Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

Rinki Ratnapriya* and Anand Swaroop*

Abstract
Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management.

Genetics of retinal degenerative diseases
The retina is our window to the outside world and is the site of capture, integration and processing of visual information. The vertebrate retina consists of a retinal pigment epithelium (RPE) monolayer, Müller glial cells, and six major types of neurons (Figure 1a) [1,2]. In mouse and human retinas, rods constitute over 95% of the photoreceptors and are responsible for night vision; whereas different cone sub-types (red, long wave-length (L); green, medium wave-length (M); and blue, short wave-length (S)) are associated with daylight vision, color perception and high visual acuity [3,4]. The distribution of rod and cone photoreceptors is not uniform in the retina; for example, in humans, the central part of the retina (fovea) and a 6 mm² cone-rich area around the fovea (macula) are responsible for high-resolution central vision (Figure 1b) [5]. Rhodopsin is the visual pigment in the rods, whereas the three kinds of cones in humans contain a distinct visual pigment (L-, M- and S-opsin in L, M, and S-cones, respectively) [4]. Development and homeostasis in the retina must be stringently controlled for normal vision [6].

The dysfunction or death of retinal photoreceptors is the primary cause of vision loss in the majority of retinal degenerative diseases (RDDs) [7,8], which are clinically and genetically heterogeneous. In general, loss of photoreceptors in the macular region is termed macular degeneration and results in central vision defects. By contrast, the loss of peripheral vision - for example, in retinitis pigmentosa (RP) - generally starts with rod dysfunction or death that is followed by cone degeneration. RDDs are associated with a diverse spectrum of phenotypes. Some, such as RP, congenital and early-onset retinal degeneration including Leber congenital amaurosis (LCA), and cone-rod dystrophies, are monogenic and non-syndromic. Some syndromic diseases, including Bardet-Biedl syndrome (BBS) and Usher syndrome, exhibit a highly penetrant retinal degeneration phenotype with multiple affected tissues and are also monogenic. Other RDDs, such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy, are complex multifactorial entities.

Monogenic RDDs, by definition, are often caused by mutations in a single gene and have a Mendelian pattern of inheritance (dominant, recessive, or X-linked). Genetic-linkage studies in large pedigrees have led to the identification of almost 200 causative genes [9]. Genetic defects in monogenic RDDs are highly penetrant, with little influence of non-genetic factors; nevertheless, clinical severity has
often been difficult to correlate to genetic mutation because of variable penetrance, mutations in more than one gene, or modifier variants. The clinical manifestations in complex multifactorial RDDs result from the interplay among multiple susceptibility genes and epigenetic and/or environmental factors; therefore, conventional linkage and positional cloning methods have not been very effective in identifying the underlying genetic cause(s). Candidate gene and genome-wide association studies (GWAS) have been successful in identifying susceptibility loci for complex RDDs. A recent meta-analysis of GWAS discovered at least 19 genes and associated cellular pathways for AMD pathogenesis; these included the complement system (CFH, C2/CFB, C3 and CFI), the high-density lipoprotein pathway (LIPC and CETP), the extracellular or collagen matrix pathway (TIMP3, COL8A1 and COL10A1) and the angiogenesis signaling pathway (VEGFA) [10]. Several loci have also been identified for primary open angle glaucoma [11-13] and diabetic retinopathy [14]. The associated alleles do not, however, specify causality, and further genetic and functional dissection of susceptibility loci will be crucial for understanding their roles in disease pathogenesis.

The discovery of new RDD genes helps in the elucidation of the molecular pathways that underlie retinal development and homeostasis, and in delineating the genetic underpinnings of the degenerative process. Several recent reviews have provided excellent synopses of the genetic and biological features of human RDDs [7,8,15-18]. We therefore focus on recent advances in next-generation sequencing (NGS) methods [19] (Boxes 1 and 2) that have provided an unprecedented opportunity for the unbiased discovery of genes and causal variants, and for the comprehensive dissection of the genetic architecture of RDDs. We also highlight the merits and limitations associated with different NGS methods, and present a framework for integrative analyses to elucidate a more complete, multidimensional view of genomic function in retinal health and diseases. Finally, we discuss the progress and challenges in the application of NGS approaches for diagnosis and management of RDDs.

NGS approaches for gene identification in Mendelian RDDs

Extensive genetic and clinical heterogeneity is observed in RDDs that have Mendelian inheritance. Although almost 200 genes have been identified, the genetic defects in many patients are still unknown. NGS offers a rapid, high-throughput and cost-effective approach to identify mutations underlying monogenic disorders.

Whole-exome sequencing

A majority of Mendelian diseases are caused by highly penetrant mutations that disrupt protein coding or splice site sequences. Conventional methods of gene identification involve linkage analysis followed by sequencing of candidate genes in the critical linked region. However, small pedigrees and simplex cases (Box 1) with uncertain inheritance patterns make it difficult to identify genetic defects using the positional-candidate strategy. Whole-exome sequencing (WES) involves the capture and sequencing of all coding exons (1 to 2% of the whole genome) (Box 1) and has become an ideal choice for Mendelian disease gene discovery with or without prior linkage information [20-24] (Figure 2). A majority of commercially available exome capture kits target with high-confidence a subset of genes annotated by the Consensus Coding Sequence (CCDS) project [25] and
the RefSeq collection [26]. Ever since it was first described in 2009 as proof-of-concept for Freeman-Sheldon syndrome [21], several studies have successfully employed WES for identifying dozens of genes in inherited diseases. With regard to retinal phenotypes, it was first employed to study an Ashkenazi Jewish family, in which WES of three affected siblings revealed a mutation in a novel gene, DHDDS, as a cause of RP [27]. Table 1 provides a summary of published reports of novel retinal disease genes discovered by WES.
Candidate exome capture

In a slight variation of WES, candidate exome sequencing captures the selected coding regions that are relevant to a specific genetic trait. Consequently, the examination of a smaller genomic region allows better utilization of resources and the analysis of a larger group of patients. This approach has been useful for ciliopathies, where almost 2,500 genes that are implicated in ciliary function can serve as potential candidates [58]. Candidate exome capture of about 13,000 exons from 828 candidate genes recently identified mutations in the SDCCAG8 gene in patients with retinal-renal ciliopathies [56]. Mutations in a single gene can cause overlapping syndromic phenotypes, and so the candidate exome capture strategy helps in refining genotype-phenotype correlations.

