Supplemental Materials

Molecular Biology of the Cell

Howard and Tansey
Legend to Supplemental Figure S1

Supplemental Figure S1. Nuclear localization of Gcn4 is not impacted by proteasome inhibition. GCN4-GFP HTB2-mCherry (GHY339) yeast were grown to log phase at 30°C in minimal media, treated with either DMSO or MG132 for one hour, and induced with SM for 1.5 hours. Samples were imaged using fluorescent microscopy to visualize (A) Gcn4-GFP and (B) Htb2-mCherry. (C) Overlay of Gcn4-GFP and Htb2-mCherry images. (D) Differential interference contrast (DIC) microscopy of corresponding fields in (A-C). Scale bars represent 10 µm. This image is a wider field view of that presented in Figure 2D.

Supplemental Figure S2. Proteasome inhibition reduces the ability of native, untagged, Gcn4 to bind the ARG1 UAS. (A) gcn4 (GHY004) and GCN4 (GHY010) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with a polyclonal antibody against Gcn4. Co-precipitating ARG1 promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. n=3. (B) GCN4 (GHY010) and GCN4-Myc (GHY021) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with an antibody against the Myc epitope. Co-precipitating ARG1 promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. n=4. Error bars represent SEM.

Supplemental Figure S3. Mutations in Gcn4 that modulate its ubiquitylation status. (A) Graphical representation of Gcn4 showing the functional domains of the protein (TAD, transcriptional activation domain, blue; DBD, DNA-binding domain, gray). The wild-type (WT) Gcn4 protein is represented on top, the 3T2S mutant (showing the location of five alanine substitution mutations) in the middle, and the lysine free, K0, mutant at the bottom. (B) GCN4-HA (GHY356) and 3T2S-GCN4-HA (GHY360) yeast carrying a copper-inducible His-Myc-Ubiquitin expression plasmid (pUB221) were grown to log phase at 30°C in minimal media and treated with 0.5 mM CuSO4 and either DMSO or 50 µM MG132 for one hour. Yeast were induced with 0.5 µg/ml SM, or a DMSO control, for an additional 1.5 hours, at which time protein lysates were collected under denaturing conditions. Ubiquitin-conjugates were captured by nickel-resin (Ni-NTA) chromatography, resolved by SDS-PAGE, and probed for HA-tagged Gcn4 protein by western blotting. A sample of the input material to the nickel resin was also probed for HA-tagged Gcn4. IB, immunoblot. A single Ub-conjugate of Gcn4 (arrow) persists in the 3T2S Gcn4 mutant. (C–D) GCN4 (GHY010) and 3T2S-GCN4 (GHY008) yeast were grown to log phase in minimal media and treated with either DMSO or 50 µM MG132 for one hour. Strains were then treated with 0.5 µg/ml SM, or DMSO control, for 1.5 hours, at which time RNA was collected and ARG1 (C) and HIS4 (D) mRNA levels quantified by RT-qPCR, relative to an ACT1 control. Relative mRNA levels were then normalized to the SM-induced, DMSO-treated, sample for each gene. Error bars represent SEM. n=3. (E) pup1–T30A pre3–T20A GCN4-HA (GHY356) and pup1–T30A pre3–T20A K0 GCN4-HA (GHY052) yeast carrying either empty vector or a copper-inducible His-Myc-Ubiquitin expression plasmid (pUB221) were grown to log phase at 30°C in minimal media and treated with 0.5 mM CuSO4 and 50 µM MG132 for one hour. Yeast were induced with 0.5 µg/ml SM for an additional 1.5 hours, at which time protein lysates were collected under denaturing conditions. Ubiquitin-conjugates were captured by nickel-resin (Ni-NTA) chromatography, resolved by SDS-PAGE, and probed for HA-tagged Gcn4 protein by western blotting. A sample of the input material to the nickel resin was also probed for HA-tagged Gcn4. IB, immunoblot. Ni-NTA pull-down material was also probed for total His-Myc-Ubiquitin. (F) GCN4-HA (GHY025) and K0 GCN4-HA (GHY052) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with either IgG or antibody against the HA epitope. Co-precipitating ARG1 promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. n=3. Error bars represent SEM.
