Public Transport Planning: When Transit Network Connectivity Meets Commuting Demand

Sheng Wang¹, Yuan Sun², Christopher Musco¹, Zhifeng Bao³
¹New York University, ²Monash University, ³RMIT University

ABSTRACT

In this paper, we make a first attempt to incorporate both commuting demand and transit network connectivity in bus route planning (CT-Bus), and formulate it as a constrained optimization problem: planning a new bus route with k edges over an existing transit network without building new bus stops to maximize a linear aggregation of commuting demand and connectivity of the transit network. We prove the NP-hardness of CT-Bus and propose an expansion-based greedy algorithm that iteratively scans potential candidate paths in the network. To boost the efficiency of computing the connectivity of new networks with candidate paths, we convert it to a matrix trace estimation problem and apply a Lanczos method to estimate the natural connectivity of the transit network with a guaranteed error bound. Furthermore, we derive upper bounds on the objective values and use them to greedily select candidates for expansion. Our experiments conducted on real-world transit networks in New York City and Chicago verify the efficiency, effectiveness, and scalability of our algorithms.

ACM Reference Format:
Sheng Wang¹, Yuan Sun², Christopher Musco¹, Zhifeng Bao³. 2021. Public Transport Planning: When Transit Network Connectivity Meets Commuting Demand. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457247

1 INTRODUCTION

With the population density increasing over time [1], the gap between the demand and the supply in public transport system is becoming larger [37]. Enhancing the transit network with new transit routes can reduce this gap [51, 67], hence having the potential to bring people from private transport to public transport [20, 40, 60, 61]. To achieve this mission, much attention has been paid to planning new routes based on emerging demands discovered from commuting records, which is also known as demand-aware route planning [40, 56, 57]. Unfortunately, most of these studies require constructing new bus stops. For well-covered cities like New York City (NYC), however, constructing new bus stops is often unnecessary and costly. In contrast, thanks to the connectivity of a road network, it does not incur any extra construction cost to create new edges by linking two unconnected existing stops. Existing studies try to meet demands without creating new stops in various ways, such as formulating it as maximal reverse k nearest neighbor trajectory queries [57], or a budgeted optimization problem [40], or optimizing existing bus routes’ time schedule [43].

Apart from meeting passengers’ commuting demands alone, we argue that an ideal transit network should also be as connected and convenient as possible for passengers to transfer, i.e., the new bus route should well connect existing routes such that more transfer options can be provided. As reported in [14, 63, 71], network connectivity is an important indicator. Our empirical study also shows that a connectivity-aware route planning can help the commuters along the new route avoid up to 4.7 transfers on average in the Bronx of NYC, while a normal demand-aware planning can only avoid around 1.6 transfers (see the bold numbers in Table 6). Unfortunately, there has not been any transit route planning work that aims to optimize the connectivity of a transit network yet.

Motivated by the above observations, we make a first attempt to define the objective to be optimized as a weighted sum of transit network connectivity and commuting demand. It provides a flexible way to specify configurations that can meet different planning requirements [18, 30, 33]. Consequently, our optimal bus route planning problem CT-Bus can be formulated as: given a trajectory dataset of users’ commuting records and a transit network over the road network in a city, CT-Bus aims to plan a new route with at most k (new and existing) edges, such that the objective value is maximized.

After a careful study of existing connectivity measures and an evaluation over real-life transit networks (in Section 2), we adopt natural connectivity [22, 23, 28, 68] to measure the transit network connectivity.

Optimizing the objective of CT-Bus is challenging because it is a combination of two complex constrained optimization problems over graph [22, 58]. A straightforward solution is to generate a large number of candidate paths from the graph and choose the one with the highest objective value. Then, for every candidate, we need to compute the connectivity of the enhanced network. Unfortunately, it is computationally expensive to evaluate the objective function of CT-Bus since the calculation of connectivity requires the computation of eigenvalues of the adjacency matrix [28, 68].

To overcome this challenge, we convert the connectivity computation as a matrix trace estimation problem, and employ a Lanczos method [45, 54] to estimate the natural connectivity with a bounded error. Subsequently, we derive two upper bounds on the objective values to greedily construct candidate bus routes. Furthermore, we...
propose a pre-computation based method that can significantly reduce the running time and meanwhile generate bus routes with competitive objective values. Finally, when evaluating the proposed methods, we monitor how fast the objective values converge over real-world transit networks and propose multiple metrics to measure the transfer convenience of the new transit network.

To summarize, this paper makes the following contributions:

- We propose and formally define a novel route planning problem-CT-Bus, aiming to plan a new route without constructing new bus stops, such that commuting demands are met and meanwhile the transit connectivity is improved (Section 3).
- We prove the NP-hardness of CT-Bus and propose a general algorithm by expanding, ranking, and pruning candidate paths by traversal in the network (Section 4).
- We identify that network connectivity computation is the major efficiency bottleneck of the above algorithm, and propose to convert it into a matrix trace estimation problem and solve it approximately with a Lanczos-based method via several iterations of simple matrix multiplications. As a result, the efficiency is boosted by up to three orders of magnitudes (Section 5).
- We employ pre-computations on edges’ connectivity increment to devise a fast connectivity estimation method, such that the calculation of each candidate path is further accelerated (Section 6).
- We conduct experiments on real-world datasets to verify that our methods can efficiently generate a new bus route that not only brings high connectivity increment but also helps connect multiple existing routes for more convenient transfers (Section 7).

2 RELATED WORK

Demand-Aware Route Planning. Compared with traditional route planning via conducting passenger surveys or estimating the demand from demographic data, demand-aware route planning aims to effectively discover timely demands from commuters, whose methodologies can be divided into two groups: 1) network redesign; and 2) specific route optimization or adding a new route. Specifically, Chen et al. [24] exploited overnight taxi trajectories to first detect the areas containing frequent pick-up/drop-offs, and then partition them into a number of clusters and identify a location in each cluster as a candidate bus stop, and finally decide popular routes from all candidate bus routes via two heuristic methods. Pinelli et al. [49] redesigned the whole transit network based on mobile phone trajectories from cell towers, by deriving frequent movement patterns and planning new routes in existing stops, without the consideration of transfer and connectivity.

Instead of knocking down existing transit systems, Liu et al. [40] proposed to discover the routes that are not well operated, and optimized them based on popular origin-destination pairs extracted from taxi and bus trip records, by optimizing a route in the existing transit network. Reverse k Nearest Neighbors over Trajectories (RkNN[5]) is a tool for estimating the demand for a bus route based on trajectory data in the existing transit network, and it is used to plan a route with a maximum capacity between two given stops. Recently, a trajectory clustering method [58] is proposed to find k representative paths (i.e., traffic trend) in the road network rather than the transit network, hence new stops need to be constructed. To summarize, none of them considered whether new edges should be linked to form a route and make the network more connected like CT-Bus.

