Histone H2AX is Phosphorylated at Sites of Retroviral DNA Integration, But is Dispensable for Post-integration Repair*

René Daniel‡+, Joseph Ramcharan‡|, Emmy Rogakou§++, Konstantin D. Taganov‡+++, James G. Greger‡, William Bonner§, André Nussenzweig†, Richard A. Katz‡, and Anna Marie Skalka‡**

‡Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111-2497, §Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892, USA, †Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA | These two authors contributed equally to this work.

Running Title: H2AX at Retroviral Integration Sites

* This work was supported by National Institutes of Health grants AI40385, CA71515, CA98090, CA06927, a Tobacco Formula Research Fund grant from the Pennsylvania Department of Health, and also by an appropriation from the Commonwealth of Pennsylvania. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute, or any other sponsoring organization.

+ Present address. Thomas Jefferson University, 1020 Walnut Street, Philadelphia, PA 19107-5587.

++ Present address. B.S.R.C. Alexander Fleming, 14-16 Fleming Street, 16672 Vari, Attika, Greece.

+++ Present address. California Institute of Technology, Pasadena, CA 91125.

** To whom correspondence should be addressed: Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497. Tel: 215 728 2490; Fax: 215 728 2778; E-mail: AM_skalka@fccc.edu
The histone variant H2AX is rapidly phosphorylated (denoted γH2AX) in large chromatin domains (foci) flanking dsDNA breaks that are produced by ionizing radiation or genotoxic agents, and during V(D)J recombination. H2AX-deficient cells, and mice, demonstrate increased sensitivity to dsDNA break damage, indicating an active role for γH2AX in DNA repair. However, γH2AX formation is not required for V(D)J recombination. The latter finding has suggested a greater dependency on γH2AX for anchoring free broken ends, versus ends that are held together during programmed breakage-joining reactions. Retroviral DNA integration produces a unique intermediate in which a dsDNA break in host DNA is held together by the intervening viral DNA, and such a reaction provides a useful model to distinguish γH2AX functions. We found that integration promotes transient formation of γH2AX at retroviral integration sites, as detected by both immunocytological and chromatin immunoprecipitation (ChIP) methods. These results provide the first direct evidence for association of newly integrated viral DNA with a protein species that is an established marker for the onset of a DNA damage response. We also show that H2AX is not required for repair of the retroviral integration intermediate, as determined by stable transduction. These observations provide independent support of an anchoring model for the function of γH2AX in chromatin repair.
Introduction

The evolutionarily-conserved histone H2AX comprises about 2-25% of the histone H2A pool in mammalian cells and is incorporated randomly into nucleosomes (1). The extended C-terminal tail of H2AX contains a serine (S139), embedded in an invariant SQE motif that is a target for phosphorylation by the PI-3K-related protein kinases, DNA-PK, ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related) (2-4). This H2AX serine residue is massively and rapidly phosphorylated at sites of double strand breaks (DSBs) and stalled replication forks (3, 5, 6) forming microscopically visible foci upon staining with a specific antibody. This phosphorylation seems to play an important role in processing or repair of DSBs (7, 8). H2AX phosphorylation has also been observed at sites of V(D)J recombination (9), meiotic strand breaks, and other physiological, programmed reactions in which DSBs are formed (10-12).

Early events in retroviral replication include entry of the viral capsid, with accompanying enzymes reverse transcriptase and integrase (IN), followed by synthesis of a DNA copy of the viral RNA genome to form a pre-integration complex. This complex then enters the nucleus and integration is first detected at about 3-4 h post-infection (13). Retroviral integration is catalyzed by integrase, acting upon specific sequences at the ends of the viral DNA and via a concerted cleavage-ligation reaction that is mechanistically similar to that catalyzed by RAG proteins during V(D)J recombination (14-16) (Fig. 1A). As a consequence of integrase-mediated joining, the host cell DNA suffers a double strand break (DSB), but the ends are held together by single strand links to viral DNA (Fig. 1B). Post-integration repair of this intermediate (Fig. 1B) is essential for the maintenance of host DNA integrity as well as the stable association of retroviral DNA with host chromosomes. Numerous lines of evidence indicate that retroviral DNA elicits a DNA damage response and that the integration intermediate is repaired primarily via components of the non-homologous end-joining (NHEJ) pathway (17-20). In this study, we asked if H2AX is phosphorylated at sites of retroviral DNA integration and whether this response is essential for repair of this complex lesion as determined by survival of
stably transduced cells.

