Loss of MD1 exacerbates pressure overload-induced left ventricular structural and electrical remodelling

Jianye Peng1,2,3, Yu Liu1,2,3, Xiaoju Xiong1,2,3, Congxin Huang1,2,3, Yang Mei1,2,3, Zhiqiang Wang1,2,3, Yanhong Tang1,2,3, Jing Ye1,2,3, Bin Kong1,2,3, Wanli Liu1,2,3, Teng Wang1,2,3 & He Huang1,2,3

Myeloid differentiation protein 1 (MD1) has been implicated in numerous pathophysiological processes, including immune regulation, obesity, insulin resistance, and inflammation. However, the role of MD1 in cardiac remodelling remains incompletely understood. We used MD1-knockout (KO) mice and their wild-type littermates to determine the functional significance of MD1 in the regulation of aortic banding (AB)-induced left ventricular (LV) structural and electrical remodelling and its underlying mechanisms. After 4 weeks of AB, MD1-KO hearts showed substantial aggravation of LV hypertrophy, fibrosis, LV dilation and dysfunction, and electrical remodelling, which resulted in overt heart failure and increased electrophysiological instability. Moreover, MD1-KO-AB cardiomyocytes showed increased diastolic sarcoplasmic reticulum (SR) Ca\(^{2+}\) leak, reduced Ca\(^{2+}\) transient amplitude and SR Ca\(^{2+}\) content, decreased SR Ca\(^{2+}\)-ATPase2 expression, and increased phospholamban and Na\(^{+}/Ca\(^{2+}\)\)-exchanger 1 protein expression. Mechanistically, the adverse effects of MD1 deletion on LV remodelling were related to hyperactivated CaMKII signalling and increased impairment of intracellular Ca\(^{2+}\) homeostasis, whereas the increased electrophysiological instability was partly attributed to exaggerated prolongation of cardiac repolarisation, decreased action potential duration alternans threshold, and increased diastolic SR Ca\(^{2+}\) leak. Therefore, our study on MD1 could provide new therapeutic strategies for preventing/treating heart failure.

Hypertension is the single most critical risk factor for heart failure (HF)1. High blood pressure is widely recognised to induce left ventricular (LV) hypertrophy and lead initially to ventricular wall thickening and stiffening, a process which is compensatory and adaptive in nature. However, sustained pressure overload contributes to maladaptive LV remodelling, progressive LV dilatation, and cardiac dysfunction2–4, and this results in arrhythmias and HF5–7, a major underlying cause of increased cardiovascular morbidity and mortality5, 7. Despite being the focus of substantial research effort in recent decades, the precise pathogenesis of maladaptive LV remodelling and the mechanisms that determine how long-standing hypertrophy ultimately progresses to HF remain unclear8. Therefore, enhanced understanding of the factors and mechanisms that modulate pathological LV remodelling could lead to novel strategies for the treatment of HF.

Evidence gathered over the past two decades has shown that Toll-like receptor 4 (TLR4) signalling is involved in several aspects of the cardiac pathological process, such as cardiac remodelling, ischaemia/reperfusion injury, hypertension, and atherosclerosis9–13. Upon stimulation, TLR4 signalling ultimately activates numerous signalling pathways14–15, including the MAPK pathway, NF-κB pathway, and PI3K/Akt pathway. Furthermore, a link between Ca\(^{2+}\)/calmodulin-dependent kinase II (CaMKII) signalling and TLR4 signalling has been clearly demonstrated16–18. More importantly, therapies targeting against TLR4 have shown effectiveness in attenuating murine cardiac remodelling caused by pressure overload19–21. Furthermore, a recent study demonstrated that
stimulation of TLR4 in rat ventricular cardiomyocytes in vitro promoted an electrical remodelling that led to action potential duration (APD) prolongation associated with delayed afterdepolarisation and triggered activity.22 The aforementioned data led us to investigate whether a naturally occurring molecule can inhibit LV remodelling and reduce the susceptibility to ventricular tachycardia (VT) during chronic pressure overload by blocking TLR4 signalling. We speculated that a favourable candidate molecule might be myeloid differentiation protein 1 (MD1), an endogenous negative modulator of TLR4 signalling.23 MD1 is expressed predominantly in B cells, macrophages, dendritic cells, and other immune cells.23, 24 MD1 forms a complex with radioprotective protein 105 (RP105), which is abundantly present in heart tissue. MD1-RP105 complex can directly interact with the MD2-TLR4 complex by a lateral binding, acting as physiological negative regulators of TLR4 signalling.25 Furthermore, recent evidence suggests that MD1-RP105 complex is associated with several pathophysiological processes, including immune regulation, obesity, insulin resistance, and inflammation.26–28 However, to the best of our knowledge, no previous study has reported whether MD1 regulates sustained pressure overload-induced LV structural and electrical remodelling. Here, using loss-of-function approach, we discovered that pressure overload-induced LV remodelling was aggravated in MD1-knockout (KO) mice, which led to overt HF and increased electrophysiological instability. Whereas these adverse effects of MD1 deletion on LV remodelling are related to the hyperactivation of CaMKII signalling and an exaggerated impairment of intracellular Ca2+ homeostasis, the increased electrophysiological instability is at least partly due to an increased prolongation of cardiac repolarisation, enhanced reduction of the APD alternans threshold, and exaggerated increase of diastolic sarcoplasmic reticulum (SR) Ca2+ leak.

