Inhibition of human pathogenic fungi by ethnobotanically selected plant extracts

Hemmung humanpathogener Pilze durch ethnobotanisch ausgewählte Pflanzenextrakte

Christine E. Ficker,1 J. T. Arnason,2 P. S. Vindas,3 L. P. Alvarez,4 K. Akpagana,4 M. Gbéassor,4 C. De Souza4 and M. L. Smith 1

1Biology Department, Carleton University, Ottawa, Ontario, Canada; 2Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; 3Herbario Juvenal Valerio Rodriguez, Universidad Nacional, Heredia, Costa Rica and 4Centre de Recherche et de Formation sur les Plantes Medicinales, Université du Bénin, Lomé, Togo

Summary

In this study, 36 extracts derived from 29 plant species selected using an ethnobotanical approach were tested for antifungal activity against a taxonomically diverse group of 13 human pathogenic fungi. We compared the inhibitory characteristics of these plant extracts with those of the commonly used antifungals, amphotericin B and ketoconazole, and the plant-derived antifungal, berberine. Several plant extracts, notably those from Zingiber officinale (ginger) and Juglans cinerea (butternut), had pronounced antifungal activity against a wide variety of fungi, including strains that were highly resistant to amphotericin B and ketoconazole. Further exploration of Z. officinale as an antifungal is warranted as this species is generally regarded as safe for human consumption.

Zusammenfassung

Es wurden 36 Extrakte von 29 Pflanzenarten auf ihre antimyzetische Aktivität gegen 13 humanpathogene Pilzarten untersucht. Die Hemmcharakteristik dieser Pflanzenextrakte wurde mit der von Amphotericin B, Ketoconazol und Berberin verglichen. Mehrere Pflanzenextrakte, besonders die von Zingiber officinale (Ingwer) und Juglans cinerea (Butternuss) zeigten eine deutliche antimyzetische Aktivität gegen ein breites Pilzspektrum einschließlich solcher Stämme, die hochresistent gegen Amphotericin B und Ketoconazol waren. Die weitere Untersuchung der antimyzetischen Aktivität von Z. officinale erscheint vielversprechend, da diese Art allgemein als sicher für menschlichen Konsum angesehen wird.

Key words: antifungal activity, plants, phytomedicine.

Schlüsselwörter: Antimyzetische Aktivität, Pflanzen, Phytomedizin.
Introduction

During the past decade there has been an increase in the number of patients with alterations in immune status associated with human immunodeficiency virus (HIV), cancer chemotherapy and organ and bone marrow transplantations. Coinciding with this rise in the immunocompromised patient population has been an increase in the incidence of human systemic mycoses (reviews in: 1–3). Amphotericin B and the azole group of antifungal agents have been used extensively in the treatment of fungal infections. Unfortunately, the widespread use of these antifungals has led to the emergence of drug resistance in several common pathogenic fungi. 4,5 In addition, fungi that were previously regarded as saprobes are now occurring on human hosts, with some of these fungal strains having an innate resistance to the presently available antifungal drugs.1,6–8

Due to this emergence of antibiotic resistant human pathogenic fungi, it is of great importance to develop new antifungal agents. The field of ethnobotanical research has expanded greatly in recent years as the value of this type of research in identifying novel therapeutics has come to be more widely recognized. 9 Using an ethnobotanical approach, this study identifies plant extracts with significant antifungal activities that are appropriate for further study and development as antifungal phytomedicines. The inhibitory characteristics of 36 extracts from 29 plant species used in traditional remedies are reported and compared with those of amphotericin B and ketoconazole. A taxonomically diverse group of human pathogenic fungi were tested to determine their susceptibilities to amphotericin B and ketoconazole, from which 13 strains were selected for use in the plant extract assays. An analysis of published literature using the NAPALERT database (obtained from the University of Illinois) revealed that, although the traditional uses of most of the plant species used in this study are well documented, few have been tested for antifungal activity against a broad range of fungi.

Materials and methods

Plant material and extract preparation

Extracts from 29 plant species (Table 1), representing 16 families, that are used in traditional remedies were obtained from the University of Ottawa Herbarium; 11 were from Togo, West Africa, 12 were from Costa Rica, Central America, and six were from Eastern Ontario, Canada. Plants were collected and preserved in alcohol in the field, then transported to the lab for processing.

