Computational analysis of prodomain cysteines in human TGF-β proteins reveals frequent loss of disulfide-dependent regulation in tumors

Samantha M. Daly, Ashley Peraza, Stuart J. Newfeld

School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA

*Corresponding author: School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA. Email: newfeld@asu.edu

Abstract

The functionally diverse members of the human Transforming Growth Factor-β (TGF-β) family are tightly regulated. TGF-β regulation includes 2 disulfide-dependent mechanisms—dimerization and partner protein binding. The specific cysteines participating in these regulatory mechanisms are known in just 3 of the 33 human TGF-β proteins. Human prodomain alignments revealed that 24 TGF-β prodomains contain conserved cysteines in 2 highly exposed locations. There are 3 in the region of the β6 helix that mediates dimerization near the prodomain carboxy terminus. There are 2 in the association region that mediates partner protein binding near the prodomain amino terminus. The alignments predict the specific cysteines contributing to disulfide-dependent regulation of 72% of human TGF-β proteins. Database mining then identified 9 conserved prodomain cysteine mutations and their disease phenotypes in 7 TGF-β proteins. Three common adenoma phenotypes for prodomain cysteine mutations suggested 7 new regulatory heterodimer pairs. Two common adenoma phenotypes for prodomain and binding partner cysteine mutations revealed 17 new regulatory interactions. Overall, the analysis of human TGF-β prodomains suggests a significantly expanded scope of disulfide-dependent regulation by heterodimerization and partner protein binding; regulation that is often lost in tumors.

Keywords: adenocarcinoma; LTBP; Fibrillin; Genome Data Commons

Introduction

Secreted signaling proteins in the Transforming Growth Factor-β (TGF-β) family modulate a vast array of cellular processes in metazoan animals from sponges to humans (Hinck et al. 2016). In humans, developmentally defective TGF-β signaling, either loss or gain of function causes birth defects such as hereditary hemorrhagic telangiectasia or fibrodysplasia ossificans progressiva (Haupt et al. 2019; Balachandar et al. 2022). Later in life, gain of TGF-β signaling facilitates fibrosis (Meng et al. 2016) while the loss of TGF-β anti-mitotic signals leads to tumors (Derynck et al. 2021). The severe mutant phenotypes produced by flawed TGF-β signaling dictate that these proteins be tightly regulated. We employ a computational approach exploiting amino acid conservation and common mutant phenotypes to suggest new tumor-associated regulatory interactions in the TGF-β family.

One mechanism of regulation is intrinsic to TGF-β proteins. All family members are encoded as 3 domains. At the amino terminus there is a signal sequence that is removed prior to secretion. Downstream is a roughly 250 residue prodomain that is also cleaved prior to secretion. Unlike the signal sequence, after cleavage, the prodomain remains associated with the carboxy-terminal ligand domain. The ligand domain is roughly 110 residues and contains a stereotypical pattern of 6–9 cysteines. Proper folding and dimerization of the ligand domain are facilitated by disulfide bonds between cysteines in the predominans of 2 TGF-β monomers. Cysteines contributing to dimerization have only been identified in 3 human TGF-β proteins.

An extrinsic mechanism of regulation via binding partners has been shown for TGFBI. Regulation is implemented via disulfide bonds between a single prodomain cysteine in 2 TGFBI monomers and a pair of cysteines in LTBP1 (Latent TGF-β-Binding Protein; Saharinen and Keski-Oja 2000) or LRC32 (GARP, Wang et al. 2012). TGFBI proteins are secreted as multisubunit latent complexes containing 2 disulfide-linked monomers each with a distinct disulfide bond to LTBP1 (Rifkin et al. 2022). Latent complexes are unable to bind receptors and limit the possibility of erroneous TGFBI signaling. The specific cysteines participating in TGF-β binding have only been identified in these 2 partners out of 10 proteins with the potential to form disulfide bonds with TGF-β family members.

Human TGF-β family members are divided into 3 subfamilies. The TGF-β subfamily has 8 members. We maintain the following naming hierarchy: TGF-β family is all 33 proteins, TGF-β subfamily is 8 proteins, individual proteins such as TGFBI use their formal name and the group of siblings is TGFBI-3. The Activin subfamily has 8 members. The BMP subfamily has 17 members. Subfamilies are distinguishable by their amino acid sequences (Wisotzkey and Newfeld 2020) and representative homodimers have distinct structures.

Received: August 01, 2022. Accepted: September 29, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
TGFB1 has a closed-ring conformation. The prodomain β8 region contains 2 cysteines (Cys223/225) that facilitate homodimerization via an interchain bond between 2 monomers (Shi et al. 2011). INHBA in the Activin subfamily (also called ActivinA) has 2 cysteines (Cys244/247) in a prodomain loop between α6 and α8 that form an intrachain bond. INHBA homodimers display a cross-arm conformation (Wang et al. 2016). BMP9 (now formally GDF2) has 2 prodomain cysteines (Cys156/237) in a loop between β7 and β9 that form an intrachain bond. BMP9 homodimers exhibit a widely open conformation (Mi et al. 2015).

To better understand the function of TGF-β family prodomains, we previously generated alignments and trees of this domain from mouse, fly, and nematode proteins (Wisotzkey and Newfeld 2020). That data suggested that heterodimers were more common than currently appreciated. Here, we applied the same methods in an analysis of the 33 human TGF-β family members. We identified conserved prodomain cysteines, retrieved mutations in these cysteines from public databases, and utilized common mutant phenotypes to generate hypotheses for disulfide-based regulation via heterodimers or binding partners.

