DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

Benedikt M. Kessler¹, Adán Pinto Fernández²*

¹Nuffield Department of Medicine, University of Oxford, UK, United Kingdom

Submitted to Journal:
Frontiers in Genetics

Specialty Section:
Cancer Genetics

ISSN:
1664-8021

Article type:
Review Article

Received on:
31 Mar 2016

Accepted on:
12 Jul 2016

Provisional PDF published on:
12 Jul 2016

Frontiers website link:
www.frontiersin.org

Citation:
Kessler BM and Pinto_fernández A(2016) DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7:133. doi:10.3389/fgene.2016.00133

Copyright statement:
© 2016 Kessler and Pinto_fernández. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon.
Conflict of interest statement

The authors declare a potential conflict of interest and state it below.

B.M.K. is associated with Cancer Research Technologies and Forma Therapeutics.
DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

Adan Pinto Fernandez1* and Benedikt M. Kessler1

1Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK

*Correspondence: Adan Pinto Fernandez
Target Discovery Institute, Nuffield Department of Medicine
University of Oxford
Roosevelt Drive
Oxford OX3 7FZ
UK
Phone: +44 1865 612 935
Email: adan.pintofernandez@ndm.ox.ac.uk

Running title: DUBs as mainstream cancer targets
Abstract (171 words)

Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Introduction

Posttranslational modifications dictate the fate and function of most proteins. Chemical modifications by phosphate groups and ubiquitin, a small 76 amino acid protein, are amongst the most common ones. Targeting enzymes that modulate protein phosphorylation, such as protein kinases, has been proven to be a suitable inroad to novel anti-cancer therapeutics. In the case of the ubiquitin system, drug development efforts have been lagging behind due to the complexity of the ubiquitin conjugating and deconjugating mechanisms, and because many aspects of the fundamental biology of this pathway, in particular the topology of poly-ubiquitin chains and post-translational modifications present on ubiquitin itself, are not yet fully understood (Cohen and Tcherpakov 2010, Swatek and Komander 2016). Despite this, the clinical approval of the proteasome inhibitors Bortezomib, Carfilzomib and Ixazomib has boosted new drug discovery programs targeting different components of the ubiquitin system (Adams 2002, Cohen and Tcherpakov 2010, Ernst, Avvakumov et al. 2013, Herndon, Deisseroth et al. 2013, Shirley 2016).

The ubiquitin system is involved in the regulation of almost every cellular activity through proteolytic and non-proteolytic events, including protein degradation by the 26S proteasome or through the lysosomal pathway & autophagy, protein-protein interactions, protein activity and protein localization (Herndon, Deisseroth et al. 2013, Swatek and Komander 2016). The covalent attachment of ubiquitin to a target protein is catalyzed by the sequential action of three enzymes: E1 activating enzyme, E2 conjugating enzyme and E3 ligase. In the final ubiquitylation step, Ub is usually transferred to an ε-NH₂ of a lysine residue in the target protein. The addition of one or more ubiquitin monomers to another substrate-attached ubiquitin is possible and leads to formation of polymeric chains. There are different types of Ub polymers depending on the linkage and on the topology of the chain. The process is reversible and the removal of ubiquitin is catalyzed by a subclass of isopeptidases referred to as deubiquitylating enzymes or DUBs (Hershko and Ciechanover 1998, Komander and Rape 2012, Mevissen, Hospenthal et al. 2013, Swatek and Komander 2016).

Deubiquitylating enzymes

There are ~90 DUBs encoded in the human genome, which are sub classified into six different families: ubiquitin-specific proteases (USPs), ubiquitin carboxy-terminal hydrolases (UCHs), ovarian tumor domain containing proteases (OTUs), Machado-Joseph disease protein domain proteases (MJD), JAMM/MPN domain-associated metallopeptidases (JAMMs) and the monocyte chemotactic protein-induced protein (MCPIP). Apart from the JAMMs family which has zinc metalloprotease activity, DUBs are cysteine proteases (Komander, Clague et al. 2009, Fraile, Quesada et al. 2012, Kolattukudy and Niu 2012).

DUB hydrolase activity (predominantly IsoT/USP5) is required to generate free ubiquitin from its precursors because Ub is transcribed as a fusion of multiple Ub molecules or as a fusion with other proteins (Hadari, Warns et al. 1992). Keeping a steady-state level of free Ub is essential for cell viability (Wang, Chen et al. 2014). Therefore, a second process involving DUBs is the recycling of ubiquitin by preventing its degradation, which is mediated by proteasome associated DUBs USP14, UCH-L5/UCH37 and POH1, or receptor mediated endocytosis and lysosomal degradation associated DUBs USP8 and AMSH (Reyes-Turcu, Ventii et al. 2009, Lee, Lee et al. 2011). More specifically, DUBs antagonize the action of ubiquitin E3 ligases that target protein substrates for degradation or by regulating E3 ligases activity and/or stability. Generally, the addition of Ub monomers or polymers to a protein can also generate non-proteolytic signals. Thus, DUBs can modulate the outcome of those signals by two main mechanisms: by removing ubiquitin polymers or monomers from proteins
involved in these signaling events, but also by editing the linkage and topology of the ubiquitin chains present in the substrate (Komander, Clague et al. 2009, Bennett 2010, Fraile, Quesada et al. 2012, Komander and Rape 2012).

DUBs activity can be tightly regulated by different means, including transcriptional changes in their gene expressions, microRNAs, post-translational modifications including phosphorylation and auto-ubiquitylation, protein interactions and by changing their subcellular localization (Komander, Clague et al. 2009, Fraile, Quesada et al. 2012, Yang, Banerjee et al. 2012, Wijnhoven, Konietzny et al. 2015). Despite that the number of encoded DUBs is moderate, it is anticipated that most of them act on a discrete set of protein substrates due to restrictions in Ub chain linkage recognition as observed for OTUs (Mevissen, Hospenthal et al. 2013) or metalloprotease DUBs (Komander, Clague et al. 2009), or the requirement of interactions with specific adaptors or scaffold proteins as noted for JAMMs and a subset of USPs (Ventii and Wilkinson 2008, Komander, Clague et al. 2009, Rahighi, Ikeda et al. 2009, Reyes-Turcu, Ventii et al. 2009, Bremm, Freund et al. 2010, Mevissen, Hospenthal et al. 2013).

As we will highlight in this review, DUBs emerge as regulators of many cellular signaling pathways critical for cell survival, proliferation, genome stability and transcriptional control, all of which are important processes that when altered can contribute to the development of neoplasia and tumorigenesis. In particular, ubiquitylation events linked to chromatin-dependent processes appear to involve a large subset of E3 ligases and DUBs that are recognized to be prominent targets in cancer. The possibility of using small molecule inhibitors against DUBs as inroads for anti-cancer strategies are now receiving a prominent focus in pharma and academia (Nicholson, Marblestone et al. 2007, Sgorbissa, Potu et al. 2010, Shi and Grossman 2010, Edelmann, Nicholson et al. 2011, Fraile, Quesada et al. 2012, Lim and Baek 2013, McClurg and Robson 2015, Lim, Song et al. 2016).

DUBs affecting chromatin function

Histone and other chromatin-associated protein modifications, together with DNA methylation, provide the cell with long-term epigenetic gene transcription regulations without affecting its DNA sequence. Deregression of these processes is a common event in cancer development and progression (Esteller 2007, Gronbaek, Hother et al. 2007, Segal and Widom 2009, Simo-Ruialbalas and Esteller 2015). Most histones are post-translationally modified by the addition of different molecules including acetylation, methylation, phosphorylation, SUMOylation, and ubiquitylation. All these histone PTMs (post-translational modifications) play an important role in gene transcription regulation and chromatin remodeling, but also in the DNA damage response (DDR) (Weake and Workman 2008, Zhou, Wang et al. 2009, Zhang, Cooper et al. 2015). Consequences of histone ubiquitylation have been extensively reviewed (Weake and Workman 2008, Belle and Nijnik 2014). Up to 10 % of cellular histone H2A is mono-ubiquitylated on lysine 119 (H2AK119Ub), and this modification is crucial for the regulation of transcription, cell cycle progression, and DNA damage responses (Clague, Heride et al. 2015). Poly-ubiquitylation of the same histone H2A (and its variant H2AX) on K13/15 is important for the DNA damage response (DDR). In the case of Histone H2B, H2BK120Ub has been identified as a marker of gene activation. Other histones are also ubiquitylated, such as histone H3, which has an important role in nucleosome assembly. These histone modifications seem to be non-redundant, and whereas ubiquitylation of histone H2B is related to transcription activation and silencing, ubiquitylated H2A accumulates at repressed promoters. Not surprisingly, a number of DUBs have been identified as histone modifiers (listed in Table1). Some of these DUBs present specificity for H2A, others are
specific for H2B, but many of them present dual specificity towards these two histones (See Table 1). The high number of DUBs targeting histones suggests redundant or context-specific roles for these enzymes (Nakagawa, Kajitani et al. 2008, Feng, Wang et al. 2010, Cao and Yan 2012, Lee, Youn et al. 2013, Mosbech, Lukas et al. 2013, Zhang, Jones et al. 2013). The regulation of histones by DUBs has already been linked to cancer. Two good examples are USP22 and BAP1. USP22 deubiquitylates both, H2A and H2B (Zhang, Pfeiffer et al. 2008, Zhang, Varthi et al. 2008, Atanassov, Evrard et al. 2009, Wang and Dent 2014). In a recent clinicopathological study in colon carcinoma samples, ubiquitylation of H2B (uH2B) was found to be decreased in colon cancers as compared to normal colon epithelium. Interestingly, high expression levels of USP22 in these tumor samples statistically correlated with reduced levels of uH2B (Wang, Zhu et al. 2015). USP22 has been linked to poor prognosis in cancer, making it a very attractive target in cancer research. Overexpression of this DUB has been found in colorectal cancer (Liu, Yang et al. 2011), gastric cancer (Yang, Cui et al. 2011, He, Jin et al. 2015), liver cancer (Tang, Liang et al. 2015, Tang, Tang et al. 2015), breast cancer (Zhang, Yao et al. 2011), glioma (Liang, Zhang et al. 2014), pancreatic cancer (He, Jin et al. 2015), non-small-cell lung cancer (Hu, Liu et al. 2012), salivary adenoid cystic carcinoma (Dai, Yao et al. 2014), human pharyngeal squamous cell carcinoma (Dou, Lin et al. 2014), and oral squamous cell carcinoma (Piao, Liu et al. 2012). BAP1 is a nuclear DUB that targets histone 2A mono-ubiquitylation on lysine 119 (H2AK119ub1) (as part of the Polycomb repressor unit) (Scheuermann, de Ayala Alonso et al. 2010) and regulates histone H3 lysine methylation and chromatin functions (Dey, Seshasayee et al. 2012). The forkhead transcription factor FOXK2 acts a scaffold protein between BAP1 and DNA, promoting targeted epigenetic regulation by BAP1 (Ji, Mohammed et al. 2014, Okino, Machida et al. 2015). BAP1 has been identified as a tumor suppressor and as a potential prognostic marker for a number of cancer types. Both, germline and somatic mutations and nuclear expression loss of BAP1 have been linked to increased susceptibility and poor prognosis in malignant melanocytic proliferations (Wiesner, Obenauf et al. 2011, Piris, Mihm et al. 2015), mesothelioma (Bott, Brevet et al. 2011), basal cell carcinoma (Mochel, Piris et al. 2015), meningioma (Abdel-Rahman, Pilarski et al. 2011), lung cancer (Abdel-Rahman, Pilarski et al. 2011), bladder cancer (Nickerson, Dancik et al. 2014), thymic carcinoma (Wang, Thomas et al. 2014), and clear cell renal cell carcinoma (Murali, Wiesner et al. 2013). Although the majority of the published studies suggest that the effects of BAP1 in cancer involve a disruption of the epigenetic homeostasis in these tumors (Wang, Thomas et al. 2014), for some researchers it is not so clear that the antitumor effect of BAP1 is only dependent on H2A deubiquitylation (Pena-Llopis, Vega-Rubin-de-Celis et al. 2012).

