Density-Based Basis-Set Incompleteness Correction for GW Methods

Pierre-François Loos,* Barthélemy Pradines, Anthony Scemama, Emmanuel Giner, and Julien Toulouse*

ABSTRACT: Similar to other electron correlation methods, many-body perturbation theory methods based on Green’s functions, such as the so-called GW approximation, suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This displeasing feature is due to the lack of explicit electron–electron terms modeling the infamous Kato electron–electron cusp and the correlation Coulomb hole around it. Here, we propose a computationally efficient density-based basis-set correction based on short-range correlation density functionals which significantly speeds up the convergence of energetics toward the complete basis set limit. The performance of this density-based correction is illustrated by computing the ionization potentials of the 20 smallest atoms and molecules of the GW100 test set at the perturbative GW (or G_0W_0) level using increasingly large basis sets. We also compute the ionization potentials of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) and show that, here again, a significant improvement is obtained.

I. INTRODUCTION

The purpose of many-body perturbation theory (MBPT) based on Green’s functions is to solve the formidable many-body problem by adding the electron–electron Coulomb interaction perturbatively starting from an independent-particle model.1 In this approach, the screening of the Coulomb interaction is an essential quantity.2–4

The so-called GW approximation is the workhorse of MBPT and has a long and successful history in the calculation of the electronic structure of solids.5–20 GW is getting increasingly popular in molecular systems20 thanks to efficient implementation relying on plane waves21–23 or local basis functions.5,24–32 The GW approximation stems from the acclaimed Hedin’s equations33

\begin{align}
G(12) &= G_0(12) + \int G_0(13)\Sigma(34)G(42)d(34) \tag{1a} \\
\Gamma(123) &= \delta(12)\delta(13) + \int \frac{\delta \Sigma(12)}{\delta G(45)}G(46)G(75)\Gamma(673)d(4567) \tag{1b} \\
P(12) &= -i\int G(13)G(41)\Gamma(342)d(34) \tag{1c} \\
W(12) &= \nu(12) + \int \nu(13)P(34)W(42)d(34) \tag{1d} \\
\Sigma(12) &= i\int G(13)W(14)\Gamma(324)d(34) \tag{1e}
\end{align}

which connects the Green’s function G, its noninteracting version G_0, the irreducible vertex function Γ, the irreducible polarizability P, the dynamically screened Coulomb interaction W, and the self-energy Σ, where ν is the bare Coulomb interaction, $\delta(12)$ is the Dirac delta function,34 and 1 is a composite coordinate gathering space, spin, and time variables (r_1, σ_1, t_1). Within the GW approximation, one bypasses the calculation of the vertex corrections by setting

$$\Gamma(123) \approx \delta(12)\delta(13) \tag{2}$$

Depending on the degree of self-consistency one is willing to perform, there exists several types of GW calculations.35 The simplest and most popular variant of GW is perturbative GW (or G_0W_0).36,37 Although obviously starting-point dependent,38–40 it has been widely used in the literature to study solids, atoms, and molecules.7,16,37,38 For finite systems such as atoms and molecules, partially5,6,41 or fully self-consistent29–32 GW methods have shown great promise.5,6,14,24,42–44

Similar to other electron correlation methods, MBPT methods suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This can be tracked down to the lack of explicit electron–electron terms modeling the infamous electron–electron coalescence point (also known as the Kato cusp35) and, more
specifically, the Coulomb correlation hole around it. Pioneered by Hylleraas \(^{46}\) in the 1930s and popularized in the 1990s by Kutzelnigg and co-workers \(^{7-49}\) (and subsequently others \(^{50-55}\)), the so-called F12 methods overcome this slow convergence by employing geminal basis functions that closely resemble the correlation holes in electronic wave functions. F12 methods are now routinely employed in computational chemistry and provide robust tools for electronic structure calculations where small basis sets may be used to obtain near complete basis set (CBS) limit accuracy.\(^{55}\)

The basis-set correction presented here follows a different route and relies on the range-separated density-functional theory (RS-DFT) formalism to capture, thanks to a short-range correlation functional, the missing part of the short-range correlation effects.\(^{56}\) As shown in recent studies on both ground- and excited-state properties,\(^{57,58}\) similar to F12 methods, it significantly speeds up the convergence of energetics toward the CBS limit while avoiding the usage of the large auxiliary basis sets that are used in F12 methods to avoid the numerous three- and four-electron integrals.\(^{50-54,59-61}\)

Explicitly correlated F12 correction schemes have been derived for second-order Green’s function methods (GF2)\(^{53,62-72}\) by Ten-no and co-workers\(^{53,74}\) and Valeev and co-workers.\(^{75,76}\) However, to the best of our knowledge, a F12-based correction for GW has not been designed yet.