Results

MD1 expression is down-regulated in the left ventricles of DCM patients and in failing left ventricles in mice. To explore the correlation between MD1 and LV remodelling, we first examined MD1 expression in the failing left ventricles. Western blot analysis revealed that MD1 protein levels were significantly lower in the heart samples of DCM patients than in those of normal donors (Fig. 1A). Moreover, the diminished MD1 protein levels were accompanied with increased mRNA levels of brain natriuretic peptide (BNP) and β-MHC and decreased ejection fraction (EF) values (Fig. 1B,C). Similarly, MD1 protein levels, EF values, and fractional shortening (FS) values in wild-type (WT) mice at 4 weeks after aortic banding (AB) were significantly reduced as compared with the corresponding values in the sham-operated group (Fig. 1D–F). These results suggest that MD1 might be involved in LV remodelling.

Deletion of MD1 exacerabtes pressure overload-induced LV structural remodelling. The absence of MD1 in the MD1-KO mouse heart was confirmed through Western blotting (Fig. 2A). Under basal conditions, MD1-KO mice showed no alterations in cardiac phenotype (data not shown). However, at 4 weeks after AB, MD1-KO mice exhibited a marked deterioration of LV hypertrophy as compared with their WT littermates, which was confirmed by the measurement in the KO mice of a relatively larger cardiomyocyte cross-sectional area (CSA), revealed by haematoxylin-eosin (H&E) staining (Fig. 2B,C), and higher ratios of heart weight (HW)/body weight (BW), HW/tibia length (TL), and lung weight (LW)/TL (Fig. 2D–F; Supplementary Table S1). Consistently, the mRNA levels of foetal genes (BNP, β-MHC) were markedly higher in the LV tissues of MD1-KO mice than in those of WT mice (Fig. 2G). Furthermore, MD1-KO mice exhibited exaggerated LV dilatation and dysfunction, as shown by measurements of the following echocardiographic and haemodynamic parameters: LV end-diastolic diameter (LVEDD), LV end-systolic diameter (LVESD), LVEF, LVFS, LV end-systolic pressure (LVESP), and the maximum and minimum rates of LV pressure development (dp/dt max and dp/dt min).
Cardiac fibrosis, a major feature of maladaptive cardiac remodelling, was more prominent in MD1-KO-AB mice than in WT-AB mice (Fig. 2I,J). Collectively, these data indicate that MD1 loss exacerbates pressure overload-induced maladaptive LV structural remodelling.

Absence of MD1 alters surface electrocardiogram (ECG) parameters during chronic pressure overload. Surface ECG (lead II) recordings were performed on mice under light anaesthesia. Mice from the groups indicated in Fig. 3 showed similar electrocardiographic PR intervals, but MD1-KO-AB mice showed shorter RR intervals and longer QRS intervals than in WT-Sham mice (Fig. 3A,B; Supplementary Table S2). The QRS intervals of MD1-KO-AB mice were significantly prolonged when compared with those of WT-AB mice (Fig. 3A,B; Supplementary Table S2). As compared with WT-Sham mice, both WT-AB and MD1-KO-AB mice exhibited prolonged QTc (corrected QT) intervals, but this prolongation was significantly higher in the KO than in the WT mice (Fig. 3A,B; Supplementary Table S2).

Disruption of MD1 exacerbates pressure overload-induced LV electrical remodelling. Langendorff-perfused hearts and the monophasic action potential (MAP) recording technique were used to determine the changes in three electrophysiological parameters: APD$_{90}$, threshold interval for APD alternans, and VT inducibility rate. After 4 weeks of AB, APD$_{90}$ was markedly prolonged in both WT-AB and MD1-KO-AB mice, but the prolongation was considerably greater in the KO mice than in the WT mice (Fig. 3C,D; Supplementary Table S2). Among the four groups tested here, the changes in the threshold interval for APD alternans (Fig. 3E,F; Supplementary Table S2) were similar to the changes in APD$_{90}$. The VT inducibility...
rate was potentially higher in MD1-KO-AB mice than in WT-AB mice (90.9% vs. 50%, Fig. 3G,H), although there is no significant difference ($P = 0.069$).

MD1 regulates TLR4 signalling and CaMKII signalling in response to pressure overload. We applied Western blotting to investigate the effects of MD1 loss on TLR4 signalling and CaMKII signalling after pressure overload.
4 weeks of AB. Our results showed that a 4-week course of AB significantly decreased RP105 expression, and increased MD2 and TLR4 expression in both WT and MD1-KO LV tissues (Fig. 4A). However, the changes of RP105, MD2 and TLR4 expression were more pronounced in MD1-KO-AB mice (P < 0.05 vs. WT-AB; Fig. 4A), suggesting a hyperactivation of TLR4 signalling. Similarly, the CaMKII signalling was activated to a higher level in MD1-KO-AB mice than in WT-AB mice; this was revealed by the increased levels of oxidised-CaMKII (ox-CaMKII), total CaMKII expression, and phosphorylation of CaMKIIβ+γ+δ in the KO mice (Fig. 4B).

