鍛造 Ni 基超合金 Udimet 520 における等温時効処理中の微細組織変化

山口義矢*1 阿部真弓*2 田島遼太郎*3 寺田芳弘*4

東京工業大学物質理工学院材料系

J. Japan Inst. Met. Mater. © 2019 The Japan Institute of Metals and Materials

Microstructure Evolution during Isothermal Aging for Wrought Ni-Based Superalloy Udimet 520

Yoshiya Yamaguchi*1, Mayumi Abe*2, Ryotaro Tajima*3 and Yoshihiro Terada*4

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502

The evolution of microstructure during the isothermal aging at 1173 K was investigated for the wrought Ni-based superalloy Udimet 520 solution-treated at 1393 K for 4 h followed by various cooling rates. The age-hardening behavior was observed during the isothermal aging for the water-quenched (WQ) and air-cooled (AC) specimens after the solution treatment, while it could not be detected for the furnace-cooled (FC) specimen. No primary γ′ particles were observed in any continuously cooled samples. For the WQ and AC specimens, the size of the secondary γ′ precipitates increased during the isothermal aging along the Ostwald ripening and their morphology evolved from a spherical shape to an intermediate shape between spherical and eutectoidal ones. On the contrary, the secondary γ′ particles exhibited an octaedrondritic shape for the AC specimen, and the octaedrondritic character of the secondary γ′ particles was emphasized during the isothermal aging resulting in the splitting of the secondary γ′ particles. It was found that the splitting of γ′ particles occurs during the isothermal aging for the Alloy 80A with a lower volume fraction of γ′ phase around 20%.

Keywords: nickel-based superalloy, aging, hardness, morphology, coarsening

I. 緒 言

鍛造 Ni 基超合金は、優れた高温強度を有する高濃造用材料として、航空機用ジェットエンジンおよび火力発電用ガスタービンにおける、ブレード部材およびディスク部材とし
て広く使用されている。近年では、これに加え、環境耐性、荷重低下を目的として、先進超合金が火力発電プラントにおけるボイラー管、および、自動車用ターボチャージャーにお
けるタービンホイールにも、その用途を拡大している。鍛造 Ni 基超合金の優れた高温強度は、γ 相中の凝固強化、および、高温安定な金属間化合物相による析出強化による。これにより引き出されるのと一般に考えられている。そこで、γ′-Ni₃Al(L1₂)は、溶体化処理で L1₂型の規則構造を有する熱力学的に安定な金属間化合物で強度の逆温度依存性を示す。合金添加元素の最大固溶量が大きく固溶強化を活用できることから、鍛造 Ni 基超合金における析出強化相としての優位性が高い。

γ-γ′ 二相組織を有する鍛造 Ni 基超合金における高温強度向上を向上させるためには、γ 相の析出組織を適切に制御することが必要不可欠である。実用の鍛造 Ni 基超合金部材は、通常、①合金インゴットを高温鍛造により成形した後に、②溶体化処理により結晶粒径を調整すると共に結晶粒内を γ 単相化し、③その後の連続冷却および時効処理により γ′ 析出組織を制御する、という 3 段階のプロセスを経て使用に供される。ここで、ソルバ温度よりも若干低い温度にて溶体化処理を施すことにより、γ 粒界に一次 γ 相粒子が残存し、溶体化処理中ににおける結晶粒の過大な粗大化を防ぐことが可能となる。また、溶体化処理後の連続冷
却中および時効処理中に、γ 粒内に粒子径数百ナノメートルの二次 γ 相粒子、および、粒子径数十ナノメートルの三次 γ 相粒子が析出し、最終的にマルチモーガナル γ′ 析出組織を得ることが可能となる。一次、二次および三次相の析出粒子サイズ、析出密度および析出粒子形状などの組織パラメータを定量的に調査し、高温強度と組織パラメータとの相関関係を評価する研究が、これまで発表されてき

