Adaptive Leader-Following Consensus for Uncertain Euler-Lagrange Systems under Directed Switching Networks

Tao Liu and Jie Huang

Abstract—The leader-following consensus problem for multiple Euler-Lagrange systems was studied recently by the adaptive distributed observer approach under the assumptions that the leader system is neutrally stable and the communication network is jointly connected and undirected. In this paper, we will study the same problem without assuming that the leader system is neutrally stable, and the communication network is undirected. The effectiveness of this new result will be illustrated by an example.

I. INTRODUCTION

Consensus, as a fundamental problem of cooperative control, has received significant attention over the past decade [1], [2], [3], [4]. There are two types of consensus problems, i.e., leaderless consensus and leader-following consensus. The leaderless consensus problem aims to design a distributed control law to make the states/outputs of all agents synchronize to each other, while the leader-following consensus problem attempts to drive the states/outputs of all agents to match the leader’s signal in polynomial form. Then we will establish our main result using this strengthened version of the adaptive distributed observer.

In what follows, we will adopt the following notation. I_N denotes an N dimensional column vector whose components are all 1. \otimes denotes the Kronecker product of matrices. $||x||$ denotes the Euclidean norm of a vector x and $||A||$ denotes the induced norm of a matrix A by the Euclidean norm. $\lambda_{\text{min}}(A)$ and $\lambda_{\text{max}}(A)$ denote the maximum and the minimum eigenvalues of a matrix A, respectively. For $X_i \in \mathbb{R}^{n_i \times p}$, $i = 1, \ldots, m$, $\text{col}(X_1, \ldots, X_m) = [X_1^T, \ldots, X_m^T]^T$. We call a time function $\sigma : [0, +\infty) \mapsto \mathcal{P} = \{1, 2, \ldots, n_0\}$ a piecewise constant switching signal if there exists a sequence $\{t_i, i = 0, 1, 2, \ldots\}$ satisfying $t_0 = 0, t_{i+1} - t_i \geq \tau_0$ for some positive constant τ_0, such that, for all $t \in [t_i, t_{i+1})$, $\sigma(t) = p$ for some $p \in \mathcal{P}$. n_0 is some positive integer. \mathcal{P} is called the switching index set; t_i is called the switching instant and τ_0 is called the dwell time.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider N EL systems described by the following dynamic equations:

$$\dot{M}_i(q_i) \ddot{q}_i + \dot{C}_i(q_i, \dot{q}_i) \dot{q}_i + G_i(q_i) = \tau_i, \quad i = 1, \ldots, N$$

where $q_i, \dot{q}_i \in \mathbb{R}^n$ are the generalized position and velocity vectors, respectively; $M_i(q_i) \in \mathbb{R}^{n_i \times n_i}$ is the positive definite inertia matrix; $C_i(q_i, \dot{q}_i) \in \mathbb{R}^{n_i \times m_i}$ is the Coriolis and centripetal forces vector; $G_i(q_i) \in \mathbb{R}^{n_i}$ is the gravity vector, and $\tau_i \in \mathbb{R}^p$ is the generalized forces vector.

It is well known that the EL systems have the following two properties:

Property 1: $\hat{M}_i(q_i) = -2C_i(q_i, \dot{q}_i)$ is skew symmetric.

Property 2: For all $x, y \in \mathbb{R}^m$,

$$\dot{M}_i(q_i)x + \dot{C}_i(q_i, \dot{q}_i)y + G_i(q_i) = Y_i(q_i, \dot{q}_i, x, y)\Theta_i$$

where $Y_i(q_i, \dot{q}_i, x, y) \in \mathbb{R}^{n_i \times p}$ is a known regression matrix and $\Theta_i \in \mathbb{R}^p$ is a constant vector consisting of the uncertain parameters of i.

Like in [11], [12], let $q_0 \in \mathbb{R}^n$ denote the desired generalized position vector, which is assumed to be generated by the following exosystem:

$$\dot{v} = Sv, \quad q_0 = Cv$$

where $v \in \mathbb{R}^m$ and $S \in \mathbb{R}^{m \times m}, C \in \mathbb{R}^{n_i \times m}$ are constant matrices. Without loss of generality, we assume the pair (C, S) is observable.

