Human Development Index of the maternal country of origin and its relationship with maternal near miss: A systematic review of the literature

Santiago García-Tizón Larroca1*, Francisco Amor Valera1, Esther Ayuso Herrera1, Ignacio Cueto Hernandez1, Yolanda Cuñarro Lopez1 and Juan De Leon-Luis1,2

Abstract

Background: The reduction in maternal mortality worldwide has increased the interest in studying more frequent severe events such as maternal near miss. The Human Development Index is a sociodemographic country-specific variable that includes key human development indicators such as living a long and healthy life, acquiring knowledge, and enjoying a decent standard of living, allowing differentiation between countries. In a globalised environment, it is necessary to study whether the Human Development Index of each patient’s country of origin can be associated with the maternal near-miss rate and thus classify the risk of maternal morbidity and mortality.

Methods: A systematic review of the literature published between 2008 and 2019 was conducted, including all articles that reported data about maternal near miss in their sample of pregnant women, in addition to describing the study countries of their sample population. The Human Development Index of the study country, the maternal near-miss rate, the maternal mortality rate, and other maternal-perinatal variables related to morbidity and mortality were used.

Results: After the systematic review, eighty two articles from over thirty countries were included, for a total of 3,699,697 live births, 37,191 near miss cases, and 4029 mortality cases. A statistically significant (p <0.05) inversely proportional relationship was observed between the Human Development Index of the study country and the maternal near-miss and mortality rates. The most common cause of maternal near miss was haemorrhage, with an overall rate of 38.5%, followed by hypertensive disorders of pregnancy (34.2%), sepsis (7.5%), and other undefined causes (20.9%).

Conclusions: The Human Development Index of the maternal country of origin is a sociodemographic variable allowing differentiation and classification of the risk of maternal mortality and near miss in pregnant women. The most common cause of maternal near miss published in the literature was haemorrhage.

Trial registration: PROSPERO ID: CRD 42019133464

Keywords: Maternal near miss, Maternal mortality, Human Development Index, Immigrants

* Correspondence: gineteca@gmail.com
1Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, HGUGM, Calle O'Donnell, 48, Planta 0, 28009 Madrid, Spain
Full list of author information is available at the end of the article
Background
Worldwide, over 1500 women die every day due to complications of pregnancy or childbirth. It is possible that most of these deaths could be prevented if the women were in countries other than their countries of origin. Although the Millennium Development Goal of reducing maternal mortality (MM) by 75% between 1990 and 2015 has not been achieved globally, significant progress has been made; in many countries, maternal health has improved significantly, and the goals for 2030 are to achieve MM rates of less than 70 per 100,000 live births and to increase the proportion of births attended by skilled health personnel [1]. One of the Millennium Development Goals set in 2000 by the member countries of the United Nations is to improve the health of women through multiple interventions, such as promoting access to family planning services and emergency obstetric care by qualified and trained personnel. In this respect, women in low-income countries are especially vulnerable to dying from obstetric causes. The World Health Organization, through its “Global Strategy for Women’s, Children’s and Adolescents’ Health (2016-2030),” is analysing relevant indicators and scores to improve the survival of newborns and pregnant women. Although the world has made substantial progress on these two issues, the decline in maternal and neonatal mortality has recently slowed down. Moreover, in 2017-2019, the Quality of Care Network group supported by the WHO included more countries – such as Ethiopia, Ghana, India, Malawi, Nigeria, Tanzania and Uganda – on its agenda to complete the following tasks:

- Accelerate action by adapting the WHO’s standards for improving the quality of maternal and newborn care in health facilities at the country level.
- Foster learning and generate evidence on quality of care through a learning platform.
- Develop and support institutions and mechanisms that will ensure accountability for quality of care by designing a national accountability framework.

Traditionally, the analysis of maternal deaths has been the approach of choice for evaluating women’s health and the quality of obstetric care. However, due to the success of modern medicine, such deaths have become very rare in developed countries, which has led to an increased interest in analysing so-called “near miss” events. The World Health Organization defines a maternal near miss (MNM) as “a woman who nearly died but survived a complication that occurred during pregnancy, childbirth or within forty-two days of termination of pregnancy”. A MNM is also assumed to be a better indicator than MM alone when designing, monitoring, following-up and evaluating safe motherhood programmes [2]. Year after year, increasingly more authors are interested in publishing MNM events that occur in their countries, and it is necessary to analyse morbidity and mortality data over the past decade to compare situations in different countries.

Haemorrhage, hypertensive disorders of pregnancy, and infections stand out as the direct causes of more than 70% of both MNM and mortality. In all these cases, the lack of care or access to care, the high cost of health care or its poor quality, and the variation among different countries results in 1 million maternal orphans every year, and these children are also more likely to die during the years following their mother’s death.

For years, gross national income per capita has been used to weigh differences among countries; however, in the 1990s, the WHO introduced the Human Development Index (HDI) as a sociodemographic variable to help differentiate countries, thus avoiding reliance on the purely economic value of each nation and trying to classify the world population in homogeneous groups through more comprehensive indicators.

This index has helped the WHO to establish different strategies to end preventable maternal morbidity and mortality; its use is increasingly widespread in the medical literature, where a very high HDI is typical of countries with more resources. Tuncalp is the first author to relate the HDI of the maternal country of origin to severe maternal outcomes such as MNM and MM with data from countries in Africa, Asia, Latin America, and the Middle East. That author describes a significant relationship between mothers from countries with medium and low HDIs; women in those countries are shown to have a risk of maternal complications that is 2-3 times higher than for women from countries with high HDIs [3].

Using the HDI of pregnant women from other countries and assessing the influence of HDI on maternal-perinatal health in our country, Spain, a previous study conducted by our team [4] observed an increased risk of adverse maternal-perinatal events in pregnant women from low-HDI countries compared to women originating from countries with higher HDIs. Similarly, Luque-Fernandez et al. [5], analysing the trend of stillbirth in Spain, showed an increased risk of stillbirth, approximately three times higher, in pregnant women from low-HDI countries. For both authors, incorporating HDI improves the characterisation of the maternal socio-economic level by introducing the HDI of the maternal country of origin and maternal educational attainment to population analysis, producing a fuller analysis compared to those studies that only include the country of origin of immigrant pregnant women.

In this study, we will consider the HDI of the place of publication (as a proxy measure like that used in the study on immigration) and determine the relationship with adverse maternal-perinatal outcomes.
The aim of this study is to conduct a systematic review of the articles published over the last decade reporting severe acute maternal morbidity. We use as a reference the HDI of the country where the study was conducted—which directly reflects the HDI of its population of pregnant women—to analyse its relationship with relevant adverse maternal-perinatal outcomes during pregnancy, childbirth, and the postpartum period, such as MNM and MM.

Methods

Protocol, eligibility criteria, information sources and search strategies

This review was performed according to an a-priori-designed protocol recommended for systematic reviews. PRISMA [6] and MOOSE guidelines were followed [7]. The study was registered in the PROSPERO database (registration number: CRD 42019133464). The systematic literature search was conducted in two electronic databases, PubMed/MEDLINE and EMBASE, utilising combinations of the relevant medical subjects by MeSH terms with the following keywords: “near miss” or “morbidity” and “pregnancy” or “mothers” or “pregnancy outcome”. The search period was between 17/02/2008 and 17/02/2019. A reference database (EndNote X7, Thomson Reuters) was used to incorporate all references.

The inclusion criteria were as follows:

- studies published between 17/02/2008 and 17/02/2019;
- studies conducted with humans;
- studies in English, both the abstract and the main text; and
- studies that included MNM analysis in their study population.

The exclusion criteria were as follows:

- studies with scarce information about the study population, such as country of origin, or studies investigating specific ethnic, racial, or immigrant groups;
- published articles that did not report data on MNM or those on maternal morbidity events not meeting MNM criteria according to the WHO;
- systematic reviews, expert opinions, and intervention studies without quantitative data about the MNM rate; and
- studies conducted on the same patient cohort. In these cases, we selected the most up-to-date patient cohorts and excluded secondary analysis studies on the same sample.

Study selection

Titles and abstracts of the search results were screened by two researchers independently (SGTL and FAV). If the title and abstract did not provide useful information for the review or was irrelevant, the articles were eliminated from the analysis. Potentially eligible studies were assessed in full-text format. Any disagreement on the eligibility of studies was resolved through discussion and joint assessment until consensus was reached between the two researchers.

