Променева терапія пухлин стовбура головного мозку у дітей

Северин Ю.П.¹, ORCID: 0000-0002-9667-3490, e-mail: yulseveryn75@gmail.com
Вінцевич Л.В.¹, ORCID: 0000-0001-7419-9882, e-mail: radiotherapy.okhmatdyt@gmail.com
Стасюк М.Б.¹, ORCID: 0000-0002-1744-5124, e-mail: radiotherapy.okhmatdyt@gmail.com
Рєбєнков С.О.¹, ORCID: 0000-0001-8116-5277, e-mail: rebenkov@gmail.com
Русин А.Г.¹, ORCID: 0000-0002-3407-3895, e-mail: nastarysuy@gmail.com
Карнаухов С.А.¹, ORCID: 0000-0002-2314-1637, e-mail: radiotherapy.okhmatdyt@gmail.com
Попадянець О.Р.¹, ORCID: 0000-0001-7450-4509, e-mail: radiotherapy.okhmatdyt@gmail.com

¹Національна дитяча спеціалізована лікарня «ОХМАТДИТ» Міністерства охорони здоров'я України, м. Київ, Україна
²Національний університет охорони здоров'я України ім. П.Л. Шупика Міністерства охорони здоров'я України, м. Київ, Україна

© Северин Ю.П., Вінцевич Л.В., Стасюк М.Б., Рєбєнков С.О., Русин А.Г., Карнаухов С.А., Попадянець О.Р., 2022

Актуальність. Пухлини центральної нервової системи посідають перше місце у структурі причин летальності від злоякісних пухлин серед дітей. Пухлини стовбурових відділів головного мозку складають від 10,0 до 15,0% всіх внутрішньочерепних новоутворень у цій віковій групі. Ендоцерева пухлина останніх недіє відділів. Діагностування патології базується на вивченні анатомічних та магнітно-резонансних даних. Отримання метаболічних даних і гістологічних даних; відсоток від негативних результатів. Результати клінічних досліджень, проведених на базі Національної дитячої спеціалізованої лікарні «ОХМАТДИТ» Міністерства охорони здоров'я України.

Матеріали та методи. На базі Національної дитячої спеціалізованої лікарні «ОХМАТДИТ» Міністерства охорони здоров'я України, у відділенні променевої терапії Центру радіології за час 3-річного існування проліковано на лінійному прискорювачі Elekta Linac 2300 в 22 особи, які мали діагноз: пухлина стовбурових відділів головного мозку. За гендерним розподілом: 10 дівчаток віком 3–10 років (54%), 12 хлопчиків віком 3–10 років (46%). Середній вік склав 6 ± 4 роки. Діагноз у 4 пацієнтів (18,0%) мав гістологічну підтвердження, у 21 пацієнта відмічалося зменшення патологічного вогнища порівняно з первинним статусом дитини через 5–14 днів від початку. Протягом 4–6-тижневого контролю медикаментозним супроводом забезпечило значне покращення неврологічного стану. Результати та їх обговорення. Застосування ПТ з відповідним протинабряковим алгоритмом Monte Carlo виконували на планувальній системі Monaco з використанням розрахункових даних по розподілу електронів Elekta Sinergy S 22 особи, які мали діагноз: пухлина стовбурових відділів головного мозку. Відповідно до результатів клінічних досліджень, проведених на базі Національної дитячої спеціалізованої лікарні «ОХМАТДИТ» Міністерства охорони здоров'я України.

Ключові слова:
пухлини стовбурових відділів головного мозку, дифузна гліома моста, лікування, променева терапія.
Abstract

Background. Tumors of the central nervous system occupy the first place in the structure of causes of death from malignant tumors among children. The tumors of brain stem structures account for 10 to 15% of all intracranial neoplasms in this age group. The etiology of these tumors is not completely known. Diagnosis of pathology is based on clinical manifestations and magnetic resonance imaging. Obtaining material for histological examination at this location is associated with the risk of severe neurological disorders. Despite clinical trials in search of targeted therapy, the treatment of this pathology is based on chemoradiation therapy.

