Spectrum and prevalence of BRCA1/2 germline mutations in Pakistani breast cancer patients: results from a large comprehensive study

Muhammad Usman Rashid1,2, Noor Muhammad1, Humaira Naeemi1, Faiz Ali Khan1, Mariam Hassan3, Saima Faisal3, Sidra Gull1,4, Asim Amin5, Asif Loya6 and Ute Hamann2*

Abstract

Background: Pathogenic germline mutations in BRCA1 and BRCA2 (BRCA1/2) account for the majority of hereditary breast and/or ovarian cancers worldwide. To refine the spectrum of BRCA1/2 mutations and to accurately estimate the prevalence of mutation in the Pakistani population, we studied 539 breast cancer patients selected for family history and age of diagnosis.

Methods: Comprehensive screening for BRCA1/2 germline mutations was performed using state-of-the-art technologies.

Results: A total of 133 deleterious mutations were identified in 539 families (24.7%), comprising 110 in BRCA1 and 23 in BRCA2. The prevalence of BRCA1/2 small-range mutations and large genomic rearrangements was 55.4% (36/65) for families with breast and ovarian cancer, 27.4% (67/244) for families with two or more cases of breast cancer, 18.5% (5/27) for families with male breast cancer, and 12.3% (25/203) for families with a single case of early-onset breast cancer. Nine mutations were specific to the Pakistani population. Eighteen mutations in BRCA1 and three in BRCA2 were recurrent and accounted for 68.2% (75/110) and 34.8% (8/23) of all identified mutations in BRCA1 and BRCA2, respectively. Most of these mutations were exclusive to a specific ethnic group and may result from founder effects.

Conclusions: Our findings show that BRCA1/2 mutations account for one in four cases of hereditary breast/ovarian cancer, one in five cases of male breast cancer, and one in eight cases of early-onset breast cancer in Pakistan. Our study suggests genetic testing of an extended panel of 21 recurrent BRCA1/2 mutations for appropriately selected patients and their families in Pakistan.

Keywords: BRCA1/2, germline mutations, breast cancer, Pakistan

Background

Individuals harboring BRCA1/2 germline mutations have high lifetime risks of breast and ovarian cancer. The identification of individuals harboring BRCA1/2 mutations is crucial to assess their cancer risk, consider preventive measures and tailor cancer management strategies.

Several studies have investigated the prevalence of BRCA1/2 small-range mutations and/or large genomic rearrangements (LGRs) with frequencies varying from 17.6% to 29.8% in white populations from Europe and Australia [1–5] and 9.4% to 21.7% in non-whites from Asia [6–8]. The prevalence and distribution of BRCA1/2 mutations vary across populations, mainly due to population-specific recurrent or founder mutations. Accurate identification of the population-specific mutation spectrum is therefore the first step towards incorporating appropriate genetic BRCA1/2 testing into clinical practice in a particular population. This information is not fully elucidated in Pakistan, a country with one of the highest rates of breast cancer in Asia.

To date, no large comprehensive studies evaluating the BRCA1/2 mutations have been reported in the Pakistani...
population and mutations in males have not been identified so far. Small-range mutations were previously reported in 341 unselected breast and 120 ovarian cancer patients, in which the analysis was restricted to a few exons only [9]. We conducted two studies in early-onset and familial breast/ovarian cancer patients from Pakistan. In the initial study the complete coding regions and exon-intron boundaries of \(\text{BRCA1/2} \) were screened for small-range mutations in 176 patients [10]. In the other study 120 \(\text{BRCA1/2} \) small-range mutations negative patients were screened for LGRs [11]. Other Asian studies also had small sample sizes [12, 13], reported small-range mutations only [14, 15], and/or restricted LGR analyses to a small number of study participants [6, 16, 17].

Here, we refined the spectrum of \(\text{BRCA1/2} \) mutations and more precisely estimated the mutation frequencies including small-range mutations and LGRs in 539 early-onset and familial breast cancer patients from Pakistan.

Methods

Enrollment of families

Five hundred and ninety-three breast cancer only or breast and ovarian cancer families were enrolled through index breast and/or ovarian cancer patients who presented at the Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan, from September 2004 to August 2015. The recruited families were classified into five risk groups based on family history of breast/ovarian cancer or age at diagnosis (Table 1) as described previously [19]. After enrollment, 54 families were excluded (Fig. 1), leaving 539 families in the study.

Clinical and histopathological data and comprehensive information on personal and family history of cancer(s), and ethnicity were obtained from all study participants. The Institutional Review Board of the SKMCH&RC approved the study. All study participants signed an informed written consent before providing a blood sample.

\(\text{BRCA1/2} \) mutation screening

Genomic DNA was extracted from 9 to 18 ml of whole blood samples, as described previously [20]. The entire coding regions of the \(\text{BRCA1} \) (Genbank accession number U14680) and \(\text{BRCA2} \) (Genbank accession number U43746) genes including exon-intron boundaries were screened for small-range \(\text{BRCA1/2} \) mutations and 33 mutations were described [18]. All small-range mutation-negative patients had been screened for LGRs using multiplex ligation-dependent probe amplification and three LGRs were described [11]. For the current study, families were selected on the basis of family history of breast/ovarian cancer, male breast cancer or age at diagnosis.

