Post-traumatic cervical pseudomeningocele: A case report

Fatima Zahrae Laamrani, Mohamed Lahkim, Ouidad Azdad, Charaf Tilfine, Laila Jroundi

ABSTRACT

Introduction: The traumatic lesions of the brachial plexus mainly are due to stretching, tearing, bruising, or direct sores accentuated by a hematoma or the presence of a foreign body. Stretching of the brachial plexus can lead to avulsion and/or pseudomeningocele.

Case Report: It is a case of a 12-year-old child who was admitted to the emergency room after a public road accident for the management of an open arm fracture, for which he received stabilization by screw plate fixation. Evolution was marked with anesthesia in the area of the musculocutaneous nerve. Magnetic resonance imaging (MRI) showed a left C7 pseudomeningocele with root avulsion. The patient underwent surgery but unfortunately did not recover his neurological deficit. Late electroneuromyography (ENMG) showed distal nerve damages which can explain the failure of surgery. Conclusion: If MRI distinguishes a preganglionic lesion from proximal postganglionic involvement, it ignores distal lesions. Electroneuromyography and MRI are therefore complementary in the determination of the reversibility or not of lesions of the brachial plexus and in the choice of the most appropriate treatment.

INTRODUCTION

The traumatic lesions of the brachial plexus mainly are due to stretching, tearing, bruising, or direct sores accentuated by a hematoma or the presence of a foreign body. Stretching of the brachial plexus can lead to avulsion and/or pseudomeningocele.

CASE REPORT

It is a case of a 12-year-old child with no significant pathological history. He was admitted to the emergency room after a public road accident for the management of an open arm fracture, for which he received a stabilization by screw plate fixation. One month later, the patient reconsidered the surgeon for persistent sensory disturbances of the upper member. Clinical examination showed anesthesia in the area of the musculocutaneous nerve without associated motor deficit. Since the cervical scan did not show abnormalities, an MRI of the cervical spine was performed to complete the lesional assessment (Figure 1A and B).

Cervical MRI showed a very limited cystic lesion with a C7/D1 foraminous topography, homogeneous, well-defined, communicating with the subarachnoid spaces.
associated with an avulsion of the C7 roots suggesting a pseudomeningocele. There was no fracture or anomaly of the medullary signal.

Microsurgical sutures were performed and duraplasty was performed with synthetic graft. In the postoperative period, symptoms did not resolve. An ENMG was lately indicated, and showed distal nerve damage explaining failure of surgery.

DISCUSSION

The traumatic lesions of the brachial plexus mainly concern young adults aged between 20 and 30 years, mostly following motorcycle accidents. They are due to stretching, tearing, bruising, or direct sores accentuated by a hematoma or the presence of a foreign body. Stretching of the brachial plexus can lead to avulsion and/or pseudomeningocele. This type of trauma is often associated with other vascular lesions or fractures, which can aggravate the prognosis and delay treatment [1, 2]. Pseudomeningocele are associated to avulsion in about 80% of cases [3].

Clinically, pseudomeningocele is generally asymptomatic but may be associated to spinal hernia within meningocele. Radicular involvement can lead to a definitive neurological deficit and to total paralysis of the limb [4, 5].

The progress of restorative microsurgery requires a precise and rapid diagnosis of the pre- and/or postganglionic localization of the lesion. This assessment was long based on the long-term ENMG, which does not confirm a coexisting avulsion with a severe postganglionic lesion [6]. Myelogram CT scan is currently replaced by MRI. Indeed, MRI with myelo MRI sequence allows the simultaneous evaluation of roots, trunks, and bundles, and to appreciate the existence of a myelopathy, as well as the state of the muscles thanks to its high spatial resolution [7].

In addition to the usual MRI sequences [T2 and short-TI inversion recovery (STIR)], the use of 3D FIESTA (GE)/CISS (SIEMENS) may be useful for the analysis of root abnormalities thanks to its excellent signal-to-

noise ratio. On the other hand, although MRI is the most sensitive imaging method for detecting trunk and bundle lesions, it does not yet allow the differentiation between edema (potentially reversible lesion) and demyelization (Irreversible in the acute phase). Moreover, it does not allow, contrary to the ENMG, to appreciate and to locate very distal lesions of the plexus [8].

