Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 reveals the basis of metal selectivity and different roles for the two magnesium ions

Received for publication, January 5, 2021, and in revised form, April 12, 2021 Published, Papers in Press, April 22, 2021, https://doi.org/10.1016/j.jbc.2021.100692

Yasin Pourfarjam 1, Zhijun Ma 1, Igor Kurinov 2, Joel Moss 3, and In-Kwon Kim 1,2,*

From the 1Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA; 2Department of Chemistry and Chemical Biology, NE-CAT APS, Cornell University, Argonne, Illinois, USA; 3Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA

Edited by Patrick Sung

ADP-ribosylation is a reversible and site-specific post-translational modification that regulates a wide array of cellular signaling pathways. Regulation of ADP-ribosylation is vital for maintaining genomic integrity, and uncontrolled accumulation of poly(ADP-ribosyl)ation triggers a poly(ADP-ribose) (PAR)–dependent release of apoptosis-inducing factor from mitochondria, leading to cell death. ADP-ribosyl-acceptor hydrolase 3 (ARH3) cleaves PAR and mono(ADP-ribose) at serine following DNA damage. ARH3 is also a metalloenzyme with strong metal selectivity. While coordination of two magnesium ions (MgA and MgB) significantly enhances its catalytic efficiency, calcium binding suppresses its function. However, how the coordination of different metal ions affects its catalysis has not been defined. Here, we report a new crystal structure of ARH3 complexed with its product ADP-ribose and calcium. This structure shows that calcium coordination significantly distorts the binuclear metal center of ARH3, which results in decreased binding affinity to ADP-ribose, and suboptimal substrate alignment, leading to impaired hydrolysis of PAR and mono(ADP-ribose)ated serines. Furthermore, combined structural and mutational analysis of the metal-coordinating acidic residues revealed that MgA is crucial for optimal substrate positioning for catalysis, whereas MgB plays a key role in substrate binding. Our collective data provide novel insights into the different roles of these metal ions and the basis of metal selectivity of ARH3 and contribute to understanding the dynamic regulation of cellular ADP-ribosylations during the DNA damage response.

Rapid and effective responses to extracellular and intracellular signals are crucial for the maintenance of genomic integrity and determination of cell fate (1). Post-translational modifications (PTMs) of proteins through a site-specific addition of chemical groups, such as phosphorylation, acetylation, and ADP-ribosylation, enable cells to dynamically regulate diverse biological pathways in an appropriate and timely manner (2). Poly(ADP-ribosyl)ation (PARylation) is a reversible PTM, in which the negatively charged ADP-ribose (ADPR) units are transferred from NAD+ to specific residues of target proteins, such as glutamate, aspartate, serine, arginine, and lysine (3–5). Poly(ADP-ribose) (PAR) polymerases (PARPs), particularly PARP1/ADP-ribosyltransferase diphtheria toxin-like 1, catalyze PARylation, generating a long chain of linear or branched polymers (6). PARylation plays a pleiotropic role in normal physiology as well as pathological conditions, including regulation of DNA damage repair (7), chromatin structure (8) and transcription (9), RNA metabolism (10), and cell fate determination (11).

However, uncontrolled accumulation of cellular PARylation is cytotoxic, leading to cell death (12). In mammals, cellular PAR levels are dynamically regulated by two PAR turnover enzymes, ADP-ribosyl-acceptor hydrolase 3 (ARH3) and PAR glycohydrolase (PARG) (13, 14). This turnover of PARylation is not only required for effective control of cellular signaling pathways but also restores the cellular energy reservoir (15, 16). Although both ARH3 and PARG cleave the α(1′–2′)- O-glycosidic linkages in PAR substrates (15), there is a substantial difference in their structure and mechanism. The macrodomain-containing PARG has both endoglycohydrolase and exoglycohydrolase activity, generating protein-free oligo(ADP-ribose) chains and mono-ADP-ribose, respectively (17–19). PARG is unable to cleave terminal mono(ADP-ribosyl)ations attached to target proteins (20).

In contrast, ARH3 has a unique ARH fold and a di-Mg2+ -containing catalytic center (21–23) and can efficiently reverse not only PARylation but also mono(ADP-ribosyl)ation (MARylation) at serine; ARH3 can also cleave O-acetyl-ADPR and α-NAD+ in a Mg2+-dependent manner releasing free ADPR (24–26). Notably, it has been shown that serine ADP-ribosylation, which is specifically synthesized by PARP1/histone PARylation factor 1 (HPF1) and PARP2/histone PARylation factor 2 complexes, is the major cellular PTM following DNA damage (27–29). Therefore, ARH3 plays an essential role in the complete reversal of DNA damage–induced cellular ADP-ribosylation. Consistent with this model, ARH3−/− cells show enhanced accumulation of cellular PAR, leading to increased cell death following hydrogen peroxide–induced DNA damage (30). ARH3 deficiency has

* For correspondence: In-Kwon Kim, kimiw@ucmail.uc.edu.
Different roles of two metal ions in ARH3

been linked to the development of a progressive neurodegeneration phenotype (31, 32).

We and others recently reported structures of full-length or truncated ARH3 bound to Mg\(^{2+}\) and ADPR, its reaction product (21–23). We identified a structurally flexible Glu flap that undergoes a dramatic “closed-to-open” conformational transition upon ADPR binding that supports the specificity of ARH3 for the 1′′-O-linkage in substrates (22). The Glu flap appears to function as a gate control for substrate entrance. Consistent with this structural plasticity of ARH3, two Mg\(^{2+}\) ions (Mg\(^A\) and Mg\(^B\)) in the binuclear metal center exhibit different dynamics upon ligand binding (22), implying potentially different contributions of the two Mg\(^{2+}\) ions to ARH3 activity. Furthermore, it has been shown that Ca\(^{2+}\) significantly suppresses ARH3 activity, supporting the strong metal specificity of ARH3 (21, 22). However, despite the importance of metal coordination in ARH3 functions, the roles of each of the two Mg\(^{2+}\) ions and the basis of metal selectivity of ARH3 have not been defined.

