The order of principal congruences of a bounded lattice.

AMS Fall Southeastern Sectional Meeting
University of Louisville, Louisville, KY
October 5-6, 2013

G. Grätzer
We characterize the order of principal congruences of a bounded lattice as a bounded ordered set. We also state a number of open problems in this new field.

arxiv: 1309.6712
Let A be a lattice (resp., join-semilattice with zero). We call A *representable* if there exist a lattice L such that A is isomorphic to the congruence lattice of L, in formula, $A \cong \text{Con} \ L$ (resp., A is isomorphic to the join-semilattice with zero of compact congruences of L, in formula, $A \cong \text{Con}_c \ L$).
For over 60 years, one of lattice theory’s most central conjectures was the following:

Characterize representable lattices as distributive algebraic lattices.
For over 60 years, one of lattice theory’s most central conjectures was the following:

Characterize representable lattices as distributive algebraic lattices.

Or equivalently: Characterize representable join-semilattices as distributive join-semilattice with zero.
For over 60 years, one of lattice theory’s most central conjectures was the following:

Characterize representable lattices as distributive algebraic lattices.

Or equivalently: Characterize representable join-semilattices as distributive join-semilattice with zero.
This conjecture was refuted in F. Wehrung in 2007.
In this lecture, we deal with Princ L, the order of principal congruences of a lattice L. Observe that

(a) Princ L is a directed order with zero.
In this lecture, we deal with Princ \(L \), the order of principal congruences of a lattice \(L \). Observe that

(a) Princ \(L \) is a directed order with zero.

(b) Con\(_c\) \(L \) is the set of compact elements of Con \(L \), a lattice theoretic characterization of this subset.
In this lecture, we deal with Princ L, the order of principal congruences of a lattice L. Observe that

(a) Princ L is a directed order with zero.

(b) Con$_c$ L is the set of compact elements of Con L, a lattice theoretic characterization of this subset.

(c) Princ L is a directed subset of Con$_c$ L containing the zero and join-generating Con$_c$ L; there is no lattice theoretic characterization of this subset.
This is the lattice N_7 and its congruence lattice $B_2 + 1$. Note that $\text{Princ } N_7 = \text{Con } N_7 - \{\gamma\}$, while in the standard representation K of $B_2 + 1$ as a congruence lattice (G. Grätzer and E. T. Schmidt, 1962), we have $\text{Princ } K = \text{Con } K$.
This is the lattice N_7 and its congruence lattice $B_2 + 1$. Note that $\text{Princ } N_7 = \text{Con } N_7 - \{\gamma\}$, while in the standard representation K of $B_2 + 1$ as a congruence lattice (G. Grätzer and E. T. Schmidt, 1962), we have $\text{Princ } K = \text{Con } K$. This example shows that $\text{Princ } L$ has no lattice theoretic description in $\text{Con } L$.
For a bounded lattice L, the order $\text{Princ } K$ is bounded. We now state the converse.
Theorem 1

For a bounded lattice L, the order $\text{Princ } K$ is bounded. We now state the converse.

Theorem

Let P be an order with zero and unit. Then there is a bounded lattice K such that $P \cong \text{Princ } K$. If P is finite, we can construct K as a finite lattice.
Problem

Can we characterize the order $\text{Princ} \ L$ for a lattice L as a directed order with zero?
Problem

Can we characterize the order Princ L for a lattice L as a directed order with zero?

(Why directed?)
Can we characterize the order $\text{Princ } L$ for a lattice L as a directed order with zero?

(Why directed?)
G. Czédli solved this problem for countable lattices
arXiv:1305.0965
Even more interesting would be to characterize the pair $P = \text{Princ } L$ in $S = \text{Con}_c L$ by the properties that P is a directed order with zero that join-generates S. We have to rephrase this so it does not require a solution of the congruence lattice characterization problem.
Even more interesting would be to characterize the pair \(P = \text{Princ } L \)
in \(S = \text{Con}_c L \) by the properties that \(P \) is a directed order with zero that join-generates \(S \). We have to rephrase this so it does not require a solution of the congruence lattice characterization problem.

