The Why and The How: A Survey on Natural Language Interaction in Visualization

Henrik Voigt¹, Özge Alacam², Monique Meuschke³, Kai Lawonn¹ and Sina Zarrieß²
¹University of Jena ²University of Bielefeld ³University of Magdeburg
¹first.last@uni-jena.de
²first.last@uni-bielefeld.de
³last@isg.cs.uni-magdeburg.de

Abstract

Natural language as a modality of interaction is becoming increasingly popular in the field of visualization. In addition to the popular query interfaces, other language-based interactions such as annotations, recommendations, explanations, or documentation experience growing interest. In this survey, we provide an overview of natural language-based interaction in the research area of visualization. We discuss a renowned taxonomy of visualization tasks and classify 119 related works to illustrate the state-of-the-art of how current natural language interfaces support their performance. We examine applied NLP methods and discuss human-machine dialogue structures with a focus on initiative, duration, and communicative functions in recent visualization-oriented dialogue interfaces. Based on this overview, we point out interesting areas for the future application of NLP methods in the field of visualization.

1 Introduction

Natural language as a modality for interacting with visual models enjoys increasing popularity in human-computer interface research in the fields of Human-Computer-Interaction (HCI) and Visualization (VIS) (Yu and Silva, 2020; Srinivasan et al., 2020a; Liu et al., 2021; Narechania et al., 2021; Kim et al., 2021c). At the same time, interest in tasks involving the visual modality has grown strongly in NLP research in recent years (Suhr et al., 2017; Hudson and Manning, 2019; Acharya et al., 2019). While there are common interests and parallel trends in VIS and NLP, research in these fields often adopts different perspectives on what interaction is and how it should be modeled. Broadly speaking, in the VIS community, a lot of research aims to understand why users need to interact with a visualization and what users’ intents are when they interact with a visual model (Dimara and Perin, 2020). Therefore, Brehmer and Munzner (2013) categorize users’ data-related intents into visualization tasks and introduce a taxonomy to describe them in general terms and compare them among applications. Recent contributions show that different forms of natural language-based interaction prove suitable to support users in accomplishing various visualization tasks. This concerns not only the popular query interfaces, but also, on a broader scale, the provision of recommendations, annotations, explanations, documentations, or for support in analytical conversation. However, the variety of existing visualization tasks benefiting from natural language interaction beyond simple query interfaces has not yet received much attention in the NLP community. On the other hand, modern NLP methods offer enormous potential for modeling multi-modal dialogues in the visualization tasks.

In this survey, we aim to complement the why-oriented perspective of classifying visualization tasks by intent in VIS with the how-oriented dialogue modeling perspective in NLP for works involving natural language interaction. To substantiate the classification of the papers, we first delimit the scope of the survey and explain the methodology employed to derive the selected papers in Section 2. We discuss the taxonomy of abstract visualization tasks by Brehmer and Munzner (2013) as the basis for the classification in Section 3 by explaining why interaction with a visualization is performed. Section 4 focuses on how interaction is implemented in the works at hand in terms of applied NLP methods as well as characteristic structures in human-machine dialogue (Bunt et al., 2010). Finally, challenges arising from current approaches are pointed out. As such, the need to compile reliable data sets to support the adoption of deep learning-based NLP methods in the field of VIS yields promising space for future creative work.
Related Surveys. The survey of Shen et al. (2021) considers 55 visualization-oriented natural language interfaces (V-NLI) at the intersection of NLP and VIS. The work focuses on the applicability of natural language interfaces at the different steps of the information visualization pipeline by Kard et al. (1999). The authors discuss query-based language interfaces in detail. Similarly, Özcan et al. (2020) put their focus on querying data visualizations using natural language. However, querying a visualization interface is only one possible language-based interaction among many such as annotation, description generation, documentation, and others. Klopfenstein et al. (2017) conduct a more general study on the application of conversational interfaces and derive usage patterns and paradigms for their implementation. Further related work is done at the intersection of Machine Learning (ML) and VIS as by Wu et al. (2021) or Wang et al. (2020), who illuminate where and how ML gains ground in VIS and discuss future directions for applying ML in VIS research. Facing that, we identify substantial ground for a survey that examines current natural language interaction techniques supporting the accomplishment of visualization tasks. Related work in VIS yields comprehensive and well-conducted state-of-the-art surveys focusing on where dialogue systems can be integrated into the information visualization pipeline proposed by Kard et al. (1999). This work is complementary in that it illuminates from an NLP perspective how visualization-oriented dialogue is structured in terms of initiative, duration, and present communicative functions within the respective visualization task at hand (see Figure 1). By shedding a light on this we hope to arouse interest in the NLP community for the interesting multi-modal dialogue modeling tasks emerging at the intersection of NLP and VIS.

2 Methodology

For a paper to be included in the survey paper selection, it must meet the following criteria:

- Language-based interaction must be a designated input/output modality and some kind of language interface must be provided for it, e.g., a text box or a microphone/speaker.

- Language-based interaction must serve to fulfill or support a main visualization task. For example, using natural language for logging into an application is neither a visualization task nor does it support the accomplishment of that task and is, therefore, not valid. In contrast, using natural language to annotate certain aspects of a visualization is considered supportive of achieving the goal of the visualization task and therefore is valid.

In addition to contributions that include concrete implementations of interaction scenarios, theoretical papers that discuss design spaces or considerations of language-based interaction possibilities are included. The aim is to explicitly show not only what has already been implemented, but also which interaction possibilities are conceivable and useful in multi-modal visualization-oriented dialogue. The paper selection is made in a two-stage process. First, a set of seed papers is derived from conference proceedings of the main conferences in HCI, namely SIGCHI, VIS, namely IEEE VIS, PacificVIS, and EuroVIS, and NLP, namely ACL and EMNLP, starting from the year 2010 until 2021. The papers are filtered using the keywords language, visualization, interface in combination with a semantic embedding map of the abstracts based on Reimers and Gurevych (2019). The exploratory process results in a set of 76 papers. In the second stage, the references of the seed papers are examined and relevant papers that meet the specified criteria are added to the list.
criteria are included in the set. This results in a final set of 119 papers. For a detailed insight into the scope of the survey, we refer to Appendix A.

3 Why Users interact with Visualizations

Brehmer and Munzner (2013) introduce a multi-level typology for abstract description and comparison of visualization tasks between applications. An abstract visualization task represents a high-level description of why interaction with a visualization application is performed, how it is performed, and what the input and output of the task are. The why-branch of Brehmer and Munzner’s typology was chosen primarily for three reasons: First, the high level of abstraction allows to cover a high number of visualization tasks and therefore ensures high representativeness. On the other hand, the modular character of the typology is beneficial for breaking down complex tasks into smaller subtasks in which commonalities can then be identified. In addition, the combination with the what and the how branch offers the possibility to describe task chains, which can serve as a blueprint for the design of a dialog with the system. The papers are classified on the basis of the why-branch of the taxonomy because it distinguishes the tasks taking into account the goal to be achieved and thus corresponds to the goal definition as also used in goal-oriented dialogue modeling (Bordes et al., 2016; Li et al., 2017; Liu et al., 2018). The why branch spawns the abstract visualization tasks present, discover, enjoy, and produce illustrated in Figure 2. Following Munzner (2009), we consider language-based interaction as domain- and interface-independent operations performed by users and/or systems by applying natural language in any kind of representation, e.g., written- or spoken text. Table 1 shows an overview of the contributions and the respective visualization task to which they are assigned. In the following subsections, concrete tasks involving natural language interaction are presented for each abstract visualization task of the taxonomy. Each section includes a brief definition of the targeted visualization task and a detailed discussion of current related work that addresses it. For a detailed inspection, we refer to Appendix B.

3.1 Present Task

Brehmer and Munzner (2013) define presentation as ‘the use of visualization for the succinct communication of information, for telling a story with data, guiding an audience through a series of cognitive operations’. During this task, natural language is used to complement the presentation of visual findings and results, for data-driven storytelling, or to explain, evaluate and discuss them.

Visual Storytelling. Visual storytelling considers the communication of knowledge to a broad audience using visual and textual elements that follow a coherent narrative. The main idea is to match linguistic and visual elements and arrange them consistently within a story. Von Landesberger et al. (2021) study how text and visualization interact with each other in a visual storytelling scenario pointing out that visualizations complement the narrative by providing overview, details, and comparison. Automatic story generation is done by Shi et al. (2021) who leverage the generation of a visual story from spreadsheet input. Natural language text drives the story of a visualization presentation in Kwon et al. (2014); Bryan et al. (2017); Metoyer et al. (2018). Users are guided through the story by interacting with the text segments and the system creates visual animations correspondingly in response.

Explanation Generation. Visualizations offer great potential to create understanding for complex issues among different user groups. In contrast to storytelling, explanation generation is not about assigning a sequence of visual elements to a text-based story, but about automatically explaining given visual facts through natural language texts. Combining text and visualization is used to explain complex processes, e.g., in verbalizing the functionality of ML models (Hohman et al., 2019).
Table 1: Classification of papers based on the Multi-Level Typology of Abstract Visualization Tasks by Brehmer and Munzner (2013). For the sake of clarity, papers are classified into the most suitable category only, although some works touch on several categories in terms of content. A comprehensive listing can be found in Appendix B.