EXPERIMENTAL PROCEDURES

Cells and Viruses – MO59K cells (purchased from ATCC) were carried as described (18, 19). Mouse embryo fibroblasts were carried as described (17). The ASV-based vectors, IN+ and IN−, and the HIV-1 based vector were described previously (17, 19).

Immunofluorescence and Quantification of Foci – Cells were plated and infected the following day at m.o.i. 10. The cells were washed with PBS and fixed with 4% Paraformaldehyde at the indicated times post-infection. After permeabilization with 0.2% Triton-X100, samples were blocked with 3% BSA at 4 °C overnight. The slides were incubated with a mouse monoclonal antibody against γH2AX (Upstate Technology) and then with AlexaFluor-488 conjugated goat anti-mouse IgG (Molecular Probes) as secondary antibody. Nuclei were stained with 4,6 diamidino-2-phenylindole (DAPI) prior to mounting the slides with Slow Fade antifade reagent (Molecular Probes).

Processed cells were examined for γH2AX foci by monitoring fluorescence of the AlexaFluor dye using a Perkin-Elmer UltraView Confocal Imaging system in which the confocal scanning head was mounted on a Nikon TE-200E microscope. Optical sections along the Z-axis of the nuclei were captured at 0.1 μm intervals, and the final images were obtained by projection of the individual sections. For each time-point, images of at least one hundred cells were captured and used for quantitative analysis of γH2AX foci. To prevent bias in selection of cells that display foci, nuclei were randomly selected for DAPI staining and then monitored for focus formation. The γH2AX foci were counted in each cell using Image Pro Plus (Media Cybernetics). A setting that excluded relatively weak foci and background speckles was used as a standard for foci quantitation in all the cells selected for analysis.

A simple stochastic model for viral integration and formation of γH2AX foci was designed to relate the number of foci counted in cells to time of observation. Virus is modeled as being integrated at 4 h, on average, after the start of the experiment. The exact time of integration
and start of H2AX phosphorylation is taken to be normally distributed with mean 4 h and standard deviation of 1.1 h. H2AX phosphorylation is modeled to continue for an exponentially distributed random time with mean 2.6 h. The number of viruses integrating in a cell is taken to be Poisson distributed. The best fit to experimental data is achieved with a mean \(m.o.i. \) of 8.5 viruses per cell.

