THE CONNECTEDNESS OF THE MODULI SPACE OF MAPS TO HOMOGENEOUS SPACES

B. KIM AND R. PANDHARIPANDE

0. Introduction

Let X be a compact algebraic homogeneous space: $X = G/P$ where G is a connected complex semisimple algebraic group and P is a parabolic subgroup. Let $\beta \in H_2(X, \mathbb{Z})$. The (coarse) moduli space $\overline{M}_{g,n}(X, \beta)$ of n-pointed genus g stable maps parameterizes the data

$$[\mu : C \to X, p_1, \ldots, p_n]$$

satisfying:

(i) C is a complex, projective, connected, reduced, (at worst) nodal curve of arithmetic genus g.

(ii) The points $p_i \in C$ are distinct and lie in the nonsingular locus.

(iii) $\mu_*[C] = \beta$.

(iv) The pointed map μ has no infinitesimal automorphisms.

Since X is convex, the genus 0 moduli space $\overline{M}_{0,n}(X, \beta)$ is of pure dimension

$$\dim(X) + \int_\beta c_1(T_X) + n - 3.$$

Moreover, $\overline{M}_{0,n}(X, \beta)$ is locally the quotient of a nonsingular variety by a finite group. For general g, the space $\overline{M}_{g,n}(X, \beta)$ may have singular components of different dimensions. Stable maps in algebraic geometry were first defined in [Ko]. Basic properties of the moduli space $\overline{M}_{g,n}(X, \beta)$ can be found in [BM], [FP], and [KoM]. The following connectedness result is proven here.

Theorem 1. $\overline{M}_{g,n}(G/P, \beta)$ is a connected variety.

This result may be viewed as analogous to the connectedness of the Hilbert scheme of projective space proven by Hartshorne. As in [Har], connectedness is obtained via maximal degenerations.

Since $\overline{M}_{0,n}(X, \beta)$ has quotient singularities, connectedness is equivalent to irreducibility.

Date: 25 March 2000.

1991 Mathematics Subject Classification. Primary 14N10, 14H10.
Corollary 1. \(\overline{M}_{0,n}(G/P, \beta) \) is an irreducible variety.

Corollary 1 is easy to verify in case \(X \) is a projective space. When \(X \) is a Grassmannian, the irreducibility follows from Strømme’s Quot scheme analysis [S]. A proof of Corollary 1 can be found in case \(G = \text{SL} \) in [MM]. For the variety of partial flags in \(\mathbb{C}^n \), a proof of irreducibility using flag-Quot schemes is established in [Ki]. Results of Harder closely related to Corollary 1 appear in [Ha]. There is an independent proof by J. Thomsen for the irreducibility of \(\overline{M}_{0,n}(G/P, \beta) \) in [T].

The moduli space \(\overline{M}_{g,n}(X, \beta) \) has a natural locally closed decomposition indexed by stable, pointed, modular graphs \(\tau \) (see [BM]). The strata correspond to maps with domain curves of a fixed topological type and a fixed distribution \(\beta_\tau \) of \(\beta \). The graph \(\tau \) determines a complete moduli space of stable maps \(\overline{M}_{\tau,n}(X, \beta_\tau) \) together with a canonical morphism:

\[
\pi_\tau : \overline{M}_{\tau,n}(X, \beta_\tau) \to \overline{M}_{g,n}(X, \beta).
\]

A closed decomposition is determined by the images of these morphisms. Theorem 1 is a special case of the following result.

Theorem 2. \(\overline{M}_{\tau,n}(G/P, \beta_\tau) \) is a connected variety.

Since \(\overline{M}_{\tau,n}(X, \beta_\tau) \) is normal in the genus 0 case, we obtain the corresponding corollary.

Corollary 2. Let \(g = 0 \). \(\overline{M}_{\tau,n}(G/P, \beta_\tau) \) is an irreducible variety.

In particular, all the boundary divisors of \(\overline{M}_{0,n}(X, \beta) \) are irreducible.

Theorem 2 is proven by studying the maximal torus action on \(X \). The method is to degenerate a general \(G \)-translate of a map \(\mu : C \to X \) onto a canonical 1-dimensional configuration of \(\mathbb{P}^1 \)’s in \(X \) determined by the maximal torus and the Bialynicki-Birula stratification of \(X \).

In the genus 0 case, we study the Bialynicki-Birula stratification of \(\overline{M}_{0,n}(X, \beta) \). The following result is then deduced from the rationality of torus fixed components.

Theorem 3. \(\overline{M}_{0,n}(G/P, \beta) \) is rational.

