Polymorphism of nuclear DNA in selected species of Taraxacum sect. Palustria

Jolanta Marciniuk, Joanna Rerak, Krystyna Musiał, Patryk Mizia, Paweł Marciniuk, Aleksandra Grabowska-Joachimiak, Andrzej J. Joachimiak

a Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Science, Prusa 14, 08-110 Siedlce, Poland
b Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
c Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland

Article info
Article history:
Received 9 December 2019
Revised 21 July 2020
Accepted 22 July 2020
Available online 28 July 2020

Keywords:
Taraxacum sect. Palustria
RAPD
Nuclear DNA

Abstract
This paper presents the results of research on nuclear DNA polymorphism in six apomictic species of marsh dandelions (Taraxacum sect. Palustria): Taraxacum bavaricum, T. belorussicum, T. brandenburgicum, T. paucilobum, T. subdolum and T. vindobonense. The studies demonstrated the existence of clear genetic differences between species and the existence of nuclear DNA polymorphism within each of the studied species.

1. Introduction
Taraxacum genus belongs to the largest and most taxonomically complicated apomictic complexes. So far, more than 3000 species have been described and traditionally classified into about 60 sections (Kirschner and Štepánková, 1997, 2004; Uhlemann et al., 2004, Kirschner et al., 2015). Most of the Taraxacum sections encompass either exclusively apomorphic taxa or apomicts with a small contribution of sexual species. Only small, relic, mainly Asiatic sections are characterized by prevalence of diploid and tetraploid sexual species (Kirschner and Štepánková, 1996). Such high morphological differentiation in the genus of relatively small sexuality and of geographic range limited to middle Asia and southern Europe is explained by several episodes of intensive hybridization between sexual plants from the south and apomicts retreating from the north between subsequent glacial periods (Richards, 1973; Kirschner and Štepánková, 1996). Formation of new taxa through hybridization is also taking place now in mixed populations composed of apomictic polyploids and sexual diploids (Hughes and Richards, 1988; van Baaren et al., 2000; Meirmans et al., 2003; Mitsuyuki et al., 2014; Matsuyma et al., 2018). However, neither historic nor current hybridization between sexual plants and apomicts does not explain the surprisingly high genetic polymorphism found in apomictic dandelions growing in regions separated by hundreds of kilometres from the nearest populations of sexual species (King and Schaal, 1990; Van Der Hulst et al., 2003). Moreover, genetic differences were observed not only among well-defined apomictic species but also among the progeny of a single mother plant (King and Schaal, 1990). Probable reasons for the appearance of so many apomictic clones in polyploid Taraxacum are point and chromosome mutations and incidental sexual reproduction (Kirschner and Štepánková, 1994; Richards, 1996).

In our pilot study we aimed at checking how genetically distinct are the apomictic microspecies of Taraxacum, which belong to a large and karyologically differentiated Palustria section with prevailing asexual mode of reproduction. This section groups 133 species of dandelions among which two are sexual diploids (T. tenuifolium and T. raii of the range limited to a small area in southern Europe), relatively numerous triploids and tetraploids and less frequent pentaploids and hexaploids (Kirschner and Štepánková, 1998; Marciniuk et al., 2018). The second aim was to find out if and how large polymorphism of nuclear DNA within an apomictic species is. The number of chromosomes in the studied taxa was reported earlier (Marciniuk et al., 2010).
2. Material and methods

2.1. Plants material

For this study we selected 6 apomictic species of Taraxacam (Table 1) from the section Palustria growing in Poland. Two of them are tetraploids (T. brandenburgicum and T. vindobonense), while the others are triploids. We chose species, classified by Kirschner and Štepánek (1998) into various morphological groups that can pose serious identification problems, especially for atypical specimens.

Seeds used in this study were collected directly in natural sites or from plants which were transferred from natural sites to the culture (Table 1). As external groups, we used leaves from 10 individuals of unidentified apomictic species T. sect. Ruderalia (material collected near Kraków) and one seedling of T. pieninicum sect. Erythrocampa - a diploid endemic species of the Pieniny Mountains (seeds collected with acceptance of the Director of the Pieniny National Park).

