A Matrix Method for Quasinormal Modes: Schwarzschild Black Holes in Asymptotically Flat and (Anti-) de Sitter Spacetimes

Kai Lin and Wei-Liang Qian

1) Universidade Federal de Itajubá, Instituto de Física e Química, Itajubá, MG, Brazil

2) Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil and

3) Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá, SP, Brazil

(Dated: December, 09, 2016)

In this work, we study the quasinormal modes of Schwarzschild and Schwarzschild (Anti-) de Sitter black holes by a matrix method. The proposed method involves discretizing the master field equation and expressing it in form of a homogeneous system of linear algebraic equations. The resulting homogeneous matrix equation furnishes a non-standard eigenvalue problem, which can then be solved numerically to obtain the quasinormal frequencies. A key feature of the present approach is that the discretization of the wave function and its derivatives are made to be independent of any specific metric through coordinate transformation. In many cases, it can be carried out beforehand which in turn improves the efficiency and facilitates the numerical implementation. We also analyze the precision and efficiency of the present method as well as compare the results to those obtained by different approaches.

INTRODUCTION

Black hole, long considered to be a physical as well as mathematical curiosity, is derived in general relativity as a generic prediction. Through gravitational collapse, a stellar-mass black hole can be formed at the end of the life cycle of a very massive star, when its gravity overcomes the neutron degeneracy pressure. A crucial feature of a black hole is the existence of event horizon, a boundary in spacetime beyond which events cannot affect an outside observer. Despite its invisible interior, however, the properties of a black hole can be inferred through its interaction with other matter. By quantum field theory in curved spacetime, it is shown that the event horizons emit Hawking radiation, with the same spectrum of black body radiation at a temperature determined by its mass, charge and angular momentum \[T = \frac{m}{4\pi a} \]. The latter completes the formulation of black hole thermodynamics \[S = \frac{\partial F}{\partial T} \], which describes the properties of a black hole in analogy to those of thermodynamics by relating mass to energy, area to entropy, and surface gravity to temperature. Quasinormal modes (QNMs) arise as the temporal oscillations owing to perturbations in black hole spacetime \[e^{-i\omega t} \]. Owing to the energy loss through flux conservation, these modes are not normal. Consequently, when writing the oscillation in an exponential form, \(e^{-i\omega t} \), the frequency of the modes is a complex number. The real part, \(\omega_R \), represents the actual temporal oscillation; and
the imaginary part, ω_I, indicates the decay rate. Therefore, these modes are commonly referred to as quasinormal. The stability of the black hole spacetime guarantees that all small perturbation modes are damped. Usually, QNMs can be conditionally divided into three stages. The first stage involves a short period of the initial outburst of radiation, which is sensitively dependent on the initial conditions. The second stage consists of a long period dominated by the quasinormal oscillations, where the amplitude of the oscillation decays exponentially in time. This stage is characterized by only a few parameters of the black holes, such as their mass, angular momentum, and charge. The last stage takes place when the QNMs are suppressed by power-law or exponential late-time tails. The properties of QNMs have been investigated in the context of the AdS/CFT correspondence. As a matter of fact, practically every stellar object oscillates, and oscillations produced by very compact stellar objects and their detection are of vital importance in physics and astrophysics. In 2015, the first observation of gravitational waves from a binary black hole merger was reported [4]. The observation provides direct evidence of the last remaining unproven prediction of general relativity and reconfirms its prediction of space-time distortion on the cosmic scale.

Mathematically, the QNMs are governed by the linearized equations of general relativity constraining perturbations around a black hole solution. The resulting master field equation is a linear second order partial differential equation. Due to the difficulty in finding exact solutions to most problems of interest, various approximate methods have been proposed [6]. If the inverse potential, which can be viewed as a potential well, furnishes a well-defined bound state problem, the QNMs can be evaluated by solving the associated Schrödinger equation. In particular, when a smooth potential well can be approximated by the Pöschl-Teller potential, QNM frequencies can be obtained through the known bound states [7]. For general potential function, approaches such as continued fraction method [8], Horowitz and Hubeny (HH) method [9], asymptotic iteration method [10] can be utilized. A common feature of the above methods is that the corresponding master field equation is obtained by representing the wave function with power series. Higher precision is therefore achieved by considering higher order expansions. A semi-analytic technique to obtain the low-lying QNMs is based on a matching of the asymptotic WKB solutions at spatial infinity and on the event horizon [11]. The WKB formula has been extended to the sixth order [12]. Further generalization to a higher order, however, is not straightforward. Finite difference method is developed to numerically integrate the master field equation [13], and the temporal evolution of the perturbation can be obtained.

