Localization of vasoactive intestinal peptide and toll-like receptor 2 immunoreactive cells in endostyle of urochordate *Styela plicata* (Lesueur, 1823)

Alessio Alesci | **Simona Pergolizzi** | **Patrizia Lo Cascio** | **Gioele Capillo** | **Eugenia Rita Lauriano**

1Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
2Department of Veterinary Sciences, University of Messina, Messina, Italy
3Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), Spianata S. Raineri, Messina, Italy

Correspondence
Gioele Capillo, Department of Veterinary Sciences, University of Messina, Messina, Italy.
Email: gcapillo@unime.it

Review Editor: Alberto Diaspro

Abstract
The endostyle is the first component of the ascidian digestive tract, it is shaped like a through and is located in the pharynx's ventral wall. This organ is divided longitudinally into nine zones that are parallel to each other. Each zone's cells are physically and functionally distinct. Support elements are found in zones 1, 3, and 5, while mucoproteins secreting elements related to the filtering function are found in zones 2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the endostyle, include cells with high iodine and peroxidase concentrations. Immunohistochemical technique using the following antibodies, Toll-like receptor 2 (TLR-2) and vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA—wheat-germ agglutinin), were used in this investigation to define immune cells in the endostyle of *Styela plicata* (Lesueur, 1823). Our results demonstrate the presence of immune cells in the endostyle of *S. plicata*, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates.

Research highlights
- Immune cells positive to TLR-2 and VIP in the endostyle of *Styela plicata*.
- Expression of WGA in several zones of endostyle.
- Use of comparative biology to improve the knowledge about immunology in ascidians.

KEYWORDS
endostyle, immune cells, *Styela plicata*, TLR2, VIP, WGA

1 | INTRODUCTION

The ascidians, also known as tunicates because of the characteristic tunic covering the whole organism, are marine invertebrates classified among the urochordates. These animals may be pelagic or sessile. *Styela plicata* (Lesueur, 1823) is a solitary benthic ascidian that represents a valid model of evolutionary study (Lauriano et al., 2021).

The endostyle, the initial part of the ascidian digestive tract, has a trough shape and is placed in the ventral wall of the pharynx. This organ plays an important immune function (Giacomelli et al., 2012) and is subdivided into nine different zones longitudinally parallel to...
each other (Hiruta et al., 2006). The cells of each zone are morphologically and functionally specialized (Aros & Viragh, 1969; Fujita & Nanba, 1971; Osugi et al., 2020) (Figure 1).

Zones 1, 3, and 5 contain support elements, zones 2, 4, and 6 present mucoproteins secreting elements associated with the filtering function. Zones 7, 8, and 9, located in the lateral dorsal portion of the endostyle, show cells with high concentrations of iodine and peroxidase (Fujita & Sawano, 1979; Thorpe et al., 1972) and are considered to be homologous to thyroid follicles (Fujita & Sawano, 1979). The expression of several thyroid-associated genes in these areas supports this homology (Ogasawara et al., 1999; Ogasawara & Satou, 2003; Ristoratore et al., 1999). The endostyle represents a key structure in the chordates evolution (Bone et al., 2003; Petersen, 2007). The mucus produced by zones 1 and 4 together with the galactins produced by zones 2 and 4 (Vizzini et al., 2015), creates a mesh that plays the role of filtering food and furthermore acts as a first barrier against microbes and pathogens, such as mammalian mucus produced by goblet cells in the gut (Flood & Fiala-Medioni, 1981; Petersen, 2007). In addition, the endostyle shows a defense immune function against foreign agents using the oral and atrial (cloacal) siphon as preferential entry routes of microorganisms. In zone 8 a population of phagocytes is exposed to seawater. These sentinel cells can recognize and ingest foreign cells, preventing them from entering the pharynx. (Sasaki et al., 2009).

This study aimed to characterize immune cells in the endostyle using Toll like receptor 2 (TLR-2) and vasoactive intestinal peptide (VIP) antibodies, and lectin histochemistry (WGA).

TLR-2 is an evolutionarily conserved recognition receptor (PRR) (Alesci et al., 2020; Alesci, Pergolizzi, et al., 2021), this receptor has been characterized in vertebrate several immune cells (Alesci, Pergolizzi, Capillo, et al., 2022; Alesci, Pergolizzi, Fumia, et al., 2022; Lauriano et al., 2014; Lauriano et al., 2018; Lauriano et al., 2019; Lauriano et al., 2020; Lauriano, Pergolizzi, et al., 2016; Marino et al., 2015; Marino et al., 2019) and also in the tunic of S. plicata (Lauriano et al., 2021).

