Digital phenotyping by consumer wearables identifies sleep-associated markers of cardiovascular disease risk and biological aging

Jing Xian Teo1, Sonia Davila1,2, Chengxi Yang3, Chee Jian Pua3, Jonathan Yap4, Swee Yaw Tan4, Anders Sahlén4,5, Calvin Woon-Loong Chin4, Bin Tean Teh1,6,7,8,9, Steven G Rozen1,6,10, Stuart Alexander Cook1,2,3,11,12, Khung Keong Yeo4*, Patrick Tan1,6,9,13,14, Weng Khong Lim1,6,*

1SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
2Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.
3National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
4Department of Cardiology, National Heart Centre Singapore, Singapore
5Department of Medicine, Karolinska Institutet, Sweden
6Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore.
7Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.
8Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
9Cancer Science Institute of Singapore, National University of Singapore, Singapore.
10Centre for Computational Biology, Duke-NUS Medical School, Singapore.
11National Heart and Lung Institute, Imperial College London, United Kingdom
12MRC Clinical Sciences Centre, Imperial College London, United Kingdom
13Biomedical Research Council, Agency for Science, Technology and Research, Singapore.

* wengkhong.lim@duke-nus.edu.sg (WKL) yeo.khun.keong@nhcs.com.sg (KKY)
gmstanp@duke-nus.edu.sg (PT)

Abstract
Despite growing adoption of consumer wearables, the potential for sleep metrics from these devices to contribute to sleep-related biomedical research remains largely uncharacterized. Here we analyze sleep tracking data, along with questionnaire responses and multi-modal phenotypic data, generated from 482 normal volunteers. First, we provide a detailed comparison of wearable-derived and self-reported sleep metrics, particularly total sleep time (TST) and sleep efficiency (SE). We then identified demographic, socioeconomic and lifestyle factors associated with wearable-derived sleep duration. We also analyzed our multi-modal phenotypic data and showed that wearable-derived TST and SE are associated with various cardiovascular disease risk markers, whereas self-reported measures were not. Using whole-genome sequencing data, we estimated leukocyte telomere length and showed that volunteers with insufficient sleep also exhibit premature telomere attrition. Our study highlights the potential for sleep metrics generated by consumer wearables to provide novel insights into data generated from population cohort studies. (147 words)

Introduction
Relationships between sleep and health outcomes have been described by many studies over the years. Among others, insufficient sleep has been associated with obesity [1,2], hypertension [3–6], cardiovascular disease (CVD) [7–10], insulin resistance [11–14] and even premature death [15,16]. Previous studies on sleep-health interactions have relied on three methods to quantify sleep: sleep questionnaires/diaries, actigraphy and polysomnography (PSG). There are drawbacks associated with each approach: 1) sleep questionnaires/diaries lack precision and rely on subjective recall [17], 2) actigraphy involves specialized devices and are only
suitable for relatively short studies, and 3) PSG studies while being the gold-standard in accuracy are very resource-intensive to conduct [18].

The digital revolution has resulted in the proliferation of consumer wearables with activity tracking functionality. Shipments of wearables exceeded 114 million units in 2017 and is expected to double by 2021 [19,20]. Although many of these wearables are marketed either as fitness trackers or smartwatches, the line between these two categories is rapidly blurring. Beyond physical activity, such devices can also track sleep, with more advanced models able to provide sleep staging information via integrated heart rate (HR) sensors. Although consumer wearables are marketed as tools to promote healthy sleep habits, their widespread availability and growing adoption suggest the possibility of using them as a source of quantitative sleep data for sleep and health research.

Biomedical researchers are beginning to explore the potential of sleep data derived from consumer wearables. First, researchers have compared the accuracy of sleep as measured by consumer wearables from several manufacturers (e.g. Fitbit and Jawbone) with gold standard PSG measurements [21–24]. They found that consumer wearables were reasonably sensitive in detecting sleep but performed poorly in detecting periods of wakefulness. Compared to research actigraphs, consumer wearables have similar sensitivity (sleep detection) and specificity (wake detection) [23,25]. Some cohort studies have begun using consumer wearables. For example, we recently used Fitbit-derived sleep tracking data to show differences in sleep patterns among volunteers stratified into various activity pattern clusters [26]. Xu et al. used Fitbit Charge HR sleep data from 748 individuals to demonstrate independent associations between both sleep duration and sleep duration variation with body mass index (BMI) [27]. Additionally, Turel et al. used Fitbit devices to show a negative association between sleep duration and abdominal obesity [28].

Despite these advances, various gaps remain in our understanding of the utility of sleep data from consumer wearables in biomedical research. First, there is little information on how sleep metrics from consumer wearables compare with self-reported sleep quality from questionnaires such as the Pittsburgh Sleep Quality Index (PSQI), which is typically used in large cohort studies where it is impractical and costly to use actigraphy or PSG to measure individual sleep parameters [27,29]. Such a comparison is important if consumer wearables are to be considered as replacements or adjuncts of sleep questionnaires in future cohort studies. Second, there has yet to be an analysis of consumer wearable sleep data in the context of a comprehensive multi-modal dataset comprising various health parameters such as anthropometry, blood pressure, lipid profile, cardiac imaging, especially in Asians; a population known to have considerably different sleep behavior compared to Western cohorts [27,30]. Third, although insufficient sleep has been linked to accelerated aging [31–34], this phenomenon has yet to be explored in a sizeable cohort using consumer wearables. Finally, there has yet to be an exploration of how wearable sleep data correlates with demographic, socioeconomic and lifestyle factors. Using an expanded cohort and dataset compared to our initial study [26], we sought to address these gaps through a comprehensive analysis of sleep data derived from Fitbit Charge HR activity trackers worn by 482 Singaporean volunteers. Apart from the wearable tracking, these volunteers have been comprehensively profiled for CVD risk markers including anthropometrics, blood pressure, lipid panel and fasting blood glucose (FBG).
Results

