Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO$_{4+\delta}$

Jian Li1,2,7, Fengjuan Pan1,7, Shipeng Geng3,7, Cong Lin1,4,7, Lukas Palatinus5, Mathieu Allix6, Xiaojun Kuang3, Jianhua Lin1 & Junliang Sun1,2

CeNbO$_{4+\delta}$, a family of oxygen hyperstoichiometry materials with varying oxygen content (CeNbO$_{4}$, CeNbO$_{4.08}$, CeNbO$_{4.25}$, CeNbO$_{4.33}$) that shows mixed electronic and oxide ionic conduction, has been known for four decades. However, the oxide ionic transport mechanism has remained unclear due to the unknown atomic structures of CeNbO$_{4.08}$ and CeNbO$_{4.33}$. Here, we report the complex (3 + 1)D incommensurately modulated structure of CeNbO$_{4.08}$, and the supercell structure of CeNbO$_{4.33}$ from single nanocrystals by using a three-dimensional electron diffraction technique. Two oxide ion migration events are identified in CeNbO$_{4.08}$ and CeNbO$_{4.25}$ by molecular dynamics simulations, which was a synergic-cooperation knock-on mechanism involving continuous breaking and reformation of Nb$_2$O$_9$ units. However, the excess oxygen in CeNbO$_{4.33}$ hardly migrates because of the high concentration and the ordered distribution of the excess oxide ions. The relationship between the structure and oxide ion migration for the whole series of CeNbO$_{4+\delta}$ compounds elucidated here provides a direction for the performance optimization of these compounds.

1College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, P. R. China. 2Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden. 3Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, 541004 Guilin, P. R. China. 4School of Advanced Materials, Shenzhen Graduate School, Peking University, 518055 Shenzhen, P. R. China. 5Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 182 21 Prague, Czech Republic. 6CNRS, CEMHTI UPR3079, Univ. Orléans, 45071 Orléans, France. 7These authors contributed equally: Jian Li, Fengjuan Pan, Shipeng Geng, Cong Lin.

*Email: kuangxj@glut.edu.cn; junliang.sun@pku.edu.cn
Materials with oxygen hyperstoichiometry have excellent electronic, magnetic, and oxygen storage properties and can be used in a wide variety of applications1,2. For example, La\textsubscript{2}CuO\textsubscript{4+δ} forms two phases depending on the oxygen content3: the phase with δ = 0 is semiconducting, while the other has a wide range of values (0.03 < δ < 0.18) and it becomes superconducting for δ = 0.08 with T\textsubscript{c} \sim 38 K. The discovery of the series of 114 cobaltites ((Ln,Ca)\textsubscript{1}BaCo\textsubscript{4}O\textsubscript{7}) revealed the existence of closely related structures with various crystallographic symmetries and the possibility of oxygen nonstoichiometry in the range “O7+−O8−” in those systems, which opened up a new field for the investigation of strongly correlated electron systems. This change of oxygen stoichiometry, which induces the variation of the Gd2+−Co3+ ratio in the system, is expected to influence the physical properties of these compounds considerably. This is the case of the oxygen-rich “114” cobaltites YBaCo\textsubscript{4}O\textsubscript{6} and YbBaCo\textsubscript{4}O\textsubscript{7}, which were shown to be magnetically frustrated rather than magnetically ordered at low temperatures4,5. Therefore, oxygen hyperstoichiometry materials with useful functionalities are attractive subjects of research for chemists, physicists, or materials scientists.

In recent years, materials with oxygen hyperstoichiometry received great attention in the field of solid oxide fuel cells because of the low activation energy (E\textsubscript{a}) of interstitial ion migration. Well known and studied examples are apatites La\textsubscript{3−δ}M\textsubscript{δ}(MO\textsubscript{3})\textsubscript{2}O\textsubscript{1.5δ} (M = Si, Ge)6, melilite La\textsubscript{1+δ}Sr\textsubscript{δ}Ga\textsubscript{2}O\textsubscript{5+δ}O\textsubscript{2} (δ=0.345)7, layered perovskites La\textsubscript{2}NiO\textsubscript{4+δ}\textsubscript{11}8, fluorite UO\textsubscript{2+δ}9, or scheelite La\textsubscript{2}Pb\textsubscript{2}B\textsubscript{2}W\textsubscript{2}O\textsubscript{11+δ}10, Bi\textsubscript{12}Sr\textsubscript{8}VO\textsubscript{20−δ}O\textsubscript{6} (δ=0.25)11, and also the subject of this study, CeNbO\textsubscript{4+δ}. CeNbO\textsubscript{4+δ} is a mixed ionic and p-type electronic conductor with fast oxygen ion diffusion at moderate temperatures (total conductivity up to 0.030 S cm−1 at 850 °C; ion transference number up to 0.4; diffusion coefficient up to 8.3 x 10−8 cm2s−1), making it a promising material for applications in energy generation and storage devices12-14. CeNbO\textsubscript{4+δ} was first reported by Cava et al.15 in 1970s. It has been identified as a family of compounds with variable oxygen contents, with distinct phases CeNbO\textsubscript{4}, CeNbO\textsubscript{4+0.08}, CeNbO\textsubscript{4+0.25}, and CeNbO\textsubscript{4+0.33}. Although Thompson et al.16 successfully indexed the unit cell of these four compounds by selected area electron diffraction (SAED) in 1999, no progress on the structure solution of these phases was made until in 2016 Pramana et al.17 solved the structure of CeNbO\textsubscript{4+0.25} by single-crystal X-ray diffraction (SCXRD) and revealed by molecular dynamics (MD) simulations that the fast ion migration occurs within planes of the neighboring NbO\textsubscript{2} polyhedra. However, the atomic structures of CeNbO\textsubscript{4+0.08} and CeNbO\textsubscript{4+0.33} remained unknown, which hindered the full understanding of the oxide ion conduction behavior for the whole system of CeNbO\textsubscript{4+δ}.

