Synergistic effects of nuclear and electronic energy deposition on damage production in KTaO₃

Ke Jin, Yanwen Zhang and William J. Weber

ABSTRACT

Ion irradiation of KTaO₃ has been performed to investigate the evolution of irradiation damage with and without significant electronic energy deposition. Damage accumulation under irradiation with 2 MeV Au ions follows a direct-impact/defect-stimulated model, and occurs more rapidly than in SrTiO₃ under similar conditions. Electronic energy deposition from 21 MeV Ni ions creates negligible damage in pristine KTaO₃ to depths of 1 micron; however, damage is greatly enhanced in samples containing pre-existing defects, as evidenced by rapid amorphization due to track formation. The cross-sections for amorphous tracks show a nearly linear dependence on initial disorder, comparable with SrTiO₃.

IMPACT STATEMENT

Structural modification in KTaO₃ is sensitive to both electronic and nuclear energy deposition that can be controlled to exploit promising electronic and optical functionalities.

1. Introduction

Functional and engineering ceramics are subjected to irradiation from energetic ions in a broad range of applications, such as nuclear energy, electro-optical device fabrication, and space exploration [1–4]. Understanding ion-solid interactions and the resulting microstructure evolution is fundamental to predicting and controlling the behavior of materials, structures and devices. Incident ions deposit their energy into target materials through two fundamental mechanisms: nuclear and electronic energy loss. Nuclear energy loss through elastic scattering collisions displaces atoms from their original positions creating defects. Electronic energy loss through inelastic energy transfer to target electrons, causing excitation and ionization. The energy that electrons receive can be transferred to the atomic structure through electron-phonon coupling, causing local heating and microstructural changes [5,6]. Ionizing irradiation has been recognized as a powerful tool for defect engineering and microstructural modification [7–9]. Nevertheless, compared with nuclear energy loss, the effects of electronic energy loss on irradiation-induced defect evolution are less understood, which might be attributed to the conflicting roles it plays. Extreme electronic energy loss may cause damage, even amorphization, along the ion track [10], or it can enhance the mobility of point defects, promoting recovery of displacement damage [11–13].

Other than the conventional focus on modifications due to swift heavy ions [14–16], recent studies have found that heavy ions in the medium energy regime (up to tens of MeV), accessible to both industrial and academic laboratories, can also affect the defect structure produced by nuclear energy deposition, and three basic types of effects have been observed [17]. First, damage produced from electronic and nuclear energy deposition can be
simply additive, as found in ZrO$_2$ [18], SiO$_2$ [19], and ZrSiO$_4$ [20]. Second, as a competitive effect to displacement damage, electronic energy deposition can heal pre-existing defects, as found in SiC [13,17,21] and several complex oxides [17]. Finally, a synergistic effect has been demonstrated in SrTiO$_3$, where electronic energy loss in the presence of pre-existing defects leads to amorphous track formation, while the same electronic energy loss in pristine material leads to negligible damage [10,22].

Extensive studies on ion irradiation effects have been made on perovskite-type oxides (ABO$_3$) because of their unique electronic and optical properties, as well as their possible role for immobilization of nuclear waste [4,23–25]. KTaO$_3$ is a model perovskite, an incipient ferroelectric [26] and a potential optical waveguide formed by ion implantation induced amorphization [27,28]. Ion irradiations have also been applied to modify KTaO$_3$ surfaces for studying low temperature quantum transport [29]. Understanding the role of energy deposition on defect evolution in KTaO$_3$ is important for manipulating defect structures and controlling electronic and optical properties, as well as for modifying, fabricating and designing material functionality. Furthermore, KTaO$_3$ and widely studied SrTiO$_3$ have been reported to exhibit the highest and lowest critical temperatures for amorphization under ion irradiation, respectively, representing two limits of irradiation sensitivities among seven common perovskites [24]. Therefore, investigating the combined effects of electronic and nuclear energy deposition on KTaO$_3$, relative to SrTiO$_3$, will provide insights on correlations between such effects and ABO$_3$ compositions and properties. Here, we report defect production and damage accumulation in KTaO$_3$ single crystals under predominate nuclear energy deposition (dE/dx_{nuc}) with and without subsequent high electronic energy deposition (dE/dx_{ele}).

