Where's the germs? The effects of using virtual reality on nursing students' hospital infection prevention during the COVID-19 pandemic

Yingjie Liu | Alice Butzlaff

Abstract

Background: Virtual reality can be a useful substitute to improve nursing education outside of the hospital setting. In the wake of COVID-19, an opportunity to compare a virtual reality activity for nursing students in the traditional classroom and in an online environment took place.

Objectives: The goal of this study was to examine the effects of incorporating a virtual reality activity into the traditional classroom and in an online environment to enhance nursing education.

Methods: Fifty nursing students participated in an exploratory descriptive study. Twenty-five students participated face-to-face while in the traditional classroom setting and 25-students participated in an online environment using a communication platform. Through a virtual reality activity, nursing students successfully created a tour which demonstrated identifying infectious sites in a hospital room setting.

Results and Conclusions: Results of the pre-and post-test showed students’ positive perceptions and performances in both traditional classroom and online settings. However, the study revealed a statistical difference between the two group perceptions towards the use of the virtual reality tour creator. Nursing students who were in the traditional classroom group found that the use the virtual reality tour creator was easier.

Implications: Designing a meaningful virtual reality activity has a positive impact of the student learning experience. Students may benefit from a more through orientation to the technology prior to engaging in the activity. A carefully constructed activity can enhance student learning outside of the hospital room.

Keywords

COVID-19, distance, education, learning, nursing, students, virtual reality

1 INTRODUCTION

In the wake of the COVID-19 many hospitals restricted student access to patients during the COVID-19 pandemic. Many student nurses in training were deemed non-essential healthcare workers and clinical rotations were cancelled (Dewart et al., 2020). Without time in the hospital setting, nursing students were at a disadvantage. How to educate a future nursing workforce outside of the traditional settings emerged as a challenge for nursing education. One way to meet this challenge was to augment nurse’s education with online education including the use of virtual reality.

The purpose of this study was to examine the impact of shifting a virtual reality activity from a traditional classroom to the online learning environment during the COVID-19 pandemic. The goal of this
study was to look at best practices when utilizing a VR activity with nursing students. The ultimate outcome was to design a meaningful and sustainable virtual learning experience which could be easily adapted during and after the COVID-19 pandemic.

2 | LITERATURE REVIEW

Virtual Reality (VR) is a technology by which computer-aided stimuli create the immersive illusion of being somewhere else. VR has been increasingly applied in higher education with positive impact in students’ learning and motivation (Di Natale et al., 2020). VR technology affords realistic immersive experiences to enable learners’ presence, active learning, and engagement when real experiences are not accessible.

Chen et al. (2020) conducted a systematic review of VR in nursing education and found that VR was more effective in improving nursing students’ knowledge compared to traditional education methods, but there were no significant differences found in the nursing students’ skills, satisfaction, confidence, and performance time. Compared to traditional classroom and computer-based simulated practice, Rourke (2020) found VR was more effective in developing clinical psychomotor skills for pre-licensure student nurses. For nurses, the definition of psychomotor skills includes activities that are movement oriented (e.g., taking a temperature) that also require cognitive reasoning (e.g., interpret thermometer reading). When compared to the traditional training with regular video approach, nursing students showed higher learning motivation and satisfaction after taking a 360° video training of childbirth education (Chang et al., 2019). Furthermore, Valenti et al. (2020) found positive outcomes when the new students received a VR student orientation instead of traditional text-and-links content. The new students’ anxiety level greatly decreased after virtually meeting and interacting with the faculty. Howard and Gutworth (2020) found that VR training programs were more effective in social skills development compared to other traditional training programs.

Most of the VR studies have been conducted to evaluate the effectiveness, affordances, and challenges of the technology integration in educational settings (Garzón et al., 2019). But very few studies have investigated the new instructional design principles on how to enhance learning in VR, especially how to apply the VR technology in actual teaching and learning (Mayer, 2019). Similarly, Radianti et al. (2020) conducted a systematic review of VR integration in higher education and found that VR applications were developed as experimental work rather than being applied regularly in actual teaching.

