RESEARCH ARTICLE

Modulation of Na⁺/K⁺ ATPase Activity by Hydrogen Peroxide Generated through Heme in *L. amazonensis*

Nathália Rocco-Machado¹,²*, Daniela Cosentino-Gomes¹,², José Roberto Meyer-Fernandes¹,²*

¹ Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil, ² Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil

* meyer@bioqmed.ufrj.br (JRMF); rocco@bioqmed.ufrj.br (NRM)

Abstract

Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na⁺/K⁺ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H₂O₂) generated in the presence of heme in the Na⁺/K⁺ ATPase activity of *L. amazonensis*. Our results show that increasing concentrations of heme stimulates the production of H₂O₂ in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na⁺/K⁺ ATPase is through the generation of H₂O₂, we measured enzyme activity using increasing concentrations of H₂O₂ and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H₂O₂. To investigate the role of PKC in this signaling pathway, we observed the production of H₂O₂ in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H₂O₂. Furthermore, we found that PKC activity is increased in the presence of H₂O₂, and that in the presence of calphostin C, H₂O₂ is unable to activate the Na⁺/K⁺ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na⁺/K⁺ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of *L. amazonensis* Na⁺/K⁺ ATPase by H₂O₂ opens new possibilities for understanding the signaling pathways of this parasite.
Introduction

Leishmania spp. are a group of protozoa from the Trypanosomatidae family that causes a variety of diseases that can manifest in a cutaneous or visceral form depending on the species of Leishmania [1,2]. Leishmania amazonensis is the major etiological agent of cutaneous or diffuse cutaneous leishmaniasis in South America [3,4]. The protozoan presents two distinct morphological and functional forms, nonflagellate intracellular amastigotes living inside the macrophages of the vertebrate host and motile flagellate promastigotes that live in the alimentary tract of the blood-sucking insect vector [5]. As a bloodstream form, promastigotes of Leishmania are constantly exposed to free heme, a pro-oxidant molecule with signaling capacity that comes from the digestion of hemoglobin in the midgut of the insect vector [6–9]. Despite being considered deleterious to the cell in excess, reactive oxygen species (ROS) play an important role in cell signaling [10–14]. Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) is generated by the dismutation of the superoxide anion radical (O\textsubscript{2}–) and can cross cell membranes more easily. At low concentrations it may play an important role in cell signaling pathways through oxidation of specific target molecules [10,11,15].

Heme is a metalloporphyrin that performs many functions as a prosthetic group of different hemoproteins involved in oxidative metabolism, oxygen storage and transport, and signal transduction [16]. Leishmania, as well as other trypanosomatid protozoa, lack several enzymes in the heme biosynthetic pathway and thus depend on extracellular heme uptake for survival [17,18]. It has been shown that there is a high binding affinity for heme in the membrane of L. amazonensis promastigotes [19], L. infantum amastigotes [20] and a specific uptake of the heme analogue magnesium protoporphyrin IX (MgPPIX) in L. donovani [21]. In 2012 a gene in L. amazonensis was identified that has homology to HRG-4, a Caenorhabditis elegans gene encoding a heme transporter in the plasma membrane [22]. This gene was given the name Leishmania heme response-1 (LHR1) [23]. The heme uptake by LHR1 was shown to be involved in L. amazonensis virulence [24].

Our group showed in 2010 that heme stimulates Na+/K+ ATPase activity through a signaling pathway involving protein kinase C (PKC) in L. amazonensis [25]. Na+/K+ ATPase is a pump that catalyzes the ATP-dependent exchange of 3 Na⁺ for 2 K⁺ across the cell membrane, creating an electrochemical gradient, and is present in Leishmania species [26–28]. The PKC family consists of serine/threonine kinases that are involved in a variety of signals. Studies show evidence of the existence of specific PKC-like activity in Leishmania [25,27,29,30]. Knowing that heme is a pro-oxidant molecule and the importance of H\textsubscript{2}O\textsubscript{2} in signal transduction, our goal in this work is to investigate if heme can promote an increase in the H\textsubscript{2}O\textsubscript{2} production by L. amazonensis and if this H\textsubscript{2}O\textsubscript{2} is involved in the activation of Na⁺/K⁺ ATPase.

Materials and Methods

1. Reagents

All reagents were purchased from E. Merck (São Paulo, Brazil) or Sigma—Aldrich (St. Louis, MO). Deionized distilled water was obtained from a Milli-Q system of resins (Millipore Corp., Bedford, MA) and was used in the preparation of all solutions.

