A comparative study on insect longevity: tropical moths do not differ from their temperate relatives

Sille Holm1,2,3 · Ants Kaasik1,3 · Juhan Javois1,3 · Freerk Molleman2,3 · Erki Ūnap1,3 · Toomas Tammaru1,3

Received: 4 July 2021 / Accepted: 11 December 2021 / Published online: 7 January 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Comparative studies on insects can significantly contribute to understanding the evolution of lifespan, as the trait can feasibly be measured in a high number of species. If the evolutionary determinants of longevity were mainly extrinsic (ecological), related species from different habitats should systematically differ in individual lifespans. We recorded adult longevities for 110 species of geometrid moths from a tropical community and paralleled the lifespans in this tropical assemblage with a temperate counterpart. Comparative analyses using an original phylogenetic reconstruction revealed that in the studied tropical assemblage, larger moth species tended to live longer, and that females had slightly shorter lifespans than males. Average adult lifespans in tropical geometrids, and the relationships of lifespan with other variables, were found to be highly similar to those reported for their temperate region relatives. The among-region similarity leads to the conclusion that intrinsic (physiological) determinants of longevity dominate over extrinsic (ecological) ones: the contrasting environments of tropical and temperate forests have hardly produced differences in moth longevities.

Keywords Ageing · Insect · Lepidoptera · Lifespan · Longevity · Phylogenetic comparative methods

Introduction

Longevity is certainly one of the most intensively studied life history traits. Quite understandably, research on human lifespan has received the most attention (Kirkwood 2005; Hulbert et al 2007; Aravinthan 2015; Beaulieu et al 2015; Ziegler et al 2015). Beyond that,
studies of ageing have largely been limited to just a few other model organisms (Ricklefs 2008; Austad 2010; Jones et al 2014). Focussing on a few profoundly known taxa is indispensable in studies on the mechanistic basis of the ageing process. In some contrast, the interpretation of ageing-related phenomena in the context of adaptive evolution requires comparing numerous different organisms which differ both with respect to longevity, and selective environment moulding the values of this trait. Comparative studies of longevity are now facilitated by the increasing availability of reliable phylogenetic reconstructions. Nevertheless, the potential of this direction of research appears to be clearly underused (Holmes and Kristan 2008; but see e.g. Minias and Podlaszczuk 2017; Wilkinson and Adams 2019).

Among-species differences in longevity may be viewed as caused by a combination of intrinsic or ‘physiological’ factors and extrinsic or ‘ecological’ factors. The ‘physiological explanation’ primarily views longevity as a side effect of body size. It is widely acknowledged that longevity is positively correlated with body size across species in vertebrate animals (Aristotle 350 BC; Prothero and Jürgens 1987; Healy et al 2014 and references therein; Scharf et al 2015; Stark and Meiri 2018). Among the proposed causal explanations to this pattern, the negative size-dependence of metabolic rate appears to be the most general one (McMahon 1973; Reich et al 2006).

According to the ‘ecological explanation’, longevity has primarily been shaped by the patterns of extrinsic mortality. Ageing arises in evolution through relaxed selection against harmful traits which are expressed in the phenotype at ages rarely reached in nature. This evolutionary process can be enhanced by positive effects of such traits on fitness attained earlier in life (Medawar 1952; Williams 1957; see also Kirkwood and Austad 2000; Reznick et al 2004; Chen and Maklakov 2012; Kimber and Chippindale 2013). Spatial and temporal distribution of the resources may have an additional role. In particular, organisms living under unpredictable conditions, e.g. species of harsh environments where the periods of favourable weather may be transient and the sources of food unstable, are to invest little resources in their own survival (Vinogradov 1998). Such animals are therefore expected to be shorter-lived (Peterson and Nilssen 1998) and to have a less durable physiological design. Contrary to that, species from more stable environments with more abundant adult food sources may evolve extended longevity because they are not limited by stored reserves (Dunlap-Pianka et al 1977; Carey 2001; Molleman et al 2009).

The extraordinary diversity of insects remains little used in phylogenetic comparative studies (Mayhew 2018), perhaps largely due to scarcity of comparable data. This also applies to studies on longevity. Indeed, gathering comparable data of insect lifespans under natural conditions for global multi-species analyses appears nearly impossible due to the typically small body size and high mobility of these animals (see also Zajitschek et al 2020). It is also nearly impossible to establish thriving populations of many insect species in the laboratory to measure lifespan in captivity. These problems can be mitigated by recording lifespans of wild-caught individuals in a controlled laboratory environment (Carey et al 2008; Holm et al 2016).