The preserved plant material was ground in a blender with ethanol (1 : 3 w/v), then filtered and the solvent was roto-evaporated at 45 °C to near dryness, after which the extract was freeze-dried for 48 h to achieve complete dryness. Two hundred milligrams of the dried extract was reconstituted in 1 mL ethanol for a final concentration of 2 mg/10 μL. More than one plant part of six of the species was extracted, resulting in a total of 36 extracts.

Fungal strains and inoculum preparation

The sources of yeast-like and filamentous fungi used in this study are given in Table 2. The strains are all opportunistic human pathogens. Fungi were cultured on Sabouraud glucose agar medium at 30 °C and are maintained at Carleton University, (Ottawa, ON, Canada). All transfers of fungal strains were carried out under a biological containment hood (Bioclone2, Microzone, Ottawa, ON, Canada). Inocula of yeast-like fungi were prepared in liquid Sabouraud glucose broth and adjusted to an OD600 of ~2.0. Inocula of filamentous fungi were prepared by placing a 1 × 2 cm block of agar medium containing hyphae from the colony margin into 10 mL of Sabouraud glucose broth and fragmenting the hyphae for 1.5 min at high speed in a water-cooled Waring blender.

Disk diffusion bioassays

Fungal inoculum (150 μL) was spread onto Sabouraud glucose agar plates with a sterile bent glass rod. Three sterile 3M paper discs, 7.5 mm in diameter, were impregnated with 10 μL (2 mg) of ethanolic plant extract, allowed to air dry and placed face down on the inoculated agar surface. A negative control consisting of 10 μL DMSO and a positive control consisting of 2 mg berberine in 10 μL of ethanol were also prepared.

To test for ultraviolet light effects on antifungal activity of the plant extracts, dark and UV-light treatments were performed. For UV-light treatments, disks impregnated with plant extracts were placed onto freshly inoculated Petri dishes and irradiated with 10 W/m² for 2 h using three 20 W black light blue tubes (320–400 nm range). For dark treatments, plates were wrapped in aluminium foil for 2 h prior to incubation. All treatments were incubated in the dark at 30 °C for 48 h at which time the diameter of the fungal growth inhibition zone was recorded. An extract was classified as having antifungal activity when the diameter of the inhibition zone was ≥8 mm, 0.5 mm larger than the diameter of the paper disk. Fungi
showing growth inhibition when treated with nine (25%) or more of the plant extracts were considered extract susceptible. This value is somewhat arbitrary but serves as a frame of reference against which the antifungal susceptibility of the fungi can be compared.

Amphotericin B and ketoconazole minimum inhibitory concentration (MIC) bioassays

Antifungal susceptibility testing was based on standardized method. Minimum inhibitory concentration (MIC) values were recorded as the lowest tested concentration of antifungal activity that resulted in a prominent reduction (≥ 80%) of fungal growth. The MIC bioassays were performed in sterile, disposable microtiter plates (Costar, 96 V-shaped well). Fungal inoculum, prepared as described above, was diluted with Sabouraud glucose broth (1 : 500) to obtain ~10^5 CFU/mL. One hundred microliters of the diluted fungal inoculum was dispensed into each microtiter well. A three-fold dilution was performed from an initial amphotericin B (Sigma, Oakville, ON, Canada) or ketoconazole (Sigma, Oakville, ON, Canada) concentration of 90 μg/mL in the first microtiter well to a final concentration of 0.005 μg/mL in the second to last
microtiter well. The last well in each row served as a drug-free control. Using the three-fold dilution series resulted in a large gap of untested antifungal concentrations from 30 to 90 μg/mL. To define MIC values within this range, bioassays were subsequently repeated using a 0.25 step-wise dilution ranging from 6.8 to 90 μg/mL. Microtiter plates were sealed with parafilm and maintained stationary in the dark at 30 °C for 48 h at which time they were examined for fungal growth. The MIC assays were performed independently at least three times for each fungal strain/antifungal combination.

