Stress and the Brain: An Emerging Role for Selenium

Daniel J. Torres*, Naghum Alfulaij and Marla J. Berry

Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States

The stress response is an important tool in an organism’s ability to properly respond to adverse environmental conditions in order to survive. Intense acute or chronic elevation of glucocorticoids, a class of stress hormone, can have deleterious neurological effects, however, including memory impairments and emotional disturbances. In recent years, the protective role of the antioxidant micronutrient selenium against the negative impact of externally applied stress has begun to come to light. In this review, we will discuss the effects of stress on the brain, with a focus on glucocorticoid action in the hippocampus and cerebral cortex, and emerging evidence of an ability of selenium to normalize neurological function in the context of various stress and glucocorticoid exposure paradigms in rodent models.

Keywords: selenium, stress, selenocompounds, glucocorticoids, selenoproteins

INTRODUCTION

The impact of stress on human health has been extensively investigated and the role of stress in disease pathology has become apparent over recent decades (Chrousos, 2009). The brain plays a key role in the response to stress, which includes higher order processing of stress-related information and an immediate physiological response executed by the hypothalamus, the proverbial “fight or flight response.” In addition to direct autonomic input to specific tissues, the stress response involves sending hormonal signals throughout the body via the hypothalamic-pituitary-adrenal (HPA) axis (depicted in Figure 1). Signaling along this pathway begins with the release of corticotropin-releasing hormone (CRH) by neurosecretory cells in the paraventricular nucleus of the hypothalamus. Upon stimulation by CRH, the anterior pituitary releases adrenocorticotropin-releasing hormone (ACTH), which then induces adrenal gland secretion of glucocorticoids into the bloodstream. Glucocorticoids comprise the main downstream component of the neuroendocrine response to stress and primarily serve to stimulate gluconeogenesis in the liver and lipolysis for energy production. They also suppress the inflammatory actions of the immune system and, thus, synthetic glucocorticoids are commonly prescribed in humans as anti-inflammatory medications. The autonomic component of the stress response, which includes vasoconstriction, inducing perspiration, and suppressing digestive activity, works in conjunction with glucocorticoids to provide an acute adaptation to stressful stimuli. Glucocorticoid receptors (GCR) are expressed in most tissues in mammals, however, and the physiological processes affected are wide-ranging. For example, both the hypothalamus and anterior pituitary express GCRs to provide negative feedback loops within the HPA axis by suppressing CRH and ACTH production (Godoy et al., 2018).

The brain is particularly sensitive to glucocorticoid levels and both acute and chronic stress (e.g., brief incidence of high stress or long-term exposure to low or moderate stress) can have deleterious effects on neurological function, including depressive symptoms and memory problems...
In recent years, pre-clinical studies have demonstrated that the antioxidant micronutrient selenium has the capacity to alleviate the neurological repercussions of stress and exogenous glucocorticoid exposure. This review will provide an overview of the negative impact of stress on the brain, with a focus on glucocorticoid activity, and discuss the emerging evidence of the protective nature of selenium.

STRESS AND THE BRAIN

The reaction to stress, whether psychological or physical, can be defined as an attempt to regain homeostasis following a disruptive environmental stimulus (Chrousos, 2009). The short-term neuroendocrine response to stress provides adaptive benefits, but prolonged and repeated activation causes physiological “wear and tear” throughout the body, including the brain (McEwen, 2007). Excessive exposure of the brain to cortisol, which is the main active glucocorticoid in humans and can easily pass the blood–brain barrier, leads to deficits in learning and memory, attention, and emotional disturbances (Lupien et al., 2009). These neurological impairments are linked to dysfunction of the prefrontal cortex, the hippocampus, and the amygdala, brain structures that are integral to the processing of stress-related information and are particularly responsive to glucocorticoids (Lupien and Lepage, 2001). Following the discovery by McEwen et al. (1968) that corticosterone, the main active glucocorticoid in rodents, can act on the rat brain, it was noted that the hippocampus has the highest density of GCRs. Subsequently, the effects of glucocorticoids on the hippocampus and the relation to stress-induced cognitive dysfunction have been extensively characterized in animal and human studies throughout the years (Lupien and Lepage, 2001; McEwen et al., 2016; Lupien et al., 2018).