2.2. Random amplification of polymorphic DNA (RAPD-PCR)

Seeds were sown in a medium composed of agar and water. The obtained seedlings were used for isolation of nuclear DNA. The amount of DNA in the studied samples was determined with NanoDrop ND1000. Samples of the highest, for a given species, concentration of DNA were selected for further studies so as to obtain the total number of 10 samples for one species. The exception was T. pieninicum for which one sample was prepared.

Eleven primers (out of 15 preliminarily tested) giving clearly distinguishable bands in all analysed specimens were selected for amplification. The names of the primers and their sequence are given in Table 2. Amplified DNA was diluted in sterile water in such a proportion as to obtain 10 ng in each case. The composition of reaction mixture is set up in Table 3.

Amplification of DNA with RAPD primers was performed in a thermocycler Mastercycler made by Eppendorf and programmed as follows: initial denaturation – 94 °C/1 min; 39 cycles composed of denaturation 93 °C/30 s, annealing of the primers 34 °C/1 min, elongation 68 °C/2.5 min; final elongation 72 °C/5 min. PCR products after adding the buffer (40% saccharose, xylene green 0.25%, methylene blue 0.25%) were separated in 1% agar gel in the TBE buffer for 2 h at a voltage of 3.5 V/cm. A size marker of 100 bp DNA Ladder plus (MBI Fermentas) was used. The gels were photographed with VilberLourmat 05 10766 type CN-3000 using the BioCapt ver. 12.3 software. Photographs of sample gels are given in Fig. 1.

WPGMA trees were made with the PragmaTax software (Moraczewski, 2009). Statistical tests (one-way ANOVA) of the differences in the number of bands per primer were performed using the VassarStats computation web site (http://vassarstats.net/).

Table 1
Species of the genus Taraxacam used in this study.

Taxon	Section	Location and the date of fruit collection	The number of individuals from which seeds were collected	The number of samples
T. brandenburgicum	Palustria	Pyzdy near Poznań, 16.05.2007	14	10
T. vindobonense	Palustria	Stasin near Siedlce, 18.05.2008	2	10
T. subdulum	Palustria	Czuchów, 20.05.2009	2	10
T. bavaricum	Palustria	Czuchów, 17.05.2008	1	10
T. belorussicum	Palustria	Mićichy - Biebrza National Park, 23.05.2008	4	9
T. paucilobum	Palustria	Sulicha, Orzyc River Valley, 10.05.2008, 19.05.2009	4	1
T. pieninicum	Palustria	Czuchów, 20.05.2007	ca. 20	10
T. sp.	Erythrocampa	Pieniny National Park, 19.05.2008	1	1
	Ruderalia	Kraków, 17.05.2009	–	10

3. Results

An RAPD PCR analysis of nuclear DNA was made for 6 species of the Taraxacam sect. Palustria and for two external groups - T. pieninicum and an unidentified taxon of the T. sect. Ruderalia. In total 72 individuals were analyzed. The lengths of the obtained PCR products ranged between 5320 and 110 bp but due to only sporadic occurrence of very long and very short bands, the analyses covered PCR products ranging from 3940 to 250 bp. The total number of the analyzed PCR products was 1652 which made 319 bands of various lengths.

The studied species differed in the number and length of products generated in the presence of the applied primers (Table S1 in supplementary materials). The number of bands was clearly higher in the polyploid taxa than in diploid T. pieninicum, where 176 bands were counted. In the Palustria section it amounted to 234 bands on average and variations between the species were small (219–249 bands). Only a slight difference was also noted between triploids and tetraploids (231.5 vs. 239 bands on average). The same applies to the average number of bands per primer, which ranges from 19.91 to 22.64. In statistical terms, the difference between tri- and tetraploids in this respect was not significant (P = 0.445). On the other hand, both the specimen of T. sect. Ruderalia (26 ± 3.0 bands) and T. pieninicum (16 ± 3.5 bands) differed significantly from both tetraploid and triploid representatives of the Palustria section (in all instances P < 0.01).

