Single-cell RNA sequencing of conditional Pten knockout neurons in mice

Marek Svoboda1, Bryan Luikart1, and Giovanni Bosco2,3

1Quantitative Biomedical Sciences Program, Geisel School of Medicine, Dartmouth College
2Molecular and Systems Biology Program, Geisel School of Medicine, Dartmouth College

PTEN is a well-known tumor suppressor whose mutations are also strongly associated with Autism Spectrum Disorder (ASD). The activity and function of PTEN in neurons have been studied extensively in various settings, whereas animal models offer the best opportunity to experimentally modify and test the role of PTEN in neuronal development in vivo. On the molecular level, PTEN’s importance in the mTOR pathway’s suppression is well-known but many other interactions have been suggested and yet others likely remain undiscovered. Therefore, to systematically explore the regulatory landscape downstream of PTEN on the genetic level, we have set out to establish a single-cell RNA sequencing (scRNA-seq) workflow to measure gene expression changes as a result of knocking out the Pten gene in vivo. We were able to collect brain tissue from four conditionally knocked out mouse samples and dissociate them into single live cells, which were subsequently flow-sorted and a scRNA-seq library was prepared. All of these steps were completed in a single day, yielding sequencing data from hundreds of cells suitable for cell clustering, cell type identification, and differential expression measurements. Having demonstrated its feasibility, this approach promises to aid hypothesis generation and discovery in mapping the function of Pten as well other genes whose regulatory networks remain to be fully defined.

Introduction
Phosphatase and TENsin homolog (PTEN) was first identified as the gene responsible for Cowden syndrome located on chromosome 10q22-23 (1). Its function was soon established as a tumor suppressor missing in endometrial carcinoma (2), glioma (3), kidney (4), breast (5), and prostate cancers (6, 7). Dominant germline PTEN mutations have been also linked to other tumor syndromes: Bannayan-Riley-Ruvalcaba syndrome (8), Proteus syndrome (9), and Proteus-like syndrome (10). Subsequently, these phenotypically heterogeneous diseases were combined under the diagnostic umbrella of PTEN Hamartoma Tumor Syndrome (PHTS) (11, 12). Soon after its discovery, mutations in PTEN were also associated with autism spectrum disorder (ASD) (13). PTEN mutations are now identified in about 10% of people with ASD and macrocephaly (14, 15), making it one of the most commonly mutated genes in these patients, which account for about 20% of all ASD cases (16). Apart from other pathogenic signs like seizures, ataxia, and Lhermitte-Duclos disease (17), macrocephaly is one of the hallmark signs of individuals carrying germline PTEN mutations, with or without PHTS, underscoring the importance of this gene in neurons, where it has been found to be important for normal function, development, and morphology (18–20) and its loss leads to their precocious differentiation, mislocation, hypertrophy, hyperexcitability, and increased survival (21–26).

Several mouse models have been created to study PTEN function. While homozygous Pten loss leads to embryonic lethality, Pten heterozygous mice have high tumor incidence (27–29). Mouse models for studying Pten’s role in neurons include its conditional knockout (cKO, Ptenflo×flox) (30), short hairpin RNA knockdown (24), and nuclear excluded Pten (PtenMM4) (31). These mice reproduce the phenotypes seen in PTEN-ASD patients including macrocephaly, seizures, and abnormal social interactions (16, 23, 32).

Thanks to these mouse models, we can study PTEN function on the cellular and molecular level. PTEN has been described as a lipid and protein phosphatase (17, 33). Its most studied function is dephosphorylation of PIP3, which results in regulation of the PI3K-Akt-mTORC1 pathway (34, 35) (Figure 1A). Accordingly, many of the Pten KO-associated changes are rescued or prevented when neurons are treated with rapamycin, an mTOR inhibitor (36). However, previous work shows that excessive microtubular (MT) polymerization, which mediates abnormal neural process formation in Pten KO neurons, is not rescued by acute rapamycin treatment (Figure 1B, 37). This suggests that PTEN exerts its regulatory activity in neurons through other pathways.

While the effects of PTEN’s lipid phosphatase activity on PIP3 have been well studied, little is known about the significance of PTEN’s protein phosphatase activity. PTEN protein phosphatase has been suggested to regulate cell migration through focal adhesion kinase (FAK) (38) and Shc (39) in glioblastoma (GBM), neural stem cell differentiation through cyclic AMP response element-binding (CREB) protein (26, 40) (Figure 1A), neuronal spine density (41) and tumor suppression of GBM (42) by autodephosphorylation, and cell metabolism through insulin receptor substrate-1 (IRS-1) (43).

