DIAMETER ESTIMATION OF GRADIENT ρ-EINSTEIN SOLITONS

ABSOS ALI SHAIKH*, PROSENJIT MANDAL2 AND CHANDAN KUMAR MONDAL3†

Abstract. Our aim in this article is to give a lower bound of the diameter of a compact gradient ρ-Einstein soliton satisfying some given conditions. We have also deduced some conditions of the gradient ρ-Einstein soliton with bounded Ricci curvature to become non-shrinking and non-expanding. Further, we have proved that a complete non-compact gradient shrinking or expanding Schouten soliton with non-constant potential and a boundedness condition on scalar curvature must be non-parabolic.

1. Introduction and preliminaries

The Ricci flow introduced by Hamilton [9] plays a significant role in Perelman’s proof of the Poincaré conjecture and currently it has been intensively used in the study of various geometric properties. For study on Ricci flow, see [5].

An important aspect in the investigation of the Ricci flow is the study of Ricci solitons. A gradient Ricci soliton is an $n (\geq 2)$-dimensional Riemannian manifold (M, g) with Riemannian metric g, satisfying

\[\text{Ric} + \nabla^2 f = \lambda g, \]

where $\nabla^2 f$ stands for the Hessian of $f \in C^\infty(M)$, the ring of smooth functions on M, Ric is the Ricci curvature tensor and $\lambda \in \mathbb{R}$. A Ricci soliton (M, g) is called expanding if $\lambda < 0$, steady if $\lambda = 0$ and shrinking if $\lambda > 0$. For some results of Ricci solitons see [12, 13, 18]. In general, it is natural to consider geometric flows of the following type on a $n (\geq 3)$-dimensional Riemannian manifold (M, g):

\[\frac{\partial g}{\partial t} = -2(\text{Ric} - \rho Rg), \]

* Corresponding author.

2010 Mathematics Subject Classification: 53C20; 53C21; 53C25.

Key words and phrases: ρ-Einstein solitons; Schouten Soliton; non-parabolic; Diameter estimation; concave function; Riemannian manifolds
where R denotes the scalar curvature of the metric g and $\rho \in \mathbb{R}\setminus\{0\}$. The parabolic theory for these flows was developed by Catino et. al. [3], which was first considered by Bourguignon [2]. They called such a flow as Ricci-Bourguignon flows. they defined the following notion of ρ-Einstein solitons.

Definition 1.1. Let (M, g) be a Riemannian manifold of dimension $n (\geq 3)$, and let $\rho \in \mathbb{R}$, $\rho \neq 0$. Then M is called a ρ-Einstein soliton if there is a smooth vector field X such that

\[
(2) \quad \text{Ric} + \frac{1}{2}L_X g - \rho Rg = \lambda g,
\]

where $L_X g$ represents the Lie derivative of g in the direction of the vector field X.

If there exists a smooth function $f : M \to \mathbb{R}$ such that $X = \nabla f$ then the ρ-Einstein soliton is called a gradient ρ-Einstein soliton, denoted by (M, g, f) and in this case (2) takes the form

\[
(3) \quad \text{Ric} + \nabla^2 f - \rho Rg = \lambda g.
\]

The function f is called a ρ-Einstein potential of the gradient ρ-Einstein soliton. As usual, a ρ-Einstein soliton is called steady for $\lambda = 0$, shrinking for $\lambda > 0$ and expanding for $\lambda < 0$. After rescaling the metric g we may assume that $\lambda \in \{-\frac{1}{2}, 0, \frac{1}{2}\}$. For more study on ρ-Einstein solitons, we refer to the interested reader [4, 16, 17] and also the references therein.

For particular value of the parameter ρ, a ρ-Einstein soliton is called

i) gradient Einstein soliton if $\rho = \frac{1}{2}$,

ii) gradient traceless Ricci soliton if $\rho = \frac{1}{n}$,

iii) gradient Schouten soliton if $\rho = \frac{1}{2(n-1)}$.

