Extremal Kirchhoff index in polycyclic chains

Hechao Liu, Lihua You*

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China, e-mail: hechaoliu@m.scnu.edu.cn, ylhua@scnu.edu.cn
* Corresponding author

Received 12 October 2022

Abstract The Kirchhoff index of graphs, introduced by Klein and Randić in 1993, has been known useful in the study of computer science, complex network and quantum chemistry. The Kirchhoff index of a graph G is defined as $Kf(G) = \sum_{\{u,v\} \subseteq V(G)} \Omega_G(u,v)$, where $\Omega_G(u,v)$ denotes the resistance distance between u and v in G.

In this paper, we determine the maximum (resp. minimum) k-polycyclic chains with respect to Kirchhoff index for $k \geq 5$, which extends the results of Yang and Klein [Comparison theorems on resistance distances and Kirchhoff indices of S,T-isomers, Discrete Appl. Math. 175 (2014) 87-93], Yang and Sun [Minimal hexagonal chains with respect to the Kirchhoff index, Discrete Math. 345 (2022) 113099], Sun and Yang [Extremal pentagonal chains with respect to the Kirchhoff index, Appl. Math. Comput. 437 (2023) 127534] and Ma [Extremal octagonal chains with respect to the Kirchhoff index, arXiv: 2209.10264].

Keywords Kirchhoff index, resistance distance, polycyclic chain.
Mathematics Subject Classification: 05C09, 05C12, 05C92

1 Introduction

1.1 Background

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $d_G(u)$ be the degree of vertex u in G. The distance between vertex u and vertex v is denoted by $d_G(u,v)$. If we replace each edge of the graph G with a unit resistor and regard the graph G as an electrical network N, then we define the effective resistance of vertex u and vertex v in the electrical network N as the resistance distance between vertex u and vertex v in the graph G, and denoted by $\Omega_G(u,v)$. In this paper, all notations and terminologies used but not defined can refer to Bondy and Murty [1].

The Wiener index is one of the oldest and most studied topological index from ap-
plication and theoretical viewpoints. As a extension of the Wiener index, The Kirchhoff index is an important measure which contains more information than the Wiener index and plays an essential role in the research of QSAR and QSPR.

The Wiener index \[24\] of graph \(G\) is defined as
\[W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v),\]
replacing distance with resistance distance in the definition of Wiener index, we can obtain the Kirchhoff index, which is defined as \[13\]
\[Kf(G) = \sum_{\{u,v\} \subseteq V(G)} \Omega_G(u,v).\]

Some mathematical and physical interpretations of Kirchhoff index can be found in \[12,14\]. The extremal Kirchhoff index had been considered on unicyclic graphs \[26\], fully loaded unicyclic graphs \[8\], cacti \[25\], graphs with given cut edges \[7\], graphs with a given vertex bipartiteness \[16\], random polyphenyl and spiro chains \[9\], linear hexagonal (cylinder) chain \[10\], generalized phenylenes \[15,32\], Möbius/cylinder octagonal chain \[17\], linear phenylenes \[19\], connected (molecular) graphs \[33\], and so on.

Some molecular descriptors of polycyclic chains had been considered for many years. Such as Wiener index \[3,5\], Kirchhoff index \[18,22,27–30\], Tutte polynomials \[2\], Merrifield-Simmons index \[4\], Kekule structures \[23\], forcing spectrum \[31\], \(k\)-matching \[6\], Hosoya index \[21\], and so on.

Let \(Q_h\) be the linear quadrilateral chain with \(h\) squares and \(S_i\) \((1 \leq i \leq h)\) the \(i\)-th square of \(Q_h\). Then the \(k\)-polycyclic chain \(P_h\) can be obtained from \(Q_h\) by adding \(k - 4\) vertices to \(S_i\) \((1 \leq i \leq h)\) by adding 0 (resp. 1, 2, \(\cdots\), \(k - 4\)) vertices to the top edge of \(S_i\) \((1 \leq i \leq h)\) and the remaining vertices to the bottom edge of \(S_i\) \((1 \leq i \leq h)\). In Figure 1, either \(D_5\) or \(L_5\) is a special \(P_5\), \(Z_6\) is a special \(P_6\).

For convenience, we suppose that we add \([\frac{k-4}{2}]\) vertices to the top edges of \(S_1\) and \(S_h\), \([\frac{k-4}{2}]\) vertices to the bottom edges of \(S_1\) and \(S_h\), and for the \(S_{i+1}\) \((1 \leq i \leq h - 2)\), we give a number \(w_i = 0\) (resp. 1, 2, \(\cdots\), \(k - 4\)) to the \(k\)-polygon if the \(k\)-polygon is obtained by adding \(w_i\) vertices to the top edge of \(S_{i+1}\). Then we can use a \((h - 2)\)-vector \(w = (w_1, w_2, \cdots, w_{h-2})\) to denote the \(k\)-polycyclic chain, where \(w_i \in \{0, 1, \cdots, k - 4\}\). Let \(P_h(w)\) (or simply \(P(w)\)) be the \(k\)-polycyclic chain with \(h\) \(k\)-polygons and \(w = (w_1, w_2, \cdots, w_{h-2})\) be a \((h - 2)\)-tuple of 0, 1, \(\cdots\), \(k - 4\).

