Xpert MTB/RIF assay for the diagnosis of rifampicin resistance in different regions: a meta-analysis

Kaican Zong 1*, Chen Luo 1, Hui Zhou 1, Yangzhi Jiang 1 and Shiying Li 2*

Abstract

Background: To estimate the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance in different regions, a meta-analysis was carried out.

Methods: Several databases were searched for relevant studies up to March 3, 2019. A bivariate random-effects model was used to estimate the diagnostic accuracy.

Results: We identified 97 studies involving 26,037 samples for the diagnosis of rifampicin resistance. The pooled sensitivity, specificity and AUC of Xpert MTB/RIF for rifampicin resistance detection were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively. For different regions, the pooled sensitivity were 0.94(95% CI 0.89–0.97) and 0.92 (95% CI 0.88–0.94), the pooled specificity were 0.98 (95% CI 0.94–1.00) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.99 (95% CI 0.98–1.00) and 0.99 (95% CI 0.97–0.99) in high and middle/lower income countries, respectively. The pooled sensitivity were 0.91 (95% CI 0.87–0.94) and 0.91 (95% CI 0.86–0.94), the pooled specificity were 0.98 (95% CI 0.96–0.99) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.98 (95% CI 0.97–0.99) and 0.99 (95% CI 0.97–0.99) in high TB burden and middle/lower prevalence countries, respectively.

Conclusions: The diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was excellent.

Keywords: Xpert MTB/RIF, Rifampicin resistance, Prevalence, Income, Meta-analysis

Background

Tuberculosis (TB) remains a major global health problem and ranks as the leading cause of death from an infectious disease worldwide. In 2017, TB infected about 10.0 million people and approximately 16% (1.6 million) of infected patients died from the disease, which was a higher global total for new TB cases and deaths than previous one. Of the 1.6 million died cases, 300,000 occurred among people infected with human immunodeficiency virus (HIV) [1].

Drug-resistant TB, including multidrug-resistant TB (MDR-TB, defined as resistance to at least isoniazid and rifampicin, the two most important first-line anti-TB drugs) and extensively drug-resistant TB (XDR-TB, defined as MDR-TB plus resistance to any fluoroquinolone, such as ofloxacin or moxifloxacin, and to at least one of three injectable second-line drugs, amikacin, capreomycin, or kanamycin) has become a serious threat to global health [2]. In 2017, approximately 460,000 people, which means 3.5% of new and 18% of previously treated TB cases, were estimated to have had MDR-TB globally. And 9.0% of them had developed to XDR-TB. Rifampicin resistance (RR) was the most common resistance drug, affected approximately 558,000 people [1].

When TB is detected and effectively treated, the disease is largely curable. However, accurate and rapid detection of TB can be difficult, as challenging sample collection from deep-seated tissues and the paucibacillary characteristics of the disease [3]. Worldwide, approximately 35% of all forms of TB and 75% of patients with MDR-TB remain undiagnosed [4]. Notably,
under 3% of people who diagnosed with TB are tested to have certain pattern of drug resistance [5]. Xpert MTB/RIF was an effective, rapid, new method to diagnose TB and RR-TB, which was recommended by WHO [1].

Traditionally, the best available reference standard for TB diagnosis is solid and/or liquid culture. However, in clinical practice, prolonged turnaround times and limited laboratory infrastructure in resource-limited settings undermine the utility of culture-based diagnosis [6]. Histology is widely used for the diagnosis of TB where the technical pathologists are available. However, it is time-consuming, technically demanding, and lacks specificity [7]. In early 2011, the World Health Organization (WHO) endorsed the Xpert® MTB/RIF assay (Cepheid, Sunnyvale, USA) [8], a novel, rapid, automated, cartridge-based nucleic acid amplification test (NAAT), for the initial diagnosis in patients with suspected pulmonary MDR-TB or HIV-associated pulmonary TB [9, 10]. It can simultaneously detect TB through detection of the DNA of Mycobacterium tuberculosis and simultaneously identify a majority of the mutations that confer rifampicin resistance (which is highly predictive of MDR-TB). A high accuracy for pulmonary TB detection (sensitivity 89%, specificity 99%) was obtained [11]. In late 2013, WHO expanded its recommendations to include the diagnosis of TB in children and some forms of extrapulmonary TB (EPTB) [1].

A series of meta-analyses were carried out to determine the diagnostic accuracy of Xpert MTB/RIF in different forms of TB [12–14], however, evaluation of its accuracy in rifampicin resistance is rare [11]. More importantly, no study estimated the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance in countries with different TB prevalence and income till now. To replenish this, in this review, we synthesized the available data, taking into account the accuracy of Xpert MTB/RIF in diagnosing rifampicin resistance.

Methods

Literature search strategy
We searched the MEDLINE, Cochrane library, EMBASE, and Web of Knowledge for published works without language restrictions. The key searching words were used were: “Xpert MTB/RIF”, “Xpert”, “Gene Xpert”, plus “rifampicin resistance”. Our last search was accomplished on March 3, 2019.

Study selection and data extraction
The study selection and data extraction procedures were performed by two researchers (Kaican Zong and Hui Zhou) independently. Any differences in the process were solved by discussing with a third author (Shiying Li).

