Problems on
Minkowski sums of convex lattice polytopes

Tadao Oda
odatadao@math.tohoku.ac.jp

Abstract submitted at the Oberwolfach Conference
“Combinatorial Convexity and Algebraic Geometry” 26.10–01.11, 1997

Throughout, we fix the notation $M := \mathbb{Z}^r$ and $M_\mathbb{R} := \mathbb{R}^r$.
Given convex lattice polytopes $P, P' \subset M_\mathbb{R}$, we have

$$(M \cap P) + (M \cap P') \subset M \cap (P + P'),$$

where $P + P'$ is the Minkowski sum of P and P', while the left hand side means $\{m + m' \mid m \in M \cap P, m' \in M \cap P'\}$.

Problem 1 For convex lattice polytopes $P, P' \subset M_\mathbb{R}$ when do we have the equality

$$(M \cap P) + (M \cap P') = M \cap (P + P')?$$

We always have the equality if $r = 1$. This need not be the case, however, if $r \geq 2$ as the following example shows:
In this example, each of \(P \) and \(P' \) is nice (known as basic or unimodular), but their relative position is not.

We may regard the case \(P' = \nu P \) for a positive integer \(\nu > 0 \) as a special case of nice relative position. We have \(P + \nu P = (\nu + 1)P \), and

\[
(M \cap P) + (M \cap \nu P) \subset M \cap (\nu + 1)P.
\]

Problem 2 When do we have the equality

\[
(M \cap P) + (M \cap \nu P) = M \cap (\nu + 1)P
\]

for all \(\nu \in \mathbb{Z}_{>0} \)?

This problem is related to the projective normality of projective toric varieties.

We obviously have the equality if \(r = 1 \). Koelman [9] showed that the equality always holds if \(r = 2 \).

More generally, Sturmfels [10] and others showed that the equality holds if \(P \) has a basic (also known as unimodular) triangulation.

In view of toric geometry, the following could be a reasonable formulation of the problem as to when \(P \) and \(P' \) are in nice relative position: We fix an \(r \)-dimensional convex lattice polytope \(P \), and let \(P' \) to be obtained from \(P \) by independent parallel translation of facets (codimension one faces) of \(P \). The combinatorial face structure of \(P' \) might differ from that of \(P \).

By toric geometry, the convex lattice polytope \(P \) corresponds to an \(r \)-dimensional projective toric variety \(X \) over the complex number field \(\mathbb{C} \) together with an ample divisor \(D \) on \(X \), while \(P' \) gives rise to an effective divisor \(D' \) on \(X \). \(D' \) is ample if the combinatorial face structure of \(P' \) coincides with that of \(P \). When \(D' \) is merely nef, the combinatorial face structure of \(P' \) could be slightly degenerate.

Problem 3 If \(D' \) is nef, do we have the surjectivity of the canonical multiplication map

\[
H^0(X, \mathcal{O}_X(D)) \otimes \mathcal{O}_X(D') \rightarrow H^0(X, \mathcal{O}_X(D + D'))?
\]

We know that \(H^1(X, \mathcal{O}_X(D')) = 0 \) when \(D' \) is nef, hence

\[
H^1(X \times X, \mathcal{O}_{X \times X}(p_1^{-1}D + p_2^{-1}D')) = 0
\]

by K"unneth formula. Consequently, Problem 3 is equivalent to the following:

Problem 4 Let \(I \) be the \(\mathcal{O}_{X \times X} \)-ideal corresponding to the diagonal subvariety \(\Delta(X) \) of \(X \times X \). If \(D' \) is nef, do we have

\[
H^1(X \times X, I \otimes \mathcal{O}_{X \times X}(p_1^{-1}D_1 + p_2^{-1}D')) = 0?
\]
Hopefully, we might have an affirmative answer at least when X is smooth and D' is ample. There have been unsuccessful attempts in this direction by means of Frobenius splittings in characteristic $p > 0$.

Without assuming X to be smooth nor D' to be ample, let us give another formulation for the problem.

Let $N := \text{Hom}_Z(M, Z)$ with the canonical bilinear pairing $\langle \cdot, \cdot \rangle : M \times N \rightarrow Z$. Consider the finite complete fan Σ for N corresponding to X. As usual, denote by $\Sigma(1) = \{\rho_1, \rho_2, \ldots, \rho_l\}$ the set of one-dimensional cones in Σ, and let $n_j \in N$ be the primitive generator for $\rho_j \in \Sigma(1)$.

Let us introduce a free Z-module $\tilde{N} := \bigoplus_{j=1}^l Z\tilde{n}_j$ with the basis consisting of the symbols $\{\tilde{n}_1, \ldots, \tilde{n}_l\}$ corresponding to $\Sigma(1)$, and the Z-linear map

$$\pi : \tilde{N} \rightarrow N \quad \text{with} \quad \pi(\tilde{n}_j) := n_j$$

for $j = 1, \ldots, l$.

Let $\tilde{M} := \text{Hom}_Z(\tilde{N}, Z)$ with the dual basis $\{\tilde{m}_1, \ldots, \tilde{m}_l\}$. Since π has finite cokernel, the dual Z-linear map

$$\pi^* : M \rightarrow \tilde{M} \quad \text{with} \quad \pi^*(m) := \sum_{j=1}^l \langle m, n_j \rangle \tilde{m}_j$$

for any $m \in M$ is injective. Let $\mathcal{M} := \text{coker}(\pi^*)$ and denote by $\mu_j \in \mathcal{M}$ the image of $\tilde{m}_j \in \tilde{M}$. We call $(\mathcal{M}, \{\mu_1, \ldots, \mu_l\})$ the linear Gale transform of $(N, \{n_1, \ldots, n_l\})$.

\mathcal{M} is canonically isomorphic to the Weil divisor class group of X (modulo linear equivalence). Let

$$\tilde{M} \supset \tilde{M}_{\geq 0} := \sum_{j=1}^l Z_{\geq 0} \tilde{m}_j \quad \text{and} \quad \mathcal{M} \supset \mathcal{M}_{\geq 0} := \sum_{j=1}^l Z_{\geq 0} \mu_j.$$

$\tilde{M}_{\geq 0}$ is canonically isomorphic to the semigroup of torus-invariant effective Weil divisors on X. For $j = 1, 2, \ldots, l$ we will use D_j and \tilde{m}_j interchangeably to denote the torus-invariant irreducible Weil divisor corresponding to the one-dimensional cone ρ_j.

The homogeneous coordinate ring introduced by Cox, Audin, Delzant, et al. (cf. [4]) is the semigroup algebra

$$S := \mathbb{C}[\tilde{M}_{\geq 0}] = \mathbb{C}[x_1, x_2, \ldots, x_l] \quad \text{with} \quad x_j := e(\tilde{m}_j) \in S \text{ for } j = 1, \ldots, l.$$

We endow the polynomial ring S with the $(\mathcal{M}_{\geq 0})$-grading defined by

$$\deg x_j := \mu_j \quad \text{for } j = 1, \ldots, l.$$

For $\alpha \in \mathcal{M}$, we denote by S_α the homogeneous part of degree α.

Note that the $(\mathcal{M}_{\geq 0})$-graded ring S depends only on the 1-skeleton $\Sigma(1)$ of Σ. Problem 1 is more or less equivalent to the following:
Problem 5 Given $\alpha, \beta \in M_{\geq 0}$, when is the multiplication map

$$S_\alpha \otimes C S_\beta \rightarrow S_{\alpha+\beta}$$

surjective?

The fan Σ determines the polyhedral cone

$$C \subset M_\mathbb{R} := M \otimes \mathbb{Z} \mathbb{R}$$

spanned by nef divisor classes. The intersection $M \cap C^\circ$ of M with the interior C° of C is the semigroup of ample divisor classes on X. Then Problems 3 and 4 are almost equivalent to the following:

Problem 6 Is the multiplication map $S_\alpha \otimes C S_\beta \rightarrow S_{\alpha+\beta}$ surjective if $\alpha \in M \cap C^\circ$ and $\beta \in M \cap C$? What if $\alpha, \beta \in M \cap C^\circ$?

The study of the diagonal ideal sheaf $I \subset O_{X \times X}$ is important not only in connection with Problem 4 but in its own right. In explaining a possible approach to the study, let us follow the notation of Cox [4].

We denote

$$x^D := \prod_{j=1}^l x_j^{a_j} \in S \quad \text{for} \quad D = \sum_{j=1}^l a_j \tilde{m}_j \in \tilde{M}_{\geq 0}$$

and

$$\deg x^D := \sum_{j=1}^l a_j \mu_j =: [D].$$

By our convention $D_j = \tilde{m}_j$, we have

$$x^{D_j} = x_j \quad \text{and} \quad [D_j] = \mu_j \quad \text{for} \quad j = 1, 2, \ldots, l.$$

For each $\alpha \in M$ we denote by $O_X(\alpha)$ the O_X-module corresponding to the degree-shifted graded S-module $S(\alpha)$. We also need the following notation later: For each $m \in M$ we denote the zero and polar divisors of the character $e(m)$ of the torus regarded as a rational function on X by

$$D^+(m) := \sum_{1 \leq j \leq l, \langle m, n_j \rangle > 0} \langle m, n_j \rangle D_j \quad \text{and} \quad D^-(m) := \sum_{1 \leq j \leq l, \langle m, n_j \rangle < 0} (-\langle m, n_j \rangle) D_j,$$

hence $\pi^*(m) = D^+(m) - D^-(m)$.

We have a canonical homomorphism of $(M_{\geq 0} \times M_{\geq 0})$-graded C-algebras

$$S \otimes C S \rightarrow C[M_{\geq 0}] \otimes C S$$
defined by
\[x^D \otimes x^E \mapsto e([D]) \otimes x^{D+E} \quad \text{for } D, E \in \tilde{M}_{\geq 0}. \]

The ideal \(I \subset O_{\Delta X} \) for the diagonal subvariety \(\Delta(X) \subset X \times X \) obviously corresponds to the \((\mathcal{M}_{\geq 0} \times \mathcal{M}_{\geq 0}) \)-homogeneous ideal
\[I := \ker(S \otimes C S \rightarrow C[\mathcal{M}_{\geq 0}] \otimes C S). \]

Problems 5 and 6 ask the surjectivity of the \((\alpha, \beta)\)-component
\[S^\alpha \otimes C S^\beta \rightarrow e(\alpha) \otimes C S^{\alpha+\beta} \]
of this homomorphism under various conditions on \(\alpha, \beta \in \mathcal{M}_{\geq 0} \).

Identifying the logarithmic derivatives \(dx_j/x_j \) with \(\tilde{m}_j \) for \(j = 1, 2, \ldots, l \) as usual, we get a canonical injective homomorphism of graded \(S \)-modules
\[\Omega_1^S \longrightarrow S \otimes \tilde{M}, \quad dx_j \mapsto x_j \otimes \tilde{m}_j \quad \text{for } j = 1, 2, \ldots, l. \]

Denote by
\[\Omega := \ker(\Omega_1^S \rightarrow S \otimes \tilde{M} \rightarrow S \otimes \mathcal{M}) \]
the kernel of the composite of this homomorphism with the canonical projection \(S \otimes \tilde{M} \rightarrow S \otimes \mathcal{M} \). It is not hard to show that the sheaf \(\Omega_1^X \) of Zariski differential 1-forms (resp. \(\bigoplus_{j=1}^l O_X(-D_j) \)) is the \(O_X \)-module associated to the graded \(S \)-module \(\Omega \) (resp. \(\Omega_1^S \)). In this way, we get the following well-known result:

Proposition 7 (Generalized Euler exact sequence. cf. Batyrev-Cox [1])

We have an exact sequence of \(O_X \)-modules
\[0 \rightarrow \Omega_1^X \rightarrow \bigoplus_{j=1}^l O_X(-D_j) \rightarrow O_X \otimes \mathcal{M} \rightarrow 0. \]

Remark 8 The graded \(S \)-module \(\Omega \) is generated over \(S \) by
\[\left\{ x^D dx^E - x^E dx^D \mid D, E \in \tilde{M}_{\geq 0}, \ D \sim E \right\}, \]
hence by
\[\left\{ x^{D^+(m)} dx^{D^-(m)} - x^{D^-(m)} dx^{D^+(m)} \mid m \in \mathcal{M} \right\}. \]

The vectors \(n_1, n_2, \ldots, n_l \in \mathbb{N} \) give rise to an arrangement \(\mathcal{A} \) of hyperplanes \(\{n_j\}^\perp \subset M_\mathbb{R} \). A chamber \(\Gamma \) for \(\mathcal{A} \) is one of the top-dimensional polyhedral cones appearing in the partition of \(M_\mathbb{R} \) induced by the arrangement \(\mathcal{A} \). If we choose for each chamber \(\Gamma \) a set \(\Xi_\Gamma \) of generators of the semigroup \(M \cap \Gamma \), then \(\Omega \) is generated over \(S \) by
\[\left\{ x^{D^+(m)} dx^{D^-(m)} - x^{D^-(m)} dx^{D^+(m)} \mid m \in \bigcup_{\text{chambers } \Gamma} \Xi_\Gamma \right\}. \]
Remark 9 As in Remark 8 we see that the “diagonal” ideal $I \subset S \otimes_C S$ is generated over $S \otimes_C S$ by

$$\left\{ x^D \otimes x^E - x^E \otimes x^D \mid D, E \in \tilde{M}_{\geq 0}, D \sim E \right\},$$

hence by

$$\left\{ x^{D^+(m)} \otimes x^{D^-(m)} - x^{D^-(m)} \otimes x^{D^+(m)} \mid m \in \bigcup_{\text{chambers } \Gamma} \Xi_\Gamma \right\}.$$

Example 10 When $X = \mathbb{P}^r$ is the projective space, the corresponding polytope P is a unimodular simplex, and $l = r + 1$. We have $\mathcal{M} = \mathbb{Z}$, and $S_{\alpha} \otimes S_{\beta} \to S_{\alpha + \beta}$ in Problem 5 is obviously surjective for all $\alpha, \beta \in \mathcal{M}_{\geq 0}$. Nevertheless, the description of the diagonal ideal $I \subset \mathcal{O}_{\times \times X}$ is nontrivial. By Beilinson [2] we have an exact sequence

$$0 \to \mathcal{O}_X(-r) \boxtimes \Omega^r_X(r) \to \cdots \to \mathcal{O}_X(-j) \boxtimes \Omega^j_X(j) \to \cdots \to \mathcal{O}_X(-1) \boxtimes \Omega^1_X(1) \to I \to 0,$$

where $\mathcal{F} \boxtimes \mathcal{F}' := (p_1^*\mathcal{F}) \otimes_{\mathcal{O}_{\times \times X}} (p_2^*\mathcal{F}')$ is the external tensor product on $X \times X$ of \mathcal{O}_X-modules \mathcal{F} and \mathcal{F}'. (Thanks are due to Miles Reid for pointing out this result to the author.) One way of proving this is to note that the $S \otimes_C S$-module homomorphism

$$S \otimes_C \Omega^1_S \longrightarrow S \otimes_C S, \quad 1 \otimes dx_j \mapsto x_j \otimes 1 \quad \text{for } j = 1, 2, \ldots, r + 1$$

induces a surjection $S \otimes_C \Omega \to I$. Thus the Koszul complex arising out of the corresponding $\mathcal{O}_{\times \times X}$-homomorphism (cf., e.g., Eisenbud [6])

$$\mathcal{O}_X(-1) \boxtimes \Omega^1_X(1) \longrightarrow \mathcal{O}_X \otimes X,$$

whose cokernel is $\mathcal{O}_{\Delta(X)}$, gives the exact sequence above.

Similarly, the Koszul complex arising out of the S-homomorphism $\Omega^1_S \to S$ which sends dx_j to x_j for $j = 1, 2, \ldots, r + 1$ is nothing but the complex (Ω^r_S, d). By Remark 8 we see that Ω is the image of $d : \Omega^2_S \to \Omega^1_S$. Consequently, we get an exact sequence of \mathcal{O}_X-modules

$$0 \to \mathcal{O}_X(-r - 1)^{\oplus_{r+1}C_{r+1}} \longrightarrow \cdots \to \mathcal{O}_X(-j)^{\oplus_{r+1}C_j} \longrightarrow \cdots \to \mathcal{O}_X(-2)^{\oplus_{r+1}C_2} \to \Omega^1_X \to 0,$$

where

$$r+1C_j := \binom{r+1}{j}$$

are the binomial coefficients.

Alternatively, we could use the Eagon-Northcott complex (cf. Eagon-Northcott [5], Kirby [8] and Eisenbud [6]) for the 2×2-minors of

$$\begin{pmatrix} x_1 \otimes 1 & x_2 \otimes 1 & \ldots & x_{r+1} \otimes 1 \\ 1 \otimes x_1 & 1 \otimes x_2 & \ldots & 1 \otimes x_{r+1} \end{pmatrix}$$
to get an exact sequence

$$0 \to \mathcal{E}_r \to \cdots \to \mathcal{E}_p \to \cdots \to \mathcal{E}_1 \to \mathcal{I} \to 0,$$

where

$$\mathcal{E}_p := \bigoplus_{j+k=p+1}^p \wedge \tilde{M} \otimes \mathcal{O}_{X \times X}(-j,-k)$$

with

$$\mathcal{O}_{X \times X}(\alpha, \beta) := \mathcal{O}_X(\alpha) \otimes \mathcal{O}_X(\beta) \text{ for } \alpha, \beta \in \mathcal{M} = \mathbb{Z}.$$

References

[1] V. Batyrev and D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), 293–338.

[2] A. A. Beilinson, Coherent sheaves on \(\mathbb{P}^n\) and problems of linear algebra, Func. Anal. App. 12, No. 3 (1978), 214–216.

[3] I. N. Bernshtein, I. M. Gelfand and S. I. Gelfand, Algebraic bundles over \(\mathbb{P}^n\) and problems of linear algebra, Func. Anal. App. 12, No. 3 (1978), 212–214.

[4] D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geometry 4 (1995), 17–50.

[5] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Royal Soc. London 269 (1962), 188–204.

[6] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1995

[7] A. G. Khovanskii, Sums of finite sets, orbits of commutative semigroups and Hilbert functions, Func. Analy. App. 29, No. 2 (1995), 102–112.

[8] D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. (2) 7 (1973), 523–530.

[9] R. Koelman, Generators for the ideal of a projectively embedded toric surface, Tohoku Math. J. 45 (1993), 385–392.

[10] B. Sturmfels, Equations defining toric varieties, \texttt{alg-geom/9610018}, AMS Summer Inst. in Algebraic Geometry, Santa Cruz, 1995.