The \(k\)-polycyclic chain \(P(0,0,\cdots,0)\) or \(P(k - 4,k - 4,\cdots,k - 4)\) is called a helicene \(k\)-polycyclic chain, where \(P(0,0,\cdots,0) \cong P(k - 4,k - 4,\cdots,k - 4)\), and denoted by
If $k \geq 6$ is even, the k-polycyclic chain $P\left(\frac{k-4}{2}, \frac{k-4}{2}, \ldots, \frac{k-4}{2}\right)$ is called a linear k-polycyclic chain, and denoted by L_h. If $k \geq 5$ is odd, then k-polycyclic chain $P\left(\left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \ldots \right)$ or $P\left(\left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \ldots \right)$ is called a zigzag chain, denoted by Z_h, where $P\left(\left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \ldots \right) \cong P\left(\left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \ldots \right)$. Figure 1 gives D_5 with $k = 6$, L_5 with $k = 6$ and Z_6 with $k = 7$.

![Figure 1: D5 with k = 6, L5 with k = 6 and Z6 with k = 7.](image)

1.2 Main results

Our main results are shown as follows.

Theorem 1.1 Let \mathcal{P}_h be the set of k-polycyclic chains with h k-polygons ($k \geq 5$). Then for any $G \in \mathcal{P}_h$, we have

$$Kf(G) \geq Kf(P(0,0,\ldots,0)),$$

with equality if and only if $G \cong D_h$.

Theorem 1.2 Let \mathcal{P}_h be the set of k-polycyclic chains with h k-polygons ($k \geq 5$). Then for any $G \in \mathcal{P}_h$, we have

$$Kf(G) \leq Kf(P(\left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \left\lfloor \frac{k-4}{2} \right\rfloor, \left\lceil \frac{k-4}{2} \right\rceil, \ldots)),$$
with equality if and only if
\[G \cong \begin{cases}
L_h, & \text{if } n \text{ is even} \\
Z_h, & \text{if } n \text{ is odd}
\end{cases}. \]

Let \(k = 5, 6, 8 \). Then by Theorems 1.1 and 1.2, we have the following corollaries immediately, which is main results of [18, 22, 27, 28].

Corollary 1.3 [22] Among all pentagonal chains with given the number of pentagons, the helicene pentagonal chain (resp. zigzag pentagonal chain) has the minimum (resp. maximum) Kirchhoff index.

Corollary 1.4 [28] Among all hexagonal chains with given the number of hexagons, the helicene hexagonal chain has the minimum Kirchhoff index.

Corollary 1.5 [27] Among all hexagonal chains with given the number of hexagons, the linear hexagonal chain has the maximum Kirchhoff index.

Corollary 1.6 [18] Among all octagonal chains with given the number of octagons, the helicene octagonal chain (resp. linear octagonal chain) has the minimum (resp. maximum) Kirchhoff index.

1.3 Preliminaries

In the following, we introduce some important rules and transformations in an electrical network. The first is the series connection rule and parallel connection rule.

Parallel Connection Rule: If \(h \) resistors are connected in parallel, then we replace them by a single resistor whose reciprocal of resistance is the sum of \(h \) reciprocal of resistances (see Figure 2 (a)).

Series Connection Rule: If \(h \) resistors are connected in series, then we replace them by a single resistor whose resistance is the sum of \(h \) resistances (see Figure 2 (b)).

Now we introduce a transformation between a resistor network \(\Delta \) and a resistor network \(Y \). Let \(N_1, N_2 \) be resistor networks and \(V^* \subseteq V(N_1) \cap V(N_2) \). Then we call \(N_1, N_2 \) are \(V^* \)-equivalent if \(\Omega_{N_1}(u, v) = \Omega_{N_2}(u, v) \) for any \(u, v \in V^* \). By \(V^* \)-equivalent, series and parallel connection rule, we have

Proposition 1.7 [11] Let \(\Delta \) and \(Y \) be two resistor networks (see Figure 3). If \(\Delta \) and \(Y \) satisfy the following equations:

\[R_{io} = \frac{R_{ij}R_{ik}}{R_{ij} + R_{ik} + R_{jk}}, \quad R_{jo} = \frac{R_{ij}R_{jk}}{R_{ij} + R_{ik} + R_{jk}}, \quad R_{ko} = \frac{R_{ik}R_{jk}}{R_{ij} + R_{ik} + R_{jk}}, \]
then Δ and Y are $\{i, j, k\}$-equivalent.

Definition 1.8 \[11\] ($\Delta - Y$ Transformation) Let Δ and Y be two resistor networks (see Figure 3). If Δ and Y satisfy $\{i, j, k\}$-equivalent, then we can transform Δ to Y, and call it a $\Delta - Y$ transformation.

Clearly, a $\Delta - Y$ transformation is a technique that change a resistor network Δ to another equivalent resistor network Y.

![Figure 3: The graph of $\Delta - Y$ Transformation.](image)

Now we introduce the definition of S, T-isomers in organic chemistry.

Definition 1.9 \[20\] (S, T-isomers) Let N_1 and N_2 be two vertex-disjoint graphs, $u, v \in V(N_1)$ and $u \neq v$, $x, y \in V(N_2)$ and $x \neq y$. Let S be the graph obtained from N_1 and N_2 by connecting u with x, and v with y, T be the graph obtained from N_1 and N_2 by connecting u with y, and v with x. Then we call S and T are S, T-isomers.

Figure 4 gives an illustration of S, T-isomers and a pair of hexagonal chains as S, T-isomers. Let $\Omega_G(u) = \sum_{v \in V(G) \setminus \{u\}} \Omega_G(u, v)$.