In this work, by discretizing the linear partial differential equation [1], we transfer the master field equation as well as its boundary conditions into a homogeneous matrix equation. In our approach, the master field equation is presented in terms of linear equations describing N discretized points where the wave function is expanded up to N-th order for each of these points. This leads to a non-standard eigenvalue problem and can be solved numerically for the quasinormal frequencies. The present paper is organized as follows. In the next section, we briefly review how to reformulate the master field equation in terms of a matrix equation of non-standard eigenvalue problem. In section III to V, we investigate the quasinormal modes of Schwarzschild, Schwarzschild de Sitter and Schwarzschild anti-de Sitter black hole spacetime respectively. The precision and efficiency of the present approach are studied by comparing to the results obtained by other methods. Discussions and speculations are given in the last section.
MATRIX METHOD AND THE EIGENVALUE PROBLEM FOR QUASINORMAL MODES

Recently, we proposed a non-grid-based interpolation scheme which can be used to solve the eigenvalue problem \[1\]. A key step of the method is to formally discretize the unknown eigenfunction in order to transform a differential equation as well as the boundary conditions into a homogeneous matrix equation. Based on the information about \(N\) scattered data point, Taylor series are carried out for the unknown eigenfunction up to \(N\)-th order for each discretized point. Then the resulting homogeneous system of linear algebraic equations is solved for the eigenvalue. Here, we briefly describe the discretization procedure. For a univariate function \(f(x)\), one applies the Taylor expansion of a function to \(N - 1\) discrete points in a small vicinity of another point. Without loss of generality, let us expand the function values and their derivatives as follows

\[
\begin{align*}
\Delta f(x) &= f(x_1) - f(x_2), f(x_3) - f(x_2), \ldots, f(x_j) - f(x_2), \ldots, f(x_N) - f(x_2),
\end{align*}
\]

where

\[
\Delta F = MD, \quad (2.1)
\]

\[
\Delta F = (f(x_1) - f(x_2), f(x_3) - f(x_2), \ldots, f(x_j) - f(x_2), \ldots, f(x_N) - f(x_2))^T, \quad (2.2)
\]

\[
M = \begin{pmatrix}
x_1 - x_2 & \frac{(x_1 - x_2)^2}{2} & \ldots & \frac{(x_1 - x_2)^i}{i!} & \ldots & \frac{(x_1 - x_2)^{N-1}}{(N-1)!} \\
x_3 - x_2 & \frac{(x_3 - x_2)^2}{2} & \ldots & \frac{(x_3 - x_2)^i}{i!} & \ldots & \frac{(x_3 - x_2)^{N-1}}{(N-1)!} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_j - x_2 & \frac{(x_j - x_2)^2}{2} & \ldots & \frac{(x_j - x_2)^i}{i!} & \ldots & \frac{(x_j - x_2)^{N-1}}{(N-1)!} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_N - x_2 & \frac{(x_N - x_2)^2}{2} & \ldots & \frac{(x_N - x_2)^i}{i!} & \ldots & \frac{(x_N - x_2)^{N-1}}{(N-1)!}
\end{pmatrix}, \quad (2.3)
\]

\[
D = (f'(x_2), f''(x_2), \ldots, f^{(k)}(x_2), \ldots, f^{(N)}(x_2))^T. \quad (2.4)
\]

Now, the above equation implies that all the derivatives at \(x = x_2\) can be expressed in terms of the function values by using the Cramer’s rule. In particular, we have

\[
f'(x_2) = \det(M_1)/\det(M),
\]

\[
f''(x_2) = \det(M_2)/\det(M),
\]

where \(M_i\) is the matrix formed by replacing the \(i\)-th column of \(M\) by the column vector \(\Delta F\). Now, by permuting the \(N\) points, \(x_1, x_2, \ldots, x_N\), we are able to rewrite all the derivatives at the above \(N\) points as linear combinations of the function values at those points. Substituting the derivatives into the eigenvalue equation, one obtains \(N\) equations with \(f(x_1), \ldots, f(x_N)\) as its variables. It was shown \[1\] that the boundary conditions can be implemented by properly replacing some of the above equations.

