Related families-based attribute reduction of dynamic covering information systems with variations of object sets

Guangming Lang1,2,3,*

1 School of Mathematics and Statistics, Changsha University of Science and Technology
Changsha, Hunan 410114, P.R. China
2 Department of Computer Science and Technology, Tongji University
Shanghai 201804, P.R. China
3 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University
Shanghai 201804, P.R. China
4 College of Mathematics and Econometrics, Hunan University
Changsha, Hunan 410004, P.R. China

Abstract. In practice, there are many dynamic covering decision information systems, and knowledge reduction of dynamic covering decision information systems is a significant challenge of covering-based rough sets. In this paper, we first study mechanisms of constructing attribute reducts for consistent covering decision information systems when adding objects using related families. We also employ examples to illustrate how to construct attribute reducts of consistent covering decision information systems when adding objects. Then we investigate mechanisms of constructing attribute reducts for consistent covering decision information systems when deleting objects using related families. We also employ examples to illustrate how to construct attribute reducts of consistent covering decision information systems when deleting objects. Finally, the experimental results illustrates that the related family-based methods are effective to perform attribute reduction of dynamic covering decision information systems when object sets are varying with time.

Keywords: Attribute reduction; Covering information system; Dynamic information system; Related family; Rough sets

1 Introduction

Covering rough set theory, proposed by Zakowski [57] in 1983, has become an useful mathematical tool for dealing with imprecise information in practice, which has been applied to many fields such as feature selection and data mining without any prior knowledge. Especially, covering-based rough set theory [1, 5, 7-11, 13, 15-20, 23, 25, 26, 29, 30, 37, 38, 44, 45, 47-51, 53, 56, 59, 64] has been developed

*Corresponding author: langguangming1984@tongji.edu.cn
E-mail address: langguangming1984@tongji.edu.cn.
from two aspects as follows: define approximation operators and compute approximations of sets. For example, on one hand, Pomykala [30] and Tsang et al. [37] provided the second and third types of covering rough set models, respectively. Yang et al. [49] investigated a fuzzy covering-based rough set model and its generalization over fuzzy lattice. Zhu [62] provided an approach without using neighborhoods for studying covering rough sets based on neighborhoods. On the other hand, Hu et al. [7] proposed matrix-based approaches for dynamic updating approximations in multigranulation rough sets. Wang et al. [44] transformed the set approximation computation into products of characteristic matrices and the characteristic function of the set in covering approximation spaces. Zhang et al. [59] updated the relation matrix to compute lower and upper approximations with dynamic attribute variation in set-valued information systems.

Many researchers [2–4, 6, 12, 14, 17, 21, 22, 24, 27, 28, 31, 32, 34–36, 39–43, 46, 52, 58, 61] have focused on knowledge reduction of dynamic information systems. For example, Cai et al. [2] studied knowledge reduction of dynamic covering decision information systems caused by variations of attribute values. Hu et al. [6] studied incremental fuzzy probabilistic rough sets over two universes. Lang et al. [12] focused on knowledge reduction of dynamic covering information systems with variations of objects using characteristic matrices. Li et al. [17] discussed the principles of updating \(P \)-dominating sets and \(P \)-dominated sets when some attributes are added into or deleted from the attribute set \(P \). Liu et al. [24] focused on incremental updating approximations in probabilistic rough sets under the variation of attributes. Luo et al. [28] provided efficient approaches for updating probabilistic approximations with incremental objects. Qian et al. [31] focused on attribute reduction for sequential three-way decisions under dynamic granulation. Wang et al. [40] investigated efficient updating rough approximations with multi-dimensional variation of ordered data. Xu et al. [46] proposed a three-way decisions model with probabilistic rough sets for stream computing. Yang et al. [52] investigated fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving. Zhang et al. [61] provided a parallel matrix-based method for computing approximations in incomplete information systems.

In practical situations, there are many types of dynamic covering decision information systems, and knowledge reduction of dynamic covering decision information systems is a significant challenge of covering-based rough sets. The purpose of this paper is to investigate knowledge reduction of dynamic covering decision information systems when object sets are varying with time. First, we study attribute reduction of consistent covering decision information systems when adding objects. Concretely, we present concepts of consistent and inconsistent covering decision approximation spaces, dynamic covering decision approximation spaces and dynamic covering decision information systems when adding objects. We also construct the related family of dynamic covering decision information systems based on that of original consistent covering decision information systems and investigate how to construct attribute reducts of dynamic covering decision information systems when adding objects using related family. Second, we study attribute reduction of consistent covering decision information systems when deleting objects. Con-
cretely, we provide concepts of dynamic covering decision approximation spaces and dynamic covering decision information systems when deleting objects and construct the related family of dynamic covering decision information systems based on that of original consistent covering decision information systems. We also investigate how to construct attribute reducts of dynamic covering decision information systems with related family. Third, we perform the experiments on data sets downloaded from UCL, and the experimental results illustrates that the related family-based methods are effective for knowledge reduction of dynamic covering decision information systems with variations of object sets.

The rest of this paper is organized as follows: In Section 2, we briefly review the basic concepts of covering-based rough set theory. In Section 3, we study updated mechanisms for attribute reductions of consistent covering decision information systems when adding objects using related families. In Section 4, we investigate attribute reductions of consistent covering decision information systems when deleting objects using related families. Concluding remarks and further research are given in Section 5.

2 Preliminaries

In this section, we briefly review some concepts of covering-based rough sets.

Definition 2.1 [57] Let U be a finite universe of discourse, and \mathcal{C} a family of subsets of U. Then \mathcal{C} is called a covering of U if none of elements of \mathcal{C} is empty and $\bigcup\{C \mid C \in \mathcal{C}\} = U$. Furthermore, (U, \mathcal{C}) is referred to as a covering approximation space.

If U is a finite universe of discourse, and $\Delta = \{\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_m\}$, where \mathcal{C}_i $(1 \leq i \leq m)$ is a covering of U, then (U, Δ) is called a covering information system. Furthermore, (U, Δ, \mathcal{D}) is called a covering decision information system, where Δ and \mathcal{D} denote conditional attributes-based coverings and decision attributes-partition, respectively.

Definition 2.2 [64] Let (U, \mathcal{C}) be a covering approximation space, and $Md_{\mathcal{C}}(x) = \{K \in \mathcal{C} \mid x \in K \land (\forall S \in \mathcal{C} \land x \in S \land S \subseteq K \Rightarrow K = S)\}$ for $x \in U$. Then $Md_{\mathcal{C}}(x)$ is called the minimal description of x.

The minimal description of x is a set of the minimal elements containing x in \mathcal{C}. For a covering \mathcal{C} of U, K is a union reducible element of \mathcal{C}, $\mathcal{C} - \{K\}$ and \mathcal{C} have the same $Md(x)$ for $x \in U$. If K is a union reducible element of \mathcal{C} if and only if $K \notin Md(x)$ for any $x \in U$, and denote $\mathcal{M}_{\cup \Delta} = \{Md_{\cup \Delta}(x) \mid x \in U\}$.

Definition 2.3 [64] Let (U, \mathcal{C}) be a covering approximation space, and $Md_{\mathcal{C}}(x)$ the minimal description of $x \in U$. Then the third lower and upper approximations of $X \subseteq U$ with respect to \mathcal{C} are defined as follows:

$$CL_{\mathcal{C}}(X) = \cup\{K \in \mathcal{C} \mid K \subseteq X\} \text{ and } CH_{\mathcal{C}}(X) = \cup\{K \in Md_{\mathcal{C}}(x) \mid x \in X\}.$$
The third lower and upper approximation operators are typical representatives of non-dual approximation operators for covering approximation spaces. Furthermore, we have \(CL_d(X) = \bigcup \{ K \in C \mid \exists x, \ \text{s.t.} \ (K \in Md_d(x)) \land (K \subseteq X) \} \) with the minimal descriptions. Especially, we have \(CL_{\Delta}(X) = \bigcup \{ K \in Md_{\Delta}(x) \mid K \subseteq X \} \) and \(CH_{\Delta}(X) = \bigcup \{ K \in Md_{\Delta}(x) \mid x \in X \} \). For simplicity, we denote \(POS_{\Delta}(X) = CL_{\Delta}(X), BND_{\Delta}(X) = CH_{\Delta}(X) \backslash CL_{\Delta}(X) \), and \(NEG_{\Delta}(X) = U \backslash CH_{\Delta}(X) \).

