Atmospheric droughts in Southern Siberia in the late 20th and early 21st centuries

N N Voropay 1,2 and A A Ryazanova 1
1 Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk
2 V.B. Sochava Institute of Geography SB RAS, Irkutsk

voropay_nn@mail.ru, raa@scert.ru

Abstract. The modern warming that began in the 70s of the 20th century is characterized by an increase in the frequency of extreme natural phenomena. Some characteristics of droughts (repeatability, intensity, etc.) for individual years are calculated on the basis of a drought index for Southern Siberia from 1979 to 2017. Specialized computational algorithms are developed to calculate these characteristics. All these algorithms are integrated into a previously created web-GIS called “CLIMATE”. It has been found that in recent years the duration of dry periods during the growing season increased. At the same time, the trends of the drought index in the summer months are different and, on average, there has been no significant change in the hydrothermal conditions over the past 40 years. However, in recent years there is an increase in the frequency of extreme events, both drought and excessive moistening ones.

1. Introduction

The increase in the global air temperature which started in the 1970s and the recent fires and floods make the scientific community more careful and detailed about the causes of extreme hydrothermal phenomena [1-3]. Drought is a complex natural phenomenon with the strongest regional anomalies of temperature and humidity (precipitation, soil moisture) [4]. In general, a drought means a temporary decrease in the humidity of the environment in relation to its average state. A large number of scientific papers are devoted to assessing the frequency, intensity, and area of droughts [5-8]. We study atmospheric, soil, and atmospheric-soil droughts. A drought occurs if the amount of precipitation decreases over a certain period in relation to the average value. It refers to a period when the balance between the precipitation and evapotranspiration in a territory becomes less than the water available for life than the quantity marked as the norm. The significance of a drought can be judged by its consequences, which are often complicated by the expanding human activity, which requires local and regional water and other natural resources to be increased locally. The history of droughts shows that the population and economy in all regions of the world remain vulnerable to them. The agriculture is essentially affected. Unfavorable agroclimatic conditions significantly reduce the agricultural potential of the climate. At atmospheric drought there is a process of active heating and relative air desiccation in the absence of precipitation and a large radiation influx of heat. According to [9], an atmospheric-soil drought often occurs due to a prolonged atmospheric drought and is intensified by a soil drought. There were years when a soil drought was intensified by an atmospheric drought, and an atmospheric-soil drought is characterized by a combination of soil and atmospheric droughts. Global warming is accompanied by a change in the general circulation of the atmosphere, which leads to a
redistribution of heat and moisture and to the manifestation of regional features of climatic changes [10].

Extensive droughts are associated with large-scale stationary anticyclones. In the early 1980s, the concept of atmospheric blocking formations (blockings) was developed, explaining the correlation of blocking and droughts in the middle latitudes, in particular, in the Russia’s grain belt [11]. The concept stressed that an adequate study of the genesis of droughts is impossible without an understanding of the conditions for the formation and evolution of atmospheric blockings. A statistical study of the connection between blocking formations and the main modes of large-scale circulation (teleconnection indices) shows that the contribution of these phenomena to the variability of aridity in many regions of the globe is very significant [12]. The influence of the North Atlantic oscillation on the occurrence of large anomalies in Europe is mostly observed in winter [13]. Papers [14, 15] established the influence of the elementary circulation mechanisms of the Northern Hemisphere, according to the typifications of Dzerdzeevsky and Wangenheim-Girs, on the formation of droughts of varying intensity in the 20th century and the beginning of the 21st century.

A clear periodicity of droughts or a certain unidirectional trend in the frequency and intensity of droughts in Russia in the 20th century were not revealed. The tendency to increase the frequency of droughts has only manifested itself in some regions [2].

2. Objects, data, and methods
Various hydrothermal coefficients are used to quantify the droughts, which in most cases are a combination of air temperature and precipitation characteristics. This work is a continuation of the series of works [16-18] on studying the humidification conditions in the territory of Southern Siberia (50-65 N, 60-120 E) during the period of the most intense global warming. To assess the hydrothermal conditions in different landscape conditions, the drought index suggested by D A Ped’ (Si) is used [19]. The index is the normalized indicator of the relationship between the air temperature and the sum of atmospheric precipitation:

$$S_i = \frac{\Delta T_i}{\sigma_T} - \frac{\Delta P_i}{\sigma_P}$$ \hspace{1cm} (1)

where i is the number of a certain period, $\Delta T_i = T_i - T_{\text{norm}}$ is the temperature anomaly in the i-th period, T_{norm} is the long-term average air temperature, and σ_T is the standard deviation of the temperature. For precipitation (P) the notations are similar.