Transit Network Connectivity. As one of the key metrics in measuring the transfer convenience of a transit network [14, 34, 71], connectivity [38] has been proposed and studied extensively in the transportation area. By modeling the transit network as an undirected graph composed of vertexes and edges, the connectivity can be measured in numerous ways, such as the vertex and edge connectivity [66], algebraic connectivity [31, 63], and natural connectivity [68] (also known as an extension from Estrada index [28]) that is more proper for complex networks. Among these measures, natural connectivity (defined in Equation 1) is arguably the most proper one for transit network, since it will not show drastic changes by small graph alterations (algebraic connectivity) or no change by big graph alteration (edge connectivity); instead, it can monotonically evolve w.r.t. more modifications [22]. To verify its monotonicity in real transit networks, we randomly remove existing routes from Chicago and New York City transit networks gradually, and we observe a nearly linear decrease of natural connectivity (see Figure 1).

To our best knowledge, there has not been any study that can plan a new route to optimize the connectivity of public transport networks yet, despite the choice of connectivity adopted. One loosely related work is [63], aiming to optimize air transport network’s connectivity by adding k new discrete edges, which is also a classical graph augmentation problem [22]. However, such an edge is not a route and hence cannot be used to solve our problem; also, it does not consider the demand from commuters. On the other side, in the graph mining field, there have been techniques aiming to improve the connectivity of a network via edge augmentation [22, 23, 47], but the resulted edges are typically discrete and hence cannot be directly applied to plan a connected route.

Comparable Approaches. We call the aforementioned work [22, 63] as the connectivity-first approach, and will use it as a baseline in our experiments. Notably, our results (see Figure 6) show that the discrete edges are hard to be connected as a smooth bus route. Similarly, meeting the commuting demand maximally with a single bus route can be another baseline, and we call it as the demand-first approach; essentially, it is equivalent to the refinement step in trajectory clustering [58] and can be implemented with proper parameter setting on our objective function formally defined in Definition 6, which will also be compared.

3 PROBLEM FORMULATION

3.1 Preliminaries

Definition 1. (Road Network) A road network is an undirected graph $G = (V, E)$: V is a set of vertices representing the intersections and terminal points of the road segments; E is a set of
with high analytic precision. We define both networks as undirected graphs.

3.2 Transit Connectivity Measure.

3.2.1 Transit Connectivity Measure. Connecting nodes and generating new edges to make the network more connected can offer more transfer choices to passengers. As discussed in Section 2, we choose to use natural connectivity \(\lambda(G) = \ln \left(\frac{1}{n} \sum_{j=1}^{n} e^{\lambda_j} \right) \) (Equation 1).

Accordingly, \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) denotes a non-descending order of the eigenvalues of \(G_r \)'s adjacency matrix \(A_r \) and \(n = |V_r| \) is the number of vertices in \(G_r \).

3.2.2 Commuting Demand Measure. We choose to extend an edge-based trajectory similarity measure in [58], which is the state-of-the-art for network-constrained trajectories. With this measure we define the commuting demand for a bus route as:

\[
O_d(\mu) = \sum_{T_i \in D} |T_i \cap \mu|
\]

where \(T_i \cap \mu \) denotes the common edges that \(T_i \) and \(\mu \) share.

3.2.3 Planning New Route. With the definitions of transit connectivity and commuting demand measures, the objective of CT-Bus is to find a new path to optimize both, which is formally defined as:

\[
O(\mu) = \arg \max_{\mu \in G_r^\prime} \left(w \cdot \frac{O_d(\mu)}{d_{\max}} + (1 - w) \cdot \frac{O_\mu(\mu)}{\lambda_{\max}} \right)
\]

where \(\mu \) should be a circle-free path both in \(G_r^\prime \) and \(G_r^\prime \). and \(O_\mu(\mu) = \lambda(G_r^\prime) - \lambda(G_r) \) is the connectivity increment with \(\mu \).

In real bus route planning, two bus stops should not be too far and turn-around should not be frequent. Based on the statistics on NYC, two neighbor stops usually have a threshold \(\tau \) on the straight-line distance and number of turns \(tn(\mu) \) [57] (see Figure 17 of [57]). We select a fixed constant \(\tau = 0.5km \) for CT-Bus and set a threshold \(T_\mu \) on the number of turns of \(\mu \), i.e., \(tn(\mu) \leq T_\mu \).

Combining multiple objectives into a single weighted objective value is the most straightforward way and has been widely applied in transit route planning [17, 30, 52, 64]. Here, two constants \(\lambda_{\max} \) and \(d_{\max} \) are used to normalize two dimensions into the same scale (choices will be discussed in Equation 12 for experimental setting). There are two parameters that are independent of the data and can

\[\text{After exponentiation and re-normalization, natural connectivity can be seen as an extension of the Estrada index [28] (\(EE = \sum_{i=1}^{n} e^{\lambda_i} \)) which is also widely used in chemistry for measuring the structure of protein.}\]

\[\text{In our following problem setting, we have multiple real-world constraints which may prune all the candidate paths with \(k \) edges, such as turns and circle-free. As a result, we may not get a feasible route with exactly \(k \) edges. Thus, we set a more flexible rule on the number of edges here.}\]

\[\text{It means all stops except the departure station should be crossed by the new planned path only once, so one-way loop is allowed.}\]

\[\text{We adopt a linear combination to weigh these two objectives, where a configurable parameter \(w \) can meet various planning requirements [18, 33]. The capacity of bus is not considered here as it is usually considered in a subsequent task after the planned route is determined, i.e. optimal timetable scheduling [43].}\]
be set by the users: 1) $w \in [0,1]$ is a constant value to balance two objectives, we set $w = 0.5$ by default; 2) k is the number of edges.

4 OUR METHODS

4.1 NP-Hardness of CT-Bus

Lemma 1. CT-Bus is NP-hard.

Proof. Considering the extreme case where the transit network G_r is a fully connected graph (complete graph), the natural connectivity of G_r will not change when we add a new bus route into the network. Hence, the objective of CT-Bus is degenerated to the case where only the commuting demand is considered in bus route planning. To simplify the calculation, we convert the demand objective function (Equation 2) into a function of f_e, denoting the number of trajectories that include edge e. We then have:

$$O_d(\mu) = \sum_{e \in \mu} b_{i,e} \cdot |e|, \text{ where } b_{i,e} = \begin{cases} 1, & \text{if } e \in T_i \\ 0, & \text{otherwise} \end{cases}$$

$$= \sum_{e \in \epsilon} f_e \cdot |e|$$

As a result of such a conversion, we can reduce CT-Bus to a routing problem that aims to maximize $\sum_{e \in \epsilon} f_e \cdot |e|$ when constructing a route μ with k edges. This is equivalent to the k minimum traveling salesman problem (k-TSP) that has been proved to be NP-hard [15, 32, 58], where renormalization can be conducted to convert maximization to minimization. More generally, when both commuting demand and network connectivity are considered, the problem is at least as hard as the k-TSP problem, and thus is also NP-hard. \hfill \Box

Solving the CT-Bus problem is challenging even in the extreme case where only the commuting demand is considered (Equation 4). An approximation algorithm with bounded error can be achieved only if the edge weight satisfies the triangle inequality [32], which unfortunately does not hold for the edge weight (i.e., $f_e \cdot |e|$) in our case. Hence, we propose an expansion-based greedy algorithm.