Taking trace of (3) we obtain

\[
(4) \quad R + \Delta f - n\rho R = n\lambda.
\]

Thus for gradient Schouten soliton, (4) takes the form

\[
(5) \quad R + \Delta f - \frac{nR}{2(n-1)} = n\lambda.
\]
The diameter estimation of Ricci soliton is an abuzz topic of research. One of the first result came from the work of Myers [15]. In particular, he showed that a complete n-dimensional Riemannian manifold (M, g) with Ricci curvature satisfying $Ric \geq \lambda g$ for some positive constant λ is compact with the diameter $diam(M)$ having an upper bound $\pi \sqrt{(n-1)/\lambda}$. After that many authors have investigated to find a bound for a manifold satisfying some curvature flow conditions, for example see [6, 7, 11]. For the complete literature in this topic see the survey article [19].

The paper is organized as follows: In the section 1, we have deduced a lower bound of the gradient ρ-Einstein soliton satisfying some curvature conditions. We have also found some conditions of the gradient ρ-Einstein soliton for being non-shrinking and non-expanding. Finally, section 2 deals with the non-parabolic behavior of Schouten soliton.

2. Diameter estimation

Theorem 2.1. Let (M, g, f) be a complete non-compact gradient ρ-Einstein soliton with bounded Ricci curvature, i.e., $|Ric| \leq c$ for some constant c, $\rho R \geq c_1 \lambda$ for some constant c_1 and $\lim_{s_0 \to \infty} \int_0^{s_0} \nabla^2 f(X, X)$ is finite. Then the ρ-Einstein soliton is non-shrinking if $(1 + c_1) > 0$ and non-expanding if $(1 + c_1) < 0$.

Proof. Let us consider a length minimizing normal geodesic $\gamma : [0, s_0] \to M$ for some positive, arbitrarily large s_0. Take $p = \gamma(0)$ and $X(s) = \gamma'(s)$ for $s > 0$. Then X is the unit tangent vector along γ. Now integrating (3) along γ, we get

$$\int_0^{s_0} Ric(X, X) = \int_0^{s_0} (\lambda + \rho R)g(X, X) - \int_0^{s_0} \nabla^2 f(X, X)$$

$$\geq \lambda(1 + c_1)s_0 - \int_0^{s_0} \nabla^2 f(X, X).$$

(6)

Again, the second variation of arc length implies that

$$\int_0^{s_0} \psi^2 Ric(X, X) \leq (n - 1) \int_0^{s_0} |\psi'(s)|^2 ds,$$

(7)
for every non-negative function \(\psi \) defined on \([0, s_0]\) with \(\psi(0) = \psi(s_0) = 0 \). We now choose the function \(\psi \) as follows:

\[
\psi(s) = \begin{cases}
 s & s \in [0, 1] \\
 1 & s \in [1, s_0 - 1] \\
 s_0 - s & s \in [s_0 - 1, s_0].
\end{cases}
\]

Then, we have

\[
2(n - 1) + \sup_{B(p,1)} |\text{Ric}| + \sup_{B(\gamma(s_0),1)} |\text{Ric}| \geq (n - 1) \int_{0}^{s_0} |\psi'(s)|^2 ds + \int_{0}^{s_0} (1 - \psi^2)\text{Ric}(X,X) ds \\
\geq \int_{0}^{s_0} \psi^2 \text{Ric}(X,X) ds + \int_{0}^{s_0} (1 - \psi^2)\text{Ric}(X,X) ds \\
= \int_{0}^{s_0} \text{Ric}(X,X) ds.
\]

Combining (6) and (8), we obtain

\[
\lambda(1 + c_1)s_0 - \int_{0}^{s_0} \nabla^2 f(X,X) \leq 2(n - 1) + \sup_{B(p,1)} |\text{Ric}| + \sup_{B(\gamma(s_0),1)} |\text{Ric}| \\
\leq 2(n - 1) + 2c.
\]

