Intake and feeding behaviour of Morada Nova lambs fed different energy levels

Danilo de Araújo Camilo,¹ Elzânia Sales Pereira,¹ Patricia Guimarães Pimentel,¹ Ronaldo Lopes Oliveira,² Magno J. Duarte Cândido,¹ Marcus R. Goes Ferreira Costa,¹ Rebeca M. da Silva Aquino¹

¹Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
²Departamento de Produção Animal, Salvador, Universidade Federal da Bahia, Brazil

Abstract

The effects of metabolizable energy levels were evaluated on nutrient intake and ingestive behaviour in Morada Nova lambs. Forty Morada Nova lambs were used with an initial weight of 12.2±2.05 kg. Five treatments were defined according to the metabolizable energy levels (0.96, 1.28, 1.72, 2.18 and 2.62 Mcal/kg DM). The experimental model was a randomized block design. Linear effect (P<0.0001) of ME levels was determined for dry matter intake (DMI), organic matter (OM), crude protein (CP), total carbohydrates (TC), non-fibrous carbohydrates (NFC) and total digestible nutrients (TDN) in g/day. Quadratic effect was determined for NDF (P<0.017) and carbohydrates (NFC) and total digestible nutrients (TDN) in g/day. Quadratic effect was determined for NDF (P<0.017) and carbohydrates (NFC) and total digestible nutrients (TDN) in g/day.

Introduction

The importance of small ruminants in undeveloped countries as a source of animal protein and income is increasing. In tropical regions such as Brazil, production systems are based on pastures, which represent the lowest cost feed resource for ruminant feeding (Duarte et al., 2011). Consequently, animal growth is slowed, mainly due to distribution and seasonal variation in quantity and quality of forage in the tropical environments. Therefore, the use of feedlot animals has been increased in Brazil because, among other reasons, the rate of weight gain is greater with concentrate than with roughage-based diets, which reduces feeding time and consequently reduces the cost of interest on the capital invested in animals.

However, in all environments feed characteristics influence animals’ motivation to eat, dietary choices and, ultimately, nutrient intake (Baumont et al., 2000; Haddad, 2005; Luo et al., 2000; Pimentel et al., 2011). In all production systems, it is generally economically sensible to maximize the proportion of forage in the diet to minimize feeding costs. When fed indoors, animals are usually fed twice a day. Sixty to 80% of daily intake is eaten during two main meals following distributions. The main characteristics of feeding behaviour are described in terms of the satiation process and motivation to eat (Provenza, 1995).

The eating behaviour of ruminants, such as feed intake, rumination time and number of chews, varies by feed type and physical characteristics and has an important effect on the digestive physiology of the ruminant. Moreover, it is used as an indicator of the physical and chemical characteristics of roughage (Lee et al., 2004b; Lee et al., 2008). In particular, the physical shape and feeding ration of roughage affects the eating and ruminating time (Gill et al., 1969; Castle et al., 1979) and considerably changes the buffering capacity in the rumen by affecting the secretion of saliva (Barley, 1976).

The Morada Nova breed has its origins in Northeastern Brazil. But there is still little scientific information about this breed and most studies have been based on breed crossing to produce heavier animals for meat (McManus et al., 2010). Feed cost represents the largest portion of the production cost. Therefore, differences among small ruminants and digestive efficiency are very important criteria for the selection of the most appropriate animal to be kept in any particular circumstance. The objective of this work was to study the differences in nutrient intake and feeding behaviour of Morada Nova lambs fed with different energy levels.

Materials and methods

Experiment site

The experiment was carried out at the Animal Laboratory of the Department of Animal Science of the Universidade Federal do Ceará (UFC) in Fortaleza-CE, Brazil. Humane animal care and handling procedures were followed according to the University’s animal care committee.

Animals, housing and feeding

Forty Morada Nova non-castrated male lambs, with average initial body weight (BW) of 12.20±2.05 kg at approximately 60 days old were used. First, animals were identified, wormed and placed in individual stalls with feeding troughs for food and water. The lambs were allocated randomly to five treatments that consisted of increasing levels of metabolizable energy (0.96; 1.28; 1.72; 2.18 and 2.62 Mcal/kg DM) obtained from different roughage:concentrate ratios (95:5, 80:20, 60:40, 40:60 and 20:80). Lambs were subjected to an adaptation period of 20 days and after that were kept in confinement until they reached an average 25
kg of body weight, after which the group was slaughtered. On this occasion, a random 2 animals of the control group (0.96 Mcal/kg DM) were also slaughtered. This procedure was carried out for each group until all the animals had been slaughtered. Average days in confinement to obtain the predetermined weight were 98, 109, 146 and 174 days at levels of 2.62, 2.18, 1.72 and 1.28 Mcal/kg DM, respectively.