VIP is a neuroimmune peptide present in different regions of the vertebrate intestine (Lauriano et al., 2017) and is also expressed in immune cells such as T and B cells, mast cells, and eosinophilic granulocytes (Alessio et al., 2020; Iwasaki et al., 2019). Neuropeptides are normally expressed in the mammalian digestive system, under physiological and pathological conditions (Pergolizzi et al., 2021). Several studies have shown the presence of neuropeptides, such as Neuropeptide Y, in S. plicata, produced by the hemocytes (Pestarino, 1992).

WGA is a haemagglutinating lectin present on phagocytic hemocytes (Cima et al., 2001), and morula cells (MCs), the predominant type of hemocytes (Ballarin & Cima, 2005). WGA lectin also stains modestly mucous cells and a brush-like boundary (Lauriano et al., 2017; Lauriano et al., 2019). Moreover, WGA is involved in innate immune response (Hillyer & Christensen, 2002; Jeong et al., 2002), collaborating with epithelial barriers in cellular defense, and cooperates with pattern-recognition receptors to stimulate pro-inflammatory signaling cascades in the innate immune system, playing a key role in the interaction with Toll-like receptors (TLRs) (Unitt & Hornigold, 2011).

2 | MATERIALS AND METHODS

2.1 | Animals

Samples of adult specimens of S. plicata used in this study were collected from the natural oriented reserve of “Capo Peloro” (Autorizzazione n.1138/A del March 15, 2021), precisely from Faro coastal lagoon (Messina, Italy) (D’Iglio et al., 2021; Sanfilippo et al., 2022; Savoca et al., 2020) and were subjected to usual procedures for preparation of durable samples for optical microscopy.
2.2 | Tissue preparation

Samples were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) 0.1 M (pH 7.4) for 12–18 h, dehydrated in graded ethanol, cleared in xylene, embedded in Paraplast® (McCormick Scientific LLC, St. Louis, MO). Finally, serial sections (3–5 μm thick) were obtained by a rotary microtome (LEICA 2065 Supercut) (Alesci et al., 2014; Icardo et al., 2015; Lauriano, Žuwała et al., 2016; Zaccone et al., 2015; Zaccone, Lauriano, et al., 2017).

2.3 | Histology and histochemistry

For light microscopic examination, serial sections were stained with May-Grünwald-Giemsa (04-081802 Bio-Optica Milano S.p.A) and Alcian Blue pH 2.5-PAS (04-163802 Bio-Optica Milano S.p.A) methods (Alesci et al., 2015; Simona Pergolizzi et al., 2022). The Lectin used was WGA HRP-conjugated (Sigma Chemicals Co. St. Louis, MO). Deparaffinized and rehydrated tissue sections were immersed in 3% H2O2 for 10 min to suppress the endogenous peroxidase activity, rinsed in 0.05 mol/L Tris–HCl buffered saline (TBS) pH 7.4, and incubated in lectin solution for 1 h at room temperature (RT). After rinsing thrice in TBS, the peroxidase activity was visualized by incubation in a solution containing 0.05% 3,3-diaminobenzidine (DAB) and 0.003% H2O2 in 0.05 mol/L TBS (pH 7.6) for 10 min at RT before dehydration and mounting.

2.4 | Immunoperoxidase method

Immunohistochemical techniques, testing TLR-2, VIP, and WGA with a light microscope for observation. Sections were incubated overnight in a humid chamber with the following antibodies: TLR2 (Toll-like Receptor 2 Antibody, product by Active Motif, La Hulpe, Belgium, Europe, 1:125) and VIP (Vasoactive intestinal polypeptide, product in rabbit by Sigma-Aldrich, St. Louis, MO). Deparaffinized and rehydrated tissue sections were immersed in 3% H2O2 for 10 min to suppress the endogenous peroxidase activity, rinsed in 0.05 mol/L Tris–HCl buffered saline (TBS) pH 7.4, and incubated in lectin solution for 1 h at room temperature (RT). After rinsing thrice in TBS, the peroxidase activity was visualized by incubation in a solution containing 0.05% 3,3-diaminobenzidine (DAB) and 0.003% H2O2 in 0.05 mol/L TBS (pH 7.6) for 10 min at RT before dehydration and mounting.