We view the system composed of (1) and (2) as a multi-agent system of $(N + 1)$ agents with (3) as the leader and N subsystems of (1) as followers. Given systems (1) and (2) and a piecewise constant switching signal $\sigma(t)$, we can define a switching digraph $G_{\sigma(t)} = (\mathcal{V}, E_{\sigma(t)})$ with $\mathcal{V} = \{0, 1, \ldots, N\}$ and $E_{\sigma(t)} \subseteq \mathcal{V} \times \mathcal{V}$ for all $t \geq 0$. Here, node 0 is associated with the leader system (3) and node $i, i = 1, \ldots, N$, is associated with the ith subsystem of (1).

For $i = 0, 1, \ldots, N, j = 1, \ldots, N, (i, j) \in E_{\sigma(t)}$ if and only if τ_j can use the state of agent i for control at time instant t. As a result, our control law has to satisfy the communication constraint described by the digraph $G_{\sigma(t)}$. Such a control law is called a distributed control law.

Our problem is described as follows.

1See Appendix for a summary on digraph.
Problem Description: Given systems $[1, 2]$ and a switching digraph $\mathcal{G}_{x(t)}$, find a distributed state feedback control law of the following form:

\begin{align*}
\tau_i &= f_i(q_i, \tilde{q}_i, \varphi_i, \varphi_j = q_j, j \in \mathcal{N}_i(t)) \\
\dot{\varphi}_i &= g_i(\varphi_i, \varphi_j = q_j, j \in \mathcal{N}_i(t)), \quad i = 1, \ldots, N \tag{3}
\end{align*}

where $\mathcal{N}_i(t)$ denotes the neighbor set of agent i at time t, such that, for $i = 1, \ldots, N$, and for any initial conditions $v(0)$, $q_i(0)$ and $\dot{q}_i(0)$, $q_i(t)$ and $\dot{q}_i(t)$ exist for all $t \geq 0$ and satisfy

\begin{align*}
\lim_{t \rightarrow +\infty} (q_i(t) - q_0(t)) &= 0, \quad \lim_{t \rightarrow +\infty} (\dot{q}_i(t) - \dot{q}_0(t)) = 0. \tag{4}
\end{align*}

Some assumptions for the solvability of the above problem are listed below.

Assumption 1. None of the eigenvalues of S have positive real parts.

Assumption 2. q_0 is bounded.

Assumption 3. There exist positive constants k_m, k_m', k_c, k_p, such that, for $i = 1, \ldots, N$, $k_m' \leq M_i(q_i) \leq k_m$ and $\|C_i(q_i, \dot{q}_i)\| \leq k_c\|\dot{q}_i\|$ and $\|G_i(q_i)\| \leq k_p$.

Assumption 4. There exists a subsequence $\{i_k\}$, $k = 0, 1, 2, \ldots$, such that $\|e_{i_k}(t)\| < \epsilon$ for some positive ϵ such that every node i, $i = 1, \ldots, N$, is reachable from node 0 in the union graph $\bigcup_{j=1}^{k+1} \mathcal{G}_0(t)$.

Remark 1. Assumption 1 allows the generalized position vector q_0 of the leader system (2) to be a polynomial in q and thus is more general than the assumption that the leader system is neutrally stable required in [2]. Assumption 2 is more restrictive than Assumption 1. However, it still allows the generalized position vector q_0 of the leader system (2) to be a ramp function, which is not allowed in [2].

Remark 2. Assumption 1 is called the jointly connected condition [1] and is perhaps the mildest condition on a switching network since it allows the network to be disconnected at any time instant.

III. MAIN RESULTS

Let us first recall the adaptive distributed observer introduced in [12]. For this purpose, let $\bar{A}_{e(t)} = [a_{ij}(t)]_{N \times N}$ denote the weighted adjacency matrix of $\bar{G}_{e(t)}$. Then, for each agent of [1], we define a dynamic compensator as follows:

\begin{align*}
\dot{S}_i &= \mu_1 \sum_{j=0}^{N} a_{ij}(t)(S_j - S_i) \\
\dot{\eta}_i &= S_i \eta_i + \mu_2 \sum_{j=0}^{N} a_{ij}(t)(\eta_j - \eta_i), \quad i = 1, \ldots, N \tag{5}
\end{align*}

where $S_i \in \mathbb{R}^{m \times m}$, $S_0 = S_0 \in \mathbb{R}^m$, $\eta_0 = v$, μ_1 and μ_2 are any positive constants.

