Viral infections by mosquitoes continue to challenge public health in Thailand. In evidence of this, we demonstrated that CHIKV has become established in northeastern Thailand. Surveillance and clinical recognition will not prevent future outbreaks, but rather will assist in organizing an early response to outbreaks and thus minimize unnecessary illness and death.

Acknowledgments
We thank Padet Siriyasatien for providing us with laboratory test kits and protocols. We thank the staff of Bueng Kan Provincial Hospital for their contribution in sample collection and the staff at the Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, for their hard work in performing laboratory tests.

This research is supported by National Research University Project; Office of Higher Education Commission (WCU-007-HR-57); Integrated Innovation Academic Center, Chulalongkorn University; Centenary Academic Development Project (CU56-HR01); the Ratchadaphiseksomphot Endowment Fund (S. V ongpunsawad and P. Chattakul); the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University; the Ratchadaphiseksomphot-Centenary Academic Development Project of Higher Education Commission (WCU-007-HR-57); the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530093); the Outstanding Professor of the Thailand Research Fund (DPG5480002); and King Chulalongkorn Memorial Hospital Thai Red Cross Society; the Ratchadaphiseksomphot Endowment Fund (S. Vongpunsawad and P. Linsuwanon); MK Restaurant Company Limited; and The Siam Cement Pel.

Nasamon Wanlapakorn, Thanunrat Thongmee, Piyada Linsuwanon, Paiboon Chattakul, Sompong Vongpunsawad, Sunchai Payungporn, and Yong Poovorawan

Author affiliations: Chulalongkorn University, Bangkok, Thailand (N. Wanlapakorn, T. Thongmee, P. Linsuwanon, S. Vongpunsawad, S. Payungporn, Y. Poovorawan); and Bueng Kan Provincial Hospital, Bueng Kan, Thailand (P. Chattakul)

DOI: http://dx.doi.org/10.3201/eid2008.140481

References
1. Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT. Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines. 2012;11:1087–101. http://dx.doi.org/10.1586/erv.12.84
2. Volk SM, Chen R, Tsitsarkin KA, Adams AP, Garcia TI, Sall AA, et al. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol. 2010;84:6497–504 http://dx.doi.org/10.1128/JVI.01603-09.
3. Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science. 1960;131:1102–3. http://dx.doi.org/10.1126/science.131.3407.1102
4. Pongsiri P, Auksornkiti V, Theamboonlers A, Luplertlop N, Rianthavorn P, Poovorawan Y. Entire genome characterization of Chikungunya virus from the 2008–2009 outbreaks in Thailand. Trop Biomed. 2010;27:167–76.
5. Suangtio P, Uppapong T. Chikungunya fever. Annual epidemiological surveillance report 2009, Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health. [cited 2014 Mar 18]. http://www.boe.moph.go.th/Annual/Annual%202009/Main.html
6. Epidemiological Information Center, Communicable Disease Epidemiological Section, Bureau of Epidemiology. Reported Cases of Diseases under Surveillance 2009, 53rd week [cited 2014 Mar 18]. http://203.157.15.4/wesr/file/y56/F56_533_1393.pdf
7. Rianthavorn P, Priantathavorn K, Wuttirattanakowit N, Theamboonlers A, Poovorawan Y. An outbreak of chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. Int J Infect Dis. 2010;3:e161–5. http://dx.doi.org/10.1016/j.ijid.2010.01.001.
8. Kosaih H, Wijaya K, Surya E, Hadiwijaya SH, Butarbutar DP, Jaya UA, et al. Evaluation of two IgM rapid immunochromatographic tests during circulation of Asian lineage Chikungunya virus. Southeast Asian J Trop Med Public Health. 2012;43:55–61.
9. Schuffenecker I, Iteman I, Michault A, Muri S, Frangel L, Vaney MC, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3:e263. http://dx.doi.org/10.1371/journal.pmed.0030263
10. Duong V, Andries AC, Ngan C, Sok T, Richner B, Asgari-Jirhandeh N, et al. Re-emergence of Chikungunya virus in Cambodia. Emerg Infect Dis. 2012;18:2066–9 http://dx.doi.org/10.3201/eid1812.120471.

Address for correspondence: Yong Poovorawan, Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; email: Yong.P@chula.ac.th

To the Editor: Kakkar et al. recently concluded that the low-quality surveillance data on acute encephalitis syndrome (AES)/Japanese encephalitis (JE) in Kushinagar District, India, provide little evidence to support development of prevention and control measures and to estimate the effect of interventions (1). Analysis of the surveillance data, however, does provide evidence supporting the effect of an ongoing intervention (i.e., JE vaccination). In accordance with the surveillance protocol, cerebrospinal fluid and/or serum samples from AES patients admitted to the Baba Raghav Das Medical College (Gorakhpur, India) are tested for IgM against JE at the field laboratory of National Institute of Virology (NIV) at Gorakhpur (2). The samples are tested by using the ELISA developed by NIV Pune (Pune, India), which has a specificity of 85% (range 77%–95%) and sensitivity of 71% (range 71%–75%) (3). Patients with samples negative for JE are considered to have JE-negative AES.

