$\frac{1}{2}$-BPS Domain wall from $N = 10$ three dimensional gauged supergravity

Parinya Karndumri

String Theory and Supergravity Group, Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand
E-mail: parinya.ka@hotmail.com

Abstract: We explicitly construct $N = 10$ Chern-Simons gaged supergravity in three dimensions with non-semisimple gauge group $SO(5) \ltimes T^{10}$. The gauge group is embedded in $E_{6(-14)}$ which is the isometry group of the 32-dimensional scalar manifold $E_{6(-14)}/SO(10) \times U(1)$. The resulting theory is on-shell equivalent to $SO(5)$ Yang-Mills gauged supergravity coming from dimensional reduction on S^1 of $SO(5) \ N = 5$ gauged supergravity in four dimensions. We discuss the spectrum of the corresponding reduction. The $SO(5) \ltimes T^{10}$ gauged supergravity, describing the reduced theory, admits a $\frac{1}{2}$-BPS domain wall vacuum solution whose explicit form is also given. This provides an example of a domain wall in non-maximal gauged supergravity.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence, Supergravity models.
1. Introduction

Chern-Simons gauged supergravity in three dimensions has a very rich structure due to the duality between scalars and vectors in three dimensions. There are many possible gauge groups since there is no restriction on the number of vector fields that act as gauge fields [1, 2], or equivalently, no restriction on the dimension of the gauge group provided that it can be embedded in the global symmetry group and consistent with supersymmetry. Any number of vector fields can be introduced via Chern-Simons terms which do not give rise to extra degrees of freedom. The theory is also useful in the study of AdS$_3$/CFT$_2$ correspondence, see for example [3] for a nice review.

To understand AdS$_3$/CFT$_2$ correspondence in the context of string/M theory, the embedding of three dimensional gauged supergravity in ten or eleven dimensions is required. The usual procedure to obtain lower dimensional supergravities from higher dimensional theories is the Kaluza-Klein (KK) dimensional reduction. The general U-duality covariant formulation of three dimensional gauged supergravities is in the form of Chern-Simons theory in which the gauge fields enter the Lagrangian through the Chern-Simons terms [4]. On the other hand, dimensional reductions result in Yang-Mills type gauged supergravity in which gauge kinetic terms are in the form of conventional Yang-Mills terms. The known class of Chern-Simons gauge groups that gives equivalent Yang-Mills type theory is of non-semisimple type [5]. Any Yang-Mills type Lagrangian can be rewritten in the Chern-Simons form by introducing two gauge fields and a compensating scalar for each Yang-Mills gauge field. This makes non-semisimple gauge groups more interesting in finding effective theories of string/M theory in three dimensions.

Some embeddings of three dimensional gauged supergravities into higher dimensions have appeared so far. These examples include $N = 2, 4, 8, 16$ gauged supergravities from reductions on spheres and Calabi-Yau manifold in [6, 7, 8, 9, 10, 11, 12] and recently various $N = 2$ theories from wrapped D3-branes of [13]. In this paper, we will give another example of this embedding namely $N = 10$ gauged supergravity with $SO(5) \ltimes \mathbf{T}^{10}$ gauge group. Due to the above mentioned equivalent between Chern-Simons and Yang-Mills type gauged supergravities, this should potentially describe $N = 5$ gauged supergravity in four dimensions with gauged group $SO(5)$ reduced on S^1. The latter has been constructed in [14]. It has been shown in [15] that the theory admits two AdS_4 critical points, an $N = 5$ supersymmetric point with $SO(5)$ gauge symmetry and a non-supersymmetric point with $SO(3)$ residual gauge symmetry. The theory has also been studied in the context of holographic superconductor in [16]. The non-supersymmetric critical point is perturbatively stable with all mass-squares above the BF-bound.
Unlike the four dimensional analogue which has maximally supersymmetric AdS_4 ground state, we will find that the reduced theory in three dimensions admits only a $\frac{1}{2}$-BPS domain wall as a vacuum solution. This is in contrast to compact and non-compact gaugings of the same theory studied in [17] that admits maximally supersymmetric AdS_3 critical points. The loss of supersymmetry after S^1 reduction has been pointed out in the context of non-semisimple gaugings in three dimensions in [10]. A general result on S^1 reduction of AdS spaces has been given in [18]. There are many known $\frac{1}{2}$-BPS domain walls in higher dimensional gauged supergravities, see for example [19, 20, 21, 22, 23, 24] as well as in lower dimensions, see [25] and [26] for three-and two-dimensional solutions. These domain walls are important in the context of the DW/QFT correspondence [27, 28, 29] which is a generalization to non-conformal field theories of the original AdS/CFT correspondence [30]. They are also useful in the study of domain wall/cosmology [31, 32, 33].

The paper is organized as follow. In section 2, we review the general structure of N extended gauged supergravities in three dimensions including all relevant formulae and notations. The $SO(5) \times T^{10}$ gauged supergravity and the associated domain wall solution are discussed in section 3. We then discuss possible higher dimensional origin of the resulting theory from S^1 dimensional reduction of $N = 5$ $SO(5)$ gauged supergravity in four dimensions. We finally give some conclusions and comments in section 5. All details and explicit calculations are given in appendix A. In appendix B, we will explore possible non-semisimple gauge groups of $N = 9$ gauged supergravity in three dimensions.

2. $N = 10$ gauged supergravity in three dimensions with non-semisimple gauge groups

Before going to the detail of the construction, we briefly review the general structure of three dimensional gauged supergravities and apply it to the construction of $N = 10$ gauged supergravity with non-semisimple gauge group $SO(10) \times T^{10}$. We will keep the number of supersymmetry to be N for conveniences and later set $N = 10$. In general, the matter coupled supergravity in three dimensions is in the form of a non-linear sigma model coupled to supergravity. For $N > 4$, supersymmetry demands that the scalar target manifold must be a symmetric space of the form G/H in which G and H are the global symmetry group and its maximal compact subgroup, respectively [34]. In particular, for $N > 8$, supersymmetry determines the scalar manifold uniquely. In the present case of $N = 10$, the scalar manifold is given by the coset space $E_{6(-14)}/SO(10) \times U(1)$ which is a 32-dimensional Kahler manifold.
Coupling of the sigma model to N-extended supergravity requires the presence of \(N-1 \) almost complex structures \(f^{\dot{P}} \), \(\dot{P} = 2, \ldots, N \) on the scalar manifold. The tensors \(f^{IJ} = f^{[IJ]} \), \(I, J = 1, \ldots, N \), constructed by the relation

\[
f^{1P} = -f^{P1} = f^P, \quad f^{PQ} = f^{[P} f^{Q]}. \tag{2.1}
\]
generate the \(SO(N) \) R-symmetry in a spinor representation under which scalar fields transform. On symmetric scalar manifolds of the form \(G/H \), the maximal compact subgroup \(H = SO(N) \times H' \) contains the R-symmetry \(SO(N) \) and another compact subgroup \(H' \) commuting with \(SO(N) \). In \(N = 10 \) theory, the group \(H' \) is simply \(U(1) \). The \(G \)-generators \(t^M, M = 1, \ldots, \text{dim}G \), can be split into \((T^{IJ}, X^\alpha) \) generating, respectively, \(SO(N) \times H' \) and non-compact generators \(Y^A \) corresponding to \(\text{dim}G - \text{dim}H \) scalars. The global symmetry group \(G \) is characterized by the following algebra

\[
\begin{align*}
[T^{IJ}, T^{KL}] &= -4\delta^{[I[K} T^{L]J]}, \\
[T^{IJ}, Y^A] &= -\frac{1}{2} f^{I[AB} Y_B, \\
[X^\alpha, X^\beta] &= f^{\alpha\beta\gamma} X^\gamma, \\
[X^\alpha, Y^A] &= h^{\alpha A} Y^B, \\
[Y^A, Y^B] &= \frac{1}{4} f^{AB} T^{IJ} + \frac{1}{8} C_{\alpha\beta} h^{\beta AB} X^\alpha. \tag{2.2}
\end{align*}
\]