Additionally, interactions with other genes seem to be of great importance for the penetrance of PTEN-associated pathology. For example, males are four times more likely than females to be diagnosed with ASD (45, 46) and similar pattern is found in Pten-specific cases (13, 47, 48). In mice, behavioral deficits in both Pten haploinsufficient (32) and cytoplasm-predominant (49) models are sex-specific as well. Similarly, penetrance of Pten haploinsufficiency-associated tumors depends on genetic background (50). Nuclear localization of PTEN (51) and its interactions with mul-

Correspondence: Giovanni.Bosco@Dartmouth.edu
tiple targets (38, 40) indicate it may have indirect effects on transcriptional regulation. Taken together, these studies strongly suggest important interactions between PTEN and other genes crucial for ASD and other pathologies, whose molecular mechanisms are yet to be elucidated.

Despite the abundant evidence that PTEN interacts with other proteins and genes, our knowledge of PTEN’s causal involvement in neural disease phenotypes is lacking. Only a systematic investigation of PTEN’s regulatory effects accounting for their diversity and temporal dynamics can ensure that we obtain a complete picture of its downstream mediators and hence potential pharmacological targets. Therefore, we developed a single-cell RNA sequencing (scRNA-seq) protocol to measure gene expression in a conditional knockout (cKO) Pten mouse model of autism to study transcriptional states during neuronal development in vivo (52). This approach will allow us to analyze the resulting data using a variety of computational methods, such as differential expression (DE), cell clustering, cell type assignment, and pseudotemporal ordering (Figure 1C), to identify the cell states present in PTEN-associated ASD and the regulatory pathways downstream of PTEN through which they arise. To our knowledge, scRNA-seq has not been previously used to study transcriptomic changes in selectively Pten-disrupted cells.

Results

Infection and collection of Pten conditional knockout mouse neurons developed in vivo

We used homozygous Pten conditional knockout (cKO) mice, in which Pten gene exons 4 and 5 were flanked by loxP sequences (Pten flox/flox, Figure 1D) (30). This portion of Pten, encoding the core phosphatase motif, is excised in

![Figure 1A](image1.png)

Figure 1. Identification of novel Pten-dependent pathways using scRNA-seq.

A. Neuronal pathways regulated by PTEN lipid and protein phosphatase activity. While the effects of PTEN's lipid phosphatase activity on the mTORC1 pathway have been well studied, little is known about the significance of PTEN's protein phosphatase activity. It has been suggested to regulate cell migration through focal adhesion kinase (FAK) and neural stem cell differentiation through cyclic AMP response element-binding (CREB) protein (40).

B. Acute rapamycin treatment ("RAPA +") does not correct the microtubular polymerization rate in Pten KO ("PTEN -") neurons. Graphical representation of data published by Getz et al. (37).

C. The expected outcome of pseudotemporal ordering of individual cells using the Monocle 2 (44) algorithm. Pten KO neurons are expected to deviate from Control neurons’ developmental trajectory of ordered cell states.

D. Flowchart outlining the experimental design: mice are injected with retroviral particles containing either pRubiG (GFP) or pRubiC-T2A-Cre (mCherry and Cre separated by a self-cleaving peptide, T2A) around post-natal day 7 (P7). Cells are collected 28 days post-injection (28 DPI), dissociated, and enriched for GFP+ (control) or mCherry+ (KO) cells before scRNA-seq and subsequent computational analysis.
the presence of Cre, resulting in \textit{Pten} KO. We targeted hippocampal dentate gyrus (DG), which is one of the structures impaired in ASD (53) and whose continued neurogenesis into adulthood (in both mice and humans) facilitates study of neuronal development and makes it a potential candidate for future treatment targeting. DG in these mice was therefore injected on post-natal day 7 with retroviral particles, which selectively target dividing cells. These particles carried either Cre and mCherry (KO) or only GFP (control). This strategy allows for precise control over the cell population and timing of the KO. Brain tissue was subsequently collected 28 days post injection, eclipsing the peak neurogenesis in mouse hippocampus (54) and allowing any morphological changes to take place after \textit{Pten} KO (25).

The collected brain tissue was subsequently separated into single cells through gentle dissociation. We optimized the timing of this process through several iterations to be able to process up to four samples in a single day to minimize any batch effects and at the same time, to maximize the number of surviving cells for each sample. The following samples were collected: a GFP+ male control (M\textsubscript{GFP}), a Cre-mCherry+ male KO (M\textsubscript{mCherry-Cre}), a GFP+ female control (F\textsubscript{GFP}), and a Cre-mCherry+ female KO (F\textsubscript{mCherry-Cre}). All samples had to be staggered while being processed during each precisely timed individual step to ensure that all the steps starting with tissue collection of \textit{in vivo} neurons up to single-cell RNA library preparation could be carried out in a single day. Keeping the timing at a minimum aimed to limit the effect of handling on the final measurement of gene expression in the live neurons.

Cell sorting through flow cytometry

The dissociated cells were then subjected to fluorescence-activated cell sorting (FACS) using the appropriate lasers and gating parameters to select only those single cells (i.e. singlets) that survived the extraction and dissociation process described above (i.e. low DAPI) and had been fluorescently labeled \textit{in vivo} (GFP or mCherry positive for the control or KO cells, respectively).

