On Vertex Irregular Total k-labeling and Total Vertex Irregularity Strength of Lollipop Graphs

Siti 'Aisyah Nur Ni’mah and Diari Indriati

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia

E-mail: sitiaisyahn@student.uns.ac.id, diari_indri@yahoo.co.id

Abstract. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. A vertex irregular total k-labeling $\lambda: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, k\}$ of a graph G is a labeling of vertices and edges of G in such a way that the weights of any two different vertices x and y are distinct. The weight of a vertex x in G, denoted by $wt(x)$, is defined as the sum of the label of x and the labels of all edges incident with the vertex x. A vertex irregular total k-labeling λ is a labeling of vertices and edges of G in such a way that the weights of any two different vertices x and y are distinct. They also defined $tvs(G)$, as the smallest positive integer k for which the graph G has a vertex irregular total k-labeling.

Many researchers have investigated the total vertex irregularity strength of some graphs. In 2007, Bača, et al. [1] defined the weight of a vertex x under a total labeling λ of graph $G = (V, E)$ as $wt(x) = \lambda(x) + \sum_{xy \in E(G)} \lambda(xy)$, for $x, y \in V(G)$ and $xy \in E(G)$. A vertex irregular total k-labeling $\lambda: V \cup E \rightarrow \{1, 2, \ldots, k\}$ of a graph G is a labeling of vertices and edges of G in such a way that the weights of any two different vertices x and y are distinct. They also defined $tvs(G)$, as the smallest positive integer k for which the graph G has a vertex irregular total k-labeling.

In 2007 Bača, et al. [1] observed that the total vertex irregularity strength of complete graph is equal to $tvs(K_n) = 2$, $n \geq 2$, while for cycle graph is equal to $tvs(C_n) = \left\lceil \frac{n+2}{3} \right\rceil$, $n \geq 3$. In 2005 Wijaya, et al. [7] obtained $tvs(K_{n,n}) = 3$, $n \geq 3$. Indriati, et al. [3] determined tvs of double star graphs $S_{n,m}$ and caterpillar $S_{n,2,n}$. Nurdin, et al. [4] defined tvs of path P_n and connected graph G having n_i vertices of degree i, $\delta \leq i \leq \Delta$, as follows,

$$tvs(G) \geq \max \left\{ \left\lfloor \frac{\delta + n_\delta}{\delta + 1} \right\rfloor, \left\lfloor \frac{\delta + n_\delta + n_{\delta+1}}{\delta + 2} \right\rfloor, \ldots, \left\lfloor \frac{\delta + \sum_{i=\delta}^{\Delta} n_i}{\Delta + 1} \right\rfloor \right\}. \tag{1}$$

In this paper, we determine the total vertex irregularity strength of a lollipop graphs $L_{m,n}$.

1. Introduction

Let $G(V, E)$ be a simple connected undirected graph with vertex set V and edge set E. Wallis [5] defined a labeling of graph as a map that carries graph elements to the number (usually to the positive or non negative integers). The most common choices of domain are the vertex set alone (called a vertex labeling), the edge set alone (called an edge labeling), or the set of vertices and edges (called a total labeling). In the recent development, the graph labeling is also defined as a various functions and one of this is an irregular labeling (see Gallian [2]).

In 2007, Bača, et al. [1] defined the weight of a vertex x under a total labeling λ of graph $G = (V, E)$ is $wt(x) = \lambda(x) + \sum_{xy \in E(G)} \lambda(xy)$, for $x, y \in V(G)$ and $xy \in E(G)$. A vertex irregular total k-labeling $\lambda: V \cup E \rightarrow \{1, 2, \ldots, k\}$ of a graph G is a labeling of vertices and edges of G in such a way that the weights of any two different vertices x and y are distinct. They also defined $tvs(G)$, as the smallest positive integer k for which the graph G has a vertex irregular total k-labeling.

