The Historical X-ray Transient KY TrA in quiescence

C. Zurita, J. M. Corral-Santana, J. Casares

1Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, 38200 La Laguna, Spain
2Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
3Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña-Mackenna 4860, Macul 7820436, Santiago, Chile

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We present deep optical images of the historical X-ray Transient KY TrA in quiescence from which we confirm the identification of the counterpart reported by Murdin et al. (1977) and derive an improved position of $\alpha = 15:28:16.97$ and $\delta = -61:52:57.8$. In 2007 June we obtained I, R and V images, where the counterpart seems to be double indicating the presence of an interloper at ~ 1.4 arcsec NW. After separating the contribution of KY TrA we calculate $I = 21.47 \pm 0.09$, $R = 22.3 \pm 0.1$ and $V = 23.6 \pm 0.1$. Similar brightness in the I band was measured in May 2004 and June 2010. Variability was analyzed from series of images taken in 2004, spanning 0.6 h, and in two blocks of 6 h during 2007. We find that the target is not variable in any dataset above the error levels ~ 0.07 mags. The presence of the interloper might explain the non-detection of the classic ellipsoidal modulation; our data indicates that it contributes around half of the total flux, which would make a variation < 0.15 mags not detectable. A single spectrum obtained in 2004 May shows the $H\alpha$ emission characteristic of X-ray transients in quiescence with a full-width-half-maximum $FWHM = 2700 \pm 280$ km s$^{-1}$. If the system follows the FWHM – K_2 correlation found by Casares (2015), this would correspond to a velocity semi-amplitude of the donor star of $K_2 = 630 \pm 74$ km s$^{-1}$. Based on the outburst amplitude and colours of the optical counterpart in quiescence we derive a crude estimate of the orbital period of 8 h and an upper limit of 15 h which would lead to mass function estimates of $\approx 9 M_\odot$ and $< 16 M_\odot$ respectively.

Key words: keyword1 – keyword2 – keyword3 binaries: close – X-rays: binaries – stars: individual: KY TrA

1 INTRODUCTION
Low-mass X-ray binaries (LMXBs) are mass-exchange binaries that contain an accreting black hole or neutron star primary and a low-mass secondary star. Accretion takes place through an accretion disc which encircles the compact object and regulates the flow of material onto it making these objects the brightest X-ray sources in the sky. LMXBs provide an ideal playground for exploring the physics of compact objects yielding the confirmation of the existence of stellar mass black holes. Optical observations are crucial to prove this. By observing the radial velocity curve of the companion star, one can determine the mass function of the system, which represents a minimum mass for the accreting compact object. This experiment can be best applied to a subclass of LMXBs, the so called X-ray Transients (XTs), in which X-ray activity occurs only during well-defined outburst episodes. Between outbursts, the emission from the accretion flow fades to the point that the companion star is clearly visible and it is nearly undisturbed by irradiation; hence it can be used to derive a dynamical mass for the compact object (e.g., Charles & Coe 2006).

The distribution of black hole masses can only be determined from the study of X-ray binaries (e.g., Casares 2007) and it is intricately related to the population and evolution of massive stars, the energetics and dynamics of supernova explosions, and the critical mass dividing neutron stars and black holes. Several attempts to extract statistical information from the observed mass distribution have been made (Bailyn et al. 1998; Özel et al. 2010; Farr et al. 2011; Kreidberg 2012), however, the small number of black holes prevents us from extracting very compelling conclusions. About 10^5–10^6 stellar–mass black holes are believed to exist in the Galaxy (Brown & Bate 1994) while 10^3–10^4 are expected to be members of XTs (White & van Paradijs 1996; Romani 1998; Yungelson et al. 2006). Unfortunately only ~ 20 black hole candidates have reliable dynamical mass determinations to date. In summary, it be-
comes necessary to increase the sample of black hole masses.