For each sample, 5 sections and 10 fields were investigated to generate data for statistical analysis. Subjectively, the fields were chosen based on the cell’s positivity reaction. The ImageJ software was used to examine each field (Schneider et al., 2012). After converting the acquired image to 8 bits, a “Threshold” filter and a mask were used to pick cells and remove the background. The cells were then counted using the “Analyze particles” plug-in. ANOVA was used to determine the statistical significance of the positive cells number respectively for TLR2, VIP, and WGA. SigmaPlot version 14.0 was used to perform statistical analyses (Systat Software, San Jose, CA). The information gathered was reported as median values with a SD (Δs). To compare regularly distributed data, two-tailed t tests were utilized, and Mann-Whitney rank-sum tests were used to analyze non-normally distributed data. Values of p below .05 were judged statistically significant in this order: *p ≤ .01, **p ≤ .02, ***p ≤ .03, ****p ≤ .04, *****p ≤ .05.

3 | RESULTS

The transverse histological sections by May-Grünwald-Giemsa showed endostyle zone from 1 to 9 (Figure 2a). Alcian Blue/PAS pH 2.5 stained Goblet cells in the 2,4 and 6 endostyle zone. These cells showed a positive reaction to different types of neutral (magenta) and acid (blue) mucopolysaccharides (Alesci et al., 2015). The Alcian-blue reaction strongly labeled the apical membrane of the goblet cells (Figure 2b). We have previously documented the presence of TLR-2 in the tunica of S. plicata (Lauriano et al., 2021). The TLR2 immunohistochemistry demonstrated, labeled scattered immunocytes, in the tissues surrounding the endostyle; furthermore, TLR-2 marked numerous cells of some zones of endostyle with thyroidal and peroxi-
dase activities (zone 5 and 8); the immune cells are often organized in strongly reactive clusters (Figure 3a). The antibody VIP showed many marked immune cells in zones 3, 6, 7, 8, and 9 (Figure 3b). WGA Lectin histochemistry stained intensely a lot of positive cells localized in endostyle zone 8 and 9, and slightly marked mucous cells in zones 5 and 6 (Figure 3c). Our results showed that cells of 5, 7, and 8 endo-
style zone, together with the hemocytes, playing a role in the immune response of ascidians (Table 1).

Statistical analysis confirms a significant number of positive cells for TLR2, VIP, and WGA in the endostyle zones, especially in the 6 and 8 zones (Table 2, Figure 4).

4 | DISCUSSION

The immune response is mediated by circulating effector cells. Hemo-
cytes, or immunocytes, include professional phagocytes (Franchi et al., 2011; Jimenez-Merino et al., 2019) and cytotoxic hemocytes, able to induce oxidative stress (Ballarin & Cima, 2005). These cyto-
toxic cells contain phenoxidase (PO) (POCCs) and have a berry-like morphology, called morula cells (MCs), and account for more than 50% of circulating hemocytes (Cammarata et al., 2008; Parrinello et al., 2003). Cytochemical analyses have shown high levels of poly-
phenols in the vacuoles of these cells. These phenolic compounds play a key role in the cytotoxicity of these hemocytes and act as substrates for POs. Polyphenols are compounds with antibacterial, anti-inflam-
matory, antioxidant, and immunostimulant activity (Alesci, Aragona, et al., 2021; Alesci, Fumia, et al., 2021; Alesci, Lauriano, Fumia,
Several studies have shown that an ethanol or methanol extract of ascidian has antibacterial, antimicrobial, anti-inflammatory, and antioxidant activity, assuming that these phenolic compounds are involved in the immune response of tunicates (Asayesh et al., 2021; Carletti et al., 2020; Elya & Edawati, 2018).

In the present study, we have marked endostyle zones cells of S. plicata with anti-TLR2 and anti-VIP polyclonal antibodies; furthermore, we have stained the Goblet cells with WGA lectin histochemistry.

The endostyle of the tunicates is a long glandular grooving extending medially to the ventral surface of the gill sac along its anterior and posterior axis formed by nine distinct anatomical zones, immersed in the blood flow through the subendostylar and endostylar sinuses.
Zones 2, 4, and 6 within it produce mucus, as shown by our data with AB/PAS staining. The ascidian hemocytes involved in immune responses (immunocytes) represent the largest fraction of circulating hemocytes (Franchi & Ballarin, 2017). They include phagocytes and cytotoxic cells. At the molecular level TLR1 is expressed in both phagocytes and MCs as a member of the TLR receptor family, actively involved in self/nonself recognition (Goldstein et al., 2021; Peronato et al., 2020). The oral and atrial (cloacal) siphon are preferential entry routes for microorganisms. In zone 8 a population of phagocytes is exposed to seawater. These sentinel cells can recognize and ingest foreign cells, preventing them from entering the pharynx (Sasaki et al., 2009). In the endostyle, as well as in the immunocytes, genes for the Toll-like and mannose-binding lectin receptors (MBLs) are transcribed, following the important role of immunosurveillance of the food tract (Franchi & Ballarin, 2017).

