RNF20/40-mediated eEF1BδL monoubiquitylation stimulates transcription of heat shock-responsive genes

Suna In¹, Yong-In Kim², J. Eugene Lee² and Jaehoon Kim⁰¹,*

¹Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea and ²Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea

Received October 16, 2018; Revised December 27, 2018; Editorial Decision January 02, 2019; Accepted January 03, 2019

ABSTRACT

RNF20/40 E3 ubiquitin ligase-mediated histone H2B monoubiquitylation plays important roles in many cellular processes, including transcriptional regulation. However, the multiple defects observed in RNF20-depleted cells suggest additional ubiquitylation targets of RNF20/40 beyond histone H2B. Here, using biochemically defined assays employing purified factors and cell-based analyses, we demonstrate that RNF20/40, in conjunction with its cognate E2 ubiquitin-conjugating enzyme RAD6, monoubiquitylates lysine 381 of eEF1BδL, a heat shock transcription factor. Notably, monoubiquitylation of eEF1BδL increases eEF1BδL accumulation and potentiates recruitment of p-TEFb to the promoter regions of heat shock-responsive genes, leading to enhanced transcription of these genes. We further demonstrate that cooperative physical interactions among eEF1BδL, RNF20/40, and HSF1 synergistically promote expression of heat shock-responsive genes. In addition to identifying eEF1BδL as a novel ubiquitylation target of RNF20/40 and elucidating its function, we provide a molecular mechanism for the cooperative function of distinct transcription factors in heat shock-responsive gene transcription.

INTRODUCTION

Protein ubiquitylation produced by specific E3 ubiquitin ligases plays diverse roles in many cellular events (1). Whereas polyubiquitylation generally directs proteins for degradation by the proteasome complex (1,2), monoubiquitylation promotes non-proteolytic functions by altering certain features of proteins, including their structure, activity, binding partners and/or subcellular localization (2,3). Previous studies have shown that monoubiquitylation is more prevalent than polyubiquitylation in cells (4) and that monoubiquitylation occurs in a reversible manner (5,6), suggesting pivotal regulatory functions of protein monoubiquitylation in cellular processes.

Human RNF20/40 (also called the BRE1 complex), first identified as an E3 ubiquitin ligase for histone H2B (7,8), utilizes RAD6 as a cognate E2 ubiquitin-conjugating enzyme (8). Depletion of RNF20 has been shown to cause various cellular defects in genomic stability, tumor suppression and inflammation, among other effects (9–11). However, it is uncertain whether all these misregulations are caused by defects in H2B ubiquitylation. In support of this, a yeast strain lacking Bre1 (yeast homolog of RNF20 and RNF40) exhibits more severe hypersensitivity to DNA damage than the htb-K123R strain, expressing histone H2B containing an arginine substitution at the site monoubiquitylated by Bre1 (lysine 123) (12), suggesting additional Bre1 target protein(s). Moreover, genome-wide transcriptome analyses have shown that RNF20 knockdown selectively regulates distinct subsets of genes (9), raising the possibility that RNF20/40 regulates transcription through complex mechanisms that are not solely dependent on H2B ubiquitylation.

In this context, several studies have reported non-histone proteins that are polyubiquitylated (13–15) or monoubiquitylated (16) by RNF20/40. However, these cell-based studies do not completely exclude the possibility that RNF20 depletion indirectly affects target protein ubiquitylation by virtue of the presence of various unknown cellular components, emphasizing the necessity of biochemical analyses using defined factors to directly demonstrate RNF20/40-mediated target protein ubiquitylation and function. In addition, given that RNF20/40 ubiquitylates the ‘nucleosomal’ component histone H2B, it is plausible that RNF20/40 targets additional chromatin-proximal proteins, such as transcription factors. However, no previously studies have identified such proteins.

Here, using biochemically defined systems and cell-based analyses, we demonstrate that RNF20/40 monoubiquitylates eEF1BδL, a heat shock-responsive transcription factor (17). We also provide mechanistic insight into the role of monoubiquitylated eEF1BδL in stimulating heat
shock-responsive gene expression, showing that this process involves cooperative interactions among eEF1B6L, RNF20/40 and HSF1, and recruitment of the transcription elongation factor p-TEFb to the promoter regions of target genes. In addition to elucidating a detailed molecular mechanism of eEF1B6L function in response to thermal stress, our study reveals a non-proteolytic function of RNF20/40-mediated protein monoubiquitylation.

MATERIALS AND METHODS

Plasmids, baculoviruses, recombinant proteins and purifications

Plasmids containing full-length human eEF1B6L, eEF1B6L and HSF1 cDNA, and the pHSE-luc plasmid were obtained from Dr. Masayuki Matsushita at University of the Ryukyus. Expression and purification of N-terminal GST- and His-tagged recombinant proteins in *Escherichia coli* were as described (18). For untagged RAD6A preparation, RAD6A protein with N-terminal His- and MBP (maltose binding protein)-tags followed by TEV cleavage site was expressed in *E. coli* and purified on Ni-NTA agarose (Qiagen). Resulting His-MBP-TEV-RAD6A protein was reacted with purified His-tagged TEV protease and then reaction mixture was incubated with Ni-NTA agarose. Unbound fraction was concentrated to enrich untagged RAD6A. For baculovirus-mediated recombinant protein expression, cDNAs were subcloned into pFASTBAC1 (Gibco-Invitrogen) with or without an epitope tag and baculoviruses were generated according to the manufacturer’s instruction. FLAG-tagged proteins/complexes were expressed in Sf9 cells and purified on M2 agarose (Sigma-Aldrich) as described (18).

Cell culture and transfection

293T cells were maintained in Dulbecco’s modified Eagle’s medium (Corning) supplemented with 10% (v/v) fetal bovine serum (FBS) (Atlas), 100 U/ml penicillin (Gibco) and 100 μg/ml streptomycin (Gibco) at 37°C in a 5% CO2 humidified incubator. For transient transfections, cells were transfected with plasmids by using iN-fect transfection reagent (iNTRON Biotechnology) according to the manufacturer’s instruction. For RNA interference, cells were transfected with siRNA oligonucleotides by using DharmaFECT 1 transfection reagent (Dharmacon) according to the manufacturer’s protocol. Oligonucleotide sequences for siRNA are summarized in Supplementary Table S1. Sf9 cells were cultured in Grace’s insect medium (Gibco) supplemented with 10% (v/v) FBS, 1% (v/v) Pluronic F-68 (Sigma-Aldrich) and 10 μg/ml gentamicin (Gibco) in normal atmospheric conditions.

Immunoprecipitation of RNF20- and RNF40-interacting proteins and liquid chromatography-mass spectrometry

293T cells and its derived cell line that carries chromosomal FLAG-RNF20 and HA-RNF40 genes were lysed in lysis buffer (50 mM HEPES [pH 7.5], 300 mM NaCl, 70 mM KOAc, 5 mM Mg(OAc)2, 0.2% n-dodecyl-β-D-maltoside and protease inhibitor cocktail (Roche)) at 4°C for 30 min. Cell lysates were centrifuged at 16,000 x g for 20 min. The supernatant was incubated with M2 agarose or anti-HA agarose (Sigma-Aldrich) beads at 4°C for 2 h. The beads were washed five times with lysis buffer and then twice with mass spectrometry (MS) buffer (100 mM Tris–Cl [pH 8.5]). The bound proteins were eluted from the beads by incubation in 10 M urea at room temperature (RT) for 15 min and then the eluted samples were diluted to 8 M urea by adding the MS buffer. For reduction of proteins, Tris(2-carboxyethyl)-phosphine was added at final 3 mM and incubated at RT for 20 min. To alkylate the cysteine residues, 2-chloro-acetamide was added at final 20 mM and incubated at RT for 15 min. Proteins were digested by Lys-C-endoprotease (Wako) at 37°C for 4 h. Sample solutions were adjusted to 2 M urea and 1 mM CaCl2 before being further digested by trypsin (Promega) at 37°C for 14 h. Reactions were stopped by adding formic acid at final 1% concentration. The digested peptides were desalted on reverse-phased C18 STAGE-Tips (19). The resulting elutes were dried in a vacuum concentrator and resuspended in 0.1% formic acid. All liquid chromatography-mass spectrometry analyses were performed with an EASY-nLC™ 1000 coupled to the Q-Exacte™ Orbitrap mass spectrometer (Thermo Scientific) equipped with a custom electrospray ionization source. Digested peptides were separated on a 150-mm reversed phase analytical column (75-μm internal diameter) packed with C18 AQ resin (3 μm, 10 nm) (Bonna-Agela Technologies). This separation took 130 min with a gradient of 2–95% acetonitrile at a flow rate 350 nl/min. The mass spectrometer was automatically switched between full-scan MS and tandem MS acquisition in data-dependent mode. Full-scan mass spectra were collected with an Orbitrap (300–1,800 m/z) utilizing an automated gain control target of 3 million ions with a resolution of 70,000. Tandem mass spectra were acquired using an automated gain control target of a half-million ions with a resolution of 17,500. Top 12 most intense ions were isolated for fragmentation by higher-energy collisional dissociation. Screening for precursor ion charged states was conducted and all single- and unassigned-charged states were rejected.

