Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Report

Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study

Eduardo Hernández-Garduño

Dirección de Administración y Desarrollo de Personal. Instituto de Seguridad Social del Estado de México y Municipios (ISSEMyM), Toluca Estado de México, Mexico

A R T I C L E I N F O

Article history:
Received 27 May 2020
Received in revised form 29 May 2020
Accepted 5 June 2020

Keywords:
COVID-19
SARS-CoV-2
Obesity
Risk factor
Comorbidities
Pandemic

A B S T R A C T

Some comorbidities are associated with severe coronavirus disease (Covid-19) but it is unclear whether some increase susceptibility to Covid-19. In this case-control Mexican study we found that obesity represents the strongest predictor for Covid-19 followed by diabetes and hypertension in both sexes and chronic renal failure in females only. Active smoking was associated with decreased odds of Covid-19. These findings indicate that these comorbidities are not only associated with severity of disease but also predispose for getting Covid-19. Future research is needed to establish the mechanisms involved in each comorbidity and the apparent “protective” effect of cigarette smoking.

© 2020 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

Introduction

Early reports have identified obesity among other comorbidities such as diabetes, hypertension, coronary artery disease, and heart failure, as risk factors associated with severe outcomes in hospitalized patients with Covid-19 [1–4]. However, only one cross sectional study so far has determined risk factors for Covid-19 in the general population and found obesity and chronic kidney disease (CKD) to be predictors with no statistically significant association for other chronic conditions [5]. This study included patients with two or more comorbidities which may have underestimated the strength of association between obesity and CKD with Covid-19 because the correlation of comorbidities, for example diabetes with obesity, or with hypertension, and the assumption of little or no multicollinearity in the multivariable logistic regression analysis would not be met which may explain why other chronic conditions were not associated with Covid-19 in that study. In this study we determined comorbidities associated with increased risk for Covid-19 in a population based-study of Mexicans reporting one comorbidity as of May 15, 2020. The present study updates a previous study (Unpublished results as of May 7, 2020) with a bigger sample size of patients.

Methods

This study used the publicly available Covid-19 data base of the Mexican Ministry of Health through the “Dirección General de Epidemiología” website [6] from which information was obtained of all patients assessed for Covid-19 as of May 15, of 2020. Variables in the data base include non-nominal ID (randomly assigned), age, gender, current smoker, history of contact with Covid-19, type of patient: ambulatory vs hospitalized and whether or not the patient was hospitalized in the intensive care unit (ICU) or had been intubated (tracheal intubation for mechanical ventilation). Information also included answers “yes, no, unknown” or no answer when questioned about the presence/absence of the following conditions and comorbidities: pregnancy in women, diabetes, hypertension, cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma, obesity, chronic renal failure (CRF) and immunosuppression conditions without specification of each. The presence of pneumonia was also recorded but was considered part of the clinical picture of Covid-19 rather than comorbidity. Only patients who answered “yes or no” to all the above questions were included in the analysis. Patients who did not respond or with missing information were excluded. Some patients presented with multiple comorbidities that may be correlated, for example diabetes and obesity, and the assumption of little or no

* Corresponding author at: Departamento de Seguridad e Higiene ISSEMyM, Av. Constituyentes #703, Col. Barrio de la Merced, Toluca de Lerdo, Estado de México, CP 50080, Mexico.
E-mail address: epidemiologist.researcher@gmail.com

https://doi.org/10.1016/j.orcp.2020.06.001
1871-403X/© 2020 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
multicollinearity of logistic regression analysis would not be met. To separate the effect of two or more comorbidities and determine the independent effect of each on Covid-19, the analysis was limited to patients reporting only one comorbidity. Laboratory test results of Covid-19 PCR test were reported as “positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)”, “negative for SARS-CoV-2” or “pending result”. Cases were defined as those with a positive test regardless of symptoms according to World Health Organization case definition [7]. Controls were those with negative test.

In univariable analysis, proportions for categorical variables were compared using the χ² test. Median age of both groups was compared with the Mann–Whitney U test. To determine comorbidities associated with Covid-19, odds ratios (OR) and 95% confidence intervals were estimated using multivariable logistic regression with the backward elimination procedure. Indicator variables for each comorbidity were included in the model with absence of each as the reference group. Statistical analyses were performed using SAS (Statistical Analysis System, Cary, NC, USA) version 9.4 software.

