Development of soil test crop response based fertilizer prescriptions through integrated plant nutrition system for aggregatum onion (*Allium cepa* L.) under drip fertigation

M. Parvathi Sugumari*
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India

S. Maragatham
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India

R. Santhi
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India

R. Swarna Priya
Department of Vegetable Science, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India

* Corresponding author. Email: parumeenakshi.acre@gmail.com

Article Info
https://doi.org/10.31018/jans.v13i3.2907
Received: August 05, 2021
Revised: September 8, 2021
Accepted: September 12, 2021

INTRODUCTION

Aggregatum onion (*Allium cepa* var. *aggregatum*), belonging to the Alliaceae family portrayed as “Queen of the kitchen” is one of the most important commercial bulb vegetables. India is the second-largest producer next to China with cultivating area, production and productivity of 1.43 million hectares, 26.15 million tonnes and 18.3 MT ha⁻¹, respectively. In Tamil Nadu, it is cultivated over an area of 0.27 lakh hectares and production of 3.11 lakh tonnes during 2017-2018 (https://www.indiastat.com/agriculture-data.aspx). The existence of allyl propyl disulphide makes onion having an idiosyncratic pungent taste. The foremost things to be appraised for escalating high yield are optimum irrigation and balanced fertilization since it is a shallow-rooted and high nutrient requiring crop. This can be achieved in a better manner by the
adoption of the soil test crop response approach as described by Ramamoorthy et al. (1987) and drip fertigation (Solanki et al., 2020). Soil test based fertilizer recommendation harmonizes the much debated approaches namely “Fertilizing the soil” versus “Fertilizing the crop” guaranteeing a real balance between the applied and soil available nutrients (Vijayakumar et al., 2017). It is a demand-driven technology that allows farmers to choose yield targets based on resource endowment capacity and farm typology, thereby using the plant nutrients judiciously. Although there is a fast retrieval of nutrients from inorganic fertilizers, utilization of organic manures and them that is inorganic manures meet crop nutrient requirements will be an inevitable practice to augment sustainable agriculture consecutively upgrading crop productivity and quality in the near future (Adekiya et al., 2020). So, the integrated plant nutrition system will be a significant option for cost-effective sustainable management of soil fertility. With this view, Fertilizer Prescription Equations (FPEs) were developed for aggregatum onion under soil application by Santhi et al. (2002), adopting STCR – IPNS approach. The rising demand for water supply exerts tremendous pressure on agricultural sectors to use available water efficiently to meet future needs. Onion requires frequent application as furnished below:

\(\text{FN} \)	0.99 T – 0.37 SN
\(\text{FP}_2\text{O}_5 \)	0.58 T – 1.43 SP
\(\text{FK}_2\text{O} \)	0.67 T – 0.25 SK

For \(\text{STCR – NPK} + \text{FYM} \) at 12.5 t ha\(^{-1}\) and \(\text{STCR – NPK} + \text{Bio compost} \) at 5 t ha\(^{-1}\) treatments, \(\text{FYM} \) at 12.5 t ha\(^{-1}\) (24% moisture, 0.53, 0.26, 0.42 % N, P, K) and Bio compost at 5 t ha\(^{-1}\) (33% moisture, 0.98, 0.56, 0.5 % N, P, K) respectively were applied in addition to the calculated fertilizer doses from FPEs. Depending on the treatments, a full dose of phosphorous was applied basally during sowing as SSP. Nitrogen and potassium were applied as urea and MOP respectively through the treatments, FYM @ 12.5 t ha\(^{-1}\), NPK + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 14 t ha\(^{-1}\), NPK + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 15 t ha\(^{-1}\), NPK + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 16 t ha\(^{-1}\). The targeted yield was 15 t ha\(^{-1}\) for the targeted yield of 16 t ha\(^{-1}\). STCR based NPK fertilizer recommendation + FYM @ 12.5 t ha\(^{-1}\) for the targeted yield of 15 t ha\(^{-1}\), \(T_{10} \) – STCR based NPK fertilizer recommendation + FYM @ 12.5 t ha\(^{-1}\) for the targeted yield of 16 t ha\(^{-1}\), \(T_{11} \) – Bio compost @ 2.5 t ha\(^{-1}\), \(T_{12} \) – Bio compost @ 5 t ha\(^{-1}\), \(T_{13} \) – STCR based NPK fertilizer recommendation + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 14 t ha\(^{-1}\), \(T_{14} \) – STCR based NPK fertilizer recommendation + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 15 t ha\(^{-1}\), \(T_{15} \) – STCR based NPK fertilizer recommendation + Bio compost @ 5 t ha\(^{-1}\) for the targeted yield of 16 t ha\(^{-1}\).