Results

We examined the susceptibility of 22 fungal strains to amphotericin B and ketoconazole (Table 2). For filamentous fungi, we used hyphal fragments as inoculum rather than conidia for our assays, the rationale being that inhibiting the growth of hyphae is more relevant to pathogenesis than is conidial germination. In addition, not all of the filamentous fungal strains we used readily produced conidia. Fungi with MIC values above ~2 μg/mL for amphotericin B and ~8 μg/mL for ketoconazole were considered antifungal resistant based on

Table 2 Infection types and minimum lethal concentration (MLC) values of fungal strains used in this study.

Fungal species/strain	Source¹	Infection types²	MLC values (μg/mL)	
Yeast-like				
Candida albicans (Robin) Berkhout		Systemic and subcutaneous infections	90	>90
D10	N. D. Lees		90	90
CN1A	N. D. Lees		90	90
al-1	OGH-308-1329		1.1	0.37
al-2	OGH-311-0628		1.1	0.12
al-3	OGH-312-0305		3.3	30
al-4	OGH-316-0588		1.1	0.13
al-5	OGH-316-0504		1.1	30
al-6	OGH-316-433		3.3	10
al-7	OMH-FR2853		3.3	10
Candida krusei (Castellani) Berkhout		Systemic and subcutaneous infections	3.3	10
kr-1	OGH-238-0967		3.3	10
kr-2	OMH-FR2428		1.1	3.3
Candida kefyr (Beijerinck) van Uden et Buckley		Systemic and subcutaneous infections	3.3	0.13
Candida glabrata (Anderson) Meyer et Yarrow		Systemic and subcutaneous infections	3.3	0.13
Cryptococcus neoformans (Sanfelice) Vuillemin	OMH-FR2704	Systemic and subcutaneous infections, meningitis/encephalitis	0.04	0.04
Saccharomyces cerevisiae Hansen	ATCC 48252	Systemic infections in immunocompromised patients	0.37	1.1
Wangiella dermatitidis (Kano) McGinnis	OMH-FR2236	Cutaneous infections and central nervous system	>90	30
Filamentous				
Alternaria alternata (Fries) Keissler	OMH-FR9884	Cutaneous and subcutaneous infections	0.37	0.37
Aspergillus fumigatus Fresenius	OMH-FR2837	Respiratory, subcutaneous infections	1.1	10
Fusarium oxysporum Schlechtendahl	OMH-FR6448	Keratomycosis, subcutaneous infections	90	>90
Microsporum gypseum (Bodin)				
Guirat et Grigorakis	OMH-FR2385	Tinea corporis, tinea pedis	30	30
Pseudallescheria boydii (Shear)				
McGinnis et al.	OMH-FR2625	Sinusitis, central nervous system colonizer	67.5	90
Rhizopus sp.	OMH-FR2874	Invasion of tissue and surrounding vessels	0.01	30
Trichophyton mentagrophytes (Robin) Blanchard	OMH-T2379	Tinea corporis, tinea pedis	67.5	67.5

¹ N.D. Lees, IUPUI, Indianapolis IN USA; OGH, Ontario General Hospital, Ottawa ON Canada, OMH, Ontario Ministry of Health, Toronto, ON Canada, ATCC, American type culture collection.
² Sources: 2,6,8,12,11–15.
therapeutic concentrations reported in the literature (reviews in: 1,4,11). Most of the yeast-like strains were susceptible to both antifungals at or below these concentrations, with the exception of C. albicans strains D10, CN1A, al-3 and al-5, and W. dermatitidis, which were resistant to either amphotericin B or ketoconazole, or to both. Notably, all filamentous fungi except A. alternata were resistant to at least one of the two antifungals. The amphotericin B and ketoconazole MIC values given in Table 2 are compatible with values reported for the fungal species examined, which tend to vary in a strain-specific manner.12–16 From these initial susceptibility assays, we selected 13 fungal strains that showed a wide range of susceptibility to the antifungals, and represented both yeast-like and filamentous growth forms. The strains selected were C. albicans strains al-1, D10, and CN1A, Cr. neoformans, S. cerevisiae, W. dermatitidis, A. alternata, A. fumigatus, F. oxysporum, M. gypseum, P. boydii, Rhizopus sp. and T. mentagrophytes.