The experimental model was a randomized block design with eight replications. The experimental diets were formulated according to the National Research Council (2007) and were offered as a total mixed ration. Animals had free access to water throughout the trial. Diets were formulated to be isonitrogenous with 16% CP (DM basis) to a 200 g daily gain, except for the ratio 95:5, formulated to meet the requirements for maintenance with 9% CP. Diets were composed of Tifton 85 hay as roughage and concentrates based on corn grain, soybean meal, urea, sodium chloride, calcium carbonate, dicalcium phosphate and mineral premix (Tables 1 and 2).

Particle size of the experimental feed

Particle sizes of the experimental feed were measured using a Penn State particle separator (PSPS), according to the method used by Kononoff and Heinrichs (2003). Samples of the experimental diets (approximately 100 g) were taken to determine particle sizes through manual agitation in the PSPS, which consisted of three sieves (1.18, 8, and 19 mm) that could separate feed into four different types depending on the particle size. This allowed the estimation of physically effective neutral detergent fibre (peNDF) according to Mertens (1997), whereby the concentration of NDF (% DM) of feed is multiplied by the percentage of particles retained in sieves 1.18 mm. The value of the effectiveness of feed is equal to the product of this operation, according to the formula:

\[\text{peNDF}_{1.18} = \left(\frac{\% \text{DM retained 1.18 mm}}{\% \text{NDF of diet}} \right) \times 100 \]

Intake and chemical analysis

Animals were fed individually ad libitum twice a day (at 08h00 and 16h00). Feed refusals were measured before the morning feeding and the amount of feed offered was adjusted to allow a 10% refusal. Daily dry matter intake (DMI) was determined by the difference between the weight of the diet offered and theorts. Every day, before the feed supply, diet and orsts of each animal were removed and weighed, and data were recorded in spreadsheets for daily control. Samples of feeds and orsts were weighed, packed and frozen each day for subsequent chemical analysis. Forage, concentrate and orsts composited samples were dried at 55°C for 72 h in a forced convection oven.

Table 1. Chemical composition of the ingredients in g/kg DM (unless otherwise stated).

Ingredient	Tifton hay	Corn meal	Soybean meal	Concentrate
DM, g/kg	953.6	891.0	951.8	967.0
OM	873.8	879.3	885.7	930.4
CP	78.9	91.4	546.3	298.6
EE	14.6	53.9	29.1	25.4
Ash (g/kg)	79.8	11.7	66.1	36.6
NDF	754.0	176.6	154.3	128.7
NDF (%)	0.44	0.38	0.56	0.14
ADF	424.7	82.8	145.4	96.7
ADIN	2.66	5.44	0.38	0.04
LIG	51.2	8.1	37.3	9.5
CEL	304.4	24.1	55.3	35.7
HEM	106.8	93.8	8.9	32.0
Urea	526.7	642.9	358.4	675.1
Lignin	701.3	138.8	104.2	96.0
NDF (%)	125.3	704.1	254.2	579.1

Table 2. Composition of the experimental diets.

Ingredient	Tifton hay	Corn meal	Soybean meal	Concentrate
Dry matter, g/kg	954.3	955.4	953.9	956.4
Mineral matter, g/kg DM	38.0	78.5	64.8	55.2
Crude protein, g/kg DM	89.9	168.2	159.1	164.4
Ether extract, g/kg DM	24.9	26.7	27.9	22.4
Neutral fibre detergent, g/kg DM	722.5	629.6	509.6	386.0
peNDF, g/kg DM	60.07	48.54	31.20	16.98
Acid fibre detergent, g/kg DM	429.6	372.8	285.9	208.0
Lignin, g/kg DM	48.1	43.7	37.3	31.8
Cellulose, g/kg DM	283.2	259.8	197.6	142.8
Hemicellulose, g/kg DM	283.9	256.8	223.7	178.0
Fibrous carbohydrates, g/kg DM	671.1	581.0	465.1	397.7
Total carbohydrates, g/kg DM	817.3	735.7	674.6	574.8
Non-fibrous carbohydrates, g/kg DM	146.2	154.7	299.5	416.3
Total digestible nutrients, g/kg DM	280.1	344.6	453.9	583.9
TDN/CP	3.12	2.04	2.85	3.61

Chemical components

Ingredients	Tifton hay	Corn meal	Soybean meal	Concentrate
Dry matter, g/kg	954.3	955.4	953.9	956.4
Mineral matter, g/kg DM	38.0	78.5	64.8	55.2
Crude protein, g/kg DM	89.9	168.2	159.1	164.4
Ether extract, g/kg DM	24.9	26.7	27.9	22.4
Neutral fibre detergent, g/kg DM	722.5	629.6	509.6	386.0
peNDF, g/kg DM	60.07	48.54	31.20	16.98
Acid fibre detergent, g/kg DM	429.6	372.8	285.9	208.0
Lignin, g/kg DM	48.1	43.7	37.3	31.8
Cellulose, g/kg DM	283.2	259.8	197.6	142.8
Hemicellulose, g/kg DM	283.9	256.8	223.7	178.0
Fibrous carbohydrates, g/kg DM	671.1	581.0	465.1	397.7
Total carbohydrates, g/kg DM	817.3	735.7	674.6	574.8
Non-fibrous carbohydrates, g/kg DM	146.2	154.7	299.5	416.3
Total digestible nutrients, g/kg DM	280.1	344.6	453.9	583.9
TDN/CP	3.12	2.04	2.85	3.61