We obtained the line-list of AES patients from the NIV laboratory at Gorakhpur for 2008–2012. Analysis of the surveillance data indicated that 251 (8.2%, range 4%–14.7%) of the 3,047 AES patients from Kushinagar

DECLINE IN JAPANESE ENCEPHALITIS, KUSHINAGAR DISTRICT, UTTAR PRADESH, INDIA

To the Editor: Kakkar et al. recently concluded that the low-quality surveillance data on acute encephalitis syndrome (AES)/Japanese encephalitis (JE) in Kushinagar District, India, provide little evidence to support development of prevention and control measures and to estimate the effect of interventions (1). Analysis of the surveillance data, however, does provide evidence supporting the effect of an ongoing intervention (i.e., JE vaccination).

In accordance with the surveillance protocol, cerebrospinal fluid and/or serum samples from AES patients admitted to the Baba Raghav Das Medical College (Gorakhpur, India) are tested for IgM against JE at the field laboratory of National Institute of Virology (NIV) at Gorakhpur (2). The samples are tested by using the ELISA developed by NIV Pune (Pune, India), which has a specificity of 85% (range 77%–95%) and sensitivity of 71% (range 71%–75%) (3). Patients with samples negative for JE are considered to have JE-negative AES.

We obtained the line-list of AES patients from the NIV laboratory at Gorakhpur for 2008–2012. Analysis of the surveillance data indicated that 251 (8.2%, range 4%–14.7%) of the 3,047 AES patients from Kushinagar
were positive for JE IgM and therefore considered to be JE case-patients. JE incidence per 100,000 persons in the district declined from 2.3 cases in 2010 to 0.81 in 2011 to 0.58 in 2012 (Figure). The decline in JE incidence since 2010 could be a consequence of JE vaccination activities in Kushinagar. In 2010, a mass vaccination campaign with 1 dose of JE vaccine (SA 14–14–2 strain) was conducted among children 1–15 years of age. Subsequently, the vaccine was introduced into the childhood vaccination program as a 1-dose strategy in 2011 and a 2-dose strategy in 2013. Unfortunately, information about evaluated coverage of JE vaccine is not available from the district. On the other hand, the average annual incidence of JE-negative AES during the same period was 16 cases per 100,000 persons (95% CI 14.8–17.2), and this incidence has remained relatively stable since 2008.

With the isolation of enteroviruses from JE-negative AES patients, waterborne transmission has been hypothesized, and the focus of intervention has shifted toward improving sanitation and water quality. However, enteroviruses were detected only in a small proportion of AES patients. Although the quality of AES surveillance needs to be improved, as Kakkar et al. suggested (1), further studies are needed to understand the etiology of JE-negative AES in the district and the risk factors for transmission. These studies might include systematically investigating patients and environmental samples for enteroviral and other etiologic agents.

Prashant Ranjan, Milind Gore, Sriram Selvaraju, K.P. Kushwaha, D.K. Srivastava, and Manoj Murhekar

Author affiliations: Indian Council of Medical Research National Institute of Epidemiology, Chennai, India (P. Ranjan, S. Selvaraju, M. Murhekar); Indian Council of Medical Research National Institute of Virology, Gorakhpur, India (M. Gore); and Baba Raghav Das Medical Collage, Gorakhpur (K.P. Kushwaha, D.K. Srivastava)

DOI: http://dx.doi.org/10.3201/eid2008.131403

References
1. Kakkar M, Rogawski ET, Abbas SS, Chaturvedi S, Dhole TN, Hossain SS, et al. Acute encephalitis syndrome surveillance, Kushinagar District, Uttar Pradesh, India, 2011–2012. Emerg Infect Dis. 2013;19:1361–7.
2. Directorate of National Vector Borne Diseases Control Programme. Guidelines for surveillance of acute encephalitis syndrome (with special reference to Japanese encephalitis) [cited 2013 Sep 11]. http://www.nvbdcp.gov.in/Doc/AES%20guidelines.pdf
3. World Health Organization Regional Office for Southeast Asia. Fourth bi-regional meeting on the control of Japanese encephalitis. Report of the meeting Bangkok, Thailand, 7–8 June 2009 [cited 2013 Aug 15]. http://www.wpro.who.int/immunization/documents/docs/JEBireregionalMeetingJune2009final.pdf

Address for correspondence: Manoj Murhekar, National Institute of Epidemiology, Indian Council of Medical Research, Chennai-600 070, India; email: mmurhekar@gmail.com

Babesiosis Surveillance, New Jersey, USA, 2006–2011

To the Editor: Since zoonotic babesiosis was first identified in the United States in 1966 (1), its incidence and geographic range have increased (2). Previous studies have demonstrated increases in transfusion-associated cases in recent years (3). In 2011, babesiosis became nationally notifiable as its emergence and the potential for transfusion-associated cases were recognized (2,4). We assessed New Jersey, USA, surveillance data for 2006–2011 to characterize case information (incidence, potential transfusion associations, geographic distribution) in a state where babesiosis is endemic.

In New Jersey, babesiosis case reporting began in 1985. A retrospective study identified an upward trend during 1993–2001; eight of 21 counties reported cases (5). In 2005, the New Jersey Department of Health...