CANONICAL BASIS FOR QUANTUM osp(1|2)

SEAN CLARK AND WEIQIANG WANG

ABSTRACT. We introduce a modified quantum enveloping algebra as well as a (modified) covering quantum algebra for the ortho-symplectic Lie superalgebra osp(1|2). Then we formulate and compute the corresponding canonical bases, and relate them to the counterpart for sl(2). This provides a first example of canonical basis for quantum superalgebras.

1. Introduction

The canonical basis of Lusztig [11] and Kashiwara [9] has served as an important motivation of the categorification of quantum enveloping algebras. In a recent paper [5] of David Hill and the second author, a class of (halves of) quantum Kac-Moody superalgebras has been categorified, and in addition, it was suggested for the first time to use a novel bar-involution to construct canonical basis of quantum Kac-Moody superalgebras and their integrable modules. We refer the reader to loc. cit. for extensive references in the fast-growing area of categorification.

The aim of this paper is to formulate and compute the canonical bases for a modified quantum enveloping superalgebra \hat{U} as well as for a (modified) covering quantum superalgebra \hat{U}^π associated to the ortho-symplectic Lie superalgebra osp(1|2). Since canonical basis has never been formulated before for quantum superalgebras, we find it desirable to work out the formulas and constructions in detail in this rank one setting. The new features and connections observed in this paper will be instrumental in a forthcoming work [4] joint with David Hill on canonical basis for general quantum Kac-Moody superalgebras.

The algebra \hat{U} is modified from a quantum enveloping superalgebra U for osp(1|2) by adding idempotents, following [2, 12]. Our (Hopf) superalgebra U is defined as a direct sum of $\mathbb{Q}(q)$-superalgebras U_0 and U_1, where U_0 and U_1 differ somewhat from the quantum osp(1|2) used in the literature (cf. [8, 1, 13, 7, 3]). In contrast to those variants, our algebras U_0, U_1 and U are well suited for introducing a bar-involution and an integral form as needed in the construction of canonical basis, and the modified algebra \hat{U} has an intrinsic description. The bar-involution on U and \hat{U} used in this paper has the unusual feature that it sends a quantum parameter q to $-q^{-1}$ (cf. [5]).

The complexified algebras $\mathbb{C}U_0$ for U_0 and $\mathbb{C}U_1$ for U_1 are shown to be isomorphic, and finite-dimensional simple modules of $\mathbb{C}U_0$ were classified in [13] in terms of highest weights labeled by pairs (n, \pm) for $n \in \mathbb{N}$. We show those even-weight (i.e., odd-dimensional) simple $\mathbb{C}U_0$-modules arise from the simple U_0-modules while those odd-weight (i.e., even-dimensional) simple $\mathbb{C}U_0$-modules arise from the simple U_1-modules.

Following [5], we introduce a covering quantum algebra U^π for osp(1|2) with an additional parameter π such that $\pi^2 = 1$. The covering algebra U^π admits a modified version \hat{U}^π too. The structure constants when multiplying the canonical basis elements in \hat{U}^π are

2010 Mathematics Subject Classification. Primary 17B37.

Key words and phrases. Quantum enveloping superalgebra, representations, canonical basis.
positive integer Laurent polynomials in q and π. We expect that the algebra \hat{U}^π and its canonical basis can be categorified in a generalized framework of spin nilHecke algebras (à la Lauda [10] for $U_q(\mathfrak{sl}(2))$, where π again is categorized as a parity shift functor as in [5]. The algebras \hat{U} and \hat{U}^π specialize when $\pi = 1$ to $U_q(\mathfrak{sl}(2))$ and its modified version, and specialize when $\pi = -1$ to \hat{U} and \hat{U}^π. In particular, the canonical basis for \hat{U}^π are shown to specialize when $\pi = 1$ and $\pi = -1$ to the canonical basis for modified quantum $\mathfrak{sl}(2)$ [12] and for \hat{U}, respectively. In other words, our constructions and formulas can be regarded as a π-enhanced version of their counterparts for quantum $\mathfrak{sl}(2)$.

It is well known that Lie superalgebra $\mathfrak{osp}(1|2)$ admits only odd-dimensional simple modules. In contrast, the quantum $\mathfrak{osp}(1|2)$ as defined in this paper has richer representation theory, which are compatible with the categorification construction and also with quantum $\mathfrak{sl}(2)$. All these will afford a natural generalization in the setting of quantum Kac-Moody superalgebras.

This paper is organized as follows. In Section 2 we define the algebras U_0, U_1 and study their basic structures including the integral forms and (anti-)automorphisms. In Section 3 we classify the finite-dimensional simple weight modules of U_0 and U_1. In Section 4 we show $U = U_0 \oplus U_1$ has a natural Hopf superalgebra structure. In Section 5 we find an explicit formula for the quasi-R-matrix of U, which is then used in defining the bar-involution for a tensor product of modules. The canonical basis on the tensor product of two finite-dimensional U-modules is computed. In Section 6 we define the modified algebra \hat{U}, compute its canonical basis, and formulate a bilinear form on \hat{U}. In Section 7 we formulate in the framework of covering algebras variants of constructions and results in the previous sections.

Acknowledgments. We thank David Hill for fruitful collaboration and stimulating discussions on closely related projects. The second author is partially supported by an NSF grant DMS–1101268.

2. Structures of quantum $\mathfrak{osp}(1|2)$

2.1. Algebra U_0. Set

$$\pi = -1$$

throughout this paper except the final Section 7 and we will use the symbol π for the super signs in superalgebras arising from exchanges of odd elements. This allows us to state clean commutation formulas, and to recover many classical formulas for quantum $\mathfrak{sl}(2)$ by simply dropping π.

Definition 2.1. The algebra U_0 is the $\mathbb{Q}(q)$-algebra generated by E, F, K, and K^{-1}, subject to the relations:

1. $KK^{-1} = 1 = K^{-1}K$;
2. $KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F$;
3. $EF - \pi FE = \frac{K - K^{-1}}{\pi q - q^{-1}}$.

Remark 2.2. There has been definitions for quantum enveloping algebra of $\mathfrak{osp}(1|2)$, which differ from U_0 by a different rescaling of the relation (3) above. A version of $U_q(\mathfrak{osp}(1|2))$ appeared in [11][13], where (3) is replaced by

$$(3a) \quad EF - \pi FE = \frac{K - K^{-1}}{q^2 - q^{-2}}.$$

On the other hand, the definition used in [7] replaces (3) by
2.2. Algebra \(U \). We introduce a variant of quantum enveloping algebra for \(\mathfrak{osp}(1|2) \).

Definition 2.3. The algebra \(U \) is the \(\mathbb{Q}(q) \)-algebra generated by \(E, F, K \), and \(K^{-1} \), subject to the relations:

1. \(KK^{-1} = 1 = K^{-1}K \);
2. \(KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F \);
3. \(EF - \pi FE = \frac{\pi K - K^{-1}}{q - q^{-1}} \).

Note the difference between definitions of \(U_0 \) and \(U_1 \) lies in the relation (3).

Remark 2.4. As we need to mix the use of \(U_0 \) and \(U_1 \), we shall denote the generators for \(U_0 \) (respectively, \(U_1 \)) by \(E_0, F_0, K_0 \) (respectively, \(E_1, F_1, K_1 \)). Then the defining relations of \(U_\epsilon \) (\(\epsilon = 0, 1 \)) can be succinctly rewritten as

1. \(K_\epsilon K_\epsilon^{-1} = 1 = K_\epsilon^{-1}K_\epsilon \);
2. \(K_\epsilon E_\epsilon K_\epsilon^{-1} = q^2E_\epsilon, \quad K_\epsilon F_\epsilon K_\epsilon^{-1} = q^{-2}F_\epsilon \);
3. \(E_\epsilon F_\epsilon - \pi F_\epsilon E_\epsilon = \frac{\pi K_\epsilon - K_\epsilon^{-1}}{q - q^{-1}} \).

The algebra \(U_\epsilon \) is naturally a superalgebra by letting \(E_\epsilon, F_\epsilon \) be odd and \(K_\epsilon^\pm1 \) be even.

2.3. Complexification. Fix a square root \(\sqrt{\pi} \in \mathbb{C} \). For \(\epsilon = 0, 1 \), denote

\[\mathbb{C}U_\epsilon = \mathbb{C}(q) \otimes_{\mathbb{Q}(q)} U_\epsilon. \]

Though \(U_0 \) and \(U_1 \) are not isomorphic as \(\mathbb{Q}(q) \)-algebras, we have the following.

Lemma 2.5. There is an isomorphism of \(\mathbb{C}(q) \)-algebras \(b : \mathbb{C}U_1 \to \mathbb{C}U_0 \) such that

\[b(F_1) = F_0, \quad b(E_1) = \sqrt{\pi}E_0, \quad b(K_1) = \sqrt{\pi}^{-1}K_0. \]

We may formally regard \(U_0 \) and \(U_1 \) as two different real forms for the same \(\mathbb{C}(q) \)-algebra. They share many of the same structural properties, and the proofs of these properties are quite similar. The rationale of introducing \(U_1 \) besides \(U_0 \) comes from Sections 3 and 6.

2.4. PBW and gradings. Clearly the elements \(F_\epsilon^aK_\epsilon^bE_\epsilon^c \) with \(a, c \in \mathbb{N} \) and \(b \in \mathbb{Z} \) span \(U_\epsilon \) since any monomial in \(E_\epsilon, F_\epsilon, \) and \(K_\epsilon \) can be expressed as a sum of such elements by using the defining relations. Proving linear independence can be done as in [6, 1.5]. Hence we obtain the following.