Supplemental Figure S4. Model. In this model, unmodified Gcn4 binds its cognate UAS element but the resulting complex is inactive for gene activation (OFF). Ubiquitylation of Gcn4 by the SCF^{Cdc4} complex converts Gcn4 into a state that is competent for gene activation (ON) but at the same time renders it a substrate for a Cdc48-containing complex. Cdc48 mediates stripping of Gcn4–Ub from DNA, allowing Gcn4 to be destroyed by the 26S proteasome. Although not shown in the figure, it is possible that Gcn4 could be deubiquitylated after extraction (recycled) and not destroyed. It is also possible that Gcn4 could be ubiquitylated before it encounters DNA, in which case the model still predicts that it would be stripped from promoters in a Cdc48-dependent manner.
Supplemental Figure S1. Nuclear localization of Gcn4 is not impacted by proteasome inhibition. GCN4-GFP HTB2-mCherry (GHY339) yeast were grown to log phase at 30°C in minimal media, treated with either DMSO or MG132 for one hour, and induced with SM for 1.5 hours. Samples were imaged using fluorescent microscopy to visualize (A) Gcn4-GFP and (B) Htb2-mCherry. (C) Overlay of Gcn4-GFP and Htb2-mCherry images. (D) Differential interference contrast (DIC) microscopy of corresponding fields in (A-C). Scale bars represent 10 µm. This image is a wider field view of that presented in Figure 2D.
Supplemental Figure S2. Proteasome inhibition reduces the ability of native, untagged, Gcn4 to bind the \textit{ARG1} UAS. (A) \textit{gcn4} (GHY004) and \textit{GCN4} (GHY010) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with a polyclonal antibody against Gcn4. Co-precipitating \textit{ARG1} promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. $n=3$. (B) \textit{GCN4} (GHY010) and \textit{GCN4-Myc} (GHY021) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with an antibody against the Myc epitope. Co-precipitating \textit{ARG1} promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. $n=4$. Error bars represent SEM.
Supplemental Figure S3. Mutations in Gcn4 that modulate its ubiquitylation status. (A) Graphical representation of Gcn4 showing the functional domains of the protein (TAD, transcriptional activation domain, blue; DBD, DNA-binding domain, gray). The wild-type (WT) Gcn4 protein is represented on top, the 3T2S mutant (showing the location of five alanine substitution mutations) in the middle, and the lysine free, K0, mutant at the bottom. (B) GCN4-HA (GHY356) and 3T2S-GCN4-HA (GHY360) yeast carrying a copper-inducible His-Myc-Ubiquitin expression plasmid (pUB221) were grown to log phase at 30°C in minimal media and treated with 0.5 mM CuSO$_4$ and either DMSO or 50 µM MG132 for one hour. Yeast were induced with 0.5 µg/ml SM, or a DMSO control, for an additional 1.5 hours, at which time protein lysates were collected under denaturing conditions. Ubiquitin-conjugates were captured by nickel-resin (Ni-NTA) chromatography, resolved by SDS-PAGE, and probed for HA-tagged Gcn4 protein by western blotting. A sample of the input material to the nickel resin was also probed for HA-tagged Gcn4, IB, immunoblot. A single Ub-conjugate of Gcn4 (arrow) persists in the 3T2S Gcn4 mutant. (C–D) GCN4 (GHY010) and 3T2S-GCN4 (GHY008) yeast were grown to log phase in minimal media and treated with either DMSO or 50 µM MG132 for one hour. Strains were then treated with 0.5 µg/ml SM, or DMSO control, for 1.5 hours, at which time RNA was collected and ARG1 (C) and HIS4 (D) mRNA levels quantified by RT-qPCR, relative to an ACT1 control. Relative mRNA levels were then normalized to the SM-induced, DMSO-treated, sample for each gene. Error bars represent SEM. n=3. (E) GCN4-HA (GHY356) and K0 GCN4-HA (GHY052) yeast carrying either empty vector or a copper-inducible His-Myc-Ubiquitin expression plasmid (pUB221) were grown to log phase at 30°C in minimal media and treated with 0.5 mM CuSO$_4$ and 50 µM MG132 for one hour. Yeast were induced with 0.5 µg/ml SM for an additional 1.5 hours, at which time protein lysates were collected under denaturing conditions. Ubiquitin-conjugates were captured by nickel-resin (Ni-NTA) chromatography, resolved by SDS-PAGE, and probed for HA-tagged Gcn4 protein by western blotting. A sample of the input material to the nickel resin was also probed for HA-tagged Gcn4, IB, immunoblot. Ni-NTA pull-down material was also probed for total His-Myc-Ubiquitin. (F) GCN4-HA (GHY025) and K0 GCN4-HA (GHY052) yeast strains were grown to log phase at 30°C in minimal media and treated with either DMSO or MG132. After one hour, Gcn4 was induced with SM for 1.5 hours. At this time, ChIP was performed with either IgG or antibody against the HA epitope. Co-precipitating ARG1 promoter DNA was quantified by qPCR, expressed relative to the percentage of input DNA. n=3. Error bars represent SEM.