4.2 Expansion-based Traversal Algorithm

Main Idea. We employ an expansion-based graph traversal method [35, 58] to solve CT-Bus, with new optimizations proposed for acceleration, as shown in Algorithm 1. We first select edges with high demand in the graph for expansion in the initialization stage. In the expansion phase, we scan candidate paths by initializing candidate seeds with all edges (including existing edges in G_r and potential edges with a length less than a threshold r), and then incrementally add neighbor edges as new candidates. In the verification phase, we compute the connectivity of each candidate, and update the result if the candidate has a higher objective value, after passing the feasibility and domination checking. The above two phases will be conducted iteratively until meeting the termination criterion, i.e., the number of iterations exceeds a predefined threshold or there is no more candidate in the queue (Line 5).

4.2.1 Initialization. In the Function Initialization (details in Line 19 to 27), we select all the potential edges with a distance within r as the seeding paths for expansion, and insert them to a priority queue Q for further expansion. To generate the candidate edges, we find all the neighboring stops that are within a distance r of a stop and add the pair into the candidate edge list L_d. The edges in L_d are sorted in descending order based on their demand (i.e., $f_e \cdot |e|$), and we use $L_d(i)$ to denote the demand of the i-th edge in L_d. To compute the demand of each new edge, we conduct a shortest path search to connect its two bus stops and aggregate the demands of all the road network edges it crosses.

4.2.2 Expansion from Two Ends. In Line 8, the expansion is conducted by adding new edges, where we have two options:
1) All Neighbors. Enqueueing the candidate path appended with each new neighbor edge enables us to scan potential candidates fully. Both depth-first and breadth-first can be used to fully scan all the candidates, and here we employ a breadth-first search based on a priority queue. Appending with each new neighbor will result in a large queue and thereby the algorithm is hard to terminate. We call the method with this option as ETA-AN.

2) Best Neighbor. To solve the convergence issue, we propose to choose only the best neighbor edge as shown in Algorithm 1, i.e., after selecting the optimal neighbors: the beginning edge be and the ending edge ee with the highest increment, we let \(cp \leftarrow be + cp + ee \) (Line 13). The queue will then remain a proper size without growing, and even become smaller after feasibility checking.

Before inserting the candidate \(cp \) into \(Q \) for further expansion in the function at Line 16 (details in Line 29 to 34), we compute the objective, update the optimal path \(\mu \) in Line 13, and then estimate its upper bound \(O^1(cp) \) with the current best result’s score \(O_{max} \). If \(O^1(cp) > O_{max} \), this candidate is inserted; otherwise, it is discarded. To distinguish all candidates in the queue, each will be attached with an upper bound on its objective value (Line 34).

4.2.3 Verification. From Line 13, we compute the objective value of each candidate path \(cp \) and check whether it can replace the current best result \(\mu \). Before inserting \(cp \) into the queue in Line 34 for future expansion, we conduct the following checking:

Feasibility Checking. Circle-free is a basic criterion in planning bus routes, and every edge can be crossed once in a bus route. Turn-checking will check how many turns the candidate path already has and will discard it if the number exceeds a threshold 7n.

Domination Checking. In Line 33, all candidates will go to a domination table DT composed of the checked paths, to compare the objective value and conduct the domination checking. This step can avoid repetitive expansion on the path that shares the same beginning edge be and ending edge ee but with a smaller objective value. We call the method without this optimization as ETA-DT.

Running Example. Recall Figure 2 as a toy example, our algorithm first takes a new edge \(e \) (dotted line) as a candidate, and starts an expansion with neighbor edge as shown in the red line. To compute the objective value \(O \), we will estimate the connectivity of the updated transit network with \(e \), and the demand increment 12 + 7.

4.3 Bottlenecks to Make ETA Work Efficiently

The above expansion-based algorithm applies a common methodology in solving route planning problems [35]. However, there are two main efficiency bottlenecks.

Bottleneck 1. There would be intensive connectivity computations (Line 10 and 13), where a single operation will cost minutes (see Column 2 of Table 2), and CT-Bus always needs thousands of iterations to terminate according to our experiments. \(^6\)

Bottleneck 2. To differentiate candidates in \(Q \), we estimate their upper bounds in lines 26 and 31 to predict the best case, and choose the one with the highest upper bound to conduct expansion. The bottleneck here is how can we quickly get tight upper bounds \(O^1 \).

To overcome Bottleneck 1, we convert the connectivity computation to fast trace computation using the Lanczos method [45, 54], combined with Hutchinson’s stochastic trace estimator [36]. We then derive tight upper bounds on the objective values based on the estimated connectivity in Section 5. To overcome Bottleneck 2, we pre-compute the connectivity increment for every edge in Section 6, that can further boost the performance of ETA.

5 FAST CONNECTIVITY AND BOUND ESTIMATION

In this section, we first show how to efficiently calculate the natural connectivity of a transit network by estimating the adjacency matrix’s trace (Equation 5), and prove that its approximation error can be bounded within 1% (Lemma 2). Subsequently, we derive two upper bounds on the connectivity of a new network enhanced with a path \(\mu \) (Lemma 3 and 4). Finally, we introduce a fast way to incrementally update the upper bound based on the previous bound of a path, without recalculating it from scratch (Algorithm 2).

5.1 Lanczos-based Connectivity Estimation

Given an updated graph \(G_t \), estimating its connectivity \(\lambda(G_t) \) efficiently and precisely is crucial to answering CT-Bus. We solve this problem by converting it to a matrix trace estimation problem, which can be rapidly approximated by combining the Lanczos method [19, 27, 45, 54, 55] with Hutchinson’s stochastic trace estimator [16, 26, 36, 42]. These techniques are often used together in the applied mathematics literature and turn out to be a winning combination for accurately estimating natural connectivity in this paper. Specifically, we start with the observation that:

\[
\hat{\lambda}(G_t) = \ln \left(\frac{1}{n} \sum_{j=1}^{n} e^{\lambda_j} \right) = \ln \left(\frac{1}{n} \text{tr}(e^A) \right)
\]

where \(\text{tr} \) is the matrix trace and \(e^A \in \mathbb{R}^{n \times n} \) is the standard matrix exponential of the adjacency matrix \(A \). So our task reduces to approximating \(\text{tr}(e^A) \). One approach to do so, which was taken in prior work [22, 23], is to compute only the largest eigenvalues of \(A \) using an iterative Krylov subspace method (like the Lanczos method) and to estimate Equation 5 using a truncated sum. However, for transit networks, which are typically planar or nearly planar, the eigenvalues of \(A \) decay very slowly, so many eigenvalues are needed to accurately approximate \(\lambda(G_t) \).

