DECAY OF SOLUTIONS OF WAVE-TYPE
PSEUDO-DIFFERENTIAL EQUATIONS OVER \(p \)-ADIC
FIELDS

W. A. ZUNIGA-GALINDO

Abstract. We show that the solutions of \(p \)-adic pseudo-differential
equations of wave type have a decay similar to the solutions of classical
generalized wave equations.

1. Introduction

During the eighties several physical models using \(p \)-adic numbers were
proposed. Particularly various models of \(p \)-adic quantum mechanics \[14],
[16], [24], [25]. As a consequence of this fact, several new mathematical
problems emerged, among them, the study of \(p \)-adic pseudo-differential
equations \[11], [25]. In this paper we initiate the study of the decay of the
solutions of wave-type pseudo-differential equations over \(p \)-adic fields; these
equations were introduced by Kochubei \[12] in connection with the problem
of characterizing the \(p \)-adic wave functions using pseudo-differential operators. We show that the solutions of \(p \)-adic wave-type equations have a
decay similar to the solutions of classical generalized wave equations.

Let \(K \) be a \(p \)-adic field, i.e. a finite extension of \(\mathbb{Q}_p \). Let \(R_K \) be the
valuation ring of \(K \), \(P_K \) the maximal ideal of \(R_K \), and \(\overline{K} = R_K / P_K \)
the residue field of \(K \). Let \(\pi \) denote a fixed local parameter of \(R_K \). The
cardinality of \(\overline{K} \) is denoted by \(q \). For \(z \in K \), \(v(z) \in \mathbb{Z} \cup \{+\infty\} \) denotes the
valuation of \(z \), and \(|z|_K = q^{-v(z)} \). Let \(\mathbb{S}(K^n) \) denote the \(\mathbb{C} \)-vector space of
Schwartz-Bruhat functions over \(K^n \), the dual space \(\mathbb{S}'(K^n) \) is the space of
distributions over \(K^n \). Let \(\mathcal{F} \) denote the Fourier transform over \(\mathbb{S}(K^{n+1}) \).
The reader can consult any of the references \[9], [25], [20\] for an exposition
of the theory of distributions over \(p \)-adic fields.

This article aims to study the following initial value problem:

\[
\begin{align*}
(Hu)(x,t) &= 0, \quad x \in K^n, \quad t \in K \\
 u(x,0) &= f_0(x),
\end{align*}
\]

1991 Mathematics Subject Classification. Primary 35S99, 47S10; Secondary 11S40.

Key words and phrases. Non-archimedean pseudo-differential equations, restriction of
Fourier transforms, exponential sums modulo \(p^m \), Igusa local zeta function.

Project sponsored by the National Security Agency under Grant Number H98230-06-
1-0040. The United States Government is authorized to reproduce and distribute reprints
notwithstanding any copyright notation herein.
where \(n \geq 1, f_0 (x) \in \mathcal{S}(K^n) \), and
\[
(H\Phi) (t, x) := \mathcal{F}^{-1}_{(\tau, \xi) \rightarrow (t, x)} \left(|\tau - \phi (\xi)|_K \mathcal{F}_{(t,x) \rightarrow (\tau, \xi)} \Phi \right), \quad \Phi \in \mathcal{S}(K^{n+1}),
\]
is a pseudo-differential operator with symbol \(|\tau - \phi (\xi)|_K \), where \(\phi (\xi) \) is a polynomial in \(K [\xi_1, \ldots, \xi_n] \) satisfying \(\phi(0) = 0 \). In the case in which \(\phi (\xi) = a_1 \xi_1^2 + \ldots + a_n \xi_n^2 \), \(H \) is called a Schrödinger-type pseudo-differential operator; this operator was introduced by Kochubei in [12]. For \(n = 1 \) the solution of (1.1) appears in the formalism of \(p \)-adic quantum mechanics as the wave function for the free particle [24]. The problem of characterizing the \(p \)-adic wave functions as solutions of some pseudo-differential equation remains open.

Let \(\Psi (\cdot) \) denote an additive character of \(K \) trivial on \(R_K \) but no on \(P_K^{-1} \). By passing to the Fourier transform in (1.1) one gets that
\[
|\tau - \phi (\xi)|_K \mathcal{F}_{(x,t) \rightarrow (\tau, \xi)} u = 0.
\]
Then any distribution \(g \) with \(g \) a distribution supported on \(\tau - \phi (\xi) = 0 \) is a solution. By taking
\[
g (\xi, \tau) = (\mathcal{F}_{x \rightarrow \xi} f_0) \delta (\tau - \phi (\xi)) ,
\]
where \(\delta \) is the Dirac distribution, one gets
\[
(1.2) \quad u(x,t) = \int_{K^n} \Psi \left(t\phi (\xi) + \sum_{i=1}^{n} x_i \xi_i \right) \left(\mathcal{F}_{x \rightarrow \xi} f_0 \right) (\xi) |d\xi| ,
\]
here \(|d\xi| \) is the Haar measure of \(K^n \) normalized so that \(vol (R_K^n) = 1 \).