Chromatin Immunoprecipitation – Chromatin immunoprecipitation assays were performed as described by Boyd and Farnham (21). In our experiments, 10⁶ HeLa cells were infected with an amphotropic ASV vectors IN⁺ or IN⁻ (17). At defined times after infection formaldehyde (1% final) was added and the cultures were incubated at room temperature for 30 min to crosslink viral DNA and interacting proteins. The cross-linking reaction was quenched with glycine (0.125 M final). Plates were washed with cold 1 x PBS and cells were scraped into 1 x PBS that contained protease inhibitors, washed and lysed by addition of 0.5% NP-40, 5 mM PIPES pH 8.0, 85 mM KCl, and protease inhibitors. The intact nuclei were isolated by centrifugation at 5,000 rpm at 4 °C. Nuclei were then resuspended in a lysis buffer (1% SDS, 50 mM Tris-Cl pH 8.1, 10 mM EDTA, protease inhibitors). Chromatin was sonicated to fragments containing DNA of average length about 600 bp. Samples were subjected to centrifugation to remove debris and pre-cleared by shaking for 1 h with ssDNA agarose (Upstate). After removal of ssDNA agarose, supernatants were diluted 10-fold with a dilution buffer (0.01% SDS, 1.1% Tx-100, 1.2 mM EDTA, 16.7 mM Tris-Cl pH 8.1, 167 mM NaCl, protease inhibitors) and chromatin fragments were immunoprecipitated with antibodies to ASV integrase (rabbit polyclonal), δH2AX (Upstate, mouse monoclonal) and PI-3K p110 (Santa Cruz, mouse monoclonal) proteins overnight. Protein-DNA-antibody complexes were isolated by addition of ssDNA agarose. After 1 h, complexes were collected by centrifugation, and washed 3x with a wash buffer (100 mM Tris pH 8, 500 mM LiCl, 1% NP-40, 1% deoxycholic acid). Pellets were eluted with 50 mM NaHCO₃, 1% SDS for 15 min at room temperature. Clarified samples were incubated with RNase and 5 M NaCl at 67°C for 4-5 h, to reverse cross-links, and were then precipitated with ethanol overnight. Following centrifugation, pellets were resuspended in proteinase K.
buffer and treated with proteinase K. After phenol/chloroform extraction, the DNA was precipitated with ethanol. Viral sequences in these fractions were detected by PCR, using primers targeting the LTRs. The left primer’s sequence was 5’-ACG TCC AGG GCC CGG AGC GAC-3’, the right primer was 5’-CTT CAA TGC CCC CAA AAC CAA-3’. PCR products were resolved by electrophoresis on an agarose gel and subjected to Southern blotting with a radioactive probe against the ASV LTR (generated by using random primers and a PCR fragment made with the LTR probe primers: 5’-GAT TGG TGG AAG TAA GGT GG-3’, 5’-CAA ATG GCG TTT ATT GTA TCG-3’). As a negative control, we used primers targeting the cellular p21 promoter sequences: left 5’-TTT CCA CCT TTC ACC ATT CC-3’, right 5’-GGC AGA TCA CAT ACC CTG TT-3’ with a probe generated by using random primers.

Transduction Assays – For infection with the ASV vector (22) mouse embryo fibroblasts were plated at a density 10^5 cells per 60 mm dish. On the following day, cells were infected in the presence of 5 μg/ml DEAE dextran. At 8 days post infection, EGFP-positive cells were counted by flow cytometry. For infection with the HIV-1 vector, mouse embryo fibroblasts were plated at a density of 5×10^4 cells per well in a 24-well plate. The following day, cells were infected with an HIV-1 EGFP vector (23). Transduced cells were counted by flow cytometry as with the ASV vector.

RESULTS

To determine if retroviral infection induces formation of γH2AX foci, we infected cells with an amphotropic ASV vector (17) and examined them by immunofluorescence with an antibody specific for γH2AX. In preliminary experiments (data not included) we observed formation of γH2AX foci in DNA repair-proficient human (HeLa and MO59K) and mouse (3T3) cells early after infection. As a control we infected cells with an integration-deficient (IN–) vector (17) and no increase in foci over background was detected. The data in Figure 2 and Table 1 summarize results from subsequent experiments, which included computer-assisted, quantitative analyses of γH2AX foci in MO59K cells infected at a multiplicity (m.o.i.) of 10 infectious particles/cell. We
again observed an increased number of foci in the infected culture (Fig. 2A), which appeared to peak at 6 h post-infection. A comparison of the distribution of the number foci/cell in uninfected cells and 6 h post-infection is shown in Figure 2B. The bulk (approximately 75%) of the uninfected cells contained no or few foci per cell, whereas a small proportion (ca. 10%) displayed numerous foci, which we speculate may be due to replication stress; such cells were also observed in the infected culture. At 6 h post infection, the infected culture had many fewer cells with no foci, and the percentage of cells with 5-10 foci was substantially higher than in the uninfected culture. As summarized in Table 1, this value increased sharply by 4 h post-infection when integration is expected to begin. The average number of virus-induced foci peaked at 5.1 per cell in the 6 h sample, and declined again at 8 h post-infection. γH2AX foci are reported to arise within minutes at sites of DNA damage and start to disappear after 30 min with a ~2 h half-life, as damage is repaired (6). Assuming similar kinetics, it is likely that some integration-induced foci were both formed and resolved within the 8 h interval monitored in this experiment. A computer simulation using such parameters, produced data consistent with the numbers of virus-induced foci/cell in a culture infected at m.o.i. of ~10, at the time points post-infection shown in Table 1.