Aiming to extract as many live neurons as possible, we were able to dissociate about 1,000,000 cells from each of the four samples studied. Cells in each sample were then sorted based on four sequential gates in the following combinations of parameters, which were consistent across all samples: FSC (forward scatter) -A (area) vs. SSC (side scatter) -A, which yielded between 11 – 15.6% of all cells; FSC-H (height) vs. FSC-W (width), which yielded 96.7 – 99.6% of the remaining cells; SSC-H vs. SSC-W, which yielded 95.6 – 98.5% of the remaining cells; and GFP (green fluorescent protein) -A vs. DAPI-A, through which only 0.8 – 1.7% of the remaining cells were selected (Table 1 and Figure 2). This resulted in only 0.1 – 0.3% of the total number of cells having been positively selected by FACS, yielding approximately between 1,000 – 3,000 of the original about 1,000,000 total cells sorted per sample.

Table 1. Proportions of cells filtered by FACS in sample 2F_GFP

Population	#Cells	%Parent	%Total
All Events	10,000	NA	100.0
P1 (FSC-A vs. SSC-A)	1,559	15.6	15.6
P2 (FSC-H vs. FSC-W)	1,541	98.8	15.4
P3 (SSC-H vs. SSC-W)	1,513	98.2	15.1
P4 (GFP-A vs. DAPI-A)	26	1.7	0.3

Table showing the numbers and relative (%Parent) and absolute (%Total) proportions of cells selected by each subsequent FACS gate in a sub-sample of 10,000 cells, as shown in Figure 2.

Single cell RNA sequencing quality control filtering

The flow-sorted cells were then used for single-cell RNA library preparation using the standard 10X Genomics Chromium protocol followed by next-generation sequencing. Sequencing reads were subsequently decomplexed and aligned to the mouse genome, yielding a gene-cell matrix for each sample. The final number of cells detected by single-cell RNA sequencing (scRNA-seq) per sample ranged between 314 – 640, the mean number of sequencing reads per cell was between 143,802 – 329,980, and the median number of genes detected per cell was between 27 – 2,198 (Table 2). Based on the significantly lower median numbers of genes detected per cell, the samples from the female mice were determined to be of insufficient quality and were not included in the subsequent analyses.

As is customary in scRNA-seq data analysis (55), the cells were further filtered based on the metrics discussed above, as well as the content of mitochondrial genes detected (Figure 3A). Because too few genes per cell are usually associated with low cell quality or background measurement and too many genes per cell suggest the presence of doublets, we removed cells that contained less than 200 or more than 5,000 genes (Figure 3B). Similarly, cells with an excessively high proportion of mitochondrial genes suggest loss of mitochondrial integrity associated with cell death and therefore contamination secondary to cell membrane disruption. Hence, cells that contained more than 20% mitochondrial genes were also removed. After this quality control (QC) filtering step, 193 control and 240 KO cells from the male samples were left in the dataset.

Cell clustering and gene expression patterns detected

Clustering analysis of the \textit{Pten} KO (n = 240) and control (n = 193) neurons from the male mice showed significant overlap between \textit{Pten} KO and control cell populations, suggesting that transcriptome of some cells did not change significance.
cantly after Pten KO (Figure 3A). Notably, however, each of
the two experimental groups also exhibited a transcription-
ally unique cell population not found in the other group, sug-
gest a detectable effect associated with knocking out of
Pten in a subset of cells. Namely, the control sample con-
tained a cluster of neuroepithelial cells not found in the KO
sample and, similarly, the KO sample contained one cluster
of neuroepithelial cells and one cluster of neurons not found
in the control sample (Figure 3B). Knockout of Pten during
neuronal development may therefore lead to a change in the
cell differentiation process, whereby the transcriptional state
of some neuroepithelial cells (i.e., the neural stem cells) is
altered and may also lead to the development of neurons with
an abnormal transcriptional profile.

Gm47283 and Plp1 were the top two most significantly
differentially expressed genes between the control and KO
samples in both neurons and neuroepithelial cells, followed
by Osm and Itm2a in these cell types, respectively (Figure
3C). The Plp1 gene, which is X-linked and encodes for the
proteolipid protein integral to myelin formation (56), was
most highly expressed in the neuronal cluster specific to the
control sample (Figure 3D). Conversely, the Itm2a gene,
which encodes for Integral membrane protein 2A shown to
be important in chondro-osteogenic and myogenic differen-
tiation (57), was most highly expressed in the two clusters
specific to the KO sample. It is also notable that the gene that
was one of the most differentially expressed genes in neurons
but not in neuroepithelial cells, Osm, encodes the Oncostatin
M protein, which has been found to suppress the growth of
several oncogenic cell lines (58), activity comparable to that
of the tumor suppressor PTEN. The Pten gene was not de-
tected as differentially expressed between the control and KO
samples in any of the cell types detected, nor among all the
cells overall.
Figure 3. Quality control (QC) measurements of the male samples.