Comparison between wearable-derived and subjective sleep metrics

The cohort of 482 volunteers underwent a wearable study lasting an average of 4 days, where Fitbit Charge HR activity trackers were used to track physical activity, HR and sleep. Summary statistics for the cohort are shown in Table 1 (full details in S1 Data). At time of enrollment, the volunteers were on average 46 years of age (range 21 – 69 years). These volunteers on average had 4 nights of tracked sleep (range 3 – 11 nights), with a mean total sleep time (TST) of 6 hours and 28 minutes. The first analysis that we performed was to compare objective sleep measures obtained using consumer wearables to subjective sleep measures in the form of PSQI responses. The PSQI questionnaire comprises various sections, each containing questions that seek to quantify a different aspect of sleep quality (e.g. sleep duration, sleep efficiency, sleep latency, subjective sleep quality, etc.). It then summarizes the scores of individual components into a global PSQI score representing overall sleep quality. We first compared wearable-derived TST and SE with global PSQI scores and found correlations in neither ($r_s = -0.089$, $p = 0.091$ and $r_s = -0.080$ $p = 0.129$ respectively). Wearable-derived TST, however, showed a significant, albeit weak correlation with self-reported TST ($r_s = 0.283$, $p = 2.394 \times 10^{-10}$). We asked if this weak correlation is at least in part due to the relatively short study duration. We thus modified the inclusion criteria from at least three nights of tracked sleep to four and five nights. Indeed, when the thresholds were increased, correlation with self-reported TST rose correspondingly to 0.322 ($p = 6.218 \times 10^{-09}$, $n = 310$) and 0.397 ($p = 1.425 \times 10^{-06}$, $n = 138$) respectively, despite remaining relatively weak. From raw self-reported TST, we also categorized self-reported TST by levels specified in component 3 of the PSQI, which profiles habitual sleep duration. Compared to those with the lowest component 3 score of 0 (> 7 hours of sleep), those with scores of 1 (6 - 7 hours) and 2 (5 - 6 hours) had lower wearable-derived TST ($\beta = -0.321$, $p = 0.001$ and $\beta = -0.721$, $p = 4.94 \times 10^{-06}$ respectively, Fig 1A). However, those with a score of 3 (< 5 hours) exhibited no significant difference in TST compared to those with a score of 0 ($\beta = -0.428$, $p = 0.123$), indicating lower concordance with wearable-derived TST among those with self-perceived chronic sleep deprivation. This may be due to the limited number of volunteers in that category ($n = 13$) and correspondingly higher variability in wearable-derived TST. Overall, we found that volunteers on average over-estimated their habitual sleep duration by 14 minutes compared to the more objective and quantitative wearable-derived measurements.

Apart from TST, the Fitbit wearables used in this study also provide sleep efficiency (SE) metrics, which represent fraction of TST over total time in bed. Similarly, the PSQI also attempts to estimate SE based on self-reported habitual sleep duration, sleep times and wake times. An overall comparison between wearable-derived and self-reported SE revealed no correlation ($r_s = -0.080$, $p = 0.081$). However, when self-reported SE was grouped by PSQI component 4 scoring thresholds (> 85%, 75 - 84%, 65 - 75%, < 65%), volunteers in the < 65% group had significantly lower wearable-derived SE compared others (mean SE = 89.722% vs 92.638%, Student’s t-test p-value = 0.005, Fig 1B). Thus, only volunteers with the poorest self-perceived SE have concordantly lower wearable-derived SE values. We note that wearable-derived SE is almost uniformly high (mean SE = 92.584%), with little variation (SE standard deviation = 3.060%), which is likely due to the lower sensitivity of Fitbit wearables in detecting wake states as opposed to sleep states [21].

Another wearable-derived sleep metric available was the number of awakenings per sleep session. For each volunteer, we obtained the average daily number of nocturnal awakenings. We then compared this number with responses to question 5b of the PSQI, which asks volunteers how frequently they had trouble sleeping due to waking up in middle of the night or early morning. There was a weak correlation between these values ($r_s =0.189$, $p = \ldots$
4.114x10^{-05}, with volunteers reporting the highest (>= 3 times/week) number of nocturnal awakenings having significantly higher daily wearable-detected nocturnal awakenings compared to volunteer reporting no trouble sleeping in the past month (β = 0.586, p = 0.004, Fig 1C). Taken collectively, our findings show that sleep metrics obtained from consumer wearables provide objective sleep metrics that, although associated with to a certain extent, are different from subjective measures of sleep quality.

