Enseñar Matemáticas en la Sociedad de Mañana: Alegato a Favor de un Contraparadigma Emergente

Yves Chevallard¹

1) Aix-Marseille Université.

Date of publication: June 24th, 2013

To cite this article: Chevallard, Y. (2013). Enseñar Matemáticas en la Sociedad de Mañana: Alegato a Favor de un Contraparadigma Emergente. Journal of Research in Mathematics Education, 2 (2), 161-182. doi:10.4471/redimat.2013.26

To link this article: http://dx.doi.org/10.4471/redimat.2013.26

PLEASE SCROLL DOWN FOR ARTICLE

The terms and conditions of use are related to the Open Journal System and to Creative Commons Non-Commercial and Non-Derivative License.
Teaching Mathematics in Tomorrow's Society: a Case for an Oncoming Counterparadigm

Yves Chevallard
Aix-Marseille Université

Abstract
The historical analysis of mathematics teaching at secondary level shows the succession in time of different school paradigms. The present article describes and tries to analyse a new didactic paradigm, yet in infancy, the paradigm “of questioning the world”, which relies heavily on four interrelated concepts, that of inquiry and of being “herbartian”, “procognitive”, and “exoteric”. It is the author’s ambition to show, however succinctly, how the present crisis in mathematics education could hopefully be solved along these lines, which preclude recourse to strategies seeking only to patch up the old, still dominant paradigm “of visiting works.”

Keywords: Anthropological theory of the didactic, inquiry, paradigm of questioning the world, research and study path.
Enseñar Matemáticas en la Sociedad de Mañana: Alegato a Favor de un Contraparadigma Emergente

Yves Chevallard
Aix-Marseille Université

Abstract
El análisis histórico de la enseñanza de las matemáticas en secundaria muestra cómo se han ido sucediendo en el tiempo diferentes paradigmas escolares. En este trabajo se describe y se analiza un nuevo paradigma didáctico, todavía en su infancia, el paradigma del “cuestionamiento del mundo”, que se basa principalmente en cuatro conceptos interrelacionados, el de la indagación y el de ser “herbartiano”, “procognitivo” y “exotérico”. La ambición del autor es mostrar, aunque sea de manera sucinta, cómo la actual crisis en la educación matemática se podría con suerte resolver según estas líneas, descartando el recurso a estrategias que solo buscan poner parches al viejo paradigma, todavía dominante, “de la visita de las obras”.

Keywords: Teoría antropológica de lo didáctico, indagación, paradigma del cuestionamiento del mundo, recorrido de estudio e investigación.
En primer lugar, debo decir que este trabajo recurrirá al marco teórico con el que se asocia mi nombre, me refiero a la TAD, la teoría antropológica de lo didáctico. Del mismo modo que hay hechos económicos o políticos, hay hechos didácticos, a los cuales me referiré en su conjunto como lo didáctico. Lo didáctico es una dimensión vital de las sociedades humanas. De forma ligeramente simplificada, se puede decir que se compone de una serie heterogénea de situaciones sociales en las que alguna persona hace algo —o incluso manifiesta una intención de hacerlo— con el fin de que alguna persona pueda “estudiar” —y “aprender”— algo. Este algo que va a ser estudiado (y aprendido) se conoce como la apuesta didáctica de la situación (traducción del término francés “enjeu didactique”). Como se puede ver, esta formulación refiere formalmente a dos personas. Si utilizamos la letra y para designar a la primera persona, y la letra x para la segunda, podemos decir que y hace, o tiene la intención de hacer, algo para ayudar a x a estudiar (y aprender) algo. Por supuesto, a veces, y y x pueden ser la misma persona. En tal caso (fundamental) de aprendizaje auto-dirigido, x se ayuda a sí mismo en el estudio de la apuesta didáctica. El “algo” que y hace o intenta hacer se llama metafóricamente un gesto didáctico y forma parte de lo didáctico en su conjunto.

Básicamente, la didáctica es la ciencia que estudia las condiciones que rigen este tipo de “situaciones didácticas”, esto es, situaciones sociales que dependen de alguna “tripleta didáctica” compuesta por algún x, algún y y alguna apuesta didáctica O. La didáctica de las matemáticas se refiere a aquellos casos en los que se considera que la apuesta didáctica O pertenece a las matemáticas. En términos generales, O es lo que se llama, en la TAD, una “obra”, es decir, cualquier cosa, material o inmaterial, creada por una acción humana deliberada, con el fin de lograr ciertas funciones específicas. Para enfocarlo con mayor generalidad, consideremos un conjunto X de personas en lugar de la persona x, llegando así a la “tripleta didáctica” (X, y, O), que puede modelizar una clase típica en una escuela secundaria —siendo X el grupo de estudiantes, e y el profesor a quien corresponde enseñar la obra O. Por supuesto, también podemos considerar tripletas del tipo (X, Y, O), donde Y es un equipo de “ayudantes” didácticos, que puede incluir tanto a un docente con todas sus dimensiones como a “ayudantes” de
diferentes tipos. Permitanme añadir que, en la TAD, se dice que una condición es una restricción para una persona o una institución si no puede ser modificada por dicha persona o institución, al menos en el corto plazo. Así, la pregunta básica en didáctica se podría formular como sigue: dado un conjunto de restricciones \(K \) impuestas sobre una tripleta didáctica \((x, y, O)\), ¿qué condiciones pueden crear o modificar \(x \) e \(y \) —esto es, qué gestos didácticos pueden realizar— para que \(x \) establezca algún tipo de relación con \(O \)? Este será el punto de partida para lo que sigue.

El Paradigma de la Visita de las Obras y sus Deficiencias

Una visión prospectiva sobre la dimensión didáctica en nuestras sociedades, que me gustaría hacer explícita —y espero que clara—, se puede encapsular en un hecho histórico crucial: el viejo paradigma didáctico aún floreciente en muchas instituciones escolares está destinado a dejar paso a un nuevo paradigma aún en sus comienzos. Para ser breves, podemos definir un paradigma didáctico como un conjunto de reglas que prescriben, aunque sea implícitamente, qué se estudia —qué pueden ser las apuestas didácticas \(O \)— y qué formas de estudiarlas puede haber.

