Characterization of an attenuated SARS-CoV-2 variant with a deletion at the S1/S2 junction of the spike protein

Pui Wang¹, Siu-Ying Lau¹, Shaofeng Deng¹, Pin Chen¹, Bobo Wing-Yee Mok¹, Anna Jinxia Zhang¹, Andrew Chak-Yiu Lee¹, Kwok-Hung Chan¹, Rachel Chun-Yee Tam¹, Haoran Xu¹, Runhong Zhou¹, Wenjun Song¹,², Li Liu¹, Kelvin Kai-Wang To¹, Jasper Fuk-Woo Chan¹, Zhiwei Chen¹, Kwok-Yung Yuen¹ & Honglin Chen¹

SARS-CoV-2 is of zoonotic origin and contains a PRRA polybasic cleavage motif which is considered critical for efficient infection and transmission in humans. We previously reported on a panel of attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction of the spike protein. Here, we characterize pathogenicity, immunogenicity, and protective ability of a further cell-adapted SARS-CoV-2 variant, Ca-DelMut, in in vitro and in vivo systems. Ca-DelMut replicates more efficiently than wild type or parental virus in Vero E6 cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut causes no obvious pathological changes and does not induce elevation of proinflammatory cytokines, but still triggers a strong neutralizing antibody and T cell response in hamsters and mice. Ca-DelMut immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, with little sign of virus replication in the upper or lower respiratory tract, demonstrating sterilizing immunity.
The emergence of SARS-CoV-2, a novel zoonotic origin β-coronavirus, has led to the first documented pandemic caused by a coronavirus1,2. The virus continues to circulate globally in humans with rapidly increasing numbers of infections and casualties each day (https://coronavirus.jhu.edu/map.html). While coronaviruses from bats and pangolins have been found to be closely related to SARS-CoV-23–6, the direct ancestral virus which attained cross-species transmission and the intermediate animal host source of human infections have not been defined. In the past two decades, three coronaviruses have jumped the species barrier to infect humans7. SARS-CoV and MERS-CoV show such motif but was fatal in 10% of infected cases16. The polybasic cleavage site is unlikely to be solely responsible for pathogenicity in human infections10,17. If the PRRA polybasic cleavage motif was not a pathogenic element in human infections, Ca-DelMut replicates to a significantly higher titer at the 24 and 48 h time points than the WT virus, with Ca-DelMut showing the strongest growth ability in both cell types (Fig. 2A). Notably, Ca-DelMut also replicated faster at 30 °C than the WT virus (HK-13) (Supplementary Fig. 1). Using HIV pseudoviruses (expressing WT or mutant spike proteins) to infect 293T-hACE2 cells, it was found that deletion of 30 bp in the S1/S2 junction significantly enhances cell entry (Supplementary Fig. 3C). Besides the 30 bp deletion, we also found that a mutation in the ORF8 (L84S) of Ca-DelMut increases protein expression, but it is not known if this mutation contributes to virus growth ability (Supplementary Fig. 3A). Biological significance of substitutions in NSP3a (A578V) and E (F20S) is not clear.

Results

Growth and pathogenic properties of Ca-DelMut in vitro and in vivo

We previously identified and characterized a panel of SARS-CoV-2 variants containing 15–30 bp deletions at the S1/S2 junction of the spike protein. One of the variants, Del-Mut-1, which contains a 30 bp (10 amino acid) in-frame deletion spanning the PRRA polybasic cleavage motif was shown to be attenuated in a hamster infection model18. We further passaged this mutant in Vero E6 cells and obtained a variant with additional mutations in multiple genes in the background of Del-Mut-1, designated Ca-DelMut (Fig. 1 and Supplementary Table 1). The growth properties of Ca-DelMut, parental Del-Mut-1, and a WT SARS-CoV-2 (HK-13) were analyzed in Vero E6 and Calu-3 cells. It is interesting to note that in Vero E6 cells both Del-Mut-1 and Ca-DelMut grow to a significantly higher titer at the 24 and 48 h time points than the WT virus, with Ca-DelMut showing the strongest growth ability in both cell types (Fig. 2A). Notably, Ca-DelMut also replicated faster at 30 °C than the WT virus (HK-13) (Supplementary Fig. 1). Using HIV pseudoviruses (expressing WT or mutant spike proteins) to infect 293T-hACE2 cells, it was found that deletion of 30 bp in the S1/S2 junction significantly enhances cell entry (Supplementary Fig. 3C). Besides the 30 bp deletion, we also found that a mutation in the ORF8 (L84S) of Ca-DelMut increases protein expression, but it is not known if this mutation contributes to virus growth ability (Supplementary Fig. 3A). Biological significance of substitutions in NSP3a (A578V) and E (F20S) is not clear.