Experimental methodology

The soil was sampled before initiating the experiment, processed and analyzed for available N, P, K following standard procedures of Subbiah and Asija (1956), Olsen et al. (1954), Stanford and English (1949), respectively. The fertilizer doses were calculated for STCR treatments using the existing FPEs developed for surface irrigation and the conventional method of fertilizer application as furnished below:

\[\text{SN} = 0.99 \text{ T} - 0.37 \text{ SP} \]
\[\text{SP} = 0.58 \text{ T} - 1.43 \text{ SK} \]
\[\text{SK} = 0.67 \text{ T} - 0.25 \text{ SN} \]

MATERIALS AND METHODS

Experimental site and initial soil description

The field experiment was conducted in a farmer’s field in Kuppanur village of Thondamuthur, Coimbatore where aggregatum onion (variety CO 4) was sown during rabi (2020). The experimental field’s soil was categorized under Palaviduthi soil series, red, non-calcareous, sandy loam (Typic Rhodustalf) with pH 7.4 and EC 0.15 dSm\(^{-1}\). The initial fertility status was low in organic carbon (0.47%) and available nitrogen (196 Kg ha\(^{-1}\)), high in available phosphorus (35 Kg ha\(^{-1}\)), medium in available potassium (250 Kg ha\(^{-1}\)).
take of bulb and straw was computed and added to determine total uptake.

From the experimental data on bulb yield, nutrient uptake, initial soil available N, P, K and fertilizer doses added (Table 2), fertilizer prescription equations were developed for aggregatum onion under drip fertigation by refinement of existing FPEs by the acquisition of protocol on Soil Test Crop Response Correlation as followed by AICRP – STCR. These data were statistically analyzed using SPSS software to determine the effect of treatments imposed. The data obtained from treatments T1, T3 to T15 were utilized for the development of FPEs. To determine the contribution of organics, T6, T7 and T11, T12 were considered for STCR – IPNS (FYM) and STCR – IPNS (Biocompost) respectively. The computation of basic parameters was done according to the methodology of Ramamoorthy et al. (1967).

1. Nutrient requirement NR (Kg q⁻¹)

\[\text{Kg of } \text{N/P/O}_2/\text{K}_2\text{O required per quintal of bulb production} = \text{Total nutrient uptake of N/P/O}_2/\text{K}_2\text{O (Kg ha}^{-1})/\text{Bulb yield (q ha}^{-1}) \]

\[\text{..... Eq. 1} \]

2. Percent contribution of nutrients from soil Cₛ (%)

\[\text{Percent contribution of } \text{N/P/O}_2/\text{K}_2\text{O from soil} = \text{Total uptake of N/P/O}_2/\text{K}_2\text{O in control plot (Kg ha}^{-1})/\text{Soil test value of N/P/O}_2/\text{K}_2\text{O in control plot (Kg ha}^{-1}) \times 100 \]

\[\text{..... Eq. 2} \]

3. Percent contribution of nutrients from fertilizer Cf (%)

\[\text{Percent contribution of } \text{N/P/O}_2/\text{K}_2\text{O from fertilizer} = \text{Total uptake of N/P/O}_2/\text{K}_2\text{O in treated plot (Kg ha}^{-1}) - \text{STV of N/P/O}_2/\text{K}_2\text{O in treated plot} \times \text{Average } Cₛ / \text{Nutrient applied through fertilizer (Kg ha}^{-1}) \times 100 \]

\[\text{..... Eq. 3} \]