Definition 2.4 Let \((U, \Delta, \mathcal{D})\) be a covering decision information system, where \(U = \{x_1, x_2, ..., x_n\} \), \(\Delta = \{C_1, C_2, ..., C_m\} \), and \(\mathcal{D} = \{D_1, D_2, ..., D_k\} \). Then

1. For \(\forall x \in U \), if there exist \(K \in \cup \Delta \) and \(D_j \in \mathcal{D} \) such that \(x \in K \subseteq D_j \), then \((U, \Delta, \mathcal{D})\) is called a consistent covering decision information system.

2. For some \(x \in U \), if there do not exist \(K \in \cup \Delta \) and \(D_j \in \mathcal{D} \) such that \(x \in K \subseteq D_j \), then \((U, \Delta, \mathcal{D})\) is called an inconsistent covering decision information system.

For simplicity, when \((U, \Delta, \mathcal{D})\) is a consistent covering decision information system, then we denote it as \(\mathcal{M}_{\Delta} \leq \mathcal{D} \); when \((U, \Delta, \mathcal{D})\) is an inconsistent covering decision information system, then we denote it as \(\mathcal{M}_{\Delta} \not\leq \mathcal{D} \).

Definition 2.5 Let \((U, \Delta, \mathcal{D})\) be a covering decision information system, where \(U = \{x_1, x_2, ..., x_n\} \), \(\Delta = \{C_1, C_2, ..., C_m\} \), and \(\mathcal{D} = \{D_1, D_2, ..., D_k\} \). Then

1. If \(POS_{\Delta}(\mathcal{D}) = POS_{\Delta \setminus \{C_i\}}(\mathcal{D})\) for \(C_i \in \Delta \), where \(POS_{\Delta}(\mathcal{D}) = \bigcup \{POS_{\Delta}(D_i) \mid D_i \in \mathcal{D} \} \), then \(C_i\) is called superfluous relative to \(\mathcal{D}\); Otherwise, \(C_i\) is called indispensable relative to \(\mathcal{D}\).

2. If every element of \(P \subseteq \Delta \) satisfying \(\mathcal{M}_{\Delta \setminus P} \leq \mathcal{D}\) is indispensable relative to \(\mathcal{D}\), then \(P\) is called a reduct of \(\Delta \) relative to \(\mathcal{D}\).

By Definition 2.5, we have the following results: if \((U, \Delta, \mathcal{D})\) is a consistent covering decision information system, then we have \(POS_{\Delta}(\mathcal{D}) = U\); if \((U, \Delta, \mathcal{D})\) is an inconsistent covering decision information system, then we have \(POS_{\Delta}(\mathcal{D}) \neq U\).

Definition 2.6 Let \((U, \Delta, \mathcal{D})\) be a covering decision information system, where \(U = \{x_1, x_2, ..., x_n\} \), \(\Delta = \{C_1, C_2, ..., C_m\} \), \(\mathcal{O} = \{C_k \in \Delta \mid \exists D_j \in \mathcal{D}, s.t. C_k \subseteq D_j \} \), and \(r(x) = \{C \in \Delta \mid \exists C_k \in \mathcal{O}, s.t. x \in C_k \in C\} \). Then \(R(U, \Delta, \mathcal{D}) = \{r(x) \mid x \in POS_{\Delta}(\mathcal{D})\}\) is called the related family of \((U, \Delta, \mathcal{D})\).

By Definition 2.6, we have the following results: if \((U, \Delta, \mathcal{D})\) is a consistent covering decision information system, then we have \(r(x) \neq \emptyset\) for any \(x \in U\); if \((U, \Delta, \mathcal{D})\) is an inconsistent covering decision information system, then there exists \(x \in U\) such that \(r(x) = \emptyset\).

Definition 2.7 Let \((U, \Delta, \mathcal{D})\) be a covering decision information system, where \(U = \{x_1, x_2, ..., x_n\} \), \(\Delta = \{C_1, C_2, ..., C_m\} \), and \(R(U, \Delta, \mathcal{D})\) the related family of \((U, \Delta, \mathcal{D})\). Then
(1) \(f(U, \Delta, \mathcal{D}) = \bigwedge \{ \bigvee r(x) \mid r(x) \in R(U, \Delta, \mathcal{D}) \} \) is the related function, where \(\bigvee r(x) \) is the disjunction of all elements in \(r(x) \);

(2) \(g(U, \Delta, \mathcal{D}) = \bigvee_{i=1}^{l} \{ \bigwedge \Delta_i \mid \Delta_i \subseteq \Delta \} \) is the reduced disjunctive form of \(f(U, \Delta, \mathcal{D}) \) with the multiplication and absorption laws.

By Definition 2.7, we have attribute reducts \(\mathcal{R}(U, \Delta, \mathcal{D}) = \{ \Delta_1, \Delta_2, \ldots, \Delta_l \} \) using the related function \(f(U, \Delta, \mathcal{D}) \). We also present a non-incremental algorithm of computing \(\mathcal{R}(U, \Delta, \mathcal{D}) \) with the related family \(R(U, \Delta, \mathcal{D}) \) as follows.

Algorithm 2.8 (Non-Incremental Algorithm of Computing \(\mathcal{R}(U, \Delta, \mathcal{D}) \) for Covering Decision Information System \((U, \Delta, \mathcal{D}) \))(NIACIS).

Step 1: Input \((U, \Delta, \mathcal{D})\);

Step 2: Construct \(POS_{\Delta}(\mathcal{D}) = \bigcup \{ POS_{\Delta}(D_i) \mid D_i \in \mathcal{D} \} \);

Step 3: Compute \(R(U, \Delta, \mathcal{D}) = \{ r(x) \mid x \in POS_{\Delta}(\mathcal{D}) \} \), where

\[
\begin{align*}
r(x) &= \{ C \in \Delta \mid \exists C \in \mathcal{A}, \text{ s.t. } x \in C \in \mathcal{C} \}; \\
\mathcal{A} &= \{ C \in \cup \Delta \mid \exists D_j \in \mathcal{D}, \text{ s.t. } C \subseteq D_j \};
\end{align*}
\]

Step 4: Construct \(f(U, \Delta, \mathcal{D}) = \bigwedge \{ \bigvee r(x) \mid r(x) \in R(U, \Delta, \mathcal{D}) \} \);

Step 5: Compute \(g(U, \Delta, \mathcal{D}) = \bigvee_{i=1}^{l} \{ \bigwedge \Delta_i \mid \Delta_i \subseteq \Delta \} \);

Step 6: Output \(\mathcal{R}(U, \Delta, \mathcal{D}) \).

The time complexity of Step 2 is \(|U| \ast (\sum_{C \in \Delta} |C|), |U| \ast (\sum_{C \in \Delta} |C|) \ast |\mathcal{D}|\); the time complexity of Step 3 is \(|U|^2, |U|^2 \ast (\sum_{C \in \Delta} |C|) \ast |\mathcal{D}|\); the time complexity of Steps 4 and 5 is \(|U|^2, |U| \ast (|\Delta| + 1)\). Therefore, the time complexity of the non-incremental algorithm is very high.

3 Related family-based attribute reduction of dynamic covering decision information systems when adding objects

In this section, we study related family-based attribute reduction of consistent covering decision information systems when adding objects.

Definition 3.1 Let \(U = \{x_1, x_2, \ldots, x_n\} \) be a finite universe of discourse, and \(\mathcal{C} = \{C_1, C_2, \ldots, C_m\} \) a covering of \(U, \mathcal{D} = \{D_1, D_2, \ldots, D_k\} \). Then \((U, \mathcal{C}, \mathcal{D})\) is called a covering decision approximation space.

