Research Article

IGF-1 Promotes Epithelial-Mesenchymal Transition of Lens Epithelial Cells That Is Conferred by miR-3666 Loss

Chao Wang,1 Baowen Zhao,2 Jiahui Fang,3 and Zhan Shi3

1The First Affiliated Hospital of Harbin Medical University, Anesthesiology Department, Harbin, China
2Hongqi Hospital Affiliated to Mudanjiang Medical College, Ophthalmology Department, Mudanjiang, China
3The First Affiliated Hospital of Harbin Medical University, Ophthalmology Department, Harbin, China

Correspondence should be addressed to Zhan Shi; dao_zhan2000@126.com

Received 16 April 2022; Revised 13 June 2022; Accepted 21 June 2022; Published 14 July 2022

Academic Editor: Mohammad Farukh Hashmi

Copyright ©2022 Chao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The abnormal proliferation, migration, and epithelial-mesenchymal transformation (EMT) of lens epithelial cells (LECs) are the main reasons for vision loss caused by posterior capsular opacification (PCO) after cataract surgery. Insulin-like growth factor-1 (IGF-1) was found to be associated with the pathogenesis of cataracts, but its biological role in PCO is poorly understood. In the present study, IGF-1 overexpression facilitated the proliferation, migration, and EMT, whereas knockdown of IGF-1 markedly suppressed the proliferation, migration, and TGF-β2-induced EMT of LECs. Additionally, to evaluate valuable microRNAs (miRNAs) which target IGF-1 to modulate LEC-EMT, we predicted miR-3666 might regulate IGF-1 by binding its 3’UTR according to the bioinformatics database. Furthermore, we verified that miR-3666 directly targeted IGF-1 by luciferase reporter assay. By using miR-3666 mimics, cell proliferation, migration, and invasion were suppressed, while being enhanced by the reduction of miR-3666. Knockout of IGF1 reverses the effect of the miR-3666 inhibitor on the malignant behavior of LECs. These results indicate the role of miR-3666/IGF-1 in LEC-EMT that offers new strategies for the therapy and prevention of PCO.

1. Introduction

Cataracts are the major cause of blindness in China, and it is also the main cause of blindness in most countries over the world [1, 2]. At present, surgery is the only effective treatment [3]. The PCO or posterior cataract is a common complication after cataract surgery, and it is also the main cause of postoperative visual acuity decline [4]. Studies have reported that the residual LECs generated by EMT play a critical role in the development of PCO [5].

EMT refers to the biological process in which epithelial cells are transformed into cells with interstitial phenotype through some specific procedures. It plays a vital role in embryonic development, a variety of fibrotic diseases, and cancer metastasis [6, 7]. PCO is one of the main reasons that affect visual quality after cataract surgery. The principle of formation is mainly caused by the surgical incision caused by cataract surgery, which leads to the release of various inflammatory factors in aqueous humor, stimulating the residual lens epithelial cells under the capsule [8, 9]. Subsequently, LECs undergo a series of biological behaviors, such as proliferation, migration, and transformation, which eventually lead to the opacity of the posterior capsule [10, 11]. Therefore, it is of great significance to explore the mechanism of EMT in LECs for cataract treatment.

IGF-1 has been reported to be involved in many diseases and promotes EMT in tumor cells [12, 13]. Moreover, IGF-1 has been reported to be related to the pathogenesis of diabetic ophthalmopathy. The level of IGF-1 in the vitreous of patients with diabetic retinopathy is increased [14, 15]. IGF-1 overexpression in transgenic mice results in neovascular glaucoma [16], and IGF-1 has been found to affect the protein composition of LECs, leading to cataracts [17]. However, the effect of IGF-1 on lens epithelial cell EMT is not clear.

The miRNAs are a kind of noncoding small RNAs that cause gene degradation or translation inhibition by binding to the complementary sequence of the target mRNA 3’-untranslated region. Accumulating evidence shows that miRNAs play an important role in PCO, such as miR-30a.
The function of miR-3666 in the pathophysiological process of different types of cancer has been widely studied [22–24]. However, the function of miR-3666 in the pathogenesis of EMT in LECs has not been verified. In the present study, we found that the high expression of IGF-1 promotes the EMT process of HLECs, and miR-3666 bound to IGF-1 attenuated TGF-β2-induced EMT in HLECs.