(9)

Therefore, taking limit as \(s_0 \to \infty \) on both sides of (9), we can write

\[
\lim_{s_0 \to \infty} \lambda(1 + c_1)s_0 - \lim_{s_0 \to \infty} \int_{0}^{s_0} \nabla^2 f(X,X) \leq 2(n - 1) + 2c.
\]

(10)

Now since \(\lim_{s_0 \to \infty} \int_{0}^{s_0} \nabla^2 f(X,X) \) is finite, hence, if \((1 + c_1) > 0\) and \(\lambda > 0\), then \(\lim_{s_0 \to \infty} \lambda(1 + c_1)s_0 = +\infty\), which contradicts the inequality (10). Thus \(\lambda \leq 0\), i.e., the \(\rho\)-Einstein soliton is non-shrinking. In a similar way we can show that if \((1 + c_1) < 0\) then \(\lambda \geq 0\), i.e., the \(\rho\)-Einstein soliton is non-expanding. \(\square\)

We know that for a non-trivial concave function \(f \in C^\infty(M) \), the function \((-f)\) is non-constant convex, also it implies that \(M \) is non-compact and \(\lim_{s_0 \to \infty} \int_{0}^{s_0} \nabla^2 f(X,X) \leq 0 \). Thus from the above Theorem 2.1 we can write the following corollary:

Corollary 2.1.1. Let \((M, g, f)\) be a complete gradient \(\rho\)-Einstein soliton with bounded Ricci curvature, i.e., \(|\text{Ric}| \leq c\) for some constant \(c\), \(\rho R \geq c_1 \lambda\) for some constant \(c_1\) and \(f\) is a non-constant concave function. Then the \(\rho\)-Einstein soliton is non-shrinking if \((1 + c_1) > 0\) and non-expanding if \((1 + c_1) < 0\).
Theorem 2.2. Let \((M, g, f)\) be a compact gradient \(\rho\)-Einstein soliton with \(c_2 g \leq \text{Ric} \leq c_3 g\).

Then for \(\rho > 0\),

\[
diam(M) \geq \max \left\{ \sqrt{\frac{2(f_{\text{max}} - f_{\text{min}})}{\lambda + n\rho c_3 - c_2}}, \sqrt{\frac{2(f_{\text{max}} - f_{\text{min}})}{c_3 - \lambda - n\rho c_2}}, \sqrt{\frac{8(f_{\text{max}} - f_{\text{min}})}{(np + 1)(c_3 - c_2)}} \right\},
\]

and for \(\rho < 0\),

\[
diam(M) \geq \max \left\{ \sqrt{\frac{2(f_{\text{max}} - f_{\text{min}})}{\lambda + n\rho c_2 - c_2}}, \sqrt{\frac{2(f_{\text{max}} - f_{\text{min}})}{c_3 - \lambda - n\rho c_3}}, \sqrt{\frac{8(f_{\text{max}} - f_{\text{min}})}{(np - 1)(c_2 - c_3)}} \right\},
\]

where the numbers \(c_2, c_3\) are denoted by

\[
c_2 = \inf_{x \in M} \{ \text{Ric}(v, v) : v \in T_x M, g(v, v) = 1 \},
\]

\[
c_3 = \sup_{x \in M} \{ \text{Ric}(v, v) : v \in T_x M, g(v, v) = 1 \}.
\]

Proof. Taking trace of \(c_2 g \leq \text{Ric} \leq c_3 g\), we obtain

\[
nc_2 \leq \text{Ric} \leq nc_3.
\]

As \(\rho > 0\), the above inequality yields

\[
n\rho c_2 \leq \rho \text{Ric} \leq n\rho c_3.
\]

