Neurodegeneration-associated TDP-43 Interacts with Fragile X Mental Retardation Protein (FMRP)/Staufen (STAU1) and Regulates SIRT1 Expression in Neuronal Cells*

Zhipeng Yu†, Dongsheng Fan‡1, Bin Gui†, Lei Shi§, Chenghao Xuan§, Lin Shan§, Qian Wang§, Yongfeng Shang§, and Yan Wang‡2

From †The Third Hospital, Peking University, Beijing 100191, China and the §Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China

Background: TDP-43 is a major pathological hallmark of several neurodegenerative diseases.
Results: TDP-43 interacts with FMRP/STAU1 and binds to the 3′-UTR of SIRT1 mRNA to promote its stability.
Conclusion: TDP-43, FMRP, and STAU1 form a functionally coordinated complex to regulate the expression of SIRT1.
Significance: Adding to our understanding of the mechanistic role of TDP-43 in neurodegenerative diseases.

Despite the identification of the 43 kDa transactive response DNA-binding protein (TDP-43) as a major pathological signatory protein in a wide range of neurodegenerative diseases, the mechanistic role of TDP-43 in neurodegenerative disorders is still poorly understood. Here, we report that TDP-43 is physically associated with fragile X mental retardation protein (FMRP) and Staufen (STAU1) to form a functional complex. Differential microarray analysis revealed that the expression of a collection of functionally important genes including Sirtuin 1 (SIRT1) is regulated by this complex. RNA-immunoprecipitation (RIP) and RNA pull-down assays demonstrated that TDP-43/FMRP/STAU1 specifically binds to the 3′-UTR of SIRT1 mRNA, and that knockdown the expression of any one of these three proteins resulted in the reduction of SIRT1 mRNA and protein. SIRT1 is implicated in double-stranded DNA break repair and is required for cell survival. Indeed, depletion of TDP-43/FMRP/STAU1 sensitizes cells to apoptosis and DNA damages. Collectively, our results revealed a molecular mechanism for the cellular function of TDP-43 and might shed new light on the understanding of the mechanistic role of TDP-43 in neurodegenerative diseases.

Transactive response DNA-binding protein (TARDBP/TDP-43) is a 43 kDa protein expressed in most tissues (1, 2). It has similar structural properties to the evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) (3). In particular, TDP-43 is predominantly a nuclear protein containing two RNA recognition motifs (RRM) and a C-terminal glycine-rich domain (GRD). These domains are known to mediate DNA and RNA recognition as well as protein-protein interactions (4, 5).

TDP-43 has been identified as a major pathological protein aggregate of cytoplasmic ubiquitin-positive inclusions that accumulates in amyotrophic lateral sclerosis (ALS) patients and individuals with frontotemporal lobar degeneration (FTLD) (6, 7). The immunoreactive inclusions of TDP-43 were also observed in a wide range of other neurodegenerative disorders, including Alzheimer disease (AD), Parkinson disease (PD), Huntington disease (HD), and dementia with Lewy bodies (8, 9). Interestingly, in ALS and FTLD, TDP-43 is cleared from the nuclear compartment, suggesting that loss of its normal nuclear function plays a critical role in the pathogenesis of these diseases (6, 7). Additionally, the identification of mutations of TDP-43 that are linked to ALS also supports an argument that TDP-43 directly contributes to the pathogenesis of neurodegenerative disorders (10–12).

Initially found to be capable of binding to the DNA of HIV and of repressing transcription (13, 14), TDP-43 is now highlighted by numerous reports showing that it regulates multiple cellular processes, including cell cycle regulation, apoptosis, as well as microRNA metabolism (15). In particular, as a member of hnRNPs that are capable of binding single-stranded RNAs via their RRM, TDP-43 has been reported to exert a pleiotropic role in RNA processing events including transcription, splicing, transport, and stability (16, 17). Early in vitro studies showed that TDP-43 preferentially bound RNAs via a GU dinucleotide repeat element (3), while recent analysis of global TDP-43 binding sites showed that the most significant RNA binding occurred at either uninterrupted GU repeats or a GU-rich motif interrupted by a single adenine (18, 19). To date, TDP-43 has been reported to regulate alternative splicing of ciliary neutrophilic factor receptor (CNTFR), MAP-kinase activating death domain (MADD), and myocyte enhancer factor 2D (MEF2D) (20–23). In addition, the mRNA expression-processing of cystic fibrosis transmembrane regulator (CFTR) and apolipoprotein A2 (APOA2) (24–26), survival motor neuron pro-
tein 2 (SMN2) (27), and histone deacetylase 6 (HDAC6) (28) was also reported to be regulated by TDP-43.

Despite the advance in the characterization of the biological activity of the TDP-43 protein, there is still much to be learned about the molecular mechanisms underlying the cellular function of TDP-43. Here we report that TDP-43 physically interacts with fragile X mental retardation protein (FMRP) and Staufen (STAU1) to form a functionally coordinated complex. Differential microarray analysis in human neuroblastoma SH-SY5Y cells identified a series of functionally important genes including Sirtuin (SIRT1) that are targeted by this complex. We showed that TDP-43/FMRP/STAU1 complex binds specifically to SIRT1 3’-UTR, and that knockdown the expression of any one of these three proteins resulted in the reduction of SIRT1 mRNA and protein levels. We demonstrated that depletion of TDP-43 sensitizes SH-SY5Y cells to DNA damages and apoptosis.