A. Violin plots of the number of genes, total number of RNA reads, and percentage of mitochondrial genes per cell in each sample. Samples depicted: 1M_GFP (control - green) and 5M_mCherry (KO - orange).

B. Plots of the number of genes vs. percentage of mitochondrial genes per cell in each of the samples. Cells enclosed in the gray boxes are those that passed the QC filtering - i.e., containing between 200-5,000 genes and less than 20% of mitochondrial genes detected. The colors are the same as in A. - left: control; right: KO.

Discussion

As the role of PTEN in neurons remains to be elucidated on the molecular level, in this study, we have developed an unbiased approach to explore the regulatory pathways downstream of PTEN in vivo and demonstrated the feasibility to collect up to four samples in a single day using this protocol. Specifically, we explored the KO-induced cellular changes using scRNA-seq to capture the alterations in transcriptional states during neuronal development. To our knowledge, Pten mutations in neurons have not been previously studied using scRNA-seq.

We have identified an absence of a specific subset of neuroepithelial cells and the emergence of a different group of neuroepithelial cells as well as neurons as a result of knocking out Pten. We have also detected genes that were differentially expressed between the samples, some of which were specific to neurons. This data underscores the importance of the scRNA-seq approach, as these differences were only found in a subset of cells and would likely be blunted or completely lost using bulk RNA-seq technology.

Additional scRNA-seq experiments will be necessary to optimize this technique and obtain data from enough cells that pass the downstream quality control (QC) checks for further analyses. One of the potential issues of this study is that Pten was not differentially expressed between the samples, as would be expected from its targeted knockout. While the introduction of Cre has been previously shown to significantly decrease the amount of PTEN protein in the cells from the mouse model used (25), it is conceivable that the amount of Pten mRNA transcripts is not significantly altered by the excision of the gene’s exons 4 and 5, which would explain the lack of its differential expression on the transcriptomic level. It is possible, however, that instead, the cells analyzed by scRNA-seq in the KO sample did not exhibit the intended suppression of PTEN expression, which might have occurred in several ways.

One of the most significant problems encountered during the tissue preparation for scRNA-seq was the noted faintness of the expressed fluorophores (GFP and mCherry). It is known that the endogenously expressed fluorophores, secondary to the in vivo retroviral infection of neurons, are relatively lowly luminescent and are therefore often amplified by immunohistochemistry in the in vitro microscopy experiments in our laboratory. During FACS sorting, a bimodal distribution of luminescence would be expected, clearly distinguishing the distinctly luminescent cells from those that do not contain the fluorophore, which was not observed during our experiment’s FACS sorting (Figure 2, gate P4).

Additionally, we were unable to detect Cre in the KO sample as an internal control of a successful viral construct infection and expression. This was most likely because the viral construct used lacks a poly(A) signal, the addition of which would enable the detection of Cre in the sequencing data from future experiments.
We also suspect that the low cell yields between cell dissociation and scRNA-seq preparation were caused by excessive cell death. Cell dissociation of live neurons, which possess numerous processes, is notoriously more problematic than that of regularly shaped cells or those that are less tightly interconnected with their milieu. It is therefore common to extract neuronal nuclei instead, which has several advantages (59). Neuronal dissociation is rendered faster, as it does not require excessive care to maintain the cell membrane integrity to keep cells alive and the nuclear membrane itself is more sturdy. Additionally, nuclei can be readily dissociated from frozen tissue, dispensing with the necessity to synchronize the tissue collection for all samples destined for the same scRNA-seq batch into a single day. In combination with a histone-associated eGFP mouse line, where the fluorophore is highly concentrated in the cell nuclei (60), snRNA-seq is therefore likely the best next step in the future iterations of this approach. Additionally, using the same fluorophore (i.e.,
eGFP) in both the control and KO cells would further standardize the cell sorting process. The improvements outlined above have the potential to further optimize this innovative approach to therapeutic target discovery by mapping transcriptional pathways associated with a complex neural disease, applicable to the study of genes beyond Pten.

Methods

Mouse Pten cKO and tissue collection

Dentate gyrus (DG) of Pten^floxfloxs^ mice was injected with retroviral particles carrying either GFP or mCherry-Cre constructs on post-natal day 7 as described by Williams et al. (25). The tissue was then collected 28 days post-injection, as described by Tasic et al. (61). Briefly, individual mice were anesthetized with 2% tribromoethanol (Avertin), perfused with artificial cerebrospinal fluid (ACSF), decapitated, and the brain was immediately removed and submerged in fresh ice-cold ACSF bubbled with carbogen gas (95% O₂ and 5% CO₂). The brain was sectioned on vibratome on ice, and each slice (300 µm) was immediately transferred to an ACSF bath at room temperature. DG was then microdissected under a microscope, and the slices after the dissection were visualized under a confocal microscope to verify the presence of the respective fluorophores. Subsequently, the cell dissociation protocol was carried out using the Papain Dissociation System (Worthington, LK003150), following the manufacturer’s protocol. The dissociation protocol was optimized to yield at least 80% viable cells, as determined using Trypan Blue.

