In silico identification of novel chemical compounds with anti-TB potential for the inhibition of InhA and EthR from Mycobacterium tuberculosis

Sajal Kumar Halder*, Fatiha Elma

Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.

*Corresponding author

Sajal Kumar Halder

Department of Biochemistry and Molecular Biology,
Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
Email: sajal.ju45@gmail.com

Fatiha Elma

Department of Biochemistry and Molecular Biology,
Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
Email: fatihaelma6310@gmail.com
ABSTRACT

Tuberculosis (TB) continuously pose a major public health concern around the globe, with a mounting death toll of approximately 1.4 million in 2019. The reduced bioavailability, increased toxicity and resistance of several first-line and second-line anti-TB drugs such as isoniazid, ethionamide have necessitated the search for new medications. In this research, we have identified several novel chemical compounds with anti-TB properties using various computational tools like molecular docking analysis, drug-likeness evaluation, ADMET profiling, P450 site of metabolism prediction and molecular dynamics simulation study. This study involves fifty drug-like compounds with antibacterial activity that inhibit InhA and EthR involved in the synthesis of one of the major lipid components, mycolic acid, which is crucial for the viability of *Mycobacterium tuberculosis*. Among these fifty compounds, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were found to pass the two-step molecular docking, P450 site of metabolism prediction and pharmacokinetics filtering analysis successfully. Their binding stability for target proteins have been evaluated through RMSD, RMSF, Radius of gyration analysis from 10 ns Molecular Dynamics Simulation (MDS) run. Our identified drugs could be a capable therapeutic for Tuberculosis drug discovery, having said that more in vitro and in vivo testing is required to justify their potential as novel drug and mode of action.

Keywords: Tuberculosis (TB), Drug-likeness, ADMET analysis, Molecular docking and Molecular dynamics simulations, Drug discovery
1. **INTRODUCTION**

Tuberculosis (TB) is a transmissible disease brought about by *Mycobacterium tuberculosis* (Mtb), which brings severe damage to lungs (pulmonary TB), along with other regions of the body, i.e. brain, spinal cord, lymph node, abdomen, bones/joints, intestinal and genitourinary system (extra pulmonary TB) [1, 2, 3]. Active TB symptoms depends on the severity of spread, generally some of clinical features are: persistent coughing more than 3 weeks, bloody sputum (hemoptysis), chest pain, fever, fatigue/weakness, weight loss, anorexia, breathlessness etc. The person with latent tuberculosis infection (LTBI) presents no symptoms and cannot transmit Mtb to others, but may develop active TB [4]. WHO recommended a standard 6-month administrative treatment for active, pulmonary, and pharmaco-sensitive TB with different combinations of four first-line medications: isoniazid, rifampin, ethambutol and pyrazinamide as bases for treatment [2, 7]. Although TB is a treatable infection, the massive emergence of resistance to antibiotics makes it a global threat. The classes of resistance that are becoming more and more prevalent includes (i) RR-TB, resistance to the first line drug rifampin only (ii) MDR-TB or multidrug resistance TB defines as the resistance towards at least two first line drugs, isoniazid and rifampin (iii) XDR-TB or extensively drug resistance TB defines as MDR-TB combined with resistance to a minimum of one drug from every of the two classes of second-line drugs (fluoroquinolones and injectables) and (iv) TDR-TB or totally drug resistance defines as the resistance to more drugs than strains categorized as XDR-TB [5,6].

It is undeniable that, the world needs new drugs to improve current treatment of TB to get around the escalation of drug-resistance. Therefore, our in-silico approach seeks to offset the burden of existing drug resistance scenarios of through exploration of new drugs performance. As a part of
the experiment, a total fifty drug-like compounds were collected to assess their effectiveness in the treatment of TB and clinical management. Our experiment proceeded through evaluating binding affinity of fifty ligands utilizing two different docking tools DockThor and Autodock vina individually against the InhA (PDB ID: 3FNG) and EthR (PDB ID: 3G1M) receptor proteins. Later on, leading four compounds were analyzed for predicting probable metabolic sites of CYP. The study was further validated by assessing drug-likeness properties and ADMET prediction so as to examine their pharmacokinetics and pharmacodynamics properties. Then the best compounds with receptor complex were subjected to molecular dynamics simulations to test the thermodynamic properties.

1.1. InhA (Enoyl acyl carrier protein reductase), a pivotal enzyme used in Mycolic acid biosynthesis pathway:

Mycobacteria are distinctive in having two Fatty acid synthase (FAS) systems which ends up synthesizing the mycobacterial mycolic acid (MA) precursors [8]: the “eukaryotic-type” multifunctional FAS-I for de novo synthesis of long-chain fatty acyl-CoA and their subsequent elongation by the “bacterial-type” FAS-II [9,10]. Malonyl-CoA is produced by the carboxylation of acetyl-CoA catalyzed by acetyl-CoA carboxylase (ACC) and integrated into the developing acyclic chain during the repeated cycle of reactions of fatty acids synthase I and II (FAS I/FAS II) [11]. The mero-mycolic chain precursors are synthesized in four stages of iterative cycles with four FAS-II enzymes catalyzing acyl carrier protein (ACP) derivatives in each elongation cycle [8]. The transformation of malonyl-CoA to malonyl-ACP by malonyl-CoA:ACP transacylase (mtFabD) facilitates its integration into the FAS-II enzymatic system [12]. Both FAS systems are interconnected by a CoA-dependent linker enzyme β-ketoacyl-ACP synthase III
(mtFabH) which catalyzes Claisen condensation of acyl-CoA precursors produced by FAS-I and malonyl-ACP to form β-ketoacyl-ACPs [13]. Next, β-ketoacyl-ACP reductase (MabA) performs

Figure 1: Biosynthesis of MA in Mtb. The acetyl-CoA carboxylase (ACC) produces malonyl-CoA, later on the synthesis of malonyl-ACP occurs by malonyl-CoA:AcpM transacylase (mtFabD). FAS II is triggered by the β-ketoacyl-ACP synthase (mtFabH), which condenses the acyl-CoA to malonyl-ACP to generate a β-ketoacyl-ACP. Following the condensation stage, the β-ketoacyl-ACP passes through a series of keto-reduction, dehydration, and enoyl-reduction catalyzed by the β-ketoacyl-ACP reductase (MabA), the β-hydroxyacyl-ACP dehydratase complex (HadABC) and the enoyl-ACP reductase (InhA), respectively. Further elongation
cycles are initiated either by KasA or KasB \(\beta\)-ketoacyl ACP synthase. The last condensation carried out by polyketide synthase (Pks13) delivers trehalose mycolic \(\beta\)-ketoester and then reduced to trehalose monomycolate (TMM) [ADAPTED FROM 19].

NADP\(+H^+\)-specific reduction of long chain \(\beta\)-ketoacyl-ACP resulting in \(\beta\)-hydroxyacyl-ACP intermediate which is dehydrated by the \(\beta\)-hydroxyacyl-ACP dehydratase complex (HadABC) to an enoyl-ACP [14,15]. The end step of the elongation cycle involves trans-2-enoyl-ACP reductase (InhA), which catalyzes the reduction of NADH\(+H^+\) in the enoyl chain and develop long-chain saturated acyl-ACP [16]. \(\beta\)-ketoacyl-ACP synthases (KasA and KasB) catalyzes new acyl extension cycles with a new malonyl-ACP unit, thereby extending the growing mero-mycolate chain by two carbon units to form a \(\beta\)-ketoacyl-ACP from acyl-ACP and malonyl-ACP [17,18]. Finally, last Claisen-type condensation step catalyzed by polyketide synthase (Pks13) that connects the mero-mycolic chain to a carboxylated \(\alpha\)-chain produced by FAS-I that synthesizes trehalose mycolic \(\beta\)-ketoester and reduced by CmrA to trehalose monomycolate (TMM), a form of mature mycolic acid in Mtb [19,20,21]. The detailed biosynthesis pathway of mycolic acid is displayed in Figure 1.