Molecular similarity between taxa depends on the general combination of all obtained PCR products and on the presence of products exclusive for a given taxon. Products which were present in all studied species of Taraxacam sect. Palustria and at the same time

Table 2
Primers used for DNA amplification.

Primer name	Sequence (5′-3′)
RAPD1	GCAAGTAGCT
RAPD2	TGGTCAAGAG
RAPD3*	CATGTTGCTG
RAPD4*	GTGTCAGGCA
RAPD5*	ATACCATCCEC
RAPD6	GATCCCCCTCA
RAPD7	CATAAAACCCA
RAPD8*	ATCCCGCTTC
RAPD9*	CCATGCTGTC
RAPD10	TGACGATCA
RAPD11*	ACGCCATGTC
RAPD12*	TACCAATCCEC
RAPD13*	ATCTCGGCCA
RAPD14*	GTTCTGCGACA
RAPD15	GTTCTGACC

* The primers used for detailed research.

(continued...
absent in external groups of T. sect. Ruderalia and T. pieninicum (sect. Erythrocarpa) were the bands of a length of: 450 bp for RAPD4, 500 bp for RAPD7, 560 bp for RAPD12 and 1310 bp for RAPD11. Products unique for T. sect. Ruderalia and T. pieninicum are presented in Table S2 in supplementary materials. Molecular differences between the studied species of T. sect. Palustria are distinct, which is evidenced by a high number of PCR products unique for a given species (Fig. 2, Table 4). Moreover, all studied apomictic species of T. sect. Palustria showed modest but distinct internal genetic differentiation. The presence of polymorphic products (detected in 5–6 individuals) and of highly polymorphic products (detected in 1–4 individuals out of 10 analyzed) decided upon this differentiation (Figs. 3 and 4). The percentage of polymorphic and highly polymorphic products in particular species of the section Palustria was as follows: T. subdolum 10.5%; T. bavaricum 15.5%; T. belorussicum 10.5%; T. paucilobum 12.5%; T. brandenburgicum 18%; T. vindobonense 13%. The average proportion of polymorphic bands in triploids and tetraploids was the same (15.5%). No relationship was observed between the number of polymorphic bands and the total number of bands observed in a given species.

Although the molecular differences between the studied species are noticeable, five out of six Palustria species showed mutual similarity of RAPD profiles. Interestingly, tetraploid T. brandenburgicum seems to be more different from them (Fig. 5).

4. Discussion

Our analysis of nuclear DNA shows clear genetic differences among the analyzed apomictic taxa from the section Palustria as well as a significant difference between the former and Taraxacum pieninicum (diploid species of the section Erythrocarpa) and an unidentified representative of the section Ruderalia (Fig. 4). The results fully confirm the commonly accepted concept of the division of the Taraxacum genus into sections and of distinguishing small apomictic species (Kirschner and Štepánek, 1996, 1997). Genetic similarity of the studied species of T. sect. Palustria (Fig. 5) indicates a clear identity of T. brandenburgicum, which markedly differs also in the morphological aspect. Other species form a rather coherent group with T. paucilobum occupying the most separate place. This species is morphologically closest to

Table 3
Composition of the mixture for standard PCR reaction.

Component	Initial concentration	Volume of the component	Final concentration
MQH2O		11.7 μl	
Taq Buffer - MgCl2 (MBI Fermentas)	10×	2.0 μl	1 ×
MgCl2	25 mM	1.6 μl	2 mM
dNTP y (dATP, dCTP, dGTP, dTTP)	10 mM (each)	0.5 μl	0.25 mM
Primer	5 μM	2.0 μl	0.5 μM
Taq Polymerase (recombinant MBI Fermentas)	5 μl	0.2 μl	1 μl/reaction
DNA	10 ng/μl	2.0 μl	20 ng/reaction
Sum		20 μl	

Fig. 1. Agarose gel electrophoresis of sequences amplified with RAPD3 primer. a - T. brandenburgicum, b - T. subdolum, c - T. bavaricum. M - molecular weight marker.