To verify that H2AX is phosphorylated at sites of retroviral DNA integration, we immunoprecipitated chromatin from nuclear extracts with a γH2AX-specific antibody (ChIP assay) and screened for the presence of viral DNA using PCR. To test the feasibility of this approach, ChIP was first performed at 6 h post-infection of HeLa cells at m.o.i. of 0.001, 0.01, or 0.1 infectious particles/cell (Fig. 3A, lanes 2-4). As expected, antibody specific for integrase protein (positive control) precipitated viral DNA in this extract, and in amounts proportional to the m.o.i. An association of viral DNA with the γH2AX immunoprecipitate was also readily detected and, as with integrase, in proportion to the m.o.i. Approximately 10% of the viral DNA was co-immunoprecipitated with γH2AX in this test. Based on the calculated efficiency of the antibody used for these analyses (data not shown), the actual amount of nuclear viral DNA associated with γH2AX in this experiment is estimated to be ~37% of the total. No association of viral DNA
was detected with the PI-3K antibody (negative control). In addition, none of the antibodies precipitated sequences corresponding to a region in the cellular p21 promoter (DNA negative control). In this experiment, viral DNA was quantified by Southern blot, but comparable results were obtained with Real Time PCR (not shown). As results with m.o.i. of 0.1 are clearly in the titratable range for ChIP analysis, this was the condition adopted in the two separate experiments summarized in Figure 3B and C. Figure 3B shows results of ChIP analyses following infection with integration-competent (IN+) or integration-defective (IN-) ASV vectors. A peak of association of γH2AX and viral DNA was observed in the IN+ infection at 6 h post-infection, and no association was detected after infection with the IN- vector. This result demonstrates that γH2AX is associated with nuclear viral DNA only after this DNA is integrated into chromatin.

To examine the kinetics of accumulation of γH2AX at integration sites more closely, the amount of viral DNA captured by ChIP at 2 h intervals was determined up to 16 h post-infection (Fig. 3C). Values for each time point were expressed as a percentage of the total viral DNA in the nuclear fraction that is associated with the ChIP at each time, corrected for IP efficiency of the γH2AX antibody. Consistent with our analysis of foci in infected MO59K cells (Table 1), these results showed that association with γH2AX peaks at ~6 h, shortly after viral DNA is detected in the nuclear extract. We estimate that 60% of the nuclear viral DNA in this experiment is associated with γH2AX, and therefore integrated at this time point. From these results we conclude that γH2AX is a valid marker for sites of retroviral DNA integration. We note that ChIP detects integrated viral DNA both pre- and post-repair (Fig. 1). To examine the functional relevance of H2AX phosphorylation to repair, we performed the transduction assays described below.