1.2. Proposed anti-TB drugs acting against InhA and EthR

In our study, the promising targets of two of our selected ligands, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole were InhA and EthR respectively. Both inhibitors are offered to work against InhA and EthR accordingly, interfering with the biosynthetic pathway of MA. InhA participates in the synthesis of MA, a major constituent of the mycobacterial cell wall [16] and EthR belongs to the tetR/CamR family of transcriptional repressor that negatively regulates the expression of EthA enzyme (Figure 2) [22]. INH and ETH both act as prodrug and represent
metabolic activation dependency within Mtb cells by two mycobacterial enzymes, catalase peroxidase katG and FAD containing monooxygenase EthA respectively [23,24]. Both require the

Figure 2: A schematic diagram showing mechanism of action of selected control drugs, Isoniazid (INH) and Ethionamide (ETH) along with showing proposed novel anti-TB drugs, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-y1]-N-(2-methylphenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole acting against InhA and EthR inside the Mtb. Both prodrugs, INH and ETH get metabolically activated by katG and EthA respectively, continuing towards formation of NAD adducts with their respective activated forms which eventually inhibit the enzyme InhA involved in mycolic acid biosynthesis. EthR, a negative transcriptional regulator which reduces the expression of EthA enzyme causing the blockage of the ETH activation pathway. Our selected two novel inhibitors, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-y1]-N-(2-methylphenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole are proposed to act against InhA and
EthR respectively, leading to disrupting the MA biosynthesis pathway. [ADAPTED FROM: 26,28]

formation of covalent adducts with NAD co-factor on oxidative activation to act on the InhA enzyme which is involved in mycolic acid synthesis. (Figure 2) [25,26,27].

2. MATERIALS AND METHODS

2.1. Molecular docking

2.1.1. Initial Molecular Docking in DockThor program

The preliminary docking of two receptor protein and fifty ligands were carried out by DockThor docking server (https://www.dockthor.lncc.br/v2/). The algorithm of the program is based on flexible-ligand and rigid-receptor grid-based system. This web-based tool spontaneously produces the topology files (i.e., atom types and partial charges) for the protein, ligand, and cofactors according to the MMFF94S force field [29]. The crystal structures of two receptors i.e., Crystal structure of InhA bound to triclosan derivative (PDB ID: 3FNG) and EthR from Mycobacterium tuberculosis in complex with compound BDM31381 (PDB ID: 3G1M), were taken from Protein Data Bank (https://www.rcsb.org/search). Fifty compounds were collected from both ACD: Antibacterial Chemotherapeutics Database (http://amdr.amu.ac.in/acad/index.jsp) and PubChem (https://pubchem.ncbi.nlm.nih.gov/) servers. Isoniazid (INH) and Ethionamide (ETH) were used as control drug against InhA and EthR proteins respectively. In the beginning, the PDB structures were modified using PyMOL tools (PyMOL) by clearing the water molecules from the structure [30] and then minimizing the structure employing Swiss-PdbViewer [31].
2.1.2. Autodock-vina binding affinity prediction

Following the initial affinity prediction, desired ligands with lower affinity score than control drugs were chosen to evaluate bound conformation and binding energy. Autodock vina software (AutoDock 4.2) was used to evaluate bound conformation and binding energy of those selected ligands [32]. This tool uses Lamarckian Genetic Algorithm to evaluate binding energy of ligands with receptor proteins. Exhaustiveness defines how many times the system will repeat the computation on binding site of protein and this was kept 10 for the analysis. CASTp server [33] was used to identify ligand binding sites of proteins and prepare grid box.

2.2. Visualization and interaction analysis

The 2D and 3D visualization of non-bonded interactions of protein-ligand docked complexes were done by BIOVIA Discovery Studio 4.1 Visualizer [34]. This tool was utilized to get the total number of hydrogen bonds and interacting amino acids of proteins.

2.3. P450 Site of Metabolism (SOM) prediction

The most promising four compounds were chosen for further calculation. The probable sites of metabolism of these compounds were predicted using RS-Web Predictor 1.0 (http://reccr.chem.rpi.edu/Software/RSWebPredictor/) [35]. This prediction tool uses 3A4, 1A2, 2A6, 2B6, 2C8, 2C9, 2D6, 2E1, 3A4 CYP isoforms for cytochrome P450 site evaluation.

2.4. Drug-likeness Properties analysis and ADMET prediction

Determination of drug likeness property of drug-like compounds is one of the vital steps of drug discovery. These properties were predicted utilizing Lipinski’s rule of five [36], Ghose’s rule [37]
Veber’s rule [38] Muegge’s rule [39], TPSA and No of rotatable bonds. The calculation was carried out using SwissADME online tool (http://www.swissadme.ch/index.php) [40].

Absorption, distribution, metabolism, excretion and toxicity, all these chemical properties were also crucial determinant of drug like compounds. ADMET properties of each of four compounds were predicted using another online tool, admetSAR (http://lmmd.ecust.edu.cn/admetsar2/) [41]. In each of the prediction study, canonical smiles of the compounds were used from PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

2.5. Molecular Dynamics Simulation

The study of molecular dynamics simulation (MDS) is a thermodynamics-based operation which helps to study the dynamic perturbation found in protein-ligand complexes. In our experiment, to ensure the stability of protein-ligand complex, we subjected the best ligands screened from previous steps to the molecular dynamics simulation (MDS) study with their respective proteins. We simulated the docking complexes using the NAMD_2.14bNAMD_2.14b2_Win64-multicore-CUDA version [42] implying CHARMM 36 force field [43] and TIP3P water model. A multi-step time algorithm was used, with an integration time step of 2 femto second. Visual molecular dynamics (VMD) [44] was used to generate psf files of protein-ligand complexes, water box and for neutralizing the system with sodium (Na+) and a chloride (Cl-) ions. Ligand topology and parameter files were generated using CHARMM-GUI web service [45]. The simulation was run for 10 ns, where the system was minimized for 1000 steps. Langevin thermostat was used to maintain a constant temperature of 310k. Periodic boundary conditions was applied surrounding the system. Finally, the results were visualized and analyzed in VMD.
3. RESULTS

3.1. Molecular docking analysis

To filter out the best ligands from docking analysis, two separate docking tools were used with different algorithm. Initially used DockThor (server-based docking tool) results were further scanned through Autodock-vina software. Detailed information of all the collected drug-like compounds were provided in Supplementary material.

Total fifty ligands were primarily docked individually against the InhA (PDB ID: 3fng) and EthR (PDB ID: 3g1m) receptors protein via the DockThor server. Against both proteins, InhA and EthR, all the compounds showed better affinity than control 1 (Isoniazid) and control 2 (Ethionamide). The binding affinity score between InhA, EthR receptors and fifty ligands, as well as control drugs is depicted in Table 1.

Table 1: Binding affinity score between receptors (InhA, EthR) and fifty ligands, along with control drugs.

