DYNAMICAL MASSES OF EARLY-TYPE GALAXIES AT $z \sim 2$: ARE THEY TRULY SUPERDENSE?*

MICHELE CAPPELLARI1, S. DI SERE.GO ALIGHIERI2, A. CIMATTI3, E. DADDI4, A. RENZINI5, J. D. KURF6, P. CASSATA7, M. DICKINSON8, A. FRANCESCHINI9, M. MIGNOLI10, L. POZZETTI10, G. RODIGHIERO10, P. ROSATI11, AND G. ZAMORAN11

1 Sub-Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
2 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
3 Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, 40127 Bologna, Italy
4 CEA-Saclay, DSM/DAPNIA/Servic d’Astrophysique, 91191 Gif-sur-Yvette Cedex, France
5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
6 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
7 Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA 01003-9305, USA
8 NOAO-Tucson, 950 North Cherry Avenue, Tucson, AZ 85719, USA
9 Università di Padova, Dipartimento di Astronomia, Vicolo dell’Osservatorio 2, 35122 Padova, Italy
10 INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy
11 European Southern Observatory, Karl Schwarzschild Street 2, 85748 Garching bei München, Germany

Received 2009 June 2; accepted 2009 September 3; published 2009 September 24

ABSTRACT

We measured stellar velocity dispersions σ and derived dynamical masses of nine massive ($M \approx 10^{11} M_\odot$) early-type galaxies (ETGs) from the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GA...)

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation – galaxies: high-redshift

1. INTRODUCTION

In the hierarchical galaxy formation paradigm, where galaxies are assembled by the merging of multiple building blocks in a universe dominated by dark matter (e.g., Springel et al. 2005), the most massive early-type galaxies (ETGs) are assembled last. However, observations in the local universe and at high redshift seem to converge toward a “downsizing” mechanism for ETGs formation in which the stars of the most massive systems formed at the highest redshifts ($z \gtrsim 3$), while the stars in the smaller ones were produced over more extended periods of time (Cowie et al. 1996; Heavens et al. 2004; Thomas et al. 2005; Treu et al. 2005; Renzini 2006). A way to reconcile these concerns affecting the compactness determinations due to possible observational biases affecting either the mass or size estimate (due to the surface brightness dimming, the presence of active galactic nuclei (AGNs) or nuclear starbursts) of galaxies at high redshift. Here, we try to address these concerns by measuring the velocity dispersion σ of the stars, related to the density, and deriving masses via dynamical models of mass-selected ETGs at $1.4 \lesssim z \lesssim 2$. We assumed a flat universe with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$.

2. VELOCITY DISPERSION DETERMINATION

2.1. Spectroscopic and Photometric Data

The sample under examination comes from the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GA...)

* Based on observations collected at the European Southern Observatory, Paranal, Chile, ESO Large Programs 173.A-0687.

12 http://www.arcetri.astro.it/~cimatti/gmass/gmass.html

L34
Observatories Origin Deep Survey (GOODS)–South public image taken with IRAC on the Spitzer Space Telescope (M. Dickinson et al. 2009, in preparation).

The GMASS optical multi-slit spectroscopy used here was obtained with the ESO VLT + FORS2 (MXU mode) in the wavelength range 600–1000 nm with the grism 300I, using very long integration times of up to 32 hr per spectroscopic mask, and with a slit width of 1 arcsec. We adopted as instrumental resolution the mean $\sigma_{\text{inst}} = 130 \pm 21$ km s$^{-1}$ of the values derived from sky emission lines and a star, where the error is half the difference between the two determinations. This conservative error also accounts for the small dependence of the resolution with wavelength. We also use public HST/ACS/F850LP (z-band) photometry from GOODS–South (Giavalisco et al. 2004).

2.2. Library of Stellar Templates

The FORS2 observations span a rest-frame UV wavelength range of 230–385 nm at the mean redshift $z \approx 1.6$ of the GMASS sample. To measure stellar kinematics, we need stellar templates in the UV and we cannot use the extensive ground-based stellar libraries. Moreover, no empirical UV library span the full required spectral range.

