NOETHER-LEFSCHETZ FOR K_1 OF A SURFACE, REVISITED

XI CHEN AND JAMES D. LEWIS

Abstract. Let $Z \subset \mathbb{P}^3$ be a general surface of degree $d \geq 5$. Using a Lefschetz pencil argument, we give a elementary new proof of the vanishing of a regulator on $K_1(Z)$.

1. Statement of result

Let Z be a smooth quasiprojective variety over \mathbb{C}, and for given nonnegative integers k, m, let $\text{CH}^k(Z, m)$ be the higher Chow group as introduced in [Blo1]. In [Blo2], Bloch constructs a cycle class map into any suitable cohomology theory. In our setting, the corresponding map is:

$$\text{cl}_{k,m} : \text{CH}^k(Z, m) \to H^{2k-m}_D(Z, \mathbb{Q}(k)),$$

where $H^{2k-m}_D(Z, \mathbb{Q}(k))$ is Deligne-Beilinson cohomology, which fits in a short exact sequence

$$0 \to H^{2k-m-1}_F(Z, \mathbb{C}) \to H^{2k-m}_D(Z, \mathbb{Q}(k)) \to H^{2k-m}_F(Z, \mathbb{C}) \to 0.$$

Our primary interest is when Z is also complete, and $m = 1$. Thus one has the corresponding map:

$$\text{cl}_{k,1} : \text{CH}^k(Z, 1) \to \frac{H^{2k-2}(Z, \mathbb{C})}{F^k H^{2k-2}(Z, \mathbb{C}) + H^{2k-2}(Z, \mathbb{Q}(1)).}$$

Let $H_{g-1} := H^{2k-2}(Z, \mathbb{Q}(k-1)) \cap F^{k-1} H^{2k-2}(Z, \mathbb{C})$ be the Hodge group. Then one has an induced map

$$\text{cl}_{k,1} : \text{CH}^k(Z, 1) \to \frac{H^{2k-2}(Z, \mathbb{C})}{F^k H^{2k-2}(Z, \mathbb{C}) + H_{g-1}(Z) \otimes \mathbb{C} + H^{2k-2}(Z, \mathbb{Q}(1)).}$$

It is known that $\text{cl}_{k,1}$ is trivial for Z a sufficiently general complete intersection and of sufficiently high multidegree. This is a consequence of the

Date: December 13, 2002.

1991 Mathematics Subject Classification. 14C25, 14C30, 14C35.

Key words and phrases. Regulator, Deligne cohomology, Chow group.

First author partially supported by a startup grant from the University of Alberta.

Second author partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
work of Nori [No], together with a technique similar to that given in [G-S]. The argument is presented in [MS]. Further, it is noted in [MS], based on an effective bound in [Pa], that
\[
\text{cl}^2_1 : \text{CH}^2(Z, 1) \to H^2(Z, \mathbb{C}) + \text{H}^1(\mathbb{Z}) \otimes \mathbb{C} + H^2(Z, \mathbb{Q}(2))
\]
is trivial for sufficiently general surfaces $Z \subset \mathbb{P}^3$ of degree $d \geq 5$. The method of Nori involves passing to the universal family of complete intersections of a given multidegree, in a given projective space. A similar point of view appears in [Na]. In this paper, we give an elementary and direct proof of the triviality of cl^2_1 for a general surface $Z \subset \mathbb{P}^3$ of degree $d \geq 5$, by working with a Lefschetz pencil of degree $d \geq 5$ surfaces in \mathbb{P}^3. Thus our main theorem is an elementary new proof of the following:

Main Theorem. For a sufficiently general surface $Z \subset \mathbb{P}^3$ of degree $d \geq 5$, the map cl^2_1 is trivial.

We remark that the theorem is trivially true, without the generic hypothesis, if $\text{deg} Z \leq 3$, as $H^2(Z)$ is algebraic. From the works of Collino, Voisin, S. M"uller-Stach, et al, and more recently the authors [C-L], it is false if $\text{deg} Z = 4$. Since our method requires only a Lefschetz pencil as opposed to the universal family of surfaces of degree d in \mathbb{P}^3, and that it provides a rather simple proof of a counterexample of the Hodge-D-conjecture of Beilinson [Bei1], we believe that this approach has some merit. In particular, we believe that this argument is potentially useful in other settings.

