Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa

Chun-Yan Weng, Jing-Li Xu, Shao-Peng Sun, Kai-Jie Wang, Bin Lv

ORCID number: Chun-Yan Weng 0000-0003-3618-9629; Jing-Li Xu 0000-0002-2264-8591; Shao-Peng Sun 0000-0002-2221-6545; Kai-Jie Wang 0000-0001-9777-6388; Bin Lv 0000-0002-6247-571X.

Author contributions: All authors contributed to the collection of articles, data analysis, and the writing and editing of the final manuscript.

Supported by National Natural Science Foundation of China, No. 722211A00352.

Conflict-of-interest statement: The authors have no potential conflict of interest related to this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License/s/by-nc/4.0/

Abstract

Helicobacter pylori (H. pylori) infects approximately 50% of all humans globally. Persistent H. pylori infection causes multiple gastric and extragastric diseases, indicating the importance of early diagnosis and timely treatment. H. pylori eradication produces dramatic changes in the gastric mucosa, resulting in restored function. Consequently, to better understand the importance of H. pylori eradication and clarify the subsequent recovery of gastric mucosal functions after eradication, we summarize histological, endoscopic, and gastric microbiota changes to assess the therapeutic effects on the gastric mucosa.

Key Words: Helicobacter pylori; Gastric mucosa; Histology; Endoscopic findings; Gastrointestinal microbiota; Eradication therapy

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Eradication of Helicobacter pylori (H. pylori) is important. Multiple gastrointestinal diseases and extragastric diseases would emerge if H. pylori infection persists, whereas they would improve after H. pylori eradication. Thus, H. pylori eradication produces dramatic changes in the gastric mucosa. This review highlights the most recent literature and presents a comprehensive evaluation about the impact of H. pylori eradication on the gastric mucosa.
INTRODUCTION

Helicobacter pylori (H. pylori) represents a type of Gram-negative microaerophilic bacterium with a helical shape, generally infecting humans in early childhood,[1,2]. O’Connor *et al*[3] have generated a table with some of the latest epidemiological findings about *H. pylori* infection, whose rate remains high, especially in certain parts of China as well as some Eastern European and South American countries. *H. pylori* infects ~50% of the global population[4]. Some researchers have reported that *H. pylori* infection rate is associated with socioeconomic status, including educational resources and living conditions, indicating that elevated *H. pylori* prevalence is more likely to happen in underdeveloped countries[5,6]. *H. pylori* is transmitted via iatrogenic, fecal–oral, and oral–oral routes[7].

Gastrointestinal diseases develop if *H. pylori* infection persists, including acute and chronic gastritis, gastric and duodenal ulcers[8], gastric mucosa-associated lymphoid tissue lymphoma (MALToma)[9], and autoimmune gastritis (AIG)[10]. Several studies have reported that *H. pylori* infection plays a role in extragastric diseases, including immune thrombocytopenia, unexplained iron-deficiency anemia, and Alzheimer’s disease[11-15]. Moreover, the World Health Organization has included *H. pylori* among group 1 carcinogens for its critical role in gastric cancer (GC) etiology[16,17].

Besides curing gastritis, complete eradication of *H. pylori* can permanently cure peptic ulcers[18] and induce MALToma regression[19]. Additional evidence also suggests that *H. pylori* eradication treatment decreases precancerous lesions[20] and successfully prevents GC development[21,22], even after resection of early GC[23]. There is an urgent need to clearly assess the importance and necessity of *H. pylori* eradication. Therefore, the purpose of this review is to examine the impact on the gastric mucosa of *H. pylori* eradication to better understand the importance of *H. pylori* eradication.

GASTRIC MUCOSAL CHANGES AFTER *H. PYLORI* ERADICATION

The gastric mucosa, the innermost layer of the stomach, consists of the epithelium, lamina propria, and muscularis mucosae, constituting three protective mucosal barriers. The most important barrier is called epithelial–bicarbonate barrier, the first line of defense of the gastric mucosa[24]. On the one hand, long-term *H. pylori* infection induces a sequence of histopathological changes, from gastritis (acute, chronic, and atrophic), intestinal metaplasia (IM), dysplasia, and ultimately to neoplasia according to the classical Correa sequence[25,26]. On the other hand, after anti-*H. pylori* therapy using antibiotics and proton pump inhibitors (PPIs)[27], the gastric mucosa undergoes various changes.

HISTOLOGICAL CHANGES UPON *H. PYLORI* ERADICATION

With *H. pylori* infection, the histological changes in the gastric mucosa, such as gastritis, are among the important and obvious manifestations. Evaluation of the extent of gastritis was proposed and revised based on the Sydney System[28] and/or the Updated Sydney System[29], comprising endoscopic and pathological findings. However, the *H. pylori* eradication efficiency can be also evaluated by histological indicators of activity (neutrophil polymorph density), inflammation (lymphocyte and plasma cell elevations), atrophy, and IM.

Changes of inflammation and activity

Regarding changes in histological indicators of gastric mucosal activity and inflammation, comparable trends of improvement have been reported[30-35]. Activity was improved in all studies. In addition, several studies have reported neutrophil...
disappearance early after *H. pylori* eradication; consequently, activity score is considered a highly sensitive index for assessing *H. pylori* presence. Meanwhile, the inflammatory index PGII declines rapidly within 1–2 mo after successful *H. pylori* eradication[36,37]. Furthermore, inflammation is cleared at a significantly reduced rate, but with overt improvement[38].

Changes in atrophy and IM

Atrophic gastritis (AG) and IM are premalignant conditions for GC. It remains controversial whether *H. pylori* eradication reverses AG and IM.

Various parts of the stomach exhibit different histological recoverability. With a 1-year follow-up, Sung *et al*[34] carried out a study in 2000, screening 587 *H. pylori*-positive subjects, randomizing them to the omeprazole, amoxicillin and clarithromycin (n = 295) or placebo (n = 292), and indicating that GA and IM in the antrum and corpus could be alleviated by *H. pylori* eradication, as did other studies by Annibale *et al*[39] and Ohkusa *et al*[40]. However, a recent study performed by Sung *et al*[35] in 2020 corrected the above results, demonstrating that GA is improved significantly with radical treatment of *H. pylori* in the antrum and corpus, while IM did not follow the same trend. With 3 years of follow-up, our team previously assessed 197 *H. pylori*-infected patients, including 92 receiving *H. pylori* eradication therapy and 87 control patients, and found markedly decreased atrophy in individuals with successful *H. pylori* eradication[33]. However, Kang *et al*[41] found that AG was improved in the corpus but not in the antrum. Furthermore, Kodama *et al*[42] showed that atrophy was markedly reduced after *H. pylori* eradication, both in the antrum and corpus after 5–13 years of follow-up. At the same time, IM was significantly decreased in the corpus but not in the antrum, with no differences observed in the untreated group. With 10 years of follow-up, Kodama *et al*[43] evaluated the gastric mucosa at five points based on the Updated Sydney System, revealing that atrophy at every site in the stomach and IM in the lesser curvature of the corpus showed continuous and significant decreases. In addition, Hwang *et al*[44] prospectively assessed patients with a 10-year follow-up, demonstrating that AG and IM in the antrum and corpus were gradually alleviated and reached a point at which they were comparable to those of *H. pylori*-negative individuals. There are three meta-analyses[45-47] concerning improvements of AG and IM. The first[45] assessed the long-term impact of *H. pylori* eradication on histological features in the stomach, and demonstrated that eradicating *H. pylori* improved atrophy but not IM, a finding similar to that of another meta-analysis[46]. However, Kong *et al*[47] reported that IM improvement only occurred in the gastric antrum and not in the corpus.

The discrepant responses of AG and IM to *H. pylori* eradication may have several reasons. On the one hand, the methods of histological assessment of biopsy specimens, sample sizes, and amounts of biopsy specimens are different across studies. On the other hand, progression from AG to serious AG, IM, and GC takes decades, indicating that a longer follow-up period could better mimic the actual situation[48,49]. Moreover, different risk factors for AG and IM, such as bile reflux, other bacterial infections, age, and dietary structure, could also influence the final results[33,50].

Different follow-up times result in different recoverability degrees of AG and IM. Since follow-up is tightly associated with improvement data in the majority of studies, follow-up times were divided into three groups for further assessment of AG and IM, including short (< 3 years), medium (3–10 years), and long (≥ 10 years) terms (Table 1). Activity and inflammation improvements following *H. pylori* eradication were consistent. However, whether AG and IM can be completely cured upon *H. pylori* eradication remains debatable. It is worth noting that a research team in Colombia conducted a large trial with long-term follow-up in the 1990s. After 6 years[51], 12 years[32], 16 years[52], and 20 years[53], the results indicated that *H. pylori* infection increased histological progression, and anti-*H. pylori* treatment significantly induced histological improvement and disease regression, and reduced progression of precancerous lesions of GC. Therefore, AG could be reversed, and even IM, with prolonged follow-up.