Purpose – to analyze the effectiveness of radiation therapy in mono-mode and in patients with the tumors of brain stem structures without intake of Temozolomide, according to the results of clinical studies conducted on the basis of National Children’s Specialized Hospital «OKHMATDYT» of the Ministry of Health of Ukraine.

Materials and Methods. On the basis of the National Children’s Specialized Hospital «OKHMATDYT» of the Ministry of Health of Ukraine, in the Department of Radiation Therapy of the Radiology Center during the 3-year existence, 22 people with brain stem tumors were treated on a linear electron accelerator Elekta Synergy S. By gender: 12 boys aged 3–10 (54%), 10 girls aged 3–11 (46%). The average life expectancy of girls was longer and exceeded one year, compared with boys. The average age was 6 ± 4 years. The diagnosis in most cases was made radiologically, but 4 patients (18%) had histological confirmation. Radiation therapy was performed according to the High grade glioma protocol with total basic dose (TBD) of up to 54 Gy for 30 fractions. 2 patients received repeated radiation therapy due to the deterioration of neurological symptoms and negative dynamics on MRI. Planning of 3D-CRT, IMRT, VMAT irradiation techniques was performed on a Monaco planning system using the Monte Carlo calculation algorithm.

Results. The use of radiation therapy with appropriate anti-edematous drug support, provided significant improvement in the neurological status of the child in 5–14 days from the beginning. After 4–6 weeks of control in 21 patients there was a decrease in the pathological focus compared to the original size by 17–70%. In 5 patients the tumor spread to the large hemispheres and/ or spinal cord after radiation therapy.

Conclusions. Diffuse intrinsic pontine gliomas are the leading cause of child mortality among patients with CNS tumors. Less than 10% of children live more than 2 years after diagnosis. At present, there is no method of radical treatment of patients with diffuse intrinsic point glioma. Radiation therapy still remains the main standard of treatment for DIPG, which improves the quality and duration of a child’s life.

Key words: brain stem tumors, diffuse intrinsic pontine glioma, treatment, radiation therapy.

For correspondence:

© Severyn Y.P., Vinsetvych L.V., Stassiuk M.B., Riebienkov S.O., Rusyn A.H., Karnaukhov S.A., Popadiynets O.P., 2022

For citation:

Severyn Yuulia Petrіvna
National Children’s Specialized Hospital «OKHMATDYT» of the Ministry of Health of Ukraine, Center of Radiology;
28/1, Chornovola Str., Kyiv, Ukraine, 01135;
e-mail: yurseveryn75@gmail.com

DOI: https://doi.org/10.46879/ukroj.1.2022.78-90
Вступ

Пухлини центральної нервової системи – це різноманітні за своєю гістологічною природою, ступенем злоякісності, локалізацією та поширеністю утворення, які слід розділяти на первинні пухлини (що виходять із тканин, складових оболонки і речовини головного мозку) та вторинні (віддалене метатстатичне ураження головного та/або спинного мозку, та/або їх оболонок в умовах дисемінації різних злоякісних пухлин людини) [1–3].

Згідно з Національним канцер-рєєстром України за 2019 рік пухлини центральної нервової системи (ЦНС) посідають друге місце у структурі вперше виявленої онкологічної патології у дітей та підлітків і перше – у структурі причин летальності від злоякісних пухлин [4]. За останні 20 років досягнуто істотних успіхів у лікуванні таких злоякісних пухлин ЦНС як геріноми і медулобластоми. Проте стосовно лікування пухлин стовбурових відділів головного мозку (ПСВГМ), що складають від 10 до 15% всіх внутрішньочерепних новоутворень у ці вікові групи, успіхи досягають значно повніше [3, 5]. Приблизно 90% дітей помирають протягом 18 міс. після встановленого діагнозу, а середня виживаність складає близько 9 місяців [6].