Mass spectrometry data analysis

MS peaks were generated from MS raw files using MaxQuant (version 1.6.1.0). The Andromeda peptide search engine in MaxQuant was used to match the MS peaks against a concatenated Uniprot human database (2018.4.28, version) and a decoy database with modified reversing of protein sequences as described previously (20). The search parameters were trypsin digestion, fixed carboxamidomethyl modifications of cysteine, maximum of two missed cleavages, variable oxidation of methionine, variable acetylation of protein N-termini and variable carbamylation of peptide N-termini. Mass tolerance was 4.5 ppm and 20 ppm for precursor and fragment ions, respectively. Protein inference and quantitation were performed using MaxQuant with a 1% false discovery rate threshold for both peptides and proteins. Abundances of the identi-
fied proteins were inferred from the iBAQ (intensity based absolute quantification) values (21).

In vitro protein interaction assays

For GST-pull down assays, 2 μg of GST-tagged proteins immobilized on glutathione-Sepharose 4B beads (GE Healthcare) were incubated with 200 ng of purified proteins in binding buffer (20 mM Tris–Cl [pH 7.9], 150 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.05% NP-40 and 0.2 mg/ml BSA) at 4°C for 3 h. For FLAG-pull down assays, 1 μg of FLAG-tagged proteins immobilized on M2 agarose were incubated with 200 ng of purified proteins in binding buffer (20 mM Tris–Cl [pH 7.9], 150 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.05% NP-40 and 0.2 mg/ml BSA) at 4°C for 3 h. For His-pull down assays, 2 μg of His-tagged proteins immobilized on Ni-NTA agarose were incubated with 200 ng of purified proteins in binding buffer (20 mM Tris–Cl [pH 7.9], 150 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.05% NP-40 and 0.2 mg/ml BSA) at 4°C for 3 h. Beads were extensively washed with the binding buffer used for each assay (without BSA) and bound proteins were scored by immunoblotting.

In vitro ubiquitylation assays

Reactions containing 100 ng E1, 2.8 μg His-pK-HA-ubiquitin (pK indicates a protein kinase recognition site), 480 ng eEF1B6L and combination of E2 and E3 proteins (200 ng RAD6A, 600 ng RNF20/40 or 660 ng RNF20/40–RAD6A complex) in 25 μl reaction buffer (50 mM Tris–Cl [pH 7.9], 5 mM MgCl₂, 2 mM NaF, 0.4 mM DTT and 4 mM ATP) were incubated at 37°C for 1 h, resolved by SDS-PAGE and subjected to immunoblot analysis.

Heat shock treatments

For assays involving heat shock treatment, cells were incubated at 42°C for 1 h or 90 min and allowed to recover at 37°C for varying times depending on assays. Recovery time that shows most significant effect in each assay was empirically determined. Specific heat shock treatment conditions for each assay are described below.

Co-immunoprecipitation assays

For co-immunoprecipitation of endogenous proteins, cells were lysed in lysis buffer (20 mM Tris–Cl [pH 7.9], 150 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.1% NP-40 and 1 mM PMSF) and cell extracts were incubated with the antibody at 4°C for overnight. After addition of Protein A/G PLUS-Agarose (Santa Cruz Biotechnology), reactions were further incubated at 4°C for 3 h. For co-immunoprecipitation with FLAG-tagged proteins, 293T cells were transfected with combinations of expression plasmids. After 2 days, cells were lysed in lysis buffer and cell extracts were incubated with M2 agarose at 4°C for 2 h. Beads were extensively washed with the lysis buffer and bound proteins were monitored by immunoblotting. For assays involving heat shock treatment, cells were incubated at 42°C for 90 min, allowed to recover at 37°C for 19 h, and then were subjected to co-immunoprecipitation.

In vivo ubiquitylation assays

Approximately 5 × 10⁵ 293T cells were transfected with combinations of 1 μg FLAG-eEF1B6L, 500 ng HA-ubiquitin, 500 ng RNF20 and 500 ng RNF40 expression plasmids as indicated and grown for 2 days. For detection of ubiquitylated proteins by anti-FLAG antibody, cells were lysed in lysis buffer (20 mM Tris–Cl [pH 7.9], 300 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.1% NP-40 and 1 mM PMSF). For detection of ubiquitylated proteins by anti-HA antibody, cells were lysed in lysis buffer (20 mM Tris–Cl [pH 7.9], 1 M KCl, 0.2 mM EDTA, 20% glycerol, 1% NP-40 and 1 mM PMSF). FLAG-tagged and HA-tagged proteins were captured by incubation of cell extracts with M2 agarose and anti-HA agarose (Pierce), respectively, at 4°C for 2 h. Beads were washed with lysis buffer used for each assay and bound proteins were scored by immunoblotting. For the assays involving heat shock treatment, cells were incubated at 42°C for 1 h, allowed to recover at 37°C for 3 h, and then were subjected to ubiquitylation analysis.

Luciferase assays

About 10⁵ 293T cells were transfected with 25 ng luciferase reporter plasmid and combinations of 50 ng eEF1B6L, 25 ng RNF20 and 25 ng RNF40 expression plasmids as indicated. After 2 days, cells were harvested and analyzed for luciferase activity using luciferase assay kit (Biotium).

Quantitative RT-PCR analyses

Total RNA was extracted using an RNA-spin total RNA extraction kit (iNtRON Biotechnology), and contaminating genomic DNA was removed by treatment with DNase I (NEB). cDNA was synthesized by reverse transcription using a PrimeScript RT Master Mix (TaKaRa), and RT-qPCR was performed using TOPreal qPCR PreMIX (Enzymomics). Primers for qPCR reactions are summarized in Supplementary Table S2. The data analysis was performed by calculating ΔCq normalized to β-actin expression by the Bio-Rad CFX Manager 3.1 based on the MIQE guidelines (22). The MIQE checklist is provided in Supplementary Table S4. For assays involving heat shock treatment, cells were incubated at 42°C for 1 h, allowed to recover at 37°C for 3 h, and then were subjected to RT-qPCR analysis. For assays involving both siRNA and heat shock treatments, cells were incubated at 42°C for 1 h, allowed to recover at 37°C for 18 h, and then were subjected to RT-qPCR analysis.

Chromatin immunoprecipitation assays

ChIP analyses were performed according to the manufacturer’s instruction (Millipore). Briefly, cells were treated with 1% formaldehyde at 37°C for 10 min for crosslinking. Cell lysates prepared by sonication in lysis buffer were subjected to immunoprecipitation with antibodies at 4°C
for overnight. After addition of Protein A agarose and further incubation at 4°C for 4 h, beads were extensively washed with wash buffers. Immunoprecipitated complexes were eluted with elution buffer, the protein-DNA complexes were reversed by incubation at 65°C for overnight. DNA was purified by phenol/chloroform extraction and enrichment of DNA was measured by qPCR analysis. Primers for qPCR reactions are summarized in Supplementary Table S3. Percentage input was calculated by equation of $2^{(C_{q(input)}-C_{q(IP)})} \times 100$. Cq is the quantification cycle as calculated by the Bio-Rad CFX Manager 3.1 based on the MIQE guidelines (22). The MIQE checklist is provided in Supplementary Table S5. For assays involving heat shock treatment, cells were incubated at 42°C for 1 h and then were subjected to ChIP analyses without recovery at 37°C to monitor rapid recruitment of proteins to the promoter regions of the genes upon heat shock.