2. Microorganisms

The MHOM/BR/75/Josefa strain of L. amazonensis [31] was used throughout this study. The MHOM/BR/75/Josefa strain was kindly supplied by Dr. Marcos André Vannier-Santos from Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Muniz, Salvador, Bahia, Brazil. Promastigotes have been maintained in our laboratory in axenic culture using Warren’s medium [32].
supplemented with 10% heat-inactivated fetal bovine serum at 22°C. Parasites were harvested at the stationary phase, sixth day of growth by centrifugation, washed twice and maintained at room temperature in a buffer consisting of 116 mM NaCl, 5.4 mM KCl, 5.5 mM D-glucose, and 50 mM Hepes—tri(hydroxymethyl)aminomethane (Hepes—Tris), pH 7.2.

3. Cell proliferation curve

1 x 10⁶ cells were added in Warren medium with 10% fetal bovine serum. Every 24 hours, aliquots of 50 μl were taken from each flask culture and the cell density was estimated daily by counting aliquots in a Neubauer chamber hemocytometer. The number of cells of each day was obtained by the weighted average of triplicate in three different curves with different cell suspensions.

4. Cell lysate preparations

The cells were washed twice in 50 mM Hepes—Tris buffer, pH 7.2, in the absence of Na⁺ and K⁺ and counted in a Neubauer chamber. Cell lysates from MHOM/BR/75/Josefa strain of L. amazonensis [31] were prepared by three freeze—thaw cycles in liquid nitrogen until sufficient cells were obtained to yield 5 mg/mL protein (5 x 10⁸ cells/mL). The total protein concentration was determined by the method of Lowry et al (1951) using bovine serum albumin as a standard [33].

5. Na⁺/K⁺ ATPase activity assay

Na⁺/K⁺ ATPase activity was measured in a reaction medium containing 20 mM Hepes—Tris pH 7.2, 10 mM MgCl₂, 5 mM ATP, [γ³²P]ATP (specific activity of approximately 10⁴ Bq/nmol ATP), 120 mM NaCl and 30 mM KCl in a final volume of 0.1 mL. ATPase activity was assayed by measuring the hydrolysis of [γ³²P]ATP as described previously [27]. The reaction was initiated by the addition of cell lysate (0.5 mg protein/mL) and stopped after 1 h by addition of 1.0 mL of ice-cold 25% charcoal in 1.0 M HCl. The tubes were then centrifuged at 1500 g for 10 min at 4°C. Aliquots (0.5 mL) of the supernatants containing the released ³²P (inorganic phosphate) were transferred to scintillation vials containing 9.0 mL of scintillation fluid (2.0 g PPO in 1 L of toluene). The [³²P]Pi released was measured using a scintillation counter. Spontaneous hydrolysis of [γ³²P]ATP was measured simultaneously by adding protein to some tubes after the addition of activated charcoal. The Na⁺/K⁺ ATPase activity was calculated as the difference between [³²P]Pi released in the absence and in the presence of 1 mM ouabain [34].

6. Hydrogen peroxide production assay

The production of H₂O₂ by living cells of L. amazonensis promastigotes was determined fluorimetrically by the method of Amplex red oxidation (Invitrogen) in the presence of horseradish peroxidase (Invitrogen). With Amplex Red it is possible to evaluate the release of H₂O₂ by the cell under real physiological conditions [35]. A reaction medium (final volume 0.2 mL) containing 100 mM sucrose, 20 mM KCl, 50 mM Tris-HCl, pH 7.2, and 1.7 mM of Amplex Red was used. Cells (5 x10⁸/mL) were incubated for 20 minutes under different conditions, as indicated in the figure legends, and the reaction was triggered with 13.4 μL of 100 U/mL horseradish peroxidase. Fluorescence was monitored at excitation and emission wavelengths of 563 ± 5 nm and 587 ± 5 nm, respectively. After 20 min of reaction, H₂O₂ production was determined using a standard curve with known quantities of H₂O₂. The results were normalized by cell number and expressed in pmol H₂O₂ x 10⁻⁸ cells.
7. Cell viability assay

L. amazonensis viability in the presence of 50 μM heme and 2.5 μM H₂O₂ was evaluated by the quantitative colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)] assay. The mitochondrial electron chain converts MTT to formazan, and a decrease in the concentration of MTT indicates toxicity to the cell [36]. Cells (5 x10⁸/mL) were incubated in a 96-well plate with a reaction medium (final volume 0.2 mL) containing 100 mM sucrose, 20 mM KCl, 50 mM Tris-HCl, pH 7.2, and 50 μM heme or 2.5 μM H₂O₂ for 1 hour, and then the MTT labeling reagent (final concentration, 0.20 mg/mL) was added to each well. After a 2-h incubation, DMSO was added to dissolve the formazan crystals and obtain a homogeneous blue solution suitable for measurement of the absorbance at 590 nm. Parasite viability (%) was calculated regarding the control. We used 1% Triton X-100 as a positive control.

