Supplemental material

Do T. Nga,1 Anh D. Phan,2,3,∗Vu D. Lam,4 Lilia M. Woods,5 and Katsunori Wakabayashi3

1Institute of Physics Vietnam Academy of Science and Technology,
10 Dao Tan, Ba Dinh, Hanoi 10000, Vietnam

2Phenikaa Institute for Advanced Study,
Artificial Intelligence Laboratory, Faculty of Computer Science,
Materials Science and Engineering,
Phenikaa University, Hanoi 12116, Vietnam

3Department of Nanotechnology for Sustainable Energy, School of Science and Technology,
Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

4Graduate University of Science and Technology,
Vietnam Academy of Science and Technology,
18 Hoang Quoc Viet, Hanoi, Vietnam

5Department of Physics, University of South Florida,
Tampa, Florida 33620, United States

PACS numbers:

∗Electronic address: anh.phanduc@phenikaa-uni.edu.vn
†Electronic address: dtnga@iop.vast.ac.vn
FIG. 1: (Color online) The maximum surface temperature as a function of the effective projected size, w, of floating fabrics on a solution of TiN nanoparticle with $N = 10^{18}$ nanoparticles/m3 and $R = 50$ nm.

Figure S1 shows the temperature gradient $\Delta T(\rho = 0, z = 0)$ with w for $N = 10^{18}$ nanoparticles/m3 concentration of TiN nanoparticles with 50-nm radius.