In order to better understand the oxygen transport mechanism and to optimize its performance, atomic structures of CeNbO\textsubscript{4+0.08} and CeNbO\textsubscript{4+0.33} need to be understood. However, for CeNbO\textsubscript{4+0.08} and CeNbO\textsubscript{4+0.33}, it was very difficult to grow large single crystal due to their specific syntheses. Furthermore, CeNbO\textsubscript{4+0.08} appeared to be a (3 + 2)−dimensional incommensurately modulated structure with monoclinic symmetry and CeNbO\textsubscript{4+0.33} a commensurately modulated structure with triclinic symmetry according to SAED18. The large unit cell parameters and complex diffraction patterns make it very difficult to determine their atomic structures by conventional powder X-ray diffraction (PXRD). Fortunately, nanocrystals and microcrystals can be treated as single crystals in electron microscopy. The recently developed 3D ED technique, continuous rotation ED24-27, can use single nanocrystals to obtain single-crystal diffraction data that can be used for structure determination by utilizing the software developed for SCXRD (ShelXT28, Superflip29,30).

In this study, we determine the incommensurately modulated structure of CeNbO\textsubscript{4+0.08} and the superstructure of CeNbO\textsubscript{4+0.33} by combining 3D ED, synchrotron X-ray powder diffraction (SPD), and neutron powder diffraction (NPD). Using the same methods, the superstructure of CeNbO\textsubscript{4+0.25} was also re-determined. The structure models are sufficiently accurate to reveal the interstitial oxygen sites and allow to elucidate how the extra oxygen atoms change the structural connectivity. Combining the structural information with MD simulations, we describe the oxide ion migration mechanisms in CeNbO\textsubscript{4+δ}. The relationship between the structure and oxide ion migration for the whole series of CeNbO\textsubscript{4+δ} compounds here provides means to optimize the performance of these compounds and to develop better oxygen hyperstoichiometric materials for a wide variety of applications.

Results

A series of phases of CeNbO\textsubscript{4+δ} was obtained from CeO\textsubscript{2} and NbO\textsubscript{2} by the solid-state synthetic route in Supplementary Fig. 1. The most striking chemical feature of the studied cerium niobate phases is that they are progressively oxidized from one structure to another under relatively mild conditions. The oxygen contents of the phases were analyzed by thermogravimetric analysis (TGA), which yields formulae CeNbO\textsubscript{4.11(2)}, CeNbO\textsubscript{4.24(2)}, and CeNbO\textsubscript{4.33(1)} (Supplementary Fig. 2). Figure 1 shows the [010]\textsubscript{p} (p denotes parent material CeNbO\textsubscript{4}) zone SAED patterns of the CeNbO\textsubscript{4+δ} (δ = 0, 0.08, 0.25, 0.33) phases. In all the four SAED patterns, the strong reflections have the same pseudo-tetragonal symmetry as that of the parent structure. However, for CeNbO\textsubscript{4.08}, CeNbO\textsubscript{4.25}, and CeNbO\textsubscript{4.33}, many additional reflections can be observed.

Incommensurately modulated structure of CeNbO\textsubscript{4+0.08}

In previous transmission electron microscopic study, CeNbO\textsubscript{4+0.08} was identified as a monoclinic (3 + 2)D incommensurately modulated phase with average unit cell parameters close to the parent CeNbO\textsubscript{4} and modulation vectors q\textsubscript{1} \sim (0.138, 0, 0.344), q\textsubscript{2} \sim (0.345, 0, −0.138) and centering I = (½, ½, ½, 0, 0) (Supplementary Fig. 3a)16. In the present study, analysis of the [010]\textsubscript{p}
zone axis SAED of CeNbO₄₀₈ indicated that the structure can be
described as monoclinic (3 + 1)D incommensurately modulated
with a single modulation vector \(q = 0.069a^* + 0.175c^* \) and a
nonstandard centering \(X = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \). However, satellites up
to order 5 or even 7 are needed to describe the whole pattern
(Supplementary Fig. 3b). The qualities of the LeBail fit of SPD are
similar for the 2D modulation and 1D modulation, which further
confirmed that the 1D modulation is the correct description
(Supplementary Fig. 4). It is extremely unlikely that a single
modulation vector would be able to describe two independent
modulation vectors just by coincidence with such accuracy.
Satellites up to order 7 in the synchrotron powder data are visible.
However, the number of satellites is very large and the sensitivity
of the SPD pattern to oxygen positions is relatively low, making it
extremely challenging to solve the (3 + 1)D incommensurately
modulated structure of CeNbO₄₀₈ ab initio from the SPD pattern.
Therefore, the 3D ED technique was applied to solve its incom-
mensurately modulated structure.