The few available comparative studies on insect longevity have had their main focus on the relationship between body size and adult lifespan. Such studies have thus primarily addressed the physiological explanation of longevity. Beck (2008) detected a weak positive effect of body size on adult longevity in rainforest butterflies, Holm et al (2016) reported that larger geometrid moths live longer, while others have failed to find an effect of body size in some other lepidopterans (Jervis et al 2007b), hymenopteran parasitoids (Blackburn 1991), and odonates (Sherratt et al 2011). Addressing the ecological determinants of longevity in insects appears to be rare (see, however, Jervis et al 2007b; Beck and Fiedler
In an earlier study, we failed to detect the predicted effects of ecological factors such as the degree of host-plant specialisation and phenology (Holm et al. 2016). However, the power of our analyses might have been low due to the limited variation in the values of the environmental parameters used as predictors (the study was restricted to species of the temperate forest zone). There should be a stronger potential for revealing the ecological effects when the geographical scope of the comparisons was extended, e.g. by including species from different climate zones. This would allow us to test directional hypotheses at the level of comparisons among biomes.

Tropical versus temperate habitats may select for different longevity for several reasons. Predation is the primary ecological factor suggested to shape longevity, and predation pressure on insects has been shown to increase towards lower latitudes (Roslin et al. 2017). However, other factors, such as stable supply of adult food (nectaring plants, fruits; Chapman et al. 1999) might facilitate the evolution of longer adult lifespans in the Lepidoptera of tropical regions (see e.g. Molleman et al. 2007). In addition, the patterns of specialisation in larval resource use may exert selective pressures on longevity—the adults may need long lives to be able to locate larval hosts which are scarce in the environment (Carey 2001; Prinzing 2003; Jervis et al. 2007a). Higher larval host-plant specificity in the tropics (compared to temperate areas) has been reported for Lepidoptera (Dyer et al. 2007; Forister et al. 2015; see, however, Holm et al. 2019b). Accordingly, in the tropics, we should expect stronger selection towards longer lifespans, imposed by the challenge of locating host plants among the diverse tropical vegetation.

In the present study, we measured post-capture adult lifespan for 110 species of tropical geometrid moths (Lepidoptera: Geometridae). Species richness, the rapidly accumulating phylogenetic information (Sihvonen et al. 2011, 2020; Murillo-Ramos et al. 2019, 2021) and feasibility of recording life-history traits in the laboratory makes this family of insects a promising target group for large-scale comparative analyses (Holm et al. 2016, 2018; Heidrich et al. 2018). We tested for the effects of body size and sex on lifespans of the moths, using wing wear and lab temperature as covariates. An original phylogenetic reconstruction (Holm et al. 2018, 2019b) was used to facilitate the comparative analysis. Further, we involved a comparable data set on longevity of temperate species (Holm et al. 2016) to test for among-region differences. The results are discussed in the light of the physiological and ecological explanations for species-specific values of lifespan.