![Figure 4: Illustrations of parallel connection rule and series connection rule.](image)
Lemma 1.10 Let $S, T, N_1, N_2, u, v, x, y$ be defined as in Figure 4(a). Then
\[
K_f(S) - K_f(T) = \frac{(\Omega_{N_1}(u) - \Omega_{N_1}(v))(\Omega_{N_2}(y) - \Omega_{N_2}(x))}{\Omega_{N_1}(u, v) + \Omega_{N_2}(x, y) + 2}.
\]

Finally, we introduce some qualities about the resistance distance, especially, the triangular inequality.

Lemma 1.11 The resistance function on a graph is a distance function. Thus for any vertices $a, b, x \in V(G)$, we have
(i) $\Omega_G(b, a) \geq 0$,
(ii) $\Omega_G(a, b) = 0$ if and only if $a = b$,
(iii) $\Omega_G(a, b) = \Omega_G(b, a)$,
(iv) $\Omega_G(a, x) + \Omega_G(x, b) \geq \Omega_G(a, b)$.

2 Proof of Theorems 1.1 and 1.2

Let $P(w)$ be a weighted k-polycyclic chain with h k-polygons and $w = (w_1, w_2, \ldots, w_{h-2})$, where $0 \leq w_i \leq k - 4$ for $1 \leq i \leq h - 2$. Suppose the k-polygons in k-polycyclic chain are C_1, C_2, \ldots, C_h in order. Let the top (resp. bottom) common vertices of C_i and C_{i+1} are a_i (resp. b_i) for $i = 1, 2, \ldots, h - 1$.

Lemma 2.1 Let $P(w)$ be a weighted k-polycyclic chain ($k \geq 5$) and the weight of edges in C_h is 1. Let $u, v \in V(C_h)$ with $d_{P(w)}(u) = d_{P(w)}(v) = 2$, $ua_{h-1} \in E(P(w))$ and $uv \in E(P(w))$. Then for any $z \in V(C_1) \setminus \{a_1, b_1\}$, we have $\Omega_{P(w)}(z, u) < \Omega_{P(w)}(z, v)$.

Proof. Firstly, we suppose that z is the vertex adjacent to a_1 in C_1. Now we show $\Omega_{P(w)}(z, u) < \Omega_{P(w)}(z, v)$.
Figure 5: Illustration of the transformation from $P(w)$ to G_{h-1} in Lemma 2.1.

Step 1: Replace the path with length $k - 1$ from z to b_1 (do not pass a_1) by an edge zb_1 with weight $k - 1$, we can obtain the graph as Figure 5 (b).

Step 2: Translate the Δ-network za_1b_1 to a Y-network with center z_1, we can obtain the graph G_1 as Figure 5 (c).

Step 3: Repeat steps 1 and 2, we can obtain the graph G_2 as Figure 5 (d).

\ldots

Step h: Repeat steps 1 and 2, we can finally obtain the graph G_{h-1} as Figure 5 (e).

Let the weight of $z_{h-1}a_{h-1}, z_{h-1}b_{h-1}$ in G_{h-1} be θ_1 and θ_2, respectively. Since the weight of $a_{h-1}b_{h-1}$ is 1, by the Proposition 1.7, it is easy to know that $0 < \theta_1 < 1$ and $0 < \theta_2 < 1$.

By the series connection rule and parallel connection rule, we have $\frac{1}{\Omega_{G_{h-1}}(z_{h-1}, u)} = \frac{1}{\sigma_1+1} + \frac{1}{\sigma_2+k-2}, \frac{1}{\Omega_{G_{h-1}}(z_{h-1}, v)} = \frac{1}{\sigma_1+2} + \frac{1}{\sigma_2+k-3}$, and

$$\Omega_{P(w)}(z,u) = \Omega_{G_{h-1}}(z,u) = \Omega_{G_{h-1}}(z,z_{h-1}) + \frac{(\theta_1 + 1)(\theta_2 + k - 2)}{\theta_1 + \theta_2 + k - 1},$$

$$\Omega_{P(w)}(z,v) = \Omega_{G_{h-1}}(z,v) = \Omega_{G_{h-1}}(z,z_{h-1}) + \frac{(\theta_1 + 2)(\theta_2 + k - 3)}{\theta_1 + \theta_2 + k - 1}.$$

Thus

$$\Omega_{P(w)}(z,u) - \Omega_{P(w)}(z,v) = \frac{\theta_1 - \theta_2 - k + 4}{\theta_1 + \theta_2 + k - 1} < 0.$$

For any other vertex $z' \in V(C_1) \setminus \{a_1, b_1\}$, we can prove similarly. This completes the proof.

With the similar proof, we can strengthen the conclusion of Lemma 2.1.
Lemma 2.2 Let $P(w)$ be a weighted k-polycyclic chain ($k \geq 5$) and the weight of edges in C_h is 1. Let $u, v \in V(C_h)$ with $d_{P(w)}(u) = d_{P(w)}(v) = 2, uv \in E(P(w))$, $d_{P(w)}(a_{h-1}, u) < d_{P(w)}(a_{h-1}, v)$ or $d_{P(w)}(b_{h-1}, u) < d_{P(w)}(b_{h-1}, v)$. Then for any $z \in V(C_1) \setminus \{a_1, b_1\}$, we have $\Omega_{P(w)}(z, u) < \Omega_{P(w)}(z, v)$.

Lemma 2.3 Let $P(w)$ be a k-polycyclic chain ($k \geq 5$). Let $u, v \in V(C_h)$ with $d_{P(w)}(u) = d_{P(w)}(v) = 2, ua_{h-1} \in E(P(w))$ and $uv \in E(P(w))$. Then we have $\Omega_{P(w)}(u) < \Omega_{P(w)}(v)$.