For this, we use synthetic libraries, which now can reproduce spectra of real stars remarkably well (Munari et al. 2005; Martins & Coelho 2007). The mismatch in minor spectral features is not critical when working with low-S/N spectra dominated by systematics. Here, we selected as templates a subset of 33 models from the high-resolution $R = 20,000$ synthetic spectral library13 by Munari et al. (2005) spanning a wide range of temperatures $3500 \leq T \leq 10,000$ and surface gravities $0 \leq \log g \leq 5$, at solar metallicity and abundance.

2.3. Individual Spectra at $z \approx 1.4$

Some sharp absorptions are required for a reliable kinematics extraction. In the rest-frame wavelength range of interest (250–400 nm), the only significant ones are the Mg$\ II$ doublet (280 nm), Mg$\ I$ (285 nm) on the blue side, the Ca$\ II$ H and K (~ 395 nm) absorptions and a blend of Fe$\ I$ and Mg$\ I$ (384 nm) on the red side.

At $z \gtrsim 1.5$, the red spectral features fall outside our observed red range of 1000 nm and the kinematics relies on the Mg$\ II$ doublet and Mg$\ I$ absorptions. Sufficient signal-to-noise ratio (S/N) is required for robust measurements at these redshifts. For this, we could only measure reliable σ for two $z \approx 1.4$ individual galaxies, where the red features could be included in the fit. For all σ determinations, we used the Penalized Pixel-Fitting method14 (pPXF; Cappellari & Emsellem 2004) with the 33 templates of Munari et al. (2005), including additive polynomials, to correct for residual template mismatch or sky subtraction errors, and multiplicative polynomials, to correct possible spectral calibration errors.

We verified the stability of our results with different degrees between 1 and 4 for the two sets of polynomials. In the fits 4–8 of the 33 templates were selected by pPXF to reproduce the spectrum.

The spectrum with the highest mean S/N ≈ 8 is GMASS 2470 (Table 1 of C08). We measured σ_{obs} (before correcting for instrumental resolution) for three wavelength ranges (Figure 1)—(1) the full range (255–405 nm); $\sigma_{\text{obs}} = 192 \pm 13$ km s$^{-1}$; (2) the blue range (264–297 nm); $\sigma_{\text{obs}} = 198 \pm 28$ km s$^{-1}$; (3) the red range (371–408 nm); $\sigma_{\text{obs}} = 159 \pm 18$ km s$^{-1}$. The three results are consistent within the relative error bars, giving confidence in the adopted approach. We found in general no trend with wavelength, so we adopt as standard value the one measured for the full spectral range, which as

13 http://archives.pd.astro.it/2500-10500/

14 http://www-astro.physics.ox.ac.uk/~mxc/idl/
expected has smaller errors. The galaxy stellar dispersion σ_* is

$$\sigma_* = \sqrt{\sigma_{obs}^2 - \sigma_{instr}^2}. \quad (1)$$

The values and errors for this galaxy and for GMASS 2239 are given in Table 1.

2.4. Public GMASS Stacked Spectrum

We applied the same approach of Section 2.3 to measure σ_* from the public GMASS spectrum, obtained by co-adding the individual normalized spectra of 13 ETGs within $1.4 \leq z \leq 2.0$, for an unprecedented total integration time of 480 hr and a mean S/N ≈ 9 (see Figure 4 of C08). We derived $\sigma_{obs} = 287 \pm 20$ km s$^{-1}$. Our value and error agree with the determination $\sigma_{obs} = \sqrt{57^2 + 267^2} = 273 \pm 20$ km s$^{-1}$ (with high-resolution UV stars) performed on the same spectrum by Cenarro & Trujillo (2009). Those authors used empirical stellar template spectra, so this agreement validates our approach of using synthetic templates in the UV.