There are various ways that stress and glucocorticoid exposure can damage the brain. Early research in the field indicated that GCR over-activation causes neuronal damage by disrupting energy production, promoting energy over-consumption, and limiting glucose uptake into the cell (Sapolsky, 1986). Additionally, glucocorticoids can increase the risk of excitotoxicity by promoting the extracellular accumulation of glutamate in the hippocampus and prefrontal cortex (Stein-Behrens et al., 1994; Treccani et al., 2014). Oxidative stress is a prominent mediator of neuronal damage and dysfunction caused by psychological stress paradigms and exogenous glucocorticoid administration in rodents (Spiers et al., 2014). Glucocorticoids appear to make neurons more susceptible to oxidative insult by raising baseline levels of reactive oxygen species (ROS; McIntosh and Sapolsky, 1996; Behl et al., 1997).

SELENIUM AND SELENOPROTEINS IN BRAIN HEALTH

The antioxidant trace element selenium is vital for overall human health and is especially important for brain function. Within the brain, selenium protects against oxidative stress, endoplasmic reticulum stress, and inflammation. There is also evidence that this micronutrient supports neurotransmission by maintaining redox balance (Solovyev, 2015). Selenium must be acquired through the diet and is most abundant in meats and legumes, as well as fruits and vegetables in trace amounts (Navarro-Alarcon and Cabrera-Vique, 2008). In the mammalian body, selenium is used to synthesize the amino acid selenocysteine (Sec), to be incorporated into selenoproteins, of which there are 25 types present in humans. Among the most well-characterized selenoproteins is the glutathione peroxidase (GPx) sub-family, responsible for reducing peroxide species, the thioredoxin reductases (TrxR), and the iodothyronine deiodinases (Dio), which support thyroid hormone metabolism. In general, adequate selenoprotein expression largely depends on an organism’s intake of selenium, which is preferentially retained within the brain (Burk and Hill, 2009). Selenoprotein P (SelenoP), which is unique in that it has 10 Sec residues rather one, acts as a selenium carrier (Labunskyy et al., 2014). Following its secretion from the liver, SelenoP travels through the blood stream to be delivered to critical organs, such as the brain, where it interacts with apolipoprotein e receptor 2 (ApoER2) to deliver selenium (Burk et al., 2014). The brain is particularly dependent on selenium due to high rates of oxygen consumption and heightened susceptibility to oxidative stress (Steinbrenner and Sies, 2013). Insufficient selenium supply and lack of selenoprotein function have been linked to multiple brain disorders, including neurodegenerative diseases, which have been thoroughly discussed in previous reviews (Pillai et al., 2014; Solovyev, 2015; Varikasuvu et al., 2019; Zhang et al., 2019). Conversely, selenium has been suggested as a potential therapeutic agent in the treatment of Alzheimer’s disease (Solovyev et al., 2018), multiple sclerosis (de Toledo et al., 2020), and stroke (Alim et al., 2019).

Throughout the body, glucocorticoids have shown a capacity to alter antioxidant enzyme activity and expression (Dougal and Nick, 1991; Asayama et al., 1992; Kratschmar et al., 2012; An et al., 2016). In the brain, glucocorticoids can down-regulate several types of antioxidant enzymes, including GPx (McIntosh et al., 1998; Sahin and Gumuslu, 2004; You et al., 2009; Sato et al., 2010). Over the past several years, selenium has been shown to mitigate the negative impact of stress and glucocorticoid action in the brain.

