Characterizing the neural correlates of reasoning

David Papo1,2*
1 Laboratory of Biological Networks, Center for Biomedical Technology, Universidad Politécnica de Madrid
2 LPC Institute, Madrid

*Correspondence:
David Papo, Laboratory of Biological Networks, Center for Biomedical Technology, Universidad Politécnica de Madrid, Calle Ramiro de Maeztu, 7, 28040 Madrid, Spain
e-mail: papodav@gmail.com
www: https://davidpapo.wordpress.com/

INTRODUCTION
Consider an individual trying to solve a problem, and reasoning for ten minutes before attaining a solution. Take the middle five minutes. Clearly, though containing no behaviourally salient event, these five minutes represent a genuine, indeed rather general, instance of reasoning. What do we know about the brain regime far from its conclusion? Can we use this regime to predict a solution, and a solution to retrodict this regime?

Here, I concentrate on a form of reasoning, of which the above scenario constitutes an example, which can broadly be defined as "thinking in which there is a conscious intent to reach a conclusion and in which methods are used that are logically justified" [1], with no a priori assumption on the type of reasoning process that may take place during it. It is argued that finding the generic properties of this form of reasoning entails addressing the following fundamental issues: What are reasoning’s temporal and spatial scales? When is a given observation time sufficient? How should we integrate the information contained in various reasoning episodes?

A MINI LITERATURE REVIEW
The neural correlates of reasoning have traditionally been expressed in terms of brain spatial coordinates. Early neuropsychological work viewed reasoning as emerging from global brain processing [2], consistent with evidence indicating that it is negatively affected by diffuse brain damage [3]. Neuroimaging studies have framed the neural correlates of reasoning in terms of local functionally specialized brain activity, either by taking a normative approach to reasoning [4-10], or by fractionating it into sub-component processes [11-14]. The results often lack specificity to reasoning [15]. Most importantly though, these investigations provide a static characterization of reasoning.

The neuroimaging literature mostly focused on short-term and normative forms of reasoning [9,16-18]. This minimizes variability in reasoning episode length and allows segmenting reasoning episodes into separable chunks, but does that at the price of limitations in the phenomenology and ecologic value of its stimuli. Some neuroimaging [19,20] and electrophysiological [21-29] studies examined more ecological forms of reasoning, viz. insight problems [30]. However, even electrophysiological studies, despite optimal temporal resolution, adopted an event-related perspective, concentrating on activity occurring few seconds before insight emergence, which only documents the outcome of the reasoning process, not the process itself.

Event-related neural activity associated with the solution of riddles with insight was found to be related to properties of preceding resting activity [26,27]. These studies had the remarkable merit of using spontaneous brain activity to characterize reasoning, but in essence provided a comparative statics description. Although some behavioural studies treated reasoning as a dynamical process [31], a comparable neurophysiological characterization is still incomplete. Altogether, the research accomplished so far has generally not looked at reasoning as a dynamical process, and produced either time-averaged frames or discrete maps in partial time cuts.

THE PROBLEM(S) WITH REASONING
The generalized form of reasoning considered in this study comes in episodes offering scant behaviourally salient events with no characteristic temporal length. Each episode is a non-reproducible instance, as reasoning task can be carry out in multiple ways. Brain activity
associated with reasoning is not event-related, and many neurophysiological processes interact in a wide range of spatial and temporal scales.

These phenomena can all be traced back to a basic fact: the brain did not develop a dedicated device for reasoning. Hardwired partially segregated modules ensure that perceptuo-motor functions are carried out at great speed, with stereotyped duration and time-varying profile, and identifiable stages, largely determined by input statistical properties. Reasoning, on the contrary, is an internally-driven dynamics: processing times, stages, and functional brain geometry are largely unconstrained.

Considering these extraordinary challenges, can we still find general reasoning properties, over and above specific task demands and individual differences? What sort of process is reasoning in its general form? Is it a series of simpler reasoning cycles? Can we segment it into stages? What are the best neural variables and tools to make these properties observable?

CHARACTERIZING THE REASONING PROCESS

Robust characterizations of reasoning should incorporate stylized facts, i.e. properties consistently appearing on different subjects and in different periods of time, and select analytical tools accordingly. For instance, perceptual response sensitivity to incoming signals, stability against noise, and minimal dependence on initial conditions favour tools capturing transient dynamics, which naturally reproduce these properties under appropriate conditions, over tools handling asymptotic activity, which fail to do so [32].

Reasoning’s relative instability and inefficiency suggest that optimal circuitry may need constant reconstruction and protection from interference, summoning protracted support of energetically costly long-range communications. Thus, reasoning may be a sort of resonant regime, where functional efficiency would be achieved with specific, though unstable, spatio-temporal patterns, and should be studied with tools capable of extracting spatially-extended dynamic transients.