The VR activity design might lead to various learning outcomes (Polland et al., 2020) therefore, the level of immersion must be considered. For example, the high-immersive VR experiences (e.g., through head-mounted display) may greatly foster students’ engagement, attitude, and level of presence but may not always lead to better learning outcomes (Makransky et al., 2019; Parong & Mayer, 2018). On the other hand, the low-immersive VR experiences (e.g., through web-based desktop VR) may still be able to facilitate students’ learning and sense of presence for suitable learning activities as a more affordable and sustainable approach (Dubovi et al., 2017; Rogers, 2020).

When it comes to online learning, VR starts to show great potential in student engagement. Researchers have used VR to mirror remote students as avatars into a classroom in order to encourage remote students’ participation and engagement with instructors and peers (Pietroszek & Lin, 2019). Educators have explored the potential of using the online social VR environment to encourage learners to interact with peers and active learning (Lia, 2019). Though innovative VR approaches have been explored in creating engaging online learning experiences, little research has systematically examined the effectiveness of VR technology in actual online classes and less is known about the differences of VR learning between online and classroom classes.

3 | INQUIRY-BASED LEARNING

Inquiry-based learning encourages students to construct knowledge through actively exploring, discussing, and solving real-world problems (Bruner, 1961). Compared with traditional instruction, an inquiry-based learning approach fosters the learners’ critical thinking skills, problem-solving, clinical reasoning and capability to think like a nurse (Theobald & Ramsbotham, 2019). Learning to think like a nurse has been explicated in the various phases of the clinical reasoning cycle (Levett-Jones, 2013). There are eight phases of clinical reasoning which are on a continuum. A critical stage at the core of clinical reasoning is to process gathered information. The use of VR assists with this process by putting all the information into the environment. The nurse then discovers this information based on pathophysiological patterns and determines possible interventions. For example, in a VR hospital environment, instead of offering direct instruction, the instructor serves as a facilitator to guide students’ learning. The inquiry-based learning approach has great potential in healthcare education and should be integrated into more classes (Kirubaraj & Santha, 2018).

VR expands the possibilities where learners actively engage with content and peers to conduct their own inquiry beyond traditional learning. VR applications (e.g., Google Expedition®) affords the first-person perspective and in-situ contextual information with 360° navigation and 3D view. By connecting research in VR with real-world situations, students could creatively tackle real-world problems and develop critical thinking and problem-solving skills (Minocha et al., 2017). This research aimed to fill the gap in the literature by exploring the students’ performance and perceptions of an inquiry-based VR learning activity while online during the COVID-19 pandemic.

4 | METHODS

The aim was to look at student identification of the most infectious areas within a hospital room using a virtual environment. The study design was a descriptive, quasi-experimental pre- and post-test model. A convenience sample of undergraduate nursing students enrolled in a west coast public university were asked to participate. Participants were junior level nursing students during their first medical-surgical
hospital rotations. The first sample of nursing students experienced the VR activity while in the classroom (n = 25). The second sample of nursing students experienced the VR activity while online (n = 25) during the COVID-19 pandemic. These students were excused from clinical training in the hospital within the first few weeks of the semester. In addition, all courses moved to a mandatory online format during this time. The investigation was approved by the university's Institutional Review Board Committee on Human Research.

The VR activity was conducted on a web-based platform called Google Tour Creator® which allows instructors and students to easily create and share their own virtual tour from computer. Built upon the Google Street View panoramas or the users' own 360° photos, the virtual tour allows users to add informational point of interest with narration, image, or text into the scenes. The virtual tours can be published and shared through Poly (poly.google.com) an online repository for 3D content. Viewers can view the tour through a web browser or in VR using a viewer like Google Cardboard®.

An investigator developed online questionnaire was utilized as a tool for measurement. This questionnaire was crafted specifically for this project and had not been previously piloted elsewhere. The questionnaire was preceded by informed consent. Students who preferred not to participate were able to defer answering questions without consequences. The questionnaire measured student demographic variables. Students were asked to label the number of infectious hospital sites that were correctly identified. Then students were asked to rate their satisfaction with the learning activity and the web-based tour creator platform using three Likert-scale questions scored from 1 = strongly disagree to 5 = strongly agree. The last section of the questionnaire asked the student to write open-ended comments about the learning experience.

