SMiRL: Surprise Minimizing RL in Dynamic Environments

Glen Berseth1
Chelsea Finn2
Daniel Geng1
Dinesh Jayaraman1,3
Coline Devin1
Sergey Levine1
1UC Berkeley 2Stanford 3Facebook
{gberseth,dangengdg,coline,dineshjayaraman,svlevine}@berkeley.edu, cbfinn@cs.stanford.edu

Abstract

All living organisms struggle against the forces of nature to carve out niches where they can maintain homeostasis. We propose that such a search for order amidst chaos might offer a unifying principle for the emergence of useful behaviors in artificial agents. We formalize this idea into an unsupervised reinforcement learning method called surprise minimizing RL (SMiRL). SMiRL trains an agent with the objective of maximizing the probability of observed states under a model trained on previously seen states. The resulting agents can acquire proactive behaviors that seek out and maintain stable conditions, such as balancing and damage avoidance, that are closely tied to an environment’s prevailing sources of entropy, such as wind, earthquakes, and other agents. We demonstrate that our surprise minimizing agents can successfully play Tetris, Doom, control a humanoid to avoid falls and navigate to escape enemy agents, without any task-specific reward supervision. We further show that SMiRL can be used together with a standard task reward to accelerate reward-driven learning.

1 Introduction

The general struggle for existence of animate beings is not a struggle for raw materials, nor for energy, but a struggle for negative entropy.

(Ludwig Boltzmann, 1886)

All living organisms carve out environmental niches within which they can maintain relative predictability amidst the increasing entropy around them [Boltzmann 1886, Schrödinger 1944, Schneidder & Kay 1993, Friston 2009]. Humans, for example, go to great lengths to shield themselves from surprise — we band together in millions to build cities with homes, supplying water, food, gas, and electricity to control the deterioration of our bodies and living spaces amidst heat, cold, wind and storm. The need to discover and maintain such surprise-free equilibria has driven great resourcefulness and skill in organisms across very diverse natural habitats. Motivated by this, we ask: could the motive of preserving order amidst chaos guide the automatic acquisition of useful behaviors in artificial agents?

Our method addresses the unsupervised reinforcement learning problem: How might an agent acquire complex behaviors and skills with no external supervision? This central problem in artificial intelligence has evoked a number of solutions, mainly focusing on novelty-seeking behaviors [Schmidhuber 1991, Lehman & Stanley 2011, Still & Precup 2012, Bellemare et al. 2016, Houthooft et al. 2016, Pathak et al. 2017]. In simulated worlds, such as video games, novelty-seeking intrinsic motivation can lead to interesting and meaningful behavior. However, we argue that these environments lack certain ingredients that are fundamental to the real world. In the real world, natural forces and other agents offer bountiful novelty. The second law of thermodynamics stipulates ever-increasing
Figure 1: In natural environments (left), a passive agent will experience a wide variety of states. By reasoning about future surprise, a SMiRL agent can take actions that temporarily increase surprise but reduce it in the long term. For example, building a house initially results in novel states, but once it is built, the house allows the agent to experience a more stable and surprise-free environment. On the right we show an interpretation of the agent interaction loop for SMiRL. The agent observes a state and computes the reward \(r_t \) as the surprise, the probability of \(s_t \) under \(\theta_{t-1} \). The belief \(\theta_t \) is then updated over states given the new state \(s_t \). The policy \(\pi_{\phi}(a|s, \theta_t) \), conditioned on the agent’s current belief over the state distribution, generates an action \(a_t \).

entropy, and therefore perpetual novelty, without even requiring any active intervention. Instead, the challenges in natural environments are allostasis and homeostasis: discovering behaviors that enable agents to maintain an equilibrium, for example, to preserve their bodies, their homes, and avoid predators and hunger. Even novelty-seeking behaviors may emerge naturally as a means to maintain homeostasis: an agent that is curious and forages for food in unlikely places might find better methods to satisfy its hunger.

We formalize allostasis as an objective for reinforcement learning based on surprise minimization (SMiRL). In highly entropic and dynamic environments with undesirable sources of novelty, minimizing surprise (i.e., minimizing novelty) causes agents to seek a stable equilibrium naturally. Natural environments with winds, earthquakes, adversaries, and other disruptions already offer a steady stream of novel stimuli, and an agent that minimizes surprise in these environments will act and explore in order to find the means to maintain a stable equilibrium in the face of these disturbances.

SMiRL operates by maintaining a density \(p(s) \) of visited states and training a policy to act such that future states have a high likelihood under \(p(s) \). This interaction scheme is shown in Figure 1 (right). Across many different environments, with varied disruptive forces and various embodiments and action spaces, we show that this simple approach induces useful equilibrium-seeking behaviors. We show that SMiRL agents can solve Tetris, avoid fireballs in Doom, enable a simulated humanoid to balance and locomote and navigate to escape enemy agents. Without any explicit task reward. More pragmatically, we show that SMiRL can be used together with a task reward to accelerate standard reinforcement learning in dynamic environments, and can provide a simple mechanism for imitation learning. Videos of our results are available online.