In this paper we show that the decay of \(u(x,t) \) is completely similar to the decay of the solution of the following initial value problem:
\[
\begin{cases}
\frac{\partial u_{arch}(x,t)}{\partial t} = i\phi (D) u_{arch} (x,t) , & x \in \mathbb{R}^n , \ t \in \mathbb{R} \\
u_{arch} (x,0) = f_0 (x) ,
\end{cases}
(1.3)
\]
here \(\phi (D) \) is a pseudo-differential operator having symbol \(\phi (\xi) \). In this case
\[
(1.4) \quad u_{arch} (x,t) = \int_{\mathbb{R}^n} \exp 2\pi i \left(t\phi (\xi) + \sum_{i=1}^{n} x_i \xi_i \right) \left(\mathcal{F}_{x \rightarrow \xi} f_0 \right) (\xi) d\xi
\]
is the solution of the initial value problem (1.3). If \(\phi (\xi) = \xi_1^2 + \ldots + \xi_n^2 \), i.e. \(\phi (D) \) is the Laplacian, \(u_{arch} (x,t) \) satisfies
\[
(1.5) \quad \left\| u^{arch} (x,t) \right\|_{L^{2(n+2)/n}} \leq c \left\| f_0 \right\|_{L^2} ,
\]
(see [22]). If \(n = 1 \) and \(\phi (\xi) = \xi^2 \), \(u_{arch} (x,t) \) satisfies
\[
(1.6) \quad \left\| u^{arch} (x,t) \right\|_{L^8} \leq c \left\| f_0 \right\|_{L^2} ,
\]
(see [13]). We show that \(u(x,t) \) satisfies (1.5), if \(\phi (\xi) = \xi_1^2 + \ldots + \xi_n^2 \) (see Theorem [5.2]), and that \(u(x,t) \) satisfies (1.6), if \(\phi (\xi) = \xi_3^2 \) (see Theorem [5.2]).
For more general symbols we are able to describe the decay of \(u(x,t) \) in \(L^\sigma(K^{n+1}) \), however, in this case the index \(\sigma \) is not optimal (see Theorem 5.1). The proof is achieved by adapting standard techniques in PDEs and by using number-theoretic techniques for estimating exponential sums modulo \(\pi^m \). Indeed, like in the classical case the estimation of the decay rate can be reduced to the problem of estimating of the restriction of Fourier transforms to non-degenerate hypersurfaces [20]; we solve this problem (see Theorems 4.1, 4.2) by reducing it to the estimation of exponential sums modulo \(\pi^m \) (see Theorems 3.1, 3.2). These exponential sums are related to the Igusa zeta function for non-degenerate polynomials [6], [10], [28], [29]. More precisely, by using Igusa’s method, the estimation of these exponential sums can be reduced to the description of the poles of twisted local zeta functions [6], [25], [29].

The restriction of Fourier transforms in \(\mathbb{R}^n \) (see e.g. [20, Chap. VIII]) was first posed and partially solved by Stein [8]. This problem have been intensively studied during the last thirty years [2], [20], [22], [27]. Recently Mockenhaupt and Tao have studied the restriction problem in \(\mathbb{F}_q^n \) [15]. In this paper we initiate the study of the restriction problem in the non-archimedean field setting.

The author thanks to the referee for his/her careful reading of this paper.

2. The Non-archimedean Principle of the Stationary Phase

Given \(f(x) \in K[x], x = (x_1, \ldots, x_m) \), we denote by

\[
C_f(K) = \left\{ z \in K^m \mid \frac{\partial f}{\partial x_1}(z) = \cdots = \frac{\partial f}{\partial x_m}(z) = 0 \right\}
\]

the critical set of the mapping \(f : K^m \to K \). If \(f(x) \in R_K[x] \), we denote by \(\overline{f}(x) \) its reduction modulo \(\pi \), i.e. the polynomial obtained by reducing the coefficients of \(f(x) \) modulo \(\pi \).

Give a compact open set \(A \subset K^m \), we set

\[
E_A(z, f) = \int_A \Psi(zf(x)) \, |dx|,
\]

for \(z \in K \), where \(|dx| \) is the normalized Haar measure of \(K^m \). If \(A = R^m_K \) we use the simplified notation \(E(z, f) \) instead of \(E_A(z, f) \). If \(f(x) \in R_K[x] \), then

\[
E(z, f) = q^{-am} \sum_{x \mod \pi^n} \Psi(zf(x));
\]

thus \(E(z, f) \) is a generalized Gaussian sum.

Lemma 2.1. Let \(f(x) \in R_K[x], x = (x_1, \ldots, x_m) \), be a non-constant polynomial. Let \(A \) be the preimage of \(\overline{A} \subseteq \mathbb{F}_q^m \) under the canonical homomorphism \(R^m_K \to (R_K/P_K)^m \). If \(C_f(K) \cap A = \emptyset \), then there exists a constant \(I(f,A) \) such that

\[
E(z, f) = 0, \quad \text{for} \quad |z|_K > q^{2I(f,A)+1}.
\]
Proof. We define

\[I(f,a) = \min_{1 \leq i \leq m} \left\{ v \left(\frac{\partial f}{\partial x_i} (a) \right) \right\}, \]

for any \(a \in A \), and

\[I(f,A) = \sup_{a \in A} \{ I(f,a) \}. \]

Since \(A \) is compact and \(C_f(K) \cap A = \emptyset \), \(I(f,A) < \infty \).

We denote by \(a^* \) an equivalence class of \(\mathbb{R}^m_K \) modulo \((P_I(f,A)+1)^m \), and by \(a \in \mathbb{R}^m_K \) a fixed representative of \(a^* \). By decomposing \(A \) into equivalence classes modulo \((P_I(f,A)+1)^m \), one gets

\[E(z,f) = \sum_{a^* \subseteq A} q^{-m(I(f,A)+1)} \int_{R_K^m} \Psi \left(z f \left(a + \pi^{I(f,A)+1} x \right) \right) \, |dx|. \]

Thus, it is sufficient to show that \(\int_{R_K^m} \Psi \left(z f \left(a + \pi^{I(f,A)+1} x \right) \right) \, |dx| = 0 \) for \(|z|_K > q^{2I(f,A)+1} \).

