Challenges in Sedation Management in Critically Ill Patients with COVID-19: a Brief Review

Kunal Karamchandani1 · Rajeev Dalal1 · Jina Patel2 · Puneet Modgil3 · Ashley Quintili2

Accepted: 15 February 2021 / Published online: 26 February 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Purpose of Review To highlight the challenges associated with providing sedation and analgesia to critically ill patients with coronavirus disease 2019 (COVID-19) and also understand the pathophysiological alterations induced by the disease process as well as the logistical difficulties encountered by providers caring for these patients. We also discuss the rationale and risks associated with the use of common sedative agents specifically within the context of COVID-19 and provide evidence-based management strategies to help manage sedation and analgesia in such patients.

Recent Findings A significant proportion of patients with COVID-19 require intensive care and mechanical ventilation, thus requiring sedation and analgesia. These patients tend to require higher doses of sedative medications and often for long periods of time. Most of the commonly used sedative and analgesic agents carry unique risks that should be considered within the context of the unique pathophysiology of COVID-19, the logistical issues the disease poses, and the ongoing drug shortages.

Summary With little attention being paid to sedation practices specific to patients with COVID-19 in critical care literature and minimal mention in national guidelines, there is a significant gap in knowledge. We review the existing literature to discuss the unique challenges that providers face while providing sedation and analgesia to critically ill patients with COVID-19 and propose evidence-based management strategies.

Keywords COVID-19 · SARS-CoV-2 · Sedation · Analgesia · Critically ill patients

Introduction

A novel strain of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted patients across the world, leading to a pandemic. Patients with SARS-CoV-2 infection develop coronavirus disease 2019 (COVID-19), which can present from asymptomatic or mild illness to hypoxemic respiratory failure and multisystem organ failure, necessitating hospitalization and intensive care unit (ICU) admissions [1••]. Roughly 10–12% of patients who test positive require ICU admission [2•]. The virus binds to the angiotensin-converting enzyme 2 receptor expressed in the lower respiratory tract causing an increased production of angiotensin II, leading to increases in pulmonary vascular permeability and induction of cytokines [3, 4]. The ensuing endothelial injury can lead to a wide variety of complications, ranging from pneumonia to acute respiratory distress syndrome (ARDS). Patients who develop severe acute hypoxic respiratory failure often require invasive mechanical ventilation, thus necessitating effective analgesia and sedation. Appropriate sedation in these patients helps prevent patient-ventilator dys-synchrony, accidental extubations, and circuit disconnections and also facilitates prone ventilation and paralysis in those that develop refractory hypoxic respiratory failure. It has been reported that critically ill patients with COVID-19 tend to require higher doses of sedation and analgesia [5••]. However, providing optimal sedation in patients with COVID-19 poses unique challenges not only due to the pathophysiology of the disease but also due to the ongoing...
drug shortages that have been plaguing the critical care community for years and seem accentuated in the aftermath of the pandemic. There seems to be very little attention to sedation in these patients in the critical care literature, with minimal mention in the Society of Critical Care Medicine’s COVID-19 guidelines or clinical reviews [4, 6].

In this article, we discuss the challenges that providers face as they strive to provide sedation and analgesia for critically ill patients impacted by the SARS-CoV-2 pandemic. We review the unique adverse effects of each sedative agent, the physiologic insults imposed by COVID-19 that impacts the choice of sedative agents, and provide a systematic framework to help critical care clinicians manage sedation and analgesia in critically ill patients with COVID-19.

Analgesia and Sedation in Critically Ill Patients with COVID-19

Analgesia and sedation are an integral part of the care provided to critically ill patients. These patients experience moderate-to-severe pain at rest and during standard care procedures [7, 8]. Further, ICU stay provokes anxiety via both physiological and psychological pathways, and more than half of patients admitted to the ICU have remembrance of being in the ICU or being intubated [9]. This pain and anxiety add to the pre-existing sympathetic stress response and lead to increased endogenous catecholamine activity, increased oxygen consumption, tachycardia, hypercoagulability, hypermetabolism, and immunosuppression [10]. Unrelieved pain and anxiety in this setting can also lead to severe agitation and removal of lifesaving medical devices (e.g., endotracheal tubes and intravascular lines), thus placing both the patient and health care providers at risk [11]. This may also contribute to significant physical and psychological stress during the acute event and in future lead to the development of long-term consequences such as posttraumatic stress disorder (PTSD) [12]. Adequate pain control and sedation also play a significant role in preventing ventilator dys-synchrony [13], which can negatively affect patient outcomes by causing ventilator-induced lung injury (VILI) due to increases in peak airway pressures [14].