Our results show a marked positivity to TLR-2 in zones 5 and 8 and in circulating immune cells. Ascidia immunocytes can synthesize and secrete humoral lectins involved in the recognition of foreign molecules and modulation of immune responses (Vasta et al., 2001). They improve the phagocytosis of microorganisms and modulate the behavior of other immune cells. WGA interacts with immune cells by activating their cytotoxic properties and inducing humoral response (Balicinaitë-Murzienė & Dzikaras, 2021). In addition, WGA induces an inflammatory response in vertebrates by stimulating the secretion of pro-inflammatory cytokines, TNF-α, IL-1β, IL-12, and IFN-γ (de Punder & Pruimboom, 2013). Our results show WGA-positive cells in 5, 6, 8, and 9 zone and cells of the endostyle lining epithelium, confirming its involvement in immunity. VIP, in addition to being a neurotransmitter/neuromodulator of the central and peripheral nervous system, is also found to play a role in the immune system in lymphoid tissues associated with the mucosa of the gastrointestinal tract (Bains et al., 2019). This neuropeptide regulates gastric acid secretion, intestinal peristalsis, and mucus secretion by mucous cells (Lelievre et al., 2007). VIP was found in several portions of the digestive tract.

TABLE 1 Summary scheme of the obtained results

Endostyle zone	Mucosal cells	TLR2-positive cells	VIP-positive cells	WGA-positive cells
1				
2	✓			
3				
4	✓			
5	✓	✓	✓	
6	✓	✓	✓	✓
7				
8	✓	✓	✓	✓
9		✓	✓	✓

Note: Zone 8, showing positivity for all the antibodies and lectin, confirms endostyle role in immunity defense of ascidians.

TABLE 2 Statistical analysis results

	TLR2-positive cells	VIP-positive cells	WGA-positive cells
Number of positive cells (±Δs)	133 ± 40.06*	287 ± 34.68**	230 ± 33.00*

Note: Δs = SD. *p ≤ .01, **p ≤ .02.
of S. plicata (esophagus, stomach, and intestine) (Pestarino, 1982) but not in the pharynx. We have characterized VIP in ascidian endostyle for the first time, showing labeled immune cells in zones 3, 6, 7, 8, and 9. Zone 8 of the endostyle contains TLR-positive, VIP-positive, and WGA-positive cells, confirming that cell populations of this zone do play a role in the innate immunity of these animals.

5 | CONCLUSIONS

In conclusion, our results demonstrating the presence of immune cells in the endostyle of S. plicata, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates. TLR2 and VIP play in ascidians a key role in adaptive immune response, as in mammals. Therefore, this animal model allows the study of the cellular and molecular processes that orchestrate innate immune responses. This information can be translated into human immunity, with a particular impact on improving therapeutic strategies for stem cells, tissues, and organ transplantation. In addition, the immune defenses of tunicates have made them a potential source of natural drug resources with great potential for pharmacological applications.

ACKNOWLEDGMENTS

The authors are grateful to all the researchers whom we cited in this article for their significant and valuable research. Open Access Funding provided by Universita degli Studi di Messina within the CRUI-CARE Agreement.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, Eugenia Rita Lauriano; methodology, Alessio Alesci, Simona Pergolizzi, Patrizia Lo Cascio, Gioele Capillo, and Eugenia Rita Lauriano; formal analysis, Alessio Alesci; investigation, Alessio Alesci and Eugenia Rita Lauriano; resources, Alessio Alesci, Simona Pergolizzi, Patrizia Lo Cascio, Gioele Capillo, and Eugenia Rita Lauriano; data curation, Simona Pergolizzi, Patrizia Lo Cascio, and Gioele Capillo; writing—original draft preparation, Alessio Alesci; writing—review and editing, Alessio Alesci and Eugenia Rita Lauriano; visualization, Alessio Alesci and Gioele Capillo; supervision, Eugenia Rita Lauriano All authors have read and agreed to the published version of the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Gioele Capillo https://orcid.org/0000-0002-2002-1138

