RESEARCH ARTICLE

Seroprevalence of Crimean-Congo hemorrhagic fever in humans in the World Health Organization European region: A systematic review

Lía Monsalve-Arteaga1*, Montserrat Alonso-Sardón2*, Juan Luis Muñoz Bellido3,4,5, María Belén Vicente Santiago1, María Carmen Vieira Lista1, Julio López Abán1, Antonio Muro1, Moncef Belhassen-Garcia1,6*

1 Laboratorio de Inmunología Parasitaria y Molecular, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain, 2 Área de Medicina Preventiva y Salud Pública, CIETUS, IBSAL, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain, 3 Servicio de Microbiología y Parasitología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain, 4 Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain, 5 Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain, 6 Servicio de Medicina Interna. Sección de Enfermedades Infecciosas. CAUSA. CIETUS. IBSAL. Universidad de Salamanca, Salamanca, Spain

* These authors contributed equally to this work.
* belhassen@usal.es

Abstract

Background

Crimean-Congo hemorrhagic fever (CCHF) is an emerging infectious disease caused by a Nairovirus. CCHF is a tick-borne disease that is predominantly associated with Hyalomma ticks and have a widespread distribution in Africa, Asia and Europe. CCHF usually presents as a subclinical disease, but in some cases, it may present as a hemorrhagic fever with a high mortality rate. This systematic review of the literature was performed to identify the available evidence on the prevalence of CCHF in the European Region of the World Health Organization, based on seroprevalence (IgG antibodies).

Methodology

A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement protocol. PubMed, Embase, and the Web of Science were used for the search (up to January 31, 2019), combining the following MeSH terms: ["Crimean-Congo haemorrhagic fever" OR "Crimean-Congo hemorrhagic fever virus" OR "Congo-Crima" OR "Crimea-Congo"] AND ["Europe"] AND ["epidemiology" OR "seroprevalence"]). The abstracts were screened. Subsequently, full-text articles were selected and reviewed based on the PICOS (Population-Intervention-Comparison-Outcomes-Study type) criteria by two independent reviewers for inclusion in the final analysis.
The data were qualitatively synthesized without quantitative pooling due to the heterogeneity in the study populations and methodologies.

Principal findings

Thirty articles (9 from western Europe, 18 from central Europe and 3 from eastern Europe) were included in the analysis. All articles were cross-sectional studies (descriptive studies).

Conclusions

The highest seroprevalence of CCHF is found in central and eastern European countries. Southern and western Europe countries, such as Greece and Spain, have low levels of endemicity, but the spread of the infection, which is associated with climate change, is a possibility that we should keep in mind. Further studies, especially larger seroprevalence studies in humans and animals, are needed to establish the current status of the CCHF epidemiology and to generate standardized guidelines for action in the region.

Author summary

Crimean Congo hemorrhagic fever (CCHF) is a widespread tick-borne viral disease caused by a Nairovirus of the *Nairoviridae* family. CCHF-virus (CCHFV) has been considered to be one of the eight priority emergent pathogens for the last 3 years by the World Health Organization (WHO), requiring urgent attention in Research, Development and Innovation (R&D&I) because of its epidemic potential in the near future. In this systematic review, we aimed to describe the epidemiological impact of CCHFV (seroprevalence for IgG antibodies and the associated risk factors) in the WHO European Region (WHO/Europe). In this systematic review suggests the following conclusions. i) The highest values of CCHFV seroprevalence are found in Turkey, the Russian Federation, and Kazakhstan. ii) Greece has a high seroprevalence, though only one death associated with CCHFV has been reported. This fact contrasts with the neighboring countries, such as Balkan countries and Turkey, where the rate of severe infections seems to be higher. iii) Extensive studies should be developed in European countries to establish the actual epidemiological situation and to take additional preventive measures for the future.

Introduction

Crimean Congo hemorrhagic fever (CCHF) is a widespread tick-borne viral disease caused by CCHFV of the family Nairoviridae [1]. This disease was first described in 1944, during World War II, when an outbreak affected a group of Soviet soldiers in the Crimean Peninsula [2]. Twenty years later, in 1967, the virus was finally identified and was named Crimean-Congo virus, based on the similarities found with the virus that affected a febrile patient in the former Belgian Congo in 1956 [3].

Ninety percent of Crimean-Congo virus infections are oligosymptomatic or asymptomatic [4]. In the remaining 10%, the infections can present as a severe disease with a higher mortality rate [5–7]. Mortality is associated with different factors, such as age, viral strain, and endemicity [8–11].
The transmission of this virus to humans is mainly associated with the bite of hard-bodied ticks (Ixodidae family), predominantly those belonging to the genus Hyalomma, which are widely distributed in Asia, Africa and Europe. The infection can also be acquired through direct contact with blood and other bodily fluids from infected animals and humans, mainly those with a high viral load, including hospitalized patients with hemorrhagic fever. Thus, there is a high risk of transmission in healthcare environments [8,12–14]. Currently, the CCHF virus (CCHFV) is considered a level 4 biosecurity risk pathogen by the Centers for Disease Control and Prevention (CDC) [15,16]. CCHFV has been considered to be one of the eight priority emergent pathogens for the last 3 years by the World Health Organization (WHO), requiring urgent attention in Research, Development and Innovation (R&D&I) because of its epidemic potential in the near future [17,18].

Almost 1000 cases of CCHFV infection are reported in the Middle East and eastern European countries yearly [11,19]. In Europe, human cases have been reported in Albania, Bulgaria, Kosovo, Russia, Serbia, Turkey, Ukraine, Greece, Georgia and Spain [1,20,21].

The aim of this study was to identify the epidemiological impact of CCHFV (seroprevalence for IgG antibodies and the associated risk factors) in the WHO European Region, through a systematic review, to address the research question: what is the seroprevalence of CCHFV infection in the different geographic areas of Europe, and what are the possible associated risk factors?

