Observation of a New Ξ_b^- Resonance

R. Aaij et al. (LHCb Collaboration)

(Received 24 May 2018; published 15 August 2018)

From samples of pp collision data collected by the LHCb experiment at $\sqrt{s} = 7$, 8, and 13 TeV, corresponding to integrated luminosities of 1.0, 2.0, and 1.5 fb$^{-1}$, respectively, a peak in both the $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ invariant mass spectra is observed. In the quark model, radially and orbitally excited Ξ resonances with quark content bds are expected. Referring to this peak as $\Xi_b(6227)^-$, the mass and natural width are measured to be $m_{\Xi_b(6227)^-} = 6226.9 \pm 0.3 \pm 0.2$ MeV/c^2 and $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4 \pm 1.8$ MeV/c^2, where the first uncertainty is statistical, the second is systematic, and the third, on $m_{\Xi_b(6227)^-}$, is due to the knowledge of the Λ_b^0 baryon mass. Relative production rates of the $\Xi_b(6227)^- \rightarrow \Lambda_b^0 K^-$ and $\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-$ decays are also reported.

DOI: 10.1103/PhysRevLett.121.072002

In the constituent quark model [1,2], baryonic states form multiplets according to the symmetry of their flavor, spin, and spatial wave functions. The masses, widths, and decay modes of these states give insight into their internal structure [3]. The Ξ_b^0 and Ξ_b^- states form an isodoublet of bsq bound states, where q is a u or d quark, respectively. Three such isodoublets, which are neither radially nor orbitally excited, should exist [4], and include one with spin $J_{qs} = 0$ and $J^P = (1/2)^+$ (Ξ_b^0), a second with $J_{qs} = 1$ and $J^P = (1/2)^+$ (Ξ_b^-), and a third with $J_{qs} = 1$ and $J^P = (3/2)^+$ (Ξ_b^{*}). Here, J_{qs} is the spin of the light diquark system qs, and J^P represents the spin and parity of the state. Three of the four $J_{qs} = 1$ states have recently been observed through their decays to $\Xi_b^0 \pi^-$ and $\Xi_b^- \pi^+$ [5–7].

Beyond these lowest-lying states, a spectrum of heavier states is expected [8–23], where there are either radial or orbital excitations amongst the constituent quarks. The only such states discovered thus far in the b-baryon sector are the $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$ resonances [24], which are consistent with being orbital excitations of the Λ_b^0 baryon.

In this Letter, we report the first observation of a new state, decaying into both $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$, using samples of pp collision data collected with the LHCb experiment at 7, 8, and 13 TeV, corresponding to integrated luminosities of 1.0, 2.0, and 1.5 fb$^{-1}$, respectively. The observation of these decays is consistent with the strong decay of a radially or orbitally excited Ξ_b baryon, hereafter referred to as $\Xi_b(6227)^-$. Charge-conjugate processes are implicitly included throughout this Letter.

The mass and width of the $\Xi_b(6227)^-$ baryon are measured using the $\Lambda_b^0 K^-$ mode, where the Λ_b^0 baryon is detected through its fully reconstructed hadronic (HAD) decay to $\Lambda^+_c \pi^-$. Larger samples of semileptonic (SL) Λ_b^0 and Ξ_b^0 decays are used to measure the production ratios

$$R(\Lambda_b^0 K^-) = \frac{f_{\Xi_b(6227)^-}}{f_{\Lambda_b^0}} B(\Xi_b(6227)^- \rightarrow \Lambda_b^0 K^-),$$

$$R(\Xi_b^0 \pi^-) = \frac{f_{\Xi_b(6227)^-}}{f_{\Xi_b^0}} B(\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-),$$

