AN ASYMPTOTIC FORMULA IN \(q \) FOR THE NUMBER OF \([n, k]\) \(q \)-ARY MDS CODES

KRISHNA KAIPA

Abstract. We obtain an asymptotic formula in \(q \) for the number of MDS codes of length \(n \) and dimension \(k \) over a finite field with \(q \) elements.

1. Introduction

MDS codes of dimension \(k \) and length \(n \) over \(\mathbb{F}_q \) are codes for which the minimum distance equals the Singleton bound \(n - k + 1 \). Equivalently these are codes for which any \(k \times n \) generator matrix has the property that all its \(k \times k \) submatrices are nonsingular. Thus \([n, k]_q\) MDS codes can be identified with the set of row equivalence classes of \(k \times n \) matrices over \(\mathbb{F}_q \) having the property that any \(k \) columns are linearly independent. Let \(\gamma(k, n) \) denote the number of \(q \)-ary \([n, k]\) MDS codes. It is well known that the dual of an MDS code is also MDS, therefore \(\gamma(k, n) = \gamma(n-k, n) \). Consequently, we henceforth assume without loss of generality that \(k \leq n/2 \). Exact values of \(\gamma(k, n) \) are hard to determine and are known only for \(k = 1, 2 \) all \(n \), and for \(k = 3 \) and \(n \leq 9 \). The formula for \(\gamma(3,9) \) was found in the work [5] in 1995. Formulae for \(\gamma(3,10) \) and \(\gamma(4,8) \) for example, are still unknown.

The known exact formulae can be written in the asymptotic form:

\[
\gamma(k, n) = q^\delta + (1 - N) q^{\delta-1} + a_2 q^{\delta-2} + O(q^{\delta-3})
\]

where

\[
\delta := k(n-k) \quad \text{and} \quad N := \binom{n}{k}.
\]

We reproduce from the known exact formulae for \(\gamma(k, n) \) (see [5] §1) the corresponding values of \(a_2(k, n) \).

\[
\begin{align*}
a_2(1, n) & = \frac{n^2 - 3n + 2}{2} \\
a_2(2, n) & = \frac{3n^4 - 10n^3 + 9n^2 - 26n + 48}{24} \\
a_2(3, 6) & = 152 \\
a_2(3, 7) & = 506 \\
a_2(3, 8) & = 1360 \\
a_2(3, 9) & = 3158
\end{align*}
\]

Key words and phrases. MDS codes, Grassmannian.

K. Kaipa is with the department of Mathematics at the Indian Institute of Science and Education Research, Bhopal 462066 India (email: kaipa@iiserb.ac.in). He is supported by the Indo-Russian project INT/RFBR/P-114 from the Department of Science & Technology, Govt. of India.
For general \((k, n)\), the following asymptotic formula was obtained in \([3]\):

\[
\gamma(k, n) = q^\delta + (1 - N) q^{\delta - 1} + O(q^{\delta - 2})
\]

(4)

Our main result is:

Theorem 1.1. The asymptotic formula \([1]\) holds for all \(k\) and \(n\), with

\[
a_2 = N k(n - k) \left(\frac{k^2 - nk + n + 3}{2(k + 1)(n - k + 1)} \right) + N^2/2 - 5N/2 + 2
\]

The formulae in \([3]\) agree with the theorem. The quantity

\[
\tilde{\gamma}(k, n) := \gamma(k, n)/(q - 1)^{n - 1}
\]

is always an integer, as it is the number of \(n\)-arcs in \(PG(k - 1; q)\) (see \([3]\) pp.219-220, \([5]\) Lemma 2)). We rewrite the theorem in terms of \(\tilde{\gamma}(k, n)\):

Corollary 1.2. The number \(\tilde{\gamma}(k, n)\) of \(n\)-arcs in \(PG(k - 1, q)\) is of the asymptotic form

\[
q^{\delta - n + 1} - b_1 q^{\delta - n + 2} + b_2 q^{\delta - n + 3} + O(q^{\delta - n + 4})
\]

where \(b_1 = N - n\), and

\[
b_2 = a_2 - (n - 1)(N - n) - (n^2 - 3n + 2)/2
\]

In particular:

\[
\tilde{\gamma}(3, 10) = q^{12} - 110q^{11} + 5561q^{10} + O(q^9)
\]

(5)

\[
\tilde{\gamma}(4, 8) = q^9 - 62q^8 + 1710q^7 + O(q^6)
\]

The ideas of the proof of Theorem \([\ldots]\) are as follows. Following \([3]\), we identify the set of MDS codes with a subset \(U(k, n)\) of the Grassmannian \(G(k, n)\) of \(k\)-dimensional subspaces of \(F_q^n\). The subset \(U(k, n)\) is an intersection of \(N\) Schubert cells of \(G(k, n)\), and hence its cardinality \(|U(k, n)|\) can be expressed using inclusion-exclusion principle as a sum

\[
E_1 - E_2 + E_3 - \cdots + (-1)^{N-1} E_N.
\]

For each \(r\), the quantity \(E_r\) is a sum of \(\binom{N}{r}\) terms each of which is of the form

\[
|G(k, n) \setminus L|\]

where \(L\) is a codimension \(r\) linear subspace of the Plücker space \(\mathbb{P}(\wedge^k F_q^n)\) (in which \(G(k, n)\) embeds). In \([3]\) asymptotic formulae of the form \(q^\delta + aq^{\delta - 1} + O(q^{\delta - 2})\) were obtained for each \(|G(k, n) \setminus L|\), and hence for the \(E_r\)’s to obtain the result given in equation \([\ldots]\). We study linear sections \(|G(k, n) \cap L|\) more closely in section \([\ldots]\) leading to Theorem \([\ldots]\) which gives an asymptotic formula of the form \(q^\delta + aq^{\delta - 1} + bq^{\delta - 2} + O(q^{\delta - 3})\) for \(|G(k, n) \setminus L|\). These formulae in turn imply the desired asymptotic formulae for the \(E_r\)’s and hence for \(\gamma(k, n)\).