REASONING DYNAMICS

Each cognitive process can be translated in dynamical terms and corresponding aspects of neural activity.

Perceptual processes are relaxational, quasi-stereotyped short duration processes. The brain can prima facie be modelled as an excitable medium: perturbations above a threshold induce a dynamical cycle, before the system reverts to its initial silent state.

Learning too is a relaxational process: following a gradient dynamics, the brain incorporates the environment’s statistical relationships, by representing them in terms of its functional connectivity. Cycles can be of much longer duration and non-trivial shape than perceptual ones. The dynamics is dominated by fluctuations much shorter than the whole process.

Reasoning may not be purely relaxational. The corresponding neural activity is a fluctuation-dominated endogenously modulated spontaneous brain activity, with no clear gradient, and no single instant summarizing the entire process. The reasoning scientist’s world is considerably more complex than the event-related short time scale one of perception. It is through the generic properties of spontaneous activity’s long time scales that robust reasoning properties should be formulated [33].

THE STARTING POINT: SPONTANEOUS BRAIN ACTIVITY

Spontaneous activity can be thought of as a data bank of cortical states, continuously reedited across the cortex [34]. This re-editing process contains rich non-random spatio-temporal structure [35-40].

The building blocks of this structure are fluctuations which the brain, as all dissipative out-of-equilibrium systems, generates even for fixed control parameter values and in the absence of external stimuli, and which constitute the trademark of its functioning. The dynamics is intermittent, with alternating laminar and turbulent phases [41,42], weakly non-ergodic, i.e. some phase space regions take extremely long times to be visited, and shows aging, i.e. temporal correlations depend on the observation time [43]. Various aspects of spontaneous activity display similar properties at all temporal and spatial scales [44-51]. Self-similarity break-down [52,53], with Gaussian low-frequency and non-Gaussian high-frequency fluctuations [54] were also reported.

Understanding fluctuations

We can imagine brain activity as the motion of a random walker, making steps of a length taken from some distribution, at times taken from some other distribution or, equivalently, of a macroscopic particle diffusing in a liquid, subject to viscous friction and to an additive random force [55].

The relationship between these two forces’ time scales determines how microscopic fluctuations produce observable macroscopic properties. In the equilibrium world of perceptual scientists, the brain makes steps taken from a Gaussian distribution and whose correlations, much faster than the friction force scale, have no macroscopical effect. Reasoning scientists live far from equilibrium: random fluctuations are no faster than the friction term and show long-lasting correlations, which renormalize, becoming macroscopically detectable [56].

Complex fluctuations reveal the particle’s navigation style, e.g. how travelled distances and the times to reach a given target scale with time [57]. They also allow deducing a system’s characteristic temporal scales. For an equilibrium system with exponential temporal autocorrelation decay, the correlation length, i.e. the value ξ that makes the autocorrelation $C(t = \xi) = 0$, or the correlation time $\tau_c = \int_0^{\xi} C(\tau) \, d\tau$, endow the process with a unique temporal scale. However, at long time scales, the presence of scaling indicates that the brain relaxes more
slowly than an exponential and fluctuates at all scales [58-60]. Both \(\langle \tau \rangle \) and \(\tau_c \) may diverge, and a characteristic time ceases to exist. Temporal scales are characterized by some relationship between them, which can be treated as a dynamical system, relating the behaviour of an observed variable over a series of nested scales [61,62].

The brain's functional and corresponding dynamical heterogeneity produces a spatial distribution of time scales. While only some of these are usually considered of interest, global temporal scales may not coincide with any of the local dynamics, and may emerge from transient connectivity patterns created and destroyed by rewiring processes [63]. Because spatial scales also have non-trivial topological properties [64], global dynamics is a field endowed with arbitrarily real and phase-space complex topologies [65], where scales replace metric distances, fractal geometry the Euclidean one, and scale invariance Galilean invariance.

By resorting to nonlinear analysis, algebraic and differential topology, renormalization group methods etc. [66,67], brain activity can then be described in terms of universal properties, i.e. regimes with robust macroscopic behaviour with respect to the nature of microscopic interactions and sharing the same symmetries. These descriptions partition the phase space, identify dynamical pathways leading to specific regions of this space, and allow relating descriptions of the same brain at different scales, and grouping descriptions of different brains exhibiting the same large-scale behaviour [66].

Chinking

Correlated noise and cross-scale relationships produce temporally ordered structures which can help segmenting reasoning episodes into chunks.

This can be done by defining quasi-stationary segments boundaries [68]. The scaling properties of quasi-stationary segments' durations may help clarifying whether reasoning in its general form is merely a repetition of simple cycles seen in more controlled forms of reasoning, or is of a qualitatively different nature, and in any case, determining the time scales at which simpler cycles are reedited.

The waiting-time distribution between steps defines an internal operational time, which may grow sub- or super-linearly with physical time [69]. Multiplicative cross-scale interactions bias the waiting-time distribution so that operational and physical times no longer coincide, and local probability densities become time-dependent and intermittent [70].