EXPERIMENTAL PROCEDURES

Cloning and Mutagenesis—Full-length TDP-43 were amplified from cDNA of SH-SY5Y cells and cloned through BamHI/ XhoI into pCMV-Tag-2B-Flag vector (Agilent). TDP-43 mutants (D169G, G287S, G290A, G298S, and R361S,) were generated using site-directed mutagenesis (Agilent). TDP-43 deletion mutants including ΔRRM1 (Δ106–176aa), ΔRRM2 (Δ191–262aa), ΔRRM1+ΔRRM2/ΔRRMs (Δ106–262aa), ΔGRN (Δ274–414aa), and ΔNLs (Δ82–98aa) were PCR-amplified and subcloned into pCMV-Tag-2B-Flag vector according to the standard protocols. TDP-43 mutants were generated by quick change site-directed mutagenesis (Agilent).

Antibodies and Reagents—The sources of the antibodies were: anti-FLAG (clone M2), anti-TDP-43 (polyclonal), anti-TDP-43 (monoclonal), anti-α-tubulin, and anti-Flag M2 affinity gel (Sigma); anti-FMRP (Abcam), and anti-SIRT1 (Santa Cruz Biotechnology); anti-STAU1 (MBL); anti-HuR (Santa Cruz Biotechnology); Camptothecin (CPT) was purchased from Sigma. Protein A/G-Sepharose CL-4B beads were from Amersham Biosciences, and protease inhibitor mixture was from Roche Applied Science. All siRNAs were synthesized by Genepharm and the target sequences are listed in supplemental Table S3.

Cell Culture and Transfections—SH-SY5Y human neuroblastoma cells and HEK293T human embryonic kidney cells were maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. Transient transfections were performed with Lipofectamine RNAiMAX (for siRNA transfection) and Lipofectamine 2000 (for plasmid transfection) according to the company’s specification (Invitrogen).

FPLC Chromatography—SH-SY5Y nuclear extracts were prepared with Nuclear-Cytosol Extraction kit (Applygen Technologies). Approximately 6 mg of nuclear protein was concentrated to 500 μl using a Millipore Ultra free centrifugal filter apparatus (10 kDa nominal molecular mass limit), and then applied to Superose 6 size exclusion column (Amersham Biosciences) that had been equilibrated with PBS and calibrated with protein standards (blue dextran, 2000 kDa; thyroglobulin, 669 kDa; ferritin, 440 kDa; aldolase, 158 kDa; bovine serum albumin, 67 kDa; and Cornolin, 44 kDa; all from Amersham Biosciences). The column was eluted at a flow rate of 0.5 ml/min and fractions were collected every 500 μl.

Immunoblotting and Immunoprecipitation—For immunoblotting, SH-SY5Y were harvested and extracted in RIPA buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 0.5% sodium deoxycholate) including protease inhibitor mixture (Roche) and centrifuged, and 50 μg of the supernatant was subjected to SDS-PAGE using 8 or 10% polyacrylamide gels and transferred onto nitrocellulose. Membranes were incubated with primary antibodies (anti-SIRT1, FMRP, STAU1, or TDP-43 antibodies) overnight at 4 °C followed by HRP-conjugated secondary antibodies. For immunoprecipitation assays, cellular extracts were incubated with appropriate primary antibodies or normal rabbit/mouse immunoglobulin G (IgG) at 4 °C overnight, followed by addition of protein A/G-Sepharose CL-4B beads for 2 h at 4 °C. Beads were then washed and the immune complexes were subjected to SDS-PAGE followed by immunoblotting with secondary antibodies. Immunodetection was performed using enhanced chemiluminescence (ECL) system, Amersham Biosciences according to the manufacturer’s instructions.

RNA Isolation and Real-time RT-PCR—RNA was isolated with Trizol (Invitrogen) and treated with DNase I. After reverse transcription with AccessQuick™ RT-PCR System (Promega), real-time PCR was conducted on an ABI 7500 real-time PCR system (Applied Biosystems). cDNA synthesis and amplification were performed according to the manufacturer’s instruction. The primers used were listed in supplemental Table S4.

RNA Immunoprecipitation (RIP)—RIP assays were performed using the Magna RIP Kit purchased from Millipore (cat. No. 17-700). SH-SY5Y cells (48 h after transfection) were collected and lysed in 500 μl of RIP lysis buffer supplemented with protease inhibitor and RNase inhibitor. 10% of the total lysate was processed in parallel to obtain the total input sample. After 5 min of incubation on ice, 50 μl of magnetic beads suspension was transferred to each tube. The beads were washed two times using 500 μl of RIP wash buffer, then add —5 μg of anti-TDP-43, anti-FMRP, and anti-STAU1 antibodies at room temperature for 30 min. The beads were washed five times with wash buffer, then in 900 μl of immunoprecipitation buffer (0.5 EDTA, RNase inhibitor, and RIP wash buffer) at 4 °C for overnight. RNA was purified using proteinase K buffer (RIP wash buffer, 10% SDS, and 10 mg/ml proteinase K) and precipitated with Salt Solution I, Salt Solution II, Precipitate Enhancer and then absolute ethanol. The isolated RNA from RIP was analyzed by quantitative RT-PCR. The results were expressed as the relative fold enrichment of the target precipitation as compared with the normal rabbit IgG control. The primers used were listed in supplemental Table S5.