where $f_{\Xi_b(6227)^-}$, $f_{\Xi_b^0}$, and $f_{\Lambda_b^0}$ are the fragmentation fractions of a b quark into each baryon and B represents a branching fraction. Here, the Λ_b^0 and Ξ_b^0 baryons are detected using $\Lambda_b^0 \rightarrow \Lambda^+_c \mu^- X$ and $\Xi_b^0 \rightarrow \Xi^0_c \mu^+ X$ decays, where X represents undetected particles. Throughout the text, H_b^0 (H_b^{*}) is used to designate either a Λ_b^0 or Ξ_b^0 (Λ_b^{0*} or Ξ_b^{0*}) baryon. Owing to much larger branching fractions, the SL signal yields are about an order of magnitude larger than that of any fully hadronic final state, which enables the observation of the $\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-$ mode. The SL decays are not used in the $\Xi_b(6227)^-$ mass or width determination, as they have larger systematic uncertainties due to modeling of the mass resolution.

The LHCb detector [25,26] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks [25,26]. Events are selected online by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction [27,28].

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP³.
Simulated data samples are produced using the software packages described in Refs. [29–35]. Samples of Λ^0_b (Ξ^0_b) are formed from $\Lambda^+_c\pi^-$ and $\Lambda^+_c\mu^-$ ($\Xi^+_c\mu^-$) combinations, where Λ^+_c and Ξ^+_c decays are reconstructed in the $pK^-\pi^+$ final state. The H^+_c decay products must have particle identification (PID) information consistent with the given particle hypothesis, and be inconsistent with originating from a primary vertex (PV) by requiring each to have large χ^2_{IP} with respect to all PVs in the event. Here χ^2_{IP} is the difference in χ^2 of the vertex fit of a given PV when the particle (here p, K^- or π^+) is included or excluded from the fit. The H^+_c candidate must have a fitted vertex significantly displaced from all PVs in the event and have an invariant mass within 60 MeV/c2 of the known H^+_c mass.

The H^+_c background is dominated by random combinations of tracks from nonsignal b-hadron decays. In the Ξ^+_c sample, about 15% of this background is due to misidentified $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+ \rightarrow K^-K^+\pi^+$, $D_s^+ \rightarrow K^-K^+\pi^+$, and $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$ decays. These cross-feed contributions are suppressed by employing tighter PID requirements on candidates that are consistent with being one of these charm mesons, with only a 1% loss of signal efficiency. These tighter requirements are not applied to the Λ^+_c sample, as the cross-feed contributions are negligible.

Muon (pion) candidates with transverse momentum $p_T > 1$ GeV/c (0.5 GeV/c) and large χ^2_{IP} are combined with H^+_c candidates to form the H^+_b samples. Each H^+_b decay vertex is required to be significantly displaced from all PVs in the event. For the $\Lambda^0_b \rightarrow \Lambda^+_c\pi^-$ decay, the reconstructed Λ^0_b trajectory must point back to one of the PVs in the event; only a very loose pointing requirement is imposed on the SL decay due to the momentum carried by the undetected particles. To reduce background in the SL decay samples, the z coordinates of the H^+_c and H^+_b decay vertices are required to satisfy $z(H^+_c) - z(H^+_b) > -0.05$ mm, where z is measured along the beam direction. Candidates that satisfy the invariant mass requirements, $5.2 < M(\Lambda^+_c\pi^-) < 6.0$ GeV/c2 or $M(H^+_c\mu^-) < 8$ GeV/c2, are retained, where M designates the invariant mass of the system of indicated particle(s).

To further suppress background in the $\Xi^0_b \rightarrow \Xi^+_c\mu^-X$ sample, a boosted decision tree (BDT) [36,37] is used. The BDT exploits 14 input variables: the χ^2 values of the fitted Ξ^+_c and Ξ^0_b decay vertices, and the momentum, p_T, χ^2_{IP}, and a PID variable for each Ξ^+_c final-state particle. Simulated signal decays and background from the Ξ^+_c mass sidebands, $30 < |M(pK^-\pi^+)| - m_{\Xi^+_c} < 60$ MeV/c2, in data are used to train the BDT, which m refers to the known mass of the indicated particle [38]. The BDT response for final-state hadrons in the signal decay is obtained from large $\Lambda \rightarrow p\pi^-$ and $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$ calibration samples in data, which is weighted to reproduce the kinematics of the signal. The chosen requirement on the BDT response provides an efficiency of about 90% (40%) on the signal (background).

