Refurbishment of Environmental Damage and Socio-Economic Consciousness Relate to Improvement of Climate Change

Hari Sadhan Sarkar* and Oly Sarkar Ghosh2

1Department of Chemical Engineering, Calcutta Institute of Technology, Uluberia, Howrah, West Bengal, India.
2Department of Family Planning, NRS Medical College and Hospital, Kolkata, West Bengal, India.

Authors' contributions
This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information
DOI: 10.9734/IJECC/2020/v10i830214
Editor(s):
(1) Dr. Grigorios L. Kyriakopoulos, National Technical University of Athens, Greece.
(2) Dr. Wen-Cheng Liu, National United University, Taiwan.
Reviewers:
(1) Bharat Raj Singh, Dr. APJ Abdul Kalam Technical University, India.
(2) Vinay Kumar Pandey, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/49016

Received 26 March 2020
Accepted 03 June 2020
Published 16 June 2020

ABSTRACT

Demand for energy, water, food and shelter for raising the standard of lifestyle of country people is the driving force of democracy in modern days but that cause the environmental damages through Green House Gas, micro-particles emission from combustion of fossil fuels like coal, oil as well as fuel gases and incessant emissions of hydrocarbons from automobiles, oil fields, oil refineries besides industrial activities in the globe along with horizontal land encroachment decreasing greeneries in the planet earth with the decrease of oxygen/nitrogen ratio. The emissions are the main causes for increase in environmental pollution and responsible for climate change in contrast to the idea expressed by various researchers about the impact of climate change on environment. Mechanisms on interaction of solar/electro- magnetic radiation with PM1.2.5 and hydrocarbons in air play a role on degradation of stratospheric ozone as well as accumulation of ozone in troposphere which manifests in various episodes and global warming. Increasing population, increasing urbanization with growing carbon footprint, deceasing greeneries in the planet, the carbon-dioxide: oxygen: Nitrogen ratios in the atmosphere suffered for the last 1000 years or more. The initiatives that are needed to promote the environmental capacity through replacement of fossil fuel energy by

*Corresponding author: E-mail: harisadhan3@gmail.com;
green energy establishments, societal upliftment through intercontinental sweet relations instead of power supremacy depriving 80% global population to refurbish the health of environment with improvement of climate. The fruit of green energy to reach all classes of people in this earth is the immediate need of the globe. The flaws of environmental laws are to be tightened and socio-environmental economic culture is to be inculcated among citizens of states for environmental health improvement vis-a-vis control on climate change to save the planet from extinction of dominant human lives.

Keywords: Refurbishment; environmental damage; socio-economic consciousness; climate change.

1. INTRODUCTION

The effects of climate change are worse among poor and low-income communities because many of them live on the margins of society, in unstable building structures, and in areas more susceptible to flooding, landslides, earthquakes, cyclones/typhoons and majority of them face epidemics, inadequate purchase capacities, inadequate resources and reduced access to emergency response systems in many countries of the globe. This is even more pronounced in developing countries. Many researchers indicated that the climate is responsible for environmental pollution e.g. it is the climate which causes flood, heavy downpour, tycoon etc. causes pollution.

1.1 Objective

The objective of the present study is to show that it is the environmental pollution which causes and relates to climate that results in various episodes for which the experimental data and observations of various authors have been reported below.

2. DATA COLLECTION AND DISCUSSION

The continuous improvement of human life style in the progressive world consumes more energy with increase in carbon foot-print at the present scenario of energy production resulting in pouring the environment with undesirable toxic fluids and non-fluid materials like gaseous volatile materials and micro-particles.

Environmental pollution due to the introduction of pollutants into the natural environment causes adverse effects on climate and human health. Climate change refers to a change in average weather conditions. It has been observed that climate change is related to some major forms of environment pollution (e.g., air pollution, water pollution, soil contamination, noise pollution, radioactive contamination, light pollution, thermal pollution, etc.). The issue of environment pollution and climate change has become a global concern because of:

1) Persistent and emerging pollutants to a certain extent cause climate change;
2) The variations in normal weather patterns have unfavourable effects on the physical and biological entities of the environment;
3) The role of atmospheric humidity and temperature on spread of viruses (e.g. COVID-19) as explained by the works of Chinese scientists [1].

The said work [1] demonstrated that higher humidity and higher temperature disfavour longevity and spread of viruses but lower temperature and humidity favour their longevity and movement. Further studies are needed to optimize the pollutants’ (as carriers) chemical characteristics, atmospheric temperature, wave lengths of radiation passing through the atmosphere, etc. on survival and movement of virus and disease germs. Study of Wei Su et. Al [1]. Did not indicate the role of other pollutants like SOx, NOx, Ozone etc. in atmosphere on climate or on virus/disease germs. However, there is definite effect of SOx, NOx and PM2.5 carbon on life span and movement of virus/disease germs while spreading through atmosphere from their source of one continent to another as per spinning characteristics of mother earth round its axis. Since SOx, NOx are acidic in character their existence in atmosphere will harm the floating virus/germs.

Precipitation is another tool of mother earth with which the toxic pollutants, PM2.5 virus/germs etc. are falling on the surface of the earth and the soil germs take care of them.

According to UN report, habitats/cities consume 78 per cent of the world’s energy and contribute more than 60 per cent of greenhouse gas emissions. Yet, they account for less than 2 per cent of the Earth’s surface. Reduction of
The reduction of greenhouse gases and air pollution is one of the goals of the UN Environment's Share the Road Programmed, which encourages walking and cycling is teed of using hydrocarbon driven transport systems. The agency endorsed an award-winning bike-sharing scheme in Hangzhou, China, which started out to provide public transport, but ended up alleviating traffic congestion and drastically improving air quality. "Hangzhou is a great example of how cities can introduce initiatives like bike sharing to encourage people to get out of their cars and reduce air pollution," said Rob de Jong, Head of UN Environment's Air Quality and Mobility Unit. Together with the WHO and the Climate and Clean Air Coalition, UN Environment is part of the global Breathe Life campaign, helping to mobilize cities and encourage individuals to protect the planet from effects of air pollution.

The researches undertaken by various authors on the cause of environmental damages are reproduced below and they tried to relate the environmental damages caused by climate change but concept of vice versa was not much addressed to improve the environmental status and its good effect on climate change have not been much studied at various regions of the globe. Impact of climate change on environment has been reviewed by various researchers [1,2]. The Graphical presentation of experimental data on Sarajevo valley [3] surrounded by high Olympic Mountains- Bjelasica, Igman, Jahorina, etc. was explained but the said change in climate has been due to variation of environmental parameters. They have shown that one of the main parameters of climate characteristics of Sarajevo's field work is temperature inversion. It has influence on temperature gradient, on appearance and disappearance of fog due to air pollution which is evident from its effects on the temperature at the middle of the mounts, especially during winter period. Their experiment explained the cause of smog during war and no smog incidence after the war period –these experiments explain the effect of pollutants on environment and consequently on climate after stoppage of war. The work of Bronstein, et al. may be reviewed where data from the meteorological station was used. Their experimental data of pollutants in the atmosphere may be compared on the following points of their observations:

1. Correlation between air pollution and temperature inversion
2. The results of experiment indicate the existence of high correlation between air pollution and temperature inversion (annual values – period April-March).
3. Decrease of air pollution was followed by appropriate decrease of number of days with inversion and number of days with fog.

4. Graph-1 [4] shows annual arithmetic means of concentration of sulphur dioxide and black smoke during the period 1974/75 - 2005/06, measured on station Sarajevo – Bjelave.

5. Graph 2 [4] shows annual number of days with temperature inversion in Sarajevo valley, during the period 1974/75 - 2005/06, measured on stations - Sarajevo - Bjelave and Sarajevo - Butmir.

6. Visual correlation between these two graphs obviously indicates Statistical correlation of these values as 0, 65, until year 2006.

7. Relatively high correlation exists when two different physical dimensions are compared. However, correlation of these values until year 2006 is lower, about 0.36.

It was reported by them that in last few years decrease of upper limit of inversion layer was noticed. Before the war, upper limit of inversion was about 900 meters, and after the war it is occasionally below 600 meters (above sea level).

The said workers admitted that because of the lack of adequate measurements on different spots, and especially aero sondage measurements, it was not adequate for analyses of the causes of this issue particularly climate change. With the help of their complex model of temperature inversion and air pollution, they had explained that structure and geometry of particles of pollution before and after the war were different. Before the war it was industrial emission, but after the war it was the traffic pollution that predominates. The Sarajevo valley experiments showed how level of inversion changes with load of pollutants in atmosphere.