Drug Identifier	Drug Name	Binding Affinity (kcal/mol)		
		InhA (3fng)	EthR (3g1m)	
Control 1	Isoniazid (INH)	-5.5	-	
Control 2	Ethionamide (ETH)	-	-6.2	
C1	1,2-Benzisothiazol-3(2H)-one	-7.549	-7.517	
C2	Tetrathiafulvalene	-8.103	-6.676	
C3	5-Chloroindoline	-7.789	-8.492	
C4	N-Tert-butyl-2-phenylacetamide	-7.822	-7.347	
	Name	Log P Values		
---	--	-------------		
C5	5-Oxo-2,3,5,9b-tetrahydro-thiazolo[2,3-a]isoindole-3-carboxylic acid	-6.480		
		-6.538		
C6	Bis(4-hydroxyphenyl)disulfide	-7.565		
		-7.175		
C7	5-(4-Methoxyphenyl)-2H-tetrazole	-7.830		
		-8.512		
C8	7-Bromo-6-hydroxy-2,3-dihydro[1]benzothieno[2,3-d]pyrrolo[1,2-a]pyrimidin-10(1H)-one	-9.191		
		-7.431		
C9	4-Benzoylphthalic acid	-8.621		
		-6.799		
C10	1,1'-Ethanediyl-bis-cyclopentanol	-8.055		
		-7.002		
C11	3-(3-Chlorophenyl)-1,1-diethylurea	-8.784		
		-7.671		
C12	(3,4-Dimethoxy-benzyl)-thiazol-2-yl-amine	-8.517		
		-7.126		
C13	3-(Diisopropyl-phosphinoyl)benzoic acid	-6.383		
		-6.329		
C14	N-[2-(4-Fluoro-benzoyl)-benzofuran-3-yl]-acetamide	-9.218		
		-8.030		
C15	1-Adamantyl-(4-hydroxy-4-pyridin-3-ylpiperidin-1-yl)methanone	-8.640		
		-8.131		
C16	N-(Furan-2-ylmethyl)-4-phenaclythieno[3,2-b]pyrrole-5-carboxamide	-9.094		
		-8.252		
C17	Carbenicillin	-6.904		
		-6.309		
C18	N-[1-(Furan-2-ylmethylamino)-3-methyl-1-oxobutan-2-yl]-2-[(4-methoxybenzoyl)amino]benzamide	-8.724		
		-7.535		
	Molecular Formula	Structure	Kd(a)	Kd(b)
---	------------------	-----------	-------	-------
C19	4,6-Bis(propan-2-ylamino)-1,3,5-triazine-2-carboxamide	![Structure](image1)	-6.580	-6.247
C20	3-Phenyl-N-(2,2,6,6-tetramethylpiperidin-4-yl)propanamide	![Structure](image2)	-7.276	-7.085
C21	3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide	![Structure](image3)	-9.156	-8.165
C22	3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide	![Structure](image4)	-9.615	-8.505
C23	2-(Piperazin-1-yl)-4,6-di(pyrrolidin-1-yl)-1,3,5-triazine	![Structure](image5)	-8.143	-6.871
C24	2-[2-(4-Methoxy-phenyl)-thiophen-3-yl]-propionic acid	![Structure](image6)	-8.844	-6.880
C25	1-Phenylmethanesulfonyl-piperidine-3-carboxylic acid (2,3-dihydro-benzo[1,4]dioxin-6-yl)-amide	![Structure](image7)	-7.099	-7.590
C26	4-Cyclohexylaminomethyl-1H-quinolin-2-one	![Structure](image8)	-8.147	-7.502
C27	(Naphthalen-1-ylcarbamoylmethylsulfanyl)-acetic acid	![Structure](image9)	-8.221	-6.869
C28	2-Propylamino-nicotinamide	![Structure](image10)	-7.298	-6.734
C29	5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole	![Structure](image11)	-8.557	-6.875
C30	Methyl 2-[4-(methylamino)-6-morpholin-4-yl-1,3,5-triazin-2-ylthio]acetate	![Structure](image12)	-7.848	-7.018
C31	Oxostephanine	![Structure](image13)	-9.423	-7.732
	Ligand	Binding Energy 1	Binding Energy 2	
---	--	------------------	------------------	
C32	Ergosterol peroxide	-7.946	-7.579	
C33	Sanguinarine	-9.457	-8.973	
C34	Micromelone	-9.331	-6.870	
C35	Oleanolic acid	-6.793	-7.211	
C36	Ursolic acid	-7.478	-7.825	
C37	Plumbagin	-7.901	-7.561	
C38	Maratinone	-8.428	-7.274	
C39	Rutin	-7.709	-7.178	
C40	Aloe emodin	-8.285	-7.082	
C41	Epigallocatechin	-9.058	-6.625	
C42	Umckalin	-8.607	-7.132	
C43	Butein	-8.400	-6.688	
C44	Luteolin	-9.152	-6.694	
C45	2-Hydroxy-4-methoxybenzaldehyde	-7.627	-6.406	
C46	Isoliquiritigenin	-8.344	-6.778	
C47	Piperine	-9.175	-8.409	
C48	Tiliacorinine	-8.327	-7.655	
C49	Isobavachalcone	-9.359	-7.043	
C50	Turgorin	-6.492	-6.856	

Ligands, filtered by DockThor server were considered for computing binding energy and bound conformation with the assistance of Autodock Vina software. Two ligands were preferred over all ligands considering their lowest binding score towards InhA protein. Likewise, two ligands with
lowest binding score towards EthR protein were chosen for further analysis. Comparative Docking results of Autodock-vina tool are listed in Table 2.

Table 2: Molecular docking results and Hydrogen bond interaction between receptors (InhA, EthR) and fifty ligands, along with control drugs by Autodock Vina.