*Centesimal concentration in relation to the concentrated portion of the diets. *Composition: Ca 7.7%; P 3%; Fe 16.500 ppm; Mn 9750 ppm; Zn 35.000 ppm; I 1000 ppm; Se 225 ppm; Co 1000 ppm. *Physically effective neutral detergent fibre.
air oven, then ground in a knife mill with a 1 mm screen (Wiley mill, Arthur H. Thomas, Philadelphia, PA, USA). The samples were analyzed for dry matter contents (DM) (AOAC 1990; method no. 930.15), ash (AOAC 1990; method no. 924.05), crude protein (CP) (AOAC 1990; method no. 984.13), ether extract (EE) (AOAC 1990; method no. 920.39) and acid detergent fibre (ADF) (Van Soest et al., 1991). To analyze the neutral detergent fibre (NDF), the samples were treated with thermo-stable alpha amylase without the use of sodium sulfite, corrected for residual ash (Mertens, 2002) and for residual nitrogenous compounds (Licitra et al., 1996).

The total carbohydrate content (TC) was calculated using the expression:

\[TC(\%) = 100 - (\%CP + \%EE + \%ash) \]

according to Sniffen et al. (1992). The non-fibrous carbohydrates (NFC) were calculated from the equation adapted from Weiss (1999), where:

\[NFC(\%) = 100 - (\%NDFap + \%CP + \%EE + \%ash) \]

Because of the presence of urea in concentrate constitution, the NFC was calculated from the adapted equation by Hall (2000), where:

\[NFC = 100 - [\%CP - \%CP derived from urea + \% of the urea] + \%NDFap + \%EE + \%ash] \]

Digestibility trials were conducted to determine metabolizable energy (ME) of the diets. Indigestible acid detergent fibre (ADF) was used as a marker to estimate faecal DM excretion as described by Casali et al. (2009). Feces were collected every 15 days for three consecutive days: at 08h00 on the first day, at 12h00 on the second day and at 16h00 on the third day. Samples of feces, feeds (Tifton 85 hay and concentrate) andorts from the digestibility trial were dried at 55°C, ground to pass through a 1 mm screen (Wiley mill, Arthur H. Thomas, Philadelphia, PA, USA). The samples were analyzed for dry matter contents (DM), ash, crude protein (CP), ether extract (EE), acid detergent fibre (ADF) and acid detergent fibre corrected for ash and protein and acid detergent ether extract, respectively. The dietary DE was estimated as 4.409 Mcal/kg of TDN, and DE was converted to ME using an efficiency of 82% to convert DE to ME (NRC, 2000).

Feeding behaviour

To measure the digestive behaviour variables, animals were submitted to visual observation in the 95th and 96th days of the experiment. First day observations were registered at 5-min intervals for 24 h to determine the time spent eating, ruminating and idle, according to the methodology proposed by Johnson and Combs (1991). The shed was kept under artificial lighting at night throughout the experimental period.

On the second day, animals were observed during 3 periods of 2 h (08h00 to 10h00, 14h00 to 16h00, and 18h00 to 20h00). These data were used to estimate the number of chews per ruminal bolus and time spent chewing per ruminal bolus, using a chronometer. The variables of ingestive behaviour were obtained by the equations:

\[
\begin{align*}
FE &= \text{DMI}/\text{ET}; \quad FE = \text{NDFi}/\text{ET} \\
RE &= \text{DMI}/\text{RT}; \quad RE = \text{NDFi}/\text{RT} \\
\text{TCT} &= \text{ET} + \text{RT} \\
\text{Nrb} &= \text{RT}/\text{TCrbs} \\
\text{NCd} &= \text{Nrb} \times \text{NCrbs}
\end{align*}
\]

where:

\[
\begin{align*}
\text{FE} &= (\text{g DM/h, g NDF/h}) \text{ is the feeding efficiency;} \\
\text{DMI} &= (\text{g DM/day}) \text{ is the dry matter intake;} \\
\text{ET} &= (\text{h/day}) \text{ is the eating time;} \\
\text{RE} &= (\text{g DM/h, g NDF/h}) \text{ is the rumination efficiency;} \\
\text{RT} &= (\text{h/day}) \text{ is the ruminating time;} \\
\text{TCT} &= (\text{h/day}) \text{ is the total chewing time;} \\
\text{Nrb} &= (\text{no./day}) \text{ is the number of ruminal boluses;} \\
\text{TCrbs} &= (\text{sec/bolus}) \text{ is the time spent chewing ruminal bolus;} \\
\text{NCrbs} &= (\text{no./bolus}) \text{ is the number of chews per ruminal bolus;} \\
\text{NCd} &= (\text{no./day}) \text{ is the number of chews per day (Polli et al., 1996).}
\end{align*}
\]