Figure 1 shows the mass spectra for $\Lambda^0_b \rightarrow \Lambda^+_c\pi^-$, $\Lambda^+_c \rightarrow pK^-\pi^+$ (from $\Lambda^0_b \rightarrow \Lambda^+_c\mu^-X$) and $\Xi^0_b \rightarrow pK^-\pi^+$ (from $\Xi^0_b \rightarrow \Xi^+_c\mu^-X$) candidates. For the $\Lambda^0_b \rightarrow \Lambda^+_c\pi^-$ mode, a peak at the known Λ^0_b mass is seen. For the SL modes, the Λ^+_c and Ξ^+_c mass peaks are used to determine the number of Λ^0_b and Ξ^0_b baryon decays, as the combinatorial background from random $H^+_c\mu^-$ combinations is at the 1% level. The mass spectra are fit with the sum of two Gaussian functions with a common mean to represent the signal component and an exponential background function. The yields are given in Table I.

To form $\Xi^0_b(6227)^-$ candidates, a Λ^0_b (Ξ^0_b) candidate is combined with a K^- (π^-) meson that has small χ^2_{IP}, consistent with being produced in the strong decay of the $\Xi^0_b(6227)^-$ resonance. Only H^0_b candidates satisfying $|M(\Lambda^+_c\pi^-)_{HAD} - m_{\Lambda^0_b}| < 60$ MeV/c2, $|M(pK^-\pi^+)_{SL} - m_{\Lambda^0_b}| < 15$ MeV/c2, and $|M(pK^-\pi^+)_{SL} - m_{\Xi^0_b}| < 18$ MeV/c2 are considered, where HAD and SL indicate the sample from which the mass is determined. We require $p_T^X > 800$ MeV/c and $p_T^{\pi^-} > 900$ MeV/c, based on an optimization of the expected statistical uncertainty on the $\Xi^0_b(6227)^-$ signal yield, using simulation to model the signal and either wrong-sign ($\Lambda^0_bK^+, \Xi^0_b\pi^+$) or $\Xi^0_b(6227)^-$ mass sideband samples in data to model the background. After all selections the dominant source of background is due to combinations of real Λ^0_b (Ξ^0_b) decays with a random K^- (π^-) meson. All candidates satisfying these selections are retained.

To improve the resolution on the $\Xi^0_b(6227)^-$ mass, we use the mass differences $\delta m_K = M(\Lambda^0_bK^-) - M(\Lambda^0_b)$ and $\delta m_{\pi} = M(\Xi^0_b\pi^-) - M(\Xi^0_b)$, for the $\Lambda^0_bK^-$ and $\Xi^0_b\pi^-$ final states, respectively. The $\delta m_K(\pi)$ resolution is obtained from simulated $\Xi^0_b(6227)^-$ decays, where the decay width is set to a negligible value. For the $\Lambda^0_b \rightarrow \Lambda^+_c\pi^-$ mode, the δm_K resolution model is approximately Gaussian with a width of 2.4 MeV/c2. For the SL decays, the missing momentum, p_{miss}, is estimated by assuming it is carried by a zero-mass particle that balances the momentum transverse to the H^0_b direction (formed from its decay vertex and PV), and satisfies the mass constraint $(p_{H^+_c} + p_{\mu^-} + p_{miss})^2 = m_{H^0_b}^2$. Mass resolution shape parameters are obtained by fitting the $\delta m_K(\pi)$ spectra from simulated decays, which include contributions from excited charm baryons and final states with π^- leptons. The core of the resolution function has a half-width at half-maximum of about 20 MeV/c2, and has a tail toward larger mass (see Supplemental Material [39]). The obtained shape parameters are fixed in the fits to data.

The δm_K and δm_{π} spectra in data are shown in Fig. 2. The $\Xi^0_b(6227)^-$ mass and width are obtained from a simultaneous unbinned maximum-likelihood fit to the
FIG. 1. Invariant mass spectra for (top) $\Lambda_0^b \to \Lambda^+_c \pi^-$, (middle) $\Lambda_0^b \to \Lambda^+_c \mu^- X$, and (bottom) $\Xi^+_c \to \Xi^+_c \mu^- X$ candidate decays. The left column is for 7, 8 TeV and the right is for 13 TeV data. Fits are overlaid, as described in the text. Here, the $\Lambda_0^b \to \Lambda^+_c \mu^- X$ mode has been prescaled by a factor of 10.

TABLE I. Uncorrected $\Xi_b(6227)^-$ and H_b^0 signal yields for 7, 8, and 13 TeV data. The H_b^0 yields are limited to the signal regions used to form $\Xi_b(6227)^-$ candidates (see text).

$\Xi_b(6227)^-$ Final state	7.8 TeV	13 TeV		
$\langle \Lambda_0^b \rangle_{HAD} K^-$	170 ± 53	204.6 ± 0.5	215 ± 63	252.7 ± 0.6
$\langle \Lambda_0^b \rangle_{SL} K^-$	2772 ± 325	3133 ± 6	3701 ± 432	3226 ± 6
$\langle \Xi_b^0 \rangle_{SL} \pi^-$	351 ± 68	36.6 ± 0.3	274 ± 73	46.5 ± 0.3
Gaussian resolution function of width Weisskopf barrier factor [41], convoluted with a relativistic Breit-Wigner function [40] with shape parameters that are freely and independently varied in the fits to the two data sets. The background shape is described by a smooth threshold mass and width are common parameters in the fit. The signal shape is described by a Gaussian constraint on the constraint $M(\Lambda^0_0 K^-)$ [MeV/c2], with $\Lambda^0_0 \to \Lambda^+_c \pi^-$. The peak has a local statistical significance of about 7.9σ for the combined fit, based on the difference in log-likelihood values between a fit with zero signal and the best fit. The signal yields are given in Table I.

A peak is observed in both data sets, with a mean $\delta m_K^{\text{peak}} = 607.3 \pm 2.0$ MeV/c2 and width $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4$ MeV/c2. The peak has a local statistical significance of about 7.9σ for the combined fit, based on the difference in log-likelihood values between a fit with zero signal and the best fit. The signal yields are given in Table I.

The $\Xi_b(6227)^- \to \Lambda^0_0 K^-$ decay with $\Lambda^0_0 \to \Lambda^+_c \mu^- X$ is fit in a similar way, except for the different resolution function (see Supplemental Material [39]). A Gaussian constraint on

δm_K spectra in 7, 8, and 13 TeV data, using the $\Lambda^0_0 \to \Lambda^+_c \pi^-$ mode. The signal shape is described by a P-wave relativistic Breit-Weisskopf barrier factor [40] with a Blatt-Weisskopf resolution function of width 2.4 MeV/c2. The mass and width are common parameters in the fit. The background shape is described by a smooth threshold function [42] with shape parameters that are freely and independently varied in the fits to the two data sets. The symbol M^* represents the mass after the constraint $p_{H^+} + p_{H^-} + p_{\text{miss}} = M_{H^0}$ is applied, as described in the text.
an analogous way to the obtained from the fit to the hadronic mode, and the mean is freely varied. A peak is observed at a mass difference of 610.8 ± 1.0(stat) MeV/c², which is consistent with that of the hadronic mode, and it contains a yield about 15 times larger, as expected. The statistical significance of this peak is about 25σ, thus clearly establishing this peaking structure.

