Magical beliefs and discriminating science from pseudoscience in undergraduate professional students

Bernard M. Garretta,*, Roger L. Cuttingb

a University of British Columbia, School of Nursing, BC, Canada
b Plymouth University, Institute of Education, Plymouth, UK

* Corresponding author.
E-mail address: bernie.garrett@nursing.ubc.ca (B.M. Garrett).

Abstract

Paranormal beliefs and magical thinking exist in the public, and amongst university students. Researchers have found that media can influence such beliefs. A 2012 study suggested pseudoscientific rationales can influence acceptance of reported paranormal phenomena. Using a paranormal belief survey and controlled experiment this work explores the paranormal beliefs and test the effects of three versions of a supernatural news story on undergraduate professional students. One version of the story presented a simple news article, another the same with a pseudoscientific rationale, and another gave a discrediting scientific critique. Results confirmed that many students do hold magical beliefs but discriminated between scientific and pseudoscientific narratives. However, pre-existing paranormal beliefs were associated with an increased likelihood of students finding paranormal reports scientific, believable and credible.

Keywords: Education, Psychology
1. Introduction

A number of surveys have reported that paranormal beliefs are widespread in the general public. An Ipsos Reid poll in Canada in 2005 revealed that 47% of Canadians believed in ghosts. A 2014 US Harris poll found that 46% of participants believed in ghosts (Harris Interactive, 2014) and a 2016 YouGov survey in the UK revealed that 28% of participants believed in ghosts (YouGov, 2016). Previous work has also identified that media messaging, and the types of media engaged with, can influence such magical beliefs and how people perceive reports of paranormal events (Brewer and Ley, 2013; Brewer, 2012; Nisbet, 2006; Sparks et al., 1994). However, there is a lack of empirical work exploring the nature of these beliefs in students, and a consideration of what sort of things might influence the ongoing prevalence of such beliefs by those engaged in science-based professional education. This research explores these earlier findings in the new context of nursing and education professional students.

Two geographically, professionally and culturally disparate Bachelor of Science student cohorts were selected to investigate evidence of magical thinking and ability to discriminate the influence of pseudoscientific media. One group were undertaking their final year of nursing studies in British Columbia, Canada, and the other their final year of education studies before qualifying as school teachers in Plymouth in the UK. Both of these programs exposed students to content on scientific inquiry and evidence-based practice as a part of their professional disciplinary training. The two cohorts were selected in order to provide a diverse sample of students, with a similar level of scientific preparation, and to mitigate potential cultural and professional biases that could exist within a single program. Both had undertaken two research methods courses, and a course specifically examining evidence-based practice and the critical analysis of research in their programs. This study examined the nature of supernatural beliefs by these students and whether attributing an authority-based scientific or pseudoscientific narrative to a short article would influence their acceptance of it. Perceptions of believability (acceptance of its being true), credibility (trustworthiness) and how scientific (based on the methods and principles of science) the article was seen to be, were examined.

2. Background

Cardinal Newman originally suggested the aim of higher education was to “Educate the intellect to reason well in all matters, to reach out toward truth, and to grasp it.” particularly arguing this should be outside of the influence of religious bodies of the time (Newman, 1907). In the age of alternative facts considering how we best educate students to discriminate between competing truths has become
even more pressing. Some (Dunne, 2015; Flaming, 2001), have argued for a focus on phronesis (to act virtuously) as a corrective dimension to the over-emphasis on techne in modern science (focused on the practical mechanics of decision-making) this developing criticality. Nevertheless, discriminating between competing solutions to complex ill-defined problems characterizes real-world professional practice, and these arguments offer few solutions on how to develop such skills in students. Also, disentangling improved outcomes through the practical application of phronesis (as distinct from techne) seems practically impossible. Alternatively, Kreber (2014) argued that practical critical reasoning does not derive from the application of abstract principles nor is it a skill; it is about the development of a certain kind of person. This person should, as Sullivan and Rosin (2008) describe, be “... disposed towards questioning and criticizing for the sake of more informed and responsible engagement.” Such dispositions form the basis of critical thinking in professional studies, and are key in making autonomous rational choices in practical applications. This approach embodies both phronesis and criticality to support a higher-level of reasoning.

The influence of misinformation, and its correction through critical analysis has also been highlighted by Lewandowsky et al. (2012). They suggest a number of good practices to engender this criticality. In particular, they suggested that developing scepticism is an important skill, in that it can reduce susceptibility to misinformation effects, if it prompts people to question the origins of and nature of information. Likewise, the active analysis of one’s own worldview/beliefs and of new information, to see if it confirms or refutes one’s worldview, and the consideration of how new information relates to personal identity are seen as important skills here.

Generally, science-based higher education programs aim to develop such skills, allowing students to more readily engage reflectively, and analytically with information and data, and discriminate between competing arguments effectively. It follows that the development of criticality should form a key component for any science-based professional curriculum, and therefore, it is important for educators to consider the factors that may influence it.

Magical beliefs involve an acceptance of mysterious or supernatural forces to explain phenomena, and where the use of prescribed rites of precisely defined actions (often verbal) are believed to produce mysterious effects. This may involve the manifestation of mystical forces to cause a specific effect, or ritualistic acts that are believed to produce results elsewhere. Magical thinking is the cognitive process that embodies such beliefs (Vyse, 2014; Hergovich and Arendasy, 2005; Tobacyk and Wilkinson, 1990; De Busscher, 1957). The nature of magical thinking is complex and most modern theories tend to explain this as a belief that supernatural or paranormal forces can affect causality in some way. For example: “I broke a
mirror; therefore, I will get seven years bad-luck.” Belief in the paranormal represents a modern manifestation of this (Vyse, 2014; Rosengren and French, 2013; De Busscher, 1957) Paranormal beliefs reveal a form where belief in magical occurrences from popular culture, folklore, and other non-scientific bodies of knowledge, are espoused. For example, belief in mind-reading, cryptids or hauntings. In all these contexts, the justification of events is described as being beyond normal experience or scientific explanation. In essence, magical thinking relies on a fallacious attribution of causal relationships between actions and events, and encompasses the acceptance of the power of unexplained supernatural or mystical forces to explain them (Hergovich and Arendasy, 2005; Tobacyk and Wilkinson, 1990). As such, magical thinking represents an attempt to explain, understand, experience or influence the world though supernatural explanations, using rituals, symbols, actions, gestures and language rather than by empirical or scientific means, and believing in things more than either evidence or experience justifies. This contrasts with modern explanations of critical thinking in science, where empirical justification and rigorous inductive and deductive processes and attempts at refutation are employed.

Although magical thinking is considered here as a separate phenomenon from religion here, it is acknowledged that some aspects of religion may also incorporate it. It has also been argued that magic is largely a polemical framework used by the scientific community to differentiate and validate their own beliefs and practices, and to discredit those of others (Rosengren and French, 2013; Hanegraaff, 2005).