FROM SPONTANEOUS ACTIVITY TO REASONING

Cognitive processes can be thought of as selections and orchestrations of cortical states already present in spontaneous activity [71,72]. Each process corresponds to a specific phase space cut, with its own topological properties and symmetries, and characteristic kinematics, memory, ageing properties, degree of ergodicity, and internal clock [33].

Reasoning may modulate not brain activity's frequency or amplitude but its functional form [33], e.g. by pushing it towards the basin of attraction of advantageous probability distributions: good reasoning could be tantamount to designing a driving noise function forcing the system's stationary distribution to equal a target one.

Cognitive demands may generally change the symmetries of brain activity. For instance, scaling regime modulations observed in associations with a reasoning task [73] may correspond to cross-overs between universality classes, reflecting dynamical transitions in the system's behaviour [74].

APPRaising REASONING

Brain fluctuations can be interpreted in various interconnected ways that help evaluating the quality of reasoning by using models of the function it fulfils and quantifying the constraints the brain faces while performing it.

Metaphors for reasoning

Reasoning, as other cognitive processes, e.g. memory recall [75,76], can be represented as a search process similar to that of animals foraging in an unknown environment [77]. This search process can be characterized in terms of random walks [78-81]. Importantly, random walk types can quantify the extent to which a given trajectory optimizes search, given the characteristics of the explored space and the resources available to the individual [81]. Such a characterisation would allow assessing in a context-specific way the quality of both the reasoning and the 'reasoner'. That behavioural aspects of human cognition [75,76] and brain activity both show non-Gaussian, heavy-tailed distributions might indicate search optimality [80,82]. However, because these properties are generic in spontaneous activity, reasoning's quality can only be described in terms of its modulations. Furthermore, since local dynamics may be nowhere Lévy-like, finding the neural property and spatial scale showing scaling are the crucial steps.

The reasoning regime could also be represented as a network traffic regulation problem, where phenomena such as overload or jamming may be quantified in terms of information creation, erasure and transmission rates, by regarding simple fluctuations as letters of an alphabet and fluctuation complexes as words, and quantifying the amount of information in the system. Characterizing traffic regulation may involve understanding the interplay between the underlying network's topology, burstiness of information packets and the shape of fluctuation distributions [83-85]. Although only causal information [86] may directly serve reasoning purposes, the total
information encoded in the network may describe the noise-control mechanisms indirectly optimizing it.

The sudden onset of insight may be thought of as an extreme event comparable to earthquakes, financial crashes or epileptic seizures [87,88], e.g. as a rupture phenomenon, and the route to it as a long charging process, with nested hierarchical "earthquakes", and try predicting its occurrence. For such phenomena, the coupling strengths distribution and topology constitute the relevant field [89], which may be described using complex network theory [64]. It is tempting to conjecture that insight onset may be predicted by monitoring e.g. anomalous diffusion parameters [88], variations in Gaussianity [90], or changes in fractal spectrum complexity [91,92].

From dynamics to thermodynamics

Differences in reasoning abilities can produce not only differences in processing times of some orders of magnitude, but also qualitative ones in dynamical and statistical aspects of brain fluctuations, and in corresponding brain topography and topology. A natural question when studying reasoning is then: "How efficiently does a given brain carry out reasoning?".

There are various ways to assess efficiency of a given device. If reasoning was the output of an engine, e.g. a Carnot's engine, it would be natural to understand not only how the engine produces it, but also how efficiently it performs it.

While functional network reconstruction can provide an indirect characterization of brain activity's energetic aspects [93,94], the brain's thermodynamics can directly be deduced from its dynamics [95], which can be interpreted as the walker's diffusion on the surface of the entropy production rate in the space of kinetic variables [96].

Temperature represents a good example of how thermodynamical variables can be used to describe brain activity [97]. For a system at equilibrium, temperature is proportional to the ratio between the response to an external field conjugate to some observable and the corresponding autocorrelation function in the unperturbed system [98]. In the brain [99], equilibrium temperature must be substituted by an effective temperature [100] reflecting what a thermometer responding on the time scale at which the system reverts to equilibrium would measure [101]. Each scales can have its own effective temperature even within the same spatial region, corresponding to different distances from equilibrium and reflecting qualitatively different diffusion processes [102]. Thus, measuring effective temperature at various scales allows understanding the extent to which each spatio-temporal scale deviates from equilibrium, produces entropy, etc.

Thermodynamic functions can be used to directly describe brain activity, but also as control parameters, i.e. one can monitor different aspects of brain activity as one measured thermodynamical variable varies in time. For instance, one may observe temperature variations during a reasoning task, but also possible phase transitions in some other property of neural activity, as temperature is varied [97].