2. **Some definitions**

1. **Deligne cohomology.** We assume that the reader is familiar with Deligne cohomology, such as can be found in [Bei] and [EV]. In the case of a smooth projective variety Z, and if we put $Q(j) = \mathbb{Q}(2\pi\sqrt{-1})^j$, one introduces the Deligne complex
\[
\mathbb{Q}(j)_D : \quad Q(j) \to O_Z \to \Omega^1_Z \to \cdots \to \Omega^{i-1}_Z,
\]
and defines $H^i_D(Z, Q(j)) := H^i(\mathbb{Q}(j)_D)$ (hypercohomology). This gives rise to a short exact sequence
\[
0 \to H^{i-1}(Z, \mathbb{C}) \to F^jH^{i-1}(Z, \mathbb{C}) + H^{i-1}(Z, Q(j)) \to H^i_D(Z, Q(j)) \to 0.
\]
A similar exact sequence holds quasiprojective Z that are not necessarily smooth.

2. **Higher Chow groups.** For a quasiprojective Z, the following abridged definition of $\text{CH}^k(Z, 1)$ will suffice [La] (cf. [MS]).
Definition. $\text{CH}^k(Z, 1)$ is the homology of the middle term in the complex

$$
\prod_{\text{cd}_2 Y = k-2} K_2(C(Y)) \xrightarrow{\text{Tame}} \prod_{\text{cd}_2 Y = k-1} K_1(C(Y)) \xrightarrow{\text{div}} \prod_{\text{cd}_2 Y = k} K_0(C(Y)),
$$

where we recall that $K_1(F) = F^\times$ and $K_0(F) = \mathbb{Z}$, for a field F, and Tame, div are respectively the Tame symbol and divisor maps.

Note: For the most part, we will identify $\text{CH}^k(-, m)$ with $\text{CH}^k(-, m) \otimes \mathbb{Q}$, unless there is a specific reason to work with $\text{CH}^k(-, m)$ (and in which case the interpretation will be clear).

(3) Horizontal displacement. Let $h : W \to S$ be a proper smooth morphism of quasiprojective varieties over \mathbb{C}, with smooth projective fiber $W_t := h^{-1}(t)$. Fix a reference point $t_0 \in S$ and consider a disk Δ centered at t_0. It is well known that there is a diffeomorphism $h^{-1}(\Delta) \approx \Delta \times W_{t_0}$. Thus for a cohomology class $\gamma := \gamma_{t_0} \in H^*(W_{t_0})$, one can talk about its horizontal displacement $\gamma_t \in H^*(W_t)$, for $t \in \Delta$ and more generally for $t \in S$. Consider the Hodge decomposition $H^*(W_t, \mathbb{C}) = \bigoplus_{p+q=\bullet} H^{p,q}(W_t)$, $\gamma_t = \bigoplus_{p+q=\bullet} \gamma_t^{p,q}$. We say that the Hodge (p, q) components deform horizontally if $\gamma_t^{p,q} = (\gamma^{p,q})_t$ for all $t \in \Delta$. By analytic considerations of Hodge subbundles, this is equivalent to saying that $\gamma_t^{p,q} = (\gamma^{p,q})_t$ for all $t \in S$.

3. Proof of the main theorem

Let $\{X_t\}_{t \in \mathbb{P}^1}$ be a Lefschetz pencil of surfaces of degree $d \geq 5$ in \mathbb{P}^3, i.e. the general fiber X_t is smooth, and each singular fiber has an ordinary double point singularity. We will think of this pencil in the form $X \subset \mathbb{P}^3 \times \mathbb{P}^1$, i.e. where X is the blowup of \mathbb{P}^3 along the base locus $\cap_{t \in \mathbb{P}^1} X_t$. Suppose that for a general $t \in \mathbb{P}^1$, the cycle class map $\text{cl}_{2,1} : \text{CH}^2(X_t, 1) \to H^3_D(X_t, \mathbb{Q}(2))$ is nontrivial. We can assume that X is defined over an algebraically closed field L of finite transcendence degree over \mathbb{Q}, i.e. $X/\mathbb{C} = X_L \times \mathbb{C}$. Let η be the generic point of \mathbb{P}^1_L. For some finite algebraic extension $K \supset L(\eta)$, and via a suitable embedding $K \hookrightarrow \mathbb{C}$, there is a class $\xi_K \in \text{CH}^2(X_K := X_\eta \times K, 1)$ such that $\text{cl}_{2,1}(\xi_K) \neq 0$ in $H^3_D(X_K(\mathbb{C}), \mathbb{Q}(2))$. [The situation here is not unlike that found in [Lew1], p. 191.] There is a smooth projective curve Γ_L with function field $L(\Gamma) = K$. Then after a base change $Y = X \times_{\mathbb{P}^1} \Gamma$, ξ_K defines a cycle in $\xi \in \text{CH}^2(Y_U, 1)$, where $U \subset \Gamma$ is a Zariski open subset of Γ and $Y_U = \sqcup_{t \in U} Y_t$. This uses the fact that