8. Protein kinase C activity assay

L. amazonensis intact promastigotes (5x10⁸/mL) were incubated, in different conditions, in a reaction medium containing 100 mM sucrose, 20 mM KCl and 50 mM Tris-HCl, pH 7.2, for 20 minutes. After this time, cells were washed twice in Hepes 50 mM Mes-buffer and lysed in liquid nitrogen for 15 minutes. PKC activity was assayed in the presence of 4 mM Hepes-Tris, pH 7.0, 0.4 mM MgCl₂, 1 mM CaCl₂, 0.36 mg/μL Neurogranin (specific substrate for PKC), 25 nM ATP and 40 μg of lysed cells in a final volume of 40 μl. The reaction was triggered by adding 40 μl of the Kinase-Glo luminescent kit [37], and after 10 minutes at 30°C cultures were placed in a luminometer (Promega Multi Glomax Junior).

9. Statistical analysis

All experiments were performed in triplicate, and similar results were obtained from at least three different cell suspensions. Data were analyzed statistically by Student’s t-test or a one-way ANOVA followed by the Tukey test using Prism computer software (GraphPad Software Inc., San Diego, CA, USA). A result was considered to be statistically significant when p < 0.05.

Results

1. H₂O₂ generation during *Leishmania amazonensis* proliferation

To verify if the presence of H₂O₂ could have a role in the proliferation of *Leishmania amazonensis* cells, we investigated the H₂O₂ generation profile during the growth curve of the parasite. There is an intense generation of H₂O₂ during the first days of the proliferation curve, decreasing over the days, and achieving minimum levels from the sixth day onward, when the cells reach their growth stationary phase (Fig 1).

2. Heme increases hydrogen peroxide production

To check whether heme, a molecule with pro-oxidant activity [38,39], was able to increase H₂O₂ production in *L. amazonensis* promastigotes, cells from sixth day of stationary phase, where the level of H₂O₂ is low, were incubated with increasing concentrations of heme. There is an increase in H₂O₂ levels in a dose response of heme concentration. The peak of H₂O₂ production (74 ± 6 pmol) occurs when cells were incubated in the presence of 2.5 μM heme. After this concentration, there is a pronounced drop in H₂O₂ generation (Fig 2).
3. H$_2$O$_2$ increases Na$^+$/K$^+$ ATPase activity

We have shown that heme activates Na$^+$/K$^+$ ATPase in *L. amazonensis* [25]. Incubating intact promastigotes with 2.5 μM heme, a concentration at which higher H$_2$O$_2$ levels were achieved, we confirmed the increase in Na$^+$/K$^+$ ATPase activity (Fig 3A). To investigate if H$_2$O$_2$ would be able to activate Na$^+$/K$^+$ ATPase, living promastigotes were incubated in the presence of increased concentrations of H$_2$O$_2$ and the Na$^+$/K$^+$ ATPase activity was assayed (Fig 3B). There is a sharp increase in Na$^+$/K$^+$ ATPase activity in response to low increased amounts of H$_2$O$_2$, with a peak of 1.16 ± 0.06 nmol Pi x h$^{-1}$ x mg protein$^{-1}$ when the cells were incubated with 0.1 μM H$_2$O$_2$ (Fig 3B). Concentrations of H$_2$O$_2$ above this threshold caused a decrease in the activation of Na$^+$/K$^+$ ATPase activity, indicating a small window where H$_2$O$_2$ could work as a signaling molecule in the enzyme activity.
4. Treatment with 50 μM heme or 2.5 μM H₂O₂ did not affect L. amazonensis cellular viability

To investigate if incubation with heme or H₂O₂ affects cell viability, we used the highest concentration of the compounds tested and evaluated the cell integrity by the MTT assay. Neither 50 μM heme nor 2.5 μM H₂O₂ were able to affect cell viability when compared to control (Fig 4). Triton X-100 was used as a positive control for non-viable cells.

5. Comparison between H₂O₂ production and Na⁺/K⁺ ATPase activation promoted by heme in L. amazonensis from log and stationary phases

The generation of H₂O₂ is higher in the log phase than the stationary phase (Fig 1). Interestingly, the Na⁺/K⁺ ATPase activity is also higher in the log phase than the stationary phase (Fig 5A). However, the heme stimulatory effects on Na⁺/K⁺ ATPase activity (Fig 5A) and H₂O₂ production (Fig 5B) in log and stationary phases were similar.