4. Percent contribution of nutrients from organics Co (%)

\[\text{Percent contribution of } \text{N/P/O}_2/\text{K}_2\text{O from organics} = \text{Total nutrient uptake of N/P/O}_2/\text{K}_2\text{O in organics treated plot (Kg ha}^{-1}) - \text{STV of N/P/O}_2/\text{K}_2\text{O in treated plot} \times \text{Average } Cₛ / \text{Amount of N/P/O}_2/\text{K}_2\text{O added through organics (Kg ha}^{-1}) \times 100 \]

\[\text{..... Eq. 4} \]

Fertilizer prescription equations

By utilizing the basic parameters, the Fertilizer Prescription Equations were created for aggregatum onion under drip fertigation which could be used to calculate the required dose of fertilizers for a particular soil test value for the soils belonging to Palaviduthi soil series. The FPEs were developed as follows:

\[\text{FN} = \frac{\text{NR}}{\text{CF} \times 100} \times \text{Cₛ} - \text{SN} \]

\[\text{..... Eq. 5} \]

\[\text{FP} = \frac{\text{FR}}{\text{CF} \times 100} \times \text{Cₛ} - \text{SN} - \text{Co} \]

\[\text{..... Eq. 6} \]

2. **Fertilizer phosphorus**

\[\text{FP}_2\text{O}_5 = \frac{\text{NR}}{\text{CF} \times 100} \times \text{T} - \text{Cs} \times 2.29 \text{SP} \]

\[\text{..... Eq. 7} \]

\[\text{FP}_2\text{O}_5 = \frac{\text{NR}}{\text{CF} \times 100} \times \text{T} - \text{Cs} \times 2.29 \text{SP} - \text{Co} \times 2.29 \text{OP} \]

\[\text{..... Eq. 8} \]

3. **Fertilizer Potassium**

\[\text{FK}_2\text{O} = \frac{\text{NR}}{\text{CF} \times 100} \times \text{Cs} \times 1.21 \text{SK} \]

\[\text{..... Eq. 9} \]

\[\text{FK}_2\text{O} = \frac{\text{NR}}{\text{CF} \times 100} \times \text{Cs} \times 1.21 \text{OK} \]

\[\text{..... Eq. 10} \]

1. **Fertilizer nitrogen**

where \(\text{FN} \), \(\text{FP}_2\text{O}_5 \), \(\text{FK}_2\text{O} \) are fertilizer N, P₂O₅, K₂O (Kg ha⁻¹) respectively. \(\text{NR} \) is nutrient requirement of N, \(\text{P}_2\text{O}_5 \), \(\text{K}_2\text{O} \) (Kg q⁻¹), \(\text{Cs} \) is percent contribution of nutrients from soil, \(\text{Cf} \) is percent contribution of nutrients from fertilizer, \(\text{Co} \) is percent contribution of nutrients through organics (FYM and Biocompost), \(\text{T} \) is targeted yield (q ha⁻¹), \(\text{SN}, \text{SP}, \text{SK} \) are available N, P, K (Kg ha⁻¹) and \(\text{ON}, \text{OP}, \text{OK} \) are quantity of N, P, K supplied through organics (FYM and Biocompost) in Kg ha⁻¹, respectively.