2. MDS codes as a subset of the Grassmannian

Let \(V = F_q^n\) with standard basis \(\{e_1, \ldots, e_n\}\). Let

\[
I_{k, n} := \{(i_1, i_2, \ldots, i_k) : 1 \leq i_1 < \cdots < i_k \leq n\},
\]

and for a multi-index \(I = (i_1, \ldots, i_k) \in I_{k, n}\) let \(e_I := e_{i_1} \wedge \cdots \wedge e_{i_k} \in \wedge^k V\). The multivectors \(\{e_I : I \in I_{k, n}\}\) form the standard basis for \(\wedge^k V\). Let \(G(k, n)\) or \(G_k(V)\) denote the Grassmannian of \(k\) dimensional subspaces of \(F_q^n\). We recall the the Plücker embedding of \(G_k(V)\) into \(\mathbb{P}(\wedge^k V)\). For any \(\Lambda \in G_k(V)\) and \(k \times n\) matrix \(M\) whose rows \(b_1, \ldots, b_k\) form a basis for \(\Lambda\), let \(i(\Lambda) := [b_1 \wedge \cdots \wedge b_k] \in \mathbb{P}(\wedge^k V)\). It is
easy to see that \(i(\Lambda) \) depends only on the row equivalence class of the matrix \(M \), and hence only on \(\Lambda \). Therefore we have a function \(i : G_k(V) \to \mathbb{P}(\lambda^k V) \) which can also be shown to be injective. The image \(i(G_k(V)) \), which we will denote again by \(G_k(V) \) is cut out by the quadratic Plücker relations \((17)\), and hence \(i : G_k(V) \to \mathbb{P}(\lambda^k V) \) realizes \(G_k(V) \) as a projective variety. Expanding the expression \(b_1 \wedge \cdots \wedge b_k \) above in terms of the standard basis of \(\lambda^k V \) we obtain

\[
b_1 \wedge \cdots \wedge b_k = \sum_{I \in I_{k,n}} p_I(\Lambda) e_I
\]

where \(p_I(\Lambda) \) is the minor of the matrix \(M \) on the columns indexed by \(I \). It follows that \(p_I(\Lambda), I \in I_{k,n} \) regarded as homogeneous coordinates, depend only on \(\Lambda \) and are known as its Plücker coordinates.

Any \(q \)-ary code of dimension \(k \) and length \(n \), being a \(k \) dimensional subspace of \(\mathbb{F}_q^n \), can be regarded as point \(\Lambda \) of \(G_k(V) \). The matrix \(M \) in the above discussion is precisely a generator matrix of the code \(\Lambda \). As observed in the introduction, the code \(\Lambda \) is \([n,k]_q\)-MDS, if and only if all \(k \times k \) submatrices of \(M \) are non-singular. Hence the set of \([n,k]_q\) MDS codes can be identified with the subset of \(G_k(V) \) defined as:

\[
U(k,n) := \{ \Lambda \in G(k,n) : p_I(\Lambda) \neq 0, \forall I \in I_{k,n} \}
\]

In particular we note

\[
\gamma(k,n) = |U(k,n)|
\]

For each of the \(N = \binom{n}{k} \) multi-indices \(I \in I_{k,n} \) let

\[
C_I := \{ \Lambda \in G(k,n) : p_I(\Lambda) \neq 0 \}
\]

For each \(\Lambda \in C_I \), there is a unique \(k \times n \) matrix \(M \) whose rows forms a basis for \(\Lambda \), and which satisfies the property that the \(k \times k \) submatrix of \(M \) on the columns indexed by \(I \) is the \(k \times k \) identity matrix. Conversely the row space of a matrix \(M \) which has the \(k \times k \) identity matrix as the submatrix on the columns indexed by \(I \), is a point of \(U(k,n) \). Therefore \(C_I \) can be identified with the set of all such matrices. Since the columns of \(M \) indexed by \(I \) are fixed and the remaining \(n-k \) columns free, we see that

\[
|C_I| = q^{k(n-k)} = q^\delta.
\]

It follows from the definitions \((7)\) and \((8)\), that

\[
U(k,n) = \bigcap_{I \in I_{k,n}} C_I
\]

For each \(r \) with \(1 \leq r \leq N \), let \(I_{k,n}^r \) denote the subsets of \(I_{k,n} \) of cardinality \(r \). Let

\[
E_r := \sum_{\{I_1, \ldots, I_r\} \in I_{k,n}^r} |C_{I_1} \cup \cdots \cup C_{I_r}|
\]

It follows from the inclusion-exclusion principle applied to \((10)\) that

\[
|U(k,n)| = E_1 - E_2 + E_3 - \cdots + (-1)^{N-1} E_N
\]

The quantity \(E_r \) is a sum of \(\binom{N}{r} \) terms of the form \(|C_{I_1} \cup \cdots \cup C_{I_r}| \). The set \(G_k(V) \setminus (C_{I_1} \cup \cdots \cup C_{I_r}) \) consists of points of \(G_k(V) \) having Plücker coordinates
We call a codimension 1 subspace \(m \) a nonzero scalar multiple of the above discussion that each hyperplane corresponds to a unique \(\omega \) of \(V \) spanning by \(\{e_i : i \notin \{1, \ldots, L\}\} \), and \(L = \mathbb{P}\hat{L} \), then \(G_k(V) \setminus (C_{i_1} \cup \cdots \cup C_{i_L}) = G_k(V) \cap L \). The set \(G_k(V) \cap L \) is an example of a linear section of \(G_k(V) \) which we study in the next section.

3. LINEAR SECTIONS OF THE GRASSMANNIAN

We say \(L \subset \mathbb{P}(\wedge^k V) \) is a codimension \(r \) linear subspace if \(L = \mathbb{P}\hat{L} \) with \(\hat{L} \) is a codimension \(r \) linear subspace of \(\wedge^k V \). Corresponding to the standard basis \(e_1, \ldots, e_n \) of \(V \), the dual space \(V^* \) has the standard dual basis \(e^1, \ldots, e^n \) defined by \(\langle e^i, e_j \rangle = \delta_{ij} \). Here \(\langle, \rangle \) is the natural pairing between \(V^* \) and \(V \). Similarly the space \(\wedge^k V^* \) has the standard basis \(\{e^I : I \in I_{k,n}\} \) where \(e^I = e^{i_1} \wedge \cdots \wedge e^{i_k} \).

Given \(k \) elements \(\omega_1, \ldots, \omega_k \) of \(V^* \) and \(k \) elements \(v_1, \ldots, v_k \) of \(V \), the determinant of the \(k \times k \) matrix with entry in row \(i \) and column \(j \) being \(\langle \omega_i, v_j \rangle \), is multilinear and alternating in both \((\omega_1, \ldots, \omega_k) \) and \((v_1, \ldots, v_k) \). It therefore defines a bilinear pairing \(\langle, \rangle \) between \(\wedge^k V^* \) and \(\wedge^k V \). In terms of the standard bases we have \(\langle e^I, e_J \rangle = \delta_{IJ} \), which also shows that the pairing is non-degenerate and hence gives an isomorphism between \(\wedge^k V^* \) and \((\wedge^k V)^* \). We refer to elements of \(\wedge^k V^* \) in short as \(k \)-forms.