The potential function \(f\) has at least one point \(p\) where it attains its global minimum value, as \(M\) is compact. Let \(\gamma\) be a geodesic with \(\gamma(0) = p\). Then using (11) and (12) we calculate

\[
g(\nabla f, \gamma')(\gamma(s)) = g(\nabla f, \gamma')(\gamma(s)) - g(\nabla f, \gamma')(\gamma(0))
\]

\[
= \int_0^s \frac{\partial}{\partial s} g(\nabla f, \gamma')(\gamma(s)) ds
\]

\[
= \int_0^s \nabla \gamma^* g(\nabla f, \gamma')(\gamma(s)) ds
\]

\[
= \int_0^s \nabla^2 f(\gamma', \gamma')(\gamma(s)) ds
\]

\[
\leq (\lambda + n\rho c_3 - c_2)s.
\]

Integrating (13) we get

\[
f(\gamma(s)) - f(p) \leq \frac{(\lambda + n\rho c_3 - c_2)s^2}{2}.
\]
Since for every point \(x \in M \) there exists a minimizing geodesic joining \(p \) and \(x \), for all \(x \in M \) we have

\[
(14) \quad f(x) - f(p) \leq \left(\frac{\lambda + npc_3 - c_2}{2} \right) d^2(x, p),
\]

where \(d(x, p) \) is the distance between \(x \) and \(p \).

In particular, we obtain

\[
f_{\text{max}} - f_{\text{min}} \leq \left(\frac{\lambda + npc_3 - c_2}{2} \right) d^2,
\]

where \(d = \text{diam}(M) \), is the diameter of the manifold \(M \). This gives

\[
d^2 \geq \left(\frac{2(f_{\text{max}} - f_{\text{min}})}{\lambda + npc_3 - c_2} \right) s.
\]

Now we consider a point \(q \) at which \(f \) attains its global maximum. Let \(\gamma \) be a geodesic with \(\gamma(0) = q \). Then

\[
\begin{align*}
g(\nabla f, \gamma')(&\gamma(s)) = g(\nabla f, \gamma')(&\gamma(s)) - g(\nabla f, \gamma')(&\gamma(0)) \\
&= \int_0^s \frac{\partial}{\partial s} g(\nabla f, \gamma')(&\gamma(s)) ds \\
&= \int_0^s \nabla_{\gamma'} g(\nabla f, \gamma')(&\gamma(s)) ds \\
&= \int_0^s \nabla^2 f(\gamma', \gamma')(\gamma(s)) ds \\
&\geq \left(\lambda + npc_2 - c_3 \right) s.
\end{align*}
\]

Again integrating (15) we get

\[
f(\gamma(s)) - f(q) \geq \frac{(\lambda + npc_2 - c_3)}{2} s^2.
\]

Since for every point \(x \in M \) there exists a minimizing geodesic joining \(q \) and \(x \), for all \(x \in M \) we have

\[
f(x) - f(q) \geq \left(\frac{\lambda + npc_2 - c_3}{2} \right) d^2(x, q),
\]

where \(d(x, q) \) is the distance between \(x \) and \(q \).

This implies that

\[
f(q) - f(x) \leq \left(\frac{c_3 - \lambda - npc_2}{2} \right) d^2(x, q).
\]
In particular, we obtain
\[f_{\text{max}} - f_{\text{min}} \leq \left(\frac{c_3 - \lambda - n\rho c_2}{2} \right) d^2, \]
which yields
\[d^2 \geq \left(\frac{2(f_{\text{max}} - f_{\text{min}})}{c_3 - \lambda - n\rho c_2} \right). \]
Finally, adding (14) and (16) for \(x \) such that \(d(x, p) = d(x, q) \leq \frac{d}{2} \), we get
\[f(q) - f(p) \leq \left(\frac{c_3 - \lambda - n\rho c_2}{2} \right) d^2(x, q) + \left(\frac{\lambda + n\rho c_3 - c_2}{2} \right) d^2(x, p) \leq \frac{(n\rho + 1)(c_3 - c_2)}{8} d^2. \]
This implies
\[d^2 \geq \frac{8(f_{\text{max}} - f_{\text{min}})}{(n\rho + 1)(c_3 - c_2)}. \]
This proves the first part. For the second part, \(\rho < 0 \), the equation (11) implies that
\[n\rho c_3 \leq \rho R \leq n\rho c_2, \]
and hence proceeding in a similar way as in the first case, we obtain the second part. \(\square \)

