SHARP LIOUVILLE THEOREMS

SALVADOR VILLEGAS

Abstract. Consider the equation \(\text{div}(\varphi^2 \nabla \sigma) = 0 \) in \(\mathbb{R}^N \), where \(\varphi > 0 \). Berestycki, Caffarelli and Nirenberg \cite{4} proved that if there exists \(C > 0 \) such that \(\int_{B_R}(\varphi \sigma)^2 \leq CR^2 \) for every \(R \geq 1 \) then \(\sigma \) is necessarily constant. In this paper we provide necessary and sufficient conditions on \(0 < \Psi \in C([1, \infty)) \) for which this result remains true if we replace \(R^2 \) with \(\Psi(R) \) in any dimension \(N \). In the case of the convexity of \(\Psi \) for large \(R > 1 \) and \(\Psi' > 0 \), this condition is equivalent to \(\int_1^\infty \frac{1}{\Psi'} = \infty \).

1. Introduction and main results

In 1978 E. De Giorgi \cite{5} made the following conjecture:

Conjecture. Let \(u \in C^2(\mathbb{R}^N) \) be a bounded solution of the Allen-Cahn equation \(-\Delta u = u - u^3 \) which is monotone in one direction (for instance \(\partial u/\partial x_N > 0 \) in \(\mathbb{R}^N \)). Then \(u \) is a 1-dimensional function (or equivalently, all level sets \(\{u = s\} \) of \(u \) are hyperplanes), at least if \(N \leq 8 \).

This conjecture was proved in 1997 for \(N = 2 \) by Ghoussoub and Gui \cite{8}, and in 2000 for \(N = 3 \) by Ambrosio and Cabré \cite{2}. In dimensions \(N \geq 9 \), del Pino, Kowalczyk, and Wei \cite{6} established that the conjecture does not hold, as suggested in De Giorgi’s original statement. The conjecture remains still open for dimensions \(4 \leq N \leq 8 \).

In the proof of the conjecture for \(N \leq 3 \), it is used the following Liouville-type theorem due to H. Berestycki, L. Caffarelli and L. Nirenberg \cite{4}:

Theorem 1.1. Let \(\varphi \in L^\infty_{\text{loc}}(\mathbb{R}^N) \) be a positive function. Assume that \(\sigma \in H^1_{\text{loc}}(\mathbb{R}^N) \) satisfies \(\sigma \text{ div}(\varphi^2 \nabla \sigma) \geq 0 \) in \(\mathbb{R}^N \) in the distributional sense. For every \(R > 0 \), let \(B_R = \{|x| < R\} \) and assume that there exists a constant independent of \(R \) such that

\[
\int_{B_R}(\varphi \sigma)^2 dx \leq CR^2
\]

for every \(R \geq 1 \).

Then \(\sigma \) is constant.

To deduce the conjecture for \(N \leq 3 \) from this theorem, the authors made the following reasoning: if \(u \) is a solution in De Giorgi’s conjecture, consider the functions \(\varphi := \partial u/\partial x_N > 0 \) and \(\sigma_i := \partial_{x_i} u/\partial_{x_N} u \), for \(i = 1, \ldots, N - 1 \).

The author has been supported by the Ministerio de Ciencia, Innovación y Universidades of Spain PGC2018-096422-B-I00 and by the Junta de Andalucía FQM-116.
Since both $\partial_x u$ and φ solves the same linear equation $-\Delta v = (1 - 3u^2)v$, an easy computation shows that $\text{div}(\varphi^2 \nabla \sigma_i) = 0$. In dimensions $N \leq 3$ it is proved that there exists $C > 0$ such that $\int_{B_R} |\nabla u|^2 \, dx \leq CR^2$, for every $R \geq 1$. Applying Theorem 1.1 gives σ_i is constant for every $i = 1, \ldots, N - 1$.

Motivated by the useful application of Liouville-type theorems to these kind of problems, a natural question is to find functions $0 < \Psi \in C([1, \infty))$, for which Theorem 1.1 remains true if we replace CR^2 with $\Psi(R)$. In this way, we make the following definitions:

Property (P). We say that a function $0 < \Psi \in C([1, \infty))$ satisfies (P) if it has the following property: if $\varphi \in L^\infty_{\text{loc}}(\mathbb{R}^N)$ is a positive function, $\sigma \in H^1_{\text{loc}}(\mathbb{R}^N)$ satisfies

\begin{equation}
\sigma \text{ div } (\varphi^2 \nabla \sigma) \geq 0 \quad \text{in } \mathbb{R}^N
\end{equation}

in the distributional sense and

$$
\int_{B_R} (\varphi \sigma)^2 \, dx \leq \Psi(R) \quad \text{for every } R \geq 1,
$$

then σ is necessarily constant.

