Versatile and Synergistic Potential of Eugenol: A Review

Mamilla R Charan Raja, Varsha Srinivasan, Sharmila Selvaraj and Santanu Kar Mahapatra*
Medicinal Chemistry and Immunology Lab, ASK-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India

Abstract
Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is the phenolic component of essential oil and the main constituent of Eugenia caryophyllata, Ocimum gratissimum and several others medicinal plant. In view of its non-mutagenic and non-carcinogenic properties, eugenol is generally regarded as safe by the Food and Agricultural Organization of the United Nations. Eugenol has been recently shown to be effective for antimicrobials and treatment of different life threatening diseases including sepsis, leishmaniasis, and cancer. However overall, activity of eugenol is not discussed elsewhere. In this review, we discuss the current understanding of the mechanisms involved the antioxidant, antimicrobial, anticancer and anti-inflammatory potential of eugenol.

Keywords: Eugenol; Antioxidant; Antimicrobials; Anticancer; Anti-inflammatory potential

Introduction
Eugenol, a phenolic photochemical extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, basil and bay leaf; possess a range of antimicrobials to anticancer activity. As it is extracted from the buds and leaves of Eugenia caryophyllata (clove) for the first time mainly, it’s named as eugenol. Now a day, eugenol can also be synthesized in laboratory scale and industrial scale by allylation of guaiacol with allyl chloride having the similar kind of functional property [1]. Being a major component in the extracts of various medicinal herbs it got much attention by the researchers and opened up a wide area of research in applying it as a medicine to cure various diseases. Eugenol is known to have several pharmacological properties i.e. anaesthetic, antioxidant, antimicrobial, antihelminthic, anti-inflammatory, anticarcinogenic, anti-fumigant, and anti-repellent properties. It has been in use as a traditional remedy for toothache and also for culinary purposes. This versatile molecule is a key ingredient in perfumes, cosmetics, flavorings and agents.

Both the Food and Agriculture Organization (FAO) and World Health Organization (WHO) have allowed an acceptable daily intake of eugenol of 2.5 mg/kg body weight for humans [2]. Moreover, the U.S. Food and Drug Administration (FDA) have proclaimed eugenol as safe and it is considered non-carcinogenic and non-mutagenic. In recent years, eugenol has fascinated the attention of researchers due to its anti-inflammatory and chemopreventive activity, as well as its superior anti-oxidant activity [3-6]. As a result of its broad range of pharmacological and biological activities, studies on eugenol and clove products still remains a research priority. It is therefore of significant value to rationally unite some of the most worth mentioning research findings related to eugenol to highlight its importance in human health as well as to elucidate its mechanisms of action where possible.

Physical and chemical properties of Eugenol
Eugenol belongs to a class of phenylpropanoids (C_{10}H_{12}O_2). The IUPAC name of the compound is 4-Allyl-2-methoxyphenol (Figure 1), having molecular mass 164.2g/mol with pK_a=10.19 at 25°C. Eugenol and isoeugenol are the two isomorph of it. It is also known as caryophylllic acid, allyglyuacil, 2-methoxy-4-(2-propenyl) phenol, 4-allylcathecol-2-methyl ether. The phenolic group confers the antioxidant property of it. It is partially soluble in water and its solubility increases with organic solvents. The colour of the compound ranges from clear to pale yellow [1,7]. Eugenol absorbed via small intestine when administered orally and rapidly distributed in all organ when administered intraperitoneally. According to Thompson et al. (1991), metabolism of eugenol resulted in the formation of conjugates with sulfate, glucuronic acid (major) and glutathione studied in vitro with 1mM concentration (lethal dose). Eugenol is eliminated and excreted as expired CO_2 and through urine studied in rabbit model (WHO, Food additive series 17 Eugenol, 1980).

Plant sources of Eugenol
Eugenol is extracted from several aromatic plants. Beside the Eugenia caryophyllata, it is also isolated from Myristica fragrans, Cinnamomum tamala, Zygium aromaticum, Ocimum basilicum, Ocimum gratissimum, Ocimum tenuiflorum, Pimenta racemosa etc. However, the principal source is clove oil which contains 45–90% eugenol of its constituent (Table 1) [1,8-10].