Data collection and data items

Data were extracted using an appraised extraction form. Each reviewer collected the data independently, and discrepancies between them were resolved by the two authors checking the study against the form. The review authors were not blinded to the journal or author details. Extracted data included the name of the first author and year of publication, first and last year of the study, study period, country or countries where the study was conducted, HDI group to which the study country belongs, and the HDI score of the study country.

The HDI is a summary measure of a country’s average level of achievement in the following major dimensions of human development: living a long and healthy life, being educated, and having a decent standard of living. Life expectancy serves as an indicator of the health dimension; standard of living is measured in terms of gross national income per capita; and education level is evaluated as the average number of years of schooling among adults aged twenty-five years and older and expected number of years of schooling among children [8].

A country obtains a higher HDI score when its population has a higher life expectancy, education level, and gross national income (GNI) per capita; these scores are reported within the annual Human Development Report published by the United Nations Development Programme (UNDP) [9]. The UNDP divides countries into four broad categories of human development: group 1 (very high HDI), group 2 (high HDI), group 3 (medium HDI), and group 4 (low HDI) based on the numerical score obtained, with a minimum of 0 and a maximum of 1.

Other maternal-perinatal variables included in the study were type of study (single- or multi-centre), study design, total number of live births (LBs), number of MNM events in the study, rate of MNM/1000 LBs, number of maternal mortality events, rate of MM/100,000 LBs, percentage of MNM due to haemorrhage, percentage of MNM due to hypertensive disorders of pregnancy, percentage of MNM due to sepsis, percentage of MNM due to other causes, MNM in the immigrant population, MNM by ethnic group, maternal age at MNM, percentage of primiparous mothers in the MNM group, parity in MNM, percentage of births <37 weeks gestation in the MNM group, caesarean section rate in the MNM group, and neonatal near miss.
In the case of multicountry studies, the average HDI score given by the HDI scores of all included countries was calculated.

After data collection, the data were ordered according to the publication year.

Risk of bias assessment and statistical analysis
The risk of bias was assessed independently by both authors, who determined the adequacy of compliance with the inclusion criteria. The items assessed were correct description of MNM cases, complete reporting of proportion and type of near miss in the case group, and adequate description of the country or countries where the study was carried out. We tried to choose strict eligibility criteria to achieve a good number of studies that were as homogeneous as possible and thereby extract concrete and valid conclusions.

The quality of the evidence of the studies included was assessed according to the Grade of Evidence Working Group Criteria [10].

Statistical analyses were carried out using STATA, version 13.1 (Stata Corp., College Station, TX, USA) in its default settings. The results are expressed as rates (%) for dichotomous variables, and we calculated 95% confidence intervals (95% CIs). We tried to perform a quantitative synthesis with pooled relative risks and 95% confidence intervals (95% CI), but a meta-analysis was not feasible given the lack of a control group and the heterogeneity of the available studies.

Results
Figure 1 describes the workflow process. As shown, the initial search identified 4842 articles in the databases. After screening and applying the eligibility and exclusion criteria in the final phase of the records, eighty-two articles were selected. A total of 3,699,697 LBs, 37,191 near miss cases and 4029 mortality cases were reported, representing the population analysed in this systematic review.