Antibodies

Polyclonal anti-RNF20 (23) and anti-RNF40 (8) antibodies were described. The following antibodies were obtained commercially: anti-FLAG (Sigma-Aldrich); anti-GST, anti-β-actin and anti-HA for immunoblot analysis (Santa Cruz Biotechnology); anti-RNF20, anti-H2B and anti-HA for ChIP assay (Abcam); anti-CDK9 and anti-UbH2BK120 (Cell Signaling Technology); anti-eEF1BßL (Proteintech Group); anti-HSF1 (Enzo Life Sciences); anti-Ubiquitin (Dako).

RESULTS

RNF20/40 directly interacts with eEF1BßL

In protein ubiquitylation systems, an E3 ubiquitin ligase recognizes and directly interacts with its target protein (1). To screen for novel ubiquitylation target protein(s) of the RNF20/40 E3 ubiquitin ligase, we performed FLAG and HA pull-downs independently using cell extracts derived from a 293T cell line expressing FLAG-RNF20 and HA-RNF40 from chromosome-integrated genes (Supplementary Figure S1A) and identified interacting proteins by mass spectrometry analysis (Supplementary Table S6). Among proteins topping the interactome list in FLAG-RNF20 and HA-RNF40 immunoprecipitates were RNF40 and RNF20 (7,8), respectively. In addition, these analyses identified RAD6A, a cognate E2 ubiquitin-conjugating enzyme of RNF20/40 (8), and WAC, a regulator of transcription-coupled histone H2B ubiquitylation (24),—both of which are known to interact with RNF20/40 (Supplementary Figure S1B).

In addition to identifying these proteins, which validated our screening approach, our mass spectrometry analysis also identified eEF1Bß as a potential candidate interacting protein of RNF20/40. In humans, eEF1Bß is present in two isoforms, eEF1BßL and eEF1BßL, that are products of alternatively spliced transcripts of the **EEFID** gene (25) (Figure 1A, Supplementary Figure S1B). Cytoplasmic eEF1BßL represents one of the four subunits that constitute the eEF1B translation-elongation complex (25,26). Inclusion of an additional exon in eEF1BßL mRNA results in the longer isoform, eEF1BßL, which contains a nuclear localization sequence (NLS) in its N-terminal region (Figure 1A), suggesting a nuclear function rather than a role in the cytoplasmic translation process (25). In support of this, it has been reported that eEF1BßL, but not eEF1BßL, functions as a heat shock-responsive transcription factor (17). Accordingly, we postulated that RNF20/40 might regulate the function of eEF1BßL in heat shock-responsive gene expression.

To determine whether eEF1BßL directly interacts with RNF20/40, we performed GST pull-down assays using purified FLAG-eEF1BßL and GST-RNF20/FLAG-RNF40 proteins (Supplementary Figure S1C). These assays revealed that eEF1BßL directly interacted with RNF20/40 in vitro (Figure 1B). To determine the regions of eEF1BßL responsible for the interaction with RNF20/40, we purified GST-tagged eEF1BßL fragments (Figure 1C, Supplementary Figure S1D) and tested their interaction with purified FLAG-RNF20/RNF40 protein (Supplementary Figure S1C). This analysis demonstrated selective binding of RNF20/40 to two N-terminal fragments encompassing amino acid residues 1–367 of eEF1BßL (Figure 1D).

In a test of intracellular interactions, we found that an anti-eEF1BßL antibody co-immunoprecipitated endogenous RNF20 (Figure 1E, left). In a reciprocal approach, an anti-RNF20 antibody was shown to selectively enrich endogenous eEF1BßL, but importantly, not eEF1BßL (Figure 1E, right). (Note that the anti-eEF1BßL antibody recognizes both eEF1BßL and eEF1BßL because it was developed against amino acid residues 347–647 of eEF1BßL.) Co-immunoprecipitation with an anti-eEF1BßL antibody after heat shock treatment resulted in slightly enhanced level of RNF20 immunoprecipitation relative to input (Supplementary Figure S1E), suggesting that heat shock might potentiate eEF1BßL-RNF20/40 interaction. In a further confirmation using ectopically expressed FLAG-RNF20, RNF40 and HA-eEF1BßL fragments, RNF20/40 showed a selective interaction with the N-terminus of eEF1BßL (Figure 1F, Supplementary Figure S1F). Collectively, these results indicate that RNF20/40 directly interacts with the N-terminal region of eEF1BßL. Based on the nuclear localization and functions of RNF20/40 (23), these observations raise the possibility that RNF20/40 regulates the function of eEF1BßL in the nucleus.

RNF20/40 and RAD6 mediate monoubiquitylation of eEF1BßL at lysine 381

Given the demonstration of a direct RNF20/40-eEF1BßL interaction and the known E3 ubiquitin ligase activity of RNF20/40, we investigated the possibility that eEF1BßL can be ubiquitylated by RNF20/40. To test this, we employed an *in vitro* ubiquitylation assay using purified factors, a previously established approach for studying nucleosomal histone H2B ubiquitylation (8,18). In this assay, purified human E1, RAD6A, RNF20/40 and eEF1BßL (Supplementary Figure S2A) served as E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, E3 ubiquitin ligase and ubiquitylation substrate, respectively, and ubiquitylation of eEF1BßL was monitored by immunoblotting with anti-eEF1BßL and anti-Ubiquitin antibodies. Complete re-
actions containing E1, RAD6A, RNF20/40, ubiquitin and eEF1BδL generated ubiquitylated eEF1BδL (Figure 2A, lanes 2 and 8), whereas reactions lacking E1, RAD6A, ubiquitin, or eEF1BδL did not (Figure 2A, lanes 3, 4, 6 and 7). Notably, we found that eEF1BδL ubiquitylation was still observed in a reaction lacking RNF20/40 (Figure 2A, lane 5). This E3-independent ubiquitylation of eEF1BδL might reflect nonspecific ubiquitin-conjugating activity of RAD6, which manifests in a purified system, as previously shown for RAD6-mediated ubiquitylation of histones in vitro in the absence of RNF20/40 (8,27,28). In a related observation, it has been reported that formation of a complex of RAD6 with RAD18 inhibits the ubiquitin chain formation activity of RAD6 and directs RAD6 toward the specific monoubiquitylation site of PCNA (proliferating cell nuclear antigen) (29). In light of these observations, we sought to clarify the requirement of RNF20/40 for eEF1BδL ubiquitylation by recon-
Figure 2. RNF20/40 and RAD6 mediate monoubiquitylation of eEF1B at lysine 381. (A) Collective requirement of factors for eEF1B ubiquitylation. The in vitro ubiquitylation reactions containing the indicated combinations of purified human FLAG-E1, untagged RAD6A, FLAG-RNF20/RNF40, Hist-pK-HA-Ubiquitin (pK indicates a protein kinase recognition site) and FLAG-eEF1B (Supplementary Figure S2A) were subjected to immunoblot analyses with anti-eEF1B and anti-Ubiquitin antibodies. Monoubiquitylated eEF1B (Ub∼eEF1B conjugates) and polyubiquitylated RAD6A (Ub∼RAD6A conjugates) are indicated. (B) Requirement of RNF20/40 for eEF1B ubiquitylation. Purified RAD6A, FLAG-RNF20/RNF40, FLAG-RNF20/RNF40−RAD6A and FLAG-RNF20ΔR/RNF40ΔR−RAD6A were added, as indicated, to in vitro eEF1B ubiquitylation assays. (C) RNF20/40- and RAD6A-mediated monoubiquitylation at lysine 381 of eEF1B in vitro. Purified wild-type and mutant eEF1B proteins (Supplementary Figure S2H) were tested in an in vitro ubiquitylation assay employing FLAG-RNF20/RNF40−RAD6A. (D and F) RNF20/40-mediated eEF1B ubiquitylation at lysine 381 in cells. 293T cells were co-transfected with FLAG-eEF1B (D), either wild-type or K381R FLAG-eEF1B (F) and RNF20, RNF40, HA-ubiquitin expression plasmids as indicated. Cell extracts were immunoprecipitated with M2 agarose or anti-HA agarose (HA-IP) as indicated and subjected to immunoblot analyses with the indicated antibodies. IP, immunoprecipitation; IB, immunoblot. (E) Requirements of endogenous RNF20 and RNF40 for eEF1B ubiquitylation in cells. 293T cells treated with RNF20-(siRNF20, top) or RNF40-targeted (siRNF40, bottom) siRNAs were co-transfected with FLAG-eEF1B and HA-ubiquitin expression plasmids as indicated. Cell extracts were immunoprecipitated with anti-HA agarose and eEF1B ubiquitylation levels were scored by immunoblotting with anti-FLAG antibody.
stituting RNF20/40–RAD6A complexes in S9 insect cells using baculovirus-mediated expression of FLAG-RNF20, RNF40 and RAD6A (Supplementary Figure S2B). We found that RAD6A complexed with RNF20ΔR/40ΔR, a RING finger domain-deletion mutant, showed no ubiquitylation activity toward eEF1B6L (Figure 2B, lane 5) or nucleosomal histone H2B (Supplementary Figure S2C), indicating that the nonspecific ubiquitin-conjugating activity of RAD6 is suppressed by complex formation with RNF20/40 and that RING finger domains within RNF20/40 are required for ubiquitylation of eEF1B6L. In contrast, RAD6A complexed with RNF20/40 exerted significant ubiquitylation activity toward eEF1B6L (Figure 2B, lane 4), producing a level of ubiquitylated eEF1B6L comparable to that produced by separate addition of RNF20/40 and RAD6A (Figure 2B, lane 3). In a test for contribution of individual RING finger domains for E3 ubiquitin ligase activity, both purified RNF20ΔR/40–RAD6A and RNF20/40ΔR–RAD6A complexes (Supplementary Figure S2D) generated reduced levels of eEF1B6L (Supplementary Figure S2E) and nucleosomal histone H2B (Supplementary Figure S2F) ubiquitylation compared to RNF20/40–RAD6A complex, indicating redundant but essential functions of two RING finger domains for full E3 ubiquitin ligase activity of RNF20/40. Taken together, these analyses unequivocally identify the factors that are necessary and sufficient for eEF1B6L ubiquitylation in vitro. Importantly, we further observed a slower-migrating species in all immunoblot analyses that appeared as a single band, suggesting that RNF20/40 and RAD6A mediate monoubiquitylation of eEF1B6L at a single site.

