Demystifying the long noncoding RNA landscape of small EVs derived from human mesenchymal stromal cells

Chien-Wei Lee a,b,c, Yi-Fan Chen d,e,f,g, Allen Wei-Ting Hsiao h, Amanda Yu-Fan Wang h, Oscar Yuan-Jie Shen i, Belle Yu-Hsuan Wang h, Lok Wai Cola Ho j, Wei-Ting Lin k, Chung Hang Jonathan Choi j,l, Oscar Kuang-Sheng Lee m,n,*

a Department of Medicine Research, China Medical University Hospital, Taichung, Taiwan
b Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
c School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
d The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11529, Taiwan
e Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
f International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
g Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
h Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
i Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
j Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
k School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
l Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taiwan
m School of Orthopedics, China Medical University Hospital, Taichung, Taiwan
n Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan

HIGHLIGHTS

• Cell-type specificity orchestrates the IncRNA signatures in small EVs (sEVs).
• IncRNA pattern in sEVs is distinct from their parental cells.
• MSC-sEV-specific and enriched IncRNAs were identified as medicinal signaling IncRNAs.
• IncRNA landscape of MSC-sEVs is responded to inflammatory cytokines.
• IncRNA-protein interactome associates with nuclear activity and chromatin remodeling.

GRAPHICAL ABSTRACT

https://doi.org/10.1016/j.jare.2021.11.003
2090-1232/© 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Mesenchymal stromal cells, also known as medicinal signaling cells [1] (MSCs), have been hailed as a putative panacea for immunomodulation and regeneration medicine [2–6]. Over the last decade, applications of MSCs have shown satisfactory outcomes in numerous preclinical investigations and human clinical trials [7–9]. Moreover, MSC-sEVs have recently drawn enormous attention because of their broad therapeutic potential in various diseases, similar to their parental cells of origin [8,10], and most importantly, there have no associated practical safety issues [11].

sEVs, lipid bilayer particles < 200 nm in diameter, are released from budding membranes of multivesicular bodies in most cell types. sEVs play a crucial role in intercellular communication and homeostasis by horizontally transferring miRNAs, lncRNAs, tRNAs, mRNAs, genomic DNA, mitochondrial DNA, lipids, proteins, and even metabolites to recipient cells through plasma membrane fusion [12–16]. lncRNAs are defined as transcripts exceeding 200 nucleotides (nt) but not belonging to any other class of noncoding RNAs. LncRNAs have been implicated in diseases, cellular functions, and as potential therapeutics by regulating gene expression at the transcriptional and posttranscriptional levels via biological molecular interactions [17]. Recent reports have indicated that lncRNAs present in MSC-sEVs possess regenerative potential in wound healing [18], osteoarthritis [19], and acute myocardial infarction [20] through diverse mechanisms. However, these studies applied a candidate approach to select specific lncRNAs within MSC-sEVs and evaluated their therapeutic capability, and this approach may obscure/overlook the quantity variance and plenary effect of lncRNAs in MSC-sEVs. Rather than one individual molecule within the vesicles, the therapeutic ability of MSC-sEVs depends on the synergism of their intricate and numerous contents, which target different therapeutic pathways in recipient cells.

The concept of transplanted MSC adaptation to new environments [21] has been applied to enhance the regenerative efficacy of these cells in vitro for specific therapeutic applications. Enhancing the therapeutic ability of MSCs by genetic or culture conditions, which is also called licensing or priming, is an emerging strategy in the field of MSC-sEV-based therapy [4]. Inflammation is highly associated with tissue injury and diseases and can be either beneficial or deleterious to tissue regeneration [22]. The inflammatory cytokines TNF-α and IFN-γ stimulate MSCs in vitro, which partly mimics the in vivo environments of various diseases [23] and is reported to augment the immunomodulatory and tissue regenerative ability of MSC-sEVs [24–29]. Although the expression profiles of proteins and miRNAs in MSC-sEVs have been described and their functions in tissue regeneration have been annotated [24,30–34], the lncRNA landscape of MSC-sEVs remains largely undescribed. Before application in clinical therapies, it is a sine-qua-non to comprehensively and meticulously investigate lncRNAs within MSC-sEVs, including their favorable and putative undesirable side effects.

To fill this critical knowledge gap, the first goal of this study was to systematically describe the lncRNA landscape of sEVs derived from human adipose-derived MSCs and identify MSC-specific and MSC-enriched lncRNAs, which are defined as medicinal signaling lncRNAs. The second objective was to delineate licensing-responsive lncRNAs of MSC-sEVs under inflammatory stimulation. Cataloging medicinal signaling lncRNAs and licensing-responsive lncRNAs in sEVs derived from naïve MSCs and inflammation-licensed MSCs will have far-reaching implications in defining therapeutic sEVs and strengthen the fundamental understanding of MSCs for the development of next-generation MSC-based therapies.

Material and methods

Cell culture and characterization

Good Manufacturing Practices (GMP)-Grade human adipose-derived MSCs (Steminent Biotherapeutics Inc., Taiwan) were cul-
tured in MSC maintenance medium consisting of IMDM, 10% FBS (#10270106, Gibco®, Thermo Fisher Scientific, Waltham, MA, USA), 10 ng/mL bFGF (#233-FB, R&D Systems, Minneapolis, MN, USA) and 1% PS (#10378016, Gibco®). Human skin fibroblasts (#GM08429, Coriell Institute, Camden, NJ, USA) were cultured in alpha MEM supplemented with 15% FBS and 1% PS at a seeding density of 3000 cells/cm², and the cells were subcultured after reaching confluence. MSC characteristics were confirmed according to the minimal criteria defined by the International Society for Cell and Gene Therapy (ISCT) [35]. Surface markers were analyzed using a FACSaria Fusion Cell sorter and Cell Analyzer (BD Biosciences, San Jose, CA, USA). Primary antibodies for flow cytometry were as follows: anti-CD105, anti-CD90, anti-CD73, anti-CD34, anti-CD45 and anti-CD11b (#800505, #328107, #344015, BioLegend, San Diego, CA, USA). Primary antibodies for flow cytometry were analyzed using a FACSAria Fusion Cell sorter and Cell Analyzer (BD Biosciences, San Jose, CA, USA), and the cells were subcultured after reaching confluence. MSC characteristics were confirmed according to the minimal criteria defined by the International Society for Cell and Gene Therapy (ISCT) [35]. Surface markers were analyzed using a FACSaria Fusion Cell sorter and Cell Analyzer (BD Biosciences, San Jose, CA, USA). Primary antibodies for flow cytometry were as follows: anti-CD105, anti-CD90, anti-CD73, anti-CD34, anti-CD45 and anti-CD11b (#800505, #328107, #344015, BioLegend, San Diego, CA, USA). Primary antibodies for flow cytometry were analyzed using a FACSAria Fusion Cell sorter and Cell Analyzer (BD Biosciences, San Jose, CA, USA), and the cells were subcultured after reaching confluence. MSC characteristics were confirmed according to the minimal criteria defined by the International Society for Cell and Gene Therapy (ISCT) [35]. Surface markers were analyzed using a FACSaria Fusion Cell sorter and Cell Analyzer (BD Biosciences, San Jose, CA, USA). Primary antibodies for flow cytometry were as follows: anti-CD105, anti-CD90, anti-CD73, anti-CD34, anti-CD45 and anti-CD11b (#800505, #328107, #344015, BioLegend, San Diego, CA, USA); and 1:100 dilution. Multidifferentiation capacities were assessed by alkaline phosphatase and Oil Red O, as previously described [9,36].