Mutation classification

All \(\text{BRCA1/2} \) alterations identified in the current study were classified into pathogenic mutations, variants of unknown significance, or polymorphisms. Pathogenic mutations were defined as (i) small-range mutations which affect one or a few nucleotides including frameshift, nonsense, or splice-site mutations and generate a premature termination codon, except \(\text{BRCA2} \) exon 27 variants generating a premature termination codon after codon 3010 [23] and (ii) LGRs that span one or more exons. Mutations were designated using the Human

Table 1 \(\text{BRCA1/2} \) mutation frequencies according to family structure

Risk group	Phenotype of families	No. of families	No. of families with mutations (%) in BRCA1	No. of families with mutations (%) in BRCA2					
			Small-range	LGRs	All	Small-range	LGRs	All	
All families		539	101 (18.7)	9 (1.7)	110 (20.4)	23 (4.3)	0 (0)	23 (4.3)	133 (24.7)*
Female breast cancer families		447	67 (15.0)	7 (1.6)	74 (16.6)	18 (4.0)	0 (0)	18 (4.0)	92 (20.6)
A1	1 case ≤ 30 years	203	20 (9.8)	2 (1.0)	22 (10.8)	3 (1.5)	0 (0)	3 (1.5)	25 (12.3)
A2	2 cases, >1 diagnosed ≤50 years	131	20 (15.3)	4 (3.0)	24 (18.3)	6 (4.6)	0 (0)	6 (4.6)	30 (22.9)
A3	≥3 cases, >1 diagnosed ≤50 years	113	27 (23.9)	1 (0.9)	28 (24.8)	9 (8.0)	0 (0)	9 (8.0)	37 (32.7)
A4	Male breast cancer families								
≥1 case of male breast cancer		27	1 (3.7)	0 (0)	1 (3.7)	4 (14.8)	0 (0)	4 (14.8)	5 (18.5)
B	Breast-ovarian cancer families								
≥1 breast cancer and ≥1 ovarian cancer		65	33 (50.8)	2 (3.0)	35 (53.8)	1 (1.5)	0 (0)	1 (1.5)	36 (55.4)

*Including 57 previously reported families [11, 18]

LGRs: large genomic rearrangements

Rashid et al. Hereditary Cancer in Clinical Practice (2019) 17:27 Page 2 of 13
Genome Variation Society (HGVS) and the Breast Cancer Information Core (BIC) committee nomenclature. All identified mutations were searched in various mutation databases including BIC (https://research.nhgri.nih.gov/bic/), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), LOVD (http://databases.lovd.nl/shared/genes/BRCA2), ARUP (http://arup.utah.edu/database/BRCA/), and BRCA Exchange (http://brcaexchange.org/). Mutations not reported in these databases were considered as novel and specific to Pakistani population.

Statistical analyses
Distribution of clinical and histopathological characteristics between BRCA1/2 carriers and non-carriers were estimated using Fisher’s exact test for categorical variables and the Wilcoxon rank-sum test for quantitative variables. All statistical tests were two-sided. Results were considered significant at a p value of <0.05. All statistical analyses were done using StatXact 4 for Windows (Cytel, Cambridge, USA) and R, version 2.1.

Results
A total of 539 index patients from unrelated families were enrolled and stratified into five risk groups (Table 1). The mean age of disease onset was 35.4 years (range 18-78) for female breast cancer (n=502), 45.4 years (range 23-66) for ovarian cancer (n=30) and 54.5 years (range 27-76) for male breast cancer (n=27) patients.

Spectrum of BRCA1/2 mutations
Evaluation of pooled data from 539 patients yielded 71 distinct pathogenic mutations in 133 families (24.7%) (Table 1). Fifty-three BRCA1 mutations were detected in 110 families (20.4%) and 18 BRCA2 mutations in 23 families (4.3%). Five mutations in BRCA1 (9.4%) and four mutations in BRCA2 (22.2%) were novel (Table 2). The phenotypes of all families carrying BRCA1/2 mutations are presented in Table 3.

Twenty-one (21/71; 29.6%) mutations including 18 in BRCA1 and three in BRCA2 occurred more than once (Fig. 2a, b). These mutations were identified in 83
Table 2: Deleterious BRCA1/2 germline mutations in Pakistani breast/ovarian cancer families

Family	Exon	BIC designation	HGVS designation	Mutation type	Reported in databases (No. of entries)
BRCA1-small-range mutations					
432	2	185	185InsA	c.66dup	p.(Glu23Argfs*18) FS BIC (32)
723	2	185	185delAG	c.68_69del	p.(Glu23Valfs*17) FS BIC (2036)
372	Intron 4	IVS4-2	-	c.135-2A>G	Splice site SP BIC (1)
254a	7	454	454delA	c.335del	p.(Asn112Ifs*7) FS ClinVar (2)
449	7	509	Y130X	c.390C>G	p.(Tyr130*) NS LOVD (3)
296, 317, 340a, 511, 521, 626a, 742					
470a	11	903	Q262X	c.784C>T	p.(Gln262*) NS ClinVar (3)
711	11	1014	1014delGT	c.895_896del	p.(Val299Argfs*4) FS BIC (2)
669a	11	1127	1127delA	c.1008del	p.(Glu337Lysfs*4) FS No
748	11	1307	1307delT	c.1188del	p.(Asp396Glufs*14) FS LOVD (1)
241a	11	1309	1309delA	c.1190del	p.(Asp397Alafs*13) FS ClinVar (3)
722	11	1518	1518_1572dupS5	c.1399_1453dup	(Ava485Glufs*13) FS No
336a	11	1590	Q491X	c.1471C>T	p.(Gln491*) NS BIC (4)
N12	11	1898	1898delTATGGAA	c.1779_1785del	p.(Met594Serfs*3) FS LOVD (2)
N28, 328a, 557a					
574a	11	2080	2080InsA	c.1961dup	p.(Tyr655Valfs*18) FS BIC (13)
488a	11	2268	E717X	c.2149G>T	p.(Glu717*) NS ClinVar (2)
236a, 283a, 489a, 493a, 593					
363	11	2388	2388delG	c.2266del	p.(Val575Phefs*8) FS BIC (10)
362, 469					
421a, 442, 510a, 542, 619a					
N34	11	2657	2657delAAT-insG	c.2538_2540delinsG	(Met847Glyfs*4) FS LOVD (2)
415a, 660a					
411a	11	2722	2722	c.2603C>G	p.(Ser868*) NS BIC (11)
318a	12	4302	4302	c.4183C>T	p.(Gln1395*) NS BIC (28)
408a	13	4446	4446	c.4327C>T	p.(Arg1443*) NS BIC (128)
Table 2 Deleterious BRCA1/2 germline mutations in Pakistani breast/ovarian cancer families (Continued)

