Abnormal p16 Expression and Prognostic Significance in Chinese Esophageal Squamous Cell Carcinoma

Xue Zhang
Zhongshan Hospital Fudan University

Weijie Chen
Zhongshan Hospital Fudan University

Xiaolei Zhang
Zhongshan Hospital Fudan University

Lei Xu
Zhongshan Hospital Fudan University

Feng Gao
Zhongshan Hospital Fudan University

Yufeng Huang
Zhongshan Hospital Fudan University

Wenyi Gu
Zhongshan Hospital Fudan University

Dongxian Jiang (jiangdongxian3@aliyun.com)
Zhongshan Hospital Fudan University

Yingyong Hou
Zhongshan Hospital Fudan University

Research

Keywords: p16 focal expression, p16 overexpression, p16 negative, prognosis, esophageal squamous cell carcinoma (ESCC)

DOI: https://doi.org/10.21203/rs.3.rs-112931/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The purpose of this study was to analyze p16 expression status and evaluate whether abnormal p16 expression was associated with prognosis in a large-scale Chinese esophageal squamous cell carcinoma (ESCC) patients.

Methods: We retrospectively evaluated p16 expression status of 525 ESCC samples using immunohistochemistry. Associations between abnormal p16 expression and survival were analyzed.

Results: P16 negative, focal expression and overexpression were found in 87.6%, 6.9% and 5.5% of ESCC patients. No significant association was observed between abnormal p16 expression and age, sex, tumor site and location, differentiation, vessel and nerve invasion, T stage and lymph node metastasis. In all patients, the survival of p16 focal expression group tended to be better compared with negative group (disease free survival/DFS \(P = 0.040 \) and overall survival/OS \(P = 0.052 \)) and overexpression group (DFS \(P = 0.201 \) and OS \(P = 0.258 \)), and there was no survival difference between negative group and overexpression group. The multivariate analysis for OS and DFS only found clinical stage was a significantly independent prognostic factor \((P < 0.001) \). When patients were divided into I-II stage \((n=290) \) and III-IVA stage \((n=235) \), the survival of focal expression group was better compared with negative group (DFS \(P = 0.015 \) and OS \(P = 0.019 \)), tended to be better compared with overexpression group (DFS \(P = 0.405 \) and OS \(P = 0.432 \)) in I-II stage ESCC, which was not found in III-IVA stage ESCC.

Conclusion: P16 overexpression or negative tend to be associated with unfavorable outcomes, especially in I-II stage ESCC. Our study will help to identify a subgroup of ESCC patients with excellent prognosis after surgical therapy.

Background

Esophageal Cancer (EC) is the seventh most frequent malignancy and the sixth most common cause of cancer-associated mortalities with the estimated 572,000 new cases and 509,000 deaths worldwide in 2018(1). Despite improvements in multidisciplinary treatments, including surgery, radiotherapy, and systemic therapy, the prognosis for EC remains poor in the “Esophageal Cancer Belt” including China(2). The most common histological type is esophageal squamous cell carcinoma (ESCC), which was regarded as an important public health problem in China. Recently, the major focus of cancer research is identifying the molecular changes that occur in tumorigenesis and progression(3, 4). A detailed search into these alterations can discover novel biomarkers, which may help classify patients at the same stage into different subgroups in terms of their prognosis and further guide surgery or adjuvant treatment. Therefore, reliable biomarkers are urgently required in ESCC.

P16 gene, also known as MTS-1 (major tumor suppressor 1), INK4a (inhibitor of CDK4a), or CDKN2A (cyclin-dependent kinase inhibitor 2A), is located on chromosome 9p21.3. It consists of 3 exons and 2 introns, encodes a tumor suppressor p16, which play an important role in regulating the cell cycle pathway. P16 inhibits cyclin D dependent protein kinases (CDK4 and CDK6) therefore maintaining
hypophosphorylation of the retinoblastoma protein (Rb). It ultimately inhibits the release of the
transcription factor E2F, preventing cell conversion from G1 phase to S phase, and eventually suppressing
cell proliferation(5, 6). The decreased expression or inactivation of p16 attenuates the ability of Rb to
inhibit cell proliferation and allows unregulated cell-cycle progression. P16 aberration is frequently
observed in a wide variety of tumors(7, 8).