Proposition 2.6. The algebra \(U_\epsilon \), for \(\epsilon = 0, 1 \), has the following (PBW) bases:

\[\{ F_\epsilon^aK_\epsilon^bE_\epsilon^c | a, c \in \mathbb{N}, b \in \mathbb{Z} \}, \quad \{ E_\epsilon^aK_\epsilon^bF_\epsilon^c | a, c \in \mathbb{N}, b \in \mathbb{Z} \}. \]

Let \(U_\epsilon^+ \) be the subalgebra of \(U_\epsilon \) generated by \(E_\epsilon \), \(U_\epsilon^- \) be the subalgebra generated by \(F_\epsilon \), and \(U_\epsilon^0 \) be the subalgebra generated by \(K_\epsilon, K_\epsilon^{-1} \).
The algebra U_ϵ has two natural gradings on it: the \mathbb{Z}-grading arising from weight space decomposition of $\mathfrak{osp}(1|2)$, and a parity \mathbb{Z}_2-grading arising from the superalgebra structure of $\mathfrak{osp}(1|2)$. The parity \mathbb{Z}_2-grading on the algebra U_ϵ is defined by
\[p(E_\epsilon) = p(F_\epsilon) = 1, \quad p(K_\epsilon) = p(K_\epsilon^{-1}) = 0. \]
The weight \mathbb{Z}-grading on the algebra U_ϵ (which is the same as a weight space decomposition in our rank one setting) is defined by
\[|E_\epsilon| = 2, \quad |F_\epsilon| = -2, \quad |K_\epsilon| = |K_\epsilon^{-1}| = 0, \]
since the defining relations are clearly homogeneous with respect to this definition. We have
\[U_\epsilon = \bigoplus_{i \in \mathbb{Z}} U_\epsilon(i), \quad U_\epsilon(i) = \{ u \in U_\epsilon | K_\epsilon u K_\epsilon^{-1} = q^i u \}. \]

2.5. The \mathcal{A}-subalgebra. Let
\[\mathcal{A} = \mathbb{Z}[q, q^{-1}], \quad \mathbb{N} = \{0, 1, 2, \ldots \}. \]
For $n \in \mathbb{Z}$ and $a \in \mathbb{N}$, we define the super quantum integer or (q, π)-integer
\[[n] = \frac{(\pi q)^n - q^{-n}}{\pi q - q^{-1}}, \quad (2.1) \]
and then define the corresponding factorials and binomial coefficients
\[[a]^! = \prod_{i=1}^{a} [i], \quad \begin{bmatrix} n \atop a \end{bmatrix} = \frac{\prod_{i=1}^{a} [n + i - a]}{[a]^!}. \quad (2.2) \]
We adopt the convention that $[0]^! = 1$. Note that $\begin{bmatrix} n \atop a \end{bmatrix} = \frac{[n]^!}{[a]^![n-a]^!}$, for $n \geq a \geq 0$. One checks that $[n] \in \mathcal{A}$, $\begin{bmatrix} n \atop a \end{bmatrix} \in \mathcal{A}$. A straightforward computation gives us
\[[-n] = -\pi^n [n], \quad \begin{bmatrix} n \atop a \end{bmatrix} = (-1)^a \pi^{n a + \binom{a}{2}} \begin{bmatrix} a - n - 1 \atop a \end{bmatrix}. \quad (2.3) \]
We use these super quantum integers to define the divided powers:
\[E_\epsilon^{(a)} = \frac{E_\epsilon^a}{[a]^!}, \quad F_\epsilon^{(a)} = \frac{F_\epsilon^a}{[a]^!}. \quad (2.4) \]
It is understood that $E_\epsilon^{(0)} = F_\epsilon^{(0)} = 1$. For $n \in \mathbb{Z}, a \in \mathbb{N}$, we also define the following elements in U_ϵ (compare [6]):
\[[K_\epsilon; n] = \frac{(\pi q)^n \pi^n K_\epsilon - q^{-n} K_\epsilon^{-1}}{\pi q - q^{-1}}, \quad \begin{bmatrix} K_\epsilon; n \atop a \end{bmatrix} = \frac{\prod_{j=1}^{a} [K_\epsilon; n + j - a]}{[a]^!}. \quad (2.5) \]
We let $\mathcal{A} U_\epsilon$ be the \mathcal{A}-subalgebra of U_ϵ generated by $E_\epsilon^{(a)}$, $F_\epsilon^{(a)}$, $K_\epsilon^{\pm 1}$, $\begin{bmatrix} K_\epsilon; n \atop a \end{bmatrix}$, for $n \in \mathbb{Z}, a \in \mathbb{N}$.
2.6. Automorphisms. Following a key observation in [5], we define the \(\mathbb{Q}(q) \)-automorphism of \(\mathbb{Q}(q) \), denoted by \(\tau \), such that

\[
\tau = \pi q^{-1}. \tag{2.6}
\]

Note that the super quantum integers are bar-invariant. A map \(\phi \) from a \(\mathbb{Q}(q) \)-algebra \(A \) to itself is called antilinear if \(\phi(g(q)a) = g(q)\overline{\phi(a)} \), for \(g(q) \in \mathbb{Q}(q) \). We also adopt the convention that an anti-homomorphism \(f \) on \(A \) is a \(\mathbb{Q}(q) \)-linear map satisfying \(f(xy) = f(y)f(x) \), for \(x, y \in A \). Below we shall denote by \(D_4 \) the dihedral group of order 8.

Proposition 2.7. Let \(\epsilon \in \{0, 1\} \).

1. There is a \(\mathbb{Q}(q) \)-antilinear involution \(\psi_\epsilon : U_\epsilon \to U_\epsilon \) such that
 \[
 \psi_\epsilon(E_\epsilon) = E_\epsilon, \quad \psi_\epsilon(F_\epsilon) = F_\epsilon, \quad \psi_\epsilon(K_\epsilon) = \pi^\epsilon K_\epsilon^{-1};
 \]
 \(\psi_\epsilon \) is referred to as the bar involution and also denoted by \(\bar{\cdot} : U_\epsilon \to U_\epsilon \).
2. There is a \(\mathbb{Q}(q) \)-linear automorphism \(\omega_\epsilon : U_\epsilon \to U_\epsilon \) such that
 \[
 \omega_\epsilon(E_\epsilon) = F_\epsilon, \quad \omega_\epsilon(F_\epsilon) = \pi^{1-\epsilon} E_\epsilon, \quad \omega_\epsilon(K_\epsilon) = K_\epsilon^{-1};
 \]
3. There is a \(\mathbb{Q}(q) \)-linear anti-involution \(\tau_\epsilon : U_\epsilon \to U_\epsilon \) such that
 \[
 \tau_\epsilon(E_\epsilon) = \pi^{1-\epsilon} E_\epsilon, \quad \tau_\epsilon(F_\epsilon) = F_\epsilon, \quad \tau_\epsilon(K_\epsilon) = K_\epsilon^{-1};
 \]
4. There is a \(\mathbb{Q}(q) \)-linear anti-involution \(\rho_\epsilon : U_\epsilon \to U_\epsilon \) such that
 \[
 \rho_\epsilon(E_\epsilon) = qK_\epsilon F_\epsilon, \quad \rho_\epsilon(F_\epsilon) = qK_\epsilon^{-1} E_\epsilon, \quad \rho_\epsilon(K_\epsilon) = K_\epsilon.
 \]
5. The subgroup of (anti-)automorphisms on \(U_\epsilon \) generated by \(\omega_\epsilon, \tau_\epsilon, \psi_\epsilon \) is isomorphic to \(D_4 \times \mathbb{Z}_2 \) for \(\epsilon = 0 \) and to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) for \(\epsilon = 1 \). More precisely,
 \[
 \omega_0^2 = 1, \quad \omega_1^2 = 1, \quad \tau_0 \omega_0 = \omega_0 \tau_0, \quad \tau_1 \omega_1 = \omega_1 \tau_1,
 \]
 \[
 \tau_\epsilon^2 = \psi_\epsilon^2 = 1, \quad \psi_\epsilon \tau_\epsilon = \tau_\epsilon \psi_\epsilon, \quad \psi_\epsilon \omega_\epsilon = \omega_\epsilon \psi_\epsilon.
 \]

Proof. This is proved by a direct computation, and let us suppress the subscript \(\epsilon \). To illustrate, let us verify that the (most involved) commutation relation (3) in Remark 2.4 between \(E \) and \(F \) is preserved under these maps. Since \(\psi \) fixes \(E, F \), and \(\pi^\epsilon K - K^{-1} \), it preserves the relation between \(E \) and \(F \), whence (1).

To verify for (2), we compute

\[
\omega(EF - \pi FE) = \pi^{1-\epsilon} FE - \pi^\epsilon EF = -\pi^\epsilon (EF - \pi FE),
\]

\[
\omega \left(\frac{\pi^\epsilon K - K^{-1}}{\pi q - q^{-1}} \right) = -\pi^\epsilon \left(\frac{\pi^\epsilon K - K^{-1}}{\pi q - q^{-1}} \right).
\]

For (4), we further compute

\[
\rho(EF - \pi FE) = q^2 K^{-1} EKF - \pi q^2 KFK^{-1} E = EF - \pi FE,
\]

\[
\rho \left(\frac{\pi^\epsilon K - K^{-1}}{\pi q - q^{-1}} \right) = \frac{\pi^\epsilon K - K^{-1}}{\pi q - q^{-1}}.
\]

The calculation for \(\tau \) in (3) is exactly the same as for \(\omega \). Finally (5) may be quickly verified by checking on the generators. \(\square \)
Let \(\epsilon \in \{0,1\} \). By Proposition 2.7, we have the following identities in \(U_\epsilon \): for \(n \in \mathbb{Z}, a \in \mathbb{N} \),

\[
\omega_\epsilon(E_\epsilon^{(r)}) = F_\epsilon^{(r)}, \quad \omega_\epsilon(F_\epsilon^{(r)}) = \pi^{r(1-\epsilon)} E_\epsilon^{(r)}, \\
\omega_\epsilon([K_\epsilon; n]) = -\pi^{\epsilon+n}[K_\epsilon; -n], \\
\omega_\epsilon \left(\begin{bmatrix} K_\epsilon; n \\ a \end{bmatrix} \right) = (-1)^a \pi^{a+n-a-\frac{n}{2}} \begin{bmatrix} K_\epsilon; a - n - 1 \\ a \end{bmatrix}.
\]

(2.7)

It is straightforward to check the following identities in \(A \): for \(a, b, c, s \in \mathbb{Z} \),

\[
[b + c][K_\epsilon; a] = [b][K_\epsilon; a + c] + \pi^b[c][K_\epsilon; a - b], \\
E_\epsilon[K_\epsilon; s] = [K_\epsilon; s - 2]E_\epsilon, \\
F_\epsilon[K_\epsilon; s] = [K_\epsilon; s + 2]F_\epsilon.
\]

(2.8)

2.7. Commutation relations.

Lemma 2.8. Let \(\epsilon \in \{0,1\} \). The following identities hold in \(A U_\epsilon \): for \(r, s \geq 1 \),

\[
\begin{align*}
(1) \quad & \pi^s E_\epsilon F_\epsilon^{(s)} = F_\epsilon^{(s)} E_\epsilon + \pi F_\epsilon^{(s-1)}[K_\epsilon; 1 - s] \\
(2) \quad & \pi^r s E_\epsilon^{(r)} F_\epsilon^{(s)} = \sum_{i=0}^{\min(r,s)} \pi^{(r+1)i} F_\epsilon^{(s-i)}[K_\epsilon; 2i - (r + s)] E_\epsilon^{(r-i)} \\
(3) \quad & \pi^s F_\epsilon E_\epsilon^{(s)} = F_\epsilon^{(s)} F_\epsilon - \pi^{1-s} F_\epsilon^{(s-1)}[K_\epsilon; s - 1] \\
(4) \quad & \pi^r s F_\epsilon^{(r)} E_\epsilon^{(s)} = \sum_{i=0}^{\min(r,s)} (-1)^i \pi^{(r+s)i} E_\epsilon^{(r-i)}[K_\epsilon; r + s - (i + 1)] F_\epsilon^{(s-i)}.
\end{align*}
\]

Proof. The first two identities (1) and (2) can be proven using induction. Fix \(\epsilon \in \{0,1\} \). Again, we suppress the subscripts throughout the proof.

