The Energy of Graphs and Matrices

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis,
Memphis TN 38152, USA, e-mail: vnikifrv@memphis.edu

November 1, 2018

Abstract

Given a complex $m \times n$ matrix A, we index its singular values as $\sigma_1(A) \geq \sigma_2(A) \geq \ldots$ and call the value $\mathcal{E}(A) = \sigma_1(A) + \sigma_2(A) + \ldots$ the energy of A, thereby extending the concept of graph energy, introduced by Gutman. Let $2 \leq m \leq n$, A be an $m \times n$ nonnegative matrix with maximum entry α, and $\|A\|_1 \geq n\alpha$. Extending previous results of Koolen and Moulton for graphs, we prove that

$$\mathcal{E}(A) \leq \frac{\|A\|_1}{\sqrt{mn}} + \sqrt{(m - 1) \left(\text{tr}(AA^*) - \|A\|_1^2 \right)} \leq \alpha \frac{\sqrt{n(m + \sqrt{m})}}{2}.$$

Furthermore, if A is any nonconstant matrix, then

$$\mathcal{E}(A) \geq \sigma_1(A) + \frac{\text{tr}(AA^*) - \sigma_2(A)}{\sigma_2(A)}.$$

Finally, we note that Wigner’s semicircle law implies that

$$\mathcal{E}(G) = \left(\frac{4}{3\pi} + o(1)\right) n^{3/2}$$

for almost all graphs G.

Keywords: graph energy, graph eigenvalues, singular values, matrix energy, Wigner’s semicircle law

Our notation is standard (e.g., see [3], [4], and [9]); in particular, we write $M_{m,n}$ for the set of $m \times n$ matrices with complex entries, and A^* for the Hermitian adjoint of A. The singular values $\sigma_1(A) \geq \sigma_2(A) \geq \ldots$ of a matrix A are the square roots of the eigenvalues of...
Note that if $A \in M_{n,n}$ is a Hermitian matrix with eigenvalues $\mu_1(A) \geq \ldots \geq \mu_n(A)$, then the singular values of A are the moduli of $\mu_i(A)$ taken in descending order.

For any $A \in M_{m,n}$, call the value $\mathcal{E}(A) = \sigma_1(A) + \ldots + \sigma_n(A)$ the energy of A. Gutman introduced $\mathcal{E}(G) = \mathcal{E}(A(G))$, where $A(G)$ is the adjacency matrix of a graph G; in this narrow sense $\mathcal{E}(A)$ has been studied extensively (see, e.g., [2], [3], [10], [11], [12], [13], and [14]). In particular, Koolen and Moulton proved the following sharp inequalities for a graph G of order n and size $m \geq n/2$,

$$\mathcal{E}(G) \leq 2m/n + \sqrt{(n-1)(2m-(2m/n)^2) \leq (n/2)(1+\sqrt{n}).} \tag{1}$$

Moreover, Koolen and Moulton conjectured that for every $\varepsilon > 0$, for almost all $n \geq 1$, there exists a graph G with $\mathcal{E}(G) \geq (1-\varepsilon)(n/2)(1+\sqrt{n})$.

In this note we give upper and lower bounds on $\mathcal{E}(A)$ and find the asymptotics of $\mathcal{E}(G)$ of almost all graphs G. We first generalize inequality (1) in the following way.

Theorem 1 If $m \leq n$, A is an $m \times n$ nonnegative matrix with maximum entry α, and $\|A\|_1 \geq n\alpha$, then

$$\mathcal{E}(A) \leq \frac{\|A\|_1}{\sqrt{mn}} + \sqrt{(m-1) \left(tr(AA^*) - \frac{\|A\|_1^2}{mn} \right)} \tag{2}$$

From here we derive the following absolute upper bound on $\mathcal{E}(A)$.

Theorem 2 If $m \leq n$ and A is an $m \times n$ nonnegative matrix with maximum entry α, then,

$$\mathcal{E}(A) \leq \alpha \frac{(m+\sqrt{m})\sqrt{n}}{2} \tag{3}$$

Note that Theorems 1 and 2 improve on the bounds for the energy of bipartite graphs given in [11].

On the other hand, for every $A \in M_{m,n}$, $(m,n \geq 2)$, we have $\sigma_1^2(A) + \sigma_2^2(A) + \ldots = tr(AA^*)$, and so

$$tr(AA^*) - \sigma_1^2(A) = \sigma_2^2 + \ldots + \sigma_m^2 \leq \sigma_2(A)(\mathcal{E}(A) - \sigma_1(A)).$$

