Tratamento da lesão muscular com células-tronco – Estudo experimental em coelhos

Treatment of Muscle Injury with Stem Cells – Experimental Study in Rabbits

Alex de Lima Santos1, Camila Gonzaga da Silva2, Leticia Siqueira de Sá Barreto2, Marcel Jun Sugawara Tamaoki1, Bruno Fiorelini Pereira3, Fernando Gonçalves de Almeida2, Flavio Faloppa1

1 Departamento de Ortopedia e Traumatologia da Escola Paulista de Medicina da Universidade Federal de São Paulo, São Paulo, SP, Brasil
2 Departamento de Cirurgia da Escola Paulista de Medicina da Universidade Federal de São Paulo, São Paulo, Brasil
3 Departamento de Ciências Biológicas, Campus Diadema, UNIFESP, São Paulo, Brasil

Endereço para correspondência Alex de Lima Santos, Doutor em Ciências pela Escola Paulista de Medicina, Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, UNIFESP, São Paulo, Brasil (e-mail: alexdels@gmail.com).

Rev Bras Ortop 2022;57(5):788–794.

Resumo

Objetivo Avaliação histológica e macroscópica do processo de cicatrização das lesões agudas do músculo reto femoral, com utilização de células-tronco derivadas de tecido adiposo (ADSCs, na sigla em inglês).

Método Foi realizado um estudo experimental com 18 patas traseiras de coelhos Nova Zelândia, que foram divididos em três nos grupos de estudo de acordo com a intervenção a ser realizada. No grupo I não foi realizado procedimento cirúrgico; no grupo II – SHAN foi realizado a lesão experimental sem nenhum protocolo de intervenção adicional; e no grupo III - Intervenção foi realizado a adição de ADSCs na mesma topografia onde foi realizada a lesão experimental. Após o período proposto, 2 semanas, o material foi coletado, submetido a avaliação macroscópica e histológica.

Resultados A análise quantitativa demonstrou que a adição de ADSCs está relacionada com a diminuição de células inflamatórias na avaliação com 2 semanas (164,2 células no grupo II – SHAN para 89,62 células no grupo III – ADSC). A análise qualitativa das lâminas coradas com Picrosírius red demonstrou um aumento das fibras de cor laranja/amarela no grupo III – ADSC, o que evidencia um processo final de cicatrização. A avaliação macroscópica não encontrou diferença entre os grupos.

Conclusão A utilização de ADSCs no tratamento de lesão muscular aguda apresentou vantagens histológicas quando comparada a sua não utilização.

Palavras-chave

► células-tronco mesenquimais
► medicina regenerativa
► doenças musculares
► músculos
► regeneração

Estudo multicêntrico desenvolvido em dois centros de pesquisa na Escola Paulista de Medicina da Universidade Federal de São Paulo e no Departamento de Ciências Biológicas, Campus Diadema, UNIFESP, São Paulo, Brasil.
Tratamento da lesão muscular com células-tronco de Lima Santos et al. 789

Abstract

Objective Histological and macroscopic evaluation of the healing process of acute lesions of the femoral rectus muscle using stem cells derived from adipose tissue-derived stem cells (ADSCs).

Method An experimental study was conducted with 18 hind legs of New Zealand rabbits, which were divided into three study groups according to the intervention to be performed. In group I, no surgical procedure was performed; in group II—SHAN, the experimental lesion was performed without any additional intervention protocol; in group III—Intervention, the addition of ADSCs was performed in the same topography of the experimental lesion. After the proposed period, 2 weeks, the material was collected and submitted to macroscopic and histological evaluation.

Results The quantitative analysis showed that the addition of ADSCs is related to the reduction of inflammatory cells in the 2-week evaluation (164.2 cells in group II – SHAN to 89.62 cells in group III – ADSC). The qualitative analysis of the slides with Picrosirius red, noticed an increase in orange/yellow fibers in group III – ADSC, which evidences a final healing process. The macroscopic evaluation found no difference between the groups.

Conclusion The use of ADSCs in the treatment of acute muscle injury presented histological advantages when compared to their non-use.

Introdução

A lesão muscular representa aproximadamente um terço das lesões relacionadas à atividade esportiva; ela acomete principalmente os membros inferiores e possui relação importante com o afastamento do esporte. Para um diagnóstico adequado, optamos por uma avaliação clínica, ficando a avaliação de exames de imagem reservada para confirmação diagnóstica, qualificação e quantificação da lesão.