Furthermore, let $G_{e(t)} = (V, E_{e(t)})$ denote the subgraph of $\mathcal{G}_{e(t)}$, where $V = \{1, \ldots, N\}$ and $E_{e(t)} \subseteq V \times V$ is obtained from $E_{e(t)}$ by removing all the edges between node 0 and the nodes in V. Let $E_{e(t)}$ be the Laplacian of $G_{e(t)}$. Then, putting $\eta = \text{col}(\eta_1, \ldots, \eta_N)$, $\tilde{\eta} = \eta - 1_N \otimes v$, $\tilde{S} = S - S_0$, $\tilde{\eta} = \text{col}(\tilde{S}_1, \ldots, \tilde{S}_N)$ and $\tilde{S}_d = \text{block diag} \{\tilde{S}_1, \ldots, \tilde{S}_N\}$, we can write (5) into the following compact form:

\begin{align*}
\dot{S}_d &= -\mu_1 (H_{e(t)} \otimes I_m) \tilde{S} \\
\dot{\eta} &= (I_N \otimes S - \mu_2 (H_{e(t)} \otimes I_m)) \dot{\eta} + \tilde{S}_d \eta \tag{6}
\end{align*}

where $H_{e(t)} = L_{e(t)} + \text{diag} \{a_0(t), \ldots, a_{N0}(t)\}$.

Now, let us establish the following result.

Lemma 1. Under Assumptions 1 and 2 for any $\mu_1, \mu_2 > 0$, and for any initial conditions $\tilde{S}(0)$ and $\eta(0)$, we have

\begin{align*}
\lim_{t \rightarrow +\infty} \dot{\tilde{S}}(t) &= 0 \tag{7} \\
\lim_{t \rightarrow +\infty} \dot{\eta}(t) &= 0 \tag{8}
\end{align*}

exponentially, and

asymptotically.

Proof: By Corollary 4 of [13], for any $\mu_1 > 0$, the origin of the \tilde{S}-subsystem of (6) is exponentially stable. That is to say, $\lim_{t \rightarrow +\infty} \tilde{S}(t) = 0$, exponentially. Thus, we only need to prove (8). Denote $A(t) = (I_N \otimes S - \mu_2 (H_{e(t)} \otimes I_m))$ and $F(t) = \dot{S}_d(t)(1_N \otimes v)$. Then, the second equation of (6) is equivalent to

\begin{align*}
\dot{\eta} &= A(t) \eta + \dot{\tilde{S}}_d(t) \dot{\eta} + F(t). \tag{9}
\end{align*}

Since $\dot{\tilde{S}}_d(t)$ converges to zero exponentially, there exist $\alpha_1 > 0$ and $\lambda_1 > 0$ such that

\begin{align*}
\|\dot{\tilde{S}}_d(t)\| &\leq \alpha_1 \|\tilde{S}_d(0)\| e^{-\lambda_1 t}. \tag{10}
\end{align*}

Note that

\begin{align*}
\|1_N \otimes v\| &\leq \|(I_N \otimes e^{\lambda_2 t})\| \|(1_N \otimes v(0))\|. \tag{11}
\end{align*}

Under Assumption 1 there exists a polynomial $p(t)$ such that

\begin{align*}
\|(I_N \otimes e^{\lambda_2 t})\| &\leq p(t). \tag{12}
\end{align*}

Then,

\begin{align*}
\|F(t)\| &\leq \|\dot{\tilde{S}}_d(t)\| \|(1_N \otimes v)\| \\
&\leq \alpha_1 \|\tilde{S}_d(0)\| \|(1_N \otimes v(0))\| p(t) e^{-\lambda_1 t} \\
&\leq \alpha_2 \|\tilde{S}_d(0)\| \|(1_N \otimes v(0))\| e^{-\lambda_2 t} \tag{13}
\end{align*}

for some $\alpha_2 > 0$ and $\lambda_1 > \lambda_2 > 0$. Thus, $F(t)$ also converges to zero exponentially.

By Lemma 2 of [13], under Assumptions 1 and 4 for any $\mu_2 > 0$, the origin of the linear switched system

\begin{align*}
\dot{\tilde{\eta}} &= A(t) \tilde{\eta} \tag{14}
\end{align*}

is exponentially stable. Let $\Phi(t, \tilde{\eta})$ be the solution of (14) that starts at $(t, \tilde{\eta})$. Define

\begin{align*}
P(t) &= \int_1^t \Phi(t, \tau) Q \Phi(t, \tau) d\tau \tag{15}
\end{align*}

where Q is some constant positive definite matrix. Clearly, $P(t)$ is continuous for all $t \geq 0$. Since the equilibrium point $\tilde{\eta} = 0$ of (14) is exponentially stable, we have

\begin{align*}
\|\Phi(t, \tau)\| &\leq \alpha_3 e^{-\lambda_3 (t - \tau)}, \quad \forall \tau \geq t \geq 0 \tag{16}
\end{align*}

for some $\alpha_3 > 0$ and $\lambda_3 > 0$. It can be easily verified that $\lambda_1 \|\tilde{\eta}\|^2 \leq \dot{\tilde{\eta}}^T P(t) \tilde{\eta} \leq c_1 \|\tilde{\eta}\|^2$ for some positive constants c_1 and c_2. Hence $P(t)$ is positive definite and bounded. Thus, we can assume that

\begin{align*}
\|P(t)\| &\leq c_0 \quad \text{for any } t \geq 0 \quad \text{with } c_0 \text{ being some positive constant.}
\end{align*}