Supplemental Figure S4. Model. In this model, unmodified Gcn4 binds its cognate UAS element but the resulting complex is inactive for gene activation (OFF). Ubiquitylation of Gcn4 by the SCF_{Cdc4} complex converts Gcn4 into a state that is competent for gene activation (ON) but at the same time renders it a substrate for a Cdc48-containing complex. Cdc48 mediates stripping of Gcn4–Ub from DNA, allowing Gcn4 to be destroyed by the 26S proteasome. Although not shown in the figure, it is possible that Gcn4 could be deubiquitylated after extraction (recycled) and not destroyed. It is also possible that Gcn4 could be ubiquitylated before it encounters DNA, in which case the model still predicts that it would be stripped from promoters in a Cdc48-dependent manner.
Strain	Genotype	Origin
W303-1a	_leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15_	Patton et al., 1998
MT670	W303-1a _cdc34-2_	Patton et al., 1998
MT668	W303-1a _cdc4-1_	Patton et al., 1998
GHY107	MT668 _GCN4-HA::KAN_	This study
HHY168	MATα _tor1-1 can1-100 leu2-3,112 ura3-1 ade2-1 his3-11,15_	Haruki et al., 2008
GHY139	HHY168 _pdr5::LEU2 GCN4-HA::KAN_	This study
GHY149	HHY168 _pdr5::LEU2 GCN4-HA::KAN CDC34-FRB::HIS_	This study
GHY145	HHY168 _pdr5::LEU2 GCN4-FRB::HIS_	This study
YUS5	WCG4a _pup1-T30A pre3-T20A_	Heinemeyer et al., 1997
GHY010	YUS5 _GCN4_	This study
GHY025	YUS5 _GCN4-3xHA::KAN_	This study
GHY021	YUS5 _GCN4-9xMYC::HIS3_	This study
GHY339	YUS5 _GCN4-yEGFP::KAN HTB2-mCherry::HIS3_	This study
GHY004	YUS5 _gcn4::URA3_	This study
GHY081	YUS5 _GCN4 arg80::NAT_	This study
GHY079	YUS5 _gcn4::URA3 arg80::NAT_	This study
GHY356	YUS5 _GCN4-3xHA::KAN [pUB221]_	This study
RHY2455	MATα _ura3–52 leu2–3,112_	Sato and Hampton, 2006
RHY2457	MATα _ura3–52 leu2–3,112 cdc48–3_	Sato and Hampton, 2006
GHY116	RHY2455 _GCN4-3xHA::KAN_	This study
GHY118	RHY2457 _GCN4-3xHA::KAN_	This study
GHY279	RHY2457 _cdc48-3::CDC48_	This study
GHY304	RHY2455 _gal80::NAT_	This study
