Effects of sub-atmospheric pressure and dissolved oxygen concentration on lesions generated in ex vivo tissues by high intensity focused ultrasound

Min Hea, Zhiqiang Zhonga, Deping Zenga, Xiaobo Gongb, Zhibiao Wanga,\ast, Faqi Lia,\ast

a State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China;

b National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, P. R. China.

(Received Nov. 18, 2020; received in revised form ; accepted ; Available online)

\astCorresponding author.

E-mail address: wangzb@cqmu.edu.cn(Z. Wang); lifq@cqmu.edu.cn(F. Li)
Abstract

Background: Acoustic cavitation plays an important role in the medical treatment using high intensity focused ultrasound (HIFU), but unnecessarily strong cavitation also could deform the morphology and enlarge the size of lesions. It is known that the increase of ambient hydrostatic pressure \(P_{stat} \) can control the acoustic cavitation but the question how decrease of \(P_{stat} \) and dissolved oxygen concentration (DOC) influences the strength of cavitation has not been thoroughly answered.

Methods: \(Ex \ viva \) bovine liver tissues were immersed in degassed water with different DOC of 1.0 mg/L, 1.5 mg/L and 2.0 mg/L. Ultrasound (US) of 1 MHz and the spatial and temporal average intensity \(I_{sata} \) of 6500 W/cm\(^2\) was used to expose two groups of in vitro bovine livers for two seconds; one group was under atmospheric pressure \(P_{stat} = 1 \) bar and the other was under sub-atmospheric pressure \(P_{stat} = 0.1 \) bar. Acoustic cavitation was detected by a passive cavitation detector (PCD) during the exposure process. Echo signals at the focal zone of HIFU were monitored by B-mode ultrasound imaging before and after exposure.

Results: The results demonstrated a significant difference of broadband acoustic emissions from the cavitation bubbles, echo signals on B mode image, morphology of lesions under various condition of ambient pressure and DOC. The lesion volume in tissue was increased with the increase of ambient pressure and DOC.

Conclusion: Cavitation could be suppressed through sub-atmospheric pressure and low DOC level in liver tissue, which could provide a method of controlling cavitation in HIFU treatment to avoid unpredictable lesions.

Keywords: HIFU; Cavitation; Lesion; Sub-atmospheric pressure; Dissolved oxygen concentration
Background

As a noninvasive therapy for cancer treatment, high intensity focused ultrasound (HIFU) has recently been received more and more attentions [1]. The absorption of highly localized ultrasound energy by the targeted tissue in the focal region allows the temperature in situ rapidly rise over 60℃, consequently the irreversible coagulation necrosis takes place instantaneously [2], while the surrounding tissues are spared from the significant damage [3]. During HIFU treatment, acoustic cavitation plays an important role through the collapse of oscillating microbubbles in tissues [4, 5]. Cavitation enhances lesion formation mainly by local high intensity acoustic wave, thermal deposition of acoustic radiation from the compressed bubbles and the viscous loss of bubble oscillation through tissue organization and the body liquid [6-8]. Coussios et al. [9] indicated that the appearance of cavitation bubbles would change the acoustic impedance and attenuation coefficient, resulting in more severe lesion. Chen et al. [10] and Watkin et al. [11] found that the morphology and size of targeted tissue were out of control due to severe cavitation. Sokka et al. [12] observed that lesions with cavitation in the region closer to the transducer of thigh tissue of rabbit were about 2 ~ 3 times larger by volume than the lesions under the same exposure conditions without cavitation. He et al.[13] proved that cavitation contributed more to lesion formation when high intensity HIFU exposed to ex vivo bovine liver tissue, and the morphology of lesion was distorted seriously by cavitation. Hynynen[14] showed that an enhanced heating effect in dog’s thigh tissue during sonications, and concluded that such effect should be avoided in clinical therapy because they might lead to unpredictable thermal and mechanical damage. Chapelon et al. [15-17] observed irregular lesion outside the focal zone when uncontrolled cavitation occurred during HIFU treatment, which affected the therapeutic effects of targeted tissue. They strongly recommended that acoustic
cavitation during the treatment should be avoided.