3. Schouten solitons

A Riemannian manifold \(M \) is parabolic if every subharmonic function \(u \) on \(M \) with \(u^* = \sup_M u < \infty \), must be constant \([8, 20]\), equivalently, if every positive superharmonic function \(u \) on \(M \) is constant. Otherwise \(M \) is said to be non-parabolic. The Green function \(G(x, y) \) on \(M \) is defined by (see, \([8]\))
\[G(x, y) = \frac{1}{2} \int_0^\infty k(t, x, y) dt, \]
where \(k(t, x, y) \) is the heat kernel of \(M \). If \(p \) is a fixed point on \(M \) and \(M \) is non-parabolic then there is a unique, minimal, positive Green function and is denoted by \(G(p, x) \). The function \(l(x) \) is defined by \(l(x) = [n(n - 2)\omega_n \cdot G(p, x)]^{\frac{1}{n-1}} \), where \(\omega_n \) is the volume of the unit ball in the \(n \) dimensional Euclidean space \(\mathbb{R}^n \). Also the asymptotic volume ratio of \(M \) is defined as
\[V_M = \lim_{r \to \infty} \frac{\text{Vol}(B_r(p))}{\omega_n r^n}, \]
where \(B_r(p) \) is the open ball with radius \(r \) and center at \(p \). For more details see, \([20]\) and also references therein.

In this section first we state one theorem and two lemmas from \([1]\) and \([20]\), which will be used to prove our results:
Theorem 3.1. [1] Let \((M, g, f)\) be a complete non-compact non-steady Schouten soliton such that the potential function \(f\) is not-constant. Then for \(\lambda > 0\) (resp., \(\lambda < 0\)), \(f\) attains a global minimum (resp., maximum) and also \(f\) is unbounded above (resp., below). Furthermore,

\[
0 \leq \lambda R \leq 2(n - 1)\lambda^2,
\]

\[
2\lambda(f - f_0) \leq |\nabla f| \leq 4\lambda(f - f_0),
\]

with \(f_0 = \min_{p \in M} f(p)\), if \(\lambda > 0\) (resp., \(f_0 = \max_{p \in M} f(p)\), if \(\lambda < 0\)).

Lemma 3.2. [20] If \((M, g)\) is an \(n\)-dimensional complete and non-compact Riemannian manifold such that it is not-parabolic with non-negative Ricci curvature, then

\[
\lim_{r \to \infty} \frac{\int_{l \leq r} |\nabla l|^3}{r^n} = (V_M)^{\frac{1}{n}}\omega_n.
\]

Lemma 3.3. [20] If \((M, g)\) is an \(n(\geq 3)\)-dimensional complete Riemannian manifold with non-negative Ricci curvature and the volume growth is maximal (resp., not maximal), then \(|\nabla l| \leq 1\) (resp., \(\lim_{r \to \infty} \sup_{t(x) = r} |\nabla l|(x) = 0\)).

Theorem 3.4. Let \((M, g, f)\) be a complete non-compact gradient shrinking Schouten soliton of dimension \(n(> 4)\) with \(R \leq k < \frac{(n-1)(n-4)}{n-2}\) for some real constant \(k\) and the potential function \(f\) is positive non-constant. Then all the ends of \(M\) are non-parabolic.