Flow cytometry and single-cell RNA sequencing

Single cells were isolated by fluorescence-activated cell sorting (FACS) on FACSAria III cell sorter using a 70 µm nozzle, sorting at 70 psi, in single-cell sorting mode, into phosphate-buffered saline (PBS) and stored on ice. To exclude dead cells, DAPI was added to the single-cell suspension to a final concentration of 2 ng/ml and FACS populations were chosen to select single cells with low DAPI (using the 405 nm laser) and high GFP (488 nm laser) or mCherry (561 nm laser) signal. The accuracy of sorting was confirmed by visually observing DAPI staining in the sorted cells. Sorted cells were then processed by the 10X Genomics Chromium workflow for scRNA-seq library construction and subsequently sequenced on Illumina NextSeq 500 sequencer.

Data analysis

The sequencing files were decompressed and reads were aligned to the mm10 v3.0.0 Cell Ranger mouse reference genome using Cell Ranger v3.1 software. Subsequent data analysis was carried out in R using the Seurat package v4.0.5 (62). Only features detected in at least three cells were included as were only cells containing between 200 – 5,000 genes total and no more than 20% mitochondrial genes. The data was subsequently normalized using regularized negative binomial regression (63). Cell types were detected with the python package ScNym (64), using an adversarial neural network model trained on TabulaMuris brain tissue data (65).

Acknowledgements

This research was supported by Bakala Foundation (M.S.), Rosaline Borison Memorial Fund (M.S.), Burroughs Wellcome Fund - Big Data in the Life Sciences Training Program at Dartmouth (M.S.), National Institutes of Health: DP1MH110234 (G.B.), Geisel School of Medicine at Dartmouth (G.B.). This article was written using the HenriquesLab bioRxiv template.

Bibliography

1. M. R. Nelen, G. W. Padberg, E. A. J. Peeters, A. Y. Lin, B. Van Den Helm, R. R. Frants, V. Coulon, A. M. Goldstein, M. M. M. Van Reen, D. F. Easton, R. A. Eeles, S. Hodgson, J. J. Mulvihill, V. A. Murray, M. A. Tucker, E. C. M. Mariman, T. M. Starink, B. A. J. Pondner, H. H. Ropers, H. Kremer, M. Longy, and C. Eng. Localization of the gene for Cowden disease to chromosome 10q22-23. *Nature Genetics*, 13(1):114–116, may 1996. ISBN 10614036. doi:10.1038/ng0596-114.

2. Dehe Kong, Akihiko Suzuki, Tong Tong Zou, Akira Sakurada, Lawrence W. Kemp, Shigeru Wakatsuki, Tadaaki Yokoyama, Hiromitsu Yamakawa, Toru Furukawa, Masami Sato, Noriaki Ohuchi, Shintaro Jing, Yin Suna, Wang John M. Abraham, Rhonda F. Souza, Kara N. Smolinski, Stephen J. Meltzer, and Akira Horii. Pten is frequently mutated in primary endome-trial carcinomas. *Nature Genetics*, 17(2):144, oct 1997. ISBN 15461718. doi:10.1038/ng097-143.

3. Jorge A. Benitez, Jianhui Ma, Matteo D’Antonio, Antonia Boyer, Maria Fern- nada Camargo, Ciro Zanca, Stephen Kelly, Alireza Khodadadi-Jamayran, Nathan M. Jameson, Michael Andersen, Hrvoje Miletic, Shahram Saberi, Kelly A. Frazer, Webster K. Cavenee, and Frank B. Furnari. Pten regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. *Communications*, 8:15223, may 2017. ISBN 20441723. doi:10.1038/s41593-017-05223.

4. Peter A. Steck, Mark A. Pershouse, Samar A. Jasser, W. K. Alfred Yung, Hui Lin, Azra H. Ligon, Lauren A. Langford, Michelle L. Baumgard, Thomas Hat- ter, Thaylon Davis, Cheryl Frye, Rong Hu, Bradley Swedlund, David H.F. Teng, and Scan V. Taviligan. Identification of a candidate tumour suppres- sor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple ad- vanced cancers. *Nature Genetics*, 15(4):356–362, apr 1997. ISBN 10614036. doi:10.1038/ng0497-356.

5. Natalie Jones, Françoise Bonnet, Sana Star, Marie Lafitte, Delfine Lafon, Ghis- laine Sierankowski, Véronique Brouste, Guillaume Banneau, Christine Tunon De Lara, Marc Debled, Gaëtan MacGrogan, Michel Longy, and Nicolas Sev- enet. Comprehensive analysis of Pten status in breast carcinomas. *In- ternational Journal of Cancer*, 133(2):323–334, jul 2013. ISSN 00207136. doi:10.1002/ijc.28201.