The tensors \(f^{IJ} \) are related to \(SO(N) \) gamma matrices, \(\Gamma^I_{A\dot{A}} \) in which \(A \) and \(\dot{A} \) label spinor and conjugate spinor representations, respectively, by

\[
f^{IJ} = -\frac{1}{2} \Gamma^{IJ} = -\frac{1}{4} \left(\Gamma^I \Gamma^J - \Gamma^J \Gamma^I \right). \tag{2.3}
\]

\(C_{\alpha\beta} \) and \(f^{\alpha\beta\gamma} \) are \(H' \) invariant tensor and \(H' \) structure constants, respectively. The \(H' \) group is generated in the \(SO(N) \) spinor representation by matrices \(h^{\alpha A}_{B} \). The coset manifold whose coordinates are given by \(d = \text{dim}(G/H) \) scalar fields \(\phi^i, i = 1, \ldots, d \) can be described by a coset representative \(L \). The usual formulae for a coset space are

\[
\begin{align*}
L^{-1} t^M L &= \frac{1}{2} \mathcal{V}^M_{IJ} T^{IJ} + \mathcal{V}^M_{A} X^\alpha + \mathcal{V}^M_{A} Y^A, \tag{2.4} \\
L^{-1} \partial_i L &= \frac{1}{2} Q_i^{IJ} T^{IJ} + Q_i^A X^\alpha + c_i^A Y^A. \tag{2.5}
\end{align*}
\]

which will be useful later on. \(e_i^A \) is the vielbein on the scalar manifold while \(Q_i^{IJ} \) and \(Q_i^A \) are \(SO(N) \times H' \) composite connections. Scalar matrices \(\mathcal{V} \) will be used to define the moment maps below.

Gaugings of supergravities in various space-time dimensions are efficiently described in a \(G \)-covariant way by the so-called embedding tensor formalism [1]. In essence, the embedding tensor \(\Theta_{\mathcal{M}\mathcal{N}} \) is a symmetric gauge invariant tensor that acts as a projector
from the global symmetry group G to a particular gauge group. Gauge covariant
derivatives describing the minimal coupling of the gauge fields A^M_μ to other fields also
involve the embedding tensor. For example, the covariant derivative on scalar fields is
given by
\[D_\mu \phi^i = \partial_\mu \phi^i + g \Theta_{MN} A^M_\mu X^N_i \]
where X^N_i are Killing vectors generating isometries on the scalar manifold and g is the
gauge coupling constant.

In order to define a viable gauging, the embedding tensor has to satisfy the so-called
quadratic constraint
\[\Theta_{PL} f^{KL} (M \Theta_{N})^K = 0, \]
which is the requirement that the gauge generators Θ_{MN}^N form a closed algebra, or
equivalently the gauge group is a proper subgroup of G. Furthermore, for supersym-
metry to be preserved in the gauging process, the embedding tensor needs to satisfy
the projection constraint
\[P_{R_0} \Theta_{MN} = 0. \]
This condition comes from supersymmetry, but it should be noted that the constraint
in this form is obtained by regarding the scalar manifold to be a symmetric space.

It is useful to introduce the T-tensor given by the moment map of the embedding
tensor by scalar matrices V^M_A, obtained from (2.4),
\[T_{AB} = V^M_A \Theta_{MN} V^N_B. \]
The T-tensor transforms under the maximal compact subgroup H and consists of var-
dious components such as T^{IJKL}, T^{IA} and T^{AB}. Since fermions transform under H,
the fermion couplings will be written in term of the T-tensor or linear combinations
of its components as we will see below. For any supersymmetric gauging, supersymmetry
requires only that the T-tensor satisfies the projection
\[P_{\Box} T^{IJKL} = 0 \]
where \Box is the Riemann tensor-like representation of $SO(N)$. In the case of symmetric
scalar manifolds which are of interest in this paper, this constraint can be lifted to
the constraint on the embedding tensor given in (2.8) in which the G-representation
R_0, branched under $SO(N)$, contains \Box representation of $SO(N)$. Any subgroup of
G whose embedding tensor satisfies the above constraints is called admissible gauge

group.

In general, gaugings need some modifications to the original ungauged Lagrangian
by fermionic mass-like terms and a scalar potential, at order g and g^2, respectively.
Also, the supersymmetry transformation rules need to be modified at order \(g \). In what follow, we will need the scalar potential and fermionic supersymmetry transformations. They are written in terms of the \(A_{1}^{I\bar{J}} \) and \(A_{2i}^{I\bar{J}} \) tensors which are in turn constructed from various components of the T-tensor

\[
A_{1}^{I\bar{J}} = -\frac{4}{N-2} T^{IM,JM} + \frac{2}{(N-1)(N-2)} \delta^{I\bar{J}} T^{MN,MN},
\]

\[
A_{2j}^{I\bar{J}} = \frac{2}{N} T^{I\bar{J},j} + \frac{4}{N(N-2)} f^{M(Im} T^{J)m}_{j} + \frac{2}{N(N-1)(N-2)} \delta^{I\bar{J}} f^{KL} m T^{KL,m}. \tag{2.12}
\]

The scalar potential is simply given by

\[
V = -\frac{4}{N} g^{2} \left(A_{1}^{I\bar{J}} A_{1}^{I\bar{J}} - \frac{1}{2} N g^{ij} A_{2i}^{I\bar{J}} A_{2j}^{I\bar{J}} \right). \tag{2.13}
\]

The metric \(g_{ij} \) on the target manifold is related to the vielbein by \(g_{ij} = e_{i}^{A} e_{j}^{A} \). We also note here that the quadratic constraint (2.7) can be written in terms of \(A_{1}^{I\bar{J}} \) and \(A_{2i}^{I\bar{J}} \) as

\[
2 A_{1}^{IK} A_{1}^{KJ} - N A_{2i}^{IK} A_{2j}^{K} = \frac{1}{N} \delta^{I\bar{J}} \left(2 A_{1}^{KL} A_{1}^{KL} - N A_{2i}^{KL} A_{2j}^{KL} \right). \tag{2.14}
\]