On the other hand, if \(a = (a_1, \ldots, a_m) \), then

\[\frac{f \left(a + \pi^{I(f,A)+1} x \right) - f \left(a \right)}{\pi^{I(f,A)+1+\alpha_0}} \]

equals

\[\sum_{i=1}^m \pi^{-\alpha_0} \frac{\partial f}{\partial x_i} (a) (x - a_i) + \pi^{I(f,A)+1-\alpha_0} \text{ (higher order terms)}, \]

where

\[\alpha_0 = \min_i \left\{ v \left(\frac{\partial f}{\partial x_i} (a) \right) \right\}. \]

Therefore

\[f \left(a + \pi^{I(f,A)+1} x \right) - f \left(a \right) = \pi^{I(f,A)+1+\alpha_0} \tilde{f}(x) \]

with \(\tilde{f}(x) \in R_K[x] \), and since \(C_f(K) \cap A = \emptyset \), there exists an \(i_0 \in \{1, \ldots, m\} \) such that

\[\frac{\partial f}{\partial x_{i_0}} (\pi) \neq 0. \]

We put \(y = \Phi(x) = (\Phi_1(x), \ldots, \Phi_m(x)) \) where

\[\Phi_i(x) = \begin{cases} \tilde{f}(x) & i = i_0 \\ x_i & i \neq i_0. \end{cases} \]

Since \(\Phi_1(x), \ldots, \Phi_m(x) \) are restricted power series and

\[f \left(\frac{(y_1, \ldots, y_m)}{(x_1, \ldots, x_m)} \right) = \frac{\partial f}{\partial x_{i_0}} (\pi) \neq 0, \]
the non-archimedean implicit function theorem implies that $y = \Phi(x)$ gives
a measure-preserving map from R_K^m to R_K^m (see [10, Lemma 7.43]). Therefore
$$\int_{R_K^m} \Psi \left(zf \left(a + \pi^{I(f,A)+1} x \right) \right) |dx| =$$
$$\Psi \left(zf (a) \right) \int_{R_K^m} \Psi \left(z\pi^{I(f,A)+1+\alpha_0} y_{i_0} \right) |dy_{i_0}| = 0,$$
for $v(z) < - (I(f,A) + 1 + \alpha_0)$, i.e. for $|z|_K > q^{I(f,A)+1+\alpha_0}$, and a fortiori
$$\int_{R_K^m} \Psi \left(zf \left(a + \pi^{I(f,A)+1} x \right) \right) |dx| = 0,$$
for $|z|_K > q^{2I(f,A)+1}$ and any a. □

Theorem 2.1. Let $f(x) \in K[x]$, $x = (x_1, \ldots, x_m)$, be a non-constant polynomial. Let $B \subset K^m$ be a compact open set. If $C_f(K) \cap B = \emptyset$, then there exist a constant $c(f,B)$ such that
$$E_B(z, f) = 0, \quad |z|_K \geq c(f,B).$$

Proof. By taking a covering $\bigcup_i (y_i + (\pi^\alpha R_K)^m)$ of B, $E_B(z, f)$ can be expressed as linear combination of integrals of the form $E(z, f_i)$ with $f_i(x) \in K[x]$. After changing z by $z \pi^\beta$, we may suppose that $f_i(x) \in R_K[x]$. By applying Lemma 2.1 we get that $E(z, f_i) = 0$, for $|z|_K > c_i$. Therefore
$$E_B(z, f) = 0, \quad |z|_K > \max_i c_i. \quad (2.3)$$

We note that the previous result implies that
$$E_B(z, f) = O(|z|_K^{-M}),$$
for any $M \geq 0$. This is the standard form of the principle of the stationary phase.

3. Local Zeta Functions and Exponential Sums

In this section we review some results about exponential sums and Newton polyhedra that will be used in the next section. For $x \in K$ we denote by $ac(x) = x\pi^{-v(x)}$ its angular component. Let $f(x) \in R_K[x]$, $x = (x_1, \ldots, x_m)$ be a non-constant polynomial, and $\chi : R_K^* \to \mathbb{C}^*$ a character of R_K^*, the group of units of R_K. We formally put $\chi(0) = 0$. To these data one associates the Igusa local zeta function,
$$Z(s, f, \chi) = \int_{R_K^m} \chi(acf(x)) |f(x)|_K^s \ |dx|, \quad s \in \mathbb{C},$$
for $Re(s) > 0$, where $|dx|$ denotes the normalized Haar measure of K^n. The Igusa local zeta function admits a meromorphic continuation to the complex plane as a rational function of q^{-s}. Furthermore, it is related to the number
of solutions of polynomial congruences modulo π^m and exponential sums modulo π^m [5], [10].

3.1. Exponential Sums Associated with Non-degenerate Polynomials. We set $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$. Let $f(x) = \sum_l a_l x^l \in K[x]$, $x = (x_1, \ldots, x_n)$ be a non-constant polynomial satisfying $f(0) = 0$. The set $\text{supp}(f) = \{l \in \mathbb{N}^m \mid a_l \neq 0\}$ is called the support of f. The Newton polyhedron $\Gamma(f)$ of f is defined as the convex hull in \mathbb{R}^m of the set

$$\bigcup_{l \in \text{supp}(f)} (l + \mathbb{R}_+).$$

We denote by $\langle \cdot, \cdot \rangle$ the usual inner product of \mathbb{R}^m, and identify \mathbb{R}^m with its dual by means of it. We set

$$\langle a_\gamma, x \rangle = m(a_\gamma),$$

for the equation of the supporting hyperplane of a facet γ (i.e. a face of codimension 1 of $\Gamma(f)$) with perpendicular vector $a_\gamma = (a_1, \ldots, a_n) \in \mathbb{N}^n \setminus \{0\}$, and $\sigma(a_\gamma) := \sum_i a_i$.

Definition 3.1. A polynomial $f(x) \in K[x]$ is called non-degenerate with respect to its Newton polyhedron $\Gamma(f)$, if it satisfies the following two properties: (i) $C_f(K) = \{0\} \subset \mathbb{N}^n$; (ii) for every proper face $\gamma \subset \Gamma(f)$, the critical set $C_{f_\gamma}(K)$ of $f_\gamma(x) := \sum_{i \in \gamma} a_i x^i$ satisfies $C_{f_\gamma}(K) \cap (K \setminus \{0\})^m = \emptyset$.

We note that the above definition is not standard because it requires that the origin be an isolated critical point (see e.g. [6], [7], [29]). The condition (ii) can be replaced by

$$(3.1) \quad \{x \in \mathbb{K}^m \mid f_\gamma(x) = 0\} \cap C_{f_\gamma}(K) \cap (K \setminus \{0\})^m = \emptyset.$$

If K has characteristic $p > 0$, by using Euler’s identity, it can be verified that condition (ii) in the above definition is equivalent to (3.1), if p does not divide the $m(a_\gamma) \neq 0$, for any facet γ.