Fortunately, the Lanczos method can be used in a far more economical way. Hutchinson [36] made the powerful observation that, for any \(M \in \mathbb{R}^{n \times n} \),

\[
\mathbb{E}(\sigma^T \text{tr}(M)\sigma) = \text{tr}(M)
\]

where \(\sigma \) is a vector with unit variance random Gaussian entries. Accordingly, if we draw \(s \) random Gaussian vectors \(\sigma_1, \ldots, \sigma_s \), we can estimate \(\text{tr}(M) \) by:

\[
\gamma = \frac{1}{s} \sum_{i=1}^{s} \sigma_i^T \text{tr}(M)\sigma_i
\]

It is possible to prove that, if \(M \) is positive semi-definite and \(s = O(\log(1/\delta)/\epsilon^2) \), then with probability \((1 - \delta)\), \(\gamma \) is within a multiplicative \((1 \pm \epsilon)\) of \(\text{tr}(M) \) [50]. Since \(e^A \) is always positive semi-definite, this bound immediately applies to our problem.
What’s more, the required computation of $e^T \text{tr}(e^A)v$ can be accelerated by iteratively approximating e^Av using the Lanczos method for the matrix exponential. Each iteration of this method requires a matrix vector multiply with A, which takes just $O(m)$ time, where m is the number of edges in G_r. To bound the number of iterations of Lanczos needed for an accurate approximation, we state a corollary of Theorem 15 in Musco et al. [45]:

Lemma 2 (Lanczos Approximation Bound). After $t = O(\|A\|^2 + \log(1/\delta))$ iterations, the Lanczos method returns an approximation s to e^Av satisfying:

$$\|s - e^Av\|_2 \leq \epsilon \text{tr}(e^A)\|v\|_2$$

Above $\|A\|_2$ denotes the spectral norm of A. Even when A is large, this is typically very small for transit networks (and planar graph adjacencies more generally). For example, for the Chicago and NYC transit networks analyzed in this paper, $\|A\|_2$ equals 5.46 and 4.79, respectively. Accordingly the number of iterations required to accurately approximate e^Av essentially depends just logarithmically on the desired accuracy ϵ.

Combined with the stated bound on the number of samples needed for Hutchinson’s estimator, and using that for a scaled Gaussian random vector $\|v\|_2 = O(\sqrt{n})$ with high probability, we conclude that $\text{tr}(e^A)$ can be estimated to multiplicative $(1 \pm \epsilon)$ error with $O(\log(1/\delta)/\epsilon^2)$ approximate computations of $\sigma^t e^{\lambda_1}v$, each of which takes just $O(\|A\|^2 + \log(n/\epsilon^2))$ iterations. This translates to an additive $\pm \epsilon \text{tr}(e^A)$ approximation to $\lambda(G_r)$.

Experimentally, we confirm the low complexity of the Lanczos + Hutchinson’s method. In this paper, we use a default setting of $s = 50$ repetitions of Hutchinson’s estimator, each computed using $t = 10$ iterations. We typically obtain an approximation to $\lambda(G_r)$ accurate to within 1% error. Table 2 shows the time comparing with NumPy.

Table 2: Running time of connectivity & bound estimation.

City	Eigen NumPy	Lanczos NumPy	Lanczos Matlab	General bound	Path bound
Chicago	28.65s	0.610s	0.035s	0.102s	0.049s
NYC	225.03s	2.412s	0.094s	0.204s	0.099s

5.2 Connectivity Upper Bound Estimation

De La Peña et al. [25] estimated bounds for the Estrada index, which can be converted to the maximum natural connectivity with k arbitrary edges:

$$\lambda(G_r') \leq \ln(1 + e^\sqrt{2(|E_r|+k)/|V_r|} - 1)$$

However, we found that this bound is much bigger than the real connectivity, and it is too loose to be used as a normalization value (see a comparison in Table 3 where $k = 15$).

We further propose a tighter upper bound on the connectivity after adding k edges, which will depend on the connectivity of the original graph, and top- k eigenvalues of the original graph adjacency matrix A. This can be computed quickly using a Lanczos method that we have mentioned. Further, one of the advantages of the expression is that it gets much tighter if the k edges added in CT-Bus form a path. This bound will also help estimate the upper bound of a candidate to be filled with less than k edges, and solving existing or new network optimization problems [22, 23] in future.

Table 3: Tightness comparison of connectivity upper bound.

City	Estrada bound [25]	General bound	Bound	Increment bound
Chicago	104.205	1.576	0.167	0.034
NYC	156.459	0.655	0.067	0.010

The proof of this lemma can be found in the appendix of our technical report [62]. To obtain a tighter upper bound when edges are specifically added into a path, we rely on Fan’s powerful generalization of Weyl’s inequality [21, 29]. This bound tells us that, if $\lambda_1 \geq \ldots \geq \lambda_n$, $\lambda_1' \geq \ldots \geq \lambda_n'$, and $\sigma_1 \geq \ldots \geq \sigma_n$ are any non-increasing ordering of the eigenvalues of A, A', and K, respectively, then:

$$\sum_{i=1}^q \lambda_i' \leq \sum_{i=1}^q \lambda_i + \sum_{i=1}^q \sigma_i \quad (8)$$

Lemma 4 (Upper Bound for Paths). If G_r' is obtained by adding a k edge simple path to G_r, then the natural connectivity satisfies:

$$\lambda(G_r') \leq \ln\left(e^{\lambda(G_r)} + \frac{1}{n} \sum_{i=1}^{\lfloor k/2 \rfloor} (e^{\sigma_i} - 1)e^{\lambda_i}\right)$$

where $\sigma_i = 2\cos\left(\frac{\pi}{k+2}\right)i$ is the ith eigenvalue of the path graph adjacency matrix.

The proof of this lemma can be found in the appendix of our technical report [62]. Note that computing the bound of Lemma 4 requires computing the top $O(k)$ eigenvalues of A, which can be done to high accuracy in roughly $O(|E| \cdot k \cdot \log n)$ time for a graph with $|E|$ edges [44]. In Algorithm 1, $O_1^1(cp)$ and $O_2^1(e_1)$ are both computed based on Lemma 4.
5.3 Incremental Demand Bound Estimation

We set the initial upper bound of the demand as the sum of the top-\(k\) edge demands in \(L_d\):

\[
O_d(\mu) \leq \sum_{i=1}^{k} L_d(i) \tag{9}
\]

When a new edge is added, the path is updated, and we need to re-estimate this upper bound. A baseline is to re-scan the whole path and enrich the rest uncovered edges by \(k - \text{len}(cp)\) top edges in \(L_d\), which should not be in \(cp\), where \(\text{len}(cp)\) denotes number of edges in \(cp\), and \(E_r(i)\) denotes \(i\)-th edge in \(L_d\).

\[
O_d^1(cp) = \sum_{e \in cp} L_d[e] + \sum_{i=1 \land E_r(i) \notin cp}^{k-\text{len}(cp)} L_d(i) \tag{9}
\]

However, this is not efficient when it needs to be conducted for every candidate. Instead of scanning, we propose a dynamic strategy to update \(O_d^1(cp)\) while returning the same bound. When a new edge is added, if its weight \(L_d[e]\) is smaller than the cur-

th top edge’s demand \(L_d(cur)\), it means we can replace one top edge with the inserted one, then we update \(O_d^1(cp)\) by reducing the gap \(L_d(cur) - L_d(e)\), the cursor value \(cur\) will decrease by one; otherwise, \(O_d^1(cp)\) and \(cur\) will not change. Each cursor \(cur\) is initialized as \(k\) at the beginning and will be inherited in the iteration with the upper bound. Based on this incremental method, we can dynamically update the bound without scanning the whole path \(cp\) and ranking list \(L_d\), which is more efficient and space-saving. Details are presented in Algorithm 2.