Because transduced genes are expressed efficiently only from stably integrated proviruses, retroviral transduction is a readout for successful post-integration repair. For example, we have shown that transduction efficiency of NHEJ-defective, DNA-PKcs-deficient murine cells is 80-90% reduced compared to wild type cells or deficient cells into which DNA-PKcs-expressing
DNA was reintroduced (17, 20). As the DNA damage induced by integration cannot be repaired efficiently, most NHEJ-deficient cells are unlikely to survive infection and, therefore, cannot give rise to stable transductants. To ask if H2AX phosphorylation is required for post-integration repair, we performed transduction experiments using embryo fibroblast lines (MEFs) obtained from H2AX knockout mice, and derivatives (24, 25). Results in Table 2 show that there is no significant difference in the transduction efficiency of an ASV-GFP vector with H2AX+/+ and H2AX-/- MEFs. Similar results were obtained with a VSV-G protein-pseudo-typed HIV-1 GFP vector (not shown). These data indicate that H2AX deficiency has little or no effect on post-integration repair. One possible explanation for this result is that H2AX function in these cells is redundant. We therefore examined transduction in H2AX-/- MEFs that had been complemented with transgenes that express wild type murine H2AX or proteins carrying either neutral, non-modifiable substitutions (S136/139A) or negatively charged substitutions that mimic constitutive phosphorylation (S136/139E) in the C-terminal PI-3K-related protein kinase target sites of H2AX. No significant difference was observed in the efficiencies of transduction of these lines compared to H2AX-/- cells (Table 1). It appears, therefore, that H2AX phosphorylation is dispensable for post-integration repair.

DISCUSSION

In this study, we show that retroviral infection induces the formation of histone γH2AX foci, and chromatin immunoprecipitation assays confirmed that H2AX phosphorylation occurs at sites of retroviral DNA integration. Therefore these results are consistent with our previous findings (17-20) that cells respond to retroviral DNA integration in a manner similar to DSBs. We also demonstrate that an H2AX deficiency and an inability to phosphorylate this histone has no detectable effect on the efficiency of retroviral transduction of cultured mouse cell lines. Because efficient expression of transduced genes requires stable retroviral vector integration, we conclude that H2AX phosphorylation is largely dispensable for post-integration repair of chromatin damage.
Although γH2AX is required for the accumulation of a subset of repair and signaling proteins into irradiation-induced foci (7, 8, 24, 26, 27), the exact role of H2AX phosphorylation is not well understood. Some DNA damage-sensing and repair proteins have been shown to interact physically with γH2AX (27-29). A functional role for γH2AX has been indicated, as H2AX deficient cells are hypersensitive to ionizing radiation, exhibit genomic instability, and also show an aberrant checkpoint response under certain conditions (7, 8, 30). On the other hand, although γH2AX foci form at sites of V(D)J recombination, H2AX appears to be dispensable for this reaction when tested with extra-chromosomal substrates in cultured cells (7, 8, 30).

The study of H2AX deficient mice has provided further insight into H2AX function. H2AX mice are viable, but DNA repair seems to proceed less efficiently in such animals, which show modest sensitivity to ionizing radiation and impairment in immunoglobulin class-switch recombination (31). In keeping with results from the cell-based assays cited above, these mice show no detectable abnormalities in V(D)J recombination (7, 8). However, the genomic caretaker function of H2AX is more fully exposed when cell cycle checkpoints are compromised due to absence of p53 (25, 32). In a p53-/- background, even H2AX +/- heterozygotes show increased misrepair of DNA damage leading to development of immature T- and B-cell lymphomas, and solid tumors. Some of the B-cell lymphomas harbor oncogenic translocations with hallmarks of aberrant V(D)J recombination. It appears therefore that although H2AX is not required for V(D)J recombination, it can suppress misrepair of RAG-dependent DSBs. Based on these and other observations, two general, non-exclusive models have been proposed for γH2AX function: 1. The high concentration of repair proteins recruited to the vicinity of DSBs, by or through some action of γH2AX, may facilitate repair especially at low (threshold) levels of damage (30) or; 2. γH2AX interaction with such proteins might help to hold broken ends together thereby minimizing the risk of misrepair (25, 32-34). According to these models differential dependencies on H2AX are expected, with repair of free DSBs formed by ionizing radiation being more dependent on γH2AX than programmed recombination reactions (e.g. V(D)J) in which ends are held in proximity by recombination proteins (35). H2AX +/-
spermatocytes show severe defects in meiotic X-Y chromosome pairing (12) and as such, it is tempting to speculate that γ-H2AX plays a bridging function during meiotic recombination.