The fermionic field content of the \(N \) extended supergravity in three dimensions consists of \(N \) gravitini \(\psi_{\mu}^{I} \) and \(d \) spin-\(\frac{1}{2} \) fields \(\chi^{iI} \). The latter is written in an overcomplete basis and subject to the projection constraint

\[
\chi^{iI} = \frac{1}{N} \left(\delta^{I\bar{J}} \delta_{j}^{i} - f^{I\bar{J}j} \right) \chi^{jJ} \tag{2.15}
\]

giving rise to \(d \) independent \(\chi^{iI} \) fields. The fermions \(\chi^{iI} \) can be redefined such that they transform in a conjugate spinor representation of \(SO(N) \) via

\[
\chi^{\dot{I}} = \frac{1}{N} e_{i}^{A} e_{\dot{I}}^{A} \chi^{iI}. \tag{2.16}
\]

The corresponding supersymmetry transformations are as follow:

\[
\delta \psi_{\mu}^{I} = \mathcal{D}_{\mu} \epsilon^{I} + g A_{1}^{I\bar{J}} \gamma_{\mu}^{\bar{J}} \epsilon^{J}, \tag{2.17}
\]

\[
\delta \chi^{iI} = \frac{1}{2} (\delta^{I\bar{J}} \delta_{j}^{i} - f^{I\bar{J}j}) \mathcal{D}^{j} \epsilon^{J} - g N A_{2i}^{I\bar{J}} \epsilon^{J}, \tag{2.18}
\]

where only relevant terms are given and

\[
\mathcal{D}_{\mu} \epsilon^{I} = \partial_{\mu} \epsilon^{I} + \frac{1}{4} \omega_{\mu}^{ab} \epsilon^{ab} + \partial_{\mu} \phi^{I} Q_{1}^{J} \epsilon^{J} + g \Theta_{\mathcal{M}N} A_{\mu}^{M} \gamma^{NI} \epsilon^{J}. \tag{2.19}
\]
Gauge groups of interest to us are non-semisimple groups of the form $G_0 \ltimes T^{\dim G}$. The translational symmetry $T^{\dim G}$ consists of $\dim G$ commuting generators which transform as an adjoint representation under G_0. This type of gauge groups gives rise to the on-shell equivalent Yang-Mills gauged supergravity coming from dimensional reductions of some higher dimensional theory. The $G_0 \ltimes T^{\dim G}$ gauge group whose generators are respectively J^m and T^m, $m = 1, \ldots, \dim G$ is characterized by the following algebra

$$[J^m, J^n] = f_{mn}^k J^k, \quad [J^m, T^n] = f_{mn}^k T^k, \quad [T^m, T^n] = 0 \quad (2.20)$$

where f_{mn}^k are G_0 structure constants. We will denote the G_0 and $T^{\dim G}$ parts of the gauge group by a and b, respectively. As shown in [3], the corresponding embedding tensor consists of two parts, one with the coupling between a and b types Θ_{ab} and the other with the coupling between b and b types Θ_{bb}. The full embedding tensor can be written as

$$\Theta = g_1 \Theta_{ab} + g_2 \Theta_{bb} \quad (2.21)$$

with g_1 and g_2 being the coupling constants. Supersymmetry constraint (2.8) may impose some relation on g_1 and g_2 such that eventually there is only one coupling. Both Θ_{ab} and Θ_{bb} are given by the Cartan-Killing form of G_0, $\eta_{mn}^{G_0}$, which is non-degenerate since G_0 is semisimple. The above information is sufficient for our discussion in this paper. The interested readers are invited to consult [4] and [5] for more a detailed discussion about three dimensional gauged supergravity with non-semisimple gauge groups.

3. $SO(5) \ltimes T^{10}$ gauged supergravity and $\frac{1}{2}$-BPS domain wall solution

In this section, we explicitly construct $N = 10$ gauged supergravity with $SO(5) \ltimes T^{10}$ gauge group. We begin with the scalar manifold $E_6(-14)/SO(10) \times U(1)$ and use E_6 generators given in [33] and [30]. The non-compact form $E_6(-14)$ is constructed by using the “Weyl unitarity trick”. We follow the same construction and notation as in [17] to which we refer the readers for more details.

The 78 generators of E_6 constructed in [30] are labeled by $c_i, i = 1, \ldots, 78$. The $SO(10)$ R-symmetry is generated by $c_i, i = 1, \ldots, 21, 30, \ldots, 36, 45, \ldots, 52, 71, \ldots, 78$ and \tilde{c}_{33}. We need to relabel these generators to the form of T^{IJ} in our $SO(N)$ covariant formalism. This has already been done in [17], but we will repeat it in appendix A for convenience. The group $H' = U(1)$ is generated by \tilde{c}_{70} whose definition and that of \tilde{c}_{33}
can be found in appendix A.

The non-compact generators can be identified as

\[
Y^A = \begin{cases}
 ic_{A+21} & \text{for } A = 1, \ldots, 8 \\
 ic_{A+28} & \text{for } A = 9, \ldots, 16 \\
 ic_{A+37} & \text{for } A = 17, \ldots, 32
\end{cases}
\]

(3.1)

We can then use (2.2) to extract the tensors \(f^{IJ} \) whose components are computed by

\[
f^{IJ}_{AB} = -\frac{1}{3} \text{Tr} \left([T^{IJ}, Y^A] Y^B \right).
\]

(3.2)

Notice that the generators have normalizations \(\text{Tr}(T^{IJ}T^{IJ}) = -6 \) and \(\text{Tr}(Y^AY^A) = 6 \), no sum on \(IJ \) and \(A \).

We now construct generators of the gauge group \(SO(5) \ltimes T^{10} \). This group is embedded in \(USp(4,4) \subset E_6(-14) \). The maximal compact subgroup \(USp(4) \times USp(4) \subset USp(4,4) \) is identified as the \(SO(5) \times SO(5) \) subgroup of the R-symmetry \(SO(10) \). Recall that the 32 scalars transform as \(16^+ + 16^- \) under \(SO(10) \times U(1) \). Under \(SO(5) \times SO(5) \), the scalars transform as

\[
16^+ + 16^- = (4,4)^+ + (4,4)^-.
\]

(3.3)

We then identify \(SO(5) \) part of the gauge group as the diagonal subgroup \(SO(5)_{\text{diag}} \subset SO(5) \times SO(5) \) under which scalars transform as

\[
16^+ + 16^- = (4 \times 4)^+ + (4 \times 4)^- \\
= (1 + 10 + 5)^+ + (1 + 10 + 5)^-.
\]

(3.4)

In this decomposition, we see that there are two singlets under \(SO(5)_{\text{diag}} \). The adjoint representation \(10^+ \) and \(10^- \) will be used to construct the translational generators of \(T^{10} \).

The explicit form of the corresponding gauge generators are as follow. The \(SO(5)_{\text{diag}} \) generators are given by

\[
J^{ij} = T^{ij} + T^{i+5,j+9}, \quad i, j = 1, \ldots, 5
\]

(3.5)

while the \(T^{10} \) generators are found to be

\[
t^{ij} = T^{ij} - T^{i+5,j+5} + \tilde{Y}^{ij}, \quad i, j = 1, \ldots, 5
\]

(3.6)

where \(\tilde{Y}^{ij} \) are given in appendix A.