Human prodomain alignments revealed that 24 TGF-β prodomains contain conserved cysteines in 2 highly exposed locations. There are 3 in region of the β8 helix that mediates dimerization near the prodomain carboxy terminus. There are 2 in the Association (Assn) region that mediates partner protein binding near the prodomain amino terminus. The alignments predict the specific cysteines contributing to disulfide-dependent regulation of 72% of human TGF-β proteins. Database mining then identified 9 conserved prodomain cysteine mutations and their disease phenotypes in 7 TGF-β proteins. Three common adenoma phenotypes for prodomain cysteine mutations suggested 7 new regulatory heterodimer pairs. Two common adenoma phenotypes for prodomain and binding partner cysteine mutations revealed 17 new regulatory interactions. Overall, the analysis of human TGF-β prodomains suggests a significantly expanded scope of disulfide-dependent regulation by heterodimerization and partner protein binding; regulation that is often lost in tumors.

Materials and methods

Prodomain sequences and alignments

The newest version of the longest isoform of each human TGF-β protein was identified via BLASTp (blast.ncbi.nlm.nih.gov; Gish and States 1993) employing the mouse sequence as a query (Wisotzkey and Newfeld 2020). Human GDNF was retained as a comparator for consistency with previous results. We utilized the UniProt database (www.uniprot.org; UniProt Consortium 2021) to identify the signal sequence at the amino terminus of the prodomain. The signal sequence was removed from the prodomain sequence before alignment. The mouse cleavage site at the carboxy terminus of the prodomain and ligand was employed to identify the human full-length prodomain sequence before alignment. The full set of trimmed human prodomain sequences was aligned with default settings in Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo; Sievers et al. 2020). Employing Clustal Omega allowed us to maintain the continuity of underlying assumptions with our prior analysis of model organism TGF-β prodomains. BoxShade 3.3.1 (ftp://www.isrec.isb-sib.ch/pub/software/unix/boxshade/3.3.1/; written by Kay Hofmann and Michael Baron) was utilized to annotate the alignment employing a cutoff for shading of 20% amino acid similarity and a biochemical definition of similar amino acids (Wisotzkey and Newfeld 2020). This was followed by manual alignment of structural features according to an alignment in Mi et al. (2015) to minimize the impact of length variability on the amino and carboxy termini.

Prodomain and binding partner cysteine mutations and disease phenotypes

For all prodomains and partner proteins, we mined 3 databases of deleterious disease mutations: GeneCards (www.genecards.org; Safran et al. 2022), MalaCards (www.malacards.org; Rappaport et al. 2017), and the National Cancer Institute Genome Data Commons (portal.GDC.cancer.gov; Grossman et al. 2016). Within these databases, manual scanning of each protein’s complete profile led to the capture of every mutation that impacted cysteine. These include: (1) loss-of-function mutations “from a cysteine” to another residue and (2) gain-of-function mutations “to a cysteine” from another residue. We recorded each mutation’s location and their phenotype if any. The majority of phenotypes were from GDC, since many disease phenotypes in the other databases were not connected to a specific residue. Common phenotypes for conserved cysteine mutations in 2 prodomains were identified. All cysteine loss-of-function mutations in each of the 10 potential prodomain-binding proteins were examined for phenotypes matching mutations in TGF-β prodomain conserved cysteines.

Results

Identification of conserved cysteines in the prodomain of human TGF-β proteins

Building on the approach of Wisotzkey and Newfeld (2020), we downloaded the longest isoform for each of the 33 human TGF-β sequences plus GDNF (Supplementary Table 1), trimmed each at the signal sequence and ligand cleavage site (Supplementary Table 2), and then created a complete prodomain alignment. To neutralize the impact of length variability at the termini, we implemented structure-based refinements to create alignments of the carboxy and amino termini (Figs. 1 and 2).

The alignments revealed 5 distinct positions that contain conserved prodomain cysteines in 24 human TGF-β family members (Table 1). These include the human homologs of 13 mouse proteins identified previously (Wisotzkey and Newfeld 2020) plus 11 newly identified proteins. To codify specific conserved cysteine positions across proteins, we created a naming convention. Cys@1 is the first conserved cysteine in either the β8 or Assn region. For example, TGFB2 Cys254 is β8Cys@1. Cys@3 is the middle conserved cysteine (third residue in the region). For example, TGFB2 Cys256 is β8Cys@3. Cys@4 is the last conserved cysteine (fourth residue in the region). For example, TGFB2 Cys257 is β8Cys@4.

The conserved cysteine positions were then visualized in the 3 TGF-β subfamily prodomain structures (Fig. 3). The number of cysteines shown for each subfamily is a compilation and not every member has all of them. In all 3 structures, conserved cysteines are located in 2 highly exposed locations. The β8 region near the ligand cleavage site is part of a protruding loop in all subfamilies. The loop is composed of 2 β-sheets (β8 and β9) in the crystal structure of TGFB1. The conserved cysteine loop in the other 2 subfamilies does not contain β-sheets but still sits at the surface. In the β8 region, partners could be other TGF-β family members to form heterodimers. The Assn region near the signal sequence cleavage site also extends beyond the core of the
structure in all subfamilies. The exposed locations suggest that their conserved cysteines participate in bonds with external partners. In the Assn region, partners could be one of 10 potential binding proteins in 4 families: LTBP, Fibrillin (FBN), Leucine Repeat Containing (LRC) or E-Selectin (SELE).