Isolation of Eugenol from plant
Eugenol was first isolated in 1929 and commercial production

Figure 1: Chemical Structure of Eugenol.
commenced in the United States in the 1940s [1]. However, eugenol is predominantly prepared from natural oil sources by mixing the essential oil with an excess of aqueous sodium (3%) or potassium hydroxide solution and shaking, leading to the formation of a phenolic alkali salt. The insoluble non-phenolic portion is then extracted with a solvent or via steam distillation. The undissolved portion is removed, the alkali solution acidified at low temperatures and the liberated eugenol purified by fractional distillation, thin layer chromatography, high pressure liquid chromatography. The presence and purity can be checked by FTIR, NMR and mass spectroscopy [3,8,11].

Therapeutic activities of Eugenol

Eugenol exhibits versatile therapeutic properties (Figure 2).

Antioxidant activity of Eugenol

Eugenol and Clove oil have the ability to scavenge the free radicals.
Eugenol exhibited potent antibacterial activity against various strains of Gram-positive (*Bacillus cereus*, *Bacillus subtilis*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus pneumonia*, *Streptococcus pyogenes*, *Enterococcus faecalis* and *Listeria monocyctogenes*) and Gram-negative (*Escherichia coli*, *Salmonella typhi*, *Salmonella choleraesuis*, *Pseudomonas aeruginosa*, *Helicobacter pylori*, *Yersinia enterocolitica*, *Proteus vulgaris*) bacteria [22-29]. Eugenol induced cell lysis of Gram-negative and Gram-positive bacteria by damaging the cell wall and membrane caused leakage of protein and lipid contents (Figure 4) [29]. In *vitro* and *in vivo* studies on biofilms revealed that eugenol has strong inhibitory and eradicative effect. It exhibited inhibition against the formation of biofilms by MRSA and MSSA strains. At a concentration of 0.5×MIC it showed 50% inhibition against MRSA and MSSA strains. At sub-MIC, eugenol significantly decreased 88% *S. aureus* colonization in rat middle ear. MBEC (minimum biofilm eliminating concentration) of eugenol and carvacrol combination decreased the already formed biofilms by 99% [30]. Eugenol at 0.5 MIC was able to induce an inhibition of ≥ 90% of *P. aeruginosa* biofilms [31]. Combinational therapy helps to reduce the risk of resistant microbes. Eugenol exhibited synergistic interaction with vancomycin, gentamicin and β-lactam antibiotics lead to greater antimicrobial effect [28,32]. Eugenol also exhibited synergic interactions with cinnamate, cinnaamaldehyde, thymol and carvacrol, resulting greater antibacterial activity [33-34]. Sub-inhibitory concentrations of eugenol (16-128 µg/mL) dose-dependently decreased the necrosis factor-inducing and haemolytic activities of culture supernatants and significantly reduced the production of staphylococcal enterotoxin A [35]. The drawbacks of eugenol i.e, low solubility, liability to sublimation and strong odor, could be overcome by glycosylation to eugenol α-D-glucopyranoside (α-EG), which is more effective than that of pure eugenol as tested with *Staphylococcus aureus* and *E. coli* [36].

Antifungal activity of Eugenol

The essential oil of clove (*Eugenia caryophyllata*) containing eugenol as a major constituent was evaluated against 53 human pathogenic yeasts using a disc paper diffusion method and it showed antifungal effect (Figure 4) against the tested strains [37]. New Mannich base-type eugenol derivatives were synthesized and evaluated for their antifungal activity using a broth microdilution assay. Among different synthesized eugenol derivatives, 4-allyl-2-methoxy-6-(morpholin-4-ylmethyl) phenyl benzoate and 4-[5-allyl-2-[(4-chlorobenzoyl)oxy]-3-methoxybenzyl] morpholin-4-ium chloride were found to be the most effective antifungal compounds even comparable with fluconazole. The most significant IC50 values were ranging 0.063-1.23 µM against *C. krusei*, *C. glabrata*, and *C. albicans* [38]. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for *C. albicans* biofilm formation were 0.31 and 0.25, respectively [39]. Eugenol treatment significantly reduced the adherence and metabolic activity of biofilms of *C. albicans* isolated from the oral cavity of HIV infected patients [40]. Exposure of Candida cells to eugenol resulted in reduction of ergosterol biosynthesis followed by apoptosis [41]. Eugenol has the ability to alter the morphogenesis of *C. albicans*. Certain combinations of eugenol and thymol led to a synergistic effect, which is interesting in the view of potentiating their inhibition of *C. albicans* colonization and infectivity [42].

Antiviral activity

Eugenol has the ability to inhibit viral replication and reduce viral infectivity specifically against herpes simplex-1 (HSV-1) and herpes simplex -2 (HSV-2) with interesting IC50 values ranging 16.2-25.6 µg/ml determined by plaque reduction assay [43-44]. Eugenol is also effective against clinical isolates of HSV-1 [45]. Unfortunately, it has been found that cytotoxicity of eugenol as a single compound is negligible against HSV-1, but in combination with acyclovir exhibits

Figure 2: Therapeutic properties of eugenol.

Figure 3: The overall mechanism of antioxidant potential of eugenol.
leishmanial activity than the native form against promastigotes and amastigotes of *Leishmania infantum chagasi* [54]. Clove essential oil having eugenol showed strong trypanocidal activity (inhibition of epimastigotes and trypomastigotes) comparable with basil and yarrow [55]. Eugenol also extended its arm in antimalarial research. Eugenol exhibited antimalarial activity with an IC50 value of 753 μM against the chloroquine-resistant strain *Plasmodium falciparum* (FCR-3) [25].

Anti-parasitic activity

The treatment of cancer lies in prohibiting the cell proliferation and destruction of the malignant cells. Eugenol and its derivatives were investigated for their anti-cancer property. *In vitro* studies showed that eugenol and its monomeric forms did not inhibit the cell proliferation. The biphenyl forms of eugenol however, had some effect. Eugenol related biphenyl (S)-6,6′-dibromo-dehydrodieugenol elicits specific antiproliferative activity on neuroectodermal tumour cells by partially triggering apoptosis [56]. The epoxide form of eugenol is a potential drug candidate for inducing apoptosis in human breast cancer cells [57]. ROS plays a critical role in eugenol and eugenol loaded nano emulsion induced apoptosis in HB8065 and HTB37 cells [58]. Volatile extracts obtained by hydrodistillation of bark and roots of *Uvariodendron angustifolium* contains 68.3% and 85.3% of methyl eugenol respectively and exhibits interesting cytotoxic properties on human breast cancer cells MCF-7 [59]. Eugenol at low dose (2 μM) has specific toxicity against different breast cancer cells. This killing effect was mediated mainly through inducing the internal apoptotic pathway and strong down-regulation of E2F1 and its downstream anti-apoptosis target survivin, independently of the status of p53 and ERα. Eugenol also inhibited several other breast cancer related oncogenes, such as NF-κB and cyclin D1. Moreover, eugenol up-regulated the versatile cyclin-dependent kinase inhibitor p21WAF1 protein, and inhibited the proliferation of breast cancer cells in a p53-independent manner. Importantly, these anti-proliferative and pro-apoptotic effects were also observed *in vivo* in xenografted human breast tumors. Hence, eugenol exhibits anti-breast cancer properties concentration both *in vitro* and *in vivo*, indicating that it could be used to consolidate the adjuvant treatment of breast cancer through targeting the E2F1/survivin pathway, especially for the less responsive triple-negative subtype of the disease [60]. Eugenol 5-O-β-(6′-galloylglucopyranoside) or ericifolin, showed antiproliferative, pro-apoptosis and anti-androgen receptor transcription activities, which suggested the potential use of aqueous allspice extract and ericifolin eugenol fraction against prostate cancer [61]. Cytotoxic concentrations of eugenol induced the reduction of ATP of oxidative stress and an increase in the polyamines and glycolytic metabolites, in normal oral cells and oral squamous cell carcinoma, suggests the induction of non-apoptotic cell death by eugenol [62]. Eugenol inhibited matrix metalloproteinase-9 activities in PMA-stimulated HT1080 cells via triggering apoptosis [56]. The epoxide form of eugenol is a potential drug candidate for inducing apoptosis in human breast cancer cells [63]. Combination therapy is the most effective treatment strategy in cancer to overcome drug toxicity and drug induced resistance. Eugenol in combination with 5-fluorouracil exhibited more cytotoxicity against the cervical cancer cells (HeLa). Flow cytometry results indicated that the combination of eugenol and 5-fluorouracil increased the number of cells in the S and G2/M phases when compared to treatment with the individual compounds alone. This indicated that eugenol possessed different cell cycle targets and induced apoptosis in the cancer cells [64]. Eugenol and its chemically synthesized derivatives proved its activity against melanoma, skin tumors, prostate cancer, gastric cancer and leukemia via oncogene activation.
regulation and caspase dependent pathway which extensively reviewed by [65].

Anti-inflammatory potential of Eugenol

The anti-inflammatory action of eugenol arises from inhibition of prostaglandin synthesis and neutrophil/macrophage chemotaxis. In *in vitro* studies also reveal that this bioactive compound inhibited nuclear factor-κB (NF-κB) activation induced by tumor necrosis factor (TNFα) and blocked cyclooxygenase activity (COX-2) in LPS stimulated macrophages. COX-2 expression is triggered by growth factors, cytokines and LPS [66]. Eugenol showed reduced inflammation by decreasing TNF-α and infiltration of neutrophils during pulmonary infection in animals. The compound when administered at a dosage of 160 mg/kg body weight showed reduction in alveolar collapse and PMN infiltration in lungs [67]. Eugenol also protected chemical-induced cellular dysfunction of macrophages and balanced the pro/ anti-inflammatory mediators in mouse peritoneal macrophages [5].

Conclusion

Eugenol, a natural bioactive compound has high potential as a therapeutic agent which can be incorporated in the treatment of cancers, leishmaniases and several other disorders. It serves as a broad spectrum drug against bacterial, viral, fungal and parasitic infections. The combinational therapy of eugenol with standard drugs has great spectrum drug against bacterial, viral, fungal and parasitic infections. Studies also reveal that this bioactive compound inhibited nuclear factor-κB (NF-κB) activation induced by tumor necrosis factor (TNFα) and blocked cyclooxygenase activity (COX-2) in LPS stimulated macrophages. COX-2 expression is triggered by growth factors, cytokines and LPS [66]. Eugenol showed reduced inflammation by decreasing TNF-α and infiltration of neutrophils during pulmonary infection in animals. The compound when administered at a dosage of 160 mg/kg body weight showed reduction in alveolar collapse and PMN infiltration in lungs [67]. Eugenol also protected chemical-induced cellular dysfunction of macrophages and balanced the pro/anti-inflammatory mediators in mouse peritoneal macrophages [5].

References

1. Barceloux DG (2008) Medical Toxicology of Natural Substances. Foods, Fungi, Medicinal Herbs, Plants and Venomous Animals. Wiley: Hoboken, NJ, USA.
2. World Health Organization (1982) Evaluation of Certain Food Additives and Contaminants; Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series, No. 683; Geneva, Switzerland.
3. Kar Mahapatra S, Chakraborty SP, Majumdar S, Bag BG, Roy S (2009) Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro. Eur J Pharmacol 623: 132-140.
4. Yogalakshmi B, Viswanathan P, Anuradha CV (2010) Investigation of Eugenol- rich Fraction of Syzygium aromaticum (Clove) Reverses Biochemical and Histopathological Changes in Liver Cirrhosis and Inhibits Hepatic Cell Proliferation. J Cancer Prev 19: 288-300.
5. Porto Mde P, da Silva GN, Luperini BC, Bachieta TF, de Castro Marcondes JP, et al. (2014) Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages. Mol Biol Rep 41: 7043-7051.
6. Singh V, Panwar R (2014) In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. Mol Cell Biochem 388: 61-74.
7. Laekeman GM, van Hoof L, Haemers A, Berge DA, Herman AG, et al. (1990) Eugenol a valuable compound for in vitro experimental research and worthwhile for further in vivo investigation. Phytother Res 4: 99-98.
8. Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H, Rao LV, Habibullah CM, Sechi LA, Ahmed N (2005) Anti-microbial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20–24.
9. López P, Sánchez C, Battle R, Nerin C (2005) Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem 53: 6939-6946.
10. van Zyl RL, Seathamlo S, van Vuuren SF, Viljoen AM (2006) The biological activities of 20 nature identical essential oil constituents. J Essent Oil Res 18:123-129.
11. Singh G, Maurya S, DeLampasona MP, Catalan CA (2007) A comparison of chemical, anti-tumour and anti-microbial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45: 1650-1661.
12. Leite AM, Lima EDO, de Souza EL, Diniz MDFFM, Trajano VN, et al. (2007) Inhibitory effect of β-pinene, a-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Braz J Pharm Sci 43: 121-126.
13. Hemaiswarya S, Doble M (2009) Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytotherapy 16: 997-1005.
14. Oyedemi SO, Okoh AI, Mabinya LV, Pirochenova G, Afelayo AJ (2009) The proposed mechanism of bactericidal action of eugenol, a-terpinen and ?-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr J Biotechnol 8: 1215-1219.
15. Yadav MK, Chae SW, Im GI, Chung JW, Song JJ (2015) Eugenol: A Phyto- Compound Effective against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms. PLoS One 10: e0119564.
16. El abed S, Houari A, Latrache H, Remmal A, Koraichi SI (2011) In vitro activity of four common essential oil components against biofilm-producing Pseudomonas aeruginosa. Res J Microb 6: 394-401.
17. Moon SE, Kim HY, Cha JD (2011) Synergistic effect between clove oil and...
Citation: Raja MRC, Srinivasan V, Selvaraj S, Mahapatra SK (2015) Versatile and Synergistic Potential of Eugenol: A Review. Pharm Anal Acta 6: 367. doi:10.4172/21532435.1000367

The major compounds and antibiotics against oral bacteria. Arch Oral Biol 56: 907-916.

33. Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74: M379-383.

34. Rico-Molina D, Aparicio-Oozores G, Dorantes-Alvarez L, Hernandez-Sanchez H (2012) Antinfectious properties of cinnamon oil: Synergistic potential, evidence of efflux pumps and amino acid effects. Am J Food Technol 7: 289–300.

35. Qiu J, Feng H, Lu J, Xiang H, Wang D, et al. (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microbiol 76: 5846-5851.

36. Zhang P, Zhang E, Xiao M, Chen C, Xu W (2013) Enhanced chemical and biological activities of a newly biosynthesized eugenol glycoconjugate, eugenol α-D-glucopyranoside. Appl Microbiol Biotechnol 97: 1043-1050.

37. Chaib K, Zmarant T, Ksouri R, Hajlajou H, Mahdouani K, et al. (2007) Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50: 403-406.

38. Abrid PH, Pizi RB, de Souza TB, Silva NC, Fregnan AM, et al. (2014) Synthesis and Biological Evaluation of New Eugenol Mannich Bases as Promising Antifungal Agents. Chem Biol Drug Des 83: 41-50.

39. Doke SK, Raut JS, Dhawale S, Karuppayil SM (2014) Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J Gen Appl Microbiol 60: 163-168.

40. de Paula SB, Bartelt TF, Di Raimo V, Santos JP, Morey AT, et al. (2014) Effect of Eugenol on Cell Surface Hydrophobicity, Adsorption, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients. Evid Based Complement Alternat Med 2014: 505204.

41. Khan MS, Ahmad I, Cameostra SS (2013) Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 3: 54.

42. Braga PC, Sasso MD, Culici M, Affieri M (2007) Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 78: 396-400.

43. Benencia F, Courréges MC (2000) In vitro and in vivo activity of eugenol on human herpesviruses. Phytother Res 14: 495-500.

44. Astani A, Reichling J, Schnitzler P (2011) Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Alternat Med 2011: 253643.

45. Tragoolpua Y, Jalsatienr A (2007) Anti-herpes simplex virus activities of Eugenia caryophyllata (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol. Phytother Res 21: 1153-1158.

46. Kurokawa M, Nagasaki K, Hirabayashi T, Uyama S, Sato H, et al. (1995) Efficacy of traditional herbal medicines in combination with acyclovir against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 27: 19-37.

47. Yukawa TA, Kurokawa M, Sato H, Yoshida Y, Kageyama S, et al. (1996) Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Res 32: 63-70.

48. Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakuchi N, et al. (2000) Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res 14: 510-516.

49. Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, et al. (2013) Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-Influenza A virus activity. PLoS One 8: e61026.

50. Machado M, Dinis AM, Salgueiro L, Custódio JB, Cavaleiro C, et al. (2011) Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Exp Parasitol 127: 732-739.

51. Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, Korehisa Maza P, Prada Dias Filho B, et al. (2006) Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 55: 99-105.

52. Fabri RL, Coimbra ES, Almeida AC, Siqueira EP, Alves TM, et al. (2012) Essential oil of Mitracarpus frigidus as a potent source of bioactive compounds. An Acad Bras Cienc 84: 1073-1080.