P16 protein expression is frequently used as a surrogate marker for human papillomavirus (HPV)
infection in many kinds of cancer, including cervical cancer(9) and head and neck squamous cell
carcinoma (HNSCC)(10). In HPV related tumors, E7 oncoprotein integrates into host genome and leads to
inactivation of Rb, which has a negative feedback on intracellular p16 levels leading to p16
overexpression. In addition to HPV-related cancer, including lung, pancreas, colorectal, bladder, and breast
tumors, p16 function is lost by gene deletions, mutations, or epigenetic silencing, which results in
negative immunohistochemistry (IHC) findings(11, 12). That’s to say, there are two abnormal p16
expression patterns: absent and overexpressed. Many studies to date have explored the
clinicopathological and prognostic significance of p16 expression in tumors(9, 13, 14).

Some studies that have examined p16 IHC results in ESCC within the past few decades(15–17), however,
the conclusions were doubtful. In their results, p16 expression was detected in 5.8–88.3% ESCC. There
was no detail demonstrate and comparison among absent, expression and overexpression. Its influence
on the prognosis of ESCC patients remains unclear. Some researches demonstrate P16 expression was
associated with favorable prognosis(18). No prognostic significance was shown in other studies(19, 20).
The inconsistent conclusions are obtained due to several reasons such as clinical stage, sample size, IHC
evaluation criteria, or ethnicity. Further studies are required to investigate the influence of p16 expression
in ESCC patients. Hence, we performed this study to explore the status of P16 expression using IHC
methods, and analysis the association of p16 expression with clinicopathological characteristics, and
prognosis of large-scale ESCC patients.

Materials And Methods

Patients and tissues

The present study included 525 patients with primary ESCC who underwent surgery at Zhongshan
Hospital, Fudan University between 2007 and 2010. Eligible patients had histologically proven squamous
cell carcinoma of esophagus. Exclusion criteria included patients with neoadjuvant therapy and
incomplete follow-up information. Clinical data were collected from their medical records, including sex,
age at diagnosis, smoking, histological grading, tumor size and location, vessel and nerve invasion.
Tumor stage was determined according to the 8th edition of American Joint Committee on Cancer tumor,
node and metastasis (TNM) classification system.

Informed consent was submitted by all patients. The present study was approved by the Institutional
Review Broad of Zhongshan Hospital. All procedures performed in studies involving human participants
were in accordance with the 1964 Helsinki declaration (and its subsequent updates) of the World Medical Association or comparable ethical standards.

Tissue microarray and immunohistochemistry

Tissue microarrays were constructed as described previously(21). Briefly, all donated cylinders were extracted from the most representative areas of the tumor within the paraffin block and transplanted into recipient tissue microarray (TMA) block. Available TMA sections were stained with p16 antibody (clone MX007, Maixin Biotechnology Co. Ltd, Fuzhou, China, monoclonal, 1: 400 dilution) on an automated immunostainer (Leica Biosystem) according to the manufacturer's protocol with appropriate controls. The results were evaluated by 2 pathologists who was blinded to the clinical outcome and all other data on the patients.

Evaluation of P16 expression status

The p16 nuclear expression and cytoplasmic expression were scored using a histochemical or H-score like method in which the percentage of cell staining was recorded for each intensity level (-, no staining; +, weak staining intensity; ++, moderate staining intensity; or ++++, strong intensity staining). Different definitions for positive p16 expression have been used in the literature. The main definitions were summarized as follows: 1) p16 was considered positive when >10% of the cells showed both nuclear and cytoplasmic brownish staining; 2) P16 overexpression was defined as positive when nuclear or cytoplasmic expression has an intensity of 2+/3+ and distribution ≥70% of cancer cells(22). As there is little consensus in the literature about what constitutes positive staining for P16 antibodies, we analysis and compared our results with the abovementioned definitions.

Statistical analysis

Statistical analyses were performed with SPSS for Windows version 24 (IBM, Armonk, NY).X² analysis and Fisher exact test were used as appropriate to assess the relationship between P16 expression and clinicopathological characteristics, including sex, age, smoking, histological grading, tumor size and location, vessel and nerve invasion. Disease-free survival (DFS) was calculated from the date of primary treatment to the date of recurrence, progression, or death from esophageal cancer. Overall survival (OS) was defined from the date of primary treatment to the date of death from any cause or the date of the last follow-up. The survival rates were calculated using Kaplan-Meier method and compared using a long-rank test. The univariate Cox proportional hazards model was used to analyze covariates. Factors with P value <0.05 were included in a multivariable Cox proportional hazards model using a forward stepwise procedure. All of the statistical tests performed were two-tailed, with P values <0.05 considered statistically significant.