The embedding tensor is of the form

\[
\Theta = g_1 \Theta_{ab} + g_2 \Theta_{bb}
\]

(3.7)
where Θ_{ab} and Θ_{bb} are given by the Cartan-Killing form of $SO(5)$. The supersymmetry constraint requires $g_2 = 0$ meaning that there is no coupling among T^{10} generators. This is similar to $N = 16$ and $N = 8$ theories with $SO(8) \ltimes T^{28}$ gauge group studied in \cite{11, 24}.

We are now in a position to study the scalar potential of the resulting gauged supergravity. Following the technique of \cite{37}, we begin with scalar fields which are singlets under the semisimple part of the gauge group, $SO(5)$. They are given by 1^\pm in (3.4) and correspond to the non-compact generators

\begin{align*}
Y_{s1} &= Y_3 - Y_5 - Y_{12} + Y_{16} + Y_{17} - Y_{18} + Y_{27} + Y_{29}, \\
Y_{s2} &= Y_4 + Y_8 + Y_{11} + Y_{13} + Y_{22} - Y_{23} + Y_{28} - Y_{32}.
\end{align*}

(3.8)

Accordingly, the coset representative is parametrized by

\[L = e^{aY_{s1}} e^{bY_{s2}}. \]

(3.9)

Using the formulae (A.4) and (A.5), we can compute A_{1IJ} and A_{2I}^J by using a computer program Mathematica. The scalar potential is computed to be

\[V = -6 e^{4(a-b)} (1 + e^{8b}) g^2 \]

(3.10)

where we have denoted g_1 simply by g. The presence of the e^a factor implies that the potential has no critical point. We then expect the vacuum solution to be a domain wall.

To find a domain wall solution, we adopt the usual domain wall ansatz for the metric

\[ds^2 = e^{2A} dx_{1,1}^2 + dr^2. \]

(3.11)

The supersymmetry transformation of χ^{II}, $\delta \chi^{II} = 0$ from equation (2.18), gives the following equations

\begin{align*}
b' \gamma_r e^I + \frac{1}{2} g (1 - e^{4b}) e^{2(a-b)} e^I &= 0, \quad I = 1, \ldots, 5, \quad (3.12) \\
b' \gamma_r e^I - \frac{1}{2} g (1 - e^{4b}) e^{2(a-b)} e^I &= 0, \quad I = 6, \ldots, 10, \quad (3.13) \\
\phi' e^I - g \frac{e^{2(a+b)(1+e^{4b})}}{1 + e^{8b}} e^I &= 0, \quad I = 1, \ldots, 5, \quad (3.14) \\
\phi' e^I + g \frac{e^{2(a+b)(1+e^{4b})}}{1 + e^{8b}} e^I &= 0, \quad I = 6, \ldots, 10, \quad (3.15)
\end{align*}

where we have used $'$ to denote the derivative $\frac{d}{dr}$ and $\phi' A^I = \frac{1}{6} \text{Tr} (L^{-1} L' Y^A)$. We will now impose the projection conditions $\gamma_r e^I = -\epsilon^I$ for $I = 1, \ldots, 5$ and $\gamma_r e^I = \epsilon^I$ for $I =$
ϵ^I has two real components. The projectors then reduce the supersymmetry by a fraction of $\frac{1}{2}$. With these two projectors, we end up with two independent equations

$$b' = \frac{1}{2} g(1 - e^{4b})e^{2(a-b)}, \quad (3.16)$$

$$a' = -g e^{2(a+b)(1+e^{4b})} \left(1 + e^{8b}\right). \quad (3.17)$$

The supersymmetry variation of the gravitini ψ^{I}_{μ}, $\delta \psi^{I}_{\mu} = 0$ from equation (2.17) after using the above projectors, gives rise to

$$e^{4b} = 1, \quad (3.18)$$

$$A' = 2g \left(1 + e^{4b}\right) e^{2(a-b)} \quad (3.19)$$

where we have used the spin connection $\omega_{\hat{\mu}\hat{\nu}} = A' \delta_{\hat{\mu}}^\hat{\nu}$ with $\hat{\mu}, \hat{\nu} = 0, 1$.

We see from (3.18) that supersymmetry demands $b = 0$. Equation (3.16) is now trivially satisfied, and equation (3.17) becomes

$$a' + e^{2a}g = 0. \quad (3.20)$$

The solution is easily obtained to be

$$a = -\frac{1}{2} \ln \left(2gr + C_1\right) \quad (3.21)$$

where C_1 is an integration constant. Substituting into equation (3.19) gives

$$A' = 4ge^{2a} = \frac{4g}{C_1 + 2gr} \quad (3.22)$$

whose solution is, with another integration constant C_2,

$$A = C_2 + 2 \ln \left(2gr + C_1\right). \quad (3.23)$$

As in other solutions of this type, the residual supersymmetry is generated by the Killing spinors given by $\epsilon^i = e^{\hat{i}} \epsilon^{i}_{0\pm}$, $i = 1, \ldots, 5$ with the constant spinors $\epsilon^i_{0\pm}$ satisfying $\gamma_\nu \epsilon^i_{0\pm} = \pm \epsilon^i_{0\pm}$. The full symmetry of this solution is $ISO(1,1) \times SO(5)$ with the unbroken $N = (5,5)$ Poincare supersymmetry in notation of the dual two-dimensional field theory.

The two integration constants C_1 and C_2 can be set to zero by shifting the coordinate r and rescaling the coordinates x^μ. We can also write down the solution in the
form of warped AdS_3 by introducing the new coordinate $\rho = -\frac{1}{4g^2 r}$ in term of which the metric becomes

$$ds^2 = \frac{1}{(4g^2 \rho)^2} \left(dx_{1,1}^2 + d\rho^2 \right). \quad (3.24)$$

We end this section by considering subgroups of $SO(5) \ltimes T^{10}$ namely $SO(4) \ltimes T^6$ and $(SO(3) \ltimes T^3) \times (SO(2) \ltimes T^1) \sim U(2) \ltimes T^4$. It can be checked that both of them are not admissible.

4. Higher dimensional origin

In this section, we discuss higher dimensional origin of the $SO(5) \ltimes T^{10} N = 10$ gauged supergravity constructed in the previous section. By the general result of [3], this theory is on-shell equivalent to the $SO(5)$ Yang-Mills gauged supergravity which can be obtained from S^1 reduction of $N = 5$ gauged supergravity in four dimensions with $SO(5)$ gauge group. The four dimensional theory has been constructed in [14] and can be obtained as a truncation of the maximal $N = 8$ gauged supergravity. In the notation of [14], the field content of this theory contains one graviton e^i_M or g_{MN}, five gravitini ψ^i_M, eleven spin-$\frac{1}{2}$ fields χ^{ijk} and χ^{678}, ten scalars ϕ^i and ϕ_i living in the coset space $SU(5,1)/U(5)$ and ten vector fields A^i_M being $SO(5)$ gauge fields. Here, $M, N = 0, 1, 2, 3$ and $a, b = 0, 1, 2, 3$ are four dimensional space-time and tangent space indices respectively while $i, j = 1, \ldots, 5$ are $SU(5)$ indices except for A^i_M which transform in the adjoint representation of $SO(5)$.

