Supplement of

A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO₂ retrievals (GCAS2021)

Fei Jiang et al.

Correspondence to: Fei Jiang (jiangf@nju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Text S1: Method for calculating prior and posterior uncertainties

The posterior and prior uncertainties are calculated based on the prior and posterior perturbations of \(X^b \) and \(X^a \), which are calculated using equation (S1) ~ (S5). \(X^b \) is perturbed from the prior flux \(X^p \) with a Gaussian random distribution \(\delta_i \) and a set of scaling factors \(\lambda \). \(\delta_i \) has a mean of 0 and a standard deviation of 1, and \(\lambda \) represents the uncertainty of each prior flux. After constrained using satellite XCO₂ observations, the perturbed flux of \(X^b \) is changed to \(X^a \) according equation (S2) ~ (S5). In these equations, \(H \) is the observation operator that maps the state variable from model space to observation space; \(R \) is observation error covariance, \(P^b \) is the background error covariance; \(K \) and \(\tilde{K} \) are the Kalman gain matrix of the ensemble mean and ensemble perturbation, respectively. Equation (S2) ~ (S5) are solved in the EnSRF module in our system. In this study, the fluxes are independently perturbed with a spatial resolution of \(3^\circ \times 3^\circ \), while \(X^b \) and \(X^a \) have a spatial resolution of \(1^\circ \times 1^\circ \), that means the fluxes \(X \) within each \(3^\circ \) grid have the same perturbation factor \((\lambda \times \delta_i) \).

In addition, we use a data assimilation window of 1 week, namely the time interval of \(X^b \) and \(X^a \) is 1 week.

\[
X^b_t = X^b + \lambda \times \delta_i \times X^b, \quad i = 1, 2, \ldots, N
\]

\[
X^a_t = X^a + (X^b_t - X^b) - \tilde{K}H(X^b_t - X^b)
\]

\[
\tilde{K} = (1 + \frac{R}{HPH^T + R})^{-1}K
\]

\[
P = \frac{1}{n-1} \sum_{i=2}^{n} (X^b_t - X^b)(X^b_t - X^b)^T
\]

For the uncertainty \(\sigma \) in a defined region during a time period (monthly or annual), we firstly aggregate each perturbed flux \(i \) at each time step \(t \) (DA window) to \(F_{i,t} \) according to equation (S6), where \(j \) is the identifier of grid located in this region, and \(m \) is the number of grid in this region. Then, the uncertainty of the regional flux at each time step \(u_t \) is given by the standard deviation of \(F_{i,t} \) according to equation (S7). Finally, the uncertainty \(\sigma \) during this time period is estimated following equation (S8), where \(T \) denotes the time steps within this period.

\[
F_{i,t} = \sum_{j=1}^{m} X_{j,i,t}
\]

\[
u_t = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_{i,t} - \bar{F}_t)^2}
\]

\[
\sigma = \sqrt{\sum_{t=1}^{T} u_t \times u_t}
\]
Figure S1: The change rate of fossil fuel and cement carbon emissions in each region in 2019 compared with 2018

Figure S2: Comparisons between this study and GCP2020 for the estimates of annual (a) NBE and (b) AGR from 2010 to 2019
Figure S3: Monthly variations of (a) XCO₂ and (b) NBE in tropical latitudes (TL, 30° S ~ 30° N) in 2015 and 2019 (because GOSAT lacks data in January 2015, XCO₂ for each month is its change relative to February. It could be found that the carbon sinks in January-August and September-December 2019 were significantly smaller and stronger than those in the same period in 2015, respectively. Correspondingly, compared with 2015, GOSAT has higher XCO₂ in March - August, and lower ones in September-December in 2019. Although OCO-2 has a similar pattern, compared with 2015, the XCO₂ increase in March-August is significantly smaller than that of GOSAT, while the decrease in September-December is significantly higher than that of GOSAT. The annual mean GOSAT XCO₂ in 2019 is higher than that in 2015, while OCO-2 is the opposite)

Figure S4: Global distributions of the mean differences between the prior and posterior NEE averaged from 2010 to 2019
Figure S5: Differences between the prior and posterior NEE in each TRANSCOM 3 regions

Figure S6: Comparison of NBE between this study and CMS-Flux NBE 2010 for the periods of 2010-2014 and 2015-2018

Figure S7: Changes in posterior NBE relative to prior fluxes in southern Africa (positive means source increase)
Figure S8: Anomaly of monthly NEE in the pantropical area (30°S ~ 30°N)

Figure S9: Interannual variations of the prior and posterior NEE in each TRANSCOM 3 region and in the global scale. (a, Boreal North America; b, Temperate North America; c, Tropical South America; d, Temperate South America; e, Northern Africa; f, Southern Africa; g, Boreal Asia; h, Temperate Asia; i, Southeast Asia; j, Australia; k, Europe; l, Globe)
Figure S10: The spatial patterns of NEE anomaly in each year (gC m⁻² yr⁻¹)
Figure S11: Time series of monthly averaged biases between observations and simulations and the frequency distribution of the biases in the 7 regions and MLO site (the black dotted line represents the linear trend of the biases between the observations and the posterior simulations)

Figure S12: Inter-annual variations of the global averaged annual mean bias (error bar represents standard deviation of monthly mean biases in one year; the dotted line is its linear trend)
Figure S13: Global mean monthly XCO₂ from 2010 to 2019 (the small figure shows the annual mean biases and bias increment in each year)
Locations	Site	Lab id	Lat	Lon	BIAS	MAE	RMSE	CORR	No. of data
High latitudes									
alt	1	82.45	297.49	0.7	1.54	2.07	0.98	518	
brw	1	71.32	203.39	0.29	2	2.61	0.97	555	
crv	1	64.99	212.4	0.47	2.79	3.52	0.93	1260	
ice	1	63.4	339.71	0.56	1.63	2.01	0.96	161	
pal	1	67.97	24.12	-0.04	2.53	3.34	0.96	438	
sum	1	72.6	321.58	0.35	1.27	1.54	0.99	506	
tik	1	71.6	128.89	0.88	1.83	2.44	0.97	500	
zep	1	78.91	11.89	0.88	1.83	2.44	0.97	500	
North America									
amt	1	45.03	291.32	1.97	3.26	4.07	0.95	1356	
bao	1	40.05	255	-0.8	2.49	3.28	0.86	1754	
bmw	1	32.26	295.12	1.69	1.99	2.58	0.97	397	
hsu	1	41.03	235.65	-0.24	2.67	3.46	0.9	69	
inx	1	39.8	273.98	0.51	3.79	4.66	0.93	409	
key	1	25.67	279.84	0.49	1.65	2.38	0.96	413	
lef	1	45.95	269.73	0.69	3	3.8	0.95	1611	
mbn	1	43.98	238.31	0.15	1.59	2.11	0.96	1500	
mex	1	18.98	262.69	0.97	1.27	1.66	0.98	387	
mwo	1	34.22	241.94	-0.81	2.24	3.11	0.92	3185	
nwr	1	40.05	254.41	0.06	1.6	2.15	0.96	489	
sct	1	33.41	278.17	0.47	3.22	4.05	0.93	1689	
sgp	1	36.61	262.51	0.72	3.28	3.99	0.93	437	
str	1	37.76	237.55	0.05	2.35	3.09	0.94	4842	
thd	1	41.05	235.85	-1.05	2.35	3.13	0.91	330	
uta	1	39.9	246.28	1.5	2.54	3.23	0.94	462	
wbi	1	41.72	268.65	1.33	3.43	4.32	0.94	1645	
wgc	1	38.26	238.51	-0.09	3.34	4.14	0.9	1238	
wkt	1	31.31	262.67	0.58	2.47	3.2	0.93	1326	
Europe									
bgu	11	41.97	3.23	-0.3	2.74	3.45	0.92	223	
cib	1	41.81	355.07	0.35	2.99	3.72	0.92	406	
fkl	11	35.34	25.67	0.49	2.41	2.97	0.94	207	
hnb	1	47.8	11.02	2.61	4.3	5.04	0.92	394	
hun	1	46.95	16.65	0.65	3.62	4.42	0.94	426	
lmb	1	35.52	12.62	0.58	1.91	2.4	0.96	415	
mhd	1	53.33	350.1	0.2	1.52	2.15	0.97	474	
oxf	1	50.03	11.81	-0.13	3.3	4.07	0.91	360	
pdm	11	42.94	0.14	-0.44	1.82	2.35	0.95	170	
East Asia									
dsi	1	20.7	116.73	0.87	2.29	2.92	0.94	376	
lnn	1	23.47	120.87	1.06	2.33	3.15	0.95	384	
tap	1	36.74	126.13	1.52	3.5	4.41	0.92	411	
umm	1	44.45	111.1	-0.41	2.79	3.57	0.93	453	
-------	---	-------	---	---	---	---	-------		
South America									
nat	1	-5.8	324.81	0.11	1.09	1.52	0.97	331	
rpb	1	13.16	300.57	0.36	0.72	0.95	0.99	511	
ush	1	-54.85	291.69	0.24	0.64	0.88	0.99	206	

Africa								
ask	1	23.26	5.63	0.01	0.65	0.83	1	474
cpt	1	-34.35	18.49	0.53	0.66	0.9	0.99	241
nmb	1	-23.58	15.03	-0.11	0.78	1.09	0.99	403
sey	1	-4.68	55.53	0.57	0.81	1.2	0.99	416
wis	1	29.96	35.06	0.17	1.98	2.57	0.95	479

Australia								
bhd	1	-41.41	174.87	-0.01	0.71	1.13	0.99	144
cfa	2	-19.28	147.06	-0.03	0.92	1.27	0.99	176
cgo	1	-40.68	144.69	0.02	0.46	0.82	0.99	337
gpa	2	-12.25	131.04	1.29	2.23	2.71	0.92	64

asc	1	-7.97	345.6	0.57	0.73	0.91	1	836
azr	1	38.77	332.62	0.29	1.57	2.02	0.96	218
cba	1	55.21	197.28	-0.91	2.08	2.82	0.96	808
chr	1	1.7	202.85	0.59	0.85	1.07	0.99	249
crz	1	-46.43	51.85	0.1	0.32	0.41	1	396
cya	2	-66.28	110.52	0.24	0.31	0.39	1	222
eic	1	-27.16	250.57	0.16	0.91	1.39	0.98	342
gmi	1	13.39	144.66	0.41	1.07	1.58	0.98	525
hba	1	-75.61	333.79	0.34	0.4	0.47	1	323
izo	1	28.31	343.5	0.59	1.06	1.44	0.99	483
kum	1	19.56	205.11	-0.18	1.25	1.79	0.98	718
maa	2	-67.62	62.87	0.36	0.38	0.46	1	239
mid	1	28.21	182.62	0.54	1.34	1.73	0.98	465
mlo	1	19.54	204.42	0.22	0.61	0.8	1	637
mqa	2	-54.48	158.97	0.17	0.4	0.55	1	242
psa	1	-64.92	296	0.21	0.38	0.47	1	466
rk1	426	-29.2	182.1	-0.07	0.58	0.7	1	49
shm	1	52.71	174.13	-0.2	2.07	2.76	0.96	429
smo	1	-14.25	189.44	0.37	0.57	0.76	1	798
spo	1	-89.98	335.2	0.3	0.35	0.41	1	494
syo	1	-69.01	39.59	0.28	0.34	0.4	1	237

	All	0.35	1.76	2.28	0.96	-	