RNA Pull-down Assays—cDNA was used as a template for PCR amplification of different SIRT1 untranslated regions (UTR) and coding regions (CR). All forward primers contained the T7 promoter sequence (T7), CAGAGATGCATAATACTCAGTACTATAGGGAGA. To prepare 5’-UTR-A transcript (positions 1 to 53), forward primer, (T7) GTGAGCAGGGAGCAGAG and reverse primer, CCTTCAACTGCTCTTCTGG were used. To prepare CR-B transcript (positions 54 to 754),
forward primer, (T7) ATGGCCGACGAGCCG and reverse primer, TTTTGTGTGGTCTGAAGAATA were used. To prepare CR-C transcript (positions 755 to 1653), forward primer, (T7) GGAAGAAAAAGAGAGATAATAT and reverse primer, TGAAGATCTGTTGGTGAA were used. To prepare CR-D transcript (positions 1654 to 2324), forward primer, (T7) GTATTTGCTCATCTCTTTGACC and reverse primer, CTATGATTTGGTATGGATAGT were used. To prepare 3’-UTR-E transcript (positions 2325 to 2924), forward primer, (T7) TGTAAATTGTCGAGTGACAGG and reverse primer, TCTCCCAATATTTTGGACTTCTCTC were used. To prepare 3’-UTR-F transcript (positions 2925 to 3473), forward primer, (T7) GCACCGTTGGTCTTTACTT and CCAGTAGAAGTACCTTAT were used. To prepare 3’-UTR-G transcript (positions 3474 to 4110), forward primer, (T7) GGAAGATTGTAATATTTTGACTG and TAATATTACAGAAAGGCTCAATG were used. For biotin pull-down assay, PCR-amplified DNA was used as a template to transcribe biotinylated RNA by using T7 RNA polymerase in the presence of biotin-UTP and was purified as previously described (29).

TUNEL Assays—SH-SY5Y cells were seeded onto 6-well plates for 24 h and transfected with indicated siRNAs using Lipofectamine RNAiMAX (Invitrogen). 12 h later, the cells were transfected with appropriate plasmid constructs using Lipofectamine 2000 (Invitrogen). After 48 h of the plasmid transfection, cells were harvested, and TUNEL assay were performed according to the manufacturer’s instructions (TB235, Promega) with a luminescent method.

Cell Viability Assays—SH-SY5Y cells were seeded onto 24-well plates for 24 h and transfected with indicated siRNAs using Lipofectamine RNAiMAX (Invitrogen). 12 h later, the cells were transfected with appropriate plasmid constructs using Lipofectamine 2000 (Invitrogen). After 24 h of the plasmid transfection, CPT (0.2 μg/ml in DMSO) or DMSO were added for another 24 h and cell viability assays were performed according to the manufacturer’s instructions (TB 288, Promega) with a luminescent method.

RESULTS

TDP-43 Is physically associated with FMRP and STAU1—In an effort to further explore the mechanistic role of TDP-43 in neuronal cells, we employed affinity purification and mass spectrometry to identify the proteins that are associated with TDP-43 in vivo. In these experiments, FLAG-tagged TDP-43 (FLAG-TDP-43) was stably expressed in SH-SY5Y cells. Cellular extracts were prepared and subjected to affinity purification using an anti-FLAG affinity gel. Mass spectrometric analysis indicates that TDP-43 co-purified with hnRNP A0, A1, A2/B1, K, L, Q, R, and FUS, as reported previously (30, 31). Interestingly, TDP-43 also co-purified with FMRP and STAU1 (Fig. 1A), two proteins that are reported to be also involved in multiple RNA-processing events (32–35). The presence of FMRP, STAU1, hnRNP A2/B1, hnRNP K, and hnRNP Q/R in the TDP-43-associated protein complex was confirmed by Western blotting analysis (Fig. 1B). The detailed results of the mass spectrometric analysis are provided in supplemental Table S1.

To further support the observation that TDP-43 is physically associated with FMRP and STAU1 in vivo, co-immunoprecipitation experiments were performed. In these experiments, total proteins from SH-SY5Y cells were extracted and immunoprecipitated with antibodies against TDP-43 followed by immunoblotting with antibodies against FMRP or STAU1. The results

![Image](image-url)
showed that both FMRP and STAU1 could be efficiently co-immunoprecipitated by TDP-43 (Fig. 1C, middle and lower panels). Reciprocal immunoprecipitations with antibodies against FMRP or STAU1 followed by immunoblotting with antibodies against TDP-43 also confirmed that association of TDP-43 with FMRP and STAU1 in vivo (Fig. 1C, upper panel). The association of TDP-43 with FMRP and STAU1 was also detected in human embryonic kidney HEK 293T cells (Fig. 1D). Taken together, these data indicate that a TDP-43/FMRP/STAU1-containing protein complex exists in both neuronal and non-neuronal cell lines. The interaction of TDP-43 with FMRP and STAU1 suggests that these proteins may function in a concerted manner to regulate expression of certain target genes.

To further support the observation that TDP-43, FMRP, and STAU1 exist in the same complex in vivo, protein fractionation experiments were carried out by fast protein liquid chromatography (FPLC). Nuclear extracts derived from SH-SY5Y cells were fractionated by DEAE Sepharose, followed by superose 6 gel filtration chromatography. Western blotting revealed a major peak at about 669–1000 kDa for TDP-43, and also for the FMRP, STAU1, and hnRNP K, whereas the hnRNP A2/B1 preferred a monomer style (Fig. 1E). Significantly, the elution pattern of TDP-43 was largely overlapped with that of FMRP and STAU1, further supporting the notion that these proteins may form a functionally coordinated complex in vivo.

