Caveolar fatty acids and acylation of caveolin-1

Qian Cai
University of Kentucky

Ling Guo
University of Kentucky, ling.guo@uky.edu

Haiqing Gao
Shandong University, China

Xiang-An Li
University of Kentucky, xli2@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/pediatrics_facpub

Part of the Pediatrics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Cai, Qian; Guo, Ling; Gao, Haiqing; and Li, Xiang-An, "Caveolar fatty acids and acylation of caveolin-1"
(2013). *Pediatrics Faculty Publications*. 1.
https://uknowledge.uky.edu/pediatrics_facpub/1

This Article is brought to you for free and open access by the Pediatrics at UKnowledge. It has been accepted for inclusion in Pediatrics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Caveolar fatty acids and acylation of caveolin-1

Digital Object Identifier (DOI)
http://dx.doi.org/doi:10.1371/journal.pone.0060884

Notes/Citation Information
Published in PLoS ONE, v. 8, no. 4, e60884.

© 2013 Cai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Caveolae are cholesterol and sphingomyelin-rich plasma membrane microdomains presented in most types of mammalian cells and tissues.[1–5] Caveolae were originally identified as 50–100 nm flask-shaped, non-clathrin-coated invagination of the plasma membrane and found to be involved in endocytosis [6] and potocytosis [7]. However, later studies revealed that these microdomains concentrate a variety of signaling molecules which provide a platform for signal transduction.[8–12] Thus, changes in the components of caveolae may have a profound effect on cellular functions. Caveolin-1, a 22-kDa protein, is the principal structural component of caveolae and a determinant for caveolae formation [13,14]. A deficiency of caveolin-1 in mice eliminated caveolae, which subsequently impaired nitric oxide and calcium signaling in the cardiovascular system, causing aberrations in endothelium-dependent relaxation, contractility, and maintenance of myogenic tone [15,16].

In addition to cholesterol and sphingomyelin, caveolae also contain a variety of fatty acids. While it is generally believed that covalent attachment of myristic and/or palmitic acid occurs on a wide variety of cellular proteins and the acylation of protein is critical for membrane targeting [17], the fatty acid compositions of caveolae, the fatty acids bound to caveolin-1, and the effect of acylation of caveolin-1 on caveolin-1 targeting to caveolae remain poorly understood. In this study, we used gas chromatography/mass spectrometry (GC/MS) to identify and quantify the fatty acid compositions of caveolae and fatty acids covalently bound to caveolin-1 in Chinese hamster ovary (CHO) cells, a cell system with high caveolin-1 expression. Our results revealed that caveolae contain a limited subset of fatty acids, highly enriched with saturated fatty acids, which is quite different from the fatty acid compositions in whole cells. We further demonstrated that the primary fatty acid associated with caveolin-1 is stearic acid, not myristic acid as previously speculated.

Materials and Methods

Materials

Bovine serum albumin (BSA, fatty acid free) and general chemical reagents were obtained from Sigma. BF3 reagent, mixture of standard fatty acids and Omegawax 250 capillary column were from Sigma/Supelco. Ham’s F-12 medium and fetal bovine serum (FBS) were from Invitrogen. Opti-Prep was from Life Technologies. The protein A-Sepharose beads were from GE...
Preparation of Whole Cell Lysate

Chinese hamster ovary (CHO) cells were cultured in Ham’s F-12 medium containing 5% FBS, 2 mmol/L L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin to 90% confluency in 10 cm culture dish. The cells were washed 5 times with 10 ml of cold PBS and dissolved in 1 ml of MBST/OG (25 mM MES, 150 mM NaCl, 1% Triton-100, 60 mM octylglucopyranoside, pH 6.7) for 30 min on ice.

Preparation of Caveolae

Caveolae, cytosol, plasma membrane, internal membranes and post nuclear supernatant fractions were isolated using a widely used Opti-Prep method as described previously [18]. This detergent-free method generates a highly purified fraction of caveolae that is enriched in caveolin-1 and free of bulk plasma membrane markers.