The results of testing the 36 ethanolic plant extracts and berberine against these six yeast-like and seven filamentous fungi are summarized in Table 3. Notably, the plant-derived berberine is a highly effective inhibitor of a wide variety of fungi. Of the 36 crude plant extracts tested, all but six (E. hirta leaves, P. amarus leaves, V. conferta leaves, Cahaba sar, C. odorata fruit and T. pleena bark) were inhibitory to the growth of at least one fungal strain. Photoactivation of plant-derived inhibitors is commonly observed.17 Significant effects (positive or negative) on antifungal activities of plant extracts by the UV-light treatment were observed in several cases (Table 3). For example, UV-light exposure enhanced the inhibitory effects of J. cinerea bark extract on Cr. neoformans and S. cerevisiae. However, the UV-light treatment of J. cinerea wood extract caused a reduction in the zone of inhibition in disk assays with C. albicans strain D10.

Figure 1 shows a trend whereby fungal strains that are inhibited by larger numbers of extracts also tend to have larger zones of inhibition by any given extract. Using either criterion, mean inhibition zone diameter or number of plant extracts that inhibit growth (Fig. 2), we found that 11 fungi fell into one of three distinct groups. Group 1 included C. albicans strains CN1A and D10, T. mentagrophytes, W. dermatitidis and M. gypseum, all of which were neither susceptible to amphotericin B (MIC ≥ 2 µg/mL) nor to ketoconazole (MIC ≥ 8 µg/mL) but were inhibited by >25% of plant extracts. Group 2 included F. oxysporum and P. boydii, which were neither susceptible to antifungal activity nor to ≤25% of the plant extracts tested. Finally, group 3 strains, A. alternata, C. albicans strain al-1, Cr. neoformans and S. cerevisiae, were susceptible to both antifungals and to ≤25% of the plant extracts. The strains representing Rhizopus sp. and A. fumigatus fell into groups 2 and 3 as both were susceptible to amphotericin B but not to ketoconazole. Evidently, several fungi (group 1) that are not susceptible to commonly used antifungals may be inhibited by several plant-derived compounds. The C. albicans strains D10 and CN1A that are highly resistant to amphotericin B and ketoconazole, for example, are inhibited by 13 and 12 of the plant extracts, respectively. The M. gypseum strain proved to be the most susceptible to the plant-derived growth inhibitors but was not susceptible to amphotericin B or to ketoconazole. The pattern associated with group 2 suggests that the active compounds in the plant extracts have different modes of action from either of the antifungals tested. Both amphotericin B and azole antifungals target ergosterol, the major sterol component of the fungal plasma membrane (reviews in: 1,4,11,18,19). Amphotericin B, a polyene antifungal, is believed to act primarily by binding to ergosterol and forming channels in the membrane through which cellular components, particularly potassium ions, leak, thereby destroying the proton gradient and causing cell death. Ketoconazole and other azoles act primarily by inhibiting lanosterol 14-z demethylase, a cytochrome P450-dependent enzyme involved in the conversion of lanosterol to ergosterol. Azole exposure results in the accumulation of 14z-methylsterols which induce a variety of functional alterations including membrane leakiness, changes in membrane-bound enzymes and inhibition of growth. The strains CN1A and D10 have mutations that effect the P-450 ergosterol biosynthetic pathway and result in a decreased cell membrane ergosterol content and resistance to ketoconazole and amphotericin B.5,20,21 These alterations may increase the permeability of the cell membrane, and thus the sensitivity of the group 1 strains to growth inhibitors in the plant extracts. By extension, the resistance to amphotericin B and ketoconazole displayed by the fungi in group 2, F. oxysporum and P. boydii, is likely achieved by a different mechanism than alterations in the cell membrane ergosterol content, as these fungi are also quite resistant to inhibition by the plant extracts. Other potential means of resistance, including altered uptake mechanisms and increased activity of efflux pumps (review in: 4), may result in general insensitivity to a wide variety of inhibitors. Because of the overall resistance of the pathogens belonging to group 2, inhibitors of fungi in this group should be actively pursued.