Family	Exon	BIC designation	HGVS designation	Mutation type	Reported in databases (No. of entries)			
523^e, 555, N18, 598^e, 612, 621	Intron 14	IVS14-1	-	IVS14-1G>A	c.4485-1G>A	Splice site	SP	BIC (2)^d
220^e, 275^e, 512^e	15	4627	1503	51503X	c.4508C>A	p.(Ser1503*)	NS	BIC (1)^d
609^e	15	4784	1558	4784delG	c.4665del	p.(Arg1555Serfs*4)	FS	No
611^e	16	4981	1621	4981delA	c.4862del	p.(Asp1621Valfs*12)	FS	No
249^e, 658	17	5154	1679	5154delC	c.5035del	p.(Leu1679*)	FS	BIC (2)
276^e, 679	Intron 17	IVS17+1	-	IVS17+1G>A	c.5074+1G>A	Splice site	SP	BIC (3)
685	20	5358	1747	5358delC	c.5239del	p.(Gln1747Lysfs*18)	FS	LOVD (2)
734	20	5385	1756	5385delC	c.5266dup	p.(Gln1756Profs*74)	FS	LOVD (376)
706	Intron 20	IVS20-1	-	IVS20-1G>C	c.5278-1G>C	Splice site	SP	LOVD (5)^d
678	21	5429	1771	5429dupG	c.5310dup	p.(Pro1771Alafs*59)	FS	LOVD (1)
278, 338^e	22	5480	1787	5480delTG	c.5361_5362del	p.(Cys1787Trpfs*42)	FS	ClinVar (3)
682	22	5496	1793	K1793X	c.5377A>T	p.(Lys1793*)	NS	ClinVar (1)
248^e	Intron 23	IVS23-2	-	IVS23-2A>T	c.5468-2A>T	Splice site	SP	ClinVar (1)
260, 264, 329^e, 377^e, 389, 439, 481, 501, 522	23	5622	1835	R1835X	c.5503C>T	p.(Arg1835*)	NS	BIC (74)^d
BRCA1-large genomic rearrangements^j	1-2	-	-	del exon 1-2	g.41271967_41308900del	LGR	(42)^d	
229, 291, 314, 379, 406, 498, 549	24	5480	1787	5480delTG	c.5361_5362del	p.(Cys1787Trpfs*42)	FS	ClinVar (3)
261, 719	21-24	-	-	del exon 21-24	g.41172653_41205744del	LGR	No	
BRCA2-small-range mutations								
497, 700	3	320	31	W61X	c.92G>A	p.(Trp31*)	NS	ClinVar (4)
N26	Intron 4	IVS4-2	-	IVS4-2A>G	c.426-2A>G	Splice site	SP	ClinVar (4)
545	9	993	255	993delCAACA	c.765_769del	p.(Asn255Lysfs*19)	FS	No
330	10	1528	434	1528delAAA	c.1300_1303del	p.(Lys434Glufs*25)	FS	ClinVar (2)
602	11	3048	941	3048delA	c.2820del	p.(Val941Cysfs*19)	No	
206	11	3063	945	3063delA	c.2835del	p.(Asp946Ilefs*14)	FS	ClinVar (2)
505	11	4088	1287	4088delA	c.3860del	p.(Asn1287Ilefs*6)	FS	BIC (2)
222, 407^e, 525, 540^h	11	5450	1741	5450delGTAA	c.5222_5225del	p.(Ser1741Thrfs*35)	FS	BIC (1)
627, 684	11	5910	1894	1894X	c.5682C>A	p.(Tyr1894*)	NS	BIC (3)
295^e	11	5950	1908	5950delCT	c.5722_5723del	p.(Leu1908Argfs*2)	FS	BIC (43)^d
447	11	6696	2156	6696delTC	c.6468_6469del	p.(Gln2157Ilefs*18)	BIC (24)^d	
548^h	11	7044	2274	7044delAAGAG	c.6816_6820del	p.(Gly2274Alafs*17)	FS	ClinVar (6)
579	15	7803	2526	7803delA	c.7575del	p.(Ala2526Glnfs*2)	FS	LOVD (2)
492	Intron 17	IVS17+2	-	IVS17+2C>A	c.7976+2C>A	Splice site	SP	ClinVar (1)
713	20	8773	2849	8773delAA	c.8545_8546del	p.(Lys2849Glufs*19)	FS	No
702	20	8779	2860	8779_8798dup20	c.8551_8570dup	p.(Lys2860Asns*10)	FS	No
207^h	21	8897	2890	8897insT	c.8660dup	p.(Thr2891Asns*16)	FS	ClinVar (1)
unrelated families and accounted for 62.4% (83/133) of all families with mutations. The most common \(\text{BRCA1} \) mutation was c.3770+3771del (ten Punjabi families), followed by c.5503C>T (nine Punjabi families), exon 1-2 deletion (seven Punjabi families), c.685del (five Punjabi and two Balochi families), c.4485-1G>A (three Punjabi families), c.4269del (one Punjabi and four Pathan families), c.2405_2406del (five Punjabi families), c.4065_4068del (three Punjabi and one Pathan families), c.1793T>G (two Pathan families), c.4508C>A (three Pathan families), c.4613_4614del (one Pathan family), c.4508C>A (two Pathan families), and c.5074+1G>A (two Punjabi families).

