FUKAYA’S CONJECTURE ON \(S^1 \)-EQUIVARIANT DE RHAM COMPLEX

ZIMING NIKOLAS MA

ABSTRACT. Getzler-Jones-Petrack \cite{7} introduced \(A_\infty \) structures on the equivariant complex for manifold \(M \) with smooth \(S^1 \) action, motivated by geometry of loop spaces. Applying Witten’s deformation by Morse functions followed by homological perturbation we obtained a new set of \(A_\infty \) structures. We extend and prove Fukaya’s conjecture \cite{6} relating this Witten’s deformed equivariant de Rham complexes, to a new Morse theoretical \(A_\infty \) complexes defined by counting gradient trees with jumping which are closely related to the \(S^1 \) equivariant symplectic cohomology proposed by Siedel \cite{15}.

1. INTRODUCTION

In the influential paper \cite{17} by Witten, harmonic forms on a compact oriented Riemannian manifold \((M, g)\) are related to the Morse complex

\[
(CM_f^* := \bigoplus_{p \in \text{Crit}(f)} \mathbb{C} \cdot p) \quad \text{on} \quad M
\]

with a Morse function \(f \). More precisely, Witten introduced the twisted Laplacian

\[
\Delta_{f, \lambda} = d^*_{f, \lambda} \circ d + d \circ d^*_{f, \lambda}
\]

with a large real parameter \(\lambda \), and an isomorphism

\[
\phi : (CM_f^*, \delta) \to (\Omega_{f, <1}^*(M), d)
\]

where \(\Omega_{f, <1}^*(M) \) refers to the small eigensubspace of \(\Delta_{f, \lambda} \) (see Section 2.2). The detailed analysis of \(\phi \) is later carried out in \cite{9, 11, 10, 12} and readers may also see \cite{18} for this correspondence.

In \cite{6}, Fukaya conjectured that Witten’s isomorphism \(\phi \) can be enhanced to an isomorphism of \(A_\infty \) algebras (or categories), a generalization of differential graded algebras (abbrev. dga), encoding rational homotopy type by work of Quillen \cite{14} and Sullivan \cite{16}. The \(A_\infty \) structures \(m_k(\lambda) \)'s on \(\Omega_{f, <1}^*(M) \) are obtained by pulling back the structures of the de Rham dga \((\Omega^*(M), d, \wedge)\) using the homological perturbation lemma (see e.g. \cite{13}) with homotopy operator \(H_{f, \lambda} = d_{f, \lambda}^* G_{f, \lambda} \). The Morse \(A_\infty \) structures \(m_k^{\text{Morse}} \)'s are defined via counting gradient flow trees of Morse functions as in \cite{5}. Fukaya conjectured that they are related by

\[
\lim_{\lambda \to \infty} m_k(\lambda) = m_k^{\text{Morse}}
\]

via the Witten’s isomorphism \(\phi \). This conjectured is proven in \cite{3} by extending the analytic technique in \cite{12} to incorporate the homotopy operator \(H_{f, \lambda} \).

When \(M \) is equipped with a smooth \(S^1 \) action, motivated by the geometry of loop space \(S^1 \acts \mathcal{L}X \) for some \(X \), Getzler-Jones-Petrack \cite{7} introduced an enhancement of the equivariant de Rham complex on \(M \). They defined new \(A_\infty \) algebra structures consisting of

\[
\tilde{m}_k : (\Omega^*(M)[[u]]) \otimes^k \to \Omega^*(M)[[u]]
\]

by adding higher order (in \(u \)) operations \(uP_k \)'s (see Section 2.1) to ordinary de Rham dga structures. Witten’s deformed \(A_\infty \) structures \(m_k(\lambda) \)'s are constructed from \(\tilde{m}_k \)'s in \(1.3 \) using the technique of homological perturbation as in original Fukaya’s conjecture.

\begin{itemize}
 \item[1] Here \(\text{Crit}(f) \) refers to set of critical points of \(f \), and the differential \(\delta \) is given by counting gradient flow lines.
 \item[2] We let \(d_{f, \lambda}^* \) to be the adjoint of \(d \), and \(G_{f, \lambda} \) to be Witten’s Green function of \(\Delta_{f, \lambda} \) w.r.t. volume form \(e^{-2\lambda f \cdot \text{vol}_M} \).
\end{itemize}
Inspired by Fukaya’s correspondence, we define new Morse theoretic type counting structures \(m_{k}^{\text{Morse}} \)'s (where \(m_{1}^{\text{Morse}} \) is known before in [2]) associated to \(S^1 \acts M \), counting of Morse flow trees with jumpings coming from the \(S^1 \) action (see the following Section 1.1). We prove the generalization of (1.2) for \(S^1 \acts M \) relating these two structures.

Theorem 1.1 (=Theorem 2.11). We have
\[
\lim_{\lambda \to \infty} m_k(\lambda) = m_{k}^{\text{Morse}}.
\]

1.1. **The operation \(m_{k}^{\text{Morse}} \)'s.** To describe \(m_{k}^{\text{Morse}} \)'s, we fix a generic sequence (see Definition 2.8) of functions \((f_0, \ldots, f_k)\) such that their differences \(f_{ij} := f_j - f_i \) are assumed to be Morse-Smale as in Definition 2.5. The Morse theoretical \(A_\infty \) product \(m_{k}^{\text{Morse}} \)'s take the form
\[
m_{k}^{\text{Morse}} := \sum_{T} m_{k,T}^{\text{Morse}} : CM_{(k-1)k}^*[u] \otimes \cdots \otimes CM_{f_0}^*[u] \to CM_{f_0}^*[u]
\]
which is a summation over directed labeled ribbon \(k \)-tree \(T \) with \(k \)-incoming edges and 1 outgoing edge, where internal vertices are either labeled by 1 or by \(u \). For example (see Section 2.3 for details), if we take the tree \(T \) to be the one with two incoming edges \(e_{12} \) and \(e_{01} \) joining the vertex \(v_r \) connected to the outgoing edge \(e_{02} \), with \(v_r \) being labeled by \(u \). The gradient flow trees with type \(T \) will be consisting of gradient flow lines of \(f_{12}, f_{01} \) and \(f_{02} \) which ending at critical points \(q_{12}, q_{01} \) and \(q_{02} \) respectively, that can be joined together at a point \(x_{v_r} \in M \) with further help of the \(S^1 \) action \(\sigma_t : M \to M \) (for some \(t \)) as shown in the Figure 1. As a consequence of the above Theorem 1.1, the Morse (pre)-category (here pre-category means this operation only defined for generic sequence \((f_0, \ldots, f_k)\) on \(S^1 \acts M \) is an \(A_\infty \) (pre)-category.

![Gradient tree with jumping](image)

Figure 1. Gradient tree with jumping of type \(T \)

Corollary 1.2. The operations \(m_{k}^{\text{Morse}} \)'s satisfy the \(A_\infty \) relation for generic sequences of functions.

Remark 1.3. In [15, Section 8b], Seidel proposed the \(A_\infty \) operators \(m_{k}^{\text{Floer}} \) on the symplectic cochain complex for a Liouville domain \(X \), which corresponds to \(m_{k}^{\text{Morse}} \)'s if we think of \(M \) as a finite dimensional analogue of \(\mathcal{L}X \). The corresponding \(m_{1}^{\text{Floer}} \) operation is studied in details in [19]. The above Theorem 1.1 suggest how Witten deformation can provide a linkage between the Getzler-Jones-Petrack’s operation \(\tilde{m}_k \) on \(\mathcal{L}X \) and the Floer theoretical operations introduced by Seidel through the investigation of the corresponding finite dimensional situation.
This paper consists of three parts. In Section 2 we set up the Witten deformation of Getzler-Jones-Petrack’s A_∞ operations \tilde{m}_k’s, the definition of counting gradient flow trees with jumping, and state our Main Theorem 2.11. In Section 3.1 we recall the necessary analytic result by following [3]. The rest of Section 3 will be a proof of Theorem 2.11 by figuring out the exact relations between the operations $m_{k,T}(\lambda)$ and counting of gradient trees.

Acknowledgement

The work in this paper is inspired by a talk of Naichung Conan Leung given at the Southern University of Science and Technology, and I would like to express my gratitude to Kwokwai Chan and Naichung Conan Leung for useful conversations when writing this paper.

2. Witten’s deformation of S^1-equivariant de Rham complex

We always let (M, g) to be an n-dimensional compact oriented Riemannian manifold, and denote it volume form by vol_M (or simply vol). We assume there is an smooth S^1 action $\sigma : S^1 \times M \to M$ on M preserving (g, vol). We should write $\sigma_t : M \to M$ to be the action for a fixed $t \in S^1$.

2.1. S^1-equivariant de Rham complex and category. We begin with recalling the Definition of S^1-equivariant de Rham A_∞ algebra introduced in [7], which is reformulated to be A_∞ category as follows for the convenient of presentation of this paper.

Definition 2.1. The S^1-equivariant de Rham A_∞ category $dR(M)$ consisting of object being smooth functions $f : M \to \mathbb{R}$, with morphism $\text{Hom}(f,g) := \Omega^*(M)[[u]]$ where u is a formal variable. The A_∞ operations $\tilde{m}_k : \text{Hom}(f_{k-1}, f_k) \otimes \cdots \otimes \text{Hom}(f_0, f_1) \cong (\Omega^*(M)[[u]])^\otimes k \to \text{Hom}(f_0, f_k) \cong \Omega^*(M)[[u]]$ is defined by $\tilde{m}_1(\alpha_{01}) = d(\alpha_{01}) + uP_1(\alpha_{01})$, $\tilde{m}_2(\alpha_{12}, \alpha_{01}) = (-1)^{|\alpha_{12}|+|\alpha_{01}|} \alpha_{12} \wedge \alpha_{01} + uP_2(\alpha_{12}, \alpha_{01})$ and $\tilde{m}_k(\alpha_{(k-1)k}, \ldots, \alpha_{01}) = uP_k(\alpha_{(k-1)k}, \ldots, \alpha_{01})$ for $\alpha_{ij} \in \text{Hom}(f_i, f_j)$.

Here the operator P_k is defined by the action $P_1(\alpha_{ij}) = \int_{S^1}(\tau \circ (\sigma^*(\alpha_{ij}))) dt$, and for $k \geq 2$ we use

$$P_k(\alpha_{(k-1)k}, \ldots, \alpha_{01}) := \int_{0 \leq t_k \leq \cdots \leq t_1 \leq 1} \left((\tau \circ (\sigma^*(\alpha_{(k-1)k}))) \wedge \cdots \wedge (\tau \circ (\sigma^*(\alpha_{01}))) \right) dt_k \cdots dt_1.$$

The fact that the about operations \tilde{m}_k’s form an A_∞ category is proven in [7] Theorem 1.7.