Attenuation of Del-Mut-1 was reported previously18.

To understand the role of the polybasic cleavage site in infection and replication of SARS-CoV-2 and determine the stability of deletion variants, a previously characterized deletion mutant18, Del-Mut-1, was further adapted in Vero E6 cells to obtain a highly attenuated variant of SARS-CoV-2 virus, designated Ca-DelMut (cell-adapted deletion mutant). We analyzed the growth properties of this variant in cells and evaluated its pathogenicity in a hamster model. While it is attenuated in the ability to cause disease in animals, Ca-DelMut replicates to a higher titer in Vero E6 cells than a wild-type (WT) SARS-CoV-2 virus. High titers of neutralizing antibodies and significant numbers of virus-specific CD4+ and CD8+ T cells were detected in animals previously immunized with the Ca-DelMut variant. However, infection with Ca-DelMut does not induce the high levels of proinflammatory cytokines seen in WT virus infections. Importantly, Ca-DelMut-immunized hamsters showed full protection against challenge with two different strains of WT SARS-CoV-2 virus.
Immune response to infection with Ca-DelMut in hamsters. Impaired or dysfunctional immune responses have been characterized as an important mechanism of pathogenesis in human SARS-CoV-2 infections. To test if infection with Ca-DelMut may induce a different immune response from that elicited by WT SARS-CoV-2, we examined interferon and cytokine expression in the lung tissues of virus-infected hamsters. In contrast to infection with WT HK-13 strain, we found that the Ca-DelMut variant does not provoke elevated levels of cytokines in infected hamsters (Fig. 3) and Supplementary Fig. 5). Aberrant activation of IL-6 has been recognized as an important biomarker of disease severity in SARS-CoV-2-infected patients. Remarkably, activation of IL-6 was only observed in HK-13-strain-infected hamsters but not in those infected with Ca-DelMut variant. We
then analyzed the adaptive immune response in hamsters previously infected with Ca-DelMut or WT virus. Levels of receptor binding domain (RBD)-specific antibodies in sera collected 3 weeks after infection were determined. Sera from hamsters previously infected with Ca-DelMut or that had recovered from WT virus (HK-001a)25 infection showed significant induction of RBD-specific antibodies (Fig. 4A and Supplementary Fig. 6A).

Cell-based neutralization assays also demonstrated strong neutralizing activity against the WT virus strain HK-13 in sera collected from both Ca-DelMut-variant- and WT SARS-CoV-2 virus (HK-13)-infected hamsters (Fig. 4B and Supplementary Fig. 6B).

Effective T cell activation is critical to prevent severe disease in COVID-19 patients and strong T cell responses have been shown in convalescent individuals26,27. We examined whether immunization with Ca-DelMut induces a specific T cell response in animals.

Because there is lack of reagents available for immunological analysis of hamsters, we utilized an Ad5-hACE2 adenovirus transduced mouse model to estimate T cell responses to Ca-DelMut immunization. Mice were transduced with Ad5-hACE2 virus through the nasal route 5 days prior to immunization with Ca-DelMut SARS-CoV-2 variant and T cell responses in lungs and spleens analyzed after 4 weeks (Fig. 5A). Using T cell epitopes specific to the N and spike proteins of SARS-CoV-2, we found that immunization with Ca-DelMut induces significant levels of CD4$^+$ and CD8$^+$ T cells in
both the lungs and spleens of mice (Fig. 5B, C). These results indicate that infection with Ca-DelMut leads to an altered immune response that does not induce the elevated levels of proinflammatory cytokines seen in WT SARS-CoV-2 virus infection. Nonetheless, Ca-DelMut elicits a strong adaptive immune response, as demonstrated by significant levels of neutralizing antibody production and induction of specific CD4+ and CD8+ T cells recognizing viral NP and spike proteins, respectively.

