Maize—A potential source of human nutrition and health: A review

Tajamul Rouf Shah1*, Kamlesh Prasad1 and Pradyuman Kumar1

Abstract: Maize or corn (Zea mays L.) is an important cereal crop of the world. It is a source of nutrition as well as phytochemical compounds. Phytochemicals play an important role in preventing chronic diseases. It contains various major phytochemicals such as carotenoids, phenolic compounds, and phytosterols. It is believed to have potential anti-HIV activity due to the presence of Galanthus nivalis agglutinin (GNA) lectin or GNA-maize. A tablespoon of maize oil satisfies the requirements for essential fatty acids for a healthy child or adult. Decoction of maize silk, roots, leaves, and cob are used for bladder problems, nausea, vomiting, and stomach complaints. Zein an alcohol-soluble prolamine found in maize endosperm has unique novel applications in pharmaceutical and nutraceutical areas. Resistant starch (RS) from maize reduces the risk of cecal cancer, atherosclerosis, and obesity-related complications. This review presents a detailed view on the nutritional and potential health benefits of maize.

1. Introduction
Maize or corn (Zea mays L.) is an important annual cereal crop of the world belonging to family Poaceae. Zea is an ancient Greek word which means “sustaining life” and Mays is a word from Taino language meaning “life giver.” The word “maize” is from the Spanish connotation “maiz” which is the best way of describing the plant. Various other synonyms like zea, silk maize, makka, barajovar, etc. are used to recognize the plant (Kumar & Jhariya, 2013). It is considered as a staple food in many

ABOUT THE AUTHORS
Tajamul Rouf Shah is a research scholar (JRF) in the Department of Food Engineering and Technology, SLIET, Longowal, India. His area of interest is cereal technology and nutraceuticals, and he has published few international publications.

Kamlesh Prasad is working as a professor in the Department of Food Engineering and Technology, SLIET, Longowal, India. He has published more than 100 papers in National and International Journals and also attended many conferences.

Pradyuman Kumar is working as a professor in the Department of Food Engineering and Technology, SLIET, Longowal, India. He has more than 100 publications in National and International Journals and also attended many conferences.

PUBLIC INTEREST STATEMENT
Due to increasing population there is more food demand, therefore maize can satisfy the food requirements as well as provide human nutrition along with number of health benefits. Thus, the aim of the present review was to provide necessary information regarding the nutritive and health benefits of maize so that people will start taking more interest to it and its consumption as a good food source will increase.
parts of the world. It is a third leading crop of the world after rice and wheat (Sandhu, Singh, & Malhi, 2007). The world production of maize was 967 million metric tons (MMT) and in India its production was 23 MMT in 2013-14 (India maize summit, 2014). Due to its highest yield potential among the cereals it is known globally as queen of cereals. The largest producer of maize is United States of America (USA) contributing about 35% of the total world maize production. It is known as mother grain of Americans and it is the driver of the US economy. In India, the major maize growing states are Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh, Punjab, Haryana, Maharashtra, Andhra Pradesh, Himachal Pradesh, West Bengal, Karnataka, and Jammu and Kashmir, jointly accounting for over 95% of the national maize production (Milind & Isha, 2013). Maize is generally used for animal feed. It is widely processed into various types of products such as cornmeal, grits, starch, flour, tortillas, snacks, and breakfast cereals. Maize flour is used to make chapatis or flat breads which are eaten mainly in a few Northern states of India (Mehta & Dias, 1999). Due to increasing attention being drawn towards the development of nutraceuticals, the phytochemical compounds derived from maize and their health properties have recently become the major focus of studies. Thus, this review aims to discuss the major phytochemical compounds in maize and their health-promoting effects, in order to better understand the nutritional and health potential of maize and consequently improve its consumption.