Етиологія даних пухлин остаточно невідома, однак велику увагу надають генетичним змінам певних генів, хоча невідомо чи є ці зміни первинними, чи вони виникають вже як наслідок даної патології [1, 7–9].

Діагностика патології базується на клінічних проявах та магнітно-резонансній візуалізації (МРТ). Клінічні прояви ПСВГМ залежно від локалізації пухлин в межах стовбура можуть розвиватися за двома напрямками: цілі на ураження нервових центрів та провідних шляхів, розташованих в стовбури, чи шляхами порушення відрізняються і існують суперечності в інтерпретації [2, 5]. Хоча критерії відсутні або неповні. Такі пацієнти традиційно вважаються діагнозом "атипової" ПСВГМ (аDIPG), тобто пухлини в межах стовбура, в яких ознаки зображення, про які йдеться, відсутні або неповні. Такі пацієнти традиційно вважаються окремими від пацієнів з tDIPG для терапевтичних або дослідницьких цілей. Молекулярне профілювання tDIPG призвело до нововиявлених патологічної
Досліджували 22 дитини з діагнозом: пухлина стовбурових відділів головного мозку, які проходили ПТ на лінійному прискорювачі електронів Elekta Sinergy S на базі Національної дитячої спеціалізованої лікарні «Охматдит» Міністерства охорони здоров'я України, у відділенні променевої терапії Центру радиології за час трірічного існування. План лікування, спостереження та прогноз формували на підставі публікацій, знайдених у базах даних Scopus, Web of Science Core Collection та Pub Med за період 2007–2020 рр.

The objective was to analyze the effectiveness of radiation therapy in mono-mode and in patients with the tumors of brain stem structures without intake of Temozolomide, according to the results of clinical studies conducted on the basis of National Children’s Specialized Hospital «ОКHMATDYT» of the Ministry of Health of Ukraine.
Серед 22 пропікалих пацієнтів з PSCVMG за гендерним розподілом було: 12 хлопчиків віком 3–10 років (54%), 10 дівчаток віком 3–11 років (46%). Середній вік склав 6 ± 4 роки.

Діагноз у більшості випадків був виставлений радіологічно, але у 4 пацієнтів (18%) був гістологічно підтверджений: субепендимома (G I), анапластична астроцитома (G III), гліобластома (G IV), дифузна середина гліома (G IV).

Рішення стосовно проведення ПТ прийняли згідно з висновком Нейроонкологічного консиліуму Національної дитячої спеціалізованої лікарні „Охматдит” Міністерства охорони здоров’я України, до складу якої, окрім променевого терапевта, входять нейрохірург, невролог, дитячий онколог, радіолог.

Топометричну підготовку проводили на 16-різьовому комп’ютерному томографі Toshiba Aquilion, з належною фіксацією голови термопластичною маскою відповідно до протоколу сканування, прописаного для певної вікової категорії. Для точності та якості опромінення контуринг-мішені та критичних структур проводили підключення КТ-зображення, отриманих після топометричної підготовки, та зображень попередньо зробленої МРТ (рис. 1, 4). МРТ-зображення, які використовували для ф’юзії, були зроблені не пізніше 10-денного терміну.

Оконтурювання мішені: як GTV визначали ділянку стовбура мозку з патологічним сигналом, зареєстрованим при МРТ (T1/T2/FLAIR послідовності), CTV = GTV + 1 см з урахуванням анатомічних меж стовбура мозку (1,5 см CTV у деяких випадках), PTV = CTV + 3–5 мм [12–14] (рис. 2).

Рішення стосовно проведення ПТ прийняли згідно з висновком Нейроонкологічного консиліуму Національного дитячого спеціалізованого лікарня “Охматдит” Міністерства охорони здоров’я України, який, відповідно до критеріїв QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) (табл. 1). Хоча мішень опромінювання знаходиться відносно недалеко від критичних структур, сучасні методики планування, можливості обладнання та професіоналізм спеціалістів дозволяють не перевищувати рекомендовані дози на критичні органи.

