Original Article

A Non-\textit{APOE} Polygenic Risk Score for Alzheimer’s Disease Is Associated With Cerebrospinal Fluid Neurofilament Light in a Representative Sample of Cognitively Unimpaired 70-Year Olds

Ingmar Skoog, MD, PhD,1,2 Silke Kern, MD, PhD,1,2 Jenna Najar, MD,1,2 Rita Guerreiro, PhD,3 Jose Bras, PhD,3 Margda Waern, MD, PhD,1,4 Henrik Zetterberg, MD, PhD,5,6,7,8 Kaj Blennow, MD, PhD,7,8 and Anna Zettergren, PhD1,*

1Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden. 2Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden. 3Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA. 4Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden. 5Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom. 6UK Dementia Research Institute at UCL, London, United Kingdom. 7Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden. 8Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

*Address correspondence to: Anna Zettergren, PhD, Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Wallingatan 6, 431 41 Mölndal, Sweden. E-mail: anna.zettergren@neuro.gu.se

Received: September 2, 2020; Editorial Decision Date: January 20, 2021

Decision Editor: David Le Couteur, MBBS, FRACP, PhD

Abstract

The effect of Alzheimer’s disease (AD) polygenic risk scores (PRS) on amyloid and tau pathophysiology and neurodegeneration in cognitively unimpaired older adults is not known in detail. This study aims to investigate non-APOE AD-PRS and APOE ε4 in relation to AD pathophysiology evaluated by cerebrospinal fluid (CSF) biomarkers in a population-based sample of 70-year olds. A total of 303 dementia-free individuals from the Gothenburg H70 Birth Cohort Studies were included. Genotyping was performed using the NeuroChip, and AD-PRS were calculated. CSF levels of amyloid-β (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), neurogranin (Ng), and neurofilament light (NfL) were measured with enzyme-linked immunosorbent assay. Associations were found between non-APOE PRS and both NfL ($p = .001$) and Aβ42 ($p = .02$), and between APOE ε4 and Aβ42 ($p = 1e^{-10}$), t-tau ($p = 5e^{-4}$), and p-tau ($p = .002$). Similar results were observed when only including individuals with CDR = 0, except for no evidence of an association between non-APOE PRS and Aβ42. There was an interaction between non-APOE PRS and Aβ42 pathology status in relation to NfL ($p = .005$); association was only present in individuals without Aβ42 pathology ($p = 3e^{-4}$). In relation to Aβ42, there was a borderline interaction ($p = .06$) between non-APOE PRS and APOE ε4; association was present in ε4 carriers only ($p = .03$). Similar results were observed in individuals with CDR = 0 ($n = 246$). In conclusion, among cognitively healthy 70-year olds from the general population, genetic risk of AD beyond the APOE locus was associated with NfL in individuals without Aβ42 pathology, and with Aβ42 in APOE ε4 carriers, suggesting these associations are driven by different mechanisms.

Keywords: Amyloid-beta, CSF biomarkers, Genetic variants, Tau
Alzheimer’s disease (AD) is characterized by aggregation of amyloid-β (Aβ) protein into plaques, hyperphosphorylation of tau protein with the formation of tangles, and brain atrophy in certain regions of the brain (1). Studies including neuropathologic series have shown that a large proportion of cognitively normal older individuals exhibit Alzheimer pathology in the brain (2). Pathological changes (brain amyloidosis, tau pathology, neurodegeneration, and synaptic dysfunction) may be reflected by cerebrospinal fluid (CSF) biomarkers (3). In the Gothenburg H70 Birth Cohort Studies, we recently reported that as much as 45% of cognitively normal 70-year olds had pathological CSF levels of Aβ or tau or both (4). Such CSF pathology was associated with having at least one APOE ε4 allele, which is the strongest genetic risk factor for late-onset AD (5).

The contribution of AD-related genetic variants of lower effect than APOE ε4 is often studied through the use of polygenic risk scores (PRS), which are based on available summary data from previous large genome-wide association studies (GWAS) on AD. Studies using AD-PRS report associations with disease stage and dementia progression (6,7). Previous studies of AD-PRS in relation to AD biomarkers in CSF have mainly been performed in clinical samples or convenience samples of cognitively healthy individuals (ie, samples recruited within health care institutions or through advertising), with mixed results (6,8–15). Studies involving representative population-based samples of dementia-free individuals are very sparse.

In addition to Aβ and tau, it is now possible to measure other CSF biomarkers of potential importance for preclinical AD, such as neurogranin (Ng) (16), a marker of early synaptic degeneration, and neurofilament light protein (NFL), a marker of subcortical large-caliber axonal degeneration (17). Increased levels of Ng, but not of NFL, have been associated with APOE ε4 carriership in subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (17). In the population-based Mayo Clinic Study on Aging (MCSA), presence of the APOE ε4 allele was associated with increased CSF levels of both biomarkers, but only in individuals with mild cognitive impairment (MCI) or dementia (18). So far, none of these markers have been studied in relation to AD-PRS.