Sevastjanova et al. (2018) discuss strategies on how to present language explanations during the model inference process and the interaction techniques to be required, such as details-on-demand, guidance, dialogue, and exploration.

3.2 Discover Task

Using natural language to discover information is one of the most common visualization tasks targeted by V-NLI. Brehmer and Munzner (2013) differentiate between different levels of task granularity such as discover - search - query (see Figure 2). The discovery of concepts, objects, and relationships in a visualization depends on the role that the user and the interface take in the visualization-oriented dialogue, as well as on the concreteness of the user’s intent. Intents are formulated in oral or written form. Less concrete user intents lead to a more exploratory character of the search. Concrete intents formalized in a query lead to a specific system response. Vague and fuzzy intents are much more difficult to formalize in a single query and must be inferred by the V-NLI through the application of intelligent recommendations or user guidance.

Keyword Search. Discovering information about a visualization by supplementing it with a keyword search interface is examined by Feng et al. (2018). The authors enable the search of visual concepts in a 2D visualization via text input. Further visualization-oriented keyword search interfaces are applied in Chowdhury et al. (2021); Siddiqui and Hoque (2020); Chung et al. (2010). In contrast to that, visual search interfaces take in keywords but focus on displaying results in a way that facilitates visual exploration, as targeted in Wilson et al. (2010); Schleußinger and Henkel (2018); Peltonen et al. (2017). Search history and coverage are tracked and visualized by Isaacs et al. (2014).

Natural Language Querying. Natural language querying is a scenario in which a user formulates a query to a visual model and the system is tasked with outputting a visual response to that query – referred to as query2viz. Most of the existing V-NLIs focus on this task. Theoretical work on utterance structures in natural language querying has been done by Srinivasan et al. (2019a, 2021b) finding that utterances mainly target attribute, chart type, encoding, aggregation, and design aspects of a visual model. Liu et al. (2021); Sun et al. (2014);
Narechania et al. (2021) generate a visualization based on a data table and a natural language query. Yu and Silva (2020) allow query sequences to be specified in a visualization workflow.

Ambiguities. Resolving ambiguities and underspecified utterances poses a difficult problem in this visualization task, especially for single-turn query interfaces. Hearst et al. (2019); Tory and Setlur (2019) develop design guidelines for how systems should respond to queries that contain vague modifiers or -user intents by exploring contextual inference strategies. Gao et al. (2015) manage ambiguities in input utterances using visual ambiguity sets. Setlur et al. (2019) apply inferencing rules based on known syntactic and semantic input structures. Setlur and Kumar (2020) use word co-occurrence in combination with sentiment analysis to determine data attributes and filter ranges associated with the articulated vague property.

Hypothesis Verification. Discovering novel insights from data is usually done by (dis-)validating hypotheses. Choi et al. (2019a,b) study the use of visualizations to prove or disprove natural language hypotheses visually. The user initiates a hypothesis test by formulating it in natural language, and the system indicates the match with the underlying data set by creating a graph that highlights matches/discrepancies in striking green/red colours.

Query Dialogue. Setlur et al. (2016); Aurisano et al. (2016); Bacci et al. (2020) extend the single-turn *query2viz* interaction to a multi-turn interactive visual exploration also referred to as *analytical conversation*. Analytical conversation is the support of visual analysis processes by V-NLI with the aim of inspecting visual features through a visualization-oriented human-machine dialogue, as studied by Turkay and Henkin (2018); Aurisano et al. (2015). In contrast to *visualization creation* (see section 3.4), where visualizations are generated based on natural language text, the manipulation or composition of a visualization in the *query dialog* is used in the sense of a speech act. The produced or manipulated visualization can be seen here as a dynamically generated visual response to a user query with the goal of providing information in the dialog. Setlur and Tory (2017); Hoque et al. (2018) apply pragmatics to visualization-oriented dialogue modeling by taking the dialogue history into account for computing more adequate future responses. Visualization-oriented dialogue assistants have been developed in various forms. General-purpose assistants for driving a visual analytics conversation are proposed by Fast et al. (2018); Kassel and Rohs (2018). Assistants implementing instruction following as in plot manipulation or navigation scenarios process and execute commands in a visualization environment (Shao and Nakashole, 2020; Wang et al., 2021). Multi-modal dialogue assistants combine natural language input in oral or written form with touch gestures (Srinivasan and Stasko, 2018; Kim et al., 2021c; Srinivasan et al., 2020a, 2021a). Sperrle et al. (2020, 2021) study adaptive guidance to support a visual analytics process. Collaborative approaches using mixed-initiative interactions for visual analytics are explored by Hu et al. (2018); Langevin et al. (2018). The potential of competitive visualization-oriented dialogue interfaces for educational purposes is theoretically investigated by Reicherts and Rogers (2020) by examining the role of questions in these dialogues. Kumar et al. (2020b) provide a data set of contextualized dialogue acts in a visual exploration scenario as a basis for training dialogue assistants.

Visual Question Answering. VQA is a well-studied task in Language & Vision (Antol et al., 2015; Yang et al., 2016; Anderson et al., 2018) with the goal to answer questions related to the visual content of images. In VIS, the aim is to answer complex questions related to visual models such as charts or scientific illustrations as in Singh and Shekhar (2020); Chaudhry et al. (2020). Graphics as sophisticated arrangements of visual elements and text are supported by VQA in Mathew et al. (2021). Meeting the high informative standards of response generation required to harness the explanatory purposes of visualizations presents itself as a challenging task.

Browsing. Browsing supports users with a vague or fuzzy data-related intent in discovering visualizations. The idea is to narrow down the user intent through language interaction using text input, multi-step questions, or dialogue and suggest appropriate next steps in the interaction with the visualization. Luo et al. (2018) use keyword input to execute personalized *visualization recommendations*. Other approaches leverage auto-completion in text input (Setlur et al., 2020; Dhamdhere et al., 2017) or use multi-step question procedures to restrict the user’s target area (de Araújo Lima and Barbosa, 2020; Luo et al., 2020). Srinivasan and
Setlur (2021) recommend data-related utterances users can use to start a visual analysis or shimmy along. Lee et al. (2021) guide users through a visualization-oriented analytical conversation using insights found in the data similar to Cui et al. (2019).

3.3 Enjoy Task

Brehmer and Munzner (2013) consider enjoying as the 'casual encounter' with a visualization without having a concrete hypothesis to verify. Natural language enhances the perception of a visualization by displaying additional information such as captions that contextualize the visual experience, as applied in immersive experiences, exhibitions, or museums. Visually impaired people experience visualizations with text analogously to image captioning (Vinyals et al., 2015; Xu et al., 2015).

Augmentation. In augmentation, visualizations are complemented by automatically generated textual elements, such as labels or links. Srinivasan et al. (2019b); Hullman et al. (2013) augment visualizations with additional facts to substantiate the message to be transmitted. Kandogan (2012) propose the concept of just-in-time augmentation of visual structures during visual analytics to help users understand the structure of the data. Lai et al. (2020) automatically annotate visualizations based on their textual description. Lallé et al. (2021) highlight corresponding elements of a visualization based on tracked gazes of users as they read a text description associated with the visualization. In contrast to that Xia et al. (2020) augment audio podcasts with visual elements. Gao et al. (2014); Latif and Beck (2019) augment map visualizations by automatically mining and linking site-related facts out of articles to their location on the map. Augmentation is also used to textually describe GUI components automatically as a preliminary step for auditory scene description helping visually impaired people interact with visualizations (Chen et al., 2020a).

Visualization Description Generation. Textual descriptions for visualizations are created to complement visual elements during the encounter with a visualization. Spreafico and Carenini (2020); Qian et al. (2021b); Liu et al. (2020) complement visualizations with text analogously to image captioning (Vinyals et al., 2015; Xu et al., 2015). Murillo-Morales and Miesenberger (2020) generate auditory descriptions to make statistical charts accessible to visually impaired people. Hsu et al. (2021) captions scientific illustrations with highly informative labels that meet scientific quality standards. Summarization of visualization content into textual form is researched by Demir et al. (2012); Moraes et al. (2014). Bylinskii et al. (2017); Madan et al. (2018) extend this to aggregating infographics into a single descriptive hashtag. Theoretical work on how charts and their descriptions are linked and verbalized by users is carried out in Kim et al. (2021a), where it is found that users tend to retain different amounts of information depending on how prominent the visual feature presented in the caption is.

3.4 Produce Task

Brehmer and Munzner (2013) refer to produce as a 'reference to tasks in which the intent is to generate new artifacts'. Artifacts generated through natural language interaction are, e.g., annotations of objects in a visualization, scene descriptions, or task reports as used, e.g., in medical visual analysis.

Annotation. Annotating areas of interest, comparing them among each other, and sharing them with colleagues is a common language interaction while working with visualizations (Ren et al., 2017). Chen et al. (2010a,b) leverage touch and click interactions for situated visualization annotation. Latif et al. (2018, 2021) explore the possibilities of linking text and visualization. Sperrle et al. (2019) study the visual annotation of argumentation and how this facilitates analysis. Theoretical work on the sustainable extraction of knowledge from visualization annotations is provided by Vanhulst et al. (2021), who propose a classification framework that enables a structured capture and ordering of annotations.

