GRBs spectral correlations and their cosmological use

BY GIANCARLO GHIRLANDA

INAF–Osservatorio Astronomico di Brera, Via E. Bianchi 46, I–23807, Merate (Italy)

The correlations involving the long–GRB prompt emission energy represent a new key to understand the GRB physics. These correlations have been proved to be the tool which makes long–GRBs a new class of standard candles. Gamma Ray Bursts, being very powerful cosmological sources detected in the hard X-ray band, represent a new tool to investigate the Universe in a redshift range which is complementary to that covered by other cosmological probes (SNIa and CMB). A review of the $E_p - E_{\text{iso}}$, $E_p - E_{\gamma}$, $E_p - E_{\text{iso}} - t_{\text{break}}$, $L_{\text{iso}} - E_p - T_{0.45}$ correlations is presented. Open issues related to these correlations (e.g. presence of outliers and selection effects) and to their use for cosmographic purposes (e.g. dependence on model assumptions) are discussed. Finally, the relevance of thermal components in GRB spectra is discussed in the light of some of the models recently proposed for the interpretation of the spectral-energy correlations.

Keywords: Gamma Rays: bursts, Cosmology

1. The $E_p - E_{\text{iso}}$ and $E_p - E_{\gamma}$ correlations

Long GRBs with spectroscopically measured redshifts show a strong correlation between the total isotropic energy emitted during the prompt phase (E_{iso}) and the peak energy of their νF_{ν} spectrum (E_p) computed in the source rest frame. This correlation, discovered by Amati et al. (2002) with 12 long–GRBs detected by BeppoSAX, was confirmed by adding 23 bursts detected by other satellites (Ghirlanda et al. 2004) and extended to very low energies with few X-Ray Flashes (Lamb et al. 2004). Figure 1 shows the $E_p - E_{\text{iso}}$ correlation updated to Sept. 2006 with 49 long GRBs. Since its discovery only two bursts (GRB 980425 and GRB 031203) appeared inconsistent with this correlation. Since the launch of the Swift satellite in Nov. 2004 only 13 out of ~45 bursts with measured redshifts (within the sample of ~170 events detected by Swift) were added to the $E_p - E_{\text{iso}}$ correlation. This is mainly due to the narrow energy range (15–150 keV) of the BAT instrument on–board Swift. Indeed, only in 5 cases (shown in figure 1) the peak energy was measured from the BAT spectrum.

However, the energy derived under the isotropic assumption is huge and widely dispersed (between few 10^{50} and 10^{54} erg). If, instead, GRBs are collimated within a jet, the estimated energies and their dispersion are highly reduced, i.e. by a factor $f = (1 - \cos \theta) \simeq 10^{-4}$ with $\theta \sim 1 - 10$ deg (Frail et al. 2001). The observable consequence of the jetted nature of GRBs is an (achromatic) break in their afterglow...
light curves. Assuming a radiative efficiency of the prompt phase (20%) and the density profile of the circumburst medium, either homogeneous (HM) or wind-like (WM, e.g., scaling as $\rho_{\text{ISM}} \propto r^{-2}$), it is possible to estimate the jet opening angle from the measure of the afterglow break time t_{jet} (Sari 1999).

In both scenarios (HM or WM) the collimation-corrected energy E_{γ} is tightly correlated with the peak energy E_{peak} (Ghirlanda et al. 2004; Nava et al. 2006).
While the $E_p - E_{\text{iso}}$ correlation requires only the knowledge of the GRB prompt emission spectrum and of its redshifts, the $E_p - E_\gamma$ correlation requires also the measure of the jet break time from the afterglow light curve. The $E_p - E_\gamma$ correlation (in the WM case) is represented in figure 1 with the most updated sample of 21 GRBs with measured t_{jet}.

The $E_p - E_\gamma$ correlation in the WM case is linear. This implies that: 1) it is invariant for transformation from the source rest frame to the comoving frame (i.e. both E_p and E_γ transform $\propto \Gamma^{-1}$ if looking a uniform jet within its opening angle); 2) the total number of photons, in different GRBs, is roughly constant $\sim 4 \times 10^{56}$.