By Definition 3.1, we see that \((U, \mathcal{C}, \mathcal{D})\) is a covering decision information system with a conditional attribute-based covering and decision attribute-based partition. Furthermore, we can refer \((U, \mathcal{C}, \mathcal{D})\) to as a covering decision information system.
Definition 3.2 Let \((U, \mathcal{C}, \mathcal{D})\) be a covering decision approximation space, where \(U = \{x_1, x_2, \ldots, x_n\}\), \(\mathcal{C} = \{C_1, C_2, \ldots, C_m\}\), and \(\mathcal{D} = \{D_1, D_2, \ldots, D_k\}\). Then

(1) for \(\forall x \in U\), if there exist \(K \in \mathcal{C}\) and \(D_j \in \mathcal{D}\) such that \(x \in K \subseteq D_j\), then \((U, \mathcal{C}, \mathcal{D})\) is called a consistent covering decision approximation space.

(2) if there exists \(x \in U\) but \(\exists K \in \mathcal{C}\) and \(D_j \in \mathcal{D}\) such that \(x \in K \subseteq D_j\), then \((U, \mathcal{C}, \mathcal{D})\) is called an inconsistent covering decision approximation space.

For simplicity, when \((U, \mathcal{C}, \mathcal{D})\) is a consistent covering decision approximation space, we denote it as \(\mathcal{M} \subseteq U/D\); when \((U, \mathcal{C}, \mathcal{D})\) is an inconsistent covering decision approximation space, we denote it as \(\mathcal{M} \not\subseteq U/D\). Especially, we have \(\text{POS}_\mathcal{C}(\mathcal{D}) = U\) and \(\text{POS}_\mathcal{C}(\mathcal{D}) \neq U\) when \((U, \mathcal{C}, \mathcal{D})\) is consistent and inconsistent, respectively.

Theorem 3.3 Let \((U, \mathcal{C}, \mathcal{D})\) be a covering decision approximation space, where \(U = \{x_1, x_2, \ldots, x_n\}\), \(\mathcal{C} = \{C_1, C_2, \ldots, C_m\}\), and \(\mathcal{D} = \{D_1, D_2, \ldots, D_k\}\).

(1) If \((U, \mathcal{C}, \mathcal{D})\) is a consistent covering decision approximation space, then we have \(r(x) = \{\mathcal{C}\}\) for \(x \in U\).

(2) If \((U, \mathcal{C}, \mathcal{D})\) is an inconsistent covering decision approximation space, then we have

\[
r(x) = \begin{cases} \{\mathcal{C}\}, & \text{if } x \in \text{POS}_\mathcal{C}(\mathcal{D}); \\ 0, & \text{otherwise.} \end{cases}
\]

Proof: The proof is straightforward by Definitions 2.6 and 3.2.

Definition 3.4 Let \((U, \mathcal{C}, \mathcal{D})\) and \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) be covering decision approximation spaces, where \(U = \{x_1, x_2, \ldots, x_n\}\), \(U^+ = \{x_1, x_2, \ldots, x_n, x_{n+1}\}\), \(\mathcal{C} = \{C_1, C_2, \ldots, C_m\}\), \(\mathcal{C}^+ = \{C_1^+, C_2^+, \ldots, C_m^+\}\), \(\mathcal{D} = \{D_1, D_2, \ldots, D_k\}\), and \(\mathcal{D}^+ = \{D_1^+, D_2^+, \ldots, D_k^+\}\), where \(C_i^+ = C_i\) or \(C_i^+ = C_i \cup \{x_{n+1}\}\) \((1 \leq i \leq m)\), and \(D_i^+ = D_i\) or \(D_i^+ = D_i \cup \{x_{n+1}\}\) \((1 \leq i \leq k)\). Then \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) is called a dynamic covering decision approximation space of \((U, \mathcal{C}, \mathcal{D})\).

By Definition 3.4, a dynamic covering decision approximation space is a dynamic covering approximation space with a decision attributes-based partition. Especially, a dynamic covering decision approximation space is a dynamic covering decision information system.

Example 3.5 Let \((U, \mathcal{C}, \mathcal{D})\) and \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) be covering decision approximation spaces, where \(U = \{x_1, x_2, \ldots, x_8\}\), \(U^+ = \{x_1, x_2, \ldots, x_8, x_9\}\), \(\mathcal{C} = \{\{x_1, x_2\}, \{x_2, x_3, x_4\}, \{x_3\}, \{x_4\}, \{x_5, x_6\}, \{x_6, x_7, x_8\}\}\), \(\mathcal{C}^+ = \{\{x_1, x_2\}, \{x_2, x_3, x_4\}, \{x_3\}, \{x_4\}, \{x_5, x_6\}, \{x_6, x_7, x_8, x_9\}\}\), \(\mathcal{D} = \{\{x_1, x_2, x_3\}, \{x_4, x_5, x_6\}, \{x_7, x_8\}\}\), and \(\mathcal{D}^+ = \{\{x_1, x_2, x_3\}, \{x_4, x_5, x_6\}, \{x_7, x_8, x_9\}\}\). By Definition 3.4, we see that \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) is a dynamic covering decision approximation space of \((U, \mathcal{C}, \mathcal{D})\).
Theorem 3.6 Let \((U^+, \mathcal{C}^+, \mathcal{D}^+\)) be a dynamic covering decision approximation space of \((U, \mathcal{C}, \mathcal{D})\). If \(r(x) = \emptyset\) for \(x \in U\), then we have \(r^+(x) = \emptyset\).

Proof: For \(x \in U\), by Definition 2.6, there does not exist \(C \in \mathcal{C}\) and \(D_i \in \mathcal{D}\) such that \(x \in C \subseteq D_i\) when \(r(x) = \emptyset\). Since \(x \in C\) and \(C \not\subseteq D_i\), we have \(x \in C^+\) and \(C^+ \not\subseteq D_i^+\) in \(\mathcal{D}^+\), where \(C^+ = C \cup \{x_{n+1}\}\) or \(C^+ = C, D_i^+ = D_i \cup \{x_{n+1}\}\) or \(D_i^+ = D_i\). Therefore, we have \(r^+(x) = \emptyset\). □

Theorem 3.6 illustrates the relationship between \(r(x) = \emptyset\) and \(r^+(x) = \emptyset\). Furthermore, if \(r(x) = \{\mathcal{C}\}\) for \(x \in U\), then \(r^+(x) = \{\mathcal{C}^+\}\) or \(r^+(x) = \emptyset\), which reduces the time complexity of computing attribute reducts of \((U^+, \mathcal{C}^+, \mathcal{D}^+)\).

Theorem 3.7 Let \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) be a dynamic covering decision approximation space of \((U, \mathcal{C}, \mathcal{D})\). If \((U, \mathcal{C}, \mathcal{D})\) is an inconsistent covering decision approximation space, then \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) is an inconsistent covering decision approximation space.

Proof: The proof is straightforward by Definition 3.4 and Theorem 3.6. □

By Theorem 3.7, we have \(POS_{\mathcal{C}^+}((\mathcal{D}^+)\neq U^+\) when \(POS_{\mathcal{C}}(\mathcal{D}) \neq U\). But \((U^+, \mathcal{C}^+, \mathcal{D}^+)\) is inconsistent or consistent when \((U, \mathcal{C}, \mathcal{D})\) is a consistent covering decision approximation space. So we can not have \(POS_{\mathcal{C}^+}((\mathcal{D}^+) = U^+\) when \(POS_{\mathcal{C}}(\mathcal{D}) = U\).

Definition 3.8 Let \((U, \Delta, \mathcal{D})\) and \((U^+, \Delta^+, \mathcal{D}^+)\) be covering decision information systems, where \(U = \{x_1, x_2, ..., x_n\}\), \(U^+ = \{x_1, x_2, ..., x_n, x_{n+1}\}\), \(\Delta = \{\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_m\}\), \(\Delta^+ = \{\mathcal{C}^+_1, \mathcal{C}^+_2, ..., \mathcal{C}^+_m\}\), \(\mathcal{D} = \{D_1, D_2, ..., D_k\}\), and \(\mathcal{D}^+ = \{D^+_1, D^+_2, ..., D^+_k\}\). Then \((U^+, \Delta^+, \mathcal{D}^+)\) is called a dynamic covering decision information system of \((U, \Delta, \mathcal{D})\).