An additional step is needed to estimate the characteristic σ_* of the galaxies in the stack. In fact, the spectra had to be shifted to the rest-frame wavelength before co-addition. The measured redshift can be written as

$$1 + z = (1 + z_{true}) \times (1 + V/c), \quad (2)$$

where z_{true} is the true galaxy redshift, V is the velocity shift due to an error in z, and c is the speed of light. If the galaxies had all identical spectra and the redshift errors Δz were normally distributed, the stacking would introduce an additional Gaussian velocity broadening

$$\sigma_{stack} \equiv \Delta V \approx \Delta z c/(1 + z) \quad (3)$$

in the co-added spectrum. Assuming all broadening functions to be Gaussian, the dispersion of the individual galaxies could be recovered using

$$\sigma_* = \sqrt{\sigma_{obs}^2 - \sigma_{instr}^2 - \sigma_{stack}^2}. \quad (4)$$

In the case of the public GMASS spectrum, which was not intended for kinematics measurements, the individual z were measured via cross correlation and the smallest $\sigma_{stack} \approx 141$ km s$^{-1}$ (M. Mignoli 2009, private communication). One can then only derive an upper limit to the typical dispersion in the stack $\sigma_* \leq 214$ km s$^{-1}$. This limit is smaller than the σ_* derived by Cenarro & Trujillo (2009) as they incorrectly assumed σ_{stack} to be negligible.

2.5. New Stacked Spectrum at $1.6 \leq z \leq 2.0$

We re-measured z of all 13 GMASS galaxies with pPXF and give redshifts and errors in Table 1. The new average velocity error becomes $\sigma_{stack} \approx 30$ km s$^{-1}$, which is negligible with respect to the expected dispersions. We verified the reliability of our errors by measuring z of the individual exposures of the same galaxy.

After excluding the two spectra of Section 2.3, we constructed a stacked spectrum from the seven remaining GMASS spectra with S/N ≥ 2.5 to maximize the S/N. We normalized the spectra in the 260–310 nm wavelength range before co-addition, not to bias the kinematics toward the brightest galaxies. The measured $\sigma_* = 202 \pm 23$ km s$^{-1}$ for the stack (Figure 2), corrected with Equation (4), agrees with the weighted average ($\sigma_{pred} = 205$ km s$^{-1}$ of the virial predictions (Table 1) for the galaxies in the stack. Although we do not trust the individual measured σ_* values for each low-S/N spectrum in the stack, and
3. DYNAMICAL MODELS

3.1. Jeans Modeling

The σ_r we measured for the GMASS galaxies in Section 2 can be used to determine their dynamical masses. As the galaxies have half-light radii $R_e \lesssim 0.25$, while the spectra aperture and seeing have size of $\sim 1''$, one may need significant corrections to the virial formalism used at low redshift to measure masses. One may estimate corrections using spherical Sersic dynamical models based on the Jeans equations (di Serego Alighieri et al. 2005). However, these models cannot describe well all ETGs, especially when they have disks and may rotate significantly. For this reason, van der Marel & van Dokkum (2007) and van der Wel & van der Marel (2008) used axisymmetric Jeans dynamical models of individual galaxies to take the surface brightness and possible rotation, as well as point-spread function (PSF) and aperture, directly into account when measuring masses at high redshift. This is the approach we also use here.

We adopt a multi-Gaussian expansion (MGE) (Emsellem et al. 1994) to parameterize the HST/ACS/F850LP (z-band) surface brightness of the GMASS galaxies (Figure 3), while taking the ACS PSF into account, using the software of Cappellari (2002). The following expression was used to K-correct the MGE parameters from observed count rate (C_v), in counts s$^{-1}$ per ACS pixel, into a rest-frame Johnson U-band surface brightness in mag arcsec$^{-2}$:

$$\mu_U = -2.5 \log \left(\frac{C_v \times f_{850} \times (1+z)^5}{f_U(A0V) \times p^2} \right).$$

Here, $f_{850} = 1.51 \times 10^{-19}$ erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$ is the latest inverse sensitivity of the F850LP filter, $f_U(A0V) = 4.28 \times 10^{-9}$ erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$ is the zero point of the Johnson U-band, and $p = 0.03$ is the dithered pixels size of the GOODS images. We include both the $(1+z)^5$ bolometric dimming of the surface brightness and a factor $(1+z)$ due to the redshifting of the bandwidth. The formula is accurate at $z \approx 1.4$, where the ACS/F850LP band is de-redshifted into the U band. At larger redshifts, we applied a small extra K-correction inferred from the stacked GMASS spectrum.