2. Taxonomy of maize

Kingdom: Plantae
Subkingdom: Tracheobionta
Superdivision: Spermatophyta
Division: Magnoliophyta
Class: Liliopsida
Subclass: Commelinidae
Order: Cyperales
Family: Poaceae
Subfamily: Panicoideae
Tribe: Andropogoneae
Genus: Zea
Species: Zea mays

The genus Zea consists of four species of which Zea mays L. is economically important. The other Zea species, referred to as teosintes, are largely wild grasses native to Mexico and Central America. The number of chromosomes in Zea mays is 2n = 20. The tribe Andropogoneae comprises seven genera, namely old and new world groups. Old world comprises Coix (2n = 10/20), Chionachne (2n = 20), Sclerachne (2n = 20), Trilobachne (2n = 20), and Polytoca (2n = 20), and new world group has Zea and Tripsacum (Biology of maize, 2011).

3. Nutritional value of maize

Maize kernel is an edible and nutritive part of the plant. The composition of maize kernel is presented in Table 1. It also contains vitamin C, vitamin E, vitamin K, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), folic acid, selenium, N-p-coumaryl tryptamine, and N-ferrulyl tryptamine. Potassium is a major nutrient present which has a good significance because an average human diet is deficient in it (Kumar & Jhariya, 2013). Roasted maize kernels are also used as coffee substitute (Breadley, 1992).

Maize germ contains about 45–50% of oil that is used in cooking, salads and is obtained from wet milling process (Orthoefer, Eastman, & List, 2003). The oil contains 14% saturated fatty acids, 30%
monounsaturated fatty acids, and 56% polyunsaturated fatty acids. The refined maize oil contains linoleic acid 54–60%, oleic acid 25–31%, palmitic acid 11–13%, stearic acid 2–3% and linolenic acid 1% (CRA, 2006). The two main forms of vitamin E present in our diet are alpha (α) and gamma (γ) tocopherols. Maize oil is amongst the rich sources of these tocopherols, especially γ-tocopherol and their reported concentration was 21.3 and 94.1 mg/100 g, respectively (Sen, Khanna, & Roy, 2006).

Maize silk contains various constituents essential for our diet such as maizenic acid, fixed oils, resin, sugar, mucilage, salt, and fibers (Kumar & Jhariya, 2013).

4. Phytochemical value of maize

Phytochemicals are bioactive chemical compounds naturally present in plants that provide human health benefits and have the potential for reducing the risk of major chronic diseases (Liu, 2004). Maize is an essential source of various major phytochemicals such as carotenoids, phenolic compounds, and phytosterols (Jiang & Wang, 2005; Kopsell et al., 2009; Lopez-Martinez et al., 2009). The concentration of carotenoids, phenolic compounds, and phytosterols is presented in Table 2.

4.1. Carotenoids

Carotenoids belong to a family of red, orange, and yellow pigments. There is a large quantity of carotenoid pigments present in yellow maize grains, especially in horny and floury endosperm (Liu, 2007). These pigments are divided into two classes: carotenes, which are purely hydrocarbons containing no oxygen, and xanthophylls (lutein and zeaxanthin) which are hydrocarbons containing oxygen.

4.2. Phenolic compounds

Phenolic compounds are most widely distributed category of phytochemicals in the plant kingdom (Saxena, Saxena, Nema, Singh, & Gupta, 2013). They are specified as phenolic acids, flavonoids, stilbenes, coumarins, and tannins (Liu, 2004). These compounds are abundantly present in maize, especially in bran (Zhao, Egashira, & Sanada, 2005). The major phenolic compounds from maize are ferulic acid (FA) or 4-hydroxy-3-methoxycinnamic acid and anthocyanins. Refined corn bran contains the

Table 1. Composition per 100 g of edible portion of maize
Carbohydrate
Protein
Fat
Fiber
Ash
Moisture
Phosphorus
Sodium
Sulfurr
Riboflavin
Amino acids
Minerals
Calcium
Iron
Potassium
Thiamine
Vitamin C
Magnesium
Copper

Source: Shah, Prasad, and Kumar (2015); Gopalan, Rama Sastri, and Balasubramanian (2007).
highest FA content, followed by barley and wheat (Zhao & Moghadasian, 2008). Anthocyanins are common class of phenolic compounds collectively known as flavonoids. They are the largest group of water-soluble plant pigments which are reddish to purple in color. Maize has the second highest concentration of anthocyanins (Abdel-Aal, Young, & Rabalski, 2006). The most abundant anthocyanin compounds reported in maize are, pelargonidin-3-glucoside, peonidin-3-glucoside, pelargonidin-3-(6″-malonylglucoside), cyanidin-3-glucoside, cyanidin-3-(3″, 6″-malonylglucoside) and cyanidin-3-(3″, 6″-dimalonylglucoside) (Salinas Moreno, Sanchez, Hernandez, & Lobato, 2005).