The best place to look for black holes are XTs, which are detected in outburst by X-ray all-sky monitors. This was the case of KY TrA, a historical X-ray transient discovered in 1974 by the Ariel V instruments (Pounds et al. 1974). After a short precursor, KY TrA reached an outburst peak flux of 0.9 Crab in the 3-6 keV band, before decaying with an e-folding time of about 2 months (Kaluziensky et al. 1975). The source also showed a low intensity outburst in 1990 which was significantly fainter than the discovery 1974 outburst (Barret et al. 1995). Six months later, an upper limit to the quiescent X-ray luminosity of \(\sim 2 \times 10^{33} \text{erg s}^{-1} \) was derived. The ultrasoft X-ray spectrum seen by Ariel V and the hard tail observed by SIGMA (Barret et al. 1992) strongly suggests that KY TrA is a black hole candidate. The optical counterpart was identified 12 days after the X-ray maximum of the 1974 outburst at \(\beta = 17.5 \) (Murdin et al. 1977). Surprisingly, no further optical studies have been done since.

In this paper we present an optical study of the counterpart of the X-ray Transient KY TrA in quiescence to test its identification and obtain information about the donor star.

2 OBSERVATIONS

2.1 Photometry

The field of KY TrA was observed on UT 2004 May 16 with the ESO VLT UT telescope at Paranal and the FORS2 at the ESO VLT U4 telescope at Paranal. We used the FORS2 600R RI grism, and a 0.6 arcmin width, through an ensemble of isolated stars in the KY TrA field, following the technique described in Honeycutt (1992).

We finally calibrated a set of stars in the 2015 field that we then used as secondary standards to calibrate the 2004 and 2007 images, taken under non photometric conditions. To do so, we used the observational extinction coefficients together with the zero points extracted from the Landolt standards.

2.2 Spectroscopy

A single 2000 s spectrum was obtained on the night of 2004 May 16 using FORS2 at the ESO VLT U4 telescope at Paranal. The field is 2x2 binning in both the spatial and spectral direction, which provides a wavelength coverage of 4850–8400 Å with 1.68 Å pixel−1 dispersion and 600 km s−1 resolution. Standard procedures were used to de-bias and flat-field the spectra. The one-dimensional spectra were extracted using optimal extraction routines which maximize the final signal-to-noise ratio. A Hg–Cd–Ar–Ne arc was obtained to provide the wavelength calibration scale.

3 ASTROMETRY OF KY TRA

The optical counterpart of KY TrA was identified at \(\alpha = 15:28:16.59 \) and \(\delta = 61:52:58.1 \) (2000) by Murdin et al. (1977) 12 days after the outburst. These authors showed a Schmidt plate of the proposed counterpart but no deep image with the target in quiescence has been published to date. In Figure 1 we show an improved finding chart of KY TrA (I-band, 1800 s exposure and 0.25′ seeing, taken on 2007 June 17). The field is 2x2 arcmin and the star at the position proposed by Murdin et al. (1977) is marked in the center. For comparison we have also marked the star labeled as ‘S’ in that paper. In this figure we also show a zoom of the central region of 30x30 arcseconds where an elongation of the source profile along the NW direction is clearly visible. We measure an elongation coefficient (the IRAF “ellipsoidal” parameter) of 0.68, significantly larger than the typical values obtained for nearby field stars (0.32). Although this requires confirmation through better seeing quality images, it strongly suggests that the counterpart is double and the transient is blended with an interloper.

To obtain a precise astrometric solution, we used the positions of the astrometric standards selected from the USNO-B1 astrometric catalog1 with a nominal 0″2 uncertainty. Hundreds of reference objects can be identified in our field from which we selected 392, discarding the stars with significant proper motions. The IRAF tasks cccmap/cctran were applied for the astrometric transformation of the images. Formal rms uncertainties of the astrometric fit for our images are 0″025 in both right
Table 1. Log of the observations.