SELENIUM AND GLUCOCORTICOID ACTION IN THE BRAIN

A literature review was conducted with Web of Science and PubMed using the words “selenium” or “selenoprotein” combined with either “glucocorticoid” or “corticosterone,” as well as either with or without “brain”, yielding the following information. Early studies associating selenium and glucocorticoids focused on the physiological response to acute selenium challenge. Researchers discovered that injection of sodium selenite provokes a stress response, raising plasma corticosterone and glucose levels in rats within 30 min.
Work by Xu et al. (2020) suggests that dietary selenium may protect against stress-induced depressive symptoms. In this study, rats were subjected to social stress using a Chronic Unpredictable Mild Stress (CUMS) paradigm. While some developed depressive-like behavior and were classified as CUMS-sensitive, others did not and were, therefore, labeled CUMS-resilient. Analysis of trace element levels revealed that plasma selenium levels were lower in the CUMS-sensitive group, correlating low selenium intake with an increased susceptibility for developing major depressive disorder in humans (Pasco et al., 2012). It is important to note that these studies don’t show cause and effect, however. Still, the effects of selenium intake on the response to stress or glucocorticoid administration remains largely under-investigated.
Over the past several years, the protective role of selenium against the neurobehavioral consequences of glucocorticoids has started to come to light. In 2014, a report by Gai et al. (2014) described the ability of 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene (F-DPS) to alleviate the anxiogenic- and depressive-like symptoms induced by chronic corticosterone administration in male Swiss mice. The organoselenium compound F-DPS is a selenophene, a class of selenium-containing aromatic compounds with antioxidant properties (Wilhelm et al., 2009; Tavadyan et al., 2017; Manikova et al., 2018), and was chosen for its antidepressant-like properties (Gay et al., 2010). One week of F-DPS treatment reversed the depressant- and anxiogenic-like behavior induced by 4 weeks of corticosterone administration. Glutamate uptake in the prefrontal cortex was reduced by corticosterone, which the authors noted was consistent with previous studies (Gourley et al., 2012) and likely contributed to the depressive-like phenotype. Administration of F-DPS during the final week of corticosterone administration restored glutamate uptake in the prefrontal cortex without causing any changes in vehicle-treated mice. These results parallel findings from clinical studies demonstrating the anti-depressive effects of the glutamatergic NMDA receptor antagonist ketamine (Yang et al., 2019). Additionally, F-DPS treatment was shown to reduce hippocampal serotonin uptake and monoamine oxidase A activity. Thus, promotion of serotonergic activity may have also contributed to the anti-depressive action of F-DPS (Gay et al., 2018). Administration of F-DPS also decreased lipid peroxides and ROS in the hippocampus and cerebral cortex, which became elevated in response to ARS. Finally, PSAP prevented the rise in serum corticosterone caused by ARS, mimicking the results from previous studies indicating that selenium has a “normalizing” effect on HPA axis activity.

Several other selenocompounds have shown promising effects in stressed mice. Casaril et al. (2019) showed that 3-((4-chlorophenyl)selenyl)-1-methyl-1H-indole (CMI) can prevent ARS-induced depressive-like behavior in mice without affecting non-stressed subjects. Originally developed to combat atherosclerosis-associated inflammation by protecting extracellular matrix proteins from oxidative stress, CMI induces antioxidative and inflammatory effects in mice by modulating serotonergic activity (Casaril et al., 2017b) and can reverse the depressive-like phenotype caused by lipopolysaccharide injection (Casaril et al., 2017a). Casaril identified multiple oxidative and inflammatory pathways that were activated by ARS and which CMI attenuated. The authors also revealed that CMI reversed the down-regulation of GCR expression in the prefrontal cortex and hippocampus caused by ARS that may have impaired the negative feedback loop of glucocorticoid secretion. Subsequent research by Pesarico et al. (2020) revealed that CMI also prevents the depressive-like phenotype caused by repeated forced swimming. The authors hypothesized that CMI acted by reducing lipid peroxidation in the prefrontal cortex and hippocampus. Domingues et al. (2019) obtained similar results while treating ARS-exposed mice with 3-[(4-methoxyphenyl) selenyl]-2-phenylimidazo[1,2-a] pyridine (MPI), a selenocompound with antioxidant and anti-inflammatory properties in the brain (Domingues et al., 2018). Administration of MPI attenuated the depressive- and anxiety-like phenotypes caused by ARS while preventing the induction of pro-inflammatory markers. Using a molecular docking simulation, the authors revealed that MPI may be capable of binding the GCR directly. Finally, Birmann et al. (2021) showed that yet another selenocompound, 3,5-dimethyl-1-phenyl-4-(phenylselenyl)-1H-pyrazole (SePy), protects against the anxiogenic- and hyperalgesic effects of ARS. The authors reported that SePy, which has anti-depressive-like properties (Birmann et al., 2020), prevented the ARS-induced elevation of TBARS levels in the prefrontal cortex and hippocampus.
TABLE 1 | Summary of the effects of selenium-containing compounds used in rodent models of stress.

