Weyl-semi symmetric special Para-Sasakian manifold

Indiwar Singh Chauhan¹* and T.S. Chauhan²

Abstract
In this paper, we investigate the theory of Weyl-semi symmetric special Para-Sasakian. In section 1, we have defined special Para-Sasakian manifold and established a few properties thereof. Section 2 is devoted to the study of Weyl-pseudo symmetric and Weyl-semi symmetric special Para-Sasakian manifold. The results of this paper are believed to be new and unified in nature.

Keywords
Weyl-semi symmetric, Weyl-pseudo symmetric, Special Para-Sasakian manifold, Levi-Civita connection, Riemannian manifold.

AMS Subject Classification
53C25, 53Cxx, 53-XX.

1,2 Department of Mathematics, Bareilly College, Bareilly-243001, Uttar Pradesh, India.
*Corresponding author: ¹ indiwarsingh.chauhan@gmail.com; ²tarkeshwarsinghchauhan@gmail.com

Article History: Received 04 February 2020; Accepted 09 May 2020

1. Introduction

Let M be a connected n-dimensional Riemannian manifold of class C^∞ with a positive definite metric g which admits a unit 1-from η satisfying

$$\nabla_\beta \eta_\alpha - \nabla_\alpha \eta_\beta = 0$$

and

$$\nabla_\gamma \nabla_\beta \eta_\alpha = -(g_{\gamma\beta} \eta_\alpha + g_{\gamma\alpha} \eta_\beta) + 2 \eta_\gamma \eta_\beta \eta_\alpha$$

wherein ∇ denotes the covariant differentiation with regard to Levi-Civita connection.

If we take

$$\xi^\alpha = g^{\alpha\beta} \eta_\beta$$

$$\eta_\alpha = g_{\alpha\beta} \xi^\beta$$

we get

$$\phi^\alpha_\beta = \nabla_\beta \xi^\alpha$$

$$\phi_\alpha_\beta = g_{\alpha\gamma} \phi^\gamma_\beta$$

Consequently, we obtain

$$\eta_\alpha \xi^\alpha = 1$$

$$\phi_\alpha^\beta = \phi_\beta^\alpha$$

$$\phi_\alpha^\gamma \phi^\alpha_\gamma = \delta_\alpha^\beta - \eta_\beta \xi^\alpha$$

$$g_{\gamma\epsilon} \phi^\gamma_\beta \phi^\beta_\epsilon = g_{\alpha\beta} - \eta_\alpha \xi^\beta$$
and

\[\text{rank}(\phi^a_\beta) = (n-1) \] \hspace{1cm} (1.13)

These relations shows that the manifold \(M \) is a special para contact Riemannian manifold with a structure \((\phi, \xi, \eta, g)\). Such a manifold is called a Para-Sasakian manifold \([1, 5]\).

If in a Para-Sasakian manifold \(M \) the unit 1-form \(\eta \)-satisfying the relation

\[\nabla_\beta \eta_\alpha = \varepsilon (-g_\beta \alpha + \eta_\beta \eta_\alpha), \] \hspace{1cm} (1.14)

wherein \(\varepsilon = \pm 1 \), then the manifold \(M \) is termed as special Para-Sasakian manifold or briefly SP-Sasakian manifold \([4]\).

From \([2]\), we have

\[S_{\alpha \beta} \xi_\beta = -(n-1) \eta_\alpha. \] \hspace{1cm} (1.15)

\[\eta_\alpha R^\lambda_{\alpha \beta \gamma} = g_{\alpha \beta} \eta_\gamma - g_{\beta \gamma} \eta_\alpha. \] \hspace{1cm} (1.16)

\[g^{\alpha \beta} S_{\alpha \beta} = \tau. \] \hspace{1cm} (1.17)

2. Weyl-Semi Symmetric Special Para-Sasakian Manifold

Let \(M \) be an \(n \)-dimensional \((n \geq 3)\) differentiable manifold of class \(C^\infty \) and \(\nabla \) denotes its Levi-Civita connection. Also let \(S \) is the Ricci tensor of \(n \)-dimensional differentiable manifold \(M \).

The Ricci operator \(S \) is defined as

\[S_{\alpha \beta} \eta^\beta = S_\alpha^\gamma \] \hspace{1cm} (2.1)

and the covariant tensor of rank two \((S^2)\) is defined as

\[(S^2)_{\alpha \beta} = (S.S)_{\alpha \beta} = S_{\alpha \alpha} S_\beta^\alpha. \] \hspace{1cm} (2.2)

The Weyl conformal curvature operator is defined as

\[C^\alpha_\beta = R^\alpha_\beta - \frac{1}{(n-2)} \left[\delta^\alpha_\alpha \delta_\beta^\gamma + S_\alpha^\gamma \delta_\beta^\gamma - k \frac{1}{(n-1)} \delta_\beta^\gamma \right] \] \hspace{1cm} (2.3)

and the Weyl conformal curvature tensor is defined as

\[C_{\alpha \beta \gamma} = g_{\gamma \epsilon} C_{\alpha \beta}. \] \hspace{1cm} (2.4)

wherein \(k \) is the scalar curvature of \(n \)-dimensional differentiable manifold \(M \).

Definition 2.1. If the tensor \(R.C \) and \(Q(g, C) \) are linearly dependent then the manifold \(M \) is termed as Weyl-Pseudo symmetric special Para-Sasakian manifold \([2, 3]\).

This is equivalent to

\[R.C = L_C Q(g, C). \] \hspace{1cm} (2.5)

Definition 2.2. A special Para-Sasakian manifold \(M \) with the properties

\[C.S = 0 \] \hspace{1cm} (2.6)

is termed as Weyl semi-symmetric special Para-Sasakian manifold.

Remark 2.3. It is noteworthy that a conformally symmetric special Para-Sasakian manifold is Weyl semi-symmetric.

Next, we define the tensor \(C.S \) on \((M, g)\) as follows

\[C^\alpha_\beta S_\epsilon^\gamma = -(S_\beta \epsilon C^\alpha_\gamma + S^\alpha_\gamma C_{\beta \epsilon}). \] \hspace{1cm} (2.7)

Equation (2.7) can be written as

\[S_{\alpha \gamma} C^\gamma_\beta + S_{\alpha \epsilon} C^\epsilon_\beta = 0. \] \hspace{1cm} (2.8)

Contracting equation (2.8) by \(\xi^\alpha \) and using equation (1.15) yields

\[\eta_\alpha C^\gamma_\beta + \eta_\epsilon C^\epsilon_\beta = 0. \] \hspace{1cm} (2.9)

By virtue of equations (1.15), (1.16), (2.2) and (2.3), we obtain

\[\eta_{\beta} S_{\alpha \gamma} + \eta_{\beta} S_{\alpha \beta} - (1-n)(\eta_{\beta} g_{\alpha \beta} + \eta_{\beta} g_{\alpha \gamma}) + \frac{1}{(n-2)} \left[(S.S)_{\alpha \gamma} + \eta_{\beta} (S.S)_{\alpha \beta} - (1-n)^2 (\eta_{\beta} g_{\alpha \gamma}) + \eta_{\gamma} g_{\alpha \beta} \right] + \frac{k}{(n-1)(n-2)} \left[(1-n)(\eta_{\beta} g_{\alpha \gamma}) + \eta_{\gamma} g_{\alpha \beta} - \eta_{\beta} S_{\alpha \gamma} - \eta_{\beta} S_{\alpha \beta} \right] = 0. \] \hspace{1cm} (2.10)

Contracting equation (2.10) by \(\xi_\gamma \) and using equations (1.15), (2.2), we get

\[(S.S)_{\alpha \beta} = \frac{k}{(n-1)(n-2)} S_{\alpha \beta} + (k+n-1) g_{\alpha \beta}. \] \hspace{1cm} (2.11)

In view of above discussion, we observe the following theorem:

Theorem 2.4. If \(n \)-dimensional special Para-Sasakian manifold is Weyl-semi symmetric then the following condition (2.11) holds good.

Let us consider an \(\eta \)-Einstein special Para-Sasakian manifold, then we can write \([2]\):

\[S_{\alpha \beta} = a g_{\alpha \beta} + b \eta_\alpha \eta_\beta, \] \hspace{1cm} (2.12)

wherein \(a \) and \(b \) are smooth functions on \(M \).

Contracting equation (2.12) with \(g^{\alpha \beta} \) and using equation (1.17), we get

\[na + b = \tau. \] \hspace{1cm} (2.13)

Further, contracting equation (2.12) with \(\xi_\beta \) and using equations (1.7), (1.15) yields

\[a + b = (1-n). \] \hspace{1cm} (2.14)
Subtracting equation (2.14) from equation (2.13), we get

\[a = 1 - \frac{\tau}{(1-n)}. \quad (2.15) \]

Inserting this value of \(a \) in equation (2.14), we obtain

\[b = \frac{\tau}{1-n} - n. \quad (2.16) \]

Consequently, we have a theorem:

Theorem 2.5. If \(\eta \)-Einstein special Para-Sasakian manifold is Weyl-semi-symmetric admits a vector field \(\xi^a \) characterised by the relation (2.12) then the smooth functions are connected by the relations (2.15) and (2.16).

Substituting the values of \(a \) and \(b \) in equation (2.12), we get

\[S_{\alpha \beta} = (1 - \frac{\tau}{(1-n)})g_{\alpha \beta} + (\frac{\tau}{(1-n)} - n)\eta_{\alpha} \eta_{\beta}. \quad (2.17) \]

Consequently, we have a theorem:

Theorem 2.6. If an \(\eta \)-Einstein special Para-Sasakian manifold admits \(C.S. = 0 \), and a vector field \(\xi^a \) characterised by the relation (2.12) then the Ricci tensor holds the relation (2.17).

In this regard, we have a theorem:

Theorem 2.7. For an \(\eta \)-Einstein special Para-Sasakian manifold with the condition \(C.S. = 0 \), the following relation \(S_{\alpha \beta} \phi^\beta_\gamma = (1 - \frac{\tau}{(1-n)})\phi_{\alpha \gamma} \) holds good.

Proof. Contracting equation (2.17) with \(\phi^\beta_\gamma \) and using equations (1.6), (1.10) yields

\[S_{\alpha \beta} \phi^\beta_\gamma = (1 - \frac{\tau}{(1-n)})\phi_{\alpha \gamma}. \quad (2.18) \]

From equations (1.12) and (2.17), we get

\[S_{\alpha \beta} = (1-n)g_{\alpha \beta} - (\frac{\tau}{1-n} - n)g_{\gamma \epsilon} \phi^\gamma_\epsilon \phi^\alpha_\beta. \quad (2.19) \]

As a consequence of equations (1.6) and (2.19), we obtain

\[S_{\alpha \beta} = (1-n)g_{\alpha \beta} - (\frac{\tau}{1-n} - n)\phi_{\epsilon \alpha} \phi^\epsilon_\beta. \quad (2.20) \]

By virtue of equations (1.5) and (2.20), we observe that

\[S_{\alpha \beta} = (1-n)g_{\alpha \beta} - (\frac{\tau}{1-n} - n)(\nabla \epsilon \eta_\alpha)(\nabla \beta \xi^\epsilon). \quad (2.21) \]

Contracting equation (2.20) with \(\xi^\beta \) and using equation (1.9) yields

\[S_{\alpha \beta} \xi^\beta = -(n-1)\eta_\alpha. \quad (2.22) \]

This expression obtained above is similar to the expression (1.15) given by Mileva Prvanovic [2].

In view of above, we have the following theorems:

Theorem 2.8. For \(\eta \)-Einstein special Para-Sasakian manifold, the relation \(\tau = -(n-1) \) holds good.

Proof. Contracting equation (2.22) with \(\eta_\beta \) and using equation (1.7), we obtain

\[S_{\alpha \beta} = -(n-1)\eta_\alpha \eta_\beta. \quad (2.23) \]

Again contracting equation (2.23) with \(g^{\alpha \beta} \) and using equations (1.3), (1.7) yields

\[g^{\alpha \beta} S_{\alpha \beta} = -(n-1). \quad (2.24) \]

From equations (1.17) and (2.24), we get

\[\tau = -(n-1) \quad (2.25) \]

Theorem 2.9. If \(\eta \)-Einstein special Para-Sasakian manifold admits \(C.S. = 0 \), then the following relation \((S.S)_{\alpha \beta} \phi^\beta_\gamma = (k+n-1)\phi_{\alpha \gamma} \) holds good.

Proof. Contracting equation (2.23) with \(\phi^\beta_\gamma \) and using the equation (1.10) yields

\[S_{\alpha \beta} \phi^\beta_\gamma = 0. \quad (2.26) \]

Contracting equation (2.11) with \(\phi^\beta_\gamma \) and using equations (2.26), we get

\[(S.S)_{\alpha \beta} \phi^\beta_\gamma = (k+n-1)\phi_{\alpha \gamma}. \quad (2.27) \]

References

[1] Indiwar Singh Chauhan, T.S. Chauhan, Rajeev Kumar Singh and Mohd. Rizwan, A note on D-Conformal para killing vector field in a P-Sasakian manifold, *Journal of Xidian University* 14(2020), 326–329.

[2] Mileva Prvanovic, On a class of SP-Sasakian manifold, *Note di Mathematica*, XXI(1990), 325–334.

[3] R. Deszcz and M. Hotlos, On geodesic mappings in pseudo symmetric manifolds, *Bull. Inst. Math. Acad. Sinica*, 16 (1988), 251–262.

[4] T.S. Chauhan, A note on SP-Sasakian manifold, *Acta Ciencia Indica*, XXVI(2000), 301–304.

[5] T.S. Chauhan, A note on recurrent P-Sasakian manifolds, *Tensor, N. S.*, 62(2000), 215–218.