Whole-genome sequencing

WES, candidate exome capture and targeted re-sequencing can examine only a fraction of the genome and present additional challenges (Table 2). A role for variants beyond coding regions has occasionally been reported in Mendelian traits, including in vision disorders; for example, intronic mutations in RP1 [59] and OFD1 [53] are implicated as causes of RP, and CSPG2 variants may cause congenital vitreoretinopathies [60]. The inability of WES to assess the impact of non-coding, conserved or regulatory regions, and other long-range genomic alterations has encouraged researchers to move towards whole-genome sequencing (WGS), which is becoming more cost-effective. Nevertheless, progress has been slow because of the technological limitations associated with the analysis and handling of large datasets.

Targeted re-sequencing

Mendelian traits have often been mapped using multi-generational families, narrowing the genomic search space for causal gene identification. Owing to the limited number of meiotic crossing-overs, however, linkage intervals can often span several megabases and include tens or hundreds of transcribed sequences. Intelligent guesses to select and sequence candidate genes can lead to labor-intensive and expensive efforts that often provide limited data on the coding regions of annotated genes. NGS can now be used to capture and sequence large genomic regions of interest, expediting the discovery of causal genes (Table 1).

RNA-Seq or transcriptome sequencing

The transcriptome represents a collection of all transcribed sequences (RNAs), both protein-coding and non-coding, in a cell type or particular tissue and at a specific stage of development or age. While microarray technology and methods for serial analysis of gene expression (SAGE) have been valuable, transcriptome profiling using NGS technology (RNA-Seq) is becoming popular because of its ability to survey the transcriptome in a high-throughput and quantitative manner and at low cost [61]. In addition, RNA-Seq has proven useful for annotating protein-coding genes, discovering novel alternatively spliced transcripts.
and non-coding RNAs (ncRNAs), single nucleotide polymorphism (SNP) profiling, and the detection of gene fusions or rearrangements [62]. DNA-Seq approaches generate a large number of variants and often secondary filtering is required to prioritize the candidate disease genes. Tissue-specific expression profiles therefore offer a valuable first-level screen to identify relevant disease-causing variants (Figure 2).

Profiling of alternative transcripts

In humans, a majority of genes (>90%) undergo alternative splicing to generate tissue-specific and functionally diverse protein isoforms [63]. The role of novel transcripts in diverse pathways and disease causation is slowly being recognized [64,65]. Retina-specific isoforms of RPGR and BBS3 have been implicated in X-linked RP and BBS, respectively [66,67]. In addition, mutations in the spliceosome-component genes (PRPF31, PRPF3, and PRPF8) are associated with RP [68]. Thus, retina-specific RNA or transcriptome profiling provides an excellent opportunity to identify novel functionally relevant transcripts. As novel transcripts may be present at low-copy number, RNA CaptureSeq (Box 1) can provide an alternative approach for enrichment [69].

Non-coding RNA

ncRNAs appear to play prominent and diverse roles in normal development, physiology, and disease. Several specific microRNAs (miRNAs) are expressed in the retina (miR-96, miR-182, and miR-183) [70,71] and RPE (miR-204/211) [72]. Long antisense (non-coding) transcripts have been associated with eight transcription factors that are involved in eye development [73], and two ncRNAs, TUG1 [74] and Six3OS [75], have been linked to retinal differentiation. Inactivation of DICER1, an RNase III endonuclease that is essential for the production and function of mature miRNAs, has been implicated in retinal degeneration [76], and Alu RNA toxicity has been suggested to a play a role in AMD [77]. Thus, further exploration of ncRNAs seems essential, and RNA-Seq offers a starting point for the identification of novel ncRNAs in development and disease.

SNP profiling

Genetic variations within the transcribed (coding or non-coding) regions of the genome can alter the expression or function of the encoded sequence. Therefore, RNA-Seq can provide profiles of genetic variants in both the quasi-complete set of transcribed genes (mRNAs) and ncRNAs in a cost-effective manner without the need for target-probe hybridization, a necessary but inefficient step in capture-based methods. However, RNA-Seq should be applied with caution, as it is possible to miss variants that result in the loss of a gene product.

ChiP-Seq-based approaches

The genomic location and function of regulatory elements contributes significantly to the development of human
Chromatin immunoprecipitation followed by NGS (ChIP-Seq) can be used to profile cis-regulatory elements (CREs) (Box 1), which include transcription factor binding sites clustered within promoters, enhancers and silencers [78]. ChIP-Seq has been employed to generate genome-wide maps of CREs for two key photoreceptor-specific transcription factors, CRX [79] and NRL [80]. In addition, these data have permitted the prioritization of disease-associated genes or variants for further study. Not surprisingly, several CRX and NRL target genes are associated with RDDs [79,80], and recently, CRX ChIP-Seq data were used to filter the candidates to identify mutations in MAK (encoding a regulator of ciliary length) as a cause of autosomal recessive RP [57].