Work exploring the impact of magical thinking on critical reasoning is limited, although studies suggest it may have an influence. A 2005 study found subjects with lower reasoning ability demonstrated higher paranormal belief and new age philosophy beliefs than did subjects with higher reasoning abilities (Hergovich and Arendasy, 2005). This suggests that those who have better reasoning abilities scrutinize to a greater extent whether their experiences are sufficient justification for belief in the reality of these phenomena. More recent work also found the perception of randomness was less strongly associated with belief in the paranormal. Dagnall et al. (2007) suggested that while belief in the paranormal in undergraduate students is not necessarily associated with weakness in probabilistic reasoning, it is more strongly related to weaknesses associated with their understanding of randomness and misunderstanding of chance factors.

A number of studies have suggested that media influences magical thinking and shapes paranormal beliefs about reported paranormal events such as telekinesis, mind-reading, clairvoyance or hauntings that are usually argued as being beyond the scope of conventional scientific understanding. In experiments conducted by Sparks and collaborators in 1994, researchers manipulated exposure to an episode
of a television series about paranormal investigations (Sparks et al., 1994). They found that exposure to one particular episode led participants to express greater belief in paranormal phenomena. On the other hand, exposure to a version of it that included a disclaimer reduced belief in such phenomena. Paul Brewer found similar results in his work in 2012; he examined beliefs about paranormal phenomena such as ghosts and haunted houses and the influence that media messaging about paranormal investigations had on perceptions of how scientific and credible such investigators were. His experiment tested the effects of three different versions of a news story about paranormal investigators on the public. One version presented the news story in terms of traditional supernaturalism, another presented the story with the “trappings of science” including pseudoscientific technology and jargon, a third, discredited the story with the use of a scientific critique. The study tested whether these different forms of media supported predictions of belief and credibility in the paranormal phenomena, and how scientific the paranormal investigators were seen to be. The results suggested that inclusion of a pseudoscientific narrative in the media story did influence the credibility of the story, and a belief in the paranormal (Brewer, 2012).

The dilemma researcher’s face is that of determining whether viewing media such as television, causes changes in brain and behaviour, or whether if pre-existing personal traits or other conditions predispose people to excessive media use (Takeuchi et al., 2015; Schwartz and Beaver, 2015; Plomin et al., 1990). Nevertheless, work by Gary Small at UCLA reported that experienced web users had developed distinctive neural pathways (Small et al., 2009). Therefore, it is at least reasonable to hypothesize that use of specific media may lead to observable neurological or behavioural changes. Some research has also suggested that the web is a more powerful influence than television, as it is a more active medium (Ferguson and Perse, 2000), whilst the combination of television and web-based media has been suggested to increase perceived message credibility (Chang and Thorson, 2004).

Another aspect of this research has targeted the relationships between the type and quantity of media use and people’s paranormal beliefs. Many sceptics express concern that the media may help to foster belief in the paranormal and perceptions of paranormal research as scientific, particularly in the light of uncritical coverage of paranormal research (Brewer and Ley 2013; Brewer, 2012; Hill, 2012; Nisbet, 2006). Sparks et al., 1997 explored cultivation theory to argue that exposure to television programing could influence viewers’ beliefs concerning the paranormal. The definitive version of this theory suggests that the televsual medium as a whole has the power to affect viewers’ perceptions of reality (Shanahan and Morgan, 1999). In a similar study, Sparks and his colleagues examined how both overall television viewing and the viewing of paranormal-themed programs were related to
paranormal beliefs. They found no clear evidence that the former predicted beliefs in the paranormal, but they did find that the latter was positively related to belief in supernatural beings. A follow-up study produced similar findings (Brewer, 2012; Sparks and Miller, 2001).

Overall, this work highlights the potential for magical thinking embodying paranormal beliefs to influence criticality, and for particular genres of media to influence viewers’ perceptions (Brewer, 2012; Morgan and Shanahan, 2010). To further our understanding of the effects of magical thinking and the influence of media in university students who had been exposed to education and training in critical thinking, a study was undertaken repeating Brewers earlier work, but using final year students in professional disciplines as the population of interest.

3. Hypothesis

The study examined:

- Is there evidence of magical thinking amongst professional nursing and education students, and if so how it is enacted?
- Are professional nursing and education students more likely to believe in magical explanations if they read an article from authority that uses pseudoscientific language to describe the phenomena?
- Do factors such as media type, exposure, and pre-existing beliefs influence belief, credibility and the perception of the scientific value of reports of paranormal events?

3.1. Effect of pseudoscientific and scientific rationales

Specifically, the following hypotheses were investigated:

Hypothesis 1A

Students exposed to a news story from authority about a paranormal phenomenon using a pseudoscientific explanation of it will be more likely to see it as scientific, credible, or to believe in the phenomenon described, compared with those reading a simple news story giving a supernatural explanation.

Hypothesis 1B

Students exposed to a news story from authority about a paranormal phenomenon using a pseudoscientific explanation of it will be more likely to see it as scientific or credible, or to believe in the phenomenon described, compared with those reading a story from authority providing a scientific rebuttal.
Hypothesis 1C

Students exposed to a news story about a paranormal phenomenon from authority providing a scientific rebuttal will be less likely to see it as scientific, or credible, or to believe in the paranormal phenomenon described, compared to those reading a simple news story giving a supernatural explanation.

Additionally, the following hypotheses were tested to explore any potential relationships between specific covariates and student reactions to the stories. As with Brewers 2012 study these reflected visual media habits regarding watching paranormal or science TV programs, web use, and web-browsing habits, and also personal paranormal experience and the influence of pre-existing paranormal beliefs.

3.2. Effect of visual media

Hypothesis 2A

Time spent viewing television will be positively associated with seeing the paranormal explanation as scientific, seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

Hypothesis 2B

Time spent web-browsing will be positively associated with seeing the paranormal explanation as scientific, seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

3.3. Effect of paranormal media

Hypothesis 3A

Viewing paranormal reality television shows the will be positively associated with seeing the paranormal explanation as scientific and seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

Hypothesis 3B

Browsing websites exploring the paranormal will be positively associated with seeing a paranormal explanation as scientific, and seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

3.4. Effect of science media

Hypothesis 4A

The time spent watching science documentary shows on television will be negatively associated with seeing the paranormal explanation as scientific, seeing
the paranormal phenomenon as credible, and to believing in the paranormal phenomenon. Significant results would be expected to contrast with Hypothesis #3A, if watching scientific television shows has the effect of making students believe less in the reported paranormal phenomenon.

Hypothesis 4B

Browsing science sites on the web will be negatively associated with seeing the paranormal explanation as scientific, seeing the paranormal phenomenon as credible, and to believing in the paranormal phenomenon. Significant results would also be expected to contrast with hypothesis 3B, and be similar with Hypothesis 4A, if this has the effect of making students believe less in the reported paranormal phenomenon.

3.5. Effect of personal experience

Hypothesis 5

Reported personal paranormal experience will be positively associated with seeing the paranormal explanation as scientific, and seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

3.6. Effect of pre-existing paranormal beliefs

Hypothesis 6

Increased paranormal beliefs (Revised Paranormal Belief Scale [RPBS] scores) will be positively associated with seeing the paranormal explanation as scientific, seeing the paranormal phenomenon as credible, and with believing in the paranormal phenomenon.