Characteristic	Female (n=262; 54.36%)	Male (n=220; 45.64%)	Test
Age, years	46.21 (11.35)	45.80 (12.70)	0.703
Ethnicity			0.001
Chinese	247 (94.3)	192 (87.3)	
Indian	6 (2.3)	11 (5.0)	
Malay	2 (0.8)	14 (6.4)	
Others	7 (2.7)	3 (1.4)	
BMI, kg/m²	22.83 (3.80)	24.27 (3.06)	<0.001
WC, cm	79.01 (11.08)	86.82 (9.36)	<0.001
WHR	0.50 (0.07)	0.51 (0.05)	0.073
BFP, %	33.16 (7.65)	23.64 (6.48)	<0.001
SMP, %	35.49 (4.40)	42.57 (4.25)	<0.001
SBP, mmHg	122.54 (17.53)	132.06 (15.04)	<0.001
DBP, mmHg	73.82 (12.85)	82.40 (10.88)	<0.001
Total Cholesterol, mmol/l	5.38 (0.93)	5.39 (0.97)	0.922
LDL, mmol/l	3.34 (0.81)	3.45 (0.91)	0.183
HDL, mmol/l	1.58 (0.32)	1.36 (0.32)	<0.001
TGs, mmol/l	1.02 (0.54)	1.33 (0.80)	<0.001
Glucose, mmol/l	5.18 (0.50)	5.39 (0.73)	<0.001
RestingHR, (Fitbit, bpm)	69.79 (6.37)	68.23 (6.48)	0.008
DailySteps, (Fitbit, x1000)	10349.55 (3466.19)	11061.09 (3818.57)	0.033
LTL, bp	-47.72 (443.41)	-57.12 (536.72)	0.899
GPPAQ Score	1.31 (1.12)	1.95 (1.11)	<0.001
Wearable-derived TST, hr	6.60 (1.00)	6.32 (0.98)	0.002
Self-report TST (PSQI Sleep Hour), hr	6.59 (1.04)	6.56 (1.00)	0.796
Wearable-derived SE, %	93.08 (2.84)	92.00 (3.22)	<0.001
Self-reported SE (PSQI Component 4 Score), %	0.26 (0.63)	0.22 (0.56)	0.407
Wearable-derived nocturnal awakenings	2.00 (1.38)	1.95 (1.57)	0.755
Self-reported nocturnal awakenings (PSQI Question 5b)	1.02 (1.06)	1.13 (1.13)	0.263
Global PSQI Score	3.73 (2.36)	3.78 (2.14)	0.854

Table 1. Summary statistics of study volunteers. Test p-values for between gender comparisons are shown: For continuous variables, Student t-test was used, whereas categorical values were evaluated using the chi-squared test. The full dataset is available in S1 Data, and this table was generated by code in S2 Data. Abbreviations: BMI = body mass index; WC = waist circumference; WHR = waist-to-height ration; BFP = body fat percentage; SMP = skeletal muscle percentage; SBP = systolic blood pressure; DBP = diastolic blood pressure; LDL = low-density lipoprotein; HDL = high-density lipoprotein; TG = triglycerides; LTL = leucocyte telomere length; TST = total sleep time; SE = sleep efficiency; GPPAQ = General Practice Physical Activity Questionnaire; PSQI = Pittsburgh Sleep Quality Index.
Fig 1. Comparison between wearable-derived and self-reported sleep metrics. (A) Wearable-derived TST and PSQI Component 3 score (sleep duration). (B) Wearable-derived SE and PSQI Component 4 score (sleep efficiency). (C) Wearable-derived nocturnal awakenings and PSQI Component 5b score (nocturnal awakenings). The code to generate this figure can be found in S2 Data. Asterisks denote significance of component score in linear model compared to reference score of 0. ** = p < 0.01, *** = p < 0.001. Abbreviations: TST, total sleep time; SE, sleep efficiency; PSQI, Pittsburgh Sleep Quality Index.

Relationship between wearable sleep metrics and cohort demographics

We next sought to determine if wearable-derived sleep metrics could be used to identify sleep-associated demographic and behavioral factors in our cohort. To do so, we first considered volunteer information provided through detailed demographic and socioeconomic questionnaires administered during their recruitment. These included basic demographics such as age, gender and ethnicity, but also socioeconomic and lifestyle factors.

Although the volunteers were predominantly of Chinese ethnicity (n = 439, 91.1%), some were of Malay (n = 16, 3.3%), Indian (n = 17, 3.5%) and other (n = 10, 2.1%) ethnicities. Adjusting for age and gender, we found that Malay volunteers on average slept 41 minutes less than Chinese volunteers (β = -40.818, p = 0.009) whereas Indian volunteers slept for an additional 32 minutes compared to their Chinese counterparts (β = 31.907, p = 0.029). Similarly, after adjusting for gender and ethnicity, we found that TST decreased with age (β = -0.493, p = 0.032, Fig 2B). For gender, we found that after adjusting for age and ethnicity, female volunteers on average slept 16 minutes longer than their male counterparts (p = 0.005, Fig 2C).

We next examined relationships between wearable-derived TST and socioeconomic factors. Among others, we considered income levels, residence type, education level and occupation type (Supplementary Table 1). Of these factors, occupation type and residence type were associated with TST. Volunteers engaged in manual work slept 27 minutes less than those engaged in other occupation types (i.e. service industry, office work and unemployed/retired, p = 0.022, Fig 2D). Furthermore, volunteers living in private residences slept 15 minutes longer than those living in public housing (p = 0.019).

Several self-reported lifestyle factors were also analyzed to determine if they are associated with wearable-derived TST. These included exercise, smoking status, alcohol consumption and caffeine consumption (Supplementary Table 2). Apart from alcohol consumption, no other significant associations were found. Volunteers who self-reported alcohol consumption within the past three months slept 19 minutes longer than those who did not, adjusting for age, gender and ethnicity (p = 8.54x10^-04). When alcohol consumption was broken down by type of alcohol, volunteers reporting consumption of hard liquor had the largest difference in TST compared to those that did not (28 minutes longer, p = 0.002), followed by red wine (19 minutes longer, p = 0.008) and beer (18 minutes longer, p = 0.014).
Associations between wearable-derived sleep metrics and cardiovascular disease markers