Quantification of Fatty Acids Associated with Caveolin-1

The CHO cell lysates were incubated with anti-caveolin-1 IgG for 18 h at 4°C and then protein A beads for an additional 2 h at 4°C. The beads were collected by centrifugation, washed five times in high salt buffer (500 mM NaCl). For quantification of fatty acids, the beads were incubated with 1M NaOH overnight, and then neutralized by 1M HCl, extracted with Folch reagent and analyzed by GC/MS. Non-immune rabbit IgG was used as a negative control.

Quantification of Fatty Acids with GC/MS

Quantification of fatty acids was conducted as we previously described [19]. Briefly, the lipids in samples were extracted with Folch/BHT reagent [20] and lower phase of the extract was added to extract as an internal standard. Tissue total lipids were methyl esterified with BF3/Methanol (10%). The fatty acid methyl ester was analyzed using a gas chromatography system, Agilent 6890 GC G2579A system (Agilent Palo Alto, CA) equipped with an Omegawax 250 capillary column. An Agilent 5973 mass selective detector was used to quantify fatty acids. Methanol (10%). The fatty acid methyl ester was analyzed using a gas chromatography system, Agilent 6890 GC G2579A system (Agilent Palo Alto, CA) equipped with an Omegawax 250 capillary column. An Agilent 5973 mass selective detector was used to quantify fatty acids.

Western Blot

Western blot was performed as described previously [21].

Characterization of Fatty Acid Esterification of Caveolin-1

CHO cells were cultured in Ham’s F-12 medium containing 5% FBS, 2 mmol/L L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin to 80% confluency in 10 cm culture dish. The cells were starved 18 h in Ham’s F-12 medium containing 1% BSA and then labeled with 2.5 μCi of 3H-palmitic acid or 25 μCi of 13C-stearic acid for 3 h at 37°C in the presence/absence of 30 times of non-labeled palmitic acid (16:0), stearic acid (18:0) or oleic acid (18:1). The cells were dissolved in MBST/OG buffer and immunoprecipitated with anti-caveolin-1/protein A. Non-immune rabbit IgG was used as negative control. The immunoprecipitated caveolin-1 was separated by SDS-PAGE and transferred to PVDF membrane. The fatty acid esterification of caveolin-1 was detected by autoradiogram at −80°C for 6 weeks using a Kodak MS film.

Results

GC/MS is a powerful tool for qualitative and quantitative analysis of fatty acids. Here, we selected Omegawax 250 capillary column and tested its efficiency in fatty acid separation using a mixture of standard fatty acid methyl esters. As shown in Figure 1, GC/MS with Omegawax 250 column separated all the fatty acids presented in animal tissue. The measurement of fatty acid methyl esters was of high sensitivity, up to 40 pg of trioscanoic methyl ester, and had a wide linear range, up to 10 ng (Figure 1, inner figure).

We employed CHO cells to study the fatty acid compositions of caveolae and fatty acids associated with caveolin-1. First, we measured the fatty acids in CHO cells. The CHO cells were cultured in Ham’s F-12 medium to 90% confluency. Total fatty acids were extracted and analyzed with GC/MS (Figure 2C). CHO cells contained a variety of fatty acids, including both saturated and unsaturated fatty acids (Figure 3C). Of all these fatty acids, oleic acid (C18:1, 307±18.4 μg/5×10^7 cells) accounted for the greatest part as high as 59.5%, followed by palmitic acid (C16:0, 91.8±9.5 μg/5×10^7 cells; 17.8%), stearic acid (C18:0, 51.8±10.2 μg/5×10^7 cells; 10%), gadoleic acid (C20:1, 22.5±1.4 μg/5×10^7 cells; 4.4%), palmitoleic acid (C16:1, 18.7±1.1 μg/5×10^7 cells; 3.6%), arachidonic acid (C20:4, 14.8±1.8 μg/5×10^7 cells; 2.9%) and myristic acid (C14:0, 9.0±1.4 μg/5×10^7 cells; 1.7%).

