Clinical Perspectives to Overcome Acquired Resistance to Anti–Programmed Death-1 and Anti–Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer

Yong Jun Lee, Jii Bum Lee, Sang-Jun Ha, and Hye Ryun Kim

INTRODUCTION

Immune checkpoint inhibitors (ICIs) that target cytotoxic T lymphocyte associated antigen-4 (CTLA-4), PD-1, and PD-L1 receptors have been shown to have beneficial therapeutic effects in lung cancer (Steven et al., 2016). ICIs are the first-line treatment for non-small cell lung cancer (NSCLC) with positive PD-L1 expression (Ettinger et al., 2019). However, only 20% to 30% of NSCLC patients are sensitive to anti–PD-1/PD-L1 therapy, and most patients experience resistance to immunotherapy (Pourmir et al., 2020). Acquired resistance is defined as disease progression within 6 months after a period of clinical benefit (Remon et al., 2020; Sharma et al., 2017). The mechanisms of acquired resistance remain to be fully elucidated, as research on treatment strategies to overcome resistance to approved immunotherapies is ongoing (Bagchi et al., 2021). Here, we discuss the mechanisms of acquired resistance to anti–PD-1/PD-L1 therapy in NSCLC, including loss of immunogenic neoantigens, upregulation of alternate immune checkpoint receptors, increase in immunosuppressive cells, cytokines, and immunoregulatory molecules in the tumor microenvironment, and epigenetic modifications. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.
addition, we have summarized the potential therapeutic targets and ongoing clinical trials.

MECHANISMS OF ACQUIRED RESISTANCE TO ANTI–PD-1/PD-L1

Loss of immunogenic neoantigen

B2M and MHC defects

Defects in beta-2-microglobulin (B2M) or major histocompatibility complex (MHC) molecules can cause decreased neoantigen presentation (Mariathasan et al., 2018; Sucker et al., 2014). B2M stabilizes the alpha subunits of the MHC-I protein, and a mutation in the B2M gene results in loss of neoantigen surface expression (Gettinger et al., 2017; Zaretzky et al., 2016). In NSCLC, acquired homozygous loss of B2M results in a lack of MHC-I expression on the cell surface, which results in acquired resistance to PD-1 therapy (Gettinger et al., 2017). In addition to loss of heterozygosity, deletions or point mutations in the B2M gene have been found to be important pathways for both primary and acquired resistance to ICIs (Gettinger et al., 2017; Pereira et al., 2017).

Defects in the IFN-γ pathway

Activated T cells and natural killer (NK) T cells release interferon-gamma (IFN-γ) into the tumor microenvironment and affect immune reactions through the downstream enzymes Janus kinase 1 and 2 (JAK1 and JAK2) and signal transducer and activators of transcription (STATs) (Taube et al., 2012). IFN-γ stimulates antigen production, upregulation of PD-L1 expression in tumor cells, and production of T cell-attracting chemokines (Abiko et al., 2015). Deficiencies in IFN-γ, JAK1/2, or STATs prevent IFN-γ signaling and consequently result in downregulation of T cell infiltration, and decrease in PD-L1 and MHC-I expression (Bach et al., 1997; Sucker et al., 2017). In patients with melanoma, JAK1- or JAK2-inactivating mutations lead to acquired resistance to anti-PD-1 therapy via inhibition of the IFN-γ pathway and PD-L1 expression (Shin et al., 2017). Loss of PD-L1 expression is associated with less effective PD-1 blocking (Ren et al., 2020). Other IFN-γ pathway-related gene mutations, such as deletion of IFN-γ receptor 1 and 2 (IFNγR1 and 2), STAT2, JAK1, and JAK2, also result in acquired resistance in melanoma (Manguso et al., 2017; Ren et al., 2020).

Targeting downstream factors, such as JAK1/2 and STAT, is a possible treatment option to overcome acquired resistance to anti-PD-1 therapy in lung cancer (Table 1). A combination of JAK-STAT or vascular endothelial growth factor (VEGF) inhibitors and immune checkpoint therapy can help control tumor growth in phosphatase and tensin homolog (PTEN)-mediated acquired resistance to immune checkpoint monotherapy (Peng et al., 2016; Toso et al., 2014). Dual inhibition of the JAK1,2/PD-L1 and STAT3/PD-L1 signaling pathways led to better immune cytolytic activity of NK cells toward hypoxia-induced castrate-resistant prostate cancer (CRPC) cells (Xu et al., 2018). However, the combination of anti-PD-1 therapy with JAK/STAT inhibitors has also been shown to reduce anti-tumor effects and tumor infiltrating lymphocyte (TIL) numbers (Ashizawa et al., 2019).