If we reduce this theory on S^1 along the x^3 direction, we find the following fields in three dimensions. The metric g_{MN} gives the non-dynamical three dimensional metric $g_{\mu\nu}$, the graviphoton $g_{\mu 3}$ and a scalar g_{33}. The $SO(5)$ gauge fields result in the three dimensional gauge fields of the same gauge group A^i_μ and ten scalars A^i_M transforming in the adjoint representation of $SO(5)$. Finally, the ten scalars (ϕ^i, ϕ_i) obviously become the three dimensional scalars.

A spinor in four dimensions give rise to two spinors in three dimensions. We then obtain ten gravitini ψ^i_μ from ψ^i_M and ten spin-$\frac{1}{2}$ fields ψ^i_3. There are additional $20 + 2$ spin-$\frac{1}{2}$ fields from the reduction of χ^{ijk} and χ^{678}, respectively. In three dimensions, the metric and gravitino do not have any dynamics. We then find 32 fermionic on-shell degrees of freedom from $(\psi^i_3, \chi^{678}, \chi^{ijk})$. We can also dualize A^i_μ and $g_{\mu 3}$ to $10 + 1$ scalars. All together, we end up with 32 scalars from $(\phi^i, \phi_i, g_{33}, g_{\mu 3}, A^i_\mu, A^i_3)$. This is the same as in $N = 10$ gauged supergravity.

We give $SO(5)_{gauge}$ representations of the reduced fields in table [3] from which we have omitted the non-dynamical fields $g_{\mu\nu}$ and ψ^i_μ. We have kept ϕ^i and ϕ_i separately.
Table 1: Representations of three dimensional fields resulted from S^1 reduction of $N = 5$ gauged supergravity in four dimensions.

to emphasize their four dimensional origin. We now consider the representation of the 32 scalars in $E_6(-14)/SO(10) \times U(1)$ coset space under the $SO(5)$ part of the gauge group. Recall that under $SO(10) \times U(1)$, the scalars transform as $16^+ + 16^-$. Under $SO(10) \times U(1) \supset SU(5) \times U(1) \supset SO(5)$ in which the $U(1)$ is the $U(1)$ subgroup of $U(5) \subset SO(10)$, we find

$$16^+ + 16^- \rightarrow (1^-_5 + 5^-_3 + 10^-_1)^+ + (1^-_5 + 5^-_3 + 10^-_1)^-$$
$$\rightarrow (1 + 5 + 10) + (1 + 5 + 10)$$

(4.1)

We find perfect agreement with table 1. Reference [38] is very useful in this decomposition. In the formalism of [4], the fermions χ^A transform as $\overline{10}^+ + 10^-$ under $SO(10) \times U(1)$. Similar decomposition gives $2 \times (1 + 5 + 10)$ under $SO(5)$ gauge group. This is again the representations obtained from S^1 reduction shown in table 1.

The result of [39] suggests that three dimensional supergravity with E_6 coset manifold can be obtained from dimensional reduction on a torus, S^1 in the present case, of a supergravity theory with A_5 coset manifold in four dimensions. Reference [39] consider only maximally non-compact E_6 and other types Lie groups. The result here should provide an example of a non-maximally non-compact E_6 ($E_6(-14)$) coset obtained from a non-maximally non-compact A_5 $SU(5,1)$ coset in four dimensions. Furthermore, the general formulae for toroidal reductions given in the appendix of [39] should also be applicable in this case.

5. Conclusions and discussions

In this paper, we have constructed $N = 10$ $SO(5) \ltimes T^{10}$ gauged supergravity in three
dimensions. We have found that the resulting theory admits a 1/2-BPS domain wall as a vacuum solution. The solutions preserves \(N = (5, 5) \) Poincare supersymmetry in two dimensions with ten supercharges. The solution is similar to the domain wall from the \(S^7 \) compactification of type II string theory discussed in [1]. This solution is the vacuum solution of the maximal \(N = 16 \) \(SO(8) \times T^{28} \) gauged supergravity. The solution given here provides an example of a domain wall in non-maximal gauged supergravity and might be useful in the DW/QFT correspondence as well as its applications.

We have also discussed possible higher dimensional origin of this theory. This is given by \(S^1 \) reduction of \(N = 5 \) \(SO(5) \) gauged supergravity in four dimensions. We have found that the spectrum of the reduction matches with the constructed three dimensional gauged supergravity. If the \(N = 5 \) four dimensional theory is reduced on \(S^1/\mathbb{Z}_2 \), it could give rise to \(N = 5 \) gauged supergravity in three dimensions. Indeed, the latter in general has scalar manifold \(USp(4, k)/USp(4) \times USp(k) \) [32]. We have seen that the \(SO(5) \times T^{10} \) gauge group is embedded in \(USp(4, 4) \subset E_{6(-14)} \). We then expect that \(N = 5 \) \(SO(5) \) gauged supergravity in four dimensions reduced on \(S^1/\mathbb{Z}_2 \) should give \(N = 5 \) \(SO(5) \times T^{10} \) gauged supergravity in three dimensions with scalar manifold \(USp(4, 4)/USp(4) \times USp(4) \) containing 16 scalars. It turns out that the latter theory admits \(SO(5) \times T^{10} \) gauge group. The details will be reported in subsequent work [1]. Unlike the \(N = 10 \) theory, the \(N = 5 \) truncation admits maximally supersymmetric \(AdS_3 \) vacuum solution. This truncation should be similar to the case of \(N = 8 \) \(SO(8) \times T^{28} \) gauged supergravity with \(SO(8, 8)/SO(8) \times SO(8) \) scalar manifold studied in [25]. This theory is a truncation of \(N = 16 \) \(SO(8) \times T^{28} \) gauged supergravity with scalar manifold \(E_{8(8)}/SO(16) \).

Due to the similar structure as in the above examples, we would like to briefly discuss the case of \(N = 12 \) gauged supergravity. The scalar manifold is the 64-dimensional quaternionic manifold \(E_{7(-5)}/SO(12) \times SU(2) \). The gauge group should be \(SO(6) \times T^{15} \) embedded in \(SU(4, 4) \subset E_{7(-5)} \). The \(SO(6) \) is again identified as \(SO(6)_{\text{diag}} \subset SO(6) \times SO(6) \subset SO(12) \). The 64 scalars transform under \(SO(12) \times SU(2) \) as \((32, 2) \) and under \(SO(6) \times SO(6) \times SU(2) \) as \((4, 4) + (4, 4), 2) \). Then, under the \(SO(6) \) part of the gauge group, we find the representation for scalars \((4 \times 4 + 4 \times 4), 2) = (1 + 15 + 1 + 15, 2) \). The non-compact generators in the \(15 \) should combine with \(SO(6) \times SO(6) \) generators to form the \(T^{15} \) part of the gauge group. The fermions transform as \((32, 2) \) under \(SO(12) \times SU(2) \) and \(((4, 4) + (4, 4), 2) \) under \(SO(6) \times SO(6) \times SU(2) \). Under \(SO(6) \), they transform as \((10 + 6 + 10 + 6, 2) \).