Then we isolated caveolae from CHO cells by using Opti-Prep method [22]. We isolated post nuclear supernatant (PNS), cytosol (Cyto), internal membrane (IM), plasma membrane (PM) and caveolae (CM) fractions. Western blot analysis of the subcellular fractions showed that caveolin-1 was highly enriched in CM fraction, indicating successful isolation of caveolae (Figure 2D).

We found that caveolae contain a limited subset of total fatty acids in cells, mainly palmitic acid (C16:0, 0.48±0.06 μg/5×10^7 cells; 24%), stearic acid (C18:0, 0.61±0.07 μg/5×10^7 cells; 30%) and oleic acid (C18:1, 0.83±0.21 μg/5×10^7 cells; 40%) (Figure 3B).

Next, we isolated caveolin-1 by immunoprecipitation and quantified fatty acids bound to caveolin-1. Western blot analysis indicated that caveolin-1 was completely immunoprecipitated by anti-Caveolin-1 IgG (Figure 2E), but not by non-immune rabbit IgG (data not shown), indicating successful isolation of caveolin-1. It is generally believed that plasma membrane proteins are acylated by myristic acid and/or by palmitic acid [17]. Surprisingly, we found that the primary fatty acid associated with caveolin-1 is stearic acid. About 60% of the associated fatty acids is stearic acid (C18:0, 0.23±0.06 μg/5×10^7 cells) and 40% of the associated fatty acids is palmitic acid (C16:0, 0.15±0.01 μg/5×10^7 cells) (Figure 3A). No myristic acid was found to be associated with caveolin-1. Of note, oleic acid was found to be the most abundant fatty acid in caveolae but it was not detected in caveolin-1 bound fraction (Figures 2 and 3). MS identified a number of peaks as non-fatty acid contaminant, which were marked as “con” on Figure 2A.

To further characterize the fatty acids bound to caveolin-1, we utilized radioisotope labeled fatty acids. CHO cells were cultured in Ham’s F-12 medium to 80% confluency and starved for 18 h. Then the cells were labeled with 2.5 μCi of 3H-palmitic acid or 25 μCi of 13C-stearic acid for 3 h at 37°C in the presence/absence of 30 times of non-labeled palmitic acid (C16:0), stearic acid (C18:0) or oleic acid (C18:1). In cells labeled with 3H-palmitic acid, we detected 3H-palmitic acid bound to caveolin-1, indicating that palmitic acid binds to caveolin-1 directly (Figure 4). In the

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60884
presence of excessive amount of non-labeled palmitic acid, non-labeled palmitic acid effectively blocked the binding of \(^{3}H\)-palmitic acid to caveolin-1. Excessive amount of non-labeled stearic acid also effectively blocked the binding of \(^{3}H\)-palmitic acid to caveolin-1. However, excessive amount of non-labeled oleic acid only moderately blocked the binding of \(^{3}H\)-palmitic acid to caveolin-1. Likewise, in the cells labeled with \(^{14}C\)-stearic acid, we detected \(^{14}C\)-stearic acid bound to caveolin-1, indicating that stearic acid binds to caveolin-1 directly. Excessive amount of non-labeled stearic acid could effectively inhibit the binding of \(^{14}C\)-stearic acid to caveolin-1. Excessive amount of non-labeled oleic acid or palmitic acid blocked the binding of \(^{14}C\)-stearic acid to caveolin-1 but with much less efficiency compared to stearic acid. These data demonstrated that palmitic acid and stearic acid are the main fatty acids binding to caveolin-1.