GHY305	RHY2457 _gal80::NAT_	This study
GHY285	YUS5 _GCN4 CDC48-3xMYC::HIS3_	This study
GHY287	YUS5 _GCN4-3xHA::KAN CDC48-3xMYC::HIS3_	This study
GHY124	YUS5 _K0 GCN4-3xHA::KAN CDC48_	This study
GHY293	YUS5 _K0 GCN4-3xHA::KAN CDC48-3xMYC::HIS3_	This study
GHY008	YUS5 _3T2S-GCN4_	This study
GHY027	YUS5 _3T2S-GCN4-HA::KAN_	This study
GHY360	YUS5 _3T2S-GCN4-HA::KAN [pUB221]_	This study
GHY052	YUS5 _K0 GCN4-HA::KAN [pUB221]_	This study
Purpose	Name	Sequence
---------	-----------------------	---
RT-qPCR	ACT1 F	AGCCGTTCCTTGCTCTTGTACTCTTCC
RT-qPCR	ACT1 R	AGGTAATTTTGGATGACGTGAGTA
RT-qPCR	ARG1 F	GCCACCGTGTGTTGGTAGA
RT-qPCR	ARG1 R	AGTCAATGGAGCTTGGTGCTGT
RT-qPCR	ARG4 F	GTCAATCCAAACGAGAGGAGAT
RT-qPCR	ARG4 R	ACCGTTGGGACTTTACAC
RT-qPCR	HIS4 F	ACAACTGCCAGTGTTGGATA
RT-qPCR	HIS4 R	TTGGACATTTTCAAGGGGTT
ChiP	ARG1 Gcn4 BS2 F	GCTGTCGCAACCTATTTCCA
ChiP	ARG1 Gcn4 BS2 R	TCAATCTGATCCAATGAAGATGA
ChiP	ARG1 TATA F	ATCTGAGCAGTTGCAGACCC
ChiP	ARG1 TATA R	AACTGTGGCGAAGAACAAGG
ChiP	ARG1 ORF3 F	CAAGCCACATTTCTTACAGAG
ChiP	ARG1 ORF3 R	ATCGAAGTCATATTCCACA
ChiP	ARG4 Gcn4 BS F	GCTTACTCATGGCGAGATCC
ChiP	ARG4 Gcn4 BS R	TTTCAATTTGCGCAGCTTTAT
ChiP	ARG5 Gcn4 BS F	TCCGAATGACTCAGTCTACATCA
ChiP	ARG5 Gcn4 BS R	GCGCGCAAGCTTTTATATG
ChiP	ARO4 Gcn4 BS F	CACCCGTGACTTTTACG
ChiP	ARO4 Gcn4 BS R	CGTCCCCGCACATTTTTT
ChiP	CPA2 Gcn4 BS F	GAGATAGGAACCTCCATGTCG
ChiP	CPA2 Gcn4 BS R	TGGCGAGAAATCTTATACAG
ChiP	HIS4 Gcn4 BS F	TGCACGCTGACTCAGT
ChiP	HIS4 Gcn4 BS R	TCAGAGATGCTAAGGACTTTT
ChiP	HIS7 Gcn4 BS F	GGCTATAGGATGTCATGAAAGAAAAA
ChiP	HIS7 Gcn4 BS R	AACCTGATTGAGTAGTGCAGT
ChiP	LEU3 Gcn4 BS F	TCTAGCATTTCTAATCATCAGTGT
ChiP	LEU3 Gcn4 BS R	CTTCCGATCGAGAGAGGTT
ChiP	LYS1 Gcn4 BS F	TTTGGAATTTCCGTCTCAAC
ChiP	LYS1 Gcn4 BS R	ATCGTGTTTTCGGAGATG
ChiP	SNZ1 Gcn4 BS F	AGCCGGGTTTTTTCACTACT
ChiP	SNZ1 Gcn4 BS R	GTAACCTACGGTGCGGCAGA
ChiP	THR4 Gcn4 BS F	CAACGAGAATAGAAGAAGAATGAAGA
ChiP	THR4 Gcn4 BS R	CCAAATGGAAAAATATAAGATACACAA
MNase	GAL1 NB F	CCCACAACAACCTTCAATTACAG
MNase	GAL1 NB R	CGCTTCGCTGATATTACCC
MNase	GAL1 NUB F	CGGATTAGAAGCCGCCCA