Fig. 2 3D ED data of CeNbO₄₀₈ and CeNbO₄₃₃. 3D reciprocal lattice reconstructed from the 3D ED data of CeNbO₄₀₈ (a) and CeNbO₄₃₃ (e), b (0k), c (hk0) and d (h0l) slices extracted from the reconstructed reciprocal lattice of CeNbO₄₀₈, reflection conditions: 0kl: k + l = 2n, hk0: h + k = 2n, h0l: h + m = 2n, l + m = 2n. e (0kl), f (hk0), g (hk0), and h (h0l) slices cut from the reconstructed reciprocal lattice of CeNbO₄₃₃, reflection conditions: no special systematic reflections appear forbidden.

Fig. 3 Structure characterization and analysis of CeNbO₄₀₈. a Average structure of the (3 + 1)D incommensurately modulated structure of CeNbO₄₀₈ along the [100]p direction. The interstitial O₃ (blue atom) is located between Ce cations within the Ce cationic chain. b Final Rietveld refinement against the SPD data for CeNbO₄₀₈ with (3 + 1)D superspace. Note: the unexplained peaks at 7.46, 7.77, and 8.86 degree (marked at inset pattern) belong to the impurity phase of CeNbO₄₂₅. c Final Rietveld refinement against the NPD data for CeNbO₄₀₈ with (3 + 1)D superspace. (Red multi (×) symbol: observed profile, green curve: simulated profile, blue curve: difference profile, black Bragg line: main reflections, pink Bragg line: satellite reflections).
Due to the limitation of processing continuous mode 3D ED data with \((3+1)D\) superspace, we processed the 3D ED data with approximate supercell. The 3D reciprocal lattice reconstructed from the 3D ED data of CeNbO\(_4\).08 are shown in Fig. 2a–d. Reciprocal lattice along the \([010]_p\) direction can be cut from the reconstructed 3D reciprocal lattice (Supplementary Fig. 6b), in which the strong reflections show the similar pseudo-tetragonal symmetry as the \([010]_p\) zone axis SAED of CeNbO\(_4\). Then we transformed the processed 3D ED data (hkl file based on the approximate supercell) to \((3+1)D\) superspace. Reflection conditions indicated the superspace group of \(X2/c(a0y)\)\(_0s\) and satellites up to order 7 were required. The determination of the modulation functions turned out to be extremely difficult due to their complexity and large number of contributing harmonic waves. Finally, the \((3+1)D\) model was constructed from the supercell structure. The structure contains one additional oxygen site (O3) compared with the parent structure of CeNbO\(_4\) (Fig. 3a, see Supplementary Information for details on the localization of...

Fig. 4 Structure model of CeNbO\(_4\).4, CeNbO\(_4\) (a, b), oxidized CeNbO\(_4\).08 (c, d), CeNbO\(_4\).25 (e, f), and CeNbO\(_4\).33 (g, h) projected along the principal axes of [010]\(_p\) and [100]\(_p\). Displacement of oxygen from the original position in the parent structure is observed. Note that c and d were 6\(a\) × 2\(b\) × 6\(c\) approximant superstructure in \((3+1)D\) incommensurately modulated model along [010]\(_p\) and [100]\(_p\).
CeNbO$_4$ (from the 3D ED datasets indicated that the possible space group Supercell structure of CeNbO$_4$.33 resulted in chemically reasonable bond distances (Supplementary data. The model Rietveld refinement of combined SPD and NPD data (Supplementary Figs. 12–15).

Identification of the interstitial sites O$_i$ in the structure models. Comparing the three oxide supercell structures with the parent structure (Fig. 4 and Supplementary Fig. 16), the additional oxygen atoms incorporated into the CeNbO$_4$ host lattice have relaxed the original oxide ion positions, which resulted in three different incommensurately or commensurately modulated structures. Figure 4 shows the structures of the parent CeNbO$_4$ and the structures of CeNbO$_4$0.08, CeNbO$_4$0.25, and CeNbO$_4$0.33 projected along the principal axes of [010]$_p$ and [100]$_p$. Significant displacement of oxygen atoms from the original positions in the parent structure is observed and additional oxygen sites appear in the cationic layers, close to the interstitial position Oi identified in the average structure of CeNbO$_4$0.08 (Fig. 3a).

In the oxidized supercell structures, the excess oxygen atoms are located at one (3 + 1)D incommensurately modulated model of CeNbO$_4$0.08, three (CeNbO$_4$0.25), and one (CeNbO$_4$0.33) fully occupied general Wyckoff sites, respectively. The interstitial sites are the blue atoms in Fig. 4 (Oi in CeNbO$_4$0.08 6a × 2b × 6c approximant superstructure structure, O4, O11, and O41 in CeNbO$_4$0.25 and O13 in CeNbO$_4$0.33). Bond valence sum (Supplementary Tables 2 and 3 and Supplementary Fig. 17) analysis shows that some of the Ce positions are Ce$^{4+}$ sites. The change of the oxidation state of Ce is responsible for the shorter Ce-O bond lengths and allows that excess oxygen is incorporated into the host lattice at the interstitial sites between Ce cations (Fig. 4c–h). In CeNbO$_4$0.33, the amount of additional oxygen is so much that part of the oxygen atoms are pushed away from the original locations of the Ce sites, as determined by a self-consistent field (SCF)-based crystallographic analysis, Ce$^{3+}$ and O$_2^−$ atoms, respectively.