Although there is wide variation in the presentation of patients with COVID-19, those presenting to the emergency department with hypoxia have been noted to deteriorate quickly, ultimately requiring intubation, proning, and paralytics [2*]. Sedation is particularly important in this patient population to allow for paralytic use, preventing unintentional extubations, and to promote ventilator synchrony. A significant proportion of patients with COVID-19 tend to be younger, have fewer comorbidities, have a high respiratory drive, and mount intense inflammatory responses which has previously been linked to increased tolerance to sedative agents [15]. Thus, these patients require unusually high doses of sedatives and often need administration of multiple agents, increasing the potential risks of side effects [5••]. The duration of mechanical ventilation is also longer in these patients, with a median duration of mechanical ventilation ranging from 7 to 12 days [16], thus the need for prolonged duration of sedation. These prolonged periods of sedation may lead to drug accumulation, tolerance and tachyphylaxis, as well as unwarranted side effects of individual drugs.

Deeper sedation levels may be required to facilitate ventilator synchrony and may also be needed to reduce the risk of patient self-extubations. Patient self-extubations and circuit disconnections are particularly problematic in this population, given the need for emergent reintubation and worsening hypoxia and for the caregivers as it exposes them to aerosols, which increase the risk of transmission [17]. Unfortunately, health care workers treating patients with COVID-19 are at increased risk of contracting the illness [18, 19], and appropriate sedation management in mechanically ventilated critically ill patients might help mitigate this risk. Attention must also be paid to the potential interaction between sedative drugs and other agents administered as part of experimental therapy for COVID-19. For instance, significant QT prolongations may result from combinations of hydroxychloroquine and haloperidol, and administration of barbiturates may increase metabolism of hydroxychloroquine. There are currently no sedation guidelines specific for this patient population requiring high doses, prolonged administration, and frequent co-administration of multiple drugs.

Choice of Sedative Agents in Critically Ill COVID-19 Patients

When choosing agents for sedation in these patients, it is imperative that a multidisciplinary team, comprising of critical care providers, caregivers, as well as pharmacists review and decide on the appropriate choice of sedative on a case by case basis, incorporating all aspects of the medication process, including availability. Since protocolized, nurse-controlled sedation has been shown to reduce sedation requirements, duration of mechanical ventilation, and ICU length of stay (LOS) [20], it might be reasonable to start with a protocolized sedation regimen, with a clear understanding that deviation from the protocol and individualized care may be needed. Recent reports indicate that acute kidney injury (AKI) is common in critically ill patients with COVID-19 and the incidence has been reported to be as high as 25% [21, 22]. Hence, drug accumulation and associated side effects also dictate the choice of sedative regimen. Prolonged infusions of high doses of sedatives and analgesics in large numbers of these patients have already resulted in drug shortages at hospital, regional, and state levels. From the very beginning of this outbreak, the US Food and Drug Administration (FDA) has been...
monitoring the medication supply chain, expecting disruptions due to COVID-19. Disruptions in supply chains from manufacturers, as well as increased demands, have worsened already burdensome drug shortages and introduced new ones. These ongoing critical shortages have impacted the availability of agents that play a vital role in the treatment of COVID-19. Hence, multidisciplinary teams must implement conservation plans which individualize therapy while limiting unnecessary use and waste. Figure 1 highlights the concerns with each of the individual drugs in patients with COVID-19.

Opioids

Opioids form the cornerstone of sedation and analgesia management in critically ill patients. Pain is omnipresent in the ICU and is attributed to prolonged immobility, indwelling devices, and exposure to invasive procedures, among other etiologies [8]. Management of pain in critically ill patients is prioritized by consensus guidelines, which recommend treating pain first or utilizing analgosedation (e.g., analgesia-first or analgesia-based) with opioids as the mainstay of pain management [10]. Opioids act upon a variety of different receptors, including the mu-opioid receptor, which is involved in nociception. Opioids may be administered as boluses or an infusion depending on the level of pain a patient may be experiencing [23]. Fentanyl, which has no active metabolites and has a high lipophilicity, is commonly used as a continuous infusion. Morphine and hydromorphone are the other drugs that are used for pain management in ICU patients. Morphine is water-soluble, has active metabolites (morphine-6-glucoronide) that may accumulate in renal failure, and may cause more histamine release than other agents in this class. In addition, the active metabolite of morphine has been shown to be nephrotoxic which can negatively contribute to pre-existing AKI often seen in this patient population. Hydromorphone, a semi-synthetic derivative of morphine, is devoid of most of the adverse effects of morphine and can be administered as intermittent boluses. Prolonged infusions of opioids that are often required to facilitate strict lung-protective ventilation in critically ill