Table 1 List of novel genes identified in retinal and macular degeneration using next-generation sequencing approaches

Method	Disease	Gene symbol	Inheritance	Aberration type	Reference(s)
Whole-exome sequencing	Retinitis pigmentosa (RP)	DHDDS	Recessive	Missense	[27]
		MAK	Recessive	Alu insertion	[28]
		GNPFG	Recessive	6-bp deletion	[29]
		EMC1	Recessive	Missense	[30]
		GPR125	Recessive	Frame-shift, splice-site	[30]
		KIAA1549	Recessive	Frame-shift	[30]
	Leber congenital amaurosis (LCA)	NMMAT1	Recessive	Missense and truncation	[32-35]
		KCNJ13	Recessive	Truncation	[36]
		DTHD1	Recessive	Missense	[30]
	Congenital stationary night blindness (CSNB)	LRIT3	Recessive	Missense and truncation	[37]
		GPR179	Recessive	Missense and truncation	[38]
	Ciliopathy with skeleton abnormality	WDR19	Recessive	Missense and truncation	[39]
	High myopia	ZNF644	Dominant	Missense	[40]
	Bardet-Biedl syndrome (BBS)	LZTFL1	Recessive	Truncation	[41]
	Nephronophthisis with retinal degeneration	ZNF423 and CEP164	Recessive	Missense, truncation, loss of stop codon	[42]
	Usher syndrome	HARS	Recessive	Missense	[43]
	Benign fleck retina	PLA2G3	Recessive	Missense and truncation	[44]
	Cone-rod dystrophy	RAB28	Recessive	Truncation	[45]
		ACD5	Recessive	Frame-shift	[30]
		C2Iorf2	Recessive	Frame-shift	[30]
	Knockloch syndrome and retinal dystrophy	ADAMTS18	Recessive	Missense	[46,47]
Targeted sequencing	RP, cone-rod dystrophy	CBFn37	Recessive	Truncation	[48]
	AMD	CFH	Dominant	Missense	[49]
		CFI	Dominant	Missense	[50]
	Usher syndrome	ABHD12	Recessive	Truncation	[51]
	CSNB	GPR179	Recessive	Large insertion	[52]
	X-linked RP	OFD1	X-linked	Intronic mutation	[53]
	Jobert syndrome	TMEM237	Recessive	Truncation	[54]
	Familial exudative vitreoretinopathy	TSPAN112	Dominant	Missense	[55]
Candidate exome capture	Retinal-renal ciliopathy	SDCCAG8	Recessive	Truncation mutations	[56]
cis-Regulatory mapping	RP	MAK	Recessive	Truncation mutation	[57]

All of the diseases listed here, except AMD, are monogenic. AMD is a multifactorial and complex disease.
Table 2 A comparison of next-generation sequencing methodologies

Method	Advantages	Limitations	Applications
Whole-exome sequencing or candidate exome capture	Customized, economical compared to WGS, manageable data size	Captures genetic variants only in the coding regions of the genome; inefficient hybridization step; high DNA input; susceptible to capture bias	SNP and indel discovery in coding exons; suitable for the identification of causal genes in high-penetrance Mendelian diseases
Targeted re-sequencing	Customized, economical compared to WGS	Genetic variant discovery is limited by array design; high DNA input; inefficient hybridization step; captures only a small proportion of the genome	SNP and indel discovery; suitable for sequencing linkage intervals and genomic regions at or around associated signals
Whole-genome sequencing	Uncovers genome-wide coding and non-coding variants, no capture bias	Expensive; very large dataset; analysis methods are still evolving	Genome-wide SNP, indel and CNV discovery; suitable for rare variant discovery in Mendelian, complex or sporadic traits
Exome-chip	Cost-effective method for evaluating known rare variants (MAF of 1 to 5%)	Does not identify novel variants; limited to coding region; limited representation of intronic and regulatory variants	Genome-wide association analysis with rare variants
RNA-Seq	Array-independent profiling of the transcriptome	High coverage required for the identification of low-copy transcripts; not applicable for the identification of variants that cause loss of protein; limited by tissue- or cell-type availability	Genome-wide expression profiling; alternative transcript identification; non-coding RNA detection; SNP profiling; eQTL analysis
ChiP-Seq	Genome-wide profiling of epigenetic marks (DNA methylation and histone modifications) and cis-regulatory elements	Dependent on the quality of antibody; requires high input; analysis methods still evolving; high coverage needed for accurate profiling	DNA methylation; histone modifications; tissue-specific enhancer profiling

Epigenetic profiling of retina, RPE and other eye tissues or cells, in combination with gene profiling, should provide valuable insights into disease mechanisms. The Encyclopedia of DNA Elements (ENCODE) project has systematically integrated gene expression data with information on regulatory elements, transcription factor binding, and epigenetic modifications for as much as 80% of the genome [85]. Expression profiles and other data relevant to retinal and macular diseases have not, however, been incorporated as yet.

NGS approaches for complex traits

The identification of the genetic susceptibility variants underlying complex multifactorial disorders requires extensive efforts including large patient cohorts and cumbersome analytical tools. GWAS have been successful in uncovering associated loci for numerous diseases, but such studies only examine common (tagging) variants in populations and additional investigations are necessary to identify causality. In this section, we provide an overview of the possible applications of NGS, with an emphasis on the study design for complex diseases.

GWAS and meta-analysis

GWAS have begun to unravel the genetic architecture of complex traits. Hundreds of susceptibility loci associated with multifactorial diseases have now been discovered [86]. AMD provided the first example of GWAS success with the identification of CFH susceptibility loci [87]. Multiple GWAS and large-scale meta-analysis studies have to date revealed as many as 19 AMD susceptibility loci [10,88]. However, the associated variants are not causal and do not explain a substantial fraction of genetic heritability. Rare and structural variants at these associated susceptibility loci might help to explain the causality and missing heritability [89]. NGS approaches have made the identification of rare alleles feasible and have ushered in a new era for a second-generation of association studies in complex diseases (Figure 3).