On the other hand, since $A(t)$ is continuous on intervals $[t_i, t_{i+1}], i = 0, 1, 2, \ldots$, we have, for $t \in [t_i, t_{i+1}], i = 0, 1, 2, \ldots$,

\begin{align*}
\frac{d}{dt} \Phi(t, -) = -\Phi(t, \dot{A}(t)), \quad \Phi(t, t) = I_m. \tag{17}
\end{align*}
Then we have
\[
P(t) = \int_t^{+\infty} \Phi(\tau, t)^T Q \left(\frac{\partial}{\partial \tau} \Phi(\tau, t) \right) d\tau \\
+ \int_t^{+\infty} \left(\frac{\partial}{\partial \tau} \Phi(\tau, t)^T \right) Q \Phi(\tau, t) d\tau - Q \\
= - \int_t^{+\infty} \Phi(\tau, t)^T Q \Phi(\tau, t) d\tau - Q \\
- A(t)^T \int_t^{+\infty} \Phi(\tau, t)^T Q \Phi(\tau, t) d\tau - Q \\
= -P(t)A(t) - A(t)^T P(t) - Q.
\]
(18)

Let \(U(t) = \bar{\eta}^T(t) P(t) \bar{\eta}(t) \). Then, along the trajectory of \(9 \), for any \(t \in [t_i, t_{i+1}) \) with \(i = 0, 1, 2, \ldots \), we have
\[
U(t) = \bar{\eta}^T \left(\hat{P}(t) + A(t)^T P(t) + P(t)A(t) \right) \bar{\eta} \\
+ 2\eta^T P(t) \bar{S}_d(t) \bar{\eta} + 2\eta^T P(t) F(t) \\
= -\bar{\eta}^T Q \bar{\eta} + 2\eta^T P(t) \bar{S}_d(t) \bar{\eta} + 2\eta^T P(t) F(t) \\
\leq -\lambda_{\min}(Q) \| \bar{\eta} \|^2 + 2c_3 \| \bar{S}_d(t) \| \| \bar{\eta} \|^2 + 2\eta^T P(t) F(t) \\
\leq \left(\lambda_{\min}(Q) - 2c_3 \| \bar{S}_d(t) \| \| \bar{\eta} \|^2 \\
+ \frac{\| P(t) \|^2}{\varepsilon} \| \bar{\eta} \|^2 + \varepsilon \| F(t) \|^2 \right) \\
\leq \left(\lambda_{\min}(Q) - 2c_3 \| \bar{S}_d(t) \| \| \bar{\eta} \|^2 \\
+ \varepsilon \| F(t) \|^2 \right).
\]
(19)

Choose \(\varepsilon = \frac{2 \sqrt{\lambda_{\min}(Q)}}{c_3} \). Then, since \(\bar{S}_d(t) \) converges to zero exponentially, there exists some positive integer \(t \) such that
\[
\left(\lambda_{\min}(Q) - 2c_3 \| \bar{S}_d(t) \| \| \bar{\eta} \|^2 \right) > 0, \quad \forall t \geq t_i.
\]
(20)

Thus, we have
\[
U(t) \leq \varepsilon \| F(t) \|^2, \quad \forall t \geq t_i
\]
(21)

which implies
\[
U(t) \leq U(t_i) + \varepsilon \int_{t_i}^t \| F(\tau) \|^2 d\tau, \quad \forall t \geq t_i.
\]
(22)

Since \(F(t) \) converges to zero exponentially, \(\lim_{t \to +\infty} U(t) \) exists and is finite. Thus, we conclude that \(U(t) \) is bounded over \(t \geq 0 \) and hence the solution \(\bar{\eta}(t) \) of \(9 \) is also bounded over \(t \geq 0 \).

