Evolutionary routes from a prebiotic ANA-world

Sebastian Braun, Christine Humphreys and Trevor C. Dale*
School of Bioscience; Cardiff University; Cardiff, Wales UK

Keywords: RNA-world, prebiotic evolution, RNAzyme, amyloid, protocell, liposome, origin of life
Submitted: 11/22/11
Accepted: 11/29/11
http://dx.doi.org/10.4161/cib.18892
*Correspondence to: Trevor C. Dale; Email: daletc@cardiff.ac.uk

Addendum to: Braun S, Humphreys C, Fraser E, Brancalé A, Bochtler M, Dale TC. Amyloid-associated nucleic acid hybridisation. PLoS One 2011; 6:e19125; PMID:21625537; http://dx.doi.org/10.1371/journal.pone.0019125

Recent experimental support has been generated for a model of prebiotic development that postulates a role for Amyloid-Nucleic Acid (ANA)-fibers as the earliest replicating entities capable of undergoing Darwinian evolution. Here, this new model is compared with existing RNA-world models with a particular focus on trajectories that lead to evolutionary-beneficial interactions between nucleic acid, protein and lipid components. This analysis suggests a number of new areas for fruitful experimental studies.

The ability of RNA to both store information and carry out enzymatic reactions links genotype to phenotype within a single molecule and has led to the idea that life initiated as an ‘RNA-world’. Implicit in this model is the idea that RNA molecules later evolved, through selection, the ability to recruit biomolecules including protein, lipids and DNA. In our recent paper, we presented data supporting an alternative model for prebiotic development in which the earliest replicating entities were amyloid-nucleic acid (ANA)-fibers. Here probable evolutionary trajectories from an ANA-world will be compared with RNA-world alternatives with a focus on how growth, replication and division are achieved. Alternative ‘metabolism-first’ models will not be discussed as they do not, as yet, include clear mechanisms that allow Darwinian inheritance. The comparisons will highlight key mechanistic differences and should help focus future efforts to reconstruct ‘living’ systems from prebiotic components.

Growth

In an early ANA-world, sequence-independent electrostatic interactions between prebiotically-generated nucleic acids and peptides generate ANA-fibers (Fig. 1A). Growth is driven by the recruitment of basic amyloidogenic peptides through interactions with uncompensated nucleic acid negative charges at fiber ends. By contrast, growth in an RNA-world centers on the increase in length of RNA molecules driven by RNAzymes with sequence-specific ligase or polymerase activities. A compelling trajectory from the RNA-world to a cellular world involves the encapsulation of RNA molecules in liposome vesicles. In these ‘protocells’ RNAzymes replicate nucleic acids with which they share a compartment, while nucleic acid polymerisation could also drive the growth of the vesicle by increasing its osmotic pressure. In summary, growth in an RNA-world would be driven by nucleic acid polymerisation, while growth in an ANA-world would be driven by protein fiber elongation.

Selection for growth in an ANA-world would involve the selective elongation of ANA-fibers whose associated nucleic acids were better able to incorporate amyloidogenic peptides (elongase activity). One hypothetical scheme is illustrated in Figure 1B that suggests how this selection could culminate in the formation of the ribosome. A key early step would be the emergence of fiber-associated nucleic acids that preferentially recognized amyloidogenic peptides (e.g., those with alternating hydrophobic/hydrophilic residues). If the supply of prebiotically-generated peptides were limiting, competition would lead to the selection of RNAzymes that ligate or extend shorter peptides. Experimental studies have identified RNAzymes that amineacylate ribonucleic acids and synthesize short peptides. However, less work has been done on RNAzymes that bind peptides. It is interesting to speculate that the strong hydrophobic/
The key feature of replication in the earliest ANA-world is base pairing of short prebiotically-generated oligonucleotides (Fig. 1A). As shown in our recent study, amyloid fibers would aid replication by concentrating nucleic acids and by enhancing their hybridization.5 By contrast, replication in the RNA-world requires an RNAzyme replicase with a specific 3-dimensional structure that can synthesize copies of itself. Thus in the RNA-world, one type of molecule serves two functions (growth and replication), while in the ANA-world, two molecules come together (protein and nucleic acid) to provide the same functions.

In the early RNA-world, selective advantage would accrue to molecules that have an enhanced ability to copy themselves. Within liposome ‘protocells’ RNAzyme replicases would copy neighboring (related) templates using RNA ligase and/or polymerase activities. Recent experimental studies have shown that RNAzyme ligases can drive an RNA-only chain reaction.13 Equivalent polymerase RNAzyme chain reactions have not yet been demonstrated nor have chain reactions been demonstrated inside liposome ‘protocells’ where RNAzyme substrates might be limiting.

In an ANA-world, greater efficiency of the interlocking ANA-fiber cycles shown in Figure 1A would result from the evolution of RNAzyme replicases that can copy both themselves and elongase molecules (Fig. 1C). A key experimental test for this trajectory would be to demonstrate that RNAzymes (e.g., nucleic acid/protein ligases and polymerases) remain functional when associated with ANA-fibers.7,14,15

Division

Division in an ANA-world involves the shearing of long ANA-fibers into daughter fibers that inherit related nucleic acids (Fig. 1A). By contrast, division in the RNA-world involves the separation (by denaturation) of replicase RNAzymes from newly generated copies. Division of RNAzyme-containing protocols would, like ANA-fibers, be driven by hydrostatic shear producing daughter protocells that inherit related nucleic acids.16 A potential problem for ANA-fibers comes from the observation that amyloid fibers tend to aggregate. This clumping would tend to reduce the genetic uniqueness of individual fibers. However, aggregation may be reduced if ANA-fibers interact with fatty acids (Fig. 1D).

