Original Research Article

https://doi.org/10.20546/ijcmas.2017.609.150

Seasonal Abundance of Rice Leaf Folder and its Natural Enemies in Irrigated Rice Ecosystem

Vimal Kumar Singh¹, Sanjay Kumar²* and Arvind Kumar³

¹Programme Assistant/ Farm Manager SMS (Plant Protection), India
²Krishi Vigyan Kendra, Badaun (U.P.), India
³Krishi Vigyan Kendra, Moradabad (U.P.), India
*Corresponding author

A B S T R A C T

A field experiment on seasonal abundance of rice leaf folder and its natural enemies under irrigated condition was carried out on farmer’s fields in villages (Murchipur, Shivdaspur and Dabhasemar) of District- Faizabad (U.P). The incidence of leaf folder was relatively more in Kharif, 2013 as compared to Kharif, 2014. The maximum population and damage of leaf folder was recorded in village Dabhasemar followed by Shivdaspur. The predators i.e. spiders, coccinellids, ground beetles, earwigs, dragonflies and damselflies were dominant in both Kharif seasons. Highest population of spiders, coccinellids, and the ground beetles per 5 hills and per five sweeps was recorded at 75 to 90 days after transplanting, while the maximum population of earwigs, dragonflies and damselflies were recorded at 60 to 75 days after transplanting. Among parasitoids the Apanteles sp, Itoplectic sp, Xanthopimpla sp and Trichogramma sp were dominating. However, the maximum population of parasitoids was recorded between 75 to 90 days after transplanting.

K e y w o r d s
Rice leaf folder, Cnaphalcrocis medinalis, Natural enemies, Coccinellids and Trichogramma spp.

Introduction

India has the world’s largest area under Rice (Oryza sativa L.) with 44.1 million ha and is the second largest producers 105.48 million tons in 2014-15, next to China (Anonymous, 2016). Rice is a high energy food and play vital role in national food security. Rice contains high carbohydrates 77.84 per cent and low fat about 2.0 to 2.5 per cent. It is a good source of thiamine, riboflavin and niacin including eight essential amino acids (Prakash et al., 2007). Among the various insect-pests damaging the rice crop stem borer, gall midge, brown plant hopper and leaf folder are major pest in India (Anonymous, 2003).

Insect-pests damage rice crop at different stages of crop growth of which leaf feeding insect Rice leaf folder, Cnaphalcrocis medinalis (Guenee) is of major importance because of its ability to remove the chlorophyll content of the leaves results considerable reduction in yield.

The yield loss was recorded from 30-80 per cent due to leaf folder epidemic situation (Rani et al., 2007). Among the natural enemies of paddy viz. spider, dragonfly (Crocothemis sp.), damselfly (Agriocnemis sp.), predatory cricket, rove beetle (Paederu
fuscipes), ground beetle (Ophionea indica and Casnoidea indica), predatory grass hopper (Conocephalus sp.) and brown bug (Andrallus spinidens) were major one in rice ecosystem (Tiwari et al., 2001).

Materials and Methods

The survey was carried out to know the status of the leaf folder and their natural enemies i.e. predators and parasitoids under irrigated condition at various crop stages viz., maximum tillering, panicle initiation, flowering and dough stage of crop at farmers’ fields in surrounding villages of Crop Research Station, Masodha (NDUAT), Faizabad viz., Murchipur, Shivdaspur and Dabhasemar during two consecutive Kharif seasons of 2013 and 2014.

Observations

Leaf folder damages and the population of various natural enemies on farmers’ fields were recorded on 10 randomly selected hills with standard method adopted SES scale provided IRRI (1996). The population of adult moth of leaf folder and their natural enemies were recorded by five sweeps with insect collecting hand net at 5 places in rice field. Leaf folder damaged leaves were recorded based on total no. of leaves and damaged leaves (1/3 part folded)/5 hill. The data recorded thirty days after transplanting and up to fifteen days before harvesting at fortnight intervals.