Conserved cysteines in the β8 region of 21 human TGF-β proteins

We observed that all cysteine positions in the β8 region correspond to demonstrated functional cysteines (Table 1). One pair (TGFβ1 Cys223/225; Shi et al. 2011) that we refer to β8Cys@1 and β8Cys@3 forms an interchain bond with their counterparts in a homodimer. A second functional cysteine pair (INHBA Cys244/247; Wang et al. 2016) that we refer to β8Cys@1 and β8Cys@4 forms an intrachain bond in a homodimer.

TGFB2, INHA, INHBA and INHBβ also share cysteines β8Cys@1 and β8Cys@4. TGFB2 and INHA were predicted to form heterodimers in our prior study (Wisotzkey and Newfeld 2020) and both of these are known to heterodimerize with their siblings (Cheifetz et al. 1988; Walton et al. 2009). All other proteins with β8@Cys4 are BMP subfamily members. The structure of BMP9 homodimers showed that β8@Cys4 forms an intrachain bond (Cys237 in GDF2; synonym for BMP9).

Overall, there are 13 BMP, 4 Activin, and 4 TGF-β subfamily members with at least 1 conserved cysteine in β8. All conserved cysteine positions in the β8 region correspond to cysteines that participate in disulfide bonds in their respective subfamily structures. The discovery of cysteine conservation in the β8 region of 21 TGF-β proteins broadens the potential impact of disulfide-dependent regulation by heterodimerization from 10% to 64% of proteins.
Conserved cysteines in the Assn region of 16 human TGF-β proteins

There are more conserved cysteine positions in the Assn region than known functional cysteines. The Assn region has 2 conserved cysteine positions (Table 1), but the only known functional cysteine position is AssnCys@1 (TGFB1 Cys33). Each monomer of a TGFB1 homodimer forms a disulfide linkage via this cysteine to either LTBP1 Cys1359 or Cys1384. TGFB1 also employs Cys33 to bind to LTBP3 and LTBP4. Conserved cysteines in this position in TGFB2 (Cys24) and TGFB3 (Cys27) are presumed to serve the same function, though this has not formally been shown. The fact that 16 proteins have an AssnCys@1 suggests that partner protein disulfide regulation extends to members of all 3 subfamilies.

The second Assn region-conserved cysteine (AssnCys@4) is present only in 6 Activin subfamily proteins. These are the 4 INHBs plus MSTN and GDF11. The latter 2 are the only proteins with 2 Assn region cysteines and no β8 region cysteines. With the 2 Assn cysteines showing identical spacing to β8Cys@1 and β8Cys@4 and the Assn region also highly exposed, 1 new hypothesis is that the 2 Assn region cysteines facilitate an Activin subfamily-specific mechanism for heterodimerization.

Overall, there are 5 BMP, 6 Activin and 5 TGF-β subfamily members with at least 1 conserved cysteine in this region. All 16 sequences contain AssnCys@1 with 6 also displaying AssnCys@4. The highly exposed nature of the Assn region together with the role of TGFB1 AssnCys@1 in binding LTBP1/LRC32 suggests that a disulfide-dependent binding partner regulates as many as 48% of human TGF-β proteins.

Common phenotype of prodomain region

To assign specific interactions to individual cysteines, we mined 3 databases of disease-associated mutations. We applied the

Table 1

Subfamily	ATG signal sequence	Assn region	
BMP15	mvlslrilflcelvlvlf	ehraqmaeqg	
GDF9	marpnkfllwccawfcpis	gssiallae	
NODAL	mchristf1hawllaqaatvat	a1lrrtqpsps	
BMP5	mrlkflitlfljwildficvtvlg	dplqgrgtpgt	
BMP7	mdsaaalcwvlacr	rdglaaavlr	
BMP6	mdpvrllsvflfslwlqpg	gqaissssse	
BMP8a	maarpgplwlgltctlgrp	pgpgpcqrrl	
BMP8b	mtałpgpwlglglacalq	pgppgprqrl	
BMP5	mhpgrqavwlclwggllc	ssccgppplr	
BMP7	mhrsrllaapshfvalwpflfllrsala	fslndnevhs	flhrlrsqwrrem
BMP5	mhl tvflkqivflwscwvlvgakgggl	dhnhvhsfylr	
BMP3	magasarflfllgcfvsllaagq	rpkkpppelr	
BMP10	mphvtaaaapppqplllllllflpllllravagag	hrpawasaip	
MSTN	mkgklqclvylflmflipvqvdvl-nenseqkenvekgleonactwr		
BMP11	<-aegpaaaaaaaagvgerssrpapsps	qhserelrleisks	
TGFB1	mppsglrlplllplllvlwltgrpaag	latektidme	
TGFB2	mphpcclvlsaflihltvlvs	lsextldmd	
TGFB3	mkmhclqlavvlalllnfatvsls-	lsccttldfg	
INHA	mvlhlllltqggghh	hikkrrveaiq	
INHA	mpppqqcppghllllllalllpslpnltra-	lqgchveiegl	
BMP3	mrlflpflalsflilalgalqvgf-	rdlevkykeg	
INHBA	mplwlwrflasliclalvivrs-	sptpgseghs	
INHBB	--aacllllaaaglwgeawgsptpppppgpsps	dgtcsggrep	
INHBB	mssllafllallapttvat	pragpcagggp	
INHBB	mrlpdqvflqflwvalv	ttlesqrelld	
GDF2	mpltqawlplisilagqsgq	ggpsgppcsgg	
BMP10	mlpqswqrgsa	kngahaslpvpgg	
LEFTY1	mppwlwclwallwpplqsgppa	tegeollgsl	
LEFTY2	mppwlwclwallwpplqsgppa	tegeollgsl	
AMH	mrvlpdsbslalvpalqagqggq	eplclvalgg	
GDNP	mqlpsnsgaagagdfrkmk	dsgnssprlvvaga	
BMP2	mvgatrclalllppqvgllkgaag	vpeklgrkka	
BMP4	mipgmrnlmvllqlcgvlgl	kvaiegkgggr	