Drug identifier	Binding energy (kcal/mol)	Number of hydrogen bonds	Interacting hydrogen bonds with receptor (H-bonds lowest distance (Å))	Binding energy (kcal/mol)	Number of hydrogen bonds	Interacting hydrogen bonds with receptor (H-bonds lowest distance (Å))					
Control 1	-5.5	Four	ILE21 (1.97863) SER94 SER94								
Control 2	-	-	-	-6.3	Two	ASN179 (2.21905) TRP145					
C1	-6.2	None	None	-5.2	None	None					
C2	-6.9	Two	TYR158(1.97767) LYS165	-7.2	Two	ASN179 (2.57931) ASN176					
C3	-6.4	One	LEU63(2.54696)	-6.7	One	ASN176 (2.794)					
C4	-7.3	One	GLY96 (2.39634)	-5.2	None	None					
C5	-8.1	Two	GLY96 (2.20643)	-5.9	Two	TYR148 (2.12252)					
			GLY14			ASN93					
C6	-7	One	ASP64 (2.39466)	-5.4	None	None					
C7	-7.5	None	None	-7.7	None	None					
C8	-7.4	Two	THR162	-6.6	Two	GLU180 (2.19834)					
			MET155 (2.13081)			GLN125					
C9	-9.2	One	ILE194 (2.16623)	-7.1	Five	GLN125					
						ARG128					
						ARG181 (2.08176)					
						ARG181					
						ARG181					
C10	-6.6	One	ILE194 (2.53774)	-8.6	One	ASN176 (2.04428)					
C11	-6.3	Four	GLY96 (2.19248)	-6.6	Two	MET102 (2.92252)					
			GLY96			MET102					
			ILE95								
			GLY14								
C12	-6.6	One	ILE194 (3.43831)	-5.3	One	ASN93 (2.19641)					
---	---	---	---	---	---						
C13	-7.3	Four	VAL 65 (2.26867)	-5.7	One	PHE184 (2.74643)					
C14	-9.5	Two	PHE41 (2.45432)	-7.4	Two	TYR148 (2.35011)					
C15	-8.4	One	ASP64 (3.52241)	-7.8	Three	TYR148 (1.72057)					
			GLY14				TRP103				
			GLY14				TRP103				
C16	-6.8	Four	ASN159(2.44733)	-6.2	Four	TYR148 (2.35114)					
			ASN159				ALA91				
			ASN159				ASN93				
			ASN106				TYR148				
C17	-8.7	Three	LYS165(2.22312)	-7.0	Four	TYR148					
			ILE194				ARG159				
			ILE95				GLU156				
							LEU90 (2.43612)				
C18	-9.3	Eight	ILE21	-8.2	Three	TYR148 (1.95967)					
			ALA22 (2.15956)								
---	---	---	---	---	---						
C19	-6.2	Four	SER94	GLY96	GLY96	GLY96	GLY14	SER94	PRO94	PRO94	
			ILE21(2.07881)	GLY96	GLY14	SER94	-6.0	Four	TYR148	(2.11179)	
			PHE149	(2.59897)			-8.2	One	ALA91	PRO94	PRO94
	8.7	One	GLY14 (3.55184)			-10.1	Three	ASN93	(2.76191)		
			LYS164	(2.62617)			-7.5	Three	ALA91	TRP103	GLY106
										(3.06001)	
---	---	---	---	---	---	---					
C23	-7.2	Four	GLY14 (3.41356)	SER94	SER94	GLY96					
						-6.5					
					One	MET102 (3.12043)					
C24	-6.4	Two	GLY96 (2.14203)	GLY96		-5.9					
					None	None					
C25	-9.8	Three	TYR158 (1.91706)	LYS165	GLU219	-6.5					
					Three	TYR148 (1.77137)					
						ALA91					
						THR97					
C26	-9.3	Three	GLY14	LEU63 (2.18784)	SER13	-6.7					
					Three	MET102 (2.1998)					
						PRO94					
						ALA91					
C27	-8.4	Four	ALA22 (2.16379)	SER94	THR196	SER20					
					Two	LEU42 (2.32601)					
						ALA43					
C28	-6.0	None	None	None		-5.4					
					Three	TYR148					
						ASN93 (2.11687)					
						ALA91					
C29	-8.9	Three	LYS165, ASP148 (2.24323), PRO193	-9.7	Two	MET102 (2.66568), TRP103					
-----	------	-------	---------------------------------	------	-----	--------------------------					
C30	-6.5	Three	ALA22 (2.23912), SER94, ASP148	-5.7	One	MET102 (3.78136)					
C31	-7.9	None	None	-7.5	Four	GLN125 (2.21503), GLN125, ARG128, GLU180					
C32	-9.3	None	None	-7.1	None	None					
C33	-9.2	Two	ASN159, MET155 (3.22531)	-8.0	One	ARG122 (3.04471)					
C34	-8.6	None	None	-6.1	Seven	TYR148 (1.96888), LEU90, ASN93, PRO94, ALA151, ALA91, ALA91					
C35	-8.7	One	ALA154 (2.26034)	-6.7	Two	THR97 (2.16018) PRO94					
C36	-8.6	None	None	-7.3	None	None					
C37	-8.3	Two	VAL65 (2.03459) LEU63	-7.9	None	None					
C38	-10.4	Two	THR39 (2.7789) ALA198	-6.1	Two	ASN93 GLU156 (2.24447)					
C39	-9.6	Four	LYS165 ASP64 GLY14 (1.83348) SER94	-6.9	Five	TYR148 ARG159 GLU156 (2.0795) MET102 PRO94					
C40	-8.8	Two	GLY14 (2.47919) ILE15	-6.9	Two	TYR148 (2.11027) TYR148					
C41	-8.3	One	ILE194 (2.83172)	-7.2	Four	GLN125 (2.07584) ARG128 ARG181 GLU190					
C42	-6.7	Three	TYR158 (2.02039) LYS165 PRO193	-6.8	Two	GLU190 (1.97977) ARG122					
C43	-8.7	Two	ALA191 PRO156 (2.48641)	-7.8	Three	ASN179 (2.137) ASN176 GLY106					
C44	-9.2	Two	ILE194 (2.71545) GLU219	-4.8	Two	GLY106 LEU90 (3.48734)					
C45	-5.5	Three	ILE194 ILE194 (2.05008) ILE194	-6.1	Six	TYR148 ALA91 LEU90 PRO94 (1.79948) MET102 THR97					
C46	-8.8	One	PRO156 (2.22355)	-6.8	Four	GLN125 (2.11947) ARG181 ARG181 ARG181					
3.2. P450 Site of Metabolism (SOM) prediction

Cytochromes P450 play an important role in metabolizing external materials like drugs. The probable metabolic sites of CYP (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and combined) of the four ligands: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-

C47	-9.2	One	LYS165 (2.99535)	-6.1	Three	ARG159 (2.51087)	LEU90	LEU87			
C48	-9.3	One	GLY14 (3.68854)	-8.2	Four	GLN125	GLU180	(2.03095)	ARG181	GLU180	
C49	-8.6	One	ALA22 (2.32119)	-9.3	One	GLY14 (3.68854)	---	---	---	---	
C50	-8.3	Five	GLY14 ILE21 ALA22(1.91793) SER94	-5.6	Six	TYR148 (2.06506)	TYR148	ARG159	GLU156	ALA91	PRO94
1-carboxamide (C22); Maritinone (C38); 3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide (C21) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were organized using RS-Web Predictor tool. The possible sites of metabolism by the isoforms were indicated by circles on the chemical structure of the four ligands. The probable sites of P450 metabolism are shown in Table 3.

Table 3: The P450 Site of Metabolism (SOM) prediction results of the best four ligands.

Drug identifier	C22	C38	C21	C29	
Names of P450 iso-enzymes	3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide	Maritinone	3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide	5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole	
1A2	![C22](image1.png)	![C38](image2.png)	![C21](image3.png)	![C29](image4.png)	
	2A6	2B6	2C8	2C9	2C19
---	-----	-----	-----	-----	------
	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)	![Image](image5.png)
	![Image](image6.png)	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)	![Image](image10.png)
	![Image](image11.png)	![Image](image12.png)	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)
	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)	![Image](image19.png)	![Image](image20.png)
	![Image](image21.png)	![Image](image22.png)	![Image](image23.png)	![Image](image24.png)	![Image](image25.png)
	![Image](image26.png)	![Image](image27.png)	![Image](image28.png)	![Image](image29.png)	![Image](image30.png)
	![Image](image31.png)	![Image](image32.png)	![Image](image33.png)	![Image](image34.png)	![Image](image35.png)
3.3. Drug-likeness and ADMET analysis

The concept of drug-likeness has appeared as an approach that can screen the high-affinity ligands with acceptable ADME (absorption, distribution, metabolism, excretion) properties. In our study,
phytochemicals: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide (C22) ; Maritinone (C38) ; 3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide (C21) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were subjected to Drug-likeness and ADMET analysis and all of them followed the Lipinski’s rule of five criteria: molecular weight (acceptable range: <500), number of hydrogen bond donors (acceptable range: ≤5), number of hydrogen bond acceptors (acceptable range: ≤10), lipophilicity (expressed as LogP, acceptable range: <5) and molar refractivity (40-130). C38 had the highest topological polar surface area (108.74 Å²) and C21 had the lowest polar surface area (55.13 Å²) although all of the five compounds satisfy the ideal value (20-130 Å²). The Ghose, Veber, Egan, Muegge rules are followed by all of the four compounds. The number of rotatable bonds, bioavailability scores, log S fell within the standard range for the four compounds (Table 4).

Table 4: The Drug-Likeness properties of the best four ligands.