Determination of correlation coefficients

The data on weather factors such as temperature and rainfall of the crop season during Kharif, 2013 and 2014 were obtained from the C.R.S. Masodha, Faizabad (U.P.) to correlate the occurrence of leaf folder and its natural enemies with weather factors. The pests were statistically analyzed in order to determine the correlation coefficients between occurrence of leaf folder and its natural enemies and weather factors.

\[r = \frac{\sum xy - \frac{\sum x \sum y}{N}}{\left(\sum x^2 - \frac{\sum x^2}{N} \right) \left(\sum y^2 - \frac{\sum y^2}{N} \right)} \]

Results and Discussion

Leaf folder incidence under irrigated condition

The leaf folder and its natural enemies complex were prominent at farmer’s fields of surrounding villages of Crop Research Station, Masodha, during Kharif 2013 and 2014 (Tables 1 and 2). The maximum population and damage of leaf folder was recorded in village Dabhasemar followed by Shivdaspur and Murchipur.

Murchipur

The maximum incidence of leaf folder as damaged leaves and adult population were recorded at 105 DAT and minimum at 30 DAT i.e. 10.94 per cent and 22.00 adults per five sweeps and 0.42 per cent and 11.80 adults per five sweeps respectively during Kharif, 2013.

During Kharif, 2014 the highest damaged leaves and population of leaf folder were recorded at 105 DAT and minimum at 30 DAT i.e. 9.02 per cent and 19.00 adults per five sweeps and 0.75 per cent and 6.60 adults per five sweeps respectively.

Shivdaspur

The incidence of leaf folder revealed that the per cent damaged leaves and population were
highest at 105 DAT \textit{i.e.} 19.49 per cent and 30.40 adults per five sweeps at 75 DAT respectively. The lowest damage and adult population recorded at 30 DAT \textit{i.e.} 0.47 per cent and 8.20 adults per five sweeps respectively during \textit{Kharif}, 2013.

However, during \textit{Kharif}, 2014 the maximum damaged leaves and population were observed at 105 DAT with 18.92 per cent and 33.40 adults per five sweep 90 DAT respectively and minimum at 30 DAT \textit{i.e.} 0.65 per cent and 8.20 adults per five sweeps respectively.

\textbf{Dabhasemar}

Damaged leaves by leaf folder and population were observed maximum at 105 DAT \textit{i.e.} 21.03 and 28.20 adults and minimum at 30 DAT \textit{i.e.} 1.23 per cent and, 7.40 adults per five sweeps respectively during \textit{Kharif}, 2013.

However during \textit{Kharif}, 2014 leaf folder damage and population was recorded minimum at 30 DAT \textit{i.e.} 1.28 per cent and 12.20 adults per five sweeps and maximum was found 22.91 at 90 DAT and 34.00 adults per five sweeps respectively during \textit{Kharif}, 2013.

\textbf{Coccinellids}

Data presented in (Tables 1 and 2) showed that the per hill coccinellids population was highest with 8.40 at 75 DAT, 7.60 at 90 DAT per 5 hill and 9.40, 7.60 adults per five sweeps during \textit{Kharif}, 2013 and 2014 respectively. The minimum population was found at 30 DAT with 2.80, 1.90 per 5 hill and 2.60, 1.60 adults per five sweeps during \textit{Kharif}, 2013 and 2014 respectively.

\textbf{Dragonflies}

Dragonfly population was highest at 60 DAT with 16.20 and 10.60 per five sweeps and minimum at 105 DAT with 4.60 and 2.40 90 DAT per five sweeps during \textit{Kharif}, 2013 and 2014 respectively.

\textbf{Ear wig}

The earwig showed maximum population at 60 DAT with 5.00 during \textit{Kharif}, 2013 and at 90 DAT with 2.20 per five sweeps in \textit{Kharif}, 2014. The minimum population was recorded
at 105 DAT 1.20 and 0.80 at 30 DAT per five sweeps during Kharif, 2013 and 2014 respectively.