Fig. 1 Medication options for analgesia and sedation in critically ill patients with COVID-19. COVID-19; coronavirus disease 2019; PRIS, propofol infusion syndrome; TG, triglyceride
patients with COVID-19 have undesirable effects. Such infusions are known to result in gut hypomotility, leading to intolerance to feeding, interruptions in feeding, and malnutrition during prolonged ICU stay. The drugs may accumulate in adipose tissue and delay neurologic recovery especially if used for prolonged durations given their long context sensitive half-life. Pre-existing AKI may further contribute to drug accumulation. Abrupt removal of these infusions can precipitate a withdrawal syndrome and make weaning from mechanical ventilation challenging [24]. Prolonged duration of therapy may also lead to development of tolerance and long-term adverse effects including B and T cell-mediated immune dysfunction, opioid-induced hyperalgesia (OIH), and the potential for physiological and psychological addiction [25]. Therefore, risks and benefits of utilizing a continuous infusion, including limiting nurse contact with COVID-19-positive patients, must be weighed on a case by case basis [26]. A rare, yet feared complication is opioid-induced chest wall rigidity, in which patients develop increased thoracic and abdominal muscle tone [27]. Intubated patients who develop chest wall rigidity can develop increased airway pressures and oxygen desaturation [28]. This complication could prove fatal if presenting in a COVID-19 patient with ARDS, on aggressive ventilator settings.

Opioid-based pain management approach should be tailored to the individual patient based on physiological derangements and comorbid conditions. An aggressive bowel regimen must be implemented to prevent an ileus or bowel distention, which can impair ventilation. Fentanyl is the preferred drug of choice in patients with renal dysfunction and should be considered as first-line in COVID-19 patients. Acknowledging the well-known risk of delirium associated with excessive use of sedative-hypnotics, a regimen based on continuous fentanyl infusion should be considered. These infusions should be assessed daily and titrated to maintain the minimal dosage to preserve ventilator synchrony and patient comfort. If feasible, daily sedation holidays should be routinely performed in most patients. In patients with adequate enteral access, transition to oral oxycodone formulations using morphine equivalent unit calculations should be considered to conserve parental products and assist with weaning. Intravenous intermittent-dosed hydromorphone is a useful adjunct to wean continuous opioid infusions in patients without adequate enteral access or ileus.

Although opioids are effective analgesic agents, they have weak sedative properties and do not provide adequate sedation in patients requiring muscle paralysis, with the risk of patient recall. Since they might not be able to provide appropriate sedation by themselves, addition of a sedative agent may be required. Hence, appropriate use of sedatives, in addition to analgesia, can facilitate patient care and contribute to overall patient safety. Various modalities of sedation exist, and the selection of the sedative agent(s) must be individualized. As no individual sedative has been shown to be superior, the risks and benefits of each must be closely reviewed in conjunction with patient specific factors and goals of therapy [29]. Characteristics noted in COVID-19 patients, including elevated triglycerides, end-organ dysfunction, and enhanced clearance of medications must be considered when choosing sedative agents. In addition to patient factors, availability of desired medications must be incorporated into clinical decision making.