Ще два пацієнти отримали повторну променеву терапію, на підставі поширення неврологічної симптоматики та негативної динаміки за МРТ дослідженням (рис. 5, 6, 8). Використовували РОД = 1,8 Гр до СОД = 36,0 Гр (20 фракцій).

Among the 22 treated patients with DIPG, distribution by gender was the following: 12 boys aged 3–10 years (54%), 10 girls aged 3–11 years (46%). The average age was – 6 ± 4 years.

Diagnosis in most cases was established radiologically, but 4 patients (18%) were histologically confirmed: Subependymoma (G I), Anaplastic astrocytoma (G III), Glioblastoma (G IV), Diffuse middle glioma (G IV).

The decision to perform RT was made according to the conclusion of the Neurooncological Conclusium of National Children’s Specialized Hospital «Okhmatdyt» of the Ministry of Health of Ukraine, which, in addition to radiation oncologist, includes: neurosurgeon, neurologist, pediatric oncologist and radiologist.

Topometric training was performed on a 16-slice Toshiba Aquillion computed tomograph, with proper fixation of the head with a thermoplastic mask in accordance with the scanning protocol prescribed for a certain age category. For the accuracy and quality of irradiation, the delineation of the target and critical structures was performed by fusing CT images obtained during topometric preparation and images of previously performed MRI (Fig. 1, Fig. 4). MRI images used for the fusion were taken no later than 10 days. Target delineation: GTV determined the area of brain stem with pathological signal, registered on MRI (T1/T2/FLAIR), CTV = GTV + 1 cm including anatomical borders of the brain stem (1.5 cm CTV in some cases), PTV = CTV + 3–5 mm [12–14] (Fig. 2).

Планування методик опромінення 3D-CRT, IMRT, VMAT здійснювалось медичними фізиками на планувальній системі Monaco з використанням програмного забезпечення (рис. 3), з урахуванням толерантності здорових оточуючих структур до критеріїв QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) (табл. 1). Хоча мішень опромінювання знаходиться відносно недалеко від критичних структур, сучасні методики планування, можливості обладнання та професіоналізм спеціалістів дозволяють не перевищувати рекомендовані дози на критичні органи.

Ще два пацієнти отримали повторну променеву терапію, на підставі поширення неврологічної симптоматики та негативної динаміки за МРТ дослідженням (рис. 5, 6, 8). Використовували РОД = 1,8 Гр до СОД = 36,0 Гр (20 фракцій).

The planning of 3D-CRT, IMRT, VMAT irradiation methods was performed by medical physicists on the Monaco planning system using the Monte Carlo calculation algorithm (Fig. 3), taking into account the tolerance of healthy sensory tissues according to QUANTEC criteria (Quantitative Analysis of Normal Tissue Effects in the Clinic) (Table 1). Although the target of irradiation is relatively close to critical structures, modern planning techniques, features of equipment and professionalism of specialists allow the recommended doses to critical organs not to be exceeded.

Another 2 patients had received repeated RT, based on the deterioration of neurological symptoms and negative dynamics on MRI (Fig. 5, 6, 8). 1.8 Gy was used per fraction; TBD = 36.0 Gy (20 fractions).
Рис. 2. Пацієнка М., 4 роки. Діагноз: дифузна гліома стовбура головного мозку. Контуринг на планувальній системі Monaco
Fig. 2. Patient M., 4 years old. Diagnosis: Diffuse glioma of the brain stem. Delineation on the planning system Monaco

Рис. 3. Пацієнка М., 4 роки. Діагноз: дифузна гліома стовбура головного мозку. Планування методики опромінення 3D-CRT
Fig. 3. Patient M., 4 years old. Diagnosis: Diffuse glioma of the brain stem. Planning of 3D-CRT irradiation technique

