Application of taguchi method coupled with GRA for optimization of drilling process parameters

Khushboo Sharma¹, Gaurav Kumar¹ and Mukesh Kumar¹*

¹Vidya College of Engineering, Department of Mechanical Engineering, Meerut-251001, India.

mukesh.ankwan@gmail.com

Abstract. In present article, an experimental study is performed for optimizing the machining parameters of AA6082. The control factors like cutting fluid (present - absent), speed (520 rpm – 420 rpm), feed rate (120 mm/min – 80 mm/min) and hole-depth (16 mm – 24 mm) are taken into account to optimize the material removal rate and surface roughness. Taguchi’s L₁₈ orthogonal array was chosen for experimental trials. Grey relational analysis is employed to find, which process parameters affect the surface finish most with their percentage contribution individually. The results of ANOVA show that among all the control factors, feed rate (74.82%) is the highest contributing factor followed by cutting fluid (11.42%). This study also shows that by using the taguchi approach, the surface finish of the machining process can be upgraded.

1. Introduction

For the sake of cost-effectiveness, increasing the quality grade of the machined component is the biggest difficulty in the global manufacturing industry. Over the past few years, the demand for the good surface finish in various machining operations has increased. Surface quality became a significant factor to judge the productivity of machined components.

Various machining operations like drilling, turning, milling etc. are widely used in manufacturing industries. Among these various machining processes Drilling is a versatile machining process used in machining shops and industries to get the desired product. Material is removed using a rotating cutting tool called drill bits in the form of burr in this process. Bit tool rotating at high speed is used to make a hole in solid material. A good surface finish is desired in every production process. It is one of the most important criteria for the evaluation of quality of the drilled hole. The small roughness can lead to affect the process and decrease the reliability of the product. This roughness factor gives a continuous need to study the optimization techniques of various parameters in the machining process to minimize the manufacturing cost and maximize the quality in terms of roughness.

Andrey Belyakov [1] discussed the mechanical behavior of various structural metals and their alloys. Various investigations regarding the micro structural changes in metallic materials when they are subjected to various machining processes are shown. Om Prakash Singh et al [2] performed an experiment by applying the GRA method to optimize the shoulder milling operation parameters. The study represents that in the optimization of cutting parameters of Al 6063, feed rate contributes the most. Arshad Noor Siddiquiee et al [3] emphasized on optimizing the drilling operation with the help of the taguchi approach. The experimental results revealed speed is the most important factor for surface roughness. The taguchi technique has been widely used in various analyses and by applying it, the time required for investigations can be saved. Avinash A Thakre and Julie Z Zhang et al [4-5] used the taguchi
technique to optimize the surface quality in different machining processes. Adem Cicek et al [6] investigated the drilling parameters and observed the effects on circularity lapse in drilling of SS 316 by taguchi technique under cryogenic treatment and observed that in reduction of roughness and hole size errors speed is a most leading factor. G Campatelli et al [7] studied the cutting forces of the milling process for aluminium 6082 and tried to develop a cutting force model for tangential cutting coefficient. Akhil K.T et al [8] tried to optimize the drilling characteristics using GRA. Glass reinforced polymer is chosen as material after noticing the increment in its use in automotive industry. M Subramanian et al [9] made a statistical model for investigation of cutting forces using RSM. Aluminium 7075 T6 was shoulder milled and a dynamometer was used to measure cutting forces. M S Sukumar et al [10] applied the taguchi approach for identification of the optimum conditions in milling of aluminium 6061. Lirong Zhou et al [11] suggested a multi-objective model to minimize the operation time and energy consumed for the end milling process of AISI 1045. Mohammad Aamir et al [12] reviews the details on drilling forces, drill tool geometry, drilling parameters, chip formation, hole metrics, analysis of tool wear, surface roughness, drill tool material and burr formation during machining of aluminium alloys. Gaurav Kumar et al [13] tried to optimize the end milling machining parameters while milling SS304. It is observed that coolant is the highest contributing factor. Mukesh Kumar et al [14] tried to optimize the machining parameters of deep drilling of SS321 by using the taguchi technique with GRA. The results revealed an improvement of 5.56%.

The literature survey shows that the Aluminium is the first choice of each and every industry especially for electrical and aerospace industry. Al 6082 is replacing 6061 in major industries. Rapidly increasing usage of 6082 is the major reason for selection of this material as a work piece. But there are certain problems related to machining of aluminium as it is a soft metal and selection of right cutting tool, cutting speed, evacuation of chip formed etc is important. While drilling of aluminium, heat generation is very large which lead to rubbing of tool with the material. This led to sticking of tool with the work piece and gives very poor surface finish and increases the rejection rate. In this article, the effects of various drilling parameters like cutting fluid, feed rate, hole-depth and speed on surface roughness were studied. The optimization was done using the taguchi technique.