Results

Clinicopathologic Features
As reported in Table 1, which summarizes the clinical and pathological features of these 525 patients, the median age was 61 years with a wide age distribution ranging from 34 to 83 years. Four hundred twenty-nine patients (81.7%) were males. A history of tobacco smoking was observed in 203 (38.7%) patients. As the anatomic site, 5% cases were located in the upper esophagus, 44.8% in the middle and the other 45.5% in the lower with a mean of tumor size of 3.4 cm of the biggest axis. The histopathological diagnoses consisted of well-differentiated ESCC in 20 patients (3.8%), moderately-differentiated ESCC in 295 patients (56.2%) and poorly-differentiated ESCC in 210 patients (40.0%). The vessel and nerve invasion was observed in 22.3% and 34.5% patients. According to the T stage, we found that 51 patients (9.7%) were in T1 stage, 116 (22.1%) patients were in T2 stage, 357 (68.0%) patients were in T3 stage and 1 (0.2%) patients were in T4 stage. The lymph node metastases were detected in 243 (46.3%) patients. According to 8th TNM stage, 290 (55.2%) patients were in the stage I-II group, and 235 (44.8%) patients were in the stage III-IVa group.
Variable	p16 IHC positive				p16 IHC overexpression					
	No	Yes	P value	No	Yes	P value	No	Yes	P value	
Age (years)	0.125			0.885			0.080		0.730	
< 60	202	22		212	12		381	48	406	23
≥ 60	258	43		284	17		184	19	193	10
Sex	0.080			0.730			0.095		0.634	
Female	79	17		90	6		381	48	406	23
Male	381	48		406	23		184	19	193	10
Smoking	0.095			0.634			0.917		0.516	
No	276	46		303	19		353	55	385	23
Yes	184	19		193	10		107	10	111	6
Tumor Size	0.917			0.516			0.281		0.323	
< 3.4	265	37		287	15		23	3	24	2
≥ 3.4	195	28		209	14		219	36	219	16
Tumor Location	0.281			0.323			0.743		0.377	
Upper	23	3		24	2		19	1	20	0
Middle	199	36		219	16		258	37	281	14
Lower	214	25		229	10		183	27	195	15
Differentiation	0.743			0.377			0.153		0.832	
Well	19	1		20	0		107	10	111	6
Middle	258	37		281	14		353	55	385	23
Poor	183	27		195	15		107	10	111	6
Vessel invasion	0.153			0.832			0.219		0.422	
No	353	55		385	23		297	47	323	21
Yes	107	10		111	6					
Table 2: Levels of p16 Expression in ESCC Tumors

Variable	p16 IHC positive	p16 IHC overexpression
Yes	163	173
pT	0.574	0.337
T1	45	48
T2	98	113
T3	316	334
T4	1	1
Lymph node metastasis	0.611	0.079
No	249	271
Yes	211	225
pN	0.809	0.242
N0	249	271
N1	114	122
N2	73	78
N3	24	25
Clinical stage	0.612	0.123
I-II	256	278
III-IVa	204	218
Disease progression	0.057	0.792
No	204	227
Yes	256	269
Death	0.066	0.825
No	206	229
Yes	254	267

p16 expression in ESCC

The levels of p16 expression in the tumor samples of all ESCC patients are presented in Table 2. When a cutoff value of > 10% was used, p16 positive was seen in 65 specimens (12.4%) and negative in 460
specimens (87.6%). When a cutoff value of > 70%++ was used, p16 overexpression was seen in 29 (5.5%) specimens. Among 65 ESCC with p16 IHC positive, 29 (5.5%) cases were p16 overexpression with diffuse and strong staining, and the other 36 (6.9%) cases showed focal and weak staining (Fig. 1).

