Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria

John Kanayochukwu Ndukaa,*, Henrietta Ijeoma Kelleb, Johnpaul Onyenezi Amukaa

a Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria

b Department of Pure and Applied Science, Faculty of Sciences National Open University, Abuja, Nigeria

ARTICLE INFO

Keywords:
- Heavy metals
- Cancer risk
- Non-cancer risks
- Paint dust
- Imported automobiles
- Auto-panel workshops

ABSTRACT

Nigeria’s economic problems which inhibited local production has resulted in massive importation of used automobiles. Most of these automobiles need some repairs and reworking, having outlived their lifespan in the manufacturer’s country. This study centers on the human carcinogenic and non-carcinogenic health risk assessment of cadmium, chromium and nickel exposures from reworking of imported used vehicles. Scraped car paint dusts from 56 Japanese made cars were collected from 8 different panel beating (body works) workshops (A–H) in Southeastern Nigeria. They were homogenized, mixed, divided into fine particles, filtered and digested by standard method. The filtrates were assayed for cadmium, chromium and nickel with atomic absorption spectrophotometry (AAS, 200A), workshops F and D have the highest concentration (mg/kg) of Cd (3.58 ± 0.02) and (3.36 ± 0.04) and higher than levels in workshops A, B, C, E, G and H. Chromium (mg/kg) in workshops F and G were (2.87 ± 0.04) and (2.95 ± 0.06) and higher than the other workshops. Nickel in workshop A (3.84 ± 0.04) is close to other workshop values. The highest hazard quotients for adults were cadmium in workshops B (1.37E-01), D (1.69E-01), E (1.79E-01) (inhalation), chromium [workshops G (5.45E-02), F (5.29E-02) and C (5.24E-02) inhalation]. Nickel -workshop A (5.9E-03) for children (inhalation). HQ in children through ingestion is cadmium (3.72E-04) workshop F and ingestion- 3.21E-01(workshop F) while nickel is 1.06E-02 (workshop A). The highest cancer risks were in exponents -4,-7 and -8 (adult) and -3, -6 and -9 (children) for workshops A–H through inhalation, ingestion and dermal contact, exposures to scrap car paint dust may be of significant public health importance in Nigeria as it can add to body burden of some carcinogenic heavy metals.

1. Introduction

Environmental heavy metal contamination is a worldwide phenomenon, but the associated ecological and health risks are not yet matters of priority to the authorities in Nigeria. Low level and unspecialized industrial and manufacturing concern have given rise to high artisanal activities in Nigeria. Nigeria imports large quantities of old vehicles and the figure continues to increase [1] and their repair fits into artisanal (unregulated) activities. Components of automobiles include mechanical components, electronic and electrical devices, polymeric and sundry components that may contain toxic substances, examples include vehicular crankshaft, engine block and connecting rod, which contains steel, chromium, nickel, titanium, copper [2,3] while switches, batteries, headlamp bulbs, break light, data tapes, floppy disk, power supply boxes, car stereo equipment etc. contains cadmium, chromium and nickel etc., when these vehicles age and decompose, they constitute environmental and public health menace [4,5]. In an attempt to repair these vehicles, the artisans at the workshops are exposed to heavy metal pollution through scrapped car paint dust by a number of subtle ways such as contact with workshop tools, handshake, body hug, sharing of personal items, inhalation of and contact with microscopic air suspensions at the workshops. These workshops are cited mainly along busy but congested roads inter mixed with other business activities in Nigeria, hence human contact with heavy metals through paint dusts is possible. These metals cause array of symptoms and chronic diseases, studies has suggested that cadmium at low environmental exposures as currently found in industrialized countries, may result to subtle renal effects leading to noticeable level in urinary excretion of micro-proteins [6,7]. Cadmium is hazardous both by inhalation and ingestion and can cause acute and chronic intoxications in...
humans with exceptional long half-life and accumulation in kidney, lungs and liver [9], very toxic, can disrupt biological systems, even at very low concentrations than most toxic metals [9]. Chronic exposure leads to ulcerations and perforations of the nasal septum, chronic bronchitis, decreased pulmonary function, pneumonia and other respiratory effects [10]. The cancer causing properties of chromium (VI) is known [11]. The acute toxicity of chromium (VI) is due to oxidation properties, hemolysis and organ failures [12].