Table 1 describes the results obtained in each study for the different variables analysed in the review. Over 90% of the studies were led by different authors; among those who led in publishing, the author who published the most studies in the period included in this analysis of MNM was Jayaratnam, with four. Of all the articles, sixty-two (75.6%) have been published since 2014, and the study by Okusanya et al. [53] (reference) included...
Authors	Publication Year	First Year	Last Year	Period Years	Country	HDI Group	HDI score	Study Type	Study Design	Total live births	MNM cases	MNM rate
Adisasmita et al.	2008	2003	2004	1	Indonesia	3	0.694	multi-centre	Retrospective longitudinal	5669	763	1346
Driul et al.	2008	1998	2008	10	Italy	1	0.88	single-centre	Retrospective longitudinal	18936	95	5.0
Roost et al.	2009	2006	2007	1	Bolivia	3	0.693	single-centre	Retrospective longitudinal	8136	401	49.3
Almerie et al.	2010	2006	2008	2	Syria	4	0.536	single-centre	Retrospective case-control	28025	901	32.1
Shrestha et al.	2010	2009	2009	1	Nepal	3	0.574	single-centre	Retrospective longitudinal	1562	36	23.0
Souza et al.	2010	2005	2005	1	Multicountry	0.745	multi-centre	Retrospective longitudinal	97095	2964	34.0	
Ali et al.	2011	2008	2010	2	Sudan	4	0.502	single-centre	Retrospective cohort	9578	205	21.4
Amaral et al.	2011	2005	2005	1	Brazil	2	0.759	single-centre	Retrospective longitudinal	4491	95	21.1
Donati et al.	2011	2004	2005	1	Italy	1	0.88	multi-centre	Retrospective longitudinal	539382	1259	2.3
Jayaratnam et al.	2011	2009	2010	1	Australia	1	0.939	single-centre	Prospective longitudinal	NR	17	6.0
Kaye et al.	2011	2010	2010	1	Uganda	4	0.516	single-centre	Prospective cohort	140	21	1500
Lobato et al.	2012	2008	2008	1	Brazil	2	0.759	single-centre	Retrospective review	1163	27	23.2
Souza et al.	2012	2009	2010	1	Brazil	2	0.759	multi-centre	Retrospective longitudinal	82388	770	9.3
Adeoye et al.	2013	2006	2007	1	Nigeria	4	0.532	multi-centre	Prospective case-control	375	75	2000
Jabir et al.	2013	2010	2010	1	Iraq	3	0.685	multi-centre	Cross-sectional	25472	129	5.1
Karolinski et al.	2013	2008	2009	1	Argentina	1	0.825	multi-centre	Cross-sectional	65033	518	8.0
Nelissen et al.	2013	2009	2011	2	Tanzania	4	0.538	single-centre	Prospective longitudinal	9136	216	23.6
Roopa et al.	2013	2011	2012	1	India	3	0.64	single-centre	Retrospective longitudinal	7390	131	17.8
Shen et al.	2013	2008	2012	4	China	2	0.752	single-centre	Retrospective longitudinal	18104	69	3.8
Tuncalp et al.	2013	2010	2011	1	Multicountry	0.649	multi-centre	Retrospective longitudinal	314623	1667	5.3	
Authors	Publication Year	First Year	Last Year	Period Years	Country	HDI Group	HDI score	Study Type	Study Design	Total live births	MNM cases	MNM rate
-------------------------	------------------	------------	-----------	--------------	----------------	-----------	-----------	----------------	-------------------------------------	-------------------	------------	----------
Wahlberg et al. [30]	2013	1998	2007	9	Sweden	1	0.933	multi-centre	Retrospective longitudinal	914474	2655	2.9
Abalos et al. [31]	2014	2004	2008	4	Multicountry	0.655	multi-centre	Cross-sectional	313030	1227	3.9	
David et al. [32]	2014	2008	2008	1	Mozambique	4	0.437	multi-centre	Cross-sectional	27916	564	202
Galvao et al. [33]	2014	2011	2012	1	Brazil	2	0.759	multi-centre	Cross-sectional/Nested case-control	16243	77	4.7
Litorp et al. [34]	2014	2012	2012	1	Tanzania	4	0.538	multi-centre	Cross-sectional	13121	467	35.6
Luexay et al. [35]	2014	2011	2011	1	Laos	3	0.601	multi-centre	Retrospective longitudinal	1215	11	9.1
Lumbiganon et al. [36]	2014	2015	2011	1	Multicountry	-	multi-centre	Cross-sectional	314623	2365	7.5	
Mazhar et al. [37]	2014	2011	2011	1	Pakistan	4	0.562	multi-centre	Retrospective longitudinal	13175	94	7.1
Pacheco et al. [38]	2014	2011	2011	1	Brazil	2	0.759	single-centre	Retrospective longitudinal	2291	24	10.5
Pandey et al. [39]	2014	2011	2012	1	India	3	0.64	single-centre	Retrospective longitudinal	6357	633	1200
Rocha Filho et al. [40]	2014	2009	2010	1	Brazil	2	0.759	multi-centre	Retrospective longitudinal	82144	770	9.4
Assarag et al. [41]	2015	2012	2012	1	Morocco	3	0.667	multi-centre	Retrospective case-control	299	80	26.76
Bashour et al. [42]	2015	2011	2015	4	Multicountry (Egypt, Lebanon, Palestine and Syria)	0.616	multi-centre	Cross-sectional	9063	71	7.8	
Cecatti et al. [43]	2015	2009	2010	1	Brazil	2	0.759	multi-centre	Cross-sectional	9555	770	806
Hassan et al. [44]	2015	2011	2012	1	Palestine	-	single-centre	Prospective longitudinal	1558	15	9.6	
Kulkarni et al. [45]	2015	2012	2013	1	India	3	0.64	multi-centre	Prospective longitudinal	19176	884	46.1
Madeiro et al. [46]	2015	2012	2013	1	Brazil	2	0.759	multi-centre	Cross-sectional / Prospective longitudinal	5841	56	9.6
Naderi et al. [47]	2015	2013	2013	1	Iran	2	0.798	multi-centre	Retrospective longitudinal	19908	501	25.2
Oladapo et al. [48]	2015	2012	2013	1	Nigeria	4	0.532	multi-centre	Prospective longitudinal	91724	1451	15.8
Authors	Publication Year	First Year	Last Year	Period Years	Country	HDI Group	HDI score	Study Type	Study Design	Total live births	MNM cases	MNM rate
--------------------------	------------------	------------	-----------	--------------	---------	-----------	-----------	----------------------------	--------------------------	-------------------	------------	-----------
Oliveira et al. [49]	2015	2006	2007	1	Brazil	2	0.759	single-centre	Retrospective longitudinal	19940	255	12.8
Rulisa et al. [50]	2015	2011	2012	1	Rwanda	4	0.524	single-centre	Retrospective longitudinal	1739	192	110.4
Sangeeta et al. [51]	2015	2012	2013	1	India	3	0.64	single-centre	Retrospective longitudinal	6892	27	4.0
Soma-Pillay et al. [52]	2015	2013	2014	1	South Africa	3	0.699	multi-centre	Retrospective longitudinal	26614	136	5.1
Okusanya et al. [53]	2016	1993	2013	20	Nigeria	4	0.532	single-centre	Retrospective cross-sectional	30553	116	3.8
de Mucio et al. [54]	2016	2013	2013	1	Latin America (12 countries)	0.723	multi-centre	Cross-sectional				
Domingues et al. [55]	2016	2011	2012	1	Brazil	2	0.759	multi-centre	Retrospective case-control	23984	244	10.2
El Ghardallou et al. [56]	2016	2012	2012	1	Tunisia	2	0.735	single-centre	Retrospective longitudinal	9957	58	5.8
Jayaratram et al. [57]	2016	2014	2015	1	Australia	1	0.939	single-centre	Prospective longitudinal	2080	10	4.8
Kalisa et al. [58]	2016	2014	2014	1	Rwanda	4	0.524	single-centre	Prospective cohort	3979	86	21.6
Lima et al. [59]	2016	2009	2010	1	Brazil	2	0.759	multi-centre	Retrospective longitudinal	4617	50	10.8
Mohammadi et al. [60]	2016	2012	2014	2	Iran	2	0.798	multi-centre	Retrospective case-control	12965	82	6.3
Nakimuli et al. [61]	2016	2013	2014	1	Uganda	4	0.516	multi-centre	Prospective cohort	NR	695	8.4
Nansubuga et al. [62]	2016	2013	2013	1	Uganda	4	0.516	single-centre	Retrospective longitudinal	1557	434	278.7
Norhayati et al. [63]	2016	2014	2014	1	Malaysia	2	0.802	multi-centre	Retrospective longitudinal	21579	47	2.2
Parmar et al. [64]	2016	2012	2012	1	India	3	0.64	single-centre	Retrospective longitudinal	1929	46	23.9
Rathod et al. [65]	2016	2011	2013	2	India	3	0.64	multi-centre	Retrospective longitudinal	21992	161	7.6
Tanimia et al. [66]	2016	2012	2013	1	Papua New Guinea	4	0.544	single-centre	Prospective longitudinal	13338	122	9.1
Bolnga et al. [67]	2017	2014	2016	2	Papua New Guinea	4	0.544	single-centre	Prospective longitudinal	6019	153	25.4
Goldenberg et al. [68]	2017	2014	2016	2	Multicountry (Congo,	0.593	multi-centre	Prospective longitudinal	122707	4866	39.7	
Authors	Publication Year	First Year	Last Year	Period Years	Country	HDI Group	HDI score	Study Type	Study Design	Total live births	MNM cases	MNM rate
-------------------------	------------------	------------	-----------	--------------	-------------------------------	-----------	-----------	-----------------	-----------------	------------------	------------	----------
Herklots et al. [69]	2017	2016	2016	1	Tanzania	4	0.538	single-centre	Cross-sectional	4125	37	6.7
Khan et al. [70]	2017	2009	2011	2	India	3	0.64	single-centre	Retrospective cross-sectional	20556	302	14.7
Kiruja et al. [71]	2017	2015	2015	1	Somalia	4	-	single-centre	Retrospective longitudinal	1385	120	86.6
Liyew et al. [72]	2017	2015	2016	1	Ethiopia	4	0.463	multi-centre	Cross-sectional	29697	238	8.0
Mawarti et al. [73]	2017	2011	2012	1	Indonesia	3	0.694	single-centre	Retrospective longitudinal	3300	86	26.0
Mbachu et al. [74]	2017	2015	2015	1	Nigeria	4	0.532	single-centre	Retrospective longitudinal	262	52	198.5
Mekango et al. [75]	2017	2016	2016	1	Ethiopia	4	0.463	multi-centre	Retrospective longitudinal	308	103	334.4
Sayinzoa et al. [76]	2017	2016	2016	1	Rwanda	4	0.524	multi-centre	Prospective case-control	5577	201	36.0
Witteveen et al. [77]	2017			Multicountry (Netherlands, Tanzania, Malawi)	0.648	multi-centre	Prospective cohort	NR	2308	NR		
Awowole et al. [78]	2018	2007	2016	9	Nigeria	4	0.532	single-centre	Retrospective longitudinal	11242	43	3.8
Benimana et al. [79]	2018	2015	2015	1	Rwanda	4	0.524	single-centre	Retrospective longitudinal	NR	98	NR
Chikadaya et al. [80]	2018	2016	2016	1	Zimbabwe	4	0.535	single-centre	Prospective longitudinal	11871	110	9.3
Iwuh et al. [81]	2018	2014	2014	1	South Africa	3	0.699	multi-centre	Retrospective longitudinal	19222	112	5.8
Jayaratnam et al. [82]	2018	2014	2015	1	Australia	1	0.939	single-centre	Prospective longitudinal	2773	19	7.0
Liyew et al. [83]	2018	2015	2016	1	Ethiopia	4	0.463	multi-centre	Prospective cohort	828	207	2500
Oliveira Neto et al. [84]	2018	2013	2015	2	Brazil	2	0.759	single-centre	Retrospective longitudinal	8065	60	7.4
Tura et al. [85]	2018	2016	2017	1	Ethiopia	4	0.463	single-centre	Retrospective longitudinal	7404	594	80.2
Woldeyes et al. [86]	2018	2015	2015	1	Ethiopia	4	0.463	single-centre	Retrospective longitudinal	2737	138	50.4
Table 1. Summary of all the studies included in the review with their results (Continued)

Authors	Publication Year	First Year	Last Year	Period Years	Country	HDI Group	HDI score	Study Type	Study Design	Total live births	MNM cases	MNM rate
Yang et al. [87]	2018	2012	2015	3	China	2	0.752	single-centre	Retrospective longitudinal	14105	265	18.8
Herklots et al. [88]	2019	2017	2018	1	Tanzania	4	0.538	single-centre	Prospective longitudinal	26842	256	9.5
Jayaratnam et al. [89]	2019	2015	2016	1	Timor	3	0.625	single-centre	Prospective longitudinal	4529	39	8.0
Oppong et al. [90]	2019	2015	2015	1	Ghana	3	0.592	multi-centre	Retrospective longitudinal	8433	288	34.2
Zanardi et al. [91]	2019	2009	2010	1	Brazil	2	0.759	multi-centre	Retrospective longitudinal	82388	624	7.6
Table 1 Summary of all the studies included in the review with their results (Continued)