2.2. Cell Culture. Human lens epithelial cells SRA10/04 were purchased from ATCC (Manassas, VA, USA). The cells were cultured with a complete medium including 89% DMEM and 10% FBS (Biological Industries, Beit HaEmek, Israel) and kept in an incubator at 37°C and 5% CO2 saturated humidity.

The final concentration of TGF-β2 (PeproTech, Rocky Hill, NJ, USA) was 10 ng/ml. Before being collected for further analysis, the cells were cultured in the medium containing TGF-β2 for 48 hours.

2.3. Western Blot. Cells were lysed with RIPA buffer (CST, Danvers, MA, USA), and 45 μg proteins were run on an 8% SDS-polyacrylamide gel and then transferred onto the PVDF membrane. After 1 hour of blocking with 5% skim milk, the membranes were incubated with primary antibodies overnight at 4°C. The corresponding secondary antibodies were incubated at room temperature for 1 hour the next day. Primary antibodies against IGF-1 (DF6096, 1:500), vimentin (AF7013, 1:2000), E-cadherin (AF0131, 1:500), and β-actin (AF7018, 1:2000) were purchased from Affinity Biosciences (Jiangsu, China), with β-actin as an internal control. Subsequently, we washed the membranes (three times for 15 min, each wash) with TBST and incubated them with a goat antirabbit (1:3000, Abcam, Cambridge, MA, USA) or antimouse secondary antibody (1:3000, Abcam) for 2 h at 26 ± 2°C. An Odyssey infrared imaging system (Odyssey CLx, Biosciences, USA) was used to detect immunoreactivity.

2.4. qRT-PCR. The Trizol reagent was used to extract RNA from cells or tissues. NanoDrop 8000 (Thermo Scientific, Waltham, MA, USA) was used to detect the concentration and purity of RNA. The single-stranded cDNAs were synthesized from 1 μg of RNA. The expressions of miRNAs and miRNAs were quantified by RT-PCR with SYBR Green I (Thermo Fisher Scientific, Inc). The primer sequences of human genes are shown in Table 1.

2.5. miRNA and Plasmid Transfection. The LECs were plated until the cell density reached 80% confluency of dishes to transfect. The miRNAs/inhibitors/plasmids were transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA). miR-3666 mimics/inhibitors were bought from RiboBio (Guangzhou, China) and plasmid of IGF-1 or short hairpin RNA of IGF-1 (sh-IGF-1) were constructed by GeneChem (Shanghai, China).

2.6. EdU Assay. EdU cell proliferation kit (RiboBio, Guangzhou, China) was used to test proliferation. LECs were seeded in 24-well plates. After miRNA or plasmid transfection for 48 h, cells were maintained with 200 μL 50 μM EdU for 2 h. Apollo dye solution (red) was used to stain the proliferating cells, and nucleic acids were stained with DAPI (blue) according to the protocols [26] and then photographed.

2.7. Wound-Healing Assay. To test the cell migration ability of LECs, a wound-healing assay was performed. LECs were plated and cultured with FBS-free medium in 6-well plates until the cells formed a confluent monolayer and then were scratched using a 100 μL pipette tip. The scratch wounds were captured using microscopy at 0 and 24 h. The wound area was analyzed by Image J.

2.8. Luciferase Reporter Assays. To verify if IGF-1 was a target of miR-3666, the 3’-UTR of IGF-1 including the predicted binding sites wild (wt) or mutated (Mut) binding sites were inserted into the pmirGLO vector. The reporter plasmids of IGF-1 were cotransfected with miR-3666 mimics or miR-NC. Luciferase activities were measured by using a dual-luciferase reporter assay kit (Promega, Madison, Wisconsin, USA) after 24 h.

2.9. Matrigel Transwell Assay. 24-well Matrigel transwell assay (Corning, San Diego, CA, USA) was used to investigate cell invasion. 2 × 105 LECs were seeded on the cell culture insert precoated with 1 μg/μL Matrigel (BD Biosciences). A medium with FBS was used to stimulate invasion in the bottom of the
Table 1: The sequences (human or rats) of the required primers.