Human exposure to nickel causes a variety of pathologic effects but adverse health effects is dependent on exposure route (inhalation, oral or dermal) and classification based on systemic, immunologic, neurologic, reproductive, distorted developmental or carcinogenic effects following acute (01 day), sub-chronic (10–100 days) and chronic (100 days or more) exposure periods [13]. Kidney is the actual organ of accumulation for nickel but inflammation in the bronchioles, alveolar congestion, alveolar cell hyperplasia and congestion in the lumen do occur [14]. Heavy metals act antagonistically disrupting trace elements in the body, inhibit and compete with protein and enzyme for binding sites and impair immune system. Unachukwu and co-workers [15] reported that non-communicable diseases (NCDs) such as cardiovascular disease, diabetes mellitus, cancer, renal diseases, liver failure and so on, which may be associated with heavy metal toxicity are now highly diagnosed and reported in Nigerian hospitals and may be pronounced amongst artisans [16–18]. This work authenticate heavy metal poisoning through occupational routes. Therefore, illiteracy and engagement in non-specialty occupation predisposes individuals (exposed subjects) to heavy metal poisoning. The aim of this study is to show that artisans can be exposed to carcinogenic heavy metals like cadmium, chromium and nickel through scraped car paint dust. It will assist in public health policy formulation and aid diagnostic skills of medical and public health workers in Nigeria.

2. Materials and methods

56 cars were selected from 8 different auto-panel workshops (workshops A–H) located in Awka, Nnewi, Onitsha and Enugu all in the Southeastern part of Nigeria. Fig. 1. Workshops A and B were from Awka, C and D from Nnewi, E and F from Onitsha and G and H were from Enugu. Seven Japanese cars of over 10 years old were identified in each of the auto-panel workshops. (Japanese cars were mostly available at the time of visit to the workshops (sampling) and most Nigerian middle class and those at the lower rung of the economy prefer Japanese cars because they have both second hand value and fuel efficiency. The paint flakes/dusts were collected from them and stored in black polythene bags before digestion and analyses. The samples were ground and sieved using meshes (metric test sieve BS 410 WS Tyler) with geometric diameters of 100 μm and 45 μm on a mechanical shaker (Retsch AS 200) for 15 min at amplitude of 10 mm/g to separate them into two particle size fractions [19]. 2 g of paint dust was weighed into a conical flask, adding 15 ml of concentrated nitric and perchloric acid at a ratio 1:1 and heating in a fume cupboard at a temperature of 105 °C near to dryness, it was allowed to cool, and 10 ml of distilled, de-ionized water was added, stirred, filtered and made up in a standard volumetric flask. Standard solutions of cadmium, chromium and nickel were prepared and assayed at their respective wavelengths with atomic absorption spectrophotometry (AAS 200A), with a detection limit set at 0.001 mg/L, and blank values reading as 0.00 mg/L in de-ionized water, electrical conductivity value lower than 5 μs/cm, standard graphs were plotted, samples of the filtrates were extrapolated from the graphs, analyzed in triplicates and results reported as Mean ± SD. The calibration curves were prepared for each of the metals investigated using the least square fitting method. Soil samples from the workshops were also analyzed using the same method, soil control samples were collected 200 m away from the workshops while water samples were collected within 500 m away from each workshop. The accuracies of this method have been evaluated by analysis of NBS standard reference materials and were better than ± 10%. A quality control program, including reagent blanks, replicate samples and standard reference materials, was used to access data precision and accuracy. Blanks were prepared in a procedure similar to that used for the dust samples and routinely analyzed before each measurement as we have reported before (20)

3. Exposure and risk assessment method

The US Environmental Protection Agency [21] and Dutch National Institute of Public Health and Environmental Protection exposure and risk assessment model for paint dusts were employed [22,23]. The haphazardly situated workshops are without safety and public health regulation. The exposure to pollutants is through inhalation, dermal and ingestion, calculated using Eqs. (1)–(3) [21]

\[
CDI_{inh} = \frac{C_X \times R_{inh} \times T_{exp}}{PBF \times ABW \times T_{avg}}
\]

(1)

\[
CDI_{dermal} = \frac{C_X \times A_{skin} \times DAF \times T_{exp} \times T_{exp}}{PBF \times ABW \times T_{avg}}
\]

(2)

\[
CDI_{ingestion} = \frac{C_X \times R_{ing} \times T_{exp} \times 10^{-6}}{ABW \times T_{avg}}
\]

(3)

The Cd is the chronic daily intake (mg kg\(^{-1}\) day\(^{-1}\)); \(R_{inh}\) is the ingestion rate at 60 mg dust day\(^{-1}\) for children (1–6 years) and 30 mg day\(^{-1}\) for adults [22,23]; \(R_{inh}\) is the inhalation rate at 20 m\(^3\) day\(^{-1}\) for adults and 7.6 m\(^3\) for children [24]; \(T_{exp}\) is the exposure frequency, in this study, 180 day year\(^{-1}\) [25,26]; \(T_{exp}\) is the exposure duration, in this study, 24 years for adults and 6 years for children [27]; \(A_{skin}\) is the skin area, in the study, 5700 cm\(^2\) for adults and 2800 cm\(^2\) for children [27]; \(SAP\) is the skin adherence factor, in this study, 0.7 mg cm\(^{-2}\) h\(^{-1}\) for adults and 0.07 mg cm\(^{-2}\) h\(^{-1}\) for children [26–29]; \(DAF\) is the dermal absorption factor (unitless), in our study, 0.001 for both children and adults; \(PEF\) is the particle emission factor, in the present study, 1.36 × 10\(^{-5}\) m\(^3\) kg\(^{-1}\) for both cases [27], body weight (ABW) at 15 kg for children and 70 kg for adults [26,30,31]; and \(T_{avg}\) = \(T_{exp}\) × 365 days is the averaging time for non-carcinogens.

