MODAL DEFINABILITY BASED ON ŁUKASIEWICZ VALIDITY RELATIONS

BRUNO TÉHEUX

Abstract. We study two notions of definability for classes of relational structures based on modal extensions of Łukasiewicz finitely valued logics. The main results of the paper are the equivalent of the Goldblatt-Thomason theorem for these notions of definability.

1. Introduction

The language of modal logic is recognized as being efficient to talk about relational structures - for instance, see Slogan 1 in the preface of [2]. Actually, the connection between the modal language and relational structures is twofold. On the one hand, relational semantics help to study the deductive properties of normal modal logics. The problem generally addressed is the following: given a modal logic \(L \), find a class of relational structures with respect to which \(L \) is complete. On the other hand, the modal language is used as a descriptive language. There are at least two types of results to characterize the ability of the modal language to describe relational structures, in other words, to characterize its expressive power.

First, one can regard the expressive power of the modal language as its ability to distinguish between worlds in relational structures. For example, van Benthem theorem [15] states that the modal language is the bisimulation invariant fragment of first order logic.

A second approach of the expressive power of the modal language is to consider its ability to distinguish between frames, that is, its ability to define classes of frames. In this respect, one of the most renowned result is the Goldblatt-Thomason theorem [9] that characterizes, in terms of certain closure conditions, those first order definable classes of relational structures that are also definable by modal formulas.

The notion of modal definability is based on the validity relation \(\models \). This relation contains \((\mathfrak{F}, \phi)\) (in notation \(\mathfrak{F} \models \phi \)) whenever \(\phi \) is a modal formula that is true in any model based on the structure \(\mathfrak{F} \). A class \(C \) of relational structures is modally definable if there is a set \(\Phi \) of modal formulas such that \(C = \{ \mathfrak{F} \mid \mathfrak{F} \models \Phi \} \). Thus, any change in the definition of the validity relation affects the notion of modal definability.

One way to modify the validity relation is to tweak the definition of a model based on a structure, that is, to change the set of possible valuations that can be added to a structure to turn it into a model. In this paper, we study modal definability for validity relations defined with a notion of models in which formulas are evaluated...
in a finite set of truth-values using ŁUKASIEWICZ interpretation of the connectors \neg and \to.

The paper is organized as follows. In the second section, we introduce the modal language \mathcal{L} that we consider in the remainder of the paper, as well as two classes of relational structures to interpret this language. The first one is the class of \mathcal{L}-frames and the second one is the class of \mathcal{L}_n-valued \mathcal{L}-frames. The latter are \mathcal{L}-frames in which the set of allowed truth values is specified in each world. These two classes of structures give rise to two validity relations, and to two corresponding notions of definability. In the third section, we develop some construction tools for (Łukasiewicz \mathcal{L}_n)-valued \mathcal{L}-frames that can be used to test definability of classes of \mathcal{L}-structures. The section is centered on the notion of canonical extension of structures. In the fourth section, we obtain many-valued versions of the Łukasiewicz theorem, which constitute the main results of the paper (Theorems 4.6 and 4.7). We conclude the paper by a section presenting some final remarks and topics for further research.

We use many results that were previously obtained for modal extensions of ŁUKASIEWICZ $(n + 1)$-valued logic and we generalize some of the standard tools and techniques of Boolean modal logic. We try to avoid duplicating existing proofs by referring to the literature as far as understanding is not jeopardized.

2. From \mathcal{L}_n-valued models to definability

Let $\mathcal{L} = \{\neg, \to, 1\} \cup \{\nabla_i \mid i \in I\}$ be a language, where \neg is unary, \to is binary, 1 is constant and ∇_i is k_i-ary with $k_i \geq 1$ for every $i \in I$. Connectors in $\{\nabla_i \mid i \in I\}$ are considered as k_i-ary universal modalities. The set \mathcal{L} of formulas is defined by induction from an infinite set of propositional variables Prop using the grammar

$$\phi ::= p \mid 0 \mid \neg \phi \mid \phi \to \phi \mid \nabla_i(\phi, \ldots, \phi),$$

where $p \in \text{Prop}$ and $i \in I$. If no additional information is given, by a formula we mean an element of \mathcal{L}. We sometimes write $\phi(p_1, \ldots, p_k)$ to stress that ϕ is a formula whose propositional variables are among p_1, \ldots, p_k. When we write ‘let ∇ be a k-ary modality’ we mean ‘let $i \in I$ and $k \in \mathbb{N}$ such that $\nabla = \nabla_i$, and $k = k_i$’. In the examples, we often use the language \mathcal{L}_\square that contains only one modal connector \square, which is unary.

We use the customary abbreviations in ŁUKASIEWICZ logic: we write $p \oplus q$ for $\neg p \to q$, $p \odot q$ for $\neg(\neg p \oplus \neg q)$, $x \lor y$ for $(y \odot \neg x) \oplus x$, $x \land y$ for $(y \oplus \neg x) \odot x$, and 0 for $\neg 1$. We assume associativity of \oplus and \odot and we denote by $k.p$ and p^k the formulas $p \oplus \cdots \oplus p$ and $p \odot \cdots \odot p$ (where p is repeated k times in both cases) for any $k \geq 0$. We use bold letters to denote tuples (arity is given by the context). Hence, we denote by ϕ, ψ, \ldots tuples of formulas and by ϕ_i the ith component of ϕ. If $\ell \geq 2$ and $R \subseteq W^\ell$, we write $w \in Ru$ for $(u, w_1, \ldots, w_{\ell-1}) \in R$.

To interpret formulas on structures, we use a many-valued generalization of the KRIPKE models. We fix a positive integer n for the remainder of the paper and we denote by \mathfrak{L}_n the subalgebra $\mathfrak{L}_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$ of the standard MV-algebra $\langle[0,1], \neg, \to, 1\rangle$ which is defined by $x \to y = \min(1, 1 - x + y)$ and $\neg x = 1 - x$. Hence, the interpretation of the connectors \oplus, \odot, \lor and \land on $[0,1]$ are given by $x \oplus y = \min(x + y, 1)$, $x \odot y = \max(x + y - 1, 0)$, $x \lor y = \max(x, y)$ and $x \land y = \min(x, y)$.

Recall that the variety \mathcal{MV} generated by the standard MV-algebra $[0,1]$ is the variety of MV-algebras that was introduced by Chang [1] in order to obtain an
algebraic proof [3] of the completeness of ŁUKASIEWICZ infinite-valued logic with respect to $[0,1]$-valuations. We denote by MV_n the subvariety of MV generated by L_n. For a general reference about the theory of MV-algebras, we refer to [7].

We use vocabulary and notation that are customary for relational structures in the field of modal logic. Hence, an L-frame is a tuple $(W, (R_i)_{i \in I})$ where W is a nonempty set and R_i is an $k_i + 1$-ary relation for every $i \in I$. We say that W is the universe of \mathfrak{F} and that elements of W are worlds of \mathfrak{F}. We denote by FR the class of L-frames. For the sake of readability, we use FR for $FR_{L,\omega}$. By abuse of notation, we let \mathcal{L} stand for the language defined at the beginning of the section and for the signature of the L-frames.