Propofol

One of the most commonly used sedative agents in the ICU is propofol, a short-acting, lipophilic phenol derivative. Propofol modulates the function of γ-aminobutyric acid (GABA) receptor, ultimately leading to hyperpolarization and inhibition of neurotransmission. Propofol exhibits a rapid onset of action making it a desirable sedative in many situations. In addition, propofol exhibits bi-phasic kinetics with a relatively short initial half-life and a terminal half-life of 4 to 7 h [30]. Unfortunately, this terminal half-life may be extended following long courses of therapy due to accumulation in the body tissues. Despite its benefits, propofol has well-documented, predictable adverse effects, which may be problematic in critically ill patients with COVID-19. Propofol causes a dose-dependent decrease in the systemic vascular resistance and myocardial contractility [31], which may worsen the pre-existing hypotension in COVID-19 patients with septic shock. This hypotension can lead to decreased end-organ perfusion, which may lead to, or compound, multi-organ failure. Patients with COVID-19 have also been known to develop myocardial injury, viral myocarditis, and stress cardiomyopathy [32], and propofol-induced decrease in myocardial contractility may not be well tolerated in these patients. Other less common side effects of propofol include hypertriglyceridemia and pancreatitis. Outside of COVID-19, hypertriglyceridemia as well as hypertriglyceridemia-associated pancreatitis can be seen in ICU patients receiving propofol. These side effects appear to be exaggerated in patients with COVID-19. In some cases, the presentation of COVID-19 patients is similar to those with hemophagocytic lymphohistiocytosis (HLH) [33]. HLH is an umbrella term for a wide variety of life-threatening disorders caused by an uncontrolled hyperinflammatory response; secondary HLH, of note, is most commonly triggered by a viral infection [34]. Some of the clinical and laboratory findings used to diagnose HLH include fever, cytopenias, hypertriglyceridemia, elevated ferritin, elevated lactate dehydrogenase (LDH), and elevated liver function enzymes. For reasons likely including cytokine storming, a subset of COVID-19 patients have presented with similar laboratory markers as those stated above, including hypertriglyceridemia [35]. Hypertriglyceridemia, defined as a blood level >150 mg/dL, is independently associated with increased risk of cardiovascular events [36], leading providers to choose sedatives
other than propofol for sedation in these patients. In addition, since patients with COVID-19 tend to require higher levels of sedation than other critically ill patients due to their hypermetabolic state, long durations of high-dose propofol infusions can independently lead to elevated levels of triglycerides, ultimately leading to pancreatitis if not monitored closely. Another concern that stems from higher doses of propofol is propofol infusion syndrome (PRIS). PRIS is a rare, albeit fatal, condition that may occur with long-term (>48 h) and high-dose (> 4–5 mg kg\(^{-1}\) h\(^{-1}\)) propofol infusions [37–40]. It is characterized by refractory bradycardia leading to asystole, metabolic acidosis, rhabdomyolysis, hyperlipidemia, enlarged liver, hyperkalemia, and each component’s downstream physiologic effects. This avoidable complication should be immediately treated by discontinuing the infusion and providing supportive measures, such as hemodynamic support, hemodialysis, or extracorporeal membrane oxygenation in severe cases. Inability to discontinue or lower the dose of propofol while maintaining adequate sedation proves problematic in certain patients presenting with COVID-19. In addition to clinical concerns, propofol, which has been monitored as a drug shortage since 2018, has seen a spike in use during the COVID-19 pandemic. Increased utilization has led to worsening shortages, ultimately forcing some hospitals to ration supplies and others to go without. Therefore, the question of whether to use propofol, at which dose, and for how long depends on the overall clinical context, patient specific factors, as well as availability.

