Supporting Information for:

Synthesis of the C₃ and C₁ Constitutional Isomers of Trifluorosubphthalocyanine and their Fluorescence within MDA-MB-231 Breast Tumor Cells

Rosemarie L. Calandrino, Katherine J. McAuliffe †, Lauren E. Dolmage and Evan R. Trivedi *

Department of Chemistry, Oakland University, Rochester, MI 48309, USA; rcalandrino@oakland.edu (R.L.C.); katherine.mcauliffe@duke.edu (K.J.M.); laurendolmage@oakland.edu (L.E.D.)

† Present Addresses: Department of Chemistry, Duke University, Durham, NC 27708, USA.

* Correspondence: trivedi@oakland.edu; Tel.: +01-248-370-2147; Fax: +01-248-370-2321

Table of Contents:

Figure S1 – HR APCI-MS F₃SPc(C₃)……………………………………………………………………S2
Figure S2 – HR APCI-MS F₃SPc(C₁)…………………………………………………………………..…S2
Figure S3 – Aromatic ¹H NMR F₃SPc(C₃)……………………………………………………………S3
Figure S4 – Aromatic ¹H NMR F₃SPc(C₁)……………………………………………………………S3
Figure S5 – ¹⁹F NMR F₃SPc(C₃)…………………………………………………………………..……S4
Figure S6 – ¹⁹F NMR F₃SPc(C₁)…………………………………………………………………..……S4
Figure S7 – HPLC purity report F₃SPc(C₃)………………………………………………………...…S5
Figure S8 – HPLC purity report for F₃SPc(C₁)…………………………………………………………S6
Figure S1. – HR APCI-MS F3SPc(C3).

Sample Name	Instrument Name	Instrument Type	Instrument Method	Instrument Setting	Instrument Condition	Instrument Time	Instrument Date
					x10.5		
					8.5		
					8.25		
					8		
					7.75		
					8		
					7.25		
					7		
					6.75		
					6.3		
					5.9		
					5.5		
					5.1		
					4.8		
					4.5		
					4.25		
					3.75		
					3.5		
					3.25		
					3		
					2.75		
					2.5		
					2		
					1.75		
					1.5		
					1.25		
					1		
					0.75		
					0.5		
					0.25		

Counts vs. Mass-to-Charge (m/z)

Figure S2. – HR APCI-MS F3SPc(C1).

Sample Name	Instrument Name	Instrument Type	Instrument Method	Instrument Setting	Instrument Condition	Instrument Time	Instrument Date
					x10.5		
					10.5		
					10.0		
					10.5		
					10.0		
					9.5		
					9.5		
					9.0		
					9.0		
					8.5		
					8.5		
					8.0		
					8.0		
					7.5		
					7.5		
					7.0		
					7.0		
					6.5		
					6.5		
					6.0		
					6.0		
					5.5		
					5.5		
					5.0		
					5.0		
					4.5		
					4.5		
					4.0		
					4.0		
					3.5		
					3.5		
					3.0		
					3.0		
					2.5		
					2.5		
					2.0		
					2.0		
					1.5		
					1.5		
					1.0		
					1.0		
					0.5		
					0.5		

Counts vs. Mass-to-Charge (m/z)
Figure S3. – Aromatic 1H NMR FeSPc(C₃).

Figure S4. – Aromatic 1H NMR FeSPc(C₄).
Figure S5. 19F NMR F$_3$SPc(C$_3$).

Figure S6. 19F NMR F$_3$SPc(C$_1$).
Purity results peak 1 at 11.025 min.

Signal DAD1 B, Sig=550,16 Ref-off (RC\RC-1-4-2MDCDL02.D)

-> The purity factor is within the calculated threshold limit. <=

Purity factor : 999.985 (62 of 62 spectra are within the calculated threshold limit.)
Threshold : 999.961 (Calculated with 62 of 62 spectra)
Reference : Peak start and end spectra (integrated) (10.703 / 12.283)
Spectra : 5 (Selection automatic, 5)
Noise Threshold: 0.018 (12 spectra, St.Dev 0.009 + 3 * 0.003)

*** End of Report ***

Figure S7. – HPLC purity report FsSPc(C).
Purity results peak 1 at 10.708 min.

Signal DAD1 B, Sig=550,16 Ref=off (RC\RC-1-4-2NDCOL03.D)

-> The purity factor is within the calculated threshold limit. <-

Purity factor : 999.984 (106 of 106 spectra are within the calculated threshold limit.)
Threshold : 999.936 (Calculated with 106 of 106 spectra)
Reference : Peak start and end spectra (integrated) (10.384 / 12.418)
Spectra : 5 (Selection automatic, 5)
Noise Threshold : 0.024 (12 spectra, St.Dev 0.0111 + 3 * 0.0043)

*** End of Report ***

Figure S8. – HPLC purity report for F3SPc(C).