Table 2
Univariate and Multivariate Analyses of Prognostic Factors for Survival

	DFS	OS		
Univariate analysis				
	P value	HR (95% CI)	P value	HR (95% CI)
Sex	0.196	1.223 (0.901–1.660)	0.120	1.286 (0.937–1.766)
Age	0.856	0.978 (0.774–1.237)	0.754	0.963 (0.759–1.222)
Smoking	0.300	1.134 (0.894–1.438)	0.212	1.166 (0.916–1.483)
Tumor Size	0.222	1.158 (0.915–1.464)	0.169	1.182 (0.931–1.502)
Tumor Location	0.922	0.990 (0.809–1.211)	0.788	1.029 (0.837–1.265)
Differentiation	0.018	1.292 (1.045–1.597)	0.047	1.244 (1.003–1.544)
Vessel invasion	< 0.001	1.620 (1.255–2.091)	< 0.001	1.592 (1.225–2.068)
Nerve invasion	0.005	1.407 (1.108–1.785)	0.001	1.494 (1.173–1.903)
pT Stage	< 0.001	1.687 (1.369–2.078)	< 0.001	1.807 (1.449–2.252)
Lymph node metastasis	< 0.001	2.789 (2.190–3.553)	< 0.001	2.836 (2.217–3.627)
pN Stage	< 0.001	1.600 (1.429–1.791)	< 0.001	1.615 (1.440–1.812)
Clinical stage	< 0.001	2.831 (2.226–3.601)	< 0.001	2.863 (2.242–3.657)
p16 positive				
p16 focal expression	0.046	0.567 (0.325–0.991)	0.059	0.584 (0.334–1.020)
p16 overexpression	0.784	0.930 (0.552–1.565)	0.834	0.946 (0.562–1.592)
Multivariate analysis				
Differentiation	0.346	1.110 (0.893–1.381)	0.601	1.060 (0.852–1.319)
Vessel invasion	0.508	1.096 (0.835–1.437)	0.631	1.069 (0.813–1.406)
Nerve invasion	0.303	1.137 (0.890–1.454)	0.098	1.230 (0.963–1.573)
Clinical stage	< 0.001	2.635 (2.043–3.398)	< 0.001	2.672 (2.070–3.448)
p16 positive	0.310		0.364	
p16 focal expression	0.144	0.659 (0.376–1.153)	0.170	0.676 (0.386–1.183)
p16 overexpression	0.595	0.868 (0.514–1.464)	0.654	0.887 (0.526–1.497)
p16 expression and clinicopathological parameters were analyzed. No significant association was observed between p16 positive or overexpression and age, sex, tumor size and location, histological differentiation, vessel and nerve invasion, T stage and lymph node metastasis (P > 0.05, Table 2).

p16 expression and patients’ prognosis

The follow-up period ranged from 3 to 102 months, with a median of 31 months. Two hundred and eighty two (53.7%) patients died within a median OS time of 42.0 months (95% CI: 33.0–51.0 months). Two hundred and eighty four (54.1%) patients had tumor progression within a median DFS time of 36.0 months (95% CI: 25.8–46.2 months).

When these patients were divided into p16 positive group (n = 65) and negative group (n = 460) defined by a cut-off value of 10%, the positive group demonstrated a better outcome compared with the negative group, however, this did not reach statistical significance (DFS $P = 0.088$ and OS $P = 0.115$) (Fig. 2A and 2B). When these patients were divided into p16 overexpression group (n = 29) and non-overexpression group (n = 496) defined by a cut-off value of 80% ++, there was no difference concerning DFS ($P = 0.888$) and OS ($P = 0.933$) of patients with p16 overexpression compared to those without overexpression (Fig. 2C and 2D). When these patients were divided into p16 negative group (n = 460), focal expression group (n = 36) and overexpression group (n = 29) defined by the above mentioned cut-off values, the survival of focal expression group tended to be better compared with negative group (DFS $P = 0.040$ and OS $P = 0.052$) and overexpression group (DFS $P = 0.201$ and OS $P = 0.258$), and there was no survival difference between negative group and overexpression group (DFS $P = 0.780$ and OS $P = 0.837$) (Fig. 2E and 2F). The univariate analysis indicated a significant association between poor differentiation, vessel invasion, nerve invasion, higher clinical stage and poorer survival, and an association between p16 focal expression and favorite survival. Then multivariate analysis for OS and DFS was performed and included above mentioned factors, and only clinical stage was found to be a significantly independent prognostic factor (Table 3) (Fig. 3A and 3B).
Table 3
Univariate and Multivariate Analyses of Prognostic Factors for Survival in Stage I-II and III-IVa ESCC