タイタニウムに代表される厚肉部材では、溶体化処理後の冷却過程において、部材表面の冷却速度に比べ厚肉内

部の冷却速度が小さくなる。このため、部材表面と厚肉内部

1 東京工業大学大学院生 (Graduate Student, Tokyo Institute of Technology)
2 東京工業大学大学院生。現在：(株)神戸製鋼所 (Graduate Student, Tokyo Institute of Technology. Present address: Kobe Steel, Ltd.)
3 東京工業大学大学院生。現在：日本空輸 (株) (Graduate Student, Tokyo Institute of Technology, Present address: All Nippon Airways Co., Ltd.)
4 Corresponding author, E-mail: terada.y.ab@m.titech.ac.jp
2. 実験方法

供試合金は鈷造 Ni 基超合金 Udimet 520であり、その合金組成を Table 1 に示す。本合金中には、γ' 相の構成元素である Al および Ti がそれぞれ21 mass%および31 mass%添加されている。本合金は、真空誘導溶接（Vacuum Induction Melting: VIM）およびエレクトロスラグ溶接（Electron Slag Remelting: ESR）の二段溶解を施した後、高速4面断造によ

Table 1 Chemical composition of Udimet 520 used in this study (in mass%).

Alloy	Cr	Co	Mo	W	Al	Ti	C	B	Fe	Ni
Udimet 520	19.0	12.2	6.0	1.0	2.1	3.1	0.04	0.06	0.34	Bal

Fig. 1 FE-SEM image of the as-received billet of Udimet 520.
第 3 章 等温時効処理中の微細組織変化

3.3.1 WQ 材

時効硬化曲線において、硬さの増加は析出の開始に対応することができる。溶体化処理後 WQ 材により冷却した試料では、時効時間 0.3 h 以下の短時間で硬さが急激に増加する (Fig. 3)。WQ 材の時効初期における微細組織変化を明確化するために、WQ 材の単時効条件である 973 K/1 h 時効材における HRTEM 像を、選択区画散乱パターン (Selected Area Diffraction Pattern: SADP) とあわせて Fig. 4(a) に示す。なお、電子線の入射方向は母相と spraying の角度 001 とおり、主な回折斑点に指数を付記している。時効初期の試料では、紅色の単相相に 2 原子ごとに格子点が暗色とする領域が認められる。SADP 中には赤い矢印で示すように、規則構造に由来する超格子回折スポットが認められるることから、試料中には γ相が析出しているものと判断される。

画像を観察し易くするために、Fig. 4(a)を高速フーリエ変換 (Fast-Fourier Transformation: FFT) することにより得られる FFT 像において、母相と γ相の周辺構造に由来する強度点以外をマスキングし、それを逆変換した。得られた逆フーリエ变换 (Inverse Fast-Fourier Transformation: IFFT) 像をFig. 4(b) に示す。
に示す。母相γ相中に、2原子ごとに格子点が暗色となる領域がより明確に認められるようになる（黄色い矢印）。これに加え、白い矢印にて示すように、2原子ごとに格子点が暗色となる特徴が明確ではない粒子も見られるようになる。この結果から、本合金におけるγ相の析出初期においては、Li₂構造における規則度の高いγ相粒子と規則度の低いγ相粒子が混在するものと考えられる。また、Fig. 4 (b) から、γ相粒子は直径約3nmの球状で母相γ相に対して整合に析出しており、γ相の粒子間距離は約2nmと見積もられる。

WQ材を、過時効条件である1173K/10-1000hの時効熱処理を施した時のFE-SEM組織をFig. 5に示す。過時効段階初期である10h時効材（Fig. 5（a））において、サイズが約100nmの二次γ相粒子が結晶粒内に均一に析出するモノモダルな組織となる。また、二次γ相粒子の析出密度は、2.4×10¹⁵m⁻²と測定された。これに対し、過時効段階後期の1000h時効材（Fig. 5（b））では、二次γ相粒子のサイズは約400nmにまで増加し、析出密度は1.8×10¹⁵m⁻²にまで著しく低下し、複数の二次γ相粒子が1つのように並列する特徴が認められるようになる。なお、二次γ相粒子の形態は、1173K/10h時効材において球状であるのに対し、時効時間の増加に伴い「球状と立方体状の中間形状」に移り変わることが見て取れる。

