Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system

Mami Oba a,1, Shinobu Tsuchiaka b,1, Tsutomu Omatsu a,b, Yukie Katayama a, Konosuke Otomaru c, Teppei Hirata d, Hiroshi Aoki e, Yoshiteru Murata a,f, Shinji Makino g, Makoto Nagai h, Tetsuya Mizutani a,*

a Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
b The United Graduate School of Veterinary Sciences, Gifu University, 1–1 Yanagito, Gifu-shi, Gifu 501-1193, Japan
c Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
d Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami District, Okinawa, 903-0129, Japan
e Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
f Murata Animal Hospital, 2016 Honnou, Mobara-shi, Chiba 299-4144, Japan
g Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA
h Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan

1 Mami Oba and Shinobu Tsuchiaka are equal contributors to this work.

Article info

Article history:
Received 16 November 2017
Accepted 4 December 2017
Available online 6 December 2017

Keywords:
Comprehensive detection
Domestic animal
Deep sequencing
Porcine parainfluenza virus

Abstract

We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Proper control of infectious diseases greatly affects productivity of domestic animals. The data that infectious diarrhea causes death of more than 50% of the calf less than 1 month of age illuminate importance of control of infectious diseases for productivity of domestic animals [5,22]. Delayed fattening of pigs due to influenza A (H1N1) virus infection [2]; a decrease in the milk yield of cattle by bovine viral diarrhea virus, Akabane virus, and bovine coronavirus [1,7,18,19]; and a decline of reproductive performance of cattle under the influence of Akabane virus [18] also represent examples of ill effects of infectious diseases for productivity of domestic animals. The regulations of the International Epizootic Office limit the movement of domestic animals near farms that are affected by certain infectious diseases. Once an outbreak of an internationally important infectious disease, e.g., foot-and-mouth disease, occurs, the products of susceptible livestock are subject to export restrictions, causing severe economic damage in the affected county. Rapid detection of the infectious agents and prompt responding to the infection would minimize the economic losses.

Next-generation sequencing (NGS) has been widely used for comprehensive detection of viruses and several studies reported successful identification of many novel viruses in various animal samples [4,8,10,22]. Host-derived nucleic acids represent the majority of the nucleic acids in most of clinical/field samples and presence of low levels of nucleic acids of infectious agents often makes their detection and identification difficult. To efficiently
2. Materials and methods

2.1. Preparation of an analytical sample

2.1.1. Extraction of nucleic acids

2.1.1.1. Cattle and bovine herpesvirus 1 (BHV-1). The present study used seven samples of feces collected from calves in farms of Hokkaido, Ishikawa prefecture, and Kagoshima prefecture in Japan. BHV-1 served as a positive control. Feces were adjusted to a 10% emulsion with sterile PBS and centrifuged at 10,000 rpm for 10 min at 4 °C by using a microcentrifuge. RNA was extracted from the supernatant using the TRIzol LS Reagent (Life Technologies, Carlsbad, CA, USA) and treated with DNase I (TaKaRa Bio). Then, equal amounts of RNA obtained from each sample were mixed into 1 sample. For DNA extraction from the isolated strain of BHV-1, QIAamp DNA Mini kit (QIAGEN, Venlo, Netherlands) was used.

2.1.1.2. Pig and goat samples. Feces of four piglets less than 3 weeks old collected from one farm in Japan and diarrheic feces obtained from two goats in Okinawa prefecture were analyzed. We previously reported the presence of a novel porcine rotavirus, astrovirus, posavirus, and circovirus in the sample group including these four samples [9,11–13,15]. Feces were adjusted to 10% emulsion with sterile PBS and centrifuged at 10,000 rpm for 10 min at 4 °C. RNA was extracted from the supernatant by using the ISOGEN LS Reagent (Nippon Gene Co., Ltd., Tokyo, Japan). DNA was extracted from the supernatant with the QIAamp Fast DNA stool kit (QIAGEN, Tokyo, Japan).

