast IDC	Hormonal and radiotherapy	no	1 y	free
65	F	Stage IIIc serous ovarian cancer	Neoadjuvant chemotherapy carboplatin / paclitaxel Interval debuing Adjuvant chemotherapy	Stage IV high grade neuroendocrine tumour	Refused chemotherapy	No	1y	dead
59	M	Cancer larynx T1N0M0	Radical Radiotherapy	Stage IV gastric cancer	Palliative chemotherapy and radiotherapy	Yes, liver Mets	2 y	dead
64	M	DLBCL stage IV B	Chemotherapy	Stage IIIIB Mesothelioma	Chemotherapy	No	4 y	Under Chemotherapy
34*	F	Stage III B Hodgkin’s lymphoma	ABVD	Papillary thyroid cancer And left breast cancer	Surgery radioactive iodine	No	12 y	Under follow up
55*	F	Stage IIA DLBCL	Chemotherapy and radiotherapy	Breast cancer stage and follicular lymphoma stage IA	Lymphectomy and ALND Chemotherapy Hormonal therapy for the breast Radiotherapy for FL	No	2y	Under follow up
54	F	Stage IIA NHL follicular GII	Rituximab for 4 weeks and then maintenance	Hodgkin’s lymphoma in axillary lymph node	AVD	No	2 y	Under follow up

*Triple malignancies; IDC, Invasive ductal carcinoma; DLBCL, diffuse large b cell lymphoma; TAH BSO, total abdominal hysterectomy and bilateral salpingo-oophorectomy; BCS ALND, breast conserving surgery and axillary lymph node dissection; MRM, modified radical mastectomy NSCLC, non-small cell lung cancer; ABVD, Adriamycin, bleomycin vinblastine dacarbazine; AML, Acute myeloid leukaemia; APL, Acute promyelocytic leukaemia.
SCLC [22]. In this study, we reported colon cancer 1 year after lung cancer and gastroesophageal cancer that was diagnosed 18 months after the lung cancer diagnosis.

The treatment decision of synchronous tumours is not straightforward and usually requires a multidisciplinary approach, one of our patients had a synchronous breast and endometrial cancer. We discussed the case in our tumour board, and we decided to give her neoadjuvant chemotherapy followed by surgery MRM and TAH&BSO in the operating room by two surgeons.

We treated our patients with curative intent in more than 60% of cases so, we should always be aware of the possibility of a second primary cancer. Late metastatic spread in a patient with triple-negative breast cancer led us to suspect second primary and diagnose pancreatic cancer. Also, low tumour marker in ovarian cancer patient which was initially high was found to have a second primary neuroendocrine tumour, continued smoking history should alert us about this possible important carcinogen.

We should inform our patients about the late side effects of their treatment, particularly Second-Primary Malignancies, by including it in the consent form. Such actions would educate patients on the value of continuous surveillance and avoiding all possible carcinogens especially smoking in addition to encouraging them for a healthy lifestyle [23-24].

Patients with multiple primaries are usually excluded from clinical trials and there are no established guidelines to treat these cases. we need clinical trials to study the new histology non-specific medications like (immunotherapy, biologic therapy, etc)

Finally, in our medical facility, we adopted the policy of referring our cases with Multiple-Primary to our genetic oncology clinic for evaluation and genetic testing; this hopefully will help us gain more knowledge about patients with hereditary cancer. we will report these data separately.

In conclusion, we are expecting an increase in the prevalence of Multiple-Primary tumours due to increased accuracy of diagnostic techniques in addition to novel target therapy that may increase the risk. Hereditary cancer syndrome, smoking, cancer therapy are all risk factors. we need to pick these cases as early as possible before the development of metastasis as this has a marked impact on patient survival. Treatment decisions for these cases should be based on a multidisciplinary approach. Research on this topic is an unmet need particularly the genetic background for developing second primary cancers. To reflect more of a real-life population, we need clinical trials investigating those patients in detail to increase the physician’s awareness that these cases are not rare, and they need to be treated with curative intent in most situations.