Table 1
Characteristics of cases and controls of the whole sample as of May 15, 2020. Univariable and multivariate logistic regression analyses for increasing risk of Covid-19.

Age group (years)	Median age (IQR) in years, range	Contact with COVID-19	Smoking history	Cardiovascular disease	COPD	Asthma	Non-immunesuppression	Chronic renal failure	Non-chronic renal failure	Pregnant	Tracheally intubated	In ICU	Non-ICU	Death	Alive
		Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
0–29	48 (38–59), 0–113	3141 (43.3)	4109 (56.7)	1191 (9.7)	11083 (90.3)	4219 (34.3)	8084 (65.7)	4717 (38.4)	7552 (61.6)	2596 (21.1)	9680 (78.9)	2887 (23.5)	9389 (76.5)	212 (1.7)	12061 (98.3)
30–52	42 (32–54), 0–102	6492 (52.8)	5083 (41.3)	7221 (58.7)	5807 (41.3)	4720 (38.4)	4720 (38.4)	5539 (45.0)	6765 (55.0)	7221 (50.7)	12061 (98.3)	212 (1.7)	12061 (98.3)	212 (1.7)	12061 (98.3)
53+	8084 (4717)	16371 (51.3)	15852 (48.7)	16371 (51.3)	15852 (48.7)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)
Total		16371 (51.3)	15852 (48.7)	16371 (51.3)	15852 (48.7)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)	16371 (51.3)

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IQR: interquartile range; COPD: chronic obstructive pulmonary disease; ICU: intensive care unit; NS: not selected by the backward elimination procedure in the multivariable logistic regression analysis with a significance level set at 0.2; NI: not included in the multivariate analysis; Covid-19: coronavirus disease.

a Unadjusted odds ratio and 95% confidence interval.

b Differences between cases and controls. Totals may not add up due to missing data.

c Adjusted odds ratio and 95% confidence interval.
Table 2
Characteristics of females as of May 15, 2020. Univariate and multivariate logistic regression analyses for increasing risk of Covid-19.

	Cases SARS-CoV-2 positive	Controls SARS-CoV-2 Negative	Total	uOR (95% CI) a	p b	aOR (95% CI) c	p
Age group (years)	n = 5083	n = 10,679	n = 15,852				
0-29	48 (37–58), 0–113	42 (32–52), 0–102	44 (34–54), 0–113	<.0001			
Contact with COVID-19	Yes	1465	50.6	3452	49.8	4952	50.0
Smoking history	Yes	289	5.7	891	8.3	1180	7.5
Chronic renal failure	No	4788	94.3	9868	91.7	14,656	92.5
Hypertension	No	1414	27.8	1292	12.0	2,706	17.1
Cardiovascular disease	Yes	1967	38.8	3,582	33.3	5,549	35.0
Chronic renal failure	No	3107	61.2	7,181	66.7	10,288	65.0
Immunosuppression	Yes	914	18.0	1,309	12.2	2,223	14.0
Non-immunosuppression	No	4,161	82.0	9,446	87.8	13,607	86.0
Cardiac disease	Yes	78	1.5	280	2.6	358	2.3
Non-cardiac disease	No	4,999	98.5	10,476	97.4	15,475	97.7
Asthma	No-COPD	68	1.3	222	2.1	290	1.8
Chronic renal failure	No	5,009	98.7	10,536	97.9	15,545	98.2
Non-immunosuppression	Non-immunosuppression	350	6.9	1,488	13.8	1,838	11.6
Chronic renal failure	No	4,725	93.1	9,276	86.2	14,001	88.4
Non-immunosuppression	Yes	95	1.9	402	3.7	497	3.1
Chronic renal failure	No	4,977	98.1	10,353	96.3	15,330	96.9
Diabetes	No	64	1.3	136	1.3	200	1.3
Non-immunosuppression	Yes	5010	98.7	10,626	98.7	15,636	98.7
Non-immunosuppression	No	63	1.2	174	1.6	237	1.5
Death	No	5005	98.8	10,566	98.4	15,572	98.5
Hypertension	No	176	9.4	155	7.6	331	8.4
Non-immunosuppression	No	1,705	90.6	1,890	92.4	3,595	91.6
Death	No	424	8.3	220	2.0	644	4.1