The above findings suggest that *H. pylori* eradication improves AG and IM, and anti-*H. pylori* treatment confers long-term benefits in decreasing the progression of precancerous lesions. The earlier the *H. pylori* eradication, the greater the benefits.

CHANGES IN ENDOSCOPIC FINDINGS AFTER *H. PYLORI* ERADICATION

Endoscopy is an important gastrointestinal examination method. The Kyoto Classi-
Table 1: Major features of the eight trials examining for histological parameters

Ref.	Study arm, n	Eradicated	Not eradicated	Follow-up, yr	Medication	Methods	Histologic parameter	1 = OS	2 = RCT									
								AG	AG									
							Antrum Before	After	P value	Antrum Before	After	P value	Corpus Before	After	P value	Corpus Before	After	P value
Sung et al [34]	226	245	1	0.64 ± 0.78	0.70 ± 0.82	0.06 ± 0.31	0.02 ± 0.18	0.0627	0.78 ± 0.98	0.61 ± 0.94	0.014	0.04 ± 0.32	0.06 ± 0.30	0.391				
Annibale et al [39]	25	7	0.5	0.56 ± 0.24	0.5 ± 0.2	NS	1.64 ± 0.11	1.36 ± 0.18 NS	0.58 ± 0.25	0.53 ± 0.23 NS	0.52 ± 0.13	0.76 ± 0.16 NS	0.391					
Ohkusa et al [40]	115	48	1-1.25	0.8 ± 1	0.5 ± 0	P > 0.2	0.7 ± 0	0.020	0.78 ± 0.98	0.61 ± 0.94	0.014	0.04 ± 0.32	0.06 ± 0.30	0.391				
Lu et al [33]	92	62	3	1.25 ± 0.44	0.97 ± 0.83	0.01	NA	NA	0.64 ± 0.76	0.73 ± 0.77	NS	NA	NA	NS				
Kang et al [41]	210	16	3	0.85 ± 0.06	1 yr: 0.83	0.06	NS	NA	0.91 ± 0.20	3 yr: 0.45	0.15	1.02 ± 0.14	3 yr: 1.29	0.14	0.68 ± 0.15	3 yr: 0.83	0.14	NS
Kodama et al [42]	118	21	8.6	1.60 ± 0.09	1.02 ± 0.08	0.01	NA	NA	0.60 ± 0.11	0.43 ± 0.09	0.09 NS	0.17 ± 0.12	0.00 ± 0.00	0.05				
Kodama et al [43]	176	21	10	1.39 ± 0.07	6 yr: 0.90	0.00	0.02 ± 0.02	0.001	0.71 ± 0.10	0.02 ± 0.02	0.001	0.60 ± 0.11	0.43 ± 0.09	0.09				
Hwang et al [44]	442	91	10	1.51 ± 0.08	1 yr: 1.24	0.09	A1: 1.14	0.10	NA	B1: 0.97 ± 0.09	0.64 ± 0.17	0.05						
A: Amoxicillin; A1: Lesser curvature of the antrum; A2: Greater curvature of the antrum; B1: Lesser curvature of the corpus; B2: Greater curvature of the corpus; B: Bismuth subcitrate; C: Clarithromycin; E: Esomeprazole; GA: Gastric atrophy; IA: Lesser curvature of the angulus; IM: Intestinal metaplasia; L: lansoprazole; M: Metronidazole; NA: Not applied; NS: Not significant; O: Omeprazole; OS: Observational study; PPI: Proton pump inhibitor; RCT: Randomized controlled trial; data are presented as n (%) or the median ± standard deviation or mean ± SE/median.																		
The eradication of Gastritis, categorizing *H. pylori* infection into three phases (non-gastritis, active gastritis, and inactive gastritis[54]), was proposed to better assess the status of *H. pylori* infection and GC risk by endoscopy[55] (Figure 1). In a healthy stomach, an easily detectable feature, non-gastritis, was the regular arrangement of collecting venules (RAC), featured as small red spots on the mucosal surface[56,57]. However, after being infected with *H. pylori*, the stomach was characterized as irregular arrangement or absence of the so-called collecting venules[58]. AG after infection by *H. pylori* presents with diffuse redness, spotty redness, mucosal edema, and enlarged folds. This phenomenon can decrease and disappear after *H. pylori* eradication[59-61]. In addition, with *H. pylori* eradication, nodular gastritis (NG), whose endoscopic character is “goose flesh” in the antrum, can also disappear with the passage of time [62,63].

After a period of *H. pylori* infection, AG turns into inactive gastritis upon eradication therapy or spontaneously disappears because of advanced atrophy, featuring map-like redness, and flat or depressed erythematous tumors, which is the characteristic change of AG after *H. pylori* eradication, i.e., nonatrophied areas dissipate the inflammation, and the atrophied areas are relatively red compared to the nonatrophied areas. Using white-light imaging (WLI) and linked color imaging (LCI), Majima et al[64] found that map-like redness is closely associated with GC occurrence upon effective *H. pylori* eradication. Another study also revealed map-like redness upon *H. pylori* eradication as the sole predictive factor for metachronous cancer[65]. With *H. pylori* infection, atrophic change expands from the antrum to the fundus, and is improved after eradication[66,67]. Another characteristic was described as mottled patchy erythema (MPE) after *H. pylori* infection, showing many flat/slightly depressed erythematous lesions detected by white light endoscopy, and highly predicting the impact of *H. pylori* eradication.

The typical endoscopic finding of IM is mixed patchy pink and pale mucosal areas surrounding grayish slightly elevated plaques generating an irregular, uneven surface. Moreover, villus-like structures, whitish mucosa, and rough mucosal surface can help diagnose IM by endoscopy[68,69]. In addition, endoscopic IM contributes to recognition of current and past *H. pylori* infections, similar to endoscopic atrophy[70]. *H. pylori* eradication reduces the development of hyperplastic polyps (HPPs); either sessile or pedunculated polyps result from *H. pylori* infection[71]. Gastric xanthoma (GX) is a typical endoscopic manifestation of *H. pylori* infection that persists upon *H. pylori* eradication, showing one or more yellowish well-delineated nodules or plaques of 1–10 mm in diameter[72]. However, GX may be a precancerous lesion of GC[72,73]. After treatment with PPI, the endoscopic phenomena of multiple white elevated lesions and cobblestone-like mucosa became more evident in comparison with PPI nonusers[74].

Overall, endoscopic features represent additional indexes for evaluating *H. pylori* therapy for efficacy. Atrophy, IM, HPPs, and fundic gland polyps are detected in active and inactive gastritis. In addition, atrophy boundaries are unclear with map-like redness observed upon *H. pylori* eradication[75]. However, endoscopic atrophy and IM may show no rapid improvement[76,77], and prolonged follow-up is required for detecting gastric mucosal changes endoscopically following *H. pylori* eradication[78].

EFFECT OF *H. PYLORI* ERADICATION THERAPY ON GASTRIC MICROBIOTA

There are many microorganisms in the human stomach, constituting alongside *H. pylori* the so-called gastric microbiota[79], whose balance and stability are indispensable for normal gastric mucosal digestion and metabolism. With more advanced techniques, such as culture-free molecular methods (e.g., 16S rDNA sequencing), the human stomach is currently known to host multiple resident microbes. Based on such techniques, many reports have shown that *H. pylori*-negative individuals have a greatly diverse gastric microbiome with four dominating phyla, including Proteobacteria (including *H. pylori*), Firmicutes, Bacteroidetes, and Actinobacteria; the commonest genera are *Streptococcus*, *Lactobacillus*, and *Propionibacterium*[80-85].

Upon *H. pylori* infection, changes in gastric microorganisms arise, including gastric microbial diversity, composition, and predictive pathways[86], leading to various diseases[87-89]. Generally, colonization by *H. pylori* is associated with significantly reduced alpha and beta diversities (representing inter-sample and in-sample diversities, respectively)[90-92]. Additionally, several studies have revealed that *H.
pylori-infected individuals have different community structures in comparison with their *H. pylori*-negative counterparts[93-96]. Compositionally, Proteobacteria often dominate the gastric mucosa upon *H. pylori* infection, becoming the single most abundant bacteria and almost reaching 90% abundance at the phylum level, while other phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Fusobacteria) show reduced numbers[82,90,92-94,96,97].