In the present manuscript, we illustrate the performance of the density-based basis-set correction developed in refs \(^{56-58}\) on ionization potentials obtained within \(G_0W_0\). Note that the present basis-set correction can be straightforwardly applied to other properties (e.g., electron affinities and fundamental gaps), as well as other flavors of (self-consistent) GW or Green’s function-based methods, such as GF2 (and its higher-order variants).

The paper is organized as follows. In section II, we provide details about the theory behind the present basis-set correction and its adaptation to GW methods. Results for a large collection of molecular systems are reported and discussed in section IV. Finally, we draw our conclusions in section V. Unless otherwise stated, atomic units are used throughout.

II. THEORY

II.A. MBPT with DFT Basis-Set Correction. Following ref \(^{56}\), we start by defining, for an \(N\)-electron system with nuclear-electron potential \(v_{ne}(\mathbf{r})\), the approximate ground-state energy for one-electron densities \(n\) which are “representable” in a finite basis set \(\mathcal{B}\)

\[
E_0^B = \min_{n \in \mathcal{D}^B} \left\{ F[n] + \int v_{ne}(\mathbf{r})n(\mathbf{r})d\mathbf{r} \right\}
\]

(3)

where \(\mathcal{D}^B\) is the set of \(N\)-representable densities which can be extracted from a wave function \(\Psi^B\) expandable in the Hilbert space generated by \(\mathcal{B}\). In this expression,

\[
F[n] = \min_{\Psi \in \mathcal{D}^B} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle
\]

(4)

is the exact Levy–Lieb universal density functional,\(^{77-79}\) where the notation \(\Psi \rightarrow n\) in eq 4 states that \(\Psi\) yields the one-electron density \(n\). \(\hat{T}\) and \(\hat{W}_{ee}\) are the kinetic and electron–electron interaction operators. The exact Levy–Lieb universal density functional is then decomposed as

\[
F[n] = F^B[n] + E^B[n]
\]

(5)

where \(F^B[n]\) is the Levy–Lieb density functional with wave functions \(\Psi^B\) expandable in the Hilbert space generated by \(\mathcal{B}\)

\[
F^B[n] = \min_{\Psi \in \mathcal{D}^B} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle
\]

(6)

and \(E^B[n]\) is the complementary basis-correction density functional.\(^{56}\) In the present work, instead of using wave function methods for calculating \(F^B[n]\), we use Green’s-function methods. We assume that there exists a functional \(\Omega^B[G]\) of \(N\)-representable one-electron Green’s functions \(G^B(r, r', \omega)\) representable in the basis set \(\mathcal{B}\) and yielding the density \(n\) which gives \(F^B[n]\) at a stationary point

\[
F^B[n] = \min_{\mathcal{D}^B} \Omega^B[G]\]

(7)

The reason why we use a stationary condition rather than a minimization condition is that only a stationary property is generally known for functionals of the Green’s function. For example, we can choose for \(\Omega^B[G]\) a Klein-like energy functional (see, e.g., refs \(^1, 65,\) and \(^80-82\))

\[
\Omega^B[G] = \text{Tr}[\ln(-G)] - \text{Tr}[(G^B)^{-1}G - 1] + \Phi^B_{\text{Hxc}}[G]
\]

(8)

where \((G^B)^{-1}\) is the projection into \(\mathcal{B}\) of the inverse free-particle Green’s function

\[
(G^B)_{\mathcal{B}}^{-1}(r, r', \omega) = \left\{ \omega + \frac{\mathbf{v}_c^2}{2} \right\} \delta(r - r')
\]

(9)

and we have introduced the trace

\[
\text{Tr}[AB] = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \int A(r, r', \omega)B(r', r, \omega)d\mathbf{r}d\mathbf{r}'
\]

(10)

In eq 8, \(\Phi^B_{\text{Hxc}}[G]\) is a Hartree-exchange-correlation (Hxc) functional of the Green’s function such that its functional derivatives yields the Hxc self-energy in the basis

\[
\frac{\delta \Phi^B_{\text{Hxc}}[G]}{\delta G(r, r', \omega)} = \Sigma^B_{\text{Hxc}}[G](r, r', \omega)
\]

(11)

Inserting eqs 5 and 7 into eq 3, we finally arrive at

\[
E_{0}^B = \min_{\mathcal{D}^B} \left\{ \Omega^B[G] + \int v_{ne}(\mathbf{r})n_{G^B}(\mathbf{r})d\mathbf{r} + E^B[n_{G^B}] \right\}
\]

(12)

where the stationary point is searched over \(N\)-representable one-electron Green’s functions \(G^B(r, r', \omega)\) representable in the basis set \(\mathcal{B}\).