2.1.2. Synthesis of double-stranded (ds) cDNA

For constructing libraries by the target enrichment method, ds cDNA was synthesized from the extracted RNA from the feces samples using the PrimeScript Double strand cDNA Synthesis Kit (TaKaRa Bio, Shiga, Japan). The synthesized ds cDNA was purified with phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich Japan, Tokyo, Japan).

2.1.3. Sample preparation for library construction

The mixed ds cDNA were synthesized from a mixture of seven cattle fecal RNA samples. DNA of BHV-1, which was added as a positive control, was prepared for a bovine-related virus capture library. The ds cDNA from the mixture of seven bovine fecal RNA samples and the BHV1 DNA was mixed so that the ratio of ds cDNA to DNA was 1:7.

Extracted nucleic acids from feces of pigs and goats were prepared for the capture library of bovine-swine-caprine-related viruses. The extracted DNAs and the ds cDNAs synthesized from the extracted RNAs were mixed in equal amounts. The concentration of each sample after mixing was measured on a Qubit 2.0 Fluorometer (Thermo Fisher Scientific K.K., Yokohama, Japan). Samples with concentrations below the measurement limit were excluded from analysis (data not shown).

2.1.4. Custom capture library

The SureSelect XT custom capture library, which was synthesized based on a selected virus genome sequence by Agilent Technologies Co., Ltd., was used.

2.1.5. Construction of a sample library by the target enrichment method

An analytical sample was constructed for the library using the SureSelect QXT Reagent kit (Agilent Technologies, Tokyo, Japan). The overview of each step is shown in Fig. 1. First, we generated the DNA library of obtained ds DNA samples by randomly fragmenting the dsDNA, and subsequent addition of adapter sequence, to which the index primer anneals. Then, the DNA samples were purified using Agencourt AMPure XP (Beckman Coulter, Inc., Brea, CA, USA). Next, the adapter-attached library was amplified using the SureSelect QXT Primer Mix. The PCR was conducted as follows: 68 °C for 2 min, at 98 °C for 2 min, followed by 8 cycles of 98 °C for 30 s, 57 °C for 30 s, and 72 °C for 1 min; with a final extension at 72 °C for 5 min. Immediately after the reaction, the DNA sample was purified using Agencourt AMPure XP. The adapter-attached DNA library was hybridized to the virus capture library designed for this study, and nucleic acids of the target viruses were enriched. Specifically, a sample was mixed with the SureSelect QXT Fast Blocker Mix and was incubated at 95 °C for 5 min and 65 °C for 10 min using a thermal cycler. After holding the sample at 65 °C for 1 min in the thermal cycler, we added SureSelect QXT Fast Hybridization Buffer to the sample and performed 60 cycles of incubation at 65 °C for 1 min and 37 °C for 3 s. Immediately after the reaction, SureSelect RNase Block solution was added to the sample, and the captured DNA was purified by using Dynabeads MyOne Streptavidin T1 beads (Thermo Fisher Scientific K.K., Yokohama, Japan). Then, the DNA library, which was attached to streptavidin beads, was amplified by PCR after addition of the index primer, dNTP mix, Herculase II Reaction Buffer, and Herculase 2 Fusion DNA polymerase. The PCR cycling conditions were as follows: an initial denaturation at 98 °C for 2 min; followed by 20 cycles of 98 °C for 30 s, 58 °C for 30 s, and 72 °C for 1 min; and a final extension at 72 °C for 5 min. After PCR, streptavidin beads were removed from the sample by using a magnet stand, and the PCR products, which were not associated with the beads, were further purified with Agencourt AMPure XP. The obtained purified product was subjected to NGS analysis. We call the NGS data analysis of the library on the basis of this method postcapture sequencing.

2.1.6. Library preparation by the conventional method

As a conventional method, libraries were constructed from ds cDNA using the Nextera DNA Library Preparation Kit (Illumina, San Diego, Calif., USA). Specifically, ds cDNA was randomly fragmented and was mixed with an adapter and was attached to an index. After the reaction, size selection was performed using Agencourt AMPure XP. The NGS data analysis of the library constructed by the conventional method was called precapture sequencing.