Material and methods

Study design

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [22]. Study eligibility was defined according to the conventional PICOS (Population-Intervention-Comparison-Outcomes-Study type) criteria [23,24], which were determined *a priori*, including the following: Population (CCHFV-seropositive individuals); Intervention or Exposure, (risk factors, environmental determinants facilitating and inhibiting viral transmission); Comparators (three geographical regions of Europe, western/central/eastern Europe); Outcomes (seroprevalence data, IgG antibodies); and Study design (Observational studies, descriptive and analytical designs).

Search strategy and selection criteria

A systematic review of electronic bibliographic databases was performed for publications up to January 31, 2019. The following databases were searched for relevant studies to identify all the published studies about the seroprevalence of CCHFV in Europe: PubMed, Embase and the Web of Science, with the language restrictions of English, Spanish or French.

The electronic research was performed using the following Boolean operators and terms: "Crimean Congo hemorrhagic fever" OR "Crimea Congo hemorrhagic fever" OR "Congo Crimean hemorrhagic fever" OR "Crimean Congo hemorrhagic fever virus" OR "Crimean Congo" OR "Crimea-Congo" AND "Europe" AND ["seroprevalence" OR "epidemiology"].

Inclusion criteria: Published reports evaluating the epidemiology of CCHF in WHO/Europe were included when they fulfilled the following selection criteria, according to PRISMA guidelines. (1) Population: Human studies about the seroprevalence of CCHF. (2) Study design and interventions: We included observational studies. Randomized controlled trials were not included because these studies evaluate the efficacy of a treatment or an intervention. (3) Types of outcome measures: As the main outcome, we compared the seroprevalence of CCHF (defined as the number of individuals with evidence of IgG antibodies against CCHFV) in the 3 areas: western, central and eastern WHO/Europe.
Exclusion criteria: All nonhuman studies, intention-to-treat clinical trials, incidence data, editorial letters, letters to the editor, expert committees, author opinions and case reports (OCEBM Level of Evidence 5, Grade of Recommendation D) were excluded because they do not allow decision making or recommendation proposals and/or do not talk about an epidemiological observation. Finally, all studies about CCHF imported cases from an endemic to a nonendemic region were also excluded.

Selection of studies, data collection/extraction, and data synthesis/analysis

For the critical evaluation of the quality of the included studies, we applied a uniform checklist method to identify the internal validity and possible bias. To identify and select the studies, we classified them in a table following a systematic method. We evaluated the quality of each study, and the conclusions were based on the evidence levels according to the Oxford Centre for Evidence-Based Medicine (OCEBM) [25], which allow us to judge the strength of evidence. Also, we used the recommendations of the PRISMA declaration as a guide.

We prepared tables to make the systematic collection of the qualitative and quantitative data of each article. All the data were compiled by the last name of the first author, the year of publication, country, study design, objective, individuals or patients studied, population characteristics and other risk factors and the seroprevalence of anti-CCHFV IgG antibodies. First, the articles were evaluated based on the title and abstract, and afterwards they were evaluated based on the full text. All studies that did not fulfill the inclusion criteria were excluded from this systematic review.

All the articles identified were revised by two review team members (LMA and MAS), which followed the methodological standards recommended by the Committee on Standards for Systematic Reviews of Comparative Effectiveness Research for finding and assessing individual study: worked independently, screened and selected studies and extracted quantitative and other critical data from included studies. Each eligible study was systematically appraised for risk of bias; relevance to the study's populations, and outcomes measures: seroprevalence. All the discrepancies were resolved by the rest of the study team.

We initially included all the countries of the WHO/European Region, and then we separated these studies into three different subgroups corresponding to three European regions, based on demographic and epidemiologic factors, and we made a qualitative comparison between these three European regions. The 53 countries of the WHO European Region were subdivided into three geographical areas, based on epidemiological considerations and in accordance with the division used by World Health Organization (WHO) and European Centre for Disease Control (ECDC) in others reports on surveillance in Europe: West (23 countries), Centre (15 countries) and East (15 countries).

Results

Summary of the included articles

The initial search identified a total of 998 references that met the inclusion criteria: 304 on PubMed, 487 on Embase and 207 on the Web of Science. We first removed 571 duplicated records and 87 animal studies. Then, 165 articles about diagnostic and treatment techniques, incidence data or whose full-text papers were not available were excluded; and, 175 full-text articles were assessed for eligibility. A total of 145 of these papers were excluded because they were mainly case reports (OCEBM Level of Evidence 5, Grade of Recommendation D). Finally, 30 studies met our inclusion criteria and were included in the qualitative synthesis. Fig 1 shows the modified PRISMA flowchart with searching process.
The articles were classified according to their origin in three European regions. The main characteristics of these studies are shown in Tables 1–3: Table 1, western Europe, 9 articles [6,26–33]; Table 2, central Europe, 18 articles [4, 34–50]; and Table 3, eastern Europe, 3
Seroprevalence of Crimean-Congo hemorrhagic fever in the European region

Table 1. Principal results of CCHF studies in western Europe.

Author	Publication year	Study years	Country (related to CCHF seroprevalence in humans)	N	Risk factors	Seroprevalence of IgG: Value (%)
Antoniadis et al. [26]	1982	1980–1981	Greece (rural area, Northern Greece)	65	Farming Living in Northern Greece (CCHF isolated in this zone from Rhipicephalus bursa since 1978)	4 (6.2)
Filipe et al. [27]	1985	1980	Portugal	190	Living in certain areas of Southern Portugal	2 (1.1)
Palomar et al. [28]	2017	2010–2014	Spain	228	No risk factors found	0 (0.0)
Papa et al. [29]	2014	2012	Greece	100	Ageing	6 (6.0)
Papa et al. [30]	2013	2010–2012	Greece (Western, border to Albania and Ionian Sea Coast)	166	Ruminants husbandry Slaughtering Ageing	24 (14.4)
Papa et al. [31]	2011	2008–2009	Greece (Eastern, border to Bulgaria)	1178	Female sex Ageing	37 (3.1)
Sargianou et al. [32]	2013	2012	Greece (Coast of the Gulf of Corinth)	207	Agropastoral occupation Ruminants (especially with sheep) Living at an altitude of ≥400m	7 (3.4)
Sidira et al. [33]	2013	2010–2011	Greece (Northern coast of the Aegean Sea)	277	Tick exposure Residence in a hilly territory Ageing Agropastoral occupation	6 (2.2)
Sidira et al. [6]	2012	2009–2010	Greece	1611	Slaughtering Agropastoral occupation Ruminants husbandry	68 (4.2)

https://doi.org/10.1371/journal.pntd.0008094.t001

Even though the geographical origin was diverse, most studies were performed in Turkey (central Europe) (13 articles) [4,34,37–39,41–42,44–45,47–50] and in Greece (western Europe) (7 articles) [6,26,29–33].

The oldest article was published by Horvath et al. in 1979 [46], and the most recent was published by Abdiyeva et al. in 2019 [51]. All articles were cross-sectional studies (descriptive studies). The study design that was generally used was to assess the prevalence of a disease in a population (prevalence study), which has an OCEBM Level of Evidence 4, Grade of Recommendation C.

Seroprevalence

Fig 2 shows in a Map the seroprevalence of CCHFV in the different European Regions.

Table 4 summarizes the main quantitative data collected from the studies that were analyzed: the sample sizes and IgG antibody levels (seroprevalence).

The sample sizes varied from 3557 individuals in a study conducted in Turkey [4] to 65 individuals in a study conducted in Greece by Antoniadis et al. [26]. The reported
Table 2. Main data of CCHF in studies in center Europe.

Author et al.	Publication year	Study years	Country	Objective (related to CCHF seroprevalence in humans)	N	Risk factors	Seroprevalence of IgG: Value (%)
Bayram et al.	2017	2012	Turkey (Eastern region, border with Iran)	To determine the seroprevalence of CCHFV in individuals with a high risk of acquiring CCHF disease in Van province	368	No risk factors found	53 (14.4)
Bodur et al.	2012	2009–2010	Turkey	To investigate the seroprevalence of CCHFV infection in a sufficiently large sample representative of the region affected during the outbreak of 2011 in Turkey	3557	Ageing, Low level of education, Agropastoral occupation, Tick exposure	356 (10.0)
Christova et al.	2017	2015	Bulgaria	To estimate the prevalence of IgG antibodies to CCHFV and hantaviruses, as stable and long persisting antibodies, in general human population of Bulgaria	1500	Tick exposure, Ageing, Ruminant husbandry, Tick exposure	55 (3.7)
Christova et al.	2013	2011	Bulgaria	To estimate the situation on CCHFV seroprevalence in both disease-endemic and -nonendemic areas in Bulgaria	1018	Tick exposure, Ageing, Living in the Black Sea Coast (Burgas District)	28 (2.8)
Cikman et al.	2016	Not specified	Turkey (North-Eastern region)	To determine the seroprevalence and risk factors associated with Crimean-Congo hemorrhagic fever virus (CCHFV) in residents of North-Eastern, Turkey	372	Ruminant husbandry, Living in rural areas, Tick exposure	59 (15.8)
Ergönül et al.	2006	2003	Turkey	To determine the seroprevalence of CCHFV, among veterinarians in a highly endemic and a non-endemic region for these infections in Turkey	83	Percutaneous injuries in veterinarians	1 (1.2)
Ertugrul et al.	2012	Not specified	Turkey (Western region, Aegean Sea Coast)	To determine the rate of specific IgG seropositivity against the virus and the contributory factors	429	Age < 34 years, Tick exposure, Ruminant husbandry, Female sex	84 (19.6)
Fajs et al.	2014	2012	Kosovo (Serbia for the WHO)	To determine the prevalence of CCHF in Kosovo	1105	Living in the Southwestern Serbia (hyperendemic regions), Ageing, Male sex	44 (4.0)
Gargili et al.	2011	2008–2009	Turkey (Western Turkey, border with Bulgaria)	To estimate whether there is an immune-protection in the region as a result of a established infection and not a recent spread of infected ticks into the area	193	Male sex, Ageing, Living in the Black Sea Coast	21 (10.9)
Gazi et al.	2016	2011–2013	Turkey (rural part of Western Turkey)	To determine the seroprevalence of CCHFV among the rural residents of Manisa region, Turkey, and to identify the associated risk factors	324	Ageing	12 (3.7)
Gergova et al.	2014	2011–2012	Bulgaria (Southeastern region)	To determine the seroprevalence of CCHFV in endemic areas of Bulgaria	751	Tick exposure, Ruminant husbandry	24 (3.2)
Gözel et al.	2013	2012	Turkey (Research Hospital, Centre-North Turkey)	To analyze the serum seropositivity for CCHFV IgM and IgG of all healthcare workers at risk, and to determine the possible risk factors	190	Visiting an endemic region	1 (0.5)
Gunes et al.	2009	2006	Turkey (Centre-North region)	To determine the seroprevalence of CCHFV in a high-risk population	782	Ageing, Tick exposure, Contact with livestock	100 (12.8)
Horváth et al.	1976	1972–1975	Hungary	To determine the seroprevalence of CCHFV in Hungary	587	Living in the Eastern Hungary, border to Rumania (Hajdú-Bihar county)	17 (2.8)

(Continued)
seroprevalence was between 0% in Spain [28] and 19.6% in Turkey [39]. We analyzed each European region independently as follows.

Western Europe. The lowest seroprevalence was observed in Spain 0% [28] and Portugal 1.1% [27]. The seven included studies that were performed in different geographical areas of Greece obtained seroprevalence ranging between 2.2% [33] and 14.4% [30]. Nevertheless, six of the seven studies included a reported prevalence between 2.2% and 6.2% (2.2% [33], 3.1% [31], 3.4% [32], 4.2% [6], 6% [29], and 6.2% [26]).

Central Europe. The studies conducted in Turkey also showed high variability. Most studies showed a seroprevalence that ranged from low values (0.5% [44], 1.2% [38], 1.8% [49], 2.3% [50], and 3.7% [42]) to moderate values (9.6% [48], 10% [4], 10.9% [41], 12.8% [45], 13.6% [47], 14.4% [34], and 15.8% [37]. One study showed a much higher prevalence (19.6% [39]), but this study was performed in an endemic area in southwestern Turkey. Bulgarian

Table 2. Main data of CCHF in studies in eastern Europe.

Author	Publication year	Study years	Country	Objective (related to CCHF seroprevalence in humans)	N	Risk factors	Seroprevalence of IgG: Value (%)
Koksal et al. [47]	2014	2004–2008	Turkey (Eastern Black Sea regions)	To determine the seroprevalence of CCHF infection and risk factors for disease in people living in the same environment with confirmed patients, either as household members or in the immediate neighbourhood, in the endemic area in the Black Sea region of Turkey	625	Ageing Ruminant husbandry Living rural areas	85 (13.6)
Tekin et al. [48]	2010	Not specified	Turkey (Northern region)	To determine the seroprevalence of CCHFV in humans in the province of Tokat (Centre-Northern region)	715	Contact with animals (not specified) Relatives of patients with CCHF (Airborne transmission?)	69 (9.6)
Temocin et al. [49]	2018	2016	Turkey (Centre region)	To determine the seroprevalence of CCHF disease among healthcare workers in a hospital in an endemic region, and to present the risk factors for healthcare workers	112	Percutaneous injuries in HCW	2 (1.8)
Yagci-Caglayan et al. [50]	2013	Not specified	Turkey	To estimate the CCHFV seroprevalence in apparently healthy adult population living in urban and rural areas of seven geographically representative provinces of Turkey and to find out the risk factors associated with the seropositivity	1066	Ageing Low level of education Male sex Farming Living in a house of adobe	25 (2.3)

Table 3. Main data of CCHF in studies in eastern Europe.

Author	Publication year	Study years	Country	Objective (related to CCHF seroprevalence in humans)	N	Risk factors	Seroprevalence of IgG: Value (%)
Abdiyeva et al. [51]	2019	2014–2015	Kazakhstan	To detect the seroprevalence of CCHFV in patients with fever of unknown origin in endemic and non-endemic oblasts of Kazakhstan	802	Agro-pastoral occupation Ruminant and other livestock (except pigs) husbandry Living in rural areas	102 (12.7)
Greiner et al. [52]	2016	2014	Georgia (12 rural affected communities)	To determine CCHF seroprevalence, identify risk factors, and document CCHF-related knowledge, attitudes, and practices	444	Agro-pastoral occupation Animal husbandry Tick exposure	12 (2.8)
Magnaval et al. [53]	2011	2007	Russian Federation (Northeastern Siberia)	To determine the seroprevalence of nine zoonoses in Viljujsk, a Northern city in the Republic of Sakha (Eastern Siberia)	90	No risk factors found	10 (11.1)
studies reported a similar seroprevalence: 2.8% [36], 3.2% [43], and 3.7% [35]. Additionally, Hungary (2.8% [46]) and Kosovo (4% [40]) reported a similar seroprevalence.

Russia and western Asia. Georgia shows a prevalence similar to that in eastern European countries (2.8%, [52]), while the Russian Federation (11.1%, [53]) and Kazakhstan (12.7%, [51]) show a prevalence closer to that found in Turkish areas, with a moderate/high prevalence.

Risk factors

Major risk factors, such as occupations associated with animal husbandry (especially of sheep and goats) [6,29,31,45,47–48,51–52] and agricultural and agropastoral activities [4,6,32,45,50,52] were identified in this study (no matter the geographical zone). Also another major risk

Western Europe		
Greece	3604	2.2–14.4 ± 1
Portugal	258	0.8 ± 3
Spain	228	0.0

Center Europe		
Bulgaria	3269	2.8–3.7 ± 1
Hungary	587	2.8 ± 1
Serbia	1105	4.0 ± 1
Turkey	8816	0.5–19.6 ± 1

Eastern Europe		
Georgia	444	2.8 ± 2
Kazakhstan	802	12.7 ± 2
Russian Federation	90	11.1 ± 6

*95% Confidence Intervals (CI) for a proportion.
* References in Tables 1, 2 & 3

https://doi.org/10.1371/journal.pntd.0008094.t004
factor was the tick exposure; tick exposure includes direct physical contact, tick bites, tick removal from people and animals and exposure to ticks around the working and home environments [12,31,33,35–37,39,43,45,47–48,52]. To a lesser extent, health care workers (physicians and nurses), veterinarians [38,44,48–49] and individuals with slaughtering-associated jobs [6,30,31] were also more likely to have the presence of CCHFV IgG antibodies.

Minor risk factors, such as gender and aging (risk markers) have been reported in some studies [4,29,31,33,35–36,39–42,45,47,50] in association with the presence of antibodies, but the heterogeneity of the studies and the populations that were evaluated prevent us from exhaustively affirming these results. Other risk factors that were evaluated were related to geographical aspects, such as residence in a hilly territory/living at an altitude [32–33], living in rural vs urban areas [26,37,47,50], in adobe houses [51], geographic regions as Black Sea Coast [36–41] and others [27,31,35,48] or endemic areas [40,43,47,49].

Some factors such as airborne transmission were also evaluated [48], but a causal association could not be determined, as the design of this study was not analytical.

Discussion

In the recent years, the epidemiology of vector-borne diseases is changing due to diverse factors, especially linked to the global warming phenomena [54–55]. In Europe, a rise on the prevalence of most important tick-borne infections are mainly due to tick-borne encephalitis and Lyme borreliosis in Central and Eastern Europe [56,57], and the emergence of the CCHFV in Southwestern Europe [21].

In this systematic review, we have realized an exhaustive and comparative analysis about the human seroprevalence of CCHFV in the WHO European Region countries (http://www.euro.who.int/en/countries). We have established three different areas (Center, Western and Eastern Europe) in order to evaluate the progression of tick-borne infection in the continent and to estimate which geographical regions are particularly at risk. This topic has been the subject of other systematic reviews based in specific subgroups of patients, such as travelers or pregnant women [58–59]. Likewise, a recently published systematic review, realized by Nasirian H. [60] discusses some of the CCHF seroprevalence studies that we also present in this systematic review. Nasirian H. study [60] collects global CCHFV seroprevalence data (no IgG—IgM antibodies difference) in humans and animals from different areas of the world, while our study is limited to CCHF seroprevalence for IgG antibodies at the WHO European Regions.

The eastern region of Europe is well known as the first site where this infection was reported [2]. Currently, CCHF continues to be endemic in the Russian Federation and in other countries of the former Soviet Union, though the real prevalence of CCHF is difficult to estimate because of the low number of seroprevalence studies. Nevertheless, the studies included in the analysis found values above 10% in Kazakhstan [51] and in the north of Russia [53].

In the central European region, human seroprevalences above 5% were also seen. The northeast of Turkey, especially the areas surrounding the Black Sea (eastern Anatolia), are classically described as highly endemic (high prevalence and incidence rates) for this infection [37,47]. However, we found the highest seroprevalence (19.6%) in a study performed on the Aegean Sea coast, which is not considered a CCHFV endemic zone. Balkan countries are also considered endemic [35,40,43,61], but their seroprevalence is lower than that in Turkey. Other countries in central Europe, such as Hungary, are not considered endemic for this infection, though seropositivity for CCHFV antibodies has been described since 1976 [46]. Recent studies have shown that this zoonosis is also circulating in animals in countries such as Romania and the former Yugoslav Republic of Macedonia [62–64].
The Western region the WHO/European Region had the lowest seroprevalence values for this infection. The infection has been documented in this area since the 1980s, when Antoniadis et al. [26] and Filipe et al. [27] demonstrated seropositivity in healthy humans in Greece and Portugal, respectively. Nevertheless, it was not until 2010 that the first and only autochthonous case was reported in Greece [20]. Additionally in 2010, the epidemiological alert in southwestern Europe increased after evidence of virus circulation in ticks belonging to the *Hyalomma marginatum* species were retrieved from a wild red deer in western Spain [65], near the Portuguese border. Six years later, first human autochthonous case was reported in Spain, a 62-year-old man that, after traveling to a little village at Central-Western Spain, presented at the Emergency Department with a severe viral hemorrhagic fever and died on the ninth day of illness. Four days later, a secondary (non-fatal) case due to a nosocomial transmission was also reported [21,66]. Since then, other two cases have also been reported in the Western Spain [67], reflecting probably only the visible part of the iceberg. Even though a recent study found no seroprevalence in humans in Spain [28], larger studies of seroprevalence need to be carried out in humans to corroborate the existence of an undetected circulation occurring in other areas of Spain and in neighboring countries, like Portugal, France, Italy or Malta where the vector tick exists and the weather conditions are favorable for the dissemination of this vector-borne disease.

Major risk factors have been well documented to be associated to tick exposure [12,31,33,35–37,39,43,45,47–48,52] in endemic regions, especially in the individuals involved in ungulate husbandry [6,29,31,45,47–48,51–52] and/or agropastoral activities [4,6,32,45,50,52]. The outbreaks emerge mainly in the spring and summer (May to October) [1]. Nevertheless, global migratory human movements, bird migrations from Africa, weather changes, global warming [55], and the presence of the main vector, *Hyalomma marginatum* ticks, in most countries of Europe might result in a situation in which this infection appears in other periods, spreads to new areas, increases in incidence, and becomes a diagnosis to be ruled-out in patients with hemorrhagic fever, even when a tick bite history cannot be documented.

The main limitation of this study was the heterogeneity of the studies and the lack of published seroprevalence investigations of some regions with elevated endemicity, especially at Northeastern Europe (Russia, Ukraine, between others). For this reason, a meta-analysis could not be performed. However, an extensive research in the main databases was performed, only excluding studies with low level of evidence. Nevertheless, a qualitative review improves the current lack of information. More studies are necessary to obtain conclusive evidence. The risks of bias (methodological and clinical) may have affected the results of our qualitative review. Despite these limitations, this systematic review sought to analyze the available information to date related to the epidemiology of CCHF in WHO/European Region.

This systematic review suggests the following conclusions. i) The highest values of CCHFV seroprevalence are found in Turkey, the Russian Federation, and Kazakhstan. ii) Greece has a high seroprevalence, though only one death associated with CCHFV has been reported [20]. This fact contrasts with the neighboring countries, such as Balkan countries and Turkey, where the rate of severe infections seems to be higher. iii) Extensive studies should be developed in European countries to establish the actual epidemiological situation and to take additional preventive measures for the future.

Supporting information

S1 Checklist. PRISMA checklist. (DOC)
Author Contributions

Conceptualization: Lía Monsalve-Arteaga, Montserrat Alonso-Sardón, Juan Luis Muñoz Bellido, Antonio Muro, Moncef Belhassen-García.

Data curation: Montserrat Alonso-Sardón, María Belén Vicente Santiago, María Carmen Vieira Lista, Moncef Belhassen-García.

Formal analysis: Montserrat Alonso-Sardón, Antonio Muro, Moncef Belhassen-García.

Investigation: Lía Monsalve-Arteaga, Julio López Abán, Antonio Muro, Moncef Belhassen-García.

Methodology: Julio López Abán, Antonio Muro, Moncef Belhassen-García.

Supervision: Juan Luis Muñoz Bellido, Moncef Belhassen-García.

Validation: Moncef Belhassen-García.

References

1. Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 2006; 6:203–14. https://doi.org/10.1016/S1473-3099(06)70435-2 PMID: 16554245

2. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 1979; 15:307–417. https://doi.org/10.1093/jmedent/15.4.307 PMID: 113533

3. Simpson DI, Knight EM, Courtois G, Williams MC, Weinbren MP, Kibukamusoke JW. Congo virus: a hitherto undescribed virus occurring in Africa. I. Human isolations—clinical notes. East Afr Med J 1967; 44:86–92. PMID: 6040759

4. Bodur H, Akinci E, Ascioglu S, Öngüru P, Uyar Y. Subclinical infections with Crimean-Congo hemorrhagic fever virus, Turkey. Emerg Infect Dis 2012; 18:640–2. https://doi.org/10.3201/eid1804.111374 PMID: 22469474

5. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013; 100:159–89. https://doi.org/10.1016/j.antiviral.2013.07.006 PMID: 23906741

6. Sidira P, Maltezou HCC, Haidich A-BA-B, Papa A. Seroepidemiological study of Crimean-Congo hemorrhagic fever in Greece, 2009–2010. Clin Microbiol Infect 2012; 18:E16–9. https://doi.org/10.1111/j.1469-0691.2011.03718.x PMID: 22192082

7. World Health Organization. Crimean-Congo haemorrhagic fever. WHO 2016. http://www.who.int/mediacentre/factsheets/fs208/en/ (accessed February 23, 2017).

8. Akuffo R, Brandful JAM, Zayed A, Adjei A, Watany N, Fahmy NT, et al. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect Dis 2016; 16:324. https://doi.org/10.1186/s12879-016-1660-6 PMID: 27392037

9. Sharifi-Mood B, Mardani M, Keshtkar-Jahromi M, Rahnavardi M, Hatami H, Metanat M. Clinical and epidemiologic features of Crimean-Congo hemorrhagic fever among children and adolescents from southeastern Iran. Pediatr Infect Dis J 2008; 27:561–3. https://doi.org/10.1097/INF.0b013e3181673c28 PMID: 18434934

10. Tezer H, Sucaklı İA, Saylı TR, Celikel E, Yakut I, Kara A, et al. Crimean-Congo hemorrhagic fever in children. J Clin Virol 2010; 48:184–6. https://doi.org/10.1016/j.jcv.2010.04.001 PMID: 20444644

11. Leblebicioglu H, Crimean–Congo haemorrhagic fever in Eurasia. Int J Antimicrob Agents 2010; 36: S43–6. https://doi.org/10.1016/j.ijantimicag.2010.06.020 PMID: 20810253

12. Yadav PD, Patil DY, Shete AM, Kokate P, Goyal P, Jadhav S, et al. Nosocomial infection of CCHF among health care workers in Rajasthan, India 2016; 16:624. https://doi.org/10.1186/s12879-016-1971-7 PMID: 27809807

13. Flika L, Maltezou HC. Viral haemorrhagic fevers in healthcare settings. J Hosp Infect 2013; 83:185–92. https://doi.org/10.1016/j.jhin.2012.10.013 PMID: 23333147

14. Richards GA. Nosocomial transmission of viral haemorrhagic fever in South Africa. S Afr Med J 2015; 105:709–12. https://doi.org/10.7196/SAMJ.8166 PMID: 26428962

15. Vannomweghen J, Alves M, Avičič T, Bino S, Chinikar S, Karlberg H, et al. Diagnostic Assays for Crimean-Congo Hemorrhagic Fever—Volume 18, Number 12—December 2012—Emerging Infectious Disease journal—CDC 2012; 18:1958–65. https://doi.org/10.3201/eid1812.120710 PMID: 23171700
16. Appannanavar SB, Mishra B. An Update on Crimean Congo Hemorrhagic Fever. J Glob Infect Dis 2011; 3:285–92. https://doi.org/10.4103/0974-777X.83537 PMID: 21887063

17. World Health Organization. Blueprint for R&D preparedness and response to public health emergencies due to highly infectious pathogens 2015.

18. World Health Organization. An R&D Blueprint for Action to Prevent Epidemics: Plan of Action [Internet]. Geneva, Switzerland; 2016. Available: http://www.who.int/csr/research-and-development/r_d_blueprint_plan_of_action.pdf?ua=1

19. Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res 2013; 98:248–60. https://doi.org/10.1016/j.antiviral.2013.02.007 PMID: 23458713

20. Papa A, Dalla V, Papadimitriou E, Kartalis GNN, Antoniades A. Emergence of Crimean–Congo haemorrhagic fever in Greece. Clin Microbiol Infect 2010; 16:843–7. https://doi.org/10.1111/j.1469-0691.2009.02996.x PMID: 19845692

21. Negredo A, de la Calle-Prieto F, Palencia-Herrejón E, Mora-Rillo M, Astray-Mochales J, Sánchez-Seco MP, et al. Autochthonous Crimean–Congo Hemorrhagic Fever in Spain. N Engl J Med 2017; 377:154–61. https://doi.org/10.1056/NEJMoa1615162 PMID: 28700843

22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg 2010; 8:336–41. https://doi.org/10.1016/j.ijsu.2010.02.007 PMID: 20171303

23. Centre for Reviews and Dissemination. Systematic Reviews: CRD’s guidance for undertaking reviews in health care [Internet]. York, United Kingdom: York Publishing Services Ltd; 2009. Available: https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf

24. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheragh i-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res 2014; 14:579. https://doi.org/10.1186/s12913-014-0579-0 PMID: 25413154

25. Oxford Centre for Evidence-Based Medicine. Levels of Evidence [Internet]. May 1 Oxford, England; 2011 p. 5653. Available: http://www.cebm.net/index.aspx?o=1025

26. Antoniadis A, Casals J. Serological Evidence of Human Infection with Congo-Crim ean Hemorrhagic Fever Virus in Greece *. Am J Trop Med Hyg 1982; 31:1066–7. https://doi.org/10.4269/ajtmh.1982.31.1066 PMID: 6812443

27. Filippe AR, Calisher CH, Lazucki J. Antibodies to Congo-Crimean hemorrhagic fever, Dhoir, Thogoto and Bhanja viruses in southern Portugal. Acta Virol 1985; 29:324–8. PMID: 2868436

28. Palomar AM, Portillo A, García-Álvarez L, Muñoz-Sanz A, Márquez FJ, et al. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013–2015. EnfermInfec Microbiol Clin 2017; 35:344–7. https://doi.org/10.1016/j.eimc.2017.01.009 PMID: 28291670

29. Papa A, Chaligiannis I, Kontana N, Sourba T, Tsioka K, Tsatsaris A, et al. A novel AP92-like Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis 2014; 5:590–3. https://doi.org/10.1016/j.ttbdis.2014.04.008 PMID: 24953797

30. Papa A, Sidira P, Kallia S, Ntouska M, Doumbali E, et al. Factors associated with IgG positivity to Crimean-Congo hemorrhagic fever virus in the area with the highest seroprevalence in Greece. Ticks Tick Borne Dis 2013; 4:417–20. https://doi.org/10.1016/j.ttbdis.2013.04.003 PMID: 23831367

31. Papa A, Tzala E, Maltezou HC. Crimean-Congo hemorrhagic fever virus, northeastern Greece. Emerg Infect Dis 2011; 17:141–3. https://doi.org/10.3201/eid1701.100073 PMID: 21192882

32. Sargianou M, Panos G, Tsatsaris A, Gogos C, Papa A. Crimean-Congo hemorrhagic fever: seroprevalence and risk factors among humans in Achaia, western Greece. Int J Infect Dis 2013; 17:e1160–5. https://doi.org/10.1016/j.ijid.2013.07.015 PMID: 24084247

33. Sidira P, Nikza P, Danis K, Panagiotopoulos T, Samara D, Maltezou H, et al. Prevalence of Crimean-Congo hemorrhagic fever virus antibodies in Greek residents in the area where the AP92 strain was isolated. Hippokratia 2013; 17:322–5. PMID: 25031510

34. Bayram Y, Parlaç M, Ozkacmaz A, Cikman A, Guducuoglu H, Kılıc S, et al. Seroprevalence of Crimean-Congo Hemorrhagic Fever in Turkey’s Van Province. Jpn J Infect Dis 2017; 70:65–8. https://doi.org/10.7883/yoken.JJID.2015.675 PMID: 27169950

35. Christova I, Panayotova E, Trifonova I, Taseva E, Hristova T, Ivanova V. Country-wide seroprevalence studies on Crimean-Congo hemorrhagic fever and hantavirus infections in general population of Bulgaria. J Med Virol 2017; 89:1720–5. https://doi.org/10.1002/jmv.24868 PMID: 28561377

36. Christova I, Gladnishka T, Taseva E, Kalvatchev N, Tsergouli K, Papa A. Seroprevalence of Crimean-Congo hemorrhagic fever virus, Bulgaria. Emerg Infect Dis 2013; 19:177–9. https://doi.org/10.3201/eid1901.120299 PMID: 23260369
PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008094 March 2, 2020 14 / 15

37. Cikman A, Aydin M, Gulhan B, Karakecili F, Kesik OA, Ozcicek A, et al. Seroprevalence of Crimean–Congo Hemorrhagic Fever Virus in Erzincan Province, Turkey, Relationship with Geographic Features and Risk Factors. Vector-Borne Zoonotic Dis 2016; 16:199–204. https://doi.org/10.1089/vbz.2015.1879 PMID: 26808904

38. Ergünül Ö, Zeller H, Kılıç S, Kutlu S, Kutlu M, Cavusoglu S, et al. Zoonotic infections among veterinarians in Turkey: Crimean-Congo hemorrhagic fever and beyond. Int J Infect Dis 2006; 10:465–9. https://doi.org/10.1016/j.ijid.2006.06.005 PMID: 16978897

39. Ertugrul B, Kirdar S, Ersoy OS, Ture M, Erol N, Ozturk B, et al. The seroprevalence of Crimean-Congo haemorrhagic fever among inhabitants living in the endemic regions of Western Anatolia. Scan J Infect Dis 2012; 44:276–81. https://doi.org/10.3109/03655448.2011.621445 PMID: 22017179

40. Fajs L, Humolli I, Saksida A, Knap N, Jelovsek M, Korva M, et al. Prevalence of Crimean-Congo hemorrhagic fever virus in healthy population, livestock and ticks in Kosovo. PLoS One 2014; 9:e110982. https://doi.org/10.1371/journal.pone.0110982 PMID: 25393542

41. Gargili A, Midilli K, Ergonul O, Ergin S, Alp HG, Vatanseser Z, et al. Crimean-Congo Hemorrhagic Fever in European Part of Turkey: Genetic Analysis of the Virus Strains from Ticks and a Seroepidemiological Study in Humans. Vector-Borne Zoonotic Dis 2011; 11:747–52. https://doi.org/10.1089/vbz.2010.0030 PMID: 21028961

42. Gazi H, Özkütük N, Ecemis Ö, Atasoylu G, Köroğlu G, Kurutepe S, et al. Seroprevalence of West Nile virus, Crimean-Congo hemorrhagic fever virus, Francisella tularensis and Borrelia burgdorferi in rural population of Manisa, western Turkey. J Vector Borne Dis 2016; 53:112–7. PMID: 27353580

43. Gergova I, Kamarinchev B. Seroprevalence of Crimean-Congo hemorrhagic fever in southeastern Bulgaria. Jpn J Infect Dis 2014; 67:397–8. https://doi.org/10.7883/yoken.67.397 PMID: 25241694

44. Gozel MG, Dokmetas I, Oztop AY, Engin A, Elalidi N, Bakir M. Recommended precaution procedures protect healthcare workers from Crimean-Congo hemorrhagic fever virus. Int J Infect Dis 2013; 17: e1046–50. https://doi.org/10.1016/j.ijid.2013.05.005 PMID: 23816412

45. Gunes T, Engin A, Poyraz O, Elalidi S, Kaya S, Dokmetas I, et al. Crimean-Congo hemorrhagic fever virus in high-risk population, Turkey. Emerg Infect Dis 2009; 15:461–4. https://doi.org/10.3201/eid1503.080687 PMID: 19239765

46. Horvath LB. Precipitating antibodies to Crimean haemorrhagic fever virus in human sera collected in Hungary. Acta Microbiol Acad Sci Hung 1976; 23:331–5. PMID: 820915

47. Koksal I, Yilmaz G, Aksen F, Erensoy S, Aydin H. The seroprevalence of Crimean-Congo haemorrhagic fever in people living in the same environment with Crimean-Congo haemorrhagic fever patients in an endemic region in Turkey. Epidemiol Infect 2014; 142:239–45. https://doi.org/10.1017/S0950268813001155 PMID: 23688370

48. Tekin S, Barut S, Bursali A, Aydogan G, Yuce O, Demir F, et al. Seroprevalence of Crimean-Congo haemorrhagic fever (CCHF) in risk groups in Tokat Province of Turkey. African J Microbiol Res 2010; 4:214–7.

49. Temocin F, Köse H, San T, Duygu F, Şahin RO. Seroprevalence of Crimean–Congo hemorrhagic fever among health care workers in a hospital in an endemic region of Turkey. J Infect Dev Cities 2018; 12:587–91. https://doi.org/10.3855/jidc.9816 PMID: 31954009

50. Yagci-Cagliyik D, Korukluoglu G, Uyar Y. Seroprevalence and risk factors of Crimean-Congo hemorrhagic fever in selected seven provinces in Turkey. J Med Virol 2013; 86:306–14. https://doi.org/10.1002/jmv.23699 PMID: 24037814

51. Abdiyeva K, Turebekov N, Dmitrovsky A, Tukhanova N, Shin A, Yeraliyev L, et al. Seroepidemiological and molecular investigations of infections with Crimean-Congo haemorrhagic fever virus in Kazakhstan. Int J Infect Dis 2019; 78:121–7. https://doi.org/10.1016/j.ijid.2018.10.015 PMID: 30522982

52. Greiner AL, Marumishvili N, Kakutia N, Stauffer K, Geleishvili M, Chitadze N, et al. Crimean-Congo Hemorrhagic Fever Knowledge, Attitudes, Practices, Risk Factors, and Seroprevalence in Rural Georgan Villages with Known Transmission in 2014. 2016. https://doi.org/10.1371/journal.pone.0158049 PMID: 27336731

53. Magnaval J-F, Tolou H, Gibert M, Innokentiev V, Laborde M, Melinchuk O, et al. Seroepidemiology of Nine Zoonoses in Viljujsk, Republic of Sakha (Northeastern Siberia, Russian Federation). Vector-Borne Zoonotic Dis 2011; 11:157–60. https://doi.org/10.1089/vbz.2009.0105 PMID: 20575641

54. Estrada-Peña A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. Elsevier; 2014; 108:104–126. https://doi.org/10.1016/j.antiviral.2014.05.016 PMID: 24925264

55. Haines A, Ebi K. The Imperative for Climate Action to Protect Health. Solomon CG, editor. N Engl J Med. 2019; 380: 263–273. https://doi.org/10.1056/NEJMra1807873 PMID: 30650330
56. De la Fuente J, Estrada-Peña A. Ticks and tick-borne pathogens on the rise. Ticks and Tick-borne Diseases. 2012. pp. 115–116. https://doi.org/10.1016/j.tbd.2012.03.001 PMID: 22609243

57. Heyman P, Cochez C, Hofhuis A, Van Der Giessen J, Sprong H, Porter SR, et al. A clear and present danger: Tick-borne diseases in Europe. Expert Review of Anti-Infective Therapy. 2010. pp. 33–50. https://doi.org/10.1586/eri.09.118 PMID: 20014900

58. Leblebicioglu H, Ozaras R, Fletcher TE, Beeching NJ. Crimean-Congo haemorrhagic fever in travellers: A systematic review. Travel Med Infect Dis 2016; 14:73–80. https://doi.org/10.1016/j.tmaid.2016.03.002 PMID: 26970396

59. Pshenichnaya NY, Leblebicioglu H, Bozkurt I, Sannikova IV, Abuova GN, Zhuravlev AS, et al. Crimean-Congo hemorrhagic fever in pregnancy: A systematic review and case series from Russia, Kazakhstan and Turkey. Int J Infect Dis 2017; 58:58–64. https://doi.org/10.1016/j.ijid.2017.02.019 PMID: 28249811

60. Nasirian H. Crimean-Congo hemorrhagic fever (CCHF) seroprevalence: A systematic review and meta-analysis. Acta Trop. 2019; 196: 102–120. https://doi.org/10.1016/j.actatropica.2019.05.019 PMID: 31108083

61. Christova I, Younan R, Taseva E, Gladnishka T, Trifonova I, Ivanova V, et al. Hemorrhagic fever with renal syndrome and Crimean-Congo hemorrhagic fever as causes of acute undifferentiated febrile illness in Bulgaria. Vector Borne Zoonotic Dis 2013; 13:188–92. https://doi.org/10.1089/vbz.2011.0938 PMID: 23421884

62. Németh V, Oldal M, Egyed L, Gyuranecz M, Erdélyi K, Kvell K, et al. Serologic Evidence of Crimean-Congo Hemorrhagic Fever Virus Infection in Hungary. Vector-Borne Zoonotic Dis 2013; 13:270–2. https://doi.org/10.1089/vbz.2012.1011 PMID: 23421895

63. Ceianu CS, Panculescu-Gatej RI, Coudrier D, Bouloy M. First Serologic Evidence for the Circulation of Crimean-Congo Hemorrhagic Fever Virus in Romania. Vector-Borne Zoonotic Dis 2012; 12:718–21. https://doi.org/10.1089/vbz.2011.0768 PMID: 22897346

64. Mertens M, Vatansever Z, Mrenoshki S, Krstevski K, Stefanovska J, Djadovski I, et al. Circulation of Crimean-Congo Hemorrhagic Fever Virus in the Former Yugoslav Republic of Macedonia Revealed by Screening of Cattle Sera Using a Novel Enzyme-linked Immunosorbent Assay. PLoS Negl Trop Dis 2015; 9:e0003519. https://doi.org/10.1371/journal.pntd.0003519 PMID: 25742017

65. Estrada-Peña A, Palomar AM, Santibáñez P, Sánchez N, Habela MA, Portillo A, et al. Crimean-Congo Hemorrhagic Fever Virus in Ticks, Southwestern Europe, 2010. Emerg Infect Dis 2012; 18:179–80. https://doi.org/10.3201/eid1801.1111040 PMID: 22261502

66. Garcia Rada A. First outbreak of Crimean-Congo haemorrhagic fever in western Europe kills one man in Spain. BMJ 2016; 354:i4891. https://doi.org/10.1136/bmj.i4891 PMID: 27609364

67. Ministerio de Sanidad Consumo y Bienestar Social. Informe de situación y evaluación del riesgo de transmisión de Fiebre Hemorrágica de Crimea-Congo en España [Internet]. Spain: Dirección General de Salud Pública, Calidad e Innovación; 2019. Available: https://www.riojasalud.es/trses/docs/ACTUALIZACION_ER_FHCC_Julio_2019.pdf