Apanteles sp

The parasitoid *Apanteles sp* was recorded maximum at 90 DAT with 3.00 and 3.00 at 105 DAT per five sweeps and minimum was found at 30 DAT 0.40 and 0.60 per five sweeps, respectively.

Trichogramma sp

The *Trichogramma sp* activity was recorded maximum at 90 DAT with 6.60 and 4.20 per five sweeps and minimum were recorded at 30 DAT *i.e.* 0.80 and 0.80 per five sweeps during Kharif, 2013 and 2014 respectively.

Shivdaspur

Spiders

The highest spider population was recorded at 75 DAT *i.e.* 19.00 and 17.20 per 5 hills in both seasons *i.e.* Kharif, 2013 and 2014 and minimum was recorded at 30 DAT *i.e.* 3.20 and 3.20 per 5 hills during Kharif, 2013 and 2014 respectively. The populations were highest at 75 DAT by net sweeping with 12.60 and 13.80 per five sweeps in both experimental years (Tables 1 and 2).

Coccinellids

Coccinellids (adults and grubs) were highest at 90 DAT with 6.60 and 7.60 per hill in irrigated eco-system, minimum population was recorded at 30 DAT *i.e.* 1.80 and 1.60 at 45 DAT per 5 hills in both the experimental years 2013 and 2014 respectively. The population 8.80 and 10.80 per five sweeps were highest at 90 DAT and lowest at 75 DAT *i.e.* 2.80 and 3.00 at 30 DAT during Kharif, 2013 and 2014 respectively.

Dragonflies

Dragonflies’ population were recorded maximum at 60 DAT *i.e.* 11.80 and 10.80 per five sweeps, minimum at 30 DAT *i.e.* 1.20 and 0.60 at 105 DAT in both years during Kharif, 2013 and 2014 respectively.

Earwig

Maximum population of earwig at 90 DAT *i.e.* 2.40 and 3.80 at 90 DAT per five sweeps and lowest 0.40 at 45 DAT and 1.00 at 30 DAT were observed in both experimental years *i.e.* Kharif, 2013 and 2014 respectively.

Dabhasemar

Spiders

Spider population wolf spiders, long jawed spiders, orb spiders and lynx spiders *etc.* were dominating throughout cropping season in irrigated condition. The maximum population of spiders was observed at 90 DAT with 6.00, 13.6 at 60 DAT per 5 hills and 8.00 at 90 DAT, 10.40 at 75 DAT per five sweeps in both experimental years *i.e.* Kharif 2013 and 2014 (Tables 1 and 2).
Table 1: Occurrence of rice leaf folder and its natural enemies under irrigated condition during Kharif, 2013