The most common \(\text{BRCA2} \) mutation was c.5682C>A (two Pathan families). In addition to the deleterious mutations, 153 (28.4%) sequence variants were detected: 79 missense variants, 48 non-coding variants, 24 synonymous variants, one in-frame deletion, and one polymorphic nonsense variant in exon 27 of \(\text{BRCA2} \) (data not shown).

BRCA1/2 mutation frequencies

The frequencies of \(\text{BRCA1/2} \) mutations by risk group are provided in Table 1. For \(\text{BRCA1} \), the highest mutation frequency was noted in families with breast and ovarian cancer (53.8%), followed by families with at least three breast cancer cases (24.8%), families with two breast cancer cases (18.3%), or families with one early-onset breast cancer case (≤30 years) (10.8%). For \(\text{BRCA2} \), the highest frequency was observed in families with male breast cancer (14.8%).

Patient and tumors characteristics by \(\text{BRCA1/2} \) status

\(\text{BRCA1} \) carriers (n=110) were more often identified among female patients (99.1% vs. 94.6%, \(p=0.039 \)) and belonged to the Punjabi ethnic group (81.8% vs. 68.7%, \(p=0.030 \)) compared to non-carriers (n=406). In contrast, \(\text{BRCA2} \) carriers (n=23) were more common among male patients (17.4% vs. 5.4%, \(p=0.043 \)) and more often belonged to Pathan ethnic group (34.8% vs. 15.5%, \(p=0.009 \)).

Female breast cancer patients with mutations in \(\text{BRCA1} \) (n=106) or \(\text{BRCA2} \) (n=19) had a similar mean age of diagnosis (34.0 years (range 21–72) and 37.7 years (range 23–56), respectively, \(p=0.073 \), Wilcoxon rank-sum test), which did not differ to that of non-carriers (n=377) (35.7 years (range 18–78). In contrast, male breast cancer patients harboring \(\text{BRCA2} \) mutations (n=4) had an older mean age of diagnosis than non-carriers (n=22) (66.5 years (range 54–76) and 52.5 years (range 27–69) years, respectively, \(p=0.039 \), Wilcoxon rank-sum test).

\(\text{BRCA1} \)-associated breast tumors more often were invasive ductal carcinomas (99.0% vs. 91.4%, \(p=0.004 \)), triple-negative (60.8% vs. 22.6%, \(p<0.0001 \)), and of higher tumor grade (grade 3: 94.9% vs. 63.2%, \(p<0.0001 \)) compared to tumors of non-carriers. \(\text{BRCA2} \)-associated breast tumors more often were PR positive compared to tumors of non-carriers (81.8% vs. 57.2%, \(p=0.025 \)) (data not shown).

Discussion

To our knowledge, this is the largest Pakistani study that comprehensively investigated the spectrum of \(\text{BRCA1/2} \) small-range mutations and LGRs and prevalence of mutations in 539 high-risk families. Mutations were identified in 24.7% (133/539) of families. Eighteen \(\text{BRCA1} \) and three \(\text{BRCA2} \) mutations were recurrent and accounted for 68.2% and 34.8% of all mutations in \(\text{BRCA1} \) and \(\text{BRCA2} \), respectively. Nine mutations were specific to the Pakistani population, whereas other mutations had been reported elsewhere.

The most common type of identified mutations were frameshift mutations (60.6%) followed by nonsense mutations (25.4%). These data are consistent with our previous report [10] and a recent worldwide study [25]. In Pakistani patients, \(\text{BRCA1} \) mutations were about 5-
Family No.	No. of cancers	Age at onset (years)	Other cancer(s)\(^c\) (age at onset in years)	Ethnicity
Females carrying BRCA1- small-range mutations				
236\(^a\)	1	22\(^b\)	-	Pathan
316	1	25\(^b\)	-	Punjabi
264	1	26\(^b\)	-	Punjabi
706	1	26\(^b\)	Uterus (67)	Punjabi
N12	1	26\(^b\)	-	Punjabi
624	1	27\(^b\)	-	Punjabi
N25	1	28\(^b\)	-	Punjabi
276\(^a\)	1	28\(^b\)	-	Punjabi
610	1	28\(^b\)	-	Punjabi
678	1	28\(^b\)	-	Punjabi
411\(^a\)	1	29\(^b\)	Stomach (70)	Punjabi
724	1	29\(^b\)	Renal (48), lung (65), throat (65), unknown	Punjabi
N28	1	30\(^b\)	-	Punjabi
279\(^a\)	1(1)	27/36\(^b\)	-	Punjabi
278	2	25\(^b\)/32	-	Kashmiri
332\(^a\)	2	26\(^b\)/51	Leukemia (45)	Punjabi
682	2	28\(^b\)/40	Uterus (<62,65), throat (<72)	Punjabi
N18	2	29\(^b\)/<50	-	Punjabi
421\(^a\)	2	30\(^b\)/33	-	Punjabi
482	2	30\(^b\)/53	Skin (12), oral (54)	Punjabi
520	2	30\(^b\)/47	Uterus (32)	Punjabi
449	2	32\(^b\)/55	-	Punjabi
557\(^a\)	2	32\(^b\)/45	Unknown (<55), renal (70)	Punjabi
747	2	33\(^b\)/38	-	Unknown
722	2	20,34\(^b\)	Unknown (<18, <40)	Punjabi
687	2	37\(^b\)/45	-	Punjabi
470\(^a\)	2	40\(^b\)/40	Stomach (46), colon (59), lung	Punjabi
510\(^a\)	2	40\(^b\)/55	-	Punjabi
N13\(^a\)	2	40\(^b\)/>50	-	Punjabi
593	2	43,44\(^b\)	Leukemia (22)	Pathan
299	2(1)	24/27\(^b\)/55	-	Punjabi
660\(^a\)	2(1)	25/26\(^b)/70	Bladder	Punjabi
669\(^a\)	3	25\(^b\)/<40, <50	Brain (<78), oral (<80)	Punjabi
685	3	26,26\(^b\)	Blood (2x)	Mohajir
723	3	28\(^b\)/40	-	Pathan
612	3	29, <30,40	Throat (45), uterus (48)	Punjabi
313\(^a\)	3	30\(^b\)/48,7	-	Punjabi
Table 3 Characteristics of the 133 families with deleterious BRCA1/2 mutations (Continued)