In this study, the VR learning activity consisted of seven steps conducted over 90-minutes (see Table 1). First, students were introduced to the VR tour creator platform (15-minutes) where they watched the instructor access, explore and label sites in a hospital room. Second, students took a pre-test questionnaire to assess their own knowledge of the most infectious sites in a typical hospital room (10-min). Third, students were assigned to class groups or breakout rooms of 3 or 4 individuals and given an evidence-based practice article to review. Students were asked to write an American Psychological Association (APA) style annotated bibliography concerning various locations for hospital acquired infections (20-min). Fourth, students were then asked to create a tour from a Ricoh Theta® 360° 3D picture. Fifth, students were asked to label the most infectious areas using the points of interest feature on the VR tour (15-min) using an APA citation (Figure 1). Sixth, students were asked to discuss nursing interventions for sanitization of various areas discussed in the articles (20-min). Finally, students took a post-test questionnaire to re-identify infectious sites after reviewing articles. In addition, the post-test assessed performance and perceptions of a VR inquiry-based learning activity (10-min).

The same instructor delivered both the classroom and online instruction. For the VR learning activity, the main differences for instruction was the delivery format. Course materials were delivered through an online learning management system. In the traditional classroom setting, students in groups could sit next to each other, observe neighbours’ screens and interact while using their laptops. In contrast, the online course was delivered during the COVID-19 pandemic period. The live session was hosted synchronously on Zoom®, a web conference platform. Students were split into groups and sent to work in breakout rooms. The instructor visited each breakout room to check on the students’ progress and answer questions. One disadvantage is only one student was able to screen share at a time. Other students could view and discuss with audio or text chat only.

4.1 Statistical analysis

Questionnaires were analysed by quantitative methods. For demographic data, results were calculated by frequencies and descriptive statistics. For performance based on knowledge assessment, frequencies and means were conducted on student identification of correct infectious sites on pre-test and post-test questionnaire. For

| Table 1 Learning objectives for virtual reality activity |
|---|---|
| **Step** | **Procedure** | **Learning objective by the end of the VR activity, the learner will be able to:** |
| 1 | Introduction to Google Tour Creator | Access tour creator website, explore a sample hospital room, and learn how to label points of interest. |
| 2 | Pre-test | Identify all the most common infectious sites in the hospital room. |
| 3 | Small groups of students review EBP articles | Write an annotated bibliography about the infectious sites mentioned in the hospital (<150 words) and site the article using APA format. |
| 4 | Create a VR tour | Upload a 360-picture of the hospital room provided. |
| 5 | Points-of-Interest | Label points-of-interest using sites identified in evidence based-practice articles and using an APA citation. |
| 6 | Interventions | Discuss at least three nursing interventions for sanitation related to infectious sites identified in evidence based-practice articles. |
| 7 | Post-test | Identify all the most common infectious sites in the hospital room after reviewing evidence-based practice articles. |
perceptions towards Google Tour Creator®, independent-samples t-tests were conducted to compare differences between traditional classroom and online groups.

5 | RESULTS

Two sessions were conducted using undergraduate nursing students ($N = 50$). The first session was held in Spring 2019 in a traditional classroom ($n = 25$). An online session was held in Spring 2020 on a communication platform ($n = 25$) during the COVID-19 pandemic. There was no significant difference between the traditional classroom and online groups in terms of demographic information. Each group ($n = 25$) was similar in age ($M = 23$ years; $SD = 3$ years), gender (female nursing students 74%, male nursing students 24%, non-binary 2%) and ethnic background (Asian 48%, Caucasian 28%, Pacific Islander 10%, Hispanic 12% and Indian 2%).

5.1 | Performance

Students were asked to identify infectious sites based on their own knowledge. After being provided with a flatten panorama image of a typical hospital room, students were able to identify four ($M = 4.28$) correct sites. Although there were some sites selected by students that did not harbour pathogens (such as the countertop). After reading evidence-based practice articles in small groups of four or five, students were able to correctly identify 10 infectious sites ($M = 10$) in a typical hospital room. Both groups demonstrated similar improvements in labeling sites after the VR learning activities. There was no significant difference with sites identified between the group of students in the classroom versus the group of students online, even after the onset of COVID-19.