Proof. We complete the proof by the following three cases.

Case 1. $z \in V(C_1) \setminus \{a_1, b_1\}$.
By Lemma 2.1 we have $\Omega_{P(w)}(z, u) < \Omega_{P(w)}(z, v)$.

Case 2. $z \in V(C_i)$ for $2 \leq i \leq h - 1$.
By the series connection rule and parallel connection rule, we can simply $P(w)$ to a weighted k-polycyclic chain which consists of k-polygons $C_i, C_{i+1}, \ldots, C_h$ such that the weight of edge $a_{i-1}b_{i-1}$ is less than 1 and the weight of all other edges are 1. They by Lemma 2.1 we have $\Omega_{P(w)}(z, u) < \Omega_{P(w)}(z, v)$.

Case 3. $z \in V(C_h)$.
By the series connection rule and parallel connection rule, we can simply $P(w)$ to a weighted k-polygons such that the weight of edge $a_{h-1}b_{h-1}$ is $r (< 1)$ and the weight of all other edges are 1. Then by $\sum_{z \in V(C_h)} \Omega_{P(w)}(z, u) = \Omega_{P(w)}(b_{h-1}, u) + \Omega_{P(w)}(a_{h-1}, u) + \Omega_{P(w)}(z, v) = \Omega_{P(w)}(a_{h-1}, v) + \Omega_{P(w)}(u, v) + \Omega_{P(w)}(z, v)$, we have

$$\sum_{z \in V(C_h)} \Omega_{P(w)}(z, u) = \frac{(r + 1)(k - 2)}{r + k - 1} + \frac{r + k - 2}{r + k - 1} + \sum_{i=1}^{k-3} \frac{i(r + k - i - 1)}{r + k - 1},$$

$$\sum_{z \in V(C_h)} \Omega_{P(w)}(z, v) = \frac{2(r + k - 3)}{r + k - 1} + \frac{r + k - 2}{r + k - 1} + \sum_{i=1}^{k-3} \frac{i(r + k - i - 1)}{r + k - 1}.$$

Thus

$$\sum_{z \in V(C_h)} \Omega_{P(w)}(z, u) - \sum_{z \in V(C_h)} \Omega_{P(w)}(z, v) = \frac{(k - 4)(r - 1)}{r + k - 1} < 0.$$

This completes the proof.

With the similar proof, we can strengthen the conclusion of Lemma 2.3
Lemma 2.4 Let $P(w)$ be a k-polycyclic chain ($k \geq 5$). Let $u, v \in V(C_h)$ with $uv \in E(P(w))$, $d_{P(w)}(u) = d_{P(w)}(v) = 2$, $d_{P(w)}(a_{h-1}, u) < d_{P(w)}(a_{h-1}, v)$ or $d_{P(w)}(b_{h-1}, u) < d_{P(w)}(b_{h-1}, v)$. Then we have $\Omega_{P(w)}(u) < \Omega_{P(w)}(v)$.

![Diagram of Lemma 2.4](image)

Lemma 2.5 Let $P(w)$ be a k-polycyclic chain ($k \geq 6$), where $w = (w_1, w_2, \cdots, w_{h-2})$ with $w_i = 0$ or $k - 4$ for some $i \in \{1, 2, \cdots, h - 2\}$ and $0 \leq w_j \leq k - 4$ for any $j \in \{1, 2, \cdots, h - 2\} \setminus \{i\}$. Let $w^* = (w_1, \cdots, w_{i-1}, t, k - 4 - w_{i+1}, \cdots, k - 4 - w_{h-2})$, where $1 \leq t \leq k - 5$. Then $Kf(P(w^*)) > Kf(P(w))$.

Proof. We only consider $w_i = k - 4$. The case of $w_i = 0$ is similar, we omit it.

Since $w_i = k - 4$, we suppose the $k - 2$ vertices on the top of the $(i + 1)$-th polygons are $u_t, \cdots, u_2, u_1, u, x, x_1, x_2, \cdots, x_{k-t-4}$. The two vertices on the bottom of the $(i + 1)$-th polygons are v, y (see Figure 6).

It is obvious that the two edges ux, vy are the edge cut of $P(w)$. Let $P(w^*)$ be the graph obtained from $P(w)$ by deleting edges ux, vy and adding edges uy, vx. Then $P(w)$ and $P(w^*)$ are isomers. Suppose that N_1 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex u, v, N_2 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex x, y.

![Diagram of Lemma 2.5](image)
By Lemma 1.10 we have
\[Kf(P(w)) - Kf(P(w^*)) = \frac{(\Omega_{N_1}(u) - \Omega_{N_1}(v))(\Omega_{N_2}(y) - \Omega_{N_2}(x))}{\Omega_{N_1}(u,v) + \Omega_{N_2}(x,y) + 2}. \]

If \(z \in V(N_1) \setminus \{u, v, u_1, u_2, \ldots, u_t\} \), then by the triangular inequality of resistance distance, we have
\[\Omega_{N_1}(v, z) \leq \Omega_{N_1}(v, u_i) + \Omega_{N_1}(u_i, z) < 1 + \Omega_{N_1}(u_i, z) \leq t + \Omega_{N_1}(u_i, z) = \Omega_{N_1}(u, z). \tag{1} \]

If \(z \in \{u_1, u_2, \ldots, u_t\} \), then by cut-vertex property of resistance distance, we have
\[\sum_{i=1}^{t} \Omega_{N_1}(v, u_i) = t \cdot \Omega_{N_1}(v, u_t) + \sum_{i=1}^{t-1} i < \sum_{i=1}^{t} i = \sum_{i=1}^{t} \Omega_{N_1}(u, u_i). \tag{2} \]

Then by \(\Omega_{N_1}(v, u) = \Omega_{N_1}(u, v) \), equations (1) and (2), we have
\[\Omega_{N_1}(v) = \sum_{z \in V(N_1)} \Omega_{N_1}(v, z) < \sum_{z \in V(N_1)} \Omega_{N_1}(u, z) = \Omega_{N_1}(u). \]

Now we show \(\Omega_{N_2}(y) < \Omega_{N_2}(x) \). For convenience, we let \(k - 4 - t = s \).