Note that the scatter of the collimation corrected correlation is dominated by the statistical errors on the two variables, differently from the $E_p - E_{\text{iso}}$ correlation which has a larger dispersion. The small scatter is what makes the $E_p - E_\gamma$ correlation a distance indicator and allows to use GRBs as standard candles (Ghirlanda et al. 2004a; Firmani et al 2005; Ghirlanda et al. 2006; Ghirlanda, Ghisellini & Firmani 2006a).

2. Open issues

While possible interpretations of the $E_p - E_{\text{iso}}$ and the $E_p - E_\gamma$ correlations have been recently proposed, there are still several open issues about these correlations and their cosmological use.

1) Outliers: GRB 980425 and GRB 031203 (both associated with a nearby SN) are respectively five and four orders of magnitude sub–luminous (but with a similar E_p) with respect to the population of bursts obeying the $E_p - E_{\text{iso}}$ correlation. It has been proposed that they are normal GRBs observed off-axis (e.g. Ramirez–Ruiz 2005). In this case, however, the true luminosities of these two events (to be consistent with the $E_p - E_{\text{iso}}$ correlation) would make them the most luminous GRBs ever observed at very low redshifts (i.e. 0.0085 and 0.106). This is hardly reconcilable with any conceivable luminosity function. Instead, it might still be the case that they are representative of a different population of local sub–luminous GRBs (e.g. Soderberg et al. 2004).

An alternative explanation (Ghisellini et al. 2006), which aims at testing if these two events can be consistent with the $E_p - E_{\text{iso}}$ correlation, was motivated by the recent Swift GRB 060218 (Campana et al. 2006) also associated with a SN event at $z = 0.033$. Its total isotropic energy ($\sim 7 \times 10^{49}$ erg) is only slightly larger than that of the two outliers. Nonetheless, its very long duration (3000 s) coupled with a strong hard–to–soft spectral evolution (figure 2) makes its time-averaged spectral peak energy ~ 5 keV, i.e. fully consistent with the $E_p - E_{\text{iso}}$ correlation.

Using GRB 060218 as a template we tried to model the spectral evolution of GRB 031203 and 980425 with the available data. It turns out that in these two bursts a strong spectral evolution might have caused part of their energy to be emitted in the soft X–ray band where it went undetected. In the case of GRB 031203 (figure 3), indeed, there is evidence that a late time soft X–ray fluence, comparable to that observed in the γ–ray band, might be responsible for the observed dust scattering halo evolution (Tiengo & Mereghetti 2006). As a result the total energy
Figure 2. GRB 060218. Top panel: XRT and BAT spectra. Each spectrum is fitted with a cutoff-powerlaw plus a black body component (whose nature is discussed elsewhere, e.g. Campana et al. 2006; Ghisellini, Ghirlanda & Tavecchio 2006a). Early and late time spectra (blue and green symbols) show a strong spectral evolution: the powerlaw spectral index and the νF_ν peak energy soften, the latter moving from the 15–150 keV BAT energy range to the 0.3–10 keV XRT band. The red spectrum is integrated over the 3000 s of duration of the burst and its cutoff-powerlaw model peaks at $E_p \sim 5$ keV. The right bottom panels show the XRT and BAT light curves and the peak energy evolution. These are fitted self-consistently with the parameters evolving as shown in the left bottom panels.

of these two events is only slightly larger than what measured from their γ–ray spectra while their peak energy is considerably (a factor 10–20) smaller.

(2) Selection effects: It has been argued that different samples of BATSE bursts, without a redshift measure, are inconsistent with the $E_p - E_{iso}$ correlation for any distance they might be located at (Nakar & Piran 2005, Band & Preece. 2005, Kaneko et al. 2006).

We note that: I) the updates of the $E_p - E_{iso}$ correlation (Ghirlanda 2004, Lamb 2004, Amati 2006 and the present paper - figure 1), i.e. from 12 to 49 events, show
Figure 3. **Top panel**: spectral evolution of GRB 980425. The data are from *Beppo*SAX (WFC: 2–28 keV and GRBM: 40–700 keV adapted from Frontera et al. 2000). The model fits (lines) are obtained with the same model used for GRB 060218 by simultaneously fitting the light curves and the available spectra of GRB 980425. **Bottom panel**: spectral evolution of GRB 031203. In this case the late time spectrum should produce a considerable flux in the X-ray band to be consistent with the observed evolution of its dust scattering halo (Tiengo & Mereghetti 2006).