4.3. Phytosterols
Phytosterols also called as plant sterols are the essential components of plant cell walls and membranes (Piironen, Lindsay, Miettinen, Toivo, & Lampi, 2000). More than 250 different phytosterols have been found so far which are divided into three classes based on their number of methyl groups at C-4 position: simple sterols or 4-desmethylsterols, 4, 4-dimethylsterols, and 4-monomethylsterols. Maize oil is very rich in phytosterols (Verleyen et al., 2002). The most commonly consumed phytosterols from maize oil are sitosterol, stigmasterol, and campesterol. Their distribution varies in different fractions of maize kernel such as endosperm, pericarp, and germ (Harrabi et al., 2008).

5. Health benefits of maize
Maize has various health benefits. The B-complex vitamins in maize are good for skin, hair, heart, brain, and proper digestion. They also prevent the symptoms of rheumatism because they are believed to improve the joint motility. The presence of vitamins A, C, and K together with beta-carotene and selenium helps to improve the functioning of thyroid gland and immune system. Potassium is a major nutrient present in maize which has diuretic properties. Maize silk has many benefits associated with it. In many countries of the world such as India, China, Spain, France and Greece it is used to treat kidney stones, urinary tract infections, jaundice, and fluid retention. It also has a potential to improve blood pressure, support liver functioning, and produce bile. It acts as a good emollient for wounds, swelling, and ulcers. Decoction of silk, roots, and leaves are used for bladder problems, nausea, and vomiting, while decoction of cob is used for stomach complaints (Kumar & Jhariya, 2013).

The presence of essential fatty acids, especially linoleic acid in maize oil plays an important role in the diet by maintaining blood pressure, regulating blood cholesterol level, and preventing cardiovascular maladies (Dupont et al., 1990; Birringer, Pfluger, Kluth, Landes, & Flohe, 2002; Sen et al., 2006). Moreover a tablespoon of maize oil satisfies the requirements for essential fatty acids for a healthy child or adult (CRA, 2006). Vitamin E in maize oil which is known as a key chain breaking antioxidant

Compounds	Concentration (mg/100gm)	References
(1) Carotenoids		
(a) Carotene	2.20	Watson and Ramstad (1987)
(b) Xanthophylls	2.07	Moros, Darnoka, Cheryan, Perkins, and Jerrell (2002)
(i) Lutein	1.50	
(ii) Zeaxanthin	0.57	
(2) Phenolic compounds	141.7	Salinas-Moreno, Soto-Hernández, Martínez-Bustos, González-Hernández, and Ortega-Paczka (1999)
(a) Ferulic acid (FA)	174	Zhao et al. (2005)
(b) Anthocyanins		
(3) Phytosterols	14.83	Locatelli and Berardo (2014)
(a) Sitosterol	9.91	
(b) Stigmasterol	1.52	
(c) Campesterol	3.40	
prevents the promulgation of oxidative stresses in biological membranes and prevents the development of atherosclerosis through intervention of maize oil in the diet (Lemcke-Norojarvi et al., 2001; Ricciarelli, Zingg, & Azzi, 2001).

Maize is believed to have potential anti-HIV activity due to the presence of Galanthus nivalis agglutinin (GNA) lectin also referred as GNA-maize. Lectins are special proteins that can bind onto carbohydrates or carbohydrate receptors found on cell membranes. In some micro-organisms including the HIV virus, the binding of lectins onto sugars is believed to inhibit activity of the virus. Zein an alcohol-soluble prolamine is an important component found in maize endosperm. It is GRAS (generally recognized as safe), nontoxic, and biodegradable protein. It possesses great potential to provide important health benefits to human beings. It acts as a nanoscale biomaterial that has unique solubility and film-forming properties. It has novel applications in pharmaceutical and nutraceutical areas to coat nanoparticles, develop promising nanocomposite antimicrobial agents, produce novel food packaging, encapsulate nutrients, and provide target delivery with controlled release (Fernandez, Torres-Giner, & Lagaron, 2009; Jin, Davidson, Zivanovic, & Zhong, 2009; Lai & Guo, 2011; Luo, Zhang, Cheng, & Wang, 2010; Luo, Zhang, Whent, Yu, & Wang, 2013; Sanchez-Garcia, Hilliou, & Lagaron, 2010; Zhang et al., 2010).