Rare variant identification

The hypothesis that rare variants influencing a complex trait should co-localize with associated common alleles has accelerated targeted re-sequencing of the GWAS loci [90]. Such studies have led to the identification of rare coding variants, R1210C in CFH [49] and G119R in CFI [12], that are associated with AMD. WES studies are also being performed to test the association of rare coding variants with a complex phenotype [91,92]. However, such studies require a large sample size to achieve the statistical power necessary to detect a significant association that can then justify multiple testing. In the absence of such a dataset, extreme phenotype study design, in which samples from both ends of the phenotype distribution are analyzed, can serve as a suitable alternative (Figure 3) [93]. In addition, inherited macular dystrophies share common clinical characteristics with AMD, and occasionally genes identified in heritable forms, such as TIMP3 [94] and ABCA4 [95], have been associated with AMD [88,96]. Thus, WES and WGS in families with macular dystrophies (and occasionally in available AMD families) can uncover rare variants that might contribute to disease pathophysiology.
Copy number variations
Large DNA stretches (>1 kb) that exhibit variable copy number when compared to the reference genome contribute significantly to population dynamics and evolution. Comparative genomic hybridization (CGH) arrays and SNP arrays have been commonly used to detect copy number variations (CNVs) that are implicated in neurodevelopmental (autism, schizophrenia, and intellectual disability) and immune-related diseases (Crohn’s disease, psoriasis, HIV/AIDS, rheumatoid arthritis, and type I diabetes) [97]. The role of CNVs is under investigation in AMD [98-100]. An 84-kb deletion spanning CFHR1 and CFHR3 has been associated with protection against the development of AMD [101-103]. A recent GWAS has identified CNVs at NPHP1 and EFEMP1 as potential candidates for AMD association [100]. CNVs in additional genes, such as CCR3, CFH, CX3CR1, ERCC6, HTRA1, VEGF, GSTM1, and GSTT1, have also been associated with AMD [104]. Nevertheless, a complete spectrum of CNVs in complex diseases (including AMD) has not been realized yet because of the limited resolution of current methods. NGS-based CNV detection utilizes high-coverage WGS data for unbiased detection of CNVs at much higher resolution than has been available to date, providing information about CNV breakpoints and the location of copy number gains [105,106]. Nevertheless, methodologies for CNV detection using NGS lack well-defined workflows, protocols, and quality-control measures, imposing substantial computational and bioinformatic challenges [107]. In addition, databases for human structural variation are limited and contain inadequate information on most breakpoints. A validated pipeline for structural variation analysis using NGS data is highly desirable for utilizing the full potential of CNVs for complex trait analysis.
Exome-chip
A common-variant-based GWAS approach has not explained the complete genetic variance observed in complex traits. Missing heritability might be explained by rare to low frequency variants (minor allele frequency (MAF) of 1 to 5%) [90,108,109]. NGS studies, such as the 1,000 Genomes Project [110] and the NHLBI Exome Sequencing Project [111], have identified a large number of such variants, leading to a second-generation genotyping array for testing the association of rare variants in complex traits [112]. Ideally, all common GWAS variants that are associated with distinct phenotypes can be included in such exome-chips. Although any regulatory or novel rare variant is not identified by this approach in RDDs, exome-chips offer an economical and rapid platform that can be used to test the hypothesis that certain rare variants are causal alleles in common diseases. Such studies are currently in progress as part of a large AMD consortium and should identify novel variants and genes in the near future.

Expression quantitative trait loci analysis
A vast majority of disease-associated SNPs identified in GWAS are reportedly located in non-coding regions of the genome, and their functional role in causing the disease is generally not understood. Arguably, such variants might regulate gene expression and act as expression quantitative trait loci (eQTL) [113]. Combined analysis of genotyping with RNA-Seq data provides a unique opportunity to correlate genetic variations and expression level at disease-associated loci [114]. Expression profiling is more relevant, however, when implemented in disease-affected tissues or cell types. Although little has been reported on the importance of eQTLs in RDDs, the integration of data on modifier and susceptibility variants with the NGS expression data would facilitate the elucidation of complex regulatory networks that can provide insights into novel intervention strategies.

Making sense of the vast amount of NGS data for disease gene identification
The identification of relevant candidate disease-causing variants from NGS data requires filtering strategies that depend on multiple factors, such as the availability of well-phenotyped patient cohorts, knowledge of the mode of inheritance, and large sample sizes. Computational tools that can predict the impact of a variant on protein function can assist in segregating the deleterious variants from neutral ones [115]. A general guideline for candidate variant identification is provided for Mendelian (Figure 2) and complex RDDs (Figure 3), but each biological question might require a unique approach. For example, homoyogosity and linkage data can complement WES or targeted sequencing in Mendelian RDDs [30,31,45-47]. Similarly, the integration of GWAS data with rare variant, eQTL or pathway-based analyses can yield meaningful results for complex traits such as AMD. Ultimately, validation of genetic causality would require additional investigations using in vitro assays and/or model organisms.

NGS in diagnostics and disease management for RDDs
Over 200 genes have been implicated in RDDs, offering an opportunity to clarify etiology, provide prognosis, and calculate associated risk(s). Nevertheless, molecular diagnosis and counseling are complicated by genetic heterogeneity and extensive phenotypic variability. Mutations in the same gene can cause different phenotypes and similar clinical findings can result from mutations in different genes. For example, RPGR and RP2 are primary causative genes in X-linked RP, but recent studies have reported the prevalence of RP2 and RPGR mutations even in simplex retinal degeneration in males [116] and in pedigrees with ‘apparent’ autosomal dominant inheritance of RP [117]. Thus, the boundaries of distinct clinical entities can be blurred, demanding more comprehensive methods of molecular evaluation [118].

Customized arrays have been developed for screening patients with RP [119,120] and other retinal dystrophies [121,122]. The National Eye Institute has established the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE*), which offers molecular diagnosis as a service [123]. The eyeGENE* network currently includes Clinical Laboratory Improvement Amendments (CLIA)-certified diagnostic laboratory partners; over 270 registered clinical organizations with 500 registered users from around the United States and Canada have analyzed over 4,400 samples. eyeGENE* is also working towards setting up high-throughput genotyping and sequencing technologies for improved clinical sequencing. These efforts, however, need continuous validation of reliability, robustness and reproducibility of the technology being employed. Implementation of NGS hardware requires substantial in-house infrastructure and a standardized guideline for NGS protocols. Issues related to the ownership and confidentiality of genomic data and the handling of incidental or secondary findings (Box 1) must also be addressed before NGS technology moves into routine clinical practice.