El “viejo” paradigma que acabo de mencionar ha sido precedido por distintos paradigmas, a veces olvidados durante largo tiempo. El más arcaico de estos paradigmas didácticos desapareció, en muchos países, durante el siglo XIX. En el campo de las matemáticas, así como en muchos otros campos del conocimiento, se organizaba alrededor del estudio de **doctrinas o sistemas** —de matemáticas, de filosofía, etc.— propuestos desde el exterior y considerados como logros excepcionales en la historia de la creación humana. Dentro de este paradigma, se solían estudiar los **Elementos** de Euclides como la mayoría de nosotros estudiamos (o aspiramos a estudiar) los sistemas filosóficos de Platón o de Hegel. Este paradigma inicial —que llamaremos el paradigma de la “aclamación y estudio de autoridades y obras maestras”— ha ido dando paso al paradigma escolar en el que actualmente se supone que todos nosotros, nos guste o no, estamos instalados, que se ha desarrollado en el transcurso de los siglos desde el antiguo paradigma del estudio de los “grandes sistemas”. Se apartaron a los “grandes hombres” que supuestamente fueron los autores de estos sistemas, y se trituraron los
sistemas de conocimientos en trozos más pequeños cuyas etiquetas autorizadas —Pitágoras, Thales, Euclides, Gauss, etc., en lo que a matemáticas se refiere— llevan la marca de su origen.

En el marco de la teoría antropológica de lo didáctico, este paradigma se conoce como el paradigma de “la visita de las obras” o —según una metáfora que se usa en la TAD— el de “la visita de monumentos”. Cada uno de estos trozos de conocimiento —por ejemplo, la fórmula de Herón para el cálculo del área de un triángulo— se presenta como un monumento con valor por sí mismo, que los estudiantes deben admirar y disfrutar, aunque no sepan casi nada sobre sus razones de ser, ni actuales ni del pasado.

A pesar de la larga devoción de tantos maestros y educadores por esta peregrinación intelectual sin fin, pese a la docilidad a menudo admirable de tantos estudiantes en la aceptación del maestro como guía, este paradigma dominante se encuentra actualmente en decadencia. Se puede argumentar que esto ha llegado a ser así porque el paradigma de la visita de monumentos tiende a dotar de poco sentido las obras así visitadas —“Por qué aparece esto aquí?”; “¿Cuál es su utilidad?”— siguen siendo preguntas sin respuesta general. El lector interesado puede querer comprobar cómo esto se aplica a muchas entidades matemáticas. Por ejemplo, ¿para qué sirve la noción de ángulo reflejo? La misma pregunta se puede plantear sobre los ángulos en general, y también acerca de las rectas paralelas, las rectas secantes, las semirrectas, los segmentos, etc. Por supuesto, lo mismo ocurre con la reducción de fracciones o el desarrollo de polinomios, con la noción de número decimal, y muchas otras. ¿En qué situaciones una entidad matemática de este tipo puede resultar útil, sino completamente inevitable, y cómo? Debido a que estas preguntas suelen ser silenciadas —cuando se visitan monumentos no hay que plantear preguntas como “¿Para qué?” o “¿Y qué?”—, los estudiantes se reducen a ser meros espectadores, incluso cuando los educadores les instan con pasión a “disfrutar” del puro espectáculo de las obras matemáticas.

Varios factores explicarían, al menos parcialmente, la larga dominación del paradigma de la visita de obras como monumentos, así como su actual declive y, creo yo, su inminente desaparición. Históricamente, la primera causa parece ser el acuerdo armonioso de este paradigma con la estructura social de países no democráticos en el pasado o, en tiempos
más recientes, con democracias débiles o incompletas. Estas sociedades se basan en un patrón omnipresente que une inseparablemente las posiciones de mando con las posiciones de obediencia. Casi todas las instituciones (ya sean familias, escuelas o naciones) derivan de alguna réplica de este patrón fundamental y dualista. No voy a entrar aquí en debatir sobre esta antigua estructura social. Solo quiero hacer hincapié en los riesgos específicos que genera fácilmente el funcionamiento de esta estructura ubicua de poder, en forma de abusos de autoridad, poder o rango —como sea que los llamemos. La existencia de una configuración dualista con alguien ejerciendo de autoridad y otro de subordinado se puede sin duda reivindicar por razones “técnicas”, para mantener el funcionamiento de algunas instituciones. Pero esta doble estructura técnicamente justificada queda normalmente delimitada en el tiempo y, sobre todo, en su alcance. La autoridad está, o debería estar, restringida a un número determinado de situaciones específicas, y debe por lo tanto abstenerse de invadir todos los aspectos de la vida —a menos que se convierta en tiranía. Pero respetar esta norma no es el punto fuerte de todos. El paradigma clásico de la visita de “monumentos del conocimiento”, aunque sean pequeños, sufre hoy día en diferentes niveles, de los abusos constantes del poder pedagógico, generado mecánicamente por su parentesco histórico con el patrón dualista del poder.

Las consecuencias de esta situación histórica son muchas. Antes que nada, voy a mencionar una a la que ya me he referido: la evolución irresistible del currículum escolar de matemáticas hacia una forma de “monumentalismo” epistemológico, en el que el conocimiento viene organizado en unos trozos y pedazos santificados por la tradición, cuya supuesta “belleza” ha sido realizada por la pátina del tiempo y que los estudiantes tienen que visitar, reverenciar, disfrutar, divertirse con él e incluso “amar”. Todo esto, por supuesto, no es más que un sueño, por lo menos para la gran masa de estudiantes —no para los pocos afortunados que necesitan muy poca atención.

El principal efecto de esta situación de larga duración es la tendencia creciente entre los estudiantes a desarrollar una relación al conocimiento escolar “oficial” de acuerdo con lo que voy a llamar principio de la “Papelera de reciclaje / Vaciar la papelera de reciclaje”: todo conocimiento enseñado puede ser legítimamente olvidado o, más
concretamente, *ignorado*, tan pronto como se hayan aprobado los exámenes. Por supuesto, este hecho es probablemente tan viejo como el sistema escuela-exámenes. Sin embargo, ha dado forma a una relación con el conocimiento impulsada por motivos institucionales, de corto plazo y lábiles, que se sitúan lejos de un enfoque funcional al conocimiento basado en su utilidad en el mundo real —para entender una situación, ya sea matemática o no, tomar una decisión o posponerla para permitir un estudio más profundo del problema abordado.