Proof. For \(a = \frac{n-4}{4} - \frac{k(n-2)}{4(n-1)} > 0\), using the equation (5) and the Theorem 3.1 we calculate

\[
\Delta f^{-a} = -af^{-a-1}\Delta f + a(a+1)f^{-a-2}|\nabla f|^2
\]

\[
\leq -a\left\{ \frac{n}{2} + \frac{nR}{2(n-1)} - R \right\} f^{-a-1} + a(a+1)\{2(f - f_0)\} f^{-a-2}
\]

\[
= \left\{ -a\left(\frac{n}{2} + \frac{nR}{2(n-1)} - R \right) + 2a(a+1) \right\} f^{-a-1} - 2a(a+1)f_0f^{-a-2}
\]

\[
\leq \left\{ -a\left(\frac{n}{2} + \frac{nR}{2(n-1)} - R \right) + 2a(a+1) \right\} f^{-a-1}
\]

\[
\leq a\left\{ \frac{k(n-2)}{2(n-1)} - \frac{n}{2} + 2(a+1) \right\} f^{-a-1} = 0.
\]

Hence it follows that \(f^{-a}\) is a positive superharmonic function which converges to zero at infinity. This proves that (see, [8]) any end of \(M\) and hence \(M\) is non-parabolic. \(\square\)
The following corollaries immediately follows from Lemma 3.2, Lemma 3.3 and Theorem 3.4.

Corollary 3.4.1. Let \((M, g, f)\) be a complete non-compact gradient shrinking Schouten soliton of dimension \(n(> 4)\) with \(R \leq k < \frac{(n-1)(n-4)}{n-2}\) for some real constant \(k\), \(\text{Ric} \geq 0\) and the potential function \(f\) is non-constant with \(\min_{p \in M} f(p) = f_0 \geq 0\). Then the following relation holds:

\[
\lim_{r \to \infty} \frac{\int_{l \leq r} |\nabla l|^3}{r^n} = (V_M)^{-\frac{1}{n-2}} \omega_n.
\]

Corollary 3.4.2. Let \((M, g, f)\) be a complete non-compact gradient shrinking Schouten soliton of dimension \(n(> 4)\) with not maximal volume growth, \(R \leq k < \frac{(n-1)(n-4)}{n-2}\) for some real constant \(k\), \(\text{Ric} \geq 0\) and the potential function \(f\) is non-constant with \(\min_{p \in M} f(p) = f_0 \geq 0\). Then \(\lim_{r \to \infty} \sup_{t(x) = r} |\nabla l|(x) = 0\). Furthermore, if it has maximal volume growth, then \(|\nabla l| \leq 1\).

Theorem 3.5. Let \((M, g, f)\) be a complete non-compact gradient expanding Schouten soliton with \(-(n-1) < k_1 \leq R\) for some real constant \(k_1\) and the potential function \(f\) is positive non-constant with \(f^{-b}\) bounded above. Then all the ends of \(M\) are non-parabolic.

Proof. For \(b = \frac{n-2}{2} + \frac{k_1(n-2)}{2(n-1)} > 0\), using the equation (3) and the Theorem 3.1 we calculate

\[
\Delta f^{-b} = -bf^{-b-1}\Delta f + b(b+1)f^{-b-2}|\nabla f|^2
\]

\[
\geq -b\left\{- \frac{n}{2} + \frac{nR}{2(n-1)} - R\right\}f^{-b-1} + b(b+1)(f_0 - f)f^{-b-2}
\]

\[
= \left\{- b\left(- \frac{n}{2} - \frac{(n-2)R}{2(n-1)} - b(b+1)\right)f^{-b-1} + b(b+1)f_0 f^{-b-2}\right\}
\]

\[
\geq \left\{- b\left(- \frac{n}{2} - \frac{(n-2)R}{2(n-1)} - b(b+1)\right)f^{-b-1}\right\}
\]

\[
\geq b\left\{ \frac{k_1(n-2)}{2(n-1)} + \frac{n}{2} - (b+1)\right\}f^{-b-1} = 0.
\]