Infection with Ca-DelMut confers full protection against SARS-CoV-2 infection with sterilizing immunity. Because infection with Ca-DelMut causes no apparent disease in hamsters while inducing a strong neutralizing antibody response in hamsters and T cell activation in transduced mice expressing the human ACE2 receptor, we examined the potential of Ca-DelMut as a live attenuated virus vaccine to prevent SARS-CoV-2 virus infection and disease. Four weeks after infection with Ca-DelMut live attenuated virus, hamsters were challenged with WT SARS-CoV-2 viruses. Two strains of SARS-CoV-2, HK-13 and HK-95, were used in the challenge experiment. HK-95 contains a D614G substitution in the spike protein, which has been suggested to bestow SARS-CoV-2 with higher infectivity in humans.28 Negligible body weight loss was observed in Ca-DelMut-vaccinated hamsters infected with either strain of WT virus, whereas control hamsters not immunized with Ca-DelMut lost about 12–15% of their body weight by day 5 post-infection (Fig. 6A and Supplementary Fig. 7). Analyses of virus replication in the lung and nasal turbinate tissues of re-challenged hamsters showed that Ca-DelMut infection provides sterilizing immunity against subsequent challenge with either HK-13 or HK-95 SARS-CoV-2, with the quantity of virus being either very low, as seen in one-third of the HK-95 challenge group on day 2, or below the level of detection in both lung and nasal tissues on days 2 and 5 post-infection (Fig. 6B and Supplementary Fig. 7). We found that HK-95 replicates more efficiently than HK-13, and it is possible that a higher inoculum of Ca-DelMut may be needed to ensure complete blockage of virus replication in the upper respiratory tract of HK-95-challenged hamsters. Histopathological analysis showed that mock-vaccinated hamster lungs collected at day 5 post-infection with either WT virus strain showed extensive alveolar exudation and infiltration; bronchiolar epithelial cell death with luminal exudation and cell debris were also observed (Fig. 7). In contrast, Ca-DelMut-inoculated hamsters challenged with either strain of WT SARS-CoV-2 virus only experienced mild regional alveolar septal infiltration and blood vessel congestion at days 2 and 5 post-infection. No other pulmonary histopathological changes were observed. Our experiment also showed that a lower inoculum of Ca-DelMut (1×10^3 pfu) is sufficient to provide full protection against WT virus challenge (Supplementary Fig. 8). These data indicate that prior infection with live attenuated Ca-DelMut variant virus provides complete protection against infection with WT SARS-CoV-2 viruses in hamsters.
Coronaviruses are zoonotic pathogens with distinct cross-species transmissibility. Besides 229E, OC43, HKU-1, and NL63, which have long been circulating in humans, SARS-CoV, MERS-CoV, and SARS-CoV-2 have jumped the species barrier to infect humans in recent years. SARS-CoV has not been detected since 2004, while MERS-CoV is restricted to a few countries in the Middle East with only sporadic human transmissions since 2012. SARS-CoV-2 virus utilizes the same cellular receptor as SARS-CoV-1, ACE2, for mediating human infection but has exhibited a distinctive infectivity and transmissibility profile since it was first recognized in humans in Wuhan, China, in December 2019. There is strong interest in understanding how SARS-CoV-2 has acquired the unique ability to infect and transmit efficiently in humans. SARS-CoV-2 contains a PRRA polybasic motif not seen in the most closely related bat and pangolin coronaviruses currently known. A peptide assay has shown that the polybasic cleavage site harbored within SARS-CoV-2 is easily accessible to proteases that activate the coronavirus spike protein. Although furin-like polybasic cleavage sites have been found in the human coronaviruses OC43 and HKU1, the presence of a PRRA motif at the S1/S2 junction of the spike protein of SARS-CoV-2 virus is considered a critical element for enhanced coronavirus infectivity in humans and zoonotic potential. This contention is supported by structural comparison of SARS-CoV-2 and bat RaTG13 spike proteins, which revealed that acquisition of the furin-cleavage site could facilitate a more optimal conformation for spike protein to bind to the ACE2 receptor. How this polybasic cleavage motif was acquired by SARS-CoV-2 remains unclear. Since both bat RaTG13- and pangolin SARS-CoV-2-related viruses that contain highly similar spike protein receptor domains to SARS-CoV-2 do not contain such motifs, it is possible that this polybasic cleavage site was acquired either through recombination with a human coronavirus containing the motif or through another mechanism during virus replication in the early stage of human transmission. If the polybasic cleavage site is one of the essential elements providing SARS-CoV-2 with increased infectivity and pathogenicity in humans, removal of this determinant could logically attenuate SARS-CoV-2 into a mild respiratory virus similar to the less pathogenic common coronaviruses currently circulating. Our previous report on a panel of attenuated variants with deletions at the S1/S2 junction supports this contention. This study has obtained a further Vero E6-adapted variant, Ca-DelMut, with additional mutations in spike and other genes (Fig. 1). One of the mutations, V367F, is situated inside the RBD domain and further study is required to understand if it may associate with altered receptor binding activity.