Material and methods

Lifespan data

Residual (=post-capture) lifespans of 734 wild-caught adults (358 females, 376 males) representing 110 tropical rainforest geometrid moth species were measured under the close-to-ambient laboratory conditions at the Makerere University Biological Field Station in Kibale National Park (795 km², 900–1590 m a.s.l.) in Uganda, East Africa (01ºN, 30ºE). The study area represents species-rich, medium-altitude, moist, evergreen tropical primary forest (Struhsaker 1997). Moths were collected as adults by light trapping in the years 2011–2013. Sampling days (N = 141) were widely scattered over the study period to cover flight periods of different species. Samples were collected non-selectively, i.e. without regard to the physical condition of each individual. Collected moths were immediately
placed individually in 50 ml or 100 ml transparent vials, depending on the individual’s size. The moths were kept in the vials in the laboratory at ambient temperature; temperature was recorded hourly. The average temperature an individual experienced over its lifetime was 21.5 °C (maximum 24.3 °C; minimum 19.4 °C). The moths were provided with food: 10% sugar solution offered on immersed tissue paper. Once per day, the tissue paper was moistened with water; sugar solution was added again in a week from the start of the experiment. Windows of the laboratory were covered with shades to darken the room. This was necessary to prevent escape flight towards the light and concurrent exhaustion which might have reduced lifespan. The survival status of each moth was recorded on a daily basis. The moths were identified based on external traits (coll. Herbulot at the Zoological Museum of Munich was consulted), genitalia dissection and/or DNA barcoding, see Holm et al. (2018) for further details. Any moths which failed to be reliably identified were considered conspecific if there was a less than 2% difference in barcode sequences. The specimens are stored at the facilities of the Department of Zoology, University of Tartu. Male forewing length, defined as the distance between basal tip and apex of the forewing, was measured from intact wild-caught specimens used in the experiments, supplemented by the collection of Ugandan geometrid moths at the University of Tartu. We could not obtain estimates of mean wing lengths for 46 species used in the experiments. This is because many individuals bore damaged wings by the end of their lives. For more than such 30 taxa, we were not able to reliably assign Latin binomials either, which prevented us from using external sources to fill in the gaps. Consequently, species with missing wing length data could not be included in the analyses involving the index of body size. However, 33 of such species were represented by just a single individual in our data. This implies that the effect of missing data was disproportionately low in our analyses which relied on weighing data points by sample sizes (see below). Temperature was included in the analyses as the mean temperature an individual experienced over its lifetime in the laboratory. Wing wear, a proxy of the moth’s age at capture (Javoiš and Tammaru 2004), was recorded as a binary trait (1: a pristine individual, 2: noticeable loss of scales). We further involved data on the longevity of temperate (Estonian) geometrids (43 species, 1281 individuals), obtained in an experiment with a similar design (described and analysed in Holm et al 2016). There was a methodological difference between the two data sets, however: the moths in Estonia were kept in thermoregulated chambers at two constant temperatures (15 °C and 23 °C), whereas this was not possible in Uganda.

Phylogenetic comparative analyses

The phylogenetic tree for subsequent comparative analyses was constructed on the basis of data extracted from GenBank (Wahlberg et al 2005, 2010; Snäll et al 2007; Viidalepp et al 2007; Wahlberg and Wheat 2008; Õunap et al 2008, 2011, 2016; Mutanen et al 2010; Strutzenberger et al 2010; Hausmann et al 2011; Sihvonen et al 2011; Holm et al 2016), which, with respect to the Ugandan species, was largely based on earlier work of the authors (Holm et al 2018, 2019a). The final data matrix comprised 373 taxa (of which 211 taxa represented the Ugandan fauna) and 6543 base pairs from eight markers: cytochrome oxidase subunit 1 (COI), elongation factor 1 alpha (EF-1a), wingless (wgl), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S5 (RpS5), isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH) and carbamoyl
phosphate dehydrogenase (CAD). All sequences were aligned using ClustalW (Thompson et al 1994) in BIOEDIT 7.2.5 (Hall 1999).

The ultrametric tree required for subsequent statistical analysis was obtained in a two-step procedure (see Holm et al. 2018, and Appendix 5 for further details). First, four separate trees were created so that each of them had the focus on one of the principal subfamilies of Geometridae (Larentiinae, Sterrhinae, Geometrinae and Ennominae; see Appendices 6abcd). These time-calibrated ultrametric trees were constructed using BEAST 1.8.1 (Drummond et al 2012) on the CIPRES Science Gateway (Miller et al 2010) using calibration points taken from Wahlberg et al (2013). All these trees shared at least 22 taxa which facilitated combining them into a single 373-taxa ultrametric tree using the consensus.edges function from the R package phytools (Revell 2012). The constructed tree (Appendix 6) was then pruned for the purposes of statistical analyses based on the availability of longevity data (Appendix 1).