Fig. 2. The number of PCR products unique for the studied species of Taraxacum sect. Palustria generated in the presence of particular RAPD primers. y axis - number of PCR products.
Table 4
PCR products unique for Taraxacum brandenburgicum, Taraxacum vindobonense, Taraxacum subdolum, Taraxacum bavaricum, Taraxacum belorussicum and Taraxacum paucilobum.

Primer	Product length in bp		
	Taraxacum brandenburgicum	Taraxacum vindobonense	Taraxacum subdolum
RAPD3	2640, 2180	2640, 1580, 620,	3720, 3550, 2920,
		2830, 2130, 1930, 630,	2920, 2690, 2260,
RAPD4	3320, 3290, 2580, 2430,	3000, 1880, 1440, 1080,	3030, 2030, 1520,
	2180, 670	2860, 3400, 1340, 1120,	1300, 950, 180,
RAPD5	2880, 2420, 1100, 870,	1580, 620, 3720, 3550,	1830, 1620, 650,
	540, 230	3250, 2920, 2690, 2260,	450,
RAPD6	3840, 3600, 3560, 3190,	3900, 2690, 2050, 930, 600,	3710, 3140, 2390,
	3030, 2130, 2030, 1780,	290, 370, 490, 350, 230,	1710, 1600,
RAPD7	1440, 1240, 250	230, 170	1520,
RAPD8	3670, 3080, 3060, 2590,	3400, 2250, 2100, 990, 920,	3560, 3270, 2120,
	1960, 1220	3000, 1880, 1440, 1080,	1570,
RAPD9	3520, 3310, 3100, 2090,	4940, 4610, 4100, 3940, 3390,	3710, 2580, 1530,
	1110, 760	2860, 3230, 1430, 1120,	1190, 120,
RAPD10	4500, 4130, 3200, 2960,	3550, 3300, 3150, 2320, 2270, 1500, 1020,	5030, 4230, 4000,
	2360, 2140, 1500,	3790, 2790, 870, 450,	3030, 2780, 2430,
RAPD11	3710, 3450, 3180, 2430,	3090, 2690, 2050, 930, 600,	4560, 3900, 1480,
	830, 2030, 1520, 550,	1300, 950, 600, 290, 3710, 2580,	4570, 1670,
RAPD12	3820, 3460, 2920, 2620,	3250, 2860, 1600, 1240,	3090, 2690, 2050,
	2400, 2320, 1900, 1520,	3590, 2560, 1870, 1650,	200, 850, 500,
	550	290, 1530, 1190, 120,	200, 1060, 620,
RAPD13	2660, 2180, 1240,	3300, 3100, 2640, 2470,	3740, 3190, 3030,
RAPD14	2810, 2150, 1230,	2240, 1930, 1810, 1520,	2260, 1780, 1320,
Taraxacum bavaricum	2660, 1440, 1270, 1040, 800, 600,	3250, 2940, 2020,	330, 3030, 2260,
RAPD3	3780, 3370, 3340, 1830, 250	3790, 3390, 1780,	1890, 1650, 1470, 680,
RAPD4	2540, 490, 210	3890, 3750, 2360, 980, 860,	2560,
RAPD5	4420, 3910, 2930, 120	3410, 1630, 700, 560, 200, 110	3590, 2560, 1870,
RAPD7	4940, 2930, 2000, 890, 800,	3580, 3890, 880,	1510,
RAPD8	3460, 3310, 1290,	3360, 2420, 1750, 1460, 240,	3710, 2580, 1530,
RAPD9	3540, 3260, 2100, 1900, 1680, 960,	3730, 3370, 2670, 1450,	3070, 2890, 1330, 570,
RAPD10	5100, 4550, 4030, 3870, 3480, 2300, 200	2970, 2990, 2510, 2290, 2020, 1870, 1350, 940, 380,	4000, 3750, 3360, 2730, 2430,
RAPD11	3600, 3210, 2940, 2040, 1780, 1220, 1050,	3330, 2530, 2290, 2000, 1880, 1640, 1170, 660,	4500, 4480, 3860, 3480, 2850, 2440, 2340, 2030,
RAPD12	4430, 3610, 2800, 1770, 1540, 1300,	4230, 3230, 2200, 2030, 1880,	1790, 1610, 1060, 620,
RAPD13	2000, 1570,	3550, 1570, 950,	3160, 3060, 2760, 2500, 2310, 1600,
RAPD14	3340, 2900, 2700, 1500, 530, 220		4000, 3070, 2740, 1960, 1860, 1520, 1290, 700, 620,