The fixed component rationality is equivalent to a rationality result for certain quotients of \(\text{SL}_2 \)-representations proven by Katsylo and Bogomolov [Ka], [Bog]. It should be noted that the fixed components will in general be contained in the boundary of the moduli space of maps –
the compactification by stable maps therefore plays an important role in
the proof.

The rationality of the Hilbert schemes of rational curves in projective
space (birational to \(\overline{M}_{0,0}(\mathbb{P}^r, d) \)) is a consequence of Katsylo’s results
[Ka] and was also studied by Hirschowitz in [Hi].

The main part of this paper was written in 1996 at the Mittag-
Leffler Institute where the authors benefitted from discussions with
many members. Thanks are especially due to I. Ciocan-Fontanine, B.
Fantechi, W. Fulton, T. Graber, and B. Totaro. Conversations with F.
Bogomolov were also helpful. B. K. was partially supported by KOSEF
grant 1999-2-102-003-5 and POSTECH grant 1999. R. P. was partially
supported by NSF grant DMS-9801574 and an A. P. Sloan foundation
fellowship.

1. The torus action on \(G/P \)

Let \(G \) be a connected complex semisimple algebraic group. Let \(P \)
be a parabolic subgroup. Select a maximal algebraic torus \(T \) and Borel
subgroup \(B \) of \(G \) satisfying:

\[
T \subset B \subset P \subset G.
\]

Let \((G/P)^T\) denote the fixed point set of the left \(T \)-action on \(G/P \).
Three special properties of this \(T \)-action will be needed:

(i) The \(T \)-action has isolated fixed points.

(ii) For every point \(p \in (G/P)^T \), there exits a \(T \)-invariant open set \(U_p \)
containing \(p \) which is \(T \)-equivalent to a vector space representation
of \(T \).

(iii) Let \(C^\ast \subset T \) correspond to an interior point of a Weyl chamber.
Then, \((G/P)^{C^\ast} = (G/P)^T \), and the Bialynicki-Birula decomposi-
tion obtained from the \(C^\ast \)-action is an affine stratification of \(G/P \).

A stratification is a decomposition such that the closures of the strata
are unions of strata. In general, the Bialynicki-Birula decomposition
obtained from a \(C^\ast \)-action on a nonsingular variety need not be a strat-
ification.

The claims (i)-(iii) are well known. Only a brief summary of the
arguments will be presented here. Let \(W \) be the Weyl group of \(G \)
relative to \(T \).

Lemma 1. \(|(G/B)^T| = |W|\), and \(W \) acts transitively on \((G/B)^T\).

Proof. See, for example, [Bor].

In particular, \((G/B)^T\) is a finite set.
Lemma 2. The natural map \((G/B)^T \to (G/P)^T\) is surjective.

Proof. Let \(p \in (G/P)^T\). The invariant fiber (isomorphic to \(P/B\)) over the fixed point \(p\) is a nonsingular projective variety, and hence contains a \(T\)-fixed point by the Borel fixed point theorem (or, alternatively, this is a Hamiltonian action on a compact manifold).

Therefore, \(W\) acts transitively on the finite set \((G/P)^T\).

A representation \(\psi : T \to GL(V)\) is fully definite if there exists a \(\mathbb{C}^*\)-basis of \(T\) for which all the weights of the representation are positive integers. Equivalently, a fully definite representation can be written

\[
\psi(t_1, \ldots, t_r)v_j = \prod_{i=1}^{r} t_i^{\lambda_{ij}} \cdot v_j
\]

where \(\lambda_{ij} > 0\) for some choice of \(\mathbb{C}^*\)-basis of \(T\) and \(\mathbb{C}\)-basis \(\{v_j\}\) of \(V\).

The point \(1 \in G/B\) corresponding to the identity element of \(G\) is a \(T\)-fixed point. The \(T\)-action induces a representation

\[
\phi : T \to GL(Tan_1 G/B).
\]

Lemma 3. The representation \(\phi\) is fully definite.

Proof. The natural quotient map \(q : G \to G/B\) is \(T\)-equivariant for the conjugation action on \(G\) and the left action on \(G/B\). The differential of \(q\) yields an isomorphism from the Adjoint representation of \(T\) on \(\text{Lie}(G)/\text{Lie}(B)\) to \(\phi\). \(\text{Lie}(G)/\text{Lie}(B)\) is the space of positive roots. This \(T\)-representation space has \(n\) simple roots (where \(n\) is the rank of \(G\)). All the 1-dimensional representations in \(\text{Lie}(G)/\text{Lie}(B)\) are non-negative tensor products of these simple roots. Moreover, the \(n\) weight vectors of these simple roots are independent in the lattice of 1-dimensional representations of the torus \(T\). Lemma 3 now follows from Lemma 4 below.