MNase	GAL1 NUB R	ATCTTTATTTTGTCCGGACAGTCG
MNase	ARG1 -820 F	ACGTCCGCATGGAAGACCTA
MNase	ARG1 -716 R2	AAGAGGCAACAGGAAAGATCAGA
Purpose	Name	Sequence
---------	---------	--
MNase	ARG1 -740 F2	CTCTGATCTTTTCTTGGCCTTCTT
MNase	ARG1 -653 R2	CTGTAGTAATGTTACTAGTAGTATGTTAGAACTTTGT
MNase	ARG1 -690 F3	CACCAAGTTCTACAACCTACACTAGTAACTACATTACAGTT
MNase	ARG1 -541 R3	CGGTGATGTGATATGTAAGTGTAAACAGATAATAG
MNase	ARG1 -580 F4	CCATTATACACGCTTTATACGTTTTACATATC
MNase	ARG1 -471 R4	ATAGATAACAGAAAAAGTATTGACCGATA
MNase	ARG1 -557 F5	TACATATCACACTACCGTTAATGGAAGA
MNase	ARG1 -510 F6	ACAACAATTAAAAATCGCCATAACCTT
MNase	ARG1 -415 R6	GGGCCATGTGGAGAATTACTG
MNase	ARG1 -492 F7	CATAACCTTTTTCTGTATCTATAGCCCTTTA
MNase	ARG1 -382 R7	GTGACTAAACATAAGCCTTTAATCTGAG
MNase	ARG1 -469 F8	GCCCTTTAAGCTGTTCTTCTCGAG
MNase	ARG1 -361 R8	ATGACTGGAGAGCGGTCAGTAG
MNase	ARG1 -444 F9	TTTCACCTGCAGTAATTCTCCACAT
MNase	ARG1 -326 R9	CCAATTCGCAATGAGTCACCTA
MNase	ARG1 -410 F10	CACTGAGATAGAGCGCTATGTTAGTC
MNase	ARG1 -297 R10	AATAGGTTGGCGACAGCGGAA
MNase	ARG1 -383 F11	ACTACTGACCGCTCTCCAGTCAT
MNase	ARG1 -281 R11	CGGCACCGTTAATGGAATAG
MNase	ARG1 -348 F12	TTAGTGACTCATGTCGATTAG
MNase	ARG1 -256 R12	CCTGCGCTTTAAATGACTCTTCTCATTAC
MNase	ARG1 -312 F13	GCTGTCGCAACCTATTTCCATTA
MNase	ARG1 -211 R13	ACGCAGTCATCAATGCTTCA
MNase	ARG1 -290 F14	ACGGTTGCCGTATGGAAGAG
MNase	ARG1 -179 R14	TCGCAACTGCTCAGATTACACTATCCT
MNase	ARG1 -231 F15	GGATCAGATTGATGACTCGTA
MNase	ARG1 -141 R15	CCCATTAATATACATTGGAGACAGTG
MNase	ARG1 -207 F16	GGCAGATAGTTGATATCTGAGCAGTTG
MNase	ARG1 -114 R16	GCAAGAACAAGGGAGTACGAATG
MNase	ARG1 -170 F17	CTGGCACTGTCTCATAATGATATTAAATGAG
MNase	ARG1 -76 R17	AGACAAGAATAAAGAGAAGAGAGAGAGAGAGAGA
MNase	ARG1 -142 F18	GGCATACATTGCATACCTCCTTGT
MNase	ARG1 -51 R18	TTTGCCTTTATCGCTGCAAAATG
MNase	ARG1 -109 F19	AGTTCCTCTCCTCTCCTCTTTACTCCTATGTC
MNase	ARG1 -15 R19	TGTGATTCTTTTTGTATCCGTGTATATTAG
MNase	ARG1 -43 F20	GCACCGATAAGAGACATTGGTCTCA
MNase	ARG1 +20 R20	CAAAACCACTCCCTAGACATTATTATATTATG
MNase	ARG1 -35 F21	CGGATAAAAAAGTATACACATAATTTG