Several proteome-wide mass spectrometry studies have reported that eEF1B6L is ubiquitylated in vivo and also identified several potential ubiquitylation sites, mostly within the C-terminal half of eEF1B6L (6,30,31) (Supplementary Figure S2G). To identify the specific site on eEF1B6L that is ubiquitylated by RNF20/40 and RAD6, we purified eEF1B6L mutant proteins in which each individual lysine residue proposed to be ubiquitylated in cells (6,30,31) was replaced with arginine (Supplementary Figure S2H), and used them in vitro ubiquitylation assays with RNF20/40–RAD6A complex (Figure 2C). These assays showed that monoubiquitylation of eEF1B6L disappeared only in the reaction containing the K381R mutant (Figure 2C, lane 6), indicating that RNF20/40 directs RAD6A-mediated ubiquitylation specifically at lysine 381 of eEF1B6L.

To test whether eEF1B6L is ubiquitylated by RNF20/40 in cells, we co-transfected 293T cells with FLAG-eEF1B6L, HA-ubiquitin, RNF20 and RNF40 expression plasmids. Cell lysates were immunoprecipitated with M2 agarose, and ubiquitylation of eEF1B6L was monitored by immunoblotting with an anti-FLAG antibody. eEF1B6L was modified with ubiquitin, as evidenced by the detection of a slowly migrating band, presumably ubiquitylated eEF1B6L (Figure 2D, top, lane 6), whose level was increased by overexpression of RNF20/40 (Figure 2D, top, lane 7 versus lane 6). To confirm that the slow-migrating band was indeed ubiquitylated eEF1B6L, we immunoprecipitated cell lysates with an anti-HA antibody under high-stringency conditions to enrich ubiquitylated proteins, and monitored ubiquitylation of eEF1B6L by immunoblotting using an anti-FLAG antibody. This approach confirmed ubiquitylation of eEF1B6L in cells (Figure 2D, middle, lane 6), and showed that it was increased by RNF20/40 (Figure 2D, middle, lane 7 versus lane 6).

To determine whether endogenous RNF20 and RNF40 are essential for eEF1B6L ubiquitylation, we performed RNA interference experiments in 293T cells. We found that transfection of a small interfering RNA (siRNA) targeting RNF20 or RNF40 resulted in efficient and concomitant decrease in intracellular RNF20 and RNF40 protein levels (Supplementary Figure S2I), highlighting the importance of complex formation of RNF20 and RNF40 for their stabilization in cells, and significantly reduced eEF1B6L ubiquitylation (Figure 2E, lane 6 versus lane 5, Supplementary Figure S2J). Next, we tested the site specificity of RNF20/40-mediated eEF1B6L ubiquitylation in cells. We found that no RNF20/40-dependent increase in eEF1B6L ubiquitylation was observed using the eEF1B6L K381R mutant (Figure 2F, top, lane 8 versus lane 7, Supplementary Figure S2K), which retains the ability to interact with RNF20/40 (Supplementary Figure S2L), confirming that RNF20/40 promotes ubiquitylation of eEF1B6L at lysine 381 in cells. Although we did note persistent ubiquitylation of the eEF1B6L K381R mutant (Figure 2F, top, lanes 6 and 8), this might reflect the presence of additional E3 ubiquitin ligases that target residues other than K381, as suggested by previous proteome-wide analyses (6,30,31). Collectively, our analyses clearly demonstrate that RNF20/40, in conjunction with RAD6, monoubiquitylates lysine 381 of eEF1B6L in vitro and in cells.

RNF20/40 enhances eEF1B6L-dependent expression of heat shock-responsive genes

Given that eEF1B6L functions as a heat shock-responsive transcription factor (17) and that the transactivation activity of some transcription factors is regulated by monoubiquitylation (2,3,32), we tested whether expression of heat shock-responsive genes was affected by RNF20/40-dependent eEF1B6L monoubiquitylation. To this end, 293T cells were co-transfected with a luciferase reporter containing multiple copies of the heat shock element (HSE) consensus sequence (17) in combination with RNF20 and RNF40, and eEF1B6L, eEF1B6L or eEF1B6L K381R expression plasmids. Consistent with a previous report (17), eEF1B6L increased luciferase activity (Figure 3A, lane 2), whereas eEF1B6L did not (Figure 3A, lane 3). Importantly, RNF20/40 significantly enhanced eEF1B6L-dependent transcription (Figure 3A, lane 6 versus lane 2) in an RING finger domain-dependent manner (Figure 3A, lane 10 versus lane 6) and this effect was markedly diminished in an assay containing the eEF1B6L K381R mutant (Figure 3A, lane 8 versus lane 6).