(1). The base case \(s = 1 \) is a defining relation for \(U_\epsilon \). Now suppose that the identity (1) holds for some \(s \). Then

\[
\begin{align*}
\pi^{s+1} EF^{(s)} F &= \pi F^{(s)} EF + \pi^2 F^{(s-1)}[K; 1 - s]F \\
&= F^{(s)} FE + \pi F^{(s)}[K; 0] + \pi^2 [s] F^{(s)}[K; -1 - s] \\
&= F^{(s)} FE + \pi F^{(s)}([K; 0] + \pi [s][K; -1 - s]) \\
&= F^{(s)} FE + \pi F^{(s)}[s + 1][K; -s]
\end{align*}
\]

The last equality follows from (2.8) with \(a = -s, b = 1, \) and \(c = s \). Dividing both sides by \([s + 1]\) finishes the induction step.
(2). We proceed by induction on r, with the case for $r = 1$ being (1). Suppose now that the identity (2) holds for some r. Then

$$\pi^{r+s} EE(r) F(s) = \sum_{i=0}^{\min(r,s)} \pi^{(i+1)/2} \pi^s EF(s-i) \left[K; 2i - (r + s) \right] E^{(r-i)}$$

$$= \sum_{i=0}^{\min(r,s)} \pi^{(i+1)/2} \pi^s F(s-i) \left[K; 2i - (r + s) \right] E^{(r-i)}$$

$$+ \sum_{i=0}^{\min(r,s)} \pi^{(i+1)/2} F(s-i-1) [K; 1 + i - s] \left[K; 2i - (r + s) \right] E^{(r-i)}$$

$$= \sum_{i=0}^{\min(r,s)+1} \pi^{(i+1)/2} F(s-i) \left[K; 2i - (r + s + 2) \right] E E^{(r-i)}$$

$$+ \sum_{i=1}^{\min(r+1,s)} \pi^{(i+1)/2} F(s-i+1) [K; i - s] \left[K; 2i - (r + s + 1) \right] E^{(r-i+1)}$$

$$= \sum_{i=0}^{\min(r+1,s)} \pi^{(i+1)/2} F(s-i) X_i E^{(r+1-i)} \tag{2.9}$$

Here $X_0 = [r + 1], X_{r+1} = [r + 1] \left[K; r + 1 - s \right]_{r + 1}$ if $r < s$, and for $1 \leq i \leq \min(r,s)$,

$$X_i = \pi^i [r + 1 - i] \left[K; 2i - (r + s + 2) \right]_{i - 1} + [K; i - s] \left[K; 2i - (r + s + 2) \right]_{i - 1}$$

$$= [i]^{-1} \left[K; 2i - (r + s + 2) \right]_{i - 1} (\pi^i [r + 1 - i] [K; i - (r + s + 1)] + [i] [K; i - s]) \tag{*}$$

$$= [i]^{-1} \left[K; 2i - (r + s + 2) \right]_{i - 1} [r + 1] [K; 2i - (r + s + 1)]$$

$$= [r + 1] \left[K; 2i - (r + s + 1) \right]_{i}.$$}

The equality (*) above follows from (2.5) with $a = 2i - (r + s + 1)$, $b = i$, and $c = r + 1 - i$. Dividing both sides of (2.9) by $[r + 1]$ we obtain (2).

3. Finite-dimensional representations

3.1. Weight U_ϵ-modules. Let us now turn to U_ϵ-modules, for $\epsilon = 1, 2$. We will call a U_ϵ-module M a weight module if the action of K on M is semisimple with finite-dimensional eigenspaces (i.e., weight spaces). The Verma module of U_ϵ of highest weight $\lambda \in \mathbb{Q}(q)$ is defined to be

$$M^\lambda_\epsilon = U_\epsilon/(U_\epsilon E_\epsilon + U_\epsilon (K_\epsilon - \lambda)),$$

with an even highest weight vector denoted by ν. Then by Proposition 2.6 M^λ_ϵ has a basis given by $F_\epsilon^{(k)} \nu$, for $k \geq 0$. Denote by L^λ_ϵ for now the unique irreducible quotient module of M^λ_ϵ. We observe the following three statements are equivalent: (i) The U_ϵ-module M^λ_ϵ
is reducible; (2) M_{t}^{λ} admits a (singular) vector $F(t)\nu$ for some $t > 0$ annihilate by E_{t}; (3) L_{t}^{λ} is finite dimensional. By Lemma 2.8, we have

$$E_{t}F_{t}^{(t)}\nu = \pi F_{t}^{(t-1)}[K_{t}; 1-t]\nu.$$

A quick calculation using this equation to locate a possible singular vector in M_{t}^{λ} leads to the following.

Proposition 3.1. Let $\epsilon \in \{0, 1\}$.

1. M_{t}^{λ} is an irreducible U_{ϵ}-module, unless $\lambda = \pm q^{n}$ for $n \in \epsilon + 2\mathbb{N}$.
2. For each $n \in \epsilon + 2\mathbb{N}$, there is a unique pair of $(n+1)$-dimensional simple U_{ϵ}-modules $L_{n, \pm} := L_{t}^{\pm q^{n}}$ of highest weight $\pm q^{n}$. Moreover, any finite-dimensional simple weight U_{ϵ}-module is isomorphic to one such module.

This result should be compared to the classification of finite-dimensional simple modules for C_{0} below.

Proposition 3.2. For each $n \in \mathbb{N}$, there are two non-isomorphic $(n+1)$-dimensional C_{0}-modules over $\mathbb{C}(q)$ of highest weight $\pi n^{2}/2q^{n}$. Moreover, any finite-dimensional C_{0}-module is completely reducible.

Remark 3.3. Note that the weights of the simple C_{0}-modules for n odd in Proposition 3.2 involve complex number $\sqrt{\pi}$, and so they cannot be realized as U_{0}-modules over $\mathbb{Q}(q)$. This partially motivated our introduction of U_{1}.

Remark 3.4. Proposition 3.2 remains to be valid if we classify finite-dimensional modules of $Q[\sqrt{\pi}](q) \otimes_{\mathbb{Q}(q)} U_{0}$ over the field $\mathbb{Q}[\sqrt{\pi}](q)$ instead of $\mathbb{C}(q)$.

Note that the “weight” U_{ϵ}-module condition in Proposition 3.1 is necessary over $\mathbb{Q}(q)$. Indeed, if we view the $Q[\sqrt{\pi}](q)$-vector space underlying a 2-dimensional module of $Q[\sqrt{\pi}](q) \otimes_{\mathbb{Q}(q)} U_{0}$ as a $\mathbb{Q}(q)$-vector space, we obtain a 4-dimensional U_{0}-module which is not a weight module.

3.2. Complete reducibility

It has been known that there is a Casimir element for (a version of) the algebra U_{0} (see e.g. [1]). Let $\epsilon \in \{0, 1\}$. We adapt this construction to the algebras U_{ϵ}. We will proceed as in [6, §2.7-2.9]. Set

$$C_{\epsilon} = \pi F_{\epsilon}E_{\epsilon} + \frac{\pi^{1-\epsilon}K_{\epsilon}q + K_{\epsilon}^{-1}q^{-1}}{(\pi q - q^{-1})^{2}}. \quad (3.1)$$

One rewrites using defining relations of U_{ϵ} that

$$C_{\epsilon} = E_{\epsilon}F_{\epsilon} + \frac{\pi^{t}K_{\epsilon}q^{-1} + \pi K_{\epsilon}^{-1}q}{(\pi q - q^{-1})^{2}}.$$

We note that $\omega_{\epsilon}(C_{\epsilon}) = \tau_{\epsilon}(C_{\epsilon}) = \pi^{t}C_{\epsilon}$. Also, we have that

$$C_{\epsilon}E_{\epsilon} = \pi E_{\epsilon}C_{\epsilon}, \quad C_{\epsilon}F_{\epsilon} = \pi F_{\epsilon}C_{\epsilon}, \quad C_{\epsilon}K_{\epsilon} = K_{\epsilon}C_{\epsilon}. \quad (3.2)$$

Indeed, clearly we have $C_{\epsilon}K_{\epsilon} = K_{\epsilon}C_{\epsilon}$. We compute

$$C_{\epsilon}E_{\epsilon} = E_{\epsilon}F_{\epsilon}E_{\epsilon} + \frac{\pi^{t}K_{\epsilon}q^{-1} + \pi K_{\epsilon}^{-1}q}{(\pi q - q^{-1})^{2}}E_{\epsilon}$$

$$= \pi \left(\pi E_{\epsilon}F_{\epsilon}E_{\epsilon} + E_{\epsilon} \frac{\pi^{t}K_{\epsilon}q + K_{\epsilon}^{-1}q^{-1}}{(\pi q - q^{-1})^{2}} \right) = \pi E_{\epsilon}C_{\epsilon}.$$

The remaining identity in (3.2) can be checked similarly. It follows by (3.2) that C_{ϵ}^{2} is in the center of U_{ϵ}.

Proposition 3.5. Let $\epsilon \in \{0, 1\}$ and $n \in \mathbb{Z}$. Then,

1. C^2_ϵ acts on the Verma module $M^+_{\epsilon}q^n$ as scalar multiplication by $\frac{[n+1]^2}{(\pi q - q^{-1})^2}$.
2. C^2_ϵ acts on $M^+_{\epsilon}q^n$ and $M^+_{\epsilon}q^{-n}$ by the same scalar if and only if $n = m$ or $n = -m-2 \in \mathbb{Z}$; in particular, C^2_ϵ acts as a different scalar on different pairs $L(n, \pm)$, for $n \in \epsilon + 2\mathbb{Z}_+$.
3. Any finite-dimensional weight U_ϵ-module is completely reducible.