$$\text{CH}^2(X_K, 1) = \text{CH}^2(Y_{\bar{\eta}}, 1) = \lim_{\rightarrow U} \text{CH}^2(Y_U, 1),$$

where $Y_{\bar{\eta}}$ is the generic fiber of Y over Γ_L. We want to spread ξ to all of Γ. However, there is obstruction preventing us to do it; rather we can extend it after a suitable modification of ξ. That is, we will show that there exists
so there is obstruction to extend ξ projection π Q over ξ

Let us first extend (3.1) \(CH^2(1) = CH^1(Y_B) \to CH^2(Y) \to CH^2(Y_U) \to 0 \) over \(Q \), where \(B = \Gamma \setminus U \) and \(Y_B = \cup_{t \in B} Y_t \).

Note that the map \(CH^1(Y_B) \to CH^2(Y) \) might not be injective if \(|B| > 1 \), so there is obstruction to extend \(\xi \) directly.

Let \(H \) be a plane in \(\mathbb{P}^3 \) and \(\pi^*H \subset Y \) be the pullback of \(H \) under the projection \(\pi : Y \to \mathbb{P}^3 \). Let \(C_b = \pi^*H \cap Y_b \) for \(b \in B \) and \(C_B = \cup_{b \in B} C_b \).

Let us first extend \(\xi \) to \(Y \setminus C_B \). We look at the localization sequence

(3.2) \(CH^2(Y \setminus C_B, 1) \to CH^2(Y_U, 1) \to CH^1(Y_B \setminus C_B) \to CH^2(Y \setminus C_B) \)

Note that

(3.3) \(CH^1(Y_B \setminus C_B) = \bigoplus_{b \in B} CH^1(Y_b \setminus C_b) \)

We claim that \(CH^1(Y_t \setminus C_t) \otimes Q = 0 \) for every \(t \in \Gamma \).

The classical Noether-Lefschetz theorem tells us that a general surface of degree \(d \geq 4 \) in \(\mathbb{P}^3 \) has Picard rank 1. This statement was refined by Mark Green [4] to the following. Let \(M = \mathbb{P}^N \) be the space parameterizing surfaces of degree \(d \) in \(\mathbb{P}^3 \) and \(M_2 \subset M \) be the subset parameterizing surfaces with Picard rank \(\geq 2 \). Then \(\text{codim} M_2 = d - 3 \). So when \(d \geq 5 \), \(M_2 \) has codimension at least 2 in \(M \) and a general pencil will avoid this locus. Thus \(\text{Pic}(Y_t) \otimes Q = Q \) for every \(t \in \Gamma \). Note that \(Y_t \) might be singular, i.e., \(Y_t \) has an ordinary double point. Since an ordinary double point is a quotient singularity, every Weil divisor of \(Y_t \) is \(Q \)-Cartier. Therefore, \(CH^1(Y_t) \otimes Q = \text{Pic}(Y_t) \otimes Q \). In any case, we have

(3.4) \(CH^1(Y_t) \otimes Q = \text{Pic}(Y_t) \otimes Q = \text{Pic}(\mathbb{P}^3) \otimes Q = Q \).

Obviously, \(CH^1(Y_t) \) is generated by \(C_t = \pi^*H \cap Y_t \) over \(Q \). Consequently,

(3.5) \(CH^1(Y_t \setminus C_t) \otimes Q = 0 \)

and there is no obstruction to extend \(\xi \) to \(Y \setminus C_B \). So we may regard \(\xi \) as a class in \(CH^2(Y \setminus C_B, 1) \) from now on.

There might be obstruction to further extend \(\xi \) to all of \(Y \) by the localization sequence

(3.6) \(CH^2(Y, 1) \to CH^2(Y \setminus C_B, 1) \xrightarrow{\phi} CH^0(C_B) \xrightarrow{\gamma} CH^2(Y) \)

where

(3.7) \(CH^0(C_B) = \bigoplus_{b \in B} CH^0(C_b) = Q^{|B|} \)

with \(\beta = |B| \).