Existem alguns fatores etiológicos com associação bem estabelecida para um risco de aumento de lesões musculares; dentre eles, podemos citar idade, lesão muscular progressiva, etnia, e sobrecarga e o desequilíbrio de forças musculares. O manejo terapêutico dessas lesões não apresentou modificações substanciais ao longo dos últimos anos, sendo o protocolo rest, ice, compression, and elevation (RICE) o tratamento mais utilizado.

Mesmo após a realização de um protocolo de tratamento adequado, o alto índice de re-lesão e o período prolongado de afastamento das atividades esportivas motivam a busca constante por novas terapias que consigam melhorar os resultados. Buscando preencher esse espaço, a utilização de ortobiológicos vem ganhando espaço no tratamento das mais diversas lesões ortopédicas, inclusive as lesões musculares. Dentre os ortobiológicos disponíveis, a utilização de células-tronco adultos mesenquimais, principalmente as derivadas de tecido adiposo, já apresentam resultados consistentes em relação a sua capacidade de diferenciação, rápido crescimento, facilidade de obtenção, bons resultados experimentais e promissores resultados clínicos.

Desta forma, na busca de alternativas para reparação muscular, este trabalho propõe avaliar a hipótese de que a cicatrização muscular pode ser otimizada através da utilização de células-troncos derivadas de tecido adiposo (ADSCs, na sigla em inglês) em um modelo experimental de lesão muscular reproduzido em coelhos, e possui como objetivo justamente a avaliação histológica e macroscópica do processo de cicatrização das lesões agudas do músculo reto femoral, com utilização de ADSCs.

Material e método

Delineamento experimental

Foi realizado um estudo experimental com 9 coelhos Nova Zelândia puros, machos, com idade de 28 a 32 semanas e peso aproximado entre 3 e 3,5 kg. Os animais foram adquiridos de um estabelecimento comercial e mantidos no centro de desenvolvimento de modelos experimentais para biologia e medicina durante todo o estudo. Nesse período, os animais foram mantidos em ambiente individualizado, ciclo claro escuro 12/12 hrs, com ração e água ad libitum. As patas traseiras dos animais (18 patas) foram divididas de forma randômica (utilizando software específico e envelopes opacos) nos grupos do estudo de acordo com a intervenção a ser realizada (Figura 1). No grupo I - controle, as patas traseiras foram mantidas intactas; no grupo II – SHAN, foi realizada a lesão experimental sem associação com tratamentos adicionais, e no grupo III – ADSC, foi realizada a lesão experimental com adição de ADSCs no local da lesão, como intervenção de tratamento (Figura 1). O estudo teve sua versão inicial e relatórios subsequentes aprovados pelo comitê de ética para uso de animais da nossa instituição (CEUA) e seguiu as diretrizes para uso de animais propostas pela nossa instituição além de preencher os critérios propostos pelas diretrizes do animal research: reporting of in vivo experiments (ARRIVE)
Procedimentos

Para a realização dos experimentos (seja coleta de gordura, realização do protocolo de lesão ou coleta do material), os animais foram submetidos ao seguinte protocolo analgésico e anestésico: Para início dos procedimentos, o animal foi submetido a analgesia e antibioticoterapia pré-operatória com tramadol (5 mg/kg) e terramicina (50 mg/kg); após 30 minutos, foi iniciada a anestesia com quetamina 50 (mg/kg) e xilazina (10 mg/kg). Como método de analgesia pós-operatória, o animal era mantido com meloxican (0,5 mg/kg) e tramadol (5 mg/kg) até completar o 3º dia de pós-operatório, sendo essas mesmas medicações administradas no caso de dor ou desconforto após esse período. As avaliações com relação ao stress, desconforto e dor eram realizadas diariamente no centro de desenvolvimento de modelos experimentais para biologia e medicina.