Several researchers elevated the ambient hydrostatic pressure (P_{stat}) to suppress cavitation \cite{18-20} in HIFU treatment. Caupin and Herbert \cite{21} demonstrated that cavitation threshold would increase with the increase of hydrostatic pressure, but sub-atmospheric pressure would strengthen the process of expansion motion of microbubbles and promote the activities of cavitation bubbles. After systematic experiment and molecular dynamics simulation, Kinjo and Matsumoto \cite{22} manifested that cavitation nuclei would appear immediately under the condition of a sub-atmospheric pressure of 0.2 bar, and the appearance time would delay when under sub-atmospheric pressure with P_{stat} equal to 0.4 bar. As sub-atmospheric pressure was used to accelerate the processing for extraction from compound \cite{23-26}, lower acoustic energy was needed for generation of cavitation under sub-atmospheric pressure. Thus, cavitation was easier to take place, which made the substances extraction efficiency higher. However, all these studies were all performed in water. It is still unknown whether the sub-atmospheric pressure would influence cavitation activities in biological tissues such as the liver during the process of HIFU exposure.

Dissolved oxygen concentration (DOC) also plays a significant role to ensure the efficiency and safety of HIFU treatment. A change in the gas content of a medium can affect the propagation of focused ultrasound beam, leading to an unpredictable lesion. Saito and Soetanto \cite{27} showed that the quantity of microbubbles would increase with the increase of DOC during ultrasound irradiation. Tuziuti \textit{et al.} \cite{28} indicated that cavitation was more active as the increase of DOC in a solution. Stomach and intestinal preparation including fasting and water-deprivation were necessary before the clinical treatment of liver cancer, pancreatic cancer and kidney cancer \cite{29-31}. When treating prostate cancer and uterine fibroid, and bladder injection with degassed water as acoustic coupling
medium through the catheter was also needed [32, 33], and the DOC of degassed water should be less than 4 mg/L, according to the treatment standard issued by the State Food & Drug Administration of China [34]. In HIFU experiments, isolated biological tissues such as bovine liver were generally degassed for 1 h [35]. However, the value of DOC in bovine liver tissue was not clearly stated in literature.

Thus, the aim of this study is to investigate the influence of P_stn and DOC levels on the variation of HIFU-induced lesions and cavitation behavior in ex vivo bovine livers. The mechanism of lesion formation is also analyzed in the study.

Results

Cavitation signal

Under the condition of atmospheric pressure and sub-atmospheric pressure, the broadband emissions from ex vivo bovine liver exposed by HIFU in degassed water with different DOC were shown in Fig. 1. The black solid line was the baseline which was detected without HIFU exposing. The signals of broadband emissions under atmospheric pressure (Fig. 1a) were higher than that under sub-atmospheric pressure (Fig. 1b) when DOC was the same. Under the condition of atmospheric pressure (1 bar), the signal of broadband emissions at three DOC levels (1.0 mg/L, 1.5 mg/L and 2.0 mg/L) were all above the noise level of the system during HIFU exposure. Moreover, the signal of broadband noise increased with an increase of the DOC levels. Under the condition of sub-atmospheric pressure (0.1 bar), there was no signal of broadband emissions above the noise level of the system except under DOC of 2.0mg/L. The violent collapse of transient cavitation is the only source of broadband emissions[10], these results indicated that each DOC
level had transient cavitation behavior during HIFU exposure under atmospheric pressure, but under the condition of sub-atmospheric pressure, only 2.0 mg/L had transient cavitation behavior.

Gray level variation on B-mode ultrasound

Fig. 2 showed B-mode ultrasound image change before and after HIFU exposure. HIFU focus was located in the center of white dotted circle during the exposure. Under the condition of atmospheric pressure (1 bar), hyper-echoic change was found in the focus after HIFU exposure under the condition of different DOC levels. Under sub-atmospheric pressure (0.1 bar), hyper-echoic changes were observed found under DOC condition of 1.5 mg/L and 2.0 mg/L, but no hyper-echo at 1.0 mg/L DOC.