Identification of TDP-43 Downstream Target Genes—As mentioned above, it is believed that TDP-43 mainly functions as an RNA-binding protein to affect the mRNA processing of target genes (16, 17). To further investigate TDP-43 downstream target genes, RNA microarray analysis was performed in SH-SY5Y cells with the expression of TDP-43 knocked down by RNA interference (RNAi). Total RNA was extracted and hybridized on a Human Genome U133 + 2.0 array (Affymetrix). Compared with control, a total of 258 altered specific mRNA targets by microarray expression profiling in TDP-43-silenced cells were identified (supplemental Table S2). Among the changed genes, FAM73A, HMOX1, NR4A1, VAMP1, ATXN3, GIGYF2, and PFKP were also reported as TDP-43 targets (18, 28, 36, 37).

These genes were then classified into cellular signaling pathways using MAS software with a p value cutoff of less than 10^{-5}. These analyses identified several cellular signaling pathways, including cell cycle and apoptosis, which are critically involved in cell proliferation and survival (Fig. 2A).

To verify the microarray results, we selected 22 genes among the 258 genes whose expression was altered by TDP-43 knockdown, including 11 up-regulated transcripts and 11 down-regulated transcripts representing each of the classified signaling pathways related to neuronal development, differentiation, proliferation, and survival (Fig. 2B). The mRNA expression of these 22 genes was measured by quantitative real-time reverse transcriptase PCR (qPCR) in SH-SY5Y cells under the knockdown of TDP-43 expression by two different TDP-43-specific siRNAs. The results showed that, upon TDP-43 depletion, 9 of the 11 up-regulated transcripts were increased in an abundance of 1.5–4.5-fold (Fig. 2C) and 9 of the 11 down-regulated transcripts were decreased in an abundance of 1.5–5-fold (Fig. 2D).

Therefore, the microarray analysis appears to be a reliable assessment of changes in transcript abundance upon TDP-43 depletion.

Regulation of SIRT1 by TDP-43/FMRP/STAU1 Complex—Neuronal death or elimination of neuronal processes is the characteristic of neurodegenerative diseases (38). After differentiation, the central nervous system has very limited capabilities for both endogenous cell proliferation and regeneration (39). Therefore, it has been speculated that molecular pathways that entail cell proliferation and survival may contribute to anti-neurodegeneration (40, 41).

Notably, among the identified genes whose expression was altered upon TDP-43 knockdown, SIRT1, the NAD^+−depend-ent class III histone deacetylase, was highlighted for its well-documented anti-apoptotic and longevity promotion activities, as well as its critical role in neurodegeneration (42, 43). Moreover, we chose SIRT1 for advanced study as our results showed that SIRT1 was the most reduced one upon TDP-43 depletion among the consistently altered target genes.

To validate the SIRT1 down-regulation by TDP-43 knockdown, we treated SH-SY5Y cells with the same TDP-43 siRNA (siTDP-43-1) and a scrambled control siRNA as for the microarray hybridizations and additionally used one more siRNAs directed against TDP-43 (siTDP-43-2) to avoid possible off-target effects. Both siRNAs specifically reduced TDP-43 expression and led to a significant down-regulation of SIRT1 mRNA, as quantitated by qPCR (Fig. 3A, left panel). This effect was confirmed at the protein level: knockdown of TDP-43 protein was consistently accompanied by a reduced SIRT1 protein level when measured by Western blotting and quantitated using the Quantity One (Bio-Rad) program (Fig. 3A).

The finding that TDP-43 is associated with FMRP and STAU1 raises a possibility that TDP-43 acts in concert with these two proteins. In order to test this hypothesis, loss-of-function experiments of FMRP and STAU1 were performed and the effect of FMRP- or STAU1-depletion on the expression of SIRT1 was examined in SH-SY5Y cells. In these experiments, two siRNAs specifically targeted different regions of FMRP mRNA or STAU1 mRNA were used. The results showed that depletion of FMRP in SH-SY5Y cells caused a significant down-regulation of SIRT1 at both mRNA and protein levels (Fig. 3B). Likewise, knockdown of STAU1 resulted in a drastic decrease in both mRNA and protein levels of SIRT1 in SH-SY5Y cells (Fig. 3C). These results suggest that TDP-43, FMRP, and STAU1 form a functionally coordinated complex to regulate the expression of SIRT1.

TDP-43-specific Regulation of SIRT1 Expression—To further consolidate the observation that TDP-43 knockdown was associated with a decrease in the expression of SIRT1 and to test the hypothesis that this effect is TDP-43-dependent, we utilized one of the siRNAs targeting the 3’-UTR of TDP-43 (siTDP-43-2; see Fig. 3A), allowing ectopic re-expression of TDP-43 in SH-SY5Y cells. The experiments revealed that SIRT1 mRNA and protein levels could be restored upon TDP-43 transfection (Fig. 4, A and B), supporting a TDP-43-dependent regulation of SIRT1.

TDP-43 contains two RRM domains that are implicated in its specific RNA processing functions. To further investigate the...
molecular mechanism by which TDP-43/FMRP/STAU1 regulates the expression of SIRT1, we generated TDP-43 mutants lacking RRM1 (H9004 RRM1) or/and RRM2 (H9004 RRM2) (Fig. 4C). Transfection of these mutants failed to restore SIRT1 mRNA levels upon TDP-43 knockdown in SH-SY5Y cells (Fig. 4D).