Table 1: Selection of DUBs involved in modulating histone H2A/B ubiquitylation

DUB	Histone (substrate)	Process	Selected references
USP3	H2A, γH2AX and H2B	Cell cycle and DNA Double-Strand Break Response	(Nicassio, Corrado et al. 2007)
USP7	H2A and H2B	Gene expression	(van der Knaap, Kumar et al. 2005, Luo, Zhou et al. 2015)
USP10	H2A (H2A.Z)	Transcriptional activation	(Draker, Sarcinella et al. 2011)
USP12	H2A and H2B	Xenopus development	(Joo, Jones et al. 2011)
USP16	H2A	Cell cycle and gene expression	(Joo, Zhai et al. 2007, Gu, Jones et al. 2016)
-------	-----	-------------------------------	---
USP21	H2A	Transcriptional activation	(Nakagawa, Kajitani et al. 2008)
USP22	H2A and H2B	Embryonic development and telomere integrity	(Zhang, Pfeiffer et al. 2008, Zhang, Varthi et al. 2008, Atanassov, Evrard et al. 2009, Wang and Dent 2014)
USP29	H2A and H2B	DNA Double-Strand Break Response	(Mosbech, Lukas et al. 2013)
USP36	H2B	Unknown	(Taillebourg, Gregoire et al. 2012)
USP44	H2A and H2B	DNA Double-Strand Break Response (H2A) and Stem cell differentiation (H2B)	(Fuchs, Shema et al. 2012, Mosbech, Lukas et al. 2013)
USP46	H2A and H2B	Xenopus development	(Joo, Jones et al. 2011)
USP49	H2B	Co-transcriptional pre-mRNA processing	(Zhang, Jones et al. 2013)
BAP1	H2A	Gene expression	(Scheuermann, de Ayala Alonso et al. 2010)
OTUB1	Histones (unspecified)	DNA Double-Strand Break Response	(Sato, Yamagata et al. 2012)
BRCC36	H2A and γH2AX	DNA Double-Strand Break Response	(Shao, Lilli et al. 2009)
MYSM1	H2A	Gene expression	(Zhu, Zhou et al. 2007, Jiang, Chou et al. 2015, Li, Yang et al. 2016)

DUBs role in the crosstalk between the different histone PTMs

The crosstalk between different histone PTMs has been described (Zhang, Cooper et al. 2015). JAMM/MPN, a member of the domain-associated metallopeptidases, plays an important role in gene expression regulation by coordinating acetylation of histones with deubiquitylation of histone H2A and regulating by this way the association of histone H1 with nucleosomes (Zhu, Zhou et al. 2007). USP22 has been found to be associated with the Spt-Ada-Gcn5-acetyltransferase (SAGA) histone acetyltransferase (HAT) complex. In this context, USP22 deubiquitylates the histone H2B and other components of the shelterin complex (Atanassov, Evrard et al. 2009). USP17 regulates histone acetylation through deubiquitylation of K63-polyubiquitylated SDS3, inhibiting the histone deacetylase activity (HDAC) of SDS3 and subsequently the proliferation and anchorage-independent growth of tumor cells (Ramakrishna, Suresh et al. 2011, Ramakrishna, Suresh et al. 2012). A recent study describes that USP7 interacts with and deubiquitylates Tip60, an acetyltransferase targeting histones, resulting in its stabilization (Dar, Shibata et al. 2013). As mentioned above,
BAP1 forms together with ASXL1 the PR-DUB complex that removes ubiquitin from H2AK119Ub. In a recent study, LaFave and colleagues found that BAP1 deletion in mice increased the levels of tri-methylated histone H3 (H3K27me3) and reduced mono-methylation of the histone H4 (H4K20me1) (LaFave, Beguelin et al. 2015). A member of the OTU family of DUBs called TRABID (also ZRANB1) was found to be an innate immunological regulator of inflammatory T cell responses. TRABID regulates histone methylation (H3K9me2, H3K9me3, and H3K4me3) at the promoter of IL-12 by deubiquitylating and stabilizing the histone demethylase JMJD2D (Jin, Xie et al. 2016). In the same study, ectopic expression of TRABID reduced K29, and to a lesser extent K11 ubiquitylation of JMJD2D. This data is consistent with previous published studies describing specificity of this DUB towards K29-linked ubiquitin chains in \textit{in vitro} assays (Virdee, Ye et al. 2010, Licchesi, Mieszczanek et al. 2012). The protein TIP5 is part of the nucleolar remodeling complex (NoRC) that modulates the silencing of a fraction of rDNA by recruiting histone and DNA methyltransferases. TIP5 is deubiquitylated and stabilized by USP21, resulting in an increase of H3K4me3 and rDNA promoter methylation (Khan, Giri et al. 2015). It had been previously described that H2A ubiquitylation controls the di- and tri-methylation of H3K4. In the same study, the authors describe the indirect effects of USP21 on H3K4m2, and H3K4m3 modifications through its H2A histone deubiquitylating activity (Nakagawa, Kajitani et al. 2008). An interesting study has recently linked the roles of the DUB USP7 on epigenetic regulation, cell cycle, and DNA repair (Wang, Ma et al. 2016). Upon DNA damage, USP7 interacts, deubiquitylates and stabilizes the histone demethylase PHF8, inducing the specific expression of a subset of genes, including the cell cycle regulator cyclin A2. In the same article, USP7, PHF8 and cyclin A2 were found to be overexpressed in breast carcinomas, correlating with the histological grade of disease. USP24 was also found to target histones by controlling the levels of the histone-lysine N-methyltransferase Suv39h1, resulting in a modulation of the H3K9me levels. Single-nucleotide polymorphisms (SNPs) of USP24 were found in lung cancer. The variants 930C/T and 7656T/C were increased in tumor samples and were found to induce USP24 expression by stabilizing RNA. (Wang, Wang et al. 2015). LSD1 (lysine-specific demethylase 1) removes methyl groups from H3K4 and also from H3K9. LSD1 has been found to be upregulated in many tumors and its protein levels regulated by the ubiquitin proteasome system. Using a library of siRNA against all human DUBs, USP28 was found as the DUB involved in the stabilization of LSD1. USP28 interacts and deubiquitylates LSD1, and the expression levels of the two proteins correlate well in tumor cell lines and tumor samples (Wu, Wang et al. 2013). In conclusion, all these examples are starting to point towards an emerging and important role of the DUBs in the regulation of gene expression by epigenetic events in cancer.

DUBs and DNA methylation

Only one DUB, USP7, has been described to have a role in the DNA methylation process. USP7 regulates the inheritance of DNA methylation patterns through control of the abundance of Dnmt1, the DNA methyltransferase responsible for this epigenetic mark (Bronner 2011, Qin, Leonhardt et al. 2011). USP7 is part of a protein complex with Dnmt1, the histone acetyl transferase Tip60 and the ubiquitin ligase Uhrf1. USP7 and Uhrf1 tightly regulate the abundance of Dnmt1 in order to control DNA methylation inheritance and replication of methylation patterns. Supporting the role of ubiquitylation in the maintenance of DNA methylation, Nishiyama \textit{et al.} have discovered that the ubiquitylation of histone H3 is necessary to keep the DNA methylation mark by Dnmt1 (Nishiyama, Yamaguchi et al. 2013).
DUBs and DNA damage