To investigate whether RNF20/40 affects transcription of endogenous heat shock-responsive genes, we co-transfected 293T cells with eEF1B6L, RNF20 and RNF40 expression plasmids, and measured transcripts of several HSE-containing genes that were previously shown to respond to heat shock (HSPA6, DNAJB1 and CRYAB) (33–35) by quantitative reverse transcription-polymerase
Figure 3. RNF20/40 enhances eEF1BδL-dependent expression of heat shock-responsive genes. (A) 293T cells were co-transfected with a luciferase reporter containing the HSE (heat shock element) consensus sequences and eEF1BδL and RNF20/40 expression plasmids as indicated. Cell extracts were subjected to luciferase analyses. (B and C) 293T cells were co-transfected with indicated protein expression plasmids (B). 293T cells treated with either control (siControl) or RNF20-targeted siRNAs were transfected with eEF1BδL expression plasmid as indicated (C). After heat shock treatment where indicated, mRNA levels of the HSPA6, DNAJB1 and CRYAB genes were measured by quantitative RT-PCR analysis and normalized relative to H9252-actin mRNA. Protein expression levels were monitored by immunoblotting with the indicated antibodies in these and other figures. The levels of transcription in lane 1 were arbitrarily set at 1 in these and other figures. Error bars denote the standard deviations from three independent experiments in these and other figures.

next, we examined the role of endogenous RNF20 in the expression of heat shock-responsive genes in cells. RNF20 siRNA, which effectively decreased both RNF20 and RNF40, but not eEF1BδL, protein levels (Supplementary Figure S2I), significantly reduced the degree of eEF1BδL-dependent transcriptional activation of DNAJBI transcription are likely attributable to induction of heat shock-responsive transcription factors (36–38), which include eEF1BδL (Supplementary Figure S3A). Interestingly, we further found that RNF20/40-dependent eEF1BδL monoubiquitylation was also increased by heat shock treatment (Supplementary Figure S3B and C), suggesting that heat-induced eEF1BδL monoubiquitylation may also contribute somewhat to the observed increase in gene expression under thermal stress.
and CRYAB genes, while causing little change in expression of the HSPA6 gene (Figure 3C, lane 4 versus lane 2); it also markedly decreased heat shock-induced expression of all tested genes (Figure 3C, lane 7 versus lane 5 and lane 8 versus lane 6). As expected from concomitant decreases in RNF20 and RNF40 by RNF20 or RNF40 siRNA treatments (Supplementary Figure S2), we obtained almost same results in a similar approach with RNF40 siRNA (Supplementary Figure S3). Taken together, these results indicate that RNF20/40 acts through monoubiquitylation of eEF1B6L to function as a coactivator in the transcription of heat shock-responsive genes.

Notably, coexpression of RNF20/40 and eEF1B6L K381R consistently caused moderately higher transcription compared with expression of eEF1B6L K381R alone (Figure 3A, lane 8 versus lane 4, Figure 3B, lane 5 versus lane 4 and lane 10 versus lane 9). Similarly, RNF20ΔR/40ΔR expression also moderately enhanced eEF1B6L-dependent transcription (Figure 3A, lane 10 versus lane 2). These suggest the possibility that RNF20/40 may also influence eEF1B6L-mediated transcription in an eEF1B6L ubiquitylation-independent manner (see below).

RFN20/40 enhances recruitment of eEF1B6L to the promoter regions of heat shock-responsive genes

To elucidate the underlying mechanism by which RNF20/40 regulates eEF1B6L-mediated transcription of heat shock-responsive genes, we first examined whether RNF20/40 affects recruitment of eEF1B6L to its target genes. To this end, we transiently co-transfected 293T cells with RNF20 and RNF40 expression plasmids, with or without heat shock treatment, and performed chromatin immunoprecipitation (ChIP) assays to measure accumulation of eEF1B6L around the promoter regions of HSPA6, DNAJBI and CRYAB genes, which contain several HSEs proximal to their transcription start sites (Figure 4A). This analysis showed that RNF20/40 overexpression substantially increased eEF1B6L recruitment to the CRYAB gene, while having little effect on recruitment to HSPA6 and DNAJBI genes (Figure 4B, lane 2 versus lane 1). Thermal stress resulted in a significant increase in eEF1B6L recruitment to the HSPA6 gene, consistent with a previous report (17), as well as DNAJBI and CRYAB genes (Figure 4B, lane 3 versus lane 1). RNF20/40 overexpression combined with heat shock treatment resulted in a further enhancement in eEF1B6L accumulation (Figure 4B, lane 4 versus lane 3). To test whether the enhanced recruitment of eEF1B6L is caused by monoubiquitylation, we transiently transfected 293T cells with an expression plasmid for HA-tagged eEF1B6L wild-type or K381R mutant and performed a ChIP analysis using an anti-HA antibody. The eEF1B6L K381R mutant showed much less accumulation relative to wild-type eEF1B6L, both without heat shock treatment (Figure 4C, lane 2 versus lane 1 and lane 4 versus lane 3) and with heat shock treatment (Figure 4C, lane 6 versus lane 5 and lane 8 and lane 7). ChIP analyses further showed that siRNA-mediated RNF20 (Figure 4D, lane 2 versus lane 1 and lane 4 versus lane 3) and RNF40 (Figure S4) knockdown significantly reduced eEF1B6L accumulation at all tested promoter regions. Collectively, these results demonstrate that RNF20/40-dependent ubiquitylation of eEF1B6L potentiates eEF1B6L accumulation at the promoter regions of heat shock-responsive genes.

Monoubiquitylated eEF1B6L acts through direct interaction to recruit p-TEFb to the promoter regions of heat shock-responsive genes

Having established that RNF20/40-dependent ubiquitylation increases recruitment of eEF1B6L to target gene promoters, we sought to elucidate the specific mechanism by which eEF1B6L stimulates heat shock-responsive transcription. It has been reported that the release of promoter-proximal paused RNA polymerase II to continue its elongation functions is a major limiting step in the transcription of heat shock-responsive genes (35-39). Notably, it has also been reported that p-TEFb, a transcription elongation factor composed of CDK9 and Cyclin T1 subunits, is rapidly recruited to heat shock loci and that recruitment of p-TEFb is sufficient to activate transcription, even in the absence of thermal stress (42-44). Accordingly, we examined whether eEF1B6L affects the recruitment of p-TEFb to the promoter regions of heat shock-responsive genes. ChIP analyses using an anti-CDK9 antibody showed that eEF1B6L depletion (Supplementary Figure S5A) decreased enrichment of CDK9 in the presence and absence of heat shock treatment (Figure 5A, lane 4 versus lane 3 and lane 2 versus lane 1). GST pull-down assays using purified p-TEFb (Supplementary Figure S5B) and eEF1B6L revealed that these proteins directly interact (Figure 5B) and further verified that amino acid residues 181-367 of eEF1B6L are responsible for the interaction with p-TEFb (Supplementary Figure S5C). These results indicate that eEF1B6L contributes to the efficient recruitment of p-TEFb to target gene promoters through direct protein interaction.