Drug identifier	C22	C38	C21	C29
Drug Likeness Properties	3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide	Maritinone	3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide	5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole
Molecular weight	380.42 g/mol	374.34 g/mol	252.27 g/mol	256.27 g/mol
------------------	--------------	--------------	--------------	--------------
Concensus Log P_o/w	3.77	2.88	2.55	1.39
Log S	-4.67	-4.77	-3.55	-2.90
Num. H-bond acceptors	5	6	3	6
Num. H-bond donors	1	2	1	1
Molar Refractivity	107.77	101.14	73.19	66.51
Lipinski	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation
Ghose	Yes	Yes	Yes	Yes
Veber	Yes	Yes	Yes	Yes
Egan	Yes	Yes	Yes	Yes
Muegge	Yes	Yes	Yes	Yes
Bioavailability score	0.55	0.55	0.55	0.56
TPSA (Å²)	71.26 Å²	108.74 Å²	55.13 Å²	98.06 Å²
The relative ADMET profiles of screened ligands are described in Table 5. The evaluated pharmacokinetic data showed that all of the selected molecules had a high intestinal absorption rate and oral bioavailability. Each chosen molecule was capable of pervading Caco2 cell lines. C22 acted as P-glycoprotein substrate, P- glycoprotein inhibitor and substrate for CYP3A4 cytochrome.

Drug identifier	C22	C38	C21	C29
Properties	3-{3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide	Maritinone	3-Methylbenzofuran-2-carboxylic acid pyridin-4-ylamide	5-(4-Ethylphenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole
Human Intestinal Absorption	Positive (0.9907)	Positive (0.9952)	Positive (0.9726)	Positive (0.9933)
blood Stream Barrier	Positive (0.9871)	Negative (0.7104)	Positive (0.9880)	Positive (0.9825)
---------------------	-------------------	-------------------	-------------------	-------------------
Caco-2	Positive (0.5586)	Positive (0.6857)	Positive (0.8079)	Positive (0.7131)
Human oral	Positive (0.5857)	Positive (0.6286)	Positive (0.8429)	Positive (0.6000)
bioavailability	Positive	Positive	Positive	Positive
Subcellular	Mitochondria	Mitochondria	Mitochondria	Mitochondria
localization	(0.7027)	(0.9018)	(0.4417)	(0.8104)
P-glycoprotein	Positive (0.6537)	Negative (0.8316)	Negative (0.8282)	Negative (0.9441)
inhibitor				
P-glycoprotein	Positive (0.6480)	Negative (0.9566)	Negative (0.8627)	Negative (0.5591)
substrate				
CYP3A4 substrate	Positive (0.6532)	Negative (0.5992)	Positive (0.5080)	Negative (0.5554)
CYP2C9 substrate	Positive (0.5894)	Negative (0.8009)	Negative (1.0000)	Negative (0.7957)
CYP2D6 substrate	Negative (0.8300)	Negative (0.8664)	Negative (0.8972)	Negative (0.8707)
Cytochrome Inhibition	C21	C22	C29	None
-----------------------	-----	-----	-----	-------
CYP3A4 inhibition	0.5188	0.7006	0.7887	0.9575
CYP2C9 inhibition	0.5217	0.9592	0.7423	0.8643
CYP2C19 inhibition	0.5209	0.7766	0.8633	0.6388
CYP2D6 inhibition	0.9132	0.7041	0.5689	0.9152
CYP1A2 inhibition	0.7245	0.9159	0.9725	0.7147
Hepatotoxicity	0.5750	0.9250	0.9500	0.5000
Carcinogenicity (binary)	0.8857	0.6510	0.8571	0.9143

Neither of the ligands acted as CYP2D6 substrate nor CYP2D6 inhibitor. Only C29 showed an inhibitory effect on CYP2C9 cytochrome. C22 acted as inhibitor for CYP3A4, CYP2C19, CYP1A2 cytochrome but acted as a substrate for CYP2C9 cytochrome. C21 inhibited CYP3A4, CYP2C19, CYP1A2 cytochrome isoform but represented as a substrate for CYP3A4 isoform.
All selected ligands were non-carcinogenic. C38 and C21 were both hepatotoxic. Overall, considering the scores 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) ligand went along with the maximum criteria. The best ligands and control drugs with respective receptors (C22 and InhA complex, Isoniazid and InhA complex, C29 and EthR complex, Ethionamide and EthR complex) were depicted in Figure (3 & 4).

3.4. Molecular Dynamics Simulation:

In our study, Molecular Dynamics Study was performed to assess conformational stability of protein-ligand complexes as well as InhA and EthR receptors. The overall conformational similarity between control drugs and the drugs being tested with target proteins was compared assessing Root Mean Square deviation (RMSD). As represented in Figure 5(A), RMSD of Free InhA protein continued stability between 1 ns to 5 ns timescale at about 1.4 Å and 5 ns (nano second) to 9 ns at about 1.7 Å. (Isoniazid +InhA) complex displayed steadiness in RMSD between 1 ns to 5 ns timescale at around 1.5 Å and 8 ns to till the end of run at around 1.8 Å. (C22+InhA) complex held stable backbone stability from 3 ns to 7 ns, with RMSD around 2 Å. Free EthR protein, (Ethionamide+EthR) protein-ligand complex and (C29+EthR) complex showed a backbone RMSD under 2 Å, which suggested minor structural changes. Free EthR protein remained stable between 1 ns to 6 ns, exhibiting RMSD around 1.2 Å. (Ethionamide+EthR) complex also showed stability from 1 ns to 6 ns timeline, with a RMSD backbone of 1.2 Å, then exhibiting small increased RMSD. On the other hand, RMSD of (C29+EthR) complex persisted
stable from 1 ns to 5 ns timeline at about 1.5 Å, then after slight fluctuation, remained stable from 8 ns to the end of run on average 1.4 Å.

Figure 3: Schematic representation of InhA and drug (C22, Isoniazid) complex; On the left, ligands were in yellow color, parts of protein in cyan color, hydrogen bonds and interacting amino acids were shown with arrows and circle; On the right, two-dimensional image of InhA and drug (C22, Isoniazid) interaction were shown, green dotted line denoted hydrogen bonds.
Figure 4: Schematic representation of EthR and drug (C29, Ethionamide) complex; On the left, ligands were in yellow color, parts of protein in cyan color, hydrogen bonds and interacting amino acids were shown with arrows and circle; On the right, two-dimensional image of EthR and drug (C29, Ethionamide) interaction were shown, green dotted line denoted hydrogen bonds.
Root Mean Square Fluctuation (RMSF) analysis per residue for backbone atoms was conducted to assess changes in conformation of Cα backbone of the systems. From figure 6(C), Free InhA, (Isoniazid +InhA), (C22+InhA) complexes mostly had RMSF from 0.4 to 2 Å that indicated close conformational contact between protein and ligands. Nevertheless, the higher fluctuation of RMSF between 205 to 211 residues confirmed the presence of loop within this region. Our MDS study showed that the RMSF of Free EthR, (EthR+Ethionamide), (EthR+C29) complexes fluctuated mostly between 0.5 to 1.5 Å, indicating close contact between active pocket of receptors and drugs. However, higher fluctuation from 73 to 75 and 170 to 172 amino acid residues indicated that the free protein and its complexes were within the loop regions.

