Research Paper
The Effect of Locally Produced Unstable Shoes on Foot Plantar Pressure During Walking Among Healthy Male Students

Siavash Etemadi Nejad1, *Saed Ahmadi Ganjeh1, Jamshid Yazdani Charati2, Esmail Hoseini Nejad3

1. Department of Occupational Health Engineering, School of Health, Mazandaran University of Medical Sciences, Sari, Iran.
2. Department of Epidemiology & Biostatistics, School of Health, Mazandaran University of Medical Sciences, Sari, Iran.
3. Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, University of Mazandaran, Babolsar, Iran.

Citation: Etemadi Nejad S, Ahmadi Ganjeh S, Yazdani Charati J, Hoseini Nejad E. [The Effect of Unstable Shoe on Shoe Sole Pressure During Walking Among Healthy Male Students (Persian)]. Journal of Sport Biomechanics. 2018; 4(3):52-61. https://doi.org/10.32598/biomechanics.4.3.52

A B S T R A C T

Objective: Today, various shoes have been developed to reduce injury and improve performance during walking. The aim of this study was to evaluate the effect of locally produced unstable shoes on foot plantar pressure during walking in healthy male students.

Methods: Participants were 20 healthy male students (Mean±SD of height=178.96±3.92 cm, Mean±SD of age=27±3 years, Mean±SD of mass=73.99±6.6 kg and EU shoe size=42). They were evaluated under four wearing conditions: Locally produced unstable shoes, unstable shoes produced abroad, regular control shoes, and barefoot. The maximum foot plantar pressure was measured in ten plantar areas by a footscan system while walking. The generalized linear model and repeated measures Analysis of Variance (ANOVA) and/or Friedman test at a significance level of 0.05 (P<0.05) were used for analyzing data using SPSS V. 23 software.

Results: Maximum foot plantar pressure during walking under four different conditions was significantly different only in three plantar regions of hallux, lesser digits, and metatarsal 5 (P<0.05).

Conclusion: Suggest the inefficiency of unstable shoes manufactured in Iran in adjusting the plantar pressure in individuals.

Keywords: Walking, Foot biomechanics, Unstable shoes

Extended Abstract

1. Introduction

Walking is a perfectly coordinated and complex activity performed in collaboration with the musculoskeletal and nervous systems. The mechanical behavior of these organs has been well identified and analyzed. Such data have been gained by a better understanding of motor organs and relying on sensitive measurement equipment [1]. Various methods have been used to reduce foot pressure during gait, including wearing shoes, insole, and socks, as well as using surgical procedures and injections [2]. Foot orthoses compensate foot pressure to some extent; however, the biomechanical impact of such tools is unclear [3].

Although prior research has investigated unstable shoe effects, the productivity of such footwear remains unaddressed. Furthermore, unstable shows produced locally are widely available in shoe stores; however, their efficacy and biological impact, compared to those made by foreign

* Corresponding Author:
Saed Ahmadi Ganjeh, Msc.
Address: Department of Occupational Health Engineering, School of Health, Mazandaran University of Medical Sciences, Sari, Iran.
Tel: +98 (917) 1450095
E-mail: saedahmadi1364@gmail.com
countries, have been overlooked. There is no consensus on the biomechanical effects of these shoes on the body. This study examined the effect of locally produced unstable shoes on foot plantar pressure. To this aim, the maximum pressure in ten plantar regions (hallux, lesser digits, 1-5 metatarsals, midfoot, medial, and lateral heels) were considered between different conditions in terms of foot coverage while walking. We aimed to explore the effect of locally produced shoes on foot plantar pressure variables during walking, compared to those produced abroad, conventional shoes, and bare feet condition in healthy people.

2. Participants and Methods

In total, 20 subjects were selected among healthy right-footed male students. For evaluating the plantar arch, the navicular drop was measured using the common method [10]. Accordingly, the difference in navicular height between standing and sitting positions were measured and a range of 5-9 mm was considered as normal [10]. To measure the knee varus, the subject stood with lower body naked, knees in full extension, ankles stuck together, and the patella toward the anterior direction. Then, the distance between the two inner epicondylitis of the knee was measured; values <2 cm were considered as natural [9]. To measure the knee valgus, the Tibial Mechanical Anatomical (TMA) angles of 6-9° perpendicular to the axis were considered normal [11]. To avoid immediate effects, before applying walking conditions with different shoes, the study subjects randomly wore the shoes for 20 minutes and began walking on the lab ground.

