Self-Assembly of Nanoparticles in a Modular Fashion to Prepare Multifunctional Catalysts for Cascade Reactions: From Simplicity to Complexity

Danjie Li,† Lingmei Liu,§ Lijing Zhang, † Shengyang Tao, *,† Guangtao Li,‡
Yongxian Yu, † Xin Liu.†

† Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.

‡ Department of Chemistry, Tsinghua University, Beijing 100084, China.

§ Center of Advanced Membranes and Porous Materials, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Jeddah 21589, Kingdom of Saudi Arabia.

* Corresponding author email: taosy@dlut.edu.cn
Figure S1. Low mag and high mag images of (a, b) pure mesoporous silica, (c, d) ZrO$_2$-SiO$_2$, (e, f) MgO-SiO$_2$.
Figure S2. (a, b) The pictures of microfluidic chip, (c) the process of producing micro-droplets by microfluidic device.
Figure S3. The mass spectrogram of the final product of the cascade reaction.
Table S1. The mass fractions of Zr in ZrO$_2$-SiO$_2$ and Mg in MgO-SiO$_2$, respectively.

Element	Zr	Mg
Percentage (%)	1.64	4.37
Table S2. Physical parameters of different mesoporous silica materials and the multi-modules microspheres.

Sample	Specific surface area (m²·g⁻¹)	Pore size (nm)	Pore volume (cm³·g⁻¹)
SiO₂	930.98	3.07	0.56
ZrO₂-SiO₂	788.83	2.96	0.54
MgO-SiO₂	246.34	3.19	0.20
Multi-modules	439.51	2.62	0.42
Microspheres			
Table S3. O 1s peak position of different mesoporous silica materials.

Peak	SiO$_2$	ZrO$_2$-SiO$_2$	MgO-SiO$_2$
O 1s (eV)	534	533.6	532.9