Un correlato de lo anterior, que no es propiamente su consecuencia, aparece en un hecho aún más desafiante y que parece especialmente cierto en el caso de las matemáticas: rara vez se percibe el poco conocimiento que permanece después de los años de escuela como algo que podría ser útil fuera de la escuela. Por lo tanto, el conocimiento generado en la escuela tiende a ser inútil, ya que su “poso” es incapaz de realizar su función específica. Pero aún hay más. Visitar un monumento se reduce normalmente a escuchar una crónica o relato hecho por el profesor-guía sobre el monumento visitado. Esto es lo que llamamos en la TAD una presentación o *exposé*, término francés que no tiene la connotación negativa de su uso en inglés. Por su propia naturaleza, todo relato, crónica o *exposé*, se salta detalles, es decir, aspectos que, más o menos arbitrariamente, sus creadores han ignorado o directamente eliminado. Por ejemplo, en el currículo francés —y supongo que en muchos currículos de matemáticas en todo el mundo—, la tradición impone pasar por alto la resolución algebraica de ecuaciones cúbicas, mientras que las ecuaciones cuadráticas ocupan un lugar prominente. Por lo tanto, en su visita escolar del universo matemático, los estudiantes se topan con una frontera más allá de la cual hay territorios matemáticos que, muy a menudo, permanecerán para siempre como tierra desconocida. ¿Qué será de ellos si, más adelante en su vida, los estudiantes necesitan saber lo que es una ecuación cúbica y cómo se puede resolver? Parece que la educación escolar en la línea del paradigma actual no tiene una respuesta clara a esta pregunta.

Así pues, la relación al conocimiento o a la ignorancia asociada a la visita de las obras matemáticas se ha vuelto cada vez menos adecuada a las necesidades y deseos de la gente, hasta el punto que actualmente existe una creencia generalizada de que el conocimiento matemático es algo de lo cual uno puede prescindir casi por completo —mientras que,
en un pasado no muy lejano, las matemáticas se consideraban como la clave de un gran número de problemas tanto individuales como colectivos. En este sentido, el principal defecto del paradigma de visitar monumentos, que se relaciona con el *ethos* no-democrático que le da origen, tiene que ver con la elección de los “monumentos” que se deben visitar en la escuela. Como sabemos, esta elección es generalmente el resultado de combinar una tradición de largo alcance con reformas frenéticas e irregularmente espaciadas. En ningún momento parece que las decisiones tomadas vayan más allá de lo que los responsables de tomarlas consideran oportuno, apropiado o incluso “bueno” para la formación de las nuevas generaciones. En ningún momento parece que la elección de los monumentos que se deben visitar se haga a partir de una base experimental o, por lo menos, de una experiencia suficientemente amplia y supuestamente relevante. En lo que sigue, voy a tratar de aportar pruebas de cómo se podría lograr una “hazaña” de este tipo, siempre y cuando optemos por el paradigma didáctico emergente que llamaremos el “paradigma del cuestionamiento del mundo.”

El Cuestionamiento del Mundo: Hacia un Nuevo Paradigma Didáctico

Hasta cierto punto, podríamos abandonar el mundo didáctico actual a favor de un nuevo paradigma que, en contraste con el anterior, aparece como un *contraparadigma* —aunque, como veremos, no está condenado a cortar todo contacto con su predecesor. Los cambios principales que voy a enfatizar son pocos, pero radicales. Consideremos de nuevo una tripleta (*X*, *Y*, *O*). Uno de los principios de la educación tradicional, que casi pasa inadvertido pero que resulta crucial, es que los miembros *x* de *X* son niños, niñas o adolescentes: tradicionalmente, el esfuerzo educativo se hace sobre los jóvenes, antes que alcancen la madurez. En la madurez, se supone que todo el mundo ya ha sido educado —bien o mal, esta es otra cuestión. En contraste con esta visión sobre la educación, en el paradigma didáctico del cuestionamiento del mundo, la educación es un proceso que se desarrolla durante toda la vida. La componente *x* en la tripleta (*x*, *y*, *O*) puede ser tanto un niño pequeño como un adulto o una persona mayor. Se considera que la tarea didáctica de la sociedad se debe aplicar a todos, tanto a los ciudadanos
actuales como a los ciudadanos futuros. En consecuencia, la evaluación de esta tarea crucial ya no puede centrarse exclusivamente en los jóvenes: no solamente debemos examinar qué se supone que saben los jóvenes de 15 años, también debemos extender esta búsqueda a las personas de hasta (por lo menos) 70 años. Además, el esfuerzo didáctico de la sociedad no debe reconocerse simplemente por lo que la gente sabe; debería ser evaluado sobre la base de lo que la gente puede aprender — y de cómo puede hacerlo.

Un segundo principio fundamental del paradigma del cuestionamiento del mundo es que, con el fin de aprender algo acerca de una obra \(O \), \(x \) tiene que estudiar \(O \), a menudo con la ayuda de algunos \(y \). No se aprende a resolver una ecuación cúbica por casualidad, hay que detenerse y considerar la cuestión. En la cultura general actual, muchas personas, al parecer, tienen la tendencia de rehuir cualquier pregunta que no tenga una respuesta evidente para ellos. Lo que el nuevo paradigma didáctico tiene como objetivo es crear un nuevo \textit{ethos} cognitivo en el cual, cuando surge alguna cuestión \(Q \), \(x \) la tome en cuenta y, cuando sea posible, empiece su \textit{estudio} con el objetivo de aportarle una respuesta valiosa \(R \), en muchos casos con alguna ayuda de algún \(y \). En otras palabras, se supone que \(x \) no se opone sistemáticamente a afrontar situaciones que involucren problemas con los que nunca se haya enfrentado ni resuelto. Por razones que no comentaré, llamaré \textit{herbartiana} —por el filósofo alemán y fundador de la pedagogía Johann Heinrich Herbart (1776-1841)— a esta actitud receptiva hacia el planteamiento de preguntas sin respuesta y de problemas sin resolver, que es normalmente la actitud de un científico en su campo de investigación y debería llegar a serlo para cualquier ciudadano en cualquier ámbito de su actividad.