Definition 2.1. An L_n-valued L-model, or a model for short, is a couple $M = ⟨\mathfrak{F}, \text{Val}⟩$ where $\mathfrak{F} = (W, (R_i)_{i \in I})$ is an L-frame and $\text{Val}: W \times \text{Prop} \to L_n$. We say that $M = ⟨\mathfrak{F}, \text{Val}⟩$ is based on \mathfrak{F}.

In a model M, the valuation map Val is extended inductively to $W \times \mathcal{L}$ using ŁUKASIEWICZ interpretation of the connectors 0, \neg and \rightarrow in $[0,1]$ and the rule

$$\text{Val}(u, \nabla(\phi)) = \min\{ \max_{1 \leq \ell \leq k} \text{Val}(w, \phi_{\ell}) \mid w \in Ru \}$$

for every k-ary modal connector ∇.

Informally speaking, models have many-valued worlds and crisp relations. The class of L_n-valued models has been considered in [3] to obtain completeness results for many-valued normal modal logics.

Definition 2.2. A formula ϕ is true in an L_n-valued L-model $M = ⟨\mathfrak{F}, \text{Val}⟩$, in notation $M \models \phi$, if $\text{Val}(u, \phi) = 1$ for every world u of \mathfrak{F}.

If Φ is a set of formulas that are true in any L_n-valued L-model based on a L-frame \mathfrak{F}, we write $\mathfrak{F} \models_n \Phi$ and say that Φ is L_n-valid in \mathfrak{F}. We write $\mathfrak{F} \models_n \phi$ instead of $\mathfrak{F} \models_n \{\phi\}$.

We base our first notion of definability on the validity relation \models_n.

Definition 2.3. A class \mathcal{C} of L-frames is L_n-definable if there is a set Φ of formulas such that $\mathcal{C} = \{ \mathfrak{F} \in FR_{L,\omega} \mid \mathfrak{F} \models_n \Phi \}$. In that case, we write $\mathcal{C} = \text{Mod}_n(\Phi)$.

Example 2.4. As expected, the many-valued nature of the valuation added to the frames may be responsible for strong differences between the standard (Boolean) validity relation and the L_n-validity relation. For instance $\text{Mod}_1(\Box(p \lor \neg p)) = FR_{L,\omega}$ while $\text{Mod}_n(\Box(p \lor \neg p)) = \{ \mathfrak{F} \in FR \mid R = \emptyset \}$ if $n > 1$.

We denote by $\text{PForm}_n^\mathcal{L}$ the fragment of \mathcal{L} defined by the grammar

$$\phi ::= p^n \mid 0 \mid \neg \phi \mid \phi \rightarrow \phi \mid \nabla_i(\phi, \ldots, \phi)$$

where $p \in \text{Prop}$ and $i \in I$. Let us also denote by tr_n the map

$$\text{tr}_n: \mathcal{L} \to \text{PForm}_n^\mathcal{L}: \phi(p_1, \ldots, p_k) \mapsto \phi(p_1^n, \ldots, p_k^n).$$

The following result states that the expressive power of \mathcal{L} with regards to \models_1 is equal to the expressive power of $\text{PForm}_n^\mathcal{L}$ with regards to \models_m, for any $m > 0$.

Proposition 2.5. Let \mathcal{C} be a class of L-frames and $\Phi \subseteq \text{Form}_\mathcal{L}$. The following conditions are equivalent.

(i) $\mathcal{C} = \text{Mod}_1(\Phi)$.

(ii) There is an $m > 0$ such that $\mathcal{C} = \text{Mod}_m(\text{tr}_n(\Phi))$.

(iii) For any $m > 0$, we have $\mathcal{C} = \text{Mod}_m(\text{tr}_n(\Phi))$.
Moreover $\text{Mod}_n(\Phi) \subseteq \text{Mod}_1(\Phi)$ for every $m > 0$.

Proof. Obviously, (11) implies (11). Now, let $\mathfrak{F} = \langle W, (R_i)_{i \in I} \rangle$ be an \mathcal{L}-frame and $m > 0$. We prove that for every $\phi \in \mathcal{L}$ we have

$$\mathfrak{F} \models_m \text{tr}_m(\phi) \iff \mathfrak{F} \models_1 \phi. \quad (2.1)$$

For any $\text{Val}: W \times \text{Prop} \to L_m$ let $\text{Val}_2: W \times \text{Prop} \to L_1$ be the map defined by $\text{Val}_2(u, p) = \text{Val}(u, p^m)$ for every $u \in W$ and $p \in \text{Prop}$. It is clear that

$$L_1^{W \times \text{Prop}} = \{ \text{Val}_2 | \text{Val} \in L_m^{W \times \text{Prop}} \}. \quad (2.2)$$

Also, by definition of the map tr_m, for every $u \in W$ and $\phi \in \mathcal{L}$ we have

$$\text{Val}(u, \text{tr}_m(\phi)) = \text{Val}_2(u, \phi).$$

Then, for every $\phi \in \mathcal{L}$, $u \in W$ and $\text{Val}: W \times \text{Prop} \to L_m$ we have

$$\langle \mathfrak{F}, \text{Val} \rangle \models \text{tr}_m(\phi) \iff \langle \mathfrak{F}, \text{Val}_2 \rangle \models \phi.$$

We conclude that (2.1) holds true by the latter equivalence and identity (2.2).

We obtain directly from (2.1) that (11) implies (0) and that (0) implies (11). The second part of the statement follows from the inclusion $L_1 \subseteq L_m$ for every $m > 0$. \hfill \square

In particular, any L_1-definable class of frames is also L_m-definable. At this point of our developments, nothing can be said about the converse property (Theorem 2.7 gives a partial answer).

Apart from the signature of \mathcal{L}-frames, there is another first-order signature that can be used to interpret \mathcal{L}-formulas. It is the signature of the L_n-valued \mathcal{L}-frames that embodies the many-valued nature of the modal language we consider. These structures were introduced in the previous section. We denote by \preceq the dual order of divisibility on \mathbb{N}, that is, for every $\ell, k \in \mathbb{N}$ we write $\ell \preceq k$ if ℓ is a divisor of k, and $\ell \prec k$ if ℓ is a proper divisor of k.

Definition 2.6 (11). An L_n-valued \mathcal{L}-frame is a tuple $\langle W, (r_m)_{m \preceq n}, (R_i)_{i \in I} \rangle$ where

1. $\langle X, (R_i)_{i \in I} \rangle$ is an \mathcal{L}-frame,
2. $r_m \subseteq W$ for every $m \preceq n$,
3. $r_n = W$ and $r_m \cap r_q = r_{\text{gcd}(m, q)}$ for any $m, q \preceq n$,
4. $R_i u \subseteq r_m$ for any $i \in I$, $m \preceq n$ and $u \in r_m$.

We denote by \mathcal{FR}_L^n the class of the L_n-valued \mathcal{L}-frames and we write \mathcal{FR}_L^n for $\mathcal{FR}_L^n \cap \mathcal{L}$ by abuse of notation, we use \mathcal{L} to denote the signature of the L_n-valued \mathcal{L}-frames. For $\mathfrak{F} \in \mathcal{FR}_L^n$, we let \mathfrak{F}_i be the underlying \mathcal{L}-frame of \mathfrak{F}, that is, the reduct of \mathfrak{F} to the language of \mathcal{L}-frames. The trivial L_n-valued \mathcal{L}-frame \mathfrak{F}_i^n associated with an \mathcal{L}-frame \mathfrak{F} is obtained by enriching \mathfrak{F} with $(r_m)_{m \preceq n}$ where $r_m = \emptyset$ if $m \neq n$ and $r_n = W$.