時効硬化挙動を示すWQ材およびAC材の過時効条件である1173K/3-1000hにおける二次γ相粒子の平均サイズ、dₐを、時効時間、tに対して整理したグラフをFig. 6に示す。なお、「球状と立方体状の中間形状」を有する二次γ相粒子のサイズを定量化するために、同一面積を示す円の直径をdとして用いている。WQ材において、過時効段階初期である3h時効材における二次γ相粒子の平均サイズは69nmである。時効時間の増加に伴い二次γ相粒子の平均サイズは単調に増加し、最も長時間の1000hでは427nmにまで達する。

過時効段階全体において、二次γ相粒子の平均サイズは時効時間に対し、傾き0.33の直線にて整理される。この値は、オーストラルド成長²¹,²²により粗大化が進行する時の値に等しい²¹,²²。AC材における二次γ相粒子サイズは、同一時効時間において比較するとWQ材に比べわずかに小さいものの、過時効段階における直線の傾きは、WQ材の場合と同様に0.33となる。以上の組織観察結果から、時効硬化挙動を示すWQ材およびAC材では、時効初期において球状の二次γ相の析出が生じ、過時効段階において、二次γ相粒子は球状から「球状と立方体状の中間形状」に遷移しながらオーストラルド成長により粗大化することが明らかとなった。

3.3.2 FC材

溶体化熱処理後FC材により冷却した試料では、1173Kにおける時効処理において時効時間の増加に伴い硬さは減少する。
し、WQ 材および AC 材と異なり時効硬化解を示さない。FC の冷却まま材における FE-SEM 組織を Fig. 7 に示す。一辺が約 200 nm のオクテンドライト状の二次 γ′ 相粒子が結晶粒内全面に析出している。また、二次 γ′ 相粒子の間には約 10 nm の微細な三次 γ′ 相粒子が高密度に析出していることが認められる。

1173 K/1-1000 h 時効材における FE-SEM 組織を Fig. 8 に示す。硬さが約 Hv 300 にまで低下する 1173 K/1 h 時効材 (Fig. 8(a)) では、二次 γ′ 相粒子は約 400 nm にまでサイズを増し、オクテンドライト形状を維持する（緑色の矢印）と共に、一部の二次 γ′ 相粒子において側面から内部に向かって深み切込みが入り（赤い矢印）、1 つの粗大な二次 γ′ 相粒子が複数の粒子にスプリッティング（黄色い矢印）。なお、スプリッティングした二次 γ′ 相粒子は「球状と立方体状の中間的形状」を呈する。また、FC まま材において認められた微細な三次 γ′ 相粒子はほとんど観察されなくなる。

時効時間が 10 h にまで増加すると（Fig. 8(b)）、スプリッティングした二次 γ′ 相粒子は「球状と立方体状の中間的形状」を維持したまま、粒子径が約 400 nm にまで増加する。時効時間が 100 h において（Fig. 8(c)）、二次 γ′ 相粒子の形状は、オクテンドライト状に移り変わり（緑色の矢印）、深い切込みが入る（赤い矢印）と共に、二次 γ′ 相粒子は再びスプリッティングする（黄色い矢印）。最も長時間の 1000 h 時効

Fig. 6 Plots of diameter of secondary γ′ precipitates vs. aging time at 1173 K for Udimet 520 solution-treated at 1393 K/4 h followed by WQ and AC.

Fig. 7 FE-SEM image of Udimet 520 solution-treated at 1393 K/4 h followed by FC.

Fig. 8 FE-SEM images of Udimet 520 solution-treated at 1393 K/4 h/FC followed by the aging treatment at 1173 K/1 h (a), 10 h (b), 100 h (c) and 1000 h (d).
材（Fig. 8(d)）では、10 h時効材（Fig. 8(b)）と同様に、粒子径約400 nmの二次γ相粒子が「球状と立方体状の中間の形状」を呈して均一に分布している。以上のように、FC材の時効処理中では、二次γ相粒子サイズの単調な増加は見られず、①オクトエンドライト状を呈する二次γ相粒子が、「球状と立方体状の中間の形状」を呈する粒子にスプリッティングすること、および、②中間的形状を呈する二次γ相粒子が粗大化し、オクトエンドライト形状に移り変わること、という2種類の形状変化が交互に生じることが明らかとなった。