Family No.	No. of cancers	Age at onset (years)	Other cancer(s) (age at onset in years)	Ethnicity
			Prostate (29)	Punjabi
336‡	3	-	-	Pathan
493‡	3	-	-	Punjabi
382	3	-	-	Punjabi
489‡	3	-	Bone (60), leukemia (60)	Pathan
743	3	-	-	Punjabi
658	3	-	-	Punjabi
377‡	3	-	Thyroid (59), intestine (70), bladder (75), liver	Punjabi
550‡	3	-	Lung, unknown	Punjabi
372	3(1)	-	Squamous cell carcinoma scalp (22)	Pathan
626‡	3(1)	-	-	Balochi
389	3(1)	-	Brain (36), uterus (70)	Punjabi
247‡	4	-	Uterus (31, 55)	Siriaki
652‡	4	-	-	Punjabi
362	4	-	Liver (>40), abdomen	Punjabi
399‡	4	-	Abdomen (45), lung (45), prostate (53)	Punjabi
338‡	4	-	Stomach (73)	Punjabi
408‡	4(1)	-	Abdomen (54), esophagus (74)	Punjabi
521	4(1)	-	Stomach (60, 65), lung, unknown	Punjabi
653	5	-	Colon (42), throat (66)	Punjabi
734	5	-	-	Punjabi
296	7(1)	-	-	Punjabi
439	8	-	Uterus (40), prostate, unknown	Punjabi
249‡	8(1)	-	-	Punjabi
619‡	1	1	-	Punjabi
646	1	1(1)	36*	Punjabi
748	1	1(1)	52*	Punjabi
542	1	2(1)	46*	Punjabi
210‡	1	4	35	Punjabi
241‡	2	1	29*	Punjabi
598‡	2	1	30*	Punjabi
463	2	1	35*	Punjabi
481	2	1	25*	Punjabi
621	2	1	50*	Punjabi
211‡	2	1(1)	50*	Punjabi
415‡	2	1(1)	35*	Punjabi
679	2	1(1)	28*	Punjabi
N4‡	2	1 (1)	41*	Punjabi
Table 3 Characteristics of the 133 families with deleterious BRCA1/2 mutations (Continued)

Family	No. of cancers	Age at onset (years)	Other cancer(s)	Ethnicity			
	Female BC (Bilateral)	OC (OC+BC)	BC	OC	(age at onset in years)		
	2	2(1)	40b,55	42b,45	-	Pavajhi	
317	2	3(1)	41,46	47b,52,55	Leukemia (10), vocal cord (45)	Pavajhi	
318	2	4(2)	40,46b	40,42b,44,58	Bladder (50, 50)	Pavajhi	
442	2(1)	2	34,50/50b	28,52	Leukemia (15)	Pavajhi	
283	2(1)	3	34/38,56	54,55,65	-	Pavajhi	
254	3	1	27,32b,43	41	Brain	Pavajhi	
711	3	1	40b,77	?	Gall bladder	Sindhi	
445	3	1(1)	44b,>60,73	74	Gall bladder	Pavajhi	
363	3	2	32,35,70	47b,7	Lung (65), oral (70), liver	Kashmari	
329	3	3	34b,39,7	39,50,7	-	Pavajhi	
609	4(1)	1	29b,31,48/55,56	30	-	Mohajir	
328	4	1	29,30b,31,39	55	-	Pavajhi	
501	4	1	34b,35,50,7	?	Brain (42)	Pavajhi	
522	4	2(1)	30b,40,45,45	35,60	Uterus (41)	Pavajhi	
611	4	2(1)	31b,36,37,42	50,55	Blood (30)	Pavajhi	
523	3(1)	4	39,46,50,53b	30,45,60	-	Pavajhi	
275	4(1)	1(1)	34,40,42,50	40	-	Pavajhi	
469	5	1(1)	29b,30,35,55	32b	-	Mohajir	
340	6	1	34b,42,50,50,50	54	-	Balochi	
574	6	2	32,32,35,45b,48,50	48,55	-	Pavajhi	
512	6(1)	1	<25,30,40,46,55b,50,50	<50,50	Uterus (<50)	Kashmari	
248	7	2(2)	23b,25,34,40,46,46,60	50,60	-	Pavajhi	
220	8	1(1)	25,27b,30,53,58,63,77	<30	-	Pavajhi	