Photometry:	Date	Exp. time (s)	∆T (hr)	Filter	Telescope / Instrument
	2004/05/16	300	0.6	I	ESO VLT U4 / FORS2
	2007/06/16	600	6.3	I	ESO 3.6m / EFOSC
	2007/06/17	600	6.0	I	"
"	1000	-	"	R	"
"	1500	-	"	V	"
	2010/06/03	80	-	I	ESO VLT U1 / FORS2
	2010/06/03	45	-	R	"
"	300	-	"	Hα	"
	2015/01/18	500	-	I	SMARTS 1.3m / ANDICAM
	2015/01/18	500	-	R	"
"	800	-	"	V	"

Spectroscopy:	Date	Exp. time (s)	Grism	Telescope / Instrument
	2004/05/16	2000	GRIS-600RI	ESO VLT U4 / FORS2

ascension and declination, which is compatible with the maximum catalog position uncertainty of the selected standards. The star within the Mordin et al. (1977) error box has coordinates α=15:28:16.97 and δ=−61:52:58.2 with a conservative estimate of our 3σ astrometric uncertainty of ≤0.73 in both RA and Dec.

We test this identification by cross-matching the R, I, and Hα photometry of the field of KY TrA taken on 2010 to build the (R-I)-(R-Hα) diagram of all the objects detected in the three photometric bands. Our proposed target (marked with a circle in Figure 2) shows a clear Hα excess above the main stellar locus, confirming it is the true quiescent counterpart of KY TrA. Note that very close to the KT TrA counterpart there is another source of similar colour and Hα excess. This source is at 58arcsec from the XT and its nature is unknown. However, KY TrA should be located even higher in this diagram since the presence of the interloper dilutes its actual Hα excess.

We can refine the location of the counterpart by choosing which of the components of the blend is actually the XT counterpart. To do so, we first aligned the R, I, and Hα images and then calculated the centroids of the profile targeted as KY TrA and of a set of 40 stars around it. In Figure 3 (bottom) we show the modulus of the shifts between R, I and Hα, defined as $|x_R - x_{Hα}^2|$, $|y_R - y_{Hα}^2|$ and $|x_I - x_{Hα}^2|$, $|y_I - y_{Hα}^2|$ where x,y are the positions of the centroids in pixels. The centroid of KY TrA measured in Hα is clearly shifted with respect to its position in the R and I images. The top panel in Figure 3 shows a zoom of the Hα image centered on our target, with the white cross marking its centroid and the black cross the centroid measured in the I-band image. This indicates that the XT is the component of the blend located at the NW. Assuming that the Hα centroid is the actual position of the target, we derived an improved source position of α=15:28:16.97 and δ=−61:52:57.8 with an uncertainty of ≤0.73 in both RA and Dec.
Figure 1. A 1800 s f image of KY TrA taken in 2007, 17 June, with a field of view of 2x2 arcmin and a zoom of the central region of 30x30 arcsec. North is at the top, and East is to the left and the plate scale is 0.315 arcsec per pixel. Star labeling as 'S' in Mardin et al. (1977) is also shown for comparison. The target, in the middle of the fields, is marked. An elongation of the source profile along the NW direction is clearly visible indicating that the counterpart is double and it is blended with an interloper. The XT is the northern component of the pair (see section 3).
Figure 2. KY TrA uncalibrated ($R-I$)-($R-H\alpha$) diagram of all the objects detected in the three photometric bands in our field of view. Our proposed target, marked with a circle, shows a clear $H\alpha$ excess above the main stellar locus. Under the hypothesis that the light of KY TrA is contaminated by an interloper, it should be located even higher in this diagram, with a larger $H\alpha$ excess. The source closest to KY TrA is unknown.