2 Surprise Minimizing Agents

We propose surprise minimization as a means to operationalize the idea of learning useful behaviors by seeking to preserve order amidst chaos. In complex natural environments with disruptive forces that tend to naturally accumulate entropy, which we refer to as entropic environments, minimizing surprise over an agent’s lifetime requires taking actions to reach stable states, and often requires acting continually to maintain homeostasis and avoid surprise. The long term effects of actions on the agent’s surprise can be complicated and counterintuitive, especially when we consider that actions not only change the state that the agent is in but also its beliefs \(\theta \) about which states are more likely. The combination of these two processes induces the agent to not only seek states where \(p_\theta(s) \) is large but to also visit states to alter \(p_\theta(s) \), in order to receive more substantial rewards in the future. This “meta” level reasoning can result in behaviors where the agent might visit new states in order to make them more familiar. An example of this is shown in Figure 1 where in order to avoid the disruptions from the changing weather, an agent needs to build a shelter or home to protect itself and decrease its observable surprise. SMiRL makes use of disruptive forces in the environment to avoid collapse to degenerate solutions, such as staying in a single state \(s_0 \). Fortunately, natural environments typically offer no shortage of such disruption.

\footnote{1https://sites.google.com/view/surpriseminimization}
2.1 Surprise Minimization Problem Statement

To instantiate SMiRL, we design a reinforcement learning agent with a reward proportional to how familiar its current state is, based on the history of states it has experienced during its “life,” which corresponds to a single episode. Formally, we assume a fully-observed controlled Markov process (CMP), though extensions to partially observed settings can also be developed. We use \(s_t \) to denote the state at time \(t \), and \(a_t \) to denote the agent’s action, \(\rho(s_0) \) to denote the initial state distribution, and \(T(s_{t+1}|s_t, a_t) \) to denote the transition dynamics. The agent has access to a dataset \(\mathcal{D}_t = \{s_1, \ldots, s_t\} \) of all states experienced in the episode. By fitting a generative model \(p_\theta(s) \) with parameters \(\theta_t \) to this dataset, the agent obtains an estimator that can be used to evaluate the negative surprise reward, given by

\[
r_t(s) = \log p_\theta(s)
\]

We denote the fitting process as \(\theta_t = \mathcal{U}(\mathcal{D}_t) \). The goal of a SMiRL agent is to maximize the sum \(\sum_t \log p_\theta(s_{t+1}) \). Since the agent’s actions affect the future \(\mathcal{D}_t \) and thus the future \(\theta_t \)'s, the optimal policy does not simply visit states that have a high \(p_\theta(s) \) now, but rather those states that will change \(p_\theta(s) \) such that it provides high likelihood to the states that it sees in the future. In Figure 2, the start of an episode is shown for the game of Tetris, with the evolving belief \(\theta \) shown on the right.

2.2 Training SMiRL Agents

We now present a practical reinforcement learning algorithm for surprise minimization. Recall that a critical component of SMiRL is reasoning about the effect of actions on future states that will be added to \(\mathcal{D}_t \), and their effect on future density estimates—e.g., to understand that visiting a state that is currently unfamiliar and staying there will make that state familiar, and therefore lead to higher rewards in the future. This means that the agent must reason not only about the unknown MDP dynamics but also the dynamics of the density model \(p_\theta(s) \) trained on \(\mathcal{D}_t \). In the algorithm, this is accomplished via an episodic training procedure, where the agent trains over many episodes and \(\mathcal{D} \) is reset at the beginning of each episode to simulate a new lifetime.

Through this procedure, SMiRL learns the parameters \(\phi \) of the agent’s policy \(\pi_\phi \) for a fixed horizon. Since the reward \(r_t \) is a function of \(\mathcal{D}_t \), the policy must be conditioned on the sufficient statistic of \(\mathcal{D}_t \) in order to produce a Markovian learning problem.

To this end, we condition the policy \(\pi_\phi \) on \(\theta_t \) and \(t \), where \(\theta_t \) is updated at every time step of the episode to train \(p_\theta \), as above. This implies an assumption that \(\theta_t \) and \(t \) represent the sufficient statistics necessary to summarize the contents of the dataset, and contain all information required to reason about how \(p_\theta \) will evolve in the future. Put another way, \((s_t, \theta_t, t) \) represents a Markovian state space for the combined MDP defined by the original Markov process and the dynamics of the belief updates. This MDP formulation is discussed in more detail in the appendix A. Of course, we