Benzodiazepines

When propofol is not an option, either due to patient specific factors or lack of resources, benzodiazepines continue to provide an alternative option for sedation. This class of medication, by facilitating the action of GABA, exerts numerous effects, notably sedation, anxiolysis, anterograde amnesia, anticonvulsant properties, and muscle relaxation. The two most commonly used benzodiazepines for ICU sedation are midazolam and lorazepam. Midazolam is one of the shortest acting, water-soluble drugs in its class. It has a short context
sensitive half-time, rendering it to be administered as a continuous infusion [41]. Midazolam rapidly undergoes hepatic metabolism via the cytochrome P450 system to the active metabolite, 1-hydroxymidazolam, which is eventually excreted by the kidneys. This active metabolite can accumulate during long-term infusions and in patients who have renal dysfunction [42]. It is necessary to use caution when administering midazolam for prolonged periods of time in patients with baseline end-stage renal disease (ESRD) or AKI due to the accumulation of the parent drug, as well as its active metabolite [43]. In a case series that included 26 patients on midazolam, 13 patients had detectable serum levels of parent drug and/or the active metabolite for a median duration of 67 h after midazolam was discontinued [44]. It is also important to know that all agents in this class are lipophilic and will accumulate in adipose tissue. Ensuring daily sedation vacations, if appropriate, and utilizing the lowest effective dose will aid in limiting accumulation. As an alternative, lorazepam infusions may also be used for sedation. Lorazepam has a longer duration of action when compared to midazolam. It is also metabolized through the hepatic system to inactive metabolites, which are excreted by the kidneys [45]. Due to the lack of an active metabolite, there may be less accumulation in patients with renal dysfunction, and therefore, this agent may be preferred in patients who are on continuous renal replacement therapy (CRRT) or hemodialysis (HD). Unfortunately, the longer half-life of lorazepam may independently contribute to delays in extubations [43]. Another concern with the use of lorazepam infusions is the risk of propylene glycol toxicity [46]. Propylene glycol (1,2-propanediol) is the solvent used to deliver multiple agents, including intravenous lorazepam. Propylene glycol has been associated with toxicity in high-dose and/or longer-term therapy. Clinical manifestations of propylene glycol toxicity include cardiac arrhythmia, seizures, lactic acidosis, hypotension, and agitation. Propylene glycol toxicity should be considered whenever a patient has an unexplained anion gap, metabolic acidosis, or clinical decline. Although no specific dose cutoff exists, there is evidence to suggest that osmolar gaps of 12 or greater may be predictive of clinical changes related to propylene glycol toxicity [47]. With increasing doses required to adequately sedate COVID-19 patients, the likelihood of toxicity increases and should be monitored closely.

Another challenge provider’s face when using benzodiazepines, especially in this patient population, is the risk of withdrawal. Patients with ARDS are more likely to receive higher doses of medications and are at increased risk of withdrawal and prolonged mechanical ventilation [24]. Similarly, patients with COVID-19 associated respiratory failure may need mechanical ventilation for extended periods of time and may require higher doses of sedative agents to achieve adequate levels of sedation; therefore, risks and benefits of long-term therapy should be routinely discussed on interdisciplinary rounds. In general, the use of benzodiazepines for ICU sedation is limited due to the heightened risk of delirium [48–51], which is even more pronounced in older patients [52]. Hence, when possible, intermittent dosing of benzodiazepines should be utilized to limit accumulation, and they should be considered as alternative agents in patients who are not able to tolerate propofol or other sedatives.

Dexmedetomidine

Dexmedetomidine is an α2-adrenergic agonist commonly used for sedation in the ICU. It binds to central and peripheral α2-receptors, leading to decreased sympathetic outflow and suppressed norepinephrine release. By providing sedation, anxiolysis, and analgesia, dexmedetomidine is an ideal agent for ICU sedation, procedural sedation, and awake fiberoptic intubations. Dexmedetomidine has an established role in decreasing opioid requirements and reducing the rates of delirium [53, 54]. Unlike other sedatives, dexmedetomidine has minimal effect on the respiratory drive, thus making it the preferred agent when weaning patients from mechanical ventilation. Side effects that limit the universal use of this agent include bradycardia, hypotension, and heart block [55]. These effects can be exaggerated in critically ill COVID-19 patients with whom cardiac complications are still being elucidated.

Dexmedetomidine is known to achieve lighter levels of sedation when used as monotherapy. A recent randomized controlled trial revealed an ancillary finding that mechanically ventilated ICU patients, who are sedated with dexmedetomidine as the primary sedative, often require supplemental sedative agents to achieve the desired level of sedation [56]. In patients with COVID-19, who continue to show signs of ventilator dyssynchrony or require proning, dexmedetomidine alone may not be sufficient to obtain desired levels of sedation. In addition, prolonged infusions may also lead to development of tolerance [57]. Clonidine, another alpha-2 adrenergic agonist, that has a similar mechanism of action, is available both as an enteral and transdermal formulation. Although there is insufficient data to recommend its use as a sedative in mechanically ventilated patients, clonidine may have a role in decreasing the duration of dexmedetomidine administration due to its similar mechanism of action, low cost, and excellent bioavailability [58]. A retrospective analysis that included 26 ICU patients showed the enteral clonidine is a safe and effective choice when transitioning patients off dexmedetomidine [59]. In addition, Gagnon et al. reported that transitioning adult ICU patients from dexmedetomidine to clonidine led to significantly lower doses of fentanyl [60]. This transition should be discussed in patients requiring prolonged infusions of dexmedetomidine as a means to limit its utilization, considering its short supply. Careful attention should be paid to formulating a weaning plan for clonidine and medication reconciliation at ICU, and hospital
discharge should be completed to prevent inappropriate continuation.