Many researchers have investigated the total vertex irregularity strength of some graphs. In 2007 Bača, et al. [1] observed that the total vertex irregularity strength of complete graph is equal to $tvs(K_n) = 2$, $n \geq 2$, while for cycle graph is equal to $tvs(C_n) = \left\lceil \frac{n+2}{3} \right\rceil$, $n \geq 3$. In 2005 Wijaya, et al. [7] obtained $tvs(K_{n,n}) = 3$, $n \geq 3$. Indriati, et al. [3] determined tvs of double star graphs $S_{n,m}$ and caterpillar $S_{n,2,n}$. Nurdin, et al. [4] defined tvs of path P_n and connected graph G having n_i vertices of degree i, $\delta \leq i \leq \Delta$, as follows,

$$tvs(G) \geq \max \left\{ \left\lfloor \frac{\delta + n_\delta}{\delta + 1} \right\rfloor, \left\lfloor \frac{\delta + n_\delta + n_{\delta+1}}{\delta + 2} \right\rfloor, \ldots, \left\lfloor \frac{\delta + \sum_{i=\delta}^{\Delta} n_i}{\Delta + 1} \right\rfloor \right\}. \tag{1}$$

In this paper, we determine the total vertex irregularity strength of a lollipop graphs $L_{m,n}$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
2. Main Result

Weisstein [6] defined the \((m, n)\)-lollipop graphs, denoted by \(L_{m,n}\), as a graph obtained by joining a complete graph \(K_m\) to a path graph \(P_n\) with a bridge. Lollipop graphs \(L_{m,n}\) has vertex set \(V(L_{m,n}) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_m\}\), where \(v_1, v_2, \ldots, v_m\) are the vertices of the complete graph \(K_m\) and \(u_1, u_2, \ldots, u_n\) are the vertices of the path graph \(P_n\). Moreover, vertex \(v_i, 1 \leq i \leq m\), adjacent with vertex \(v_j, 1 \leq j \leq m, i \neq j\). Vertex \(u_i, 1 \leq i \leq n-1\), adjacent with vertex \(u_{i+1}\). Vertex \(v_m\) adjacent with vertex \(u_n\). Lollipop graphs \(L_{m,n}\) can be see at Figure 1.

![Figure 1. Lollipop graph \(L_{m,n}\)](image)

Theorem 2.1 For \(m \geq 3\) and \(n \geq 1\), the total vertex irregularity strength of lollipop graphs \(L_{m,n}\) is equal to \(\text{tvs}(L_{m,n}) = \max\{\lceil \frac{n+1}{3}\rceil, \lceil \frac{m+n}{m}\rceil\}\).

Proof. Lollipop graphs \(L_{m,n}\) has 1 vertex of degree 1, \((n-1)\) vertices of degree 2, \((m-1)\) vertices of degree \((m-1)\), and 1 vertex of degree \(m\). According (1), a lower bound of lollipop graph for \(m \geq 3\) and \(n \geq 1\) is,

\[
\text{tvs}(L_{m,n}) \geq \max\left\{\frac{1+1}{1+1}, \frac{1+1+(n-1)}{1+2}, \frac{1+1+(n-1)+(m-1)}{1+(m-1)}, \frac{1+1+(n-1)+(m-1)+1}{m+1}\right\}
\]

\[
= \max\left\{\left\lceil \frac{2}{2}\right\rceil, \left\lceil \frac{n+1}{3}\right\rceil, \left\lceil \frac{m+n}{m}\right\rceil, \left\lceil \frac{m+n+1}{m+1}\right\rceil\right\}
\]

\[
= \max\left\{\left\lceil \frac{n+1}{3}\right\rceil, \left\lceil \frac{m+n}{m}\right\rceil\right\}
\]

We now prove that \(\text{tvs}(L_{m,n}) \leq \max\{\lceil \frac{n+1}{3}\rceil, \lceil \frac{m+n}{m}\rceil\}\) for \(m \geq 3\) and \(n \geq 1\). Let \(k = \max\{\lceil \frac{n+1}{3}\rceil, \lceil \frac{m+n}{m}\rceil\}\). Then we define \(\lambda\) as follows.

\[
\lambda(v_m) = 1, \quad \text{for } m \geq 3.
\]

\[
\lambda(u_i) = \begin{cases}
1, & \text{for } 1 \leq i \leq 4; \\
\left\lceil \frac{i+1}{3}\right\rceil, & \text{for } 5 \leq i \leq n.
\end{cases}
\]

\[
\lambda(u_iu_{i+1}) = \left\lceil \frac{i+1}{3}\right\rceil, \quad \text{for } 1 \leq i \leq n-1.
\]

\[
\lambda(v_mu_n) = \left\lceil \frac{n+1}{3}\right\rceil.
\]
For vertex labeling of $\lambda(v_i)$, $i \neq m$, and $\lambda(v_iv_j)$, $1 \leq i, j \leq m$, there are 3 cases.