The aim of the present study was to investigate non-APOE AD-PRS and APOE ε4 status in relation to CSF biomarkers of AD and neurodegeneration (ie, Aβ42, total tau [t-tau], phosphorylated tau [p-tau], NFL, and Ng) in a representative sample of 70-year olds without dementia recruited from the general population. We also aimed to examine possible interactions with Aβ42 pathology status and APOE ε4 carriership. Further, we wanted to study the same relationships after excluding individuals with MCI (clinical dementia rating [CDR] > 0), who do not fulfill all the criteria of a dementia diagnosis.

Method

Population

The sample used in the present study originates from the 2014–2016 examinations of the H70 Gothenburg Birth Cohort Studies in Gothenburg, Sweden (19). The sample was obtained from the Swedish Population Registry and included persons living in private households and in residential care. Every 70-year old in Gothenburg, Sweden, born during 1944 on prespecified birthdates, was invited to the examination, and 1203 participated (response rate 72.2%). Of these, 430 (35.8%) consented to a lumbar puncture. Contraindications (anticoagulant therapy, immunomodulated therapy, cancer therapy) were present in 108, leaving 322 (26.8%) with a CSF tap. CSF volume was insufficient for analyses in 4 participants, leaving 318 with data on the CSF biomarkers Aβ42, t-tau, and p-tau (4). Due to insufficient CSF volume, 1 person lacked data on Ng; 3 were missing NFL. One further person had an outlier value on NFL and was excluded from the analyses involving that biomarker. Ten additional individuals were excluded based on the quality control (QC) of the genetic data (described in detail below), and 5 had dementia, leaving a final sample of 303 individuals free from dementia with data on Aβ42, t-tau, and p-tau, 302 with data on Ng, and 299 with data on NFL. Characteristics of the total sample are presented in Table 1. Analyses were also performed on the subgroup with CDR = 0; n = 246 (245 for Ng and 242 for NFL).

All participants and/or their close relatives gave written informed consent. The study was approved by the Regional Ethics Review Board in Gothenburg.

Examinations and Diagnoses

Neuropsychiatric examinations were performed by experienced psychiatric nurses. The examinations were semi-structured and included comprehensive psychiatric examinations and an extensive battery of neuropsychological tests (20). Close informant interviews were performed by psychiatric nurses or psychologists. Dementia was diagnosed according to DSM-III-R criteria (21) (which have been used in the Gothenburg studies for over 30 years). A history of stroke/transient ischemic attack (TIA) was determined based on self- or close informant report, and on the Swedish Inpatient and Outpatient Registries (ICD codes: I60, I61, I63.0–I63.5, I63.8–I63.9, I64, G45.0, G45.1, G45.3, G45.9, I69.0, I69.1, I69.2, I69.3, I69.4, and I62).

CSF Analyses

CSF t-tau and p-tau (tau phosphorylated at threonine 181) concentrations were measured with sandwich enzyme-linked immunosorbent assays (ELISAs) (INNOTEST htau Ag and PHOSPHO_TAU [181P], Fujirebio [formerly Innogenetics], Ghent, Belgium) (22, 23). CSF Aβ42 was measured with a sandwich ELISA (INNOTEST Aβ1–42) specifically constructed to measure Aβ starting at amino acid 1 and ending at amino acid 42 (24). For NFL, an in-house sandwich ELISA with capture and detection antibodies that were directed against the central rod domain of the protein (NFL 21 and NFL 23, respectively)

Table 1. Sample Characteristics
Total Samplea (n = 303)
Age at CSF sampling, mean (SD)
Sex: women, n (%)
APOE ε4, n (%)
MMSE, mean (SD)
Years of education, mean (SD)
Stroke, n (%)
Amyloid-beta 42 (pg/mL), mean (SD)
t-tau (pg/mL), mean (SD)
p-tau (pg/mL), mean (SD)
Ng (pg/mL)c,a, mean (SD)
NFL (pg/mL)c,a, mean (SD)

Notes: CSF = cerebrospinal fluid; MMSE = mini-mental state examination; Ng = neurogranin; NFL = neurofilament light.

aTotal sample without dementia diagnosis after QC of the genotyping-data.
bMean is based on 302 individuals. cMean is based on 299 individuals.
was used (25). An in-house ELISA method (26) was used to measure CSF Ng.

Genotyping
Genotyping was performed with the NeuroChip (Illumina) (27). QC included the removal of individuals due to any of the following: per-individual call rate <98%, sex mismatch, and excessive heterozygosity (FHET outside a±0.2). Further, individuals were defined as non-European ancestral outliers, and removed, if their first 2 principal components (PCs) exceeded 6 SDs from the mean values of the European samples in the 1000 Genome global reference population. Closely related individuals were removed based on pairwise PI_HAT (i.e., proportion of the genome that is in identity-by-descent; calculated using --genome option in PLINK) ≥0.2. Genetic variants were excluded due to per-single nucleotide polymorphism (SNP) call rate <98%, minor allele frequency <0.01, and Hardy–Weinberg disequilibrium (p < 1e−6). The Sanger imputation service was used to impute post-QC, using the reference panel of Haplotype Reference Consortium data (HRC1.1). The SNPs rs7412 and rs429358, defining the APOE alleles ε2, ε3, and ε4, were also genotyped, using the KASPar PCR SNP genotyping system (LGC Genomics, Hoddesdon, Herts, UK).

