Structural evolution of a crustal-scale seismogenic fault in a magmatic arc: The Bolfin Fault Zone (Atacama Fault System)

Simone Masoch¹*, Rodrigo Gomila¹, Michele Fondriest², Erik Jensen³, Thomas Mitchell⁴, Giorgio Pennacchioni¹, José Cembrano⁵,⁶, Giulio Di Toro¹,⁷

*simone.masoch@phd.unipd.it

This research is under review on Tectonics. Preprint available at https://doi.org/10.1002/essoar.10506525.1

1. Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy.
2. Institute de Sciences de la Terre (ISTerre), Grenoble, France.
3. CIGIDEN, Santiago, Chile.
4. Department of Earth Sciences, University College London, London, United Kingdom.
5. Departamento de Ingeniería Estrucutural y Geotécnica, Pontificia Universidad Católica de Chile, Santiago, Chile.
6. Andean Geothermal Center of Excellence, Santiago, Chile.
7. Sezione di Tetttonofisica e Sismologia, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
Motivations and aims of the study

The geometry and evolution in space and time of seismogenic fault zones control main-shock earthquake ruptures and associated seismic sequence. However, the nucleation and evolution of seismogenic crustal-scale (i.e., 10s of km-long) faults is poorly known because exhumed crustal-scale faults are hardly exposed along their whole length at the Earth’s surface. In this study, we aimed at:

- investigating the *structural evolution* of a *crustal-scale* (i.e., 10s of km-long) *seismogenic fault* hosted in the continental crust;
- examining the influence of *precursory structures* on the *fault geometry* over the scale of a *crustal-scale fault*.

Methods

- Detailed geological field surveys along the >40-km-long seismogenic Bolfin Fault Zone (BFZ) of the Atacama Fault System (Atacama Desert, Northern Chile);
- Image analysis of satellite and drone images;
- Microstructural, mineralogical and geochemical investigations of host rocks and fault zone rocks.
The exhumed seismogenic Bolfin Fault Zone (BFZ)

- >40-km-long seismogenic, splay fault of the 1000-km-long sinistral, strike-slip Atacama Fault System (AFS)

- Mesozoic oblique subduction of the Phoenix oceanic plate

- Deformation along the AFS spatially and temporally associated with magmatism

- Exceptional outcrop exposures due to hyper-arid climate and slow erosion rates

Modified from Jaillard et al. (1990); Scheuber and Gonzalez (1999); Cembrano et al. (2005); Gomila et al. (2016)
Evidence of ancient seismic faulting ($T \leq 310 \, ^\circ C$ and 5-7 km depth)

- Pseudotachylyte injection vein
- Pseudotachylyte fault vein

Green protobreccia to cataclasite
(chlorite + epidote + albite + quartz + (Fe-)actinolite)

$20 \, \mu m$

Kfs+Pl microlites

Pl clast
The BFZ: northern & central segments

Seismic faulting exploited magmatic foliation of plutons

magmatic foliation
andesitic/tonalitic dykes
Chl-rich cataclasites
pseudotachylytes

Playa escondida
Sand Quarry
Quebrada Corta
Ni Miedo
Seismic faulting exploited magmatic foliation of plutons

Miocene continental deposits

BFZ fault core

Jurassic meta-diorites

150 m
The BFZ: fault linkage & southern segment

NW-striking splay and horsetail linkage faults
- Magmatic foliation
- Andesitic/tonalitic dykes
- Chl-rich cataclasites
- Pseudotachylytes

Seismic faulting exploited andesitic dykes
- Magmatic foliation
- Andesitic/tonalitic dykes
- Chl-rich cataclasites
- Pseudotachylytes

Fault Bend
Quebrada Larga
Seismic faulting exploited andesitic dykes
Structural evolution of the seismogenic Bolfin Fault Zone

Syn-to-late magmatic deformation

- $T > 700 \, ^\circ C$
- Depth $< 10 \, km$
- Diachronous plutons emplacement: development of magmatic foliations

Multiple dyke intrusion

- $310 \, ^\circ C < T < 700 \, ^\circ C$
- Depth \approx
- Emplacement of NW-SE and NE-SW dyke sets

Seismic faulting

- $T \leq 310 \, ^\circ C$
- Depth 5-7 km
- Formation of the Bolfin Fault Zone: chlorite-rich cataclasites and pseudotachylytes
Conceptual model of formation of the Bolfin Fault Zone

1: pre-faulting framework
2: fault nucleation
3: fault growth

1: emplacement of plutons and multiple dyke sets;
2: fault nucleation along precursory anisotropies favorably oriented with respect to the far-stress field;
3: fault growth through NW-SE splay and horsetail faults (hard linkage)
Conclusions

- The Bolfin Fault Zone was seismogenic, as attested by widespread occurrence of pseudotachylytes, and active at ambient temperatures of $\leq 310 ^\circ C$ and depths of 5-7 km in a fluid-rich environment.

- Seismic faulting exploited magmatic foliations and dykes well-oriented with respect to the subduction-related stress field.

- The sinuous geometry of the Bolfin Fault Zone results from hard linkage of anisotropy-pinned fault segments during fault growth.
References

Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., Herrera, V., 2005. Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics 400, 105–125.

Gomila, R., Arancibia, G., Mitchell, T.M., Cembrano, J.M., Faulkner, D.R., 2016. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system. Journal of Structural Geology 83, 103–120.

Jaillard, E., Soler, P., Carlier, G., Mourier, T., 1990. Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. Journal of the Geological Society 147(6), 1009–1022.

Scheuber, E., González, G., 1999. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of crustal deformation along a convergent plate boundary. Tectonics 18, 895–910.

Satellite images from https://earthexplorer.usgs.gov/