Proof. Let ν be the highest weight vector of Λ_n. Using (3.1), we see that $C^2_\epsilon \nu = \frac{[n+1]^2}{(\pi q - q^{-1})^2} \nu$. Since any $m \in M^\pm_{\epsilon}q^n$ can be represented as $m = uv$ for $u \in U_\epsilon$, $C^2_\epsilon m = C^2_\epsilon uv = uC^2_\epsilon v = (\pi q - q^{-1})^{-2}[n+1]^2 m$, whence (1).

Now $[n+1]^2 = [m+1]^2$ if and only if $(\pi q)^{n+1} - q^{-n-1} = \pm((\pi q)^{m+1} - q^{-m-1})$, whence (2). For a given $n \in \mathbb{Z}_+$, by weight considerations there is no nontrivial extension between $L(n, +)$ and $L(n, -)$. We can prove (3) as is done in [6, §2.9]; that is, pick a composition series for M and use a weight dimension argument to show that composition factors are direct summands.

4. The Hopf superalgebra U

4.1. Algebra U. By the similarities of U_0 and $U_q(\mathfrak{sl}(2))$, we hope to make sense that the tensor product of two odd-weight modules should decompose as a sum of even-weight modules. It is therefore convenient to combine U_0 and U_1 into a single algebra.

Definition 4.1. The algebra U is defined to be the direct sum of algebras $U = U_0 \oplus U_1$, whose multiplication is denoted by m. Let $e_0 = (1, 0)$ and $e_1 = (0, 1)$ be the central idempotents of U with $U_0 = e_0 U$, $U_1 = e_1 U$ and $e_0 e_1 = 0$; hence U is a unital algebra with $1 = e_0 + e_1$.

Another possible way is to define a smaller single algebra so that both U_0 and U_1 become the quotient algebras, but we will not follow that route in this paper.

It is immediate that the direct sums (over $\epsilon = 0, 1$) of the (anti-)automorphisms ψ_ϵ, ω_ϵ, τ_ϵ, and ρ_ϵ define (anti-)automorphisms ψ, ω, τ, and ρ on U, respectively. We also have the A-subalgebra $AU = AU_0 \oplus AU_1$ and a Z-grading $U = \oplus_{i \in \mathbb{Z}_2} U(i)$, where $U(i) = U_0(i) + U_1(i)$. Since U is a direct sum of unital algebras, each U-module M decomposes as $M = M_0 \oplus M_1$ where $M_\epsilon = e_\epsilon M$ is a U_ϵ-module ($\epsilon = 0, 1$), and $U_1 M_0 = U_0 M_1 = 0$. We shall call a U-module $M = M_0 \oplus M_1$ a weight module if M_0 and M_1 are weight modules. We may restate Proposition 3.1 and Proposition 3.5(3) in a form more commensurate with Proposition 3.2 and also with representation theory of $U_q(\mathfrak{sl}(2))$ ([6]).

Proposition 4.2. For each $n \in \mathbb{N}$, there is a pair of non-isomorphic $(n+1)$-dimensional simple U-modules denoted by $L(n, \pm)$ of highest weight $\pm q^n$. Any finite-dimensional simple weight U-module is isomorphic to one such module. Moreover, any finite-dimensional weight U-module is completely reducible.

We will from now on concentrate only on $L(n) := L(n, +)$, since the cases of $L(n, -)$ is completely parallel.

4.2. Algebra f. Following Lusztig ([12]), there is a free $\mathbb{Q}(q)$-algebra $f = \mathbb{Q}(q)[\theta]$, where θ has \mathbb{Z}-grading 2 and parity $p(\theta) = 1$. We have natural $\mathbb{Q}(q)$-algebra isomorphisms $(\cdot)_\pm : f \rightarrow U^\pm_\epsilon$ given by $\theta \mapsto \theta^+ = E_\epsilon$ and $\theta \mapsto \theta^- = F_\epsilon$. We define the maps $(\cdot)_\pm : f \rightarrow U$ by $u^\pm = u^+_0 \oplus u^+_1$; that is, it is the diagonal embedding $\theta^+ = E_0 + E_1$ and $\theta^- = F_0 + F_1$.

CANONICAL BASIS FOR QUANTUM $\mathfrak{osp}(1\vert 2)$
We can define a bilinear form on f such that
\[(\theta, \theta) = (1 - \pi q^{-2})^{-1}, \quad (4.1)\]
\[(\theta^{(a)}, \theta^{(b)}) = \delta_{a,b} \prod_{s=1}^{a} \frac{\pi^{s-1}}{1 - (\pi q^{-2})^s} = \delta_{a,b} \pi^a q^{a+1}(\pi q - q^{-1})^{-a}([a]_1)^{-1}. \quad (4.2)\]

A version of this bilinear form was first introduced in [5] for quantum Kac-Moody superalgebras including $\mathfrak{osp}(1|2)$, with a switch of q with q^{-1} in [4].

4.3. The coproduct. We endow the tensor product of superalgebras with the twisted multiplication
\[(a \otimes b) \ast (c \otimes d) = \pi^{p(b)p(c)} abc \otimes bd.\]

It is known that U_0 is a Hopf superalgebra (cf. [13]). The following lemma can be regarded as an extension of the coproduct on U_0 (compare [12 3.1.3]).

Lemma 4.3. For fixed $\epsilon, \kappa \in \{0, 1\}$, there is a unique (super)algebra homomorphism $\Delta_{\epsilon, \kappa} : U_{\epsilon+\kappa} \to U_{\epsilon} \otimes U_{\kappa}$ satisfying
\[
\begin{align*}
\Delta_{\epsilon, \kappa}(E_{\epsilon+\kappa}) &= E_{\epsilon} \otimes e_\kappa + \pi^\epsilon K_\epsilon \otimes E_{\kappa}, \\
\Delta_{\epsilon, \kappa}(F_{\epsilon+\kappa}) &= F_{\epsilon} \otimes K_\kappa^{-1} + e_\epsilon \otimes F_{\kappa}, \\
\Delta_{\epsilon, \kappa}(K_{\epsilon+\kappa}) &= K_{\epsilon} \otimes K_{\kappa}.
\end{align*}
\]

Proof. In the following, we shall suppress the subscripts on elements of $U_{\epsilon+\kappa}$ since they are clear from context. We need to prove that the defining relations of $U_{\epsilon+\kappa}$ are preserved by $\Delta_{\epsilon, \kappa}$. We will only check the most involved case as follows:
\[
\begin{align*}
\Delta_{\epsilon, \kappa}(E) \Delta_{\epsilon, \kappa}(F) - \pi \Delta_{\epsilon, \kappa}(F) \Delta_{\epsilon, \kappa}(E) &= [E, F] \otimes K_\kappa^{-1} + \pi^\epsilon K_\epsilon \otimes [E, F] \\
&= \frac{(\pi^\epsilon K_\epsilon - K_\kappa^{-1}) \otimes K_\kappa^{-1} + \pi^\epsilon K_\epsilon \otimes (\pi^\kappa K_\kappa - K_\kappa^{-1})}{\pi q - q^{-1}} \\
&= \frac{\pi^{\epsilon+\kappa} K_\epsilon \otimes K_\kappa - K_\epsilon \otimes K_\kappa^{-1}}{\pi q - q^{-1}} = \Delta_{\epsilon, \kappa} \left(\frac{\pi^{\epsilon+\kappa} K - K^{-1}}{\pi q - q^{-1}} \right).
\end{align*}
\]
The lemma is proved. \qed

Lemma 4.4. The maps $\Delta_{\epsilon, \kappa}$ are coassociative, that is, for $\epsilon, \kappa, \iota \in \{0, 1\}$, the following diagram is commutative:
\[
\begin{array}{ccc}
U_{\epsilon+\kappa+\iota} & \xrightarrow{\Delta_{\epsilon, \kappa+\iota}} & U_{\epsilon} \otimes U_{\kappa+\iota} \\
\downarrow \Delta_{\epsilon+\kappa, \iota} & & \downarrow \text{id} \otimes \Delta_{\kappa, \iota} \\
U_{\epsilon+\kappa} \otimes U_{\epsilon} & \xrightarrow{\Delta_{\epsilon, \kappa} \otimes \text{id}} & U_{\epsilon} \otimes U_{\kappa} \otimes U_{\iota}
\end{array}
\]

Proof. We shall suppress subscripts on elements in $U_{\epsilon+\kappa+\iota}$. It suffices to check the commutativity on the generators; it is trivially true on K. We compute
\[
\begin{align*}
(\text{id} \otimes \Delta_{\kappa, \iota}) \circ \Delta_{\epsilon, \kappa+\iota}(F) &= F_{\epsilon} \otimes K_\kappa^{-1} \otimes K_\iota^{-1} + e_\epsilon \otimes F_{\kappa} \otimes K_\iota^{-1} + e_\kappa \otimes e_\iota \\
(\Delta_{\epsilon, \kappa} \otimes \text{id}) \circ \Delta_{\epsilon+\kappa, \iota}(F) &= F_{\epsilon} \otimes K_\kappa^{-1} \otimes K_\iota^{-1} + e_\epsilon \otimes F_{\kappa} \otimes K_\iota^{-1} + e_\kappa \otimes e_\iota \\
(\text{id} \otimes \Delta_{\kappa, \iota}) \circ \Delta_{\epsilon, \kappa+\iota}(E) &= E_{\epsilon} \otimes e_\kappa \otimes e_\iota + \pi^\epsilon K_\epsilon \otimes E_{\kappa} \otimes e_\iota + \pi^\epsilon K_\epsilon \otimes E_{\kappa} \otimes e_\iota \\
(\Delta_{\epsilon, \kappa} \otimes \text{id}) \circ \Delta_{\epsilon+\kappa, \iota}(E) &= E_{\epsilon} \otimes e_\kappa \otimes e_\iota + \pi^\epsilon K_\epsilon \otimes E_{\kappa} \otimes e_\iota + \pi^\epsilon K_\epsilon \otimes E_{\kappa} \otimes e_\iota.
\end{align*}
\]
The commutator relation between E is the first one. To prove the first identity, it is equivalent to prove that

\[\text{Proof.} \]

The proof of all the four identities are similar, and we will only give the details on the defining commutative diagram for a counit; for example, to check that $(\varepsilon \otimes 1) \circ \Delta(E_1) = 1 \otimes E_1$, we compute

\[(\varepsilon \otimes 1) \circ \Delta(E_1) = \varepsilon(E_0) \otimes e_1 + \varepsilon(E_1) \otimes e_0 + \varepsilon(K_0) \otimes E_1 + \pi \varepsilon(K_1) \otimes e_0 = 1 \otimes E_1. \]

To show that the antipode is an anti-automorphism, it is trivial to check all except for the commutator relation between E and F, which we compute directly:

\[
S(E \varepsilon F - \pi F \varepsilon E) = \pi S(F \varepsilon E) - \pi^2 S(E \varepsilon F)
\]

\[
= \pi F \varepsilon E - \pi K F \varepsilon E K^{-1} = -\pi F \varepsilon E - \pi F \varepsilon E
\]

\[
= \frac{\pi K^{-1} - K}{\pi q - q^{-1}} = S \left(\frac{\pi K^{-1} - K}{\pi q - q^{-1}} \right).
\]

Then we need to check that $m \circ (S \otimes 1) \circ \Delta = m \circ (1 \otimes S) \circ \Delta = \iota \circ \varepsilon$ on the generators, where $\iota : \mathbb{Q}(q) \rightarrow U$ is the $\mathbb{Q}(q)$-linear embedding sending $1 \mapsto 1$. This is trivial to check on E_1, F_1 and K_1 since $U_0 \otimes U_1 \otimes U_1 \otimes U_0$ is in the kernel of m. Checking this equality on E_0, F_0, and K_0 is essentially the same as the $U_q(\mathfrak{sl}(2))$-argument; for example,

\[m \circ (S \otimes 1) \circ \Delta(K_0) = S(K_0)K_0 + S(K_1)K_1 = e_0 + e_1 + 1 = \varepsilon(K_0). \]

The proposition is proved. \qed

The following is a super analogue of [12, 3.1.5].

Lemma 4.6. The following formulas hold for $\Delta : U \rightarrow U \otimes U$ and $\epsilon = 0, 1$:

\[
\Delta(E_0^{(p)}) = \sum_{a+b=p} q^{ab} E_0^{(a)} K_0^{b} \otimes E_0^{(b)} + \sum_{a+b=p} \pi^{b} q^{ab} E_1^{(a)} K_1^{b} \otimes E_1^{(b)},
\]

\[
\Delta(E_1^{(p)}) = \sum_{a+b=p} q^{ab} E_0^{(a)} K_0^{b} \otimes E_1^{(b)} + \sum_{a+b=p} \pi^{b} q^{ab} E_1^{(a)} K_1^{b} \otimes E_1^{(b)},
\]

\[
\Delta(F_0^{(p)}) = \sum_{a+b=p} (\pi q)^{-ab} F_0^{(a)} \otimes K_0^{-a} F_0^{(b)} + \sum_{a+b=p} (\pi q)^{-ab} F_1^{(a)} \otimes K_1^{-a} F_1^{(b)},
\]

\[
\Delta(F_1^{(p)}) = \sum_{a+b=p} (\pi q)^{-ab} F_0^{(a)} \otimes K_1^{-a} F_1^{(b)} + \sum_{a+b=p} (\pi q)^{-ab} F_1^{(a)} \otimes K_0^{-a} F_1^{(b)}.
\]

Proof. The proof of all the four identities are similar, and we will only give the detail on the first one. To prove the first identity, it is equivalent to prove that

\[
\Delta_{0,0}(E_0^{(p)}) = \sum_{a+b=p} q^{ab} E_0^{(a)} K_0^{b} \otimes E_0^{(b)},
\]

\[
\Delta_{1,1}(E_0^{(p)}) = \sum_{a+b=p} \pi^{b} q^{ab} E_1^{(a)} K_1^{b} \otimes E_1^{(b)}.
\]
Let us verify only the formula for $\Delta_{1,1}(E_{0}^{(p)})$ by induction on p, as the other formula can be similarly verified. The case for $p = 1$ follows directly from Lemma 4.3. Assume now the formula for $\Delta_{1,1}(E_{0}^{(p)})$ is valid for some p. Then,

$$
\Delta_{1,1}(E_{0}^{(p)} E_{0}) = \left(\sum_{a+b=p} \pi^{b} q^{ab} E_{1}^{(a)} K_{1}^{b} \otimes E_{1} \right) \cdot (E_{1} \otimes e_{1} + \pi K_{1} \otimes E_{1})
$$

$$
= \sum_{a+b=p} q^{(a+2)b}[a+1] E_{1}^{(a+1)} K_{1}^{b} \otimes E_{1} + \sum_{a+b=p} \pi^{b+1} q^{ab}[b+1] E_{1}^{(a)} K_{1}^{b+1} \otimes E_{1}^{(b+1)}
$$

$$
= (p+1) E_{1}^{(p+1)} \otimes e_{1} + \pi^{p+1} [p+1] K_{1}^{p+1} \otimes E_{1}^{(p+1)}
$$

$$
+ \sum_{a+b=p, a \geq 1, b \geq 1} (q^{(a+1)(b+1)}[a] + \pi^{b+1} q^{ab}[b+1]) E_{1}^{(a)} K_{1}^{b+1} \otimes E_{1}^{(b+1)}
$$

$$
= (p+1) \sum_{a+b=p+1} \pi^{b} q^{ab} E_{1}^{(a)} K_{1}^{b} \otimes E_{1}^{(b)}.
$$

The identity \ast above is obtained by shifting a to $a - 1$ and b to $b + 1$ in the first \sum on the left-hand side. This completes the proof. \hfill \Box

4.4. Tensor of Modules. Let M and N be U-modules. Then $M \otimes N$ is a $U \otimes U$-module via the action

$$(u \otimes v)(m \otimes n) = \pi^{p(v)p(m)}(um) \otimes (vn)$$

for \mathbb{Z}_{2}-homogeneous $v \in U$ and $m \in M$. Composition with the coproduct Δ defines a U-module structure on $M \otimes N$.

Example 4.7. Consider the tensor module $M = L(1,+) \otimes L(2,+)$, for which we need only consider the action of U_{1} under the coproduct $\Delta_{1,0}$. Let w be a highest weight vector of $L(1,+)$ and v be a highest weight vector of $L(2,+)$ Then $M \cong L(3,+) \oplus L(1,+)$.

Indeed, the vector

$$F_{1} v \otimes w - \pi q^{-1}[2]^{-1} v \otimes F_{0} w$$

is a singular vector generating a copy of $L(1,+)$ since

$$\Delta_{1,0}(E_{1})(F_{1} v \otimes w) = E_{1} F_{1} v \otimes w + \pi^{p(E_{1})p(F_{1} v)}(\pi K_{1}) F_{1} v \otimes E_{1} w = v \otimes w,$$

$$\Delta_{1,0}(E_{1})(v \otimes F_{0} w) = E_{1} v \otimes w + \pi^{p(E_{1})p(v)}(\pi K_{1}) v \otimes E_{0} F_{0} w = \pi q[2] v \otimes w.$$
Proposition 5.1. Let $\epsilon_1, \epsilon_2 \in \{0, 1\}$, and let $u \in U_{\epsilon_1+\epsilon_2}$. Then

1. $\Delta_{\epsilon_1, \epsilon_2}(u)\Theta_{\epsilon_1, \epsilon_2} = \Theta_{\epsilon_1, \epsilon_2} \Delta_{\epsilon_1, \epsilon_2}(u)$;
2. $\Theta_{\epsilon_1, \epsilon_2} \Theta_{\epsilon_1, \epsilon_2} = e_{\epsilon_1} \otimes e_{\epsilon_2}$.

Proof. To avoid cumbersome notation, we will drop the subscripts on E, F, K; the hidden subscripts can be recovered from the positions in the tensors.

1. If $\Delta_{\epsilon_1, \epsilon_2}(u_1)\Theta_{\epsilon_1, \epsilon_2} = \Theta_{\epsilon_1, \epsilon_2} \Delta_{\epsilon_1, \epsilon_2}(u_1)$ and $\Delta_{\epsilon_1, \epsilon_2}(u_2)\Theta_{\epsilon_1, \epsilon_2} = \Theta_{\epsilon_1, \epsilon_2} \Delta_{\epsilon_1, \epsilon_2}(u_2)$, then clearly $\Delta_{\epsilon_1, \epsilon_2}(u_1u_2)\Theta_{\epsilon_1, \epsilon_2} = \Theta_{\epsilon_1, \epsilon_2} \Delta_{\epsilon_1, \epsilon_2}(u_1u_2)$. Hence it suffices to check (1) on the generators E, F, K, which is equivalent to proving the following identities:

 (i) $(E \otimes e)\Theta^n_{\epsilon_1, \epsilon_2} + (\pi \epsilon_1 K \otimes E)\Theta^n_{\epsilon_1, \epsilon_2} = \Theta^n_{\epsilon_1, \epsilon_2} (E \otimes e) + \Theta^n_{\epsilon_1, \epsilon_2} (K^{-1} \otimes E)$;

 (ii) $(e \otimes F)\Theta^n_{\epsilon_1, \epsilon_2} + (F \otimes K^{-1})\Theta^n_{\epsilon_1, \epsilon_2} = \Theta^n_{\epsilon_1, \epsilon_2} (e \otimes F) + \Theta^n_{\epsilon_1, \epsilon_2} (F \otimes \pi \epsilon_2 K)$;

 (iii) $(K \otimes K)\Theta^n_{\epsilon_1, \epsilon_2} = \Theta^n_{\epsilon_1, \epsilon_2} (K \otimes K)$.

For (i), we have

$$(E \otimes e)\Theta^n_{\epsilon_1, \epsilon_2}(E \otimes e) = a_n(EF^{(n)}) - \pi^n(F^{(n)}E) \otimes E^{(n)}$$

$$= \pi^n F^{(n-1)}a_n \left(\frac{(\pi q)^{1-n} \pi \epsilon_1 K - q^{n-1} K^{-1}}{\pi q - q^{-1}} \right) \otimes E^{(n)}$$

$$= \pi^{n-1} a_n \Theta_{\epsilon_1, \epsilon_2} \Theta^{n-1}_{\epsilon_1, \epsilon_2} \left(\frac{(\pi q)^{1-n} \pi \epsilon_1 K - q^{n-1} K^{-1}}{\pi q - q^{-1}} \right) \otimes E,$$

and

$$(\pi \epsilon_1 K \otimes E)\Theta^{n-1}_{\epsilon_1, \epsilon_2} = \Theta^{n-1}_{\epsilon_1, \epsilon_2} (K^{-1} \otimes E)$$

$$= q^{1-n} (\pi q - q^{-1}) \Theta^{n-1}_{\epsilon_1, \epsilon_2} \left(\frac{(\pi q)^{1-n} \pi \epsilon_1 K - q^{n-1} K^{-1}}{\pi q - q^{-1}} \right) \otimes E.$$

Hence (i) follows by applying (5.1).