![Fig 3. Effect of heme and hydrogen peroxide on the Na⁺/K⁺ ATPase activity in L. amazonensis. The intact cells were incubated with (white bar) or without (black bar) 2.5 μM heme (A) or with increasing concentrations of hydrogen peroxide (B) for 20 min. The values represent the mean ± standard error of at least three independent experiments. *Statistically significant when compared to control (P < 0.05). CTRL, control.](http://example.com)

![Fig 4. MTT assay for the viability of L. amazonensis incubated with 50 μM heme and 2.5 μM hydrogen peroxide. Living parasites were incubated for 1 hour in the reaction medium with the addition of 50 μM heme or 2.5 μM H₂O₂. Triton 1% was used as a positive control. The values represent the mean ± standard error of at least three independent experiments. *Statistically significant when compared to control (P < 0.05). CTRL, control.](http://example.com)
6. Effect of heme analogs, degradation products of heme, and FeCl₃ on H₂O₂ production and Na⁺/K⁺ ATPase activity

To verify if the stimulatory effect on H₂O₂ production and Na⁺/K⁺ ATPase activity in L. amazonensis was caused exclusively by heme, we tested heme precursor, protoporphyrin IX (PPIX), two heme analogs, cobalt protoporphyrin IX (Co-PPIX) and tin-protoporphyrin IX (tin-PPIX), and FeCl₃, (Fig 6A and 6B) at a concentration of 2.5 μM. We also tested the products of heme degradation, bilirubin and biliverdin (Fig 7A and 7B). None of the compounds that did not have effect on cell viability (Figs 6C and 7C), were able to mimic the stimulatory effect caused by heme on the production of H₂O₂ (Figs 6A and 7A) or the activation of Na⁺/K⁺ ATPase activity (Figs 6B and 7B). Moreover, addition of 2.5 μM bilirubin and biliverdin reverted the stimulatory effect of heme on H₂O₂ production and activation of Na⁺/K⁺ ATPase activity (Fig 7A and 7B).

7. Cell signaling involved in the production of H₂O₂ and on heme-dependent activation of Na⁺/K⁺ ATPase activity

PKC was shown to be involved in the activation of Na⁺/K⁺ ATPase by heme [25]. In this sense, we investigated if phorbol ester (PMA), a potent tumor promoter that mimics diacylglycerol (DAG) in activation of PKC [40], and calphostin C, a specific and potent inhibitor of PKC...
were able to modulate heme-dependent activation of Na⁺/K⁺ ATPase activity and the increase of H₂O₂ production. No effect of PMA and calphostin C could be observed on H₂O₂ generation (Fig 8A). However, PMA was able to activate the Na⁺/K⁺ ATPase activity (Fig 8B). In addition, calphostin C suppressed the activation of Na⁺/K⁺ ATPase activity promoted by Heme (Fig 8B) and also abolished the activation of Na⁺/K⁺ ATPase activity promoted by H₂O₂ (Fig 8C). These data could be suggesting that H₂O₂-dependent activation of Na⁺/K⁺ ATPase activity would be through PKC activity.

8. H₂O₂ stimulates PKC activity

To confirm our hypothesis that in *L. amazonensis* PKC is activated by H₂O₂, we evaluated the PKC activity in the presence of heme, H₂O₂ and heme plus H₂O₂. As expected, we observed a similar increase in PKC activity in the presence of both compounds, and there was no additive effects when cells were incubated with heme plus H₂O₂ (Fig 9).

9. The effect of PEG-catalase on the Na⁺/K⁺ ATPase activity

To confirm that Na⁺/K⁺ ATPase stimulation by heme is through H₂O₂, we used catalase-polyethylene glycol (PEG-catalase), which is a scavenger of H₂O₂ that can cross the plasma.
membrane. The stimulatory effect of heme on Na\(^+\)/K\(^+\) ATPase activity was abolished in the presence of the PEG-catalase; however, as expected, the same was not seen when PMA was used (Fig 10A). While PMA activates PKC directly, heme seems to activate PKC through H\(_2\)O\(_2\) generation. The treatment with PEG-catalase did not have effect on cell viability (Fig 10B).

10. The effect of Mito-TEMPO on the production of H\(_2\)O\(_2\) and the heme-dependent activation of Na\(^+\)/K\(^+\) ATPase activity

To investigate where heme-dependent H\(_2\)O\(_2\) production was coming from, we used Mito-TEMPO, a mitochondria-targeted SOD mimetic that also reduces mitochondria electron leak and inhibits the production of all ROS, including H\(_2\)O\(_2\) [43,44]. Promastigotes cells were incubated with increasing concentrations of Mito-TEMPO and the production of H\(_2\)O\(_2\) was evaluated (Fig 11A). At 100 \(\mu\)M of Mito-TEMPO the production of H\(_2\)O\(_2\) stimulated by heme was the same as control (without heme). Mito-TEMPO was also capable of abolishing the
stimulatory effect of heme on the Na⁺/K⁺ ATPase activity (Fig 11B). In this condition, Mito-TEMPO did not interfere on cell viability (Fig 11C).