5.2 | Perceptions

Students agreed that Google Tour Creator® was easy to use ($N = 50$). However, findings demonstrated there was a significant difference in the scores between students who were given classroom instruction ($M = 4.3, SD = 0.90$) and students who were given online instruction ($M = 3.5, SD = 0.77$) about the use Google Tour Creator®; $t (48) = 3.37, p = 0.001$. Students agreed that using Google Tour Creator® was a good learning tool ($N = 50$). Findings demonstrated there was not a significant difference in the scores between students who were given classroom instruction ($M = 4.3, SD = 0.90$) and students who were given online instruction ($M = 4.1, SD = 0.9$) that Google Tour Creator® was a good learning tool; $t(48) = 0.47, p = 0.64$. Finally, students agreed that labeling infectious sites in VR could help them in a hospital setting ($N = 50$). Findings demonstrated there was not a significant difference in the scores between students who were given classroom instruction ($M = 4.3, SD = 0.90$) and students who were given online instruction ($M = 4.2, SD = 0.90$) when trying to use Google Tour Creator®; $t(48) = 0.46, p = 0.63$.

Nursing students also provided written comments about the activity. One student stated, ‘I totally enjoyed working with the tour creator. It was like a find it game for nurses. Instead of “Where’s Waldo?” it was like “Where are the Germs?” Many of the areas I thought would be dirty were in fact, clean and equipment that was dry and plastic were in fact, really dirty’. Another student mentioned they appreciated using evidenced-based practice articles, ‘It was great to get information about different areas around the patient and nurse that would be potentially infectious from the research provided. I don’t think I will ever forget the main places in a room that harbor disease’. Finally, one student commented that the activity helped them recognize high-risk areas, ‘I am so glad I learned which spots to look out for! I can’t believe when I was in the hospital, I would rest my
hand on the bed rail when I was talking with the patient! It totally motivates me to wash, wash, wash and clean, clean, clean.

6 | DISCUSSION

First, findings suggest that the VR inquiry learning activities can help promote nursing performance in both the traditional classroom and online settings. Results indicated that both groups of students identified a correct number of infectious sites at the end of the VR inquiry learning activity. The findings are consistent with previous comparison studies that classroom and online learning are similarly effective in developing nursing students’ clinical skill (McCutcheon et al., 2015). Students can have similar academic performance between the classroom and online modes despite the students might have different experience satisfaction and challenges in the two modes (Braun, 2017).

Second, perceptions differed between how easy it was to use the tour creator. There was a significant difference in the scores between students who were given classroom instruction versus students who were given online instruction. It may have been that the demonstration of the tour creator platform in the classroom was more robust than what was received online. Previous studies found that 360° virtual tour or 360 videos can help students get virtual experiences and orientations that are hard to access otherwise (Chang et al., 2019; Valenti et al., 2020). But the students usually take the passive role as viewers which does not fully support students’ deeper learning. In fact, in an online setting it may be more difficult to ask questions in front of a large group or ask the instructor to repeat the demonstration. In addition, another possible reason is that online students had more challenges to work together in the online Zoom breakout room.

Findings implicated that the online students had more challenges in working effectively in an online group rather than the Zoom conferencing technology itself. The challenge found in the present study echoes previous studies. For instance, de Oliveira Dias et al. (2020) reported that Zoom breakout room itself was not effective in supporting students’ online group work so additional technology (e.g., WhatsApp) or scaffolding should be adopted to assist. Cirillo et al. (2020) argued that in order to use Zoom effectively in teaching and learning, both instructor and students need to understand the difference between classroom and online communication and collaboration. Furthermore, the findings of the present study indicated the students’ lack of readiness with the Google Tour Creator® tool directly impacted the students’ collaborative learning experiences, which might explain the online students’ perceptions of viewing Google Tour Creator® as not an easy learning tool.

The findings of online students’ struggle with Google Tour Creator® indicated the importance of preparation activity before students’ collaborative inquiry-learning activities. An introductory activity or pre-training might help students feel more comfortable and confident in using the tool. This finding resonates with literature on VR integrated learning. For example, students perform better in a transfer test when they participated in a pre-training before immersive virtual reality field trip (Petersen et al., 2020; Meyer, Omadahl & Makransky, 2019). Takala et al. (2016) found that with gradually increased technology integration, the students demonstrated better understanding and higher quality of VR application development. If a pre-training module is used to get students familiar with all the technologies through practices (e.g., creating a virtual tour using Google Tour Creator®) then, during the live session, students will be able to focus more on the collaborative inquiry activity rather than learning about the technology tool from scratch.