Inclusion criteria and exclusion criteria
Studies included in our meta-analysis should meet the following criteria: (i) clinical trials that used Xpert MTB/RIF for the detection of rifampicin resistance; (ii) samples were body tissues or fluid from suspected TB patients; (iii) the number of cases were more than 10; (iv) original data were sufficient to calculate the true positive (TP), true negative (TN), false positive (FP), and false negative (FN); (v) drug-susceptibility testing (DST) was used as the gold standard. Studies were excluded from our meta-analysis if they were: (i)
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
1	Al-Atiha SM [15]	2012	Saudi Arabia	Laboratory	126 (53.8)	1 (0.4)	NR	Cross-sectional Unspecified	234 (239)	Sputum (56), BAL (116); tissue (16), CSF (14), FNA (5), body fluid (22), abscess (10)	DST	
2	Antonenka U [16]	2013	Germany	Clinical	NR	NR	NR	Retrospective Unspecified	121 (121)	Respiratory specimens (121)	Solid or liquid media DST	
3	Balkells ME [17]	2012	Chile	Clinical	127 (79.4)	160 (100)	Adults > 18 (37.4, 19–65)	Cross-sectional Prospective Consecutive	160 (12)	Sputum (160)	Solid and liquid media DST	
4	Barmankulova A [18]	2015	Kyrgyzstan	Laboratory	172 (57.3)	NR	Median 34, IQR 25–45	Cross-sectional Unspecified	300 (191)	Sputum (300)	Solid and liquid media DST	
5	Barnard M [19]	2012	South Africa	Laboratory	NR	NR	NR	Unspecified Consecutive	282 (68)	Sputum (282)	DST	
6	Bates M [20]	2013	Zambia	Clinical	NR	22 (2.4)	Children ≤ 15	Prospective Unspecified	930 (930)	Sputum, gastric lavage aspirate (930)	Liquid culture	
7	Biadglegne F [21]	2014	Ethiopia	Clinical	99 (42.9)	NR	14.7% ≤ 14, 85.3% > 14	Cross-sectional Unspecified	231 (32)	Lymph node aspirates (231)	DST	
8	Blakemore R [22]	2010	America	Clinical	NR	NR	NR	Unspecified Unspecified	168 (79)	Sputum (168)	DST	
9	Boehme CC [23]	2010	Peru	Clinical	929 (53.7)	392 (22.7)	Adults ≥ 18 (34, 17–88)	Prospective Consecutive	1730 (720)	Sputum (1730)	Solid media DST	
			Azerbaijan		181 (53.1)	3 (0.9)	Adults ≥ 18 (31, 18–79)		341 (209)	Sputum (341)	Solid media DST	
			South Africa		251 (71.1)	9 (2.6)	Adults ≥ 18 (37, 20–69)		353 (143)	Sputum (353)	Solid or liquid media DST	
			India		357 (49.2)	376 (51.8)	Adults ≥ 18 (34, 18–74)		726 (183)	Sputum (726)	Liquid media DST	
					140 (45.2)	4 (12.9)	Adults ≥ 18 (30, 17–88)		310 (185)	Sputum (310)	Liquid media	
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
-------	----------------------	------	----------	---------------	----------	---------	--------------------------	-------------------------	-----------------------------	--------------------------	---------------	
10	Boehme CC [24]	2011	Peru	Clinical	60.8	18.9	Adults ≥18 (38, 29–50)	Unspecified Conssecutive	6648 (1060) Sputum (6648)	DST		
					31.2	0.4	Adults ≥18 (37, 26–53)					
			Azerbaijan		99.9	0.1	Adults ≥18 (36, 30–44)		749 (211) Sputum (749)			
			South Africa		50.6		Adults ≥18 (36, 29–46)		2522 (188) Sputum (2522)			
			Uganda		54.3		Adults ≥18 (32, 26–38)		372 (116) Sputum (372)			
			India		69.6		Adults ≥18 (45, 32–58)		902 (103) Sputum (902)			
			Philippines		60.5		Adults ≥18 (47, 34–58)		918 (257) Sputum (918)			
11	Bowles EC [25]	2011	Netherlands	Clinical	NR	NR	NR	Unspecified	89 (60) Sputum (86), pleural fluid (1), gastric fluid (1), bronchial washing (1)	DST		
12	Carriquiry G [26]	2012	Peru	Clinical	73%	0%	Adults ≥18 (35, 29–42)	Cross-sectional	131 (39) Sputum (131)			
13	Cayci YT [27]	2017	Turkey	Laboratory	NR	NR	NR	Unspecified	34 (34) Respiratory (19) and Non-respirator specimens (15)	Liquid media DST		
14	Chakravorty S [28]	2017	South, Africa, India	Laboratory	NR	NR	NR	Prospective	139 (139) Sputum (139)			
15	Chiang TY [29]	2018	China	Clinical	55%	0%	Median 55, IQR 35.8–700	Prospective	2957 (697) Sputum (697)			
16	Chikaonda T [30]	2017	Malawi	Clinical	50%	0%	Adults ≥18 (36, 29–50)	Retrospective Random	351 (188) Sputum (60)			
Study	First author [ref.]	Year	Country	Study setting	Male (%	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
-------	---------------------	------	---------	---------------	---------	---------	--------------------------	--------------------------	-----------------------------	--	--------------	
17	Çiftçi IH [31]	2011	Turkey	Clinical	NR	NR	NR	Unspecified	85 (24)	Sputum (50), BAL (25), thorascopy fluid (5), urine (5)	Liquid media DST	
18	Deggim V [32]	2013	Switzerland	Clinical	NR	NR	NR	Prospective	79 (10)	Respiratory and Non-respirator specimens (79)	DST	
19	Dharan NJ [33]	2016	Russia, Peru, Hong Kong, Haiti, USA	Clinical	358 (66.8)	536 (98.5)	Median 54.2, IQR 19–88	Unspecified	544 (185)	Sputum (185)	DST	
20	Dorman SE [34]	2012	South Africa	Laboratory	6499 (98.8)	602 (8.7)	Median 43, IQR 34–49	Cross-sectional	6893 (144)	Sputum (6893)	Liquid media DST	
21	Dorman SE [35]	2018	South Africa, Uganda, Kenya, India, China, Georgia, Belarus, Brazil	Clinical	1059 (60.4)	441 (25.2)	Median 38, IQR 28–50	Prospective	1753 (551)	Sputum (551)	Liquid media DST	
22	Du J [36]	2015	China	Clinical	70 (55.6)	5 (40)	Adults> 16 (38.6, 254–518)	Unspecified	126 (126)	Pleural biopsy (126), pleural fluid specimens (126)	Liquid media DST	
23	Feliciano CS [37]	2018	Brazil, Mozambique	Clinical	22 (75.9)	6 (20.7)	NR	Cross-sectional	29 (29)	NR (29)	Solid media DST	
24	Giang do C [38]	2015	Vietnam	Clinical	98 (65.3)	0 (0)	Children< 15 (18.5 months, 5–170 months)	Prospective	150 (29)	Sputum (79), Gastric fluid (215), CSF (3), Pleural fluid (4), Cervical lymphadenopathic pus (1)	Liquid media DST	
25	Gu Y [39]	2015	China	Clinical	28 (46.7)	NR	Median 39.7, IQR 19.5–746	Prospective	60 (24)	Pus specimens (60)	Liquid media DST	
26	Guenaoui K [40]	2016	France	Laboratory	35 (0.7)	NR	NR	Prospective	50 (50)	Sputum (50)	Liquid DST	
27	Helb D [41]	2010	Uganda	Clinical	38 (59.3)	20 (313)	Median 34, IQR 18–60	Retrospective	64 (64)	Sputum (64)	DST	
28	Hillemann D [42]	2011	Germany	Laboratory	NR	NR	NR	Unspecified	521 (29)	Urine (91), gastric aspirate (30), tissue (245), pleural fluid (113), CSF (19), stool (23)	Liquid media DST	
29	Huang H [43]	2018	China	Laboratory	NR	NR	NR	Retrospective	2910 (1066)	NR	Liquid media DST	
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
-------	---------------------	------	---------	---------------	----------	---------	--------------------------	--------------------------	---------------------------	--------------------------	---------------	
30	Huh HJ [44]	2014	South Korea	Clinical	197 (65.7)	1 (0.3)	Median 58, IQR 18–93	Retrospective Unspecified	300 (98) Sputum (264), Bronchial washing or BAL (39)	Solid and liquid media DST		
31	Hu P [45]	2014	China	Laboratory	1037 (76.7)	NR	3.2% < 20, 96.8% ≥ 20	Unspecified Consecutive	1352 (332) Sputum (1352)	Solid media DST		
32	Jin YH [46]	2017	China	Clinical	59 (54.1)	NR	Median 48.6, IQR 24.0–73.1	Unspecified Unspecified	109 (48) Pus (48)	Liquid media DST		
33	Kawkitinarong K [47]	2017	Thailand	Clinical	284 (58.6)	128 (25.9)	Median 41, IQR 30.8–54.3	Prospective Unspecified	521 (228) Pulmonary specimens (228)	DST		
34	Khalil KF [48]	2015	Pakistan	Clinical	36 (38.7)	0 (0)	> 16, 19.5–576	Unspecified Consecutive	93 (93) BAL (93)	Solid media DST		
35	Kim CH [49]	2014	South Korea	Clinical	104 (60.8)	1 (0.6)	Median 58.6, IQR 41.02–76.18	Retrospective Unspecified	171 (26) Pulmonary (160), Non-pulmonary (38) specimens	Solid media DST		
36	Kim CH [50]	2015	South Korea	Clinical	217 (56.7)	1 (0.3)	Median 56.3, IQR 38.43–74.18	Retrospective Convenience	383 (444)	Solid media DST		
37	Kim MJ [51]	2015	South Korea	Laboratory	NR	NR	NR	Unspecified Convenience	52 (45) Sputum (36), bronchial washing (10), pleural fluid (3), pleural mass (1), urine (2)	Liquid media DST		
38	Kim SY [52]	2012	South Korea	Clinical	NR	NR	NR	Unspecified Convenience	71 (62) Sputum (71)	Liquid media DST		
39	Kim YW [53]	2015	South Korea	Clinical	761 (53.3)	12 (0.8)	Median 59, IQR 0–99	Retrospective Convenience	1429 (1540) LN and tissue/pus (397), body fluid (469), CSF (254), joint fluid (283), urine (106), others (31)	Solid media DST		
40	Kim YW [54]	2015	South Korea	Clinical	196 (61.1)	NR	Median 36, IQR 38–71	Retrospective Convenience	321 (321) Sputum (321)	DST		
41	Kokuto H [55]	2015	Japan	Clinical	51 (54.8)	0 (0)	Adult≥20 (59.6, 450–75.0)	Retrospective Convenience	93 (56) fecal specimens (93)	DST		
42	Kostera J [56]	2018	Bangladesh	Clinical	NR	NR	NR	Unspecified Unspecified	132 (122) Sputum (122)	Liquid media DST		
Study	First author [ref.]	Year	Country	Study setting	Male (%	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
-------	----------------------	------	---------	---------------	---------	---------	--------------------------	---------------------------	---------------------------	-----------------------------	---------------	
43	Kurbaniyazova G [57]	2017	Kyrgyzstan	Laboratory	NR	NR	Adult≥18	Retrospective, Unspecified	2734 (364) (414)	NR	Solid and liquid media DST	
44	Kurbatova EV [58]	2013	Russia	Clinical	NR	NR	Adults≥18	Unspecified, Consecutive	201 (99)	Sputum (201)	Solid and liquid media DST	
45	Kwak N [59]	2013	South Korea	Clinical	426 (62.5)	5 (0.7)	Median 61, IQR 47.5–73.0	Retrospective, Unspecified	681 (127)	Sputum (127)	Liquid media DST	
46	Lawn SD [60]	2011	South Africa	Clinical	162 (34.6)	468 (100)	Adults≥18	Prospective, Consecutive	468 (55)	Sputum (468)	Liquid media DST	
47	Lee HY [61]	2013	South Korea	Clinical	78 (59.1)	1 (0.8)	Median 54.0, IQR 18–90	Retrospective, Unspecified	132 (132)	Bronchoscopy specimens (132)	Ogawa media DST	
48	Li Q [62]	2016	China	Laboratory	NR	NR	NR	Unspecified, Consecutive	1973 (449)	Sputum (449)	Liquid media DST	
49	Li Y [63]	2017	China	Laboratory	251 (60.6)	NR	Median 48.5, IQR 38.3–58.7	Unsimplified, Consecutive	420 (59)	Extra-pulmonary specimens (59)	Solid media DST	
50	Liu X [64]	2015	China	Clinical	NR	NR	NR	Unsimplified, Consecutive	134 (44)	Pleural biopsy and pleural fluid specimens (100)	Liquid media DST	
51	Lorent N [65]	2015	Cambodia	Clinical	160 (33.5)	189 (64.5)	Median 43, IQR 34–52	Prospective, Consecutive	299 (102)	Sputum (102)	Solid media DST	
52	Luetkemeyer AF [66]	2016	USA South Africa, Brazil	Laboratory	446 (45.0)	617 (62.2)	Median 46, IQR 35–64	Unsimplified, Consecutive	992 (194)	Sputum (2)	DST	
53	Metcalfe IZ [67]	2016	Zimbabwe	Clinical	216 (61.4)	238 (67.6)	Median 36.3, IQR 29.0–44.4	Prospective, Consecutive	352 (161)	Sputum (161)	Solid and liquid media DST	
54	Mokaddas E [68]	2015	Kuwait	Laboratory	NR	NR	NR	Unsimplified, Consecutive	452 (452)	Sputum (287), FNA (66), pus (58), pleural fluid (14), tissue (10), other sterile fluids (8), urine (5), CSF (2), stool (2).	Liquid media DST	
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
-------	---------------------	------	---------	---------------	----------	---------	--------------------------	--------------------------	----------------------------	--------------------------	---------------	
55	Moon HW [69]	2015	South Korea	Clinical	NR	NR	NR	Unspecified Unspecified	100 (100)	Respiratory specimens (100)	DST	
56	Moure R [70]	2011	Spain	Clinical	NR	NR	NR	Retrospective Unspecified	122 (85)	Sputum (92), BA (12), pulmonary biopsy (1); pleural fluid (4), gastric aspirate (5), urine (2), stool (1); cerebrospinal fluid (3), ascitic fluid (2), lymph node aspirate (1), skin biopsy (1), mammary abscess (1)	DST	
57	Mwanza W [71]	2018	Zambia	Laboratory	NR	NR	NR	Unspecified Consecutive	1070 (24)	NR (24)	Liquid media DST	Liquid media DST
58	Myneedu VP [72]	2014	India	Laboratory	NR	NR	NR	Unspecified Unspecified	134 (88)	Sputum (134)	Liquid media DST	Liquid media DST
59	Nguessan K [73]	2014	Côte d’Ivoire	Clinical	91 (75.8)	NR	Median 34.2, IQR 24.1–44.3	Unspecified Unspecified	120 (29)	Sputum (120)	Liquid media DST	Liquid media DST
60	Nguessan K [74]	2018	Côte d’Ivoire	Clinical	715 (65.3)	130 (12)	Median 33, IQR 18–80	Cross-sectional Consecutive	1095 (162)	Sputum (162)	Liquid media DST	Liquid media DST
61	Nikolayevsky V [75]	2018	Ukraine	Clinical	2393 (68.8)	1265 (364)	Median 38.3, IQR 27–51.6	Retrospective Unspecified	3478 (3167)	Pulmonary specimens (3167)	Solid and liquid media DST	DST
62	Nicoll MP [76]	2011	South Africa	Clinical	250 (55.3)	108 (239)	Children ≤ 15 (19.4 months, 11.1–46.2 months)	Prospective Consecutive	452 (77)	Sputum (452)	DST	
63	O’Grady J [77]	2012	Zambia	Clinical	446 (50.6)	595 (67.5)	Adults > 15 (35, 28–43)	Prospective Unspecified	881 (96)	Sputum (881)	Liquid media DST	Liquid media DST
64	Ou X [78]	2014	China	Laboratory	1741 (70.9)	NR	NR	Unspecified Consecutive	2454 (616)	Sputum (2454)	Solid media DST	Liquid media DST
65	Ozkutuk N [79]	2014	Turkey	Laboratory	NR	NR	NR	Unspecified Unspecified	2639 (133)	Sputum (721), BAL (757), gastric fluid (94), endotracheal aspirates (30), transtracheal aspirate (9); urine (341), pleural fluid (232), tissue (176), CSF (111), abscesses (94), peritoneal fluid (42), pericardial fluid (18), joint fluid (7), other (7)	Liquid media DST	Liquid media DST
66	Pan X [80]	2018	China	Clinical	120 (68.2)	NR	Median 46.7, IQR 16–84	Prospective Unspecified	190 (62)	Sputum, BAL (62)	DST	
67	Pang Y [81]	2014	China	Clinical	128 (NR)	14 (Children ≤ 14)	Prospective Consecutive	211 (10)	Gastric lavage aspirates (211)	Liquid media		
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard	
--------	----------------------	------	---------	---------------	----------	---------	---------------------------	--------------------------	---------------------------	-----------------------------	---------------	
68	Park KS [82]	2013	South Korea	Clinical	NR	NR	NR	Prospective Consecutive	320 (19)	Respiratory specimens (320)	Liquid media DST	
69	Pimkina E [83]	2015	Lithuania	Laboratory	559 (70.6)	NR	Age ≥ 15	Retrospective Unspecified	791 (264)	Respiratory specimens (264)	Solid or liquid media DST	
70	Pinyopoompanish K [84]	2015	Thailand	Clinical	34 (59.6)	15 (26.3)	≥15 (55.6, 35.5–75.7)	Cross-sectional Consecutive	57 (43)	Sputum (57)	Liquid media DST	
71	Rachow A [85]	2011	Tanzania	Clinical	141 (48.3)	172 (58.9)	Median 39.2	Unspecified Consecutive	292 (61)	Sputum (292)	Liquid media DST	
72	Rahman A [86]	2016	Bangladesh	Clinical	NR	NR	NR	Unspecified Unspecified	92 (92)	Sputum (92)	Liquid media DST	
73	Raizada N [87]	2014	India	Clinical	2339 (50.8)	NR	Children < 14	Prospective Consecutive	4600 (48)	Sputum (4600)	Liquid media DST	
74	Reither K [88]	2015	Tanzania Uganda	Clinical	219 (46.8)	197 (43.7)	Children < 16 (5.6, 20–58)	Prospective Consecutive	451 (25)	Sputum (451)	Liquid media DST	
75	Rice JP [89]	2017	America	Laboratory	NR	NR	Median 30, IQR 35–60	Retrospective Unspecified	637 (120)	Sputum (120)	Liquid media DST	
76	Sharma SK [90]	2015	India	Laboratory	909 (64.7)	NR	Median 37.5, IQR 19.4–55.6	Unspecified Consecutive	1406 (422)	Respiratory specimens (422)	Solid and liquid media DST	
77	Sharma SK [91]	2017	India	Laboratory	1405 (55.6)	NR	Median 35.29, IQR 20–50	Unspecified Convenient	2468 (328)	Extra-pulmonary specimens (328)	Liquid media DST	
78	Singh UB [92]	2016	India	Clinical	589 (51.4)	NR	NR	Prospective Unspecified	1145 (72)	Pulmonary and Extra-pulmonary specimens (132)	Liquid media DST	
79	Soeroto AY [93]	2019	Indonesia	Clinical	193 (56.9)	5 (1.5)	Median 38.2, IQR 25.7–50.7	Retrospective Unspecified	339 (158)	NR (158)	DST	
80	Ssengooba W [84]	2014	Uganda	Clinical	155 (36.6)	424 (100)	Median 32, IQR 32–34	Prospective Unspecified	424 (9)	Sputum (424)	Liquid media	