In addition, for any \(t \in [t_i, t_{i+1}), i = 0, 1, 2, \ldots \), we have \(\bar{U}(t) \) is bounded over \([0, +\infty) \) since \(\bar{\eta}, \bar{\eta}, P(t), \hat{P}(t), \bar{S}_d(t), \bar{S}_d(t) F(t) \) and \(F(t) \), are all bounded over \([0, +\infty) \).

Thus, \(U(t) \) satisfies the three conditions of Lemma 1 of \(13 \). As a result, \(\bar{U}(t) \to 0 \) as \(t \to +\infty \), which in turn implies that the solution \(\bar{\eta}(t) \) of \(9 \) converges to zero asymptotically. Hence the proof is completed.

Remark 3. Since \(\bar{U} \) is only piecewise continuous over \([0, +\infty) \), instead of using Barbalat’s lemma, we have to use Lemma 1 of \(12 \) to conclude \(\bar{U}(t) \to 0 \) as \(t \to +\infty \).

Remark 4. As a result of Lemma 7 under Assumptions 7 and 2, for any \(\mu_1, \mu_2 > 0 \), and \(i = 1, \ldots, N \),
\[
\lim_{t \to +\infty} (S_i(t) - S) = 0
\]
(23)

\[
\lim_{t \to +\infty} (\eta_i(t) - v(t)) = 0.
\]
(24)

That is why \(5 \) is called the adaptive distributed observer of the leader system \(2 \). Moreover, let \(\eta_{di} = \mu_2 \sum_{j=0}^N a_{ij}(t)(\eta_j - \eta_i) \). Then, \(24 \) implies
\[
\lim_{t \to +\infty} \eta_{di}(t) = 0.
\]
(25)

Since
\[
\dot{\eta}_i - \dot{v} = S_i \dot{\eta}_i + \dot{S}_i v = S_i (\dot{\eta}_i - v) + \dot{S}_i v + \eta_{di},
\]
we have
\[
\lim_{t \to +\infty} (\dot{\eta}_i - v) = 0, \quad i = 1, \ldots, N.
\]
(26)

Remark 5. The adaptive distributed observer for the leader system \(2 \) was first developed in Lemma 2 of \(12 \) under the assumptions that all the eigenvalues of the matrix \(\Sigma \) are semi-simple with zero real parts and the digraph \(G_{\sigma(t)} \) is undirected. Lemma 2 of \(12 \) was strengthened recently by Lemma 4.1 of \(15 \), which removed the assumption that the digraph \(G_{\sigma(t)} \) is undirected. Here, Lemma 7 further replaced the neutral stability assumption on the matrix \(\Sigma \) required in \(12 \) and \(13 \) with Assumption 1. As a result, we can handle signals in polynomial form.

Next, like in \(12 \), we will synthesize an adaptive distributed control law utilizing the adaptive distributed observer as follows.

Let \(\xi = C \eta \), and
\[
\dot{q}_{ri} = C S_i \eta_i - \alpha(q_i - \xi_i)
\]
(27)

where \(\alpha \) is a positive constant. Then,
\[
\dot{q}_{ri} = C \left(S_i \eta_i + S_i \hat{\eta}_i \right) - \alpha(q_i - \xi_i).
\]
(28)

By Property 2, there exists a known matrix \(Y_i = Y_i(q_i, \dot{q}_i, \dot{q}_i, \dot{q}_{ri}) \) and an unknown constant vector \(\Theta_i \), such that
\[
Y_i \Theta_i = M_i(q_i, \dot{q}_i, \dot{q}_i, \dot{q}_{ri}) + C_i(q_i, \dot{q}_i, \dot{q}_i, \dot{q}_{ri}).
\]
(29)

Let
\[
s_i = \dot{q}_i - \dot{q}_{ri}.
\]
(30)

Then, we define our control law as follows:
\[
\tau_i = -K_i s_i + Y_i \Theta_i
\]
(31)

\[
\dot{\Theta}_i = -\Lambda^{-1}_i Y_i^{\top} s_i
\]
(32)

\[
\dot{S}_i = \mu_1 \sum_{j=0}^N a_{ij}(t) (S_j - S_i)
\]
(33)

\[
\hat{\eta}_i = S_i \eta_i + \mu_2 \sum_{j=0}^N a_{ij}(t) (\eta_j - \eta_i), \quad i = 1, \ldots, N
\]
(34)

where \(\Theta_i \in \mathbb{R}^p \), \(K_i \) and \(\Lambda_i \) are positive definite matrices.

Now, we are ready to present our main result.