Statistical analysis

The experimental design was a randomized block (initial body weight), with five treatments, according to the mathematical model:

\[
Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}
\]

where:

\[
Y_{ij} = \text{value observed in the plot that received the treatment } i \text{ in the block } j; \\
\mu = \text{general average of the population;} \\
\alpha_i = \text{effect of treatment } i = 1, 2, 3, 4, 5; \\
\beta_j = \text{effect of the block } j = 1, 2, 3, 4, 5, 6, 7, 8; \\
e_{ij} = \text{random error.}
\]

The statistical analyses were performed using PROC GLM of the SAS version 9.0 (SAS, 2003). An orthogonal partition of the sum of the square of treatments into linear, quadratic and cubic degree effects was obtained by analysis of variance. Regression equation was adjusted when 0.05 significance was observed, using PROC REG SAS (9.0).

Results and discussion

Nutrient intake

A linear effect (P<0.0001) was observed for DM, OM, CP, NFC and TDN intakes (g/day) with increased diet ME levels. Increased ME levels promoted a quadratic effect for NDF (P<0.0170) and FC (P<0.0030) intakes (g/day), with critical points (maximum response) at ME levels of 1.56 and 1.44 Mcal/kg DM, respectively. A similar pattern was also observed for FC (P<0.0001) intake, when expressed in g/kgBWs0.75 with critical points (maximum response) at ME levels of 1.79 Mcal/kg DM (Table 3).

Medeiros et al. (2007) reported linear increase in intake with values of 925, 964, 1,063 and 1,124 g/day for sheep fed diets containing 20, 40, 60 and 80% concentrate, values similar to those reported by Mahgoub et al. (2000), when three energy levels (2.4, 2.5 and 2.7 Mcal/kg DM) were assessed in Omani growing lambs’ diets. NFC intake, when expressed in g/day, showed quadratic behaviour with the ME increase in the diets, indicating the existence of an inflection point or transition between the physical and biological control. According to Mertens (1987), when the energy density of the diet is high (low NFC), in relation to requirements of the animal, intake may be limited by energy demand, not rumen fill. For diets of low energy density (high content of NFC), the intake can be limited by filling the rumen reticulum.

The increase in particle size in the experimental diets with lower ME levels may also have influenced the filling effect and, consequently, the reduction of DM intake. Similarly, Kato et al. (1989) and Jeon et al. (2001) observed that the small particle size of the feed induced an increased dry matter intake.

Low-quality tropical forages are deficient not only in nutrients for animal performance, but also in substrates for microbial metabolism, mainly nitrogenous compounds (Detmann et al., 2009). Thus, inclusion of protein and/or energy sources in diets would be beneficial to the rumen environment and would increase the microbial growth on the fibrous carbohydrates (Costa et al., 2008).
Increase in intake could be a reflection of increases in the digestibility of the fibrous compounds (Lazzarini et al., 2009) which exert a high rumen fill effect. Increases in the voluntary low-quality forage intake as a result of protein sources is frequently associated with higher forage passage and digestion rates, which accelerate the removal of the indigestible fibre compounds from the rumen, resulting in a higher rumen turnover (Paulino et al., 2008). Particle size of diets may also influence intake. According to Poppi et al. (1985), the particle size of 1.18 mm is that which determines whether a particle has a rapid (<1.18 mm) or slow (> 1.18 mm) passage by the rumen, this value being valid for both sheep and cattle. Thus, the larger particle size in diets with high levels of ME (Table 4) allowed rumens to escape slowly and a higher filling effect.

Thus, if daily intake is the primary goal, theories related to the regulation of long-term consumption are the most suitable as a starting point for derivation of the equations. Therefore, the optimum content of NDF in the diet should not be fixed but should vary depending on the net energy requirement of the animal. The diet (0.96 Mcal/kg DM) containing high NDF content (722.5 g/kg DM) promoted low total DMI due to restrictions caused by the filling of the animals’ rumen-reticulum. On the other hand, the diet containing a high level of energy (2.62 Mcal/kg DM) and low fibre (267.4 g/kg DM) also resulted in lower total DM intake, indicating that animal energy requirements have been reached at lower levels of consumption. Satiety as the physiological factor limiting intake may be related to diets with high caloric density (high amount of concentrate) and, in this case, animal requirements control intake.