A key aim of the study cohort was to study cardiovascular disease (CVD) risk in normal individuals. To that end, various baseline markers of cardiovascular health were collected, including anthropometric measurements (body mass index [BMI], waist circumference [WC], waist-to-height ratio [WHtR]), resting HR, blood pressure (systolic blood pressure [SBP], diastolic blood pressure [DBP]), lipid panel results (total cholesterol [TotalChol], low-density lipoprotein [LDL], high-density lipoprotein [HDL], triglycerides [TG]) and FBG. To determine if wearable-derived sleep metrics were associated with any of these CVD risk markers, we performed multiple linear regression using three different models. Models 1 and 2 consider TST and SE individually, whereas Model 3 includes both TST and SE. All three models included age, gender and daily step counts as covariates. Wearable-derived TST was associated with BMI, TotalChol and resting HR, whereas wearable derived SE was associated with BMI, WC, WHtR and HDL levels (Table 2). Neither wearable-derived TST nor SE were
significantly associated with blood pressure or FBG levels in this study. We then tested self-reported sleep metrics for TST and SE using the same models and found no significant associations, probably due to the less precise nature of subjective sleep measures. Potential reasons for this are considered in the Discussion.

Marker	Model 1*	Model 2*	Model 3*					
	Wearable-derived TST	Wearable-derived SE	Wearable-derived TST	Wearable-derived SE				
	β	p-value	β	p-value	β	p-value	β	p-value
BMI	-0.006	0.040	-0.109	0.040	-0.005	0.070	-0.097	0.070
WC	0.001	0.893	-0.410	0.009	0.004	0.638	-0.420	0.008
WHR	-3.750	0.449	-0.003	0.008	-2.120x10^-4	0.669	-0.002	0.010
RestingHR	-0.014	0.004	-0.024	0.800	-0.015	0.004	0.011	0.910
SBP	-0.009	0.493	-0.180	0.461	-0.008	0.550	-0.161	0.513
DBP	-0.008	0.383	-0.011	0.952	-0.008	0.384	0.009	0.960
TotalChol	-0.001	0.043	0.005	0.726	-0.002	0.037	0.009	0.540
LDL	-0.001	0.053	0.003	0.819	-0.001	0.048	0.006	0.636
HDL	-9.581x10^-5	0.670	0.009	0.046	-1.609x10^-4	0.517	0.010	0.039
TG	-2.046x10^-4	0.670	-0.009	0.380	-1.486x10^-4	0.779	-0.008	0.404
FBG	-2.354x10^-4	0.620	-0.002	0.792	-2.235x10^-4	0.640	-0.002	0.837
BFP	-0.010	0.071	-0.173	0.108	-0.009	0.108	-0.150	0.166
SMP	0.006	0.056	0.103	0.112	0.006	0.086	0.088	0.175

Table 2. Association between wearable-derived sleep metrics and CVD risk markers.

Model 1 = TST only, Model 2 = SE only, Model 3 = TST + SE. All models include age and gender as covariates. The code to generate this figure can be found in S2 Data. Highlighted cells are statistically significant (p < 0.05). BMI = body mass index; WC = waist circumference; WHR = waist-to-height ratio; BFP = body fat percentage; SMP = skeletal muscle percentage; SBP = systolic blood pressure; DBP = diastolic blood pressure; TotalChol = total cholesterol; LDL = low-density lipoprotein; HDL = high-density lipoprotein; TG = triglycerides; TST = total sleep time; SE = sleep efficiency.

We further examined this association by considering two groups of volunteers; those with wearable-derived TST < 5 hours and those

Wearable-inferred sleep insufficiency is associated with premature telomere attrition

A subset of the cohort (n = 175) underwent whole-genome sequencing (WGS) for prospective genetic studies. Previous studies have shown that leukocyte telomere length (LTL) can be computationally-inferred from WGS data by analyzing reads containing the telomeric repeat motif (TTAGGG). We used a tool called Telomerecat that estimates LTL by calculating the ratio between read-pairs completely mapping to the telomere and those that span the telomere boundary [35]. WGS-inferred LTL (“WGS-LTL”) was computed for the 175 volunteers with WGS data, and the estimated values were further corrected to account for different sequencing runs. We first confirmed that WGS-LTL values were correlated with volunteer chronological age (r = -0.264, p = 4.14x10^-64). When volunteers were split into age-groups of 20-40, 40-60 and 60-80 years, volunteers in the 40-60 and 60-80 years age-groups had WGS-LTL that were on average 259 bp and 427 bp shorter than the reference group of 20-40 years (β = -259.35, p = 0.005 and β = -426.66, p = 0.002 respectively, adjusted for gender and ethnicity, Fig 3A). We then asked if wearable-derived sleep metrics were associated with telomere length, and found a positive association between wearable-derived TST and WGS-LTL (β = 1.272, p = 0.020, adjusted for age, gender and ethnicity, Fig 3B). We further examined this association by considering two groups of volunteers; those with wearable-derived TST < 5 hours and those
with wearable-derived TST > 7 hours. Volunteers with adequate sleep (> 7 hours) had WGS-LTL that was on average 331 bp longer than those with insufficient sleep (< 5 hours) (p = 0.017, adjusted for age, gender and ethnicity, Fig 3C). When this analysis was repeated using self-reported TST, a similar association was found between self-reported TST and telomere length (β = 94.404, p = 0.007, Fig 3D).

Fig 3. Wearable-derived TST predicts leukocyte telomere length. (A) WGS-LTL by age-group. (B) Wearable-derived TST and WGS-LTL. (C) WGS-LTL of volunteers with insufficient (< 5 hours) and sufficient (> 7 hours) of TST. (D) Self-reported TST and WGS-LTL. The code to generate this figure can be found in S2 Data. Asterisks denote significance of component score in linear model compared to reference score of 0. ** = p < 0.01, *** = p < 0.001. TST = total sleep time; PSQI = Pittsburgh Sleep Quality Index.