2.1.7. Deep sequencing and sequencing data analysis

Deep sequencing was performed on a MiSeq benchtop sequencer (Illumina, San Diego, CA, USA). The constructed library was analyzed as a read of a 76-bp paired end by means of the MiSeq Reagent Kit v3 (150 cycles) (Illumina, San Diego, CA, USA). The sequence of each obtained read was output in FASTAq format, using a MiSeq reporter, and analyzed in CLC Genomic Workbench 6.5.1 (Q3 bio, Aarhus, Denmark). Each read was processed by a quality trim command to trim low-quality sequences, and contigs were obtained via the de novo assembly command. A BLAST search was conducted on all contigs using a virus database obtained from NCBI.
3. Results

3.1. The design of the SureSelect enrichment system

We designed two sets of capture libraries, one for bovine-related viruses and the other for bovine-swine-caprine-related viruses. Both library sets took into consideration of various viral pathogens of domestic animals in Japan. Based on the literature search on PubMed.gov and the master list from International Virus Classification Committee (ICTV), we added other viruses that are at risk of disease outbreaks. Unclassified viruses that are not listed in the ICTV classification table were also selected from the NCBI Virus database. Viruses possibly related to cattle, pigs and goats were also added from Virus-Host-DB (http://www.genome.jp/virushostdb/).

The capture library set of the bovine-related viruses included four species of single-stranded (ss) DNA viruses, 28 species of dsDNA viruses, 17 species of ssRNA (−) viruses, 36 species of ssRNA (+) viruses, and three species of ssRNA viruses encoding a reverse transcriptase. The capture library set of bovine-swine-caprine-related viruses included 48 species of ssDNA viruses, 81 species of dsDNA viruses, 416 species of dsRNA viruses, 156 species of ssRNA (−) viruses, 135 species of ssRNA (+) viruses, 14 species of ssRNA viruses encoding a reverse transcriptase, and 15 species of unclassified viruses. The entire regions of these viral genomes were used to capture target viral nucleic acids, except for herpesvirus, for which we screened the samples for the polymerase gene and eight functionally conserved genes; these genes were used for phylogenetic analysis of the α, β, γ Herpesvirinae (HEP1–12) [3]. The virus genomes used for the capture libraries are shown in Supplementary Material.

3.2. Verification on the cattle samples

Bovine hungarovirus 1 (BHuV-1) was detected only in the postcapture sequencing, while the contigs homologous to bovine astrovirus (BastV), enterovirus F, BHV-1, bovine picornavirus (BPV), RVA, BtoV, bovine calicivirus (BECV), bovine kobu virus (BKV), and stealth virus 1 (STV-1) were obtained from both precapture and postcapture sequences (Table 2).

Table 1 shows the number of reads and contigs obtained from analysis of each precapture sequencing and postcapture sequencing. Contigs of each sample were subjected to a local BLAST search using a virus database obtained from NCBI. Contigs with E value* < 1E-100 were reused for BLASTn search on NCBI, and the results with the highest score are shown in Table 2. (*E value means “Expected value” where a hit between an entry and a query sequence happens by chance.). We defined E values less than 1E-100 as positive. The viral genomes that were positive in the postcapture sequencing are shown in Tables 2A and 3.

Table 2

Comparison between pre- and post-capture sequencing of read count and number of contig.

	Pre-capture sequencing	Post-capture sequencing		
	Total reads	Contigs	Total reads	Contigs
Cattle 1*	6,317,276	570	50,967,228	264
Pig 1*	629,140	579	3,074,544	71
Pig 2*	957,684	370	3,798,954	232
Goat 1*	3,280,164	1387	2,546,868	190
Goat 2*	3,390,671	73	1,044,452	122

*A to *E in this table correspond to A to E in Table 2 respectively.

