Forced transport of deformable containers through narrow constrictions
Kusters, R.P.T.; van der Heijden, T.W.G.; Kaoui, B.; Harting, J.D.R.; Storm, C.

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.90.033006

Published: 01/01/2014

Citation for published version (APA):
Kusters, R. P. T., van der Heijden, T., Kaoui, B., Harting, J. D. R., & Storm, C. (2014). Forced transport of deformable containers through narrow constrictions. Physical Review E, 90, 033006. [033006]. DOI: 10.1103/PhysRevE.90.033006
Forced transport of deformable containers through narrow constrictions

Remy Kusters,1,5 Thijs van der Heijden,1 Badr Kaoui,1,2 Jens Harting,1,3 and Cornelis Storm1,4

1Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
2Theoretical Physics I, University of Bayreuth, D-95447 Bayreuth, Germany
3Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500AE Enschede, The Netherlands
4Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 1 May 2014; published 10 September 2014)

We study, numerically and analytically, the forced transport of deformable containers through a narrow constriction. Our central aim is to quantify the competition between the constriction geometry and the active forcing, regulating whether and at which speed a container may pass through the constriction and under what conditions it gets stuck. We focus, in particular, on the interrelation between the force that propels the container and the radius of the channel, as these are the external variables that may be directly controlled in both artificial and physiological settings. We present lattice Boltzmann simulations that elucidate in detail the various phases of translocation and present simplified analytical models that treat two limiting types of these membrane containers: deformational energy dominated by the bending or stretching contribution. In either case we find excellent agreement with the full simulations, and our results reveal that not only the radius but also the length of the constriction determines whether or not the container will pass.

DOI: 10.1103/PhysRevE.90.033006

PACS number(s): 47.63.—b, 47.11.—j, 82.70.Uv

I. INTRODUCTION

Membrane-enclosed vesicles are the principal carriers used in intracellular protein trafficking. Moreover, because of their intrinsic biocompatibility and flexibility they are becoming an increasingly common motif in drug delivery, for instance, in transdermal applications, as well as in microfluidic production or extrusion may be controlled and optimized. Our central interest, however, lies with the basic competition between the constriction geometry and the active force levels sufficient to effect translocation in physiological settings? We focus in particular on those physical variables that are controllable over: motor activity and constriction geometry. We also consider the dependence on the membrane’s mechanical moduli which in synthetic settings such as vesicle production or extrusion may be controlled and optimized. Our principal interest, however, lies with the basic competition between the constriction geometry and the active forcing: how the shape, length, and radius of the constriction and the force regulate the transport of a deformable container through a narrow constriction. We model the energetics of the transportation of deformable containers through a narrow constriction in a lattice Boltzmann simulation, combined with an immersed boundary method and a finite element method, and a simplified theoretical model. Our theoretical model may be applied to a wide range of deformable containers, but here we restrict ourselves to the discussion of two limiting cases: highly stretchable containers and inextensible membrane containers, to which we will refer as capsules and vesicles respectively. Our analysis reveals a generic phase behavior of the Stuck and Pass regimes as function of the applied force, relative size of the constriction, and the mechanical
properties, in both the vesicle and capsule limits. In addition to infinitely long constrictions, we model the effect of a finite constriction length and show that the deformation energy and thus the minimal force necessary to get the capsule through the constriction significantly decreases for decreasing neck length.

This paper is organized as follows: Sec. II discusses the lattice Boltzmann simulation and presents the key results of our simulation. In Sec. III we introduce our simplified theoretical model and outline the calculations of the two limiting cases (stretch vs bend-dominated containers). In Sec. IV we compare and discuss the results of our theoretical model with the simulation results and present our main conclusions.

II. LATTICE-BOLTZMANN SIMULATIONS

In this section we outline our three-dimensional lattice Boltzmann simulations for the deformable container and present our main results. In order to efficiently simulate deformable containers, immersed in a fluid, we use a lattice Boltzmann method as fluid solver, an explicit immersed boundary method for the coupling of the fluid and the membrane, and a finite element method for the computations of the membrane response to deformations. The surface of the particles is triangulated to allow efficient calculations of the deformations. The number of faces is in the range of 720 to 1280, which is sufficient to capture the studied deformations. For an overview of our method and membrane model, its relation to microscopic structure and the numerical evolution of the deformation gradient and its corresponding membrane forces we refer to Refs. [23–25]. We will present our results in conventional lattice units, and at the end of this section we will shortly outline the conversion to SI units.