Modelo experimental de lesão muscular aguda

Após protocolo anestésico já apresentado, os animais com patas pertencentes ao grupo II - SHAN ou ao grupo III - ADSCs foram submetidos a tricotomia, antissepsia, assepsia, incisão cutânea anterior na coxa, divulsão por planos e exposição do reto femoral em toda a sua extensão (–Figura 2A). Na sequência, foi realizada lesão parcial no 1/3 médio do reto femoral (–Figura 2B), com lâmina fria, e marcação das extremidades (–Figura 2C) com nylon 6-0 (Nylon 6-0, Shalon, Alto da Boa Vista, GO, Brazil), a uma distância aproximada de 0,5 cm proximal e distal à lesão.19,20 Após a realização dos procedimentos e recuperação anestésica, o animal foi estimulado a aplicar carga no membro, sem restrições.

ADSCs – coleta de gordura ao implante das ADSCs

Para preparo e implante de células-tronco oriunda de tecido adiposo autólogo, todos os animais eram submetidos a coleta de gordura abdominal duas semanas antes da realização da lesão experimental. Para coleta de gordura os animais eram anestesiados com o mesmo protocolo e então realizado incisão mediana abdominal inferior, com disseccção por planos até a aponeurose do músculo reto abdominal. Identificação da artéria epigástrica superficial esquerda na região inguinal, e coletado um fragmento de gordura com peso variando entre 2 +/- 0,5 gramas.10,11,21

O fragmento de gordura, era transportado, em solução tampão PBS, do local de coleta até o laboratório para seguir com os procedimentos específicos de preparação da ADSC.

Fig. 1 Delineamento experimental geral. Descrição: A imagem representa a divisão geral dos grupos desde a coleta de gordura na primeira etapa do procedimento até a realização das respectivas avaliações.

Fig. 2 Modelo experimental de lesão muscular. Descrição: (A) Exposição do músculo reto femoral em toda a sua extensão. (B) Lesão experimental no terço médio do músculo reto femoral. (C) Marcação das extremidades da lesão do músculo reto femoral com ponto não absorvível.
Preparo das ADSCs
A preparação das células seguiu o protocolo que já havia sido publicado previamente;10,11,21 de forma resumida, a prepa-
ração das ADSCs seguiu as seguintes etapas: Após a coleta de
tecido gorduroso autólogo, o fragmento de tecido adiposo foi
pesado e lavado extensivamente com solução salina (PBS),
cortado em pequenos pedaços e enzimaticamente digerido
utilizando colagenase crua tipo IA (Sigma, St Louis, MO, USA)
0,075% por 30 minutos em constante agitação a uma tempe-
ratura de 37 °C. O tecido digerido foi peneirado (100 µm) para
obter a fração celular estromal-vascular, que foi ressuspension-
dia de meio de Dulbecco s modificado (DMEM, Mediatech,
Herndon, VA, USA) suplementado com 10% de soro bovino
fetal (FBS Gibco, Grand Island, NY, USA) e 1% de solução
antibiótica (Penicilina G 10.000 U/mL, anfotericina B
25µg/ml e estreptomicina 10.000 µg/ml). Após observar a
viabilidade celular, as células foram semeadas em pratos de
25µg/ml e estreptomicina 10.000 µg/ml). Após observar a
viabilidade celular, as células foram semeadas em pratos de
100 mm na concentração de 1 × 10^5. Após 24 a 36 horas, as
células não aderentes e eritrócitos foram removidos por meio
da troca do meio de cultura. As células foram cultivadas até
atingirem aproximadamente 80% de con-
fluentes, quando
eram tripsinizadas usando tripsina a 0,25% e plaqueadas.
As células eram ainda identificadas com marcador de super-
fície (Vybrant Dil, Molecular Probes, Eugene, OR, USA) utili-
zando protocolo específico preconizado pelo fabricante. Na
realização da intervenção, foram aplicadas aproximada-
mente 1–2 × 10^6 de ADSCs marcadas.

Implante de ADSC
As patas incluídas no grupo III – ADSCs foram inicialmente
submetidas ao protocolo de lesão experimental muscular e
então submetidas à aplicação de ADSCs diretamente no local
da lesão.15 A aplicação ocorreu através de visualização direta
com infiltração intramuscular de o 1–2 × 10^6 de ADSCs
marcadas.