We now consider \(S^1 \) reduction of \(N = 6 \) \(SO(6) \) gauged supergravity in four dimensions which is also a truncation of \(N = 8 \) \(SO(8) \) gauged supergravity [42]. The bosonic fields are \((g_{MN}, \phi_{AB}, \phi_{AB}, A_{M}^{AB}, A_{M}) \) where the 30 scalars \((\phi_{AB}, \phi_{AB}) \) live in the coset space \(SO^*(12)/U(6) \) and \(A, B = 1, \ldots, 6 \), see [42] for more detail. The fermionic fields

\[-12 - \]
are given by \((\psi_A^M, \chi^A, \chi^{ABC})\). After \(S^1\) reduction, the dynamical bosonic fields are given by \((g_{\mu 3}, g_{33}, \phi^{AB}, \phi_{AB}, A_\mu, A_3, A^{AB}_\mu, A^{AB}_3)\) transforming as \((1 + 1 + 15 + 15 + 1 + 1 + 15 + 15)\) under \(SO(6)\) gauge group. After dualizing the vector fields, we end up with 64 scalars with correct \(SO(6)\) representations as in \(N = 12\) gauged supergravity. The reduced dynamical fermionic fields are \((\psi_3^A, \chi^{ABC}, \chi^A)\) transforming under \(SO(6)\) as \(2 \times (6 + 10 + 10 + 6)\) which are indeed the same as those in \(N = 12\) theory. The factor of 2 comes from the fact that a four dimensional spinor gives two three dimensional spinors.

Finally, similar to the discussion in the \(N = 5\) case, we expect that the \(S^1/\mathbb{Z}_2\) reduction should give \(N = 6\) \(SO(6) \times T^{15}\) gauged supergravity on three dimensions with scalar manifold \(SU(4,4)/S(U(4) \times U(4))\) whose compact and non-compact gauge groups have been explored in \([13]\). The possibility of non-semisimple gauge groups is under investigation \([41]\).

Acknowledgments

The author would like to thank the Institute for Fundamental Study (IF), Naresuan University for hospitality during this work was in progress. He is also grateful to Pitayuth Wongjun for computing facilities, financial support and many helps during his visit to IF. This work is partially supported by Thailand Center of Excellence in Physics through the ThEP/CU/2-RE3/11 project, Chulalongkorn University through Ratchadapisek Sompote Endowment Fund and The Thailand Research Fund (TRF) under grant TRG5680010.

A. Useful formulae and details

In this appendix, we give some details of \(N = 10\) gauged supergravity with \(SO(5) \times T^{10}\) gauge group constructed in the main text. First of all, the \(SO(10)\) R-symmetry
generators T^{ij} are explicitly given by

\[
T^{12} = c_1, \quad T^{13} = -c_2, \quad T^{23} = c_3, \quad T^{34} = c_6, \quad T^{14} = c_4, \quad T^{24} = -c_5,
\]
\[
T^{15} = c_7, \quad T^{25} = -c_8, \quad T^{35} = c_9, \quad T^{45} = -c_{10}, \quad T^{56} = -c_{15}, \quad T^{16} = c_{11},
\]
\[
T^{26} = -c_{12}, \quad T^{46} = -c_{14}, \quad T^{36} = c_{13}, \quad T^{17} = c_{16}, \quad T^{27} = -c_{17}, \quad T^{47} = -c_{19},
\]
\[
T^{37} = c_{18}, \quad T^{67} = -c_{21}, \quad T^{57} = -c_{20}, \quad T^{78} = -c_{36}, \quad T^{18} = c_{30}, \quad T^{28} = -c_{31},
\]
\[
T^{48} = -c_{33}, \quad T^{38} = c_{32}, \quad T^{68} = -c_{35}, \quad T^{58} = -c_{34}, \quad T^{29} = -c_{46}, \quad T^{19} = c_{45},
\]
\[
T^{49} = -c_{48}, \quad T^{39} = c_{47}, \quad T^{69} = -c_{50}, \quad T^{59} = -c_{49}, \quad T^{89} = -c_{52}, \quad T^{79} = -c_{51},
\]
\[
T^{1,10} = -c_{71}, \quad T^{2,10} = c_{72}, \quad T^{3,10} = -c_{73}, \quad T^{4,10} = c_{74}, \quad T^{5,10} = c_{75},
\]
\[
T^{6,10} = c_{76}, \quad T^{7,10} = c_{77}, \quad T^{8,10} = c_{78}, \quad T^{9,10} = -\tilde{c}_{53}
\]

where \tilde{c}_{53} and \tilde{c}_{70} are defined by

\[
\tilde{c}_{53} = \frac{1}{2} c_{53} + \frac{\sqrt{3}}{2} c_{70} \quad \text{and} \quad \tilde{c}_{70} = -\frac{\sqrt{3}}{2} c_{53} + \frac{1}{2} c_{70}.
\]

Also, notice a typo in the sign of $T^{9,10}$ in \[17\].

The \tilde{Y}^{ij} part of the translational generators T^{10} is constructed from the following non-compact generators

\[
\tilde{Y}^{12} = \frac{1}{2} (Y_3 - Y_{12} + Y_{17} + Y_{29} + Y_5 - Y_{16} + Y_{18} - Y_{27}),
\]
\[
\tilde{Y}^{13} = \frac{1}{2} (Y_2 + Y_{14} + Y_{21} - Y_{26} - Y_1 + Y_{15} - Y_{19} - Y_{25}),
\]
\[
\tilde{Y}^{14} = \frac{1}{2} (Y_{31} - Y_7 - Y_6 - Y_{30} - Y_9 + Y_{10} + Y_{20} - Y_{24}),
\]
\[
\tilde{Y}^{15} = \frac{1}{2} (Y_{15} - Y_{14} + Y_{25} - Y_{26} - Y_1 - Y_2 + Y_{19} + Y_{21}),
\]
\[
\tilde{Y}^{23} = \frac{1}{2} (Y_1 + Y_2 + Y_{15} - Y_{14} + Y_{19} + Y_{21} - Y_{25} + Y_{26}),
\]
\[
\tilde{Y}^{24} = \frac{1}{2} (Y_{10} + Y_9 - Y_{30} - Y_{31} + Y_6 - Y_7 - Y_{20} - Y_{24}),
\]
\[
\tilde{Y}^{25} = \frac{1}{2} (Y_2 - Y_1 - Y_{25} - Y_{26} - Y_{14} - Y_{15} + Y_{19} - Y_{21}),
\]
\[
\tilde{Y}^{34} = \frac{1}{2} (Y_8 - Y_4 - Y_{11} - Y_{28} + Y_{13} - Y_{32} + Y_{22} + Y_{23}),
\]
\[
\tilde{Y}^{35} = \frac{1}{2} (Y_{18} + Y_{17} - Y_{12} + Y_{27} - Y_{29} - Y_{16} - Y_5 - Y_3),
\]
\[
\tilde{Y}^{45} = \frac{1}{2} (Y_8 + Y_4 - Y_{11} - Y_{28} - Y_{13} + Y_{32} - Y_{23} + Y_{22}).
\]
This choice is of course not unique.