After anti-*H pylori* treatment, the gastric microbiome undergoes major reshaping (Table 2). Mounting evidence indicates that gastric microbial diversity markedly increases upon effective *H. pylori* eradication but does not improve if treatment fails [35,82,86,93,98,99]. Recovery may take some time as microbial diversity increases gradually from week 0 to weeks 6 and 26[86]. Additionally, alpha diversity can regain the level of uninfected individuals following effective eradication[98]. Although the community structure can also be partly restored upon *H. pylori* eradication, whether in post-eradication groups it can be restored to that of healthy control groups appeared to be age related. Specifically, several studies indicated that the adult specimens from 6 mo after successful treatment still showed altered community structure vs the negative control group[98], while others recruiting children reported the close community structures between the eradication and *H. pylori*-negative groups at 4 wk post-therapy[99] and the restored gastric microbiota composition in individuals administered with anti-*H. pylori* therapy at 2 mo post-treatment[82]. We believe that in adult patients, further research is needed to see whether the recovery in microbial composition can be observed over a longer observation period.

Compositionaly, the relative abundance of *H. pylori* starkly decreases post-treatment, although it remains the dominant bacterium[86,93]. Meanwhile, Actinobacteria, Firmicutes, Bacteroidetes, and Fusobacteria are significantly enriched after successful eradication[82,90,93,98]. At the genus level, the probiotics *Lactobacillus* and *Bifidobacterium* are markedly increased post-therapy[86]. Functional analysis was performed in multiple studies[82,86,98]. The activities of disease-associated categories in *H. pylori* infection (lipopolysaccharide biosynthesis, bacterial motility proteins, etc.) were more pronounced[82,98]. In addition, the metabolic pathways (protein digestion and absorption, gastric acid secretion, and carbohydrate digestion and absorption) in the presence of *H. pylori* were downregulated[100]. After eradication therapy, these functions might be partly restored[86].

H. pylori infection is associated with reduced bacterial diversity and causes a shift in bacterial structure. Clearance of *H. pylori* significantly increases bacterial diversity. The relative abundance of *Helicobacter* decreases after therapy, while other phyla are increased, partly restoring bacterial structure and improving microbiota functions,
such as metabolism.

CHANGES IN GC AFTER H. PYLORI ERADICATION

Many studies have confirmed that *H. pylori* infection is the main etiological agent of GC[101,102], whose risk can be reduced by *H. pylori* eradication[103-108].

To explore this, Wong et al[109] performed a study demonstrating that GC incidence rates were comparable in the treatment and placebo groups (7 cases in either group), which may have been due to a underpowered design despite the 7.5-year follow-up of 1630 participants. However, with the follow-up time gradually extended, the incidence rates of GC in both groups gradually showed differences. Another study demonstrated significantly decreased GC incidence after 6 years of follow-up after *H. pylori* eradication, and the standardized incidence ratio (SIR) was 1.62 in the initial 5 years but was reduced thereafter to reach 0.14[21]. A Swedish cohort study found significantly decreased risks of gastric adenocarcinoma and non-cardia gastric adenocarcinoma upon cure of *H. pylori* infection (SIRs were 8.65 in 1–3 years, 2.02 in 3–5 years, and 0.31 in 5–7.5 years)[22,109]. After *H. pylori* treatment, the risk was 39% lower over an extended follow-up of 15 years and 52% over an extended follow-up of 22 years among individuals with *H. pylori* eradication compared with those showing persistent infection, whereas there was no difference during the initial 7.3-year follow-up[20,110,111]. Having a first-degree relative with diagnosed GC doubles or triples GC risk[112]. In *H. pylori*-infected individuals with a first-degree relative diagnosed with GC, eradication of *H. pylori* also reduces GC risk[106,113]. A South Korean study utilized a prospective randomized design (832 and 844 in the cure and placebo groups, respectively, of first-degree relatives of GC cases). GC risk was reduced by 55% after *H. pylori* eradication compared with the placebo group, with an average follow-up of 9.2 years. Of note, GC risk was 73% lower upon *H. pylori* eradication compared with the placebo group.

GC, as the end point of gastric disease, is also inextricably linked to *H. pylori*. Choi and collaborators[114] found that *H. pylori* eradication had no significant relationship with metachronous GC (MGC) incidence within an average follow-up of 3 years, whereas *H. pylori* eradication markedly reduced MGC incidence with a median follow-up duration of 71.6 mo[115]. A recent randomized trial involving early GC cases (a population that usually has severe atrophic alterations in the gastric mucosa) demonstrated that treating *H. pylori* infection reduced MGC risk by half[106]. A similar effect was also reported in another Chinese trial[116]. Successful eradication therapy cannot completely eliminate the development of GC. Take et al[117] performed a retrospective cohort trial in Japan, including 2737 patients treated for *H. pylori* infection with yearly endoscopic follow-up for 21.4 years. The degree of atrophy was related to a high yearly risk of GC. They also found an elevated risk of diffuse-type GC in individuals with mild to moderate gastric atrophy at baseline. The above findings suggest that endoscopic monitoring for GC should continue beyond 10 years post-*H. pylori* eradication regardless of the degree of gastric mucosal atrophy at the time of eradication treatment[117].
Several meta-analyses have demonstrated that the risk of GC is correlated with *H. pylori* eradication (Table 3)[104,118-121]. One meta-analysis including six randomized studies involving healthy, asymptomatic participants with *H. pylori* infection showed that GC risk was about 34% less after treatment compared with the control group [104]. Another meta-analysis also showed a reduced incidence of GC upon eradication therapy compared with control patients (pooled incidence rate ratio = 0.54)[122]. Sugano et al[119] and Doorakers et al[120] reported that the lower odds ratio/relative risk was 0.46. A further meta-analysis demonstrated that no matter how varied the countries, conditions at baseline, and follow-up periods among studies, *H. pylori* eradication effectively reduces GC incidence. Consistent with the prediction, long-term (≥ 5 years) follow-up showed greater effects in reducing GC upon *H. pylori* eradication compared with shorter follow-up periods (< 5 years)[119]. This was consistent with other meta-analyses[104,118,120-122]. Thus, the above meta-analyses provided further robust evidence of the effect of eradication treatment.

Frecancerous lesions are closely associated with GC. Consequently, whether and when *H. pylori* eradication reverses precancerous tumors has attracted increasing attention. Kiriyama et al[123] and Wong et al[109] have reported that eradicating *H. pylori* did not reverse mucosal injury in IM to yield a normal gastric mucosa or prevent GC development, indicating a histological point of no return. In agreement, others have indicated that GC progression continues following *H. pylori* eradication[109,124]. However, the Taipei global consensus and Matsu Islands consensus proposed that eradicating *H. pylori* reduces GC risk[107,108], which may be due to treatment effects before a certain point for preventing GC.

In general, GC risk in *H. pylori*-infected patients is increasing. A large number of studies have shown that *H. pylori* eradication can reduce the incidence of not only GC, but also MGC. In both small and large studies (community, region, or country) examining young and old individuals, and even first-degree relatives of patients, eradication of *H. pylori* results in long-term benefits.

DISCUSSION

H. pylori infection induces a sequence of histological changes, especially AG and IM. A histological classification system (Figure 2A) was proposed by an international group of gastroenterologists and pathologists, to grade gastritis into stages with corresponding cancer risk in individual patients, termed the Operative Link on Gastritis Assessment (OLGA) scale[125]. However, disease severity and extent in OLGA are primary parameters, which leads to low interobserver agreement. Therefore, a staging system based on IM (Operative Link on Gastric Intestinal Metaplasia Assessment, OLGIM; Figure 2B) was proposed to assess the degree of IM and GC risk in 2010[126]. However, some individuals potentially at high risk of GC may be overlooked[127]. Therefore, the combination of OLGA and OLGIM more accurately predicts GC risk. Meanwhile, the AI system using deep learning (especially convolutional neural networks; CNNs) has been applied in gastroenterology[128-131]. For example, studies have reported the usefulness of CNN-based AI systems for diagnosing *H. pylori* infection and timely detecting gastric neoplasms[129,131,132].