Lemma 4. Let \(\psi : T \to GL(\mathbb{C}^n)\) be an \(n\) dimensional representation of a rank \(n\) torus \(T\). If the \(n \times n\) matrix of weights is nonsingular, then the representation is fully definite.

Proof. See [Bi].

Lemma 5. The \(T\)-representation \(Tan_1 G/P\) is fully definite.

Proof. There is a surjection of \(T\)-modules given by the differential \(Tan_1 G/B \to Tan_1 G/P\).
Proposition 1. For every \(p \in (G/P)^T \), there exists a \(T \)-invariant Zariski open set \(U_p \subset G/P \) of \(p \) which is \(T \)-equivalent to a vector space representation of \(T \).

Proof. By a theorem of Bialynicki-Birula [Bi], it suffices to show the tangent representation of \(T \) is fully definite at \(p \). This is a consequence of Lemma 5 and the transitivity of the \(W \)-action on \((G/P)^T\). (In fact, only definiteness of the tangent representation is needed in [Bi].) \(\square \)

Let \(C^* \subset T \) correspond to an interior point of a Weyl chamber. By the analysis of the tangent representation \(\phi \), every point of \((G/B)^T\) is an isolated fixed point of \(C^* \). The equality \((G/B)^{C^*} = (G/B)^T\) follows. Since the map \((G/B)^C \rightarrow (G/P)^{C^*}\) is surjective, \((G/P)^{C^*} = (G/P)^T \).

For each \(p \in (G/P)^T \), let \(A_p \) be the set of points \(x \in G/P \) such that \(\lim_{t \to 0} tx = p \).

By Proposition 1, \(A_p \) is isomorphic to the affine space \(C^{r_p} \) where \(r_p \) is the number of positive weights in the \(C^*\)-representation \(\text{Tan}_{p} G/P \). The set \(\{A_p\} \) is the Bialynicki-Birula affine decomposition of \(G/P \). In fact, \(\{A_p\} \) coincides (up to the Weyl group action) with the (open) Schubert cell stratification of \(G/P \). This is essentially proven in [Bor] for the case \(G/B \). The general case \(G/P \) is proven in [A]. Therefore, \(\{A_p\} \) is a stratification.

2. The \(C^* \)-flow

Let \(C^* \subset T \) correspond to an interior point of a Weyl chamber. Let \(s, x_1, \ldots, x_l \in (G/P)^T \) be the fixed points corresponding to the unique maximal dimensional stratum \(A_s \) and the complete set of codimension 1 strata, \(A_1, \ldots, A_l \), respectively. The points of \(A_s \) flow \((t \to 0) \) to \(s \), and the points of \(A_i \) flow \((t \to 0) \) to \(x_i \). Let \(U = A_s \cup A_1 \cup \ldots \cup A_l \). Since the Bialynicki-Birula decomposition \(\{A_p\} \) is a stratification, \(U \) is a Zariski open set with complement of codimension at least 2.

The inverse action of \(C^* \) on \(G/P \) is also a torus action on \(G/P \) with the same fixed point set. Let \(A'_s, A'_1, \ldots, A'_l \) be the affine strata for the inverse action corresponding to the fixed points \(s, x_1, \ldots, x_l \). Let \(\dim(G/P) = m \). Since,

\[
\dim(A_p) + \dim(A'_p) = m,
\]

\(A'_1, \ldots, A'_l \) are the complete set of 1-dimensional strata for the inverse action. Moreover, the closure \(P_i = \overline{A_i} \) can contain only the unique 0-dimensional stratum \(A'_s = s \). We have shown the closures \(P_i \) are contained in \(U \). Each \(P_i \) is isomorphic to \(\mathbb{P}^1 \) (Chevelley [C] proves the
closed Schubert cells have singularities in codimension at least 2). The intersection pairing
\[P_i \cap A_j = \delta(i - j) \]
follows from the above analysis. Since the closed strata of the inverse action freely generate the integral homology, the classes
\[[P_1], \ldots, [P_l] \in H_2(G/P, \mathbb{Z}) \]
span an integral basis of \(H_2(G/P, \mathbb{Z}) \).

Let \(f : C \to G/P \) be a non-constant stable map satisfying the following properties:

(i) The image \(f(C) \) lies in \(U \).
(ii) \(C \) intersects (via \(f \)) the divisors \(A_i \) transversely at nonsingular points of \(C \).
(iii) All the markings of \(C \) have image in \(A_s \).