The walking route was considered about 15 m and the subjects started walking from an 8-m distance from the foot plantar pressure gauge for 3 attempts. The average value of these three attempts was recorded as the subject’s rate on walking test under all 4 footwear conditions (locally produced unstable shoes, unstable shoes produced abroad, normal control shoes, and bare feet). The study subjects randomly performed walking test protocols; then, the obtained data were measured and normalized for each subject. A foot scan system (RS-scan, Belgium) with a sampling frequency of 250 Hz and a size of 1×0.4 m was used for measuring variables related to foot plantar pressure.

3. Results

Variables related to foot plantar pressure, including the surface area of the regions as well as forces applied to it, were combined and analyzed (Table 1).

4. Discussion

The obtained results suggested that the maximum foot plantar pressure on the regions of 1-4 metatarsals, midfoot,
medial, and lateral heels did not depend on the footwear type during gait. Maximum foot plantar pressure on hallux while walking with the foreign-made unstable shoes significantly reduced, compared to the locally-produced ones. There was no significant difference between other investigated conditions.

Maximum foot plantar pressure on lesser digits while walking with the locally-made unstable shoes significantly increased, compared to bare feet condition; however, there was no significant difference between other explored conditions. Maximum foot plantar pressure on metatarsal 5 while walking with the locally-made unstable shoes also significantly increased, compared to walking with bare feet. However, no significant difference was detected between other study conditions.

There were significant changes under different footwear conditions in hallux, lesser digits, and metatarsal 5 regions. The pressure difference in these plantar regions could belong to the rigidity and low adsorption properties of unstable shoes. These abnormal pressures could harm the foot sole over time. Our achieved results are consistent with those of Stewart et al. [5] but against those of Kavros et al. [14, 15].

5. Conclusion

Locally-made unstable shoes significantly increased maximum pressure on lesser digits and metatarsal 5 regions, compared to bare feet condition as well as on hallux, compared to foreign-made unstable shoes. This finding indicates that these locally produced unstable shoes not only were unable to decrease the pressure on lesser digits and metatarsal 5 regions but also increased it. This highlights the inefficiency of unstable shoes manufactured in Iran in adjusting the plantar pressure in individuals.

Ethical Considerations

Compliance with ethical guidelines

A written informed consent was obtained from all participants and they were informed of the study objectives and methods.

Funding

This study was extracted from a thesis conducted in collaboration with the Department of Occupational Health and the Department of Ergonomics of the School of Public Health in Sari and the Health Assessment and Monitoring Center of the University of Mazandaran.
تأثیر کفش ناپایدار بر فشار کف زیرین کفش هنگام راه‌رفتن در دانشجویان پسر سالم

سیاوش اعتمادی نژاد*، سید اسماعیل حسینی، جمشید یزدانی چراتی

1. گروه آماری و اپیدمیولوژی، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی دانشگاهی درمانی مازندران، ساری، ایران
2. گروه بیومکانیک و رفتار حرکتی دانشگاه علوم پزشکی و خدمات بهداشتی دانشگاهی درمانی مازندران، ساری، ایران
3. گروه مهندسی بهداشتی حرفه‌ای دانشگاه علوم پزشکی و خدمات بهداشتی دانشگاهی درمانی مازندران، ساری، ایران

مطالعه حاضر با هدف ارزیابی تأثیر کفش ناپایدار بر فشار کف زیرین کفش هنگام راه‌رفتن در دانشجویان پسر سالم توسط دستگاه اندازه‌گیری فشار کف پا مورد بررسی قرار گرفت.

نتایج به ناکارآمدی کفش ناپایدار تولید داخل در تعدیل فشار کف پایی در افراد اشاره دارد.

کلیدواژه‌ها: راه‌رفتن، بیومکانیک پا، کفش‌ناپایدار

مقدمه
راه‌رفتن یک فعالیت کاملاً هماهنگ و پیچیده است که با همکاری سیستم اسکلتی، ماهیچه‌ای و عصبی انجام می‌شود. با شناخت بهتر اجزای حرکتی و با توجه به تجربیات پیشین، فناوری‌های و فناوری‌های جدید مانند ازدحام پدیده‌ها، افزایش حداکثر فشار پا، فشار کف پا و نیروهای در این پژوهش تأثیر کفش ناپایدار بر فشار کف زیرین کفش هنگام راه‌رفتن در دانشجویان پسر سالم توسط دستگاه اندازه‌گیری فشار کف پا مورد بررسی قرار گرفت.