Algorithm 1: Training a SMiRL agent with RL

1: Initialize policy parameters \(\phi \)
2: Initialize RL algorithm RL
3: for each episode \(= 1, 2, \ldots \) do
4: \(s_0 \sim \rho(s_0) \) \quad \triangleright Initial state distribution.
5: \(\mathcal{D}_0 \leftarrow \{s_0\} \) \quad \triangleright Reset state history.
6: for each \(t = 0, 1, \ldots, T \) do
7: \(\theta_t \leftarrow \mathcal{U}(\mathcal{D}_t) \) \quad \triangleright Fit density model.
8: \(a_t \sim \pi_\phi(a_t|s_t, \theta_t, t) \) \quad \triangleright Run policy.
9: \(s_{t+1} \sim T(s_{t+1}|s_t, a_t) \) \quad \triangleright Transition dynamics.
10: \(r_t \leftarrow \log p_\theta(s_{t+1}) \) \quad \triangleright SMiRL reward.
11: \(\mathcal{D}_{t+1} \leftarrow \mathcal{D}_t \cup \{s_{t+1}\} \) \quad \triangleright Update state history.
12: \(\phi \leftarrow \text{RL}(\phi; s_{[0:T]}, \theta_{[0:T]}, \{0:T\}, a_{[0:T]}, r_{[0:T]}) \)
13: end for each
14: end for each
We evaluate SMiRL on a range of environments, from video game domains to simulated robotic control scenarios. These are rich, dynamic environments — the world evolves automatically, even without agent intervention due to the presence of disruptive forces and adversaries. Note that SMiRL makes use of such disruptions to produce meaningful emergent behavior, since mere inaction would otherwise suffice to achieve homeostasis. However, as we have argued above, such disruptions are also an essential property of most real-world environments. Current RL benchmarks neglect this.

Algorithm 1 provides the pseudocode for SMiRL, which can be used with any choice of model class for the generative model \(p_\theta(s) \), this choice must be carefully made in practice. As we show in our experiments, relatively simple distribution classes, such as products of independent marginals, suffice to run SMiRL in many environments. However, it may be desirable in more complex environments to use more sophisticated density estimators, especially when learning directly from high-dimensional observations such as images.

In these cases, we propose to use variational autoencoders (VAEs) (Kingma & Welling, 2014) to learn a non-linear compressed state representation to facilitate estimation of \(p_\theta(s) \) for SMiRL. A VAE is trained using the standard loss to reconstruct states \(s \) after encoding them into a low-dimensional normal distribution \(q_\omega(z|s) \) through the encoder \(q \) with parameters \(\omega \). A decoder \(p_\theta(s|z) \) with parameters \(\psi \) computes \(s \) from the encoder output \(z \). During this training process, a KL divergence loss between the prior \(p(z) \) and \(q_\omega(z|s) \) is used to keep this distribution near the standard normal distribution.

Using this online VAE training approach necessitates two changes to the procedure described in Section 2.2. First, training a VAE requires more data than the simpler density models, which can easily be fitted to data from individual episodes. We propose to overcome this by not resetting the VAE parameters between training episodes. Instead, we train the VAE across episodes. Second, instead of passing all VAE parameters to the SMiRL policy, we track a separate episode-specific episode. However, this does provide for a richer state density model, and the within-episode updates to estimate \(p_\theta_z(z) \) still provide our method with meaningful surprise-seeking behavior. As we show in our experiments, this can improve the performance of SMiRL in practice.

3 Environments

We evaluate SMiRL on a range of environments, from video game domains to simulated robotic control scenarios. These are rich, dynamic environments — the world evolves automatically, even without agent intervention due to the presence of disruptive forces and adversaries. Note that SMiRL makes use of such disruptions to produce meaningful emergent behavior, since mere inaction would otherwise suffice to achieve homeostasis. However, as we have argued above, such disruptions are also an essential property of most real-world environments. Current RL benchmarks neglect this,
focusing largely on unrealistically static environments where the agent alone drives change (Bellemare et al., 2015; Brockman et al., 2016). Therefore, our choices of environments, discussed below, are not solely motivated by suitability to SMiRL; instead, we aim to evaluate unsupervised RL approaches, ours as well as others, in these more dynamic environments.

Tetris. The classic game of Tetris offers a naturally entropic environment — the world evolves according to its own rules and dynamics even in the absence of coordinated behavior of the agent, piling up pieces and filling up the board. It therefore requires active intervention to maintain homeostasis. We consider a 4×10 Tetris board with tromino shapes (composed of 3 squares), as shown in Figure 3a. The observation is a binary image of the current board with one pixel per square, as well as an indicator for the type of shape that will appear next. Each action denotes one of the four columns in which to drop the shape and one of 4 shape orientations. For evaluation, we measure rows cleared, as well as how many times the agent dies in the game by allowing the blocks to reach the top of the board, within the max episode length of 100. Since the observation is a binary image, we model $p(s)$ as independent Bernoulli. See Appendix A for details.

VizDoom. We consider two VizDoom environments from Kempka et al. (2016): TakeCover and DefendTheLine. TakeCover provides a dynamically evolving world, with enemies that appear over time and throw fireballs aimed at the player (Kempka et al., 2016). The observation space consists of the 4 previous grayscale first-person image observations, and the action space consists of moving left or right. We evaluate the agent based on how many times it is hit by fireballs, which we term the “damage” taken by the agent. Images from the TakeCover environment are shown in Fig 3b.