6. J Li, C Yen, D Liaw, K Podosypina, S Bose, S I Wang, J Puc, C Miliaris, L Rodgers, R McCombie, S H Bigner, B C Giovanella, M Ittmann, B Tycko, H Hilshoosh, M H Wiger, and R Parsons. PTEN, a putative protein tyro- sine phosphatase gene mutated in human brain, breast, and prostate cancer. *Science (New York, N.Y.)*, 275(5308):1943–7, mar 1997. ISBN 0036-8075. doi:10.1126/science.275.5308.1943.

7. Jeffrey A. Engelman, Ji Luo, and Lewis C. Cantley. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. *Nature Reviews Genetics*, 7(6):606–619, aug 2006. ISSN 14710056. doi:10.1038/ng1879.

8. Debbie J. Marsh, Patricia L.M. Dahlia, Zimu Zhang, Danny Liaw, Ramon Parsons, Robert J. Gorlin, and Charis Eng. Germline mutations in pten are present in bannayan-zonana syndrome. *Nature Genetics*, 9(5):765–8, 2000.

9. Z.-N. Wang, J. H. Abraham, R. J. Gorlin, and C. Eng. Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malforma- tions and lipomatosis. *Human Molecular Genetics*, 9(5):765–8, 2000.

10. X. P. Zhou, D. J. Marsh, H. Hampel, J. B. Mulliken, O. Gimm, and C. Eng. Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malforma- tions and lipomatosis. *Human Molecular Genetics*, 9(5):765–8, 2000.

11. Debbie J. Marsh, Jennifer B. Kum, Kathryn L. Lunetta, Michael J. Bennett, Robert J. Gorlin, S. Faisal Ahmed, Joann Bodurtha, Carol Crowe, Mary A. Cur- tis, Majed Dasouki, Teresa Dunn, Howard Feit, Michael T. Geraghty, John M. Graham, Shirley V. Hodgson, Alasdair Hunter, Bruce R. Korf, David Manch- ester, Susan Mesefield, Victoria A. Murray, Katherine L. Nathanson, Melissa Parisi, Barbara Pober, Corrado Romano, John L. Tolmie, Richard Trembath, Robin M. Winter, Elaine H. Zackai, Roberto T. Zori, Liang Ping Feng, Pa- tricia L.M. Dahlia, and Charis Eng. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a sin-

Svoboda et al. | Pten cKO scRNA-seq
gle entity with Cowden syndrome. Human Molecular Genetics, 8(8):1461–
1472, 1999. ISSN 09646906. doi:10.1093/hmg/8.8.1461.

12. Charis Eng. PTEN: One gene, Many syndromes. Human Mutation, 22(3):
183–198, sep 2003. ISSN 10997794. doi:10.1097/01.hmu.10257.

13. Roberto T. Zori, Debbie J. Marsh, Gail E. Graham, Errol B. Marliess, and Charis Eng. Germine PTEN mutation in a family with Cowden syndrome and Bannayan-Riley-Ruvalcaba Syndrome. American Journal of Medical Genetics, 80(4):398–402, dec 1998. ISSN 0148-7299. doi:10.1002/(SICI)1096-8628(19981204)80:4<398::AID-AJMG1>3.0.CO;2-O.

14. Claudia Perandones, Roxana Verónica Costanzo, Valeria Kowaljow, Omar Hi-
nario Pivetta, Hector Carminatti, and Martín Radrizzani. Correlation between synaptogenesis and the PTEN phosphatase expression in dendrites during postnatal brain development. Molecular Brain Research, 128(1–8): 19–29, may 2005. ISSN 0169-816X. doi:10.1016/j.mbr.2004.12.009.

15. Elizabeth A. Varga, Matthew Pastore, Thomas Prior, Gail E. Herman, and Kim L. McBride. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macro-
cephaly. Genetics in Medicine, 11(2):111–117, feb 2009. ISSN 10939800.

16. Amy E. Clippeen-Allen and Damon T. Page. PTEN haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behav-
ioral tests. Human Molecular Genetics, 23(13):3490–3505, jul 2014. ISSN 14620208. doi:10.1093/hmg/ddu057.

17. Tomohiko Maehama and Jack E. Dixon. The tumor suppressor, PTEN /
MMAC1, dephosphorylates the lipid second messenger, phosphorylatedinositol 3,4,5-trisphosphate. Journal of Biological Chemistry, 273(22):13373–13378, may 1998. ISSN 0022-7184. doi:10.1074/jbc.273.22.13373.

18. Vuk Stambolic, Akira Suzuki, José Luis de la Pompa, Greg M Brothers, Chris-
tine Mirtsos, Takehiko Sasaki, Jungen Rulof, Joseph M Penninger, David P
Siderovski, and Tak W. Mak. Negative Regulation of PKB/Akt-Dependent Cell
Survival by the Tumor Suppressor PTEN. Cell, 95(1):29–39, oct 1998. ISSN 0092-8674. doi:10.1016/0092-8674(98)00178-0.