For each redshift, we placed the models at the corresponding angular diameter distance D_A. We computed a prediction for the velocity second moment $V_{\text{rms}}^2 = V^2 + \sigma^2$ inside a $1''$ square aperture, with a $1''$ seeing FWHM, assuming semi-isotropy ($\beta_z = 0$) and axisymmetry, for a constant $(M/L)_U = 1$, using Equation (28) of the Jeans anisotropic MGE (JAM) method of Cappellari (2008). We assumed an intermediate inclination $i = 60^\circ$ for all galaxies, but the results do not change more than 5% for an edge-on inclination ($i = 90^\circ$). The dynamical M/L of each galaxy is then given by $(M/L)_{\text{JAM}} = (\sigma/V_{\text{rms}})^2$ (Table 1). The $(M/L)_{\text{JAM}}$ decreases by 5% by assuming in the models the largest radial anisotropy $\beta_z = 0.5$ observed in nearby galaxies.

Not all seven galaxies included in the stack are expected to have the same $\sigma_r = 202$ km s$^{-1}$ we measured. Some can be higher and some lower than this average. If the virial predictions σ_{pred} were correct, the fact that generally $\sigma_{\text{pred}} < 200$ km s$^{-1}$ suggests the quoted masses and M/L are mostly overestimated.

3.2. Virial and Population Masses

In the top panel of Figure 4, we compare the dynamical mass obtained from the JAM models $M_{\text{JAM}} = L_U \times (M/L)_{\text{JAM}}$ to the virial mass $M_{\text{vir}} = 5.0 \times K_0 \sigma_r^2 / G$, where the scaling factor was calibrated using dynamical models and integral-field

15 http://www.stsci.edu/hst/acs/analysis/zeropoints

16 http://archive.stsci.edu/pub/hlsp/goods/v2/h_goods_v2.0_rdm.html
Figure 4. Top panel: comparison between mass determinations via dynamical models M_{JAM} and virial masses M_{vir}. Blue diamonds are galaxies with individually measured σ_e (Section 2.3), while red circles are galaxies for which we assumed the σ_e of the stacked spectrum (Section 2.5). The dashed line indicates equality, while the dotted lines correspond to a factor 2 \times difference. Second panel: as in the top panel, for a comparison with stellar population masses M_{pop}. The error bars in the latter span the ranges of estimates using the three different population codes presented in C08. The symbols correspond to the Maraston (2005) models. Third panel: comparison between the GMASS σ_e, the values for the Coma sample (black filled circles), and dynamical models of local ETGs (black open squares). The large red open circle indicates the weighted average value for the seven galaxies in the New Stack (Table 1). The dash-dotted lines are virial predictions of mass surface density Σ_0 inside R_e. Bottom Panel: as in the third panel, for Σ_0. We adopted errors of 30% on R_e. The dash-dotted lines are virial predictions of σ_e. The solid green lines are the values and errors from Shen et al. (2003). The magenta arrow represents a 30% decrease of σ_e.

For the data of local ETGs, for σ_e measured within 1 R_e (Cappellari et al. 2006). We estimate σ_e by increasing σ_e from the measured $1'' \times 1''$ aperture to a 1 R_e circular aperture using Equation (1) of Cappellari et al. (2006). Our R_e values were determined in a non-parametric way from circularized MGE models ($\{\sigma_j, q_j\} \leftarrow (\sigma_j \sqrt{q_j}, 1)$), which preserve the luminosity and peak surface brightness of each Gaussian. With constant ellipticity, this corresponds to the circularized radius $R_e = \sqrt{a b}$ of the ellipse enclosing half of the analytically derived MGE galaxy light. Our values agree (except for GMASS 2196) with the determination via Sersic profiles fits of C08 within their quoted 20% errors (estimated via simulations).

There is a general agreement between the JAM and virial estimate, but in median the latter is \sim30% lower. As both values are based on the same σ_e, the difference must be attributed to an underestimation of R_e and/or to non-homology in the profiles. This may be due to the low S/N caused by cosmological surface brightness dimming (Mancini et al. 2009). The JAM approach has the important advantage over the virial one that it robustly recovers the M/L even when non-homology is important or the outer parts of the profiles are lost in the noise. Considering a test model with an $I(R) \propto \exp(-k R^{1/4})$ surface brightness profile truncated at 1 R_e, we still recovered the true M/L to 1% with JAM, but the M/L was underestimated by 26% with the virial approach.