Ingestive behaviour

Eating time and ruminating time (h/day) decreased linearly (P<0.0001) with the energy levels of the experimental diets (Table 5). A linear effect was observed for ruminating efficiency (g DM/h) at the levels of ME (P<0.0001). When expressed in g NDF/h, feeding efficiency had a significant effect (P<0.0016), meanwhile rumination efficiency had no significant effect for the diet ME levels (Table 4). Kim et al. (1994) reported that the shorter the length of the feed, the higher the feeding efficiency. This was also observed by Jeon et al. (1997) who reported that feeding efficiency was higher with roughage of a smaller particle size. The total chewing time (min/day) was influenced by the ME level of experimental diets,

Table 3. Intake of diet constituents by sheep fed with different levels of metabolizable energy.

ME level in diet, Mcal/kg DM	SEM	L	Q	C					
0.96	1.28	2.18	2.62						
DM°, g/day	370.38	467.99	527.05	687.75	628.86	26.45	<0.0001	0.0861	0.2291
OM°, g/day	310.84	410.05	487.86	646.20	583.85	26.18	<0.0001	0.0361	0.1654
CP°, g/day	32.05	80.81	89.79	115.49	119.01	6.50	<0.0001	0.0191	0.3257
NDF°, g/day	237.03	278.87	265.89	238.72	187.99	10.69	0.7531	0.0630	0.0612
TC°, g/day	281.23	330.32	400.75	510.82	455.79	18.98	<0.0001	0.0564	0.1182
FC°°, g/kg BW^0.75	59.12	51.64	59.01	75.91	68.91	2.53	<0.0001	0.0351	0.0379
OM°°, g/kg BW^0.75	45.43	66.50	54.63	71.33	65.09	2.45	<0.0001	0.0345	0.0298
NDF°°°, g/kg BW^0.75	36.69	31.50	28.91	26.03	17.71	1.55	<0.0001	0.0380	0.2320

PSD% MS retained	Tifton 85 hay	Concentrate	ME level in diet, Mcal/kg DM on sieves	SEM	L	Q	C
0.96	1.28	2.18	2.62				

Above 19.0 mm

PSD% MS retained	Tifton 85 hay	Concentrate	ME level in diet, Mcal/kg DM on sieves	SEM	L	Q	C
0.96	1.28	2.18	2.62				

| ME, metabolizable energy, L, linear degree; Q, quadratic degree; C, cubic degree; DM, dry matter; OM, organic matter; CP, crude protein; NDF, neutral detergent fibre; TC, total carbohydrates; FC, fibrous carbohydrates; NFC, non-fibrous carbohydrates; TDN, total digestible nutrients; \(R^2 = 0.97 \); § § § \(R^2 = 0.85 \); \(R^2 = 31.946 \); ## \(R^2 = 5.361+3.936X \) (R=0.85).

Table 4. Particle size distribution in percentage of feeds and diets.

PSD% MS retained	Tifton 85 hay	Concentrate	ME level in diet, Mcal/kg DM on sieves	SEM	L	Q	C
0.96	1.28	2.18	2.62				

PSD% MS retained	Tifton 85 hay	Concentrate	ME level in diet, Mcal/kg DM on sieves	SEM	L	Q	C
0.96	1.28	2.18	2.62				

Table 5. Ingestive behaviour of Morada Nova lambs fed rations with different metabolizable energy levels.

Items	ME level in diet, Mcal/kg DM	SEM	L	Q	C
0.96	1.28	2.18	2.62		

Items	ME level in diet, Mcal/kg DM	SEM	L	Q	C
0.96	1.28	2.18	2.62		

Items	ME level in diet, Mcal/kg DM	SEM	L	Q	C
0.96	1.28	2.18	2.62		

Items	ME level in diet, Mcal/kg DM	SEM	L	Q	C
0.96	1.28	2.18	2.62		
with a decreasing linear effect (P<0.0001). According to Dulphy et al. (1980), when the cell wall constituents of the diet decreases, increasing the starch content, the total chewing time decreases, a fact detected by the linear decrease observed in the data obtained in this study (Table 4). Turino (2003) observed that diets with higher NDF and physically effective neutral detergent fibre (peNDF) promote an increase in chewing activity in sheep.

The number of ruminal boluses, number of chews per day and chews per ruminal bolus were not affected by ME. However, time spent chewing by ruminal bolus was influenced by ME (P<0.0014) by ME in the diets (Table 6). Lee et al. (2004a) and Jeon et al. (1997) reported that the shorter the cutting length (particle size) of the roughage, the lower the number of boluses.