19. Sandy Julodo, Marlen S. Neshat, Young E. Whang, and Charles L. Sawyers. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proceedings of the National Academy of Sciences, 95(25):15587–15591, dec 1998. ISSN 0027-8424. doi:10.1073/pnas.95.25.15587.

20. Priyanka Tibarewal, Georgios Zilidis, Laura Spinelli, Nick Schurch, Helene
yin. CREB is a novel nuclear target of PTEN phosphatase. Molecular Brain Research, 17(3):377–388, may 2006. ISSN 0169-816X. doi:10.1016/j.mbr.2005.04.021.

21. Chang-Hyuk Kwon, Xiaoyan Zhu, Junyuan Zhang, Lori L. Knoop, Ruby Tharp,
Marek Mlodzik, Chang-Hyuk Kwon, Bryan W. Luikart, Craig M. Powell, Jing Zhou, Sharon A. B. W. Luikart, E. Schnell, E. K. Washburn, A. L. Bensen, K. R. Tovar, and G. L. Westbrook. PTEN Knockdown In Vivo Increases Excitatory Drive onto Dentate
Granule Cells. Journal of Neuroscience, 31(13):4435–4435, mar 2011. ISSN 0270-6744. doi:10.1523/JNEUROSCI.2820-09.2012.

22. Matthias Groszer, Rebecca Erickson, Deirdre D Scripture-adams, Ralf Lesche,
Charles L. Sawyers. PTEN regulates dendritic arborization by decreasing Microtubule Polymerization. Nature Neuroscience, 42 (10):1945–1957, mar 2022. ISSN 02614189. doi:10.1038/s41596-022-01116-x.

23. Jennifer Hong, and Bryan W. Luikart. PTEN Regulates Dendritic Arborization by Decreasing Microtubule Polymerization. Nature Neuroscience, 280(5369):1614–7, jun 1998. ISSN 08966273. doi:10.1038/3962.0092-8674. doi:10.1016/s0092-8674(00)01780-8.

24. J Gu, M Tamura, R Pankov, E H Danen, T Takino, K Matsumoto, and K M Y amada. Inhi-
bition of cell migration, spreading, and focal adhesions by tumor suppressor
protein phosphatase activity of PTEN is essential for regulating neural stem
cell differentiation. Molecular Brain, 8(1):26, apr 2015. ISSN 17566606.

25. J Gu, M Tamura, R Pankov, E H Danen, T Takino, K Matsumoto, and K M Y amada. T Cell-Specific Loss of Pten Leads to Defects in Central and Peripheral Tolerance. Proceedings of the National Academy of Sciences, 96(24):14602083. doi:10.1523/JNEUROSCI.0061-11.2011.

26. Xiaoqun Catherine Zhang, Antonella Piccini, Michael P. Myers, Linda Van
Aelst, and Nicholas K. Tonks. Functional analysis of the protein phosphatase
activity with germline PTEN mutations and of brain weight in Pten knock-in murine
model. European Journal of Human Genetics, 19(7):763–768, jul 2011. ISSN 10184813. doi:10.1038/ejhg.2011.22.

27. Stephanie A. Getz, Kamran Tariq, Dylan H. Marchand, Conor R. Dickson,
James R. Howe Vi, Patrick D. Skelton, Wei Wang, Mei-Jie Li, Jeremy M. Barry,
Jennifer Hong, and Bryan W. Luikart. PTEN Regulates Dendritic Arborization
bypoietin-like cytokine 3 (PLXCN3). Journal of Neuroscience, 289(4):398–403, dec 2008. ISSN 08966273. doi:10.1523/JNEUROSCI.0061-11.2011.

28. Akira Suzuki, José Luis de la Pompa, Vuk Stambolic, Andrew J. Ella, Takehiko
Sasaki, Iván del Barco Barrantes, Alexandre H. Ho, Andrew Wakeham, Annick
Lite, Wilson Kho, Manabu Fukumoto, and Tak W. Mak. High cancer sus-
ceptibility and embryonic lethality associated with mutation of the PTEN tumor
suppressor gene in mice. Current Biology, 8(21):1169–1178, oct 1998. ISSN 0960-9822. doi:10.1016/S0960-9822(07)00498-5.

29. K Podosypina, L H Ellison, A Nemes, J Gu, M Tamura, K M Yamada, C Cordon-Cardo, G Catoretti, P E Fisher, and R Parsons. Mutation of Pten/MMac1 in mice causes neoplasia in multiple organ systems. Proceed-
ing of the National Academy of Sciences of the United States of America,
104(8):3520–3525, aug 2007. ISSN 0027-8424. doi:10.1073/pnas.0607341104.