Location/Village	DAT	Leaf folder	Natural Enemies													
		Spi	Cocc.	GB	Sp.	Cocc.	GB	Dam.	Drag.	EW	Zantho.	Itoplitic	Apen.	Tricho.		
		DL %	AV. No / 5 Sweeps	Sp.	Cocc.	GB	Sp.	Cocc.	GB	Dam.	Drag.	EW	Zantho.	Itoplitic	Apen.	Tricho.
Murchipur	30	0.42	11.80	4.40	2.80	1.60	2.60	2.60	4.40	3.20	5.00	1.40	0.80	0.60	0.40	0.80
	45	3.86	18.60	9.00	4.20	2.60	4.20	5.40	10.40	6.80	6.60	2.40	2.00	2.40	1.60	1.60
	60	8.88	24.40	17.40	5.80	5.80	9.60	8.40	10.00	5.60	16.20	5.00	1.80	3.20	2.40	1.40
	75	8.91	33.60	23.60	8.40	7.40	12.00	4.20	7.80	3.80	8.40	2.80	3.40	1.40	2.80	1.80
	90	10.88	28.20	10.20	7.00	6.20	6.80	9.40	12.60	6.80	4.80	2.40	4.60	3.60	3.00	6.60
	105	10.94	22.00	19.60	3.60	4.60	8.60	8.60	7.00	3.80	4.60	1.20	4.00	1.80	1.20	4.00
	-	7.32	23.10	14.03	5.30	4.70	7.30	6.43	8.70	5.00	7.60	2.53	2.77	2.17	1.90	2.70
Shivdaspur	30	0.47	8.20	3.20	1.80	1.00	1.20	4.00	8.60	2.40	1.20	1.00	0.40	0.40	0.00	0.00
	45	4.25	14.40	5.00	2.20	1.80	4.80	4.60	3.20	5.40	5.00	0.40	2.00	1.40	1.20	1.60
	60	10.21	25.20	13.80	4.60	3.60	5.40	4.80	5.40	4.00	11.80	4.40	1.20	1.60	1.60	1.40
	75	13.78	30.40	19.00	4.60	5.80	12.60	2.80	3.60	5.40	6.60	1.80	2.00	2.00	3.20	2.20
	90	15.89	28.20	7.60	6.60	4.20	4.20	8.80	5.60	5.60	5.80	2.40	1.80	3.00	2.20	3.00
	105	19.49	18.00	11.00	4.20	1.80	5.40	3.60	4.00	1.20	2.00	1.60	1.20	1.20	2.00	3.80
	-	10.68	20.73	9.93	4.00	3.03	5.60	4.77	5.07	4.00	5.40	1.93	1.43	1.60	1.70	2.00
Dabhasamer	30	1.23	7.40	2.60	1.00	0.60	0.8	0.80	2.60	1.00	2.40	0.20	0.00	0.00	0.40	0.00
	45	3.50	12.40	6.00	2.60	2.00	3.20	3.20	3.60	4.60	3.00	1.00	1.80	1.40	1.80	0.80
	60	11.42	22.00	5.40	4.40	5.40	5.20	5.20	7.40	6.40	8.00	5.00	1.80	2.60	1.40	1.60
	75	16.81	28.20	4.80	7.00	4.80	2.80	2.80	3.60	8.20	6.60	2.20	2.00	0.60	1.80	0.80
	90	18.71	27.20	6.00	5.20	6.00	8.00	8.00	8.80	5.00	2.00	1.80	1.40	1.80	3.20	4.60
	105	21.03	18.00	3.60	4.40	3.60	4.80	4.80	4.00	1.60	2.60	0.80	1.60	1.20	1.80	2.60
	Mean	12.12	19.20	4.73	4.10	3.73	4.13	4.13	5.00	4.47	4.10	1.83	1.43	1.27	1.73	1.73

DL- Damage leaf, Spi- Spider, Cocc.- Coccinfelid, GB- Ground beetle, Dam.- Damsel fly, Drag.- Dragon fly, EW- Ear wig, Zantho-Zanthopimpla sp, Itoplitic-Itoplitic sp, Apen.- Apentilous sp, Tricho.- Trichomma sp
Table 2 Occurrence of rice leaf folder and its natural enemies under irrigated condition during Kharif, 2014