Case 1. For $1 \leq n \leq m-2$ and $m \geq 3$

\[
\lambda(v_i) = \begin{cases}
1, & \text{for } 1 \leq i \leq \left\lfloor \frac{m}{2} \right\rfloor; \\
2, & \text{for } \left\lceil \frac{m}{2} \right\rceil < i < m.
\end{cases}
\]

$\forall i, 1 \leq i \leq m, i \neq j$

\[
\lambda(v_iv_j) = \begin{cases}
1, & \text{for } 1 \leq j \leq m - i + 1; \\
2, & \text{for } m - i + 2 \leq j \leq m.
\end{cases}
\]

Case 2. For $n \geq m - 1$ and $m \geq 3$ and not for $m = 4$ and $n \equiv 2 \pmod{3}$, $n \geq 8$

\[
\lambda(v_i) = \begin{cases}
\left\lceil \frac{n-m+2}{3} \right\rceil, & \text{for } 1 \leq i \leq \left\lfloor \frac{m-3+(m-n+1) \mod 3}{2} \right\rfloor; \\
1 + \left\lceil \frac{n-m+2}{3} \right\rceil, & \text{for } \left\lfloor \frac{m-3+(m-n+1) \mod 3}{2} \right\rfloor < i < m.
\end{cases}
\]

$\forall i, 1 \leq i, j \leq m, i \neq j$

\[
\lambda(v_iv_j) = \begin{cases}
\left\lceil \frac{n-m+2}{3} \right\rceil, & \text{for } 1 \leq j \leq m - i - (n - m + 4) \mod 3 \text{ and } 1 \leq i \leq m - (n - m + 4) \mod 3; \\
1 + \left\lceil \frac{n-m+2}{3} \right\rceil, & \text{for } m - i - (n - m + 4) \mod 3 < j < m \text{ and } 1 \leq i \leq m - (n - m + 4) \mod 3.
\end{cases}
\]

\[
\lambda(v_iv_m) = \begin{cases}
\left\lceil \frac{n-m+2}{3} \right\rceil, & \forall i \text{ and } (n - m + 4) \equiv 0, 1 \pmod{3}; \\
k, & \text{for } i = m - 1 \text{ and } (n - m + 4) \equiv 2 \pmod{3}; \\
1 + \left\lceil \frac{n-m+2}{3} \right\rceil, & \text{for } i \neq m - 1 \text{ and } (n - m + 4) \equiv 2 \pmod{3}.
\end{cases}
\]

Case 3. For $m = 4$ and $n \equiv 2 \pmod{3}$, $n \geq 8$

\[
\lambda(v_i) = \begin{cases}
\left\lceil \frac{n-2}{3} \right\rceil, & \text{for } i = 1; \\
1 + \left\lceil \frac{n-2}{3} \right\rceil, & \text{for } i \neq 1.
\end{cases}
\]

$1 \leq j \leq 4, i \neq j$

\[
\lambda(v_iv_j) = \begin{cases}
\left\lceil \frac{n-2}{3} \right\rceil, & \text{for } 1 \leq j \leq 3 - i \text{ and } i = 1, 2; \\
1 + \left\lceil \frac{n-2}{3} \right\rceil, & \text{for } 4 - i \leq j \leq 4 \text{ and } 1 \leq i \leq 3.
\end{cases}
\]
We can see that \(\lambda \) is a map that carries \(V(L_{m,n}) \cup E(L_{m,n}) \) to \(1, 2, \ldots, k \). Therefore, \(\lambda \) is a total \(k \)-labeling with \(k = \max\{\lceil \frac{n+1}{3} \rceil, \lceil \frac{m+n}{m} \rceil \} \). Then, the weight of vertices are.
\[
wt(u_i) = i + 1, \quad \text{for } 1 \leq i \leq n.
\]

Case 1. For \(1 \leq n \leq m - 2 \) and \(m \geq 3 \)
\[
wt(v_i) = \begin{cases}
 m + i + \left\lceil \frac{n-m+2}{3} \right\rceil + (n-m) \mod 3 + (m-1) \left(\frac{(n-m)-(n-m) \mod 3}{3} \right), & \text{for } 1 \leq i \leq m - 1; \\
 2m - 1 + \left\lceil \frac{n+1}{3} \right\rceil + (m-1) \left(\frac{(n-m)-(n-m) \mod 3}{3} \right), & \text{for } i = m \\
\end{cases}
\]