RESULTS AND DISCUSSION

Bulb yield

The present study observed that the bulb yield of aggregatum onion (Allium cepa L.) was increased with increasing fertilizer doses of different treatments (Table 2). The remarkably elevated yield was recorded in \(\text{T}_{10} - \text{STCR – NPK + FYM @ 12.5 t} - \text{16 t ha}^{-1} \) (17.58 t ha⁻¹) followed by \(\text{T}_{15} \) (16.91 t ha⁻¹) which was on par with \(\text{T}_5 \). Subsequently, the greater yield was acquired in \(\text{T}_{14} \). It was statistically collated with \(\text{T}_8 \) and \(\text{T}_5 \). The minimal yield was registered in \(\text{T}_1 – \text{Absolute control (6.56 t ha}^{-1}) \). The high targeted yield (16 t ha⁻¹) treatments of STCR – NPK, STCR – NPK + Biocompost @ 5 t ha⁻¹ and STCR – NPK + FYM @ 12.5 t ha⁻¹ exhibited 6, 13, 16 percent increase in yield respectively over \(\text{T}_2 – \text{Blanket recommendation + FYM @ 12.5 t ha}^{-1} \). It was speculated that the inducement of yield in the STCR approach might be due to the consideration of initial soil fertility levels, crop nutrient removal and efficiency.
of nutrients both in soil and added fertilizer. This reason was also supported by Satalagaon et al. (2014) in their study on STCR based fertilizer recommendation for onion through soil application in deep black soil. The main cause for maximum yield in STCR – IPNS over STCR – NPK alone was the slow and effective release of nutrients through organics compared to readily available fertilizer nutrients. Babu et al. (2018) had reported that the escalated yield in drip fertigation than soil application was because of constant nutrient availability during the entire crop growth period. As a whole, the amalgamation of STCR – IPNS approach of fertilizer prescription together with drip fertigation proclaimed the improvement in yield by rising fertilizer use efficiency and timely supply of nutrients than that of adopting the same approach through the conventional method of fertilizer application and surface irrigation even though in similar condition.

Table 1. Details of fertigation given as per the stage wise requirement for aggregatum onion following TNAU – CPG (2020)

S.No	Crop stage	Duration (DAS)	Nutrient to be supplied (%)	No. of Fertilizations
1	Sowing to establishment	1-10	N 10, K 10	2
2	Vegetative	11-35	N 30, K 20	3
3	Bulb formation	36-60	N 30, K 30	3
4	Bulb development	60-90	N 30, K 40	3

Nutrient uptake
There existed a significant influence of treatments on nutrient uptake, having a range of N uptake (27.13 to 85.79 Kg ha⁻¹), P uptake (11.26 to 26.10 Kg ha⁻¹), K uptake (31.47 to 65.11 Kg ha⁻¹). T₁₀ – STCR – NPK + FYM @ 12.5 t ha⁻¹ - 16 t ha⁻¹ exhibited greater N, P, K uptake of 85.79, 26.10 and 65.11 Kg ha⁻¹, respectively. Following T₁₀, T₁₅ revealed high nutrient uptake, which was on par with T₉. The crop had a lesser nutrient uptake in T₁ – Absolute control. Nitrogen uptake manifested a 3.21 and 1.19 fold increase than P and K uptake, respectively. This pattern of nutrient uptake matched homogeneously with the research on STCR – IPNS based fertilizer prescriptions in Cassava (Suganya et al., 2016), Pearl millet (Ravikiran et al., 2018; Sekaran et al., 2019) and in Bhendi (Ammal et al., 2020). The greater nutrient uptake in STCR – IPNS treatments could be attributed to the capability of FYM and Bio compost, which created a conducive environment for the crop by enhancing soil properties, nutrient retention and water holding capacity. This would mobilize the unavailable nutrients and also had some positive effects on root growth ensuring improved uptake. The increased nutrient uptake in STCR – NPK + FYM treatments than STCR – NPK + Bio compost treatments might be due to more nutrients from FYM than bio compost thereby minimizing the losses. This might be attributed due to its larger quantity of application. Thangasamy (2016) quantified the nutrient uptake pattern in his study on onion, whose results intimated that basal and soil application of fertilizers was not enough to match the periods of peak nutrient uptake. From the current study, it was pretended to be advantageous to follow STCR – IPNS approach through drip fertigation than through soil application since the nutrients were supplied to the crop at the right time and right method through drip fertigation, the applied nutrients were proficiently taken up by the crop. On the other side, the organics might release the nutrients gradually whose combination had resulted in optimum nutrient uptake.