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IQR: interquartile range; COPD: chronic obstructive pulmonary disease; ICU: intensive care unit; NS: not selected by the backward elimination procedure in the multivariable logistic regression analysis with a significance level set at 0.2; NI: not included in the multivariate analysis; Covid-19-coronavirus disease.

a Unadjusted odds ratio and 95% confidence interval.
b Differences between cases and controls. Totals may not add up due to missing data.
c Adjusted odds ratio and 95% confidence interval.

Results

A total 32,583 patients (12,304 cases and 20,279 controls) were identified with one comorbidity.

Cases were older than controls, median age in years (interquartile range) of 48 (38–59) vs 42 (32–54) respectively, and more likely to be: males (58.7 vs 47% females) and hospitalized (45 vs 23% ambulatory) or to have had pneumonia (34.3 vs 15.2%) diabetes (21.1 vs 13.3%), hypertension (23.5 vs 21.3%), obesity (38.4 vs 32.4%) admitted to the ICU (10.4 vs 8.2%) intubated (10.5 vs 6.5%) respectively. Cases were also more likely to have died (12.2 vs 2.7%) respectively. Univariable analysis showed controls more likely to have had a history of: contact with Covid-19, current smoking, cardiovascular, COPD, asthma or immunosuppressed conditions, all p-values<0.0001. Table 1. After controlling by variables associated with Covid-19 in univariate analysis, the following comorbidities remained statistically significant in the multivariable analysis by sex: obesity (females:aOR = 5.55, males-aOR = 4.72), diabetes (females-aOR = 3.91, males-aOR = 3.50), hypertension (females-aOR = 3.25, males-aOR = 2.70) and chronic renal failure (females-aOR = 2.25). Active smoking was associated with decreased odds of Covid-19 (females-aOR = 0.49, males-aOR = 0.64) as was the group of immunosuppressed conditions in males (aOR = 0.50), Tables 2 and 3.
Table 3
Characteristics of males as of May 15, 2020. Univariate and multivariate logistic regression analyses for increasing risk of Covid-19.

	Cases SARS-CoV-2 positive	Controls SARS-CoV-2 Negative	Total	uOR (95% CI) *	p	aOR (95% CI) *	p
Median age (IQR) in years, range	49 (39–59), 0–103	43 (32–55), 0–99	46 (34–57), 0–103	.0001	1	1	1
Age group (years)							
0–29	573	79	1808	19.0	2381	14.2	1
30–52	3772	52.2	4886	51.4	8658	51.7	.0001
53 +	2876	39.8	2816	29.6	5692	34.0	.0001
Hospitalized outpatient	3656	50.6	2586	27.2	6242	37.3	.0001
Contact with COVID-19	3565	49.4	6924	72.8	10489	62.7	1
Smoking history							
Yes	1676	39.1	3008	48.3	4684	44.6	.0001
No	2609	60.9	3214	51.7	5823	55.4	1
Pneumonia	902	12.5	1508	15.9	2410	14.4	.0001
No	6295	87.5	7993	84.1	14288	85.6	1
Obesity	2805	38.8	1798	18.9	4603	27.5	.0001
No	4416	61.2	7711	81.1	12127	72.5	1
Diabetes	2750	38.2	2978	31.3	5728	34.3	.0001
No	4445	61.8	6525	68.7	10970	65.7	1
Hypertension	1682	23.4	1392	14.7	3074	18.4	.0001
No	5519	76.6	8103	85.3	13622	81.6	1
Cardiovascular disease	1729	24.0	2207	23.2	3936	23.6	.0001
No	5469	76.0	7293	76.8	12762	76.4	1
COPD	134	1.9	303	3.2	437	2.6	.0001
No	7062	98.1	9196	96.8	16258	97.4	1
Asthma	126	1.8	269	2.8	395	2.4	.0001
No	7072	98.2	9231	97.2	16303	97.6	1
Non-asthma	273	3.8	951	10.0	1224	7.3	.0001
Immunosuppression	6992	96.2	8547	90.0	15469	92.7	1
Non-immunosuppression	118	1.6	375	4.0	493	3.0	.0001
Chronic renal failure	103	1.4	173	1.8	276	1.7	.0001
Non-chronic renal failure	7093	98.6	9328	98.2	16421	98.3	1
Tracheally intubated	429	11.7	168	6.5	597	9.6	.0001
Non-intubated	3225	88.3	2415	93.5	5640	90.4	1
In ICU	399	10.9	226	8.7	625	10.0	.0001
Non-ICU	3255	89.1	2357	91.3	5612	90.0	1
Death	1078	14.9	324	3.4	1402	8.4	.0001
alive	6143	85.1	9166	96.6	15329	91.6	1