Discussion

Recent studies have demonstrated that H₂O₂ could play a key role in intracellular signal transduction through the reversible activation / inactivation of the active site of several enzymes [12, 14, 45, 46]. Protozoan parasites of genus Trypanosoma are able to generate H₂O₂ during its growth [12]. High levels of H₂O₂ produced at log phase of growth of *Leishmania amazonensis* (Fig 1) could be indicating that this molecule is important to parasite to grow. Knowledge of signal transduction pathways in protozoan parasites is extremely important, considering that understanding the cellular physiology of these organisms can help the design of new drugs and the understanding of the interaction with its host. Felibert et al [26] proposed in 1995 that the Na⁺/K⁺ ATPase activity could be involved in the generation of an electrochemical gradient of Na⁺ and K⁺ in *L. mexicana*. The Na⁺ gradient gives the energy required for the transport of nutrients and other solutes. A signaling pathway activated by heme involving phosphatidylinositol-specific phospholipase C (PI-PLC) and PKC, which leads the activation of Na⁺/K⁺ ATPase, has been described in *L. amazonensis* [25].

Leishmania PKC-like has been associated with biological properties such as interaction with host macrophages [30,47] and maintenance of ion homeostasis [25, 27, 30]. Free heme, an amphiphatic porphyrin containing iron, can catalyze the production of reactive oxygen species [6–9]. In this work, we show that promastigotes of *L. amazonensis* in the presence of 2.5 μM heme have a spike in the production of H₂O₂, reaching an amount of 74 ± 6 pmol (Fig 2). It is currently accepted that organisms have not only adapted to deal with oxidizing species but also developed mechanisms to make use of these free radicals [10]. It has been reported that ROS generated by heme activates the intestinal epithelial cells through activation of focal adhesion kinase (FAK) and the polymerization of the actin cytoskeleton [9]. In *T. brucei* and *T. cruzi*, respectively, heme-dependent ROS production was shown to modulate ecto-nucleoside triphosphatase diphosphohydrolase (E-NTPDase) activity [8] and Ca²⁺ calmodulin kinase II activity (CaMKII-like), which activates epimastigote proliferation [48]. Thus, ROS may act as second messengers, which are required in various signaling cascades [11]. In this context, we aimed to investigate if H₂O₂ could have a role in the heme-dependent stimulation of Na⁺/K⁺ ATPase activity (Fig 3A). The maximum activity, 1.16 ± 0.06 nmol Pi x h⁻¹ x mg⁻¹, was at a concentration
of 0.1 μM H₂O₂, nearly a 2-fold increase from control (Fig 3B). None of the concentrations of heme and H₂O₂ tested affected cell viability (Fig 4).

We also evaluated the heme stimulatory effect on the Na⁺/K⁺ ATPase activity and on the H₂O₂ production at log and stationary phases of L. amazonensis and no difference was observed (Fig 5A and 5B). Interestingly the Na⁺/K⁺ ATPase activity is highest in log phase of growth, probably because high levels of H₂O₂ are found (Fig 5A and 5B).

Recently, a correlation between iron uptake by ferrous iron transporter (LIT1) in L. amazonensis and an intracellular H₂O₂ increase was described [49]. In aerobic environments ferrous iron (Fe²⁺) is easily oxidized to the ferric form (Fe³⁺), but to cross the plasma membrane Fe³⁺ must be converted to Fe²⁺, the LIT1 substrate, by a ferric iron reductase [50]. In this context, and knowing that heme is a source of iron, we tested ferric chloride for the ability to induce the production of H₂O₂ and activate the Na⁺/K⁺ ATPase (Fig 6A and 6B). Ferric chloride was not able to mimic the action of heme in the production of H₂O₂ or in Na⁺/K⁺ ATPase activity. To evaluate if the signaling events occur exclusively in the presence of heme, we also tested protoporphyrin IX, cobalt protoporphyrin and tin-protoporphyrin (Fig 6A and 6B). The stimulatory effect of heme in the production of H₂O₂ or in Na⁺/K⁺ ATPase activity were not observed in the presence of these compounds.

It has been described in other models that biliverdin and bilirubin possess antioxidant activity [51,52]. In this work promastigote cells were incubated with heme in the presence or absence of bilirubin or biliverdin and tested for the ability to induce the production of H₂O₂ (Fig 7A) and activate the Na⁺/K⁺ ATPase (Fig 7B). The effect of heme was abolished in the presence of bilirubin and biliverdin, showing that in L. amazonensis they also have antioxidant activity.