It has been reported that monoubiquitylation of the acidic region of transcription factors provides a preferential binding platform for p-TEFb, thereby enhancing transcription elongation rates (45,46). Notably, we found that the isoelectric value (pI) of the 12 amino acid residues around the K381 eEF1B6L isoelectric value (pI) of the 12 amino acid residues around the K381 eEF1B6L monoubiquitylation site (Supplementary Figure S5D) is about 4.2; thus, this region has the potential to create an acidic environment. Accordingly, we examined whether RNF20/40-mediated eEF1B6L monoubiquitylation affects p-TEFb recruitment to target gene promoters. Our ChIP analysis showed that RNF20/40 expression increased recruitment of CDK9 under thermal stress condition (Figure 5C, lane 4 versus lane 3), although this effect of RNF20/40 was relatively modest at HSPA6 and DNAJBI gene promoters in the absence of heat shock (Figure 5C, lane 2 versus lane 1). In addition, in a test for CDK9 recruitment to the promoter region of PMS2 gene that was previously reported as a CDK9 target gene (47) but almost unresponsive to eEF1B6L, HSF1 and RNF20/40 expression or heat shock (Supplementary Figure S5E), we found that thermal stress and RNF20/40 expression did not much affect recruitment of CDK9 at the PMS2 gene promoter (Supplementary Figure S5F). We further found that coexpression of RNF20/40 and eEF1B6L markedly increased CDK9 recruitment relative to that induced by eEF1B6L expression alone (Figure 5D, lane 3 versus lane 1 and lane 7.
Figure 4. RNF20/40 enhances recruitment of eEF1βL to the promoter regions of heat shock-responsive genes. (A) Schematic representation of the HSPA6, DNAJB1 and CRYAB loci and amplicons (dotted lines) used for quantitative PCR. Black bars indicate HSEs. Numbers below the amplicons indicate base pairs from the transcription start site of the gene. (B–D) Accumulation of eEF1βL around the promoter regions of heat shock-responsive genes. 293T cells were co-transfected with indicated protein expression plasmids (B and C) or treated with RNF20-targeted siRNA (D). After heat shock treatment where indicated, chromatin immunoprecipitation (ChIP) analyses were performed with anti-eEF1βL (B and D) or anti-HA (C) antibodies. Anti-rabbit IgG was used as a control in (C). Error bars denote the standard deviations from two independent experiments in these and other figures.
Figure 5. Monoubiquitylated eEF1βL acts through direct interaction to recruit p-TEFb to the promoter regions of heat shock-responsive genes. (A, C, D and E) Accumulation of CDK9 around the promoter regions of heat shock-responsive genes. 293T cells were treated with either control or eEF1βL-targeted (siEEF1βL) siRNAs (A), either control or RNF20-targeted siRNAs (E), and transfected with eEF1βL expression plasmid (E) as indicated. 293T cells were co-transfected with indicated protein expression plasmids (C and D). After heat shock treatment where indicated, ChIP analyses were performed with anti-CDK9 antibody. (B) Direct binding of eEF1βL to p-TEFb. GST pull-down assays employed purified p-TEFb (GST-CDK9/FLAG-Cyclin T1) (Supplementary Figure S5B) and FLAG-eEF1βL. (F) Enhanced binding of monoubiquitylated eEF1βL to p-TEFb. FLAG-eEF1βL was ubiquitylated *in vitro* using purified factors as in Figure 2 and then tested for binding to purified p-TEFb.
versus lane 5); however, this RNF20/40-dependent increase in recruitment was diminished upon coexpression with the eEF1B6L K381R mutant (Figure 5D, lane 4 versus lane 3 and lane 8 versus lane 7). We also found that eEF1B6L-induced CDK9 recruitment was attenuated by deletions of RNF20 (Figure 5E, lane 4 versus lane 2 and lane 8 versus lane 6) and RNF40 (Supplementary Figure S5G).

To more directly assess the effect of eEF1B6L monoubiquitylation on eEF1B6L–p-TEFb interactions, we first ubiquitylated purified eEF1B6L using purified factors in vitro, as shown in Figure 2, and then performed protein-interaction assays using purified p-TEFb. This analysis showed that p-TEFb interacts more efficiently with ubiquitylated eEF1B6L than with the non-ubiquitylated species (Figure 5F). Taken together, these results suggest that RNF20/40-mediated monoubiquitylation of eEF1B6L potentiates recruitment of the transcription elongation factor p-TEFb to the promoter regions of heat shock-responsive genes and thereby stimulates the release of promoter-proximal–paused RNA polymerase II, allowing it to perform its elongation functions.

Cooperative binding of eEF1B6L, RNF20/40 and HSF1 synergistically enhances the expression of heat shock-responsive genes

The eEF1B6L K381R mutant consistently promoted enhanced heat shock-responsive gene expression when coexpressed with RNF20/40, albeit to a lesser extent than wild-type eEF1B6L (Figure 3). This suggests that eEF1B6L and RNF20/40, possibly in conjunction with other heat shock transcription factor(s), affects transcription in an ubiquitylation-independent manner. Therefore, given that eEF1B6L directly interacts with RNF20/40 and eEF1B6L co-immunoprecipitates with HSF1 (heat shock factor 1) (17), a master heat shock regulator (36,38,48), we postulated that eEF1B6L, RNF20/40, and HSF1 act coordinately in regulating heat shock-responsive gene expression. In support of this, we found that endogenous eEF1B6L, RNF20/40, and HSF1 proteins co-immunoprecipitated with each other (Supplementary Figure S6A). Furthermore, protein-interaction studies using purified HSF1 (Supplementary Figure S6B) revealed that HSF1 directly interacts with RNF20/40 as well as eEF1B6L (Figure 6A) through amino acid residues 181–367 of eEF1B6L (Supplementary Figure S6C). Importantly, we also found that the direct interaction between eEF1B6L and HSF1 was markedly enhanced by addition of purified RNF20/40 (Figure 6B, top, lane 5 versus lane 3). In a test of intracellular binding, the interaction between eEF1B6L and HSF1 was also strengthened by overexpression of RNF20/40 in the presence of thermal stress (Figure 6C, top, lane 12 versus lane 9) and in its absence (Figure 6C, top, lane 6 versus lane 3). In addition, this cooperative binding was independent of RNF20/40-mediated eEF1B6L ubiquitylation (Figure 6D, top, lane 6 versus lane 8). Collectively, these results indicate direct and cooperative interactions among eEF1B6L, RNF20/40, and HSF1. Notably, the ubiquitylation-independent cooperative binding explains, at least in part, why the eEF1B6L K381R mutant moderately enhanced heat shock-responsive gene expression in the presence of RNF20/40 (Figure 3).

Consistent with the protein-interaction studies described above, we found that eEF1B6L, HSF1, RNF20 and CDK9 were all localized to the promoter regions of heat shock-responsive genes, but not to the intergenic region downstream of the HSPA6 gene, and that their enrichment was markedly enhanced by heat shock treatment (Supplementary Figure S6D). As was the case for eEF1B6L (Figure 4D, Supplementary Figure S4), RNF20 (Figure 6E) and RNF40 (Supplementary Figure S6E) depletions resulted in decreased HSF1 occupancy on the promoter regions of these genes. Thus, these results indicate that RNF20/40 enhances the targeting of both eEF1B6L and HSF1 to target gene promoter regions. Finally, given the cooperative physical interaction and colocalization of eEF1B6L, RNF20/40 and HSF1 on chromatin, we tested the synergistic effect of these proteins on heat shock-responsive gene expression. This analysis showed that coexpression of eEF1B6L, RNF20/40, and HSF1 resulted in higher expression of the HSPA6 gene compared with that produced by individual or paired expression of these proteins in the presence (Figure 6F, lane 16) or absence (Figure 6F, lane 8) of thermal stress. Similar results were observed for DNAJ1B1 and CRYAB genes (Supplementary Figure S6F). Collectively, these results suggest that eEF1B6L, RNF20/40, and HSF1 act synergistically through their cooperative interactions to enhance the expression of heat shock-responsive genes.

DISCUSSION

Defects in RNF20 cause cell-cycle arrest, genomic instability and apoptosis (10,16), emphasizing the importance of this E3 ubiquitin ligase in cell survival. On a related note, accumulating evidence has implicated RNF20 in tumorigenesis (49–51). Based on recent reports that many histone-modifying enzymes target non-histone proteins that play important roles in various cellular events (52), it is reasonable that RNF20/40 might also have additional ubiquitylation-target protein(s) other than histone H2B that are important for cell viability. This supposition is supported by recent studies that have reported several non-histone ubiquitylation target proteins of RNF20/40 (13–16).