The non-carcinogenic risk (Hazard Quotient) from the metals is expressed as:

\[
HQ = \frac{(CDI \times BAF)}{RFD}
\]

Where CDI (E) is chronic daily intake (exposure), ‘RFD\(^{ex}\)’ is reference dose of the metals (mg kg\(^{-1}\) day\(^{-1}\)) and BAF = bio-accumulation factor.

Hazard index \(= \sum_{i=1}^{n} \frac{CDI(E)k}{RFD}\)

(5)

Hazard index (HI) = sum total of more than one hazard quotient if multiple substances or multiple exposure pathways, this study involves exposure from different vehicles and three exposure pathways (ingestion, inhalation and dermal contact) [32], where HI > 1, means non- cancer risk is likely but when HI < 1, non-cancer may be impossible (32).

When a multiple pathways, total exposure hazard index (HI) could be used to communicate non-cancer risks expressed thus [22]:

\[
HI = \sum_{i=1}^{n} \frac{HI(Exposure\, Pathway\, 1)}{HI(Exposure\, Pathway\, 1)}
\]

(6)

\[HI \leq 1, \text{ the assumption is that no chronic risks will occur, but } HI > 1, \text{ non-cancer risks are possible.}\]

The Incremental Lifetime Cancer Risk (ILCR) is the probability of an individual developing cancer in his lifetime when exposed to potential carcinogens. Calculated with [22]:

\[
\text{Incremental lifetime cancer risk } = CDI_{ing} \times \text{BIF} \times \text{DAF} \times \text{SLF}
\]

(7)

Where SLF is known as the cancer slope factor, in this study,
4. Results

The heavy metal concentration (mg/kg) in Table 1 shows the level of cadmium, chromium and nickel from scrapped car paint in different workshop in the Southeastern Nigeria as follows: workshop F has the highest concentration of Cd (3.58 ± 0.02), followed by workshop D (3.36 ± 0.04), that of workshop B (2.27 ± 0.07), workshops E, G, A, C and H are as follows (2.54 ± 0.04, 2.37 ± 0.08, 2.25 ± 0.003, 2.03 ± 0.10 and 1.95 ± 0.03) respectively. The concentration (mg/kg) of chromium in workshops G (2.95 ± 0.06), F (2.87 ± 0.04), C (2.84 ± 0.03), D (2.63 ± 0.03) which were higher than those of workshops E (2.48 ± 0.04), B (2.45 ± 0.03), A (2.43 ± 0.02) and H (2.29 ± 0.02) while the highest concentration (mg/kg) of nickel is from workshop A (3.84 ± 0.04), followed by workshops F (3.52 ± 0.01), D (3.34 ± 0.03), B (3.30 ± 0.02), C (3.23 ± 0.07). The least values were in workshops G (2.88 ± 0.02), H (2.78 ± 0.04) and E (2.75 ± 0.03). Table 1 also shows the highest soil cadmium values of 3.63 ± 0.03 and 3.93 ± 0.01 (mg/kg) at workshops D and F, highest soil chromium values of 3.53 ± 0.02 and 3.45 ± 0.02 in workshops F and G. Highest soil nickel concentration of 4.31 ± 0.01 and 4.57 ± 0.01 (mg/kg) were in workshops A and F. Range of heavy metal in surface water were Cd (Nd-0.03), Cr (Nd-0.05), Ni (Nd-0.03) while that of borehole water were Cd (Nd-0.02), Cr (Nd-0.01) and Ni (Nd-0.02).

Table 2 shows the chronic daily intake from exposure to cadmium, chromium and nickel through ingestion, inhalation and dermal contact exposures in adults and also the hazard quotient from the different exposure pathways. The highest exposure pathway for the three metals (cadmium, chromium and nickel) is through inhalation with a range (1.85E-03 – 3.65E-03), ingestion (4.11E-07 - 8.10E-07) and dermal (9.86E-08 – 1.0E-07). The highest hazard quotient through ingestion, inhalation and dermal exposures in adults were workshop F (3.98E-05), workshop F (1.79E-01) and workshop F (5.29E-06).