Discussion

Coronaviruses are zoonotic pathogens with distinct cross-species transmissibility. Besides 229E, OC43, HKU-1, and NL63, which have long been circulating in humans, SARS-CoV, MERS-CoV, and SARS-CoV-2 have jumped the species barrier to infect humans in recent years. SARS-CoV has not been detected since 2004, while MERS-CoV is restricted to a few countries in the Middle East with only sporadic human transmissions since 2012. SARS-CoV-2 virus utilizes the same cellular receptor as SARS-CoV-1, ACE2, for mediating human infection but has exhibited a distinctive infectivity and transmissibility profile since it was first recognized in humans in Wuhan, China, in December 2019. There is strong interest in understanding how SARS-CoV-2 has acquired the unique ability to infect and transmit efficiently in humans. SARS-CoV-2 contains a PRRA polybasic motif not seen in the most closely related bat and pangolin coronaviruses currently known. A peptide assay has shown that the polybasic cleavage site harbored within SARS-CoV-2 is easily accessible to proteases that activate the coronavirus spike protein. Although furin-like polybasic cleavage sites have been found in the human coronaviruses OC43 and HKU1, the presence of a PRRA motif at the S1/S2 junction of the spike protein of SARS-CoV-2 virus is considered a critical element for enhanced coronavirus infectivity in humans and zoonotic potential. This contention is supported by structural comparison of SARS-CoV-2 and bat RaTG13 spike proteins, which revealed that acquisition of the furin-cleavage site could facilitate a more optimal conformation for spike protein to bind to the ACE2 receptor. How this polybasic cleavage motif was acquired by SARS-CoV-2 remains unclear. Since both bat RaTG13- and pangolin SARS-CoV-2-related viruses that contain highly similar spike protein receptor domains to SARS-CoV-2 do not contain such motifs, it is possible that this polybasic cleavage site was acquired either through recombination with a human coronavirus containing the motif or through another mechanism during virus replication in the early stage of human transmission. If the polybasic cleavage site is one of the essential elements providing SARS-CoV-2 with increased infectivity and pathogenicity in humans, removal of this determinant could logically attenuate SARS-CoV-2 into a mild respiratory virus similar to the less pathogenic common coronaviruses currently circulating. Our previous report on a panel of attenuated variants with deletions at the S1/S2 junction supports this contention. This study has obtained a further Vero E6-adapted variant, Ca-DelMut, with additional mutations in spike and other genes (Fig. 1). One of the mutations, V367F, is situated inside the RBD domain and further study is required to understand if it may associate with altered receptor binding activity.