References

1. Siegel R, Miller K, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 2019;69(1):7-34.
2. Noh S, Yoon J, Ryoo U, Choi C, Sung C, Kim T et al. A case report of quadruple cancer in a single patient including the breast, rectum, ovary, and endometrium. Journal of Gynecologic Oncology. 2008;19(4):265.
3. Lee J, Moon W, Park S, Park M, Kim K, Jang L et al. Triple Synchronous Primary Cancers of Rectum, Thyroid, and Uterine Cervix Detected during the Workup for Hemachozia. Internal Medicine. 2010;49(16):1745-1747.
4. Owen L. MULTIPLE MALIGNANT NEOPLASMS. JAMA: The Journal of the American Medical Association. 1921;70(20):1329.
5. Bugher JC. The probability of the chance occurrence of multiple malignant neoplasms. Am J Cancer. 1934; 21(4):2309.
6. Vogt A, Schmid S, Heinimann K, Frick H, Herrmann C, Cerny T et al. Multiple primary tumours: challenges and approaches, a review. ESMO Open. 2017;2(2):e000172.
7. Warren S, Gates O. Multiple primary malignant tumours: A survey of the literature and statistical study. Am J Cancer. 1932; 16:1358-414.
8. Coyte A, Morrison D, McLoone P. Second primary cancer risk - the impact of applying different definitions of multiple primaries: results from a retrospective population-based cancer registry study. BMC Cancer. 2014;14(1).
9. Amer M. Multiple neoplasms, single primaries, and patient survival. Cancer Management and Research. 2014.;119.
10. Ferretti S. Airtum cancer registration handbook. Florence, Italy, 2009.
11. Kim S, Kim H, Lee J, Lee Y, Kang W, Park J et al. Multiple Primary Cancers Including Colorectal Cancer. Journal of the Korean Society of Coloproctology. 2008;24(6):467.
12. Hartley A, Birch J, Kelley A, Murshed H, Harris M, Teare M. Are germ cell tumours part of the Li-Fraumeni cancer family syndrome?. Cancer Genetics and Cyto genetics. 1989;42(2):221-226.
13. Frebourg T, Barbier N, Yan XY, Garber JE, Dreyfus M, Fraumeni Jr., et al. Germline p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet 1995; 56:608-15.
14. Shah SA, Riaz U, Zahoor I, et al. Carcinoma multiplex. J Coll Physicians Surg Pak 2013; 23:290–2.
15. Amer M. Multiple neoplasms, single primaries, and patient survival. Cancer Management and Research. 2014.;119.
16. Weir H, Johnson C, Thompson T. The effect of multiple primary rules on population-based cancer survival. Cancer Causes & Control. 2013;24(6):1231-1242.
17. Riccieri F, Fasanelli F, Giraudo M, Sieri S, Tumino R, Mattiello A et al. Risk of second primary malignancies in women with breast cancer: Results from the European prospective investigation into cancer and nutrition (EPIC). International Journal of Cancer. 2015;137(4):940-948.
18. Molina-Montes E, Pérez-Nevet B, Pollán M, Sánchez-Canalejo E, Espin J, Sánchez M. Cumulative risk of second primary cancers: results from a retrospective population-based study. Cancer Causes & Control. 2015;26:608-15.
19. Friedenson B. BRCA1 and BRCA2 mutation carriers with a first breast cancer: A systematic review and meta-analysis. The Breast. 2014;23(6):721-742.
20. Shah P et al. Second malignancies after radiotherapy for prostate cancer: systematic review and meta-analysis. BMJ. 2016;;i851.
21. Mofina Elemam, et al: Multiple Primary Tumours, How Frequent we Can Offer Curative Therapy? Asian Pacific Journal of Cancer Care• Vol 5• Issue 2
22. Bhaskarla A, Tang P, Mashtare T, Nwogu C, Demmy T.
Adjei A et al. Analysis of Second Primary Lung Cancers in the SEER Database. Journal of Surgical Research. 2010;162(1):1-6.

23. Hewitt M, Greenfield S, Stovall E, editors. From cancer patient to cancer survivor: lost in transition. Washington, DC: The National Academies Press; 2006.

24. Demark-Wahnefried W, Pinto B, Gritz E. Promoting Health and Physical Function Among Cancer Survivors: Potential for Prevention and Questions That Remain. Journal of Clinical Oncology. 2006;24(32):5125-5131.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.