4. Materials and methods

A quasi-experimental research design following the approach of Brewer’s original 2012 study was implemented. The study involved a comparison of the effects of three different treatment news stories regarding a reported paranormal event on students. As a randomised allocation of students into three treatment groups may have resulted with one group with a disparate number of students with pre-existing paranormal beliefs a matched group quasi-experimental design was adopted. Quasi-experimental research shares similarities with traditional experimental research designs or randomized controlled trials, but lacks the element of random assignment to a treatment or control group. Therefore, a matched subject design was used where the three treatment groups were matched in terms of the subject’s pre-existing levels of paranormal belief. The advantage of this is that it reduces the
chances of a confounding variable skewing the results, particularly with smaller samples (Cohen et al., 2011; Srinagesh, 2006).

4.1. Study area

Two accessible but geographically, professionally and culturally disparate cohorts who had been exposed to an evidence-based rationale for practice were selected using a convenience sample of students in their final years of two different professional programs (N = 90). In Canada, these consisted of Bachelor of Science in Nursing students in their final year of the program at the University of British Columbia (cohort = 119: n = 35). In the UK students were drawn from the Faculty of Education at the University of Portsmouth (cohort = 240: n = 55), in their final year of a Bachelor of Education degree. Prior to recruitment ethical approval was obtained from the universities’ behavioural research ethics boards. Students were then contacted by an initial email, and further encouraged to volunteer through a brief in-class presentation of the study. Informed consent was obtained from all participants. As it was important not to prompt the students as to the actual nature of the research and thereby affect their behaviour, some degree of deception was required. Therefore, the work was introduced as a survey exploring conventional and unconventional beliefs in professional students. An incentive of cinema vouchers was offered to all participants to encourage participation. Those interested were sent an initial contact letter detailing the terms of the project and research requirements. Consent forms were also provided to students at this time.

4.2. Materials

Three different treatments were used in the study, and each matched student group was exposed to one of three different versions of the same news story about the ghostly apparition of a murdered girl appearing in a photograph of an old school building, as per Brewer’s (2012) study. Group One read a newspaper article from a correspondent on the appearance of the ghost written in everyday language, explaining it simply as a paranormal event. This represented the control variable, as no explanatory argument or was used, other than briefly referring to the apparition as a paranormal phenomenon. Group Two were given the same story, but from a correspondent identified as a PhD prepared social scientist and with an alternative explanatory paragraph using pseudoscientific language to support an explanation of the phenomenon. The third group read the same account of the ghost from a correspondent identified as a PhD prepared science correspondent, but with an alternative explanatory paragraph giving a scientific rebuttal of the phenomenon. All students were also provided with an additional distractor article (so each student received two articles in total). The second story was about a potential Ebola vaccine, and was unrelated to the focus of this study other than to distract students...
from its real purpose. Each participant read both of these two short newspaper articles (derived from actual news stories). Accompanying the stories were instructions that asked them to read the two articles, and then to answer some questions about what they thought of them using a short web survey.

4.3. Methodology

Initially students were allocated into the three matched groups on the basis of their paranormal beliefs. To accomplish this, they completed a short online questionnaire using a validated psychometric tool: The Revised Paranormal Belief Scale (RPBS: Dagnall et al., 2016; Bouvet et al., 2014; Tobacyk, 2004). In order to misdirect participants as to the focus of the research some additional distractor questions on general beliefs about health and society were also interspersed with the RPBS questions. The results from these questions were discarded prior to analysis. Participants were then placed into three matched sub-groups of 30 each on the basis of their paranormal belief (RPBS) scores, so that each group had a balanced mix of students. The mean RPBS survey scores for each group were: group 1: 69, group 2: 70.1 and group 3: 70.6.

Following grouping each group of students was sent the news stories. Double-blinding was used as an experimental procedure to help guard against both experimenter bias and placebo effects (Cohen et al., 2011). The investigators were unaware which group received which story until after the initial data analysis as they were randomly renamed by an independent third party “News Article 1, 2, or 3.” The participants were sent the materials by a research assistant and did not know that they were receiving different articles to read. At first glance the different paranormal news stories would have appeared the same.

Participants then completed a short post-exposure web survey to rate how compelling they found the arguments in both of the stories they read (the research paper and the distractor). They were specifically asked how credible they were, how scientific they were, and how likely they were to believe in the phenomenon based on the story. Seven point Likert scale attitudinal questions were used to score each of these covariates:

- How credible do you think the paper was? (scored highly incredible to highly credible),
- How scientific do you think the paper was? (scored highly unscientific highly to highly scientific),
- How believable do you think the paper was? (scored highly believable to highly unbelievable).

This survey also included items capturing the other covariates for analysis, including daily hours of web-browsing, daily television exposure, viewing of...
paranormal television shows and web-sites, and any personal experiences with paranormal phenomena.

Responses for the paranormal stories were analysed whilst those for the Ebola distractor story were discarded. Quantitative data from the surveys was analysed using descriptive and inferential statistics to test the hypotheses between the three groups. In order to maintain blinding the initial analysis was undertaken by a professional statistician from the Applied Statistics and Data Science Group at UBC using R Software for Statistical Computing. An ANOVA was performed on the hypothesis 1A-C results and for the other covariate hypotheses (hypotheses 2–6) an ANCOVA for interval data and 2-Way ANOVA for the nominal: data. The nominal data referred to the yes/no question in this particular analysis. We used a 3 × 2 ANOVA, three treatment groups x 2 (yes/no) responses. Post hoc T-Tests were used for pairwise group comparisons of covariates to explore whether various forms of media use correlated with beliefs about the paranormal phenomenon, as well as whether any of the hypothesized relationships varied with self-reported personal paranormal experiences.

5. Results

The original data from the study can be found in the Study Data file in the Supplementary Content section online. No significant differences were seen between the Canadian and the UK based student cohorts for any of the questions explored in the study, and so the results described here reflect the combined products from all participants. Also, as 87% of the final participants identified as female, gender was not used for analysis, as the sample was significantly unbalanced.

From the initial RPBS scale relating to the religious and spiritual beliefs, 45% of respondents believed in a god, and 52% believed that the soul continues after death, 43% believed that reincarnation may occur and 31% believed there is a heaven and a hell. These are similar to statistics reported in the general population. However, 33% also believed that it was possible to communicate with the dead, but only 21% reported they believed a devil (e.g. Satan or Iblis) actually existed. Another related aspect of paranormal beliefs explored in the RPBS was that of astral projection (the belief that the spirit can leave the body) and 23% believed that during altered states, such as sleep or trances, the spirit could leave the body. A similar number also believed that the mind or soul could leave the body and travel.

With respect to beliefs concerning psychic prediction and astrology 37% believed that psychics could accurately predict the future. Mind reading and telekinesis were also explored in the survey and 34% of participants believed mind reading was possible. However, few participants believed it possible to levitate or move objects...
by mental forces (only 13%). With respect to witchcraft and casting magic spells, 32% believed that there were actual cases of witchcraft, and a similar number of participants believed black magic existed and that witches with magic powers existed. However, only 13% reported that they believed it was possible to cast spells on persons.