Characterization of Ca-DelMut reveals that it has low pathogenicity and does not provoke an inflammatory response in hamsters, and that it induces adaptive immunity protective against subsequent infection with more pathogenic SARS-CoV-2 strains. Ca-DelMut attenuated virus could also be a useful tool for studying SARS-CoV-2 replication, host tissue tropism, and transmissibility.

Although both SARS-CoV-1 and SARS-CoV-2 utilize ACE2 to mediate infection, the distinctive infectivity and pathogenicity displayed by SARS-CoV-2 is likely to be associated with the acquisition of a polybasic furin-cleavage site in the spike protein.
which, together with enhanced binding affinity of the SARS-CoV-2 RBD for ACE2, would significantly broaden the tissue tropism of this virus. Deregulated innate immunity during the early stage of infection in the upper respiratory tract may determine the subsequent outcome regarding dissemination to the lower respiratory tract and disease severity. We found that Ca-DelMut replicates to comparable levels to WT virus in the nasal turbinates but less effectively than WT virus in the lungs (Fig. 2C). Importantly, while replication of Ca-DelMut variant was observed in lung tissues, the elevated expression of proinflammatory cytokines elicited in WT-virus-infected hamsters was not detected (Fig. 3 and Supplementary Fig. 5). These observations clearly suggest that the polybasic cleavage motif is a virulence element in SARS-CoV-2 and that its removal makes SARS-CoV-2 much less pathogenic, and more similar to a common cold respiratory coronavirus. We believe that SARS-CoV-2 will continue to undergo further adaptation as it circulates in humans. Our previous study revealed that variants with deletions at the S1/S2 junction are present at low levels in clinical specimens. In 2003, the SARS-like coronavirus characterized from civet cats and early-outbreak human SARS-CoV isolates contained a 29 bp sequence in the ORF8 sequence, which was deleted following its incorporation into the ORF7b and ORF8 genes of SARS-CoV-2, although the significance of these alterations is currently unknown. Deletions in ORF7b and ORF8 have also been observed in SARS-CoV-2, although the significance of these alterations is currently unknown. Interestingly, two ORF8 mutations, V62L and L84S, were identified in the Ca-DelMut variant (Fig. 1 and Supplementary Table 1). It remains to be seen if continued evolution of SARS-CoV-2 in humans will subsequently select for less-pathogenic variants similar to Ca-DelMut, or with other mutations. Further studies on the role of ORF8 in host adaptation are required.

Some early studies suggested that anti-SARS-CoV-2 antibodies decline rapidly, while recent studies suggest the presence of immunological memory in naturally infected individuals. Several SARS-CoV-2 vaccines have been developed and are being used in humans. However, it remains to be seen if current vaccine strategies will be able to provide adequate and sufficiently long-lasting immunity to prevent infection and alleviate disease severity and spread. This study showed that Ca-DelMut induces a different innate immune response to that observed in WT virus infections in an animal model and evokes sterilizing protective adaptive immunity against challenge with WT virus (Figs. 4–6). Because Ca-DelMut is attenuated, it does not provoke proinflammatory cytokines that could interfere with the induction of adaptive immunity. It is possible that the Ca-DelMut variant may be able to stimulate more balanced and long-lasting immunity; further study is required to comprehensively compare the immune profiles induced by Ca-DelMut and WT SARS-CoV-2 viruses. Understanding the immunological response to infection with Ca-DelMut may provide valuable information for improving current vaccine strategies. Given the high replication efficiency, low pathogenicity, and maintenance of original antigenicity of Ca-DelMut, it may be an ideal strain for production of an inactivated vaccine for use in humans.

