Anomalous Heat Conduction in a Di-atomic One-Dimensional Ideal Gas

Giulio Casati\(^1\) and Tomaž Prosen\(^2\)

\(^1\)International Center for the Study of Dynamical Systems, Universita’degli Studi dell’Insubria, I-22100 Como, Italy and
Istituto Nazionale di Fisica della Materia and INFN, Unità’ di Milano, Italy

\(^2\)Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

(March 22, 2022)

We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e. the Fourier Law does not hold. Our conclusions are based on the analysis of the dependence of the heat current on the number of particles, of the internal temperature profile and on the Green-Kubo formalism.

PACS number: 05.45.-a

Understanding the dynamical origin for the validity of the Fourier law of heat conduction in deterministic one-dimensional particle chains is one of the oldest and most frustrating problems in non-equilibrium statistical physics. Due to some very basic unresolved issues this problem has been a source of many recent publications.

In the absence of analytical results, these papers are mainly oriented towards a numerical analysis of the problem. However, due to the delicate nature of the questions under discussion, numerical results sometimes lead to different conclusions. This is the case, for example, of the 1d hard-point particles with alternating masses for which opposite conclusions have been reached. Disagreement is not extremely surprising since this system lies in the foggy region which separates clear, regular behavior from chaotic behavior. Indeed this system has zero Lyapounov exponent and therefore it lacks of the exponential local instability which characterizes chaotic systems. On the other hand it has been shown that such systems can exhibit Gaussian diffusive behavior and, more recently, an example has been shown of a system with zero Lyapounov exponent which however obeys the Fourier law. From the point of view of a general theoretical understanding, the fact that the alternating mass problem lies in this critical region renders particularly important to establish, beyond any reasonable doubt, its conducting character. From the point of view of a general theoretical understanding, the fact that the alternating mass problem lies in this critical region renders particularly important to understand, beyond any reasonable doubt, its conducting character.

The energy current from site \(n\) to site \(n+1\) is defined as \(J_n = \{h_{n+1}, h_n\}\) and satisfies the continuity equation \((d/dt)h_n = \{H, h_n\} = J_n - J_{n-1}\). In particular we focus our attention on the ideal gas model of elastically colliding particles, \(V(q > 0) = 0, V(q < 0) = \infty\), with alternating masses, \(m_{2n-1} = m_1 = \sqrt{r}, m_{2n} = m_2 = 1/\sqrt{r}\), where the ratio \(r = m_1/m_2\) serves as a model parameter.

We have mainly considered the value \(r = (\sqrt{5} - 1)/2\); however all the reported numerical results have been checked also for several other values of \(r\) \((0 < r < 1)\) where we found no qualitative distinction.

We place our system of \(N\) particles between two stochastic maxwellian heat reservoirs at temperatures \(T_L\) and \(T_R\) (see \(^2\) for a description of the reservoir model). We chose the temperatures of the reservoirs, \(T_L = 1\) and \(T_R = 2\), and measure the long-time averaged heat current \(\langle J \rangle = \lim_{t \to \infty} (1/t) \int_0^t dt' J(t')\) versus the system size \(N\), where \(J = (1/N) \sum_{n=1}^{N-1} J_n\) and \(J_n = m_n v_n^2/2\) used by some authors, e.g \(^3\) (which does not ‘feel’ the collisions), is nontrivial in general.

In order to ensure that our results are not affected by finite size effects we have put particular care in using an efficient numerical scheme which allows to reach high \(N\) values. Our algorithm, developed for the first time in Ref. \(^3\), searches in a partially ordered tree (heap) of pre-computed candidates pairs for the next collision and, due to this, its requires only \(\log_2 N\) computer operations per collision. As a consequence, we were able to simulate very long chains and we have obtained reliably converged results for lattices with sizes \(N\) up to 30000. Convergence has been controlled by checking the constancy of the finite-time-averaged heat current \((1/t) \int_0^t dt' J(t')\), and to this end simulations for the largest system sizes had to be carried on up to \(10^{12}\) pair collisions. It is also clear that convergence problems suggest to keep far away from the values too close to one or to zero. The analysis made in \(^3\) indicated that the range \(0.15 < r < 0.6\) was the most effective in attenuating solitary pulses and the value \(r = 0.2\) was chosen. In the present paper we take the somehow ‘standard’ choice \(r = (\sqrt{5} - 1)/2\).