Discussion
We have shown in a sizeable cohort of 482 individuals how sleep metrics obtained from consumer wearables can be used in biomedical research, particularly in the context of health cohort studies. This multi-modal cohort is one of the largest to date to include consumer wearable sleep metrics. Our comparison of objective wearable-derived sleep metrics against subjective measures obtained through the PSQI provides insights into the characteristics of
these two modalities. The weak correlation between wearable-derived and self-reported TST is consistent findings from a study that compared between TST obtained from research actigraphs and the PSQI ($r = 0.29$) [36], despite that study having a considerably longer minimum tracking duration than ours (14 nights vs 3 nights). Concordance was poorer when we compared wearable-derived SE and number of nocturnal awakenings with their self-reported counterparts. As Fitbit devices have been found to perform poorly in terms of detecting wake states [21,24], it is perhaps unsurprising that a significant reduction in wearable-derived SE was only recorded among volunteers reporting the lowest level of SE (< 65%). Our comparison of wearable-derived sleep metrics against volunteer-provided responses to the PSQI – an instrument frequently used in population studies, will inform investigators considering using wearables in future cohort studies. Furthermore, the limitations we highlighted present opportunities for researchers to develop algorithms that can more accurately detect wake states, perhaps by fusing accelerometer and HR data obtained from consumer wearables.

The detailed questionnaires administered as part of our cohort recruitment process afforded us the opportunity to study how wearable-derived sleep metrics are influenced by demographic, socioeconomic and lifestyle factors. Among others, we showed that wearable-derived TST was associated with age, gender, ethnicity, occupation type and even habitual alcohol consumption. That these relationships were not detected previously when self-reported TST was used could be due to several factors. First, wearable-derived TST is quantitative and provides greater resolution compared to self-reported TST, which was in hourly increments. Second, self-reported TST has been shown to be biased and poorly-calibrated compared to objectively-measured habitual sleep duration [37]. With many countries realizing the importance of population health studies, the use of consumer wearables to identify demographic, socioeconomic and lifestyle factors associated with sleep duration could provide vital insights into population sub-groups at risk for poorer health outcomes due to insufficient sleep.

Our analysis on how wearable-derived TST and SE relate to various CVD risk markers demonstrate the utility of wearable-derived sleep metrics in biomedical research. Xu et al. previously described a link between habitual sleep duration estimated using Fitbit Charge HR devices and BMI in a predominantly European-American cohort of 471 individuals. We identified in an Asian cohort this relationship despite a considerably shorter average tracking duration (4 nights vs 78 nights), suggesting that sleep metrics obtained from even short studies can be useful. One novel aspect of this study was our analysis of wearable-derived SE against CVD risk markers. Our findings of links between SE and three obesity markers; BMI, WC and WHtR, is supported by previous studies performed using orthogonal approaches such as PSG and actigraphy [38,39]. This indicates that wearables are capable of contributing beyond TST to health cohort studies, notwithstanding current limitations to the accuracy of wearable-derived SE. The paucity of associations between wearable-derived sleep metrics and clinical parameters such as fasting blood glucose (a marker of insulin sensitivity), and blood pressure could be due in part to the cohort size, and highlights the need for wearables to be included in larger population-scale cohort studies in order to thoroughly assess their utility.

Beyond comparisons with the usual clinical health markers, our study provides a novel demonstration of the utility of wearable-derived sleep data in the study of biological aging. In particular, we showed that in a normal free-living cohort, individuals with short habitual sleep duration also exhibited premature telomere attrition. Previous studies of this phenomenon have either used sleep questionnaires [31–34] or cohorts of sleep disorder patients [40,41]. As premature telomere shortening has been linked to the early onset of various age-related diseases [42] and all-cause mortality [43,44], new evidence on the link between insufficient sleep and accelerated aging such as this are vital in helping shape public policy (e.g. later school start
times, altered work hours and schedules, etc.) and to promote healthier sleep habits among the public. This finding is especially relevant to Singapore, a developed nation whose citizenry is among the most sleep-deprived in the world [45,46]. Our use of 1) wearables for sleep tracking and 2) WGS for LTL estimation in this study, demonstrate the versatility that emerging technologies can bring to population cohort studies by providing added behavioral and phenotypic data beyond their primary functions.

In summary, our study has demonstrated various aspects in which sleep metrics from wearables can be used in cohort studies. Apart from comparing wearable-derived and self-reported sleep metrics, our work has shown that wearables can be used to study how sleep relates to demographic, socioeconomic and lifestyle factors, as well as various markers of health and aging. The increasing ubiquity of wearables and other forms of digital health, represent a rich source of behavioral data that can be tapped by investigators running cohort studies. Beyond the use of wearables as study-provided devices, a BYOD (bring your own device) model, where participants share data from their own wearables with investigators through application programming interfaces (APIs), is also possible. This is particularly attractive as the BYOD model allows for much longer tracking durations with minimal incremental cost. At the same time, the use of wearables and other digital health devices in population health studies can catalyze further development of digital applications that promote healthy behavior, including sleep habit.

Materials and Methods

Study volunteers and ethics statement
Volunteers were recruited as part of the SingHEART/Biobank study using a protocol and written informed consent form approved by the SingHealth Centralized Institutional Review Board (ref: 2015/2601). Details on the cohort and its inclusion criteria is available in [26]. Among others, the cohort underwent an activity tracking study a consumer wearable (Fitbit Charge HR), detailed clinical profiling for various CVD risk markers including anthropometry, blood pressure, lipid panel and fasting blood glucose. After evaluation for completeness of sleep and activity tracking data, and the removal of subjects with extreme outlier activity metrics, 482 volunteers were included in this study.

Processing of wearable sleep metrics
For each volunteer, we extracted their Fitbit data (activity, heart rate and sleep) using the Fitbit Web API (https://dev.fitbit.com/reference/web-api/quickstart). Data completeness was evaluated by the availability of HR data and days with no intraday steps were excluded (full details are available in [26]). We considered days with at least 20 hours of data to be complete, and only volunteers with at least three data-complete days were included. Detailed sleep tracking data from Fitbit was obtained in the JSON (JavaScript Object Notation) format, and processed using an R script (available in S2 Data). For each day, we summed the duration of all sleep sessions starting between 8 PM and 8AM. We then averaged daily sums for each volunteer to obtain the TST. Sleep hour was determined by calculating the average start time of sleep sessions occurring between 8 PM and 8 AM with duration more or equal to 3 hours. Wake hour was determined by averaging the end time of sleep sessions. SE was computed in a similar fashion, except that for each day, the average SE of sleep sessions was obtained. In addition, we estimated the number of nocturnal awakenings by averaging daily total wake counts.
Questionnaires
The volunteer recruitment process included the administration of several questionnaires. This included the SingHEART patient questionnaire which covered demographics, socioeconomic factors, medical history, smoking history, alcohol consumption patterns, exercise and dietary habits. The General Practice Physical Activity Questionnaire (GPPAQ) was used to estimate physical activity levels (details on how we converted GPPAQ responses to numerical scores are available in [26]). Finally, the Pittsburgh Sleep Quality Index (PSQI) questionnaire, which assesses sleep quality and disturbances over a one-month time interval, was also administered [29]. Volunteers were asked about their sleep habits, for example their bed time, hours of sleep per night, sleep trouble and sleep quality. The PSQI contains 19 self-rated questions and 5 questions rated by the bed partner or roommate (if one is available). These 19 self-rated items are then combined to produce seven component scores, each of which has a range of 0-3. Components 3 and 4, as well as Question 5b were examined in this study due to their relevance to our wearable-derived sleep metrics (TST, SE and nocturnal awakenings respectively).

Association tests
Multiple linear regression analyses described in this study were conducted using the GLM (generalized linear model) function in R and Gaussian error distribution was used. When gender was considered as a covariate, the female gender was set as the reference level. Whereas the following are the reference level for each of the socioeconomic factor when it was set as a covariate: “Public-housing” for residence type; “Others” for education level and “Manual-labor” for occupation type. For lifestyle factors, the reference level for alcohol and caffeine, tea and green tea consumption is “No”; the reference levels for smoking and exercise status are “Ex-smoker” and “Never/hardly” respectively.

For linear regression analysis between wearable-derived sleep metrics and CVD risk markers, three models were used. Age, gender, ethnicity, daily step counts were included as covariates. For Model 1 and Model 2 which considered TST and SE-based sleep metric, the model is, respectively, Marker ~ Age + Gender + Ethnicity + AverageDailyTotalSteps + TST and Marker ~ Age + Gender + Ethnicity + AverageDailyTotalSteps + SE. Whereas for Model 3 which includes both TST and SE, the model is Marker ~ Age + Gender + Ethnicity + AverageDailyTotalSteps + TST + SE. For linear regression analysis between wearable-derived TST metrics and socioeconomic factors, the following model was used: TST ~ Age + Gender + Ethnicity + SocioeconomicFactor. In addition, linear regression analysis between wearable-derived TST metrics and LTL was done by using this model: LTL ~ Age + Gender + Ethnicity + TST.

Telomere length estimation
Telomerecat [35] was used to estimate LTL from WGS data (WGS-LTL) by calculating the ratio between read-pairs completely mapping to the telomere and those that span the telomere boundary. As part of a larger study, we had sequenced the genomes of 546 volunteers (of which 175 overlapped with this study) at a target depth of 30X. We used Telomerecat to estimate WGS-LTL for the volunteers. Briefly raw sequencing reads in FASTQ files were aligned to the human reference genome (hs37d5) using BWA-MEM version 0.7.12 [47]. The resulting BAM files were further processed using Sambamba version 0.5.8 [48] to sort the reads and flag duplicates. Telomerecat was run in two steps. First, the *bam2telbam* command was run on individual BAM files to generate *telbam* files, which are small BAM files containing only sequencing reads relevant to LTL estimation. The *telbam2length* command was then executed to generate LTL estimates for the entire 546 set of *telbam* files. Finally, we used linear regression to correct for different sequencing runs. BAM files containing telomeric and
subtelomeric sequencing reads are available in the European Nucleotide Archive (ENA, accession number PRJEB29577).

Software and statistical tests
All statistical analyses in this study were performed using the R statistical environment. Unless otherwise stated, correlations described in this study are Spearman correlation coefficients.

Data and code availability
All data (including raw wearable metrics) and R code used in this study are available in S2 Data.

Acknowledgments: We would like thank the volunteers for their participation, as well as the NHCS and SingHEART Clinical Research Coordinators.

Funding: This work was supported in part by funding from SingHealth, Duke-NUS Medical School, National Heart Centre Singapore, Singapore National Medical Research Council (NMRC/STaR/0011/2012, NMRC/STaR/0026/2015), Lee Foundation and Tanoto Foundation.

Author contributions: J.X.T., K.K.Y., P.T. and W.K.L. conceived the study. W.K.L, K.K.Y. and P.T. directed the study and supervised the research. J.X.T., W.K.L., S.D. and S.G.R. performed bioinformatics and biostatistical analysis. C.Y. and C.J.P. were involved in sample preparation and processing. J.Y., S.Y.T., S.A., and B.T.T. performed interpretation of clinical data and findings. J.X.T and W.K.L., K.K.Y. and P.T. wrote the manuscript, with the assistance and final approval of all authors.

Competing interests: The authors declare no competing financial interests.

References
1. Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91: 881–884. doi:10.1136/adc.2005.093013
2. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 2014;15: 1456–1462. doi:10.1016/j.sleep.2014.07.018
3. Pepin J-L, Borel A-L, Tamisier R, Baguet J-P, Levy P, Dauvilliers Y. Hypertension and sleep: Overview of a tight relationship. Sleep Med Rev. 2014;18: 509–519. doi:10.1016/j.smrv.2014.03.003
4. Gangwisch JE. A review of evidence for the link between sleep duration and hypertension. Am J Hypertens. 2014;27: 1235–1242. doi:10.1093/ajh/hpu071
5. Wang Y, Mei H, Jiang Y-R, Sun W-Q, Song Y-J, Liu S-J, et al. Relationship between Duration of Sleep and Hypertension in Adults: A Meta-Analysis. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2015;11: 1047–1056. doi:10.5664/jcsm.5024
6. Calhoun DA, Harding SM. Sleep and Hypertension. Chest. 2010;138: 434–443. doi:10.1378/chest.09-2954
7. Hoevenaar-Blom MP, Spijkerman AMW, Kromhout D, Berg VD, F J, Verschuren WMM. Sleep Duration and Sleep Quality in Relation to 12-Year Cardiovascular Disease Incidence: The MORGEN Study. Sleep. 2011;34: 1487–1492. doi:10.5665/sleep.1382
8. Covassin N, Singh P. Sleep Duration and Cardiovascular Disease Risk: Epidemiologic and Experimental Evidence. Sleep Med Clin. 2016;11: 81–89. doi:10.1016/j.jsmc.2015.10.007
9. Sabanayagam C, Shankar A. Sleep duration and cardiovascular disease: results from the National Health Interview Survey. Sleep. 2010;33: 1037–1042.
10. Nagai M, Hoshide S, Kario K. Sleep Duration as a Risk Factor for Cardiovascular Disease - a Review of the Recent Literature. Curr Cardiol Rev. 2010;6: 54–61. doi:10.2174/157340310790231635

11. Matthews KA, Dahl RE, Owens JF, Lee L, Hall M. Sleep duration and insulin resistance in healthy black and white adolescents. Sleep. 2012;35: 1353–1358. doi:10.5665/sleep.2112

12. Pyykkönen A-J, Isomaa B, Pesonen A-K, Eriksson JG, Groop L, Tuomi T, et al. Sleep duration and insulin resistance in individuals without type 2 diabetes: the PPP-Botnia study. Ann Med. 2014;46: 324–329. doi:10.3109/07853890.2014.902226

13. Rutters F, Besson H, Walker M, Mari A, Konrad T, Nilsson PM, et al. The Association Between Sleep Duration, Insulin Sensitivity, and β-Cell Function: The EGIR-RISC Study. J Clin Endocrinol Metab. 2016;101: 3272–3280. doi:10.1210/jc.2016-1045

14. Wong PM, Manuck SB, DiNardo MM, Korytkowski M, Muldoon MF. Shorter Sleep Duration is Associated with Decreased Insulin Sensitivity in Healthy White Men. Sleep. 2015;38: 223–231. doi:10.5665/sleep.4402

15. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Sleep. 2010;33: 585–592.

16. Shen X, Wu Y, Zhang D. Nighttime sleep duration, 24-hour sleep duration and risk of all-cause mortality among adults: a meta-analysis of prospective cohort studies. Sci Rep. 2016;6: 21480. doi:10.1038/srep21480

17. Ibáñez V, Silva J, Cauli O. A survey on sleep assessment methods. PeerJ. 2018;6. doi:10.7717/peerj.4849

18. Toon E, Davey MJ, Hollis SL, Nixon GM, Horne RSC, Biggs SN. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2016;12: 343–350. doi:10.5664/jcsm.5580

19. Global Wearables Market Grows 7.7% in 4Q17 and 10.3% in 2017 as Apple Seizes the Leader Position, Says IDC. In: IDC: The premier global market intelligence company [Internet]. [cited 10 Aug 2018]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS43598218

20. IDC Forecasts Shipments of Wearable Devices to Nearly Double by 2021 as Smart Watches and New Product Categories Gain Traction. In: IDC: The premier global market intelligence company [Internet]. [cited 20 Aug 2018]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS43408517

21. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. Chronobiol Int. 2018;35: 465–476. doi:10.1080/07420528.2017.1413578

22. de Zambotti M, Baker FC, Colrain IM. Validation of Sleep-Tracking Technology Compared with Polysomnography in Adolescents. Sleep. 2015;38: 1461–1468. doi:10.5665/sleep.4990

23. Montgomery-Downs HE, Insana SP, Bond JA. Movement toward a novel activity monitoring device. Sleep Breath Schlaf Atm. 2012;16: 913–917. doi:10.1007/s11325-011-0585-y

24. Osterbauer B, Koempel JA, Ward SLD, Fisher LM, M.Don D. A Comparison Study of the Fitbit Activity Monitor and PSG For Assessing Sleep Patterns and Movement in Children. J Otolaryngol Adv. 2016;1: 24. doi:10.14302/issn.2379-8572.joa-15-891

25. Lee H-A, Lee H-J, Moon J-H, Lee T, Kim M-G, In H, et al. Comparison of Wearable Activity Tracker with Actigraphy for Sleep Evaluation and Circadian Rest-Activity...
Rhythm Measurement in Healthy Young Adults. Psychiatry Investig. 2017;14: 179–185. doi:10.4306/pi.2017.14.2.179
26. Lim WK, Davila S, Teo JX, Yang C, Pua CJ, Blöcker C, et al. Beyond fitness tracking: The use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research. PLOS Biol. 2018;16: e2004285. doi:10.1371/journal.pbio.2004285
27. Xu X, Conomos MP, Manor O, Rohwer JE, Magis AT, Lovejoy JC. Habitual sleep duration and sleep duration variation are independently associated with body mass index. Int J Obes. 2018;42: 794–800. doi:10.1038/ijo.2017.223
28. Turel O, Romashkin A, Morrison KM. Health Outcomes of Information System Use Lifestyles among Adolescents: Videogame Addiction, Sleep Curtailment and Cardio-Metabolic Deficiencies. PLoS ONE. 2016;11. doi:10.1371/journal.pone.0154764
29. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28: 193–213.
30. Lo JC, Leong RLF, Loh K-K, Dijk D-J, Chee MWL. Young Adults’ Sleep Duration on Work Days: Differences between East and West. Front Neurol. 2014;5. doi:10.3389/fneur.2014.00081
31. Jackowska M, Hamer M, Carvalho LA, Erusalimsky JD, Butcher L, Steptoe A. Short sleep duration is associated with shorter telomere length in healthy men: findings from the Whitehall II cohort study. PloS One. 2012;7: e47292. doi:10.1371/journal.pone.0047292
32. James S, McLanahan S, Brooks-Gunn J, Mitchell C, Schneper L, Wagner B, et al. Sleep Duration and Telomere Length in Children. J Pediatr. 2017;187: 247-252.e1. doi:10.1016/j.jpeds.2017.05.014
33. Lee KA, Gay C, Humphreys J, Portillo CJ, Pullinger CR, Aouizerat BE. Telomere Length is Associated with Sleep Duration But Not Sleep Quality in Adults with Human Immunodeficiency Virus. Sleep. 2014;37: 157–166. doi:10.5665/sleep.3328
34. Liang G, Schernhammer E, Qi L, Gao X, Vivo ID, Han J. Associations between Rotating Night Shifts, Sleep Duration, and Telomere Length in Women. PLOS ONE. 2011;6: e23462. doi:10.1371/journal.pone.0023462
35. Farmery JHR, Smith ML, Lynch AG. Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci Rep. 2018;8: 1300. doi:10.1038/s41598-017-14403-y
36. Landry GJ, Best JR, Liu-Ambrose T. Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci. 2015;7. doi:10.3389/fnagi.2015.00166
37. Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ. Sleep duration: how well do self-reports reflect objective measures? The CARDIA Sleep Study. Epidemiol Camb Mass. 2008;19: 838–845. doi:10.1097/EDE.0b013e318187a7b0
38. Kim M. Association between Objectively Measured Sleep Quality and Obesity in Community-dwelling Adults Aged 80 Years or Older: A Cross-sectional Study. J Korean Med Sci. 2015;30: 199–206. doi:10.3346/jkms.2015.30.2.199
39. Gohil A, Hannon TS. Poor Sleep and Obesity: Concurrent Epidemics in Adolescent Youth. Front Endocrinol. 2018;9. doi:10.3389/fendo.2018.00364
40. Carroll JE, Esquivel S, Goldberg A, Seeman TE, Effros RB, Dock J, et al. Insomnia and Telomere Length in Older Adults. Sleep. 2016;39: 559–564. doi:10.5665/sleep.5526
41. Huang P, Zhou J, Chen S, Zou C, Zhao X, Li J. The association between obstructive sleep apnea and shortened telomere length: a systematic review and meta-analysis. Sleep Med. 2018;48: 107–112. doi:10.1016/j.sleep.2017.09.034
42. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14: 28–34. doi:10.1097/MCO.0b013e32834121b1

43. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet. 2003;361: 393–395. doi:10.1016/S0140-6736(03)12384-7

44. Pusceddu I, Kleber M, Delgado G, Herrmann W, März W, Herrmann M. Telomere length and mortality in the Ludwigshafen Risk and Cardiovascular Health study. PLOS ONE. 2018;13: e0198373. doi:10.1371/journal.pone.0198373

45. Walch OJ, Cochran A, Forger DB. A global quantification of “normal” sleep schedules using smartphone data. Sci Adv. 2016;2: e1501705. doi:10.1126/sciadv.1501705

46. Venkatraman V, Chuah YL, Huettel SA, Chee MW. Sleep Deprivation Elevates Expectation of Gains and Attenuates Response to Losses Following Risky Decisions. Sleep. 2007;30: 603–609. doi:10.1093/sleep/30.5.603

47. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324

48. Tarasov A, Vilella AJ, Cuppen E, Nijman JJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31: 2032–2034. doi:10.1093/bioinformatics/btv098

Supporting Information

Supplementary Table 1. Summary of multiple linear regression results for socioeconomic factors and sleep metric, wearable-derived TST. β-values, P-values and standard error are shown. Highlighted cells have p < 0.05. The reference level in each model is stated as "ref" and highlighted in grey.

Supplementary Table 2. S2 Table: Summary of multiple linear regression results for lifestyle factors and sleep metric, wearable-derived TST. β-values, P-values and standard error are shown. Highlighted cells have p < 0.05. The reference level in each model is stated as "ref" and highlighted in grey.

S1 Data. Characteristics of study participants.

S2 Data. All data and R code used in this work.