For (ii), we have

$$(e \otimes F)\Theta^n_{\epsilon_1, \epsilon_2} - \Theta^n_{\epsilon_1, \epsilon_2} (e \otimes F) = a_n F^{(n)} \otimes (\pi^n FE^{(n)} - E^{(n)} F)$$

$$= a_n F^{(n)} \otimes \frac{\pi^{n-1} n E^{(n-1)} q^{1-n} K^{-1} - (\pi q)^{n-1} \pi \epsilon_2 K}{\pi q - q^{-1}}$$

$$= a_n \Theta_{\epsilon_1, \epsilon_2} \Theta^{n-1}_{\epsilon_1, \epsilon_2} F \otimes \frac{q^{1-n} K^{-1} - (\pi q)^{n-1} \pi \epsilon_2 K}{\pi q - q^{-1}},$$

and

$$(F \otimes K^{-1})\Theta^{n-1}_{\epsilon_1, \epsilon_2} - \Theta^{n-1}_{\epsilon_1, \epsilon_2} (F \otimes \pi \epsilon_2 K)$$

$$= \pi^{n-1} q^{1-n} (\pi q - q^{-1}) \Theta^{n-1}_{\epsilon_1, \epsilon_2} F \otimes \frac{q^{1-n} K^{-1} - (\pi q)^{n-1} \pi \epsilon_2 K}{\pi q - q^{-1}}.$$

Hence (ii) follows. The identity (iii) is clear.

(2) Write the formal product

$$\Theta_{\epsilon_1, \epsilon_2} \Theta_{\epsilon_1, \epsilon_2} = \sum_{n \geq 0} b_n F^{(n)} \otimes E^{(n)}.$$

Comparing coefficients, we compute that $b_0 = 1$, and for $n \geq 1$,

$$b_n = [n]!(\pi q - q^{-1})^n \sum_{t=0}^n (-1)^t \pi^n (n-t) q^{-1-\frac{t}{2}} (\pi q)^{-\frac{1}{2}} \binom{n}{t} = 0,$$

where the last equality follows from a version of q-binomial identity for super binomial coefficients. Hence $\Theta_{\epsilon_1, \epsilon_2} \Theta_{\epsilon_1, \epsilon_2} = e_{\epsilon_1} \otimes e_{\epsilon_2}$. \qed
Set $\Theta = \Theta_{0,0} + \Theta_{0,1} + \Theta_{1,0} + \Theta_{1,1}$.

Corollary 5.2. We have $\Delta(u)\Theta = \Theta \Delta(u)$, for $u \in U$, and $\Theta \Theta = 1 \otimes 1$.

Define an antilinear operator
$$\Psi = \Theta \circ (\sim \times \sim)$$
on $M_1 \otimes M_2$ as in [12 24.3.2], where M_1 and M_2 are finite-dimensional weight U-modules. The following can be proved as in loc. cit..

Proposition 5.3. The operator Ψ acts as an antilinear involution on the $\mathbb{Q}(q)$-vector space $M_1 \otimes M_2$, where M_1 and M_2 are finite-dimensional U-modules.

5.2. **Canonical basis** for $^\omega L(s) \otimes L(t)$. Suppose M is a U-module. We define $^\omega M$ to be the same vector space as M, but with the U-module action given by $u \cdot m = ^\omega (u)m$. In particular, a highest weight module becomes a lowest weight module under this transformation. Given $n \in \mathbb{Z}$, we define
$$p(n) \in \{0,1\} \text{ such that } p(n) \equiv n \pmod{2}.$$Consider the U-module
$$L(s,t) = ^\omega L(s) \otimes L(t), \quad \text{for } s,t \in \mathbb{N}.$$This module has a basis
$$E_{p(s)}^{(a)} \eta \otimes F_{p(t)}^{(b)} \nu, \quad 0 \leq a \leq s, 0 \leq b \leq t,$$where η, ν are the lowest weight and highest weight vectors respectively. This basis also generates a J-submodule $JL(s,t)$ which is also an JU-module. Note that Θ and Ψ are well defined on $L(s,t)$ and $JL(s,t)$.

Now we have $\Psi(E_{p(s)}^{(a)} \eta \otimes F_{p(t)}^{(b)} \nu) = E_{p(s)}^{(a)} \eta \otimes F_{p(t)}^{(b)} \nu + (\ast)$, where (\ast) is an J-linear combination of $E_{p(s)}^{(i)} \eta \otimes F_{p(t)}^{(j)} \nu$, with $(i,j) < (a,b)$. Here the partial order \preceq on \mathbb{N}^2 is defined by declaring that $(i,j) \preceq (m,n)$ if and only if $m - n = i - j$ and $m \leq i$ (hence also $n \leq j$). Then by a variant of [12 Lemma 24.2.1] adapted to our bar map (2.6), we have the following.

Proposition 5.4. Retain the notations above. There exists a unique Ψ-invariant element $(E^{(a)} \otimes F^{(b)})_{s,t} \in JL(s,t)$, for $0 \leq a \leq s, 0 \leq b \leq t$, such that
$$(E^{(a)} \otimes F^{(b)})_{s,t} = \sum_{m,n} c_{a,b,m,n}^{s,t} E_{p(s)}^{(m)} \eta \otimes F_{p(t)}^{(n)} \nu,$$where $c_{a,b,m,n}^{s,t} = 1$, $c_{a,b,m,n}^{s,t} \in \mathbb{Q}^{-1}\mathbb{Z}[q^{-1}],$ for all $(m,n) < (a,b)$.

This is an analogue of [12 Theorem 24.3.3]. The elements $(E^{(a)} \otimes F^{(b)})_{s,t}$, for $0 \leq a \leq s, 0 \leq b \leq t$, will be called the canonical basis of $L(s,t)$. The coefficients $c_{a,b,m,n}^{s,t}$ will be determined precisely in Corollary 6.3

6. **Modified superalgebra and canonical basis**

6.1. **Algebra \hat{U}**. Let $a,b \in \mathbb{Z}$, and consider the subspace of U:
$$aJ_b = (K_{p(a)} - q^a1)U_{p(a)} + U_{p(a)}(K_{p(b)} - q^b1).$$Then aJ_b is a subspace of $U_{p(a)}$, and $aJ_b = U_{p(a)}$ if $p(a) \neq p(b)$. We set
$$aU_b = U_{p(a)} / aJ_b.$$Note that $aU_b = \{0\}$ if $p(a) \neq p(b)$.
We define
\[
\hat{U} = \bigoplus_{m,n \in \mathbb{Z}} mU_n.
\]
This is called the modified (also called idempotented) quantum enveloping algebra of \(\mathfrak{osp}(1|2)\) (cf. \cite{2,12}). Let \(p_{m,n} : U \to mU_n\) be the canonical projection. We endow \(\hat{U}\) with the structure of an associative algebra under the multiplication
\[
p_{k,\ell}(x)p_{m,n}(y) = \delta_{m,mk} p_{k,\ell}(x) p_{m,n}(y), \quad \text{for } x, y \in U; \ k, \ell, m, n \in \mathbb{Z}. \tag{6.1}
\]

The algebra \(\hat{U}\) inherits a \(\mathbb{Z}\)-grading from \(U\):
\[
\hat{U} = \bigoplus_{k \in \mathbb{Z}} \hat{U}(k),
\]
where
\[
\hat{U}(k) = \sum_{m,n \in \mathbb{Z}} p_{m,n}(U(k)).
\]

Note that if \(x \in U(2i)\), then \(p_{m,n}(x) = 0\) if \(2i \neq m-n\), since the identity \(q^{2i}x = KxK^{-1}\) in \(U\) descends to \(q^{2i}p_{m,n}(x) = q^{m-n}p_{m,n}(x)\). The new feature in this algebra is the addition of idempotents \(1_n = p_{n,n}(1)\), which satisfy
\[
1_m1_n = \delta_{m,n}1_n.
\]

We have
\[
mU_n = 1_m\hat{U}1_n.
\]

Also, we have that \(\hat{U} = \hat{U}_0 \oplus \hat{U}_1\), where
\[
\hat{U}_\epsilon = \sum_{a,b \in \mathbb{Z}} 1_{2a+\epsilon} \hat{U} 1_{2b+\epsilon}.
\]

Moreover, \(\hat{U}_0\) and \(\hat{U}_1\) are subalgebras of \(\hat{U}\) such that \(\hat{U}_0\hat{U}_1 = \hat{U}_1\hat{U}_0 = 0\).

6.2. \(\hat{U}\) as a \(U\)-bimodule. The algebra \(\hat{U}\) has a natural \(U\)-bimodule structure: if \(x \in U(k)\), \(y \in U\) and \(z \in U(n)\) then we set
\[
xp_{\ell,m}(y)z = p_{k+\ell,m-n}(xyz). \tag{6.2}
\]

With this action, we have the following identities in \(\hat{U}\), for \(n \in \mathbb{Z}, a \in \mathbb{N}, \epsilon = 0, 1\):
\[
E^{(a)}_\epsilon 1_n = \delta_{\epsilon,p(n)} 1_{n+2a} E^{(a)}_\epsilon, \quad \quad F^{(a)}_\epsilon 1_n = \delta_{\epsilon,p(n)} 1_{n-2a} F^{(a)}_\epsilon; \quad \quad (E^{(a)}_\epsilon - \pi F^{(a)}_\epsilon) 1_n = \delta_{\epsilon,p(n)} [n] 1_n, \tag{6.3}
\]

\[
[K_\epsilon; m] 1_n = \delta_{\epsilon,p(n)} [n+m] 1_n, \quad \quad \begin{bmatrix} K_\epsilon; m \\ a \end{bmatrix} 1_n = \delta_{\epsilon,p(n)} \begin{bmatrix} m + n \\ a \end{bmatrix} 1_n. \tag{6.4}
\]

The following is a super analogue of \cite{12} 23.1.3.