FROM THEORY TO EXPERIMENT

OBSERVING REASONING

Reasoning is a difficult phenomenon to observe: tasks can be executed in more than one way, each possibly corresponding to a neural phase space with convoluted geometry and the processes involved in reasoning may evolve over time-scales exceeding those typical of laboratory testing.

Proper observation of a given process requires that the observation time be much larger than any scale in the system. A process is observable if it has a finite ratio between the characteristic time of the independent variable and the length of the available time series [103]. Factors including long-term memory, aging and weak ergodicity breaking may result in a diverging ratio [104]. The observation time should also be much larger than the time needed to visit the neural phase space. However, deciding whether a reasoning episode, or even an ensemble of episodes, sufficiently sample a subject's repertoire is non-trivial.

Cognitive neuroscientists observe phenomena through experiments where subjects typically carry out given tasks a large number of times, assumed to be independent realizations of the same observable, and to adequately sample the phase space of task-related brain activity. However, in the presence of complex fluctuations, trials may not self-average, i.e. dispersion would not vanish even for an infinite number of trials [105].

Furthermore, the time needed to explore this space may far exceed the typical reasoning episode duration, and reasoning episodes may explore different aspects of the space of available strategies. Thus, trials may improve phase space exploration rather than the signal-to-noise ratio [106].

EXPERIMENTAL IMPLICATIONS

Reasoning's characteristics, particularly its lack of characteristic temporal duration, have implications at various levels. First, episodes cannot be compared in an event-related fashion. Second, defining reliable neural correlates of reasoning requires defining its characteristic temporal scales. Third, measures of brain activity should be invariant with respect to overall duration. Scaling exponents, data collapse and universality of fluctuations statistics [107-109], or explicit evolution equations for the particle's momenta and for the cross-scale fluctuation probabilities [62] can be retrieved from data and applied to unevenly lengthen trials. Thermodynamic quantities such as free energy or temperature can also be estimated for stochastic trajectories over finite time durations [97,110-113]. In all cases, the reconstruction of the
underlying dynamics improves with the recording device’s resolution.

Reasoning presents a dilemma between ensuring complete phase space exploration, which may require extremely long trials, and signal stationarity, which is guaranteed only for time scales much shorter than the reasoning episodes’ duration. At fast time scales, the window in which relevant quantities are calculated should not introduce spurious time scales, filtering out genuine ones. Altogether, reasoning’s inherently unstable nature suggests that describing it may boil down to characterizing non-stationarities and their aetiologies.

Reasoning tasks may be so difficult that only few participants manage to produce solutions within a reasonable time. This represents a shortcoming when trials are considered as independent and identically distributed, as the signal-to-noise ratio improves with the square root of the number of trials. Smoothing response times is a frequent strategy to obviate this problem, but limits or distorts the reasoning process. Furthermore, however many, short trials may insufficiently explore the phase space. Designs with few long trials may express richer spatiotemporal brain dynamics than many short ones of equivalent overall length.

Finally, while observed scaling properties may help understanding whether insight is predictable, i.e. whether it is an outlier or it is generated by the same distribution producing anonymous events, predicting insight onset in real data appears a challenging task, as reasoning episodes are various orders of magnitude shorter than earthquake, financial or epilepsy time series [114].

CONCLUSIONS

Reasoning elicits an exceptionally rich repertoire of otherwise unexpressed neural properties. Its neural correlates are therefore as much helpful to neuroscientists, whom it compels to consider hitherto neglected brain properties, as they are to psychologists striving to understand its underlying processes.

Defining general and robust mechanistic properties of healthy and dysfunctional reasoning will require as yet non-standard brain metrics, experimental designs, and analytical tools (borrowed from fields rarely made available to psychologists). This may shed light on fundamental mechanistic properties of both healthy and dysfunctional reasoning, and ultimately help understanding the actions of cognitive and pharmacological interventions used as brain enhancers and targeting them to achieve desired states [115].

ACKNOWLEDGEMENT

The author acknowledges the support of MINECO (FIS201238949-C03-01).

