Association of Toxoplasmosis with suicide: A systematic review and meta-analysis

CURRENT STATUS: UNDER REVIEW

Eissa Soleymani
Hamadan University of Medical Sciences Medical School

Fariba Faizi
Hamadan University of Medical Sciences Medical School

Rashid Heidarimoghadam
Hamadan University of Medical Sciences School of Public Health
 Corresponding Author

Lotfollah Davoodi
Mazandaran University of Medical Sciences

Younes Mohammadi
Hamadan University of Medical Sciences School of Public Health

DOI:
10.21203/rs.2.14031/v1

SUBJECT AREAS
Psychology

KEYWORDS
Toxoplasma gondii, Suicide, Systematic review, Meta-analysis
Abstract

Background findings on association of Toxoplasmosis and suicide is contradictory. This paper aimed to resolve this uncertainty with help of Meta-analysis.

Methods using keywords include “Toxoplasmosis” and “suicide” and the relayed synonyms in international databases such as ISI, Medline and Scopus, we found the relevant studies. The eligible studies included into Meta-analysis phase. Random effect approach was used to combine the results.

Results out of 150 initial studies, 16 were included into meta-analysis. Odds of suicide in person with toxoplasmosis was 47% (OR: 1.47, 95%CI; 1.20 to 1.79) higher than of that without toxoplasmosis. Test for publication bias was not statistically significant, which indicate absence of likely publication bias.

Conclusion This study confirm which toxoplasmosis is a potential risk factor for suicide. To reduce cases of suicide attributable to Toxoplasmosis, it deserving the measures to prevent and control of transmission of toxoplasmosis should be taken.

Background

Suicide is the most critical sequel of mental disease which lead to more than 800000 deaths globally, that is, in every second one person die from suicide. Therefore, suicide account for 1.5 % of all deaths (1, 2).

Many risk factors have been identified which increase the risk of suicide. The mental disorders, misuse of drugs, mental states, cultural factors and family, social and genetic conditions may reinforce the risk of suicide. (3).

The studies found that latent toxoplasmosis may cause the reduced Intelligence Quotient (IQ) (4), personality changes(5) and psychomotor performance (6). Hidden toxoplasmosis impresses the behavior of humans. Recently clinical data demonstrate that infectious
disease such as Toxoplasma gondii may play role in the pathophysiology of suicide.

Toxoplasma gondii is agent of toxoplasmosis, that infected about one third of the humans worldwide (7). Consumption of Toxoplasma-contaminated food, vegetable and water is the most common route of disease transmission (8). Complications of the disease are so crucial. Developing Toxoplasmosis in pregnancy is associated with mental disorders and deafness, abortion and vision disturbances after birth (9, 10). Moreover, meningoencephalitis and psychiatric complications can occur in *T.gondii* infected immunocompetent human (11, 12). Notably, tachyzoite form of the disease is responsible for the acute stage of the infection. (13).

However, results of the studies on association of toxoplasmosis and suicide are not consistent. While some studies claim that there is no association between suicide and toxoplasmosis (14, 15), some suggest that these two factors are correlated (16). One of the resolutions to overcome this conflict is to perform meta-analysis. Meta-analysis is a statistical method to extract one single effect size from several multiple studies. In this regard, the present study aimed to provide summary estimates for the available data on association of toxoplasmosis with suicide and to evaluate whether *T. gondii* may associate with the risk of suicides or not.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to write this study.

Protocol and registration

The protocol has been registered in Hamadan university of Medical Sciences (No. 9710256386).

Eligibility criteria

All analytical studies reported association of toxoplasmosis with suicide regardless of age,
sex, and race and time and language limitation were included.

Information sources

Medline, ISI and Scopus databases were searched to retrieve the related studies up to 25 March 2019. Moreover, we searched reference list of the screened studies to find the missed studies.

Searching literature

Two keywords include suicide and Toxoplasmosis were used to construct search strategy for each database.

Study selection

The studies which assess association of toxoplasmosis with suicide were included. Cross-sectional, case-control and cohort studies were eligible to be included. Two independent reviewers searched the databases, and then screened the title and subtract and full text of the studies to choose the relevant studies. Disagreement between two reviewers was resulted by third person.

Data collection process

An excel form was designed to extract the required data of the selected studies. This from included name of first author, year of publication, country of the study, age, sex, sample size and effect size of association.

Risk of bias in individual studies

Newcastle and Ottawa statement (NOS) checklist was used to assess the quality of the studies.

Summary measures

Odds Ratio (OR) with 95% Confidence Interval (95%CI) was determined as effect size for this study.

Synthesis of results
The final selected studies included into Meta-analysis. Random-effect approach was used to combine the studies and produce one single estimate. I² and chi-square test were used to assess existence of heterogeneity among the studies.