2.2. Homological perturbation via Witten’s deformation. We follow [3] Section 2.2. to introduce the Witten deformation with a real parameter $\lambda > 0$, which is originated from [17]. For each f_i and f_j, we twist the volume form vol by $f_{ij} := f_j - f_i$ as $\text{vol}_{ij} := e^{-2\lambda f_i} \text{vol}$, and let $d_{ij} := e^{2\lambda f_{ij}} d e^{-2\lambda f_i} = d + 2\lambda \nabla f_i$ to be the adjoint of d with respect to the volume form vol_{ij}. The Witten Laplacian is defined by $\Delta_{ij} := dd^*_{ij} + d^*_j d^*_{ij}$, acting on the complex $\Omega^*(M)[[u]]$ We denote the span of eigenspaces with eigenvalues contained in $[0, 1)$ by $\Omega^*_{ij, < 1}(M)[[u]]$, or simply $\Omega^*_{ij, < 1}[[u]]$. We use construction in [3] originated from [6] using homological perturbation lemma [13], which obtain a new A_∞ structure from m_k’s as follows.

Definition 2.2. A (directed) k-tree labeled T consists of a finite set of vertices $\bar{T}^{[0]}$ together with a decomposition $\bar{T}^{[0]} = T^{[0]}_\infty \sqcup T^{[0]}_o \sqcup \{v_o\}$, where $T^{[0]}_\infty$, called the set of incoming vertices, is a set of size k and v_o is called the outgoing vertex (we also write $T^{[0]}_{\infty} := T^{[0]}_\infty \cup \{v_o\}$ and $T^{[0]}_{o} := T^{[0]}_o \cup \{v_o\}$), a finite set of edges $\bar{T}^{[1]}$, two boundary maps $\partial_{\infty}, \partial_o : \bar{T}^{[1]} \to \bar{T}^{[0]}$ (here ∂_{∞} stands for incoming and$$3$$Strictly speaking, the differential forms here depend on the real parameter λ while we prefer to suppress the dependence in our notation.
∂₀ stands for outgoing), and a labeling of every internal vertices $T^{[0]}$ by either 1 or u, satisfying the following conditions:

1. Every vertex $v \in T^{[0]}_{in}$ has valency one, and satisfies $\#\partial^{-1}_o(v) = 0$ and $\#\partial^{-1}_i(v) = 1$; we let $T^{[1]} := T^{[1]} \setminus \partial^{−1}_i(T^{[0]}_{in})$.
2. Every vertex $v \in T^{[0]}$ has an unique edge $e_{v,o} \in T^{[1]}$ such that $\partial^{−1}_i(e_{v,o}) = v$, and only trivalent vertices in $T^{[0]}$ can be labeled with 1.
3. For the outgoing vertex v_o, we have $\#\partial^{-1}_o(v_o) = 1$ and $\#\partial^{-1}_i(v_o) = 0$; we let $e_o := \partial^{-1}_o(v_o)$ be the outgoing edge and denote by $v_r \in T^{[0]}_{in} \cup T^{[0]}$ the unique vertex (which we call the root vertex) with $e_o = \partial^{-1}_i(v_r)$.
4. The topological realization $|\tilde{T}| := (\bigcup_{v \in T^{[1]}[0,1]} 1)/\sim$ of the tree T is connected and simply connected; here \sim is the equivalence relation defined by identifying boundary points of edges if their images in $T^{[0]}$ are the same.

By convention we also allow the unique labeled 1-tree with $T^{[0]} = \emptyset$. Two labeled k-trees T_1 and T_2 are isomorphic if there are bijections $T^{[0]}_1 \cong T^{[0]}_2$ and $T^{[1]}_1 \cong T^{[1]}_2$ preserving the decomposition $T^{[0]}_i = T^{[0]}_{in} \cup T^{[0]}_o \cup \{v_i,o\}$ and boundary maps $\partial^{−1}_i$ and $\partial^{−1}_o$ and the labeling of $T^{[0]}$. The set of isomorphism classes of labeled k-trees will be denoted by \mathbb{T}_k. For a labeled k-tree T, we will abuse notations and use T (instead of $|T|$) to denote its isomorphism class.

A labeled ribbon k-tree is a k-tree T with a cyclic ordering of $\partial^{−1}_i(v) \cup \partial^{−1}_o(v)$ for each trivalent vertex $v \in T^{[0]}$, and isomorphism of labeled ribbon k-trees are further required to preserve this ordering. A labeled ribbon k-tree can have its topological realization $|\tilde{T}|$ being embedded into the unit disc D, with $T^{[0]}_D$ lying on the boundary ∂D such that the cyclic ordering of $\partial^{−1}_i(v) \cup \partial^{−1}_o(v)$ agree with the anti-clockwise orientation of D. The set of isomorphism classes of labeled ribbon k-trees will be denoted by \mathbb{LT}_k.

Notations 2.3. For each $T \in \mathbb{LT}_k$, we can associated to each edge $e \in T^{[1]}$ a numbering by pair of integer ij using the embedding $|T| \to D$ by the rules: there are $k + 1$ connected components of $D \setminus |T|$, and we assign each component by integers $0, \ldots, k$; each (directed) edge $e \in T^{[1]}$ with region numbered by i on its left and region numbered by j on its right is numbered by ij; the incoming edges numbered by $e_{(k−1)k}, \ldots, e_{01}$ and the outgoing edge e_{0k} are in clockwise ordering of ∂D.

A pair of $v \in T^{[0]} \cup \{v_o\}$ attached to an edge $e \in T^{[1]}$ is called a flag, and we will let $f(T)$ to be the set of all flags. For every flag (e, v), we let $T_{e,v}$ to be the unique subtree with outgoing vertex being v if $\partial_o(e) = v$, and we let $T_{e,v}$ to be the unique subtree with outgoing edge being e if $\partial_i(e) = v$.

Definition 2.4. Given a labeled ribbon k-tree $T \in \mathbb{LT}_k$ with an embedding $|\tilde{T}| \to D$, we associate to it an operation $m_{k,T}(\lambda) : \Omega^{*}_{(k−1)k,\leq 1}[\{i\}] \otimes \cdots \otimes \Omega^{*}_{01,\leq 1}[\{i\}] \to \Omega^{*}_{0k,\leq 1}[\{i\}]$ by the following rules:

1. aligning the inputs $\varphi_{(k−1)k}, \ldots, \varphi_{01}$ at the incoming vertices $T^{[0]}_{in}$ according to the clockwise ordering induced from D;
2. if a vertex $v \in T^{[0]}$ has incoming edges $e_{v,1}, \ldots, e_{v,l}$ and outgoing edge $e_{v,o}$ attached to it such that $e_{v,1}, \ldots, e_{v,l}, e_{v,o}$ is in clockwise orientation, we apply the operation \wedge if v is labeled with 1 (and hence trivalent) and the operation \vee if v is labeled with \bar{u};
3. for an edge $e \in T^{[0]}$ which is numbered by ij, we apply the homotopy operator $H_{ij} := d^*_ij G_{ij}$ where G_{ij} is the Witten’s twisted Green operator associated to the Witten Laplacian Δ_{ij};
4. for the unique outgoing edge e_o, we apply the operator P_{0k} which is the orthogonal projection $P_{0k} : \Omega^{*}_{\{i\}} \to \Omega^{*}_{0k,\leq 1}[\{i\}]$ with respect to the twisted L_2-norm obtained from the volume form vol_{0k}.

Definition 2.7. Given a sequence a_{ij} for the unique tree with $T^{[0]} = \emptyset$ to be the restriction of d on Ω_{ij}^{*}. For each labeled ribbon k-tree T, we assign n_T to be the number of vertices in $T^{[0]}$ labeled with u, and we let $m_k(\lambda) := \sum_{T \in \mathcal{LT}_k} u_T m_{k,T}(\lambda)$ to be the homological perturbed A_∞ structure.

It is well-known that (see e.g. [11, Chapter 8]) the perturbed A_∞ structure $m_k(\lambda)$'s satisfy the A_∞ relation. And we obtain a new category $dR_{<1}(M)$ via Witten deformation.

2.3. Relation with S^1-equivariant Morse flow trees. In [12, 17, 18], a relation between the Morse complex $CM_{f_{ij}}$ and Ω_{ij}^{*} is established when f_{ij} is a Morse-Smale function in following Definition 2.5. Following [18], it is an isomorphism

$$\Phi_{ij} : \Omega_{ij}^{*} \rightarrow CM_{f_{ij}}; \quad \Phi_{ij}(\alpha) := \sum_{p \in \text{Crit}(f_{ij})} \int_{V_p^-} \alpha,$$

where $\text{Crit}(f_{ij})$ is the finite set of critical points of f_{ij} (with Morse index of p given by number of negative eigenvalues of $\nabla^2 f_{ij}(p)$), and V_p^- (Notice that we further choose an orientation of V_p^- by choosing a volume element of the normal bundle $\mathcal{N}V_p^+$) is the unstable submanifold associated to p which is the union of all gradient flow lines $\gamma(s)$ of ∇f_{ij} which limit toward p as $s \rightarrow \infty$. Furthermore, the de Rham differential is identified with the Morse differential δ_1 defined via counting Morse flow lines.

Definition 2.5. A Morse function f_{ij} is said to satisfy the Morse-Smale condition if V_p^+ and V_q^- intersecting transversally for any two critical points $p \neq q$ of f_{ij}.

We illustrate how the technique in [3] can be used to establish a relation between $\lambda \rightarrow \infty$ limit of the operation $m_k^T(\lambda)$ with a new Morse-theoretical counting for $S^1 \rightarrow M$ defined as follows.

Notations 2.6. A metric labeled k-tree (ribbon) T is a labeled (ribbon) k-tree together with a length function $l : T^{[1]} \setminus \{e_o\} \rightarrow (0, +\infty)$. For each $e \in T^{[1]}$, we let $\mathcal{I}_e = (-\infty, 0]$ if $e \in T^{[1]}_{\infty}$, $\mathcal{I}_e = [0, l(e)]$ for $e \in T^{[1]} \setminus \{e_o\}$ and $\mathcal{I}_{e_o} = [0, \infty)$. The space of metric structure on T, denoted by $S(T)$, is a copy of $(0, +\infty)^{|T^{[1]}|-1}$. The space $S(T)$ can be partially compactified to a manifold with corners $(0, +\infty)^{|T^{[1]}|-1}$, by allowing the length of internal edges going to be infinity. In particular, it has codimension-1 boundary $\partial S(T) = \bigsqcup_{T = T' \sqcup T''} S(T') \times S(T'')$.