Selenocompound/Species	Therapeutic Effects Against Stress in Rodent Studies
3-(4-Fluorophenylselanyl)-2,5-diphenylselenophene (F-DPS) (Gay et al., 2014)	- Reversed depressant- and anxiety-like behaviors caused by CORT administration - Normalized serum ACTH and CORT levels - Lowered monoamine oxidase-A activity in the PFC - Augmented synaptosomal serotonin and restored GLU uptake in PFC
3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (SePy) (Birmann et al., 2020)	- Attenuated anxiety-like behavior, allodynia, and hyperalgesia caused by ARS - Normalized plasma CORT levels - Reversed the elevation of ROS and TBARS in the PFC and HPC - Restored SOD activity in the PFC and HPC - May be capable of binding GCR directly
Sodium Selenite (Na₂SeO₃) (Left column) Selenium-containing compounds used in the reviewed studies and references for preceding studies with those compounds. (Right column) Ameliorative effects of treatment with the selenocompounds against the neurological and physiological impact of various stress paradigms. ACTH, adrenocorticotropic hormone; ARS, acute restraint stress; BDNF, brain-derived neurotrophic factor; CAT, catalase; CC, cerebral cortex; CORT, corticosterone; GCR, glucocorticoid receptor; GLU, glutamate; GPx, glutathione peroxidase; GSH, glutathione; HPC, hippocampus; PFC, prefrontal cortex; ROS, reactive oxygen species; SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive substances.	- Reduced total brain TBARS induced by prednisolone administration - Restored brain GPx activity and levels of reduced GSH - Did not, however, prevent the reduction in CAT activity

while reducing plasma corticosterone levels. Additionally, SePy was predicted to bind the active site of GCRs, similar to MPI, using a computational model. The molecular effects of stress on the brain examined by these studies, as well as the impact on selenoprotein expression as discussed below, are summarized in Figure 1.
GLUCOCORTICOID REGULATION OF SELENOPROTEINS

Glucocorticoids can regulate selenoprotein expression as reported by a handful of studies. For example, Rock and Moos identified a retinoid responsive element that can be regulated by dexamethasone to decrease SelenoP expression in HEK-293 cells (Rock and Moos, 2009). In another report by Kim and Kim (2013), dexamethasone was found to induce proteasomal degradation of Selenoprotein S (SelenoS) in 3T3-L1 murine preadipocytes, which the authors identified as necessary for adipogenesis. These studies highlight the diverse mechanisms through which glucocorticoids may differentially regulate selenoprotein expression in a tissue-specific manner.

Our knowledge of the ability of glucocorticoids to regulate the selenoproteins was recently expanded to the brain by Wray et al. (2019). In this study, chronic corticosterone administration increased gene expression of SelenoP and Dio2, while decreasing expression of the selenium recycling enzyme selenocysteine lyase (Scly), in the arcuate nucleus (Arc) of the hypothalamus, a brain region with high GCR expression. The authors focused on the metabolic effects of glucocorticoids, which include over-eating and excess weight gain (Vegiopoulos and Herzig, 2007; Perez et al., 2014). Interestingly, elevated serum SelenoP has been associated with diabetes and obesity (Misu et al., 2010) and Dio2 increases hypothalamic thyroid hormone availability (Bechtold and Loudon, 2007) to promote food intake (Coppola et al., 2007; Ishii et al., 2008; Varela et al., 2012). The finding that corticosterone down-regulated Scly draws an interesting parallel to whole-body Scly knockout mice, which exhibit an over-weight phenotype and heightened susceptibility to developing metabolic syndrome (Seale et al., 2012, 2015). Thus, long-term glucocorticoid action may promote positive energy balance, in part, by altering the expression of Scly and the selenoproteome in the Arc and other parts of the hypothalamus. In light of these findings, investigation of the interactions between glucocorticoids and selenium within the hypothalamus, and the relation to stress-related metabolic disruptions as well as downstream HPA axis function, remains a worthy course of investigation.