Location/ Village	DAT	Leaf folder	Natural Enemies												
			AV. No/5 hill	AV. No/5 Sweeps											
	DL %	AV No/5 sweeps	Spider	Cocc.	GB	Spider	Cocc.	GB	Dam.	Drag.	EW	Zantho.	Itoplitic	Apen.	Tricho.
Murchipur	30	0.75 6.60	2.60 1.90 1.20	2.00 1.60 3.20	2.00	2.80	0.80	0.20	0.00	0.60	0.00				
	45	3.82 12.20	5.80 2.80 2.20	5.00 4.20 6.00	2.60	5.00	1.00	1.00	1.00	1.20	1.40	1.60			
	60	8.70 20.20	12.60 4.20 5.00	6.60 5.20 6.60	3.80	10.60	1.00	1.00	2.00	1.60	0.80				
	75	9.91 24.40	22.40 5.60 4.40	10.20 1.80 5.00	5.00	6.00	1.80	1.80	1.60	2.20	1.40				
	90	11.28 28.20	8.20 7.60 6.80	3.20 7.60 6.60	5.60	2.40	2.20	2.20	2.00	2.40	4.20				
	105	9.02 19.00	20.80 5.40 4.80	7.60 4.40 5.50	2.20	2.50	1.80	1.80	1.80	3.00	3.40				
		7.25 18.43	12.07 4.58 4.07	5.77 4.13 5.48	3.53	4.88	1.43	1.33	1.43	1.87	1.90				
Shivdaspur	30	0.65 8.20	3.20 3.60 1.20	3.20 3.00 3.80	2.40	4.40	1.00	0.20	0.80	0.40	0.60				
	45	4.07 17.00	8.40 1.60 2.40	5.20 3.20 7.20	7.60	5.20	2.00	1.40	2.20	2.20	2.00				
	60	11.56 22.80	16.20 8.20 5.60	10.8 5.20 10.60	5.00	10.80	3.60	2.00	1.40	2.60	1.80				
	75	14.51 31.80	17.20 7.60 6.20	13.8 3.40 6.20	3.60	9.00	3.60	2.40	2.80	1.80	2.20				
	90	16.00 33.40	10.40 5.00 7.60	5.40 10.8 14.40	8.40	5.60	3.80	4.40	4.20	2.20	6.20				
	105	18.92 22.40	13.20 3.40 2.00	5.60 7.20 3.80	4.00	0.60	1.00	1.40	2.00	1.40	1.20				
		10.95 22.60	11.43 4.90 4.17	7.33 4.57 7.67	5.17 5.93	2.50	1.97	2.23	1.77	2.33					
Dabhasamer	30	1.28 12.20	1.60 1.4 1.40	1.40 3.20 1.80	2.20	6.80	3.60	0.20	1.00	0.40	1.80				
	45	3.28 15.80	9.60 1.0 1.40	6.00 4.20 8.20	4.40	2.20	1.60	1.80	3.40	1.40	1.40				
	60	12.65 27.20	13.60 4.0 5.20	4.60 11.00 9.00	4.40	13.40	6.00	2.00	3.40	2.00	1.40				
	75	17.05 29.80	8.40 9.8 5.40	10.40 4.20 9.00	5.20	5.40	1.60	2.80	2.00	2.60	1.40				
	90	18.50 34.00	8.40 7.2 5.80	5.80 8.40 13.40	7.40	5.40	2.60	1.80	2.40	4.60	4.80				
	105	22.91 21.60	11.60 3.0 1.80	10.20 8.00 7.20	3.80	2.60	2.60	1.40	1.80	1.40	3.60				
Mean		12.61 23.43	8.87 4.40 3.50	6.40 6.50 8.10	4.57 5.97	3.00	1.67	2.33	2.07	2.40					

DL- Damage leaf, Spi- Spider, Cocc.- Coccinellid, GB- Ground beetle, Dam.- Damsel fly, Drag.- Dragon fly, EW- Ear wig, Zantho-Zanthopimpla sp, Itoplitic- Itoplitic sp, Apen.- Apentilous sp, Tricho.- Trichogramma sp
Table.3 Correlations of leaf folder and natural enemies with abiotic factors under irrigated condition during *Kharif*, 2013 and 2014