The values of peNDF increased with increasing fibre in the diets (Table 2), which may be indicative of longer rumination and chewing times since the concept of peNDF is related to the physical characteristics of fibre to stimulate chewing activity, because of a high correlation between time spent chewing and fibre effectiveness (Mertens, 1997). Beauchemin and Yang (2005) reported that by decreasing the peNDF content of diets, the number of chews per day during intake was linearly reduced and tended to reduce the number of chews during rumination. Consequently, total chewing activity was reduced. The authors reported that eating time (min/day) and rumination time (min/day) were linearly affected by diet peNDF, as well as the total chewing time (min/day).

Figure 1 shows the distribution of consumption and ruminating activities in four periods of the day: (1) 06h00 to 12h00; (2) 12h00 to 18h00; (3) 18h00 to 24h00; and (4) 24h00 to 06h00. The sum of periods 1 and 2 corresponded to the longer time spent on consumption (82.21% of total consumption), so the consumption was concentrated during the day. These observations were also registered by Pereira et al. (2009), Dado and Allen (1995), and Macedo et al. (2007), who obtained an average of 57% of time spent feeding adding the periods 1 and 2. Dado and Allen (1995) reported that DMI is increased after feeding, when feed is still fresh. According to Forbes (1995), as ruminants are diurnal animals, their feeding activity is more frequent during the day than at night; however, this can vary. Rumination occurred mainly at night, usually the time when air temperature is milder. Rumination prevailed between periods 3 and 4 (Figure 1). The daily pattern of ruminating activity was high after 10 h of daily feed supply (period 3) and remained active during the sub-

Figure 1. Distribution of consumption and ruminating activities in four periods (06h00 to 12h00, 12h00 to 18h00, 18h00 to 24h00 and 24h00 to 06h00) of the day.

Table 6. Ingestive behaviour of Morada Nova lambs fed rations with different metabolizable energy levels.

ME level in diet, Mcal/kg DM	0.96	1.28	1.72	2.18	2.62
SEM					
Effect degree	L	Q	C		
Items					
Nrb, nº/day^	643.04	704.73	689.38	602.38	616.52
SEM	27.74	27.74	27.74	27.74	27.74
Effect degree	0.3498	0.8538	0.3784		
Ncd, nº/day^§	34.97650	38.78657	38.21139	36.32153	32.50752
SEM	1.231012	1.231012	1.231012	1.231012	1.231012
Effect degree	0.2951	0.1240	0.6834		
Ncrb, nº/bol^	56.36	56.13	61.00	58.44	56.13
SEM	1.46	1.46	1.46	1.46	1.46
Effect degree	0.9048	0.3167	0.7947		
Tcrb, sec/bol$	52.36	45.75	47.19	47.19	47.19
SEM	0.0004	0.0004	0.0004	0.0004	0.0004
Effect degree	0.7959	0.3854	1.0284		

ME, metabolizable energy; DM, dry matter; L, linear degree; Q, quadratic degree; C, cubic degree; Nrb, number of ruminal boluses; Tcrb, time spent chewing ruminal bolus; NCrb, number of chews per ruminal bolus; Ncd, number of chews per day. ^Ŷ = 634.41; §Ŷ = 36.610.70; ^= 57.61; $ = 59.298-8.342X (R^2 = 0.78).
Conclusions

The increase in ME levels in diets influences nutrient intake and feeding behaviour of Morada Nova lambs during the growing period.

References

AOAC, 1990. Official Methods of Analysis. 15th ed., Association of Official Analytical Chemists, Washington, DC, USA.

Bartley, E.E., 1976. Bowline saliva: production and function of buffers in ruminant physiology and metabolism. Church and Dwight Co., Inc., New York, NY, USA.

Baumont, R., Prache, S., Meuret, M., Morhand-Fehr, P., 2000. How forage characteristics influence behaviour and intake in small ruminants: a review. Livest. Prod. Sci. 61:15-28.

Beauchemin, K.A., Yang, W.Z., 2005. Effects of physically effective fiber on intake, chewing behavior, and ruminal acidosis for dairy cows fed diets based on corn silage. J. Dairy Sci. 88:2117-2129.

Casali, A.O., Detmann, E., Valadares Filho, S.C., Pereira, J.C., Cunha, M., Detmann, K.S.C., Paulino, M.F., 2009. Estimação de teores de componentes fibrosos em alimentos para ruminantes em sacos de diferentes tecidos. Rev. Bras. Zootecn. 38:130-138.

Castle, M.E., Retter, W.C., Watson, J.N., 1979. Silage and milk production: comparisons between three silages of different chop lengths. Grass Forage Sci. 34:293-301.

Costa, V.A.C., Detmann, E., Valadares Filho, S.C., Paulino, M.F., Henriques, L.T., Mantovani, H.C., 2008. Degração in vitro da fibra em detergente neutro de forragem tropical de baixa qualidade em função de suplementação com proteína e/ou carboidratos. Rev. Bras. Zootecn. 37:494-503.

Dado, R.G., Allen, M.S., 1995. Intake limitation, feeding behaviour and rumen function of cows challenger with rumen flt from dietary fiber or inert bulk. J. Anim. Sci. 78:118-133.