The stationary condition from eq 12 is

\[
\frac{\delta}{\delta G^B} \left(\Omega^B[G^B] + \int v_{ne}(\mathbf{r})n_{G^B}(\mathbf{r})d\mathbf{r} + E^B[n_{G^B}] \right) - \lambda \int n_{G^B}(\mathbf{r})d\mathbf{r} = 0
\]

(13)

where \(\lambda\) is the chemical potential (enforcing the electron number). It leads the following Dyson equation

\[
(G^B)^{-1} = (G_0^B)^{-1} - \Sigma^B_{\text{Hxc}}[G^B] - \Sigma^B[n_{G^B}]
\]

(14)

where \((G_0^B)^{-1}\) is the basis projection of the inverse non-interacting Green’s function with potential \(v_{ne}(\mathbf{r})\), i.e.,
\[(G_0^{-1}(r', r, \omega) = \left(\omega + \frac{V^2}{2} - v_{\text{ref}}(r) + \lambda \delta(r - r') \right) d(r - r') \tag{15}\]

and \(\Sigma^B\) is a frequency-independent local self-energy coming from the functional derivative of the complementary basis-correction density functional

\[\Sigma^B[n](r, r') = v^B[n](r) \delta(r - r') \tag{16}\]

with \(v^B[n](r) = \delta \mathcal{E}^B[n]/\delta n(r)\). This is found from eq 13 by using the chain rule

\[\frac{\delta \mathcal{E}^B[n]}{\delta G(r, r', \omega)} = \int \delta \mathcal{E}^B[n] / \delta n(r') \delta G(r, r', \omega) dr' \tag{17}\]

and

\[n(r) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi \omega} G(r, r, \omega) \tag{18}\]

The solution of the Dyson eq 14 gives the Green's function \(G^0(r, r', \omega)\) which is not exact (even using the exact complementary basis-correction density functional \(\Sigma^B[n]\)) but should converge more rapidly with the basis set thanks to the presence of the basis-set correction \(\Sigma^B\). Of course, in the CBS limit, the basis-set correction vanishes and the Green's function becomes exact, i.e.

\[\lim_{B \to \text{CBS}} \Sigma^B = 0, \quad \lim_{B \to \text{CBS}} G^B = G \tag{19}\]

The Dyson eq 14 can also be written with an arbitrary reference

\[(G^B)^{-1} = (G_0^B)^{-1} - (\Sigma^B_{\text{Hxc}}(G^B) - \Sigma^B_{\text{ref}}) - \Sigma^B[n] \tag{20}\]

where \((G_0^B)^{-1} = (G_0)^{-1} - \Sigma^B_{\text{ref}}\). For example, if the reference is Hartree–Fock (HF), \(\Sigma^B_{\text{Hxc}}(G^B) = \Sigma^B_{\text{Hxc}}(G, r, \omega)\) is the HF non-local self-energy, and if the reference is Kohn–Sham (KS), \(\Sigma^B_{\text{Hxc}}(G^B) = v_{\text{Hxc}}(r) \delta(r - r')\) is the local Hxc potential.

Note that the present basis-set correction is applicable to any approximation of the self-energy (irrespective of the diagrams included) without altering the CBS limit of such methods. Consequently, it can be applied, for example, to GF2 methods (also known as second Born approximation in the condensed-matter community) or higher orders.
"resembles" the long-range interaction operator $\mathbf{r} - \mathbf{r}'\nabla$ used within RS-DFT.56

We start therefore by considering an effective nondivergent two-electron interaction $W^S(r, r')$ within the basis set which reproduces the expectation value of the Coulomb interaction over a given pair density $n^S(r, r')$, i.e.

$$
\frac{1}{2} \int \frac{\rho^S(r, r')}{|r - r'|} \, dr \, dr' = \frac{1}{2} \int \frac{\tilde{n}^S(r, r')}{|r - r'|} W^S(r, r') \, dr \, dr'
$$

(30)

The properties of $W^S(r, r')$ are detailed in ref 56. A key aspect is that because the value of $W^S(r, r')$ at coalescence, $W^S(r, r)$, is necessarily finite in a finite basis \mathcal{B}, one can approximate $W^S(r, r')$ by a nondivergent, long-range interaction of the form

$$
W^S(r, r') \approx \frac{1}{2} \left(\frac{\text{erf}(\mu^S(r)|r - r'|)}{|r - r'|} + \frac{\text{erf}(\mu^S(r')|r - r'|)}{|r - r'|} \right)
$$

(31)

The information about the finiteness of the basis set is then transferred to the range-separation function $\mu^S(r)$, and its value can be determined by ensuring that the two sides of eq 31 are strictly equal at $|r - r'| = 0$. Knowing that $\lim_{|r| \rightarrow \infty} \text{erf}(\mu r) / r = 2\mu / \sqrt{\pi}$, this yields

$$
\mu^S(r) = \frac{\sqrt{2}}{2} W^S(r, r)
$$

(32)