that all bursts with measured z and spectral properties do follow this relation (i.e. the outliers are still only 2 bursts); II) a test (Ghirlanda et al. 2005), performed with 442 GRBs for which only a pseudo redshift estimate is available (from the Lag–Luminosity correlation - Norris, Marani & Bonnel 2000), has confirmed that these bursts still define a correlation in the $E_p - E_{iso}$ plane. This correlation has a similar slope and a different normalization (but only a slightly larger scatter) with respect to the correlation defined with the GRBs with spectroscopically measured redshifts. On the other hand, Nakar & Piran 2005, Band & Preece 2005 were unable to argue that more than a small fraction of that only a small fraction of GRBs are inconsistent with the $E_p - E_\gamma$ correlation. Therefore, if we assume that the $E_p - E_\gamma$ correlation is true we can derive from a given E_γ its isotropic
Figure 4. Left panel: jet opening angle distribution of 21 GRBs with measured z and t_{break} (dashed line). The opening angle distribution of the large sample of 442 GRBs with pseudo-z measured from the Lag–Luminosity correlation (Band, Norris & Bonnell 2004) is shown (solid line histogram) together with its log–normal fit (solid line – with $\langle \theta_{\text{jet}} \rangle \sim 6$ deg). Right panel: the $E_p - E_{\text{iso}} - t_{\text{break}}$ correlation. The best fit is $E_{\text{iso}} = 1.12 \pm 0.11 (E_p/295\text{keV})^{1.93 \pm 0.17} \cdot (t'_{\text{jet}}/0.51d)^{-1.08 \pm 0.17}$, where primed quantities are in the source rest frame.

(3) Model dependence of the $E_p - \gamma$ correlation. The $E_p - \gamma$ correlation is derived in the standard uniform jet scenario assuming a constant radiative efficiency and a circumburst medium density profile. Although the present afterglow observations do not allow to distinguish between the homogeneous or the wind density circum–burst scenario, the properties of the $E_p - \gamma$ correlation (small scatter and linear slope) derived in the WM case are appealing (Nava et al. 2006) also for the improvement of the cosmological constraints (Ghirlanda et al. 2006). However, the model dependence of this correlation still represents one of its main weak points. Liang & Zhang (2005) discovered a completely empirical correlation $E_{\text{iso}} \propto E_p^{2.1} t_{\text{break}}^{-1}$ (figure 4 - Nava et al. 2006). Through this correlation it is possible to derive cosmological constraints which are consistent with those obtained with the two (HM and WM) model dependent $E_p - \gamma$ correlations. It has been demonstrated (Nava et al. 2006) that the $E_p - E_{\text{iso}} - t_{\text{break}}$ correlation is fully consistent.
Figure 5. Left panel: the $L_{\text{iso}} - E_p - T_{0.45}$ correlation defined with the most updated sample of GRBs with firmly measured spectral properties and light curves (from Firmani et al. 2006). The solid line is the best fit to this correlation, i.e.
\[
L_{\text{iso}} = 10^{52.11 \pm 0.95} (E_p/234.4\text{ keV})^{1.62 \pm 0.08} (T_{0.45}/2.88\text{ s})^{-0.49 \pm 0.07}.
\]
Right panel: the cosmological constraints on the $\Omega_M-\Omega_\Lambda$ plane obtained with the Legacy SNIa sample (green line) and combining these with 19 GRBs (solid filled contours). Only the 68\% confidence contours are shown.

with the two model dependent correlations and this strengthen the possibility to use GRBs as standard candles.

One of the main still open issues related to the $E_p - E_\gamma$ and $E_p - E_{\text{iso}} - t_{\text{break}}$ correlations is the fact that they require the measure of the afterglow jet break time t_{break}. While most of the jet breaks of the “gold” sample of 21 bursts used to define these correlations are derived from the optical afterglow light curves, there is growing evidence that several Swift bursts do not show a break in their X-ray and optical light curves when it should be expected according to these correlations.