Now we apply the above method to investigate the master field equation of for QNM. For simplicity, here we only investigate the scalar perturbation in black hole spacetime.
According to the action of the massless scalar field with minimal coupling in curved four dimensional spacetime:

\[S = \int d^4x \sqrt{-g} L = \int d^4x \sqrt{-g} (\partial_\mu \Phi \partial^\mu \Phi), \] (2.6)

the equation of motion for the massless scalar field reads

\[g^{\mu\nu} \nabla_\mu \nabla_\nu \Phi = 0. \] (2.7)

Consider the following static spherical metric

\[ds^2 = -F(r)dt^2 + \frac{dr^2}{F(r)} + r^2(d\theta^2 + \sin^2 \theta d\phi^2), \] (2.8)

and rewriting the scalar field by using the separation of variables \(\Phi = \frac{\phi(r)}{r} Y(\theta)e^{-i\omega t + im\phi} \), we obtain the following well-known Schrödinger-type equation

\[\frac{d^2 \phi}{dr_*^2} + \left[\omega^2 - V(r) \right] \phi = 0 \] (2.9)

where \(V(r) = F(r) \left(\frac{F'(r)}{r} + \frac{L(L+1)}{r^2} \right) \) is the effective potential, and \(r_* = \int \frac{dr}{F(r)} \) is tortoise coordinate. As discussed below, the boundary conditions in asymptotically flat, de Sitter and anti-de Sitter spacetimes are different. For the interpolation in Eq.(2.5) to be valid, appropriate coordinate transformation shall be introduced, which will be discussed in detail in the following sections.

QUASINORMAL MODES IN SCHWARZSCHILD BLACK HOLE SPACETIME

In Schwarzschild spacetime, one has

\[F(r) = 1 - \frac{2M}{r}, \] (3.1)

and \(r_h = 2M \) corresponds to the event horizon of the black hole. The potential vanishes on the horizon \(F(r_h) = 0 \) and at infinity \(r \to \infty \), therefore, the wave function has the asymptotic solution \(\phi(r) \sim e^{\pm i\omega r_*} \), where \(\pm \) correspond to incoming and outgoing solutions. Since the wave function must be an incoming wave on the horizon and an outgoing wave at infinity, the boundary conditions of Eq.(2.9) read

\[\phi(+\infty) \sim e^{i\omega r_*}, \]
\[\phi(r_h) \sim e^{-i\omega r_*}, \] (3.2)

where

\[r_* = r + r_h \ln \left(\frac{r}{r_h} - 1 \right) \] (3.3)
is the tortoise coordinate. We study the QNM only in the region $r \in [r_h, \infty)$. By taking into account the above boundary conditions, we first make use of the coordinate transformation

$$x = 1 - \frac{r_h}{r},$$

and rewrite the scalar wave function as

$$\phi = e^{i\omega r_h} (1 - x)^{-i\omega r_h} x^{-i\omega r_h} R(x).$$

(3.5)

In this case, the boundary conditions become $R(0) = R_0$ and $R(1) = R_1$, where R_0 and R_1 are indeterminate constants.

The boundary conditions can be further simplified by introducing

$$\chi(x) = x(1 - x)R(x),$$

(3.6)

so that

$$\chi(1) = \chi(0) = 0.$$

(3.7)