Response and percent achievement
By assessing the response, it was obvious that the peak response of 11.02 t ha⁻¹ was attained in T₁₀, followed by T₁₅ with a response of 10.4 t ha⁻¹. It increased with an increase in yield target. Integrated use of inorganic and organic fertilizers exposed a greater response over inorganic fertilizers alone. This was identical with the findings on STCR – IPNS approach through drip fertigation in hybrid maize (Mohanapiya et al., 2020). In the present case, the percent yield achievement was between 97.7 to 114.7.

Basic parameters
The basic parameters viz., nutrient requirement (NR), percent contribution of nutrients from soil (Cₛ), fertilizers (Cᵢ) and organics (Cₒ) viz., FYM and Bio compost which were quantified from the experimental data are given in Table 3. It was confessed that the nutrient required to bring about one quintal of bulb yield in aggregatum onion was 0.43, 0.32, 0.45 Kg of N, P₂O₅, K₂O, respectively (Fig. 1). The percent contribution of nutrients from soil and fertilizers was reckoned to be 14.01 and 54.57 for N, 35.11 and 50.50 for P₂O₅, 12.69 and 70.12 for K₂O, respectively. The FYM contributed nutrients of 41.02, 16.23, 41.53 percent of N, P₂O₅, K₂O respectively. Similarly, the contribution of nutrients from bio compost was 47.98, 15.87, 49.56 percent of N, P₂O₅, K₂O sequentially (Fig. 2).
Table 2. Bulb yield, nutrient uptake, initial soil test value, fertilizer doses applied, response, percent yield achievement for aggregatum onion

S. No.	Treatments	Bulb yield (t ha\(^{-1}\))	UN (Kg ha\(^{-1}\))	UP (Kg ha\(^{-1}\))	UK (Kg ha\(^{-1}\))	SN (Kg ha\(^{-1}\))	SP (Kg ha\(^{-1}\))	SK (Kg ha\(^{-1}\))	FN (Kg ha\(^{-1}\))	FP\(_2\)O\(_5\) (Kg ha\(^{-1}\))	FK\(_2\)O (Kg ha\(^{-1}\))	FYM (Kg ha\(^{-1}\))	Bio-compost	Response (Percent)	Percent achievement
1	T\(_1\)	6.56	27.13	11.26	31.47	194	32.2	248	0	0	0	0	0	-	-
2	T\(_2\)	14.76	53.63	16.01	46.55	195	33.6	252	60	60	30	12.5	0	8.2	-
3	T\(_3\)	14.18	49.09	14.83	45.05	198	34.2	251	66	31	31	0	0	7.62	101.3
4	T\(_4\)	14.82	55.83	16.66	46.79	193	33.8	250	76	37	38	0	0	8.26	98.8
5	T\(_5\)	15.63	63.24	18.85	50.63	196	34.4	255	86	43	45	0	0	9.07	97.7
6	T\(_6\)	8.29	38.78	13.38	39.31	197	35.5	252	0	0	0	6.25	0	1.73	-
7	T\(_7\)	8.66	42.55	14.19	42.49	196	34.7	248	0	0	0	12.5	0	2.10	-
8	T\(_8\)	16.06	72.17	20.83	54.04	198	35.6	250	66	31	31	12.5	0	9.50	114.7
9	T\(_9\)	16.71	78.57	23.39	58.99	196	32.8	248	76	37	38	12.5	0	10.15	111.4
10	T\(_{10}\)	17.58	86.46	26.10	65.11	197	32.6	249	86	43	45	12.5	0	11.02	109.9
11	T\(_{11}\)	7.86	36.33	12.66	35.86	195	36.3	251	0	0	0	0	2.5	1.30	-
12	T\(_{12}\)	8.45	40.49	13.90	40.43	199	37.4	252	0	0	0	0	5	1.89	-
13	T\(_{13}\)	15.20	59.74	18.15	48.52	200	35.8	247	66	31	31	0	5	8.64	108.6
14	T\(_{14}\)	16.19	73.18	22.00	56.54	196	36.6	250	76	37	38	0	5	9.63	107.9
15	T\(_{15}\)	16.91	81.86	25.41	61.57	194	35.9	249	86	43	45	0	5	10.35	105.7