Likewise, TDP-43 mutants either lacking the C-terminal GRD (H9004 GRD) or with an impaired nuclear localization (H9004 NLS) also failed to restore SIRT1 expression (Fig. 4D). The GRD has been shown to be responsible for the interaction of TDP-43 with hnRNPs and be necessary for the exon skipping function toward CFTR (3, 24). These experiments indicate that nuclear localization of TDP-43 as well as its nucleic acid and protein binding capacities are all important determinants for SIRT1 regulation. These results also support a notion that an intact TDP-43 must be ensured for its normal functions, which is consistent with previous observations (3, 31, 44).

To investigate the effects of clinical mutations on the biological functions of TDP-43 in our system, we performed rescuing experiments by transfecting a series of full-length TDP-43 missense mutants into silenced cells (Fig. 4E). In these experiments, most of the disease-associated TDP-43 mutants including D169G, G290A, G298S, and R361S consistently showed a trend of reduced ability to increase the mRNA level of SIRT1 compared with wild type of TDP-43 (Fig. 4E), except for the G287S mutation in GRD of TDP-43, which showed a similar activity in restoring SIRT1 mRNA expression as the wild type TDP-43 (Fig. 4E).

The expressions of TDP-43 mutants corresponding to Fig. 4, D and E in SH-SY5Y cells were examined by Western blotting (Fig. 4F). These results suggest that the functional association between TDP-43 and SIRT1 might be pathophysiologically significant.

TDP-43 Specifically Binds to the 3′-UTR of SIRT1 mRNA

To further understand the molecular basis underlying the regulation of SIRT1 expression by TDP-43, we next tested whether TDP-43 could directly bind to SIRT1 transcripts. For this purpose, RNA-immunoprecipitation assays (RIP) were performed...
using TDP-43 antibodies under conditions that preserved native protein-RNA complexes, followed by detection of the SIRT1 mRNA from immunoprecipitated complexes by quantitative real-time RT-PCR amplification. In addition, to identify the regions of SIRT1 mRNA that are responsible for the TDP-43-SIRT1 mRNA interaction, primers for SIRT1 mRNA corresponding to either the 5'-UTR, the coding region (CR), or 3'-UTR were prepared as probes (Fig. 5A). The results of these experiments showed that compared with control IgG, quantitative RT-PCR product was significantly enriched in anti-TDP-43-immunoprecipitated materials, and much more abundant PCR products were detected in 3'-UTR than in 5'-UTR and CR of the SIRT1 mRNA, suggesting that TDP-43 binding to SIRT1 mRNA was restricted to 3'-UTR (2325–3826 bp). HDAC6 was used as a positive control (45), and housekeeping gene GAPDH served as a negative control (Fig. 5B). Taken together, these experiments support an argument that TDP-43 specifically binds SIRT1 mRNA and that binding occurs in the 3'-UTR of SIRT1 mRNA.

We then tried to identify the regions of TDP-43 that are responsible for the TDP-43-SIRT1 mRNA interaction using TDP-43 deletion mutants and the 3'-UTR of SIRT1 mRNA (Fig. 5C). Notably, neither ΔRRM1 nor ΔRRM2 was able to bind to SIRT1 3'-UTR, suggesting that the direct SIRT1 mRNA binding is dependent on the two RRM domains of TDP-43. To further assess the effects of clinical mutations on the cellular function of the TDP-43 gene, we transfected the 5 missense mutants into SH-SY5Y cells (see Fig. 4C). In these experiments, D169G, G290A, G298S, and R361S consistently showed a diminished binding to SIRT1 3'-UTR compared with wild type TDP-43 (Fig. 5D). Interestingly, the G287S mutation located in GRD of TDP-43 appeared not to affect the TDP-43 and SIRT1 mRNA interaction (Fig. 5D). The expressions of TDP-43 mutants corresponding to Fig. 5, C and D in SH-SY5Y cells were validated by Western blotting (Fig. 5E). Taken together, these results indicate that the binding of TDP-43 to SIRT1 mRNA is mediated by its RRM1 and RRM2.

FMRP and STAU1 Bind to SIRT1 mRNA 3'-UTR in a TDP-43-dependent Manner—Based on the physical and functional association between TDP-43 and FMRP/STAU1, we sought to determine whether FMRP and STAU1 could also bind to SIRT1
mRNA 3'-UTR. To the end, we performed RIP analysis in SH-SY5Y cells with antibodies against FMRP and STAU1 and with primers targeted the 5'-UTR, CR, or 3'-UTR of SIRT1 mRNA. After 24 h cells were transfected with empty vector, or wild type (WT) FLAG-TDP-43 as indicated. Total RNA was extracted and subjected to semi-quantitative RT-PCR amplifying endogenous TDP-43 (primers designed to target the 3'-UTR), total TDP-43 (primers designed to target the coding region), and SIRT1 as indicated. The mRNA levels were normalized to those of GADPH. SH-SY5Y cells were mock transfected, treated with scrambled control siRNA or siRNA TDP-43-2. After 24 h cells were transfected with empty vector (−) and wild type (WT) FLAG-TDP-43 (+). FLAG-TDP-43 and SIRT1 expression were analyzed by Western blotting. C, schematic of the TDP-43 deletions and point mutations. D and E, SH-SY5Y cells were treated with scrambled siRNA (siCtrl) or siRNA TDP-43-2. After 12 h cells were transfected with empty vector, FLAG tagged TDP-43 and TDP-43 deletions (D) or TDP-43 point mutations (E) as indicated. F, identical expressions of a serious TDP-43 constructs corresponding to Fig. 4, D and E in SH-SY5Y cells were verified by Western blotting. To further explore the molecular mechanism governing the regulation of SIRT1 mRNA expression by TDP-43/FMRP/STAU1, SH-SY5Y cells were treated with TDP-43, FMRP-, or STAU1-specific siRNAs or with scrambled control siRNA (Fig. 6B). Using antibodies against TDP-43, FMRP or STAU1, RIP assays showed that the binding of TDP-43, FMRP, and STAU1 to SIRT1 mRNA were all markedly decreased after TDP-43 depletion (Fig. 6B), whereas only marginal decreases in the binding of TDP-43 were detected upon FMRP or STAU1 depletion. These data suggest that the binding of FMRP and STAU1 to the 3'-UTR of SIRT1 mRNA is recruited TDP-43 and occurs in a TDP-43-dependent manner. The knockdown efficiency was validated by qPCR and Western blotting (Fig. 6C).
TDP-43 Interacts with FMRP/STAU1 and Regulates SIRT1 Expression