Following refs 56–58, we adopt the following definition for $W^S(r, r')$

$$
W^S(r, r') = \begin{cases}
\int \frac{f^S(r, r')}{n^S(r, r')}, & \text{if } n^S(r, r') \neq 0 \\
\infty, & \text{otherwise}
\end{cases}
$$

(33)

where, in this work, $f^S(r, r')$ and $n^S(r, r')$ are calculated using the opposite-spin two-electron density matrix of a spin-restricted single determinant (such as HF and KS). For a closed-shell system, we have

$$
f^S(r, r') = 2 \sum_{pq} \sum_{ij} \phi_p(r) \phi_i(r) \phi_q(r') \phi_j(r')
$$

(34)

and

$$
n^S(r, r') = 2 \sum_{ij} \phi_i(r) \phi_j(r')^2 = \frac{1}{2} n^S(r)n^S(r')
$$

(35)

where $n^S(r)$ is the one-electron density. The quantity $n^S(r, r')$ represents the opposite-spin pair density of a closed-shell system with a single-determinant wave function. Note that in eq 34 the indices p and q run over all occupied and virtual orbitals ($N_{\text{occ}} + N_{\text{virt}}$ is the total dimension of the basis set).

Thanks to this definition, the effective interaction $W^S(r, r')$ has the interesting property

$$
\lim_{\mathcal{B} \rightarrow \text{CBS}} W^S(r, r') = |r - r'|^{-1}
$$

(36)

which means that in the CBS limit one recovers the genuine (divergent) Coulomb interaction. Therefore, in the CBS limit, the coalescence value $W^S(r, r)$ goes to infinity and so does $\mu^S(r)$. Since the present basis-set correction employs complementary short-range correlation potentials from RS-DFT which have the property of going to zero when μ goes to infinity, the present basis-set correction properly vanishes in the CBS limit.

II.D. Short-Range Correlation Functionals. The frequency-independent local self-energy $\Sigma^S[n](r, r') = \bar{\Sigma}^S[n](r)\delta(r - r')$ originates from the functional derivative of complementary basis-correction density functionals $\bar{\Sigma}^S[n](r) = \delta E^G[n] / \delta n(r)$.

In this work, we have tested two complementary density functionals coming from two approximations to the short-range correlation functional with multideterminant (md) reference of RS-DFT.91 The first one is a short-range local-density approximation (srlDA)91,92

$$
E^\text{srlDA}[n] = \int n(r) E^\text{srlDA}_c(n(r), \mu^S(r)) \, dr
$$

(37)

where the correlation energy per particle $E^\text{srlDA}_c(n, \mu)$ has been parametrized from calculations on the uniform electron gas93 reported in ref 92. The second one is a short-range Perdew–Burke–Ernzerhof (srPBE) approximation57,94

$$
E^\text{srPBE}[n] = \int n(r) E^\text{srPBE}_c(n(r), s(r), \mu^S(r)) \, dr
$$

(38)

where $s(r) = \nabla n(r) / n(r)^{1/3}$ is the reduced density gradient and the correlation energy per particle $E^\text{srPBE}_c(n, s, \mu)$ interpolates between the usual PBE correlation energy per particle95 at $\mu = 0$ and the exact large-μ behavior96,97 using the on-top pair density of the Coulombic uniform electron gas (see ref 57). Note that the information on the local basis-set incompleteness error is provided to these RS-DFT functionals through the range-separation function $\mu^S(r)$.

From these energy functionals, we generate the potentials

$$
\bar{\Sigma}^\text{srPBE}[n](r) = \delta E^\text{srlDA}[n] / \delta n(r) \quad \text{and} \quad \bar{\Sigma}^\text{srPBE}[n](r) = \delta E^\text{srPBE}[n] / \delta n(r)
$$

(considering $\mu^S(r)$ as being fixed) which are then used to obtain the basis-set corrected $G_{\mu W_0}$ quasiparticle energies

$$
\varepsilon^G_{\mu W_0} = \varepsilon^G_{\mu} + \Sigma^G_{\mu}(r)
$$

(39)

with

$$
\Sigma^G_{\mu}(r) = \int \phi_p(r) \bar{\Sigma}^\text{srPBE}[n](r) \phi_p(r) \, dr
$$

(40)

where $\bar{\Sigma}^\text{srPBE}[n](r) = \bar{\Sigma}^\text{srPBE}_c(n)[r]$ or $\bar{\Sigma}^\text{srPBE}_c[n]$ and the density is calculated from the HF or KS orbitals. The expressions of these srLDA and srPBE correlation potentials are provided in the Supporting Information.