MSC sEV isolation and characterization

Cells were washed with PBS three times to remove the maintenance medium and FBS-derived exogenous EVs, and the cells were treated with or without 20 ng/mL TNF-α and 20 ng/mL IFN-γ (#210-TA, #285-IF, R&D Systems) for 48 h under serum-free conditions to avoid FBS-derived exogenous EV interference. The conditioned medium was centrifuged at 3000 × g for 20 min and filtered through 0.22-μm filters to remove detached cells and debris. The filtered conditioned medium was then concentrated using 30-kDa Vivaspin (#28–9323-61, GE Healthcare, Chicago, IL, USA) devices to an appropriate concentration at 4°C. sEVs were then isolated from the concentrated conditioned medium using Exo-PREP (#HBM-EXP-C25, HansaBioMed Life Sciences Ltd, Tallinn, Estonia), resuspended in PBS and characterized according to suggestions from the International Society for Extracellular Vesicles [37,38].

Transmission electron microscopy (TEM)

The morphology of sEVs was observed by transmission electron microscopy (Hitachi H-7700, Tokyo, Japan). Twenty microliters of sEVs was dropped onto a carbon-coated formvar film (#FC200Cu100, EM Resolution, South Yorkshire, United Kingdom) for 15 min and then fixed with 1% glutaraldehyde (#G6257, Sigma-Aldrich, St. Louis, MO, USA) for 15 min. The grid was washed with ddH2O twice and stained with 2% uranyl acetate (#22400, Electron Microscope Science, Hatfield, PA, USA). After washing with ddH2O, the sEVs were air-dried and imaged with H-7700 operating at 100 keV.

Nanoparticle tracking analysis (NTA)

The number and size distribution of sEVs was measured using NTA version NTA 3.1.45 (Nanosight NS300, Malvern Panalytical, Malvern, United Kingdom). For measurement, the instrument preacquisition parameters were set to 24°C, with a slider gain of 15, a slider shutter of 165, and a frame rate of 25 frames per second (fps). sEVs were diluted in various amounts of filtered PBS to determine the optimal concentration for analysis. These measurements were analyzed by dedicated NanoSight NTA software, with a detection threshold of 2, autoburst size, and a maximum jump distance of 14.2 pixels. The mean and mode diameter and the concentrations of sEVs were recorded.

Western blotting

MSCs and sEVs were lysed in RIPA buffer (#ab156034, Abcam, Cambridge, UK) with 1X protease/phosphatase inhibitor (#1861281, Thermo Fisher Scientific), and the protein content was measured by BCA analysis (#23225, Thermo Fisher Scientific). For western blotting, protein samples were separated on polyacrylamide gels and transferred to PVDF membranes (#IPVH00010, Merck Millipore, Massachusetts, USA). The membranes were incubated with 5% bovine serum albumin (#A9647, Sigma-Aldrich) followed by probing with primary antibodies overnight at 4°C and then washing with HRP-conjugated secondary antibodies for 1 h at room temperature. A chemiluminescent substrate (#34095, Thermo Fisher Scientific) was added to the membranes, and images were acquired with the ChemiDoc MP imaging system (Bio-Rad, Hercules, CA, USA). The following primary antibodies were used: CD63 antibody (#NB92-42255s, Novus Biologicals, Centennial, USA), CD9 antibody (#10626D, Invitrogen, Carlsbad, CA, USA), and β-actin antibody (#sc-47778, Santa Cruz).

RNA isolation, RNA sequencing and quantitative real-time PCR

RNA was extracted by TRIzol (#15596018, Invitrogen). The RNA content and quality were determined by a NanoDrop (Thermo Fisher Scientific) and an Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Samples with an OD260/OD230 > 1.8, OD260/OD280 ratio of approximately 2.0, and RNA integrity ≥ eight were subjected to RNA sequencing using an Illumina HiSeq 2500. For quantitative PCR, cDNA was transcribed by a High-Capacity cDNA Reverse Transcription Kit (#4368814, Applied Biosystems, Foster City, CA, USA). Quantitative real-time PCR was performed by using a QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with Fast SYBR® Green Master Mix (#4385612, Thermo Fisher Scientific). The primers are listed in Table S1.

LncRNA expression analysis

Quality control of the RNA sequencing data was conducted using FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.11.7). Ensembl Automatic Gene Annotation System (http://www.ensembl.org) and GENCODE version 27 [39] were used to annotate and evaluate LncRNA expression. Transcripts with <200 base pairs were filtered out. The transcript abundance of LncRNAs between each sample was normalized with transcripts per million (TPM). We conducted differential expression (DE) analysis with the limma package [40] (version 3.42.2; http://bioconductor.org/packages/release/bioc/html/limma.html) in R 3.6.3 (RStudio Team (2020)). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ to identify DE LncRNAs according to thresholds of the absolute value of log2-fold-change (log2 FC) > 1 and a P value < 0.05. The volcano plot of DE LncRNAs was generated with GraphPad Prism 8.

LncRNA-protein interactome predictions

To predict LncRNA-protein interactions, we used the computationally expensive protein–RNA interaction prediction method catRAPID [41] with the large database RNAct (https://rnact.crg.eu/). The catRAPID algorithm is based on X-ray and nuclear magnetic resonance (NMR) structures to estimate the interaction propensity of RNA–protein pairs through van der Waals forces, secondary structures, and hydrogen bonding. Briefly, upregulated DE LncRNAs in datasets (medicinal signaling LncRNAs and licensing-responsive LncRNAs) were loaded into RNAct to predict interacting proteins, and the predicted target proteins were used to generate protein reactomes by using the Reactome database (version 75;
Our results indicate that both naïve MSCs and L-MSCs liberate sEVs, though L-MSCs produced more sEVs than naïve MSCs. Our results suggest that licensing MSCs with TNF-α and IFN-γ enhances sEV production without affecting morphology.

