Rearrangements of Gaussian fields

Raphaël Lachièze-Rey

PLLUS Worshop, Kaiserslautern

February 11, 2011
1 Introductory example: Brownian motion

2 Convergence of random measures

3 Rearrangement of random fields
1 Introductory example: Brownian motion

2 Convergence of random measures

3 Rearrangement of random fields
Asymptotic rearrangement of the Brownian motion
Theorem (Davydov, Zitikis 2004)

\(X \): Brownian motion.

\(X_n \): Piece-wise linear interpolation of \(X \) on \(\{0, 1/n, \ldots, 1\} \).

\(C_{X_n} \): Convex rearrangement of \(X_n \).

Then

\[
\sup_{x \in [0,1]} \left| \frac{1}{\sqrt{n}} C_{X_n}(x) - L(x) \right| \to 0,
\]

\(L \): Lorenz curve.

Other asymptotic convex rearrangements in Davydov & Vershik 1998.

\(X^H \): fBm with Hurst parameter \(H \). Then

\[
n^{H-1} C_{X_n^H} \to L.
\]

(\(L \) is the limit rearrangement for many Gaussian processes with stationary increments)
Convex rearrangement

green: Piecewise linear function f.
Lower part (red): *convex rearrangement of* f, denoted by Cf.

![Graph showing convex rearrangement](image)
Rearrangement of the derivative

It corresponds to rearranging the derivative in a monotone way. If f' is the derivative of f, and $(\mathcal{C}f)'$ the derivative of $\mathcal{C}f$, we have

$$\lambda_1 f'^{-1} = \lambda_1 (\mathcal{C}f)'^{-1}.$$
The proof can be decomposed in two steps:

1: The probabilistic result:
Consider the image measure
\[\mu_n = \lambda_1 (n^{-1/2} \nabla X_n)^{-1}. \]
Then \(\mu_n \Rightarrow \gamma_1 \) a.s..
(\(\lambda_1 \): 1-dim. Lebesgue, \(\gamma_1 \): Normal distrib., \(\Rightarrow \): weak convergence.)

2: The measure theory result:

Theorem

If a sequence of convex functions \(\{g_n : n \geq 1\} \) satisfies\n
\[\lambda_1 (g_n^{-1}) \Rightarrow \mu \]

for some measure \(\mu \) with finite first moment, then \(g_n \rightarrow g \), with \(g \) convex and \(\mu = \lambda_1 g^{-1} \).
Associated convex body of a 1-dimensional function

Resource distributed to a population of size N.

- Member labelled k receives r_k.
- Cumulative income function: $f(n) = \sum_{k \leq n} r_k$.

f is extended to a piece-wise linear function on $[0, N]$.
The area of the convex body can measure the inequalities over this particular resource (consider the equality case, where r_k is equal for all k).
1 Introductory example: Brownian motion

2 Convergence of random measures

3 Rearrangement of random fields
Gaussian fields

X: Centered Gaussian field, with covariance function

$$\sigma(z, \zeta) = \mathbb{E}X(z)X(\zeta), \; z, \zeta \in [0, 1]^d.$$

X_n: Approximations of a Gaussian field X on $[0, 1]^d$.

X_n is obtained by interpolation of X on a triangulation \mathcal{T}_n.

There are regular simplices T_1, \ldots, T_k, and a discrete group Γ of \mathbb{R}^d such that

$$\mathcal{T}_n = \left\{ \frac{1}{n}(\gamma + T_j) : \gamma \in \Gamma, 1 \leq j \leq k \right\}.$$
Brownian sheet approximation
Results

Define

\[\mu_n = \lambda_d (b_n \nabla X_n)^{-1} \]

and

\[\sigma_{z, \zeta}^{(2)}(u, v) = \sigma(z, \zeta) + \sigma(z + u, \zeta + v) - \sigma(z + u, \zeta) - \sigma(z, \zeta + v), \]

the second order local increment of \(\sigma \).

Theorem

Assume the following: For all \(u, v \) in \(\mathbb{R}^d \)

\[(nb_n)^2 \sigma_{z,z}^{(2)}(n^{-1}u, n^{-1}v) \to \sigma^{diag}_z(u, v) \]

uniformly in \(z \in [0, 1]^d \).