Таблиця 1. Загальні дозові рекомендації для критичних органів [12–14]
Table 1. General dosage recommendations for critical organs [12–14]

Орган / Organ	Об’єм / Volume	Доза, Гр Dose, Gy
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	54,0
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	14,4
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	45,0
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	42,0
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	40,0
Оптичний нерв / Хіазма	Максимальна точкова доза / Dmax	45,0
Patient R., 7 years old. Diagnosis: Diffuse glioma of the brain stem. MRI from 04.09.20 in 4 weeks after 1st course of PT, TBD of 54 Gy without TMZ. Tumor size: 36x30x41 mm

Patient R., 7 years old. Diagnosis: Diffuse glioma of the brain stem. MRI from 29.06.21. Tumor of diffuse nature. The size together with the stem and the vermis cerebelli in the axial area at the level of the posterior cranial fossa is 80x61 mm, vertically – 74 mm. Secondary lesions of the corpus callosum are up to 9 mm in transverse size (supratentorial), diffuse lesions in the basal ganglia. She had 3 courses of TMZ 150 mg/m² №5 (15.03.21–23.03.21, 01.06.21–07.06.21) and 200 mg/m² №5 (12.04.21–20.04.21)

Patient R., 7 years old. Diagnosis: Diffuse glioma of the brain stem. Delineation on the planning system Monaco for repeated RT
Нейроонкологічним консиліумом було прийняте рішення про повторний курс ПТ.
Через 2,5 місяці після ПТ відмічалося зменшення об’ємного утворення (рис. 7).

Використання променевої терапії з відповідним протинабряковим медикаментозним супроводом забезпечило значне покращення неврологічного статусу дитини через 5–14 днів від початку. Через 4–6-тижневий контроль у 21 пацієнта відмічалося зменшення патологічного вогнища в порівнянні з первинними розмірами на 17–70%.
У 13 пацієнтів спостерігали локальне прогресування росту пухлини та значне погіршення неврологічного статусу пацієнта залежно від локалізації пухлини в межах стовбура. У 10 з цих пацієнтів проявилися симптоми порушення функції черепно-мозкових нервів, порушення статики та координації. А у 3 осіб, за...

The use of radiation therapy with appropriate anti-edematous drug support, provided a significant improvement in the neurological status of the child in 5–14 days from the beginning. After 4–6 weeks of control in 21 patients there was a decrease in the pathological focus compared to the original size by 17–70%.
Local progression of the tumor and significant deterioration of the patient’s neurological status were observed in 13 patients depending on the location of the tumor within the stem. 10 of these patients showed symptoms of craniocebral nerve dysfunction, impaired statics and coordination. And in 3 people, due to the violation of cerebrospinal fluid flow caused by compression of...
рахунок порушення ліквородинаміки через компресію водопроводу, що додатково виявилося підвищення внутрішньочерепного тиску та виникла необхідність у нейрохірургічному втручанні.

Приблизно у 1/3 пацієнтів з дифузними гліомами стовбура мозку спостерігається лептоменінгеальне розповсюдження пухлини та по трактам білої речовини в велики півкулі та/або спинний мозок [15, 16].

В нашому відділенні схожі випадки зафіксовані у 5 пацієнтів через 3–6 місяців після променевої терапії. Двое з них отримали повторну променеву терапію через 1 рік та 1 рік і 1 місяць після попередньої внаслідок погіршення неврологічної симптоматики та негативної динаміки за МРТ дослідженням. На фоні ПТ спостерігалося поліпшення загального стану обох пацієнтів на 3–4 місяці (рис. 9).

Середня тривалість життя складала 13 ± 7мес., у дівчаток була довшою та перевищувала рік, у порівнянні з хлопчиками.