For every vertex $v \in T$, we use $\nu(v) + 1$ to denote the valency of v. We write $\Delta_l := \{(t_l, \ldots, t_1) \in [0, 1]^l \mid 0 \leq t_l \leq \cdots \leq t_1 \leq 1\}$ for $l > 1$, and $\Delta_1 = S^1$ [4] and attach to each vertex v labeled with u a simplex $\Delta_{\nu(v)}$. Writing $LT^{[0]}$ to be the collection of all vertices with label u, we let $S(T) := \prod_{v \in LT^{[0]}} \Delta_{\nu(v)} \times S(T)$.

Definition 2.7. Given a sequence $\vec{f} = (f_0, \ldots, f_k)$ such that all the difference f_{ij}'s are Morse, with a sequence of points $\vec{q} = (q_{k-1}, \ldots, q_0, q_k)$ such that q_{ij} is a critical point of f_{ij}, and a metric labeled ribbon k-tree T, a gradient flow tree (with jumping) T (readers may see Figure [4] for an example) of type (T, \vec{f}, \vec{q}) consisting of a gradient flow line $\gamma_{ij} : \mathcal{I}_{e_{ij}} \rightarrow M$ of the Morse function f_{ij} for each edge $e_{ij} \in T^{[1]}$ numbered by ij, and a point $t_v = (t_v, \nu(v), \ldots, t_{v,1}) \in \Delta_{\nu(v)}$ for every $v \in LT^{[0]}$ satisfying:

1. $\lim_{s \rightarrow -\infty} \gamma_{e_{i(i+1)}}(s) = q_{i(i+1)}$ for the incoming edges $e_{i(i+1)} \in T^{[1]}_{\infty}$, and $\lim_{s \rightarrow \infty} \gamma_{e_{ij}}(s) = q_{0k}$ for the outgoing edge e_{0k};
2. for a trivalent vertex $v \in T^{[0]}$ labeled by 1 with two incoming edges e_{ij}, e_{ij} and outgoing edge e_{il}, we require that $\gamma_{ij}(l(e_{ij})) = \gamma_{ij}(l(e_{ij})) = \gamma_{il}(0)$;

4This is not the 1-simplex, but we would like to unify our notation in this way.
(3) for a vertex \(v \in LT^{[0]} \) with incoming edges \(e_{i_1}u_{i_1}, \ldots, e_{i_{k-1}}u_{i_{k-1}} \) and outgoing edge \(e_{i_{k}}u_{i_{k}} \), we require that \(\sigma(-t_{i_1}, \gamma_{i_1}(l(e_{i_1})) = \cdots = \sigma(-t_{i_{k-1}}, \gamma_{i_{k-1}}(l(e_{i_{k-1}}))) = \gamma_{i_{k}}(0) \), where \(l = \nu(v) \) and \(\sigma \) is the \(S^1 \) action map in the beginning of Section 2.8.

We will let \(M_T(\bar{f}, \bar{q}) \) to denote the moduli space (as a set) of gradient flow lines of type \(T \). For the unique tree with \(T^{[0]} = \emptyset \), we let \(M_T(\bar{f}, \bar{q}) \) to be the moduli space of gradient flow lines quotient by the extra \(R \) symmetry by convention.

Similar to the moduli space of gradient flow trees without \(S^1 \) action (see e.g. [3] Section 2.1.), we can describe \(M_T(\bar{f}, \bar{q}) \) as intersection of stable and unstable manifolds.

Definition 2.8. Given the sequence \(f \) and \(q \) as in the above Definition 2.7, we define a smooth map \(f_{T,i(i+1)} : V^{+}_{q(i+1)} \times S(T) \to M \) for each \(i = 0, \ldots, k - 1 \) as follows. Given a incoming edge \(e_{i(i+1)} \), there is a unique sequence of edges \(e_{i_0}u_0 = e_{i(i+1)}, e_{i_1}u_1, \ldots, e_{i_{m+1}}u_{m+1} = e_0 \) with \(v_d := \partial_0(e_{i_{d+1}}) \) forming a path from the incoming vertex \(v_{i(i+1)} \) to the outgoing vertex \(v_0 \). Fixing a point \(x_0 \in V^{+}_{q(i+1)} \), and a point \((\{t_v\}_{v \in LT^{[0]}}, \{l(e_i)\}_{e_i \in T^{[1]}}, \{e_{i_0}\}) \in S(T) \), we determine a point \(x_d \in M \) inductively for \(0 \leq d \leq m + 1 \) by the rules:

1. if \(v_d \) is labeled with 1, we simply take \(x_{d+1} \) to be the image of \(x_d \) under \(l(e_{i_{d+1}}) = 1 \) time flow of \(\nabla f_{i_{d+1}u_{d+1}} \) for \(d < m \), and \(x_{d+1} = x_d \) for \(d = m \);
2. if \(v_d \) is labeled with \(u \), we take \(x_{d+1} \) to be the image of \(\sigma(-t_{v_d}, x_d) \) under the \(l(e_{i_{d+1}}) \) time flow of \(\nabla f_{i_{d+1}u_{d+1}} \) if \(d < m \), and \(x_{d+1} = \sigma(-t_{v_d}, x_d) \) for \(d = m \), where \(e_{i_{d+1}} \) is the \(l \)-th incoming edge attached to \(v_d \) in the anti-clockwise orientation.

These map can be put together as \(f_T : V^{+}_{q_0} \times V^{+}_{q_{(k-1)}k} \times \cdots \times V^{+}_{q_{01}} \times S(T) \to M^k \) using the natural embedding \(V^{+}_{q_0} \hookrightarrow M \) for the first component. Therefore we see that \(M_T(\bar{f}, \bar{q}) = f_T^{-1}(D) \) where \(D = M \leftrightarrow M^{k+1} \) is the diagonal.

We say a sequence of function \(f \) generic if for any sequence of critical points \(q \), any labeled tree \(T \) the associated intersection \(f_T \) with \(D \) is transversal with expected dimension (meaning that it is empty when expected negative dimensional intersection), and the same hold when restricting \(f_T \) on any boundary strata of \(V^{+}_{q_0} \times V^{+}_{q_{(k-1)}k} \times \cdots \times V^{+}_{q_{01}} \times S(T) \) (the stratification coming from that of \(T^{[1]} \)) and for any subsequence of \(f \).

Suppose we are given a generic sequence \(f \) with \(q \) and \(T \) as in the above Definition 2.8 then we can compute the dimension of the moduli space as

\[
\text{dim}(M_T(\bar{f}, \bar{q})) = \text{deg}(q_{(0)}) - \sum_{i=0}^{k-1} \text{deg}(q_{i(i+1)}) + \sum_{v \in LT^{[0]}} \nu(v) + |T^{[1]}| - 1.
\]

Definition 2.9. Given generic \(f, q \) and \(T \) as in the above Definition 2.8, such that \(\text{dim}(M_T(\bar{f}, \bar{q})) = 0 \), with a flow tree \(\Gamma \in M_T(\bar{f}, \bar{q}) \), we assign a sign \((-1)^{\chi(\Gamma)} \) by assigning a differential form \(\text{vol}_v \in \wedge^n T^* M_{\gamma(v)} \) (Here we abuse the notation to use \(v \) to stand for the corresponding point in \(\mathcal{I}_\nu \)) for each flag \((e, v) \in f(T) \) inductively along the tree \(T \) as follows:

1. for an incoming edge \(e_{i(i+1)} \) with \(v = \partial_0(e_{i(i+1)}) \), we let \(\text{vol}_{e_{i(i+1)}, v} \) to be the restriction of the volume form of the normal bundle \(NV^{+}_{q(i+1)} \) onto \(\gamma_{e_{i(i+1)}}(v) \);
2. for a vertex \(v \in T^{[0]} \) with incoming edges \(e_{i_{1}}u_{i_{1}}, \ldots, e_{i_{1}}u_{i_{1}} \) and outgoing edge \(e_{i_{0}}u_{i_{0}} \), we take \((-1)^{\text{vol}_{e_{i_{1}}u_{i_{1}}, v} + 1} \text{vol}_{e_{i_{1}}u_{i_{1}}, v} \wedge \text{vol}_{e_{i_{0}}u_{i_{0}}, v} \) arranged in clockwise orientation with \(\text{vol}_{e_{i_{1}}, v} \) defined, we let \(\text{vol}_{e_{i_{1}}u_{i_{1}}, v} := (-1)^{|\text{vol}_{e_{i_{1}}u_{i_{1}}, v} + 1}} \text{vol}_{e_{i_{1}}u_{i_{1}}, v} \wedge \text{vol}_{e_{i_{0}}u_{i_{0}}, v} \).
Therefore, for the outgoing edge e_v we obtain a differential form ν_{e_v} when v is labeled with a.

(3) for an edge e_{ij} with incoming vertex $v_0 = \partial_{in}(e_{ij})$ and outgoing vertex $v_1 = \partial_{out}(e_{ij})$, we let $\nu_{e_{ij},v_1} = (\tau(\partial_{in}(e_{ij})))^* (\nu_{e_{ij},v_0})$ where $\tau(\partial_{in}(e_{ij}))$ is the gradient flow of ∇f_{ij} for time $l(e_{ij})$.

Therefore, for the outgoing edge e_0 starting at the root vertex v_r and ending at the outgoing vertex v_o, we obtain a differential form ν_{e_0,v_r} from the above construction, and we determine the sign $(-1)^{\chi(\Gamma)}$ by $(-1)^{\chi(\Gamma)} \nu_{e_0,v_r} \wedge \nu_{e_0,v_o} = \nu_M$ where ν_{e_0} is the chosen volume element in NV^+ for the critical point q_0. (For the case $T^{[0]} = \emptyset$, we define by convention that $(-1)^{\chi(\Gamma)} \Gamma' \wedge \nu_p \wedge^* \nu_q = \nu_M$ for a gradient flow line Γ from p to q.)

Definition 2.10. Given a generic sequence of functions $\tilde{f} = (f_0, \ldots, f_k)$, with a sequence of critical points $(q_{(k-1)k}, \ldots, q_{01})$ we define the operation $m_k^{\text{Morse}}(q_{(k-1)k}, \ldots, q_{01}) \in CM_{f_0}^*[[u]]$ by extending linearly the formula

$$m_k^{\text{Morse}}(q_{(k-1)k}, \ldots, q_{01}) := \begin{cases} \sum_{q_0 \in \text{Crit}(f_0)} \sum_{\Gamma \in \mathcal{M}_{\tilde{f}}(\tilde{q})} (-1)^{\chi(\Gamma)} q_{0} & \text{if } \dim(\mathcal{M}_{\tilde{f}}(\tilde{q})) = 0, \\ 0 & \text{otherwise,} \end{cases}$$

where $\tilde{q} = ((q_{(k-1)k}, \ldots, q_{01}, q_{0k})$). We further let $m_k^{\text{Morse}} = \sum_{T \in \mathcal{L}_k} u^{n_T} m_k^{\text{Morse}}$ where $n_T = |\mathcal{L}_k^{[0]}|$.

We have the following **Theorem 2.11** which is the main result for this paper.

Theorem 2.11. Given a generic sequence of functions $\tilde{f} = (f_0, \ldots, f_k)$, with a sequence of critical points $\tilde{q} = (q_{(k-1)k}, \ldots, q_{01}, q_{0k})$, then we have

$$\lim_{\lambda \to \infty} \Phi(m_k,T(\lambda)(\phi(q_{(k-1)k}), \ldots, \phi(q_{01}))) = m_k^{\text{Morse}}(q_{(k-1)k}, \ldots, q_{01}),$$

where $\phi := \Phi^{-1}$ is the inverse of the isomorphism in equation (2.1).

As a consequence, the Morse product m_k^{Morse} satisfies the A_∞-relation whenever we consider a generic sequence of functions such that every operation appearing in the formula is well-defined.

3. Proof of Theorem 2.11

3.1. Analytic results.

For the proof of Theorem 2.11, we assume $T^{[0]} \neq \emptyset$ since this is exactly the case carried out by [12]. We begin with recalling the necessary analytic results from [12, 18, 3].

3.1.1. Results for a single Morse function.

We will assume that the function f_{ij} we are dealing with satisfy the Morse-Smale assumption 2.5. Due to difference in convention, $e^{-\lambda f_{ij}} \Delta_{ij} e^{\lambda f_{ij}}$ is called the Witten’s Laplacian in [3], and result stated in this Section is obtain by the corresponding statements in [3] by conjugating $e^{\lambda f_{ij}}$.

Theorem 3.1 ([12, 18]). For each f_{ij}, there is $\lambda_0 > 0$ and constants $c, C > 0$ such that we have $\text{Spec}(-\Delta_{ij}) \cap [ce^{-\lambda_0}, C\lambda^{1/2}] = \emptyset$, for $\lambda > \lambda_0$. The map $\Phi = \Phi_{ij} : \Omega^*_{ij,c} \to CM_{f_{ij}}^*$ in equation (2.1) is a chain isomorphism for λ large enough. We will denote the inverse by $\phi = \phi_{ij}$.

We will the asymptotic behaviour of $\phi(q)$ for a critical point q of f_{ij}, and we will need the following Agmon distance d_{ij} for this purpose.

5Hence we have valency of v being 3.

6We omit the numbering ij from our notation here.
Definition 3.2. For a Morse function f_{ij}, the Agmon distance d_{ij} or simply denoted by d, is the distance function with respect to the degenerated Riemannian metric $\langle \cdot, \cdot \rangle_{f_{ij}} = |df_{ij}|^2 \langle \cdot, \cdot \rangle$, where $\langle \cdot, \cdot \rangle$ is the background metric. We will also write $\rho_{ij}(x,y) := d_{ij}(x,y) - f_{ij}(y) + f_{ij}(x)$.

Lemma 3.3. We have $\rho_{ij}(x,y) \geq 0$ with equality holds if and only if x is connected to y via a generalized flow line $\gamma : [0,1] \to M$ with $\gamma(0) = x$ and $\gamma(1) = y$. Here a generalized flow line means that γ is continuous, and there is a partition $0 = t_0 < t_1 < \cdots < t_i = 1$ such that $\gamma|_{(t_r,t_{r+1})}$ is a reparameterization of a gradient flow line of f_{ij} and $\gamma(t_r) \in \text{Crit}(f_{ij})$ for $0 < r < i$.

Lemma 3.4. Let $\gamma \subset \mathbb{C}$ to be a subset whose distance from $\text{Spec}(\Delta_{ij})$ is bounded below by a constant. For any $j \in \mathbb{Z}_+$ and $\epsilon > 0$, there is $k_j \in \mathbb{Z}_+$ and $\lambda_0 = \lambda_0(\epsilon) > 0$ such that for any two points $x_0, y_0 \in M$, there exist neighborhoods V and U (depending on ϵ) of x_0 and y_0 respectively, and $C_{j,\epsilon} > 0$ such that $\| \nabla^j((z - \Delta_{ij})^{-1}u) \|_{C^0(V)} \leq C_{j,\epsilon}e^{-\lambda(\rho_{ij}(x_0,y_0) - \epsilon)} \| u \|_{W^{k,j,2}(U)}$, for all $\lambda > \lambda_0$ and $u \in C^0_c(U)$, where $W^{k,p}$ refers to the Sobolev norm.

We will also need modified version of the resolvent estimate for G_{ij}, which can be obtained by applying the original resolvent estimate to the the formula

\begin{equation}
G_{ij}(u) = \int_s z^{-1}(z - \Delta_{ij})^{-1}u.
\end{equation}

Lemma 3.5. For any $j \in \mathbb{Z}_+$ and $\epsilon > 0$, there is $k_j \in \mathbb{Z}_+$ and $\lambda_0 = \lambda_0(\epsilon) > 0$ such that for any two points $x_0, y_0 \in M$, there exist neighborhoods V and U (depending on ϵ) of x_0 and y_0 respectively, and $C_{j,\epsilon} > 0$ such that $\| \nabla^j(G_{ij}u) \|_{C^0(V)} \leq C_{j,\epsilon}e^{-\lambda(\rho_{ij}(x_0,y_0) - \epsilon)} \| u \|_{W^{k,j,2}(U)}$, for all $\lambda > \lambda_0$ and $u \in C^0_c(U)$, where $W^{k,p}$ refers to the Sobolev norm.

For a critical point q of f_{ij}, $\phi(q)$, has certain exponential decay measured by the Agmon distance from the critical point q.

Lemma 3.6. For any ϵ, there exists $\lambda_0 = \lambda_0(\epsilon) > 0$ such that for $\lambda > \lambda_0$, we have $\phi(q) = \mathcal{O}_\epsilon(e^{-\lambda(g^+_q(x) - \epsilon)})$, and same estimate holds for the derivatives of $\phi_{ij}(q)$ as well. Here \mathcal{O}_ϵ refers to the dependence of the constant on ϵ and $g^+_q(x) = \rho_{ij}(q,x) = d_{ij}(q,x) + f_{ij}(q) - f_{ij}(x)$.

Remark 3.7. We notice that g^+_q is a nonnegative function with zero set V^+_q that is smooth and Bott-Morse in a neighborhood W of $V^+_q \cup V^-_q$. Similarly, if we write $g^-_q = d_{ij}(q,x) + f_{ij}(x) - f_{ij}(q)$ which is a nonnegative function with zero set V^-_q and is smooth and Bott-Morse in W, and we have $\phi_{ij}(q)/\| \phi_{ij}(q)e^{-\lambda f_{ij}} \|^2 = \mathcal{O}_\epsilon(e^{-\lambda(g^-_q - \epsilon)})$ where $\ast_{ij} = \ast_{e^{-2\lambda f_{ij}}}$ comparing to the usual star operator \ast.

Lemma 3.8. The normalized basis $\phi(q)/\| \phi(q) \|$’s are almost orthonormal basis with respect to the twisted inner product $\langle \cdot, \cdot \rangle_{e^{-2\lambda f_{ij}}}$. More precisely, there is a $C, c > 0$ and λ_0 such that when $\lambda > \lambda_0$, we will have $\int_M \langle \frac{\phi(q)}{\| \phi(q) \|}, \frac{\phi(q)}{\| \phi(q) \|} \rangle \text{vol}_{ij} = \delta_{pq} + Ce^{-c\lambda}$.

Restricting our attention to a small enough neighborhood W containing $V^+_q \cup V^-_q$, the above decay estimate of $\phi(q)$ from [24] can be improved from an error of order $\mathcal{O}_\epsilon(e^{e\lambda})$ to $\mathcal{O}(\lambda^{-\infty})$.

Lemma 3.9. There is a WKB approximation of the $\phi(q)$ as $\phi(q) \sim \lambda^{\deg(q)/2}e^{-\lambda g^+_q} (\omega_{q,0} + \omega_{q,1} \lambda^{-1/2} + \ldots)$ which is an approximation in any precompact open subset $K \subset W_q$ of the form

\begin{equation}
\| e^{\lambda g^+_q} \nabla^j (\lambda^{-\deg(q)/2} \phi(q) - e^{-\lambda g^+_q} \sum_{l=0}^N \omega_{q,j} \lambda^{-l/2}) \|_{L^\infty(K)} \leq C_{j,K,N} \lambda^{-N-1+2j}.
\end{equation}

\[\text{Readers may see [5] for its basic properties.} \]

\[\text{Notice that we indeed have } \omega_{q,j+1} = 0 \text{ in this case while we prefer to write it in this form to unify our notations.} \]
for any \(j, N \in \mathbb{Z}_+ \), where \(W_q \supset V^+_q \cup V^-_q \) is an open neighborhood of \(V^+_q \cup V^-_q \).

Furthermore, the integral of the leading order term \(\omega_{q,0} \) in the normal direction to the stable submanifold \(V^+_q \) is computed in [12].

Lemma 3.10. Fixing any point \(x \in V^+_q \) and \(\chi \equiv 1 \) around \(x \) compactly supported in \(W \), we take any closed submanifold (possibly with boundary) \(NV_{q,x}^+ \) of \(W \) intersecting transversally with \(V^+_q \) at \(x \). We have

\[
\lambda^{\deg(q)/2} \int_{NV_{q,x}^+} e^{-\lambda g^+_q} \chi \omega_{q,0} = 1 + \mathcal{O}(\lambda^{-1});
\]

\[
\frac{\lambda^{\deg(q)}}{||e^{-\lambda f_{ij}} \phi_{ij}(q)||^2} \int_{NV_{q,x}^+} e^{-\lambda g^-_q} \chi \cdot \omega_{q,0} = 1 + \mathcal{O}(\lambda^{-1}),
\]

for any point \(x \in V^-_q \), with \(NV_{q,x}^- \) intersecting transversally with \(V^-_q \).

3.1.2. WKB for homotopy operator

We recall the key estimate for the homotopy operator \(H_{ij} \) proven in [3 Section 4]. Let \(\gamma(t) \) be a flow line of \(\nabla f_{ij} / |\nabla f_{ij}|_{d_{ij}} \) starts at \(\gamma(0) = x_S \) and \(\gamma(T) = x_E \) for a fixed \(T > 0 \) as shown in the following figure [2]. We consider an input form \(\zeta_S \) defined in a neighborhood \(W_S \) of \(x_S \). Suppose we are given a WKB approximation of \(\zeta_S \) in \(W_S \), which is an approximation of \(\zeta_S \) according to order of \(\lambda \) of the form

\[
\zeta_S \sim e^{-\lambda g_S}(\omega_{S,0} + \omega_{S,1} \lambda^{-1/2} + \omega_{S,2} \lambda^{-1} + \ldots)
\]

which means we have \(\lambda_{j,0} > 0 \) such that when \(\lambda > \lambda_{j,N,0} \) we have

\[
\|e^{\lambda g_S} \nabla_j (\zeta_S - e^{-\lambda g_S}(\sum_{i=0}^N \omega_{S,i} \lambda^{-i/2}))\|_{L^\infty(W_S)} \leq C_{j,N} \lambda^{-N-1+2j},
\]

for any \(j, N \in \mathbb{Z}_+ \). We further assume that \(g_S \) is a nonnegative Bott-Morse function in \(W_S \) with zero set \(V_S \) such that \(\gamma \) is not tangent to \(V_S \) at \(x_S \). We consider the equation

\[
\Delta_{ij} \zeta_E = (I - P_{ij}) d^*_{ij}(\chi_S \zeta_S),
\]

where \(\chi_S \) is a cutoff function compactly supported in \(W_S \), \(P_{ij} : \Omega^*(M) \to \Omega^*_{ij,<1} \) is the projection. We want to have a WKB approximation of \(\zeta_E = H_{ij}(\chi_S \zeta_S) \)

Lemma 3.11. For \(\text{supp}(\chi_S) \) small enough (the size only depends on \(g_S \) and \(f_{ij} \)), there is a WKB approximation of \(\zeta_E \) in a small enough neighborhood \(W_E \) of \(x_E \), of the form \(\zeta_E \sim e^{-\lambda g_E} \lambda^{-1/2} (\omega_{E,0} + \omega_{E,1} \lambda^{-1/2} + \ldots) \) in the sense that we have \(\lambda_{j,0} > 0 \) such that when \(\lambda > \lambda_{j,N,0} \) we have

\[
\|e^{\lambda g_E} \nabla_j (\zeta_E - e^{-\lambda g_E}(\sum_{i=0}^N \omega_{E,i} \lambda^{-(i+1)/2}))\|_{L^\infty(W_E)} \leq C_{j,N} \lambda^{-N+2j}.
\]
Furthermore, the function g_E (only depending on g_S and f_{ij}) is a nonnegative function which is Bott-Morse in W_E with zero set $V_E = \bigcup_{-\infty < t < +\infty} \{ t(V_S) \} \cap W_E$ which is a closed submanifold in W_E, where c_t is the t-time $\nabla f_{ij}/|\nabla f_{ij}|^2$.

Finally, we have the following Lemma 3.12 from [3] relating the integrals of ω_{S0} and ω_{E0}.

Lemma 3.12. Using same notations in lemma 3.11 and suppose χ_S and χ_E are cutoff functions supported in W_S and W_E respectively, then we have

$$\lambda^{-\frac{1}{2}} \int_{N_{x_B}} e^{-\lambda g_s} \chi_E \omega_{E0} = \left(\int_{N_{x_S}} e^{-\lambda g_s} \chi_S \omega_{S0} \right) (1 + O(\lambda^{-1})).$$

Furthermore, suppose $\omega_{S0}(x_S) \in \bigwedge^{top} N(V_S)_{x_S}$, we have $\omega_{E0}(x_E) \in \bigwedge^{top} N(V_E)_{x_E}$. Here $\bigwedge^{top} E$ refers to the r-rank vector bundle E. Here N_{x_S} and N_{x_E} are any closed submanifold of W_S and W_E intersecting V_S and V_E transversally at x_S and x_E respectively.

3.2. Apriori Estimate.

Notations 3.13. From now on, we will consider a fixed generic sequence $\hat{f} = (f_0, \ldots, f_k)$ with corresponding sequence of critical points $\hat{q} = (q_{(k-1)k}, \ldots, q_{01}, q_{0k})$ and a fixed labeled ribbon k-tree T such that $\dim(M_T(\hat{f}, \hat{q})) = 0$ (the dimension is given by formula (2.2)). We use q_{ij} to denote a fixed critical point of f_{ij}. $\phi(q_{ij})$ associated to q_{ij} is abbreviated by ϕ_{ij}.

Notations 3.14. For $T \in T_k$ or LT_k with \hat{q}, we let $\Delta_T := \coprod_{v \in LT_k} \Delta_{\nu(v)}$ of dimension $\nu(T) := \sum_{v \in LT_k} \nu(v)$, and we also let $\deg(T) := \sum_{i=0}^{k-1} \deg(q_{(i+1)}) - [T[1]] - \nu(T)$. We inductively define a volume form ν_T on Δ_T for labeled ribbon tree $T \in LT_k$ by: letting $\nu_1 = dt_1 \wedge \ldots \wedge dt_1$ on the Δ_1; and for ν_v labeled with 1 we split T at v_v into T_2 and T_1 such that T_2, T_1, e_o is clockwisely oriented, then we take $\nu_T = \nu_{T_2} \wedge \nu_{T_1}$; and for ν_v labeled with u we split T at v_v into T_1, \ldots, T_1 clockwisely, and we take $\nu_T = \nu_{T_1} \wedge \ldots \wedge \nu_{T_1} \wedge v_v$. We should also write ν_T to be the polyvector field dual to ν_T.

Definition 3.15. Given a labeled ribbon k-tree T with \tilde{f} and \tilde{q} as above, we associate to it a length function $\hat{\rho}_T$ on $\mathcal{M}(T) := \Delta_T \times \mathbb{R}_{[T_{ni}]}^+ \to \mathbb{R}_{[T_{ni}]}^+$ with coordinates $(\tilde{v}_T, \tilde{x}_T)$ (where $\tilde{v}_T = (v_v)_{v \in LT_k}$ and $\tilde{x}_T = (x_v)_{v \in LT_k}$) inductively along the tree by the rules:

1. for the unique tree with one edge e numbered by ij, we take $\hat{\rho}_T(x_v) := \rho_{ij}(q_{ij}, x_v)$;
2. when v_v is labeled with 1, we split T at the root vertex v_v into T_2, T_1. We notice that $\mathcal{M}(T) = \mathcal{M}(T_2) \times_M \mathcal{M}(T_1) \times M_{v_v}$ (with coordinates $\tilde{v}_T = (\tilde{v}_T, \tilde{x}_T)$, and $\tilde{x}_T = (\tilde{x}_T, \tilde{x}_T, \tilde{x}_v)$ such that $x_{T_2, v} = x_{T_1, v} = x_v$ in M) and we let

$$\hat{\rho}_T(\tilde{v}_T, \tilde{x}_T) = \hat{\rho}_{ij}(x_v, x_v) + \sum_{j=1}^2 \hat{\rho}_{ij}(\tilde{v}_T, \tilde{x}_j)$$

if the numbering on e_o is ij;
3. when v_v is labeled with u, we split T at v_v into T_1, \ldots, T_1 and we can write $\mathcal{M}(T) = \mathcal{M}(T_1) \times_M \ldots \times_M \mathcal{M}(T_1) \times M(\Delta_l \times M_{v_v})$ where $l = \nu(v_v)$. By writing coordinates $(\tilde{v}_{T_l}, \tilde{x}_{T_l})$ for $\mathcal{M}(T_l)$, $t_{v_v} = (t_{v_v,l}, t_{v_v,1})$ for Δ_l, x_{v_v} for M_{v_v} and x_v for M_{v_v} satisfying $x_{T_1, v} = \sigma_{t_{v_v,l}}(x_v), \ldots, x_{T_1, v} = \sigma_{t_{v_v,1}}(x_v)$, we let

$$\hat{\rho}_T(\tilde{v}_T, \tilde{x}_T) := \hat{\rho}_{ij}(x_v, x_v) + \sum_{j=1}^l \hat{\rho}_{ij}(\tilde{v}_{T_l}, \tilde{x}_{T_l})$$

if the numbering on e_o is ij.

9Here T_{ni} is the set of all vertices besides incoming edges introduced in Definition 2.2.
Fixing the outgoing point \(x_{v_0} = q_0 \) giving coordinates \(\bar{x}_T = (x_v)_{v \in T[0]} \) for \(M[T[0]] \), we let \(\hat{\rho}_T(\bar{u}_T, \bar{x}_T) := \hat{\rho}_T(\bar{u}_T, \bar{x}_T, q_0) \).

Example 3.16. Suppose that \(T \) is the labeled ribbon 2-tree with two incoming vertices \(v_2 \) and \(v_1 \) joining to \(v \) labeled with \(u \) by \(e_{12} \) and \(e_0 \), and \(v \) is joining to the root vertex \(v_r \) labeled with \(u \) via \(e \). Then we have \(\Delta \times M[T[0]] \) \(= \Delta_2 \times S^1 \times M^3 \) and \(\hat{\rho}_T(t_{v,2}, t_{v,1}, t_{v_r}, x_{v_r}, x_{v_2}, x_{v_1}) = \rho_{02}(x_{v_r}, x_{v_2}) + \rho_{02}(x_{v}, \sigma_{t_{v,2}}(x_{v_2})) + \rho_{12}(q_{12}, \sigma_{t_{v,1}}(x_{v_1})) + \rho_{01}(q_{01}, \sigma_{t_{v,1}}(x_{v_1})) \). The following Figure 3 shows the tree \(T \) and its associated \(\hat{\rho}_T \).

![Image](image.png)

Figure 3. Distance function associated to \(T \)

From its construction and Lemma 3.3, we notice that \(\rho_T(\bar{u}_T, \bar{x}_T) \geq 0 \) and equality holds if and only if for each edge \(e \) numbered by \(ij \) with \(\partial_n(e) = v_1 \) and \(\partial_0(e) = v_2 \), there is a generalized flow line of \(\nabla f_{ij} \) joining \(x_{v_1} \) to \(x_{v_2} \), where \(x_{v_2} = x_{v_2}^0 \) when \(v_2 \) is labeled by 1; and \(x_{v_2} = \sigma_{t_{v_2,j}}(x_{v_2}) \) if \(v_2 \) is labeled by \(u \) with and \(e \) is the \(j \)th incoming edges of \(v_2 \) in the anti-clockwise orientation. Therefore, we have a generalized flow tree (with jumping) of type \((T, \bar{f}, \bar{q})\) (which is a generalization of flow tree in Definition 2.7) by allow broken flow lines as in Definition 3.3. With the condition that \(\dim(M(\bar{f}, \bar{q})) = 0 \) as mentioned in Notation 3.13, we notice that every such generalized flow line is an actual flow line from the generic assumption 2.8 for \(\bar{f} \), because the expected dimension for flow tree with broken flow line is negative.

Notations 3.17. We let \(\Gamma_1, \ldots, \Gamma_d \) be the gradient flow tree of type \((T, \bar{f}, \bar{q})\), such that each \(\Gamma_i \) is associated with a point \(t_{\Gamma_i,v} \in \Delta_{v(v)} \) (for \(v \in LT[0] \) and \(x_{\Gamma_i,v} \in M \) (for \(v \in T[0] \)) such that

1. \(x_{\Gamma_i,v} \) is the starting point of a gradient flow line \(\gamma_e \) associated to edge \(e \) if \(\partial_n(e) = v \), and we write \(x_{\Gamma_i,e,v} = x_{\Gamma_i,v} \) in this case;
2. \(x_{\Gamma_i,v} \) is the end point of the gradient flow line \(\gamma_e \) if \(v \) is labeled by 1 if \(\partial_0(e) = v \), and we write \(x_{\Gamma_i,e,v} = x_{\Gamma_i,v} \) in this case;
3. and \(\sigma_{\Gamma_i,e,j}(x_{\Gamma_i,v}) \) is the end point of a gradient flow line \(\gamma_e \) associated to \(j \)th-edge \(e \) clockwise if \(v \) is labeled by \(u \) and \(\partial_0(e) = v \), and we write \(x_{\Gamma_i,e,v} = \sigma_{\Gamma_i,e,j}(x_{\Gamma_i,v}) \) in this case.

We consider a sequence of cut off functions \(\tilde{\chi} := (\chi_v)_{v \in T[0]} \) such that \(\chi_v \) compactly supported in a ball \(U_v := B(x_v, r/2) \) of radius \(r \) centered at a fixed point \(x_v \in M \), and \((\tilde{\chi}_v)_{v \in LT[0]} \) with \(\chi_v \).
Lemma 3.20. We fix a point \(\tilde{v}_T, \tilde{x}_T \) in \(\mathcal{M}(T) \) with the cut off functions \(\check{\chi} \) and \(\check{\nu} \) and \(m_{\check{\nu}, \check{\chi}}^T \) as before Definition 3.18, for any \(\epsilon > 0 \) we have \(\lambda_0(\epsilon) \) and small enough radius \(r = r(\epsilon) \) of cut off functions (which is described before Definition 3.18) such that when \(\lambda > \lambda_0 \) we have the norm estimate

\[
\| m_{\check{\nu}, \check{\chi}}^T \|_{\| e^{-\lambda} \phi_0 \|_2} \leq C_{\epsilon} e^{-\lambda (\rho_T(\tilde{v}_T, \tilde{x}_T) - r \epsilon)},
\]

\(\lambda \) as before Definition 3.18}
for any $j \in \mathbb{Z}_+$ (Here we fix an arbitrary metric on the simplices Δ_1’s), where b_T is a constant depending the combinatorics of T.

Proof. We prove by induction along the tree T that for each flag (e, v) with $\partial_0(e) = v \neq v_o$ we have

$$\|m_{\hat{v}, \hat{e}}^{(e,v)}\|_{C^j(\mathbf{A}(\hat{e}, v) \times U_v)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda(\hat{\rho}_{T_{T,v}}(\hat{v}_{T_{T,v}}, \hat{x}_{T_{T,v}}) - b_{T_{T,v}})\right),$$

where $U_v = B(x_v, r/2)$, for any points $\hat{v}_T \in \mathbf{A}_T, \hat{x}_T \in M^{[T_{T,v}]}_{\text{geo}}$ with the associated cut off functions $\hat{\tau}$ and $\bar{\chi}$ with small enough r. The initial case follows from the estimate in Lemma 3.6. For induction we consider an edge e with $\partial_0(e) = v$ and $\partial_0(e) = \bar{v}$. We take subtrees (of T) T_1, \ldots, T_l with edges e_1, \ldots, e_l attached to v such that e_1, \ldots, e_l is clockwise oriented. There are two cases.

The first case is when v is labeled with 1 and we have $l = 2$. In this case we have the estimate

$$\|m_{\hat{v}, \hat{e}}^{(e_2,v)} \wedge m_{\hat{v}, \hat{e}}^{(e_1,v)}\|_{C^j(\mathbf{A}(e_2, v) \times \mathbf{A}(e_1, v) \times U_v)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda(\hat{\rho}_{T_{T,v}}(\hat{v}_{T_{T,v}}, \hat{x}_{T_{T,v}}) - b_{T_{T,v}})\right),$$

by choosing $b_{T_{T,v}} = b_{T_1} + b_{T_2}$, where we require $x_{T_1,v} = x_{T_2,v} = x_v$ in the R.H.S. of the above equation. Assuming that e is numbered by ij, and we apply the Lemma 3.5 to the term $m_{\hat{v}, \hat{e}}^{(e, v)} = d_{ij}^e G_{ij}(\nu_v m_{\hat{v}, \hat{e}}^{(e_2,v)} \wedge m_{\hat{v}, \hat{e}}^{(e_1,v)})$ (we choose smaller r if necessary) we obtain the estimate

$$\|d_{ij}^e G_{ij}(\nu_v m_{\hat{v}, \hat{e}}^{(e_2,v)} \wedge m_{\hat{v}, \hat{e}}^{(e_1,v)})\|_{C^j(\mathbf{A}(e_2, v) \times U_v)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda(\hat{\rho}_{T_{T,v}}(\hat{v}_{T_{T,v}}, \hat{x}_{T_{T,v}}) - b_{T_{T,v}})\right),$$

by taking $b_{T_{T,v}} \geq b_{T_{T,v}} + 1$ which is the desired estimate.

The second case is when v is labeled with u, and we have the estimate

$$\|\sigma_1^* (t_{w_{v,1}} \wedge \nu_v) m_{\hat{v}, \hat{e}}^{(e,v)} \wedge \cdots \wedge \sigma_l^* (t_{w_{v,1}} \wedge \nu_v) m_{\hat{v}, \hat{e}}^{(e,v)}\|_{C^j(\Pi_{j=1}^l \mathbf{A}(t_j) \times C_u \times U_i)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda\sum_{j=1}^l \hat{\rho}_{T_j}(\hat{v}_{T_j}, \hat{x}_{T_j}) - b_{T_{T,v}}\right),$$

using the induction hypothesis and by taking $b_{T_{T,v}} \geq l + \sum_{j=1}^l b_{T_j}$, for (t_1, \ldots, t_l) varying in small enough neighborhood C_u of $(t_{w_1,1}, \ldots, t_{w_l,1})$ (C_u introduced in the paragraph before Definition 3.18), where we require that the identity $x_{T_{T,v}} = \sigma_{T_{T,v}}(x_v)$ on the R.H.S. as in the Definition 3.18. By applying $d_{ij}^e G_{ij}$ (if e is numbered by ij) to the term $m_{\hat{v}, \hat{e}}^{(e,v)} = \nu_{T_{T,v}} \nu_v \sigma_1^* (t_{w_{v,1}} \wedge \nu_v) m_{\hat{v}, \hat{e}}^{(e,v)} \wedge \cdots \wedge \sigma_l^* (t_{w_{v,1}} \wedge \nu_v) m_{\hat{v}, \hat{e}}^{(e,v)}$ as in Definition 3.18, and using Lemma 3.5 again we have the desired estimate

$$\|m_{\hat{v}, \hat{e}}^{(e,v)}\|_{C^j(\mathbf{A}(T_{T,v}) \times U_v)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda(\hat{\rho}_{T_{T,v}}(\hat{v}_{T_{T,v}}, \hat{x}_{T_{T,v}}) - b_{T_{T,v}})\right),$$

where we take $b_{T_{T,v}} \geq b_{T_{T,v}} + 1$.

To obtain the statement of the Lemma, we observe that if T_1, \ldots, T_l are the incoming trees joining to the root vertex we have

$$\|m_{\hat{v}, \hat{e}}^{(e,v)}\|_{C^j(\mathbf{A}(T) \times U_v)} \leq C_{j, \epsilon, \bar{\chi}, \bar{\tau}} \exp \left(-\lambda\sum_{j=1}^l \hat{\rho}_{T_j}(\hat{v}_{T_j}, \hat{x}_{T_j}) - b_{T_{T,v}}\right)$$

in a small enough neighborhood U_v of x_v, where we have $l = 2$ and $x_{T_{T,v}} = x_{T_1,v} = x_{T_2,v}$ in R.H.S. as in the first case with v labeled with 1, and $x_{T_{T,v}} = \sigma_{T_{T,v}}(x_v)$ in R.H.S. as in the second case that v is labeled with u. The Lemma follows from the estimate for $m_{\hat{v}, \hat{e}}^{(e,v)}$ and that for $e^{-2\lambda(\phi + \phi_0)\|\epsilon\|^2}$ in Remark 3.7.
The above Lemma allows us to estimate the terms $m^T_{\tilde{\chi},\tilde{\zeta}}$ appearing in the R.H.S., and from the discussion after Example 3.16, we notice that it is closely related to gradient flow tree of type T. With the gradient flow trees Γ_i’s as in Notation 3.17, we assume there are open neighborhoods $D_{\Gamma_i,v}$ and $W_{\Gamma_i,v}$ of $x_{\Gamma_i,v}$ for $v \in T^{[0]}$ such that $D_{\Gamma_i,v} \subset W_{\Gamma_i,v}$ together with $\chi_{\Gamma_i,v} \equiv 1$ on $D_{\Gamma_i,v}$ which is compactly supported in $W_{\Gamma_i,v}$ giving $\tilde{\chi}_i = (\chi_{\Gamma_i,v})_{v \in T^{[0]}}$. Similarly, we also assume there are open neighborhoods $C_{\Gamma_i,v}$ and $E_{\Gamma_i,v}$ of $t_{\Gamma_i,v}$ in $\triangle_{u(v)}$ satisfying $C_{\Gamma_i,v} \subset E_{\Gamma_i,v}$ together with $\chi_{\Gamma_i,v} \equiv 1$ on $C_{\Gamma_i,v}$ which is compactly supported in $E_{\Gamma_i,v}$ giving $\tilde{\chi}_i = (\chi_{\Gamma_i,v})_{v \in LT^{[0]}}$. We should further prescribe the size of these neighborhood $W_{\Gamma_i,v}$’s and $E_{\Gamma_i,v}$ in the upcoming Section 3.3 which is defined along the gradient tree Γ_i’s together with the WKB approximation [11]. By writing $\overline{D}_{\Gamma_i} = \prod_{v \in T^{[0]}} D_{\Gamma_i,v}$ and $\overline{C}_{\Gamma_i} = \prod_{v \in LT^{[0]}} C_{\Gamma_i,v}$, we have $\rho_T \geq c > 0$ for some constant c outside $\bigcup_{i=1}^d \overline{C}_{\Gamma_i} \times \overline{D}_{\Gamma_i}$ by continuity of ρ_T and the discussion after Example 3.16. As a result, we can fix a small enough ϵ (and the associated $r(\epsilon)$) such that $b_T \epsilon < c/2$. The following Figure 4 show the situation for these open subsets $W_{\Gamma_i,v}$’s and $E_{\Gamma_i,v}$’s for the tree in Example 3.16.

![Figure 4: Open subsets near gradient tree Γ_i](image)

We can take a finite collection $\{\tilde{\chi}_i\}_{i \in I}$ and $\{\tilde{\zeta}_j\}_{j \in J}$ in the paragraph before Lemma 3.20 such that $\{\tilde{\chi}_i\}_{i \in I} \cup \{\tilde{\chi}_{\Gamma_1}, \ldots, \tilde{\chi}_{\Gamma_d}\}$ forms a partition of unity of $M|T^{[0]}|$ and finite collection $\{\tilde{\zeta}_j\}_{j \in J} \cup \{\tilde{\zeta}_{\Gamma_1}, \ldots, \tilde{\zeta}_{\Gamma_d}\}$ forms a partition of unity of \triangle_T respectively, further satisfying $(\text{Supp}(\tilde{\chi}_i) \times \text{Supp}(\tilde{\zeta}_j)) \cap \overline{C}_{\Gamma_i} \times \overline{D}_{\Gamma_i} = \emptyset$ for each flow tree Γ_i and any i, j. Therefore we have the estimate $\|m^T_{\tilde{\chi}_i,\tilde{\zeta}_j} \wedge e^{-2\lambda f_{\phi_{0k}} \phi_{0k}} \|_{C^0(\triangle_T \times M)} \leq C_{\epsilon,\tilde{\chi}_i,\tilde{\zeta}_j} \epsilon^{-\lambda c/2}$. As a conclusion of this Section 3.2, we have

$$\int_M m_{k,T}(\lambda) (\hat{\phi}_{(k-1)k}, \phi_{01}) \wedge e^{-2\lambda f_{\phi_{0k}} \phi_{0k}} = \sum_{i=1}^d \int_{\triangle_T \times M} m^T_{\tilde{\chi}_{\Gamma_i},\tilde{\zeta}_{\Gamma_i}} \wedge e^{-2\lambda f_{\phi_{0k}} \phi_{0k}} + O(\epsilon^{-\lambda c/2}),$$

ROUGHLY speaking, these are the open subsets that WKB approximation for $m^T_{\tilde{\chi},\tilde{\zeta}}$ can be constructed. These open subsets does not depend on $m^T_{\tilde{\chi},\tilde{\zeta}}$ but rather depend on the geometry of gradient flow tree Γ_i’s when applying Lemma 3.9 and Lemma 3.11 along Γ_i’s.
where $O(e^{-\lambda c/2})$ refers to function in λ bounded by $Ce^{-\lambda c/2}$ for some C. This cut off the contribution to integral near the gradient flow trees Γ_i's.

3.3. WKB approximation method.

3.3.1. WKB expansion for $m_{(e,v)}^{(e,v)}$. We fix a particular gradient flow tree $\Gamma = \Gamma_i$ (we omit i in our notations for the rest of this paper) and compute the contribution from the integral $\int_{\Delta \times M} m_{\Delta,0}^T \cdot \lambda_f \omega \frac{e^{-\lambda_f \phi_{0k}}}{\lambda_f^{-\phi_{0k}}} \quad \text{in the above equation 3.6 using techniques from \cite{3} Section 3].}$

We inductively define the open subset $\lambda f = \lambda f_{ij}$ for (e,v) and $(e,v) = \lambda f_{ij}$ for the incoming edges (1) for the incoming edges (4) for an edge λf_{ij} for the outgoing edge (2) for (e,v) to λf_{ij} with $\tau^j_{ij} \subset \lambda f_{ij}$. In this case we have $\lambda f_{ij} = \lambda f_{ij} \subset \lambda f_{ij}$ with the product WKB expansion as $\lambda f_{ij} = \lambda f_{ij} \times \lambda f_{ij}$. Therefore we have the WKB expansion $m_{(e,v)}^{(e,v)} \sim \lambda^e_{e,v} \cdot \lambda^g_{e,v} \cdot (\omega(e,v),0 + \omega(e,v),1 \lambda^{-\frac{1}{2}} + \cdots)$ by taking $\lambda^e_{e,v} = \lambda^e_{e,v} \cdot \lambda^g_{e,v} = \lambda^e_{e,v} + \lambda^g_{e,v}$ and $\omega(e,v) = \sum_{i+j=0}^1 \omega(e,v),i \cdot \omega(e,v),j + \omega(e,v),j$ (Here e is given (2) in Definition 3.18). In this case we have $g_{e,v}$ being a non-negative Bott-Morse function in $E_{e,v}$ together with the WKB expansion for $\tau^j_{ij} \subset \lambda f_{ij}$ with $\tau^j_{ij} \subset \lambda f_{ij}$.

(1) for the incoming edges e_{ij} with $\partial \omega(e_{ij}) = v$, we define $W_{e_{ij},v}$ to be a open subset of $x_{\lambda f, e_{ij},v}$ (We use the notation as in Notation 3.17) together with the WKB expansion for ϕ_{ij} in λf_{ij} from Lemma 3.9 with $r_{e_{ij},v} = \deg(q_{ij})_v$ and $g_{e_{ij},v} = g_{e_{ij},v}$. In this case we have $W_{e_{ij},v} = V_{e_{ij},v} \cap W_{e_{ij},v}$ being the stable submanifold;

(2) for (e,v) with $\partial \omega(e,v) = v$ with v is labeled with 1, we let T_2, T_1 to be subtrees with outgoing edges e_2, e_1 ending at v such that e_2, e_1 are clockwisely oriented, we let $E_{e_{ij},v} = E_{T_2} \times E_{T_1}$ and $W_{e,v} = W_{e_2,v} \cap W_{e_1,v}$ with the product WKB expansion as

$$\sum_{i+j=0}^1 \omega(e,v),i \cdot \omega(e,v),j \lambda^{\frac{1}{2}} + \cdots$$

by taking $\lambda^e_{e,v} = \lambda^e_{e,v} \cdot \lambda^g_{e,v} = \lambda^e_{e,v} + \lambda^g_{e,v}$ and $\omega(e,v) = \sum_{i+j=0}^1 \omega(e,v),i \cdot \omega(e,v),j + \omega(e,v),j$ (Here e is given (2) in Definition 3.18). In this case we have $g_{e,v}$ being a non-negative Bott-Morse function in $E_{e,v}$ together with the WKB expansion for $\tau^j_{ij} \subset \lambda f_{ij}$ with $\tau^j_{ij} \subset \lambda f_{ij}$.

(3) when we have v labeled with u, we let $\mathcal{L}_1, \mathcal{L}_2$ be subtrees with outgoing edges e_1, \ldots, e_1 ending at v with e_1, \ldots, e_1 are clockwisely oriented, we let $E_{e,v} = E_{T_2} \times E_{T_1} \times E_{e,v}$ and $W_{e,v} = W_{e_2,v} \cap W_{e_1,v}$ with the product WKB expansion as

$$\sum_{i+j=0}^1 \omega(e,v),i \cdot \omega(e,v),j \lambda^{\frac{1}{2}} + \cdots$$

by taking $\lambda^e_{e,v} = \lambda^e_{e,v} \cdot \lambda^g_{e,v} = \lambda^e_{e,v} + \lambda^g_{e,v}$ and $\omega(e,v) = \sum_{i+j=0}^1 \omega(e,v),i \cdot \omega(e,v),j + \omega(e,v),j$ (Here e is given (2) in Definition 3.18). In this case we have $g_{e,v}$ being a non-negative Bott-Morse function in $E_{e,v}$ together with the WKB expansion for $\tau^j_{ij} \subset \lambda f_{ij}$ with $\tau^j_{ij} \subset \lambda f_{ij}$.

(4) for an edge e numbered by ij with $\partial \omega(e) = v_0$ and $\partial \omega(e) = v_1$ with v_1 not being the outgoing vertex v_0, we apply the Lemma 3.11 by taking $C_S = m_{(e,v)}^{(e,v)}$ and shrinking $W_{e,v}$ if necessary together with its WKB approximation, therefore we obtain the WKB approximation for

12Here $T_{e,v}$ is the combinatorial subtree of T as in Notation 2.3.
\[\zeta_E = m_{\chi,\overline{z}}^{(e, v_1)}\] in a neighborhood of zero section in the normal bundle.

In this case we have \(V_{e,v_1} = \cup_{t \in \mathbb{R}} \sigma_t(V_{e,v_0} \cap (\mathcal{E}_{T,e,v_1} \times W_{e,v_1})\) where \(\sigma_t\) is the t-time flow of \(\nabla f_{ij}/\nabla f_{ij}\)'s extended to \(\mathcal{E}_{T,e,v_1} \times (\mathcal{M} \setminus \text{Crit}(f_j))\) by taking product with \(\mathcal{E}_{T,e,v_1}\).

For the outgoing edge \(e_o\) with outgoing vertex \(v_o\), we simply take the WKB expansion of \(m_{\chi,\overline{z}}^{(e_o, v_o)}\) to be that of \(m_{\chi,\overline{z}}^{(e, v_1)}\). In this case we have \(V_{e_o,v_0} = V_{e_o,v_1}\).

Having the WKB approximation of \(m_{\chi,\overline{z}}^{(e, v_0)}\), together with that for \(e - 2\lambda f_0 \phi_0 k \sim \frac{\lambda^{\deg(\phi_0)}/2}{\|e - \lambda f_0 \phi_0 k\|^2} \quad \star e - \lambda f_0 \phi_0 k \|e - \lambda f_0 \phi_0 k\|\), from Lemma 3.9 (here we abbreviated \(g_{\phi_0}\) and \(\omega_{\phi_0, j}\)’s by \(g_{\phi_0}\) and \(\omega_{\phi_0}\)’s respectively), we obtain

\[
\int_{\mathbf{T} \times M} m_{\chi,\overline{z}}^{\mathbf{r},\mathbf{r}} \wedge \frac{\lambda^{\deg(\phi_0)/2}}{\|e - \lambda f_0 \phi_0 k\|} \quad \int_{\mathbf{T} \times M} e^{-\lambda g_{\phi_0} + \omega_{\phi_0}} + \omega_{\phi_0,0} + \mathcal{O}(\lambda^{-1/2}).
\]

3.3.2. Explicit computation of the integral. From the generic assumption of \(f\) in Definition 2.8, we notice that all the points \(t_\mathbf{r}_\mathbf{v} \in \mathbf{r}_\mathbf{v}(\mathbf{T})\). In the above WKB construction, by shrinking \(\mathcal{E}_{T,e,v}\)’s if necessary, we may always assume that \(\pi_{e,v} : \mathcal{E}_{T,e,v} \times W_{e,v} \rightarrow W_{e,v}\) being identified with a neighborhood of zero section in the normal bundle \(N_{\mathcal{E}_{T,e,v}} \times W_{e,v}\). We notice that the element \(\nu_{T,e,v} \wedge \text{vol}_{e,v}\) (Here vol_{e,v} is introduced in Definition 2.9 as a top degree element in \(\wedge^* N_{e,v}\)) is a top degree element in \(\wedge^* N_{e,v}\), serves as an orientation in the normal direction (by extending to whole \(W_{e,v}\)).