MD1 modulates intracellular Ca2+ handling in response to pressure overload. At baseline, the sham-operated WT and MD1-KO mice displayed similar Ca2+ transients in LV myocytes (Fig. 5A,C,D). However, the peak amplitude of caffeine-induced Ca2+ transients was lower in MD1-KO-Sham mice than WT-Sham mice (P < 0.05; Fig. 5A,C). After 4 weeks of AB, the LV myocytes of MD1-KO-AB mice exhibited a significantly reduced peak amplitude of Ca2+ transients and further reduced SR Ca2+ content (P < 0.05 vs. WT-AB; Fig. 5A,C), as well as prolonged time to peak [Ca2+]i transient amplitude and duration of [Ca2+]i transient decay (P < 0.03 vs. WT-AB; Fig. 5A,D).

We also examined whether MD1 loss increases RyR2-mediated diastolic SR Ca2+ leak, measured as Ca2+ sparks (Fig. 5B), in mouse LV myocytes. The mean Ca2+ spark frequency (CaSpF) values revealed that diastolic SR Ca2+ leak was markedly higher in MD1-KO-Sham myocytes than in WT-Sham myocytes (3.21 ± 0.18 vs. 2.21 ± 0.19 sparks/100 μm²/s, P < 0.05; Fig. 5E). Moreover, at 4 weeks after AB, the CaSpF increase was greater in MD1-KO mice than in WT mice (7.26 ± 0.31 vs. 4.43 ± 0.22 sparks/100 μm²/s, P < 0.001; Fig. 5E).

Under baseline conditions, the expression and phosphorylation of major Ca2+ handling proteins (Fig. 5F–H), and the expression of Cav1.2, calsequestrin 2 (CASQ2), and calcineurin A (Supplementary Fig. S3) were similar in WT and MD1-KO hearts. After 4 weeks of AB, SR Ca2+ ATPase 2 (SERCA2) expression and SERCA2 phosphorylation were drastically decreased, whereas the expression of Na+/Ca2+ exchanger 1 (NCX1) and phospholamban (PLN) were significantly increased in both MD1-KO and WT hearts, although these changes were considerably greater in MD1-KO hearts than in WT hearts (Fig. 5F,G). Moreover, PLN phosphorylation was increased, markedly and to a similar extent, in both MD1-KO-AB and WT-AB hearts (Fig. 5F,G). Phosphorylation of cardiac ryanodine receptor (RyR2) (Fig. 5H) and the expression of CASQ2 and calcineurin A (Supplementary Fig. S3) were markedly increased, whereas Cav1.2 expression (Supplementary Fig. S3) was significantly decreased in both WT and MD1-KO hearts by a 4-week course of AB, although these changes were significantly greater in MD1-KO-AB hearts (P < 0.05 vs. WT-AB).

MD1 regulates the expression of K+ and Na+ channels in failing hearts. The K+ and Na+ channels are also associated with electrical remodelling during HF, so we investigated the expression of some K+ and Na+ channels in the mouse left-ventricle samples. Our western blotting results demonstrated that after 4 weeks of AB,
both WT and MD1-KO mice showed a significant reduction in protein levels of KCNH2 (Fig. 6A), KCNE1 and KCNQ1 (Fig. 6A), Kv4.2 and Kv4.3 (Fig. 6B), and Nav1.5 (Fig. 6B), which generate IKr, IKs, Ito, and INa currents, respectively. However, this reduction was more pronounced in MD1-KO-AB mice than in WT-AB mice.

Discussion

Here, we examined the role of MD1 in pressure overload-induced LV structural and electrical remodelling by using loss-of-function strategy. Expression of MD1 is decreased in LV tissues of DCM patients and failing mouse hearts. Deletion of MD1 exaggerated LV pathological hypertrophy, fibrosis, and LV dilation and dysfunction in

![Figure 5.](image-url)
mice in response to persistent pressure overload, which resulted in overt HF. Moreover, in agreement with recent work, we discovered that TLR4 activation resulting from a loss of MD1 expression promoted an aggravation of LV electrical remodelling, which enhanced electrophysiological instability and tended to increase the susceptibility to VT in pressure-overloaded mice. To our knowledge, this is the first report to demonstrate a critical role of MD1 in pressure overload-induced LV structural and electrical remodelling. It should be noted, however, that the real function of MD1 in the development of HF in clinical setting needs to be further determined due to the limitation of experimental conditions.

MD1 protects against pressure overload-induced LV remodelling, but the precise molecular mechanisms remain unclear. Previous studies have suggested that TLR4 activation can increase the intracellular concentration of reactive oxygen species, which results in CaMKII oxidation and sustained activation of CaMKII signalling in stressed myocardial tissues. Abundant evidence indicates that CaMKII is involved in cardiac remodelling and HF. Transgenic overexpression of CaMKIIδ in mouse hearts was shown to alter Ca2+ handling through several mechanisms and cause cardiac remodelling and diseases. Conversely, CaMKIIδ deletion protects against adverse ventricular remodelling after chronic pressure overload by suppressing the CaMKII/histone deacetylase signalling pathway, and limits the progression to HF by altering the expression of Ca2+-handling proteins. In this study, we found that loss of MD1 led to a more pronounced activation of TLR4 signalling in mouse LVs after 4 weeks of AB. Furthermore, we found that MD1 deletion further enhanced the CaMKII signalling by CaMKII oxidation in response to chronic pressure overload. These data suggest that MD1 loss exacerbates pressure overload-triggered LV remodelling, at least partly, through hyperactivation of the CaMKII signalling.