Methods

Generation of cell-adapted Del-Mut (Ca-DelMut) virus. Del-Mut viruses were prepared as previously described. To generate Ca-DelMut virus, the Del-Mut-
Expression of proinflamatory cytokines and chemokines. Expression of proinflammatory cytokines was quantified using a qRT-PCR technique similar to that described in a previous study. Briefly, total RNA was extracted from hamster lungs using RNAzol RT reagent (MRC) according to the manual. cDNA was synthesized using a High Capacity cDNA Reverse Transcription Kit (Invitrogen) and oligo dT primers following the protocol provided. qPCR was performed using SYBR Premix Ex Taq (Takara) reagent and gene-specific primers in an LC480 PCR machine (Roche). PCR conditions were as follows: initial denaturation: 95 °C for 5 min, 45 cycles of amplification: 95 °C for 10 s, 60 °C for 10 s, and 72 °C for 10 s, and melting curve analysis: 65 °C to 97 °C at 0.1 °C/s. Expression of target genes was normalized to internal reference genes (hamster γ-actin or GAPDH) and the comparative Ct (2−ΔΔCt) method utilized to calculate the cytokine expression profile.

Histopathology and immunostaining of viral antigens. Organs were fixed in 10% PBS buffered formalin and processed into paraffin-embedded blocks. Tissue sections were stained with haematoxylin and eosin (H&E) and examined by light microscopy as in a previous study. For staining of viral antigens in lung tissue, indirect immunofluorescence assay was used. Samples were deparaffinized and rehydrated. After blocking with normal goat serum for 30 min at room temperature, a rabbit anti-SARS-CoV-2 nucleoplas antibody (1:1000 dilution) was added and incubated at 4 °C overnight, followed by washing and incubation with a FITC-conjugated goat anti-rabbit IgG antibody (Abcam) (1:500 dilution) for 1 h at room temperature. Images were captured by/confocal microscopy using a Carl Zeiss LSM 700.

T cell response analysis. Nine 6–8-week-old BALB/c mice were transduced with Ad5-hACE2 virus (4 × 10^6 pfu). After 5 days, the mice were immunized with Ca-DelMut (1 × 10^6 pfu) or mock immunized with PBS (n = 4). After 4 weeks, lung and spleen tissues were collected. Splenocytes were isolated and homogenized through a cell strainer, then suspended in RPMI medium (10% fetal bovine serum (FBS) and penicillin/streptomycin). Lung tissue was chopped and digested in RPMI solution containing collagenase II (1 mg/ml) (Sigma) and DNase (10 μg/ml) (Roche) for 1 h at 37 °C. Red blood cells were lysed by addition of lysis solution (BD). After three washes with RPMI, cells were counted and resuspended in RPMI. Cells were stimulated in RPMI solution containing 1 mg/ml of either spike or NP peptide pool (sets of 15-mer) overlapping by 11 amino acids (spanning the whole protein) or no peptide control. After 1 h, brefeldin A (BFA) was added and cells were incubated overnight at 37 °C. Cells were then washed with FACS buffer and resuspended with anti-CD8α Pacific Blue (PB), anti-CD4 Allophycocyanin (APC), and Zombie (Biotrend) overnight at 4 °C. Cells were then washed twice with FACS buffer and resuspended with FACS buffer. Sample data were acquired using a BD FACSAria III cell sorter and the generated data were analyzed with FlowJo V9 (Supplementary Fig. 9). Cytokine production was calculated by subtracting the background of the no peptide control.

Generation of pseudovirus and virus entry assay. 293T cells were co-transfected with human immunodeficiency virus type 1 pNL4-3-Luc Env Vpr plasmid and WT or different mutant spike protein expression plasmids using TransIT-LT1 (Turing). After 48 h, viral supernatant was collected, aliquoted, and stored at −80 °C. Virus titers were quantified by measuring p24 antigen levels using the HIV p24 ELISA kit (Sino Biological). To study virus entry, equal amounts of pseudovirus were added to 293T-hACE2 stable cell cultures. After 48 h, cells were lysed and luciferase activity measured using a luciferase assay kit (Promega).

Statistical analysis. Statistical analysis was carried out using GraphPad Prism software (GraphPad Software). Data were presented as mean ± SD of at least 3 replicates, unless otherwise indicated. Statistical significance was analyzed by either Student’s t-test, one-way analysis of variance (ANOVA) with Tukey post-test, or two-way ANOVA with Bonferroni post-test. For all tests, **p < 0.001, ***p < 0.001, ****p < 0.001, *p < 0.05, NS, not significant.