FCまま材、および、FC後1173 K時効処理材における二次γ相粒子形状を、時効時間に対して定量的に評価する。球状、立方体状に加えオクトエンドライト状を含む多様なγ相粒子形状を定量的に評価するためにあたり、MacSleynらは対応モーメント不変量ω1およびω2値を用いた数学的手法が有効であることを示し（39）。本実験におけるオクトエンドライト状の領域を拡大して示している。FCまま材において、中央値は（ω1, ω2）＝（11.1, 142.6）なるプロットが時効時間3 h以下の短時間時効処理材におけるプロット（B, C, D）は、プロットAの近傍に位置するのに対し、10 h時効材（E)において中央値は（ω1, ω2）＝（12.1, 153.8）とする。A-Dのプロットに対して（ω1, ω2）の定義域の右端を右上方向に大幅に移動する。時効時間が30 h（F)および100 h（G)にさらに増加すると、プロットは左下方向に大幅に移動しA-Dの近傍に戻る。そして、長時間である300 h（H)および1000 h（I)時効材では、プロットは再び右上方向に大幅に移動する。以上の組織解析結果から、時効硬変挙動を示さないFC材では、冷却後においてオクトエンドライト形状の二次γ相粒子が結晶粒内全面に析出し、時効処理中に新たな析出は生じず、二次γ相粒子は、アスペクト比の小さい状態を維持したまま、オクトエンドライト形状に近づき、析出形状を示す。
状、および、球状と立方体状の中間の形状」、という2種類の形状を往復することが明らかとなった。

3.4 等温時効処理中における二次γ’相粒子の形状変化

Udimet 520を1393 K/4 hにて溶体化熱処理後、WQおよびFCにて連続冷却した試料を、1173 Kにて等温時効処理した時の、二次γ’相粒子の形状変化を模式的に示した図をFig. 11に示す。Udimet 520において、溶体化熱処理後の冷却速度がWQ-ACと比較的違い場合、連続冷却中または時効熱処理期において球状の二次γ’相粒子が析出し、逆時効段階において、二次γ’相粒子は球状から「球状と立方体状の中間の形状」に連続変化が観察される（Fig. 11 (i)）。これに対し、冷却速度が最も遅いFC材では、冷却ままでにおいて二次γ’相粒子はオクテンドライト形状を呈し（ii）、その後の時効処理中において二次γ’相粒子における切込みが深くなり（iii）。ついにはスプリッティングするに至る（iv）。ここで、スプリッティングした後のγ’相粒子は「球状と立方体状の中間の形状」を呈し、その後の時効処理に伴う形状を保ったままサイズを増す（v）。FC材では、時効処理中に（ii）～(v)に示す粗大化およびスプリッティングのサイクルを繰り返す。

Ni基超合金におけるγ’相粒子のスプリッティング現象27,28]は、溶体化熱処理後の連続冷却中（鋼材合金Nimonic 11531）、鍛造合金IN738LC32）および等温時効処理中（粉末冶金合金RR100033）において見ることが、これまでに報告されている。Nimonic 115、IN738LCおよびRR1000におけるγ’相体積率は、それぞれ60%、50%および46%と大きい33]に対し、本研究では、γ’相体積率が32%であるUdimet 520においてスプリッティング現象が確認された。γ’相体積率をさらに低めた鍛造Ni基超合金においても、スプリッティング現象が見ることを考慮するために、γ’相体積率が20%であるAlloy 80A33（Ni-19.2Cr-1.4Al-2.2Ti, mass%）について溶体化熱処理後連続冷却を行い、その後の等温時効処理中における微細組織変化を調査した。