To identify the factors associated with species-specific values of adult lifespan in Ugandan Geometridae, we implemented trait-specific GLM models that accounted for phylogenetic autocorrelation. Body size, sex, wing wear, and temperature were the predictors considered in the analyses. As the number of individuals per species was highly variable, we chose a method of analysis which weighs data points (species, in our case) by sample sizes (individuals used in the experiment). Accordingly, we used analyses relying on Bayesian inference implemented in the R package rstan (Stan Development Team 2016; see Appendix 3 and Holm et al 2018, 2019a, for details). Due to the Bayesian framework, the impact of the predictors of longevity was assessed on the basis of examination of its credible interval (Table 1). The same statistical approach was applied in a further analysis in which longevity of tropical and temperate geometrids was compared. This analysis had to be limited to the subfamily Ennominae for the reason of reducing the sample to manageable size (the applied Bayesian analyses are extremely demanding in terms of computing time). Ennominae was chosen as the largest subfamily in the data set (65% of Ugandan species), and also as the only one in which both Ugandan and Estonian species are well represented (Appendix 2).

Table 1	Determinants of moth lifespan in the tropical region (Uganda, N = 654 individuals) based on a four-way phylogenetically informed GLM analysis relying on Bayesian inference (R package rstan)	
Model parameter	Estimate	95% Credible interval
Intercept	2.386	(0.365; 3.815)
Temperature	−0.082	(−0.116; −0.050)
Sex: Female	−0.250	(−0.334; −0.169)
Wing wear: worn	−0.196	(−0.307; −0.087)
Male wing length (mm)	0.029	(0.010; 0.049)

The baseline for categorical model parameters are: a) sex: male; b) wing wear: pristine individuals; other categories are compared against the baseline categories. Estimates for 95% credible intervals of the posterior distribution of the difference which do not contain zero provide support for the model parameter: the effects of all the factors included in the model are supported.
Results and discussion

For a number of Ugandan geometrid moth species, post-capture lifespans were measured in the laboratory. Although the recorded residual lifespans do not directly represent the full potential of adult longevity, such values are still informative for comparative purposes (see Carey et al 2008 and Holm et al 2016 for discussion). The sample of 110 species included 3 species from the subfamily Larentiinae; 72 species from Ennominae; 10 species from Sterrhinae; 26 species from Geometrinae. While the maximum sample size per species was 153 individuals, for many species we had only a few specimens and there were 43 singletons. On average, the moths lived for 5.1 days (maximum was 17 days for a Cleora subcincta (Warren, 1901) female) in the laboratory. For females, mean lifespan was 4.4 days (median 4 days); for males, mean lifespan was 5.8 days (median 6 days). On average, individuals in a pristine condition lived 1.31 times longer than the individuals with worn wings. When the lifespans of worn individuals were adjusted for wing wear (multiplied by 1.31, the average ratio across the data set), the average lifespan calculated over species means was 5.9 days (median 6 days; maximum 13.1 days; minimum 2.0 days).

These values are very close to those recorded for temperate (Estonian) geometrid moths (average over species means 6.7 days, median 6.8 days; Holm et al 2016, see also Fig. 2). For the subfamily Ennominae, subjected to a formal analysis of the effect of region (Uganda vs. Estonia), the difference in lifespan was estimated to equal exactly zero (Table 2). In concert with the cross-region similarity of the mean values, we detected no species with extraordinary long lifespans among tropical geometrid moths, which is in contrast to the pattern in butterflies (Molleman et al 2007).

The among-region similarity is in disagreement with some a priori expectations. Undeniably, the tropical environment is climatically more stable and offers more steady availability of adult food (nectaring plants, fruits; Chapman et al 1999) in comparison with the temperate region. This stability could be seen as permissive for the evolution of long adult lifespans. It might be hypothesized that selection caused by high predation pressure in tropical environments (Roslin et al 2017) balances the positive impacts of resource and climate stability, leaving therefore the net outcome of adult lifespan similar to that in the temperate zone. Indeed, predator-mediated selective forces are expected to play a substantial role in Geometridae, as these moths typically lack chemical defences and/or mimicry, or the ability to outperform their predators in flight speed (see also Holm et al 2016 for further discussion). Such a high vulnerability is in contrast to the situation with many butterflies (Molleman et al 2019). This may partly—complementary to the adaptations to fruit feeding (Beck and Fiedler 2009; Molleman et al 2009)—explain the existence of long-living

Table 2 The effect of geographical location (Estonia vs Uganda, N=1935 individuals) on moth lifespan based on Bayesian inference (R package rstan) for a subset of the data, the subfamily Ennominae