\(^1\)Strictly speaking, we don’t really need the localization sequence in this paper. Rather, it is used out of convenience.
Let $\xi = \sum_\alpha (f_\alpha, D_\alpha)$ where D_α is a divisor on $Y \setminus C_B$ and f_α is a rational function on D_α. We have
\begin{equation}
\sum_\alpha \text{div}(f_\alpha) = 0.
\end{equation}
Let $\overline{D_\alpha}$ be the closure of D_α in Y and f_α naturally extends to a rational function \overline{f}_α on $\overline{D_\alpha}$. Let $\bar{\xi} = \sum_\alpha (f_\alpha, \overline{D_\alpha})$. We no longer have (3.8). Instead,
\begin{equation}
\sum_\alpha \text{div}(\overline{f}_\alpha) = \sum_{b \in B} m_b C_b
\end{equation}
for some $m_b \in \mathbb{Z}$. Actually, the RHS of (3.9) is exactly the image of ξ under the map $\phi : \text{CH}^2(Y \setminus C_B, 1) \to \text{CH}^0(C_B)$ in (3.6), i.e.,
\begin{equation}
\phi(\xi) = \sum_{b \in B} m_b C_b.
\end{equation}
Note that $\phi(\xi)$ lies in the kernel of $\gamma : \text{CH}^0(C_B) \to \text{CH}^2(Y)$ and there is a natural map $\text{CH}^0(C_B) \to \text{CH}^1(\Gamma)$ via
\begin{equation}
\text{CH}^0(C_B) \to \text{CH}^2(Y) \to \text{CH}^3(\mathbb{P}^3 \times \Gamma) \to \text{CH}^1(\Gamma).
\end{equation}
Note that the map $\text{CH}^3(\mathbb{P}^3 \times \Gamma) \to [\mathbb{P}^1] \otimes \text{CH}^1(\Gamma) = \text{CH}^1(\Gamma)$, comes from the projective bundle formula. Of course, the map $\text{CH}^0(C_B) \to \text{CH}^1(\Gamma)$ simply sends C_b to Nb, where $N = d$. And $\phi(\xi)$ maps to zero under this map, i.e. the divisor $\sum m_b C_b$ is N-torsion in $\text{CH}^1(\Gamma) = \text{Pic}(\Gamma)$.

Note that $\pi^* H$ is a fibration of curves over Γ. So the fact $\sum m_b C_b$ is torsion in $\text{CH}^1(\Gamma)$ implies that $\sum m_b C_b$ is N-torsion in $\text{CH}^1(\pi^* H)$. Consequently, there exists a rational function f_H on $\pi^* H$ such that
\begin{equation}
\text{div}(f_H) = N \sum_{b \in B} m_b C_b.
\end{equation}
So we may simply modify $\bar{\xi}$ as follows
\begin{equation}
\xi' = \bar{\xi} - \frac{1}{N} (f_H, \pi^* H).
\end{equation}
Now $\xi' \in \text{CH}^2(Y, 1)$ and $\text{cl}_{2,1}(\xi'_t) = \text{cl}_{2,1}(\xi_t)$ for all $t \in U$, where we recall that
\begin{equation}
\text{cl}_{2,1} : \text{CH}^2(Y_t, 1) \to \frac{H^3_D(Y_t, \mathbb{Q}(2))}{H^1_G(Y_t) \otimes (\mathbb{C}/\mathbb{Q}(1))}
\end{equation}
is the induced map. This is due to the fact that the restrictions f_H to Y_t are obviously constants. Thus we can now replace ξ by ξ'. Next observe that even though Y is complete, it may be singular. It is worthwhile pointing out that we can further pull back ξ to a desingularization \tilde{Y} of Y. More precisely,

Claim. There exists $\tilde{\xi} \in \text{CH}^2(\tilde{Y}, 1)$ such that $\tilde{\xi}$ and ξ agree on the open set where \tilde{Y} and Y are isomorphic.
The usefulness of this claim is as follows. The (cohomological) cycle class map \(\text{cl}_{2,1} : \text{CH}^2(Y, 1) \to H^3_D(Y, \mathbb{Q}(2)) \) is only defined if \(Y \) is smooth. Granting the existence of this cycle class map, the remaining argument only requires the completeness of \(Y \). There is a short exact sequence:

\[
0 \to \frac{H^2(Y, \mathbb{C})}{F^2H^2(Y, \mathbb{C}) + H^2(Y, \mathbb{Q}(2))} \to H^3_D(Y, \mathbb{Q}(2)) \to F^2 \cap H^3(Y, \mathbb{Q}(2)) \to 0.
\]