Given a codimension \(r \) linear subspace \(L = \mathbb{P}(\hat{L}) \) of \(\mathbb{P}(\wedge^k V) \), let

\[\operatorname{Ann}(\hat{L}) := \{ \omega \in \wedge^k V^* : \langle \omega, \xi \rangle = 0, \forall \xi \in \hat{L} \}, \]

and let \(\operatorname{Ann}(L) = \mathbb{P}(\operatorname{Ann}(\hat{L})) \). We note that \(\operatorname{Ann}(L) \) is a \(r - 1 \) dimensional linear subspace of \(\mathbb{P}(\wedge^k V^*) \). The correspondence \(L \leftrightarrow \operatorname{Ann}(L) \) allows us to identify codimension \(r \) linear subspaces of \(\mathbb{P}(\wedge^k V) \) with \(r - 1 \) dimensional linear subspaces of \(\mathbb{P}(\wedge^k V^*) \). We define

\[||L|| := |G_k(V) \setminus L| \]

We call a codimension 1 subspace \(H \) of \(\mathbb{P}(\wedge^k V) \), a hyperplane. It follows from the above discussion that each hyperplane corresponds to a unique \(k \)-form (up to a nonzero scalar multiple) \(\omega \). We write \(H = H_\omega \) to emphasize this, and we also define

\[||\omega|| := ||H_\omega|| = |G_k(V) \setminus H_\omega| \]

The main results of this section are Theorems \([5.10]\) and \([5.11]\) which appear at the end. In the remaining part of this section, we either recall or develop several results leading upto the main results.

Definition 3.1. A linear subspace of \(G_k(V) \) is a linear subspace of \(\mathbb{P}(\wedge^k V) \) which is entirely contained in \(G_k(V) \).

For each \(\alpha \in G_{k-1}(V) \) and each \(\gamma \in G_{k+1}(V) \), we define:

\[\pi_\alpha := \{ \beta \in G_k(V) : \beta \supset \alpha \} \]
\[\pi_\gamma := \{ \beta \in G_k(V) : \beta \subset \gamma \} \]

Since \(\pi_\alpha \) is projectively isomorphic to \(\mathbb{P}(V/\alpha) \), it is a linear subspace of \(G_k(V) \) of dimension \(n - k \). Similarly \(\pi_\gamma \) is projectively isomorphic to \(\mathbb{P}(\gamma^*) \), and hence it is a linear subspace of \(G_k(V) \) of dimension \(k \). It is a classical fact \([1, \S 21.1, \text{7, Proposition 3.2}]\) that, for \(k \geq 2 \), the \(\pi_\alpha \)'s and the \(\pi_\gamma \)'s are the maximal linear subspaces of \(G_k(V) \). Some facts about these spaces that we will need are as follows. They easily follow from the definitions of \(\pi_\alpha \) and \(\pi_\gamma \) (also see \([2\text{ p.}88]\)).
Fact 3.2.
(1) For $\alpha \neq \alpha' \in G_{k-1}(V)$ the intersection $\pi_\alpha \cap \pi_{\alpha'}$ is empty if $\dim(\alpha + \alpha') > k$ and consists of the single point $\alpha + \alpha'$ if $\dim(\alpha + \alpha') = k$.

(2) For $\gamma \neq \gamma' \in G_{k+1}(V)$ the intersection $\pi^- \cap \pi^-'$ is empty if $\dim(\gamma \cap \gamma') < k$ and consists of the single point $\gamma \cap \gamma'$ if $\dim(\gamma \cap \gamma') = k$.

(3) The intersection $\pi_\alpha \cap \pi^-$ is empty if $\alpha \not\subset \gamma$, and it is the line $\{\beta : \alpha \subset \beta \subset \gamma\}$ if $\alpha \subset \gamma$.

(4) For any pair $\beta, \beta' \in \pi_\alpha$ the intersection $\beta \cap \beta'$ is α, and for any pair $\beta, \beta' \in \pi^- \cap \pi^-$ the vector space sum $\beta + \beta'$ is γ.

We recall the definition of the interior multiplication operator: for $\xi \in \wedge^f V$, $\zeta \in \wedge^n V$, and $\omega \in \wedge^{k+m} V^*$, $\iota_\xi \omega \in \wedge^m V^*$ is defined by:

$$\langle \iota_\xi \omega, \zeta \rangle = \langle \omega, \xi \wedge \zeta \rangle$$

For any nonzero $\omega \in \wedge^k V^*$, we define subspaces $V_\omega \subset V$ and $U_\omega \subset V^*$ by

$$V_\omega := \{ v \in V : \iota_v \omega = 0 \}$$

$$U_\omega := \{ \theta \in V^* : \langle \theta, v \rangle = 0 \quad \forall v \in V_\omega \}$$

Fact 3.3. We recall [4, p.210] that ω is decomposable if and only if $\dim(V_\omega) = n-k$ or equivalently $\dim(U_\omega) = k$. We also note that if ω is indecomposable then $\dim(U_\omega) \geq k+2$ because $\omega \in \wedge^k U_\omega$ and every element of $\wedge^k \mathbb{F}^{k+1}$ is decomposable.

The next lemma will be used in the proof of Theorem 3.10.

Lemma 3.4. Let $k \geq 2$. A $k+1$-form $\omega \in \wedge^{k+1} V^*$ is decomposable if and only if $\iota_{\omega} \omega$ is decomposable for all $v \in V$.

Proof. If ω is decomposable, then so is $\iota_v \omega$. Conversely if $\iota_v \omega$ is decomposable for all $v \in V$, then

$$S_\omega := \mathbb{P}\{ \iota_v \omega : v \in V \} \subset G_k(V^*) \subset \mathbb{P}(\wedge^k V^*)$$

is a linear subspace of $G_k(V^*)$. Therefore S_ω is contained either in a π_α for some $\alpha \in G_{k-1}(V^*)$, or a $\pi^- \omega$ for some $\gamma \in G_{k+1}(V^*)$. Suppose $S_\omega \subset \pi_\alpha$. Let f_1, f_2, \ldots, f_n be a basis of V such that f_1, f_2, \ldots, f_n is a basis of V_ω or equivalently f^{n+1}, \ldots, f^n is a basis of U_ω where f^1, \ldots, f^n is the dual basis. The condition $n-\ell = k+1$ for ω to be decomposable can be written as $n-\ell \leq k+1$ since $n-\ell$ equals $\dim(U_\omega) \geq k+1$. The expression for ω in terms of the basis vectors $\{f^I : I \in I_{k+1,n}\}$ of $\wedge^k V^*$ involves only those basic vectors f^I for which all indices of I are strictly greater than ℓ. For each $i \geq \ell + 1$, the fact that $\iota_{f_i} \omega \neq 0$ implies that there is at least one $j \neq i$ with $j \geq \ell + 1$ such that $\iota_{f_j} \wedge \omega \neq 0$. Now let $\beta = \iota_{f_i} \omega$ and $\beta' = \iota_{f_j} \omega$. Then $\iota_{f_i} \wedge \beta = -\iota_{f_j} \wedge \beta' = \iota_{f_i} \beta$ represents a $k-1$ dimensional space contained in the k dimensional spaces β and β'. It follows that $\iota_{f_i} \wedge f_j \omega$ represents $\beta \wedge \beta'$. By part 4) of Fact 3.2 we conclude that the expression for α in terms of the basis vectors $\{f^I : I \in I_{k-1,n}\}$ of $\wedge^{k-1} V^*$ involves only those basis vectors f^I for which no index of I equals i. Since $i \geq \ell + 1$ was arbitrary, the expression for α involves only those basic vectors f^I for which all indices of I are less than or equal to ℓ. This however contradicts the fact that the expression for ω and hence $\iota_{f_i} \wedge \omega$ involves only those f^I for which the indices of I are strictly greater than ℓ. This contradiction shows that $S_\omega \subset \pi^- \omega$ for some $\gamma \in G_{k+1}(V^*)$. Since $\dim(\pi^-) = k$ and $\dim(S_\omega) = n-\ell - 1$ we get $n-\ell \leq k+1$ as desired. \qed

The next lemma will be used in the proof of Proposition 3.8.
Lemma 3.5. If \(P \) is a subset of \(G_k(V) \) such that for every pair \(P, Q \in P \), the line \(PQ \) joining them is contained in \(G_k(V) \), then the linear subspace of \(\mathbb{P}(\wedge V) \) generated by \(P \) is completely contained in \(G_k(V) \).