Model parameter	Estimate	95% Credible interval
Intercept	2.306	(0.137; 3.563)
Region: Uganda	0.000	(−0.113; 0.106)
Temperature	−0.067	(−0.073; −0.058)
Sex: Female	−0.014	(−0.079; 0.043)
Wing wear: worn	−0.284	(−0.343; −0.219)
Male wing length (mm)	0.009	(−0.006; 0.024)

See Table 1 for further details
Evolutionary Ecology (2022) 36:251–262

species among tropical representatives of this taxon (Molleman et al 2007), as opposed to the absence of those among studied geometrids. Estimates of adult mortality rates in the field are scarce for flying insects (see, however, Sang and Teder 2011; Tiitsaar et al 2013), and appear to be lacking for the tropical region completely, so that this hypothesis cannot be directly evaluated. However, the few warningly coloured diurnal geometrids in the Ugandan fauna (e.g. Cartaletis spp., not included in the present study) may offer a possibility to address this question via further comparative analyses.

Nevertheless, it appears rather unlikely that the putatively higher predation pressure in the tropics would exactly outweigh the stable availability of adult food there, and that this scenario applies for moths but not for butterflies. The similarity of adult lifespans of Estonian and Ugandan geometrids should thus rather be seen as a further piece of evidence of a limited role of ecological (vs. physiological) factors as determinants of species-specific longevities in insects (Holm et al 2016). Indeed, consistent with the ‘physiological hypothesis’, larger species in our tropical sample showed longer adult lifespans (Table 1; Fig. 1). The largest moths (Colocleora sp. nr. potaenia, 34 mm wing length, average lifespan 7.1 days) lived 1.8 times, or 3.2 days, longer on average than the smallest ones (Scopula sp. SH01, 9 mm, average lifespan 3.9 days). A twofold increase in a linear measure of body size approximately corresponded to 1.2-fold increase in lifespan (Fig. 1); not so much different from the 1.3-fold increase reported for temperate species (Holm et al 2016). It remains to be noted that no systematic difference in body sizes was found between Estonian and Ugandan geometrid moths (Holm et al 2019a), which implies that the size-dependence of lifespan does not directly interfere with the comparison of longevity among the regions.

Sex had a credible effect on lifespan, with females showing 1.3 times shorter lifespans on average than males (Table 1; Fig. 2). A sexual difference in lifespan is not unexpected, as the tasks which male and female insects have to accomplish during their lifetimes differ substantially (e.g. Tammaru et al 1996; Gotthard et al 2000; Hunt et al 2004). However, no sex difference was detected in the temperate data set (Holm et al 2016). Such an asymmetry might be related to the limited seasonality in Ugandan forests which results in overlapping generations of insects, in contrast to the strictly seasonal life cycles in the temperate climate. This could give the males more opportunities for multiple mating over

Fig. 1 Relationship between species-specific average lifespan and male wing length (mm). Each rectangle represents one species (N=64 species). The side lengths of the rectangles are proportional to the inverse of species-specific standard errors of respective variables. The indication of reliability is relative and should not be read against the scale on the axes. Non-phylogenetic linear regression line is added to visualise the results presented in Table 1.
an extended period of time (Tammaru et al. 1996). An among-region difference in selective pressures on female lifespan appears less likely, as Estonian and Ugandan moths do not differ in egg production strategies (capital vs. income breeding, Holm et al. 2019a), a major determinant of ecological traits in female moths (Davis et al. 2016).

On the other hand, the among-region similarity in female lifespan may be viewed as further support to the earlier conclusion that the degree of host-plant specialization in Geometridae is actually rather similar between the two studied regions (Holm et al. 2018, 2019b). Adult lifespan can be expected, and has been reported, to be negatively correlated with larval diet breadth (see Jervis et al. 2007b and references therein, but see also Beck and Fiedler 2009; Holm et al. 2016). The likely explanation is that higher degree of host specialization implies that the ovipositing female needs more time to find larval hosts. The challenge of locating the few suitable host-plant species from a dense and diverse vegetation should, if anything, lead to the evolution of prolonged female lifespans in the tropics. This was, however, not the case.