Altered Ca2+ homeostasis in cardiomyocytes is a proximal trigger of stress-induced maladaptive cardiac remodelling, whereas defective intracellular Ca2+ homeostasis is a central cause of cardiac dysfunction and arrhythmias in failing hearts. RyR2 hyperphosphorylation by CaMKII causes a diastolic SR Ca2+ leak, which combines with reduced SERCA2-dependent Ca2+ content and an intracellular Ca2+ overload and thus lead to HF. Our study suggests that MD1 loss increases SR Ca2+ leak, and decreases SR Ca2+ content and Ca2+ transient amplitudes in failing LV myocytes, but this wasn't the case with the reduction of peak L-type Ca2+ channel current (I_{Ca,L}) density (Supplementary Fig. S4A–C). The reduced SR Ca2+ content, a major cause for the severe cardiac dysfunction in MD1-KO-AB mice, was associated with increased SR Ca2+ leak and diminished SERCA2-dependent Ca2+ uptake, and was likely associated with increased expression of NCX1. Unexpectedly, the expression of CASQ2 was also increased. We speculate that this might represent a compensatory response to the increased SR Ca2+ leak: it might contribute to RyR2 deactivation and refractoriness early after Ca2+ release and to the reduced SR Ca2+ buffering. In agreement with recent studies, our study

Figure 6. MD1 regulates the expression of K+ and Na+ channels in failing hearts. Immunoblot analysis of WT and MD1-KO left-ventricle samples at 4 weeks after surgery for (A) KCNH2, KCNE1 and KCNQ1 expression; (B) Kv4.2, Kv4.3 and Nav1.5 expression. Left: representative original immunoblots; right: quantitative results. Data were normalized to GAPDH. Numbers of mice per group are shown inside bars. *P < 0.02 vs. WT-Sham, #P < 0.05 vs. WT-AB.
also suggested that exaggerated RyR2 dysfunction led to a hyperactivation of calcineurin/NFAT signalling pathway, which has been implicated in stress-induced pathological remodelling of the heart \(^8\).

Prolongation of cardiac repolarisation is widely recognised to increase the risk of malignant ventricular arrhythmias (VAs) and sudden cardiac death \(^9\). QTc interval is a cardiac repolarisation marker and it corresponds to APD at the cellular scale; when QTc interval and APD are prolonged, they become pro-arrhythmic factors \(^49\). Consistent with these data, MD1-KO-AB hearts demonstrated prolonged QTc interval and APD, and a tendency of increasing the susceptibility to VT when compared with WT-AB hearts in this study. Moreover, our result agrees with the findings of a recent study suggesting that activation of cardiac TLR4 by lipopolysaccharide markedly increases APD \(^2\). Cardiac repolarization is mainly controlled by K\(^+\) currents, and CaMKII overactivity can impair K\(^+\) channel function and thereby prolong APD \(^29, 41\). Therefore, we examined the effect of MD1 deletion on protein expression of KCNHI2, KCNIE1 and KCNQ1, Kv4.2 and Kv4.3, which generate Ikr, Iks and Ito currents, respectively. Our results suggest that the APD prolongation observed in isolated MD1-KO-AB hearts might partly be through regulating cardiac K\(^+\) channels. However, the direct effect of MD1 deletion on Ikr, Iks and Ito currents in failing hearts needs to be further determined.

T-wave alternans (TWA) is a risk marker of cardiac repolarisation that has been associated with VAs \(^40, 42\), and interventions that eliminate TWA might prevent VT and sudden death \(^42\). TWA corresponds to APD alternans at the cellular level \(^40, 43\). Therefore, any factor that decreases the APD alternans threshold might induce VT. Our results showed that MD1 loss decreased the APD alternans threshold in isolated pressure-overload hearts, which suggests that reduction of the APD alternans threshold is one of the mechanisms underlying the MD1 deletion-elicted arrhythmogenic potential in response to pressure overload. A recent literature review revealed that increased SR Ca\(^{2+}\) leak through RyR2 channels and/or decreased SERCA pump activity contributes to alternans \(^43\). Consistent with this review’s finding, our study has shown that SERCA2 expression and phosphorylation levels were lower but RyR2 phosphorylation was higher in MD1-KO-AB mice than in WT-AB mice. In addition, alternans can be caused by instabilities originating from voltage and is influenced by I\(_{\text{to}}\) in electrically remodelled diseased hearts \(^43\). I\(_{\text{to}}\) is affected by CaMKII activity \(^29, 41\). Although I\(_{\text{to}}\) might be reduced as Nav1.5 expression was demonstrated to be markedly decreased in MD1-KO-AB mice in this study, but the activation and kinetic properties of I\(_{\text{to}}\) remain to be explored in future work.

RyR2 hyperphosphorylation due to CaMKII overactivity is widely accepted to lead to increases in diastolic SR Ca\(^{2+}\) leak, which can cause Ca\(^{2+}\) waves and activate an arrhythmogenic inward Na\(^+\)/Ca\(^{2+}\) exchange current, causing delayed afterdepolarisations (DADs) and triggering arrhythmias \(^29, 44–46\). Here, MD1 loss enhanced the increase in CaMKII activity and CaMKII-mediated RyR2 phosphorylation in response to chronic pressure overload. Moreover, the LV myocytes isolated from MD1-KO-AB mice exhibited an increased arrhythmogenic potential \(\text{in vitro}\) as compared with WT-AB mice, including enhanced diastolic SR Ca\(^{2+}\) leak, reduced SERCA2 pump activity, and increased NCX1 expression. Growing evidence indicates that increased SR Ca\(^{2+}\) loading is necessary for enhanced RyR2 Ca\(^{2+}\) leak to produce arrhythmia \(^29\), but no direct evidence is available to demonstrate that spontaneous Ca\(^{2+}\) sparks arise only when a specific SR cistern becomes ‘overloaded’ and that a lower-than-physiological concentration of Ca\(^{2+}\) in the SR does not affect Ca\(^{2+}\) spark production \(^45\). Collectively, these data indicate that the enhanced diastolic SR Ca\(^{2+}\) leak is likely sufficient to contribute to the electrophysiological instability, although the occurrence of spontaneous Ca\(^{2+}\) waves, and DADs needs to be further investigated.