We show inductively along gradient tree \(\Gamma\) that the integration along fiber

\[(\pi_{e,v})_*(\lambda^{\mathbf{r},e,v} e^{-\lambda g_{\mathbf{r},e,v} \omega_{\mathbf{r},e,v}}, 0) = 1 + \mathcal{O}(\lambda^{-1/2})\]

at the point \((\mathbf{r}_{e,v}, \pi_{e,v})\) (here \(\mathbf{r}_{e,v}\) is introduced in Notation 3.17) in \(V_{e,v}\) (Here \((\pi_{e,v})_*\) refers integration along fibers of \(\pi_{e,v}\) with respect to orientation \(\nu_{T,e,v} \wedge \text{vol}_{e,v}\) using techniques from \[3\] Section 3). Since \(g_{e,v}\) is non-negative Bott-Morse function with zero set \(V_{e,v}\), using the well-known stationary phase expansion (see e.g. [4] or [3, Lemma 58]) we notice the leading order in \(\lambda^{-1/2}\) is strictly positive. Below we only consider \(v\) in \(V_{e,v}\) modulo error \(\mathcal{O}(\lambda^{-1/2})\). (\(\mathbf{r}\) as in (2) Definition 3.18).

(1) for the incoming edges \(e_i\) with \(\partial_0(e_i) = v\), this is exactly Lemma 3.10

(2) for \((e, v)\) with \(\partial_1(e) = v\) with \(v\) is labeled with 1, with subtree \(T_2, T_1\) and outgoing edges \(e_2, e_1\) ending at \(v\), we have \(V_{e,v} = (V_{e_2,v} \times \mathcal{E}_{T_2}) \cap (V_{e_1,v} \times \mathcal{E}_{T_1})\) and we can compute

\[(\pi_{e,v})_*(\lambda^{\mathbf{r},e,v} e^{-\lambda g_{\mathbf{r},e,v} \omega_{\mathbf{r},e,v}}, 0) = (-1)\mathbf{\varepsilon}(\pi_{e_2,v})_*\lambda^{\mathbf{r},e_2,v} e^{-\lambda g_{\mathbf{r},e_2,v} \omega_{\mathbf{r},e_2,v}}(\pi_{e_1,v})_*\lambda^{\mathbf{r},e_1,v} e^{-\lambda g_{\mathbf{r},e_1,v} \omega_{\mathbf{r},e_1,v}}, 0) = 1\]

at the point \((\mathbf{r}_{e,v}, \pi_{e,v})\) in \(V_{e,v}\) modulo error \(\mathcal{O}(\lambda^{-1/2})\) (\(\varepsilon\) as in (2) Definition 3.18);

(3) when we have \(v\) labeled with \(u\), let \(T_1, \ldots, T_1\) be subtrees with outgoing edges \(e_1, \ldots, e_1\) ending at \(v\) with \(e_i, \ldots, e_1\) clockwise ordered, we notice that \(V_{e,v} = \bigcap_{j=1}^t V_{e_j,v}\) from WKB construction in previous Section 3.3. From the induction, we can compute the integral

\[(\pi_{e_j,v})_*(\lambda^{\mathbf{r},e_j,v} e^{-\lambda g_{\mathbf{r},e_j,v} \omega_{\mathbf{r},e_j,v}}, 0) = 1 + \mathcal{O}(\lambda^{-1/2})\]

as function on \(\tau_j^{-1}(\mathcal{E}_{T_1} \times W_{e,v})\) with \(\mathcal{O}(\lambda^{-1/2})\) if we identify a neighborhood \(\tau_j^{-1}(\mathcal{E}_{T_1} \times W_{e,v})\) with a neighborhood of zero section in the pull back normal bundle \(\tau_j^{-1}(N_{\mathcal{E}_{T_1}})\) as treat \(\pi_{e,v} : \tau_j^{-1}(N_{\mathcal{E}_{T_1}}) \rightarrow (V_{e,v})\) as
integration along fibers. We obtain the identity

\[(\pi_{e,v})_{\ast}(\lambda_{T_{e,v}} e^{\lambda g_{e,v}} \omega_{e,v}) = \prod_{j=1}^{l} (\pi_{e,j,v})_{\ast}(\lambda_{T_{e,j,v}} e^{-\lambda \tau_{j}}(g_{e,j,v}) \tau_{j}(\omega(e,j,v),0)) = 1,\]

at \((\tilde{t}_{G_{e,v}}, x_{G_{e,v}})\) modulo error \(O(\lambda^{-\frac{1}{2}})\);

(4) for an edge \(e\) numbered by \(ij\) with \(\partial_{ri}(e) = v_0\) and \(\partial_{i}(e) = v_1\) with \(v_1\) not being the outgoing vertex \(v_o\), we can compute \((\pi_{e,v_1})_{\ast}(\lambda_{T_{e,v_1}} e^{\lambda g_{e,v_1}} \omega_{e,v_1}) = 1 + O(\lambda^{-\frac{1}{2}})\) at the point \((\tilde{t}_{G_{e,v_1}}, x_{G_{e,v_1}})\) using the fact that \((\pi_{e,v_0})_{\ast}(\lambda_{T_{e,v_0}} e^{-\lambda g_{e,v_0}} \omega_{e,v_0}) = 1 + O(\lambda^{-\frac{1}{2}})\) at the point \((\tilde{t}_{G_{e,v_0}}, x_{G_{e,v_0}})\) by applying Lemma 3.12 with \(x_S = x_{G_{e,v_0}}\) an \(x_E = x_{G_{e,v_1}}\) (notice that \(\tilde{t}_{G_{e,v_0}} = t_{G_{e,v_1}}\));

(5) for the outgoing edge \(e_o\) with outgoing vertex \(v_o\), since we have \(V_{e_o,v_o}\) and \(E_T \times V_{0k}^\perp\) intersecting transversally at \((\tilde{t}_{G_{e,v}}, x_{G_{e,v}})\), we can compute

\[
\frac{\lambda_{T_{e_o,v_o}}^{\deg(q_{0k})/2}}{\|e^{\lambda f_{0k}} \phi_{0k}\|^2} \int_{\Delta_T \times M} e^{-\lambda(g_{e_o,v_o} + g_{0k})} \omega_{e_o,v_o} \wedge \omega_{0k,0} = \pm (\pi_{e_o,v_0})_{\ast}(\lambda_{T_{e_o,v_0}} e^{-\lambda g_{e_o,v_0}} \omega_{e_o,v_0})(\lambda^{\deg(q_{0k})/2} ||e^{\lambda f_{0k}} \phi_{0k}\|^2 \int_{NV_{T_{e_o,v_0}}} e^{-\lambda g_{0k} \omega_{0k,0}} + O(\lambda^{-\frac{1}{2}})) = \pm 1 + O(\lambda^{-\frac{1}{2}})
\]

where the \(\pm\) sign depending on whether the sign of gradient flow tree \(\Gamma\) obtained by comparing \(\text{vol}_{e_o,v_r} \wedge \text{vol}_{0k}\) with \(\text{vol}_M\) as described in Definition 2.9.

As a conclusion, we have proven that

\[
\int_M m_{k,T}(\lambda)(\phi_{(k-1)k}, \ldots, \phi_{01}) \wedge * e^{-2\lambda f_{0k}} \phi_{0k} = \sum_{i=1}^{d} (-1) \chi(\Gamma_i) + O(\lambda^{-\frac{1}{2}})
\]

and hence Theorem 2.11

References

1. P. Aspinwall, T. Bridgeland, A. Craw, M. R. Douglas, M. Gross, A. Kapustin, G. W. Moore, G. Segal, B. Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952 (2011e:53148)

2. M. Berghoff, S^1-equivariant Morse cohomology, arXiv preprint arXiv:1204.2802 (2012).

3. K.-L. Chan, N. C. Leung, and Z. N. Ma, Witten deformation of product structures on deRham complex, preprint, arXiv:1401.5867

4. Mouez Dimassi and Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, no. 268, Cambridge university press, 1999.

5. K. Fukaya, Morse homotopy, A\(^\infty\)-category, and Floer homologies, Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993), Lecture Notes Ser., vol. 18, Seoul Nat. Univ., Seoul, 1993, pp. 1–102. MR 1270931 (95a:57053)

6. ———, Multivalued Morse theory, asymptotic analysis and mirror symmetry, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 205–278. MR 2131017 (2006a:53100)

7. E. Getzler, J. D. S. Jones, and S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology 36, no. 3, 339–371.

8. B. Helffer and F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. MR 2130405 (2006a:58039)

9. B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. in PDE 9 (1984), no. 4, 337–408.
10. ______, *Multiple wells in the semi-classical limit III - Interaction through non-resonant wells*, Math. Nachrichten 124 (1985), 263–313.
11. ______, *Puits multiples en limite semi-classique II - Interaction moléculaire-Symétries-Perturbations*, Annales de l'IHP(section Physique théorique) 42 (1985), no. 2, 127–212.
12. ______, *Puits multiples en limite semi-classique IV - Étude du complexe de Witten*, Comm. in PDE 10 (1985), no. 3, 245–340.
13. M. Kontsevich and Y. Soibelman, *Homological mirror symmetry and torus fibrations*, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 203–263. MR 1882331 (2003c:32025)
14. D. Quillen, *Rational homotopy theory*, Ann. of Math. 90 (1969), 205–295.
15. P. Seidel, *A biased view of symplectic cohomology*, arXiv preprint arXiv:0704.2055 (2007).
16. D. Sullivan, *Infinitesimal computations in topology*, Publications Mathématiques de l'IHÉS 47 (1977), no. 1, 269–331.
17. E. Witten, *Supersymmetry and Morse theory*, J. Differential Geom. 17 (1982), no. 4, 661–692 (1983). MR 683171 (84b:58111)
18. W. Zhang, *Lectures on Chern-Weil theory and Witten deformations*, Nankai Tracts in Mathematics, vol. 4, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1864735 (2002m:58032)
19. J. Y. Zhao, *Periodic symplectic cohomologies*, arXiv preprint arXiv:1405.2084 (2014).

The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: zmma@math.cuhk.edu.hk

E-mail address: nikolasming@outlook.com