Identification of potential therapeutic targets for lung cancer by bioinformatics analysis

LI-QUAN WANG, LAN-HUA ZHAO and YI-ZE QIAO

Department of Thoracic Surgery, LiaoCheng People’s Hospital and LiaoCheng Clinical School of Taishan Medical University, LiaoCheng, Shandong 252000, P.R. China

Received March 9, 2015; Accepted December 8, 2015

DOI: 10.3892/mmr.2015.4752

Abstract. The aim of the present study was to identify potential therapeutic targets for lung cancer and explore underlying molecular mechanisms of its development and progression. The gene expression profile datasets no. GSE3268 and GSE19804, which included five and 60 pairs of tumor and normal lung tissue specimens, respectively, were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) between lung cancer and normal tissues were identified, and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the DEGs was performed. Furthermore, protein–protein interaction (PPI) networks and a transcription factor (TF) regulatory network were constructed and key target genes were screened. A total of 466 DEGs were identified, and the PPI network indicated that IL-6 and MMP9 had key roles in lung cancer. A PPI module containing 34 nodes and 547 edges was obtained, including PTTG1. The TF regulatory network indicated that TFs of FOSB and LMO2 had a key role. Furthermore, MMP9 was indicated to be the target of FOSB, while PTTG1 was the target of LMO2. In conclusion, the bioinformatics analysis of the present study indicated that IL-6, MMP9 and PTTG1 may have key roles in the progression and development of lung cancer and may potentially be used as biomarkers or specific therapeutic targets for lung cancer.

Introduction

Lung cancer is one of the most common malignancies and has a significant socioeconomic impact on patients and their families (1). In western countries, the mortality rate of lung cancer is 15% and the worldwide mortality rate for patients with lung cancer is 86% (2). The high mortality of lung cancer is mainly attributable to the lack of effective therapeutic methods and the difficulty of obtaining an early diagnosis. Thus, the development of effective therapeutic targets is urgently required.

Differentially expressed genes (DEGs) have been reported to have important roles in lung cancer, and their identification may aid in the elucidation of its underlying molecular mechanisms as well as the discovery of novel biomarkers and treatments (3). Numerous genes, including p53 (3,4), EGFR (5,6), kRAS (7), PIK3CA (8) and EML4 (9), are known to be associated with lung cancer, while others have remained elusive. Furthermore, SEMA5A and -6A were identified as potential therapeutic targets for lung cancer (10-12). Although tremendous efforts have been made to discover novel targets for lung cancer treatments, the current knowledge is insufficient and requires expansion.

In the present study, DEGs between lung cancer and normal lung tissues were identified. Protein–protein interaction (PPI) and transcription factor (TF) regulatory networks were constructed and key target genes were screened. Through the identification of key genes, the possible underlying molecular mechanisms as well as potential candidate biomarkers and treatment targets for lung cancer were explored.

Materials and methods

Affymetrix microarray data. The gene expression profile dataset no. GSE3268 deposited in the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) by Wachi et al (13) based on the GPL96 platform (HG-U133A; Affymetrix Human Genome U133A Array), was subjected to bioinformatics analysis in the present study. The dataset contained a total of 10 chips, including five squamous cell lung cancer tissues and five paired adjacent normal lung tissues obtained from patients with squamous cell lung cancer.

Furthermore, the gene expression profile dataset GSE19804 based on the platform GPL570 (HG-U133_Plus_2; Affymetrix Human Genome U133 Plus 2.0 Array), which was deposited in the GEO database by Lu et al (14), was used. The dataset contained 120 chips, including 60 samples of non-small cell lung cancer tissues and 60 samples of paired normal lung tissues from female Taiwanese patients.

Identification of DEGs. The raw data were pre-processed using the Affy package (15) in R language. DEGs of GSE3268 (DEG1) and GSE19804 (DEG2) between normal groups and
was shown to be downregulated in squamous cell and wounding, immune response, defense response and inflammation significantly enriched in biological processes, including response to division (Table I); the downregulated DEGs were significantly enriched in organismal macromolecule metabolic processes and nuclear division (Table I); the downregulated DEGs were significantly enriched in biological processes, including response to cell cycle, extracellular matrix-receptor interaction and the p53 signaling pathway (Table I); the downregulated DEGs were significantly enriched in cytokine receptor interaction, complement and coagulation cascades as well as chemokine signaling pathways (Table I).

Construction of PPI network and screening of module. The PPI network was constructed based on the predicted interactions of the identified DEGs (Fig. 2). Genes of IL-6, FOSB, CDK1, MMP9 and ICAM1 were found to have a high degree of interaction in lung cancer. A sub-network containing 34 nodes and 547 edges was screened from the PPI network, such as PTTG1 (Fig. 3). The DEGs in the sub-net were significantly enriched in biological processes, such as the cell cycle, and pathway analysis showed that they were significantly enriched in cell cycle and oocyte meiosis (Table II).

Discussion

Lung cancer is the leading cause of cancer-associated mortality; however, the underlying molecular mechanisms of its development and progression have remained to be fully elucidated (1). The present study used a bioinformatics approach to predict the potential therapeutic targets and explore the possible molecular mechanisms for lung cancer. A total of 466 DEGs between tumorous and normal tissues was identified, among which 310 genes were downregulated and 156 were upregulated. By constructing a PPI network and a TF regulatory network, key genes, including IL6, MMP9 and PTTG1, were identified.

IL-6 is a multifunctional cytokine that was characterized as a regulator of immune and inflammatory responses (27,28). It is involved in the regulation of cell proliferation, survival and metabolism, and IL-6 signaling has an important role in tumorigenesis (29). Chung et al (30) found that IL-6 activated PI3K, which promoted apoptosis in human prostate cancer cell lines. Furthermore, studies have shown that IL-6 inhibited the growth of numerous types of cancer, including lung (31), breast (32) and prostate cancer (33). In the present study, IL-6 was shown to be downregulated in squamous cell and non-small cell lung cancer, and GO analysis showed that IL-6 was significantly enriched in biological processes, including defense response, inflammatory response, immune response and regulation of cell proliferation, which was consistent with a previous study (29). Combined with the above studies, it is indicated that IL-6 may be a diagnostic biomarker and therapeutic target in lung cancer.

MMP9 has a key role in cell migration, proliferation, differentiation, angiogenesis, apoptosis and host defense (34). Dysregulation of MMPs has been implicated in numerous diseases, including chronic ulcers and cancer (35-37).
Figure 1. Boxplot of normalized expression values for the datasets. The dotted lines in the middle of each box represent the median of each sample, and its distribution among samples indicates the level of normalization of the data, with a nearly straight line indicating a fair normalization level. Gene expression omnibus datasets: 1, GSE3268; 2, GSE19804.
Downregulation of MMPs has been shown to inhibit metastasis, while upregulation of MMPs led to enhanced cancer cell invasion (37). In the present study, MMP9 was overexpressed and regulated by FOSB in lung cancer tissues. Kim et al (38) found that FOSB was downregulated in pancreatic cancer and promoted tumor progression. Kataoka et al (39) found that FOSB gene expression in cancer stroma is a independent prognostic indicator for patients with epithelial ovarian cancer receiving standard therapy. Combined with the above studies, the present study indicated that MMP9 may have important roles in the progression of lung cancer, and that it may be utilized as a therapeutic target.

Table I. GO and pathway analysis of the differentially expressed genes.