In [29] the author showed that if f is non-degenerate with respect $\Gamma(f)$, then the poles of $(1 - q^{-1-s}) Z(s, f, \chi_{\text{triv}})$ and $Z(s, f, \chi), \chi \neq \chi_{\text{triv}}$, have the form

$$s = -\frac{\sigma(a_\gamma)}{m(a_\gamma)} + \frac{2\pi i}{\log q m(a_\gamma)} k, \quad k \in \mathbb{Z},$$

for some facet γ of $\Gamma(f)$ with perpendicular a_γ, and $m(a_\gamma) \neq 0$ (see [29 Theorem A, and Lemma 4.4]). Furthermore, if $\chi \neq \chi_{\text{triv}}$ and the order of χ does not divide any $m(a_\gamma) \neq 0$, where γ is a facet of $\Gamma(f)$, then $Z(s, f, \chi)$ is a polynomial in q^{-s}, and its degree is bounded by a constant independent of χ (see [29 Theorem B]). These two results imply that for $|z|_K$ big enough $E(z, f)$ is a finite \mathbb{C}-linear combination of functions of the form

$$\chi(ac(z)) |z|_K^\lambda (\log(|z|_K))^\gamma,$$

with coefficients independent of z, and with $\lambda \in \mathbb{C}$ a pole of

$$(1 - q^{-1-s}) Z(s, f, \chi_{\text{triv}})$$

or of $Z(s, f, \chi), \chi \neq \chi_{\text{triv}}$.

and $\gamma \in \mathbb{N}, \gamma \leq (\text{multiplicity of pole } \lambda) - 1$ (see [3, Corollary 1.4.5]). Moreover all poles λ appear effectively in this linear combination. Therefore

$$(3.2) \quad |E(z, f)| \leq C |z|^{-\beta_f + \epsilon},$$

with $\epsilon > 0$, and

$$\beta_f := \min_{\tau} \left\{ \frac{\sigma(a_{\tau})}{m(a_{\tau})} \right\},$$

where τ runs through all facets of $\Gamma(f)$ satisfying $m(a_{\tau}) \neq 0$. The point

$$T_0 = (\beta_f^{-1}, ..., \beta_f^{-1}) \in \mathbb{Q}^m$$

is the intersection point of the boundary of the Newton polyhedron $\Gamma(f)$ with the diagonal $\Delta = \{(t, ..., t) \mid t \in \mathbb{R}\} \subset \mathbb{R}^m$. By combining estimation (3.2) and Theorem 2.1, we obtain the following result.

Theorem 3.1. Let $f(x) \in K[x]$ be non-degenerate with respect to its Newton polyhedron $\Gamma(f)$. Let $B \subset K^m$ a compact open subset. Then

$$|E_B(z, f)| \leq C |z|^{-\beta_f + \epsilon},$$

for any $\epsilon > 0$.

We have to mention that the previous result is known by the experts, however the author did not find a suitable reference for the purposes of this article. If K has characteristic $p > 0$, the previous result is valid if p does not divide the $m(a_{\tau}) \neq 0$ [29, Corollary 6.1].

3.2. Exponential Sums Associated with Quasi-homogeneous Polynomials.

Definition 3.2. Let $f(x) \in K[x], x = (x_1, \ldots, x_m)$ be a non-constant polynomial satisfying $f(0) = 0$. The polynomial $f(x)$ is called quasi-homogeneous of degree d with respect $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbb{N} \setminus \{0\})^m$, if it satisfies

$$f(\lambda^{\alpha_1}x_1, \ldots, \lambda^{\alpha_m}x_m) = \lambda^d f(x),$$

for every $\lambda \in K$.

In addition, if $C_f(K)$ is the origin of K^m, then $f(x)$ is called a non-degenerate quasi-homogeneous polynomial.

The non-degenerate quasi-homogeneous polynomials are a subset of the non-degenerate polynomials with respect to the Newton polyhedron. For these type of polynomials the bound (3.2) can be improved:

$$(3.3) \quad |E(z, f)| \leq C |z|^{-\beta_f},$$

where $\beta_f = \frac{1}{d} \sum_{i=1}^m \alpha_i$. By using the techniques exposed in [28, Theorem 3.5], and [29, Lemma 2.4] follow that the poles of $(1 - q^{-1-s}) Z(s, f, \chi_{\text{triv}})$ and $Z(s, f, \chi), \chi \neq \chi_{\text{triv}}$, have the form

$$s = -\frac{\sigma(\alpha)}{d} + \frac{2\pi i}{\log q} \frac{k}{d}, k \in \mathbb{Z}.$$
Then by using the same reasoning as before, we obtain \((3.3) \). This estimate and Theorem 2.1 imply the following result.

Theorem 3.2. Let \(f(x) \in K[x] \), \(x = (x_1, \ldots, x_m) \) be a non-degenerate quasi-homogeneous polynomial of degree \(d \) with respect to \(\alpha = (\alpha_1, \ldots, \alpha_m) \).

Let \(B \subset K^m \) be a compact open set. Then

\[
|E_B (z, f)| \leq C |z|^{-\beta} f.
\]

If \(K \) has characteristic \(p > 0 \), the above result is valid, if \(p \) does not divide \(\sigma (\alpha) \).