In the second panel of Figure 4, we compare M_{JAM} to the mass determination M_{pop} based on stellar population models and 11 photometric bands of C08. The values are in agreement within the rather large uncertainty in both quantities. The agreement may improve when considering the possible underestimation of σ_e for some galaxies in the stack. This shows that mass errors are $\lesssim 2 \times$ when detailed photometric information is available. It also confirms the result of C08 that ETGs at $z \sim 1$ would have dramatically lowered the dynamical (M/L)$_{\text{JAM}}$ which scales linearly with time in the age-sensitive U band. This is in agreement and extends to $z \sim 2$ previous dynamical studies of M/L evolution based on the fundamental plane at $z \sim 1$ (van Dokkum & Stanford 2003; Gebhardt et al. 2003; van de Ven et al. 2003; van der Wel et al. 2004; Treu et al. 2005; di Serego Alighieri et al. 2005, 2006; Jørgensen et al. 2006).

The M_{pop} values are based on the Chabrier (2003) initial mass function (IMF). Adopting a Salpeter IMF would increase M_{pop} by 70%, making in most cases $M_{\text{JAM}} < M_{\text{pop}}$ for these high-redshift galaxies. Similarly, with a straight Salpeter IMF the (M/L)$_{\text{pop}}$ ratio of local ETGs would be about twice the value derived from dynamical modeling (Renzini 2005; Cappellari et al. 2006), which requires instead a bottom-light IMF such as in the case of Kroupa (2001) or Chabrier’s IMFs. Therefore, it appears that the dynamical modeling of both low-redshift and high-redshift ETGs requires a bottom-light IMF.

4. DISCUSSION

We have measured the stellar velocity dispersion σ_e from individual and stacked spectra, and have constructed detailed dynamical models, of nine ETGs from the GMASS sample (C08) in the redshift range $1.4 \lesssim z \lesssim 2.0$. The agreement between the dynamical masses and the ones previously derived via population models by C08 indicates that an overestimation of the mass cannot explain the high density discovered by previous works.
If high-z ETGs are indeed denser that local ones, they should have a higher σ and surface mass density $\Sigma_{50} \equiv M_{\text{Jeans}}/(2\pi R_e^2)$ within R_e at given dynamical mass (Toft et al. 2007; van Dokkum et al. 2008). To test this fact, in the bottom two panels of Figure 4, we compare the measurements for our GMASS galaxies to a sample of ETGs in the Coma cluster (Jørgensen 1999; Jørgensen et al. 2006) and to dynamical models of local ETGs (Cappellari et al. 2006), which use the same modeling technique as this paper. We also compare with the density derived on Sloan Digital Sky Survey galaxies by Shen et al. (2003), increased by 30% to account for the fact that the population masses using a Kroupa IMF on average underestimate the dynamical mass of massive ETGs (e.g. Figure 17 of Cappellari et al. 2006). We find that our two $z \approx 1.4$ galaxies have σ and Σ_{50} consistent with the ones of local ETGs (as shown in C08). However, the galaxies in the stacked spectrum at $1.6 < z < 2.0$ have on average the σ and Σ_{50} of the most dense local ETGs.

This paper illustrates the limits of what can be achieved in the study of the dynamics of ETGs with the current generation of telescopes. It emphasize the usefulness of stacking technique to infer the dynamics of selected classes of galaxies. Much progress along these lines could be obtained with massively multi-object spectrographs on the future generations of 30–40 m telescopes. It emphasis the usefulness of stacking technique and near-infrared wavelength range, as soon available on James Webb Space Telescope, would dramatically improve the kinematics determination in ETGs at $z \gtrsim 2$ by bringing the rich set of optical absorption lines into the observable domain.

We are grateful to Inger Jørgensen for providing the virial parameters for the Coma galaxies. M.C. acknowledges support from an STFC Advanced Fellowship (PP/D005574/1). E.D. is thankful for ANR-08-JCJC-0008 funding.