Methods

Human heart samples. Samples of human failing hearts were collected from the left ventricles of DCM patients undergoing heart transplants. Control samples were obtained from the left ventricles of normal heart donors who had died as a result of accidents, and whose hearts were not used for transplantation due to non-cardiac reasons. After excision, all specimens were immediately flash-frozen in liquid nitrogen and stored at \(-80^\circ\text{C}\) for biochemical analysis. Written informed consent was obtained from the family of prospective heart donors. The study was approved by Renmin Hospital of Wuhan University Review Board and was conducted in accordance with the Declaration of Helsinki.
Mice. Male MD1-KO mice (C57BL/6 background, purchased from RIKEN, RBRC02386) and their WT littermates aged 8–10 weeks were used for experiments. All animals were housed in a 12/12-h light/dark cycle and provided food and water ad libitum. Mice were genotyped by means of PCR performed using the protocol provided by RIKEN (Supplementary Methods and Fig. S1). All animal experiments were performed according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (Publication No. 85-23, revised 1996) and approved by the Animal Care and Use Committee of Renmin Hospital of Wuhan University.

Animal model. All surgeries and subsequent analyses were performed in a blinded fashion for all groups. AB surgery and sham operation were performed as described previously66, 67. Doppler analysis was performed to ensure the induction of adequate constriction of the aorta. LV internal diameter and wall thickness were evaluated through echocardiography at various times after surgery. At the end of these procedures, some of the mice of the tested groups were sacrificed using an overdose of pentobarbital sodium (150 mg/kg, intraperitoneal injection), and ratios of HW/BW (mg/g), HW/TL (mg/mm), and LW/TL (mg/mm) of the sacrificed mice from the different groups were assessed. The LV tissues from each heart were dissected, snap-frozen in liquid nitrogen, and stored at −80 °C for biochemical studies.

Pressure-volume relationship measurements and echocardiography. We performed pressure-volume relationship measurements and echocardiography as described previously66, 67 to obtain these values: LVEF, LVFS, LVEDD, LVESD, LVPWd, and LVPWs. Additional details are presented in Supplementary Methods.

Histological analysis. Hearts were excised and washed with saline solution, arrested in diastole with 10% KCl, fixed in 4% paraformaldehyde solution, and embedded in paraffin. The paraffin–embedded hearts were sectioned transversely at the level of the LV papillary muscles. Several slices (4–5 mm thick) of heart were prepared and stained with H&E for morphometric analysis or picrosirius red (PSR) for evaluation of myocardial fibrosis. All micrographs were acquired using a high-resolution optical microscope. Image-Pro Plus 6.0 software was used to determine the CSA of cardiomyocytes and the volume of LV collagen deposition.

Quantitative real-time PCR (qRT-PCR). Total RNA from human or mouse LV tissues was extracted and reverse transcribed to generate cDNAs; qRT-PCR was performed by using an ABI-PRISM 7900 Sequence Detection System with the SYBR Color qPCR Master Mix (Beyotime Biotechnology, P0010) was used to determine protein concentrations. Proteins (40 μg) were separated using SDS-PAGE and transferred onto polyvinylidene difluoride membranes, which were then incubated with primary antibodies overnight at 4 °C and subsequently with secondary antibodies for 2 h at room temperature. Chemiluminescent detection was performed using the SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, NCI5079). Additional details are presented in Supplementary Methods.

Western blotting. Total proteins were extracted from frozen LV samples, and a BCA Protein Assay Kit (Beyotime Biotechnology, P0010) was used to determine protein concentrations. Proteins (40 μg) were separated using SDS-PAGE and transferred onto polyvinylidene difluoride membranes, which were then incubated with primary antibodies overnight at 4 °C and subsequently with secondary antibodies for 2 h at room temperature. Chemiluminescent detection was performed using the SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, NCI5079). Additional details are presented in Supplementary Methods.

Surface ECG recording and analysis. Mice were lightly anaesthetised using inhaled isoflurane (1.5% isoflurane in 98% O2). Surface electrodes were placed subcutaneously and the surface–lead ECG (lead II) was recorded. Data were analysed off-line using LabChart 7 Pro (AD Instruments). To correct for heart rate, the QTc was calculated using Bazett's formula: QTc = QT/(RR/100)1/2. Additional details are presented in Supplementary Methods.

Preparation of Langendorff-perfused hearts and MAP recording. Langendorff-perfused hearts were prepared according to published methods69. Epicardial MAP was recorded from the LV anterior free wall by using a custom-made MAP electrode, constructed from two 0.25-mm Teflon-coated silver wires (99.99% purity). The paired platinum stimulating electrode was positioned on the basal surface of the right ventricle, and it delivered regular pacing. Method details are described in Supplementary Methods.