The air temperature and precipitation totals from the ERA Interim reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF) [20] at grid nodes with a step of 0.75 × 0.75° and data of weather stations [21] for 1979-2017 (Figure 1) were used in the analysis.

For a detailed analysis of droughts in Siberia, the following characteristics were calculated based on the Si drought index:

- maximum index values,
- minimum index values,
- variability range of the index (the difference between the maximum and minimum values),
- the frequency of droughts of different intensity for the study period,
- the duration and beginning of the dry period (when $S_i > 1$).

New computational algorithms have been developed that allow calculating maximum and minimum values of the index, as well as its variability, for each month of the growing season (May-September) for each year of the period under study. Additional software algorithms were also developed to calculate the frequency of occurrence of droughts of different intensity, duration and beginning of the dry period. The repeatability of droughts is calculated based on the classification presented in Table 1.
As a result of the algorithm application, the percentage of dry years from the total study period (39 years) for each month from May to September was calculated. The algorithm for calculating the duration of a drought determines it as the number of consecutive months in the vegetation period when $S_i > 1$, this algorithm also allows one to calculate the beginning of the dry period. As a result of using the algorithm, we get the month number when the drought started and its duration for each year of the study period.

Table 1. Classification of droughts based on the Ped’ drought index.

Intensity of drought	Ped’ drought index (S_i)
Weak	$1 \leq S_i < 2$
Medium	$2 \leq S_i < 3$
Severe	$3 \leq S_i < 4$
Extreme	$S_i \geq 4$

All developed computational algorithms were integrated into the previously created web-GIS "CLIMATE" [22, 23] as additional modules to the main computational module for calculating the Ped’ drought index created earlier for the system [18]. The "CLIMATE" system, built on the basis of web and GIS technologies, is a part of the hardware and software complex for "cloud" analysis of climate data, including various sets of climate and meteorological data, as well as special interactive tools for their search, sampling, processing, and visualization. Using this system greatly facilitates and accelerates work with large volumes of geospatial climatic data, allowing a user who is not an expert
in information technologies to remotely perform their statistical analysis using any modern desktop PC connected to the Internet.

As the main results of the modules and the system, archives of the calculated characteristics were obtained, as well as a set of cartographic layers on the basis of which further analysis of the hydrothermal conditions in the territory of Siberia was carried out. Previously, the precipitation reanalysis data were corrected using the observation data according to the previously proposed approach [17].

3. Results and discussion

During the year, the latitudinal distribution of the mean monthly air temperature is observed in the study area. In Eastern Siberia, the orographic factor contributes a certain violation to this pattern. Trends of the monthly temperature for 1979-2017 were analyzed. The spatial distribution of the trends varies during the growing season. In May, the temperature in most of Siberia increases at a rate of 0.3-0.7°C / 10 years. In June and July, a decrease in the air temperature is observed in Western Siberia and an increase in the air temperature in Eastern Siberia. The maximum contrast in the distribution of trends is observed in July in the southern part of the territory. The trend coefficients vary from -0.65°C / 10 years in the south-west to 1.2 in the south-east of Siberia. At the same time, in the north of the territory, the air temperature trends are minimal in modulus. In August and September, the air temperature trends with values of 0.4-0.8°C / 10 years were observed in the west and south-east of Siberia, and for the rest of the territory there are not statistically significant trends. During all summer months, the same regularities are observed in the distribution of long-term average amounts of precipitation over the study area. The maximum in the monthly precipitation (up to 125 mm) is recorded in the mountains (Altai, Western and Eastern Sayan, Khamar-Daban, Stanovoye Highlands), and a minimum (less than 10 mm) is observed in the south-west of the territory. At the same time, the greatest humidification is observed in the whole territory in July, and the smallest one in May. The trends in the amount of atmospheric precipitation during the warm period are multidirectional. In most cases the trends are negative. Changes in the hydrothermal conditions within the territory, according to the results of the analysis of the S_i index, are characterized as follows. In May, aridity increases in most of the territory, only in the mountainous regions of the Transbaikalie there is a slight decrease in S_i. In June, humidification grows in the central regions of Western Siberia, while the south of Eastern Siberia becomes more arid. In July the contrasts increase: the S_i trends in the territory vary from -1.0 to +1.4 units / 10 years. In August and September there is a latitudinal distribution of trends: from positive ones in the south to negative ones in the north of Siberia [18].