Coleta do tecido muscular
Após o período de 2 semanas pós-intervenção, os animais
foram anestesiados, e então submetidos à morte indolor
através de superdosagem dos anestésicos (quetamina 200
mg/kg + xilazina 40 mg/kg e tramadol 10 mg/kg). Para a
coleta, foi realizada uma incisão cutânea conforme via prévia
e divisão por planos até a exposição da região préviamente
lesionada no músculo reto femoral (marcado previamente
com nylon 6-0). Foi realizada então a incisão do músculo reto
femoral na região compreendida entre os pontos de nylon 6-
0 (local da lesão muscular). O material coletado foi adicio-
nado a uma solução de formaldeído 10% para seguir com todo
o protocolo de avaliação histológica.

Análise histológica
Preparo do material
Os fragmentos musculares foram fixados em formaldeído
a 10% por 24 horas e desidratados em concentrações
crecentes de álcool etílico, diafanizados pelo xilol e
impregnados pela parafina líquida em estufa, regulada
à temperatura de 60 °C. A inclusão foi realizada de tal
maneira que pode ser observada nas lâminas histológicas,
cortes transversais da região medial do músculo reto
femoral. Em sequência, os blocos foram cortados em
microtomo do tipo Minot, ajustado para 4 µm com dis-
tância entre os cortes de 50 µm. Os cortes assim obtidos
foram colocados em lâminas previamente untadas com
albúmina de Mayer e mantidos em estufa regulada à
temperatura de 37 °C, durante 24 horas, para secagem e
colagem. Após preparação, as lâminas foram submetidas
colagem e picrosirius red.

Avaliação quantitativa do processo inflamatório
Tendo em vista a existência de processos inflamatórios
resultantes de lesões teciduais, cinco imagens de cada lâmina
foram obtidas através de microscópio óptico Olympus IX 81
(Olympus Corporation, Shinjuku-ku, Tóquio, Japão), com
câmera Olympus DP72 (Olympus Corporation, Shinjuku-
ku, Tóquio, Japão) acoplada. Essas imagens, obtidas com
aumento de 40X, foram analisadas com o auxílio do Software
ImageJ (ImageJ 1.53h, National Institutes of Health, Bethesda
MA, EUA).

Para análise, as células relativas ao processo inflamatório
cicatricial foram isoladas através do plugin Segmentation,
excluindo-se dessa forma os núcleos referentes as fibras
musculares, e na sequência foi aplicado o plugin Counter
Cell para quantificação do número de células totais restantes
em cada imagem. Os dados obtidos foram compilados e
posteriormente separados entre os grupos (grupo II –
SHAN ou grupo III – ADSCs). Ao final, foi realizada uma
análise comparativa relativa aos efeitos do tratamento com
ADSCs na cicatrização muscular.

Avaliação qualitativa da cicatrização muscular
Levando em consideração o processo de cicatrização da lesão
muscular e as alterações do colágeno que ocorrem ao longo
do tempo, foi realizada uma análise de metodologia qualifi-
citativa usando como referência o processo de cicatrização
cutânea e as respectivas modificações de cor ao longo desse
durante 24 horas, para secagem e
colagem. Após preparação, as lâminas foram submetidas
colagem e picrosirius red. De forma simplificada, foi realizada uma
análise descritiva sobre a proporção de fibras em aspecto
avancado de cicatrização, ou seja, com coloração
amarela/laranja.

Análise macroscópica
A avaliação da morfologia local foi realizada no momento
imediatamente após a aplicação de ADSCs marcadas; nessa avaliação, foram
analizados os seguintes aspectos: alterações na coloração,
solidez, nível de fibrose, presença de sinais infecciosos e
resposta inflamatória local.22 De forma adicional, as imagens
também foram documentadas através de fotografias obtidas
com câmera Canon (Canon EOS Rebel T5; Canon, Manaus,
AM, Brasil) para posterior verificação e apresentação dos
resultados.
Cálculo amostral e análise estatística

Levando em consideração o pioneirismo do estudo, o número de animais foi decidido após análise da literatura relevante. Os dados obtidos na análise quantitativa da resposta inflamatória foram tabelados e analisados estatisticamente pelo programa BioStat 2009 (AnalystSoft Inc., Alexandria, VA, EUA). Primeiramente, os dados foram submetidos ao teste de Shapiro-Wilk para verificar a normalidade dos grupos e posteriormente ao teste de análise de variância (ANOVA)/Tukey para dados paramétricos, e Kruskal-Wallis/Dunn para dados não paramétricos, para determinar a significância dos resultados. Foi fixado em 5% ($p < 0.05$) o nível para rejeição da hipótese de nulidade, assinalando-se com asterisco os valores significantes.