Deviations from the equilibrium shape of the container induce an increase in the total energy, which we divide into three distinct contributions: (1) energy due to in-plane strain, i.e., local contributions due to resistance to shear and to lateral dilatation, (2) energy due to out-of-plane bending, and (3) energy due to global volumetric expansion or compression. The in-plane strain energy of an isotropic and homogeneous section of membrane is computed as

\[E_S = \int \epsilon_s \, dA, \]

where \(\epsilon_s \) is the surface strain energy density which depends on the principal stretches: the eigenvalues \((\lambda_1, \lambda_2) \) of the displacement gradient tensor \(D \). In general, the strain energy density is a function only of the invariants \(I_1 = \lambda_1^2 + \lambda_2^2 - 2 \) and \(I_2 = \lambda_1^2\lambda_2^2 - 1 \), and any constitutive model is represented by a specific functional form for \(\epsilon_s(I_1, I_2) \). As the deformations in biological cells are in general large, a linear stress-strain approximation is generally not justified. In our modeling, we implement therefore the nonlinear strain energy density proposed by Skalak [26] for biological membranes, valid for both small and large strains: \(\epsilon_s = k_s(I_1^2 + 2I_1 - 2I_2)/12 + k_d I_2^2/12 \). \(k_s \) is the surface elastic shear modulus, and \(k_d \) the area dilation modulus. For pure lipid bilayers, the in-plane behavior is liquidlike and \(k_s \) should be set to zero (in favor, technically, of a 2D viscosity multiplying the in-plane strain rate; we will, however, consider slow deformations and neglect viscous effects). For polymer capsules and even more complex mixtures of lipids, however, there will be contributions from the in-plane shear. Note that we neglect thermal area fluctuations; their effects are discussed in Ref. [27].

To account for the membrane bending, we recall the Helfrich bending energy [28],

\[E_B = \frac{k_B}{2} \int (H - H_0)^2 \, dA, \]

where \(k_B \) is the (out-of-plane) bending modulus of the membrane \(H \) is the mean curvature, and \(H_0 \) is the spontaneous curvature. The most general formulation of the Helfrich bending energy includes the Gaussian curvature term \(k_G \int K \, dA \), but this does not contribute to the overall energy provided no topological changes occur.

Finally, as the membrane is permeable to water, but not to ions, we associate an osmotic penalty for a deviation in volume given by

\[E_V = \frac{k_V}{2} \left(\frac{V - V_0}{V_0} \right)^2, \]

where \(V - V_0 \) is the deviation in total volume and \(k_V \) is the volume modulus.

We now use this model to address the question to what extent the force and the relative radius and length of the constriction affect the translocation of a deformable container [see Fig 1(a)]. In particular, we focus on a container with given mechanical properties (fixed \(k_V = 1 \), \(k_s = 0.018 \), \(k_d = 0.5 \), and \(k_B = 0.05 \)), where we have used a dimensionless lattice constant, time step, and mass and set them all to unity, as well as the relaxation time. For the parameter values we choose here, the container is highly stretchable and strongly resists deviations in total volume. The bending contribution is relatively weak, and as it is resistant to shear, it resembles a polymeric capsule rather than a bilayer membrane. As we show in the next section, however, the bending dominated limit and the stretching dominated limit show very similar behavior. In our simulations we assume that the fluid both inside and outside the capsule are Newtonian, and both have the same properties, i.e., the same viscosity and density. In Fig. 1(b) we show a typical time sequence of the transport of a deformable container through a constriction.