REFERENCES

Alesci, A., Aragona, M., Cicero, N., & Lauriano, E. R. (2021). Can nutraceuticals assist treatment and improve covid-19 symptoms? Natural Product Research, 1-20, 1-20. https://doi.org/10.1080/14786419.2021.1914032

Alesci, A., Cicero, N., Salvo, A., Palombieri, D., Zacecone, D., Dugo, G., Bruno, M., Vadala, R., Lauriano, E. R., & Pergolizzi, S. (2014). Extracts deriving from olive mill waste water and their effects on the liver of the goldfish Carassius auratus fed with hypercholesterolemic diet. Natural Product Research, 28(17), 1343–1349. https://doi.org/10.1080/14786419.2014.903479

Alesci, A., Fumia, A., Lo Cascio, P., Miller, A., & Cicero, N. (2021). Immunosuppressant and antidepressant effect of natural compounds in the Management of Covid-19 symptoms. Journal of the American College of Nutrition, 1-15, 1-15. https://doi.org/10.1080/07315724.2021.1965503

Alesci, A., Lauriano, E. R., Aragona, M., Capillo, G., & Pergolizzi, S. (2020). Marking vertebrates longerhans cells, from fish to mammals. Acta Histochemica, 122(7), 151622. https://doi.org/10.1016/j.acthis.2020.151622

Alesci, A., Lauriano, E. R., Fumia, A., Irrera, N., Mastrantonio, E., Vaccaro, M., Gangemi, S., Santini, A., Cicero, N., & Pergolizzi, S. (2022). Relationship between immune cells, depression, stress, and psooriasis: Could the use of natural products be helpful? Molecules, 27(6), 1953. https://doi.org/10.3390/molecules27061953

Alesci, A., Miller, A., Tardugno, R., & Pergolizzi, S. (2021). Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Natural Product Research, 1-14. https://doi.org/10.1080/14786419.2021.1922404

Alesci, A., Nicosia, N., Fumia, A., Giorgianni, F., Santini, A., & Cicero, N. (2022). Resveratrol and immune cells: A link to improve human health. Molecules, 27(2), 1-12. https://doi.org/10.3390/molecules27020424

Alesci, A., Pergolizzi, S., Capillo, G., Lo Cascio, P., & Lauriano, E. R. (2022). Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochemica, 124(3), 1–12. https://doi.org/10.1016/j.acthis.2022.151876

Alesci, A., Pergolizzi, S., Fumia, A., Calabrò, C., Lo Cascio, P., & Lauriano, E. R. (2022). Mast cells in goldfish (Carassius auratus) gut: Immunohistochemical characterization. Acta Zoologica, 1-14. https://doi.org/10.1111/azo.124147

Alesci, A., Pergolizzi, S., Lo Cascio, P., Fumia, A., & Lauriano, E. R. (2021). Neuronal regeneration: Vertebrates comparative overview and new perspectives for neurodegenerative diseases. Acta Zoologica, 103, 129–140. https://doi.org/10.1111/azo.12297

Alesci, A., Salvo, A., Lauriano, E. R., Gervasi, T., Palombieri, D., Bruno, M., Pergolizzi, S., & Cicero, N. (2015). Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Natural Product Research, 29(12), 1122–1126. https://doi.org/10.1080/14786419.2014.979417

Alessio, A., Pergolizzi, S., Gervasi, T., Aragona, M., Lo Cascio, P., Cicero, N., & Lauriano, E. R. (2020). Biological effect of astaxanthin on alcohol-induced gut damage in Carassius auratus used as experimental model. Natural Product Research, 1-7, 5737–5743. https://doi.org/10.1080/14786419.2020.1830396

Aros, B., & Viragh, S. (1969). Fine structure of the pharynx and endostyle of an ascidian (Ciona intestinalis). Acta Biologica Academiae Scientiarum Hungaricae, 20(3), 281–297.