Table 3 shows the chronic daily exposure to Cd, Cr and Ni in children through inhalation, ingestion and dermal routes. The highest exposure pathway in children is through inhalation with a range of (3.32E-03 – 6.53E), ingestion (3.84E-06 – 7.56E-06) and dermal (1.26E-08 – 2.47E-08). The highest values for hazard quotient through ingestion, inhalation and dermal exposures in children were 3.72E-04 (workshop F), 3.21E-01 (workshop F) and 1.61E-06 (workshop F).

Table 4 shows hazard index for cadmium for both adult and children through inhalation were 1.043 and 1.869 respectively, when cadmium, chromium and nickel are added (linear summation), the values were 1.469 and 2.631, and these values were above one [1], thereby making exposure through inhalation very hazardous. Total linear exposure for adult (children) through ingestion and dermal routes were 3.263E-04 (3.036E-03) and 4.335E-05 (1.967E-05), these were below one [1] and does not constitute health hazard.

Table 5 the total hazard index (HI) of the three heavy metal from exposure to scrap car paint dusts. The adult is highest in the range of 4.82E-06 – 1.64E-01, that of children 1.11E-06 – 2.93E-01 (workshop A). Adult and children range were 5.53E-06 – 1.88E-01 and 1.27E-06 – 3.36E-01 (workshop B). The highest for adult and children in workshop...
Table 1
Showing Metals Levels (mg/kg; mg/l) of Scrapped Car Paint Dust, Workshop Soil and Water Samples.

WKS	Bearing Cd SD Cr SD Ni SD	WKS = Workshops; [N = 3]; SD = standard deviation; values in parenthesis are control of workshop soil; ND = not detected; SFW = surface water; BHW = borehole water.														
A6	0.21 (0.1), 3.14 (0.09)	0.012 (0.04)	0.09 (0.03)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)	0.029 (0.01)	0.01 (0.01)
B6	0.09 (0.03)	3.05 (0.09)	0.013 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)
C6	0.029 (0.01)	2.96 (0.09)	0.012 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)
D6	0.028 (0.01)	2.96 (0.09)	0.012 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)
F6	0.028 (0.01)	2.96 (0.09)	0.012 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)
G6	0.029 (0.01)	2.96 (0.09)	0.012 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)
H6	0.029 (0.01)	2.96 (0.09)	0.012 (0.04)	0.009 (0.03)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)	0.028 (0.01)	0.01 (0.01)

5. Discussions

In our first attempt at chronicling hazardous effect of non-cancer causing metals from scrapped car paint dust in Nigeria [20], literature search using PubMed, Scopus, Google Scholar and other online search engines show that our work may be first of its kind. The high concentration of carcinogenic heavy metals in this study is an important public health concern (Table 1). A careful look at Table 1, is evident that our work can add Cd, Cr and Ni to the environment. The health and environmental effect of heavy metals with regard to their concentration makes this important, for toxicity of heavy metals is mainly a function of concentration [34].

Global public health issue has led to restrictions in environmental protection in developed countries [35,36], but in Nigeria auto-panel workshops which has created direct and indirect job opportunities for self-employed young artisans through fairly used vehicular spare parts sales and repair, battery chargers, auto-painters, body work (panel-beating), auto-electricians, engine oil and diesel sales, car wash, tire pumping and repair, wheel balancing, taxi cab etc., implying that auto artisans may be exposed to carcinogenic heavy metals (Cd, Cr and Ni) are not regulated.

By inspection, it is evident that metal values of soil from all the workshops were higher than that of paint dust matrix (Table 1), this is despite the fact that soil heavy metal can percolate into the soil or may be affected by dilution factor from rain or redistribution by flood, this can be attributed to the fact that as vehicles are repaired and taken away, more are brought into the workshops for the same purpose, the workshop soil therefore keep accumulating these metals as against control samples taken 200 m away from the workshops, though with insignificant metal value. In water samples, in which heavy metals were detected, the levels in surface water were slightly higher than that of borehole (underground water), this may be attributed to the high filtering capacity of clay soil underlying the geologic formation of the study area [37]. Established cadmium, chromium, and nickel are contacted from scrapped paint dust through ingestion, nose inhalation of mobile particles of paint dust and absorption of these heavy metals by skin adhered dust/particles (CDIing, CDIinh, CDIdermal). Literatures of exposure pathway that could be used to compare with our study include: ingestion exposure [38–41]; skin and dermal exposures [42], inhalational (nose) exposure [43,44], and the findings of this study can...
Table 2
Health risk from heavy metals exposure in adults from scrapped car paint dust (n = 56 samples, n = 7 samples from each workshop).