TDP-43, FMRP, and STAU1 were pulled down by the biotinylated SIRT1 3'-UTR (especially E). HuR were used as a positive control (46). Moreover, GST-TDP-43, but not the GST tag, could also be pulled down by the SIRT1 3'-UTR (especially E), but not by 5'-UTR and CR (Fig. 6F). These findings indicate that TDP-43 could directly bind SIRT1 mRNA in vivo and in vitro, and that this binding occurs in the SIRT1 3'-UTR.

TDP-43 Knockdown-mediated SIRT1 Down-regulation Sensitizes Cells to Apoptosis and DNA Damages—Because SIRT1 inhibits apoptosis and is essential for cell survival (47, 48), we next investigated whether TDP-43/FMRP/STAU1 could influence SIRT1-protected apoptosis in SH-SY5Y cells. To this end, SH-SY5Y cells were transiently transfected with either scrambled control siRNA or TDP-43 siRNA for 48 h. TUNEL assays revealed a striking increase in apoptotic cells, 28.76% in TDP-43 RNAi group compared with only 3.65% in control group (p < 0.001) (Fig. 7, A and B). Significantly, the increased cell apoptosis resulted from TDP-43 depletion could be partially rescued through SIRT1 overexpression (from 25.62% to 9.93%, p < 0.001) (Fig. 7A). Similar results were obtained when SH-SY5Y cells were treated with FMRP siRNA or STAU1 siRNA (Fig. 7B). These findings indicated that TDP-43/FMRP/STAU1 complex is required for neuronal cell survival, at least in SH-SY5Y cells, and that this effect might be partially due to its regulation of SIRT1 expression.

It is reported that SIRT1 encourages cell survival by engaged in DNA double-strand breaks (DSB) repair upon DNA damages to promote genomic stability (49, 50). To further validate the neuroprotective role of TDP-43/FMRP/STAU1 complex and its functional association with SIRT1, we examined the cell viability upon exposure to DNA toxicant, camptothecin (CPT). CPT is a cytotoxic quinoline alkaloid which inhibits the DNA enzyme topoisomerase I thus interferes with DNA replication and transcription, leading to DSBs and cell death (51). In these experiments, SH-SY5Y cells in which the expression of TDP-43, FMRP, or STAU1 was knocked down were treated with CPT for 24 h. Cell viability assays by a luminescent method indicated that, compared with control siRNA-treated group, the viability of cells that were treated with siRNA specific for TDP-43, FMRP, or STAU1 was significantly reduced (Fig. 7C). In addition, in TDP-43 depleted SH-SY5Y cells, exogenous expression of SIRT1 could partially rescue the decreased cell viability in a dose-dependent manner (Fig. 7D). Furthermore, in cells that were transfected with TDP-43 siRNA-2 which targets the 3'-UTR of the TDP-43 mRNA (Fig. 3A), re-introduction of the wild type TDP-43 but not the mutants ΔRRMs, ΔGRD, or ΔNLS could partially restore the viability of these cells (Fig. 7E), consistent with our earlier observations that an intact TDP-43 is required in SIRT1 regulation. These results indicated that depletion of TDP-43, FMRP, or STAU1 thus disrupting the TDP-43/FMRP/STAU1 complex impairs SIRT1-dependent DSB repair, leading to neuronal cell death in response to genomic toxicity. Taken together, these data support a notion that an intact TDP-43/FMRP/STAU1 complex is required for the stability of SIRT1 mRNA, and that defects in the integrity of the TDP-43/FMRP/STAU1 complex result in destabilization of SIRT1 mRNA and sensitize cells to apoptosis and DNA toxicity.

DISCUSSION

TDP-43 was identified several years ago as the major constituent of the proteinaceous inclusions that are characteristic of...
TDP-43 Interacts with FMRP/STAU1 and Regulates SIRT1 Expression

A

B

C

D

E

F
FIGURE 6. FMRP and STAU1 bind to SIRT1 3′-UTR mainly depend on TDP-43. A, SH-SY5Y cells extracts were immunoprecipitated with anti-TDP-43, anti-FMRP, anti-STAU1 antibodies or control rabbit IgG, and the RIP was analyzed with quantitative RT-PCR using primers corresponding to 5′-UTR, coding region (CR) or 3′-UTR of the SIRT1 transcript. B, SH-SY5Y cells were transfected with scrambled control siRNA, TDP-43 siRNA, FMRP siRNA, or STAU1 siRNA. RIP assays were performed with quantitative RT-PCR amplifying the 3′-UTR of SIRT1 transcript immunoprecipitated by the indicated antibodies. C, knockdown efficiency was validated by real time RT-PCR (left panel) and Western blotting (right panel). D, schematic of SIRT1 biotinylated probes used in RNA pull-down assays. E, each SIRT1 biotinylated probes was incubated with SH-SY5Y whole cell lysate. The affinity-purified elutes were separated on SDS-PAGE and immunoblotted using antibodies against the indicated proteins. HuR served as a positive control. G, each SIRT1 biotinylated probes was incubated with purified GST-TDP-43 or GST. The affinity purified elutes were separated on SDS-PAGE and immunoblotted using antibodies against TDP-43 and GST.