Ketamine

Ketamine is a N-methyl-D-aspartate (NMDA) receptor antagonist that is used as an analgesic and a sedative-hypnotic agent in the ICU. Ketamine acts as a noncompetitive inhibitor of NMDA receptors, blocking transmission of the excitatory amino acid glutamate. It is increasingly being used for both postoperative analgesia and acute pain management in critically ill trauma patients [25] and has been shown to reduce opioid use in such patients [61]. At sub-anesthetic doses, ketamine has effective analgesic properties while significantly reducing total opioid requirements [62]. In a recent study, adjunctive continuous infusion of ketamine was shown to have analgesic and sedative dose-sparing effects in mechanically ventilated patients while improving time spent within the goal sedation range [63]. The use of ketamine has historically been limited due to its psychotomimetic effects and its tendency to cause delirium. These psychotomimetic effects are however dose-dependent and may be reduced by the concomitant administration of low-doses benzodiazepines [64]. High doses of ketamine may induce myocardial depression in catecholamine-depleted patients based on pre-clinical studies; [65] however, at smaller dosages ketamine demonstrates a sympathomimetic effect without myocardial depression [66]. Ketamine can increase tracheobronchial secretions, which may be detrimental in patients with COVID-19 where excess mucus plugging from respiratory inflammation and injury is common. Ketamine does have bronchodilatory effects, both due to increased catecholamine release as well as inhibition of vagal pathways [67], and may prove beneficial in patients presenting with a history of asthma. Hence, ketamine can be used as an adjunct to other sedatives to limit their dose and duration and may be considered as an alternative agent in specific COVID-19 patients, including asthmatics, or when other sedatives are unavailable or cannot be used. None the less, a thorough risk-benefit analysis should be considered prior to initiation [68].

Figure 2 provides a brief overview of sedation management in a critically ill mechanically ventilated patient with COVID-19.

Conclusion

The burgeoning crisis of COVID-19 disease in the aftermath of the ongoing SARS-CoV-2 pandemic has led to a significant proportion of patients requiring intensive care and mechanical ventilation. Although optimal analgesia and sedation are essential to help improve outcomes in these patients, the need for higher doses as well as longer duration of sedation creates challenges and requires a multidisciplinary approach towards sedation management. Management of sedation in such patients should take into account individual properties and side effect profiles of various agents, unique patient characteristics and health care system limitations, as well as local and national drug shortages. Multimodal sedation regimens with early enteral transitions might be indicated and can help minimize side effects of individual drugs, development of tolerance, and limitations imposed by the supply chain. Formulation of recommendations and guidelines by leveraging the collective clinical experience from around the world may help increase provider awareness of these unique challenges and improve patient safety and outcomes.

References

Papers of particular interest, published recently, have been highlighted as:
- Of importance
- Of major importance

1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020; This is one of the initial studies describing the demographics, clinical characteristics and outcomes in critically ill patients diagnosed with COVID-19.
2. Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8(5):506–17 In this comprehensive review, the authors draw on the experience of ICU practitioners from a variety of settings in Asia and also evaluate the existing literature to provide an overview of the challenges the ICU community faces with regards to managing patients impacted with COVID-19.
3. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4).
4. Greenland JR, Michelow MD, Wang L, London MJ. COVID-19 infection: implications for perioperative and critical care physicians. Anesthesiology. 2020.

5. Kapp CM, Zaeh S, Niedermeyer S, Punjabi NM, Siddharthan T, Damarlo M. The use of analgesia and sedation in mechanically ventilated patients with COVID-19 ARDS. Anesth Analg. 2020; This article is the first to describe sedation and analgesia practices in critically ill patients with COVID-19 requiring mechanical ventilation. The authors compared the quantity of sedation used in this population to the quantity of sedation described in a prior study of patients with ARDS and found that these patients have higher requirement of sedative and analgesic medications, thus raising the potential for more severe side effects.

6. Alhazzani W, Moller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020; These are the international guidelines providing direct and indirect evidence based recommendations to help support healthcare workers caring for critically ill ICU patients with COVID-19. A panel comprised of 36 experts from 12 countries proposed 53 questions, relevant to the management of COVID-19 in the ICU and formulated 54 statements, (including best practice statements, strong recommendations, and weak recommendations) in the areas of infection control, laboratory diagnosis and specimens, hemodynamic support, ventilatory support, and COVID-19 therapy.