As expected, individuals that experienced higher average temperatures showed shorter adult lifespans (Table 1; Fig. 2). The effect of temperature was moderate, with roughly a 0.4-day decrease in lifespan per a 1-degree increase in average temperature experienced over the captive lifespan; the relationship was similar to that found in the temperate region (Fig. 2). It must be noted, however, that such quantitative between-region comparison should be treated with appropriate caution, because of methodological differences in measuring lifespans between the regions. Tropical moths were kept at ambient temperature (due to the lack of equipment in the tropics) whereas temperate species were housed in thermo-regulated climate chambers (Holm et al. 2016). Temperature was, however, accounted for in the comparative analyses to minimize temperature-caused differences. Even if this did not eliminate the potential bias caused by methodological differences completely, the qualitative conclusion appears straightforward: the tropical moths in our sample have rather similar adult lifespan patterns to their temperate relatives.

In summary, we found no evidence for extraordinary long lifespans in tropical geometrid moths. In particular, lifespans recorded for the tropical region were found not to differ considerably from those reported for the temperate region. A relationship between body
size and longevity—similar to the one for temperate moths—was confirmed at the among-species level. These observations provide evidence that physiological rather than ecological factors shape the evolution of longevity in geometrid moths. In a more general context, we believe that the present study adds to the examples of how comparative studies on species-rich taxa hold the potential to address questions on the evolution of senescence.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10682-021-10150-9.

Acknowledgements We thank Boniface Balyeganira, Francis Katuramu Kanywanii, Edith Mbabazi, Harriet Kesiime, Isaiah Mwesige and Swaibu Katusabe for their invaluable assistance in the field and in the laboratory. Mark Gimbutas helped with data analysis. We thank the Uganda Wildlife Authority (U.W.A.) and the Ugandan National Council for Science and Technology (U.N.C.S.T.) for permission to carry out the research. The authors declare that they have no conflict of interest. This work was supported by the Estonian Research Council Grant PRG741.

Authors’ contributions FM, TT, JJ and SH conceived and planned the experiment. SH and FM carried out the experiment. SH and AK analysed the data. EÖ constructed the phylogeny. SH and TT led writing the paper with all other authors contributing.

Funding This work was supported by the Estonian Research Council Grant PRG741.

Availability of data and material (data transparency) All the data are available in Appendix 1, Appendix 2, Appendix 3, Appendix 4, Appendix 5, Appendix 6, Appendix 6a – 6d.

Code availability (software application or custom code) Not applicable.

Declaration

Conflicts of interest The authors have no conflict of interest to declare.

Ethics approval (include appropriate approvals or waivers) Not applicable.

Consent to participate (include appropriate statements) Not applicable.

Consent for publication (include appropriate statements) Not applicable.