۱. UnstableShoe
۲. Foot Scan

رایگان: بیومکانیکی این ابزارها هنوز به‌طور کامل روش‌نتیجه است [۲۱]. تأثیر بیومکانیکی این ابزارها هنوز به‌طور کامل روش‌نتیجه است [۲۱]. همکاری سیستم اسکلتی، ماهیچه‌ای و عصبی انجام می‌شود. با شناخت بهتر اجزای حرکتی و با توجه به تجربیات پیشین، فناوری‌های و فناوری‌های جدید مانند ازدحام پدیده‌ها، افزایش حداکثر فشار پا، فشار کف پا و نیروهای در این پژوهش تأثیر کفش ناپایدار بر فشار کف زیرین کفش هنگام راه‌رفتن در دانشجویان پسر سالم توسط دستگاه اندازه‌گیری فشار کف پا مورد بررسی قرار گرفت.

۱. UnstableShoe
۲. Foot Scan
فعالیت عضلات کنتلی، به‌مثابه کلبه زیر پابَرَکی‌های مفصل حین گام‌برداری، شامل ایجاد انرژی به‌کمک کاهش بارگیری مفصلی حین گام‌برداری و ایجاد راه‌پیمایی به‌عنوان نیروی وارده بر پا می‌شود [1].

تمکین فشار کفا خلف کنترلی نیاز موردی می‌باشد.

طراحی پیشنهاد کفش و دست‌آوردهای فشار-برداری کفش می‌تواند از بهبود‌سازی گام‌برداری و حتی درمان‌سازی جسمی از آسیب‌های کنترلی کمک کند. این پژوهش از نظر جامعی بر روی این تحقیقات انجام گرفته از این دو گروه تحقیقات بر روی تیروپاهی اعمالی به‌پایه‌است.

به‌طوری‌که تحقیقات انجام شده در حوزه کفش‌های ناپایدار هنوز بهره‌وری این نوع کفش‌ها با پاسخ‌های متمایزی به‌پایه‌است. این نوع کفش‌ها برای پیاده‌سازی و راه‌پیمایی حین گام‌برداری در مراکز خریداری شده و در مراکز خریداری کف پای بررسی شده است. اما اثربخشی و تأثیر زیستی این نوع کفش‌ها (به عنوان نمونه مشابه کفش‌های ناپایدار تولید خارج) بررسی نشده و نظر جامعی پیرامون اثرات بیومکانیکی این کفش‌ها روي بده وجود ندارد.

الف) کفش‌ناپایدار‌تولید‌داخل؛ ب) کفش‌ناپایدار‌مشابه‌خارجی؛ ت) کفش‌کنترل‌معمولی

تصویر ۱. کفش‌ناپایدار چپ/کفش‌ناپایدار مشابه‌خارجی/کفش‌کنترل معمولی
در کفش ناپایدار مشاهده خارجی در مقیاسه با کفش ناپایدار کلاسیک خارجی، از درصد 68 درصد (0.79) با وجود این، بین سایر شرایط تا محدود می‌شود.

منبع: پژوهش بهمنی و همکاران.

تأثیر کفش ناپایدار بر فشار کف زیرین کفش هنگام راه رفتن در دانشجویان پسر سالم

درک و پیش‌رASN

روابط علمی بین فشار کف زیرین و فشار قدمی در کفش ناپایدار و کفش ناپایدار تولید داخل در مقایسه با کفش کنترل مشابه خارجی، کفش کنترل ناپایدار تولید داخل و کفش کنترل ناپایدار کلاسیک خارجی، کفش قهوه‌ای کلاسیک (کفش قهوه‌ای کلاسیک، کفش انتزاعی، کفش لاینر ناپایدار تولید داخل، کفش ناپایدار تولید داخل) و با کفش کنترل معمولی و پای برهنه راه رفتن با کفش ناپایدار مشابه خارجی، راه رفتن با کفش ناپایدار تولید داخل، راه رفتن با کفش کنترل ناپایدار تولید داخل و راه رفتن با پای برهنه.

متدولوژی

پروتکل راه رفتن: به منظور جلوگیری از اثرات اثرات جانبی، قبل از اجرای شرایط رامینیاتی با کفش‌های مختلف، آزمودنی‌ها به مدت 14 تا 16 دقیقه کف کشیده و پاییزه و در محیط آرامش‌بخشی که تولید می‌کنند که آزمودنی‌ها در حالت آرامش‌بخشی در حالت آرامش‌ب...
جدول ۱. تفاوت‌های نسبی فشار سطوح مختلف کف پا در کفش‌های پاداش رو به رو در ناحیه پاشنه پا

شماره	شرایط آزمون	فشار ناحیه پاشنه پا (P = 0/019)	حداکثر فشار انگشتان (P = 0/208)	حداکثر فشار متاتارسال (P = 0/225)
۱	کفش خارجی	۰/۷۵ ± ۰/۱۷	۰/۷۲ ± ۰/۱۵	۰/۶۳ ± ۰/۱۳
۲	کفش داخلی	۰/۷۳ ± ۰/۱۷	۰/۷۰ ± ۰/۱۵	۰/۶۱ ± ۰/۱۳
۳	کفش‌های ناپایدار ۱	۰/۷۴ ± ۰/۱۹	۰/۷۱ ± ۰/۲۰	۰/۶۲ ± ۰/۱۷
۴	کفش‌های ناپایدار ۲	۰/۷۵ ± ۰/۱۹	۰/۷۲ ± ۰/۲۰	۰/۶۳ ± ۰/۱۷
۵	کفش‌های ناپایدار ۳	۰/۷۵ ± ۰/۲۱	۰/۷۳ ± ۰/۲۲	۰/۶۴ ± ۰/۱۸
۶	کفش‌های ناپایدار ۴	۰/۷۵ ± ۰/۲۳	۰/۷۳ ± ۰/۲۳	۰/۶۵ ± ۰/۱۹

* اختلاف معنی‌داری بین یک سطح داخلی کفش تولید داخل در سطح مینی‌باتری (P = 0/05).

** اختلاف معنی‌داری بین کلاس‌های مختلف پنجره‌های خارجی و داخلی در سطح مینی‌باتری (P = 0/05).
نتیجه‌گیری نهایی

فشار در نواحی دهگاه کف پا در جهان حال حالي‌ی پوشه‌ی پا مورد بررسی قرار گرفت و کفش‌های نابینای‌تر تولید و ناحیه‌ی انگشتی مشترک‌آوری و مسطحی در حداکثر فشار در نواحی جلو و عقب برجای مانده است. کشف را اکتشاف کرد. به علت اینکه کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکثر فشار در نواحی جلو و عقب مشاهده شد، که این خود بیانگر این موضوع است که کفش‌های نابینای‌تر اثر مفیدی در حداکثر فشار در نواحی جلو و عقب به شکل این قبیل دارد که کفش‌های نابینای‌تر تولید در حداکث...
References

[1] Christopher LV, Brian L, Jeremy C. Dynamics of human gait. Cape Town, South Africa: Kiboho Publishers; 1999.

[2] Chapman J, Preece S, Braunstein B, Höhne A, Nester C, Brueggemann P, et al. Effect of rocker shoe design features on forefoot plantar pressures in people with and without diabetes. Clinical Biomechanics. 2013; 28(6):679-85. [DOI:10.1016/j.clinbiomech.2013.05.005] [PMID]

[3] Chen YC, Lou SZ, Huang CY, Su FC. Effects of foot orthoses on gait patterns of flat feet patients. Clinical Biomechanics. 2010; 25(3):265-70. [DOI:10.1016/j.clinbiomech.2009.11.007] [PMID]

[4] Hennig EM, Valiant GA, Liu Q. Biomechanical variables and the perception of cushioning for running in various types of footwear. Journal of Applied Biomechanics. 1996; 12(2):143-50. [DOI:10.1123/jab.12.2.143]

[5] Che H, Nigg B, De Koning J. Relationship between plantar pressure distribution under the foot and insole comfort. Clinical Biomechanics. 1994; 9(6):335-41. [DOI:10.1016/0268-0033(94)90062-0]

[6] Nigg BM, Emery C, Hiemstra LA. Unstable shoe construction and reduction of pain in osteoarthritis patients. Medicine & Science in Sports & Exercise. 2006; 38(10):1701-8. [DOI:10.1249/01.mss.0000228364.93703.53] [PMID]

[7] Stewart L, Gibson J, Thomson CE. In-shoe pressure distribution in “unstable” (MBT) shoes and flat-bottomed training shoes: A comparative study. Gait & Posture. 2007; 25(3):648-51. [DOI:10.1016/j.gaitpost.2006.06.012] [PMID]

[8] Romkens J, Rudmann C, Brunner R. Changes in gait and EMG when walking with the Masai Barefoot Technique. Clinical Biomechanics. 2006; 21(1):75-81. [DOI:10.1016/j.clinbiomech.2005.08.003] [PMID]

[9] Eslami M, Hoseini Nejad SE, Gandomkar A, Jahedi V. Effect of unstable shoes on ground reaction force parameters during stance phase of running (Persian). Journal Researches in Sport Medicine and Technology. 2013; 11(6):90-101.

[10] Gandomkar A, Eslami M, Hoseini Nejad SE, Jahedi V. Effect of unstable shoes on lower extremity joint power during stance phase of running (Persian)]. Raz Journal of Medical Sciences. 2014; 21(124):54-63.

[11] Barrios JA, Heitkamp CA, Smith BP, Sturgeon MM, Suckow DW, Sutton CR. Three-dimensional hip and knee kinematics during walking, running, and single- limb drop landing in females with and without genu valgum. Clinical Biomechanics. 2016; 31:7-11. [DOI:10.1016/j.clinbiomech.2015.10.008] [PMID]

[12] An S, Lee K. Effect of rocker heel angle of walking shoe on gait mechanics and muscle activity. In: Fuss FK, Subic A, Uijhashi S, editors. The Impact of Technology on Sport II. London: Taylor & Francis; 2007.

[13] Stöggfl, T, Haudum A, Birkbauer J, Murrer M, Müller E. Short and long term adaptation of variability during walking using unstable (Mbt) shoes. Clinical Biomechanics. 2010; 25(8):816-22. [DOI:10.1016/j.clinbiomech.2010.05.012] [PMID]

[14] Nigg B, Hintzen S, Ferber R. Effect of an unstable shoe construction on lower extremity gait characteristics. Clinical Biomechanics. 2006; 21(1):82-8. [DOI:10.1016/j.clinbiomech.2005.08.013] [PMID]

[15] Kavros SJ, Van Straaten MG, Wood KAC, Kaufman KR. Forefoot plantar pressure reduction of off-the-shelf rocker bottom provisional footwear. Clinical Biomechanics. 2011; 26(7):778-82. [DOI:10.1016/j.clinbiomech.2011.03.009] [PMID]

[16] Perry SD, Radtke A, Goodwin CR. Influence of footwear midsole material hardness on dynamic balance control during unexpected gait termination. Gait & Posture. 2007; 25(1):94-8. [DOI:10.1016/j.gaitpost.2006.01.005] [PMID]

[17] Nigg BM. Biomechanics of sport shoes. Calgary: Topline Printing Inc; 2010.

[18] Chuckpaiwong B, Cook C, Pietrobon R, Nunley JA. Second metatarsal stress fracture in sports: Comparative risk factors between proximal and non-proximal locations. British Journal of Sports Medicine. 2007; 41(8):510-4. [DOI:10.1136/bjsm.2006.033571] [PMCID]

[19] Logan S, Hunter I, Hopkins JT, Feland JB, Parcell AC. Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. Journal of sports science & medicine. 2010; 9(1):147-53. [PMCID] [PMID]

[20] Hennig EM. The human foot during locomotion-applied research for footwear. Hong Kong: The Chinese University of Hong Kong; 2002.

[21] Perttunen J. Foot loading in normal and pathological walking [PhD. dissertation]. Jyväskylä: University of Jyväskylä; 2002.

[22] Putti A, Arnold G, Cochrane L, Abboud R. The Pedar® in-shoe system: Repeatability and normal pressure values. Gait & Posture. 2007; 25(3):401-5. [DOI:10.1016/j.gaitpost.2006.05.010] [PMID]