Expression	Category	Term/gene and function	Count	P-value
Upregulated	KEGG_PATHWAY	hsa04110 - Cell cycle	12	6.94x10^-7
	KEGG_PATHWAY	hsa04512 - ECM-receptor interaction	10	1.50x10^-6
	KEGG_PATHWAY	hsa04510 - Focal adhesion	10	1.42x10^-3
	KEGG_PATHWAY	hsa04115 - p53 signaling pathway	6	2.14x10^-3
	KEGG_PATHWAY	hsa00240 - Pyrimidine metabolism	5	3.93x10^-2
	GOTERM_BP_FAT	GO:0032963 - Collagen metabolic process	9	2.10x10^-10
	GOTERM_BP_FAT	GO:0044259 - Multicellular organismal macromolecule metabolic process	9	5.19x10^-10
	GOTERM_BP_FAT	GO:0002280 - Nuclear division	17	5.79x10^-10
	GOTERM_BP_FAT	GO:0000767 - Mitosis	17	5.79x10^-10
	GOTERM_BP_FAT	GO:0000278 - Mitotic cell cycle	21	7.04x10^-10
	GOTERM_BP_FAT	GO:0000087 - M phase of mitotic cell cycle	17	7.55x10^-10
	GOTERM_CC_FAT	GO:0005756 - Extracellular region	53	1.41x10^-10
	GOTERM_CC_FAT	GO:0005758 - Proteinaceous extracellular matrix	19	7.80x10^-9
	GOTERM_CC_FAT	GO:0031012 - Extracellular matrix	19	2.50x10^-4
	GOTERM_CC_FAT	GO:0044421 - Extracellular region part	30	2.27x10^-7
	GOTERM_CC_FAT	GO:0005819 - Spindle	12	4.55x10^-7
	GOTERM_MF_FAT	GO:004222 - Metalloendopeptidase activity	9	9.37x10^-10
	GOTERM_MF_FAT	GO:0048407 - Platelet-derived growth factor binding	4	1.53x10^-4
	GOTERM_MF_FAT	GO:004175 - Endopeptidase activity	13	3.80x10^-4
	GOTERM_MF_FAT	GO:0004857 - Enzyme inhibitor activity	11	3.81x10^-4
Downregulated	KEGG_PATHWAY	hsa04060 - Cytokine-cytokine receptor interaction	20	6.99x10^-5
	KEGG_PATHWAY	hsa04610 - Complement and coagulation cascades	8	2.47x10^-3
	KEGG_PATHWAY	hsa04620 - Chemokine signaling pathway	13	4.53x10^-3
	KEGG_PATHWAY	hsa04650 - Natural killer cell mediated cytotoxicity	10	9.69x10^-3
	KEGG_PATHWAY	hsa04614 - Renin-angiotensin system	4	1.01x10^-2
	GOTERM_BP_FAT	GO:0009611 - Response to wounding	48	2.23x10^-17
	GOTERM_BP_FAT	GO:0006952 - Defense response	46	1.66x10^-13
	GOTERM_BP_FAT	GO:0006954 - Inflammatory response	33	2.92x10^-13
	GOTERM_BP_FAT	GO:0006955 - Immune response	43	4.20x10^-10
	GOTERM_BP_FAT	GO:0048545 - Response to steroid hormone stimulus	21	3.81x10^-9
	GOTERM_CC_FAT	GO:0005615 - Extracellular space	55	2.36x10^-18
	GOTERM_CC_FAT	GO:004421 - Extracellular region part	64	2.03x10^-17
	GOTERM_CC_FAT	GO:0005576 - Extracellular region	93	3.37x10^-15
	GOTERM_CC_FAT	GO:0005886 - Plasma membrane	131	2.25x10^-12
	GOTERM_CC_FAT	GO:0005887 - Integral to plasma membrane	61	1.99x10^-11
	GOTERM_MF_FAT	GO:0019838 - Growth factor binding	16	2.01x10^-9
	GOTERM_MF_FAT	GO:0030246 - Carbohydrate binding	27	7.86x10^-9
	GOTERM_MF_FAT	GO:0019955 - Cytokine binding	13	1.54x10^-6
	GOTERM_MF_FAT	GO:0005509 - Calcium ion binding	39	1.04x10^-3
	GOTERM_MF_FAT	GO:0030247 - Polysaccharide binding	14	1.11x10^-5

BP, biological process; CC, cellular component; MF, molecular function; Count, numbers of differentially expressed genes; ECM, extracellular matrix; GO, gene ontology; hsa, Homo sapiens; KEGG, Kyoto Encyclopedia of Genes and Genomes; FAT, functional annotation tool.
PTTG1 has tumorigenic activity and is highly expressed in various tumor types (40). Studies have shown that PTTG1 was overexpressed in esophageal cancer and associated with endocrine therapy resistance in breast cancer (41,42). Yoon et al (40) showed that the PTTG1 oncogene promoted tumor malignancy via epithelial-to-mesenchymal expansion of the cancer stem cell population. Hamid et al (43) found that PTTG1 promoted tumorigenesis in human embryonic kidney cells. A study by Li et al (44) indicated that PTTG1 promoted migration and invasion of human non-small cell lung cancer cells. Panguluri et al (45) showed that PTTG1 was an important target gene for ovarian cancer therapy. In the present study, PTTG1 was found to be overexpressed in lung cancer tissues and regulated by LMO2. LMO2 is an important regulator in determining cell fate and controlling cell growth and differentiation (46). Nakata et al (47) found that LMO2 was a novel predictive biomarker with the potential to enhance the accuracy of prognoses for pancreatic cancer. Yamada et al (48) showed that LMO2 is a key regulator of tumour angiogenesis. Combined with the above studies, the present study indicated that PTTG1 may have important roles in the progression of lung cancer and that it may represent a therapeutic target.