4. Fourier Transform of Measures Supported on Hypersurfaces

Let \(Y \) be a closed smooth submanifold of \(K^n \) of dimension \(n - 1 \). If

\[
I = \{ i_1, \ldots, i_{n-1} \} \text{ with } i_1 < i_2 < \ldots < i_{n-1}
\]

is a subset of \(\{ 1, \ldots, n \} \) we denote by \(\omega_I \) the differential form induced on \(Y \) by \(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_{n-1}} \), and by \(d\sigma_Y I \) the corresponding measure on \(Y \). The canonical measure of \(Y \) is defined as

\[
d\sigma_Y = \sup_I \{ d\sigma_Y I \}
\]

where \(I \) runs through all the subsets of form \((4.1)\). Given \(S \) a compact open subset of \(K^n \) with characteristic function \(\Theta_S \), we define \(d\mu_{Y,S} = d\mu_Y = \Theta_S d\sigma_Y \). The canonical measure \(d\mu_Y \) was introduced by Serre in [17]. The Fourier transform of \(d\mu_Y \) is defined as

\[
\hat{d\mu_Y}(\xi) = \int_Y \Psi (-[x,\xi]) d\mu_Y (x),
\]

where \([x,y] := \sum_{i=1}^n x_i y_i \), with \(x, y \in K^n \). The analysis of the decay of \(|d\mu_Y(\xi)| \) as \(||\xi||_K := \max_i \{|\xi_i|_K\} \) approaches infinity plays a central role in this paper. This analysis can be simplified taking into account the following facts. Any compact open set of \(K^n \) is a finite union of classes modulo \(\pi^e \), by taking \(e \) big enough, and taking into account that \(Y \cap y + (\pi^e R_K)^n \) is a hypersurface of the form

\[
\{ x \in y + (\pi^e R_K)^n | x_n = \phi (x_1, \ldots, x_{n-1}) \}
\]

with \(\phi \) an analytic function satisfying

\[
\phi (0) = \frac{\partial \phi}{\partial x_1} (0) = \ldots = \frac{\partial \phi}{\partial x_{n-1}} (0) = 0,
\]

(see [17] page 147), we may assume that \(Y \) is a hypersurface of the form \(x_n - \phi (x_1, \ldots, x_{n-1}) = 0 \), with \(\phi \) satisfying \((4.2)\). In this case \(d\sigma_Y (x) = |dx_1| \ldots |dx_{n-1}| \), the normalized Haar measure of \(K^{n-1} \).
Finally we want to mention that if \(X = \{ x \in K^n \mid f(x) = 0 \} \) is a hypersurface then

\[
\frac{dx_1 \ldots dx_{n-1}}{\left| \frac{\partial f}{\partial x_n} \right|_K}
\]

is a measure on a neighborhood of \(X \) provided that \(\left| \frac{\partial f}{\partial x_n} \right|_K \neq 0 \) (see \cite[Sec. 7.6]{10}). This measure is not intrinsic to \(X \), but if \(S \) is small enough, it coincides with \(d\mu_X = \Theta_S d\sigma_X \) for a polynomial of type \(f(x) = x_n - \phi(x_1, \ldots, x_{n-1}) \). The Serre measure allow us to define \(\hat{d\mu_Y}(\xi) \) intrinsically for an arbitrary submanifold \(Y \).

Theorem 4.1. Let \(\phi(x) \in R_K[x] \), \(x = (x_1, \ldots, x_{n-1}) \), be a non-constant polynomial such that \(C_\phi(K) = \{0\} \subset K^{n-1} \). Let \(d_j(\phi) \) be the degree of \(\phi \) with respect the variable \(x_j \), and let \(\beta_\phi := \max_j d_j(\phi) \). Let \(\Theta_S \) be the characteristic function of a compact open set \(S \), let \(Y = \{ x \in K^n \mid x_n = \phi(x_1, \ldots, x_{n-1}) \} \), and let \(d\mu_Y = \Theta_S d\sigma_Y \). Then

\[
\left| \hat{d\mu_Y}(\xi) \right| \leq C \| \xi \|^{-\beta_K},
\]

for \(0 \leq \beta \leq \beta_\phi - \epsilon \), with \(\epsilon > 0 \).

Proof. By passing to a sufficiently fine covering we may suppose that

\[
\hat{d\mu_Y}(\xi) = \int_{(x_0 + \pi^a R_K)^{n-1}} \Psi \left(-\xi_n \phi(x) - [x, \xi'] \right) |dx|.
\]

By applying Theorem 6.1 of \cite{3}, we have

\[
\left| \hat{d\mu_Y}(\xi) \right| \leq C \left(\log_q \| \xi \|_K \right)^{n-1} \| \xi \|^{-\beta_\phi}_K,
\]

and then

\[
\left| \hat{d\mu_Y}(\xi) \right| \leq C \| \xi \|^{-\beta_\phi}_K, \text{ for } 0 \leq \beta \leq \beta_\phi - \epsilon, \epsilon > 0.
\]

It is important to mention that Cluckers’ Theorem 6.1 is established only for \(\mathbb{Q}_p \), however this result is valid for any \(p \)-adic field. Indeed, the proof of this result is based on a result of Chubarikov \cite[Lemma 3]{4} whose proof uses inductively an estimation for one-dimensional exponential sums due to I. M. Vinogradov (see e.g. \cite[Theorem 2.1]{1}). The proof of this last estimation as given in \cite{1} can be adapted to the case of \(p \)-adic fields easily using the notion of dilation as in \cite{28}.

The Cluckers’ result does not give an optimal decay rate, and then \(\beta_\phi \) is not optimal (see also \cite{30}).

Remark 1. If \(\phi(x) = \sum_{i=1}^{n-1} a_i x_i^2 \), then the phase of \(\hat{d\mu_Y}(\xi) \) around any critical point has the form \(\sum_{i=1}^{n-1} a_i x_i^2 \). By using Theorem 3.2 one verifies
that the decay rate around the point is \(\frac{n-1}{2} \), therefore Theorem 4.1 holds for \(0 \leq \beta \leq \frac{n-1}{2} := \beta_\phi \). If \(n = 1 \) and \(\phi(x) = x^d, \ d > 1 \), the phase of \(\hat{d\mu}_Y(\xi) \) around a critical point can take the form \(x^f p(x), \ 2 \leq f \leq d, \ p(x) \neq 0 \) locally. By using the fact the real parts of the possible poles of the corresponding local zeta functions have the form \(\frac{1}{d}, \ 2 \leq f \leq d \), and Theorem 8.4.2 in [10], one verifies that Theorem 4.1 holds for \(0 \leq \beta \leq \frac{1}{d} := \beta_\phi \).

In the case of real numbers the results described in the previous remark are well-known (see e.g. [20]).

4.1. Restriction of the Fourier Transform to Non-degenerate Hypersurfaces. Let \(X \) be a submanifold of \(K^n \) with \(d\sigma_X \) its canonical measure. We set \(d\mu_{Y,S} = \Theta_S d\sigma_Y \), where \(\Theta_S \) is the characteristic function of a compact open set \(S \) in \(K^n \). We say that the \(L^\rho \) restriction property is valid for \(X \) if there exists a \(\tau(\rho) \) so that

\[
\left(\int_X |\mathcal{F}g(\xi)|_K^{\frac{1}{\tau}} d\mu_{X,S}(\xi) \right)^{\frac{1}{\tau}} \leq C_{\tau,\rho}(S) \|g\|_{L^\rho}
\]

holds for each \(g \in \mathbb{S}(K^n) \) and any compact open set \(S \) of \(K^n \).

The restriction problem in \(\mathbb{R}^n \) (see e.g. [20] Chap. VIII) was first posed and partially solved by Stein [5]. This problem have been intensively studied during the last thirty years [2], [20], [22], [27]. Recently Mockenhaupt and Tao have studied the restriction problem in \(F_q^n \) [15]. In this paper we study the restriction problem in the non-archimedean field setting. More precisely, in the case in which \(X \) is a non-degenerate hypersurface and \(\tau = 2 \). The proof of the restriction property in the non-archimedean case uses the Lemma of interpolation of operators (see e.g. [20] Chap. IX) and the estimates for oscillatory integrals obtained in the previous section. The interpolation Lemma given in [20] Chap. IX] is valid in the non-archimedean case. For the sake of completeness we rewrite this lemma here.

Let \(\{U^z\} \) be a family of operators on the strip \(a \leq \text{Re}(z) \leq b \) defined by

\[
(U^z g)(x) = \int_{K^n} \mathfrak{R}_z(x,y) g(y) |dy|,
\]

where the kernels \(\mathfrak{R}_z(x,y) \) have a fixed compact support and are uniformly bounded for \((x,y) \in K^n \times K^n \) and \(a \leq \text{Re}(z) \leq b \). We also assume that for each \((x,y) \), the function \(\mathfrak{R}_z(x,y) \) is analytic in \(a < \text{Re}(z) < b \) and is continuous in the closure \(a \leq \text{Re}(z) \leq b \), and that

\[
\begin{align*}
\|U^z g\|_{L^\tau_0} &\leq M_0 \|g\|_{L^{\rho_0}}, \text{ when } \text{Re}(z) = a, \\
\|U^z g\|_{L^\tau_1} &\leq M_1 \|g\|_{L^{\rho_1}}, \text{ when } \text{Re}(z) = b;
\end{align*}
\]

here \((\tau_i, \rho_i) \) are two pairs of given exponents with \(1 \leq \tau_i, \rho_i \leq \infty \).
Lemma 4.1 (Interpolation Lemma \cite{[20]} Chap. IX). Under the above hypotheses,
\[\left\| U^{(1-\theta)+b\theta} g \right\|_{L^\tau} \leq M_0^{1-\theta} M_1^\theta \left\| g \right\|_{L^\rho} \]
where \(0 \leq \theta \leq 1, \frac{1}{\tau} = \frac{(1-\theta)}{\tau_0} + \frac{\theta}{\tau_1}, \) and \(\frac{1}{\rho} = \frac{(1-\theta)}{\rho_0} + \frac{\theta}{\rho_1}. \)

Theorem 4.2. Let \(\phi(x) \in R_K[x], x = (x_1, \ldots, x_{n-1}), \) be a non-constant polynomial such that \(C_\phi(K) = \{0\} \subset K^{n-1}. \) Let
\[Y = \{ x \in K^n \mid x_n = \phi(x_1, \ldots, x_{n-1}) \} \]
with the measure \(d\mu_{Y,S} = \Theta_S \sigma_Y, \) where \(\Theta_S \) is the characteristic function of a compact open subset \(S \) of \(K^n. \) Then
\[(4.4) \quad \left(\int_Y \left| Fg(\xi) \right|^2 d\mu_{Y,S}(\xi) \right)^\frac{1}{2} \leq C(Y) \left\| g \right\|_{L^\rho}, \]
holds for each \(1 \leq \rho < \frac{2(1+\beta_\phi)}{2+\beta_\phi}. \)

Proof. We first note that
\[\int_Y \left| Fg(\xi) \right|^2 d\mu_{Y,S}(\xi) = \int_Y Fg(\xi) \overline{Fg(\xi)} d\mu_{Y,S}(\xi) \]
\[= \int_{K^n} (Tg)(x) \overline{g(x)} \left| dx \right| \]
(4.5) where \((Tg)(x) = (g \ast \mathcal{R})(x) \) with
\[\mathcal{R}(x) = \int_Y \Psi([x,\xi]) d\mu_{Y,S}(\xi) = \tilde{d\mu_{Y,S}}(-x). \]
The theorem follows from (4.5) by Hölder’s inequality if we show that
\[\left\| T(g) \right\|_{L^{\rho_0}} \leq C \left\| g \right\|_{L^{\rho_0}} \]
where \(\rho_0' \) is the dual exponent of \(\rho_0. \) Now we define \(\mathcal{R}_\mathcal{Z}(x) \) as equal to
\[\gamma(z) \int_{K^n} \Psi([x,\xi]) \left| \xi_n - \phi(\xi') \right|^{-1+\gamma} \eta(\xi_n - \phi(\xi')) \Theta_S(\xi', \phi(\xi')) \left| d\xi \right|, \]
where \(\gamma(z) = \left(\frac{1-q^{-z}}{1-q^{-1}}, z \in (1, \ldots, n-1), \right. \) \(\eta(\xi) \) is the characteristic function of the ball \(P_{\epsilon_0}^0, \) \(\epsilon_0 \geq 1, \) and \(\text{Re}(z) > 0. \) By making \(y = \xi_n - \phi(\xi') \) in the above integral we obtain
\[\mathcal{R}_\mathcal{Z}(x) = \mathcal{Z}_\mathcal{Z}(x_n) \mathcal{R}(x) \]
with
\[\mathcal{Z}_\mathcal{Z}(x_n) = \gamma(z) \int_{K^n} \Psi(x_n y) \left| y \right|^{-1+\gamma} \eta(y) \left| dy \right|, \text{ Re}(z) > 0. \]
On the other hand,
\[
\zeta_z(x_n) = \begin{cases}
q^{-e_0 z}, & \text{if } |x_n|^K \leq q^{e_0}; \\
\left(\frac{1-q^{-e_0}-1}{1-q^{-e_0}}\right)|x_n|^{-z}, & \text{if } |x_n|^K > q^{e_0};
\end{cases}
\]
(for a similar calculation the reader can see [23, page 54]), then \(\zeta_z(x_n)\) has an analytic continuation to the complex plane as an entire function; also \(\zeta_0(x_n) = 1\), and \(|\zeta_z(x_n)| \leq c|x_n|^{-\Re(z)}\) where \(|x_n|^K \geq q^{e_0}\). Therefore \(\zeta_z(x_n)\) has an analytic continuation to an entire function satisfying the following properties:

(i) \(\mathfrak{R}_0(x) = \mathfrak{R}(x)\),
(ii) \(|\mathfrak{R}_{-\beta+i\gamma}(x)| \leq C\), for every \(x \in K^n\), \(\gamma \in \mathbb{R}\), and \(0 \leq \beta \leq \beta_\phi - \epsilon\), \(\epsilon > 0\),
(iii) \(|\mathcal{F}\mathfrak{R}_{1+i\gamma}(x)| \leq C\), for \(x \in K^n\), and \(\gamma \in \mathbb{R}\).

In fact (ii) follows from Theorem 4.1, and (iii) is an immediate consequence of the definition of \(\mathfrak{R}_z(x)\).

Now we consider the analytic family of operators \(T_z(g) = (g * \mathfrak{R}_z)(x)\). From (ii) one has
\[
\|T_{-\beta+i\gamma}(g)\|_{L^\infty} \leq C \|g\|_{L^1},
\]
for \(0 \leq \beta \leq \beta_\phi - \epsilon\), \(\epsilon > 0\), and \(\gamma \in \mathbb{R}\), and from (iii) and Plancherel’s Theorem one gets
\[
\|T_{1+i\gamma}(g)\|_{L^2} \leq C \|g\|_{L^2},
\]
for \(\gamma \in \mathbb{R}\). By applying the Interpolation Lemma with
\[
\theta = \frac{\beta}{1+\beta},
\]
we obtain
\[
\|T_0(g)\|_{L^\rho'} \leq C \|g\|_{L^\rho},
\]
with \(\rho'\) the dual exponent of \(\rho = \frac{2(1+\beta)}{2+\beta}\), and \(0 \leq \beta \leq \beta_\phi - \epsilon\), \(\epsilon > 0\). Therefore the previous estimate for \(\|T_0(g)\|_{L^\rho'}\) is valid for \(1 \leq \rho \leq \frac{2(1+\beta_\phi - \epsilon)}{2+\beta_\phi - \epsilon}\). \(\square\)

Our proof of Theorem 4.2 is strongly influenced by Stein’s proof for the restriction problem in the case of a smooth hypersurface in \(\mathbb{R}^n\) with non-zero Gaussian curvature [19].

5. Asymptotic Decay of Solutions of Wave-type Equations

Like in the classical case [22], the decay of the solutions of wave-type pseudo-differential equations can be deduced from the restriction theorem proved in the previous section, taking into account that the following two problems are completely equivalent if \(\frac{1}{\rho} + \frac{1}{\sigma} = 1\):
Problem 1. For which values of ρ, $1 \leq \rho < 2$, is it true that $f \in L^\rho(K^n)$ implies that Ff has a well-defined restriction to Y in $L^2(d\mu_{Y,s})$ with
\[
\left(\int_Y |Ff|^2 d\mu_{Y,s} \right)^{\frac{1}{2}} \leq C_\rho \|f\|_{L^\rho}.
\]

Problem 2. For which values of σ, $2 < \sigma \leq \infty$, is it true that the distribution $gd\mu_{Y,s}$ for each $g \in L^2(d\mu_{Y,s})$ has Fourier transform in $L^\sigma(K^n)$ with
\[
\|F(gd\mu_{Y,s})\|_{L^\sigma} \leq C_\sigma \left(\int_Y |g|^2 d\mu_{Y,s} \right)^{\frac{1}{2}}.
\]

5.1. Wave-type Equations with Non-degenerate Symbols.

Theorem 5.1 (Main Result). Let $\phi(\xi) \in R_K[\xi]$, $\xi = (\xi_1, \ldots, \xi_n)$, be a non-constant polynomial such that $C_\phi(K) = \{0\} \subset K^n$. Let $u(x, t)$ be the solution of the following initial value problem:

\[
\begin{aligned}
(Hu)(x, t) &= 0, \quad x \in K^n, \quad t \in K, \\
u(x, 0) &= f_0(x),
\end{aligned}
\]

where $f_0(x) \in S(K^n)$. Then
\[
\|u(x, t)\|_{L^\sigma(K^{n+1})} \leq A \|f_0(x)\|_{L^2(K^n)},
\]
for $\frac{2(1+\beta_{\phi})}{\beta_\phi} < \sigma \leq \infty$.