Theorem 1. Given systems \(1 \) and \(2 \) and a switching digraph \(G_{\sigma(t)} \), under Assumptions 2 to 4, the problem is solvable by a distributed state feedback control law composed of \(12 \) and \(13 \).

Proof: First note that, under Assumption 2, the leader system also satisfies Assumption 1. Next, from \(27 \) and \(30 \), we have
\[
q_i + \alpha(q_i - \xi_i) = s_i + C S_i \eta_i.
\]
(35)
where $C S_i \bar{\eta}_i = C(\bar{\eta}_i - \eta_{di}) = \bar{\xi}_i - C \eta_{di}$. Subtracting $\bar{\xi}_i$ on both sides of (35) gives

$$ (\bar{q}_i - \bar{\xi}_i) + \alpha(q_i - \xi_i) = u_i $$

(36)

where $u_i = s_i - C \eta_{di}$. Since $\alpha > 0$, (36) is a stable first order linear system in $(q_i - \xi_i)$ with input u_i. If u_i decays to zero as t tends to infinity, then both $(q_i - \xi_i)$ and $(\bar{q}_i - \bar{\xi}_i)$ decay to zero as t tends to infinity. As a result, by (24), (26) and the following identities

$$ q_i(t) - q_0(t) = (q_i(t) - \xi_i(t)) + C(\bar{\eta}_i(t) - v(t)) $$

$$ \bar{q}_i(t) - \bar{q}_0(t) = (\bar{q}_i(t) - \bar{\xi}_i(t)) + C(\bar{\eta}_i(t) - v(t)) $$

(37)

the proof is completed.

By (25), under Assumptions 2 and 4, $\eta_{di}(t) \to 0$ as $t \to +\infty$. We only need to show $s_i(t) \to 0$ as $t \to +\infty$. To this end, substituting (31) into (11) gives

$$ M_i(q_i) \ddot{q}_i + C_i(q_i, \dot{q}_i) \dot{q}_i + G_i(q_i) = -K_i s_i + Y_i \Theta_i $$

(38)

and subtracting $Y_i \Theta_i$ on both sides of (35) gives

$$ M_i(q_i) \ddot{q}_i + C_i(q_i, \dot{q}_i) \dot{q}_i - M_i(q_i) \ddot{q}_i + C_i(q_i, \dot{q}_i) \dot{q}_i = -K_i s_i + Y_i \Theta_i $$

(39)

where $\Theta_i = \Theta_i - \Theta_i$.

Then, by (30), we have

$$ M_i(q_i) s_i + C_i(q_i, \dot{q}_i) s_i = -K_i s_i + Y_i \Theta_i $$

(40)

Let $x = \text{col}(x_1, \ldots, x_N)$ for $x = q_i, \dot{q}_i, s_i, \dot{s}_i$, and $X = \text{block diag}(X_1, \ldots, X_N)$ for $X = K, Y, \Lambda^{-1}$. Then (40) and (12) can be written as

$$ M(q) s = -C(q, \dot{q}) s - K s + Y \Theta $$

(41)

$$ \ddot{\Theta} = -\Lambda^{-1} Y^T s $$

(42)

where

$$ M(q) = \text{block diag}\{M_1(q_1), \ldots, M_N(q_N)\} $$

$$ C(q, \dot{q}) = \text{block diag}\{C_1(q_1, \dot{q}_1), \ldots, C_N(q_N, \dot{q}_N)\} $$

Define

$$ V = \frac{1}{2} \left(s^T M(q) s + \dot{\Theta}^T \Lambda \dot{\Theta} \right) $$

(43)

By (28) and (30), $s(t)$ is differentiable on each interval $[t_i, t_{i+1})$, $i = 0, 1, 2, \ldots$, so is $V(t)$. Noticing that $M_i(q_i) - 2C_i(q_i, \dot{q}_i)$ is skew symmetric gives

$$ \dot{V} = s^T M(q) s + \frac{1}{2} s^T M(q) s + \dot{\Theta}^T \Lambda \dot{\Theta} $$

$$ = s^T \left(-C(q, \dot{q}) s - K s + Y \Theta \right) + \frac{1}{2} s^T M(q) s + \dot{\Theta}^T \Lambda \dot{\Theta} $$

$$ = -s^T \dot{K} s + s^T \dot{Y} \Theta - \dot{\Theta}^T \Lambda^{-1} Y^T s $$

(44)

$$ = -s^T K s \leq 0 $$

Since $V(t)$ and $\dot{V}(t)$ are piecewise continuous over $[0, +\infty)$, we cannot use Barballa’s lemma to conclude $V(t) \to 0$ as $t \to +\infty$. We need to use Corollary 1 of (14) to conclude $\lim_{t \to +\infty} \dot{V}(t) = 0$, which implies $\lim_{t \to +\infty} s(t) = 0$. For this purpose, we need to show that there exists a positive number γ such that

$$ \sup_{t_i \leq t \leq t_{i+1}, i = 0, 1, 2, \ldots} \left| \dot{V}(t) \right| \leq \gamma $$

(45)

Since $\dot{V}(t) = -2s^T K s$, it suffices to show that both s and \dot{s} are bounded.