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IQR: interquartile range; COPD: chronic obstructive pulmonary disease; ICU: intensive care unit; NS: not selected by the backward elimination procedure in the multivariable logistic regression analysis with a significance level set at 0.2; aOR: not included in the multivariate analysis; Covid-19: coronavirus disease.

* Unadjusted odds ratio and 95% confidence interval.
\[Differences between cases and controls. Totals may not add up due to missing data.
\[Adjusted odds ratio and 95% confidence interval.

Discussion

The findings of this update and the previous analysis of data of May 7, 2020 (Unpublished results) indicate that obesity is the strongest predictor for Covid-19 among Mexicans followed by diabetes and hypertension. CRF was a risk factor in females only. This risk increase for Covid-19 is alarming. The higher odds ratios in females than males suggest that females with obesity, diabetes and hypertension are more susceptible for Covid-19.

These findings indicate that common comorbidities associated with severe Covid-19 outcomes also predispose this disease. Among the potential mechanisms for the association include the higher susceptibility of the obese to respiratory viral infections including influenza A [8] and increased duration of virus shedding [9] which may also be the case for SARS-CoV-2. Obesity is a state of low-grade chronic inflammation that can contribute to the onset of dyslipidemia, insulin resistance and diabetes and can modify innate and adaptive immune responses, resulting in a less responsive immune system to vaccinations, antivirals and antimicrobial drugs and more vulnerable to infections [10]. Further research is needed to confirm whether obesity represents the strongest predictor for getting Covid-19 in other populations and settings.

Potential implicated mechanisms on the association between diabetes and Covid-19 include chronic inflammation, increased coagulation activity, immune response impairment, and potential direct pancreatic damage by SARS-CoV-2 [11]. Diabetics are particularly more susceptible to bacterial, mycotic, parasitic and viral infections [12].

SARS-CoV-2 binds to angiotensin converting enzyme (ACE) 2 in the lung to enter cells [13,14], this cell surface diminution of ACE2...
may contribute to widespread inflammation observed with Covid-19. Angiotensin-converting enzyme inhibitors are recommended treatments for cardiovascular diseases, hypertension and chronic kidney disease and have been postulated to impact SARS-CoV-2 host-cell interactions [15]. Unfortunately information regarding patients undergoing treatment for these conditions is unavailable in the data base and needs to be explored to establish whether medication types predispose Covid-19 in Mexican patients with these comorbidities and determine the potential mechanisms involved. The increased risk of Covid-19 among females with CRF also warrants further investigation as does the mechanisms involved.

Asthma was associated with Covid-19 but only in the analysis of the whole sample. The lack of association in either sex may be related with the relative small sample size. The relationship between asthma and respiratory virus infection has been recognized [16] but is not well understood. A larger sample size would yield more data as to the population of asthmatics and the mechanism of Covid-19 susceptibility.

The decreased odds of Covid-19 among immunosuppressed males may be influenced by relatively small sample size and needs confirmation in future studies as well as identifying the specific immunosuppression illnesses associated with Covid-19.

The lower smoking prevalence in patients with Covid-19 compared with controls found in this study is consistent with preliminary estimates showing the same trend [17]. Active smoking remained statistically significant in the multivariable analysis which is consistent with recent findings [5]. Nicotine has been proposed as a therapeutic option for Covid-19 [18]. Further research is needed to confirm the “protective” effect of active smoking on Covid-19.

Pregnancy was not associated with Covid-19 in the multivariate analysis restricted to women. Table 2.