Risk of bias across studies

We used egger and beg test to investigate publication bias in reporting of the results.

Results

Figure 1 demonstrates process of the study. Initial search in the databases yielded 150 studies. After discarding duplicates and the irrelevant studies, 16 studies were qualified to be included into final phase. In term of setting of study, the selected studies were conducted in the United States, Turkey, Germany, Mexico, Poland, Denmark, France, Russia, South Korea, and Iran. Out of 16 studies, seven studies reported the significant association of Toxoplasmosis with suicide. In contrary, nine studies did not find any significant relationships between Toxoplasmosis and suicide.

The strongest and the weakest association reported by Dickerson (2.41) Okusaga (1.14) respectively.

Result of Meta-analysis indicate that odds ratio of Toxoplasmosis and suicide was 1.47, that is, it is statistically significant. Therefore, the person who infected by Toxoplasmosis have more 47% risk of attempting suicide relative to person who not infected by Toxoplasmosis.

To assess existence of publication bias, Begg test was not statistically significant (P-value = 0.28), which indicate absence of publication bias in the study.

Examining degree of heterogeneity among studies using I² test demonstrated a moderate heterogeneity (I² = 0.73). Therefore, we used random effect model to perform meta-analysis.
One study assessed the association of Toxoplasmosis with suicide through ecological study. This study showed that after adjusting potential confounders, a significant association is present between sero-prevalence of Toxoplasmosis and suicide rate among European countries (17).

Discussion

In this paper, we presented result of meta-analysis for association of Toxoplasmosis and suicide. Our analysis confirmed that developing Toxoplasmosis may increase risk of suicide by 47%. Mechanisms presented by literature endorse our results. The studies show that people who attempt suicide had significantly the higher IgG antibody to *T. gondii* as compared with people without suicide attempt (18). Moreover, report of an association of *toxoplasma* antibodies and suicidal behavior in patients with schizophrenia is in consistent with reports on associations between *T. gondii* and suicidal behavior in patients with mood disorders (19), overall psychiatric patients (16) and the completed suicide (17).

The experimental studies on animals demonstrate existence of effect of toxoplasmosis on their behaviors. In rodents, it has been reported which *T. gondii* enforce self- Malicious performances and reduce rodent learning and memory (20, 21). These changes result in reduction in harm avoidance, fear of death and attempting suicide.

T. gondii make pro-inflammatory cytokines (22) Pro-inflammatory cytokines, such as Interleukin-6 (IL-6) in the pleural fluid (23) and IL-6 and TNF> in the plasma (24) have lately been related with suicidal behavior. It is likely that promotions of kynurenine (KYNA) and its metabolites, and the stimulation of indoleamine 2,3<dioxygenase (IDO) by immune mediators targeting *T. gondii*, could result in changes in dopaminergic and glutaminergic neurotransmission and eventually lead to the affective and behavioral alterations to commit suicide (25).

Seropositivity to toxoplasmosis has a role in the higher the later occurrence of suicide in
lifespan (17). Studies indicate that individuals with depression and without a history of suicide attempt had smaller KYNA levels than depressed patients with a history of suicide attempts (26). Consistently, KYNA condensation in pleural fluid have been found to be related with severe suicide attempts and IL-6 levels (27). In fact, interferon gamma, by triggering lymphocytes and macrophages blocks the development of *T. gondii* (28). Also *T. gondii*, is a Collaborative agent increase the risk of suicide in the early- sickness phase patients (29). Low pleural fluid 5-hydroxyindoleacetic acid (5-HIAA), the metabolite of serotonin, has been related with suicide (30). Changes in glutamate and dopamine neurotransmission have been displayed to play a role in suicide and suicidal behavior (31, 32).

One major limitations present is this paper. We just included English language studies and not included non-English studies. Therefore, we can't assess the effect of non-English studies on our final result.

Despite the mentioned limitation of the study, but this study yield important clues which policy-maker would get serious role of toxoplasmosis in attempting suicide. Therefore, considering squeals and complications of Toxoplasmosis such as suicide, control, prevention and treatment of Toxoplasmosis is very important.

Conclusion

Our study is the first meta-analysis and systematic review to assess association of toxoplasmosis and suicide. *T. gondii* significantly increases risk of suicide. Therefore, to reduce suicide attributable to Toxoplasmosis, it deserving the measures to prevent and control of transmission of toxoplasmosis should take.

Abbreviations

Intelligence Quotient (IQ)
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

Odds Ratio (OR)

Confidence Interval (CI)

Newcastle and Ottawa statement (NOS)

Declarations

Ethical consideration

The protocol of study has been endorsed by Ethics Committee of Hamadan University of Medical Sciences (No. IR.UMSHA.REC.1397.73).