Investigation of lncRNAs in sEVs derived from human fibroblasts, MSCs and L-MSCs

We applied high-throughput lncRNA sequencing to comprehensively analyze lncRNA signatures of sEVs from naïve MSCs and L-MSCs without bias and compared them with those from human F-sEVs obtained from public databases [45,46]. The total lncRNA counts in both MSC- and L-MSC-sEVs were higher than those in F-sEVs; the total abundance of lncRNAs in L-MSC-sEVs was higher than that in MSC-sEVs (Fig. 4A). The distribution of transcripts per kilobase million (TPM) values was significantly distinct in each group. The TPM distribution of F-sEVs was higher than that of both MSC-sEV groups (Fig. 4B), and licensing reduced the TPM distribution, suggesting an increase in low-abundance IncRNAs in L-MSC-sEVs (Fig. 4B). The length distribution ratio of IncRNAs is depicted in Fig. 4C. There was no significant difference among the groups (Table S2). The two major ranges of IncRNAs were 100,000 to 10,000 nt and 5,000 to 1,000 nt in all groups. In detail, IncRNAs in naïve MSC-sEVs ranged from 74 to 440,879 nt in length, those in licensed MSC-sEVs ranged from 74 to 475,377 nt in length, and those in F-sEVs ranged from 93 to 440,879 nt. We classified the sEV-IncRNAs into nine subclasses according to the biogenesis and structure of IncRNAs [49] (Fig. 4D), with no significant difference among all groups (Table S3). The primary types of IncRNAs in sEVs were antisense RNA and lincRNA, together accounting for 74%–78% of all IncRNAs in all groups.

To investigate the distribution of the sEV lncRNA reference genome, we visualized the chromosomal distribution of IncRNAs by Circos (Fig. 4E, left panel). Most IncRNAs in sEVs are transcribed from chromosomes 1 and 17 (Fig. 4E right panel). Widespread lncRNA distribution along all chromosomes and the distinct distribution within a chromosome between three groups indicated that the lncRNAs identified were not transcriptional noise (Fig. 4E, left panel). In general, the differences in TPM distribution, length, types, and chromosome distribution of IncRNAs indicated that both lineage specificity and unique microenvironments govern lncRNA proportions in sEVs.

lncRNA landscape in sEVs derived from human fibroblasts and MSCs

Through correlation coefficient analysis, we found that the lncRNAs of MSC-sEVs were distinct from those of F-sEVs; surprisingly, lncRNAs of MSC-sEVs and L-MSC-sEVs correlated highly (Fig. 5A). A total of 132, 233, and 496 IncRNAs were identified in F-sEVs, MSC-sEVs, and L-MSC-sEVs, respectively. Comparing F-sEVs and MSC-sEVs, 93 IncRNAs were expressed only in F-sEVs, and 194 IncRNAs were only present in MSC-sEVs; only 39 IncRNAs were identified in both sample pools. Because MSC-sEVs, but not F-sEVs, possess therapeutic potential, 194 MSC-specific IncRNAs were considered potential medicinal signaling IncRNAs. Overall, 389 IncRNAs were gained and 129 IncRNAs lost after licensing compared with MSC-sEVs. Among the three groups, 89 IncRNAs were expressed exclusively in F-sEVs, 121 IncRNAs were only expressed in MSC-sEVs, and 385 were newly observed in L-MSC-sEVs. Only 34 IncRNAs were identified across the three sample pools (Fig. 5B). These results suggest that cell-type specificity orchestrates the disparate lncRNA signatures in sEVs for unique sEV-mediated intercellular communication between various cell types. Although the lncRNA profile of sEVs responds to microenvironmental stimulation, lineage specificity might restrict changes.

The ranking of lncRNA expression levels in sEVs was ordered according to TPM value, and the top 10 enriched lncRNAs of the...
Human MSCs were stimulated with TNF-α and IFN-γ for 48 h under serum-free conditions. After removing debris and concentrating the conditioned medium, EVs released by naïve MSCs and licensed MSCs (MSC-sEVs and L-MSC sEVs) were isolated by Exo-PREP. The EVs were characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blotting. High-throughput RNA sequencing was used to identify expression profiles of lncRNAs in EVs. Quality control of the RNA sequencing data was conducted using FastQC software. High-quality lncRNAs were obtained by mapping, annotation and filtering. LncRNA classification and distribution were analyzed by bioinformatics tools. Differential expression (DE) analysis was conducted, followed by quantitative PCR-based biological validation. LncRNA-interacting proteins were identified by a computational prediction method, catRAPID. The gene ontology, protein interactome and reactome of lncRNA-interacting proteins were further deciphered using online tools, the PANTHER classification system, GeneMANIA and Reactome.
three groups are listed in Tables 1–3. The top 10 enriched lncRNAs in sEVs accounted for the vast majority in sEVs in each group, indicating that most lncRNAs in sEVs are present at a low level. Interestingly, the top 10 expressed lncRNAs in the three groups highly overlapped (Fig. 5C). The abundance of each enriched lncRNA in F-sEVs was relatively average compared with those of MSC-sEVs and L-MSC-sEVs. LncRNA AC051619.8, with the highest abundance in both MSC-sEVs and L-MSC-sEVs, accounted for 69.57% and 98.28% of all lncRNAs, respectively, though it comprised only 0.8% of lncRNAs in F-sEVs. Such extreme expression of AC051619.8 in both MSC-sEVs and L-MSC-sEVs explains the high correlation coefficients between the two groups. On the other hand, several enriched lncRNAs in MSC-sEVs were not exclusive. For instance, FP236383.3, FP236383.2, and AD000090.1 were enriched in both MSC-sEVs and F-sEVs, suggesting that they are nonlineage-specific lncRNAs.

Compared with F-sEVs, the top 10 new loading lncRNAs in MSC-sEVs, such as LINC00623, LINC00317 and SNHG20, compared with F-sEVs are shown in Fig. 5D. Fig. 5E illustrates the top 10 newly loaded lncRNAs after licensing, such as MINCR, TTTY19, and AC087897.2. The details of the top 10 newly loaded lncRNAs of the two datasets are given in Tables S4 and S5. Interestingly, increasing the TPM cutoff value to reduce potential sequencing noise between samples dramatically decreased the numbers of identified lncRNAs in MSC-sEVs (70.4% decrease) and L-MSC-sEVs (88.1% decrease), indicating that most lncRNAs in MSC-sEVs are expressed at low abundance (Fig. 5F). As we identified more lncRNAs in L-MSC-sEVs than in MSC-sEVs (Fig. 5B), licensing might
increase the heterogeneity of sEV lncRNAs by altering newly loaded lncRNAs with low abundance.