Lesions on ex vivo bovine livers

The morphology of lesions in ex vivo bovine liver exposed by HIFU was shown in Fig. 3. Under atmospheric pressure (1 bar), the morphology of lesions was very different from each other. In the 2.0 mg/L DOC group, the lesion was teardrop-shaped. In the 1.5 mg/L and 1.0 mg/L DOC groups, the lesions were approximately ellipsoidal. Under sub-atmospheric pressure (0.1 bar), in the 2.0 mg/L DOC group, the lesion was approximately cigar-shaped. In the 1.5 mg/L DOC group, the lesion was also cigar-shaped but the size of lesion was smaller than that in the 2.0 mg/L group, with homogeneous coagulation necrosis in the central part. In the 1.0 mg/L DOC group there was no significant lesion formed in the liver tissue. In addition, when the DOC level was the same, the size of lesions at atmospheric pressure (1 bar) were larger than that at sub-atmospheric pressure (0.1 bar), and damage on the central zone of lesion at atmospheric pressure (1 bar) was severer than that at sub-atmospheric pressure (0.1 bar).
Fig. 4 showed the volume of lesions in *ex vivo* bovine liver exposed by HIFU under atmospheric pressure (1 bar) and sub-atmospheric pressure (0.1 bar) with different DOC conditions. At atmospheric pressure (1 bar), the volume of lesions in the 2.0 mg/L and 1.5 mg/L DOC group were 83.28 ± 14.56 mm3 and 76.84 ± 11.07 mm3 respectively. There was no significant difference between two groups ($p>0.05$). However, when DOC was equal to 1.0 mg/L, the volume of lesion was 47.98 ± 14.92 mm3, which was significantly decreased while compared with the 2.0 mg/L and 1.5 mg/L groups ($p<0.05$). At sub-atmospheric pressure (0.1 bar), the volume of lesions in the 2.0 mg/L, 1.5 mg/L and 1.0 mg/L groups were 20.53 ± 5.54 mm3, 16.01 ± 4.22 mm3 and 0.00 ± 0.00 mm3 respectively. There were significant differences between any two ($p<0.05$), indicating that the volume of lesion was increased with the increase of DOC levels at either atmospheric pressure or sub-atmospheric pressure. Meanwhile, the volume of lesion in tissue at atmospheric pressure (1 bar) were larger than that at sub-atmospheric pressure (0.1 bar) while DOC level kept the same ($p<0.05$).

Discussion

The main mechanisms of coagulation necrosis induced by HIFU are thermal deposition and cavitation effect[37]. During the process of HIFU exposure, the absorption of sound energy can result in thermal deposition in tissue, leading to formation of lesions[2]. Moreover, cavitation can accelerate the rise of the in situ temperature and enlarge the size of lesions[14]. Cavitation includes stable cavitation and transient cavitation[38], and the accelerated temperature increasing during HIFU exposure comes from transient cavitation[12].

Overpressure has been proved to suppress cavitation and has been used to study the influence of cavitation on HIFU-induced lesions [13, 19, 20]. This study investigates the effect of atmospheric
pressure and sub-atmospheric pressure on the formation of the lesions. Under various DOC conditions (2.0 mg/L, 1.5 mg/L or 1.0 mg/L), the broadband noise at sub-atmospheric pressure (0.1 bar) is significantly lower than that at atmospheric pressure (1 bar). It manifests that sub-atmospheric pressure can partly suppress cavitation in liver tissue during HIFU exposure, which is different from the report that sub-atmospheric pressure can strengthen cavitation activity in water by Caupin and Herbert [21]. We think that although sub-atmospheric pressure can enhance the expansion process of cavitation bubble, the mechanical strain of sub-atmospheric pressure can also disperse the bubble distribution in tissue, resulting in that cavitation bubble cannot stably formed and concentrated in the focus and the signal of sound scattering in focus is distinctly weakened. This is demonstrated by our bovine liver experiments at sub-atmospheric pressure, which reveals that the volume of the lesions is smaller than that at atmospheric pressure ($p < 0.05$). Under the experiment parameter with cavitation occurred, the central of lesions appears mechanical damage due to the collapse of cavitation bubbles. Without cavitation occurred, lesion is of homogeneous necrosis, and there is no lesion formed in bovine liver tissue while DOC is equal to 1.0 mg/L.