As will be seen below, the boundary condition in Eq.(3.7) guarantees that the resulting matrix equation is homogeneous. The corresponding field equation now becomes

$$\tau_0(x)\chi''(x) + \lambda_0(x)\chi'(x) + s_0(x)\chi(x) = 0$$

(3.8)

where

$$\tau_0(x) = x^2(1 - x)^2A_2(x),$$

$$\lambda_0(x) = x(x - 1) [x(x - 1)A_1(x) + 2(1 - 2x)A_2(x)],$$

$$s_0(x) = 2A_2(x) + x(x - 1) [x(x - 1)A_0(x) + (1 - 2x)A_1(x) + 6A_2(x)]$$

(3.9)

with

$$A_2(x) = -x(1 - x)^2,$$

$$A_1(x) = 4iM\omega(2x^2 - 4x + 1) - (1 - 3x)(1 - x),$$

$$A_0(x) = (1 - x)(1 - 8iM\omega) + 16M^2\omega^2(x - 2) + L(L + 1).$$

(3.10)

Now, we discretize the interval $x \in [0, 1]$ by introducing N evenly distributed points with $x_1 = 0$ and $x_N = 1$. By Eq.(2.5), one may rewrite the above partial differential equation in a matrix form:

$$\hat{\mathcal{M}} \mathcal{F} = 0,$$

(3.11)

where $\mathcal{F} = (f_1, f_2, \ldots, f_i, \ldots, f_N)^T$ with $f_i = \chi(x_i)$, and the matrix $\hat{\mathcal{M}}$ is a function of the quasinormal frequency, ω. The boundary conditions $f_1 = f_N = 0$ can be implemented by defining

$$\mathcal{M}_{k,i} = \begin{cases}
\delta_{k,i}, & k = 1 \text{ or } N, \\
\mathcal{M}_{k,i}, & k = 2, 3, \ldots, N - 1,
\end{cases}$$

(3.12)
and approximating Eq. (3.12) by

\[\mathcal{M} F = 0. \] (3.13)

Eq. (3.13) furnishes a non-standard eigenvalue problem, obtained by discretizing the master equation for massless scalar field Eq. (2.8) in Schwarzschild black hole spacetime. As a homogeneous matrix equation, for eigenvalues \(\omega = \omega_0 \), the determinant

\[\det(\mathcal{M}(\omega_0)) = 0. \] (3.14)

Eq. (3.14) is the desired algebraic equation for the quasinormal frequencies, which can be solved numerically by using, for example, Mathematica. In Table I we show the calculated values of the quasinormal frequencies, which are compared to those obtained by sixth order WKB method. It is inferred from the results that the present method is consistent with the

\((n, L) \)	\(\omega \) (sixth order WKB)	\(\omega \) (present method)
\{0,0\}	0.220928 - 0.201638i	0.220476 - 0.208708i
\{0,1\}	0.585819 - 0.195523i	0.585868 - 0.195298i
\{1,1\}	0.528942 - 0.613037i	0.530236 - 0.61245i
\{0,2\}	0.967284 - 0.193532i	0.967288 - 0.193515i
\{1,2\}	0.927693 - 0.591254i	0.927764 - 0.59132i
\{2,2\}	0.860771 - 1.0174i	0.859041 - 1.01637i
\{0,3\}	1.35073 - 0.1930001i	1.35073 - 0.192999i
\{1,3\}	1.32134 - 0.584575i	1.32133 - 0.584595i
\{2,3\}	1.26718 - 0.992021i	1.26736 - 0.99146i
\{3,3\}	1.19686 - 1.42277i	1.19685 - 1.43117i

WKB method.

In order to show that the present method gives convergent therefore reliable results, we show in Fig. [1] the calculated frequencies, as well as relative errors as functions of the number of interpolation points \(N \). It is found that the results indeed converge well at big \(N \). We note that the algebraic Eq. (3.14), by construction, usually has a finite number of roots. Therefore, one has to identify the correct eigenvalues from other by-products of the numerical solution. In order to seek out the relevant eigenvalue corresponding to the quasinormal mode, one may first study a simpler case by taking a specific limit of the metric parameter where the corresponding quasinormal frequency is already known. After pinning down the relevant quasinormal frequency, one can then vary continuously the parameters to restore the general case in question. In practice, the relevant eigenvalue of Eq. (3.14) is likely to be the one with the smallest imaginary part.
Figura 1: The calculated quasinormal frequencies ω and relative errors $\delta \omega$ as a function of N. The calculations are carried out with $r_h = 1$. The exact solutions are estimated by the results obtained with $N = 40$ interpolation points, which read $\omega(n = 1, L = 3) = 1.321342995697624 - 0.5845695700903002i$, $\omega(n = 2, L = 3) = 1.2672516204041664 - 0.9920164341930597i$.