This study has some limitations namely that patients presenting symptoms of Covid-19 would be more investigated for comorbidities and/or tested selecting bias affecting the estimates. Unfortunately, body mass index (BMI), symptoms, laboratory results and treatment of comorbidities was not available in the data base. Future studies including this information will more accurately determine the association of comorbidities with Covid-19.

This study is one of the first Mexican studies on Covid-19 indicating that obesity is the comorbidity more strongly associated with Covid-19. In 2016 the prevalence of overweight and obesity combined was 72.5% in Mexican adults aged 20 years or older [19] and was declared public health emergency by the government of Mexico. Diabetes, hypertension and CRF were also risk factors of disease.

This work compares a previous analysis of the database extracted may 7, 2020 (Unpublished results) and the results of both analyses are similar. Both indicate that comorbidities frequently found in patients with severe Covid-19 are also risk factors for the disease. Future studies will determine the potential mechanisms behind the association between these predisposing comorbidities with Covid-19.

Patients with comorbidities found to be associated with this disease should take extreme preventive measures and physicians should be aware of such associations when assessing patients with Covid-19 symptoms and take appropriate precautions.

Funding

None.

Ethics statement

Ethics approval was not required as the study was based on de-identified routine daily data publicly available.

Conflict of interest

The author has no conflicts of interest relevant to this article.

References

[1] Zhou F, Yu T, Du R, Fan G, Liu Y, Li Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–62.

[2] Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. J Am Med Assoc 2020;323:1574–81.

[3] Yancy CW [published online ahead of print, 2020 Apr 15] COVID-19 and African Americans. J Am Med Assoc 2020, 10.1001/jama.2020.6548.

[4] Palaiodimos L, Kokkodis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 2020;108:154262.

[5] de Luisgnan S, Dorward J, Corea A, Jones N, Alkinyemi O, Amirthalingam G, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis 2020;20:353;3073–3076.

[6] Dirección General de Epidemiología, Secretaría de Salud. Datos abiertos Covid-19; 2020 [Accessed 27 May 2020] https://www.gob.mx/salud/documentos/datos-abiertos-152127.

[7] Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected interim guidance. World Health Organization; 2020, . [Accessed 27 May 2020] https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.

[8] Van Kerkhove MD, Vandermaelle KA, Shinde V, Jaramillo-Gutierrez G, Koukounari A, Donnelly CA, et al. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med 2011;8(7):e1001053.

[9] Maier HE, Lopez R, Sanchez N, Ng S, Gresh L, Ojeda S, et al. Obesity increases the duration of influenza virus shedding in adults. J Infect Dis 2018;218(9):1378–82.

[10] Dhurandhar NV, Bailey D, Thomas D. Interaction of obesity and infections. Obes Rev 2015;16(12):1017–29.

[11] van Creveld R, de la Vijver S, Moore DAJ. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol 2017;5(6);457–68.

[12] Hodgson K, Morris J, Briddon T, Govan B, Rush C, Ketheesam N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015;144(2):171–85.

[13] Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade–long structural studies of SARS coronavirus. J Virol 2020;94(7):e00127–220.

[14] Hoffmann M, Kleine-Webert H, Schroder S, Kruger N, Herring T, Eriksen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280.e8.

[15] Vaduganathan M, Vardeny O, Michel T, McMurray JJF, Pfeffer MA, Solomon SD. Renin-angiotensin-Aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020;382(17):1653–9.

[16] Wark PAB, Ramsahai JM, Pathinayake P, Malik B, Bartlett NW. Respiratory viruses and asthma. Semin Respir Crit Care Med 2018;39(1):45–55.

[17] CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 – United States, February 12–March 28, 2020. MMWR Mortal Weekly Rep 2020;69(3):382–6.

[18] Farsalinos K, Barbouni A, Nauru R [published online ahead of print, 2020 May 9] Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med 2020;1–8.

[19] Encuesta Nacional de Nutrición a Medio Camino. (ENSANUT MC 2016) Informe Final de Resultados. Instituto Nacional de Salud Pública; 2016. p. 2016 [Accessed 27 May 2020] http://fmdialabetes.org/wp-content/uploads/2017/04/ ENSANUT2016-mc.pdf.