Workshops	CDI	Mg/kg day⁻¹	HAZARD	QUOTIENT (HQ)			
A	Cadmium	Chromium	Nickel	Cadmium	Chromium	Nickel	
Inhalation	2.14 E-03	2.31 E-03	3.65 E-03	1.13 E-01	4.49 E-02	5.9 E-03	
Ingestion	4.75 E-07	5.13 E-07	8.10 E-07	2.51 E-05	9.96 E-06	1.31 E-06	
Dermal	6.3 E-08	6.80 E-08	1.08 E-07	3.36 E-06	1.32 E-06	1.74 E-07	
B	Inhalation	2.6 E-03	2.32 E-03	3.14 E-03	1.37 E-01	4.52 E-02	5.08 E-03
Ingestion	5.78 E-07	5.17 E-07	6.96 E-07	3.05 E-05	1.0 E-05	1.12 E-06	
Dermal	7.67 E-08	6.86 E-08	9.24 E-08	4.05 E-06	1.33 E-06	1.49 E-07	
C	Inhalation	1.93 E-03	2.69 E-03	3.07 E-03	1.01 E-01	5.24 E-02	4.97 E-03
Ingestion	4.28 E-07	5.99 E-07	6.82 E-07	2.26 E-05	1.16 E-05	1.11 E-06	
Dermal	5.68 E-08	7.95 E-08	9.04 E-08	3.0 E-06	1.55 E-06	1.44 E-07	

RfDO = Cd (0.0005); Cr (0.005); Ni (0.02); BAF = Cd (52.8); Cr (5.83); Ni (32.4).

Table 3
Health risk from heavy metals exposure in Children from scrapped car paint dust (n = 56 samples, n = 7 samples from each workshop).

Workshops	CDI	Mg/kg day⁻¹	HAZARD	QUOTIENT (HQ)			
A	Cadmium	Chromium	Nickel	Cadmium	Chromium	Nickel	
Inhalation	3.83 E-03	4.13 E-03	6.53 E-03	2.02 E-01	8.03 E-02	1.06 E-02	
Ingestion	4.43 E-06	4.79 E-06	7.56 E-06	2.34 E-04	9.3 E-05	1.23 E-05	
Dermal	1.44 E-08	1.57 E-08	2.47 E-08	7.65 E-07	3.04 E-07	1.11 E-06	
B	Inhalation	4.66 E-03	4.17 E-03	5.61 E-03	2.46 E-01	8.09 E-02	9.09 E-03
Ingestion	5.39 E-06	4.83 E-06	6.5 E-06	2.64 E-05	1.21 E-05	9.84 E-07	
Dermal	6.64 E-08	8.26 E-08	8.06 E-08	3.50 E-06	1.60 E-06	1.31 E-07	
C	Inhalation	2.25 E-03	2.81 E-03	2.74 E-03	1.19 E-01	5.45 E-02	4.43 E-03
Ingestion	5.0 E-07	6.22 E-07	6.08 E-07	2.64 E-05	1.21 E-05	9.84 E-07	
Dermal	6.64 E-08	8.26 E-08	8.06 E-08	3.50 E-06	1.60 E-06	1.31 E-07	
D	Inhalation	5.71 E-03	4.87 E-03	5.68 E-03	3.02 E-01	8.69 E-02	1.99 E-03
Ingestion	6.62 E-06	5.18 E-06	6.58 E-06	3.49 E-04	1.0 E-04	1.07 E-05	
Dermal	2.16 E-08	1.69 E-08	2.15 E-08	1.14 E-06	3.29 E-07	1.51 E-06	
E	Inhalation	4.32 E-03	4.22 E-03	4.68 E-03	2.28 E-01	8.19 E-02	7.57 E-03
Ingestion	5.0 E-06	4.89 E-06	5.42 E-06	2.64 E-04	9.49 E-05	8.78 E-06	
Dermal	1.64 E-08	1.59 E-08	1.77 E-08	8.64 E-07	3.1 E-07	1.22 E-06	
F	Inhalation	6.09 E-03	4.88 E-03	5.98 E-03	3.21 E-01	9.48 E-02	9.69 E-03
Ingestion	7.05 E-06	5.65 E-06	6.93 E-06	3.72 E-04	1.09 E-04	1.12 E-05	
Dermal	2.31 E-08	1.85 E-08	2.27 E-08	1.22 E-06	3.59 E-07	1.61 E-06	
G	Inhalation	4.03 E-03	5.02 E-03	4.89 E-03	2.13 E-01	9.74 E-02	7.93 E-03
Ingestion	4.67 E-06	5.81 E-06	5.67 E-06	2.47 E-04	1.13 E-04	9.19 E-06	
Dermal	1.53 E-08	1.89 E-08	1.85 E-08	8.06 E-07	3.69 E-07	1.21 E-06	
H	Inhalation	3.32 E-03	3.89 E-03	4.73 E-03	1.75 E-01	7.56 E-02	7.66 E-03
Ingestion	3.84 E-06	4.51 E-06	5.48 E-06	2.03 E-04	8.77 E-05	8.87 E-06	
Dermal	1.26 E-08	1.47 E-08	1.79 E-08	6.63 E-07	2.87 E-07	9.79 E-07	
compromise body immunity (Tables 1–3). Heavy metals can accumulate and build up in cells, bones, glands and hair [45]. Scrap car paint dusts, soil aerosols and fugitive dust laden heavy metals less than 10μm been tiny, microscopic and less dense than air can travel far and wide (distance covered is dependent on meteorological condition of geographical area) and when inhaled can be trapped in the trachea-bronchial and alveolar-bronchial system, but infiltration of inhaled particles into air-track has an inverse relation with particle size for those greater than 0.5μm [46]. Biologic and physic-chemical factors influence the movement of settled particulates in the respiratory tract coupled with dissolution and movement into body fluid and blood by phagocytosis and simultaneous mobility with mucus [47], adhesion and dispersion process of accumulated particles differs at different section of the respiratory track [48].