Acylation of protein has been shown to affect the subcellular targeting of the protein [17]. To test whether acylation of caveolin-1 affects caveolin-1 subcellular location, we cultured CHO cells in the presence/absence of palmitic acid or stearic acid. As shown in Figure 5, the targeting of caveolin-1 to caveolae was not affected by the presence of palmitic acid or stearic acid.

Discussion

GC/MS offers high chromatographic resolution, wide linear range, high sensitivity, and excellent reproducibility [19]. In this study, we employed GC/MS with a polar column to quantify fatty acids in caveolae and associated with caveolin-1. We found that caveolae contain a limited subset of the fatty acids in cells, including palmitic acid, stearic acid and oleic acid. Unexpectedly, we found that caveolin-1 is acylated by stearic acid and palmitic acid, not by myristic acid, and the acylation of caveolin-1 does not affect caveolin-1 targeting to caveolae.

Based on the character that caveolae are insoluble in detergent Triton x-100, Gafencu et al. isolated caveolae from aortic endothelial cells and measured the fatty acid compositions of caveolae with gas chromatography [23]. The authors found that there are significant increases in the ratios of palmitic acid, stearic acid and oleic acid in caveolae. Using MCF7 cells (a breast cancer
Hout et al also observed significant increases in the ratios of palmitic acid, stearic acid and oleic acid in caveolae [24]. However, both studies did not quantify the absolute amount of fatty acid in caveolae. In this study, we used the Opti-Prep method to isolate caveolae and quantify the amount of fatty acid in caveolae in CHO cells using tricosanoic acid as an internal standard. Opti-Prep is a detergent-free method which can isolate highly purified caveolae [18]. We found that caveolae indeed contained high levels of palmitic acid, stearic acid and oleic acid. Thus evidence from three different types of cells and two independent approaches pointed out that caveolae are enriched with saturated fatty acids compared to the fatty acid compositions in whole cells and the enrichment of saturated fatty acids in caveolae is likely a character of caveolae, regardless of cell types.

Acylation of protein has been demonstrated to be a principal posttranslational modification of protein, which plays a pivotal role in protein subcellular targeting and cellular function [17]. For example, palmitoylation and myristoylation can both influence the localization of eNOS to caveolae [25,26]. To determine the acylation of caveolin-1, we purified caveolin-1 by immunoprecipitation of caveolin-1. The CHO cell lysates were immunoprecipitated with anti-caveolin-1 IgG/protein A-Sepharose beads and detected by Western blot using antibody against caveolin-1. The experiments were repeated three times with triplicate measurements. Quantitative analysis of the data is shown in Figure 3.

doi:10.1371/journal.pone.0060884.g002

Figure 2. Quantification of fatty acids bound to caveolin-1, associated with caveolae, and present in CHO cells. The CHO cells were cultured in Ham’s F-12 medium to 90% confluency. After washed with PBS, they were dissolved in MBST/OG on ice. Post nuclear supernatant (PNS), cytosol (Cyto), internal membranes (IM), plasma membrane (PM), and caveolae (CM) were isolated with Opti-Prep method. Total fatty acids were extracted from each sample with Folch reagent, methyl esterified with BF3, and then subjected to GC/MS equipped with Omegawax 250 capillary column. Fatty acids bound to caveolin-1 (A), associated with caveolae (B), and present in CHO cells (C) were identified by MS. (D) Isolation of caveolae from CHO cells. Subcellular fractions were isolated with Opti-Prep method and subjected to Western blot using antibody against caveolin-1. (E) Immunoprecipitation of caveolin-1. The CHO cell lysates were immunoprecipitated with anti-caveolin-1 IgG/protein A-Sepharose beads and detected by Western blot using antibody against caveolin-1. The experiments were repeated three times with triplicate measurements. Quantitative analysis of the data is shown in Figure 3.

doi:10.1371/journal.pone.0060884.g002
We unexpectedly found that caveolin-1 is acylated by stearic acid and palmitic acid, not by myristic acid. To the best of our knowledge, this was the first direct characterization and quantification of fatty acid associated with caveolin-1.