If \(z \in V(N_2) \setminus \{x, y, x_1, x_2, \ldots, x_s\} \), then by the triangular inequality of resistance distance of Lemma 1.11 we have
\[\Omega_{N_2}(y, z) \leq \Omega_{N_2}(y, x_s) + \Omega_{N_2}(x_s, z) < 1 + \Omega_{N_2}(x_s, z) \leq s + \Omega_{N_2}(x_s, z) = \Omega_{N_2}(x, z). \tag{3} \]

If \(z \in \{x_1, x_2, \ldots, x_s\} \), then by cut-vertex property of resistance distance, we have
\[\sum_{i=1}^{s} \Omega_{N_2}(y, x_i) = s \cdot \Omega_{N_2}(y, x_s) + \sum_{i=1}^{s-1} i < \sum_{i=1}^{s} i = \sum_{i=1}^{s} \Omega_{N_2}(x, x_i). \tag{4} \]

Then by \(\Omega_{N_2}(y, x) = \Omega_{N_2}(x, y) \), equations (3) and (4), we have \(\Omega_{N_2}(y) < \Omega_{N_2}(x) \).

Thus \(Kf(P(w^*)) - Kf(P(w)) > 0 \). This completes the proof. \[\square \]

Proof of Theorem 1.1 Let \(P(w) \) be the \(k \)-polycyclic chain with \(h \) polygons and have the minimum Kirchhoff index. Then by Lemma 2.5, we have \(w_i = 0 \) or \(w_i = k - 4 \) for any \(i \in \{1, 2, \ldots, h - 2\} \). It is obvious that we also have \(w_i = 0 \) or \(w_i = 1 = k - 4 \) if \(k = 5 \).

Suppose that \(w_1 = 0 \), next we show \(w_i = 0 \) for \(2 \leq i \leq h - 2 \). Otherwise, there exists \(i(2 \leq i \leq h - 2) \) such that \(w_{i-1} = 0 \) and \(w_i = k - 4 \).

Suppose that the \(k - 2 \) vertices on the top of the \((i+1)\)-th polygons are \(u, x, x_1, \ldots, x_{k-4} \), and the two vertices on the bottom of the \((i+1)\)-th polygons are \(v, y \).
It is obvious that the two edges ux, vy are the edge cut of $P(w)$. Let $P(w^*)$ be the graph obtained from $P(w)$ by deleting edges ux, vy and adding edges uy, vx. Then $P(w)$ and $P(w^*)$ are isomers. Suppose that N_1 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex u, v, N_2 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex x, y.

By Lemma 1.10, we have

$$Kf(P(w)) - Kf(P(w^*)) = \frac{(\Omega_{N_1}(u) - \Omega_{N_1}(v))(\Omega_{N_2}(y) - \Omega_{N_2}(x))}{\Omega_{N_1}(u,v) + \Omega_{N_2}(x,y) + 2}.$$

Since $w_{i-1} = 0$, there are two vertices a_{i-1} and u in the top of i-th polygons, and $k-2$ vertices in the bottom of i-th polygons. By Lemma 2.3, we have $\Omega_{N_1}(u) < \Omega_{N_1}(v)$.

We replace $s(= k - t - 4)$ by $k - 4$ in the proof of equations (3) and (4) of Lemma 2.5, and we can show $\Omega_{N_2}(y) < \Omega_{N_2}(x)$.

Then $Kf(P(w)) - Kf(P(w^*)) > 0$. This is a contradiction with that $P(w)$ has the minimum Kirchhoff index. Thus $w_i = 0$ for $1 \leq i \leq h-2$. This completes the proof. ■

Lemma 2.6 Let $P(w)$ be a k-polycyclic chain ($k \geq 6$) with h k-polygons, $w = (w_1, w_2, \cdots, w_{h-2})$ where $0 \leq w_i \leq k-4$ for $i \in \{1, 2, \cdots, h-2\}$. If $w_i \geq \lceil \frac{k-4}{2} \rceil + 1$ for some $i(1 \leq i \leq h-2)$, we take $w^* = (w_1, \cdots, w_{i-1}, \lceil \frac{k-4}{2} \rceil, k-4-w_{i+1}, \cdots, k-4-w_{h-2})$, then $Kf(P(w^*)) > Kf(P(w))$.

Proof. Let $w_i = t \geq \lceil \frac{k-4}{2} \rceil + 1$, the $t+2$ vertices on the top of the $(i+1)$-th polygons be $u_{t-[\frac{2t-4}{2}]}$, $u_2, u_1, u, x, x_1, x_2, \cdots, x_{[\frac{2t-4}{2}]}$, and the $k-t-2$ vertices on the bottom of the $(i+1)$-th polygons be $v_{k-t-4}, \cdots, v_2, v_1, v, y$, respectively.