The lowest RPBS belief scores seem to be related to belief in monsters and luck. Only 23% believed that the Abominable Snowman of Tibet probably existed and less than 14% believed the Loch Ness Monster existed. In relation to luck, 22% believed that breaking a mirror would bring bad luck, 17% believed the number 13 was unlucky and 12% of respondents thought black cats would also bring bad luck.

A total of 70 students proceeded further in the study to read the papers and complete the post-exposure survey resulting in 67 usable surveys (group 1: n = 21, group 2: n = 22, and group 3: n = 24). In terms of Hypotheses 1 A-C (effect of pseudoscientific vs scientific rationales) there were no statistically significant differences between the three groups exposed to the different stories. In terms of how scientific the groups found the various papers, the pseudoscience group trend was slightly higher compared with those who read the simple news story, but this was not statistically significant (Tables 1, 2 and 3).

For Hypotheses 2A and B (media) there were also no significant differences between belief, credibility and perceived scientific value of the stories, and no significant between groups differences when accounting for the quantity of television and web use reported by students. For Hypothesis 3A (the impact of the watching paranormal reality television), there was a significant relationship between the watching of paranormal reality television shows and the overall perceived scientific value (F(1,66) = 7.59, p = 0.008, ηp2 = 0.10), credibility (F(1,66) = 9.49, p = 0.003, ηp2 = 0.13) and believability (F(1,66) = 31.49, p = 0.000, ηp2 = 0.32) of the stories (Tables 4, 5 and 6). However, there was no significant difference between the three different groups when taking watching paranormal reality television into account.

For Hypothesis 3B, which explored the impact of browsing paranormal web-sites on how scientific, credible and believable the students found the stories, there were also significant relationships between all of these items (F(1,66) = 5.96, p = 0.017, ηp2 = 0.08), (F(1,66) = 12.55, p = 0.001, ηp2 = 0.16) and (F(1,66) = 38.10, p = 0.000, ηp2 = 0.37) based on Tables 7, 8 and 9. Paranormal web browsing also had no impact on the between group comparisons when this was accounted for in the statistical analysis.

For Hypotheses 4A and B, examining the impact of science media, no significant effects were observed overall, nor between groups. Similarly, for Hypothesis 5,
exploring the impact of any reported personal paranormal experiences on the student’s perceptions of the stories, there were no significant differences overall for the scientific value attributed to the stories, nor in their perceived credibility. There was, however, a significant relationship between reported personal paranormal experience and the perceived believability of the story (Table 10: F(1,66) = 24.02, p = 0.000, ηp2 = 0.27), but once again no between group effects for this covariate.

Finally, for hypothesis 6, examining the impact of participants’ pre-existing paranormal beliefs (RPBS scores), higher RPBS scores were significantly associated with student’s seeing the story as scientific (F(1,66) = 25.87, p = 0.000, ηp2 = 0.28), seeing the paranormal phenomenon as credible F(1,66) = 20.59, p = 0.000, ηp2 = 0.24), and believing in it (F(1,66) = 75.25, p = 0.000, ηp2 = 0.23) based on Tables 11, 12 and 13.

Additionally, in the between group comparison there was a borderline significant difference between the simple story versus the rebuttal story groups for their perceived scientific value of the story (t(66) = 1.972, p = 0.0528) when corrected for the RPBS scores (Table 14).

Table 1. Results from R of ANOVA testing for students’ scientific value of the stories, and the post-hoc T-test for pairwise comparison.

Perception of Story as Scientific with Group						
Response: How scientific did you find the article?	Group: Control, Rebuttal, Pseudoscience					
Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	269.50	1	269.50	122.06	0.000	0.65
Group	8.07	2	4.04	1.83	0.169	0.05
Error	147.93	67	2.21			
PR.TV	Estimate	SE	df	95% lower CL	95% upper CL	
Control	3.5000	0.3168	67	2.8677	4.1323	
Rebuttal	2.7391	0.3098	67	2.1207	3.3576	
Pseudoscience	2.8000	0.2972	67	2.2068	3.3932	
Contrast	Estimate	SE	df	t-statistic	Sig.	
Control – Rebuttal	0.7609	0.4431	67	1.717	0.0906	
Control – Pseudoscience	0.7000	0.4344	67	1.612	0.1118	
Rebuttal – Pseudoscience	-0.0609	0.4293	67	-0.142	0.8877	
Table 2. Results from R of ANOVA testing for students’ perceived credibility of the stories, and the post-hoc T-test for pairwise comparison.

Level of Credibility with Group								
Response: How credible did you find the article?	Group: Control, Rebuttal, Pseudoscience	Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	352.00	1	352.00	108.44	0.000	0.62		
Group	4.29	2	2.15	0.66	0.520	0.02		
Error	217.48	67	3.25					
PR.TV		Estimate	SE	df	t-statistic	Sig.		
Control	4.0000	0.3841	67	3.2333	4.7667			
Rebuttal	3.6087	0.3757	67	2.8589	4.3585			
Pseudoscience	4.2000	0.3603	67	3.4808	4.9192			
Contrast		Estimate	SE	df	t-statistic	Sig.		
Control – Rebuttal	-0.3913	0.5373	67	-0.173	0.8636			
Control – Pseudoscience	-0.2000	0.5267	67	-0.380	0.7053			
Rebuttal – Pseudoscience	-0.5913	0.5205	67	-1.136	0.2600			

Table 3. Results from R of ANOVA testing for students’ perceived Believability of the stories, and the post-hoc T-test for pairwise comparison.

Level of Believability with Group								
Response: How believable did you find the article?	Group: Control, Rebuttal, Pseudoscience	Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	305.64	1	305.64	82.85	0.000	0.55		
Group	1.78	2	0.89	0.24	0.786	0.01		
Error	247.17	67	3.69					
PR.TV		Estimate	SE	df	95% lower CL	95% upper CL		
Control	3.7273	0.4095	67	2.9099	4.5446			
Rebuttal	3.8261	0.4005	67	3.0267	4.6255			
Pseudoscience	4.1000	0.3841	67	3.3333	4.8667			
Contrast		Estimate	SE	df	t-statistic	Sig.		
Control – Rebuttal	-0.0988	0.5728	67	-0.173	0.8636			
Control – Pseudoscience	-0.3727	0.5615	67	-0.664	0.5091			
Rebuttal – Pseudoscience	-0.2739	0.5549	67	-0.494	0.6232			
Table 4. Results from R of ANOVA (type II) testing for students who watched paranormal reality television shows, and their perceived scientific value of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	198.94	1	198.94	79.07	0.000	0.55
PR.TV	27.35	1	27.35	9.49	0.003	0.13
Group	5.68	2	2.84	1.33	0.271	0.04
Error	132.67	66	2.01			

PR.TV Estimate	SE	df	95% lower CL	95% upper CL
No | 2.6574 | 0.2132 | 66 | 2.2318 | 3.0831 |
Yes | 3.6431 | 0.2843 | 66 | 3.0746 | 4.2112 |
Contrast Estimate | SE | df | t-statistic | Sig. |
--- | --- | --- | ----------- | ---|
Yes − No | 0.9857 | 0.3577 | 66 | 2.756 | 0.0076 |

Table 5. Results from R of ANOVA (type II) testing for students who watched paranormal reality television shows, and their perceived credibility of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	197.29	1	197.29	68.49	0.000	0.51
PR.TV	27.35	1	27.35	9.49	0.003	0.13
Group	5.68	2	2.84	0.99	0.379	0.03
Error	190.13	66	2.88			

PR.TV Estimate	SE	df	95% lower CL	95% upper CL
No | 3.4602 | 0.2552 | 66 | 2.9507 | 3.9698 |
Yes | 4.7796 | 0.3409 | 66 | 4.0991 | 5.4601 |
Contrast Estimate | SE | df | t-statistic | Sig. |
--- | --- | --- | ----------- | ---|
Yes − No | 1.3194 | 0.4282 | 66 | 3.081 | 0.0030 |
Table 6. Results from R of ANOVA (type II) testing for students who watched paranormal reality television shows, and their perceived believability of the stories.