To isolate the influence of neck size, relative to the radius of the container \(d/R_0 \), we consider a system with a neck length that is considerably longer than the size of the container within the constriction: \(L = 100 \), and measure the time evolution of the position of the center of mass. We vary the radius of the container in the range \(R_0 = 5.5–8.0 \) and fix the radius of the neck at \(d = 5.5 \) [see Fig. 1(c)]. The container is released at a distance 25 lattice units in front of the constriction and is propelled by a fixed body force \(F_m = 1.5 \times 10^{-4} \) on all the fluid nodes. Similarly we also fix the size of the container and the size of the constriction \(d/R_0 = 0.7 \) and vary the applied body force \(F_m = 2 \times 10^{-5} - 2 \times 10^{-4} \) and observe highly similar behavior [see Fig. 1(d)]. Below a threshold force \(F_m^* \) and above a critical ratio \((d/R_0)^* \), the container remains Stuck in front of the constriction (dashed lines), and above \(F_m^* \) and below \((d/R_0)^* \), the velocity within the constriction increases for increasing \(F_m \), as can be seen in Fig. 1(c) and 1(d).

To quantify the speed of the translocation, we extract the minimal velocity of the container in the constriction \(v_{\text{min}} \) as
function of the relative size of the container d/R_0, as shown in Fig. 1(e), where a sharp transition between Stuck and Pass is found at a critical ratio $(d/R_0)^*$. Above this value, v_{min} increases for increasing d/R_0. The exact value of $(d/R_0)^*$ depends on the magnitude of the applied body force as can be seen from the force dependence, where likewise we find that increasing the applied body force increases v_{min} [see Fig. 1(f)], and that below a threshold force F_m^* the container remains Stuck.

We combine the force and size dependence of the translocation into a single phase diagram, showing for which parameter values the container gets through the constriction (Pass) or remains stuck (Stuck) in Fig. 2(a). The regime for $d/R_0 < 0.6$ and $F_m > 0.0002$, which is expected to show a power law-like behavior of F_m^* with decreasing d/R_0, at least for fluid vesicles [27], is presently inaccessible due to limitations in the simulation methods: velocities on the lattice nodes become too high, and the weak incompressibility constraint may be numerically violated.

As mentioned in Sec. I, both the radius and the length of the constriction are expected to affect the dynamics of the passage process. As we show in Fig. 2(b), decreasing the length of the neck can considerably decrease the minimal relative radius of the neck d/R_0 through which the container can be forced. This is due to the fact that for shorter necks, one end of the container may already be exiting the constriction while the other end has not yet entered, allowing parts of the passage process to occur at considerably lower curvatures and thus to proceed more effectively. We discuss this in detail in Sec. III.

All the results we have presented in this section were given in lattice units. These units can be converted to regular SI units. Although the scope of this section is to come up with a generic system and not to solve this problem for one particular system, it is insightful to convert our lattice units to SI units for one particular case where the kinematic viscosity of the liquid equal that of water and the sound of speed is set to 27.8 m/s. For this particular case the lattice constant equals 1.25×10^{-6} m, which corresponds to a container of radius of the order of 1μm. The resultant time step is then 2.6×10^{-9} s. As a result of this, the force densities F_m on the lattice sites we have considered are in the order of 10^6 N m$^{-3}$ or 10^{-9} N μm$^{-3}$, the

FIG. 1. (a) Model system for the transport of containers through a narrow constriction of length L and radius d. (b) A typical time sequence of the transport of a deformable container through a relatively short and narrow constriction. Position of the container’s center of mass x as function of time t for (c) varying the relative radius of the constriction d/R_0 (solid line, Pass, $d/R_0 = 0.92–0.68$ and dashed line, Stuck, $d/R_0 = 0.67$) and a fixed applied body force $F_d = 1.5 \times 10^{-4}$ and (d) where we vary the applied force F_m (dashed line: Stuck, $F_m = 2 \times 10^{-5}$ and 6.5×10^{-6}; and solid line: Pass, $F_m = 7 \times 10^{-5} - 2 \times 10^{-4}$) and fix $d/R_0 = 0.7$. In (e) we fix the applied body force $F_d = 1.5 \times 10^{-4}$, and in (f) we fix $d/R_0 = 0.7$ and we calculate the minimal velocity of the particle during transportation. For the containers that remained stuck $v_{\text{min}} = 0$. In (c), (d), (e), and (f), the length of the constriction is $L = 100$, and the system size is $b = 208$ and $a = 52$ lattice units [see panel (a)].

FIG. 2. (Color online) (a) Phase diagram indicating whether the container passes the constriction as function of the relative size of the constriction d/R_0 and the applied body force F_m. (b) Phase diagram as function of the neck length L and the relative size of the constriction d/R_0, where $F_m = 1.5 \times 10^{-4}$.