Table 1 Characteristics of studies included in the meta-analysis for rifampicin-resistance tuberculosis detection (Continued)
Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard
81	Strydom K [95]	2015	South Africa	Laboratory	NR	NR	NR	Retrospective Consecutive	120 (115)	Sputum (120)	DST
82	Tahseen S [96]	2016	Pakistan	Clinical	1078 (54.3)	NR	Median 33	Cross-sectional Consecutive	1984 (1533)	Sputum (1533)	Solid media DST
83	Theron G [97]	2011	South Africa	Clinical	325 (67.7)	130 (27.1)	Adults≥18 (96, 18–83)	Unspecified Consecutive	480 (157)	Sputum (480)	Liquid media DST
84	Tsuyuguchi K [88]	2017	Japan	Clinical	146 (61.6)	NR	Median 65.2, IQR 23–94	Prospective Consecutive	237 (201)	Sputum (201)	Solid media DST
85	Ullah I [99]	2017	Pakistan	Clinical	130 (48.9)	0 (0)	Median 34, IQR 3–80	Unspecified Unspecified	266 (88)	Extra-pulmonary specimens (88)	DST
86	Vadwai V [100]	2011	India	Clinical	251 (45.9)	16 (29)	Median 37, IQR 8–months–94	Unspecified Consecutive	547 (125)	Biopsy (284), pus (147), body fluids (93), CSF (23)	Solid and liquid media DST
87	van Kampen SC [101]	2015	Kazakhstan	Laboratory	NR	52 (0.9)	NR	Prospective Consecutive	5611 (1054)	Sputum (5611)	Solid or liquid media DST
88	van Kampen SC [102]	2015	Indonesia	Clinical	872 (60.5), missing 15 (1.0)	35 (24)	0.5% < 15, 97.7% ≥ 16, 18% missing	Unspecified Consecutive	1442 (339)	Sputum (1442)	DST
89	Wang G [103]	2017	China	Clinical	NR	NR	NR	Prospective Undefined	1461 (538)	Pulmonary specimens (1063), extra-pulmonary specimens (398)	Solid media DST
90	Wang G [104]	2019	China	Clinical	192 (65.75)	0 (0)	Median 42, IQR 14–89	Prospective Consecutive	292 (119)	Sputum (90), pleural fluid (29)	Solid or liquid media DST
91	Williamson DA [105]	2012	New Zealand	Clinical	NR	NR	NR	Unspecified Unspecified	169 (14)	Respiratory specimens (89); extra-pulmonary specimens (9), MGIT liquid culture vials (71)	Liquid media DST
92	Yin QQ [106]	2014	China	Clinical	141 (55.3)	NR	Children≤18 (6.1, 0.3–15.3)	Unspecified Unspecified	255 (21)	BALF (255)	Liquid media DST
Table 1: Characteristics of studies included in the meta-analysis for rifampicin-resistance tuberculosis detection (Continued)