Fig. 1. Overview of the sample library construction by the conventional method (precapture sequencing), and by the target enrichment method (postcapture sequencing). For the verification of cattle samples, only RNA extracted from the sample was used. In pig and goat samples, both DNA and RNA from samples were used.
sequencing was more than 20% better than that in precapture sequencing (BhuV-1: pre- 40.9%, post- 72.1%; BEV: pre- 34.8%, post- 56.6%; BAsTV: pre-19.5%, post- 40.8%). Breadth of BHV-1, BPV, BtoV, BECV, and STV-1 in pre- and postcapture sequencing were equally high. RVA/Human-wt/IND/N36/2003/G10P [11] segment 9 had higher Breadth in precapture sequencing than in postcapture sequencing (pre- 95.1%, post- 80.8%). Further study is needed to clarify this reason.

3.3. Detection of viruses in pigs and goats

We analyzed two pig and two goat samples. In pig sample 1, only postcapture sequencing detected porcine parainfluenza virus 1 and porcine stool-associated circular virus 3, while only precapture sequencing detected human picobirnavirus. In pig sample 2, only postcapture sequencing detected porcine stool-associated circular virus and porcine endogenous retrovirus, and there was no virus that was detected only by precapture sequencing. A clearly large increase in Breadth (%) was seen in the two pig samples (Fig. 2). The number of reads mapped to porcine parainfluenza virus strain 1438-1, partial genome (KT749882.1), increased from 19 to 4989 for pig sample 1 and from 237 to 20,581 for pig sample 2. Also Breadth rose from 8.5% to 98.9% and from 81.7% to 99.8% in pig sample 1 and pig sample 2, respectively (Fig. 2). Both pre- and postcapture sequencing detected goat enterovirus [21] in goat sample 1, whereas no virus was detected in goat sample 2.

4. Discussion

Whole genome sequencing of viruses usually requires virus amplification in cultured cells or eggs, whereas many recent studies determined whole virus genome sequences by metagenomic analysis of nucleic acids directly extracted from clinical or field samples [4,16,23]. Because the availability of reads of the target virus is dependent on the relative amount of the target viral genome to other nucleic acids of host and other agents in a given sample, sample pretreatments that eliminate the host genome have been carried out to obtain the target viral sequence [13,17]. Without these pretreatment, determining the whole or partial genome sequence of the target virus would be difficult. Hence, the target enrichment system represents an important method for detection of target viral genomes in a mixture of nucleic acids derived from both host and infectious agents. The target enrichment system also has been widely applied for all exosome sequencing, particularly in large-scale cohort research for taxonomic identification and for identification of causative genes of specific diseases such as cancer [6,14,20].

The present study examined the usefulness of a target enrichment method, SureSelect, for efficient concentration of genomes of various viruses of domestic animals. By using this enrichment method, we were able to efficiently detect the sequence of the target viruses, assemble longer contigs and directly obtain the genome data, including sequences of nearly full-length of viral

Table 2	Captured viruses in pre-capture sequencing and post-capture sequencing.	
Name of virus	Pre-capture sequencing	Post-capture sequencing
A Cattle		
Bovine astrovirus	+	+
Bovine calicivirus	+	+
Bovine enterovirus	+	+
Bovine hungarovirus 1	+	+
Bovine herpesvirus 1	+	+
Bovine kobuvirus	+	+
Bovine picornavirus	+	+
Bovine torovirus	+	+
Cryptosporidium parvum virus 1	+	+
Dromedary picobirnavirus	+	+
Bovine rotavirus A	+	+
Stealth virus 1	+	+
B Pig 1		
Porcine astrovirus 3	+	+
Porcine astrovirus 4	+	+
Porcine endogenous retrovirus	+	+
Porcine kobuvirus	+	+
Porcine parainfluenza virus 1	+	+
Porcine stool-associated circular virus 3	+	+
Enterovirus	+	+
Human picobirnavirus	+	+
Rotavirus A	+	+
B Pig 2		
Porcine astrovirus 3	+	+
Porcine astrovirus 4	+	+
Porcine endogenous retrovirus	+	+
Porcine kobuvirus	+	+
Porcine parainfluenza virus 1	+	+
Porcine stool-associated circular virus 3	+	+
Enterovirus	+	+
Human picobirnavirus	+	+
Rotavirus A	+	+
D Goat 1		
Goat enterovirus	+	+
E Goat 2		
Not applicable		

