Water-responsive artificial muscles from commercial viscose fibers without chemical treatment

Ya Lia and Menghe Miao b

aInstitute of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, People’s Republic of China; bCSIRO Manufacturing, Waurn Ponds, Australia

ABSTRACT
Moisture change in the clothing system caused by perspiration may be used as a stimulus for smart textiles in a variety of applications. Here we report a water-responsive coil-shaped artificial muscle produced from time-proven, low-cost viscose fibers without chemical modification. Crystallinity of the viscose fiber is a key factor to the actuation performance of the final artificial muscle. The viscose fiber artificial muscle can generate a 35\% contraction and a force many times greater than animal skeletal muscles of the same weight. The structural parameters and fabrication conditions were optimized to improve the performance of the coil-shaped artificial muscle.

IMPACT STATEMENT
Here we report a simple method of making water-responsive artificial muscles from commercial viscose fibers, which have a wide range of potential applications as smart building and textile materials.

Introduction
Flexible actuators and artificial muscles are interchangeable terms for single-component material structures or devices that can reversibly contract, expand, or rotate in response to an external stimulus, similar to biological muscles. A number of artificial muscles that are actuated by the absorption and desorption of water have recently been developed [1–7]. These actuators are made from polymer composite films or carbon nanomaterials that are chemically modified to achieve hydrophilicity. Modified hydrophilic CNT fibers with hierarchical helix structures were developed to perform rapid and large contraction or rotation in response to water moisture [7,8]. Helical assemblies of modified nanowires and carbon nanotube actuators have also been reported to provide high actuation responses to electrochemical, temperature and electrical stimuli [9–17].

Perspiration is an instinctive body reaction to physical exercise, emotion, or ill health. Moisture change in the clothing system caused by perspiration may be used as a stimulus to drive textile actuators or artificial muscles. Natural cellulose fibers, such as cotton, flax and hemp, have been used in actuators, sensors, and energy harvesting devices [18–20]. To increase the response speed of moisture-driven artificial muscles, the natural cellulose fibers need to be chemically treated. Viscose is a regenerated cellulose fiber widely used in apparel fabrics. Like natural cellulose, viscose fibers can absorb considerable amount of water and swell anisotropically, i.e. expanding preferentially in the radial direction. Based on this anisotropic hydro-expansion, we converted commercial viscose fibers into high-performance water moisture-cellulose artificial muscles without the need of chemical modification, which offers advantages when used in apparel.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Materials and methods

Two types of commercial viscose yarns, a staple fiber yarn (15 tex, 955 turns/m in Z direction) and a multifilament yarn (150D/44F, twistless), were used in this investigation. The yarns were folded and then twisted on a textile twisting machine by hanging a predetermined weight at one end of the multiply yarn while the end was stopped from rotation, as illustrated in Figure S1. To obtain approximately the same linear density (150 tex) of multiply yarns, the staple fiber yarn was folded to 10-ply while the multifilament yarn was folded to 9-ply. The twist insertion rate was 1512 turns/min. When sufficient twist was inserted, the yarn started to form a spring-like coil, which was later used as water-responsive artificial muscle. The detailed experimental procedures for characterization of the coiled muscles made from viscose are provided as Supporting Information.

Results and discussion

Construction of artificial muscles

Compact, helical coil-structured artificial muscles were constructed by over-twisting the viscose staple fiber yarn and the multifilament yarn. A series of left-handed helical muscles were prepared under different tensions by twisting the yarns in Z direction. Right-handed helical muscles were also prepared for comparison. Optical images of the as-prepared muscles are displayed in Figure 1. The rising angle of the helix (α) and the outer diameter (d) of the coils in the muscle, as indicated in Figure 1(B), were used to represent the helix geometry of the coils.

The tension applied to the yarn during preparation is critical to the formation of the coil structure. When the applied tension is low, a side snarl, or a loose snarl perpendicular to the general yarn direction, is formed [21]. When the tension is sufficiently high, a compact artificial muscle (cylindrical snarl) can be formed continuously. The number of twist turns required to form a compact muscle is affected by the size of the multiply yarn (measured in tex), the torsional rigidity of the yarn and the tension applied to the yarn during coil fabrication.

The length of the final muscle was determined by the original length of the yarn and the applied tension [22]. From the same length of initial yarn, more than 10 cm of artificial muscles were obtained from the 10-ply spun yarn at the applied tension between 30 and 70 cN, whilst...
about 5 cm continuous muscles were formed from the
9-ply multifilament yarn at the applied tension between
50 and 70 cN. The two series of images in Figure 1 show
that the helix angle and diameter of the muscles could be
changed by varying the tension applied to the yarn during
fabrication.