Resistant starch (RS) from maize, also called as high-amylase maize has various health beneficial effects. Maize endosperm contains 39.4 mg/100 g RS (Jiang, 2010). It escapes digestion and its consumption helps in altering microbial populations, lowering cholesterol and enhancing its fecal excretion, increasing the fermentation and short-chain fatty acid production in large intestine, reducing symptoms of diarrhea, which altogether reduce the risk of cecal cancer, atherosclerosis, and obesity-related complications (Murphy, Douglass, & Birkett, 2008). RS enhances the desirable composition of colonic bacteria in mice therefore might possess potential prebiotic properties (Wang et al., 2002). Its consumption influences cholesterol metabolism, lowers body fat storage therefore reduces the risk of atherosclerosis, hyperlipidemia, diabetes, and obesity (Higgins, 2004). It can significantly shorten the intestinal transit time that leads to elimination of waste material through feces in a quicker time (Kim, Chung, Kang, Kim, & Park, 2003).

RS as dietary fiber helps in weight control as it reduces the food intake by diluting energy density of the diet as well as by modulating certain gene expressions. A study was carried on rats which explained that the inclusion of RS from maize in their diet can affect the energy balance through its effect as a fiber, a stimulator of gut peptide tyrosine-tyrosine (peptide YY), an expressor of glucagon-like peptide-1, as well as other genes in hypothalamic area of brain which are the key factors for maintaining energy homeostasis and reducing the food intake by increasing satiety (Keenan et al., 2006; Shen et al., 2009). Another investigation was carried out to examine the effects of different high-fiber foods on the satiety of healthy human subjects. The results showed that eating muffins containing RS and maize bran had a major impact on satiety compared with foods containing other fibers (Willis, Eldridge, Beiseigel, Thomas, & Slavin, 2009). RS has also been suggested to be potentially beneficial for improving insulin sensitivity in both animal and human subjects (Deng et al., 2010; Johnston, Thomas, Bell, Frost, & Robertson, 2010).

Maize is an essential source of various phytochemicals that play an important role in our health (Kopsell et al., 2009). There is inverse correlation between the consumption of phytochemicals and the development of chronic diseases. The phytochemicals in whole grains have received less attention and sometimes been underestimated. The research has suggested that phytochemicals in grains due to their potent antioxidant activities demonstrate significant beneficial contribution in reducing the risk of many diseases (Liu, 2007; Madhujith & Shahidi, 2007; Shahidi, 2009). Maize grains, especially yellow variety contains large quantities of the carotenoid pigments and has a vital significance in the diet as human beings are not able to biosynthesize carotenoids. These pigments are also beneficial in preventing cancer (Michaud et al., 2000).
Carotene has many health benefits associated with it. Yellow maize, maize silage, and stalklage has carotene content of 22, 17.3, and 6.5 mg/kg, respectively (Watson & Ramstad, 1987). Alpha (α) and beta (β) carotene possess provitamin A activity. High concentration of β-carotene has been observed to act as a pro-antioxidant and induces apoptosis of colon cancer cells, leukemia cells, melanoma cancer cells, and gastric cancer cells, thus rendering potent chemopreventive effect (Jang, Lim, & Kim, 2009; Palozza et al., 2003, 2001). However a diet with a high dose of β-carotene might not be appropriate for smokers because it is believed to increase chances of lung cancer incidences (Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group, 1994; Duffield-Lillico & Begg, 2004).