Construction of PRS
Among the AD-PRS constructed in this study was a 39-SNP PRS based on all SNPs (excluding the APOE region) that have shown genome-wide significant association with AD after combined meta-analyses in the very recent GWAS by de Rojas et al. (28) (Supplementary Table 1). Similar to the study by de Rojas et al., where the PRS was validated for the first time, the 39 SNPs were weighted using published effect sizes from IGAP (29), Sims et al. (30), and Jun et al. (31). All genetic variants included in the PRS represent independent signals (28). In addition, AD-PRS were generated using summary statistics from stage 1 of the most recently published AD GWAS including clinically defined AD (29). SNPs were selected using LD-clumping. In short, the European ancestry samples from the 1000 Genomes Project were used as reference panel to remove variants in LD; all variants 250 kb upstream and downstream of the top signal were removed (R² < .001). All variants in the APOE region (chromosome 19, coordinates GRCh37: 44412079–46412079) were removed. In the present study, we created PRS based on 4 p-value thresholds (p < 5e−4, p < 1e−3, p < 1e−2, and p < 1e−1), referred to as 5e−4 PRS, 1e−3 PRS, 1e−2 PRS, and 1e−1 PRS. All AD-PRS were calculated as the sum of the β coefficient multiplied with the number/dosage of effect alleles of each genetic variant, and then standardized.

Statistical Analyses
The values of t-tau, p-tau, and NfL were logarithmized due to skewed distribution. Linear regressions, adjusted for sex, age at CSF sampling, and 10 PCs (computed in PLINK) to correct for population stratification, were used to analyze non-APOE PRS and APOE ε4 status in relation to levels of CSF biomarkers (Aβ42, t-tau, p-tau, Ng, and NfL), both in the total sample and in the CDR = 0 subsample. p-Values generated during these analyses were further validated against a Bonferroni corrected p-value threshold. This threshold was based on tests of 2 different “genetic risk designs” (i.e., APOE ε4 status and non-APOE PRS) in relation to 5 different biomarkers (i.e., 2 x 5 tests = 10; corrected p-value level = .005).

Analyses investigating possible interactions between Aβ42 pathology status (i.e., Aβ42 ≥530 pg/mL yes/no) and the non-APOE PRS, and the APOE ε4 status, in relation to the other CSF biomarkers were performed using linear regressions including the interaction terms Aβ42 pathology status × Non-APOE PRS/APOE ε4 status. Identified interactions were further investigated in analyses stratified on Aβ42 pathology status (linear regressions adjusted for sex, age at CSF sampling, and 10 PCs).

Analyses investigating possible interactions between APOE ε4 status and non-APOE PRS in relation to the CSF biomarkers were performed using linear regressions including the interaction term APOE ε4 status × Non-APOE PRS. Identified interactions were further investigated in analyses stratified on APOE ε4 status (linear regressions adjusted for sex, age at CSF sampling, and 10 PCs).

The statistical analyses were done in IBM SPSS Statistics v26 and R v4.0.0 using stats and ggplot2 packages.

Results
Associations were found between non-APOE PRS and NfL (for the 39-SNP PRS: β = 0.07, SE = 0.03, p = .01 and 5e−4 PRS: β = 0.08, SE = 0.03, p = .001) and Aβ42 (5e−4 PRS: β = −29.8, SE = 13.0, p = .02) in the total sample. The association with NfL remained after Bonferroni correction for multiple testing, but the association with Aβ42 did not. Associations, surviving correction for multiple testing, were also found between APOE ε4 status and Aβ42 (β = −171.1, SE = 25.5, p = 1e−10), t-tau (β = 0.16, SE = 0.05, p = 5e−4), and p-tau (β = 0.13, SE = 0.04, p = .002). Further, a borderline association was found between the ε4 allele and increased levels of Ng in the total sample (β = 15.5, SE = 8.6, p = .07). Apart from an association between the non-APOE PRS at level 1e−5 and NfL (β = 0.06, SE = 0.03, p = .04), and a lack of evidence of an association between non-APOE PRS and Aβ42, similar results were observed in the CDR = 0 subsample (Table 2). No evidence of associations was found between the non-APOE PRS and t-tau, p-tau, and Ng, or between APOE ε4 status and NfL (Table 2).

To study if the identified association, at a nominal p-value level, between the 5e−4 PRS and Aβ42 levels was beyond the effect of APOE, we included APOE ε4 status as a covariate in the linear regression analysis of the relation between the 5e−4 PRS and Aβ42. The result showed that the 5e−4 PRS and APOE ε4 status were both significantly associated (p = 2e−10 and p = .04) with Aβ42 (ie, both variables had an independent effect in relation to Aβ42). Moreover, the explanatory value (adjusted r²) of a model including APOE ε4 status increased slightly, from 0.13 to 0.14, when the non-APOE PRS (5e−4) was added.

There was an interaction between Aβ42 pathology status (≥530 pg/mL yes/no) and non-APOE PRS in relation to NfL levels, both in the total sample (39-SNP PRS: p = .005, 5e−4 PRS: .04) and in the CDR = 0 subsample (39-SNP PRS: p = .005, 5e−4 PRS: .05). Associations between the PRS and CSF NfL were only found among individuals with normal Aβ42 pathology levels, that is, in those without evidence of brain amyloidosis (total sample: 39-SNP PRS: β = 0.11, SE = 0.03, p = 3e−4 [Figure 1] and 5e−4 PRS: β = 0.12, SE = 0.03, p = 2e−4; CDR = 0 subsample: 39-SNP PRS: β = 0.12, SE = 0.03, p = 3e−4 and 5e−4 PRS: β = 0.11, SE = 0.03, p = .001). The associations did not change when adjusting for history of stroke (including TIA) (results not shown). There were no interactions between non-APOE PRS and CSF Aβ42 (brain amyloidosis) status in relation to any of the other CSF-markers (ie, t-tau, p-tau, and Ng), either in the total sample, or in the CDR = 0 subsample (results not
Table 2. Non-APOE PRS and APOE Score in Relation to CSF Biomarkers

	Total Sample	CDR = 0 Subsample										
	39-SNP PRS	5e-8 PRS	1e-5 PRS	1e-3 PRS	1e-1 PRS	APOEε4	39-SNP PRS	5e-8 PRS	1e-5 PRS	1e-3 PRS	1e-1 PRS	APOEε4
Aβ42 β	16.9	-29.8	-8.2	1.1	6.3	-171.1	17.5	-23.2	-0.7	-3.1	6.1	-166.8
Aβ42 SE	13.1	13.0	13.3	13.4	25.5		14.5	14.2	14.7	15.6	14.4	29.5
p	.2	.02	.5	.9	.6	1e-10	.2	.1	.96	.8	.7	5e-8
Ln t-tau β	-0.02	0.03	0.02	0.02	0.007	0.16	-0.02	0.02	0.05	0.002	0.006	0.18
Ln t-tau SE	0.02	0.02	0.02	0.02	0.02	0.05	0.03	0.03	0.03	0.03	0.03	0.05
p	.4	.2	.2	.5	.8	5e-4	.4	.3	.08	.9	.8	0.001
Ln p-tau β	-0.02	0.02	0.02	0.02	0.003	0.13	-0.02	0.02	0.03	0.001	-0.001	0.14
Ln p-tau SE	0.02	0.02	0.02	0.02	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.05
p	.4	.2	.3	.4	.9	.002	.4	.5	.2	.96	.96	.003
Ngε β	-5.3	0.17	2.4	3.3	-2.6	15.5	-6.0	-0.8	5.2	1.9	-3.3	20.1
Ngε SE	4.1	4.2	4.2	4.2	8.6		4.7	4.7	4.8	5.2	4.7	10.2
p	.2	.97	.6	.4	.5	.07	.2	.99	.3	.7	.5	.05
Ln NfLβ	0.07	0.08	0.05	-0.02	-0.03	0.01	0.07	0.08	0.06	-0.04	-0.03	0.02
Ln NfL SE	0.03	0.03	0.03	0.03	0.05		0.03	0.03	0.03	0.03	0.03	0.06
p	.01	.001	.09	.4	.3	.8	.01	.003	.04	.2	.3	.7

Notes: CDR = clinical dementia rating; CSF = cerebrospinal fluid; Ng = neurogranin; NfL = neurofilament light; PRS = polygenic risk score; SNP = single nucleotide polymorphism.

*Similar results for associations between APOE ε4 and Aβ42, t-tau, and p-tau in the CDR = 0 subsample have been published previously ([4]). Due to removal of samples during the quality control of the genome-wide association study data, the number of individuals were slightly lower in the present study. Results for Ng are based on 302 individuals in the total sample, and 245 in the CDR = 0 subsample. Results for NfL are based on 299 individuals in the total sample, and 242 in the CDR = 0 subsample. *Surviving Bonferroni correction for multiple testing (based on a corrected p-value level of .005). Significant p-values (p < .05) are presented in bold.
shown). Further, there were no interactions between APOE ε4 status and CSF Aβ42 status in relation to any of the biomarkers (results not shown).

There was a trend towards an interaction between APOE ε4 status and the 39-SNP PRS in relation to Aβ42 in the total sample (p = .06), and an interaction in the CDR = 0 subsample (p = .04). An association between the PRS and CSF Aβ42 was only found among APOE ε4 carriers in the total sample (β = −62.6, SE = 27.7, p = .03) (Figure 2). In the CDR = 0 subsample, there was a borderline association in ε4 carriers (β = −59.9, SE = 30.0, p = .06). The interactions between APOE ε4 status and the 3e4 PRS in relation to Aβ42 only approached significance (total sample: p = .09, CDR = 0 subsample: p = .1), but similar to results for the 39-SNP PRS, stratification based on ε4 status showed an association in ε4 carriers in the total sample (β = −56.1, SE = 22.6, p = .02), and a borderline association in the CDR = 0 subsample (β = −48.3, SE = 25.1, p = .06). No interactions were observed between APOE ε4 status and non-APOE PRS in relation to the other CSF-markers in the total sample, and the same was the case for the CDR = 0 subsample (results not shown).

Discussion

In a representative sample of 70-year olds free from dementia, non-APOE PRS was associated with CSF levels of NfL and Aβ42. The association with NfL remained after correction for multiple testing, while the association with Aβ42 did not. Associations surviving correction were also found between APOE ε4 status and Aβ42, t-tau, and p-tau, while Ng was associated at a borderline level. Stratified analyses, based on identified interactions, showed associations between the non-APOE PRS and CSF levels of NfL only in individuals without CSF biomarker evidence of brain amyloid pathology. In addition, the non-APOE PRS was associated with CSF levels of Aβ42 among APOE ε4 carriers, but not in those without this allele.

Previous studies of AD-PRS in relation to the CSF biomarkers Aβ42, t-tau, and p-tau in representative population-based samples of cognitively healthy individuals are lacking. Studies performed among cognitively healthy and MCI individuals from convenience and clinical samples show discrepant results. A possible explanation could be heterogeneity of the samples, regarding both age and diagnostic status. Considering Aβ42, several studies, including ours, show association with either APOE ε4 status or APOE PRS (10,12,15), but association with non-APOE PRS, or APOE PRS adjusted for APOE ε4 status, is rare (14). In our study, we see an association between a non-APOE PRS at the genome-wide significance level, but the finding is not strong enough to survive correction for multiple testing and should therefore be interpreted with caution. A recent study reported that both APOE and non-APOE PRS predicted MCI and AD, while only APOE predicted amyloid deposition based on positron emission tomography (PET), suggesting that genetic risk for AD can differ from genetic risk for amyloid deposition (32). Considering tau levels, reports on association with APOE in cognitively healthy individuals are rare (4). Apart from the AIBL study, which used a small CSF biomarker sample, associations between non-APOE PRS and tau levels have only been reported in analyses including individuals with MCI (12,14). Few studies report results for non-APOE PRS in relation to CSF biomarkers stratified by APOE ε4 status. We found an association between non-APOE PRS and Aβ42 in ε4 carriers. This type of association could not be seen for the other biomarkers.
In contrast to our results, a study on MCI reported an association between non-APOE PRS and CSF t-tau and p-tau, which became stronger in ε4 carriers, while no association was found with Aβ42 in ε4 carriers (12).

Due to discrepant results, studies in larger samples are needed to sort out the relationship between AD-PRS and novel CSF biomarkers in cognitively healthy individuals. Large population-based samples with data on CSF-biomarkers are rare, but combining data from several smaller studies would enable meta-analyses, or even pooled analyses if the data can be homogenized in an appropriate way. Further, discrepant findings among studies could probably to some extent also be explained by differences in the PRS used. Among the PRS employed in our study, it was apparent that those including SNPs based on a genome-wide significance level performed better than the broader versions of PRS including SNPs based on higher significance levels.

To the best of our knowledge, this is the first study investigating the relation between AD-PRS and novel CSF biomarkers (ie, Ng and NfL) suggested to be involved in the AD disease process. CSF NfL predicts progression to MCI and dementia among cognitively normal individuals with preclinical AD (33). Although it is a valuable marker of early neurodegeneration, it is not specific for AD pathobiology (17,33). In patients in the AD spectrum, NfL is more closely linked to concomitant cerebrovascular disease (34–36). Indeed, we found that NfL was associated with non-APOE PRS, but the association was only present among individuals without pathological levels of Aβ42. These results are to some extent in line with the findings by Mattsson et al. (17), showing that although NfL associates with AD, the association was strongest in individuals without Aβ pathology. Moreover, the authors found that the association between NfL and other AD traits, such as cognitive decline, brain atrophy, brain hypometabolism, and white matter hyperintensities, often was stronger in individuals without Aβ42 pathology.

We also found an association between the non-APOE PRS and Aβ42 in APOE ε4 carriers. It may be that the associations we see with the non-APOE PRS reflect different pathways in the process of AD, and that the association with NfL indicates a pre-amyloid phase. The influence of polygenic scores during the prodromal phase of AD has been discussed in previous literature (6,37). An association between the non-APOE PRS and preclinical, and prodromal, disease independent of amyloid pathology is reasonable, since many of the genetic variants included in the PRS are involved in non-amyloidogenic pathways, such as immune response and inflammation, lipid transport, and endocytosis (28). Alternative explanations include that the association between AD-PRS and NfL among cognitively unimpaired individuals without amyloid pathology reflects brain processes also involved in accelerated aging or other neurodegenerative diseases (eg, Lewy body disease, frontal lobe dementia), in inflammatory diseases, as well as in cerebrovascular disease. A genetic overlap between these types of disorders has been suggested in several previous studies (38–40). The association between the non-APOE PRS and NfL in our sample did not change after adjusting for stroke (including TIA). However, the number of individuals with stroke in our cohort was low. Moreover, a relation between the non-APOE PRS and types of pathophysiology other than plaques and tangles characteristic of AD is further supported by the finding that elevated levels of NfL in our sample were not driven by APOE, the strongest genetic factor modulating risk for AD.

We also found a borderline association between APOE ε4 carriership and increased CSF levels of Ng in cognitively unimpaired 70-year olds. This result contrasts the finding in a previous study in one of the other cohorts included in the Gothenburg H70 Birth Cohort Studies, where no association was seen in 129 cognitively healthy individuals with a mean age of 82 years (41). A similar result was seen in the population-based MCSEA, showing no association between APOE ε4 and Ng in cognitively unimpaired older individuals (n = 687) (18). One reason for the discrepancy may be the high frequency of APOE ε4 carriers (37%) in our sample. However, as mentioned, the association seen in the present study is relatively weak and has to be further investigated in other samples before any conclusions could be drawn.

Among the strengths of our study are the comprehensive examinations and the homogeneous, and relatively large, CSF biomarker sample of cognitively unimpaired individuals originating from a representative population-based study. All individuals were dementia-free, and analyses including only those with CDR = 0 did not change the results, indicating that individuals with CDR above 0 are relatively similar to the rest of the sample. There are also some limitations. Even if the number of individuals with CSF data was relatively large, the overall number is low, at least for a genetic study, which influences the statistical power. Considering the findings for non-APOE PRS, only the association with NfL survives Bonferroni correction for multiple testing. Similarly, among the stratified analyses, the NfL-related findings seem to be more robust. Further, the cross-sectional design of the study makes it impossible to identify individuals who will stay cognitively healthy over time for subgroup analyses. Moreover, the study involves a Caucasian 70-year-old population and generalization of the results to other populations should be done with caution.

In conclusion, we found that APOE genotype was associated with CSF Aβ42, t-tau, and p-tau among cognitively healthy 70-year olds recruited from the general population. We also found that genetic risk of AD beyond the APOE locus was associated with NfL and Aβ42. However, the association with NfL was only seen in individuals without evidence of Aβ42 pathology, and the association with Aβ42 was only seen in APOE ε4 carriers, suggesting that associations between the non-APOE AD-PRS and these markers of neurodegeneration and brain amyloidosis are driven by different mechanisms.

Supplementary Material
Supplementary data are available at The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences online.

Funding
The study was financed by grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF agreement (ALFBG-716681, ALFBG-715986, ALFBG-81392, ALFBG-771071), the Swedish Research Council (2012-5041, 2013-8717, 2015-02830, 2016-01590, 2019-01096, 2017-00639, 2017-00915, 2018-02532, 2019-02075), Swedish Research Council for Health, Working Life and Welfare (2013-1202, 2018-00471, AGECAP 2013-2300, 2013-2496), Konung Gustaf V:s och Drottning Victorias Frimurarstiftelse, Hjämfonden (FO2016-0214, FO2017-0243, FO2018-0214, FO2019-0163), Alzheimerfonden (AF-742881, AF-930582, AF-646061, AF-741361, AF-842471, AF-737641), Evind och Elsa K'sons Sylvars stiftelse, Magnus Bergvalls stiftelse, Stiftelsen Hjalmar Svenssons forskningsfond, Stiftelsen For Gamla Tjänarinnor, Stiftelsen Demensfonden, the Alzheimer Drug Discovery Foundation (ADDF), USA (RDAPB-201809-2016615 and RDAPB-201809-20166826), the European Research Council (681712), and European Union Joint Program for Neurodegenerative Disorders (JPDN2019-466-236). H.Z. is a Wallenberg Scholar. The i–Select chips was funded by the French National Foundation on Alzheimer’s disease and related disorders. European Alzheimer’s Disease Initiative (EADI) was
supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2, and the Lille University Hospital. GERAD/PERADES was supported by the Medical Research Council (grant no. 503480), Alzheimer's Research UK (grant no. 503176), the Wellcome Trust (grant no. 082604/207/2), and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grants no. 01GI0102, 01GI0711, and 01GI0420. Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE) was partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract NO1-AG-12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. Alzheimer Disease Genetics Consortium (ADGC) was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer's Association grant ADGC-10-196728.

Conflict of Interest
H.Z. has served at scientific advisory boards for Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pinteer Therapeutics, and CogRx; has given lectures in symposia sponsored by Fujirebio, Alzecure, and Biogen; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). K.B. has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axxon, Biogen, JOMDD/Shimadzu, Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. All other authors declared no conflict of interest.

Acknowledgments
We thank the participants in the Gothenburg H70 Birth Cohort Study. We also thank UCL Genomics, London, UK, for performing the genotyping, and the Genomic Aggregation Project in Sweden (GAPS), the Karolinska Institute, Stockholm, for help and advice with the QC and imputation. We thank the International Genomics of Alzheimer’s Project (IGAP) for providing summary result data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families.

Author Contributions
A.Z. and I.S. designed the study; A.Z., I.S., S.K., and J.N. took part in the acquisition of subjects and data; A.Z. analyzed the data; A.Z., I.S., S.K., J.N., R.G., J.B., M.W., H.Z., and K.B. took part in the interpretation of the data; and I.S. and A.Z. drafted the manuscript; S.K., J.N., R.G., J.B., M.W., H.Z., and K.B. revised it critically for important intellectual content; A.Z., I.S., S.K., J.N., R.G., J.B., M.W., H.Z., and K.B. approved the final version of the manuscript; and I.S., A.Z., M.W., H.Z., and K.B. funded the study.

References
1. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403. doi:10.1016/S0140-6736(06)69113-7
2. Tomlinson BE, Blessed G, Roth M. Observations on the brains of non-demented old people. J Neurol Sci. 1968;7:331–356. doi:10.1016/0022-510X(68)90354-8
3. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284:643–663. doi:10.1111/joim.12816
4. Kern S, Zetterberg H, Kern J, et al. Prevalence of preclinical Alzheimer disease: comparison of current classification systems. Neurology. 2018;90:e1682–e1691. doi:10.1212/WNL.0000000000005476
5. Farrer LA, Cuppers LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. J Am Med Assoc. 1997;278:1349–1356.
6. Desikan RS, Fan CC, Wang Y, et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med. 2017;14:e1002258. doi:10.1371/journal.pmed.1002258
7. Adams HH, de Bruijn RE, Hofman A, et al. Genetic risk of neurodegenerative disease is associated with mild cognitive impairment and conversion to dementia. Alzheimers Dement. 2015;11:1277–1285. doi:10.1016/j.jalz.2014.12.008
8. Altman A, Schiødt MA, Shaoi M, et al. A comprehensive analysis of methods for assessing polygenic burden on Alzheimer’s disease pathology and risk beyond APOE. Brain Commun. 2020;2:fcz047. doi:10.1093/braincomms/fcz047
9. Sleezers K, Bettens K, De Roock A, et al.; BELNEU Consortium. A 22-single nucleotide polymorphism Alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ42. Alzheimers Dement. 2015;11:1452–1460. doi:10.1016/j.jalz.2015.02.013
10. Darst BF, Kosic RL, Racine AM, et al. Pathway-specific polygenic risk scores as predictors of amyloid-β deposition and cognitive function in a sample at increased risk for Alzheimer’s disease. J Alzheimers Dis. 2017;55:473–484. doi:10.3233/JAD-161019
11. Martiskainen H, Helselamin S, Vovanaathan J, et al. Effects of Alzheimer’s disease-associated risk loci on cerebrospinal fluid biomarkers and disease progression: a polygenic risk score approach. J Alzheimers Dis. 2015;43:565–573. doi:10.3233/JAD-140777
12. Louwersheimer E, Wölgfraber G, Espinosa A, et al. Alzheimer’s disease risk variants modulate endophenotypes in mild cognitive impairment. Alzheimer’s Dement. 2016;12:872–881. doi:10.1016/j.jalz.2016.01.006
13. Mormino EC, Sperling RA, Holmes A, et al.; Alzheimer’s Disease Neuroimaging Initiative. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology. 2016;87:481–488. doi:10.1212/WNL.000000000002922
14. Tan CH, Fan CC, Mormino EC, et al.; Alzheimer’s Disease Neuroimaging Initiative. Polygenic hazard score: an enrichment marker for Alzheimer’s associated amyloid and tau deposition. Acta Neuropathol. 2018;135:85–93. doi:10.1007/s00401-017-1789-4
15. Porter T, Burnham SC, Milicic L, et al.; ABLE Research Group. Utility of an Alzheimer’s disease risk-weighted polygenic risk score for predicting rates of cognitive decline in preclinical Alzheimer’s disease: a prospective longitudinal study. J Alzheimers Dis. 2016;66:1193–1211. doi:10.3233/JAD-150713
16. Casaleto KB, Elahi FM, Betcher BM, et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology. 2017;89:1782–1788. doi:10.1212/WNL.000000000004569
17. Mattsson N, Insel PS, Palmqvist S, et al.; Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol Med. 2016;8:1184–1196. doi:10.15252/emmm.201606540
18. Mielke MM, Sjärinen JA, Blennow K, et al. Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin. Alzheimers Dement. 2019;15:1437–1447. doi:10.1016/j.jalz.2019.07.009
19. Rydberg Sterner T, Ahlner F, Blennow K, et al. The Gothenburg H70 Birth cohort study 2014-16: design, methods and study population. Eur J Epidemiol. 2019;34:191–209. doi:10.1007/s10654-018-0459-8
20. Guo X, Waern M, Sjogren K, et al. Midlife respiratory function and incidence of Alzheimer’s disease: a 29-year longitudinal study in women. Neurobiol Aging. 2007;28:343–350. doi:10.1016/j.neurobiolaging.2006.01.008
21. American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders. 3rd ed., rev. Washington, DC: American Psychiatric Press. 1987.
22. Vannemelchen E, Vanderstichele H, Davidsson P, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett. 2000;285:49–52. doi:10.1016/S0304-3940(00)01036-3
23. Blennow K, Wallin A, Agren H, Spencer C, Siegfried J, Vannemelchen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995;26:231–245. doi:10.1007/BF02815140
24. Andreasen N, Hesse C, Davidsson P, et al. Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol. 1999;56:673–680. doi:10.1001/archneur.56.6.673
25. Gaetani L, Höglund K, Parnetti L, et al. A new enzyme-linked immuno-sorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. *Alzheimers Res Ther*. 2018;10:8. doi:10.1186/s13195-018-0339-1