SEd 0.29 0.977 0.302 1.416
CD (P = 0.05) 0.60 2.005 0.620 2.906
It was inferred that the percent contribution of P_2O_5 from soil was higher to the extent of 2.51 times than N and 2.77 times than that of K_2O. The contribution of nutrients from fertilizers was more than its contribution from the soil. The data on C_f showed the order of $K_2O > N > P_2O_5$. This trend was in synchronous with the results of STCR-IPNS based fertilizer prescriptions for rice in alfisols (Maragatham et al., 2018) and for cauliflower in inceptisols (Thilagam et al., 2009).

Fertilizer prescription equations for aggregatum onion under drip fertigation

Using the calculated basic parameters, FPEs were developed for STCR – NPK alone and STCR – IPNS (FYM and Biocompost) for aggregatum onion under drip fertigation as furnished below:

STCR – NPK + FYM	STCR – NPK + Biocompost
$FN = 0.79 T – 0.26 SN – 0.78 ON$	$FN = 0.79 T – 0.26 SN – 0.88 ON$
$FP_{P_2O_5} = 0.63 T - 1.59 SP$	$FP_{P_2O_5} = 0.63 T - 1.59 SP$
$FP_{K_2O} = 0.64 T – 0.22 SK$	$FP_{K_2O} = 0.64 T – 0.22 SK$
$FK_{P_2O_5} = 0.75 OK$	$FK_{P_2O_5} = 0.75 OK$

Soil test based fertilizer prescriptions

The ready reckoner was formulated utilizing the constructed FPEs for a range of soil test values and desired yield target of 17 t ha$^{-1}$ (Table 4). An estimate from these data showed that when NPK alone was applied with the soil test value of 180:34:250 Kg ha$^{-1}$ of K\textsubscript{MnO$_4$}-N, Olsen P and NH$_4$OAc-K, respectively, the fertilizer dose required was 88:53:54 Kg ha$^{-1}$ of N, P_2O_5, K_2O. It was 50:35:25 and 58:39:39 Kg ha$^{-1}$ of N, P_2O_5, K_2O when FYM @ 12.5 t ha$^{-1}$ and biocompost @ 5 t ha$^{-1}$ was applied along with NPK respectively. The extent of fertilizer saved due to FYM and biocompost application was 38, 29 Kg of N, 18, 14 Kg of P_2O_5 and 29, 15 Kg of K_2O, respectively.

The perusal of nomogram for the targeted yield of 17 t ha$^{-1}$ and soil test value of 180:34:250 Kg ha$^{-1}$ of N, P_2O_5, K_2O, sequentially confessed that when FYM and biocompost were applied with NPK, the reduction of fertilizers due to FYM over NPK alone was 43, 35, 54 percent of N, P_2O_5, K_2O, respectively and due to biocompost was 33, 26, 27 percent of N, P_2O_5, K_2O, sequentially. This was concurrent with the findings of Sellamuthu et al. (2019) on STCR – IPNS (FYM) based fertilizer prescriptions through soil application in Big onion. The percent fertilizer reduction due to IPNS over NPK alone increases with an increase in soil nutrient status and decreases with an increase in targeted yield. This decrement may be due to the maintenance of soil fertility by supplying nutrients for a long time and creating favorable soil physical, chemical and biological properties as reported by Suresh and Santhi (2018) for Maize in vertisols of the southern region in TamilNadu. Adekiya et al. (2020) also had the opinion that organic manures also contain both micro and macronutrients, unlike NPK fertilizer that contains only N, P and K. The quality of vegetables can be provoked by integrated nutrient management. The additional saving of 8, 4, 14 Kg of N, P_2O_5, K_2O, respectively, was generated when FYM was chosen along with NPK instead of biocompost. This might be owing to the large application of FYM. It was obvious from this current study that the use of both organic ma-