Documentation. Visualization systems are used by experts, e.g., in the medical domain (Meuschke et al., 2021) to plan and discuss a surgery. Reporting, summarizing, and sharing this visualization-related work is an important task that is an additional burden to the surgeon and therefore should be executed by a machine. Nafari and Weaver (2013, 2015) generate natural language questions from queries executed on a visualization resulting in a natural language translation of the interaction. This leaves a step-by-step report of the interaction finding usage as a report of done work.

Visualization Creation. Visualization creation considers the production of a visual model from a
natural language description – also referred to as text2viz. Rashid et al. (2021) generate chart visualizations from natural language text input. Collaborative authoring tools assisting users in visualization creation use natural language as an input modality. Cui et al. (2020) provide a tool that generates infographics using natural language statements as input, similar to Qian et al. (2021a). Fulda et al. (2016) design an interactive production process for generating timelines from unstructured text input. Language-based 3D scene generation, also referred to as text2scene, which allows users to describe 3D scenes using text without having to learn software tools, is investigated in Coyne and Sproat (2001); Coyne et al. (2012); Ulinski et al. (2018).

4 How Users interact with Visualizations

After discussing why users interact with visualizations using natural language, Section 4 provides a complementary discussion of how these interactions are modeled. First, in Section 4.1 it is explained which NLP methods are used in these systems. Subsequently, Section 4.2 summarizes the structure of the visualization-oriented dialogues in the analyzed paper set in terms of initiative, duration, and present communication functions within the respective visualization task.

4.1 NLP Methods

For each paper in the collection, both the NLP methods used, if any, and if named the specific NLP toolkits used for implementation are elaborated. For the sake of clarity, the methods are roughly divided into two areas: Natural Language Understanding (NLU) and Natural Language Generation (NLG). The majority of the systems apply standard NLP methods like tokenization, stemming or stopword removal to pre-process text inputs, which is why these are not recorded separately. For a detailed inspection, we refer to Appendix C. Figure 3 shows the distribution of applied NLU methods over all papers. Semantic Parsing, which relies on rule-based mapping procedures from recognized input tokens to semantic predicates, is predominantly used. Often, POS-Tagging, Word Embeddings, and Named Entity Recognition (NER) are additionally applied to increase the accuracy of the mapping. For Word Sense Disambiguation WordNet, VerbNet or ConceptNet are leveraged. Speech-to-Text APIs are a common method used in many systems to enable auditory input. A small number of pioneering systems integrate more sophisticated NLP methods such as Sentiment Analysis, Vector Search or Co-Reference Resolution. One main reason for the hesitant use of deep learning methods is the high demands on performance and robustness of visualization systems as Dhamdhere et al. (2017) points out. Fluid interaction between user and system in real time is a crucial factor for the success of a visualization application. Adopting state-of-the-art deep learning models to real-time interactions in visualization, e.g., by using Knowledge Distillation (Hinton et al., 2015) or Quantization (Jacob et al., 2018) leaves space for future work. Figure 4 shows the distribution of applied NLG methods over all papers. Template-based language generation is used by the majority of the systems followed by a significantly smaller number of deep learning-based Seq2Seq Modeling approaches. Multi-turn systems are predominantly based on rule-based or probabilistic Dialogue Management. Only a few systems use the Text-to-Speech functionality, as most of the generated responses consist of visual elements. In order to advance the adoption of deep learning-based methods in visualization-related text generation, extensive training data sets are required, as pointed out by Kumar et al. (2020a). There is a
limited number of data sets for Visualization Description Generation (Obeid and Hoque, 2020), Visual Question Answering (Mathew et al., 2021; Kim et al., 2020) and Natural Language Querying (Fu et al., 2020; Srinivasan et al., 2021b; Luo et al., 2021). In particular, the compilation of data sets for emerging dialogue scenarios in Analytical Conversation, Hypothesis Verification or collaborative authoring in Visualization Creation would motivate the use of deep learning based NLP methods in these tasks. Therefore, generating high-quality data sets for the aforementioned visualization tasks leaves room for future work.

4.2 Dialogue Structures

The study of structures in visualization-oriented dialogue is done with the idea of identifying task-specific patterns, as shown in Figure 5. The structural analysis is based on the work of Bunt (2009) and highlights, in particular, the initiative, duration, and communicative functions present in the modeled dialogues. For each contribution that provides access to sample data illustrating human-machine dialogue within the paper or supplementary material, the presence of the communicative functions information providing, information-seeking, commissive, or directive for the user and system is detected. A comprehensive list of allocations is presented in Appendix C. Bunt’s DIT++ taxonomy was chosen due to the fact that it focuses on the function of the individual speech act. In the context of a visualization task, it is important which function a dialog act fulfills in the successful execution of this task. This manifests itself particularly in the design of dialog agents, where speech acts that are intended to help solve the task must be specified. Other taxonomies focus on the rhetorical relations of speech acts to each other, as in Prasad et al. (2008), or the emotional information a speech act conveys in the dialogue, as in EmotionML (Schröder et al., 2011). In contrast to the aforementioned taxonomies, Bunt’s taxonomy proves suitable in two respects: It allows to understand how current dialogue situations are functionally structured in the visualization context. In this way, patterns can be identified that are common for the respective visualization tasks. From the generation perspective, it allows to specify dialog actions that need to be prepared in certain visualization task contexts in order to support the solution of the visualization task.

Present Task. In Visual Storytelling, users initiate the interactions which are performed as a sequence of multiple turns triggered through the selection of text phrases. The human-machine dialogue is characterized by the actors complementing each other through text and visual animations as speech acts. Similar to storytelling, the human-machine dialogue in Explanation Generation is characterized by a complementing of user input and visualization system output by matching visual and textual elements. Communicating insights found by investigating a visual model is little accompanied by NLP techniques so far compared to other visualization tasks. Template-based story generation systems leave room for innovation in grounding story segments in visualization elements.

Discover Task. The human-machine dialogue in Keyword Search is a short, single-turn dialogue characterized by user-initiated text input that is reciprocated by a visual response from the system, similar to Natural Language Querying. Keyword-based visualization search relies on text label-only search without including the on-screen representation. This leaves space for grounding abstract visualization concepts like outliers or clusters in natural language as a promising step towards a generalized visualization search. Keyword search beyond 2D visualizations is an open issue. The modeled dialogue interaction in analytical conversation is a user-initiated dialogue with multiple turns. Visual elements function in the communication as information providers carrying the response. This scenario offers the possibility to apply modern NLP methods to multi-modal dialogues by checking the user’s
intents and dynamically adapting the user’s experience by using the feedback of multiple turns. The implemented systems in Visual Question Answering follow a user-initiated, single-turn dialogue approach in which a user question is answered based on textual or visual information the visualization holds. In Browsing the initiative in the systems varies between user-, mixed- and system-initiated (see Figure 5) with variable duration. Most approaches focus on high-quality auto-completion to lead users, leaving space for innovation in guidance-based dialogue approaches.

Enjoy Task. The predominant features of human-machine dialogue in Augmentation are system-initiated single-turn interactions where written or spoken text is used to augment the visual representation. The augmentation of visualizations leaves room for a stronger inclusion of multi-modal interaction triggers such as gazes and gestures in the dialogue conception. Visualization Description Generation is characterized by system-initiated single turn systems. Summarizing visualizations is a challenge because it requires a high-quality scene description due to the high explanatory potential of visualizations. Particularly visually impaired people benefit from well-designed auditory visualization descriptions, which are a motivation for further improvements.

Produce Task. During Annotation, users initiate interactions, which can be continued by system suggestions or completions. Producing artifacts based on a visualization so far relies on template-based authoring tools. Guidance and competition in educational contexts, as well as the collaboration of user and system during artifact production, seem to be promising directions for production-supporting human-machine dialogue conception in the future. Authoring tools take the initiative in Visualization Creation by suggesting answers or partial task completions. The cooperation with the user appears often in form of a multi-turn production process. Documentation is done as a complement of the user’s actions, in that the system provides the user with a report of the work performed after or during the user-initiated interaction with a visualization.

5 Conclusion

In this survey, for a renowned taxonomy of abstract visualization tasks, we classified 119 approaches of language-based interaction that support users in pursuing data-related intents. In particular, we shed a light on how the human-machine dialogue is constructed in these works and which NLP methods current V-NLI use. Considering the progress of NLP methods in the field of visualization, we can summarize our work on two main outcomes: A compilation of data sets for the individual visualization tasks seems promising to advance the use of deep learning-based NLP methods; When introducing them, special attention must be paid to performance and robustness aspects due to the high requirements in the VIS area. Finally, the support of visualization tasks through natural language interaction offers a large number of interesting areas for the application of state-of-the-art NLP methods, inviting the NLP and VIS communities to work creatively in the emerging intersection of both fields.

Acknowledgments

We thank the Michael Stifel Center Jena for funding this work, which is part of the Carl Zeiss Foundation-funded project ‘A Virtual Workshop for Digitization in the Sciences’ (062017-02).