But since \(Y \) is complete, a weight argument gives \(F^2 \cap H^3(Y, \mathbb{Q}(2)) = 0 \). Thus for \(t \in U \), \(\text{cl}_{2,1}^t(\xi_t) \) is given by the restriction \(\text{cl}_{2,1}^t(\xi) \big|_{Y_t} \), i.e., induced by the restriction

\[
\frac{H^2(Y, \mathbb{C})}{F^2H^2(Y, \mathbb{C}) + H^2(Y, \mathbb{Q}(2))} \to \frac{H^2(Y_t, \mathbb{C})}{F^2H^2(Y_t, \mathbb{C}) + H^2(Y_t, \mathbb{Q}(2))}.
\]

Thus as \(t \in U \) varies, the class \(\text{cl}_{2,1}^t(\xi_t) \) varies by horizontal displacement; further, the restriction \(H^2(Y) \to H^2(Y_t) \) is a morphism of mixed Hodge structures. Thus \(\text{cl}_{2,1}^t(\xi_t) \) is induced by a class in \(H^2(Y_t) \), whose Hodge \((p, q)\) components displace horizontally, i.e., preserving the given Hodge type. But over the set where \(\Gamma \to \mathbb{P}^1 \) ramifies, one can find open sets \(\Delta_\Gamma \subset U \subset \Gamma \), \(\Delta \subset \mathbb{P}^1 \), in the strong topology, such that \(\Delta_\Gamma \simeq \Delta \). Thus \(\text{cl}_{2,1}^t(\xi_t) = 0 \), by virtue of:

Lemma. Consider a Lefschetz pencil \(\{Z_t\}_{t \in \mathbb{P}^1} \) of surfaces in \(\mathbb{P}^3 \) of degree \(d \geq 1 \), and let \(U_0 \subset \mathbb{P}^1 \) be the smooth set. Further, let \(\Delta \subset U_0 \) be a disk, and assume given \(\gamma_1 \in H^2(Z_t, \mathbb{C}) \), a horizontal displacement of a class \(\gamma \) for \(t \in \Delta \). If the \((p, q)\) components of \(\gamma_t \) also horizontally displace, then \(\gamma_t \in H^1_{\text{lg}}(Z_t) \).

Proof. This follows from a standard monodromy argument, together with the analyticity of Hodge subbundles.

Finally, we attend to:

Proof of claim. It turns out that the singularities of \(Y \) are quite mild. Note that the singularities of \(Y \) are introduced during the base change \(\Gamma \to \mathbb{P}^1 \); \(Y \) becomes singular when the map \(\Gamma \to \mathbb{P}^1 \) ramifies over a point \(t \in \mathbb{P}^1 \) where \(X_t \) is singular, i.e., it has an ordinary double point. Therefore, the singularities of \(Y \) have the type of \(x^2 + y^2 + z^2 + t^m = 0 \). Let \(p \in Y \) be such a singularity. We may solve \(p \) by a sequence of blowups:

\[
Y = Y_\mu \xrightarrow{\varphi_\mu} Y_{\mu-1} \xrightarrow{\varphi_{\mu-1}} \ldots \xrightarrow{\varphi_1} Y_0 = Y
\]

where \(\mu = \lfloor m/2 \rfloor \). The exceptional divisor \(E_k \subset Y_k \) of \(\varphi_k \) is a quadric in \(\mathbb{P}^3 \); it is a cone over a conic curve if \(2k < m \) and it is a smooth quadric if \(m = 2k \). Let \(p_0 = p \) and \(p_k \in E_k \) be the vertex of the cone \(E_k \) for \(2k < m \). It is obvious that \(Y_k \) is locally given by \(x^2 + y^2 + z^2 + t^{m-2k} = 0 \) at \(p_k \) and \(\varphi_{k+1} : Y_{k+1} \to Y_k \) is the blowup of \(Y_k \) at \(p_k \).
In order to pull back ξ to \tilde{Y}, we do it step by step, i.e., we first pull it back to Y_1, then Y_2 and so on. We will show that there exists a sequence of cycles $\{\xi_k \in \text{CH}^2(Y_k, 1)\}$ with all of them agreeing on the open set $Y \setminus \{p\}$.