According to the results of the analysis, the maximum values of the S_i index (up to 4.6) and, therefore, the most intense droughts are observed in August. They are localized in the north-east of the territory and in the south of the West Siberian Plain. The north-west part of the territory is characterized by droughts with $S_i <3$ in all months. The minimum values of S_i reach -5 and correspond to the state of waterlogging of the territory. In most cases they are -4 ... -3. The interannual variability of S_i, on average, does not exceed 6-7 units.

The repeatability of droughts of weak intensity in certain months during the study period reaches 38%, of moderate ones 23%, of strong ones 7%, and of extreme ones 2% (Figure 2). More than half of the cases of observed extreme events occur after 2000. For instance, Figure 3 shows the number of extreme and severe droughts in May for different periods.

Extreme droughts ($S_i \geq 4$) were observed only in August in a small area (in the north-east of the Central Siberian plateau and in Altai region). The repeatability of severe droughts ($3 \leq S_i <4$) is less than 5-7% and it has a local character. Severe droughts are observed in May in the territory adjacent to the Bratsk and Ust-Ilimsk reservoirs and the Stanovoy Range; in June in the Sayan Mountains, in July in the south of the West Siberian Plain; in August at the Sayan foothills and northern areas of the Central Siberian plateau. In September for the large part of the territory the frequency of severe droughts does not exceed 1-2%. Moderate droughts ($2 \leq S_i <3$) are observed in all months of the vegetation period, and their frequency in most of the territory is less than 10%, and they have lowest
values (4%) in May. The repeatability of weak droughts ($1 \leq S_i < 2$) is maximum in September in Western Siberia (20-35%). In Eastern Siberia weak droughts were observed twice less often. From May to August, the frequency of weak droughts does not exceed 10-20% throughout the study area.

Month	Extreme	Severe	Medium	Weak
May	![Map]	![Map]	![Map]	![Map]
Jun	![Map]	![Map]	![Map]	![Map]
Jul	![Map]	![Map]	![Map]	![Map]
Aug	![Map]	![Map]	![Map]	![Map]
Sep	![Map]	![Map]	![Map]	![Map]

Figure 2. Frequency of droughts, %.

Figure 3. Number of droughts in May.
In some years, continuous duration of a drought (for $S_i > 1$) in a significant part of the territory can reach 3-5 months. In Eastern Siberia, this situation was observed in 1986, 2001, 2002-2007; and in Western Siberia in 1988, 1998, and 2012 (Figure 4). After 2000, the frequency of droughts lasting more than 2 months increased throughout the region. In years when the duration of a drought does not exceed 2-3 months, the period with insufficient moisture in most cases begins in May-June.

Figure 4. Duration of drought periods ($S_i > 1$) in 2001, 2002, and 2012 in Southern Siberia.
4. Conclusions
The new computational algorithms developed for the web-GIS “CLIMATE” allowed us to calculate extreme characteristics of the drought index, estimate the frequency of droughts of different intensities, and the duration and beginning of the dry period. Archives of the calculated characteristics were obtained, as well as a set of cartographic layers to carry out further analysis of the hydrothermal conditions in the territory of Siberia. The precipitation reanalysis data had been corrected according to the observation data using the above-proposed approach.

The analysis of cartographic material showed that in a large part of Southern Siberia in 1979-2017, from May to September, there is a statistically significant increase in the air temperature and a small change in the precipitation. The trends of the S_i drought index in the summer months are multidirectional and, on average, there has been no significant change in the hydrothermal conditions over the past 40 years. However, in recent years the duration of droughts has increased during the growing season, there has been an increase in the frequency of extreme events, both drought and excessive moistening ones. Most intensive droughts have been observed in August in the north-eastern part of the territory and in the West-Siberian Plain. More than half of the extreme and severe droughts have been observed after 2000. The duration of drought periods in the growing season is 2-3 months on average, but in some years the duration can be 4-5 months.