Level of Believability with Paranormal Reality television

Response: How believable did you find the article?

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	124.63	1	124.63	49.16	0.000	0.43
PR.TV	79.84	1	79.84	31.49	0.000	0.32
Group	6.79	2	3.40	1.34	0.269	0.04
Error	167.33	66	2.54			

PR.TV Estimate SE df 95% lower CL 95% upper CL

PR.TV	Estimate	SE	df	95% lower CL	95% upper CL
No	3.0711	0.2394	66	2.5931	3.5492
Yes	5.3254	0.3198	66	4.6870	5.9638

Contrast Estimate SE df t-statistic Sig.

| Yes – No | 2.2542 | 0.4017 | 66 | 5.612 | 0.000 |

Table 7. Results from R of ANOVA (type II) testing for students who engaged in browsing paranormal web sites, and their perceived scientific value of the stories.

Perception of story as Scientific with Paranormal Web Use

Response: How scientific did you find the article?

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	161.53	1	161.53	78.58	0.000	0.54
PR.Web	12.26	1	12.26	5.96	0.017	0.08
Group	6.32	2	3.16	1.53	0.222	0.04
Error	135.68	66	2.06			

PR.Web Estimate SE df 95% lower CL 95% upper CL

PR.Web	Estimate	SE	df	95% lower CL	95% upper CL
No	2.6859	0.2177	66	2.2513	3.1206
Yes	3.5868	0.2909	66	3.0059	4.1677

Contrast Estimate SE df t-statistic Sig.

| Yes – No | 0.9008 | 0.3689 | 66 | 2.442 | 0.0173 |
Table 8. Results from R of ANOVA (type II) testing for students who engaged in browsing paranormal web sites, and their perceived credibility of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	185.35	1	185.35	66.95	0.000	0.50
PR.Web	34.75	1	34.75	12.55	0.001	0.16
Group	10.47	2	5.24	1.89	0.159	0.05
Error	182.73	66	2.77			

PR.TV Estimate SE df t-statistic Sig.
No 3.3855 0.2526 66 2.8811 3.8898
Yes 4.0922 0.3376 66 4.2281 5.5764
Contrast Estimate SE df t-statistic Sig.
Yes − No 1.5167 0.4281 66 3.543 0.0007

Table 9. Results from R of ANOVA (type II) testing for students who engaged in browsing paranormal web sites, and their perceived believability of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	115.64	1	115.64	48.70	0.000	0.42
PR.Web	90.46	1	90.46	38.10	0.000	0.37
Group	13.03	2	6.51	2.74	0.072	0.08
Error	157.71	66	2.37			

PR.TV Estimate SE df t-statistic Sig.
No 2.9959 0.2340 66 2.5288 3.4630
Yes 5.4429 0.3127 66 4.8186 6.0672
Contrast Estimate SE df t-statistic Sig.
Yes − No 2.4470 0.3965 66 6.172 0.000

17 http://dx.doi.org/10.1016/j.heliyon.2017.e00433
2405-8440© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 10. Results from R of ANOVA (type II) testing for students who reported personal paranormal experience, and their perceived believability of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	149.67	1	149.67	54.51	0.000	0.45
PR.Exp	65.96	1	65.96	24.02	0.000	0.27
Group	1.97	2	0.98	0.36	0.700	0.01
Error	181.21	66	2.75			

PR.TV Estimate	SE	df	95% lower CL	95% upper CL
No	3.1312	0.2509	2.6302	3.6321
Yes	5.1671	0.3284	4.5112	5.8227

Contrast Estimate	SE	df	t-statistic	Sig.
Yes – No	2.0360	0.4154	4.901	0.000

Table 11. Results from R of ANCOVA (type II) comparing students RPBS scores, with the perceived scientific value of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	10.80	1	10.80	6.71	0.012	0.09
RPBS	41.66	1	41.66	25.87	0.000	0.28
Group	6.92	2	3.46	2.15	0.125	0.06
Error	106.28	66	1.61			

Trend SE	df	95% lower CL	95% upper CL	t-statistic	Sig.
0.0268	0.0053	0.0163	0.0373	5.086	0.000
Table 12. Results from R of ANCOVA (type II) comparing students RPBS scores, with the perceived credibility of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	15.31	1	15.31	6.09	0.016	0.08
RPBS	51.72	1	51.72	20.59	0.000	0.24
Group	5.90	2	2.95	1.17	0.316	0.03
Error	165.76	66	2.51			
Trend	SE	df	95% lower CL	95% upper CL	t-statistic	Sig.
0.02981	0.0066	66	0.0167	0.0429	4.538	0.000

Table 13. Results from R of ANCOVA (type II) comparing students RPBS scores, with the perceived believability of the stories.

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	0.15	1	0.15	0.09	0.767	0.00
RPBS	131.67	1	131.67	75.25	0.000	0.53
Group	4.38	2	2.19	1.25	0.293	0.04
Error	115.49	66	1.75			
Trend	SE	df	95% lower CL	95% upper CL	t-statistic	Sig.
0.0476	0.0055	66	0.0366	0.0585	8.674	0.000
Table 14. Post Hoc T-Tests for pairwise between group comparisons after correction for RPBS Scores.

Group Comparisons	RPBS: RPBS Scores						
Response: How scientific was the article?	Group: Control, Rebuttal, Pseudoscience						
Group	Estimate	SE	df	95% lower CL	95% upper CL		
Control	3.4542	0.2707	66	2.9138	3.9947		
Rebuttal	2.7081	0.2647	66	2.1797	3.2365		
Pseudoscience	2.8688	0.2542	66	2.3614	3.3762		
Group	Estimate	SE	df	t ratio	Sig.		
Contrast	Group	- Rebuttal	0.7461	0.3784	66	1.972	**0.0528**
Group	- Pseudoscience	0.5855	0.3716	66	1.575	0.1200	
Rebuttal	- Pseudoscience	-0.1607	0.3672	66	-0.438	0.6631	

6. Discussion

Well-established levels of magical belief were evident in the students, but lower than in previously reported work (Peltzer, 2003; Aarnio and Lindeman, 2005). However, these were based on larger samples comprised of different age groups and in wider populations. Nevertheless, the level of magical beliefs encountered was surprising, given that these students were studying science-based professional degree programs in nursing and education. It may be assumed that students arrive at university with their belief in the supernatural already established, but what is interesting here, is the degree to which their field of study challenges those beliefs. Some of these beliefs persisted in spite of student’s having explored empirical scientific methods to substantiate phenomena, discriminating specious arguments, recognizing flawed logic/fallacies, probability theory and the use of inferential statistics in their programs. For established core personal beliefs, it would seem although undergraduate education offered challenges to individual belief systems, this was insufficient to significantly change them.

