SOME REMARKS ON THE CONVERGENCE OF THE DIRICHLET SERIES OF \(L\)-FUNCTIONS AND RELATED QUESTIONS

J. KACZOROWSKI and A. PERELLI

Abstract. First we show that the abscissae of uniform and absolute convergence of Dirichlet series coincide in the case of \(L\)-functions from the Selberg class \(\mathcal{S}\). We also study the latter abscissa inside the extended Selberg class, indicating a different behavior in the two classes. Next we address two questions about majorants of functions in \(\mathcal{S}\), showing links with the distribution of the zeros and with independence results.

Mathematics Subject Classification (2000): 11M41, 30B50, 40A05, 42A75

Keywords: Dirichlet series, Selberg class, almost periodic functions

1. Introduction

Let

\[F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \]

be a Dirichlet series which converges somewhere in the complex plane. It is well known that there are four classical abscissae associated with \(F(s)\): the abscissa of convergence \(\sigma_c(F)\), of uniform convergence \(\sigma_u(F)\), of absolute convergence \(\sigma_a(F)\) and of boundedness \(\sigma_b(F)\). It may well be that \(\sigma_c(F) = -\infty\), in which case the other three abscissae equal \(-\infty\) as well. From the theory of Dirichlet series we know that

\[\sigma_c(F) \leq \sigma_b(F) = \sigma_u(F) \leq \sigma_a(F), \]

and in general this is best possible, i.e. inequalities cannot be replaced by equalities. We refer to Maurizi-Queffélec [15] for a modern reference for this sort of problems.

Our first result is that \(\sigma_b(F) = \sigma_a(F)\) for an important class of Dirichlet series, namely those defining the \(L\)-functions of the Selberg class \(\mathcal{S}\). We recall that the axiomatic class \(\mathcal{S}\) contains, at least conjecturally, most \(L\)-functions from number theory and automorphic forms theory, and that \(\sigma_b(F) = \sigma_a(F)\) is known in some special cases like the Riemann or the Dedekind zeta functions. The Selberg class \(\mathcal{S}\) is defined, roughly, as the class of Dirichlet series absolutely convergent for \(\sigma > 1\), having analytic continuation to \(\mathbb{C}\) with at most a pole at \(s = 1\), satisfying a functional equation of Riemann type and having an Euler product representation. Moreover, their coefficients satisfy the Ramanujan condition \(a(n) \ll n^\varepsilon\) for any \(\varepsilon > 0\). We also recall that the extended Selberg class \(\mathcal{S}^\#\) is the larger class obtained by dropping the Euler product and Ramanujan condition requirements in the definition of \(\mathcal{S}\). We refer to our survey papers [9], [7], [17], [18], [19] and to the forthcoming book [12] for definitions, examples and the basic theory of the Selberg classes \(\mathcal{S}\) and \(\mathcal{S}^\#\). In particular, we refer to these papers for the definition of degree \(d_F\), conductor \(q_F\) and standard twist of \(F(s)\).

Theorem 1. Suppose that \(F(s)\) belongs to the Selberg class. Then

\[\sigma_b(F) = \sigma_u(F) = \sigma_a(F). \] (1)

Several months after submitting this result, the note by Brevig-Heap [3] appeared, where the authors prove the same theorem in the much more general framework of Dirichlet series with
multiplicative coefficients. Trying to understand Brevig-Heap’s proof, based on Bohr’s theory, we noticed that their result was already known to Bohr himself in 1913 (see [1], Satz XI, p.480); incidentally, Bohr’s paper [11] appears as item [5] of the reference list in Brevig-Heap [3]. We wish to thank Dr. Mattia Righetti for bringing [3] and [1] to our attention and for his advice concerning these papers. We decided to keep Theorem 1 since our proof is different, easier and more direct; moreover, some points in the proof will be useful for the other results in the paper.

We expect that actually $\sigma_a(F) = 1$ for all $F \in S$. This is known for most classical L-functions and, in the general case of the class S, under the assumption of the Selberg orthonormality conjecture; however, an unconditional proof is missing at present. See again the above quoted references for definitions and results about such a conjecture.

Note that the abscissa of convergence $\sigma_c(F)$ can be smaller than 1 for functions in S. For example, the Dirichlet L-functions $L(s, \chi)$ with a primitive non-principal character χ are convergent in the half-plane $\sigma > 0$. Actually, several general results are known about the abscissa $\sigma_c(F)$ for functions $F(s)$ in the extended Selberg class S^\sharp. First of all

$$\text{if } F \in S^\sharp \text{ is entire with degree } d \geq 1, \text{ then } \frac{1}{2} - \frac{1}{2d} \leq \sigma_c(F) \leq 1 - \frac{2}{d+1}$$

(2)

(recall that there exist no functions $F \in S^\sharp$ with degree $0 < d < 1$, see [8] and Conrey-Ghosh [5]). Indeed, the first inequality in (2) is Corollary 3 in [11] and is based on the properties of the standard twist, while the second inequality follows from a well known theorem of Landau [13]. Moreover, in accordance with classical degree 2 conjectures and with the general Ω-theorem in Corollary 2 of [11], we expect that equality holds in the left inequality in (2). Further

$$\sigma_c(F) = -\infty \text{ if and only if } d_F = 0,$$

since the degree 0 functions of S^\sharp are Dirichlet polynomials (see [8]). From (2) we also deduce that

$$\sigma_c(F) = 1 \text{ if and only if } F(s) \text{ has a pole at } s = 1.$$

We also remark that if the Lindelöf Hypothesis holds for $F \in S^\sharp$, then $\sigma_c(F) \leq 1/2$.

The behavior of $\sigma_a(F)$ in the extended class S^\sharp is different from the expected behavior in S. Indeed, in the next section, which is also of independent interest, we show that

there exist functions $F \in S^\sharp$ with $\sigma_a(F)$ arbitrarily close to 1/2.

We conclude this section with the following

Question. Does (11) hold for the functions in the extended Selberg class? \end{flushright}

A variant of the question is: does (11) hold for linear combinations

$$F(s) = \sum_{j=1}^{N} c_j F_j(s)$$

with $F_j \in S$ and $c_j \in \mathbb{C}$? If needed, one may assume that $F(s)$ belongs to S^\sharp.

Since $\sigma_a(F) = 1$ for most classical L-functions $F(s)$, Theorem 1 prevents the possibility of getting information on the non-trivial zeros exploiting the properties of the abscissa of uniform convergence. On the other hand, if $F \in S$ is bounded for $\sigma > 1 - \delta$ for some $\delta > 0$, then its Dirichlet series is absolutely convergent for $\sigma > 1 - \delta$ and hence $F(s) \neq 0$ by Euler’s identity. In the next theorems we replace boundedness by more general majorants and deduce some consequences.
Let $F \in \mathcal{S}$ be of degree d, $N_F(\sigma, T)$ be the number of zeros $\rho = \beta + i\gamma$ with $\beta > \sigma$ and $|\gamma| \leq T$, and denote the density abscissa $\sigma_D(F)$ by

$$\sigma_D(F) = \inf \{ \sigma : N_F(\sigma, T) = o(T) \}.$$

An inspection of the proof of Lemma 3 in [10], obtained by a rudimentary version of Montgomery’s zero-detecting method, shows that

$$N_F(\sigma, T) \ll T^{4(d+3)(1-\sigma)+\varepsilon}.$$

Hence in general

$$\frac{1}{2} \leq \sigma_D(F) \leq 1 - \frac{1}{4(d+3)},$$

although it is well known that the classical L-functions $F(s)$ of degree 1 and 2 have $\sigma_D(F) = 1/2$, see e.g. Luo [14]. Actually, one can prove that $\sigma_D(F) = 1/2$ for all $F \in \mathcal{S}$ with degree $0 < d \leq 2$. Further, let $f(s)$ be holomorphic in $\sigma > 1 - \delta$ for some $\delta > 0$ and almost periodic on the line $\sigma = A$ for some $A > 1$. We say that $f(s)$ is a δ-almost periodic majorant of $F(s)$ if

$$|F(s)| \leq c(\sigma)|f(s)|$$

in the half-plane $\sigma > 1 - \delta$, where $c(\sigma) > 0$ is a continuous function for $\sigma > 1 - \delta$.

Theorem 2. Let $F \in \mathcal{S}$ and $f(s)$ be a δ-almost periodic majorant of $F(s)$. Then $F(s)$ and $f(s)$ have the same zeros, with the same multiplicity, in the half-plane $\sigma > \max(1 - \delta, \sigma_D(F))$.

Remark. Clearly, in view of (3) each zero of $f(s)$ is also a zero of $F(s)$; the non-trivial part of Theorem 2 says that the opposite assertion holds true as well. Note that we do not require that $f(s)$ is almost periodic for $\sigma > 1 - \delta$, but only on some vertical line far on the right. We already noticed that, as a consequence of Theorem 1, $F(s) \not= 0$ in every right half-plane where it is bounded. An immediate consequence of Theorem 2 is that $F(s) \not= 0$ for $\sigma > \max(1 - \delta, \sigma_D(F))$ if $f(s)$ is a non-vanishing δ-almost periodic majorant. In particular, from the density estimates reported above when $d \leq 2$, if $\delta = 1/2$ then the Riemann Hypothesis holds for such $F(s)$.

Our final result is a kind of new independence statement for L-functions from the Selberg class. Several forms of independence are known in \mathcal{S}, such as the linear independence, the multiplicity one property and the orthogonality conjecture and some of its consequences; see our above quoted surveys on the Selberg class. The new independence result is expressed in terms of majorants as follows.

Theorem 3. Let $F, G \in \mathcal{S}$ be such that $F(s) \ll |G(s)|$ for $\sigma > 1/2$. Then $F(s) = G(s)$.

The special nature of the majorant is very important here. Indeed, suppose that $G(s)$ is entire; then Theorem 2 gives only that $F(s)$ and $G(s)$ have the same zeros for $\sigma > \sigma_D(F)$. Instead, exploiting the information that $G \in \mathcal{S}$, Theorem 3 shows that actually $F(s) = G(s)$. In other words, no function from \mathcal{S} can dominate in $\sigma > 1/2$ another function from \mathcal{S}. We may regard this as a weak form of a well known result obtained, under stronger assumptions, by Selberg [20] and Bombieri-Hejhal [2] about the statistical independence of the values of L-functions.

Acknowledgements. This research was partially supported by Istituto Nazionale di Alta Matematica and by grant 2013/11/B/ST1/02799 Analytic Methods in Arithmetic of the National Science Centre.
2. The lift operator

Let $Q > 0$, $\lambda = (\lambda_1, \ldots, \lambda_r)$ with $\lambda_j > 0$, $\mu = (\mu_1, \ldots, \mu_r)$ with $\mu_j \in \mathbb{C}$ and $|\omega| = 1$. We denote by $W(Q, \lambda, \mu, \omega)$ the \mathbb{R}-linear space of the Dirichlet series solutions $F(s)$ of the functional equation

$$Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) F(s) = \omega Q^{1-s} \prod_{j=1}^r \Gamma(\lambda_j (1 - s) + \mu_j) F(1 - \overline{s}). \quad (4)$$

Given an integer $k \geq 1$, we define the k-lift operator by

$$F(s) \mapsto F_k(s) = F(ks + \frac{1-k}{2});$$

clearly, the operator is trivial for $k = 1$. A simple computation shows that

$$\text{if } F \in W(Q, \lambda, \mu, \omega) \text{ then } F_k \in W(Q^k, k\lambda, k\mu + \frac{1-k}{2} \lambda, \omega). \quad (5)$$

In particular, from (5) we have that degree d_{F_k} and conductor q_{F_k} of $F_k(s)$ satisfy

$$d_{F_k} = kd_F \quad q_{F_k} = q_F k^{d_F}. \quad (6)$$

We recall (see the above references) that the class S^\sharp consists of the Dirichlet series satisfying a functional equation of type (4), where now $\Re \mu_j \geq 0$, with the following properties: $F(s)$ is absolutely convergent for $\sigma > 1$ and $(s - 1)^m F(s)$ is entire of finite order for some integer $m \geq 0$. Therefore we consider

$$B_F = 2 \min_{1 \leq j \leq r} \frac{\Re \mu_j}{\lambda_j} + 1,$$

which is an invariant of S^\sharp (see again the above references) since a simple computation shows that

$$B_F = -2 \max_{\rho} \Re \rho + 1,$$

where ρ runs over the trivial zeros of $F(s)$. From the definition of the k-lift operator and (5) we see that, given $F \in S^\sharp$, the lifted function $F_k(s)$ also belongs to S^\sharp provided $1 \leq k \leq B_F$ and, if $B_F \geq 2$, $F(s)$ is entire. Indeed, if $k \geq 2$, $F(s)$ has to be holomorphic at $s = 1$ otherwise the pole of $F_k(s)$ is not at $s = 1$, and the bound $k \leq B_F$ is needed to have non-negative real part of the μ’s data of $F_k(s)$. Therefore, defining $V(Q, \lambda, \mu, \omega)$ to be the \mathbb{R}-linear space of the entire functions $F \in S^\sharp$ satisfying (4) (again with $\Re \mu_j \geq 0$), we have that

$$\text{for } 1 \leq k \leq B_F, \text{ the } k \text{-lift operator maps } V(Q, \lambda, \mu, \omega) \text{ into } V(Q^k, k\lambda, k\mu + \frac{1-k}{2} \lambda, \omega).$$

Note that B_F depends only on λ and μ, so it is the same for all functions in $V(Q, \lambda, \mu, \omega)$. Note also that the Selberg class S is not preserved under the above mappings since the Ramanujan condition is not (necessarily) satisfied by $F_k(s)$ even if $F(s)$ does; see the examples below. Further, a simple computation shows that the k-lift operator commutes with the map sending $F(s)$ to its standard twist. We also remark that the requirement $\Re \mu_j \geq 0$ in the definition of S^\sharp, which is responsible for the limitation $k \leq B_F$ in (4), is apparently not of primary importance in the theory of the Selberg class. Hence, although formally not belonging to S^\sharp, the lifts $F_k(s)$ of entire $F \in S^\sharp$ with $k > B_F$ are further examples of Dirichlet series with continuation over \mathbb{C} and functional equation. A similar remark applies to the other condition in the definition of $V(Q, \lambda, \mu, \omega)$, namely the holomorphy at $s = 1$.

Examples. The Riemann zeta function $\zeta(s)$ cannot be lifted inside S^\sharp since it has $B_\zeta = 1$. The same holds for the Dirichlet L-functions with even primitive characters, while those associated with odd primitive characters may be lifted inside S^\sharp for $k = 2$ and $k = 3$. However,
after lifting their Dirichlet coefficients do not satisfy the Ramanujan condition, hence the lifted Dirichlet \(L \)-functions do not belong to \(S \). Note that, once suitably normalized, the lifts with \(k = 2 \) become the \(L \)-functions associated with half-integral weight modular forms; see the books by Hecke [6] and Ogg [16]. Concerning degree 2, we consider the \(L \)-functions associated with holomorphic eigenforms of level \(N \) and integral weight \(K \); see Ogg [16]. Denoting by \(F(s) \) their normalization satisfying a functional equation reflecting \(s \mapsto 1 - s \) (instead of the original \(s \mapsto K - s \)), we have that

\[B_F = K. \]

In other words, the normalized \(L \)-functions of eigenforms of weight \(K \) may be lifted inside \(S^\sharp \) with \(k \) up to their weight. Here we consider only eigenforms since in general the \(L \)-functions of modular forms of level \(N \) satisfy a slightly different functional equation, not of \(S^\sharp \) type.

We finally turn to the problem of the absolute convergence abscissa in \(S^\sharp \). Let \(F \in S^\sharp \) be of degree \(d \geq 1 \). Then, thanks again to the properties of the standard twist, we know that

\[\sigma_a(F) \geq \frac{1}{2} + \frac{1}{2d}, \tag{7} \]

this follows from Theorem 1 of [11]. On the other hand, if \(F \in S^\sharp \) we have that the series

\[\sum_{n=1}^{\infty} \frac{|a(n)|}{n^{k\sigma+(1-k)/2}} \]

converges for \(\sigma > 1/2 + 1/(2k) \). Hence from (6) and (7) we obtain that if both \(F(s) \) of degree \(d \geq 1 \) and \(F_k(s) \) belong to \(S^\sharp \), then

\[\frac{1}{2} + \frac{1}{2kd} \leq \sigma_a(F_k) \leq \frac{1}{2} + \frac{1}{2k}. \tag{8} \]

Since the above examples show that there exist functions \(F \in S^\sharp \) with arbitrarily large \(B_F \) (e.g. the holomorphic eigenforms with arbitrarily large weight \(K \)), (8) shows that \(\sigma_a(F) \) can be arbitrarily close to \(1/2 \) inside \(S^\sharp \). Hence the behavior of \(\sigma_a(F) \) in the extended class \(S^\sharp \) is definitely different from its expected behavior in the class \(S \).

3. Proof of Theorem 1

Observe that the case \(d = 0 \) is trivial, since \(F(s) \) is identically 1; see Conrey-Ghosh [5]. For \(d \) positive we have \(\sigma_0(F) \geq 1/2 \), since \(F(s) \) is unbounded for \(\sigma < 1/2 \) by the functional equation and the properties of the \(\Gamma \) function. Therefore, to prove the assertion it suffices to show the following fact: if for a certain \(1/2 < \sigma_0 \leq 1 \) the function \(F(s) \) is bounded for \(\sigma > \sigma_0 \), then \(\sigma_a(F) \leq \sigma_0 \).

Let us fix an \(\varepsilon \in (0, \sigma_0 - 1/2) \), and let \(c_0 = c_0(\varepsilon) \) be such that \(|a(n)| \leq c_0 n^{\varepsilon/2} \) for all \(n \geq 1 \). Without loss of generality we may assume that \(c_0 \geq 3 \). Consider the finite set of primes

\[S_\varepsilon = \{ p : |a(p)| > p^{\varepsilon/2} \text{ or } p < c_0^{2/\varepsilon} \}. \]

Let

\[F_p(s) = \sum_{m=0}^{\infty} \frac{a(p^m)}{p^{ms}} \tag{9} \]

denote the \(p \)-th Euler factors of \(F(s) \). We split the Euler product as

\[F(s) = \prod_{p \nmid S_\varepsilon} \left(1 + \frac{a_F(p)}{p^s} \right) \prod_{p \mid S_\varepsilon} F_p(s) \prod_{p \nmid S_\varepsilon} \left(F_p(s) \left(1 + \frac{a_F(p)}{p^s} \right)^{-1} \right) \tag{10} \]

\[= P_1(s)P_2(s)P_3(s), \]
say. Both $P_2(s)$ and its inverse $1/P_2(s)$ have Dirichlet series representations which converge absolutely for $\sigma > \theta$ for some $\theta < 1/2$. This is a simple consequence of the definition of the Selberg class; see the above quoted references. Therefore, $P_2(s)$ and $1/P_2(s)$ are bounded for $\sigma > \sigma_0$.

In view of (9) we have

$$P_3(s) = \prod_{p \notin S_\varepsilon} \left(1 + \sum_{m=2}^{\infty} \frac{b(p^m)}{p^{ms}} \right)$$

with

$$b(p^m) = \sum_{l=0}^{m} (-1)^l a(p)^l a(p^{m-l}).$$

Hence, recalling that $p \notin S_\varepsilon$, $m \geq 2$ and $c_0 \geq 3$, we have

$$|b(p^m)| \leq \sum_{l=0}^{m} |a(p)^l| |a(p^{m-l})| \leq c_0 mp^{m\varepsilon/2} \leq p^{m\varepsilon}.$$

Thus for $\sigma > 1/2 + \varepsilon$ and $p \notin S_\varepsilon$ we have

$$\sum_{m=2}^{\infty} \frac{|b(p^m)|}{p^{m\sigma}} < 1 \quad \text{and} \quad \sum_{p \notin S_\varepsilon} \sum_{m=2}^{\infty} \frac{|b(p^m)|}{p^{m\sigma}} \ll 1.$$

Hence both $P_3(s)$ and $1/P_3(s)$ are bounded and have Dirichlet series representations which converge absolutely for $\sigma > \sigma_0$ (recall that $\sigma_0 > 1/2 + \varepsilon$).

We therefore see that $P_1(s) = F(s)/(P_2(s)P_3(s))$ is bounded for $\sigma > \sigma_0$. Let us write

$$P_1(s) = \sum_{n=1}^{\infty} \frac{c(n)}{n^s}.$$

The coefficients $c(n)$ are completely multiplicative, and the series converges for $\sigma > \sigma_0$. Fix such a σ, and a positive $\delta < \sigma - \sigma_0$. Consider the following familiar Mellin’s transform

$$\sum_{n=1}^{\infty} \frac{c(n)}{n^{\sigma+it}} e^{-n/Y} = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \frac{F(w+\sigma+it)}{P_2(w+\sigma+it)P_3(w+\sigma+it)} \Gamma(w)Y^w\,dw.$$

We shift the line of integration to $\Re(w) = -\delta$ and obtain

$$\sum_{n=1}^{\infty} \frac{c(n)}{n^{\sigma+it}} e^{-n/Y} = \frac{F(\sigma+it)}{P_2(\sigma+it)P_3(\sigma+it)} + O(Y^{-\delta}) \ll 1$$

uniformly in $t \in \mathbb{R}$ and $Y \geq 1$. Since $|c(n)| \leq n^{\varepsilon/2}$, due to the decay of the exponential we may cut the sum on the left hand side to $n \leq 3Y \log Y$, say, producing an extra error term of size $O(1/Y)$. Thus

$$\sum_{n \leq 3Y \log Y} \frac{c(n)}{n^{\sigma+it}} e^{-n/Y} \ll 1 \quad (11)$$

uniformly in $t \in \mathbb{R}$ and $Y \geq 1$.

Now we apply Kronecker’s theorem in the following form, see Theorem 8 of Ch.VIII of Chandrasekharan [4]. If $\theta_1, \ldots, \theta_k \in \mathbb{R}$ are linearly independent over \mathbb{Z}, $\beta_1, \ldots, \beta_k \in \mathbb{R}$ and $T, \eta > 0$, then there exist $t > T$ and $n_1, \ldots, n_k \in \mathbb{Z}$ such that

$$|t\theta_\ell - n_\ell - \beta_\ell| < \eta \quad \ell = 1, \ldots, k. \quad (12)$$
We choose the \(\theta \)'s as \(-\frac{1}{2\pi} \log p \) with the primes \(p \leq 3Y \log Y \) not in \(S_\epsilon \) and, correspondingly, the \(\beta \)'s such that \(|c(p)| = c(p)e^{2\pi i \beta p} \) for each such \(p \). Hence by (12) there exists a sequence of real numbers \(t_\nu \to +\infty \) such that
\[
c(p)p^{-i\nu} \to |c(p)| \quad \nu \to \infty
\]
uniformly for the primes \(p \leq 3Y \log Y \) not in \(S_\epsilon \). By the complete multiplicativity of \(c(n) \) we infer that
\[
c(n)n^{-i\nu} \to |c(n)| \quad \nu \to \infty
\]
uniformly for \(n \leq 3Y \log Y \). Thus putting \(t = t_\nu \) in (11) and making \(\nu \to \infty \) we obtain
\[
\sum_{n \leq Y} \frac{|c(n)|}{n^\sigma} \leq e \sum_{n \leq 3Y \log Y} \frac{|c(n)|}{n^\sigma} e^{-n/Y} = e \lim_{\nu \to \infty} \sum_{n \leq 3Y \log Y} \frac{c(n)}{n^\sigma + i\nu} e^{-n/Y} \ll 1
\]
uniformly for \(Y \geq 1 \). Letting \(Y \to \infty \), we see that the Dirichlet series of \(P_1(s) \) converges absolutely for \(\sigma > \sigma_0 \).

Summarizing, we have shown that the Dirichlet series of \(P_1(s) \), \(P_2(s) \) and \(P_3(s) \) are absolutely convergent for \(\sigma > \sigma_0 \), hence the Dirichlet series of \(F(s) \) is also absolutely convergent for \(\sigma > \sigma_0 \) thanks to (10), and the result follows.

4. PROOF OF THEOREM 2

As in Theorem 1 the case \(d = 0 \) is trivial, hence we assume \(d > 0 \) and consider the function
\[
h(s) = \frac{F(s)}{f(s)}
\]
for \(\sigma > 1 - \delta \). From (3) we have that \(h(s) \) is holomorphic for \(\sigma > 1 - \delta \), bounded on every closed vertical strip inside \(\sigma > 1 - \delta \) and almost periodic on the line \(\sigma = A \). For a given \(\epsilon > 0 \), let \(\tau \) be an \(\epsilon \)-almost period of \(h(A + it) \), namely for every \(t \in \mathbb{R} \)
\[
|h(A + i(t + \tau)) - h(A + it)| < \epsilon.
\]
Then, by the convexity following from Phragmén-Lindelöf’s theorem applied to \(h(s + i\tau) - h(s) \), given \(\eta > 1 - \delta \) and any \(\eta < \sigma < A \) we have
\[
\sup_{t \in \mathbb{R}} |h(\sigma + i(t + \tau)) - h(\sigma + it)| \leq \left(\sup_{t \in \mathbb{R}} |h(\eta + i(t + \tau)) - h(\eta + it)| \right)^{\frac{\delta - \sigma}{\delta - \eta}} \times \left(\sup_{t \in \mathbb{R}} |h(A + i(t + \tau)) - h(A + it)| \right)^{\frac{\sigma - \eta}{\delta - \eta}}.
\]
Hence we obtain that
\[
\sup_{t \in \mathbb{R}} |h(\sigma + i(t + \tau)) - h(\sigma + it)| \ll \epsilon^c
\]
uniformly in any closed strip contained in \(\eta < \sigma < A \), where \(c > 0 \) depends on the strip. Since \(\epsilon \) is arbitrarily small, \(h(s) \) is uniformly almost periodic in such strips. Suppose now that \(h(\rho) = 0 \) for some \(\rho \) with \(\Re \rho > 1 - \delta \). Then by a well known argument based on Rouche’s theorem we have that for any \(1 - \delta < \eta < \Re \rho \)
\[
T \ll N_h(\eta, T) \leq N_F(\eta, T) = o(T)
\]
if \(\eta > \sigma_D(F) \), a contradiction. Thus \(h(s) \neq 0 \) for \(\sigma > \max(1 - \delta, \sigma_D(F)) \), hence every zero of \(F(s) \) in this half-plane is a zero of \(f(s) \). Theorem 2 is therefore proved, since the opposite implication is a trivial consequence of (3).
5. Proof of Theorem 3

Again the case \(d = 0 \) is trivial, since in this case \(F(s) \equiv 1 \) and so \(G(s) \) does not vanish inside the critical strip, thus its degree is 0 and hence \(G(s) \equiv 1 \) as well. Let \(F, G \in \mathcal{S} \) be with positive degrees and coefficients \(a_F(n) \) and \(a_G(n) \), respectively, and consider the function

\[
H(s) = \frac{F(s)}{G(s)} = \sum_{n=1}^{\infty} \frac{h(n)}{n^s},
\]

say. By our hypothesis \(H(s) \) is bounded, and hence holomorphic, for \(\sigma > 1/2 \). We modify the proof of Theorem 1 at several points. By Lemma 1 of [10] we have that for every \(\varepsilon > 0 \) there exists an integer \(K = K(\varepsilon) \) such that the coefficients \(a_G^{-1}(n) \) of \(1/G(s) \) satisfy

\[
a_G^{-1}(n) \ll n^{\varepsilon} \quad (n, K) = 1,
\]

and hence

\[
h(n) \ll n^{2\varepsilon} \quad (n, K) = 1.
\]

Therefore the set

\[
S = \{ p : |h(p^m)| > p^{m/10} \text{ for some } m \geq 1 \text{ or } p \leq 10^4 \}
\]

is finite and we write

\[
H(s) = \prod_p \frac{F_p(s)}{G_p(s)} = \prod_p H_p(s)
\]

\[
= \prod_{p \notin S} \left(1 + \frac{h(p)}{p^s} + \frac{h(p^2)}{p^{2s}} \right) \prod_{p \in S} H_p(s) \prod_{p \notin S} \left(H_p(s) \left(1 + \frac{h(p)}{p^s} + \frac{h(p^2)}{p^{2s}} \right)^{-1} \right) \quad (13)
\]

say. As in the proof of Theorem 1, \(Q_2(s) \) and \(1/Q_3(s) \) are holomorphic and bounded for \(\sigma \geq 1/2 \). Moreover we have

\[
Q_3(s) = \prod_{p \notin S} \left(1 + \frac{\sum_{m=3}^{\infty} \frac{h(p^m)}{p^{ms}}}{1 + \frac{h(p)}{p^s} + \frac{h(p^2)}{p^{2s}}} \right) = \prod_{p \notin S} \left(1 + \sum_{m=3}^{\infty} \frac{k(p^m)}{p^{ms}} \right),
\]

say, and a computation shows that for \(\sigma \geq 1/2 \)

\[
\sum_{m=3}^{\infty} \frac{|k(p^m)|}{p^{m\sigma}} \leq \frac{1}{3} \quad \text{for every } p \notin S \quad \text{and} \quad \sum_{p \notin S} \sum_{m=3}^{\infty} \frac{|k(p^m)|}{p^{m\sigma}} \ll 1.
\]

Therefore, no factor of the product vanishes, and \(Q_3(s) \) and \(1/Q_3(s) \) are holomorphic and bounded for \(\sigma \geq 1/2 \) as well.

In order the treat \(Q_1(s) \) we need the following elementary lemma.

Lemma. For every \(a, b \in \mathbb{C} \) there exists \(\theta \in \mathbb{C} \) with \(|\theta| = 1 \) such that

\[
|1 + \theta a + \theta^2 b| \geq 1 + \frac{1}{24}(|a| + |b|).
\]

Proof. Suppose first that \(|a| \leq |b|/2 \). Then

\[
\max_{|\theta| = 1} |1 + \theta a + \theta^2 b| \geq 1 + |b| - |a| \geq 1 + \frac{1}{2}|b| \geq 1 + \frac{1}{3}(|a| + |b|),
\]

and the result follows in this case. In the opposite case \(|a| > |b|/2 \) we apply the maximum
modulus principle to the function \(f(z) = 1 + az + bz^2 \), thus obtaining
\[
\max_{|θ| = 1} |1 + θa + θ^2b| ≥ \max_{|θ| = 1} |1 + \frac{1}{4}θa + \frac{1}{16}θ^2b|
\geq 1 + \frac{1}{4}|a| - \frac{1}{16}|b| ≥ 1 + \frac{1}{24}(|a| + |b|),
\]
and the Lemma follows. Note that the constant 1/24 is neither optimal nor important in what follows; moreover, in general it cannot be made arbitrarily close to 1.

From (13), our hypothesis and the above information on \(Q_2(s) \) and \(Q_3(s) \) we deduce that there exists \(M > 0 \) such that for \(σ > 1/2 \)
\[
|Q_1(s)| = \prod_{p \notin S} \left| 1 + \frac{1}{24} \left(\frac{|h(p)|}{p^{4σ}} + \frac{|h(p^2)|}{p^{2σ}} \right) \right| ≤ M.
\]

By the Lemma, for every \(σ \) and \(p \) there exists \(|θ_{p,σ}| = 1 \) such that
\[
\left| 1 + \frac{θ_{p,σ}h(p)}{p^σ} + \frac{θ_{p,σ}^2 h(p^2)}{p^{2σ}} \right| ≥ 1 + \frac{1}{24} \left(\frac{|h(p)|}{p^σ} + \frac{|h(p^2)|}{p^{2σ}} \right).
\]
Assuming that \(σ > 1/2 \) and \(p \notin S \), applying Kronecker’s theorem as in the last part of the proof of Theorem 1 we find that
\[
\prod_{p \notin S} \left(1 + \frac{1}{24} \left(\frac{|h(p)|}{p^{4σ}} + \frac{|h(p^2)|}{p^{2σ}} \right) \right) ≤ M.
\]

Then, letting \(σ \to 1/2^+ \), we deduce that the product
\[
\prod_{p \notin S} \left(1 + \frac{1}{24} \left(\frac{|h(p)|}{p^{4σ}} + \frac{|h(p^2)|}{p^{2σ}} \right) \right)
\]
is convergent. Thus the series
\[
\sum_{p \notin S} \left(\frac{|h(p)|}{p^{1/2}} + \frac{|h(p^2)|}{p} \right)
\]
is convergent as well and, in turn, the product
\[
\prod_{p \notin S} \left(1 + \left(\frac{|h(p)|}{p^{1/2}} + \frac{|h(p^2)|}{p} \right) \right)
\]
converges. Hence \(Q_1(s) \) and \(Q_1(s)^{-1} \) are non-vanishing for \(σ ≥ 1/2 \).

From (13) and the above properties of \(Q_j(s) \), \(j = 1, 2, 3 \), we immediately see that \(H(s) \) is holomorphic and non-vanishing for \(σ ≥ 1/2 \). Denoting by \(γ_F(s) \) and \(γ_G(s) \) the \(γ \)-factors of \(F(s) \) and \(G(s) \), thanks to the functional equation we deduce that
\[
\frac{γ_F(s)}{γ_G(s)} H(s)
\]
is a non-vanishing entire function of order \(≤ 1 \), and hence by Hadamard’s theory we have
\[
H(s) = \frac{γ_G(s)}{γ_F(s)} e^{as + b} \tag{14}
\]
with some \(a, b ∈ \mathbb{C} \). Now we can conclude by means of the almost periodicity argument that we used in our proof of the multiplicity one property of \(S \). For this we refer to Lemma 2.1 of [9] and to Theorem 2.3.2 of [7]; in particular, (14) is exactly the last displayed formula of p.167 of [7]. This way we get that \(H(s) ≡ 1 \), hence Theorem 3 is proved.
References

[1] H.Bohr - Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen $\sum \frac{a_n}{n^s}$ - Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1913), 441–488; see also Collected Mathematical Works, vol.I, Dansk Matematisk Forening, 1952.

[2] E.Bombieri, D.A.Hejhal - On the distribution of zeros of linear combinations of Euler products - Duke Math. J. 80 (1995), 821–862.

[3] O.F.Brevig, W.Heap - Convergence abscissas for Dirichlet series with multiplicative coefficients - to appear in Expo. Math. 2015; see arXiv:1506.04546v2.

[4] K.Chandrasekharan - Introduction to Analytic Number Theory - Springer Verlag 1968.

[5] J.B.Conrey, A.Ghosh - On the Selberg class of Dirichlet series: small degrees - Duke Math. J. 72 (1993), 673–693.

[6] E.Hecke - Lectures on Dirichlet Series, Modular Functions and Quadratic Forms - Van-derhoeck & Ruprecht 1983.

[7] J.Kaczorowski - Axiomatic theory of L-functions: the Selberg class - In Analytic Number Theory, C.I.M.E. Summer School, Cetraro (Italy) 2002, ed. by A.Perelli and C.Viola, 133–209, Springer L.N. 1891, 2006.

[8] J.Kaczorowski, A.Perelli - On the structure of the Selberg class, I: 0 ≤ d ≤ 1 - Acta Math. 182 (1999), 207–241.

[9] J.Kaczorowski, A.Perelli - The Selberg class: a survey - In Number Theory in Progress, Proc. Conf. in Honor of A.Schinzel, ed. by K.Györy et al., 953–992, de Gruyter 1999.

[10] J.Kaczorowski, A.Perelli - On the prime number theorem for the Selberg class - Arch. Math. 80 (2003), 255–263.

[11] J.Kaczorowski, A.Perelli - On the structure of the Selberg class, VI: non-linear twists - Acta Arith. 116 (2005), 315–341.

[12] J.Kaczorowski, A.Perelli - Introduction to the Selberg Class of L-Functions - In preparation.

[13] E.Landau - Über die Anzahl der Gitterpunkte in gewissen Bereichen (Zweite Abhandlung) - Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. (1915), 209–243.

[14] W.Luo - Zeros of Hecke L-functions associated with cusp forms Acta Arith. 71 (1995), 139–157.

[15] B.Maurizi, H.Queffélec - Some remarks on the algebra of bounded Dirichlet series - J. Fourier Anal. Appl. 16 (2010), 676–692.

[16] A.Ogg - Modular Forms and Dirichlet Series - Benjamin 1969.

[17] A.Perelli - A survey of the Selberg class of L-functions, part I - Milan J. Math. 73 (2005), 19–52.

[18] A.Perelli - A survey of the Selberg class of L-functions, part II - Riv. Mat. Univ. Parma (7) 3* (2004), 83–118.

[19] A.Perelli - Non-linear twists of L-functions: a survey - Milan J. Math. 78 (2010), 117–134.

[20] A.Selberg - Old and new conjectures and results about a class of Dirichlet series - In Proc. Amalfi Conf. Analytic Number Theory, ed by E.Bombieri et al., 367–385, Università di Salerno 1992; Collected Papers vol.II, 47–63, Springer 1991.

Jerzy Kaczorowski, Faculty of Mathematics and Computer Science, A.Mickiewicz University, 61-614 Poznań, Poland and Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw, Poland. e-mail: kjerzy@amu.edu.pl

Alberto Perelli, Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy. e-mail: perelli@dima.unige.it