Alloy 80Aを1423 K/1 hにて溶体化熱処理を施した後に、冷却速度0.013 K s^{-1}にて連続冷却した時の、冷却まま材におけるFE-SEM組織をFig. 12(a)に示す。なお、冷却速度0.013 K s^{-1}は、FCの冷却速度0.13 K s^{-1}に比べ十分の一の極めて遅い冷却速度である。冷却まま材における二次γ’相粒子のサイズは約200 nmであり、γ’相粒子の一部はオクテンドライト状の形状を呈している（緑色の矢印）。なお、微細な二次γ’相粒子は観察されない。冷却まま材に対して、1173 K/0.3 hの時効熱処理を施した試料（Fig. 12(b)）では、二次γ’相粒子サイズは約300 nmにまで増大してオクテンドライト形状を維持する（緑色の矢印）と共に、一部の二次γ’相粒子において側面から内部に向かって深い切込みが入る（赤い矢印）。さらに、1173 K/1 h時効熱処理材（Fig. 12(c)）
では、1つ目の粗大な二次γ相粒子が数の小さい立方体状の粒子にスピリティングし（黄色と赤印）、個々のγ相粒子サイズは約150 nm と、冷却まま材に比べ小さくなる。以上の結果から、スピリティングは、γ相体積率が高い塊状Ni基超合金に特有の現象ではなく、γ相体積率が20%を低い塊状Ni基超合金においても生じ得ることが明らかとなった。

γ相体積率32%であるUdimet 520および、20%であるAlloy 80Aのいずれの合金においても、溶体化処理後に極めて速い冷却速度で連続冷却材を試すことにより、オクタドリフト状の形状を有するγ相が得られる。この場合、その後の等時効処理中に、γ相粒子のスピリティングが生じることが明らかとなった。これに対し、溶体化処理後の冷却速度が比較的速く、連続冷却後にオクタドライフト形状のγ相が得られない場合には、その後の等時効処理中にスピリティングは生じず、γ相はオストワルド成長により粗大化する。塊状Ni基超合金において、溶体化処理後にオクタドリフト状の形状を有するγ相を得るための臨界の冷却速度について、γ相体積率およびγ′相の格子ミスフィットの観点から系統的に調査することは今後の課題であるといえる。

4. 結言

本研究では、溶体化処理後に様々な速度で連続冷却を施した塊状Ni基超合金Udimet 520について、その後の等時効処理中に生じる強化事象および細緻組織変化を調査し、以下の結果を得た。

（1）Udimet 520の結晶粒径は、1373 K以上の温度領域において、溶体化処理温度の増加に伴い単調に増加する。これは、結晶粒界上に析出している一次γ相粒子が、1373 Kに溶解して存在することを示唆している。

（2）溶体化処理後、水冷および空冷を施した試料では、その後の等温効処理中に生じる強化事象および細緻組織変化を調査し、冷却した試料では等温効初期から破面は減少し、等温効化強化事象を示さない。

（3）時効強化を示す溶体化処理後水冷材では、等温効処理初期において球状の二次γ相が析出し、時効効段階において、二次γ相粒子は球状から「球状と立方体状の中间形状」に移り変わりながらオストワルド成長により粗大化する。

（4）時効強化を示さない溶体化処理後水冷材では、冷却時においてオクタドライフト形状の二次γ相粒子が結晶粒内に核生し、さらに、二次γ相粒子の間に微細な三次γ相粒子が高密度に析出する。等温効処理中ににおいて、オクタドライフト形状を呈する二次γ相粒子における切込みが深くなり、二次γ相粒子は最終的にスピリティングするに至る。スピリティングした後の三次γ相粒子は「球状と立方体状の中間形状」を呈し、時効効化に伴う形状を維持した状態で粗大化する。なお、三次γ相粒子は、等温効処理初期において母相中に溶解する。

（5）γ相粒子のスピリティング現象は、溶体化処理後、極めて速い速度にて連続冷却し、その後、等温効処理を施すことにより、γ相体積率が20%であるAlloy 80Aにおいても生じ得ることが明らかとなった。

本研究にて使用した合金試料Alloy 80Aは大同特殊鋼株式会社より提供を受けており、ここに厚く御礼申し上げます。本研究の遂行において、電子顕微鏡観察にて御協力いただきました東京工業大学大学院教授に感謝の意を表します。本研究の一部は北海道大学において文部科学省ナノテクノロジープラットフォーム事業を通じた技術の支援を受けて実施されました。北海道大学大学院准教授氏および大多流氏に対し感謝の意を表します。

