Large monochromatic components of small diameter

Erik Carlson¹ | Ryan R. Martin² | Bo Peng¹ | Miklós Ruszinkó³,⁴,⁵

¹Department of Mathematics and Statistics, Carleton College, Northfield, Minnesota, USA
²Department of Mathematics, Iowa State University, Ames, Iowa, USA
³Alfréd Rényi Institute of Mathematics, Budapest, Hungary
⁴Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
⁵NYU Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates

Correspondence
Ryan R. Martin, Iowa State University, 411 Morrill Road, Ames, Iowa 50011, USA.
Email: rymartin@iastate.edu

Funding information
J. William Fulbright Educational Exchange Program; Simons Foundation; Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Abstract
Gyárfás conjectured in 2011 that every r-edge-colored K_n contains a monochromatic component of bounded (“perhaps three”) diameter on at least $n/(r-1)$ vertices. Letzter proved this conjecture with diameter four.

In this note we improve the result in the case of $r = 3$: We show that in every 3-edge-coloring of K_n either there is a monochromatic component of diameter at most three on at least $n/2$ vertices or every color class is spanning and has diameter at most four.

KEYWORDS
diameter, monochromatic component, Ramsey theory

MATHEMATICAL SUBJECT CLASSIFICATION
05C55

1 | MONOCHROMATIC COMPONENTS

An easy exercise in an introductory graph theory course—a remark by Erdős and Rado, see [4]—states that any 2-coloring of the edges of K_n has a monochromatic spanning component. In general, Gyárfás [3] proved that the largest monochromatic component in an r-edge-coloring of K_n has order at least $n/(r-1)$ and equality holds if an affine plane of order $r-1$ exists and $(r-1)^2$ divides n.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC

J Graph Theory. 2022;99:247–250.
wileyonlinelibrary.com/journal/jgt

247
Füredi [2] proved the significantly larger lower bound \(n/(r - 1 - (r - 1)^{-1}) \) in the case that there is no affine plane of order \(r - 1 \). This connection to the existence of affine planes suggests that to determine exactly the maximum size of a monochromatic component is extremely difficult in general.

A double (triple) star is the tree obtained by joining the centers of two (three) stars by a path of length one (two). Clearly, double or triple stars have diameter 3 or 4, respectively. Additional structure on large monochromatic components has been conjectured by Gyárfás [4].

Conjecture 1 (Gyárfás [4, Problem 4.2]). For \(r \geq 3 \), is there a monochromatic double star on at least \(n/(r - 1) - o(n) \) vertices in every \(r \)-coloring of \(K_n \)?

A weaker version of the problem reads as follows.

Conjecture 2 (Gyárfás [4, Problem 4.3]). Given positive numbers \(n, r \). Is there a constant \(d \) (perhaps \(d = 3 \)) such that in every \(r \)-coloring of \(K_n \) there is a monochromatic subgraph of diameter at most \(d \) with at least \(n/(r - 1) \) vertices?

The assumption \(r \geq 3 \) in Conjecture 1 is necessary, since a random two-coloring will give a monochromatic double star of size \(\approx 3n/4 \) only. The best result for double stars is due to Gyárfás and Sárközy.

Theorem 3 (Gyárfás and Sárközy [5]). Every \(r \)-edge-coloring of \(K_n \) contains a monochromatic double star on at least \(\frac{n(r+1)+r-1}{r^2} \) vertices.

The bipartite Ramsey number of the double star has been determined by Mubayi [7]. The result of Theorem 4 is tight if each color class is biregular.

Theorem 4 (Mubayi [7]). In every \(r \)-edge-coloring of the complete bipartite graph \(K_{k,\ell} \) there is a monochromatic double star of order \(\frac{k+\ell}{r} \).

The weaker Conjecture 2 was later shown to be true by Ruszinkó [8] with \(d = 5 \).

Theorem 5 (Ruszinkó [8]). In every \(r \)-edge-coloring of \(K_n \) there is a monochromatic subgraph of diameter at most 5 on at least \(n/(r - 1) \) vertices.

This was further improved and was shown to be true for \(d = 4 \) by Letzter [6].