Fig. 3. Dendrograph of genetic similarity between individuals of the studied Taraxacum sect. Palustria specimens (WPGMA/Jaccard dissimilarity index).
It is possible that morphological similarity does not coincide with the kinship among species of the T. sect. Palustria. This issue requires further studies on more representative material.

A much more interesting result of our studies is the finding of intraspecific polymorphism of nuclear DNA. Although the polymorphism is not high (percentage share of polymorphic PCR products in studied species of T. sect Palustria ranged from 10.5% in T. subdolum to 18% in T. brandenburgicum), it pertains to all studied species and all individuals (Fig. 3). In single similar research where the RAPD technique was used in molecular studies on six species of T. sect. Erythrosperma (Reisch, 2004), it was shown that the species of a range of similarity similar to ours (maximum 15.8%) were accompanied by genetically uniform (polymorphism 0%) taxa. Such a complete lack of variability among apomictic plants seems to be rare (Richards, 1996). In the genus Taraxacum the species of very small genetic variability are probably phylogenetically young ones like T. albidum (Menken and Morita, 2005), most species of the T. sect. Hamata (Mogie, 1985) and taxa associated with specific habitats like T. oblquum (Van Oostrum et al., 1985) growing on seashore dunes, and alpine T. alpestre (Kirschner and Štěpánek, 1994). Very low variability was also found in widespread in Europe T. hollandicum (sect. Palustria) but T. vindobonense studied with the same methods showed high variability (Battjes et al., 1992; Kirschner and Štěpánek, 1998). Unfortunately, most studies on genetic variability in clonal plants are hardly comparable with our studies since the former are based on morphological data, on the variability of selected isoenzymatic systems (Lyman and Ellstrand, 1984; Ellstrand and Reese, 1987; Widén et al., 1994; Kashin et al., 2005) or on the polymorphism of chloroplast cpDNA (Kirschner et al., 2003; Mes et al., 2000; Shibaike et al., 2002; Van Der Hulst et al., 2003; Vijverberg et al., 2004; Wittzell, 1999). Studies on the variability of nuclear DNA were seldom and pertained mainly to the genera Rubus and Hieracium (Widén et al., 1994; Kashin et al., 2005). In Taraxacum these studies were limited to analyzing the polymorphism of ribosomal rDNA (King and Schaal, 1990; Záveská Drábková et al., 2009; Kirschner et al., 2015). However, in recent years nuclear simple sequence repeat (SSR, microsatellites) and amplified fragment length polymorphism (AFLP) markers were also used to characterize genotypic diversity of apomictic dandelion clones (Majesky et al., 2012, 2015; McAssey et al., 2016). Studies using different methods of DNA analysis were more often used in Taraxacum to solve various specific issues such as clone identification and gene flow between apomictic and sexual plants (Falque et al., 1998, and Brock, 2004 - microsatellite markers; Van Der Hulst et al., 2000 - AFLP; Shibaike et al., 2002 - cpDNA markers; Mitsuyuki et al., 2014 - PCR-RFLP of the rDNA) or the mutational variability among offspring of obligate apomicts (King and Schaal, 1990 - RFLP of the rDNA).