In summary, our studies have produced two important findings. First they provide direct confirmation that cultured cells respond to retroviral DNA integration in the same way that they respond to DSBs produced by a variety of genotoxic agents or normal programmed events, namely massive phosphorylation of histone H2AX in the vicinity of the damage site. The second finding is that H2AX appears to be dispensable for post-integration repair. These observations lend independent support to a model in which the anchoring of broken DNA ends to facilitate their repair is a critical function of γH2AX. Because chromosome breaks are likely to be held together by the RAG1/2 complex during V(D)J recombination and are held covalently by viral DNA in retroviral integration (Fig. 4), such an anchoring function should not be essential in either reaction.

Acknowledgements – The authors thank Dr. Samuel Litwin for performing the computer simulations summarized in Table 1. The following Fox Chase Cancer Center Shared Facilities were used in the course of this work: Cell Imaging Facility, Biostatistics Facility, and Research Secretarial Services.
REFERENCES

1. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) J. Biol. Chem. 273, 5858-5868
2. Burma, S., Chen, B. P., Murphy, M. B., Kurimasa, A., and Chen, D. J. (2001) J. Biol. Chem. 276, 42462-42467
3. Ward, I. M., and Chen, J. (2001) J. Biol. Chem. 276, 42462-42467
4. Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M., and Jeggo, P. A. (2004) Cancer Res. 64, 2390-2396
5. Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999) J. Cell Biol. 146, 905-916
6. Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. (2002) Curr. Opin. Genet. Dev. 12, 162-169
7. Celeste, A., Petersen, S., Romanienko, P. J., Fernandez-Capetillo, O., Chen, H. T., Sedelnikova, A. O., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M. J., Redon, C., Pilch, D. R., Olaru, A., Eckhaus, M., Camerini-Otero, D. C., Tessarollo, L., Livak, F., Manova, K., Bonner, W. M., Nussenzweig, M. C., and Nussenzweig, A. (2002) Science 296, 922-927
8. Bassing, C. H., Chua, K. F., Sekiguchi, J., Suh, H., Whitlow, S. R., Fleming, J. C., Monroe, B. C., Ciccone, D. N., Yan, C., Vlasakova, K., Livingston, D. M., Ferguson, D. O., Scully, R., and Alt, F. W. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 8173-8178
9. Chen, H. T., Bhandoola, A., Difilippantonio, M. J., Zhu, J., Brown, M. J., Tai, X., Rogakou, E. P., Broz, T. M., Bonner, W. M., Ried, T., and Nussenzweig, A. (2000) Science 290, 1962-1965
10. Petersen, S., Casellas, R., Reina-San-Martin, B., Chen, H. T., Difilippantonio, M. J., Wilson, P. C., Hanitsch, L., Celeste, A., Muramatsu, M., Pilch, D. R., Redon, C., Ried, T., Bonner, W. M., Honjo, T., Nussenzweig, M. C., and Nussenzweig, A. (2001) Nature 414, 660-665
11. Mahadevaiah, S. K., Turner, J. M., Baudat, F., Rogakou, E. P., de Boer, P., Blanco-Rodriguez, J., Jasmin, M., Keeney, S., Bonner, W. M., and Burgoyne, P. S. (2001) Nat. Genet. 27, 271-276