Plant extracts with inhibitory activity against five or more fungal strains included M. charantia leaves.
Table 3 Growth inhibition of fungi by plant extracts.

Agent tested	Cn	Sc	al-1	D10	CNTA	Wd	Aa	Af	Fo	Mg	Pb	Rh	Trm			
Togo																
E. hirta (l)																
E. odoratum (l)																
H. madagascariensis (l)	9.5		11.5		9.5		9.5		13.2		20.2		11.5		11.5	
M. charantia (l)																
P. amarus (l)																
P. mutica (l)																
P. guajave (l)																
T. guineensis (l)	9.5															
V. conferta (l)		9.5														
X. americana (l)	11.5*															
Z. officinale (l)	9.5															
Costa Rica																
Cabralea spp. (b)																
C. odorata (b)																
C. odorata (f)																
C. odorata (l)																
C. salvadorensis (w)	10.8	9.5														
P. tuberculatum (l)	10.8		9.5		9.5											
P. glabrum (l)					10.8	12.8										
P. panamense (l)						12.8	13.5	10.8		11.5		10.8		9.5		
R. aromatica (l)						12.8	11.5	12.8*								
S. mahogoni (w)						13.5	13.5									
T. americana (f)						11.5*										
T. americana (l)						9.5										
T. glabra (f)	10.8		9.5		9.5											
T. pkeana (w)						9.5										
T. pkeana (b)																
T. triflora (w)	9.5															
Eastern Canada																
A. rubrum (b)																
A. saccharum (b)																
B. papyrifera (w)	9.5															
J. cinerea (b)	14.2*	14.8*		13.5	12.2	21.5	24.2	11.5	11.5	13.5	11.5	9.5	12.2	11.5	11.5	11.5
P. serotina (b)	14.8*		27.5*		9.5		17.5	13.5	15.5	14.2						
P. serotina (w)	12.8*										10.8	11.5				
J. cinerea (w)	19.5	17.5	9.5	10.5		12.2*	14.2*	18.8	22.2							
Z. officinale rhizome, J. cinerea bark, Q. rubra bark and P. serotina wood. Of the extracts tested, J. cinerea bark and Z. officinale rhizome demonstrated the broadest range of antifungal activity, measured as either the number of fungi inhibited or as the average diameter of

Figure 1 Correlation between mean inhibition zone diameters and number of plant extracts that inhibit fungal strains (from Table 3).

Figure 2 Comparison of inhibition of fungal strains by ketoconazole (open squares) or amphotericin B (closed triangles) and by plant extracts. Susceptibility to ketoconazole and amphotericin B is considered to be about $\geq 2 \mu g/mL$ and $\geq 8 \mu g/mL$, respectively. Fungi that were inhibited by nine (25%) or more of the 36 plant extracts tested were considered extract sensitive. C. albicans strains al-1 (a1), CN1A (1A) and D10, T. mentagrophytes (Tm), W. dermatitidis (Wd), M. gypseum (Mg), F. oxysporum (Fo), P. boydii (Pb), Rhizopus sp., (Rh)A. fumigatus (Af), A. alternata (Aa), C. neoformans (Cn), S. cerevisiae (Sc).

$R^2 = 0.94$
the zones of inhibition. Fungi inhibited by *J. cinerea* bark and *Z. officinale* rhizome included those in group 2. Of particular interest, only the *Z. officinale* rhizome extract exhibited activity against the *Rhizopus* sp. strain that was not inhibited by berberine, ketoconazole or any other plant extracts tested. Likewise, *J. cinerea* bark was the only extract inhibiting the growth of the amphotericin B- and ketoconazole-resistant *F. oxysporum* strain.

Discussion

Additional antifungal agents must be developed to successfully control the new and emerging human fungal pathogens resistant to available antifungals. Intense selective pressure on plants by fungal pathogens has resulted in the evolution of a wide range of phytochemicals with antifungal activity. In this study, a survey of plant species important in traditional medicines was conducted to identify species with antifungal activity. Their traditional uses suggest that these plants are favored by low overall toxicity to humans. While none of the extracts from these plant species inhibited growth of all fungal strains, several extracts, especially those from *J. cinerea* bark and *Z. officinale* rhizome, were identified as having pronounced antifungal activities toward a wide range of fungi.