To identify potential medicinal signaling lncRNAs and licensing-responsive lncRNAs, we performed DE analysis between two datasets: (I) MSC-sEVs and F-sEVs and (II) MSC-sEVs and L-MSC-sEVs. A total of 224 and 55 lncRNAs were found to be significantly different in MSC-sEVs vs. F-sEVs and in MSC-sEVs vs. L-MSC-sEVs, respectively (Fig. 5G-H). We detected 224 DE lncRNAs in MSC-sEVs through comparison with F-sEVs. Among them, 8 upregulated DE lncRNAs were considered a cluster of medicinal signaling lncRNAs (fold change > 2 and P value < 0.05) (Fig. 5G). For instance, lncRNA LINC00623 was an upregulated DE lncRNA in MSC-sEVs and also the most enriched new loading lncRNA (Fig. 5D). LINC00623 has been reported to ameliorate osteoarthritis [50], indicating medicinal signaling potential. Additionally, we found 54 licensing-responsive lncRNAs, including 27 DE upregulated and 27 downregulated DE lncRNAs, in L-MSC-sEVs (Fig. 5H). The lncRNA MINCR, upregulated by licensing, was also the top 1 newly expressed loading lncRNA in L-MSC-sEVs; it has been reported to promote proliferation and migration by activating Wnt/β-catenin signaling [51–53]. The top 20 DE lncRNAs between MSC-sEVs vs. F-sEVs and MSC-sEVs vs. L-MSC-sEVs are listed in Tables S6 and S7, respectively. To verify the accuracy of the lncRNA sequencing data, we conducted quantitative PCR on randomly selected DE lncRNAs from the two datasets. Consistent with the sequencing results, quantitative PCR showed that LINC00623, ZNF436-AS1 and LINC00637 were more highly expressed in MSC-sEVs than in F-sEVs (Fig. 5 I) and that AC051619.8 and MINCR, but not AC10967.2, were increased in L-MSC-sEVs compared with MSC-sEVs (Fig. 5J).
The field of lncRNA research is still in its infancy, and most of the lncRNAs identified in this study have not yet been annotated. Because MSC-sEV lncRNAs are unlikely to regulate recipient genes in a cis-acting manner [54], i.e., regulating transcription of neighboring mRNAs at loci where they are transcribed, we sought to gain insight into the function of MSC-sEV lncRNAs through interacting proteins. To investigate medicinal signaling lncRNA- and licensing-responsive lncRNA-protein interactomes, we predicted interacting proteins of the upregulated DE lncRNAs in the two datasets using catRAPID in conjunction with the RNAct database. By estimating the interaction propensity of RNA-protein pairs through van der Waals forces, secondary structures, and hydrogen bonding contributions, a total of 301 and 452 proteins are predicted to interact with medicinal signaling lncRNAs and licensing-responsive lncRNAs, respectively; 251 predicted proteins were found in both sample pools (Fig. 6A). The details of the predicted proteins are provided in Supplemental material 1–3).

To delineate categories of the lncRNA-protein interactome, we performed Gene Ontology network analysis to decipher biological processes, molecular functions and cellular components in which medicinal signaling lncRNAs and licensing-responsive lncRNAs are implicated. Both medicinal signaling lncRNA- and licensing-responsive lncRNA-protein interactomes were enriched with similar annotations (Fig. 6B). Regarding the above GO categories, both interactomes were significantly associated with terms including binding and catalytic activity, cellular processes, and cellular anatomical entities. Protein-protein interaction network analysis revealed a complex and highly connected cluster in both interactomes (Fig. 6C-D). Functional enrichment analysis of both interactomes showed that the most significantly enriched pathways involve chromatin remodeling, the SWI/SNF superfamily type complex, and histone binding (Fig. 6C-D). We subsequently analyzed functional enrichment according to the entity reaction network, and coverage of both medicinal signaling lncRNA- and licensing-responsive lncRNA-protein interactomes occurred throughout the whole reactome, including chromatin organization (Fig. 6E-F). Our results indicate that medicinal signaling lncRNAs and licensing-responsive lncRNAs might interact with chromatin remodeling proteins to override the regulatory machinery in the nucleus of recipient cells.

Unique lncRNA signatures across sEVs and parental cells

sEVs exhibit lineage specificity that is dependent on cell origin, and we thus hypothesized that the lncRNA profile of sEVs is equal to that of their parental cells. The distribution of TPM between F-sEVs and fibroblasts was significantly distinctive, and the same was observed between MSC-sEVs and MSCs (Fig. 7A). sEVs contained shorter lncRNAs (<1000 bp) compared with their parental cells, whereas longer lncRNAs (>500000 bp) were only observed in parental cells (Tables S2 and S8). In general, the pattern of lncRNA length distribution...
between F-sEVs and fibroblasts, as well as between MSC-sEVs and MSCs, was consistent (Fig. 7B, Table S8). Regarding the classification of lncRNAs, antisense RNAs and noncoding RNAs were enriched in both cell types compared with their sEVs; however, lincRNAs and sense intronic RNAs were enriched in both types of sEV types compared with their parental cells (Fig. 7C, Table S9). Similar to the observation for sEVs, most lncRNAs in parental cells were transcribed from chromosomes 1 and 17, but the chromosomal distribution of lncRNAs between sEVs and their parental cells differed (Fig. 7D-E, Table S10).

Table 1
The top 10 enriched lncRNAs in F-sEVs.

lncRNAs	TPM	%	Chr	Type	Length (nt)
ENSG00000281181.1_FP236383.3	225,476	22.55	chr21	lincRNA	922
ENSG00000280614.1_FP236383.2	225,476	22.55	chr21	lincRNA	922
ENSG00000283907.1_AD000090.1	168,176	16.82	chr19	antisense RNA	23,998
ENSG00000261889.1_AC108134.2	111,412	11.14	chr16	lincRNA	747
ENSG00000280800.1_FP671120.3	69,167	6.92	chr21	lincRNA	922
ENSG00000280396.1_AL5929259.4	50,692	5.07	chr1	lincRNA	21,015
ENSG00000279123.1_AC027281.2	50,151	5.02	chr16	TEC	712
ENSG00000234324.1_LINC01783	21,568	2.16	chr1	lincRNA	2286
ENSG00000234741.7_GASS	12,164	1.22	chr1	processed transcript	4982
ENSG00000280329.1_AL139099.5	10,302	1.05	chr14	non_coding	299
Sum	**944,784**	**94.5**	–	–	–

Table 2
The top 10 enriched lncRNAs in MSC-sEVs.

lncRNAs	TPM	%	Chr	Type	Length (nt)
ENSG00000260035.1_AC051619.8	695,743	69.57	chr15	sense_intronic	307
ENSG00000283907.1_AD000090.1	89,857	8.99	chr19	antisense RNA	23,998
ENSG00000270100.3_AL360012.1	88,681	8.87	chr1	lincRNA	96,016
ENSG00000281181.1_FP236383.3	67,994	6.8	chr1	lincRNA	130
ENSG00000280800.1_FP671120.3	14,001	1.4	chr21	lincRNA	922
ENSG00000280800.1_FP671120.3	14,001	1.4	chr21	lincRNA	922
ENSG00000280614.1_FP236383.2	14,001	1.4	chr21	lincRNA	922
ENSG00000249087.6_ZNF436-AS1	661,21	66.6	chr1	anti sense RNA	2842
ENSG00000279123.1_AC027281.2	2149.7	0.21	chr16	TEC	712
ENSG000002806919.3_AC104984.5	1330.8	0.13	chr17	sense_intronic	93
Sum	**994370.6**	**99.43**	–	–	–