Property (P'). We say that a function $0 < \Psi \in C([1, \infty))$ satisfies (P') if it has the following property: if $\varphi \in L^\infty_{\text{loc}}(\mathbb{R}^N)$ is a positive function, $\sigma \in H^1_{\text{loc}}(\mathbb{R}^N)$ satisfies

\begin{equation}
\text{div } (\varphi^2 \nabla \sigma) = 0 \quad \text{in } \mathbb{R}^N
\end{equation}

in the distributional sense and

$$
\int_{B_R} (\varphi \sigma)^2 \, dx \leq \Psi(R) \quad \text{for every } R \geq 1,
$$

then σ is necessarily constant.

Note that, a priori, the definitions of properties (P) and (P') depend on the dimension N. We will show that, in fact, this is not so: if a function $0 < \Psi \in C([1, \infty))$ satisfies (P) (resp. (P')) in some dimension N_0, then it satisfies (P) (resp. (P')) in any dimension N.

It is obvious that property (P) is stronger than property (P'). In fact, in this paper we will prove that they are equivalent.

With this notation, Theorem 1.1 says that the function CR^2 satisfies (P) for every $C > 0$. In [1] the authors formulated the following problem: What is the optimal (maximal) exponent γ_N such that CR^{γ_N} $(C > 0)$ satisfies (P')?
In [3] it is proved that \(\gamma_N < N \) when \(N \geq 3 \). Also, a sharp choice in the counterexamples of [8] shows that \(\gamma_N < 2 + 2\sqrt{N-1} \) for \(N \geq 7 \). Recently, Moradifam [9] proved that \(\gamma_N < 3 \) when \(N \geq 4 \). Finally, in a recent work [12] the author has proven that \(\gamma_N = 2 \) for every \(N \geq 1 \). In other words, the functions \(CR_k \) do not satisfy (P') for every \(k > 2 \) and \(C > 0 \). On the other hand, the sharpness of the exponent 2 for condition (P) was proved by Gazzola [7].

Moschini [10] proved that \(CR_2(1 + \log R) \) satisfies (P) for every \(C > 0 \). By a classical example [11] it is obtained that \(R^2(1+\log R)^2 \) does not satisfy (P) in dimension \(N = 2 \).

All the results previously exposed are covered by the following theorems:

Theorem 1.2. Suppose \(0 < \Psi \in C([1, \infty)) \). The following conditions are equivalent:

i) \(\Psi \) satisfies (P).

ii) \(\Psi \) satisfies (P').

iii) \(\int_1^{\infty} \frac{1}{h'} = \infty \), for every nondecreasing function \(0 \leq h \in C([1, \infty)) \) satisfying \(h \leq \Psi \) in \([1, \infty)\).

Note that if \(0 < \Psi \in C^1([1, \infty)) \) satisfy \(\Psi' > 0 \) in \([1, +\infty)\), the we can take \(h = \Psi \) in iii), obtaining that \(\int_1^{\infty} 1/\Psi' = \infty \) is a necessary condition to have i) and ii), but not sufficient (see Remark 2 below). The next theorem shows that, under convexity conditions on \(\Psi \), this is also a sufficient condition to obtain i) and ii).

Theorem 1.3. Suppose \(0 < \Psi \in C^1([1, \infty)) \) satisfy \(\Psi' > 0 \) in \([1, +\infty)\) and \(\Psi \) is convex in \([R_0, +\infty)\) for some \(R_0 > 1 \). The following conditions are equivalent:

i) \(\Psi \) satisfies (P).

ii) \(\Psi \) satisfies (P').

iii') \(\int_1^{\infty} \frac{1}{\Psi'} = \infty \).

Remark 1. For general \(0 < \Psi \in C([1, \infty)) \), it is possible to prove that if \(\liminf_{x \to \infty} \Psi(x)/x^2 < +\infty \) then \(\Psi \) satisfy (P) and (P'). Therefore, we can restrict our attention to the case \(\lim_{x \to \infty} \Psi(x)/x^2 = +\infty \). Thus, the condition of convexity of \(\Psi \) in Theorem 1.3 seems natural and not too restrictive.

To see that \(\liminf_{x \to \infty} \Psi(x)/x^2 < +\infty \) implies \(\Psi \) satisfy (P) and (P') we will apply Theorem 1.2. Suppose that there exists a divergent sequence \(\{ R_n \} \) and a real number \(C > 0 \) such that \(\Psi(R_n) \leq CR_n^2 \), \(n \geq 1 \) and take a nondecreasing function \(0 \leq h \in C([1, \infty)) \) satisfying \(h \leq \Psi \) in \([1, \infty)\). Our purpose is to obtain \(\int_1^{\infty} 1/h' = \infty \). To this end, take an arbitrary \(R > 1 \) and consider \(n_0 \in \mathbb{N} \) such that \(R_n > R \) for every \(n \geq n_0 \). Then

\[
R_n - R = \int_R^{R_n} \sqrt{h'} \frac{1}{h'} \leq \left(\int_R^{R_n} h' \right)^{1/2} \left(\int_R^{R_n} \frac{1}{h'} \right)^{1/2}
\]
\[(h(R_n) - h(R))^{1/2} \left(\int_R^{R_n} \frac{1}{h'} \right)^{1/2} \leq (\Psi(R_n))^{1/2} \left(\int_R^{R_n} \frac{1}{h'} \right)^{1/2}\]

\[\leq C^{1/2} R_n \left(\int_R^{\infty} \frac{1}{h'} \right)^{1/2},\]

for every \(n \geq n_0 \). Hence

\[\int_R^{\infty} \frac{1}{h'} \geq \frac{(R_n - R)^2}{C R_n^2},\]

for \(n \geq n_0 \). Taking limit as \(n \) tends to infinity we deduce

\[\int_R^{\infty} \frac{1}{h'} \geq \frac{1}{C}.\]

Since \(R > 1 \) is arbitrary we conclude \(\int_1^{\infty} 1/h' = \infty \), which is the desired conclusion.