7. Chanques G, Sebbane M, Barbotte E, Viel E, Eledjam JJ, Jaber S. A prospective study of pain at rest: incidence and characteristics of an unrecognized symptom in surgical and trauma versus medical intensive care unit patients. Anesthesiology. 2007;107(5):585–60.

8. Puntillo KA, Max A, Timsit JF, et al. Determinants of procedural pain intensity in the intensive care unit. The Europain(R) study. Am J Respir Crit Care Med. 2014;189(1):39–47.

9. Rotondi AJ, Chelluri L, Sirio C, Mendelson A, Schulz R, Belle S, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002;30(4):746–52.

10. Devlin JW, Skrobik Y, Gelinas C, et al. Executive summary: clinical practice guidelines for the prevention and management of agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):1532–42.

11. Hughes CG, McGrane S, Pandharipande PP. Sedation in the intensive care setting. Clin Pharmacol. 2012;4:53–63.

12. Kapffhammer HP, Rothenhausler HB, Krauseneck T, Stoll C, Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry. 2004;161(1):45–52.

13. Reade MC, Finfer S. Sedation and delirium in the intensive care unit. N Engl J Med. 2014;370(5):444–54.

14. Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respir Med. 2020;8:433–4.

15. Martyn JA, Mao J, Bittner EA. Opioid tolerance in critical illness. N Engl J Med. 2019;380(4):365–78.

16. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in critically ill patients in the Seattle Region - case series. N Engl J Med. 2020;382:2012–22.

17. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020.

18. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020.

19. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239.

20. Sessler CN, Pedram S. Protocolized and target-based sedation and analgesia in the ICU. Anesthesiol Clin. 2011;29(4):625–50.

21. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81 This article highlights that AKI may be a common complication of COVID-19 therapy and underscores the importance of considering renal function when designing a sedation scheme.

22. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.

23. Puntillo KA, Arai S, Cohen NH, Gropper MA, Neuhaus J, Paul SM, et al. Symptoms experienced by intensive care unit patients at high risk of dying. Crit Care Med. 2010;38(11):2155–60.

24. Cammarano WB, Pittet JF, Weitz S, Schlobohm RM, Marks JD. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. Crit Care Med. 1998;26(4):676–84.

25. Malechow RJ, Black H. The evolution of pain management in the critically ill trauma patient: emerging concepts from the global war on terrorism. Crit Care Med. 2008;36(7 Suppl):S346–57.

26. Tedders KM, McNorton KN, Edwin SB. Efficacy and safety of analgesosedation with fentanyl compared with traditional sedation with propofol. Pharmacotherapy. 2014;34(6):643–7.

27. Roan JP, Bajaj N, Davis FA, Kandinata N. Opioids and chest wall rigidity during mechanical ventilation. Ann Intern Med. 2018;168(9):678.

28. Ham SY, Lee BR, Ha T, Kim J, Na S. Recurrent desaturation events due to opioid-induced chest wall rigidity after low dose fentanyl administration. Korean J Crit Care Med. 2016;31(2):118–22.

29. Roberts DJ, Haroon B, Hall RI. Sedation for critically ill or injured adults in the intensive care unit: a shifting paradigm. Drugs. 2012;72(14):1881–96.

30. Sahinovic MM, Strys M, Absalom AR. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin Pharmacokinet. 2018;57(12):1539–58.

31. Mark PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10(29):3639–49.

32. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020; This article informs the reader of the cardiac implications COVID-19 can have such as stress cardiomyopathy, which can serve as an important consideration in the context of intubation. Septic shock and the effects of propofol could drastically impact cardiovascular function in light of the findings presented in this paper.

33. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.

34. George MR. Hemophagocytic lymphohistiocytosis: review of etiologies and management. J Blood Med. 2014;5:69–86.

35. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020; This article elucidates a unique inflammatory condition seen in COVID-19 that specifically serves as a contraindication against using propofol, a commonly used sedative agent. Thus the article provides rationale in critically evaluating a patient’s COVID status before providing a sedative.

36. Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169(6):572–8.

37. Kac PC, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62(7):690–701.

Springer
38. Mirrakhimov AE, Voore P, Halyshtskyy O, Khan M, Ali AM. Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract. 2015;2015:263085.