Previous studies have found that only a small number of patients with *H. pylori* infection develop GC eventually, but *H. pylori* is one of the main causes of GC. The high risk of GC emphasizes the need for early detection and proper treatment of *H. pylori* infection. Along with standard endoscopy, new endoscopic techniques, such as magnifying endoscopy[133], endocytoscopy[134,135], magnifying narrow-band imaging (M-NBI)[136], I-Scan[137], endomicroscopy[138], and LCI[139-141], can be used to detect *H. pylori* infection. Magnifying endoscopy allows the structure of the mucosa and the subepithelial capillary network around the gastric fovea to be observed in detail. As a novel ultra-high magnification technology, endocytoscopy can recognize gastric mucosal minimal changes[134,135]. Moreover, the NBI system and I-Scan are also the recent developments in computed virtual chromoendoscopy imaging[137]. The diagnostic accuracy of M-NBI endoscopy for gastritis and magnifying I-Scan for *H. pylori* infection was 96.1% and 94.0%, respectively[136,137]. Currently, a novel imaging mode under blue laser endoscopy, LCI, plays an important role in endoscopic diagnosis of active *H. pylori* infection or distal gastric disease, through its enhanced slight differences in mucosal color[139-141]. With the assistance of computer-aided diagnosis (CAD) systems, LCI-CAD can effectively assess the gastric mucosal status of uninfected, currently infected, and post-*H. pylori* eradication patients[142-144].
Table 3 Studies on gastric microbiota alteration after eradication

Ref.	Year	Total subjects	Follow-up time	Age	Regimen	Study group	Main outcomes
Li et al[93]	2017	33	Day 0 and week 9	1	1 = TT for Adults	H. pylori (-)	Bacterial diversity increased and the relative abundance of Helicobacter decreased, while the relative abundance of other phyla increased
Serrano et al[99]	2019	16	Day 0 and month 2	2	1 = TT for Adults	H. pylori (-)	Bacterial diversity increased and the structures of the uninfected group were restored
Gao et al[88]	2020	164	Day 0 and month 6	1	2 = QT for Children	H. pylori (-)	Bacterial diversity returned to the level of the control group. The structure of the bacteria was different after treatment compared to the control group. Microbiota functional capacities were changed
He et al[86]	2019	17	Weeks 0, 6, and 26	1	2 = QT for Children	H. pylori (-)	Bacterial diversity increased and structure and microbiota functional capacities were changed
Miao et al[82]	2020	55	Day 0 and week 4	2	1, 2 and STP	H. pylori (-)	Diversity was similar compared to the control group. The bacterial structure became close to controls
Sung et al[35]	2020	102	Day 0 and 1 year	1	1 = TT for Adults	H. pylori (-)	Bacterial diversity increased and structure was changed

HEG: *Helicobacter pylori* eradication group; H. pylori: *Helicobacter pylori*; NA: Not applicable; QT: Quadruple therapy; TT: Triple therapy; STP: Sequential therapy with proton pump inhibitor and amoxicillin.

In this review, we describe the changes in gastric histology, endoscopic appearances, gastric microbiota, and decreased risk of GC and MGC[108]. Dyspeptic symptoms, AIG, and recurrence of peptic ulcer disease significantly declined after eradication of *H. pylori*. The risk of synchronous GC after endoscopic resection of early GC was also reduced. Many extragastric disorders, such as iron deficiency anemia, MALToma, and idiopathic thrombocytopenic purpura, were also associated with the presence of *H. pylori* and they were improved after eradication of *H. pylori*[8,9,10,145,146]. Therefore, consensus reports recommend eradication of *H. pylori* in infected patients, decreasing the risk of these diseases[38,147].

However, there are some potential concerns for *H. pylori* therapy due to the significantly increased antibiotic (particularly metronidazole and clarithromycin) resistance rates for *H. pylori*[148,149], and development of novel and alternative antimicrobial agents specific for *H. pylori* is urgent. These approaches are broadly divided into two main categories: (1) Novel synthetic treatment, which includes new classes of antimicrobial peptides (AMPs) and small molecule inhibitors; and (2) natural treatment options, which include the use of probiotics and phytotherapy to treat *H. pylori* infection. First, AMPs play a pivotal role in the innate immune responses to *H. pylori* in humans. AMPs can be roughly divided into nine categories: Pexiganan, tilapia piscidins, epinecandin-1, cathelicidins, defensins, bicairelin, odorranain-HP, PGLA-AMI, and bacteriocins[150]. Among them, cathelicidins and defensins, both secreted by epithelial cells of many tissues, exhibit the key therapeutic potential[151]. SQ109, a typical representative of small molecule inhibitors for treating *H. pylori* infection, displays robust thermal and pH stability, induces low/no spontaneous drug resistance, and shows anti-*H. pylori* superiority over metronidazole and amoxicillin[152]. Second, adjuvant probiotics and phytotherapy are designed to increase the eradication rate of *H. pylori* and reduce the adverse effects of treatment[153,154]. Phytotherapy, including herbs and spices, cruciferous vegetables, Korean red ginseng and green tea, and extracts of oils, resveratrol, and beta-carotene, is another nontargeted therapy. Specifically, herbal-based therapies, one of the most popular forms of phytotherapy, can act as anti-inflammatory agents to treat *H. pylori* infection[155]. Nevertheless, the active component for the majority of agents and the molecular mechanism of inhibition against *H. pylori* remain unknown. After the eradication of *H. pylori*, the risk of gastroesophageal reflux disease is increased due to the restoration of gastric acid secretion[156,157]. Alterations in gut microbiota might decrease the secretion levels of insulin, and fasting glucose, total cholesterol, and triglyceride were reduced after *H. pylori* eradication[148,158]. However, the findings remain contro-
versial and further well-designed randomized trials are warranted to clarify the impact of \textit{H. pylori} eradication on metabolic parameters.

More significantly, the relative immutability of IM is of concern, as the condition carries a high GC risk not only in the presence of \textit{H. pylori} infection, but also after \textit{H. pylori} eradication. In other words, GC can still develop even after successful eradication in the presence of IM[159]. Previous studies have indicated that the detection of map-like erythema, a histological indicator of IM, is correlated with a high risk of GC development after \textit{H. pylori} eradication[65]. Even worse, the eradication therapy can cause some characteristics, such as a gastritis-like appearance, resulting in a difficult diagnosis of GC[160-162]. This is why post-eradication status should be distinguished from \textit{H. pylori} negativity.

CONCLUSION

Whether \textit{H. pylori} eradication confers long-term benefits has been debated for a long time. Obviously, eradication of \textit{H. pylori} is more important, because the disadvantages can be avoided based on clinical experience and continuous technological development. More importantly, \textit{H. pylori} eradication offers lifelong benefits, and the earlier it is eradicated, the better. In addition, more sensitive and accurate tools can be developed to detect \textit{H. pylori} infection in the early and post-eradication stages. This could be a promising area of research.
REFERENCES

1. Okuda M, Osaki T, Lin Y, Yonezawa H, Maekawa K, Kamiya S, Fukuda Y, Kikuchi S. Low prevalence and incidence of Helicobacter pylori infection in children: a population-based study in Japan. *Helicobacter* 2015; 20: 133-138 [PMID: 25382113 DOI: 10.1111/hel.12184]

2. Roma E, Miele E. Helicobacter pylori Infection in Pediatrics. *Helicobacter* 2015; 20 Suppl I: 47-53 [PMID: 26372825 DOI: 10.1111/hel.12257]

3. O’Connor A, O’Morain CA, Ford AC. Population screening and treatment of Helicobacter pylori infection. *Nat Rev Gastroenterol Hepatol* 2017; 14: 230-240 [PMID: 28053340 DOI: 10.1038/nrgastro.2016.195]

4. Kotilea K, Bontems P, Touati E. Epidemiology, Diagnosis and Risk Factors of Helicobacter pylori Infection. *Adv Exp Med Biol* 2019; 1149: 17-33 [PMID: 31016621 DOI: 10.1007/5884_2019_357]

5. Sun Y, Jiang Y, Huang J, Chen H, Liao Y, Yang Z. CISP2 enhances the chemosensitivity of gastric cancer through the enhancement of 5-FU-induced apoptosis and the inhibition of autophagy by AKT/mTOR pathway. *Cancer Med* 2017; 6: 2331-2346 [PMID: 28857517 DOI: 10.1002/cam4.1169]

6. Yan TL, Hu QD, Zhang Q, Li YM, Lian TB. National rates of Helicobacter pylori recurrence are significantly and inversely correlated with human development index. *Aliment Pharmacol Ther* 2013; 37: 963-968 [PMID: 23550618 DOI: 10.1111//apt.12293]

7. Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. *Clin Microbiol Rev* 1997; 10: 720-741 [PMID: 9386670 DOI: 10.1128/cmr.10.4.720-741.1997]

8. Sonnenberg A, Turner KO, Genta RM. Low Prevalence of Helicobacter pylori-Positive Peptic Ulcers in Private Outpatient Endoscopy Centers in the United States. *Am J Gastroenterol* 2020; 115: 244-250 [PMID: 31972622 DOI: 10.1039/ajg.0000000000000517]