Fig. 2. Prodomain Assn region structurally guided refined alignment. Alignment of 60 residues begins at Met1 for all proteins except GDF11 and INHBB due to long sequences between the signal sequence and Assn region. The ATG, signal sequence, and structural features derived from the alignment of TGFB1 and BMP9 (Hinck et al. 2016) are noted at the top. The Assn region is further identified by a blue boundary. Note that any inconsistency with the amino terminus of the alignments in Wisotzkey and Newfeld (2020) is due to the presence of distinct species and the absence of structural information. Numbering is accurate and indicates the last residue on each line. One or 2 red cysteines in the Assn region are conserved in 16 of the 33 human TGF-β proteins plus GDNP. A cysteine conservation summary is in Table 1 and a cysteine mutation summary is in Table 2.
concept originated by Beadle and Tatum (1941) for the dissection of biochemical pathways: common mutant phenotypes result from a lost biochemical interaction that would normally achieve a common function.

The phenotypes of 9 conserved prodomain cysteines that display a loss-of-function mutation are shown (Table 2). Common phenotypes in different proteins would broaden the impact of regulation by heterodimerization in the TGF-β family. In the table, mutations are color-coded and numbered to display potential within subfamily and across subfamily heterodimer pairs. Eight cysteine mutations are in the β8 region and 1 is in the Assn region.

There are 3 mutations in BMP subfamily members. BMP15 β8Cys@4 has Cys209Gly found in lung squamous cell neoplasms. GDF1 β8Cys@4 Cys227-Del is an in-frame deletion of 145 residues causing inherited right atrial isomerism, a heart defect. For GDF6, there are 2 colon adenocarcinoma mutations, 1 in β8Cys@4 (Cys230Arg) and 1 in the ligand (Cys419Tyr). Furthermore, a GDF5 ligand mutation Arg438Cys is also associated with colon adenocarcinomas. When a ligand cysteine mutation generates the same phenotype as a conserved prodomain cysteine mutation, it provides additional confidence that the prodomain cysteine is essential. The common phenotype of GDF5 and GDF6 suggests heterodimerization.

Six mutations are in Activin and TGF-β subfamily members. INHBA β8Cys@1 has Cys244Tyr found in lung adenocarcinomas. Note that BMP15 and INHBA cancers originate in distinct cell types (squamous cells vs epithelial cells, respectively), limiting the relevance of these mutations to understand heterodimerization. TGFβ1 β8Cys@1 has 3 mutations: Cys223Arg/Gly/Ser and TGFβ1 β8Cys@3 has 2 Cys225Arg/Tyr. All 5 can cause Camurati-Engelmann disease, an autosomal dominant disease with skeletal hyperplasia.

INHBE AssnCys@4 has Cys29Tyr that is associated with plasma cell tumors. INHBB has a prodomain gain-of-function mutation that is also associated with plasma cell tumors. INHBB Ser154Cys maps to an exposed loop between β1 and β2 that is topologically near to the Assn region in the INHBA structure (Fig. 3b, green arrowhead right). A new cysteine in close proximity to the INHBB pair of Assn cysteines likely interferes with their function. If INHBE and INHBB formed a heterodimer or were regulated by a common binding partner, then loss or gain of cysteine near the Assn region could be disruptive and result in tumors.

TGFβ2 β8Cys@3 has Cys256Stop identified in endometrial adenocarcinomas. The same tissue and tumor type are seen with the Cys29Tyr in the ligand of INHA that shares β8Cys@1 and β8Cys@4 with TGFβ2. Endometrial adenomas were again seen with Arg223Cys in the prodomain of INHBB that shares β8Cys@1 and β8Cys@4 with TGFβ2 and INHA. Arg223Cys maps to an exposed loop between β6 and β7 that is topologically near to β8 in the INHBB structure (Fig. 3b, blue arrowhead left). A new cysteine in close proximity to the pair of INHBB β8 region cysteines likely interferes with their function. The common phenotype for INHA and INHBB that is known to heterodimerize increases confidence in identifying heterodimer partners via cysteine mutations and common disease phenotypes. The fact that TGFβ2 shares 2 β8 cysteines and an endometrial adenoma phenotype with INHA and INHBB implies that TGFβ2 can heterodimerize with either to prevent endometrial tumor formation.

TGFβ2 β8Cys@4 has 2 mutations. First, Cys257Phe is associated with Holt–Oram syndrome. This is an autosomal dominant disease with a proximate cause of nonfunctional TBX5 (Boogerd et al. 2010). It is characterized by skeletal abnormalities and heart
defects. A TGFβ2 ligand mutation Cys378Tyr is also found in Holt-Oram.

The TGFβ2 mutation Cys257Stop in B8Cys@4 was noted in Loeys–Dietz syndrome. This is an autosomal dominant disease with systemic effects on connective tissue and blood vessels. A TGFβ2 ligand mutation Cys439Ser was also noted in Loeys–Dietz, as was a ligand mutation in TGFβ3 Cys409Tyr. The common phenotype for these mutations suggests heterodimerization. Demonstrated heterodimers of TGFβ2 and TGFβ3 (Cheifetz et al. 1988) serve to validate this hypothesis. What is new is that TGFβ2 B8Cys4 shows the phenotype, thus suggesting a B8-based mechanism for TGFβ2 and TGFβ3 heterodimer formation.