This study also demonstrates a certain quantity of cavitation nuclei is needed for the occurrence of cavitation. Under atmospheric pressure, PCD results showed that cavitation activities exist during HIFU exposure under the condition of three DOC levels, with the hyper-echoic changed observed on B-mode ultrasound after HIFU exposure. With the increase of DOC level, the strength of the cavitation signal enhances gradually during the process of exposure, leading to the increased volume of the lesion in bovine liver tissue. However, under sub-atmospheric pressure, cavitation signal only appeared in 2.0 mg/L DOC level group, and the B-mode ultrasound image without hyper-echoic occurred only at the DOC 1.0 mg/L group. The volume of the lesion at the condition of 2.0 mg/L
DOC is 20.53 ± 5.54 mm3, which is larger than the lesion volume of 16.01 ± 4.22 mm3 at the DOC 1.5 mg/L group ($p < 0.05$), but no lesion is observed at the DOC 1.0 mg/L group, indicating that lower DOC level could produce less gas content in water, and less than the critical number of cavitation nuclei that makes cavitation difficult occur during HIFU exposure. On the contrary, an increase of gas content in both water and tissues could facilitate the occurrence of cavitation and lesion formation, which could improve the efficiency of HIFU treatment through microbubbles[39]. In addition, Rabkin et al.[40] reported that hyper-echo on B-mode ultrasound was produced by boiling bubbles of water during HIFU exposure. But the boiling point of water at sub-atmospheric pressure (0.1 bar) is only 56°C, which is much lower than that at atmospheric pressure (1 bar). This might help understand our findings that under the condition of sub-atmospheric pressure and DOC 1.5 mg/L level, PCD showed no cavitation during HIFU exposure but a significant hyper-echo on B-mode ultrasound and homogenous lesion in bovine liver tissue.

Conclusions

Using *ex vivo* bovine livers, we investigated the effect of P_{stat} and DOC levels on the formation of HIFU-induced lesions in this study. Our results showed that the occurrence of cavitation could be suppressed through sub-atmospheric pressure and low DOC level in liver tissue. This could provide a method of controlling cavitation in HIFU treatment which could avoid unpredictable lesions. Conversely, coagulation necrosis could be enhanced by increasing the quantity of cavitation nuclei in tissues.
Methods

Experimental equipment

As shown in Fig. 5, all HIFU exposing experiments were performed in a stainless chamber (50 cm $L \times 50$ cm $W \times 70$ cm H) which filled with degassed water of different DOC. The major experimental system (Jisheng 1#, Chongqing Haifu Technology Co., Ltd, Chongqing, China) includes a 1.0MHz HIFU transducer (12-32, Chongqing Haifu Technology Co., Ltd, Chongqing, China), with an aperture diameter of 220mm and a focal length of 170mm. The probe of the B-mode ultrasound (PA230E, ESAOTE Co., Genova, Italy) was mounted in the central hole of HIFU transducer, sharing the same focus with HIFU transducer, so that its imaging plane intersected the HIFU axis along its axial length. Data cables connected to a computer through the hermetic feedthrough. A HIFU drive system, a water processing system, which can prepare for degassed water of different DOC, and sample holder are all provided by Chongqing Haifu (HIFU) Technology Co., Ltd. A rotary vane vacuum pump (2XZ-2, Taizhou Qiushi vacuum pump Co., Ltd, Zhejiang, China) was used to control the condition of P_{stat} in the chamber. DOC in water and tissue was monitored by a portable dissolved oxygen meter (LDOTM 550A-12, YSI Co., Yellow Springs, OH, USA), with measurement range of 0–50 mg/L and resolution of 0.01 mg/L.

Cavitation detection

A passive cavitation detection (PCD) (V309-SU, Olympus Panametrics NDT Inc, Waltham, MA, USA) with a central frequency of 5 MHz was used to detect the cavitation characteristics to compare the cavitation behavior. The broadband focusing PCD transducer with the diameter of
13mm and focal length of 40mm was fixed on the sample holder, shown in the Fig. 1. Acoustic signal from ex vivo bovine liver was recorded by the high-speed data acquisition card with sampling rate of 20MHz (PXie-5122, National Instruments Co., USA). The corresponding spectrum of obtained signal was analyzed via fast Fourier transform on the LabView development platform (v10.0.1, National Instruments Co., Austin, TX, USA), and the sampling step length was 15ms. The broadband noise was calculated after band-pass filter (3~7 MHz) and band-stop filter (filter stopped the signals around harmonics ± 30 kHz), to minimize the error caused by the contributions from the HIFU fundamental, second, third and fourth harmonic frequencies arising from nonlinear sound propagation.