In DefendTheLine, additional enemies can move towards the player, and the player can shoot the enemies. The agent starts with limited ammunition. This environment provides a “survival” reward function ($r = 1$ for each timestep alive), and performance is measured by how long the agent survives in the environment. For both environments, we model $p(s)$ as independent Gaussians over the pixels. See Appendix A for details.

HauntedHouse is a navigation task where the agent has a partial observation of the environment (shown by the lighter gray area around the red agent in Figure 3d). The agent starts on the left of the map, where the “enemy” agents (blue) pursue the agent (red). To escape, the agent can navigate down the hallways and through a randomly placed doors (green) to reach the safe room on the right, which the enemies can not enter. To get to the safe room the agent will need to endure increased surprise early on to reach states in the future with lower surprise.

Simulated Humanoid robots. In the last set of environments, a simulated planar Humanoid robot is placed in situations where it is in danger of falling. The action consists of the PD targets for each of
the joints. The state-space comprises the rotation of each joint and the linear velocity of each link. We evaluate several versions of this task, which are shown in Figure 3. The Cliff task initializes the agent at the edge of a cliff, in a random pose and with a forward velocity of 1 m/s. Falling off the cliff leads to highly irregular and unpredictable configurations, so a surprise minimizing agent will want to learn to stay on the cliff. In the Treadmill environment, the robot starts on a platform that is moving at 1 m/s backwards; an agent will be carried backwards unless it learns to locomote. The Pedestal environment is designed to test whether SMiRL can learn a more active balancing policy. In this environment, the agent starts on a thin pedestal and random forces are applied to the robot’s links and boxes of random size are thrown at the agent. The Walk domain is used to evaluate the use of the SMiRL reward as a form of “stability reward” that assists the agent in learning how to walk while reducing the number of falls. We also initialize $p(s)$ from example walking data and to show how expert data can be used to accelerate training, as discussed in Section 4.2. The task reward in Walk is $r_{\text{walk}} = \exp(-1.5v_d^2)$, where v_d is the difference between the x velocity and the desired velocity of 1 m/s. In these environments, we measure performance as the proportion of episodes with a fall. A state is classified a fall if the agent’s links, except for the feet, are touching the ground, or if the agent is -5 meters or more below the platform or cliff. Since the state is continuous, we model $p(s)$ as independent Gaussian; see Appendix A for details.

4 Experimental Results

Our experiments aim to answer the following questions: (1) Can SMiRL learn meaningful and complex emergent behaviors in the environments described in Section 3? (2) Can we incorporate generative models into SMiRL, as described in Section 2.3, and use state densities in learned representation spaces? (3) Can SMiRL serve as a joint training objective to accelerate the acquisition of reward-guided behavior, and does it outperform prior intrinsic motivation methods in this role? We also illustrate several applications of SMiRL, showing that it can accelerate task learning, provide for exploration with fewer damaging falls, and provide for elementary imitation. Videos of learned behaviors are available on the website https://sites.google.com/view/surpriseminimization/home

4.1 Emergent Behavior in Unsupervised Learning

First, we evaluate SMiRL on the Tetris, VizDoom, Cliff, and Treadmill tasks, studying its ability to generate purposeful coordinated behaviors after training using only the surprise minimizing objective, in order to answer question (1). The SMiRL agent demonstrates meaningful emergent behaviors in each of these domains. In the Tetris environment, the agent can learn proactive behaviors to eliminate rows and properly play the game. The agent also learns emergent game playing behaviour in the VizDoom environment, acquiring an effective policy for dodging the fireballs thrown by the enemies. In both of these environments, stochastic and chaotic events force the SMiRL agent to take a coordinated course of action to avoid unusual states, such as full Tetris boards or fireball explosions. In the Cliff environment, the agent learns a policy that dramatically reduces the probability of falling off of the cliff by bracing against the ground and stabilize itself at the edge, as shown in Figure 5. In the Treadmill environment, SMiRL learns a more complex locomotion behavior, jumping forward to increase the time it stays on the treadmill, as shown in Figure 5. While SMiRL can learn a stable policy, in Pedestal a policy that actively reacts to persistent disturbances is needed. We find that SMiRL learns a policy that can reliably keep the agent atop the pedestal. Quantitative measurement of the reduction in falls is shown in Figure 6.

We also study question (2) in the TakeCover, Cliff, Treadmill and Pedestal environments, training a VAE model and estimating surprise in the latent space of the VAE. In most of these environments, the representation learned by the VAE leads to faster acquisition of the emergent behaviors in TakeCover Figure 5 (right), Cliff Figure 5 (left), and Treadmill Figure 6 (middle), leads to a substantially more successful locomotion behavior.

SMiRL and exploration. Although SMiRL by itself is not an objective that inherently encourages exploration (any more so than any other reward function), at convergence the SMiRL policy can exhibit an active “searching” behavior, seeking out objects in the environment that would allow it to reduce surprise later. For example, in the HauntedHouse environment, the position of the doors change between episodes, and the optimal SMiRL policy learns to search for the doors because it knows that finding them will result in lower future surprise, even if the act of finding the doors
themselves has higher surprise. This behavior is illustrated in Figure 4a and the “delayed gratification” plot in [45], which shows that the SMiRL agent incurs increased surprise early in the episode, for the sake of much lower surprise later.

