Problems of natural restoration of forest and green spaces of the resort Caucasian Mineral Waters region

O Slepykh1*, A Zubko2, V Slepykh3, M Zubko2

1 Federal state institution of science Botanical Institute V L Komarova of the Russian Sciences Academy, 2 Professor Popov Street, Saint Petersburg 197376, Russian Federation
2 Federal State Budgetary Educational Institution Novocherkassk engineering reclamation Institute A K Kortunov of the Donskoy state agricultural university, 111 Pushkinskaya Street, Novocherkassk 346428, Rostov region, Russian Federation
3 Federal State Budgetary Institution "Sochi National Park", 21 Moscovskaya Street Sochi, Krasnodar Region, 354000, Russian Federation

*Corresponding email: slepykh.olya@yandex.ru

Abstract. In the forests and green spaces of the Caucasian Mineral Waters resort region there are observed successions, leading to a decrease in their ecological potential. We defined the sanitary conditions and productivity of artificial and natural stands, collected data on species composition and abundance of trees in these stands and non-forested areas. We also determined the level of optimum illumination for the development of oak undergrowth.

1. Introduction

The Caucasian Mineral Waters region is located in the Central part of the North Caucasus. In 1992 the region was given the status of a specially protected ecological and resort region of the Russian Federation, in order to preserve and reproduce the natural resources of the Caucasian Mineral Waters region.

The total forested area of the Caucasian Mineral Waters region is 34.4 thousand hectares. Forests in the region have a diverse species composition. The main forest-forming species are birch (22.1%), oak (20.9%), ash (15.0%), hornbeam (13.7%), pine (12.1%), beech (4.8%), alder gray (2.7%), maple (1.7%) and others, whose share is less than 1% [3].

During the afforestation measures of mineral springs supply zones in the 60’s and 70’s of the last century, forests were established on the area of 9754.5 hectares. 5% of forest crops had unsatisfactory conditions. Stands of introduced species accounted for 24% of the total area of artificial forests - 2378.4 hectares [1].

The area of green spaces of the Caucasian Mineral Waters resort cities is not known due to the lack of their accounting.

There are city parks in the resort towns. One of them is given the status of a specially protected natural area of Federal importance – the Kislovodsk National Park, which covers an area of 966 hectares.

In the forests of the region there are intensive successional processes, which affect the overall environmental condition of the resort region by changing the balance of atmospheric carbon deposition by forests and environment specific changes due to the change of tree species. In natural
forests there is a change of oak species to hornbeam and beech to ash [1-7]. In the forests of artificial origin, the focus of successions has not been studied to date.

In order to identify the direction of the successional process in the most valuable region’s forest formations, the characteristics of the renewable process under the canopy of English oak natural stands and artificial stands of introduced species were studied.

2. Methods and Materials

Permanent sample plots (PP) were laid in accordance with the provisions of the Industry standard [8]. On PP we defined indicators of forest stands, their sanitary condition [9, 10].

The undergrowth is considered on the grounds of size 4 m2 in quantity and high groups [4] of 25 pcs in PP. Evaluation of the resumption was given according to the established standards [12]. Healthy undergrowth was considered reliable at a height of 0.5 m and above. At the same time, the illumination under the forest canopy space and in the open area was measured using a certified universal meter of meteorological parameters ATT-9508 with a light sensor ATA-1591 (Lutron Electronic Enterprise Co., Ltd., Taiwan.)

Objects of research were a natural coppice stands of Quercus robur L., forest crops of Quercus robur L., Quercus rubra L., Pinus pallasiana D. Don, Pinus kochiana Klotzsch ex K. Koch, Juniperus virginiana L., Fraxinus pennsylvanica Marshall, as well as areas partially or completely devoid of woody vegetation with successful development of the oak undergrowth. Sample plots were laid on the territory of the Kislovodsk National Park and Beshtaugorsky and Essentuksky forest districts.

3. Results and Discussion

All the studied artificial stands have high productivity –class I forest site, with the exception of Juniperus virginiana and Quercus robur (class II) (Table. 1).

Table 1. Sample plots inventory characteristics of natural and artificial forests of the Caucasian Mineral Waters region.