Upregulation of other immune checkpoint receptors

Immune checkpoint receptors are upregulated as a compensatory mechanism after immunotherapy. These mechanisms include T cell exhausation, proliferation, migration, and cytokine secretion by CD8+ T cells (Thommen et al., 2015; Topalian et al., 2015). Immune checkpoints such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), and T cell immunoreceptors with Igl and

Table 1. Mechanisms of acquired resistance and potential therapeutic approaches

Resistance mechanisms	Description of resistance mechanisms	Potential therapeutic approaches
Loss of immunogenic neoantigen	Defects in IFN-γ pathway	STING agonist, JAK inhibitor, STAT inhibitor
Upregulation of alternate immune checkpoint receptors	Compensatory upregulation of inhibitory receptors (LAG-3, TIM-3, TIM3, TIGIT, BTLA, VISTA, SIGLEC9)	Blockade of alternate co-inhibitory immune checkpoint receptors: LAG-3, TIM-3, TIGIT, BTLA, VISTA, SIGLEC9
Immunosuppressive cells and immunoregulative molecules in tumor microenvironment	Increased immunosuppressive cells (Treg, MDSC, M2 macrophage)	Immune stimulatory agents: OX40, ICOS
	Elevated immunosuppressive cytokines (TGF-β, VEGF, IL-6/8)	CSF1R inhibitor, TGF-β inhibitor
	Immune regulating molecules: adenosine pathway, IDO1, B7-H4	TGF-β inhibitor, VEGF inhibitor, IL-1β inhibitor, IL-6/8 inhibitor
Epigenetic modification	Tumor suppressor, apoptosis gene modification	A2AR inhibitor/anti-CD73, IDO inhibitor, B7-H4 inhibitor
	Stability of chromatin remodeling complexes	Epigenetic modifiers: DNMTi, HMTi, HDACi

IFN-γ, interferon-γ; **STING**, stimulator of IFN genes; **JAK**, Janus kinase; **STAT**, signal transducer and activators of transcription; **LAG-3**, lymphocyte-associated gene 3; **TIM-3**, T-cell immunoglobulin and mucin domain-3; **TIGIT**, T-cell immunoglobulin and ITIM domain; **BTLA**, B and T-lymocyte attenuator; **VISTA**, V-domain immunoglobulin suppressor of T-cell activation; **SIGLEC9**, sialic acid binding Ig-like lectin 9; **ICOS**, inducible T-cell costimulator; **Treg**, regulatory T-cell; **MDSC**, myeloid-derived suppressor cell; **CSF1R**, colony stimulating factor 1 receptor; **TGF-β**, transforming growth factor-β; **VEGF**, vascular endothelial growth factor; **IL**, interleukin; **IDO**, indoleamine 2,3-dioxygenase; **A2AR**, adenosine A2A receptor; **DNMTi**, DNA methyltransferase inhibitor; **HMTi**, histone methyltransferase inhibitor; **HDACi**, histone deacetylase inhibitor.

364 Mol. Cells 2021; 44(5): 363-373
ITIM domains (TIGIT) create an immunosuppressive environment (Fig. 1, Table 1) (Toor et al., 2020). LAG-3 is expressed on TILs, and dual blockade of LAG-3 and PD-1 resulted in synergistic anti-tumor effects in preliminary models (Hellmann et al., 2016). TIM-3 was upregulated in both CD4+ and CD8+ T cells in patients with lung cancer refractory to anti–PD-1 therapy (Koyama et al., 2016). Similarly, TIGIT expression on tumor antigen-specific CD8+ T cells was observed in patients with melanoma after anti–PD-1 treatment (Chauvin et al., 2015).

Other immune checkpoint receptors such as B and T lymphocyte attenuator (BTLA), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and sialic acid-binding Ig-like lectin 9 (SIGLEC9) are also potential treatment targets (Galon and Bruni, 2019). Similarly, immune stimulatory agents such as OX40 and inducible T cell costimulatory (ICOS) agonists enhance T cell expansion and effector functions by controlling the tumor suppressive function of regulatory T cells (Tregs) (Hu-Lieskovan and Ribas, 2017; Mahoney et al., 2015).

Suppressive tumor microenvironment

Immunosuppressive cells

In patients refractory to anti–PD-1 therapy, decreased T cell effector function is associated with an increase in immunosuppressive cells such as Tregs, myeloid-derived suppressor cells (MDSCs), and tumor associated macrophages (TAM) (Fig. 1, Table 1) (Arlauckas et al., 2017). Tregs directly inhibit effector T cells (Teff) or produce inhibitory cytokines, such as interleukin (IL)-10, IL-35, and transforming growth factor-β (TGF-β), which suppress CD8+ T cells, resulting in acquired resistance to ICIs (Sakaguchi et al., 2008; Saleh and Elkord, 2019). MDSCs induce acquired resistance to ICIs via direct action on T cells, promotion of tumor angiogenesis, and recruitment of immune suppressive cells to the tumor microenvironment (Hou et al., 2020). MDSCs in the tumor microenvironment are related to a lack of response to immunotherapy (Meyer et al., 2014). M2 macrophages reshape the tumor microenvironment into a pro-tumorigenic environment (Chanmee et al., 2014). The colony-stimulating growth factor 1 receptor (CSF1R) plays a critical role in differentiation, pro-

Fig. 1. Immune suppressive and immune stimulatory cell-favored niche. The immune suppressive environment (left) shows the 1) immune suppressive cells including Tregs and MDSCs, 2) the expression of immune suppressive cytokines, and 3) upregulation of immune checkpoint receptors such as TIGIT, LAG-3, and TIM-3 by T cells. The immune stimulatory environment includes PD-1 expression by T cells (right). The immune suppressive cell-favored niche does not respond well to ICIs, while the immune stimulatory responds favorably to ICIs.