![Figure 4](image1.png)
(a) HauntedHouse SMiRL (top) and SMiRL + Counts (bottom)
(b) Episode Reward
(c) Imitation in Tetris, where $D_0 =$ left image.

Figure 4: Results for the HauntedHouse environment (a,b). Here we show SMiRL’s incentive for longer term planning. On the left we show that SMiRL can learn to perform early exploration, causing an increased amount of surprise early on, that leads to reduced surprise in the long run. In (c) we show frames from two episodes from performing imitation in Tetris by initializing $p_0(s)$ with the image on the left.

Comparison to intrinsic motivation.

![Figure 5](image2.png)

Figure 5: Results for video game environments: Comparison between SMiRL, ICM, RND, and an oracle RL algorithm with access to the true reward in Tetris on (left) number of deaths per episode (lower is better), (center) number of rows cleared per episode (higher is better), and (right) in TakeCover on amount of damage taken (lower is better). The SMiRL agent can learn to play Tetris and avoid fireballs in TakeCover almost as well as an agent trained on the task reward. Using VAE features for the density model (SMiRL VAE) improves performance in VizDoom. Five random seeds are sampled for each method on each plot, and the mean and standard deviation are shown. Videos of the policies can be found at https://sites.google.com/view/surpriseminimization.

Figure 5 shows plots of the environment-specific rewards over time on Tetris, TakeCover, and the Humanoid domains Figure 6. In order to compare SMiRL to more standard intrinsic motivation methods, which seek out states that maximize surprise or novelty, we also evaluated ICM (Pathak et al. 2017) and RND (Burda et al., 2018b). Additionally, we plot an oracle agent that directly optimizes the task reward. On Tetris, after training for 2000 epochs, SMiRL achieves near-perfect play, on par with the oracle reward optimizing agent, with no deaths, as shown in Figure 5(left, middle). ICM and RND seek novelty by creating more and more distinct patterns of blocks rather than clearing them, leading to deteriorating game scores over time. On TakeCover, SMiRL effectively learns to dodge fireballs thrown by the adversaries, as shown in 5(right). Novelty-seeking seeking methods once again yield deteriorating rewards over time. The baseline comparisons for the Cliff and Treadmill environments have a similar outcome. Novelty-seeking methods learn irregular behaviors that cause the humanoid to jump off the Cliff and roll around on the Treadmill, maximizing the variety (and quantity) of falls.

However, SMiRL and intrinsic motivation are not mutually exclusive. While at first glance, the SMiRL objective appears to be the opposite of standard intrinsic motivation objectives (Bellemare et al., 2016; Pathak et al., 2017; Burda et al., 2018b), which seek out states with maximal surprise (i.e., novel states), we next demonstrate that in fact, these two methods are complementary. SMiRL can use conventional intrinsic motivation methods to aid in exploration so as to discover more effective policies for minimizing surprise. We can, therefore, combine these two methods and learn more sophisticated behaviors. While SMiRL on its own has a difficult time producing a walking gait on
the Treadmill environment, the addition of novelty-seeking intrinsic motivation allows increased exploration, which results in an improved walking gait that remains on the treadmill longer, as can be seen in Figure 6 (middle). We evaluate this combined approach on the Pedestal environment as well, where a more difficult balancing policy is necessary. As shown in Figure 6 (right) the addition of exploration bonuses aids in learning the task quickly and results in similar final performance as SMiRL.

While the central focus of this paper is the emergent behaviors that can be obtained via SMiRL, in this section we study more pragmatic applications. We show that SMiRL can be used for joint training to accelerate reward-driven learning of tasks, and also illustrate how SMiRL can be used to produce a rudimentary form of imitation learning.

Imitation. We can easily adapt SMiRL to perform imitation by initializing the buffer D_0 with states from expert demonstrations, or even individual desired outcome states. To study this application of SMiRL, we initialize the buffer D_0 in Tetris with user-specified desired board states. An illustration of the Tetris imitation task is presented in Figure 4c, showing imitation of a box pattern (top) and a checkerboard pattern (bottom), with the leftmost frame showing the user-specified example, and the other frames showing actual states reached by the SMiRL agent. While several prior works have studied imitation without example actions (Liu et al., 2018; Torabi et al., 2018a; Aytar et al., 2018; Torabi et al., 2018b; Edwards et al., 2018; Lee et al., 2018), this capability emerges automatically in SMiRL, without any further modification to the algorithm.

While the central focus of this paper is the emergent behaviors that can be obtained via SMiRL, in this section we study more pragmatic applications. We show that SMiRL can be used for joint training to accelerate reward-driven learning of tasks, and also illustrate how SMiRL can be used to produce a rudimentary form of imitation learning.