The scalar matrices for the moment maps are given by

\[
\begin{align*}
\mathcal{V}_{ij,IJ}^a &= -\frac{1}{6} \text{Tr}(L^{-1}j^{ij}LT^{IJ}), \\
\mathcal{V}_{ij,IJ}^b &= -\frac{1}{6} \text{Tr}(L^{-1}t^{ij}LT^{IJ}), \\
\mathcal{V}_{ij,IA}^a &= \frac{1}{6} \text{Tr}(L^{-1}j^{ij}LY^A), \\
\mathcal{V}_{ij,IA}^b &= \frac{1}{6} \text{Tr}(L^{-1}t^{ij}LY^A),
\end{align*}
\]

from which the T-tensor follows

\[
\begin{align*}
T^{IJ,KL} &= g \left(\mathcal{V}_{ij,IJ}^a \mathcal{V}_{ij,KL}^b + \mathcal{V}_{ij,IJ}^b \mathcal{V}_{ij,KL}^a \right) \\
T^{IJ,A} &= g \left(\mathcal{V}_{ij,IJ}^a \mathcal{V}_{ij,A}^b + \mathcal{V}_{ij,IJ}^b \mathcal{V}_{ij,A}^a \right)
\end{align*}
\]

Using these together with (2.11), (2.12) and (2.13), we can find the tensors \(A_{1IJ} \) and \(A_{2IJ} \) as well as the scalar potential.

B. Non-semisimple gauging of \(N = 9 \) gauged supergravity in three dimensions

We will consider \(N = 9 \) gauged supergravity in three dimensions. The corresponding scalar manifold is given by the 16-dimensional \(F_4(-20)/SO(9) \) coset space. Some vacua of the compact and non-compact gaugings of this theory have been studied in [44]. In this appendix, we will explore the possibilities of non-semisimple gauge groups which are crucial for embedding the theory in higher dimensions. Notice that the construction of \(E_6 \) given in [36] is based on the \(F_4 \) group given in [35]. We can simply remove the last 26 matrices \(c_i, i = 53, \ldots, 78 \) from \(E_6 \) to get the group \(F_4 \) generated by \(c_i, i = 1, \ldots, 52 \) as has been used in [44]. All 52 matrices are effectively \(26 \times 26 \) matrices since all elements in the last row and last column are zero.

The \(SO(9) \) R-symmetry generators are \(T^{IJ} \) in (A.1) with \(I, J = 1, \ldots, 9 \), and non-compact generators are the first 16 generators of (3.1), \(Y^A, A = 1, \ldots, 16 \). In the case of \(F_4(4)/USp(6) \times SU(2) \) which is a scalar manifold of \(N = 4 \) theory studied in [45], \(SO(4) \ltimes T^6 \) can be gauged consistently with supersymmetry by the embedding of \(SO(4) \ltimes T^6 \) in \(SO(5, 4) \subset F_4(4) \). In the present case, the embedding of \(SO(3) \ltimes T^3 \) in \(USp(2, 2) \subset USp(4, 2) \times SU(2) \subset F_4(-20) \) should be possible.

To identify generators of this group, we first consider the \(SO(4) \ltimes T^6 \) subgroup of the
$SO(5) \times T^{10}$ in section 3. Obviously, the $SO(4)$ part is generated by J^{ij}, $i, j = 1, \ldots, 4$. We then consider \tilde{Y}^{ij} with $i, j = 1, \ldots, 4$. It can be verified that by removing Y_{17} to Y_{32} from \tilde{Y}^{ij}, the resulting generators, see appendix A,

$$
\begin{align*}
\tilde{Y}^{12} &= \frac{1}{2} (Y_3 - Y_{12} + Y_5 - Y_{16}), \\
\tilde{Y}^{13} &= \frac{1}{2} (Y_2 + Y_{14} - Y_1 + Y_{15}), \\
\tilde{Y}^{14} &= \frac{1}{2} (Y_{10} - Y_7 - Y_6 - Y_{30} - Y_9), \\
\tilde{Y}^{23} &= \frac{1}{2} (Y_1 + Y_2 + Y_{15} - Y_{14}), \\
\tilde{Y}^{24} &= \frac{1}{2} (Y_{10} + Y_9 + Y_6 - Y_7), \\
\tilde{Y}^{34} &= \frac{1}{2} (Y_8 - Y_4 - Y_{11} + Y_{13})
\end{align*}
$$

(B.1)

still transform in the adjoint representation of $SO(4)$. It turns out that when combined into t^{ij}, the resulting generators do not commute. Therefore, it is not possible to find $SO(4) \ltimes T^6$ subgroup of $F_4(-20)$. On the other hand, we can form two $SU(2)_{\pm}$ subgroups from these generators by introducing the self-dual and anti-self-dual $SO(4)$ generators

$$
\begin{align*}
J^1_+ &= J^{12} + J^{34}, & J^2_+ &= J^{13} - J^{24}, & J^3_+ &= J^{14} + J^{23}, \\
t^1_+ &= t^{12} + t^{34}, & t^2_+ &= t^{13} - t^{24}, & t^3_+ &= t^{14} + t^{23}
\end{align*}
$$

(B.2)

and

$$
\begin{align*}
J^1_- &= J^{12} - J^{34}, & J^2_- &= J^{13} + J^{24}, & J^3_- &= J^{14} - J^{23}, \\
t^1_- &= t^{12} - t^{34}, & t^2_- &= t^{13} + t^{24}, & t^3_- &= t^{14} - t^{23}.
\end{align*}
$$

(B.3)

It can be readily verified that each set of generators forms $SO(3) \ltimes T^3 \sim SU(2) \ltimes T^3$ algebra but generators t^a_\pm from the two sets do not commute with each other. Although this subgroup can be embedded in $F_4(-20)$, it is not admissible namely it cannot be gauged in a way that is consistent with supersymmetry. Embedding in higher dimensions aside, it seems to be difficult (if possible) to find non-semisimple gaugings of the $N = 9$ theory.

References

[1] H. Nicolai and H. Samtleben, “Maximal gauged supergravity in three dimensions”, Phys. Rev. Lett. 86 (2001) 1686-1689, arXiv: hep-th/0010076.
[2] H. Nicolai and H. Samtleben, “$N = 8$ matter coupled AdS$_3$ supergravities”, Phys. Lett. B514 (2001) 165-172, arXiv: hep-th/0106153.

[3] P. Kraus, “Lectures on black holes and the AdS$_3$/CFT$_2$ correspondence”, Lect. Notes Phys. 755 (2008) 193-247, arXiv: hep-th/0609074.

[4] Bernard de Wit, Ivan Herger and Henning Samtleben, “Gauged Locally Supersymmetric $D = 3$ Nonlinear Sigma Models”, Nucl. Phys. B671 (2003) 175-216, arXiv: hep-th/0307006.

[5] H. Nicolai and H. Samtleben, “Chern-Simons vs Yang-Mills gaugings in three dimensions”, Nucl. Phys. B 638 (2002) 207-219, arXiv: hep-th/0303213.

[6] H. Lü, C. N. Pope and E. Sezgin, “$SU(2)$ reduction of six-dimensional (1,0) supergravity”, Nucl. Phys. B668 (2003) 237-257, arXiv: hep-th/0212323.

[7] H. Lü, C. N. Pope and E. Sezgin, “Yang-Mills-Chern-Simons Supergravity”, Class. Quant. Grav. 21 (2004) 2733-2748, arXiv: hep-th/0305242.

[8] Edi Gava, Parinya Karndumri and K. S. Narain, “3D gauged supergravity from SU(2) reduction of $N = 1$ 6D supergravity”, JHEP 09 (2010) 028, arXiv: 1006.4997.