Proof. An element \(\lambda \in \wedge^k V \) is decomposable if and only if it satisfies the Plücker relations (\cite{4}, pp.210-211)

\[
(\iota_\xi \lambda) \wedge \lambda = 0 \quad \forall \xi \in \wedge^{k-1} V^*
\]

Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be decomposable elements of \(\wedge^k V \) representing points \(P_1, P_2, \ldots, P_n \) of \(P \). For each \(\xi \in \wedge^{k-1} V^* \), let \(a_i(\xi) := (\iota_\xi \lambda_i) \wedge \lambda_i \) for \(1 \leq i \leq n \), and let \(a_{ij}(\xi) := (\iota_\xi \lambda_i) \wedge \lambda_j + (\iota_\xi \lambda_j) \wedge \lambda_i \) for \(1 \leq i < j \leq n \). The condition for \(\lambda = \sum t_i \lambda_i \) to be decomposable is

\[
\sum_i t_i^2 a_i(\xi) + \sum_{i<j} t_i t_j a_{ij}(\xi) = 0, \quad \forall \xi \in \wedge^{k-1} V^*
\]

Using (17), \(a_i(\xi) = 0 \) because \(\lambda_i \) is decomposable, and \(a_{ij}(\xi) = 0 \) because \(PQ \subset G_k(V) \).

Some of the results we will need about the cardinalities \(|L|\) (as defined in (13)) appear in the literature in the context of linear codes associated to the embedding \(G(k, n) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{F}_q^n) \). We briefly describe the construction of these Grassmann codes \(C(k, n) \), the details of which can be found in [6]. These are linear codes of length \(\tilde{n} \) and dimension \(\tilde{k} \) where:

\[
\tilde{n} = |G(k, n)| = \frac{(q^n - 1)(q^{n-1} - 1)\cdots(q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1)\cdots(q - 1)}
\]

\[
\tilde{k} = \binom{\tilde{n}}{k}
\]

Let \(P_1, P_2, \ldots, P_{\tilde{n}} \) denote representatives in \(\wedge^k \mathbb{F}_q^n \) of the \(\tilde{n} \) points of \(G(k, n) \) arranged in some order. We also arrange in some order, the \(\tilde{k} \) basic vectors \(\{e_I : I \in I_{k,n}\} \) of \(\wedge^k \mathbb{F}_q^n \). A \(\tilde{k} \times \tilde{n} \) generator matrix for the code \(C(k, n) \) has for its \((i, j)\)-th entry, the \(i \)-th Plücker coordinate \(p_i(P_j) \). The fact that the Plücker embedding is non-degenerate (i.e., no hyperplane of \(\mathbb{P}(\wedge^k \mathbb{F}_q^n) \) contains \(G(k, n) \)) is equivalent to the fact that the generator matrix above has full row rank. A codeword of \(C(k, n) \) is of the form \(\sum_I a_I p_I(P_1), \ldots, \sum_I a_I p_I(P_{\tilde{n}}) \). If \(\omega \) is the \(k \)-form \(\sum_I a_I e^I \), then the above codeword can be expressed as \((\omega(P_1), \ldots, \omega(P_{\tilde{n}})) \). In this way we identify codewords of \(C(k, n) \) with \(k \)-forms on \(V = \mathbb{F}_q^n \). Moreover, the Hamming weight of the above codeword clearly coincides with the expression \(|\omega|\) as defined in (13).

More generally, let \(\tilde{L} \) be a codimension \(r \) subspace of \(\wedge^k \mathbb{F}_q^n \), and let \(\{\omega_1, \ldots, \omega_r\} \) be a basis for \(\text{Ann}(\tilde{L}) \). Evaluating elements of \(\text{Ann}(\tilde{L}) \), i.e., forms \(\sum_{i=1}^r a_i \omega_i \) on \(P_1, \ldots, P_{\tilde{n}} \) gives a \(r \) dimensional subcode of \(C(k, n) \). Moreover, the Hamming weight of this subcode is clearly \(|L|\) as defined in (13) (where \(L = \mathbb{P}(\tilde{L}) \)). The minimum distance \(d_1(C(k, n)) \) of the code \(C(k, n) \) equals minimum value of \(|\omega|\) over all nonzero \(k \)-forms on \(V \), and the higher weight \(d_i(C(k, n)) \) equals the minimum value of \(|L|\) over all codimension \(r \) subspaces of \(\mathbb{P}(\wedge^k V) \).

Using the well known formula (see [6], p.7)

\[
||D|| = \frac{1}{q^r - q^{r-1}} \sum_{c \in D} ||c||
\]
relating the Hamming weight of a \(r \) dimensional subcode \(D \) to the Hamming weights of its constituent codewords, we get the corresponding formula

\[
||L|| = \frac{1}{q^{r-1}} \sum_{[\omega] \in \text{Ann}(L)} ||\omega|| = \frac{1}{q^{r-1}} \sum_{H \supset L} ||H||
\]

where the sum \(H \supset L \) is over all hyperplanes \(H \) containing \(L \).

The next theorem summarizes the information we will need about the minimum distance, higher weights and the weight spectrum of the code \(C(k, n) \).

Theorem 3.6 (Nogin). \([6]\)

1. The minimum distance \(d_{\min}(C(k, n)) \) equals \(q^\delta \). The codewords of minimum weight correspond precisely with decomposable \(k \)-forms.

2. More generally, for \(1 \leq r \leq n - k + 1 \), the higher weight

\[
d_r(C(k, n)) = q^\delta + q^{\delta - 1} + \cdots + q^{\delta - r + 1}.
\]

The \(r \) dimensional subcodes with minimum weight correspond exactly to codimension \(r \) subspaces \(L \) of \(\mathbb{P}(\wedge^k V) \) such that \(\text{Ann}(L) \) is a linear subspace of \(G_k(V^*) \).