The said model is in agreement with fluctuation of SPM_{0.5} (black shoots), VOCs and ozone concentrations with height of air column over sea level in and around the cities of developing and developed countries [5,6]. The continuous reduction of oxygen level in the global atmosphere for the last 1000 years is a challenge to the survival of red blood animals which is of global concern as appeared from the data published by various authors [7]. Continuous removal of oxygen molecules from air by various industrial activities is thinning the oxygen level in the atmosphere, increasing the likelihood that incoming sunlight will make it easy access to the earth’s surface without getting scattered away.

More sunlight means more evaporation from the earth’s surface, more ozone concentration in lower tropospheric region of earth which leads to higher exposure of biotics to UV radiation and increase in humidity. As humidity levels rise, temperatures also increase because water vapor is a potent heat-trapping greenhouse gas. Adding oxygen molecules has the opposite effect: a thicker layer in the atmosphere, with more scattering of incoming sunlight, reduced surface evaporation, and less heat trapped by water vapor. In their Science paper, Poulsen and two colleagues quantified the effect of changing oxygen levels on climate using an atmospheric global climate model to account for changes in atmospheric density, mass and molecular weights.

It was focused on the mid-Cretaceous, a period characterized by high atmospheric carbon dioxide levels and the warmest conditions of the last 100 million years. Specifically, they focused on Cenomanian Age, from 100.5 million years ago to 93.9 million years ago.

A series of simulations were developed in which oxygen levels varied from a low of 5 percent to a high of 35 percent. It was found that decreased oxygen levels led to substantial increases in global precipitation rates and temperature. Changing oxygen concentrations could help explain features of the paleo-climate record not accounted for by variations in carbon dioxide levels, such as warm polar temperatures and unexpectedly high precipitation rates in some periods.

Though previously unappreciated for its influence on climate, changing atmospheric oxygen levels have long been recognized for shaping the course of life on Earth. Billions of years ago, for example, photosynthesizing Cyanobacteria in the oceans released massive amounts of oxygen that eventually made it possible for animals to colonize the land.

Thus continuous depletion of oxygen level in the atmosphere, the oxygen concentration in each breathing cycle of animals is not enough for proper oxidation of food materials taken by them and the replenishment of oxygen level for ferrous hemoglobin – to ferric hemoglobin cycle being /to be maintained by heart and may cause
indigestion of food materials, gradual decrease in heights of red-blood animals, lower potency to fight against disease germs, failure to prevent the various types of virus attacks. This is the scenario of mass scale attack by COVID-19 besides other causes that requires immediate studies to save mankind in the planet. Each biotic environmental element is now facing direct threat by environmental pollutants causing climate change which further damages the environmental protection given by mother earth so long.

2.1 Effect of Environmental Pollution on Climate in US Air

The impression of the author is that the pollution results from the combination of high emissions from various sources and unfavorable weather conditions during the studies. The regulatory authorities are supposed to be active to protect public health through emission control regulations. But still there is substantial air pollution as evidenced from experimental data published by various authors. The resulting improvements in air quality may be evidenced by changes in weather statistics, i.e., changes in climate. It is a fact that the countries are entering an era of rapid change in life style with implication of electromagnetic wave clusters endangering vegetation and other components of environment (noticed large damage to coconut, brittle nuts, etc. in developing and developed countries) causing environmental change, the implications of air quality need to be better understood, both for the purpose of air quality management, as well as biosphere as a whole besides one of the societal consequences on climate change.

It was established by researchers [7] that besides others the two air pollutants of most concern for public health are surface ozone and particulate matter (PM$_{2.5}$).

Ozone is produced in the troposphere by photochemical oxidation of CO, methane and higher hydrocarbons, and non-methane volatile organic (HOx) radicals and increase of any of these constituents will definitely cause environment to danger in respect of climate change which was being established [8] in the observations of researchers [9] at Sarajevo valley.

Jacob Daniel J. et al. [10] had shown that during summer, ozone pollution mostly occurs due to photochemical interaction of (HOx) and (NOx), but is limited by non-methane volatile organic compounds (NMVOC) under highly polluted conditions of atmosphere even during non-summer season. The stratospheric ozone is depleted by photolysis in the presence of water vapor of the atmosphere. Uptake and transport on hemispheric scales in the free troposphere add atmospheric lifetime of ozone ranging from a few days in the boundary layer to weeks in the troposphere. Anthropogenic ozone and methane ventilated from the source continents by vegetation in the dry boundary layer is an important sink in the continental boundary layer (2 km).

Although NMVOCs, CO, SOx and NOx have large sources from combustion, municipal wastes and vegetation, methane has a number of biogenic and anthropogenic sources. OH originates mainly from atmospheric oxidation of water vapor and hydrologic cycles in the atmosphere with other hydrogen oxide.

Fig. 1. 1980–2006 trend in the number of ozone pollution episodes (black) and the number of mid-Latitude cyclones (red) in the northeastern U.S. in summer (Jun- Aug) for 1980-2006 has been shown by Leibensperger et al. [11]
Surface ozone which is of increasing concern for its concentration being higher than air quality standards as per studies [12] presented above.

As per the studies of previous researchers [13], the Solid Particulate Matter (SPM) includes as principal components - sulfate, nitrate, organic carbon, elemental carbon, soil dust, sea salt etc., the average concentration of ozone exceeds 85ppb during summer in Asia, US and Arab region which is manifested in the form of cyclones in the cyclone tracks of each year [11]. As per observation of Leung, L.R. et al. [13] the first four components are mostly present as fine particles less than 2.5 mµ diameter (PM2.5), and these are of most concern for human health. Sulfate, nitrate and organic carbon are produced within the atmosphere by oxidation of SOx, NOx, and NMVOCs [14]. Carbon particles emitted directly by combustion and auto exhausts adsorbs Nitrate and organic compounds (VOCs) exchange between the particle and gas phases, depending on back-ground temperature.

Particulate matter (PM) pollution, such as PM2.5, is of concern due to health and climate change impact. High volume air samplers with two -stage filter pack have been used to collect weekly ambient air samples, i.e. coarse particles (PM >2.5) and fine particles (PM2.5) from regions of utmost importance. From the published report of TERI, India, the highest monthly levels of PM2.5 and PM>2.5 were in December 2016 and November 2015 of 75 ± 5 and 55.2 ± 8 μg/m3, respectively. The findings of this study suggest that strict controls of PM2.5 concentrations in South and South East Asia (SSEA) are urgently required.

The studies of Yusheng Shi et al. [15] had shown that fine particulate matter (PM2.5) poses a potential threat to human health, including premature mortality under long-term exposure based on a long-term series of high-resolution (0.01° × 0.01°) satellite-retrieved PM2.5 concentrations, this study estimated the 2.5 µm solid particulates along with VOCs in the upper troposphere (at cloud forming zone) where water vapor cannot form cloud. The VOC along with Micro level particulates (mostly free carbon) accumulation in upper atmosphere of troposphere sometimes repulses water vapour from cloud formation. The cloud formation is favoured when these pollutants are swept away from equatorial region towards polar region due to high temperature difference between these two regions and high wind velocity during spinning of earth with increasing concentrations of SPM2.5 µm (global cyclonic separation of SPM2.5 µm at lower tropospheric region helping for shelter to viruses and VOCs resulting in lower precipitation rates, higher heat accumulation in the lower tropospheric region.

The relation of increase in ozone concentration in the tropospheric region with increase in surface temperature of earth is very much co-related in the observation of researchers [7] and that a record high number of exceedances of ozone
was experienced during summer of 1988 the hottest on record in the Northeast due to the eruption of Mt. Pinatubo where as low number of exceedances of ozone was reported by researchers in the coolest summer of 1992 during the period of 1980-2006. The difference in the number of episodes between 1988 and 1992 was a factor of 10 [15]. The above condition is gradually being reached due to continuous pouring of GHG gases into the atmosphere for increased fossil fuel fire and other human activities at industries and non-point traffic sources of air pollution besides addition of those gases from anthropogenic sources as per chemistry – climate systems. Change is forced by a perturbation to anthropogenic emissions resulting from socio-economic factors external to the Chemistry-climate systems.

It was established that Ozone and PM interact with solar and terrestrial radiation and as such are recognized as important climate forcing agents [15]. Because of this dual role, the effect on climate change by surface air quality is often framed in the broader context of chemistry-climate interactions [16,17] as shown diagrammatically in Fig. 2 proving the fact of perturbation to surface air quality.

As per present author’s observation, the study by above authors did not consider the effect of hydrocarbons concentration in atmosphere from various sources-industrial (Refineries, fertilizer, etc.), traffic, anthropogenic, etc. Change in climate is effected by anthropogenic emissions from biosphere, dust, forest fires, lightning, etc. affecting air quality.