The general idea is to use the structure given by the sets r_m (where $m \preceq n$) to define a validity relation which is weaker than \models_n. Informally, when adding a valuation to an L_n-valued frame, we require that the truth value of any formula in any world $u \in r_m$ belongs L_m. This idea is formalized in the following definition.

Definition 2.7. An L_n-valued model \mathcal{M} is based on the L_n-valued \mathcal{L}-frame $\mathfrak{F} = \langle W, (r_m)_{m \preceq n}, (R_i)_{i \in I} \rangle$ if \mathcal{M} is based on \mathfrak{F}_i^n and $\text{Val}(u, \text{Prop}) \subseteq L_m$ for every $m \preceq n$ and $u \in r_m$.

If \(\Phi \) is a set of \(\mathcal{L} \)-formulas that are true in every \(\mathbb{L}_n \)-valued model based on an \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frame \(\mathfrak{F} \), we write \(\mathfrak{F} \models \Phi \) and say that \(\Phi \) is valid in \(\mathfrak{F} \). We write \(\mathfrak{F} \models \phi \) instead of \(\mathfrak{F} \models \{ \phi \} \).

The proof of the following lemma is straightforward and omitted.

Lemma 2.8. Let \(\mathfrak{F} \) be an \(\mathcal{L} \)-frame and \(\mathfrak{F}_b \) be its associated trivial \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frame.

1. For every \(\phi \in \mathcal{L} \) it holds \(\mathfrak{F} \models \phi \) if and only if \(\mathfrak{F}_b \models \phi \).
2. For every \(\phi \in \mathcal{L} \), if \(\mathfrak{F} \models \phi \) then \(\mathfrak{G} \models \phi \) for every \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frame based on \(\mathfrak{F} \).
3. \(\mathfrak{F}_b \models \mathfrak{F} \).

We use the validity relation \(\models \) to introduce the notion of definability for \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frames.

Definition 2.9. A class \(\mathcal{C} \) of \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frames is definable if there is \(\Phi \subseteq \mathcal{L} \) such that \(\mathcal{C} = \{ \mathfrak{F} \in \mathcal{F} \mathcal{R}_n^\mathcal{L} \mid \mathfrak{F} \models \Phi \} \). In that case, we write \(\mathcal{C} = \text{Mod}(\Phi) \).

Example 2.10. It is not difficult to prove that \(\text{Mod}(\Box(p \lor \neg p)) = \{ \mathfrak{F} \in \mathcal{F} \mathcal{R}^\mathcal{L}_n \mid \forall u Ru \subseteq r_1 \} \). Moreover, as we shall prove in Example 3.3, the class \(\{ \mathfrak{F} \in \mathcal{F} \mathcal{R}^\mathcal{L}_n \mid \forall u u \not\in r_n \} \) is not definable if \(m \) is a strict divisor of \(n \).

Any \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frame \(\mathfrak{F} \) has an underlying \(\mathcal{L} \)-frame \(\mathfrak{F}_b \). Conversely, for any \(\mathcal{L} \)-frame \(\mathfrak{F} \), the trivial \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-frame \(\mathfrak{F}_b \) associated with \(\mathfrak{F} \) is based on \(\mathfrak{F} \). The following result clarifies the connections between these constructions with regards to definability.

Proposition 2.11. Let \(\mathcal{C} \) be a class of \(\mathcal{L} \)-frames and \(\Phi \subseteq \mathcal{L} \). Denote by \(\mathcal{C}' \) the class \(\{ \mathfrak{F} \in \mathcal{F} \mathcal{R}_n^\mathcal{L} \mid \mathfrak{F}_b \in \mathcal{C} \} \).

1. If \(\mathcal{C}' = \text{Mod}(\Phi) \) then \(\mathcal{C} = \text{Mod}(\Phi) \).
2. If \(\mathcal{C} = \text{Mod}(\Phi) \) then \(\mathcal{C}' \subseteq \text{Mod}(\Phi) \) but the converse inclusion may not hold.

Proof.

1. If \(\mathfrak{F} \in \mathcal{C} \) then any \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-model based on \(\mathfrak{F} \) can be viewed as an \(\mathbb{L}_n \)-valued \(\mathcal{L} \)-model based on \(\mathfrak{F}_b \). By Lemma 2.8 (1), such an \(\mathfrak{F}_b \) belongs to \(\mathcal{C}' = \text{Mod}(\Phi) \). If follows that \(\mathfrak{F} \in \text{Mod}(\Phi) \) by definition of \(\mathcal{C}' \).

Conversely, if \(\mathfrak{F} \in \text{Mod}(\Phi) \) then \(\mathfrak{F}_b \in \text{Mod}(\Phi) = \mathcal{C}' \) by Lemma 2.8 (1). We conclude that \(\mathfrak{F} \in \mathcal{C} \) by Lemma 2.8 (3).

2. The stated inclusion follows directly from Lemma 2.8 (2). To obtain a counterexample for the converse inclusion, assume that \(n > 1 \) and consider the formula \(\phi = \Box(p \lor \neg p) \). We have stated in Example 2.4 and Example 2.10 that \(\mathcal{C} := \text{Mod}(\phi) \) is equal to \(\{ \mathfrak{F} \in \mathcal{F} \mathcal{R} \mid R = \emptyset \} \) and \(\text{Mod}(\phi) = \{ \mathfrak{F} \in \mathcal{F} \mathcal{R}_n^\mathcal{L} \mid \forall u Ru \subseteq r_1 \} \). Hence, \(\text{Mod}(\phi) \not\subseteq \mathcal{C}' \). \(\square \)

3. Testing definability with frame constructions

There are several frame constructions that are known to preserve the standard Boolean validity relation. These constructions can be used to test if a class \(\mathcal{C} \) of frames is modally definable: if \(\mathcal{C} \) is not closed under these constructions, it is not modally definable.

Three of them (namely, bounded morphisms, generated subframes and disjoint unions) admit straightforward many-valued versions. To deal with the last one, that is, canonical extension, we need to generalize some algebraic apparatus.
3.1. $Ł_n$-valued definability based on Łukasiewicz validity relations

3.1. Ł$_n$-valued definability based on Łukasiewicz validity relations and generated substructures. If R is a $(k+1)$-ary relation on a set W, if $u \in W$ and if $f : W \to W'$ is a map, we denote by $f(Ru)$ the set $\{(f(v_1), \ldots, f(v_k)) : v \in Ru\}$. Recall that a map $f : \mathfrak{F} \to \mathfrak{F}'$ between two Ł$_n$-frames $\mathfrak{F} = (W, (R_i)_{i \in I})$ and $\mathfrak{F}' = (W', (R'_i)_{i \in I})$ is called a bounded-morphism if $f(R_iu) = R'_if(u)$ for every world u of \mathfrak{F} and $i \in I$. If in addition f is onto, we write $f : \mathfrak{F} \to \mathfrak{F}'$ and say that \mathfrak{F}' is a bounded morphic image of \mathfrak{F}.

A substructure \mathfrak{F}' of an Ł-frame \mathfrak{F} is a generated subframe of \mathfrak{F}, in notation $\mathfrak{F}' \to \mathfrak{F}$, if the inclusion map $i : \mathfrak{F}' \to \mathfrak{F}$ is a bounded-morphism.