As evidenced by eq 39, the present basis-set correction is a non-self-consistent, post-GW correction. Although outside the scope of this study, various other strategies can be potentially designed, for example, within linearized $G_{\mu W_0}$ or self-consistent GW calculations.

III. COMPUTATIONAL DETAILS

All the geometries have been extracted from the GW100 set.16 Unless otherwise stated, all the $G_{\mu W_0}$ calculations have been performed with the MOLGW software developed by Bruneval and co-workers.10 The HF, PBE, and PBE0 calculations as well as the srLDA and srPBE basis-set corrections have been computed with Quantum Package,98 which by default uses the SG-2 quadrature grid for the numerical integrations. Frozen-
The mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the various basis sets and corrections are also reported.

Table I. IPs (eV) of the 20 Smallest Molecules of the GW100 Set Computed at the G_0W_0@HF Level of Theory with Various Basis Sets and Corrections

mol.	G_0W_0@PBE0	G_0W_0@PBE0+srLDA	G_0W_0@PBE0+srPBE	G_0W_0@PBE0
He	23.99	23.98	23.04	23.04
Ne	20.35	20.88	21.05	21.05
N	15.98	16.13	16.21	16.21
Li	5.15	5.24	5.28	5.30
LiH	7.32	7.49	7.56	7.61
HF	14.95	15.61	15.82	15.85
Ar	14.93	15.25	15.52	15.50
H2O	11.53	12.21	12.43	12.47
F2	15.93	16.30	16.51	16.61
MAD	0.60	0.32	0.14	0.06
RMSD	0.71	0.32	0.14	0.06
MAX	1.08	0.46	0.22	0.10

Table II. IPs (eV) of the 20 Smallest Molecules of the GW100 Set Computed at the G_0W_0@PBE0 Level of Theory with Various Basis Sets and Corrections

mol.	G_0W_0@PBE0	G_0W_0@PBE0+srLDA	G_0W_0@PBE0+srPBE	G_0W_0@PBE0
He	23.99	23.98	23.04	23.04
Ne	20.35	20.88	21.05	21.05
N	15.98	16.13	16.21	16.21
Li	5.15	5.24	5.28	5.30
LiH	7.32	7.49	7.56	7.61
HF	14.95	15.61	15.82	15.85
Ar	14.93	15.25	15.52	15.50
H2O	11.53	12.21	12.43	12.47
F2	15.93	16.30	16.51	16.61
MAD	0.60	0.32	0.14	0.06
RMSD	0.71	0.32	0.14	0.06
MAX	1.08	0.46	0.22	0.10
core (FC) calculations are systematically performed. The FC density-based basis-set correction is used consistently with the FC approximation in the G0W0 calculations. The G0W0 quasiparticle energies have been obtained “graphically,” i.e., by solving the nonlinear, frequency-dependent quasiparticle equation (without linearization). Moreover, the infinitesimal η in eq 21 has been set to zero.

Compared to the conventional $O(N^3 N_{\text{occ}} N_{\text{vir}})$ computational cost of GW, the present basis-set correction represents a marginal $O(N_{\text{occ}}^2 N_{\text{vir}}^2)$ additional cost as further discussed in refs 57 and 58. Note, however, that the formal $O(N_{\text{occ}}^3 N_{\text{virt}}^2)$ computational scaling of GW can be significantly reduced thanks to resolution-of-the-identity techniques59,65,66 and other tricks.

IV. RESULTS AND DISCUSSION

In this section, we study a subset of atoms and molecules from the GW100 test set. In particular, we study the 20 smallest molecules of the GW100 set, a subset that we label as GW20. This subset has been recently considered by Lewis and Berkelbach to study the effect of vertex corrections to W on IPs of molecules.65 Later in this section, we also study the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) which are also part of the GW100 test set.

IV.A. GW20. The IPs of the GW20 set obtained at the G0W0@PBE0 levels with increasingly larger Dunning’s basis sets cc-pVXZ (X = D, T, Q, and 5) are reported in Tables I and II, respectively. The corresponding statistical deviations (with respect to the CBS values) are also reported: mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX). These reference CBS values have been obtained with the usual X−3 extrapolation procedure using the three largest basis sets.

The convergence of the IP of the water molecule with respect to the basis set size is depicted in Figure 1. This represents a typical example. Additional graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the G0W0@PBE0 and G0W0@PBE0 levels are reported in the Supporting Information.

Tables I and II (as well as Figure 1) clearly evidence that the present basis-set correction significantly increases the rate of...
be less important. The possible reasons for this could be (i) DFT recovered with triple-

Figure 2. Error (eV) with respect to the $G_0W_0@PBE$/$\text{def}2$-TZVVP extrapolated values for the IPs of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) computed at the $G_0W_0@PBE$ level of theory for various basis sets and corrections.