References

Manoj Acharya, Karan Jariwala, and Christopher Kanian. 2019. Vqd: Visual query detection in natural scenes. arXiv preprint arXiv:1904.02794.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang. 2018. Bottom-up and top-down attention for image captioning and visual question answering. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. International Journal of Computer Vision, 123:4–31.

Jillian Aurisano, Abhinav Kumar, Alberto Gonzales, Khairi Reda, Jason Leigh, Barbara Di Eugenio, and Andrew Johnson. 2015. Show me data”: Observational study of a conversational interface in visual data exploration. In IEEE VIS, volume 15, page 1.

Jillian Aurisano, Abhinav Kumar, Alberto Gonzalez, Jason Leigh, Barbara DiEugenio, and Andrew Johnson. 2016. Articulate2: Toward a conversational interface for visual data exploration. In IEEE Visualization.

Francesca Bacci, Federico Maria Cau, and Lucio Davide Sano. 2020. Inspecting data using natural language queries. Computational Science and Its Applications – ICCSA 2020, 12254:771 – 782.
Stefan Bieliauskas and Andreas Schreiber. 2017. A conversational user interface for software visualization. 2017 IEEE Working Conference on Software Visualization (VISSOFT), pages 139–143.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2016. Learning end-to-end goal-oriented dialog. arXiv preprint arXiv:1605.07683.

Matthew Brehmer and Tamara Munzner. 2013. A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics, 19:2376–2385.

Chris Bryan, Kwan-Liu Ma, and Jonathan Woodring. 2017. Temporal summary images: An approach to narrative visualization via interactive annotation generation and placement. IEEE Transactions on Visualization and Computer Graphics, 23:511–520.

Harry Bunt. 2009. The dit++ taxonomy for functional dialogue markup. In AAMAS 2009 Workshop, Towards a Standard Markup Language for Embodied Dialogue Acts, pages 13–24.

Harry Bunt, Jan Alexandersson, Jean Carletta, Jae-Woong Choe, Alex Chengyu Fang, Kōiti Hasida, Kiyong Lee, Volha Petukhova, Andrei Popescu-Belis, Laurent Romary, Claudia Soria, and David R. Traum. 2010. Towards an iso standard for dialogue act annotation. In LREC.

Zoya Bylinskii, Sami Alsheikh, Spandan Madan, Adrià Recasens, Kimberli Zhong, Hanspeter Pfister, Frédo Durand, and Aude Oliva. 2017. Understanding infographics through textual and visual tag prediction. ArXiv, abs/1709.09215.

Ritwick Chaudhry, Sumit Shekhar, Utkarsh Gupta, Pranav Maneriker, Prann Bansal, and Ajay Joshi. 2020. Leaf-qa: Locate, encode & attend for figure question answering. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 3501–3510.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Ximei Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang. 2020a. Unblind your apps: Predicting natural-language labels for mobile gui components by deep learning. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages 322–334.

Siming Chen, Jie Li, Gennady L. Andrienko, Natalia V. Andrienko, Yun Wang, Phong H. Nguyen, and Cagatay Turkay. 2020b. Supporting story synthesis: Bridging the gap between visual analytics and storytelling. IEEE Transactions on Visualization and Computer Graphics, 26:2499–2516.

Yang Chen, Scott Barlowe, and Jing Yang. 2010a. Click2annotate: Automated insight externalization with rich semantics. 2010 IEEE Symposium on Visual Analytics Science and Technology, pages 155–162.

Yang Chen, Jing Yang, Scott Barlowe, and Dong Hyun Jeong, 2010b. Touch2annotate: generating better annotations with less human effort on multi-touch interfaces. CHI ’10 Extended Abstracts on Human Factors in Computing Systems.

Zhutian Chen, Wai-Shun Tong, Qianwen Wang, Benjamin Bach, and Huamin Qu. 2020c. Augmenting static visualizations with papavis designer. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.

In Kwon Choi, Taylor Childers, Nirmal Kumar Raveendranath, Swati Mishra, Kyle Harris, and Khairi Reda. 2019a. Concept-driven visual analytics: an exploratory study of model- and hypothesis-based reasoning with visualizations. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.

In Kwon Choi, Nirmal Kumar Raveendranath, Jared Westerfield, and Khairi Reda. 2019b. Visual (dis)confirmation: Validating models and hypotheses with visualizations. In 2019 23rd International Conference in Information Visualization–Part II, pages 116–121. IEEE.

Jinho Choi, Sanghun Jung, Deok Gun Park, Jaegul Choo, and Niklas Elmqvist. 2019c. Visualizing for the non-visual: Enabling the visually impaired to use visualization. Computer Graphics Forum, 38.

Arjun Choudhry, Mandar Sharma, Pramod Chundury, Thomas Kapler, Derek W. S. Gray, Naren Ramakrishnan, and Niklas Elmqvist. 2021. Once upon a time in visualization: Understanding the use of textual narratives for causality. IEEE Transactions on Visualization and Computer Graphics, 27:1332–1342.

Imran Chowdhury, Abdul Moeid, Enamul Hoque, Mohammad Ashad Kabir, Md. Sabir Hossain, and Mohammad Mainul Islam. 2021. Designing and evaluating multimodal interactions for facilitating visual analysis with dashboards. IEEE Access, 9:60–71.

Haeyong Chung, Seungwon Yang, Naveed Massjouni, Christopher Andrews, Rahul Kanna, and Chris North. 2010. Vizcept: Supporting synchronous collaboration for constructing visualizations in intelligence analysis. 2010 IEEE Symposium on Visual Analytics Science and Technology, pages 107–114.

Bob Coyne, Alex Klapheke, Masoud Rouhizadeh, Richard Sproat, and Daniel Bauer. 2012. Annotation tools and knowledge representation for a text-to-scene system. In Proceedings of COLING 2012, pages 679–694.

Bob Coyne and Richard Sproat. 2001. Wordseye: An automatic text-to-scene conversion system. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 487–496.

Pietro Crovari, Sara Pidò, Franca Garzotto, and Stefano Ceri. 2020. Show, don’t tell. reflections on the design of multi-modal conversational interfaces. In CONVERSATIONS.
Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, B. Chen, Lei Fang, Haidong Zhang, Jian-Guang Lou, and Dongmei Zhang. 2020. Text-to-viz: Automatic generation of infographics from proportion-related natural language statements. *IEEE Transactions on Visualization and Computer Graphics*, 26:906–916.

Zhe Cui, Sriram Karthik Badam, Mehmet Adil Yalçın, and Niklas Elmqvist. 2019. Dataset: Proactive visual data exploration with computation of insight-based recommendations. *Information Visualization*, 18:251 – 267.

Raul de Araújo Lima and Simone Dinuz Junqueira Barbosa. 2020. A question-oriented visualization recommendation approach for data exploration. *Proceedings of the International Conference on Advanced Visual Interfaces*.

Seniz Demir, Sandra Carberry, and Kathleen F. McCoy. 2012. Summarizing information graphics textually. *Computational Linguistics*, 38:527–574.

Jan Deriu, Álvaro Rodrigo, Arantxa Otegi, Guillermo Ecchegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak. 2020. Survey on evaluation methods for dialogue systems. *Artificial Intelligence Review*, 54:755 – 810.

Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan, and Qiqi Yan. 2017. Analyza: Exploring data with conversation. *Proceedings of the 22nd International Conference on Intelligent User Interfaces*.

Evanthia Dimara and Charles Perin. 2020. What is interaction for data visualization? *IEEE Transactions on Visualization and Computer Graphics*, 26:119–129.

Mennatallah El-Assady, Rebecca Kehlbeck, Christopher M. Collins, Daniel A. Keim, and Oliver Deussen. 2020. Semantic concept spaces: Guided topic model refinement using word-embedding projections. *IEEE Transactions on Visualization and Computer Graphics*, 26:1001–1011.

Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S. Bernstein. 2018. Iris: A conversational agent for complex tasks. *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*.

Mi Feng, Cheng Deng, Evan M. Peck, and Lane Harrison. 2018. The effects of adding search functionality to interactive visualizations on the web. *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*.

C. Ailie Fraser, Julia M. Markel, N. James Basa, Mira Dontcheva, and Scott R. Klemmer. 2020. Remap: Lowering the barrier to help-seeking with multimodal search. *Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology*.

Siwei Fu, Kai Xiong, Xiaodong Ge, Siliang Tang, Wei Chen, and Yingcai Wu. 2020. Quda: Natural language queries for visual data analytics. *arXiv preprint arXiv:2005.03257*.

Johanna Fulda, Matthew Brehmer, and Tamara Munzner. 2016. Timelinecurator: Interactive authoring of visual timelines from unstructured text. *IEEE Transactions on Visualization and Computer Graphics*, 22:300–309.

Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie Karahalios. 2015. Datatone: Managing ambiguity in natural language interfaces for data visualization. *Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology*.

Tong Gao, Jessica R. Hullman, Eytan Adar, Brent J. Hecht, and Nicholas A. Diakopoulos. 2014. Newsviews: an automated pipeline for creating custom geovisualizations for news. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*.