Imitation. We can easily adapt SMiRL to perform imitation by initializing the buffer D_0 with states from expert demonstrations, or even individual desired outcome states. To study this application of SMiRL, we initialize the buffer D_0 in Tetris with user-specified desired board states. An illustration of the Tetris imitation task is presented in Figure 4c, showing imitation of a box pattern (top) and a checkerboard pattern (bottom), with the leftmost frame showing the user-specified example, and the other frames showing actual states reached by the SMiRL agent. While several prior works have studied imitation without example actions (Liu et al., 2018; Torabi et al., 2018a; Aytar et al., 2018; Torabi et al., 2018b; Edwards et al., 2018; Lee et al., 2018), this capability emerges automatically in SMiRL, without any further modification to the algorithm.

While the central focus of this paper is the emergent behaviors that can be obtained via SMiRL, in this section we study more pragmatic applications. We show that SMiRL can be used for joint training to accelerate reward-driven learning of tasks, and also illustrate how SMiRL can be used to produce a rudimentary form of imitation learning.

Imitation. We can easily adapt SMiRL to perform imitation by initializing the buffer D_0 with states from expert demonstrations, or even individual desired outcome states. To study this application of SMiRL, we initialize the buffer D_0 in Tetris with user-specified desired board states. An illustration of the Tetris imitation task is presented in Figure 4c, showing imitation of a box pattern (top) and a checkerboard pattern (bottom), with the leftmost frame showing the user-specified example, and the other frames showing actual states reached by the SMiRL agent. While several prior works have studied imitation without example actions (Liu et al., 2018; Torabi et al., 2018a; Aytar et al., 2018; Torabi et al., 2018b; Edwards et al., 2018; Lee et al., 2018), this capability emerges automatically in SMiRL, without any further modification to the algorithm.
this is, of course, not the case for all tasks, many real-world tasks do require the agent to stabilize itself in a specific and relatively narrow set of conditions. Incorporating SMiRL into the learning objective in such settings can accelerate learning and potentially improve safety during training, as the agent automatically learns to avoid anything unfamiliar. We study this application of SMiRL in the DefendTheLine task and the Walk task. In both cases, we use SMiRL to augment the task reward, such that the full reward is given by $r_{\text{combined}}(s) = r_{\text{task}}(s) + \alpha r_{\text{SMiRL}}(s)$, where α is chosen to put the two reward terms at a similar magnitude. In the Walk task, illustrated in Figure 3g we include an additional version of SMiRL (imitate) where $p_\theta(s)$ is initialized with 8 example walking trajectories (256 timesteps each), similar to the imitation setting, to study how well SMiRL can incorporate prior knowledge into the stability reward. We measure the number of falls during training, with and without the SMiRL reward term. The results in Figure 7b show that adding the SMiRL reward results in significantly fewer falls during training, and less when using imitation data while learning to walk well, indicating that SMiRL stabilizes the agent more quickly than the task reward alone. In Figure 7c only $r_{\text{task}}(s)$ is plotted, indicating that the use of SMiRL also increases average reward.

In the DefendTheLine task, shown in Figure 3c, we compare the performance of SMiRL as a joint training objective to the more standard novelty-driven bonuses provided by ICM (Pathak et al., 2017) and RND (Burda et al., 2018b). As shown in the results in Figure 7a the SMiRL reward, even without demonstration data, provides for substantially faster learning on this task than novelty-seeking intrinsic motivation. These results suggest that SMiRL can be a viable method for accelerating learning and reducing the amount of unsafe behavior (e.g., falling) in dynamic environments.

5 Related Work

Prior works have sought to learn intelligent behaviors through reinforcement learning (Sutton & Barto, 2018) concerning a provided reward function, such as the score of a video game (Mnih et al., 2013) or a hand-defined cost function (Levine et al., 2016). Such rewards are often scarce or difficult to provide in practical real-world settings, motivating approaches for reward-free learning such as empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2013) or intrinsic motivation (Chentanez et al., 2005; Oudeyer & Kaplan, 2009; Oudeyer et al., 2007). Intrinsic motivation has typically focused on encouraging novelty-seeking behaviors by maximizing model uncertainty (Houthooft et al., 2016; Still & Precup, 2012; Shyam et al., 2018; Pathak et al., 2019), by maximizing model prediction error or improvement (Lopes et al., 2012; Pathak et al., 2017, 2019), through state visitation counts (Bellemare et al., 2016), via surprise maximization (Achiam & Sastry, 2017; Schmidthuber, 1991; Sun et al., 2011), and through other novelty-based reward bonuses (Lehman & Stanley, 2011; Burda et al., 2018a; Kim et al., 2019). We do the opposite. Inspired by the free energy principle (Friston, 2009; Friston et al., 2009; Ueltzhöffer, 2018), we instead incentivize an agent to minimize surprise and study the resulting behaviors in dynamic, entropy-increasing environments. In such environments, which we believe are more reflective of the real world, we find that prior novelty-seeking environments perform poorly.