Nevertheless, students from both the UK and Canadian cohorts provided similar evaluations on all three test articles and the use of a pseudoscientific and authoritative narrative did not seem to influence their views. This is an intriguing finding as it is contrary to some of the outcomes of prior work (Brewer, 2012; Peltzer, 2003; Aarnio and Lindeman, 2005). This likely reflects the higher educational accomplishment in the sample, whereas previous work was based on the general public or outside of professional science-based education. This may
also reflect greater criticality and promotion of critical thinking skills frequently associated with professional degree level studies (Kreber, 2014).

Hypotheses 2-4 explored the impact of exposure to different forms of media on perceived believability, credibility and scientific value of the stories, and once again no significant differences were found between those students who watched television or surfed the web a lot and those who did not. Volume of media exposure seemed to have no discernible effect here. However, responses to questions around more specific media behaviours did yield some interesting results. Those students who watched paranormal reality television shows displayed significantly different responses to the stories than those students who eschewed such predilections. Similarly, those who visited websites dealing with the supernatural also displayed different results from their counterparts (see Tables 1 and 2). Overall, students who watched paranormal reality TV found stories they were given to be more scientific, credible and believable, as did those who browsed a lot of paranormal websites. This suggests that students’ criticality and critical thinking skills might be influenced by these specific forms of media. Browsing paranormal websites may also have a larger influence on perception of the scientific value ascribed to paranormal narratives than watching paranormal television. This may also reflect the widespread growth in production of paranormal focused media in recent years, with the differentiation between reportage and drama becoming increasingly blurred (such as the trend in the found video footage drama genre: Heller-Nicholas, 2014). Overall, these findings give some validation of the influence of specific forms of broadcast media and the web on students’ ability to appraise and evaluate reportage, and to potentially support a belief in the paranormal (Sparks and Pellechia, 1997).

The analysis also suggests that students who reported a personal paranormal experience thought the stories were more believable than those who did not. It appears that personal experience and perception is as powerful as any form of media influence and also supports earlier findings in the general public (Brewer, 2012). This supports the view that the criticality and scientific rationale engendered during an education process may be insufficient to influence a pre-existing personal belief based on personal experience. This presents an interesting paradox. On the one hand, those students who report some form of personal paranormal experience are no more likely to see reported supernatural events as being scientific or credible than those who have not. However, their personal experience clearly influenced believability, and recognition of the impact of any potential bias based on their personal experience was limited. It might be expected that belief in the existence of supernatural phenomenon might be raised in such students, but in this case, they did find a very implausible and poorly evidenced ghost story more believable than their counterparts. Despite equal preparation on the fallibility of individual human perception and the nature of evidence-based practice, these
students still appeared swayed by personal experience, and their ability to apply a scientific critique was affected.

Watching science shows on television or science related web-browsing did not affect the credibility, believability or perceived scientific value of the stories by the students (Hypotheses 4A & B). This contrasts with Brewer’s earlier study findings where differences were noted. Reasons for this are unclear, but it appears that watching paranormal reality television and reading paranormal websites had a more pronounced effect on our sample than watching science shows and browsing science websites. This may be related to issues around the more populist formats of media presentations in this genre.

The analysis of data for Hypothesis 6 confirmed that overall higher paranormal belief scores can usefully predict an increased likelihood of students finding paranormal reports scientific, believing them and finding them credible (Table 4). Additionally, the effects of accounting for the RPBS scores in the between group comparisons confirmed that those people with higher levels of pre-existing paranormal beliefs exposed to a simple supernatural story would be more likely to regard it as having scientific value, compared to those with a similar level of paranormal belief exposed to the same story with a scientific rebuttal (Table 5).

Many of the students retained belief in the paranormal, despite being taught a critical rationale and an evidence-based standard in their programs, exhibiting a paradoxical disjuncture or compartmentalization of belief systems supported by conflicting epistemological stances. Possibly, the alignment of professional nursing and education studies with broader postmodern forms of inquiry, rather than a scientific paradigm, may have had an influence here (McKenna et al., 1999). For example, both nursing and education have now become more aligned with the disciplines of the arts and social sciences. This has resulted in pluralistic curricular developments. For example, there has been a movement to introduce postmodern inquiry as the epistemological centre of nursing supporting relativistic inquiry based on multiple ways of knowing rather than science (Garrett and Cutting, 2014). Although these are important aspects to explore in modern professional curricula, such diverse approaches may leave students with the impression that science, relativistic constructed knowledge and alternative intuitive explanations of phenomena are all equally valid as a basis for professional knowledge. For the students with personal paranormal beliefs, this may have encouraged a more pluralistic intuitive analysis rather than a more critical scientific analysis of the story.

More recent trends towards evidence-based practice (Lipscomb, 2016) have resulted in contemporary scientific theory such as hypothesis construction, the notion of falsifiability, experimental design, probability theory, analysis of logical fallacies and bias in published work all being central elements in the study of
critical inquiry in the professional curriculum. But in many programs, this
substantive content may be contrasted or even supplanted with postmodern
philosophical material (Locsin and Purnell, 2009; 251). Of concern here, is the
possibility that such pluralistic approaches to analytical reasoning may be
translated into professional practice (both as nurses or teachers), supporting
insufficient academic discrimination of fictions, and promoting susceptibility to
accept fabrications and implausible explanations as sufficient evidence for practice.

Given the nature of the participants in this study, these findings have significantly
wider implications, particularly in relation to teaching and learning in science-
based professional higher education. The impact of magical beliefs exemplified
here raise critical questions about the acquisition of the analytical attributes
required for critical thinking in science-based professions. These have been
described by Reissner (2010) as “one of the pillars of undergraduate studies.” It is
generally well established that critical thinking is an essential characteristic of
graduate and professional studies (Reissner, 2010; Garett and Wulf, 1978) and that
critical thinking skills are seen to contribute to graduates’ success in the workplace
(Watson and Adamson, 2010; Coetzee, 2014). Here are students who have the
capability to critically engage with information, evaluate evidence, make rational
judgments and draw conclusions; yet these attributes of criticality appear
selectively applied and suspended to allow for magical thinking. Here we have
identified students who are able to deploy skills in critical engagement in specific
academic settings and in professional placements, but are nevertheless, still
influenced by magical thinking. In light of these results, educators may wish to
consider how best to promote rigorous objective analytical skills in undergraduate
science-based programs with the aim of fully realizing what Barnett (2007) called
“the formation of critical being (p160).”