Algorithm 2: Incremental update on bound & turn

```
Input: e, \(O_d^1(cp)\), \(tn(cp)\), cur
1 if \(L_d(cur) > L_d[e]\) then
2   cur ← cur - 1;
3 \(O_d^1(cp) \leftarrow O_d^1(cp) - (L_d(cur) - L_d[e]);
4 angle ← \text{ComputeAngle}(e, cp.end);
5 if angle > \frac{\pi}{2} then
6   \(tn(cp) \leftarrow tn(cp) + 1;
7 if angle > \frac{\pi}{2} then
8   \(tn(cp) \leftarrow \text{null} \)
9 return \(O_d^1(cp), tn(cp), cur\);
```

6 PRE-COMPUTATION FOR FASTER ETA

Although employing the Lanczos method can boost the efficiency of estimating connectivity and upper bounds in Algorithm 1, a single iteration’s runtime is still nonnegligible, as shown in Table 2. Hence with thousands of iterations, it is slow to terminate this algorithm (see our experiment results in Column 2 & 4 of Table 7). Thus, in this section, by reducing the connectivity to a linear aggregation function for fast updates with new edges, pre-computation is conducted on each edge’s demand and connectivity, which can accelerate the algorithm drastically by using a greedy strategy.

6.1 Linear Connectivity and Bound Increment

Recall Figure 1 the connectivity of a network keeps decreasing as edges are removed. It inspires us to explore the possibility of having a linear increase in connectivity by adding edges. To facilitate our exploration, we define a new concept as below.

Definition 7. (Edge Connectivity Increment) By adding an edge \(e\) into the transit network \(G_e\), which generates a new graph \(G_r\), the edge connectivity increment is denoted as:

\[
\Delta(e) = \lambda(G_r) - \lambda(G_e) \tag{10}
\]

By adding a new route \(\mu\) with multiple edges, the connectivity increment is denoted as \(O_\mu(\mu)\) in Definition 6. Discovering the relation between the sum of \(\mu\)’s each individual edge, \(\sum_{e \in \mu} \Delta(e)\) and \(O_\mu(\mu)\), is a fundamental problem in the literature of maximizing submodular set functions [46]. However, we have an observation: Natural connectivity is a monotonic but non-submodular function (when adding new edges). The analysis is as below.

Along with the definition, Wu et al. [68] have also proved its monotonicity. To prove it is sub-modular, with the above definition, we just need to verify whether \(O_\mu(\mu) < \sum_{e \in \mu} \Delta(e)\) holds. We use counterexamples to verify that natural connectivity is non-submodular. As shown in Figure 3, we randomly sample a set of new edges and plot the percentage difference of two connectivity scores:

\[
\theta = \frac{\sum_{e \in \mu} \Delta(e)}{\sum_{e \in \mu} \Delta(e)}
\]

by increasing the number of selected edges in NYC and Chicago. The box plot shows that \(O_\mu(\mu) \geq \sum_{e \in \mu} \Delta(e)\) holds most of the time especially when more edges are included in \(\mu\), so natural connectivity is not sub-modular, and there is no guaranteed bound [46] for a greedy algorithm when answering CT-Bus.

Even though natural connectivity is non-sub-modular, we still observe that \(O_\mu(\mu)\) is highly close to \(\sum_{e \in \mu} \Delta(e)\). Then, we can use \(\sum_{e \in \mu} \Delta(e)\) to estimate the potential connectivity increment to fulfill all the edges in \(\mu\), and have: \(O_\mu(\mu) \approx \sum_{e \in \mu} \Delta(e)\).

6.2 Improvements to Algorithms 1 and 2

With the fast Lanczos method, we are able to pre-compute \(\Delta(e)\) for all the candidate edges in \(L_d\). Then, we rank them by their connectivity increment \(\Delta(e)\) as another descending sorted list \(L_\lambda\), i.e., \(L_\lambda[e] = \Delta(e)\), and \(L_\lambda(i)\) returns the \(i\)-th edge’s demand. Further, the increment upper bound can be estimated using \(O_d^1(\mu) = \sum_{i=1}^{k} L_\lambda(i)\), similar to \(O_d^1\), and its tightness can be observed from the last column of Table 3. Now, \(O_d\) and \(O_\lambda\) can be incrementally computed in the same way, and we further combine them into one.
Integrated Objective Value Increment. We compute a new objective value composed of the normalized connectivity and demand on each edge, same in Definition 6, including every existing edge (the connectivity increment is set as 0) and every new edge. Then we rank all the edges by this objective and create a new sorted list \(L_e \) in descending order, and convert CT-Bus to optimize a single objective instead of two. With an edge \(e \) being added into \(cp \), \(O(cp) \) will increase by:

\[
L_e[e] = w \cdot \frac{L_e[e]}{d_{\text{max}}} + (1-w) \cdot \frac{L_e[e]}{\lambda_{\text{max}}} \tag{11}
\]

Next we show how to optimize the algorithms earlier presented in Section 4. First, we replace all the \(L_d \) with \(L_e \), and \(O^1 \) with \(O^1_e \) in Algorithm 1 and 2, respectively. Then, we revise Line 21 as: Update \(\mu \) by neighbor \(e_l \) with the highest \(L_e(e_l) \). Further, we remove Line 26 and 31 of Algorithm 1. Lastly, we can simplify line 13 as: Increasing \(O(cp) \) by \(L_e[e] \), correspondingly.

Selective Edges for Seeding. After our increment computation on edges in \(L_d \) using the Lanczos method, we observe that a minority of edges can lead to a large increment on connectivity and demand of the objective functions, as shown in Figure 4. To reduce the candidate pool size, we choose top-\(sn \) edges in the list \(L_e \) as initial seeding paths in Line 19, where \(sn \) denotes the seeding number.

6.3 More Discussions

Effect of \(|D|\) and Pre-processing. Our method is independent of the number of trajectories \(|D|\), since all the trajectories are mapped to the road network and each edge on the road network gets a demand weight. The pre-processing on mapping and building transit network edge weight is related to the number of new edges, because each edge will invoke one-time shortest path search and one-time connectivity increment estimation (using the Lanczos method).

Effect of Increasing \(\tau \). According to the above analysis, the complexity of CT-Bus is highly related to the number of candidate edges. A direct parameter to this is the neighbor stop interval distance \(\tau \) in Definition 6; if we increase \(\tau \), there will be more candidate edges. In this paper, we set \(\tau \) as a fixed constant (\(\tau \approx 0.5 \)km), which is big enough w.r.t. the current statistics in NYC. However, the number of edges will not sharply increase according to our initial numerical analysis; the running time of pre-computation and ETA will increase linearly and slightly when increasing \(\tau \) in a proper range.

Planning Multiple Routes. It is worth mentioning that CT-Bus can be employed to plan multiple routes as follows – After planning a new route, we update the graph and its adjacent matrix with the new edges. Then, we can set all the covered edges’ demand value as zero, as our previously-planned new bus routes have covered them. This step can also be skipped if there is no requirement on whether a new edge should be crossed only once. At the end, we conduct the new route searching using our algorithm.