DISCUSSION

The majority of studies characterizing the protective role of selenium against stress and exogenous glucocorticoid administration have utilized various selenocompounds that were previously shown to have antioxidant activity. While the relative contributions of the selenium residues within each of these compounds to the overall therapeutic effect observed is not immediately clear, the protective results reported by the studies reviewed herein are striking (reviewed in Table 1). Developing synthetic compounds that incorporate selenium may, in fact, be a useful alternative to dietary selenium supplementation by providing the potential for tissue-specific targeting and limiting cytotoxicity. Still, dietary selenium remains an attractive potential treatment to counteract the oxidative effects of glucocorticoid action due its ease of delivery, and broad availability as an over-the-counter supplement. A comprehensive investigation of the role of selenium in the brain in response to stress, as well as the influence of glucocorticoid activity on the broader selenoproteome, however, is merited as this remains a major research gap. Additionally, investigating the apparent capability of seleno-therapy to normalize HPA axis function is instructive in order to understand the overall physiological implications. In conclusion, the interactions between glucocorticoids and selenium represent an emerging field with exciting potential for therapeutic development.

AUTHOR CONTRIBUTIONS

DT and NA wrote the manuscript. All authors revised the manuscript.

FUNDING

This work was supported by the following NIH grants: R01 DK047320 and F32 DK124963.

REFERENCES

Alim, I., Caulfield, J. T., Chen, Y., Swarup, V., Geschwind, D. H., Ivanova, E., et al. (2019). Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 177, 1262–1279.e25. doi: 10.1016/j.cell.2019.03.032

An, B. C., Jung, N. K., Park, C. Y., Oh, I. J., Choi, Y. D., Park, J. I., et al. (2016). Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells. Mol. Cells 39, 631–638. doi: 10.14348/molcells.2016.0164

Assayama, K., Hayashibe, H., Dobashi, K., Uchida, N., and Kato, K. (1992). Effect of dexamethasone on antioxidant enzymes in fetal rat lungs and kidneys. Biol. Neonate 62, 136–144. doi: 10.1159/000243866

Bechtold, D. A., and Loudon, A. S. (2007). Hypothalamic thyroid hormones: mediators of seasonal physiology. Endocrinology 148, 3605–3607. doi: 10.1210/en.2007-0596

Behl, C., Lezoualch, F., Trapp, T., Widmann, M., Skutella, T., and Holsboer, F. (1997). Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138, 101–106. doi: 10.1210/endo.138.1.4835

Beytut, E., Yilmaz, S., Aksakal, M., and Polat, S. (2018). The possible protective effects of vitamin E and selenium administration in oxidative stress caused by high doses of glucocorticoid administration in the brain of rats. J. Trace Elem. Med. Biol. 45, 131–135. doi: 10.1016/j.jtemb.2017.10.005

Birmann, P. T., Casaril, A. M., Hartwig, D., Jacob, R. G., Seixas, F. K., Collares, T., et al. (2020). A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res. 1741:146880. doi: 10.1016/j.brainres.2020.146880