Supercell structure of CeNbO$_4$0.33. From the [010]$_p$ zone axis SAED, the satellites in CeNbO$_4$0.25 and CeNbO$_4$0.33 can be indexed with a single vector $q = 1/12$ [204]$_p$ and 1/3 [101]$_p$, respectively. Thus the commensurately modulated structure of CeNbO$_4$0.25 and CeNbO$_4$0.33 can be described by supercell models. Again, 3D ED data were collected on CeNbO$_4$0.33 (Fig. 2e–h) and CeNbO$_4$0.25 (Supplementary Fig. 5e–h). The reflection conditions derived from the 3D ED datasets indicated that the possible space group of CeNbO$_4$0.33 is P1. All the crystallographically unique Ce and Nb atoms as well as a part of oxygen atoms in the structure were located directly by using the software SHELXT28. The supercell structure model of CeNbO$_4$0.25 could also be obtained with 3D ED data. The final supercell structure model for CeNbO$_4$0.33 and CeNbO$_4$0.25 with interstitial oxygen sites were obtained by the Rietveld refinement of combined SPD and NPD data (Supplementary Figs. 12–15).

![Fig. 5 Molecular dynamics simulations study of CeNbO$_4$.4.4.](image-url) Calculated MSD values of Ce$^{3+}/4^+$, Nb, and O atoms as a function of simulation time for CeNbO$_4$ (a), CeNbO$_4$0.08 (b), CeNbO$_4$0.25 (c), and CeNbO$_4$0.33 (d) from the MD simulation at 1200 °C. Trajectory scatter plots for CeNbO$_4$ (e, i), CeNbO$_4$0.08 (f, j), CeNbO$_4$0.25 (g, k), and CeNbO$_4$0.33 (h, l) at 1200 °C where cyan, blue, and red dots represent Ce$^{3+}/4^+$, Nb$^{5+}$, and O$^{2−}$, respectively.
normal site into an interstitial site (O11) due to the relaxation of the structure. The interstitial site oxygens (O11, O13) between Ce cations are occupied in an ordered manner along the a and c axes in CeNbO$_{4.33}$ (Supplementary Fig. 18). The ordered interstitial oxygen (O13) and the relaxation of the other oxygen site (O11) generate a zigzag-shaped [Nb$_6$O$_{26}$]$^+$ infinite chain comprising edge-sharing [NbO$_6$]$_4^-$ units bridged by edge-sharing [NbO$_4$]$_2^-$ units through vertex (Supplementary Fig. 18a).

Oxide ion migration. MD simulations based on interatomic potential method were performed to elucidate the dependence of oxide ion migration on the variation of oxygen hyper-stoichiometry and structure in CeNbO$_{4+\delta}$ compounds. The mean square displacement (MSD) values (Fig. 5a–d and Supplementary Fig. 19) and scatter plots (Fig. 5e–l and Supplementary Fig. 20) indicate that all atoms in the parent CeNbO$_4$ show only lattice vibration without long-range migration as expected. With inclusion of the excess oxygen into the host lattice of CeNbO$_4$, the oxide ions become mobile in CeNbO$_{4.08}$ and CeNbO$_{4.25}$ but hardly migrate in CeNbO$_{4.33}$. The MD simulations show that CeNbO$_{4.08}$ and CeNbO$_{4.25}$ phases have similar oxide ion migration pathways.

Two kinds of oxide ion migration events contributing to the long-range migration can be identified in the MD simulations of CeNbO$_{4.08}$ (Fig. 6a, b). The first one is oxide ion migration between Nb$_{O_n}$ polyhedra isolated by the Ce cationic chain by ~5.0–5.4 Å (labeled as path A). In this migration event, the oxide ion leaves one NbO_n polyhedron and passes through the interstitial sites (referred to as O$_i$) within the chain of Ce cations along the a or c axis of the parent CeNbO$_4$ structure to subsequently enter into the coordination environment of another Nb$_{O_n}$ polyhedron located at the other side of the Ce chain through a knock-on process. The second type of migration is the oxide ion migration between the neighboring Nb$_{O_n}$ polyhedra separated by ~3.6–4.2 Å (labeled as path B) through a chain knock-on process via the Nb$_{O_n}$ polyhedral rotation and deformation. This migration event also frequently involves the interstitial sites O$_i$ (Fig. 6a, b). MD simulations indicate that the migration along path A is much less frequent than that along path B, which is consistent with the larger separation between the Nb$_{O_n}$ polyhedral units involved in path A than that in path B.

