Title: Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils

Authors: Qin Cao¹, David R. Boyer¹, Michael R. Sawaya¹, Peng Ge², David S. Eisenberg¹

¹Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.
²California NanoSystem Institute, UCLA, Los Angeles, CA, USA.
*Correspondence to: David S. Eisenberg, email: david@mbi.ucla.edu
Supplemental Tables:

Supplementary Table 1 Comparison of possible models of hIAPP fibrils

Model composition	Model 1	Model 2	Model 1 (swap)	Model 2 (swap)
Nonhydrogen atoms	1800	1600	1800	1600
Protein residues	240	220	240	220
Ligands	0	0	0	0
B factors (Å)	105.1	120.6	105.1	80.4
R.m.s. deviations				
Bond lengths (Å)	0.006	0.009	0.003	0.008
Bond angles (°)	1.138	1.203	0.940	1.354
MolProbity score	2.69	2.58	2.67	2.84
Clashcore	23.8	22.4	25.9	29.6
Poor rotamers (%)	0	0	0	0
Ramachandran plot				
Favored (%)	72.7	80	77.3	65
Allowed (%)	27.3	20	22.7	35
Disallowed (%)	0	0	0	0
Model vs. Data CC	0.71	0.60	0.63	0.68
Model resolution (Å) (FSC=0.5)	3.7	4.0	4.4	3.8
Solvation energy				
ΔG° per chain (kcal/mol)	-10.8	-12.2	-10.6	-10.3
ΔG° per residue (kcal/mol)	-0.45	-0.55	-0.44	-0.47

Supplementary Table 2 Solvation energy calculation

Fibril structure	ΔG° per layer (kcal/mol)	ΔG° per residue (kcal/mol)
hIAPP (PDB 6VW2)	-21.6	-0.45
TDP-43 SegA-sym (PDB 6N37)	-34.2	-0.47
Aβ ex vivo (PDB 6SHS)	-33.2	-0.42
Tau PHF (PDB 5O3L)	-62.8	-0.43
FUS (PDB 5W3N)	-12.2	-0.20

Supplementary Table 3 Structure alignments between Aβ and hIAPP

PBD ID	Residues	Mutation	Methods	r.m.s.d. (Å)	# of atoms	IAPP 24-34 vs. Aβ 19-29	
6OIZ	20-34	isoAsp23	MicroED	4.0	42	2.1	40
2M4J	1-40	Wild type	NMR	3.3	55	3.5	42
2MVX	1-40	Osaka (E22Δ)	NMR	6.4	81	1.5	36
5KK3	1-42	Wild type	NMR	4.7	62	1.5	38
5OQV	1-42	Wild type	CryoEM	4.8	62	1.9	36
2NAO	1-42	Wild type	NMR	4.8	61	1.6	40
2MXU	1-42	Wild type	NMR	4.9	62	1.6	39
2BEG	1-42	Wild type	NMR	3.7	55	2.0	40
2LMN	1-40	Wild type	NMR	3.5	59	1.8	42
2MPZ	1-40	Lowa (D23N)	NMR	3.7	56	2.8	42
6SHS	1-40	Wild type (ex vivo)	CryoEM	1.8	46	2.3	35
Name	Segment targeted	Sequence	Effect				
-------	----------------------	-------------------------------	-------------------				
N9S-A	Asn21-Ser29	NNFGAI\{nme-L\}SS	Delay aggregation				
N9S-B	Asn21-Ser29	NN\{nme-F\}GAILSS	No effect				
A9G-A	Ala25-Gly33	AI\{nme-L\}SSTNVG	Delay aggregation				
A9G-B	Ala25-Gly33	A\{nme-I\}LSSTNVG	Delay aggregation				
N4Gm-A	Asn21-Gly24	N\{nme-N\}FGG\{d-F\}\{d-N\}\{d-N\}	No effect				
N4Gm-B	Asn21-Gly24	NN\{nme-F\}GG\{d-F\}\{d-N\}\{d-N\}	Delay aggregation				

Supplementary Note 1

Construct design

SUMO-hIAPP constructs were designed with a (His)$_6$-tag for Ni-column purification, SUMO protein as a solubility tag and full-length hIAPP. hIAPP cDNA was inserted into a pET28a vector containing an amino terminus conjugation of SUMO protein. We initially designed one glycine residue as a linker between SUMO and hIAPP, and we found the SUMO tag cannot be cleaved from this construct. We then extended the linker to three glycine residues to generate a SUMO-tag removable construct. The sequences of both SUMO tag unremovable version (one-glycine linker, 1xG) and removable version (three-glycine linker, 3xG) are shown as follows:

SUMO-hIAPP (1xG)

MGSSHHHHHHHGSGLVPRGSASMSDSEVNQEAKEVKPEVKEVKEPTHEHNLKVSDGSEIFFKIKKTTPLRLM
EAFAKRQGKEMDRLRFYDGIQADQTPEDLDMDNDIIEAHRERQIGKCNATCATQRNLAFHLHSSNN
FGAILSSSTNVGSNTY

SUMO-hIAPP (3xG)

MGSSHHHHHHHGSGLVPRGSASMSDSEVNQEAKEVKPEVKEVKEPTHEHNLKVSDGSEIFFKIKKTTPLRLM
EAFAKRQGKEMDRLRFYDGIQADQTPEDLDMDNDIIEAHRERQIGGKCNATCATQRNLAFHLHVS
SNNFGAILSSSTNVGSNTY

Protein purification and SUMO-tag cleavage assays

Both 1xG and 3xG SUMO-hIAPP were expressed in the Escherichia coli BL21 (DE3) strain, which grows in LB media with 50 μg/ml kanamycin. Protein expression was induced by adding 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) to the cell culture when an OD600 of 0.6-0.8 was reached. The bacterial cells were further cultured at 25 °C for 3 hours and then were harvested and resuspended in 20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 20 mM imidazole and 10% (v/v) glycerol, supplemented with 1% (v/v) halt protease inhibitor single-
use cocktail (Thermo Scientific), and sonicated (3 s on/3 s of cycle, 10 min) and centrifuged (24,000g for 20 min) to obtain the cell lysate. We added our homemade NucA nuclease (5000 U per liter of cell culture) to the cell lysate, filtered the mixed solution and then loaded it onto a HisTrap HP column (GE healthcare). The column was pre-equilibrated with 20 mM Tris-HCl, pH 8.0, 500 mM NaCl and 20 mM imidazole before loading the sample, and after the sample was loaded, the column was washed with 20 mM Tris-HCl, pH 8.0, 500 mM NaCl and 200 mM imidazole and eluted with 20 mM Tris-HCl, pH 8.0, 500 mM NaCl and 500 mM imidazole. Purified protein was concentrated using Amicon Ultra-15 centrifugal filters (Millipore) and stored at −80 °C for future use.

To remove the SUMO-tag, ULP1 protease cleavage assays were performed. Both 1xG and 3xG SUMO-hIAPP protein were mixed with 100:1 (weight basis) with homemade ULP1 protease and samples were analyzed via SDS-PAGE (Extended Data Fig. 3b). At 0 h, samples mixed with ULP1 showed bands of intact SUMO-hIAPP; at 1 h of cleavage, only 3xG SUMO-hIAPP showed band of free SUMO and hIAPP, whereas 1xG still showed intact SUMO-hIAPP, indicating 3xG is SUMO removable but 1xG is not; after more than one month (> 1 m) of incubation at fibril growth condition, SUMO-hIAPP form fibrils and still showed intact SUMO-hIAPP band but not free SUMO and hIAPP bands, indicating 1xG SUMO-hIAPP fibrils contain SUMO tags.

Synthetic peptide preparation

Full-length hIAPP wild type and S20G were synthesized by InnoPep with amination at the carboxyl terminal and an intramolecular disulfide bridge between Cys2 and Cys7 with a purity higher than 95%. The inhibitors were synthesized by GenScript at a purity of 95% or higher. The sequences of all inhibitors designed are summarized in Supplementary Table 4, and the sequences of wild type and S20G hIAPP peptides are as follows:

hIAPP wild type:

KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH₂

hIAPP S20G:

KCNTATCATQRLANFLVHSGNNFGAILSSTNVGSNTY-NH₂

The synthetic hIAPP peptide was first dissolved in 100% HFIP at a concentration of 1 mM, sonicated at 4 °C for 1 min, and incubated at room temperature for 5 hours. The HFIP was then removed with a CentriVap Concentrator (Labconco) and treated peptides were stored at -20 °C. Before use, the peptides were freshly dissolved at 1 mM or 5 mM in 100% DMSO, and further diluted 100-fold in PBS and filtered using 0.1 μm Ultrafree-MC-VV centrifugal filters (Millipore) to form 10 μM and 50 μM hIAPP solutions. The peptide inhibitors were dissolved in 100% DMSO at a concentration of 30 mM and stored at -20 °C. Before use, the
DMSO inhibitor stocks were diluted to 10 mM or 3 mM with 100% DMSO, and then diluted 100-fold into hIAPP PBS solution to form 300 μm, 100 μm and 30 μm inhibitor mixtures.