Detmann, E., Paulino, M.F., Mantovani, H.C., Valadares Filho, S.C., Sampaio, C.B., Souza, M.A., Lazzarini, I., Detmann, K.S.C., 2009. Parameterization of ruminal fiber degradation in lowquality tropical forage using Michaelis-Menten kinetics. Livest. Sci. 126:136-146.

Duarte, M.S., Paulino, P.V.R., Valadares Filho, S.C., Paulino, M.F., Detmann, E., Zervoudakis, J.T., Monnerat, J.P.L.S., Viana, G.S., Silva, L.H.P., Serão, N.V.L., 2011. Performance and meat quality traits of beef heifers fed with two levels of concentrate and ruminally undegradable protein. Trop. Anim. Health Prod. 43:877-886.

Dulphy, J.P., Remond, B., Theriez, M., 1980. Ingestive behaviour and related activities in ruminants. In: Y. Ruckebusch and P. Thievend (eds.) Digestive physiology and metabolism in ruminants. MTP Press, Lancaster, UK, pp 103-122.

Forbes, J.M., 1995. Voluntary food intake and diet selection in farm animals. CAB Int. Publ., Wallingford, UK.

França, S.R.L., Gonzaga Neto, S., Pimenta Filho, E.C., Medeiros, A.N., Torrêoa, J.N.C., Mariz, T.M.A., Costa, R.G., 2009. Comportamento ingestivo de ovelhas Morada Nova no terço final de gestação com níveis de energia metabolizável na dieta. Rev. Bras. Saúde Prod. An. 50:73-84.

Gill, S.S., Conrad, H.R., Hibbs, J.W., 1969. Relative rate of in vitro cellulose disappearance as a possible estimator of digestible dry matter intake. J. Dairy Sci. 52:1687-1690.

Haddad, S.G., 2005. Effect of dietary forage:concentrate ratio on growth performance and carcass characteristics of growing Baladi kids. Small Ruminant Res. 57:43-49.

Hall, M.B., 2000. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Bulletin No. 339, University of Florida Publ., Gainesville, FL, USA.

Jeon, B.T., Moon, S.H., Kwon, Y.J., Kwak, W.S., 2001. Effect of supplementary level of fermented broiler litter on the dry matter intake, digestibility and nitrogen balance in female spotted deer (Cervus nippon). Korean J. Anim. Sci. 43:730-731.

Jeon, B.T., Park, I.H., Lee, S.M., Kim, K.H., Kim, J.S., Son, J.C., 1997. The effect of different fiber sources on chewing behavior of Korean native cattle. Korean J. Anim. Sci. 39:385-388.

Johnson, T.R., Combs, D.K., 1991. Effects of prepartum diet, inert rumen bulk, and dietary polyethylene glicol on dry matter intake of lactating dairy cows. J. Dairy Sci. 74:933-944.

Kato, K., Kajima, Y., Odashima, M., Lee, L.S., Nam, K.T., Chiga, H., Shoji, Y., Otha, M., Sasaki, Y., 1989. Feed passage and digestibility in Japanese deer and sheep. Research report of Kawatabi Experimental Station 5:59-62.

Kim, C.M., Lee, B.S., Chung, T.Y., 1994. Influence of cutting length of ammoniated barley straw on the eating and ruminating behavior of Korean native cattle. Korean J. Anim. Sci. 36:487-493.

Kononoff, P.J., Heinrichs, A.J., 2003. The effect of reducing alfalfa haylage particle size on cows in early lactation. J. Dairy Sci. 86:1445-1457.

Lazzarini, I., Detmann, E., Sampaio, C.B., Paulino, M.F., Valadares Filho, S.C., Souza, M.A., Oliveira, F.A., 2009. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Rev. Bras. Zootecn. 38:2021-2030.

Lee, S.M., Hwang, J.H., Yoon, Y.B., Kwak, W.S., Kim, Y.I., Moon, S.H., Jeon, B.T., 2008. Effects of spent mushroom substrates addition on eating behavior of growing Hanwoo. Korean J. Grassl. Forage Sci. 28:107-118.

Lee, W.S., Lee, B.S., Lee, S.C., Lee, S.S., Lee, S.Y., Lee, D.Y., Ha, J.K., 2004a. Effects of rice straw and rice hull supplement on rumination and chewing behavior in Hanwoo steers. Korean J. Anim. Sci. 46:49-54.

Lee, W.S., Lee, B.S., Oh, Y.K., Kang, S.W., Lee, S.S., Ha, J.K., 2004b. Effects of concentrate to roughage ratios on duration and frequencies of rumination and chewing in Hanwoo steers. Korean J. Anim. Sci. 46:55-60.

Licitra, G., Hernandes, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Tech. 57:347-358.