The findings of foregoing authors made to understand that it is the environmental quality whose variation influences the climate. This review thus reveals that increased air pollutants have direct impact upon health and climate and vice-versa.

The findings of Scientists [17,18] explained impact of Ozone and increased CO₂ load in atmospheric air on the public health and climate change - sometimes causing natural disaster like tycoon, cyclone, etc. This was also predicted by a number of researchers [6] presented the intercontinental transport of ozone over USA. The impact of PMₐ₂.₅ and Sulphates on global atmosphere was explained by a number of workers [19,20]. The increased load of pollutants like Ozone, GHG, VOCs, micron level particles etc. in the atmosphere, results in climate change which will make it harder for any given regulatory approach to reduce ground-level ozone pollution in the future as meteorological conditions become increasingly conducive to forming ozone over most of the part of earth unless drastic measures be taken by the country authorities for immediate emission reductions to reduce the super cyclonic conditions at various regions of the globe to maintain equilibrium condition of the nature. Environmental pollution of heavy metals like mercury from particulates emissions from large and micro-level industrial sources (fly ash from fossil fuel firing systems of industrial activities-power plant, steam generators, etc.) cause continuous loading of micron level particulates on environment with harmful impact on vegetation and animals who have freedom to nourish in nature’s mass and energy.

3. GLOBAL ATMOSPHERIC STATUS

3.1 Before the Industrial Revolution

It was experimentally established that abrupt increments of most of the green house gas (GHGs) in atmosphere has occurred since nineteenth century. It was reported by various researchers that 40 per cent more CO₂ increase in the atmosphere as compared to 200 years ago might be from carbon emissions from industries and transport systems. 1998 was being the hottest year in the warmest decade of the warmest century for one thousand years due to unabated carbon emission whose impact caused heat wave in Europe in 2003 killing over 30,000 people with the appearance of severe drought in the Amazon region in 2005 turning the Amazonian Rainforest of carbon sink - into a source of carbon emissions endangering flora and fauna., Arctic ice had melted by significant amounts (2007): 2009 was the fifth warmest year since 1850; and 2010 has broken all records for extreme weather events.

3.2 Studies of Global Atmospheric Parameters

The published data on global atmospheric parameters are presented below to show how global pandemics/epidemics are initiated due to their abnormal variations. The following global parameters are encrypted below on Temperature and Precipitation Map from National Centre for Environmental Information [21].
The global land and ocean surface temperature for January 2020 was the highest in the 141-year record, with a temperature departure from average of 1.14°C (2.05°F) above the 20th century average. This value was only 0.02°C (0.04°F) higher than the now second highest January temperature departure from average set in 2016. The four warmest Januarys on record have occurred since 2016, while the 10 warmest Januarys have occurred since 2002. The only Januarys with a global land and ocean surface temperature departure from average above 1.0°C (1.8°F) occurred in 2016 and 2020.

The January global land and surface temperature departure was also the fourth highest monthly temperature departure in the 1,681-month record. Only March 2016, February 2016, and December 2015 had a greater temperature departure; all months that had a strong warm phase El Niño / Southern Oscillation (ENSO) present in the tropical Pacific Ocean. ENSO, which is a periodic fluctuation in sea surface temperature and air pressure of the overlying atmosphere across the tropical Pacific Ocean, can influence global temperatures. A warm phase ENSO, also known as El Niño, tends to have a warming influence on global temperatures, while the cold phase (La Niña) tends to have a cooling influence.

However, the January 2020 global land and ocean surface temperature departure from average was the highest for any month during ENSO neutral conditions, meaning El Niño or La Niña was not present in the tropical Pacific Ocean. March 2017 (+1.08°C/+1.94°F), December 2019 (+1.05°C/+1.89°F), and February 2017 (+1.02°C/+1.84°F) were the other months where the global land and ocean surface temperature departure from average was above 1.0°C (1.8°F) during ENSO neutral conditions in the tropical Pacific Ocean.

The global land-only surface temperature departure of +2.12°C (+3.82°F) was the highest on record for January, besting the previous record set in 2007 by 0.15°C (0.27°F). This was also the third highest global land surface temperature for any month in the 1,681-month record. The months of March 2016 (+2.53°C/+4.55°F) and February 2016 (+2.43°C/+4.37°F) were warmer. The January 2020 global ocean surface temperature was the second highest for January on record with a temperature departure from average of +0.78°C (+1.40°F). Only January 2016 was warmer at +0.91°C (+1.64°F).

The Northern Hemisphere land and ocean surface temperature departure from average was also highest on record at 1.50°C (2.70°F) above average. This value exceeded the previous record of 1.38°C (2.48°F) set in January 2016 by 0.12°C (0.22°F). The Southern Hemisphere had its second warmest January on record, with a land and ocean surface temperature departure from average of 0.78°C (1.40°F) above average. Only January 2016 was warmer.
Fig. 3. Global land and ocean temperature anomalies

Fig. 4. January 2020 blended land and sea surface temperature anomalies in Degrees Celsius
The first month of the year was characterized by warmer-than-average temperatures across much of the world’s land and ocean surface. The most notable warm temperatures were observed across much of Russia and parts of Scandinavia and eastern Canada, where temperatures were at least 5.0°C (9.0°F) above average. Other notable warm temperatures were observed across parts of the eastern contiguous U.S., central Europe, and eastern Australia, where temperatures were more than 2.0°C (3.6°F) above average. Meanwhile, the most notable cool temperature departures from average were observed across much of Alaska and parts of western Canada, where temperatures were at least 4.0°C (7.2°F) below average. Record warm January surface temperatures present across parts of Scandinavia, Asia, the Indian Ocean, the central and western Pacific Ocean, the Atlantic Ocean, and Central and South America. However, no land or ocean areas had record-cold January temperatures.

It may be noted that different countries report anomalies with respect to different base periods. Each country got highest temperature in may-june period and warmest winter during last 110 years as per National Centre for Environmental Information [21] and placed at Table 1.

The maps shown above represent precipitation percent of normal (left, using a base period of 1961–1990) and precipitation percentiles (right, using the period of record) based on the GHCN dataset of land surface stations. As is typical, precipitation anomalies during January 2020 varied significantly around the world.

January precipitation was generally drier than normal across parts of Alaska, the South-western contiguous U.S., central and western Europe, New Zealand, and parts of eastern Asia. Wetter-than-normal conditions were no table across the northwestern and eastern half of the contiguous U.S., eastern Brazil, northern Europe, western and central Russia, and parts of southern and eastern Asia.

Select national information is highlighted below. (Please note that different countries report anomalies with respect to different base periods. The information provided here is based directly upon these data):

- Alaska had its driest January since 2006 and the 14th driest on record.
- While much of the western half of Spain had below-average precipitation, much of the east had above-average conditions.
Table 1. The global surface transport anomalies

| January                  | Anomaly  | Rank (out of 141 years) | Records |
|-------------------------|----------|-------------------------|---------|
|                         | °C       | °F                      | Year(S) | °C    | °F    |
| **Global**              |          |                         |         |       |       |
| Land                    | +2.12 ± 0.21 | +3.82 ± 0.38           | Warmest 1st | 2020 | +2.12 | +3.82 |
|                         |          |                         | Coolest 141st | 1893 | -1.97 | -3.55 |
| Ocean                   | +0.78 ± 0.15 | +1.40 ± 0.27           | Warmest 2nd | 2016 | +0.91 | +1.64 |
|                         |          |                         | Coolest 140th | 1917 | -0.53 | -0.95 |
| Land and Ocean          | +1.14 ± 0.17 | +2.05 ± 0.31           | Warmest 1st | 2020 | +1.14 | +2.05 |
|                         |          |                         | Coolest 141st | 1893 | -0.72 | -1.30 |
| **Northern Hemisphere** |          |                         |         |       |       |
| Land                    | +2.44 ± 0.29 | +4.39 ± 0.52           | Warmest 1st | 2007, 2020 | +2.44 | +4.39 |
|                         |          |                         | Coolest 141st | 1893 | -2.51 | -4.52 |
|                         | Ties: 2007 |                         |         |       |       |
| Ocean                   | +0.91 ± 0.14 | +1.64 ± 0.25           | Warmest 2nd | 2016 | +1.10 | +1.98 |
|                         |          |                         | Coolest 140th | 1904 | -0.53 | -0.95 |
| Land and Ocean          | +1.50 ± 0.20 | +2.70 ± 0.36           | Warmest 1st | 2020 | +1.50 | +2.70 |
|                         |          |                         | Coolest 141st | 1893 | -1.32 | -2.38 |
| **Southern Hemisphere** |          |                         |         |       |       |
| Land                    | +1.29 ± 0.14 | +2.32 ± 0.25           | Warmest 2nd | 2019 | +1.44 | +2.59 |
|                         |          |                         | Coolest 140th | 1918 | -0.91 | -1.64 |
| Ocean                   | +0.69 ± 0.15 | +1.24 ± 0.27           | Warmest 2nd | 2016 | +0.78 | +1.40 |
|                         |          |                         | Coolest 140th | 1917 | -0.58 | -1.04 |
| Land and Ocean          | +0.78 ± 0.15 | +1.40 ± 0.27           | Warmest 2nd | 2016 | +0.86 | +1.55 |
|                         |          |                         | Coolest 140th | 1917 | -0.59 | -1.06 |
Overall, Spain's January 2020 was near average at 11% above average precipitation for January. Several locations set new high January precipitation records. Of note, the Barcelona airport had a total of 174 mm of precipitation for the month, the highest on record for January.