Figure 2(A,B) shows respectively the number of twist
turns per meter required to initiate the formation of
coil muscle and the number of twist turns per meter
required to complete the formation of the muscle, plotted
against the tension applied. Clearly, more twist turns
were required to form a coil structure at a higher ten-
sion. At 20 cN applied tension, the 10-ply spun yarn
required 610 turns/m to start coiling and 827 turns/m
to complete coiling. When the tension was raised to
60 cN, the corresponding twists increased to 690 and
1034 turns/m (Figure 2(A)). At the same applied tension,
lower twists were needed for the 9-ply multifilament yarn
(Figure 2(B)).

On the other hand, the helix angle of the muscle
formed from the 10-ply spun yarn was at a lower overall
level (14.1° to 20.5°) than that formed from the 9-ply mul-
tifilament yarn (19.6° to 25°), as shown in Figure 2(C).
Both the helix angle and the diameter of the coiled
muscles showed a parabolic trend, with maximum val-
ues occurring at 30 and 50 cN, respectively for the 10-ply
spun yarn and the 9-ply multifilament yarn, as shown
in Figure 2(D). Nonlinear relationships among ply yarn
torque, tension and twist, as well as ply yarn diameter, coil
diameter and the coil helix angle may be responsible for
the parabolic trends in Figure 2(C,D).

Contraction of 10-ply spun yarn artificial muscle

Natural and regenerated cellulose fibers contain strongly
polarized hydroxyl groups and their hydrophilic charac-
ter causes the fibers to swell in diameter while contracting
in length when absorbing water [23–25]. Photos of a mus-
cle made from the 10-ply spun yarn under the tension
of 40 cN before and after water actuation are shown in
Figure 3(A). At its initial dry state, when a load was hung
to the lower end, the muscle started to elongate, which
causes gaps between neighboring turns of the coiled
muscle to increase. After the muscle stopped elongat-
ing, a few drops of water were applied to the dry muscle,
which caused the gaps between neighboring turns to
close and the muscle to shorten, causing the weight to
climb up. This gave the desired muscle action. As shown
in Figure 3(B), with the application of a few drops of water, the muscle contracted immediately and reached its maximum contraction in about 5 s (Video S1). The length of the muscle contracted from 39 to 30.5 mm, giving a contractile strain of 0.22. Drying at room conditions took about 90 s (video S2).

At actuation, the artificial muscle increased its outer diameter by 34.3% while the number of coil turns per meter decreased by 21.3%. These changes caused the decrease of gaps between the coil turns, resulting in muscle contraction. In Figure 4(A–C), each curve represents a relationship between the stress and the contraction stroke of one muscle prepared from the 10-ply spun yarn and 9-ply multifilament yarn under a different applied tension. Clearly, the contraction stroke initially increased with the load applied to the muscle before a maximum was reached. Further increase of the applied load then caused a decrease of contraction stroke. For the muscles prepared from 10-ply spun yarn at 30, 40 and 50 cN, the maximum contract strokes achieved at a stress between 0.25 and 0.28 MPa were very similar (31%–35%) (Figure 4(A,B)). The curve for the muscle prepared from the same yarn at the highest applied tension of 60 cN displayed a shift to the right, and showed a maximum contraction of 32.8% at the contraction stress of 0.48 MPa. Figure 4(C) shows that the work capacity of the muscles increased with increasing contraction tension stress. The work capacity increased from 9.3 to 90.4 J/g as the contraction stress increased from 0.1 to 0.75 MPa for the muscle coiled under 40 cN. The maximum work capacity of 90.4 J/kg is 11 times of typical skeletal muscles (~8 J/kg) [26]. The 9-ply multifilament yarn displayed a much smaller contraction stroke than the muscles prepared from the 10-ply spun yarn. A maximum contraction stroke of 7.5% (based on loaded length) was achieved at a load stress of about 0.45 MPa (Figure 4(C)).

The tensile behaviors of the coiled spun yarn were studied in dry (before actuation) and wet (after actuation) states. The stress increased from 7.9 to 12.2 MPa after actuation (Figure 4(D)). After 50 cycles of actuation, there was no noticeable change in contractile stress (Figure 4(E)).

The parabolic load-contraction relationship can be interpreted as follows [27]. Under a small load, there is small or even zero space between the neighboring coils of the muscle and thus when activated, there is little or no space for the muscle to contract before neighboring coil turns contact with each other, reaching the lockup position of the muscle. Hanging a heavier load opens up a larger gap between neighboring coil turns so that the muscle could contract to a greater extent. However, when an even heavier load was used, the contraction stroke reached its peak. At this point, coil lockup is no longer the limiting factor for contraction because the energy released by wetting the muscle is not sufficient to lift the weight up to the lockup position. Therefore, further increasing the load caused a decrease of contraction stroke.

