interventions or recommendations were made, averaging 3.3 per resident. Table 1 shows that the highest proportion (30.4%) of these were public health related, whilst changing and stopping medicines accounted for 17.9% and 12.8% respectively. The majority (63%) of interventions made by community pharmacists were public health related, whilst those made by the mental health specialist pharmacist most frequently concerned changing medicines (25%), stopping medicines (18%), and blood monitoring (13%).

Conclusion: The study findings indicate a high level of polypharmacy among the ID residents and a high number of interventions/recommendations were needed to improve care, in line with national priorities. The small scale of the study is acknowledged, and further research is warranted. However, the findings suggest that this service model may be an effective use of the respective skill sets of the pharmacists involved and suitable for wider adoption, with community pharmacists focusing on holistic care and specialist mental health making specialist medicines interventions.

References

1. University of Bristol Norah Fry Centre for Learning Disability Studies. The Learning Disability Mortality Review (LeDeR) Programme Annual Report 2018. Available at: https://www.hqip.org.uk/wp-content/uploads/2019/05/LeDeR-Annual-Report-Final-21-May-2019.pdf (last accessed 12/10/20).

2. NHS England. Stopping over medication of people with a learning disability, autism or both (STOMP). https://www.england.nhs.uk/learning-disabilities/improving-health/stomp/ (last accessed 12/10/20).

DEVELOPING A USER-FOCUSED STANDARDISED DESIGN SYSTEM FOR PRESCRIPTION MEDICINE PACKAGING IN SLOVENIA.

Eva Bevec, Academy of Fine Arts and Design, University of Ljubljana, Ljubljana, Slovenia

Introduction: In my thesis I am exploring the role of pharmaceutical packaging design in relation to the user. This topic is becoming increasingly relevant as the number of issued prescriptions in Slovenia is rising every year, treatment with prescription medicine is experienced by almost everyone. Medicine packaging must therefore provide essential information effectively and efficiently.

Aim: The purpose of this thesis is to improve current heterogeneous conditions by developing a standardized design system for all prescription drugs by taking into account users’ needs at each stage of the process. The final goal is a simpler and more effective use of products for everyone involved.

Methods: Research was conducted in three stages. In the first stage, the existing condition in packaging design was analysed: information hierarchy/arrangement on 8 significant manufacturers’ products considering 1 - the type of information and 2 - different user groups. Second stage consisted of conducting surveys with 2 focus groups representing two main user groups who use the packaging differently - medicine consumers and healthcare professionals. (1) Consumer focus group consisted of 81 participants, recruited randomly from various age groups (age 10 to 89). They were asked closed-ended questions. Healthcare professionals focus group consisted of 5 pharmacists with extensive experience. They were asked open-ended questions. The collected data from both research stages was statistically and qualitatively analysed in order to define the main problems with medicine packaging design and use. Identified problems were then addressed through the design process. The third stage included development of a standardised design system in accordance with information design theory and cognitive psychology findings. (2) These helped establish the system building blocks/rules: information hierarchy and organization, use of colour, shape and typography.

Results: Analysis of existing conditions clearly exposed the heterogeneity and unsuitability of the majority of medicine packaging design. These caused similar problems to both user groups: trouble finding information (73%), lack/redundancy of information (47%/17%), illegible, unreadable typography (39%), distracting visual elements (26%), unclear distinction between medicines (17%). These lead to various consequences: incorrect route of administration (39%), consuming/prescribing expired (30%) or incorrect product (8%), time loss (8%). Each of these problems was addressed through establishment of new, highly precise rules in packaging design: regulating hierarchy and typography, introducing visual categorization through symbols and illustrations (information category, pharmaceutical form, ATC group) and color-coding medicine strength. The rules form a standardised system which provides unity, consistency and quality regulation, improving the everyday experience of many people.

Conclusion: The research was carried out as a part of a BA thesis. The execution of the project would require a change in the legislation on state level. It therefore serves as a speculative proposal, aiming to raise questions that are currently not being addressed properly within the industry. The possibility of implementation could be recognized through gradual transformation of individual rules/building blocks of the system into new state regulations or guidelines. Discussion with the industry and the profession has not yet been carried out due to the Covid-19 crisis.

References

1. Heinio RL, Rusko E, Van der Waarde K. Challenges to read and understand information on pharmaceutical packages [Internet]. 2012 Jun [cited 2020 May 24]; 79 - 85. Available from: https://www.vtrresearch.com/sites/default/files/julkaisut/muut/2012/Rusko_ IAPRI_2012_ Manuscript_final.pdf.

2. Černe Oven P, Požar C. On Information Design [Internet]. Ljubljana: Muzej za arhitekturo in oblikovanje; 2016. 149 p. Available from: http://www.mao.si/Upload/file/Oninformation-design_e-book-spread.pdf Evaluation of the first pharmacy-led weight management programme in Greece.

EVALUATION OF THE FIRST PHARMACY-LED WEIGHT MANAGEMENT PROGRAMME IN GREECE.

A. Peletidi1,2,3 and R. Kayyali2, 1. Department of Life and Health Sciences, Pharmacy Programme, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus. 2. Faculty of Science, Engineering and Computing, School of Pharmacy and Chemistry, Kingston University London.