Study	First author [ref.]	Year	Country	Study setting	Male (%)	HIV (%)	Age (year) (Median, IQR)	Patient selecting method	Total samples n (included n)	Specimen type (samples n)	Gold standard
93	Yuan M [107]	2016	China	Clinical	NR	0 (0)	NR	Retrospective Unspecified	328 (90)	Extra-pulmonary specimens (90)	DST
94	Zar HJ [108]	2012	South Africa	Clinical	294 (55.0)	117 (219)	Children<15 (19.0 months, 112–38.3 months)	Unspecified Consecutive	535 (125)	Nasopharyngeal specimens, sputum (535)	Liquid culture
95	Zar HJ [109]	2014	South Africa	Clinical	181 (47)	31 (8)	Children<15 (38.3 months, 212–56.5 months)	Prospective Consecutive	384 (18)	Sputum (309), Nasopharyngeal aspirate specimens (309)	DST
96	Zetola NM [110]	2014	Botswana	Clinical	221 (59.7)	279 (594)	Adult≥18 (37, 31–44)	Retrospective Consecutive	370 (370)	Sputum (370)	DST
97	Zhang AM [111]	2016	China	Clinical	65 (95.6)	0 (0)	Children≤14 (Unspecified)	Unspecified	109 (21)	Pulmonary and Extra-pulmonary specimens (21)	Liquid media DST

Sample selection: Study units selected prospectively, or retrospectively from existing samples. Consecutive, random or convenience sampling method. ‘Unspecified’ refers to studies where there was no clear indication how the study participants were chosen. Solid media culture (Löwenstein-Jensen), liquid media culture (Bactec MGIT 960).
Table 2: Data of diagnostic accuracy of studies included in the meta-analysis for rifampicin resistance tuberculosis detection

Study	First author [ref.]	Year	Total samples n (included n)	True positive	False positive	False negative	True negative	Specimen type
1	Al-Ateah SM [15]	2012	234 (59)	2	0	0	57	Respiratory and non-respiratory specimens
2	Antonenka U [16]	2013	121 (50)	2	0	0	48	Respiratory specimens
3	Balcells ME [17]	2012	160 (12)	0	2	0	10	Sputum
4	Barak M [19]	2012	282 (36)	3	0	0	33	Sputum
5	Bates M [20]	2013	930 (41)	2	1	0	38	Sputum, gastric lavage aspirate
6	Bladegne F [21]	2014	231 (32)	2	1	0	29	Lymph node aspirates
7	Blakemore R [22]	2010	168 (79)	37	0	0	42	Sputum
8	Boehme CC [23]	2010	1730 (720)	200	10	5	505	Sputum
9	Peru		341 (209)	16	3	0	190	
10	Boehme CC [24]	2011	6648 (1060)	236	14	14	796	Sputum
11	Carriquiry G [26]	2012	131 (39)	6	3	0	30	Sputum
12	Cayci YT [27]	2017	34 (34)	3	1	0	30	Respiratory and none-respiratory specimens
13	Chakravorty S [28]	2017	139 (139)	38	1	3	97	Sputum
14	Chiang TY [29]	2018	2957 (697)	36	9	0	652	Sputum
15	Chikanda T [30]	2017	351 (200)	2	1	0	185	Sputum
16	Ciftçi IH [31]	2011	85 (24)	0	0	0	24	Sputum, BAL, thorasynthesis fluid, urine
17	Deggim V [32]	2013	79 (10)	0	3	0	7	Respiratory and None-respiratory
18	Dharan NJ [33]	2016	544 (185)	85	9	2	89	Sputum
19	Dorman SE [34]	2012	6893 (144)	5	5	0	134	Sputum
20	Dorman SE [35]	2018	1753 (511)	167	7	8	369	Sputum
21	Du J [36]	2015	126 (43)	9	2	1	31	Pleural biopsy specimen
22	Feliciano CS [37]	2018	29 (29)	12	3	4	10	NR
23	Giang do C [38]	2015	150 (29)	1	0	0	28	Respiratory and non-respiratory specimens
24	Gu Y [39]	2015	60 (24)	6	0	0	18	Pus specimens
25	Guenavoi K [40]	2016	50 (50)	21	0	0	29	Sputum
26	Helb D [41]	2010	64 (64)	9	1	0	54	Sputum
27	Hilleman D [42]	2011	521 (29)	0	4	0	25	Non-respiratory specimens
28	Huang H [43]	2018	2910 (1066)	147	16	5	898	NR
Table 2 Data of diagnostic accuracy of studies included in the meta-analysis for rifampicin resistance tuberculosis detection (Continued)

Study	First author [ref.]	Year	Total samples n (included n)	True positive	False positive	False negative	True negative	Specimen type
29 Huh HJ [44]	2014	300 (98)	6	1	1	90	Respiratory specimens	
30 Hu P [45]	2014	1352 (332)	26	4	2	300	Sputum	
31 Jin YH [46]	2017	109 (48)	4	4	1	39	Pus	
32 Kawkitinarong K [47]	2017	521 (228)	15	0	1	212	Pulmonary specimens	
33 Khalil KF [48]	2015	93 (93)	5	0	1	87	BAL	
34 Kim CH [49]	2014	171 (26)	2	0	0	24	Respiratory and non-respiratory specimens	
35 Kim CH [50]	2015	383 (36)	4	1	0	31	Respiratory and Non Respiratory specimens	
36 Kim MJ [51]	2015	52 (45)	1	0	1	43	Respiratory and non-respiratory specimens	
37 Kim SY [52]	2012	71 (62)	21	0	0	41	Sputum	
38 Kim YW [53]	2015	1429 (47)	4	0	1	42	Non-respiratory specimens	
39 Kim YW [54]	2015	321 (321)	25	4	0	292	Sputum	
40 Kokuto H [55]	2015	93 (56)	4	0	2	50	Fecal specimens	
41 Kostera J [56]	2018	132 (122)	28	0	4	90	Sputum	
42 Kurbaniyazova G [57]	2017	2734 (364, solid media DST)	120	20	12	212	NR	
43 Kurbatova EV [58]	2013	201 (99)	57	1	5	36	Sputum	
44 Kwak N [59]	2013	681 (127)	8	6	0	113	Sputum	
45 Lawn SD [60]	2011	468 (55)	4	3	0	48	Sputum	
46 Lee HY [61]	2013	132 (35)	2	0	0	33	Bronchscopy specimens	
47 Li Q [62]	2016	1973 (449)	47	16	6	380	Sputum	
48 Li Y [63]	2017	420 (59)	11	0	1	47	Extra-pulmonary specimens	
49 Liu X [64]	2015	134 (44)	10	2	1	31	Pleural biopsy and pleural fluid specimens	
50 Lorent N [65]	2015	299 (102)	24	6	3	69	Sputum	
51 Luetkemeyer AF [66]	2016	992 (194)	5	1	2	186	Sputum	
52 Metcalf JZ [67]	2016	352 (161)	54	8	9	90	Sputum	
53 Mokaddas E [68]	2015	452 (452)	10	2	0	440	Respiratory and non-respiratory specimens	
54 Moon HW [69]	2015	100 (100)	47	0	3	50	Respiratory specimens	
55 Muñoz L [70]	2011	122 (85)	6	0	1	78	Respiratory and non-respiratory specimens	
56 Mwanza W [71]	2018	1070 (24)	13	3	0	8	NR	
57 Mynedd M [72]	2014	134 (88)	54	1	1	32	Sputum	
58 Nguessan K [73]	2014	120 (29)	14	4	0	11	Sputum	
59 NGuessan K [74]	2018	1095 (162)	112	8	0	42	Sputum	
60 Nikolayevskyy V [75]	2018	3478 (3167)	1212	77	86	1792	Pulmonary specimens	
61 Nicol MP [76]	2011	452 (77)	3	4	0	70	Sputum	
62 O’Grady J [77]	2012	881 (96)	13	2	3	78	Sputum	
Table 2 Data of diagnostic accuracy of studies included in the meta-analysis for rifampicin resistance tuberculosis detection
(Continued)

Study	First author [ref.]	Year	Total samples n (included n)	True positive	False positive	False negative	True negative	Specimen type
63	Ou X [78]	2014	2454 (616)	54	16	8	538	Sputum
64	Ozkutuk N [79]	2014	2639 (133)	1	1	0	131	Respiratory and non-respiratory specimens
65	Pan X [80]	2018	190 (62)	2	2	0	58	Sputum and BAL
66	Pang Y [81]	2014	211 (10)	1	0	0	9	Gastric lavage aspirates
67	Park KS [82]	2013	320 (19)	2	0	0	17	Respiratory specimens
68	Pimkina E [83]	2015	791 (264)	39	4	0	221	Sputum
69	Pinyopornpanish K [84]	2015	57 (43)	0	0	3	40	Sputum
70	Rachow A [85]	2011	292 (61)	0	0	0	61	Sputum
71	Rahman A [86]	2016	92 (92)	85	6	0	1	Sputum
72	Raizada N [87]	2014	4600 (48)	47	1	0	0	Sputum
73	Reither K [88]	2015	451 (25)	0	0	0	25	Sputum
74	Rice JP [89]	2017	637 (120)	2	2	0	116	Sputum
75	Sharma SK [90]	2015	1406 (422)	104	7	6	305	Respiratory specimens
76	Sharma SK [91]	2017	2468 (328)	38	2	3	285	Extra-pulmonary specimens
77	Singh UB [92]	2016	1145 (72)	14	0	2	56	Pulmonary and extra-pulmonary specimens
78	Soeroto AY [93]	2019	339 (158)	141	17	0	0	NR
79	Sengooba W [94]	2014	424 (94)	4	0	0	9	Sputum
80	Strydom K [95]	2015	120 (115)	59	1	2	53	Sputum
81	Taheen S [96]	2016	1984 (1533)	85	17	15	1416	Sputum
82	Theron G [97]	2011	480 (157)	5	1	0	151	Sputum
83	Tsuyuguchi K [98]	2017	237 (201)	22	3	0	176	Sputum
84	Ullah I [99]	2017	266 (88)	24	2	0	62	Extra-pulmonary specimens
85	Vadwai V [100]	2011	547 (125)	39	5	1	80	Non-respiratory specimens
86	van Kampen SC [101]	2015	5611 (1054)	522	31	33	468	Sputum
87	van Kampen SC [102]	2015	1442 (339)	158	18	21	142	Sputum
88	Wang G [103]	2017	1461 (538)	145	0	3	390	Pulmonary and extra-pulmonary specimens
89	Wang G [104]	2019	229 (119)	21	0	1	97	Sputum, pleural fluid
			90	15	0	1	74	Sputum
			29	6	0	0	23	Pleural fluid
90	Williamson DA [105]	2012	169 (14)	7	6	0	1	Respiratory; extra-pulmonary specimens, positive MGIT liquid culture vials
91	Yin QQ [106]	2014	255 (21)	1	0	0	20	BALF
92	Yuan M [107]	2016	328 (900)	12	0	3	75	Extra-pulmonary specimens
93	Zar HJ [108]	2012	535 (125)	5	5	1	114	Nasopharyngeal specimens, sputum
94	Zar HJ [109]	2014	384 (18)	0	0	0	18	Sputum, Nasopharyngeal aspirate specimens
95	Zetola NM [110]	2014	370 (370)	51	1	4	314	Sputum
96	Zhang AM [111]	2016	109 (21)	6	0	0	15	Pulmonary and extra-pulmonary specimens

IQR Interquartile range, TA Tracheal aspirate, BA Bronchial aspirate; BAL Bronchoalveolar lavage, LN Lymph node, CSF Cerebrospinal fluid, EPTB Extra-pulmonary tuberculosis, CCRS Composite clinical reference standard, FNA Fine needle aspirate; DST: drug-susceptibility testing
case report; (ii) abstract of any conference; (iii) non-clinical research; (iv) review.

Data extraction
The following data were extracted from each included study: first author, year of publication, country, study settings, gender, the number of patients, the number and type of samples, diagnostic characteristics of Xpert MTB/RIF such as TP, TN, FP and FN. We sent e-mails to the authors for more details when data of individual studies were insufficient for a meta-analysis. In the case of inability to obtain data from the authors, the studies were excluded.

Statistical analysis
MIDAS modules in the STATA statistical software (version 12.0; STATA Corporation, College Station, TX, USA) was used to perform the meta-analyses. The summary receiver operating characteristic (SROC) model and the bivariate random-effects model were used in our study to evaluate the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection. For each study, we calculated the sensitivity and specificity of Xpert MTB/RIF to diagnose rifampicin resistance along with 95% confidence intervals.

Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was introduced to assess the quality of each included study. The Review Manager software (version 5.3, The Nordic Cochrane Centre, Copenhagen, Denmark) was used to present the result of QUADAS assessment.

We assessed the heterogeneity between included studies by using a bivariate boxplot, which can describe the degree of interdependence including the central location and identification of any outliers with an inner oval representing the median distribution of the data points and an outer oval representing the 95% confidence bound (by visually examining the position of each individual study, within the range of boxplot suggesting more heterogeneity).

![Fig. 2 Risk of bias and applicability concerns as percentages across the included studies for rifampicin resistance detection](image)

![Fig. 3 Heterogeneity test of included studies in this meta-analysis: a bivariate boxplot (a) and a Deek's funnel plot (b)](image)
Results
Description of included studies
Finally, we included 97 studies in this meta-analysis [15–111] (Fig. 1), including 26,037 samples for the diagnosis of rifampicin resistance. All studies were in English except five (three in Chinese [46, 64, 111] and two in Turkish [31, 79]). Twenty-six studies (26.8%) were conducted in high income countries (the World Bank income classification 2018) and 52 studies (53.6%) were in the 22 countries with a high burden of TB [1].

The median number of samples per study was 268 for rifampicin resistance detection. The samples of 56 included studies were pulmonary, such as sputum and BAL. Another 15 studies were extrapulmonary samples (e.g. body fluid, FNA, stool and blood), 16 studies included samples of both pulmonary and extrapulmonary (Tables 1 and 2).

Methodological quality of included studies
The overall methodological quality of the included studies was summarized in Fig. 2. Approximately half of the included studies collected data consecutively (n = 41; 42.2%) (Table 1) and no study used a case-control design. All studies were carried out either in tertiary care centers or reference laboratories. In index tests part, 15 studies (15.5%) were considered as unclear risk of bias. In reference standard part, 11 studies (11.3%) were considered as unclear risk of bias because the results of the reference standard were interpreted with unclear blind of the results of the index tests. In flow and timing part, 14 studies (24.7%) were considered as unclear risk of bias because not all patients were included in the analysis.

The heterogeneity of the studies included in this study was tested by a bivariate boxplot (Fig. 3a) and a Deek's funnel plot (Fig. 3b). Most of the included studies were in the bivariate boxplot, and the slope of Deek's funnel was almost horizontal, which all meant a good heterogeneity.

Detection of rifampicin resistance in different prevalence and income regions
The accuracy of Xpert MTB/RIF for rifampicin resistance detection was estimated in 59 studies. The pooled sensitivity, specificity and AUC of Xpert MTB/RIF were estimated.
RIF for detecting rifampicin resistance were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively (Fig. 4).