If \([f]\) represents the class \(\beta = \sum_{i=1}^l a_i [P_i] \in H_2(G/P, \mathbb{Z}) \)
then let \(C \) meet \(A_i \) at the \(a_i \) distinct points \(\{x_{i,1}, \ldots, x_{i,a_i}\} \).

We will study the induced \(\mathbb{C}^* \)-action on \(\overline{M}_{g,n}(G/P, \beta) \) by translation of maps. Let \(F : C_0 \to G/P \) be the limit in the space of stable maps,
\[F = \lim_{t \to 0} tf \]
where \(t \in \mathbb{C}^* \).

Define a map \(\tilde{F} : \tilde{C} \to G/P \) as follows. Let the domain \(\tilde{C} \) be:
\[\tilde{C} = C \cup \bigcup_{i=1}^l (\bigcup_{j=1}^{a_i} \mathbb{P}_1^{i,j}) \]
where \(\mathbb{P}_1^{i,j} \) is a projective line attached to \(C \) at the point \(x_{i,j} \). Let the markings of \(\tilde{C} \) coincide with the markings of \(C \) (note the markings of \(C \) are disjoint from the set \(\{x_{i,j}\} \) by condition (ii)). Define \(\tilde{F} \) by \(\tilde{F}(C \subset \tilde{C}) = s \) and
\[\tilde{F}|_{\mathbb{P}^{i,j}_{i,j}} : \mathbb{P}^{i,j}_{i,j} \simeq P_i \]
for each \(i \) and \(j \).

Proposition 2. If \(f \) satisfies conditions (i-iii), then the \(t \to 0 \) limit \(F \) equals the stabilization of \(\tilde{F} \).
Proof. Let \(\triangle^\circ \subset \triangle \) be the punctured holomorphic disk at the origin. Let
\[
h : C \times \triangle^\circ \to \mathbb{G}/\mathbb{P}
\]
be the map defined by \(h(c, t) = tf(c) \). The \(\mathbb{C}^* \)-action on \(A_s \) extends to a map
\[
C \times A_s \to A_s
\]
since the \(\mathbb{C}^* \)-action on \(A_s \) is a vector space representation with positive weights. The map \(h \) thus extends to a map
\[
h : C \times \triangle \setminus \{x_{i,j} \times 0\} \to \mathbb{G}/\mathbb{P}
\]
since the \(f \)-image of \(C \setminus \{x_{i,j}\} \) lies in \(A_s \). Note,
\[
(2) \quad h(C \setminus \{x_{i,j}\}, 0) = s.
\]
After a suitable blow-up
\[
\gamma : S \to C \times \triangle
\]
supported along the isolated nonsingular points \(\{x_{i,j} \times 0\} \) of \(C \times \triangle \), there is a morphism \(h' : S \to \mathbb{G}/\mathbb{P} \).

The limit as \(t \to 0 \) of \(tf(x_{i,j}) \) equals \(x_i \). Hence, the exceptional divisor \(C_{i,j} \) of \(\gamma \) over \(x_{i,j} \) connects the points \(x_i \) to \(s \) under the map \(h' \). The image \(h'(C_{i,j}) \) thus represents an effective curve class containing the class \([P_i]\). By degree considerations over all the exceptional divisors \(C_{i,j} \), we conclude \(h'(C_{i,j}) \) is of curve class exactly \([P_i]\). As \(P_i \) is the unique \(\mathbb{C}^* \)-fixed curve of class \([P_i]\) connecting the points \(x_i \) and \(s \),
\[
h'(C_{i,j}) = P_i.
\]

We may assume \(S \) to be nonsingular (away from the original nodes of \(C \)) and each \(C_{i,j} \) to be a normal crossings divisor – possibly after further blow-ups and base changes altering only the special fiber over \(0 \in \triangle \). We then conclude each \(C_{i,j} \) has a single component which is mapped to \(P_i \) isomorphically (and the other components of \(C_{i,j} \) are contracted).

After blowing-down the \(h' \)-contracted components of each \(C_{i,j} \), we obtain a map \(h'' : S'' \to \mathbb{G}/\mathbb{P} \) which is a family of nodal maps over \(\triangle \). The fiber of \(S'' \) over \(t = 0 \) is isomorphic to \(\tilde{C} \). Moreover, the condition \(\tilde{F}(C \subset \tilde{C}) = s \) follows directly from (3).