The findings were also in line with the claim that student-to-student and instructor-to-student interaction in the Zoom breakout room were less effective than classroom interactions (de Oliveira Dias et al., 2020). Students in the current study missed the opportunity to talk to neighbouring students for information clarification (e.g., instructor’s instructions, G Tour creator steps). Online students were forced to take an individual-controlling pattern (e.g., one screen share) while the classroom students had more freedom to switch between the individual-controlling and collaborative group-controlling pattern (e.g., checking and discussing multiple teammates’ screens). This finding contradicts the comparison between online and classroom group interaction in Shu and Gu’s (2018) study, where the online interaction in online forum is more group-controlling while classroom interaction of in-class discussion is more individual-controlling. Compared to the classroom group, the online students in the current study had more challenges deciding the group arrangement, members’ role and responsibilities, for example, who will share the screen while labeling sites in the Google Tour Creator. The challenges of online group work were in line with previous studies that online students perceived online collaboration helpful, but they viewed it as the least favourite thing to do in online class (Thomas & Thorpe, 2019).

Third, online students had more challenges than the classroom students during the VR inquiry learning activity, which calls for proactive instructional design for meaningful VR integration in the online learning environment. For future technology design, the findings of students’ perceptions and challenges with both VR and online learning platforms demand more collaboration-friendly VR and online conferencing tools. The challenge of using technology for real-time collaborative work made it harder for students to work in groups online. In this study, Google Tour Creator® does not afford real-time collaboration like Google Docs® and Zoom® does not support students to view other students’ screens simultaneously. Future online learning technology should allow for group interactions, where students can easily turn to other classmates to check on their screens for project progress and have engaging conversations.

There were still some limitations to this study. The online students were not able to access VR viewers (e.g., Google Cardboard®) for a full VR experience. In the future, the instructors can ship a VR viewer to students or set a course material requirement of purchasing a low-cost Google Cardboard® viewer. In addition, the small sample size in the study makes it hard to be generalized. Future research should consider a larger scale and include students from...
different disciplines to offer additional insights about VR inquiry-based learning.

7 | CONCLUSION

This study offers insights for the educators, instructional designers, researchers and administrators about the adoption of a VR activity on students’ performance and perceptions. The study contributes to the literature by exploring the challenges of VR integration in an online course setting during COVID-19. The instructional design and delivery of the VR learning activity greatly influenced the students’ learning experiences, rather than the VR technology itself. Future VR integration should consider a pre-training to make sure students are comfortable with the VR technology before jumping into the VR course activities. Future research should also draw on the students’ prior knowledge and experiences in online learning to ensure the students are aware of the best practices of learning and collaborating in online learning environments.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1111/jcal.12601.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Alice Butzlaff https://orcid.org/0000-0001-9112-0523

REFERENCES

Braun, M. (2017). Comparative evaluation of online and in-class student team presentations. *Journal of University Teaching and Learning Practice, 14*(3). https://files.eric.ed.gov/fulltext/EJ1170210.pdf

Bruner, J. S. (1961). The act of discovery. *Harvard Educational Review, 31*(1), 21–32.

Chang, C. Y., Sung, H. Y., Guo, J. L., Chang, B. Y., & Kuo, F. R. (2019). Effects of spherical video-based virtual reality on nursing students’ learning performance in childbirth education training. *Interactive Learning Environments, 1–17*. https://doi.org/10.1080/10494820.2019.1661854

Chen, F. Q., Leng, Y. F., Ge, J. F., Wang, D. W., Li, C., Chen, B., & Sun, Z. L. (2020). Effectiveness of virtual reality in nursing education: Meta-analysis. *Journal of Medical Internet Research, 22*(9), e18290.