Australia, as a whole, had 12% above average January precipitation. The region with the highest precipitation was Western Australia, receiving 59% above average precipitation for January. However, New South Wales and South Australia had 36% and 25% below average precipitation, respectively.

3.3 Global Precipitation Climatology Project (GPCP)

The following analysis is based upon the Global Precipitation Climatology Project (GPCP) Interim Climate Data Record. It is provided courtesy of the GPCP Principal Investigator team at the University of Maryland.
- Australia receives some rainfall to help fight wildfires and even experiences floods in the north.
- West Indian Ocean area and into Madagascar and eastern Africa still have positive rainfall anomalies and flooding over the land areas.
- South America rainfall anomaly pattern reverses from December.
- Northern Hemisphere mid-latitude storm tracks over both ocean and land related to variations in precipitation.

As per the report [21] the anomaly rain features are observed in January 2020 when the sun reaches its furthest south position. Over tropical oceans, this is also the case in the Indian and Atlantic Oceans, while across the Pacific the ITCZ hovers near the Equator, with a strong extension to the southeast into the Southern Hemisphere as part of the SPCZ.

Positive rainfall anomalies are prevalent in the western Indian Ocean, as they have been over the last few months, again associated with positive SST anomalies, even though the IOD index has gone neutral due to warming in the eastern portion of that ocean. These rainfall excesses over the ocean extend inland into eastern Africa and are tending to continue the flooding evident over the last few months. A positive SST anomaly off the southwest coast of Africa is also associated with excess rainfall over that ocean area and extending onto the coastal countries.

![Land-Only Precipitation Anomalies Jan 2020](image1)

**Fig. 8. January 2020 land-only precipitation anomalies**

![Land-Only Percent of Normal Precipitation Jan 2020](image2)

**Fig. 9. January 2020 land-only precipitation percent of normal**
Australia, which has suffered an extended drought and one of the worst wildfire seasons in their history, had gotten some relief in January as the monsoon has arrived. The anomaly field even shows some significant positive features in the north that were associated with floods, mostly in areas of low population density. In the southeast portion of the country, where wildfires were concentrated, the limited rainfall was helpful, but insufficient to end the fires. To the north over the Maritime Continent the monsoon is active, but still shows below normal rainfall for the month. Further to the southeast, New Zealand continues their drought accompanied by a negative precipitation anomaly over the islands and surrounding waters.

Over South America a rainfall maximum is evident in eastern Brazil, with a rainfall deficit over the western part of the continent. This
alignment is a flip-flop from last month. The rainfall feature in the east was accompanied by floods and landslides in that area. In the Northern Hemisphere the typical mid-winter rainfall maxima extend to the northeast from the Asian and North American continents, with the anomaly field showing variations from the mean pattern. For the Pacific feature positive precipitation above the mean is evident at the western edge of the feature in China, extending to the east over the water through southern Japan. Further to the east this mid-latitude storm track has mostly negative anomalies. Over North America the U.S. Pacific North West had a positive precipitation (snow) anomaly, with excess precipitation also in the Midwest and part of the Gulf coast. The Gulf of Mexico itself had a rain deficit.

In the North Atlantic there is a rainfall deficit just east of the U.S., but further to the northeast the anomaly pattern indicates a northward shift to the Atlantic storm track and related precipitation feature with a peak at the coast of Norway. Southwest Europe has a precipitation deficit this month, while to the northeast, over Scandinavia and east over northern Europe there is a moderate precipitation excess.

The above observations clearly indicate while there anomaly of precipitation from region to region, eastern part of continents get heavy rain with high climatic change but reverse is true in western part which may be explained by uneven distribution of pollutants in space.

Recent chemistry-climate modeling studies have attempted to account for geographical differences in patterns of air pollution emissions and interaction of pollutants with atmosphere. These models which explored the effects of a variety of projected future changes in short-lived air pollutants suggest that these species are likely to contribute to further warming by 2050 and these anomalies are linked with climate change. For example, studies considering pollution by aerosol particles and air pollution abatement strategies in the energy and transport sectors suggest that, even with maximum abatement strategies, changes in air pollution patterns are likely to contribute to an increase in temperatures.

Through a series of observations by the researchers it was observed that increasing in relative humidity increases the PM- water content and hence the uptake of semi-volatile components, mainly nitrate and little of organics. Dawson et al. [19] focused their model of perturbation studies with large sensitivity of nitrate and sulphate PM to humidity having little sensitivity to other PM components. A likely explanation is that aqueous-phase SO2 oxidation by H2O2 in cloud takes place on a time scale of minutes. This processing frequency or simulation of aqueous-phase sulfate formation in clouds is difficult to explain in either meso-scale or global models [20] (Koch et al., 2003). From chemistry-climate modeling it is easy to explain the interaction of SO2 –SO4 oxidation enhancement over solid surface of particulates specifically carbon centers adsorbed on particulates and shoots floating in atmosphere.

4. IMPACT OF AIR QUALITY

4.1 Climate Change and Human Health

Air pollutants influence$^{21}$ meteorological variables such as temperature, humidity, wind speed and direction, and mixing height which in turn inducts weather and climate of the adjoining areas locally or regionally. There is growing recognition that development of optimal control strategies for key pollutants like ozone and fine particles now requires assessment of potential future climate conditions and their influence on the attainment of air quality objectives. In addition, other air contaminants of relevance to human health, including smoke from wildfires and airborne pollens and molds, may be influenced by climate change but guided by meteorological variables. The chemical characteristics of pollutants governs the humidity of adjoining space e.g., the hygroscopic pollutants cause temporary increase in local humidity causing acid rain but VOC(Hydrocarbons) accumulation cause repulsion of water molecules in space causing decrease in humidity thus controlling the meteorological parameters and thus control weather/ climate. Further works are in progress to get generalized concept of pollutants’ influence on weather/climate.

The above findings have a definite bearing on the major attack of COVID-19 on USA as compared to Asian countries might be due to highest temperature in January 2020 in this region; low humidity, low temperature (in the range of 15-21°C) in USA and some other environmental parameters favourable for viral spread that to be searched out.
4.2 Effect of Environment on Climate Change

NO$_2$ is an irritant to our lungs and gives smog its brown color. Its main significance however is that it helps make ozone and adsorb on airborne particles, two of the most harmful air pollutants [22]. Ozone damages our lungs and crops. Fine particles of 2.5 microns (PM$_{2.5}$) or less in size – end up deep in our lungs and can enter our bloodstream. Satellite observations help us to track pollutants like nitrogen dioxide (NO$_2$) that indicate areas of unhealthy air, as well as levels of greenhouse gases carbon dioxide (CO$_2$) and methane (CH$_4$) that are driving global warming.

4.3 COVID-19 Drop in Pollution to Be Short-Lived

COVID-19’s hit to the global human life is cutting air pollution, but the eventual recovery could leave our environment worse off and further behind in reducing emissions [23].

By weighted-average statistics of GCM results it may be projected by 2000–2050 there will be a likely increase of $\sim 0.1$ μg m$^{-3}$ in annual mean PM$_{2.5}$ in the eastern US arising from less frequent frontal ventilation and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM$_{2.5}$ may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM$_{2.5}$ by more than 0.5 μg m$^{-3}$.

To reduce cost and complexity, the researchers [24,25] suggested regional components to be omitted and diagnose change in air quality from the global CTM simulation (with spatial resolution of a few hundred km) but authors suggest that RCM /GCM simulation on pollution parameters relating the climate change would be more illustrative on regional impact vis-à-vis global influence on regional climate.

5. ROPOSPHERIC POLLUTION AND CLIMATE CHANGE

5.1 Impact of Tropospheric Ozone on Climate Change

The researchers [26,27] established that the most important climate variables affecting troposphere ozone on a global scale are stratosphere-troposphere exchange, lightning NOx, and water vapor associated with VOCs.