Mol. Cells 2021; 44(5): 363-373 365
liferation, and survival of the mononuclear phagocyte system and macrophages (Stanley and Chitu, 2014). Blocking CSF1R results in a decrease in tumor-associated macrophages, and addition of CSF1R inhibitor with PD1 and CTLA4 antagonists improves the response to ICIs in pancreatic cancer mouse models (Zhu et al., 2014), suggesting CSF1R inhibitor as a therapeutic approach for immunotherapy resistance.

Immunosuppressive cytokines

The upregulation of the TGF-β pathway promotes the immunosuppressive effects of Tregs (Table 1) (Neel et al., 2012). Inhibition of TGF-β provided a better anti-tumor response to ICIs in a colorectal cancer model, followed by application of a TGF-β inhibitor with or without anti–CTLA-4 or radiation therapy (Fig. 1) (Hanks et al., 2014; Vanpouille-Box et al., 2015).

VEGF signaling activates the infiltration of Tregs into the tumor microenvironment and induces exhaustion of cytotoxic T lymphocytes (CTLs) by increasing inhibitory receptor expression (Voron et al., 2015). Patients with anti-PD-1 resistance have higher levels of VEGF than anti-PD-1 responsive patients (Chen et al., 2016). Combined anti-VEGF/anti-PD-L1 therapy has been shown to have beneficial outcomes in small cell lung cancer (SCLC) mouse models (Meder et al., 2018). These results suggest that the addition of VEGF inhibitors may improve the response to immunotherapy.

IL-6 and IL-8 are proinflammatory cytokines that are found in the tumor microenvironment. IL-6 decreases PD-L1 and MHC class 1 expression, leading to tumor evasion and ICI therapy resistance (García-Díaz et al., 2017). IL-8 modulates chemotaxis of neutrophils, resulting in pro-tumorigenic effects (Alfaro et al., 2016). High concentrations of IL-8 inhibit T cell function and antigen presentation, thereby promoting resistance to ICI therapy (Yuen et al., 2020).

Immunoregulative molecules

Immunoregulatory molecules such as adenosine, indoleamine 2,3-dioxygenase 1 (IDO1), and B7-H4 contribute to immunosuppression, which is associated with ICI resistance (Table 1) (Platten et al., 2015; Zang et al., 2003; Zhang et al., 2004). Adenosine inhibits effector T cells and increases Tregs via adenosine A2A receptor (A2AR) binding, leading to a decrease in NK cell maturation and its action (Young et al., 2018). Blocking CD73 or A2AR prevents adenosine signaling and improves the response of tumor cells to anti–PD-1 therapy (Vijayan et al., 2017). IDO1 is an enzyme that converts tryptophan to kynurenine. Consumption of tryptophan and accumulation of kynurenine activates Teff and Tregs, and promotes Treg cell formation (Ricciuti et al., 2019). Combination of IDO inhibitors with ICI therapy enhances the TIL function and number in the tumor microenvironment (Spranger et al., 2014). B7-H4 binds to T cells and inhibits their proliferation, cytotoxic action, and interleukin secretion by T cells (Zang et al., 2003). In patients with advanced NSCLC, high expression of B7-H4 is associated with tumor progression and tumor-related death risks (Genova et al., 2019). The effect of B7-H4 on immunotherapy resistance remains to be fully elucidated.