The limit stable map \(F \) is then simply obtained by stabilizing the map \(\tilde{F} \). We have carried out the stable reduction of the family of maps \(tf \) (see [FP]). \(\square \)
3. Connectedness

Let $[\mu]$ denote the point $[\mu : C \to X, p_1, \ldots, p_n] \in \overline{M}_{g,n}(X, \beta)$. The stable, pointed, modular graph τ with $H_2(X, \mathbb{Z})$-structure canonically associated to $[\mu]$ consists of the following data:

(i) The pointed dual graph of C:
 (a) The vertices V_τ correspond to the irreducible components of the curve C.
 (b) The edges correspond to the nodes.
 (c) The markings correspond to the marked points p_i.

(ii) The genus function, $g_\tau : V_\tau \to \mathbb{Z} \geq 0$, where $g_\tau(v)$ is the geometric genus of the corresponding component of C.

(iii) The $H_2(X, \mathbb{Z})$-structure, $\beta_\tau : V_\tau \to H_2(X, \beta)$, where $\beta_\tau(v)$ equals the μ push-forward of the fundamental class of the corresponding component of C.

Following [BM], define $M_{\tau,n}(X, \beta_\tau)$ to be the moduli space of maps μ together with an isomorphism of τ_μ with a fixed stable graph τ. The space $\overline{M}_{\tau,n}(X, \beta_\tau)$ is the compactification via stable maps where the vertices of V_τ may correspond to nodal curves. Note $M_{\tau,n}(X, \beta_\tau)$ may not be dense in $\overline{M}_{\tau,n}(X, \beta_\tau)$.

There is a canonical morphism

$$\pi_\tau : \overline{M}_{\tau,n}(X, \beta_\tau) \to \overline{M}_{g,n}(X, \beta).$$

As τ varies over possible graphs, the images of π_τ determine a (closed) decomposition of the moduli space of maps.

Let τ be a stable, pointed, modular graph with $H_2(G/P, \mathbb{Z})$-structure. The connectedness of $\overline{M}_{\tau,n}(G/P, \beta_\tau)$ will now be established.

Proof of Theorem 2. If $\beta_\tau = 0$, the irreducibility of $\overline{M}_{\tau,n}(G/P, \beta_\tau)$ is a direct consequence of the irreducibility of the corresponding stratum in $\overline{M}_{g,n}$ and the irreducibility of G/P. We may thus assume $\beta_\tau \neq 0$.

Fix the \mathbb{C}^*-action on G/P as studied in Section 2. Consider an arbitrary point

$$[\mu] \in \overline{M}_{\tau,n}(G/P, \beta_\tau).$$

By the Kleiman-Bertini Theorem, a general G-translate f of μ satisfies conditions (i-iii) of Section 3. As G is connected, $[\mu]$ is connected to its general G-translate $[f]$.

The point $[f]$ is connected to the limit:

$$[F] = \lim_{t \to 0} [tf].$$
To prove the connectedness of $\overline{M}_{\tau,n}(G/P, \beta_\tau)$, it suffices to prove the set of limits F lies in a connected locus of the moduli space. We will first construct the required connected locus of $\overline{M}_{\tau,n}(G/P, \beta_\tau)$.

The pair (τ, β_τ) canonically determines a family of maps γ_b with nodal domains over a base $b \in B$. For $v \in V_\tau$, let $\beta_\tau(v) = \sum_i a_i^v [P_i]$. Define the base space B as follows:

$$B = \prod_{v \in V_\tau} \overline{M}_{g(v), \mathit{val}(v)+\sum_i a_i^v}.$$

where $\mathit{val}(v)$ is the valence of v in τ (including nodes and markings). The extra $\sum_i a_i^v$ markings each correspond to a basis homology element -- with a_j^v of these markings corresponding to $[P_j]$. The degenerate cases $\overline{M}_{0,1}$ and $\overline{M}_{0,2}$ in the product B are taken to be points. B is irreducible and hence connected.

For $b = \prod_v [b_v] \in B$, let

$$\gamma_b : D_b \to G/P$$

be defined as follows:

(i) D_b is obtained by attaching the curves b_v by connecting nodes as specified by τ and further attaching \mathbb{P}^1's to each of the extra points $\sum_i a_i^v$.

(ii) For each subcurve $b_v \subset D_b$, $\gamma_b(b_v) = s$.

(iii) For each \mathbb{P}^1 corresponding to $[P_j]$, $\gamma_b(\mathbb{P}^1) \cong P_j$.