Theorem 6 (Letzter [6]). In every \(r \)-edge-coloring of \(K_n \) there is a monochromatic triple star on at least \(n/(r - 1) \) vertices.

For the case of \(d = r = 2 \), the following tight bound was proved by Erdős and Fowler [1].

Theorem 7 (Erdős and Fowler [1]). Every 2-edge-coloring of \(K_n \) contains a monochromatic connected subgraph of diameter at most 2 on at least \(3n/4 \) vertices.
Moreover, for \(r = 3, 4, 5, 6 \), Ruszinkó, Song, and Szabo [9] constructed colorings where the maximum size of a monochromatic, diameter 2 subgraph is strictly less than \(n/(r - 1) \), suggesting that \(d = 3 \) is best possible for diameter in Conjecture 2.

In this note we further improve (in terms of diameter) Theorem 6 for three colors. Let \(G_\alpha, G_\beta, \) and \(G_\gamma \) be the subgraphs of \(K_n \) induced by the edges that have color \(\alpha, \beta, \) and \(\gamma, \) respectively.

Theorem 8. In every 3-edge-coloring of \(K_n \) either there is a monochromatic connected subgraph of diameter at most 3 on at least \(n/2 \) vertices or each of \(G_\alpha, G_\beta, \) and \(G_\gamma \) is spanning and has a diameter at most 4.

Proof. By Theorem 4, we may assume that each of \(G_\alpha, G_\beta, \) and \(G_\gamma \) is both spanning and connected because if one is not, then the union of the other two color classes is a complete bipartite graph on \(n \) vertices.

Suppose, towards a contradiction and without loss of generality, that the distance between \(w_1 \) and \(w_2 \) is at least 5 in \(G_\alpha \) and \(w_1w_2 \in E(G_\beta) \). The set of the vertices \(U \) of the double star centered by \(w_1 \) and \(w_2 \) in \(G_\beta \) must contain less than \(n/2 \) vertices, otherwise the theorem is proven.

Note that there are no \(\beta \)-colored edges from \(\{w_1, w_2\} \) to \(V \setminus U \) by definition. Split the remaining vertices of \(V \setminus U \) into three parts:

\[
X = \{v \in V \setminus U : vw_1 \in E(G_\gamma), vw_2 \in E(G_\alpha)\},
Y = \{v \in V \setminus U : vw_1 \in E(G_\gamma), vw_2 \in E(G_\gamma)\},
Z = \{v \in V \setminus U : vw_1 \in E(G_\alpha), vw_2 \in E(G_\gamma)\}.
\]

Note that there are no vertices \(v \), such that \(vw_1 \in E(G_\alpha) \) and \(vw_2 \in E(G_\alpha) \), or else the distance between \(w_1 \) and \(w_2 \) in \(G_1 \) would be 2 < 5. Clearly, neither \(X \) nor \(Z \) is empty, or else there is a star in \(G_\gamma \) (centered at either \(w_1 \) or \(w_2 \)) of order greater than \(n/2 \). Furthermore, no edge between \(X \) and \(Z \) is colored \(\alpha \), or else we have a path of length 3 in \(G_\alpha \) between \(w_1 \) and \(w_2 \).

In addition, there is a length 2 path in color \(\gamma \) between each pair of vertices in \(X \) (through \(w_1 \)), between each vertex in \(X \) with each vertex in \(Y \) (through \(w_1 \)), between each pair of vertices in \(Y \) (through either \(w_1 \) or \(w_2 \)), between each vertex in \(Y \) and each vertex in \(Z \) (through either \(w_1 \) or \(w_2 \)), and between each pair of vertices in \(Z \) (through \(w_2 \)).

Since \(X \cup Y \cup Z \cup \{w_1, w_2\} \) contains more than \(n/2 \) vertices, there must exist some vertices, \(v_X \in X, v_Z \in Z \), such that their distance in color \(\gamma \) within the vertex set \(X \cup Y \cup Z \cup \{w_1, w_2\} \) is at least 4, otherwise we have found a vertex set of diameter 3 in color \(\gamma \) of size larger than \(n/2 \). For this to be the case, neither \(v_X \) nor \(v_Z \) can have an edge colored \(\gamma \) connecting it to any vertex in \(Y \), otherwise there would be a path of length 3 connecting \(v_X \) and \(v_Z \) in \(G_\gamma \). Furthermore, since there is no edge of color \(\alpha \) between \(X \) and \(Z \), \(v_X \) must have only edges colored \(\beta \) between itself and all vertices of \(Z \), and \(v_Z \) must have only edges colored \(\beta \) between itself and all vertices of \(X \), otherwise, again \(v_X \) and \(v_Z \) would have distance at most 3 in \(G_\gamma \).