2. Experimental details

Samples used in this study are epi-polished, $<100>$ oriented KTaO$_3$ single crystals synthesized by MTI Corp. Predominant nuclear energy deposition was achieved using 2 MeV Au ion irradiation at $\sim 5–6^\circ$ off the surface normal to avoid channeling, with $dE/dx_{\text{nuc}} = 5.2$ and $dE/dx_{\text{ele}} = 1.3$ keV/nm at 190 nm, corresponding to the displacement damage peak for 2 MeV Au ions in KTaO$_3$; while high electronic energy deposition was achieved using 21 MeV Ni ion irradiations with $dE/dx_{\text{ele}} = 9.2$ and $dE/dx_{\text{nuc}} = 0.1$ keV/nm at 190 nm. The irradiated area was defined by beam slits in front of the sample, and the broad defocused ion beam was rastered across the slits with fixed horizontal and vertical scan frequencies of 517 and 64 Hz, respectively, to provide a continuous and uniform irradiation at 300 K using the Ion Beam Materials Laboratory at the University of Tennessee [30]. The flux for 2 MeV Au and 21 MeV Ni ions remained constant at 2.8×10^{11} and 6.0×10^{10} cm$^{-2}$ s$^{-1}$, respectively. Irradiation damage was characterized using Rutherford backscattering spectrometry in channeling mode (RBS/C), with 3.5 MeV He as the probe beam and a silicon detector located at 155$^\circ$ from the incident beam direction. High sensitivity of KTaO$_3$ to electron beams resulted in rapid amorphization in scanning transmission electron microscopy, preventing microstructural characterization. The displacement and energy deposition profiles were determined using the Stopping and Range of Ions (SRIM) code [31] in full-cascade mode with a reference density of 7.015 g cm$^{-3}$ [29]. A threshold displacement energy of 25 eV was assumed for all atoms, consistent with previous studies [24].

3. Results and discussion

Figure 1(a) shows RBS/C spectra of KTaO$_3$ irradiated with 2 MeV Au ions at 300 K to various fluences. The corresponding relative disorder profiles, derived using an iterative method [32,33], are shown in Figure 1(b). The damage peak occurs at ~ 190 nm, consistent with the SRIM predicted damage profile included in Figure 1(b). The relative disorder at the damage peak as a function of local irradiation dose is shown in Figure 1(c). Damage accumulation in KTaO$_3$ can be described by the direct-impact/defect-stimulated (DI-DS) model [25,34], where total disorder S_d arises from the sum of two contributions: the amorphous fraction, f_a, and the disorder, S_{d}^a, due to interstitial defects in the residual crystalline material, as described by

$$f_a = 1 - \frac{(\sigma_a - \sigma_s)}{\sigma_a + \sigma_s \exp[(\sigma_a + \sigma_s)/D]}$$

$$S_{d}^a = S_d^a [1 - \exp(-BD)] (1 - f_a)$$

where σ_a is the amorphization cross section, σ_s is the effective cross section for defect-stimulated amorphization, D is the local dose (displacements per atom or dpa), S_{d}^a is the saturation value for the defect-induced disorder, and B is proportional to an effective defect recombination volume. This model has been used to describe damage accumulation in SrTiO$_3$ [25,30], and results for 900 keV Au irradiation are included in Figure 1(c), along with the KTaO$_3$ results. The results indicate a higher damage rate in KTaO$_3$ than in SrTiO$_3$ that is consistent with the previously observed suppression of damage rate in SrTiO$_3$ relative to KTaO$_3$ [24] due to recovery processes at 300 K in SrTiO$_3$ that are not active in KTaO$_3$, which also leads to
Figure 1. (a) RBS/C spectra for KTaO$_3$ irradiated with 2 MeV Au ions, along with unirradiated virgin (black symbols) and random (red symbols) spectra. (b) Relative disorder profiles for different Au fluences, and SRIM predicted displacement dose profile for Au fluence of 4×10^{13} cm$^{-2}$ (dashed curve). (c) Damage accumulation at the damage peak for KTaO$_3$ under 2 MeV Au ion irradiation. Previous results for SrTiO$_3$ [30] irradiated with 900 keV Au ions are shown for comparison.

Figure 2. Relative disorder after subsequent irradiation with 21 MeV Ni ions for pre-damaged KTaO$_3$ at initial disorder levels of (a) 0.28 and (b) 0.1.

a critical amorphization temperature in SrTiO$_3$ (425 K) much lower than that for KTaO$_3$ (880 K).

Under 21 MeV Ni ion irradiation, electronic energy loss is predominant, and damage in pristine KTaO$_3$ is negligible at shallow depths (<1000 nm) at fluences up to 4×10^{12} cm$^{-2}$. This is attributed to the very low displacement dose (6.2×10^{-4} dpa) for 21 MeV Ni ions at 190 nm, which is 50 times smaller than the corresponding value for 2 MeV Au ions, 0.045 dpa, at a fluence of 5×10^{12} cm$^{-2}$, where measurable damage is first observed in Figure 1. Such negligible damage indicates that the electronic energy loss threshold for track formation in pristine KTaO$_3$ is higher than the 9.2 keV/nm for 21 MeV Ni ions.

In contrast, significant damage is produced at lower fluences for Ni ion irradiation of samples with pre-existing damage from Au irradiation. The disorder profiles derived from RBS/C spectra for samples with initial peak disorder of 0.28 and 0.1 are shown in Figures 2(a and b), respectively. For 0.28 initial disorder, the peak disorder increases to 0.65 with increasing fluence up to 1.4×10^{12} cm$^{-2}$, while the increase in disorder is much smaller for the sample with 0.1 initial disorder under identical irradiation conditions. Such a rapid increase in disorder at low fluences suggests formation of amorphous tracks, as predicted by molecular dynamics (MD) simulations [35]. Moreover, the RBS/C spectra clearly show that the disorder returns to pristine conditions at depths beyond the pre-damage thickness, while dE/dx_{el} decreases by only $\sim 10\%$. The rapid damage accumulation in the pre-damaged thickness suggests
that the electronic energy loss threshold for track formation is reduced due to pre-existing disorder, similar to behavior in SrTiO₃ [22]. MD simulations using a thermal spike model have confirmed amorphous track formation under electronic energy deposition from 21 MeV Ni ions for both KTaO₃ [35] and SrTiO₃ [10,22,36], if the pre-damaged level is high enough.

A direct impact model is applied to analyze the increasing disorder due to synergistic ionization effects as a function of 21 MeV Ni ion fluence [10,22]:

\[S = S_0 + f_a = 1 - (1 - S_0) \exp(-\sigma D), \quad (3) \]

where \(S \) is the total disorder, \(S_0 \) is the initial disorder level, and \(\sigma \) is the amorphous track cross-section. Figure 3(a) shows relative disorder as a function of Ni ion fluence at different depths (from Figure 2), and the solid curves are model fits using Eq. 3. For the lowest disorder level, the fit is close to a linear relationship. Assuming a circular amorphous cross-section, an effective track diameter, \(d \), can be defined by:

\[d^2 = \frac{4\sigma}{\pi}. \quad (4) \]

The effective track diameter as a function of initial disorder is shown in Figure 3(b). The track diameter increases monotonically with increasing initial disorder. This phenomenon can be explained by the thermal spike model, where an increase in electron and phonon scattering induced by defects results in decreased thermal conductivity and increased electron-phonon coupling, which increases the melt radius with increasing defect concentration. This process may be assisted by the generalized Lindemann melting criteria [37], in which increased defect concentrations lead to decreased melting temperatures. To understand the general trend of synergistic electronic energy loss interaction with pre-existing damage in perovskites, previous results [10,36] for 21 MeV Ni irradiation of pre-damaged SrTiO₃ are included for comparison. While the higher melting temperature for
SrTiO₃ might be expected to lead to smaller track diameters for the same level of initial disorder, the higher dE/dx_{cle} (9.8 keV/nm) for 21 MeV Ni in SrTiO₃ compared to KTaO₃ (9.2 keV/nm) and a larger effect of initial disorder on melting and electronic energy dissipation in SrTiO₃ may be responsible for the larger track sizes observed. Further studies will be required to understand this behavior.