Resultados

Análise histológica

O processo inflamatório de cicatrização muscular estava em curso em ambos os grupos, visto a presença de tecido inflamatório na amostra analisada. Todavia, a análise quantitativa demonstrou que a adição de ADSCs está relacionada com diminuição da quantidade de células inflamatórias por campo na avaliação com 2 semanas (Figura 3). Sobre a análise quantitativa, notamos diminuição de 164,2 células no grupo sem adição de ADSCs, para 89,62 células por campo no grupo com adição de ADSCs, representando uma diminuição de 46% na quantidade de células inflamatórias após a adição de ADSCs (Figura 4). Tendo em vista que o grupo controle não apresentou qualquer indício de processo inflamatório, ele não entrou nesta quantificação.

A técnica de picrosirius red, sob polarização, evidenciou que o grupo tratado apresentou mais fibras de cor laranja/amarela, o que evidencia acúmulo de fibras colágenas mais grossas comparáveis com o processo final de cicatrização (Figura 5).

Análise macroscópica

Não foi observada nenhuma alteração no estado geral do animal ou sinais infecciosos nas patas traseiras submetidas à lesão experimental ou à intervenção com adição de ADSCs. Os animais foram capazes de desambular na gaiola nos primeiros dias de pós-operatório e em nenhum momento apresentaram modificação na aceitação da dieta ou de água. Em ambos os grupos, o tecido muscular já se apresentava com aspecto de cicatrização em fase final, com alterações fibróticas notáveis em sua superfície. A avaliação macroscópica não foi capaz de notar diferenças entre os grupos submetidos ou não à intervenção (Figura 6).

Discussão

Os principais achados desse estudo fazem referência à obtenção de bons resultados histológicos após a utilização de ADSCs no tratamento de lesão muscular aguda. Esses
achados estão somados aos recentes trabalhos publicados por nosso grupo, que mostram resultados promissores para utilização de diferentes ortobiológicos: (i) células-tronco e (ii) scaffolds. Esses primeiros estudos conseguiram reproduzir de forma satisfatória resultados já bem estabelecidos em outros grupos de pesquisa, e estão funcionando como motivadores para a continuidade no desenvolvimento, aperfeiçoamento e utilização de ortobiológicos.

No modelo experimental apresentado, com uma lesão aguda, cortante do tecido muscular, esperamos que a utilização de ADSCs consiga otimizar a cicatrização muscular através de três mecanismos: (i) produção de fatores de crescimento, com otimização da angiogênese e diminuição das vias que favorecem a apoptose celular; (ii) ação imunossupressora através da diminuição da atividade nos linfócitos T e B; (iii) indução na diferenciação de fibroblastos em miócitos.

A opção por uma lesão aguda e com avaliação precoce foi motivada pela maior funcionalidade e atuação das células-tronco nos primeiros dias pós-intervenção. Dessa maneira, procuramos avaliar uma provável aceleração na recuperação funcional ao longo do tempo, após utilização de ADSCs. Nesse sentido, a grande inovação desse trabalho foi justamente apresentar o primeiro estudo com utilização de ADSCs no tratamento de lesão muscular aguda em um modelo experimental.

Dentre as limitações deste estudo podemos citar as dificuldades para o cálculo amostral, visto o pioneirismo do estudo; a utilização de um modelo experimental pouco reproduzível na prática clínica, visto que as lesões cortantes não são as mais frequentes; e ausência de avaliação adicional com outros métodos, como a biomecânica e a avaliação funcional. Como perspectivas para o futuro, esperamos manter o pioneirismo e continuar os trabalhos com desenvolvimento, produção e avaliação dos mais diversos ortobiológicos disponíveis.
Conclusão

A utilização de ADSCs no tratamento de lesão muscular aguda apresentou vantagens histológicas quando comparado a sua não utilização.

Suporte Financeiro

O estudo teve o financiamento do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – processo número 311237/2018-5.

Contribuições dos autores

Cada autor contribuiu individual e significativamente para o desenvolvimento deste artigo.

