ADDENDUM TO:
“CONSTRUCTING QUANTIZED ENVELOPING ALGEBRAS VIA INVERSE LIMITS OF FINITE DIMENSIONAL ALGEBRAS”

STEPHEN DOTY

Abstract. It is shown that the question raised in Section 5.7 of [1] has an affirmative answer.

We use the notation and numbering from [1]. In Section 5.7 we raised the question: does \(R \) \(U \) embed in \(\hat{R} \) \(U \)? The purpose of this addendum is to show that the answer is affirmative. To be precise, we have the following result.

Theorem. The map \(R^\theta : R\ U \rightarrow \hat{R} \) \(U \) defined in 5.7(a) is injective. Hence, \(R\ U \) is isomorphic to the \(R \)-subalgebra of \(\hat{R} \) \(U \) generated by all \(\hat{E}^{(m)}_{\pm i} \) \((i \in I, m \geq 0)\) and \(\hat{K}_h \) \((h \in Y)\).

Proof. Consider the commutative diagram of \(R \)-algebra maps

for any finite saturated \(\pi \subset \pi' \). The universal property of inverse limits guarantees the existence of a unique \(R \)-algebra map \(R^\theta : R\ U \rightarrow \hat{R} \) \(U \) making the diagram commute, and one easily checks that this map coincides with the map defined in 5.7(a). We need to show that \(R^\theta \) is injective.

Date: 17 October 2009.

Supported by a Mercator grant from the DFG.
We note that from the definitions it follows that for any \(\pi \) the maps \(p_\pi \) and \(\dot{p}_\pi \) are related by the identity \(1_\pi (1 \otimes p_\pi)(u)_1 = (1 \otimes \dot{p}_\pi)(1_\pi u_1) \), for any \(u \in U, \lambda, \mu \in X \). It follows immediately that
\[
1_\lambda (1 \otimes p_\pi)(u)_1 = (1 \otimes \dot{p}_\pi)(1_\lambda u_1),
\]
for any \(u \in RU, \lambda, \mu \in X \). This is needed below.

Let \(u \in \ker R\theta \) and \(\lambda, \mu \in X \). Then \(\hat{1}_\lambda R\theta(u) \hat{1}_\mu = 0 \) in \(R\hat{U} \). This implies that \(1_\lambda (1 \otimes p_\pi)(u)_1 = 0 \) in \(RS(\pi) \) for any \(\pi \), and hence that \((1 \otimes \dot{p}_\pi)(1_\lambda u_1)_1 = 0 \) in \(R\hat{U} \) for any \(\pi \). Thus by Lemma 5.2 we have \(1_\lambda u_1 \in \cap_\pi R\hat{U}[\pi^c] \). Since the intersection is zero, the equality \(1_\lambda u_1 \in R\hat{U} \) for any \(\lambda, \mu \in X \). We claim this implies that \(u = 0 \).

To see the claim we observe that the construction of \(\dot{U} \) given in Section 3.1 and [3, Chapter 23] commutes with change of scalars. This is easily verified and left to the reader. It means that \(R\pi_{\lambda,\mu}(u) = 0 \) where
\[
R\pi_{\lambda,\mu} : RU \to RU/\left(\sum_{h \in Y} (K_h - \xi^{(h,\lambda)})RU + \sum_{h \in Y} RU(K_h - \xi^{(h,\mu)}) \right)
\]
is the canonical projection map. Thus it follows that
\[
u \in \sum_{h \in Y} (K_h - \xi^{(h,\lambda)})RU + \sum_{h \in Y} RU(K_h - \xi^{(h,\mu)}).
\]
Since this is true for all \(\lambda, \mu \in X \) it follows that \(u = 0 \) as claimed. \(\square \)

From [3 31.1.5] we recall the category \(RC \) of unital \(R\hat{U} \)-modules. As in [3 23.1.4] one easily checks that this is the same as the category of \(RU \)-modules admitting a weight space decomposition. Following [3 31.2.4], we say that an object \(M \) of \(RC \) is integrable if for any \(m \in M \) there exists some \(n_0 \) such that
\[
E_i^{(n)} m = 0 = E_{-i}^{(n)} m
\]
for all \(n \geq n_0 \).

We have the following consequence of the theorem, which generalizes [2 Proposition 5.11] and [3 Proposition 3.5.4].

Corollary. Suppose that \(u \in RU \) acts as zero on all integrable objects of \(RC \). Then \(u = 0 \).

Proof. The natural quotient map \(1 \otimes p_\pi : RU \to RS(\pi) \) makes \(RS(\pi) \) into a left \(RU \)-module, by defining \(u \cdot s = \bar{u} s \) (for \(u \in RU, s \in RS(\pi) \)) where \(\bar{u} \) is the image of \(u \). It is easily checked that, as a left \(RU \)-module, \(RS(\pi) \) is an integrable object of \(RC \). Hence by hypothesis \(u \) acts as zero on \(RS(\pi) \), for any finite saturated subset \(\pi \) of \(X^+ \). It follows
that u lies in the intersection of the kernels of the various $1 \otimes p_r$. By the commutative diagram above this implies that $R\theta(u) = 0$. By the theorem, $u = 0$. □

References

[1] S. Doty, Constructing quantized enveloping algebras via inverse limits of finite dimensional algebras, *J. Algebra* 321 (2009), 1225–1238.
[2] J.C. Jantzen, *Lectures on Quantum Groups*, Amer. Math. Soc. 1996.
[3] G. Lusztig, *Introduction to Quantum Groups*, Birkhäuser Boston 1993.

Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois 60626 USA

E-mail address: doty@math.luc.edu