References

Aravinthan A (2015) Cellular senescence: a hitchhiker’s guide. Hum Cell 28:51–64
Aristotle (350 BC) On Longevity and the Shortness of Life. Translated by Ross GRT (1911), pp 1–7
Austad SN (2010) Cats, “Rats”, and bats: the comparative biology of aging in the 21st century. Integrated Comput Biol 50:783–792
Beaulieu M, Geiger RE, Reim E et al (2015) Reproduction alters oxidative status when it is traded-off against longevity. Evolution 69:1786–1796
Beck J (2008) Phylogenetic and ecological correlates with male adult life span of rainforest butterflies. Evol Ecol 22:507–517
Beck J, Fiedler K (2009) Adult life spans of butterflies (Lepidoptera: Papilionoidea + Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biol J Lin Soc 96:166–184
Blackburn TM (1991) A comparative examination of life-span and fecundity in parasitoid Hymenoptera. J Anim Ecol 60:151–164
Carey JR (2001) Insect biodemography. Annu Rev Entomol 46:79–110
Carey JR, Papadopoulos NT, Müller H-G et al (2008) Age structure changes and extraordinary lifespan in wild medfly populations. Aging Cell 7:426–437
Chapman CA, Wrangham RW, Chapman LJ et al (1999) Fruit and flower phenology at two sites in Kibale National Park, Uganda. J Trop Ecol 15:189–211
Chen H, Maklakov AA (2012) Longer life span evolves under high rates of condition-dependent mortality. Curr Biol 22:2140–2143
Davis RB, Javois J, Kaasik A, Ōunap E et al (2016) An ordination of life-histories using morphological proxies: capital vs income breeding in insects. Ecology 97:2112–2124
Drummond AJ, Suchard MA, Xie D et al (2012) Bayian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973
Dunlap-Pianka H, Boggs CL, Gilbert LE (1977) Ovarian dynamics in Heliconiine butterflies: programmed senescence versus eternal youth. Science 197:487–490
Dyer LA, Singer MS, Lill JT et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699
Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci USA 112:442–447
Gotthardt K, Nylin S, Wiklund C (2000) Mating opportunity and the evolution of sex-specific mortality rates in a butterfly. Oecologia 122:36–43
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Hausmann A, Haszprunar G, Hebert PDN (2011) DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions. PLoS ONE 6:e17134
Healy K, Guillerme T, Finlay S et al (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc R Soc B Biol Sci 281:20140298
Heidrich L, Friess N, Fiedler K (2018) The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude. Glob Ecol Biogeogr 27:407–416
Holm S, Davis RB, Javois J et al (2016) A comparative perspective on longevity: the effect of body size dominates over ecology in moths. J Evol Biol 29:2422–2435
Holm S, Javois J, Kaasik A et al (2019a) Size-related life-history traits in geometrid moths: a comparison of a temperate and a tropical community. Ecol Entomol 44:711–716
Holm S, Javois J, Molleman F et al (2019b) No indication of high host-plant specificity in Afrotropical geometrid moths. J Insect Sci 19:1
Holm S, Javois J, Ōunap E et al (2018) Reproductive behaviour indicates specificity in resource use: phylogenetic examples from temperate and tropical insects. Oikos 127:1113–1124
Holmes DJ, Kristan DM (2008) Comparative and alternative approaches and novel animal models for aging research. Age 30:63–73
Hulbert AJ, Pamplona R, Buffenstein R (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213
Hunt J, Brooks R, Jennions MD et al (2004) High-quality male field crickets invest heavily in sexual display but die young. Nature 432:1024–1027
Javois J, Tammaru T (2004) Reproductive decisions are sensitive to cues of life expectancy: the case of a moth. Anim Behav 68:249–255
Jervis MA, Boggs CL, Ferns PN (2007a) Egg maturation strategy and survival trade-offs in holometabolous insects: a comparative approach. Biol J Lin Soc 90:293–302
Jervis MA, Ferns PN, Boggs CL (2007b) A trade-off between female lifespan and larval diet breadth at the interspecific level in Lepidoptera. Evol Ecol 21:307–323
Jones OR, Scheuerlein A, Salguero-Gómez R et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173
Kimber CM, Chippindale AK (2013) Mutation, condition, and the maintenance of extended lifespan in Drosophila. Curr Biol 23:2283–2287
Kirkwood TB, Austad SN (2000) Why do we age? Nature 408:233–238
Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447
Mayhew PJ (2018) Comparative analysis of behavioural traits in insects. Current Opin Insect Sci 27:52–60
Minias P, Podlaszczuk P (2017) Longevity is associated with relative brain size in birds. Ecol Evol 7:3558–3566
McMahon T (1973) Size and shape in biology elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179:1201–1204
Medawar PB (1952) An Unsolved Problem of Biology. HK Lewis, London
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, Louisiana, 14 November 2010, pp. 1–8
Molleman F, Ding J, Carey JR et al (2009) Nutrients in fruit increase fertility in wild-caught females of large and long-lived *Euphaedra* species (Lepidoptera, Nymphalidae). J Insect Physiol 55:375–383

Molleman F, Javois J, Davis RB et al (2019) Quantifying the effects of species traits on predation risk in nature: A comparative study of butterfly wing damage. J Anim Ecol 89:716–729

Molleman F, Zwaan BJ, Brakefield PM et al (2007) Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp Gerontol 42:472–482

Murillo-Ramos L, Brehm G, Sihvonen P et al (2019) A comprehensive molecular phylogeny of Geometeridae (Lepidoptera) with a focus on enigmatic small subfamilies. PeerJ 7:e7386

Murillo-Ramos L, Chazot N, Sihvonen P et al (2021) Molecular phylogeny, classification, biogeography and diversification patterns of a diverse group of moths (Geometridae: Boarmiini). Mol Phylogenet Evol 162:107198

Mutanen M, Wahlberg N, Kaila L (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc R Soc B Biol Sci 277:2839–2848

Öunap E, Javois J, Viidalepp J et al (2011) Phylogenetic relationships of selected European Ennominae (Lepidoptera: Geometridae). Eur J Entomol 108:267–273

Öunap E, Viidalepp J, Truuverk A (2016) Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): integrating molecular data and traditional classifications. Syst Entomol 41:824–843