Remark 2. As said before, if \(0 < \Psi \in C^1([1, \infty)) \) satisfy \(\Psi' > 0 \) in \([1, +\infty) \), it is obvious from Theorem 1.2 that the condition \(\int_1^\infty 1/\Psi' = \infty \) is necessary to have i) and ii). To show that this is not sufficient, it suffices to construct functions \(\Psi, h \in C^\infty([1, \infty)) \) satisfying \(0 < h < \Psi \) and \(0 < \Psi', h' \) in \([1, \infty) \) such that \(\int_1^\infty 1/\Psi' = \infty \) and \(\int_1^\infty 1/h' < \infty \).

To do this, for every integer \(n \geq 1 \) define the function \(f_n : [n, n+1/2] \to \mathbb{R} \) by

\[f_n(x) := 7nx + n^3, \quad n \leq x \leq n + 1/2.\]

Clearly

\[f_n(n+1/2) = 7n(n+1/2) + n^3 < f_{n+1}(n+1) = 7(n+1)^2 + (n+1)^3, \quad \text{for every } n \geq 1.\]

Hence, there exists \(0 < \Psi \in C^\infty([1, +\infty)) \) satisfying \(\Psi' > 0 \) and \(\Psi(x) = f_n(x) \) for every \(n \leq x \leq n + 1/2 \) and \(n \geq 1 \).

It follows that

\[\int_1^\infty \frac{1}{\Psi'} \geq \sum_{n \geq 1} \int_n^{n+1/2} \frac{1}{\Psi'} = \sum_{n \geq 1} \frac{1}{14n} = \infty.\]

Then \(\int_1^\infty 1/\Psi' = \infty \). On the other hand, take an arbitrary \(x \geq 1 \). Then there exists an integer \(n \geq 1 \) such that \(n \leq x < n + 1 \). Thus

\[\Psi(x) \geq \Psi(n) = 7n^2 + n^3 \geq (n + 1)^3 > x^3.\]

Therefore, taking \(h(x) = x^3 \) we have \(\int_1^\infty 1/h' < \infty \), which is our claim.
2. Proof of Theorem 1.2

Proof of Theorem 1.2

It is evident that i) \Rightarrow ii). Therefore we shall have established the theorem if we prove iii) \Rightarrow i) and ii) \Rightarrow iii).

Proof of iii) \Rightarrow i)

Suppose that $0 < \Psi \in C([1, \infty))$ satisfies iii) and $\int_{B_R} (\varphi \sigma)^2 \leq \Psi(R)$ for every $R \geq 1$ where $\varphi \in L^\infty_\text{loc}(\mathbb{R}^N)$ is a positive function and $\sigma \in H^1_\text{loc}(\mathbb{R}^N)$ satisfies (1.1) in the distributional sense. Our purpose is to obtain that σ is constant.

If $\inf \Psi = 0$ then there exists a divergent sequence $\{R_n\}$ such that $\Psi(R_n)$ tends to 0 as n tends to ∞. Thus $\int_{B_{R_n}} (\varphi \sigma)^2$ also tends to 0, which implies $\sigma = 0$.

Otherwise, let $0 < m := \inf \Psi$ and consider the function

$$h(r) := \frac{1}{2} \int_{B_r} (\varphi \sigma)^2 + \frac{1}{2} m \left(1 - e^{-r}\right), \quad r \geq 1.$$

Clearly, $h \leq 1/2 \Psi + 1/2 m \leq \Psi$ in $[1, \infty)$ and h is a positive continuous and nondecreasing function satisfying

$$h'(r) = \frac{1}{2} \left(\int_{|x|=r} (\varphi \sigma)^2 \right) + \frac{1}{2} me^{-r},$$

for almost every $r > 1$. From this $\int_1^\infty 1/h' = \infty$. Taking into account that $1/h'(r) \leq 2e^{r}/m$ for almost every $r > 1$ we have $1/h' \in L^\infty_\text{loc}([1, \infty))$. Thus

$$\int_R^\infty \frac{1}{h'} = \infty, \quad \text{for every } R > 1 \quad (2.1)$$