7 EXPERIMENTS

7.1 Setup

7.1.1 Datasets. We conduct experiments in two cities, New York City (NYC) and Chicago (Chi), where the road network with travel distance and travel time on each edge is obtained from DIMACS [4], and the transit network is extracted from shapefiles [3, 8]. Figure 5 presents an overview of these four networks.

![Figure 4: Top-1000 new edges in terms of increment.](image)

Table 4: Running time of pre-computation on new edges.

Dataset	#New edges	Connectivity	Shortest path
Chicago	95,304	1857s	15,322s
NYC	160,790	7332s	33,241s

Table 5: An overview of datasets. \(|R|\): number of bus routes; \(\text{len}(R)\): average number of stops; \(|V|\) and \(|E|\): number of vertices and edges in road network; \(|V_r|\) and \(|E_r|\): number of vertices and edges in bus network; \(|D|\): number of trajectories.

| Dataset | \(|R|\) | \(\text{len}(R)\) | \(|V|\) | \(|V_r|\) | \(|E|\) | \(|E_r|\) | \(|D|\) |
|---------|--------|-------------------|--------|---------|--------|---------|--------|
| Chicago | 146 | 47 | 58337 | 6171 | 89051 | 6892 | 555367 |
| NYC | 463 | 30 | 264346 | 12340 | 365050 | 13907 | 407122 |

7.1.2 Implementation. We use Python 3 to clean data and search the shortest path between two stops, and MATLAB to compute the connectivity, which is much faster for large matrix computation. NetworkX [10] is used to store the graph and the shortest path, and Mapv [9] is used to visualize the networks and the returned results in maps. All experiments are conducted on a laptop with 2.6 GHz 6-Core Intel Core i7 and 32 GB 2400 MHz DDR4 running MacOS Catalina. Our cleaned datasets, MATLAB code and visualization tools are available on GitHub for reproducibility [11].

7.1.3 Pre-processing. Table 4 shows the number of new edges of our two datasets and their pre-processing time. Pre-processing time on the candidate new edges includes the time spent on the shortest path search of selective new edges, and their connectivity increment based on the Lanczos method. Each new edge conducted the shortest path between its two ends, then we put the edge demand by summing up edges in the road network. Although this pre-processing is costly, it is called only once for each dataset but will benefit all the algorithms with various parameter settings.
7.1.4 Evaluation Metrics. For effectiveness evaluation, we first compare the increased objective value and connectivity value by our route, and then introduce three metrics to measure the transfer convenience of the new transit network, as shown in Table 6. We also conduct a visual analysis on our taxi trajectory dataset to plan new bus routes through visualization (Figure 7).

For efficiency evaluation, we compare the running time (Table 7) and verify the optimizations on accelerating the convergence, where we alter the parameter $k = \{10, 20, 30, 40, 50\}$, the weight $w = \{0.3, 0.5, 0.7\}$, the seeding number $sn = \{3000, 5000, 7000\}$, and the number of Turns $Tn = \{1, 3, 5\}$. The default value is underlined. The objective values are recorded every 100 times, and the iteration number is set as 100, 000 in Figures 9-12.

For the sake of unity of objective value in Definition 6, we choose the same values for normalization. Specifically, we choose top-k edges and sum up their demands to set as the λ_{max} for the connectivity normalization in Equation 3. Similar operation applies to the demand normalization based on L_d.\footnote{Since $\sum_{i=1}^{k} L_d(i)$ and $\sum_{i=1}^{k} L_o(i)$ are also used as upper bounds which are much bigger than O_d and O_l, the objective values of the final results are usually small (e.g., those in Figure 9 & 11).}

$$\lambda_{\text{max}} = \sum_{i=1}^{k} L_d(i), \quad d_{\text{max}} = \sum_{i=1}^{k} L_o(i)$$

7.2 Effectiveness

We conduct both quantitative analysis and visual analysis, showing CT-Bus with ETA has the potential to increase connectivity and meet commuters’ demand for Chicago and five boroughs of NYC.\footnote{In NYC, the bus transit system is planned independently in each borough.}

7.2.1 Comparisons. We implemented two most related approaches (see the last paragraph of Section 2) which optimize the connectivity [22, 63] and demand [58] by setting w as 0 and 1, respectively. Other approaches [24, 40, 57] which aim to optimize an existing bus route are essentially different from our work in term of problem formulation, hence we will not compare with them.

1) Connectivity-First Approaches. Chan et al. [22] proposed to maximize the natural connectivity of a graph when adding k new edges (not a path). We can use a greedy algorithm proposed by [22] to generate $l < k$ new edges to maximize the natural connectivity first, connect and order them using travelling salesman search, and then enrich the two ends by the shortest path. However, Figure 6 shows 10 edges returned by this method, and they are hard to be connected as a smooth bus route. In addition, this greedy algorithm needs several hours to complete. Hence, we will not conduct further comparison with this approach.

2) Demand-First Approaches. When optimizing the trajectory-based demand alone, similar to trajectory clustering [58], the problem is a variant of k-TSP: maximizing the sum of edges’ demands with at most k new edges. The difference with k-TSP is that the edges in the path should be newly connected. To increase the connectivity simultaneously, we set a constraint of new edges only here, as adding existing edges will not increase the network connectivity. We denote this baseline as vk-TSP. Note that Algorithm 1 applies a classical greedy method that can also work for the vk-TSP. To have a fair comparison when verifying the increments on connectivity in Section 7.2, we implemented it with the same configuration with minor changes: 1) setting $w = 1$; 2) only considering new edges during the initialization and expansion.

7.2.2 Results. Analysis of Objective Values. Table 6 shows the estimated connectivity and the objective value increment of new path by running CT-Bus in different areas, with our two algorithms. The connectivity values here are normalized by λ_{max} for a better illustration. We also compare the number of existing bus routes that can transfer to the route returned by our two methods, in order to verify whether the pre-computation sacrifices precision for efficiency. In each cell that has three numbers, the left is returned by online computation (ETA), the central is returned by pre-computation (ETA-Pre), and the right is returned by our baseline (vk-TSP). It shows that ETA-Pre and ETA have similar performance, and ETA-Pre is dominant in most cases.

We compare with vk-TSP, which plans a route by adding new edges to maximize the demand increment only and hence should also have a considerable connectivity increment, as shown in Table 6. However, we find ETA-Pre has a larger connectivity increment as we append new edges with high connectivity, while vk-TSP appends edges with high demand but may have low connectivity increment. We ignore the efficiency comparison as they use the same procedure in Algorithm 1.

Transfer Convenience. Since transfer convenience is one of the main performance indicators of a connected transit network [53], we further evaluate the newly planned route’s effect to the commuters along it, which are composed of an origin stop and a destination stop in the new route. For every possible trip of these commuters, we run the shortest path search on the old and new bus network, respectively. We use the following three metrics widely adopted in transportation evaluation area [14, 71], also shown in the right part of Figure 7, and a higher value indicates more convenience. Then, we calculate the average value for each metric.