Problem

Let \(S \) be a representable join-semilattice. Let \(P \subseteq S \) be a directed order with zero and let \(P \) join-generate \(S \). Under what conditions is there a lattice \(K \) such that \(\text{Con}_c K \) is isomorphic to \(S \) and under this isomorphism \(\text{Princ } K \) corresponds to \(P \)?
For a lattice L, let us define a valuation v on $\text{Con}_c L$ as follows: for a compact congruence α of L, let $v(\alpha)$ be the smallest integer n such that the congruence α is the join of n principal congruences. A valuation v has some obvious properties, for instance, $v(0) = 0$ and $v(\alpha \vee \beta) \leq v(\alpha) + v(\beta)$. Note the connection with Princ L:

$$\text{Princ } L = \{ \alpha \in \text{Con}_c L \mid v(\alpha) \leq 1 \}.$$
For a lattice L, let us define a valuation v on $\text{Con}_c L$ as follows: for a compact congruence α of L, let $v(\alpha)$ be the smallest integer n such that the congruence α is the join of n principal congruences. A valuation v has some obvious properties, for instance, $v(0) = 0$ and $v(\alpha \lor \beta) \leq v(\alpha) + v(\beta)$. Note the connection with Princ L:

\[
\text{Princ } L = \{ \alpha \in \text{Con}_c L \mid v(\alpha) \leq 1 \}.
\]

Problem

Let S be a representable join-semilattice. Let v map S to the natural numbers. Under what conditions is there an isomorphism φ of S with $\text{Con}_c K$ for some lattice K so that under φ the map v corresponds to the valuation on $\text{Con}_c K$?
Let D be a finite distributive lattice. In G. Grätzer and E. T. Schmidt 1962, we represent D as the congruence lattice of a finite lattice K in which \textit{all congruences are principal} (that is, $\text{Con } K = \text{Princ } K$).
Let D be a finite distributive lattice. In G. Grätzer and E. T. Schmidt 1962, we represent D as the congruence lattice of a finite lattice K in which all congruences are principal (that is, $\text{Con} K = \text{Princ} K$).

Problem

Let D be a finite distributive lattice. Let Q be a subset of D satisfying $\{0, 1\} \cup \text{Ji } D \subseteq Q \subseteq D$. When is there a finite lattice K such that $\text{Con} K$ is isomorphic to D and under this isomorphism $\text{Princ} K$ corresponds to Q?
Example:
Let D be the eight-element Boolean lattice. Let Q be a subset of D containing 0 and 1 and the three atoms (the join-irreducible elements).

Lemma

If there is a finite lattice K such that $\text{Con } K$ is isomorphic to D and under this isomorphism $\text{Princ } K$ corresponds to Q, then Q has seven or eight elements.
In particular, let $Q = \text{Con} \, L$.

Problem

Let \mathbf{K} be a class of lattices with the property that every finite distributive lattice D can be represented as the congruence lattice of some finite lattice in \mathbf{K}. Under what conditions on \mathbf{K} is it true that every finite distributive lattice D can be represented as the congruence lattice of some finite lattice L in \mathbf{K} with the additional property: $\text{Con} \, L = \text{Princ} \, L$.

G. Grätzer
G. Grätzer and E. T. Schmidt, *An extension theorem for planar semimodular lattices*. Periodica Mathematica Hungarica. arXiv: 1304.7489

Theorem

Every finite distributive lattice D *can be represented as the congruence lattice of a finite, planar, semimodular lattice* K *with the property that all congruences are principal.*

In fact, K is constructed as a “rectangular lattice”.

In the finite variant of the valuation problem, we need an additional property.

Problem

Let S be a finite distributive lattice. Let v be a map of D to the natural numbers satisfying $v(0) = 0$, $v(1) = 1$, and $v(a \lor b) \leq v(a) + v(b)$ for $a, b \in D$. When is there an isomorphism φ of D with $\text{Con } K$ for some finite lattice K such that under φ the map v corresponds to the valuation on $\text{Con } K$?
In Theorem 1, can we construct a semimodular lattice?
Problem 7

In Theorem 1, can we construct a semimodular lattice?

Remember Theorem 1:

Theorem

Let P be an order with zero and unit. Then there is a bounded lattice K such that

$$P \cong \text{Princ } K.$$

If P is finite, we can construct K as a finite lattice.
Problem

In Problems 2 and 3, in the finite case, can we construct a finite semimodular lattice K?
Problem 8

In Problems 2 and 3, in the finite case, can we construct a finite semimodular lattice K?

Remember Problems 2 and 3:

Problem

Let S be a representable join-semilattice. Let $P \subseteq S$ be a directed order with zero and let P join-generate S. Under what conditions is there a lattice K such that $\text{Con}_c K$ is isomorphic to S and under this isomorphism $\text{Princ} K$ corresponds to P?