As Nb atoms are usually found in 6 or 4 coordinate environments and the Nb–O bond lengths normally vary within 1.8–2.2 Å, the Nb–O bonds >2.2 Å were not included in the Nb$_{O_n}$ polyhedral units during a close examination of oxide ion migration, which simplifies the description of the polyhedral units and assists understanding the complex migration process. This representation leads to isolated tetrahedral Nb$_3$O$_6$ units and corner-sharing Nb$_5$O$_9$ units most of the time during simulation. The oxide ions were found to move between the polyhedral units in the long-range migration routes composed of paths A and B mainly through the synergic-cooperation mechanism involving the continuous breaking and reformation of the Nb$_{O_n}$ units assisted by rotation and deformation of the Nb$_{O_n}$ polyhedra and a knock-on process between the oxygen atoms (Fig. 6b, c and Supplementary Video 1). Therefore, the interstitial sites within the Ce cationic chain and Nb$_{O_n}$ polyhedra define more like 3D pathways for the oxide ion migration in CeNbO$_{4.08}$, which is consistent with the fact that inclusion of the extra oxygen atoms disturbs anisotropically the polyhedral linkage in CeNbO$_4$.

The same oxide ion migration pathways are found also in CeNbO$_{4.25}$ phase in our study. Oxide migration in CeNbO$_{4.25}$ was analyzed also by Praman et al.17 They identified anisotropic oxide ion diffusion paths within the linked Nb$_{O_n}$ layers and pointed out that migration between the adjacent layers also took

Fig. 6 The oxide ionic transport mechanism of CeNbO$_{4+\delta}$. a, b Trajectory scatter plots of Ce and O atoms showing the migration paths A (black dash dot line) and B (yellow dash dot line) with the Nb$_{O_n}$ polyhedral network embedded in, and c snapshots of long-range oxide ion (marked with the blue circle) migration involving the breaking and reforming of the Nb$_{O_n}$ units (highlighted by dashed lines) in CeNbO$_{4.08}$ from the MD simulations at 1200 °C. In order to illustrate the Nb$_2$O$_9$ breaking and reforming mechanism clearly, in b, c the weak Nb–O bonds >2.2 Å are not included in the Nb$_{O_n}$ polyhedral units. d Arrhenius plot of the oxygen diffusion coefficient calculated using the MSD values of oxygen atoms for CeNbO$_{4+\delta}$ ($\delta = 0.08, 0.25, 0.33$). The activation energies are labeled.
place when the migration paths along the linked NbO₆ layers were blocked. The migration routes proposed by Pramana et al.17 are similar to those composed of paths B only identified in our study. However, the work of Pramana et al.17 did not identify the interstitial sites and as a consequence did not recognize migration paths going through the interstitial sites and the related dynamic process of the adaptation of the polyhedral units to the oxide ion migration. The proper description of the interstitial sites turns out to be crucial for the correct description of the full 3D long-range migration and also for the elucidation of the knock-on dynamic process of breaking and reformation of the Nb₂O₅ units during the oxide ion migration.

The calculated oxide diffusion coefficients of CeNbO₄₀.₈₈ are about one magnitude lower than that of CeNbO₄.₂₅ (Fig. 6d). This is ascribed to the larger concentration of the mobile charge carriers in CeNbO₄.₂₅. However, the oxide ions in CeNbO₄.₃₃ phase with more excess oxygen are essentially immobile at the same simulation temperatures compared with CeNbO₄₀.₈₈ and CeNbO₄.₂₅. The well-organized mixed corner/edge-sharing zigzag-shaped polyhedral [Nb₆O₁₆] chains in CeNbO₄.₃₃ phase resulting from the ordered distribution of the excess oxide ions have much less flexibility on the rotation and deformation. This rigidity blocks the transfer of the oxide ions between the polyhedral units. Also the high concentration of excess oxide ions in the oxygen sublattice seems to have a significant blocking effect to the oxide ion migration. The oxide ions in CeNbO₄.₃₃ phase get mobile only when the temperature is increased to above 2200 °C during the MD simulations (Supplementary Fig. 21). Even in that case, the migration path is confined only along the [Nb₆O₁₆] chain (Supplementary Fig. 22). The large Eₐ (~2.07 eV) calculated from the Arrhenius plot of oxygen diffusion coefficients confirm that the oxide ions are hardly mobile in CeNbO₄.₃₃ phase (Fig. 6d).

The MD simulations show an increase of Eₐ for the oxide ion migration with the temperature for both CeNbO₄₀.₈₈ and CeNbO₄.₂₅ phases (Fig. 6d), in accordance with the results by Pramana et al.17. The low-temperature Eₐ values (0.27–0.41 eV) are close to those from the conductivity data of CeNbO₄₀.₈₈ (δ = 0.08, 0.25, 0.33; Supplementary Fig. 23), which did not show apparent Eₐ changes when placed under N₂ flow and below 600 °C to maintain their oxygen contents (Supplementary Fig. 2). However, CeNbO₄.₂₅ displays mixed electronic and oxide ion conduction and it is hard to quantify the electronic and ionic contributions to the conductivity. Therefore, the calculated Eₐ from the MD simulations at low temperatures here cannot be compared directly with the experimental values from these conductivity measurements. Owing to the instability of the CeNbO₄.₂₅ phases to lose the extra oxygen at temperatures above 600 °C even in the O₂-rich atmosphere18,20, there is no accurate Eₐ in higher temperature region for direct comparison with the calculated high-temperature Eₐ values for each phase. However, the high-temperature Eₐ values for CeNbO₄₀.₈₈ (0.84 eV) and CeNbO₄.₂₅ (0.93 eV) are close to the experimental Eₐ (~0.99 eV) for oxide diffusion in CeNbO₄₀.₈₈ from the ¹⁸O tracer diffusion measurements by Packer et al.22, further validating our MD simulations. The increase of Eₐ with the temperature may be explained by the fact that the concentration of mobile oxide anions in CeNbO₄.₂₅ could depend on the temperature. At low temperatures, the loosely bonded oxide ion could be the major mobile oxide ion, while at higher temperatures the more strongly bonded oxide ions start to move and contribute to the oxide ion migration, which requires extra energy and therefore increases the total Eₐ.