Firstly, we calculate how many transfers are needed in the old network. Since there is no direct path like our new route, passengers
Table 6: Effectiveness analysis of planned routes. (normal cells: ETA | ETA-Pre | vk-TSP; gray cells: ETA-Pre with \(w = 0 \) | 0.3 | 0.7)

City	Improvement on Defined Metrics	Transfer Convenience Metrics																
	#New edges	Objective \(\mu(\mu) \)	Connectivity	#Transfer avoided	Distance ratio \(\zeta(\mu) \)	#Crossed routes												
Chicago	29	29	22	0.22	0.22	0.06	0.20	0.19	0.05	3.02	3.15	2.33	5.35	5.90	5.45	41	30	25
Manhattan	19	23	21	0.08	0.07	0.06	0.17	0.18	0.13	1.43	1.40	1.32	1.86	1.91	1.47	5	7	4
Queens	13	20	8	0.09	0.09	0.12	0.14	0.17	0.03	4.22	4.39	2.76	1.60	1.59	1.93	31	37	22
Brooklyn	26	26	6	0.11	0.10	0.04	0.22	0.23	0.03	1.39	1.36	1.25	2.44	2.85	1.16	13	17	5
Staten Island	11	11	6	0.09	0.09	0.08	0.16	0.16	0.05	1.93	1.89	1.67	3.66	3.83	3.64	42	40	34
Bronx	21	19	4	0.08	0.08	0.01	0.16	0.16	0.02	4.78	4.73	1.60	6.38	7.07	1.32	20	17	8

Figure 7: Visualization of a new bus route (bold red) and its connected existing routes. (w = 0.5). Figure 8: w = 1 & 0@Chicago.

need multiple transfers, e.g., it is 3.15 in Chicago. Secondly, for a group of trips, we calculate the ratio of shortest-path travel distance via the new bus network over that via the old bus network, i.e.,

\[
\zeta(\mu) = \frac{1}{l(\mu) \cdot (l(\mu) - 1)} \cdot \sum_{\forall O,D \in \mu} \frac{|G_r(O,D)|}{|G_r'(O,D)|}
\]

where \(O \) and \(D \) are any two different stops in \(\mu \), then there are \(l(\mu) \cdot (l(\mu) - 1) \) possible pairs, and \(l(\mu) \) is the number of stops in \(\mu \); \(|G_r(O,D)| \) denotes the travel distance of shortest path from \(O \) to \(D \) in \(G_r \). The ratio \(\zeta(\mu) \) is always bigger than one as passengers can directly commute without detour anymore in the new network \(G_r' \), and can have shorter travel distance. Thirdly, we count how many existing bus routes share common stops with the newly planned one. More crossed routes mean that passengers can easily transfer and get to more destinations in the network by taking other routes.

Effect of Varying the Weight \(w \). To investigate the effect of \(w \) on the resulted routes, we set \(w \) as \(\{0, 0.3, 0.5, 0.7, 1\} \) on Chicago and observe how the metrics change w.r.t. \(w \). Since ETA-Pre and vk-TSP were set with \(w = 0.5 \) and 1, the rest results of other values \((0, 0.3, 0.7) \) can be found from the grayed row of Table 6.

Visual Analysis. In Figure 7, we visualize the planned route based on our algorithms and its existing connected routes in different colors to make sure it can present a complete profile of each route. Our newly planned routes are highlighted in bold red. By default, we set \(w = 0.5 \) in Figure 7. To further investigate the visualized effect of \(w \), we set it as 0 and 1 respectively and compare the results in Figure 8 with those in Figure 7(a).

Insight 1: 1) CT-Bus based on our method can generate a valid path with a high objective value comparable to the one with online
Table 7: Running time (s) comparison with increasing k.

	Chi-ETA	Chi-ETA Pre	NYC-ETA	NYC-ETA Pre
$k = 10$	22234.21	55.45	15011.55	37.55
$k = 20$	28291.92	76.88	16468.02	43.14
$k = 30$	30828.44	82.45	16567.51	41.17
$k = 40$	31967.53	88.32	16671.96	41.13
$k = 50$	32435.84	94.14	16686.87	44.97

Figure 9: Convergence comparison of ETA and ETA-Pre.

Figure 10: Objective value, connectivity, and demand increments with increasing k.

7.3 Efficiency

7.3.1 Comparisons. Since CT-Bus is proposed for the first time, we will mainly compare our proposed ETA with Lanczos and pre-computation optimizations introduced in Section 5 and 6, respectively. We denote them as ETA and ETA-Pre. Since ETA is based on the classical expansion-based traversal framework [58] which takes all edges as candidate routes to start expansion, we denote it as ETA-ALL for comparison.

7.3.2 Results. Running Time of ETA. To compare two algorithms fairly, we apply the same initialization with selective edges in Section 6.2 to avoid unnecessary scanning. Table 7 shows the running time using pre-computed connectivity and the ETA with our fast Lanczos method, by various k. We can observe that ETA with pre-computation (ETA-Pre) proposed in Section 6 is almost 400 times faster than ETA with online connectivity computation, as it has computed core information for fast connectivity and bound estimation off-line, and online computation is very limited.

Convergence of ETA. Figure 9 shows the convergence of our two methods with the increase of iteration number, where we estimate the final results of ETA-Pre using the Lanczos method and plot it as the last point. We observe that ETA-Pre has comparable and even higher objective values due to our tight upper bounds, and initializing all edges leads to slow convergence.

Parameter Sensitivity Test. To further verify the parameter-sensitivity of domination table (DT) and enqueuing best neighbors rather than all neighbors (AN), we add two more comparisons which mute them respectively. We test the sensitivity to four parameters: k, w, Tn, and sn. Also, we use ETA-Pre only since ETA is too slow to run such multiple rounds’ tests. Figure 10 presents how the connectivity, demand and objective values change with an increasing k. Figure 11 shows that despite the choice of w, our algorithm converges well and terminates at an early stage, as the feasibility checking has pruned all the candidate paths and the queue is empty. Figure 12 shows the sensitivity result on the rest parameters.

We find that the objective values drop with an increase of k (see Figure 11, Figure 11(b), and Figure 12(a)(b)), because our normalization values d_{max} and λ_{max}, which are related to k in Equation 12, also rise but with a bigger increase rate than Q_2 and Q_3. Figure 11 also indicates that our weight parameter keeps a good balance between connectivity and demand, and the demand slightly dominates the connectivity when k is large. This is because more existing edges are inserted into the route when no more feasible new edges can be found. For other parameters like w (see Figure 11), Tn (see

computation, and keep a balance between demand and connectivity. 2) Compared with vk-TSP, our method gets a much higher connectivity increment; we further verify that new routes with higher connectivity increments can dramatically avoid transfers for commuters with direct routes, and also provide more transfer choices especially in Chicago and Bronx. 3) The planned routes are very smooth in the map, and it also indicates the emerging trends and valuable suggestions for new bus routing planning in each city. 4) With more weight on the connectivity (i.e. smaller w), the connectivity increases linearly, such that it becomes easier to transfer (linearly increased metrics) and meanwhile more existing routes are connected.