The study had a number of limitations. Given the fairly small sample size for
exploration of the key dependent a fully randomized trial was not appropriate, and
so a quasi-experiential approach was adopted. Given this, it is acknowledged that
the statistical analysis might not detect small effects of the treatments, although
some of the effects seen in this sample were moderate to large (with \(\eta^2\) ranging
from 0.13–0.27). There have also been some reported sex differences in
supernatural beliefs, in that women are more likely to espouse supernatural and
paranormal beliefs than men (Tobacyk and Pirttilä-Backman, 1992; Zebb and
Moore, 2003). Being a predominantly female sample (87%) this may also have
influenced the results here. These factors may influence generalizability of the
results in a larger or different populations. Also, as it is impossible to completely
rule out zero-order or spurious and suppressor relationships between covariates,
here, we should be cautious with inferences about the influence of media on
thinking. As with other reports of these phenomena, a relationship does not
indicate causation. It may simply be that students with a predilection for
paranormal media may be more susceptible to its influence on their criticality in certain circumstances. However, it was evident that criticality was negatively influenced by pre-existing paranormal believes, and this did not appear to have been influenced by the educational processes undertaken.

7. Conclusions

A primary aim of this study was to explore evidence of magical beliefs and thinking amongst professional nursing and education students, and to explore to what extent the use of pseudoscientific language influenced the degree to which these students regarded the validity of media reports. Principally it attempted to evaluate and validate the influence of bogus authority through the use of pseudoscientific language, as detected in previous work (Brewer, 2012). Allied to this, however, was a secondary aim; namely to establish whether students’ reactions to different styles of reporting were influenced by their own personal perspectives, in this case their level of belief in the paranormal. A final aim also investigated aspects of media behaviour within the cohort, including estimated time spent watching television as well as web use. It also established the inclination of students to watch paranormal television shows.

Aside from religious beliefs, well-established levels of magical belief remained evident in the students. There was however, no significant difference in this, or any of the variables examined between the UK and Canadian cohorts. The first hypotheses (1A-C) did not establish any significant differences in believability and credibility or perceived scientific value attributed to the different stories, based on their use of authority, scientific and pseudoscientific narratives. Overall this would suggest that the nature of the narrative presented did not affect the students’ belief in the phenomenon nor how credible or scientific they saw the different stories to be.

No significant difference was established between the reactions to the papers and the hours of general television viewing and web usage reported by the students. The degree of electronic media utilization or exposure to science television and websites likewise did not appear to influence believability, credibility or perception of scientific value of the stories. Students who watched paranormal reality television found the stories more credible believable and scientific than those who did not. Also, students who browsed a lot of paranormal websites found the stories they were given to be more credible, believable and scientific. The web may have a more persuasive influence than television, as browsing paranormal websites more positively influenced how believable, credible and scientific the paranormal stories were seen to be.

The study found that RPBS scores can usefully predict the likelihood of students finding paranormal reports scientific, believing them and finding them credible.
Although the students here differentiated between scientific and pseudoscientific rationales, pre-existing supernatural beliefs did significantly influence their thinking. Students with high levels of paranormal beliefs demonstrated this influence on their ability to critically discriminate presentations of unscientific material. The results indicate that those students with higher levels of paranormal belief exposed to a simple ghost news story would be more likely to perceive it as being scientific compared to those with a similar level of paranormal belief exposed to the same story but with a scientific rebuttal. Distinguishing the scientific validity of a simple bogus news story is a skill required for both nursing and education professionals. If discrimination of the veracity of a narrative remains significantly influenced by personal magical beliefs, then the assumption that the educational experience helps develop criticality may not be met. This at least raises questions as to the expectations for scientific preparation in professional programs, and to what degree material on objectively analysing specious arguments (irrespective of personal material) is necessary.

The results here undoubtedly show that the students here have developed some of the skills of criticality, discriminating between scientific and pseudoscientific narratives, but also that these skills were somewhat abstracted, being deployed in different situations, dependent upon other belief systems. Whether this constitutes authentic critical thinking (a central theme in so-called ‘graduate attributes’) and the development of what have been called ‘critical dispositions’ (Barnett, 2007; Kreber, 2014) for science-based disciplines is questionable. These findings stand not as a criticism of personal belief systems, nor of susceptibility to paranormal beliefs, but raise questions of how professional degree level programs should best address developing authentic, transformative, critical and scientific thinking skills as important learning outcomes for professional practice.

Declarations

Author contribution statement

Bernie Garrett, Roger Cutting: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by the Canadian Association of Schools of Nursing – Pat Griffin Education Scholarship Award.
Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at http://dx.doi.org/10.1016/j.heliyon.2017.e00433.

Acknowledgements

The authors acknowledge the assistance of the following people in undertaking this work: Dr. Paul R. Brewer, University of Delaware, Newark, USA. The late Rick White, Managing Director, Applied Statistics and Data Science Group, Department of Statistics, University of British Columbia. Mr Owen Thompson, City College, Norwich, Norfolk, UK.

References

Aarnio, K., Lindeman, M., 2005. Paranormal beliefs, education, and thinking styles. Pers. Individ. Dif. 39, 1227–1236.

Barnett, R., 2007. A will to learn: being a student in an age of uncertainty. Society for Research into Higher Education and the Open University Press, Maidenhead.

Bouvet, R., Djeriouat, H., Goutaudier, N., Py, J., Chabrol, H., 2014. Validation française de la Revised Paranormal Belief Scale. L’Encéphale 40 (4), 308–314.

Brewer, P.R., 2012. The Trappings of Science: Media Messages, Scientific Authority, and Beliefs About Paranormal Investigators. Sci. Commun. 35 (3), 311–333.

Brewer, P.R., Ley, B.L., 2013. Whose Science Do You Believe? Explaining Trust in Sources of Scientific Information About the Environment. Sci Commun. 35 (1), 115–137.

Coetzee, M., 2014. Measuring student graduateness: reliability and construct validity of the Graduate Skills and Attributes Scale. High. Educ. Res. Dev. 33 (5), 887–902.

Cohen, L., Manion, L., Morrison, K., 2011. Research methods in education. Professional Development in Education, Seventh edition Routledge, New York.

Chang, Y., Thorson, E., 2004. Television and Web Advertising Synergies. J. Advert. 33 (2), 75–84.
Dagnall, N., Drinkwater, K., Denovan, A., Parker, A., Rowley, K., 2016. Misperception of Chance, Conjunction, Framing Effects and Belief in the Paranormal: A Further Evaluation. Appl. Cogn. Psychol. 30 (3), 409–419.

Dagnall, N., Parker, A., Munley, G., 2007. Paranormal belief and reasoning. Personal. Individ. Differ. 43, 1406–1415.

De Busscher, J., 1957. [Magical thinking]. Acta Neurologica et Psychiatrica Belgica 57 (1), 1–26.

Dunne, G., 2015. Beyond critical thinking to critical being: Criticality in higher education and life. Int. J. Educ. Res. 71, 86–99.

Flaming, D., 2001. Using phronesis instead of research-based practice as the guiding light for nursing practice. Nurs. Phil. 2 (3), 251–258.