Thus, if A is a nonconstant matrix, then

$$\mathcal{E}(A) \geq \sigma_1(A) + \frac{tr(AA^*) - \sigma_1^2(A)}{\sigma_2(A)} \tag{4}.$$
If A is the adjacency matrix of a graph, this inequality is tight up to a factor of 2 for almost all graphs. To see this, recall that the adjacency matrix $A(n, 1/2)$ of the random graph $G(n, 1/2)$ is a symmetric matrix with zero diagonal, whose entries a_{ij} are independent random variables with $E(a_{ij}) = 1/2$, $\text{Var}(a_{ij}^2) = 1/4 = \sigma^2$, and $E(a_{ij}^{2k}) = 1/4^k$ for all $1 \leq i < j \leq n, k \geq 1$. The result of Füredi and Komlós \cite{6} implies that, with probability tending to 1,

$$
\sigma_1(G(n, 1/2)) = (1/2 + o(1)) n,
$$

$$
\sigma_2(G(n, 1/2)) < (2\sigma + o(1)) n^{1/2} = (1 + o(1)) n^{1/2}.
$$

Hence, inequalities (1) and (4) imply that

$$
(1/2 + o(1)) n^{3/2} > \mathcal{E}(G) > (1/2 + o(1)) n + \frac{(1/4 + o(1)) n^2}{(1 + o(1)) n^{1/2}} = (1/4 + o(1)) n^{3/2}
$$

for almost all graphs G.

Moreover, Wigner’s semicircle law \cite{15} (we use the form given by Arnold \cite{1}, p. 263), implies that

$$
\mathcal{E}(A(n, 1/2)) = n \left(\frac{2}{\pi} \int_{-1}^{1} |x| \sqrt{1 - x^2} dx + o(1) \right) = \left(\frac{4}{3\pi} + o(1) \right) n,
$$

and so $\mathcal{E}(G) = \left(\frac{4}{3\pi} + o(1) \right) n^{3/2}$ for almost all graphs G.

Proof of Theorem 1 We adapt the proof of (1) in \cite{10}. Letting i to be the all ones m-vector, Rayleigh’s principle implies that $\sigma_1^2(A) m \geq \langle AA^* i, i \rangle$; hence, after some algebra, $\sigma_1(A) \geq ||A||_1 / \sqrt{mn}$. The AM-QM inequality implies that,

$$
\mathcal{E}(A) - \sigma_1(A) \leq \sqrt{(m - 1) \sum_{i=2}^{n} \sigma_i^2(A)} = \sqrt{(m - 1) (tr(AA^*) - \sigma_1^2(A))}.
$$

The function $x \to x + \sqrt{(m - 1)(tr(AA^*) - x^2)}$ is decreasing if $\sqrt{tr(AA^*)}/m \leq x \leq \sqrt{tr(AA^*)}$; hence, in view of

$$
tr(AA^*) = \sum_{j=1}^{n} \sum_{k=1}^{m} |a_{kj}|^2 = \sum_{j=1}^{n} \sum_{k=1}^{m} a_{kj}^2 \leq \alpha \sum_{j=1}^{n} \sum_{k=1}^{m} a_{kj} = \alpha ||A||_1,
$$

we find that $\sqrt{tr(AA^*)}/m \leq ||A||_1 / \sqrt{mn}$, and inequality (2) follows.
Proof of Theorem 2: If \(\|A\|_1 \geq n\alpha \), then Theorem 1 and \(\text{tr}(AA^*) \leq \alpha \|A\|_1 \) imply that

\[
\mathcal{E}(A) \leq \frac{\|A\|_1}{\sqrt{mn}} + \sqrt{(m-1)\left(\alpha \|A\|_1 - \frac{\|A\|_1^2}{mn}\right)}.
\]

The right-hand side is maximal for \(\|A\|_1 = (m + \sqrt{m})\alpha n / 2 \) and inequality (3) follows. If \(\|A\|_1 < n\alpha \), we see that

\[
\mathcal{E}(A) \leq \sqrt{m\text{tr}(AA^*)} \leq \sqrt{m\alpha \|A\|_1} \leq \sqrt{mn\alpha} \leq \alpha \frac{(m + \sqrt{m}) \sqrt{n}}{2},
\]

completing the proof. \(\square \)

Remarks (1) The bound (2) may be refined using more sophisticated lower bounds on \(\sigma_1(A) \). (2) Inequality (4) and the result of Friedman [5] can be used to obtain lower bounds for the energy of “almost all” \(d \)-regular graphs.

References

[1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20 (1967) 262–268.

[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004), 287–295.

[3] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998), xiv+394 pp.

[4] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980, 368 pp.

[5] J. Friedman, A proof of Alon’s Second Eigenvalue conjecture, preprint.

[6] Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233–241.

[7] I. Gutman, The energy of a graph, Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978), 1–22.

[8] I. Gutman, The energy of a graph: old and new results, Algebraic Combinatorics and Applications (Gössweinstein, 1999), Springer, Berlin, 2001, pp. 196–211.
[9] R. Horn and C. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1985, xiii+561 pp.

[10] J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001), 47–52.

[11] J.H. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs Combin. 19 (2003), 131–135.

[12] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004), 446–455.

[13] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra Appl. 414 (2006), 378–382.

[14] D. Stevanović, I. Stanković, Remarks on hyperenergetic circulant graphs, Linear Algebra Appl. 400 (2005), 345–348.

[15] E. Wigner, On the Distribution of the Roots of Certain Symmetric Matrices, Ann. of Math. 67(1958), 325-328.