3. For the code \(C(2, n) \), up to a code-isomorphism any codeword corresponds to one of the \(2 \)-forms

\[
\omega_r = e^1 \wedge e^2 + e^3 \wedge e^5 + \cdots + e^{2r - 1} \wedge e^{2r},
\]

where \(1 \leq r \leq \lfloor n/2 \rfloor \). Moreover

\[
||\omega_r|| = q^\delta + q^{\delta - 2} + \cdots + q^{\delta - 2r + 2}
\]

Proof. We refer to [6] for the proofs of parts 1) and 3). We give a quick proof of part 2) of the theorem. For a codimension \(r \) subspace \(L \subset \mathbb{P}(\wedge^k V) \), there are \(1 + q + q^2 + \cdots + q^{r - 1} \) elements in \(\text{Ann}(L) \), and each \([\omega] \in \text{Ann}(L) \) satisfies \(||\omega|| \geq q^\delta \) (by the first part of the theorem). The formula (19) gives

\[
||L|| \geq \frac{q^\delta(1 + q + \cdots + q^{r - 1})}{q^{r - 1}} = q^\delta + q^{\delta - 1} + \cdots + q^{\delta - r + 1}
\]

Moreover, equality holds above if and only if each \([\omega] \) in \(\text{Ann}(L) \) satisfies \(||\omega|| = q^\delta \), or equivalently is decomposable. In other words equality holds if and only if \(\text{Ann}(L) \) is a \(r - 1 \) dimensional linear subspace of \(G_k(V^*) \). Since linear subspaces of \(G_k(V^*) \) exist only in dimensions less than or equal to \(n - k \), taking such subspaces for \(\text{Ann}(L) \) we obtain the desired formula for \(d_r(C(k, n)) \) when \(1 \leq r \leq n - k + 1 \). \(\square \)

The next lemma relates the weight of a \(C(k, n) \) codeword to certain codewords of \(C(k - 1, n - 1) \) associated with it. For a nonzero \(\omega \in \wedge^k V^* \) and a vector \(u \not\in V_\omega \), let \(\omega_u \) denote \(\iota_u \omega \) regarded as a \(k - 1 \) form on the quotient vector space \(V/\langle \mathbb{F}_q u \rangle \). The weight \(||\omega|| \) can be expressed in terms of the weights \(||\omega_u|| \) for \(u \not\in V_\omega \) as follows.

Lemma 3.7.

\[
||\omega|| = \frac{1}{q^k - 1} \sum_{u \not\in V_\omega} ||\omega_u||
\]
Proof. Let us denote the cardinality of the general linear group $GL(m, \mathbb{F}_q)$ by

$$[m]_q := q^{m(m-1)/2} (q^m - 1)(q^{m-1} - 1) \cdots (q - 1).$$

Let $[v_1, v_2, \ldots, v_k]$ denote an ordered set of k vectors of V. By definition of $||\omega|| = |G_k(V) \setminus \mathcal{H}_\omega|$ we get:

$$[k]_q \cdot ||\omega|| = \sum_{u \in \mathcal{V}_\omega} |\{[v_1, v_2, \ldots, v_k] : \langle \omega, v_1 \wedge \cdots \wedge v_k \rangle \neq 0\}|.$$

Let \hat{v}_i for $2 \leq i \leq k$ denote the class of v_i in $V/(\mathbb{F}_q u)$. There are q^{k-1} ordered sets $[v_2, \ldots, v_k]$ whose projection under $V \to V/(\mathbb{F}_q u)$ is a given ordered set $[\hat{v}_2, \ldots, \hat{v}_k]$. Therefore,

$$\frac{[k]_q \cdot ||\omega||}{q^{k-1}} = \sum_{u \in \mathcal{V}_\omega} |\{[\hat{v}_2, \ldots, \hat{v}_k] : \langle \omega_u, \hat{v}_2 \wedge \cdots \wedge \hat{v}_k \rangle \neq 0\}| = [k - 1]_q \sum_{u \in \mathcal{V}_\omega} ||\omega_u||.$$

The lemma now follows by noting that

$$[k]_q = q^{k-1}(q^k - 1)[k - 1]_q.$$

\hfill \Box

Proposition 3.8. For $1 \leq m \leq n - k + 1$, let L be an m dimensional subspace of $\mathbb{F}(\wedge^k V)$ such that L is not contained in $G_k(V)$. Suppose $L_1 \subset L$ is an $m - 1$ dimensional subspace which is contained in $G_k(V)$. Then we have:

$$|L \cap G_k(V)| - |L_1| \leq \begin{cases} 1 & \text{if } m = 1, \\ q & \text{if } m = 2, \\ q^2 & \text{if } m \geq 3. \end{cases} \tag{20}$$

Proof. If there is no point $P \in L \cap G_k(V)$ which is not in L_1, then $|L \cap G_k(V)| - |L_1|$ being zero, clearly satisfies the stated bounds. So we assume such a point P exists. Let L_2 be the subset of L_1 defined by

$$L_2 := \{Q \in L_1 : \overline{PQ} \subset G_k(V)\}$$

where, for any two points $P_1 \neq P_2 \in G_k(V)$, $\overline{P_1 P_2}$ denotes the line joining P_1 and P_2. By extending a basis of $P_1 \cap P_2$ to a basis of P_1 and P_2, it is easy to see that

$$\overline{P_1 P_2} \cap G_k(V) = \begin{cases} \overline{P_1 P_2} & \text{if } \dim(P_1 \cap P_2) = k - 1, \\ \{P_1, P_2\} & \text{if } \dim(P_1 \cap P_2) < k - 1. \end{cases}$$

This together with the fact that $L = \bigcup_{P' \in L_1} \overline{PP'}$, gives:

$$|L \cap G_k(V)| - |L_1| = 1 + (q - 1)|L_2| \tag{21}$$

Let $\mathcal{P} = L_2 \cup \{P\}$. Given $P_1, P_2 \in \mathcal{P}$, if P_1 or P_2 equals P, then by definition of L_2 the line $\overline{P_1 P_2}$ is contained in $G_k(V)$. Otherwise $P_1, P_2 \in L_2 \subset L_1$, and since $L_1 \subset G_k(V)$ is a linear subspace we again get $\overline{P_1 P_2} \subset G_k(V)$. Therefore we can apply Lemma 3.5 to \mathcal{P} to conclude that the linear subspace $L(\mathcal{P})$ generated by \mathcal{P} is contained in $G_k(V)$. Let \mathcal{P}' be a maximal linear subspace of $G_k(V)$ containing $L(\mathcal{P})$. If $Q, Q' \in L_2$ and $Q'' \in \overline{QQ'}$, then $\overline{QQ''} \in L(\mathcal{P})$, and hence $\overline{QQ''} \subset G_k(V)$. This shows that $Q'' \in L_2$, and hence that L_2 is a linear subspace of $G_k(V)$.
Let \(\pi \) be a maximal linear subspace of \(G_k(V) \) containing \(L_1 \). We note that \(P \notin \pi \), for otherwise all lines joining \(P \) to \(L_1 \) are contained in \(G_k(V) \), and hence \(L \) itself, being the union of these lines, is contained in \(G_k(V) \), which is not true by hypothesis. Therefore \(\pi \neq \pi' \). By parts 1)-3) of Fact 3.2, \(\pi \cap \pi' \) is either a line, a point or empty. Since \(L_2 \) is a linear subspace of \(\pi \cap \pi' \), we conclude that \(|L_2| \in \{0, 1, 1 + q\} \). Using this in (21) we get:

\[
|L \cap G_k(V)| - |L_1| \in \{1, q, q^2\}.
\]

The fact that \(L \notin G_k(V) \) implies \(|L \cap G_k(V)| - |L_1| < q^m \). Therefore, in the case \(m = 1 \) we get \(|L \cap G_k(V)| - |L_1| = 1 \), and in the case \(m = 2 \), we get \(|L \cap G_k(V)| - |L_1| \in \{1, q\} \).