To verify the effect of the initial twist in the individual yarns to the final coiled muscle, we prepared two coiled muscles by adding Z-direction twist to the staple fiber yarn bundle in the first coiled muscle and by adding S-direction twist in the second coiled muscle, and then tested their contractions. Optical images of the coiled muscles were shown in Figure S2. The two muscles twisted to the opposite directions showed very similar contractions, 25.8% and 26.8%, respectively. Similarly, we prepared two muscles from the twistless multifilament yarns, and they demonstrated 10.7% and 12.5% contractions, less than a half of the contraction of the staple fiber yarn muscles. These results indicated that the initial
Figure 4. Effect of applied load on the contraction stroke of coiled cellulose fibers. (A) Actuation contraction stroke of muscles prepared from the 10-ply spun yarn at different applied tensions versus load stress, as a percent of loaded coiled yarn length. (B) The contraction stroke results of (A) normalized to the initial non-loaded yarn length, indicating the absolute displacement during actuation. (C) Work capacity of the 10-ply spun yarn coiled under load tension from 30 to 60 cN. (D) Actuation contraction stroke of muscle made from the 9-ply multifilament yarn as a function of hung weight. (E) Before and after water actuation Stress-strain curve of coiled 10-ply spun yarn formed under 50 cN. (F) Contractive stress of 10-ply spun yarn coiled under loads of 50 cN for 50 cycles.

Twist of the individual yarn in the muscles had little influence on the contractile performance. This is because, in preparing the coils, several (9 or 10) yarns were plied together and then twisted to make one coil, so the twist in the individual yarns is 'locked up' and 'insulated' from the twist added to the ply, which is in a higher structural level. In other words, adding opposite twist to the ply does not remove the twist in the individual yarns.
Figure 4(D) and Tables S1 and S2 show that the muscle made from the 9-ply multifilament yarn generated a much smaller contraction stroke and work capacity than the muscle made from the 10-ply spun yarn. This difference between the two types of artificial muscles may be explained by the crystallinity of their constituent fibers. The XRD patterns of the staple fiber spun yarn and the multifilament yarn are displayed in Figure 5(A). Typical diffraction peaks appeared at $2\theta = 12.4^\circ$ and 20.7°. The peak positions suggest that the crystal structures of both two types of fibers are cellulose III [28]. Crystallinity of the fibers was calculated from the curves using peak fitting method. The multifilament yarn showed a crystallinity of 42% while the staple fiber spun yarn showed a much lower crystallinity of 19%. It is known that crystallinity of cellulose fibers has an important impact on their water absorbency and their degree of dimensional expansion (swelling) [29,30]. In crystalline regions, the cellulose molecules are closely packed in a regular pattern. When a cellulose fiber comes in contact with water, water diffuses into the fiber, at first mostly into its amorphous domains because of their relatively high disorder [23,24], as illustrated in Figure 5(B) and Figure S3. This means that the low crystallinity staple fiber will swell considerably more than the high crystallinity multifilament. The highly twisted coil structure transforms the fiber dimensional expansion into muscle contraction, as described in our previous work [29]. This explains why the contraction capacity of the muscle made from the 10-ply staple fiber spun yarn was much larger than that of the muscle made from the 9-ply multifilament yarn.

Applications

Several applications of moisture-actuating artificial muscles made from synthetic materials have been suggested, such as humidity switches [2] and smart windows that respond to weather conditions [4,8]. In our previous work, we demonstrated that the artificial muscles made from wool, cotton, and flax fibers could be used in smart textiles for releasing body heat [29]. Jia et al. [3] recently demonstrated applications of moisture-responsive artificial muscles made from silk yarns, including a robotic ‘caterpillar’ walking on a barbed wire, a retractable sleeve and a woven fabric that changes the spaces between weft yarns or warp yarns. Natural cotton, flax, wool and silk fibers have hydrophobic surfaces that slow down the movement of water from the surface into the center of the fibers. Therefore, they were treated chemically to increase the contraction speed of the artificial muscles. The viscose fibers used in this study are regenerated cellulose fibers that do not have a hydrophobic surface so that the artificial muscles made from the viscose fibers can generate contraction without any chemical treatment when used in the applications that were demonstrated in previous works.

Conclusion

Helical coil-structured artificial muscles responsive to water were fabricated by inserting extremely high twist to regenerated cellulose viscose fiber yarns. When actuated by water, the muscles could achieve more than 30% contraction. The fabrication method is simple and uses widely available textile machines and low-cost commercial fibers without further chemical modification. The viscose fiber artificial muscles have potential for many applications, including smart building materials and textiles.