The incorporation of ANA-fibers into a protocols could reduce clumping and may ultimately allow the separation of replicase and elongase RNAzyme activities as shown in Figure 1D. Growth of liposome-encapsulated ANA-fibers would occur both through increased osmotic pressure and through fiber-associated forces at the growing fiber tips. It is interesting to note that protein fibers play an on-going role in the growth and division of archaea and bacteria,17,18 although modern fibers involve protein-protein interactions that can be better regulated than the amyloid cross-β motif.

Preliminary data from our group suggests that fatty acids, like nucleic acids, promote the formation of amyloid fibers and aggregates from short peptides. We suggest that a prebiotic ‘triple’ mix of lipids, short peptides and nucleic acids would have generated a range of charge-based aggregates including liposome-encapsulated ANA-fibers, RNAzyme-containing ‘protocells’ and fatty acid-peptide aggregates that could act as a feed for the growth of ANA-fibers. The further study of inter-compartmental interactions should be a fruitful area to test predictions from these distinct models.

Conclusion

A feature of the ANA- and RNA-world evolutionary trajectories is the importance of interactions between nucleic acids (NA), protein (P) and lipid (L) components in the prebiotic environment. In the ANA-world, we suggest that the NA-P interaction generated the first replicating entities capable of NA-based Darwinian evolution. In the RNA-world, NA replication alone is proposed to precede others, while the ‘protocell’ model expands this to a world based on NA-L interactions. The transition from an NA, NA-L (protocell) or NA-P (ANA-world) to the ‘modern’ NA-L-P world may have been a relatively late development that followed the establishment of Darwinian selection, but may alternatively have been necessary for its earliest implementation.
References

1. Gilbert W. The RNA World. Nature 1986; 319:618; http://dx.doi.org/10.1038/319618a0
2. Dale T. Protein and nucleic acid together: a mechanism for the emergence of biological selection. J Theor Biol 2006; 240:337-42; PMID:16289611; http://dx.doi.org/10.1016/j.jtbi.2005.09.027
3. Braun S, Humphreys C, Fraser E, Brancal A, Bochtler M, Dale TC. Amyloid-associated nucleic acid hybridisation. PLoS One 2011; 6:e19125; PMID:21625537; http://dx.doi.org/10.1371/journal.pone.0019125
4. Schrum JP, Zhu TF, Sotoak JW. The origins of cellular life. Cold Spring Harb Perspect Biol 2010; 2: a002212; PMID:20484387; http://dx.doi.org/10.1101/cshperspect.a002212
5. Wächtershäuser G. From volcanic origins of chemooxygenic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 2006; 361:1787-808; http://dx.doi.org/10.1098/rstb.2006.1904
6. Wächtershäuser G. Origin of life. Life as we don’t know it. Science 2000; 289:1307-8; PMID:10979855; http://dx.doi.org/10.1126/science.10979855
7. Joyce GF. The antiquity of RNA-based evolution. Nature 2002; 418:214-21; PMID:12110897; http://dx.doi.org/10.1038/418214a
8. Chen IA, Salehi-Ashtiani K, Szostak JW. RNA catalysis in model protocell vesicles. J Am Chem Soc 2005; 127:33213-9; PMID:16173749; http://dx.doi.org/10.1021/ja051784p
9. Chen IA, Roberts RW, Szostak JW. The emergence of competition between model protocells. Science 2004; 305:1474-6; PMID:15353806; http://dx.doi.org/10.1126/science.1100757
10. Turk RM, Chumachenko NV, Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 2010; 107:4585-9; PMID:20176971; http://dx.doi.org/10.1073/pnas.0912895107
11. Lee N, Suga H. A minihelix-loop RNA acts as a trans-aminocacylation catalyst. RNA 2001; 7:1043-51; PMID:11453065; http://dx.doi.org/10.1017/S1355838201010457
12. Murakami H, Bonzagni NJ, Suga H. Aminocacyl-RNA synthesis by a resin-immobilized ribozyme. J Am Chem Soc 2002; 124:6834-5; PMID:12059198; http://dx.doi.org/10.1021/ja025872a
13. Lincoln TA, Joyce GF. Self-sustained replication of an RNA enzyme. Science 2009; 323:1229-32; PMID:19133595; http://dx.doi.org/10.1126/science.1167856
14. Wachter A, Artwater J, Coulson A, Holliger P. Ribozyme-catalyzed transcription of an active ribozyme. Science 2011; 332:209-12; PMID:21474753; http://dx.doi.org/10.1126/science.1200752
15. Robertson MP, Joyce GF. The origins of the RNA World. Cold Spring Harb Perspect Biol 2010; In press; PMID:20759415; http://dx.doi.org/10.1101/cshperspect.a03608
16. Zhu TF, Szostak JW. Coupled growth and division of model protocell membranes. J Am Chem Soc 2009; 131:5705-13; PMID:19325552; http://dx.doi.org/10.1021/ja090919c
17. Oliva MA, Hucenas S, Palacios JM, Marrín-Benito J, Valpuesta JM, Andreu JM. Assembly of archael cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments. J Biol Chem 2003; 278:35562-70; PMID:12807911; http://dx.doi.org/10.1074/jbc.M303798200
18. Stricker J, Maddox P, Salmon ED, Erickson HP. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photo-bleaching. Proc Natl Acad Sci U S A 2002; 99:3171-5; PMID:11854462; http://dx.doi.org/10.1073/pnas.05259099