Слід зазначити, що згідно з HGG протоколом лікування, рекомендують паралельне введення темозоломіду (TMZ) денною дозою 75 мг/м² кожного сеансу ПТ на підставі доведеної ефективності у дорослих [6, 17].

Лікування темозоломідом призводить до виснаження O6-метилгуанін метилтрансферази (MGMT), білка репарації ДНК, що викликає переважний цитотоксичний ефект, а також зменшує час для його поповнення, яке відбувається між дозами темозоломіду. На підставі цього зроблено припущення, що такий самий ефект можна спостерігати в пухлинних клітинах. Доведено, що режим тривалого дозування є можливим і безпечним для педіатричної популяції [6, 17–19].

Результати клінічних досліджень, таких як United Kingdom phase II trial (CNS 2007 04), не підтвердили ефективність схеми тривалого прийому TMZ у виснажені MGMT при дифузних гліомах стовбура мозку через можливе високу експресію цього білка чи інші механізми резистентності, пов’язані з недостатністю концентрації препарату через більшу цілісність гематоенцефалічного бар’єру при ПСВГМ [6, 18].

The average life expectancy was 13 months ± 7 months. It was longer for girls – more than a year, compared to boys. It should be noted that according to the protocol, concomitant administration of Temozolomide (TMZ) is recommended daily at the dose of 75 mg/m² per every fraction of RT based on proven efficacy in adults [6, 17].

Treatment with TMZ results in the depletion of O6-methylguanine methyltransferase (MGMT), a DNA repair protein, which causes dominant cytotoxic effect, and also shortens time for its replenishment, which occurs between the doses of TMZ. Thus, an assumption was made that the same effect may be seen in tumor cells. A prolonged dosing regime has been shown to be feasible and safe in a pediatric population [6, 17–19].

TMZ is the standard treatment for adult patients with HGG, but there is no standard chemotherapy backbone that is universally acknowledged in the setting of pediatric HGG. For DIPG in particular, there is no established role for chemotherapy, and radiation therapy is the standard treatment. [17, 18, 20].

The results of clinical trials, such as the United Kingdom phase II trial (CNS 2007 04), did not confirm the efficacy of the long-term regimen of TMZ in MGMT depletion in DIPG due to possible high expression of this protein or other resistance mechanisms associated with insufficient drug concentration integrity of the blood-brain barrier in DIPG [6, 18].

Similar studies have shown that the administration of TMZ does not improve the prolongation of median survival in children with diffuse brain glioma [6, 9, 17–19].
В подібних дослідженнях доведено, що введення TMZ не покращує пролонгації середньої виживаності у дітей з дифузною глиомою мозку [6, 9, 17–19].

В даному дослідженні спостерігали 4 пацієнтів, яким проводили паралельне введення TMZ денною дозою 75 мг/м² кожного сеансу ПТ, але загального подовження виживаності більше 2 років не спостерігалось.

Отже, спираючись на дані клінічних досліджень, в Національній дитячій спеціалізованій лікарні «Охматдит» Міністерства охорони здоров’я України лікують без фонового прийому темозоломіду, щоб зменшити вплив токсичності на самопочуття дитини. Оскільки продовжують досліджувати нові варіанти лікування, можна також розглянути повторне опромінення. Американо-європейські дослідження продемонстрували середню виживаність від 5 до 7 місяців після повторного опромінення, хоча проспективних досліджень досі не існує. СОД повторного опромінення коливалася у межах 18–36 Гр при РОД 1,8 – 2 Гр, і чітких рекомендацій не існує через малу когорту досліджуваних [21].

На момент лютого 2022 року ці пацієнти були живі, але менингеальні оболонки та ураження спинного мозку. Після чого були виявлені розповсюдження по лептомозоліду [6, 18, 20], ризик виникнення гематологічної токсичності та поганого самопочуття (нудота, головний біль, атаксія) [6], не виключає прогресування росту пухлини на тлі ПТ. Дітей з локалізованими ПСВГМ в Національній дитячій спеціалізованій лікарні «Охматдит» Міністерства охорони здоров’я України хворих з таким діагнозом. Променева терапія не виключає роботи MRT контроль не тільки головного мозку, але і MRT вертебрального каналу. При своєчасному виявлення патологічних змін у спинному мозку будемо робити краніоспінальне опромінення з бустом.