REFERENCES

1. Moshman, D. (1995). Reasoning as self-constrained thinking. *Hum. Devel.* 38, 53–64.
2. Gloning, K., and Hoff, H. (1969). Cerebral localization of disorders of higher nervous activity. In Vincken and Bruyn (Eds.), *Handbook of clinical neurology* (Vol. 3, Disorders of higher nervous activity). New York: Wiley.
3. Lezak, M.D. (1995). *Neuropsychological assessment*. 3rd Edition. Oxford: Oxford University Press.
4. Goel, V., Gold, B., Kapur, S., and Houle S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. *Neuroreport* 8, 1305–1310.
5. Goel, V., Gold, B., Kapur, S., and Houle, S. (1998). Neuroanatomical correlates of human reasoning. *J. Cogn. Neurosci.* 10, 293–302.
6. Noveck, I.A., Goel, V., and Smith, K.W. (2004). The neural basis of conditional reasoning with arbitrary content. *Cortex* 40, 613–622.
7. Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F., and Fazio, F. (1990). Distinct brain foci in deductive versus probabilistic reasoning. *Neuropsychologia* 36, 369–376.
8. Parsons, L.M., and Osherson, D. (2001). New evidence for distinct right and left brain systems for deductive versus probabilistic reasoning. *Cereb. Cortex* 11, 954–965.
9. Prado, J., Spotorno, N., Koun, E., Hewitt, E., Van der Henst, J.B., Sperber, D., and Noveck, I.A. (2014). Neural interaction between logical reasoning and pragmatic processing in narrative discourse. *J. Cogn. Neurosci.* 16, 1–13.
10. Prado, J., Chadha, A., and Booth, J.R. (2011). The brain network for deductive reasoning: a quantitative meta-analysis of 28 neuroimaging studies. *J. Cogn. Neurosci.* 23, 3483–3497.
11. Acuna, B.D., Eliassen, J.C., Donoghue, J.P., and Sanes, J.N. (2002). Frontal and parietal lobe activation during transitive inference in humans. *Cereb. Cortex* 12, 1312–1321.
12. Houdé, O., Zago, L., Crivello, F., Moutier, S., Pineau, A., Mazoyer, B., and Tzourio-Mazoyer, N. (2001). Access to deductive logic depends on a right ventromedial prefrontal area devoted to emotion and feeling: evidence from a training paradigm. *Neuroimage* 14, 1486–1492.
13. Kroger, J.K., Sabb, F.W., Fales, C.L., Bookheimer, S.Y., Cohen, M.S., and Holyoak, K.J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. *Cereb. Cortex* 12, 477–485.
14. Reverberi, C., Bonatti, L.L., Frackowiak, R.S., Paulesu, E., Cherubini, P., and Macaluso, E. (2012). Large scale brain activations predict reasoning profiles. *Neuropsychologia* 50, 1752–1764.
15. Papo, D., Douiri, A., Bouchet, F., Bourzeix, J.-C., Caverni, J.-P., and Baudonnière, P.-M. (2007). Time-frequency intracranial source localization of feedback-related EEG activity in hypothesis testing. *Cereb. Cortex* 17, 1314–1322.
16. Bonnefond, M., Noveck I., Baillet S., Cheyulus, A., Delpuech, C., Bertrand, O., Fourneret, P. and Van Der Henst, J.B. (2013). What MEG can reveal about reasoning: the case of if...then sentences. *Hum. Brain Mapp.* 34, 684–697.
17. Bonnefond, M., Castelain, T., Cheyulus, A., and Van der Henst, J.B. (2014). Reasoning from transitive premises: an EEG study. *Brain Cogn.* 90, 100–108.
18. Bonnefond, M., Kaliuzhna, M., Van der Henst, J.B., and De Neys, W. (2014). Disabling conditional inferences: an EEG study. *Neuropsychologia* 56, 255–262.