To further characterize the acylation of caveolin-1, we utilized 3H-palmitic acid and 14C-stearic acid combined with competitive inhibition by non-labeled fatty acids. We found that acylation of caveolin-1 by 3H-palmitic acid is effectively inhibited by non-labeled palmitic acid or stearic acid. However, acylation of caveolin-1 by 14C-stearic acid is only effectively inhibited by non-labeled stearic acid, but not by palmitic acid. These findings indicate that some of the acylation sites on caveolin-1 can only be acylated by stearic acid. Although we did not detect any existing oleic acid binding to caveolin-1 by GC/MS, we found that non-labeled oleic acid moderately inhibits 14C-stearic acid and 3H-palmitic acid binding to caveolin-1. We speculate that oleic acid may hinder the binding of stearic acid and palmitic acid to caveolin-1.

As acylation of protein has been shown to affect the subcellular targeting of the protein [17]. We tested whether acylation of caveolin-1 by stearic acid or palmitic acid affects caveolin-1 subcellular location. We did not observe an effect of stearic acid or palmitic acid on the targeting of caveolin-1 to caveolae. This is in agreement with an early report showing that palmitoylation of caveolin-1 is not required for caveolae targeting [27]. However, available evidence indicates that acylation of caveolin-1 is critical for the function of caveolin-1. Utilizing acylation site mutant

![Figure 3](https://example.com/figure3.png)

Figure 3. Quantification of fatty acids bound to caveolin-1, associated with caveolae, and present in CHO cells. The CHO cells were cultured in Ham’s F-12 medium to 90% confluency. Caveolae were isolated with Opti-Prep method and caveolin-1 was purified by immunoprecipitation. Total fatty acids were extracted from each sample with Folch reagent, methyl esterified with BF3, and then subjected to GC/MS equipped with Omegawax 250 capillary column. Fatty acids bound to caveolin-1 (A), associated with caveolae (B), and present in CHO cells (C) were quantified with FID. The experiments were repeated three times with triplicate measurements. Data are presented as Mean ± SD. doi:10.1371/journal.pone.0060884.g003

![Figure 4](https://example.com/figure4.png)

Figure 4. Acylation of caveolin-1. CHO cells were cultured in Ham’s F-12 complete medium to 80% confluency. The cells were starved and then labeled with 2.5 µCi of 3H-palmitic acid or 25 µCi of 14C-stearic acid for 3 h at 37°C in the presence/absence of 30 times of non-labeled palmitic acid (C16:0), palmitic acid (C18:0) or oleic acid (C18:1). The cells were harvested in MBST/OG buffer and immunاليابان語-1 IgG/protein A. The immunoprecipitated caveolin-1 was separated by SDS-PAGE, transferred to a membrane and the fatty acid associated with caveolin-1 was detected with autoradiogram. The experiments were repeated three times, and representative data are shown. doi:10.1371/journal.pone.0060884.g004

![Figure 5](https://example.com/figure5.png)

Figure 5. Effect of fatty acids on caveolin-1 subcellular location. CHO cells were cultured in Ham’s F-12 complete medium to 80% confluency. The cells were culture for 24 h with Ham’s F-12 containing 20% FBS, 1% BSA (fatty acid free), 1% BSA plus 200 µg/ml palmitic acid or 1% BSA plus 200 µg/ml stearic acid. The subcellular fractions were isolated with Opti-Prep method and subjected to Western blot using antibody against caveolin-1. The experiments were repeated two times and representative data are shown. doi:10.1371/journal.pone.0060884.g005
caveolin-1 (C133S, C143S, and C156S), Galbiati et al demonstrated that lack of acylation, caveolin-1 was unable to bind with G-protein Gi1α in caveolae [20]; Lee et al showed that palmitoylation of caveolin-1 at a single site (C156) is required for coupling caveolin-1 to the c-Src tyrosine kinase, which is critical for phosphorylation of caveolin-1 [29].