Evalue <1 E−100 was defined as positive.
Breadth was lower than pre-capture sequence by 30% or more in post-capture sequence. The numbers in shaded showed that Breadth increased by more than 20% in post-capture sequence than pre-capture sequence. The numbers in bold letters indicated that sequencing analysis detected BHnV-1, which was present in the bovine-related capture library, whereas only postcapture sequencing because those viruses were not included in homology with the reference. CPV and DPV were detectable only in target enrichment method could detect viruses that had over 69% query cover and 69% Ident. These results indicated that SureSelect query cover and 68% Ident. Similar analysis of BKV revealed 83% sequencing analysis showed that homology to BPV manifested 86% and 81% of the whole genome sequence (KT749882.1) of the virus, in pig sample 1 and 2, respectively (Fig. 2). Thus, SureSelect target enrichment system determined genome, from animal feces. The result of BLAST analysis of contigs obtained from SureSelect enrichment method for bovine-related viruses was slightly inferior to that of the conventional method for BPV and BKV, whereas the target enrichment method was better than conventional method for contigs of BHV-1, BEV and BAstV. The results of comparison using BLAST against the BPV TCH 6 strain (KM 589358), which was included in the bovine-related capture library, and the contig obtained from the postcapture sequencing analysis showed that homology to BPV manifested 86% query cover and 68% Ident. Similar analysis of BKV revealed 83% query cover and 69% Ident. These results indicated that SureSelect target enrichment method could detect viruses that had over 69% homology with the reference. CPV and DPV were detectable only in precapture sequencing because those viruses were not included in the bovine-related capture library, whereas only postcapture sequencing analysis detected BHV1-1, which was present in the bovine-related capture library. These results indicate that SureSelect target enrichment system can detect the viral genomes present in the capture library more efficiently.

Analyses of the samples obtained from pigs and goats also illuminated strength and limitation of SureSelect method. Almost all viruses detected by precapture sequencing were also detected by postcapture sequencing in both pig samples. One exception was human picobirnavirus in pig sample 1; precapture sequencing, but not postcapture sequencing, detected this virus. We included four strains of picobirnavirus in the capture library for bovine-swine-caprine--related viruses. A BLAST search showed that one contig in precapture sequencing had homology to human picobirnavirus, whereas this contig showed little homology to any of four strains of picobirnavirus in the capture library; those showing the most homology were in agreement on only 20 bases. As SureSelect could detect sequences showing homology over 69% to the reference (see above), SureSelect is suitable to detect many emerging mutated viruses. However, picobirnavirus is known for its diversity of sequences [18]; hence, for successful detection of virus species with high diverse sequences, inclusion of sequences of as many strains as possible in the capture library would be helpful. The SureSelect target enrichment system substantially increased the number of reads mapped to porcine parainfluenza virus strain 1438–1, allowing to reveal 98.9% and 99.8% of the whole genome sequence (KU198480.1), whereas this contig showed little homology to any of four strains of picobirnavirus in the capture library; those showing the most homology were in agreement on only 20 bases. The numbers in bold letters indicated that Breadth was lower than pre-capture sequencing by 30% or more in post-capture sequence.

Table 3

Comparison of results of mapping reads obtained pre- and post-capture sequencing.