J. cinerea bark was previously found to be a potent antibacterial agent. The antimicrobial activity of *J. cinerea* is thought to be the result of the presence of quinones. The potential toxicity of quinones renders these extracts unsafe for use against systemic mycoses but is of potential value as a topical antifungal. Extracts of *Z. officinale* have been reported to possess numerous biological activities and have been used extensively in antinausea clinical trials, including trials conducted in pregnant women. As adverse side-effects have not been reported in any of the clinical trials, *Z. officinale* is generally regarded as safe for human use and further investigation into the antifungal activity of this species and its possible use as a phytomedicine is warranted.

Acknowledgements

This work was funded by Research Grants to MLS and JTA through the Natural Sciences and Research Council of Canada (NSERC).

References

1. Graybill JR. The future of antifungal therapy. *Clin Infect Dis* 1996; 22 (Suppl. 2): S166–S178.

2. Perfect JR, Schell WA. The new fungal opportunists are coming. *Clin Infect Dis* 1996; 22 (Suppl. 2): S112–S118.

3. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. *Clin Microbiol Rev* 1998; 11: 382–402.

4. Alexander BD. Perfect JR. Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches. *Drugs* 1997; 54: 657–78.

5. Jensen-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M. Sequencing, disruption and characterization of the *Candida albicans* sterol methyltransferase (ERG6) gene: drug susceptibility studies in *erG6* mutants. *Antimicrob Agents Chemother* 1998; 42: 1160–7.

6. Anaissie EJ, Bodey GP, Rinaldi MG. Emerging fungal pathogens. *Eur J Clin Microbiol Infect Dis* 1989; 8: 323–30.

7. Walsh M, White L, Atkinson K, Enno A. Fungal *Pseudallescheria boydii* lung infiltrates unresponsive to amphotericin B in leukaemic patients. *Aust N Z J Med* 1992; 22: 265–8.

8. Varttianen SE, Anaissie EJ, Bodey GP. Emerging fungal pathogens in immunocompromised patients: classification, diagnosis, and management. *Clin Infect Dis* 1993; 17 (Suppl. 2): S487–91.

9. McCutcheon AR, Ellis SM, Hancock REW, Towers GN. Antimicrobial screening of medicinal plants of the British Columbian native peoples. *J Ethnopharmacol* 1992; 37: 213–23.

10. Rex JH, Pfaffer MA, Walsh TJ et al. Antifungal susceptibility testing: practical aspects and current challenges. *Clin Microbiol Rev* 2001; 14: 643–58.

11. Vanden Bossche H, Willemens G, Marichal P. Anti-*Candida* drugs – the biochemical basis for their activity. *CRC Crit Rev Microbiol* 1987; 15: 57–72.

12. Del Poeta M, Barchiese F, Morbiducci V, et al. Comparison of broth dilution and semisolid agar dilution for *in vitro* susceptibility testing of *Cryptococcus neoformans*. *J Chemother* 1994; 6: 173–6.

13. Franzot SP, Hamdan JS. *In vitro* susceptibilities of clinical and environmental isolates of *Cryptococcus neoformans* to five antifungal drugs. *Antimicrob Agents Chemother* 1996; 40: 822–4.

14. Pujol I, Guarro J, Gené J, Sala J. *In vitro* antifungal susceptibilities of clinical and environmental *Fusarium* spp. strains. *J Antimicrob Chemother* 1997; 39: 163–7.

15. Wildfleuer A, Seidi HP, Paule I, Haberreiter A. *In vitro* evaluation of voriconazole against clinical isolates of yeasts, moulds and dermatophytes in comparison with itraconazole, ketoconazole, amphotericin B and griseofulvin. *Mycoses* 1998; 41: 309–19.

16. Daynaoui E, Persat F, Monier M-F, Borel E, Piens M-A. Picot S. *In vitro* susceptibility of *Aspergillus* spp. isolates to amphotericin B and itraconazole. *J Antimicrob Chemother* 1999; 44: 553–5.