Epigenetic modification

Epigenetic modifications are associated with anticancer...
Mechanism	Target	Mechanism	Drug	Clinical trial No.	Phase	Tumor types	Treatment arms	Status
Blockade of alternate coinhibitory immune checkpoint receptors	LAG-3	LAG-3 fusion protein (IMP321)	Eftilagimod alpha	NCT03625323	2	NSCLC, HNSCC	Eftilagimodalpha + pembrolizumab	Recruiting
	IgG4 mAb	Relatlimab (BMS-986016)	NCT02750514	2	NSCLC	Nivolumab ± relatlimab or ipilimumab or BMS-986205 or dasatinib	Active, not recruiting	
	IgG4 mAb	LAG525	NCT02460224	1,2	Solid tumor	LAG525 ± spartalizumab (PDR001)	Active, not recruiting	
	mAb	BI 754111	NCT03780725	1	NSCLC, HNSCC	BI 754111 + BI 754091	Active, not recruiting	
	IgG4 mAb	Mavezelimab (MK-4280)	NCT03516981	2	NSCLC	Pembrolizumab + quavonlimab or MK-4280 or lenvatinib	Completed	
TIM-3	Anti-PD-1/TIM-3 bispecific Ab	R07121661	NCT03708328	1	Solid tumor	R07121661	Recruiting	
	Anti-TIM-3 mAb	INCGN02390	NCT03652077	1	Solid tumor	INCGN02390	Active, not recruiting	
		Sym023	NCT03489343	1	Solid tumor, lymphoma	Sym023	Completed	
		LY3321367	NCT03099109	1	Solid tumor	LY330054 (anti-PD-L1), LY3321367, LY330054 + LY3321367	Active, not recruiting	
		Cobolimab (TSR-022)	NCT02817633	1	Solid tumor	Cobolimab ± nivolumab, cobolimab + TSR-042 + TSR-033 or docetaxel	Recruiting	
		Sabatolimab (MBG453)	NCT02608268	1,2	Solid tumor	Sabatolimab ± PDR001 or decitabine	Active, not recruiting	
TiGIT	Anti-TiGIT mAb	Tiagrolumab (MTiG7192/AR-G-6058)	NCT04294810	3	NSCLC	Atezolizumab ± tiagrolumab	Recruiting	
		Vibostilimab (MK-7684)	NCT024256421	3	SCLC	Atezolizumab + carboplatin + etoposide ± tiagrolumab	Recruiting	
		BMS-986207	NCT02964013	1	Solid tumor	Vibostilimab ± pembrolizumab ± pemetrexed/carboplatin/vibostilimab ± carboplatin + cisplatin + etoposide	Recruiting	
		BMS-986207	NCT02913313	1,2	Solid tumor	BMS-986207 ± nivolumab	Active, not recruiting	
BTLA	Anti-OX40 mAb	Domvanalimab (AB-1 54)	NCT04262856	2	NSCLC	Zimberelimab ± domvanalimab ± etrumadenant	Recruiting	
	Anti-BTLA mAb	Cudarolimab (Bi101)	NCT04672356	1	NSCLC, SCLC	IB939 + sintilimab	Not yet recruiting	
VISTA	Anti-VISTA mAb	NCT03758001	1	Solid tumor	Cudarolimab ± sintilimab	Recruiting		
		NCT04137900	1	Solid tumor	TAB004	Recruiting		
		NCT02671955	1	Solid tumor	JNJ-61610588	Terminated		
		NCT04475523	1	Solid tumor	CI-8993	Recruiting		
	Small molecule targeting VISTA and PD-L1	CA-170	NCT02812875	1	Solid tumor, lymphoma	CA-170	Completed	
Mechanism	Target	Mechanism	Drug	Clinical trial No.	Phase	Tumor types	Treatment arms	Status
-----------	--------	-----------	------	--------------------	-------	-------------	----------------	--------
Immune stimulatory agents	OX40 Hexavalent OX40 agonist Ab	INBRX-106	NCT04198766	1	Solid tumor	INBRX-106 + pembrolizumab	Recruiting	
	PD1-Fc-OX40L	SL-279252	NCT03894618	1	Solid tumor, lymphoma	SL-279252	Recruiting	
	Anti-OX40 agonist mAb	PF-04518600	NCT021315066	1	Solid cancer	PF-04518600 + PF-05082566	Completed	
	Anti-OX40 agonist mAb	INCAGN01949	NCT02923349	1,2	Solid tumor	INCAGN01949	Completed	
	Anti-OX40 agonist mAb	GSK3359609	NCT03693612	2	Solid tumor	GSK3359609 + tremelimumab, docetaxel + paclitaxel + cetuximab	Recruiting	
Tumor microenvironment	CSF1R MET, CSF1R, SRC kinase inhibitor	TPX-0022	NCT03993873	1	Solid tumor	TPX-0022	Recruiting	
	CSF1R mAb	Cabiralizumab (FPA008)	NCT02526017	1	Solid tumor	FPA008 + BMS-936558	Completed	
	TGF-β TGF-β inhibitor	Galunisertib (LY2157299)	NCT02423343	1,2	Solid tumor	Galunisertib + nivolumab	Completed	
	TGF-β inhibitor	AVID200	NCT03834662	1	Solid tumor	AVID200	Active, not recruiting	
	TGF-β inhibitor	SAR-439459	NCT04729725	1	Solid tumor	SAR-439459 + cemiplimab	Not yet recruiting	
	VEGF VEGFR TKI inhibitor	Vandetanib (ZD6474)	NCT00418886	3	NSCLC	Vandetanib + pemetrexed	Active, not recruiting	
	Axitinib (AG-013736)	NCT03472560	2	NSCLC, urothelial cancer	Axitinib + avelumab	Active, not recruiting		
	Apatinib (YN968D1)	NCT03389256	2	NSCLC, urothelial cancer	Apatinib + EGFR-TKI	Not yet recruiting		
	Anti-VEG mAb	Bevacizumab (L01XC07)	NCT00451906	3	NSCLC	Bevacizumab + first-line chemotherapy	Completed	
		IB305	NCT03802240	3	Non-squamous NSCLC	Nivolumab ± IB305 + pemetrexed + cisplatin	Recruiting	
	Anti-VEGFR mAb	Ramucirumab (LY3009806)	NCT04340882	2	NSCLC	Ramucirumab + docetaxel + pembrolizumab	Recruiting	
	Aurora B/VEGFR/ PDGFR/c-Kit/ CSF1R inhibitor	Chiauranib (CS2164)	NCT03216363	1	SCLC	Chiauranib	Recruiting	
	IL-1β	Ant-IL-1β mAb	Canakinumab (ACZ885)	NCT03626545	3	NSCLC	Canakinumab + docetaxel	Active, not recruiting
	IL-6	IL1RAP Ab	CAN04	NCT04455214	1	Solid tumor	CAN04 + pembrolizumab	Recruiting
		Anti-IL-6R mAb	Tocilizumab (RO4877533)	NCT04651917	1,2	NSCLC	Tocilizumab + atezolizumab	Not yet recruiting
		Anti-IL-6 mAb	Siltuximab (CNT0 328)	NCT00811911	1,2	Solid tumor	Siltuximab	Completed
	IL-8	Anti-IL-8 mAb	BMS-986253	NCT04123379	2	NSCLC, HCC	Nivolumab + BMS-81360 or BMS-986253	Recruiting
Mechanism	Target	Drug	Clinical trial No.	Phase	Tumor types	Treatment arms	Status	
-----------	--------	------	--------------------	-------	-------------	----------------	--------	
Overcoming Anti–PD-1/PD-L1 Therapy Resistance in NSCLC								
Overcoming Anti–PD-1/PD-L1 Therapy Resistance in NSCLC								
immunity, including T cell function, migration, exhaustion, and neoantigen expression (Wang et al., 2020). Epigenetic modifications silence tumor suppressor and apoptosis genes, thereby activating tumor proliferation (Table 1) (Baxter et al., 2014). For instance, the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex decreases the sensitivity of tumor cells to CTLs, leading to a lack of response to immunotherapy (Miao et al., 2018; Pan et al., 2018). Several studies have demonstrated that re-invigoration of exhausted CD8+ T cells and memory T cells is feasible via chromatin remodeling and epigenetic modification (Fig. 1) (Jenkins et al., 2018; Pauken et al., 2016; Ribas et al., 2016).

POTENTIAL THERAPEUTIC STRATEGIES FOR OVERCOMING ACQUIRED RESISTANCE

Clinical trials on the IFN-γ pathway

Several clinical trials targeting JAK1/2 and STAT are ongoing. In a phase 1/2 study, AZD4205, a JAK1-selective inhibitor, was administered as both monotherapy and combination therapy with osimertinib in advanced NSCLC patients (NCT03450330). A phase 1/2 clinical trial of SC-43, an SHP-1 agonist that inhibits STAT3, in combination with cisplatin therapy for NSCLC is ongoing (NCT04733521).

Activation of stimulator of IFN genes (STING) showed an increase in anti-tumor immunity via the upregulation of proinflammatory chemokines and cytokines, including type I IFNs (Su et al., 2019). STING agonists are a promising option for patients with resistance to immunotherapy. Clinical trials of STING agonists for solid tumors, such as E7766, GSK3745417, and MIW815, are ongoing (NCT04144140, NCT03843359, and NCT03172936, respectively).

Clinical trials targeting other immune checkpoints

Randomized, double-blind, and phase 2 clinical trial of anti-TIGIT antibody tiragolumab in combination with atezolizumab (PD-L1 inhibitor) compared with placebo plus atezolizumab in patients with PD-L1-selected NSCLC (CITYSCAPE) revealed improved overall response rates (ORR): 31.3% for tiragolumab group and 16.2% for placebo group) and mean progression-free survival (mPFS: 5.4 months for tiragolumab group and 3.6 months for placebo group) (Rodríguez-Abreu et al., 2020). Other agents targeting immune checkpoint receptors are currently under investigation (Table 2).

Clinical trials targeting tumor microenvironment

The A2AR antagonist CPI-444 showed anti-tumor effects as both monotherapy and combination therapy with atezolizumab in patients with anti-PD-1/PD-L1 treatment-refractory renal cell carcinoma (RCC) and NSCLC, with a disease control rate of 36% for monotherapy in NSCLC and 71% for combination therapy in NSCLC (Fong et al., 2017). Other agents targeting the tumor microenvironment, such as CSF1R, TGF-β, VEGF, IL-1/6, A2AR, CD73, IDO1, and B7-H4 inhibitors, are listed in Table 2.

Clinical trials on epigenetic modification

Epigenetic modifications include DNA methylation and histone (Kim et al., 2020). DNA methylation is mediated by DNA methyltransferase (DNMT), which regulates silencing of genes and non-coding genomic regions. Histone modification enzymes such as histone methyltransferase (HMT) and histone deacetylase (HDAC) change the structure of chromatin, leading to gene regulation and carcinogenesis (Kanwal and Gupta, 2012). Epigenetic modification enzyme inhibitors such as DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis) are potential therapeutic targets for immunotherapy resistance (Arenas-Ramirez et al., 2018).

Preclinical studies have shown that both DNMTi and HDACi increase the response to anti-PD-1 therapy in various tumors (Mazzone et al., 2017). One of the histone methyltransferase enzymes, enhancer of zeste homolog 2 (EZH2), is involved in the proliferation, migration, and invasion of various cancer cells such as glioblastoma, ovarian cancer, and prostate cancer (Yamaguchi and Hung, 2014). EZH2 exhibited a silencing effect on antigen presentation and immune reaction, and blocking of EZH2 resulted in synergistic effects with anti-CTLA-4 and IL-2 immunotherapy (Zingg et al., 2017).

For patients with relapsed or refractory malignant mesothelioma, the EZH2 inhibitor tazemetostat was well tolerated and showed a 47% disease control rate in 12 patients (Zauderer et al., 2020). A phase 1/2 clinical trial of tazemetostat monotherapy in patients with advanced solid tumors or B-cell lymphomas is currently underway (NCT01897571). Other clinical trials for epigenetic modulators such as DNMTis, HMTis, HDACis, and adoptive T cell therapy are included in Table 2.