Xanthophylls (lutein and zeaxanthin) in maize have some pivotal and specific biological functions. Lutein supplementation in food at dose-dependent manner increases tumor latency, inhibits mammary tumor growth, enhances lymphocyte proliferation, lowers the incidence of palpable tumor, and significantly protects cells against oxidant-induced damages (Chew, Wong, & Wong, 1996). Lutein and zeaxanthin are found to be the only carotenoids in the macula of the retina that are responsible for sharp and detailed vision. They also appear to protect humans against phototox damage; also play a role in protection against age-related macular degeneration and age-related cataract formation. Supplementing lutein to the subjects diets for a period showed a significant enhancement in macular pigment optical density and notable protection of the macula from light damage (Landrum, Bone, & Kilburn, 1997). Lutein also acts as a cancer chemopreventive suppressing agent by presenting inhibitory actions during promotion of disease (Moreno et al., 2007).

FA has promising health benefits (Zhao et al., 2005). It has potent antioxidant properties and protects the cell membranes against oxidation. The various benefits of FA derived from maize include anticancer, anti-inflammatory, preventive effects against bone loss, anti-diabetic, and hepatoprotective effects (Balasubashini, Rukkumani, Viswanathan, & Menon, 2004; Kawabata et al., 2000; Ou, Kong, Zhang, & Niwa, 2003; Rukkumani, Aruna, Varma, & Menon, 2004; Sassa et al., 2003).

Anthocyanins have been well known for their health-promoting benefits such as anti-carcinogenic, anti-atherogenic, lipid lowering, anti-diabetic, antimicrobial, and anti-inflammatory properties. Due to the potent antioxidant properties they are able to decrease capillary permeability and fragility, immune system stimulation, and inhibit platelet aggregation (Ghosh & Konishi, 2007). The consumption of anthocyanins from purple maize at 5% dietary level during 36-week administration period demonstrated a pronounced inhibition of colorectal carcinogenesis in male rats showing that the lesion development of colon was significantly suppressed (Hagiwara et al., 2001). The dietary administration of purple maize pigment has been reported to have anti-hypertensive effects on spontaneously hypertensive male rats through lowering the systolic blood pressure (Shindo, Kasai, Abe, & Kondo, 2007). The pigments from black glutinous maize cob have shown to possess potent anti-hyperlipidemic effects in high-fat-fed mice by improving the serum lipids profile and reducing the atherogenic index (Zhang et al., 2010).

Phytosterols have many health benefits. Dietary consumption of phytosterol is negatively related to cholesterol absorption, serum total, and LDL cholesterol (Jiang & Wang, 2005). The major mechanism involved in the health benefits of dietary phytosterols is the inhibition of cholesterol absorption through intestine and stimulation of cholesterol synthesis resulting in the enhanced elimination of cholesterol in stools. To test the contribution of phytosterols in maize oil on cholesterol-lowering effect, a study compared cholesterol absorption between the human subjects who consumed original and phytosterol-removed commercial maize oil. The study reported that the cholesterol absorption of healthy subjects was 38% higher in the group consuming the phytosterol-removed commercial corn oil than the group consuming the original commercial corn oil for two weeks. When corn oil phytosterols were added back to phytosterol-removed maize oil the cholesterol absorption was reduced significantly again. Thus, the consumption of corn oil in a long-term period can reduce cholesterol concentrations and prevent atherosclerotic disease (Ostlund, Racette, Okeke, & Stenson, 2002).
6. Conclusion

Maize is a healthy food due to the presence of nutrients and phytochemicals. Based on the health benefits of maize discussed in this article, it can be recommended and made a part of our daily diet.

Funding

The authors received no direct funding for this research.

Competing interests

The authors declare no competing interest.

Author details

Tajamul Rouf Shah1
E-mail: tajamulrouf@gmail.com

Kamlesh Prasad1
E-mail: pradyuman2002@hotmail.com

Pradyuman Kumar1
E-mail: pradyuman2002@hotmail.com

1 Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, India.

Citation information

Cite this article as: Maize—A potential source of human nutrition and health: A review, Tajamul Rouf Shah, Kamlesh Prasad & Pradyuman Kumar, Cogent Food & Agriculture (2016), 2: 1166995.

References

Abdel-Aal, E. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54, 6696–704. http://dx.doi.org/10.1021/jf0606609

Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. (1990). The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New England Journal of Medicine, 330, 1029–1035.