Families carrying BRCA1-LGRsa

	No. of cancers	Age at onset (years)	Other cancer(s)	Ethnicity			
	Female BC (Bilateral)	OC (OC+BC)	BC	OC	(age at onset in years)		
229	1	-	28b	-	-	Pavajhi	
379	2	-	29,31b	-	Liver (38)	Pavajhi	
261	2	-	33,34b	-	-	Pavajhi	
406	2	-	39b,40	-	Abdomen (65)	Pavajhi	
498	2	-	40,41b	-	-	Siriaki	
549	2	-	38,72b	-	Unknown	Pavajhi	
314	6	-	32b,42,56,70,7	-	Uterus (54), pharynx (59), brain (63), abdomen	Pavajhi	
291	3	1	39,42,48	48b	Stomach, brain	Pavajhi	
719	3(1)	1	>40,42b	?	-	Pavajhi	

Families carrying BRCA2-small-range mutations

	No. of cancers	Age at onset (years)	Other cancer(s)	Ethnicity			
	Female BC (Bilateral)	OC (OC+BC)	BC	OC	(age at onset in years)		
330	1	-	29b	-	Lung (48, 58, 66), tongue (55)	Pavajhi	
206	1	-	30b	-	-	Pathan	
540d	1	-	67b	-	-	Mohajir	
207d	1	-	76b	-	Intestine (60)	Pavajhi	
295	1(1)	-	23/23b	-	Leukemia (49), esophagus (50)	Pavajhi	
times more frequent than BRCA2 mutations. A similar distribution was observed in two Asian studies from South India [26] and Saudi Arabia [27] and most studies among white populations [3–5, 28]. This is likely due to the predominance of recurrent BRCA1 mutations in these populations. Contradictory results were reported in other Asian studies from China, Hong Kong, Korea, and Indonesia, where BRCA2 mutations were observed at an equal or a higher frequency than BRCA1 mutations [6, 12, 15–17].

Among the 133 mutations identified in our study, 18 BRCA1 and three BRCA2 mutations were recurrent, accounting for 68.2% and 34.8% of all mutations in BRCA1 and BRCA2, respectively. The proportion of recurrent BRCA1 mutations to the total number of identified BRCA1 mutations is higher than our previous report [10], which is likely due to the larger size of the present study. Of the identified recurrent mutations, the majority was also reported as recurrent mutations in other populations [1, 4, 25], while few were exclusively identified in a specific ethnic group of Pakistan. Fourteen BRCA1 mutations (c.3770_3771del, c.5503C>T, c.4485-1G>A, c.4508C>A, c.2603C>G, c.3339_3341del, c.3598C>T, c.5035del, c.5074+1G>A, c.5361_5362del, exon 1-2 deletion, and exon 21-24 deletion) and one BRCA2 mutation (c.92G>A) were identified only in the Punjabi ethnic group. Fourteen BRCA1 mutations (c.3770_3771del, c.4065_4068del, c.4485-1G>A, c.4508C>A, c.5503C>T, exon 1-2 deletion) [9–11], while haplotype analyses of the remaining recurrent mutations have not been performed so far.

Table 3 Characteristics of the 133 families with deleterious BRCA1/2 mutations (Continued)

Family No.	Female BC (Bilateral)	OC (OC+BC)	Age at onset (years)	Other cancer(s) (age at onset in years)	Ethnicity
N26	2	-	26;35	-	Pathan
602	2	-	31;43	-	Punjabi
492	2	-	38;39	-	Mohajir
505	2	-	43;46	-	Pathan
713	2	-	35;56	-	Kashmiri
700	2(1)	-	35/43;46	Throat (72)	Punjabi
627	2(1)	-	42;51/51	-	Pathan
545	3	-	35;36;47	Brain (50), uterus (50), bone (54)	Punjabi
497	3	-	51;55;50	Brain	Sriuki
548d	3	-	45;50,69	-	Pathan
702	4	-	26,30;33,70	-	Punjabi
579	4	-	35,49;50,51	Oral (35), gall bladder (42)	Kashmiri
407d	4	-	31,45(male),45,54	Esophagus (39,59), leukemia (64)	Mohajir
538	5	-	34;38,45,50,58	Retinoblastoma (3), pancreas (73, liver (83)	Pathan
684	5	-	40;45,48,50,57	Throat (<48, <82), stomach (53), intestine (60)	Pathan
447	3(1)	2	31;50,55/65,50>50	Abdomen (>50), colon (62), brain (65)	Punjabi
525	4(1)	1	32,33/35;50,60	<45	Mohajir
222	7	2(1)	35,42;43;50,54;60,7	47;53b	Kashmiri

BC breast cancer, OC ovarian cancer, Unknown cancer phenotype is not known

*Mutations previously described [11, 18]; *Proband; *Age at cancer diagnosis is mentioned along with cancer phenotype. For relatives with unknown age at cancer onset, only cancer phenotype is mentioned; *Families with male breast cancer
The high percentage of recurrent BRCA1 mutations facilitates the development of a local, economical, and efficient ethnic-specific genetic testing strategy in Pakistan. BRCA1/2 mutations were identified in 24.7% of Pakistani breast cancer families. This frequency is higher than that from our initial report (17%) [10], probably due to the larger study size and comprehensive mutation analyses of both genes. This frequency is also higher than those from other Asian reports from Hong Kong, Malaysia, and Korea, ranging from 9.4% to 21.7% [6–8, 16, 17]. These findings further support the notion that the BRCA1/2 mutation frequencies vary among different populations. Our data are similar to those reported in white populations [1, 2, 4]. We found the highest mutation frequency in breast and ovarian cancer families (55.4%), in agreement with previous studies from Pakistan [10], Korea [16], and studies in white populations [4, 28]. We observed a 2.52 fold (53.8% vs. 21.3%) increased occurrence of BRCA1 mutations in breast and ovarian cancer families compared to breast cancer only families, in line with previous reports [1, 4, 6, 28]. Our findings support the notion that the presence of ovarian cancer in Pakistani breast cancer families increases the likelihood for the occurrence of BRCA1 mutation.