Although the lack of jet break times is still an open issue to be investigated, the use of GRBs as standard candles has been definitely confirmed by the recent discovery of a new correlation which is not affected by this problems. Firmani et al. (2006) found that there is a very tight correlation between the GRB isotropic luminosities L_{iso}, the peak energy E_p and a characteristic timescale of the prompt emission light curve $T_{0.45}$ (figure 5). The latter parameter was originally defined to compute the GRB variability (Reichart et al. 2001) which is indeed correlated with the GRB luminosity. This new $L_{\text{iso}} - E_p - T_{0.45}$ correlation, being model independent and assumptions-free, solves the previous problems. Moreover, the cosmological constraints derived with this correlation, though still based on a small sample of GRBs, are tighter than those obtained with the $E_p - E_\gamma$ correlations.
Figure 6. Prompt emission spectrum of GRB 990123 time–averaged over its duration: BATSE/CGRO data (black points) and WFC/BeppoSAX data (green points). Solid blue line is the best fit with the non–thermal Band empirical model. The fit of the BATSE data alone with the mixed model (i.e. black body + powerlaw) is good (solid red line) but the resulting powerlaw component is inconsistent with the WFC data. Note also that the WFC and BATSE (low energy) data are consistent with a single powerlaw \(EF(E) \propto E^{1.15}\), which excludes the possibility that it is the self absorbed synchrotron emission) extending from 2 keV to few hundred keV. Solid orange lines are the model fits with the mixed black body + powerlaw model to the time resolved spectra covering the duration of the burst. Their sum is represented by the dot–dashed red line.

(Firmani et al. 2006a). The larger redshift extension of GRBs with respect to SNIa and the fact that the \(L_{\text{iso}} - E_p - T_{0.45}\) correlation is based only on prompt emission properties (i.e. related to the detection of the GRB prompt emission in the \(\gamma\)–ray band) makes GRBs a new cosmological tool complementary to SNIa. By adding 19 GRB to the sample of 115 SNIa (Astier et al. 2005) the constraints on the \(\Omega_{M,\Lambda}\) (as well as on the parameters describing the dark energy equation of state - Firmani et al. 2006a) are considerably improved (figure 5) and show that GRBs and SNIa seem to prefer the \(\Lambda CDM\) model.
4) Thermal components in GRB spectra and the interpretation of the $E_p - E_{iso}$, $E_p - E_{\gamma}$, $L_{iso} - E_p - T_{0.45}$ correlations. Among the proposed interpretations of the above correlations (Levinson & Eichler 2005, Toma et al. 2005) Rees & Meszaros (2005) suggested that a thermal black body spectrum is the most natural way to link the peak spectral energy and the total luminosity of GRBs as shown by the $E_p - E_{iso}$ correlation (see also Thompson 2006; Thompson, Meszaros & Rees 2006). This “thermal” interpretation requires that the prompt emission spectrum of GRBs is dominated by a thermal black body which determines the peak of the νF_ν spectrum. Thermal emission is expected in the standard “hot” fireball model (Goodman 1986): it is the initial black body which survived to the conversion (during the opaque–acceleration phase) into bulk kinetic energy. An alternative scenario (Rees & Meszaros 2005) proposes that the thermal photons are created by dissipation below the GRB photosphere.

Evidences of the presence of a thermal black body component were discovered in the BATSE spectra (Ghirlanda, Celotti & Ghisellini 2003; Ryde 2004) although this component dominated the initial phase of ~ 2 sec of the prompt emission. During this phase it was shown that the luminosity and the temperature evolve similarly in different GRBs while the late time spectrum is dominated by a non thermal component (e.g. fitted with the empirical Band et al (1993) model). Attempts to deconvolve these spectra with a mixed model, i.e. a thermal black body and a non thermal powerlaw (Ryde et al. 2005), showed that the presence of the black body component (with a monotonically decreasing flux) could be extended to the late prompt emission phase (see also Bosnjak et al. 2005).

