Prevalence of K13 mutation and Day-3 positive parasitaemia in artemisinin-resistant malaria endemic area of Cambodia: a cross-sectional study

Soy Ty Kheang1*, Siv Sovannaroth2, Sovann Ek1, Say Chy1, Phally Chhun1, Sokkieng Mao1, Sokomar Nguon1, Dy Soley Lek2, Didier Menard3 and Neeraj Kak1

Abstract
Background: The presence of artemisinin-resistant malaria parasites was confirmed in western Cambodia in 2009. In 2013, mutations in the propeller domain of the kelch protein K13 was found to be associated with artemisinin resistance. A cross-sectional study was conducted to determine the prevalence of Day-3 parasitaemia, estimate the frequency of k13 molecular marker and assess their relationship in the context of operational research.

Methods: Blood smears and filter paper blood spots were collected from febrile patients in Kravanh District, Pursat Province. The blood smears were examined by microscopy, and blood spots by a k13 mutation assay.

Results: Data from 92 patients were analysed. Only one was positive for Day-3 parasitaemia. Results of the k13 assay were interpretable for 76 of the 92 samples. The findings were: wild type: 9 (12%), CS80Y: 64 (84%), Y493H: 3 (4%). Therefore, despite the high prevalence of k13 mutants (67/76: 88%), only 1 of the 92 patients remained blood smear positive for Plasmodium falciparum on Day-3.

Conclusions: These preliminary findings suggest good potency of artemisinin despite the dominance of k13 mutation in Kravanh, but the result is not necessarily representative of the western part of Cambodia. Further investigation should be made to determine if k13 marker remains useful as a tool for tracking artemisinin resistance and predicting the trend of the efficacy of artemisinin combination therapy once the mutant alleles have been well established in the population.

Keywords: Malaria, Cambodia, Surveillance, Artemisinin, Case management, Artemisinin resistant malaria

Background
Artesunate in combination with mefloquine (A+M) has been the first-line regimen for the treatment of Plasmodium falciparum malaria in Cambodia since 2000. Within a few years, local malaria control staff began to observe frequent recurrences of infection among patients in western Cambodia especially in Pailin Province and nearby areas. Therapeutic efficacy studies (TES) independently conducted in Pailin and across the border in Thailand’s Chanthaburi Province during 2002–2003 indicated A+M treatment failures [1, 2]. Artemisinin resistance was suspected. It was not until 2008, when a formal study began to investigate the efficacy status of artemisinin-based combination therapy (ACT) in the area. Based on clinical data, including the presence of Day-3 positive parasitaemia suggestive of poor artemisinin potency, it became widely accepted that artemisinin resistance had emerged in that area [3]. Given the entrenched mefloquine resistance in Thailand and Cambodia, the findings explained the ACT treatment failures.
The first-line therapy for falciparum malaria in Pailin was switched to atovaquone–proguanil (Malarone®) during 2013–2014. In nearby Pursat Province, dihydroartemisinin–piperaquine (DHA-PIP) replaced A+M in 2012 at the time when DHA-PIP was deployed countrywide. The Cambodian national therapeutics guidelines earlier adopted DHA-PIP (in principle) as the first line drug for both P. falciparum and Plasmodium vivax in 2010.

In both Pursat and Pailin, DHA-PIP efficacy also dropped significantly from 2008 to 2010 and prevalence of Day-3 positive parasitaemia increased from 25 to 45% in Pursat and from 8 to 10% in Pailin [4]. TES monitoring of DHA-PIP by the National Center for Parasitology, Entomology and Malaria Control (CNM) found that in 2012, 46% of the patients were Day-3 positive in Pursat and 15% in Tasanh District in Battambang Province, adjacent to Pailin; in 2014, 13% were Day-3 positive in Pursat and 41% in Pailin [5].

In 2013, Ariey et al. identified mutations in the propeller domain of the kelch protein K13 to be associated with artemisinin resistance as measured by Ring Stage Survival assays and delayed parasite clearance times in P. falciparum isolates from Cambodia [6]. Allele C580Y was found to be the most common mutant in western Cambodia. Its prevalence in Pailin increased progressively from 40% in 2001 to about 90% in 2012.

In Cambodia, after mefloquine withdrawal, the in vitro sensitivity to mefloquine improved along with a decrease in the prevalence of multiple pfmdr1 copies numbers (a marker of mefloquine resistance) [7]. However, in the case of artemisinin resistance, as observed in this observation, while k13 mutants have almost replaced the wild type in Kravanh, Day-3 positive parasitaemia is rare. The results indicate a lack of correlation between...
$k13$ mutation and the presence of Day-3 parasitaemia. Although evidence of DHA-PIP resistance was detected in the study area in 2014, in reality the first-line treatment was still DHA-PIP in February 2016. The findings of this study supported the continuation of the use of DHA-PIP.