№	Forest stand	Tree species composition	Origin	Section	Age, years	Wood stock, m3/ha	Density	Forest site	Index of sanitary condition
1	Quercus rubra	10QR	Forest crops	K	48	685,3	1,7	I	1,8
2	Pinus pallasiana	9PP 1FE		-	48	524,1	1,5	I	2,4
3	Pinus kochiana	10 PK		-	48	350	1,3	I	1,4
4	Juniperus virginiana Fraxinus pennsylvanica	10 JV		37	153	0,8	II	2,9	
5									
6	Quercus robur	7Q 3FE	Natural stand	-	77	104,7	0,6	V	3,0
7	Quercus robur	8Q 2FE		-	77	92,2	0,6	IV	3,1
8	Quercus robur	8Q 1FE 1CB		-	77	109,5	0,6	V	3,7
9	Quercus robur	7Q 3FE		-	77	61,2	0,4	V	2,1
10	Quercus robur	10 Q	Forest crops	-	70	370,9	1,0	II	2,9
11	Betula pendula Roth	4Q 3BP 3FE		-	60	27,3	0,2	II	1,4
12	Quercus petraea	5QP 2UP 2OT 1PM	Natural stand	-	60	13,8	0,1	V	1,3
The sanitary condition of the stands varies from weakened to severely weakened, with the exception of *P. kochiana*, which has no signs of weakening. Weakened stands of *Q. rubra* and *P. pallasiana* have the same index of sanitary condition -1.8. Similar values have plantings of *F. pennsylvanica* index of the sanitary condition 1.9 and *P. pallasiana* index of the sanitary condition of 2.4. The planting of *J. virginiana* is severely weakened, the index of the sanitary condition corresponds to 2.9 points.

Under the canopy of all studied pure forest crops, maternal undergrowth, capable of providing natural reproduction of the growing species, is absent. The most common species reaching the values of reliable undergrowth are *F. excelsior* and *A. platanoides*. The number of reliable undergrowth of these native species provides a guaranteed restorative succession under the canopy of introduced crops.

The *Q. rubra* undergrowth in a small amount occurs in almost all the studied PP, except for the *F. pennsylvanica* stand. In the plantation *J. virginiana* *Q. rubra* occurs in a single instance. Considered an invasive species in the Caucasian Mineral Waters region, *Q. rubra* rarely reaches the size of a reliable undergrowth.

The studied coppice English oak (PP6-PP9) located on the territory of Beshtaugorsky forest district growing in forest-growing conditions of dry oak stand (C1), belong to the IV-V class of forest site. The sanitary condition of the stands varies from the category weakened to severely weakened with an index of 2.1 to 3.7 (Table 1).

Table 2. The composition and size of trees in stands of artificial origin of the Caucasian Mineral Waters region

PP	Forest stand	Tree species composition	Sidlings	Small	Medium	Large	Reliable
PP-1	*Quercus rubra*, section K	*Quercus rubra* L.	25200	35600	100	-	100
		Fraxinus excelsior L.	8600	41300	8500	1000	9500
		Crataegus microphylla C.Koch	-	1600	200	200	400
		Other species	100	900	200	300	500
PP-2	*Pinus pallasiana*	*Fraxinus excelsior* L.	39600	26800	9800	3000	12800
		Acer platanoides L.	1600	2300	1200	800	2000
		Crataegus microphylla C.Koch	100	400	900	500	1400
		Quercus robur L.	800	500	-	-	-
		Other species	100	500	200	-	200
PP-3	*Pinus Abies nordmanniana*		11000	11600	300	-	300
Species	PP-4	PP-5	PP-6	PP-7	PP-8		
-------------------------------	---------------	---------------	---------------	---------------	---------------		
(Steven) Spach							
Fraxinus excelsior L.	200	1000	2300	-	2100		
Cerasus avium (L.) Moench	200	1000	46800	5600	35800		
Juglans regia L.	-	1400	28500	-	2300		
Acer pseudoplatanus L.	100	1500	6000	1000	11500		
Tilia begoniiifolia Stev.	-	800	5800	-	10000		
Quercus rubra L.	1100	1400	10600	39900	39000		
Acer platanoides L.	-	1400	10900	34400	34400		
Other species	100	1100	10900	1000	10000		
Total	**4000**	**4600**	**5100**	**5000**	**4600**		

Species	PP-4	PP-5	PP-6	PP-7	PP-8
Juniperus virginiana					
Acer platanoides L.	200	1000	2300	-	2100
Robinia pseudoacacia L.	-	1400	28500	-	2300
Quercus rubra L.	100	1500	6000	1000	11500
Thuja occidentalis L.	-	800	5800	-	10000
Acer pseudoplatanus L.	-	1000	10600	-	10000
Fraxinus excelsior L.	-	1100	10900	39900	39000
Other species	100	1100	10900	1000	10000
Total	**4000**	**4600**	**5100**	**5000**	**4600**