Starting with forward screening of RNF20/40-interacting proteins, we used in vitro ubiquitylation assays employing defined purified factors in conjunction with confirming cellular analyses to unequivocally demonstrate that RNF20/40 monoubiquitylates eEF1B6L together with its cognate E2 ubiquitin-conjugating enzyme, RAD6A. RAD6 also serves as an E2 enzyme for RAD18. From a mechanistic standpoint, RAD6 promotes polyubiquitylation by binding free ubiquitin non-covalently through its backside surface (53). However, it has been reported that RAD18 directs RAD6-mediated monoubiquitylation of a specific site in PCNA by blocking the backside of RAD6 (29). Interestingly, our structural analysis of the complexed form of Bre1 and Rad6 (yeast homologs of RNF20/40 and RAD6, respectively) also revealed that the N-terminal region of Bre1 is anchored to the backside of Rad6 and mediates E2 recognition (unpublished data). Assuming that this structural feature also applies to the human homologs,
Figure 6. Cooperative binding of eEF1B6L, RNF20/40 and HSF1 synergistically enhances the expression of heat shock-responsive genes. (A) Direct bindings of HSF1 to RNF20/40 and eEF1B6L. Purified His-HSF1 (Supplementary Figure S6B) was tested for binding to M2 agarose-coupled FLAG-RNF20/RNF40 (left) and FLAG-eEF1B6L (right). (B) Cooperative interactions among eEF1B6L, RNF20/40 and HSF1 in vitro. Purified FLAG-eEF1B6L was tested for binding to Ni-NTA agarose-coupled His-HSF1 in the presence (lanes 4 and 5) and in the absence (lanes 2 and 3) of FLAG-RNF20/RNF40. (C and D) Cooperative interactions among eEF1B6L, RNF20/40 and HSF1 in cells. 293T cells were co-transfected with RNF20 and RNF40 expression plasmids, followed with heat shock treatment where indicated, and cell extracts were co-immunoprecipitated with anti-eEF1B6L antibody (C). 293T cells were co-transfected with indicated protein expression plasmids. Cell extracts were immunoprecipitated with anti-FLAG antibody (D). The bound proteins were scored by immunoblotting with the indicated antibodies. (E) Effect of endogenous RNF20 on recruitment of HSF1 to the promoter regions of heat shock-responsive genes. 293T cells were treated with RNF20-targeted siRNA, followed with heat shock treatment where indicated, and ChIP analyses were performed using anti-HSF1 antibody. (F) Synergistic effect of eEF1B6L, RNF20/40 and HSF1 on transcription of the HSPA6 gene. 293T cells were co-transfected with indicated combinations of protein expression plasmids, followed with heat shock treatment where indicated, and mRNA levels of the HSPA6 gene were analyzed.
RNF20/40–RAD6 would mediate ubiquitylation of target proteins in a monoubiquitylation manner. This would explain why RNF20/40–RAD6 mediates monoubiquitylation, rather than polyubiquitylation, of histone H2B (8), Eg5 (16) and eEF1B8L, a modification that exerts non-proteolytic functions (2,3) instead of directing the proteins for proteasome-mediated degradation.

Hyperthermia immediately induces the expression of heat shock proteins (35,54), many of which are molecular chaperones that serve to maintain protein quality (55). Prior to induction by heat, a significant fraction of RNA polymerase II is already engaged at promoter-proximal regions of target genes, allowing for a rapid response to stimulation (56). Early studies in Drosophila found that the rapid induction of heat shock-responsive genes is largely dependent on HSF1 (57). Upon an elevation in temperature, HSF1 translocates into the nucleus, binds to HSEs, and recruits p-TEFb to facilitate the release of RNA polymerase II from its paused state and convert it to an elongating state. A subsequent study showed that HSF1 alone is not sufficient to provoke p-TEFb–mediated transcriptional activation (42), suggesting the presence of additional factors that can compensate for and/or synergize with HSF1 to fully support the recruitment and action of p-TEFb. One such additional heat shock transcription factor candidate is eEF1B8L. It was first reported that eEF1B8L protein level is substantially increased in response to thermal stress and translocates into the nucleus, where it upregulates heat shock-responsive genes in cooperation with HSF1 (17). But how eEF1B8L exerts its role in regulating heat shock-responsive gene expression has not been established.

Our biochemical and cellular analyses provide valuable insight into the molecular mechanism underlying eEF1B8L regulation of heat shock-responsive gene expression, showing that eEF1B8L functions are modulated by RNF20/40 (Figure 7). We propose that RNF20/40-mediated monoubiquitylation of eEF1B8L increases eEF1B8L accumulation at HSE-containing promoter regions, and thus enhances transcription of heat shock-responsive genes. Although it is not clear whether monoubiquitylation directly increases the affinity of eEF1B8L for HSF1, our studies provide direct evidence that eEF1B8L monoubiquitylation contributes to heat shock-responsive gene expression by enhancing the recruitment of p-TEFb through physical interaction of monoubiquitylated eEF1B8L with p-TEFb. Importantly, in addition to monoubiquitylation of transcription factors (45), RNF20/40- (58) and MLS-mediated (59) histone H2B monoubiquitylation have also been implicated in the recruitment and stabilization of p-TEFb at active gene promoters, supporting pivotal roles of monoubiquitylation of transcription factors and nucleosome components in early transcription-elongation events. Apart from the ubiquitylation-dependent functions of eEF1B8L, we also envision that RNF20/40 and eEF1B8L contribute to heat shock-responsive transcription via an ubiquitylation-independent pathway. Our demonstration that eEF1B8L, RNF20/40 and HSF1 interact, and that RNF20/40 strengthens the physical interaction between eEF1B8L and HSF1, collectively suggest that these players are cooperatively stabilized and accumulate on promoter regions of heat shock-responsive genes, leading to increased p-TEFb recruitment and transcriptional activation. In addition, we found that the physical interaction between HSF1 and p-TEFb is strengthened by eEF1B8L (Supplementary Figure S7A), highlighting the role of eEF1B8L, in cooperation with HSF1, in the transcription of heat shock-responsive genes. We further found that neither HSF1 nor eEF1B8L can rescue transcriptional activation in the absence of the other (Supplementary Figure S7B–D), suggesting that eEF1B8L and HSF1 synergize to serve non-redundant functions in promoting target gene expression. The N-terminal part of eEF1B8L (amino acid residues 1–367) is unique to eEF1B8L and is not present in the cytoplasmic eEF1B8L isoform. Interestingly, we found that RNF20/40, p-TEFb, and HSF1 all bind to the N-terminal region of eEF1B8L. A previous report showed that the N-terminal region of eEF1B8L alone is unable to support transcriptional activity (17). These results help define the molecular architecture of eEF1B8L as a transcription activator: the N-terminal region is responsible for binding to the HSE (17) and also provides a binding platform for cooperative interactions with transcription factors, whereas the C-terminal region plays a role in the transcriptional activity of eEF1B8L.

Although heat shock-responsive transcriptional regulation has been extensively studied in Drosophila, eEF1B8L has not been recognized as an important heat shock-responsive transcription factor in Drosophila. Notable in this context, the eEF1B8L isoform is unique to mammalian cells, and is not expressed in Drosophila (60). Our study thus provides a novel molecular mechanism to explain how mammalian-specific eEF1B8L functions in heat shock-responsive transcription in collaboration with HSF1, and add important additional information to account for pre-
vious observations that HSF1 alone is not sufficient for re-
cruitment of p-TEFb to the promoters of target genes.
These mechanistic insights into eEF1BδL monoubiquity-
lation provide another example of the non-proteolytic func-
tion of RNF20/40-mediated protein ubiquitylation in ad-
dition to its established function in ubiquitylating histone
H2B (61,62) and shed light on the role of multiple players in
orchestrating stress-responsive gene expression (63).

SUPPLEMENTARY DATA
Supplementary data are available at NAR Online.

ACKNOWLEDGEMENTS
We thank Dr. Masayuki Matsushita for eEF1BδL, HSF1 and
luciferase reporter plasmids.

FUNDING
National Research Foundation of Korea [NRF-
2015R1A1A0500159 and NRF-2018R1A5A1024261
to J.K.]; National Research Council of Science and
Technology [DRC-14-2-KRISS to J.E.L.]. Funding for open
access charge: National Research Foundation of Korea
[NRF-2018R1A5A1024261].

Conflict of interest statement. None declared.