Balasubashini, M. S., Rukkumani, R., Viswanathan, P., & Menon, V. P. (2004). Ferulic acid alleviates lipid peroxidation in diabetic rats. Journal of Phytotherapy Research, 18, 210–214.

Biology of maize. (2011). Retrieved from http://dbtbiosafety.nic.in/guidelines/maize.pdf

Brininger, M., Pfluger, P., Kluth, D., Lendes, N., & Flohe, R. B. (2002). Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 Cells. Journal of Nutrition, 132, 3113–3118.

Breadley, P. R. (1992). British herbal compendium (Vol. 2). Bournemouth: British Herbal Medicine Association.

Chew, B. P., Wong, M. W., & Wong, T. S. (1996). Effects of lutein from marigold extract on immunity and growth of mammary tumors in mice. Journal of Anticancer Research, 16, 3689–3694.

CRA. (2006). Corn oil (5th ed.). Washington, DC: Corn Refiners Association.

Deng, J., Wu, X., Bin, S., Li, T. J., Huang, R., Liu, Z., ... Hou, Y. L. (2019). Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splancnic tissues. Journal of Animal Physiology and Animal Nutrition, 94, 220–226. http://dx.doi.org/10.1111/jpa.2019.94.issue-2

Duffield-Lillico, A. J., & Begg, C. B. (2004). Reflections on the landmark studies of β-carotene supplementation. JNCI Journal of the National Cancer Institute, 96, 1729–1731. http://dx.doi.org/10.1093/jnci/djh344

Dupont, J., White, P. J., Carpenter, M. P., Schoefler, E. J., Meydan, S. N., Elson, C. E., ... Gorbach, S. L. (1999). Food uses and health effects of corn oil. Journal of the American College of Nutrition, 9, 438–470. http://dx.doi.org/10.1080/07315724.1999.10720403

Fernandez, A., Torres-Giner, S., & Logaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electropopun fibers of zein prolamine. Food Hydrocolloids, 23, 1427–1432. http://dx.doi.org/10.1016/j.foodhyd.2008.10.011

Ghosh, D., & Konishi, T. (2001). Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pacific Journal of Clinical Nutrition, 16, 200–208.

Gopalan, C., Rama Sastri, B. V., & Balasubramanian, S. (2007). Nutritive value of Indian foods. Hyderabad: National Institute of Nutrition (NIN), ICMR.

Hagiwara, A., Miyashita, K., Nakashashi, T., Sano, M., Tamama, S., Kadota, T., ... Shirai, T. (2001). Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-aminio-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHPy)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Letters, 171, 17–25. http://dx.doi.org/10.1016/S0304-3835(01)00510-9

Harrabi, S., Ait-Andam, A., Sakoufi, F., Sebei, K., Kalileh, H., Mayer, P. M., & Boukhchina, S. (2008). Phytostanols and phytosterols distributions in corn kernel. Food Chemistry, 111, 115–120. http://dx.doi.org/10.1016/j.foodchem.2008.03.044

Higgins, J. A. (2004). Resistant starch: Metabolic effects and potential health benefits. Journal of AOAC International, 87, 761–768.

India maize summit. (2014). Retrieved from http://www.ficci.com/spdocument/20386/India-Maize-2014_v2.pdf

Jiang, H. (2010). Resistant-starch formation in high-amylose maize starch (Graduate Theses and Dissertations Paper 11351) Iowa, IA: Iowa State University Ames.

Jiang, Y. Z., & Wang, T. (2005). Phytosterols in cereal by-products. Journal of the American Oil Chemists’ Society, 82, 439–444. http://dx.doi.org/10.1007/s11776-005-1090-5

Jin, M. F., Davidson, P. M., Zivanovic, S., & Zhong, Q. X. (2009). Production of corn zein microparticles with loaded lysosome directly extracted from hen egg white using spray drying: Extraction studies. Food Chemistry, 115, 509–514. http://dx.doi.org/10.1016/j.foodchem.2008.12.041

Johnston, K. L., Thomas, E. L., Bell, J. D., Frost, G. S., & Robertson, M. D. (2010). Resistant starch improves insulin sensitivity in metabolic syndrome. Diabetic Medicine, 27, 391–397. http://dx.doi.org/10.1111/j.1464-5491.2010.027.issue-4