In L. amazonensis PKC is involved in the pathway that leads to activation of Na⁺/K⁺ ATPase by heme [25]; however, until this work, there was no evidence of PKC modulation by hydrogen peroxide in trypanosomatids. In neutrophils and macrophages it was shown that PKC was involved in increasing ROS levels [53,54], but in this work we show that modulators of PKC activity, such as the activator PMA or the inhibitor calphostin C, were not able to modify the increased levels of H₂O₂ triggered by heme, excluding PKC participation in this process (Fig 8A). On the other hand, Na⁺/K⁺ ATPase activity increased in the presence of PMA, and the increase in activity induced by heme is abolished in the presence of calphostin C (Fig 8B). We also tested the ability of H₂O₂ to stimulate Na⁺/K⁺ ATPase activity when PKC is inhibited with calphostin C (Fig 8C), confirming that H₂O₂ does not activate Na⁺/K⁺ ATPase directly, but through PKC activation (Fig 9). Activation of PKC by ROS has been shown in several other models. In hepatocytes mitochondrial ROS generation after cell exposure to sodium arsenite (NaAsO₂) was shown to induce PKC activation, which in turn activates c-Jun N-terminal kinases (JNK), leading to the progression of apoptosis [55]. In splenic lymphocytes, radiotherapy treatment led to a decrease in the activities of antioxidant enzymes and an increase in cell oxidative damage. This effect was followed by an increase in PKC activity and activation of signaling with a cytoprotective effect [56].

To ensure that hydrogen peroxide generated by incubation with heme would be involved in the modulation of Na⁺/K⁺ ATPase activity, we used PEG-catalase (Fig 10) and mito-TEMPO (Fig 11), two known antioxidants. Both compounds were able to abolish the heme effect, showing that this process is dependent on an oxidation effect and that mitochondria are the most likely source of increased H₂O₂.

Taken together, our results show a signaling pathway that is activated by heme, causing an increase in the intracellular H₂O₂, which leads to the activation of PKC, culminating in the increase of Na⁺/K⁺ ATPase activity (Fig 12). Further investigation would be necessary to explain if heme signalization occurs through a receptor located on the promastigote plasma membrane or if heme is transported into the cell.
Acknowledgments

We thank Mr. Fabiano Ferreira Esteves, Mr. Edimilson Antônio Pereira, and Ms. Rosangela Rosa de Araújo for their excellent technical assistance. This work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author Contributions

Conceived and designed the experiments: NRM DCG JRMF. Performed the experiments: NRM DCG. Analyzed the data: NRM DCG JRMF. Contributed reagents/materials/analysis tools: JRMF. Wrote the paper: NRM DCG JRMF.

References

1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence, PLoS One. doi:10.1371/journal.pone.0035671
2. Antinori S, Schifanella L, Corbellino M (2012) Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis. 31:109–118. doi:10.1007/s10096-011-1276-0 PMID: 21533874
3. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S (2007) Cutaneous leishmaniasis, Lancet Infect Dis. 7:581–596. PMID: 17714672
4. Silveira FT, Lainson R, De Castro Gomes CM, Laurenti MD, Corbett CE (2009) Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis, Parasite Immunol. 31:423–431. doi:10.1111/j.1365-3024.2009.01116.x PMID: 19646206
5. Vannier-Santos MA, Martiny A, de Souza W (2002) Cell biology of Leishmania spp.: invading and evading, Curr. Pharm. Des. 8:297–318. PMID: 11860368
6. Balla G, Vercellotti GM, Müller-Eberhard U, Eaton J, Jacob HS (1991) Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species, Lab Invest. 64:648–655. PMID: 2030579
7. Graça-Souza AV, Silva-Neto MA, Oliveira PL (1999) Urate synthesis in the blood-sucking insect rhodnius prolixus. Stimulation by heme is mediated by protein kinase C, J Biol Chem. 274:9673–9676. PMID: 10092654
8. Leite MS, Thomaz R, Oliveira JH, Oliveira PL, Meyer-Fernandes JR (2009) Trypanosoma brucei brucei: effects of ferrous iron and heme on ecto-nucleoside triphosphate diphosphohydrolase activity, Exp Parasitol. 121:137–143. doi:10.1016/j.exppara.2008.10.018 PMID: 19027737

Fig 12. Hypothetical signaling pathway of Na+/K+ ATPase activation by increasing H2O2 production through heme and stimulation of the PKC in Leishmania amazonensis promastigotes. HR, heme receptor; H2O2, hydrogen peroxide; PKC, protein kinase C; ATP, adenosine triphosphate; ADP, adenosine diphosphate; Pi, inorganic phosphate.

doi:10.1371/journal.pone.0129604.g012
9. Barcellos-de-Souza P, Moraes JA, de-Freitas-Junior JC, Morgado-Díaz JA, Barja-Fidalgo C, Arruda MA (2013) Heme modulates intestinal epithelial cell activation: involvement of NADPHox-derived ROS signaling, Am. J. Physiol. Cell Physiol. 304:170–179.