In nonstoichiometric CeNbO₄₊ₓ, the incorporation of extra oxygen atoms is coupled by the oxidation of Ce³⁺ to smaller Ce⁴⁺ and the interstitial oxide ion migrations in the scheelite-based CeNbO₄₀.₈₈ and CeNbO₄.₂₅ take place through a synergic mechanism of breaking and reformation of the Nb₂O₅ dimers, which is possible thanks to the spatial proximity of the tetrahedral units. This is akin to the continuous breaking and reformation of the tetrahedral dimers in the vacancy-mediated oxide ion conductors based on isolated tetrahedral anion structures, e.g., La₁₋ₓBaₓCoO₄₋₀.₅ₓ31 and Bi₁₋ₓSrₓVO₄₋₀.₅ₓ. In these compounds, there is the coordination number in the polyhedral units involved in the oxide ion migration changes. The oxide ion migration mechanism in CeNbO₄₋ₓ revealed here thus emphasizes the key roles of the coordination-number-variable cations as well as rotation and deformation flexibility of 4/5-coordinated polyhedral units for the oxide ion migration. This is generally consistent with the previous findings in interstitial oxide ion conductingapatite14 and melilite-type materials10. Therefore, the structures containing cations forming polyhedral units with rotation, deformation and coordination flexibility, e.g., Ga, Ti, V, Nb, Mo, and W, are promising candidates for new oxide ion conductors if, at the same time, flexible oxidation state or donor substitution with smaller cations allows the introduction of excess oxide ions.

Discussion

In summary, atomic structures of three oxygen hyperstoichiometric materials (CeNbO₄₀.₈₈, CeNbO₄.₂₅, CeNbO₄.₃₃) were determined by combining data from 3D ED, SPD, and NPD. The superstructure of CeNbO₄.₃₃ and the (3 + 1)D incommensurately modulated structure of CeNbO₄₀.₈₈ were obtained for the first time, to the best of our knowledge. The interstitial sites O₃ were identified in all the three compounds and the structure analysis elucidates how the structure adapts for the oxygen hyperstoichiometry change, advancing our understanding of the complex CeNbO₄₊ₓ system. Cationic size contraction of Ce upon the oxidation allows not only the incorporation of excess oxygen into the host lattice of CeNbO₄ but also the relaxation of the NbO₆ polyhedra and their interconnection through mixed corner/edge-sharing in three dimensions. MD simulations show that, with the inclusion of the excess oxygen into the host lattice of CeNbO₄, the oxide ions become mobile in CeNbO₄₀.₈₈ and CeNbO₄.₂₅ with coordination-number-variable network but hardly migrate in the CeNbO₄.₃₃ phase owing to the ordered distribution of the excess oxide ions and the 6-coordinated [Nb₆O₁₆] polyhedral chain network with constrained deformation and rotation. Two kinds of oxide ion migration events are identified in CeNbO₄₀.₈₈ and CeNbO₄.₂₅ involving the interstitial O₃ sites: (i) migration between the NbO₆ polyhedra isolated by Ce cations; (ii) migration between neighboring NbO₆ polyhedra. These two processes together form a long-range 3D network of migration pathways through which the oxygen ions migrate via a synergic-cooperation knock-on mechanism involving the continuous breaking and reformation of the Nb₂O₅ units assisted by the polyhedral rotation and deformation. The relationship between the structure and oxide ion migration for the whole series of CeNbO₄₊ₓ compounds here provides means to optimize the performance of these compounds and to develop better oxygen hyperstoichiometric materials for a wide variety of applications.

Methods

Materials. The parent material CeNbO₄ was prepared by traditional solid-state reaction. The powders of CeO₂ and Nb₂O₅ were mixed and homogenized through grinding with an agate mortar and a pestle. The mixtures were annealed at 1623 K for 10 h and then sintered at 1073 K for 10 h in flowing argon gas atmosphere. The yellow colored powder, pure phase of CeNbO₄, was finally obtained.
phases CeNbO₄₋₀.₈, CeNbO₄₋₂₅, and CeNbO₄₋₁₂ were synthesized as described in Supplementary Fig. 1. In short, the CeNbO₄₋₁₂ phase was obtained by heating CeNbO₄ in air at 1123 K for 15 min, then quenching in the furnace to 948 K, holding at 948 K for another 20 min, and finally quenching to room temperature in air. CeNbO₄₋₂₅ was prepared by heating CeNbO₄ at 873 K in air for 24 h and then cooling in furnace to room temperature. The CeNbO₄₋₁₂ was prepared by heating CeNbO₄ at 673 K in flowing oxygen atmosphere for 72 h and then cooling to room temperature under oxygen atmosphere. The powder was reground and then reheated under the same conditions until the powder was in a single crystalline phase (Schematic representation of the synthesis of CeNbO₄₋₁₂ is shown in Supplementary Fig. 1).