CONCLUSION

The advent of immunotherapy has changed the treatment options in NSCLC. Prior to immunotherapy and targeted agents, chemotherapy was the backbone of treatment. Currently, the first-line standard treatment for stage IV NSCLC is anti-PD-1 with or without chemotherapy, with the addition of chemotherapy depending on the PD-L1 expressions of the patients (Mok et al., 2019). There is also the option of anti-PD-L1 and VEGFR inhibitor with chemotherapy in first-line non-squamous NSCLC (Socinska et al., 2018). Recently, front-line nivolumab with ipilimumab in combination with short course chemotherapy showed overall survival benefit in patients with NSCLC and received U.S. Food and Drug Administration approval (Arenas-Ramirez et al., 2018).

Unprecedented results of survival gain in NSCLC have accelerated scientists and clinicians to explore various combinations of immunotherapy with other agents in order to overcome acquired resistance. Indeed, elucidating the mechanisms underlying acquired resistance is necessary to provide treatment options for this subset of patients. Notably, the upregulation IFN-γ pathway, co-inhibition of immune checkpoints such as TIGIT, and inhibition of TGF-β have gained attention as promising potential therapeutic strategies and are awaiting results.

ACKNOWLEDGMENTS

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean Government (MSIT) (NRF-2017M3A9E9072669, 2017M3A9E8029717,
NRF-2019M3A9B6065231, 2019M3A9B6065221, 2018R1A2A1A05076997, 2017R1A5A1014560).

AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

CONFLICT OF INTEREST
The authors have no potential conflicts of interest to disclose.

ORCID
Yong Jun Lee https://orcid.org/0000-0001-6394-0364
Jii Burn Lee https://orcid.org/0000-0001-5608-3157
Sang-Jun Ha https://orcid.org/0000-0002-1192-6031
Hye Ryun Kim https://orcid.org/0000-0002-1842-9070

REFERENCES
Abiko, K., Matsumura, N., Hamanishi, J., Horikawa, N., Murakami, R., Yamauchi, K., Yoshikawa, Y., Baba, T., Konishi, I., and Mandai, M. (2015). IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 112, 1501-1509.

Alfaro, C., Teijeira, A., Óñate, C., Pérez, G., Sammamed, M.F., Andueza, M.P., Alignani, D., Labiano, S., Azpilikueta, A., Rodríguez-Pauleta, A., et al. (2016). Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res.

Arenas-Ramírez, N., Sahin, D., and Boyman, O. (2018). Epigenetic mechanisms of tumor resistance to immunotherapy. Cell. Mol. Life Sci. 75, 4163-4176.

Ashizawa, T., Iizu, A., Maeda, C., Tanaka, E., Kondou, R., Miyata, H., Sugino, T., Kawata, T., Deguchi, S., Mitsuoka, Y., et al. (2019). Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on resistance pathway in anti–PD-1 therapy. Sci. Transl. Med. 9, eaal3604.

Bagchi, S., Yuan, R., and Engleman, E.G. (2021). Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223-249.

Baker, E., Windloch, K., Gannon, F., and Lee, J.S. (2014). Epigenetic regulation in cancer progression. Cell Biosci. 4, 45.

Chanmee, T., Ontong, P., Konno, K., and Itano, N. (2014). Tumor-associated macrophages as major players in the cancer microenvironment. Cancers (Basel) 6, 1670-1690.

Chauvin, J.M., Chen, T.H., Maurer, M., Korman, A.J., et al. (2015). TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest. 125, 2046-2058.

Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, PA., Miller, JP., Bassett, R.L., Gopalakrishnan, V., Wani, K., et al. (2016). Analysis of immune signatures in longitudinal tumor samples yields insights into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827-837.

Ettinger, D.S., Wood, D.E., Aggarwal, C., Aisner, DL., Akerley, W., Bauman, J.R., Bharat, A., Bruno, D.S., Chang, J.Y., Chirieac, L.R., et al. (2019). NCCN guidelines insights: non–small cell lung cancer; version 1.2020: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw. 17, 1464-1472.

Fong, L., Forde, P.M., Powderly, J.D., Goldman, J.W., Nemunaitis, J.J., Luke, J.J., Hellmann, M.D., Kumm, S., Doebele, R.C., Mahadevan, D., et al. (2017). Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 35(S15 Suppl), 3004.

Galton, J. and Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197-218.

García-Díaz, A., Shin, D.S., Moreno, B.H., Saco, J., Escuin-Ordinas, H., Rodríguez, G.A., Zaretsky, J.M., Sun, L., Hugo, W., Wang, X., et al. (2017). Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189-1201.

Genova, C., Boccardo, S., Mora, P., Rijavec, E., Biello, F., Rossi, G., Tagliamento, M., Dal Bello, M.G., Coco, S., Alama, A., et al. (2019). correlation between B7-H4 and survival of non–small-cell lung cancer patients treated with nivolumab. J. Clin. Med. 8, 1566.

Gettinger, S., Choi, J., Hastings, K., Trunii, A., Datar, I., Sowell, R., Wurtz, A., Dong, W., Cai, G., Melnick, M.A., et al. (2017). Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420-1435.