In order to achieve the mutational status that leads to malignancy, tumor cells often deregulate the DNA damage response and the genome maintenance systems (Hanahan and Weinberg 2011). Under normal physiological conditions, cells have sensor proteins that check for damage in their genome, and once these proteins detect the lesion, repair enzymes are recruited to the damage site to promote repair. Small lesions are repaired by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and the Fanconi anemia (FA) pathways. More harmful damages such as double-stranded breaks (DSBs) can be repaired by non-homologous end joining (NHEJ) or through homologous recombination (HR). All the DDR pathways are tightly regulated by PTMs, which includes ubiquitylation/deubiquitylation events. Therefore, DUBs are involved in multiple DDR checkpoints in addition to their capability to modulate histone modifications (Figure 1) (Bennett and Harper 2008, Jacq, Kemp et al. 2013, Liu, Li et al. 2016, Nie and Boddy 2016). Fanconi anemia complementation group D2 protein (FANCD2) and proliferating cell nuclear (PCNA), when mono-ubiquitylated, induce the DNA damage response. USP1 targets FANCD2, FANC1, and PCNA for deubiquitylation. FANCD2 and FANC1 are implicated in the FA pathway and PCNA in the translesion synthesis process (Nijman, Huang et al. 2005, Oestergaard, Langevin et al. 2007, Hendel, Krijger et al. 2011, Villamil, Liang et al. 2013, Kim and Kim 2016). USP1 mutations and deregulated expression levels have been reported in different tumors (Garcia-Santisteban, Peters et al. 2013). The Chk2-p53-PUMA pathway is another regulator of the DNA damage response generated by double-strand breaks. USP28 was found to stabilize two components of this pathway upon DNA damage, Chk2 and 53BP1 (Zhang, Zaugg et al. 2006). The proteasome-associated DUB Rpn11/POH1 has been described as an important regulator of ubiquitin conjugates generated after DNA damage, thereby representing an important component of the double-strand break response (Butler, Densham et al. 2012). BRIT1 is an early DDR factor that is recruited upon DSBs by phosphorylated H2AX histone (γ-H2AX), and it contributes to the final repair process by inducing chromatin relaxation. BRIT1 is deubiquitylated and stabilized by USP8 with the help of the scaffold protein BRUCE, tightly regulating the action of BRIT1 at damaged sites (Ge, Che et al. 2015). USP4 has been found to be important for DSB repair by promoting homologous recombination. USP4 is autodeubiquitylated on lysine, but potentially also on cysteine residues, and its deubiquitylation is an important step to permit interaction with the DNA-end resection factor CtIP and MRE11-RAD50-NBS1 (MRN) complex, thereby recruiting CtIP to the damaged sites (Wijnhoven, Konietzny et al. 2015). USP10 was recently identified as a partner of MSH2 by mass-spectrometry based interactome studies. MSH2 is an important factor for the mismatch repair pathway and for the resistance to DNA-damaging agents. USP10 stabilizes MSH2, and knockdown of USP10 in lung cancer cells reduces the sensitivity of these cells to DNA damaging agents. A well-known mechanism of DDR involves histone H2AX, which is phosphorylated and accumulated at damaged sites. Then, the ubiquitin ligases RNF168 and RNF8 ubiquitylate γ-H2AX, thereby inducing the accumulation of repair factors. USP7 has been identified as a regulator of γ-H2AX and H2A ubiquitylation by modulating the stability of the E3 ubiquitin ligases RNF168, RINGB1, and BMI1 (Zhu, Sharma et al. 2015). USP7 is a regulator of different pathways of the DDR, and it is also a modulator of the ATR-Chk1 pathway since it controls the levels of two main components of this response, Chk1 (an essential checkpoint kinase in the DDR) and Claspin (an important component of the ATR-Chk1 axis) (Fastrup, Bekker-Jensen et al. 2009, Alonso-de Vega, Martin et al. 2014). Other DUBs have also been identified to stabilize Claspin and, therefore, to modulate the ATR-Chk1 pathway, such as is the case for USP9X (McGarry, Gaboriau et al. 2016), USP29 (Martin, Cabrera et al. 2015), and USP20 (Yuan,
Luo et al. 2014, Zhu, Zhao et al. 2014). In an interesting study, Nishi et al., identified UCH-L5 as the only DUB from a library of 90 DUBs that were able to promote changes in the DDR during three different assays: recruitment at the damaged sites, DDR signaling modulation and DSB repair. The authors found that UCH-L5 interacted with and stabilized NFRKB. NFRKB is a component of the INO80 complex that promotes HR and DNA-end resection (Nishi, Wijnhoven et al. 2014).

Table 2: DUBs associated with DNA Damage Responses (DDR)

DUB	Non-histone substrate	DDR pathway	Selected references
USP1	FANCD2, FANCI, and PCNA	Fanconi anemia, post-replication repair (PRR), and translesion DNA synthesis (TLS)	(Nijman, Huang et al. 2005, Oestergaard, Langevin et al. 2007, Hendel, Krijger et al. 2011, Villamil, Liang et al. 2013, Kim and Kim 2016)
USP2a	Mdm2	p53	(Stevenson, Sparks et al. 2007)
USP4	Autodeubiquitylation, ARF-BP1	DSB-response (HR), p53	(Zhang, Berger et al. 2011, Wijnhoven, Konietzny et al. 2015)
USP5	p53	p53	(Dayal, Sparks et al. 2009)
USP7	Mdm2, p53, Claspin, Chk1, Ring1b, Bmi1 and RNF168	p53, ATR-Chk1, and γ-H2AX (DSBs and SSBs)	(Brooks, Li et al. 2007, Fastrup, Bekker-Jensen et al. 2009, Brooks and Gu 2011, Alonso-de Vega, Martin et al. 2014, Qian, Pentz et al. 2015, Zhu, Sharma et al. 2015)
USP8	BRIT1	BRIT1–SWI–SNF DSB-response	(Ge, Che et al. 2015)
USP9X	Claspin	ATR-Chk1	(McGarry, Gaboriau et al. 2016)
USP10	p53, and MSH2	ATM-p53, and mismatch repair (MMR)	(Yuan, Luo et al. 2010, Zhang, Hu et al. 2016)
Regulation of p53, c-MYC and other oncogenes by DUBs

The tumor suppressor p53 is a transcription factor able to control important cellular pathways including DNA damage response, cell cycle, apoptosis, angiogenesis and senescence. It is called “the guardian of the genome” because of its ability to prevent genome mutation and tumor onset and progression (Nag, Qin et al. 2013). p53 levels and subcellular localization are mainly regulated by ubiquitylation (Brooks and Gu 2011). A number of DUBs can modulate p53 signals: USP7 deubiquitylates both p53 and MDM2, one of the ubiquitin ligases that ubiquitylates p53, thereby stabilizing both proteins (Brooks, Li et al. 2007, Brooks and Gu 2011). Upon DNA damage, USP10 deubiquitylates and activates p53. The same study shows that USP10 suppresses tumor cell growth in cells expressing wild-type p53 (Yuan, Luo et al. 2010). USP2a associates with and deubiquitylates MDM2, but not p53, and promotes MDM2-dependent p53 degradation (Stevenson, Sparks et al. 2007). Overexpression of this DUB was found in different tumors such as glioma (Boustani, Khoshnood et al. 2016), bladder cancer (Jeong, Ha et al. 2015), prostate cancer (Nelson, De Marzo et al. 2012), and oral squamous carcinoma (da Silva, Cunha et al. 2009). USP4 interacts with and deubiquitylates another E3 ubiquitin ligase for p53, ARF-BP1/Mule/HUWE, leading to the stabilization of ARF-BP1 and subsequent reduction of p53 levels. The same authors found that USP4 is overexpressed in several types of human cancer, and they suggest that USP4 could be a potential oncogene (Zhang, Berger et al. 2011, Xing, Lu et al. 2016). In response to oxidative stress, USP29 binds to and stabilizes p53. Accumulated p53 quickly induces apoptosis under these conditions (Liu, Chung et al. 2011). OTUB1 is a DUB with preference for substrates with poly-ubiquitin K48 linked chains (Mevissen, Hospenthal et al. 2013, Altun, Walter et al. 2015) that was reported to suppress

USP11	p53	DDR to etoposide	(Ke, Dai et al. 2014)
USP20	Claspin	ATR-Chk1	(Yuan J et al., 2014; Zhu M et al., 2014)
USP24	p53, DDB2	p53-PUMA	(Zhang, Lubin et al. 2012, Zhang, Nemzow et al. 2015)
USP28	Chk2, and 53BP1	Chk2-p53-PUMA	(Zhang, Zaugg et al. 2006)
USP29	p53, and Claspin	p53, ATR-Chk1	(Liu, Chung et al. 2011, Martin, Cabrera et al. 2015)
UCH-L5	NFRKB	DSB-response (HR)	(Ryotaro Nishi et al., 2014)
OTUB1	p53	p53	(Sun, Challagundla et al. 2012)
OTUD5	p53, PDCD5	p53	(Luo, Lu et al. 2013, Park, Choi et al. 2015)
Rpn11	Ubiquitin conjugates generated by DNA damage	DNA Double-Strand Break Response	(Butler, Densham et al. 2012)
MDM2-mediated p53 ubiquitylation (Sun, Challagundla et al. 2012). Interestingly, the mechanism by which OTUB1 controls p53 ubiquitylation is independent of its DUB activity. OTUB1 blocks p53 ubiquitylation by MDM2 by interacting with and inhibiting UbcH5, and E2 conjugating enzyme for MDM2. Overexpression of OTUB1 in cells drastically stabilizes and activates p53, leading to apoptosis and to a marked inhibition of cell proliferation in a p53-dependent manner (Sun, Challagundla et al. 2012). OTUB1 is also involved in the inhibition of another E2-ligase, UBC13 (Sato, Yamagata et al. 2012). Since UBC13 is the only E2 involved in the conjugation of K63 Ub chains, this makes OTUB1 an interesting regulator of both, K63 and K48 polyubiquitin chains signals. OTUB1 is also an activator of a very important oncogene in cancer, RAS. Remarkably, OTUB1 deubiquitylates mono- and di-ubiquitylated RAS, independently of its activation status, resulting in the translocation of the RAS protein to the plasma membrane where it is normally activated (Baietti, Simicek et al. 2016). OTUB1 expression levels are related with poor prognosis and metastasis in colorectal cancer (Zhou, Wu et al. 2014), ovarian cancer (Wang, Zhou et al. 2016), non-small-cell lung carcinomas (Baietti, Simicek et al. 2016), and it has been linked to resistance to chemotherapy in breast cancer bearing patients (Karunarathna, Kongsema et al. 2016) and prostate cancer cell invasion (Iglesias-Gato, Chuan et al. 2015). Knock-down of USP5, the only DUB with specificity for unanchored poly-ubiquitin, stabilizes p53 as well. The authors propose a model in which p53 is selectively stabilized because the unanchored poly-ubiquitin that accumulates after USP5 knockdown is able to compete with ubiquitylated p53 for proteasomal proteolysis (Dayal, Sparks et al. 2009). Another DUB, OTUD5, interacts and deubiquitylates p53 in response to DNA damage stress (Luo, Lu et al. 2013). PDCD5 is an additional factor accumulated upon DNA damage and regulates the p53 pathway. In a two yeast two-hybrid study to identify partners of PDCD5 in the presence of genotoxic stress, OTUD5 was found to interact with and stabilize PDCD, thereby unveiling a dual role for this enzyme in the regulation of the p53 signals (Park, Choi et al. 2015). In another two-hybrid study, USP24 was found to interact with and stabilize DDB2 (UV damage binding protein) (Zhang, Lubin et al. 2012). Posteriori, the same authors identified an upregulation of USP24 in a number of tumor cell lines. They found also that USP24 deubiquitylates p53, activating the PUMA pathway, a regulator of DNA-damage-induced apoptosis (Zhang, Nemzow et al. 2015). Similarly, it was found that USP11 deubiquitylates p53 in response to genotoxicity induced by etoposide (Ke, Dai et al. 2014). Other DUBs are linked to the turn-over of important tumor suppressors and oncogenes. For instance, oncogenic transformation by the stabilization of the dual specificity (Tyr/Thr) phosphatase Cdc25A appears to be controlled by Dub3/USP17 (Pereg, Liu et al. 2010). USP17 knockdown does lead to a cell cycle arrest in G1/S and G2/M, and high levels of USP17 have been observed in in lung, colon, esophagus and cervix tumor biopsies, underpinning its role in cell cycle control (McFarlane, Kelvin et al. 2010). USP7 is abundantly expressed in many cell types and, as mentioned above, it was shown to deubiquitylate MDM2, thereby modulating p53 stability, but it also has other cellular substrates including FOXO4, Claspin and FOXO3 (Nicholson and Suresh Kumar 2011). Knockdown of USP7 leads to cell cycle arrest in G1 or G2 (Khoronenkova, Dianova et al. 2012), which is underpinning its role in controlling several aspects of cell division. The JAMM-domain containing DUB BRCC36 stimulates activity of BRCA1, leading to G2/M checkpoint arrest/control (Mallery, Vandenberg et al. 2002). In addition to its role in the p53 pathway, USP28 was also shown to stabilize the oncogene c-MYC after DNA damage. The same authors and others found high expression levels of this DUB in colon, lung, glioma, bladder, and breast carcinomas (Popov, Herold et al. 2007, Popov, Wanzel et al. 2007, Diefenbacher, Popov et al. 2014, Guo, Xu et al. 2014, Diefenbacher, Chakraborthy et al. 2015, Wang, Song et al. 2016). USP36 and USP37 also control the
stability of c-Myc and thereby affect c-Myc oncogene driven cellular proliferation (Zhang, Zaugg et al. 2006, Pan, Deng et al. 2015, Sun, He et al. 2015).