Cysteine mutations in TGFβ2, INHA, and INHBB associated with endometrial adenocarcinoma plus cysteine mutations in TGFβ2 and TGFβ3 with Loeys–Dietz syndrome lead to the hypothesis that TGFβ2 is capable of heterodimerization with numerous partners. Further evidence for TGFβ2 versatility is that 2 TGFβ2 ligand mutations Cys246Tyr and Cys407Ser share a lung adenocarcinoma phenotype with a mutation in B8Cys@1 of INHBA Cys244Tyr. Taken together, TGFβ2 cysteine mutations have a common phenotype with cysteine mutations in 4 TGF-β family members INHA, INHBA, INHBB, and TGFβ3.

Overall, phenotypic analyses of 9 prodomain-conserved cysteine disease mutations in 7 proteins suggested 7 new heterodimers. Four heterodimers are within a subfamily (1 BMP, 1 Activin, and 2 TGF-β) and 3 are across subfamilies (all are Activin with TGF-β). Six heterodimers are associated with tumors, with 5 of these adenomas. We then identified common disease phenotypes shared by conserved prodomain cysteine mutations and partner-binding protein cysteine mutations.

Common phenotype of Assn region cysteine mutations suggest new regulation

We analyzed the single Assn region mutation separately from the B8 region mutations. A common phenotype for the Assn region cysteine mutation and a cysteine mutation in one of the 10

Table 1. Twenty-four human TGF-β proteins with conserved prodomain cysteines.

Protein and subfamily	Region, Position* and Residue #				
BMP15 BMP subfamily	AssnCys@1	AssnCys@4	β8Cys@1	β8Cys@3	β8Cys@4
GDF9 BMP subfamily	209				
NODAL BMP subfamily	33b				
GDF5 BMP subfamily	223d	225d			
GDF6 BMP subfamily	254				
GDF7 BMP subfamily	256				
BMP5 BMP subfamily	257				
GDF2 (BMP9) BMP subfamily	237c				
BMP6 BMP subfamily	22				
BMP8a BMP subfamily	22				
BMP8b BMP subfamily	227				
GDF1 BMP subfamily	232				
GDF3 BMP subfamily	233				
MSTN Act subfamily	39				
GDF11 Act subfamily	42				
INHBA Act subfamily	35				
INHBB Act subfamily	38				
INHBC Act subfamily	244c				
INHBE Act subfamily	247c				
AMH TGF subfamily	241				
INHA TGF subfamily	200				
TGFB1 TGF subfamily	203				
TGFB2 TGF subfamily	33b				
TGFB3 TGF subfamily	229				

* Cys@1 is the first in the respective region with Cys@3 and Cys@4 the 3rd & 4th residue downstream.

b. TGFB1 Cys33 binds LTBP1 (Saharinen and Keski-Oja 2000).

c. INHBA Cys244/Cys247 form an intrachain bond (Wang et al. 2016).

d. TGFB1 Cys223/Cys225 form an interchain bond (Shi et al. 2011).

e. BMP9 (GDF2) Cys237 participates in an intrachain bond (Mi et al. 2015)
potential TGF-β-binding proteins would suggest a regulatory in-
teraction that broadens the impact of disulfide-dependent part-
tner protein binding. INHBE Cys29Tyr in AssnCys@4 is found in
plasma cell tumors from the hematopoietic and phagocytic sys-
tems. This suggests that undetected binding partners can regu-
late Activin subfamily members.

We identified all cysteine mutations showing a plasma cell tu-
mor phenotype in each potential binding partner (LTBP1–4, FBN1–
3, LRC32/33, and SELE). We found 11 cysteine mutations in 4 pro-
teins that generate this phenotype (Table 3). There is 1 plasma cell
tumor cysteine mutation in LTBP1. Cys1022Tyr is in EGF-like re-
peat-7, roughly 330 residues upstream of TGF-β-binding domain-3
that binds TGFB1. The common phenotype with INHBE suggests
an interaction between LTBP1 and INHBE via AssnCys@4. The lo-
gation of LTBP1 Cys1022 outside of TGF-β-binding domain-3 is log-
ical since INHBA has its Assn cysteines in a topologically distinct
location from TGFB1 (Fig. 3b).

There are 2 plasma cell tumor cysteine mutations in FBN1. One is Cys1431Tyr in EGF-like repeat-24 and the other
Cys1608Tyr in EGF-like repeat-28. The common phenotype
suggests an interaction between FBN1 and INHBE via AssnCys@4. Another FBN1 mutation Cys1431Trp is associated with Loeys–
Dietz syndrome, a phenotype generated by prodomain cysteine
mutations in TGFB2 and TGFB3. The common Loeys–Dietz syn-
drome phenotype for cysteine mutations in FBN1, TGFB2, and
TGFB3 supports their interaction via conserved prodomain cyste-
eines.

There are 5 plasma cell tumor cysteine mutations in FBN2.
One is in EGF-like repeat-16 and 2 are in EGF-like repeat-22
including Cys1406. Mutations in Cys1406 have distinct associa-
tions: Cys1406Phe is found in plasma cell tumors and Cys1406Ser
is associated with colon adenocarcinoma. The mutations
Cys1579Gly and Cys1608Tyr are in TGF-β-binding domain-6.
Their spacing of 27 amino acids is similar to the spacing of the
TGFB1-binding cysteines in LTBP1 (25 residues). An alignment of
FBN2 TGF-β-binding domain-6 and LTBP1 TGF-β-binding domain-
3 (Fig. 4a) shows that both FBN2 mutant cysteines are spaced
similarly to those in LTBP1. Spacing similarity supports the hy-
pothesis that these cysteines in FBN2 TGF-β-binding domain-6
are each capable of binding a monomer of INHBE AssnCys@4.