Case 2. For \(n \geq m - 1 \) and \(m \geq 3 \) and not for \(m = 4 \) and \(n \equiv 2 \pmod{3} \), \(n \geq 8 \)
\[
wt(v_i) = \begin{cases}
 m + i + \left\lceil \frac{n-m+2}{3} \right\rceil + (n-m) \mod 3 + (m-1) \left(\frac{(n-m)-(n-m) \mod 3}{3} \right), & \text{for } 1 \leq i \leq m - 1; \\
 2m - 1 + \left\lceil \frac{n+1}{3} \right\rceil + (m-1) \left(\frac{(n-m)-(n-m) \mod 3}{3} \right), & \text{for } i = m \\
\end{cases}
\]

Case 3. For \(m = 4 \) and \(n \equiv 2 \pmod{3} \), \(n \geq 8 \)
\[
wt(v_i) = \left\lceil \frac{n-2}{3} \right\rceil + n + i - 1, \quad \text{for } 1 \leq i \leq 4.
\]

We can see that the weight of all vertices are distinct. Then, we can obtain a vertex irregular total \(k \)-labeling of lollipop graphs \(L_{m,n} \). That means, \(tvs(L_{m,n}) = k \). So, it is proven that \(tvs(L_{m,n}) \leq \max\{\lceil \frac{n+1}{3} \rceil, \lceil \frac{m+n}{m} \rceil \} \) for \(m \geq 3 \) and \(n \geq 1 \).

If \(m = 4, n > 5 \) and \(m \geq 5, n > 2 \), then the total vertex irregularity strength of lollipop graphs \(L_{m,n} \) is \(tvs(L_{m,n}) = \lceil \frac{n+1}{3} \rceil \). If \(m = 3, n \geq 1, m = 4, n \leq 5 \), and \(m \geq 5, n \leq 2 \), then the total vertex irregularity strength of lollipop graphs \(L_{m,n} \) is \(tvs(L_{m,n}) = \lceil \frac{m+n}{m} \rceil \).
Example for case 1 and case 2.

Figure 2. Vertex irregular total 2-labeling of $L_{4,2}$

The vertex labeling of $L_{4,2}$, is as follows.

\[
\begin{align*}
\lambda(u_1) &= 1, & \lambda(v_1) &= 2, & \lambda(v_3) &= 2, \\
\lambda(u_2) &= 1, & \lambda(v_2) &= 1, & \lambda(v_4) &= 1.
\end{align*}
\]

The edge labeling of $L_{4,2}$, is as follows.

\[
\begin{align*}
\lambda(u_1u_2) &= 1, & \lambda(v_1v_2) &= 1, & \lambda(v_1v_4) &= 1, & \lambda(v_2u_4) &= 2, \\
\lambda(u_2v_4) &= 1, & \lambda(v_1v_3) &= 1, & \lambda(v_2v_3) &= 1, & \lambda(v_3v_4) &= 2.
\end{align*}
\]

The weight of all vertices of $L_{4,2}$, is as follows.

\[
\begin{align*}
wt(u_1) &= 2, & wt(v_1) &= 4, & wt(v_3) &= 6, \\
wt(u_2) &= 3, & wt(v_2) &= 5, & wt(v_4) &= 7.
\end{align*}
\]

Based on Figure 2, we can see that the biggest label is 2 and the weight of all vertices are distinct, so that we obtain a vertex irregular total 2-labeling of $L_{4,2}$. That means, $tvs(L_{4,2}) = 2$.

The vertex labeling of $L_{4,5}$, is as follows.

\[
\begin{align*}
\lambda(u_1) &= 1, & \lambda(u_4) &= 1, & \lambda(v_2) &= 2, \\
\lambda(u_2) &= 1, & \lambda(u_5) &= 2, & \lambda(v_3) &= 2, \\
\lambda(u_3) &= 1, & \lambda(v_1) &= 1, & \lambda(v_4) &= 1.
\end{align*}
\]

The edge labeling of $L_{4,5}$, is as follows.

\[
\begin{align*}
\lambda(u_1u_2) &= 1, & \lambda(u_4u_5) &= 2, & \lambda(v_1v_2) &= 2, & \lambda(v_2v_3) &= 2, \\
\lambda(u_2u_3) &= 1, & \lambda(u_5v_4) &= 2, & \lambda(v_1v_3) &= 2, & \lambda(v_2v_4) &= 2, \\
\lambda(u_3u_4) &= 2, & \lambda(v_1v_4) &= 2, & \lambda(v_3v_4) &= 3.
\end{align*}
\]

The weight of all vertices of $L_{4,5}$, is as follows.

\[
\begin{align*}
wt(u_1) &= 2, & wt(u_4) &= 5, & wt(v_2) &= 8, \\
wt(u_2) &= 3, & wt(u_5) &= 6, & wt(v_3) &= 9, \\
wt(u_3) &= 4, & wt(v_1) &= 7, & wt(v_4) &= 10.
\end{align*}
\]

Based on Figure 3, we can see that the biggest label is 3 and the weight of all vertices are distinct, so that we obtain a vertex irregular total 3-labeling of $L_{4,5}$. That means, $tvs(L_{4,5}) = 3$.