Proposition 3.9. Let \(L \) be an \(\ell \) dimensional linear subspace of \(\mathbb{P}(\wedge^k V) \) which is not contained in \(G_k(V) \). Also suppose \(\ell \geq 3 \). Then:

\[
|L \cap G_k(V)| \leq 1 + q + 2q^2 + q^3 + \cdots + q^{\ell-1}
\]

Proof. Let \(L'' \) be a subspace of \(L \) which is maximal with respect to the property of being contained in \(G_k(V) \). If \(L'' = \emptyset \) then \(|L \cap G_k(V)| = 0 \) satisfies the asserted bound. So we assume \(\dim(L'') = \mu \geq 0 \) and let

\[
\mathcal{F} := \{L' \subset L : \dim(L') = \mu + 1, L' \supset L''\}
\]

We note that \(|\mathcal{F}| = q^{\ell-\mu-1} \). Each point of \(L \) is contained in some \(L' \in \mathcal{F} \), and any two distinct elements of \(\mathcal{F} \) intersect in \(L'' \). Therefore

\[
|L \cap G_k(V)| = |L''| + \sum_{L' \in \mathcal{F}} (|L' \cap G_k(V)| - |L''|)
\]

The pair of spaces \(L'' \subset L' \) satisfies the hypothesis of Proposition 3.8, therefore \(|L' \cap G_k(V)| - |L''| \) satisfies the bounds of (20). Consequently,

\[
\sum_{L' \in \mathcal{F}} (|L' \cap G_k(V)| - |L''|) \leq \begin{cases} 1 + q + \cdots + q^{\ell-1} & \text{if } \mu = 0, \\ q + q^2 + \cdots + q^\ell - 1 & \text{if } \mu = 1, \\ q^2 + q^3 + \cdots + q^{\ell+\mu+1} & \text{if } \mu \geq 2 \end{cases}
\]

Adding \(|L''| = 1 + q + \cdots + q^\mu \) to the above equation we get:

\[
(22) \quad |L \cap G_k(V)| \leq \begin{cases} 2 + q + \cdots + q^{\ell-1} & \text{if } \mu = 0 \\ 1 + 2q + q^2 + \cdots + q^{\ell-1} & \text{if } \mu = 1 \end{cases}
\]

and if \(\mu \geq 2 \) then

\[
(23) \quad |L \cap G_k(V)| \leq 1 + q + 2 \left(q^2 + \cdots + q^{\min(\mu, \ell-\mu+1)}\right) + \left(q^{\min(\mu+1, \ell-\mu+2)} + \cdots + q^{\max(\mu, \ell-\mu+1)}\right)
\]

Consider the quantity:

\[
A := 1 + q + 2q^2 + q^3 + \cdots + q^{\ell-1}
\]

and let \(B \) denote the right hand side of (22) if \(\mu = 0 \) or \(\mu = 1 \), and the right hand side of (23) if \(2 \leq \mu \leq \ell - 1 \). The assertion in the proposition statement that needs to be established is \(|L \cap G_k(V)| \leq A \). Hence it suffices to show \(A \geq B \). If \(\mu = 0 \),
then \(A - B = q^2 - 1 > 0 \) and if \(\mu = 1 \) then \(A - B = q^2 - q > 0 \). If \(\mu = 2 \) or \(\ell - 1 \), then \(A = B \). In the remaining cases \(3 \leq \mu \leq \ell - 2 \), we get:

\[
\frac{(q - 1)(A - B)}{q^3} = (q^{\ell-1-\mu} - 1)(q^{\mu-2} - 1)
\]

Since \(3 \leq \mu \leq \ell - 2 \) implies \(\ell - 1 - \mu \geq 1 \) and \(\mu - 2 \geq 1 \), we obtain \(A > B \).

Theorem 3.10. Let \(\omega \in \wedge^k V^* \) be a nonzero \(k \)-form. If \(\omega \) is decomposable then \(||\omega|| = q^\delta \), and if \(\omega \) is indecomposable then

\[
||\omega|| = q^\delta + q^{\delta-2} + O(q^{\delta-3})
\]

(where \(\delta(k, n) = k(n - k) \) and \(k \leq n/2 \))

Proof. If \(\omega \) is decomposable then \(||\omega|| = q^\delta \) by part 1) of Theorem 3.6. If \(\omega \) is indecomposable and \(k = 2 \), then the desired result (24) holds by part 3) of Theorem 3.6 for all \(n \geq 4 \). So, we assume \(k \geq 3 \) and assume inductively that the result holds for all \(k - 1 \) forms \(\omega \) on a vector space of dimension \(n \geq 2(k - 1) \). We now use Lemma 3.4 and the notation therein. Let \(W_\omega \) be a complement of \(V_\omega \) in \(V \), so that every element of \(V \setminus V_\omega \) can be written as \(u + v \) with \(u \in W_\omega \setminus \{0\} \) and \(v \in V_\omega \).

We let \(\dim(W_\omega) = \dim(U_\omega) = k + s \) where \(s \geq 2 \) as noted in Fact 3.3. We get:

\[
||\omega|| = \frac{q^{n-k-s}}{q^k - 1} \sum_{u \in W \setminus \{0\}} ||\omega_u||
\]

For any \(u \in W_\omega \), the form \(\omega_u \in \wedge^{k-1}(V/Fu)^* \) is decomposable if and only if \(\iota_u \omega \) is decomposable. This easily follows by working with a basis for \(V = W_\omega \oplus V_\omega \) that extends \(u \). Let \(L_\omega \) denote the \(k + s - 1 \) dimensional subspace of \(\mathbb{P}(\wedge^{k-1}U_\omega) \) defined by

\[
L_\omega = \mathbb{P}\{\iota_u \omega : u \in W_\omega\}
\]

Since \(\omega \) is indecomposable, it follows by Lemma 3.4 that \(L_\omega \) is not contained in \(G_{k-1}(U_\omega) \). Hence, by Proposition 3.3, we get

\[
|L_\omega \cap G_{k-1}(U_\omega)| \leq 1 + q + 2q^2 + q^3 + \cdots + q^{k+s-2}.
\]