Definition 3.1. A map $f : \mathfrak{F} \to \mathfrak{F}'$ between two Ł$_n$-valued Ł-frames \mathfrak{F} and \mathfrak{F}' is an Ł$_n$-valued bounded morphism if f is a bounded morphism between \mathfrak{F} and \mathfrak{F}' and if $f(r_m) \subseteq r'_m$ for every $m \leq n$. If in addition f is onto, we write $f : \mathfrak{F} \to \mathfrak{F}'$ and say that \mathfrak{F}' is an Ł$_n$-valued bounded morphic image of \mathfrak{F}.

A substructure \mathfrak{F}' of an Ł$_n$-valued Ł-frame is an Ł$_n$-valued generated subframe of \mathfrak{F}, in notation $\mathfrak{F}' \to \mathfrak{F}$, if the inclusion map $i : \mathfrak{F}' \to \mathfrak{F}$ is a bounded morphism.

If $\{\mathfrak{F}_j \mid j \in J\}$ is a family of relational structures over the same signature (the signature of Ł-frames or the signature of Ł$_n$-valued Ł-frames), we denote by $\bigcup\{\mathfrak{F}_j \mid j \in J\}$ the disjoint union of these structures.

The next result shows how to use the constructions just introduced as criteria for (Ł$_n$)-definability. Proofs are routine arguments and are omitted.

Proposition 3.2. Let $\{\mathfrak{F}, \mathfrak{F}'\} \cup \{\mathfrak{F}_j \mid j \in J\}$ be a family of Ł-frames, $\{\mathfrak{G}, \mathfrak{G}'\} \cup \{\mathfrak{G}_j \mid j \in J\}$ be a family of Ł$_n$-valued Ł-frames, and $\phi \in \mathcal{L}$.

1. If $\mathfrak{F} \models \phi$ and $\mathfrak{F}' \to \mathfrak{F}$ or $\mathfrak{F} \to \mathfrak{F}'$ then $\mathfrak{F}' \models \phi$.
2. If $\mathfrak{F}_j \models \phi$ for every $j \in J$ then $\bigcup\{\mathfrak{F}_j \mid j \in J\} \models \phi$.
3. If $\mathfrak{G} \models \phi$ and $\mathfrak{G}' \to \mathfrak{G}$ or $\mathfrak{G} \to \mathfrak{G}'$ then $\mathfrak{G}' \models \phi$.
4. If $\mathfrak{G}_j \models \phi$ for every $j \in J$ then $\bigcup\{\mathfrak{G}_j \mid j \in J\} \models \phi$.

Example 3.3. Assume that $n > 1$ and that $k < n$. The class $C_1 = \{\mathfrak{F} \in \mathcal{FR}^n : \forall u \varphi \notin r_k\}$ is not definable. Indeed, consider the two Ł$_n$-valued frames \mathfrak{F} and \mathfrak{G} which both have an empty accessibility relation, whose universes are respectively $\{s\}$ and $\{t\}$ with $s \in r_k$ if and only if $\ell = n$ and $t \in r_k$ if and only if $k < \ell$. Then the map $\mathfrak{F} \to \mathfrak{G}$ is an onto Ł$_n$-valued bounded morphism, $\mathfrak{F} \in C_1$ but $\mathfrak{G} \notin C_1$.

Similarly, the class $C_2 = \{\mathfrak{F} \in \mathcal{FR}^n : \exists u \varphi \notin Ru\}$ is not definable. Indeed, consider the Ł$_n$-valued frame \mathfrak{F} defined on the universe $\{u, v\}$ by setting $R = \{(u, v)\}$, $u \in r_k$ if and only if $\ell = n$ and $v \in r_k$ if and only if $k < \ell$. Then $\mathfrak{F} \in C_2$, while it is not the case of the substructure $\mathfrak{F}|_v$ which is an Ł$_n$-valued generated subframe of \mathfrak{F}.

3.2. Ł$_n$-valued canonical extensions. The most comfortable way to introduce canonical extensions of structures (Definitions 3.10 and 3.11) is to go through the variety \mathcal{MMV}_n which is the algebraic counterpart of the modal extensions of Łukasiewicz $n + 1$-valued logics considered in [10] [11] [13]. In order to recall the definition of \mathcal{MMV}_n, we need to introduce some notation. For every $x \in X^k$, every $a \in X$, and every $i \in \{1, \ldots, k\}$, we denote by x_i^a the k-tuple obtained from x by substituting x_i by a.

The variety \mathcal{MMV}_n is defined [11] [13] as the variety of Ł-algebras whose $\langle -, \rightarrow \rangle$-reduct is an MV$_n$-algebra and that satisfy the equations

$$\nabla(x_i^{u\cdot v}) = \nabla(x_i^{u}) \rightarrow \nabla(x_i^{v}), \quad \nabla(x \cdot x) = \nabla x \cdot \nabla x, \quad \nabla(x^i) = 1,$$
for any \(k \)-ary modality \(\nabla, i \in \{1, \ldots, k\} \), and \(* \in \{\ominus, \oplus\}\). A \(k \)-ary operation on an algebra \(A \in \mathcal{MV}_n \) that satisfies the equations in (3.1) is called a \(k \)-ary modal operator.

It follows that if \(A \in \mathcal{MMV}_n^\mathcal{L} \) then the Boolean algebra \(\mathfrak{B}(A) \) of idempotent elements of \(A \) (i.e., elements \(a \in A \) that satisfy \(a \oplus a = a \)) equipped with the operations \(\nabla |_{\mathfrak{B}(A)} \) for every modality \(\nabla \) belongs to \(\mathcal{MMV}_1 \) (which is the variety of Boolean algebras with \(\mathcal{L} \)-operators). By abuse of notation, we denote this algebra by \(\mathfrak{B}(A) \).

Definition 3.4. The canonical \(L_n \)-valued \(\mathcal{L} \)-frame associated with \(A \in \mathcal{MMV}_n^\mathcal{L} \), in notation \(A^\triangleright \), is the structure \((W, (r_m)_{m \leq n}, (R_i)_{i \in I})\) whose universe is the set \(W = \mathcal{MV}(A, L_n) \) of \(\mathcal{MV} \)-algebra homomorphisms from \(A \) to \(L_n \) and whose structure is defined by

\[
r_m = \mathcal{MV}(A, I_m)
\]

for every \(m \leq n \), and

\[
(3.2) \quad uR_i v \quad \text{if} \quad \forall a \in A^{k_i} (u(\nabla_i a) = 1 \implies \max\{v_i(a_\ell) \mid 1 \leq \ell \leq k_i\} = 1),
\]

for every \(i \in I \).

An \(\mathcal{L} \)-homomorphism \(\alpha : \mathcal{L} \rightarrow A \) where \(A \in \mathcal{MMV}_n^\mathcal{L} \) is called an algebraic valuation on \(A \) (see [11, Definition 4.4] and [13, Definition 2.32]). Recall the following result, which states how any modal operator \(\nabla_i \) of an \(\mathcal{MMV}_n^\mathcal{L} \)-algebra \(A \) can be recovered from its canonical relation \(R_i \). Its proof can be found in [11, Proposition 5.6] and [13, Lemma 2.40] and is omitted here.