The family of maps γ_b over B then defines a morphism (via stabilization):

$$\epsilon : B \to \overline{M}_{\tau,n}(G/P, \beta_\tau).$$

Certainly the image variety $\epsilon(B)$ is connected.

By Proposition 2, the limit F is simply the stabilization of $[\tilde{F}]$. Since $\tilde{F} = \gamma_b$ for some b, the set of limits F lies in a connected locus of $\overline{M}_{\tau,n}(G/P, \beta_\tau)$. This concludes the proof of Theorem 2.

Theorem 1 is a special case of Theorem 2 (where τ has a single vertex). Corollary 2 is a simple consequences of Theorem 2.

Proof of Corollary 2. In the genus 0 case, τ is a tree with genus function identically zero. The moduli stack

$$\overline{M}_{\tau,n}(G/P, \beta_\tau)$$

is constructed as a fiber product over the evaluation maps obtained from the edges of τ. We will prove $\overline{M}_{\tau,n}(G/P, \beta_\tau)$ is a nonsingular Deligne-Mumford stack by induction on the number of vertices of τ.

First, suppose τ has only 1 vertex v. Then, the moduli stack (3) is $\mathcal{M}_{0,\text{val}(v)}(G/P, \beta_\tau(v))$ – a nonsingular moduli stack by the convexity of G/P.

Next, let τ have m vertices and let v be an extremal vertex (v is incident to exactly 1 edge). Let $p \in G/P$ be a point. By the Kleiman-Bertini Theorem,

\[(4) \quad ev_1^{-1}(p) \subset \mathcal{M}_{0,\text{val}(v)}(G/P, \beta_\tau(v))\]

is a nonsingular Deligne-Mumford stack for the general point p (and hence every point p). Let τ' be the graph obtained by removing v from τ and adding an extra marking corresponding to the broken node. The moduli stack (3) is fibered over

\[(5) \quad \mathcal{M}_{\tau',n'+1}(G/P, \beta'_{\tau'})\]

with fiber (4). As (3) is nonsingular by induction, the stack (3) is thus nonsingular. This completes the induction step.

Finally, since $\mathcal{M}_{\tau,n}(G/P, \beta_\tau)$ is a nonsingular and connected Deligne-Mumford stack, it is irreducible.

4. Rationality

We first review a basic rationality result proven in a sequence papers by Katsylo and Bogomolov [Ka], [Bog]. Let $V = \mathbb{C}^2$ be a vector space. Let a_1, a_2, \ldots, a_n be a sequence of positive integers with $\sum a_i \geq 3$. Then, the quotient

\[(6) \quad \mathbb{P}(\text{Sym}^{a_1}V^*) \times \cdots \times \mathbb{P}(\text{Sym}^{a_n}V^*) \// \mathbb{PGL}(V)\]

is a rational variety – we may take any non-empty invariant theory quotient. Geometrically, the quotient (4) is birational to the moduli space quotient

\[(7) \quad M_{\tau,n,\sum a_i} / \Sigma a_1 \times \Sigma a_2 \times \cdots \times \Sigma a_n\]

where Σ is the symmetric group. Essentially, the rationality of (4) is deduced from rationality in case $n = 1$ [Ka]. Proofs in the $n = 1$ case may be found in [Ka], [Bog].

We will also need the following simple Lemma.

Lemma 6. Let W be any finite dimensional linear representation of A where $A = \Sigma_2$ or $A = \Sigma_3$. Then, W/A is rational.

Proof. By the complete reducibility of representations and the fact that a GL-bundle is locally trivial in the Zariski topology, it suffices to prove the Lemma in case W is an irreducible representation. It is then
easily checked by hand the two irreducible representation of Σ_2 and the three irreducible representations of Σ_3 have rational quotients. □

Proof of Theorem 3. Fix the \mathbb{C}^*-action on G/P as studied in Section 2. We first consider the moduli space

$$M = M_{0,n}(G/P, \beta = \sum_i a_i [P_i])$$

where the property

$$n + \sum_i a_i \geq 4$$

is satisfied.

Let τ be the graph with a single vertex v with n markings, and let $\beta_\tau(v) = \sum_i a_i [P_i]$. Let γ_b over B be the family of maps constructed canonically from (τ, β_τ) in the proof of Theorem 2. The base B is simply:

$$B = M_{0,n+\sum_i a_i}.$$ \hspace{1cm} (9)

The map γ_b over a general point $b \in B$ has no map automorphisms (as $n + \sum_i a_i \geq 4$). Hence, the image $\epsilon(B)$ in \overline{M} intersects the nonsingular (automorphism-free) locus of the moduli space $\overline{M}_0 \subset \overline{M}$. Let

$$\epsilon(B)^0 = \epsilon(B) \cap \overline{M}_0,$$

and let $B^0 = \epsilon^{-1}(\epsilon(B)^0)$. The map

$$B^0 \rightarrow \epsilon(B)^0$$

is simply a quotient of B^0 by the natural $\Sigma_{a_1} \times \cdots \times \Sigma_{a_n}$ action on (3). By the rationality result (5), $\epsilon(B)^0$ is rational.