Hanks, B.A., Holtzhausen, A., Evans, K., Heid, M., and Blobe, G.C. (2014). Combinatorial TGF-β1 signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAFV600E-PTEN-/- transgenic model of melanoma. J. Clin. Oncol. 32(S15 Suppl), 3011.

Hellmann, M.D., Friedman, C.F., and Wolchok, J.D. (2016). Combinatorial cancer immunotherapies. Adv. Immunol. 130, 251-277.

Hou, A., Hou, K., Huang, Q., Lee, Y., and Chen, W. (2020). Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front. Immunol. 11, 783.

Hu-Lieszkov, S. and Ribas, A. (2017). New combination strategies using PD-1/L1 checkpoint inhibitors as a backbone. Cancer Discov. 7, 10-22.

Jenkins, R.W., Barbie, D.A., and Flaherty, K.T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9-16.

Kanwal, R. and Gupta, S. (2012). Epigenetic modifications in cancer. Clin. Genet. 81, 303-311.

Kim, D., Lee, Y.S., Kim, D.H., and Bae, S.C. (2020). Lung cancer staging and associated genetic and epigenetic events. Mol. Cells 43, 1-9.

Koyama, S., Akbay, E.A., Li, Y.Y., Herter-Sprie, G.S., Buzzikowski, K.A., Richards, W.G., Gandhi, L., Redig, A.J., Rodig, S.J., Asahina, H., et al. (2016). Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoint markers. Nat. Commun. 7, 10501.

Mahoney, K.M., Rennert, P.D., and Freeman, G.J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561-584.

Manguso, R.T., Pope, H.W., Zimmer, M.D., Brown, F.D., Yates, K.B., Miller, B.C., Collins, N.B., Bi, K., LaFleur, M.W., Juneja, V.R., et al. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413-418.

Mariathasan, S., Tulip, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., Kadel, E.E., III, Koeppen, H., Astarita, J.L., Cubas, R., et al. (2018). TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548.

Mazzon, R., Zwergel, C., Mai, A., and Valente, S. (2017). Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin. Epigenetics 9, 59.

Meder, L., Schuldt, P., Thelen, M., Schmitt, A., Dietlein, F., Klein, S., Borchmann, S., Wenhild, K., Vlassis, I., Oberbeck, S., et al. (2018). Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer.
Cancer Res. 78, 4270-4281.

Meyer, C., Cagnon, L., Costa-Nunes, C.M., Baumgaertner, P., Montandon, N., Leyvraz, L., Michielin, O., Romano, E., and Speiser, D.E. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother. 63, 247-257.

Miao, D., Margolis, C.A., Gao, W., Voss, M.H., Li, W., Martini, D.J., Norton, C., Bossé, D., Wankowicz, S.M., Cullen, D., et al. (2018). Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801-806.

Mok, T.S.K., Wu, Y.L., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., Castro, G., Jr, Srinuninimm, V., Laktionov, K.K., Bondarenko, I., et al. (2019). Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819-1830.

Neel, J.C., Humbert, L., and Lebrun, J.J. (2012). The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428.

Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R.E., Luoma, A.M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., et al. (2018). A major chromatin stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165.

Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., Xu, C., McKenzie, J.A., Zhang, C., Liang, X., et al. (2016). Loss of PTEN promotes resistance to T-cell-mediated immunotherapy. Cancer Discov. 6, 202-216.

Pereira, C., Gimenez-Xavier, P., Pros, E., Pajares, M.J., Moro, M., Gomez, A., Navarro, A., Condorn, E., Moran, S., Gomez-Lopez, G., et al. (2017). Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin. Cancer Res. 23, 3203-3213.

Platten, M., von Knebel Doeberitz, N., Ozen, I., Wick, W., and Ochs, K. (2015). Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol. 5, 673.

Pourmiri, I., Gazeau, B., de Saint Basile, H., and Fabre, E. (2020). Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality? Cancer Drug Resist. 3, 276-286.

Remon, J., Passiglia, F., Ahn, M.I., Barlesi, F., Forde, P.M., Garon, E.B., Gettinger, S., Goldberg, S.B., Herbst, R.S., Horn, L., et al. (2020). Immune checkpoint inhibitors in thoracic malignancies: review of the existing evidence by an ISALC expert panel and recommendations. J. Thorac. Oncol. 15, 914-947.

Ren, D., Hua, Y., Yu, B., Ye, X., He, Z., Li, C., Wang, J., Mo, Y., Wei, X., Chen, Y., et al. (2020). Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer 19, 19.

Ribas, A., Shin, D.S., Zaretsky, J., Frederiksen, J., Cornish, A., Avramis, E., Seja, E., Kivork, C., Siebert, J., Kaplan-Lefko, P., et al. (2016). PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4, 1904-203.

Ricciuti, B., Leonardi, G.C., Puccetti, P., Fallarini, F., Bianconi, V., Sahebkar, A., Baglivo, S., Chiari, R., and Pirro, M. (2019). Targeting indoleamine-2,3-dioxygenase in cancer: scientific rationale and clinical evidence. Pharmacol. Ther. 196, 105-116.