Year of Observation	Location/Village	Variables	Leaf folder	Natural Enemies					
			DL %	Per 5 hill	Per 5 sweeps				
			AV. No / 5 Sweeps	Spider	Insect	Spider	Insect		
2013	Murchipur	Temperature °C	Mini	-0.761	-0.450	-0.489	-0.335	-0.431	-0.175
			Maxi	-0.711	-0.744	-0.662	-0.676	-0.674	-0.119
		Rain fall (mm)	Mini	-0.049	0.471	0.471	0.527	0.528	-0.248
			Maxi	-0.904*	-0.372	-0.301	-0.433	-0.265	-0.135
	Shivdaspur	Temperature °C	Mini	-0.892*	-0.479	0.065	-0.701	-0.519	-0.176
			Maxi	-0.867*	-0.724	0.031	-0.782	-0.341	-0.262
		Rain fall (mm)	Mini	0.040	0.365	-0.177	0.182	-0.438	0.029
	Dabhasamer	Temperature °C	Mini	-0.910*	-0.915*	-0.476	**0.959**	-0.292	**0.828**
			Maxi	-0.525	-0.526	-0.626	-0.417	-0.680	-0.406
		Rain fall (mm)	Mini	-0.017	0.062	0.294	-0.164	0.528	-0.128
2014	Murchipur	Temperature °C	Mini	-0.874*	-0.899*	-0.519	-0.494	-0.213	**0.813**
			Maxi	-0.520	-0.643	-0.526	-0.160	-0.432	-0.415
		Rain fall (mm)	Mini	0.130	0.223	0.249	0.137	0.543	0.102
	Shivdaspur	Temperature °C	Mini	-0.850*	-0.840*	-0.488	-0.646	-0.615	-0.686
			Maxi	-0.489	-0.403	-0.368	-0.418	**0.875**	-0.125
		Rain fall (mm)	Mini	0.147	0.044	-0.137	0.322	0.413	-0.275

Significant at 5% level *
Significant at 1% level **
DL- Damage leaf
Coccinellids

The highest population of coccinellids recorded at 75 DAT with 7.00 and 9.80 at 75 DAT per 5 hills and 8.0 at 90 DAT and 11.00 at 60 DAT per five sweeps in season Kharif, 2013 and 2014. The minimum population was recorded at 30 DAT i.e. 1.0 and 1.0 at 45 DAT per five hills and 0.80 at 30 DAT and 3.20 at 30 DAT per five sweeps during Kharif, 2013 and 2014 respectively.

Dragonflies

Maximum population of dragonflies was recorded as 8.00 at 45 DAT and 13.40 at 60 DAT per five sweeps in both season i.e. Kharif, 2013 and 2014, minimum as 2.0 at 90 DAT and 2.20 at 45 DAT per five sweeps respectively.

Apanteles sp

The Apanteles sp activity was highest with 3.2 at 90 DAT and 4.60 at 90 DAT per five sweeps and lowest population was observed with 0.40 at 30 DAT and 0.40 at 30 DAT during both Kharif season (Tables 1 and 2).

Trichogramma sp

The maximum population of Trichogramma sp as 4.60 at 90 DAT, and 4.80 at 90 DAT per five sweeps while minimum was recorded as 0.80 at 30 DAT, 1.40 at 45 DAT during both experimental years, respectively. Minimum population (per 5 hills and per five sweeps) of spiders, coccinellids ground beetles damselflies, dragonflies, earwigs and the parasitoids Apanteles sp, Itopectic sp, Xanthopimpla sp and Trichogramma sp was recorded on 30 DAT of crop during both experimental years. Similar results were observed by Tiwari et al., (2001).

Correlation coefficient between weather parameters and rice leaf folder and their natural enemies

Murchipur

Leaf folder

Negative correlations of leaf folder population with minimum and maximum temperature were -0.450, and -0.744 and positive correlation with rain fall 0.471 respectively, while the damage by leaf folder showed negative correlations with minimum and maximum temperature and rainfall (-0.761, -0.711 and -0.049) respectively in Kharif, 2013. During Kharif, 2014, the population of leaf folder was negative significant correlations with maximum temperature and non- significant correlation with minimum temperature (-0.915*, and -0.526) and positive correlation with rain fall (0.062) respectively, while negative correlation was found between leaf folder damage and minimum and maximum temperature and rainfall (-0.910*,-0.525 and -0.017) respectively and its damage showed significant negative correlations with maximum temperature (Table 3).