In order to test the applicability of the thermal interpretation to the $E_p - E_{iso}$, $E_p - E_{\gamma}$, $L_{iso} - E_p - T_{0.45}$ correlations, we have been verifying if a thermal component can be fitted to the spectra of the bursts that are used to define these correlations (Ghirlanda et al. 2007). Ryde et al. 2005 showed that the mixed model fits to the time resolved spectra of GRBs is almost equivalent to a fit with a non thermal model “a la Band”. We therefore selected the 10 GRBs on the $E_p - E_{iso}$ correlation detected by BATSE: these data allow to analyze the spectral evolution with adequate spectral resolution. We succeeded in fitting a thermal black body component plus a powerlaw. In general (as also found by Ryde 2005 in few GRBs) the powerlaw component softens during the burst being (on average) $F(E) \propto E^{-0.5}$ at the very beginning. The black body also evolves in time and comprises at most $\sim 50\%$ of the total spectral flux. However, such a soft non-thermal powerlaw component should dominate the spectrum in the X–ray energy band. We found that in 5/10 GRBs there are also X-ray data from the BeppoSAX/WFC (2-28 keV) and in all these cases the data of the WFC are inconsistent with the extrapolation in the 2-28 keV band of the powerlaw fitted to the BATSE γ–ray data. Moreover the X–ray to γ–ray (WFC+BATSE) broad band spectrum is consistent with a single non–thermal fit (with the Band model) with a low energy spectral component much harder than the powerlaw of the mixed model. An example is shown in figure 6. These results represent a challenge to the presence of a dominating black body component in these bursts.
I am grateful to G. Ghisellini, C. Firmani, F. Tavecchio, A. Celotti, L. Nava, M. Nardini, Z. Bosnjak for years of fruitful collaboration. I am also grateful to M.L. & T. Smith for the valuable logistic support during my stay in London.

References

Amati L. et al. 2002, A&A, 390, 81
Amati L. 2006, A&A, 372, 233
Astier P. et al. 2006, A&A, 447, 31
Band D. L. et al. 1993, ApJ, 413, 281
Band D. L., Norris J. P. & Bonnel, J. T. 2004, ApJ, 613, 484
Band D. L. & Preece R. 2005, ApJ, 627, 319
Bosnjak Z., Celotti A., Ghirlanda G. 2005, MNRAS, 370, L33
Ghirlanda et al., 2007, in preparation
Campana S. et al. 2006, Nat., 442, 1008
Eichler D. & Levinson A. 2004, ApJ, 614, L13
Firmani C. et al. 2005, MNRAS, 360, L1
Firmani C. et al. 2006, MNRAS, 370, 185
Firmani C. et al. 2006a, MNRAS, 372, L28
Frail D. A., Kulkarni S. R. & Sari R. 2001, ApJ, 562, L55
Frontera F. et al. 2000, ApJS, 127, 59
Ghirlanda G., Celotti A. & Ghisellini G. 2003, A&A, 406, 879
Ghirlanda G., Ghisellini G. & Lazatti D. 2004, ApJ, 616, 331
Ghirlanda G. et al. 2004a, ApJ, 613, L13
Ghirlanda G., Ghisellini G. & Firmani C. 2005, MNRAS, 361, L10
Ghirlanda G. et al. 2005, MNRAS, 360, L45
Ghirlanda G. et al. 2006, A&A, 452, 839
Ghirlanda G., Ghisellini G. & Firmani C. 2006a, NJP, 8, 123
Ghisellini G., et al., 2006, MNRAS in press, astro-ph/0605431
Ghisellini G., Ghirlanda G. & Tavecchio F. 2006a, MNRAS submitted, astro-ph/0608555
Goodman, 1986, ApJ, 308, L47
Kaneko Y. et al., 2006, ApJS, 166, 298
Liang E. & Zhang B. 2005, ApJ, 633, 611
Lamb D. Q. et al. 2005, Preprint, astro-ph/0507362
Lamb D. Q., Donaghy T. Q. & Graziani C. 2004 NewAR, 48, 459
Nava L. et al., 2004, A&A, 450, 471
Nakar E. & Piran T. 2005, MNRAS, 360, L73
Norris J. P., Marani G. F. & Bonnel J. T. 2000, ApJ, 534, 248
Norris J. P., 2002, ApJ, 579, 386
Ramirez–Ruiz E., 2005, ApJ, 625, L91
Reichart D. et al. 2001, ApJ, 552, 57
Rees M. J. & Meszaros P. 2005, ApJ, 628, 847
Ryde F., 2004, ApJ, 614, 827
Ryde F. 2005, A&A, 429, 869
Soderberg A. et al., 2004, Nat., 430, 648
Sari R. 1999, ApJ, 524, L43
Thompson C., Meszaros P. & Rees M. J., 2006, ApJ submitted, astro-ph/0608282
Thompson C., 2006, ApJ in press, astro-ph/0507387
Tiengo A. & Mereghetti S., A&A, 449, 203
Toma K., Yamazaki R. & Nakamura T. 2005, ApJ, 635, 481

Article submitted to Royal Society