DUBs affecting cell cycle regulators

The accumulation and turnover of proteins that regulate the cell cycle such as cyclins, CDKs and checkpoint signaling molecules is highly orchestrated and controlled to ensure the timely progression through the cell cycle. Inappropriate expression of one or more of these proteins is a common feature of virtually all human tumors. A large number of studies have underscored the importance of E3 ubiquitin ligases and the role they play in regulating cell cycle components (reviewed in (Li and Jin 2012)). However, deubiquitylating enzymes (DUBs) that counterbalance E3 ligase activity may also be critical in cell cycle progression (Song and Rape 2008, Fraile, Quesada et al. 2012). Indeed, DUB function is frequently miss-regulated in cancer, but our knowledge concerning DUB expression and activity during the different phases of the cell cycle is expanding (for a specific review, see (Lim, Song et al. 2016)). The regulation of chromatin structure and transcription is one of the key mechanisms by which DUBs exert cell cycle control. DUBs involved in DNA damage checkpoints are exerting effects on cell cycle progression, and these include USP1, USP3, USP7, USP10, USP11, USP16, USP21, USP22, USP28, BRCC36, MYSM1 and BAP1 (Jacq, Kemp et al. 2013) (see also section above). Another key cell cycle checkpoint is the one controlling the correct mitotic spindle assembly, and DUBs such as USP44, CYLD and USP15 were reported to modulate this process. USP44 acts as a tumor suppressor by preventing chromosome segregation errors (Holland and Cleveland 2012) via deubiquitylation of the anaphase promoting complex (APC) coactivator Cdc20 (Stegmeier, Rape et al. 2007), and USP44 deletion leads to spontaneous tumor formation, preferentially in the lungs (Zhang, Foreman et al. 2012). USP15 stabilises newly synthesized REST and rescues its expression at mitotic exit (Faronato, Patel et al. 2013). CYLD targets Plk1 and contributes to regulating mitotic entry (Stegmeier, Sowa et al. 2007). USP3 modifies chromatin and is required for S-phase progression (Nicassio, Corrado et al. 2007). USP2a, as mentioned above, has been linked to different types of cancer. In bladder cancer cells, USP2a was found to deubiquitylate and to stabilize the cell cycle regulator, Cyclin A1, controlling proliferation of these cells (Kim, Kim et al. 2012). Taken together, ~15 (out of ~90) DUBs have been directly linked to molecular processes of the cell cycle (Figure 1).

Will DUB inhibition work in cancer?

Generally, DUB function is linked to most cellular processes, but in particular appears to cluster around three major pathways that are commonly deregulated in tumorigenesis. These include transcriptional and epigenetic control of gene expression, DNA damage response pathways and cell cycle checkpoint control (Figure 1). These processes are functionally interconnected, for instance DNA repair mechanisms that are part of cell cycle control checkpoints in the transitions from G2 to S and M to cytokinesis. The associated subset of DUBs are therefore attractive drug candidates, although so far small molecule inhibitors for only a few of them have been reported many of them are subject to intense screening activities (for a comprehensive review, see (Kemp 2016)) including natural compounds (Tsukamoto 2016). The most relevant DUBs related to these pathways with existing chemical matter are UCH-L1, USP1, USP7, USP9, USP14 and UCH-37. Inhibitors of the USP1/UAF complex have been reported, such as ML323, developed based on a N-Benzyl-2-phenylpyrimidin scaffold (Liang, Dexheimer et al. 2014), and C527 (SJB3-019A) (Mistry, Hsieh et al. 2013). Interestingly, ML323 was found to sensitize the non-small lung cancer cell line H596 to cisplatin (Liang, Dexheimer et al. 2014). Most efforts so far have been focused
on USP7 (HAUSP), because of its effect on the MDM2-p53 axis. Reported inhibitors include Hybrigenix HBX41108 / HBX19818, all based on quinazoline core structures (Colland, Formstecher et al. 2009, Reverdy, Conrath et al. 2012), Progenra P22077 / P5091 developed from a phenyl-thio-2-thienyl building block (Altun, Kramer et al. 2011, Chauhan, Tian et al. 2012), but also natural compounds such as spongicadin (Yamaguchi, Miyazaki et al. 2013). Most promisingly, the USP7 inhibitor P5091 was shown to be able to overcome Bortezomib resistance in Multiple Myeloma cells (Chauhan, Tian et al. 2012). However, this chemical scaffold has limited pharmacodynamics properties. A different small molecule, WP1130 and its improved derivative EOA13402143 based on second-generation tyrphostin derivatives (initially identified as Janus-activated kinase (JAK)-signal transducer), appear to inhibit USP9X and USP24 and consequently increased Myeloma tumor cell apoptosis in vitro and in vivo (Peterson, Sun et al. 2015). USP9X affects chromosome alignment and segregation via ubiquitylation of survivin (Vong, Cao et al. 2005), but has potentially other roles including cell sensitization by affecting the stability of MCL-1, BCR-ABL and ITCH (Schwickart, Huang et al. 2010, Kushwaha, O'Leary et al. 2015). Spautin-1, a quinazolinamine derivative, was characterized as a USP10 inhibitor that to some extent also targets USP13 (Liu, Xia et al. 2011). The resemblance of the quinazoline chemical core element to USP7 inhibitors may offer an opportunity to use this scaffold to further develop inhibitors specific for other USPs.

Clinical perspective for DUB inhibitors

The USP14 inhibitor IU1 and dual inhibitors of USP14/UCHL5 (proteasomal DUBs) such as b-AP15 (D'Arcy, Brnjic et al. 2011), a bis[(4-nitrophenyl)methylene]-piperidinone derivative or its more recently developed analogue VLX1570 (Wang, D'Arcy et al. 2015), show potentially promising effects that could be potentially translated into the clinic. IU1 appears to accelerate degradation of protein aggregates (Lee, Lee et al. 2010), and b-AP15 also overcomes Bortezomib resistance in Multiple Myeloma cells (Tian, D'Arcy et al. 2014). As a consequence, VLX1570 has now been cleared to enter Phase I/II for the treatment against Multiple Myeloma patients for whom every other drug combination failed (Taylor 2016). This represents the first DUB inhibitor reaching the clinical phase, and it is expected that within the next one to two years, a number of other DUB inhibitor candidates will follow also for the potential treatment of solid tumors. For instance, p53 wildtype expressing tumors (e.g. certain colon cancers) may be suitable for USP7/10 inhibitor based treatment strategies. c-Myc-dependent tumors (adenocarcinomas and non-small lung, breast and colon cancer) could potentially respond to USP28, USP36, USP37, all DUBs affecting c-Myc protein turnover. One third of human cancers present mutations in the oncogene RAS or in components of its effector pathways (Matallanas and Crespo 2010). The recent discovery describing how OTUB1 control RAS activity (Baietti, Simicek et al. 2016) may lead to the development of OTUB1 inhibitors targeting RAS mutation based cancers such as pancreatic cancer, colon and melanoma. Clearly, DUBs have now reached center stage as cancer targets, and novel inhibitors for this enzyme class will provide the framework for more effective single agent or combination therapies to better treat hematological and solid tumors.

Figure Legend

Figure 1: DUBs emerge as major pharmacologica targets. Uncontrolled cell proliferation is one of the hallmarks of cancer. Recent literature evidence establishes the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only
hematological, but potentially also solid tumors. Small molecule inhibitors available for a subset of DUBs are indicated in red.

References

Abdel-Rahman, M. H., R. Piliarski, C. M. Cebulla, J. B. Massengill, B. N. Christopher, G. Boru, P. Hovland and F. H. Davidorf (2011). "Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers." J Med Genet 48(12): 856-859.

Adams, J. (2002). "Development of the proteasome inhibitor PS-341." Oncologist 7(1): 9-16.

Alonso-de Vega, I., Y. Martin and V. A. Smits (2014). "USP7 controls Chk1 protein stability by direct deubiquitination." Cell Cycle 13(24): 3921-3926.