9. Ben Younes K, Lenti MV, Papaefthymiou A, Polyzos SA, Boziki M, Deretzi G, Vardaka E. Cytokine profile of patients with chronic immune thrombocytopenia affects platelet count recovery after Helicobacter pylori eradication. *Br J Haematol* 2015; 168: 421-428 [PMID: 25257094 DOI: 10.1111/bjh.13141]

10. Rostami N, Keshtkar-Jahromi M, Rahnavardi M, Esfahani FS. Effect of eradication of Helicobacter pylori on platelet recovery in patients with chronic idiopathic thrombocytopenic purpura: a controlled trial. *Am J Hematol* 2008; 83: 376-381 [PMID: 18183613 DOI: 10.1002/ajh.21125]

11. DuBois S, Kearney DJ. Iron-deficiency anemia and Helicobacter pylori infection: a review of the evidence. *Am J Gastroenterol* 2005; 100: 453-459 [PMID: 15667507 DOI: 10.1111/j.1572-0241.2005.30252.x]

12. Douberlis M, Papaefthymiou A, Polyzos SA, Boziki M, Deretzi G, Giartza-Taxidou E, Vardaka E, Gogou A, Koutsouras J. Microbes and Alzheimer’s disease: lessons from H. pylori and GLUT microbiota. *Eur Rev Med Pharmacol Sci* 2019; 23: 1845-1846 [PMID: 30915725 DOI: 10.26355/eurrev_201903_17218]

13. Raderer M, Kiesewetter B, Ferrari AJ. Clinicopathological characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). *CA Cancer J Clin* 2016; 66: 153-171 [PMID: 26773441 DOI: 10.3322/caac.21330]

14. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. *N Engl J Med* 1991; 325: 1127-1131 [PMID: 1891020 DOI: 10.1056/nejm199110173251603]

15. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. *N Engl J Med* 1991; 325: 1132-1136 [PMID: 1891021 DOI: 10.1056/nejm199110173251604]

16. Lasers A, Chan FKL. Peptic ulcer disease. *Lancet* 2017; 390: 613-624 [PMID: 28242110 DOI: 10.1016/S0140-6736(16)32404-7]

17. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacsen PG. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. *Lancet* 1993; 342: 575-577 [PMID: 8102719 DOI: 10.1016/0140-6736(93)91409-I]

18. You WC, Brown LM, Zhang L, Li JY, Jin ML, Chang YS, Ma JL, Pan KF, Liu WD, Hu Y, Crystal-
Improvement in atrophic gastritis and intestinal metaplasia in patients in whom Helicobacter pylori infection in atrophic body gastritis patients does not improve mucosal atrophy but reduces evaluation of the success of Helicobacter pylori eradication at 4 wk after completion of therapy.

J, Tolmanis I, Lejnieks A, Boka V, Rumba-Rozenfelde I, Vikmanis U. Pepsinogen testing for eradication. Scarpignato C. Quantification of serum levels of pepsinogens and gastrin to assess eradication of Helicobacter pylori. Gatta L, Kikuchi S, Inoue K, Uemura N, Okamoto S, Terao S, Amagai K, Hayashi S, Asaka M; Japan Gst duodenal ulcer patients. Bianchi Porro G. Effects of eradication of Helicobacter pylori on gastritis in duodenal ulcer patients. Solcia E, Lima MI, Marcolongo N, de la Fuente MJ, Correa P. Long term follow up of patients treated for Helicobacter pylori infection. Gut 2005; 54: 1536-1540 [PMID: 15985559 DOI: 10.1136/gut.2005.072009]

Lu B, Chen MT, Fan YH, Liu Y, Meng LN. Effects of Helicobacter pylori eradication on atrophic gastritis and intestinal metaplasia: a 3-year follow-up study. World J Gastroenterol 2005; 11: 6518-6520 [PMID: 16425426 DOI: 10.3748/wjg.v11.i41.6518]

Sung JY, Lin SR, Ching YJ, Zhou LY, To KF, Wang RT, Leung WK, Ng EK, Lau YJ, Lee YT, Yeung CK, Chao W, Chang SC. Atrophy and intestinal metaplasia one year after cure of H. pylori infection: a prospective, randomized study. Gastroenterology 2000; 119: 7-14 [PMID: 10891490 DOI: 10.1053/gast.2000.3550]

Sung JY, Coker OO, Chu E, Szeto CH, Luk STY, Lau HCHL, Yu J. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 2020; 69: 1572-1580 [PMID: 31974133 DOI: 10.1136/gutjnl-2019-319826]

Gatta L, Di Mario F, Vaira D, Rugge M, Franzé A, Plebani M, Cavestro GM, Lucarini P, Lera M, Scarpignato C. Quantification of serum levels of pepsinogens and gastrin to assess eradication of Helicobacter pylori. Clin Gastroenterol Hepatol 2011; 9: 440-442 [PMID: 21172454 DOI: 10.1016/j.cgh.2010.12.009]

Leja M, Lapina S, Polaka I, Rudzite D, Vilkoite I, Daugule I, Belkovets A, Pimanov S, Makarenko J, Tolmanis I, Lejnieks A, Boka V, Rumba-Rozenfelde I, Vikmanis U. Pepsinogen testing for evaluation of the success of Helicobacter pylori eradication at 4 wk after completion of therapy. Medicina (Kaunas) 2014; 50: 8-13 [PMID: 25900199 DOI: 10.1016/j.medici.2014.05.001]

Malferttheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuijpers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Sauerbaum S, Sugano K, El-Omar EM; European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 2017; 66: 6-30 [PMID: 27707777 DOI: 10.1136/gutjnl-2016-312288]

Annibale B, Aprile MR, D'ambra G, Caruana P, Bordi C, Delle Fave G. Cure of Helicobacter pylori infection in atrophic body gastritis patients does not improve mucosal atrophy but reduces hypergastrinemia and its related effects on body ECL-cell hyperplasia. Aliment Pharmacol Ther 2000; 14: 625-634 [PMID: 10792127 DOI: 10.1046/j.1365-2036.2000.00752.x]

Ohkusa T, Fujiki K, Takashimizu I, Kumagai T, Tanizawa T, Eishi Y, Yokoyama T, Watanabe M. Improvement in atrophic gastritis and intestinal metaplasia in patients in whom Helicobacter pylori was eradicated. Ann Intern Med 2001; 134: 380-386 [PMID: 11242498 DOI: 10.7326/0003-4819-134-5-200103060-00010]
Kang JM, Kim N, Shin CM, Lee HS, Lee DH, Jung HC, Song IS. Predictive factors for improvement of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication: a three-year follow-up study in Korea. Helicobacter 2012; 17: 86-95 [PMID: 22044338 DOI: 10.1111/j.1523-5378.2011.00918.x]

Kodama M, Murakami K, Okimoto T, Abe T, Nakagawa Y, Mizukami K, Uchida M, Inoue K, Fujioka T. Helicobacter pylori eradication improves gastric atrophy and intestinal metaplasia in long-term observation. Digestion 2012; 85: 126-130 [PMID: 22269293 DOI: 10.1159/00034684]

Kodama M, Murakami K, Okimoto T, Sato R, Uchida M, Abe T, Shiota S, Nakagawa Y, Mizukami K, Fujioka T. Ten-year prospective follow-up of histological changes at five points on the gastric mucosa as recommended by the updated Sydney system after Helicobacter pylori eradication - a prospective study for up to 10 years. Aliment Pharmacol Ther 2018; 47: 380-390 [PMID: 29193217 DOI: 10.1111/apt.14424]

Wang J, Xu L, Shi R, Huang X, Li SW, Huang Z, Zhang G. Gastric atrophy and intestinal metaplasia before and after Helicobacter pylori eradication: a meta-analysis. Digestion 2011; 83: 253-260 [PMID: 21282951 DOI: 10.1159/000280318]

Rokkas T, Pistilos D, Sechopoulos P, Robotis I, Margantinis G. The long-term impact of Helicobacter pylori eradication on gastric histology: a systematic review and meta-analysis. Helicobacter 2007; 12 Suppl 2: 32-38 [PMID: 17991174 DOI: 10.1111/j.1523-5378.2007.00563.x]

Kong YJ, Yi HG, Dai JC, Wei MX. Histological changes of gastric mucosa after Helicobacter pylori eradication: a systematic review and meta-analysis. World J Gastroenterol 2014; 20: 5930-5931 [PMID: 24913532 DOI: 10.3748/wjg.v20.i19.5930]

Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007; 133: 659-672 [PMID: 17681184 DOI: 10.1053/j.gastro.2007.06.026]

Sonnenberg A. Review article: historic changes of Helicobacter pylori-associated diseases. Aliment Pharmacol Ther 2013; 38: 329-342 [PMID: 23786250 DOI: 10.1111/apt.12380]