Prior works have also studied how competitive self-play and competitive, multi-agent environments can lead to complex behaviors with minimal reward information (Silver et al., 2017; Bansal et al., 2017; Sukhbaatar et al., 2017; Baker et al., 2019). Like these works, we also consider how complex behaviors can emerge in resource-constrained environments. However, our approach can also be applied in non-competitive environments.

6 Discussion

We presented an unsupervised reinforcement learning method based on minimization of surprise. We show that surprise minimization can be used to learn a variety of behaviors that maintain “homeostasis,” putting the agent into stable and sustainable limit cycles in its environment. Across a range of tasks, these stable limit cycles correspond to useful, semantically meaningful, and complex behaviors: clearing rows in Tetris, avoiding fireballs in VizDoom, and learning to balance and hop forward with a bipedal robot. The key insight utilized by our method is that, in contrast to simple simulated domains, realistic environments exhibit dynamic phenomena that gradually increase entropy over time. An agent that resists this growth in entropy must take effective and coordinated actions, thus learning increasingly complex behaviors. This stands in stark contrast to commonly proposed intrinsic exploration methods based on novelty, which instead seek to visit novel states and increase entropy.
Besides fully unsupervised reinforcement learning, where we show that our method can give rise to intelligent and sophisticated policies, we also illustrate several more practical applications of our approach. We show that surprise minimization can provide a general-purpose risk aversion reward that, when combined with task rewards, can improve learning in environments where avoiding catastrophic (and surprising) outcomes is desirable. We also show that SMiRL can be adapted to perform a rudimentary form of imitation.

Our investigation of surprise minimization suggests several directions for future work. The particular behavior of a surprise minimizing agent is strongly influenced by the choice of state representation: by including or excluding particular observation modalities, the agent will be more or less surprised. Thus, tasks may be designed by choosing an appropriate state or observation representations. Exploring this direction may lead to new ways of specifying behaviors for RL agents without explicit reward design. Other applications of surprise minimization may also be explored in future work, possibly for mitigating reward misspecification by disincentivizing any unusual behavior that likely deviates from what the reward designer intended. Finally, we believe that a promising direction for future research is to study how lifelong surprise minimization can result in intelligent and sophisticated behavior that maintains homeostasis by acquiring increasingly complex behaviors. This may be particularly relevant in complex real-world environments populated by other intelligent agents, where maintaining homeostasis may require constant adaptation and exploration.

Acknowledgments This research was partly funded by a DARPA Young Faculty Award #D13AP0046. This work was supported by the Office of Naval Research, the National Science Foundation, Google, NVIDIA, Amazon, and ARL DCIST CRA W911NF-17-2-0181.

References

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement learning. arXiv preprint arXiv:1703.01732, 2017.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing hard exploration games by watching youtube. In Advances in Neural Information Processing Systems, pp. 2930–2941, 2018.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528, 2019.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent complexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems, pp. 1471–1479, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 4148–4152. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832747.2832830.

Ludwig Boltzmann. The second law of thermodynamics. 1886.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-Scale Study of Curiosity-Driven Learning. 2018a. URL http://arxiv.org/abs/1808.04355

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. ICLR, 2018b.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement learning. In Advances in neural information processing systems, pp. 1281–1288, 2009.
Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L Isbell. Imitating latent policies from observation. *arXiv preprint arXiv:1805.07914*, 2018.

Karl Friston. The free-energy principle: a rough guide to the brain? *Trends in cognitive sciences*, 13(7):293–301, 2009.

Karl J. Friston, Jean Daunizeau, and Stefan J. Kiebel. Reinforcement learning or active inference? *PLOS ONE*, 4(7):1–13, 07 2009. doi: 10.1371/journal.pone.0006421. URL https://doi.org/10.1371/journal.pone.0006421.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME: Variational Information Maximizing Exploration. 2016. URL http://arxiv.org/abs/1605.09674.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom: A doom-based ai research platform for visual reinforcement learning. In *2016 IEEE Conference on Computational Intelligence and Games (CIG)*, pp. 1–8. IEEE, 2016.

Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee Kim. Curiosity-bottleneck: Exploration by distilling task-specific novelty. In *International Conference on Machine Learning*, pp. 3379–3388, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *ICLR*, 2014.

Alexander S. Klyubin, Daniel Polani, and Chrystopher L. Nehaniv. All else being equal be empowered. In Mathieu S. Capcarrère, Alex A. Freitas, Peter J. Bentley, Colin G. Johnson, and Jon Timmis (eds.), *Advances in Artificial Life*, pp. 744–753, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31816-3.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Ruslan Salakhutdinov, and Sergey Levine. State marginal matching with mixtures of policies.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for novelty alone. *Evolutionary computation*, 19(2):189–223, 2011.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. *Journal of Machine Learning Research*, 17(1), January 2016.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning to imitate behaviors from raw video via context translation. In *2018 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1118–1125. IEEE, 2018.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-based reinforcement learning by empirically estimating learning progress. In *Advances in neural information processing systems*, pp. 206–214, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically motivated reinforcement learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems* 28, pp. 2125–2133. Curran Associates, Inc., 2015.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational approaches. *Frontiers in neurorobotics*, 1:6, 2009.