Species	PP-4	PP-5	PP-6	PP-7	PP-8
Fraxinus pennsylvanica					
Acer platanoides L.	10000	46300	46000	300	5600
Fraxinus excelsior L.		300	1900	-	300
Crataegus monogyna Jacquin s.l.	100	1100	1000	400	1000
Cerasus avium (L.) Moench	100	400	39900	-	35800
Other species	500	700	1000	1000	1000
Total	**9700**	**5600**	**46000**	**5000**	**5000**

Species	PP-4	PP-5	PP-6	PP-7	PP-8
Quercus robur L.	2300	16800	2300	-	2100
Fraxinus excelsior L.	46800	28500	46000	-	35800
Ulmus glabra Huds.	1900	6000	1900	300	11500
Carpinus betulus L.	4100	5800	4100	300	10000
Acer compestre L.	1500	1500	1500	500	10000
Pyrus communis L.	-	500	500	200	1000
Other species	-	-	-	-	300
Total	**200**	**100**	**200**	**200**	**200**

Species	PP-4	PP-5	PP-6	PP-7	PP-8
Quercus robur L.					
Fraxinus excelsior L.	100	34400	1000	-	2100
Ulmus glabra Huds.	200	600	200	300	1000
Carpinus betulus L.	2200	10900	2200	1000	11500
Acer compestre	-	1000	1000	400	10000
Other species	-	-	-	-	300
Total	-	-	-	-	300

Species	PP-4	PP-5	PP-6	PP-7	PP-8
Quercus robur L.					
Fraxinus excelsior L.	2100	39000	2100	-	-
Ulmus glabra Huds.	35800	28000	35800	-	-
Carpinus betulus L.	11500	10600	11500	300	-
Acer compestre L.	100	1000	1000	500	1000
Other species	900	200	900	200	200
Total	**5000**	**5000**	**5000**	**5000**	**5000**
The results of reliable undergrowth accounting in these areas showed that the amount of oak does not exceed 500 pcs/ha and can not be considered significant in the process of reforestation. The exception is the amount of reliable undergrowth of oak (1500 PCs/ha) on PP 9, which is also lower than standard, but significantly higher than in other areas.

The study of the forest crops characteristics on PP10 in the territory of Beshtaugorsky forest district showed that, in general, for the English oak stand artificial origin at the age of 70 years retained its

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Ulmus glabra Huds.	Carpinus betulus L.	Acer compestre L.	Pyrus communis L.
9		-	4500	1300	200	1500	
10		16700	49900	2000	800	2800	
	Quercus robur	100	900	900	500	1400	
	Pyrus communis L.	100	900	300	-	-	

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Ulmus glabra Huds.	Carpinus betulus L.	Acer compestre L.	Other species
10		100	2800	-	100	100	
	Quercus robur	5600	15100	1000	-	1000	
	Fraxinus excelsior L.	100	1400	100	-	100	
	Ulmus partifolia Jacq.	-	200	-	1500	1500	
	Carpinus betulus L.	900	7300	1000	-	1000	
	Acer compestre L.	-	200	100	-	200	
	Other species	-	300	700	1000		

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Ulmus partifolia Jacq.	Pinus sylvestris L.	Fraxinus excelsior L.	Malus sylvestris (L.) Mill.	Other species
11		200	4100	2800	5800	8600		
	Betula pendula	100	300	200	1400	3000		
	Quercus robur L.	-	4600	1300	900	2200		
	Ulmus partifolia Jacq.	400	300	2200	2500			
	Pinus sylvestris L.	-	200	1000				
	Fraxinus excelsior L.	-	1300	900	2200			
	Malus sylvestris (L.) Mill.	-	1000					
	Other species	-	300	700	1000			

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Pinus sylvestris L.	Juglans regia L.	Other species
12		-	2700	900	2100	3000
	Quercus robur L.	-	300	900	200	1100
	Ulmus partifolia Jacq.	-	200	300	500	1000
	Pinus sylvestris L.	-	300	900	200	
	Juglans regia L.	-	200	100		
	Other species	-	200	200		

PP	Species	Quercus petraea(Matt.) Liebl.	Fraxinus excelsior L.	Prunus domestica L.	
13		-	900	1400	2300
	Quercus petraea(Matt.) Liebl.	-	-	900	1400
	Fraxinus excelsior L.	-	400	100	500
	Prunus domestica L.	-	100	300	-

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Malus sylvestris (L.) Mill.	Acer platanoides L.	
14		-	100	200	1200	1400
	No stand	-	300	500	1300	1800
	Malus sylvestris (L.) Mill.	-	900	900		
	Acer platanoides L.	-	100	100		

PP	Species	Quercus robur L.	Fraxinus excelsior L.	Other species	
15		1900	1200	300	100
	Quercus robur	500	4600	600	2800
	Carpinus betulus L.	-	600	500	1200
	Fraxinus excelsior L.	100	400	100	-

\(^a \) height from 0.1 to 0.5 m.
\(^b \) height from 0.6 to 1.5 m.
\(^c \) height from 0.6 and more 1.5 m.
\(^d \) height from 1.5 m.
position. Forest in this area grows in the condition of fresh oak stand (D2), belong to IV class of forest site and has an index of the sanitary condition of 2.9. Reliable undergrowth in the amount of 3900 pcs/ha has the species composition with a predominance of hornbeam like in natural coppice oak stands (PP6-PP9).