Disclosure statement

No potential conflict of interest was reported by the author(s).
Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 51703100, 51603107], Ningbo Public Welfare Science and Technology Project [grant number 2019C10037], Natural Science Foundation of Ningbo City, China [grant number 2017A610075].

ORCID

Menghe Miao http://orcid.org/0000-0003-1799-1704

References

[1] Mu J, Hou C, Zhu B, et al. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Sci Rep. 2015;5:9503.

[2] Cheng H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor. Adv Mater. 2014;26:2909–2913.

[3] Jia T, Wang Y, Dou Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber meshes. Adv Funct Mater. 2019;29:1808241.1–1808241.12.

[4] Kim SH, Kwon CH, Park K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Sci Rep. 2016;6:23016.

[5] Ma M, Guo L, Anderson DG, et al. Bio-inspired polymer composite actuator and generator driven by water gradients. Science. 2013;339:186–189.

[6] Chen X, Goodnight D, Gao Z, et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat Commun. 2015;6:7346.

[7] Di J, Zhang X, Yong Z, et al. Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater. 2016;8:10529–10538.

[8] He S, Chen P, Qiu L, et al. A Mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew Chem Int Ed. 2015;54:14880–14884.

[9] Haines CS, Lima MD, Li N, et al. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868–872.

[10] Cherubini A, Moretti G, Vertechy R, et al. Experimental characterization of thermally-activated artificial muscles based on coiled nylon fishing lines. AIP Adv. 2015;5:067158.

[11] Chen P, He S, Xu Y, et al. Electromechanical actuator ribbons driven by electrically conducting spring-like fibers. Adv Mater. 2015;27:4982–4988.

[12] Chen P, Xu Y, He S, et al. Hierarchically arranged helical fiber actuators driven by solvents and vapours. Nat Nanotechnol. 2015;10:1077–1083.

[13] Tong W, Jian Nong W. Carbon nanotube springs with high tensile strength and energy density. RSC Adv. 2016;6:38187–38191.

[14] Lima MD, Hussain MW, Spinks GM, et al. Efficient, absorption-powered artificial muscles based on carbon nanotube hybrid yarns. Small. 2015;11:3113–3118.

[15] Foroughi J, Spinks GM, Wallace GG, et al. Torsional carbon nanotube artificial muscles. Science. 2011;334:494–497.

[16] Shang Y, Li Y, He X, et al. Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale. 2013;5:2403–2410.

[17] Wang C, Nosaka T, Yost B, et al. Printed carbon nanotubes on polymer films for active origami. Mater Res Lett. 2012;1:13–18.

[18] Wang J S, Wang G, Feng X-Q, et al. Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci Rep. 2013;3:3102.

[19] Plaza N, Zelinka SL, Stone DS, et al. Plant-based torsional actuator with memory. Smart Mater Struct. 2012;22:072001.

[20] Gao Z, Zhang Y, Song N, et al. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett. 2016;5:69–88.

[21] Hearle J WS, Rose O N. 25—The form of yarn twisting part I: ideal cylindrical and ribbon-twisted forms. J Text Inst Trans. 1966;57:7294–7307.

[22] Hearle J WS, Yegin A E. 33—The Snarling of highly twisted monofilaments. Part: cylindrical snarling. J Text Inst. 2008;63:490–501.

[23] Ghasemi M, Alexandridis P, Tsinou M. Dissolution of cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromolecules. 2018;19:640–651.

[24] Klemm DP B, Heinze T, Heinze U, et al. Comprehensive cellulose chemistry: fundamentals and analytical methods. Weinheim: Wiley-VCH; 1998.

[25] Chaudemanche C, Navard P. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose. 2010;18:1–15.

[26] Mirfakhrai T, Madden J DW, Baughman R H. Polymer artificial muscles. Mater Today. 2007;10:30–38.

[27] Antal MJ. Biomass Pyrolysis: A review of the literature part I-carbohydrate pyrolysis. In: Boer KW, Duffie JA, editors. Advances in solar energy: American solar energy Society. Boulder (CO): Elsevier Ltd; 1982. p. 61–111.

[28] Abdullah R, Saka S. Transformation of crystalline cellulose III to cellulose Iβ in semi-flow hot-compressed water treatment. Zero-Carbon Energy Kyoto; 2013. p. 105–111.

[29] Yang X, Wang W, Miao M. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl Mater Interfaces. 2018;10:32256–32264.

[30] Wang Z, McDonald AG, Westerhof R JM, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrolysis. 2013;100:56–66.