QUASINORMAL MODES IN SCHWARZSCHILD DE SITTER BLACK HOLE SPACETIME

In Schwarzschild de Sitter spacetime, one has

$$F(r) = 1 - \frac{2M}{r} - \Lambda r^2 = \Lambda \left(1 - \frac{r_h}{r}\right)(r_c - r)(r + r_c + r_h).$$ \hspace{1cm} (4.1)

Here $M = \frac{r_h r_c (r_h + r_c)}{2(r_h^2 + r_h r_c + r_c^2)}$ and $\Lambda = (r_h^2 + r_h r_c + r_c^2)^{-1}$ are the black hole mass and the cosmological constant, where $r = r_h$ and $r = r_c$ represent the event horizon and cosmological horizon
respectively. The boundary conditions, owing to the existence of the two horizons, become

\begin{align*}
\phi(r_c) &\sim e^{i\omega r_c}, \\
\phi(r_h) &\sim e^{-i\omega r_h}.
\end{align*}

(4.2)

We study QNM in the radial interval \(r_h \leq r \leq r_c \), and the the tortoise coordinate reads

\[r_* = \eta_h \ln (r - r_h) + \eta_c \ln (r_c - r) + \eta_t \ln (r + r_h + r_c), \]

(4.3)

where

\begin{align*}
\eta_h &= \frac{r_h}{\Lambda} (r_h - r_c)^{-1} (2r_h + r_c)^{-1}, \\
\eta_c &= \frac{r_c}{\Lambda} (r_c^2 + r_h r_c - 2r_c^2)^{-1}, \\
\eta_t &= \frac{r_h + r_c}{\Lambda} (2r_h + r_c)^{-1} (2r_h + r_c)^{-1}.
\end{align*}

(4.4)

In order to transfer the radial interval into \([0, 1]\), we introduce the coordinate transformation

\[y = \frac{r - r_h}{r_c - r_h}, \]

(4.5)

which gives \(y = 0 \) at \(r = r_h \) and \(y = 1 \) at \(r = r_c \). In accordance with the boundary conditions, we rewrite the scalar field as

\[\phi = (1 - y)^{i\omega \eta_c} y^{-i\omega \eta_h} G(y). \]

(4.6)

This implies that \(G(0) = G_0 \) and \(G(1) = G_1 \), where \(G_0 \) and \(G_1 \) are indeterminate constants. Again, in order to transfer the boundary conditions into the desired form, we further introduce

\[\zeta(y) = y(1 - y)G(y), \]

(4.7)

and transfer the field equation to

\[\tau_0(y)\zeta''(y) + \lambda_0(y)\zeta'(y) + s_0(y)\zeta(y) = 0 \]

(4.8)

with

\begin{align*}
\tau_0(y) &= \Lambda (r_c - r_h)^2 y(1 - y) \frac{(y - 2)r_h - (1 + y)r_c}{(y - 1)r_h - yr_c}, \\
\lambda_0(y) &= \frac{(y - 1)y\tau_0'(y) + 2i\tau_0(y) (y\omega \eta_c + \eta_h (\omega - y\omega) + i(2y - 1))}{(y - 1)y}, \\
s_0(y) &= \frac{\tau_0(y)}{(y - 1)^2 y^2} \left\{ \frac{i(y - 1)y\tau_0''(y)(y\omega \eta_c - (y - 1)\omega \eta_h + 2iy - i)}{\tau_0(y)} \\
&\quad + \frac{(y - 1)^2 y^2 (r_c - r_h)^2 (\omega^2 - V(y))}{\tau_0(y)^2} + 6(y - 1)y + 2 \right. \\
&\quad \left. + \omega \left[(y - 1)\eta_h (2y\omega \eta_c + 5iy - 3i) - y\eta_c (y\omega \eta_c + 5iy - 2i) - (y - 1)^2 \omega \eta_h^2 \right] \right\}, \\
V(y) &= \tau_0(y) \left(\frac{\tau_0(y)}{r_c - r_h} \frac{r_c - r_h}{r_h + (r_c - r_h)y} + \frac{L(L + 1)}{(r_h + (r_c - r_h)y)^2} \right).
\end{align*}

(4.9)
The boundary conditions now read $\zeta(0) = \zeta(1) = 0$. Now we are in the position to utilize the same numerical procedure to discretize the wave function in the interval $0 \leq y \leq 1$, and solve for the quasinormal frequencies. The obtained the quasinormal frequencies are presented in Table II compared to those obtained by the WKB method. It is found that the results from the present method are consistent with those from the WKB method.

Table II: The quasinormal frequencies in asymptotically de Sitter black hole spacetime obtained by the present method. The interpolation makes use of 22 points. It is compared to those obtained by sixth order WKB method. Both calculations consider $r_h = 1$ and $r_c = 5$.

(n, L)	ω (sixth order WKB)	ω (present method)
{0,0}	0.196612 - 0.209246i	0.197867 - 0.214336i
{0,1}	0.52848 - 0.186061i	0.528526 - 0.185917i
{1,1}	0.494221 - 0.566946i	0.494128 - 0.566613i
{0,2}	0.884043 - 0.180588i	0.884046 - 0.180578i
{1,2}	0.857042 - 0.547231i	0.857032 - 0.547189i
{2,2}	0.80711 - 0.929985i	0.807617 - 0.922932i
{0,3}	1.23965 - 0.179048i	1.23965 - 0.179046i
{1,3}	1.21882 - 0.540233i	1.21883 - 0.540230i
{2,3}	1.17886 - 0.910682i	1.17842 - 0.910812i
{3,3}	1.12329 - 1.29622i	1.13422 - 1.2328i

QUASINORMAL MODES IN SCHWARZSCHILD ANTI-DE SITTER BLACK HOLE SPACETIME

Finally, we study the Schwarzschild Anti-de Sitter spacetime. We have

$$F(r) = 1 - \frac{2M}{r} + \Lambda r^2 = \Lambda \left(1 - \frac{r_h}{r} \right) \left(r^2 + r_h r + r_h^2 + \frac{1}{\Lambda} \right). \quad (5.1)$$

Here $M = \frac{1}{r_h} (1 + \Lambda r_h^2)$ is the mass of the black hole. Following the [9], one utilizes the coordinate transformation $v = t + r_\ast$. The resulting black hole metric reads

$$ds^2 = -F(r)dv^2 + 2dvdr + r^2(d\theta^2 + \sin^2 \theta d\varphi^2). \quad (5.2)$$

The scalar field equation becomes

$$F(r) \frac{d^2 \phi(r)}{dr^2} + \left[\frac{dF(r)}{dr} - 2i\omega \right] \frac{d\phi(r)}{dr} - U(r)\phi(r) = 0, \quad (5.3)$$

where $U(r) = \frac{1}{r} \frac{dF(r)}{dr} + \frac{L(L+1)}{r^2}$. We introduce the coordinate transformation

$$z = r_h/r, \quad (5.4)$$

to transfer the radial coordinate into the interval $z \in [0, 1]$, with $z = 1$ at $r = r_h$ and $z = 0$ at $r \to \infty$. Since the effective potential $U(r)$ diverges at infinity, one has $\phi|_{z=0} = 0$ [9]. On
the event horizon, the boundary condition reads \(\phi|_{z=1} = \phi_0 \), where \(\phi_0 \) is a constant. By further introducing

\[
\varrho(z) = (z - 1)\phi(z),
\]

one obtains the desired boundary condition \(\varrho(0) = \varrho(1) = 0 \) for the field equation

\[
\tau_0(z)\varrho''(z) + \lambda_0(z)\varrho'(z) + s_0(z)\varrho(z) = 0,
\]

with

\[
\tau_0(z) = r_h^2 \left(\frac{\Lambda}{z^2} - \Lambda z \right) - z + 1,
\]

\[
\lambda_0(y) = \frac{2i\omega r_h + \Lambda (-z^2 + 2z + 2)r_h^2 + (2 - z)z}{z^2},
\]

\[
s_0(z) = \frac{r_h^2 \left[\Lambda z^2 \left(z^2 - 2z - 2 \right) - (z - 1)U \left(\frac{z}{2} \right) \right] - 2i\omega z^2r_h + (z - 2)z^3}{(z - 1)z^4}.
\]

Again, the eignequation can be obtained following the same procedures as before. The calculated quasinormal frequencies are shown in Table III and compared with the results obtained by the HH method. It is inferred from the results that the present method is in accordance with the HH method.