El nuevo paradigma didáctico quiere que tanto el ciudadano futuro como el actual se conviertan en \textit{herbartianos}. Déjenme poner tres ejemplos fáciles y variados de posibles preguntas “abiertas” latentes. Primer ejemplo: muchas personas que se dedican a la investigación en ciencias sociales, pero que han tenido poco contacto con la estadística en la escuela o en la universidad, al encontrarse con el test Chi-cuadrado de Pearson, se tropiezan con la difícil noción de grados de libertad, y se obsesionan con la pregunta ¿Qué significa exactamente la expresión “grados de libertad”? Segundo ejemplo: los estudiantes de física pueden
estar molestos por tener que utilizar el símbolo curioso de “proporcional a” (\(\propto \)), “un ocho puesto de lado y con un trozo eliminado” (Miller, 2011), sin ninguna idea acerca de cómo la manipulación de este símbolo se puede justificar en términos matemáticos, especialmente en lo que se refiere a la conclusión intrigante de que, si una variable \(z \) es proporcional a las variables \(x \) e \(y \), entonces \(z \) será también proporcional a su producto \(xy \). Tercer ejemplo: cualquier persona interesada en la cuestión de la biodiversidad puede cruzarse con una ecuación matemática como la siguiente:

\[
H_e = 1 - \frac{1}{1 + 4N_e \mu}
\]

(1)

Para el no-matemático impenitente, la primera pregunta será: “¿Qué significa eso? ¿Qué conlleva?” Supongo que para todos nosotros una segunda pregunta surge enseguida: “¿De dónde viene? ¿Cómo se puede obtener?” Por supuesto, el ciudadano pre-herbartiano generalmente hace caso omiso a todas estas preguntas porque, por lo general, huye de cualquier cosa que parezca matemática. Pero el ciudadano en sintonía con el nuevo paradigma didáctico se enfrentará a las preguntas, y, cuando sea posible, llegarán a lidiar con cada una de ellas. ¿Cómo es posible?

En el mundo didáctico modelado por el paradigma de visitar monumentos, la mayoría de la gente se comporta “retrocognitivamente”. Usaremos la palabra “retrocognición” no en su viejo sentido parapsicológico sino simplemente para expresar la actitud cognitiva que nos conduce a referirnos preferentemente y casi exclusivamente a conocimientos que ya conocemos. La retrocognición en este sentido, se rige por el casi-postulado que, una vez terminada la escuela y la universidad, si uno no sabe de antemano la respuesta a una pregunta, entonces es mejor renunciar a toda pretensión de conseguir una respuesta sensata. Esto, por supuesto, se correlaciona con la propensión a esquivar preguntas nunca planteadas de la que hablábamos antes. Por el contrario, el paradigma de cuestionar el mundo exige una actitud muy diferente, que llamaremos procognitiva (en un sentido no relacionado con el uso de esta palabra referente a una droga que “reduce el delirio o desorientación”), y que nos empuja a comportarnos como si el conocimiento estuviera esencialmente aún por descubrir y todavía por
conquistar —o por descubrir y conquistar de nuevo. Por lo tanto, en la interpretación retrocognitiva, saber es “saber hacía atrás”, mientras que en la vía procognitiva, saber es “saber hacía delante”.

En el escenario en el que estamos, ¿cómo se puede construir y validar una respuesta R a una cuestión Q? Básicamente, para indagar una cuestión Q se requiere un movimiento doble. En primer lugar, el “indagador” x buscará en la literatura relevante las respuestas existentes a la cuestión Q —un movimiento tradicionalmente prohibido en la escuela, que por el contrario resulta inevitable en la investigación científica. En la TAD es usual denotar las respuestas existentes añadiendo a la letra R un pequeño rombo o diamante —un rombo “delgado”— en superíndice, R^\diamond con el fin de expresar que esta respuesta ha sido creada y difundida por alguna institución que, en algún sentido, la hizo suya, la “etiquetó”. Por supuesto una respuesta R^\diamond no tiene por qué ser “verdadera” o “válida”; le corresponde a x evaluar si las respuestas R^\diamond son relevantes —lo que también difiere de la costumbre escolar, donde las respuestas aportadas por el profesor están siempre garantizadas por el propio docente. En segundo lugar, para llegar a una respuesta apropiada —normalmente representada añadiendo a la letra R un pequeño corazón en superíndice, interpretado como la “marca del autor”: R^\heartsuit —, el indagador x debe usar “herramientas”, matemáticas o no, es decir, trabajos de diferente naturaleza. Es a partir del estudio combinado de las respuestas “etiquetadas” R^\diamond y de las obras O (utilizadas como herramientas para estudiar las respuestas R^\diamond y construir una respuesta R^\heartsuit) que el proceso de búsqueda de una respuesta R^\heartsuit se pondrá en marcha.

La indagación dirigida por x sobre Q abre un camino llamado recorrido de estudio e investigación. Para avanzar por este camino, el equipo de indagación X tiene que utilizar el conocimiento —relativo a las respuestas R^\diamond, así como a las obras O— hasta entonces desconocido para sus miembros, con el cual el equipo deberá familiarizarse para poder continuar por el camino hacia la respuesta R^\heartsuit. Una condición necesaria para ello es que X y cada miembro x de X se comporten procognitivamente, con ganas de encontrar nuevo conocimiento —nuevas obras—, sin más preámbulos.

Algunos aspectos didácticos adicionales deberían ser destacados aquí. En primer lugar, en el paradigma de cuestionar el mundo, encontrar
nuevo conocimiento o reencontrar conocimiento antiguo y medio olvidado, durante el recorrido de estudio e investigación, es la manera en que los indagadores \textit{x aprenden}: aprenden o vuelven a aprender las respuestas \(R^\diamond \), las herramientas de trabajo \(O \) y, finalmente, la respuesta \(R^* \). Debería quedar claro que los \textit{ contenidos } aprendidos, en este contexto, \textit{no han sido planificados de antemano} —contrariamente a lo que es habitual en el paradigma de la visita de monumentos— y están esencialmente determinados por dos factores: la cuestión \(Q \) que se estudia y el recorrido de estudio e investigación realizado, que a su vez está determinado por los \(R^\diamond \) y los \(O \) encontrados y estudiados para construir la respuesta \(R^* \). En segundo lugar, es importante considerar que estudiar una obra (matemática o no-matemática) \(O \) —y lo mismo ocurre con las respuestas \(R^\diamond \)— viene determinado por el proyecto de llegar a una respuesta \(R^* \). Contrariamente a la ficción impuesta sobre \(x \) e \(y \) en el paradigma de la visita de obras, no existe algo así como el estudio “normal” o “natural” de una obra \(O \). Todas las presentaciones de \(O \) son especiales, ninguna es exhaustiva, y la mayoría no consiguen disimular su arbitrariedad. El estudio de una obra \(O \) en el contexto de una investigación sobre alguna cuestión \(Q \) dependerá fuertemente, tanto cuantitativa como cualitativamente, del uso que se haga de \(O \) para elaborar la respuesta \(R^* \). Lo que debería quedar claro en este estudio contextualizado de \(O \) es que el conocimiento de \(O \) adquirido por los indagadores es \textit{funcionalmente coherente} porque la indagación lo asocia con la pregunta \(Q \), de modo que en este caso son evidentes las razones de ser de \(O \) que explican su uso.