Therefore, \(|L_\omega \setminus G_{k-1}(U_\omega)| \geq q^{k+s-1} - q^2 \). On the other hand \(|L_\omega \setminus G_{k-1}(U_\omega)| \leq |L_\omega| \). Putting these inequalities together we get:

\[
|L_\omega \setminus G_{k-1}(U_\omega)| = q^{k+s-1} - q^2 + O^+(q^{k+s-2}) = q^{k+s-1} + O(q^{k+s-2})
\]

where \(O^+(q^m) \) denotes a positive quantity which is \(O(q^m) \). Let

\[
\delta' := \delta(k - 1, n - 1) = (k - 1)(n - k).
\]

We note that \(q^{\delta'} = q^\delta / q^{n-k} \). The weight \(||\omega_u|| \) equals \(q^{\delta'} \) if \(\iota_u \omega \) is decomposable, and if \(\iota_u \omega \) is indecomposable, then

\[
||\omega_u|| = q^{\delta'} + q^{\delta'-2} + O(q^{\delta'-3}),
\]

by the inductive hypothesis. Using this in (25), we get:

\[
\frac{q^{\delta'}(q^{k-1})}{q-1} ||\omega|| = (q^{\delta-2} + O(q^{\delta-3}))|L_\omega \setminus G_{k-1}(U_\omega)| + q^\delta |\mathcal{P}(W_\omega)|
\]

\[
= (q^{\delta-2} + O(q^{\delta-3}))(q^{k+s-1} + O(q^{k+s-2})) + q^\delta \frac{q^{k+s-1} - q^2}{q-1}
\]
Simplifying this, we get:

$$||\omega|| = q^d + q^{d-s} \frac{q^s - 1}{q^k - 1} + (q^{d-2} + O(q^{d-3})) \frac{q^k + O(q^{k-1})}{q^k - 1}$$

$$= q^d + O(q^{d-k}) + q^{d-2} + O(q^{d-3})$$

(27)

$$= q^d + q^{d-2} + O(q^{d-3})$$

\[\square\]

Theorem 3.11. Let L be a codimension r subspace of $\mathbb{P}(\wedge^k V)$. If $\text{Ann}(L) \subseteq G_k(V^*)$ then

$$||L|| = q^d + q^{d-1} + \cdots + q^{d-r+1}.$$

If $\text{Ann}(L) \not\subseteq G_k(V^*)$ and $r \geq 3$ then:

$$||L|| = q^d + q^{d-1} + 2q^{d-2} + O(q^{d-3})$$

If $\text{Ann}(L) \not\subseteq G_k(V^*)$ and $r = 2$ then:

$$||L|| = q^d + q^{d-1} + q^{d-2} + O(q^{d-3})$$

Proof. When $\text{Ann}(L) \subseteq G_k(V^*)$, the assertion is a restatement of part 2) of Theorem 3.10. We now assume $\text{Ann}(L) \not\subseteq G_k(V^*)$. Using the formula (19) and Theorem 3.10, we get:

$$q^{r-1} ||L|| = |\text{Ann}(L) \cap G_k(V^*)| q^d + |\text{Ann}(L) \setminus G_k(V^*)| (q^d + q^{d-2} + O(q^{d-3}))$$

$$= q^d (1 + q + \cdots + q^{r-1}) + |\text{Ann}(L) \setminus G_k(V^*)| (q^d + q^{d-2} + O(q^{d-3}))$$

Since $\text{Ann}(L) \not\subseteq G_k(V^*)$ and $r \geq 3$, we use Proposition 3.9 to obtain (as in the proof of Theorem 3.10):

$$|\text{Ann}(L) \setminus G_k(V^*)| = q^{r-1} + O(q^{r-2})$$

Using this in (28), we get:

$$||L|| = q^d + q^{d-1} + \cdots + q^{d-r+1} + (q^{d-2} + O(q^{d-3}))$$

$$= q^d + q^{d-1} + 2q^{d-2} + O(q^{d-3})$$

In the case when $r = 2$, $\text{Ann}(L)$ is a line in $\mathbb{P}(\wedge^k V^*)$. As mentioned in the proof of Proposition 3.8 if a line is not contained in $G_k(V^*)$, then it meets $G_k(V^*)$ in at most two points. Hence $|\text{Ann}(L) \setminus G_k(V^*)|$ being $q, q-1$ or $q-2$, can be written as $q + O(1)$. Using this in (28), we get

$$||L|| = \frac{1}{q} \left[q^d (1 + q) + (q + O(1))(q^{d-2} + O(q^{d-3})) \right]$$

$$= q^d + q^{d-1} + q^{d-2} + O(q^{d-3})$$

\[\square\]

4. Proof of the main result

We recall from (12) the formulas (11) and (12)

$$\gamma(k, n) = E_1 - E_2 + E_3 - \cdots + (-1)^{N-1} E_N$$

$$E_r = \sum_{\{I_1, \ldots, I_r\} \in T_{k,n}} |C_{I_1} \cup \cdots \cup C_{I_r}|$$
From (29), we get

\[E_1 = N q^\delta \]

If \(L \) is the codimension \(r \) subspace of \(\mathbb{P}(\wedge^k V) \) defined by

\[\text{Ann}(L) = \mathbb{P} \left(\text{Span}(e^{I_1}, \ldots, e^{I_r}) \right) \]

then \(|C_{I_1} \cup \cdots \cup C_{I_r}| = ||L|| \). If \(r = 2 \), the line \(\text{Ann}(L) \) of \(\mathbb{P}(\wedge^k V^*) \) joining \(e^I \) and \(e^J \) is contained in \(G_k(V^*) \) if and only if, the \(k \)-dimensional subspaces of \(V^* \) represented by \(e^I \) and \(e^J \) have a \(k-1 \) dimensional intersection. In other words there is a multi-index \(K \in I_{k-1,n} \) with \(I \) and \(J \) of the form \(I = K \cup \{i\} \) and \(J = K \cup \{j\} \). Clearly there are

\[\binom{n}{k-1} \binom{n-k+1}{\frac{1}{2}} = N \delta / 2 \]

such elements of \(I_{k,n}^2 \). Therefore, by Theorem 3.11 we get:

\[E_2 = \frac{N \delta}{2} (q^\delta + q^{\delta-1}) + \left(\binom{n}{2} - N \delta / 2 \right) (q^\delta + q^{\delta-1} + q^{\delta-2} + O(q^{\delta-3})) \]

\[= \left(\binom{n}{2} \right) (q^\delta + q^{\delta-1}) + \frac{N^2 - N \delta}{2} q^{\delta-2} + O(q^{\delta-3}) \]

Now, let \(r \geq 3 \). The subspace \(\text{Ann}(L) \) of (29) is contained in \(G_k(V^*) \) if and only if it is contained in a maximal linear subspace \(\pi_\alpha \) or \(\pi_\gamma \) for some \(\alpha \in G_{k-1}(V^*) \) or some \(\gamma \in G_{k+1}(V^*) \). Moreover, these two cases are disjoint, because \(\text{Ann}(L) \) is \(r-1 \) dimensional and the intersection of a \(\pi_\alpha \) and a \(\pi_\gamma \) is at most one dimensional (part 3) of Fact 3.2. Suppose \(\text{Ann}(L) \subset \pi_\alpha \). By part 4) of Fact 3.2 it follows that \(\alpha \) is the intersection of the points of \(G_k(V^*) \) represented by \(e^{I_\mu} \) and \(e^{J_\nu} \) for any pair \(1 \leq \mu < \nu \leq r \). In other words, there is a \(J \in I_{k-1,n} \) common to all the multi-indices \(I_1, \ldots, I_r \). Clearly there are

\[c_1(r) := \begin{cases} \binom{n}{k-1} \binom{n-k+1}{\frac{1}{r}} = \frac{kN}{n-k+1} \binom{n-k+1}{\frac{1}{r}} & \text{if } r \leq n-k+1 \\ 0 & \text{if } r > n-k+1 \end{cases} \]

such elements of \(I_{k,n}^r \).