Hence it follows that \(f^{-b}\) is a subharmonic function which is bounded above. This proves that (see, [8]) any end of \(M\) and hence \(M\) is non-parabolic. \(\square\)

4. ACKNOWLEDGMENT

The second author gratefully acknowledges to the CSIR(File No.:09/025(0282)/2019-EMR-I), Govt. of India for financial assistance.
References

[1] Borges, V., On complete gradient Schouten solitons, arXiv:2102.05605.
[2] Bourguignon, J. P., Ricci curvature and Einstein metrics, Glob. Diff. Geom. and Glob. Anal., 838 (1979), 42–63.
[3] Catino, G., Cremaschi, L., Mantegazza, C., Djadli, Z. and Mazzieri, L., The Ricci-Bourguignon flow, Pac. J. Math., 287(2) (2017), 337–370.
[4] Catino, G. and Mazzieri, L., Gradient Einstein solitons, Nonlinear Anal., 132 (2016), 66–94.
[5] Chow, B., Lu, P. and Ni, L., Hamilton’s Ricci Flow, Graduate Studies in Mathematics, Amer. Math. Soc., 77 (2006).
[6] Fernández-López, M. and García-Río, E., Diameter bounds and Hitchin–Thorpe inequalities for compact Ricci solitons, Quart. J. Math., 61 (2010), 319–327.
[7] Futaki, A. and Sano, Y., Lower diameter bounds for compact shrinking Ricci solitons, Asian J. Math., 17 (2013), 17–32.
[8] Grigor’yan, A., Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bulletin(New Series) of the Amer. Math. Soc., 36(2) (1999), 135–249.
[9] Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255–306.
[10] Hamilton, R. S., The Ricci flow on surfaces, Contemporary Math., 71 (1988), 237–261.
[11] Li, H. and Wei, Y., Lower volume growth estimates for self-shrinkers of mean curvature flow, Proc. Amer. Math. Soc., 142 (2014), 3237–3248.
[12] Mondal, C. K. and Shaikh, A. A., Some results in \(\eta \)-Ricci soliton and gradient \(\rho \)-Einstein soliton in a complete Riemannian manifold, Comm. Korean Math. Soc., 34(4) (2019), 1279–1287.
[13] Mondal, C. K. and Shaikh, A. A., On Ricci solitons whose potential is convex, Proc. Indian Acad. Sci. (Math. Sci.), 130(55) (2020), 1–7.
[14] Monteau, O. and Sesum, N., On gradient Ricci solitons, J. Geom. Anal., 23(2013), 539–561.
[15] Myers, S. B., Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401–404.
[16] Shaikh, A. A., Cunha, A. W. and Mandal, P., Some characterizations of \(\rho \)-Einstein solitons, arXiv:2101.03896.
[17] Shaikh, A. A., Mondal, C. K. and Mandal, P., Compact gradient \(\rho \)-Einstein soliton is isometric to the Euclidean sphere, Accepted in Indian J. Pure Appl. Math.
[18] Shaikh, A. A. and Mondal, C. K., Isometry theorem of gradient Shrinking Ricci solitons, J. Geom. Phys., 163 (2021), 104–110.
[19] Tadano, H., Some Myers Type Theorems and Hitchin-Thorpe Inequalities for Shrinking Ricci Solitons, II, Rendiconti Sem. Mat. Univ. Pol. Torino, 77(1) (2019), 83–111.
[20] Xu, G., Integral of scalar curvature of non-parabolic manifolds, J. Geom. Anal., 30 (2019), 901–909.
1,2,3 Department of Mathematics, University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India.

†Department of Mathematics, School of Sciences, Durgapur Regional Center Netaji Subhas Open University, Durgapur-713214, West Bengal, India.

Email address: 1 aask2003@yahoo.co.in, aashaikh@math.buruniv.ac.in
Email address: 2prosenjitmandal235@gmail.com
Email address: 3chan.alge@gmail.com, chandanmondal@wbnso.ac.in