Papo Characterizing the neural correlates of reasoning
19. Luo, J., Niki, K., and Phillips, S. (2004). Neural correlates of the ‘Aha! reaction’. *Neuroreport* **15**, 2013–2017.
20. Subramaniam, K., Kounios, J., Parrish, T.B., and Jung-Beeman, M. (2008). A brain mechanism for facilitation of insight by positive affect. *J. Cogn. Neurosci.* **21**, 415–432.
21. Bowden, E.M., and Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. *Methods* **42**, 87–99.
22. Jung-Beeman, M., Bowden, E.M., Haberman, J., Frymiare, J.L., Arambel-Liu, S., Greenblatt, R., Reber, P.J., and Kounios, J. (2004). Neural activity when people solve verbal problems with insight. *PLoS Biol.* **2**, e97.
23. Mai, X-Q., Luo, J., Wu, J-H., and Luo, Y-J. (2004). “Aha!” Effects in a guessing riddle task: An event-related potential study. *Hum. Brain Mapp.* **22**, 261–270.
24. Lang, S., Kanngieser, N., Jaśkowski, P., Haider, M., Rose, M., and Verleger, R. (2006). Precursors of insight in event-related brain potentials. *J. Cogn. Neurosci.* **18**, 100–106.
25. Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., and Zhang, Q. (2008). The neural basis of insight problem solving: an event-related potential study. *Brain Cogn.* **68**, 100–110.
26. Kounios, J., Fleck, J.I., Green, D.L., Payne, L., Stevenson, J.L., Bowden, E.M., and Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. *Neuropsychologia* **46**, 293–299.
27. Kounios, J., Frymiare, J.L., Bowden, E.M., Fleck, J.I., Subramaniam, K., Parrish, T.B., and Jung-Beeman, M. (2006). The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. *Psychol. Sci.* **17**, 882–890.
28. Sheth, B.R., Sandulkhier, S., and Bhattacharya, J. (2008). Posterior beta and anterior gamma oscillations predict cognitive insight. *J. Cogn. Neurosci.* **21**, 1269–1279.
29. Sandulkhier, S., and Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. *PLoS ONE* **3**, e1459.
30. Knoblich, G., Oihlsson, S., Haider, H., and Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. *J. Exp. Psychol. Learn.* **25**, 1534–1556.
31. Stephen, D.G., Bonfiglio, R.A., Magnuson, J.S., & Dixon, J.A. (2009). The dynamics of insight: mathematical discovery as a phase transition. *Mem. Cognition* **37**, 1132–1149.
32. Rabinovich, M., Huerta, R., and Laurent, G. (2008). Transient dynamics for neural processing. *Science* **321**, 48–50.
33. Papo (2014). Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. *Front. Syst. Neurosci.* **8**, 112.
34. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003). Spontaneously emerging cortical microcircuits of visual attributes. *Nature* **425**, 954–956.
35. Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. *Nature* **425**, 259–262.
36. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lamy, L., Ferster, D., and Yuste, R. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. *Science* **304**, 559–564.
37. Beggs, J.M., and Plenz, D. (2003). Neuronal avalanches in neocortical circuits. *J. Neurosci.* **23**, 11167–11177.
38. Beggs, J.M., and Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. *J. Neurosci.* **24**, 5216–5229.
39. Dragoi, G., and Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. *Nature* **469**, 397–401.
40. Betzel, R.F., Erickson, M.A., Ahell, M., O'Donnell, B.F., Hetrick, W.P., and Sporns, O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG. *Front. Comput. Neurosci.* **6**, 74.
41. Gong, P., Nikolaev, A.R., and van Leeuwen, C. (2007). Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. *Phys. Rev. E* **76**, 011904.
42. Allegro, P., Menicucci, D., Paradisi, P., and Gemignani, A. (2010). Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. *Front. Physiol.** **1**, 128.
43. Bianco, S., Ignaccolo, M., Rider, M.S., Ross, M.J., Winsor, P., and Grigolini, P. (2007). Brain activity, music, and non-Poisson renewal processes. *Phys. Rev. E* **75**, 061911.
44. Novikov, E., Novikov, A., Shannahoff-Khalsa, D., Schwartz, B., and Wright, J. (1997). Scale-similar activity in the brain. *Phys. Rev. E* **56**, R2387–R2389.
45. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., and Ilmoniemi, R. (2001). Long-range temporal correlations and scaling behavior in human oscillations. *J. Neurosci.* **15**, 1370–1377.
46. Gong, P., Nikolaev, A.R., and van Leeuwen, C. (2002). Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity. *Neurosci. Lett.* **336**, 33–36.
47. Stam, C.J., and de Bruin, E.A. (2004). Scale-free dynamics of global functional connectivity in the human brain. *Hum. Brain Mapp.* **22**, 97–109.
48. Freeman, W.J., Holmes, M.D., Burke, B.C., and Vanhatalo, S. (2003). Spatial spectra of scalp EEG and EMG from awake humans. *Clin. Neurophysiol.* **114**, 1053–1068.
49. van de Ville, D., Britz, J., and Michel, C.M. (2010). EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. *Proc. Natl. Acad. Sci. USA* **107**, 18179–18184.
50. Expert, P., Lambiötte, R., Chialvo, D.R., Christensen, K., Jensen, H.J., Sharp, D.J., and Turkheimer, F. (2010). Self-similar correlation function in brain resting-state functional magnetic resonance imaging. *J. R. Soc. Interface* **8**, 472–479.
51. Frisman, D., and Chialvo D.R. (2012). What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. *Front. Physiol.* **3**, 307.
52. Suckling, J., Wink, A.M., Bernard, F.A., Barnes, A., and Bullmore, E. (2009). Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. *J. Neurosci. Methods* **174**, 292–300.
53. Zilber, N., Giuciu, P., Abry, P., and van Wassenhove, V. (2012). Modulation of scale-free properties of brain activity in MEG. *IEEE I. S. Biomed. Imaging (Barcelona)*, 1531–1534.
54. Freyer, F., Aquino, K., Robinson, P.A., Ritter, P., and Breakspear, M. (2009). Bistability and Non-Gaussian fluctuations in spontaneous cortical activity. *J. Neurosci.* **29**, 8512–8524.
55. Hsu, D., and Hsu, M. (2009). Zwanzig-Mori projection operators and EEG dynamics: Deriving a simple equation of motion. *PMC Biophysics* **2**, 6.
56. Grigolini, P., Rocco, A., and West, B.J. (1999). Fractional calculus as a macroscopic manifestation of randomness. *Phys. Rev. E* **59**, 2603–2613.