MNase	ARG1 +60 R21	CAAAATGACGGAGGATCTGAACATTTG
Purpose	Name	Sequence
---------	--------	---------------------------
MNase	ARG1 -10 F22	TGCATAAAAATAATGTCTAAGGGAAAAGTT
MNase	ARG1 +79 R22	CTTGGTCTAGTAGCCAAGCCAAA
MNase	ARG1 +21 F23	TTTGGCTTTATCTGGTGTTTAGAT
MNase	ARG1 +111 R23	TACATTAGCCATGAAAGCTACAACCTTC
MNase	ARG1 +33 F24	TGGTGTTTAGATACCTCCGTCAAT
MNase	ARG1 +137 R24	GCGGCACTGGAAATCTCTTCT
MNase	ARG1 +84 F25	CGAAGTTGTAGCTTTTCATGGCTAAT
MNase	ARG1 +170 R26	TTGCAGGCAACCGATCCTCTCA
MNase	ARG1 +102 F26	GGCTAATGTAGGGCAAGAAGAGAT
MNase	ARG1 +197 R26	TCTTCACGACAAATCCACACAAAC
MNase	ARG1 +153 F27	GAAGATCGGTGCCGTCAAGT
MNase	ARG1 +235 R27	TGACCTGTAGCTGGGAATAAGAT
MNase	ARG1 +175 F28	GTTTGTGTTGATTGTGTAAGAAGA
MNase	ARG1 +269 R28	GTACCCCAACAGATAACGCTTTCTGT
MNase	ARG1 +190 F29	CGTGAAGATTTTTGGCAGGATATTCTATT
MNase	ARG1 +291 R29	AATAACAGGTCTTGGCAAAAGGTA
MNase	ARG1 +213 F30	TCTATTCACGCTGTACAGGCTCA
MNase	ARG1 +312 R30	GACGTCAATTTGGCTTTGG
MNase	ARG1 +234 F31	GTACGAAGACGTTTATCTGGGTGTA
MNase	ARG1 +349 R31	AACCATTGAGAGAGCCCGAAA
MNase	ARG1 +279 F32	AAGACCTGTATTGGCAGGAAAAGCC
MNase	ARG1 +383 R32	TCGAATCTGATTGCTTACGTTCTTT
MNase	ARG1 +325 F33	GGCTGTTCGGGCTCTCT
MNase	ARG1 +426 R33	TGTAATACACTTTAAGCTCTGGCTTCA
MNase	ARG1 +341 F34	CTCATGGTTGTACCGGTAAGATC
MNase	ARG1 +444 R34	TTCAGGCAATTCTCCATGGGTGTA
MNase	ARG1 +381 F35	CGAATTGTCATTCTTACGCTCTGAA
MNase	ARG1 +471 R35	CTTTCTGCGCAATCTTTCTCG
MNase	ARG1 +411 F36	CGTTAAGTGCTATACACATGGGAGATG
MNase	ARG1 +506 R36	GGAATACCCCTTTGTGCAGCATAG
MNase	HIS4 -757 F1	TGTCGTAAGCCAAACTACAGA
MNase	HIS4 -679 R1	TCAGGAATTCGACATCTTCC
MNase	HIS4 -707 F2	TTTCATATAACACCAACTGGT
MNase	HIS4 -618 R2	CAAATTGGTCTTCTATGTTGCGTA
MNase	HIS4 -679 F3	CGAAGATGTCGAACTTCTGGA
MNase	HIS4 -586 R3	GCGTTTTTAGCCCAACTTTG
MNase	HIS4 -640 F4	AGCGAACATAGAAGACCAAATTT
MNase	HIS4 -550 R4	TTTACTGAGCGAATCGTTATGC
MNase	HIS4 -598 F5	GGCTAAAGAAGCGGAAACAAAT
MNase	HIS4 -493 R5	CGATGAGGAATCTTGTGTTT
Purpose	Name	Sequence
---------	--------	---------------------------------------
MNase	HIS4 -557 F6	TCAGTAAGAATACCAAAATTTTGAGC