Lemma 3.5. If \(\alpha : \mathcal{L} \rightarrow A \) is an algebraic valuation on \(A \in \mathcal{MMV}_n^\mathcal{L} \), if \(i \in I \) and if \(u \in \mathcal{MV}(A, I_n) \), then \(u(\nabla a) = \min\{\max_{1 \leq \ell \leq k_i} v_i(a_\ell) \mid (u, v) \in R \} \) for every \(a \in A^{k_i} \).

This result can be used to prove that \(A^\triangleright \) is an \(L_n \)-valued \(\mathcal{L} \)-frame for every \(A \in \mathcal{MMV}_n^\mathcal{L} \).

Proposition 3.6. If \(A \in \mathcal{MMV}_n^\mathcal{L} \), then \(A^\triangleright \) is an \(L_n \)-valued \(\mathcal{L} \)-frame.

Proof. We have to prove that for any \(k \)-ary modal operator \(\nabla \) on an algebra \(A \in \mathcal{MV}_n \), we have \(R_{r_m} \subseteq r_m^k \) for every \(m \leq n \), where \(r_m \) and \(R \) are defined on \(\mathcal{MV}(A, I_n) \) as in Definition 3.4. If \(\nabla \) is unary, the proof is provided in [11, Lemma 7.4]. Let us prove the general case and assume that \(k > 1 \). For the sake of contradiction, suppose that \(v_i \not\in r_m \) for some \(m \leq n \), some \(u \in r_m \), some \(v \in R u \) and some \(i \in [k] \). Let us denote by \(\Box \) the unary modal operator defined on \(A \) by \(\Box a = \nabla(0^a) \) for every \(a \in A \). It follows from Proposition 3.3 that for any \(a \in A \) we have \(u(\Box a) = 1 \) if and only if \(\min\{v_i(a) \mid (u, v) \in R \} = 1 \). We deduce that if \(u(\Box a) = 1 \) then \(v_i(a) = 1 \), which means that \((u, v_i) \in R_\Box \) where \(R_\Box \) is the relation associated with \(\Box \) as in (3.2) . It follows that \(v_i \in r_m \) since \(R_\Box \) is the relation associated with a unary modal operator on \(A \). This gives the desired contradiction.

Definition 3.7. The canonical \(\mathcal{L} \)-frame associated with \(A \in \mathcal{MMV}_n^\mathcal{L} \), in notation \(A^+ \), is defined as \(A^+ = (A^\triangleright)_2 \).

It is worth recalling [13, Lemma 2.38] that for every \(A \in \mathcal{MMV}_n \) it holds

\[
(3.3) \quad A^+ \cong \mathfrak{B}(A)^+,
\]

where an isomorphism is given by the map \(u \mapsto u|_{\mathfrak{B}(A)} \).

MODAL DEFINABILITY BASED ON LUKASIEWICZ VALIDITY RELATIONS 7
Now that we have a canonical way to associate structures to algebras of \mathcal{MV}_n^L, we consider the converse construction. That is, we define some ways to associate algebras to structures. These constructions generalize the standard Boolean ones.

Definition 3.8 ([11], Definition 7.7). The L_n-complex algebra of an \mathcal{L}-frame $\mathfrak{F} = \langle W, (R_i)_{i \in I} \rangle$ is the \mathcal{L}-algebra $\mathfrak{F}_{+n} = \langle L_{m}^W, \neg, \rightarrow, 1, (\nabla_i)_{i \in I} \rangle$ where \neg, \rightarrow and 1 are defined componentwisely and $\nabla_i \alpha(u) = \min \{ \max_{1 \leq i \leq k} \alpha_{i}(v) \mid v \in R_iu \}$, for any modality ∇_i, any $x \in L_{m}^W$, and any $u \in W$.

The L_n-tight complex algebra of an L_n-valued \mathcal{L}-frame $\mathfrak{F} = \langle W, (r_m)_{m \leq n}, (R_i)_{i \in I} \rangle$ is the algebra $\mathfrak{F}_{n} = \langle \prod_{u \in W} L_{s_u}, \neg, \rightarrow, 1, (\nabla_i)_{i \in I} \rangle$ where $s_u = \gcd \{ m \leq n \mid u \in r_m \}$ for every $u \in W$ and where the operations are defined as for \mathfrak{F}_{+n}.

As recalled by the following result (see [11] Lemma 7.8 and [13] Lemma 2.34 and Lemma 2.35), complex constructions give an algebraic translation of the validity relations. We use the standard equivalence between \mathcal{L}-formulas and \mathcal{L}-terms.

Proposition 3.9. Let $\phi \in \mathcal{L}$.

1. If \mathfrak{F} is an \mathcal{L}-frame then $\mathfrak{F}_{+n} \in \mathcal{MV}_n^L$, and $\mathfrak{F} \models \phi$ if and only if $\mathfrak{F}_{+n} \models \phi = 1$.
2. If \mathfrak{F} is an L_n-valued \mathcal{L}-frame then $\mathfrak{F}_{n} \in \mathcal{MV}_n^L$, and $\mathfrak{F} \models \phi$ if and only if $\mathfrak{F}_{n} \models \phi = 1$.

Definition 3.10. The canonical extension of an L_n-valued \mathcal{L}-frame \mathfrak{F} is the structure $\mathcal{E}(\mathfrak{F}) = (\mathfrak{F}_{n})^\times$.

The notion of canonical extension \mathfrak{B} of an \mathcal{L}-frame \mathfrak{F}, also known as the ultrafilter extension, is a classical tool in Boolean modal logic. It turns out that it is also relevant in our many-valued setting. It is convenient to adopt the following equivalent construction of this extension.

Definition 3.11. The canonical extension of an \mathcal{L}-frame \mathfrak{F} is the \mathcal{L}-frame $\mathcal{E}(\mathfrak{F}) = (\mathfrak{B}(\mathfrak{F}_{+n}))^+$.

It is not difficult to check that $\mathfrak{B}(\mathfrak{F}_{+n}) \cong \mathfrak{B}(\mathfrak{F}_{+n})$ for every \mathcal{L}-frame \mathfrak{F}. This isomorphism together with equation (6.3) establish the equivalence between Definition 3.11 and the usual definition of the canonical extension of an \mathcal{L}-frame.

Lemma 3.12. If \mathfrak{F} is an L_n-valued \mathcal{L}-frame, then the map $f: \mathcal{MV}(\mathfrak{F}_{+n}, L_n) \rightarrow \mathcal{MV}(\mathfrak{B}(\mathfrak{F}_{+n}), L_n): u \mapsto u|_{\mathfrak{B}(\mathfrak{F}_{+n})}$ is an isomorphism between $\mathcal{E}(\mathfrak{F})$ and $\mathcal{E}(\mathfrak{F}_{+n})$.

Proof. First, we note that f is valued in the universe of $\mathcal{E}(\mathfrak{F}_{+n})$ since \mathfrak{F}_{n} is a subalgebra of \mathfrak{F}_{+n} that satisfies $\mathfrak{B}(\mathfrak{F}_{+n}) = \mathfrak{B}(\mathfrak{F}_{+n})$ (see [11] Lemma 7.9). Moreover, it is well known that f is one-to-one and onto. It follows from Definitions 3.11 and 3.12 that $(f(u), f(v_1), \ldots, f(v_k)) \in R_i^{\mathcal{E}(\mathfrak{F}_{+n})}$ for every $(u, v_1, \ldots, v_k) \in R_i^{\mathfrak{B}(\mathfrak{F}_{+n})}$ and every $i \in I$.