The hazard indices of cadmium for children and adults through inhalation were 1.869 and 1.043, inferring health risk associated with scrap car paint dust. Total non-carcinogenic hazard indices (adult and children) for both ingestion and dermal contact are below the hazard threshold value of one [1] set by the US EPA [22,23] (Table 4). Although the values are minimal and suggest insignificant risk when singly considered but when the three exposure routes are summed up, as they may occur simultaneously, the effect can compromise public health.

The total hazard indices (Table 5) of the three heavy metal from scrap car paint dust reveal there may be reasonable level of toxicity through inhalation mostly in children followed by adult than through ingestion and dermal contact, this agrees with the work of Orisakwe and co-workers [18] wherein the respiratory abnormalities associated with occupational exposure to particulate insults in “Okada” (motorcycle) operators in Nigeria reveal serious health implications. Cadmium has no healthy body function but has been recognized as an endocrine disruptor for its adverse effect on reproduction [49], disruption of spermatogenesis in vivo and in laboratory animals [50] and binding with androgen and estrogen receptors [51], prostate and testicular toxicity and infertility [52,53]. There are reported cases of cognitive reduction with osteoporotic effect in aged sick resulting from presence of lead, a metal of charge similarity with cadmium, nickel, calcium (Pb+2, Cd+2, Ni+2, Ca+2) in the bloodstream implies bone defect [54,55]. Chromium (Cr+6) is not very toxic, hexavalent chromium (Cr+6) is carcinogenic, corrodes skin and causes denaturation and precipitation of tissue proteins [56]. Occupational exposure to chromium is mostly by inhalation, but gastrointestinal tract and skin can occur [57], hence respiratory tract is the primary target organ for Cr+6 and its compounds. Nickel is absorbed through the lungs [58,59], gastrointestinal tract [60] and skin [61], but excreted in the urine [62]. A careful look at our work, shows that it may be significant in public health issues through occupational exposure considering the work of occupational exposure considerations.

Table 4

	Cd	Cr	Ni	Total Hazard Index (THI)
Inhalation				
Adult	1.043	0.56	2.96E-02	1.469
Children	1.869	0.62	7.06E-02	2.63
Ingestion				
Adult	2.31E-04	8.57E-05	8.74E-06	3.26E-04
Children	2.15E-03	7.99E-04	7.17E-05	3.03E-03
Dermal				
Adult	3.08E-05	1.13E-05	1.16E-06	4.33E-05
Children	7.08E-06	2.62E-06	9.90E-06	1.90E-05