Remark: We take \((U, \Delta, \mathcal{D})\) as a consistent covering decision information system, and \(|\mathcal{C}^+_i| = |\mathcal{C}_i|\) for \(1 \leq i \leq m\). Concretely, we have \(\mathcal{C}_i = \{C_{i1}, C_{i2}, ..., C_{ik}\}\) and \(\mathcal{C}^+_i = \{C^+_{i1}, C^+_{i2}, ..., C^+_{ik}\}\), where \(C^+_{ij} = C_{ij}\) or \(C^+_{ij} = C_{ij} \cup \{x_{n+1}\}\). We also notice that \((U^+, \Delta^+, \mathcal{D}^+)\) is consistent or inconsistent when adding \(x_{n+1}\) into \((U, \Delta, \mathcal{D})\).

Example 3.9 Let \((U, \Delta, \mathcal{D})\) and \((U^+, \Delta^+, \mathcal{D}^+)\) be covering decision information systems, where \(U = \{x_1, x_2, ..., x_8\}\), \(U^+ = \{x_1, x_2, ..., x_8, x_{9}\}\), \(\Delta = \{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_4, \mathcal{C}_5\}\), \(\Delta^+ = \{\mathcal{C}^+_1, \mathcal{C}^+_2, \mathcal{C}^+_3, \mathcal{C}^+_4, \mathcal{C}^+_5\}\), \(\mathcal{D} = \{D_1, D_2, ..., D_k\}\), and \(\mathcal{D}^+ = \{D^+_1, D^+_2, ..., D^+_k\}\).
Therefore, we have

Reduces the time complexity of computing related family U

Especially, By Definition 3.8, we see that

$(x, \{r, 3\}) = 2 + C + D \in \times_{k \in \Delta} \Delta \in (\cup D_j + \exists D_j + \forall D_j + \forall D_j + \exists D_j + \forall D_j + \forall D_j + \exists D_j + \forall D_j) of (\cup D_j + \exists D_j + \forall D_j + \forall D_j + \exists D_j + \forall D_j + \forall D_j + \exists D_j + \forall D_j)$

By Definition 3.8, we see that (U^+, Δ^+, D^+) is a dynamic covering decision information system of (U, Δ, D). Especially, (U, Δ, D) and (U^+, Δ^+, D^+) are consistent covering decision information systems.

Suppose (U^+, Δ^+, D^+) and (U, Δ, D) are covering decision information systems, where $U = \{x_1, x_2, ..., x_n\}$, $U^+ = \{x_1, x_2, ..., x_n, x_{n+1}\}$, $\Delta = \{\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_m\}$, $\Delta^+ = \{\mathcal{C}_1^+, \mathcal{C}_2^+, ..., \mathcal{C}_m^+\}$, $D = \{D_1, D_2, ..., D_k\}$, $D^+ = \{D_1^+, D_2^+, ..., D_k^+\}$, $A^+ = \{C_k \in \Delta \mid \exists D_j \in D, s.t. C_k \subseteq D_j\}$, $\mathcal{A}^+_\Delta = \{C_k^+ \in \cup \Delta \mid \exists D_j^+ \in D^+, s.t. C_k \subseteq D_j^+\}$, $r(x) = \{C \in \Delta \mid \exists C_k \in \mathcal{A}^+_\Delta, s.t. x \in C_k \in C\}$, and $r^+(x) = \{C \in \Delta^+ \mid \exists C_k^+ \in \mathcal{A}^+_\Delta, s.t. x \in C_k^+ \in C^+\}$.

Theorem 3.10 Let (U^+, Δ^+, D^+) be a dynamic covering decision information system of (U, Δ, D). Then

$$r^+(x) = \begin{cases} \{C^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ s.t. } x \in C^+ \subseteq D_i^+, \text{ } C \in r(x)\}, & x \in U; \\ \{C^+ \in \Delta^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ s.t. } x \in C^+ \subseteq D_i^+\}, & x = x_{n+1}. \end{cases}$$

Proof: For $x \in U$, by Theorem 3.6 and 3.7, if $C \notin r(x)$, then we have $C^+ \notin r^+(x)$. Thus, we obtain

$$r^+(x) = \{C^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ such that } x \in C^+ \subseteq D_i^+, \text{ } C \in r(x)\}.$$

Furthermore, for x_{n+1}, by Definition 2.6, we have $r^+(x_{n+1}) = \{C \in \Delta^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ such that } x_{n+1} \in C^+ \subseteq D_i^+\}$. Therefore, we have

$$r^+(x) = \begin{cases} \{C^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ s.t. } x \in C^+ \subseteq D_i^+, \text{ } C \in r(x)\}, & x \in U; \\ \{C^+ \in \Delta^+ \mid \exists C \in C^+ \text{ and } D_i^+ \in D^+ \text{ s.t. } x \in C^+ \subseteq D_i^+\}, & x = x_{n+1}. \end{cases}$$

Theorem 3.10 illustrates the relationship between $r(x)$ of (U, Δ, D) and $r^+(x)$ of (U^+, Δ^+, D^+), which reduces the time complexity of computing related family $R(U^+, \Delta^+, D^+)$. We provide an incremental algorithm of computing $R(U^+, \Delta^+, D^+)$ for dynamic covering decision information system (U^+, Δ^+, D^+) as follows.
Algorithm 3.11 (Incremental Algorithm of Computing $\tilde{R}(U^+, \Delta^+, \mathcal{D}^+)$ for Consistent Covering Decision Information System $(U^+, \Delta^+, \mathcal{D}^+)(IACAIS)$)

Step 1: Input $(U^+, \Delta^+, \mathcal{D}^+)$;
Step 2: Construct $POS_{\cup\Delta^+}(\mathcal{D}^+)$;
Step 3: Compute $R(U^+, \Delta^+, \mathcal{D}^+) = \{r^+(x) | x \in POS_{\cup\Delta^+}(\mathcal{D}^+)\}$, where
\[r^+(x) = \begin{cases} \{C^+ | \exists C^+ \in C^+ \text{ and } D^+_i \in \mathcal{D}^+ \text{ s.t. } x \in C^+ \subseteq D^+_i, C \in r(x)\}, & x \in U; \\ \{C^+ \in \Delta^+ | \exists C^+ \in C^+ \text{ and } D^+_i \in \mathcal{D}^+ \text{ s.t. } x \in C^+ \subseteq D^+_i\}, & x = x_{n+1}. \end{cases} \]
Step 4: Construct $f(U^+, \Delta^+, \mathcal{D}^+) = \bigwedge \{r^+(x) | r^+(x) \in R(U^+, \Delta^+, \mathcal{D}^+)\}$;
Step 5: Compute $g(U^+, \Delta^+, \mathcal{D}^+) = \bigvee_{i=1}^{\Delta^+} \{\Delta^+_i | \Delta^+_i \subseteq \Delta^+\}$;
Step 6: Output $\tilde{R}(U^+, \Delta^+, \mathcal{D}^+)$.

The time complexity of Step 3 is $|U| * |\mathcal{C}_{m+1}|, |U| * |\mathcal{C}_{m+1}| * |\mathcal{D}|$; the time complexity of Steps 4 and 5 is $|U| * (|UIACAIS|, |U| * (|\mathcal{D}| + 1))$. Therefore, the time complexity of the incremental algorithm is lower than that of the non-incremental algorithm.