Here, to address these previously unanswered questions on ARH3, we combined biochemical, biophysical, mutational, and structural tools. We found that Mg\(^{2+}\) coordination by ARH3 induces an approximately 60-fold increase in binding affinity to its product ADPR, whereas Ca\(^{2+}\) shows only a relatively moderate increase. Our new crystal structure of ARH3–ADPR–Ca\(^{2+}\) complex reveals that Ca\(^{2+}\) coordination significantly distorts the structure of the dimetallic catalytic center and interferes with optimal positioning of the 1′′-OH group of the terminal ribose of ADPR, corresponding to the 1′′-O-linkage in substrates, which results in impaired hydrolysis of PAR and serine mono(ADP-ribosyl)ated substrates. We further found that Mg\(^A\) and Mg\(^B\) play key but different roles for proper substrate alignment and substrate binding, respectively. Together, our results provide new insights into the metal-dependent mechanism and function of ARH3.

Results

Mg\(^{2+}\) coordination substantially enhances the ADPR-binding affinity of ARH3

A Mg\(^{2+}\)-dependent catalytic mechanism and metal preference of ARH3 has been proposed by several groups (21–23, 33). In addition, it has been shown that Ca\(^{2+}\) effectively suppresses ARH3 functions, whereas Mn\(^{2+}\) shows minimal effects (21, 22). To gain insights into the basis for metal selectivity in ARH3, we used isothermal titration calorimetry (ITC) to determine the thermodynamic properties of ARH3 interactions with its reaction product ADPR in the absence (with EDTA) and the presence of Mg\(^{2+}\) and other divalent metals (Mn\(^{2+}\) and Ca\(^{2+}\)) (Fig. 1, Table 1). The control injections into a buffer did not generate any significant heat (Fig. S1), indicating the signal comes from specific ADPR binding to ARH3. In all datasets, ARH3 binds to approximately one molecule of ADPR, which is consistent with reported crystal structures of ARH3–ADPR–Mg\(^{2+}\) complexes (21–23).

The addition of Mg\(^{2+}\) to ARH3 increases its binding affinity to ADPR nearly 60-fold, in comparison to that of the metal-free enzyme state (in the presence of EDTA), \(K_D^{Mg}\) of 1.42 \(\mu\)M versus \(K_D^{EDTA}\) of 80.65 \(\mu\)M (Fig. 1, A and B, Table 1). The ADPR-binding affinity of ARH3 in the presence of Mn\(^{2+}\) is comparable to that with Mg\(^{2+}\) (\(K_D^{Mn}\) of 0.83 \(\mu\)M), which is consistent with the similar level of PAR hydrolisis activity in the presence of Mg\(^{2+}\) or Mn\(^{2+}\) (Fig. 1C, Table 1) (22). In contrast, ARH3 showed a significantly lower ADPR-binding affinity in the presence of Ca\(^{2+}\) (\(K_D^{Ca}\) of 7.81 \(\mu\)M), about a sixfold reduction in

Figure 1. Differential effects of metal coordination for substrate binding in ADP-ribosyl-acceptor hydrolase 3 (ARH3). Isothermal calorimetry titration was used to measure ARH3 binding to ADP-ribose (ADPR) in the presence of EDTA (A), Mg\(^{2+}\) (B), Mn\(^{2+}\) (C), and Ca\(^{2+}\) (D). Binding affinities between ARH3 and ADPR were dramatically increased in the presence of Mg\(^{2+}\) and Mn\(^{2+}\) (\(K_D\) of 1.42 and 0.83 \(\mu\)M, respectively), compared with EDTA (\(K_D\) of 80.65 \(\mu\)M). The coordination of Ca\(^{2+}\) shows only a moderate increase in binding affinity (\(K_D\) of 7.81 \(\mu\)M). The ratio of ARH3:ADPR was approximately 1:1 in all experimental conditions. This is a representative assay of two independent experiments. The detailed thermodynamic parameters are described in Table 1.
ADPR-binding affinity compared with that with Mg$^{2+}$ (Fig. 1D, Table 1). Unlike Mg$^{2+}$, the addition of Ca$^{2+}$ resulted in less heat release (ΔH; −5.71 kcal M$^{-1}$ [Ca$^{2+}$]) versus −9.29 kcal M$^{-1}$ [Mg$^{2+}$]) and an increase in entropy (TΔS) (Fig. 1, Table 1). The concentration of Ca$^{2+}$ used for ITC (5 mM) is saturating, given that the Ca$^{2+}$-dependent inhibitory was not further enhanced at higher Ca$^{2+}$ concentrations (Fig. S2). Overall, the ADPR binding of ARH3 with inhibitory Ca$^{2+}$ shows different isotherm and kinetic parameters from those with Mg$^{2+}$ or Mn$^{2+}$, which support enzymatic activity of ARH3, and shows features rather resembling those from metal-free ARH3 (in the presence of EDTA; Fig. 1A). Taken together, these results are consistent with the metal selectivity of ARH3 that enables its specific substrate recognition.

Ca$^{2+}$ binding distorts the binuclear metal center of ARH3

We previously reported the ligand-driven conformational switch in ARH3 that enables specific recognition and cleavage of the 1$^\prime$-O-linkage in substrates (22). Furthermore, we showed that even a subtle distortion in the active-site architecture can have a detrimental effect on ARH3 functions. Since Ca$^{2+}$ significantly suppresses the enzymatic activity of ARH3 (21, 22) and the ADPR binding in the Ca$^{2+}$-bound form of ARH3 resembles the metal-free state of ARH3 (Fig. 1), we reasoned that Ca$^{2+}$ binding likely distorts the active-site arrangement and metal-coordinating geometry in ARH3. To test this model and dissect the structural basis for the inhibitory effect of Ca$^{2+}$, we determined the structure of full-length ARH3 in complex with ADPR and Ca$^{2+}$ at a resolution of 1.75 Å (Fig. 2A, Table S2). Two metal ions (CaA and CaB) and ADPR are positioned in a way similar to those found in the Mg$^{2+}$-bound form (Fig. 2, B and D). However, the overall coordination geometry of the dimetallic catalytic center is remarkably different from that found in the Mg$^{2+}$-bound form.