4 PHOTOMETRY

4.1 The colours of KY TrA

The colours of KY TrA in quiescence were obtained on UT 2007 June 17. We calculated $I=20.88\pm0.01$, $R=21.75\pm0.01$ and $V=22.83\pm0.12$. Photometric error estimates on the magnitudes are based on a combination of Poisson statistics and the error contribution of the stars used for calibration. These magnitudes, however, correspond to the transient blended with the interloper (see section 3) so they need to be corrected taking this into account. To do so, we cleaned the contribution of the contaminant component by subtracting its best PSF fit. The initial centers for fitting the profiles of the components were determined by visual inspection of the I image, where they are more clear. The two components of the blend have approximately equal brightness: we calculated $I=21.47\pm0.09$, $R=22.3\pm0.1$ and $V=23.6\pm0.1$ for the top component, which is the XT counterpart as suggested by the $H\alpha$ image. The $V-R$ and $V-I$ colours are typical of a M0 star, although note that this is not corrected for interstellar reddening. Murdin et al. (1977) report a reddening E(B-V)≥0.5. An estimation of the interstellar reddening for any sky region can be obtained from the NASA/IPAC Infrared Science Archive2. The reddening quoted for the field of KY TrA, E(B-V)=0.7, implies a corrected $V-R_0=0.77$ and $V-I_0=1.15$ consistent with a \simK0-2V companion. Nevertheless, it should be noted that this is likely an upper limit to the true spectral type of the donor star because we have neglected any contribution from a residual accretion disc into the observed colour.

2 http://irsa.ipac.caltech.edu/applications/DUST/

Figure 3. (Upper) Zoom of the $H\alpha$ profile of KY TrA with a white cross marking its centroid. The black cross marks the centroid measured in the I image. (Lower) Modulus of the shifts (in pixels) between the image centroid positions for KY TrA and 40 surrounding stars as measured in our R, I and $H\alpha$ images (for details see text).

4.2 Searching for variability

The limited seeing conditions prevents us from deblending the flux of the two stars in every single image. Therefore, we studied the variability of KY TrA by integrating the total flux of the blend from the series of images in the I-band in the two different epochs: in 2004 May with less than one hour of observations and in 2007 June 16 and 17 with about 6 hours coverage. The 2004 images were obtained during twilight so photometry accuracy was dominated by a bright sky level. Unfortunately on 2007 June 16 we were affected by poor weather conditions with variable transparency caused by clouds. On 2007 June 17 no clouds were present although sky transparency was not ideal. In this night we get \sim7\% photometry for a 21.5 magnitude star. In summary, we found that the target is not variable above the error levels in any of our nights (i.e., $\sigma=0.07$, 0.14 and 0.07 mags for 2004 May and 2007 June 16 and 17 respectively). This is clearly seen in Fig.4 where we plot the scatter in the observed magnitudes. The scatter around the mean magnitude of KY TrA (marked with a circle in Fig.4) is consistent with that displayed by the field stars of similar mean brightness. Note that the presence of the interloper dilutes the orbital modulation of KY TrA, which would explain the lack of photometric variability on our images. Because the interloper contributes around half of

MNRAS in press, 1–7 (2015)
the total flux, we can only conclude that the target is not variable by >0.15 mags.

After re-scaling the zero-point of each night we found that the total flux remains stable at $I=20.88 \pm 0.01$ ($I=21.47 \pm 0.09$ for KY TrA, i.e. the top component of the blend) in our entire dataset, from 2004 until 2007.

5 SPECTROSCOPY

Although very noisy, our spectrum shows the Hα emission line characteristic of X-ray transients in quiescence. We obtained its full-width-half-maximum (FWHM) from a Gaussian fit of the continuum rectified spectrum within the range ± 10000 km/s, centered on the Hα line. This is shown in Fig. 5. After subtracting quadratically the instrumental resolution we find $\text{FWHM}=2700 \pm 280$ km/s where the error is the formal 1-σ on the fitted parameter as derived through χ^2 minimization. We note that the quoted error is within the typical 10% standard deviation caused by intrinsic line variability and therefore we take this as realistic (Casares 2015). We also extracted the equivalent width (EW) by integrating the Hα flux after continuum normalization and find $\text{EW} = 72 \pm 7$ Å. Note, however, that this value is diluted by the extra continuum of the interloper and hence the true EW of KY TrA is underestimated by a factor 2.