2. Experimental Details

2.1 Work piece Material

Machined AA 6082 was used for the experiment. The sheet of 200×200×25 mm is taken to carry out the experiment which is shown in the Figure 1 a piece of 24 mm×24 mm is cut out from the sheet for composition test. The chemical constituents of the AA6082 is also shown below in Table 1.

![Figure 1. AA6082 Sheet](image)

| Table 1. Chemical constituents of AA6082 Material |
|-----------------|-----------------|
| Element | % Constituents |
| Silicon | 0.765 |
| Iron | 0.312 |
| Copper | 0.024 |
Manganese 0.492
Magnesium 0.607
Zinc 0.029
Titanium 0.032
Chromium 0.030
Aluminium Balance
Lead 0.001
Tin 0.005
Nickel 0.012

2.2 VMC Machine
All the experiments were performed on the AA6082 sheet by the VMC machine available at Anushree Electicals Pvt. Ltd. Meerut as shown in Figure 2 and Mitotoyo tester was used for testing the surface roughness as shown in Figure 3.

![Figure 2. VMC Machine](image1)

![Figure 3. Mitotoyo Tester](image2)

The working conditions of the experiment are shown below in Table 2.

Conditions	Specifications
Specimen	AA 6082
Size of specimen	200mm×200mm×25mm
Diameter of drilled holes	11 mm
Machine	VMC milling machine
Tool	End mill 11mm
Measuring instrument	Mitotoyo tester
Cutting fluid	Sherol BN

Work piece was cut into 5 pieces after machining with the aid of a power hacksaw to obtain the surface roughness measurements of eighteen drilled holes. The cross section of drilled holes after machining is shown in the Figure 4 and 5.
2.3 Experimental Design

L_{18} orthogonal array is chosen for the design of experiment. On a VMC milling machine, all of the experiments were carried out. To find the optimized combination of multi performance factors, ANOVA was used. The four main machining parameters like cutting fluid, speed, feed and hole depth and feed were observed during drilling process as shown in Table 3.

Process Parameters	Levels	Levels	Levels
A Cutting fluid	Present	Absent	-
B Speed (rpm)	520	470	420
C Feed (mm/min)	120	100	80
D Hole – Depth (mm)	16	20	24

All 18 experiments were done according to taguchi’s experimental design. Mitotoyo’s tester was used to determine the roughness of drilled holes. The sampling length was taken 5.5 mm. MRR is calculated by equation 1 as given below.

$$MRR = \frac{\pi \times D \times D \times F}{4 \times 60} \text{ mm}^3/\text{sec}$$

F = feed rate (mm/min); D = diameter of drilled hole (mm), diameter of drilled holes is kept constant i.e., 11mm.

The calculated material removal rate and measured roughness evaluation is given in the Table 4.

EXPERIMENT NO.	A	B	C	D	Ra(µm)	MRR (mm³/sec)
1	1	1	1	1	1.7	189.97
2	1	1	2	2	0.875	158.3
3	1	1	3	3	1.5	126.64
4	1	2	1	1	0.865	189.97
5	1	2	2	2	1.76	158.3
6	1	2	3	3	1.205	126.64
7	1	3	1	2	1.21	189.97
8	1	3	2	3	0.715	158.3
9	1	3	3	1	1.35	126.64
10	2	1	1	3	1.51	189.97
11	2	1	2	1	1.475	158.3
12	2	1	3	2	1.96	126.64
13	2	2	1	2	1.685	189.97
14	2	2	2	3	2.2	158.3
3. Analysis method
3.1 Analysis of Signal to Noise Ratio
The influential factors like noise factors and design parameters influence the product quality in taguchi’s design method. The Signal-to-Noise ratio takes the account of both; variability of results and mean, and generally depends on the characteristics to be optimized. The signal to noise ratios used in analysis are “nominal-the-better, lower-the-better and higher-the better”. The detailed equations are available in [15].