Particularly interesting is the finding of relatively high polymorphism in T. bavaricum (the share of polymorphic products was 15.5%) in which all studied individuals originated from one mother plant. This polymorphism was much higher than that in T. belorus- sicum, whose individuals were taken from two different populations and that in T. subdolum, whose seeds were collected from two plants of the same population. The reasons for the observed polymorphism are not clear but one may assume that they are partly an effect of an imperfect RAPD method, point mutations and sexual origin of some seeds. Some authors suggested that the additional source of genetic variation among Taraxacum offspring can be sporadic meiotic recombination during restitutional megalosporogenes (Malecka, 1973; van Baarlen et al., 2000; Archetti, 2004).

The sexual production of some seeds seems to be probable in the case of an individual of T. bavaricum in which 19 polymorphic products were found in our RAPD studies (including 13 character-
istic only of itself) which markedly distinguished it from the rest of its siblings. However, this issue would require further investigation because apomictic mother plants in *Taraxacum* are generally considered incapable of producing seeds sexually in nature (Richards, 1973; Majesky et al., 2012). On the other hand, apomictic plants can produce viable, chromosomally balanced pollen grains, able to fertilize diploid sexuals (de Kovel and de Jong, 2000). Thus, apomicts can participate in gene exchange, although based on the existing data, this process is considered unidirectional.

Author contributions

All authors contributed equally to the study conception and design, material preparation, and data collection. The first draft of the manuscript was written by Jolanta Marciniuk and Paweł Marciniuk and all authors commented on previous versions of the manuscript. All authors read and approved the final version of manuscript.

Declaration of Competing Interest

None.

Acknowledgements

Funding: This work was supported by the Ministry of Science and Higher Education as part of the statutory activites of Siedlce University of Natural Sciences and Humanities (research theme No. 7820/Sl) and of the Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków (K/N18/D85/000002).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsbs.2020.07.025.

References

Archetti, M., 2004. Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. *J. Evol. Biol.* 17, 1084–1097.

Battjes, J., Menken, S.B.J., den Nijs, J.C.M., 1992. Clonal diversity in some microspecies of *Taraxacum* sect. Palustria (UNDB. fl.) DAHlST. from Czechoslovakia. Botanische Jahrbücher für Systematik, Pflanzengeographie und Pflanzengeographie 114, 315–328.

Brock, M.T., 2004. The potential for genetic assimilation of a native dandelion species, *Taraxacum crateriformum* (Asteraceae), by the exotic congener *T. officinale*. Am. J. Bot. 91 (5), 656–663.

Elistrand, N.C., Röse, M.L., 1987. Patterns of genotypic diversity in clonal plant species. *Am. J. Bot.* 74, 123–131.

Falque, M., Keurentjes, J., Balx-Schotman, J.M.T., van Dijk, P.J., 1998. Development and characterization of microsatellite markers in the sexual–apomorphic complex *Taraxacum officinale* (dandelion). *Theor. Appl. Genet.* 97, 283–292.

Hughes, J., Richards, A.J., 1988. The genetic structure of populations of sexual and asexual *Taraxacum* (dandelions). *Hereditas* 100, 161–171.

Kashin, A.S., Anfalov, V.E., Demochko, Y.A., 2005. Studying allozyme variation in agamospermous microspecies of *Taraxacum* sect. Palustria. *Folia Geobotanica et Phytotaxonomica* 31, 415–426.

Kirschner, J., Kirschner, J., Štěpánek, J., Uhlemann, I., 2015. Towards a better understanding of the *Taraxacum* evolution (Compositae–Cichorieae) on the basis of nrDNA of sexually reproducing species. *Plant Syst. Evol.* 301, 1135–1156.

Kirschner, J., Záveská-Drábková, L., Štěpánek, J., Uhlemann, I., 2015. Towards a better understanding of the *Taraxacum* evolution (Compositae–Cichorieae) on the basis of nrDNA of sexually reproducing species. *Plant Syst. Evol.* 301, 1135–1156.

Kupersh, P., 2003. Principal features of the cpDNA evolution in *Taraxacum* (Asteraceae). *Lactuca*; with a conflict: *Plant Syst. Evol.* 239, 231–235.