Unlike the Mg$^{2+}$-bound form where both Mg$^{2+}$ ions have a similar octahedral coordination geometry with six ligands, the coordination architecture of CaA and CaB shows a notable difference (Fig. 2, C and D, Table 2). CaB is coordinated with a total of seven ligands with an average metal–ligand distance of 2.49 Å (Fig. 2C, Table 2 and Table S1). This is slightly longer than that of MgB in the Mg$^{2+}$-bound form (2.25 Å) and is likely because of the longer cationic diameter of calcium (radius of 0.99 Å) compared with magnesium (radius of 0.65 Å) (34). In contrast, CaA shows an octahedral but highly relaxed geometry. The average metal–ligand distance of CaA (2.82 Å) is substantially longer than that of MgA in the Mg$^{2+}$-bound form (2.23 Å).

In the ARH3–ADPR–Ca$^{2+}$ complex, the orientation of 1$^\prime$-OH group of the terminal ribose, corresponding to the 1$^\prime$-O-linkage in uncleaved substrates, is tilted toward CaB (Fig. 2B). With respect to the Mg$^{2+}$-bound form, the 1$^\prime$-OH group is rotated ~10$^\circ$ in the Ca$^{2+}$-bound form. This rotation induces a concomitant ~1 Å displacement of 1$^\prime$-OH toward CaB. As a result, the 1$^\prime$-OH group is directly coordinated to CaB, whereas 2$^\prime$-OH bridges the dimetallic center by interacting with both Ca$^{2+}$ ions (Fig. 2C).

Notably, the metal-bridging water (μ-aqua) is missing in the Ca$^{2+}$-bound form (Fig. 2, C and D). In the Mg$^{2+}$-bound form, this μ-aqua ligand simultaneously engages both Mg$^{2+}$ ions and the 2$^\prime$-OH. This μ-aqua ligand is missing in three of four ARH3–ADPR–Ca$^{2+}$ complexes in the asymmetric unit, and only a very weak electron density was found in the last ARH3 molecule. Instead, two Ca$^{2+}$ ions are bridged by 2$^\prime$-OH of the terminal ribose (Fig. 2C), which causes the tilted confirmation of the terminal ribose. This absence of the bridging water ligand may explain the shorter metal–metal distance in the Ca$^{2+}$-bound form than in the Mg$^{2+}$-bound form (3.1 Å [Ca$^{2+}$–Ca$^{2+}$] versus 3.3 Å [Mg$^{2+}$–Mg$^{2+}$]) (Table S1).

Taken together, our findings suggest that the distorted di-Ca$^{2+}$ metal center and the tilted conformation of 1$^\prime$-OH, a position for the scissile O-linkage in substrates, are likely to interfere with a precise alignment of substrates for nucleophilic attack, resulting in suppression of enzymatic activities of ARH3. These results also support the hypothesis that a subtle change in the metal-coordination arrangement can result in a detrimental effect on ARH3 functions.

Metal-coordinating acidic residues are critical for the catalytic activity of ARH3

To gain further insights into the structure–function relationship of the dimetallic catalytic center and its metal-coordination geometry, we substituted acidic residues that directly coordinate metals (Asp77, Asp78, Asp314, and Asp316) with alanine. Asp77 and Asp314 interact with both ADPR and Mg$^{2+}$, whereas Asp78 and Asp316 coordinate only Mg$^+$ and Mg$^2+$, respectively but do not directly interact with ADPR. We purified these mutants (Fig. 3D) and monitored their PAR and serine MARYlation hydrolytic activities in the presence of Mg$^{2+}$, EDTA, and Ca$^{2+}$ (Fig. 3).

The addition of a metal-chelating EDTA or Ca$^{2+}$ effectively suppresses PAR hydrolysis by ARH3, which is in good agreement with published results (Fig. 3A) (21, 22). Among ARH3 mutants, only ARH3D314A showed some residual PAR hydrolysis activity in the presence of Mg$^{2+}$, and the others

Table 1

Proteins	Metals	K_D (mM)	N (sites)	ΔG (kcal M$^{-1}$)	ΔH (kcal M$^{-1}$)	−TΔS (kcal M$^{-1}$)
ARH3^{WT}	EDTA	80.65 ± 5.25	0.96 ± 0.08	−5.59	−5.164	−0.42
Mg$^{2+}$		1.42 ± 0.07	1.13 ± 0.01	−7.98	−9.29	1.31
Mg$^{2+}$		0.83 ± 0.05	1.09 ± 0.01	−8.29	−10.57	2.28
Ca$^{2+}$		7.81 ± 0.51	1.18 ± 0.01	−6.96	−5.71	−1.25
ARH3^{D77A}	EDTA	0.06 ± 0.01	1.18 ± 0.01	−9.87	−8.50	−1.37
Mg$^{2+}$		62.89 ± 2.90	0.96 ± 0.04	−5.74	−10.36	4.61

J. Biol. Chem. (2021) 296 100692
Different roles of two metal ions in ARH3

Figure 2. The Ca²⁺ coordination distorts the active-site architecture of ARH3. A, overall structure of ARH3WT-ADPR-Ca²⁺ with difference electron density maps (Fo −Fc) for ADPR and Ca²⁺ ions contoured at 3.0 o (blue: ADPR and purple: Ca²⁺). B, the structural superposition of ARH3WT-ADPR-Ca²⁺ (green) with ARH3WT-ADPR-Mg²⁺ (gray; Protein Data Bank ID: 6D36) reveals a tilted conformation of ADPR, in particular, the terminal ribose, in the Ca²⁺-bound form. C, a close-up view into the binuclear catalytic center and ADPR-binding mode in the Ca²⁺-bound form, which is distorted from those in the Mg²⁺-bound form (Fig. S3). Notably, the bridging water molecule (µ-aqua ligand) is missing, and all three hydroxyl groups of the terminal ribose interact with CaB. D, an overlay of the active-site structures of ARH3WT-ADPR-Ca²⁺ (green) with ARH3WT-ADPR-Mg²⁺ (gray). Water ligands in Mg²⁺-bound form are colored gray, and those in Ca²⁺-bound form are colored red. ADPR, ADP-ribose; ARH3, ADP-ribosyl-acceptor hydrolase 3.

Different roles of two metal ions in ARH3

were nearly inactive in all three tested metal conditions (Fig. 3A).

While the WT enzyme efficiently reversed the serine-linked MARylated PARP1 substrate, all tested ARH3 mutants lacked enzymatic activity (Fig. 3, B and C). Collectively, these results suggest that metal-coordinating residues in the active site of ARH3 are critical for both PAR and MAR hydrolysis, and de-MARylation function of ARH3 appears to require a more strict structural integrity to specifically recognize and/or cleave MARylated substrates.

Mg⁴⁺ is required for precise substrate alignment, whereas Mg⁸⁺ is important for substrate binding

In WT ARH3, Asp77 not only interacts with 2'-OH of the terminal ribose but also coordinates Mg⁴⁺. Thus, Asp77 appears to be important for the maintenance of integrity of Mg⁴⁺ and the optimal orientation of the terminal ribose for catalysis. Similarly, on the other side of the active site, Asp314 interacts with 3'-OH of the terminal ribose and Mg⁸⁺. Asp314 seems to contribute to the integrity of Mg⁸⁺, given that the substitution of Asp314 with glutamate eliminates Mg⁸⁺ from the active site (22). To gain further structural basis for different alterations in enzymatic activity in D77A and D314A mutants and to better understand the roles of each Mg²⁺ ion in ARH3, we determined the high-resolution crystal structures of ARH3D77A and ARH3D314A bound to ADPR and Mg²⁺ at a resolution of 1.85 and 1.80 Å, respectively.

Structural analysis of ARH3D77A reveals that Mg⁴⁺ is missing (Fig. 4, A and B). This lack of Mg⁴⁺ causes a large-scale rearrangement in the active site. First, the terminal ribose is rotated ~37° using Mg⁸⁺ as a pivot (Fig. 4B). Because of this rotation, which is an even greater degree of rotation than that
Different roles of two metal ions in ARH3

Table 2
Comparison of coordination of the two Ca$^{2+}$ and Mg$^{2+}$ (Protein Data Bank ID: 6D36) ions in the structures of ARH3–ADPR complexes

Metal	Distance (Å)	Coordinating atom	Distance (Å)	Coordinating atom
Ca$^{2+}$	2.7	Thr76-OG1	2.4	Thr76-OG1
	2.4	Asp77-OD1	2.3	Asp77-OD1
	3.0	Asp78-OD2	2.3	Asp78-OD2
	2.6	Asp316-OD2	2.2	Asp316-OD2
	2.8	W2-O	2.2	W2-O
	3.0	ADPR (2'-OH)	2.0	μ-aqua-O
	2.4	Asp314-OD1	2.2	Asx314-OD1
	3.0	Asp316-OD1	2.3	Asp316-OD1
	2.4	Thr317-OG1	2.3	Thr317-OG1
	2.5	W1-O	2.1	W1-O
	2.4	ADPR (1'-OH)	2.1	μ-aqua (μ-W)
	2.6	ADPR (2'-OH)	2.5	ADPR (3'-OH)

found in the Ca$^{2+}$-bound form of ARH3 (Fig. 2), the 2'-OH group replaces the metal-bridging μ-aqua ligand and directly interacts with Mg$^{2+}$. In this conformation, the 2'-OH group makes additional hydrogen bonds with side chains of Asp78 and Asp316, and the 1'-OH group makes a new hydrogen bond with the main carbonyl chain of Gly115 (Fig. 4C and Fig. S2). Consistently, ARH3D77A shows a 23-fold increase in ADPR-binding affinity, compared with ARH3WT (Fig. 4A, Table 1). As a result, the 1'-OH group is displaced ~2.4 Å toward Ala77 (Fig. 4B). This significantly rotated conformation of ADPR in ARH3D77A, with respect to ARH3WT, is likely to interfere with a correct substrate positioning for catalysis (Fig. 4B). Together, the coordination of MgA appears to contribute to the optimal alignment of substrate, while it sacrifices the overall substrate-binding affinity of ARH3.

In the structure of ARH3D314A, similar to ARH3D314E (22), MgB is missing (Fig. 4D). Unlike ARH3D77A, the orientation of ADPR in ARH3D314A is nearly identical to that in ARH3WT, and critical residues for the formation of the binuclear metal center occupy nearly identical positions (Fig. 4E). This finding is in line with the proposed important role of MgA for precise substrate alignment. The geometry of MgA is also maintained in an octahedral shape as seen in ARH3WT (Fig. 4F). Overall, in contrast to ARH3D77A, ARH3D314A appears to show a limited effect on the alignment of the terminal ribose (Fig. 4F and Fig. S2). Rather, MgB appears to be important for substrate binding. The 3'-OH group of the terminal ribose, which is originally in direct coordination with MgB and the side chain of Asp314 (Fig. S3), lacks interactions with the enzyme in the structure of ARH3D314A and is disordered (Fig. 4F). Consistent with these findings, ARH3D314A shows a 44-fold decrease in ADPR-binding affinity compared with ARH3WT (Fig. 5B, Table 1). Notably, this reduced ADPR-binding affinity mimics the metal-free state of ARH3 (Fig. 1, Table 1), further supporting the hypothesis that MgB is critical for substrate binding in ARH3.

Figure 3. Metal-coordinating acidic residues are critical for ARH3 functions. A, effects of metal coordination on PAR hydrolytic activity. WT and metal-coordination mutants of ARH3 (D77A, D78A, D314A, and D316A) were incubated with PARylated PARP1C substrates to measure PAR hydrolytic activity in the presence of EDTA, Mg$^{2+}$, and Ca$^{2+}$. With WT ARH3, Mg$^{2+}$ is required for PAR hydrolysis, whereas EDTA and Ca$^{2+}$ inhibit, which is consistent with our previous report (22). All ARH3 mutants showed impaired PAR hydrolytic activity. B, the serine MARylated PARP1C was treated with 60 nM concentration of WT ARH3 and metal-coordination mutants of ARH3 in the presence of Mg$^{2+}$ (5 mM). While ARH3WT efficiently cleaves ADP-ribose–serine, all metal-coordination mutants were inactive, supporting the hypothesis that the metal coordination is critical for ARH3 functions.

C, quantification of the ADP-ribose–serine hydrolytic activity is shown in panel B. The data are shown with mean values and standard deviations from three independent experiments. D, a gel image showing the purified WT ARH3 and ARH3 mutants used in this study. ARH3, ADP-ribose-acceptor hydrolase 3; MAR, mono(ADP-ribose); PAR, poly(ADP-ribose); PARP1C, PARP1C catalytic domain.
Taken together, these findings imply that MgA is important for the optimal positioning of substrates, whereas MgB plays a key role for substrate binding in ARH3.

Discussion

Our combined structural, biochemical, and mutational analysis reveals new insights into the metal selectivity and different roles of two metal ions in ARH3. Our new crystal structure of the ARH3–ADPR–Ca2+ complex explains the strong preference of Mg2+ over Ca2+ and the Ca2+-mediated inhibition of ADP-ribosyl-acceptor hydrolase activities of ARH3. Although overall folding of ARH3 remains nearly identical upon substitution of Mg2+ with Ca2+ (Fig. 2B), our careful structural analysis showed that Ca2+ coordination in ARH3 results in significant rearrangements in geometry, coordination, and metal–ligand distances of the binuclear metal center, explaining the impaired ARH3 activities in the presence of Ca2+ (Fig. 3).

In contrast to Mg2+ (Fig. 2D, Table 2), Ca2+ ions can coordinate up to eight metal ligands (35, 36). In our structure, CaB is coordinated with seven ligands, including the 1”-OH (scissile O-linkage in substrates) and 2”-OH, and CaA shows a very relaxed octahedral geometry (Fig. 2C). The significantly distorted active-site structure and reduced binding affinity in the Ca2+-bound form of ARH3 are consistent with the proposed roles of MgA and MgB in substrate alignment and binding. For example, the highly relaxed CaA geometry, compared with the Mg2+-bound form, likely interferes with an optimal substrate alignment in ARH3 and following nucleophilic attack on the distal ribose. In addition, Ca2+ ions can

Figure 4. Structural comparison reveals different roles of MgA and MgB in the ARH3 active site. A, difference electron density maps ($F_\text{o} - F_\text{c}$) for ADPR and Mg2+ ions contoured at 3.0 σ (blue: ADPR and green: Mg2+). B, structural overlay of ARH3D77A–ADPR–Mg2+ (red) and ARH3WT–ADPR–Mg2+ (gray). The substitution of Asp77 to Ala results in missing MgA, a dramatically rotated terminal ribose (37° C24), and a 2.4 Å displacement of 1”-OH, with respect to the WT ARH3. This structural rearrangement would likely interfere with correct positioning of substrate for catalysis, supporting the role of MgA in the precise substrate alignment. The position of the missing MgA is shown with a dotted circle. C, a close-up view of the active site and ADPR-binding mode in ARH3D77A. D, difference electron density maps ($F_\text{o} - F_\text{c}$) for ADPR and Mg2+ ions contoured at 3.0 σ (blue: ADPR and green: Mg2+). E, structural overlay of ARH3D314A–ADPR–Mg2+ (red) and ARH3WT–ADPR–Mg2+ (gray). The substitution of Asp314 with Ala results in missing MgB, whereas the overall ADPR-binding mode is not changed compared with ARH3WT. This structure, along with the dramatically reduced ADPR-binding affinity of ARH3D314A (Fig. 5, Table 1), suggests that MgB plays a key role in substrate binding. The position of the missing MgB is shown with a dotted circle. F, a close-up view of the active site and ADPR-binding mode in ARH3D314A. ADPR, ADP-ribose; ARH3, ADP-ribosyl-acceptor hydrolase 3.
reduce the chemical reactivity of metal-bound water molecules. Previous studies reported that a Cα2+-bound water molecule has a higher pKₐ (12.9) in comparison to that bound to Mg²⁺ (11.4) or Mn²⁺ (10.9) (34). Consequently, a nucleophilic attack on substrates becomes less favorable (37). Finally, it is possible that the larger size of Ca²⁺ (radius of 0.99 Å) (34), compared with Mg²⁺ (radius of 0.65 Å) and Mn²⁺ (radius of 0.80 Å), along with its preference for a higher coordination number (up to eight ligands), might cause steric interference with the coordinated oxygen atoms, possibly perturbing the stability of the transition state.

Figure 5. Differential effects of the substitution of metal-coordinating residues in substrate binding. A, ADPR binds to ARH3D77A with a significantly higher affinity (Kᵦ of 0.06 µM) compared with ARH3WT (1.42 µM). B, in contrast, ARH3D314A shows a substantially weaker binding affinity for ADPR (Kᵦ of 62.89 µM). This is the representative assay of two independent experiments. The detailed thermodynamic parameters are described in Table 1. ADPR, ADP-ribose; ARH3, ADP-riboyl-acceptor hydrolase 3.

Among the ARH–macrodomain family of ADP-ribosylation reversal enzymes, ARH3 is a unique multitasking metalloenzyme that regulates cellular concentrations of multiple ADP-ribosylated substrates, including PAR (Fig. 3A), serine MAR (Fig. 3B), O-acetyl-ADPR (26, 39), and α-NAD⁺ (25). These ADP-ribosylated substrates play key roles in cellular signaling pathways, such as the DNA damage response and determination of cell death. Although more work needs to be done to define the comprehensive metal-dependent catalytic mechanism in ARH3, the structural and biochemical data presented here provide detailed insights into the dynamic active-site rearrangement upon coordination of different divalent metals and suggest specific and different roles of Mg° and Mg²⁺. The observed metal preference of ARH3 to Mg²⁺ supports the structural plasticity and broad substrate specificity of ARH3, while maintaining the structural integrity of the active site. Finally, our data suggest that the change in cellular concentrations of divalent metals, such as Ca²⁺, can modulate ARH3 functions.
Different roles of two metal ions in ARH3

Experimental procedures

Plasmids and protein purification

WT ARH3 (ARH3\(^{WT}\)), the DNA-binding domain (DBD; residues 1–374), and the PARP1C catalytic domain (PARP1C; residues 375–1014) of human PARP1 were purified as described previously (22). To purify biotinylated PARP1C, the corresponding gene was cloned into a pET28a vector with a C-terminal biotin affinity peptide tag for biotinylation and an N-terminal His6 tag for purification. PARP1C was coexpressed in Escherichia coli BL21 cells expressing the biotin ligase BirA that biotinylates the biotin affinity peptide tag on its lysine residue. Genes for mutants of ARH3 were synthesized and cloned into a modified pET21b vector with an N-terminal His6 tag and a following cleavage site for PreScission protease (pET21b-His6-pps) by Gene Universal Inc. All plasmids were sequenced, and mutations were confirmed. The biotinylated PARP1C and ARH3 mutant proteins were purified using the same protocol as ARH3\(^{WT}\). A gene for human HPF1 was synthesized and cloned into the pET21b-His6-pps by Gene Universal Inc. HPF1 was purified as described previously (29).

ITC

ITC experiments were performed at 25 °C in a buffer containing 150 mM NaCl, 100 mM Tris at pH 7.5, and 5 mM divalent metals (MgCl\(_2\), MnCl\(_2\), and CaCl\(_2\)) or EDTA (Sigma–Aldrich). The WT or mutants of ARH3 were placed in a cell at 50 μM concentration, and ADPR was placed in the injection syringe at 660 μM concentration. Overall, 26 injections (10 μl per injection except for the first sample [5 μl]) were administered with an interval of 5 min between peaks to allow the baseline to be stabilized. Control experiments were conducted under the same condition to determine the heat of dilution by injecting ADPR to buffers, which shows no significant heat generation (Fig. S1). The obtained plots were fitted with a single-site binding model in the Origin software package (MicroCal, Inc).

PAR turnover assay

A gel-based PAR-turnover assay was performed to evaluate the enzymatic activity of ARH3\(^{WT}\), ARH3\(^{D77A}\), ARH3\(^{D78A}\), ARH3\(^{D314A}\), and ARH3\(^{D316A}\), as described previously (14, 40). Briefly, 2 μM of the catalytic domain of human PARP1 (PARP1C; residues 375–1014) was auto-PARylated at 37 °C for 30 min in the presence of 2 μM DBD of PARP1 (residues 1–374), 2 μM double-stranded DNA, and 400 μM β-NAD\(^{+}\) (Sigma) in a buffer containing 100 mM NaCl, 50 mM Tris (pH 7.5), 10 mM MgCl\(_2\), and 2 mM DTT. ARH3 proteins (in the presence of 5 mM EDTA, Mg\(^{2+}\), or Ca\(^{2+}\)) with final concentrations of 2 μM were mixed with the PARylated PARP1C substrate, followed by incubation for 1 h at 37 °C. Reactions then were stopped by adding 4× SDS-loading dye (Bio-Rad) and visualized by Coomassie blue staining of SDS-polyacrylamide gels.

Serine mono(ADP-ribosyl)ation turnover assay

To generate serine-linked MARylated substrate, 4 μM of PARP1C was first PARylated in the presence of 4 μM PARP1 DBD, 8 μM HPF1, 2 μM double-stranded DNA, and 400 μM β-NAD\(^{+}\) (Sigma–Aldrich) in a buffer containing 100 mM NaCl, 50 mM Tris (pH 7.5), 10 mM MgCl\(_2\), and 2 mM DTT. The reaction then was passed through a PD-10 column to remove excess β-NAD\(^{+}\). PARP inhibitor, Olaparib (SelleckChem), at 8 μM was then added before performing dePARylation of the substrate by incubating with 10 nM PARG for 30 min in 37 °C. The generated serine-linked MARylated PARP1C was passed through a PD-10 column to remove protein-free PAR and ADPR units, followed by aliquoting and storing in –80 °C. ARH3 proteins at a final concentration of 60 nM were treated into the serine-MARylated substrate in a buffer containing 50 mM Tris–HCl (pH 7.5), 50 mM NaCl, and 5 mM MgCl\(_2\), followed by incubation for 1 h at 37 °C. Reactions then were stopped by adding 4× SDS-loading dye and resolved by 10% SDS-polyacrylamide gels.

Western blotting

To visualize and quantify the level of serine-MARylation, we performed Western blotting on samples. Reactions were transferred to polyvinylidene fluoride membranes. Polyvinylidene fluoride membranes first were blocked by incubation in PBS with Tween-20 (PBST) buffer containing 5% nonfat skim milk for 1 h at room temperature. After one washing step with PBST, membranes were incubated with anti–pan-ADPR antibody (Sigma–Aldrich; 3 μg/ml final concentration), anti-ARH3 N-terminal antibody (Aviva System Biology) (1/1000 dilution), and antibiotin antibody (Invitrogen; 0.25 μg/ml final concentration) overnight at 4 °C. After three steps of wash with PBST, blots were incubated with horseradish peroxidase–conjugated polyclonal secondary anti-rabbit antibody (Thermo Fisher; 1/10,000 dilution) for 1 h at room temperature. Afterward, membranes were washed three times with PBST and finally visualized by enhanced chemiluminescence detection kit using the iBRIGHT-FL1000 imager (Thermo Fisher). Bands were quantified using ImageJ software (National Institutes of Health).

Crystallization and data collection

The ARH3\(^{WT}\), ARH3\(^{D77A}\), and ARH3\(^{D314A}\) (10 mg/ml) were recrystallized with 5 mM ADPR (Sigma–Aldrich) and 5 mM Ca\(^{2+}\) (for ARH3\(^{WT}\)) or Mg\(^{2+}\) (for ARH3\(^{D77A}\) and ARH3\(^{D314A}\)) by hanging-drop vapor diffusion (22). Briefly, 1 μl of protein samples was mixed with 1 μl mother liquor containing 0.1 M sodium acetate buffer (pH 4.5), 0.1 M MgCl\(_2\) or CaCl\(_2\), and 20 to 24% PEG 4000. About 24-well plates were placed in 22 °C incubator until crystals appeared. Harvested crystals were transferred into a cryoprotectant solution (26% PEG 4000; 0.1 M sodium acetate; pH 4.5; 0.1 M corresponding divalent metal; 5 mM ADPR; and 10% glycerol) before flash cooling in liquid nitrogen for data collection.

X-ray diffraction data were collected at the NE-CAT 24ID-E beamline at the Advanced Photon Source. The
ARH3WT – ADPR – Ca2+ complex crystals (P1; four ARH3 – ADPR – Ca2+ complexes per asymmetric unit) diffraction to a resolution of 1.75 Å, ARH3D77A – ADPR – Mg2+ complex crystals (P1) diffracted to a resolution of 1.85 Å, and ARH3D314A – ADPR – Mg2+ complex crystals (P1) diffracted to a resolution of 1.80 Å. X-ray datasets were collected with an Eiger 16M detector (Dectris) and processed using HKL2000 (41) and SCALEPACK (HKL Research, Inc.) (41, 42). Data collection statistics are shown in Table S2.

Structure determination

Structures were determined by molecular replacement using MOLREP (43, 44) in the CCP4 suite (44) with the ARH3WT – ADPR – Mg2+ structure (Protein Data Bank ID: 6D36) as a search model. Models were manually built using Coot (45) and refined in PHENIX (46); R_factor of 14.9% and R_free of 18.8% for ARH3WT – ADPR – Ca2+, R_factor of 18.1% and R_free of 22.7% for ARH3D77A – ADPR – Mg2+, and R_factor of 18.8% and R_free of 22.7% for ARH3D314A – ADPR – Mg2+. Crystallographic data are shown in Table S2. Ramachandran plots indicate that >98% of residues in all three structures are in favored regions, and all others are in allowed regions. No outlier residue is observed.

Data availability

Atomic coordinates and structure factors of the ARH3WT – ADPR – Ca2+, ARH3D77A – ADPR – Mg2+, and ARH3D314A – ADPR – Mg2+ complexes have been deposited in the Protein Data Bank under accession numbers 7L9F, 7L9H, and 7L9I, respectively.

Supporting information—This article contains supporting information (22).

Acknowledgments—This work used Northeastern Collaborative Access Team beamlines (P30 GM124165) and an Eiger 16M detector on 24-ID-E beamline (S10OD021527) at the Advanced Photon Source (DE-AC02-06CH11357).

Author contributions—Y. P. and Z. M. designed experiments and ran ARH3 assays. Y. P. crystallized proteins and determined and analyzed structures. I. K. collected and processed X-ray datasets. Y. P., Z. M., J. M., and I. K. analyzed data and wrote the article. I. K. supervised overall studies.

Funding and additional information—I. K. was supported by National Institutes of Health (United States) (R01 GM141226 to I. K.) American Cancer Society Research Scholar Grant (133405-RSG-19-200-01-DMC to I. K.), V Foundation V Scholar Grant (V2018-25 to I. K.), and Marlene Harris Ride Cincinnati Breast Cancer Pilot Grant program (to I. K.). J. M. was supported by the Intramural Research Program, National Institutes of Health and National Heart, Lung, and Blood Institute (United States). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: ADPR, ADP-ribose; ARH3, ADP-ribosyl-acceptor hydrolase 3; DBD, DNA-binding domain; HPF1, histone PARylation factor 1; ITC, isothermal titration calorimetry; MARylation, mono(ADP-ribosyl)ation; PAR, poly(ADP-ribose); PARG, PAR glycohydrolase; PARP, poly(ADP-ribose) polymerase; PARP1C, PARP1 catalytic domain; PARylation, poly(ADP-ribosylation); PBST, PBS with Tween-20; PTM, post-translational modification.

References

1. Palazzo, L., Mikoć, A., and Ahel, I. (2017) ADP-ribosylation: New facets of an ancient modification. FEBS J. 284, 2932–2946
2. O’Sullivan, J., Tedim Ferreira, M., Gagne, J. P., Sharma, A. K., Hendzel, M. J., Masson, J. Y., and Poirier, G. G. (2019) Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat. Commun. 10, 1182
3. Gupte, R., Liu, Z., and Kraus, W. L. (2017) PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–122
4. Langelier, M. F., Eisemann, T., Riccio, A. A., and Pascal, J. M. (2018) PARP family enzymes: Regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 53, 187–198
5. Pascal, J. M., and Ellenberger, T. (2015) The rise and fall of poly(ADP-ribose): An enzymatic perspective. DNA Repair (Amst.) 32, 10–16
6. Luo, X., and Kraus, W. L. (2012) On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432
7. Ray Chaudhuri, A., and Nussenzweig, A. (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621
8. Beneke, S. (2012) Regulation of chromatin structure by poly(ADP-ribose)ation. Front. Genet. 3, 169
9. Kraus, W. L., and Hottiger, M. O. (2013) PARP-1 and gene regulation: Progress and puzzles. Mol. Aspects Med. 34, 1109–1123
10. Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol. Cell 58, 959–969
11. Vyas, S., Chesare-Cataldo, M., Todorova, T., Huang, Y. H., and Chang, P. (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat. Commun. 4, 2240
12. Andradi, S. A., Kim, N. S., Yu, S. W., Wang, H., Koh, D. W., Sasaki, M., Klaus, J. A., Otsuka, T., Zhang, Z., Koehler, R. C., Hurn, P. D., Poirier, G. G., Dawson, V. L., and Dawson, T. M. (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl. Acad. Sci. U. S. A. 103, 18308–18313
13. Mashimo, M., and Moss, J. (2018) ADP-ribosyl-acceptor hydrolase activities catalyzed by the ARH family of proteins. Methods Mol. Biol. 1813, 187–204
14. Kim, I. K., Kiefer, J. R., Ho, C. M., Stegemann, R. A., Classen, S., Tainer, J. A., and Ellenberger, T. (2012) Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat. Struct. Mol. Biol. 19, 653–656
15. Barkauskaite, E., Jankevicius, G., and Ahel, I. (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58, 935–946
16. Hassa, P. O., Haenni, S. S., Elser, M., and Hottiger, M. O. (2006) Nuclear ARH-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789–829
17. Brochu, G., Duchaine, C., Thibeault, L., Laglauex, I., Shah, G. M., and Poirier, G. G. (1994) Role of mode of action of poly(ADP-ribose) glycohydrolase. Biochim. Biophys. Acta 1219, 342–350
18. Barkauskaite, E., Brassington, A., Tan, E. S., Warwicker, J., Dunstan, M. S., Banos, B., Lafite, P., Ahel, M., Mitchison, T. J., Ahel, I., and Leys, D. (2013) Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat. Commun. 4, 2164
19. Pourfarjam, Y., Kasson, S., Tran, L., Ho, C., Lim, S., and Kim, I. K. (2020) PARG has a robust endo-glycohydrolase activity that releases protein-free poly(ADP-ribose) chains. Biochem. Biophys. Res. Commun. 527, 818–823
Different roles of two metal ions in ARH3

20. Slade, D., Dunstan, M. S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D., and Ahel, I. (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616–620
21. Rack, J. G. M., Ariza, A., Drown, B. S., Henfrey, C., Bartlett, E., Shirai, T., Hergenrother, P. J., and Ahel, I. (2018) (ADP-ribose)hydrolases: Structural basis for differential substrate recognition and inhibition. Cell Chem. Biol. 25, 1533–1546.e1512
22. Pourfarjam, Y., Ventura, J., Kurinov, I., Cho, A., Moss, J., and Kim, I. K. (2018) Structure of human ADP-ribose-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J. Biol. Chem. 293, 12350–12359
23. Wang, M., Yuan, Z., Xie, R., Ma, Y., Liu, X., and Yu, X. (2018) Structure-function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-riboseylation. J. Biol. Chem. 293, 14470–14480
24. Abplanalp, J., Leutert, M., Frugier, E., Nowak, K., Feurer, R., Kato, J., Kistemaker, H. V. A., Filippov, D. V., Moss, J., Catilisch, A., and Hottiger, M. O. (2017) Proteomic analyses identify ARH3 as a serum-mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055
25. Stevens, L. A., Kato, J., Kasamatsu, A., Oda, H., Lee, D. Y., and Moss, J. (2019) The ARH and macromdomain families of alpha-ADP-ribose-acceptor hydrolases catalyze alpha-NAD(+) hydrolysis. ACS Chem. Biol. 14, 2576–2584
26. Kasamatsu, A., Nakao, M., Smith, B. C., Comstock, L. R., Ono, T., Kato, J., Denu, J. M., and Moss, J. (2011) Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3. J. Biol. Chem. 286, 21110–21117
27. Palazzo, L., Leidecker, O., Prokhorova, E., Dauben, H., Matic, I., and Ahel, I. (2018) Serine is the major residue for ADP-ribosylation upon DNA damage. Elife 7, e34334
28. Bonfiglio, J. J., Fontana, P., Zhang, Q., Colby, T., Gibbsey-Seymour, I., Atanasov, I., Bartlett, E., Zaja, R., Ahel, I., and Matic, I. (2017) Serine ADP-ribosylation depends on HPF1. Mol. Cell 65, 932–940.e936
29. Suskiewicz, M. J., Zobel, F., Ogden, T. E. H., Fontana, P., Ariza, A., Yang, J. C., Zhu, K., Bracken, L., Hawthorne, W. J., Ahel, D., Neuhaus, D., and Ahel, I. (2020) HPF1 complements the PARP active site for DNA damage-induced ADP-ribosylation. Nature 579, 598–602
30. Mashimo, M., Kato, J., and Moss, J. (2013) ADP-ribose-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 110, 18964–18969
31. Danhauser, K., Alhaddad, B., Makowski, C., Piektowski-Abramczuk, D., Syre, S., Gomez-Ospina, N., Manning, M. A., Kostera-Pruszczyk, A., Krakhn-Peper, C., Berutti, R., Kovacs-Nagy, R., Gusic, M., Graf, E., Laugwitz, L., Roblitz, M., et al. (2018) Bi-allelic ADPRHL2 mutations cause neurodegeneration with developmental delay, ataxia, and axonal neuropathy. Annu. J. Hum. Genet. 103, 817–825
32. Mashimo, M., Bu, X., Aoyama, K., Kato, J., Ishiwata-Endo, H., Stevens, L. A., Kasamatsu, A., Wolfe, L. A., Toro, C., Adams, D., Markello, T., Gahl, W. A., and Moss, J. (2019) PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight 4, e124519
33. Oka, S., Kato, J., and Moss, J. (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713
34. Glusker, J. P. (1991) Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76
35. Falke, J. J., Drake, S. K., Hazard, A. L., and Peersen, O. B. (1994) Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27, 219–290
36. Grosshans, C. A., and Cech, T. R. (1989) Metal ion requirements for sequence-specific endonuclease cleavage of the tetrahymena ribozyme. Biochemistry 28, 6888–6894
37. Mordasini, T., Curioni, A., and Andreoni, W. (2003) Why do divalent metal ions either promote or inhibit enzymatic reactions? The case of BaniH restriction endonuclease from combined quantum-classical simulations. J. Biol. Chem. 278, 4381–4384
38. Muller-Dieckmann, C., Kernstock, S., Lisurek, M., von Kries, J. P., Haag, F., Weiss, M. S., and Koch-Nolte, F. (2006) The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein-ADP-ribosylation. Proc. Natl. Acad. Sci. U. S. A. 103, 15026–15031
39. Ono, T., Kasamatsu, A., Oka, S., and Moss, J. (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc. Natl. Acad. Sci. U. S. A. 103, 16687–16691
40. Kim, I. K., Stegeman, R. A., Brosey, C. A., and Ellenberger, T. (2015) A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 290, 3775–3783
41. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326
42. Pfugrath, J. W. (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725
43. Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25
44. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterson, E. A., Powell, H. R., et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242
45. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
46. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367