There are 3 plasma cell tumor cysteine mutations in FBN3.
They are in EGF-like repeat-2, EGF-like repeat-20 and in TGF-
β-binding domain-6. An alignment of TGF-β-binding domain-6
from FBN3 with TGF-β-binding domain-6 in FBN2 (Fig. 4a) shows
that Cys1519Arg impacts the same cluster of 3 cysteines as FBN2
Cys1608Tyr mutation and yields the same phenotype. Phenotypic
correspondence provides additional evidence in support of the
hypothesis that FBN family members bind to Activin subfamily
Assn region cysteines.

Independent support for the FBN-Activin-binding hypothesis
derives from an NMR study of FBN1 TGF-β-binding domain-6 and
the adjacent downstream EGF-like repeat (Yuan et al. 2002). The
Marfan syndrome mutation N2144S in the FBN1 EGF-like repeat led
to a conformational shift impacting the 2 nearest intrachain disul-
fide bonds. The loss of those bonds altered the protein’s local topol-
ogy in both directions including TGF-β-binding domain-6. The
authors conclude that lost interactions of TGF-β-binding domain-6
contribute to the disease.
Overall, the common phenotype analysis of an Assn region cysteine mutation in INHBE suggested 4 new binding partners. Loss of each regulatory interaction results in plasma cell tumors suggesting that regulation serves to prevent an INHBE promitotic signal from impacting the hematopoietic and/or phagocytic systems.

Common phenotype of β8 region cysteine mutations suggests additional new regulation

Analysis of β8 region cysteines began with GDF6 β8Cys@4 (Cys230Arg) that is found in colon adenocarcinomas (Table 4). Five partner proteins display cysteine mutations found in this tumor. In LTBP1, 2 plasma cell mutations in TGF-β-binding domain-1 Cys559Tyr and Cys594Trp are 35 residues apart affecting the first and sixth cysteines. In LTBP1 TGF-β-binding domain-3, the cysteines that bind TGFB1 are the second and sixth. Perhaps the extra space is necessary to accommodate the widely open structure of BMP proteins. Each of the 3 FBN proteins has at least 3 cysteine mutations linked to colon adenocarcinomas. In FBN3, Cys1406Ser occurs in the same cysteine where Cys1406Phe was found in plasma cell tumors. Distinct missense mutations in a single FBN3 cysteine in tumors linked to BMP and Activin proteins indicate that FBN3 may have multiple partners.

A second β8 region mutation TGFβ2 β8Cys@3 (Cys256Stop) is found in endometrial adenocarcinomas. Eight partner proteins display cysteine mutations in this tumor. Four of these have a single mutation LTBP1, LTBP3, LRC32, and SELE. The Cys342Arg mutation in LRC32 is in the same repeat (LRR-12) as Cys350 that binds to TGFB1. These are the only 2 cysteines in this repeat. There are 2 mutant cysteines each in FBN2 and FBN3 and 4 mutant cysteines in LTBP2 and FBN1.

Overall, the common phenotype analysis of β8 region cysteine mutations in GDF6 and TGFβ2 suggested 13 new binding partners. Loss of each regulatory interaction results in adenocarcinomas suggesting that regulation serves to prevent a GDF6 or TGFβ2 promitotic signal from impacting the colon or endometrium, respectively.

Taken together, the common phenotype analysis of Assn and β8 region-conserved cysteine mutations (1 protein from each subfamily) suggested 17 new regulatory interactions with 8 binding partners. Sixteen of these interactions are associated with tumors. Four of the partners (LTBP1 and FBN1-3) demonstrate a common disease phenotype with each mutant TGF-β protein suggesting the ability to bind to members of all 3 subfamilies. As all regulatory partners act to restrict signaling, common mutant phenotypes in tumors suggest that the absence of partner binding (due to a prodomain or a partner cysteine mutation) contributes to TGF-β family members’ well-known ability to serve tumors as promitotic signals.

LTBP1 repeat that binds TGFB1 aligns well with repeats in FBN proteins

To investigate the basis for the common phenotypes noted above for FBN1-3 cysteine mutations, we created alignments with LTBP1 of FBN1-3 TGF-β-binding domain-6 (Fig. 4a) and an EGF-like repeat (Fig. 4b). Two important features of TGF-β-binding domain-3 in LTBP1 that shape its ability to bind TGFB1 Cys33 are: (1) a 2 residue (FP) insertion between cysteines 6 and 7 and (2) a suite of 5 acidic residues (D/E) that form a docking site (Lack et al. 2003; Chen et al. 2005). The fact that FBN proteins do not bind TGFB1 is attributed to the lack of the FP insertion in any of their TGF-β-binding domains (Rifkin et al. 2003; Chen et al. 2005). The fact that FBN proteins do not bind TGFB1 is attributed to the lack of the FP insertion in any of their TGF-β-binding domains (Rifkin et al. 2003; Chen et al. 2005). Data in Table 3 address the question “would the absence of the insertion prevent Activin subfamily binding?” The common plasma cell tumor phenotype for a cysteine mutation in INHBE and 3 mutations in TGF-β-binding domain-6 of FBN2 and FBN3 suggest it does not.