Consent for publication

Not applicable.

Availability of data and materials

Corresponding author is responsible of data. Access to all relevant raw data will be freely available to any scientist.

Competing interests

The authors have no conflict of interest.

Funding

The study has been supported by Hamadan University of Medical Sciences

Authors’ contributions

Eissa Soleymani: search, Reviewing, data extraction, writing primary draft, final approval

Fariba Faizi: search, Reviewing, writing primary draft, final approval of manuscript

Rashid Heidarimoghadam: Design, Reviewing, final approval of manuscript

Lotfollah Davoodi: design, data extraction, reviewing, final approval of manuscript

Younes Mohammadi: design, statistical analysis, final approval of manuscript

Acknowledgments

Not Applicable
References

1. Hawton K, van Heeringen K. Suicide. Lancet (London, England). 2009;373(9672):1372–81.

2. Klonsky ED, May AM, Saffer BY. Suicide, suicide attempts, and suicidal ideation. Annual review of clinical psychology. 2016;12:307–30.

3. Hawton K, Saunders KE, O’Connor RC. Self-harm and suicide in adolescents. The Lancet. 2012;379(9834):2373–82.

4. Flegr J, Preiss M, Klose J, Havlíček J, Vitáková M, Kodym P. Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii Dopamine, a missing link between schizophrenia and toxoplasmosis? Biological psychology. 2003;63(3):253–68.

5. Flegr J, Zitková Š, Kodym P, Frynta D. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology. 1996;113(1):49–54.

6. Havlíček J, Gašová Z, Smith AP, Zvára K, Flegr J. Decrease of psychomotor performance in subjects with latent ‘asymptomatic’toxoplasmosis. Parasitology. 2001;122(5):515–20.

7. Furtado JM, Smith JR, Belfort Jr R, Gattey D, Winthrop KL. Toxoplasmosis: a global threat. Journal of global infectious diseases. 2011;3(3):281.

8. Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical microbiology reviews. 2012;25(2):264–96.

9. Carellos E, Caiaffa W, Andrade G, Abreu M, Januário J. Congenital toxoplasmosis in the state of Minas Gerais, Brazil: a neglected infectious disease? Epidemiology & Infection. 2014;142(3):644–55.

10. Fatollahzadeh M, Jafari R, Mohammadi F, Ghayemmaghammi N, Rezvan S, Parsaïi M, et al. Study of anti-Toxoplasma IgG and IgM seropositivity among subjects referred to the central laboratory in Tabriz, Iran, 2013–2014. Avicenna Journal of Clinical Microbiology and...
Infection. 2016;3(3).

11.Soleymani E, Babamahmoodi F, Davoodi L, Marofi A, Nooshirvanpour P. Toxoplasmic Encephalitis in an AIDS Patient with Normal CD4 Count: A Case Report. Iranian journal of parasitology. 2018;13(2):317.

12.Kaushik RM, Mahajan SK, Sharma A, Kaushik R, Kukreti R. Toxoplasmic meningoencephalitis in an immunocompetent host. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2005;99(11):874–8.

13.Montoja J, Liesenfeld O. Toxoplasmosis Lancet. 2004; 363: 1965-1976. doi: 10.1016. S0140–6736 (04).

14.Okusaga O, Langenberg P, Sleemi A, Vaswani D, Giegling I, Hartmann AM, et al. Toxoplasma gondii antibody titers and history of suicide attempts in patients with schizophrenia. Schizophrenia research. 2011;133(1–3):150–5.

15.Dickerson F, Origoni A, Schweinfurth LA, Stallings C, Savage CL, Sweeney K, et al. Clinical and serological predictors of suicide in schizophrenia and major mood disorders. The Journal of nervous and mental disease. 2018;206(3):173–8.

16.Yagmur F, Yazar S, Temel HO, Cavusoglu M. May Toxoplasma gondii increase suicide attempt-preliminary results in Turkish subjects? Forensic science international. 2010;199(1–3):15–7.

17.Ling VJ, Lester D, Mortensen PB, Langenberg PW, Postolache TT. Toxoplasma gondii seropositivity and suicide rates in women. The Journal of nervous and mental disease. 2011;199(7):440.

18.Arling TA, Yolken RH, Lapidus M, Langenberg P, Dickerson FB, Zimmerman SA, et al. Toxoplasma gondii antibody titers and history of suicide attempts in patients with recurrent mood disorders. The Journal of nervous and mental disease. 2009;197(12):905–8.
19. Arling TA, Yolken RH, Lapidus M, Langenberg P, Dickerson FB, Zimmerman SA, et al. Toxoplasma gondii antibody titers and history of suicide attempts in patients with recurrent mood disorders. The Journal of nervous and mental disease. 2009;197(12):905-8.