IV.B. Nucleobases. In order to check the transferability of the present observations to larger systems, we have computed the values of the IPs of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) at the $G_0W_0@PBE$ level of theory with a different basis set family. The numerical values are reported in Table III, and their error with respect to the $G_0W_0@PBE$/$\text{def}2$-TZVVP extrapolated values (obtained via extrapolation of the $\text{def}2$-TZVP and $\text{def}2$-QZVP results) are shown in Figure 2. Table III also contains extrapolated IPs obtained with plane-wave basis sets with two different software packages. The CCSD(T)/$\text{def}2$-TZVPP computed by Krause et al. on the same geometries, the CCSD(T)/CCSD/aug-cc-pVDZ results from ref 107, as well as the experimental results extracted from ref 16 are reported for comparison purposes.

For these five systems, the IPs are all of the order of 8 or 9 eV with an amplitude of roughly 1 eV between the smallest basis set ($\text{def}2$-SVP) and the CBS value. The conclusions that we have drawn in the previous subsection do apply here as well. For the smallest double-ζ basis $\text{def}2$-SVP, the basis-set correction reduces by roughly half an eV the basis-set incompleteness error. It is particularly interesting to note that the basis-set corrected $\text{def}2$-TZVP results are on par with the correction-free $\text{def}2$-QZVP numbers. This is quite remarkable as the number of basis functions jumps from 371 to 777 for the largest system (guanine).

V. CONCLUSION

In the present manuscript, we have shown that the density-based basis-set correction developed by some of the authors in ref 56 and applied recently to ground- and excited-state properties can also be successfully applied to Green’s function methods such as GW. In particular, we have evidenced that the present basis-set correction (which relies on LDA- or PBE-based short-range correlation functionals) significantly speeds up the convergence of IPs for small and larger molecules toward the CBS limit. These findings have been observed for different GW starting points (HF, PBE, and PBE0). We have observed that the performance of the two short-range correlation functionals (sRLDA and srPBE) are quite similar with a slight edge for srPBE over sRLDA. Therefore, because srPBE is only slightly more computationally expensive than sRLDA, we do recommend the use of srPBE.

As mentioned earlier, the present basis-set correction can be straightforwardly applied to other properties of interest such as electron affinities or fundamental gaps. It is also applicable to other flavors of GW such as the partially self-consistent evGW or qsGW methods and, more generally, to any approximation of the self-energy. We are currently investigating the performance of

V. CONCLUSION

In the present manuscript, we have shown that the density-based basis-set correction developed by some of the authors in ref 56 and applied recently to ground- and excited-state properties can also be successfully applied to Green's function methods such as GW. In particular, we have evidenced that the present basis-set correction (which relies on LDA- or PBE-based short-range correlation functionals) significantly speeds up the convergence of IPs for small and larger molecules toward the CBS limit. These findings have been observed for different GW starting points (HF, PBE, and PBE0). We have observed that the performance of the two short-range correlation functionals (sRLDA and srPBE) are quite similar with a slight edge for srPBE over sRLDA. Therefore, because srPBE is only slightly more computationally expensive than sRLDA, we do recommend the use of srPBE.

As mentioned earlier, the present basis-set correction can be straightforwardly applied to other properties of interest such as electron affinities or fundamental gaps. It is also applicable to other flavors of GW such as the partially self-consistent evGW or qsGW methods and, more generally, to any approximation of the self-energy. We are currently investigating the performance of
the present approach within linear response theory in order to speed up the convergence of excitation energies obtained within the RPA and Bethe—Salpeter equation\(^4\),\(^11\),\(^12\) formalisms. We hope to report on this in the near future.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jctc.9b01067.

Expression of the short-range correlation potentials, additional graphs reporting the convergence of the ionization potentials of the GW20 subset with respect to the size of the basis set (PDF)

Numerical data of Table I (TXT)

Numerical data of Table II (TXT)

AUTHOR INFORMATION

Corresponding Authors

Pierre-François Loos — Université de Toulouse, CNRS, UPS, Toulouse, France; orcid.org/0000-0003-0598-7425; Email: loos@irsamc.ups-tlse.fr

Julien Toulouse — Sorbonne Université, CNRS, Paris, France, and Institut Universitaire de France, Paris, France; Email: toulouse@lct.jussieu.fr

Other Authors

Barthélémy Pradines — Sorbonne Université, CNRS, Paris, France, and Sorbonne Université, Paris, France

Anthony Scemama — Université de Toulouse, CNRS, UPS, Toulouse, France

Emmanuel Giner — Sorbonne Université, CNRS, Paris, France; orcid.org/0000-0002-6206-1103

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.jctc.9b01067

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

P.F.L. would like to thank Fabien Bruneval for technical assistance. P.F.L. and J.T. would like to thank Arjan Berger and Pina Romanelli for stimulating discussions. This work was performed using HPC resources from GENCI-TGCC (Grant No. 2018-A004080173) and CALMIP (Toulouse) under allocation 2019-18005. Funding from the Centre National de la Recherche Scientifique is acknowledged. This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the Programme des Investissements d’Avenir.