Figure 3. Vertex irregular total 3-labeling of $L_{4,5}$
Example for case 3.

\[\begin{align*}
 v_1 \quad &v_4 \\
 v_2 \quad &v_3 \\
 u_1 \quad &u_2 \quad &u_3 \quad &u_4 \quad &u_5 \quad &u_6 \quad &u_7 \quad &u_8 \\
 11111 \quad &1223 \quad &21 \quad &222333 \\
 2 \quad &3 \quad &11 \quad &9 \quad &5 \quad &10 \quad &6 \quad &3 \quad &2 \quad &8 \quad &12 \quad &4 \quad &13 \quad &7
\end{align*} \]

Figure 4. Vertex irregular total 3-labeling of \(L_{4,8} \)

The vertex labeling of \(L_{4,8} \), is as follows.

\[
\begin{align*}
 \lambda(u_1) &= 1, & \lambda(u_5) &= 2, & \lambda(v_1) &= 2, \\
 \lambda(u_2) &= 1, & \lambda(u_6) &= 2, & \lambda(v_2) &= 3, \\
 \lambda(u_3) &= 1, & \lambda(u_7) &= 2, & \lambda(v_3) &= 3, \\
 \lambda(u_4) &= 1, & \lambda(u_8) &= 3, & \lambda(v_4) &= 1.
\end{align*}
\]

The edge labeling of \(L_{4,8} \), is as follows.

\[
\begin{align*}
 \lambda(u_1u_2) &= 1, & \lambda(u_5u_6) &= 2, & \lambda(v_1v_2) &= 2, & \lambda(v_2v_4) &= 3, \\
 \lambda(u_2u_3) &= 1, & \lambda(u_6u_7) &= 3, & \lambda(v_1v_3) &= 3, & \lambda(v_3v_4) &= 3, \\
 \lambda(u_3u_4) &= 2, & \lambda(u_7u_8) &= 3, & \lambda(v_1v_4) &= 3, \\
 \lambda(u_4u_5) &= 2, & \lambda(u_8v_4) &= 3.
\end{align*}
\]

The weight of all vertices of \(L_{4,8} \), is as follows.

\[
\begin{align*}
 wt(u_1) &= 2, & wt(u_5) &= 6, & wt(v_1) &= 10, \\
 wt(u_2) &= 3, & wt(u_6) &= 7, & wt(v_2) &= 11, \\
 wt(u_3) &= 4, & wt(u_7) &= 8, & wt(v_3) &= 12, \\
 wt(u_4) &= 5, & wt(u_8) &= 9, & wt(v_4) &= 13.
\end{align*}
\]

Based on Figure 4, we can see that the biggest label is 3 and the weight of all vertices are distinct, so that we obtain a vertex irregular total 3-labeling of \(L_{4,8} \). That means, \(tvs(L_{4,8}) = 3 \).

3. Conclusion

According to the discussion above it can be concluded that total vertex irregularity strength of a lollipop graphs \(L_{m,n} \) is as stated in Theorem 2.1.

References

[1] Bača, M., S. Jendrol’, M. Miller, and J. Ryan, *On Irregular Total Labelings*, Discrete Mathematics 307 (2007), 1378–1388.
[2] Gallian, J. A., *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics 19 (2016), #DS6.
[3] Indriati, D., Widodo, I. E. Wijayanti, and K. A. Sugeng, *On Total Irregularity Strength of Double-Star and Related Graphs*, Procedia Computer Science 74 (2015), 118–123.
[4] Nurdin, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, *On the Total Vertex Irregularity Strength of Trees*, Discrete Math 310 (2010), 3043–3048.
[5] Wallis, W. D., *Magic Graphs*, Birkhäuser, Boston, 2001.
[6] Weisstein, E. W., *CRC Concise Encyclopedia of Mathematics, 2nd edition*, Boca Raton, 2002.
[7] Wijaya, K., Slamin, Surahmat, and S. Jendrol’, *Total Vertex Irregular Labeling of Complete Bipartite Graphs*, J Combin Math Combin Comput 55 (2005), 129–136.