Luo, J., Sahlu, T., Cameron, M., Goetschet, A.L., 2000. Growth of Spanish, Boer x Angora and Boer x Spanish goat kids fed milk replacer. Small Ruminant Res. 36:189-194.

Macedo, C.A.B., Mizubuti, I.Y., Moreira, E.B., Pereira, E.S., Ribeiro, E.L.A., Rocha, M.A.R., Ramos, B.M.O., Mori, R.M., Pinto, A.P., Alves, T.C., Casimiro, T.R., 2007. Comportamento ingestivo de ovinos recebendo dietas com diferentes níveis de bagaço de laranja em substituição à silagem de sorgo na ração. Rev. Bras. Zootecn. 36:1910-1916.

Mahgoub, O., Lu, C.D., Early, R.J., 2000. Effects sequent h (period 4). Polli et al. (1996) reported that the distribution of rumination activity is influenced by diet, since rumination takes place soon after the feeding periods when the animal is quiet. Macedo et al. (2007) observed a percentage of 54.54% for the time spent in rumination.
of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Ruminant Res. 37:35-42.

McManus, C., Paiva, S.R., Araújo, R.O., 2010. Genetics and breeding of sheep in Brazil. Rev. Bras. Zootecn. 39:236-246.

Medeiros, G.R., Carvalho, F.F.R., Ferreira, M.A., Batista, A.M.V., Alves, K.S., Souto Maior Junior, R.J., Almeida, S.C., 2007. Efeito dos níveis de concentrado sobre o desempenho de ovinos Morada Nova em confinamento. Rev. Bras. Zootecn. 36:1162-1171.

Mendes, C.Q., Turino, V.F., Susin, I., Pires, A.V., Morais, J.B., Gentil, R.S., 2010. Comportamento ingestivo de cordeiros e digestibilidade dos nutrientes de dietas contendo alta proporção de concentrado e diferentes fontes de fibra em detergente neutro. Rev. Bras. Zootecn. 39:594-600.

Mertens, D.R., 1987. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 64:1548-1558.

Mertens, D.R., 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481.

Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J. AOAC Int. 85:1217-1240.

National Research Council, 2000. Nutrient Requirements of Beef Cattle. 8th ed., National Academy Press, Washington, DC, USA.

National Research Council, 2007. Nutrient Requirements of Sheep. National Academic Press, Washington, DC, USA.

Paulino, M.F., Detmann, E., Valente, E.E.L., Barros, L.V., 2008. Nutrição de bovinos em pastejo. pp 131-170 in Proc. 4th Nat. Symp. on Strategic Management of Pasture, Viçosa, Brazil.

Pereira, E.S., Mizubuti, I.Y., Ribeiro, E.L.A., Villarroel, A.B.S., Pimentel, P.G., 2009. Consumo, digestibilidade aparente dos nutrientes e comportamento ingestivo de bovinos da raça Holandesas alimentados com dietas contendo feno de capim-tifton 85 com diversos tamanhos de partícula. Rev. Bras. Zootecn. 38:190-195.

Pimentel, P.G., Pereira, E.S., Queiroz, A.C., Mizubuti, I.Y., Regadas Filho, J.G.L., Maia, I.S.G., 2011. Intake, apparent nutrient digestibility and ingestive behavior of sheep fed cashew nut meal. Rev. Bras. Zootecn. 40:1128-1133.

Polli, V.A., Restle, J., Senna, D.B., Almeida, S.R.S., 1996. Aspectos relativos à ruminação de bovinos e bubalinos em regime de confinamento. Rev. Bras. Zootecn. 25:987-993.

Popp, D.P., Hendricksen, R.E., Minson, D.J., 1985. The relative resistance to escape of leaf and stem particles from the rumen of cattle and sheep. J. Agr. Sci. 105:9-14.

Provenza, F.D., 1995. Role of learning in food preferences of ruminants: Greenhalgh and Reid revisited. pp 233-247 in Proc. 8th Int. Symp. on Ruminant Physiology, Logan, UT, USA.

SAS, 2003. SAS System for Windows, Release 9.1. SAS Inst., Inc., Cary, NC, USA.

Sniffen, C.J., O’Connor, D.J., Van Soest, P.J., Fox, D.G., Russell, J.B., 1992. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: Carbohydrate and Protein Availability. J. Anim. Sci. 70:3562-3577.

Turino, V.F., 2003. Substituição da fibra em detergente neutro (FDN) do bagaço de cana-de-açúcar in natura pela FDN de casca de soja em dietas contendo alta proporção de concentrados para cordeiros confinados. Degree Diss., Universidade de São Paulo, Brazil.

Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral-detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.

Weiss, W.P., 1999. Energy prediction equations for ruminant feeds. pp 176-185 in Proc. Cornell Nutrition Conf. for Feed Manufacturers, Cornell University, Ithaca, NY, USA.