Rodriguez-Abreu, D., Johnson, M.L., Hussein, M.A., Cobo, M., Patel, A.J., Secen, N.M., Lee, KH., Massuti, B., Hiret, S., Yang, J.C.H., et al. (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 38(15 Suppl), 9503.

Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787.

Sales, R. and Elordi, E. (2019). Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457, 168-179.

Sharma, P., Hu-Lieskovsk, S., Wargo, J.A., and Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707-723.

Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovsk, S., Kalbasi, A., Grasso, C.S., Hugo, W., Sandoval, S., Torrejon, D.Y., et al. (2017). Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188-201.

Sociinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., Rodriguez-Abreu, D., Moro-Sibiloi, D., Thomas, C.A., Barlesi, F., et al. (2018). Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288-2301.

Spranger, S., Koblish, H.K., Horton, B., Scherle, P.A., Newton, R., and Gajewski, T.F. (2014). Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer 2, 3.

Stanley, E.R. and Chitu, V. (2014). CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857.

Steven, A., Fisher, S.A., and Robinson, B.W. (2016). Immunotherapy for lung cancer. Respilology 21, 821-833.

Su, T., Zhang, Y., Valeri, K., Wang, X.Y., Lin, S., and Zhu, G. (2019). STING activation in cancer immunotherapy. Theranostics 9, 7759-7771.

Sucker, A., Zhao, F., Pieper, N., Heeke, C., Maltaner, R., Stadtlter, N., Real, B., Moll, I., Maltaner, R., Horn, P.A., et al. (2014). Acquired resistance mechanisms in melanoma progression. Clin. Cancer Res. 20, 6593-6604.

Staub, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMilller, T.L., Chen, S., Klein, A.P., Perrell, D.M., Topalian, S.L., et al. (2012). Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra37.

Thommen, D.S., Schreiner, J., Müller, P., Herzig, P., Roller, A., Belousov, A., Umana, P., Pisa, P., Klein, C., Bacac, M., et al. (2015). Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol. Res. 3, 1344-1355.

Toor, S.M., Nair, V.S., Decock, J., and Elordi, E. (2020). Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1-12.

Topalian, S.L., Drake, C.G., and Pardoll, D.M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461.

Toso, A., Revandkar, A., Di Mitri, D., Guccini, I., Proietti, M., Sarti, M., Pinton, S., Zhang, J., Kalathur, M., Civenni, G., et al. (2014). Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75-89.

Vanpouille-Box, C., Diamond, J.M., Pilones, K.A., Zavadil, J., Babb, J.S., Formenti, S.C., Formenti, S.C., Barcellos-Hoff, M.H., and Demaria, S. (2015). TGFβ1 is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232-2242.

Vijayan, D., Young, A., Teng, M.W., and Smyth, M.J. (2017). Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709-724.

Voron, T., Colussi, O., Marcheteau, E., Pernot, S., Nizard, M., Pointet, A.L., Latreche, S., Bergaya, S., Benhamouda, N., Tanchot, C., et al. (2015).
VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139-148.

Wang, F., Wang, S., and Zhou, Q. (2020). The resistance mechanisms of lung cancer immunotherapy. Front. Oncol. 10, 568059.

Xu, L.J., Ma, Q., Zhu, J., Li, J., Xue, B.X., Gao, J., Sun, C.Y., Zang, Y.C., Zhou, Y.B., Yang, D.R., et al. (2018). Combined inhibition of JAK1, 2/Stat3-PD-L1 signaling pathway suppresses the immune escape of castration-resistant prostate cancer to NK cells in hypoxia. Mol. Med. Rep. 17, 8111-8120.

Yamaguchi, H. and Hung, M.C. (2014). Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46, 209-222.

Young, A., Ngiow, S.F., Gao, Y., Patch, A.M., Barkauskas, D.S., Messaoudene, M., Lin, G., Coudert, J.D., Stannard, K.A., Zitvogel, L., et al. (2018). A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003-1016.

Yuen, K.C., Liu, L.F., Gupta, V., Madireddi, S., Keerthivasan, S., Li, C., Rishipathak, D., Williams, R., Kadel, E.E., 3rd, Koeppen, H., et al. (2020). High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693-698.

Zang, X., Loke, P., Kim, J., Murphy, K., Waitz, R., and Allison, J.P. (2003). B7x: a widely expressed B7 family member that inhibits t cell activation. Proc. Natl. Acad. Sci. U. S. A. 100, 10388-10392.

Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovsan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819-829.

Zauderer, M.G., Szlosarek, P.W., Le Moulec, S., Popat, S., Taylor, P., Planchard, D., Scherpereel, A., Jahan, T.M., Kocywia, M., Forster, M., et al. (2020). Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. J. Clin. Oncol. 38(Suppl), 9058.

Zhang, H., Conrad, D.M., Butler, J.J., Zhao, C., Blay, J., and Hoskin, D.W. (2004). Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3’, 5’-monophosphate and phosphatases. J. Immunol. 173, 932-944.

Zhu, Y., Knollhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., Wang-Gillam, A., Goedegebuure, S.P., Linehan, D.C., and DeNardo, D.G. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057-5069.

Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R.A., Antunes, A.T., Haeusel, J., Sommer, L., and Boyman, O. (2017). The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867.