Now, we have a double star in color \(\beta \), anchored at \(v_X \) and \(v_Z \), containing all of \(X \cup Z \). If \(Y \) is empty, the theorem is proven. Therefore, there must be some \(v_Y \in Y \) such that
neither \(v_Yv_X \) nor \(v_Yv_Z \) has color \(\beta \), otherwise there is a double star in color \(\beta \), anchored at \(v_X \) and \(v_Z \), containing \(X \cup Y \cup Z \), which is a double star on at least \(n/2 \) vertices.

So, the edges \(v_Yv_X \) and \(v_Yv_Z \) have neither color \(\beta \) nor color \(\gamma \). Therefore, both such edges have color \(\alpha \). This produces a path in \(G_\alpha \), namely, \(w_1v_Zv_Yv_Xw_2 \), of length 4, which is a contradiction to the assumption that \(w_1 \) and \(w_2 \) have distance at least 5 in \(G_\alpha \). \(\square \)

2 | CONCLUSION

Though Theorem 8 does not prove Conjecture 2 for \(d = 3 \) in the case of three colors, it gives support to this very natural and surprisingly difficult question.

ACKNOWLEDGMENTS

This study was part of a class in the Budapest Semesters in Mathematics program in the Fall of 2019. The authors also wish to acknowledge the Rényi Institute of Mathematics for the use of its facilities. The authors would like also to thank Gábor Sárközy and András Gyárfás for fruitful comments and discussions. Ryan R. Martin’s research was supported in part by a Simons Foundation Collaboration Grant (Grant No. #353292) and by the J. William Fulbright Educational Exchange Program. Miklós Ruszinkó’s research was supported in part by NKFIH (Grant No. 132696).

ORCID

Ryan R. Martin https://orcid.org/0000-0003-0683-1414
Miklós Ruszinkó http://orcid.org/0000-0003-1664-7717

REFERENCES

1. P. Erdős and T. Fowler, Finding large \(p \)-colored diameter two subgraphs, Graphs Combin. 15 (1999), no. 1, 21–27.
2. Z. Füredi, Covering the complete graph by partitions. Graph theory and combinatorics (Cambridge, 1988), Discrete Math. 75 (1989), no. 1–3, 217–226.
3. A. Gyárfás, Partition coverings and blocking sets in hypergraphs (in Hungarian), vol. 71, Communications of the Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, 1977, 62pp.
4. A. Gyárfás, Large monochromatic components in edge colorings of graphs: a survey (A. Soifer ed.) Ramsey theory, Progr. Math., vol. 285, Burkhäuser/Springer, New York, 2011, pp. 77–96.
5. A. Gyárfás and G. N. Sárközy, Size of monochromatic double stars in edge colorings, Graphs Combin. 24 (2008), no. 6, 531–536.
6. S. Letzter, Large monochromatic triple stars in edge colourings, J. Graph Theory. 80 (2015), no. 4, 323–328.
7. D. Mubayi, Generalizing the Ramsey problem through diameter, Electron. J. Combin. 9 (2002), no. 1, Research Paper 42, 10pp. https://doi.org/10.37236/1658
8. M. Ruszinkó, Large components in \(r \)-edge-colorings of \(K_n \) have diameter at most five, J. Graph Theory. 69 (2012), no. 3, 337–340.
9. M. Ruszinkó, L. Song, and D. P. Szabo, Monochromatic diameter-2 components in edge colorings of the complete graph, Involve, a Journal of Mathematics. 14 (2021), no. 3, 377–386.

How to cite this article: E. Carlson, R. R. Martin, B. Peng, and M. Ruszinkó, Large monochromatic components of small diameter. J Graph Theory. 2022;99:247–250. https://doi.org/10.1002/jgt.22739