Suppose \(\text{Ann}(L) \subset \pi_\gamma \). By part 4) of Fact 3.2 it follows that for any pair \(1 \leq \mu < \nu \leq r \), \(\gamma \) is the vector space sum of the points of \(G_k(V^*) \) represented by \(e^{I_\mu} \) and \(e^{J_\nu} \). In other words, there is a \(J \in I_{k+1,n} \) containing all the multi-indices \(I_1, \ldots, I_r \). Clearly there are

\[c_2(r) := \begin{cases} \binom{n}{k+1} \binom{k+1}{\frac{1}{r}} = \frac{N(n-k)}{k+1} \binom{k+1}{\frac{1}{r}} & \text{if } r \leq k+1 \\ 0 & \text{if } r > k+1 \end{cases} \]

such elements of \(I_{k,n}^r \). (A derivation of \(c_1(r) \) and \(c_2(r) \) can also be found in [3 Corollary 4.4].) Therefore, by Theorem 3.11 we get:

\[\sum_{r=3}^{N} (-1)^{r-1} E_r = \sum_{r=3}^{N} (-1)^{r-1} \left[(c_1(r) + c_2(r))(q^\delta + q^{\delta-1} + \ldots + q^{\delta-r+1}) \right. \\
+ \left. \left(\binom{N}{r} - c_1(r) - c_2(r) \right)(q^\delta + q^{\delta-1} + 2q^{\delta-2} + O(q^{\delta-3})) \right] \]
which simplifies to

\[
\sum_{r=3}^{N} (-1)^{r-1} E_r = O(q^\delta^{-3}) + \left(q^\delta + q^\delta^{-1} \right) \sum_{r=3}^{N} (-1)^{r-1} \binom{N}{r}
\]

\[+ q^{\delta - 2} \left[\frac{N_k}{n-k+1} \sum_{r=3}^{n-k+1} (-1)^{r} \binom{n-k+1}{r} + N(a-k) \sum_{r=3}^{k} (-1)^{r} \binom{k+1}{r} + 2 \sum_{r=3}^{N} (-1)^{r-1} \binom{N}{r} \right] \]

Adding \(E_1 - E_2 \) from formulas (28) and (30) to the above expression and simplifying we get:

\[
\gamma(k, n) = O(q^{\delta - 3}) + q^{\delta} \left(\sum_{r=1}^{N} (-1)^{r-1} \binom{N}{r} \right) + q^{\delta - 1} \left(\sum_{r=2}^{N} (-1)^{r-1} \binom{N}{r} \right)
\]

\[+ q^{\delta - 2} \left[\frac{N^2}{2(n-k+1)(k+1)} \left(k^2 - nk + n + 3 \right) + 2 - \frac{5N}{2} + \frac{N^2}{2} \right] \]

\[= q^{\delta} + (1 - N) q^{\delta - 1} + a_2(k, n) q^{\delta - 2} + O(q^{\delta - 3}) \]

\[\square\]

5. Conclusion

Since the problem of determining the number \(\gamma(k, n; q) \) of \([n, k]\) \(q \)-ary MDS codes is very difficult and complicated, we have studied the problem of determining asymptotic formulae in \(q \) for \(\gamma(k, n; q) \). We have improved the known formula \(\gamma(k, n) = q^\delta - (N - 1)q^{\delta - 1} + O(q^{\delta - 2}) \) by by the formula \(\gamma(k, n) = q^\delta - (N - 1)q^{\delta - 1} + a_2(k, n)q^{\delta - 2} + O(q^{\delta - 3}) \) where \(a_2(k, n) \) is given by \(\delta \). The main tool is a closer study of cardinalities of linear sections of the Grassmannian (Theorems 3.10 and 3.11). The problem of improving this to a formula \(\gamma(k, n) = q^\delta - (N - 1)q^{\delta - 1} + a_2(k, n)q^{\delta - 2} + a_3(k, n)q^{\delta - 3} + O(q^{\delta - 4}) \) is more challenging, and will be studied in future work. On a different note, Theorem 6.10 can be significantly strengthened: In a future work we will show that for an indecomposable \(k \)-form \(\omega \), we in fact have

\[||\omega|| = q^{\delta} + q^{\delta - 2} + O^+(q^{\delta - 3}) \]

where \(O^+(q^{\delta - 3}) \) is positive quantity which is \(O(q^{\delta - 3}) \). This enables us to determine some of the as yet unknown higher weights of the Grassmann code \(C(k, n) \).

References

[1] W.-L. Chow. On the geometry of algebraic homogeneous spaces. Ann. of Math. (2), 50:32–67, 1949.
[2] Sudhir R. Ghorpade and Krishna V. Kaipa. Automorphism groups of Grassmann codes. Finite Fields Appl., 23:80–102, 2013.
[3] Sudhir R. Ghorpade and Gilles Lachaud. Hyperplane sections of Grassmannians and the number of MDS linear codes. Finite Fields Appl., 7(4):468–506, 2001.
[4] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons], New York, 1978.
[5] Anna V. Iampolskaia, Alexei N. Skorobogatov, and Evgenii A. Sorokin. Formula for the number of \([9, 3]\) MDS codes. IEEE Trans. Inform. Theory, 41(6, part 1):1667–1671, 1995. Special issue on algebraic geometry codes.
[6] D. Yu. Nogin. Codes associated to Grassmannians. In Arithmetic, geometry and coding theory (Luminy, 1993), pages 145–154. de Gruyter, Berlin, 1996.
[7] M. Pankov. Grassmannians of Classical Building. World Scientific, Hackensack, NJ, 2010.
[8] Alexei N. Skorobogatov. Linear codes, strata of Grassmannians, and the problems of Segre. In *Coding theory and algebraic geometry (Luminy, 1991)*, volume 1518 of *Lecture Notes in Math.*, pages 210–223. Springer, Berlin, 1992.

[9] Michael Tsfasman, Serge Vlăduț, and Dmitry Nogin. *Algebraic geometric codes: basic notions*, volume 139 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2007.