In the present study on 27 families with male breast cancer, a BRCA1/2 mutation frequency of approximately 19% was observed, with BRCA2 mutations being about 4-times more common than BRCA1 mutations. Our data are in line with previous studies [4, 14]. This observed frequency is higher than that reported in our initial much smaller study, in which no mutations were identified [10]. In agreement with the National Comprehensive Cancer Network (NCCN) guidelines, our data also
warrant BRCA1/2 testing in families with male breast cancer (NCCN Guidelines Version 2.2019).

The main strength of this study is its large size of 539 high-risk families, the comprehensive screening of both genes for small-range mutations and LGRs using highly sensitive methods (allowing the identification of recurrent BRCA1/2 mutations in the Pakistani population and the more accurate estimation of BRCA1/2 mutation frequencies among high-risk families), and the confirmations of mutations in an independent patient’s sample. However, our study also has some limitations. Participants were recruited at one tertiary care cancer center in Lahore, which may have introduced selection bias. Families belonging to Punjabi and Pathan ethnic groups are over-represented and, therefore, mutations in these groups may be over-represented. Nevertheless, Punjabi (44.7%) and Pathan (15.4%) are the most common ethnic groups reported in Pakistan (The World Factbook). Further, our data are based on self-reported ethnicity of study participants, which may lead to a misclassification of the ethnic origin of some of them.

Conclusions
In summary, our study showed that BRCA1/2 mutations account for 24.7% of high-risk breast cancer patients in Pakistan. Our results have important clinical implications, such as personalized treatment with platinum-based or PARP-inhibitor therapy for breast/ovarian cancer patients carrying a pathogenic BRCA1/2 mutation and early detection, surgical prevention, and chemoprevention strategies for their unaffected BRCA1/2 mutation positive relatives.
Overall, BRCA1/2 mutations account for one in four patients with a family history of breast cancer/breast and ovarian cancer, one in five patients with male breast cancer, and one in eight patients with early-onset breast cancer. Eighteen mutations in BRCA1 and three in BRCA2 were recurrent and accounted for 68.2% and 34.8% of all identified mutations in BRCA1 and BRCA2, respectively. Our data suggest that BRCA1 testing may be justified for families with multiple female breast cancers, breast cancer, and ovarian cancer or early-onset breast cancer and BRCA2 testing for families with male breast cancer from Pakistan. Our findings will help in tailoring cost-effective genetic testing approach for the high-risk Pakistani population or for individuals of Pakistani origin residing in other countries.

Abbreviations
BIC: Breast cancer information core; HGVs: Human genome variation society; LGRs: Large genomic rearrangements; LOVD: The Leiden open variation database; SKMCH&RC: Shaukat Khanum Memorial Cancer Hospital and Research Centre

Acknowledgements
We are grateful to all study subjects for their participation in this study. We thank the clinicians (Neelam Siddiqui, Mazhar Ali Shah, Narjis Muzaffar, Usman Ahmad, Umm e Kaltoom, Amir Ali Syed, Huma Majeed, Zulqarnain Chaudhry, Muhammad Asad Parvaiz, and Amina Khan) for their help in recruitment of study participants. We thank Jörg Hoheisel for critical reading of the manuscript.

Authors’ contributions
MUR contributed to conception and design of the study, patient recruitment and data acquisition. In addition, he was involved in data analysis, interpretation and in drafting and revising the manuscript. NM performed the molecular analyses and contributed to data analysis and interpretation. He was also involved in writing the first draft of the manuscript. HN, FAK and SG performed the molecular analysis. MH and SF were involved in patient recruitment and clinical data acquisition. AA was involved in the recruitment of study subjects, clinical data collection and revising the manuscript. AL was involved in the pathological data acquisition and interpretation. UH contributed to conception and design of the study, data analysis and interpretation and led the writing of the manuscript. All authors read and approved the final manuscript.

Funding
The study was supported by the Shaukat Khanum Memorial Cancer Hospital and Research Centre (grant number ONC-BRCA-002) and the German Cancer Research Center.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. It was approved by the ethics committee of Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore Pakistan. The ethics committee name is the “Institutional Review Board”. The approval number is ONC-BRCA-002. Written informed consent was obtained from all study participants.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing of interests.

Author details
1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan. 2Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. 3Clinical Research Office, SKMCH&RC, Lahore, Pakistan. 4Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany. 5Levine Cancer Institute, Charlotte, USA. 6Pathology Department, SKMCH&RC, Lahore, Pakistan.

Received: 23 May 2019 Accepted: 2 September 2019
Published online: 11 September 2019

References
1. de Juan JI, Garcia Casado Z, Palanca Suela S, Esteban Cardenosa E, Lopez Guerrero JA, Segura Huerta A, et al. Novel and recurrent BRCA1/BRCA2 mutations in early on Set and familial breast and ovarian cancer detected in the Program of Genetic Counseling in Cancer of Valencian Community (eastern Spain). Relationship of family phenotypes with mutation prevalence. Fam Cancer. 2013;12:767-77.
2. James PA, Sawyer S, Boyle S, Young MA, Kovalenko S, Doherty R, et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam Cancer. 2015;14:267–95.
3. Janavicius R, Rudaitis V, Micksys U, Eltakov P, Griskevicius L. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuanian Cancer Genet. 2014;207: 195–205.
4. Stegel V, Kraic M, Zgajnar J, Teugels E, De Greve J, Hoevear M, et al. The occurrence of germline BRCA1 and BRCA2 sequence alterations in Slovenian population. BMC Med Genet. 2011;129.
5. Thomassen M, Gerdes AM, Cruger D, Jensen PK, Kruse TA. Low frequency of large genomic rearrangements of BRCA1 and BRCA2 in western Denmark. Cancer Genet Cytogenet. 2006;168:168–71.