Of the 97 studies, 26 studies were of high income countries, 62 of middle and 9 were of low income. For TB prevalence, 52 studies were from the 22 high TB burden countries, and 45 were not. The pooled sensitivity were 0.94 (95% CI 0.89–0.97) and 0.92 (95% CI 0.88–0.94), the pooled specificity were 0.98 (95% CI 0.94–1.00) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.99 (95% CI 0.98–1.00) and 0.99 (95% CI 0.97–0.99) in high and middle/low income countries, respectively (Fig. 5a and Fig. 5b). The pooled sensitivity were 0.91 (95% CI 0.87–0.94) and 0.91 (95% CI 0.86–0.94), the pooled specificity were 0.98 (95% CI 0.96–0.99) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.98 (95% CI 0.97–0.99) and 0.99 (95% CI 0.97–0.99) in high TB burden and middle/low prevalence countries, respectively (Fig. 5c and Fig. 5d).

Discussion

Several meta-analyses have focused on the diagnostic accuracy of Xpert MTB/RIF for pulmonary [12] or extra-pulmonary TB [13, 14] detection either on adults or children [12]. However, to our knowledge, this is the first meta-analysis for Xpert MTB/RIF diagnostic accuracy for rifampicin resistance detection in different prevalence and income regions. Our systematic review demonstrated that Xpert MTB/RIF is high sensitive diagnostic tool for rifampicin resistance detection. Firstly, the accuracy of Xpert MTB/RIF for rifampicin resistance detection was estimated in our meta-analysis. As shown in Fig. 4, the accuracy of Xpert MTB/RIF for rifampicin resistance detection was impressive. The pooled sensitivity, specificity and AUC were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively. As estimated, about 75% of multi-drug resistant TB remains undiagnosed [4]. We strongly hope Xpert
MTB/RIF, which provided a quick and accurate result, will contribute to early and accurate diagnosis of rifampicin resistance.

The overall sensitivity of Xpert MTB/RIF for rifampicin resistance detection were almost the same between high TB prevalence countries and middle/low ones (0.91, 95% CI 0.87–0.94 versus 0.91, 95% CI 0.86–0.94). And for different income levels, the sensitivities of high income ones was also similar with the ones of middle/low income (0.94, 95% CI 0.89–0.97 versus 0.92, 95% CI 0.88–0.94). We can see, taking the different levels of TB prevalence and country income into account, no significant differences were found between subgroups, either in sensitivities, specificities and AUCs.

TB remains one of the world’s deadliest communicable diseases. However, it is intensively distributed in several high burden countries. In 2017, more than half of the new TB was developed in the South-East Asia and Western Pacific Regions. To be specific, one quarter were in the African Region. India and China alone accounted for 24 and 13% of the total cases, respectively [4]. Interestingly, the tendency of TB prevalence was consisted with the economic development at some degree. The income levels of the 22 high TB burden countries all were all middle or low, except one (Russian) [4]. Therefore, it is of significant meanings to estimate the diagnostic accuracy of Xpert MTB/RIF in countries with different levels of TB prevalence and income. Some researchers discovered that the Xpert MTB/RIF showed a higher sensitivity of TB detection in lower TB prevalence countries, which could significantly help the physicians to make clinical decisions [112]. However, our result, from another aspect, showed the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was not differed between countries with different TB prevalence and incomes.

Advantages of this review were the use of a standard protocol, a bivariate random-effects model used for meta-analysis, and independent reviewers. The data set involved comprehensive searching to identify studies as well as repeated correspondence with authors of study to obtain additional data on the studies.

While there were still some limitations in our analysis. We may have missed some studies despite the comprehensive search. Secondly, sample processing was highly variable across and within studies, as there was no recommendation available on how to process non-respiratory samples from the manufacturer or the WHO.

Conclusions
In conclusion, based on our meta-analysis, the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was excellent. The overall sensitivity of Xpert MTB/RIF for rifampicin resistance detection in different TB prevalence and income countries were not significant different. We believe that the information obtained from this study will aid the decision making of physicians who take care of patients with possible resistant tuberculosis infection.

Abbreviations
BA: Bronchial aspirate; BAL: Bronchoalveolar lavage; CCRS: Composite clinical reference standard; CF: Cerebrospinal fluid; DST: Drug-susceptibility testing; EPTB: Extra-pulmonary tuberculosis; FN: False negative; FNA: Fine needle aspirate; FP: False positive; HIV: Human immunodeficiency virus; IQR: Interquartile range; LN: Lymph node; MDR-TB: multidrug-resistant TB; NAAT: Nucleic acid amplification test; QUADAS: Quality assessment of diagnostic accuracy studies; RR: Rifampicin resistance; SROC: Summary receiver operating characteristic; TA: Tracheal aspirate; TB: Tuberculosis; TN: True negative; TP: True positive; WHO: World Health Organization; XDR-TB: Extensively drug-resistant TB.

Acknowledgements
None.

Authors’ contributions
ZKC and LSY conceived the study. ZKC and JYZ carried out the literature selection, data extraction and statistical analysis. LC accomplished the manuscript draft. ZH and JYZ participated in the analysis. The final manuscript was approved by all the authors.

Funding
This work was supported by the National Science Foundation of China (No. 81801990).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The protocol was established according to the ethical guidelines of the Helsinki Declaration and approved by the Human Ethics Committee of Department of Respiratory Disease, The Seventh People’s hospital of Chongqing. Written informed consent was obtained from individual participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Respiratory Medicine, The Seventh People’s hospital of Chongqing, Chongqing, People’s Republic of China. 2Department of Infectious Disease, The Second Affiliated Hospital, Chongqing Medical University, 74# Linjiang Road, Chongqing 400010, People’s Republic of China.

Received: 6 September 2018 Accepted: 17 June 2019
Published online: 05 August 2019

References
1. World Health Organization (2018) Global Tuberculosis Report 2018. Geneva.
2. Zumla A, Abubakar I, Raviglione M, Hoelscher M, Ditu L, McHugh TD, Squire SB, Cox H, Ford N, Mc Nemery R, Marais B, Grobusch M, Lawn SD, Migliori GB, Mwaba P, O’Grady J, Pletschette M, Ramsay A, Chakaya J, Schito M, Swaminathan S, Mennin Z, Mauerer M, Atun R. Drug-resistant tuberculosis—current dilemmas, unanswered questions, challenges, and priority needs. J Infect Dis. 2012;205(Suppl 2):S228–40.
3. Harries A. How does the diagnosis of tuberculosis in persons infected with HIV differ from diagnosis in persons not infected with HIV? In: Frieden T, editor. Toman’s tuberculosis: case detection, treatment, and monitoring-
questions and answers. WHO/HTM/TB/2004.334. Geneva: World Health Organization; 2004. p. 80–3.

2. Zumla A, George A, Sharma V, Herbert N. Baroness Masham of Ilton. WHO’s 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet. 2013;382(9907):1765–7.

3. Chaisson RE, Neumannberger EL. Confronting multidrug-resistant tuberculosis. N Engl J Med. 2012;366(23):2223–4.

4. World Health Organization. Policy framework for implementing new tuberculosis diagnostics. Geneva: World Health Organization; 2011.

5. Chakravorty S, Sen MK, Tyagi JS. Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol. 2005;43:4557–62.

6. World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. WHO/HTM/TB/2011.4. Geneva: World Health Organization; 2011.

7. Lawn SD, Mwaba P, Bates M, Platek A, Alexander H, Marais BJ, Cuevas LE. Performance of the Xpert MTB/RIF assay for the detection of Mycobacterium tuberculosis in respiratory and non-respiratory clinical specimens using the Cepheid GeneXpert system. Saudi Med J. 2012;33(10):1100–5.

8. Antonenka U, Hofmann-Thiel S, Laxminarayan R, Sarker MA, Alim MA, Hamajima N. Tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13:349–61.

9. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva: World Health Organization; 2013.

10. Steingart KR, Schiller J, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;1:CDC009593.

11. Detjen AK, DiNardo AR, Leyden J, Steingart KR, Schiller I, Menzies D, Schiller I. Xpert MTB/RIF assay for tuberculosis in children: a prospective descriptive study. Lancet Infect Dis. 2012;13(1):36–46.

12. Ciftçi IH, Aslan MH, Aşký, Baltaci G, Dayikoglu D, Ertürk M, Ergen A, Eryilmaz S. Rapid detection of Mycobacterium tuberculosis complex in respiratory and non-respiratory clinical specimens using the Cepheid GeneXpert system. SAJR. 2012;40(2):111–4.

13. Balcells ME, García P, Chanqueo L, Bahamondes L, Gallardo AM, Chung NW, Cote C, James KL. Performance of Xpert® MTB/RIF assay for direct detection of M. tuberculosis complex in respiratory samples from high- and low-tuberculosis prevalence settings. BMC Infect Dis. 2013;13:280.

14. Deggim V, Somoskovi A, Voit A, Böttger EC, Bloemberg GV. Integrating the Xpert® MTB/RIF assay for the detection of Mycobacterium tuberculosis in a low-prevalence area. Microbiol Bult. 2011;5(3):143–7. Turkish.