	DFS	OS		
	\(P \) value	HR (95% CI)	\(P \) value	HR (95% CI)
Univariate factor analysis				
I-II Stage				
Sex	0.764	0.937 (0.613–1.432)	0.850	0.959 (0.625–1.474)
Age	0.830	1.043 (0.712–1.528)	0.786	1.054 (0.719–1.547)
Smoking	0.469	0.859 (0.570–1.296)	0.626	0.904 (0.601–1.359)
Tumor Size	0.514	0.877 (0.591–1.301)	0.850	0.963 (0.651–1.423)
Tumor Location	0.677	0.935 (0.680–1.285)	0.744	0.947 (0.685–1.310)
Differentiation	0.104	1.321 (0.945–1.846)	0.191	1.251 (0.894–1.750)
Vessel invasion	0.350	1.288 (0.758–2.187)	0.488	1.213 (0.703–2.091)
Nerve invasion	0.916	1.023 (0.670–1.563)	0.400	1.195 (0.789–1.811)
p16 positive	0.045		0.052	
p16 focal expression	0.025	0.270 (0.086–0.851)	0.029	0.277 (0.088–0.874)
p16 overexpression	0.247	0.508 (0.161–1.600)	0.266	0.521 (0.165–1.642)
III-IVa Stage				
Sex	0.690	1.098 (0.695–1.733)	0.796	1.062 (0.673–1.677)
Age	0.464	1.118 (0.829–1.508)	0.238	1.198 (0.887–1.617)
Smoking	0.794	1.041 (0.772–1.403)	0.816	1.036 (0.768–1.398)
Tumor Size	0.270	1.183 (0.878–1.594)	0.252	1.191 (0.883–1.607)
Tumor Location	0.105	0.807 (0.623–1.046)	0.144	0.823 (0.634–1.069)
Differentiation	0.932	1.012 (0.764–1.341)	0.897	0.982 (0.740–1.302)
Vessel invasion	0.461	1.122 (0.827–1.522)	0.519	1.106 (0.813–1.505)
Nerve invasion	0.142	1.251 (0.928–1.689)	0.099	1.287 (0.953–1.739)
p16 positive	0.977		0.974	
p16 focal expression	0.899	1.042 (0.549–1.977)	0.847	1.065 (0.561–2.021)
p16 overexpression	0.856	1.056 (0.586–1.901)	0.890	1.042 (0.578–1.878)
p16 expression and patients’ prognosis in I-II stage ESCC

Among 290 I-II stage patients, 110 (37.9%) patients died and 111 (38.3%) patients had tumor progression within a non-reached median OS and DFS time.

When these patients were divided into p16 negative group (n = 256), focal expression group (n = 22) and overexpression group (n = 12) defined by the above mentioned cut-off values, the survival of focal expression group was better compared with negative group (DFS $P = 0.015$ and OS $P = 0.019$), tended to be better compared with overexpression group (DFS $P = 0.405$ and OS $P = 0.432$). And p16 overexpression group tended to have better outcome compared with the negative group, however, this did not reach statistical significance (DFS $P = 0.233$ and OS $P = 0.254$) (Fig. 3C and 3D). The univariate analysis only indicated p16 focal expression was associated with favorable DFS and OS (Table 4).

p16 expression and patients’ prognosis in III-IVa stage ESCC

Among 235 III-IVa stage patients, 172 (73.2%) patients died within a median OS time of 25.0 months (95% CI: 22.9–27.1 months). 173 (73.6%) patients had tumor progression within a DFS mean time of 20.0 months (95% CI: 17.8–22.2 months).

When these patients were divided into p16 negative group (n = 204), focal expression group (n = 14) and overexpression group (n = 17) defined by the above mentioned cut-off values, there were no survival difference between focal expression group and negative group (DFS $P = 0.899$ and OS $P = 0.848$) or overexpression group (DFS $P = 0.976$ and OS $P = 0.853$) (Fig. 3E and 3F). In univariate statistical analysis, no prognostic factor was found in these patients (Table 4).

Discussion

P16, as an important tumor suppressor protein, plays an important role in cell cycle regulation and prevents tumor development. Serrano et al. first cloned the cDNA of its encoding gene (CDKN2A) in 1993(23). Since then it has been widely studied in the field of cancer research. Although some studies have explored the clinicopathological and prognostic significance of p16 aberration in ESCC, the results remain inconclusive because of the differences in sample sizes, methods, study populations, and evaluating criteria(16, 18–20). Therefore, we conduct this study in a larger sample size to explore and validate the association between p16 status and clinicopathological factors including survival in ESCC patients.