Understanding the biology of disease
The extreme phenotypic variability in RDDs can be attributed to allelic heterogeneity, modifier loci, and epigenetic and environmental factors, or a combination of these. A modifier gene is predicted to alter the phenotypic outcome of a given genotype by interacting with the primary disease gene or by functioning in the same or a related biological pathway, affecting penetrance, expressivity
and pleiotropy [124,125]. A few examples are warranted. Digenic inheritance has been reported for mutations in ROM1 and peripherin/RDS resulting in RP [126] and for ROM1 and ABCA4 mutations in macular dystrophy [127]. CNOT3 can modify the phenotype of a PRPF31 mutation in RP [128]. The potential involvement of mutations in more than one causative gene has also been described in LCA [129]. Phenotypic differences in ciliopathies are also attributed to modifiers [130,131]. For example, a common allele in RPRGIP1L, Ala229Thr, is reported to be a modi-

fier of retinal degeneration in ciliopathy patients [132].

AHI1 seems to act as a modifier of CEP290 [133] and NPHP1 [134], and PDZD7 can modify the phenotype in Usher syndrome patients who have a homozygous USH2A mutation [135]. The search for modifiers has, however, been limited because of their non-Mendelian segregation and restricted exploration within known RDD genes, and because of the abundant normal genetic variations in humans. NGS approaches offer an expanded platform for genome-wide evaluation of modifier variants that would permit a better understanding of genetic variability and progression in RDDS.

Mouse models have provided valuable insights into RDD pathogenesis, but complex interactions among retina-

dopathy proteins and additional variants can exacerbate or ameliorate the disease phenotypes. For example, mice that had a combination of Cep290 and Mkks disease alleles had better sensory functions than those with either mutation alone [136]. The development of therapeutic strategies would therefore require a comprehensive understanding of RDD gene interaction networks and cellular pathways. NGS technology should expedite the integration of genetic variants in relevant RDDS and modifier genes with retinal transcriptome and epigenetic profiles.

Conclusions, challenges and future prospects

It is an exciting time in the genetic analysis of RDDS as NGS has led to unprecedented access to various genome-

wide datasets. NGS has proven successful in identifying the genetic cause of monogenic RDDS in many patients and families and offers great promise for the genetic dissection of complex RDDS. With the generation and analysis of NGS data becoming more accessible and affordable, a comprehensive catalog of variants for most (if not all) vision-related traits seems a viable prospect. Whole-transcriptome and epigenome analysis in retinal tissues would greatly facilitate the elucidation of important pathways or networks underlying development and disease. In this review, we have highlighted the challenges and the opportunities in applying NGS for gene discovery and clinical diagnosis of RDDS. A major goal lies ahead in developing a unified framework for identifying all disease-

relevant variants and genes. Methods for downstream bioinformatic analyses are still evolving and represent a

major bottleneck in NGS applications. There is significant room for improvement in mapping and variant-calling methods, especially for small insertions or deletions and CNVs. Better tools are required for combining informa-

tion from across studies that have used different sequen-

cing platforms or even distinct methods of data analysis. As each kind of NGS data has its own merits, integrated and multidimensional analyses of biological systems with relevant clinical information records would be valuable for intervention and personalized medicine.

Abbreviations

AMD: Age-related macular degeneration; BBS: Bardet-Biedl syndrome; ChIP: Chromatin immunoprecipitation; CNV: Copy number variation; CRE: cis-regulatory element; eQTL: Expression quantitative trait loci; GWAS: Genome-wide association studies; L: Long wave-length; LCA: Leber congenital amaurosis; M: Medium wave-length; MAF: Minor allele frequency; miRNA: microRNA; ncRNA: Non-coding RNAs; NGS: Next-generation sequencing; RDD: Retinal degenerative diseases; RP: Retinitis pigmentosa; RPE: Retinal pigment epithelium; S: Short wave-length; SNP: Single nucleotide polymorphism; WES: Whole-exome sequencing; WGS: Whole-genome sequencing.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We thank Dr Emily Chew (National Eye Institute, National Institutes of Health, Bethesda, MD) for providing the fundus photograph of the human retina. This work is supported by the Intramural Research Program of the National Eye Institute.

Published: 11 October 2013

References

1. Dowling JE. The Retina: an Approachable Part of the Brain. Cambridge, MA: Belknap Press; 1987.
2. Masland RH: The fundamental plan of the retina. Nat Neurosci 2001, 4:877–886.
3. Lamb TD, Collin SP, Pugh EN Jr: Evolution of the vertebrate eye: opsins, photoreceptor, retina and eye cup. Nat Rev Neurosci 2007, 8:960–976.
4. Nanthas J, Thomas D, Hogness DS: Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 1986, 232:193–202.
5. Caruso CA, Sloan KR, Kallina RE, Hendrickson AE: Human photoreceptor topography. J Comp Neurol 1990, 292:497–523.
6. Swaroop A, Kim D, Forrest D: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010, 11:563–576.
7. Brannan AN, Wright AF, Jacobson SG, McInnes RR: The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 2010, 33:441–472.
8. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS: Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010, 11:273–284.
9. RetNet. [https://sphnuth.edu/retnet/].
10. Fritsche LG, Chen W, Schu M, Yaplan BL, Yu Y, Thorellsson G, Zack DJ, Arakawa S, Cipriani V, Ripke S, Igbo RP Jr, Butendirik GH, Sim X, Weeks DE, Guymer RH, Memiam JE, Francis PJ, Hannum G, Agarwal A, Armbrrecht AM, Audo I, Aung T, Barlie GL, Benchaboune M, Bird AC, Bishop PN, Branham KE, Brooks M, Brucker AJ, Cade WH, et al: Seven new loci associated with age-related macular degeneration. Nat Genet 2013, 45:433–439.
11. Thorellsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DevWan A, Sigurdsson A, Jonassdotir A, Gudjonsson SA, Magnusson KP, Stefansson H, Lam DS, Tam PO, Gudmundsdottir GJ, Southgate L, Burdon KP, Gottfredsdottir MS, Aldred MA, Mitchell P, St Clair D, Collier DA, Tang N, Svendsen O, Macgregor S, Martin NG, Cree AJ, Gibson J, Macleod A, Jacob A, Ennis S, et al: Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 2010, 42:906–909.
12. van Koolwijk LM, Ramdas WD, Iksam MK, Jansons NM, Pasutto F, Heyi PG, Macgregor S, Jansen SF, Heeit AV, Wisman Allan, van ten Brink JB, Hosseini SM, Amin N, Despreit DD, Willemse-Assink J, Kramer R, rvadevire F, Struchal M, Aulichenko YS, Weisschul N, Zenrek M, Mardin CY, Graner E, Welge-Lussen U, Montgomery GW, Carbone F, Young TL, DCT/EDRC Research Group, Bellenguez C, McGuffin P, et al. Common genetic determinants of intracranial pressure and primary open-angle glaucoma. PLoS Genet 2012; 8:e1002611.

