The association between dietary patterns and the novel inflammatory markers platelet-activating factor and lipoprotein-associated phospholipase A₂: a systematic review

Carolyn J. English, Hannah L. Mayr, Anna E. Lohning, and Dianne P. Reidlinger

Context: Atherosclerosis is a disease of chronic inflammation. Recent research has identified 2 novel inflammatory biomarkers: platelet-activating factor (PAF) and lipoprotein-associated phospholipase A₂ (Lp-PLA₂). Diet has been proposed as a mediator of inflammation, but to date, the focus for these novel biomarkers has been on individual foods and nutrients rather than overall dietary patterns.

Objective: To systematically review the literature on the association between dietary patterns and PAF and Lp-PLA₂. Data Sources: The PubMed, Embase, CINAHL, and Cochrane CENTRAL literature databases were searched. Data Analysis: Study quality was evaluated using the Quality Criteria Checklist. Sixteen studies (n = 4 observational and n = 12 interventional) were included and assessed for associations between dietary patterns and PAF and Lp-PLA₂. Conclusion: Study quality varied from neutral (n = 10) to positive (n = 6). Mediterranean, heart healthy, and vegetarian dietary patterns were associated with improved levels of PAF and Lp-PLA₂. Conversely, Western dietary patterns were less favorable. A range of well-established, healthier dietary patterns may lower inflammation and the risk of atherosclerosis. More well-designed studies are needed to confirm these findings and identify other dietary patterns that improve inflammation.

INTRODUCTION

Atherosclerosis, the main underlying cause of cardiovascular disease (CVD), is a chronic arterial disease leading to fatty streaks and atheromas in the arterial wall.¹,² Once thought to be solely caused by dyslipidemia, atherosclerosis is now known to be a result of inflammatory responses.³ Inflammation is involved in all stages of atherosclerosis, from the initial injury of the endothelium to plaque formation and eventual plaque rupture and thrombosis.⁴,⁵

Two novel inflammatory markers involved in CVD that are receiving increasing attention are platelet-activating factor (PAF) and lipoprotein-associated phospholipase A₂ (Lp-PLA₂).⁶,⁷ PAF is the most potent lipid inflammatory mediator and is produced upon
stimulation by numerous cells such as platelets, endothelial cells, and leukocytes.\(^8,9\) PAF is implicated in every step of atherosclerosis (Figure 1).\(^4\) PAF plays a crucial role in the initiation of atherosclerosis and one of its main pro-inflammatory actions is the mediation of adhesion of monocytes to the endothelium and initiation of gene transcription within monocytes to produce inflammatory cytokines such as monocyte chemoattractant protein-1, interleukin (IL) 8, and tumor necrosis factor \(\alpha\) (TNF-\(\alpha\)).\(^12,13\) PAF also stimulates the release of the proinflammatory cytokine IL-6 from both endothelial cells and monocytes.\(^14\)

PAF induces an influx of Ca\(^{2+}\), which results in increased endothelial permeability as the endothelial cells contract, allowing the migration of low-density lipoprotein (LDL) cholesterol and monocytes into the intima.\(^15\) PAF also stimulates reactive oxygen and nitrogen species and contributes to the oxidation of LDL.\(^6\) PAF is further involved in the differentiation of monocytes into pro-inflammatory macrophages that engulf oxidized LDL, and is involved in the formation of foam cells and the growth and rupture of plaques.\(^20,21\)

PAF, once produced, triggers an uncontrolled and prolonged inflammatory milieu, because it is responsible for the production of new PAF molecules and additional free radicals.\(^21,22\) Patients with diabetes, heart failure, acute myocardial infarction, and coronary heart disease have elevated levels of PAF.\(^23\)–\(^28\)

Lp-PLA\(_2\) (alternatively known as platelet-activating factor–acylhydrolase) is an enzyme that catalyzes hydrolysis of PAF and belongs to the PLA\(_2\) superfamily.\(^29\) As Lp-PLA\(_2\) hydrolyses PAF into the inactive form lysol-PAF, Lp-PLA\(_2\) levels are proposed to be determined by in vivo levels of PAF and may serve as a reliable surrogate marker of PAF.\(^30\) Because Lp-PLA\(_2\) catabolizes PAF, Lp-PLA\(_2\) appears to play an anti-inflammatory role. However, because of its nonspecificity for its ligand, the hydrolysis products of Lp-PLA\(_2\) have been linked to pathologies.\(^31\)

Lp-PLA\(_2\) is primarily secreted by macrophages and circulates in the blood bound to LDL and high-density lipoprotein (HDL), with the majority attached to LDL, and preferentially to small dense fractions.\(^32\) It is proposed that HDL bound to Lp-PLA\(_2\) plays a protective role.\(^33\)
role, whereas LDL-bound Lp-PLA2 is atherogenic. When associated with LDL, Lp-PLA2 hydrolyzes oxidized phospholipids on the surface of the LDL particles, creating pro-inflammatory and pro-atherogenic by-products such as lysophosphatidylcholine and oxidized, nonesterified fatty acids. Lysophosphatidylcholine and oxidized, nonesterified fatty acids mimic PAF in mediating inflammation by upregulating adhesion molecules; acting as a chemoattractant to monocytes; activating leukocytes; stimulating cytokine production such as IL-6 and TNF-α; contributing to necrosis and apoptosis of macrophages in the plaque; and inducing smooth muscle migration into the intima (Figure 2). Lp-PLA2 is an independent risk marker for coronary heart disease events, stroke, calcific aortic-valve stenosis, and plaque stability.

Previous research on diet and PAF and/or Lp-PLA2 is limited. However, some research has demonstrated that bioactive compounds found in foods regularly consumed in the traditional Mediterranean diet contain natural PAF inhibitors. These compounds inhibit inflammation by preventing PAF from binding to its receptor, blocking the cascade of intracellular signaling and inflammatory processes, and possibly by inhibiting metabolic enzymes used in the remodeling pathway for PAF synthesis. This research provides some insight into the potential mechanisms of components within the Mediterranean diet and its established cardioprotective effects.

Research into specific Mediterranean foods that inhibit PAF have predominantly been in vitro studies using washed rabbit platelets and, more recently, human platelets. The foods include fish, eggs, honey, wild plants; garden peas; dairy (especially fermented and of goat and sheep origin); goat and sheep meat; flaxseeds; olive oil and olive pomace; wine; grapes; Origanum onites (Cretan oregano); clove and cinnamon; onion; garlic; and seeds oils, such as corn, sunflower, and sesame. Foods found outside the Mediterranean region that inhibit PAF include soy sauce, Camillea sinensis (tea), and curcumin.

Dietary effects on Lp-PLA2 levels are largely unexplored, but some evidence from studies in humans has shown that low-energy diets with concurrent weight loss can reduce Lp-PLA2 levels, whereas increased energy intake is associated with higher Lp-PLA2 levels.
The replacement of 5% of energy from carbohydrates with energy from protein is associated with a decrease in Lp-PLA2 activity.72 An 8-week intervention with the supplementation of omega-3 fatty acids did not influence Lp-PLA2 activity in older adults,73 whereas a similar 30-day intervention in people with stable coronary artery disease resulted in decreased Lp-PLA2 levels.74 Studies have varied in terms of the assays used to measure Lp-PLA2. Lp-PLA2 assays can measure either plasma concentrations or enzymatic activity. This makes comparisons between studies and interpretation of results difficult. Enzyme activity assays now predominate the recent literature, because mass assays have been shown to be less accurate for risk stratification, because of their ability to only detect a smaller amount of Lp-PLA2, particularly that associated with HDL.75,76

In a recent review considering 17 studies of varying designs that investigated the Mediterranean diet and its components, the authors concluded that this dietary pattern has the potential to lower PAF and Lp-PLA2 levels.30 However, the scope of that review was limited to 1 database, and 12 of the 17 included studies examined individual foods, alcohol, or supplements such as fish oil and eicosapentaenoic acid, and not dietary patterns, which are more translatable and relevant across populations. In the present review, we aimed to comprehensively investigate the association between overall dietary patterns and their effect on PAF and Lp-PLA2 as novel inflammatory biomarkers.

MATERIALS AND METHODS

For this systematic review, we followed the requirements of the Preferred Reporting of Systematic Reviews and Meta-Analyses (PRISMA) statement (Supporting Information online), and the review was registered in July 2021 with the International Prospective Register of Systematic Reviews (PROSPERO no. CRD42020169666; available at http://www.crd.york.ac.uk/PROSPERO).