Table 3. Basic parameters calculated for developing FPEs for aggregatum onion under drip fertigation
N
NR (Kg q$^{-1}$)
Cs (%)
Cf (%)
Co (%)
Co (%) – Biocompost
nures, i.e., FYM & Biocompost would have the highest calibre in benefitting the farming community. The use of FYM was economically feasible than biocompost as it was comparatively expensive. Although the cost of biocompost was comparatively higher, it had the potential to minimize not only the application of inorganic fertilizers but also the other organic manures too. This was also reported in the experimental findings of Rahaman et al. (2012) in Chilli using biocompost produced from kitchen wastes. So, the biocompost will be the most fitting option to farmers if there is low availability of FYM. Due to the above mentioned benefits of biocompost, the STCR–IPNS based FPEs were also developed for biocompost which could be used by the farmers for aggregatum onion under drip fertigation in Palaviduthi soil series.

Conclusion

The experimental outcomes showed that the refined fertilizer prescription equations could be used for aggregatum onion (A. cepa L.) under drip fertigation to prescribe specific fertilizer doses for different soil test values and yield targets for Palaviduthi soil series. It would set out as a touchstone to the farming community to effectuate momentous yield and pave the way for an ecologically sound environment and assist in fertilizer saving and nutrient availability. The need of the hour in exhilarating water and nutrient requirement of the crop can be made possible by drip fertigation. Biocompost will be a viable replacement for FYM to the farmers if there is low availability of FYM. Thus, drip fertigation and STCR–IPNS approach brings forth efficient irrigation and balanced fertilization, thereby accomplishing optimum yield in aggregatum onion.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

1. Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, C. M., Aremu, C. & Akinpelo, O. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-73291-x
2. Ammal, U. B., Prabhu, G. K., Coumaravel, K., Sankar, R.
& Dey, P. (2020). Integrated fertilizer prescriptions for bhendi through inductive cum targeted yield model in B-hour soil series (Typic usturopt) of Puducherry. *The Pharma Innovation Journal*, 9(10), 491-496

3. Babu, V. A., Thingalmanian, K. S & Natarajan, S. K. (2018). Influence of Drip Fertigation on Yield, Quality parameters and Economics of Aggregatum Onion. *Madras Agricultural Journal*, 105(1-3), 1. doi:10.29321/MAJ.2018.8.000192

4. Bhasker, P., Singh, R. K., Gupta, R. C., Sharma, H. P., & Gupta, P. K. (2018). Effect of drip irrigation on growth and yield of onion (Allium cepa L.). *J. Spices and Aromatic Crops*, 27(1), 32-37. https://doi.org/10.25081/iosac.2018.v27i1.1012

5. Humphries, E. C. (1956). Mineral components and ash analysis. In *Moderne Methoden der Pflanzenanalyse/ Modern Methods of Plant Analysis*. Springer, Berlin, Heidelberg. 468-502

6. Jackson, M. (1973). Soil Chemical Analysis." *Prentic Hall (India) Pvt. Ltd.* New Delhi

7. Maragatham, S., Santhi, R., Sellamuthu, K. M. & Dey, P. (2018). Yield Targeting for Rice under SRI on Alfisols of Tamil Nadu through Soil Test based Integrated Plant Nutrition System. *Int. J. Curr. Microbiol. App. Sci.*, 7(8), 1134-1143. https://doi.org/10.20546/ijcmas.2018.708.129

8. Mebrahtu, Y., Tamiru, H. & Mohammed, A. (2019). Determination of Optimal Irrigation Scheduling for Onion (Allium cepa L.) in Raya Valley, Northern Ethiopia. *Results of Natural Resources Management Research.*

9. Mohanpriya, G., Gopalakrishnan, M., Santhi, R., Maragatham, S. & Srintharan, N. (2020). Fertilizer prescription equations for targeted yield of hybrid maize under drip fertigation on alfisol. *Journal of Pharmacognosy and Phytochemistry*, 9(6), 1350-1355

10. Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.