Radius of Gyration with time was calculated to assess the change of compactness after ligand binding with receptors. From figure 7(E), the Rg of Free InhA was reported between 17.9 to 18.2 Å; (InhA+Isoniazid) complex showed Rg between 17.9 to 18.3 Å; (InhA+C22) complex continue Rg between 18.1 to 18.4 Å through the simulation. This evaluation proved ligand binding did not affect the compactness of the protein. On the other hand, from figure 7(F), it was evident Free EthR had stable Rg value around 19.3 Å from 2 to 8 ns; (EthR+Ethionamide) complex remained stable Rg about 19.4 Å between 5 ns to till the end of simulation and (EthR+C29) complex kept stability from 5 to 9 ns, with Rg around 19.3 Å. This confirmed ligand binding with respective receptor did not cause structural instability to proteins.
Figure 5: 10 ns Molecular Dynamics Simulation (MDS) RMSD of Free protein and bounded protein; (A, B) Free protein (InhA and EthR) in blue color, Control drugs (Isoniazid and Ethionamide) and protein in orange color, Selected drug (C22 + C29) and protein in grey color.
Figure 6: RMSF outline of Free protein and bounded protein; (C, D) Free protein (InhA and EthR) in blue color, Control drugs (Isoniazid and Ethionamide) and protein in orange color, Selected drug (C22 + C29) and protein in grey color.
4. **DISCUSSION:**

In our study, the screening of high affinity ligands was accomplished by two stages of molecular docking analysis. As an initial docking evaluation, fifty ligands were primarily docked separately against the InhA and EthR receptors protein via the DockThor server [29]. Both for InhA and EthR proteins, all the compounds showed lower affinity score than their respective controls. Subsequently Autodock Vina software was employed for computing binding energy and bound conformation in which two ligands for InhA protein and two ligands for EthR protein were chosen considering their lower binding score [32].
Drug-likeness is an approach that qualitatively evaluate the probability for a molecule to qualify as an oral drug with respect to bioavailability [46,47]. To analyze the drug-likeness property of our compounds we used SwissADME, a free web-based tool [40]. Lipinski’s Rule of 5, a rule of thumb was established to evaluate ‘drugability’ of new chemical entities having certain pharmacological or biological activity [48]. In the drug discovery and optimization approach, the Rule of 5 reveals that a drug compound should follow the criteria with the acceptable range having molecular weight: ≤500, number of hydrogen bond donors: ≤5, number of hydrogen bond acceptors: ≤10, lipophilicity (denoted as LogP): ≤5 and molar refractivity between 40 to 130 [36]. Our selected four compounds: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide (C22) ; Maritinone (C38) ; 3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide (C21) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) followed the Lipinski’s rule of five criteria without violating any of its parameters. According to Ghose filter, to qualify as a drug, it should have log P value between 0.4 and 5.6, molecular weight from 160 to 480, molar refractivity between 40 and 130, total atomic count between 20 and 70 [37]. Veber rule states that compounds which meet two criteria of: 10 or fewer rotatable bonds and polar surface area equal or less than 140 Å are predicted to have good oral bioavailability [38]. The Egan rule considers candidate drug to have good oral bioavailability with $-1.0 \leq \text{logP} \leq 5.8$ and TPSA ≤130 Å² [49]. Muegge rule utilizes pharmacophore point filter to distinguish between drug-like and nondrug-like compounds which is based on simple structural rules. To pass the filtering, candidate drug should obtain two to seven pharmacophore points [39]. In addition to following the Lipinski rule, they followed the Ghose, Veber, Egan and Muegge rules as well. The aqueous solubility of a compound expressed as log S determines the oral bioavailability resulting in affecting its absorption and distribution in the ADME/T properties [50].
The "Topological Polar Surface Area" (TPSA) is an approach that enables the calculation of the Polar Surface Area which is correlated with passive molecular transport through membranes, thus used to predict the transport properties of medicines such as human intestinal absorption, permeability to Caco-2 monolayer and permeation of blood-brain barrier [51]. Bioavailability results define the probability compounds to have minimum value of 10% oral bioavailability in rat or measurable Caco-2 permeability [52]. Considering the standard values, our four compounds pass through the Log S, bioavailability score, TPSA (Å²), Number of rotatable bonds value. The drug-likeness property experiment showed that our four compounds possess drug-like properties against tuberculosis.

Cytochrome P450 (CYPs) enzymes are metabolic enzymes, responsible for the biotransformation of ~90% FDA certified drugs [53]. The oxidative metabolism of drugs in phase I is achieved by the CYP system [54,55]. Nine of the isozymes under the CYP system scanned for the prediction of the metabolically vulnerable points using RS-WebPredictor tool [56]. It is a publicly available, web-based tool for predicting the regioselectivity of isozyme specific CYP mediated xenobiotic metabolism on any set of user-submitted molecules [57]. C22, C38, C21, C29 drugs displayed several sites of metabolism for CYP1A2, 2A6, 2B6, 2C8, 2C19, 2E1, 3A4, 2C9, 2D6 isoforms that suggested a satisfactory result.

In silico analysis of ADMET properties, absorption, distribution, metabolism, elimination and toxicity can help in determining the efficacy, pharmacological profile, mode of administration and safety of drugs. [58]. Human Intestinal Absorption (HIA) is a pharmacokinetic process that determines the effectivity of intestinal absorption or bioavailability of a drug upon oral administration, an anticipated route of drug administration [59]. Our four ligands showed a high rate of intestinal absorption and oral bioavailability. Caco-2 cell line, a prominent substitute to
human intestinal epithelium (mucosa) is one of the in-vitro models to determine in vivo human intestinal absorption of drug molecules due to their morphological and functional resemblances with human enterocytes [60]. All of our probable drug candidates showed ability of penetrating Caco-2 cell line. P-glycoprotein (P-gp) is an efflux, ATP powered membrane-bound transport protein pump that is widely distributed throughout the body. It is a unique defensive barrier network that protects tissues from toxic xenobiotics by blocking entry to the cytosol and pumping its substrates to the exterior and also determines the uptake and distribution of pharmacotherapeutic drugs [61]. C22 acted as P-gp substrates as well as inhibitors. On the other hand, C38, C21, C29 were neither P-gp substrates nor P-gp inhibitors. Blood-Brain Barrier, a unique property possessed by the blood vessels in the Central Nervous System (CNS) tightly controls the transport of molecules, ions, nutrients and cells from blood to the brain and vice versa [62]. Consideration of BBB is an utmost priority for those drugs whose primary target is brain cells. Out of four ligands, only C38 was not capable of penetrating BBB.

As the incidence of anti-TB induced hepatotoxicity is one of the frequent causes behind the termination of anti-TB medication, assessing the potential hepatotoxicity of novel drugs is important [63]. As well as carcinogenicity test is necessary to classify a tumorigenic potentiality of drugs to assess the relevant risk in humans [64]. Only two ligands, C22 and C29 passed two of the criteria: - hepatotoxicity, and carcinogenicity as they showed negative result.

To validate conformational stability of our proposed drug upon binding with receptors, Molecular Dynamics Simulation was performed. Root Mean Square deviation (RMSD) analysis showed that binding of both control drugs and proposed drug C29 did not induce structural instability to the proteins because the reported RMSD change after ligand binding remained under 2 Å for both receptors. A thorough study of Root Mean Square Fluctuation (RMSF) curve revealed our tested
compounds kept close contact with their active sites which was evident from their small range fluctuation under 1.5 Å and 2 Å for EthR and InhA complexes respectively. Though, because of loop regions on receptor proteins, greater fluctuation of RMSF was seen [65]. Our Radius of Gyration (Rg) analysis disclosed our proposed drug C29 and C22 induced fewer fluctuation of Rg upon binding with their respective receptors compared to the control drugs. This confirmed C29 and C22 did not cause instability to receptors. We compared our proposed drugs C29 and C22 with control drugs (Ethionamide and Isoniazid) through Molecular Dynamics Simulation (MDS), in which C29, C22 protein complexes represented stability throughout 10 ns simulation.

Starting from the preliminary docking analysis to Molecular Dynamics Simulation, our candidate compounds were thoroughly examined. At the stage of docking, our selected four candidates showed greater binding affinity in comparison to the control drugs. Additionally, the best four compounds examined for analyzing pharmacokinetics and pharmacodynamics properties and they showed promising results in drug-likeness and ADMET profiling. In all aspects, our chosen 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole showed satisfactory result than other two of the ligands. To conclude, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole could be chosen as the most effective and promising candidates for as anti-TB drug.