In conclusion, the bioinformatics analysis of the present study indicated that IL-6, MMP9 and PTTG1 may have key roles in the progression and development of lung cancer. They
Table II. GO and pathway analysis of genes in sub-network.

Category	Term/gene and function	Count	P-value
KEGG_PATHWAY	hsa04110 - Cell cycle	10	1.09x10^{-11}
KEGG_PATHWAY	hsa04114 - Oocyte meiosis	6	1.09x10^{-3}
KEGG_PATHWAY	hsa04914 - Progesterone-mediated oocyte maturation	4	1.83x10^{-1}
KEGG_PATHWAY	hsa04115 - p53 signaling pathway	3	1.65x10^{-3}
KEGG_PATHWAY	hsa00240 - Pyrimidine metabolism	3	3.10x10^{-2}
GOTERM_BP_FAT	GO:0000278 - Mitotic cell cycle	19	7.13x10^{-21}
GOTERM_BP_FAT	GO:0007049 - Cell cycle	22	1.65x10^{-19}
GOTERM_BP_FAT	GO:0000280 - Nuclear division	16	2.14x10^{-19}
GOTERM_BP_FAT	GO:0007067 - Mitosis	16	2.14x10^{-19}
GOTERM_BP_FAT	GO:0000087 - M phase of mitotic cell cycle	16	2.82x10^{-19}
GOTERM_CC_FAT	GO:0015630 - Microtubule cytoskeleton	14	5.31x10^{-11}
GOTERM_CC_FAT	GO:0000779 - Condensed chromosome, centromeric region	8	3.94x10^{-11}
GOTERM_CC_FAT	GO:0015630 - Microtubule cytoskeleton	14	5.31x10^{-11}
GOTERM_CC_FAT	GO:0000779 - Condensed chromosome, centromeric region	8	1.01x10^{-10}
GOTERM_CC_FAT	GO:000922 - Spindle pole	7	1.01x10^{-10}
GOTERM_MF_FAT	GO:0005524 - Adenosine triphosphate binding	15	4.89x10^{-7}
GOTERM_MF_FAT	GO:0032559 - Adenyl ribonucleotide binding	15	5.78x10^{-7}
GOTERM_MF_FAT	GO:0030554 - Adenyl nucleotide binding	15	1.10x10^{-6}
GOTERM_MF_FAT	GO:0001883 - Purine nucleoside binding	15	1.32x10^{-6}
GOTERM_MF_FAT	GO:0001882 - Nucleoside binding	15	1.44x10^{-6}

BP, biological process; CC, cellular component; MF, molecular function; Count, numbers of DEGs; GO, gene ontology; hsa, Homo sapiens; KEGG, Kyoto Encyclopedia of Genes and Genomes; FAT, functional annotation tool.

Figure 4. Transcriptional regulatory network analysis. Blue nodes represent products of upregulated DEGs and pink nodes represent products of downregulated DEGs. Triangle arrowheads indicate transcription factors and circles indicate target genes. DEG, differentially expressed gene.
may be used as prognostic biomarkers as well as specific therapeutic targets for the treatment of lung cancer. However, molecular biology experiments are required to confirm these findings.

References

1. Nugent M, Edney B, Hammerness PG, Dain BJ, Maurer LH and Rigas JR: Non-small cell lung cancer at the extremes of age: Impact on diagnosis and treatment. Ann Thorac Surg 63: 193-197, 1997.

2. Yang SP, Luh KT, Kuo SH and Lin CC: Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration—a 30-year consecutive study. Jpn J Clin Oncol 14: 7-19, 1984.

3. Andriani F, Roz E, Caserini R, Conte D, Pastorino U, Sozzi G, and Roz L: Inactivation of both FHT and p53 cooperate in deregulating proliferation-related pathways in lung cancer. J Thorac Oncol 7: 631-642, 2012.

4. Toyooka S, Tsuda T and Gazdar AF: The TP53 gene, tobacco exposure and lung cancer. Hum Mutat 21: 229-239, 2003.

5. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Amin N, Lee H, Toyooka S, Shimizu N et al: Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97: 339-346, 2005.

6. Martin P, Kelly CM and Carney D: Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Control 13: 129-140, 2006.

7. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Januario T, Johnson DH, et al: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23: 5900-5909, 2005.

8. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, Soh J, Suzuki M, Wistuba II, Fong KM, et al: PIK3CA mutations and copy number gain in human lung cancers. Cancer 115: 1723-1733, 2009.

9. Dong DW, Leung EL, So KK, Tam IY, Siuho AD, Cheng LC, Ho KK, Au JS, Chung LP, Pik Wong M, et al: The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115: 1723-1733, 2009.

10. Castro-Rivera E, Ran S, Thorpe P and Minna JD: Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA 101: 11432-11437, 2004.

11. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, Lerman MI, Gazdar AF, Minna JD et al: Inhibition of lung cancer cell growth and induction of apoptosis after re-expression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci USA 98: 13954-13959, 2001.

12. Brambilla E, Constantini B, Drabkin H and Roche J: Semaphorin SEMA3F localization in malignant human lung and cell lines: A suggested role in cell adhesion and cell migration. Am J Pathol 156: 939-950, 2000.

13. Wachi S, Yoneda K and Wu R: Interactome -transcriptome analysis reveals the high centrality of genes differentially expressed in microarray experiments. Stat Appl Genet Mol Biol 3: 2004.

14. Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, Shih JY, Yang PC, Hsiao CK, Lai LC, et al: Identification of a novel biomarker, SEMA5A, for non-small-cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev 16: 619-626, 2007.

15. Sica A, Allavena P and Mantovani A: Cancer related inflammation: The macrophage connection. Cancer Lett 267: 204-215, 2008.

16. Benveniste EN: Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med (Berl) 75: 165-173, 1997.

17. Firestein GS: Evolving concepts of rheumatoid arthritis. Nature 423: 356-361, 2003.

18. Coussens LM, Fingleton B and Matrisian LM: Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295: 2387-2392, 2002.

19. Kim JH, Lee JY, Lee KT, Lee JK, Lee KH, Jang KT, Heo JS, Choi SH and Rhee JC: RGS16 and FosB underexpressed in pancreatic cancer with lymph node metastasis promote tumor progression. Tumor Biol 31: 541-548, 2010.

20. Kataoka F, Tsuda H, Arao T, Nishimura S, Tanaka H, Nomura H, Chiyoda T, Hirasawa A, Akahane T, Nishio H, et al: EGR1 and FOSB gene expressions in cancer stroma are independent prognostic indicators for epithelial ovarian cancer receiving standard therapy. Gene Chromosome Cancer 51: 300-312, 2012.

21. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, Lee GH, Cui YH, Oh YS, Gye MC, Yoon CH, Kim MJ, Lee H, et al: Expression of PTPTG (pituitary tumor transforming gene) in esophageal cancer. Jpn J Clin Oncol 32: 233-237, 2002.
42. Ghayad SE, Vendrell JA, Bieche I, Spyratos F, Dumontet C, Treilleux I, Lidereau R and Cohen PA: Identification of TACC1, NOV and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J Mol Endocrinol 42: 87-103, 2009.
43. Hamid T, Malik MT and Kakar SS: Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells. Mol Cancer 4: 3, 2005.
44. Li H, Yin C, Zhang B, Sun Y, Shi L, Liu N, Liang S, Lu S, Liu Y, Zhang I, et al: PTTG1 promotes migration and invasion of human non-small cell lung cancer cells and is modulated by miR-186. Carcinogenesis 34: 2145-2155, 2013.
45. Panguluri SK, Yeakel C and Kakar SS: PTTG: An important target gene for ovarian cancer therapy. J Ovarian Res 1: 6, 2008.
46. Ma S, Guan XY, Beh PS, Wong KY, Chan YP, Yuen HF, Vielkind J and Chan KW: The significance of LMO2 expression in the progression of prostate cancer. J Pathol 211: 278-285, 2007.
47. Nakata K, Ohuchida K, Nagai E, Hayashi A, Miyasaka Y, Kayashima T, Yu J, Aishima S, Oda Y, Mizumoto K, et al: LMO2 is a novel predictive marker for a better prognosis in pancreatic cancer. Neoplasia 11: 712-719, 2009.
48. Yamada Y, Pannell R, Forster A and Rabbits TH: The LIM-domain protein Lmo2 is a key regulator of tumour angiogenesis: A new anti-angiogenesis drug target. Oncogene 21: 1309-1315, 2002.