Now, for arbitrary $1 < R_1 < R_2$ define in the ball B_{R_2} the radial function η by

$$\eta(r) := \begin{cases}
1 & \text{if } 0 \leq r \leq R_1 \\
\int_{R_1}^{R_2} \frac{1}{h'} & \text{if } R_1 < r \leq R_2 \\
\int_{|x|=r}^{R_2} \frac{1}{h'} & \text{if } R_2 \leq |x| \leq R_2 \end{cases}$$

for every $r = |x| \leq R_2$. Multiplying (1.1) by η^2 and integrating by parts in B_{R_2}, we obtain

$$\int_{B_{R_2}} \eta^2 \varphi^2 |\nabla \sigma|^2 \leq -2 \int_{B_{R_2}} \eta \varphi^2 \sigma \nabla \eta \cdot \nabla \sigma$$

$$\leq 2 \left(\int_{B_{R_2}} \eta^2 \varphi^2 |\nabla \sigma|^2 \right)^{1/2} \left(\int_{B_{R_2}} \varphi^2 |\nabla \eta|^2 \right)^{1/2}.$$
Therefore
\[\int_{B_{R_2}} \eta^2 \varphi^2 |\nabla \sigma|^2 \leq 4 \int_{B_{R_2}} \varphi^2 \sigma^2 |\nabla \eta|^2. \]

Thus
\[\int_{B_{R_1}} \varphi^2 |\nabla \sigma|^2 \leq \int_{B_{R_2}} \eta^2 \varphi^2 |\nabla \sigma|^2 \leq 4 \int_{B_{R_2}} \varphi^2 \sigma^2 |\nabla \eta|^2 \]
\[= 4 \int_{R_1}^{R_2} \eta'(r)^2 \left(\int_{|x|=r} (\varphi \sigma)^2 \right) dr \leq 4 \int_{R_1}^{R_2} \eta'(r)^2 2h'(r) dr \]
\[= \frac{8}{\left(\frac{\int_{R_1}^{R_2} \frac{1}{h'(r)^2} h'(r) dr}{\int_{R_1}^{R_2} \frac{1}{h'} h'} \right)^2} \int_{R_1}^{R_2} \frac{1}{h'(r)^2} h'(r) dr = \frac{8}{\int_{R_1}^{R_2} \frac{1}{h'}}. \]

Fix \(R_1 > 1 \). Applying \((2.1)\) and taking limit in the above inequality as \(R_2 \) tends to \(\infty \) we obtain
\[\int_{B_{R_1}} \varphi^2 |\nabla \sigma|^2 = 0. \]

Since \(R_1 > 1 \) is arbitrary, \(\sigma \) is constant, which is the desired conclusion.

Proof of ii) ⇒ iii)

Suppose that iii) does not hold. That is, there exists a nondecreasing function \(0 \leq h \in C([1, \infty)) \) satisfying \(h \leq \Psi \) in \([1, \infty)\) and \(\int_{1}^{\infty} \frac{1}{h'} < \infty \). The proof is completed by constructing a positive function \(\varphi \in L^\infty_{\text{loc}}(\mathbb{R}^N) \) and a nonconstant function \(\sigma \in H^1_{\text{loc}}(\mathbb{R}^N) \) satisfying \((1.2)\) in the distributional sense and \(\int_{B_R}(\varphi \sigma)^2 \leq \Psi(R) \) for every \(R \geq 1 \).

First of all, note that \(0 < \lim_{r \to \infty} h(r) \leq \liminf_{r \to \infty} \Psi(r) \). Since \(\Psi > 0 \) in \([1, \infty)\), we have that \(0 < m := \inf \Psi \). Consider the odd function \(\mu : \mathbb{R} \to \mathbb{R} \) such that
\[
\mu(r) := \begin{cases}
\frac{m}{2}(1 - e^{-r}) & \text{if } 0 \leq r \leq 1 \\
\frac{1}{2} \int_{1}^{r} \min \{ h'(s), s^2 \} ds + \frac{m}{2}(1 - e^{-r}) & \text{if } 1 < r
\end{cases}
\]

Clearly \(\mu \) is continuous and increasing in \(\mathbb{R} \) and satisfies, almost everywhere, that
\[\mu'(r) := \begin{cases} \frac{m}{2} e^{-|r|} & \text{if } 0 \leq |r| \leq 1 \\ \frac{1}{2} \min \{h'(|r|), r^2\} + \frac{m}{2} e^{-|r|} & \text{if } 1 < |r| \end{cases} \]

Therefore

\[0 < \frac{1}{\mu'(r)} < \frac{2}{\min \{h'(r), r^2\}} \leq \frac{2}{h'(r)} + \frac{2}{r^2}, \text{ for every } r > 1. \]

Hence \(1/\mu' \in L^1(1, \infty) \) and it follows immediately \(1/\mu' \in L^1(\mathbb{R}) \). For this reason, taking any \(0 < H \in C^\infty(\mathbb{R}^{N-1}) \) satisfying \(\int_{\mathbb{R}^{N-1}} H^2 = 1/2 \), we can define the functions \(\varphi, \sigma : \mathbb{R}^N \to \mathbb{R} \) by

\[\varphi(x_1, \ldots, x_N) := H(x_1, \ldots, x_{N-1}) \sqrt{\mu'(x_N)} \int_{x_N}^{+\infty} \frac{dr}{\mu'(r)}, \]

\[\sigma(x_1, \ldots, x_N) := \frac{1}{\int_{x_N}^{+\infty} \frac{dr}{\mu'(r)}}. \]

(If \(N = 1 \), then define \(\varphi(x) = \sqrt{\mu'(x)} \int_{x}^{+\infty} \frac{dr}{\mu'(x)/\sqrt{2}} \) and we apply the same reasoning that in the case \(N > 1 \)).