39. Hemphill S, McMenamin L, Bellamy MC, Hopkins PM. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth. 2019;122(4):448–59.

40. Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndrome in the ICU. J Intensive Care Med. 2011;26(2):59–72.

41. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multiphasic compartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.

42. Gomers D, Bakker J. Medications for analgesia and sedation in the intensive care unit: an overview. Crit Care. 2008;12(Suppl 3):S4.

43. Arulkumaran N, Montero RM, Singer M. Management of the dialysis patient in general intensive care. Br J Anaesth. 2012;108(2):183–92.

44. McKenzie CA, McKinnon W, Naughton DP, et al. Differentiating midazolam over-sedation from neurological damage in the intensive care unit. Crit Care. 2005;9(1):R32–6.

45. Elliott HW. Metabolism of lorazepam. Br J Anaesth. 1976;48(10):1017–23.

46. Wilson KC, Readon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines: a case series and prospective, observational pilot study. Chest. 2005;128(3):1674–81.

47. Yahwak JA, Riker RR, Fraser GL, Subak-Sharpe S. Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy. 2008;28(8):984–91.

48. Brummel NE, Girard TD. Delirium in the critically ill patient. Handb Clin Neurol. 2019;167:357–75.

49. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.

50. Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.

51. Kok L, Slooter AJ, Hillegers MH, van Dijk D, Veldhuijzen DS. Benzodiazepine use and neuropsychiatric outcomes in the ICU: a systematic review. Crit Care Med. 2018;46(10):1673–80.

52. Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–7.

53. Martin E, Ramsay G, Mantz J, Sum-Ping ST. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit. J Intensive Care Med. 2003;18(1):29–41.

54. Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1147–56.

55. Piao G, Wu J. Systematic assessment of dexmedetomidine as an anesthetic agent: a meta-analysis of randomized controlled trials. Arch Med Sci. 2014;10(1):19–24.

56. Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506–17.

57. Anand VG. Sedation in intensive care unit: is dexmedetomidine the best choice? Int J Crit Illn Inj Sci. 2012;2(1):3–5.

58. Wang JG, Belley-Côté E, Burry L, Duffett M, Karachi T, Perri D, et al. Clonidine for sedation in the critically ill: a systematic review and meta-analysis. Crit Care. 2017;21(1):75.

59. Terry K, Blum R, Szumita P. Evaluating the transition from dexmedetomidine to clonidine for agitation management in the intensive care unit. SAGE Open Med. 2015;3:2050312115621767.

60. Gagnon DJ, Riker RR, Glisic EK, Kelner A, Perrey HM, Fraser GL. Transition from dexmedetomidine to enteral clonidine for ICU sedation: an observational pilot study. Pharmacotherapy. 2015;35(3):251–9.

61. Pruskowski KA, Harbourt K, Pajoumand M, Chui SJ, Reynolds RN. Impact of ketamine use on adjunctive analgesic and sedative medications in critically ill trauma patients. Pharmacotherapy. 2017;37(12):1537–44.

62. Bell RF, Dahl JB, Moore RA, Kalso E. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev. 2006;1:CD004603.

63. Garber PM, Droege CA, Carter KE, Harger NJ, Mueller EW. Continuous infusion ketamine for adjunctive analgesedation in mechanically ventilated, critically ill patients. Pharmacotherapy. 2019;39(3):288–96.

64. Green SM, Li J. Ketamine in adults: what emergency physicians need to know about patient selection and emergence reactions. Acad Emerg Med. 2000;7(3):278–81.

65. Saegusa K, Furukawa Y, Ogiwara Y, Chiba S. Pharmacologic analysis of ketamine-induced cardiac actions in isolated, blood-perfused canine atria. J Cardiovasc Pharmacol. 1986;8(2):414–9.

66. Gelissen HP, Epema AH, Henning RH, Krijnen HJ, Hennis PJ, den Hertog A. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology. 1996;84(2):397–403.

67. Craven R. Ketamine. Ketamine. Anaesthesia. 2007;62(Suppl 1):48–53.

68. Manasco AT, Stephens RJ, Yaeger LH, Roberts BW, Fuller BM. Ketamine sedation in mechanically ventilated patients: a systematic review and meta-analysis. J Crit Care. 2020;56:80–8.