6 DISCUSSION

Although KY TrA is a very promising black hole candidate, it had not been studied in the optical band since its discovery in 1974. We have observed KY TrA in quiescence and confirmed its identification. The finding chart we present will certainly be helpful in performing observations with eELT-class telescopes in order to obtain dynamical information on the mass of the compact object.

A rough estimate of the period can be made by combining the Paczynski (1971) expression for the averaged radius of a Roche lobe with Kepler’s Third Law to get the well-known relationship between the secondary’s mean density and the orbital period:

$$\rho \approx \frac{110}{P_h^2} \text{g cm}^{-3}$$

where ρ is the mean density and P_h the orbital period in hours. Under the hypothesis that the light of KY TrA is contaminated by the interloper, we calculate an orbital period of about 8 h assuming a K0V star. It should be noted that this is likely an upper limit since, as we pointed out in Sect. 4.1, we have neglected any residual contribution from an accretion disc to the colour of KY TrA. An independent estimation can be made using the empirical relation $\Delta V = 14.36 - 7.63 \log P_h$ which predicts the orbital period of XTs with orbital periods less than 1 day given only its visual outburst amplitude ΔV (Shahbaz & Kuulkers 1998). During outburst, optical emission is dominated by the reprocessing of the X-rays in the accretion disc where most of the reprocessed energy is radiated in the ultraviolet. According to the irradiated model predictions $B - V_{\text{disc}} \sim 0$ (van Paradijs & McClintock 1995) resulting in $V \sim 17.5$ at the outburst peak (Murdin et al. 1977).

MNRAS in press, 1–7 (2015)
Taking $V = 23.6$ in quiescence, the total outburst amplitude is ~ 6.1 mag so this would lead to an orbital period of about 12 hours. We can place a robust upper limit for the period of about 15 h corresponding to a minimum outburst amplitude if the source were not contaminated by any interloper.

After analyzing the Hα emission profiles of 12 dynamically confirmed black holes and 2 neutron star X-ray transients (XTs) in quiescence, Casares (2015) has found a tight correlation between the FWHM of the Hα line and the velocity semi-amplitude of the donor star, where

$$K_2 = 0.233(13) \times \text{FWHM}.$$

We have applied this relation to KY TrA and predict $K_2 = 630 \pm 74$ km/s. This can be combined with our rough estimates of the orbital period to infer the mass function $f(M)$ of the binary. Our upper limit $P < 15$ h implies $f(M) < 16 M_\odot$ while $P \approx 8$ h would lead to $f(M) \approx 9 M_\odot$. More accurate constraints require an accurate determination of the orbital period.

Despite the foregoing, no variability has been found above the error levels, i.e. ~ 0.07 mags, indicating that we may be looking at the binary at very low inclination. However, given the contaminating flux from an interloper, the variability would be diluted to the extent that any intrinsic variability above 0.15 mag would not be detectable given our error levels, and so the inclination might not be as low. Interestingly, KY TrA has one of the broadest Hα lines among SXTs (a summary of the parameters of the XTs can be found in Casares (2015) Table 3), suggesting that, if KY TrA is viewed at low inclination, it must have a very short orbital period. Some clues about the inclination are provided by the EW of the Hα line, since it depends on the binary geometry. The EW tends to increase with inclination because, when the disc is seen at large inclinations, its continuum brightness decreases. An interesting exercise is to locate KY TrA in the EW–FWHM diagram shown in figure 5 of Casares (2015). Regions of constant inclination and M_1/P, where M_1 is the mass of the compact object and P is the orbital period, are defined in the diagram. Both the relatively large EW and the high M_1/P factor are reminiscent of XTE J1118+480 and suggest that KY TrA also hosts a black hole seen at moderately high inclination. Furthermore, we point out that given the contaminating flux from an interloper, the observed EW would just be a lower limit to the true EW since the latter would be diluted by the excess continuum. Clearly, more higher quality photometry is necessary to resolve these issues and draw further firm conclusions.