Example 3.12 (Continuation from Example 3.9) By Definition 2.6, we first have $r(x_1) = \{C_1, C_3, C_5\}, r(x_2) = \{C_1, C_2, C_3, C_4, C_5\}, r(x_3) = \{C_1, C_2, C_3, C_4, C_5\}, r(x_4) = \{C_1, C_2, C_3, C_4, C_5\}, r(x_5) = \{C_1, C_2, C_3, C_4, C_5\}, r(x_6) = \{C_1, C_2, C_4, C_5\}, r(x_7) = \{C_2, C_4\},$ and $r(x_8) = \{C_2, C_4\}$. Thus, we get $R(U, \Delta, \mathcal{D}) = \{|C_1, C_3, C_5\}, \{C_1, C_2, C_3, C_4, C_5\}, \{C_1, C_2, C_3, C_5\}, \{C_1, C_2, C_4, C_5\}, \{C_2, C_4\}\}$. After that, by Definition 2.7, we obtain
\[
\begin{align*}
f(U, \Delta, \mathcal{D}) &= \bigwedge \{r(x) | r(x) \in R(U, \Delta, \mathcal{D})\} \\
&= (C_1 \lor C_3 \lor C_5) \land (C_1 \lor C_2 \lor C_3 \lor C_4 \lor C_5) \land (C_1 \lor C_2 \lor C_4 \lor C_5) \land (C_2 \lor C_4) \\
&= (C_1 \lor C_3 \lor C_5) \land (C_2 \lor C_4) \\
&= (C_1 \land C_2) \lor (C_1 \land C_4) \lor (C_2 \land C_3) \lor (C_3 \land C_4) \lor (C_2 \land C_5) \lor (C_4 \land C_5).
\end{align*}
\]
So we have $\tilde{R}(U, \Delta, \mathcal{D}) = \{|C_1, C_2\}, \{C_1, C_4\}, \{C_2, C_3\}, \{C_3, C_4\}, \{C_2, C_5\}, \{C_4, C_5\}\}$. Secondly, by Definition 2.6, we have $r^+(x_1) = \{C_1^+, C_3^+, C_5^+\}, r^+(x_2) = \{C_1^+, C_2^+, C_3^+, C_4^+, C_5^+\}, r^+(x_3) = \{C_1^+, C_2^+, C_3^+, C_4^+, C_5^+\}, r^+(x_4) = \{C_1^+, C_2^+, C_4^+, C_5^+\}, r^+(x_5) = \{C_1^+, C_2^+, C_3^+, C_5^+\}, r^+(x_6) = \{C_1^+, C_2^+, C_3^+, C_5^+\}, r^+(x_7) = \{C_2^+, C_4^+\}, and r^+(x_8) = \{C_2^+, C_4^+\}$, and $r^+(x_9) = \{C_2^+, C_4^+\}$. By Definition 2.6, we get $R(U^+, \Delta^+, \mathcal{D}^+) = \{|C_1^+, C_3^+, C_5^+\}, \{C_1^+, C_2^+, C_3^+, C_4^+, C_5^+\}, \{C_1^+, C_2^+, C_4^+, C_5^+\}, \{C_2^+, C_4^+\}\}$. By Definition 2.7, we obtain
\[
\begin{align*}
f(U^+, \Delta^+, \mathcal{D}^+) &= \bigwedge \{r^+(x) | r^+(x) \in R(U^+, \Delta^+, \mathcal{D}^+)\} \\
&= (C_1^+ \lor C_3^+ \lor C_5^+) \land (C_1^+ \lor C_2^+ \lor C_3^+ \lor C_4^+ \lor C_5^+) \land (C_1^+ \lor C_2^+ \lor C_4^+ \lor C_5^+) \land (C_2^+ \lor C_4^+) \\
&= (C_1^+ \lor C_3^+ \lor C_5^+) \land (C_1^+ \lor C_2^+ \lor C_4^+ \lor C_5^+) \land (C_2^+ \lor C_4^+) \\
&= (C_1^+ \lor C_2^+) \lor (C_1^+ \lor C_4^+) \lor (C_2^+ \lor C_3^+) \lor (C_3^+ \lor C_4^+) \lor (C_2^+ \lor C_5^+) \lor (C_4^+ \lor C_5^+) \\
&= (C_1^+ \lor C_2^+) \land (C_1^+ \lor C_4^+) \land (C_2^+ \lor C_3^+) \land (C_3^+ \lor C_4^+) \land (C_2^+ \lor C_5^+) \land (C_4^+ \lor C_5^+).
\end{align*}
\]
Therefore, we have $R(U^+, \Delta^+, \mathcal{D}) = \{ [C_1^+, C_2^+], [C_1^+, C_4^+], [C_2^+, C_3^+], [C_3^+, C_4^+], [C_4^+, C_5^+] \}$.

Example 3.12 illustrates how to compute attribute reducts of $(U^+, \Delta^+, \mathcal{D})$ by Algorithm 2.8; Example 3.6 also illustrates how to compute attribute reducts of $(U^+, \Delta^+, \mathcal{D})$ by Algorithm 3.5. We see that the incremental algorithm is more effective than the non-incremental algorithm for attribute reduction of dynamic covering decision information systems.

4 Related family-based attribute reduction of dynamic covering decision information systems when deleting objects

In practical situations, there are a lot of dynamic covering decision information systems caused by deleting objects, and we study attribute reduction of consistent covering decision information systems when deleting objects in this section.

Definition 4.1 Let $(U, \mathcal{C}, \mathcal{D})$ and $(U^-, \mathcal{C}^-, \mathcal{D}^-)$ be covering decision approximation spaces, where $U = \{x_1, x_2, ..., x_n\}$, $U^- = \{x_1, x_2, ..., x_{n-1}\}$, $\mathcal{C} = \{C_1, C_2, ..., C_m\}$, and $\mathcal{C}^- = \{C_1^-, C_2^-, ..., C_m^-\}$, $\mathcal{D} = \{D_1, D_2, ..., D_k\}$, and $\mathcal{D}^- = \{D_1^- = D_1 \setminus \{x_n\} (1 \leq i \leq k)$. Then $(U^-, \mathcal{C}^-, \mathcal{D}^-)$ is called a dynamic covering decision approximation space of $(U, \mathcal{C}, \mathcal{D})$.

By Definition 4.1, we see that a dynamic covering decision approximation space is a dynamic covering approximation space with a decision attribute-based partition. Especially, we can refer a dynamic covering decision approximation space to as a covering decision information system.

Example 4.2 Let $(U, \mathcal{C}, \mathcal{D})$ and $(U^-, \mathcal{C}^-, \mathcal{D}^-)$ be covering decision approximation spaces, where $U = \{x_1, x_2, ..., x_8\}$, $U^- = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, $\mathcal{C} = \{C_1, C_2, C_3, x_4, x_5, x_6, x_7\}$, $\mathcal{C}^- = \{C_1, C_2, C_3, x_4, x_5, x_6, x_7\}$, $\mathcal{D} = \{D_1, D_2, D_3\}$, and $\mathcal{D}^- = \{D_1 \setminus \{x_n\} (1 \leq i \leq k)$. By Definition 4.1, we see that $(U^-, \mathcal{C}^-, \mathcal{D}^-)$ is a dynamic covering decision approximation space of $(U, \mathcal{C}, \mathcal{D})$.

Theorem 4.3 Let $(U^-, \mathcal{C}^-, \mathcal{D}^-)$ be a dynamic covering decision approximation space of $(U, \mathcal{C}, \mathcal{D})$. If $r(x) = \{\mathcal{C}\}$ for $x \in U^-$, then we have $r^-(x) = \{\mathcal{C}^-\}$.

Proof: For $x \in U^-$, by Definition 2.6, there exists $C \in \mathcal{C}$ and $D_i \in \mathcal{D}$ such that $x \in C \subseteq D_i$ when $r(x) = \{\mathcal{C}\}$. Since $x \in C \subseteq D_i \in \mathcal{D}$, we have $x \in C^\prime \subseteq D_i^\prime \in \mathcal{D}^\prime$, where $C^\prime = C \setminus \{x_n\}$ or $C^\prime = C$, $D_i^\prime = D_i \setminus \{x_n\}$ or $D_i^\prime = D_i$. Therefore, we have $r^-(x) = \{\mathcal{C}^\prime\}$.