Kim N, Park YS, Cho SI, Lee HS, Choe G, Kim IW, Won YD, Park JH, Kim JS, Jung HC, Song IS. Prevalence and risk factors of atrophic gastritis and intestinal metaplasia in a Korean population without significant gastroduodenal disease. Helicobacter 2008; 13: 245-255 [PMID: 18665932 DOI: 10.1111/j.1523-5378.2008.00604.x]

Correa P, Fontham ET, Bravo JC, Bravo LE, Ruiz B, Zarama G, Realpe JL, Malcom GT, Li D, Johnson WD, Mera R. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helcobacter pylori therapy. J Natl Cancer Inst 2000; 92: 1881-1888 [PMID: 11066679 DOI: 10.1093/nci.92.23.1881]

Mera RM, Bravo LE, Camargo MC, Bravo JC, Delgado AG, Romero-Gallo J, Yepez MC, Realpe JL, Schneider BG, Morgan DR, Peek RM Jr, Correa P, Wilson KT, Piazuelo MB. Dynamics of Helicobacter pylori infection as a determinant of progression of gastric precancerous lesions: 16-year follow-up of an eradication trial. Gut 2018; 67: 1239-1246 [PMID: 28647684 DOI: 10.1136/gutjnl-2016-311685]

Piazuelo MB, Bravo LE, Mera RM, Camargo MC, Bravo JC, Delgado AG, Washington MK, Rosero A, Garcia LS, Realpe JL, Cifuentes SP, Morgan DR, Peek RM Jr, Correa P, Wilson KT. The Colombian Chemoprevention Trial: 20-Year Follow-Up of a Cohort of Patients With Gastric Precancerous Lesions. Gastroenterology 2021; 160: 1106-1117.e3 [PMID: 33220252 DOI: 10.1053/j.gastro.2020.11.017]

Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, Haruma K, Asaka M, Uemura N, Malfhertheiner P; faculty members of Kyoto Global Consensus Conference. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015; 64: 1335-1367 [PMID: 26187502 DOI: 10.1136/gutjnl-2015-309252]

Tygat GN. The Sydney System: endoscopic division. Endoscopic appearances in gastritis/duodenitis. J Gastroenterol Hepatol 1991; 6: 223-234 [PMID: 1912432 DOI: 10.1111/j.1440-1746.1991.tb01469.x]

Ebigbo A, Marienhagen J, Messmann H. Regular arrangement of collecting venules and the Kimura-Takemoto classification for the endoscopic diagnosis of Helicobacter pylori infection: Evaluation in a Western setting. Dig Endosc 2021; 33: 587-591 [PMID: 32767790 DOI: 10.1111/den.13808]

Zhao J, Xu S, Gao Y, Lei Y, Zou B, Zhou M, Chang D, Dong L, Qin B. Accuracy of Endoscopic Diagnosis of Helicobacter pylori Based on the Kyoto Classification of Gastritis: A Multicenter Study. Front Oncol 2020; 10: 599218 [PMID: 33344250 DOI: 10.3389/fonc.2020.599218]

Cho JH, Chang YW, Jang JY, Shim JJ, Lee CK, Dong SH, Kim HJ, Kim BH, Lee TH, Cho JY. Close observation of gastric mucosal pattern by standard endoscopy can predict Helicobacter pylori infection status. J Gastroenterol Hepatol 2013; 28: 279-284 [PMID: 23189930 DOI: 10.1111/jgh.12046]

Nomura S, Terao S, Adachi K, Kato T, Ida K, Watanabe H, Shimoto T; Research Group for Establishment of Endoscopic Diagnosis of Chronic Gastritis. Endoscopic diagnosis of gastric mucosal activity and inflammation. Dig Endosc 2013; 25: 136-146 [PMID: 23362997 DOI: 10.1111/j.1443-1661.2012.01357.x]

Kato M, Terao S, Adachi K, Nakajima S, Ando T, Yoshida N, Uedo N, Murakami K, Ohara S, Ito
M, Uemura N, Shimbo T, Watanabe H, Kato T, Ida K; Study Group for Establishing Endoscopic Diagnosis of Chronic Gastritis. Changes in endoscopic findings of gastritis after cure of H. pylori infection: multicenter prospective trial. *Dig Endosc* 2013; 25: 264-273 [PMID: 23369104 DOI: 10.1111/j.1572-0241.2012.01385.x]

Kato T, Yagi N, Kamada T, Shimbo T, Watanabe H, Ida K; Study Group for Establishing Endoscopic Diagnosis of Chronic Gastritis. Diagnosis of Helicobacter pylori infection in gastric mucosa by endoscopic features: a multicenter prospective study. *Dig Endosc* 2013; 25: 508-518 [PMID: 23369058 DOI: 10.1111/den.12031]

Miyamoto M, Haruma K, Yoshishira M, Hiyama T, Sumiioka M, Nishisaka T, Tanaka S, Chayama K. Nodular gastritis in adults is caused by Helicobacter pylori infection. *Dig Dis Sci* 2003; 48: 968-975 [PMID: 12772798 DOI: 10.1023/a:1023016000096]

Miyamoto M, Haruma K, Yoshishira M, Sumiioka M, Nishisaka T, Tanaka S, Inoue K, Chayama K. Five cases of nodular gastritis and gastric cancer: a possible association between nodular gastritis and gastric cancer. *Dig Liver Dis* 2002; 34: 819-820 [PMID: 12546520 DOI: 10.1016/s1590-8658(02)80078-0]

Majima A, Dohi O, Takayama S, Hirose R, Inoue K, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Takagi T, Handa O, Konishi H, Naito Y, Itoh Y. Linked color imaging identifies important risk factors associated with gastric cancer after successful eradication of Helicobacter pylori. *Gastrointest Endosc* 2019; 90: 763-769 [PMID: 31299258 DOI: 10.1016/j.gie.2019.06.043]

Morihata K, Iwagishi JK, Nakachi K, Maeda Y, Shingaki N, Niwa T, Deguchi H, Inoue I, Maekita T, Tamai H, Ichinose M. Endoscopic features associated with development of metachronous gastric cancer in patients who underwent endoscopic resection followed by Helicobacter pylori eradication. *Dig Endosc* 2016; 28: 434-442 [PMID: 26623565 DOI: 10.1111/den.12581]

Nonura S, Ida K, Terao S, Adachi K, Kato T, Watanabe H, Shimbo T; Research Group for Establishment of Endoscopic Diagnosis of Chronic Gastritis. Endoscopic diagnosis of gastric mucosal atrophy: multicenter prospective study. *Dig Endosc* 2014; 26: 709-719 [PMID: 24698334 DOI: 10.1111/den.12286]

Bao L, Yu Y. Study on Tongue Coating Microbiota in Patients with Atrophic Gastritis. *Adv Microbiol* 2020; 10: 681-690 [DOI: 10.4236/aim.2020.1012049]

Fukuta N, Ida K, Kato T, Uedo N, Ando T, Watanabe H, Shimbo T; Study Group for Investigating Endoscopic Diagnosis of Gastric Intestinal Metaplasia. Endoscopic diagnosis of gastric intestinal metaplasia: a prospective multicenter study. *Dig Endosc* 2013; 25: 526-534 [PMID: 23363394 DOI: 10.1111/den.12032]

Esposito G, Pimentel-Nunes P, Angeletti S, Castro R, Librínio D, Galli G, Lahner E, Di Giulio E, Annibale B, Dinis-Ribeiro M. Endoscopic grading of gastric intestinal metaplasia (EGGIM): a multicenter validation study. *Endoscopy* 2019; 51: 515-521 [PMID: 30577062 DOI: 10.1055/a-0808-3186]

Yoshii S, Mahe K, Watano K, Ohno M, Matsumoto M, Ono S, Kudo T, Nojima J, Kato M, Sakamoto N. Validity of endoscopic features for the diagnosis of Helicobacter pylori infection status based on the Kyoto classification of gastritis. *Dig Endosc* 2020; 32: 74-83 [PMID: 31309632 DOI: 10.1111/den.13486]

Ji F, Wang ZW, Ning JW, Wang QY, Chen JY, Li YM. Effect of drug treatment on hyperplastic gastric polyps infected with Helicobacter pylori: a randomized, controlled trial. *World J Gastroenterol* 2006; 12: 1770-1773 [PMID: 16586550 DOI: 10.3748/wjg.v12.i11.1770]