There are two abnormal p16 expression patterns: absent and overexpression in tumors. In HPV–driven tumors such as HNSCC and cervical cancer, viral E7 oncoprotein functionally inactivates RB protein and have a negative feedback on intracellular p16 leading to its protein accumulation. Therefore, a positive p16 expression is considered when there is a diffuse block staining with strong nuclear or nuclear plus cytoplasmic staining, and focal or patchy nuclear staining and exclusive cytoplasmic staining is interpreted as negative(9, 22). In non-HPV-driven tumors such as lung, breast, pancreas and colon cancer,
p16 function is lost as a result of various alterations including complete point mutation, promoter methylation, homozygous deletion and loss of heterozygosity\(^{(11, 12)}\). IHC negative for p16 protein expression is believed an accurate and relatively simple method for evaluating \(P16\) gene inactivation, and observed at a higher frequency.

At present, there is little detailed discussion about the expression pattern in ESCC. Recent global data including Chinese study, indicates that HPV has no significant etiological role for ESCC\(^{(3, 24–26)}\). \(P16\) gene inactivation through gene mutation and promoter methylation is reported in ESCC\(^{(4, 17)}\), and IHC expression is reported in 5.8–88.3% patients\(^{(15–17)}\). In our study, we used cut-off values of 10% and 70%++, to evaluate p16 focal and diffuse expression. The former was commonly used in various tumors\(^{(27, 28)}\). The latter was similar to the new p16 criteria, which AJCC adopted in oropharyngeal cancer and included for its TNM staging\(^{(22)}\). p16 overexpression was found in 5.5% of our ESCC. p16 overexpression using this new criteria was also reported in other non-HPV-driven tumors\(^{(14)}\). The mechanisms that lead to p16 overexpression in these tumors are not well understood. Our p16 deficiency rate was 87.6%, consistent with some reports (83.1–94.2%) about ESCC\(^{(15, 20, 29)}\), which demonstrate p16 inactivation might be an important molecular event for esophagus tumorigenesis. Our negative rate was higher than some older reports\(^{(30)}\), which tended to have small sample size (< 200 cases), different cut-off values and environmental factors. Our study is one of the largest ESCC studies about p16 expression to date in china.

The prognostic effect of p16 abnormal expression on survival was explored in both HPV-driven tumors and non-HPV-driven tumors\(^{(9, 27, 28)}\). P16 positive has been widely identified as a prognostic factor for a better outcome. The higher the p16 expression, the greater the effect it is on cell-cycle arrest and survival. At present, the prognostic studies in ESCC are still limited and variable, with some controversy. High p16 expression supposedly correlated with favorable prognosis in Bylsrid’s study with 53 ESCC patients\(^{(18)}\). However, other retrospective studies did not find p16 to function as a significant outcome predictor\(^{(19, 20)}\). In our study, 6.9% patients with p16 focal expression had better DFS than those without p16 expression, and 5.5% patients with p16 overexpression had no prognostic difference with those without p16 expression. What’s more, 5.5% patients with p16 overexpression tended to be associated with a more unfavorable survival than 6.9% patients with p16 focal expression. That’s to say, either overexpression or absence of p16 tend to be associated with unfavorable outcomes in ESCC. Some studies in ovarian cancer also showed that overexpression and silencing of p16 could predict worse outcome\(^{(31, 32)}\).

In our multivariate survival analysis of 525 ESCC patients, only clinical stage was found to be a significantly independent prognostic factor. Then we analyzed and verified the prognostic value of p16 expression in earlier stage (I-II stage) and later stage (III-IVa stage), separately. No significant association was observed between p16 expression and clinical stage. Among 290 I-II stage patients, p16 focal expression was associated with both favorite DFS and OS, which was not found in 235 III-IVa stage patients. In other words, reduced risk of progression and mortality in the p16-focal expression patients compared with the p16 negative only in earlier stage (stage I and II) ESCC patients. Similar phenomenon is also observed for other molecules\(^{(33–35)}\). Abnormal p16 expression may lead to malignant, abnormal
cell proliferation and accelerated tumor development in ESCC, however, many other markers may interact with p16 and also contribute to these processes, especially in III-IVa stage tumors\(^3\), \(^4\), \(^36\). These might reduce the prognostic significance of individual marker, and further studies are needed in more advanced ESCC.