Dissolved oxygen concentration and hydrostatic pressure detection

Degassed water at different DOC levels was prepared by regulating the water flow of a water processing system. The experimental chamber was filled with degassed water at DOC of 1.0 mg/L, 1.5 mg/L and 2.0 mg/L respectively with the temperature kept at 37°C, according to the standard protocol of HIFU treatment system[34]. The degassed bovine liver specimens were mounted in the sample holder, and then placed in the experimental chamber. Ten minutes later, the DOC of degassed water and inside the tissue was detected for five times, shown in Table 1. The DOC in water was in accord with the DOC inside the tissue. Therefore, we used the DOC in water to present the DOC inside the tissue. \(p_{\text{stat}} \) in sealed experimental chamber was changed by a vacuum pump which was turned off after five minutes to keep the experimental chamber under the \(p_{\text{stat}} \) of 0.1 bar, which was the maximum negative pressure that vacuum pump could stably support.
HIFU exposure

The liver specimens were taken from the portion of fresh bovine liver with less connective tissues and blood vessels within 6 hours after the animal was sacrificed. It was then cut into blocks of 12 cm × 6 cm × 4 cm, soaked in 0.9% saline, and degassed by vacuum pump for 60 min. Acoustic spatial and temporal averaged intensity (I_{sta}) was 6500 W/cm2 for ultrasound applied to *ex vivo* bovine livers, which cavitation could be detected clearly under atmospheric pressure. Before the exposure experiment, the acoustic power generated was measured by the radiation force method[36], and the sound field was scanned by needle-type hydrophone (HFO-660, ONDA, Sunnyvale, CA, USA), in order to ensure every experiment had the same acoustic output.

During the experiment, 1MHz HIFU transducer was used to generate a continuous wave of exposure parameter of I_{sta} 6500 W/cm2 for two seconds to expose bovine liver specimens. Experiments were done under two P_{stat}: atmospheric pressure ($P_{stat} = 1$ bar) and sub-atmospheric pressure ($P_{stat} = 0.1$ bar). Experiments with same exposure conditions were repeated for ten times. The gray level variation bovine livers at HIFU focus was monitored by B-mode ultrasound before and after HIFU exposure. Moreover, the DOC of water was detected by the portable dissolved oxygen analyzer before and after each experiment. The deviation of DOC in each group was within $±0.1$ mg/L.

Sections of the bovine liver specimens with their cross section perpendicular to the direction of acoustic propagation of HIFU were cut immediately after exposure to observe the lesion size and shape. The lesion was photographed digitally under every exposure condition. The *HIFU measurement* software (1.0, Chongqing Haifu Technology Co., Ltd, Chongqing, China) was used to set the scale and mark the boundary of the lesion region. The SPSS software (19.0, IBM, Camp
Takajo, NY, USA) was used for statistical analysis. The final measurement results were expressed by mean ± standard deviation. Statistical significance of differences was evaluated using paired-sample t test. If \(p < 0.05 \), a significant difference between two groups was specified.

List of abbreviations

DOC: dissolved oxygen concentration;

HIFU: high intensity focused ultrasound;

PCD: passive cavitation detection;

\(P_{\text{stat}} \): ambient hydrostatic pressure.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 11274404, 11574039), and the State Key Development Program for Basic Research of China (973 program, Grant No. 2011CB707900).