Similarly, a different 5 D/E residue docking site would be expected for Activin subfamily binding by an FBN TGF-β-binding domain.
Different docking sites are needed to accommodate the cross-arm structure of Activin proteins vs the closed-ring of TGF-β proteins. A comparison of FBN TGF-β-binding domain-6 D/E content to LTBP1 TGF-β-binding domain-3 reveals that 2 of the D/E residues that form 1 edge of the docking site in LTBP1 TGF-β-binding domain-3 are conserved in all 3 FBN sequences (D12, E42; Chen et al. 2005). Three other D/E residues are not (E5, D17, D39). Instead there are 3 D/E residues aligned in all FBN sequences that are spaced similarly. The 5 D/E docking sites in FBN TGF-β-binding domain-6 with a slightly different shape for Activin proteins seem likely.

Overall, the mutant phenotype analysis expands the scope of TGF-β family partner interactions to include EGF-like repeats in LTBP1 and the FBN proteins that could form a docking site for an Activin protein.

Discussion

Frequent regulatory interactions with partner proteins seem likely given the number of cysteines in each potential partner protein. The secreted LTBP and FBN families each contain multiple 8-Cys repeat domains. An 8-Cys repeat in LTBP1 contains the 2 cysteines that each bind to Cys33 in a monomer of TGFB1 (Saharinen and Keski-Oja 2000). As a result, 8-Cys repeats in the 4 LTBP and 3 FBN proteins are also called TGF-β-binding domains. Proteins in these 2 families also contain a large number of 6-Cys EGF-like repeats. For example, LTBP1 has 16 and FBN1 has 47 of them. While EGF-like repeats are common, 8-Cys repeats are not found in any other protein. To date no TGF-β partner for LTBP2 is known and only TGFB1–3 have been tested for binding to LTBP1–4.

Protein and subfamily	Location	Mutation	Disease phenotype is adenocarcinoma
GDF6 BMP subfamily	β8Cys@4	Cys230Arg	colon
LTBP1	TGF-β bind-1	Cys559Tyr Cys594Trp	colon
Fibrillin1	EGF-like-2	Cys119Gly Cys763Phe	colon
Fibrillin2	EGF-like-22	Cys1903Tyr Cys2072Arg	colon
Fibrillin3	EGF-like-6	Cys557Tyr Cys885Tyr Cys1096Phe	colon
SELE	Sushi-3	Cys304Arg	colon
TGFB2 TGF subfamily	β8Cys@3	Cys256Stop	endometrial
LTBP1	EGF-like-2	Cys413Phe	endometrial
LTBP2	EGF-like-3	Cys648Tyr Cys985Tyr Cys1611Tyr Cys1788Arg	endometrial
LTBP3	EGF-like-13	Cys1282Tyr	endometrial
Fibrillin1	EGF-like-35	Cys821Tyr Cys1201Tyr Cys2053Tyr Cys2190Arg	endometrial
Fibrillin2	EGF-like-23	Cys280Trp Cys1412Trp	endometrial
Fibrillin3	EGF-like-35	Cys2181Phe Cys2225Arg	endometrial
LRC32	LRR-12	Cys342Arg	endometrial
SELE	Sushi-6	Cys506Tyr	endometrial

* Mutation FBN2 Cys1406Phe yields plasma cell tumors as shown in Table 3.

Table 4. Common disease phenotypes for GDF6 and TGFB2 β8 region cysteine mutations suggest 13 new binding partner interactions associated with tumors.
Studies of FBN1 binding to TGFB1 have been negative, dampening enthusiasm for this family (Yuan et al. 2002). As a result, to our knowledge, no other TGF-β family members have been tested for binding to any FBN protein. Each FBN protein has 8 TGF-β-binding domains. Alignments indicate that TGF-β-binding domains in FBN family members share features with TGF-β-binding domain-3 in LTPB1 that binds TGFB1 Cys33. There are 105 potential partnerships between the 15 TGF-β proteins that are not TGFB1 but have AssnCys@1 and the 7 TGF-β-binding domain proteins (4 LTPB plus 3 FBN proteins). The probability that a subset of these interactions is real seems high.

The cell surface transmembrane proteins LRC32 (also known as GARP) and LRC33 are also TGFB1-binding partners. The extracellular portion of LRC32 binds to TGFB1 Cys33 in the same 2:1 ratio as LTPB1 (Liénart et al. 2018). In contrast to the proximity of the 2 cysteines in LTPB1 (Cys1539/1584, 25 residues), the 2 cysteines in LRC32 are far apart (Cys211/350, 139 residues). TGFB1 binding to LRC33 has been reported but the relevant cysteines are not identified (Ma et al. 2019). These proteins have roughly 20 Leucine Rich Repeats containing 1 or 2 cysteines each. It again seems likely that additional TGF-β proteins can bind LRC32 and LRC33.

The ER transmembrane protein E-Selectin-ligand (SELE) plays a different role. Rather than maintaining latency in the secreted TGFB1 dimer like the others, this binding partner is a negative regulator of TGFB1 and TGFB2 secretion (Yang et al. 2010). Neither the cysteine in SELE nor the cysteine in TGFB1 and TGFB2 is known. SELE contains 6 Sushi domains each with 6 cysteines. The potential for a disulfide bond between SELE and the 14 TGF-β family proteins with AssnCys@1 that are not TGFB1 and TGFB2 is considerable.

Nevertheless, we recognize that not all the tumor phenotypes provided by the NCI Cancer Genome Commons precisely describe a specific cell type. While colon, endometrial, and lung adenocarcinoma describe only epithelial cell tumors, the phenotype plasma cell tumors covers many cell types. We also recognize that heterodimerization and partner binding require expression of both proteins in the same cell. To date, for most human TGF-β family proteins, detailed expression data to confirm or deny our hypotheses are lacking. Thus, we urge our colleagues to test our hypothesis for new heterodimers and new binding partner interactions.