Öunap E, Viidalepp J, Saarma U (2008) Systematic position of Lythrinini revised: transferred from Larentiinae to Sterrhinae (Lepidoptera, Geometridae). Zoolog Scr 37:405–413

Peterson NA, Nilssen AC (1998) Late autumn eclosion in the winter moth *Operophtera brumata*: compromise of selective forces in life-cycle timing. Ecol Entomol 23:417–426

Prinzing A (2003) Are generalists pressed for time? An interspecific test of the time-limited disperser model. Ecology 84:1744–1755

Prothero J, Jürgens KD (1987) Scaling of maximal lifespan in mammals: a review. In: Woodhead AD, Thompson KH (eds) Evolution of Longevity in Animals. Springer, Berlin, pp 49–74

Reich PB, Tjoelker MG, Machado J-L et al (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

Reznick DN, Bryant MJ, Roff D et al (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099

Rickles RE (2008) The evolution of senescence from a comparative perspective. Funct Ecol 22:379–392

Roslin T, Hardwick B, Novotny V (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 342:744–744

Sang A, Teder T (2011) Dragonflies cause spatial and temporal heterogeneity in habitat quality for butterflies. Insect Conserv Divers 4:257–264

Scharf I, Feldman A, Novosolov M et al (2015) Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Glob Ecol Biogeogr 24:396–405

Sherratt TN, Hassall C, Laird RA et al (2011) A comparative analysis of senescence in adult damselflies and dragonflies (Odonata). J Evol Biol 24:810–822

Sihvonen P, Murillo-Ramos L, Brehm G et al (2020) Molecular phylogeny of Sterrhinae moths (Lepidoptera: Geometridae): towards a global classification. Syst Entomol 45:606–634

Sihvonen P, Mutanen M, Kaila L et al (2011) Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae). PLoS ONE 6(6):e20356

Snäll N, Tammaru T, Wahlberg N et al (2007) Phylogenetic relationships of the tribe Operophterini (Lepidoptera, Geometridae): a case study of the evolution of female flightlessness. Biol J Lin Soc 92:241–252

Stan Development Team (2016) RStan: the R interface to Stan R package version 2141 http://mc-stan.org/

Stark G, Meiri S (2018) Cold and dark captivity: Drivers of amphibian longevity. Glob Ecol Biogeogr 27:1384–1397

Struhsaker TT (1997) Ecology of an African rain forest. University Press of Florida, Gainesville

Strutztenberger P, Brehm G, Bodner F et al (2010) Molecular phylogeny of Eois (Lepidoptera, Geometridae): evolution of wing patterns and host plant use in a species-rich group of Neotropical moths. Zoolog Scr 39:603–620

Tammaru T, Ruohomäki K, Saikkonen K (1996) Components of male fitness in relation to body size in *Epirrita autumnata* (Lepidoptera, Geometridae). Ecol Entomol 21:185–192

Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
Tiitsaar A, Kaasik A, Teder T (2013) The effects of seasonally variable dragonfly predation on butterfly assemblages. Ecology 94:200–207
Viidalepp J, Tammaru T, Snäll N et al (2007) Cleorodes Warren, 1894 does not belong in the tribe Boarmiini (Lepidoptera: Geometridae). Eur J Entomol 104:303–309
Vinogradov AE (1998) Male reproductive strategy and decreased longevity. Acta Biotheor 46:157–160
Wahlberg N, Braby MF, Brower AVZ et al (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc R Soc B Biol Sci 272:1577–1586
Wahlberg N, Wheat CW (2008) Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst Biol 57:231–242
Wahlberg N, Snäll N, Viidalepp J et al (2010) The evolution of female flightlessness among Ennominae of the Holarctic forest zone (Lepidoptera, Geometridae). Mol Phylogenet Evol 55:929–938
Wahlberg N, Wheat CW, Peña C (2013) Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS ONE 8:e80875
Wilkinson GS, Adams DM (2019) Recurrent evolution of extreme longevity in bats. Biol Let 15:20180860
Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411
Zajitschek F, Zajitschek S, Bonduriansky R (2020) Senescence in wild insects: Key questions and challenges. Funct Ecol 34:26–37
Ziegler DV, Wiley CD, Velarde MC (2015) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14:1–7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.