If MRI distinguishes a preganglionic lesion from proximal postganglionic involvement, it ignores distal lesions. The association of ENMG and MRI allows defining the site and the lesional mechanism [8, 9]. Electroneuromyography and MRI are therefore complementary in the determination of the reversibility or not of lesions of the brachial plexus and in the choice of the most appropriate treatment [8, 9].

Pseudomeningoceles can be surgically treated and the radiologist has an important role in guiding the surgeon to the site of injury.

Postganglionic injuries have a favorable prognosis due to persistence of anterior horn cells in the spinal cord. Therefore, if continuity is established with surgery then chance of recovery can be improved [10].

Repair of the dural fistula is performed first, while nerve transplants represent a promising avenue for correcting nerve impulses in the future [11]. Late diagnosis of distal nerve lesions can explain failure of surgery in our patient. Late complications may occur, such as spinal cord herniation into pseudomeningocele. It is an extremely rare complication, poorly documented, that should be considered in the differential diagnosis of patients presenting with delayed myelopathy or Brown–Sequard syndrome [12].

CONCLUSION

If MRI distinguishes a preganglionic lesion from proximal postganglionic involvement, it ignores distal lesions. Electroneuromyography and MRI are therefore complementary in the determination of the reversibility or not of lesions of the brachial plexus and in the choice of the most appropriate treatment.

REFERENCES

1. Rankine JJ. Adult traumatic brachial plexus injury. Clin Radiol 2004;59(9):767–74.
2. Sasaki KK, Phisitkul P, Boyd JL, Marsh JL, El-Khoury GY. Lumbosacral nerve root avulsions: MR imaging demonstration of acute abnormalities. AJNR Am J Neuroradiol 2006;27(9):1944–6.
3. Gasparotti R, Ferraresi S, Pinelli L, et al. Three-dimensional MRI myelography of traumatic injuries of the brachial plexus. AJNR Am J Neuroradiol 1997;18(9):1733–42.
4. Moses JE, Bansal SK, Goyal D. Herniation of spinal cord into nerve root avulsion pseudomeningocele: A rare cause of delayed progressive neurological deficit. Indian J Radiol Imaging 2013;23(3):205–7.
5. Yokota H, Yokoyama K, Noguchi H, Uchiyama Y. Spinal cord herniation into associated pseudomeningocele after brachial plexus avulsion injury: Case report. Neurosurgery 2007;60(1):E205

6. Wilbourn AJ, Aminoff MJ. AAEM minimonograph 32: The electrodiagnostic examination in patients with radiculopathies. American Association of Electrodiagnostic Medicine. Muscle Nerve 1998;21(12):1612–31.

7. Nagano A, Ochiai N, Sugioaka H, Hara T, Tsuyama N. Usefulness of myelography in brachial plexus injuries. J Hand Surg Br 1989;14(1):59–64.

8. Yoshikawa T, Hayashi N, Yamamoto S, et al. Brachial plexus injury: Clinical manifestations, conventional imaging findings, and the latest imaging techniques. Radiographics 2006;26 Suppl 1:S133–43.

9. Vargas MI, Beaulieu J, Magistris MR, Della Santa D, Delavelle J. Clinical findings, electroneuromyography and MRI in trauma of the brachial plexus. [Article in French]. J Neuroradiol 2007;34(4):236–42.

10. Karalija A, Novikova LN, Oräd G, Wiberg M, Novikov LN. Differentiation of pre- and postganglionic nerve injury using MRI of the spinal cord. PLoS One 2016;11(12):e0168807.

11. Thatte MR, Bahulkar S, Hiremath A. Brachial plexus injury in adults: Diagnosis and surgical treatment strategies. Ann Indian Acad Neurol 2013;16(1):26–33.

12. Tanaka M, Ikuma H, Nakamishi K, et al. Spinal cord herniation into pseudomeningocele after traumatic nerve root avulsion: Case report and review of the literature. Eur Spine J 2008;17(Suppl 2):S263–6.

Author Contributions

Fatima Zahrae Laamrani – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Mohamed Lahkim – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Ouidad Azdad – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None.

Consent Statement
Written informed consent was obtained from the patient for publication of this article.

Conflict of Interest
Authors declare no conflict of interest.

Data Availability
All relevant data are within the paper and its Supporting Information files.

Copyright
© 2020 Fatima Zahrae Laamrani et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