FIGURE 7. TDP-43 knockdown-mediated SIRT1 down-regulation induces apoptosis and sensitizes cells to DNA toxicity. A and B, SH-SY5Y cells were transfected with indicated siRNAs and with appropriate plasmid constructs 12 h later. After 48 h of the plasmid transfection, TUNEL assay were performed with a fluorescence method. For each group, 6 different fields under fluorescence microscopy with 100-fold magnifications were randomly chosen and counted. Representative photos were showed in A and statistical analyzed in B. C–E, SH-SY5Y cells were treated as indicated with presence or absence of camptothecin (CPT, 0.2 μg/ml). 24 h later, cell viability assays were performed with a luminescent method. Error bars represent S.D. of triplicates. *, p < 0.05 and **, <0.01 (one-tailed unpaired t test).
most forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) (6). Subsequent studies have confirmed this finding and have shown that dominantly inherited genetic mutations within the gene that encodes TDP-43 are linked with ALS and FTLD phenotypes (10, 11).

Despite the progress toward revealing the full spectrum of TDP-43 pathology in human neurodegenerative diseases, the fundamental question of whether TDP43 dysfunction mediates neurodegeneration through gain of toxic function or a loss of normal function remains unanswered. Nevertheless, there is now an emerging consensus that TDP-43 protein is mechanistically linked to neurodegeneration.

TDP-43 is a 414 aa protein with two RNA recognition motifs, RRM1 and RRM2, and a C-terminal glycine-rich domain. Previous studies have shown that TDP-43 binds several hnRNP proteins such as hnRNP A/B and H through its C-terminal tail and participate in mRNA splicing (31, 52). It is believed that RNA binding proteins are the common components of much larger protein complexes required for the stabilization, transport, and metabolism of mRNA. Indeed, we revealed that TDP-43, FMRP, and STAU1, together with several hnRNPs form a functionally coordinated complex in vivo. Structurally, TDP-43, FMRP, STAU1, and hnRNPs contain domains that are implicated in protein-RNA and protein-protein interactions (4, 53), and all of them are associated with neurodegeneration disorders (17, 54, 55), supporting a physical and functional link among them.

Despite accumulating data showing that TDP-43 could bind and stabilize several target genes (18, 28, 36, 37, 56), the significance of these TDP-43 targets with regard to disease pathogenesis remains to be determined. Thus, we performed differential microarray analysis to obtain a cohort of downstream targets. This would provide further insights for the understanding of the pathophysiological functions of TDP-43. Among the target genes identified in our chip assays is SIRT1. SIRT1 plays critical roles in the pathogenesis of multiple neurodegenerative diseases (42, 49), in which TDP-43 malfunction has been implicated in. In mice models, SIRT1 could suppress the production of toxic product in AD and PD (57, 59, 62), prevent neurodegeneration in AD and ALS, and protect axon against degeneration in Wallerian degeneration (58, 63), consistent with our revelation in this study that TDP-43 and SIRT1 are functionally connected. Moreover, the study that SIRT1 cooperates with E2F1 to regulate apoptotic response to DNA damage (64) and the finding that loss of functional TDP-43 induces apoptosis in a pRB/E2F1-dependent manner (36) further support our argument that the requirement for TDP-43 in neuronal cell survival is partially mediated by SIRT1. Strikingly, recent studies revealed that SIRT1 knockdown results in poly Q-expanded aggregation of androgen receptor (AR) and α-synuclein (59, 65). These findings appear to be consistent with the observations that knockdown of TDP-43 leads to the aggregation of neuropathological prion proteins, further supporting our observation that TDP-43 and SIRT1 are functionally connected.

In summary, our experiments revealed that TDP-43 is physically associated with FMRP and STAU1 to form a functionally coordinated complex to co-regulate the expression of SIRT1. Our results indicate that defects in the TDP-43/FMRP/STAU1 complex sensitize neuronal cells to apoptosis and DNA damages in a SIRT1-dependent manner. These findings may shed new light on the understanding of the biological functions and the mechanistic involvement of TDP-43 in neurodegenerative diseases.

REFERENCES

1. Wang, H. Y., Wang, I. F., Bose, J., and Shen, C. K. (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. *Genomics* **83**, 130–139.

2. Ayala, Y. M., Pantano, S., D’Ambrogio, A., Buratti, E., Brindisi, A., Marchetti, C., Romano, M., and Baralle, F. E. (2005) Human, *Drosophila*, and *C. elegans* TDP43: nucleic acid binding properties and splicing regulatory function. *J. Mol. Biol.* **348**, 575–588.