Tabela III: The quasinormal frequencies in asymptotically Anti de Sitter black hole spacetime obtained by the present method. The interpolation makes use of 22 points. It is compared to those obtained by HH method. Both calculations consider \(L = 0 \) and \(n = 0 \).

\((\Lambda, r_h) \)	\(\omega \) (HH method)	\(\omega \) (present method)
\{1,100\}	184.9534-266.3856i	184.956 - 266.385i
\{1,50\}	92.4937-133.1933i	92.4949 - 133.193i
\{1,10\}	18.6070-26.6418i	18.6073 - 26.6417i
\{1,5\}	9.4711-13.3255i	9.47129 - 13.3255i
\{1,1\}	2.7982-2.6712i	2.79778 - 2.67047i
\{1,0.8\}	2.5878-2.1304i	2.58624 - 2.12876i
\{1,0.6\}	2.4316-1.5797i	2.42592 - 1.57212i
\{1,0.4\}	2.3629-1.0064i	2.38152 - 0.938149i

DISCUSSIONS AND OUTLOOKS

In this work, we proposed a new interpolation scheme to discretize the master field equation for the scalar quasinormal modes. It is shown that the method can be applied to different black hole spacetimes. By appropriately introducing coordinate transformations, the resulting homogeneous matrix equation possesses very similar characteristics. And therefore, the quasinormal frequencies can be obtained by the same numerical solver for algebraic equations.
On the one hand, we obtain the desired the boundary conditions through appropriate choice of coordinate, so that quasinormal modes for different black hole spacetimes are obtained through the same numerical scheme. The precision of the present method, on the other hand, can be easily improved by increasing the total number of discretization points N, which is a convenient feature. By taking the advantage of the efficiency of existing matrix as well as algebraic equation solvers, such as Matlab and Mathematica, the present method is practical and efficient. In particular, we have deliberately transferred the radial variable into the interval $[0, 1]$. This is because the evaluation of Eq.(2.5) can be quite time-consuming for a high-rank matrix. However, once the radial interval is given, such calculations become independent of the specific form of metric. As a result, Eq.(2.5) can be carried out beforehand which in turn increases the efficiency of the present method.

In this work, we studied quasinormal frequencies. We note that the corresponding wave function can also be obtained easily by substituting the obtained frequency ω_A into $\mathcal{M}(\omega)$ and numerically evaluating the column matrix ξ_A which satisfies $\mathcal{M}(\omega_A)\xi_A = 0$. For instance, this can be achieved by using Eigensystem command of Mathematica to acquire the eigenvector ξ_A corresponding to the null eigenvalue.

It is noting that the present method is particularly advantageous when applied to asymptotically AdS spacetime. This is because in this case, the derivation of Eq.(5.6) does not require the knowledge of an analytic form of the tortoise coordinates, which also applies to other metrics in AdS spacetime. In the asymptotically flat as well as dS spacetime, on the other hand, an analytic form of the tortoise coordinate usually provides considerable convenience to acquire the desired boundary conditions, in order that the problem can be transformed into a homogeneous matrix equation for the quasinormal modes. In fact, the above mathematical difficulties are also encountered for other approaches such as continued fraction and asymptotic iteration methods. Furthermore, we observe that the proposed method is quite general and can be employed to investigate more sophisticated and physically interesting cases. It possesses flexibility and therefore the potential to explore some black hole metrics where the applications of other traditional methods become less straightforward. As an example, the quasinormal modes of a rotational black hole is characterized by, besides the quasinormal frequency ω, a second eigenvalue λ whose physical content is associated with the angular quantum number L. Its numerical solution, therefore, involves finding the two eigenvalues, ω and λ, simultaneously. The continued fraction method is fit for the task, but its success relies on the derivation of a recurrence relation of the coefficients, which might not be obvious for some sophisticated metrics. A preliminary attempt [14] shows that the approach proposed in this work, on the other hand, can be applied straightforwardly in a more intuitive fashion. Another example is the quasinormal modes of massive Dirac field [15], where the present method is also expected to introduce significant convenience when handling the coupled equations of spinor components. These are worthy topics for further investigations.