Theorem 3.6 illustrates the relationship between $r(x) = \{\mathcal{C}\}$ and $r^-(x) = \{\mathcal{C}^-\}$. Furthermore, if $r(x) = \emptyset$ for $x \in U$, then $r^-(x) = \{\mathcal{C}^-\}$ or $r^-(x) = \emptyset$, which reduces the time complexity of computing attribute reducts of $(U^-, \mathcal{C}^-, \mathcal{D}^-)$.
Theorem 4.4 Let \((U^-, C^-, D^-)\) be a dynamic covering decision approximation space of \((U, C, D)\). If \((U, C, D)\) is a consistent covering decision approximation space, then \((U^-, C^-, D^-)\) is a consistent covering decision approximation space.

Proof: The proof is straightforward by Definition 4.1 and Theorem 4.3. □

By Theorem 4.4, we have \(\text{POS}_{\bar{\Phi}}(D^-) = U^-\) when \(\text{POS}_{\bar{\Phi}}(D) = U\). But \((U^-, C^-, D^-)\) is inconsistent or consistent when \((U, C, D)\) is an inconsistent covering decision approximation space. So we can not have \(\text{POS}_{\bar{\Phi}}(D^-) \neq U^-\) when \(\text{POS}_{\bar{\Phi}}(D) \neq U\).

Definition 4.5 Let \((U, \Delta, D)\) and \((U^-, \Delta^-, D^-)\) be covering decision information systems, where \(U = \{x_1, x_2, \ldots, x_n\}\), \(U^- = \{x_1, x_2, \ldots, x_{n-1}\}\), \(\Delta = \{C_1, C_2, \ldots, C_m\}\), \(\Delta^- = \{C^-_1, C^-_2, \ldots, C^-_m\}\), \(D = \{D_1, D_2, \ldots, D_k\}\), and \(D^- = \{D^-_1, D^-_2, \ldots, D^-_k\}\). Then \((U^-, \Delta^-, D^-)\) is called a dynamic covering decision information system of \((U, \Delta, D)\).

Remark: We take \((U, \Delta, D)\) as a consistent covering decision information system, and \(|\mathcal{C}^-_i| = |\mathcal{C}_i|\) for \(1 \leq i \leq m\). Concretely, we have \(\mathcal{C}_i = \{C_{i,1}, C_{i,2}, \ldots, C_{i,k_i}\}\) and \(\mathcal{C}^-_i = \{C^-_{i,1}, C^-_{i,2}, \ldots, C^-_{i,k_i}\}\), where \(C^-_{ij} = C_{ij}\) or \(C^-_{ij} = C_{ij}\) \(\Delta^-\) is consistent when deleting \(x_n\) from \((U, \Delta, D)\).

Example 4.6 (Continuation from Example 3.9) Let \((U, \Delta, D)\) and \((U^-, \Delta^-, D^-)\) be covering decision information systems, where \(U = \{x_1, x_2, \ldots, x_8\}\), \(U^- = \{x_1, x_2, \ldots, x_7\}\), \(\Delta = \{C_1, C_2, C_3, C_4, C_5\}\), \(\Delta^- = \{C^-_1, C^-_2, C^-_3, C^-_4, C^-_5\}\), \(D = \{\{x_1, x_2, x_3\}, \{x_4, x_5, x_6\}, \{x_7, x_8\}\}\), and \(D^- = \{\{x_1, x_2, x_3\}, \{x_4, x_5, x_6\}, \{x_7\}\}\), where

\[
\begin{align*}
\mathcal{C}^-_1 &= \{\{x_1, x_2\}, \{x_2, x_3, x_4\}, \{x_3\}, \{x_4\}, \{x_5, x_6\}, \{x_6, x_7\}\}; \\
\mathcal{C}^-_2 &= \{\{x_1, x_3, x_4\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_5, x_6\}, \{x_6\}, \{x_7\}\}; \\
\mathcal{C}^-_3 &= \{\{x_1\}, \{x_1, x_2, x_3\}, \{x_2, x_3\}, \{x_3, x_4, x_5, x_6\}, \{x_5, x_7\}\}; \\
\mathcal{C}^-_4 &= \{\{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_4, x_5, x_6\}, \{x_6\}, \{x_7\}\}; \\
\mathcal{C}^-_5 &= \{\{x_1, x_2, x_3\}, \{x_4\}, \{x_5, x_6\}, \{x_5, x_6\}, \{x_4, x_7\}\}.
\end{align*}
\]

By Definition 4.5, we see that \((U^-, \Delta^-, D^-)\) is a dynamic covering decision information system of \((U, \Delta, D)\).

Especially, \((U, \Delta, D)\) and \((U^-, \Delta^-, D^-)\) are consistent covering decision information systems.

Suppose \((U^-, \Delta^-, D^-)\) and \((U, \Delta, D)\) are covering decision information systems, where \(U = \{x_1, x_2, \ldots, x_n\}\), \(U^- = \{x_1, x_2, \ldots, x_{n-1}\}\), \(\Delta = \{C_1, C_2, \ldots, C_m\}\), and \(\Delta^- = \{C^-_1, C^-_2, \ldots, C^-_m\}\), \(D = \{D_1, D_2, \ldots, D_k\}\), \(D^- = \{D^-_1, D^-_2, \ldots, D^-_k\}\), \(\mathcal{A} = \{C_k \in \cup \Delta \mid \exists D_j \in D, \text{ s.t. } C_k \subseteq D_j\}\), \(\mathcal{A}^- = \{C^-_k \in \cup \Delta^- \mid \exists D^-_j \in D^- \text{ s.t. } C^-_k \subseteq D^-_j\}\), \(r(x) = \{C \in \Delta \mid \exists C_k \in \mathcal{A}, \text{ s.t. } x \in C_k \in \mathcal{C}\}\), and \(r^- (x) = \{C^- \in \Delta^- \mid \exists C^-_k \in \mathcal{C}^- \text{ s.t. } x \in C^-_k \in \mathcal{C}^-\}\).
Theorem 4.7 Let \((U^-, \Delta^-, \mathcal{D}^-)\) be a covering decision covering information system of \((U, \Delta, \mathcal{D})\). Then
\[
\hat{r}^{-}(x) = \{C^- | C \in r(x)\} \cup \{C^- | \exists C^- \in C^- \text{ and } D_i^- \in \mathcal{D}^- \text{ s.t. } x \in C^- \subseteq D_i^-, C \notin r(x)\}.
\]

Proof: For \(x \in U^\ast\), by Theorem 4.3 and 4.4, if \(C \in r(x)\), we have \(\hat{C}^- \in \hat{r}^{-}(x)\). So we only need to identify \(\hat{C}^\ast\) belongs to \(\hat{r}^{-}(x)\) or not, where \(\hat{C}^\ast \notin r(x)\). Therefore, we have \(\hat{r}^{-}(x) = \{C^- | C \in r(x)\} \cup \{C^- | \exists C^- \in C^- \text{ and } D_i^- \in \mathcal{D}^- \text{ s.t. } x \in C^- \subseteq D_i^-, C \notin r(x)\} \). \(\square\)

Theorem 4.7 illustrates the relationship between \(r(x)\) of \((U, \Delta, \mathcal{D})\) and \(\hat{r}^{-}(x)\) of \((U^-, \Delta^-, \mathcal{D}^-)\), which reduces the time complexity of computing related family \(R(U^-, \Delta^-, \mathcal{D}^-)\).

We provide an incremental algorithm of computing \(R(U^-, \Delta^-, \mathcal{D}^-)\) for dynamic covering decision information system \((U^-, \Delta^-, \mathcal{D}^-)\) as follows.