To prove the converse property, assume that $(f(u), f(v_1), \ldots, f(v_k)) \in R_i^{\mathfrak{B}(\mathfrak{F}_{+n})}$ while $(u, v_1, \ldots, v_k) \not\in R_i^{\mathcal{E}(\mathfrak{F}_{+n})}$. Then, there exists $a \in \mathfrak{F}_{+n}$ such that $u(\nabla_i a) = 1$.
while \(v_\ell(a \ell) < 1\) for every \(\ell \in \{1, \ldots, k_i\}\). It follows that \(u(\nabla, a^{2^n}) = u((\nabla, a) = 1\) while \(\sqrt{v_\ell(u^{(2)})} \mid \ell \in \{1, \ldots, k_i\} = 0\). We conclude that \((f(u, f(v_1, \ldots, f(v_k))) cannot belong to \(R^\ell\). \(\square\)

We introduce the notion of \(L_n\)-valued canonical extension at the level of models.

Definition 3.13. The \(L_n\)-valued canonical extension of \(M\) is the \(L_n\)-valued \(L\)-model \(\mathcal{C}_n(M) = (\mathcal{C}(\mathcal{F}), \text{Val}^\ell)\) based on the canonical extension \(\mathcal{C}(\mathcal{F})\) of its underlying \(L\)-frame \(\mathcal{F}\) and defined by setting \(\text{Val}^\ell(u, p) = u(\text{Val}(\neg, p))\) for every \(p \in \text{Prop}\) and every world \(u\) of \(\mathcal{C}(\mathcal{F})\).

To state the properties of the canonical extensions of the \(L_n\)-valued \(L\)-models, we need to introduce the notion of submodel.

Definition 3.14. Let \(M = (\mathcal{F}, \text{Val})\) and \(M' = (\mathcal{F}', \text{Val}')\) be two \(L_n\)-valued \(L\)-models. We say that \(M\) is a submodel of \(M'\) if \(\mathcal{F}\) is a substructure of \(\mathcal{F}'\) and \(\text{Val}(u, p) = \text{Val}'(u, p)\) for every world \(u\) of \(\mathcal{F}\) and every \(p \in \text{Prop}\).

Proposition 3.15. Let \(M = (\mathcal{F}, \text{Val})\) be an \(L_n\)-valued \(L\)-model based on the \(L_n\)-valued \(L\)-frame \(\mathcal{F}\). Denote by \(\iota\) the map

\[
\iota : \mathcal{F} \rightarrow \mathcal{C}(\mathcal{F}) : w \mapsto \pi^\mathcal{F}_w
\]

where \(\pi^\mathcal{F}_w\) denotes the projection map \(\mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}_w\) from \(\mathcal{F} \times \mathcal{F}\) onto its \(w\)-th factor.

(1) The map \(\iota\) identifies \(\mathcal{F}\) as a substructure of \(\mathcal{C}(\mathcal{F})\).

(2) The map \(\iota\) identifies \(M\) as a submodel of \(\mathcal{C}_n(M)\).

Proof.

(1) It is known that the map

\[
\iota' : \mathcal{F}_w \rightarrow \mathcal{C}(\mathcal{F}_w) : w \mapsto \pi^\mathcal{F}_w
\]

identifies \(\mathcal{F}_w\) as a substructure of \(\mathcal{C}(\mathcal{F}_w)\). Using notation introduced in Lemma 3.12, the map \(f^{-1} \circ \iota'\) identifies \(\mathcal{F}_w\) as a substructure of \(\mathcal{C}(\mathcal{F})\). Since \(f^{-1} \circ \iota' = \iota\), it remains to show that

\[w \in r^\mathcal{F}_m \iff \iota(w) \in r^\mathcal{C}_m\]

for every \(m \leq n\) and \(w \in W\). This equivalence follows directly from the definition of \(\iota\).

(2) For any world \(w\) of \(M\) and \(p \in \text{Prop}\), we obtain successively

\[\text{Val}^\ell(\iota(w), p) = \iota(w)(\text{Val}(\neg, p)) = \pi^\mathcal{F}_w(\text{Val}(\neg, p)) = \text{Val}(w, p),\]

where the first equality is obtained by definition of \(\text{Val}^\ell\), the second and the third ones by definition of \(\iota\) and \(\pi^\mathcal{F}_w\), respectively. \(\square\)

Proposition 3.16. Let \(M = (\mathcal{F}, \text{Val})\) be an \(L_n\)-valued \(L\)-model based on the \(L\)-frame \(\mathcal{F}\). For any world \(u\) of \(\mathcal{C}_n(M)\) and any \(\phi \in \mathcal{L}\) we have \(\text{Val}^\ell(u, \phi) = u(\text{Val}(\neg, \phi))\).

Proof. The map \(\alpha : \mathcal{L} \rightarrow \mathcal{F}_+\) defined by \(\alpha_p = \text{Val}(\neg, p)\) and extended as an \(L\)-homomorphism is an algebraic valuation on \(\mathcal{F}_+\). Moreover, \(\mathcal{C}_n(M)\) is the canonical model associated with the algebraic model \((\mathcal{F}_+, \alpha)\) in the sense of [11] Definition 5.2 (see also [13] Definition 2.32). It follows from [11] Proposition 5.6 and [13] Lemma 2.40 that \(\text{Val}^\ell(u, \phi) = u(\alpha_\phi)\), while equality \(\text{Val}(\neg, \phi) = \alpha_\phi\) holds by definition. \(\square\)

Corollary 3.17. Let \(M = (\mathcal{F}, \text{Val})\) be an \(L_n\)-valued \(L\)-model. For every world \(u\) of \(M\) and every \(\phi \in \mathcal{L}\), it holds \(\text{Val}^\ell(\iota(u), \phi) = \text{Val}(u, \phi)\), where \(\iota\) is the map defined in Proposition 3.15.
Proof. We have
\[\text{Val}(\iota(u), \phi) = \iota(u)(\text{Val}(\phi)) = \text{Val}(u, \phi), \]
where the first equality is obtained by Proposition \ref{prop:valuation} and the second by definition of \(\iota \).
\(\Box \)

From Corollary \ref{cor:validity} we obtain that canonical extensions of structures reflect the validity relation, as stated in the next result.

Corollary 3.18. Let \(\mathfrak{F} \) and \(\mathfrak{G} \) be an \(\mathcal{L} \)-frame and an \(L_n \)-valued \(\mathcal{L} \)-frame, respectively, and \(\phi \) be a formula.

1. If \(\mathcal{C}(\mathfrak{F}) \models \phi \) then \(\mathcal{C}(\mathfrak{G}) \models \phi \).
2. If \(\mathcal{C}(\mathfrak{G}) \models_n \phi \) then \(\mathcal{C}(\mathfrak{F}) \models_n \phi \).