Authors	MM cases	MM rate	MNM Haemorrhage %	MNM Hypertension %	MNM Sepsis %	MNM Others %	MNM immigrants	MNM ethnicity	MNM Maternal age	GI in MNM %	Parity in MNM	GA < 37 weeks in MNM %	Caesarean rate in MNM %	Neonatal near miss	
Adisasmita et al. [11]	127	2240	40.6	32.3	NR	16.3	NR	NR	NR	NR	NR	NR	NR	NR	
Driul et al. [12]	1	54	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Roost et al. [13]	15	1870	48	46	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Almerie et al. [14]	15	548	34	52	2.8	NR	NR	NR	Mean 28.4 years	28	30.5	NR	NR	2.77% shoulder dystocia	
Shrestha et al. [15]	5	3240	41.6	27.7	19.4	8.3	NR	NR	Mean 27 years	30.5	G1 NM= 30.5%	NR	NR	NR	
Souza et al. [16]	25	26	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Ali et al. [17]	41	4320	40.8	18	21.5	NR	NR	NR	Mean 255 years	NR	Mean 3.01 in NM	NR	NR	NR	
Amaral et al. [18]	4	89	17.9	57.8	14.3	17.8	NR	NR	NR	NR	NR	NR	NR	60 perinatal deaths	
Donati et al. [19]	NR	NR	40	29	3	25	Immigrants OR 3	NR	≥ 35 years 2.8/1000	NR	Not specified	NR	70%	NR	
Jayaratnam et al. [20]	NR	NR	40	12	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Kaye et al. [21]	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Lobato et al. [22]	NR	NR	4	80	NR	NR	NR	NR	NR	NR	Not specified	NR	NR	NR	
Souza et al. [23]	140	1700	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Adeoye et al. [24]	NR	NR	45.3	37.3	18.6	NR	NR	NR	>40 years 5.3%	NR	1-2 (61.3%); 3-4 (25.3%); 5 or more (13.4%) in NM	NR	NR	NR	
Jabir et al. [25]	16	628	65.9	21	NR	NR	NR	NR	NR	NR	Not specified	NR	67.83%	NR	
Karolinski et al. [26]	34	523	36.7	31.1	4.4	15.3	NR	NR	>35 years in 21.8%, <20 years in 16.1%	26.6	26.6% P0; 37.5% >P3 in NM	NR	80.1	NR	
Nelissen et al. [27]	32	3503	NR	NR	NR	NR	NR	NR	NR	NR	Not specified	NR	NR	NR	
Authors	MM cases	MM rate	MMN Haemorrhage %	MMN Hypertension %	MMN Sepsis %	MMN Others %	MMN immigrants	MMN ethnicity	MMN Maternal age	G1 in MMN %	Parity in MMN	GA < 37 weeks in MMN %	Caesarean rate in MMN %	Neonatal near miss	
------------------	----------	---------	-------------------	-------------------	--------------	--------------	----------------	---------------	-----------------	--------------	----------------	-----------------------------	-----------------------------	------------------	
Roopa et al.	23	313.0	44.2	23.6	16	NR	NR	NR	NR	58	NR	NR	NR	NR	
Shen et al.	3	16.0	36.1	31.7	NR	NR	aOR in Immigrants_mean 28 ± 5 years	NR	76.8	G1 76.8% in NM	NR	89.9	40% admission to neonatal ICU	NR	
Tuncalp et al.	360	1144	NR	NR	NR	NR	MNM by groups: 0.8% HDI 1-2, 0.5% HDI 3, 1.1% HDI 4 Mean ≥35 years	10.6%	NR	G1 37.3% of the total	NR	NR	NR	NR	
Wahlberg et al.	22	24	NR	NR	NR	Specified by groups of origin Specified by groups of origin	NR	Specified by groups of origin	NR	NR	NR	NR			
Abalos et al.	204	65.2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		
David et al.	71	2540	58	35.5	3.9	NR	NR	NR	14-19 (23.6%), 20-24 (27%), 25-29 (26.2%), 30-34 (16.7%), ≥35 (6.6%)	33.9	0 (33.9%); 1 (20.47%); 2-4 (40.6%); ≥5 (4.8%) in NM	NR	56.6	NR	NR
Galvao et al.	NR	NR	NR	NR	NR	84.4% non white; 15.6% white	< 35 years 73.9%; ≥35 years 26.1%	NR	Not specified	NR	74.5	NR	NR		
Litorp et al.	77	5870	13	42	NR	NR	NR	NR	Mean 26 years	43	NR	NR	35	NR	
Luexay et al.	2	1780	NR	NR	NR	Lao (70.6%); tribes (18.3%)	Mean 244 years	NR	NR	NR	NR	NR	NR		
Lumbiganon et al.	NR	NR	NR	8.1	28.1	NR	NR	NR	NR	NR	NR	NR	NR		
Mazhar et al.	38	2990	48.5	25.8	NR	NR	NR	NR	20-40 years 96.2 %	37	G1 37% in NM	47	49	NR	
Pacheco et al.	3	1309	NR	NR	NR	NR	NR	NR	NR	NR	NR	Not specified	NR		
Pandey et al.	247	46840	45.6	24.2	7.5	8.7	NR	NR	NR	NR	NR	NR	NR		
Authors	MM cases	MM rate	MNM Haemorrhage	MNM Hypertension	MNM Sepsis	MNM Others	MM Material	MNM Maternal age	G1 in MNM	Parity in MNM	GA < 37 weeks	MNM Coma	MNM Neonatal near miss		
------------------	----------	---------	----------------	-----------------	------------	------------	-------------	-----------------	-----------	--------------	---------------	----------	------------------------		
Rocha Filho et al. [40]	140	170.4	43.5	NR	NR	56.5	white; 56.9% non white	≥ 40 years 7%	24.1% in NM	72.3	89.5	10%			
Assarag et al. [41]	NR	NR	39	45	45.1%	23.3%	NR	Mean 29.2 years	50	NR	66	NR	10%		
Bashour et al. [42]	6	66.2	100	15.4	15.4%	10%	10%	Egypt 40.7%; Lebanon 60%; Palestine 43.8%; Syria 27.8%; Others 50%; 61.1%	43.1%	white; 54.2% non white	3-4; (Egypt 40.7%); 0; (Lebanon 60%); (Palestine 43.8%); (Syria 27.8%); (Others 50%); 61.1%	34	10%		
Cecatti et al. [43]	16	170.0	40.5	45.3	45.3%	26.9%	NR	Mean 25.8 years	4.2	4.2%	NR	NR	10%		
Hassan et al. [44]	NR	NR	16.4	4.2	4.2%	2.5%	NR	41% G1 in NM	NR	NR	NR	NR	10%		
Madeiro et al. [45]	94	490.2	7.7	53.4	53.4%	30.9%	NR	41% G1 in NM	NR	NR	NR	NR	10%		
Naderi et al. [46]	10	171.2	100	86.1	86.1%	71.9%	NR	41.5%	NR	NR	NR	NR	10%		
Chatto et al. [47]	2	46.1	25	31.9	31.9%	25.7%	NR	NR	NR	NR	NR	NR	10%		
Chakrapani et al. [48]	998	10880	49	20.5	20.5%	15.5%	NR	41.5%	NR	NR	NR	NR	10%		
Viera et al. [49]	56	2808	53.7	62.7	62.7%	45.5%	NR	45% G1 in NM	NR	NR	NR	NR	10%		
Vila et al. [50]	50	28752	19.3	28.6	28.6%	20.5%	NR	45.5%	NR	NR	NR	NR	10%		
Sangeeta et al. [51]	8	116	40.7	26	26%	44.7%	NR	41% G1 in NM	NR	NR	NR	NR	10%		
Soma-Pillay et al. [52]	19	714	39.5	32.4	32.4%	24.1%	NR	NR	NR	NR	NR	NR	10%		
Khokar et al. [53]	20	2420	0.6	20.24	20.24%	20.24%	NR	NR	NR	NR	NR	NR	10%		
Authors	MM cases	MM rate	MNM Haemorrhage	MNM Hypertension	MNM Sepsis	MNM Others	MNM immigrants	MNM ethnicity	MNM Maternal age	GI in MNM	Parity in MNM	GA < 37 weeks in MNM	Caesarean rate in MNM	Neonatal near miss	
-------------------------	----------	---------	-----------------	------------------	------------	------------	----------------	---------------	-------------------	-----------	----------------	---------------------	-------------------------	---------------------	
et al. [53]	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	29 n=31; 30-34 n=40; 35-39 n=33; 40-44 n=9	27; 3 n=35; 4 n=14; 5		
de Mucio et al. [54]	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	Not specified	133	NR	
Domingues et al. [55]	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	46.9	40.69%; P1 29.4%; 2.3 18.8%; >4 49%	NR	
El Ghardallou et al. [56]	1	100	74.1	20.7	NR	25.9	NR	NR	Mean 32 ± 5.2 years, >39 years 12.1%	36.2	NR	NR	66.7	15.4% neonatal death, 48.9% (n=16) ICU admission	
Jayaratnam et al. [57]	NR	48	NR	NR	NR	NR	NR	NR	NR	NR	NR	Not specified	NR	No	
Kalina et al. [58]	13	325.0	57	31.4	NR	NR	NR	NR	NR	NR	NR	Not specified	NR	43	
Lima et al. [59]	10	216	NR	NR	NR	NR	NR	NR	NR	NR	NR	54.3	NR	NR	
Mohammadi et al. [60]	12	926	35	32	7	NR	NR	NR	≥35 years n=124	23	G1= 184 (23%; G1 in NM)	48	81	204 perinatal deaths	
Nakimuli et al. [61]	130	503.0	26.5	22	11.8	NR	NR	NR	≥25 years 55.7%	26.5	G1= 184 (26.5%) of NM	NR	78%	NR	
Nanzubuga et al. [62]	NR	NR	55	0.2	3.5	4.1	NR	NR	NR	NR	NR	Not specified	NR	NR	
Norhayati et al. [63]	2	93	80.9	21.3	NR	38.3	NR	NR	Mean 33.2(60.8) years, >35years 42.6%	NR	NR	Not specified	NR	63.80%	
Parmar et al. [64]	18	933.0	NR	NR	NR	NR	NR	NR	NR	NR	NR	42 NR	39% perinatal death		
Rathod et al. [65]	66	300	26.7	11.8	11.5	NR	NR	NR	NR	NR	NR	NR	NR		