Successful development in the oak forest conditions native deciduous tree species are: hornbeam and ash, and also related – *C. betulus, F. excelsior*, and also accompanying – *U. glabra, A. campestre* and *P. communis*. Their total number on all experimental plots corresponds to the norms of successful natural forest restoration.

On oak restoration research in the Caucasian Mineral Waters region, open areas were discovered immediately adjacent to the forest stands, glades with successful *Q. robur* and *Q. petraea* regeneration. Sample plots were laid in the Kislovodsk National Park and Essentuksky forest district. The species and quantitative undergrowth characteristics take into account (Table 2).

In the studied open areas from 3 to 6 units of species composition is oak in the amount of 1400 to 8600 pieces/ha. Ash, elm and maple sycamore are up to 3 units of composition. In the open space, taking into account the small shading of the adjacent walls of the stand, the oak is not inferior in the success of the resumption of ash and other species.

4. Conclusion

Artificial stands of introduced species of the Caucasian Mineral Waters region possessing high productivity (I - II class of a forest site) and having a satisfactory sanitary condition, are not provided with own reliable undergrowth. Successful renewal of predominantly *F. excelsior* under their canopy is the initial stage of regenerative succession of the native breed.

Natural coppice oak forests of the region belong to the IV-V class of forest type and the category of weakened and severely weakened by sanitary conditions. Oak forest crops are more productive - II class of forest site. Under the canopy of natural and artificial oak stands maternal undergrowth is not formed. In the regeneration process in the oak forest conditions the dominant positions are occupied by *Carpinus betulus* and *Fraxinus excelsior*, and also related *Ulmus glabra, Acer campestre* and *Pyrus communis*.

More successful oak undergrowth develops on the glades at the soil illumination at the level of 10 % of full lightening, where it occupies positions equivalent to ash and elm.

In order to prevent the change of species in the artificial and natural forests of the Caucasian Mineral Waters resort region, timely measures of care for the undergrowth and forest stands should be carried out according to special programs developed for this purpose.

References

[1] Scientific report. To develop the scientific basis for the natural forests regeneration in the areas of intensive anthropogenic impact of the Central part of the North Caucasus. Section 3.3.5 NII gorlesecol 2002 p 54

[2] Slepykh V and Zubko A 2017 the Problem of oak forests restoration in the Caucasian Mineral Waters resort region. Materials of the IX int. forum. (Heihe) pp 324-327

[3] Slepykh V and Povolotskaya N 2017 Protective properties and recreational potential of oak forests of Caucasian Mineral Waters. Resort medicine [in Russian – Kurortnaya medicina] 4 pp 10-16

[4] Slepykh V and Povolotskaya N 2015 Succession and bioclimate oak forests in the Caucasian Mineral Waters resort region. Resort medicine [in Russian – Kurortnaya medicina] 3 pp 18-27

[5] Povolotskaya N, Slepykh V, Efimenko N, Zherlitsina L, Senik I, Kirilenko A, Kortunova Z, Urvacheva E 2014 Dynamics of recreational landscapes in the Caucasian Mineral Waters resorts. Resort medicine [in Russian – Kurortnaya medicina] 3 pp 9-20

[6] Slepykh V and Kovaleva L A Successions, biological diversity and methods of forest ecosystems stabilization of the North Caucasus 2014 Collection of articles of the Int. sc.
Conf. "Biotechnological techniques in biodiversity conservation and plant breeding" (Minsk) pp 221-224.

[7] Chalaya E 2014 Oak ecosystem succession of the Northern Caucasus Geophysical Research Abstracts: EGU General Assembly EGU2014-1326 Vol 16.

[8] OST 56-69-8, 1983. Forest management trial areas. Bookmark method.

[9] Andreeva E 2002 Methods of studying forest communities. p 240

[10] Sanitary rules in forests of the Russian Federation, 1998

[11] Pobedinsky A, 1966. Study of reforestation processes p 64

[12] Handbook of forest taxation standards for the North Caucasus, 1995