Problem

Let S be a representable join-semilattice. Let ν map S to the natural numbers. Under what conditions is there an isomorphism φ of S with $\text{Con}_c K$ for some lattice K so that under φ the map ν corresponds to the valuation on $\text{Con}_c K$?
In E. T. Schmidt 1962 (see also G. Grätzer and E. T. Schmidt 2003), for a finite distributive lattice D, a countable modular lattice M is constructed with $\text{Con} M \cong D$.

Problem

In Theorem 1, for a finite P, can we construct a countable modular lattice K?
Some of these problems seem to be of interest for algebras other than lattices as well.

Problem

Can we characterize the order $\text{Princ} \mathcal{A}$ for an algebra \mathcal{A} as an order with zero?
Problem 9

Problem

For an algebra \mathcal{A}, how is the assumption that the unit congruence 1 is compact reflected in the order $\text{Princ}\mathcal{A}$?
Problem 10

Problem

Let \mathcal{A} be an algebra and let $\text{Princ}\, \mathcal{A} \subseteq Q \subseteq \text{Con}_c \, \mathcal{A}$. Does there exist an algebra \mathcal{B} such that $\text{Con}\, \mathcal{A} \cong \text{Con}\, \mathcal{B}$ and under this isomorphism Q corresponds to $\text{Princ}\, \mathcal{B}$?
Problem

Extend the concept of valuation to algebras in general. State and solve Problem 3 for algebras.
Problem 11

Problem

Extend the concept of valuation to algebras in general. State and solve Problem 3 for algebras.

Remember Problem 3:

Problem

Let S be a representable join-semilattice. Let v map S to the natural numbers. Under what conditions is there an isomorphism φ of S with $\text{Con}_c K$ for some lattice K so that under φ the map v corresponds to the valuation on $\text{Con}_c K$?
Problem 12

Problem

Can we sharpen the result of G. Grätzer and E. T. Schmidt 1960: every algebra \mathcal{A} has a congruence-preserving extension \mathcal{B} such that $\text{Con} \mathcal{A} \cong \text{Con} \mathcal{B}$ and $\text{Princ} \mathcal{B} = \text{Con}_c \mathcal{B}$.

I do not even know whether every algebra \mathcal{A} has a proper congruence-preserving extension \mathcal{B}.
Problem 12

Problem

Can we sharpen the result of G. Grätzer and E. T. Schmidt 1960: every algebra A has a congruence-preserving extension B such that $\text{Con} A \cong \text{Con} B$ and $\text{Princ} B = \text{Con}_c B$.

I do not even know whether every algebra A has a proper congruence-preserving extension B.
For a bounded order Q, let Q^- denote the order Q with the bounds removed. Let P be the order in Theorem 1. Let 0 and 1 denote the zero and unit of P, respectively. We denote by P^d those elements of P^- that are not comparable to any other element of P^-, that is,

$$P^d = \{ x \in P^- \mid x \parallel y \text{ for all } y \in P^-, \ y \neq x \}.$$
We first construct the lattice F consisting of the elements o, i and the elements a_p, b_p for every $p \in P$, where $a_p \neq b_p$ for every $p \in P^-$ and $a_0 = b_0$, $a_1 = b_1$. The lattice F:

Proof by Picture: The Lattice F
Proof by Picture: The Lattice K

We are going to construct the lattice K (of Theorem 1) as an extension of F. For $p \prec q$, between the edges $[a_p, b_p]$ and $[a_q, b_q]$ we insert the lattice $S = S(p, q)$:

![Lattice Diagram]

The principal congruence of K representing $p \in P^-$ will be $\text{con}(a_p, b_p)$.
Proof by Picture: The Orders C, V, and H

For $x \in S(p, q)$ and $y \in S(p', q')$, $p \prec q$, $p' \prec q'$ we have to find $x \lor y$ and $x \land y$.

If $\{p, q\} \cap \{p', q'\} = \emptyset$, then x and y are complimentary.

If $\{p, q\} \cap \{p', q'\} \neq \emptyset$, then $\{p, q\} \cup \{p', q'\}$ form a three element order C, V, or H:
We form $x \lor y$ and $x \land y$ in the appropriate lattices,

$S_C = S(p < q, q < q')$, $S_V = S(p < q, p < q')$ with $q \neq q'$, and

$S_H = S(p < q, p' < q)$ with $p \neq p'$.

G. Grätzer

The order of principal congruences of a bounded lattice
The lattice $S_C = S(p < q, \; q < q')$:
The lattice $S_V = S(p < q, \ p < q')$ with $q \neq q'$:
The lattice $S_H = S(p < q, \ p' < q)$ with $p \neq p'$: