Factors Associated With Pulmonary Embolism Among Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: A Multicenter Study Among 375 Patients

Abstract: Risk factors associated with pulmonary embolism in coronavirus disease 2019 acute respiratory distress syndrome patients deserve to be better known. We therefore performed a post hoc analysis from the COVADIS project, a multicenter observational study gathering 21 ICUs from France (n = 12) and Belgium (n = 9). Three-hundred seventy-five consecutive patients with moderate-to-severe acute respiratory distress syndrome and positive coronavirus disease 2019 were included in the study. At day 28, 15% were diagnosed with pulmonary embolism. Known risk factors for pulmonary embolism including cancer, obesity, diabetes, hypertension, and coronary artery disease were not associated with pulmonary embolism. In the multivariate analysis, younger age (< 65 yr) (odds ratio, 2.14; 1.17–4.03), time between onset of symptoms and antiviral administration greater than or equal to 7 days (odds ratio, 2.39; 1.27–4.73), and use of neuromuscular blockers greater than or equal to 7 days (odds ratio, 1.89; 1.05–3.43) were independently associated with pulmonary embolism. These new findings reinforce the need for prospective studies that will determine the predictors of pulmonary embolism among patients with severe coronavirus disease 2019.

Key Words: acute respiratory distress syndrome; coronavirus disease 2019; critically ill; pulmonary embolism; severe acute respiratory syndrome coronavirus 2; thrombotic complications

MATERIALS AND METHODS

In participating ICUs, all consecutive patients with moderate-to-severe ARDS according to Berlin definition (4) (Pao2/Fio2 ratio under 200 mm Hg with a positive end-expiratory pressure of at least 5 mm Hg) and positive SARS-CoV-2 reverse transcriptase-polymerase chain reaction seen between March 10, 2020, and April 12, 2020, were analyzed. This study was approved by appropriate regulatory committee in France and in Belgium in accordance with national regulation. Each patient was informed about the study. In case of incompetency, next of kin were informed. The requirement for written informed consent was waived. Each local investigator filled an electronic case report form to collect data (Castor EDC, Amsterdam, The Netherlands).

Among all collected data, demographics, known predisposing risk factors associated with thrombotic complications (5), management interventions delivered during ICU hospitalization, antiviral treatment, and immunomodulatory agents were kept for the current analysis. PE occurrence and mortality were recorded at day 28. To identify factors associated with PE, a post hoc multivariate logistic regression analysis with backward stepwise selection was performed. All variables associated with PE in univariate analysis with a p value of less than 0.20 were included. Statistical analysis was performed with R Version 3.5.0 and RStudio Version 1.1.453 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Three-hundred seventy-five patients were included in the study. The mean age was 63.5 ± 10.1 years, 77% were male, and 40% had a body mass index over 30 kg/m2. The most frequent comorbidities were hypertension (58%), diabetes (26%), coronary artery disease (10%) and cancer, leukemia, or lymphoma (12%). Main treatments administrated are summarized in Table 1. Details in anticoagulation regimen were not collected but all patients received administrated anticoagulation at least at preventive dose.

At day 28, 55 patients (15%) were diagnosed with PE with a rate of 9.1 cases per 1,000 ventilator days and a mean duration of 7.2 ± 6.1 days between intubation and PE diagnosis. Deep venous thrombosis were more frequently found in patients with PE than in those without PE. Patients with PE tended to be younger, had longer interval between onset of symptoms and antiviral administration, and had longer duration of neuromuscular blockers use and of mechanical ventilation. However, known risk factors for PE including cancer, obesity, diabetes, hypertension, and coronary artery disease were not associated with PE. Furthermore, we did not find differences in disease severity, ventilator settings at admission, and antiviral strategies between patients with and without PE.

In the multivariate analysis, younger age (< 65 yr), time between onset of symptoms and antiviral administration greater than or equal to 7 days, and use of neuromuscular blockers greater than or equal to 7 days, and use of in anticoagulation regimens were not collected but all patients received administrated anticoagulation at least at preventive dose.

To the Editor:

Recent studies have suggested that patients with acute respiratory distress syndrome (ARDS) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (also known as coronavirus disease 2019 [COVID-19]) were at higher risk of pulmonary embolism (PE) (1–3). Risk factors associated with PE in these patients deserve to be better known. To do that, we performed a post hoc analysis from the COVADIS project, a multicenter observational study gathering 21 ICUs from France (n = 12) and Belgium (n = 9).

For information regarding this article, E-mail: thibaud_soumagne@live.fr

Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
TABLE 1. Main Characteristics of the Critically Ill Patients With Coronavirus Disease 2019 Acute Respiratory Distress Syndrome

	Patients With Pulmonary Embolism (n = 55)	Patients Without Pulmonary Embolism (n = 320)	p
Age (yr)	61.1 ± 9.1	63.9 ± 10.3	0.06
Male	46 (84)	242 (76)	0.23
Body mass index (kg/m²)	29.6 ± 4.7	29.8 ± 5.6	0.77
Comorbidities			
Hypertension	26 (53)	190 (59)	0.11
Diabetes mellitus	12 (22)	87 (27)	0.40
Coronary artery disease	8 (15)	28 (9)	0.21
Chronic heart failure	1 (2)	12 (4)	0.70
Cancer, leukemia, or lymphoma	4 (7)	40 (13)	0.36
Peripheral vascular disease	4 (7)	20 (6)	0.77
Chronic liver disease	2 (4)	10 (3)	0.69
Chronic renal disease	5 (9)	26 (8)	0.81
Autoimmune disease	0	12 (4)	0.23
Charlson score	1.3 ± 1.9	1.4 ± 1.9	0.83
Deep venous thrombosis	11 (20)	24 (8)	0.003
ICU therapy			
Invasive mechanical ventilation	55 (100)	320 (100)	1
Duration of mechanical ventilation at day 28 (d)	18.3 ± 9.1	15.8 ± 9.1	0.048
Neuromuscular blockers	48 (87)	266 (83)	0.56
Duration of neuromuscular blockers (d)	9.5 ± 7.6	6.4 ± 5.4	< 0.001
Inhaled pulmonary vasodilators	9 (16)	34 (11)	0.25
Prone positioning	45 (82)	255 (80)	0.86
Extracorporeal membrane oxygenation	6 (11)	35 (11)	1
Renal replacement therapy	13 (24)	61 (19)	0.43
Antiviral therapy	48 (87)	280 (88)	0.96
Lopinavir	10 (18)	71 (22)	0.50
Remdesivir	4 (7)	14 (4)	0.34
Hydroxychloroquine	39 (71)	199 (62)	0.21
Time between onset of symptoms and antiviral administration (d)	10.0 ± 3.6	8.4 ± 4.3	0.02
Steroids	13 (26)	64 (21)	0.47
Tocilizumab	0	9 (3)	0.37
Ventilator settings and oxygenation at admission			
Tidal volume (mL per kg of predicted body weight)	6.1 ± 0.7	6.3 ± 0.9	0.16
Positive end-expiratory pressure (cm of water)	11.9 ± 2.6	11.5 ± 2.9	0.35
P_{aO_2}/F_{Io_2} (mm Hg)	132 ± 57	127 ± 49	0.53
Outcome			
ICU mortality at day 14	9 (16)	83 (26)	0.13
ICU mortality at day 28	16 (29)	118 (37)	0.27
Extubated at day 28*	19 (49)	137 (68)	0.25
Ventilator-free days at day 28*	7.4 ± 9.1	9.7 ± 8.4	0.13

*Patients who were dead at day 28 were excluded.

Values are mean ± so or number of patients (percentage of total). Significant results are in boldface.
Critical Care Explorations

Antiviral therapies in COVID-19 are supposed to decrease viral load (11). The association between PE and delay in antiviral administration found in our study might incite to investigate the link between viral load and risk factors related to PE.

Our results should be interpreted with caution, as the study was not originally designed to investigate PE. In particular, there was no systematic strategy was used to search PE, and information regarding anticoagulation dose was not collected.

CONCLUSIONS

Based on the analysis of a large multicenter case series of COVID-19 ARDS, we found that: 1) at least 15% of patients with COVID-ARDS have PE; 2) known risk factors for PE were not associated with PE in the particular setting of COVID-19 ARDS; and 3) patients with PE had longer duration of mechanical ventilation and of neuromuscular blocker use. These new findings reinforce the need for prospective studies that will determine the predictors of PE among patients with severe COVID-19 (12).

Dr. Textoris is a part-time employee of bioMérieux, an IV diagnostics company, and Hospices Civils de Lyon, a university hospital. The remaining authors have disclosed that they do not have any potential conflicts of interest.

Thibaud Soumagne, MD, Service de Réanimation Médicale, CHU Besançon, Besançon, France; Jean-Baptiste Lascarrou, MD, CRICS-TriggerSEP research network, Tours, France, and Medecine Intensive Reanimation, CHU Nantes, Nantes, France; Sami Hraiech, MD, Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Marseille, Marseille, France, and Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, Aix-Faculté de médecine, Marseille Université, Marseille, France; Geoffrey Horlait, MD, Unité de soins intensifs, CHU Dinant Godinne, site Godinne, Namur, Belgium; Julien Higny, MD, Unité de soins intensifs, CHU Dinant Godinne, site Dinant, Dinant, Belgium; Alain d’Hondt, MD, Unité de soins intensifs, CHU Ambroise Paré, Mon, Belgium; David Grimaldi, MD, Soins Intensifs, Hôpital Erasme, ULB, Bruxelles, Belgium; Stéphane Gaudry, MD, Réanimation médico-chirurgicale CHU Avicennes, Université Sorbonne Paris Nord, Bobigny, France; Romain Courcelle, MD, Unité de soins intensifs, Centres Hospitaliers de Jolimont, La Louvière, Belgium; Giuseppe Carbetti, MD, Unité de soins intensifs, CHR Mons-Hainaut, Mons, Belgium; Gauthier Blonzi, MD, Medecine Intensive Reanimation, District Hospital Center, Boulevard Stephane Moreau, La Roche Sur Yon, France; Nadia Aissaoui, MD, Medecine Intensive Reanimation, Hôpital Européen Georges Pompidou, Paris centre U 970 PARCC, Paris, France; Christophe Vinsonneau, MD, CRICS-TriggerSEP research network, Tours, France, and Service de Médecine Intensive Réanimation Unité de Sevrage Ventilatoire et Réhabilitation Centre Hospitalier de Bethune, Beauvry, France; Benoit Vandenbunder, MD, Groupe des anesthésistes réanimateurs, Hôpital Privé d’Antony, Antony, France; Julien Textoris, MD, Service de réanimation, Hospices Civils de Lyon, Lyon, France, and Laboratoire Commun de Recherche bioMérieux-Hospices Civils de Lyon-Université de Lyon 1, Lyon, France; Piotr Szychowiak, MD, CRICS-TriggerSEP
research network, Tours, France, and Médecine Intensive Réanimation, CHRU Tours, Tours, France, and INSERM CIC 1415, CHRU Tours, Tours, France; Nicolas Serck, MD, Unité de soins intensifs, Clinique Saint Pierre, Ottignies, Belgium; Bertrand Sauneuf, MD, Réanimation - Médecine Intensive, Centre Hospitalier Public du Cotentin, Cherbourg-en-Cotentin, France; Michael Piagnerelli, MD, Intensive Care, CHU-Charleroi, Marie Curie, Université Libre de Bruxelles, chaussée de Bruxelles, Charleroi, Belgium; André Ly, MD, Service d’anesthésie-réanimation chirurgicale Unité de réanimation chirurgicale polyvalente Hôpitaux Universitaires Henri Mondor, Créteil, France; François Lejeune, MD, Unité de soins intensifs, Clinique Notre Dame de Grâce, Gosselies, Belgium; Laurent Lefebvre, MD, Réanimation polyvalente Centre Hospitalier du pays d’Aix, Aix en Provence, France; Gaël Piton, MD, Service de Réanimation Médicale, CHU Besançon, Besançon, France

REFERENCES

1. Llitjos JF, Leclerc M, Choclois C, et al: High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020 Apr 22. [online ahead of print]
2. Helms J, Tacquard C, Severac F, et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis: High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 2020; 46:1089–1098
3. Marinj JJ: Dealing with the CARDS of COVID-19. Crit Care Med 2020 May 13. [online ahead of print]
4. Ranieri VM, Rubenfeld GD, Thompson BT, et al; ARDS Definition Task Force: Acute respiratory distress syndrome: The Berlin definition. JAMA 2012; 307:2526–2533
5. Konstantinides SV, Meyer G, Becattini C, et al: 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J 2019; 54:1901647
6. Simon M, Braune S, Laqmani A, et al: Value of computed tomography of the chest in subjects with ARDS: A retrospective observational study. Respir Care 2016; 61:316–323
7. Lim W, Meade M, Lauzier F, et al; PROphylaxis for ThromboEmbolism in Critical Care Trial Investigators: Failure of anticoagulant thromboprophylaxis: Risk factors in medical-surgical critically ill patients*. Crit Care Med 2015; 43:401–410
8. Minet C, Lugosi M, Savoye PY, et al: Pulmonary embolism in mechanically ventilated patients requiring computed tomography: Prevalence, risk factors, and outcome. Crit Care Med 2012; 40:3202–3208
9. Susen S, Tacquard C, Godon A, et al: Traitement anticoagulant pour la prévention du risque thrombique chez un patient hospitalisé avec COVID-19 et surveillance de l’hémostase. Propositions du GHHP et du GFHT. 2020. Available at: https://sfar.org/traitement-anticoagulant-pour-la-prevention-du-risque-thrombique-chez-un-patient-hospitalise-avec-covid-19-et-surveillance-de-l-hemostase/. Accessed April 12, 2020
10. Bodi M, Barbani F, Abbate R, et al: Reduction in deep vein thrombosis incidence in intensive care after a clinician education program. J Thromb Haemost 2010; 8:121–128
11. Wu R, Wang L, Kuo HD, et al: An update on current therapeutic drugs treating COVID-19. Curr Pharmaco Rep 2020; 11:1–15
12. Bikdeli B, Madhavan MV, Jimenez D, et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function: COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75:2950–2973

DOI: 10.1097/CCE.0000000000000166