Cirillo, M., LaRochelle, R., Arbaugh, F., & Bieda, K. N. (2020). An innovative early field experience for Preservice secondary teachers: Early results from shifting to an online model. *Journal of Technology and Teacher Education, 28*(2), 353–363. https://www.learntechlib.org/primary/p/216305/

Dias, M., Lopes, R., & Teles, A. (2020). Will virtual replace classroom teaching? Lessons from virtual classes via zoom in the times of COVID-19. *Journal of Advances in Education and Philosophy, 4*(5), 208–213.

Dewatt, G., Corcoran, L., Thirsk, L., & Petrovic, K. (2020). Nursing education in a pandemic: Academic challenges in response to COVID-19. *Nurse Education Today, 92*, 104471. https://doi.org/10.1016/j.nedt.2020.104471

Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K-12 and higher education: A 10-year systematic review of empirical research. *British Journal of Educational Technology, 51*(6), 2006–2033.

Dubovi, I., Levy, S. T., & Dagan, E. (2017). Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation. *Computers & Education, 113*, 16–27.

Garzon, J., Pavon, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. *Virtual Reality, 23*(4), 447–459.

Howard, M. C., & Gutworth, M. B. (2020). A meta-analysis of virtual reality training programs for social skill development. *Computers & Education, 144*, 103707.

Kirubaraj, H. S., & Santha, N. J. (2018). Inquiry based learning: An introspection. *Asian Journal of Nursing Education and Research, 8*(1), 145–148.

Levett-Jones, T. (2013). *Clinical reasoning: Learning to think like a nurse*. Frenchs Forest: Pearson Australia.

Llaw, M. L. (2019). EFL learners’ intercultural communication in an open social virtual environment. *Journal of Educational Technology & Society, 22*(2), 38–55.

Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. *Learning and Instruction, 60*, 225–236.

McCutcheon, K., Lohan, M., Traynor, M., & Martin, D. (2015). A systematic review evaluating the impact of online or blended learning vs. face-to-face learning of clinical skills in undergraduate nurse education. *Journal of Advanced Nursing, 71*(2), 255–270.

Minocha, S., Tudor, A. D., & Tilling, S. (2017). Affordances of mobile virtual reality and their role in learning and teaching. In Proceedings of British HCI 2017 – Digital Make-Believe (pp. 1–10). Sunderland: BCS Learning and Development. https://doi.org/10.14236/ewic/HCI2017.44.

Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. *Journal of Educational Psychology, 110*(6), 785–797.

Petersen, G. B., Klingenberg, S., Mayer, R. E., & Makransky, G. (2020). The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. *British Journal of Educational Technology, 51*(6), 2098–2114. https://doi.org/10.1111/bjet.12991

Pietroszek, K., & Lin, C. C. (2019, November). UniVResity: Classroom class of a VR capstone course. *Informatics in Education, 28*, 2416. https://doi.org/10.25304/rlt.v28.2416

Rourke, S. (2020). How does virtual reality simulation compare to simulated practice in the acquisition of clinical psychomotor skills for pre-registration student nurses? A systematic review. *International Journal of Nursing Studies, 102*, 103466.

Shu, H., & Gu, X. (2018). Determining the differences between online and classroom student-group interactions in a blended learning course. *The Internet and Higher Education, 39*, 13–21.

Takala, T. M., Malmi, L., Pugliese, R., & Takala, T. (2016). Empowering students to create better virtual reality applications: A longitudinal study of a VR capstone course. *Informatics in Education, 15*(2), 287–317.

Theobald, K. A., & Ramsbotham, J. (2019). Inquiry-based learning and clinical reasoning scaffolds: An action research project to support undergraduate students’ learning to ‘think like a nurse’. *Nurse Education in Practice, 38*, 59–65.
Thomas, G., & Thorpe, S. (2019). Enhancing the facilitation of online groups in higher education: A review of the literature on face-to-face and online group-facilitation. Interactive Learning Environments, 27(1), 62–71.

Valenti, S., Lund, B., & Wang, T. (2020). Virtual reality as a tool for student orientation in distance education programs: A study of new library and information science students. Information Technology and Libraries (Online), 39(2), 1–12.

How to cite this article: Liu, Y., & Butzlaff, A. (2021). Where’s the germs? The effects of using virtual reality on nursing students’ hospital infection prevention during the COVID-19 pandemic. Journal of Computer Assisted Learning, 37(6), 1622–1628. https://doi.org/10.1111/jcal.12601