Name	Forward primer (5’→3’)	Reverse primer (5’→3’)
GAPDH	ACCACAGTCCTAGCAGCATCAC	TCCACACCCTGTGCTGTA
miR-3666	ACGAGAGCGACGACAGAC	CAGTGAAGTGTGAGATGCCGA
U6	GCCUUGCGCAAGCACUAUACUAACUAAAU	CCGUUCAGAAGUAGUCUGUAGU
IGF-1	CAGCAGTCTCTCAACACCATAT	GCTGACCTTGAGGCTTGGAG
CDH1	CTAAGAGACGGCTAAAG	CCACATCATATACGATATG
N-cadherin	ACACTTGTTGACACTAAG	TACACATACAGAGGCAAAG
IGF-1(rats)	TTTACCAGCTCGGCCAC	TTGGTCCACACACGACACTGA

wells. After 48 h, the invasion cells were stained with a 0.1% crystal violet solution. The number of invading cells was counted under the microscope.

2.10. Statistical Analysis. Data are shown as mean ± SEM. The unpaired Student’s t-test or one-way ANOVA was used to compare the groups. \(P < 0.05 \) was considered significant.

3. Results

3.1. IGF-1 Was Upregulated in OPC and TGF-β2-Induced HLEC-EMT. We constructed an injury-induced OPC model in rats. qRT-PCR confirmed that the level of IGF-1 was upregulated in the lens posterior capsule tissue of the OPC model compared to the control, as shown in Figure 1(a). We then tested the IGF-1 expression in TGF-β2-induced HLEC-EMT. We verified that the TGF-β2 exposure promoted the IGF-1 mRNA level at 48 h, as shown in Figure 1(b). The result of the western blot revealed that IGF-1 protein was increased after treatment with TGF-β2, as shown in Figures 1(c) and 1(d).

3.2. Overexpression of IGF-1 Promotes the EMT of HLECs. To analyze the potential effects of IGF-1 in the EMT of LECs, we constructed an IGF-1 plasmid and confirmed the overexpression efficiency using qRT-PCR, as shown in Figure 2(a). After being transfected with the IGF-1 plasmid, the epithelial cells marker CDH1 mRNA level was decreased, as shown in Figure 2(b), and the mesenchymal-related marker vimentin mRNA level was increased, as shown in Figure 2(c). Overexpression of IGF-1 also downregulated the protein level of E-cadherin and upregulated the vimentin protein level, as shown in Figures 2(d) and 2(e), respectively. Subsequently, an in vitro wound-healing assay demonstrated that IGF-1 overexpression promoted the ability of HLECs to close a wound, indicating that IGF-1 promotes a cell migratory phenotype, as shown in Figures 2(f) and 2(g). Furthermore, Matrigel invasion experiments displayed that upregulated IGF-1 promoted cell invasion, as shown in Figures 2(h) and 2(i). EdU staining was conducted to detect cell proliferation activity, and we found that IGF-1 enhanced the proliferation ability of HLECs, as shown in Figures 2(j) and 2(k). Collectively, the above-mentioned results show that forced expression of IGF-1 promotes the EMT phenotype of HLECs.

3.3. Silencing IGF-1 Alleviated TGF-β2-Induced EMT of HLECs. Since the overexpression of IGF-1 has suggested a role in promoting EMT, we next validated whether silencing IGF-1 has an anti-EMT effect on HLECs. We constructed an IGF-1 short hairpin RNA (sh-IGF-1) and performed the functional assays, as shown in Figure 3(a). The expressions of E-cadherin and vimentin were tested by qRT-PCR and western blot. After IGF-1 silencing, we found that E-cadherin levels were increased, as shown in Figures 3(b)–3(e), whereas levels of vimentin were decreased in TGF-β2-induced HLECs-EMT, as shown in Figures 3(c)–3(e). The wound-healing assay showed sh-IGF-1 decreased cell motility induced by TGF-β2, as shown in Figures 3(f) and 3(g). Strikingly, sh-IGF-1 inhibited HLEC invasion and migration induced by TGF-β2, as shown in Figures 3(h)–3(k).

3.4. IGF-1 Was a Potential Target of miR-3666. It has been reported that microRNAs regulate the gene’s expression and function. To clarify the regulatory relationship between miRNAs and IGF-1, we used the miRNA target identification tool TargetScan 7.2 (http://www.targetscan.org/vert_72/) to search for potential microRNAs binding with IGF-1. We identified miR-3666 which contained potential-binding sites on 3'-UTR of IGF-1, as shown in Figure 4(a). Luciferase reporter vectors were constructed with the 3'-UTR sequence of IGF-1 containing the putative binding site for miR-3666. The luciferase activity was suppressed with wild-type IGF-1 (IGF-1-wt) but not with the mutated IGF-1 vector (IGF-1-mut), as shown in Figure 4(b). Contrary to IGF-1, low miR-3666 expression was observed in cataract tissues, as shown in Figure 4(c), and HLECs treated with TGF-β2, as shown in Figure 4(d). Overexpression of miR-3666 with mimics suppressed the expression of IGF-1, which further proved the regulatory relationship between them, as shown in Figure 4(e).

3.5. Enhanced Expression of miR-3666 Attenuates EMT of LECs. To further validate the role of miR-3666, HLECs were transfected with miR-3666 mimics and miR-NC with or without TGF-β2, respectively. The mRNA level of CDH1 was high expression and vimentin was downregulated when treated with miR-3666 mimics in TGF-β2-induced cells, as shown in Figures 5(a) and 5(b), respectively. The protein levels that E-cadherin was upregulated and vimentin was downregulated in the miR-3666 mimics group were further detected by western blot, as shown in Figures 5(c) and 5(d). Wound healing and invasion assays demonstrated that the migratory capacity and invasion ability of HLECs were markedly inhibited by miR-3666 mimics, as shown in Figures 5(e)–5(h). EdU assay indicated that proliferating cells were decreased with the presence of miR-3666 mimics, as shown in Figures 5(i) and
Figure 1: The expression of IGF-1 in PCO and TGF-β2 induced HLECs. (a) The mRNA expression of IGF-1 in the posterior capsule tissue of the PCO model and healthy control was detected by qRT-PCR, \(n = 6 \). (b) The expression level of IGF-1 mRNA in TGF-β2 induced HLECs was determined by qRT-PCR, \(n = 6 \). (c) The protein level of IGF-1 was confirmed in TGF-β2-induced HLECs and the control group by western blot. (d) Statistical data of western blot, \(n = 4 \). * \(p < 0.05 \); ** \(p < 0.01 \).

Figure 2: Continued.
Figure 2: Overexpression of IGF-1 results in EMT in HLECs. (a–c) qRT-PCR was used to confirm mRNA expression of IGF-1, CDH1, and vimentin to detect the effect of IGF-1 overexpression in HLECs, n = 6. (d) The protein levels of IGF-1, E-cadherin, and vimentin were determined by western blot to detect the effect of IGF-1 overexpression in HLECs. (e) Analysis of western blot, n = 4. (f) The wound-healing assay revealed that overexpression of IGF-1 increased cell migration in HLECs. (g) Analysis of wound-healing assay, n = 6. (h) Transwell assay showed the invasion ability of HLECs was promoted by IGF-1. (i) Analysis of Transwell assay, n = 6. (j) EdU staining illustrated that forced expression of IGF-1 promoted cell proliferation. (k) Analysis of EdU staining, n = 6. ∗p < 0.05; ∗∗p < 0.01.

Figure 3: Continued.
5(j). As has been reported in human tumors, miR-3666 impeded the EMT process of HLECs.

3.6. Inhibition of miR-3666 Promotes EMT by Regulating IGF-1. We further explored the effect of the miR-3666 inhibitor and the biological regulatory relationship between miR-3666 and IGF-1 in vitro. We constructed the miR-3666 inhibitor and the negative control inhibitor and verified their functions, as shown in Figure 6(a).

According to the results of qRT-PCR and western blot, we found that upon being treated with the miR-3666 inhibitor, E-cadherin levels were decreased, as shown in Figures 6(c)–6(f), whereas the levels of IGF-1 and vimentin were increased, as shown in Figures 6(b)–6(f), in TGF-β2-induced HLEC-EMT. By transfecting sh-IGF-1 into HLECs, we found that silencing IGF-1 partially reversed the EMT promoting function of the miR-3666 inhibitor. As expected, the miR-3666 inhibitor promoted the migration, invasion, and proliferation of HLECs, but the silencing of IGF-1 partially restored cell function, as shown in Figures 6(g)–6(l).
Figure 4: Identification of miR-3666 as a master miRNA regulating the IGF-1. (a) Predicted binding sites of IGF-1 and miR-3666. IGF-1-Mut, mutated binding site. (b) Luciferase activities of chimeric vectors with IGF-1 containing wild-type or mutated. (c) The expression of miR-3666 in posterior capsule tissue of the PCO model and healthy control was detected by qRT-PCR, n=6. (d) The expression of miR-3666 in HLECs with or without TGF-β2 was determined by qRT-PCR, n=6. (e) The effect of miR-3666 on IGF-1 mRNA expression, n=6. *p<0.05; **p<0.01; NS, not significant.

Figure 5: Continued.
Figure 5: Overexpression of miR-3666 attenuated TGF-β2-induced EMT in HLECs. (a, b) miR-3666 mimics reversed TGF-β2-induced mRNA expression of CDH1 and vimentin, which was measured by qRT-PCR. (d) Using western blot to investigate the effect of miR-3666 mimics with or without TGF-β2 on the level of IGF-1, E-cadherin, and vimentin proteins. (e) Analysis of western blot, n = 4. (f) Wound healing revealed that miR-3666 mimics ablated the increased cell migration induced by TGF-β2. (g) Analysis of wound-healing assay, n = 6. (h) Transwell assay showed that the invasion ability of HLECs was inhibited by miR-3666 mimics. (i) Analysis of Transwell assay, n = 6. (j) EdU staining illustrated that miR-3666 mimics inhibited cell proliferation induced by TGF-β2.
Figure 6: Continued.

(a) miR-3666
(b) IGF-1
(c) CDH1
(d) Vim
(e) E-cad
(f) Protein expression
(g) Wound healing rate (%)
(h) Invasion cells (× 100)
4. Discussion

This study shows that IGF-1 is directly related to the EMT process of HLECs. Overexpression of IGF-1 promoted the proliferation, migration, invasion, and EMT of HLECs, whereas knockout of IGF-1 significantly inhibited the EMT phenotype induced by TGF-β2.

Previous studies have shown that IGF-1 receptors are widely distributed in the eyes [27]. For example, there were IGF-1 receptors in lens epithelial cells, so IGF-1 is capable of stimulating lens cell differentiation by binding its receptors [28], which is one of the reasons leading to PCO. Crystallin aggregation is also the cause of cataracts; it is described that IGF-1 affects the total ratio of β and γ crystallin to α crystallin in lens fiber cells, which may make the lens susceptible to cataracts. In humans, mutations of IGF-1 can reduce retinal angiogenesis [29]. It is suggested that IGF-1 may play a critical role in the occurrence and development of ocular complications. Our study clearly defines the effect of IGF-1 on LECs.

In addition, we used a bioinformatics website to screen valuable microRNAs which bind to IGF-1 to regulate lens epithelial cell proliferation and predicted that miR-3666 may regulate IGF-1 by binding to the 3’ UTR of IGF-1. The luciferase reporter gene experiment verified the targeting relationship between them. Overexpression of miR-3666 can inhibit the proliferation, migration, invasion, and interstitial phenotype of HLECs, whereas knockout of IGF-1 reverses the effect of the miR-3666 inhibitor on the malignant behavior of HLECs [30]. These results highlight the role of miR-3666/IGF-1 in lens EMT and provide a new strategy for the prevention and therapeutic method of PCO.

At present, most of the studies of EMT in PCO are focused on cell and animal experiments, and the mechanism is complex and needs to be further explored. Understanding the specific molecular mechanism of the occurrence and development of LEC-EMT is very important for the treatment of PCO and also provides ideas for the prevention of PCO from a new point of view.

5. Conclusion

In summary, the present study provides evidence for the miR-3666/IGF-1 pathway involved in TGF-β2-induced HLEC-EMT. miR-3666 acts as an endogenous sponge of IGF-1 and regulates EMT phenotype and cell activity. These findings provide a novel insight into understanding that the mechanisms of HLEC-EMT provide in vitro support for the specific pathogenesis of PCO. Our results indicate the potential therapeutic target to heal the damaging process after cataract surgery.

Data Availability

The simulation experiment data used to support the findings of this study are available from the corresponding author upon request.

Disclosure

The preprint has been published before (https://www.researchsquare.com/article/rs-488224/v1). With the permission of other team members, some new research content has been added to this manuscript.
References

[1] P. Song, H. Wang, E. Theodoratou, K. Y. Chan, and I. Rudan, “The national and subnational prevalence of cataract and cataract blindness in China: a systematic review and meta-analysis,” Journal of Global Health, vol. 8, no. 1, Article ID 010894, 2018.

[2] J. Foreman, S. Keel, P. v. Wijngaarden et al., “Prevalence and causes of visual loss among the indigenous peoples of the world: a systematic review,” JAMA Ophthalmology, vol. 136, no. 5, pp. 567–580, 2018.

[3] M. Dickman Mor, L. S. Spekreijse, W. Bjorn et al., “Immediate sequential bilateral surgery versus delayed sequential bilateral surgery for cataracts,” Cochrane Database of Systematic Reviews, vol. 4, Article ID CD013270, 2022.

[4] C. Mastromonaco, M. Balazsi, J. Coblentz, A. B. T. Dias, P. Zoroquiain, and M. Burnier Jr, “Histopathological analysis of residual lens cells in capsular opacities after cataract surgery using objective software,” Indian Journal of Ophthalmology, vol. 70, pp. 1617–1625, 2022.

[5] G. Martinez and R. U. d. e. Jongh, “The lens epithelium in ocular health and disease,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 12, pp. 1945–1960, 2010.

[6] T. Chen, Y. You, H. Jiang, and Z. Z. Wang, “Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis,” Journal of Cellular Physiology, vol. 232, no. 12, pp. 3261–3272, 2017.

[7] F. J. Lovicu, E. H. Shin, and J. W. McAvoy, “Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract,” Experimental Eye Research, vol. 142, pp. 92–101, 2016.

[8] V. S. Sangwan, S. Gupta, and S. Das, “Cataract surgery in ocular surface diseases: clinical challenges and outcomes,” Current Opinion in Ophthalmology, vol. 29, no. 1, pp. 81–87, 2018.

[9] V. V. Juthani, E. Clearfield, and R. S. Chuck, “Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery,” Cochrane Database of Systematic Reviews, vol. 7, p. CD010516, 2017.

[10] S. Maki R, M. N. K. Nakamura et al., “A complement receptor C5a antagonist regulates epithelial to mesenchymal transition and crystallin expression after lens cataract surgery in mice,” Molecular Vision, vol. 17, pp. 949–964, 2011.

[11] L. M. Zukin, M. G. Pedler, S. G. Lupa, M. Pantcheva, D. A. Ammar, and J. M. Pettrash, “Aldose reductase inhibition prevents development of posterior capsular opacification in an in vivo model of cataract surgery,” Investigative Ophthalmology & Visual Science, vol. 59, no. 8, pp. 3591–3598, 2018.

[12] X. Zheng, G. Lu, Y. Yao, and W. Gu, “An autocrine IL-6/IGF-1R loop mediates EMT and promotes tumor growth in non-small cell lung cancer,” International Journal of Biological Sciences, vol. 15, no. 9, pp. 1882–1891, 2019.

[13] G. Liao, M. Wang, Y. Ou, and Y. Zhao, “IGF-1-induced epithelial–mesenchymal transition in MCF-7 cells is mediated by MUC1,” Cellular Signalling, vol. 26, no. 10, pp. 2131–2137, 2014.

[14] P. Järgen, A. Dietrich, A. W. Herling, H. P. Hammes, and M. Wohlflart, “The role of insulin resistance in experimental diabetic retinopathy—Genetic and molecular aspects,” PLoS One, vol. 12, Article ID e0178658, 2017.

[15] N. Inokuchi, T. Ikeda, Y. Imamura et al., “Interevelous levels of insulin-like growth factor-I in patients with proliferative diabetic retinopathy,” Current Eye Research, vol. 23, no. 5, pp. 368–371, 2001.

[16] J. Ruberte, A. Ayuso, M. Navarro et al., “Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease,” Journal of Clinical Investigation, vol. 113, no. 8, pp. 1149–1157, 2004.

[17] A. Civil, S. T. Genesen, E. J. Klok, and N. H. Lubsen, “Insulin and IGF-I affect the protein composition of the lens fibre cell with possible consequences for cataract,” Experimental Eye Research, vol. 70, no. 6, pp. 785–794, 2000.

[18] H. Li, H. Song, X. Yuan, J. Li, and H. Tang, “miR-30a reverses TGF-β2-induced migration and EMT in posterior capsular opacification by targeting Smad2,” Molecular Biology Reports, vol. 46, no. 4, pp. 3899–3907, 2019.

[19] Y. Wang, W. Li, X. Zang et al., “MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4,” Investigative Ophthalmology & Visual Science, vol. 54, no. 1, pp. 323–332, 2013.

[20] R. Han, P. Hao, L. Wang et al., “MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1,” Experimental Eye Research, vol. 185, 2019.

[21] B. Liu, J. Sun, X. Lei, Z. Zhu, C. Pei, and L. Qin, “MicroRNA-486-5p suppresses TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition of lens epithelial cells by targeting Smad2,” Journal of Biosciences (Bangalore), vol. 42, no. 4, pp. 575–584, 2017.

[22] G. Wang, C. z. Cai, and L. Chen, “MicroRNA-3666 regulates thyroid carcinoma cell proliferation via MET. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology,” Biochemistry, and Pharmacology, vol. 38, no. 3, pp. 1030–1039, 2016.

[23] Y. Li, H. Shi, J. Yuan, L. Qiao, L. Dong, and Y. Wang, “Downregulation of Circular RNA circPVT1 Restricts Cell Growth of Hepatocellular Carcinoma through Downregulation of SIRT7 via microRNA-3666,” Clinical and Experimental Pharmacology & Physiology, 2020.

[24] J. W. Huang, X. Y. Luo, Z. H. Li, and B. P. Lang, “LncRNA NNT-AS1 regulates the progression of lung cancer through the NNT-AS1/miR-3666/E2F2 axis,” European Review for Medical and Pharmacological Sciences, vol. 24, no. 1, pp. 238–248, 2020.

[25] X. Chen, W. Xiao, W. Chen et al., “MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating
Jagged-1/Notch signaling pathway,” Cell Death & Differentiation, vol. 24, no. 8, pp. 1431–1442, 2017.

[26] W. Huang, L. Guo, M. Zhao, D. Zhang, H. Xu, and Q. Nie, “The inhibition on MDFIC and PI3K/AKT pathway caused by miR-146b-3p triggers suppression of myoblast proliferation and differentiation and promotion of apoptosis,” Cells, vol. 8, no. 7, 2019.

[27] M. A. Economou, J. Wu, D. Vasilcanu et al., “Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor,” Acta Ophthalmologica, pp. 42–49, 2008.

[28] J. Alemany, M. Girbau, L. Bassas, and F. d. Pablo, “Insulin receptors and insulin-like growth factor I receptors are functional during organogenesis of the lens,” Molecular and Cellular Endocrinology, vol. 74, no. 2, pp. 155–162, 1990.

[29] N. Lenhartova, K. Matasova, Z. Lasabova, and J. A. CALKOVSKA, “Impact of early aggressive nutrition on retinal development in premature infants,” Physiological Research, vol. 66, pp. S215–S226, 2017.

[30] Z. Shi, X. M. Zhao, Y. Su, C. Wang, H. Ge, and P. Liu, “IGF-1 Promotes Epithelial-Mesenchymal Transition of Lens Epithelial Cells that Is Conferred by miR-3666 Loss,” ResearchSquare, 2021.