It is obvious that the two edges ux, vy are the edge cut of $P(w)$. Let $P(w^*)$ be the graph obtained from $P(w)$ by deleting edges ux, vy and adding edges uy, vx. Then $P(w)$ and $P(w^*)$ are isomers. Suppose that N_1 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex u, v, N_2 is the component of $P(w) \setminus \{ux, vy\}$ containing vertex x, y.

By Lemma 1.10, we have

$$Kf(P(w)) - Kf(P(w^*)) = \frac{(\Omega_{N_1}(u) - \Omega_{N_1}(v))(\Omega_{N_2}(y) - \Omega_{N_2}(x))}{\Omega_{N_1}(u,v) + \Omega_{N_2}(x,y) + 2}.$$

If $z \in V(N_1) \setminus \{u, v, u_1, u_2, \cdots, u_{t-[\frac{2t-4}{2}]}\}, v_1, v_2, \cdots, v_{k-t-4}\}$, then by the triangular inequality, cut-vertex property of resistance distance and $t \geq \lceil \frac{k-4}{2} \rceil + 1$, we have

$$\Omega_{N_1}(v, z) \leq k - t - 4 + \Omega_{N_1}(v_{k-t-4}, u_{t-[\frac{2t-4}{2}]} + \Omega_{N_1}(u_{t-[\frac{2t-4}{2}]}), z)$$

$$< t - \left[\frac{2t - k + 4}{2} \right] + \Omega_{N_1}(u_{t-[\frac{2t-4}{2}]}), z)$$

11
\[\Omega_{N_1}(u, z). \]

If \(z \in \{u_1, u_2, \ldots, u_{t-[\frac{k-4}{2}]+1}, v_1, v_2, \ldots, v_{k-t-4}\} \), then by cut-vertex property of resistance distance and \(t \geq \left\lceil \frac{k-4}{2} \right\rceil + 1 \), we have

\[
\sum_{i=1}^{k-t-4} \Omega_{N_1}(v, v_i) + \sum_{i=1}^{t-[\frac{k-4}{2}]} \Omega_{N_1}(v, u_i) < \sum_{i=1}^{k-t-4} \Omega_{N_1}(u, v_i) + \sum_{i=1}^{t-[\frac{k-4}{2}]} \Omega_{N_1}(u, u_i).
\]

Thus

\[
\Omega_{N_1}(v) = \sum_{z \in V(N_1)} \Omega_{N_1}(v, z) < \sum_{z \in V(N_1)} \Omega_{N_1}(u, z) = \Omega_{N_1}(u).
\]

If \(z \in V(N_2) \setminus \{x, y, x_1, x_2, \ldots, x_{\left\lceil \frac{2k+4}{2} \right\rceil}\} \), then by the triangular inequality of resistance distance, we have

\[
\Omega_{N_2}(y, z) \leq \Omega_{N_2}(y, x_{\left\lceil \frac{2k+4}{2} \right\rceil}) + \Omega_{N_2}(x_{\left\lceil \frac{2k+4}{2} \right\rceil}, z) < 1 + \Omega_{N_2}(x_{\left\lceil \frac{2k+4}{2} \right\rceil}, z) \leq \Omega_{N_2}(x, z).
\]

If \(z \in \{x_1, x_2, \ldots, x_{\left\lceil \frac{2k+4}{2} \right\rceil}\} \), then by cut-vertex property of resistance distance, similarly we have

\[
\sum_{i=1}^{\left\lceil \frac{2k+4}{2} \right\rceil} \Omega_{N_2}(y, x_i) < \sum_{i=1}^{\left\lceil \frac{2k+4}{2} \right\rceil} \Omega_{N_2}(x, x_i).
\]

Thus

\[
\Omega_{N_2}(y) < \Omega_{N_2}(x).
\]

Then \(Kf(P(w^*)) - Kf(P(w)) > 0 \). This completes the proof.

Similar to the proof of Lemma 2.6, we also have

Lemma 2.7 Let \(P(w) \) be a \(k \)-polycyclic chain \((k \geq 6)\) with \(h \) \(k \)-polygons, \(w = (w_1, w_2, \ldots, w_{h-2}) \) where \(0 \leq w_i \leq k - 4 \) for \(i \in \{1, 2, \ldots, h - 2\} \). If \(w_i \leq \left\lceil \frac{k-4}{2} \right\rceil - 1 \) for some \(i(1 \leq i \leq h - 2) \), we take \(w^* = (w_1, \ldots, w_{i-1}, \left\lceil \frac{k-4}{2} \right\rceil, k - 4 - w_{i+1}, \ldots, k - 4 - w_{h-2}) \), then \(Kf(P(w^*)) > Kf(P(w)) \).

Proof of Theorem 1.2 Let \(P(w) \) be the \(k \)-polycyclic chain with \(h \) polygons and has the maximum Kirchhoff index. Then by Lemmas 2.6 and 2.7, we have \(w_i = \left\lceil \frac{k-4}{2} \right\rceil \) or \(w_i = \left\lfloor \frac{k-4}{2} \right\rfloor \) \((k \geq 6)\) for \(1 \leq i \leq h - 2 \). It is obvious that we also have \(w_i = 1 = \left\lceil \frac{k-4}{2} \right\rceil \) or \(w_i = 0 = \left\lfloor \frac{k-4}{2} \right\rfloor \) if \(k = 5 \).

If \(k \) is even, the conclusion holds. Next we only consider \(k \) is odd, then \(\left\lceil \frac{k-4}{2} \right\rceil > \left\lfloor \frac{k-4}{2} \right\rfloor \).