Pierre-Yves Oudeyer, Frédric Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous mental development. *IEEE transactions on evolutionary computation*, 11(2):265–286, 2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven Exploration by Self-supervised Prediction. 2017.
Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-Supervised Exploration via Disagreement. 2019.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference on neural networks, pp. 1458–1463, 1991.

Eric D Schneider and James J Kay. Life as a manifestation of the second law of thermodynamics. Mathematical and computer modelling, 19(6-8):25–48, 1994.

Erwin Schrödinger. What is life? The physical aspect of the living cell and mind. Cambridge University Press Cambridge, 1944.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration. arXiv preprint arXiv:1810.12162, 2018.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement learning. Theory in Biosciences, 131(3):139–148, 2012.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017.

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal bayesian exploration in dynamic environments. In International Conference on Artificial General Intelligence, pp. 41–51. Springer, 2011.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation. arXiv preprint arXiv:1807.06158, 2018b.

Kai Ueltzhöffer. Deep active inference. Biological Cybernetics, 112(6):547–573, 2018.
A Implementation Details

SMiRL on Tetris. In Tetris, since the state is a binary image, we model \(p(s) \) as a product of independent Bernoulli distributions for each board location. The SMiRL reward \(\log p_\theta(s) \) from (1) becomes:

\[
r_{\text{SMiRL}}(s) = \sum_i s_i \log \theta_i + (1 - s_i) \log (1 - \theta_i),
\]

where \(s \) is a single state, \(\theta_i \) is the sample mean calculated from \(D_t \) indicating the proportion of datapoints where location \(i \) has been occupied by a block, and \(s_i \) is a binary variable indicating the presence of a block at location \(i \). If the blocks stack to the top, the game board resets, but the episode continues and the dataset \(D_t \) continues to accumulate states.

SMiRL on VizDoom and Humanoid. In these environments the observations placed in the buffer are downsampled 10 \(\times \) 13 single-frame observations for VizDoom environments and the full state for the Humanoid environments. We model \(p(s) \) as an independent Gaussian distribution for each dimension in the observation. Then, the SMiRL reward can be computed as:

\[
r_{\text{SMiRL}}(s) = -\sum_i \left(\log \sigma_i + \frac{(s_i - \mu_i)^2}{2\sigma_i^2} \right),
\]

where \(s \) is a single state, \(\mu_i \) and \(\sigma_i \) are calculated as the sample mean and standard deviation from \(D_t \) and \(s_i \) is the \(i^{th} \) observation feature of \(s \).

SMiRL rewards We emphasize that the RL algorithm in SMiRL is provided with a standard stationary MDP (except in the VAE setting, more on that below), where the state is simply augmented with the parameters of the belief over states \(\theta \) and the timestep \(t \). We emphasize that this MDP is indeed Markovian, and therefore it is reasonable to expect any convergent RL algorithm to converge to a near-optimal solution. Consider the augmented state transition \(p(s_{t+1}, \theta_{t+1}, t+1|s_t, a_t, \theta_t, t) \).

This transition model does not change over time because the updates to \(\theta \) are deterministic when given \(s_t \) and \(t \). The reward function \(R(s_t, \theta_t, t) \) is also stationary: it is in fact deterministic given \(s_t \) and \(\theta_t \). Because SMiRL uses RL in an MDP, we benefit from the same convergence properties as other RL methods.

However, the version of SMiRL that uses a representation learned from a VAE is not Markovian because the VAE parameters are not added to the state, and thus the reward function changes over time.. We find that this does not hurt results, and note that many intrinsic reward methods such as ICM and RND also lack stationary reward functions. This process is described in Algorithm 1.

Entropic Environments We do not use entropic to mean that state transition probabilities change over time. Rather, it means that for any state in the environment, random disruptive perturbations may be applied to the state. In such settings, SMiRL seeks to visit state distributions \(p(s) \) that are easy to preserve.

VAE on-line training When using a VAE to model the surprise of new states, we evaluate the probability of the latent representations \(z \), as described in Section 2.3. The VAE is trained at the end of each episode on all data seen so far across all episodes. This means that the encoder \(q_\omega(z|s) \) is changing over the course of the SMiRL algorithm, which could lead to difficulty learning a good policy. In practice, the rich representations learned by the VAE help policy learning overall.

Training parameters. For the discrete action environment (Tetris and VizDoom), the RL algorithm used is deep Q-learning (Mnih et al., 2013) with a target Q network. For the Humanoid domains, we use TRPO (Schulman et al., 2015). For Tetris and the Humanoid domains, the policies are parameterized by fully connected neural networks, while VizDoom uses a convolutional network. The encoders and decoders of the VAEs used for VizDoom and Humanoid experiments are implemented as fully connected networks over the same buffer observations as above. The coefficient for the KL-divergence term in the VAE loss was 0.1 and 1.0 for the VizDoom and Humanoid experiments, respectively.