Marti A. Hearst and Melanie K. Tory. 2019. Would you like a chart with that? incorporating visualizations into conversational interfaces. *2019 IEEE Visualization Conference (VIS)*, pages 1–5.

Marti A. Hearst, Melanie K. Tory, and Vidya Setlur. 2019. Toward interface defaults for vague modifiers in natural language interfaces for visual analysis. *2019 IEEE Visualization Conference (VIS)*, pages 21–25.

Rafael Henkin and Cagatay Turkay. 2020. Words of estimative correlation: Studying verbalizations of scatterplots. *IEEE Transactions on Visualization and Computer Graphics*, PP.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*.

Fred Hohman, Arjun Srinivasan, and Steven Mark Drucker. 2019. Telegram: Combining visualization and verbalization for interpretable machine learning. *2019 IEEE Visualization Conference (VIS)*, pages 151–155.

Enamul Hoque, Vidya Setlur, Melanie K. Tory, and Isaac Dykeman. 2018. Applying pragmatics principles for interaction with visual analytics. *IEEE Transactions on Visualization and Computer Graphics*, 24:309–318.

Ting-Yao Hsu, C. Lee Giles, and Ting-Hao Kenneth Huang. 2021. Scicap: Generating captions for scientific figures. In *EMNLP*.

Kevin Zeng Hu, Diana Orghian, and César A. Hidalgo. 2018. Dive: A mixed-initiative system supporting integrated data exploration workflows. *Proceedings of the Workshop on Human-In-the-Loop Data Analytics*.

Drew A Hudson and Christopher D Manning. 2019. Gqa: a new dataset for compositional question answering over real-world images. arXiv preprint arXiv:1902.09506, 3(8).

Jessica R. Hullman, Nicholas A. Diakopoulos, and Eytan Adar. 2013. Contextifier: automatic generation of annotated stock visualizations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

Ellen Isaacs, Kelly Domico, Shane Ahern, Eugene Bart, and Mudita Singhal. 2014. Footprints: A visual search tool that supports discovery and coverage tracking. IEEE Transactions on Visualization and Computer Graphics, 20:1793–1802.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2704–2713.

Rogers Jeffrey Leo John, Navneet Potti, and Jignesh M. Patel. 2017. Ava: From data to insights through conversations. In CIDR.

Crescentia Jung, Shubham Mehta, Atharva Kulkarni, Yuhang Zhao, and Yea-Seul Kim. 2021. Communicating visualizations without visuals: Investigation of visualization alternative text for people with visual impairments. IEEE Transactions on Visualization and Computer Graphics, PP.

Eser Kandogan. 2012. Just-in-time annotation of clusters, outliers, and trends in point-based data visualizations. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 73–82.

Stuart T Kard, Jock D Mackinlay, and Ben Scheiderman. 1999. Readings in Information Visualization, using vision to think. San Francisco: Morgan Kaufmann.

Jan-Frederik Kassel and Michael Rohs. 2018. Valletto: A multimodal interface for ubiquitous visual analytics. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems.

Jan-Frederik Kassel and Michael Rohs. 2019. Talk to me intelligibly: Investigating an answer space to match the user’s language in visual analysis. Proceedings of the 2019 on Designing Interactive Systems Conference.

Dae Hyun Kim, Enamul Hoque, and Maneesh Agrawala. 2020. Answering questions about charts and generating visual explanations. In Proceedings of the 2020 CHI conference on human factors in computing systems, pages 1–13.

Dae Hyun Kim, Vidya Setlur, and Maneesh Agrawala. 2021a. Towards understanding how readers integrate charts and captions: A case study with line charts. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.

Nam Wook Kim, Shakila Cherise Joy, Amalia Riegelhuth, and Yea-Seul Kim. 2021b. Accessible visualization: Design space, opportunities, and challenges. Computer Graphics Forum, 40.

Young-Ho Kim, Bongshin Lee, Arjun Srinivasan, and Eun Kyoungh Choe. 2021c. Data@hand: Fostering visual exploration of personal data on smartphones leveraging speech and touch interaction. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.

Lorenz Cuno Klopfenstein, Saverio Delpiori, Silvia Malatini, and Alessandro Bogliolo. 2017. The rise of bots: A survey of conversational interfaces, patterns, and paradigms. Proceedings of the 2017 Conference on Designing Interactive Systems.

Abhinav Kumar, Jillian Aurisano, Barbara Di Eugenio, and Andrew Johnson. 2020a. Intelligent assistant for exploring data visualizations. In The Thirty-Third International Flairs Conference.

Abhinav Kumar, Jillian Aurisano, Barbara Maria Di Eugenio, Andrew E. Johnson, Abeer Alsaiari, Nigel Flowers, Alberto Gonzalez, and Jason Leigh. 2017. Multimodal coreference resolution for exploratory data visualization dialogue: Context-based annotation and gesture identification.

Abhinav Kumar, Barbara Di Eugenio, Jillian Aurisano, and Andrew Johnson. 2020b. Augmenting small data to classify contextualized dialogue acts for exploratory visualization. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 590–599.

Bum Chul Kwon, Florian Stoffel, Dominik Jäckle, Bongshin Lee, and Daniel Keim. 2014. Visjockey: Enriching data stories through orchestrated interactive visualization. In Poster compendium of the computation+ journalism symposium, volume 3, page 3.

Chufan Lai, Zhixian Lin, Ruike Jiang, Yun Han, Can Liu, and Xiaoru Yuan. 2020. Automatic annotation synchronizing with textual description for visualization. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.

Sébastien Lallé, Dereck Toker, and Cristina Conati. 2021. Gaze-driven adaptive interventions for magazine-style narrative visualizations. IEEE Transactions on Visualization and Computer Graphics, 27:2941–2952.

Scott Langevin, David Jonker, Christopher Bethune, Glen Coppersmith, Casey Hilland, Jonathon Morgan, Paul Azuine, and Justin Gawrilow. 2018. Distil: A mixed-initiative model discovery system for subject matter experts. In International Conference on Machine Learning AutoML Workshop.

Shahid Latif and Fabian Beck. 2019. Interactive map reports summarizing bivariate geographic data. Vis. Informatics, 3:27–37.
Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai Zhang, Zhiwei Tai, and Jianmin Wang. 2021. Towards natural language interfaces for data visualization: A survey. ArXiv, abs/2109.03506.

Dangqing Shi, Xinyue Xu, Fuling Sun, Yang Shi, and Nan Cao. 2021. Calliope: Automatic visual data story generation from a spreadsheet. IEEE Transactions on Visualization and Computer Graphics, 27:453–463.

Nadia Siddiqui and Enamul Hoque. 2020. Convisqa: A natural language interface for visually exploring online conversations. 2020 24th International Conference Information VISualisation (IV), pages 440–447.

Tarique Adnan Siddiqui. 2021. From sketching to natural language: Expressive visual querying for accelerating insight.

Hrituraj Singh and Sumit Shekhar. 2020. Stl-cqa: Structure-based transformers with localization and encoding for chart question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3275–3284.

Fabian Sperrle, Astrid Jeitler, J. Bernard, Daniel A. Keim, and Mennatallah El-Assady. 2020. Learning and teaching in co-adaptive guidance for mixed-initiative visual analytics. In EuroVA@Eurographics/EuroVis.

Fabian Sperrle, Hanna Schäfer, Daniel Keim, and Mennatallah El-Assady. 2021. Learning contextualized user preferences for co-adaptive guidance in mixed-initiative topic model refinement. In Computer Graphics Forum, volume 40, pages 215–226. Wiley Online Library.

Fabian Sperrle, Rita Sevastjanova, Rebecca Kehlbeck, and Mennatallah El-Assady. 2019. Viana: Visual interactive annotation of argumentation. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 11–22.

Andrea Spreafico and Giuseppe Carenini. 2020. Neural data-driven captioning of time-series line charts. In Proceedings of the International Conference on Advanced Visual Interfaces, pages 1–5.

Arjun Srinivasan, Mira Dontcheva, Eytan Adar, and Seth Walker. 2019a. Discovering natural language commands in multimodal interfaces. In Proceedings of the 24th International Conference on Intelligent User Interfaces, pages 661–672.

Arjun Srinivasan, Steven Mark Drucker, Alex Endert, and John T. Stasko. 2019b. Augmenting visualizations with interactive data facts to facilitate interpretation and communication. IEEE Transactions on Visualization and Computer Graphics, 25:672–681.

Arjun Srinivasan, Bongshin Lee, Nathalie Henry Riche, Steven M Drucker, and Ken Hinckley. 2020a. Inchorus: Designing consistent multimodal interactions for data visualization on tablet devices. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13.

Arjun Srinivasan, Bongshin Lee, and John T. Stasko. 2021a. Interweaving multimodal interaction with flexible unit visualizations for data exploration. IEEE Transactions on Visualization and Computer Graphics, 27:3519–3533.

Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee, Steven M Drucker, and John Stasko. 2021b. Collecting and characterizing natural language utterances for specifying data visualizations. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–10.

Arjun Srinivasan and Vidya Sethur. 2021. Snowy: Recommending utterances for conversational visual analysis. The 34th Annual ACM Symposium on User Interface Software and Technology.

Arjun Srinivasan and John T. Stasko. 2017. Natural language interfaces for data analysis with visualization: Considering what has and could be asked. In EuroVis.

Arjun Srinivasan and John T. Stasko. 2018. Orko: Facilitating multimodal interaction for visual exploration and analysis of networks. IEEE Transactions on Visualization and Computer Graphics, 24:511–521.

Arjun Srinivasan, John T. Stasko, Daniel F. Keefe, and Melanie K. Tory. 2020b. How to ask what to say?: Strategies for evaluating natural language interfaces for data visualization. IEEE Computer Graphics and Applications, 40:96–103.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. 2017. A corpus of natural language for visual reasoning. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 217–223.

Yiwen Sun, Jason Leigh, Andrew Johnson, and Barbara Di Eugenio. 2014. Articulate: Creating meaningful visualizations from natural language. In Innovative Approaches of Data Visualization and Visual Analytics, pages 218–235. IGI Global.

Melanie K. Tory and Vidya Sethur. 2019. Do what i mean, not what i say! design considerations for supporting intent and context in analytical conversation. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 93–103.

Cagatay Turkay and Rafael Henkin. 2018. Towards natural language empowered interactive data analysis. In EuroVis.

Morgan Ulinski, Bob Coyne, and Julia Hirschberg. 2018. Evaluating the wordseye text-to-scene system: imaginative and realistic sentences. In Proceedings of
Research on visualization-oriented natural language-based interaction is conducted in the VIS, HCI, and NLP communities. For providing an overview of the number of selected contributions per community, the selection set is grouped based on publication venues related to their respective community. Important related work with high subject relevance being derived from other sources is subsumed in the category Miscellaneous. The time span of surveyed works is restricted to be between 2010 and 2021. Next to application papers implementing human-machine interaction theoretical works related to language-based interaction modeling are explicitly included. Table 2 shows the distribution of contributions over community-related venues.

Venues	Papers
Visualization (VIS)	49
Human-Computer-Interaction (HCI)	27
Natural Language Processing (NLP)	9
Miscellaneous	34
Total	**119**

The survey is targeted to touch the intersection of the domains of NLP, HCI and VIS. The scope is defined to reflect on how interaction is modeled and implemented in the different communities as well as to point out how researchers combine different ideas originating from the three fields into work that can be deposited in the intersection of them. For the VIS domain, the most common venues are IEEE Transactions on Visualization and Computer Graphics (19) and Computer Graphics Forum (5) containing work that is mostly specialized on query-based natural language interfaces. The area of HCI is ostensibly represented by the venue of the Conference on Human Factors in Computing Systems (SIGCHI) (14) originating works that consider the interaction aspect and focus on language as a tool that transmits information for reaching a goal. In the NLP domain, the most frequent venue is the Annual Meeting of the Association for Computational Linguistics (ACL) (3) including works less
visualization-related focusing to a large extent on
the dialogue modeling.

B Classification

The contributions are classified based on the Multi-
Level Typology of Abstract Visualization Tasks
by Brehmer and Munzner (2013). Figure 6 illus-
trates a distribution of papers over the abstract vi-
sualization tasks. The visualization task accommo-
dating the highest number of works considering
natural language-based interaction is the task discover (70), followed by enjoy (26). Contributions
supporting present (9) and produce (14) tasks are
less frequent.

Figure 6: Distribution of papers over tasks.

Figure 7 shows the distribution of papers over the
inner class sub-tasks. For sake of simplicity, papers
are categorized into the single most suitable cate-
gory only, although some works touch on several
categories. Natural Language Querying (45) is by
far the sub-task with the highest amount of con-
tributions followed by Keyword Search (15) and
Visualization Description Generation (14). Less
frequently studied tasks are Explanation Genera-
tion (3), Visual Question Answering (VQA) (3), and
Documentation (1).

Figure 7: Distribution of papers over sub-tasks.

Table 3 contains a comprehensive listing of the
classification of the single contributions into the
taxonomy by Brehmer and Munzner (2013).
Table 3: Classification of papers based on the Multi-Level Typology of Abstract Visualization Tasks by Brehmer and Munzner (2013).

Visualization Task	Subtask	References
Discover	**Keyword Search**	(Feng et al., 2018; Chowdhury et al., 2021; Chung et al., 2010; Fraser et al., 2020; Wilson et al., 2010; Schleußinger and Henkel, 2018; Isaacs et al., 2014; Peltonen et al., 2017; Siddiqui and Hoque, 2020)
	VQA	(Singh and Shekhar, 2020; Mathew et al., 2021; Chaudhry et al., 2020)
Querying		(Srinivasan et al., 2020b; Srinivasan and Stasko, 2017; Kassel and Rohs, 2019; Crovari et al., 2020; Tory and Setlur, 2019; Hearst and Tory, 2019; Liu et al., 2021; Hoque et al., 2018; Setlur and Tory, 2017; Siddiqui, 2021; Bacci et al., 2020; Narechania et al., 2021; Yu and Silva, 2020; Setlur et al., 2016; Sun et al., 2014; Aurisano et al., 2016; Srinivasan et al., 2021b, 2019a; Gao et al., 2015; Setlur et al., 2019; Hearst et al., 2019; Setlur and Kumar, 2020; Choi et al., 2019b,a; Sperrle et al., 2020, 2021; El-Assady et al., 2020; Kumar et al., 2020a; Aurisano et al., 2015; Turkay and Henkin, 2018; Mazumder and Riva, 2021; Lawrence and Riezler, 2016; Shao and Nakashole, 2020; Wang et al., 2021; Manuvinakurike et al., 2018; Fast et al., 2018; Kassel and Rohs, 2018; Bieliauskas and Schreiber, 2017; Seipel et al., 2019; Lee and Parameswaran, 2018; Kumar et al., 2020b; Srinivasan and Stasko, 2018; Kim et al., 2021c; Srinivasan et al., 2020a; Kumar et al., 2017; Srinivasan et al., 2021a; Hu et al., 2018; Langevin et al., 2018; Reicherts and Rogers, 2020; John et al., 2017)
	Browsing	(Setlur et al., 2020; Lee et al., 2021; Luo et al., 2018; de Araújo Lima and Barbosa, 2020; Luo et al., 2020; Srinivasan and Setlur, 2021; Cui et al., 2019; Dhamdhere et al., 2017)
Enjoy	**Augmentation**	(Srinivasan et al., 2019b; Hullman et al., 2013; Xia et al., 2020; Gao et al., 2014; Kandogan, 2012; Chen et al., 2020c,a; Lai et al., 2020; Bylinskii et al., 2017; Madan et al., 2018; Lallé et al., 2021; Latif and Beck, 2019)
	Description Generation	(Demir et al., 2012; Moraes et al., 2014; Spreafo and Carenini, 2020; Qian et al., 2021b; Murillo-Morales and Miesenberger, 2020; Kim et al., 2021a; Lundgard and Satyanarayan, 2021; Kim et al., 2021b; Jung et al., 2021; Choi et al., 2019c; Obeid and Hoque, 2020; Hsu et al., 2021; Henkin and Turkay, 2020; Liu et al., 2020)
Visualization Task	Subtask	References
--------------------	-----------------------	--
Present	Storytelling	(Bryan et al., 2017; Kwon et al., 2014; Metoyer et al., 2018; Choudhry et al., 2021; Shi et al., 2021; Chen et al., 2020b)
	Explanation Generation	(Sevastjanova et al., 2018; Hohman et al., 2019; von Landesberger et al., 2021)
Produce	Annotation	(Chen et al., 2010b,a; Vanhulst et al., 2021; Sperre et al., 2019; Latif et al., 2018; Ren et al., 2017; Latif et al., 2021)
	Documentation	(Nafari and Weaver, 2013, 2015)
	Visualization Creation	(Rashid et al., 2021; Cui et al., 2020; Qian et al., 2021a; Fulda et al., 2016; Xia, 2020)
C Analysis Details

The language-based interaction implemented in the visualization applications is analyzed considering their initiative, duration and communicative functions present in the human-machine dialogue based on the DIT++ taxonomy of dialogue acts by Bunt (2009). The idea is to create an overview of how the modeled interactions in the respective tasks and sub-tasks are structured. The variables considered in the study and the definitions used for them are explained below. Only contributions that present systems that implement human-machine interaction are part of this examination, theoretical works are excluded. Table 6 contains a comprehensive listing of all contributions evaluated as well as their respective investigation results.

C.1 NLP Methods

For all papers in the selection, the NLP methods used, if any, and if named the NLP toolkits used for implementation are elaborated. For the sake of clarity, the methods are roughly divided into two areas: Natural Language Understanding (NLU) and Natural Language Generation (NLG). Due to the fact, that the majority of the systems use standard NLP methods such as tokenization, stemming, or stopword removal in text pre-processing, these are not recorded separately.

At present, NLU methods are only used to a minor extent.

Figure 8: Distribution of NLU methods per task.

Figure 8 shows the distribution of applied NLU methods over the four visualization tasks. It can be seen, that in the discover task the largest variety of methods is applied. Predominantly used are Semantic Parsing, POS-Tagging, and Speech-to-Text methods followed by Language Modeling and Word Sense Disambiguation. Interfaces in produce to a greater extend rely on Word Embedding and Named Entity Recognition (NER). The enjoy task similar to discover employs a variety of methods.

NLP Toolkits. An overview of the applied toolkits in NLU is shown in Table 4. Especially Stanford Core NLP, ANTLR, SpaCy, and NLTK are found to accomplish several tasks. Word2Vec is the most popular embedding method, followed by FastText. The Web Speech API is used primarily because many visualization applications use web technologies. It is striking that many systems rely on N-gram language models. In terms of Word Sense Disambiguation, WordNet experiences great popularity.

An overview of the applied toolkits in NLG is illustrated in Table 4. The markup language for chatbots AIML as well as the Rasa toolkit are adopted for Template-based text generation, as well as hand-crafted Context-Free-Grammars. LL* Parsers are predominantly applied in the generation of auto-completions. Seq2Seq Modeling is experiencing increasing interest expressed through the adoption...
NLU Method Toolkits and Technologies

NLU Method	Toolkits and Technologies
Semantic Parsing	ANTLR (4), Context-Free-Grammars (CFG) (3), NLTK (3), Stanford Core NLP (2), AIMA (2), IBM Watson, NL4DV Toolkit, SpaCy, Google Cloud Natural Language API, OpenCalais API, Conditional Random Fields (CRF), Wit.ai, Stanford SEMPRE
POS-Tagging	Stanford Core NLP (6), SpaCy (3), ClearNLP, Rasa, Comprojs JS
Word Embedding	Word2Vec (8), FastText (3), GloVe (2), TF-IDF(2), Sent2Vec, BERT Embedding
Speech-to-Text	Web Speech API (8), Microsoft Speech API (3), Google Speech API (2), Apple Speech Framework
NER	Stanford Core NLP (3), Chrono JS, Google NLP Toolkit, Wikifier, OpenCalais API, TimeML, TERNIP
Language Modeling	N-Gram Language Model (6), BERT (4), Bidirectional LSTM (2)
Word Sense Disambiguation	WordNet (6), VerbNet, ConceptNet, FrameNet
Dependency Parsing	Stanford Core NLP (3), Apache OpenNLP, SpaCy
Knowledge Representation	RDF (2), Wolfram Alpha Unit Taxonomy, SIMON
Constituency Parsing	ANTLR (2), Stanford Core NLP
Keyword Extraction	TF-IDF (3)
Co-Reference Resolution	CogCompNLP
Sentiment Analysis	Stanford Core NLP, LSTM
Vector Search	Word2Vec (2), TF-IDF

NLG Method Toolkits and Technologies

NLG Method	Toolkits and Technologies
Template-based NLG	AIMA, Rasa, LL* Parser, Context-Free-Grammars (CFG), IBM Watson
Seq2Seq Modeling	LSTM (3), LSTM+Attention (2), CNN+Conditional Random Fields (CRF) (2), Transformer, M4C, LayoutLM, Image Transformer, Bidirectional LSTM
Dialogue Management	Finite-State-Machines (FSM) (2), AIMA, Rasa, IBM Watson
Text-to-Speech	Microsoft TTS
Text-Summarization	PageRank Algorithm

| C.2 Initiative |

In an interaction, the initiative is taken by the actor that leads or controls the dialogue, e.g., via questions. McTear (2002) classifies initiative into user initiative, system initiative, and mixed-initiative. Litman and Pan (2004) mark that the initiative within a dialogue determines the set of possible questions and responses of user and system and therefore the outline of the dialogue. Considering the initiator, the classification of McTear (2002) is used as a basis for the classification including the three general categories:

User Initiative. Language-based interactions are classified as user-initiated when the direction of the dialog is determined by the user’s actions, in this case, written- or spoken utterances or other text input. The conversation is usually conducted through commands or questions. In addition to prior works (McTear, 2002; Litman and Pan, 2004) considering visualization-oriented dialogue the **data-related intent** depicts an important factor for a user to take the initiative. Exemplary, this happens when users initiate a conversation by formulating a query to discover new insights about...
System Initiative. System-initiated language-based interactions are determined by natural language utterances generated by the system. The system creates the outline of the interaction towards a previously determined goal. The user is led towards the goal and if the goal is achieved the visualization task is completed. An exemplary case is a system guiding a user in a step-by-step tutorial through the execution of a task, e.g., the identification and elimination of outliers in a visualization.

Mixed Initiative. In mixed-initiated language-based interaction users and systems at different times and to different proportions contribute to the determination of the interaction. In a visualization context both follow a data-related intent but the way there is characterized by negotiation, proposals, and agreement and disagreement. Exemplary this is the case during interactive clustering where user and system propose different divisions of the data space to each other negotiating a good classification for the underlying data.

To carry out the classification an interaction is considered to be single-initiated (= user initiative or system initiative only) if during the whole completion of the visualization task the same actor is initiating. If the initiative changes at least once the interaction is classified as mixed-initiative interaction. The scaling of the visualizations is normalized to 100 percent.

Figure 10 shows the distribution of initiative over all included papers in the study. In the set of contributions, user-initiated interactions are predominant, followed by mixed-initiative interactions. Only about ten percent of the interactions are system-initiated.

The distribution of the initiative within the individual visualization tasks is illustrated in Figure 11. In discover and produce user-initiated interactions are predominant. The present task contains a balanced ratio of user- and mixed-initiated interactions. The enjoy task is the only task, where system-initiated interactions represent the majority.

Figure 12 shows the distribution of initiative within the single sub-task categories. Users initiate the interactions in Keyword Search, Explanation Generation, VQA, Visualization Creation, and Documentation. System initiative is present in Augmentation, Visualization Description Generation, and Browsing. Mixed initiative interaction is modeled in Annotation, Storytelling and less frequently in Natural Language Querying, Browsing, and Augmentation.

C.3 Duration

Within dialogue modeling, natural language-based interactions are modeled as a sequence of dialogue turns. In their survey Deriu et al. (2020) propose a characterization of dialogue system types as task-oriented dialogue systems, conversational
agents, and interactive QA systems. The basis for this classification is differences in the dialogue structures supported by the different systems, especially in their duration and task-orientatedness. Interactive QA systems are considered task-related single- or multi-turn systems. Task-oriented dialogue systems are considered multi-turn systems with short interaction lengths due to the optimization goal. Conversational agents are classified as non-task-oriented multi-turn systems with long interaction lengths. The decision for single- or multi-turn dialogue systems in a visualization-oriented dialogue is a conceptual one that V-NLI designers have to make concerning the quality measure that is set on the system. Single turn systems, e.g., hold higher risks in failing to resolve ambiguities or vague expressions from a single query than multi-turn systems that can pose requests, but also deliver the result in the quickest possible way.

Depending on the visualization task and sub-task at hand, the interaction structures differ. To carry out a uniform duration classification we consider the length of the human-machine dialogue, that is modeled by the application as the decisive criterion. Therefore, interactions that include more than a single utterance in the calculation of the next response (e.g. by including the dialogue history in context management) and interactions that support more than one dialogue turn for users and system respectively are considered multi-turn. An interaction is considered to be single-turn if user and system utter at maximum one utterance respectively in a coherent dialogue.

Figure 13: Distribution of duration over all papers.

Figure 13 shows that the modeled interactions in almost two-thirds are single turn and one-third are multi-turn.

Figure 14: Distribution of duration over tasks.

On the task level, in present and enjoy interactions are predominantly single-turned (see Figure 14). In the discover and produce task the ratio of multi- to single turn interactions is rather balanced.

Figure 15: Distribution of duration over sub-tasks.

Figure 15 illuminates the distribution of duration on a sub-task level. Explanation Generation and VQA are modeled in single turn interactions similar to Keyword Search, Augmentation, and Browsing. Multi-turn interactions are found predominantly in Natural Language Querying, Visualization Creation, and Documentation.

C.4 Communicative Functions

Bunt (2009) introduces a taxonomy for dialogue act classification. Following that, each individual speech act in a conversation is classified due to the communicative function it carries. On a high level, these general-purpose functions distinguish speech acts as that every individual turn carries either information providing, information seeking, commissive or directive functionality. Especially since visualization-oriented interactions are multi-modal designers of V-NLI have to decide which communicative functions are adopted by visual elements as a complementary modality to language
in multi-modal dialogue. The examination of communicative functions in the applications at hand is carried out with the idea in mind of gaining an overview of who holds which share of which communicative function in the modeled dialogues. The aim is to help to better characterize and compare the dialogues in the individual tasks and sub-tasks. For contributions that provide access to exemplary human-machine dialogues either within the paper or the supplemental material the presence of each of the communicative functions information providing, information seeking, commissive, or directive is detected for user and system respectively (see Table 6). The representation of the identified communicative functions is in absolute quantities for the respective sub-task under consideration.

Figure 16: Distribution of communicative functions in task present.

Figure 16 shows the characteristic distribution of communicative functions for the task present and its respective sub-tasks. It turns out that in these interactions systems predominantly provide users with information. In Visual Storytelling the user and the system complement each other in different modalities, textual and visual, to jointly present visual insights in the form of a multi-modal story. Explanation Generation is characterized by users who are looking for an explanation for a certain behaviour, which can be understood more easily with the help of a visualization and a generated text description acting as a guide.

Figure 17 illuminates the shares of communicative functions in the visualization task discover and the respective sub-tasks. It shows that interactions in Keyword Search and Visual Question Answering are predominantly characterized by users seeking information and systems providing those to the user. In Keyword Search commissives are occasionally uttered by the system to respond to user-induced directives in dialogue. Visual Question Answering follows the classic question-answer scheme in which users bundle their search for information in a question and systems provide textual answers that can be substantiated by the visualization. Natural Language Querying and Browsing contain a more variable profile of communicative functions which also accommodate higher numbers of directives such as, e.g., system-generated suggestions used to pose recommendations to the user in Browsing or commands in Natural Language Querying applied
by users to make the system execute an action.Interestingly, commissive utterances occur especially in longer analytical conversations, for example, to confirm the loading of a data set or to acknowledge the perception of a command given by the user.

When looking at the distribution of communicative functions in *Browsing*, it becomes clear that the system tries to facilitate the user’s entry into visual exploration by providing additional information or directives.

![Image](image.png)

Figure 18: Distribution of communicative functions in task *enjoy*.

The *enjoy* task is characterized through systems providing the user with additional information as well as occasional directives in the *Augmentation* task (see Figure 18). Users occasionally ask for information, but the bulk of the interaction consists of the system presenting information to the user or suggesting directives for future interaction. In *Visualization Description Generation*, the special focus of systems is on providing information to visually impaired people. Describing scenes from a visualization in detail so that visually impaired people can perceive them in their full detail requires high-quality text generation that goes beyond standard image captioning.

Interactions in the context of artifact *production* deliver diverse profiles of communicative functions, as shown in Figure 19. *Annotation* is characterized by users providing information, e.g., in form of text labels and systems that direct the user, e.g., by making suggestions where to put those. Interactions in *Visualization Creation* face user and system contributing information as well as systems delivering additional suggestions for the next step in the creation process. In *Documentation*, systems provide textual information in form of a report during or after a user interaction with a visual model.

![Image](image.png)

Figure 19: Distribution of communicative functions in task *produce*.
Table 6: Table of references to contributions included in the study sorted according to the abstract visualization task (Task) and sub-task (Sub). Contributions within the same task category share the same color base. Categories the works are evaluated on are duration (Dur), initiative (Init), and present communicative functions (CF), respectively for user (CF - User) and system (CF - System). The individual communicative functions that are investigated are information seeking (IS), information providing (IP), commissives (CM), and directives (DI).

References	Task	Sub	Dur	Init	CF - User	CF - System
Bryan et al. (2017)	Pre	Sto	MT	MI	✓	✗
Kwon et al. (2014)	Pre	Sto	ST	UI	✓	✗
Metoyer et al. (2018)	Pre	Sto	ST	MI	✓	✗
Hohman et al. (2019)	Pre	Exp	ST	UI	✓	✗
Feng et al. (2018)	Dis	Key	ST	UI	✓	✗
Chowdhury et al. (2021)	Dis	Key	MT	UI	✓	✗
Chung et al. (2010)	Dis	Key	ST	UI	✓	✗
Fraser et al. (2020)	Dis	Key	ST	UI	✓	✗
Schleußinger (2018)	Dis	Key	ST	UI	✓	✗
Isaacs et al. (2014)	Dis	Key	MT	UI	✓	✗
Peltonen et al. (2017)	Dis	Key	ST	UI	✓	✗
Siddiqi and Hoque (2020)	Dis	Key	ST	UI	✓	✗
Singh and Shekhar (2020)	Dis	VQA	ST	UI	✓	✗
Mathew et al. (2021)	Dis	VQA	ST	UI	✓	✗
Chaudhry et al. (2020)	Dis	VQA	ST	UI	✓	✗
Choi et al. (2019b)	Dis	Que	ST	UI	✓	✗
Choi et al. (2019a)	Dis	Que	ST	UI	✓	✗
Liu et al. (2021)	Dis	Que	ST	UI	✓	✗
Hoque et al. (2018)	Dis	Que	MT	UI	✓	✗
Siddiqui (2021)	Dis	Que	ST	UI	✓	✗
Bacci et al. (2020)	Dis	Que	ST	UI	✓	✗
Narechania et al. (2021)	Dis	Que	ST	UI	✓	✗
Yu and Silva (2020)	Dis	Que	MT	UI	✓	✗
Setlur et al. (2016)	Dis	Que	MT	UI	✓	✗
Sun et al. (2014)	Dis	Que	ST	UI	✓	✗
Aurisano et al. (2016)	Dis	Que	MT	UI	✓	✗
Srinivasan et al. (2019a)	Dis	Que	ST	MI	✓	✗
Srinivasan et al. (2020)	Dis	Que	ST	MI	✓	✗
Srinivasan et al. (2019)	Dis	Que	ST	MI	✓	✗
John et al. (2017)	Dis	Que	MT	MI	✓	✗
Wang et al. (2021)	Dis	Que	ST	UI	✓	✗
Shao and Nakashole (2020)	Dis	Que	MT	UI	✓	✗
Srinivasan et al. (2020a)	Dis	Que	MT	UI	✓	✗
Mazumder and Riva (2021)	Dis	Que	ST	UI	✓	✗
Lawrence and Riezler (2016)	Dis	Que	ST	UI	✓	✗
Fast et al. (2018)	Dis	Que	MT	MI	✓	✗
Kassel and Rohs (2018)	Dis	Que	MT	UI	✓	✗
Kumar et al. (2020a)	Dis	Que	MT	UI	✓	✗
Dhamdhere et al. (2017)	Dis	Que	MT	UI	✓	✗

Continued on next page
References	Task	Sub	Dur	Init	CF - User	CF - System						
					IS	IP	CM	DI	IS	IP	CM	DI
Manuvinakurike et al. (2018)	Dis	Que	MT	UI	✗	✓	✗	✓	✓	✓	✓	✓
Seipel et al. (2019)	Dis	Que	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Srinivasan and Stasko (2018)	Dis	Que	MT	UI	✓	✓	✓	✓	✓	✓	✓	✓
Kim et al. (2021c)	Dis	Que	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Bieliauskas (2017)	Dis	Que	MT	MI	✓	✓	✓	✓	✓	✓	✓	✓
Sperrele et al. (2021)	Dis	Que	MT	MI	✓	✓	✓	✓	✓	✓	✓	✓
El-Assady et al. (2020)	Dis	Que	MT	MI	✗	✗	✗	✓	✓	✓	✓	✓
Langevin et al. (2018)	Dis	Que	MT	MI	✓	✓	✓	✓	✓	✓	✓	✓
Hu et al. (2018)	Dis	Que	ST	MI	✓	✓	✓	✓	✓	✓	✓	✓
Setlur et al. (2020)	Dis	Bro	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Lee et al. (2021)	Dis	Bro	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Luo et al. (2018)	Dis	Bro	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Lima (2020)	Dis	Bro	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Srinivasan and Setlur (2021)	Dis	Bro	ST	MI	✓	✓	✓	✓	✓	✓	✓	✓
Luo et al. (2020)	Dis	Bro	MT	SI	✓	✓	✓	✓	✓	✓	✓	✓
Cui et al. (2019)	Dis	Bro	ST	MI	✓	✓	✓	✓	✓	✓	✓	✓
Lallé et al. (2021)	Enj	Aug	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Lai et al. (2020)	Enj	Aug	ST	SI	✓	✓	✓	✓	✓	✓	✓	✓
Kandogan (2012)	Enj	Aug	ST	SI	✓	✓	✓	✓	✓	✓	✓	✓
Srinivasan et al. (2019b)	Enj	Aug	MT	MI	✓	✓	✓	✓	✓	✓	✓	✓
Xia et al. (2020)	Enj	Aug	ST	SI	✓	✓	✓	✓	✓	✓	✓	✓
Hullman et al. (2013)	Enj	Aug	ST	SI	✓	✓	✓	✓	✓	✓	✓	✓
Moraes et al. (2014)	Enj	VDG	ST	SI	✓	✓	✓	✓	✓	✓	✓	✓
Murillo (2020)	Enj	VDG	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Choi et al. (2019)	Enj	VDG	MT	SI	✓	✓	✓	✓	✓	✓	✓	✓
Sperrele et al. (2019)	Pro	Ann	ST	MI	✓	✓	✓	✓	✓	✓	✓	✓
Ren et al. (2017)	Pro	Ann	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Latif et al. (2021)	Pro	Ann	MT	MI	✓	✓	✓	✓	✓	✓	✓	✓
Cui et al. (2020)	Pro	VC	ST	UI	✓	✓	✓	✓	✓	✓	✓	✓
Xia (2020)	Pro	VC	MT	UI	✓	✓	✓	✓	✓	✓	✓	✓
Nafari and Weaver (2015)	Pro	Doc	MT	UI	✓	✓	✓	✓	✓	✓	✓	✓