It is easy to check that

\[0 < \mu'(r) \leq \frac{1}{2} r^2 + \frac{m}{2} e^{-|r|}, \quad \frac{1}{\mu'(r)} \leq \frac{2}{m} e^{|r|}, \quad r \in \mathbb{R}. \]

From the above it follows that \(0 < \varphi \in L^\infty_{\text{loc}}(\mathbb{R}^N) \) and \(|\nabla \sigma| \in L^\infty_{\text{loc}}(\mathbb{R}^N) \). Thus \(\sigma \in H^1_{\text{loc}}(\mathbb{R}^N) \). Moreover, an easy computation shows that

\[\nabla \sigma(x_1, \ldots, x_N) = \left(0, \ldots, 0, \frac{1}{\mu'(x_N)} \left(\int_{x_N}^{+\infty} \frac{dr}{\mu'(r)} \right)^2 \right), \]

\[(\varphi^2 \nabla \sigma)(x_1, \ldots, x_N) = (0, \ldots, 0, H^2(x_1, \ldots, x_{N-1})) \],

which implies \(\text{div}(\varphi^2 \nabla \sigma) = 0 \) in \(\mathbb{R}^N \).

Finally taking into account that \(B_R \subset \mathbb{R}^{N-1} \times (-R, R) \), we obtain for every \(R \geq 1 \)

\[\int_{B_R} (\varphi \sigma)^2 \, dx = \int_{B_R} H^2(x_1, \ldots, x_{N-1}) \mu'(x_N) \, dx \]

\[\leq \int_{\mathbb{R}^{N-1}} H^2 \, d(x_1, \ldots, x_{N-1}) \int_{-R}^R \mu'(r) \, dr = \frac{1}{2} (\mu(R) - \mu(-R)) = \mu(R) \]
\[\frac{1}{2} \int_1^R h'(s) \, ds + \frac{m}{2} (1 - e^{-R}) \leq \frac{h(R)}{2} + \frac{m}{2} \leq \frac{\Psi(R)}{2} + \frac{\Psi(R)}{2} = \Psi(R), \]

which completes the proof. \(\Box\)

3. Proof of Theorem 1.3

Proposition 3.1. Let \(\phi \in C^1([a, b]) \) a convex function satisfying \(\phi' > 0 \) in \([a, b]\). Then

\[\int_a^b \frac{1}{\phi'} \leq \int_a^b \frac{1}{g'} \]

for every nondecreasing function \(g \in C([a, b]) \) satisfying \(g(a) = \phi(a) \) and \(g \leq \phi \) in \([a, b]\).

Moreover, equality holds if and only if \(g = \phi \).

Lemma 3.2. Let \(g \in C([a, b]) \) a nondecreasing function. Let \(p(x) = Ax + B, A > 0, B \in \mathbb{R} \) such that \(g(a) = p(a), g(b) \leq p(b) \). Then

\[\int_a^b \frac{1}{p'} \leq \int_a^b \frac{1}{g'}. \]

Moreover, equality holds if and only if \(g = p \).

Proof.

If \(\int_a^b 1/g' = \infty \) the lemma is trivial. Otherwise, applying Cauchy-Shwartz inequality we obtain

\[b - a = \int_a^b \sqrt{g'} \frac{1}{\sqrt{g'}} \leq \left(\int_a^b g' \right)^{1/2} \left(\int_a^b \frac{1}{g'} \right)^{1/2} = (g(b) - g(a))^{1/2} \left(\int_a^b \frac{1}{g'} \right)^{1/2}. \]

Hence

\[\int_a^b \frac{1}{g'} \geq \frac{(b - a)^2}{g(b) - g(a)} \geq \frac{(b - a)^2}{p(b) - p(a)} = \int_a^b \frac{1}{p'}. \]

On the other hand, if equality holds then all the previous inequalities become equalities. This implies that \(g(b) = p(b) \) and that \(\sqrt{g'} \) is a real multiple of \(1/\sqrt{g'} \). That is, \(g' \) is constant and, since \(g(a) = p(a), g(b) = p(b) \), we obtain \(g = p \). \(\Box\)

Lemma 3.3. Let \(g \in C([a, b]) \) a nondecreasing function. For \(1 \leq i \leq m \) consider \(p_i(x) = A_i x + B_i, A_i > 0, B_i \in \mathbb{R} \) such that \(p_i(a) \leq g(a) \). Define

\[\overline{g}(x) := \max \{ g(x), p_1(x), p_2(x), ..., p_m(x) \}, \ a \leq x \leq b. \]

Then
Moreover, if $\int_a^b 1/g' < \infty$, then equality holds if and only if $g = \overline{g}$.

Proof.