REFERENCES
1. Pickart,C.M. (2001) Mechanisms underlying ubiquitination. Annu.
Rev. Biochem., 70, 503–533.
2. Geng,F., Wenzel,S. and Tansey,W.P. (2012) Ubiquitin and
proteasomes in transcription. Annu. Rev. Biochem., 81, 177–201.
3. Nakagawa,T. and Nakayama,K. (2015) Protein monoubiquitylation:
targets and diverse functions. Genes Cells, 20, 543–562.
4. Kaiser,S.E., Riley,B.E., Shaler,T.A., Trevino,R.S., Becker,C.H.,
Schulman,H. and Kopito,R.R. (2011) Protein standard absolute
quantification (PSAQ) method for the measurement of cellular
ubiquitin pools. Nat. Methods, 8, 691–696.
5. Sigismund,S., Polo,S. and Di Fiore,P.P. (2004) Signaling through
monoubiquitylation. Curr. Top. Microbiol. Immunol., 286, 149–185.
6. Kim,W., Bennett,E.J., Huttlin,E.L., Guo,A., Li,J., Possemato,A.,
Sowa,M.E., Rad,R., Rush,J., Comb,M.J. et al. (2011) Systematic and
quantitative assessment of the ubiquitin-modified proteome. Mol.
Cell, 44, 325–340.
7. Zhu,B., Zheng,Y., Pham,A.D., Mandal,S.S., Erdjument-Bromage,H.,
Tempst,P. and Reimerberg,D. (2005) Monoubiquitylation of human
histone H2B: the factors involved and their roles in Hox gene
regulation. Mol. Cell, 20, 601–611.
8. Kim,J., Gueramih,M., McGinty,R.K., Lee,J.S., Tang,Z., Milne,T.A.,
Shilatifard,A., Muir,T. and Roeder,R.G. (2009) RAD6-mediated
transcription-coupled H2B ubiquitylation directly stimulates H3K4
methylation in human cells. Cell, 137, 459–471.
9. Shema,E., Tirosi,I., Aylon,Y., Huang,J., Ye,C., Moskovits,N.,
Raver-Shapira,N., Minsky,N., Pirngruber,J., Tarcic,G. et al. (2008)
The histone H2B-specific ubiquitin ligase RNF20/1BRE1 acts as a
potatous suppressor through selective regulation of gene
expression. Genes Dev., 22, 2664–2676.
10. Chernikova,S.B., Razorenova,O.V., Higgins,J.P., Sieh,B.I.,
Nicolau,M., Dorth,J.A., Chernikova,D.A., Kwok,S., Brooks,J.D.,
Bailey,S.M. et al. (2012) Deficiency in mammalian histone H2B
ubiquitin ligase Bre1 (Rn20/Rn40) leads to replication stress and
chromosomal instability. Cancer Res., 72, 2111–2119.
11. Tarcic,O., Pateras,I.S., Cooks,T., Shema,E., Kanterman,J.,
Ashkenazi,H., Boocole,H., Hubert,A., Rotkopf,R., Baniyah,M.
et al. (2016) RNF20 links histone H2B ubiquitylation with
inflammation and inflammation-associated cancer. Cell Rep., 14,
1462–1476.
12. Foster,E.R. and Downs,J.A. (2009) Methylation of H3 K4 and K79 is
formepten-dependent on H2B K123 ubiquitylation. J. Cell Biol., 184,
631–638.
13. Liu,Z., Oh,S.M., Okada,M., Liu,X., Cheng,D., Peng,J., Brat,D.J.,
Sun,S.Y., Zhou,W., Gu,W. et al. (2009) Human BRE1 is an E3
ubiquitin ligase for Ebp1 tumor suppressor. Mol. Biol. Cell, 20,
1577–1588.
14. Lee,J.H., Lee,G.Y., Jiang,H., Choe,S., Koo,S.H. and Kim,J.B. (2014)
Ring finger protein20 regulates hepatic lipid metabolism through
protein kinase A-dependent sterol regulatory element binding
protein 1c degradation. Hepatology, 60, 844–857.
15. Ren,P., Sheng,Z., Wang,Y., Yi,X., Zhou,Q., Zhou,J., Xiang,S., Hu,X.
and Zhang,J. (2014) RNF20 promotes the polyubiquitination and
proteasome-dependent degradation of AP-2α protein. Acta Biochim.
Biophys. Sin. (Shanghai), 46, 136–140.
16. Duan,Y., Hoo,D., Gao,J., Wu,H., Ye,Z., Liu,Z., Zhang,K., Shan,L.,
Zhou,X., Wang,Y. et al. (2016) Ubiquitin ligase RNF20/40 facilitates
spindle assembly and promotes breast carcinogenesis through
stabilizing motor protein Eg5. Nat. Commun., 7, 12648.
17. Kaitisuk,J., Tomizawa,K. and Matsushita,M. (2011) Transformation
of eEF1Bδ into heat-shock response transcription factor by
alternative splicing. EMBO Rep., 12, 673–681.
18. Kim,J. and Roeder,R.G. (2011) Nucleosomal H2B ubiquitylation
with purified factors. Methods, 54, 331–338.
19. Rappoliber,J., Mann,M. and Ishihama,Y. (2007) Protocol for
micro-purification, enrichment, pre-fractionation and storage of
peptides for proteomics using StageTips. Nat. Protoc., 2, 1896–1906.
20. Cox,J. and Mann,M. (2008) MaxQuant enables high peptide
identification rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol., 26,
1367–1372.
21. Schwanhausser,B., Busse,D., Li,N., Dittmar,G., Schuchhardt,J.,
Wolf,J., Chen,W. and Selbach,M. (2011) Global quantification of
mammalian gene expression control. Nature, 473, 337–342.
22. Bustin,S.A., Benes,V., Garson,J.A., Hellemans,J., Huggett,J.,
Kubista,M., Mueller,R., Nolan,T., Pfaffl,M.W., Shipley,G.L. et al. (2009)
The MIQE guidelines: minimum information for publication of
quantitative real-time PCR experiments. Clin. Chem., 55, 611–622.
23. Kim,J., Hake,S.B. and Roeder,R.G. (2005) The human homolog of
yeast BRE1 functions as a transcriptional coactivator through direct
activator interactions. Mol. Cell, 20, 759–770.
24. Zhang,F. and Yu,X. (2011) WAC, a functional partner of RNF20/40,
regulates histone H2B ubiquitination and gene transcription. Mol.
Cell, 41, 384–397.
25. Le Sourd,F., Boulben,S., Le Bouffant,R., Cormier,P., Morales,J.,
Belle,R. and Mulner-Lorillon,O. (2006) E6F1B: At the dawn of the
21st century. Biochim. Biophys. Acta, 1759, 13–31.
26. Andersen,G.R., Nissen,P. and Nyborg,J. (2003) Elongation factors
in protein biosynthesis. Trends Biochem. Sci., 28, 434–441.
27. Jentsch,S., McGrath,J.P. and Varshavsky,A. (1987) The yeast DNA
repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature,
329, 131–134.
28. Kim,J. and Roeder,R.G. (2009) Direct Brc-Paf1 complex
interactions and RING finger-independent Brc-Rad6 interactions
mediate histone H2B ubiquitylation in yeast. J. Biol. Chem., 284,
20582–20592.
29. Hibbert,R.G., Huang,A., Boelens,R. and Sixma,T.K. (2011) E3 ligase
Rad18 promotes monoubiquitination rather than ubiquitin chain
formation by E2 enzyme Rad6. Proc. Natl. Acad. Sci. U.S.A., 108,
5590–5595.
30. Wagner,S.A., Beli,P., Weinert,B.T., Nielsen,M.L., Cox,J., Mann,M.
and Choudhary,C. (2011) A proteome-wide, quantitative survey of in
vivo ubiquitylation sites reveals widespread regulatory roles. Mol.
Cell Proteomics, 10, M111.013284.
31. Poulsen,L.K., Beli,P., Wagner,S.A., Poulsen,S.L., Sylvesterens,K.B.,
Poulsen,J.W., Nielsen,M.L. and Maitland,N. (2011) Systems-wide analysis of ubiquitylation
dynamics reveals a key role for PAF15 ubiquitylation in
DNA-damage bypass. Nat. Cell Biol., 14, 1089–1098.
32. Greer,S.F., Zeka,E., Coni,B., Zhu,X.S. and Ting,J.P. (2003)
Enhancement of CIITA transcriptional function by ubiquitin. Nat.
Immunol., 4, 1074–1082.
33. Head,M.W., Hurwitz,L. and Goldman,J.E. (1996) Transcription
regulation of alpha B-crystallin in astrocytes: analysis of HSF and