17. Omar S, Lemonnier B, Jones N, et al. Antimicrobial activity of extracts of eastern North American hardwood trees and...
relation to traditional medicine. *J Ethnopharmacol* 2000; **73**: 161–70.

18 DeMuri GP, Hostetter MK. Resistance to antifungal agents. *Microb Resist Pediatr* 1995; **42**: 665–85.

19 VandenBosche H, Warnock DW, Dupont B. *et al.* Mechanisms and clinical impact of antifungal drug resistance. *J Med Vet Mycol* 1994; **32**: 189–202.

20 Bard M, Lees ND, Barbuch RJ, Sanglard D. Characterization of a cytochrome P450 deficient mutant of *Candida albicans*. *Biochem Biophys Res Commun* 1987; **147**: 794–800.

21 Broughton MC, Bard M, Lees ND. Polyene resistance in ergosterol producing strains of *Candida albicans*. *Mycoses* 1991; **34**: 75–83.

22 Mahoney N, Molyneux RJ, Campell BC. Regulation of aflatoxin production by napthoquinones of walnut (*Juglans regia*). *J Agricult Food Chem* 2000; **48**: 4418–21.

23 Oloke JK, Kolawole DO, Erhun WO. Antimicrobial effectiveness of six paradols. 1: a structure-activity relationship study. *J Ethnopharmacol* 1989; **25**: 109–13.

24 Roth GN, Chandra A, Nair MG. Novel bioactivities of *Curcuma longa* constituents. *J Nat Prod* 1998; **61**: 542–5.

25 Goto C, Kasuya S, Koga K, Ohtomo H, Kagei, N. Lethal efficacy of extract from *Zingiber officinale* (traditional Chinese medicine) or [6]-shogaol and [6]-gingerol in *Anisakis* larvae in vitro. *Parasitol Res* 1990; **76**: 653–6.

26 Habsah M, Amran M, Mackeen MM. *et al.* Screening of *Zingiberaceae* extracts for antimicrobial and antioxidant activities. *J Ethnopharmacol* 2000; **72**: 403–10.

27 Mowrey DB, Clayson DE. Motion sickness, ginger, and psychophysics. *Lancet* 1982; **20**: 655–7.

28 Wood CD, Manno MJ, Wood BR, Mims, ME. Comparison of ginger with various antimotion sickness drugs. *Clin Res Practices Drug Regulat Affairs* 1988; **6**: 129–36.

29 Bone ME, Wilkinson DJ, Young JR, McNeil J, Charlton S. Ginger root—a new antiemetic. The effect of ginger root on postoperative nausea and vomiting after major gynecological surgery. *Anaesthesia* 1990; **45**: 669–71.

30 Fischer-Rasmussen W, Kjaer SK, Dahl C, Asping U. Ginger treatment of hyperemesis gravidarum. *Eur J Obstet Gynecol Reprod Biol* 1990; **38**: 19–24.

31 Arnason JT, Hebda R, Richard J, Johns T. Use of plants for food and medicine by Native peoples of eastern Canada. *Can J Bot* 1981; **59**: 2189–325.

32 Kwon-Chung KJ, Bennett J. *Medical Mycology*. Philadelphi-a: Lea & Febiger, 1992.

33 Abbas J, Bodey GP, Hanna HA, *et al.* *Candida krusei* fungemia. An escalating serious infection in immunocompromised patients. *Arch Intern Med* 2000; **160**: 2659–64.

34 Romano C, Asta F, Massai L. Tinea incognito due to *Microsporum gypseum* in three children. *Pediatr Dermatol* 2000; **17**: 41–4.

35 Fidel PL Jr., Vazquez JA, Sobel JD. *Candida glabrata*: review of epidemiology, pathogenesis and clinical disease with comparison to *C. albicans*. *Clin Microbiol Rev* 1999; **12**: 80–96.

36 Sternitz FR, Lorenz P, Twawer RN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5’methoxyhynocarpin, a multidrug inhibitor. *Proc Natl Acad Sci USA* 2000; **97**: 1433–7.