Table 5

| Total hazard index (HI) of three heavy metals from exposure to car paint dust. |
|---------------------------------|--------|--------|--------|--------|
| **Table 5** | | | | |
| **Workshops** | | | | |
| **Inhalation** | | | | |
| Adult A | 1.64E-01 | 3.63E-05 | 4.82E-06 | |
| Children B | 2.93E-01 | 3.93E-04 | 1.11E-06 | |
| **Ingestion** | | | | |
| Adult C | 1.88E-01 | 4.17E-05 | 5.53E-06 | |
| Children D | 3.36E-01 | 3.89E-04 | 1.27E-06 | |
| **Dermal** | | | | |
| Adult E | 1.59E-01 | 3.54E-05 | 4.69E-06 | |
| Children F | 2.85E-01 | 3.3E-04 | 1.08E-06 | |
| **Table 6** | | | | |
| Incremental Lifetime Cancer Risk (ILCR) for adult and children from three metals in scrapped car paints in Southeastern Nigeria. |
Carcinogenic metal	Route of exposure	A	B	C	D	E	F	G	H
Cadmium	Ingestion	8.31E-4	9.88E-4	7.33E-4	1.21E-3	9.16E-4	1.29E-3	8.55E-4	7.03E-4
	Adult	1.46E-3	1.77E-3	1.31E-3	2.17E-3	1.64E-3	2.31E-3	1.53E-3	1.26E-3
	Children	1.81E-7	2.19E-7	1.63E-7	2.69E-7	2.04E-7	2.87E-7	1.98E-7	1.56E-7
	Dermal	1.65E-6	2.05E-6	1.52E-6	2.52E-6	1.90E-6	2.68E-6	1.77E-6	1.46E-6
Chromium	Ingestion	2.39E-8	2.91E-8	2.16E-8	3.58E-8	2.70E-8	3.8E-8	2.52E-8	2.07E-8
	Adult	5.47E-9	6.73E-9	4.98E-9	8.21E-9	6.23E-9	8.78E-9	5.81E-9	4.79E-9
	Children	1.16E-3	1.16E-3	1.35E-3	1.25E-3	1.18E-3	1.37E-3	1.41E-3	1.09E-3
	Dermal	2.07E-3	2.09E-3	2.42E-3	2.24E-3	2.11E-3	2.44E-3	2.51E-3	1.95E-3
	Adult	2.57E-7	2.59E-7	2.99E-7	2.78E-7	2.62E-7	3.03E-7	3.11E-7	2.42E-7
	Children	2.39E-6	2.42E-6	2.79E-6	2.57E-6	2.45E-6	2.83E-6	2.91E-6	2.26E-6
	Dermal	3.40E-8	3.43E-8	3.98E-7	3.68E-8	3.47E-8	4.02E-8	4.13E-8	3.21E-8
	Children	7.85E-9	7.90E-9	9.15E-9	8.45E-9	7.95E-9	9.25E-9	9.45E-9	7.35E-9
Orisakwe et al [17] and that of Vitayavirasuk et al [63] which shows that subjects exposed to heavy metal in a paint factory and automobile paint spray may have compromised health status.

Table 6 shows the possibility of exposed subjects developing cancer from lifetime exposure to carcinogenic metals. Cadmium and chromium in children and adult are at a higher risk through inhalation but children are marginally at risk than adult through ingestion, dermal contact does not constitute threat been below the regulatory range of 1 × 10^{-6} to 1 × 10^{-4} [32]. Hazard index (HI) is the total calculated hazard quotients (HQ) and greater than 1 show that non-carcinogenic effects may occur but lower than one [1] shows no significant risk of non-carcinogenic effect, higher HI value means the occurrence of non-cancer effect [27], several studies have linked cadmium, chromium, arsenic, lead and other heavy metals to cancer, diabetes, osteoporosis, bronchiitis, respiratory and pulmonary symptoms, allergic effect, nephrotoxicity, keratoconjunctivitis, cardiovascular disease, neuroendocrine disruption, hypertension and infertility [6-10,12,49,64].

In conclusion, the artisans and the resident population working or residing near auto-panel workshops may be exposed to heavy metal or chemical risk, that may be associated with scrap car paint dust. The findings here correlates with other literature [68,69] that despite advantages automobile transportation offers to the populace, it surely has negative public health impact. This work amongst others [16,18] is an indication that occupational and direct local exposures [70] is the most self-evident scenario of heavy metal or chemical risk, that may be associated with scrap car paint dust.

In Conclusion, the artisans and the resident population working or residing near auto-panel workshops may be exposed to heavy metal risks, from car paint dust matrix and this can compromise their body immunity.

Conflict of interest

The authors hereby state that they do not have any conflict of interest with regards to research article.

Acknowledgement

The funding is the Federal Government of Nigeria, through its agency, the tertiary education trust fund (TET FUND) covering 2016-2017 (merged) institutional based research projects (RP) intervention.