Table 1 Summary of all the studies included in the review with their results (Continued)
Authors	MM cases	MM rate	MNM Haemorrhage %	MNM Hypertension %	MNM Sepsis %	MNM Others %	MNM immigrants	MNM Maternal age	GI in MNM %	Parity in MNM	GA < 37 weeks in MNM %	Caesarean rate in MNM %	Neonatal near miss		
Tanimia et al. [66]	9	675	38	32	7.4	NR	NR	NR	NR	NR	NR	NR	NR		
Bolnga et al. [67]	10	1660	42.5	22.2	16.3	3.3	NR	NR	NR	NR	NR	26.80%	NR		
Goldenberg et al. [68]	190	1550	79	42	75	NR	NR	NR	NR	NR	NR	NR	NR		
Herklots et al. [69]	28	6788	29.7	24.3	10.8	2.7	NR	NR	NR	<20 years 12.3%; 20-35 years 66.2%; >35 years 21.5%	20	P0 20%; P1-4 60%; P>4 20%	NR	63	NR
Khan et al. [70]	67	3250	63.6	20.5	2.6	NR	NR	NR	Mean 267 years	36.4	G1 (36.4%); G2-3 (50%); G4-6 (13.6%)	NR	64.2	NR	
Kiruja et al. [71]	18	13280	36.7	55	2.5	1.7	NR	NR	Mean 295 years	2.5	≥ 7 (29.2%); 5-6 (10.8%); 2-4 (29.2%); 1 (28.3%); 0 (2.5%)	NR	NR	21.7% perinatal death	
Liyew et al. [72]	NR	NR	38	53	1	NR	NR	NR	NR	NR	NR	NR	NR		
Mawarti et al. [73]	29	879	5.81	95	4.5	NR	NR	NR	NR	NR	NR	NR	NR		
Mbachu et al. [74]	5	19080	24.6	28.1	1.8	NR	NR	NR	NR	NR	NR	NR	NR		
Mekango et al. [75]	NR	NR	44.7	38.8	9.7	NR	NR	NR	≥40 years n= 88	NR	G1 N=5	54.4	NR	NR	
Sayinzoga et al. [76]	13	2331	22.9	8.5	7.5	5	NR	NR	≥35 years 60%	60	G1 60%	34	52	46.1% perinatal death	
Witteveen et al. [77]	126	NR	NR	NR	NR	MNM% specified by country of origin	NR	Specified by country	NR	Specified by country	NR	NR	NR		
Awowole et al. [78]	NR	NR	18	40	12	NR	NR	NR	Mean 292 years	NR	Mean 2	NR	NR	NR	
Benimana et al. [79]	NR	NR	23.1	21.5	27.3	NR	NR	NR	16-24 years (28.9%); 25-34 years (52.1%); ≥35 years (19%)	17.4	0 (17.4%); 1-2 (53.7%); ≥3 (28.9%)	NR	NR	NR	
Table 1 Summary of all the studies included in the review with their results (Continued)

Authors	MM cases	MM rate	MNM Haemorrhage %	MMN Hypertension %	MNM Sepsis %	MNM Others %	MNM immigrants	MNM ethnicity	MNM Maternal age	GI in MNM %	Parity in MNM	GA < 37 weeks in MNM %	Caesarean rate in MNM %	Neonatal near miss		
Chikadaya et al. [80]	13	1095	31.8	28.2	NR	20	NR									
Iwuh et al. [81]	13	676	33.9	44.6	11.6	NR	NR	NR	NR	<18 years 3.6%; 18-34 years 84.8%; ≥35 years 11.6%	41.1	40.1%	41.1%; P1-4 58%; P5 0.9%	NR	NR	NR
Jayaratnam et al. [82]	NR															
Liyew et al. [83]	NR															
Oliveira Neto et al. [84]	5	62	64.5	25.8	6.5	NR	NR	NR	NR	>35 years 79%	NR	NR	NR	74	NR	
Tura et al. [85]	28	378	36	45.6	21.2	NR										
Woldeyes et al. [86]	24	8770	22.5	21	10.1	5.8	NR	NR	NR	NR	41.6	NR	NR	25.7	NR	NR
Yang et al. [87]	10	709	36.9	49	NR	NR	NR	NR	NR	≥35 years 2.54%	22.3	G1-2 2.33%	5.36	NR	35 perinatal deaths	
Herklots et al. [88]	79	294	NR													
Jayaratnam et al. [89]	30	662	25	25	NR	NR	NR	NR	NR	NR	50	NR	NR	NR	NR	NR
Oppong et al. [90]	62	735	12.2	41	11.1	NR										
Zanardi et al. [91]	113	1371	NR	37	NR	63%	73.9	14.2% perinatal death								

García-Tizón Larroca et al. BMC Pregnancy and Childbirth (2020) 20:224

Page 15 of 24
the longest period of data collection, at twenty years. Over 70% of the studies had a follow-up design with retrospective data collection/analysis.

Looking at single-country studies, over thirty-three countries were represented, and seven studies were conducted with populations from several countries; Brazil published more studies than any other country, with thirteen (15.4%), followed by India, with six (7.1%), and Nigeria and Ethiopia, with five each (6%). Regarding the number of studies classified by HDI group, seven belonged to group 1, nineteen to group 2, eighteen to group 3, and twenty-nine to group 4. In only three studies, the HDI score could not be obtained because of the lack of data provided regarding the study country.

Regarding the MM rate, the median was 175 deaths per 100,000/LBs, with six studies reporting a rate above 1000; in relation to the MNM rate, the median was 11 events per 1000 LBs, with nine studies reporting a rate above 100. Regarding MNM, the average of the overall percentage of publications reported the cause to be haemorrhage (38.5%), hypertensive disorders of pregnancy (34.2%), sepsis (7.5%), and other causes (20.9%).

In relation to gestational data, the mean percentage of primiparous women in the total cases of MNM published was 37%. The mean percentage of premature births in the MNM cases was 38%. The mean percentage of caesarean sections in the MNM cases reported in the twenty-eight articles that reported these data was 57.2%.

Of all the articles included in the review, only sixteen presented data on adverse neonatal outcomes; the most commonly described complication was perinatal death, reported in twelve articles.