Authors’ contributions

MH, FL and ZW designed the study, MH and ZZ performed the experiments, collected and
processed the data, XG and DZ maintained the experimental setup, MH wrote the manuscript, FL revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Halpern EJ. High-intensity focused ultrasound ablation: Will image-guided therapy replace conventional surgery? Radiology. 2005, 235:345-6.
2. Hill CR, Ter Haar G. Review article: high intensity focused ultrasound—potential for cancer treatment. Brit J Radiol. 1995, 68:1296-303.
3. Ter Haar G. Ultrasound focal beam surgery. Ultrasound Med Biol. 1995, 21:1089-100.
4. Ter Haar G, Daniels S, Morton K. Evidence for Acoustic Cavitation In Vivo: Thresholds for Bubble Formation with 0.75-MHz Continuous Wave and Pulsed Beams. IEEE Trans Ultrason Ferroelectr Freq Control. 1986, 33:162-4.
5. Holt G, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol. 2001, 27:1399-412.
6. Stride E, Saffari N. The potential for thermal damage posed by microbubble ultrasound contrast agents. Ultrasonics. 2004, 42:907-13.
7. Sboros V. Response of contrast agents to ultrasound. Adv Drug Deliver Rev. 2008, 60:1117.
8. Wan M, Feng Y, Haar GT. Cavitation in Biomedicine. Springer Netherlands; 2015.
9. Coussios CC, Farny CH, ter Haar G, Roy RA. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia. 2007, 23:105-20.
10. Chen WS, Brayman AA, Matula TJ, Crum LA. Inertial cavitation dose and hemolysis produced in vitro with or without Optison. Ultrasound Med Biol. 2003, 29:725-37.
11. Watkin N, Ter Haar G, Rivens I. The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery. Ultrasound Med Biol. 1996, 22:483-91.
12. Sokka SD, King RK. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol. 2003, 48:223.
13. He M, Zhong Z, Li X, et al. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound. Ultrasound Sonochem. 2017, 36:36-41.
14. Hyynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol. 1991, 17:157-69.
15. Chapelon JY, Prat F, Delon C, Maragonari J. Effects of cavitation in the high intensity therapeutic ultrasound. In Ultrasonics Symposium, 1991. Proceedings., IEEE. 1991:1357-60 vol.2.
16. Chapelon JY, Dupenloup F, Cohen H, Lenz P. Reduction of cavitation using pseudorandom signals [therapeutic US]. IEEE T Ultrason Ferr. 1996, 43:623-5.
17. Chapelon JY, Cathignol D, Cain C, Ebbini E, Kluivstra JU, Sapochnikov OA, Fleury G, Berriet R, Chupin L, Guey JL. New piezoelectric transducers for therapeutic ultrasound. Ultrasound
18. Reed JA, Bailey MR, Nakazawa M, et al. Separating nonlinear propagation and cavitation effects in HIFU. In Ultrasonics, 2003 IEEE Symposium on. IEEE; 2003:728-31.
19. Sapozhnikov OA, Khokhlova VA, Bailey M, et al. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am. 2002, 112:1183-95.
20. Bailey MR, Couret LN, Sapozhnikov OA, et al. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol. 2001, 27:695-708.
21. Caupin F, Herbert E. Cavitation in water: a review. Comptes Rendus Physique. 2006, 7:1000-17.
22. Kinjo T, Matsumoto M. Cavitation processes and negative pressure. Fluid Phase Equilib. 1998, 144:343-50.
23. Dong LL, Fu YJ, Zu YG, et al. Negative pressure cavitation accelerated processing for extraction of main bioactive flavonoids from Radix Scutellariae. Chemical Engineering and Processing: Process Intensification. 2011, 50:780-9.
24. Mu F, Yang L, Wang W, et al. Negative-pressure cavitation extraction of four main vinca alkaloids from Catharanthus roseus leaves. Molecules. 2012, 17:8742-52.
25. Tian H, Li WY, Xiao D, et al. Negative-Pressure Cavitation Extraction of Secoisolariciresinol Diglycoside from Flaxseed Cakes. Molecules. 2015, 20:11076-89.
26. Li L, Liu JZ, Luo M, et al. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2016, 1033-1034:40-8.
27. Saito T, Soetanto K. Study on relationship between amount of dissolved oxygen and quantity of microbubbles by ultrasound exposure. Collection of acoustics society studies in Japan. 1998, 1998.
28. Tuziuti T, Hatanaka S, Yasui K, et al. Influence of dissolved oxygen content on multibubble sonoluminescence with ambient-pressure reduction. Ultrasonics. 2002, 40:651-4.
29. Xu LS Shen CF. Clinical observation on the treatment of liver cancer with high intense focused ultrasonic (HIFU) apparatus. Journal of Qilu Oncology. 2005, 12:1505-7.
30. Wong SH, Ergun AS, Yaralioglu GG, Oralakan O, Pauly KB, Khuri - Yakub BT. Design of HIFU CMUT Arrays for Treatment of Liver and Renal Cancer. In International Symposium on Therapeutic Ultrasound. 2007:54-60.
31. Ohto M, Fukuda H, Ito R, et al. Contrast-Enhanced Three Dimensional Ultrasoundography supporting HIFU treatment of Small Liver Cancer. 2009, 1113:86-90.
32. Sammet S, Partanen A, Yousuf A, et al. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle. In International Symposium on Therapeutic Ultrasound. 2017:16004.
33. Liu Y, Liu W, Song Y, et al. Effects of carboprost tromethamine on HIFU ablation of uterine fibroid. Chongqing Medicine. 2016, 45:3949-53.
34. (SFDA) SFDA. High intensity focused ultrasound therapy system. In Volume YY 0592-2005; 2006.
35. Mclaughlan J, Rivens I, Ter Haar G. Cavitation detection in ex vivo bovine liver tissue exposed to high intensity focused ultrasound (HIFU). In IEEE International Symposium on Biomedical Imaging: From Nano To Macro. 2007:1124-7.
36. Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Advanced Drug Delivery Reviews. 2008, 60:1103-16.