Висновки

Дифузні гіломи стовбура мозку – основна причина дитячої смертності серед пацієнтів з пухлинами ЦНС. На теперішній час не існує методу радикального лікування хворих з таким діагнозом. Променева терапія залишається основним стандартом лікування ПСВГМ, що дозволяє покращити якість та тривалість життя дитини. Враховуючи не доведену ефективність темозоламіду [6, 18, 20], ризик виникнення гематологічної токсичності та поганого самопочуття (нудота, головний біль, атаксія) [6], не виключає прогресування росту пухлини на тлі ПТ. Дітей з локалізованими ПСВГМ в Національній дитячій спеціалізованій лікарні «Охматдит» Міністерства охорони здоров’я України лікують без фонового прийому темозоломіду, а використовують тільки ПТ з відповідним противіарковим медика-ментозним супроводом. Для своєчасного виявлення метастатичного розповсюдження у спинний мозок рекомендуємо робити MRT вертебрального каналу.

Безумовно, що 22 дитини це маленька група для того щоб зробити висновки, наближені до більших досліджень, але в Національній дитячій спеціалізованій лікарні «Охматдит» перебуває найбільша кількість таких дітей з України.

Однак з ростом розуміння молекулярної генетики цієї патології, зростання кількості перспективних доклінічних моделей та новими методами подолання обмежень ефективної доставки ліків через гематоенцефалічний бар’єр, вони сподівається, що майбутнє терапії DIPG кардинально зміниться за короткий час, що принесе велику користь дітям з вищеописаною патологією [6, 21, 22].

In this study, 4 patients were observed who were receiving concomitant administration of TMZ at a daily dose of 75 mg/m² each RT session, but an overall prolongation of survival of more than 2 years was not observed.

Therefore, based on clinical trials, in National Children’s Specialized Hospital «Okhmatdyt» of the Ministry of Health of Ukraine, patients are treated without background intake of Temozolomide to reduce the influence of toxicity on the child's condition.

As new treatment options continue to be explored, re-irradiation may also be considered. American-European studies have shown a median survival of 5 to 7 months after re-irradiation, although there are no prospective randomized phase 2 studies, as well as no standards. TBD of re-irradiation ranged from 18–36 Gy at 1.8–2 Gy by fraction, and there are no clear recommendations due to the small cohort of the patients [21].

In 2 patients from the studied cohort, improvement was observed for 3–4 months after repeated radiotherapy, followed by spreading to leptomeningeal membranes and spinal cord injury. In February 2022 – these patients were still alive, but under the supervision of related specialists.

According to our observations, in case of disease progression and before resolving the issue of re-irradiation, we recommend performing MRI control not only of the brain, but also of the vertebral canal. At timely detection of pathological changes in a spinal cord we will do craniospinal irradiation with a boost.

Клінічний випадок

A clinical case
It is planned to monitor the quality and life expectancy of pediatric patients after radiation therapy for the purpose of improvement according to modern requirements.

The authors declare no conflict of interest.

Funding information

Severyn Yulia Petrovna – Candidate of Medical Sciences, Doctor of Radionuclide Diagnostics and Radiation Therapy of the of National Children's Specialized Hospital «Okhmetyd» of the Ministry of Health of Ukraine, Center of Radiology; 28/1, Chornovola Str., Kyiv, Ukraine, 01135; Associate Professor of the Department of Nuclear Medicine, Radiation Oncology and Radiation Safety of Shupyk National Healthcare University of Ukraine of the Ministry of Health of Ukraine; 9, Dorozychtska Str., Kyiv, Ukraine, 04112; e-mail: yulseveryn75@gmail.com
tel.: +38 (050) 383-88-78
Author’s contribution: development of the concept of analysis, text writing, literature review, collection and analysis of information, direct participation in treatment process.