To better understand the relationship between the amorphous cross-section and initial disorder, we investigated the response of KTaO₃ at a constant 21 MeV Ni ion fluence (8 × 10¹¹ cm⁻²), but with different levels of initial disorder (0.08 to nearly 1.0). Figure 4(a) shows the increase in disorder level at the damage peak due to subsequent irradiation with 21 MeV Ni ions at each Au irradiation dose. The amorphous track cross-sections are determined, using Eq. 3, as a function of initial disorder from the disorder increase with Ni ion fluence at different depths and Au ion fluences, as summarized in Figure 4(b). A linear correlation between amorphous cross-section and initial disorder has been reported for SrTiO₃ irradiated with 20 MeV Ti ions [10] for initial disorder levels below 0.15. As shown in Figure 4(b), a linear correlation is observed to higher disorder levels, ~0.7, in the present study, and extrapolation of the linear correlation to the disorder axis indicates a threshold disorder level of 0.03 for track formation in KTaO₃ from 21 MeV Ni ions.

4. Conclusions

Damage accumulation under nuclear and electronic energy depositions has been studied in single crystalline KTaO₃ and compared with SrTiO₃. For 2 MeV Au ion irradiation, damage accumulation due to nuclear energy deposition follows the DI-DS model for amorphization and occurs more rapidly than in SrTiO₃. The pristine KTaO₃ is insensitive at shallow depths (<1000 nm) to 21 MeV Ni ions up to a fluence of 4 × 10¹² cm⁻². However, in the case of pre-damaged KTaO₃, significant damage production occurs for relatively low fluences of 21 MeV Ni ions, indicating a strong synergistic effect, similar to the case for SrTiO₃. The increased rate of disordering is attributed to the formation of amorphous ion tracks in the pre-damaged layer. The amorphous cross-sections exhibit a linear dependence on initial disorder level. This work highlights the impact of highly ionizing particle irradiation on microstructural modification.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract Number DE-AC05-00OR22725.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract Number DE-AC05-00OR22725.

ORCID

Ke Jin http://orcid.org/0000-0001-7697-0466
Yanwen Zhang http://orcid.org/0000-0003-1833-3885
William J. Weber http://orcid.org/0000-0002-9017-7365

References

[1] Was GS. Fundamentals of radiation materials science: metals and alloys. Berlin (Germany): Springer; 2007.
[2] Weber WJ, Ewing RC, Catlow CRA, et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res. 1998;13(6):1434–1484.
[3] Duzellier S. Radiation effects on electronic devices in space. Aerosp Sci Technol. 2005;9(1):93–99.
[4] White CW, McHargue CJ, Sklad PS, et al. Ion implantation and annealing of crystalline oxides. Mater Sci Rep. 1989;4(2):41–146.
[5] Thomé L, Debelle A, Garrido F, et al. Radiation effects in nuclear materials: role of nuclear and electronic energy losses and their synergy. Nucl Instrum Methods B. 2013;307:43–48.
[6] Thomé L, Debelle A, Garrido F, et al. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl Phys Lett. 2013;102(14):141906.
[7] Itoh N, Duffy DM, Khakhshouri S, et al. Making tracks: electronic excitation roles in forming swift heavy ion tracks. J Phys Conden Mater. 2009;21(47):474205.
[8] Kumar PMR, Kartha CS, Vijayakumar KP, et al. Modifications of ZnO thin films under dense electronic excitation. J Appl Phys. 2005;97(1):013509.
[9] Olivares J, García G, García-Navarro A, et al. Generation of high-confinement step-like optical waveguides in LiNbO₃ by swift heavy ion-beam irradiation. Appl Phys Lett. 2005;86(18):183501.
[10] Xue H, Zarkadoula E, Liu P, et al. Amorphization due to electronic energy deposition in defective strontium titanate. Acta Mater. 2017;127:400–406.
[11] Xue H, Zhang Y, Weber WJ. In-cascade ionization effects on defect production in 3C silicon carbide. Mater Res Lett. 2017;5(7):494–500.
[12] Sachan R, Cooper VR, Liu B, et al. Forging fast ion conducting nanochannels with swift heavy ions: the correlated role of local electronic and atomic structure. J Phys Chem C. 2017;121(1):975–981.
[13] Zhang Y, Xue H, Zarkadoula E, et al. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr Opin Solid State Mater Sci. 2017;21(6):285–298.