13. Wiggins JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Orlow P, Brucker AJ, de la Cruz R, Nishina PM, McInnes RR, Pagon R, Vanier MT, Hunter CA, Stankiewicz P, Cibulskis K, Pippa Norris, Lander ES, McKenna N, Xiong W, Li R, Ateeq B, Guo H, Zhang Q, Zou L, Sun Y, Zhou Y, Li H, Wang H, Yang Z, Exome sequencing identifies mutations in ZNF644 mutations, in high myopia. Nat Genet 2012; 44:1040–1046.

14. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Berger W, Wassinger B, Hamel CP, Schorderet DF, et al. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat Genet 2012; 44:972–974.

15. Priya RR, Chew EY, Swaroop A: Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery. Proc Retin Eye Res 2010, 29:335–375.

16. Grassi MA, Thilimonior A, Ramalingam S, Below JE, Cox NJ, Nicolae DL: Targeted capture and massively parallel sequencing of 12 human exomes. Nat Genet 2012; 44:1035–1039.

17. Fak MJ, Zakian V, Nakamura-Ogasawara A, Collin-Sorensen K, Chakravaran C, Audo I, Mackay DS, Zeitz C, Berman AD, Stanisiewska M, Shukla R, Palwali L, Mohan-Said S, Weissem NAH, Jalal S, Perin JC, Place A, Ostrovsky J, Xiao R, Bratatchaya SS, Consugar M, Webster AR, Sahel JA, Moore AT, Berson EL, Liu Q, Gai X, Pierce EA: NMNAT1 mutations cause Leber congenital amaurosis. Nat Genet 2012; 44:1040–1046.

18. Berger W, Kloeckener-Gruissem B, Neidhardt J: Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery. Proc Retin Eye Res 2010, 29:335–375.

19. Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Musunuru K, Price AL, Altshuler D, Lee RK, Lichter PR, Loomis S, Liu Y, Medeiros FA, McCarthy C, Miet D, Moro SE, Musch DC, Realini A, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 2012; 8:e1002654.

20. Grassi MA, Thilimonior A, Ramalingam S, Below JE, Cox NJ, Nicolae DL: Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet 2011; 20:2472–2481.

21. Priya RR, Chew EY, Swaroop A: Genetic studies of age-related macular degenerations: lessons, challenges, and opportunities for disease management. Ophthalmology 2012; 119:2526–2536.

22. Wiggs JL, Chew EY, Swaroop A: Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 2009; 10:19–43.

23. Picone LR, Szego MJ, Ieke S, Nishina PM, Mtchak CN: Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci 2003; 26:657–700.

24. Berger W, Kloeckener-Gruissem B, Neidhardt J: The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010, 29:335–375.

25. Mitkler ML: Sequencing technologies - the next generation. Nat Rev Genet 2010; 11:31–46.

26. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J: Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2012; 12:745–755.

27. Ng SB, Turner EH, Robertson PD, Flydare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eicher EE, Bigham AW, Nickerson DA, Shendure J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009, 461:272–276.

28. Chok MC, Scholl UJ, J W, Lu T, Thilimonor IR, Zumbo P, Nayi A, Bakkaloglu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Moore S, Liftin RP: Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 2009, 106:19096–19101.

29. Gníkér A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Gnanoukó G, Fisher S, Russ C, Gabriel J, Dabe D, Lander ES, Nussbaum R: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009, 27:182–187.

30. Priya RR, Rajasimha HK, Brooks MJ, Swaroop A: Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery. Methods Mol Biol 2012, 884:335–351.

31. CCDS database. [http://www.ncbi.nlm.nih.gov/CCDS/CCDSbrowse.cgi].

32. RefSeq. [http://www.ncbi.nlm.nih.gov/RefSeq/].

33. Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Whitehead PL, Hulme W, Konidari I, Edwards YJ, Cai G, Peter I, Seo D, Xuabaud JQ, Haines J, Bantong S, Young J, Alfons E, Vance JM, Larn BL, Renkav-Vance MA: Whole-exome sequencing links a variant in DHDDS to congenital stationary night blindness. Am J Hum Genet 2011; 89:183–190.

34. Zeitz C, Jacobsson SG, Hamel BP, Bujakowska K, Neukllin M, Orhan E, Zanlonghi X, Lancelot ME, Michels C, Schwartz SB, Bocquet B, Congenital Stationary Night Blindness Consortium, Antonio A, Audier C, Letiesier M, Saravipa JP, Lu TD, Senslaab F, Nguyen H, Poch O, Dolfuss H, Lecompte O, Kohl S, Sahal JA, Bhattacharya SS, Audo I: Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2013, 92:67–75.

35. Audo I, Bujakowska K, Orhan E, Polotschek OM, Defoort-Chellermens S, Dumaire I, Kohl S, Lu TD, Lecompte O, Zieren E, Lancelot ME, Antonio A, Germain A, Michels C, Audier C, Letiesier M, Saravipa JP, Leroy BP, Munier FL, Mohan-Said S, Lergner S, Friedburg C, Perinon A, Kellner AB, Li 18:1–10.

36. Berger W, Wassinger B, Hamel CP, Schorderet DF, et al. Whole-exome sequencing identifies mutations in GRPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2012, 90:521–32.