文献

1) T.M. Pollock and S. Tin: J. Propuls. Power 22 (2006) 361–374.
2) D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England and C. Daniel: Prog. Mater. Sci. 103 (2019) 109–179.
3) R.C. Reed: The Superalloys: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).
4) D.M. Wee and T. Suzuki: Trans. JIM 20 (1979) 634–646.
5) V. Paudar, D.F. Pope and V. Vitek: Acta Metall. 32 (1984) 435–448.
6) M. Yamaguchi and Y. Umakoshi: Prog. Mater. Sci. 34 (1990) 1–148.
7) S. Ochiai, Y. Oya and T. Suzuki: Acta Metall. 32 (1984) 289–298.
8) S. Xu, J.J. Dickson and A.K. Koul: Metall. Mater. Trans. A 29 (1998) 2687–2695.
9) M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A 259 (1999) 85–97.
10) R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage and T.M. Pollock: Metall. Mater. Trans. A 40 (2009) 1588–1603.
11) E.L. Galindo-Nava, L.D. Connor and C.M.F. Rae: Acta Mater. 98 (2015) 387–399.
12) R. Radis, M. Schäfter, M. Albu, G. Kogelmeier, P. Pölt and E. Kozeschkin: Acta Mater. 57 (2009) 5739–5747.
13) Y. Yamaguchi, H. Hisazawa and Y. Terada: J. Japan Inst. Met. Mater. 82 (2018) 375–383.
14) Y. Yamaguchi, H. Hisazawa and Y. Terada: Mater. Trans. 60 (2019) 591–601.
15) J. Tiley, G.B. Viswanathan, R. Sinivasan, R. Banerjee, D.M. Dimitrik and H.L. Fraser: Acta Mater. 57 (2009) 2538–2549.
16) R.J. Mitchell and P. Meusel: Metall. Mater. Trans. A 38 (2007) 615–627.
17) B. Geddes, H. Leon and X. Huang: Superalloys: Alloying and Performance, (ASM International, Materials Park, OH, 2010).
18) S. Onuma, D. Saito and Y. Yoshioka: Report of the 123rd Committee on Heat-Resisting Materials and Alloys (JSFS) 53 (2012) 123–132.
19) M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35–50.
20) C. Wagner: Z. Elektrochem. 65 (1961) 581–591.
21) A.J. Ardell and R.B. Nicholson: Acta Metall. 14 (1966) 1295–1309.
22) E.A. Marquis and D.N. Seidman: Acta Mater. 49 (2001) 1909–1919.
23) H. Monajati, M. Jahazi, R. Bahrami and S. Yue: Mater. Sci. Eng. A 373 (2004) 286–293.
24) R.A. Ricks, A.J. Porter and R.C. Ecob: Acta Metall. 31 (1983) 43–53.
25) T. Grossditter, A. Hazotte and A. Simon: Mater. Sci. Eng. A 256 (1998) 183–196.
26) A.J. Goodfellow, E.L. Galindo-Nava, K.A. Chrostofido, N.G. Jones, T. Martin, P.A.J. Bagot, C.D. Boyer, M.C. Hardy and H.J. Stone: Metall. Mater. Trans. A 49 (2018) 718–728.
27) M. Ooi, T. Miyazaki and T. Wakasuki: Mater. Sci. Eng. 67 (1984) 247–253.
28) M. Ooi: Mater. Sci. Trans. JIM 33 (1992) 637–649.
29) J.P. MacSweeney, J.P. Simmons and M. De Graef: Acta Mater. 56 (2008) 427–437.
30) H. Hisazawa and Y. Terada: J. Japan Inst. Met. Mater. 81 (2017) 244–250.
31) M. Ooi, T. Miyazaki and T. Wakasuki: Mater. Sci. Eng. 74 (1984) 139–145.
32) S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A 498 (2008) 266–271.
33) Y. Chen, R. Prasath babu, T.J.A. Slater, M. Bai, R. Mitchell, O. Ciuca, M. Preuss and S.J. Haigh: Acta Mater. 110 (2016) 295–305.