Proof. \(\Box \) follows directly form Corollary \ref{cor:validity}. For \(\Box \), first note that
\[\mathcal{C}(\mathfrak{F}) = \mathcal{C}(\mathfrak{G}) \circ \mathcal{G}(\mathfrak{F}), \]
where the first equality is obtained by Lemma \ref{lem:isomorphism} and the second one by Lemma \ref{lem:isomorphism2}. Thus, \(\mathcal{C}(\mathfrak{F}) \) is an \(L_n \)-valued \(\mathcal{L} \)-frame based on \(\mathcal{C}(\mathfrak{G}) \). If follows by Lemma \ref{lem:isomorphism} that if \(\phi \in \mathcal{L} \) is such that \(\mathcal{C}(\mathfrak{F}) \models \phi \), then \(\mathcal{C}(\mathfrak{G}) \models \phi \). Then, we obtain \(\mathcal{C}(\mathfrak{F}) \models \phi \) by statement \(\Box \). or equivalently that \(\mathcal{C}(\mathfrak{G}) \models \phi \) by Lemma \ref{lem:isomorphism}.
\(\Box \)

4. Goldblatt - Thomason Theorems

We pursue the algebraic approach of frame definability in our proofs of the Goldblatt - Thomason theorems. The proofs rely on two ingredients: a correspondence between construction operators for algebras and frames, and a construction of the canonical extensions of \(L_n \)-valued \(\mathcal{L} \)-frames as ultrapowers. Regarding the first ingredient, we only expose the tools needed for our purpose, without developing a real duality. Our approach is an adaptation of the original proof of the Goldblatt - Thomason Theorem \[\Box \].

Proposition 4.1. If \(\{ \mathfrak{F}_i \mid i \in I \} \) is a family of \(L_n \)-valued \(\mathcal{L} \)-frames then \((\bigcup_{i \in I} \mathfrak{F}_i)_x \) is isomorphic to \(\prod_{i \in I} (\mathfrak{F}_i)_x \). In particular, if \(\{ \mathfrak{F}_i \mid i \in I \} \) is a family of \(\mathcal{L} \)-frames then \((\bigcup_{i \in I} \mathfrak{F}_i)_+ \) is isomorphic to \(\prod_{i \in I} (\mathfrak{F}_i)_+ \).

Proof. The map \(f : (\bigcup_{i \in I} \mathfrak{F}_i)_x \to \prod_{i \in I} (\mathfrak{F}_i)_x \) defined by \(f(a)_i(u) = a(u) \) for every \(i \in I \), \(a \in (\bigcup_{i \in I} \mathfrak{F}_i)_x \), and \(u \in \mathfrak{F}_i \) is an isomorphism.
\(\Box \)

Proposition 4.2. If \(f : A \to A' \) is an \(\mathcal{M} \mathcal{M} \mathcal{V}_n \)-homomorphism between two \(\mathcal{M} \mathcal{M} \mathcal{V}_n \)-algebras \(A \) and \(A' \), then the map \(f^x : A^x \to A'^x : u \mapsto u \circ f \) is an \(L_n \)-valued bounded \(\mathcal{L} \)-morphism. In particular, it is a bounded \(\mathcal{L} \)-morphism from \(A^x \) to \(A'^x \).

In addition, if \(f \) is one-to-one then \(f^x \) is onto. If \(f \) is onto then \(f^x \) is one-to-one.

Proof. From isomorphism \[\Box \] and \[\Box \] Theorem 3.2.4 we fist obtain that \(f^x \) is a bounded \(\mathcal{L} \)-morphism from \((A')^x \) to \((A^x) \mathcal{R}_n \) A. Moreover, \(f^x \) clearly satisfies \(f(u) \in r^A \) for every \(u \in r^{A^x} \).

The second part of the proof follows once again by \[\Box \] and \[\Box \] Theorem 3.2.4.
\(\Box \)

Theorem \[\Box \] lifts the following known result at the level of \(L_n \)-valued \(\mathcal{L} \)-frames.

Theorem 4.3 (\[\Box \]). The canonical extension of an \(\mathcal{L} \)-frame \(\mathfrak{F} \) is a bounded morphic image of an ultrapower of \(\mathfrak{F} \).
Theorem 4.4. The canonical extension of an L_n-valued \mathcal{L}-frame \mathfrak{F} is an L_n-valued bounded morphic image of an ultrapower of \mathfrak{F}.

Proof. We adapt the proof of the corresponding result for the class of \mathcal{L}-frames given in [8]. Denote by \mathcal{L}_n the language $\mathcal{L} \cup \{P_X \mid X \subseteq W\}$ where W is the universe of \mathfrak{F} and P_X is a unary predicate for every $X \subseteq W$. We turn \mathfrak{F} into an \mathcal{L}_n-structure \mathfrak{F}' by setting $\mathfrak{F}', w \models P_X$ if $w \in X$, for any $w \in W$ and $X \subseteq W$. Theorem 6.1.8 in [6] provides with an ω-saturated ultrapower \mathfrak{F}_ω of \mathfrak{F}'. We prove that

\[(4.1) \quad \mathcal{E}(\mathfrak{F}) \text{ is an } L_n\text{-valued bounded morphic image of the } \mathcal{L}\text{-reduct of } \mathfrak{F}_\omega.\]

It is shown in [8] that for every element x of \mathfrak{F}_ω, the set $F_x = \{X \subseteq W \mid \mathfrak{F}_\omega, x \models P_X\}$ is an ultralift of $2^W = \mathfrak{B}(\mathfrak{F}_\omega)$. Thus, for every $x \in \mathfrak{F}_\omega$, there is a unique $u_x \in \mathcal{MV}(\mathfrak{F}_\omega, L_n)$ which satisfies $F_x = u_x^{-1}(1) \cap \mathfrak{B}(\mathfrak{F}_\omega)$. To obtain (4.1), we prove that the map $f: \mathfrak{F}_\omega \rightarrow \mathcal{E}(\mathfrak{F})$: $x \mapsto u_x$ is an L_n-valued bounded morphism. It is shown in [8] that f is an bounded morphism from $(\mathfrak{F}_\omega, \mathcal{E}(\mathfrak{F}))$ onto $\mathcal{E}(\mathfrak{F})$. It remains to prove that $f(r_{m}^\mathfrak{F}_\omega \preceq) \subseteq e_{\mathcal{E}(\mathfrak{F})}(r_{m}^\mathfrak{F}_\omega)$ for every $m \leq n$. Let $x \in r_m^\mathfrak{F}_\omega$ and $a \in \mathfrak{F}_\omega$. We have to prove that $u_x(x) \in L_m$ or equivalently that $u_x(I_m(a)) = 1$ where I_m is an \mathcal{E}-term whose interpretation on L_m is valued in $\{0, 1\}$ and satisfies

\[I_m^x(a) = 1 \iff a \in L_m.\]

for every $a \in L_m$ (the existence of such a term is a consequence of McNaughton Theorem [12]). If $X_{a,m}$ denotes the set $\{y \in W \mid I_m(a)(y) = 1\}$ then $\mathfrak{F}' \models \forall y (v \in r_m \Rightarrow P_{X_{a,m}}(v))$ by definition of \mathfrak{F}_ω, from which we deduce $\mathfrak{F}_\omega \models \forall v (v \in r_m \Rightarrow P_{X_{a,m}}(v))$ since \mathfrak{F}_ω is an elementary extension of \mathfrak{F}'. It follows by definition of u_x that $u_x(I_m(a)) = 1$, and we have proved (4.1). \[\square\]

Remark 4.5. Recall that, thanks to Birkhoff theorem on varieties, if $K \cup \{A\}$ is a class of algebras of the same type, then A belongs to the equational class defined by the equational theory of K if and only if $A \in \mathcal{HSP}(K)$.