The stratosphere-troposphere exchange and lightning NOx cause an increase in ozone and the water vapour in troposphere. The above models agree that climate change will decrease the ozone background in the lower troposphere where the water vapor effect is dominant but cannot explain the decrease of ozone in the northern hemisphere [28] while in the analysis of 10 global GCM-CTMs where a decrease of annual mean surface ozone in the northern hemisphere has been highlighted due to flow of pollutants from equatorial region and stratosphere–troposphere exchange causing climate change holding anthropogenic emissions of ozone precursors constant. The contradictory views can be cleared if one considers that it is the pollutants’ flow from equatorial region to polar region due to temperature gradient and atmospheric air flow in the opposite direction causing climate change.

From the various models it may be generalized that the ozone increase is largest in urban areas where present-day ozone is already high [29,30,31] which is due to increase of air pollutants.

Major studies as described were based on US and Canada areas but a few studies were published in the application of above models in European and other sub-continents. Differences in air pollution meteorology between GCMs/RCMs are a major cause of the above discrepancies [32]. In the opinion of authors, the differences between CTMs in the parameterizations of natural emissions, chemistry and deposition also play a role. Wu et al. [33] pointed out that model differences in isoprene oxidation mechanisms have significant implications for sensitivity to climate change in regions where NOx is relatively low and isoprene is high, such as the southeastern U.S. Oxidation of isoprene by OH produces organic peroxy radicals RO$_2$, which react with NO by two branches:

i. Produce ozone by NO$_2$ photolysis
ii. Produces isoprene nitrates and can be a major sink for NOx [34].

But the fate of these nitrates (in particular whether they recycle NOx or represent terminal sinks) remains largely unknown as claimed [35].
There may also be substantial production of isoprene nitrates from oxidation of isoprene by the nitrate radical but this is even less supported by experimental data Giacopelli, et al, Horowitc 2007 [32,33] found that their assumed isoprene nitrate yield of 12%, with no NOX recycling, is responsible for their lack of sensitivity of ozone to climate change in the southeastern U.S. While Racherla and Adams [34] did not include isoprene nitrate formation in their model and found by contrast a large ozone sensitivity to climate change in that region. Other major factor of uncertainty is the sensitivity of isoprene emission to climate change.

Minimum GHG level in troposphere is needed to maintain ambient temperature at a level of comfort of human beings, Zero GHGs in atmosphere has also serious impact on climate. Continued and improved networks of measurements that provide long-term data are essential to gain a more robust understanding about past and present changes in concentrations of air pollutants and GHGs. Such networks include surface, aircraft and satellite monitoring. Aircraft experiments combined with analysis using numerical models have proved to be particularly useful in advancing our knowledge about key chemical and physical processes in the atmosphere. There is also a clear need for improved emission inventories that track changing sources of air pollutants and GHGs over a wide range of locations and from year to year.

5.2 Impact of Mercury Pollution on Climate Change

Through a series of experiments of fly ash/bottom ash analysis in authors’ laboratory, it was observed that mercury contents range from 0.1-0.3 Mg per Kg of ash in thermal power stations in Asian countries. It was also noticed that the mercury content in fly/bottom ash increases with increase in depth of mines- from which the coal is extracted.

The effect of mercury pollution through ash disposal from various sources like coal fired thermal power stations of different continents victimize the local mass for ingress of mercury through food chain or air breathing. Increased volatilization of soil mercury could potentially be of considerable importance, as the amount of mercury stocked in soil (1.2-106 Mg) and that in the atmosphere (6- 103 Mg) and in the ocean (4 - 104 Mg) [36]. Soil mercury is mainly bound to organic matter [36] which may be, besides above, due to contamination with fly ash emission from thermal power plants and industrial emissions. Future warming at mid latitudes could release large amounts of soil organic matter to the atmosphere as CO2, both through increased respiration [37] and increased fires. The mercury pollution from fly ash of thermal power station is getting settled ultimately on soil and water body of earth surface and sometimes is getting access in the food chain of animals including human systems causing varieties of diseases.

The effect of PM although is uncertain but potentially significant on climate control as indicated in earlier studies. Future scenarios without significant reductions of emission beyond current level, the models as explained above find that the combined effects of emissions will cause increased ozone pollution. Assuming emission reductions far beyond the full implementation of current regulations of various countries, the reduction of emission will partly offset the benefit of the emission reductions [38,39,40].

6. SUSTAINABLE DEVELOPMENT FOR SAFE ENVIRONMENT

The actions being taken in air quality upgradation can attain a 10% NOx emission reduction but unless all other devices are used it will not be possible for a 50% NOx reduction in the 2050 climate. The climate penalty can decrease anthropogenic NOx emissions, thus providing additional return on NOx emission controls. By using the observed inter-annual correlation between cyclone frequency and exceedances of the ozone in air quality standard, it can be concluded that air quality standard for the ozone should be more stringent to reduce trends in cyclone frequency as indicated by the NCEP/NCAR reanalysis. Still the important issue is whether climate change is dependent on ozone which is being influenced by NOx and NMVOC emissions in a way that would compromise the effectiveness of current emission control strategies in the global scenarios.

Cardelino and Chameides [41,42] for the Atlanta urban plume showed in their model simulation that ozone sensitivity increased to NOx as temperature increases, due to increasing isoprene emission and supply of HOx radicals. The studies of Milan and Atlanta plumes likely reflect regional differences in biogenic NMVOC
emissions, and from both studies it was shown that sensitivities of ozone to NOx and NMVOC emissions might have affected the climate change. Higher temperatures increase the demand for air conditioning in summer when ozone, chloro-fluoro compounds and PM concentrations are highest in the region. Anthropogenic NMVOCs also increase in the atmosphere due to Evaporative emissions, although the effect determined for mobile sources is relatively weak, in the range 1.3-5% K⁻¹ [41,42]. Since ozone has direct impact on air quality, the ozone background is likely to become an increasingly important issue for air quality standards as the same will become more stringent. This background is likely to increase in the future because of global increase in methane and NOx emissions [43,44] find that the U.S. policy-relevant background (PRB), defined by the U.S. Environmental Protection Agency (EPA) as the surface ozone concentration in the absence of North American anthropogenic emissions will decrease by up to 2 ppb in summer as a result of 2000-2050 climate change. Wu et al. [45] [44,46,47] projected that climate change will fully offset the effect of rising global anthropogenic emissions on the PRB in the eastern U.S. in summer, though there will still be a 2-5 ppb increase in the PRB in the west. Seasons outside summer will experience less benefit from climate change in terms of decreasing the ozone background and intercontinental transport of pollutants46 (Fiore et al., 2002) [43].

6.2 Global Energy Policy

Global energy policy offers an opportunity to dramatically improve air quality through transition to nonpolluting energy sources. A switch from mineral fossil fuel energy to Solar/Ocean energy would benefit air quality and could possibly be helpful in reducing the carbon emission. The battery run bus/truck /TOTO/bikes etc. are already started plying the developing countries helping in the removal of environment related problems and started reducing GHG emissions.

6.3 Social Workers’ Role on Pollution and Pandemic/ Epidemic Control

The environmental pollution is not now restricted to industrial pollution; the viral pollution is also alarming as in COVID-19. Social workers can play an important role in using their mediation skills to mobilize communities, facilitate technology sharing, reducing disputes in ideologies of technocrats, bureaucrats, politicians and state administrators on environmental sustainability. Industrialists, agriculturists and economists so far treated the atmosphere as a carbon sink by pouring gaseous, liquids and solid pollutants straight into it. Population explosion, their unrealistic lifestyles associated with industrialization, centralization in cities and growth of communities associated with urbanization have added pressure on the earth’s finite fossil fuel resources on one hand and lack of proper waste management practices multiplied the pressure on the environment on the other. Global demand for energy is predicted to increase by 60 per cent over the present requirement in 2030 [48,49] while the atmosphere is rapidly approaching its limits in absorbing emissions; Scientists on the IPCC calculated that to keep temperature rises within 2°C, a total of 1,400 billion tons of carbon emissions are to be absorbed by the atmosphere between 2000 and 2050 [50]. The repercussion of increasing pollutants load in the atmosphere is expected to manifest in the weather/climate as well as direct attack on living kingdom through various diseases besides chronic health issues with increase in medical bills in almost all families. Thus medical bill may be considered to be an economic index of global pollution impact and pandemic/epidemic spread of viruses may be related to global temperature and humidity fluctuation from allowable limit. It may be mentioned in this connection that the virus germs under hibernation in ice coverage get alive as soon as they get favourable atmospheric condition (through increase of temperature may be due to GHG effect or some of her reason which is to be corroborated with the fact that January 2020 had seen higher temperature in corresponding periods of previous years [21] and mass attack by COVID-19 virus thus spread since January 2020 from its source.