57. Papo, D. (2013). Time scales in cognitive neuroscience. *Front. Physiol.* **4**, 86.

58. Fairhall, A.L., Lewen, G.D., Bialek, W., and de Ruyter van Steveninck, R. (2001). Multiple timescales of adaptation in a neural code. In *Advances in Neural Information Processing Systems* 13. (Leen TK, Dietterich TG, Tresp V. Eds.), MIT Press, pp. 124–130.

59. Gilboa, G., Chen, R., and Brenner N. (2005). History-dependent multiple-timescale dynamics in a single-neuron model. *J. Neurosci.* **25**, 6479–6489.

60. Lundström, B.N., Higgs, M.J., Spain, W.J., and Fairhall, A.L. (2008). Fractional differentiation by neocortical pyramidal neurons. *Nat. Neurosci.* **11**, 1335–13342.

61. Bacro, E., Delour, J., and Muzy, J.F. (2001). Multifractal random walk. *Phys. Rev. E* **64**, 026103.

62. Friedrich, R., Peinke, J., Sahimi, M., and Reza Rahimi Tabar, M. (2011). Approaching complexity by stochastic methods: from biological systems to turbulence. *Phys. Rep.* **506**, 87–162.

63. Bianco, S., Geneston, E., Grigolini, P., and Ignaccolo, M. (2007). Renewal aging as emerging property of phase synchronization. *Physica A* **387**, 1387–1392.

64. Bullmore, E.T., and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. *Nat. Rev. Neurosci.* **10**, 186–198.

65. Zaslavsky, G.M. (2002). Chaos, fractional kinetics, and anomalous transport. *Phys. Rep.* **371**, 461–580.

66. Lesne, A. (2008). Regularization, renormalization, and renormalization groups: relationships and epistemological aspects. In *Vision of Oneness*. (I. Lichert and A. Sakaji Eds), Aracne, Roma, pp. 121–154.

67. Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, J., and Vaccarino, F. (2014). Homological scaffolds of brain functional networks. *J. R. Soc. Interface* **11**, 20140873.

68. Kaplan, A.Y., Fingelurts, A.A., Fingelurts, A.A., Borisov, B.S., and Dang-Bathoiev, B.S. (2005). Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. *Signal Process.* **85**, 2190–2212.

69. Sokolov, I.M., and Klafter, J. (2005). From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. *Chaos* **15**, 026103.

70. Crisanti, A., and Ritort, F. (2003). Violation of the fluctuation–dissipation theorem in glassy systems: basic notions and the numerical evidence. *J. Phys. A-Math. Gen.* **36**, R181–R290.

71. Fiser, J., Chiu, C., and Weliky, M. (2004). Small modulation of ongoing cortical dynamics by sensory input during natural vision. *Nature* **431**, 573–579.

72. Lučzka, A., Barchho, P., and Harris, K.D. (2009). Spontaneous events outline the realm of possible sensory responses in neocortical populations. *Neuron* **62**, 413–425.

73. Buiatti, M., Papo, D., Baudonnière, P.M., and van Vreeswijk, C. (2007). Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task. *Neuroscience* **146**, 1400–1412.

74. Burov, S., and Barkai, E. (2008). Critical exponent of the fractional Langevin equation. *Phys. Rev. Lett.* **100**, 070601.

75. Rhodes, T., and Turvey, M.T. (2007). Human memory retrieval as Lévy foraging. *Physica A* **385**, 255–260.

76. Baronchelli, A., and Radicchi, F. (2013). Lévy flights in human behaviour and cognition. *Chaos Soliton. Fract.* **56**, 101–105.

77. Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., and Stanley, H.E. (2011). The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, Cambridge.

78. Shlesinger, M., Zaslavsky, G., and Klafter, J. (1993). Strange kinetics. *Nature* **363**, 31–37.

79. Codling, E.A., Plank, M.J., and Benhamou, S. (2008). Random walk models in biology. *J. R. Soc. Interface* **5**, 813–834.

80. Lomholt, M., Tal, K., Metzler, R., and Joseph, K. (2008). Lévy strategies in intermittent search processes are advantageous. *Proc. Natl. Acad. Sci. USA* **105**, 11055–11059.

81. Bénichou, O., Loverdo, C., Moreau, M., and Voituriez, R. (2011). Intermittent search strategies. *Rev. Mod. Phys.* **83**, 81.

82. Humphries, N.E., Weimerskirch, H., Queiroz, N., Southall, E.J., and Sims, D.W. (2012). Foraging success of biological Lévy flights recorded in situ. *Proc. Natl. Acad. Sci. USA* **109**, 7169–7174.

83. DeDeo, S., and Krakauer, D.C. (2012). Dynamics and processing in finite self-similar networks. *J. R. Soc. Interface* **9**, 2131–2144.

84. Delvenne, J.-C., Lambiotte, R., and Rocha, L.E.C. (2013). Bottlenecks, burstiness, and fat tails regulate mixing times of non-Poissonian random walks. arXiv:1309.4155.