Consider now the \mathbb{C}^*-action on \overline{M}^0 by translation. As \overline{M}^0 is a nonsingular, irreducible, quasi-projective variety, we may study the Bialynicki-Birula stratification of \overline{M}^0. By the proof of Theorem 2, $\epsilon(B)^0$ is a \mathbb{C}^*-fixed locus which contains the limit,

$$\lim_{t \to 0} t[f],$$

of the general point $[f] \in \overline{M}^0$. By [Bi], \overline{M}^0 is birational to an affine bundle over $\epsilon(B)^0$. Therefore, \overline{M} is rational. The proof of Theorem 3 is complete in case (8) is satisfied.

Next, we will consider the case where the sum (8) is at most 3. In this case, the base B is a point. If $\epsilon(B)$ lies in the automorphism-free locus, the previous argument proving the rationality of $M_{0,n}(G/P, \beta)$
is still valid. There are exactly four cases in which the point \(\epsilon(B) \) corresponds to a map with nontrivial automorphisms:

(i) \(n = 0, \beta = 3[P_i] \).
(ii) \(n = 0, \beta = 2[P_i] + [P_j], i \neq j \).
(iii) \(n = 0, \beta = 2[P_i] \).
(iv) \(n = 1, \beta = 2[P_i] \).

Here, the Deligne-Mumford stack structure of these moduli spaces is important. The automorphism group in case (i) is \(\Sigma_3 \) and in cases (ii-iv) is \(\Sigma_2 \). In each case, we will show the coarse moduli space \(\overline{M}_{0,n}(G/P, \beta) \) is birational to a quotient of a linear representation of the corresponding automorphism group.

Consider first the case (i): \(n = 0, \beta = 3[P_i] \). Let \(\epsilon(B) = [\gamma] \). Let \(\mu \) denote the unique 3-pointed stable map obtained from \(\gamma \) by marking each \(\mathbb{P}^1 \cong P_i \) by a point lying over \(x_i \). Certainly, \([\mu] \in \overline{M}_{0,3}^0(G/P, \beta) \).

We will study:

\[
N \subset \overline{M}_{0,3}^0(G/P, \beta)
\]

where \(N \) is the component of the locus of transverse intersection of the three divisors \(\text{ev}_1^{-1}(A_i) \), \(\text{ev}_2^{-1}(A_i) \), and \(\text{ev}_3^{-1}(A_i) \) containing \([\mu] \). The torus \(\mathbb{C}^* \) acts on \(N \) by translation. By an argument exactly parallel to the flow result of Proposition 2, we deduce

\[
\lim_{t \to 0} t[f] = [\mu]
\]

for a general element \([f] \in N \). As \(N \) is a nonsingular, quasi-projective scheme, Theorem 2.5 of [Bi] implies that \(N \) is \(\mathbb{C}^* \)-equivariantly birational to the tangent \(\mathbb{C}^* \)-representation at \([\mu] \).

There is a \(\Sigma_3 \)-action on \(N \) by permutation of the markings. The \(\mathbb{C}^* \) and \(\Sigma_3 \) actions commute. A slightly refined version of Theorem 2.5 of [Bi] shows \(N \) is \(\mathbb{C}^* \times \Sigma_3 \)-equivariantly birational to the tangent \(\mathbb{C}^* \times \Sigma_3 \)-representation at \([\mu] \). Lemma \(\mathbb{L} \) below explains the refinements of the results of [Bi] needed here. \(N/\Sigma_3 \) is birational to \(\overline{M}_{0,3}^0(G/P, \beta) \).

Hence, by Lemma \(\mathbb{L} \), Theorem 3 is proven in case (i).

