The complete chloroplast genome sequence of *Clerodendrum cyrtophyllum* from Guangzhou, China

Shiqiang Xu, Weizhong Huang, Shike Cai and Jihua Wang

Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Luofushan Sinopharm Co., Ltd, Huizhou, PR China

ABSTRACT

Clerodendrum cyrtophyllum is a well-known medicinal plant in southern China. Here, we presented the complete chloroplast (cp) genome of *C. cyrtophyllum* using Illumina high-throughput sequencing technology. The *C. cyrtophyllum* cp genome size is 152,004 bp with 38.13% GC content, including a pair of inverted repeat regions (IR, 51,592 bp) separated by a large single copy (LSC, 86,480 bp) and a small single copy region (SSC, 18,425 bp). It possesses 87 protein-coding genes, 37 *tRNA* genes and eight *rRNA* genes. Phylogenetic analysis fully shows that *C. cyrtophyllum* is closely related to *Clerodendrum bungei* and *Clerodendrum lindleyi*. Overall, the complete cp genome sequence of *C. cyrtophyllum* provides a valuable resource for genetic diversity, phylogenetic relationship, and species identification.

Clerodendrum cyrtophyllum Turcz. 1863, belonging to the genus *Clerodendrum* of Lamiaceae family, is a perennial herb that widely distributed in tropical and subtropical regions (Shrivastava and Patel 2007). In Vietnam and China, it has been reported as folk medicine to treat various disease, such as epidemic colds, fever, sore throat, and rheumatic arthritis (Nguyen et al. 2020). Its dried aerial part, called *daqingye* in traditional Chinese medicine, has the effects of clearing heat and detoxification, dispelling wind and eliminating dampness, antioxidant, and anti-inflammatory. It has various phytochemical compounds, such as phenolic acids, polyketides, diterpenes, triterpenes, glycosides, sterols, and flavonoids (Zhou et al. 2013). Among them, phenolic acids, and flavonoids are the main medicinal active ingredients with potent anti-inflammatory and antioxidant effects (Li et al. 2020). However, the same genus species in *Clerodendrum* exhibit high similarity in morphological characters, leading to challenges in species identification. Although studies of *C. cyrtophyllum* using DNA barcodes have been published (Deng et al. 2014), the cp genome has not been assembled. In order to address the cp genome characteristics and evolutionary relationship of *C. cyrtophyllum*, we assembled its complete cp genome by next-generation sequencing technology.

Fresh young leaves of *C. cyrtophyllum* were collected from Guangdong Academy of Agricultural Sciences (Guangzhou, China; N23.1459, E113.3498), and immediately frozen by liquid nitrogen. Genomic DNA was extracted by using plant genomic DNA kit (Omega, Norcross, GA), and deposited in −80 °C refrigerator at Guangdong Provincial Key Laboratory of Crops Genetics and Improvement with the voucher number Dq2020. The herbarium voucher specimen was deposited at the Medicinal Plant Germplasm Resource Nursery (Jihua Wang, wangjihua@gdaas.cn). The paired-end sequencing libraries (insert size 150 bp) were constructed using the DNA Library Fast Construction Kit (Illumina) and sequenced on the Illumina Novaseq platform (Illumina, San Diego, CA) to yield 6,123,816 raw reads. More than 5.0 Gb (base-coverage 525.74×) clean data were obtained by removing adaptors and low-quality reads pairs (Q ≤ 20) using Trimmomatic version 0.33 (Golm, Germany) with default parameters (Bolger et al. 2014). GetOrganelle version 1.6.2e (default parameters, Kunming, China) was employed to assemble the *C. cyrtophyllum* cp genome, and Geseq was performed to annotate the complete cp genome with default settings (Tillich et al. 2017; Jin et al. 2020). The final cp genome was evaluated and corrected with the *Clerodendrum japonicum* cp genome as a reference (NCBI accession number: MW222242.1).

The *C. cyrtophyllum* cp genome size was 152,004 bp with 38.13% GC content (GenBank accession number MW858153.1). The structure of the *C. cyrtophyllum* cp genome displayed a typical quadripartite structure with a pair of IRs regions (25,633 bp), which were separated by a LSC (83,413 bp) and a SSC region (17,325 bp). The cp genome of *C. cyrtophyllum* possessed 132 genes, including 87 protein-coding genes, 37 *tRNA* genes, and eight *rRNA* genes. In addition, 17 genes were duplicated in the IR regions and 23 genes contained introns.

To resolve the phylogenetic position of *C. cyrtophyllum*, a phylogenetic analysis is constructed by using the whole cp genome by next-generation sequencing technology. The cp genome of *C. cyrtophyllum* exhibits high similarity with other *Clerodendrum* species, and the phylogenetic tree is consistent with their morphological characteristics and geographical distribution. The cp genome of *C. cyrtophyllum* provides a valuable resource for genetic diversity, phylogenetic relationship, and species identification.
genome sequences of 16 species in the Lamiaceae family and two outgroups (*Stachys japonica* and *Lamium takeshimense*). The maximum likelihood (ML) phylogenetic tree was inferred using RaxML software version 8.2.12 (Heidelberg, Germany) under the model automatically selected for 1000 bootstraps (Stamatakis 2014). As shown in Figure 1, the bootstrap values of the nodes in the ML tree were 94/95/100, and species in the same genus were clustered together, demonstrating a highly robust evolutionary relationship. *C. cyrtophyllum* was clearly clustered with other *Clerodendrum* genus species, and formed a subclade with *C. bungei* and *C. lindleyi*. In conclusion, the characterized cp genome sequence of *C. cyrtophyllum* provides a useful genetic information for the evolutionary relationship and species identification.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by the Special fund for scientific innovation strategy-construction of high level Academy of Agriculture Science [R2019PY-JX003] and Southern Medicinal Plants Pharmaceutical Modern Agricultural Industrial Park Project of Boluo (2019).

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at [https://www.ncbi.nlm.nih.gov/nuccore/MW858153] under the accession no. MW858153. The associated BioProject, SRA, and Bio-Sample number are PRJNA721121, SRR14209297, and SAMN18700176, respectively.

References

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.

Deng SY, Wen Q, Li KQ, Ye JS, Zhu PL. 2014. Screening and application of SSR primers in plants of *Clerodendrum* L. Chin Trad Herb Drugs. 45(22):3317–3322.

Li G, Zhou J, Sun M, Cen J, Xu J. 2020. Role of luteolin extracted from *Clerodendrum cyrtophyllum* Turcz leaves in protecting HepG2 cells from TBHP-induced oxidative stress and its cytotoxicity, genotoxicity. J Funct Foods. 74:104196.
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Nguyen TH, Le HD, Nguyen Thi Kim T, Pham The H, Nguyen TM, Cornet V, Lambert J, Kestemont P. 2020. Anti-inflammatory and antioxidant properties of the ethanol extract of Clerodendrum cyrtophyllum turcz in copper sulfate-induced inflammation in zebrafish. Antioxidants. 9(3):192.

Shrivastava N, Patel T. 2007. Clerodendrum and healthcare: an overview. Med Aromat Plant Sci Biotechnol. 1(1):142–150.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Zhou J, Zheng X, Yang Q, Liang Z, Li D, Yang X, Xu J. 2013. Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves. PLoS One. 8(7):e68392.