ACKNOWLEDGEMENTS

JMC-S acknowledges financial support from CONICYT through the FONDECYT project No. 3140310 and Basal-CATA PFB-06/2007, and JC to the Spanish Ministerio de Educación, Cultura y Deportes under grants AYA2010–18080 and AYA2013-42627. We specially want to thank Jose L. Prieto for his help in obtaining the SMARTS observations. We also acknowledge the referee (Phil Charles) whose comments greatly improved the manuscript.

References

Bailyn, C. D., Jain, . K., Coppi, P., Orosz, J. A., 1998, ApJ, 499, 367
Barret, D., Bouchet, L., M.rou, P., Roques J. P., Cordier B., Laurent P., Lebrun F., Paul J., Sunyaev, R., Churazov E., Gilfanov M., Diachkov A., Khavenson N., Novikov B., Chulkov, I., Kuznetsov, A., 1992, ApJ, 394, 615
Barret D., Mandrou P., Roques J. P., Denis M., Lebrun F., Clare T., Goldwurm A., Laurent P., Churazov E., Gilfanov M., Sunyaev R. A., Bogomolov A., Khavenson N., Kuleshova N., Tserenlii L., Sukhanov K., 1993, A&A, 97, 241
Barret D., Motch C., Pietsch W., Voges W., 1995, A&A, 296, 459
Brown, G. E., & Bethe, H. A. 1994, ApJ, 423, 657
Casares J., 2007, in KarasV., MattG., eds, Proc. IAU Symp. 238, Black Holes: From Stars to Galaxies - Across the Range of Masses. Cambridge Univ. Press, Cambridge
Casares J., 2015, astro-ph.SR, arXiv:1506.00639
Charles P.A., & Coe M. 2006, in Lewin W.H.G., van der Klis M., eds, Compact Stellar X-ray Sources. Cambridge Univ. Press, Cambridge, 215, 265, p. 3
Farr, W. M., Sravan, N., Cantrell, A., Kreidberg, L., Bailyn, C. D., Mandel, I., Kalogera, V. 2011, ApJ, 499, 367
Honeycutt R. K., 1992, PASP, 104, 435
Kaluzienski L. J., Holt S. S., Boldt E. A., Serlemitsos P. J., Eadie G., Pounds K. A., Ricketts M. J., Watson, M., 1975, ApJL, 201, 121
Kreidberg L., Bailyn C.D., Farr W.M., Kalogera V., 2012, ApJ, 757, 36
Murdin, P., Griffiths, R. E., Pounds, K. A., Watson, M. G., Longmore, A. J., 1977, MNRAS, 178, 27
Özel F., Psaltis, D., Narayan, R., McClintock, J. E. 2010, ApJ, 725,1818
Pounds K. A., Holt S. S., Kaluzienski L. J., Boldt E. A., Serlemitsos P. J., 1974, IAU Circ., 2729
Paczynski, B., 1971, ARAA, 9, 183
Romani, R. W. 1998, A&A, 333, 583
Shahbaz T., & Kuulkers E., 1998, MNRAS, 295, L1
Stetson, P.B., 1987, PASP, 99, 191
van Paradijs, J., & McClintock, J., 1995, in X rays Binaries. Cambridge Univ. Press, Cambridge
White, N. E., & van Paradijs, J. 1996, ApJ, 473, 25
Yungelson L. R., Lasota J.-P., Nelemans G., Dubus G., van den Heuvel E. P. J., Dewi J., Portegies Zwart S., 2006, A&A, 454, 559

This paper has been typeset from a TeX/L_TeX file prepared by the author.