Conflito de interesses

Os autores declaram não haver conflito de interesses.

Referências

1 Silva RT, Cohen M, Matsumoto MH, Gratieri GC. Avaliação das lesões ortopédicas: Assessment of orthopedic injuries in competitive amateur tennis players. Rev Bras Ortop 2005;40(05):270–279
2 Cristiano Netto D, Ariani GG, Thiele ES, Cat MNL, Cohen M, Pagura JR. Avaliação prospectiva das lesões esportivas ocorridas durante as partidas do Campeonato Brasileiro de Futebol em 2016. Rev Bras Ortop 2019;54(03):329–334
3 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011;39(06):1226–1232
4 Astur DC, Novaretti JV, Uehbe RK, et al. Lesão muscular: perspectivas e tendências atuais no Brasil. Rev Bras Ortop 2014;49(06):573–580
5 Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 2012;42(03):209–226
6 Sales RM, Cavalcante MC, Cohen M, Ejinisman B, Andreoli CV, Pochini AC. Treatment of acute thigh muscle injury with or without hematoma puncture in athletes. Rev Bras Ortop (São Paulo) 2019;54(01):6–12
7 Järvinen TAH, Kääriäinen M, Järvinen M, Kalimo H. Muscle strain injuries.Curr Opin Rheumatol 2000;12(02):155–161
8 Grassi A, Napoli F, Romandini I, et al. Is Platelet-Rich Plasma (PRP) Effective in the Treatment of Acute Muscle Injuries? A Systematic Review and Meta-Analysis. Sports Med 2018;48(04):971–989
9 LaPrafe RF, Dragoo JL, Koh JL, Murray IR, Geeslin AC, Chu CR. Aaos research symposium updates and consensus: Biologic treatment of orthopaedic injuries. J Am Acad Orthop Surg 2016;24(07):e62–e78
10 Barretto LS, Lessio C, Sawaki e Nakamura AN, et al. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells. In Vitro Cell Dev Biol Anim 2014;50(09):831–839
11 Almeida FG, Nobre YTD, Leite KR, Bruschini H. Autologous transplantation of adult adipose derived stem cells into rabbit urethral wall. Int Urogynecol J Pelvic Floor Dysfunct 2010;21(06):743–748
12 Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24(05):1294–1301
13 Kaleka CC, Zuconi E, Vieira TDS, Secco M, Ferretti M, Cohen M. Evaluation of different commercial hyaluronic acids as a vehicle for injection of human adipose-derived mesenchymal stem cells. Rev Bras Ortop 2018;53(05):557–563
14 Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. 2013 Neer Award: Effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg 2014;23(04):445–455
15 de Lima Santos A, Silva CGD, de Sá Barretto LS, et al. Biomechanical evaluation of tendon regeneration with adipose-derived stem cell. J Orthop Res 2019;37(06):1281–1286
16 Freitag J, Bates D, Wickham J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med 2019;14(03):213–230
17 Han X, Yang B, Zou F, Sun J. Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. J Comp Eff Res 2020;9(05):361–374
18 Percie du Sert N, Aihuwalia A, Alam S, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020;18(07):e3000411
19 Utomo DN, Mahyudin F, Hernugrahanto KD, Suroto H, Chilmi MZ, Rantam FA. Implantation of platelet rich fibrin and allogenic mesenchymal stem cells facilitate the healing of muscle injury: An experimental study on animal. Int J Surg Open 2018;11:4–9
20 Vieira DFF, Guarniero R, Vaz CES, De Santana PJ. Efeito da utilização de um centrifugado de medula óssea no tratamento de lesão muscular: Estudo experimental em coelhos. Rev Bras Ortop 2011;46(06):718–725
21 Silva CGD, Barretto LSS, Lo Turco EG, et al. Lipidomics of mesenchymal stem cell differentiation. Chem Phys Lipids 2020;232:104964
22 de Lima Santos A, da Silva CG, de Sá Barretto LS, et al. A new decellularized tendon scaffold for rotator cuff tears - evaluation in rabbits. BMC Musculoskelet Disord 2020;21(01):689
23 Chong AK, Ang AD, Goh JC, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am 2007;89(01):74–81
24 Meirelles LdaS, Fontes AM, Covas DT, Caplan AL. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009;20(5–6):419–427