Finally, 4/82 articles referred to the differential analysis of near-miss ratios in immigrants, and 16/82 provided data on perinatal mortality or morbidity (near miss) in their results.

Figures 2 and 3 show the exponential trend relationship between the HDI score of the study population and the MNM and MM rates. In both, an inversely proportional relationship between the two variables was shown; higher MNM rates and higher MM rates were observed for study countries with lower HDI scores, significantly in both cases:

- Average rate of MNM/country = $331.71e^{-4.572 \text{country HDI}}$ per 1000 live births ($R^2 = 0.2251; p = 0.001$)
- Average rate of MM/country = $47290e^{-8.663 \text{country HDI}}$ per 100,000 live births ($R^2 = 0.4304; p = 0.038$)

In addition, to provide more detail in these figures, Tables 2 and 3 show the MNM and MM rates, respectively, weighted by the number of LBs according to the HDI group of the study population. The articles whose study population belonged to HDI group 1 showed the lowest MNM and MM rates compared to the rest of the groups. Those whose study population belonged to HDI group 3 had the highest MNM rate, 7.6 times higher than that of HDI group 1. Studies whose population was classified as HDI group 4 had the highest MM rate, 98.4 times higher than that of HDI group 1. It should be noted in these tables that the MNM rate for group 4 was lower than that for HDI group 3.

The proportion of each cause of MNM published in each study is shown in Figure 4. This same figure reflects the overall proportions of each type of MNM. The most common cause of MNM in the set of studies selected in this review was haemorrhage, occurring in 38.5% (95% CI, 37.7-39.2) of all cases.

Concerning haemorrhagic causes of MNM, the study by Lobato et al. [22] reported the lowest proportion of this complication, with 3.7%, compared to the study by Madeiro et al. [46], which reported the highest percentage of haemorrhagic causes of MNM, 100% of total cases in their sample.

Regarding hypertensive disorders as a cause of MNM, the studies by Lobato et al. [22], Madeiro et al. [46], and Mawarti et al. [73] predominantly include populations of
pregnant women from countries in HDI groups 2 and 3, with proportions of MNM greater than 80% out of all cases in their respective samples.

Overall, the less common cause of MNM was infection/sepsis, at 7.5%, although the studies by Rulisa et al. [50] and Benimana et al. [79] observed this cause to be responsible for 30.2% and 27.6%, respectively, of total MNM cases. Both studies were conducted in countries belonging to HDI group 4. A total of 83.7% of studies that reported infectious causes of MNM were conducted in countries classified as HDI groups 3 and 4.

Discussion

This systematic review of the literature selected eighty-two studies that included over three million live births, over 37,000 MNM cases, and just over 4,000 MM events over the past eleven years, representing over fifty countries.

To our knowledge, this is the most up-to-date review of MNM as an adverse perinatal outcome, and the only one in which the country of origin of the study population has been analysed. In addition, it is the first review that analyses these results in relation to the HDI of each country of publication.

As shown in Table 1, increasingly more studies are publishing MNM results as an indicator for monitoring the quality of maternal health and maternal care. These data will be a valuable contribution to taking necessary action to improve the quality of maternal care.

MNM as an analysis variable of maternal morbidity and mortality and the importance of the country of origin

Despite the differences in MM between countries, these events are increasingly infrequent and related to a LB rate on the order of 100,000. As stated above, MNM data collection is increasingly necessary; most of the studies included have been published since 2014, showing the growing interest in considering this variable.

Brazil published the most studies in this period, followed by India, Nigeria and Ethiopia; most studies were published in low-HDI countries, leading to publication bias because, as this study shows, cases of severe maternal morbidity are more prevalent in more disadvantaged countries.

As highlighted in Table 1, only four studies underline the relationship between MNM and migration when analysing maternal origin, where perinatal outcomes were more unfavourable in immigrant groups. However, many studies analysed this variable for MM. In a systematic review that included thirteen studies involving over forty-two million women and 4995 maternal deaths, immigrant women had twice the risk of this complication over native women in Western Europe [92].

As in the results obtained in those four studies regarding both MNM and MM, our results highlight a significant relationship between the HDI of the place of publication and adverse maternal-perinatal outcomes. These results are in line with previous studies by Tunçalp et al. [3] and Luque-Fernández et al. [5] and those reported previously by our team.

These studies highlight the importance of classifying maternal risk by considering not only economic data but also other relevant aspects of human development and capacity for survival in each country, or, in the case of immigrants, their country of origin, specifically in the case of pregnant women from low-income countries where monitoring of pregnancy and childbirth occurs in their countries of origin and when a pregnant woman

HDI group	Sum of MNM	Sum of livebirths	MNM rate per 1000 livebirths
1	4556	1542678	2.95
2	4844	439728	11.01
3	4265	188743	22.59
4	7196	352653	20.40
Total	20861	2523802	8.26

HDI group	Sum of MM	Sum of livebirths	MM rate per 100,000 live births
1	57	998443	5.7
2	527	398338	132.4
3	841	188444	446.3
4	1563	277953	562.2
Total	2988	1863178	160.4
Fig. 4 Proportion of each cause of MNM published according to HDI group
Main findings

The present study shows that MNM and MM rates have a significant relationship with maternal country of origin. Specifically, the HDI of the maternal country of origin where the different studies were conducted was significantly related to MNM and MM rates. Thus, we have observed that the lower the HDI score of the maternal country of origin, the greater the risk is of suffering from these 2 severe pregnancy complications.

We must emphasise that HDI group 3 had the highest MNM rate compared to the other groups even though group 4 would be expected to have the worst results for this complication. The reason for this is not explained in our review, although a possible cause could be that HDI group 4 had lower MNM ratios compared to group 3 because cases of severe morbidity in these countries more frequently caused maternal deaths. This hypothesis would explain why HDI group 4 had an overall MM rate higher than Group 3 and other groups.

Thus, the present study allows calculation of the average expected MNM ratios based on the country’s HDI score, as shown in the following examples:

- Average MNM rate in Sweden = 331.71e^{-4.572x0.933} = 4.69 per 1000 LBs
- Average MNM rate in Brazil = 331.71e^{-4.572x0.759} = 10.38 per 1000 LBs
- Average MNM rate in Uganda = 331.71e^{-4.572x0.516} = 31.54 per 1000 LBs

In the same way, if we wanted to calculate the average expected MM rate in a country based on its HDI, we could apply the following formula presented in the results section:

- Average MM rate in Sweden = 47290e^{-8.663x0.933} = 15.02 per 100,000 LBs
- Average MM rate in Brazil = 47290e^{-8.663x0.759} = 67.46 per 100,000 LBs
- Average MM rate in Uganda = 47290e^{-8.663x0.516} = 549.73 per 100,000 LBs

We can observe how the MNM and MM rates increase as the HDI score of the reference country decreases. On the other hand, we see rates of these complications similar to those published by the authors of the studies included in this review. The calculation of these rates is limited by the use of a single explanatory variable such as the HDI score of the country in which the adverse event occurs in the study; therefore, we can observe differences in the results published by other authors, such as the study by Vangen et al. [94] in Norway, which presented an HDI score similar to that of Sweden and a MM rate of 7.2 per 100,000 LBs, half of what was anticipated from our equation.

Estimating these two severe adverse events of pregnancy, childbirth, and the postpartum period can be important for clinicians, enabling them to classify the risk of such events according to the place of maternal origin. Considering previous calculations, a clinician in Sweden can expect that near-miss and mortality rates for a patient attending their hospital from Uganda may be higher than those of a patient from Brazil (if we consider the rates of these countries and how to discriminate between Uganda and Brazil), even if both are immigrants. Obviously, this hypothesis must be confirmed by more studies; surely, the near-miss rate of an immigrant patient in Sweden is lower than that corresponding to their country of origin, but according to our results, it is possible that HDI can help estimate the risk with more accuracy.

The HDI simplifies and captures major sociodemographic characteristics and encompasses various aspects of human development across countries in the form of a common score, as explained above. Therefore, using the HDI, maternal origin can be categorised not only by race and ethnicity but also by income and...
educational level, which provide accurate information regarding poverty and inequality worldwide. According to our systematic review, the excess risk of MNM and MM seems to depend not only on the maternal birthplace but also on the region where the prenatal checkups and delivery took place, other maternal characteristics and the presence of comorbidities. Therefore, taking into account that a significant proportion of MNM and MM cases are avoidable, there should be an initiative to develop and implement epidemiological analysis systems in host countries to identify socio-demographic risk factors – such as indicators of poverty and social impairment – that have a significant impact on the perinatal outcomes of pregnant immigrant women.