[14] Debelle A, Backman M, Thomé L, et al. Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals. Phys Rev B. 2012;86(10):100102.

[15] Grygiel C, Lebius H, Bouffard S, et al. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation. Rev Sci Instrum. 2012;83(1):013902.

[16] Dufour C, Audouard A, Beuneu F, et al. A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage? J Phys Cond Mat. 1993;5(26):4573–4584.

[17] Weber WJ, Duffy DM, Thomé L, et al. The role of electronic energy loss in ion beam modification of materials. Curr Opin Solid State Mater Sci. 2015;19(1):1–11.

[18] Thomé L, Velisa G, Debelle A, et al. Behavior of nuclear materials irradiated with a dual ion beam. Nucl Instrum Methods Phys Res B. 2014;326(1):219–222.

[19] Toulemonde M, Weber WJ, Li G, et al. Synergy of nuclear and electronic energy losses in ion-irradiation processes: The case of vitreous silicon dioxide. Phys Rev B. 2011;83(5):054106.

[20] Zarkadoula E, Toulemonde M, Weber WJ. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon. Appl Phys Lett. 2015;107(26):261902.

[21] Zhang Y, Varga T, Ishimaru M, et al. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials. Nucl Instrum Methods Phys Res B. 2014;327:33–43.

[22] Weber WJ, Zarkadoula E, Pakarinen OH, et al. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3. Sci Rep. 2015;5(1):7726.

[23] Meldrum A, Boatner LA, Ewing RC. Effects of ionizing and displacive irradiation on several perovskite-structure oxides. Nucl Instrum Methods B. 1998;141(1–4):347–352.

[24] Meldrum A, Boatner LA, Weber WJ, et al. Amorphization and recrystallization of the ABO3 oxides. J Nucl Mater. 2002;300(2–3):242–254.

[25] Zhang Y, Lian J, Wang CM, et al. Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys Rev B. 2005;72:094112.

[26] Singh DJ. Stability and phonons of KTaO3. Phys Rev B. 1996;53(1):176–180.

[27] Yamaichi E, Watanabe K, Imamiya K, et al. Photoluminescence in KTaO3 single crystal. J Phys Soc Jap. 1987;56(5):1890–1897.

[28] Wong JYC, Zhang L, Kakarantzas G, et al. Ion-implanted optical waveguides in KTaO3. J Appl Phys. 1992;71(1):49–52.

[29] Harashima S, Bell C, Kim M, et al. Coexistence of two-dimensional and three-dimensional Shubnikov–de Haas oscillations in Ar+-irradiated KTaO3. Phys Rev B. 2013;88(8):085102.

[30] Zhang Y, Crespillo ML, Xue H, et al. New ion beam materials laboratory for materials modification and irradiation effects research. Nucl Instrum Methods B. 2014;338:19–30.

[31] Ziegler JF. SRIM-2013. Available from: www.srim.org.

[32] Zhang Y, Lian J, Zhu Z, et al. Response of strontium titanate to ion and electron irradiation. J Nucl Mater. 2009;389(2):303–310.

[33] Feldman LC, Mayer JW, Picraux ST. Materials analysis by ion channeling. New York: Academic Press; 1982.

[34] Weber WJ. Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res B. 2000;166–167:98–106.

[35] Zarkadoula E, Jin K, Zhang Y, et al. Synergistic effects of nuclear and electronic energy loss in KTaO3 under ion irradiation. AIP Adv. 2017;7(1):015016.

[36] Zarkadoula E, Pakarinen OH, Xue H, et al. Predictive modeling of synergistic effects in nanoscale ion track formation. Phys Chem Chem Phys. 2015;17(35):22538–22542.

[37] Lam NQ, Okamoto PR. Generalized melting criterion for beam-induced amorphization. Surf Coat Technol. 1994;65(1–3):7–14.