Now note that $V(t)$ is continuous, and $M(q) \Lambda$ is positive definite. (44) implies that s and \dot{s} are bounded.

Thus, the input u_i in (33) is bounded.
5

\[T_0 = 2, \quad s = 0, 1, 2, \ldots \]

\[\text{The four digraphs } \tilde{G}_i, i = 1, 2, 3, 4, \text{ are described by Figure 1 where node 0 is associated with the leader and the other nodes are associated with the followers.} \]

\[\sigma(t) = \begin{cases}
1, & \text{if } sT_0 \leq t < (s + \frac{1}{2})T_0 \\
2, & \text{if } (s + \frac{1}{2})T_0 \leq t < (s + \frac{3}{2})T_0 \\
3, & \text{if } (s + \frac{3}{2})T_0 \leq t < (s + \frac{5}{2})T_0 \\
4, & \text{if } (s + \frac{5}{2})T_0 \leq t < (s + 1)T_0
\end{cases} \]

where \(T_0 = 2 \), and \(s = 0, 1, 2, \ldots \). The four digraphs \(\tilde{G}_i, i = 1, 2, 3, 4, \) are described by Figure 1 where node 0 is associated with the leader and the other nodes are associated with the followers.

It can be seen that Assumption 4 is satisfied even though \(\tilde{G}_{\sigma(t)} \) is disconnected at any time \(t \geq 0 \).

According to Theorem 1, we can design a control law in the form described by (31)-(34) with the following design parameters: \(\mu_1 = \mu_2 = 10, \alpha = 10, K_i = 20I_2, \Lambda_i = 0.2I_n, \) for \(i = 1, 2, 3, 4 \). We let \(a_{ij}(t) = 1, i, j = 0, 1, 2, 3, 4, \) whenever \((j, i) \in \tilde{E}_{\sigma(t)} \). The actual values of \(\Theta_i \) are given as follows:

\[\Theta_1 = \text{col}(0.64, 1.10, 0.08, 0.64, 0.32) \]
\[\Theta_2 = \text{col}(0.76, 1.17, 0.14, 0.93, 0.44) \]
\[\Theta_3 = \text{col}(0.91, 1.26, 0.22, 1.27, 0.58) \]
\[\Theta_4 = \text{col}(1.10, 1.36, 0.32, 1.67, 0.73). \]

Simulation is conducted with randomly chosen initial conditions. The trajectories of \(q_i \) and \(\dot{q}_i, i = 1, 2, 3, 4, \) are shown in Figure 2 and Figure 3 respectively.

V. CONCLUSION

In this paper, we have studied the leader-following consensus problem for multiple uncertain Euler-Lagrange systems under the jointly connected switching network. Due to the employment of the adaptive distributed observer in a strengthened version, we have removed the assumptions that the leader system is neutrally stable and the communication network is undirected.

APPENDIX

A digraph \(G = (\mathcal{V}, \mathcal{E}) \) consists of a finite set of nodes \(\mathcal{V} = \{1, \ldots, N\} \) and an edge set \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \). An edge of \(\mathcal{E} \) from node \(i \) to
node \(j \) is denoted by \((i, j)\), and node \(i \) is called a neighbor of node \(j \). Let \(N_i = \{j | (j, i) \in \mathcal{E}\} \), which is called the neighbor set of node \(i \). The edge \((i, j)\) is called undirected if \((i, j) \in \mathcal{E}\) implies \((j, i) \in \mathcal{E}\). The digraph \(G \) is undirected if every edge in \(\mathcal{E} \) is undirected. If the digraph contains a sequence of edges of the form \((i_1, i_2), (i_2, i_3), \ldots, (i_k, i_{k+1})\), then the set \(\{i_1, i_2, i_3, \ldots, i_k, i_{k+1}\} \) is called a directed path of \(G \) from node \(i_1 \) to node \(i_{k+1} \) and node \(i_{k+1} \) is said to be reachable from node \(i_1 \). A digraph \(G_s = (\mathcal{V}, \mathcal{E}_s) \) is called a subgraph of \(G = (\mathcal{V}, \mathcal{E}) \) if \(\mathcal{V}_s \subseteq \mathcal{V} \) and \(\mathcal{E}_s \subseteq \mathcal{E} \cap (\mathcal{V} \times \mathcal{V}_s) \). Given a set of \(n_0 \) digraphs \(\{G_i = (\mathcal{V}, \mathcal{E}_i), i = 1, \ldots, n_0\} \), the digraph \(G = (\mathcal{V}, \mathcal{E}) \) where \(\mathcal{E} = \bigcup_{i=1}^{n_0} \mathcal{E}_i \) is called the union of the digraphs \(G_i \), denoted by \(G = \bigcup_{i=1}^{n_0} G_i \).