30. Akira Suzuki, Manae Tsukio Yamaguchi, Toshiaki Ohteki, Takehiko Sasaki,
Tsuneya Kaiso, Yuki Kimura, Ritsuko Yoshida, Andrew Wakeham, Tetsuya
Higuchi, Manabu Fukumoto, Takeshi Tsubata, Pamela S Chashi, Shigeo Kyoz-
sou, Josef M Penninger, Toru Nakano, and Tak W Mak. T Cell-Specific Loss of Pten Leads to Defects in Central and Peripheral Tolerance. Immunity, 14(5):
525–535, may 2001. ISSN 1074-7613. doi:10.1016/S1074-7613(01)00313-0.

31. Jessica L. Mester, Amanda K. Tilot, Lisa A. Rybicki, Thomas W. Frazier, and
Charis Eng. Analysis of prevalence and degree of macrocephaly in patients
with germline PTEN mutations and of brain weight in Pten knock-in murine
model. European Journal of Human Genetics, 19(7):763–768, jul 2011. ISSN 10184813. doi:10.1038/ejhg.2011.22.

32. Amy E. Clippeen-Allen and Damon T. Page. PTEN haploinsufficient mice show
broad brain overgrowth but selective impairments in autism-relevant behav-
ioral tests. Human Molecular Genetics, 23(13):3490–3505, jul 2014. ISSN 14620208. doi:10.1093/hmg/ddu057.

33. Ankeo Qu, Qiao M, Ying Tang. Li Wang, Raghav Chawla, Hannah A. Pliner, and
Cole Trapnell. Reversed graph embedding resolves complex single-
cell trajectories. Nature Methods, 14(10):979–982, 2017. ISSN 15487105.
Hidenori Ito, Rika Morishita, and Koh-ichi Nagata. Autism spectrum disorder—
Samah Ayoub, Benedikt Obermayer, F. Alexander Wolf, Christine Kocks, Aris-
Ji Hyun Chung, Margaret E. Ginn-Pease, and Charis Eng. Phosphatase
Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
Serena Grossi, Stefano Regis, Roberta Biancheri, Matthew Mort, Susanna
Tomislav Ilicic, Jong Kyoung Kim, Aleksandra A. Kolodziejczyk, Frederik Otzen
Fiorenza Stagni, Andrea Giacomini, Sandra Guidi, Elisabetta Ciani, and Re-
Emily Hansen-Kiss, Sarah Beinkampen, Brent Adler, Thomas Frazier, Thomas
Cefan Zhou, Ming Wang, Jing Yang, Hui Xiong, Yefu Wang, and Jingfeng Tang.
Aleide Goffin, Lies H. Hoefsloot, Ermanno Bosgoed, Ann Swillen, and
Svoboda et al.

53. Hidenori Ito, Rika Morishita, and Koh-ichi Nagata. Autism spectrum disorder—
52. Salah Ayoub, Benedikt Obermayer, F. Alexander Wolf, Christine Kocks, Aris-
51. Ji Hyun Chung, Margaret E. Ginn-Pease, and Charis Eng. Phosphatase
50. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
48. Emily Hansen-Kiss, Sarah Beinkampen, Brent Adler, Thomas Frazier, Thomas
45. Sebastien Jacquemont, Bradley P. Cое, Michaèle Hersch, Michael H. Duyszend,
43. Jon Bao, Lisa Wiggins, Deborah L. Christensen, Matthew J Maenner, Julie
42. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
41. Yi Zhang, Yizhuo Liu, Congguo Zhang, Wei Zheng, Andrew Butler, Maddie
40. Partha Samadder, Ning Weng, Thomas Doetschman, Roland L. Heimark, and
39. Jacob C. Kimmel and David R. Kelley. Semisupervised adversarial neural net-
38. Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauk, Miao-
37. Cefan Zhou, Ming Wang, Jing Yang, Hui Xiong, Yefu Wang, and Jingfeng Tang.
36. The Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs
35. Trygve E. Bakken, Rebecca D. Hodge, Jeremy A. Miller, Zizhen Yao, Thuc Nghi
34. Tomislav Ilicic, Jong Kyoung Kim, Aleksandra A. Kolodziejczyk, Frederik Otzen
33. Fiorenza Stagni, Andrea Giacomini, Sandra Guidi, Elisabetta Ciani, and Re-
32. John D. Franzen, Fabian J. Theis. Cell type atlas and lineage tree of a whole complex ani-
31. Amanda K. Tilot, Mary K. Gaugler, Qi Yu, Todd Romigh, Wanqiu Yu, Robert H.
30. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
29. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
28. Salah Ayoub, Benedikt Obermayer, F. Alexander Wolf, Christine Kocks, Aris-
27. John D. Franzen, Fabian J. Theis. Cell type atlas and lineage tree of a whole complex ani-
26. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
25. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
24. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
23. Dan Freeman, Ralf Lesche, Nathalie Kertesz, Shungyou Wang, Gang Li,
22. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
21. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
20. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
19. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
18. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
17. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
16. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
15. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
14. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
13. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
12. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
11. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
10. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
9. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
8. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
7. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
6. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
5. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
4. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
3. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
2. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.
1. Don Bradley, Michael Young, Jonathan W. Sprague, Mike Bowser, John N.