Proposition 6.1. The following identities hold in \(\hat{U}\): for \(n \in \mathbb{Z}, r, s \geq 0,\)
\[
\pi^{rs} E^{(r)}_\epsilon 1_n F^{(s)}_\epsilon = \delta_{\epsilon,p(n)} \sum_{i=0}^{\min(r,s)} \pi^{i+i} \begin{bmatrix} n + (r + s) \\ i \end{bmatrix} F^{(s-i)} E^{(r-i)}_\epsilon 1_{n+2i+2r-2i}, \tag{6.5}
\]
\[
\pi^{rs} F^{(s)}_\epsilon 1_n E^{(r)}_\epsilon = \delta_{\epsilon,p(n)} \sum_{i=0}^{\min(r,s)} \pi^{i+i} \begin{bmatrix} (r + s) - n \\ i \end{bmatrix} E^{(r-i)} F^{(s-i)}_\epsilon 1_{n-2s-2r+2i}. \tag{6.6}
\]
Proof. First, it is clear by definition that the expressions are zero unless the parities match, so we may assume that \(\epsilon = p(n) \). Using (6.3), (6.4) and Lemma 2.8 we compute that

\[
\pi^r s E_\epsilon^{(r)} 1_n F_\epsilon^{(s)} = \left(\sum_{i=0}^{\min(r,s)} \pi^{(i+1)} F_\epsilon^{(s-i)} \left[K_\epsilon; 2i - (r + s) \atop i \right] E_\epsilon^{(r-i)} \right) 1_{n+2s} = \sum_{i=0}^{\min(r,s)} \pi^{(i+1)} F_\epsilon^{(s-i)} \left[K_\epsilon; 2i - (r + s) \atop i \right] 1_{n+2s+2r-2i} E_\epsilon^{(r-i)} = \sum_{i=0}^{\min(r,s)} \pi^{(i+1)} \left[n + (r + s) \atop i \right] E_\epsilon^{(s-i)} 1_{n+2s+2r-2i} E_\epsilon^{(r-i)}.
\]

This proves (6.5). The identity (6.6) can be proved similarly, using in addition the identities (2.3). \[\Box\]

6.3. Additional structures of \(\hat{U} \). We also note that \(\hat{U} \) has a triangular decomposition as in Lustig [12, 23.2]. Recall the algebra \(f \) from (4.2) The \(U \)-bimodule structure induces a \((\hat{f}, \hat{f}^{\text{op}}) \)-bimodule structure on \(\hat{U} \) via

\[
x \otimes y \cdot u = x^{-}\cdot u y^{+}, \quad \text{for } x, y \in \hat{f}, u \in \hat{U}.
\]

Recall that \(1_n F_\epsilon^{(a)} 1_n F_\epsilon^{(b)} = 0 \) if and only if \(\epsilon \neq p(n) \). Hence we adopt the following convention by dropping the subscript \(\epsilon \) without ambiguity:

\[
F_1^{(a)} 1_n F_\epsilon^{(b)} := F_1^{(a)} 1_n F_{\rho(n)}^{(b)}, \quad E_1^{(a)} 1_n F_\epsilon^{(b)} := E_1^{(a)} 1_n F_{\rho(n)}^{(b)}.
\]

In this way, we could also drop all subscripts \(\epsilon \) as well as \(\delta_{\epsilon,p(n)} \) in (6.3)-(6.6).

It follows by the triangular decomposition of \(U \) that the elements \(F_1^{(a)} 1_n F_\epsilon^{(b)} \), for \(n \in \mathbb{Z}, a, b \in \mathbb{N} \), form a basis for \(\hat{U} \). Similarly, \(E_1^{(a)} 1_n F_\epsilon^{(b)} \), for \(n \in \mathbb{Z}, a, b \in \mathbb{N} \), form a basis for \(\hat{U} \). In addition, it is clear from (6.5) and (6.6) that these two bases span the same \(\mathcal{A} \)-submodule of \(\hat{U} \), denoted by \(\hat{\mathcal{A}} \). This \(\mathcal{A} \)-submodule \(\hat{\mathcal{A}} \mathcal{U} \) is in fact an \(\mathcal{A} \)-subalgebra generated by the elements \(E_1^{(a)} 1_n \) and \(F_1^{(a)} 1_n \), for \(n \in \mathbb{Z}, a \in \mathbb{N} \).

We say a \(\hat{U} \)-module is unital if for every \(v \in M \), \(1_n v = 0 \) for all but finitely many \(n \in \mathbb{Z} \) and \(v = \sum_{n \in \mathbb{Z}} 1_n v \). Each unital module is a weight \(U \)-module under the action

\[
u \cdot v = \sum_{n \in \mathbb{Z}} (u1_n)v, \quad \text{where } u1_n \text{ is viewed as an element of } \hat{U}.
\]

Likewise, each weight \(U \)-module with weights in \(\mathbb{Z} \) is naturally a unital \(\hat{U} \)-module: given a weight decomposition \(v = \sum_{n \in \mathbb{Z}} v_n \) such that \(K v_n = q^n v_n \), we set \(1_n v = v_n \).

We define \(\Delta_{a,b,c,d} : a+b \mathcal{U}_{c+d} \to a \mathcal{U}_c \otimes b \mathcal{U}_d \) by (cf. [12, 23.1.5])

\[
\Delta_{a,b,c,d}(p_{a+b,c+d}(x)) = (p_{a,c} \otimes p_{b,d}) \circ \Delta(x).
\]

The direct product of these maps for various \(a, b, c, d \) defines a coproduct on \(\hat{U} \) which restricts to \(\mathcal{A} \)-linear homomorphism on \(\hat{\mathcal{A}} \mathcal{U} \).

The antilinear bar-involution \(\bar{\cdot} : U \to U \) induces an antilinear bar-involution \(\bar{\cdot} : \hat{U} \to \hat{U} \), which fixes each idempotent \(1_n \) for \(n \in \mathbb{Z} \), and satisfies \(x\bar{y} = \bar{y}\bar{x} \) for \(x, y \in U \) and \(h \in \hat{U} \). Similarly, the (anti-)automorphisms \(\omega, \tau \) and \(\rho \) on \(U \) induce (anti-)automorphisms on \(\hat{U} \) (denoted by the same letters), which respect the \(U \)-bimodule structure, and \(\rho(1_n) = 1_n, \omega(1_n) = 1_{-n}, \tau(1_n) = 1_{-n} \), for \(n \in \mathbb{Z} \).
6.4. Canonical basis for \hat{U}. Following Lusztig [12], a canonical basis for \hat{U} should be a bar-invariant $\mathbb{Q}(q)$-basis for \hat{U} and an \mathcal{A}-basis for $\hat{A}\hat{U}$ which consist of elements of the form

$$u = E^{(a)} \hat{\otimes} k F^{(b)} \in \hat{A}\hat{U} 1_k, \text{ for } a, b \in \mathbb{N}, k \in \mathbb{Z},$$

such that $u(\eta \otimes \nu) = (E^{(a)} \hat{\otimes} F^{(b)})_{s,t}$ where η is the lowest weight vector for $\omega L(s)$ and ν is the highest weight vector for $L(t)$, with $t - s = k$. We take this as the definition of a canonical basis for \hat{U}.

Keeping in mind the convention (6.7), we consider the elements

$$E^{(a)} 1_{-n} F^{(b)}, \quad \pi^{ab} F^{(b)} 1_n E^{(a)}, \quad \text{for } a, b \in \mathbb{N}, n \in \mathbb{Z}, n \geq a + b. \quad (6.8)$$

By (6.5), we have the following overlapping elements in (6.8):

$$E^{(a)} 1_{-n} F^{(b)} = \pi^{ab} F^{(b)} 1_n E^{(a)}, \quad \text{for } n = a + b. \quad (6.9)$$

The following is a super analogue of [12 Proposition 25.3.2], and it formally looks identical!

Theorem 6.2. The elements in (6.8) subject to the identification (6.9) form a canonical basis for \hat{U}. Moreover, if $n \geq a + b$, we have

$$E^{(a)} 1_{-n} F^{(b)} = E^{(a)} \hat{\otimes} 2b - n F^{(b)},$$

$$\pi^{ab} F^{(b)} 1_n E^{(a)} = E^{(a)} \hat{\otimes} n - 2a F^{(b)}.$$

Proof. First, recall that all elements of the form $E^{(a)} 1_{-n} F^{(b)}$ form a basis for the \mathcal{A}-algebra $\hat{A}\hat{U}$ and $\mathbb{Q}(q)$-algebra \hat{U}. If $a + b > n$, $E^{(a)} 1_{-n} F^{(b)}$ can be expressed as a \mathcal{A}-linear combination of the elements in (6.8) by using (6.5) as follows:

$$\pi^{ab} E^{(a)} 1_{-n} F^{(b)} = \sum_{i=0}^{\min(a,b)} \pi^{(i+1)2} \left[a + b - n \atop i \right] F^{(b-i)} 1_{2a + 2b - n - 2i} E^{(a-i)},$$

where $0 \leq a - i + b - i < (a + b - n) + a + b - 2i = 2a + 2b - n - 2i$. Hence we conclude that the set (6.8) forms a spanning set of \hat{U}. On the other hand, the set (6.8) naturally splits into two halves, each of which is already linearly independent. Except for the case $a + b = n$ with identification (6.9), the halves live in different subspaces $\hat{A}\hat{U}_b$ and hence are necessarily linearly independent. This shows the linear independence of the set (6.8) subject to the identification (6.9).

Let η_s and ν_t be the lowest and highest weight vectors of $\omega L(s)$ and $L(t)$. We have $E^{(a)} 1_{-n} F^{(b)} (\eta_s \otimes \nu_t) = 0$ unless $-n + 2b = t - s$, in which case we compute by Lemma 4.6...
Moreover, the bilinear form

\[E^{(a)}_1 = E^{(b)}(\eta_s \otimes \nu_t) \]

\[= \Delta(E^{(a)})\Delta(E^{(b)})(\eta_s \otimes \nu_t) = \Delta(E^{(a)})(\eta_s \otimes F^{(b)}\nu_t) \]

\[= \sum_{a=c+d} \pi^{sd}q^{cd}E^{(c)}K^{d}\eta_s \otimes E^{(d)}F^{(b)}\nu_t \]

\[= \sum_{a=c+d} \pi^{sd}q^{dc-d}E^{(c)}\eta_s \otimes E^{(d)}F^{(b)}\nu_t \]

\[= \sum_{a=c+d} \min(b,d) \sum_{i=0} \pi^{sd}q^{dc-d}E^{(c)}\eta_s \otimes \pi^{-bd}\pi^{(i+1)}2^{(b-i)}F^{(d-i)}[K; 2i - (b + d)]E^{(d-i)}\nu_t \]

\[= \sum_{a=c+d} \pi^{sd}q^{dc-d}E^{(c)}\eta_s \otimes \pi^{-bd}\pi^{(d+1)/2} \left[d - b + t \right] E^{(d-b)}\nu_t \]

\[= \sum_{0 \leq j \leq \min(a,b)} \pi^{sj+(l+1)/2} - bj q^{j(a-j-s)} \left[j - b + t \right] E^{(a-j)}\eta_s \otimes F^{(b-j)}\nu_t. \]

Let us denote by \(X \) the right-hand side of the last equation. Then \(X \) is bar-invariant since the left-hand side is; it is also therefore \(\Theta \)-invariant since \(\Theta(\eta_s \otimes \nu_t) = \eta_s \otimes \nu_t \), so \(X \) is \(\Psi \)-invariant. The leading term (i.e., the term with \(\eta_s \otimes F^{(b)}\nu_t \) satisfies the defining properties of a canonical basis are satisfied, completing the proof.