Ferguson, D.A., Perse, E.M., 2000. The World Wide Web as a Functional Alternative to Television. J. Broadcast. Electron. Media 44 (2), 155–174.

Garett, K., Wulf, K., 1978. The relationship of a measure of critical thinking ability to personality variables and to indicators of academic achievement. Educ. Psychol. Meas. 38 (4), 1181–1187.

Garrett, B.M., Cutting, R.L., 2014. Ways of knowing: Realism, non-realism, nominalism and a typology revisited with a counter perspective for nursing science. Nurs. Inquiry 22 (2), 95–105.

Harris Interactive, 2014. U.S. Teens More Likely than Adults to Believe in God, Heaven and Angels. Retrieved 26/08/2016 http://goo.gl/MnfHBL.

Hanegraaff, W.J., 2005. Forbidden Knowledge: Anti-Esoteric Polemics and Academic Discourse. Aries: Journal for the study of Western esotericism 5 (2), 225–254.

Heller-Nicholas, A., 2014. Found footage horror films: fear and the appearance of reality. McFarland, Jefferson, NC.

Hergovich, A., Arendasy, M., 2005. Critical thinking ability and belief in the paranormal. Pers. Individ. Dif. 38 (8), 1805–1812.

Hill, S., 2012. Amateur Paranormal Research and Investigation Groups ‘Sciencey’ Things. Retrieved 26/08/2016 http://goo.gl/SDwuGu.

Kreber, C., 2014. Rationalising the nature of ‘graduateness’ through philosophical accounts of authenticity. Teaching in Higher Education 19 (1), 90–100.

Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., Cook, J., 2012. Misinformation and Its Correction. Psychol. Sci. Public Interest 13 (3), 106–131.
Lipscomb, M., 2016. Debates and Challenges in Nursing. Routledge, London.

Locsin, R.C., Purnell, M.J., 2009. A contemporary nursing process: The (un)bearable weight of knowing in nursing. Springer, New York, NY.

McKenna, H., Cutliffe, J., McKenna, P., 1999. Evidence-based practice: Demolishing some myths. Nurs. Stand. 14, 39–42.

Morgan, M., Shanahan, J., 2010. The state of cultivation. J. Broadcast. Electron. Media 54, 337–355.

Newman, J.H., 1907. The Idea of a University. Longmans Green & Co, New York, NY. Retrieved 26/08/2016 http://www.newmanreader.org/works/idea/.

Nisbet, M., 2006. Cultural indicators of the paranormal. Skeptical Inquirer. Retrieved 26/08/2016 www.csicop.org/specialarticles/show/cultural_indicators_of_the_paranormal.

Ipsos Reid, 2006. Do You Believe In Ghosts? Almost Half (47%) Of Canadians Say They Do. Retrieved 26/08/2016 http://www.marketwired.com/press-release/do-you-believe-in-ghosts-almost-half-47-of-canadians-say-they-do-618230.htm.

Peltzer, K., 2003. Magical thinking and paranormal beliefs among secondary and university students in South Africa. Pers. Individ. Dif. 35, 1419–1426.

Plomin, R., Corley, R., DeFries, J.C., Fulker, D.W., 1990. Individual Differences in Television Viewing in Early Childhood: Nature as Well as Nurture. Psychol. Sci. 1 (6), 371–377.

Reissner, S.C., 2010. Essential post-graduate study skills. In: Watson, G., Reissner, C. (Eds.), Developing skills for business leadership. CIPD, London, pp. 35–64.

Rosengren, K.S., French, J.A., 2013. Magical Thinking: The Oxford Handbook of the Development of the Imagination. University Press, Oxford. Oxford.

Schwartz, J.A., Beaver, K.M., 2015. Revisiting the Association between Television Viewing in Adolescence and Contact with the Criminal Justice System in Adulthood. J. Interpers. Violence 31 (14), 2387–2411.

Shanahan, J., Morgan, M., 1999. Television and its viewers: Cultivation theory and research. Cambridge University Press, London, England.

Small, G.W., Moody, T.D., Siddarth, P., Bookheimer, S.Y., 2009. Your Brain on Google: Patterns of cerebral activation during internet searching. Am. J. Geriatr. Psychiatry 17 (2), 116–126.

Sparks, G.G., Hansen, T., Shah, R., 1994. Do televised depictions of paranormal events influence viewers’ paranormal beliefs? Skeptical Inquirer 18, 386–395. Retrieved 21/08/2017 https://www.csicop.org/si/archive.
Sparks, G.G., Nelson, C.L., Campbell, R.G., 1997. The relationship between exposure to televised messages about paranormal phenomena and paranormal beliefs. J. Broadcast. Electron. Media 41, 345–359.

Sparks, G.G., Pellechia, M., 1997. The effect of news stories about UFOs on readers’ UFO beliefs: The role of confirming or disconfirming testimony from a scientist. Communic. Rep. 10, 165–172.

Sparks, G.G., Miller, W., 2001. Investigating the relationship between exposure to television programs that depict paranormal phenomena and beliefs in the paranormal. Commun. Monogr. 68, 98–113. Retrieved 21/08/2017 https://web.sas.upenn.edu/ghosts-healing/files/2017/04/sparks_survey-1e6tqhi.pdf.

Srinagesh, K., 2006. The principles of experimental research. Elsevier/Butterworth-Heinemann, New York.

Sullivan, W.M., Rosin, M.S., 2008. A New Agenda for Higher Education: Shaping a Life of the Mind for Practice. Carnegie Foundation for the Advancement of Teaching and Jossey-Bass, San Francisco, CA, pp. 16–17.

Takeuchi, H., Taki, Y., Hashizume, H., Asano, K., Asano, M., Sassa, Y., Kawashima, R., 2015. The Impact of Television Viewing on Brain Structures: Cross-Sectional and Longitudinal Analyses. Cereb. Cortex 25 (5), 1188–1197.

Tobacyk, J.J., 2004. A Revised Paranormal Belief Scale. International Journal of Transpersonal Studies 23, 94–98.

Tobacyk, J.J., Pirttilä-Backman, A.M., 1992. Paranormal Beliefs and their Implications in University Students from Finland and the United States. J. Cross Cult. Psychol. 23 (1), 59–71.

Tobacyk, J.J., Wilkinson, L.V., 1990. Magical thinking and paranormal beliefs. J. Soc. Behav. Pers. 5 (4), 255–264.

Vyse, S.A., 2014. Believing in Magic: The psychology of superstition. Oxford University Press, Oxford, UK.

Watson, G., Adamson, I., 2010. Effective team-building and communication. In: Watson, G., Reissner, C. (Eds.), Developing Skills for Business Leadership. CIPD, London, pp. 161–187.

YouGov, 2016. British people more likely to believe in ghosts than a Creator. Retrieved 26/08/2016 https://yougov.co.uk/news/2016/03/26/o-we-of-little-faith/.

Zebb, B.J., Moore, M.C., 2003. Superstitiousness and perceived anxiety control as predictors of psychological distress. J. Anxiety Disord. 17 (1), 115–130.