Kawabata, K., Yamamoto, T., Hara, A., Shimizu, M., Yamada, Y., Matsumoto, K., ... Mori, H. (2009). Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Letters, 257, 15–21. http://dx.doi.org/10.1016/j.canlet.2008.12.041

Keenan, M. J., Zhou, J., McCutcheon, K. L., Raggio, A. M., ... McFarland, K. (2006). Effect of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity, 14, 1523–1534. http://dx.doi.org/10.1038/oby.2006.176

Kim, W. K., Chung, M. K., Kang, N. E., Kim, M. H., & Park, O. J. (2003). Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. The Journal of Nutritional Biochemistry, 14, 166–172. http://dx.doi.org/10.1016/j.jnutbio.2003.02.008-214-1
Sen, C. K., Khanna, S., & Roy, S. (2006). Tocotrienols: Vitamin E beyond tocopherols. Life Sciences, 78, 2088–2098. http://dx.doi.org/10.1016/j.lfs.2005.12.001

Shah, T. R., Prasad, K., & Kumar, P. (2015). Studies on physicochemical and functional characteristics of asparagus bean flour and maize flour. In G. C. Mishra (Ed.), Conceptual frame work & innovations in agroecology and food sciences (1st ed., pp. 103–105). New Delhi: Krishri Sanskriti Publications.

Shahidi, F. (2009). Nutraceuticals and functional foods: Whole versus processed foods. Trends in Food Science and Technology, 20, 376–387. http://dx.doi.org/10.1016/j.tifs.2008.08.004

Shen, L., Keenan, M. J., Martin, R. J., Tulley, R. T., Raggio, A. M., McCutcheon, K. L., & Zhou, J. (2009). Dietary Resistant Starch Increases Hypothalamic POMC Expression in Rats. Obesity, 17, 40–45. http://dx.doi.org/10.1038/oby.2008.483

Shindo, M., Kasai, T., Abe, A., & Kondo, Y. (2007). Effects of dietary administration of plant-derived anthocyanin-rich colors to spontaneously hypertensive rats. Journal of Nutritional Science and Vitaminology, 53, 90–93. http://dx.doi.org/10.3177/jnsv.53.90

Verleyen, T., Forcades, M., Verhe, R., Dewettinck, K., Huygebaert, A., & De Greyt, W. (2002). Analysis of free and esterified sterols in vegetable oils. Journal of the American Oil Chemists' Society, 79, 117–122. http://dx.doi.org/10.1007/s11746-002-0444-3

Wang, X., Brown, I. L., Kohled, D., Mahoney, M. C., Evans, A. J., & Conway, P. L. (2002). Manipulation of colonic bacteria and volatile fatty acid production by dietary high amylose maize (amylo maize) starch granules. Journal of Applied Microbiology, 93, 390–397. http://dx.doi.org/10.1046/j.1365-2672.2002.01704.x

Watson, S. A., & Ramstad, P. E. (1987). Corn: Chemistry and technology (1st ed., pp. 453–455). St. Paul, MN: American Association of Cereal Chemists.

Willis, H. J., Eldridge, A. L., Beiseigel, J., Thomas, W., & Slavin, J. (2009). Greater satiety response with resistant starch and corn bran in human subjects. Nutrition Research, 29, 100–105. http://dx.doi.org/10.1016/j.nutres.2009.01.004

Zhang, Z., Yang, L., Ye, H., Du, X. F., Gao, Z. M., & Zhang, Z. L. (2010). Effects of pigment extract from black glutinous corncob in a high-fat-fed mouse model of hyperlipidemia. European Food Research and Technology, 230, 943–946. http://dx.doi.org/10.1007/s00217-010-1242-6

Zhao, Z., Egashira, Y., & Sanada, H. (2005). Phenolic antioxidants richly contained in corn bran are slightly bioavailable in rats. Journal of Agricultural and Food Chemistry, 53, 5030–5035. http://dx.doi.org/10.1021/jf050111n

Zhao, Z. H., & Moghadasian, M. H. (2009). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109, 691–702. http://dx.doi.org/10.1016/j.foodchem.2008.02.039