The weighted adjacency matrix of a digraph \(G \) is a nonnegative matrix \(A = [a_{ij}] \in \mathbb{R}^{N \times N} \), where \(a_{ii} = 0 \) and \(a_{ij} > 0 \) if and only if \((j, i) \in \mathcal{E} \). On the other hand, given a matrix \(A = [a_{ij}] \in \mathbb{R}^{N \times N} \) satisfying \(a_{ii} = 0 \) and \(a_{ij} \geq 0 \) for \(i \neq j \), we can always define a digraph \(G \) whose weighted adjacency matrix is \(A \). The Laplacian of \(G \) is then defined as \(L = [l_{ij}] \in \mathbb{R}^{N \times N} \), where \(l_{ij} = \sum_{j=1}^{N} a_{ij}, l_{ij} = -a_{ij} \) for \(i \neq j \).

Given a piecewise constant switching signal \(\sigma : [0, +\infty) \mapsto \mathcal{P} = \{1, 2, \ldots, n_0\} \), and a set of \(n_0 \) digraphs \(G_i = (\mathcal{V}, \mathcal{E}_i), i = 1, \ldots, n_0 \), with the corresponding weighted adjacency matrices being denoted by \(A_i, i = 1, \ldots, n_0 \), we call the time-varying graph \(G_{\sigma(t)} = (\mathcal{V}, \mathcal{E}_{\sigma(t)}) \) a switching digraph, and denote the weighted adjacency matrix and the Laplacian of \(G_{\sigma(t)} \) by \(A_{\sigma(t)} \) and \(L_{\sigma(t)} \), respectively.

References

[1] A. Jadbabaie, J. Lin and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” *IEEE Trans. Autom. Control*, vol. 48, no. 6, pp. 988-1001, 2003.

[2] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” *Proceedings of the IEEE*, vol. 95, no. 1, pp. 215-233, 2007.

[3] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” *IEEE Trans. Autom. Control*, vol. 50, no. 5, pp. 655-661, 2005.

[4] S. E. Tuna, “Conditions for synchronizability in arrays of coupled linear systems,” *IEEE Trans. Autom. Control*, vol. 54, no. 10, pp. 2416-2420, 2009.

[5] F. L. Lewis, C. T. Abdallah and D. M. Dawson, *Control of Robot Manipulators*, 1st ed. New York: Macmillan, 1993.

[6] J. J. E. Slotine, W. Li, *Applied Nonlinear Control*, Englewood Cliffs, NJ: Prentice-hall, 1991.

[7] S. J. Chung and J. J. E. Slotine, “Cooperative robot control and concurrent synchronization of Lagrangian systems,” *IEEE Transactions on Robotics*, vol. 25, no. 3, pp. 686-700, 2009.

[8] J. Mei, W. Ren and G. Ma, “Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems,” *IEEE Trans. Autom. Control*, vol. 56, no. 6, pp. 1415-1421, 2011.

[9] G. Chen and F. L. Lewis, “Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems,” *IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics*, vol. 41, no. 3, pp. 805-816, 2011.

[10] E. Nuño, R. Ortega, L. Basanez and D. Hill, “Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays,” *IEEE Trans. Autom. Control*, vol. 56, no.4, pp. 935-941, 2011.

[11] H. Cai and J. Huang, “Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology,” *International Journal of General Systems*, vol. 43, no. 3-4, pp. 294-304, 2014.

[12] H. Cai and J. Huang, “The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer,” *IEEE Trans. Autom. Control*, DOI:10.1109/TAC.2015.2504728.

[13] Y. Su and J. Huang, “Cooperative output regulation with application to multi-agent consensus under switching network,” *IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics*, vol. 42, no. 3, pp. 864-875, 2012.