Protocols used for electrical stimulation of isolated hearts. S1-S1 pacing was used for determining APD90 and APD alternans threshold; pacing was performed with a series of pulse trains at a regular pacing cycle length (PCL) for 30 s, and then interrupted for at least 30 s to minimise pacing memory effects. The PCL was shortened from 150 to 100 ms in 10-ms steps and then to 50 ms in 5-ms steps. The APD90 at the PCL of 150 ms was defined as the average 90% repolarisation time for 6–8 successive MAPs. Alternans was judged to have occurred when alternate APDs differed by 5% over at least 10 beats62. The APDs were measured at 90% repolarisation and the longest PCL-induced APD90 alternans was defined as the APD alternans threshold interval. To test for VT inducibility, burst pacing at cycle lengths of 100–50 ms or 2:1 capture occurrence was used62, 63. Unlike in previous studies, we applied a pacing train of 20 stimuli. VT was defined as the occurrence of at least 4 consecutive ventricular waveforms after the last paced beat.

Preparation of mouse LV myocytes. Single LV myocytes were isolated from the mice by using collagenase type II digestion. Freshly isolated LV myocytes were stored at room temperature until use. Only rod-shaped myocytes showing clear striations were studied, and experiments were performed at room temperature (20 °C–25 °C) within 6 h after cell isolation. Additional details are presented in Supplementary Methods.
Patch-clamp recording. Whole-cell membrane currents were obtained and assessed by using an EPC-9 patch-clamp amplifier (HEKA Electronik, Lambrecht, Germany) in the whole-cell mode and Pulse/Pulsee software (HEKA Electronik). Supplementary Methods contains the experimental details.

Measurements of Ca\(^{2+}\) transients and SR Ca\(^{2+}\) content. Isolated cardiomyocytes were loaded with the Ca\(^{2+}\) indicator Fluo-4 AM (10 μmol/L; Molecular Probes, Invitrogen, F14217) in Tyrode's solution (mmol/L: NaCl 135; KCl 1.8; CaCl\(_2\) 1; MgCl\(_2\) 1; NaH\(_2\)PO\(_4\) 0.33; HEPES 10; glucose 10; pH adjusted to 7.35 with NaOH) at 37 °C for 30 min; cells were suspended every 5 min during incubation. The loaded cells were washed for 15 min for de-esterification, superfused for 10 min with dye-free Tyrode's solution, and then transferred to a chamber equipped with a pair of parallel platinum electrodes. The chamber was placed on a Leica AF6000 fluorescence microscope (Leica Microsystems Inc, Germany). Systolic Ca\(^{2+}\) transients were recorded in steady-state conditions under constant field stimulation (8 pulses at 0.5 Hz, 10 V). We evaluated the average time to peak Ca\(^{2+}\) transient amplitude and duration of Ca\(^{2+}\) transient decay of a tested cardiomyocyte by measuring 4 consecutive and well performed Ca\(^{2+}\) transients during field stimulation. To assess SR Ca\(^{2+}\) content, the amplitude of caffeine-induced Ca\(^{2+}\) transients was measured at 4 s after the stimulation was stopped, 10 mmol/L caffeine was applied directly onto the cells, which led to an immediate and complete SR Ca\(^{2+}\) release. The fluorescence intensity of Fluo-4 (measured at 526 nm upon excitation at 488 nm) was recorded and the Ca\(^{2+}\) transient amplitude (F/F\(_{0}\)) and duration were assessed, both by using the Leica AF6000 Modular system.

Ca\(^{2+}\) spark measurements. Loaded cardiomyocytes were prepared as described above and transferred to the recording chamber, which was placed on a Leica TCS SP8 STED 3X laser-scanning confocal microscope (Leica Microsystems Inc.). Fluo-4 was excited using a 488-nm argon-ion laser and the emitted fluorescence was measured at 526 nm. Diastolic Ca\(^{2+}\) sparks of the loaded cardiomyocytes were recorded at resting conditions after repetitive field stimulation (8 pulses at 0.5 Hz, 10 V). Ca\(^{2+}\) sparks were analysed using SparkMaster and Image \(^{14}\). The mean CaSpF of each recorded cell was expressed as sparks/100 μm/s.

Statistical analysis. Statistical analysis was performed using SPSS or GraphPad Prism software. Continuous variables are shown as means ± SEM and were evaluated with Student's 2-tailed unpaired \(t\) test or two-way ANOVA followed by Bonferroni post hoc test. Categorical data are expressed as percentages and were analysed using Fisher exact test. \(P<0.05\) was considered statistically significant.