Characterizations. 3D ED data was collected on a 200 kV JEM JEM-2100 transmission electron microscope. The geometries were continuously rotated while SAED patterns were simultaneously captured from crystals with the sizes ranging from 100 to 500 nm using the quad hybrid pixel detector (Tietzimex). The 3D ED datasets were then processed using the X-ray Detector Software package37, which can export the results as an hkl txt. TGA was performed on a TGA.Q500 from room temperature to 1000 °C with a heating rate of 10 °C min⁻¹ under flowing N₂ atmosphere. The AC impedance spectroscopy (IS) measurements were performed with a Solartron 1260 frequency response analyzer over the 10⁻¹–10⁻² Hz frequency range within the 100–700 °C temperature range under N₂ atmosphere flows. Prior to the IS measurements, the platinum paste was coated on the opposite faces of the pellets to form electrodes. Conventional PXRD pattern for parent phase CeNbO₄ was collected at room temperature on a PANalytical X’Pert Pro diffractometer in Debye–Scherrer geometry with Cu Kα1 radiation with a minimum full width half maximum of 0.028°. NPD data were collected on CeNbO₄₋₁₂ at ambient temperature over the 10–120° 2θ range at 26 intervals of 0.05° on the 3T2 diffractometer at Laboratoire Leon Brillouin (France) using wavelength λ = 1.22977 Å (CeNbO₄₋₁₀ and CeNbO₄₋₁₂) and λ = 1.54 Å (CeNbO₄₋₂₅). High-intensity and high-resolution SPD data were recorded on CeNbO₄₋₁₂ under transmission electron microscope. The goniometer was continuously rotated while receiving oxygen atmosphere for 72 h and then cooling to room temperature at 1 atm at specific temperature and pressure. The oxide ion migration in CeNbO₄₋₁₂ was then monitored by solid-state ¹⁷O MAS NMR spectroscopy.

Data availability

All relevant data supporting the findings of this study are available from the corresponding authors upon request.

Received: 22 December 2019; Accepted: 25 August 2020;
Published online: 21 September 2020

References

1. Forslund, R. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La₂₋₃Sr₂₋₃Ni₀.₇Fe₀.₃₋₃ Ruddlesden-Popper oxides. Nat. Commun. 9, 3150 (2018).

2. Halat, D. M. et al. Probing oxide-ion mobility in the mixed ionic–electronic conductor La₃₋₄SrₓMnO₃₋₀.₈ by solid-state ⁷¹Os MAS NMR spectroscopy. J. Am. Chem. Soc. 138, 11958–11969 (2016).

3. Nicoud, S. et al. Comprehensive study of oxygen storage in YbFe₂O₄₋₀.₈ (± 0.5): unprecedented coexistence of FeO₆ polyhedra in a single phase. J. Am. Chem. Soc. 139, 17031–17034 (2017).

4. Belik, A. A. et al. Crystal and magnetic structures and properties of BiMoO₄₋₁₂. J. Am. Chem. Soc. (2019).

5. Saranya, A. M. et al. Engineering mixed ionic electronic conduction in La₃₋₂SrₓMnO₃₋₀.₈ nanostructures through fast grain boundary oxygen diffusivity. Adv. Energy Mater. 5, 1500377 (2015).

6. Phillips, J. C. et al. Interstitial oxygen and high-temperature superconductivity in La₂₋₃SrₓCoO₄₋₀.₈. Phys. Rev. B 42, 6795 (1990).

7. Chmielowski, O. Zhen, A., Stephen, P. W., & Mitchell, J. F. Formation of CeO₂₋₀.₀₈ octahedra and tetrahedra in Yb₃CoO₄₋₀.₈. J. Solid State Chem. 181, 664–672 (2008).

8. Huq, A. et al. Structural and magnetic properties of the Kagomé antiferromagnet Yb₂CoO₄₋₀.₈. J. Solid State Chem. 179, 1136–1145 (2006).

9. Nakayama, S., Kageyama, T., Aono, H. & Sadaoka, Y. Ionic-conductivity of lanthanoid silicates, Ln₂₋₂O₃₋₀.₈ (Ln = La, Nd, Sm, Gd, Dy, Ho, Er and Yb). J. Mater. Chem. 5, 1801–1805 (1995).

10. Kuang, X. et al. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat. Mater. 7, 498–504 (2008).

11. Boehm, E. et al. Oxygen transport properties of La₃₋₀.₄Ni₀.₄Co₀.₄O₄₋₀.₄ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003).

12. Allen, G. C., Tempest, P. A. & Tyler, J. W. Coordination model for the defect structure of high-strain superconductors UO₃₋₀.₈ and U₂O₅. Nature 295, 48–49 (1982).

13. Wang, J. et al. Molecular dynamic simulation of interstitial oxide ion migration in Pb₁₋ₓLaₓWO₄₋₀.₈ scheelite. J. Solid State Chem. 268, 16–21 (2018).

14. Yang, X. Y. et al. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion scheelite structure. Nat. Commun. 9, 4484 (2018).