References
[1] Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M 2013 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press and NY, USA) p 1535
[2] Kattsov V M et al 2014 Second Roshydromet assessment report on climate change and its consequences in Russian Federation (Moscow: Federal service for hydrometeorology and environmental monitoring (Roshydromet)) p 56
[3] Voropay N N and Kichigina N V 2018 Long-term changes in the hydroclimatic characteristics in the Baikal region IOP Conference Series: Earth and Environmental Science 107(1) 012042
[4] Hydrometeorological disasters 2001 ed Golicin G S and Vasilev A A (Moscow: KRUK Publisher) p 296
[5] Zolotokrylin A N, Vinogradova V V and Cherenkova E A 2007 Dynamics of droughts in European Russia in the situation of global warming Problems of ecological monitoring and modeling of ecosystems 21 160-81
[6] Cherenkova E A and Zolotokrylin A N 2016 About comparability of some quantitative indices of drought Fundamental and Applied Climatology 2 79-94
[7] Meshcherskaya A V, Blazhevich V G, Golod M P and Belyankina I G 1986 Long-term fluctuations of aridity indices in the warm period of the year in the main agricultural zone of the USSR Proc. GGO 505 120-9
[8] Zadornova O I 2013 Comparative characteristics of the intensity of droughts in the European territory of Russia Proc. of the FGBU VNIIISKhM 38 346-57
[9] Sadokov V P, Kozeleeva V F and Kuznecova N N 2002 Emergence of atmospheric and soil drought with considering atmospheric and soil aridity Proc. of the Hydrometcentre of Russia 337 48–56
[10] Evaluation report on climate change and its consequences on the territory of the Russian Federation: Climate change 2008 vol 1 (Moscow: Roshydromet) p 277
[11] Obukhov A M, Kurgansky M V and Tatarskaya M S 1984 Dynamic conditions drought and other large-scale weather anomalies Meteorology and hydrology 10 5-13
[12] Hu Z-Z and Bohua Huang 2009 Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains J. Climate 22 6047-65
[13] Bardin M Y 2007 Anticyclonic quasistationary circulation and its influence on air temperature
anomalies and extremes in the western regions of Russia Meteorology and Hydrology 2 5-18
[14] Cherenkova E A and Kononova N K 2009 Connection of dangerous atmospheric droughts in European Russia in the 20th century with macrocirculation processes Izvestiya RAS (ser. geogr.) 1 73-82
[15] Litvinova O S and Gulyaeva N V 2017 Macro-Circulation Causes of Atmospheric Droughts in the South Urals and Western Siberia in the XX – Early XXI Centuries Electronic scientific-methodical journal of the Omsk State University 1(8) URL.http://e-journal.omgau.ru/index.php/2017/1/35-statya-2017-1/740-00270 ISSN 2413-4066
[16] Voropay N N, Maksyutova E V and Riazanova A A 2016 Hydrothermal conditions at the south of East Siberia during the ongoing warming IOP Conference Series: Earth and Environmental Science 48 doi:10.1088/1755-1315/48/1/012003
[17] Riazanova A A, Voropay N N, Okladnikov I G and Gordov E P 2016 Development of computational module of regional aridity for web-GIS “Climate” IOP Conference Series: Earth and Environmental Science 48 doi:10.1088/1755-1315/48/1/012032
[18] Ryazanova A A and Voropay N N 2017 Droughts and Excessive Moisture Events in Southern Siberia in the Late XXth - Early XXIst Centuries IOP Conference Series: Earth and Environmental Science 96(1)
[19] Ped D A 1975 About index of drought and excessive wetting Proc. of the Hydrometcentre of USSR 156 19-38
[20] Dee D P et al 2011 The ERA-Interim reanalysis: configuration and performance of the data assimilation system Quarterly Journal of the Royal Meteorological Society 137 553–97
[21] Bulygina O N, Veselov V M, Razuvaev V N and Aleksandrova T M Description of the array of urgent data on the main meteorological parameters at Russian stations Certificate of state registration of the database 2014620549 http://meteo.ru/data/163-basic-parameters#description of the mass-data
[22] Gordov E P, Okladnikov I G, Titov A G, Bogomolov V Yu, Shulgina T M and Genina E Yu 2012 Geo-information system for investigation of regional climatic changes and first results obtained Atmospheric and Oceanic Optics 25 137-43
[23] Gordov E P, Shiklomanov A, Okladnikov I G, Prusevich A and Titov A G 2016 Development of the Distributed Research Center for the analysis of the regional climatic and environmental changes IOP Conf. Series: Earth and Environmental Science 48 doi: 10.1088/1755-1315/48/1/012033