3.2 Grey relational generation
Grey relational generation is also called normalization. While using grey relational analysis one has to be cautious about preprocessing of data, as this analysis might give false conclusion if there exists a difference in factors, directions and goals. The transferring of real sequence to a parallel sequence is called data preprocessing. So, the standardization or normalization of the results are done in the range (0 - 1). The detailed equations are given in [16]

3.3 Normalization
After standardization, the grey coefficient is evaluated with the help of processed data to show the association of desired and real results which can be depicted as

\[\xi_i(y) = \frac{\Delta_{minimum} + \zeta \Delta_{maximum}}{\Delta_{0i}(y) + \zeta \Delta_{maximum}} \]

(2)

Where \(\Delta_{0i}(y) \) is the Deviation order of reference series \(x_0^*(y) \) and comparability order \(x_i^*(y) \), named as:

\[\Delta_{0i}(y) = \|x_0^*(y) - x_i^*(y)\| \]

(3)

\[\Delta_{maximum} = \max_{ij} \min_{y} \|x_0^*(y) - x_i^*(y)\| \]

(4)

\[\Delta_{minimum} = \max_{ij} \min_{y} \|x_0^*(y) - x_i^*(y)\| \]

(5)

\(\zeta \) is distinctive coefficient: \(\zeta \in [0,1] \). Normally \(\zeta = 0.5 \) is taken.

After calculating the grey coefficient, ANOM is done to attain the grey relational grade. ANOM is the average of the normalized data. To find the grey relational grade, equation is given below

\[y_i = \frac{1}{n} \sum_{y=1}^{n} \xi_i(y) \]

(6)

In actual scenario, the influence of each factor is different. So, equation (6) can be modified as:

\[y_i = \frac{1}{n} \sum_{y=1}^{n} w_y \xi_i(y) \sum_{y=1}^{n} w_y \]

(7)

where, \(w_y \) = the standardized weight of factor \(y \).

4. Results and discussions
The grey relational grade and coefficient obtained by analysis are investigated and presented in Table 5 and the optimization of drilling parameters is done.

Table 5. Values of grey relational grade

Experiment No.	Grey relational coefficient	Grade	Order	
	Surface roughness	MRR		
1	0.5956	1.000	0.7978	2
2	0.3715	0.5265	0.4490	14
3	0.5348	0.3333	0.4341	15
4	0.3691	1.000	0.6845	6
5	0.6150	0.5265	0.5707	10
6	0.4537	0.3333	0.3935	18
7	0.4550	1.000	0.7275	5
8	0.3333	0.5265	0.4299	16
9	0.4925	0.3333	0.4129	17
10	0.5377	1.000	0.7688	4
11	0.5276	0.5265	0.5270	11
12	0.6840	0.3333	0.5087	12
13	0.5908	1.000	0.7954	3
14	0.7777	0.5265	0.6521	7
15	0.5924	0.3333	0.4629	13
16	1.0000	1.000	1.0000	1
17	0.6696	0.5265	0.5980	8
18	0.8323	0.3333	0.5828	9

Figure 6. Response graph

It was observed from Figure 6 that the grey relational grade for feed decreases with increase in their levels, the value of grey relational grade increases with increase in levels of cutting fluid, hole-depth and speed. The dotted line shows the mean of grey relational level. Values of max-min for all parameters is also shown in Table 6 which depict that feed has maximum value of max-min i.e., 0.3299 and hence
ranked first, cutting fluid, speed and hole-depth are ranked second, third and fourth with reduced value as 0.1107, 0.0443 and 0.0326 respectively and it is also observed that grey relational grade are maximum at second level of cutting fluid, third level of speed, first level of feed and third level of hole-depth. So, $A_2B_3C_1D_3$ is the best combination of machining factors for optimization of drilling process parameters.

Table 6. Response table

Symbol	Level1	Level2	Level3	Max-Min
A	0.5444	0.6551	0.6252	0.1107
B	0.5809	0.5932	0.4658	0.0443
C	0.7957	0.5378	0.4658	0.3299
D	0.5805	0.6057	0.6131	0.0326

4.1 **Analysis of Variance**

Analysis of variance (ANOVA) is incorporated to find the significant effects of cutting parameters on the performance characteristics. To check these impacts, there is a tool F-test. When $F>4$, The variation in machining parameters has a high impact on quality characteristics.

Table 7. Results of ANOVA

Symbol	Machining parameters	SS	DOF	Mean square	F - ratio	% contribution
A	Cutting fluid	0.0551	1.0000	0.0551	9.7346	11.42
B	Speed	0.0063	2.0000	0.0031	0.5545	1.30
C	Feed rate	0.3610	2.0000	0.1805	31.8923	74.82
D	Hole Depth	0.0035	2.0000	0.0017	0.3087	0.72
Error		0.0566	10.0000	0.0057		11.73
Total		0.4825	17.0000		100.0000	

Table 7 gives the data of the contribution of taken cutting parameters on the characteristics of drilling process. Speed and hole-depth have very little effect on the performance characteristics.

![Figure 7. Contribution of process parameters](image)

The results of ANOVA proves that the feed rate has the maximum contribution (74.82 %) followed by cutting fluid (11.42%), speed (1.30%) and hole depth (0.72%) which is shown in Figure 7.

4.2 **Confirmation test**

The optimization is done using the taguchi’s method. Table 8 shows that the actual results and predicted results are in good agreement.
Table 8. Confirmation test results

	Prediction	Experiment	% change
Level	A₂B₃C₁D₃	A₂B₃C₁D₃	
Surface roughness	1	1	
MRR	1	1	
Grey relational grade	0.8898	1	12.39

5. Conclusions
The article is focused on taguchi’s technique to optimize the drilling process parameters since it is an easy and systematic way to do so. Findings for finest optimum combination of multi-performance parameters of drilling of AA 6082 is A₂B₃C₁D₃ that is with cutting fluid absent, speed 420 rpm, feed of 120 mm/min and hole-depth 24 mm. The results obtained from ANOVA prove that the feed is the highest impactful factor chased by cutting fluid, speed and hole-depth. By applying this method, an improvement of 12.39% is observed.

The future scope is that more optimization methods like ANN model, genetic algorithms, cuckoo search, RSM, etc can be applied for analysis. There is always a chance of betterment.

References
[1] Belyakov A 2018 Microstructure and mechanical properties of structural metals and alloys
[2] Singh O P, Kumar G and Kumar M 2019 Multi Performance optimization of shoulder milling process parameters of AA6063 T6 aluminium alloy by Taguchi Based GRA Journal of Innovative Technology and Exploring Engineering 8 pp 420-425
[3] Siddiquee A N, Khan Z A, Goel P, Kumar M, Agarwal G and Khan N Z 2014 Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method Procedia Materials Science 6 pp 1217-1225
[4] Thakre A A 2013 Optimization of milling parameters for minimizing surface roughness using Taguchi’s approach International Journal of Emerging Technology and Advanced Engineering 3(6) pp 226-230
[5] Zhang J Z and Chen J C 2009 Surface roughness optimization in a drilling operation using the Taguchi design method Materials and manufacturing processes 24(4) pp 459-467
[6] Cicek A, Kivak T and Samtaj G 2012 Application of Taguchi method for surface roughness and roundness error in drilling of AISI 316 stainless steel Journal of Mechanical Engineering 58(3) pp 165-174
[7] Campatelli G and Scippa A 2012 Prediction of milling cutting force coefficients for Aluminum 6082-T4 Journal of Mechanical Engineering 58(3) pp 165-174
[8] Akhil K T, Shunmugesh K, Aravind S and Pramodkumar M 2017 Optimization of drilling characteristics using grey relational analysis (GRA) in glass fiber reinforced polymer (GFRP) International Journal of Engineering and Technology 64 pp 690-700
[9] Subramanian M, Sathivel M, Sooryaparakash K and Sudhakaran R 2013 Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm Procedia Engineering 64 pp 690-700
[10] Sukumar M S, Ramaiah P V and Nagarjuna A 2014 Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach Procedia Engineering 97 pp 365-371
[11] Zhou L, Li J, Li F, Mendis G and Sutherland J W 2018 Optimization parameters for energy efficiency in end milling Procedia CIRP 69 pp 312-317
[12] Aamir M, Giasin K, Tolouei-Rad M and Vafadar A 2020 A review: Drilling performance and hole quality of aluminium alloys for aerospace applications Journal of Materials Research and Technology 9(6) pp 12484-12500
[13] Kumar G, Kumar M and Tomer A 2021 Optimization of End Milling Machining Parameters of SS 304 by Taguchi Technique In Recent Advances in Mechanical Engineering Springer Singapore pp 683-689

[14] Kumar M, Kumar G, Singh O P and Tomer A 2021 Multiperformance Optimization of Parameters in Deep Drilling of SS-321 by Taguchi-Based GRA In Recent Advances in Mechanical Engineering Springer Singapore pp 675-681

[15] Siddiquee A N, Khan Z A and Mallick Z 2010 Grey relational analysis coupled with principal component analysis for optimisation design of the process parameters in in-feed centreless cylindrical grinding The International Journal of Advanced Manufacturing Technology 46(9) pp 983-992

[16] Khan Z A, Kamaruddin S and Siddiquee A N 2010 Feasibility study of use of recycled High Density Polyethylene and multi response optimization of injection moulding parameters using combined grey relational and principal component analyses Materials & Design 31(6) pp 2925-2931