Natural enemies

The population of natural enemies was non-significantly negatively correlated with minimum and maximum temperature (-0.335 and -0.676), while non-significant positive correlations with rainfall (0.527). The population per five sweeps showed non-significant negative correlations with minimum and maximum temperature and rainfall (-0.175, -0.119 and -0.248) in Kharif, 2013. However during Kharif 2014, per 5 hill population was significantly negatively correlated with maximum temperature (-0.959**) and non-significantly negatively correlated with minimum temperature and
rainfall (-0.417 and -0.164), while it was significant negative correlation with maximum temperature (-0.828*) and non-significantly negatively correlated with minimum temperature and rainfall (-0.406 and -0.128) per five sweeps respectively. The leaf folder population showed non-significantly negatively correlation with minimum and maximum temperature and non-significantly positive correlation with rainfall during Kharif, 2013 and 2014 and damage per cent was significantly negatively correlated with minimum and maximum temperature was observed in villages Murchipur, Shivdaspur and Dabhasemar during Kharif, 2013. The present findings are comparable with the finding obtained by Bhaskar (1994); Ram et al., (2014), Nigam et al., (2009) and Netam and Gupta (2015).

Shivdaspur

Leaf folder

It was evident from the data that the damage by leaf folder showed significant negatively correlations with minimum and maximum temperature (-0.904* and -0.821*), and non-significant negatively correlations with rainfall (-0.052). The population per five sweeps had non-significant negative correlation with minimum and maximum temperature (-0.372 and -0.644), while non-significant positive correlation with rain fall (0.400) during Kharif, 2013. However, during Kharif 2014, the leaf folder damage was significantly negatively correlated with maximum temperature (-0.874*) and non-significantly negative correlation with minimum temperature and rainfall (-0.520 and -0.130) while significantly negatively correlated with maximum temperature (-0.899*) and non-significantly negatively correlation with minimum temperature (-0.643) and rainfall showed positive correlation (0.233) (Table 3).

Natural enemies

The population of natural enemies showed non-significant negative correlations were with minimum and maximum temperature (-0.433 and -0.692) whereas non-significant positive correlation with and rainfall (0.364) during Kharif, 2013. The population per five sweeps with minimum and maximum temperature (-0.135 and -0.250) was non-significantly negatively correlations and non-significant positive correlations with rainfall (0.025) in the same year.

However, during Kharif, 2014 the natural enemies population per 5 hill was showed non-significant negative correlations were with minimum and maximum temperature (-0.494 and -0.160), whereas non-significant positive correlation with and rainfall (0.137), the population per five sweeps with maximum temperature significant negative correlations was (-0.813*) and non-significantly negatively correlations with minimum temperature (-0.415) and non-significant positive correlations with rainfall (0.102) (Table 3).

Dabhasemar

Leaf folder

The results of correlation studies found on leaf folder damage were negative significant correlation with minimum and maximum temperature (-0.892* and -0.821*) while positive non-significant correlation was found with rainfall (0.040), whereas its population showed non-significant negative correlation with minimum and maximum temperature (-0.479 and -0.724) while positive non-significant correlation with rainfall during Kharif 2013. However, during Kharif 2014, its population was significant negative correlation with maximum temperature (-0.899*) and non-significant negative
correlation with minimum temperature (-0.403) while significantly positively correlated with rainfall (0.0.044) and its damage was negatively significantly correlated with maximum temperature (-0.850*) and non-significant negative correlation with minimum temperature and rainfall (-0.489 and -0.147) respectively.