Yamashita K, Suzuki R, Kubo T, Onodera K, Ida T, Saito M, Arimura Y, Endo T, Nojima N, Nakase H. Gastric Xanthomas and Fundic Gland Polyps as Endoscopic Risk Indicators of Gastric Cancer. *Gut Liver* 2019; 13: 409-414 [PMID: 30600671 DOI: 10.5009/gnl17136]

Oviedo J, Swan N, Farraye FA. Gastric xanthomas. *Am J Gastroenterol* 2001; 96: 3216-3218 [PMID: 11721787 DOI: 10.1111/j.1572-0241.2001.005293.x]

Kiso M, Ito M, Boda T, Kotachi T, Masuda K, Hata K, Sasaki A, Kawamura T, Yoshishira M, Tanaka S, Chayama K. Endoscopic findings of the gastric mucosa during long-term use of proton pump inhibitor - a multicenter study. *Scand J Gastroenterol* 2017; 52: 828-832 [PMID: 28485638 DOI: 10.1080/00365521.2017.1322137]

Watanabe K, Nagata N, Nakashima R, Furuhata E, Shimbo T, Kobayakawa M, Sakurai T, Imbe K, Nikiura R, Yokoi C, Akiyama J, Uemura N. Predictive findings for Helicobacter pylori-infected; -infected and -eradicated gastric mucosa: validation study. *World J Gastroenterol* 2013; 19: 4374-4379 [PMID: 23885149 DOI: 10.3748/wjg.v19.i27.4374]

Nagata N, Shimbo T, Akiyama J, Nakashima R, Kim HH, Yoshida T, Hoshimoto K, Uemura N. Predictability of Gastric Intestinal Metaplasia by Mottled Patchy Erythema Seen on Endoscopy. *Gastroenterology Research* 2011; 4: 203-209 [PMID: 27957016 DOI: 10.4021/gr357w]

Toyoshima O, Nishizawa T, Sakitani K, Yamakawa T, Takahashi Y, Kinoshita K, Torii A, Yamada A, Suzuki H, Koike K. *Helicobacter pylori* eradication improved the Kyoto classification score on endoscopy. *JGH Open* 2020; 4: 909-914 [PMID: 33102763 DOI: 10.1002/jghb.12360]

Kodama M, Okimoto T, Ogawa R, Mizukami K, Murakami K. Endoscopic atrophic classification before and after H. pylori eradication is closely associated with histological atrophy and intestinal metaplasia. *Endosc Int Open* 2015; 3: E311-E317 [PMID: 26357676 DOI: 10.5009/gnl1392090]

Iaiiro G, Molina-Infante J, Gashbarrini A. Gastric Microbiota. *Helicobacter* 2015; 20 Suppl 1: 68-71 [PMID: 26372828 DOI: 10.1111/hel.12260]
Weng CY et al. H. pylori eradication

[PMID: 30552502 DOI: 10.1007/s00464-018-06625-6]

101 Banks M, Graham D, Jansen M, Gotoda T, Coda S, di Pietro M, Uedo N, Bhandari P, Pritchard DM, Kuipers EJ, Rodriguez-Justo M, Novelli MR, Ragunath K, Shepherd N, Dinis-Ribeiro M. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 2019; 68: 1545-1575 [PMID: 31278206 DOI: 10.1136/gutjnl-2018-318126]

102 Chiu PWY, Uedo N, Singh R, Gotoda T, Ng EKW, Yao K, Ang TL, Ho SH, Kikuchi D, Yao F, Pittayanon R, Goda K, Lau JYW, Tajiri H, Inoue H. An Asian consensus on standards of diagnostic upper endoscopy for neoplasia. Gut 2019; 68: 186-197 [PMID: 30420400 DOI: 10.1136/gutjnl-2018-317111]

103 Takeuchi T, Furuta T, Ota K, Harada S, Edogawa S, Kojima Y, Sahara S, Sugimoto M, Fujimoto K, Arakawa T, Higuchi K. Comparative study of proton pump inhibitors less influenced by CYP2C19 polymorphism for the first-line triple eradication therapy of helicobacter pylori. Gastroenterology 2015; 148: S422-S423 [DOI: 10.1016/S0016-5085(15)31427-X]

104 Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 2014; 348: g3174 [PMID: 24846275 DOI: 10.1136/bmj.g3174]

105 Leung WK, Wong IOL, Cheung KS, Yeung KF, Chan EW, Wong AYS, Chen L, Wong ICK, Graham DY. Effects of Helicobacter pylori Treatment on Incidence of Gastric Cancer in Older Individuals. Gastroenterology 2018; 155: 67-75 [PMID: 2950592 DOI: 10.1053/j.gastro.2018.03.028]

106 Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH. Helicobacter pylori Therapy for the Prevention of Metachronous Gastric Cancer. N Engl J Med 2018; 378: 1085-1095 [PMID: 29562147 DOI: 10.1056/NEJMoa1708423]

107 Lion JM, Malfertheiner P, Lee YC, Shen BS, Sugano K, Cheng HC, Yeoh KG, Hsu PI, Goh KL, Mahachai V, Gotoda T, Chang WL, Chen MJ, Chiang TH, Chen CC, Wu CY, Leow AH, Wu JY, Wu DC, Hong TC, Lu H, Yamaoka Y, Megraud F, Chan FK, Sung JJ, Lin JT, Graham DY, Wu MS, El-Omar EM. Asian Pacific Alliance on Helicobacter and Microbiota (APAHAM). Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut 2020; 69: 2093-2112 [PMID: 33004546 DOI: 10.1136/gutjnl-2020-322368]

108 Chiang TH, Chang WJ, Chen SL, Yen AM, Fann JC, Chiu SY, Chen YR, Chuang SL, Shieh CF, Liu CY, Chiu HM, Chiang H, Shen CT, Lin MW, Wu MS, Lin JT, Chan CC, Graham DY, Chen HH, Lee YC. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 2021; 70: 243-250 [PMID: 32792335 DOI: 10.1136/gutjnl-2020-322290]

109 Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, Lai KC, Hu WH, Yuen ST, Leung SY, Fong DY, Ho J, Ching CK. China Gastric Cancer Study Group. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 2004; 291: 187-194 [PMID: 14722144 DOI: 10.1001/jama.291.2.187]

110 Ma JL, Zhang L, Brown LM, Li JY, Shen L, PanKF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S, Pee D, Blot WJ, Fraumeni JF Jr, You WC, Gail MH. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 2012; 104: 488-492 [PMID: 22271764 DOI: 10.1093/jnci/djt003]

111 Li WQ, Zhang JY, Ma JL, Li ZX, Zhang L, Zhang Y, Guo Y, Zhou T, Li JY, Shen L, Liu WD, Han ZX, Blot WJ, Gail MH, PanKF, You WC. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: follow-up of a randomized intervention trial. BMJ 2019; 366: i5016 [PMID: 31511230 DOI: 10.1136/bmj.i5016]

112 Choi YJ, Kim N. Gastric cancer and family history. Korean J Intern Med 2016; 31: 1042-1053 [PMID: 27809451 DOI: 10.3904/kjem.2016.14.7]

113 Choi IJ, Kim CG, Lee JY, Kim YI, Kook MC, Park B, Joo J. Family History of Gastric Cancer and Helicobacter pylori Treatment. N Engl J Med 2020; 382: 427-436 [PMID: 31995688 DOI: 10.1056/NEJMoa1909666]

114 Choi J, Kim SG, Yoon H, Im JP, Kim JS, Kim WH, Jung HC. Eradication of Helicobacter pylori after endoscopic resection of gastric tumors does not reduce incidence of metachronous gastric carcinoma. Clin Gastroenterol Hepatol 2014; 12: 793-800.e1 [PMID: 24100112 DOI: 10.1016/j.cgh.2013.09.057]

115 Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC. Effects of Helicobacter pylori eradication for metachronous gastric cancer prevention: a randomized controlled trial. Gastrointest Endosc 2018; 88: 475-485.e2 [PMID: 29800546 DOI: 10.1016/j.gie.2018.05.009]

116 Li WQ, Ma JL, Zhang L, Brown LM, Li JY, Shen L, PanKF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S, Pee D, Blot WJ, Fraumeni JF Jr, You WC, Gail MH. Effects of Helicobacter pylori treatment on gastric cancer incidence and mortality in subgroups. J Natl Cancer Inst 2014; 106 [PMID: 24925350 DOI: 10.1093/jnci/dju116]

117 Take S, Mizuno M, Ishiki K, Kusunoto C, Imada T, Hamada F, Yoshida T, Yokota K, Mitsushahi T, Okada H. Risk of gastric cancer in the second decade of follow-up after Helicobacter pylori eradication. J Gastroenterol 2020; 55: 281-288 [PMID: 31667586 DOI: 10.1007/s00535-019-01639-w]

118 Sugimoto M, Murata M, Yamaoka Y. Chemoprevention of gastric cancer development after
Helicobacter pylori eradication therapy in an East Asian population: Meta-analysis. World J Gastroenterol 2020; 26: 1820-1840 [PMID: 32351296 DOI: 10.3748/wjg.v26.i15.1820]

Sugano K. Effect of Helicobacter pylori eradication on the incidence of gastric cancer: a systematic review and meta-analysis. Gastric Cancer 2019; 22: 435-445 [PMID: 30206731 DOI: 10.1007/s10120-018-0876-0]

Doorekakis E, Lagergren J, Engstrand L, Brusselaers N. Eradication of Helicobacter pylori and Gastric Cancer: A Systematic Review and Meta-analysis of Cohort Studies. J Natl Cancer Inst 2016; 108 [PMID: 27416750 DOI: 10.1093/jnci/djw132]

Chen HN, Wang Z, Li X, Zhou ZG. Helicobacter pylori eradication cannot reduce the risk of gastric cancer in patients with intestinal metaplasia and dysplasia: evidence from a meta-analysis. Gastric Cancer 2016; 19: 166-175 [PMID: 25694952 DOI: 10.1007/s10120-015-0462-7]

Lee JY, Choi JJ, Kim CG, Cho SJ, Kook MC, Ryu KW, Kim YW. Therapeutic Decision-Making Using Endoscopic Ultrasonography in Endoscopic Treatment of Early Gastric Cancer. Gut Liver 2010; 14: 42-50 [PMID: 26087792 DOI: 10.5009/gnl14401]

Kiriya Y, Tahara T, Shihata T, Okubo M, Nakagawa M, Okabe A, Ohmiya N, Kuroda M, Sugioka A, Ichinose M, Tatematsu M, Tsukamoto T. Gastric-and-intestinal mixed intestinal metaplasia is irreversible point with eradication of Helicobacter pylori. Open J Pathol 2016; 6: 93-104 [DOI: 10.4236/ojpathology.2016.62012]

Lu B, Li M. Helicobacter pylori eradication for preventing gastric cancer. World J Gastroenterol 2014; 20: 5660-5665 [PMID: 24914325 DOI: 10.3748/wjg.v20.i19.5660]

Görg A, Postel W, Baumer M, Weiss W. Two-dimensional polyacrylamide gel electrophoresis, with immobilized pH gradients in the first dimension, of barley seed proteins: discrimination of cultivars with different malting qualities. Electrophoresis 1992; 13: 192-203 [PMID: 1628598 DOI: 10.1002/elps.1150130141]

Capelle LG, de Vries AC, Haringansa J, Ter Borg F, de Vries RA, Bruno MJ, van Dekken H, Meijer J, van Grieken NC, Kuipers EJ. The staging of gastritis with the OLGA system by using intestinal immobilized pH gradients in the first dimension, of barley seed proteins: discrimination of cultivars with different malting qualities. Electrophoresis 1992; 13: 192-203 [PMID: 1628598 DOI: 10.1002/elps.1150130141]

Zhou Y, Li HY, Zhang JJ, Chen XY, Ge ZZ, Li XB. Operative link on gastritis assessment stage is an appropriate predictor of early gastric cancer. World J Gastroenterol 2016; 22: 3670-3678 [PMID: 27053859 DOI: 10.3748/wjg.v22.i13.3670]

Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T, Takayama H, Tanimoto T, Ishihara S, Matsu K, Tada T. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori infection Based on Endoscopic Images. EBioMedicine 2017; 25: 106-111 [PMID: 29056541 DOI: 10.1016/j.ebiom.2017.10.014]

Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujiashiro M, Matsu K, Fujisaki J, Tada T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018; 21: 653-660 [PMID: 29353825 DOI: 10.1007/s10120-018-0793-2]

Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, Kelly R, Iqbal N, Chandelier F, Rex DK. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019; 68: 94-100 [PMID: 29066570 DOI: 10.1136/gutjnl-2017-314547]

Mori Y, Kado SE, Mohmed HEN, Misawa M, Ogata N, Itoh H, Oda M, Mori K. Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Dig Endosc 2019; 31: 378-388 [PMID: 30549317 DOI: 10.1111/den.13317]

Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, Ding Q, Mu G, Yin A, Huang X, Liu J, Jiang X, Wang Z, Deng Y, Liu M, Lin R, Ling T, Li P, Wu Q, Jin P, Chen J, Yu H. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 2019; 51: 522-531 [PMID: 30861533 DOI: 10.1055/a-0855-3532]

Anagnostopoulos GK, Yao K, Kaye P, Fogden E, Fortun P, Shonde A, Foley S, Sunil S, Atherton JJ, Hawkey C, Ragunath K. High-resolution magnification endoscopy can reliably identify normal gastric mucosa, Helicobacter pylori-associated gastritis, and gastric atrophy. Endoscopy 2007; 39: 202-207 [PMID: 17723960 DOI: 10.1055/s-2006-945056]

Sato H, Inoue H, Hayee B, Ikeda H, Sato C, Phalanusitthepa C, Santi EG, Kobayashi Y, Kado SE. In vivo histopathology using endocytoscopy for non-neoplastic changes in the gastric mucosa: a prospective pilot study (with video). Gastrointest Endosc 2015; 81: 875-881 [PMID: 25442082 DOI: 10.1016/j.gie.2014.08.019]

Sato H, Inoue H, Ikeda H, Sato C, Phalanusitthepa C, Hayee B, Santi EG, Kobayashi Y, Kado SE. In vivo gastric mucosal histopathology using endocytoscopy. World J Gastroenterol 2015; 21: 7000-7005 [PMID: 25945015 DOI: 10.3748/wjg.v21.i16.7000]

Cho JH, Jeon SR, Jin SY, Park S. Standard vs magnifying narrow-band imaging endoscopy for diagnosis of Helicobacter pylori infection and gastric precancerous conditions. World J Gastroenterol 2021; 27: 2238-2250 [PMID: 34025076 DOI: 10.3748/wjg.v27.i18.2238]

Qi QQ, Zuo XL, Li CQ, Ji R, Li Z, Zhou CJ, Li YQ. High-definition magnifying endoscopy with i-scan in the diagnosis of Helicobacter pylori infection: a pilot study. J Dig Dis 2013; 14: 579-586 [PMID: 23837680 DOI: 10.1111/1751-2980.12086]

Ji R, Li YQ, Gu XM, Yu T, Zuo XL, Zhou CJ. Confocal laser endomicroscopy for diagnosis of Helicobacter pylori infection: a prospective study. J Gastroenterol Hepatol 2010; 25: 700-705
Yasuda T, Hiroyasu T, Wiwa S, Okada Y, Hayashi S, Nakahata Y, Yasuda Y, Omatsu T, Obora A, Kojima T, Ichikawa H, Yagi N. Potential of automatic diagnosis system with linked color imaging for diagnosis of Helicobacter pylori infection. *Dig Endosc* 2020; 32: 373-381 [PMID: 31398276 DOI: 10.1111/den.13509]
Polyzos SA, Kountouras J, Zavos C, Deretzi G. The association between Helicobacter pylori infection and insulin resistance: a systematic review. Helicobacter 2011; 16: 79-88 [PMID: 21435084 DOI: 10.1111/j.1523-5378.2011.00822.x]

Shichijo S, Hirata Y, Niikura R, Hayakawa Y, Yamada A, Ushiku T, Fukayama M, Koike K. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointest Endosc 2016; 84: 618-624 [PMID: 26995689 DOI: 10.1016/j.gie.2016.03.791]

Shichijo S, Hirata Y. Characteristics and predictors of gastric cancer after Helicobacter pylori eradication. World J Gastroenterol 2018; 24: 2163-2172 [PMID: 29853734 DOI: 10.3748/wjg.v24.i20.2163]

Kitamura Y, Ito M, Matsuo T, Boda T, Oka S, Yoshihara M, Tanaka S, Chayama K. Characteristic epithelium with low-grade atypia appears on the surface of gastric cancer after successful Helicobacter pylori eradication therapy. Helicobacter 2014; 19: 289-295 [PMID: 24766284 DOI: 10.1111/hel.12132]

Hori K, Watari J, Yamasaki T, Kondo T, Toyoshima F, Sakurai J, Ikehara H, Tornita T, Oshima T, Fukui H, Nakamura S, Miwa H. Morphological Characteristics of Early Gastric Neoplasms Detected After Helicobacter pylori Eradication. Dig Dis Sci 2016; 61: 1641-1651 [PMID: 26423081 DOI: 10.1007/s10620-015-3887-2]
