SUSY Searches at Tevatron Collider

C. Pagliarone
University of Cassino & INFN of Pisa,
via di Biasio,43 - 03043 Cassino, Italy
E-mail: pagliarone@fnal.gov

This article presents recent results of searches for Supersymmetry using the CDF and the DØ detector at the Fermilab Tevatron Collider. Described are the Tevatron searches for third generation scalar quarks and for supersymmetric signatures involving photons. All the reported results have been obtained assuming theoretical models in which \(\mathcal{R} \)-parity is conserved.

1 Introduction

1.1 Supersymmetry

Although at present, the Standard Model (SM) provides a remarkably successful description of known phenomena, it seems to be, most likely, a low energy effective theory of spin-1/2 matter fermions interacting via spin-1 gauge bosons. An excellent candidate of a new theory, able to describe physics at arbitrarily high energies, is Supersymmetry (SUSY). SUSY is a larger space-time symmetry, that relates bosons to fermions. Even if we don’t have direct experimental evidences of SUSY, there are remarkable theoretical properties that provides ample motivation for its study. SUSY describe electroweak data equally well than SM but, in addition, allows the unification of the gauge couplings constants, the unification of the Yukawa couplings and do not require the incredible fine tuning, endemic to Higgs sector of the SM. Naturally, SUSY cannot be an exact symmetry of the nature, as none of the predicted spin 0 partners of the quarks or leptons and none of the spin 1/2 partners of the gauge bosons have been observed so far.

In Supersymmetry fermions can couple to a sfermion and a fermion, violating lepton and/or baryon number. To avoid this problem, a new quantum number, the \(\mathcal{R} \)-parity, has been introduced. For SM particles \(\mathcal{R} = +1 \), for the SUSY partners \(\mathcal{R} = -1 \). \(\mathcal{R} \)-parity conservation has deep phenomenological consequences. SUSY particles can be only produced in pairs; the lightest supersymmetric particle (LSP) does exist and it is stable and interacts very weakly with the ordinary matter, leading to a robust missing transverse energy signature (\(\not{E}_T \)); the LSP is a natural candidate for the dark matter. In the present article, we present a review of recent Tevatron searches performed assuming \(\mathcal{R} \)-parity conservation.

1.2 Gauge Mediated SUSY Breaking Models

Theories with gauge-mediated supersymmetry breaking (GMSB) provide an interesting alternative scenario. In GMSB, the dynamical supersymmetry breaking (DSB) is mediated by gauge interactions. In recent years, many mechanism for DSB have been found and realistic models have been constructed. This class of models assumes that supersymmetry is broken with a scale \(\sqrt{F} \) in a sector of the theory.
which contains heavy non-Standard-Model particles. This sector then couples to a set of particles with Standard Model interactions, called messengers, which have a mass of order M. The mass splitting, between the superpartners in the messenger multiplets, depends by \(\sqrt{F} \) and the SUSY particles get their masses via gauge interactions, so there are no flavor changing neutral currents. These theories have a very distinctive phenomenological features. The typical SUSY spectra is different from those in the SUGRA models; the LSP is the gravitino \(\tilde{G} \) (in SUGRA \(M_{\tilde{G}} \sim 1 \) \(T eV \)), the next lightest supersymmetric particle (NLSP) has a lifetime that can vary strongly from model to model (1\(\mu \) \(< c\tau < \) several Km) and decays into \(\tilde{G} \).

2 Search for scalar top

Search for scalar top is particularly interesting since, in many SUSY models, the top-squark eigenstate \(\tilde{t}_1 \) (stop) is expected to be the lightest squark. The strong Yukawa coupling, between top/stop and Higgs fields, gives rise, in fact, to potentially large mixing effects and mass splitting. The CDF experiment has recently performed two different searches for scalar top: direct \(\tilde{t}_1\tilde{t}_1 \) production, assuming a branching ratio \(BR(\tilde{t}_1 \to c\tilde{\chi}_0^0) = 100\% \) (CDF experiment).

2.1 Search for direct Stop pair production

Whether \(\mathcal{R} \)-parity is conserved or not, at Tevatron, stop quarks are produced in pairs via \(gg \) and \(q\bar{q} \) fusion. The LO diagonal pair production cross section depends mainly on stop mass and very little on other SUSY parameters such as gluino mass,
2.2 Search for SUSY decays of the top