In summary, our study demonstrates that caveolae contain a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 is acylated by palmitic acid and stearic acid.

The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

Author Contributions
Conceived and designed the experiments: HG X-AL. Performed the experiments: QC LG. Analyzed the data: QC. Wrote the paper: QC X-AL.

References

1. Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2: 120.
2. Palade GE (1953) Fine structure of blood capillaries. Journal of Applied Physics 24: 1424.
3. Palade GE, (1961) Blood capillaries of the heart and other organs. Circulation 24: 360–384.
4. Palade GE (1968) Structural modulation of plasmalemmal vesicles. Journal of Cell Biology 37: 633–649.
5. Yamada E (1953) The fine structure of the gall bladder epithelium of the mouse. Journal of Biophysical Biochemical and Cytology 1: 445–458.
6. Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fusion of caveolae directly from plasma membranes [published erratum appears in Science 1996 Nov 15;274(5290): 1069]. Science 274: 239–242.
7. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 253: 410–411.
8. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signaling. Nat Rev Neurosci 8: 129–140.
9. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8: 185–194.
10. Insel PA, Patel HH (2009) Membrane rafts and caveolae in cardiovascular signaling. Curr Opin Nephrol Hypertens 18: 50–56.
11. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48: 359–391.
12. Li XA, Everson WW, Smart EJ (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 15: 92–96.
13. Jin Y, Lee SJ, Minshall RD, Choi AM (2011) Caveolin-1: a critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol 300: L151–160.
14. Rothberg KG, Brauer JE, Donzell WC, Ying YS, Glennen JR, et al. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.
15. Drab M, Verkade P, Elger M, Kasper M, Lohn M, et al. (2001) Loss of caveolae, caveolin, and caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121: 3747–3755.
16. Dietzen D, Hastings W, Lublin D (1995) Caveolin is palmitoylated on multiple cysteine residues; palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270: 6838–6842.
17. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451: 1–16.
18. Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A 92: 10104–10108.
19. Liu J, Sabaev NS, Bhatnagar S, Li XA, Pujol A, et al. (2010) ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat. J Lipid Res 51: 162–168.
20. Folch J, Lees M, Stanley GS (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. Journal of Biological Chemistry 226: 497–509.
21. Li XA, Guo L, Assim R, Nikolova-Karakashian M, Smart EJ (2006) Scavenger receptor BI prevents nitric oxide-induced cytotoxicity and endotoxin-induced death. Circ Res 98: e60–65.
22. Winterhogard A, Ying Y, Smart EJ (1998) Characterization of a cytosolic heat-shock protein-protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 273: 6525–6532.
23. Gafencu A, Stanescu M, Toderici AM, Heltianu C, Simionescu M (1998) Protein and fatty acid composition of caveolae from apical plasmalemma of aortic endothelial cells. Cell Tissue Res 293: 101–110.
24. Huot PS, Sarkar B, Ma DW (2010) Congjugated linoleic acid alters caveolae phospholipid fatty acid composition and decreases caveolin-1 expression in MCF-7 breast cancer cells. Nutr Res 30: 179–185.
25. Robinson IJ, Busconi L, Michel T (1995) Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem 270: 995–998.
26. Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC (2011) A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121: 3747–3755.
27. Dietzen D, Hastings W, Lublin D (1995) Caveolin is palmitoylated on multiple cysteine residues; palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270: 6838–6842.
28. Galbiati F, Volonte D, Meani D, Milligan G, Lublin DM, et al. (1999) The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. J Biol Chem 274: 5843–5850.
29. Lee H, Woodman SE, Engelman JA, Volonte D, Galbiati F, et al. (2001) Palmitoylation of caveolin-1 at a single site (Cys-136) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncoouples c-Src and caveolin-1 (TYR-14). J Biol Chem 276: 35150–35158.