37. Broedrup C, Saunier S, Oud MA, Fiskerstrand T, Hoischen A, Brakdalen M, Lehm SM, Middbe MFH, Belfoy-Cept Y, Nistigl P, Iligsen C, Haugen OH, Sanders JS, Sotecky Dijkstra I, Mars DA, Steenbergen EJ, Hamel BC, Matisson M, Pfundt R, Jeanpierre C, Bormann H, Radjae E, Wallman J, Zonnes NV, Roopmus R, Arts HH: Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. J Med Genet 2012; 49:639–643.

38. Shi Y, Li Y, Zhang D, Zhang H, Li Y, Liu F, Liu X, He E, He G, Bai L, Li R, Liao S, Ma S, Lin H, Cheng J, Zheng H, Shan Y, Chen B, Hu J, Xu Z, Zhao F, Chen Y, Zhang Y, Lin Y, Liu X, Fan Y, Yang H, Wang J, Yang Z: Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet 2011; 7:e1002084.

39. Marion V, Stuttman F, Gerard M, de Mello C, Schaefer E, Clausmann A, Heiße S, Delague V, Soueid L, Barrey C, Verloes A, Stoetzel C, Dollfus H: Exome sequencing identifies mutations in LZTFL1, a BBSome and silenced trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and internal orofacial polydactyly. Mol Genet Metab 2012; 105:317–327.

40. Sathi AK, Rishi AK, Gals HH, Chen R, Staal GS, Wang H, Hurd TW, Zhou W, Cluckey A, Gee HY, Ramaswami G, Hong C, Hamilton BA, Cervinka I, Gani RJ, Byia A, Viss H, van Reeswijk J, Oud MM, Lettebro SJ, Roepman R, Hussin H, Ibrahimov-Beskorovayaya O, Yasunaga T, Walz G, Eley L, Sayer JA, Schermer B, Liebau MC, et al: Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012; 150:535–548.
43. Puffenberger EG, Jinks RN, Sougnez C, Cibulskis K, Willett RA, Achilli NP, Cassidy RP, Fiorentini CJ, Heffner KE, Lawrence JJ, Mahoney MH, Miller CJ, Nair DT, Politi KA, Worcester KN, Setter RA, Dzapica R, Sherman EA, Eastman JT, Franklyn C, Robey-Bond S, Rider NL, Gabriel S, Morton DH, Strauss KA: Genetic mapping and exome sequencing identify variants associated with five novel diseases. Genes 2012, 3:2895.

44. Sergouniotis PI, Davidson AE, Mackay DS, Lenars E, Li Z, Robson AG, Yang X, Kam JH, Isacvs TW, Holder GE, J Jeffrey G, Beck JA, Moore AT, Piagnol W, Webster AR: Biallelic mutations in PLAG2, encoding group V phospholipase A2, cause benign flexic retina. Am J Hum Genet 2011, 89:782–791.

45. Roosing R, Rohrschneider K, Beryozkin A, Sharon D, Weischnet N, Staller J, Kohl S, Ratnapriya R, Swaroop A: Mutations in the biallelic PDE6H gene cause autosomal-recessive complete congenital stationary nightblindness. Am J Hum Genet 2011, 89:253–264.

46. Lee JE, Gleeson JG: A systems-biology approach to understanding the cilipathy disorders. Genome Med 2011, 3:59.

47. Audo I, Mohand-Said S, Dharmen CM, Germann A, Orhan E, Antonia A, Hanem C, Sahet A, Bhattacharya S, Zietz C, RP1 and autosomal dominant rod-cone dystrophy: novel mutations, a review of published variants, and genotype-phenotype correlation. Hum Mutat 2012, 33(9):939–950.

48. Edwards AO: Clinical features of the congenital vitreoretinopathies. Eye (Lond) 2008, 22:1233–1242.

49. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57–63.

50. Morozova O, Hirst M, Marra MA: Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 2010, 11:405–428.
Albuquerque RJ, Blandford AD, Bogdanovich S, Hrana Y, et al. Dicer1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 2011, 471:325–330.

Wittkopp PJ, Kalay G. cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 2012, 13:59–69.

Corbo JC, Lawrence KA, Karlfelttter M, Myers CA, Abdelzatt M, Dirker W, Weigelt K, Seifert M, Benes V, Fritscher LG, Weber BH, Langmann T. CRX Chip-seq reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res 2010, 20:1512–1525.

Hao H, Kim DS, Klocke B, Johnson KR, Cui K, Gotoh N, Zang C, Gregorski J, Ratnapriya and Swaroop A. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NLR targetome analysis. PLoS Genet 2012, 8:e1002649.

Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 2008, 9:170–191.

Davis DM, Dyer MA. Retinal progenitor cells, differentiation, and barriers to cell cycle reentry. Curr Top Dev Biol 2010, 93:175–188.

Merbs SL, Khan MA, Hackett L Jr, Oliver VF, Wan J, Qian J, Zack DJ. Cell-specific DNA methylation patterns of retina-specific genes. PLoS One 2012, 7:e32692.

Hunter A, Speichler PA, Cwanger A, Song Y, Zhang Z, Ying GS, Hunter AK, Dezoeten E, Duniaf JL. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci 2012, 53:2089–2105.

ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Merbs SL, Khan MA, Hackler L Jr, Oliver VF, Wan J, Qian J, Zack DJ, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 498:57–74.

National Human Genome Research Institute Catalog of Published Genome-Wide Association Studies. [http://www.genome.gov/gwastudies].

Klein RJ, Zeiss C, Chew EY, Tsai SY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Stenke MA, Bracken MB, Ferris FL, Jr, Jant B, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385–388.

Chen W, Stambolian D, Edwards AO, Brannan KE, Othman M, Jakobsdottir J, Tosakulwong N, Merbs SL, Khan MA, Hackler L Jr, Oliver VF, Wan J, Qian J, Zack DJ, Gunter C, Snyder M. Cell-specific DNA methylation patterns of retina-specific genes. PLoS One 2012, 7:e32692.