CONCLUSION:

The number of people dying annually of TB is growing rapidly due to multiple drug resistance scenarios around the world. This situation demands newer anti-TB drugs to deal with the crisis. Drug repurposing is an easier and cheaper option to look for novel candidate as anti-TB drugs using different computational tools. The main objective of this study is to find novel inhibitor
against fast-mutating anti-TB drug targets. Our work incorporates pharmacore analysis, ADMET profiling, two-step molecular docking, followed by 10 ns Molecular Dynamics Simulation. Drugs with greater binding affinity than the control drugs are considered for determining Drug-likeliness and ADMET analysis to evaluate their bioavailability and toxicity. Two of our screened compounds: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole showed promising results with higher binding affinity with respective receptors and standard pharmacophoric properties. Molecular Dynamics Simulation study including RMSD, RMSF, Rg analysis confirmed their binding stability with respective proteins throughout the simulation timeline. Our present work can be productive finding new therapeutics against multiple drug resistant tuberculosis, having said that extensive in vitro and in vivo studies are required to prove our hypothetical analysis.

ACKNOWLEDGEMENTS

The authors are thankful to Mohammad Mahfuz Ali Khan Shawan, the Assistant Professor of Dept. of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka for reviewing our research paper.

DECLARATION OF INTEREST

Authors declare no potential conflict of interest.

5. REFERENCES

1. Zaman, K. (2010) "Tuberculosis: A Global Health Problem", Journal of Health, Population and Nutrition, 28(2). doi: 10.3329/jhpn.v28i2.4879.
2. Madhavaram, M., Nampally, V., Gangadhari, S., Palnati, M.K. and Tigulla, P., 2019. High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. Journal of Receptors and Signal Transduction, 39(4), pp.312-320.

3. Loddenkemper, R., Lipman, M. and Zumla, A., 2016. Clinical aspects of adult tuberculosis. Cold Spring Harbor perspectives in medicine, 6(1), p.a017848. Muñoz, L., Stagg, H. and Abubakar, I. (2015) "Diagnosis and Management of Latent Tuberculosis Infection: Table 1.", Cold Spring Harbor Perspectives in Medicine, 5(11), p. a017830. doi: 10.1101/cshperspect.a017830.

4. Muñoz, L., Stagg, H. and Abubakar, I. (2015) "Diagnosis and Management of Latent Tuberculosis Infection: Table 1.", Cold Spring Harbor Perspectives in Medicine, 5(11), p. a017830. doi: 10.1101/cshperspect.a017830.

5. Seung, K.J., Keshavjee, S. and Rich, M.L., 2015. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harbor perspectives in medicine, 5(9), p.a017863.

6. Uc-Cachón, A.H., Borges-Argáez, R., Said-Fernández, S., Vargas-Villarreal, J., González-Salazar, F., Méndez-González, M., Cáceres-Farfán, M. and Molina-Salinas, G.M., 2014. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulmonary pharmacology & therapeutics, 27(1), pp.114-120.

7. Sotgiu, G. et al. (2015) "Tuberculosis Treatment and Drug Regimens", Cold Spring Harbor Perspectives in Medicine, 5(5), pp. a017822-a017822. doi: 10.1101/cshperspect.a017822.
8. Bloch, K. (2006) "Control Mechanisms for Fatty Acid Synthesis in Mycobacterium Smegmatis", *Advances in Enzymology - and Related Areas of Molecular Biology*, pp. 1-84. doi: 10.1002/9780470122907.ch1.

9. Bloch, K. and Vance, D. (1977) "Control Mechanisms in the Synthesis of Saturated Fatty Acids", *Annual Review of Biochemistry*, 46(1), pp. 263-298. doi: 10.1146/annurev.bi.46.070177.001403.

10. Smith, S., Witkowski, A. and Joshi, A. (2003) "Structural and functional organization of the animal fatty acid synthase", *Progress in Lipid Research*, 42(4), pp. 289-317. doi: 10.1016/s0163-7827(02)00067-x.

11. Wakil, S., Stoops, J. and Joshi, V. (1983) "Fatty Acid Synthesis and its Regulation", *Annual Review of Biochemistry*, 52(1), pp. 537-579. doi: 10.1146/annurev.bi.52.070183.002541.

12. Kremer, L. et al. (2001) "Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA:AcpM Transacylase (mtFabD), Two Major Components of Mycobacterium tuberculosis Fatty Acid Synthase II", *Journal of Biological Chemistry*, 276(30), pp. 27967-27974. doi: 10.1074/jbc.m103687200.

13. Marrakchi, H., Lanéelle, M. and Daffé, M. (2014) "Mycolic Acids: Structures, Biosynthesis, and Beyond", *Chemistry & Biology*, 21(1), pp. 67-85. doi: 10.1016/j.chembiol.2013.11.011.

14. Marrakchi, H. et al. (2002) "MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II", *Microbiology*, 148(4), pp. 951-960. doi: 10.1099/00221287-148-4-951.

15. Sacco, E. et al. (2007) "The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis", *Proceedings of the National Academy of Sciences*, 104(37), pp. 14628-14633. doi: 10.1073/pnas.0704132104.
16. Dessen, A. et al. (1995) "Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis", *Science*, 267(5204), pp. 1638-1641. doi: 10.1126/science.7886450.

17. Mdluli, K. (1998) "Inhibition of a Mycobacterium tuberculosis -Ketoacyl ACP Synthase by Isoniazid", *Science*, 280(5369), pp. 1607-1610. doi: 10.1126/science.280.5369.1607.

18. Bhatt, A. et al. (2007) "The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development", *Molecular Microbiology*, 64(6), pp. 1442-1454. doi: 10.1111/j.1365-2958.2007.05761.x.

19. Daffé, M., Quémard, A. and Marrakchi, H. (2017) "Mycolic Acids: From Chemistry to Biology", *Biogenesis of Fatty Acids, Lipids and Membranes*, pp. 1-36. doi: 10.1007/978-3-319-43676-0_18-1.

20. Gavalda, S. et al. (2014) "The Polyketide Synthase Pks13 Catalyzes a Novel Mechanism of Lipid Transfer in Mycobacteria", *Chemistry & Biology*, 21(12), pp. 1660-1669. doi: 10.1016/j.chemb.2014.10.011.

21. B., S. and M. K., K. (2020) "Insights into structures of imidazo oxazines as potent polyketide synthase XIII inhibitors using molecular modeling techniques", *Journal of Receptors and Signal Transduction*, 40(4), pp. 313-323. doi: 10.1080/10799893.2020.1742740.

22. Engohang-Ndong, J. et al. (2003) "EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator", *Molecular Microbiology*, 51(1), pp. 175-188. doi: 10.1046/j.1365-2958.2003.03809.x.
23. Takayama, K., Wang, L. and David, H. (1972) "Effect of Isoniazid on the In Vivo Mycolic Acid Synthesis, Cell Growth, and Viability of Mycobacterium tuberculosis", Antimicrobial Agents and Chemotherapy, 2(1), pp. 29-35. doi: 10.1128/aac.2.1.29.

24. Timmins, G. and Deretic, V. (2006) "Mechanisms of action of isoniazid", Molecular Microbiology, 62(5), pp. 1220-1227. doi: 10.1111/j.1365-2958.2006.05467.x.

25. Rawat, R., Whitty, A. and Tonge, P. (2003) "The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance", Proceedings of the National Academy of Sciences, 100(24), pp. 13881-13886. doi: 10.1073/pnas.2235848100.

26. Abbadi, B. et al. (2018) "Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis?", Frontiers in Microbiology, 9. doi: 10.3389/fmicb.2018.00880.

27. Freundlich, J. et al. (2009) "Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis", ChemMedChem, 4(2), pp. 241-248. doi: 10.1002/cmdc.200800261.