REFERENCES

Bernardi, M. 2009, MNRAS, 395, 1491
Buitrago, F., Trujillo, I., Conselice, C. J., Bouwens, R. J., Dickinson, M., & Yan, H. 2008, ApJ, 687, L61
Cappellari, M. 2002, MNRAS, 333, 400
Cappellari, M. 2008, MNRAS, 390, 71
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138
Cappellari, M., et al. 2006, MNRAS, 366, 1126
Cenarro, A. J., & Trujillo, I. 2009, ApJ, 696, L43

Chabrier, G. 2003, PASP, 115, 763
Cimatti, A., Daddi, E., & Renzini, A. 2006, A&A, 453, L29
Cimatti, A., et al. 2004, Nature, 430, 184
Cimatti, A., et al. 2008, A&A, 482, 21
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Daddi, E., et al. 2005, ApJ, 626, 680
De Lucia, G., Springel, V., White, S. D. M., Croton, D., & Kauffmann, G. 2006, MNRAS, 366, 499
di Serego Alighieri, S., Lanzoni, B., & Jørgensen, I. 2006, ApJ, 647, L99
di Serego Alighieri, S., et al. 2005, A&A, 442, 125
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723
Gebhardt, K., et al. 2001, ApJ, 597, 239
Giavalisco, M., Ferguson, H. C., & Koekemoer, A. M. 2004, ApJ, 600, L93
Glazebrook, K., et al. 2004, Nature, 430, 181
Heavens, A., Panter, B., Jimenez, R., & Dunlop, J. 2004, Nature, 428, 625
Jørgensen, I. 1999, MNRAS, 306, 607
Jørgensen, I., Chiboucas, K., Flint, K., Bergmann, M., Barr, J., & Davies, R. 2006, ApJ, 639, L9
Khochfar, S., & Silk, J. 2006, ApJ, 648, L21
Kroupa, P. 2001, MNRAS, 322, 231
Longhetti, M., et al. 2007, MNRAS, 374, 614
Mancini, C., et al. 2009, MNRAS, submitted
Maraston, C., di Serego Alighieri, S., & Meynet, G. 2005, A&A, 443, 1127
Martins, L. P., & Coelho, P. 2007, MNRAS, 381, 1329
Munari, U., Sordo, R., Castelli, F., & Zwitter, T. 2005, A&A, 442, 1127
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJ, 699, L178
Renzini 2005, in The Initial Mass Function 50 Years Later, ed. E. Corbelli & F. Falla (Dordrecht: Springer), 221
Renzini, A. 2006, ARA&A, 44, 141
Scarlata, C., et al. 2007, ApJS, 172, 494
Shen, S., Mo, H. J., White, S. D. M., Blanton, M. R., Kauffmann, G., Voges, W., Brinkmann, J., & Csabai, I. 2003, MNRAS, 343, 978
Springel, V., et al. 2005, Nature, 435, 629
Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621, 673
Toft, S., et al. 2007, ApJ, 671, 285
Treu, T., et al. 2005, ApJ, 633, 174
Trujillo, I., Cenarro, A. J., de Lorenzo-Cáceres, A., Vazdekis, A., de la Rosa, I. G., & Cava, A. 2009, ApJ, 692, L118
Trujillo, I., Conselice, C. J., Bundy, K., Cooper, M. C., Eisenhardt, P., & Ellis, R. S. 2007, MNRAS, 382, 109
Trujillo, I., et al. 2006, MNRAS, 373, L36
van de Ven, G., van Dokkum, P. G., & Franx, M. 2003, MNRAS, 344, 924
van der Wel, A., Rix, H.-W. 2004, ApJ, 648, 48
van der Wel, A., Fransen, M., van Dokkum, P. G., & Rix, H.-W. 2004, ApJ, 601, L5
van der Wel, A., Holden, B. P., Zirm, A. W., Franx, M., Rettura, A., Illingworth, G. D., & Ford, H. C. 2008, ApJ, 688, 48
van der Wel, A., & van der Marel, R. P. 2008, ApJ, 684, 260
van Dokkum, P. G., & Stanford, S. A. 2003, ApJ, 585, 78
van Dokkum, P. G., et al. 2008, ApJ, 677, L5
Zirm, A. W., et al. 2007, ApJ, 656, 66