26. Portelius E, Zetterberg H, Skillback T, et al.; Alzheimer's Disease Neuroimaging Initiative. Cerebrospinal fluid neurofilament: relation to cognition and neurodegeneration in Alzheimer's disease. *Brain*. 2015;138(Pt 11):3373–3385. doi:10.1093/brain/awv267

27. Blauwendraat C, Faghri F, Pihlstrom L, et al.; International Parkinson's Disease Genomics Consortium (IPDGC), COURAGE-PD Consortium. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. *Neurobiol Aging*. 2017;57:247.e9–247.e13. doi:10.1016/j.neurobiolaging.2017.05.009

28. de Rojas I, Moreno-Grau S, Tesi N, et al. Common variants in Alzheimer's disease: novel association of six genetic variants with AD and risk stratification by polygenic risk scores. *medRxiv*. 2020, preprint: not peer reviewed. doi:10.1101/19012021

29. Kunkle BW, Grenier-Boley B, Sims R, et al.; Alzheimer Disease Genetics Consortium (ADGC); European Alzheimer's Disease Initiative (EADI); Cohort for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. *Nat Genet*. 2019;51:1423–1424. doi:10.1038/s41588-019-0495-7

30. Sims R, van der Lee SJ, Naj AC, et al.; ARUK Consortium; GERAD/PERADES, CHARGE, ADGC, EADI. Rare coding variants in PLCG2, AB3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. *Nat Genet*. 2017;49:1373–1384. doi:10.1038/ng.3916

31. Jun G, Ibrahim-Verbaas CA, Vronskaya M, et al.; IGAP Consortium. A novel Alzheimer disease locus located near the gene encoding tau protein. *Mol Psychiatry*. 2016;21:108–117. doi:10.1038/mp.2015.23

32. Leonenko G, Shoaib M, Bellou E, et al.; Alzheimer's Disease Neuroimaging Initiative. Genetic risk for Alzheimer disease is distinct from genetic risk for amyloid deposition. *Ann Neurol*. 2019;86:427–435. doi:10.1002/ana.25330

33. Kern S, Syrjanen JA, Blennow K, et al. Association of cerebrospinal fluid neurofilament light protein with risk of mild cognitive impairment among individuals without cognitive impairment. *JAMA Neurol*. 2019;76:187–191. doi:10.1001/jamaneurol.2018.3459

34. Rosengren LE, Karlsson JE, Sjögren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia. *Neurology*. 1999;52:1090–1093. doi:10.1212/wnl.52.5.1090

35. Skillback T, Farahmand B, Bartlett JW, et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. *Neurology*. 2014;83:1945–1953. doi:10.1212/wnl.0000000000001015

36. Sjögren M, Blomberg M, Jonsson M, et al. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. *J Neurosci Res*. 2001;66:510–516. doi:10.1002/jnr.20124

37. Escott-Price V, Sims R, Bannister C, et al.; GERAD/PERADES; IGAP Consorita. Common polygenic variation enhances risk prediction for Alzheimer's disease. *Brain*. 2015;138:3673–3684. doi:10.1093/brain/awv268

38. Guerreiro R, Gibbons E, Tibbals-Pereira M, Kun-Rodrigues C, Santos GC, Bray J. Genetic architecture of common non-Alzheimer's disease dementias. *Neurobiol Dis*. 2020;142:104946. doi:10.1016/j.nbd.2020.104946

39. Yokoyama JS, Wang Y, Schork AJ, et al. Association between genetic traits for immune-mediated diseases and Alzheimer disease. *J Am Med Assoc Neurol*. 2016;73:691–697. doi:10.1001/jamaneurol.2016.0150

40. Ferrari R, Wang Y, Vandrovcova J, et al.; International FTD-Genomics Consortium (IFGC), International Parkinson's Disease Genomics Consortium (IPDGC), International Genomics of Alzheimer's Project (IGAP). Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. *J Neurol Neurosurg Psychiatry*. 2017;88:152–164. doi:10.1136/jnnp-2016-314411

41. Höglund K, Kern S, Zettergren A, et al. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. *Transl Psychiatry*. 2017;7:e995. doi:10.1038/tp.2016.232