References
1. Burchfield, J. S., Xie, M. & Hill, J. A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128, 388–400, doi:10.1161/circulationaha.113.010878 (2013).
2. Opie, L. H., Commerford, P. J., Gersh, B. J. & Pfeffer, M. A. Controversies in ventricular remodelling. Lancet (London, England) 367, 356–367, doi:10.1016/s0140-6736(06)68074-4 (2006).
3. Drazier, M. H. The progression of hypertensive heart disease. Circulation 123, 327–334, doi:10.1161/circulationaha.108.845792 (2011).
4. Houser, S. R. et al. Animal models of heart failure: a scientific statement from the American Heart Association. Circulation research 111, 131–150, doi:10.1161/res.0b013e31821582523 (2012).
5. McMurray, J. J. & Pfeffer, M. A. Heart failure. Lancet (London, England) 365, 1877–1889, doi:10.1016/s0140-6736(05)66621-4 (2005).
6. van Berlo, J. H., Maillet, M. & Molkentin, J. D. Signaling effectors underlying pathologic growth and remodeling of the heart. The journal of clinical investigation 123, 37–45, doi:10.1172/jcic26389 (2013).
7. Go, A. S. et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129, e28–e292, doi:10.1161/01.cir.0000441139.02102.80 (2014).
8. Hill, J. A. & Olson, E. N. Cardiac plasticity. The New England journal of medicine 358, 1370–1380, doi:10.1056/NEJMra072139 (2008).
9. Frantz, S., Ertl, G. & Bauersachs, J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nature clinical practice. Cardiovascular medicine 4, 444–454, doi:10.1038/ncpcardi9038 (2007).
10. Topkara, V. K. et al. Therapeutic targeting of innate immunity in the failing heart. Journal of molecular and cellular cardiology 51, 594–599, doi:10.1016/j.yjmcc.2010.11.003 (2011).
11. McCarthy, C. G. et al. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. American journal of physiology. Heart and circulatory physiology 306, H184–196, doi:10.1152/ajpheart.00328.2013 (2014).
12. Arslan, E., de Klein, D. P. & Pasterkamp, G. Innate immune signaling in cardiac ischemia. Nature reviews. Cardiology 8, 292–300, doi:10.1038/nrcardio.2011.38 (2011).
13. Zimmer, S., Grebe, A. & Latz, E. Danger signaling in atherosclerosis. Circulation research 116, 323–340, doi:10.1161/circresaha.116.301315 (2015).
14. Gay, N. I., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nature reviews. Immunology 14, 546–558, doi:10.1038/nri3713 (2014).
15. Li, X., Jiang, S. & Tapping, R. I. Toll-like receptor signaling in cell proliferation and survival. Cytokine 49, 1–9, doi:10.1016/j.cyto.2009.08.010 (2010).
16. Singh, M. V. et al. MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction. Journal of molecular and cellular cardiology 52, 1135–1144, doi:10.1016/j.yjmcc.2012.01.021 (2012).
17. Zhang, C. et al. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes. Journal of molecular and cellular cardiology 74, 260–273, doi:10.1016/j.yjmcc.2014.08.003 (2014).
18. Singh, M. V. & Anderson, M. E. Is CaMKII a link between inflammation and hypertrophy in heart? Journal of molecular medicine (Berlin, Germany) 89, 537–543, doi:10.1007/s00109-011-0727-5 (2011).
19. Echem, C. et al. Anti-toll like receptor 4 (TLR4) therapy diminishes cardiac remodeling regardless of changes in blood pressure in spontaneously hypertensive rats (SHR). International journal of cardiology 187, 245–245, doi:10.1016/j.ijcard.2015.03.190 (2015).
20. Ehrentraut, H. et al. The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. European journal of heart failure 13, 602–610, doi:10.1093/eurheartj/hfr035 (2011).
21. Dange, R. B. et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovascular research 103, 17–27, doi:10.1093/cvr/cvu067 (2014).
22. Monnerat-Cahl, G. et al. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway. Journal of molecular and cellular cardiology 76, 116–125, doi:10.1016/j.yjmcc.2014.04.012 (2014).

23. Divanovic, S. et al. Inhibition of TLR-4/MD-2 signaling by RIPO5/MD-1. Journal of endotoxin research 11, 363–368, doi:10.1179/096850105x7300 (2005).

24. Miyake, K. et al. Mouse MD-1, a molecule that is physically associated with RIPO5 and positively regulates its expression. Journal of immunology (Baltimore, Md.) 190, 161, 1348–1353 (1998).

25. Ohto, U., Miyake, K. & Shimizu, T. Crystal structures of mouse and human RIPO5/MD-1 complexes reveal unique dimer organization of the toll-like receptor family. Journal of molecular biology 413, 815–825, doi:10.1016/j.jmb.2011.09.020 (2011).

26. Watanabe, Y. et al. The radioprotective 105/MD-1 complex contributes to diet-induced obesity and adipose tissue inflammation. Diabetologia 61, 1199–1209, doi:10.2337/db11-1182 (2012).

27. Nagai, Y., Watanabe, Y. & Takatsu, K. The TLR family protein RIPO5/MD-1 complex: A new player in obesity and adipose tissue inflammation. Adipocyte 2, 61–66, doi:10.4161/adip.22929 (2013).

28. Candel, S. et al. MD1 and RIPO5 regulate innate immunity and viral resistance in zebrafish. Developmental and comparative immunology 50, 155–165, doi:10.1016/j.dci.2015.01.005 (2015).

29. Luo, M. & Anderson, M. E. Mechanisms of altered Ca(2+)
+ handling in heart failure. Circulation research 113, 690–708, doi:10.1161/circresaha.113.301651 (2013).

30. Zhang, T. et al. The cardiac-specific nuclear delta(B) isoform of Ca(2+)-calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. The journal of biological chemistry 277, 1261–1267, doi:10.1074/jbc.m104522200 (2002).

31. Zhang, T. et al. The deltaac isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation research 92, 912–919, doi:10.1161/01.res.0000096886.31472.e5 (2003).

32. Ling, H. et al. Requirement for Ca2+-calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. The journal of clinical investigation 119, 1230–1240, doi:10.1172/jci38022 (2009).