85. Lambiotte, R., Tabourier, L., and Delvenne, J.-C. (2013). Burstiness and spreading on temporal networks. *Eur. Phys. J. B* **86**, 320.

86. Shalizi, C.R., and Moore, C. (2003). What is a macrostate? Subjective observations and objective dynamics. arXiv:cond-mat/0303625v1.

87. Osorio, I., Frei, M.G., Sornette, D., Milton, J., and Lai YC. (2010). Epileptic seizures: quakes of the brain? *Phys. Rev. E* **82**, 021919.

88. Contoyiannis Y.F., and Eftaxias, K.A. (2008). Tsallis and Levy statistics in the preparation of an earthquake. *Nonlin. Processes Geophys.* **15**, 379–388.

89. Sornette, D., and Osorio, I. (2010). Prediction. arXiv:1007.2420v1.

90. Manshour, P., Saberi, S., Sahimi, M., Peinke, A.F., and Rahimi Tabar, M.R. (2009). Turbulencelike behavior of seismic time series. *Phys. Rev. Lett.* **102**, 014101.

91. de Arcangelis, L., and Herrmann, H.J. (1989). Scaling and multiscaling laws in random fuse networks. *Phys. Rev. B* **39**, 2678.

92. Kapiris, P.G., Eftaxias, K.A., and Chelidze, T.L. (2004). Electromagnetic signature of prefracture criticality in heterogeneous media. *Phys. Rev. Lett.* **92**, 065702.

93. Bullmore, E.T., and Sporns, O. (2012). The economy of brain network organization. *Nat. Rev. Neurosci.* **13**, 336–349.

94. Papo, D., Zanin, M., Pineda, J.A., Boccaletti, S., & Buldù, J.M. (2014). Brain networks: great expectations, hard times, and the big leap forward. *Phil. Trans. R. Soc. B* **369**, 20130525.

95. Sekimoto, K. (1998). Langevin equation and thermodynamics. *Prog. Theor. Phys. Supplement* **130**, 17–27.

96. Kirkaldy, J.S. (1964). Thermodynamics of the human brain. *Biophys. J.* **5**, 981–986.
97. Papo, D. (2013). Brain temperature: what it means and what it can do for (cognitive) neuroscientists. arXiv:1310.2906v1.
98. Kubo, R. (1966). The fluctuation-dissipation theorem. Rep. Progr. Phys. 29, 255–294.
99. Papo, D. (2013). Why should cognitive neuroscientists study the brain’s resting state? Front. Hum. Neurosci. 7, 45. doi: 10.3389/fnhum.2013.00045
100. Cugliandolo, L. F. (2011). The effective temperature. J. Phys. A Math. Theor. 44, 443001.
101. Kurchan, J. (2005). In and out of equilibrium. Nature 433, 222–225.
102. Papo, D. (2014). Measuring brain temperature without a thermometer. Front. Physiol. 5, 124.
103. Reiner, M. (1964). The Deborah number. Phys. Today 17, 62.
104. Rebenshtok, A., and Barkai, E. (2007). Distribution of time-averaged observables for weak ergodicity breaking. Phys. Rev. Lett. 99, 210601.
105. Aharony, A., and Harris, A.B. (1996). Absence of self-averaging and universal fluctuations in random systems near critical points. Phys. Rev. Lett. 77, 3700–3703.
106. Ghosh, A., Rho, Y., McIntosh, A.R., Köttér, R., and Jirsa, V.K. (2007). Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4, e1000196.
107. Bramwell, S.T., Holdsworth, P.C.W., and Pinton, J.-F. (1998). Universality of rare fluctuations in turbulence and critical phenomena. Nature 396, 552–554.
108. Bhattacharya, J. (2009). Increase of universality in human brain during mental imagery from visual perception. PLoS One 4, e4121.
109. Friedman, N., Ito, S., Brinkman, B.A., Shimon, M., Deville, R.E., Dahmen, K.A., Beggs, J.M., and Butler, T.C. (2012). Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 108, 208102.
110. Ruelle, D. (1978). Thermodynamic formalism. Addison Wesley Publ. Co., Reading, MA.
111. Beck, C., and Schlögl, F. (1997). Thermodynamics of chaotic systems: an introduction. Cambridge University press, Cambridge.
112. Canessa, E. (2000). Multifractality in time series. J. Phys. A: Math. Gen. 33, 3637–3651.
113. Olemskoi, A., and Kolkan, S. (2006). Effective temperature of self-similar time series: analytical and numerical developments. Physica A 360, 37–58.
114. Sornette, D. (2002). Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth. Proc. Natl. Acad. Sci. USA 99, 2522–2529.
115. Gutiérrez R, Sendiña-Nadal I, Zanin M, Papo D, Boccaletti S. 2012 Targeting the dynamics of complex networks. Sci. Rep. 2, 936.