If there exists \(i \) such that \(w_{i-1} = w_i = \left\lceil \frac{k-4}{2} \right\rceil \) or \(w_{i-1} = w_i = \left\lfloor \frac{k-4}{2} \right\rfloor \), we will obtain a contradiction. We only consider \(w_{i-1} = w_i = \left\lceil \frac{k-4}{2} \right\rceil \), the proof case of \(w_{i-1} = w_i = \left\lfloor \frac{k-4}{2} \right\rfloor \) is similar.
Suppose the \(\left\lceil \frac{k-4}{2} \right\rceil + 2 \) vertices on the top of the \((i+1)\)-th polygons are \(u, x, x_1, \cdots, x_{\left\lceil \frac{k-4}{2} \right\rceil} \). The \(\left\lceil \frac{k-4}{2} \right\rceil + 2 \) vertices on the bottom of the \((i+1)\)-th polygons are \(v, y, y_1, \cdots, y_{\left\lceil \frac{k-4}{2} \right\rceil} \), respectively.

It is obvious that the two edges \(ux, vy \) are the edge cut of \(P(w) \). Let \(P(w^*) \) be the graph obtained from \(P(w) \) by deleting edges \(ux, vy \) and adding edges \(uy, vx \). Then \(P(w) \) and \(P(w^*) \) are isomers. Suppose that \(N_1 \) is the component of \(P(w) \setminus \{ux, vy\} \) containing vertex \(u, v, N_2 \) is the component of \(P(w) \setminus \{ux, vy\} \) containing vertex \(x, y \).

By Lemma 1.10 we have

\[
Kf(P(w)) - Kf(P(w^*)) = \frac{(\Omega_{N_1}(u) - \Omega_{N_1}(v))(\Omega_{N_2}(y) - \Omega_{N_2}(x))}{\Omega_{N_1}(u, v) + \Omega_{N_2}(x, y) + 2}.
\]

Since \(w_{i-1} = \left\lceil \frac{k-4}{2} \right\rceil > \left\lfloor \frac{k-4}{2} \right\rfloor \), then by Lemmas 2.2 and 2.4 we have \(\Omega_{N_1}(u) > \Omega_{N_1}(v) \).

Next we prove \(\Omega_{N_2}(y) < \Omega_{N_2}(x) \).

If \(z \in V(N_2) \setminus \{x, y, x_1, x_2, \cdots, x_{\left\lfloor \frac{k-4}{2} \right\rfloor}, y_1, y_2, \cdots, y_{\left\lceil \frac{k-4}{2} \right\rceil} \} \), Note that the weight of edge \(x_{\left\lfloor \frac{k-4}{2} \right\rfloor}y_{\left\lceil \frac{k-4}{2} \right\rceil} \) is less than 1 and \(\left\lfloor \frac{k-4}{2} \right\rfloor > \left\lceil \frac{k-4}{2} \right\rceil \). Then by the triangular inequality of resistance distance, we have

\[
\Omega_{N_2}(y, z) \leq \left\lceil \frac{k-4}{2} \right\rceil + \Omega_{N_2}(y_{\left\lfloor \frac{k-4}{2} \right\rceil}, x_{\left\lfloor \frac{k-4}{2} \right\rceil}) + \Omega_{N_2}(x_{\left\lceil \frac{k-4}{2} \rceil}, z) < \left\lceil \frac{k-4}{2} \right\rceil + \Omega_{N_2}(x_{\left\lfloor \frac{k-4}{2} \right\rceil}, z) = \Omega_{N_2}(x, z).
\]

If \(z \in \{x_1, x_2, \cdots, x_{\left\lfloor \frac{k-4}{2} \right\rceil}, y_1, y_2, \cdots, y_{\left\lceil \frac{k-4}{2} \right\rceil} \} \). Note that the weight of edge \(x_{\left\lfloor \frac{k-4}{2} \right\rceil}y_{\left\lceil \frac{k-4}{2} \right\rceil} \) is less than 1 and \(\left\lfloor \frac{k-4}{2} \right\rfloor > \left\lceil \frac{k-4}{2} \right\rceil \). Then by cut-vertex property of resistance distance, similarly we have \(\sum_{i=1}^{\left\lfloor \frac{k-4}{2} \right\rceil} \Omega_{N_2}(y, x_i) + \sum_{i=1}^{\left\lceil \frac{k-4}{2} \right\rceil} \Omega_{N_2}(y, y_i) < \sum_{i=1}^{\left\lfloor \frac{k-4}{2} \right\rceil} \Omega_{N_2}(x, x_i) + \sum_{i=1}^{\left\lceil \frac{k-4}{2} \right\rceil} \Omega_{N_2}(x, y_i) \).

Then \(\Omega_{N_2}(y) < \Omega_{N_2}(x) \). Thus \(Kf(P(w^*)) - Kf(P(w)) > 0 \). This is a contradiction with that \(P(w) \) has the maximum Kirchhoff index. This completes the proof.

3 Conclusions

In this paper, we completely solve the problem about the extremal \(k \)-polycyclic chains with respect to Kirchhoff index for \(k \geq 5 \), which extends the results of [22] for \(k = 5 \), [27,28] for \(k = 6 \) and [18] for \(k = 8 \).