37. Bailey MR, Khokhlova VA, Sapozhnikov OA, et al. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics. 2003, 49:369-88.

38. Gielen B, Jordens J, Janssen J, et al. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique. Ultrason Sonochem. 2015, 25:31-9.

39. Gielen B, Jordens J, Janssen J, et al. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique. Ultrason Sonochem. 2015, 25:31-9.

39. Peng S, Xiong Y, Li K, He M, Deng Y, Chen L, Zou M, Chen W, Wang Z, He J. Clinical utility of a microbubble-enhancing contrast ("SonoVue") in treatment of uterine fibroids with high intensity focused ultrasound: a retrospective study. Eur J Radiol. 2012, 81:3832-8.

40. Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound Med Biol. 2005, 31:947-56.

Figure captions

Fig. 1 Broadband noise during HIFU exposure, (a) atmospheric pressure, (b) sub-atmospheric pressure. The black solid line was the baseline which was detected without HIFU exposing. The red, blue and purple solid line represent the broadband noise signal at the DOC of 2.0mg/L, 1.5mg/L and 1.0mg/L respectively.

Fig. 2 B-mode ultrasound image before and after HIFU exposure. The white dotted circle flagged the HIFU focus zone. Hyper-echoic occurred under all the condition except at sub-atmospheric pressure with the DOC of 1.0mg/L.

Fig. 3 Morphology variation of lesions in *ex vivo* bovine liver. The first row was experimented under the condition of atmospheric pressure, and the second row was experimented under the condition of sub-atmospheric pressure. The column represented the HIFU exposure conducted under the DOC of 2.0mg/L, 1.5mg/L and 1.0mg/L. Lesion appeared under all the condition except at sub-atmospheric pressure with the DOC of 1.0mg/L.

Fig. 4 Lesion volume variation in *ex vivo* bovine liver after HIFU exposure. At atmospheric pressure (1 bar), the volume of lesions in the 2.0 mg/L and 1.5 mg/L DOC group were 83.28 ± 14.56 mm3.
and 76.84 ± 11.07 mm3 respectively. At sub-atmospheric pressure (0.1 bar), the volume of lesions in the 2.0 mg/L, 1.5 mg/L and 1.0 mg/L groups were 20.53 ± 5.54 mm3, 16.01 ± 4.22 mm3 and 0.00 ± 0.00 mm3 respectively. Lesion volume under atmospheric pressure was significant different from that under sub-atmospheric pressure when DOC kept the same. *represents $p<0.05$ for significance of difference between the two group, **represents $p>0.05$ for no significance of difference between the two group.

Fig. 5 Schematic diagram of the experimental system. The HIFU transducer was driven by the HIFU drive system. The input power was set on the PC. The PCD signal was acquired by the data acquisition card and shown on the PC. The ultrasound diagnostic scanner, which was controlled by PC, was used to scan the B mode image of tissue.

Table captions

Table 1 The comparation of DOC in degassed water and inside the tissue