15. Detjen AK, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir. 2014;44(2):435–46.

16. Al-Ateah SM, Al-Dossiawi MM, El-Bihzy NA. Evaluation of direct detection of Mycobacterium tuberculosis complex in respiratory and non-respiratory clinical specimens using the Cepheid GeneXpert system. Saudi Med J. 2012;33(10):1100–5.

17. Bahamondes L, Gallardo AM, Chung NW, Feilding KJ. Performance characteristics of the Cepheid Xpert MTB/RIF test in a tuberculosis prevalence survey. PLoS One. 2012;7(8):e43307.

18. Dorman SE, Chihota VN, Lewis JJ, Shah M, Clark D, Grant AD, Churcxfeld GJ, Fielding KF. Performance characteristics of the Cepheid Xpert MTB/RIF test in a tuberculosis prevalence survey. PLoS One. 2012;7(8):e43307.

19. Dorman SE, Schumacher SG, Alland D, Nabieta P, Armstrong DT, King B, Hall SL, Chakravorty S, Cifulo DM, Tuivodae N, Babinbali S, Scott L, Rodrigues C, Kazi M, Dolopa M, Nkayangi L, Nicol MP, Ghebrekristos Y, Anyango I, Muirithi W, Dietze L, Lyer Peres R, Skrakhina A, Auchynka V, Chopra KK, Hanif M, Liu X, Yuan J, Boehme CC, Ellner JJ, Denkinger CM, Stevens W. Performance of Xpert® MTB/RIF among tuberculosis outpatients in Lilongwe, Malawi. Afr J Lab Med. 2017;6(2):464.

20. Du J, Huang Z, Luo Q, Xiong G, Xu X, Li W, Liu X, Li J. Rapid diagnosis of pleural tuberculosis by Xpert MTB/RIF assay using pleural biopsy and pleural fluid specimens. J Fd Med Sci. 2015;20(2):643–9.
M. tuberculosis in two regions of Russia with a high prevalence of drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 2013;32(6):735–43.

57. Kwok N, Choi SM, Lee J, Park YS, Lee CH, Lee SM, Yoo CG, Kim YW, Han SK, Yim JJ. Diagnostic accuracy and turnaround time of the Xpert MTB/RIF assay in routine clinical practice. PLoS One. 2013;8(10):e77456.

58. Lawn SD, Brooks SY, Kraemer K, Nolte MP, Whitelaw A, Vogt M,贝壳ker LG, Wood R. Screening for HIV-associated tuberculosis and rifampin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med. 2011;8(7):e1001067.

59. Lee HY, Seong MW, Park SS, Hwang SS, Lee J, Park YS, Lee CH, Lee SM, Yoo CG, Kim YW, Han SK, Yim JJ. Diagnostic accuracy of Xpert MTB/RIF on bronchoscopy specimens in patients with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis. 2013;17(7):917–21.

60. Li Q, Bao XD, Liu Y, Ou XC, Pang Y, Zhao YL. Comparison of two molecular assays for detecting smear negative pulmonary tuberculosis. Biomed Environ Sci. 2016;29(4):248–53.

61. Li Y, Yang P, Zhang T, Xian W, Xiang W, Yang J, Wang R, Chen M, Chen W. Rapid diagnosis of extrapulmonary tuberculosis with Xpert mycobacterium tuberculosis/rifampicin assay. J Med Virol. 2017;96(1):5184–5190.

62. Liu X, Zou D, Jia L. Rapid diagnosis of pleural tuberculosis by Xpert MTB/RIF assay. Zhonghua Jie He He Hu Xi Za Zhi. 2015;38(10):741–5 Article in Chinese.

63. Lorent N, Kong C, Kim T, Sam S, Thai S, Colebunders R, Rigouts L, Lyne L. Systematic screening for drug-resistant tuberculosis with Xpert MTB/RIF® in a referral hospital in Cambodia. Int J Tuberc Lung Dis. 2015;19(12):1528–35.

64. Luedke-Kenney AF, Fimbahay W, Wu X, Mathijsheyen K, Benatar DA, Arjundo R, Fernandez M, Guy E, Johnson P, Metchock B, Sattler F, Tekie L, Yang WF, Weiner M, Swindells S, Danie MM, Hatvini DV, Grinstead B, Alland D. AIDs Clinical Trials Group A5295 and Tuberculosis Trials Consortium Study 34 Teams. Evaluation of Xpert MTB/RIF versus AFB smear and culture to identify pulmonary tuberculosis in patients with suspected tuberculosis from low and higher prevalence settings. Clin Infect Dis. 2016;62(9):1081–8.

65. Metcalfe JZ, Makumbirofa S, Makumure B, Sandy C, Bara W, Mason P, Hopewell PC. Xpert® MTB/RIF detection of rifampin resistance and time to treatment initiation in Harare, Zimbabwe. Int J Tuberc Lung Dis. 2016;20(7):882–9.

66. Mokaddess A, Ahmed S, Eldeen HS, AlMutairi N. Discordance between Xpert MTB/RIF assay and Bactec MGIT 960 Culture System for detection of rifampicin-resistant Mycobacterium tuberculosis isolates in a country with a low tuberculosis (TB) incidence. J Clin Microbiol. 2015;53(4):1351–41.

67. Moon HW, Hur M, Kim KY, Yun YM. Comparison of three molecular assays for the detection of rifampicin resistance in Mycobacterium tuberculosis. J Clin Lab Anal. 2015;29(2):142–5.

68. Moura R, Muñoz L, Torres M, Santin M, Martin R, Alcacer F. Rapid detection of Mycobacterium tuberculosis complex and rifampicin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J Clin Microbiol. 2011;49(3):1137–9.

69. Mrwansa W, Milimo D, Chilufya WM, Kasene N, Lengwe MC, Munkondya S, de Haas P, Ayles H, Muyoyeta M. Diagnosis of rifampicin-resistant tuberculosis: discordant results by diagnostic methods. Afr J Lab Med. 2018(7):2086.

70. Myneerud VP, Behera D, Verma AK, Bhalla M, Singh N, Acora J, Singhal R, Mathur M, Lal P, Sarin R. Xpert® MTB/RIF assay for tuberculosis diagnosis: evaluation in an Indian setting. Int J Tuberc Lung Dis. 2014;18(8):958–60.

71. N’guessan K, Assi JS, Osusa A, Ahui-Brou JM, Tehe A, Keita Sow M, Guei A, Kouakou J, Dosso M. Assessment of the genotype MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d’Ivoire. Eur J Microbiol Immunol (Bp). 2014(4):166–73.

72. NGuessan K, Osusa A, Dean AS, Alagwa IU, Adagura SD, Ikode V, Cirillo DM, Kouakou J. Multidrug-resistant tuberculosis in Cote d’Ivoire from 1995 to 2016: results of National Surveys. Eur J Microbiol Immunol (Bp). 2018(8):591–9.

73. Nikolayevskiy V, Kontsevaya I, Nikolayevskaya E, Kurkova E, Samenchko S, Esipenko S. Diagnostic performance and impact of routinely implemented Xpert® MTB/RIF assay in a setting of high incidence of drug-resistant TB in Odessa Oblast, Ukraine. Clin Microbiol Infect. 2019;25(8):1040.e1–1040.e6.

74. Nicol MP, Workman L, Islas W, Mungro P, Raffa A, Rodgers P, Berndt DA, Byryk B, Bohme CC, Zemanay W, Zar H. Accuracy of the Xpert MTB/RIF test for the diagnosis of children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis. 2011;11(11):819–24.

75. O’Grady J, Bates M, Chilukutu L, Mbye J, Cheelo B, Chilufya M, Mukonda L, Mumba M, Tembo J, Chomba M, Kapata N, Mauerer M, Rachow A, Clowes M, Kuhnert B, De Serres S, God,</p>
P. Hoelscher M, Mwaba P, Zuma A. Evaluation of the Xpert Mtb/Rif assay at a tertiary care referral hospital in a setting where tuberculosi s and HIV infection are highly endemic. Clin Infect Dis. 2012;55(9):1171–8.

87. Xu X, Xia H, Li Q, Pang Y, Wang S, Zhao B, Song Y, Zhou Y, Zheng Y, Zhang Z, Zhang Z, Liu J, Dong H, Ch J, Zhang J, Karn KM, Huan S, Jun Y, Chin DP, Zhao Y. A feasibility study of the Xpert Mtb/Rf test at the peripheral level laboratory in China. Int J Tuberc Lung Dis. 2011;15:141–6.

88. Odkutuk N, Suruciuoglu S. Evaluation of the Xpert Mtb/Rif assay for the diagnosis of pulmonary and extrapulmonary tuberculosis in an intermediate-prevalence setting. Mikrobiol Bul. 2014;48(2):223–32 Turkish.