[9] E. O Colgain and H. Samtleben, “3D gauged supergravity from wrapped M5-branes with AdS/CMT application”, JHEP 02 (2011) 031, arXiv: 1012.2145.

[10] T. Fischbacher, H. Nicolai and H. Samtleben, “Non-semisimple and Complex Gaugings of $N = 16$ Supergravity”, Commun.Math.Phys. 249 (2004) 475-496, arXiv: hep-th/0306276.

[11] O. Hohm and H. Samtleben, “Effective actions for massive Kaluza-Klein states on $AdS_3 \times S^3 \times S^3$”, JHEP 05 (2005) 027, arXiv: hep-th/0503088.

[12] H. Nicolai and H. Samtleben, “Kaluza-Klein supergravity on $AdS_3 \times S^3$”, JHEP 09 (2003) 036, arXiv: hep-th/0306202.

[13] P. Karndumri and E. O Colgain, “3D supergravity from wrapped D3-branes”, arXiv: 1307.2086.

[14] B. de Wit and H. Nicolai, “Extended supergravity with local $SO(5)$ invariance”, Nucl. Phys. B188 (1981) 98-108.

[15] N. P. Warner, “Some properties of the scalar potential in gauged supergravity theories”, Nucl. Phys. B231 (1984) 250-268.

[16] N. Bobev, A. Kundu, K. Pilch and N. P. Warner, “Minimal holographic superconductor from maximal supergravity”, JHEP 03 (2012) 064, arXiv: 1110.3454.
[17] Auttakit Chatrabhuti and Parinya Karndumri, “Vacua of \(N = 10 \) three dimensional gauged supergravity”, Class. Quantum Grav. 28 (2011) 125027, arXiv: 1011.5355.

[18] H. Lu, C. N. Pope and P. K. Townsend, “Domain Walls from Anti-de Sitter spacetime”, Phys. Lett. B391 (1997) 39-46, arXiv: hep-th/9607164.

[19] C. M. Hull, “Domain Wall and de Sitter Solutions of Gauged Supergravity”, JHEP 11 (2001) 061, arXiv: hep-th/0110048.

[20] G. W. Gibbons and C. M. Hull, “De Sitter Space from Warped Supergravity Solutions”, arXiv: hep-th/0111072.

[21] H. Lu, C. N. Pope, E. Sezgin and K. S. Stelle, “Dilatonic p-brane solitons”, Phys. Lett. B371 (1996) 46-50, arXiv: hep-th/9511203.

[22] Klaus Behrndt, Eric Bergshoeff, Rein Halbersma and Jan Pieter van der Schaar, “On Domain-Wall/QFT Dualities in Various Dimensions”, Class. Quant. Grav. 16 (1999) 3517-3552, arXiv: hep-th/9907006.

[23] Eric Bergshoeff, Mikkel Nielsen and Diederik Roest, “The Domain Walls of Gauged Maximal Supergravities and their M-theory Origin”, JHEP 07 (2004) 006, arXiv: hep-th/0404100.

[24] Eric A. Bergshoeff, Axel Kleinschmidt and Fabio Riccioni, “Supersymmetric Domain Walls”, Phys. Rev. D86 (2012) 085043, arXiv: 1206.5697.

[25] P. Karndumri, “Domain walls in three dimensional gauged supergravity”, JHEP 10 (2012) 001, arXiv: 1207.1027.

[26] T. Ortiz and H. Samtleben, “SO(9) supergravity in two dimensions”, JHEP 01 (2013) 183, arXiv: 1210.4266.

[27] H.J. Boonstra, K. Skenderis and P.K. Townsend, “The domain-wall/QFT correspondence”, JHEP 01 (1999) 003, arXiv: hep-th/9807137.

[28] T. Gherghetta and Y. Oz, “Supergravity, Non-Conformal Field Theories and Brane-Worlds”, Phys. Rev. D65 (2002) 046001, arXiv: hep-th/0106255.

[29] Ingmar Kanitscheider, Kostas Skenderis and Marika Taylor, “Precision holography for non-conformal branes”, JHEP 09 (2008) 094, arXiv: 0807.3324.

[30] J. M. Maldacena, “The large \(N \) limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2 (1998) 231-252, arXiv: hep-th/9711200.

[31] K. Skenderis and P. K. Townsend, “Hidden supersymmetry of domain walls and cosmologies”, Phys. Rev. Lett. 96 (2006) 191301, arXiv: hep-th/0602260.
[32] Kostas Skenderis and Paul K. Townsend, “Hamilton-Jacobi method for Domain Walls and Cosmologies”, Phys. Rev. D74 (2006) 125008, arXiv: hep-th/0609056.

[33] Kostas Skenderis, Paul K. Townsend and Antoine Van Proeyen, “Domain-wall/Cosmology correspondence in adS/dS supergravity”, JHEP 08 (2007) 036, arXiv: 0704.3918.

[34] Bernard de Wit, A. K. Tollsten and H. Nicolai, “Locally supersymmetric $D = 3$ nonlinear sigma models”, Nucl. Phys. B392 (1993) 3-38, arXiv: hep-th/9208074.

[35] Bernardoni F, Cacciatori S L, Cerchiai B L and Scotti A 2008 Mapping the geometry of the F_4 group Adv. Theor. Math. Phys. Volume 12 Number 4 889-994 (arXiv: 07053978)

[36] Bernardoni F, Cacciatori S L, Cerchiai B L and Scotti A 2008 Mapping the geometry of the E_6 group J. Math. Phys. 49 012107 (arXiv: 0710.0356)

[37] N. P. Warner, “Some New Extrema of the Scalar Potential of Gauged $N = 8$ Supergravity”, Phys. Lett. B128 (1983) 169.

[38] R. Slansky, “Group Theory for Unified Model Building” Phys. Rep. 79 (1981) 1128.

[39] E. Cremmer, B. Julia, H. Lu and C. N. Pope, “Higher-dimensional Origin of $D = 3$ Coset Symmetries”, arXiv: hep-th/9909099.

[40] J. F. Morales and H. Samtleben, “Supergravity duals of matrix string theory”, JHEP 08 (2002) 042, arXiv: hep-th/0206247.

[41] A. Chatrabhuti, P. Karndumri and B. Ngamwatthanakul, “New gauged supergravities in three dimensions with $N = 5, 6$ supersymmetry”, to appear.

[42] L. Andrianopoli, R. D’ Auria, S. Ferrara, P. A. Grassi and M. Trigiante, “Exceptional $N = 6$ and $N = 2$ AdS$_4$ supergravity and zero-center modules”, JHEP 04 (2009) 074, arXiv: 0810.1214.

[43] A. Chatrabhuti, P. Karndumri and B. Ngamwatthanakul, “3D N=6 Gauged Supergravity: Admissible Gauge Groups,Vacua and RG Flows”, arXiv: 1202.1043.

[44] Auttakit Chatrabhuti and Parinya Karndumri, “Vacua and RG flows in $N = 9$ three dimensional gauged supergravity”, JHEP 10 (2010) 098, arXiv: 1007.5438.

[45] P. Karndumri, “Gaugings of $N = 4$ three dimensional gauged supergravity with exceptional coset manifolds”, JHEP 08 (2012) 007, arXiv: 1206.2150.