In addition to the Kirchhoff index, the Wiener index is also an important molecular descriptor. Cao et al. [5] determined the extremal Wiener indices in \(k \)-polycyclic chains with \(k \) is even. Chen et al. [3] determined the expected values of Wiener indices in random \(k \)-polycyclic chains with \(k \) is even. Thus the problem of determining the extremal Wiener indices in \(k \)-polycyclic chains with \(k \) is odd is still open. We intend to consider the above challenging problems in the future.
Acknowledgements This research is supported by the National Natural Science Foundation of China (Grant No. 11971180), the Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012052), the Characteristic Innovation Project of General Colleges and Universities in Guangdong Province (Grant No. 2022KTSCX225) and the Guangdong Education and Scientific Research Project (Grant No. 2021GXJK159).

References

[1] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, New York, 2008.

[2] H. Chen, Q. Guo, Tutte polynomials of alternating polycyclic chains, *J. Math. Chem*. 57 (2019) 2248–2260.

[3] H. Chen, C. Li, The expected values of Wiener indices in random polycyclic chains, *Discrete Appl. Math*. 315 (2022) 104–109.

[4] Y. Cao, W. Yang, F. Zhang, Extremal polygonal chains concerning Merrified-Simmons index, *Polycycl. Aromat. Comp*. 37 (2017) 1–23.

[5] Y. Cao, W. Yang, F. Zhang, Extremal even polygonal chains on Wiener numbers, *Polycycl. Aromat. Comp*. 40 (2020) 1616–1623.

[6] Y. Cao, F. Zhang, Extremal polygonal chains on k-matchings, *MATCH Commun. Math. Comput. Chem*. 60 (2008) 217–235.

[7] H. Deng, On the minimum Kirchhoff index of graphs with a given number of cut-edges, *MATCH Commun. Math. Comput. Chem*. 63 (2010) 171–180.

[8] Q. Guo, H. Deng, D. Chen, The extremal Kirchhoff index of a class of unicyclic graphs, *MATCH Commun. Math. Comput. Chem*. 61 (2009) 713–722.

[9] G. Huang, M. Kuang, H. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, *Ars Math. Contemp*. 9 (2014) 197–207.

[10] S. Huang, S. Li, On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain, *Physica A* 558 (2020) #124999.

[11] A. E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks, *Electr. World Eng*. 34 (1899) 413–414.

[12] D. J. Klein, Graph geometry, graph metrics and Wiener, *MATCH Commun. Math. Comput. Chem*. 35 (1997) 7–27.

[13] D. J. Klein, M. Randić, Resistance distance, *J. Math. Chem*. 12 (1993) 81–95.

[14] D. J. Klein, H. Y. Zhu, Distances and volumina for graphs, *J. Math. Chem*. 23 (1998) 179–195.

[15] Q. Li, S. Li, L. Zhang, Two-point resistances in the generalized phenylenes, *J. Math. Chem*. 58 (2020) 1846–1873.
[16] J. B. Liu, X. F. Pan, Minimizing Kirchhoff index among graphs with a given vertex bipartiteness, *Discrete Appl. Math.* **291** (2016) 84–88.

[17] J. B. Liu, T. Zhang, Y. Wang, W. Lin, The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain, *Discrete Appl. Math.* **307** (2022) 22–31.

[18] Q. Ma, Extremal octagonal chains with respect to the Kirchhoff index, arXiv:2209.10264, 2022.

[19] Y. Peng, S. Li, On the Kirchhoff index and the number of spanning trees of linear phenylenes, *MATCH Commun. Math. Comput. Chem.* **77** (2017) 765–780.

[20] O. E. Polansky, M. Zander, Topological effects on MO energies, *J. Mol. Struct.* **84** (1982) 361–385.

[21] Y. Qiao, F. Zhang, Ordering polygonal chains with respect to Hosoya index, *Appl. Math. J. Chin. Univ.* **27** (2012) 305–319.

[22] W. Sun, Y. Yang, Extremal pentagonal chains with respect to the Kirchhoff index, *Appl. Math. Comput.* **437** (2023) #127534.

[23] Y. Tang, Y. Zuo, Z. Tang, H. Deng, Ordering unbranched catacondensed benzenoid hydrocarbons by the number of Kekule structures, *MATCH Commun. Math. Comput. Chem.* **82** (2019) 163–180.

[24] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.* **69** (1947) 17–20.

[25] H. Wang, H. Hua, D. Wang, Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices, *Math. Commun.* **15** (2010) 347–358.

[26] Y. Yang, X. Jiang, Unicyclic graphs with extremal Kirchhoff index, *MATCH Commun. Math. Comput. Chem.* **60** (2008) 107–120.

[27] Y. Yang, D. J. Klein, Comparison theorems on resistance distances and Kirchhoff indices of S,T-isomers, *Discrete Appl. Math.* **175** (2014) 87–93.

[28] Y. Yang, W. Sun, Minimal hexagonal chains with respect to the Kirchhoff index, *Discrete Math.* **345** (2022) #113099.

[29] Y. Yang, D. Wang, Extremal phenylene chains with respect to the Kirchhoff index and degree-based topological indices, *IAENG Int. J. Appl. Math.* **49** (2019) 274–280.

[30] L. Zhang, The minimum Kirchhoff index of phenylene chains, arXiv:2208.07727, 2022.

[31] H. Zhang, X. Jiang, Continuous forcing spectra of even polygonal chains, *Acta Math. Appl. Sin-E* **37** (2021) 337–347.

[32] Z. Zhu, J. B. Liu, The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes, *Discrete Appl. Math.* **254** (2019) 256–267.

[33] B. Zhou, N. Trinajstić, On resistance-distance and Kirchhoff index, *J. Math. Chem.* **46** (2009) 283–289.