89. Pan X, Yang S, Deighton MA, Qu Y, Hong L, Su F. A comprehensive evaluation of Xpert Mtb/RIF assay with bronchoalveolar lavage fluid as a single test or combined with conventional assays for diagnosis of pulmonary tuberculosis in a Chinese tertiary hospital. Front Microbiol. 2018;9:444.

90. Pang Y, Wang Y, Zhao S, Liu J, Zhao Y, Li H. Evaluation of the Xpert Mtb/RIF assay in gastric lavage aspirates for diagnosis of smear-negative childhood pulmonary tuberculosis. Pediatr Infect Dis J. 2014;33(10):1047–51.

91. Park KS, Kim JY, Lee JW, Hwang YJ, Jeon K, Koh WH, KI CS, Lee NY. Comparison of the Xpert Mtb/RIF and Cavas Taban Mtb assays for detection of Mycobacteriumtuberculosis in respiratory specimens. J Clin Microbiol. 2013;51(10):3225–9.

92. Pimkina E, Zablackis R, Nikolaevsky V, Danila E, Davidevich E. The Xpert® Mtb/RIF assay in routine diagnosis of pulmonary tuberculosis: a multicentre study in Lithuania. Respir Med. 2015;109(1):1484–9.

93. Pinyopoompanich K, Chaiwarith R, Pantic C, Keawwhit C, Wongworapat K, Khannoo P, Supaphol P, Sirisanthana T. Comparison of Xpert Mtb/RIF and the Conventional Sputum Microscopy in Detecting Mycobacterium tuberculosis in Northern Thailand. Tuberc Res Treat. 2015;2015:571782.

94. Rachow A, Zuma A, Heinrich N, Rojas RN, Birh Y, Wu F, Jia Z, Miao J, Zhang L, Chen P. Comparison of Xpert Mtb/RIF assay and GeneType MtbDRPlus DNA probes for detection of mutations associated with rifampin resistance in mycobacterium tuberculosis. PLoS One. 2016;11(4):e0152694.

95. Raizada N, Sachdeva KS, Nair SA, Kalsange S, Gupta RS, Thakur R, Pamar M, Gray C, Ramachandran R, Vadera B, Elka S, Dhawan S, Babre A, Ghedia M, Aivalad U, Dewan P, Khetrapal M, Khanna A, Boehme C, Parmar VN, Pansuriya CN. Enhancing TB case detection: experience in offering upfront Xpert Mtb/RIF testing to pediatric presumptive TB and TB cases for children: a retrospective study. PLoS One. 2011;6(6):e204586.

96. Rahman A, Sahmim AH, Afrin S, Zaman T. Comparison of Xpert Mtb/RIF assay and GenoType MtbDR assay in children with false-positive rifampicin resistance in mycobacterium tuberculosis. PLoS One. 2016;11(4):e0153264.

97. Rahman A, Nair SA, Kodir AA, Kalaria AR, Bhat Y, Anantha Prabha P. Rapid diagnosis of childhood pulmonary tuberculosis by Xpert MTB/RIF. J Infect Dev Ctries. 2015;9(3):227–31.

98. Rajan S, Perumbavoor V, Paramanathan M, Shanmugam R, Swaminathan S, Natarajan S, Rajan V, Pillai RS, Nair KM, Mehta A, Sebagh M, Nicol MP. Rapid molecular diagnosis of pulmonary tuberculosis in children: a prospective, multi-centre, multi-center evaluation. J Infect. 2015;70(4):392–9.

99. Rice JP, Seifert M, Moser KS, Rodwell TC. Performance of the Xpert Mtb/RIF assay for the diagnosis of pulmonary tuberculosis and rifampin resistance in a low-incidence, high-resource setting. PLoS One. 2017;12(10):e0181659.

100. Sharma SK, Kohli M, Yadav RN, Chauhey J, Bhasin D, Sreenivas V, Sharma R, Singh BK. Evaluating the diagnostic accuracy of Xpert Mtb/Rif assay in pulmonary tuberculosis. PLoS One. 2015;10(10):e0143011.

101. Sharma SK, Chauhey J, Singh BK, Sharma R, Mittal A, Sharma A. Drug resistance patterns among extra-pulmonary tuberculosis cases in a tertiary care centre in North India. Int J Tuberc Lung Dis. 2017;21(10):1112–7.

102. Singh UB, Pandey P, Mehta B, Bhargava AK, Mohan A, Goyal V, Ahuja V, Ramachandran R, Sachdeva KS, Samantary JC, Genotypic, phenotypic and clinical validation of GeneXpert in extra-pulmonary and pulmonary tuberculosis in India. PLoS One. 2016;11(12):e0164928.

103. Soeroto AW, Lestari BW, Santoso P, Chaidir L, Andnyboko L, Alisjahbana B, van Crevel R, Hill PC. Evaluation of Xpert MTB-RIF guided diagnosis and treatment of rifampicin-resistant tuberculosis in Indonesia: a retrospective cohort study. PLoS One. 2019;14(2):e0213017.

104. Sengoopta W, Nakijngi L, Armstrong DT, Cobelens FG, Alland D, Manabe YC, Dormann SE, Eliner JJ, Jadoul B, Lobo J, Ng L, Upadhyay R, Veenstra R, Whelan A, Hoelscher M, Sharma S, Pai M, Warren R, Dhand K. Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med. 2011;184(1):132–40.

105. Sono Y, Gaihi N, Ogawa K, Matsumoto T, Morimoto K, Takaka A, Mitani S. Performance evaluation of Xpert Mtb/RIF in a moderate tuberculosis incidence compared with TaqMan Mtb and TRC/Rapid Mtb. J Infec Chemother. 2017;23(2):101–6.

106. Ullah I, Javid A, Masud H, Ali M, Basit A, Ahmad W, Younis F, Yasmine R, Khan A, Jabbar A, Husain M, Butt ZA. Rapid detection of mycobacterium tuberculosis and rifampicin resistance in extrapulmonary tuberculosis and sputum smear-negative pulmonary suspects using Xpert Mtb/RIF. J Med Microbiol. 2017;66(4):412–8.

107. Vrachwai V, Boehme C, Nkabeta P, Shetty A, Aliand D, Rodrigues C. Xpert Mtb/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol. 2011;49(7):2540–5.

108. van Kampen SC, Turisnybayeva A, Koptleuova A, Murzabekeva Z, Bigaleva L, Aubakirova M, Pak S, van den Hof S. Effect of Introducing Xpert Mtb/RIF to Test and Treat Individuals at Risk of Multidrug-Resistant Tuberculosis in Kazakhstan. A Prospective Cohort Study. PLoS One. 2015;10(7):e0132514.

109. van Kampen SC, Susanto NH, Simon AS, Attidi SD, Chandra R, Burhan E, Farid MN, Chittenden K, Mustikawat DE, Alisjahbana B. Effects of introducing Xpert Mtb/RIF on diagnosis and treatment of drug-resistant tuberculosis inpatients in Indonesia: A pre-post intervention study. PLoS One. 2015(1066):e023536.

110. Wang G, Wang S, Jiang G, Fu Y, Shang Y, Huang H. Incremental cost-effectiveness of the second Xpert Mtb/RIF assay to detect mycobacterium tuberculosis. J Thorac Dis. 2018;10(3):1689–95.

111. Wang G, Wang S, Jiang G, Yang X, Huang M, Huao F, Ma Y, Dai G, Li W, Chen X, Huang H. Xpert Mtb/RIF ultra improved the diagnosis of paucibacillary tuberculosis: a prospective cohort study. J Infect. 2019;78(4):311–6.

112. Williamson DA, Basiu L, Bower J, Freeman JT, Henderson G, Roberts SA. An evaluation of the Xpert Mtb/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn Micrbiol Infect Dis. 2017;92(4):207–9.

113. Yin QQ, Jiao WW, Han R, Jiao AX, Sun L, Tian J, Ma YY, Rao XG, Shen C, Li QJ, Shen AD. Rapid diagnosis of childhood pulmonary tuberculosis by Xpert Mtb/RIF assay using bronchoalveolar lavage fluid. Biomed Res Int. 2014;2014:310914.

114. Yuan M, Luyu Y, Chen ST, Cai C, Li Y, Zhang Z, LiY, Dong LL, Fu YH, Huang HR, Gao JM, Li W. Evaluation of Xpert Mtb/RIF for the diagnosis of Extrapulmonary Tuberculosis in China. Biomed Environ Sci. 2016;29(8):599–602.

115. Zar HJ, Workman L, Isaacs W, Munro J, Black F, Eley B, Allen V, Boehme CC, Zemanay W, Nicol MP. Rapid molecular diagnosis of tuberculosis in children using nasopharyngeal specimens. Clin Infect Dis. 2012;55(8): 1088–95. Epub 2012 Jul 2.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.