Reproting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The sequences used in Fig. 1 are available via GenBank (accession code MT862537). Source data are provided with this paper.

Received: 16 September 2020; Accepted: 9 April 2021; Published online: 13 May 2021

References.

1. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).
2. Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).
3. Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

8 NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23166-0 | www.nature.com/naturecommunications
4. Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1578 (2020).

5. Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203 e2193 (2020).

6. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

7. de Wit, E. van Gemenen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).

8. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

9. Matsuzyama, S., Ujike, M., Morikawa, S., Tashiro, M. & Taguchi, F. Protease-mediated enhanced entry of severe acute respiratory syndrome coronavirus infection. Proc. Natl Acad. Sci. USA 102, 12543–12547 (2005).

10. Jaimes, J. A., Millet, J. K. & Whittaker, G. R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. Science 23, 101212 (2020).

11. de Haan, C. A. et al. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding under cell culture adaptation. J. Virol. 82, 6078–6083 (2008).

12. Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 176, 104742 (2020).

13. Koivunen, V. & Ito, R. G. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl Acad. Sci. USA 85, 324–328 (1988).

14. Ito, T. et al. Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J. Virol. 75, 4439–4443 (2001).

15. Alexander, D. J. & Brown, I. H. History of highly pathogenic avian influenza. Rev. Sci. Tech. 28, 19–38 (2009).

16. Stadler, K. et al. SARS—beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218 (2003).

17. Hoffmann, M., Kleine-Weber, H. & Pohlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784 e775 (2020).

18. Lau, S. Y. et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 9, 837–842 (2020).

19. Wong, Y. C. et al. Natural transmission of bat-like SARS-CoV-2PRRA variants in COVID-19 patients. Clin. Infect. Dis. eiaa953 (2020) Public Health Emergency Collection.

20. Zhou, Z. et al. Enhanced innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890 e882 (2020).

21. Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000 e1003 (2020).

22. Mazzoni, A. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. 130, 4094–4103 (2020).

23. Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients.Clin. Infect. Dis. 71, 1937–1942 (2020).

24. Luo, M. et al. IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19 JCI Insight 5, e139024 (2020).

25. Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523 (2020).

26. Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).

27. Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells. Nat. Med. 27, 78–85 (2021).

28. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020).

29. Metzger, V. D., Graham, R. L. & Baric, R. S. Jumping species: a mechanism for coronavirus persistence and survival. Curr. Opin. Virol. 23, 1–7 (2017).

30. Chan, J. F. et al. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 28, 465–522 (2015).

31. Menachery, V.D. et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection J. Virol. 94, e01774-19 (2020).

32. Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 27, 763–767 (2020).

33. Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

34. Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 e414 (2020).

35. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

36. Su, Y.C.F. et al. Discovery and genomic characterization of a SARS-like SARS-CoV-2 whole-genome sequence. Nat. Biotechnol. 11, e1610–20 (2020).

37. Gong, Y. N. et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8 deletion mutant and clade possibly associated with infections in Middle East. Emerg. Microbes Infect. 9, 1457–1466 (2020).

38. Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).

39. Yin, S. et al. Longitudinal anti-SARS-CoV-2 antibody profile and neutralization activity of a COVID-19 patient. J. Infect. 81, e31–e32 (2020).

40. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2020).

41. Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81 (2020).

42. Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383, 1544–1555 (2020).

43. Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020).

44. Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.Lancet 396, 467–478 (2020).

45. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

46. Zhang, Y. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 181–192 (2021).

47. Chan, J. F. et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. ciaa325 (2020) Public Health Emergency Collection.

48. Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection.JCI Insight 4, e123158 (2019).

49. Zhang, A.J. et al. SARS-CoV-2 infection and damage in the immortal olfactory sensory neurons of hamsters.Clin. Infect. Dis. ciaa995 (2020) Public Health Emergency Collection.

50. Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 172, 734–743 e735 (2020).