The H(b) final state is investigated by examining the δm_K spectra in H(6227)− → Ξ(b)π− candidate decays, as shown in the bottom row of Fig. 2. The fit is performed in an analogous way to the δm_K spectra, except for a different resolution function (see Supplemental Material [39] for δm_K resolution). The fitted mean of 440 ± 5 MeV/c² is consistent with the value expected from the hadronic mode of δm_peak + m_{Λ_b} − m_{Ξ(0)} = 435 ± 2 MeV/c². The statistical significance of the peak is 9.2σ.

The production ratios are computed using

\[
R(Λ_b^0 K^-) = \frac{N(Ξ(0)→Λ_b^0 K^-)}{N(Λ_b^0)} \kappa, \quad (3)
\]

\[R(Ξ_b^0 π^-) = \frac{N(Ξ(0)→Ξ_b^0 π^-)}{N(Ξ_b^0)} \kappa', \quad (4) \]

where N represents the yields in Table I, and \(e_{rel}^{(i)} \) is the relative efficiency between the Ξ_b(6227)− and H_b^0 selections, reported in Table II. The quantity \(\kappa^{(i)} \) represents corrections to the N(Λ_b^0) SL signal yields to account for (i) random H_b^0μ− combinations, (ii) cross-feed from Ξ_b(6227)− → Ξ(b)π−X decays into the Ξ_b^0 → Ξ_b^0 π− sample, and (iii) slightly different integrated luminosities used for the Ξ_b(6227)− and H_b^0 samples. The contribution from random H_b^0μ− combinations is estimated from a study of the wrong-sign (H_b^0μ+) and right-sign (H_b^0μ−) yields, from which a correction of 1.010 ± 0.002 to both R(Ξ_b^0 π−) and R(Λ_b^0 K−) is found. Cross-feeds from SL Ξ_b decays, which must be subtracted from N(Ξ_b^0), are inferred by adding a π− meson to the Ξ_b^0 μ− candidate and searching for excited Ξ_b^0 states. Mass peaks associated with the Ξ_b(2645)^0 and Ξ_b(2790)^0 resonances are observed, although for the former about half is due to Ξ_b(2815)→Ξ_b(2645)^0π^− decays, as determined through a study of the Ξ_b^0 π^− mass spectrum. Since the Ξ_b(2815)^0μ− final state is predominantly from Ξ_b^0 decays, this contribution is not subtracted. After correcting for the pion detection efficiency, we estimate that R(Ξ_b^0 π−) must be corrected by 1.11 ± 0.03. Slightly different-size data samples are used for the Ξ_b(6227)− and inclusive H_b^0 yield determinations, which amounts to corrections of less than 3%.

Several sources of systematic uncertainty have been considered. For the mass and width, the momentum scale uncertainty of 0.03% [43] leads to a 0.1 MeV/c² uncertainty on δm_K. A fit bias on the mass of 0.1 MeV/c² is observed in simulation, and is corrected for and a systematic uncertainty of equal size is assigned. Uncertainty due to the signal shape model is estimated by using a nonrelativistic Breit-Wigner signal shape and varying the Gaussian resolution by ±10% about its nominal value. With these variations, systematic uncertainties of 0.2 MeV/c² on δm_K and 0.9 MeV/c² on Γ_Ξ(6227)− are obtained. Sensitivity to the background function is assessed by varying the fit range by 100 MeV/c² on both ends, from which maximum shifts of 0.2 MeV/c² in the mass and 1.6 MeV/c² in the width are observed; these values are assigned as systematic uncertainties. Adding these systematic uncertainties in quadrature, leads to a total systematic uncertainty of 0.3 MeV/c² on the mass and 1.8 MeV/c² on the width.

The systematic uncertainties affecting the production ratio measurements are listed in Table III. The background shape affects the yield determination, and the associated systematic uncertainty is estimated by varying the fit range as described above. (Different background models give smaller deviations.) For the signal shape, the uncertainty is dominated by the resolution function. In an alternative fit, the resolution parameters are allowed to vary within twice the expected uncertainty and we take the difference with respect to the nominal result as the uncertainty. To assess

| Table II. Relative efficiencies (e_{rel}) for the SL modes. Uncertainties are due only to the finite size of the simulated samples. |
Final state	7, 8 TeV	13 TeV
Λ_b^0 K^-	0.295 ± 0.006	0.305 ± 0.005
Ξ_b^0 π^-	0.236 ± 0.007	0.277 ± 0.006

Source	R(Λ_b^0 K^-)[10^{-3}]	R(Ξ_b^0 π^-)[10^{-3}]
Background shape	0.3	0.3
Signal shape	0.1	0.1
Ξ_b(6227)− p_T	+0.16	+0.14
Tracking efficiency	0.03	0.03
PID requirement	0.05	0.06
N(Λ_b^0)	0.01	0.01
Simulated sample size	0.07	0.05
Total	0.4	0.4

072002-5
TABLE IV. Measured ratios $R(Λ_b^0 K^-)$ and $R(Ξ_b^- π^-)$ for 7.8, and 13 TeV data, in units of 10^{-3}. The uncertainties are statistical (first) and systematic (second).

Quantity $[10^{-3}]$	7, 8 TeV	13 TeV
$R(Λ_b^0 K^-)$	3.0 ± 0.3 ± 0.4	3.4 ± 0.3 ± 0.4
$R(Ξ_b^- π^-)$	47 ± 10 ± 7	22 ± 6 ± 3

the dependence on the kinematical properties of the $Ξ_b(6227)^-$ resonance, the p_T spectrum in simulation is weighted by $1 ± 0.01 × P_T(6227)^-/(\text{GeV}/c)$, based on previous studies of the $Ξ_b^0$ and $Λ_b^0$ production spectra [44]; the relative change in efficiency is assigned as a systematic uncertainty. The charged-particle tracking efficiency, obtained using large samples of $Jψ → μ^+μ^-$ decays [45], contributes an uncertainty of 1% to $e^{(\text{rel})}$. The systematic uncertainty of the PID requirement on the $K^−$ or $π^-$ from the $Ξ_b(6227)^-$ baryon is determined by comparing the PID response of kaons and pions in the $Λ_b^+ → pK^-π^+$ decay between data and simulation, where the latter are obtained from calibration data, as described previously. The uncertainty on $N(H_0^(-))$ is taken as the quadratic sum of the uncertainties on the fitted yields and the uncertainties on the $κ^{(0)}$ corrections. Lastly, the finite size of the simulated samples is taken into account.

In summary, we report the first observation of a new state, assumed to be an excited $Ξ_b^0$ state, using pp collision data samples collected by LHCb at $\sqrt{s} = 7, 8$ and 13 TeV. The mass and width are measured to be

$$m_{Ξ_b(6227)^-} - m_{Λ_b^0} = 607.3 ± 2.0(\text{stat}) ± 0.3(\text{syst}) \text{ MeV/c}^2,$$

$$\Gamma_{Ξ_b(6227)^-} = 18.1 ± 5.4(\text{stat}) ± 1.8(\text{syst}) \text{ MeV/c}^2,$$

$$m_{Ξ_b(6227)^-} = 6226.9 ± 2.0(\text{stat}) ± 0.3(\text{syst})$$

$$± 0.2(Λ_b^0) \text{ MeV/c}^2,$$

where for the last result we have used $m_{Λ_b^0} = 5619.58 ± 0.17 \text{ MeV/c}^2$ [38].

We have also measured the relative production rates to two final states, $Λ_b^0 K$ and $Ξ_b^- π$, as summarized in Table IV. The $R(Λ_b^0 K^-)$ values from the hadronic mode are consistent with those obtained in the SL mode, and are about an order of magnitude smaller than $R(Ξ_b^- π^-)$. Assuming $f_{Ξ_b^-} ≈ 0.1 f_{Λ_b^0}$ [46–48], we find that the ratio of branching fractions $B(Ξ_b(6227)^- → Λ_b^0 K^-)/B(Ξ_b(6227)^- → Ξ_b^- π^-) ≈ 1$, albeit with sizable uncertainty ($≈ ± 0.5$) due to theoretical assumptions and the values of experimental inputs.

The mass of this structure and the observed decay modes are consistent with expectations of either a $Ξ_b(1P)^-$ or $Ξ_b(2S)^-$ state [8–23]. As there are several excited $Ξ_b^0$ states expected in this mass region, the presence of more than one of these states contributing to this peak cannot be excluded. More precise measurements of the width and the relative branching fractions to $Λ_b^0 K^-$ and $Ξ_b^- π^-$, as well as $Ξ_b^- π^-$ and $Ξ_b(2S)^-$, could help to determine the J^{PC} quantum numbers of this state [20].

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPEs, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); Generalitat Valenciana and MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France), Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China), RFBR, RSF and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom).

[1] M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964).
[2] G. Zweig, An SU3 model for strong interaction symmetry and its breaking, CERN-TH-412, reprinted in Developments in the Quark Theory of Hadrons 1, 22 (1980), edited by D. Lichtenberg and S. Rosen (Hadronic Press, Nonantum, 1980).
[3] E. Klemp and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys. 82, 1095 (2010).
[4] D. Ebert, T. Feldmann, C. Kettner, and H. Reinhardt, A diquark model for baryons containing one heavy quark, Z. Phys. C 71, 329 (1996).
[5] R. Aaij et al. (LHCb Collaboration), Observation of Two New $Ξ_b$ Baryon Resonances, Phys. Rev. Lett. 114, 062004 (2015).
[6] S. Chatrchyan et al. (CMS Collaboration), Observation of a New $Ξ_b$ Baryon, Phys. Rev. Lett. 108, 252002 (2012).
[7] R. Aaij et al. (LHCb Collaboration), Measurement of the properties of the $Ξ_b^{0}$ baryon, J. High Energy Phys. 05 (2016) 161.
[8] D. Ebert, R. N. Faustov, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84, 014025 (2011).

[9] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark-diquark picture, Phys. Lett. B 659, 612 (2008).

[10] W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008).

[11] H. Garcilazo, J. Vijande, and A. Valcarce, Faddeev study of heavy-baryon spectroscopy, J. Phys. G 34, 961 (2007).

[12] B. Chen, K.-W. Wei, and A. Zhang, Investigation of Λ_Q and Ξ_Q baryons in the heavy quark-light diquark picture, Eur. Phys. J. A 51, 82 (2015).

[13] Q. Mao, H. X. Chen, W. Chen, A. Hosaka, X. Liu, and S. L. Zhu, QCD sum rule calculation for P-wave bottom baryons, Phys. Rev. D 92, 114007 (2015).

[14] I. L. Grach, I. M. Narodetskii, M. A. Trusov, and A. I. Veselov, Heavy baryon spectroscopy in the QCD string model, in *Particles and Nuclei. Proceedings of the 18th International Conference, PANIC08*, Eilat, Israel, 2008, arXiv:0811.2184.

[15] C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, and L. Tolos, Odd parity bottom-flavored baryon resonances, Phys. Rev. D 87, 034032 (2013).

[16] M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner, The quark model and b baryons, Ann. Phys. (Amsterdam) 324, 2 (2009).

[17] Z.-G. Wang, Analysis of the $1^- \otimes 2^- \otimes 3^- \otimes 2^- \otimes$ heavy and doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A 47, 81 (2011).

[18] A. Valcarce, H. Garcilazo, and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A 37, 217 (2008).

[19] J. Vijande, A. Valcarce, T. F. Carames, and H. Garcilazo, Heavy hadron spectroscopy: A quark model perspective, Int. J. Mod. Phys. E 22, 1330011 (2013).

[20] K.-L. Wang, Y.-X. Yao, X.-H. Zhong, and Q. Zhao, Strong and radiative decays of the low-lying S and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).

[21] Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and K.-W. Wei, Spectra of charmed and bottom baryons with hyperfine interaction, Chin. Phys. C 41, 093103 (2017).

[22] H.-X. Chen, Q. Mao, A. Hosaka, X. Liu, and S. L. Zhu, D-wave charmed and bottomed baryons from QCD sum rules, Phys. Rev. D 94, 114016 (2016).

[23] K. Thakkar, Z. Shah, A. K. Rai, and P. C. Vinodkumar, Excited state mass spectra and Regge trajectories of bottom baryons, Nucl. Phys. A965, 57 (2017).

[24] R. Aaij et al. (LHCb Collaboration), Observation of Excited Λ_{b1}^0 Baryons, Phys. Rev. Lett. 109, 172003 (2012).

[25] A. A. Alves Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).

[26] R. Aaij et al. (LHCb Collaboration), LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).

[27] R. Aaij et al. (LHCb Collaboration), The LHCb trigger and its performance in 2011, J. Instrum. 8, P04022 (2013).

[28] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, J. Instrum. 8, P02013 (2013).

[29] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).

[30] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.

[31] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).

[32] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[33] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45, 97 (2006).

[34] J. Allison et al. (Geant4 Collaboration), Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al. (Geant4 Collaboration), Geant4: A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[35] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzo, M. Pappagallo, and P. Robbe, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331, 032023 (2011).

[36] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification, Nucl. Instrum. Methods Phys. Res., Sect. A 543, 577 (2005).

[37] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55, 119 (1997).

[38] C. Patrignani et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 40, 100001 (2016), and 2017 update.

[39] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.121.072002 for the mass resolution functions on Δm_K and Δm_{τ}.

[40] J. D. Jackson, Remarks on the phenomenological analysis of resonances, Nuovo Cimento 34, 1644 (1964).

[41] J. Blatt and V. Weisskopf, *Theoretical Nuclear Physics* (John Wiley & Sons, New York, 1952).

[42] R. Brun and F. Rademakers, *ROOT: An object oriented data analysis framework*, Nucl. Instrum. Methods Phys. Res., Sect. A 389, 81 (1997); the threshold function is described by the RooDST::DOBg class within ROOT.

[43] R. Aaij et al. (LHCb Collaboration), Precision measurement of D meson mass differences, J. High Energy Phys. 06 (2013) 065.

[44] R. Aaij et al. (LHCb Collaboration), Precision Measurement of the Mass and Lifetime of the Ξ_{b1}^0 Baryon, Phys. Rev. Lett. 113, 032001 (2014).
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Cincinnati, Cincinnati, Ohio, USA
University of Maryland, College Park, Maryland, USA
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
University of Chinese Academy of Sciences, Beijing, China
School of Physics and Technology, Wuhan University, Wuhan, China
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
Department of Physics, University of Liverpool, Liverpool, United Kingdom
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
University of Michigan, Ann Arbor, Michigan, USA
Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, USA
† Deceased.
‡ Also at Università di Ferrara, Ferrara, Italy.
§ Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
¶ Also at Università di Milano Bicocca, Milano, Italy.
∥ Also at Università di Modena e Reggio Emilia, Modena, Italy.
† Also at Novosibirsk State University, Novosibirsk, Russia.
‡ Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
§ Also at Università di Genova, Genova, Italy.
∥ Also at Università di Pisa, Pisa, Italy.
† Also at Università di Bari, Bari, Italy.
‡ Also at Sezione INFN di Trieste, Trieste, Italy.
§ Also at Università degli Studi di Milano, Milano, Italy.
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Università di Padova, Padova, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.

Also at Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Also at National Research University Higher School of Economics, Moscow, Russia.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.

Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.