Table 3
The top 10 enriched lncRNAs in L-MSC-sEVs.

lncRNAs	TPM	%	Chr	Type	Length (nt)
ENSG00000260035.1_AC051619.8	982771.16	98.28	chr15	sense_intronic	307
ENSG00000226067.6_LINC00623	9769.68	0.98	chr1	lincRNA	96,016
ENSG00000270100.3_AL360012.1	2196.64	0.22	chr1	lincRNA	130
ENSG00000280800.1_FP671120.3	1338.81	0.13	chr16	TEC	712
ENSG00000280614.1_FP236383.2	205.78	0.21	chr16	TEC	712
ENSG000002806919.3_AC104984.5	1338.81	0.13	chr17	sense_intronic	93
Sum	**999236.07**	**99.93**	–	–	–
Surprisingly, a distinct correlation of lncRNAs in sEVs and parental cells was observed for both fibroblasts (Fig. 7F) and MSCs (Fig. 7G). A total of 2235 lncRNAs were identified in fibroblasts, with only 49 lncRNAs coexisting in F-sEVs (Fig. 7H). A total of 858 lncRNAs were identified in MSCs and fibroblasts, but only 94 coexisted in MSC-sEVs (Fig. 7I). The most enriched lncRNA in MSC-sEVs, AC051619.8, accounted for 69% of all lncRNAs but accounted for only 0.04% of all lncRNAs in MSCs; F-sEV-enriched FP236383.3 and AD000090.1 accounted for 22.5% and 16.8% of all lncRNAs in F-sEVs but only occupied 10.8% and 0.32% of all lncRNAs in fibroblasts, respectively. Differences in lncRNA signa-

Fig. 6. Characteristics of medicinal signaling lncRNA- and licensing-responsive lncRNA-protein interactomes. (A) Venn diagrams illustrating convergence and noncongruence of predicted interacting proteins of medicinal signaling lncRNAs and licensing-responsive lncRNAs. (B) Functional classifications of the medicinal signaling lncRNA interactome and licensing-responsive lncRNA interactome according to their biological processes, cellular components, and molecular functions. (C-D) Functional enrichment analysis of the medicinal signaling lncRNA interactome (C) and licensing-responsive lncRNA interactome (D) by the Genemania online tool. Purple lines indicate coexpression of proteins, red lines indicate physical interactions between proteins, orange lines represent predicted interactions between proteins, blue lines show colocalization between proteins, and green lines denote genetic interactions. (E-F) Overview of enriched pathways of medicinal signaling lncRNAsinteractome (E) and licensing-responsive lncRNA interactome (F) by the Reactome online tool. The yellow key represents the coverage of identified pathways.
Fig. 7. Comparison of IncRNA characteristics between sEVs and parental cells. (A) The TPM distribution of all identified IncRNAs. (B) Length distribution of IncRNAs. (C) Classification of IncRNAs in sEVs and parental cells into nine categories. (D-E) Chromosomal distribution of IncRNAs in F-sEVs and fibroblasts (D) and MSC-sEVs and MSCs (E). The outer ring represents the IncRNAs labeled with chromosome number and position. A histogram revealed the percentage of chromosome distribution of IncRNAs. (F-G) Pearson's correlation analysis of IncRNAs from F-sEVs and fibroblasts (F) and from MSC-sEVs and MSCs (G). (H-I) Venn diagrams illustrating the convergence and noncongruency of IncRNAs from F-sEVs and fibroblasts (H) and from MSC-sEVs and MSCs (I). TPM cutoff > 0.
cells and fibroblasts, suggesting that rather than a stochastic event, a novel mechanism exists to select the sEV lncRNA cargo. The selective lncRNA packaging mechanism shapes the unique lncRNA profile in sEVs and plays a vital role in cell–cell communication under physiological and pathological conditions.

Discussion

Undisputedly, MSC-sEVs create a new therapeutic paradigm for regenerative medicine due to their preponderance over MSC transplantation [55]. MSC-sEVs possess stability, strong biocompatibility, and high therapeutic expandability via various modifications of parental cells. Moreover, compared with parental cells, transplantation of MSC-sEVs has lower risks of immunogenicity, genomic alterations, senescence-induced genetic instability, and pulmonary embolism [56,57]. Clinical trials of MSC-sEVs demonstrate their increased application as a presumptive surrogate to MSC-based therapeutics, yet without an understanding of their intricate properties and how their therapeutic effects are mediated. Indeed, a lack of a deep understanding of the intrinsic composition of MSC-sEVs under physiological and pathological conditions will restrict their clinical applications. Herein, we provide an atlas of lncRNAs in MSC-sEVs with the goal of identifying medicinal signaling lncRNAs using a bioinformatics approach. We further robustly characterized MSC-sEVs under inflammatory cytokine stimulation, which partly mimics the niche of transplanted MSCs under various pathophysiological conditions. The core findings were that MSC-sEVs have a unique lncRNA atlas and that the yield and intrinsic properties of MSC-sEVs are sensitive to inflammatory stimulation, which might correlate with their therapeutic potential in vivo. To the best of our knowledge, this is the first study to elucidate and annotate lncRNAs in human MSC-sEVs with or without inflammatory cytokine stimulation. By identifying medicinal signaling lncRNAs, future studies may investigate the therapeutic potential of medicinal signaling lncRNAs under various disease conditions.

LncRNAs appear to participate in many processes, such as RNA splicing, transcription, RNA localization, RNA decay, translation, and epigenetic remodeling, through their unique sequence and structure [54], and the topological structures of DNA controlled by cohesion, CTCF, histone and chromatin-associated protein complexes are dominant in the generation of gene regulatory networks. By connecting those nuclear elements, lncRNAs alter the three-dimensional organization of DNA to regulate transcription [58]. Functional enrichment analysis revealed medicinal signaling lncRNA-interacting proteins to be enriched in nuclear activity such as ATP-dependent chromatin remodeling, SWI/SNF complex and nBAF, which is implicated in development and neuron disorders [59]. Although sublocalization of MSC-sEV lncRNAs in recipient cells requires further investigation, our results suggest that MSC-sEVs regulate transcriptional activity in recipient cells by affecting higher-order chromatin structures.

Growing evidence reveals that lncRNAs in MSC-sEVs mediate the biological functions of these vesicles [18–20,60]. By RNA sequencing and robust computational pipeline analysis, we identified a cluster of medicinal signaling IncRNA, which IncRNAs that are specific to and enriched in MSC-sEVs but not F-sEVs. For instance, LINCO0623, the most abundant newly loaded IncRNA in MSC-sEVs, is increasingly downregulated with osteoarthritis severity, which causes chondrocyte apoptosis and extracellular matrix degradation [50]. As LINCO0623 is specific and enriched in MSC-sEVs, it might act as a dominant medicinal signaling IncRNA of MSC-sEVs in osteoarthritis treatment [61,62]. Based on our in silico prediction, the LINCO0623-interacting proteins PICH3R, CHMP7, ROCK1 and ARID4B are associated with SARS-CoV-1/2 infection. Furthermore, ROCK1 and ARID4B (HDAC complex) are associated with therapeutics for SARS/COVID-19 [63–65]. Indeed, inhibition of HDAC in COVID-19 treatment seems to occur by reducing ACE2, a receptor for SARS-CoV-1/2 entry into cells [63,66].