15. Cava, J. R. & Roth, R. S. Characterisation of modulated structures in ABO₄₋₁₋₁₋ₓ₋ₓ oxides. AIP Conf. Proc. 53, 361 (1979).

16. Thompson, J. G., Withers, R. L. & Brink, F. J. Modulated structures in oxidized cerium niobates. J. Solid State Chem. 143, 122–131 (1999).

17. Pramana, S. S. et al. Correlation of local structure and diffusion pathways in the modulated anisotropic oxide ion conductor CeNbO₄₋₁₂. J. Am. Chem. Soc. 138, 1273–1279 (2016).

18. Vullum, F. & Grande, T. Oxidation driven decomposition of CeNbO₄ in pure oxygen. Chem. Mater. 20, 5434–5437 (2008).

19. Vullum, F. & Grande, T. Oxygen stoichiometry and transport properties of cerium niobate. Solid State Ion. 179, 1061–1065 (2008).

20. Skinner, S. J. & Kang, Y. X-ray diffraction studies and phase transformations of CeNbO₄₋₁₋₀.₄ using in situ techniques. Solid State Sci. 5, 1475–1479 (2003).

21. Skinner, S. J. et al. Redox chemistry of the novel fast oxide ion conductor CeNbO₄₋₁₋₀.₄ determined through an in-situ spectroscopic technique. Solid State Ion. 192, 659–663 (2011).

22. Packer, R. J. & Skinner, S. J. Remarkable oxide ion conductivity observed at low temperatures in a complex superstructured oxide. Adv. Mater. 22, 1613–1616 (2010).

23. Bavylin, R. D. Fergusson-type CeNbO₄₋₁₋₀.₄ single crystal growth, symmetry determination and conductivity. J. Solid State Chem. 204, 291–292 (2013).

24. Li, J. & Sun, J. Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc. Chem. Res. 50, 2737–2745 (2017).

25. Li, J. et al. Discovery of complex metal oxide materials by rapid phase identification and structure determination. J. Am. Chem. Soc. 141, 4990–4996 (2019).

26. Wan, W., Sun, S., Su, J., Hovmöller, S. & Zou, X. Three dimensional rotation electron diffraction software RED for automated data collection and data processing. J. Appl. Cryst. 46, 1863–1873 (2013).

27. Yun, Y. F. et al. Phase identification and structure determination from multiphase crystallographic powder samples by rotation electron diffraction. J. Appl. Cryst. 47, 2048–2054 (2014).

28. Sheldrick, G. M. SHEXTL-Integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).

29. Palatinus, L. & Chapuis, G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).

30. Wu, J. et al. Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 5, 647–652 (2006).

31. Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007).

32. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst. D66, 125–132 (2010).
33. Petříček, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. *Z. Kristallogr.* 229, 345–352 (2014).
34. Coelho, A. Topas academic version 5. http://www.topas-academic.net/ (2012).
35. Todorov, I. T., Smith, W., Trachenko, K. & Dove, M. T. DL‐POLY 3: new dimensions in molecular dynamics simulations via massive parallelism. *J. Mater. Chem.* 16, 1911–1918 (2006).
36. Islam, M. S. Ionic transport in ABO3 perovskite oxides: a computer modelling tour. *J. Mater. Chem.* 10, 1027–1038 (2000).
37. Dick, B. G. Jr. & Overhauser, A. W. Theory of the dielectric constants of alkali halide crystals. *Phys. Rev.* 112, 90–103 (1958).
38. Lewis, G. V. & Catlow, C. R. A. Potential models for ionic oxides. *J. Phys. C Solid State Phys.* 18, 1149–1161 (1985).
39. Gale, J. D. GULP: a computer program for the symmetry-adapted simulation of solids. *J. Chem. Soc. Faraday Trans.* 93, 629–637 (1997).
40. Gale, J. D. & Rohl, A. L. The General Utility Lattice Program (GULP). *Mol. Simul.* 29, 291–341 (2003).
41. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. *J. Mol. Graph. Model* 14, 33–38 (1996).
42. Rog, T., Murzyn, K., Hinsen, K. & Kneller, G. R. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations. *J. Comput. Chem.* 24, 657–667 (2003).

Acknowledgements
J.S. gratefully acknowledges financial support from the National Natural Science Foundation of China (21527803, 21401099 and 21621061). X.K. acknowledges financial support from the National Natural Science Foundation of China (21622101 and 21511130134) and Guangxi Natural Science Foundation (2019GXNSFGA245006 and 2014GXNSFGA118004). We also acknowledge the Swedish Research Council (VR), the Knut and Alice Wallenberg Foundation (RAW), and beamline Laboratoire Leon Brillouin (France).

Author contributions
J. Li performed the SAED data collection, 3D ED data collection, and the structure solution and refinement of CeNbO4+δ. S.G. and X.K. performed the molecular dynamic simulations. F.P. and C.L. performed the syntheses, PXRD data collection, and assisted with refinement. M.A. performed the SPD and NPD data collection. L.P. supervised the incommensurately modulated structure solution and refinement. J.S. and X.K. conceived the project and supervised the experiments. J.S., X.K., L.P., and J. Li wrote the manuscript with the assistance of the other authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18481-x.

Correspondence and requests for materials should be addressed to X.K. or J.S.

Peer review information
Nature Communications thanks the anonymous reviewers for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020