Algorithm 4.8 (Incremental Algorithm of Computing \(R(U^-, \Delta^-, \mathcal{D}^-)\) for Consistent Covering Decision Information System \((U^-, \Delta^-, \mathcal{D}^-)\)) (IACAIS)

Step 1: Input \((U^-, \Delta^-, \mathcal{D}^-)\);
Step 2: Construct \(POS_{\Delta^-}(\mathcal{D}^-)\);
Step 3: Compute \(R(U^-, \Delta^-, \mathcal{D}^-) = \{\hat{r}^{-}(x) | x \in POS_{\Delta^-}(\mathcal{D}^-)\}\), where
\[
\hat{r}^{-}(x) = \{C^- | C \in r(x)\} \cup \{C^- | \exists C^- \in C^- \text{ and } D_i^- \in \mathcal{D}^- \text{ s.t. } x \in C^- \subseteq D_i^-, C \notin r(x)\};
\]
Step 4: Construct \(f(U^-, \Delta^-, \mathcal{D}^-) = \bigwedge \{\bigvee \hat{r}^{-}(x) | \hat{r}^{-}(x) \in R(U^-, \Delta^-, \mathcal{D}^-)\}\);
Step 5: Compute \(g(U^-, \Delta^-, \mathcal{D}^-) = \bigvee_{i=1}^{l} \{\bigwedge \Delta^-_i \mid \Delta^-_i \subseteq \Delta^-\}\);
Step 6: Output \(R(U^-, \Delta^-, \mathcal{D}^-)\).

The time complexity of Step 3 is \([|U| \ast |C_m|], |U| \ast |C_{m+1}| \ast |D|\); the time complexity of Steps 4 and 5 is \([|U| \ast |\Delta_m|], |U| \ast (|\Delta| + 1)\). Therefore, the time complexity of the incremental algorithm is lower than that of the non-incremental algorithm.

Example 4.9 (Continuation from Example 3.12) By Definition 2.6 and Theorem 4.7, we have \(r^{-}(x_1) = \{C_1^-, C_3^-, C_5^-\}, r^{-}(x_2) = \{C_1^-, C_2^-, C_3^-, C_4^-, C_5^-\}, r^{-}(x_3) = \{C_1^-, C_2^-, C_3^-, C_4^-, C_5^-\}, r^{-}(x_4) = \{C_1^-, C_2^-, C_4^-, C_5^-\}, r^{-}(x_5) = \{C_1^-, C_2^-, C_3^-, C_4^-, C_5^-\}, r^{-}(x_6) = \{C_1^-, C_2^-, C_4^-, C_5^-\}, \) and \(r^{-}(x_7) = \{C_2^-, C_4^-\} \). By Definition 2.6, we get \(R(U^-, \Delta^-, \mathcal{D}^-) = \{\{C_1^-, C_3^-, C_5^-, \}, \{C_1^-, C_2^-, C_3^-, C_4^-\}, \{C_1^-, C_2^-, C_4^-\}, \{C_1^-, C_2^-, C_5^-\}, \{C_2^-, C_4^-\}\}. \) By Definition 2.7, we obtain
\[
f(U^-, \Delta^-, \mathcal{D}^-) = \bigwedge \{\bigvee \hat{r}^{-}(x) | \hat{r}^{-}(x) \in R(U^-, \Delta^-, \mathcal{D}^-)\} = (C_1^- \lor C_3^- \lor C_5^-) \land (C_1^- \lor C_2^- \lor C_3^- \lor C_4^- \lor C_5^-) \land \cdots \land (C_2^- \lor C_4^-) \land \cdots \]
Therefore, we have $R(U^-, \Delta^-, \mathcal{D}^-) = \{\{C_1^-, C_2^-, C_4^-, C_5^-, C_3^-, C_6^-, C_7^-, C_8^-\}\}$. Example 4.9 illustrates how to compute attribute reducts of $(U^-, \Delta^-, \mathcal{D}^-)$ by Algorithm 2.8; Example 4.9 also illustrates how to compute attribute reducts of $(U^-, \Delta^-, \mathcal{D}^-)$ by Algorithm 4.8. We see that the incremental algorithm is more effective than the non-incremental algorithm for attribute reduction of dynamic covering decision information systems.

5 Conclusions

In this paper, we have constructed attribute reducts of consistent covering decision information systems when adding objects. We have employed examples to illustrate how to compute attribute reducts of consistent covering information systems when adding objects. Furthermore, we have investigated updated mechanisms for constructing attribute reducts of inconsistent covering decision information systems when deleting object sets. We have employed examples to illustrate how to compute attribute reducts of inconsistent covering decision information systems when deleting objects. Finally, we have employed the experimental results to illustrate that the related family-based incremental approaches are effective for attribute reduction of dynamic covering decision information systems when object sets are varying with time.

Acknowledgments

We would like to thank the anonymous reviewers very much for their professional comments and valuable suggestions. This work is supported by the National Natural Science Foundation of China (NO.61673301, 61603063, 11526039, 61573255), Doctoral Fund of Ministry of Education of China(No. 20130072130004), China Postdoctoral Science Foundation(NO.2013M542558, 2015M580353), the Scientific Research Fund of Hunan Provincial Education Department(No.15B004).

References

[1] Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska, Extensions and intentions in the rough set theory, Information Sciences 107(1998) 149-167.

[2] M.J. Cai, Q.G. Li, J.M. Ma, Knowledge reduction of dynamic covering decision information systems caused by variations of attribute values, International Journal of Machine Learning and Cybernetics, (2017) doi:10.1007/s13042-015-0484-9.

[3] H.M. Chen, T.R. Li, D. Ruan, J.H. Lin, C.X. Hu, A rough-set based incremental approach for updating approximations under dynamic maintenance environments, IEEE Transactions on Knowledge and Data Engineering 25(2)(2013) 174-184.
[4] D.G. Chen, Y.Y. Yang, Z. Dong, An incremental algorithm for attribute reduction with variable precision rough sets, Applied Soft Computing 45(2016) 129-149.

[5] D.G. Chen, X.X. Zhang, W.L. Li, On measurements of covering rough sets based on granules and evidence theory, Information Sciences 317(2015) 329-348.

[6] J. Hu, T.R. Li, C. Luo, H. Fujita, S.Y. Li, Incremental fuzzy probabilistic rough sets over two universes, International Journal of Approximate Reasoning 81(2017) 28-48.

[7] C.X. Hu, S.X Liu, G.X. Liu, Matrix-based approaches for dynamic updating approximations in multigranulation rough sets, Knowledge-Based Systems 122(2017) 51-63.

[8] Q.H. Hu, D.R. Yu, Z.X. Xie, Neighborhood classifiers, Expert Systems with Applications 34(2008) 866-876.

[9] B. Huang, C.X. Guo, H.X. Li, G.F. Feng, X.Z. Zhou, An intuitionistic fuzzy graded covering rough set, Knowledge-Based Systems 107(2016) 155-178.

[10] Y.Y. Huang, T.R. Li, C. Luo, H. Fujita, S.J. Horng, Matrix-based dynamic updating rough fuzzy approximations for data mining, Knowledge-Based Systems 119(2017) 273-283.

[11] Y.Y. Huang, T.R. Li, C. Luo, H. Fujita, S.J. Horng, Dynamic variable precision rough set approach for probabilistic set-valued information systems, Knowledge-Based Systems 122(2017) 131-147.

[12] G.M. Lang, Q.G. Li, M.J. Cai, T. Yang, Characteristic matrices-based knowledge reduction in dynamic covering decision information systems, Knowledge-Based Systems 85(2015) 1-26.

[13] G.M. Lang, Q.G. Li, M.J. Cai, T. Yang, Q.M. Xiao, Incremental approaches to constructing approximations of sets based on characteristic matrices, International Journal of Machine Learning and Cybernetics 8(2017) 203-222.

[14] G.M. Lang, D.Q. Miao, T. Yang, M.J. Cai, Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities, Information Sciences 346-347(2016) 236-260.

[15] Y. Leung, W.Z. Wu, W.X. Zhang, Knowledge acquisition in incomplete information systems: a rough set approach, European Journal of Operational Research 168(2006) 164-180.

[16] S.Y. Li, T.R. Li, D. Liu, Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set, Knowledge-Based Systems 40(2013) 17-26.
[17] S.Y. Li, T.R. Li, D. Liu, Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set, International Journal of Intelligent Systems 28(8)(2013) 729-751.

[18] T.R. Li, D. Ruan, W. Geert, J. Song, Y. Xu, A rough sets based characteristic relation approach for dynamic attribute generalization in data mining, Knowledge-Based Systems 20(5)(2007) 485-494.

[19] T.R. Li, D. Ruan, J. Song, Dynamic maintenance of decision rules with rough set under characteristic relation, Wireless Communications, Networking and Mobile Computing (2007) 3713-3716.

[20] J.H. Li, C.L. Mei, Y.J. Lv, Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction, International Journal of Approximate Reasoning 54(1)(2013) 149-165.

[21] Y. Li, Z.H. Zhang, W.B. Chen, F. Min, TDUP: an approach to incremental mining of frequent item-sets with three-way-decision pattern updating, International Journal of Machine Learning and Cybernetics 8(2)(2017) 441-453.

[22] J.Y. Liang, F. Wang, C.Y. Dang, Y.H. Qian, A group incremental approach to feature selection applying rough set technique, IEEE Transactions on Knowledge and Data Engineering 26(2)(2014) 294-308.

[23] G.L. Liu, Special types of coverings and axiomatization of rough sets based on partial orders, Knowledge-Based Systems 85(2015) 316-321.

[24] D. Liu, T.R. Li, J.B. Zhang, Incremental updating approximations in probabilistic rough sets under the variation of attributes, Knowledge-based Systems 73(2015) 81-96.

[25] D. Liu, D.C. Liang, C.C. Wang, A novel three-way decision model based on incomplete information system, Knowledge-Based Systems 91(2016) 32-45.

[26] C.H. Liu, D.Q. Miao, J. Qian, On multi-granulation covering rough sets, International Journal of Approximate Reasoning 55(6)(2014) 1404-1418.

[27] C. Luo, T.R. Li, H.M. Chen, L.X. Lu, Fast algorithms for computing rough approximations in set-valued decision systems while updating criteria values, Information Sciences 299(2015) 221-242.

[28] C. Luo, T.R. Li, H.M. Chen, H. Fujita, Y. Zhang, Efficient updating of probabilistic approximations with incremental objects, Knowledge-Based Systems 109(2016) 71-83.
[29] L.W. Ma, Two fuzzy covering rough set models and their generalizations over fuzzy lattices, Fuzzy Sets and Systems 294(2016) 1-17.

[30] J.A. Pomykala, Approximation operations in approximation space, Bulletin of the Polish Academy of Sciences 35 (9-10)(1987) 653-662.

[31] J. Qian, C.Y. Dang, X.D. Yue, N. Zhang, Attribute reduction for sequential three-way decisions under dynamic granulation, International Journal of Approximate Reasoning 85(2017) 196-216.

[32] Y.H. Qian, J.Y. Liang, D.Y. Li, F. Wang, N.N. Ma, Approximation reduction in inconsistent incomplete decision tables, Knowledge-Based Systems 23(5)(2010) 427-433.

[33] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11(5)(1982) 341-356.

[34] Y.L. Sang, J.Y. Liang, Y.H. Qian, Decision-theoretic rough sets under dynamic granulation, Knowledge-Based Systems 91(2016) 84-92.

[35] W.H. Shu, H. Shen, Incremental feature selection based on rough set in dynamic incomplete data, Pattern Recognition 47(12)(2014) 3890-3906.

[36] W.H. Shu, W.B. Qian, An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory, Data and Knowledge Engineering 100(2015) 116-132.

[37] Eric C.C. Tsang, D. Chen, D.S. Yeung, Approximations and reducts with covering generalized rough sets, Computers and Mathematics with Applications 56(2008) 279-289.

[38] A.H. Tan, J.J. Li, Y.J. Lin, G.P. Lin, Matrix-based set approximations and reductions in covering decision information systems, International Journal of Approximate Reasoning 59(2015) 68-80.

[39] A.H. Tan, J.J. Li, G.P. Lin, Y.J. Lin, Fast approach to knowledge acquisition in covering information systems using matrix operations, Knowledge-Based Systems 79(2015) 90-98.

[40] S. Wang, T.R. Li, C. Luo, H. Fujita, Efficient updating rough approximations with multi-dimensional variation of ordered data, Information Sciences 372(2016) 690-708.

[41] F. Wang, J.Y. Liang, C.Y. Dang, Attribute reduction for dynamic data sets, Applied Soft Computing 13(2013) 676-689.

[42] F. Wang, J.Y. Liang, Y.H. Qian, Attribute reduction: A dimension incremental strategy, Knowledge-Based Systems 39(2013) 95-108.
[43] C.Z. Wang, M.W. Shao, B.Q. Sun, Q.H. Hu, An improved attribute reduction scheme with covering based rough sets, Applied Soft Computing 26(2015) 235-243.

[44] S.P. Wang, W. Zhu, Q.H. Zhu, F. Min, Characteristic matrix of covering and its application to boolean matrix decomposition and axiomatization, Information Sciences 263(1)(2014) 186-197.

[45] W.Z. Wu, Attribute reduction based on evidence theory in incomplete decision systems, Information Sciences 178(2008) 1355-1371.

[46] J.F Xu, D.Q. Miao, Y.J. Zhang, Z.F. Zhang, A three-way decisions model with probabilistic rough sets for stream computing, International Journal of Approximate Reasoning 88(2017) 1-22.

[47] W.H. Xu, X.Y. Zhang, J.M. Zhong, Attribute reduction in ordered information systems based on evidence theory, Knowledge and Information Systems 25(2010) 169-184.

[48] B. Yang, B.Q. Hu, On some types of fuzzy covering-based rough sets, Fuzzy sets and Systems 312(2017) 36-65.

[49] B. Yang, B.Q. Hu, A fuzzy covering-based rough set model and its generalization over fuzzy lattice, Information Sciences 367(2016) 463-486.

[50] T. Yang, Q.G. Li, Reduction about approximation spaces of covering generalized rough sets, International Journal of Approximate Reasoning 51(3)(2010) 335-345.

[51] T. Yang, Q.G. Li, B.L. Zhou, Related family: A new method for attribute reduction of covering information systems, Information Sciences 228(2013) 175-191.

[52] Y.Y. Yang, D.G. Chen, H. Wang, E.C.C. Tsang, D.L. Zhang, Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving, Fuzzy Sets and Systems 312(2017) 66-86.

[53] X.B. Yang, Y. Qi, H.L. Yu, X.N. Song, J.Y. Yang, Updating multigranulation rough approximations with increasing of granular structures, Knowledge-Based Systems 64(2014) 59-69.

[54] Y.Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences 111(1)(1998) 239-259.

[55] Y.Y. Yao, Y.H. She, Rough set models in multigranulation spaces, Information Sciences 327(2016) 40-56.
[56] Y.Y. Yao, B.X. Yao, Covering based rough set approximations, Information Sciences 200(2012) 91-107.

[57] W. Zakowski, Approximations in the space (u, π), Demonstratio Mathematica 16(1983) 761-769.

[58] J.B. Zhang, T.R. Li, H.M. Chen, Composite rough sets for dynamic data mining, Information Sciences 257(2014) 81-100.

[59] Y.Y. Zhang, T.R. Li, C. Luo, J.B. Zhang, H.M. Chen, Incremental updating of rough approximations in interval-valued information systems under attribute generalization, Information Sciences 373(2016) 461-475.

[60] B.W. Zhang, F. Min, D. Ciucci, Representative-based classification through covering-based neighborhood rough sets, Applied Intelligence 43(4)(2015) 840-854.

[61] J.B. Zhang, J.S. Wong, Y. Pan, T.R. Li, A parallel matrix-based method for computing approximations in incomplete information systems, IEEE Transactions on Knowledge and Data Engineering 27(2)(2015) 326-339.

[62] P. Zhu, Covering rough sets based on neighborhoods: an approach without using neighborhoods, International Journal of Approximate Reasoning 52(3)(2011) 461-472.

[63] W. Zhu, Relationship among basic concepts in covering-based rough sets, Information Sciences 179(14)(2009) 2478-2486.

[64] W. Zhu, Relationship between generalized rough sets based on binary relation and coverings, Information Sciences 179(3)(2009) 210-225.