MNase	HIS4 -470 R6	TCAGTAAAGAATACCAAAATTTTGAGC
MNase	HIS4 -509 F7	CACCAAGATCCCTCATCGGAAG
MNase	HIS4 -412 R7	TGTTTGTGCTTGGAGCCTGTGTT
MNase	HIS4 -469 F8	AAAACTTGAAGAGGCTAATGAAAAAA
MNase	HIS4 -385 R8	GTCGAAAATTGGCAACGATT
MNase	HIS4 -419 F9	CACAAACAGCCGTGGAATC
MNase	HIS4 -328 R9	ATCGCAATGCTCACACCCTC
MNase	HIS4 -381 F10	CCTGCACCAAGTCGATACCAC
MNase	HIS4 -297 R10	GGGGGCATTCTGCTGTATTA
MNase	HIS4 -342 F11	TGTGACAGTGCAGCATGAGCTG
MNase	HIS4 -257 R11	TCAGCTGCTAGAAGGAAGTCC
MNase	HIS4 -299 F12	CCCATCAACACCTCTGACAAC
MNase	HIS4 -196 R12	TCAGCTGCTAGGCTTTCTGAGC
MNase	HIS4 -257 F13	AACTGACTCTAATAGTGACTCCGTTA
MNase	HIS4 -161 R13	CCTTCTATATCGAATGACTGATAAAA
MNase	HIS4 -205 F14	TGCACAGTGACTACGTTTTTTA
MNase	HIS4 -88 R14	CGGAGTGAAATATACGTTCC
MNase	HIS4 -176 F15	CATTCCATATAGAAGGTAAGAAAAAGGA
MNase	HIS4 -78 R15	CAACACACATCGGAGGTAA
MNase	HIS4 -96 F16	TCACCTCCGATGTGTTGTGTGT
MNase	HIS4+23 R16	GGTAAGATCGGCAAACGTTT
MNase	HIS4 -56 F17	GCACAACTGCGCTGTGTAAT
MNase	HIS4 +44 R17	CATGAGCCAGATCATCAAT
MNase	HIS4 -6 F18	CTGAAATAGGTTTTTGCCGATT
MNase	HIS4 +83 R18	ACCTGACCAACAAGTGAACG
MNase	HIS4 +31 F19	GCTCTGGCCCTATGGAATAG
MNase	HIS4 +140 R19	TCCTCTTGGAGAACTGAGGA
MNase	HIS4 +71 F20	TTGTTGTGTCAGGTACTTTTGGA
MNase	HIS4 +162 R20	CAAAGCCCAACATGGAAC
MNase	HIS4 +120 R21	TCTCCAGTTCCTCCAGAGAGA
MNase	HIS4 +218 R21	CCGTTGTTCAGAAGGCAAT
MNase	HIS4 +158 F22	CTTTTGTCCTTGCCAAAGTG
MNase	HIS4 +266 R22	TGTTCGGCTGTTTAGCATC
MNase	HIS4 +202 R23	GCCTTCTTGAAACAACGGGA
MNase	HIS4 +299 R23	CGCTCCTTGGGATATTCAA
MNase	HIS4 +246 F24	AGATGCTAAACACAGGCAACA
MNase	HIS4 +335 R24	TGATTGGAGAAAACACCGTTTCA
MNase	HIS4 +285 F25	TGTTAACAAAGGAGCGTGTGTT
MNase	HIS4 +375 R25	CACAATTTATCTTGGCAAGAATTT
Purpose	Name	Sequence
---------	--------	-----------------------------------
MNase	HIS4 +328 F26	TCCAATCAATTCTGGTAACA
MNase	HIS4 +422 R26	CCAAGCACTTGCTTTGCAAC
MNase	HIS4 +390 F27	AAGCAAGGATATGTTGACCAAG
MNase	HIS4 +476 R27	TGGTCGACACTAGGGTGTT
MNase	HIS4 +444 F28	TGACGGTTATATACCACCCTAGTT
MNase	HIS4 +536 R28	TCGATGGCCTTTGCTAGATT