Conclusion

In this investigation, we used immunohistochemical staining of TMA blocks to evaluate p16 expression patterns and its prognostic role in a large cohort of Chinese ESCC patients. To conclude, p16 focal expression was significantly associated with better DFS, especially in I-II stage ESCC, and p16 overexpression or negative tend to be associated with unfavorable outcomes. As present, this study is the large sample size providing excellent power to examine differences of protein expression patterns in Chinese ESCC. Our study will help to identify a subgroup ESCC with excellent prognosis after surgical therapy, who might not need any further adjuvant therapy after surgery with curative intention at all. This, however, is only a hypothesis, and it remains to be elucidated in a prospective trial in the future.

List Of Abbreviations

ESCC, esophageal squamous cell carcinoma

DFS, disease free survival

OS, overall survival

EC, esophageal cancer

MTS-1, major tumor suppressor 1

CDKN2A, cyclin-dependent kinase inhibitor 2A

Rb, retinoblastoma protein

HPV, human papillomavirus

HNSCC, head and neck squamous cell carcinoma

IHC, immunohistochemistry

TNM, tumor, node and metastasis

TMA, tissue microarray

Declarations
Ethics approval and consent to participate

The present study was approved by the Institutional Review Broad of Zhongshan Hospital. All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration (and its subsequent updates) of the World Medical Association or comparable ethical standards.

Consent for publication

Informed consent was submitted by all patients.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was financially supported by National Natural Science Foundation of China (No. 81702372), Shanghai Natural Science Foundation of China (No. 18ZR1406800), Shanghai Municipal Commission of Science and Technology (No. 19441904000), Shanghai Municipal Key Clinical Specialty (No. shslozdcz01302), and Shanghai Science and Technology Development Fund (No. 19MC1911000), Xiamen Science and Technology Project of Fujian Province, China (No. 3502Z20184003).

Authors’ contributions

XZ and WC analyzed and interpreted the clinicopathological data of all ESCC patients. XZ, LX, FG, YH, and WG performed the immunohistochemistry examination of p16. DJ and YH designed and supervised the experiments, and were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Conflict of interest statement

The authors declare that they have no competing interests.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.

2. He Y, Li D, Shan B, Liang D, Shi J, Chen W, et al. Incidence and mortality of esophagus cancer in China, 2008-2012. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu. 2019;31(3):426-34.

3. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169-75.

4. Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, et al. Genetic Alterations in Esophageal Tissues From Squamous Dysplasia to Carcinoma. Gastroenterology. 2017;153(1):166-77.

5. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83(6):993-1000.

6. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375(6531):503-6.

7. Serra S, Chetty R. p16. Journal of clinical pathology. 2018;71(10):853-8.

8. LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. Molecular cancer research : MCR. 2014;12(2):167-83.

9. Nicolas I, Saco A, Barnadas E, Marimon L, Rakislova N, Fuste P, et al. Prognostic implications of genotyping and p16 immunostaining in HPV-positive tumors of the uterine cervix. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2020;33(1):128-37.

10. Paver EC, Currie AM, Gupta R, Dahlstrom JE. Human papilloma virus related squamous cell carcinomas of the head and neck: diagnosis, clinical implications and detection of HPV. Pathology. 2020;52(2):179-91.

11. Mahajan A. Practical issues in the application of p16 immunohistochemistry in diagnostic pathology. Human pathology. 2016;51:64-74.

12. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265-75.

13. Kitamura H, Takemura H, Minamoto T. Tumor p16INK4 gene expression and prognosis in colorectal cancer. Oncology reports. 2019;41(2):1367-76.

14. An HJ, Koh HM, Song DH. New P16 Expression Criteria Predict Lymph Node Metastasis in Patients With Non-small Cell Lung Cancer. In vivo (Athens, Greece). 2019;33(6):1885-92.

15. Liu YS, Yu CH, Li L, Zhang BF, Fang J, Zhou Q, et al. Expression of p53, p16 and cyclooxygenase-2 in esophageal cancer with tissue microarray. Journal of digestive diseases. 2007;8(3):133-8.

16. Bai P, Xiao X, Zou J, Cui L, Bui Nguyen TM, Liu J, et al. Expression of p14(ARF), p15(INK4b), p16(INK4a) and skp2 increases during esophageal squamous cell cancer progression. Experimental and therapeutic medicine. 2012;3(6):1026-32.

17. Taghavi N, Biramijamal F, Sotoudeh M, Khademi H, Malekzadeh R, Moaven O, et al. p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell
carcinoma. BMC cancer. 2010;10:138.