10. Dröge W (2002) Free radicals in the physiological control of cell function, Physiol. Rev., 82:47–95. PMID: 11773609

11. Cross JV, Templeton DJ (2006) Regulation of signal transduction through protein cysteine oxidation, Antioxid Redox Signal. 8:152–158. doi: 10.1089/ars.2006.8.152 PMID: 16987034

12. Cosentino-Gomes D, Russo-Abrahão T, Fonseca-de-Souza AL, Ferreira CR, Galina A, Meyer-Fernandes JR (2009) Modulation of Trypanosoma rangeli ecto phosphatase activity by hydrogen peroxide, Free Radic. Biol. Med. 47:152–158. doi: 10.1016/j.freeradbiomed.2009.04.020 PMID: 19389470

13. Paes MC, Cosentino-Gomes D, de Souza CF, Nogueira NP, Meyer-Fernandes JR (2011) The Role of Heme and oxygen species in Proliferation and Survival of Trypanosomossma cruzi, J. Parasitol. Res. doi: 10.1155/2011/174614

14. Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR (2012) Cell Signaling through Protein Kinase C Oxidation and Activation, Int. J. Mol. Sci. 13:10697–10721. doi: 10.3390/ijms130910697 PMID: 23109817

15. Groeger G, Mackey AM, Pettigrew CA, Bhatt L, Cotter TG (2009) Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide, J. Neurochem. 109:1544–1554. doi: 10.1111/j.1471-4159.2009.06081.x PMID: 19344371

16. Severance S, Hamza I (2009) Trafficking of heme and porphyrins in metazoan, Chem Rev. 109:4596–4616. doi: 10.1021/cr9001116 PMID: 19764719

17. Chang KP, Chang CS, Sassa S (1975) Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes, Proc. Natl. Acad. Sci. U.S.A. 72:2979–2983. PMID: 810795

18. Dutta S, Furuyama K, Sassa S, Chang KP (2008). Leishmania spp.: delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway, Exp. Parasitol. 118:629–636. doi:10.1016/j.exppara.2007.11.013 PMID: 18164705

19. Galbraith RA, Mcelrath MJ (1988) Heme binding to Leishmania mexicana amazonsensis, Mol. Biochem. Parasitol. 29:47–53. PMID: 3386666

20. Carvalho S, Cruz T, Santarém N, Castro H, Costa V, Tomás AM (2009), Heme as a source of iron to Leishmania infantum amastigotes, Acta Trop. 109:131–135. doi: 10.1016/j.actatropica.2008.10.007 PMID: 19013419

21. Campos-Salinas J, Cabello-Donayre M, García-Hernández R, Pérez-Victoria I, Castany S, Gamarro F, et al. (2011) A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania, Mol. Microbiol. 79:1430–1444. doi: 10.1111/j.1365-2958.2009.07531.x PMID: 21255121

22. Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK, Hall C, et al. (2008) Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins, Nature. 453:1127–1131. doi: 10.1038/nature06934 PMID: 18418376

23. Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, et al. (2012) Heme uptake by leishmania amazonensis is mediated by the transmembrane protein LHR1, PLoS Pathog. doi: 10.1371/journal.ppat.1002795

24. Miguel DC, Flannery AR, Mittra B, Andrews NW (2013) Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence, Infect Immun. 81:3620–3626. doi: 10.1128/IAI.00687-13 PMID: 23876801

25. de Almeida-Amaral EE, Cardoso VC, Francioli FG, Meyer-Fernandes JR (2010) Leishmania amazonensis: heme stimulates (Na⁺+K⁺)ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways, Exp. Parasitol. 124:436–441. doi: 10.1016/j.exppara.2009.12.012 PMID: 20045694

26. Felibert P, Bermúdez R, Cervino V, Dawidowicz K, Dagger F, Proverbio T, et al. (1995) Ouabain-sensitive Na⁺,K⁺-ATPase in the plasma membrane of Leishmania mexicana, Mol. Biochem. Parasitol. 74:179–187. PMID: 8719159

27. de Almeida-Amaral EE, Caruso-neves C, Lara LS, Pinheiro CM, Meyer-Fernandes JR (2007) Leishmania amazonensis: PKC-like protein kinase modulates the (Na⁺+K⁺)ATPase activity, Exp. Parasitol. 116:419–426. PMID: 17475255