If \(j > 0 \), a degree argument shows that \(q^{j(a-j-s)} \left[j - b + t \right] \) lies in \(q^{-1}\mathbb{Z}[q^{-1}] \). Hence \(X \) satisfies the defining properties of the element \((E^{(a)} \otimes F^{(b)})_{s,t} \) (see Proposition 5.4), and then must be equal. A similar argument applies to \(F^{(b)}1_{\eta}E^{(a)} \).

It is clear from the triangular decomposition and the definition of \(\psi \) that the other properties of a canonical basis are satisfied, completing the proof. \(\square \)

From the proof above, we have the following formula for the coefficients \(c_{a,b}^{s,t} \) in the expansion of \((E^{(a)} \otimes F^{(b)})_{s,t} \) as defined in Proposition 5.4.

Corollary 6.3. Let \(0 \leq a \leq s \), \(0 \leq b \leq t \). For \(0 \leq j \leq \min(a,b) \), we have

\[c_{a,b}^{s,t} = \pi^{sj+(l+1)/2} - bj q^{j(a-j-s)} \left[j - b + t \right]. \]

6.5. **A bilinear form on \(\hat{U} \).** Recall the definition of \(\rho \) from Proposition 2.7. Since we have defined a suitable bilinear form \(\langle \cdot, \cdot \rangle \) on \(f \) (see (4.1) and (4.2)) and constructed the canonical basis on \(\hat{U} \), the same proof in [12, 26.1.2] leads to the following.

Proposition 6.4. There exists a unique bilinear form \(\langle \cdot, \cdot \rangle : \hat{U} \times \hat{U} \to \mathbb{Q}(q) \) such that

1. \(\langle 1_{a}x1_{b}, 1_{c}y1_{d} \rangle = 0 \) whenever \(a \neq c \) or \(b \neq d \), \(a, b, c, d \in \mathbb{Z} \);
2. \(\langle ux, y \rangle = \langle x, \rho(u)y \rangle \) for \(u \in U \) and \(x, y \in \hat{U} \);
3. \(\langle x^{-1}a, y^{-1}a \rangle = \langle x, y \rangle \) for all \(x, y \in f \) and \(a \in \mathbb{Z} \).

Moreover, the bilinear form \(\langle \cdot, \cdot \rangle \) is symmetric.

7. **The covering algebras**

Essentially all the constructions and results in the previous sections make sense in the framework of covering algebras introduced below by treating \(\pi \) as a formal parameter satisfying \(\pi^2 = 1 \). The idea of (half) covering algebras first appeared in [3]. Given a ring \(A \) with unit, we define a new ring \(A^\pi = A[\pi]/(\pi^2 - 1) \). We shall mainly need \(A^\pi \)
and \(\mathbb{Q}(q)^\pi \) below. Note that \(\mathcal{A}^\pi \subset \mathbb{Q}(q)^\pi \). The quantum integers and quantum binomials \([n], [n/i] \) in (2.1) and (2.2) make sense as elements in \(\mathcal{A}^\pi \) and also in \(\mathbb{Q}(q)^\pi \).

7.1. Covering algebra \(U^\pi \). We define the covering algebra \(U^\pi \) for \(\mathfrak{osp}(1|2) \) to be the \(\mathbb{Q}(q)^\pi \)-(super)algebra generated by elements \(E_\epsilon, F_\epsilon, K_\epsilon \) and \(K_\epsilon^{-1} \) for \(\epsilon \in \{0, 1\} \), subject to the relations (1)-(3) in Remark 2.4. Then all the definitions and calculations earlier on can be translated to the covering algebra. Indeed, all computations only involve quotients of elements of the form \((\pi q)^n - q^{-n} \) and we never used \(1 + \pi = 0 \) to reduce any expression. Therefore we have the following.

1. \(U^\pi \) is a free \(\mathbb{Q}(q)^\pi \)-module with basis \(F^{(a)}_\epsilon K^b_\epsilon E^{(c)}_\epsilon \) for \(a, c \in \mathbb{N}, b \in \mathbb{Z}, \epsilon \in \{0, 1\} \).
2. \(U^\pi \) has algebra (anti-)automorphisms as described in Proposition 2.7 which fix \(\pi \).
3. The elements \(E^{(r)}, F^{(s)} \) satisfy the commutation relations in Lemma 2.8.
4. \(U^\pi \) has a Hopf superalgebra structure.
5. \(U^\pi \) admits a quasi-R matrix \(\Theta \) and the map \(\Psi \) as operators on tensor products of modules.
6. Proposition 5.4 remains valid, with \(c^{s,t}_{a,b;m,n} \in q^{-1}\mathbb{N}[q^{-1}, \pi] \).

7.2. Covering algebra \(\dot{U}^\pi \). Similarly, we can modify the definition of \(\dot{U} \) in 6.1 as follows. Let \(a, b \in \mathbb{Z} \) and set

\[
a_{U^\pi} = \dot{U}^\pi / \left((K_{p(a)} - q^a)U^\pi + U^\pi (K_{p(b)} - q^b) \right),
\]

and define

\[
\dot{U}^\pi = \bigoplus_{a,b \in \mathbb{Z}} a_{U^\pi}.
\]

This is called the modified (also called idempotented) covering quantum (super)algebra of \(U^\pi \). Imitating the \(\mathcal{A} \)-subalgebra \(\dot{\mathcal{A}}^\pi \), we can define the \(\mathcal{A}^\pi \)-subalgebra \(\dot{\mathcal{A}}^\pi \). We can now reinterpret earlier results on \(\dot{U} \) in the setting of covering algebra as follows:

1. The identities (6.3), (6.4), (6.5), and (6.6) are valid in \(\dot{\mathcal{A}}^\pi \).
2. Theorem 6.2 on canonical basis is valid for \(\dot{\mathcal{A}}^\pi \).

7.3. Specializations. The specialization by setting \(\pi \) to be \(\pm 1 \) in the constructions and statements for the covering algebras recovers corresponding results for quantum \(\mathfrak{sl}(2) \) and \(\mathfrak{osp}(1|2) \) simultaneously as follows.

1. Specializing \(\pi = -1 \), we obtain that \(U^\pi / \langle \pi + 1 \rangle \cong U \) and \(\dot{U}^\pi / \langle \pi + 1 \rangle \cong \dot{U} \).
2. The canonical basis for \(\dot{U}^\pi \) specializes at \(\pi = -1 \) to that for \(\dot{U} \).
3. Specializing \(\pi = 1 \), we obtain that \(U^\pi / \langle \pi - 1 \rangle \) is isomorphic to a direct sum of two copies of the quantum group \(U_q(\mathfrak{sl}(2)) \), and \(\dot{U}^\pi / \langle \pi - 1 \rangle \) is isomorphic to the modified algebra \(\dot{U}_q(\mathfrak{sl}(2)) \) in [2, 12].
4. The canonical basis for \(\dot{U}^\pi \) specializes at \(\pi = 1 \) to that for the modified quantum \(\mathfrak{sl}(2) \) given in [12, Proposition 25.3.2].

Remark 7.1. The super sign, being inherent in the structure of superalgebras, rules out the hope of positivity of the structure constants for canonical basis of the quantum superalgebra \(U \) in the usual sense. Using (6.3), (6.5), and (6.6), we can show that the structure coefficients from multiplying canonical basis elements in \(\dot{U}^\pi \) lie in \(\mathbb{N}[q, q^{-1}, \pi] \). So passing to covering algebras restores the positivity.
A categorification of \hat{U}^{π} and its canonical basis, à la Lauda [10] for modified quantum $\mathfrak{sl}(2)$, is expected in a generalized framework of spin nilHecke algebras, with π categorified as a parity shift functor as in [5]. Such a categorification would be relevant to odd Khovanov homology and knot invariants (also compare [3]). Forgetting the Z_2-grading and the parity shift functor would lead to a (second) categorification of modified quantum $\mathfrak{sl}(2)$ and its canonical basis; see (4) above.

References

[1] D. Arnaudon and M. Bauer, Scasimir operator, Scentre and Representations of $U_q(osp(1|2))$, Lett. Math. Phys. 40 (1997), 307–320.
[2] A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for quantum groups, Duke Math. J. 61 (1990), 655–677.
[3] S. Blumen, On the $U_q(osp(1|2n))$ and $U_{-q}(so(2n + 1))$ uncoloured quantum Link invariants, J. Knot Theory Ramifications 19 (2010), 335–353.
[4] S. Clark, D. Hill and W. Wang, to appear.
[5] D. Hill and W. Wang, Categorification of quantum Kac-Moody superalgebras, Preprint 2012, arXiv:1202.2769.
[6] J.C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics 6, AMS, Providence, RI, 1996.
[7] K. Jeong, Crystal bases for Kac-Moody superalgebras, Journal of Algebra 237 (2002), 562–590.
[8] P. Kulish and N. Reshetikhin, Universal R-matrix of the quantum superalgebra $osp(2|1)$, Lett. Math. Phys. 18 (1989), 143–149.
[9] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 456–516.
[10] A. Lauda, A categorification of quantum $\mathfrak{sl}(2)$, Adv. Math. 225 (2010), 3327–3424.
[11] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.
[12] G. Lusztig, Introduction to quantum groups, Birkhäuser, 1994.
[13] Y.-M. Zou, Integrable representations of $U_q(osp(1,2n))$, J. of Pure and Applied Alg. 130 (1998), 99–112.

Department of Mathematics, University of Virginia, Charlottesville, VA 22904
E-mail address: sic5ag@virginia.edu (Clark), ww9c@virginia.edu (Wang)