Accession No.	Sequence name of registered on Genbank	Reference length	Pre-capture sequencing	Post-capture sequencing	
		Consensus length	Breadth(%) Read count	Consensus length	Breadth(%) Read count
LC047787.1	Bovine astrovirus genomic RNA, nearly complete genome	6287	1224 19.5 186	2565 40.8 3037	
AB117797	Calicivirus isolate TGG genomic RNA, complete genome, isolate: TGG 14	7453	6279 90.3 1234	7281 97.7 728,260	
DQ092794.1	Enterovirus F strain PS87/Belfast polyprotein gene, complete cds	7394	2573 34.8 149	4185 56.6 13,828	
JQ441880	Bovine hongarovirus 1 strain BHU1V/2008/HU1, complete genome	7583	3103 40.9 394	5464 72.1 15,134	
KU198480.1	Bovine herpesvirus 1 strain Cooper, complete genome	3744	3692 98.6 483	3744 100.0 502,980	
LC059660.1	Kobuvirus cattle/Kagoshima-2-24-KoV/2015/JPN genomic RNA	8496	8250 97.1 2552	5730 67.4 14,671	
LC036582.1	Bovine picornavirus genomic RNA, complete genome	7635	7602 99.6 11,084	5327 69.8 390	
LC088095.1	Bovine torovirus genomic RNA, complete genome	28,308	28,256 99.8 89,433	27,456 97.0 5,202,269	
EU183403.1	Cryptosporidium dsRNA virus RNA-dependent RNA polymerase (RDRP) gene	1783	1762 98.8 332	456 25.6 25	
KM573802.1	Dromedary picobirnavirus isolate c4566	1623	1287 79.3 361	549 33.8 24	
JF693026	Bovine rotavirus A isolate bovine-tc/USA/NCDV/1971/G6P[1] segment 1	3267	3267 100.0 509,480	3267 100.0 8,105,770	
JF693035	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 10	528	528 100.0 20,751	528 100.0 157,753	
JF693036	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 11	597	597 100.0 12,604	597 100.0 871,968	
JF693027	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 2	2643	2643 100.0 193,068	2643 100.0 6,389,174	
JF693028	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 3	2508	2508 100.0 926,149	2508 100.0 3,428,327	
JF693029	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 4	2331	723 31.0 152	640 27.5 37	
JF693030	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 5	1476	1475 99.9 197,905	1476 100.0 941,606	
JF693031	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 6	1194	1194 100.0 33,151	1194 100.0 2,006,621	
JF693032	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 7	954	954 100.0 76,801	954 100.0 519,469	
JF693033	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 8	942	942 100.0 133,442	942 100.0 3,742,643	
JF693034	Bovine rotavirus A isolate bovine-vc/USA/NCDV/1971/G6P[1] segment 9	981	981 100.0 35,204	981 100.0 532,493	
KC175118	Rotavirus A strain RVA/Human-wt/IND/N160/2003/G10P[11] segment 4	2301	2301 100.0 91,147	2246 97.6 1117	
KC174871	Rotavirus A strain RVA/Human-wt/IND/N36/2003/G10P[1] segment 9	1025	975 95.1 14,652	828 80.8 869	
AF191073.1	Stealth virus 1 clone 3B43, genomic sequence	3620	2953 81.6 644,124	2949 81.5 3,774,005	

The numbers in shaded showed that Breadth increased by more than 20% in post-capture sequence than pre-capture sequence. The numbers in bold letters indicated that Breadth was lower than pre-capture sequencing by 30% or more in post-capture sequence.
nearly full-length of the viral genome without virus isolation. Although the porcine parainfluenza virus genome was detected in feces, this virus had been reported as a cause of porcine respiratory disease (ref); biological significance of porcine parainfluenza virus in feces is currently unclear.

In summary, our data imply that SureSelect-based target enrichment system has an excellent potential for identification of viruses without incubating and amplifying viruses.

Conflict of interest

No potential conflicts of interest were disclosed.

Formatting of funding sources

This study was supported by the Research Project for Improving Food Safety and Animal Health of the Ministry of Agriculture, Forestry and Fisheries of Japan (716057223).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.bbrc.2017.12.017.