6. Han SA, Kim SW, Kang E, Park SK, Ahn SH, Lee MH, et al. The prevalence of BRCA mutations among familial breast cancer patients in Korea: results of the Korean Hereditary Breast Cancer study. Fam Cancer. 2013;12:75–81.

7. Kang P, Matapun S, Phuah SY, Lim LS, Liu J, Yoon SY, et al. Large BRCA1 and BRCA2 genomic rearrangements in Malaysian high risk breast-ovarian cancer families. Breast Cancer Res Treat. 2010;124:579–84.

8. Kwong A, Shin VY, Au CH, Law FB, Ho DN, Ip BK, et al. Detection of Germline Mutation in Hereditary Breast and/or Ovarian Cancers by Next-Generation Sequencing on a Four-Gene Panel. J Mol Diagn. 2016;18:580–94.

9. Liede A, Malik IA, Aztiz Z, Rios PD, Pde L, Kwan E, Narod SA. Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. Am J Hum Genet. 2002;71:595–606.

10. Rashid MU, Zaidi A, Torres D, Sultan F, Benner A, Naqvi B, et al. Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. Int J Cancer. 2006;119:282–9.

11. Rashid MU, Muhammad N, Amin A, Loya A, Hamann U. Contribution of BRCA1 large genomic rearrangements to early-onset and familial breast/ovarian cancer in Pakistan. Breast Cancer Res Treat. 2017;161:191–201.

12. Pumomoysi D, Pals G, Wahyono A, Ayyandono T, Manuaba TW, Haryono SJ, et al. BRCA1 and BRCA2 germline mutation analysis in the Indonesian population. Breast Cancer Res Treat. 2007;106:297–304.

13. Sugano K, Nakamura S, Ando J, Takayama S, Kamata H, Sekiguchi I, et al. Cross-sectional analysis of germline BRCA1 and BRCA2 mutations in Japanese patients suspected to have hereditary breast/ovarian cancer. Cancer Sci. 2008;99:1967–76.

14. Son BH, Ahn SH, Kim SW, Kang E, Park SK, Lee MH, et al. Prevalence of BRCA1 and BRCA2 mutations in non-familial breast cancer patients with high risks in Korea: the Korean Hereditary Breast Cancer (KOHBCA) Study. Breast Cancer Res Treat. 2012;133:1143–52.

15. Zhang J, Sun J, Chen J, Yao L, Dayang T, Li J, et al. Comprehensive analysis of BRCA1 and BRCA2 germline mutations in a large cohort of 5931 Chinese women with breast cancer. Breast Cancer Res Treat. 2016;158:455–62.

16. Kang E, Park SK, Lee JW, Kim Z, Noh WC, Jung Y, et al. KOHBCA BRCA risk calculator (KOHCaI): a model for predicting BRCA1 and BRCA2 mutations in Korean breast cancer patients. J Hum Genet. 2016;61:365–71.

17. Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBCA) study. Breast Cancer Res Treat. 2015;151:157–68.

18. Rashid MU, Muhammad N, Bajwa S, Faisal S, Tahseen M, Bermejo JL, et al. High prevalence and predominance of BRCA1 germline mutations in Pakistani triple-negative breast cancer patients. BMC Cancer. 2016;16:673.

19. Rashid MU, Muhammad N, Faisal S, Amin A, Hamann U. Deleterious RAD51C germline mutations rarely predispose to breast and ovarian cancer in Pakistan. Breast Cancer Res Treat. 2014;145:775–84.

20. Rashid MU, Muzaaffar M, Khan FA, Kabisch M, Muhammad N, Faiz S, et al. Association between the BsmI Polymorphism in the Vitamin D Receptor Gene and Breast Cancer Risk: Results from a Pakistani Case-Control Study. PLoS One. 2015;10:e0141562.

21. Arnold N, Gross E, Schwarzböeuger U, Pfisterer J, Jonat W, Kiechle M. A highly sensitive, fast, and economical technique for mutation analysis in hereditary breast and ovarian cancers. Hum Mutat. 1999;14:333–9.

22. Gross E, Arnold N, Pfeifer K, Bandick K, Kiechle M. Identification of specific BRCA1 and BRCA2 variants by DHPLC. Hum Mutat. 2000;16:435–53.

23. Claes K, Poppe B, Machackova E, Coene I, Foretova L, De Paepe A, et al. Differentiating pathogenic mutations from polymorphic alterations in the splice sites of BRCA1 and BRCA2. Genes Chromosomes Cancer. 2003;37:314–20.

24. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–61.

25. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Hsu D, Kwong A, et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat. 2018;39:593–620.

26. Vaidyanathan K, Lakhota S, Ravishankar HM, Tabassum U, Mukherjee G, Somasundaram K. BRCA1 and BRCA2 germline mutation analysis among Indian women from south India: identification of four novel mutations and high-frequency occurrence of 185delAG mutation. J Biosci. 2009;34:415–22.

27. Bu R, Siraj AK, Al-Obaisi KA, Bieg S, Al-Hazim M, Ajarim D, et al. Identification of novel BRCA1 founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis. Int J Cancer. 2016;139:1091–7.

28. Machackova E, Foretova L, Lukesova M, Vasikova P, Navratilova M, Coene I, et al. Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer. BMC Cancer. 2008;8:140.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.