Asayesh, G., Mohebbi, G. H., Nabipour, I., Rezaei, A., & VaziriZadeh, A. (2021). Secondary metabolites from the marine tunicate “Phallusia nigra” and some biological activities. Biology Bulletin, 48(3), 263–273. https://doi.org/10.1134/s1062539021030031

Bains, M., Lane, C., Wolfe, A. E., Orr, M., Waschek, J. A., Ericsson, A. C., & Dorsam, G. P. (2019). Vasoactive intestinal peptide deficiency is associated with altered gut microbiota communities in male and female C57BL/6 mice. Frontiers in Microbiology, 10, 2689. https://doi.org/10.3389/fmicb.2019.02689

Balčiūnienė–Murzienė, G., & Dzikaras, M. (2021). Wheat germ agglutinin—From toxicity to biomedical applications. Applied Sciences, 11(2), 1–10. https://doi.org/10.3390/app11020884
Rosental, B., Raveh, T., Voskoboynik, A., & Weissman, I. L. (2020). Evolutionary perspective on the hematopoietic system through a colonial chordate: Allogeneic immunity and hematopoiesis. Current Opinion in Immunology, 62, 91–98. https://doi.org/10.1016/j.coi.2019.12.006

Santilippo, M., Albano, M., Manganaro, A., Capillo, G., Spanò, N., & Savoca, S. (2022). Spatiotemporal organic carbon distribution in the capo Peloro lagoon (Sicily, Italy) in relation to environmentally sustainable approaches. Water, 14(1), 1–14. https://doi.org/10.3390/w14010108

Sasaki, N., Ogasawara, M., Sekiguchi, T., Kusumoto, S., & Satake, H. (2009). Toll-like receptors of the ascidian Ciona intestinalis: Prototypes with hybrid functionalities of vertebrate toll-like receptors. The Journal of Biological Chemistry, 284(40), 27336–27343. https://doi.org/10.1074/jbc.M109.032433

Savoca, S., Grifò, G., Panarello, G., Albano, M., Giacobbe, S., Capillo, G., Spanò, N., & Consolo, G. (2020). Modelling prey-predator interactions in Messina beachrock pools. Ecological Modelling, 434, 109206. https://doi.org/10.1016/j.ecolmodel.2020.109206

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to Image: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Thorpe, A., Thorndyke, M. C., & Barrington, E. J. (1972). Ultrastructural and histochemical features of the endostyle of the ascidian Ciona intestinalis with special reference to the distribution of bound iodine. General and Comparative Endocrinology, 19(3), 559–571. https://doi.org/10.1016/0016-6480(72)90125-0

Uniti, J., & Horningold, D. (2011). Plant lectins are novel toll-like receptor agonists. Biochemical Pharmacology, 81(11), 1324–1328. https://doi.org/10.1016/j.bcp.2011.03.010

Vasta, G. R., Quesenberry, M. S., Ahmed, H., & O'Leary, N. (2001). Lectins from tunicles: Structure-function relationships in innate immunity. Advances in Experimental Medicine and Biology, 484, 275–287. https://doi.org/10.1007/978-1-4615-1291-2_26

Vizzini, A., Parrinello, D., Sanfratello, M. A., Trapani, M. R., Mangano, V., Parrinello, N., & Cammarata, M. (2015). Upregulated transcription of phenoloxidase genes in the pharynx and endostyle of Ciona intestinalis in response to LPS. Journal of Invertebrate Pathology, 126, 6–11. https://doi.org/10.1016/j.jip.2015.01.009

Zacccone, D., Icardo, J. M., Kuciel, M., Alesci, A., Pergolizzi, S., Satora, L., Lauriano, E. R., & Zacccone, G. (2017). Polymorphous granular cells in the lung of the primitive fish, the bichirPolypterus senegalus. Acta Zoologica, 98(1), 13–19. https://doi.org/10.1002/jemt.24119

Zacccone, G., Lauriano, E. R., Kuciel, M., Capillo, G., Pergolizzi, S., Alesci, A., Ishimatsu, A., Ip Y., K., & Icardo, J. M. (2017). Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri. Zoology (Jena, Germany), 125, 41–52. https://doi.org/10.1016/j.zool.2017.08.002

Zacccone, G., Lauriano, E. R., Silvestri, G., Kenaley, C., Icardo, J. M., Pergolizzi, S., Alesci, A., Sengar, M., Kuciel, M., & Gopesh, A. (2015). Comparative neurochemical features of the innervation patterns of the gut of the basal actinopterygian, Lepisosteus oculatus, and the euteleost, Clarias batrachus. Zoology, 119(2), 115–125. https://doi.org/10.1111/zoj.12059

How to cite this article: Alesci, A., Pergolizzi, S., Lo Cascio, P., Capillo, G., & Lauriano, E. R. (2022). Localization of vasoactive intestinal peptide and toll-like receptor 2 immunoreactive cells in endostyle of urochordate Styela plicata (Lesueur, 1823). Microscopy Research and Technique, 85(7), 2651–2658. https://doi.org/10.1002/jemt.24119