Insight 2: For Chicago, CT-Bus suggests that one more route should be built to connect the northwest part (Avondale) to the city, as we can see, most existing bus lines are near the lakeside. Different with $w = 0.5$ in Figure 7(a), we observe that the route planned with $w = 1$ (considering demand only) crosses the city and coast area to meet high demands from passengers (see Figure 8(a)), but it intersects with much fewer routes (only 25) than the planned route of $w = 0$ (considering connectivity only), which connects 60 routes but crosses interior area mostly (see Figure 8(b)). The above analysis tells that a choice of $w = 0.5$ can make a good trade-off.

Insight 3: For NYC, more routes need to be built between Queens and Brooklyn, which will further connect more routes to Staten island. For Manhattan, existing subway and bus systems are very mature and connectivity increase will not be obvious, and newly planned bus routes are not necessary. This is also consistent with the fact that NYC is redesigning bus routes in the other four boroughs except for Manhattan. However, more routes should be planned to connect Manhattan with Staten Island which highly depends on buses, while there is only one internal subway line on the island. The Bronx also needs to connect north and south to form a circle from Yankee Stadium, Hunts Point Av, to Kingsbridge.
Objective value

\(k=30, w=0.5, T_n=1, s_n=5000\)

Chi-ETA Chi-ETA-AN Chi-ETA-DT NYC-ETA NYC-ETA-AN NYC-ETA-DT

Figure 11: Parameter-sensitivity experiments on \(w\).

Figure 12: More parameter-sensitivity experiments on \(k, T_n\) (number of turns), and \(s_n\) (seeding number).

Figure 11(b) and Figure 12(c)(d)), and \(s_n\) (see Figure 11(b) and Figure 12(e)(f)), none of them has much impact to the convergence and efficiency.

Insight 4: 1) Our ETA-Pre (i.e. with pre-computation) can converge quickly and is robust to various parameter settings. It also returns a highly similar objective score to the one with online connectivity computation while the latter is much slower. 2) Both the best-neighbor-only optimization strategy and the domination table optimization strategy can effectively prune candidates. 3) Pre-computation can be done in hours but it contributes to high performance for interactive route planning [65].

8 CONCLUSIONS

We investigated a public transport route planning problem CT-Bus, which aims to plan a bus route to improve the connectivity of the transit network and also to meet the demand of commuters. We formulated CT-Bus as an optimization problem and proposed a practical heuristic method to solve it. To avoid computationally expansive matrix operations, we used the Lanczos method to estimate the natural connectivity of transit network with bounded error. We derived upper bounds on the objective values when adding edges, and used the derived upper bounds to select edges for greedy expansion. Our experiments showed that CT-Bus could plan effective routes in two of the US’s most complicated bus transit systems. In future, we will investigate how to update the connectivity efficiently in the pre-computation stage based on perturbation theory, and use our derived upper bounds to solve existing and new network connectivity optimization problems [22, 23]. For small-scale cities that do not have sophisticated transit systems, the optimal site selection for deploying new bus stops based on trajectories and connectivity will be another interesting direction for future research.

ACKNOWLEDGMENTS

Zhifeng Bao is supported in part by ARC DP200102611, DP180102050, and a Google Faculty Award.
Appendices

A PROOF OF LEMMAS

A.1 Proof of Lemma 3

Proof. Let \(A \) be the adjacency matrix of our original transit network \(G \), and let \(A' \) be the adjacency matrix of the updated network \(G' \), which is obtained by adding \(k \) edges. Let \(K = A' - A \). Let \(\lambda_1 \geq \ldots \geq \lambda_n \), \(\lambda'_1 \geq \ldots \geq \lambda'_n \), and \(\sigma_1 \geq \ldots \geq \sigma_n \) be the eigenvalues of \(A, A', \) and \(K \), respectively.

Let \(\text{tr} (\cdot) \) denote the matrix trace, we have \(\lambda(G'_i) = \ln \left(\frac{\text{tr} (e^{A'})}{\pi} \right) \). Then it suffices to upper bound \(\text{tr} (e^{A'}) \). To do so, we apply the Golden–Thompson inequality: \(\text{tr} (e^{A'}) = \text{tr} (e^{A+K}) \leq \text{tr} (e^{A} e^{K}) \). Next, we apply a trace inequality of Lassere [39] to bound \(\text{tr} (e^{A} e^{K}) \leq \sum_{i=1}^{n} e^{\lambda_i} e^{\sigma_i} \). Since \(K \) is a graph adjacency matrix with at most \(2k \) nodes, it has a rank of at most \(2k \), so we have \(\sum_{i=1}^{n} e^{\lambda_i} e^{\sigma_i} \leq \sum_{i=1}^{2k+1} e^{\lambda_i} + \sum_{i=1}^{2k} e^{\sigma_i} \). Since this expression is maximized exactly when \(K \) is chosen to maximize the Estrada index \(\sum_{i=1}^{2k} e^{\sigma_i} \), we can apply the upper bound of De La Peña et al. [25] to obtain \(\sum_{i=1}^{2k} e^{\sigma_i} \leq 2k + 1 + e^{\sqrt{2k}} \). Our final result is that \(\text{tr} (e^{A'}) \leq \text{tr} (e^{A}) - \sum_{i=1}^{2k} e^{\lambda_i} + e^{\lambda_1} [2k - 1 + e^{\sqrt{2k}}] \), which gives the bound of the lemma after renormalizing and taking a log. □

A.2 Proof of Lemma 4

Proof. For \(i = 1, \ldots, n \), let \(\Delta_i = \lambda'_i - \lambda_i \). We have that:

\[
 e^{\lambda(G'_i)} = e^{\lambda(G_i)} + \frac{1}{n} \sum_{i=1}^{n} (e^{\Delta_i} - 1) e^{\lambda_i}.
\]

We are going to choose \(\Delta_1^*, \ldots, \Delta_n^* \) to maximize this expression given the constraints of implied by Equation 8:

\[
 \sum_{i=1}^{q} \Delta_i \leq \sum_{i=1}^{q} \sigma_i.
\]

It is clear that any solution which maximizes Equation 14 under these constraints must set \(\Delta_q^* = \sum_{i=1}^{q} \sigma_i - \sum_{i=1}^{q-1} \sigma_i = \sigma_q \).

The non-zero eigenvalues of \(K = A' - A \) are simply the well-known eigenvalues of an unweighted simple path graph, which are equal to

\[
 2 \cos \left(\frac{2 \pi i}{k+1} \right)
\]

for \(i = 1, \ldots, k+1 \). The remaining \(n-k-1 \) eigenvalues of \(K \) are equal to 0. Noting that only the first \(m = \lfloor \frac{k+1}{2} \rfloor \) path graph eigenvalues are positive, we immediately have that \(\Delta_1^*, \ldots, \Delta_m^* = 2 \cos \left(\frac{2 \pi i}{k+1} \right), \ldots, 2 \cos \left(\frac{m \pi}{k+1} \right) \), \(\Delta_{m+1}^*, \ldots, \Delta_{n-k+m}^* = 0 \), and \(\Delta_{n-k+m+1}^*, \ldots, \Delta_{n}^* = 2 \cos \left(\frac{(m+1) \pi}{k+2} \right), \ldots, 2 \cos \left(\frac{(k+1) \pi}{k+2} \right) \).

The lemma follows by noting that \((e_i^1 - 1) \leq 1 \) for all \(\Delta_i \leq 0 \). □