Validity of Fourier law implies the scaling \(J \propto \nabla T \propto N^{-1}\). Our numerical results shown in fig. \(^3\) clearly demonstrate instead a different power-law behaviour namely \(J \propto N^{-\alpha}\) with \(\alpha \approx 0.745 \pm 0.005\) over a very large range in \(N\). We have also found that the scaling
exponent α does not change appreciably with the mass ratio r. For example for ten times smaller value of r the asymptotic scaling only sets in later (i.e. for larger values of N, see fig. 1). The possibility of a slow convergence to the asymptotic value might be at the origin of the slightly different numerical values for α found in previous numerical experiments ($\alpha \approx 0.65$ in Hatano [3], $\alpha \approx 0.83$ in Dhar [4]). Since the model under consideration is energy scaling we do not expect any dependence of the exponent α on the reservoirs temperatures.

The above results therefore solve the existing controversy and clearly show that the alternating mass, 1d hard point gas does not obey Fourier heat law. We turn now to the analysis of other quantities which, besides providing additional confirmation of the above conclusions, illuminate interesting aspects of the heat conduction problem. A quantity of main interest is the internal local temperature profile $T_n = \langle p_n^2/(2m_n) \rangle$ in the non-equilibrium steady state for the system placed in between the heat reservoirs. First we notice that the temperature profile in discrete index variable n is different than the temperature profile in position variable q_n since the inverse density $dq/dn = (q_{n+1} - q_n)$ is non-uniform in non-equilibrium, in fact it is simply proportional to the temperature due to constancy of pressure. Now, in case of a Fourier law, the thermal conductivity κ scales with temperature like $\kappa \propto \sqrt{T}$. Therefore, from $\sqrt{\mathcal{T} (dT/dn) dn/dq}$ = const one obtains the temperature profile $T_n^{\text{kin}} = (T_L^{1/2} + (T_R^{1/2} - T_L^{1/2}) n/N)^2$. Extensive numerical simulations showed that the temperature profile in our model converges, for sufficiently large N, to a well-defined scaling function $T_n^{\text{scal}} = f(n/N)$ which is slightly, but significantly different, from the kinetic temperature profile T_n^{kin}. This is another evidence for the anomalous heat transport and for the non-validity of the Fourier law in our system. It should be remarked that the convergence to the temperature profile predicted by kinetic theory observed in [7], which has indeed been considered as surprising by the author himself, actually does not take place.

A standard theoretical analysis of transport laws is based on Kubo formulae [12,13]. However, applicability of Kubo formula in momentum conserving cases, i.e. for translationally invariant systems like model [4], is not very clear. This is particularly critical in view of a recent claim [6] that Kubo formula diverges for a momentum conserving lattice with non-vanishing pressure. For this latter type of models we have an additional difficulty in applying the Kubo formalism, namely, as we show below, the result depends not only on the temperature gradient, but also on other thermodynamic properties of the initial non-equilibrium state – i.e. the isobaric case (constant pressure profile) or the isodense case (constant density profile). There is no a-priori argument which favours either of these two options: the choice depends on the specific physical situation of interest. For instance the steady-state heat current simulation considered above (figs. 1,2) is clearly described by the isobaric state. Since we want to consider both situations we need to revise the derivation of Kubo formula by following the time evolution of a general non-equilibrium initial state in an isolated system with periodic boundary conditions $q_N = q_0 + N, p_N = p_0$. To this end, we prepare the initial state in a local-equilibrium state described by the inverse temperature profile β_n and by an additional thermodynamic potential γ_n.

$$\rho_{\text{neq}} = Z_{\text{neq}}^{-1} \exp \left(- \sum_n \beta_n h_n - \sum_n \gamma_n(q_{n+1} - q_n) \right) \tag{2}$$

![FIG. 1. Time-averaged energy current of a system of N particles between heat baths at temperatures $T_L = 1$ and $T_R = 2$ vs. the size N, at two different mass ratios $r = m_1/m_2 = (\sqrt{5} - 1)/2$ and $r = (\sqrt{5} - 1)/20$. The suggested scaling $(J) \propto N^{-\alpha}$ with $\alpha = 0.745$ is shown for comparison.](image1)

This (small) additional term is necessary in order to equilibrate the pressure in the isobaric case. Notice that γ_n is undetermined up to an arbitrary additive constant due to a gauge invariance of the second term in (4). In order to determine the gradient of the γ-potential which
is necessary to keep the physical pressure ϕ constant (n-independent), we compute the generalized pressure ϕ_t

$$\beta \phi_t = -\frac{\partial}{\partial t} \ln Z_t(a)|_{a=0},$$

(3)

$$Z_t(a) = \int e^{-\sum_n (\beta_n V(q_{n+1} - q_n + a) - \gamma_n (q_{n+1} - q_n + a))} dq$$

By a simple trick, a shift of one variable $q_t \rightarrow q_t + a$ in the integral $Z_t(a)$, we find $Z_t(a) \equiv Z_{t-1}(a)$ and therefore

$$\beta \phi_t = B_{t-1} \phi_{t-1} = \text{const.}$$

(4)