033006-3
area dilation modulus is $\kappa_a = 5 \times 10^{-3}$ J m$^{-2}$ and the bending modulus is $\kappa_B = 2 \times 10^{-16}$ J. These values can be manipulated by varying the viscosity and the speed of sound of the medium; this has been discussed in more detail in Narváez et al. [29].

To conclude this section we mention that this particular simulation method poses some limitations as it does not permit a large range of mechanical properties of the deformable container to be studied, and therefore, we are unable to simulate the bilayer limit, where the shear modulus is negligible and the area stretching modulus is very large. To access these regimes, we now present a tractable model for the two limiting cases of the capsule and the vesicle.

III. LIMITING BEHAVIORS

In this section we consider two limiting cases of the translocation of a deformable container: the stretch-dominated and the bend-dominated. The geometry we consider is shown in Fig. 3(a). We presume the dynamics to be determined by a balance of forces between a coarse-grained hydrodynamic drag $F_d[\dot{x}(t)] = 6\pi \eta R_0 \dot{x}(t)$, with η the dynamic viscosity of the fluid, R_0 the equilibrium radius of the container, and $\dot{x}(t)$ the instantaneous velocity of the container’s center of mass, a driving force, associated for instance with the pulling by molecular motors, F_m, and a force opposing the motion due to the increase in membrane energy F_B. The latter, in the two limits, can be determined by calculating the derivative with respect to the center of mass position of either the global stretching energy E_A for the stretch-dominated limit or the bending of the surface E_B for the bend-dominated limit, such that

$$F_g[x(t)] = F_d[\dot{x}(t)] + F_m = m\ddot{x}(t),$$

where m is the mass of the container and $x(t)$ is the position of mass of the center of mass, which for the nonspherical particles is calculated by summing the “weighted” contributions of the subunits and assuming a homogeneous density. In the remainder of this section we will assume the mass to be $m = 4\pi \times 10^{-18}$ kg and the dynamic viscosity of the fluid $\eta = 10^{-3}$ N s/m2. In the limit of low Reynolds number, Eq. (4) reduces to $F_g[x(t)] + F_m = 0$. We should note that the force we apply in this theoretical model is applied to the container and not to the fluid as we did in the simulations. Therefore, the numerical value of the force is actually significantly lower compared to that in the simulations.

We consider a spherical deformable container with radius R_0 that is transported through a cylindrical constriction with radius d and length L, as depicted in Fig. 3(a) and distinguish several distinct stages of the process: stage I is the free capsule in solution, the reference configuration for the container shape. During this stage the deformation force, F_g, acting on the container is zero, and the motion is determined by a competition between driving and drag force. Stage II:
partial entry of the capsule into the constriction. Here the hydrodynamic drag force is much smaller than the deformation force acting on the container. Stage IIIc: intermediate stage for short channels or large containers. Stage IIIb: intermediate stage for long channels or small containers; and finally stage IV: partial exit out of the constriction. Stage IIIb is only encountered when the volume of the container is larger than the total volume inside the constriction. We will now consider the stretch- and bending-dominated regime of this translocation.

A. Stretch-dominated (capsule) limit

In the stretch-dominated regime, we assume that the total volume of the container is conserved \((V = V_0, \dot{V} = 0)\) and that, given a certain global stretching modulus \(\kappa_A\), the surface of the container is allowed to stretch. For simplicity we will account for a global energy penalty, associated with stretching:

\[
E_A = \frac{\kappa_A}{2} (A - A_0)^2 / A_0,
\]

where \(A - A_0\) is the deviation in total surface and \(\kappa_A\) a global stretching modulus. In the limit of small and uniform stretch \((\lambda_1 = \lambda_2)\) and zero shear modulus \(\kappa_s, \kappa_A\) can be related to the more general local area dilatation modulus \(\kappa_k\): \(4\kappa_k/3 = 2\kappa_A\).

We will refer to containers in this regime as capsules. This approach enables us to calculate analytically the height of the elastic energy barrier due to stretching of a container. As shown in Eq. (5) we need to calculate the difference in total surface area for these three situations, illustrated in Fig. 3(a).