Then there is a deterministic measure \(\mu \) such that, for all Borel set \(B \),

\[\mathbb{E} \int_{[0,1]^d} \mathbb{1}_{\{b_n \nabla X_n(z) \in B\}} dz = \mathbb{E}(\mu_n(B)) \to \mu(B). \]
examples

Multifractional Brownian field:

\[
\sigma(z, \zeta) = \|z\|^\alpha + \|\zeta\|^\alpha - \|z - \zeta\|^\alpha, \quad \alpha \in (0, 2)
\]

\[
\begin{cases}
\sigma_{z,z}^{(2)}(u, v) = \|u\|^\alpha + \|v\|^\alpha - \|u - v\|^\alpha = \sigma_z^{\text{diag}}(u, v), \\
b_n = n^{\alpha/2-1}
\end{cases}
\]

Brownian sheet:

\[
\sigma(z, \zeta) = \prod_i \min(z_i, \zeta_i).
\]

\[
\begin{cases}
\sigma_z^{\text{diag}}(u, v) = \langle l(z), u \wedge v - u \wedge 0 - v \wedge 0 \rangle, \\
b_n = \sqrt{n}
\end{cases}
\]

with

\[
l(z) = (z_2 \ldots z_d, z_1 z_3 \ldots z_d, \ldots, z_1 \ldots z_{d-1}).
\]
\(\varphi_n \): Characteristic function of \(\mu_n \).

Theorem

Let \(h \in \mathbb{R}^d \).

\[
\mathbb{E}|\varphi_n(h) - \mathbb{E}\varphi_n(h)|^4 \\
\leq C \left(\frac{n}{b_n} \right)^2 \sum_{S, S' \in \mathcal{T}_n} \text{vol}(S)\text{vol}(S')|\sigma_{z,\zeta}^{(2)}(n^{-1}u, n^{-1}v)|
\]

\((u, v \text{ are the directions of edges of resp. } S \text{ and } S').\)
For the Multivariate Brownian field and the Brownian sheet, the right hand member is in $O(n^{-2})$, whence (Borel-Cantelli),

$$\mu_n \Rightarrow \mu$$

a.s..

Remarks:

- μ is deterministic,
- the convergence happens on each sample path.

New consistent estimators for parameters $\sigma(z, \zeta)$:

- Regularity parameters (Hurst Index),
- Directional parameters (Privileged axes)
1. Introductory example: Brownian motion

2. Convergence of random measures

3. Rearrangement of random fields
Multidimensional rearrangement

Let \(f : [0, 1]^d \to \mathbb{R} \), differentiable a.e. such that

\[
\int_{[0,1]^d} \| \nabla f(x) \| \, dx < +\infty.
\]

A convex function \(C \) is a convex rearrangement of \(f \) if

\[
\lambda_d \nabla f^{-1} = \lambda_d \nabla C^{-1}.
\]

Theorem (Brenier, 91)

Every function \(f \) with finite gradient mass has a convex rearrangement \(C f \). The convex rearrangement is unique up to a constant.
Asymptotic rearrangement

- \(f \): “irregular function”
- \(f_n \): Functions with finite gradient mass, the \(f_n \) converge to \(f \). Is there a function \(C \), and positive numbers \(\{ b_n; \ n \geq 1 \} \), such that
 \[
 b_n C f_n \rightarrow C
 \]

If yes, \(C \) is an asymptotic convex rearrangement.

Theorem

\(\{ f_n; \ n \geq 1 \} \): Functions with finite gradient mass,
\(\{ b_n; \ n \geq 1 \} \): Positive numbers.

The following assertions are equivalent

(i) Weak convergence \(\lambda_d \nabla (b_n f_n)^{-1} \Rightarrow \mu \).
(ii) \(b_n C f_n(z) \rightarrow C(z) \), for \(z \in \text{int}([0, 1]^d) \),
(iii) \(\nabla (b_n C f_n)^{-1} \rightarrow \nabla C \) in the \(L^1 \) sense on every sub-compact, whence \(C \in C f \).

In this case: \(\mu = \lambda_d \nabla C^{-1} \).
Asymptotic rearrangement of the Brownian sheet

\[n^{-1/2} \mathcal{X}_n(z) \to C(z) \quad a.s., \quad z \in (0,1)^2, \]