Vintsevych Lyudmyla Vasylivna – Head of the Radiation Therapy Department of the Radiology Center of National Children's Specialized Hospital «Okhmetyd» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135; e-mail: radiotherapy.okhmetyd@gmail.com
tel.: +38 (095) 661-41-49
Author’s contribution: development of the concept of analysis, direct participation in the development of the treatment process, literature review, collection and analysis of information.

Stassiuk Maria Borysivna – Radiologist, Radiotherapist of the Radiation Therapy Department of the Radiology Center of National Children's Specialized Hospital «Okhmetyd» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135; e-mail: radiotherapy.okhmetyd@gmail.com
tel.: +38 (068) 788-78-01
Author’s contribution: direct participation in the development of the treatment process, literature review, collection and analysis of information.

Riebenkov Stanislav Olehovych – Head of the Radiology Center of National Children's Specialized Hospital «Okhmetyd» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135; e-mail: rebenkov@gmail.com
tel.: +38 (093) 207-60-88
Author’s contribution: direct participation in the diagnostic process, analysis of information.
Клінічний випадок

Український радіологічний та онкологічний журнал. 2022. Т. 30. № 1. С. 78–90
Ukrainian journal of radiology and oncology. 2022;30(1):78–90
ISSN 2708-7166 (Print)
ISSN 2708-7174 (Online)

Карнаухов Сергій Анатолійович – медичний фізик відділення променевої терапії Центру радіології Національної дитячої спеціалізованої лікарні «Охматдит» Міністерства охорони здоров'я України; вул. Чорновола, буд. 28/1, м. Київ, Україна, 01135;
e-mail: radiotherapy.okhmatdyt@gmail.com
тел.: +38 (097) 263-22-51

Внесок автора: безпосередня участь у розрахунку лікувального плану, аналіз інформації.

Попадянець Олена Романівна – медичний фізик відділення променевої терапії Центру радіології Національної дитячої спеціалізованої лікарні «Охматдит» Міністерства охорони здоров'я України; вул. Чорновола, буд. 28/1, м. Київ, Україна, 01135;
e-mail: radiotherapy.okhmatdyt@gmail.com
тел.: +38 (050) 197-00-70

Внесок автора: безпосередня участь в розрахунку лікувального плану, аналіз інформації.

Rusyn Anastasia Heorgiivna – Head of the Radiation Diagnostics Department of the Radiology Center of National Children’s Specialized Hospital «Okhmatdyt» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135;
e-mail: nastyarusyn@gmail.com
tel.: +38 (093) 406-49-36

Author’s contribution: direct participation in the diagnostic process, analysis of information.

Karnaukhov Serhiy Anatoliyovych – Medical Physicist of the Radiation Therapy Department of the Radiology Center of National Children’s Specialized Hospital «Okhmatdyt» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135;
e-mail: radiotherapy.okhmatdyt@gmail.com
tel.: +38 (097) 263-22-51

Author’s contribution: direct participation in estimation of the treatment plan, analysis of information.

Popadyanets Olena Romanivna – Medical Physicist of the Radiation Therapy Department of the Radiology Center of National Children’s Specialized Hospital «Okhmatdyt» of the Ministry of Health of Ukraine; 28/1, Chornovola Str., Kyiv, Ukraine, 01135;
e-mail: radiotherapy.okhmatdyt@gmail.com
tel.: +38 (050) 197-00-70

Author’s contribution: direct participation in the estimation of the treatment plan, analysis of information.

Рукопис надійшов
Manuscript was received
15.11.2021

Отримано після рецензування
Received after review
01.02.2022

Прийнято до друку
Accepted for printing
29.03.2022

Опубліковано
Published
31.03.2022