28. de Almeida-Amaral EE, Caruso-Neves C, Pires VM, Meyer-Fernandes JR (2008) Leishmania amazonensis: characterization of an ouabain-insensitive Na⁺-ATPase activity, Exp. Parasitol. 118:165–171. PMID: 17825292
29. Alvarez N, Robledo S, Velez ID, Robert JM, Le Baut G, Le Pape P (2002) Inhibition of parasite protein kinase C by new antileishmanial imidazolidin-2-one compounds. J. Enzyme Inhib. Med Chem. 17:443–447. PMID: 12683682
30. Alvarez-Rueda N, Biron M, Le Pape P (2009) Infectivity of Leishmania mexicana is associated with differential expression of protein kinase C-like triggered during a cell-cell contact, PLoS One doi: 10.1371/journal.pone.0007581
31. Martiny A, Meyer-Fernandes JR, de Souza W, Vannier-Santos MA (1999) Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes, Mol Biochem Parasitol 102:1–12. PMID: 10477171
32. Warren LG (1960) Metabolism of Schizotrypanum cruzi Chagas. I. Effect of culture age and substrate concentration on respiratory rate, Journal of Parasitology 46:529–539. PMID: 13783227
33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275. PMID: 14907713
34. Caruso-Neves C, Meyer-Fernandes JR, Saad-Nehme J, Proverbio F, Marin R, Lopes AG (1988) Ouabain-insensitive Na+/ATPase activity of Malpighian tubules from Rhodnius prolixus, Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 119:807–811.
35. Votyakova TV, Reynolds LJ (2004) Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch. Biochem. Biophys. 431:138–144. PMID: 15464736
36. Wilson R, Spier RE (1987) Biochemistry of hybridoma technology. Dev Biol Stand. 66:661–167. PMID: 3582745
37. Kupcho K, Somberg R, Bulleit B, Goueli SA (2003) A homogeneous, nonradioactive high-throughput fluorogenic protein kinase assay. Anal Biochem. 317:210–217. PMID: 12758259
38. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, et al. (2011) LFR1 ferric iron reductase of Leishmania amazonensis modulates host cell infection via secreted acid phosphatase, Eur J Cell Biol. 90:119. PMID: 21777699
39. ijsenmagger N, Rijnierse A, de Wit NJ, Boekschoten MV, Dekker J, Schonewille A, et al. (2013) Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation. In: Carcinogenesis 34:1628–1635. doi: 10.1093/carcin/bgt084 PMID: 2345377
40. Saitoh T, Dobkins KR (1986) Protein kinase C in human brain and its inhibition by calmodulin, Brain Research 379:196–199. PMID: 3742215
41. Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C, Biochemical and Biophysical Research Communications 159:548–553. PMID: 2467670
42. Tamaoki T, Takahashi I, Kobayashi E, Nakano H, Akinaga S, Suzuki K (1990) Calphostin (UCN1028) and calphostin related compounds, a new class of specific and potent inhibitors of protein kinase C, Advances in Second Messenger and Phosphoprotein Research 24:497–501. PMID: 1690411
43. Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol. 47:629–656. PMID: 17014364
44. Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases, Free Radic. Biol. Med. 51:1289–1301. doi: 10.1016/j.freeradbiomed.2011.06.033 PMID: 21777669
45. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 17:183–189. PMID: 15780595
46. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell. 121:443–447. PMID: 1670411
47. Vannier-Santos MA, Martiny A, Meyer-Fernandes JR, de Souza W (1995) Leishmanial protein kinase C modulates host cell infection via secreted acid phosphatase, Eur J Cell Biol. 67:112–119. PMID: 7664753
48. Nogueira NP, de Souza CF, Saraiva FM, Sultano PE, Dalmau SR, Bruno RE, et al. (2011) Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS. PLoS One. doi: 10.1371/journal.pone.0025935
49. Mittra BL, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels, J. Exp. Med. 210:401–416. doi: 10.1084/jem.20121368 PMID: 23382545
50. Flannery AR, Huynh C, Mitra B, Mortara RA, Andrews NW (2011) LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms. J. Biol. Chem. 286:23266–23279. doi: 10.1074/jbc.M111.229674 PMID: 21558274
51. Otterbein LE, Choi AM (2000). Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell Mol. Physiol. 279:1029–1037. PMID: 11076792
52. Kaur H, Hughes MN, Green CJ, Naughton P, Foresti R, Motterlini R (2003) Interaction of bilirubin and biliverdin with reactive nitrogen species, FEBS Lett. 543:113–119. PMID: 12753916

53. Graça-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL (2002) Neutrophil activation by heme: implications for inflammatory processes, Blood. 99:4160–4165. PMID: 12010821

54. Fernandez PL, Dutra FF, Alves L, Figueiredo RT, Mourão-Sa D, Fortes GB, et al. (2010) Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J Biol Chem. 285:32844–32851.

55. Das J, Ghosh J, Manna P, Sil PC (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PloS One. 5, e12602. doi: 10.1371/journal.pone.0012602 PMID: 20830294

56. Kunwar A, Narang H, Priyadarsini K.I, Krishna M, Pandey R, Sainis KB (2007) Delayed activation of PKCdelta and NFkappaB and higher radioprotection in splenic lymphocytes by copper (II)-Curcumin (1:1) complex as compared to curcumin. J. Cell. Biochem. 102, 1214–1224. PMID: 17471506