33. Backs, J. et al. The delta isoform of CaMK kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America 106, 2342–2347, doi:10.1073/pnas.0813013106 (2009).

34. Braunwald, E. The war against heart failure: The Lancet lecture. Lancet (London, England) 385, 812–824, doi:10.1016/s0140-6736(14)61889-4 (2015).

35. Kho, C., Lee, A. & Hajjar, R. J. Altered sarcoplasmic reticulum calcium cycling–targets for heart failure therapy. Nature reviews. Cardiology 9, 717–733, doi:10.1038/nrcardio.2012.145 (2012).

36. Liu, B. et al. Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovascular research 108, 299–311, doi:10.1093/cvr/cvw222 (2015).

37. Ling, H. et al. Requirement for Ca2+-calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. The journal of clinical investigation 119, 1230–1240, doi:10.1172/jci38022 (2009).

38. Backs, J. et al. The delta isoform of CaMK kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America 106, 2342–2347, doi:10.1073/pnas.0813013106 (2009).

39. van Oort, R. J. et al. Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovascular research 108, 299–311, doi:10.1093/cvr/cvw222 (2015).

40. Tse, G. & Yan, B. F. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, doi:10.1093/europace/euw280 (2016).

41. Mustroph, J., Neef, S. & Maier, L. S. CaMKII as a target for arrhythmia suppression. Pharmacology & therapeutics, doi:10.1016/j.pharmthera.2016.10.006 (2016).

42. Rosenbaum, D. S. et al. Electrical alternans and vulnerability to ventricular arrhythmias. The New England journal of medicine 330, 235–241, doi:10.1056/nejm199912273300402 (1999).

43. Qu, Z. & Weiss, J. N. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annual review of physiology 77, 79–95, doi:10.1146/annurev-physiol-021014-071622 (2015).

44. Dobrev, D. & Wehrens, X. H. Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease. Circulation research 114, 1311–1319; discussion 1319, doi:10.1161/circresaha.114.300568 (2014).

45. Bers, D. M. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annual review of physiology 76, 107–127, doi:10.1146/annurev-physiol-020911-153308 (2014).

46. Belevych, A. E., Radwanski, P. B., Carnes, C. A. & Gyorke, S. ‘Ryanopathy’: causes and manifestations of RyR2 dysfunction in heart disease. Circulation. Arrhythmia and electrophysiology 5, 1122–1132, doi:10.1161/circep.115.002745 (2015).

47. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. The journal of clinical investigation 123, 46–52, doi:10.1172/jci62834 (2013).

48. Voigt, N. et al. Enhanced sarcoplasmic reticulum Ca2+- leak and increased Na+–Ca2+- exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125, 2059–2070, doi:10.1161/circulationaha.111.067306 (2012).

49. Voigt, N. et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129, 145–156, doi:10.1161/circulationaha.113.066641 (2014).

50. Liu, Y. et al. Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice. Cardiovascular research 101, 87–96, doi:10.1093/cvr/crt232 (2014).

51. Li, H. et al. Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proceedings of the National Academy of Sciences of the United States of America 107, 13818–13823, doi:10.1073/pnas.1008397107 (2010).
58. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402–408, doi:10.1006/meth.2001.1262 (2001).
59. Zhang, Z. et al. Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 112, 1936–1944, doi:10.1161/circulationaha.105.540070 (2005).
60. Qin, M. et al. Absence of Rgs5 prolongs cardiac repolarization and predisposes to ventricular tachyarrhythmia in mice. Journal of molecular and cellular cardiology 53, 880–890, doi:10.1016/j.yJCMeCC.2012.10.003 (2012).
61. Martin, C. A., Grace, A. A. & Huang, C. L. Spatial and temporal heterogeneities are localized to the right ventricular outflow tract in a heterozygotic Scn5a mouse model. American journal of physiology. Heart and circulatory physiology 300, H605–616, doi:10.1152/ajpheart.00824.2010 (2011).
62. Sovari, A. A. et al. Inhibition of c-Src tyrosine kinase prevents angiotensin II-mediated connexin-43 remodeling and sudden cardiac death. Journal of the American College of Cardiology 58, 2332–2339, doi:10.1016/j.jacc.2011.07.048 (2011).
63. Sovari, A. A. et al. Mitochondria oxidative stress, connexin43 remodeling, and sudden arrhythmic death. Circulation. Arrhythmia and electrophysiology 6, 623–631, doi:10.1161/circep.112.976787 (2013).
64. Picht, E., Zima, A. V., Blatter, L. A. & Bers, D. M. SparkMaster: automated calcium spark analysis with ImageJ. American journal of physiology. Cell physiology 293, C1073–1081, doi:10.1152/ajpcell.00586.2006 (2007).

Acknowledgements
This work was supported by grants from the National Natural Science Foundation of China (No. 81570306, No. 81270249, and No. 81570459), and the Hubei Provincial commonweal Foundation of China (No. 2013BCB013).

Author Contributions
J.P. conceived the study, performed the experiments, acquired and analyzed the data, and drafted the manuscript. Y.L. designed the study, revised the manuscript, and provided a part of the research funds. X.X. performed some experiments, acquired the data. C.H. revised the manuscript. Y.M., Z.W. and J.Y. provided the samples and materials. Y.T., B.K. and W.L. offered helpful discussion in the study. T.W. provided technical assistance. H.H. designed the overall study, analyzed the data, and revised the manuscript. All authors have reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05379-w

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017