In the presence of a light stop, $M_{t_1} < M_A$, the top-quark could decay, with appreciable branching ratio, into stop plus neutralino: $t \rightarrow \tilde{t}_1 \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the LSP. CDF has searched for such supersymmetric decays of the top, in the kinematic region where stop decays into chargino plus b-quark are dominant ($M_{t_1} > M_{\tilde{\chi}_1^\pm}$). The search has been performed on the full Run 1 data sample of $109.4 \pm 7.2 \text{pb}^{-1}$. The kinematic differences between SUSY and SM $t\bar{t}$ decays have been used to separate signal from background. A sample of $W^+ \geq 3$ jets top candidate events has been observed.
selected, from the inclusive lepton sample, by requiring: \(E_T^e > 20\ \text{GeV}/c^2, \ p_T^\ell > 20\ \text{GeV}/c^2, \ E_T > 25\ \text{GeV}\) and the mass of the transverse component of the lepton-\(E_T\) system (\(M_T\)) to be larger than 40 GeV. We required the presence of at least 3 jets: \(E_{T}^{\text{jet}}(1) > 20\ \text{GeV}, \ E_{T}^{\text{jet}}(2) > 20\ \text{GeV}, \ E_{T}^{\text{jet}}(3) > 15\ \text{GeV} \ (|\eta_{\text{jet}}| < 2),\) satisfying the condition that the cosine of the angle, in the rest frame, between the proton beam and the jet (\(\theta^*_j\)), have to be: \(|\cos(\theta^*_j)|_1 < 0.9, |\cos(\theta^*_j)|_2 < 0.8, \ |\cos(\theta^*_j)|_3 < 0.7\), where \(|\cos(\theta^*_j)|_k\) are ordered quantities. Further cuts have been applied to reduce QCD \(W\)-jets and SM top background, by requiring that the three highest jets are well separated, the reconstructed transverse momentum of the \(W\) is \(p_T(W) > 50\ \text{GeV}/c\) and \(E_T > 45\ \text{GeV}\). Finally we required the presence of at least one \(b\)-jet by asking a SVX \(b\)-tag in the event. The discrimination between SUSY top decays and SM top background has been achieved by combining the information on the \(E_{T}^{\text{jet}}\) in a Relative Likelihood (see figure 3), defined as: \(R_L = \frac{L_{\text{SUSY}}}{L_{\text{SM}}}\), where \(L_{\text{Abs}}\) is the Absolute Likelihood function defined by the equation: \(L_{\text{Abs}} = \left(\frac{1}{\sigma dE_{T}^{\text{jet}}(2)}\right) \times \left(\frac{1}{\sigma dE_{T}^{\text{jet}}(3)}\right)\). Since no signal has been observed, we set a 95\% C.L. limit on \(BR(t \rightarrow \tilde{t}_1 \tilde{\chi}^0_1)\), as function of \(M_{\tilde{t}_1}\) and \(M_{\tilde{\chi}^0_1}\), for \(m_{\text{LSP}} = 40\ \text{GeV}/c^2\) (CDF experiment).

3 Search for scalar bottom

At large \(\tan\beta\) (\(\tan\beta > 10\)), a considerable \(\tilde{b}_L - \tilde{b}_R\) mixing can occur in the sbottom sector, leading to a scenario in which the \(\tilde{b}_1\) could be the lightest scalar quark. The LO and NLO diagonal pair production cross section are the same as for stop quark. DØ has performed a search for light sbottom, assuming \(\tilde{\chi}^0_1\) to be the LSP and fixing the branching ratio \(BR(\tilde{b}_1 \rightarrow b\tilde{\chi}^0_1) = 100\%\). In the region of interest for the Teva-
Figure 7: The E_T spectrum for diphoton events with $E_T^{\gamma} > 12$ GeV and with $E_T^{\gamma} > 25$ GeV in the data from CDF detector.

Figure 8: 95% C.L. excluded region ($M_{\tilde{b}}$ vs $\tan\beta$) for the Light Gravitino LSP scenario (CDF experiment).

In the last few years, triggered by the CDF $e\gamma e\gamma + E_T$ event candidate, many models of new physics, predicting photon enriched final states have been introduced. CDF and DØ have systematically searched for events containing two photons in the final state: $\gamma\gamma + X$, where X can be a jet, a b-tag, a lepton (e, μ, τ) or E_T.

4 Photon enriched SUSY

4.1 Light Gravitino LSP

In the Minimal Gauge Mediated SUSY Breaking Model (MGM), as in SUGRA, the supersymmetry breaking occurs in a hidden sector. Unlike the SUGRA models, in which $\Lambda_{SUSY} \sim 10^{11}$, in MGM $\Lambda_{SUSY} \sim 10^5 - 10^9$, making the Gravitino the lightest supersymmetric particle ($M_{\tilde{G}} \sim 1 \div 10^2 eV$). The Next-to-lightest SUSY
4.2 Neutralino Radiative Decay

The $\gamma E_T + n$ jets event topology may also arise in MSSM, in some region of the parameter space, where the radiative decay $\tilde{\chi}_0^0 \rightarrow \gamma \tilde{\chi}_1^0$ dominates. Depending on the number of $\tilde{\chi}_2^0$, involved in the process, it will be possible to have one or more γ in the final state. DØ has searched for such signal using $99 pb^{-1}$ of data, assuming that slepton masses are heavy, $M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0} > 20 GeV/c^2$ and $BR(\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0) = 100\%$. In order to select $\gamma E_T + \geq 2$ jets event candidates, we require to have at least one identified photon with $E_T^\gamma > 20 GeV$, $E_T > 25 GeV$ (see fig. 11), two or more jets ($E_T^{jet} > 20 GeV$). Then the event selection has been optimized in the E_T, H_T plane ($E_T > 45 GeV$, $H_T > 220 GeV$), resulting in 5 events passing the above cuts. 8.1 ± 5.8 events are expected from SM background processes. The 95% C.L. upper limit on $\sigma \times BR$ as function of $M_{\tilde{q}}$ ($M_{\tilde{q}} = M_{\tilde{g}}$) is given in figure 12.
4.3 The Higgsino LSP scenario

The present Higgsino LSP scenario assumes MSSM without sfermion/scalar masses unification. $\tilde{\chi}_0^1$ is an Higgsino-like LSP ($\tan \beta = 1.2$), and $\tilde{\chi}_2^0$ is photino-like ($M_1 = M_2$). So doing this model predicts a large branching ratio for the process $\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$ and a light stop. A branching ratio of $\text{BR}(\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0) = 100\%$ is assumed. We end up with a topology containing $\gamma b + \not{E}_T$ in the final state: $p\bar{p} \rightarrow C_1 N_2 \rightarrow \tilde{t} b \gamma N_1 \rightarrow c b \gamma N_1 N_1$. CDF has searched for such events requiring a photon with $E_T^\gamma > 25$ GeV, a SVX b-tag and $\not{E}_T > 25$ GeV. To increase the sensitivity we then required the photon to be not opposite to the \not{E}_T, and $\not{E}_T > 40$ GeV (see figure 13). We see 2 events; this allows to rule out more than approximately 7 events of anomalous production. Figure 14 shows the limit, plotted as function of gluino mass. In figure 15 we present the limit on direct production of $\tilde{\chi}_1^+ \tilde{\chi}_2^0$.

4.4 Gauge-mediated SUSY with $\gamma b + \not{E}_T$

Another way to produce the $\gamma b + \not{E}_T$ signature comes from a GMSB model. In this model, the gravitino is light and becomes the LSP. The $\tilde{\chi}_1^0$ is an higgsino and may decay into either a gravitino and a photon ($\tilde{\chi}_1^0 \rightarrow \tilde{G} \gamma$) or into a gravitino and an Higgs boson ($\tilde{\chi}_1^0 \rightarrow \tilde{G} h$), with the Higgs decaying into $b\bar{b}$. Since we have two $\tilde{\chi}_1^0$ in each event this will give rise to a $\gamma b + \not{E}_T$ signature. The CDF limits obtained in this scenario are shown in figure 16.

5 Conclusions

Extensive searches of supersymmetric signals have been done at Tevatron Collider. No positive results have been found so far showing that the data are consistent with
the SM expectation. Further regions of SUSY parameter space, assuming different SUSY models, have been excluded. With the Run II upgrades, providing an higher acceptance and higher luminosity, it will be possible to probe larger region of SUSY parameter space.

References

1. G. Altarelli, CERN-TH-98-348, hep-ph/9811456 (1998).
2. S.P. Martin, hep-ph/9709356.
3. W. de Boer, hep-ph/9808448.
4. H. Dreiner, Pramana 51, 123 (1998).
5. J. Ellis et al., Phys. Lett. B 150, 142 (1985).
6. F. Vissani, IC-96-32, hep-ph/9602395 (1995).
7. G.F. Giudice, R. Rattazzi, CERN-TH-97-380, hep-ph/9801271 (1998).
8. M. Dine et al., Nucl. Phys. Proc. Suppl. 62, 266-275 (1998).
9. C. Kilda, Nucl. Phys. Proc. Suppl. 62, 485 (1998).
10. Ken-ichi Hikasa, Makoto Kobayashi, Phys. Rev. D 36, 724 (1987).
11. W. Beenakker et al., Nucl. Phys. B 515, 3 (1997).
12. S. Abachi et al. (DØ Collaboration), Phys. Rev. Lett. 76, 2222 (1996).
13. J. Sender, Phys. Rev. D 54, 3271 (1996).
14. J. Wells and G. L. Kane, Phys. Rev. Lett. 76, 869 (1996).
15. G. Mahlon and G. L. Kane, Phys. Rev. D 55, 2779 (1997).
16. M. Hosch et al., Phys. Rev. D 58, 034002 (1999).
12. F. Abe et al. (CDF Collaboration), Phys. Rev. D 51, 4623 (1995).
 F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2626 (1995).
13. A. Bartl et al., Z. Phys. C76, 549 (1997).
14. F. Abachi et al. (DØ Collaboration), Phys. Rev. Lett. 76, 2222 (1996).
15. F. Abachi et al. (DØ Collaboration), Phys. Rev. Lett. 81, 38 (1998).
16. F. Abe et al., (CDF Collaboration), Phys. Rev. D 81, 1971 (1998).
 F. Abe et al., (CDF Collaboration) [hep-ex/9806034].
17. S. Ambrosanio et al., Phys. Rev. D 54, 5395 (1996).
18. R. Blair et al., (CDF-II Collaboration), FERMILAB-PUB-96-390-E (1996).
19. D. Amidei et al., (TeV-2000 Study Group Collaboration),