Conclusions
These preliminary findings suggest good potency of artemisinin despite the dominance of $k13$ mutation in Kravanh. This raises some concern over the relevance of highly prevalent $k13$ mutation to artemisinin resistance. Further investigation should be made to determine if $k13$ marker remains useful as a tool for tracking artemisinin resistance and predicting the trend of ACT efficacy once the mutant alleles have been well established in the population.

When interpreting the findings, there is need for caution since the data were obtained as part of an ongoing service delivery, not collected under a stringent research setting. The timing of Day-3 parasitaemia samples was not based on an exact 72-h duration from the time of administration of the first DHA-PIP dose (the Day-3 collection from patients was beyond 72 h and <96 h) and the second and third doses might not have been exactly 24 h apart. In addition, slides were primarily read by a laboratory technician from the local health centre. However, slide cross-checks by the reference microscopist showed <10% discrepancy suggesting that the local microscopist had adequate competency to serve in such a remote malaria endemic area as in Kravanh. The microscopist also detected very low-density parasitaemia in several smears that might have been missed by most field microscopists. Overall, these preliminary data are considered sufficient to warrant a comprehensive study to re-assess the relationship between $k13$ mutation and artemisinin resistance in western Cambodia.

Abbreviations
A+M: artesunate–mefloquine combination; ACT: artemisinin-based combination therapy; APCR: adequate clinical-parasitological response; CNM: National Center for Parasitology, Entomology and Malaria Control; DHA-PIP: dihydroartemisinin–piperaquine; RDT: rapid diagnostic test; TES: therapeutic efficacy study.

Authors’ contributions
STK, SS, and DSL conceived of the study, and led design and coordination. SE and SC led the design of the study and managed study implementation. PC, SM, and SN supervised study implementation in the field with the support of DL. DM carried out the molecular analysis. CW helped to draft the manuscript. NK provided technical guidance during study design, implementation, and analysis. All authors read and approved the final manuscript.

Author details
1 PMI/USAID Control and Prevention of Malaria (CAP-Malaria)/Cambodia Malaria Elimination Project (CMEP) projects, University Research Co., LLC, Phnom Penh, Cambodia. 2 National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. 3 Pasteur Institute in Cambodia (IPC), Phnom Penh, Cambodia.

Acknowledgements
Staff of Pursat Provincial Health Department and heath personnel of the Sampov Meas Operational District engaged in the private sector initiative assisted in data collection and field supervision. The Pasteur Institute of Cambodia contributed to K13 assays with the Institute’s own resources. The National Center for Parasitology, Entomology and Malaria Control (CNM) provided support for the cross-reference slide checks.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset supporting the conclusions of this article is available from the Cambodian National Centre for Parasitology, Entomology, and Malaria Control.

Consent for publication
Available.

Ethics approval and consent to participate
Not applicable. Data was collected through routine health service delivery. Verbal consent was obtained from every patient and is considered sufficient in Cambodia as part of operational research.

Funding
Funding for the data analysis and reporting was provided by University Research Co. LLC, which is implementing malaria control projects in the region.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
1. Vijayakadga S, Rojanawatsirivej C, Cholpol S, Phoungmanee D, Nakavej A, Wongrinchanalal C. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate–mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health. 2006;11:211–9.
2. Denis MB, Tsuyuoka R, Poravuth Y, Naran SS, Seila S, Lim C, et al. Surveillance of the efficacy of artesunate and mefloquine combination for the treatment of uncomplicated falciparum malaria in Cambodia. Trop Med Int Health. 2006;11:1360–6.
3. WHO. Global plan for artemisinin resistance containment (GPARC). Geneva, World Health Organization, 2011.
4. Leang R, Barrette A, Mey Bouth D, Menard D, Abdur R, Duong S, et al. Efficacy of dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother. 2013;57:818–26.
5. National Malaria Center: Update on Therapeutic Efficacy Studies, Meeting Report January 27, 2016.
6. Arey F, Witrkowskki B, Amarutunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.
7. Lim P, Dek D, Try V, Srng S, Suon S, Fairhurst RM. Decreasing pfmdr1 copy number suggests that Plasmodium falciparum in Western Cambodia is regaining in vitro susceptibility to mefloquine. Antimicrob Agents Chemother. 2015;59:2934–7.