Acknowledgements

We gratefully acknowledge the financial support from Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), as well as National Natural Science Foundation of China (NNSFC) under contract No.11573022 and 11375279.
1. K. Lin and W.-L. Qian, A non-grid-based interpolation scheme for the eigenvalue problem. arXiv:1609.05948

2. S. W. Hawking, *Nature* 248 30 (1974); S. W. Hawking, *Commun.Math.Phys.* 43 199 (1975)

3. S. P. Robinson and F. Wilczek, *Phys.Rev.Lett.* 95 011303 (2005) [arXiv:gr-qc/0502074]; T. Damour and R. Ruffini, *Phys.Rev.D* 14 332 (1976); P. Kraus and F. Wilczek 1995 *Nucl.Phys.B* 433 403 [arXiv:gr-qc/9408003]; M.K. Parikh and F. Wilczek, *Phys.Rev.Lett.* 85 5042 (2000) [arXiv:hep-th/9907001]; K. Srinivasan and T. Padmanabhan, *Phys. Rev. D* 60 24007 (1999); R. Kerner and R. B. Mann, *Class.Quant.Grav.* 25 095014 (2008) [arXiv:0710.0612]; K. Lin and S. Z. Yang *Phys.Rev.D* 79 064035 (2009); *Phys.Lett.B* 674 127 (2009); *Phys.Lett.B* 680 509 (2009)

4. Abbott, Benjamin P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration), *Phys. Rev. Lett.* 116 (6): 061102. arXiv:1602.03837

5. R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011); Kokkotas, K. D., and B. G. Schmidt, 1999, Living Rev. Relativity 2, 2.

6. S. Chandrasekhar and S. Detweiler, Proc. R. Soc. A 344, 441 (1975); S. R. Dolan and A. C. Ottewill, Classical Quantum Gravity 26, 225003 (2009); S. R. Dolan, Phys. Rev. D 82, 104003 (2010); K. Lin, J. Li and N. Yang, Gen. Relativ. Gravit. 43, 1889-1899 (2011). S. Mahapatra, JHEP 04, 142 (2016) [arXiv:1602.03007]

7. H.-J. Blome and B. Mashhoon, Phys. Lett. 110A, 231 (1984).

8. E. Leaver. Proceedings of the Royal Society A, 402, 285 (1985); H. P. Nollert. Phys. Rev. D, 47, 5253 (1993).

9. G. T. Horowitz and V. E. Hubeny, Phys.Rev.D 62, 024027 (2000)

10. Cho, H.T., et al.: Class. Quantum Gravity 27, 155004 (2010); Cho, H.T., et al.: Adv. Math. Phys., 281705 (2012); Cho, H.T., et al.: Phys. Rev. D 83, 124034 (2011); K. Lin, J. Li and S.Z. Yang, Int. J. Theor. Phys. 52, 3771 (2013).

11. B. F. Schutz and C. M. Will, Astrophysical Journal, 291, L33 (1985); S. Iyer and C. M. Will. Phys.Rev.D 35, 3621 (1987).

12. R. A. Konoplya, Phys.Rev.D 68, 024018 (2003).

13. C. Gundlach, R. H. Price and J. Pullin, Phys. Rev. D 49, 883 (1994); Phys. Rev. D 49, 890 (1994); J. S. F. Chan and R. B. Mann, Phys. Rev.D 55, 7546 (1997); B. Cuadros-Melgar, J. de Oliveira, and C. E. Pellicer, Phys. Rev. D 85, 024014 (2012); E. Abdalla, O. P. F. Piedra, F. S. Nunez, and J. de Oliveira, Phys. Rev. D 88, 064035 (2013); K. Lin, W.-L. Qian and A. B. Pavan, Phys. Rev. D 94, 064050 (2016).

14. K. Lin, W.-L. Qian, A. B. Pavan and E. Abdalla, in preparation (2016).

15. Cho, H.T. Phys.Rev. D68, 024003 (2003).