Natural enemies

The results of correlation studies showed that per five hill population of natural enemies was non-significantly negatively correlated with minimum and maximum temperature (-0.701 and -0.782) and non-significantly positively correlated with rainfall (0.182).

The population per five sweeps showed non-significant negative correlations with minimum and maximum temperature (-0.176 and -0.262) and non-significantly positively correlated with rainfall (0.029) in Kharif, 2013. However, during Kharif 2014 per 5 hill population was non-significantly negatively correlated with minimum and maximum temperature (-0.646 and -0.418), while it was non-significant positive correlation with rainfall (0.322) whereas non-significantly negatively correlated with minimum and maximum temperature and rainfall (-0.686, -0.125 and -0.275) per five sweeps, respectively (Table 3). The present findings are comparable with the finding obtained by Bhaskar (1994), Ram et al., (2014), Nigam et al., (2009) and Netam and Gupta (2015).

Acknowledgements

The authors are thankful to the Director of Research, Narendra Dev University of Ag. and Tech., Kumargang, Faizabad and Head, Department of Entomology, College of Agriculture for the unstinted support and other research facilities provided to carry out the investigation.

References

Anonymous, 2003. Progress Report 2002. Vol.-2 (Entomology and Pathology). All India Coordinated Rice Improvement project, Directorate of Rice Research, Rajendra Nagar, Hyderabad, A.P, India. pp. 36-39.

Anonymous, 2016. Annual Report 2016-17, Department of Agriculture, Cooperation and Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India Krishi Bhawan, New Delhi (India). pp. 194.

Bhasker, L. V., 1994. Efficacy of certain insecticides against pest complex of Rice (Oryza sativa Linn.) M. Sc. (Agri.) Thesis, University of Agricultural Sciences, Hyderabad, Andhra Pradesh (India).

Bhattacharya, B., Basit, A. and Saikia, D. K. 2006. Parasitoids and predators of rice insect-pests of Jorhat district, Journal of Biological Control 20 (1): 37-44.

Khan, Z. H., and Ramamurthy, V. V. (2004). Influence of weather factors on the activity of rice leaf folder, Cnaphalocrocis medinalis (Guenee). Annals of Plant Protection Sciences 12(2):267-270.

Netam, C. S., and Gupta, A. K. 2015. Seasonal incidence of rice leaf folder Cnaphaocrocis midinalis (Guenee) in agro climatic condition of baster plateau zone. Annals of Plant and Soil Research, 17(1): 24-28.

Nigam V. D., Sharma, R. C. and Ali, S. 2008. Evaluation of Rice germplasm at different cropping stages for resistant to Cnaphalocrocis medinalis. Annals of Plant Protection Sciences, 16(2): 329-332.

Prakash, A., Rao, J., Singh, O.N., Tyagi, J.P., Singh, S. and Rath, P.C. 2007. Rice the queen of cereal, AZARA Publication CRRI, pp. 1-40.
Ram, M., Sachan, S. K., and Singh, G. (2014). Study on population buildup of rice. Rice leaf folder, *Cnaphalocrocis medinalis* in relation to weather factor. *International Journal of Advanced Research* 2(10): 75-77.

Rani, W.B., Amutha, R., Muthulakshmi, S., Indra, K. and Mareesawri, P. 2007. Diversity of rice leaf folders and their natural enemies. *Research Journal of Agriculture and Biological Science* 3(5): 394-397.

Tiwari, V.K., Dubey, O. P. and Tiwari, S.K. 2001. Predatory status of paddy pests in Jabalpur region. *Research-on-Crops* 2(3): 375-377.

How to cite this article:

Vimal Kumar Singh, Sanjay Kumar and Arvind Kumar. 2017. Seasonal Abundance of Rice Leaf Folder and its Natural Enemies in Irrigated Rice Ecosystem. *Int.J.Curr.Microbiol.App.Sci.* 6(9): 1244-1254. doi: https://doi.org/10.20546/ijcmas.2017.609.150