28. Willand, N., Flipo, M., Villemagne, B., Baulard, A. and Deprez, B., 2019. Recent advances in the design of inhibitors of mycobacterial transcriptional regulators to boost thioamides antitubercular activity and circumvent acquired-resistance. In Annual Reports in Medicinal Chemistry (Vol. 52, pp. 131-152). Academic Press.

29. Guedes, I., Krempser, E. and Dardenne, E. (2017) DockThor 2.0: a Free Web Server for Protein-Ligand Virtual Screening, Semanticscholar.org. Available at: https://www.semanticscholar.org/paper/DockThor-2-0-a-Free-Web-Server-for-Virtual-
30. Schrödinger, L.L.C., The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC (2017). Google Scholar There is no corresponding record for this reference.

31. Guex, N. and Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. electrophoresis, 18(15), pp.2714-2723.

32. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. and Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), pp.2785-2791.

33. Tian, W. et al. (2018) "CASTp 3.0: computed atlas of surface topography of proteins", Nucleic Acids Research, 46(W1), pp. W363-W367. doi: 10.1093/nar/gky473.

34. Xu, L., Jiang, W., Jia, H., Zheng, L., Xing, J., Liu, A. and Du, G., 2020. Discovery of Multitarget-Directed Ligands Against Influenza A Virus From Compound Yizhihao Through a Predictive System for Compound-Protein Interactions. Frontiers in Cellular and Infection Microbiology, 10, p.16.

35. Zaretzki, J., Bergeron, C., Huang, T.W., Rydberg, P., Swamidass, S.J. and Breneman, C.M., 2013. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics, 29(4), pp.497-498.

36. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), pp.3-25.

37. Ghose, A., Viswanadhan, V. and Wendoloski, J. (1999) "A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A
Qualitative and Quantitative Characterization of Known Drug Databases", Journal of Combinatorial Chemistry, 1(1), pp. 55-68. doi: 10.1021/cc9800071.

38. Veber, D. et al. (2002) "Molecular Properties That Influence the Oral Bioavailability of Drug Candidates", Journal of Medicinal Chemistry, 45(12), pp. 2615-2623. doi: 10.1021/jm020017n.

39. Muegge, I., Heald, S. and Brittelli, D. (2001) "Simple Selection Criteria for Drug-like Chemical Matter", Journal of Medicinal Chemistry, 44(12), pp. 1841-1846. doi: 10.1021/jm015507e.

40. Daina, A., Michielin, O. and Zoete, V. (2017) "SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules", Scientific Reports, 7(1). doi: 10.1038/srep42717.

41. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G. and Tang, Y., 2019. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), pp.1067-1069.

42. Phillips, James C., Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kalé, and Klaus Schulten. 2005. "Scalable Molecular Dynamics With NAMD". Journal Of Computational Chemistry 26 (16): 1781-1802. doi:10.1002/jcc.20289.

43. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ et al (1998) Allatom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f

44. Humphrey, W., Dalke, A. and Schulten, K. (1996) "VMD: Visual molecular dynamics", Journal of Molecular Graphics, 14(1), pp. 33-38. doi: 10.1016/0263-7855(96)00018-5.
45. Jo, S. et al. (2008) "CHARMM-GUI: A web-based graphical user interface for CHARMM", Journal of Computational Chemistry, 29(11), pp. 1859-1865. doi: 10.1002/jcc.20945.

46. Sarkar B, Islam SS, Ullah MA, Hossain S, Prottoy MN, Araf Y, Taniya MA. Computational assessment and pharmacological property breakdown of eight patented and candidate drugs against four intended targets in Alzheimer’s disease. Advances in Bioscience and Biotechnology. 2019 Nov 25;10(11):405.DOI: 10.4236/abb.2019.1011030

47. Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. Journal of Receptors and Signal Transduction. 2020 Mar 28:1-5. DOI: 10.1080/10799893.2020.1742741

48. Lipinski, C. (2000) "Drug-like properties and the causes of poor solubility and poor permeability", Journal of Pharmacological and Toxicological Methods, 44(1), pp. 235-249. doi: 10.1016/s1056-8719(00)00107-6.

49. Egan, W., Merz,, K. and Baldwin, J. (2000) "Prediction of Drug Absorption Using Multivariate Statistics", Journal of Medicinal Chemistry, 43(21), pp. 3867-3877. doi: 10.1021/jm000292e.

50. Wang, J. and Hou, T. (2011) "Recent Advances on Aqueous Solubility Prediction", Combinatorial Chemistry & High Throughput Screening, 14(5), pp. 328-338. doi: 10.2174/138620711795508331.

51. Ertl, P., Rohde, B. and Selzer, P. (2000) "Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties", Journal of Medicinal Chemistry, 43(20), pp. 3714-3717. doi: 10.1021/jm000942e.
52. Martin, Y. (2005) "A Bioavailability Score", Journal of Medicinal Chemistry, 48(9), pp. 3164-3170. doi: 10.1021/jm0492002.

53. Nebert, D. and Russell, D. (2002) "Clinical importance of the cytochromes P450", The Lancet, 360(9340), pp. 1155-1162. doi: 10.1016/s0140-6736(02)11203-7.

54. Phang-Lyn, S. and Llerena, V. (2020) "Biochemistry, Biotransformation", StatPearls Publishing, p. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544353/ (Accessed: 22 November 2020).

55. Zanger, U. et al. (2008) "Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation", Analytical and Bioanalytical Chemistry, 392(6), pp. 1093-1108. doi: 10.1007/s00216-008-2291-6.

56. Zanger, U. and Schwab, M. (2013) "Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation", Pharmacology & Therapeutics, 138(1), pp. 103-141. doi: 10.1016/j.pharmthera.2012.12.007.

57. Zaretzki, J. et al. (2012) "RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules", Bioinformatics, 29(4), pp. 497-498. doi: 10.1093/bioinformatics/bts705.

58. Li, A. (2001) "Screening for human ADME/Tox drug properties in drug discovery", Drug Discovery Today, 6(7), pp. 357-366. doi: 10.1016/s1359-6446(01)01712-3.

59. Radchenko, E. et al. (2016) "Prediction of human intestinal absorption of drug compounds", Russian Chemical Bulletin, 65(2), pp. 576-580. doi: 10.1007/s11172-016-1340-0.

60. Wang, N. et al. (2016) "ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting", Journal of Chemical Information and Modeling, 56(4), pp. 763-773. doi: 10.1021/acs.jcim.5b00642.
61. Amin, M. (2013) "P-glycoprotein Inhibition for Optimal Drug Delivery", Drug Target Insights, 7, p. DTI.S12519. doi: 10.4137/dti.s12519.

62. Małkiewicz, M. et al. (2019) "Blood-brain barrier permeability and physical exercise", Journal of Neuroinflammation, 16(1). doi: 10.1186/s12974-019-1403-x.

63. Ramappa, V. and Aithal, G. (2013) "Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management", Journal of Clinical and Experimental Hepatology, 3(1), pp. 37-49. doi: 10.1016/j.jceh.2012.12.001.

64. Todd Bourcier, D. (2015) "Improving Prediction of Carcinogenicity to Reduce, Refine, and Replace the Use of Experimental Animals", Journal of the American Association for Laboratory Animal Science: JAALAS, 54(2), p. 163. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382620/ (Accessed: 22 November 2020).

65. Brigo, A. et al. (2005) "Comparison of Multiple Molecular Dynamics Trajectories Calculated for the Drug-Resistant HIV-1 Integrase T66I/M154I Catalytic Domain", Biophysical Journal, 88(5), pp. 3072-3082. doi: 10.1529/biophysj.104.050286.