12. Fernandez-Capetillo, O., Mahadevaiah, S. K., Celeste, A., Romanienko, P. J., Camerini-Otero, R. D., Bonner, W. M., Manova, K., Burgoyne, P., and Nussenzweig, A. (2003a) Dev. Cell 4, 497-508
13. Vandegraaff, N., Kumar, R., and Burrell, C. J. (2001) J. Virol. 75, 11253-11260
14. Katz, R. A., and Skalka, A. M. (1994) Annu. Rev. Biochem. 63, 133-173
15. Craig, N. L. (1996) Science 271, 1592-1594
16. van Gent, D. C., Mizuuchi, K., and Gellert, M. (1996) Science 271, 1592-1594
17. Daniel, R., Katz, R. A., and Skalka, A. M. (1999) Science 284, 644-647
18. Daniel, R., Katz, R. A., Merkel, G., Hittle, J. C., Yen, T. J., and Skalka, A. M. (2001a) Mol. Cell. Biol. 21, 1164-1172
19. Daniel, R., Kao, G., Taganov, K., Greger, J., Favorova, O., Merkel, G., Yen, T. J., Katz, R. A., and Skalka, A. M. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 4778-4783
20. Daniel, R., Greger, J., Katz, R. A., Taganov, K., Wu, X., Kappes, J. C., and Skalka, A. M. (in press 2004) J. Virol.
21. Boyd, K. E., and Farnham, P. J. (1999) Mol. Cell. Biol. 19, 8393-8399
22. Katz, R. A., Greger, J. G., Boimel, P., and Skalka, A. M. (2003) J. Virol. 77, 13412-13417
23. Katz, R. A., Greger, J. G., Darby, K., Boimel, P., Rall, G. F., and Skalka, A. M. (2002) J. Virol. 76, 5422-5434
24. Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., Pilch, D. R., Staudt, D. W., Lee, A., Bonner, R. F., Bonner, W. M., and Nussenzweig, A. (2003) Nat. Cell Biol. 5, 675-679
25. Celeste, A., Difilippantonio, S., Difilippantonio, M. J., Fernandez-Capetillo, O., Pilch, D. R., Sedelnikova, O. A., Eckhaus, M., Ried, T., Bonner, W. M., and Nussenzweig, A. (2003)
26. Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000) *Curr. Biol.* **10**, 886-895
27. Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M., and Elledge, S. J. (2003) *Nature* **421**, 961-966
28. Ward, I. M., Minn, K., Jorda, K. G., and Chen, J. (2003) *J. Biol. Chem.* **278**, 19579-19582
29. Kobayashi, J., Taucl, H., Sakamoto, S., Nakamura, A., Morishima, K., Matsuura, S., Kobayashi, T., Tamai, K., Tanimoto, K., and Komatsu, K. (2002) *Curr. Biol.* **12**, 1846-1851
30. Fernandez-Capetillo, O., Chen, H. T., Celeste, A., Ward, I. M., Romanienko, P. J., Morales, J. C., Naka, K., Xia, Z., Camerini-Otero, R. D., Motoyama, N., Carpenter, P. B., Bonner, W. M., Chen, J., and Nussenweig, A. (2002) *Nat. Cell Biol.* **4**, 993-997
31. Reina-San-Martin, B., Difilippantonio, S., Hanitsch, L., Masilamani, R. F., Nussenzweig, A., and Nussenweig, M. C. (2003) *J. Exp. Med.* **197**, 1767-1778
32. Bassing, C. H., Suh, H., Ferguson, D. O., Chua, K. F., Manis, J., Eckersdorff, M., Gleason, M., Bronson, R., Lee, C., and Alt, F. W. (2003) *Cell* **114**, 359-370
33. Bassing, C. H., and Alt, F. W. (2004) *Cell Cycle* **3**, 149-153
34. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. C., and Nussenweig, A. (in press 2004) *DNA Repair*
35. Jones, J. M., and Gellert, M. (2003) *Proc. Natl. Acad. Sci. U.S.A.* **100**, 15446-15451
TABLE 1

Quantitative assessment of γ-H2AX foci formation in response to retroviral infection in MO59K cells