Note that \overline{g} is a nondecreasing continuous function in $[a, b]$. Therefore, the statement of the lemma has sense. If $\int_a^b 1/g' = \infty$ the lemma is trivial.

Hence, we will suppose in the rest of the proof that $\int_a^b 1/g' < \infty$. The proof is by induction on m.

We first prove the lemma for $m = 1$. To do this, consider the open set $G = \{x \in (a, b) : p_1(x) > g(x)\}$. If $G = \emptyset$, then $\overline{g} = g$ and the lemma follows. Otherwise, G is the countable (possible finite) disjoint union of open intervals. That is, $G = \bigcup_{n \in X} (a_n, b_n)$, where $X \subset \mathbb{N}$ and $p_1(a_n) = g(a_n)$, $p_1(b_n) \geq g(b_n)$ for every $n \in X$. Then

$$
\int_a^b \frac{1}{g'} - \int_a^b \frac{1}{\overline{g}} = \int_G \left(\frac{1}{g'} - \frac{1}{p_1} \right) = \sum_{n \in X} \int_{a_n}^{b_n} \left(\frac{1}{g'} - \frac{1}{p_1} \right).
$$

Applying Lemma 3.2 in each interval (a_n, b_n) we conclude the lemma for the case $m = 1$.

We now proceed by induction. Suppose that the lemma holds for $m - 1 \geq 1$ and we will prove that it holds for m. Define

$$h(x) := \max \{g(x), p_1(x), p_2(x), \ldots, p_{m-1}(x)\}, \ a \leq x \leq b.$$

By hypothesis of induction we have

(3.4) \[\int_a^b \frac{1}{h'} \leq \int_a^b \frac{1}{g'} \, . \]

On the other hand, note that

$$\overline{g}(x) := \max \{g(x), p_1(x), p_2(x), \ldots, p_m(x)\} = \max \{h(x), p_m(x)\}, \ a \leq x \leq b.$$

It is easily seen that h is a continuous nondecreasing function satisfying $p_m(a) \leq g(a) = h(a)$. Therefore applying the case of $m = 1$ (which is yet proved) to functions $h(x)$ and $p_m(x)$, we obtain

(3.5) \[\int_a^b \frac{1}{\overline{g}} \leq \int_a^b \frac{1}{h'} \, . \]

Combining inequalities (3.4) and (3.5) we obtain the desired inequality (3.3). Finally, if equality holds in (3.3), then equalities also hold in (3.4) and (3.5). This gives $g = h = \overline{g}$ and the proof is completed. \qed
Proof of Proposition 3.1.

We first prove (3.1) in the case \(g(x) < \phi(x) \) for every \(x \in (a, b) \). To do this, for every positive integer \(n \), consider a partition of the interval \((a, b)\) in \(2^n\) subintervals of the same length. That is

\[
(a, b) = \bigcup_{k=1}^{2^n} [x_{k-1,n}, x_{k,n}]; \quad \text{where} \quad x_{k,n} = a + k \frac{b-a}{2^n}; \quad 0 \leq k \leq 2^n.
\]

Consider now the \(2^n \) lines which are tangent to the graphic of the function \(y = \phi(x) \) at \(x_{k,n} \), \(1 \leq k \leq 2^n \). That is

\[
p_{k,n}(x) := \phi'(x_{k,n})(x-x_{k,n}) + \phi(x_{k,n}), \quad a \leq x \leq b, \quad 1 \leq k \leq 2^n.
\]

Define

\[
g_n(x) := \max \{ g(x), p_{1,n}(x), p_{2,n}(x), \ldots, p_{2^n,n}(x) \}, \quad a \leq x \leq b.
\]

Note that the convexity of \(\phi \) gives \(g_n(x) \leq \phi(x) \) for every \(a \leq x \leq b \), \(n \geq 1 \).

We claim that \(g_n \rightarrow \phi \) in \(L^\infty(a, b) \) as \(n \rightarrow \infty \). To do this, take an arbitrary \(x \in (a, b) \). Then, for fixed \(n \geq 1 \), there exists \(1 \leq k \leq 2^n \) such that \(x_{k-1,n} < x \leq x_{k,n} \). Using the convexity and monotonicity of \(\phi \) we deduce

\[
\phi(x) \geq g_n(x) \geq p_{k,n}(x) \geq p_{k,n}(x_{k-1,n}) = \phi'(x_{k,n})(x_{k-1,n} - x_{k,n}) + \phi(x_{k,n}) \geq \phi'(b)(x_{k-1,n} - x_{k,n}) + \phi(x) = -\phi'(b) \frac{b-a}{2^n} + \phi(x).
\]

This gives \(\| \phi - g_n \|_{L^\infty(a, b)} \leq \phi'(b) \frac{b-a}{2^n} \) and the claim is proved.

Now fix \(n_0 > 1 \) and consider \(a_0 = a + (b-a)/2^{n_0} \) and \(b_0 = b - (b-a)/2^{n_0} \).

Note that \(a_0 = x_{2^{n-n_0},n} \) and \(b_0 = x_{2^{n-n_0}-n,n} \) for every \(n \geq n_0 \). Since \([a_0, b_0] \subset (a,b) \) and \(g < \phi \) in \((a,b)\), we deduce that there exists \(\varepsilon_0 > 0 \) (depending on \(n_0 \)) such that \(g(x) < \phi(x) - \varepsilon_0 \) for every \(x \in [a_0, b_0] \). Using \(g_n \rightarrow \phi \) in \(L^\infty(a_0, b_0) \) we can assert that there exists \(n_1 \geq n_0 \) (depending on \(\varepsilon_0 \)) such that \(g(x) < g_n(x) \) for every \(x \in [a_0, b_0] \) and \(n_1 \geq n_0 \). Then

\[
g_n(x) = \max \{ p_{1,n}(x), p_{2,n}(x), \ldots, p_{2^n,n}(x) \}, \quad a_0 \leq x \leq b_0, \quad n \geq n_1.
\]

Consider \(n \geq n_1 \) and \(2^{n-n_0} < k \leq 2^{n} - 2^{n-n_0} \). Take \(x \in [x_{k-1,n}, x_{k,n}] \).

The convexity of \(\phi \) yields \(g_n(x) = \max \{ p_{k-1,n}(x), p_{k,n}(x) \} \) and consequently \(g_n'(x) \leq \phi'(x_{k,n}) \). This gives

\[
\int_{x_{k-1,n}}^{x_{k,n}} \frac{1}{g_n'} \geq \frac{x_{k,n} - x_{k-1,n}}{\phi'(x_{k,n})}.
\]

Therefore, applying Lemma 3.3 in the interval \([a,b]\) it follows that
\[\int_{a}^{b} \frac{1}{g'} \geq \int_{a}^{b} \frac{1}{g_{n}} \geq \int_{a_{0}}^{b_{0}} \frac{1}{g_{n}} = \frac{2^{n-2^{n-n_{0}}} \int_{x_{k,n}}^{x_{k-1,n}} \frac{1}{g_{n}} \geq \sum_{k=2^{n-n_{0}+1}}^{2^{n-2^{n-n_{0}}}} \frac{x_{k,n} - x_{k-1,n}}{\phi'(x_{k,n})},} \]

for every \(n \geq n_{1} \). Since \(1/\phi' \) is continuous in \([a_{0}, b_{0}]\) and \(x_{k,n} - x_{k-1,n} = (b - a)/2^{n} \) we deduce that the right term of the last inequality tends to \(\int_{a_{0}}^{b_{0}} 1/\phi' \) as \(n \) tends to \(\infty \). Thus,

\[\int_{a}^{b} \frac{1}{g'} \geq \int_{a_{0}}^{b_{0}} \frac{1}{\phi'}. \]

Finally, since \(n_{0} > 1 \) is arbitrary we conclude (3.1) for the case \(g < \phi \) in \((a, b)\).

We now turn out to the general case \(g \leq \phi \) in \((a, b)\) and we proceed to show (3.1). For this purpose, consider the open set \(G = \{ x \in (a, b) : \phi(x) > g(x) \}\). If \(G = \emptyset \), then (3.1) is trivial. Otherwise, \(G \) is the countable (possible finite) disjoint union of open intervals. That is, \(G = \bigcup_{n \in X} (a_{n}, b_{n}) \), where \(X \subset \mathbb{N} \), \(\phi(a_{n}) = g(a_{n}) \), \(\phi(b_{n}) \geq g(b_{n}) \) and \(\phi > g \) in \((a_{n}, b_{n})\) for every \(n \in X \). Applying the previous case in each interval \((a_{n}, b_{n})\) we conclude

\[\int_{a}^{b} \frac{1}{g'} - \int_{a}^{b} \frac{1}{\phi'} = \int_{G} \left(\frac{1}{g'} - \frac{1}{\phi'} \right) = \sum_{n \in X} \int_{a_{n}}^{b_{n}} \left(\frac{1}{g'} - \frac{1}{\phi'} \right) \geq 0. \]

It remains to prove that equality holds in (3.1) if and only if \(g = \phi \). To this end suppose that we have equality in (3.1) for some \(g \). Take an arbitrary \(x_{0} \in [a, b] \) and consider the function

\[g_{x_{0}} := \max \{ g(x), \phi'(x_{0}) (x - x_{0}) + \phi(x_{0}) \}, \quad a \leq x \leq b. \]

Clearly \(g_{x_{0}} \) is nondecreasing and satisfies \(g \leq g_{x_{0}} \leq \phi \) in \([a, b]\) and \(g_{x_{0}}(a) = g(a) = \phi(a) \). Hence

\[\int_{a}^{b} \frac{1}{g_{x_{0}}} \geq \int_{a}^{b} \frac{1}{\phi'} = \int_{a}^{b} \frac{1}{g'}. \]

Applying Lemma 3.3 yields \(g = g_{x_{0}} \) in \([a, b]\). In particular \(g(x_{0}) = g_{x_{0}}(x_{0}) = \max \{ g(x_{0}), \phi(x_{0}) \} = \phi(x_{0}) \). Since \(x_{0} \in [a, b] \) is arbitrary we conclude that \(g = \phi \) in \([a, b]\) and the proposition follows. \(\square \)

Proof of Theorem 1.3

Obviously, taking \(h = \Psi \) in Theorem 1.2 it follows immediately i) \(\Rightarrow \) ii) \(\Rightarrow \) iii').