11. Rahman, M. A., Rahman, M. M., Begum, M. F. & Alam, M. F. (2012). Effect of bio compost, cow dung compost and NPK fertilizers on growth, yield and yield components of chil. *International Journal of Biosciences*, 2(1), 51-55

12. Ramadaas, S., & Ramanathan, S. P. (2017). Evaluation of drip fertigation in aerobic rice-onion cropping system. *International Journal of Current Microbiology and Applied Sciences*, 6(4), 2623-2628. https://doi.org/10.20546/ijcmas.2017.604.305

13. Ramamoorthy, B., Narasimham, R. L. & Dinesh, R. S. (1967). Fertilizer application for specific yield targets on Sonora 64 (wheat). *Indian farming*, 17(5), 43-45

14. Ravikiran, K. B., Santhi, R., Meena, S. & Sumathi, P. (2018). Refinement of soil test crop response-integrated plant nutrition system based fertilizer prescriptions for pearl millet variety grown under Inceptisol. *Madras Agricultural Journal*, 105(4-6), 165-169. (DOI:10.29321/MAJ.2018.000123

15. Santhi, R., Natesan, R. & Selvakumari, G. (2002). Soil test based fertilizer recommendation under IPNS for aggregatum onion in Inceptisols of Tamil Nadu. *Agropedology*, 12, 141-147

16. Satalagaon, G. S., Chandranath, H. T. & Potdar, M. P. (2014). Response of drill sown onion to nutrient management through soil test crop response (STCR) and soil test laboratory (STL) approach. *Karnataka Journal of Agricultural Sciences*, 27(2), 232-233

17. Sekaran, U., Santhi, R., Dey, P., Meena, S. & Maragatham, S. (2019). Validation of soil test and yield target based fertilizer prescription model developed for pearl millet on Inceptisol. *Research on Crops*, 20(2), 266-274. DOI:10.31830/2348-7542.2019.039

18. Sellamuthu, K.M & Santhi, R. & Subramaniam, S. Maragatham & Dey, P. (2019). Balanced Fertilizer Prescription for Big Onion through Inductive Cum Targeted Yield Model on an Alfisol. *Madras Agricultural Journal*, 106(10-12). doi:10.29321/MAJ.2019.000322

19. Solanki, R. M., Malam, K. V., Vasava, M. S. & Chhodavadiya, S. K. (2020). Influence of rabi onion (Allium cepa L.) to levels and application schedule of soluble fertilizers under drip irrigation. *The Pharma Innovation Journal*, 9(9), 176-181

20. Stanford, G. & English, L. (1949). Use of the flame photometer in rapid soil tests for K and Ca. *Agronomy Journal*, 41(9), 446-447

21. Subbiah, B. V. & Asija, G.L (1956). A rapid procedure for estimation of available nitrogen in soil. *Curr. Sci.*, 25, 259-260

22. Suganya, S., & Manickam, S. (2017). Soil Test Crop Response based Integrated Plant Nutrient Supply for Cassava in a Typic Rhodustalf of Tamil Nadu for Sustainable Livelihood. *Journal of Root Crops*, 42(2), 39-43

23. Suresh, R., & Santhi, R. (2018). Validation of soil test and yield target based fertiliser prescription model for hybrid maize on Vertisol. *Int. J. Curr. Microbiol. App. Sci.*, 7(9), 2131-2139. https://doi.org/10.20546/ijcmas.2018.709.261

24. Thangasamy, A. (2016). Quantification of dry-matter accumulation and nutrient uptake pattern of short day onion (Allium cepa L.). *Communications in Soil Science and Plant Analysis*, 47(2), 246-254. https://doi.org/10.1080/00103624.2015.1118116

25. Thilagam, V. K., & Natesan, R. (2009). Fertilizer prescription equations for desired yield targets of cauliflower under integrated plant nutrient system based on targeted yield model. *Agricultural Science Digest*, 29(4), 250-253.

26. Vijayakumar, M., Santhi, R., & Jalaluddin, S. M. (2017). Refinement of fertilizer recommendation based on Soil Test Crop Response technology for rice under System of Rice Intensification. *Journal of Applied and Natural Science*, 9(2), 855-859. https://doi.org/10.31018/jans.v9i2.1286