References

[1] A. Tschopp, R. Deiss, M. Rotzer, S. Wanda, B. Thomann, G. Schüpbach-regula, M. Meylan, A matched case-control study comparing udder health, production and fertility parameters in dairy farms before and after the eradication of Bovine Virus Diarrhoea in Switzerland, Prev. Vet. Med. 144 (2017) 29–39.
[2] C. Er, E. Skjerve, E. Brun, P.O. Hofmo, T. Framstad, B. Liun, Production impact of influenza A (H1N1) pdm09 virus infection on fattening pigs in Norway, J. Anim. Sci. 94 (2016) 751–759.
[3] D.J. McGeoch, A. Dolan, A.C. Ralph, T. Toward a comprehensive phylogeny for mammalian and Avian herpesviruses, J. Virol. 74 (2000) 10401–10406.
[4] E.A.V. Burioli, M. Prearo, M. Houssin, Complete genome sequence of Ostreid herpesvirus type 1 υVar isolated during mortality events in the Pacific oyster Crassostrea gigas in France and Ireland, Virology 509 (2017) 239–251.
[5] Highlights of Dairy 2007 Part II, Changes in the U.S. Dairy Cattle Industry, 1991–2007 United States Department of Agriculture (USDA), February 2008. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_is_PartII_Highlights.pdf.
[6] J. Flannick, N.L. Beer, A.G. Bick, V. Agarwala, N. Gupta, N.P. Burt, J.C. Florez, J.B. Meigs, Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes, Nat. Genet. 45 (2013) 1380–1385.
[7] M. Tro, K. Na, L. Linde, A. Silva, M. Tra, A. Possum, K.O. Hedlund, B, Experimental reproduction of winter dysentery in lactating cows using BCV Ð comparison with BCV infection in milk-fed calves, Vet. Microbiol. 81 (2001) 127–151.
[8] M.C. Koch, S. Werder, D. Jakupovic, T. Seuberlich, Indication of cross-species transmission of astrovirus associated with Encephalitis in sheep and cattle, Emerg. Infect. Dis. 23 (2017) 1604–1608.
[9] M. Ito, M. Kuroda, T. Masuda, M. Akagami, K. Haga, S. Tsuchiaka, M. Kishimoto, Y. Naoi, K. Sano, T. Omatsu, Y. Katayama, M. Oba, H. Aoki, T. Ichimaru, I. Mukono, Y. Ouchi, H. Yamasato, J. Shirai, K. Katayama, T. Mizutani, M. Nagai, Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination, Infect. Genet. Evol. 50 (2017) 250–256.
[10] K. Sano, Y. Naoi, M. Kishimoto, T. Masuda, H. Tanabe, M. Ito, K. Niira, K. Haga, K. Asano, S. Tsuchiaka, T. Omatsu, T. Furuya, Y. Katayama, M. Oba, Y. Ouchi, H. Yamasato, M. Ishida, J. Shirai, K. Katayama, T. Mizutani, M. Nagai, H2 genotypes of G4P[6], G5P[7], and G9[23] porcine rotaviruses show short RNA electropherotypes, Vet. Microbiol. 176 (2015) 209–217.
[11] M. Nagai, S. Shimada, Y. Fujii, H. Moriyama, M. Oba, Y. Katayama, S. Tsuchiaka, S. Okazaki, T. Omatsu, T. Furuya, S. Koyama, J. Shirai, K. Katayama, T. Mizutani, H2 genotypes of G4[6], G5[7], and G9[23] porcine rotaviruses show short RNA electropherotypes, Vet. Microbiol. 176 (2015) 250–256.
[12] K. Sano, Y. Naoi, M. Kishimoto, T. Masuda, H. Tanabe, M. Ito, K. Niira, K. Haga, K. Asano, S. Tsuchiaka, T. Omatsu, T. Furuya, Y. Katayama, M. Oba, Y. Ouchi, H. Yamasato, M. Ishida, J. Shirai, K. Katayama, T. Mizutani, M. Nagai, ...

Fig. 2. A comparison of mapping read numbers and consensus lengths for pre- and postcapture sequencing. *a* indicates a reference sequence. *b* indicates a consensus sequence by reads mapped to the reference sequence. "c" indicates reads mapped to the reference sequence. In other words, the results showed that reads mapped to porcine parainfluenza virus strain 1438-1, partial genome (KT749882.1), were clearly more pronounced in postcapture sequencing than in precapture sequencing.
Identification of further diversity among posaviruses, Arch. Virol. 161 (2016) 3541–3548.