In Appendix A we detail the calculations of the total stretching energy as function of the center of mass of this system. Figure 3(b) collects the results, showing the elastic energy \(E_A\) as function of the position of the center of mass where we fix the radius of the constriction and the stretching modulus and vary the constriction length. We find that upon decreasing the length of the constriction, the height of the energy barrier decreases considerably as can be seen in Fig. 3(b) and 3(d).

The height of the barrier is determined by the most stretched state with maximal surface area and thus the maximal elastic energy. For shorter neck lengths, there is a single maximum of the elastic energy for this type of container is highly similar in Fig. 3(a)]i st h e b[. This phase diagram indicates the critical force \(F_{min}\) necessary to translocate a container of radius \(R_0\) through a constriction with size \(d\), for a given stretching modulus \(\kappa_A\). If we now fix the driving force and vary the stretching modulus \(\kappa_A\) and \(d/R_0\), we obtain a similar phase diagram for the critical \(\kappa_A\). Obviously the minimal size of the constriction through which a container would pass decreases strongly with decreasing modulus [see Fig. 4(d)]. While for biological membranes the elastic parameters are largely fixed, in synthetic systems one may have some control over the area elastic properties.

B. Bend-dominated (vesicle) limit

We now analyze the opposite limit, where the container has very limited opportunity to stretch, and the elastic energy is dominated by the bending contribution \(E_B\). This would resemble more closely a biological membrane, whose internal volume may adapt due to the relatively high permeability to water of lipid bilayers. Though there may be some areal extension, we will assume its energy is negligible compared to the bending contributions. As our reference configuration, we take again the spherical vesicle, and the various stages of translocation are the same as in Fig. 3(a). The calculation of the elastic energy for this type of container is highly similar to that of the stretchable container; we refer to Appendix B for the details and summarize only our main findings here.

Figure 3(e) shows the elastic energy for a bend-dominated container for a constriction with finite and infinite length. The transition from stage I, free container, to the stage II is no longer continuous. This jump in the bending energy is an artifact of our simplified setup, as our model does not resolve the continuous transition from situation I to II. Once
the container enters the constriction, its energy increases until it reaches a maximum. For larger vesicles, or short channels, this point corresponds to the symmetric configuration during stage IIIb when \(R_1 = R_2 \), provided the length of the constriction is short enough that the container can span both ends of the constriction. For smaller vesicles, or longer channels, the stage II bending energy continues to increase until the vesicle has completely entered the constriction to reach stage IIIc, with the spherocylinder completely inside the channel. Past this point, both stage IIIa and IIIb develop into stage IV, where the energy decreases in the inverse manner that it rose in stage II.

If we now compute the maximal height of the energy barrier \(E_{\text{max}} \) in Fig. 3(g) as a function of the radius of the constriction, we find that it increases strongly for decreasing radius and length of the constriction. For long channels, we find a scaling regime where \(E_B \sim \kappa_B(d/R_0)^{-2} \) which is highly similar to what we found for the stretchable container in Fig. 3(c). There is, however, one notable difference: the barrier height does not display the maximum we find in the capsule limit. This may be understood from the fact that the bending energy diverges for small \(d \), whereas \(\kappa_A \) does not.

Next, we use the equation of motion [Eq. (4)] to obtain the dependence of the minimal velocity during the passage through the constriction as a function of the relative radius of the constriction \(d/R_0 \) [Fig. 4(e)] and the force applied to the vesicle \(F_m \) [Fig. 4(f)]. Figures 4(e) and 4(f) reveal similar behavior as for the stretch-dominated container: below a threshold force, the container gets stuck, and above this critical force, its velocity increases linearly with increasing force \(F_m \). If the size of the neck, relative to the size of the vesicle, is decreased below a critical ratio \(d/R_0 \), the vesicle gets stuck. Above this value the minimal velocity increases as shown in Fig. 4(e).

We summarize in Fig. 4(g) and 4(h) the force dependence of the translocation in a phase diagram, indicating under which combinations of parameters the vesicle gets through the constriction and when it does not. This phase diagram indicates the critical force \(F_m \) necessary to transport a vesicle of radius \(R_0 \) through a constriction with radius \(d \). If we now fix the driving force and vary the bending modulus \(\kappa_B \) and \(d/R_0 \), again at fixed area increasingly small bending moduli are required to pass through the channel. Overall, the results are very similar to those in the stretch-dominated limit and those observed in the simulations presented in Sec. II.

IV. Conclusions

In this paper we have sought to address the question of how passage dimensions, container mechanics, and external forcing together determine whether or not a container will pass through a narrow constriction, and if it does, how fast it does so. We have shown that by varying the size of the container relative to that of the neck and by regulating the force that is exerted on the container, the system may be biologically or physically controlled to, for instance, switch between a state where the container remains stuck in front of the neck and a state where the container passes through the neck. Both these states possess some biological significance.

We have presented the results of lattice Boltzmann simulations, supported by two limiting simplified theoretical models. Although a quantitative comparison between the simulations and the theoretical is difficult to establish as a result of, among others, the dependence on the exact driving mechanism, we find that even while the energetics of highly stretchable containers is very different from that of containers that are bend-energy-dominated, the resulting phase diagram, in terms
of Stuck vs Pass, is very similar in both cases, suggesting some universality between both limits. We focus on the scaling and a qualitative analysis of this problem in the regime of low flow rates, justifying the fact that we neglect both the membrane viscosity as well as the solvent viscosity in our models. At high flow rates, the imposed strain rate the membrane experiences may lead to significant contributions from both the viscosity of the membrane as well as the viscosity of the solvent, and different behaviors from those we describe here are to be expected.

Nonetheless, our modeling allows us to address some of the questions we have raised in the introduction: whether typical cellular force levels are sufficient to effect translocation in typically dimensioned vesicles and constrictions, and whether it is feasible for a cell to switch between pass and stuck by controlling this force. In order to do so, we must quantify the position within the Stuck/Pass phase diagram for a typical biological cell. We may use our results to provide some quantitative insight into the passage of biological vesicles into thin necks, such as occurs in the dendritic spines mentioned in the introduction. In Fig. 4(g) we show the phase diagram as a function of the minimal force that a molecular motor has to exert vs the size of the neck, where we have substituted typical values of relevant parameters for a recycling endosome, which has an equilibrium radius of 1 μm [21,22], and the bending modulus of a typical vesicle 4 × 10 −19 J [30]. Our analysis shows that the range of forces necessary to transport this container through a typical dendritic spine neck, which has a radius of between 0.2 – 0.6 μm, is on the order of a few to tens of pN. A typical myosin motor can exert forces of 5–6 pN [31,32].

In this appendix we outline the calculations of the energetics involved in the stretch-dominated regime. As mentioned in the main text we assume that for the container in the stretch-dominated limit that the total volume is conserved, and that the total surface determines the stretching energy as shown in Eq. (5). The surface of the container in the constriction can be divided in three parts [see Fig. 3(a) for parameters], and in stage III e the total surface area of the capsule is computed to be

\[A_{\text{tot}} = 4\pi R_1^2 - \pi \left\{ d^2 + \left[R_1 - \sqrt{\left(R_1^2 - d^2\right)}\right]\right\}^2 + 2\pi ld + 4\pi R_2^2 - \pi \left\{ d^2 + \left[R_2 - \sqrt{\left(R_2^2 - d^2\right)}\right]\right\}^2. \]

(A1)

The radius of the first spherical cap \(R_1 \) is related to that of the second spherical cap \(R_2 \) via total volume conservation:

\[V_{\text{tot}} = \frac{4\pi R_0^3}{3} = \frac{4\pi R_1^3}{3} - \pi h^2 \left(3R_1 - R_1 - \sqrt{R_1^2 - d^2}\right) + \pi d^2 l + \frac{4\pi R_2^3}{3} - \pi h^2 \left(3R_2 - R_2 - \sqrt{R_2^2 - d^2}\right). \]

(A2)

where \(V_{\text{tot}} = 4\pi R_0^3/3 \) is conserved. To calculate the evolution of the stretching energy, we identify the position of the center of mass of this system, then calculate the shape of the system and the corresponding area deviation. In stage I, where we have a spherical capsule at its equilibrium radius \(R_0 \), the total stretching energy is 0 as \(A = A_0 \). The deviation in total surface area and the corresponding stretching energy of the stages II and III e/III o are calculated assuming total volume conservation. In stage II, we divide the membrane shape into three domains: a partial sphere of radius \(R \) outside the constriction, and a (truncated) spherocylinder with length \(h \) and radius (both of the cylindrical section and the spherical cap) equal to the radius of the channel, \(d \). In stage III o, likewise, we distinguish three domains: a spherical cap with radius \(R_1 \) outside the entry, a cylindrical tube with radius \(d \) and length \(h \) inside the channel, and a spherical cap with radius \(R_2 \) outside the exit. In stage III o the shape is a spherocylinder with length \(h \) and all radii equal to \(d \).

APPENDIX B: BEND-DOMINATED LIMIT

In this appendix we outline the calculations of the energetics involved in the bend-dominated regime. For the initial state we consider a spherical vesicle that has an initial radius \(R_0 \) before it enters the constriction. Its bending energy is given by \(E_B = 2\pi \kappa_B \), independent of the radius. In stage II, we consider the entrance of the vesicle in the constriction. Again, the complete shape is divided into two, possibly distinct, spherical domains and the cylindrical part. Note

ACKNOWLEDGMENTS

We thank Timm Krüger for valuable discussions. This work was supported by funds from the Netherlands Organization for Scientific Research (NWO-FOM) within the programme “Barriers in the Brain: The Molecular Physics of Learning and Memory” (No. FOM-E1012M) and the VIDI Grant No. 10787 of Jens Harting “Dense suspensions in medicine and industry.”
that in contrast to the capsule, the total surface area of the vesicle is conserved: \(A_{\text{tot}} = A_1 + A_{\text{II}} + A_{\text{III}} \), where \(A_1(R_1, d) = 4\pi R_1^2 - \pi (d^2 + (R_1^2 + \sqrt{R_1^2 - d^2})^2) \), \(A_{\text{II}}(h, d) = 2\pi dh \) and \(A_{\text{III}}(R_2, d) = 4\pi R_2^2 - \pi (d^2 + (R_2^2 + \sqrt{R_2^2 - d^2})^2) \). The volume of the vesicle is allowed to increase during the translocation.

The bending energy associated to the vesicle in stage III\(_a\) or III\(_b\) can be approximated by the sum of the three separate contributions:

\[
E_B = \kappa_B/2 \left[\frac{A_1(R_1, d)}{R_1^2} + \frac{A_{\text{II}}(h, d)}{4d^2} + \frac{A_{\text{III}}(R_2, d)}{R_2^2} \right].
\] (B1)

where \(A_1 \) is the surface of the spherical cap with radius \(R_1 \), \(A_{\text{II}} \) the cylindrical part with radius \(d \) and length \(h \), and \(A_{\text{III}} \) the spherical cap with radius \(R_2 \).

As mentioned in the main text, by assuming that the total surface area is conserved, one can relate \(R_1 \) and \(R_2 \) to the initial radius \(R_0 \) and the position of the center of mass \(x \). As depicted in Fig. 3(a) we consider two separate situations, III\(_a\) and III\(_b\), in the first we assume a neck with short length \(L < R_0 \) and the situation where \(L \ll R_0 \). To calculate the bending energy of the first situation we fix \(R_2 = d \). By fixing the total area we obtain the following relation between the radius of the first spherical part \(R_1 \) and the length of the cylindrical domain \(h \):

\[
R_1(h) = \frac{A_{\text{tot}} - 2d^2\pi - 2\pi dh}{\sqrt{4\pi A_{\text{tot}} - 12\pi^2 d^2 - 8\pi^2 h d}}.
\] (B2)

We use this condition to solve Eq. (B1) as long as \(h < L \). If \(h > L \), we fix \(h = L \) and by conserving the total area one can determine a relation between \(R_1 \) and \(R_2 \). Assuming that the volume enclosed by the neck is \(2\pi dL \ll 4\pi R_0^2 \) one should consider an extra situation which is the vesicle completely inside the neck stage III\(_b\). The calculation is a straightforward extension of the previous setting \(R_1 = R_2 = d \). This yields the following relation between the length of the neck and the total area of the vesicle:

\[
h(d) = \frac{A_{\text{tot}} - 4d\pi d^2}{2\pi d}.
\] (B3)