By induction, it suffices to pull back the cycle $\xi_{k-1} \in \text{CH}^2(Y_{k-1}, 1)$ to $\xi_k \in \text{CH}^2(Y_k, 1)$. Since $\varphi_k: Y_k \to Y_{k-1}$ is the blowup of Y_{k-1} at p_{k-1},

\[(3.15) \quad Y_k \setminus E_k \cong Y_{k-1} \setminus \{p_{k-1}\}.\]

So the question is again to extend a class in $\text{CH}^2(Y_k \setminus E_k, 1)$ to $\text{CH}^2(Y_k, 1)$. We look at the localization sequence

\[(3.16) \quad \text{CH}^2(Y_k, 1) \to \text{CH}^2(Y_k \setminus E_k, 1) \to \text{CH}^1(E_k) \to \text{CH}^2(Y_k) \]

If E_k is a cone over a conic curve, then $\text{CH}^1(E_k) = \mathbb{Q}$ (see [Ha, Appendix A, Example 1.1.2, p. 428]) and $\gamma: \text{CH}^1(E_k) \to \text{CH}^2(Y_k)$ is obviously injective.

Suppose that E_k is a smooth quadric. This happens in the last step of blowups, i.e., when $k = \mu$ and $m = 2\mu$ is even. Now

\[(3.17) \quad \text{CH}^1(E_k) = \text{CH}^1(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Q} \oplus \mathbb{Q}.\]

Let $L_1, L_2 \subset E_k$ be the two rulings of E_k which generate $\text{CH}^1(E_k)$. We claim that L_1 and L_2 are numerically independent on Y_k, i.e., there exist divisors $D_1, D_2 \subset Y_k$ such that $D_i \cdot L_j = 0$ if $i = j$ and $D_i \cdot L_j \neq 0$ if $i \neq j$. This certainly implies that γ is injective.

Note that Y_{k-1} has an ordinary double point $x^2 + y^2 + z^2 + t^2 = 0$ at p_{k-1}. It is well known that there exist two small resolutions of Y_{k-1}. That is, we may blow down Y_k along either of the two rulings L_1 and L_2. Let $g: Y_k \to Y'_k$ be the blowdown of Y_k along L_1. Let D be an ample divisor on Y'_k. Then $g^*D \cdot L_2 \neq 0$ since D is ample on Y'_k and $g^*D \cdot L_1 = 0$ since $g_*L_1 = 0$. We are done.

References

[Bei1] A. Beilinson, Higher regulators and values of L-functions, J. Soviet math. 30, 1985, 2036–2070.
[Bei2] Notes on absolute Hodge cohomology, In: Contemp. Math. 55, Part I, AMS, pp. 35-68 (1985).
[Blo1] S. Bloch, Algebraic cycles and higher K-theory, Adv. Math. 61, 1986, 267–304.
[Blo2] Algebraic cycles and the Beilinson conjectures, Cont. Math. 58 (1) (1986), 65–79.
[C-L] X. Chen and J. D. Lewis, Indecomposable K_1 and the Hodge-D-conjecture for $K3$ and Abelian surfaces. Preprint, Oct. 27, 2002.
[EV] H. Esnault and E. Viehweg, Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-Functions, (Rapoport, Schappacher, Schneider, eds.), Perspect. Math. 4, Academic Press, 1988, 43–91.
[G] M. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geometry, 27, (1988), 155–159.
[G-S] M. Green and S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety, Comp. Math. 100 (3), 305–309 (1996).
[Ha] Hartshorne R., Algebraic Geometry, Springer-Verlag, 1977.
[La] S. Landsberg, Relative Chow groups, *Ill. Jour. of Math.* **35**, (1991), 618–641.

[Leu] J. D. Lewis, A duality pairing between cohomology and higher Chow groups, *J. reine angew. Math.* **504**, (1998), 177–193.

[MS] S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, *J. Alg. Geom.* **6**, (1997), 513–543.

[Na] J. Nagel, Effective bounds for Hodge-theoretic connectivity, *J. Alg. Geom.* **11**, (2001), 1–32.

[No] M. Nori, Algebraic cycles and Hodge theoretic connectivity, *Invent. math.* **111**, (1993), 349–373.

[Pa] K. Paranjape, Cohomological and cycle theoretic connectivity, *Ann. of math.* **140**, (1994), 641–660.

632 Central Academic Building, University of Alberta, Edmonton, Alberta
T6G 2G1, CANADA

E-mail address: xichen@math.ualberta.ca

632 Central Academic Building, University of Alberta, Edmonton, Alberta
T6G 2G1, CANADA

E-mail address: lewisjd@gpu.srv.ualberta.ca