Unlike proteins and miRNAs, expression of lncRNAs is not conserved across species [67,68], indicating that IncRNA expression in the same cell type varies among species. Therefore, it is paramount to verify IncRNAs in human sEVs prior to further mechanistic interpretation and clinical application. Recently, it has been reported that by delivering IncRNA H19, sEVs from rodent MSCs possess therapeutic potential in wound healing and myocardial infarction [18,20]. Exosomal IncRNA H19 from mouse MSCs accelerate wound healing via regulation of mir-152-3p-mediated PTEN inhibition, and rat MSC-exosomal IncRNA H19 protects cardiomyocytes against apoptosis via regulation of miR-675 in endothelial cells. Surprisingly, IncRNA H19 was hardly detected in human MSC-sEVs in our study: it was identified in only one MSC-sEV sample among six samples, with a low expression level of approximately 0.05 TPM, and seems unlikely to have dramatic biological effects compared to other abundant lncRNAs. Regardless, the possibility of the butterfly effect on transcriptomic or epigenomic regulation in recipient cells by rarely expressed lncRNAs in sEVs should not be excluded.

Although numerous studies have proven the efficacy of MSCs for treating inflammatory-related diseases [69], the curative effect is not consistent. For instance, the therapeutic effectiveness of MSCs on graft-versus-host disease ranges from 15 to 94% in clinical trials [70–74], which might be attributed to divergent changes in the MSC in vivo microenvironment. Indeed, previous reports have shown that inflammatory cytokines shape protein and miRNA patterns to boost the therapeutic ability of MSC-sEVs [32,75]. Herein, we demonstrate that the lncRNA landscape also responds to inflammatory cytokines. Inflammatory stimulation upregulated IncRNA MINCR and DUXAP8 in MSC-sEVs. However, MINCR and DUXAP8 are implicated in tumor progression [51,52,76,77] through Wnt/b-catenin pathway activation, a crucial signaling pathway also involved in tissue regeneration [78,79]. Some identified lncRNAs in L-MSC-sEVs are related to tumor development, which might be attributed to most investigations on lncRNAs being in cancer studies. Indeed, there is still limited literature regarding the role of MSC-sEV lncRNAs, and whether inflammatory stimulation boosts or blunts the therapeutic efficacy of MSC-sEVs via IncRNA reprogramming remains unclear. Our study provides groundwork for future investigations on MSC-sEV lncRNAs regarding regenerative medicine and even tumorigenesis in pathological conditions. Further experimental characterization to identify the accurate roles and therapeutic candidates of medicinal signaling lncRNAs is critical for developing a lncRNA-based intervention.

Compared to protein-coding transcripts, cellular lncRNAs are relatively lineage- and tissue-specific in a spatiotemporal manner [80–83]. Despite the fact that tissue specificity is observed for sEV-lncRNAs, the patterns are distinct from their parental cells. Similar to previous findings in cancer-associated fibroblasts and their derived exosomes [84], distinct IncRNA profiles between parental cells and sEVs were also observed for both MSCs and fibroblasts, indicating a novel lineage-specific mechanism to selectively sort IncRNAs toward sEVs rather than merely lineage specificity of the cellular IncRNAs itself. On the other hand, the encapsulation of exogenous therapeutic materials and genetic modification of parental cells to boost the therapeutic ability of sEVs are new therapeutic avenues. Further investigation into the selective packaging mechanism will enhance packaging efficiency and provide better therapeutic opportunities for patients.

Minimal criteria for defining MSCs, including morphology, surface markers, and multipotency, were established by the International Society for Cell and Gene Therapy in 2006 [35], but those characteristics do not reflect the clinical therapeutic efficacy and
mechanism of action of MSCs. On the other hand, the characteristics of EVs were defined in the Minimal Information for Studies of EVs (MISEV2014) in 2014 [85] and renewed to MISEV2018 [37] by the International Society for Extracellular Vesicles (ISEV). Although the key definition of physical and biological characteristics of MSC-sEVs has been discussed [38], the current criteria do not provide guidance on functional testing of the biological activities of MSC-sEVs, which relies on distinct components inside the vesicles, which are distinguishable from non-MSC-sEVs, i.e., F-sEVs. Overall, the therapeutic ability of MSC-sEVs hinges on the synergistic effects of their intricate contents targeting different therapeutic pathways in recipient cells rather than only a few key molecules. In this study, we elucidated the lncRNA landscapes in MSC-sEVs and F-sEVs. Furthermore, we improved the systematic understanding of component diversity within MSC-sEVs under inflammatory conditions, which will provide certain advantages for defining the characteristics and therapeutic indications of MSC-sEVs as quantifiable features.

The present in silico study still has some limitations. The protein and miRNA profiles of MSC-sEVs are distinct in MSCs harvested from different origins and cultured under different conditions that impact the biological effects and therapeutic capacity of MSC-sEVs [86–88]. We analyzed sEVs derived from human male adipose-derived MSCs, and it remains unclear whether origin or sex affects the lncRNA landscape in sEVs in response to inflammation. Some of the RNA sequencing data obtained from public repositories and the different sample preparation and library construction processes may introduce bias; enlarging the sample size and standardizing sample operations will reduce differences between experimental conditions in future investigations. Because a comprehensive functional annotation of lncRNAs is lacking, we predicted lncRNA function by an in silico approach, which may overlook lncRNA functions in nature, particularly effects at the posttranscriptional level. Additionally, the functional roles of identified medicinal signaling lncRNAs in MSC-sEVs require further investigation in vivo.

Conclusion

This study provides valuable information regarding the lncRNA landscapes of sEVs derived from human naïve MSCs and licensed MSCs. Understanding the fingerprint of lncRNAs in MSC-sEVs will provide a new avenue for defining a standard of therapeutic sEVs and developing efficacious precision-engineered MSC-sEVs [89–91]. Using next-generation CRISPR-Cas technologies and preloading with specific therapeutic molecules, i.e., medicinal signaling lncRNAs, may provide a new perspective therapeutic regimen in precision nanomedicine.

Compliance with ethics requirements

No human or animal subjects are involved in this article.

CRediT authorship contribution statement

Chien-Wei Lee: Conceptualization, Methodology, Writing – original draft, Funding acquisition. Yi-Fan Chen: Writing – original draft, Writing – review & editing. Allen Wei-Ting Hsiao: Investigation, Validation. Amanda Yu-Fan Wang: Formal analysis, Methodology. Oscar Yuan-Jie Shen: Writing – review & editing. Belle Yu-Hsuan Wang: Investigation, Validation. Lok Wai Cola Ho: Investigation. Wei-Ting Lin: Investigation, Validation. Chang Hung Jonathan Choi: Resources. Oscar Kuang-Sheng Lee: Writing – review & editing, Supervision, Writing – review & editing. Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Hong Kong Government Research Grant Council, General Research Fund (Reference no. 14104620) to CW Lee and by China Medical University Hospital (Reference no. DMR-110-226) to OK Lee. The authors also thank Prof. HH Cheung at the School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong for the generous gift of human skin fibroblasts (GM08429). Fig. 1 is created with materials from BioRender.com.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jare.2021.11.003.

References

[1] Caplan Al. Mesenchymal Stem Cells: Time to Change the Name? Stem Cells Transl Med 2017;6(6):1445–51. doi: https://doi.org/10.1002/stem.12061.
[2] Galipeau J. Mesenchymal Stromal Cells for Graft-versus-Host Disease: A Tragedy. Biol Blood Marrow Transplant 2020;26(5):e89–91. doi: https://doi.org/10.1016/j.bbmt.2020.02.023.
[3] Lee CW, Chen YF, Wu HH, Lee OK. Historical Perspectives and Advances in Mesenchymal Stromal Cell Research for the Treatment of Liver Diseases. Gastroenterology 2018;154(1):46–56. doi: https://doi.org/10.1015/j.gastro.2017.09.049.
[4] Yin QJ, Zhu J, Ankrum JA. Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019;3(12):90-104. doi: https://doi.org/10.1038/s41551-018-0325-6.
[5] Hu C-H, Tseng Y-W, Lee C-W, Chiu C-Y, Chuang S-S, Yang J-Y, et al. Combination of mesenchymal stem cell-conditioned medium and botulinum toxin type A for treating human hypertrophic scars. J Plast Reconstr Aesthetic Surg 2020;73(3):516–27. doi: https://doi.org/10.1016/j.bjps.2019.07.010.
[6] Xu H, Lee C-W, Wang Y-F, Huang S, Shin L-Y, Wang Y-H, et al. The Role of Paracrine Regulation of Mesenchymal Stem Cells in the Crohn’s Stalk with Macrophages in Musculoskeletal Diseases: A Systematic Review. Front Bioeng Biotechnol 2020;8. doi: https://doi.org/10.3389/fbioe.2020.587052.
[7] Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Sem Cell Therapies. Stem Cells 2018;36(9):1311–28. doi: https://doi.org/10.1002/stem.2847.
[8] Mendt M, Rezvani K, Shpilai E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019;54(Suppl 2):789–92. doi: https://doi.org/10.1038/s41409-019-0616-z.
[9] Lee C-W, Hsiao W-T, Lee O-S. Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Transl Res 2017;182:61–78.e8. doi: https://doi.org/10.1016/j.trsl.2016.11.003.
[10] Elahi FM, Farwell DG, Nofta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 2020;38(1):15–21. doi: https://doi.org/10.1002/stem.3096.
[11] Vani A, Nolan G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018;19(4):213–28. doi: https://doi.org/10.1038/nrm.2017.125.
[12] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200(4):833–83. doi: https://doi.org/10.1083/jcb.201211138.
[13] Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–8. doi: https://doi.org/10.1038/cr.2014.44.
[14] Sato-Kuwabara Y, Melo SA, Soares FA, Calvin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles–diagnostic and therapeutic implications (Review). Int J Oncol 2015;46(1):17–27. doi: https://doi.org/10.3892/ijo.2014.2712.
[15] Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and lncRNA species. Stem Cell Res Ther 2015;6(1). doi: https://doi.org/10.1186/s13287-015-0116-z.
[16] Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res 2017;66:30–41. doi: https://doi.org/10.1016/j.plipres.2017.03.001.

86
Kazimierzczuk M, Kasprowicz MK, Kasprowy ME, Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. Int J Mol Sci 2020;21(3): doi:10.3390/ijms21030787.

Li Bo, Luan S, Chen J, Zhou Y, Wang T, Li Z, et al. TNF-alpha-induced exosome-transmitted LINC00461 modulating microRNA/BCL-2 expression. Cytotherapy 2019;21(1):96–106. doi: https://doi.org/10.1016/j.cytog.2018.10.005.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43(7): doi:10.1093/nar/gkv1306.

Langfeldt A, Armas A, Tartaglia C. Interchromosomal interactions: A genomic love mechanism to therapy. Nat Med 2014;20(8): doi:10.1038/nm.3505.

Chen-Wei Lee, Yi-Fan Chen, Allen Wei-Ting Hsiao et al. Journal of Advanced Research 39 (2022) 73–88.

[24] Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Human Long Non-coding RNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating the miR-153-2p. Mol Ther Nucleic Acids 2020;19:814–26. doi:https://doi.org/10.1016/j.omtn.2020.07.018.

[45] Au Yeung CL, Co N-N, Tsuruga T, Yeung T-L, Kwan S-Y, Leung CS, et al. Exosomal transfer of stroma-derived miR221 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 2016;7: doi:https://doi.org/10.1038/ncomms11550.

[56] Sun Li, Xu R, Sun X, Liu J, Zhao Y, et al. Safety evaluation of Mesenchymal Stem Cell-Derived Small Extracellular Vesicles From Endometrially-Derived Mesenchymal Stem Cells for Therapeutic applications. J Extracell Vesicles 2018;7(1):1535750. doi: https://doi.org/10.1080/20013078.2018.1535750.

[57] Frankish A, Diekhans M, Ferrarese AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 2019;47(D1):D766–73. doi:10.1093/nar/gky955.

[58] Maass PG, Barutcu AR, Rinn JL. Interchromosomal interactions: A genomic love mechanism to therapy. Nat Med 2014;20(8): doi:10.1038/nm.3505.

[59] Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal Stem Cell-derived Exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019;10(1). doi:https://doi.org/10.1186/s13287-019-1445-0.

[60] Deng M, Yuan H, Liu S, Hu Z, Xiao H. Exosome-transmitted LINC00461 modulating microRNA/BCL-2 expression. Cytotherapy 2019;21(1):96–106. doi: https://doi.org/10.1016/j.cytog.2018.10.005.

[61] Zhu Z, Yang X, Yang F, Hu R, Guo K, Sun J, et al. Mesenchymal stromal cell-derived exosomes exosome-transmitted LINC00461 modulating microRNA/BCL-2 expression. Cytotherapy 2019;21(1):96–106. doi: https://doi.org/10.1016/j.cytog.2018.10.005.

[62] Sun Li, Xu R, Sun X, Duan Y, Han Y, Zhao Y, et al. Safety evaluation of exosomal-derived exosome-transmitted LINC00461 modulating microRNA/BCL-2 expression. Cytotherapy 2016;18(3):413–22. doi: https://doi.org/10.1016/j.cytog.2016.05.005.