Table 1: PICOS criteria for inclusion and exclusion of studies

Parameter	Inclusion criteria	Exclusion criteria
Participants	Adults ≥ 18 y	Aged < 18 y
Intervention	Studies examining diet assessed by dietary patterns, dietary scores, dietary indices, and food patterns	Studies reporting animal or cellular models, or that analyzed consumption of single nutrients or foods rather than a dietary pattern
Comparator	Any/none	Any/none
Outcome	Any measurement of systemic inflammation using PAF and/or Lp-PLA2. Secondary outcomes included other reported novel markers of inflammation	Other cardiovascular disease outcomes
Study design	Observational (eg, prospective cohort, retrospective cohort, cross sectional, longitudinal, case-control, case series, intervention and randomized controlled trials)	None

Search strategy

The databases PubMed, Embase, CINAHL, and Cochrane CENTRAL were searched for relevant studies, with backward citation checking of relevant reviews retrieved in the search. A search for trial protocols through the ClinicalTrials.gov website (www.clinicaltrials.gov) and World Health Organization International Clinical Trials Registry Platform (https://apps.who.int/trialsearch/) was also performed. Databases were searched from inception; the search date was February 21, 2020, with an update to the search performed on February 7, 2021. Table 1 lists PICOS criteria (ie, participants, intervention, comparators, outcomes, and study designs) used to identify studies for inclusion. Eligible studies in any language were considered, provided they were full articles published in a peer-reviewed journal.

A comprehensive search strategy was developed by the research team in conjunction with an experienced librarian. Terms used in the literature search included PAF, platelet-activating factor, Lp-PLA2, lipoprotein-associated phospholipase A2, diet, and variations of these terms. The complete search strategy is available in the Supporting Information online.

Data management and extraction

Search results were imported into Endnote, version X9.3.3 for de-duplication, then uploaded to Covidence78 for removal of duplicates and screening. Screening of titles and abstracts against the inclusion criteria was undertaken independently and in duplicate by 2 researchers. Full-text articles were then reviewed independently and in duplicate by 2 researchers and screened for inclusion criteria. Disagreements were resolved by discussion or by a third reviewer.

Data extraction was performed by populating data-extraction tables for multiple study designs from the Cochrane Handbook for Systematic Reviews of Interventions,79 which were further adapted to extract
additional information during this stage. Data extraction was piloted on included articles reporting 3 different study designs, and then was amended to a final format. Data extraction was undertaken by 1 researcher and independently reviewed for accuracy by another researcher.

Data extracted included author, date published, study design, level of evidence, population, sex, country, age, type of dietary pattern, control group, sample size, and study duration. Primary outcomes extracted were PAF levels, PAF-induced platelet aggregation in platelet-rich plasma, specific activities of plasma lyso-PAF and PAF-AH, and LP-PLA2 mass and activity. Secondary outcomes extracted were any reported biomarkers identified as novel (ie, not recognized as a common inflammatory marker by the research team) and related to CVD. Study authors were contacted by email for additional information if required data had not been published.

Outcomes

The primary outcomes included mean net change in outcome measurements (ie, blood PAF, lyso-PAF, and PAF-AH levels; Lp-PLA2 mass and/or activity; or platelet aggregation induced by PAF) over the duration of the trial for interventions. Mean net change is the change from baseline to end point in the intervention group minus the change from baseline in the control group, or mean net change between baseline and end point for single-arm studies. Outcomes extracted for observational studies were a comparison of outcome measurements between dietary patterns.

Quality assessment

The quality of included studies was assessed independently and in duplicate using the Academy of Nutrition and Dietetics Quality Criteria Checklist (Table 3). Four relevance questions and 10 quality questions were rated yes or no, ranging from clarity of research question, selection bias, randomization, dropout, blinding, clarity of intervention description, validity of measures, appropriateness of statistical analyses, and conclusions drawn and funding sources. A positive score was determined by “Yes” answers to questions 2, 3, 6, and 7, and at least 1 additional “Yes” on the other questions. If a “No” was the answer to 1 of questions 2, 3, 6, and 7 overall, and there were ≥8 “Yes” answers, the study was rated positive. If answers to 2, 3, 6, and 7 were “No,” the study was rated as neutral. The study received a negative score if ≥6 of the 10 questions were responded to with “No.”

Data synthesis

A quantitative synthesis of the data was unable to be performed because of substantial diversity in methodology, dietary patterns, and measurements for outcomes of interest. As such, a narrative review was performed.

Meta-bias(es)

To assess whether reporting bias was present in intervention studies, an investigation of whether each study’s protocol had been published before commencement of the trial was undertaken. For all studies published after July 1, 2005, the Clinical Trial Register of the International Clinical Trials Registry Platform of the World Health Organization was searched and outcome reporting bias was assessed on the basis of whether selective reporting of outcomes were present.

RESULTS

Figure 3 presents the process and PRISMA flowchart for study selection. After deduplication, we identified 652 articles through the literature search. After reviewing titles and abstracts, 56 articles were relevant for full-text review. Exclusion of full-text articles was based largely on the lack of examination of a dietary pattern. Sixteen articles were eligible and included for narrative synthesis.

Table 2 lists the characteristics of included studies. The majority of studies were undertaken in Greece (n = 5) and the United States (n = 3). Two studies were undertaken in South Korea and 1 each in Taiwan, India, Sweden, Iran, Spain, and Canada. Specific dietary patterns identified in the literature included “Mediterranean” dietary patterns, “vegetarian” dietary patterns, and “other heart healthy” dietary patterns (which included the Dietary Approaches to Stop Hypertension, or DASH, pattern; Living Heart dietary pattern; National Cholesterol Education Program dietary pattern; and a dietary pattern that replaced refined carbohydrates with whole grains and legumes and more vegetables). A posteriori dietary patterns were also reported and highlighted different patterns consumed across different population groups (namely in Greece, Sweden, and Iran). Data relating to primary and secondary outcomes were extracted from 7 randomized controlled trials (RCTs), 2 non-RCTs, 2 pre-post or single-arm studies, and 1 fixed-sequence intervention trial. The remaining 4 studies were cross-sectional.

In the 4 intervention studies examining Mediterranean dietary patterns, 2 showed significant reductions in PAF-induced aggregation of platelets in both healthy participants and people with type 2
diabetes, with the latter showing a much greater response.17,88 A post hoc study of the Prevención con Dieta Mediterránea trial found a significant favorable change in Lp-PLA\textsubscript{2} activity levels in HDL after a 1-year Mediterranean dietary intervention supplemented with extra-virgin olive oil, when compared with a low-fat diet. However, no significant difference was seen in the Mediterranean diet group supplemented with nuts, when compared with a low-fat diet.81 The other study was a fixed-sequence study that presented Lp-PLA\textsubscript{2} as percentage change only, which limited the usefulness of the data.91 In that study, the small number of people whose HDL cholesterol was noted to have increased (n = 6 compared with n = 6 with reduced HDL), and there was a trend toward a favorable impact on Lp-PLA\textsubscript{2}; however, the results were not significant.91

Four studies examined vegetarian dietary patterns. One study was an RCT and compared similar Indian vegetarian diets that differed in the addition of either coconut or peanuts.83 Results showed PAF reduced within the peanut group, but no between-group analysis was conducted.83 In the single cross-sectional study in Taiwan,95 Lp-PLA\textsubscript{2} activity was less favorable in omnivores. However, overall, both groups had low average Lp-PLA\textsubscript{2} levels, which could be due to Asian ethnicity.96 In the 2 papers that reported pre-post single-arm studies, 1 reported significantly lower Lp-PLA\textsubscript{2} levels after 4 weeks of a raw, vegan dietary intervention.89 The other reported a marginally significant increase in Lp-PLA\textsubscript{2} after 21 days of a largely vegetarian Pritikin dietary pattern.90

Heart-healthy dietary patterns were investigated in 5 studies, 4 of which were RCTs. Two of the RCTs focused on the replacement of refined grains with whole grains, increased vegetables, and addition of legumes in a South Korean population sample.84,85 There were significant reductions in Lp-PLA\textsubscript{2} levels after a 12-week intervention. Another RCT evaluated a 3-week heart-healthy dietary pattern (the Living Heart Diet) combined with exercise and found significant reductions in Lp-PLA\textsubscript{2} compared with participants receiving usual care.86 A pre-post study with a heart-healthy dietary intervention that was broadly similar to the Living Heart Diet found no significant difference in Lp-PLA\textsubscript{2} levels
| Reference and study location | Study design | Inclusion criteria | Population mean ±SD or (range) | Duration | Dietary pattern/intervention | Control | Outcomes (measurement method) | PAF pg/mL (ELISA) Vegetarian with coconut group: Pre: 186.88 ± 383.11 Post: 194.52 ± 174.40; P = 0.947 Vegetarian with peanut group: Pre: 375.25 ± 705.03 Post: 139.45 ± 144.8; P = 0.05 Between-group difference: P = 0.224 PGD1 ng/mL Vegetarian with coconut group: Pre: 2679.78 ± 787.8 Post: 2715.82 ± 918.3; P = 0.67 Vegetarian with peanut group: Pre: 221.68 ± 647.7 Post: 2773.59 ± 1145.7; P = 0.001 Between-group difference: P = 0.95 MPO ng/mL Vegetarian with Coconut group: Pre: 657.92 ± 599.22 Post: 677.95 ± 551.65; P = 0.17 Vegetarian with Peanut group: Pre: 648.57 ± 529.38 Post: 924.26 ± 734.24; P = 0.006 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) (high-throughput radiometric assay) Whole-grain diet group: Pre: 28.0 ± 1.2 Post: 25.7 ± 1.1; P > 0.05 Usual diet group Pre: 30.1 ± 1.64 Post: 30.3 ± 1.61; P > 0.05 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) Whole-grain diet group: Pre: 2.16 ± 0.12 Post: 1.90 ± 0.12; P < 0.01 Usual