In conclusion, for over 20 years, our understanding of TGF-β signaling has benefited from computational approaches. A recent advance in our ability to align TGF-β family prodomains across species facilitated this study of human TGF-β-prodomain cysteines. New human prodomain alignments revealed that 24 TGF-β prodomains contain conserved cysteines in 2 highly exposed locations. There are 3 in the region of the β8 helix that mediates dimerization near the prodomain carboxy terminus. There are 2 in the Assn region that mediates partner protein binding near the prodomain amino terminus. The alignments predict the specific cysteines contributing to disulfide-dependent regulation of 72% of human TGF-β proteins. Database mining then identified 9 conserved prodomain cysteine mutations and their disease phenotypes in 7 TGF-β proteins. Three common adenoma phenotypes for prodomain cysteine mutations suggested 7 new regulatory heterodimer pairs. Two common adenoma phenotypes for prodomain and binding partner cysteine mutations revealed 17 new regulatory interactions. Overall, the analysis of human TGF-β prodomains suggests a significantly expanded scope of disulfide-dependent regulation by heterodimerization and partner protein binding; regulation that is often lost in tumors.

Data availability
The authors affirm that all data necessary for confirming the conclusions of the article are present in the article, figures, tables, and supplemental information.

Supplemental material is available at G3 online.
Acknowledgments

This article is dedicated to my dear friend and collaborator Robert Wisotzkey. His insight and ingenuity in sequence analysis will be sorely missed.

Funding

SJN is supported by National Institutes of Health OD024794 and OD028242. SMD was supported by a Research Supplement to Promote Diversity in Health-Related Research to SJN (OD024794-S1).

Conflicts of interest

None declared.

Literature cited

Balachandar S, Graves TJ, Shimonty A, Kerr K, Kilner J, Xiao S, Slade R, Sroya M, Alikian M, Curetenant E, et al.; Genomics England Research Consortium. Identification of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Am J Med Genet A. 2022;188(3):959–964.

Beadle GW, Tatum EL. Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA. 1941;27(11):499–506.

Boogerd CJJ, Dooijes D, Ilgun A, Mathijssen IB, Hordijk R, Van De Laar B, Beadle GW, Tatum EL. Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA. 1941;27(11):499–506.

Bioinformatics. In: Abugessaisa I, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2022. p. 27–56.

Capriotti E, Fishilevich D, Lancet D. The GeneCards suite. In: Abugessaisa I, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2022. p. 27–56.

Cheifetz S, Bassols A, Stanley K, Ohta M, Greenberger J, Massagué J. Heterodimeric TGF-β: biological properties and interaction with three types of cell surface receptors. J Biol Chem. 1988;263(22):10783–10789.

Chen Y, Ali T, Todorovic V, O'leary JM, Kristina Downing A, Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBP5s in TGF-β signaling. Dev. Dyn. 2022;251(1):75–84.

Shah R, Chen Y, Bertin TK, Yang T, Mendoza-Londono R, Lu H, Tao J, Li K, Keller B, Jiang MM, Yang T, Mendoza-Londono R, Lu H, Tao J, Li K, Keller B, Jiang MM, Shah R, Chen Y, Bertin TK, et al. Structural basis of latent TGFβ1 presentation and activation by GARP on human regulatory T cells. Science. 2018;362(6417):952–956.

Ma W, Qin Y, Chapuy B, Lu C. LRC33 is a novel binding and potential regulating protein of TGFβ1 in human acute myeloid leukemia cells. PLoS One. 2019;14(10):e0213482.

Meng XM, Nikolic-Paterson D, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338.

Mi L-Z, Brown CT, Gao Y, Tian Y, Le VQ, Walz T, Springer TA. Structure of BMP9 pro-complex. Proc Natl Acad Sci USA. 2015;112(12):3710–3715.

Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M, Leman D, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017;45(D1): d 877–D887.

Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBP5s in TGF-β signaling. Dev. Dyn. 2022;251(1):75–84.

Safarinen J, Keski-Oja J. Specific sequence motif of 8-Cys repeats of TGF-β binding proteins LTBP5s creates a hydrophobic interaction surface for binding of small latent TGF-β. Mol Biol Cell. 2000;11(8):2691–2704.

Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bączgier V, Velankar S, Burley SK, Koča J, Rose AS. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49(W1):W431–W437.

Shah R, Chen Y, Bertin TK, Yang T, Mendoza-Londono R, Lu H, Tao J, Li K, Keller B, Jiang MM, Yang T, Mendoza-Londono R, Lu H, Tao J, Li K, Keller B, Jiang MM, Shah R, Chen Y, Bertin TK, et al. E-selectin ligand-1 regulates bioavailability and activation of TGF-β. Mol Biol Cell. 2012;23(6):1129–1139.

Wang X, Fischer G, Hyvonen M. Structure and activation of pro-ACTIVINa. Nat Commun. 2016;7:12052.

Wisotzkey RG, Newfeld SJ. TGF-β prodomain alignments reveal unexpected cysteine conservation consistent with phylogenetic predictions of cross-subfamily heterodimerization. Genetics. 2020;214(2):447–465.

Yang T, Mendoza-Londono R, Lu H, Tso J, Li K, Keller B, Jiang MM, Shah R, Chen Y, Bertin TK, et al. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-β. J Clin Invest. 2010;120(7):2474–2485.

Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK. Effects of the N2144S mutation on backbone dynamics of a TB-chEGF domain pair from human fibrillin-1. J Mol Biol. 2002;316(1):113–125.

Communicating editor: E. Betran