[63] Maas PG, Barutcu AR, Rinn JL. Interchromosomal interactions: a genomic love story of kissing chromosomes. J Cell Biol 2019;218(1):27–38. doi: https://doi.org/10.1083/jcb.201805052.

[64] Alfert A, Moreno N, Keri L. The BAF complex in development and disease. Epigenetics Chromatin 2019;12(1):19. doi: https://doi.org/10.1186/s13072-019-0206-4.

[65] Deng M, Yuan H, Liu S, Hu Z. Xiao H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 2019;21(1):96–106. doi: https://doi.org/10.1016/j.cytog.2018.10.005.

[66] Meunhizh E, Mirzaei HR, Mahjoob-Tehran M, Rezaee A, Shahnasargh R, Pouranfieh MH, et al. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019;10(1). doi: https://doi.org/10.1186/s13287-018-0680-4.

[67] Lee Y-H, Park H-K, Aah Q-S, Nah H, Lee J, Moon H-J, et al. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. Int J Mol Sci 2020;21(4):1541. doi: https://doi.org/10.3390/ijms21041541.

[68] Teodori L, Sestili P, Madia V, Coppolari S, Fratelli D, Crocchi MBL. et al. MicroRNAs Bioinformatics Analyses Identifying HDAC Pathway as a Putative Target for Existing Anti-COVID-19 Therapeutics. Front Pharmacol 2020;11: doi: https://doi.org/10.3389/fphar.2020.00037.

[69] Mousavi SZ, Rahmanian M, Sami A. A connectivity map-based drug repositioning study and integrative analysis of transcriptomic profiling of SARS-CoV-2 infection. Infect Genet Evol 2020;86:104610. doi: https://doi.org/10.1016/j.meegid.2020.104610.

[70] Wallin S, Chen J, Zhou Y, Wang T, Li Z, et al. MSC-Derived Exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol 2019;234(12):3234–55. doi:https://doi.org/10.1002/jcp.28318.

[71] Okada S, Otaka T. Inflammation and regeneration in cross-organs. Inflamm Regen 2016;38(1): doi:10.1007/s10726-016-9046-x.

[72] Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014;20(8):857–69. doi: https://doi.org/10.1038/nm.3505.

[73] Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The protein family classification, tree-based classification, tool enhancer and regions and extensive API. Nucleic Acids Res 2020; doi:10.1093/nar/gkaa1106.

[74] Lang B, Armaos A, Tartaglia GG. RNAct: Protein-RNA interaction predictions for neurodegenerative disorders. ACS Nano 2019;13(6):6670–88. doi: https://doi.org/10.1021/acsnano.9b01004.

[75] Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1). doi:10.1080/20013078.2018.1535750.

[76] Sharpless NE, Ades L, Emery JG. Genomic interactions: a common theme in cancer development. Nat Rev Cancer 2011;11(1):5–16. doi:https://doi.org/10.1038/nrc2912.

[77] Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1). doi:10.1080/20013078.2018.1535750.

[78] Witwer KW, Van Balkom BWM, Bruno S, Choo A, Dominici M, Gimona M, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019;8:1609206. doi: https://doi.org/10.1080/20013078.2019.1609206.
Bouhaddou M, Memon D, Meyer B, White KM, Rezeli VV, Correa Marrero M, et al. The GlobalPhenotypic Landscape of SARS-CoV-2 Infection. Cell 2020;182(3):685–712.e19. doi: https://doi.org/10.1016/j.cell.2020.06.034.

Takahashi Y, Hayakawa A, Sano R, Fukuda H, Harada M, Kubo R, et al. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci Rep 2021;11(1). doi: https://doi.org/10.1038/s41598-021-83070-2.

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294(5543):853–8. doi: https://doi.org/10.1126/science.1064421.

Meunier J, Lemoine F, Soumillon M, Liecehi A, Weser M, Guschanski K, et al. Birth and expression evolution of mammalian microRNA genes. Genome Res 2013;23(1):34–45. doi: https://doi.org/10.1101/gr.140269.112.

Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019;8(12):1605. doi: https://doi.org/10.3390/cells8121605.

Le Blanc K, Rasmussen I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363(9419):1439–41. doi: https://doi.org/10.1016/S0140-6736(04)16104-7.

Le Blanc K, Frassoni F, Balli L, Locatelli F, Rietjens H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371(9629):1579–86. doi: https://doi.org/10.1016/S0140-6736(08)60990-X.

Rebraaid P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Blood Marrow Transplant 2009;15(7):804–11. doi: https://doi.org/10.1016/j.bbmt.2008.03.012.

von Bonn M, Stötzel F, Goedecke A, Richter K, Wuschek N, Högl K, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 2009;43(3):245–51. doi: https://doi.org/10.1038/s10388-008-0116-5.

Perez-Simon JA, Lopez-Villar O, Andreu EJ, Martín SJ, Muntion S, Campelo MD, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2019;179(9):695–705. doi: https://doi.org/10.1016/s41551-019-04486-6.

Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Yu, et al. Enhanced Cardioprotection by Human Endometrial Mesenchymal Stem Cells Driven by Exosomal MicroRNA-21. Stem Cells Transl Med 2017;6(1):9:695–705. doi: https://doi.org/10.1002/sctm.2016-0038.

Zhu OA, Xie H, Lin SY, Lei Q, Ben WX, Gao F, et al. Interferon-gamma alters the expression of lncRNAs in the brain, colon, liver, and lung of macaque during development. Mol Biosyst 2015;11(12):3253–63. doi: https://doi.org/10.1039/c5mb00744h.

Huang P, Yan R, Zhang X, Wang L, Ke X, Qi Y. Activating Wnt/beta-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol Ther 2019;196:79–90. doi: https://doi.org/10.1016/j.pharmthera.2019.11008.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature 2012;489(7414):101–8. doi: https://doi.org/10.1038/nature11233.

Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017;35(4):851–8. doi: https://doi.org/10.1002/stem.2575.

Börger V, Bremer M, Ferrer-Tur R, Gockeln I, Stambouli O, Becic A, et al. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int J Mol Sci 2017;18(7):1450. doi:https://doi.org/10.3390/ijms18071450.

Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Yu, et al. Enhanced Cardioprotection by Human Endometrial Mesenchymal Stem Cells Driven by Exosomal MicroRNA-21. Stem Cells Transl Med 2017;6(1):209–22. doi:https://doi.org/10.1002/sctm.2016-0386.

Zhao Q, Du H, Liu S, Meng J, Huo L, et al. Exosomal MicroRNA-21 facilitates the progression of neuroblastoma and activates Wnt/beta-catenin signaling via microRNA-29/nucleolar protein 4 like (NOL4L) axis. Brain Res 2020;1746:6. doi: https://doi.org/10.1016/j.brainres.2020.146947/146947.

Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem Cell Res Ther 2019;10(1):30. doi: https://doi.org/10.1186/s13287-018-1121-9.

88