It remains to prove iii') \(\Rightarrow \) i). Suppose \(\int_{1}^{\infty} \frac{1}{\Psi'} = \infty \). Using again Theorem 1.2 what is left is to show that \(\int_{1}^{\infty} \frac{1}{h'} = \infty \), for every nondecreasing function \(0 \leq h \in C([1, \infty)) \) satisfying \(h \leq \Psi \) in \([1, \infty)\).
To obtain a contradiction suppose that there exists a nondecreasing function \(0 \leq h \in C([1, \infty)) \) satisfying \(h \leq \Psi \) in \([1, \infty)\) and \(\int_1^\infty \frac{1}{h'} < \infty \). We first claim that \(\lim_{x \to \infty} \frac{h(x)}{x} = +\infty \). Conversely, suppose that there exist \(M > 0 \) and a divergent sequence \(\{R_n\} \) such that \(h(R_n) \leq MR_n \) for every positive integer \(n \). Applying Cauchy-Shwartz inequality we obtain

\[
R_n - 1 = \int_1^{R_n} \sqrt{R'} \frac{1}{\sqrt{h'}} \leq \left(\int_1^{R_n} h' \right)^{1/2} \left(\int_1^{R_n} \frac{1}{h} \right)^{1/2} \leq (M R_n)^{1/2} \left(\int_1^\infty \frac{1}{h'} \right)^{1/2},
\]

which contradicts that \(\{R_n\} \) diverges.

Consequently there exists \(R_1 := \min \{ R \geq R_0 : h(R) = \Psi'(R_0)(R - R_0) + \Psi(R_0) \} \).

For every \(R > R_1 \) define \(g_R : [R_0, R] \to \mathbb{R} \) by

\[
g_R(x) := \begin{cases}
\Psi'(R_0)(x - R_0) + \Psi(R_0) & \text{if } R_0 \leq x \leq R_1 \\
h(x) & \text{if } R_1 < x \leq R
\end{cases}
\]

It is easily seen that \(g_R \in C([R_0, R]) \) is a nondecreasing function satisfying \(g_R(R_0) = \Psi(R_0) \) and \(g_R \leq \Psi \) in \([R_0, R]\). Then we can apply Proposition 3.1 in the interval \([R_0, R]\) and obtain

\[
\int_{R_0}^R \frac{1}{\Psi'} \leq \int_{R_0}^R \frac{1}{g_R}.
\]

Hence, for arbitrary \(R > R_1 \), we have

\[
\int_{R_1}^R \frac{1}{h'} = \int_{R_0}^R \frac{1}{g'_R} - \int_{R_0}^{R_1} \frac{1}{g'_R} \geq \left(\int_{R_0}^R \frac{1}{\Psi'} \right) - \left(\frac{R_1 - R_0}{\Psi'(R_0)} \right).
\]

Since \(\int_{R_0}^\infty \frac{1}{\Psi'} = \infty \), we can take limit as \(R \) tends to infinity, obtaining

\[
\int_{R_1}^\infty \frac{1}{h'} \geq +\infty. \quad \text{This contradicts our assumption } \int_1^\infty \frac{1}{h'} < \infty.
\]

REFERENCES

[1] G. Alberiti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math. 65 (2001), 9-33.

[2] L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in \(\mathbb{R}^3 \) and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739.

[3] M. T. Barlow, On the Liouville property for divergence form operators, Canad. J. Math. 50 (1998), 487-496.

[4] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 69-94.
[5] E. De Giorgi, *Convergence problems for functionals and operators*, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 131-188.

[6] M. del Pino, M. Kowalczyk, J. Wei, *On De Giorgi’s conjecture in dimension $N \geq 9$*, Ann. of Math. 174 (2011), 1485-1569.

[7] F. Gazzola, *The sharp exponent for a Liouville-type theorem for an elliptic inequality*, Rend. Istit. Mat. Univ. Trieste 34 (2002), 99-102.

[8] N. Ghoussoub, C. Gui, *On a conjecture of De Giorgi and some related problems*, Math. Ann. 311 (1998), 481-491.

[9] A. Moradifam, *Sharp counterexamples related to the De Giorgi conjecture in dimensions $4 \leq n \leq 8$*, Proc. Amer. Math. Soc. 142 (2014), 199-203.

[10] L. Moschini, *New Liouville theorems for linear second order degenerate elliptic equations in divergence form*, Ann. Inst. H. Poincar Anal. Non Lineaire 22 (2005), 11-23.

[11] M. H. Protter, H. F. Weinberger, *Maximum principles in differential equations*, Prentice-Hall, Englewood Cliffs, N.J. (1967).

[12] S. Villegas, *Optimal power in Liouville theorems*, preprint, arXiv: 2003.04400 (2020).

Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain.

E-mail address: svillega@ugr.es