Birmann, P. T., Domingues, M., Casaril, A. M., Smaniotto, T. A., Hartwig, D., Jacob, R. G., et al. (2021). A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav. Brain Res. 396:112874. doi: 10.1016/j.bbr.2020.112874
Burk, R. F., and Hill, K. E. (2009). Selenoprotein P expression, functions, and roles in mammals. Biochem. Biophys. Acta 1790, 1441–1447. doi: 10.1016/j.bbagrm.2009.03.026
Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., et al. (2014). Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 28, 3579–3588. doi: 10.1096/fj.14-252874
Buyntsky, T., and Mostofsky, D. I. (2009). Restraint stress in biobehavioral research: recent developments. Neurosci. Biobehav. Rev. 33, 1089–1098. doi: 10.1016/j.neubiorev.2009.05.004
Cascaril, A. M., Domingues, M., Bampi, S. R., de Andrade Lourenco, D., Padilha, N. B., Lenardao, E. J., et al. (2019). The selenium-containing compound 3-((4-chlorophenyl)selenyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology 236, 2867–2880. doi: 10.1007/s00213-018-5151-x
Cascaril, A. M., Domingues, M., Fronza, M., Vieira, B., Begnini, K., Lenardao, E. J., et al. (2017a). Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice. J. Psychopharmacol. 31, 1263–1273. doi: 10.1177/0269881117711713
Cascaril, A. M., Ignaiask, M. T., Chuang, C. Y., Vieira, B., Padilha, N. B., Carroll, L., et al. (2017b). Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated proteases and protective effect against oxidation of extracellular matrix proteins. Free Radic. Biol. Med. 113, 395–405. doi: 10.1016/j.freeradbiomed.2017.10.344
Chanoine, J. P., Wong, A. C., and Lavoie, J. C. (2004). Selenium deficiency impairs hippocampus plasticity and learning in mice and rats. Neurosci. Biobehav. Rev. 28, 3579–3588. doi: 10.1016/j.neubiorev.2009.03.026
Labunskyy, V. M., Hatfield, D. L., and Gladyshev, V. N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777. doi: 10.1152/physrev.00039.2013
Lupien, S. J., Juster, R. P., Raymond, C., and Marin, M. F. (2018). The effects of chronic stress on human neuroplasticity: from vulnerability, to opportunity. Front. Neuroendocrinol. 49:91–105. doi: 10.1016/j.yfrne.2018.02.001
Lupien, S. J., and Lepage, M. (2001). Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav. Brain Res. 127, 137–158. doi: 10.1016/s0166-4328(01)00361-8
Lupien, S. J., McEwen, B. S., Gunnar, M. R., and Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. doi: 10.1038/nrn2639
Lupien, S. J., and Lepage, M. (2001). Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav. Brain Res. 127, 137–158. doi: 10.1016/s0166-4328(01)00361-8
Gai, B. M., Prigol, M., Stein, A. L., and Nogueira, C. W. (2010). Antidepressant-like pharmacological profile of 3-((4-fluoropheny)selenyl)-2,5-diphenylselenophene: involvement of serotonergic system. Neuropharmacology 59, 172–179. doi: 10.1016/j.neuropharm.2010.05.003
Labunskyy, V. M., Hatfield, D. L., and Gladyshev, V. N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777. doi: 10.1152/physrev.00039.2013
Lupien, S. J., McEwen, B. S., Gunnar, M. R., and Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. doi: 10.1038/nrn2639
Manikova, D., Sestakova, Z., Rendekova, J., Vlasakova, D., Lukacova, P., Paegle, E., et al. (2018). Reversal-induced Benzo[b]selenophenenes Act as Anti-Oxidants in Yeast. Molecules 23:507. doi: 10.3390/molecules23020507
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904. doi: 10.1152/physrev.00041.2006
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583, 174–185. doi: 10.1016/j.ejphar.2007.11.071
McEwen, B. S., Nasca, C., and Gray, J. D. (2016). Stress Effects on Neuronal Structure: hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 41, 3–23. doi: 10.1038/npp.2015.171
McEwen, B. S., Weiss, J. M., and Schwartz, L. S. (1988). Selective retention of corticosterone by limbic structures in rat brain. Nature 220, 911–912. doi: 10.1038/220911a0
McIntosh, L. J., Cortopassi, K. M., and Sapolsky, R. M. (1998). Glucocorticoids may alter antioxidant enzyme capacity in the brain: kaiic acid studies. Brain Res. 791, 215–222. doi: 10.1016/s0006-8993(98)00410-8
Misu, H., Takamura, T., Takayama, H., Hayashi, H., Matsuzawa-Nagata, N., Kurita, S., et al. (2010). A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 12, 483–495. doi: 10.1016/j.cmet.2010.09.015
Navarro-Alarcon, M., and Cabrera-Vique, C. (2008). Selenium in food and the human body: a review. Sci. Total Environ. 400, 115–141. doi: 10.1016/j.scitotenv.2008.06.024

Pasco, J. A., Jacka, F. N., Williams, L. J., Evans-Cleverdon, M., Brennan, S. L., Kotowicz, M. A., et al. (2012). Dietary selenium and major depression: a nested case-control study. Complement. Ther. Med. 20, 119–123. doi: 10.1016/j.ctim.2011.12.008

Perez, A., Jansen-Chaparro, S., Saigi, I., Bernal-Lopez, M. R., Minambres, I., and Gomez-Huelgas, R. (2014). Glucocorticoid-induced hyperglycemia. J. Diabetes 6, 9–20. doi: 10.1111/1753-0437.12090

Pesarico, A. P., Birmann, P. T., Pinto, R., Padilha, N. B., Lenardão, E. J., and Savañg, L. (2020). Short- and Long-Term Repeated Forced Swim Stress Induce Depressive-Like Phenotype in Mice: effectiveness of 3-[(4-Chlorophenyl)Selenyl]-1-Methyl-1H-Indole. Front. Behav. Neurosci. 14:140. doi: 10.3389/fnbeh.2020.00140

Pillai, R., Uyehara-Lock, J. H., and Bellinger, F. P. (2014). Selenium and selenoprotein function in brain disorders. JUBMB Life 66, 229–239. doi: 10.1002/tub.1262

Potmis, R. A., Nonavinakere, V. K., Rashek, H. R., and Early, J. L. II. (1993). Effect of selenium (Se) on plasma ACTH, beta-endorphin, corticosterone and glucose in rat: influence of adrenal enucleation and metyrapone pretreatment. Toxicology 79, 1–9. doi: 10.1016/0300-483X(93)90201-3

Rashek, H. R., Potmis, R. A., Nonavinakere, V. K., Early, J. L., and Iszard, M. B. (1991). Effect of selenium on plasma glucose of rats: role of insulin and glucocorticoids. Toxicol. Lett. 58, 199–207. doi: 10.1016/0378-4274(91)90174-5

Rock, C., and Moos, P. J. (2009). Selenoprotein P regulation by the glucocorticoid receptor. Biometals 22, 995–1009. doi: 10.1007/s10534-009-9251-2

Sahin, E., and Gumuslu, S. (2004). Alterations in brain antioxidant status, protein oxidation and lipid peroxidation in response to different stress models. Behav. Brain Res. 155, 241–248. doi: 10.1016/j.bbr.2004.04.022

Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. J. Neurosci. 6, 2240–2244.

Sato, H., Takahashi, T., Sumitani, K., Takatsu, H., and Urano, S. (2010). Glucocorticoid Generates ROS to Induce Oxidative Injury in the Hippocampus, Leading to Impairment of Cognitive Function of Rats. J. Clin. Neurophysiol. Nutr. 47, 224–232. doi: 10.3164/jcn.10-58

Sayd, A., Vargas-Caraveo, A., Perea-Romero, I., Robledo-Montana, J., Caso, J. R., Madrigal, J. L. M., et al. (2020). Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur. Neuropsychopharmacol. 34, 50–64. doi: 10.1016/j.euroneuro.2020.03.004

Seale, L. A., Gilman, C. L., Hashimoto, A. C., Ogawa-Wong, A. N., and Berry, M. J. (2015). Diet-induced obesity in the selenocysteine lyase knockout mouse. Biophys. Res. Commun. 189, 361–369. doi: 10.1007/s12011-015-1482-6

Sousa, F. S. S., Birmann, P. T., Balaguez, R., Alves, D., Bruning, C. A., and Savengaño, L. (2018). alpha-(phenylselenyl) acetophenone abolishes acute restraint stress induced-comorbid pain, depression and anxiety-related behaviors in mice. Neurochem. Int. 120, 112–120. doi: 10.1016/j.neuint.2018.06.008

Spiers, J. G., Chen, H. H., Cuffe, J. S., Sernia, C., and Lavidis, N. A. (2016). Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats. Psychoneuroendocrinology 67, 104–112. doi: 10.1016/j.psyneuen.2016.02.005

Spiers, J. G., Chen, H. H., Sernia, C., and Lavidis, N. A. (2014). Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front. Neurosci. 8:456. doi: 10.3389/fnins.2014.00456