REFERENCES

(1) Martin, R. M.; Reining, L.; Ceperley, D. M. Interacting Electrons: Theory and Computational Approaches; Cambridge University Press, 2016.

(2) Aryasetiawan, F.; Gunnarsson, O. The GW method. Rep. Prog. Phys. 1998, 61, 237–312.

(3) Onda, G.; Reining, L.; Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601–659.

(4) Reining, L. The GW Approximation: Content, Successes and Limitations: The GW Approximation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1344.

(5) Blase, X.; Attaccalite, C.; Olevano, V. First-Principles GW Calculations for Fullerenes, Porphyrins, Phthalocyanine, and Other Molecules of Interest for Organic Photovoltaic Applications. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 115103.

(6) Faber, C.; Attaccalite, C.; Olevano, V.; Runge, E.; Blase, X. First-Principles GW Calculations for DNA and RNA Nucleobases. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 115123.

(7) Bruneval, F. Ionization Energy of Atoms Obtained from GW Self-Energy or from Random Phase Approximation Total Energies. J. Chem. Phys. 2012, 136, 194107.

(8) Bruneval, F.; Hamed, S. M.; Neaton, J. B. A Systematic Benchmark of the Ab Initio Bethe-Salpeter Equation Approach for Low-Lying Optical Excitations of Small Organic Molecules. J. Chem. Phys. 2015, 142, 244101.

(9) Bruneval, F.; Rangel, T.; Hamed, S. M.; Shao, M.; Yang, C.; Neaton, J. B. Molgw 1: Many-Body Perturbation Theory Software for Atoms, Molecules, and Clusters. Comput. Phys. Commun. 2016, 208, 149–161.

(10) Bruneval, F. Optimized Virtual Orbital Subspace for Faster GW Calculations in Localized Basis. J. Chem. Phys. 2016, 145, 234110.

(11) Boulanger, P.; Jacquemin, D.; Duchemin, I.; Blase, X. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach. J. Chem. Theory Comput. 2014, 10, 1212–1218.

(12) Blase, X.; Boulanger, P.; Bruneval, F.; Fernandez-Serra, M.; Duchemin, I. GW and Bethe-Salpeter Study of Small Water Clusters. J. Chem. Phys. 2016, 144, 034109.

(13) Li, J.; Holzmann, M.; Duchemin, I.; Blase, X.; Olevano, V. Helium Atom Excitations by the G W and Bethe-Salpeter Many-Body Formalism. Phys. Rev. Lett. 2017, 118, 163001.

(14) Hung, L.; da Jornada, F. H.; Souto-Casesares, J.; Chelikowsky, J. R.; Louie, S. G.; Ögüt, S. Excitation Spectra of Aromatic Molecules within a Real-Space G W -BSE Formalism: Role of Self-Consistency and Vertex Corrections. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94, 085125.

(15) Hung, L.; Bruneval, F.; Baishya, K.; Ögüt, S. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides. J. Chem. Theory Comput. 2017, 13, 2135–2146.

(16) van Setten, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Scheffler, M.; Liu, F.; Lischner, J.; Lin, L.; Deslippe, J. B.; Louie, S. G.; Yang, C.; Weigend, F.; Neaton, J. B.; Evers, F.; Runke, P. GW100: Benchmarking G\(_0\)W\(_0\) for Molecular Systems. J. Chem. Theory Comput. 2015, 11, 5665–5687.

(17) van Setten, M. J.; Costa, R.; Viñes, F.; Illas, F. Assessing GW Approaches for Predicting Core Level Binding Energies. J. Chem. Theory Comput. 2018, 14, 877–883.

(18) Ou, Q.; Subotnik, J. E. Comparison between GW and Wave-Function-Based Approaches: Calculating the Ionization Potential and Electron Affinity for 1D Hubbard Chains. J. Phys. Chem. A. 2016, 120, 4514–4525.

(19) Ou, Q.; Subotnik, J. E. Comparison between the Bethe-Salpeter Equation and Configuration Interaction Approaches for Solving a Quantum Chemistry Problem: Calculating the Excitation Energy for Finite 1D Hubbard Chains. J. Chem. Theory Comput. 2018, 14, 527–542.

(20) Faber, C. Electronic, Excitonic and Polaronic Properties of Organic Systems within the Many-Body GW and Bethe-Salpeter Formalisms: Towards Organic Photovoltaics. PhD Thesis, Université de Grenoble, 2014.