Altun, M., H. B. Kramer, L. I. Willems, J. L. McDermott, C. A. Leach, S. J. Goldenberg, K. G. Kumar, R. Konietzny, R. Fischer, E. Kogan, M. M. Mackeen, J. McGouran, S. V. Khoronenkova, J. L. Parsons, G. L. Dianov, B. Nicholson and B. M. Kessler (2011). "Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes." Chem Biol 18(11): 1401-1412.

Altun, M., T. S. Walter, H. B. Kramer, P. Herr, A. Iphofer, J. Bostrom, Y. David, A. Komsany, N. Ternette, A. Navon, D. I. Stuart, J. Ren and B. M. Kessler (2015). "The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages." PLoS One 10(1): e0115344.

Atanassov, B. S., Y. A. Evrard, A. S. Multani, Z. Zhang, L. Tora, D. Devys, S. Chang and S. Y. Dent (2009). "Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance." Mol Cell 35(3): 352-364.

Baietti, M. F., M. Simicek, L. Abbasi Asbagh, E. Radaelli, S. Lievens, J. Crowther, M. Steklov, V. N. Aushev, D. Martinez Garcia, J. Tavernier and A. A. Sablina (2016). "OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination." EMBO Mol Med 8(3): 288-303.

Belle, J. I. and A. Nijnik (2014). "H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology." Int J Biochem Cell Biol 50: 161-174.

Bennett, E. J. (2010). Cellular regulation by deubiquitinating enzymes. Nat Rev Mol Cell Biol.

Bennett, E. J. and J. W. Harper (2008). "DNA damage: ubiquitin marks the spot." Nat Struct Mol Biol 15(1): 20-22.

Bott, M., M. Brevet, B. S. Taylor, S. Shimizu, T. Ito, L. Wang, J. Creaney, R. A. Lake, M. F. Zakowski, B. Reva, C. Sander, R. Delsite, S. Powell, Q. Zhou, R. Shen, A. Olshen, V. Rusch and M. Ladanyi (2011). "The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma." Nat Genet 43(7): 668-672.

Boustani, M. R., R. J. Khoshnood, F. Nikpasand, Z. Taleshi, K. Ahmadi, E. Yahaghi and P. K. Goudarzi (2016). "Overexpression of ubiquitin-specific protease 2a (USP2a) and nuclear factor erythroid 2-related factor 2 (Nrf2) in human gliomas." J Neurol Sci 363: 249-252.
Bremm, A., S. M. Freund and D. Komander (2010). "Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne." Nat Struct Mol Biol 17(8): 939-947.

Bronner, C. (2011). "Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code." Sci Signal 4(157): pe3.

Brooks, C. L. and W. Gu (2011). "p53 regulation by ubiquitin." FEBS Lett 585(18): 2803-2809.

Brooks, C. L., M. Li, M. Hu, Y. Shi and W. Gu (2007). "The p53--Mdm2--HAUSP complex is involved in p53 stabilization by HAUSP." Oncogene 26(51): 7262-7266.

Butler, L. R., R. M. Densham, J. Jia, A. J. Garvin, H. R. Stone, V. Shah, D. Weekes, F. Festy, J. Beesley and J. R. Morris (2012). "The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response." EMBO J 31(19): 3918-3934.

Cao, J. and Q. Yan (2012). "Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer." Front Oncol 2: 26.

Chauhan, D., Z. Tian, B. Nicholson, K. G. Kumar, B. Zhou, R. Carrasco, J. L. McDermott, C. A. Leach, M. Fulcinniti, M. P. Kodrasov, J. Weinstock, W. D. Kingsbury, T. Hideshima, P. K. Shah, S. Minvielle, M. Altun, B. M. Kessler, R. Orlowski, P. Richardson, N. Munshi and K. C. Anderson (2012). "A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance." Cancer Cell 22(3): 345-358.

Clague, M. J., C. Heride and S. Urbe (2015). "The demographics of the ubiquitin system." Trends Cell Biol 25(7): 417-426.

Cohen, P. and M. Tcherpakov (2010). "Will the ubiquitin system furnish as many drug targets as protein kinases?" Cell 143(5): 686-693.

Colland, F., E. Formstecher, X. Jacq, C. Reverdy, C. Planquette, S. Conrath, S. Trouplin, J. Bianchi, V. N. Ausev, J. Camonis, A. Calabrese, C. Borg-Capra, W. Sippl, V. Collura, G. Boissy, J. C. Rain, P. Guedat, R. Delansorme and L. Daviet (2009). "Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells." Mol Cancer Ther 8(8): 2286-2295.

D'Arcy, P., S. Brnjic, M. H. Olofssoon, M. Fryknas, K. Lindsten, M. De Cesare, P. Perego, B. Sadeghi, M. Hassan, R. Larsson and S. Linder (2011). "Inhibition of proteasome deubiquitinating activity as a new cancer therapy." Nat Med 17(12): 1636-1640.

da Silva, S. D., I. W. Cunha, I. N. Nishimoto, F. A. Soares, D. M. Carraro, L. P. Kowalski and E. Graner (2009). "Clinicopathological significance of ubiquitin-specific protease 2a (USP2a), fatty acid synthase (FASN), and ErbB2 expression in oral squamous cell carcinomas." Oral Oncol 45(10): e134-139.

Dai, W., Y. Yao, Q. Zhou and C. F. Sun (2014). "Ubiquitin-specific peptidase 22, a histone deubiquitinating enzyme, is a novel poor prognostic factor for salivary adenoid cystic carcinoma." PLoS One 9(1): e87148.

Dar, A., E. Shibata and A. Dutta (2013). "Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway." Mol Cell Biol 33(16): 3309-3320.

Dayal, S., A. Sparks, J. Jacob, N. Allende-Vega, D. P. Lane and M. K. Saville (2009). "Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53." J Biol Chem 284(8): 5030-5041.

Dey, A., D. Seshasayee, R. Noubade, D. M. French, J. Liu, M. S. Chaurushiya, D. S. Kirkpatrick, V. C. Pham, J. R. Lil, C. E. Bakalariski, J. Wu, L. Phu, P. Katavolos, L. M. LaFave, O. Abdel-Wahab, Z. Modrusan, S. Seshagiri, K. Dong, Z. Lin, M. Balazs, R. Surlben, K. Newton, S. Hymowitz, G. Garcia-Manero, F. Martin, R. L. Levine and V. M. Dixit (2012). "Loss of the tumor suppressor BAP1 causes myeloid transformation." Science 337(6101): 1541-1546.

Diefenbacher, M. E., A. Chakraborty, S. M. Blake, R. Mitter, N. Popov, M. Eilers and A. Behrens (2015). "Usp28 counteracts Fbw7 in intestinal homeostasis and cancer." Cancer Res 75(7): 1181-1186.
Diefenbacher, M. E., N. Popov, S. M. Blake, C. Schulein-Volk, E. Nye, B. Spencer-Dene, L. A. Jaenicke, M. Eilers and A. Behrens (2014). "The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer." J Clin Invest 124(8): 3407-3418.

Dou, Y., J. Lin, H. Shu and N. Jiang (2014). "Role of ubiquitin-specific peptidase 22 in carcinogenesis of human pharyngeal squamous cell carcinoma." Mol Med Rep 10(6): 2973-2978.

Draker, R., E. Sarcinella and P. Cheung (2011). "USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation." Nucleic Acids Res 39(9): 3529-3542.

Edelmann, M. J., B. Nicholson and B. M. Kessler (2011). "Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases." Expert Rev Mol Med 13: e35.

Ernst, A., G. Awwakumov, J. Tong, Y. Fan, Y. Zhao, P. Alberts, A. Persaud, J. R. Walker, A. M. Neculai, D. Neculai, A. Vorobyov, P. Garg, L. Beatty, P. K. Chan, Y. C. Juang, M. C. Landry, C. Yeh, E. Zeqiraj, K. Karamboulas, A. Allali-Hassani, M. Vedadi, M. Tyers, J. Moffat, F. Sicheri, L. Pelletier, D. Durocher, B. Raught, D. Rotin, J. Yang, M. F. Moran, S. Dhe-Paganon and S. S. Sidhu (2013). "A strategy for modulation of enzymes in the ubiquitin system." Science 339(6119): 590-595.

Esteller, M. (2007). "Cancer epigenomics: DNA methylomes and histone modification maps." Nat Rev Genet 8(4): 286-298.

Faronato, M., V. Patel, S. Darling, L. Dearden, M. J. Clague, S. Urbe and J. M. Coulson (2013). "The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit." Cell Cycle 12(12): 1964-1977.

Fastrup, H., S. Bekker-Jensen, J. Bartek, J. Lukas and N. Mailand (2009). "USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin." J Cell Biol 184(1): 13-19.

Feng, L., J. Wang and J. Chen (2010). "The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments." J Biol Chem 285(40): 30982-30988.

Fraile, J. M., V. Quesada, D. Rodriguez, J. M. Freije and C. Lopez-Otin (2012). "Deubiquitinases in cancer: new functions and therapeutic options." Oncogene 31(19): 2373-2388.

Fuchs, G., E. Shema, R. Vesterman, E. Kotler, Z. Wolchinsky, S. Wilder, L. Golomb, A. Pribluda, F. Zhang, M. Haj-Yahya, E. Feldmesser, A. Brik, X. Yu, J. Hanna, D. Aberdam, E. Domany and M. Oren (2012). "RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation." Mol Cell 46(5): 662-673.

Garcia-Santisteban, I., G. J. Peters, E. Giovannetti and J. A. Rodriguez (2013). "USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy." Mol Cancer 12: 91.

Ge, C., L. Che, J. Ren, R. K. Pandita, J. Lu, K. Li, T. K. Pandita and C. Du (2015). "BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1." Proc Natl Acad Sci U S A 112(11): E1210-1219.

Gronbaek, K., C. Hother and P. A. Jones (2007). "Epigenetic changes in cancer." APIMIS 115(10): 1039-1059.

Gu, Y., A. E. Jones, W. Yang, S. Liu, Q. Dai, Y. Liu, C. S. Swindle, D. Zhou, Z. Zhang, T. M. Ryan, T. M. Townes, C. A. Klug, D. Chen and H. Wang (2016). "The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function." Proc Natl Acad Sci U S A 113(1): E51-60.

Guo, G., Y. Xu, M. Gong, Y. Cao and R. An (2014). "USP28 is a potential prognostic marker for bladder cancer." Tumour Biol 35(5): 4017-4022.

Hadar, T., J. V. Warm, I. A. Rose and A. Hershko (1992). "A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation." J Biol Chem 267(2): 719-727.

Hanahan, D. and R. A. Weinberg (2011). "Hallmarks of cancer: the next generation." Cell 144(5): 646-674.
He, Y., Y. J. Jin, Y. H. Zhang, H. X. Meng, B. S. Zhao, Y. Jiang, J. W. Zhu, G. Y. Liang, D. Kong and X. M. Jin (2015). "Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma." *Transl Res* **165**(3): 407-416.

Hendel, A., P. H. Krijger, N. Diamant, Z. Goren, P. Langerak, J. Kim, T. Reissner, K. Y. Lee, N. E. Geacintov, T. Carell, K. Myung, S. Tateishi, A. D’Andrea, H. Jacobs and Z. Livneh (2011). "PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells." *PLoS Genet* **7**(9): e1002262.

Herschko, A. and A. Ciechanover (1998). "The ubiquitin system." *Annu Rev Biochem* **67**: 425-479.

Holland, A. J. and D. W. Cleveland (2012). "The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation." *J Clin Invest* **122**(12): 4325-4328.

Hu, J., Y. L. Liu, S. L. Piao, D. D. Yang, Y. M. Yang and L. Cai (2012). "Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer." *Lung Cancer* **77**(3): 593-599.

Iglesias-Gato, D., Y. C. Chuan, N. Jiang, C. Svensson, J. Bao, I. Paul, L. Egevad, B. M. Kessler, P. Wikstrom, Y. Niu and A. Flores-Morales (2015). "OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo." *Mol Cancer* **14**: 8.

Jacq, X., M. Kemp, N. M. Martin and S. P. Jackson (2013). "Deubiquitylating enzymes and DNA damage response pathways." *Cell Biochem Biophys* **67**(1): 25-43.

Jeong, P., Y. S. Ha, S. J. Yun, H. Y. Yoon, M. R. Freeman, J. Kim and W. J. Kim (2015). "Assess the expression of ubiquitin specific protease USP2a for bladder cancer diagnosis." *BMC Urol* **15**: 80.

Ji, Z., H. Mohammed, A. Webber, J. Ridsdale, N. Han, J. S. Carroll and A. D. Sharrocks (2014). "The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex." *Nucleic Acids Res* **42**(10): 6232-6242.

Joo, H. Y., A. Jones, C. Yang, S. Nie, H. Erdjument-Bromage, P. Tempst, C. Chang and H. Wang (2007). "Regulation of cell cycle progression and gene expression by H2A deubiquitination." *Nature* **449**(7165): 1068-1072.

Karunarathna, U., M. Kongsema, S. Zona, C. Gong, E. Cabrera, A. R. Gomes, E. P. Man, P. Khongkow, J. W. Tsang, U. S. Khoo, R. H. Medema, R. Freire and E. W. Lam (2016). "OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance." *Oncogene* **35**(11): 1433-1444.

Ke, J. Y., C. J. Dai, W. L. Wu, J. H. Gao, A. J. Xia, G. P. Liu, K. S. Lv and C. L. Wu (2014). "USP11 regulates p53 stability by deubiquitinating p53." *J Zhejiang Univ Sci B* **15**(12): 1032-1038.

Kemp, M. (2016). "Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors." *Prog Med Chem* **55**: 149-192.

Khan, A., S. Giri, Y. Wang, A. Chakraborty, A. K. Ghosh, A. Anantharaman, V. Aggarwal, K. M. Sathyan, T. Ha, K. V. Prasanth and S. G. Prasanth (2015). "BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase." *Proc Natl Acad Sci U S A* **112**(27): 8338-8343.
Khoronenkova, S. V., Dianova, I. N. Ternette, B. M. Kessler, J. L. Parsons and G. L. Dianov (2012). "ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage." Mol Cell 45(6): 801-813.

Kim, J., W. J. Kim, Z. Liu, M. Loda and M. R. Freeman (2012). "The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer." Cell Cycle 11(6): 1123-1130.

Kim, M. and J. M. Kim (2016). "The role of USP1 autocleavage in DNA interstrand crosslink repair." FEBS Lett 590(3): 340-348.

Kolattukudy, P. E. and J. Niu (2012). "Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway." Circ Res 110(1): 174-189.

Komander, D., M. J. Clague and S. Urbe (2009). "Breaking the chains: structure and function of the deubiquitinases." Nat Rev Mol Cell Biol 10(8): 550-563.

Komander, D. and M. Rape (2012). "The ubiquitin code." Annu Rev Biochem 81: 203-229.

Kushwaha, D., C. O'Leary, K. R. Cron, P. Deraska, K. Zhu, A. D. D'Andrea and D. Kozono (2015). "USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1." Cancer Biol Ther 16(3): 392-401.

LaFave, L. M., W. Beguelin, R. Koche, M. Teater, B. Spitzer, A. Chramiec, E. Papalexi, M. D. Keller, T. Hricik, K. Konstantinoff, J. B. Micol, B. Durham, S. K. Knutson, J. E. Campbell, G. Blum, X. Shi, E. H. Doud, A. V. Krivtsov, Y. R. Chung, I. Khodos, E. de Stanchina, O. Ouferelli, P. S. Adusumilli, P. M. Thomas, N. L. Kelleher, M. Luo, H. Keilhack, O. Abdel-Wahab, A. Melnick, S. A. Armstrong and R. L. Levine (2015). "Loss of BAP1 function leads to EZH2-dependent transformation." Nat Med 21(11): 1344-1349.

Lee, B. H., M. J. Lee, S. Park, D. C. Oh, S. Elsasser, P. C. Chen, C. Gartner, N. Dimova, J. Hanna, S. P. Gygi, S. M. Wilson, R. W. King and D. Finley (2010). "Enhancement of proteasome activity by a small-molecule inhibitor of USP14." Nature 467(7312): 179-184.

Lee, M. J., B. H. Lee, J. Hanna, R. W. King and D. Finley (2011). "Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes." Mol Cell Proteomics 10(5): R110 003871.

Lee, S. W., H. Yoon, E. J. Kim and S. J. Um (2013). "Retracted: Histone H2B ubiquitination regulates retinoic acid signaling through the cooperation of ASXL1 and BAP1." Mol Cell 51(2): 200-210.

Li, J. M. and J. Jin (2012). "CRL Ubiquitin Ligases and DNA Damage Response." Front Oncol 2: 29.

Li, P., Y. M. Yang, S. Sanchez, D. C. Cui, R. J. Dang, X. Y. Wang, Y. X. Lin, Y. Wang, C. Wang, D. F. Chen, S. Y. Chen, X. X. Jiang and N. Wen (2016). "Deubiquitinase MYSM1 Is Essential for Normal Bone Formation and Mesenchymal Stem Cell Differentiation." Sci Rep 6: 22211.

Liang, J., X. Zhang, S. Xie, X. Zhou, Q. Shi, J. Hu, W. Wang, W. Qi and R. Yu (2014). "Ubiquitin-specific protease 22: a novel molecular biomarker in glioma prognosis and therapeutics." Med Oncol 31(4): 899.

Liang, Q., T. S. Dexheimer, P. Zhang, A. S. Rosenthal, M. A. Villamil, C. You, Q. Zhang, J. Chen, C. A. Ott, H. Sun, D. K. Luci, B. Yuan, A. Simeonov, A. Jadhav, H. Xiao, Y. Wang, D. J. Maloney and Z. Zhuang (2014). "A selective USP1-UF1 inhibitor links deubiquitination to DNA damage responses." Nat Chem Biol 10(4): 298-304.

Licchesi, J. D., J. Miewszczech, T. E. Mevissen, T. J. Rutherford, M. Akutsu, S. Virdee, F. El Oualid, J. W. Chin, H. Ovaa, M. Bienz and D. Komander (2012). "An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains." Nat Struct Mol Biol 19(1): 62-71.

Lim, K. H. and K. H. Baek (2013). "Deubiquitinating enzymes as therapeutic targets in cancer." Curr Pharm Des 19(22): 4039-4052.

Lim, K. H., M. H. Song and K. H. Baek (2016). "Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint." Cell Mol Life Sci 73(7): 1439-1455.

Liu, J., H. J. Chung, M. Vogt, Y. Jin, D. Malide, L. He, M. Dundr and D. Levens (2011). "JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress." EMBO J 30(5): 846-858.
Liu, J., H. Xia, M. Kim, L. Xu, Y. Li, L. Zhang, Y. Cai, H. V. Norberg, T. Zhang, T. Furuya, M. Jin, Z. Zhu, H. Wang, J. Yu, Y. Li, Y. Hao, A. Choi, H. Ke, D. Ma and J. Yuan (2011). "Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13." Cell 147(1): 223-234.
Liu, Y., Y. Li and X. Lu (2016). "Regulators in the DNA damage response." Arch Biochem Biophys 594: 18-25.
Liu, Y. L., Y. M. Yang, H. Xu and X. S. Dong (2011). "Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer." J Surg Oncol 103(3): 283-289.
Luo, J., Z. Lu, X. Lu, L. Chen, J. Cao, S. Zhang, Y. Ling and X. Zhou (2013). "OTUD5 regulates p53 stability by deubiquitinating p53." PLoS One 8(10): e77682.
Luo, M., J. Zhou, N. A. Leu, C. M. Abreu, J. Wang, M. C. Anguera, D. G. de Rooij, M. Jasim and P. J. Wang (2015). "Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis." PLoS Genet 11(1): e1004954.
Mallery, D. L., C. J. Vandenberg and K. Hiom (2002). "Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains." EMBO J 21(24): 6755-6762.
McClurg, U. L. and C. N. Robson (2015). "Deubiquitinating enzymes as onctargets." Oncotarget 6(12): 9657-9668.
McFarlane, C., A. A. Kelvin, M. de la Vega, U. Govender, C. J. Scott, J. F. Burrows and J. A. Johnston (2010). "The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression." Cancer Res 70(8): 3329-3339.
McGarry, E., D. Gaboriau, M. Rainey, U. Restuccia, A. Bachi and C. Santocanale (2016). "The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-phase." Cancer Res.
Mevissen, T. E., M. K. Hospenthal, P. P. Geurink, P. R. Elliott, M. Akutsu, N. Arnaudo, R. Ekkebus, Y. Kulathu, T. Wauer, F. El Oualid, S. M. Freund, H. Ovaa and D. Komander (2013). "OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis." Cell 154(1): 169-184.
Mistry, H., G. Hsieh, S. J. Buhrlage, M. Huang, E. Park, G. D. Cuny, I. Galinsky, R. M. Stone, N. S. Gray, A. D. D’Andrea and K. Parmar (2013). "Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells." Mol Cancer Ther 12(12): 2651-2662.
Mochel, M. C., A. Piris, V. Nose and M. P. Hoang (2015). "Loss of BAP1 Expression in Basal Cell Carcinomas in Patients With Germline BAP1 Mutations." Am J Clin Pathol 143(6): 901-904.
Mosbech, A., C. Lukas, S. Bekker-Jensen and N. Mailand (2013). "The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases." J Biol Chem 288(23): 16579-16587.
Murali, R., T. Wiesner and R. A. Scolyer (2013). "Tumours associated with BAP1 mutations." Pathology 45(2): 116-126.
Nag, S., J. Qin, K. S. Srivenugopal, M. Wang and R. Zhang (2013). "The MDM2-p53 pathway revisited." J Biomed Res 27(4): 254-271.
Nakagawa, T., T. Kajitani, S. Togo, N. Masuko, H. Ohdan, Y. Hishikawa, T. Koji, T. Matsuyama, T. Ikura, M. Muramatsu and T. Ito (2008). "Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation." Genes Dev 22(1): 37-49.
Nelson, W. G., A. M. De Marzo and S. Yegnasubramanian (2012). "USP2a activation of MYC in prostate cancer." Cancer Discov 2(3): 206-207.
Nicassio, F., N. Corrado, J. H. Vissers, L. B. Areces, S. Bergink, J. A. Marteijn, B. Geverts, A. B. Houtsmuller, W. Vermeulen, P. P. Di Fiore and E. Citterio (2007). "Human USP3 is a chromatin modifier required for S phase progression and genome stability." *Curr Biol* **17**(22): 1972-1977.

Nicholson, B., J. G. Marblestone, T. R. Butt and M. R. Mattern (2007). "Deubiquitinating enzymes as novel anticancer targets." *Future Oncol* **3**(2): 191-199.

Nicholson, B. and K. G. Suresh Kumar (2011). "The multifaceted roles of USP7; new therapeutic opportunities." *Cell Biochem Biophys* **60**(1-2): 61-68.

Nickerson, M. L., G. M. Dancik, K. M. Im, M. G. Edwards, S. Turan, J. C. Costello, G. Guo, S. X. Tsang, Y. Li, Q. Zhou, Z. Cai, L. E. Moore, M. S. Lucia, M. Dean and D. Theodorescu (2014). "Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer." *Clin Cancer Res* **20**(18): 4935-4948.

Nie, M. and M. N. Boddy (2016). "Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability." *Biomolecules* **6**(1).

Nijman, S. M., T. T. Huang, A. M. Dirac, T. R. Brummelkamp, R. M. Kerkhoven, A. D. D'Andrea and R. Bernards (2005). "The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway." *Mol Cell* **17**(3): 331-339.

Nishi, R., P. Wijnhoven, C. le Sage, J. Tjeertes, Y. Galanty, J. V. Forment, M. J. Clague, S. Urbe and S. P. Jackson (2014). "Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity." *Nat Cell Biol* **16**(10): 1016-1026, 1011-1018.

Nishiyama, A., L. Yamaguchi, J. Sharif, Y. Johmura, T. Kawamura, K. Nakanishi, S. Shimamura, K. Arita, T. Kodama, F. Ishikawa, H. Koseki and M. Nakanishi (2013). "Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication." *Nature* **502**(7470): 249-253.

Oe stergaard, V. H., F. Langevin, H. J. Kuiken, P. Pace, W. Niedzwiedz, L. J. Simpson, M. Ohzeki, M. Takata, J. E. Sale and K. J. Patel (2007). "Deubiquitination of FANCD2 is required for DNA crosslink repair." *Mol Cell* **28**(5): 798-809.

Okino, Y., Y. Machida, S. Frankland-Searby and Y. J. Machida (2015). "BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes." *J Biol Chem* **290**(3): 1580-1591.

Pan, J., Q. Deng, C. Jiang, X. Wang, T. Niu, H. Li, T. Chen, J. Jin, W. Pan, X. Cai, X. Yang, M. Lu, J. Xiao and P. Wang (2015). "USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer." *Oncogene* **34**(30): 3957-3967.

Park, S. Y., H. K. Choi, Y. Choi, S. Kwak, K. C. Choi and H. G. Yoon (2015). "Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress." *Cancer Lett* **357**(1): 419-427.

Piao, S., Y. Liu, J. Hu, F. Guo, J. Ma, Y. Sun and B. Zhang (2012). "USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma." *PLoS One* **7**(8): e42540.
Piris, A., M. C. Mihm, Jr. and M. P. Hoang (2015). "BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations." Hum Pathol 46(2): 239-245.

Popov, N., S. Herold, M. Llamazares, C. Schulein and M. Eilers (2007). "Bfw7 and Usp28 regulate myc protein stability in response to DNA damage." Cell Cycle 6(19): 2327-2331.

Popov, N., M. Wanzel, M. Madiredjo, D. Zhang, R. Beijersbergen, R. Bernards, R. Moll, S. J. Elledge and M. Eilers (2007). "The ubiquitin-specific protease USP28 is required for MYC stability." Nat Cell Biol 9(7): 765-774.

Qian, J., K. Pentz, Q. Zhu, Q. Wang, J. He, A. K. Srivastava and A. A. Wani (2015). "USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability." Oncogene 34(36): 4791-4796.

Qin, W., H. Leonhardt and F. Spada (2011). "Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1." J Cell Biochem 112(2): 439-444.

Rahighi, S., F. Ikeda, M. Kawasaki, M. Akutsu, N. Suzuki, R. Kato, T. Kensche, T. Uejima, S. Bloor, D. Komander, F. Randow, S. Wakatsuki and I. Dikic (2009). "Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation." Cell 136(6): 1098-1109.

Ramakrishna, S., B. Suresh, S. M. Bae, W. S. Ahn, K. H. Lim and K. H. Baek (2012). "Hyaluronan binding motifs of USP17 and SDS3 exhibit anti-tumor activity." PLoS One 7(5): e37772.

Reverdy, C., S. Conrath, R. Lopez, C. Planquette, C. Atmanene, V. Collura, J. Harpon, V. Battaglia, V. Vivat, W. Sippl and F. Colland (2012). "Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme." Chem Biol 19(4): 467-477.

Reyes-Turcu, F. E., K. H. Ventii and K. D. Wilkinson (2009). "Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes." Annu Rev Biochem 78: 363-397.

Sato, Y., A. Yamagata, S. Goto-Ito, K. Kubota, R. Miyamoto, S. Nakada and S. Fukai (2012). "Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13." J Biol Chem 287(31): 25860-25868.

Scheuermann, J. C., A. G. de Ayala Alonso, K. Oktaba, N. Ly-Hartig, R. K. McGinty, S. Fraterman, M. Wilm, T. W. Muir and J. Muller (2010). "Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB." Nature 465(7295): 243-247.

Schwickart, M., X. Huang, J. R. Lill, J. Liu, R. Ferrando, D. M. French, H. Maecker, K. O'Rourke, F. Bazan, J. Eastham-Anderson, P. Yue, D. Dornan, D. C. Huang and V. M. Dixit (2010). "Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival." Nature 463(7277): 103-107.

Segal, E. and J. Widom (2009). "What controls nucleosome positions?" Trends Genet 25(8): 335-343.

Sgorbissa, A., H. Potu and C. Brancolini (2010). "Isopeptidases in anticancer therapy: looking for inhibitors." Am J Transl Res 2(3): 235-247.

Shao, G., D. R. Lill, J. Patterson-Fortin, K. A. Coleman, D. E. Morrissey and R. A. Greenberg (2009). "The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks." Proc Natl Acad Sci U S A 106(9): 3166-3171.

Shi, D. and S. R. Grossman (2010). "Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets." Cancer Biol Ther 10(8): 737-747.

Shirley, M. (2016). "Ixazomib: First Global Approval." Drugs 76(3): 405-411.

Simo-Ruibalbas, L. and M. Esteller (2015). "Targeting the histone orthography of cancer: drugs for writers, erasers and readers." Br J Pharmacol 172(11): 2716-2732.

Song, L. and M. Rape (2008). "Reverse the curse--the role of deubiquitination in cell cycle control." Curr Opin Cell Biol 20(2): 156-163.
Stegmeier, F., M. Rape, V. M. Draviam, G. Nalepa, M. E. Sowa, X. L. Ang, E. R. McDonald, 3rd, M. Z. Li, G. J. Hannon, P. K. Sorger, M. W. Kirschner, J. W. Harper and S. J. Elledge (2007). "Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities." Nature 446(7138): 876-881.

Stegmeier, F., M. E. Sowa, G. Nalepa, S. P. Gygi, J. W. Harper and S. J. Elledge (2007). "The tumor suppressor CYLD regulates entry into mitosis." Proc Natl Acad Sci U S A 104(21): 8869-8874.

Stevenson, L. F., A. Sparks, N. Allende-Vega, D. P. Xirodimas, D. P. Lane and M. K. Saville (2007). "The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2." EMBO J 26(4): 976-986.

Sun, X. X., K. B. Challagundla and M. S. Dai (2012). "Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1." EMBO J 31(3): 576-592.

Sun, X. X., X. He, L. Yin, M. Komada, R. C. Sears and M. S. Dai (2015). "The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc." Proc Natl Acad Sci U S A 112(12): 3734-3739.

Swatek, K. N. and D. Komander (2016). "Ubiquitin modifications." Cell Res.

Taillebourg, E., I. Gregoire, P. Viargues, A. C. Jacomin, D. Thevenon, M. Faure and M. O. Fauvarque (2012). "The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins." Autophagy 8(5): 767-779.

Tang, B., X. Liang, F. Tang, J. Zhang, S. Zeng, S. Jin, L. Zhou, Y. Kudo and G. Qi (2015). "Expression of USP22 and Survivin is an indicator of malignant behavior in hepatocellular carcinoma." Int J Oncol 47(6): 2208-2216.

Tang, B., F. Tang, B. Li, S. Yuan, Q. Xu, S. Tomlinson, J. Jin, W. Hu and S. He (2015). "High USP22 expression indicates poor prognosis in hepatocellular carcinoma." Oncotarget 6(14): 12654-12667.

Taylor, D. (2016). "Multiple Myeloma Therapy in 2015: "An Extraordinary Moment in Oncology"." Am Health Drug Benefits 9(Spec Issue): 1-12.

Tian, Z., P. D'Arcy, X. Wang, A. Ray, Y. T. Tai, Y. Hu, R. D. Carrasco, P. Richardson, S. Linder, D. Chauhan and K. C. Anderson (2014). "A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance." Blood 123(5): 706-716.

Tsukamoto, S. (2016). "Search for Inhibitors of the Ubiquitin-Proteasome System from Natural Sources for Cancer Therapy." Chem Pharm Bull (Tokyo) 64(2): 112-118.

van der Knaap, J. A., B. R. Kumar, Y. M. Moshkin, K. Langenberg, J. Krijgsveld, A. J. Heck, F. Karch and C. P. Verrijzer (2015). "GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7." Mol Cell 17(5): 695-707.

Ventii, K. H. and K. D. Wilkinson (2008). "Protein partners of deubiquitinating enzymes." Biochem J 414(2): 161-175.

Villamil, M. A., Q. Liang and Z. Zhuang (2013). "The WD40-repeat protein-containing deubiquitinate complex: catalysis, regulation, and potential for therapeutic intervention." Cell Biochem Biophys 67(1): 111-126.

Virdee, S., Y. Ye, D. P. Nguyen, D. Komander and J. W. Chin (2010). "Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinate." Nat Chem Biol 6(10): 750-757.

Vong, Q. P., K. Cao, H. Y. Li, P. A. Iglesias and Y. Zheng (2005). "Chromosome alignment and segregation regulated by ubiquitination of survivin." Science 310(5753): 1499-1504.

Wang, C. H., G. C. Chen and T. C. Chien (2014). "The deubiquitinate Leon/USP5 regulates ubiquitin homeostasis during Drosophila development." Biochem Biophys Res Commun 452(3): 369-375.

Wang, L. and S. Y. Dent (2014). "Functions of SAGA in development and disease." Epigenomics 6(3): 329-339.

Wang, Q., S. Ma, N. Song, X. Li, L. Liu, S. Yang, X. Ding, L. Shan, X. Zhou, D. Su, Y. Wang, Q. Zhang, X. Liu, N. Yu, K. Zhang, Y. Shang, Z. Yao and L. Shi (2016). "Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis." J Clin Invest.
Wang, X., P. D'Arcy, T. R. Caulfield, A. Paulus, K. Chitta, C. Mohanty, J. Gullbo, A. Chanana-Khan and S. Linder (2015). "Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15." Chem Biol Drug Des 86(5): 1036-1048.

Wang, Y., A. Thomas, C. Lau, A. Rajan, Y. Zhu, J. K. Killian, I. Petrini, T. Pham, B. Morrow, X. Zhong, P. S. Meltzer and G. Giaccone (2014). "Mutations of epigenetic regulatory genes are common in thymic carcinomas." Sci Rep 4: 7336.

Wang, Y., X. Zhou, M. Xu, W. Weng, Q. Zhang, Y. Yang, P. Wei and X. Du (2016). "OTUB1-catalyzed deubiquination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer." Oncotarget.

Wang, Y., A. Thomas, C. Lau, A. Rajan, Y. Zhu, J. K. Killian, I. Petrini, T. Pham, B. Morrow, X. Zhong, P. S. Meltzer and G. Giaccone (2014). "Mutations of epigenetic regulatory genes are common in thymic carcinomas." Sci Rep 4: 7336.

Wang, Y., X. Zhou, M. Xu, W. Weng, Q. Zhang, Y. Yang, P. Wei and X. Du (2016). "OTUB1-catalyzed deubiquination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer." Oncotarget.

Wang, Y. C., S. A. Wang, P. H. Chen, T. I. Hsu, W. B. Yang, Y. P. Chuang, W. C. Su, H. J. Liaw, W. C. Chang and J. J. Hung (2015). "Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy." Oncogene.

Wang, Z., Q. Song, J. Xue, Y. Zhao and S. Qin (2016). "Ubiquitin-specific protease 28 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity by regulating MYC expression." Exp Biol Med (Maywood) 241(3): 255-264.

Wang, Z., L. Zhu, T. Guo, Y. Wang and J. Yang (2015). "Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma." Hum Pathol 46(7): 1006-1014.

Weake, V. M. and J. L. Workman (2008). "Histone ubiquitination: triggering gene activity." Mol Cell 29(6): 653-663.

Wiesner, T., A. C. Obenauf, R. Murali, I. Fried, K. G. Griewank, P. Ulz, C. Windpassinger, W. Wackernagel, S. Loy, I. Wolf, A. Viale, A. E. Lash, M. Pirun, N. D. Socci, A. Rutten, G. Palmedo, D. Abramson, K. Ofit, A. Ott, J. C. Becker, L. Cerroni, H. Kutzner, B. C. Bastian and M. R. Speicher (2011). "Germline mutations in BAP1 predispose to melanocytic tumors." Nat Genet 43(10): 1018-1021.

Wijnhoven, P., R. Konietzny, A. N. Blackford, J. Travers, B. M. Kessler, R. Nishi and S. P. Jackson (2015). "USP4 Auto-Deubiquitylation Promotes Homologous Recombination." Mol Cell 60(3): 362-373.

Wu, Y., Y. Wang, X. H. Yang, T. Kang, Y. Zhao, C. Wang, B. M. Evers and B. P. Zhou (2013). "The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells." Cell Rep 5(1): 224-236.

Xing, C., X. X. Lu, P. D. Guo, T. Shen, S. Zhang, X. S. He, W. J. Gan, X. M. Li, J. R. Wang, Y. Y. Zhao, H. Wu and J. M. Li (2016). "Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis." Cancer Res 76(1): 83-95.

Yang, D. D., B. B. Cui, L. Y. Sun, H. Q. Zheng, Q. Huang, J. X. Tong and Q. F. Zhang (2011). "The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma." Cell Biochem Biophys 61(3): 703-710.

Yuan, J., S. Banerjee, A. Freitas, H. Cui, N. Xie, E. Abraham and G. Liu (2012). "miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling." Am J Physiol Lung Cell Mol Physiol 302(6): L521-L529.

Yuan, J., K. Luo, M. Deng, Y. Li, P. Yin, B. Gao, Y. Fang, P. Wu, T. Liu and Z. Lou (2014). "HERC2-USP20 axis regulates DNA damage checkpoint through Claspin." Nucleic Acids Res 42(21): 13110-13121.

Zhang, D., K. Zaugg, T. W. Mak and S. J. Elledge (2006). "A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response." Cell 126(3): 529-542.
Zhang, L., A. Lubin, H. Chen, Z. Sun and F. Gong (2012). "The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability." Cell Cycle 11(23): 4378-4384.
Zhang, L., L. Nemzow, H. Chen, A. Lubin, X. Rong, Z. Sun, T. K. Harris and F. Gong (2015). "The deubiquitinating enzyme USP24 is a regulator of the UV damage response." Cell Rep 10(2): 140-147.
Zhang, M., C. Hu, D. Tong, S. Xiang, K. Williams, W. Bai, G. M. Li, G. Bepler and X. Zhang (2016). "Ubiquitin-Specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage." J Biol Chem.
Zhang, T., S. Cooper and N. Brockdorff (2015). "The interplay of histone modifications - writers that read." EMBO Rep 16(11): 1467-1481.
Zhang, X., F. G. Berger, J. Yang and X. Lu (2011). "USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1." EMBO J 30(11): 2177-2189.
Zhang, X. Y., H. K. Pfeiffer, A. W. Thorne and S. B. McMahon (2008). "USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A." Cell Cycle 7(11): 1522-1524.
Zhang, X. Y., M. Varthi, S. M. Sykes, C. Phillips, C. Warzecha, W. Zhu, A. Wycie, A. W. Thorne, S. L. Berger and S. B. McMahon (2008). "The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression." Mol Cell 29(1): 102-111.
Zhang, Y., O. Foreman, D. A. Wigle, F. Kosari, G. Vasmatzis, J. L. Salisbury, J. van Deursen and P. J. Galardy (2012). "USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis." J Clin Invest 122(12): 4362-4374.
Zhang, Y., L. Yao, X. Zhang, H. Ji, L. Wang, S. Sun and D. Pang (2011). "Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer." J Cancer Res Clin Oncol 137(8): 1245-1253.
Zhang, Z., A. Jones, H. Y. Joo, D. Zhou, Y. Cao, S. Chen, H. Erdjument-Bromage, M. Renfrow, H. He, P. Tempst, T. M. Townes, K. E. Giles, L. Ma and H. Wang (2013). "USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing." Genes Dev 27(14): 1581-1595.
Zhou, W., X. Wang and M. G. Rosenfeld (2009). "Histone H2A ubiquitination in transcriptional regulation and DNA damage repair." Int J Biochem Cell Biol 41(1): 12-15.
Zhou, Y., J. Wu, X. Fu, W. Du, L. Zhou, X. Meng, H. Yu, J. Lin, W. Ye, J. Liu, H. Peng, R. Y. Liu, C. Pan and W. Huang (2014). "OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer." Mol Cancer 13: 258.
Zhu, M., H. Zhao, J. Liao and X. Xu (2014). "HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability." Nucleic Acids Res 42(21): 13074-13081.
Zhu, P., W. Zhou, J. Wang, J. Puc, K. A. Ohgi, H. Erdjument-Bromage, P. Tempst, C. K. Glass and M. G. Rosenfeld (2007). "A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation." Mol Cell 27(4): 609-621.
Zhu, Q., N. Sharma, J. He, G. Wani and A. A. Wani (2015). "USP7 deubiquitinase promotes ubiquitin-independent DNA damage signaling by stabilizing RNF168." Cell Cycle 14(9): 1413-1425.