A similar strategy is used in cases (ii-iv). In each of these cases, let \(\epsilon(B) = [\gamma] \) and let \([\mu] \) denote the rigidification by adding 2 new markings \(\bullet, \bullet' \) which lie over \(x_i \). The locus \(N \) is chosen as the corresponding transverse intersection locus of \(\text{ev}_1^{-1}(A_i) \) and \(\text{ev}_2^{-1}(A_i) \) in the maps space with the new markings. \(N \) is then \(\mathbb{C}^* \times \Sigma_2 \)-equivariantly birational to the tangent \(\mathbb{C}^* \times \Sigma_2 \)-representation of \(N \) at \([\mu] \) by the refined Lemma \(\mathbb{L} \). Theorem 3 is then a consequence of Lemma \(\mathbb{L} \) since \(N/\Sigma_2 \) is birational to the moduli space of maps considered in the case. \(\square \)
Lemma 7. Let A be a finite group. Let S be a nonsingular, irreducible, quasi-projective scheme with a $\mathbb{C}^* \times A$-action and a $\mathbb{C}^* \times A$-fixed point $s \in S$. Let T_s denote the $\mathbb{C}^* \times A$-representation on the tangent space at s. Suppose the \mathbb{C}^*-action is fully definite at s. Then, there is $\mathbb{C}^* \times A$-equivariant isomorphism between an open set of (S, s) and $(T_s, 0)$.

Proof. We note $\mathbb{C}^* \times A$ is a linearly reductive group. By Theorem 2.4 of [Bi] for linearly reductive group actions, we may find a third nonsingular irreducible pointed space (Z, z) with a $\mathbb{C}^* \times A$-action and equivariant, étale, morphisms:

$$\pi_1 : (Z, z) \to (S, s),$$

$$\pi_2 : (Z, z) \to (T_s, s).$$

In the proof of Theorem 2.5 of [Bi], such morphisms π_1 and π_2 are proven to be open immersions by a study of only the \mathbb{C}^*-action. Hence, the morphisms π_1 and π_2 are open immersions in our case. By the full definiteness of the \mathbb{C}^*-representation on T_s, the morphism π_2 is then an isomorphism. \qed

References

[A] E. Akyildiz, Bruhat decomposition via G_m-action, (English. Russian summary) Bull. Acad. Polon. Sci. Sr. Sci. Math. 28 (1980), no. 11-12, 541–547 (1981).

[BM] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1-60.

[Bi] Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.

[Bog] F. Bogomolov, Rationality of the moduli of hyperelliptic curves of arbitrary genus, Proceedings of the 1984 Vancouver conference in algebraic geometry, 17-37, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, R.I., 1986.

[Bor] A. Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin: New York-Amsterdam, 1969.

[C] C. Chevalley, Séminaire C. Chevalley, 1956–1958, Classification des groupes de Lie algébriques, Secrétariat mathématique, 11 rue Pierre Curie, Paris 1958.

[DM] P. Deligne and D. Mumford The irreducibility of the space of curves of given genus, Inst. Hautes tudes Sci. Publ. Math. No. 36 1969 75–109.

[FP] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Notes on stable maps and quantum cohomology. Algebraic geometry—Santa Cruz 1995, 45-96, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.

[Ha] G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (1974), 249-306.

[Har] R. Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Etudes Sci. Publ. Math. 29 (1966), 5-48.
A. Hirschowitz, *La rationalité des schémas de Hilbert de courbes gauches rationnelles suivant Katsylo*, Algebraic curves and projective geometry (Trento, 1988), 87-90, Lecture Notes in Math., 1389, Springer: Berlin-New York, 1989.

P. Katsylo, *Rationality of the field of invariants of reducible representations of the group SL₂*, Moscow Univ. Math. Bull. **39** (1984), no. 5, 80-83.

B. Kim, *Gromov-Witten invariants for flag manifolds*, Ph.D. Thesis, University of California at Berkeley, 1996.

M. Kontsevich, *Enumeration of rational curves via torus actions*, in *The moduli space of curves*, R. Dijkgraaf, C. Faber, and G. van der Geer, eds., Birkhüser, 1995, pp 335-368.

M. Kontsevich and Yu. Manin, *Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Commun. Math. Phys. **164** (1994), 525-562.

B. Mann and M. Milgram, *On the moduli space of SU(n) monopoles and holomorphic maps to flag manifolds*, J. Diff. Geom. **38** (1993), 39-103.

S. Stromme, *On parametrized rational curves in Grassmann varieties*, Space curves (Rocca di Papa, 1985), 251-272, Lecture Notes in Math., 1266, Springer: Berlin-New York, 1987.

J. Thomsen, *Irreducibility of \(\overline{M}_{0,n}(G/P, \beta) \)*, Internat. J. Math. 9 (1998), no. 3, 367-376.

Pohang University of Science and Technology

E-mail address: bumsig@postech.ac.kr

California Institute of Technology

E-mail address: rahulp@cco.caltech.edu