References

[1] N. Mbawike, 7 Million Vehicles Operate on Nigeria Roads FRSC Leadership Nigerian Muse, (2007) [Assessed March 10, 2016], http://www.nigerianmuse.com.
[2] S. Kalpakjian, S.R. Schmidt, Manufacturing Engineering and Technology, 5th ed., Pearson Prentice Hall, Chicago, 2006, pp. 156-210.
[3] J. Hirsch, “Automotive trends in aluminium-The European perspective”, Mater. Forum 28 (2004) 17-21.
[4] C.M. Ojahjwara, P.M.V. Bodegum, M.G. Vijeer, W.J.G.M. Peiijnenburg, Environ. Health 18 (2013) 385–394.
[5] V.N. Kyere, Environmental and Health Impacts of Informal E-waste Recycling in Agbogbloshie, Accra, Ghana: Recommendations for Sustainable Management, A Phd dissertation, Rheinischen Friedrich-Wilhelms-Universit鋞, Bonn, Germany, 2016.
[6] C.Barbure J.P. Buchet, A. Leroyer, N. Catherine, J.M. Huguenoer, A. Mutti, Z. Smerhovsky, M. Cikiri, M. Trzcinka-ochikei, G. Razniewska, M. Jakubowski, Respiratory and neurological effects of cadmium, lead, mercury and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels, Environ. Health Perspect. 114 (2006) 117–121.
[7] A. Akeson, T. Lundh, M. Vaher, P. Bjellerup, J. Liefledt, C. Berndr, S.U. Goran, S. Staffen, Tubular in Swedish women with low environmental cadmium exposure, Environ. Health Perspect. 113 (2005) 1627–1631.
[8] A. Bernard, Cadmium and its adverse effects on human health, Indian J. Med. Res. 128 (2008) 557–564.
[9] A. Bernard, Renal dysfunction induced by cadmium; Biomarkers of critical effects, Biomets 17 (2004) 519–523.
[10] L.M. Bradshaw, D. Fishwick, T. Slater, N. Pearce, Chronic bronchitis, work related respiratory symptoms and pulmonary function in welders in New Zealand, Occup. Med 55 (1995) 150–154.
[11] D.G. Baciloux, “Chromium”, Clin. Toxicol. 37 (2) (1999) 173–194.
[12] A.D. Dayan, A.J. Paine, Mechanisms of Chromium toxicity, carcinogenicity and allergenicity: Review of the Literature from 1985 to 2006, Hum. Exp. Toxicol. 20 (9) (2001) 439-451.
[13] K.K. Das, S.W. Das, S.A. Dhundasi, Nickel, its adverse effects and oxidative stress, Indian J. Med. Res. 128 (2008) 412–425.
[14] A.D. Gupta, A.M. Patil, T.G. Ambekar, K.K. Das, L-ascorbic acid protects the anti-oxidant defense system in nickel-exposed albino rat lung tissues, J. Basis Clin. Physiol. Pharmacol. 17 (2006) 87–100.
[15] C.N. Unachukwu, D.D. Agamuo, Pattern of non-communicable diseases among medical admissions in Port-Harcourt, Nigeria, Niger. J. Clin. Pract. 11 (1) (2008) 14–17.
[16] J.K. Nduka, C.J. Nwara, T.E. Ezenwa, Occupational exposure to lead poisoning: a public health concern, 31st International Annual Conference of Chemical Society of Nigeria, 22nd-26th September, Book of Proceedings, (2008), pp. 695-697.
[17] O.E. Orisakwe, E. Nwachukwu, H.B. Osadalor, O.J. Afonne, C.E. Okocha, Liver and kidney function tests amongst paint factory workers in Nkpor, Nigeria, Toxicol. Ind. Health 23 (3) (2007) 161–163.
[18] O.E. Orisakwe, C.E. Dike, E.O. Nwobodo, V.C. Okomkwo, I.C. Anike, A.O. Enendu, Respiratory abnormalities associated with occupational exposure to particulate insults in “Okada” (Motorcycle) Operators in Nnewi, Nig. Med. Prct 32 (1996) 36–38.
[19] American Conference of Governmental Industrial Hygienists (AGIHI), Particle Size-Selective Sampling in the Workplace: Report of the AGIHI Technical Committee on Air Sampling Procedures AGIHI, Cincinnati, (1985), pp. 65-76.
[20] J.K. Nduka, J.O. Amuka, J.C. Onwuka, N.A. Udowelle, O.E. Orisakwe, Human health risk assessment of lead, manganese and copper from scrapped car paint dust from automobile workshops in Nigeria, Environ. Sci. Pollut. Res. (2016), https://doi.org/10.1007/s11356-016-7219-7.
[21] US EPA, Soil Screening Guidance: Technical Background Document, EPA/540/1-95/128; Office of solid Waste and Emergency Response, 1996.
[22] US EPA, Risk Assessment Guidance for Superfund, Volume 1: (Part a: Human Health Evaluation; Part b, Supplemental Guidance for Dental Risk Assessment; Part F, Supplementary Guidance for Inhalation Risk Assessment) (EPA/540/1-89/022), (2011).
[23] US EPA, Section 2.4.1-1pages 51589-51590 of the HRS Rule, (2011) [Assessed 08 Oct 2014] http://www.epa.gov/harmsite/p24/.../.
[24] R. Van den Berg, Human Exposure to Soil Contamination: A Qualitative Analysis Towards Proposals for Human Toxicology Intervention Values. RIVM Report No. 725201011 National Institute of Public Health and Environmental Protection (RIVM) Bilthoven, The Netherlands, 1995/http://www.rivm.nl, bibliotheekrappenburg.725201011.html.
[25] X. Hu, Y. Zhang, J. Luo, T. Wang, H. Lian, Z. Ding, Bioaccessibility and health risk of arsenic, mercury and other heavy metals in urban street dusts from a mega city, Nanjing China, Environ. Pollut. 159 (5) (2011) 1215–1221, https://doi.org/10. 1016/j.envpol.2011.03.003.
[26] N. Zheng, J. Liu, Q. Wang, Z. Liang, Health risk assessment of heavy metal exposure