[13] M. Oba, Y. Katayama, Y. Naoi, S. Tsuchiaka, T. Omatsu, A. Okumura, M. Nagai, T. Mizutani, Discovery of fur seal feces-associated circular DNA virus in swine feces in Japan, J. Vet. Med. Sci. 79 (2017) 1664–1666.

[14] N.G. Carininsky, E.J. Miclau, A.M. Perri, R. Lu, J.H.M. Knoll, P.K. Rogan, Prioritizing variants in complete hereditary breast and ovarian cancer genes in patients lacking known BRCA mutations, Hum. Mutat. 37 (2016) 640–652.

[15] K. Sano, Y. Naoi, M. Kishimoto, T. Masuda, H. Tanabe, M. Ito, K. Niira, K. Haga, K. Asano, S. Tsuchiaka, T. Omatsu, T. Furuya, Y. Katayama, M. Oba, Y. Ouchi, H. Yamasato, M. Ishida, J. Shirai, K. Katayama, T. Mizutani, M. Nagai, Identification of further diversity among posaviruses, Arch. Virol. 161 (2016) 3541–3548.

[16] S.H. Gu, D.H. Song, D. Lee, J. Jang, M.Y. Kim, J. Jung, K.I. Woo, M. Kim, W. Seog, H.S. Oh, B.S. Choi, J.S. Ahn, Q. Park, S.T. Jeong, Whole-genome sequence analysis of Zika virus, amplified from urine of traveler from the Philippines, Virus Genes (2017), https://doi.org/10.1007/s11262-017-1500-9.

[17] S. Shimada, M. Nagai, H. Moriyama, T. Fukushima, S. Koyama, T. Omatsu, T. Furuya, J. Shirai, T. Mizutani, Use of S1 nuclease in deep sequencing for detection of double-stranded RNA viruses, J. Vet. Med. Sci. 77 (2015) 1163–1166.

[18] S. Zhang, R. Bai, R. Feng, H. Zhang, L. Liu, Detection and evolutionary analysis of picobirnaviruses in treated wastewater, Microb. Biotechnol. 8 (2014) 474–482.

[19] T. Horikita, S. Yoshinaga, A.T. Okatani, I. Yamane, E. Honda, H. Hayashidani, Loss of milk yield due to Akabane disease in dairy cows, J. Vet. Med. Sci. 67 (2004) 287–290.

[20] T.J. Dixon-salazar, J.L. Silhavy, N. Udpa, J. Schroth, A.E. Schaffer, J. Olvera, V. Bafna, M.S. Zaki, H. Ghada, L.A. Mansour, L. Selim, S. Abdel-hadi, N. Marzouki, T. Ben-omiran, N.A. Al-saana, F.M. Soumez, F. Celep, K.V. Garimella, C. Sougnez, C. Russ, S.B. Gabriel, J.G. Gleeson, Exome sequencing can improve diagnosis and alter patient management, Sci. Transl. Med. 4 (2012), https://doi.org/10.1126/scitranslmed.3003544.

[21] T. Omatsu, S. Tsuchiaka, T. Hirata, Y. Shiroma, T. Omatsu, Y. Naoi, M. Oba, N. Nishiura, Y. Sassa, T. Furuya, M. Nagai, H. Ochiai, S. Tamaki, T. Mizutani, Detection of enterovirus genome sequence from diarrheal feces of goat, Virus Genes 48 (2014) 550–552.

[22] T.Y. Hur, Y.H. Jung, C.Y. Choe, Y.I. Cho, S.J. Kang, H.J. Lee, K.S. Ki, K.S. Baek, G.H. Suh, The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea, Korean J. Vet. Res. 53 (2013) 103–108.

[23] W. Zhang, S. Yang, T. Shan, R. Hou, Z. Liu, W. Li, L. Guo, Y. Wang, P. Chen, X. Wang, F. Feng, H. Wang, C. Chen, Q. Shen, C. Zhou, X. Hua, L. Cui, X. Deng, Z. Zhang, D. Qi, E. Delwart, Virome comparisons in wild-diseased and healthy captive giant pandas, Microbiome 5 (2017), https://doi.org/10.1186/s40168-017-0308-0.