| Shankar (2017) India | RCT | Healthy adults | n = 58 (31 M, 27 F) Age: 23.8 ± 4.8 y Coconut group weight: 59.8 ± 10.2 kg Peanut group BMI: 56.8 ± 7.3 kg/m² | 90 d | n = 27 Vegetarian dietary pattern with Coconut group: Balanced vegetarian Yogic diet (based on grains, pulses, fruits, and vegetables) + 100 g/d fresh coconut | n = 31 Vegetarian dietary pattern with Peanut group: Balanced vegetarian Yogic diet + 45 g peanuts + 22 g peanut oil | PAF pg/mL (ELISA) Vegetarian with coconut group: Pre: 186.88 ± 383.11 Post: 194.52 ± 174.40; P = 0.947 Vegetarian with peanut group: Pre: 375.25 ± 705.03 Post: 139.45 ± 144.8; P = 0.05 Between-group difference: P = 0.224 PGD1 ng/mL Vegetarian with coconut group: Pre: 2679.78 ± 787.8 Post: 2715.82 ± 918.3; P = 0.67 Vegetarian with peanut group: Pre: 221.68 ± 647.7 Post: 2773.59 ± 1145.7; P = 0.001 Between-group difference: P = 0.95 MPO ng/mL Vegetarian with Coconut group: Pre: 657.92 ± 599.22 Post: 677.95 ± 551.65; P = 0.17 Vegetarian with Peanut group: Pre: 648.57 ± 529.38 Post: 924.26 ± 734.24; P = 0.006 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) Whole-grain diet group: Pre: 28.0 ± 1.2 Post: 25.7 ± 1.1; P > 0.05 Usual diet group Pre: 30.1 ± 1.64 Post: 30.3 ± 1.61; P > 0.05 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) Whole-grain diet group: Pre: 2.16 ± 0.12 Post: 1.90 ± 0.12; P < 0.01 Usual

| Kim et al (2016) South Korea | RCT | Nonobese adults with impaired fasting glucose or newly diagnosed diabetes | n = 80 (M:F ratio not reported) Age: 40–70 y Weight: not reported BMI: not reported | 12 wk | n = 40 Whole-grain dietary pattern Whole-grain diet group: Refined rice replaced with 33% legumes, 33% barley, 33% wild rice 3 servings of vegetables (180–420 g) | n = 40 Usual diet (control) group: Usual Korean diet with refined rice | PAF pg/mL (ELISA) Vegetarian with coconut group: Pre: 186.88 ± 383.11 Post: 194.52 ± 174.40; P = 0.947 Vegetarian with peanut group: Pre: 375.25 ± 705.03 Post: 139.45 ± 144.8; P = 0.05 Between-group difference: P = 0.224 PGD1 ng/mL Vegetarian with coconut group: Pre: 2679.78 ± 787.8 Post: 2715.82 ± 918.3; P = 0.67 Vegetarian with peanut group: Pre: 221.68 ± 647.7 Post: 2773.59 ± 1145.7; P = 0.001 Between-group difference: P = 0.95 MPO ng/mL Vegetarian with Coconut group: Pre: 657.92 ± 599.22 Post: 677.95 ± 551.65; P = 0.17 Vegetarian with Peanut group: Pre: 648.57 ± 529.38 Post: 924.26 ± 734.24; P = 0.006 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) Whole-grain diet group: Pre: 28.0 ± 1.2 Post: 25.7 ± 1.1; P > 0.05 Usual diet group Pre: 30.1 ± 1.64 Post: 30.3 ± 1.61; P > 0.05 Between-group difference (change adjusted for baseline): P < 0.001 Unstimulated PBMC Lp-PLA2 activity (nmol/mL/min) Whole-grain diet group: Pre: 2.16 ± 0.12 Post: 1.90 ± 0.12; P < 0.01 Usual

(continued)
Reference and study location	Study design	Inclusion criteria	Population mean ± SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)
Kim et al (2014) South Korea 59	RCT	Adults with impaired fasting glucose, impaired glucose intolerance, or newly diagnosed T2DM	n = 99 (67 M, 32 F) Age, y: Whole-grain group: 56.3 ± 1.2 Usual diet (control) 55.4 ± 1.5 Y Weight: not reported BMI (in lieu of weight): Whole-grain diet group: 24.0 ± 0.38 kg/m² Usual diet (control): 24.1 ± 0.44 kg/m²	12 wk	Whole-grain dietary pattern Whole-grain diet group: Refined rice replaced with 33% legumes (black soybeans), 33% barley, 33% wild rice 3×/d + 6 servings of vegetables (180–420 g)	n = 50 Usual diet (control) group: Usual Korean diet with refined rice	**Plasma Lp-PLA₂ activity (nmol/mL/min)** (high-throughput radiometric assay) Whole-grain diet group: Pre: 30.2 ± 1.32 Post: 27.8 ± 1.08; **P < 0.01** Usual diet group: Pre: 29.16 ± 1.29 Post: 29.84 ± 1.28; **P > 0.05** Between-group difference (change adjusted for baseline): **P < 0.001** Unstimulated PBMC Lp-PLA₂ activity (nmol/mL/min) Whole-grain diet group: Pre: 2.15 ± 0.11 Post: 1.96 ± 0.11; **P < 0.001** Usual diet group: Pre: 2.27 ± 0.13; **P < 0.001** Between-group difference (change adjusted for baseline): **P < 0.001** LDL particle size (nm) Whole-grain diet group: Pre: 24.3 ± 0.12 Post: 24.5 ± 0.14; **P < 0.01** Usual diet group: Pre: 24.11 ± 0.10 Post: 24.01 ± 0.14; **P > 0.05** Between-group difference (change adjusted for baseline): **P = 0.048**
Reference and study location	Study design	Inclusion criteria	Population mean ± SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)
------------------------------	--------------	--------------------	---------------------------------	----------	-------------------------------	---------	-----------------------------
Wooten et al (2013) United States	RCT (5-arm drug trial) Data extracted for 2 arms only: (1) Living Heart Diet group (diet and exercise, no medication) and (2) usual care (control) only	Dyslipidemic, HIV-positive adults treated with highly active antiretroviral therapy	n = 107 (98 M, 9 F) Age: 44.8 ± 9 y Weight: Living Heart Diet 81.6 ± 2.0 kg Usual care (control)	6 wk	- Heart Healthy dietary pattern: Carbohydrate, 50% energy; fat, 30% energy (< 7% SFA, 15% MUFA, 8% PUFA, minimal TFA), cholesterol < 200 mg/d, fiber 20–30 g/d + 2 placebos. Aerobic and resistance exercise: 75–90 min 3 ×/wk.	General advice on heart-healthy diet and exercise + 2 placebos. Participants given booklet titled Nutrition and Your Health	Lp-PLA, mass (ng/mL) mean ± SE (ELISA, PLAC test) Living Heart Diet group: Pre: 387.2 ± 17.9 Post: 323 ± 27.2; P < 0.05 Usual care (control) group: Pre: 415.1 ± 31.7 Post: 402.2 ± 25.3; P > 0.05 Between-group difference (adjusted for baseline): P < 0.05
Rizos et al (2011) Greece	RCT: only cross-sectional data extracted Results extracted for baseline data only (all 3 arms), after dietary intervention but before randomization to drug interventions	Adults with impaired fasting plasma glucose, mixed dyslipidemia, and stage 1 hypertension	n = 151 (73 M, 78 F) Age: 60 (46–70) y Weight: not reported BMI (in lieu of weight): Group 1: 29 ± 4 kg/m² Group 2: 29 ± 5 kg/m² Group 3: 28 ± 4 kg/m²	12 wk	- DASH dietary pattern: all groups	N/A	Plasma Lp-PLA, activity (nmol/ml/min) (TCA precipitation) Group 1 (RT): 57 ± 17 Group 2 (RI): 53 ± 11 Group 3 (RO): 58 ± 14 Plasma Lp-PLA, mass (ng/mL) (ELISA, PLAC test) Group 1: 277 ± 40 Group 2: 301 ± 20 Group 3: 304 ± 34 Small dense LDL cholesterol (mg/dL) (mmol/L) median (range) Group 1: 17 (2–69) [0.4 (0.1–1.8)] Group 2: 15 (7–46) [0.4 (0.2–1.1)] Group 3: 17 (2–78) [0.4 (0.1–2)] LDL particle size (Å) Group 1: 261 ± 7 Group 2: 262 ± 4 Group 3: 262 ± 6 PAF EC₅₀ (PAF induces platelet aggregation in PRP) Healthy group: Pre: 1.45 ± 1.47 Post: 2.70 ± 2.59; P = 0.023 T2DM group: Pre: 1.02 ± 1.38
Karaftonis et al (2005) Greece	Non-RCT	T2DM: managed with diet or OHAs. Healthy age- and weight-matched adults	n = 67 (35 M, 32 F) Age: 56 (26–74) y Weight: 77 ± 9 kg	4 wk	- Healthy: n = 45 2 groups: Healthy: n = 22; T2DM: n = 23	Mediterranean-type dietary pattern: Based on fast-food meals pretested for ability to reduce	PAF EC₅₀ (PAF-induced platelet aggregation in PRP) Healthy group: Pre: 1.45 ± 1.47 Post: 2.70 ± 2.59; P = 0.023 T2DM group: Pre: 1.02 ± 1.38
Table 2 Continued

Reference and study location	Study design	Inclusion criteria	Population mean ±SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)			
Roberts et al (2006) USA	Single-arm trial	Overweight or obese adult males	n = 22 (22 M Age : 62.8 (46–76) y Weight: 103.4 ± 22.9 kg	21 d	n = 22 Vegetarian dietary pattern Low-fat, Pritikin diet ≥5 servings/d whole grains, ≥4 servings/d vegetables ≥3 servings/d fruit. Protein from plant sources, nonfat dairy ≤2 servings/d; fish/fowl 85–140 g/wk. Minimal SFA and trans FA intake; no added fats, sugars + 45–60 min walking/d	N/A	PAF-induced aggregation in vitro (TPL)	Pre: 2.40 ± 4.6; P = 0.019 Usual/control (T2DM) group: Pre: 0.774 ± 0.522 Post: 0.831 ± 0.5; P = 0.285		
Observational studies	Prospective cohort study	Adult men and women No diagnosis of diabetes (IFG eligible) or previous history of CVD	n = 4999 (2040 M; 2959 F) Age: M (46–73) y F (45–73) y Weight: not reported	N/A	n = 4999 A posteriori dietary patterns identified by cluster analysis Six dietary patterns 1. Many foods and drinks 2. Fiber-rich bread 15% of energy from fiber-rich bread 3. Low-fat and high-fiber foods 10.5% of total energy from fruit, 8% from low-fat milk, both high-fat and low-fat meats and sweets 4. White bread 16% of total energy from white bread, other major energy sources were low-fat margarine; both high-fat and low-fat meats and sweets 5. Milk-fat pattern 12% of total energy from butter/rapeseed oil spread, other major energy sources included cheese, whole milk, + some white bread and sweets 6. Sweets and cakes pattern 18% of total energy from sugar, sweets, jam; other major energy sources were cakes, biscuits, and soft drinks	N/A	General linear model (controlled for age, total energy, season, % body fat, WHR, Lp-PLA2 mass (ng/mL) (ELISA, PLAC test) Many foods and drinks pattern (n = 1399): Male: 287.39 ± 3.76 Female: 258.72 ± 2.65 Fiber-rich bread pattern (n = 460): Male: 286.51 ± 5.48 Female: 257.15 ± 5.17 Low-fat and high-fiber foods pattern (n = 755): Male: 284.55 ± 6.97* Female: 250.64 ± 3.26 White bread pattern (n = 713): Male: 291.74 ± 4.22 Female: 252.15 ± 4.17 Milk-fat pattern (n = 638): Male: 291.74 ± 4.22 Female: 263.62 ± 4.40 Sweets and cakes pattern (n = 1034): Male: 296.33 ± 4.17 Female: 265.42 ± 3.19 Male: P = .009; Female: P = 0.004 Lp-PLA2 activity (ng/mL) (high-throughput)	Post: 24 ± 0.6; P = 0.05 PON1 activity per mg/HDL Pre: 669.2 ± 95.6 Post: 684.8 ± 99.7; P > 0.05		
Reference and study location	Study design	Inclusion criteria	Population mean ± SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)			
-----------------------------	-------------	--------------------	---------------------------------	----------	-------------------------------	---------	------------------------------			
Chen et al (2011) Taiwan²⁵	Cross-sectional	Healthy, adult, non-smoking women n = 363 (363 F) Age: 51.9 ± 9.9 y Weight: not reported BMI (in lieu of weight): Omnivore: 23.28 ± 3.4 kg/m² Vegetarians: 22.87 ± 2.94 kg/m²	N/A	n = 173 Vegetarian dietary pattern Lacto-ovo vegetarian	n = 190 Omnivore dietary pattern			PAF-AH activity in plasma		
Hernaez et al (2020) Spain²⁶	RCT	T2DM or ≥ 3 cardiovascular risk factors (cholesterol, hypertension, BMI, smoking, family history) n = 358 (131 M, 227 F) Age: 66.8 ± 5.8 y Weight: not reported BMI: mean not reported	1 y	Total n = 239 2 groups: Mediterranean diet supplemented with EVOO: n = 120; Mediterranean diet supplemented with nuts: n = 119	Total n = 119 Low-fat diet			PAF-AH activity in HDLs (PAF acetylhydrolase colorimetric assay) (1 y change): Mean change (95% CI)		

(continued)
Reference and study location	Study design	Inclusion criteria	Population mean ±SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)	
Makariou et al (2019) Greece	RCT	Adults with metabolic syndrome	n = 50 (25 M, 25 F) Age: 53 (37-67) y Weight: 89.0 ± 13.4 kg	3 mo	Heart Healthy Dietary Pattern NCEP ATP III guidelines Fat 25–35% energy (<7% SFA, reduced TFA), dietary cholesterol < 200 mg/d. Most dietary fat unsaturated; simple sugars limited	N/A	N/A	
							7.48% (0.17–14.8)	Mediterranean diet with nuts vs control: 3.39% (3.64 to 10.4) Heart-healthy dietary pattern Lp-PLA₂ activity (nmol/mL/min) (TCA precipitation) Pre: 7.4 ± 13.3 Post: 5.2 ± 12.6; P > 0.05 sdLDL cholesterol mg/dL Pre: 7.0 (2-22) Post: 5 (2-25); P > 0.05 sdLDL proportion, % Pre: 3.8 ± 2.8 Post: 3.7 ± 2.6; P > 0.05 Mean LDL size (nm) Pre: 266 ± 5.9 Post: 267 ± 3.5; P > 0.05 PAF EC₅₀ (PAF-induced platelet aggregation in PRP) Healthy group: Pre: 1.4 ± 1.4 Post: 2.7 ± 1.6; P = 0.023 T2DM group: Pre: 0.9 ± 0.6 Post: 4.2 ± 1.2; P < 0.001 Baseline significantly different between groups Usual/control (T2DM) group: Pre: 0.77 ± 0.52 Post: 0.81 ± 0.5; P = 0.285 Lp-PLA₂ mass (ng/mL) (not reported) Vegan raw plant–based diet: Pre: 252.3 ± 136.3 Post: 210.7 ± 119.1; P = 0.001 MPO (pmol/L) Pre: 124.1 ± 58.1 Post: 104.5 ± 53.6; P = 0.056 sdLDL cholesterol mg/dL Pre: 33.7 ± 11.3 Post: 23.7 ± 8.7; P < 0.0005
Antonopoulou et al (2006) Greece	Non-RCT	Type 2 diabetes: managed with diet or OHAs. Healthy age- and weight-matched adults	n = 69 (37 M, 32 F) Age: 53 (26–70) y Weight: 77 ± 9 kg	4 wk	Mediterranean-type dietary pattern: Based on catering company–supplied meals pretested for ability to reduce PAF aggregation in vitro (TL)	Usual diet	N/A	
							N/A	
Najjar et al (2018) United States	Single-arm trial	Adults with hypertension and dyslipidemia: SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, LDL-C ≥ 100 mg/dL and BMI ≥ 25 kg/m².	n = 31 (10 M, 21 F) Age: 53.4 (32–69) y Weight: 108.1 ± 5.1 kg	4 wk	Vegetarian dietary pattern (vegan, raw) Vegan, raw plant-based diet: raw fruits, vegetables, avocado, seeds, and plant foods dehydrated to temperatures ≤160 °F ad libitum. Cooked foods, animal products, free oils, soda, alcohol, and coffee were excluded.	N/A	N/A	
							N/A	

(continued)
Reference and study location	Study design	Inclusion criteria	Population mean ±SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)
Richard et al (2014) Canada	Fixed-sequence intervention	Nonsmoking male adults with metabolic syndrome, no CHD or diabetes, not taking lipid-lowering or antihypertensive medication	n = 26 (26 M) Age: 49.4 (24–62) y Weight: 98.3 ± 17.6 kg	10 wk	Mediterranean dietary pattern	Standard North American diet—the intervention diet followed a 5-wk run-in, which served as the control	PAF-AH HDL protein (fold change) (mass spectrometry iTRAQ) Error factor = 5.93 (an error factor value > 2 indicates the ratios vary greatly from peptide to peptide)
Seyedi et al (2020) Iran	Cross-sectional	Adult men and women ≥5 of: TC > 200 mg/dL, HDL C < 40 mg/dL (M), < 50 mg/dL (F), waist circ. ≥ 102 cm (M), ≥ 88 cm (F), SBP > 140 mmHg, DBP > 90 mmHg, anti-hypertensive medication, age ≥ 45 y (M), ≥ 55 y (F), smoker	n = 470 (114 M, 356 F) Age: 40–70 y Weight: not reported	N/A	A posteriori dietary pattern identified by factor analysis. Three dietary patterns calculated: 1. Healthy (reference pattern): high in fresh and dried fruits, olives, high-and low-fat dairy products, poultry and fish, liquid oils, and canned products 2. Semi-Mediterranean: characterized by legumes, potatoes, eggs, red meats, tea, and coffee. 3. Western: dominated by carbonated drinks, fast foods, salty snacks, mayonnaise, and organ meats	N/A	Lp-PLA₂ mass ng/mL (ELISA) Univariate linear regression Western: β = 0.35 (0.11, 0.78); P = 0.026 Semi-Mediterranean: β = -0.12 (-3.52, -0.16); P = 0.043 Multivariate linear regression (age, BMI, activity, EI, FBG, hormone therapy, lipid-lowering drug) Western: β = 1.32 (1.05, 1.64); P = 0.035 Semi-Mediterranean β = -0.01 (-0.16, 0.43); P = 0.75
Detopoulou et al (2015) Greece	Cross-sectional	Healthy adults No history of CVD or inflammatory disease, no current respiratory infection, dental problems, renal/hepatic abnormalities. Men were age- and BMI-matched to women.	n = 106 (48 M, 58 F) Age: 44 (31–57) y Weight: not reported BMI (in lieu of weight): 27.5 kg/m²	N/A	Mediterranean Dietary Pattern (and 2 miscellaneous other patterns): 1. A priori MedDietScore (as developed by Panagiotakos et al, 2006): based on nonrefined cereal, fruits, vegetables, potatoes, legumes, olive oil, fish, red meat, poultry, full-fat dairy products, and alcohol. 2. Calculation of dietary antioxidant capacity 3. Six a posteriori dietary patterns identified by principal component analysis 1. Fruits, nuts, and herbal drinks	None	Total PAF (pmol/mL), median (lower-upper quartile) (PAF-induced platelet aggregation toward washed rabbit platelets) Male: 82 (29–372) Female: 152 (43–944) Total: 119 (34–578) MedDietScore: Men only (n = 48); Adjusted for age, sex, EI/BMR Bound PAF r = -0.26; P = 0.08 Total PAF r = -0.30, P < 0.05 Dietary antioxidant capacity: adjusted for age, sex, EI/BMR Total PAF (pmol/mL)

(continued)
Reference and study location	Study design	Inclusion criteria	Population mean ± SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method)
2: Legumes, vegetables, poultry and fish							
3: Low consumption of low-fat dairy, high consumption of full-fat dairy, cheeses, alcohol, and red meat							
4: Coffee and low intake of whole-wheat products							
5: Refined cereals and full-fat dairy, cheeses							
6: Whole-wheat products and olive oil							

DAC FRAP: $r = -0.197; P = 0.06$
DAC TRAP: $r = -0.211; P = 0.04$
DAC TEAC: $r = -0.200; P = 0.05$
Lyso-PAF-AT (nmol/min/mg) $r = -0.171; P = 0.1$
DAC FRAP: $r = -0.200; P = 0.05$
DAC TRAP: $r = -0.211; P = 0.1$
DAC TEAC: $r = -0.146; P = 0.1$
Ly-PLA$_2$ (nmol/min/mg) (TCA precipitation) $r = -0.110; P = 0.30$
DAC FRAP: $r = -0.090; P = 0.30$
DAC TRAP: $r = 0.119; P = 0.20$
DAC TEAC: $r = 0.110; P = 0.30$
Free PAF: bound PAF, PAF-CPT, and PAF-AH: all results not significant.
A posteriori dietary patterns: Linear regression adjusted for age, sex, EI/BMR, and other dietary patterns
Free PAF pmol/mL
Legumes, vegetables, poultry, and fish dietary pattern:
$-0.157 \pm 0.087; P = 0.07$
Total PAF pmol/mL
Coffee and low intake of whole-wheat products dietary pattern:
$-0.147 \pm 0.06; P = 0.06$
Lyso-PAF-AT (nmol/min/mg)
Fruits, nuts, herbal drinks:
$-1.202 \pm 0.652; P = 0.06$
Whole-wheat products, olive oil dietary pattern:
$-1.273 \pm 0.571; P = 0.02$
Cox proportional hazards regression (adjusted for age, total energy, season, % body fat, WHR, and smoking)
Tertile 1: lowest adherence; tertile 3: highest adherence
Lp-PLA$_2$ mass (ng/mL1)
Female:
Low-fat and high-fiber foods pattern:
(continued)
Table 2 Continued

Reference and study location	Study design	Inclusion criteria	Population mean ± SD or (range)	Duration	Dietary pattern/intervention	Control	Outcomes (measurement method) mean ± SD or (range)a
							Tertile 2: OR, 0.89 (0.71, 1.12)
							Tertile 3: OR, 0.69 (0.54, 0.87)
							P = 0.002
							Sweets and cakes pattern:
							Tertile 2: OR, 1.20 (0.96, 1.50)
							Tertile 3: OR, 1.29 (1.02, 1.62)
							P = 0.030
							No significance when those with past change in diet were excluded (P = 0.098 and P = 0.149, respectively)
							Data for other patterns not reported
							Lp-PLA2 activity (ng/mL)
							Male:
							Low-fat and high-fiber foods pattern:
							Tertile 2: OR, 0.92 (0.61, 1.38)
							Tertile 3: OR, 0.62 (0.40, 0.90)
							P = 0.036
							No significance when those with past change in diet were excluded: P = 0.352
							Milk-fat pattern
							Tertile 2: OR, 1.17 (0.85, 1.62)
							Tertile 3: OR, 1.50 (1.10, 2.05)
							P = 0.011
							P = 0.009 when those with past change in diet were excluded
							Data for other patterns not reported

Abbreviations: AH, acetylhydrolase; BMI, body mass index; BMR, basal metabolic rate; CHD, coronary heart disease; circ., circumference; CV0, cardiovascular disease; DAC, dietary antioxidant capacity; DASH, Dietary Approach to Stop Hypertension; DBP, diastolic blood pressure; EC50, half-maximal effective concentration; ELISA, enzyme-linked immunosorbent assay; EVOO, extra virgin olive oil; F, female; FA, fatty acid; FBG, fasting blood glucose; FRAP, ferric-reducing antioxidant power; HDL, high-density lipoprotein; IFG, impaired fasting glucose; iTRAQ, isobaric tags for relative and absolute quantitation; LDL-C, low-density lipoprotein cholesterol; Lp-PLA2, lipoprotein-associated phospholipase A2; M, male; MPO, myeloperoxidase; MUFA, monounsaturated fatty acid; N/A, not applicable; OHA, oral hypoglycemic agent; OR, odds ratio; PAF, platelet activating factor; PBMC, peripheral blood mononuclear cells; PRP, platelet-rich plasma; PON1, serum paraoxonase and arylesterase 1; PUFAs, polyunsaturated fatty acids; RCT, randomized controlled trial; SBP, systolic blood pressure; sdLDL, small dense low-density lipoprotein; SE, standard error; SF, saturated fat; SFA, saturated fatty acids; T2DM, type 2 diabetes mellitus; TC, total cholesterol; TCA, trichloroacetic acid; TEAC, trolox-equivalent antioxidant power; TFA, trans fatty acids; TRAP, total radical-trapping antioxidant parameters; WHR, waist to hip ratio.

Bold indicates statistically significant results P ≤ 0.05. For some observational studies, only statistically significant results (or results approaching significance) are included, for brevity.
Atherosclerosis. RANTES is a pro-inflammatory cytokine and has been shown to be involved in all stages of atherosclerosis. 98 MPO prevents the accumulation of oxidized LDL and promotes cholesterol efflux out of macrophages. 97 MPO is an enzyme linked to inflammation and oxidative stress and has been shown to be involved in all stages of atherosclerosis. 98 RANTES is a pro-inflammatory cytokine that induces leukocyte activation and migration and is associated with a wide range of inflammatory disorders. 99 LDL particle size can be a marker used in the prediction of CVD. Small dense LDL particles are a distinct LDL subclass that is more pro-atherogenic than large LDL particles because they have a decreased affinity for the LDL receptor, resulting in longer circulation time; enter the arterial wall more easily; are more prone to entrapment in the arterial wall; and are more susceptible to oxidation. 100

A vegetarian diet supplemented with peanuts (but not the same diet supplemented with coconut instead of peanuts) resulted in a significant increase in PON1. 83 Similarly, MPO was significantly increased in the peanuts-supplemented group but not the coconut group. 83 The largely vegetarian Pritikin dietary pattern showed no effect on PON1 levels. 90

Similarly, a raw vegan dietary pattern intervention significantly lowered small dense LDL particles and decreased levels of MPO (P = 0.056). 89 A heart-healthy intervention resulted in no significant difference in RANTES in either the usual-care or intervention groups. 86 LDL particle size was significantly increased in the whole-grain dietary pattern interventions compared with a refined-grains dietary pattern. 84,85

Risk-of-bias assessment identified 6 positive, 10 neutral, and 0 negative articles (Table 3). Studies that rated lower on the scale did so mostly because of inadequate description of follow-up methods and handling of withdrawals and methods of blinding. There were no discrepancies in outcome reporting when study reports were checked against the Clinical Trial Register of the International Clinical Trials Registry Platform of the World Health Organization.

DISCUSSION

In this systematic review, we investigated the association between overall dietary patterns and their effect on PAF and Lp-PLA₂ as novel biomarkers of inflammation. There was a small number of published dietary studies reporting these biomarkers. Thirteen of the 16 included studies reported Lp-PLA₂ and only 4 reported PAF, with 1 study reporting on both markers. The paucity of research in this area is likely due to the novelty of the markers, in addition to the difficulty in measuring them and a lack of an established reference range for PAF and Lp-PLA₂ activity in a normal, healthy population.

However, a key finding from this review is that a range of established dietary patterns broadly consistent with country-specific dietary guidelines around the world show promise in producing favorable changes in these novel biomarkers. These included Mediterranean dietary patterns, vegetarian dietary patterns, and other heart-healthy dietary patterns. Conversely, dietary patterns including foods that were more highly processed...
A Mediterranean diet intervention also significantly improved inflammatory index scores (a measure of potential of diet to affect established inflammatory cytokines) compared with a low-fat diet in people with coronary heart disease. 103

People with cardiometabolic conditions or risk factors may have greater responses to dietary intervention.

Results from 2 studies we included in the present review suggested that Mediterranean dietary patterns may have greater favorable effects on PAF-induced platelet activity in patients with type 2 diabetes who are treated with both medication and diet, compared with healthy control study participants. 17, 88 It is possible that this was due to lower platelet resistance to PAF-induced platelet aggregation in participants with type 2 diabetes at baseline, compared with healthy participants, which provides greater scope for improvement because of their naturally higher levels of platelet hyperactivity resulting in increased activation and aggregation. 104

Furthermore, the results of the present study demonstrated that vegetarian dietary patterns were associated with more favorable changes in levels of PAF and Lp-PLA₂ post intervention compared with healthy participants, which provides greater scope for improvement because of their natural levels of platelet hyperactivity resulting in increased activation and aggregation. 104

Table 3 Risk-of-bias assessment

Reference	Relevance questionsa	Validity questionsb	Overall quality rating
Karantonis et al (2005) 10	Neutral	Neutral	Neutral
Hemaz et al (2020) 10	Neutral	Neutral	Neutral
Makariou et al (2019) 10	Neutral	Neutral	Neutral
Shankar (2017) 10	Neutral	Neutral	Neutral
Kim et al (2016) 10	Neutral	Neutral	Neutral
Kim et al (2014) 10	Neutral	Neutral	Neutral
Wooten et al (2013) 10	Neutral	Neutral	Neutral
Rios et al (2013) 10	Neutral	Neutral	Neutral
Antonopoulou et al (2006) 10	Neutral	Neutral	Neutral
Najjar et al (2018) 10	Neutral	Neutral	Neutral
Roberts et al (2006) 10	Neutral	Positive	Neutral
Richard et al (2014) 10	Neutral	Neutral	Neutral
Seyedi et al (2020) 10	Neutral	Neutral	Neutral
Detopoulou et al (2013) 10	Neutral	Neutral	Neutral
Hlebowicz et al (2011) 10	Neutral	Neutral	Neutral

Green = Yes; Yellow = Unclear; Grey = N/A; Red = No

a. Relevance questions (n = 4):
1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/client/population group?
2. Did the authors study an outcome (dependent variable) or topic that the patients/client/population group would care about?
3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dietetics practice?
4. Is the intervention or procedure feasible?

b. Validity questions (n = 10):
1. Was the research question clearly stated?
2. Was the selection of study subjects/patients free from bias?
3. Were study groups comparable?
4. Was method of handling withdrawals described?
5. Was blinding used to prevent introduction of bias?
6. Were outcomes clearly defined and the measurements valid and reliable?
7. Were outcomes clearly defined and the measurements valid and reliable?
8. Were statistical analysis appropriate for the study design and type of outcome indicators?
9. Are conclusions supported by results with biases and limitations taken into consideration?
10. Is bias due to study’s funding or sponsorship unlikely?

and reflective of Western diets were associated with unfavorable outcomes.

The finding that Mediterranean dietary patterns were associated with favorable changes in levels of both PAF and Lp-PLA₂ post intervention is unsurprising. The Mediterranean diet was associated with reduced risk of CVD, including a reduction in events and deaths in a recent systematic review, although the effect size was small and the quality of evidence low to moderate. 101 A previous systematic review that investigated the Mediterranean diet or its components and PAF and Lp-PLA₂ found a range of foods to have favorable effects; the authors concluded that dietary patterns that emphasize cereals, legumes, vegetables, fish, and wine were worthy of additional investigation. 102 This study also noted that research was lacking on olive oil (the most characteristic component of Mediterranean diets). Although not specific to these novel biomarkers, another systematic review found that a Mediterranean dietary pattern was associated with lower levels of other markers of inflammation and improved endothelial function. 102 A Mediterranean diet intervention also significantly improved dietary inflammatory index scores (a measure of potential of diet to affect established inflammatory cytokines) compared with a low-fat diet in people with coronary heart disease. 103

Table 3 Risk-of-bias assessment
consumption, due to a greater bioavailability of high-value nutrients such as vitamin D and other anti-inflammatory microconstituents.107,108

Within the current review, vegetarian diets with and without dairy and/or eggs were associated with favorable outcomes. One observational study found lower levels of Lp-PLA2 in groups following a lacto-ovo vegetarian dietary pattern compared with groups who were omnivores; however, the former group had higher levels of high-sensitivity C-reactive protein than did the omnivore group.95 These results are in contrast to those of a recent systematic review and meta-analysis that found vegetarian diets are associated with significantly lower levels of high-sensitivity C-reactive protein compared with nonvegetarian diets.109 The researchers noted Taiwanese vegetarians consume fewer fresh vegetables, which they cook in oil, than do Western vegetarians, and they consume many deep-fried and refined soybean and grain products, which might contribute to higher high-sensitivity C-reactive protein levels.

The other heart-healthy dietary patterns associated with favorable effects on inflammation in this review are broadly similar to country-specific dietary guidelines across the United States, the United Kingdom, and Australia.110–112 These guidelines advocate higher intakes of vegetables and fruits, moderate dairy consumption (albeit favoring reduced- or lower-fat options), plant-based oils, and unprocessed protein sources such as fish, lean meat, and legumes. A randomized dietary intervention study in healthy men and women compared a diet consistent with UK dietary guidelines with a representative UK diet and demonstrated a significant reduction in C-reactive protein levels after 12 weeks. This suggests that inflammation is positively affected when dietary guidelines are followed,115 possibly via increased food sources of polyphenols,114 known to be PAF inhibitors.63 Research has shown an inverse association between Lp-PLA2 and retinol and carotene, markers for provitamin A fruit and vegetable intake, in patients with incident CVD.115 Higher intake of fruit and vegetables led to a reduction in levels of inflammatory biomarkers in a recent systematic review and meta-analysis.116

We found that a Western dietary pattern is associated with higher levels of inflammation. This is not unexpected, because Western dietary patterns are associated with increased risk of coronary heart disease in both men and women.117,118 and given the known link between inflammation and heart disease. A recent review found that Western dietary patterns are associated with increased levels of the blood inflammatory biomarkers high-sensitivity C-reactive protein, leptin, and IL-6.119

Very few secondary outcomes were identified in this review; however, key markers appear to be PON1, MPO, and LDL particle size. Results for these outcomes were mixed. LDL particle size appears to be an important predictor of cardiovascular events and small dense LDL particles are more pro-atherogenic than large LDL particles.100,120 Levels of Lp-PLA2 in small dense LDL have been reported to be 5 to 10 times higher than in normal-size LDL.121 Of the 3 secondary outcomes, PON1 may be a useful addition to future studies investigating PAF and Lp-PLA2, given its presence within HDL and protective action against LDL oxidation.

Weight change may be a mediator of inflammatory biomarkers. Authors of a recent review (which did not include the novel biomarkers investigated in the present review) found no significant effect on markers of subclinical inflammation when examining whole foods and dietary patterns in weight-stable individuals with a high body mass index.122 The review authors concluded that weight loss may be a key factor in dietary interventions that reduce inflammation. In the present review, there was no change in mean weight from baseline in 7 of 10 interventions, but there were improvements in inflammation after the interventions. Three studies noted significant weight loss, but inflammatory outcomes were inconsistent. One study89 showed a weight loss of >6% of body weight after a 4-week intervention, with concomitant reductions in levels of novel inflammatory biomarkers. In contrast, the other 2 studies showed no or a worsening effect: one study87 reported a small reduction in weight with no change in Lp-PLA2 from baseline; the other study90 reported a 3% reduction in body weight, but Lp-PLA2 level actually increased after the intervention.

To our knowledge, this is the first systematic review to explore the association between dietary patterns, beyond the Mediterranean Diet, and the novel biomarkers PAF and Lp-PLA2. Strengths of our study include a strong methodology and use of the PRISMA guidelines. A comprehensive literature search was performed using 4 databases. Screening of title and abstracts and full-text review for inclusion criteria were performed in duplicate. Data extraction was independently reviewed for accuracy and quality assessment was performed.

This review was comprehensive and systematic; however, the analysis is limited by the small number of studies adhering to the inclusion criteria assessing dietary patterns and these novel biomarkers. The sheer novelty of the markers of interest are another limitation, because measurement methods are varied and no consensus of cutoff points have been derived for either PAF or Lp-PLA2 activity, making it difficult to interpret the results reported in the studies. Other limitations of this study include the wide diversity of groups reported in the studies, which makes it difficult to draw comparisons, and the inclusion of cross-sectional studies that encompass a high risk of bias and lower level of study...
quality when compared with RCTs. The number of studies examining PAF was very limited, suggesting this is a gap in the literature. Large-scale intervention studies are needed to gain a better understanding of how diet affects this novel biomarker. Because little is known about the normal concentrations of both biomarkers in healthy populations, priority for research should be placed on establishing reference values to determine the clinical utility of these biomarkers.

CONCLUSION

There is limited evidence and considerable diversity in existing studies investigating dietary patterns and the novel inflammatory markers PAF and Lp-PLA₂. A range of well-established dietary patterns has potential to improve these novel markers, including Mediterranean, vegetarian, and other heart-healthy dietary patterns. Conversely, Western dietary patterns are associated with higher levels of inflammation, as measured by these markers. More, well-designed studies are needed to confirm these findings and identify other dietary patterns that could positively affect inflammation.

Acknowledgments

Author Contributions. C.J.E. and D.P.R. conceived the study and extracted the data; CJE designed and performed the literature search and wrote the initial draft of the manuscript; C.J.E., D.P.R., and H.L.M. undertook article screening. All authors analyzed and interpreted the data and critically reviewed and approved the final manuscript.

Funding. C.J.E. was supported by an Australian Government Research Training Program Scholarship.

Declaration of interest. The authors declare no conflict of interest.

Supporting Information

The following Supporting Information is available through the online version of this article at the publisher’s website.

Table S1 Search terms used in the PubMed, CINAHL, Embase, and Cochrane databases

Acknowledgement

The authors thank Sarah Bateup, Bond University Faculty of Health Sciences and Medicine librarian, for assistance with designing and refining the search terms.

REFERENCES

1. Frostegard J. Immunity, atherosclerosis and cardiovascular disease. *BMC Med* 2013;11:117.
2. Herrington W, Lacey B, Sherkpen, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. *Circ. Res.* 2016;118:535–546.
3. Hansson GK, Robertson A-KL, Söderberg-Naucler C. Inflammation and atherosclerosis. *Arnu Rev Pathol.* 2006;1:297–329.
4. Demopoulos CA, Karantonis HC, Antonopoulou S. Platelet activating factor—a molecular link between atherosclerosis theories. *Eur J Lipid Sci Technol.* 2003;105:705–716.
5. Pearson TA, Mensah GA, Alexander RW, et al.; American Heart Association. Markers of inflammation and cardiovascular disease. *Circulation* 2003;107:499–511.
6. Palar Ramakrishnan AV, Varghese TP, Vanapalli S, et al. Platelet activating factor: a potential biomarker in acute coronary syndrome? *Cardiovasc Ther.* 2017;35:64–70.
7. Cojocaru M, Cojocaru IM, Silosi I. Lipoprotein-associated phospholipase A2 as a predictive biomarker of sub-clinical inflammation in cardiovascular diseases. *Mandica (Bucharest)* 2010;5:51–55.
8. Triggiani M, Schleimer RP, Warner JA, et al. Differential synthesis of 1-acyl-2-acyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. *J. Immunol.* 1991;147:660–666.
9. Prescott SM, Zimmerman GA, Stafforini DM, et al. Platelet-activating factor and related lipid mediators. *Annu Rev Biochem.* 2000;69:419–445.
10. Marathe GK, Zimmerman GA, Prescott SM, et al. Activation of vascular cells by PAF-like lipids in oxidized LDL. *Vascul Pharmacol.* 2002;38:193–200.
11. Rinager GE, Chimen M, Hamilton MJ, et al. The role of platelets in the recruitment of leukocytes during vascular disease. *Platelets* 2015;26:507–520.
12. Weyrich AS, McIntyre TM, McEver RP, Prescott SM, et al. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-Kappa B translocation. *J Clin Invest.* 1995;95:2297–2303.
13. Prescott SM, McIntyre TM, Zimmerman GA, et al. Inflammation as an early component of atherosclerosis and vascular damage—a role for P-selectin and platelet-activating factor. *Jpn Circ J.* 1996;60:137–141.
14. Lacasse C, Turcotte S, Gingras D, et al. Platelet-activating factor stimulates interleukin-6 production by human endothelial cells and synergizes with tumor necrosis factor for enhanced production of granulocyte-macrophage colony stimulating factor. *Inflammation* 1997;21:145–158.
15. Handleby DA, Arbeeny CM, Lee ML, Van Valen RG, et al. Effect of platelet activating factor on endothelial permeability to plasma macromolecules. *Immunopharmacology* 1984;8:137–142.
16. Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. *Nutrients* 2018;10:604.
17. Antonopoulou S, Fragopoulou E, Karantonis HC, et al. Effect of traditional Greek Mediterranean meals on platelet aggregation in normal subjects and in patients with type 2 diabetes mellitus. *J Med Food* 2006;9:356–362.
18. Suketti S, Tauseef M, Yazzbeck P, et al. Mechanisms regulating endothelial permeability. *Pulm Circ.* 2014;4:535–551.
19. Gaut JP, Heinecke JW. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. *Trends Cardiovasc Med.* 2003;13:103–112.
20. Lord an R, Nasopoulou C, Tsoupras A, et al. The anti-inflammatory properties of food polar lipids. In: Mettilllon J-M, Ramawat KG, eds. *Bioactive Molecules in Food.* Switzerland: Springer International Publishing; 2018:1–34.
21. Dentan C, Lesnik P, Chapman MJ, et al. Phagocytic activation induces formation of platelet-activating factor in human monocyte-derived macrophages and in macrophage-derived foam cells. *Relevance to the inflammatory reaction in atherogenesis.* *Eur J Biochem.* 1996;236:48–55.
22. Antonopoulou SN, Karantonis HC, Fragopoulou E, et al. PAF, a potent lipid mediator. In: Ad T, ed. *Bioactive Phospholipids Role in Inflammation and Atherosclerosis.* Kerala, India: Transworld Research Network; 2008:85–134.
23. Zheng G-H, Xiong S-Q, Mei L-I, et al. Elevated plasma platelet activating factor, platelet activating factor acetylhydrolase levels and risk of coronary heart disease or blood stasis syndrome of coronary heart disease in Chinese: a case control study. *Inflammation* 2012;35:1419–1428.
24. Cavallo-Perin P, Lupia E, Gruden G, et al. Increased blood levels of platelet-activating factor in insulin-dependent diabetic patients with microalbuminuria. *Nephrol Dial Transplant.* 2000;15:994–999.
25. Kudolo GB, Defranza RA. Urinary platelet-activating factor excretion is elevated in non-insulin dependent diabetes mellitus. *Prostaglandins Other Lipid Mediat.* 1999;57:87–98.
26. Chen H, Zheng P, Zhu H, et al. Platelet-activating factor levels of serum and gingival crevicular fluid in nonsmoking patients with periodontitis and/or coronary heart disease. Clin Oral Investig. 2010;14(2):629–636.

27. Detopoulou P, Fragopoulou E, Nomikos T, et al. Baseline and 6-week follow-up levels of PAF and activity of its metabolic enzymes in patients with heart failure and healthy volunteers—a pilot study. Angiology. 2011;62(4):522–528.

28. Sato H, Imaizumi T, Yoshida H, et al. Increased levels of blood platelet-activating factor (PAF) and PAF-like lipids in patients with ischemic stroke. Acta Neurol Scand. 1995;82(1):122–127.

29. Burke J, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res. 2009;50(suppl):S227–S242.

30. Nomikos T, Fragopoulou E, Antonopoulou S, et al. Mediterranean diet and its protective effects on platelet-activating factor (PAF): a systematic review. Clin Biochem. 2018;60:1–10.

31. Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: the story continues. Minerva Med. 2020;109(2):79–134.

32. Tellis CC, Tselepis AD. Pathophysiological role and clinical significance of lipoprotein-associated phospholipase A2 (Lp-PLA2) bound to LDL and HDL.Curr Pharm Des. 2014;20(26):3269.

33. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and potential therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–931.

34. Silva IT, Mello APo, Damasceno NRT. Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A2 (Lp-PLA2): a review. Lipids Health Dis. 2011;10:170.

35. Shi Y, Zhang P, Zhang L, et al. Role of lipoprotein-associated phospholipase A2 in leukocyte activation and inflammatory responses. Atherosclerosis 2007;191:54–62.

36. Steen DL, O’Donoghue ML. Lp-PLA2 inhibitors for the reduction of cardiovascular events. Cardiol Ther. 2013;2:125–134.

37. Kohno M, Yokokawa K, Yasunari K, et al. Induction by lymphoprophathydolchine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration. Circulation 1998;98:335–339.

38. Garza CA, Montori VM, McConnell JP, et al. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clin Proc. 2007;82:159–165.

39. Hu G, Liu D, Tong H, et al. Lipoprotein-associated phospholipase A2 activity and mass as independent risk factor of stroke: a meta-analysis. BioMed Res Int. 2019;2019:1–11.

40. Chung H, Kwon HM, Kim J-Y, et al. Lipoprotein-associated phospholipase A2 is related to plaque stability and is a potential biomarker for acute coronary syndrome. Jpn Med J. 2014;45:1507–1515.

41. Perrot N, Thériault S, Rigade S, et al. Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans. Heart. 2020;106:1407–1412.

42. Lordan R, Tsoupras A, Zabetakis I. Phospholipids of animal and marine origin: structure, function, and anti-inflammation properties. Molecules 2017;22:1964.

43. Lordan R, Tsoupras A, Zabetakis I, et al. Forty years since the structural elucidation of platelet-activating factor (PAF): historical, current, and future research perspectives. Molecules. 2019;24:4414.

44. Zimmerman GA, Elstad MR, Lorant DE, et al. Platelet-activating factor and arachidonic acid metabolism. J Agric Food Chem. 1999;47:4167–4174.

45. Saeed SA, Simjee RU, Shamim G, et al. Eugenol: a dual inhibitor of platelet-activating factor and arachidonic acid metabolism. Phytotherapy Research 1995;9:223–228.

46. Weisenger H, Grube H, Koenig E, et al. Isolation and identification of the platelet aggregation inhibitor present in the onion, Allium cepa. FEMS Lett. 2017;55(2):159–165.

47. Ntzouvani A, Giannopoulou E, Fragopoulou E, et al. Energy intake and plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and mass in healthy subjects. Eur J Nutr. 2020;59(5):1371–1391.

48. Covidence [Computer software]. Covidence Systematic Review Software.
81. Hernández A, Castaño O, Tresserras Rimbau A, et al. Mediterranean diet and atherothrombosis biomarkers: a randomized controlled trial. Mol Nutr Food Res. 2020;64(2):2000350.

82. Makariou SE, Elfish M, Challa A, et al. No effect of vitamin D administration plus dietary intervention on emerging cardiovascular risk factors in patients with metabolic syndrome. J Nutr Intermediary Metab. 2019;16:100093.

83. Shankar N. A Randomized Comparative Study on the Effect of Fresh Coconut in a Balanced Yogic Diet on Anthropometric Biochemical Immunological and Psychological Parameters in Healthy Adults. Swami Vivekananda Yoga Anusandhana Samsthana; 2017. Available at: http://hdl.handle.net/10023/216121. Accessed August 20, 2021.

84. Kim M, Song G, Kang M, et al. Replacing carbohydrate with protein and fat in prediabetes or type-2 diabetes: greater effect on metabolites in PBMC than plasma. Nutr Metab (Lond). 2016;13:3.

85. Kim M, Jeung SR, Jeong TS, et al. Replacing with whole grains and legumes reduces Lp-PLA2 activities in plasma and PBMCs in patients with prediabetes or T2D. J Lipid Res. 2014;55:1762–1771.

86. Wooten JS, Nambi P, Gaddis BK, et al. Intensive lifestyle modification reduces Lp-PLA2 in dyslipidemic HIV/HAART patients. Med Sci Sports Exerc. 2013;45:1043–1050.

87. Ricos CV, Libenopoulou EN, Telis CC, et al. Combining rosuvastatin with satitans of different peroxisome proliferator-activated receptor-γ activating capacity is not associated with different changes in low-density lipoprotein subfractions and plasma lipoprotein-associated phospholipase A2. Metab Syndr Relat Disord. 2011;9:217–223.

88. Karantonis HC, Frappolou E, Antonnopoulou S, et al. Effect of fast-food Mediterranean-type diet on type 2 diabetics and healthy human subjects’ platelet aggregation. Diabetes Res Clin Pract. 2006;72:33–41.

89. Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet containing vegetable protein (soy), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018;41:1062–1068.

90. Roberts CK, Ng C, Hama S, et al. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J Appl Physiol (1985). 2006;101:1727–1732.

91. Richard C, Couture P, Desrues S, et al. Effect of an isoenzymatic traditional Mediterranean diet on the high-density lipoprotein proteome in men with the metabolic syndrome. J Nutrigenet Nutrigenomics. 2014;7:48–60.

92. Seyedi S, Mottiaghi A, Mirrman P, et al. The relationship between dietary patterns and lipoprotein-associated phospholipase A2 levels in adults with cardiovascular risk factors. J Appl Physiol. 2005;99:1–14.

93. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in older adults. J Lipid Res. 2014;55:1762–1771.

94. Choudhury A, Castaño O, Treserras Rimbau A, et al. Mediterranean diet and athero-vascular diseases: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2014;24:929–939.

95. Mayr HL, Thomas C, Tierney AC, et al. Randomization to 6-month Mediterranean diet compared with a low-fat diet leads to improvement in Dietary Inflammatory Index scores in patients with coronary heart disease: the AUSMED Heart Trial. Nutr Rev. 2018;55:94–107.

96. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2016;15:121.

97. Satia A, Hu FB. Plant-based diets and cardiovascular health. Trends Cardiovasc Med. 2018;28:437–441.

98. Rombaut R, Camp JV, Dewettink K. Phospho- and sphingolipid distribution during processing of milk, butter and whey. Int J Food Sci Technol. 2006;41:435–443.

99. Lordan R, Tsoupras A, Mitra B, et al. Dairy fats and cardiovascular disease: do we really need to be concerned? Foods 2018;7:28.

100. Lordan R, Zabetakis I. Invited review: the anti-inflammatory properties of dairy lipids. J Dairy Sci. 2017;100:4197–4212.

101. Todd J, Jeanelle EP, Peoples GE, Probst YC. Vegetarian-based dietary patterns and their relation with inflammatory and immune biomarkers: a systematic review and meta-analysis. Adv Nutr. 2019;10:433–451.

102. US Department of Health and Human Services, US Department of Agriculture. Dietary Guidelines for Americans, 2020-2025. 9th ed. Washington, DC: DietaryGuidelines.gov; 2020.

103. Public Health England. Government Dietary Recommendations. London, UK: Public Health England; 2016.

104. National Health and Medical Research Council. Australian Dietary Guidelines. National Health and Medical Research Council; 2013.

105. Reidinger DP, Darzi J, Hall WL, et al. How effective are current dietary guidelines for cardiovascular disease prevention in healthy middle-aged and older men and women? A randomized controlled trial. Am J Clin Nutr. 2015;101:922–930.

106. Castro-Acosta ML, Sanders TAB, Reidinger DP, et al. Adherence to UK dietary guidelines is associated with higher dietary intake of total and specific polyphenols compared with a traditional UK diet: further analysis of data from the Cardiovascular risk REDUction Study; supported by an Integrated Dietary Approach (CRESSIDA) randomised controlled trial. Br J Nutr. 2019;121:402–415.

107. Tsirikas S, Willeit J, Knoflach M, et al. Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study. Eur Heart J. 2009;30:107–115.

108. Hosseini B, Berthon BS, Saedisomeolua A, et al. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am J Clin Nutr. 2018;108:136–155.

109. Hu FB, Rimm EB, Stampfer MJ, et al. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr. 2000;72:912–921.

110. Fung TT, Willett WC, Stampfer MJ, et al. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med. 2001;161:1857–1862.

111. Nordre MM, Collese TS, Giovanucci E, et al. A posteriori dietary patterns and their association with systemic low-grade inflammation in adults: a systematic review and meta-analysis. Nutr Rev. 2021;79:331–350.

112. Rizzo M, Berneis K. Low-density lipoprotein size and cardiovascular risk assessment. QJM. 2006;99:1–14.

113. Gazi I, Louwisa ES, Filippatos T, et al. Lipoprotein-associated phospholipase A2 activity is a marker of small, dense LDL particles in human plasma. Clin Chem. 2005;51:2264–2273.

114. Cowan SF, Leeming ER, Sinclair A, et al. Effect of whole foods and dietary patterns on markers of subclinical inflammation in weight-stable overweight and obese adults: a systematic review. Nutr Rev. 2020;78:19–38.