Writing the physical pressure (force) as $\phi = -\langle V'(q_{n+1} - q_n) \rangle_{\text{neq}} = \phi_n + \gamma_n / \beta_n$, multiplying by β_n, and taking the first difference $\nabla f_n := f_n - f_{n-1}$ we obtain the required ‘gradient’

$$\nabla \gamma_n = \phi \nabla \beta_n.$$

(5)

In the following we consider two specific cases: (i) The initial isodense state with $\langle q_{n+1} - q_n \rangle_{\text{neq}} = \text{const.}$ This is obtained by putting $\gamma_n \equiv 0$. (ii) The initial isobaric state with uniform pressure profile. This is obtained by specifying the γ-potential according to eq. [3]. We note again that the isobaric state (ii) is the one which is relevant for the steady non-equilibrium state of a system in contact with heat reservoirs. Carefully repeating the first few steps in the derivation of the Green-Kubo formula (following Ref. 13) we arrive at the very general linear response formula

$$\langle A(t) - A(t_0) \rangle_{\text{neq}} = \int_{t_0}^t dt' \langle A(t') \sum_n (\nabla \beta_n J_n + \nabla \gamma_n v_n) \rangle_{\text{eq}}$$

where $v_n = \dot{q}_n$ are the particles’ velocities. In the last step we have assumed that we are close to equilibrium ($\nabla \beta_n$ and $\nabla \gamma_n$ small) so that the RHS can be evaluated in the corresponding equilibrium state $\langle \rangle_{\text{eq}}$. Let us now consider the periodic temperature profile $\beta_n = \beta + \epsilon \sin(2\pi k n / N)$, and compute the total heat that has been transported in time t from warm to cold regions of the lattice, namely $Q(t) = \int_0^t dt' J_k(t)$ where $J_k := N^{-1} \sum_{n=0}^{N-1} \cos(2\pi k n / N) J_n$. Inserting Q for A and using [3] (case (i) is obtained by formally setting $\phi = 0$) we obtain

$$\langle Q(t) \rangle_{\text{neq}} = \frac{2\pi \epsilon}{N} \int_0^t dt' (t - t') \langle J_k(t) (J_k + \phi V_k) \rangle_{\text{eq}}.$$

(6)

where $V_k := N^{-1} \sum_{n=0}^{N-1} \cos(2\pi k n / N) v_n$. We see that the growth of the transported heat $\langle Q(t) \rangle_{\text{neq}}$ is given by the generalized correlation function $C_k(t) = C_{J_J(t)}(t) + \phi C_{J_V(t)}(t)$, where $C_{J_J(t)} = \langle J_k(t) J_k \rangle_{\text{eq}}$ and $C_{J_V(t)} = \langle J_k(t) V_k \rangle_{\text{eq}}$. In the isodense case (i) expression [3] reduces to the usual current autocorrelation function only.

In the case of Fourier law, we expect initial linear growth $\langle Q(t) \rangle_{\text{neq}} \approx c t$, while for the ballistic heat transport we expect quadratic growth $\langle Q(t) \rangle_{\text{neq}} \propto t^2$ (this has been confirmed numerically for the integrable gas of equal masses $r = 1$). However, in a generic system with momentum conservation and non-vanishing pressure $\phi \neq 0$, like our diatomic hard-point gas, we find qualitatively different behavior in cases (i) and (ii). For example, due to the result [3], $C_{J_J(t)}$ has a plateau $\propto \phi^2$ and the transport is ballistic in the isodense case, while in the isobaric case the second term, $C_{J_V(t)}$, compensates for the plateau and yields a much slower increase of the transported heat. In this latter case, independent numerical computations of $\langle Q(t) \rangle_{\text{neq}}$ and of $C_k(t)$ for N up to 32768 shown in fig. 3 give $\langle Q(t) \rangle_{\text{neq}} \propto t^\mu$ with $\mu \approx 1.255$, which is still clearly super-diffusive, and directly validate the formula [4].

![FIG. 3. Transported heat $Q(t)$ in an isolated system of size $N = 2048$ obtained by starting from a non-equilibrium isobaric initial state (circles) with $\epsilon = 0.2$. For comparison we show the corresponding equilibrium averaged Kubo-like expressions [3] for $N = 2048$ (dashed) and for $N = 32768$ (solid curve, multiplied by 16 to account for scaling $\langle Q(t) \rangle \propto 1/N$). The dashed-dotted line has a slope 1.255 and gives the best fit in the range $20 < t < 2000$. The corresponding data for the isodense case are shown in the inset with the ballistic slope 2.](image-url)
effect of temperature gradients so that the net effect is a sub-ballistic, but still super-diffusive, energy transport. In order to illustrate the mechanism of ballistic energy transport we show in fig. 4 the spatio-temporal current-current correlation function $c_{jj}(n, t) = \langle j_0j_n(t) \rangle_{eq}$ which exhibits clear ballistic tongues along the lines $n = \pm c_s t$ where $c_s = 1.78$.

In this paper we have discussed the thermal conducting properties of a one dimensional hard point gas with alternating masses. This problem has a long history and recently several numerical results have appeared which lead to contrasting conclusions on whether Fourier law is obeyed or not. In the latter case, different values have been found for the rate of divergence of coefficient of thermal conductivity as a function of the particles number. Indeed, the slow convergence properties which sometimes characterize this problem suggest particular care in the interpretation of numerical findings.

Here we have presented accurate numerical analysis, made possible by a powerful integration scheme, which allows us to establish definite convincing evidence that the system does not obey the Fourier law. Moreover, by considering a typical mass ratio $r = (\sqrt{5} - 1)/2$, we have found that the asymptotic scalings: (i) steady-state heat current between heat baths $\langle J \rangle \propto N^{-\alpha}$, (ii) heat transported within a non-equilibrium isobaric initial state in isolated system $\langle Q(t) \rangle \propto t^{2-\alpha}$, and (iii) generalized current-velocity correlation in equilibrium state $C_k(t) \propto t^{-\alpha}$, are described by just one exponent $\alpha = 0.745$.

This work has been partially supported by EU Contract No. HPRN-CT-1999-00163(LOCNET network) and by MURST (Prin 2000, Caos e localizzazione in Meccanica Classica e Quantistica). TP acknowledges financial support by the Ministry of Science, Education and Sport of Slovenia.

FIG. 4. The generalized time correlation function (see text) computed with canonical average at $\beta = 1$ for two system sizes $N = 1024$ and $N = 8192$ and for the zeroth $k = 0$ (dashed/solid curve) and the first $k = 1$ (thin curve) spatial Fourier mode. Note the $t^{-0.745}$ decay (dashed line) in the range $20 < t < 200$ (for $N = 8192$) whereas for longer times we see finite size effects (e.g., we have periodic oscillations for $k = 1$ due to transversals of sound waves).

FIG. 5. The spatio-temporal current-current correlation function $c_{jj}(n, t)$ at temperature $1/\beta = 1$ on a lattice of size $N = 1024$ is shown with twenty different shades of greyness spaced equidistantly from 10^{-6} to 4.0 in logarithmic scale. The zig-zag solid line indicates the peak ballistic sound-wave contribution moving with a uniform sound velocity $c_s = 1.78$.

[1] M. Toda, Phys. Rep. 18, 1 (1975); W. M. Visscher, Meth. Comput. Phys. 15, 371 (1976); R. A. MacDonald and D. H. Tsai, Phys. Rep. 46, 1 (1978); E. A. Jackson, Rocky Mountain J. of Math. 8, 127 (1978); G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev. Lett. 52, 1861 (1984); J. Ford, Phys. Rep. 213, 271 (1992).
[2] G. Casati, Foundations of Physics 16, 51 (1986).
[3] T. Prosen and M. Robnik, J. Phys A: Math. Gen. 25, 3449 (1992).
[4] S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78, 1896 (1997); S. Lepri, R. Livi, and A. Politi, Physica D 119, 140 (1998); B. Hu, B.-W. Li, and H. Zhao, Phys. Rev. E 57, 2992 (1998); D. Alonso, R. Artuso, G. Casati, and I. Guarneri, Phys. Rev. Lett. 82, 1859 (1999); C. Giardina, R. Livi, A. Politi and M. Vassalli, Phys. Rev. Lett. 84, 2144 (2000); O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381 (2000); C. Mejia-Monasterio, H. Larralde and F. Leyvraz, Phys. Rev. Lett. 86, 5417 (2001); A. Dhar, Phys. Rev. Lett. 86, 5882 (2001).
[5] T. Hatano, Phys. Rev. E 59, R1 (1999).
[6] T. Prosen and D. K. Campbell, Phys. Rev. Lett. 84, 2857 (2000).
[7] A. Dhar, Phys. Rev. Lett. 86, 3554 (2001).
[8] P.L. Garrido, P.I. Hurtado, and B. Nadrowski, Phys. Rev. Lett. 86, 5486 (2001).
[9] S. Lepri, R. Livi and A. Politi, cond-mat/0112193.
[10] G. Casati and T. Prosen, Phys. Rev. Lett. 85, 4261 (2000); see also ibid. 83, 4729 (1999).
[11] Baowen Li, G. Casati, Lei Wang and Bambi Hu, in preparation.
[12] R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
[13] W. M. Visscher, Phys. Rev. A 10, 2461 (1974).