20. Webster JP. The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophrenia bulletin. 2007;33(3):752-6.

21. Berdoy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with Toxoplasma gondii. Proceedings of the Royal Society of London Series B: Biological Sciences. 2000;267(1452):1591-4.

22. Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to Toxoplasma gondii. International journal for parasitology. 2009;39(1):23-39.

23. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, et al. Interleukin–6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biological psychiatry. 2009;66(3):287-92.

24. Janelidze S, Mattei D, Westrin Å, Träskman-Bendz L, Brundin L. Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain, behavior, and immunity. 2011;25(2):335-9.

25. Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biological psychiatry. 2011;70(2):175-82.

26. Sublette ME, Galfalvy HC, Fuchs D, Lapidus M, Grunebaum MF, Oquendo MA, et al. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain, behavior, and immunity. 2011;25(6):1272-8.

27. Lindqvist D. Redefining suicidal behaviour–Rating scales and biomarkers: Lund
University; 2010.

28. Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clinical microbiology reviews. 1998;11(4):569–88.

29. Pompili M, Serafini G, Innamorati M, Lester D, Shrivastava A, Girardi P, et al. Suicide risk in first episode psychosis: a selective review of the current literature. Schizophrenia research. 2011;129(1):1–11.

30. Lidberg L, Belfrage H, Bertilsson L, Mattila Evenden M, Åsberg M. Suicide attempts and impulse control disorder are related to low cerebrospinalfluid 5-HIAA in mentally disorderedviolent offenders. Acta Psychiatrica Scandinavica. 2000;101(5):395–402.

31. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PloS one. 2009;4(8):e6585.

32. Suda A, Kawanishi C, Kishida I, Sato R, Yamada T, Nakagawa M, et al. Dopamine D2 receptor gene polymorphisms are associated with suicide attempt in the Japanese population. Neuropsychobiology. 2009;59(2):130–4.

Tables

Table 1. Characteristics of the studies included into the study
Author	Country	Study Type	Outcome	Number of Suicide
Timothy A (2009)	United state	Case-control	suicide attempt	
Yagmur F (2010)	Turkey	Case-control	suicide attempt	
Ling, V. J. (2011)	20 European countries	Ecological	Seroprevalence of Toxo	
Okusaga (2014)	Germany	Case-control	suicide attempt	
Pedersen, M. G (2012)	Denmark	prospective cohort study	suicide attempt	
Alvarado-Esquivel, C	Mexico	Case-control	suicide attempt	
Samojlowicz, D (2013)	Poland	Case-control	death from suicide	
Coryell W (2016)	United state	prospective cohort study	suicide attempt	
Gale, S. D (2016)	United state	Cross-Sectional	suicidal ideation	
Okusaga, O (2016)	United states OR Germany	Case-control	suicide attempt	
Sugden, K (2016)	United state	prospective cohort study	suicide attempt	
Ansari-Lari, M (2017)	Iran	Case-control	suicide attempt	
Dickerson, F (2017)	United state	Case-control	suicide attempt	
Bak, J (2018)	South Korea	Case-control	suicide attempt	
Dickerson, F (2018)	United state	prospective cohort study	death from suicide	
Fond, G (2018)	France	prospective cohort study	suicide attempt	

Figures
Figure 1

Process of performing systematic review
Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Timothy A (2009)	1.55	1.14	2.11	2.77	0.01
Yagmur F (2010)	1.79	1.18	2.71	2.72	0.01
Okusaga (2014)	1.18	0.90	1.54	1.18	0.24
Pedersen, M. G (2012)	1.53	1.27	1.85	4.43	0.00
Alvarado-Esquível, C (2013)	0.55	0.20	1.49	-1.18	0.24
Samołłowicz, D (2013)	1.78	0.79	4.03	1.39	0.16
Coryell W (2016)	5.93	0.78	45.40	1.71	0.09
Gale, S. D (2016)	1.22	0.85	1.75	1.08	0.28
Sugden, K (2016)	2.63	0.97	7.14	1.90	0.06
Ansari-Lari, M (2017)	0.40	0.16	1.03	-1.89	0.06
Dickerson, F (2017)	2.41	1.02	5.70	2.00	0.05
Bak, J (2018)	2.68	1.15	6.27	2.28	0.02
Dickerson, F (2018)	6.45	2.15	19.33	3.33	0.00
Fond, G (2018)	1.27	0.26	6.25	0.29	0.77
Okusaga, O (2016)	1.14	0.86	1.50	0.91	0.36
	1.47	1.20	1.79	3.70	0.00

Figure 2

Odds ratio with 95% confidence Interval the studies and meta-analysis.