This proposal to use HDI as a parameter related to morbidity and mortality rates is another step in calculating these risks by analysing other aspects than just the average income of the maternal country of origin or immigrant status. Previously, other authors showed an increased risk of severe maternal morbidity events during pregnancy, childbirth, and the postpartum period in women from low-income countries, such as those in sub-Saharan Africa and the Caribbean [95–97]. The study published by Blagoeva Atanasova et al. [98] in Spain showed a significantly increased MM risk (four times higher) in immigrant women from South American countries. Similarly, this study highlighted important inequalities in the rate of this complication depending on the place of maternal origin.

Near-miss types by HDI group (Figure 4)

Our review showed that the most common cause of MNM was haemorrhage (38.5% of cases), followed closely by hypertensive disorders of pregnancy.

Overall, we did not observe significant differences in the proportions of MNM types according to the HDI or maternal HDI groups. Thus, although the absolute number and MNM rate are higher in low-HDI countries compared to countries with higher HDI, the proportion of causes of these maternal morbidity events does not differ substantially from one country to another for reasons that are not clear in the literature.

Published studies reflect heterogeneous results in the proportions of MNM, as in a recent multi-centre analysis published by Oppong et al. [90] conducted in Ghana with 8,433 LBs and 288 MNM cases. In this study, the most common cause of MNM was preeclampsia/eclampsia, at 41%, compared to haemorrhage, which was observed in 12.2% of cases. The identification and classification of near-miss cases were performed in this group using the WHO Maternal Near Miss Tool [23].

Tanimia et al. [66], however, in a study conducted in Papua New Guinea with 13,338 LBs and 122 near-miss cases, identified, using the same tool and WHO criteria, haemorrhage as the most common cause of maternal near miss (38%), followed by hypertensive disorders of pregnancy (32%).

The main cause of MM identified by the Global Burden of Disease (GBD) study, which conducted a global and regional review of data from 186 countries during the period of 1990–2015, was obstetric haemorrhage. Other relevant causes of MM were hypertensive disorders of pregnancy, maternal sepsis, obstructed labour, and uterine rupture [99].

There are several reasons why the proportion of MNM cases may differ from one study to another even among countries with similar socio-economic development levels as defined by the HDI. On the one hand, the method used in the collection, definition, and classification of MNM varies from one study to another in both the sources and classification systems of these pregnancy complications. There are several cases in which patients may suffer from several types of near-miss incidents, or one cause of near miss may trigger another, but these situations may not be revealed in the results of the studies included in this review. Furthermore, the description of the study population and hospitals where the conditions were treated in the various studies were not always sufficiently detailed to identify the reason why, in some studies, one cause of near miss was more prevalent than another. In this regard, the maternal HDI given by the country of origin where each study was conducted does not explain the differences found between the studies in the proportion of each type of MNM.

Strengths of the review

This is the most recent and up-to-date systematic review that addresses the importance of characterising pregnant women by their country of origin and investigates a relevant sociodemographic variable, HDI, and its relationship with adverse events such as MNM and MM. From what has been published over the course of a decade, eighty-two articles were collected, describing results from over forty countries, including a large number of patients and maternal morbidity and mortality events.

Limitations of the review

Several limitations are worth considering when interpreting the results of this review. However, there is a lack of uniform criteria for the identification of cases of severe obstetric morbidity or MNM. The identification of cases is complex and varies across studies. Three major criteria have been mentioned in a review conducted by the WHO [100]. The review suggested the use of organ system dysfunction-based criteria supplemented with compatible clinical markers of organ system dysfunction that are feasible for collection in the absence of higher-level amenities-based criteria for identifying all severe morbidity and
investigating the cause as the most reproducible one across similar areas.

Population characteristics in case-control groups were not always well described; in several studies, relevant adjustment variables of perinatal outcomes were not used, such as maternal comorbidities, maternal age, parity, maternal body mass index (BMI), or belonging to ethnic or sociodemographic groups that are more vulnerable to pregnancy complications.

As we have described, very few studies refer to immigrant pregnant women or maternal HDI influencing adverse events during pregnancy, childbirth, and the postpartum period.

To address these limitations, Mengistu et al. [101] have recently published a protocol for the systematic review and meta-analysis of severe maternal morbidity events and MNM, at least in high-income countries.

Finally, we must note the limitations of the HDI. On the one hand, the population in the study country is not homogeneous with regard to origin, education level, or income; these factors are not always perfectly described in national epidemiological publications or data. On the other hand, migration flows are very diverse from one country to another depending on economic, social, political, and geographical factors; therefore, the quantity and characteristics of the immigrant population of a nation can be more or less heterogeneous even within similar territories, as in the European Union. We attempted to divide the patients into groups in a simple manner that was based on maternal HDI; additionally, we obtained as much information as we could regarding the mothers’ social situation, as indicated by their country of origin but this might not be entirely informative.

Conclusions
In summary, this review of the literature highlights the usefulness of identifying the HDI of the maternal country of origin through the HDI of the country of publication. Based on eighty-two articles, the review includes a great variety of countries, patients, and maternal morbidity and mortality events. This variety has allowed us to study the inverse and significant relationship between maternal morbidity and mortality and the HDI of the countries included. This relationship is maintained according to the HDI groups.

The most common causes of MNM described were haemorrhage and hypertensive disorders of pregnancy and, less frequently, infectious complications and sepsis. Overall, there were no significant differences in the proportion of each cause of MNM, the HDI, and HDI groups.

Implications for clinical practice
This study shows that the use of maternal sociodemographic variables, including the HDI, may be useful to categorise the risk of maternal morbidity and mortality. In addition to economic value, the HDI weighs education level and life expectancy – as health and social parameters of pregnant women – according to their origin. The HDI is a variable that is easily accessible and calculated, although it may have limitations influenced by other factors, for example, in the immigrant population, such as time spent in the destination country, baseline health state, or the degree of social integration and family income. More studies are needed to determine the discriminatory value of risk in the immigrant population treated in different countries.

Abbreviations
MM: Maternal mortality; MMN: Maternal near miss; HDI: Human development index; WHO: World Health Organization; GNI: Gross national income; UNDP: United Nations Development Programme; LB: Live births; NR: Non reported; GBD: Global Burden of Disease; BMI: Body mass index

Acknowledgements
The authors are grateful to Mr Jose Maria Bellon for statistical assistance.

Authors’ contributions
SGTL and FAV designed the study, reviewed all the studies included and wrote the final manuscript. ICH, EAH and YCL reviewed the final manuscript. JLL designed the study as well and prepared the final manuscript. The author(s) read and approved the final manuscript.

Funding
No funding was received for this study.

Availability of data and materials
Data from this systematic review is available as supplementary material in table 1 and provided upon request.

Ethics approval and consent to participate
This is a systematic review of the literature so consent to participate was not required. Ethical approval was not required either.

Consent for publication
Not Applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, HGUGM, Calle O’ Donnell, 48, Planta 0, 28009 Madrid, Spain. 2Department of Public and Maternal-Infant Health, Complutense University, Madrid, Spain.

Received: 8 September 2019 Accepted: 27 March 2020
Published online: 16 April 2020

References
1. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1603-58.
2. Say L, Souza JP, Pattinson RC. Maternal near-miss–towards a standard tool for monitoring quality of maternal health care. Best Pract Res Clin Obstet Gynaecol. 2009;23:287–96.
3. Tunçalp O, Hindin MJ, Adu-Bonaffoh K, Adanu RM. Assessment of maternal near-miss and quality of care in a hospital-based study in Accra, Ghana. Int J Gynaecol Obstet. 2013;123:58–63.
4. Garcia-Tizon Larroca S, Arevalo-Serrano J, Duran Vila A, Pintado Recarte MP, Cueto Hernandez I, Solis Pierna A, et al. Human Development Index (HDI) of the maternal country of origin as a predictor of perinatal outcomes - a longitudinal study conducted in Spain. BMC Pregnancy Childbirth. 2017;17:314.
46. Madeiro AP, Rufino AC, Lacerda EZ, Brasil LG. Incidence and determinants of severe maternal morbidity: a transversal study in a referral hospital in Teresina, Piauí, Brazil. BMC Pregnancy Childbirth. 2015;15:210.