Proof. Since
\[
u(x, t) = \int_{K^n} \Psi (t\phi(\xi) + [x, \xi]) \mathcal{F}f_0(\xi) \, d\xi
\]
\[
= \int_Y \Psi ([x, \xi]) \mathcal{F}f_0(\xi) \, d\mu_{Y,s}(\xi),
\]
where $\xi = (\xi, \xi_{n+1}) \in K^{n+1}$, $x = (x, t) \in K^{n+1}$,
\[
Y = \{\xi \in K^{n+1} | \xi_{n+1} = \phi(\xi)\},
\]
and $d\mu_{Y,s} = \Theta_S d\sigma_Y$, with Θ_S the characteristic function of a compact open set S containing the support of $\mathcal{F}f_0$. By applying Theorem 4.2 replacing n with $n + 1$, and dualizing, one gets
\[
\|u(x, t)\|_{L^\sigma(K^{n+1})} \leq A \|f_0(x)\|_{L^2(K^n)},
\]
where \(\sigma = \frac{2(1+\beta)}{\beta} \) is the dual exponent of \(\rho \) in Theorem 4.2 and \(0 \leq \beta < \beta_\phi \), therefore (5.2) is valid for \(\frac{2(1+\beta_\phi)}{\beta_\phi} < \sigma \leq \infty \). \(\square \)

5.2. Wave-type Equations with Homogeneous Symbols. In the cases \(\phi(\xi) = a_1\xi_1^2 + \ldots + a_n\xi_n^2 \) and \(n = 1 \), \(\phi(\xi) = \xi^d \) by using Remark 1 we have the following estimations for the solution of Cauchy problem (1).

Theorem 5.2. If \(\phi(\xi) = a_1\xi_1^2 + \ldots + a_n\xi_n^2 \), then
\[
\| u(x,t) \|_{L^2(2^{(n+1)}(K^{n+1}))} \leq C \| f_0(x) \|_{L^2(K^n)}.
\]

Theorem 5.3. If \(n = 1 \) and \(\phi(\xi) = \xi^d \), then
\[
\| u(x,t) \|_{L^2(4^{(d+1)}(K^2))} \leq C \| f_0(x) \|_{L^2(K)}.
\]

In particular if \(d = 3 \), then
\[
\| u(x,t) \|_{L^8(K^2)} \leq C \| f_0(x) \|_{L^2(K)}.
\]

REFERENCES

[1] G. I. Arkhipov, V. N. Chubarikov, and A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis. Walter de Gruyter, Berlin, 2004.

[2] J. Bourgain, “Some new estimates on oscillatory integrals” in Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, 1991), Math. Ser. 42, Princeton Univ. Press, Princeton, 1995, 83-112.

[3] Chubarikov V.N., Multiple rational trigonometric sums and multiple integrals, Mat. Zametki, 20 (1976), no.1, 61–68, English transl.: Math Notes 20 (1976).

[4] Raf Cluckers, Multivariate Igusa theory: decay rates of exponential sums, Int. Math. Res. Not. 2004, no. 76, 4093-4108.

[5] J. Denef, Report on Igusa’s Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386. Available at http://www.wis.kuleuven.ac.be/algebra/denef.html.

[6] J. Denef, Poles of \(p \)-adic complex powers and Newton polyhedra. Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 289-295.

[7] J. Denef, and Kathleen Hoornaert, Newton polyhedra and Igusa local zeta function, J. Number Theory 89 (2001), no. 1, 31-64.

[8] C. Fefferman, Inequalities for strongly singular convolution operators, Acta. Math. 124 (1970),9-36.

[9] I. M. Gelfand, M. I. Graev, and I. I. Piatetski-Shapiro, Representation theory and automorphic functions, Saunders, Philadelphia, 1969.

[10] Jung-Ichi Igusa, An introduction to the theory of local zeta functions, AMS/IP studies in advanced mathematics, v. 14, 2000.

[11] A. N. Kochubei, Pseudodifferential equations and stochastics over non-archimedean fields, Marcel Dekker, 2001.

[12] A. N. Kochubei, A Schrödinger type equation over the field of \(p \)-adic numbers, J. Math. Phys., 34 (1993), 3420-3428.

[13] Carlos Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40 (1991), no. 1, 33-69.

[14] A. Khrennikov, \(p \)-Adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994.

[15] Gerd Mockenhaupt and Terence Tao, Restriction and Kakeya phenomena for finite fields, Duke Math. J. 121(2004), 35-74.
[16] Ph. Ruelle, E. Thiran, D. Verstegen, J. Weyers, Quantum mechanics on p-adic fields. J. Math. Phys. 30 (1989), no. 12, 2854–2874.
[17] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev. (French) [Some applications of the Chebotarev density theorem] Inst. Hautes Études Sci. Publ. Math. No. 54, (1981), 323-401.
[18] E. M. Stein, “Some problems in harmonic analysis” in Harmonic Analysis in Euclidean Spaces, Part I (Williamstown, Mass., 1978), Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence, 1979, 3-20.
[19] E. M. Stein, “Oscillatory integrals in Fourier Analysis” in Beijing Lectures in Harmonic Analysis (ed.). Annals of Math. Study #112, Princeton Univ. Press., 1986.
[20] E. M. Stein, Harmonic analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Monogr. Harmon. Anal. 3, Princeton Univ. Press, Princeton, 1993.
[21] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean Spaces, Princeton Univ. Press. 1971.
[22] R. S. Strichartz, Restrictions of the Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-774.
[23] V. S. Vladimirov, Tables of Integrals of Complex-valued Functions of p-Adic arguments, http://www.arxiv.org/abs/math-ph/9911027.
[24] V. S. Vladimirov, and I. V. Volovich, p-Adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659-676.
[25] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p–adic Analysis and Mathematical Physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
[26] M.H. Taibleson, Fourier Analysis on Local Fields. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975.
[27] P. A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478.
[28] W. A. Zuniga-Galindo, Igusa’s local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), 3193-3207.
[29] W. A. Zuniga-Galindo, Local zeta functions and Newton polyhedra, Nagoya Math. J., 170 (2003), 31-58.
[30] W. A. Zuniga-Galindo, Multiparametric Exponential Sums Associated with Quasihomogeneous Mappings, To appear in Finite Fields and their Applications.

Department of Mathematics and Computer Science, Barry University, 11300 N. E. Second Avenue, Miami Shores, Florida 33161, USA.
E-mail address: wzuniga@mail.barry.edu