\textbf{La Sociedad, la Escuela y el Nuevo Paradigma}

El paradigma del cuestionamiento del mundo y las investigaciones que lo hacen realidad no existen en el vacío. Deben tener una base en la sociedad y en la escuela. Permítanme volver a insistir aquí que el campo de relevancia del esquema didáctico —el llamado \textit{esquema herbartiano}— esbozado hasta ahora se extiende a toda la sociedad, no se concibe limitado solamente a la escuela. Cualquier persona puede ocupar el lugar de \(x \) en una tripleta didáctico \((x, y, O)\). (Puede pasar que el “ayudante” didáctico y no exista, en cuyo caso la tripleta se escribe como \((x, \emptyset, O) \), reduciéndose así a una 2-tupla). Hay por supuesto una diferencia notable. En muchas sociedades modernas, ir a la escuela
durante la primera parte de la vida —mientras se es joven— es obligatorio. Ciertos es que no hay nada parecido a la educación obligatoria para adultos en general. En este sentido, el escenario que aquí se defiende supone un cambio fundamental, con la extensión del derecho a la educación a un derecho universal a la educación para toda la vida, soportado por una infraestructura adecuada que podríamos seguir llamando “escuela”, pero en un sentido que se remonta a la antigua Grecia y, más concretamente, a la palabra griega *skhole*, que designaba originalmente el tiempo libre dedicado al ocio (este era aún su significado en la época de Platón, por ejemplo), pero que evolucionó hacia el significado de “ocio studioso”, “un lugar para la discusión intelectual”, y “tiempo para los estudios liberales”. El nuevo papel de la didáctica en nuestras sociedades implica así el desarrollo de una institución ubicua que, en lo que sigue, llamaremos más propiamente *skhole*. Por supuesto, la escuela tal como la conocemos es un componente clave de la *skhole*, a pesar de que, en su forma actual, se mantenga en gran medida ajena al nuevo paradigma didáctico. Pero la escuela no agota la *skhole*. Por ejemplo, tanto para los adultos como para los más jóvenes, una buena parte de la *skhole* se desarrolla en casa: la *skholerización* en casa será, y ya es, un componente esencial de la *skhole*. En lo que sigue, consideraremos la *skhole* por su capacidad para favorecer el desarrollo y la fecundidad del paradigma del cuestionamiento del mundo, aunque algunas de sus partes estén todavía bajo el control del viejo paradigma escolar.

Empezaremos considerando el caso de la *skholerización* de los adultos —hoy en día, la escolarización de los adultos, como debemos llamarla, es relativamente exigua. En realidad, muchos ciudadanos ya están, aunque sea parcialmente, preparados para indagar por su cuenta muchas cuestiones que los rodean, por ejemplo en su vida diaria. Entonces, ¿cuáles son las principales restricciones u obstáculos que dificultan, y cuáles son las condiciones que pueden favorecer el desarrollo de la *skholerización* de los adultos? La primera condición radica en el hecho de que, en lugar de huir de las cuestiones, x se enfronte debidamente a ellas. Para ello, x tiene que formularlas explícitamente, al menos para sí mismo o sí misma. Por simple que pueda parecer, este paso entra en conflicto con un determinante fundamental de nuestras culturas: la disyuntiva entre “maestros” y “subordinados”. Esta disyuntiva, si se me
permite decirlo, prohíbe a los últimos plantear preguntas sobre el mundo —natural o social— o, como dice la expresión, poner el mundo “en tela de juicio”, mientras que solo los “maestros” tienen la legitimidad de cuestionar el mundo y cambiarlo. La simple observación —pero cuya conclusión puede ser fácilmente sometida a la experimentación— muestra que la mayoría de la gente se emociona al atreverse a plantear por sí misma la más mínima cuestión. Históricamente, plantear preguntas, que era el privilegio de los poderosos, se ha convertido en un derecho que define a los ciudadanos, pero es un derecho que aún no se ejerce como debería ser en una democracia plenamente desarrollada.

Supongamos que un ciudadano decide investigar una cuestión \(Q \), convirtiéndose así en un indagador \(x \) de una tripleta \((x, ?, Q)\). En esta etapa de su estudio, surgen dos problemas. Por un lado, \(x \) puede pensar en conseguir ayuda de algunas personas \(Y \); por otro lado, tendrá que “explorar el mundo” en busca de respuestas \(R \circ \) a la pregunta \(Q \) y de obras relevantes \(O \). El primero de esos dos problemas no tiene aún una solución sistemática. El segundo problema tiene una buena solución aproximada. Consiste en la suma total de la información que Internet y, sobre todo la Web, puede aportar. De hecho, me referiré a Internet sensu latissimo —en el sentido más amplio—, el sentido que, contra su uso actual, incluye... todas las bibliotecas del mundo. Porque cualquier documento o bien ya está disponible en Internet, o puede considerarse que todavía no está disponible en Internet. Para poner aquí un solo ejemplo, en el caso de una investigación en matemáticas sobre el símbolo de “proporcional a” \((\propto)\), si empezamos por la conocida página web de Jeff Miller sobre *Earliest uses of symbols of relation* (2011), nos lleva al libro clásico de Florian Cajori sobre la historia de las notaciones matemáticas (1993, *vol. 1*, p. 297) que, a su vez, remite a tres libros más antiguos, cuyos autores son respectivamente William Emerson (1768), quien introdujo el símbolo \(\propto\), George Chrystal (1866) y Frank Castle (1905). Hoy en día, todos estos libros están disponibles en la web de forma gratuita. También debemos observar que Internet permite que la mayoría de investigadores \(x \) encuentren la ayuda de ayudantes ocasionales \(y \), por ejemplo en foros de internet e hilos de discusión, de modo que la principal solución al segundo problema también proporciona una solución (parcial) al primer problema.