We have gathered the tools needed to obtain the L_n-valued versions of the Goldblatt-Thomason theorem.

Theorem 4.6. Assume that \mathcal{C} is a class of L_n-valued \mathcal{L}-frames that contains ultrapowers of its elements. Then \mathcal{C} is definable if and only if the following two conditions are satisfied.

1. The class \mathcal{C} contains L_n-valued generated subframes, disjoint unions and L_n-valued bounded morphic images of its elements.

2. For any L_n-valued \mathcal{L}-frame \mathfrak{F}, if $\mathcal{E}(\mathfrak{F}) \in \mathcal{C}$ then $\mathfrak{F} \in \mathcal{C}$.

Theorem 4.7. Assume that \mathcal{C} is a class of \mathcal{L}-frames that contains ultrapowers of its elements. Then \mathcal{C} is L_n-definable if and only if the following two conditions are satisfied.

1. The class \mathcal{C} contains generated subframes, disjoint union and bounded morphic images of its elements.

2. For any \mathcal{L}-frame \mathfrak{F}, if $\mathcal{E}(\mathfrak{F}) \in \mathcal{C}$ then $\mathfrak{F} \in \mathcal{C}$.

Proof of Theorem 4.6 and Theorem 4.7. Necessity follows from Proposition 5.2 and Corollary 6.16. For sufficiency, suppose that \mathcal{C} is a class of L_n-valued \mathcal{L}-frames that satisfies conditions (1) and (2) of Theorem 4.6 and that \mathcal{D} is a class of \mathcal{L}-frames.
that satisfies conditions (1) and (2) of Theorem 4.7. Let Λ_C and Λ_D be the sets of L-formulas defined as

$$
\Lambda_C = \bigcap_{\mathfrak{F} \in C} \{ \phi \in L | \mathfrak{F} \models \phi \}, \quad \Lambda_D = \bigcap_{\mathfrak{F} \in D} \{ \phi \in L | \mathfrak{F} \models_n \phi \}.
$$

We prove that $K = M(\Lambda_K)$ for $(K, M) \in \{ (C, \text{Mod}), (D, \text{Mod}_n) \}$. To simplify the exposition of the proof, we use A^+_{n} to denote the L-frame A^+ for every $A \in \text{MMV}_n^L$.

We have $K \subseteq M(\Lambda_K)$ by definition of Λ_K. For the other inclusion, let $\mathfrak{F} \in M(\Lambda_K)$. By Proposition 5.9, it means that \mathfrak{F} satisfies every equation that is satisfied by every member of $K^* = \{ \mathfrak{F} | \mathfrak{F} \in L \}$, where $* = \times$ if $(K, M) = (C, \text{Mod})$ and $* = +_n$ if $(K, M) = (D, \text{Mod}_n)$. We deduce from Remark 5.5 that \mathfrak{F} is in $\text{HSP}(K^*)$, and there exist a family $\{ \mathfrak{F}_i | i \in I \}$ of elements of K and a subalgebra A of $\prod_{i \in I} \mathfrak{F}_i$ such that \mathfrak{F} is an homomorphic image of A. By considering the canonical structures associated to these algebras, we obtain by Proposition 5.9 and Proposition 4.2 that $\bigoplus_{i \in I} (\mathfrak{F}_i^*) \colon A^* \twoheadrightarrow (\mathfrak{F}_*^*)^*$.

From our assumptions on K and Theorems 4.3 and 4.4, we obtain that $(\mathfrak{F}_i^*)^*$ belongs to K, thus so are A^* and $(\mathfrak{F}_*^*)^*$. We conclude that $\mathfrak{F} \in K$ using assumption (2) since $(\mathfrak{F}_*^*)^* = \mathfrak{C}e(\mathfrak{F})$. □

5. Conclusions and further research

The results obtained in this paper clarify some links between the standard notion of modal definability and two of its generalizations based on Łukasiewicz $(n + 1)$-valued logic. We conclude the paper by presenting some final remarks and topics for further research.

(I) Theorem 4.7 completely deciphers the links between standard modal definability and L_n-valued definability for elementary classes of L-frames. Indeed, as a corollary of Theorem 4.7 and the Goldblatt - Thomason theorem [9], we obtain that those elementary classes of L-frames that are L_n-definable are exactly the ones that are modally definable. Deciphering these links in the non-elementary case is a topic of interest, and Propositions 2.5 and 2.11 can be considered as modest steps towards some solution to this problem.

(II) The validity relations considered in this paper to define the notions of definability and L_n-definability are based on models that evaluate formulas in a finite subalgebra of the standard MV-algebra $[0, 1]$. Finding the right tools to generalize our results to a notion of definability based on a validity relation defined with $[0, 1]$-valued models is a difficult task that would probably require new appropriate representation results for the variety of MV-algebras.

(III) The validity relation \models is obtained from \models_n by restricting the set of possible valuations that can be added to an L-frame to turn it into a model. The paper illustrates the links that exist between these two validity relations. It would be interesting to develop tools to study (modal) definability in general situations involving a validity relation which is a weakening of another one.

(IV) Informally, the validity relation \models defined in section 2 allows to talk about the set of possible truth values in worlds of L_n-valued L-frames. This gain of expressive power could turn out to be interesting for application oriented...
modal extensions of many-valued logics such as the many-valued generalization of Propositional Dynamic Logic developed in [14].

References

[1] J Van Benthem. Canonical modal logics and ultrafilter extensions. Journal of Symbolic Logic, 44(1):1–8, 1979.
[2] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic, volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.
[3] Félix Bou, Francesc Esteva, Lluís Godo, and Ricardo Oscar Rodríguez. On the minimum many-valued modal logic over a finite residuated lattice. J. Logic Comput., 21(5):739–790, 2011.
[4] C. C. Chang. Algebraic analysis of many valued logics. Trans. Amer. Math. Soc., 88:467–490, 1958.
[5] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc., 93:74–80, 1959.
[6] C. C. Chang and H. J. Keisler. Model theory. North-Holland, third edition, 1990.
[7] Roberto L. O. Cignoli, Itala M. L. D’Ottaviano, and Daniele Mundici. Algebraic foundations of many-valued reasoning, volume 7 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2000.
[8] Robert Goldblatt. Varieties of complex algebras. Annals of pure and applied logic, 44:173–242, 1989.
[9] Robert Goldblatt and Steven Thomason. Axiomatic classes in propositional modal logic. In Algebra and logic, pages 163–173. Springer, Berlin, 1975.
[10] Georges Hansoul and Bruno Téheux. Completeness results for many-valued Łukasiewicz modal systems and relational semantics. arXiv preprint [math/0612542], 2006.
[11] Georges Hansoul and Bruno Téheux. Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics. Studia Logica, 101(3):505–545, 2013.
[12] Robert McNaughton. A theorem about infinite-valued sentential logic. J. Symbolic Logic, 16:1–13, 1951.
[13] Bruno Téheux. Algebraic approach to modal extensions of Łukasiewicz logics. PhD thesis, University of Liège, 2009.
[14] Bruno Téheux. Propositional dynamic logic for searching games with errors. Journal of Applied Logic, 12(4):377 – 394, 2014.
[15] Johan van Benthem. Modal correspondence theory. PhD thesis, Mathematisch Instituut & Instituut voor Grondbouwonderzoek, University of Amsterdam, 1976.