47. Naderi T, Foroozandeh S, Omidi S, Samadani F, Nahkaee N. Incidence and correlates of maternal near miss in southeast Iran. Int J Reprod Med. 2015; 2015;94:173.

48. Oladapo OT, Adetoro OO, Ekele BA, Chama C, Etuk SI, Aboyeji AP, et al. When getting there is not enough: a nationwide cross-sectional study of 998 maternal deaths and 1451 near-misses in public tertiary hospitals in a low-income country. BJOG. 2016;123:928–38.

49. Oliveira LC, da Costa AA. Maternal near miss in the intensive care unit: clinical and epidemiological aspects. Rev Bras Ter Intensiva. 2015;22:70–7.

50. Rulisa S, Umuziainenje I, Small M, van Roosmalen J. Maternal near miss and mortality in a tertiary care hospital in Rwanda. BMC Pregnancy Childbirth. 2015;15:203.

51. Sangerca G, Leena W, Taru G, Sushma K, Nupur G, Amrita P. Evaluation of severe outcomes to assess quality of maternal health care at a tertiary center. J Obstet Gynaecol India. 2015;65:23–7.

52. Soma-Pillay P, Partrinon RC, Langa-Mlambo L, Nkosi BS, Macdonald AP. Maternal near miss and maternal death in the Pretoria academic complex, South Africa: a population-based study. S Afr Med J. 2015;105:S78–63.

53. Okusanya BO, Sajo AE, Osanyin GE, Okojie OE, Abodunrin ON. Peripartum hysterectomy in a Nigerian university hospital an assessment of severe maternal outcomes with the maternal severity index model. Niger Postgrad Med J. 2016;23:62–6.

54. de Mucio B, Abalos E, Cuesta C, Carrol G, Sernuya S, Giordano D, et al. Maternal near miss and predictive ability of potentially life-threatening conditions at selected maternity hospitals in Latin America. Reprod Health. 2016;13:134.

55. Domingues RM, Dias MA, Schiltz AO, Leal MD. Factors associated with maternal near miss in childbirth and the postpartum period: findings from the birth in Brazil national survey, 2011-2012. Reprod Health. 2016;13:115.

56. El Ghardallou M, Nabli Ajmi T, Mkhazni A, Zedini C, Meddeb S, Khairi H, et al. Maternal near-miss and organ failure defined by SOFA score following severe maternal morbidity in Zanzibar. BMC Pregnancy Childbirth. 2017;18:345.

57. Lingham RG, Chohan NM, Goodman AB, Iyer R, Cullen DJ, Shuttleworth H, et al. Severe maternal morbidity in Zanzibar: Maternal near miss in low-income countries. Int J Gynaecol Obstet. 2017;138:300.

58. Goldenberg RL, Saleem S, Ali S, Moore JL, Lokangako A, Tshefu A, et al. Maternal near miss in low-resource areas. Int J Gynaecol Obstet. 2017;138:347–55.

59. Herklotz T, van Acht L, Meguid T, Franx A, Jacob B. Severe maternal morbidity in Zanzibar’s referral hospital: measuring the impact of in-hospital care. PLoS One. 2017;12:e019470.

60. Khan T, Laul P, Laul A; Ramzan M. Prognostic factors of maternal near miss events and maternal deaths in a tertiary healthcare facility in India. Int J Gynaecol Obstet. 2017;138:171–6.

61. Kimura J, Osman F, Egal JA, Essen B, Klingberg-Allvin M, Erlandsson K. Maternal near-miss and death incidences - frequencies, causes and the referral chain in Somalia: a pilot study using the WHO near-miss approach. Sex Reprod Healthc. 2017;12:50–6.

62. Liyew EF, Yafele AW, Afework MF, Essen B. Incidence and causes of maternal near miss in selected hospitals of Addis Ababa. Ethiopia PLoS One. 2017;12:e0197013.

63. Mawari Y, Uranini A, Hakimi M. Maternal care quality in near miss and maternal mortality in an academic public tertiary hospital in Yogyakarta, Indonesia: a retrospective cohort study. BMC Pregnancy Childbirth. 2017;17:194.

64. Mbouchu I, Ezeama C, Osagwui K, Umeonwhu OS, Obianika C, Ezeama N. A cross sectional study of maternal near miss and mortality at a rural tertiary centre in southern Nigeria. BMC Pregnancy Childbirth. 2017;17:251.

65. Meckongo DE, Alemayehu M, Gebregorses GB, Medhane AA, Goba G. Determinants of maternal near miss among women in public hospital maternity wards in Northern Ethiopia: a facility based case-control study. BMC Pregnancy Childbirth. 2017;17:250.

66. Sayirzoga F, Blijmakers L, van der Velden K, van Dilleen J. Severe maternal outcomes and quality of care at district hospitals in Rwanda - a multicentre prospective case-control study. BMC Pregnancy Childbirth. 2017;17:394.

67. Witteveen T, Beztaaroshti H, de Konig J, Nelissen E, Bloemenkamp KW, van Roosmalen J, et al. Validating the WHO maternal near miss tool: comparing high- and low-resource settings. BMC Pregnancy Childbirth. 2017;17:194.

68. Wuluse A, Zwart J, van Roosmalen J, Stekelenburg J, van den Akker T, van Roosmalen J. Maternal near miss and quality of obstetric care in a tertiary care hospital: a cross-sectional study. S Afr Med J. 2018;108:171.
89. Jayaratnam S, Soares M, Jennings B, Thapa AP, Woods C. Maternal mortality and 'near miss' morbidity at a tertiary hospital in Timor-Leste. Aust N Z J Obstet Gynaecol. 2019;59:567–72.
90. Oppong SA, Bakari A, Bell AJ, Bockarie Y, Adu JA, Turpin CA, et al. Incidence, causes and correlates of maternal near-miss morbidity: a multi-centre cross-sectional study. BJOG. 2019;126:755–62.
91. Zanardi DM, Parpinelli MA, Haddad SM, Costa ML, Sousa MH, Leite DFB, et al. Adverse perinatal outcomes are associated with severe maternal morbidity and mortality: evidence from a national multicentre cross-sectional study. Arch Gynecol Obstet. 2019;299:645–54.
92. Pedersen GS, Grøntved A, Mortensen LH, Andersen AM, Rich-Edwards J. Maternal mortality among migrants in Western Europe: a meta-analysis. Matern Child Health J. 2014;18:1628–38.
93. Urquia ML, Wanigaratne S, Ray JG, Joseph KS. Severe maternal morbidity associated with maternal birthplace: a population-based register study. J Obstet Gynaecol Can. 2017;39:978–87.
94. Vangen S, Bodker B, Ellingsen L, Saltvedt S, Gissler M, Geirsson RT, et al. Maternal deaths in the Nordic countries. Acta Obstet Gynecol Scand. 2017;96:1112–9.
95. Knight M, Kurinczuk JJ, Spark P, Brocklehurst P. Inequalities in maternal health: national cohort study of ethnic variation in severe maternal morbidities. BMJ. 2009;338:b542.
96. Urquia ML, Glazier RH, Mortensen L, Nybo-Andersen AM, Small R, Davey MA, et al. Severe maternal morbidity associated with maternal birthplace in three high-immigration settings. Eur J Pub Health. 2015;25:630–5.
97. Zwart JJ, Jonkers MD, Richters A, Ory F, Bloemenkamp KW, Duvekot JJ, et al. Ethnic disparity in severe acute maternal morbidity: a nationwide cohort study in the Netherlands. Eur J Pub Health. 2011;21:229–34.
98. Blagoeva Atanasova V, Arevalo-Serrano J, Antolin Alvarado E, García-Tizón LS. Maternal mortality in Spain and its association with country of origin: cross-sectional study during the period 1999-2015. BMC Public Health. 2018;18:1171.
99. GBD 2015 Maternal Mortality Collaborators. Global, regional, and national levels of maternal mortality, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1775–812.
100. Chhabra P. Maternal near miss: an indicator for maternal health and maternal care. Indian J Community Med. 2014;39:132–7.
101. Mengistu TS, Turner J, Flatley C, Fox J, Kumar S. Impact of severe maternal morbidity on adverse perinatal outcomes in high-income countries: systematic review and meta-analysis protocol. BMJ Open. 2019;9:e027100.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.