Time post-Infection (h)	Percentage of cells with foci	Number of foci per cell	Number of virus-induced foci per cell
0	53	5.2	0.0 (0.00)*
2	51	5.5	0.3 (0.26)
4	92	8.6	3.4 (3.41)
6	88	10.3**	5.1 (4.88)
8	84	8.2	3.0 (3.05)

Cells were infected at an m.o.i. of 10, fixed with paraformaldehyde at the indicated times following infection, and immunostained with γ-H2AX antibody. The number of foci per cells, as well as the percentage of cells displaying foci, for an 8 h time course post-infection were determined as described in Methods. The number of virus-induced foci per cell was determined by subtracting the background foci in uninfected cells (time 0) from the various time points. *The numbers in parenthesis are from the computer simulation described in Methods. **p is <10⁻⁶ for this timepoint.
TABLE 2

Transduction efficiency of H2AX null cells and null cells complemented with H2AX genes carrying mutation of the C-terminal phosphorylation site of this histone*

Virus Dilution	H2AX +/+	H2AX -/-	H2AX -/- +wt H2AX	H2AX -/- +S136/139A	H2AX -/- +S136/139E
10^{-3}	66.3	62.0	59.1	74.1	64.1
10^{-4}	14.1	12.1	11.6	15.2	16.0
10^{-5}	1.8	1.2	1.1	1.7	1.6

* Cells were infected with an amphotropic ASV vector carrying an EGFP reporter (23). Virus titer ~ 1.4×10^5 infectious particles/ml.
FIGURE LEGENDS

FIG. 1. **Stable, heritable establishment of a retroviral provirus requires integrase-mediated DNA integration, and post-integration repair of the integration intermediate by host proteins.**
A, The first two steps in this process are catalyzed by a multimer of integrase, (IN)n.
B, Post-integration repair is dependent on host cell functions.

FIG. 2. **Retroviral infection induces formation of γH2AX foci.**
A, Confocal images of uninfected cells MO59K cells (left) and 6 h post-infection with an ASV vector at m.o.i. 10 (right). Nuclei were stained with DAPI (blue).
B, Distribution of foci in untreated cells and in cells 6 h after infection.

FIG. 3. **Association of viral DNA with γH2AX.** HeLa cells were infected and chromatin immunoprecipitation performed as described in Methods.
A, Results with nuclear lysates from cells at 6 h after infection with the ASV vector at m.o.i. 0.001, 0.01, or 0.1;
B, Results of γH2AX ChIP assays with cells infected with the IN+ and IN- ASV vectors at m.o.i. 0.1.
C, Time course of association of γH2AX with integrated viral DNA after infection at m.o.i. 0.1

FIG. 4. **Broken chromosomal ends may be held together by several mechanisms to facilitate NHEJ.** Proximity of ends produced by ionizing radiation or treatment with genotoxic agents would be enhanced by γH2AX-mediated anchoring via specific protein-protein interactions.
Ends produced during V(D)J recombination would also be held together by the RAG1/2 protein complex (dashed oval).
Ends produced during retroviral integration are linked by single stand covalent bonds to viral DNA and, perhaps, by the viral IN complex as well.
A. Retroviral DNA Integration

Viral DNA

\[\text{(IN)}_n \]

\[\text{Processing} \]

Host DNA

\[\text{(IN)}_n \]

\[\text{Joining} \]

B. Post-Integration Repair

\[\text{Provirus} \]

\[\text{Repair} \]

\[\text{dXTPs} \]

\[2(\text{NN}) \]
Histone H2AX is phosphorylated at sites of retroviral DNA integration, but is dispensable for post-integration repair

Rene Daniel, Joseph Ramcharan, Emmy Rogakou, Konstantin D. Taganov, James G. Greger, William Bonner, Andre Nussenzweig, Richard A. Katz and Anna Marie Skalka

J. Biol. Chem. published online August 11, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M407886200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts