Actor-Critic Network for O-RAN Resource Allocation: xApp Design, Deployment, and Analysis

Mohammadreza Kouchaki and Vuk Marojevic
Electrical and Computer Engineering, Mississippi State University, USA
mk1682@msstate.edu, vm602@msstate.edu

Abstract—Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy network controllers. xApps are the applications that can leverage machine learning (ML) algorithms for near-real-time control. Despite the opportunities provided by this new architecture, the progress of practical artificial intelligence (AI)-based solutions for network control and automation has been slow. There is a lack of end-to-end solutions for designing, deploying, and testing AI-based xApps in production-like network settings. This paper introduces an end-to-end O-RAN design and evaluation procedure using the latest O-RAN architecture and interface releases. We provide details on the development of a reinforcement learning (RL)-based xApp, considering two RL approaches and present numerical results to validate the xApp.

Index Terms—O-RAN, Near Real-Time RIC, xApp, Resource Allocation, Reinforcement Learning, Actor-Critic, AI.

I. INTRODUCTION

Telecommunication networks will soon provide wireless connectivity and facilitate tiny and huge data transactions among 10s of billions of smart devices. Resource, data, and network management is becoming more challenging and artificial intelligence (AI) solutions are being researched for facilitating future wireless network operations. The major obstacles are the resource restrictions and the lack of a proficient platform to handle AI solutions completely independently from the network hardware, decreasing the cost of changes to new third-party software solutions [1]. The hardware, software, and interfaces of traditional radio access networks (RANs) are tightly coupled. Recent advancements of RAN technology can help breaking such closed designs and vendor monopoly [2]. A new architecture introduced by the Open-RAN (O-RAN) Alliance can bring this idea into reality and change the future of RAN deployment, operation, and maintenance [3]. The O-RAN Alliance defines specifications to facilitate AI integration and allow machines and software to function intelligently in a cellular network. The O-RAN architecture enables intelligence and openness by providing an infrastructure for integrating RANs on open hardware with embedded AI-based software [4]. This architecture supports the Third Generation Partnership Project (3GPP) and other industry standards. 3GPP defines the radio and network protocols for the user equipment, RAN, and core network. O-RAN leverages those and the Radio Unit (RU), Distributed Unit (DU), and Central Unit (CU) that 3GPP defines and specifies particular RAN functional splits and open interfaces facilitating practical disaggregation of functionalities and integration from different vendors. O-RAN also introduces new architectural components: the Near-Real Time (RT) RAN Intelligent Controller (RIC), the Non-RT RIC, and additional interfaces which pave the way for inserting intelligent network control and optimization applications called xApps [5].

The challenges for developing xApps and deploying them on real networks include: finding the most efficient AI models suitable for very large real-world networks, adopting the most proficient network parameters, and testing the AI models in an environment that accurately represents the behavior of real-world networks. In light of these concerns, this paper details the development and testing flow of a reinforcement learning (RL) based xApp. We discuss the O-RAN architectural components, interfaces, and workflow to design an xApp. We investigate and simulate different AI solutions to analyze the performance of various RL methods for designing the xApp.

The rest of this paper is organized as follows: Section II introduces the O-RAN architecture and the main components that are relevant to the AI controller design. Section III presents the related work. Section IV discusses the design procedure and the challenges for developing xApps. Section V analyzes different AI models to select the most efficient solution. Sections VI describes the xApp development and Section VII the deployment and results. Section VIII draws the conclusions.

II. O-RAN ARCHITECTURE AND KEY COMPONENTS FOR XAPP DEVELOPMENT

The network architecture needs to provide a platform for deploying AI/ML-based applications and provide the required infrastructure for data transactions from the RAN nodes to the AI model, data storage, transmission of the model decision and control commands to the network, and the AI model training process. The O-RAN architecture shown in Fig. 1 is based on open interfaces to enable interactions between the RAN and the RAN controller. The RAN is split into three logical units: CU, DU, and RU. The CU is a centralized unit developed to handle the higher layer RAN protocols, such as the radio resource control (RRC), the service data adaptation protocol (SDAP), and the packet data convergence protocol (PDCP). It interfaces with the DUs through the mid-haul. The DU is a logical node that handles the lower protocol layers, which are the radio link control (RLC), the medium access control
(MAC), and part of the physical layer (PHY). It interfaces with the RUs through the fronthaul. The RU implements the lower part of the PHY.

Data is transmitted from the RAN to the non-RT RIC through the O1 interface and is stored in a database for offline training and testing of the AI/ML model. The model training will take place at the non-RT RIC which is also responsible for performing non-RT control operations in O-RAN and for providing and managing higher layer policies. After training, the xApp will run on the near-RT RIC and interact with the RAN through the E2 interface to perform online optimization and control of the network. An xApp can communicate with other parts of the near-RT RIC through internal interfaces which are introduced in Section IV. There is an internal messaging infrastructure called RIC Message Router (RMR) and a shared data layer (SDL) for data sharing. The near-RT RIC provides the framework to handle conflicts, subscriptions, applications, security, and logging.

III. RELATED WORK

Several ML based schedulers have been introduced in the literature to address the most challenging problem of resource allocation in cellular networks. Gosal et al. introduce a centralized RL-based scheduler based on the Deep Deterministic Policy Gradient (DDPG) considering pricing rate of resources [6]. Elsayed et al. discuss challenges of AI-enabled solutions for optimizing network resource orchestration [7]. Polese et al. propose an ML-based edge-controller architecture for the 5G network and use generated data in a testbed to evaluate the model [8]. Niknam et al. propose an ML based resource allocation scheme for controlling O-RAN network congestion and evaluate the model using published real-world data from an operator [9]. Mollahasani et al. introduce an optimization method for RL based solutions of resource allocation function in O-RAN [10]. They investigate the effects of observation nodes on the performance of the resource allocation. Mollahasani, at al. design a RL based scheduler for allocating resource blocks in a reconfigurable wireless network considering mobility [11]. Bonati et al. introduce an open experimental toolbox which provides an open testbed for AI/ML xApps and present an ML based scheduler and test results [12].

The prior works focus on the ML application, testing, and evaluation parameters. This paper presents the detailed process for designing and deploying AI/ML based xApps on the RIC. The O-RAN Software Community (OSC) has published several xApps developed by its members [13].

IV. XAPP DEVELOPMENT

To write any AI/ML solution in the format of an xApp to be deployed in the RIC, two main steps should be considered. The first is to write an xApp with the essential libraries and functions based on the RIC requirements. For this purpose, developers can use the RIC utility libraries, such as the RMR, SDL, logging, or use a predefined xApp frameworks that have been developed based on the RIC platform requirements. The xApp frameworks simplifies developing xApps in Python, go, or C++ [13]. We have used the ricxappframe 3.2.0 provided by PyPi for our development to facilitate adding essential features such as communication functions with RMR and SDL. The second step is building and deploying the application on Kubernetes since the RIC cluster is developed on the Kubernetes platform.

Kubernetes is an open-source platform for deploying and managing containerized applications across clusters of nodes. Fig. 2 shows the high-level Kubernetes architecture which consists of a control plane, a master node, and a number of worker nodes that execute the deployed applications. The master node hosts the API server, scheduler for assigning worker nodes to applications, etc as a key-value distributed storage system, and a controller manager.

The worker nodes which are running containerized applications are built of different components. The deployment unit of Kubernetes is Pod, which is a group of containers with shared resources. Pod with all of its containers is deployable through a Yaml file that determine the Pod configurations such as ports, name, the number of replicas and is implemented on one machine that has a single IP address shared among all of its containers. The next component is the container runtime (e.g., Docker) that is responsible for running containers. The Kubeproxy unit routes traffic coming into a node from the service and forwards work requests to the correct containers. To provide communication with the master node and containers of the worker node, Kubernetes uses kubelet service that also traces the states of a pod to check whether all the containers are running.

After developing the main application code in Python within the xApp framework, we need to deploy it as an containerized application on Kubernetes. In RIC To deploy our containerized application we use the ricxapp Pod in the Kubernetes node. For xApp deployment we have four main steps: First we should containerize the application to create a container image. This facilitates porting an application and executing it on any machine. To create a container image, we wrote a Docker file that includes the instructions to run our Python code and built our Docker image. In the next step we should tag and push
the container image to a cloud repository such as Dockerhub. Then, in order to deploy the xApp we need to create an xApp descriptor that is a JSON file contains the main configuration parameters required by RIC platform.

V. PROPOSED XAPP ARCHITECTURE

The next step in designing an xApp is to determine the network nodes, main data-flows, and the architecture. The main concern is designing a deployable platform for data transactions between the near-RT RIC and the RAN via control messages. Since all the needed data related to the RAN are available through the E2 interface and the xApp can send decisions to the RAN through E2 Control Messages, the E2 termination is the main node and E2 messaging will be the main data transaction procedure in the near-RT RIC for our design.

E2 Messaging Procedure: E2 messages are divided into two classes of support and service types. The interface management functions E2 Setup, E2 Update, and Reset are related to the support class. The RAN CONTROL and REPORT functions are related to the service class. The E2 messages are provided in the Abstract Syntax Notation One (ASN.1) format which is a standard interface description language. Since ASN.1 format is the final encoding format of the messages, any other system that employs the same ASN.1 can decode it. This specification has removed the dependency of the system to any specific vendor or language.

The KPIMON xApp enables collecting metrics from E2 nodes. The RAN nodes’ metrics, such as the number of used and available physical resource blocks (PRBs), the number of connected UEs, the downlink and uplink data rates, and so on are collected by the E2 agent. These metrics are packaged in containers. Each container has its own ID with a header to determine the related RAN node (CU, DU, ...). These metrics are compiled to form the indication message and will be encoded using ASN.1 encoding. The KPIMON xApp periodically receives these indication messages and uses the same ASN.1 and service model definitions to decode them and get the metrics. KPIMON uses Redis for data storage. Redis is an open-source in-memory data storage that is used as the RIC database. In order to share metrics between KPIMON and the new xApps, a time series database like influxDB can play the role of the sharing layer. Fig. 3 shows the designed architecture for the resource allocation xApp.

InfluxDB is a time series (TS) open source database. It makes it possible for developers to store, retrieve, and work with TS data that is used for real-time analysis. These kind of DBs are especially useful in situations such as monitoring and operations on the logs and metrics of large networks. For our purpose we use the influxdb-client module in Python that is supported by InfluxDB 1.8 and Python 3.6 or later versions.

VI. AI MODEL SELECTION AND FORMULATION FOR DESIGNING XAPPS

The next step is to find an AI/ML model that suits the problem. Generally, AI/ML solutions are divided into three classes: Supervised learning, where a set of labeled data is available, unsupervised Learning, where the task is to find a structure of similarity among unlabeled data, and RL, where the learning is based on trial and error while facing with an unknown environment. The best method should be selected based on the problem that the AI/ML model needs to solve. The RAN operates in a dynamic environment of variable characteristics, where mobile users with non-stationary channels generate service requests. This can lead to different sets of undefined resource allocation actions for which RL would be the appropriate solution.

RL is a learning model designed based on interactions between the agent and the environment. It is often used in control or resource management problems because it can learn from direct interactions with the environment. Each time the RF agent applies an action to the environment, the new state will determine the reward of the system. RL is based on the Markov decision process (MDP). It has a state space that defines a series of states s with a distribution $p(s)$, a series of actions a, state transitions $T(S_{t+1} | S_t, A_t)$ from time slot t to time slot $t + 1$, a reward function which is a function of the current state-action and the next state $R(S_t, A_t, S_{t+1})$, and a discount factor γ defined between 0 and 1. The policy π captures the probability distribution of actions and is used...
by an agent to decide which action is performed in the given state. In other words, it is a function that has state s as the input and returns an action a as the output: $\pi(s) \rightarrow a$. In every execution of the policy, the system gathers rewards from the environment. The goal of the RL model is to find an optimum policy π^* to earn the maximum reward from the environment across all states:

$$\pi^* = \max_{\pi} E \left[\sum_t R_{t+1} | \pi(s_t) \right]. \quad (1)$$

RL algorithms are categorized in two main classes: value function and policy search. For the value function approaches, the model tries to maximize the value function V or the equivalent Q function by finding some policy π. Based on the MDP, if the optimal policy is π^*, the model will act optimally and the best policy in each state can be found by choosing the action with the maximum value in each state:

$$a^* = \arg \max_a Q_{\pi^*}(s, a). \quad (2)$$

For the direct policy search, the model searches in the policy space to find the optimal policy π^* without the value function model. π will be chosen by the system as the policy that the RL model updates to maximize the expected return $E[R|\theta]$.

One concern with the direct policy search approach is the slow convergence when the data is noisy. This usually happens in episodic processes as is the case for resource allocation which is a continuous process where the variance can be large [10]. We can combine the value-function with the policy method to overcome this problem by introducing a bias from the value function for reducing the variance of the policy gradient. The method is called actor-critic in which the actor network obtains the policy using feedback from the critic network that approximates the value function.

As described above the states, actions, and reward function play important roles in any RL model along with determining the environment accurately. The first step in designing an RL solution is thus to decide about the environment and its characteristics, which is the action and observation plane that must be understood to design a high-fidelity model that contains the exact definition of states, actions, reward function, and the flows.

A. Reward Function

Defining a reward function play a very important role in any RL solution since RL models try to maximize the reward. Designing an appropriate reward can establish an efficient RL model to reach the main goals. In our proposed scenario in an environment with multiple base stations (BSs) and multiple users, the system needs to decide which user equipment (UE) to admit to which BS to maximize the global Quality of Experience (QoE). From the UE’s point of view, the UE intends to obtain as many resources as possible in order to increase its data rate. From the BS’s point of view, the limited amount of resource blocks need to be scheduled to competing UEs with different network states to maximize the network’s QoE. In our QoE-based scheduling model where the UEs are moving, the target is to connect as many UEs as possible (C) to the most suitable BSs to maximize the overall data rate and fairness (fa). Now, we can write the reward function as:

$$r_{ue}(s, a) = R_{ue}[C, fa] * (\min fa/\max fa) \quad (3)$$

In each time slots, if the model achieves the target, it will obtain the full reward. For any partial achievements, a degraded reward is associated with the action, whereas for any failure, the system will feedback a penalty.

B. States

Since the task of our xApp is resource scheduling to maximize the network’s QoE, the xApp needs to decide which resource block group (RBG) to dedicate to which UE from the group of UEs with active resource requests. Here we assume four important network parameters: Channel request, channel quality indicator (CQIs) from the channel state information (CSI), data rate, and UE fairness (fa). These are the observation to decide about the resource allocation.

Modulation and coding scheme (MCS) defines the number of useful bits that can be transmitted on a resource element (RE). It depends on the channel, i.e. CQI, and determines the data rate. We use the MCS table from the 5G physical layer specification version 16.2.0 for this mapping.

For UE fairness, a matrix will be constructed to trace the history of each UE and update it when new resources are allocated. This process logs all UEs and their allocated resources. The model tries to keep all UEs in an approximate equality in terms of allocated RBGs in the long term for maximum fairness.

C. Advantage Actor-critic (A2C)

The actor-critic model is a temporal difference (TD) learning algorithm. In this approach, the actor network sets the policy that represents a set of possible actions for a given state, and the critic network embodies the estimated value function that evaluates the actions. A series of rewards in each time slot t are gathered and multiplied by a discount factor $\gamma \in (0, 1)$ to build a series of expected returns:

$$G_t = \sum_{t} \gamma^t r_t. \quad (4)$$

The loss function of the actor-critic model is a combination of losses of both the actor and critic networks:

$$L = L_a + L_c. \quad (5)$$

By proposing s_t and a_t as the state and action at time slot t, π_{θ} as the policy parameterized by θ, V_{θ}^π as the value function (critic) parameterized by θ, the policy gradient-based actor loss can be written as

$$L_a = -\sum t \log_{\pi_{\theta}}(a_t | s_t) [G(s_t, a_t) - V_{\theta}^\pi (s_t)]. \quad (6)$$

The term $(G - V)$ is called advantage which indicates how much is earned in each state by selecting a random action.
TABLE I
PPO ALGORITHM USED IN OUR MODEL.

PPO Algorithm
1. Initial guess of the policy parameters (θ) and find value function parameters (ϕ)
2. For iteration $k = 0, 1, 2, \ldots$ do:
1. Collect set of trajectories $D_k = \{r_t\}$ by running policy $\pi_k = \pi(\theta_k)$
2. Compute reward-to-go \hat{R}_t
3. Compute Advantage estimates $\hat{A}_1, \hat{A}_2, \ldots$
4. Update policy by maximizing PPO objective through stochastic gradient ascent: $\theta_{k+1} = \arg \max_{\theta} \frac{1}{D_kT} \sum_t \sum_r \min \left[\frac{\pi_\theta(a_t
5. Fit value function by regression on mean squared error and via gradient descent algorithm: $\phi_{k+1} = \arg \min_{\phi} \frac{1}{D_kT} \sum_t \sum_r \left[V_\phi(s_t) - \hat{R}_t \right]^2$
3. end For

based on policy π. By assuming the critic as the baseline, the system is trained to decrease $(G - V)$, which leads to lower variance.

D. Proximal Policy Optimization

Proximal policy optimization (PPO) is a policy gradient algorithm that uses the actor-critic model to train a stochastic policy. We propose the PPO method as the second method to compare the solutions and analyze its performance in our actor-critic based resource allocation model. Similar to the actor-critic model, the actor represents the actions and the critic provides the estimations of the value function for evaluating the actions and predicting the rewards. The PPO algorithm collects a series of trajectories in each episode by sampling from the stochastic policy. Then, the policy and value functions are updated based on the rewards-to-go and advantage estimation. Generally, the policy uses a stochastic gradient ascent as an optimizer to be updated while the value function uses the gradient descent to be fitted. Table I shows the algorithm we propose for employing the PPO method.

VII. DEPLOYMENT AND RESULTS

The AI model is developed using Tensorflow2 and expanded to the format of xApp using the ricxappframe framework. We deploy the near-RT RIC as Kubernetes pods with related interfaces provided by OSC to interact with the E2 nodes and the service management and orchestration. The proposed xApp and KPIMON are both deployed in the near-RT RIC and influxDB is used for implementing the shared database. The implementation is done on an Intel i7 11th Gen Processor with 32 GB of RAM, an Nvidia RTX-3070 Ti GPU to handle AI/ML functionality, 1 TB of storage capacity, and Ubuntu 20.04 as the operating system. For the training, testing, and evaluation of the xApp, we use the mobile-env simulated RAN environment [14] that implements an openAI Gym interface. It is written in Python and can be installed through PyPi. It provides a RAN environment with different customizable scenarios featuring different network configuration such as moving users, multiple BSs, different frequencies, and so on. For our testing scenario, we customize the environment to have 5 BSs and 10 moving UEs. Fig. 4 shows the five BS towers with their coverage ranges. The movement of users can be observed from the two snapshots that represent different time slots. The lines between UEs and BSs indicate the connections and the colors the user’s QoE, where green represents good and red poor QoE.

Table II provide the details of designed A2C network and simulation parameters. The scheduling executes every TTI. The results are related to an average of 500 to 700 runs with 1000 iterations. In order to evaluate the performance of the proposed xApp, since the model is designed to maximize the QoE based on the reward function, we consider the sum of average data rate and rewards as the two metrics for our evaluation. Since reaching convergence in fewer number of iterations is especially important for online training, the
TABLE II
TESTING NETWORK PARAMETERS.

Network Parameters	Value
Number of Hidden Layers	4
Number of Neurons	384
Number of gNB	5
Number of UEs	10
Maximum Traffic load per UE(Downlink)	1 Mbps
Frequency	3.5 GHz
Bandwidth	10 MHz
TRx	30 dBm
Discount factor	0.9
Actor learning-rate	0.01
Critic learning-rate	0.04
Optimizer	Adam
Number of Timeslots per Episode	1000
Number of Episodes	500-700

![Fig. 5. Average normalized reward over period for both RL models.](image-url)

![Fig. 6. Average sum data rate for both RL models.](image-url)

VIII. CONCLUSIONS

This paper illustrates the step-by-step design, development, and testing of an AI-based resource allocation xApp for the near-RT RIC of the O-RAN architecture. The introduced xApp leverages RL. The basic version is designed using the A2C algorithm, which is further optimized using the PPO method. The results show improvements in returned values, metrics, and stability of the system. We plan to extend this work by expanding our test network and neighboring cell parameters, as well as deploy it on software radio testbeds as part of the Open AI Cellular project. We will also investigate how to handle more tasks by one xApp using new AI/ML methods to increase the task management efficiency.

ACKNOWLEDGMENT

This work was supported in part by NSF award CNS-2120442.

REFERENCES

1. Mohammadi, H. and Marojevic, V., “Artificial neuronal networks for empowering radio transceivers: Opportunities and challenges,” in IEEE VTC2021-Fall, 2021, pp. 1–5.
2. Saad, W., Bennis, M., and Chen, M., “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020.
3. Abdalla, A. S., Upadhyaya, P. S., Shah, V. K., and Marojevic, V., “Toward next generation open radio access network—what O-RAN can and cannot do!” IEEE Network, pp. 1–8, Early Access, 2022.
4. Bonati, L., Oro, S., Polese, M., Basagni, S., and Melodia, T., “Intelligence and learning in O-RAN for data-driven nextg cellular networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.
5. O-RAN Alliance, “O-RAN Minimum Viable Plan and Acceleration towards Commercialization,” https://static1.squarespace.com/static/5ad7744ce74940d7f11504406060f9d614abce90271243475/162697655796/O-RAN+Minimum+Viable+Plan+and+Acceleration+and+Commercialization+White+Paper+29+June+2021.pdf, 2021, [Online; accessed, October 2022].
6. Ghosal, G. R., Ghosal, D., Sim, A., Thakur, A. V., and Wu, K., “A deep deterministic policy gradient based network scheduler for deadline-driven data transfers,” in 2020 IFIP Networking Conference, 2020, pp. 253–261.
7. Elsayed, M. and Erol-Kantarci, M., “AI-enabled future wireless networks: Challenges, opportunities, and open issues,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 70–77, 2019.
8. Polese, M., Jana, R., Kounav, V., Zheng, K., Deb, S., and Zorzi, M., “Machine learning at the edge: A data-driven architecture with applications to 5g cellular networks,” IEEE Transactions on Mobile Computing, vol. 20, no. 12, pp. 3367–3382, 2021.
9. Niknam, S. et al., “Intelligent O-RAN for beyond 5G and 6G wireless networks,” 10.48550/arXiv.2005.08374, 2020.
10. Mollahasani, S., Erol-Kantarci, M., and Wilson, R., “Dynamic CU-DU selection for resource allocation in O-RAN using actor-critic learning,” in 2021 IEEE GLOBECOM, 2021, pp. 1–6.
11. Mollahasani, S., Erol-Kantarci, M., Hirab, M., Behsharif, H., and Wilson, R., “Actor-critic learning based qos-aware scheduler for reconfigurable wireless networks,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 1, pp. 45–54, 2022.
12. Bonati, L., Polese, M., Oro, S., Basagni, S., and Melodia, T., “OpenRAN Gym: An open toolbox for data collection and experimentation with AI in O-RAN,” in 2022 IEEE WCNC, 2022, pp. 518–523.
13. O-RAN Software Community, “O-RAN Software Community F Release,” https://wiki.o-ran-sc.org/display/REL/4F+Release, 2022, [Online; accessed, October 2022].
14. Schneider, S., Werner, S., Khalili, R., Hecker, A., and Karl, H., “mobileenv: An open platform for reinforcement learning in wireless mobile networks,” in IEEE/IFIP NOMS, 2022.
15. Upadhyaya, P. S., Abdalla, A. S., Marojevic, V., Shah, V. K., and Reed, J. H., “Prototyping next-generation O-RAN research testbeds with SDRs,” arXiv preprint arXiv:2205.13178, 2022.
16. Open AI Cellular, “Open AI Cellular Software Repository,” https://github.com/openai cellular, 2022, [Online; accessed, October 2022].