El hecho de indagar en Internet *sensu latissimo* se enfrenta a
dificultades claramente identificadas. En primer lugar, aunque \(x \) esté casi seguro de encontrar algunos recursos pertinentes, pueden faltar documentos que le permitan ir más allá y profundizar en la cuestión estudiada. En segundo lugar, el indagador \(x \) puede ser incapaz tanto de encontrar documentos relevantes que ya existen como de aprovechar al máximo la poca información que recogió. El equipamiento intelectual del indagador —o, más exactamente, su equipamiento praxeológico, en el sentido que la palabra praxeología tiene para la TAD— se basa en dos pilares: la capacidad de localizar recursos, tanto on-line como off-line, y los conocimientos necesarios para aprovecharlos. Esto nos lleva a la cuestión de cómo hacer buen uso de las obras recolectadas. La mayoría de las cuestiones generales \(Q \) implican el uso de obras \(O \) pertenecientes a diferentes ramas del conocimiento, por lo que el estudio de \(Q \) está condenado a ser una actividad co-disciplinar, reuniendo herramientas de diferentes “disciplinas” para una causa común. Cabe destacar en este punto que lo que hemos llamado “ciudadano” no es una persona reducida a ser miembro de una comunidad política. Muy al contrario, se le considerará como tal según sus logros y potencial, sobre todo como indagador de cuestiones de cualquier tipo. Se desprende de ello que un ciudadano no sólo tiene que ser educado en diferentes campos sino que, en la perspectiva procognitiva del nuevo paradigma didáctico, también debe estar preparado para estudiar y aprender, incluso desde cero, campos de conocimiento nuevos para él. Un ciudadano no sólo es una persona que respeta la ley también tiene que volverse una persona cultivada, siempre dispuesta a estudiar obras que hasta entonces le eran desconocidas, sólo porque una determinada indagación requiere el estudio de estas obras.

El ciudadano que describo aquí puede sentirse incapaz de estar a la altura de lo que se le pide. Este sentimiento proviene esencialmente de la antigua organización didáctica de la escuela y la sociedad que nos ha impuesto a todos la ilusión de que, dada una necesidad cualquiera de conocimiento que podamos tener, siempre existe en algún lugar una persona providencial que nos puede enseñar lo que queremos saber. Esta creencia pueril conduce a la pasividad y sumisión a eventos que están fuera de nuestro alcance. En el paradigma del cuestionamiento del mundo, no se descarta asistir a un curso o una conferencia sobre algún tema de interés. Pero se considera como un medio para un fin común:
aprender algo sobre unas determinados obras O que se suponen útiles para generar respuestas R^* a la cuestión Q. En esta situación, debido a la relación a la ignorancia y al conocimiento que resulta de la exposición al paradigma de la vieja escuela, somos propensos a sentirnos frustrados por no tener todo el conocimiento necesario —toda la historia, biología, matemáticas, física, química, filosofía, lingüística, sociología, y así indefinidamente. El personaje implícitamente dibujado aquí es lo que llamaremos un esotérico (usando así el adjetivo como sustantivo), alguien al que se le supone en posesión de todo el conocimiento necesario (la idea que la mayoría de la gente tiene de “un historiador”, “un biólogo”, “un matemático”, “un físico”, etc., se relaciona normalmente con esta fantasía). Por el contrario, un exotérico tiene que estudiar y aprender indefinidamente, y nunca llegará al estatus escurridizo del esotérico. De hecho, todos los verdaderos estudiosos son exotéricos y deberían seguir siéndolo para mantenerse sabios: el esoterismo, como yo lo defino aquí, es un cuento.

En el nuevo paradigma, el ciudadano debe convertirse en herbartiano, procognitivo y exotérico. ¿Cómo podemos promover esta nueva ciudadanía? Más allá de estar poseídos por la pasión epistemológica que se necesita para ir del camino de la pura ignorancia hacia el del conocimiento adecuado, una condición crucial es, sin duda, el tiempo asignado al estudio y a la indagación en la vida de un adulto. Bastante a menudo, parece que este tiempo tiende a cero con el paso de los años. En este sentido, sugiero que repitamos una y otra vez el gran truco de los antiguos griegos —el de transmutar el tiempo de ocio, del que algunos de nuestros contemporáneos parecen gozar en abundancia, en tiempo de estudio e investigación, según la auténtica tradición de la skhole. Esta búsqueda pertenece a lo que Freud llamó una vez Kulturarbeit, el “trabajo civilizador” —un cambio radical que está aún por llegar y que es una condición sine qua non para la emergencia del nuevo paradigma didáctico.

El problema del tiempo destinado al estudio e investigación tiene una solución fácil cuando se trata de la escolarización normal: la juventud va a la escuela a estudiar, según el principio definidor de la skhole. Pero, ¿en qué medida la escuela acoge el nuevo paradigma didáctico? No me voy a extender en este tema. Solo sugeriré que, en demasiados casos, la así llamada “enseñanza basada en la investigación” (inquiry based
teaching) utiliza de una forma u otra “falsas indagaciones”, muy a menudo porque la cuestión generatriz Q de la investigación no es más que un truco ingenuo para conseguir que los alumnos se reúnan para estudiar unas obras O que el profesor ha determinado de antemano. Por supuesto, esto es una simple consecuencia del dominio del paradigma de la visita de las obras, lo que implica que los contenidos curriculares están definidos en términos de obras O. En contraposición, en el paradigma de cuestionar el mundo, los planes de estudio se definen en términos de cuestiones Q. Sin embargo, las obras O estudiadas a resultados de investigar estas cuestiones Q juegan un papel central en el proceso de definir y refinar el currículum: a partir de un conjunto Q de cuestiones “primarias”, los contenidos curriculares C estudiados eventualmente incluirán cuestiones Q y respuestas R^*, además de respuestas R° y obras O.

En este punto surgen dos preguntas. La primera se refiere al conjunto Q de cuestiones “primarias”: ¿de dónde vienen estas cuestiones y según qué mecanismos? En el caso del currículum nacional, el conjunto de cuestiones primarias para ser estudiadas en la escuela constituye el “núcleo del currículum” y, por lo tanto, el fundamento del pacto nacional entre la sociedad y la escuela. En consecuencia, corresponde a la nación decidir cuidadosa y democráticamente de qué estará formado el conjunto Q, así como revisar y actualizar periódicamente sus contenidos con un esmerado control del ciclo vital del currículum. Dado que es esencial para la relación entre una sociedad y su sistema escolar, el núcleo del currículum —es decir, las cuestiones “primarias”— jugará un papel decisivo en la skhole de la sociedad. Pero debería ser obvio que el currículum no se define con precisión por las cuestiones primarias solamente. Las indagaciones derivadas de estas cuestiones no están de ningún modo univocamente definidas: como sabemos, una indagación puede seguir diferentes recorridos de estudio e investigación, y las preguntas investigadas, así como las otras obras encontradas y hasta cierto punto estudiadas, dependen del camino tomado. Por consiguiente, incluso si el núcleo del currículum (en el sentido definido anteriormente) se ha definido con precisión, el currículum resultante podría quedar vagamente definido debido a su inherente variabilidad. ¿Cómo se puede manejar esta situación para bien?

Vamos a considerar tripletas didácticas (X, Y, O) donde O es una
familia (¡finita!) de cuestiones. Podemos imaginar dos tipos de tripletas didácticas asociados a una clase de estudiantes. Primero, hay un seminario en el que \(O \) es una familia dinámica de preguntas que incluye las cuestiones primarias y aquellas cuestiones que el estudio generará (recordemos que el guión esbozado tiene que aplicarse tanto a estudiantes avanzados, como a niños pequeños..., así que las palabras que utilizamos deben interpretarse en un sentido muy amplio, lo que permite adaptarlas a una amplia variedad de condiciones concretas). Este seminario será esencialmente co-disciplinar, ya que las cuestiones primarias raramente pertenecen a un ámbito disciplinar único. En segundo lugar, se realizarán talleres para estudiar las preguntas y las obras que habrán aparecido en el seminario, pero que pertenecen esencialmente a una determinada disciplina —habrá, por ejemplo, un taller de química, un taller de matemáticas, un taller de historia, un taller de biología, y así sucesivamente. Los talleres organizados pueden variar dependiendo de las cuestiones primarias estudiadas en el seminario. El hecho clave es que, en este proceso en dos pasos (seminario más talleres), algunas obras \(O \) y disciplinas aparecerán de forma consistentemente recurrente, porque se requerirán más a menudo en las indagaciones, mientras que otras aparecerán de forma esporádica o incluso no surgirán casi nunca. Este “grado de movilización” de una obra \(O \), promediada nacionalmente entre todos los seminarios organizados a un determinado nivel escolar, proporciona el “grado de pertenencia” de la obra \(O \) del currículum considerado, metafóricamente, como un conjunto difuso continuamente redefinido —visión esta más adecuada a la verdadera naturaleza de un currículum real. Como indicamos anteriormente, y en contraposición con la antigua costumbre de imponer un currículum fundado esencialmente en una opinión, el paradigma de cuestionamiento del mundo permite sacar a la luz de manera orgánica qué recursos se utilizan realmente para tratar una cuestión y conocer el mundo, tanto natural como social.

¿Cuál Será el Lugar de las Matemáticas?

En un momento dado, una indagación puede llegar a pararse debido a que alguna herramienta útil no está a disposición de los indagadores. Una razón principal para que una indagación se paraice es que el dominio de partes esenciales de alguna obra \(O \), idealmente requerida
para seguir avanzando, está fuera del alcance de los indagadores. Hay que destacar que esta es la norma común de la investigación, tanto en la escuela como en un equipo de investigación, y no es para nada exclusiva de los “exotéricos de bajo nivel”: es parte integral del arte de investigar—estos “incidentes” no son más que algunos de los altibajos de la aventura del indagador. Pero el camino seguido en una investigación dada, independientemente de sus factores determinantes, tiene consecuencias cruciales en el escenario didáctico descrito anteriormente: si rara vez se recurre a una obra O en todos los seminarios y talleres del país, entonces esta obra O desaparecerá a la larga del currículum nacional. Para ser francos, esto puede provocar la desaparición de partes de las disciplinas tradicionales de la escuela, porque el lugar ocupado por una disciplina en el nuevo currículum dependerá de su eficacia en la provisión de herramientas para indagar sobre las cuestiones planteadas en el currículum; ya no dependerá de ninguna jerarquía de disciplinas establecida antigua o recientemente, considerada como el incuestionable legado del pasado. Las disciplinas tradicionalmente florecientes deberían entonces preocuparse por su futuro en la escuela: ¿continuarán teniendo éxito o languidecerán pronto? La pregunta se plantea para todas las disciplinas, y en particular para las matemáticas.

Si el conocimiento se valora según lo que nos permite comprender racionalmente y conseguir, el problema con el que nos enfrentamos no es tanto el del destino de las disciplinas como el del valor y la calidad de las investigaciones desarrolladas en los seminarios y talleres. Desde este punto de vista, el escenario futuro puede ser mejorado sustancialmente si permitimos agregar “preguntas de control” a cualquier cuestión incluida en el currículum. En cierto sentido, esto suma a un flujo de información ascendente desde la base nacional de seminarios y talleres, un control regulatorio desde arriba hacia las escuelas, operado por autoridades supervisoras. Cualquier cuestión Q puede efectivamente complementarse con sentido por una serie de “cuestiones secundarias” Q^* que servirán para controlar la calidad, el rigor y la profundidad de una indagación sobre la cuestión Q. De esta manera se puede exponer con sentido —y no limitarse a presuponer— la utilidad de una obra O para profundizar en la pregunta estudiada. Por ejemplo, a una cuestión sobre biodiversidad, se podría añadir de forma relevante una cuestión
sobre diversidad genética y, a su vez, una cuestión sobre el sentido y el
interés de la ecuación anterior (1), cuestión que seguramente llamará la
atención de los investigadores sobre la importancia de... las matemáticas
en las indagaciones sobre diversidad genética.

Para las matemáticas, así como para una multitud de obras de los más
variados campos de conocimiento, este sistema de preguntas de control
parece indispensable para recordar a x y a y que investigar una cuestión
puede requerir el uso de herramientas que, desde los límites culturales
que precisamente esperan superar, pueden resultar completamente
alejadas del tema estudiado. Esto es particularmente cierto en el caso de
obras matemáticas. Por razones históricas muy arraigadas, las
matemáticas son hoy en día a la vez formalmente veneradas y, al mismo
tiempo, enérgicamente rechazadas. Mucha gente huye de las
matemáticas tan pronto como ya no están obligados a “hacer”
matemáticas. Esto ha llevado a muchos educadores matemáticos a
utilizar una estrategia de seducción con el fin de recuperar la aprobación
de los “no creyentes en matemáticas”, convenciéndoles de que, como
dicen algunos: ¡“las matemáticas son divertidas”! Permítanme decir
escuetamente que esta estrategia tiene dos defectos principales y que, en
mi opinión, debería descartarse completamente. El primer defecto
parece ser bastante ignorado en el mundo educativo actual: por
profundas razones políticas y morales, la instrucción impartida en la
escuela debe abstenerse de manipular sentimientos y creencias
—deberemos ser impecables en lo que concierne a la libertad de
conciencia de x (y de y). En consecuencia, los profesores de
matemáticas deben resistir la tentación de tratar de inducir a los
estudiantes a “amar” las matemáticas: su única misión es la de llevarles
da conocer las matemáticas, ¡lo que es un poco más exigente! El amor y
el odio son sentimientos personales e íntimos que pertenecen a la esfera
de lo privado. Por supuesto, es muy probable que conocer mejor las
matemáticas provoque alguna forma de aprecio hacia ellas. Pero todo
esto pertenece por completo a la conciencia de cada persona. El
segundo defecto de la tan aclamada estrategia de seducción es, si se
me permite decirlo, su bajo rendimiento. El problema con las
matemáticas, como ocurre con otras disciplinas, es un problema masivo.
La raíz del problema radica, en mi opinión, en el proceso de rechazo
cultural que las matemáticas han venido sufriendo durante mucho
tiempo, con la consecuencia fundamental que, fuera de las propias instituciones matemáticas, las matemáticas desaparecen de la escena “laica”. Tanto es así que muchos documentos sobre temas no ajenos a las matemáticas pueden no contener ninguna señal de matemáticas, hecho que pone en peligro la calidad de muchas investigaciones. Déjenme proponer aquí un ejemplo sencillo. Consideremos la pregunta “¿Por qué flota el hielo en el agua?” Parte de la respuesta es: porque el hielo es menos denso que el agua líquida. Y ¿por qué el hielo es menos denso que el agua líquida? La respuesta habitual es que la disposición de las moléculas de H₂O ocupa más espacio en el hielo que en el agua líquida. Una mirada más precisa a esta respuesta lleva a algunos cálculos sencillos (Ravera, 2012). En efecto, se puede demostrar que, bajo ciertas condiciones, la celda unidad de hielo tiene una altura de 737 pm (es decir, 737·10⁻¹² m), con un rombo como base con lados de longitud 452 pm y un ángulo de 60°. El volumen de esta celda unidad es por lo tanto:

\[V = \frac{\sqrt{3}}{2} \times 452^2 \times 737 \times 10^{-33} \text{L} \quad (2) \]

La masa molar de agua es aproximadamente 18 g/mol. La masa de una celda unidad de hielo se sabe que es igual a la de cuatro moléculas de agua. Tomando como número de Avogadro \(6.02\times10^{23}\) mol⁻¹, la masa \(M\) de una celda unitaria sería:

\[M = \frac{4 \times 18}{6.02 \times 10^{23}} \text{g} \quad (3) \]

La densidad del hielo es por lo tanto:

\[d = \frac{M}{V} = 917\text{g/L} \quad (4) \]

Este resultado (aproximado) confirma que el hielo es más ligero que el agua líquida. El cálculo usa herramientas elementales que todos (supuestamente) dominamos a los 15 años. A pesar de ello, este cálculo generalmente es omitido en la mayoría de las presentaciones relevantes disponibles en Internet. No es una excepción a la regla. En la mayoría de los casos, las matemáticas relativas al tema presentado están voluntariamente ausentes, como si nunca hubieran existido, caso típico
que los profesores de matemáticas deben combatir. En este sentido, en cuanto a matemáticas se refiere, las “cuestiones piedra-de-toque” que deben adjuntarse provisionalmente a cualquier cuestión propuesta para el estudio, se reducen a esto: “¿Cuáles son las matemáticas del tema y cómo el hecho de tomarlas en cuenta puede mejorar la calidad de vuestra respuesta?”

¿Es esta realmente una manera de salir de la trampa histórica en la que las matemáticas han quedado atrapadas? Creo que sí. La estrategia de seducción, que tiene éxito con un número insignificante de personas, no es más que otro escollo. En mi opinión, la única solución realista consiste en tratar de persuadir de forma racional a los ciudadanos y, para empezar, a los estudiantes que prescindir de las matemáticas puede empobrecer crucialmente nuestra comprensión y reducir drásticamente la calidad de nuestra implicación, tanto en el mundo natural como social. Esto, por supuesto, no se logrará solo mediante buenas palabras. Se necesita la acción cotidiana, tanto en las escuelas como fuera de ellas, especialmente en el tiempo libre dedicado al aprendizaje que se otorga a la ciudadanía para enriquecer sus vidas. En esta búsqueda, los profesores de matemáticas jugarán un rol crucial, aunque diferente del actual.

Durante siglos, las matemáticas como institución cultural prosperaron a partir de una doble auto-presentación: se las consideraba compuestas, por un lado, de matemáticas “puras” y, por otro, de las denominadas matemáticas “mixtas”, con su penetrante ethos y su toque ligeramente imperialista. La parte “mixta”, llamada más tarde matemáticas “aplicadas”, ha disminuido progresivamente en la escuela durante las últimas décadas, mientras que lo que quedaba de la primera parte —matemáticas puras, aunque elementales— ha tratado de simbolizar y mantener el viejo “imperio”. Creo que este periodo ha llegado a su fin. Actualmente debemos resucitar el espíritu epistemológico de las matemáticas mixtas, sin arrogancia cultural alguna pero con la voluntad política y social necesaria para revitalizar la idea de que las matemáticas son para nosotros, los seres humanos, una solución, no un problema.
Notas

1 Este trabajo es resultado de la traducción de la ponencia realizada por el investigador Yves Chevallard en el acto de entrega de la Medalla Hans Freudenthal 2009 durante el “International Congress on Mathematical Education” (ICME 12) celebrado en Julio de 2012 en Seul (Corea).

References

Cajori, F. (1993). *A history of mathematical notations (Vols. 1-2).* Mineola, N.Y.: Dover.

Castle, F. (1905). *Practical mathematics for beginners.* Nueva York: Macmillan.

Chrystal, G. (1866). *Algebra: An elementary text-book for the higher classes of secondary schools and for colleges (vol. 1).* Londres: Adam and Charles Black.

Emerson, W. (1768). *The Doctrine of fluxions.* Londres: Richardson.

Miller, J. (2011, November 11). Earliest uses of symbols of relation. Consultado en http://jeff560.tripod.com/relation.html

Ravera, K. (2012). Pourquoi la glace flotte sur l’eau. En Tangente (Eds.), *Mathématiques et chimie. Des liaisons insoupçonnées* (pp. 80-82). París: Pole.

Yves Chevallard is full professor at the IUFM Aix-Marseille Université, France.

Contact Address: Direct correspondence concerning this article should be addressed to the author at: IUMF Aix-Marseille, 32 Rue Eugène Cas 13248 Marseille Cedex 04. E-mail address: y.chevallard@free.fr.