18. Sturm I, Petrowsky H, Volz R, Lorenz M, Radetzki S, Hillebrand T, et al. Analysis of p53/BAX/p16(ink4a/CDKN2) in esophageal squamous cell carcinoma: high BAX and p16(ink4a/CDKN2) identifies patients with good prognosis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2001;19(8):2272-81.

19. Shimada Y, Imamura M, Watanabe G, Uchida S, Harada H, Makino T, et al. Prognostic factors of oesophageal squamous cell carcinoma from the perspective of molecular biology. British journal of cancer. 1999;80(8):1281-8.

20. da Costa AM, Fregnani J, Pastrez PRA, Mariano VS, Silva EM, Neto CS, et al. HPV infection and p53 and p16 expression in esophageal cancer: are they prognostic factors? Infectious agents and cancer. 2017;12:54.

21. Shi Y, He D, Hou Y, Hu Q, Xu C, Liu Y, et al. An alternative high output tissue microarray technique. Diagnostic pathology. 2013;8:9.

22. Fakhry C, Lacchetti C, Rooper LM, Jordan RC, Rischin D, Sturgis EM, et al. Human Papillomavirus Testing in Head and Neck Carcinomas: ASCO Clinical Practice Guideline Endorsement of the College of American Pathologists Guideline. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2018;36(31):3152-61.

23. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704-7.

24. Ludmir EB, Stephens SJ, Palta M, Willett CG, Czito BG. Human papillomavirus tumor infection in esophageal squamous cell carcinoma. Journal of gastrointestinal oncology. 2015;6(3):287-95.

25. Koshiol J, Wei WQ, Kreimer AR, Chen W, Gravitt P, Ren JS, et al. No role for human papillomavirus in esophageal squamous cell carcinoma in China. International journal of cancer. 2010;127(1):93-100.

26. Teng H, Li X, Liu X, Wu J, Zhang J. The absence of human papillomavirus in esophageal squamous cell carcinoma in East China. International journal of clinical and experimental pathology. 2014;7(7):4184-93.

27. Myong NH. Cyclin D1 overexpression, p16 loss, and pRb inactivation play a key role in pulmonary carcinogenesis and have a prognostic implication for the long-term survival in non-small cell lung carcinoma patients. Cancer research and treatment : official journal of Korean Cancer Association. 2008;40(2):45-52.

28. Zhou N, Gu Q. Prognostic and clinicopathological value of p16 protein aberrant expression in colorectal cancer: A PRISMA-compliant Meta-analysis. Medicine. 2018;97(12):e0195.

29. Lofdahl HE, Du J, Nasman A, Andersson E, Rubio CA, Lu Y, et al. Prevalence of human papillomavirus (HPV) in oesophageal squamous cell carcinoma in relation to anatomical site of the tumour. PloS one. 2012;7(10):e46538.

30. Wang L, Li J, Yu X, Zhang Z, Pang L, Li S, et al. Prognostic significance of overexpressed p16(INK4A) in esophageal squamous cell carcinoma: a meta-analysis. Biomarkers in medicine. 2016;10(5):537-46.
31. Dong Y, Walsh MD, McGuckin MA, Gabrielli BG, Cummings MC, Wright RG, et al. Increased expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product P16INK4A in ovarian cancer is associated with progression and unfavourable prognosis. International journal of cancer. 1997;74(1):57-63.

32. Kudoh K, Ichikawa Y, Yoshida S, Hirai M, Kikuchi Y, Nagata I, et al. Inactivation of p16/CDKN2 and p15/MTS2 is associated with prognosis and response to chemotherapy in ovarian cancer. International journal of cancer. 2002;99(4):579-82.

33. Xu P, Zhao M, Liu Z, Liu Y, Chen Y, Luo R, et al. Elevated nuclear CCND1 expression confers an unfavorable prognosis for early stage lung adenocarcinoma patients. International journal of clinical and experimental pathology. 2015;8(12):15887-94.

34. Song Q, Liu Y, Jiang D, Wang H, Huang J, Xu Y, et al. High amplification of FGFR1 gene is a delayed poor prognostic factor in early stage ESCC patients. Oncotarget. 2017;8(43):74539-53.

35. Lanki MA, Seppanen HE, Mustonen HK, Bockelman C, Juuti AT, Hagstrom JK, et al. Toll-like receptor 2 and Toll-like receptor 4 predict favorable prognosis in local pancreatic cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2018;40(9):1010428318801188.

36. Meltzer SJ. The molecular biology of esophageal carcinoma. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 1996;142:1-8.

Table

Table 4 not available with this version.