Klein RJ, Zeiss C, Chew EY, Tsai SY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Stenke MA, Bracken MB, Ferris FL, Jr, Jant B, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Proc Natl Acad Sci U S A 2010, 107:7401–7406.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Leal SM, Liu G, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Altshuler D, professional society genetics committee. Fine-scale structural variation analysis of 6,515 exomes reveals the recent origin of most copy number variants in the human genome. Nature 2011, 490:71–77.

Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2008, 9:54–63.

Terhorst C, Kort ES, Sillence D, Bovolenta P, Marletta MA. Cell biology of the immune system. Nat Rev Immunol 2002, 2:227–237.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.

Tuzun E, Sharp AJ, Bailey JA, Kaur R, Worsley PA, Wysoczka M, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727–733.

Alkan C, Coe BP, Eichler EE. Genome structure variation discovery and genotyping. Nat Rev Genet 2011, 12:363–376.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.

Tuzun E, Sharp AJ, Bailey JA, Kaur R, Worsley PA, Wysoczka M, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727–733.

Alkan C, Coe BP, Eichler EE. Genome structure variation discovery and genotyping. Nat Rev Genet 2011, 12:363–376.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.

Tuzun E, Sharp AJ, Bailey JA, Kaur R, Worsley PA, Wysoczka M, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727–733.

Alkan C, Coe BP, Eichler EE. Genome structure variation discovery and genotyping. Nat Rev Genet 2011, 12:363–376.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.

Tuzun E, Sharp AJ, Bailey JA, Kaur R, Worsley PA, Wysoczka M, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727–733.

Alkan C, Coe BP, Eichler EE. Genome structure variation discovery and genotyping. Nat Rev Genet 2011, 12:363–376.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.

Tuzun E, Sharp AJ, Bailey JA, Kaur R, Worsley PA, Wysoczka M, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727–733.

Alkan C, Coe BP, Eichler EE. Genome structure variation discovery and genotyping. Nat Rev Genet 2011, 12:363–376.

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Rev Genet 2008, 9:57–67.

Pritchard JK. Are rare variants important? Am J Hum Genet 2010, 87:235–238.
117. Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Daiger SP. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:1411–1416.

118. Swaroop A. What’s in a name? RPGR mutations redefine the genetic and phenotypic landscape in retinal degenerative diseases. Invest Ophthalmol Vis Sci 2013; 54:1417.

119. Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbot RM, Sodergren EJ, Birch DG, Wheaton DH, Heckenlively JR, Lu Q, Pierce EA, Weinstock GM, Daiger SP. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 2013; 54:2494–2503.

120. Neveling K, Collin RW, Glissone C, van Huet RA, Visser L, Kwint MP, Gilissen C, Wijmenga C, van Eeden SFM, Kellner U, Brantsma H, Kroes HY, de Vries JJ. Simultaneous mutation detection in 90 retinal disease genes in multiple patients using a custom-designed 300-kb retinal resequencing chip. Ophthalmology 2011; 118:160–167. e1-3.

121. Song J, Smou N, Ayyagari R, Stiles D, Verheij J, Kroes HY, Klaver CC, van Schooneveld M, Bergen AA, Florijn RJ. Simultaneous mutation detection in 90 retinal disease genes in multiple patients using a custom-designed 300-kb retinal resequencing chip. Ophthalmology 2011; 118:160–167. e1-3.

122. Polotschiek CM, Bach M, Lageeza WA, Glaes AM, lemke JR, Berger W, Neidhardt J, ABCA4 and ROM1: implications for modification of the PRPH2-associated macular dystrophy phenotype. Invest Ophthalmol Vis Sci 2010; 51:4253–4265.

123. Bourtoule D, Goetz KE, Ayyagari R, Tumminia SJ, Hejtmancik F, Wang X. High-throughput retinal-array for screening 93 genes involved in inherited retinal dystrophy. Invest Ophthalmol Vis Sci 2011; 52:9053–9060.

124. Blain D, Goetz KE, Ayyagari R, Timmins JJ, eyeGENE: a vision community resource facilitating patient care and paving the path for research through molecular diagnostic testing. Clin Genet 2013; 84:190–197.

125. Haider NB, Ikeda A, Nagy JT, Nishina PM. Genetic modifiers of vision and hearing. Hum Mol Genet 2002, 11:1195–1206.

126. Nodeau JH. Modifier genes in mice and humans. Nat Rev Genet 2001; 2:165–174.

127. Kajiwara K, Gotoh N, Choi BY, Murga-Zamalloa CA, Estrada-Cuzacon A, Lopez I, Den Hollander AI, de Vries JJ, Kroes HY, Ruland R, Westerfield M, Benzing T, Bolz HJ. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120:1812–1823.

128. Rachel RA, May-Simera H, Velé S, Gotoh N, Choi BY, Murga-Zamalloa CA, McIntyre JC, Marek J, Lozen A, Hackett AN, Zhang J, Brooks M, den Hollander AI, Beales PL, Lu T, Jacobson SG, Liou P, Friedman TB, Hildebrandt F, Khanna H, Koenekeko RK, Kelley MW, Swaroop A. Combining Cep290 and Miks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J Clin Invest 2012; 122:1233–1245.

129. Ebermann I, Phillips JB, Liebau MC, Koenekeko RK, Schermer B, Lopez I, Schafer E, Roux AF, Dainger CT, Bernd A, Zienner E, Claustres M, Blanco B, Nümberg G, Nürnberg P, Ruland R, Westerfield M, Benzing T, Bolz HJ. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120:1812–1823.

130. Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Daiger SP. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:1411–1416.

131. Rachel RA, May-Simera H, Velé S, Gotoh N, Choi BY, Murga-Zamalloa CA, McIntyre JC, Marek J, Lozen A, Hackett AN, Zhang J, Brooks M, den Hollander AI, Beales PL, Lu T, Jacobson SG, Liou P, Friedman TB, Hildebrandt F, Khanna H, Koenekeko RK, Kelley MW, Swaroop A. Combining Cep290 and Miks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J Clin Invest 2012; 122:1233–1245.

DOI:10.1186/gm488
Cite this article as: Ratnapriya and Swaroop. Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing. Genome Medicine 2013 5:84.