The lock-down, on maintaining social distance to defeat COVID-19 attack, is an unique social work which helped in the check of corona virus when all the pollutants emission centers are completely under shut down reducing atmospheric pollution to a great extent. After 14 days lock down of all transport, hotel restaurants, industries, etc. were kept shut down except thermal power plants, the level of PM2.5 had come down to almost 40% and similar reduction of other pollutants by same ratio, no much deposits of dusts on house hold materials in Kolkata. The water of the Hooghly river (India) appears to be more transparent (before and after 2 hours of tides), green leaves

Sarkar and Ghosh; IJECC, 10(8): 1-25, 2020; Article no.IJECC.49016
shining without dust coverage during COVID-19 lockdown period.

6.4 Shifting Patterns of Energy Consumption

Binary authentication of 'Polluters'(West) and 'Non-Polluters' (Global South) makes the West as the perpetrator of catastrophic events and the others as victims bearing a disproportionate share of the effects of climate change. The West is blamed for unfairly consuming fossil fuels, extensively polluting land, air and water and producing climate change. These constitute a historical legacy and moral obligation to reduce its own emissions and pay for industrializing nations to put them in their development by funding for clean air technologies [50,49]. Unfortunately, the blame game has produced an intractable impasse in negotiations about who caused the damage, who will pay for undoing it and who is suffering and resulted in an impasse in negotiations around the Kyoto Protocol (TWN, 2010). The West's dominance as polluter is changing as emissions from industrializing countries in the Global South rises. For example, South Korea's emissions nearly doubled from 298 million tons in 1990 to 594 tons in 2005. Asper UNDP recommendation there should be an Independent body like WHO for control of global emission as suggested by some researchers [51]. Emissions in China rival those of Germany at 6.4 tons of HCU per capita GDP. China's use of energy is less efficient because 3.5 times more energy than the global average is consumed to generate each unit of GDP [36]. The largest consumers of energy in 2005 included industrialized and rapidly industrialising countries (percentage in brackets): USA (20.5%); China (15.0%); Russia (5.7%); Indonesia (4.7%); Japan(3.0%); Germany (2.4%); France (2.4%); Canada (2.4%); the UK (2.0%); South Korea (1.9%). China emits 6.1 billion tons of CO₂ yearly, while 250 million people live in poverty.

Its emissions are set to rise to 10 billion by 2020 [46]. China overtook the USA as the single largest polluter in 2006 and is likely to retain that position for the foreseeable future. Together, they produce 40 per cent of global carbon emissions to be absorbed by the same atmosphere and biosphere inhabited by all living Things [46]. China's emissions will continue to rise because it is opening a coal-fired power station every few days to feed its industrialization drive. Coal, the dirtiest fossil fuel, could be substituted by renewable energies if the green technologies associated with them were better shared and emissions recycled more effectively. More global technological cooperation would enable the country with technology to expand its existing renewable energy programme and accelerate the search for alternative solutions, a development its policymakers are keen to progress. Rapid population growth, highest in the Global South, will intensify pressures on resources available to meet ever growing needs (UNDP, 2009). The changing picture in energy use requires a more equitable sharing of resources and clean energy technologies than is occurring in the present days. Social workers can advocate for this to happen. Individual contributions to climate change are differentiated according to class and geographic region.

Rich individuals contribute most in GHG emissions, if lifestyle activities are counted. These include private jets at huge oil consumption with burden of pollutants on environment [47]. Individuals can disregard carbon footprints and their impact upon the earth's entire population. In contrast, a homeless person in a rich country would have a small personal carbon footprint [52]. Wars and terrorist bombs contribute carbon emissions that are usually discounted. The people enjoy in groups, for example, fireworks to celebrate New Year, or Guy Fawkes Day, add to the total carbon emissions that planet earth has to absorb. Some alternatives are available or can be created to reduce man made GHG emission. The impact on climate change will be variable as weather events become more extreme-some countries will sink. Small island nations in the Pacific like Tuvalu might disappear altogether. Others might rise. Climate migrants will pose another issue to be addressed (UNDP, 2008). The intercontinental transport of ozone over subcontinents is causing more danger to the planet [52]. The 1951 Geneva Convention on Refugees perhaps does not apply to climate migrants [49], new protocols are necessary to cover their needs (UNDP, 2008).

Humanitarian aid currently cannot meet demands for food, shelter and medicines by climate refugees in drought stricken Somalia, Kenya and Ethiopia. Social workers can advocate for increases in aid and help develop appropriate services and. These complex realities are compelling the West to rethink its strategy policies towards climate change reject the Polluter-Non-Polluter barriers but everyone
should think to take action in reducing emissions.

Public should play a minimal role on control of environmental pollution as Mother Nature causes climate change. The emphasis on earth’s more surface coverage with greeneries should made for people’s contributions and call for reductions in greenhouse gas emissions to limit temperature rises to 2°C, stabilize the world’s climate and reduce damage caused by humans.

A substantial amount of other evidence supports the view that people induced climate change is real and having deleterious effects on the livelihoods and well-being of countless people as per meeting in Mexico [53]. One-half of British voters are sceptical about the relevance of climate change to their lives as per simulation of climate changes in regional air of USA [51]. Their numbers encompass distinguished persons, including Nigel Lawson, former Chancellor in the UK, who deems policies to reduce carbon emissions extremely damaging and harmful.

A DEFRA study in the UK made the classification in a survey that clustered people’s responses around:

- Positive greens: They comprise 18 per cent of respondents and will do as much as possible to limit their impact on the environment
- Waste-watchers: Covering 12 per cent of respondents, this group considers thrift part of their lifestyle and recycles extensively;
- Concerned consumers: Forming 14 per cent of those replying, they felt they were already doing a lot and unlikely to do more;
- Sideline starters: Making up 14 per cent of those surveyed, they acknowledged climate change as a problem, but refused to alter current lifestyles;
- Stalled starters: This group has little information about climate change, wanted an affluent lifestyle, but could not afford it;
- Honestly disengaged: These respondents lacked interest in the issue, seeing it as irrelevant to them.

6.5 Social Responsibility on Pollution Control and Climate Change

Air pollution control side by side Climate change has become imminent for one of the most important challenges being faced by contemporary societies. It encompasses the idea that the world’s climate is changing as a result of greenhouse gas or carbon emissions caused by human activities. Greenhouse gases include water vapor, carbon dioxide (CO₂), methane, nitrous oxide and chlorofluorocarbons. The forest fires, deforestation and industrial processes contribute in the increase in carbon foot-print resulting in the changes in air temperature, precipitation patterns, ocean acidity causing the melting of glaciers and sea level rise [54-56]. The Inter-governmental Panel on Climate Change (IPCC) suggests that natural processes account for only 5 per cent of climate change (IPCC, 2007). Measured in parts per million (ppm), carbon emissions have risen from 280 ppm before the industrial revolution to 430 ppm by 2005 and around 480ppm by 2014 and still are growing. Climate change is expected to have a differentiated impact on countries as extreme weather events frequently increase, produce climate change refugees and increased risk to poorest communities if emissions remain unabated.

Poor air quality is also caused by emissions of nitrogen oxides, methane and other volatile organic compounds (VOC) that combine in the lower atmosphere to produce ozone. Ground-level ozone is a serious pollutant, which at high levels, damages human health and vegetation, including crop yields. In addition, ozone is a short lived air pollutant and improved networks of measurements to provide long-term data are essential to gain a more robust understanding about past and present changes in concentrations of air pollutants and GHGs. Such networks include surface, aircraft and satellite monitoring. Aircraft experiments combined with analysis using numerical models have proved to be particularly useful in advancing our knowledge about key chemical and physical processes in the atmosphere. There is also a clear need for improved emission inventories that track changing sources of air pollutants and GHGs over a wide range of locations from year to year.

This initiative which was launched in 2008 can be thought of as one which is low carbon, resource efficient and socially applauded. UNEP initiative involves 3 sets of activities:

- Producing a Green Economy
- Providing Advisory Services and
- Research [51]

It may be mentioned in this connection that social workers must engage effectively in these by
learning about the science behind climate change; speaking about policies; developing resilience amongst individuals and communities; mitigating losses caused by climate change; helping to resolve conflicts over scarce resources; and responding to devastation caused by extreme weather events including floods and droughts. Social workers can counsel people effectively to overcome the complex arguments and realities around climate change by the people suffering loss and grief in these circumstances and help their resilience in preventing and/or adapting to its consequences. The roles of social work educators and practitioners range from advocacy to community mobilization. In this connection two case studies are shown below:

i. One from the Global South and
ii. The other from the Global North

To examine these because climate change affects everyone, everywhere in the planet it was noticed to increase the pollutants level to increase as compared to equatorial region.

At the COP16 meeting in Mexico in 2010 [53] the carbon credit scheme for encouragement of pollution control by polluters but compliance mechanisms proved problematic as this cause price tag to increase and non-polluters stated earning with some plea or other. In actual practice the polluters should pay. The scheme of subsidizing firms using clean, green technologies by paying an amount per ton of carbon reduced may be operated to reduce GHG emission. Social workers' roles in climate change endeavors to have a commonly accepted formula effectively for reduction of total pollution on the earth acceptable to all has become necessary at the present juncture to save the earth from destruction like “Extreme events of heat waves, heavy rainfall, and winter extremes are more likely with a changing climate or climate change is understood to be a public health issue because it affects the quality of our water, air, food supplies, and living spaces or extreme weather events-hurricanes that are unprecedented in size and strength, for example-are very much in line with what climate scientists have been warning we should expect as a result of global warming.

The nonconventional energy efficient technology implements and continuous growth of natural resources like greeneries and minerals, land and implements may safe guard the environment and simultaneous action on social consciousness to the citizen of the country to contribute least emission of green house gases on the one hand and conservation of environment on the other to give continuous impetus to the climate improvement. Some countries, like Republic of China, started shifting hutments of villages to multistoried apartments for vertical accommodation of families instead of horizontal spread of residences/commercial complexes to increase the greeneries instead of reducing the natural greeneries as is being the trend among developing and developed countries. The increase of greeneries must be the immediate step to be adopted by each and individual of country in this planet.

Since the pouring in pollutants to atmosphere is increasing, its effect on mixing depth is uncertain and possibly increases and climate change will be more in coming years at the rate of increasing pollutants load. The latest impact of climate change due to change in pollutant's load in India has been noticed recently causing tremendous damage by strong cyclones like Phony, Bul-bul, etc. 2019 in India of South East Asia.

6.6 Dynamics in Sustainability of Environment

In the Rio summit 1992 for stress on clean development mechanism and then Kyoto Protocol, signed by 184 countries in Kyoto, Japan in 1997 the stress was given for limiting rises in the earth's temperature to less than 2°C through action on revival of environmental health for which countries could participate in the Clean Development Mechanism (CDM) Projects to reduce emissions. These were to be funded through an Adaption Fund that levied a 2 per cent charge on CDM Projects, but much improvement in global environmental status has not been achieved.

Any success in achieving pollution reduction needs encouragement which acts as catalyst in the induction of people’s mind towards sustainable environment for the benefit of themselves and the globe. The catalyst may be of different types:

1. Polluter to pay penalty which will go to pollution minimize like carbon credit
2. The environment upgrading agency should be properly remunerated in kind through status elevation relaxation of taxes, interest to capital expenses.
3. The actions of such agency (may be owner of polluting source, regulator, technocrat or democrat) should be properly recognized through attractive benefits.
4. More benefits should come through global competition

It is suggested that including the imposition of 'climate penalty' as the need of the present day for stronger emission controls to achieve the given air quality standard but concerns are to be highlighted to those involved.

This further observed correlations of air quality with meteorological variables and statistical correlation of pollutant concentrations with meteorological variables in US which has been an active area of study by various researchers for over three decades, and this focuses three principal purposes for highlighting in the present review:

1) To remove the effect of meteorological variability in analyses of long-term trends of air quality,
2) To construct empirical models for air quality forecasts,
3) To gain insight into the processes affecting pollutant concentrations.
4) Pandemic eruption of COVID-19 taking lives of lakhs of people throughout the globe is now a challenge to find out the solution in the long run.

The beneficial effect of climate change on the ozone background may partly offset the expected global increase in the ozone locally, nonconventional energy will offset the background of rising methane and NOx emissions over the coming decades. Let the people of the planet have peaceful life with less epidemic/pandemic attacks globally through the use of renewable green energy. For global implementation the country concerned should be rewarded with catalyst that ensures the reduction of environmental pollution load.

7. CONCLUSION

The environmental pollutants are the key factors that control the regional and global pollution which in turn relates to climate change. Thus Precipitation frequency, which is largely determined by PM, VOCs, NOx, SOx, Ozone loss, etc. in the atmosphere, is expected to increase with reduction of pollution load in environment as a whole so as to reach the environmental pollution level of that of thousand years back with the result of minimizing the frequency of natural disaster like "PHONY" of last May or "Bulbul" of last October 2019 in India from Bay of Bengal of Indian Ocean or COVID-19 taking lakhs of lives erupted from China which caused a serious impact on social economy ultimately besides life and material loss.

While considering the scientific causes of climate changes, the following are suggested for all out action as follows:

1. The global power requirement should be met by solar power and other renewable energy sources and its growth should be given most priority with all out global help so that global carbon foot print is drastically reduced.
2. Polluters should be penalized through socio-economic means to restrict the Pandemic/epidemic due to viral/nonviral pollution.
3. Technological revolutions on cheaper durable long term light weight capacitors for storage of power on long time uses are the need to run the transports or machineries.
4. Fossil fuel burning is the heart burning of the present day and that should be immediately stopped globally.
5. Greeneries to be spread over the entire globe making land availability through stoppage of land enclosure by erratic hutments; vertical industrial and residential expansion should be given priority instead of horizontal spread with stricter pollution control rules implementation side by side rigid implementation of social obligation on polluters.
6. Green energy producers should be properly rewarded with to face the challenges of reduction of global carbon foot print.

ACKNOWLEDGEMENTS

The author(*) is grateful to Prof. (Dr.) R. Debnath, chairman, URSCHARD, NGO, Uluberia Distt.-Howrah, West Bengal, India for his continuous encouragement on the work presented. The author thanks to colleagues of the Institute for their cooperation on undertaking the work.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Wei Su, Xiuguo Wu, Xingyi Geng, Xiaodong Zhao, Qiang Liu, Ti Liu. BMC Public Health. Article number: 1319. 2019; 19. [Published: 21 October 2019]
2. World Health Organization (WHO), report of 26th October 2018.
3. Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int. 2013;59C:41–52.; Barnes CS, Alexis NE, Bernstein JA, Cohn JR, Demain JG, Horner E, Levetin E, Nel A, Phipatanakul W. Climate change and our environment: the effect on respiratory and allergic disease. J Allergy Clin Immunol Pract. 2013;1:137–141; Lee SY, Chang YS, Cho SH. Allergic diseases and air pollution. Asia Pac Allergy. 2013;3:145–154. Pavagadhi S, Betha R, Venkatesan S, Balasubramanian R, Hande MP. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environ Sci Pollut Res Int. 2013; 20:2569–2578
4. Majstorovic Ž, Toromanovic A, Halilovic S. Trends of climate changes considered over years 1894-1993 and 1894-2003 in Sarajevo, BALWOIS Conference, Ohrid; 2004.
5. Hauglustaine DA, Lathiere J, Szopa S, Folberth GA. Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys. Res. Lett. 2005;32:L24807. Brasseur GP, Schultz M, Granier C, Saunois M, Diehl T, Botzet T, Roeckner E, Walters S. Impact of climate change on the future chemical composition of the global troposphere. J. Clim. 2006; 19:3932–3951. Holloway T, Fiore A, Galanter Hastings M. Intercontinental transport of air pollution: Will emerging science lead to a new hemispheric treaty? Environ. Sci. Technol. 2003;37:4535–4542. Fiore AM, Jacob DJ, Field BD, Streets DG, Fernandes SD, Jang C. Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett. 2002;29:1919.
6. Lin JT, Patten KO, Liang XZ, Wuebbles DJ. Effects of intercontinental transport on surface ozone over the United States at the present and future. Geophys. Res. Lett. 2008b;35:L02805.
7. Jim Erickson, Climate change and the aridification of North America, Proceedings of the National Academy of Sciences, Michigan news, University of Michigan; 2020
8. Dawson JP, Adams PJ, Pandis SN. Sensitivity of ozone to summertime climate in the Eastern USA: A modeling case study. Atmos. Environ. 2007a;41:1494–1511; Dawson JP, Adams PJ, Pandis SN. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007b;7:4,295–4,309. Majstorovic Ž, Toromanovic A, Halilovic S. Trends of climate changes considered over years 1894-1993 and 1894-2003 in Sarajevo, BALWOIS Conference, Ohrid; 2004.
9. Jacob DJ, Horowitz LW, Munger JW, Heikes BG, Dickerson RR, Artz RS, Keene WC. Seasonal transition from NOx- to hydrocarbon-limited ozone production over the eastern United States in September. J. Geophys. Res. 1995;100:9315–9324.
10. Leibensperger EM, Mickley LJ, Jacob DJ. Sensitivity of U.S. air quality to midlatitude cyclone frequency and implications of 1980–2006 climate change. Atmos. Chem. Phys.
11. Holloway T, Fiore A, Galanter Hastings M. Intercontinental transport of air pollution: Will emerging science lead to a new hemispheric treaty? Environ. Sci. Technol. 2003;37:4535–4542.
12. Leung LR, Gustafson WI. Potential regional climate change and implications to U.S. air quality. Geophys. Res. Lett. 2005;32:L16711.
13. Tsuneo Matsunaga, Yasushi Yamaguchi, Aimei Zhao, Zhengqiang Li, Xingfa Gu. Science of the total environment. 2018; 631–632:1504-1514.
14. Weaver CP, Wise EK, Gustafson Jr, Steiner AL, Weaver CP, et al. A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations. Bull. Amer. Met. Soc. 2007;2006.
15. Guerova G, Jones N. A global model study of ozone distributions during the August 2003 heat wave in Europe. Environ. Chem. 2007;4:285–292.
17. Neal Fann, Christopher G. Nolte, Patrick Dolwick, Tanya L. Spero, Amanda Curry Brown, Sharon Phillips, Susan Anenberg. Journal of the Air & Waste Management Association. 2015;65:570–580.

18. Albertine JM, Manning WJ, DaCosta M, Stinson KA, Muiilenberg ML, Rogers CA. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS ONE. 2014; 9(11):e111712.

19. Dawson JP, Adams PJ, Pandis SN. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007;7:4295–4309. DOI: 10.5194/acp-7-4295-2007

20. Koch D, Park J, Del Genio A. Clouds and sulfate are anti-correlated: A new diagnostic for global sulfur models. J. Geophys. Res. 2003;108:4781.

21. National Oceanic and Atmospheric Administration-NOAA)-issue of 8th April 2020; Patrick L Kinney, American Journal of Preventive Medicine. 2008;35(5):459-67.

22. Tao Z, Williams A, Huang HC, Caughey M, Liang XZ. Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophys. Res. Lett. 2007;34:L08811.

23. Gabriel da Silva. University of Melbourne-Engineering & Technology- commented on 28.3.2020.

24. Giorgi F, Mearns LO. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method, J. Climate. 2002;15:1141–1158.

25. Liang J, Horowitz LW, Jacob DJ, Wang Y, Fiore AM, Logan JA, Gardner GM, Munger JW. Seasonal variations of reactive nitrogen species and ozone over the United States and export fluxes to the global atmosphere. J. Geophys. Res. 1998;103(13):435–450.

26. Dentener FD, et al. The global atmospheric environment in the next generation. Environ. Sci. Technol. 2006;40:3586–3594.

27. Bell ML, Goldberg R, Hogrefe C, Kinney PL, Knowlton K, Lynn B, Rosenthal J, Rosenzweig C, Patz JA. Climate change, ambient ozone, and health in 50 US cities. Climatic Change. 2007;82:61–76.

28. Jacobson MZ. On the causal link between carbon dioxide and air pollution mortality. Geophys. Res. Lett. 2008;35:L03809.

29. Nolte CG, Gilliland AB, Hogrefe C, Mickley LJ. Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J. Geophys. Res. 2008;113:D14307.

30. Kunkel KE, Huang HC, Liang XZ, Lin JT, Wuebbles D, Tao Z, Williams A, Caughey M, Zhu J, Hayhoe K. Sensitivity of future ozone concentrations in the northeast USA to regional climate change. Mitigation and Adaptation Strategies for Global Change. 2008;13:597–606.

31. Wu S, Mickley LJ, Leibensperger EM, Jacob DJ, Rind D, Streets DG. Effects of 2000–2050 global change on ozone air quality in the United States. J. Geophys. Res. 2008a;113:D06302.

32. Giacopelli P, Ford K, Espada C, Shepson PB. Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy. J. Geophys. Res. 2005;110:D01304.

33. Horowitz LW, Fiore AM, Milly GP, Cohen RC, Perring A, Woolridge JP, Hess PG, Emmons LK, Lamarque JF. Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J. Geophys. Res. 2007;112: D12S08.

34. Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus. 1992;44B:81–99.

35. Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, Sunderland EM. Global 3-D land-ocean-atmosphere model for mercury: Present-day vs. preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem. Cy. 2008;22:GB2011.

36. Ravichandran M. Interaction between mercury and dissolved organic matter– a review. Chemosphere. 2004;55:319–331.

37. Racherla PN, Adams PJ. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res. 2006;111: D24103.

38. Tao Z, Williams A, Huang HC, Caughey M, Liang XZ. Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophys. Res. Lett. 2007;34:L08811.

39. Tagaris E, Manomaiaphiboon K, Liao KJ, Leung LR, Woo JH, He S, Amar P, Russell AG. Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the
49. DOI: 10.1039/C2CS35095E
50. Averchenkova A. UNDP, the role of independent body for climate governance; 2010.
51. Lena Dominell. Climate change: Social workers’ roles and contributions to policy debates and interventions. International Journal of Social Welfare. 2011;20(4):430-438.

52. Andrew E. Dessler, Edward A. Parson. The science and politics of global climate change: A guide to Debate, Canadian public policy. December K. Hennessy, R. Fawcett, D. Kirono, F. Mpealasokay, D. Jones, J. Bathols, P. Whetton, M. Stafford Smith, M. Howden, C. Mitchell and N. Plummer. 2010;32(4).
53. Hogrefe C, Lynn B, Civerolo K, Ku JY, Rosenthal J, Rosenzweig C, Goldberg R, Gaffin S, Knowlton K, Kinney PL. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res. 2004;109:D22301.
54. Giacopelli P, Ford K, Espada C, Shepson PB. Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy. J. Geophys. Res. 2005;110:D01304.
55. Cryderman. COP16 meeting in Mexico in 2010; 2009.

56. United States. J. Geophys. Res. 2007;112:D14312.
57. Cardelino CA, Chameides WL. Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res. 1990;95:13,971–13,979.
58. Rubim J. Kean AJ, Harley RA, Millet DB, Goldstein AH. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles. J. Geophys. Res. 2006;111:D03305.
59. Fiore AM, Jacob DJ, Field BD, Streets DG, Fernandes SD, Jang C. Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett. 2002;29:1919.
60. Fiore AM, et al. Global air quality and climate. Chemical Society Reviews. 2012; 41:6663-6683.
61. doi: 10.1039/C2CS35095E
62. Wolfgang Löscher. Special issue: Proceedings of the Innsbruck colloquium on status Epilepticus Innsbruck, Austria; 2009.
63. Averchenkova A. UNDP, the role of independent body for climate governance; 2010.
64. Robert Allen the British industrial revolution in global perspective March 7, 2017; 2009.
65. Andrew E. Dessler, Edward A. Parson. The science and politics of global climate change: A guide to Debate, Canadian public policy. December K. Hennessy, R. Fawcett, D. Kirono, F. Mpealasokay, D. Jones, J. Bathols, P. Whetton, M. Stafford Smith, M. Howden, C. Mitchell and N. Plummer. 2010;32(4).
66. Wu S, Mickley LJ, Jacob DJ, Rind D, Streets DG. Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background ozone in the United States. J. Geophys. Res. 2008b;113:D18312.
67. Alexander JS. P. Whetton, M. Stafford Smith, M. Howden, C. Mitchell and N. Plummer. P. Whetton, M. Stafford Smith, M. Howden, C. Mitchell and N. Plummer. Global observed changes in daily climate extremes of temperature and precipitation, Journal of Geophysical Research Atmosphere. 2006;111(D5).
68. Prospero JM. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. 1999;104:15917–15927.
69. Andrew E. Dessler, Edward A. Parson. The science and politics of global climate change: A guide to Debate, Canadian public policy. K. Hennessy, R. Fawcett, D. Kirono, F. Mpealasokay, D. Jones, J. Bathols, P. Whetton, M. Stafford Smith, M. Howden, C. Mitchell and N. Plummer. 2010;32(4).
70. Lena Dominell. Climate change: Social workers’ roles and contributions to policy debates and interventions. International Journal of Social Welfare. 2011;20(4):430-438.
71. Hennessy KJ, Fawcett R, David Jones, J. Bathols. An assessment of the impact of climate change on the nature and frequency of exceptional climatic events. 33. Canberra: DAFF CSIRO BoM; 2008.
72. Hogrefe C, Lynn B, Civerolo K, Ku JY, Rosenthal J, Rosenzweig C, Goldberg R, Gaffin S, Knowlton K, Kinney PL. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res. 2004;109:D22301.
73. Giacopelli P, Ford K, Espada C, Shepson PB. Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy. J. Geophys. Res. 2005;110:D01304.
74. Cryderman. COP16 meeting in Mexico in 2010; 2009.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/49016

© 2020 Sarkar and Ghosh; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.