(21) Marini, A.; Hogan, C.; Gruning, M.; Varsano, D. Yambo: An Ab Initio Tool For Excited State Calculations. Phys. Commun. 2009, 180, 1392.

(22) Deslippe, J.; Samsonidze, G.; Strubbe, D. A.; Jain, M.; Cohen, M. L.; Louie, S. G. BerkeleyGW: AMassively Parallel Computer Package for the Calculation of the Quasiparticle and Optical Properties of Materials and Nanostructures. Comput. Phys. Commun. 2012, 183, 1269.
Effects on Ionization Potentials. For Single Molecules: Efficient Implementation and Quantitative
Chem. Theory Comput.
Quantum Chemistry Applications: Theory and Implementation.
13
Wave Perspective for Small Molecules.
NIST Handbook of Mathematical Functions
2018
Press: New York, 2010.
self-consistency: insights from the spherium model.
Journal of Chemical Theory and Computation pubs.acs.org/JCTC
Setten, M. J. Quasi-Particle Self-Consistent
Challenges.
Equation in Chemistry: Relations with TD-DFT, Applications and
Convergence Of Partially Self-Consistent BSE/GW Calculations.
Orbital Space: Ionization Energy and Electron Affinity of Conjugated
Molecules.
Bethe-Salpeter Formalism. Starting Points for Calculating Molecular Excitation Energies Using the
Accurate Excitation Energies With Small Basis Sets.
Density-Based Basis-Set Correction for Wave Function Theory.
Explicitly Correlated Electronic Structure Theory For Complex
Molecules.
Nonequilibrium Many-Body
Systems.
Explicitly Correlated R12/
̈
̈neis, A.; Hirata, S.; Ohnishi, Y.-Y.; Ten-no, S. Perspective:
Explicitly Correlated Electronic Structure Theory For Complex Systems.
J. Chem. Phys. 2017, 146, 080901.
Tew, D. P.; Klopfer, W.; Neiss, C.; Hattig, C. Quintuple-ζ
Quality Coupled-Cluster Correlation Energies With Triple-ζ Basis Sets.
Phys. Chem. Chem. Phys. 2007, 9, 1921.
Giner, E.; Pradines, B.; Ferté, A.; Assaraf, R.; Savin, A.; Toulouse, J. Curing Basis-Set Convergence Of Wave-Function Theory Using Density-Functional Theory: A Systematically Improvable Approach. J. Chem. Phys. 2018, 149, 194301.
Loos, P. F.; Pradines, B.; Scemama, A.; Toulouse, J.; Giner, E. A Density-Based Basis-Set Correction for Wave Function Theory. J. Phys. Chem. Lett. 2019, 10, 2931–2937.
Giner, E.; Scemama, A.; Toulouse, J.; Loos, P. F. Chemically Accurate Excitation Energies With Small Basis Sets. J. Chem. Phys. 2019, 151, 144118.
Barca, G. M. J.; Loos, P.-F.; Gill, P. M. W. Many-Electron Integrals over Gaussian Basis Functions. I. Recurrence Relations For Three-Electron Integrals. J. Chem. Theory Comput. 2016, 12, 1735–1740.
Barca, G. M.; Loos, P.-F. Three- and Four-Electron Integrals Involving Gaussian Geminals: Fundamental Integrals, Upper Bound, and Recurrence Relations. J. Chem. Phys. 2017, 147, 024103.
Barca, G. M.; Loos, P.-F. Recurrence Relations For Four-Electron Integrals Over Gaussian Basis Functions. In Adv. Quantum Chem.; Elsevier, 2018; Vol. 76; pp 147–165.
Szabo, A.; Ostlund, N. S. Modern quantum chemistry; McGraw-Hill: New York, 1989.
Casida, M. E.; Chong, D. P. Physical Interpretation and Assessment of the Coulomb-Hole and Screened-Exchange Approximation For Molecules. Phys. Rev. A: At., Mol., Opt. Phys. 1989, 40, 4837–4848.
Casida, M. E.; Chong, D. P. Simplified Green-Function Approximations: Further Assessment of a Polarization Model For Second-Order Calculation of Outer-Valence Ionization Potentials in Molecules. Phys. Rev. A: At., Mol. Opt. Phys. 1991, 44, 5773–5783.
Stefanucci, G.; van Lenten, R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction; Cambridge University Press: Cambridge, 2013.
Ortiz, J. V. Electron Propagator Theory: An Approach To Prediction and Interpretation in Quantum Chemistry: Electron Propagator Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 123–142.
(112) Leng, X.; Jin, F.; Wei, M.; Ma, Y. GW Method and Bethe-Salpeter Equation for Calculating Electronic Excitations: GW Method and Bethe-Salpeter Equation. *Rev. Comput. Mol. Sci.* **2016**, *6*, 532–550.