3. Buratti, E., and Baralle, F. E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel
splicing regulator of CFFT exon 9. *J. Biol. Chem.* 276, 36337–36343

4. Wang, I. F., Wu, L. S., and Shen, C. K. (2008) TDP-43: an emerging new player in neurodegenerative diseases. *Trends Mol. Med.* 14, 479–485

5. Kuo, P. H., Doudeva, L. G., Wang, Y. T., Shen, C. K., and Yuan, H. S. (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. *Nucleic Acids Res.* 37, 1799–1808

6. Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., and Clark, C. M. (2006) Ubiquitinylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Science* 314, 130–133

7. Davidson, Y., Kelley, T., Mackenzie, I. R., Pickering-Brown, S., Du Plessis, D., Neary, D., Snowden, J. S., and Mann, D. M. (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. *Acta Neuropathol.* 113, 521–533

8. Chen-Plotkin, A. S., Lee, V. M., and Trojanowski, J. Q. (2010) TAR DNA-binding protein 43 in neurodegenerative disease. *Nat. Reviews. Neurology* 6, 211–220

9. Cook, C., Zhang, Y. J., Xu, Y. F., Dickson, D. W., and Petrucci, L. (2008) TDP-43 in neurodegenerative disorders. *Exp. Opin. Biol. Ther.* 8, 969–978

10. Van Deerlin, V. M., Leverenz, J. B., Bekris, L. M., Bird, T. D., Yuan, W., Alu, N., and Zeman, S. (1995) Ciliary neurotrophic factor receptor expression and histopathological analysis. *Lancet Neurol.* 7, 409–416

11. Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., Baralle, F., de Belleroche, J., Mitchell, J. D., Leigh, P. N., Al-Chalabi, A., Miller, C. C., Nicholson, G., and Shaw, C. E. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. *Science* 319, 1668–1672

12. Baradma, S. J., and Finkbeiner, S. (2010) Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. *Rev. Neurosci.* 21, 251–272

13. Acharya, K. K., Govind, C. K., Shore, A. N., Stoler, M. H., and Reddi, P. P. (2011) TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration. *Dev. Biol.* 357, 158–164

14. Tollervey, J. R., Cerk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., König, J., Hortaçoğlu, T., Nishimura, A. L., Zupunski, V., Patani, R., Chen, S., Rot, G., Zupan, B., Shaw, C. E., and Ule, J. (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. *Nat. Neurosci.* 14, 452–458

15. Ou, S., Wu, F., Harrich, D., García-Martinez, L. F., and Gaynor, R. B. (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. *J. Biol. Chem.* 283, 28852–28859

16. Fiesel, F. C., Voigt, A., Weber, S. S., Van den Haute, C., Walsemoniaux, A., Görner, K., Walter, M., Anderson, M. L., Kern, J. V., Rasse, T. M., Schmidt, T., Springer, W., Kirchner, R., Bonin, M., Neumann, M., Baekelant, V., Aluni-Fabbroni, M., Schulz, J. B., and Kahle, P. J. (2010) Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylation 6. *EMBO J.* 29, 209–221

17. Rossi, F., and Cattaneo, E. (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. *Nat. Neurosci.* 5, 409–416

18. Chiang, P. M., Ling, J., Jeong, Y. H., Price, D. L., Aja, S. M., and Wong, P. C. (2007) Staufen1 regulates diverse classes of mammalian transcripts. *Nat. Struct. Mol. Biol.* 14, 2670–2681

19. Ling, S., Albuquerque, C. P., Han, J. S., Lagier-Tourenne, C., Tokunaga, S., Zhou, H., and Cleveland, D. W. (2010) ALS-associated mutations in TARDBP increase its stability and promote TDP-43 complexes with FUS/TLS. *Proc. Natl. Acad. Sci. U.S.A.* 107, 13318–13323

20. Mercado, P. A., Ayala, Y. M., Romano, M., Buratti, E., and Baralle, F. E. (2005) Decrease of TDP-43 overridess the need for exonic and intronic splicing enhancers in the human apol-I gene. *Nucleic Acids Res.* 33, 6000–6010

21. Barmada, S. S., and Gleichmann, M., Mughal, M. R., Martindale, J. L., Yang, X., Alu, N., and Zeman, S. (2008) Nuclear factor 2168–2172

22. Wang, M., Martindale, J. L., Yang, X., Chen, F. J., and Gorospe, M. (2005) Increased stability of the p16 mRNA with replicative senescence. *EMBO Rep.* 6, 158–164

23. Ling, S. C., Albuquerque, C. P., Han, J. S., Lagier-Tourenne, C., Tokunaga, S., Zhou, H., and Cleveland, D. W. (2010) ALS-associated mutations in TARDBP increase its stability and promote TDP-43 complexes with FUS/TLS. *Proc. Natl. Acad. Sci. U.S.A.* 107, 13318–13323

24. Mercado, P. A., Ayala, Y. M., Buratti, E., and Baralle, F. E. (2005) Decrease of TDP-43 overridess the need for exonic and intronic splicing enhancers in the human apol-I gene. *Nucleic Acids Res.* 33, 6000–6010

25. Koo, E. H., and Kopan, R. (2004) Potential role of presenilin-regulated notch signaling pathways in sporadic neurodegeneration. *Nature Med.* 10, 401–409

26. Rossi, F., and Cattaneo, E. (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. *Nat. Neurosci.* 5, 409–416

27. Koo, E. H., and Kopan, R. (2004) Potential role of presenilin-regulated notch signaling pathways in sporadic neurodegeneration. *Nature Med.* 10, 401–409
TDP-43 Interacts with FMRP/STAU1 and Regulates SIRT1 Expression

S26–33
41. Friedlander, R. M. (2003) Apoptosis and caspases in neurodegenerative diseases. *New England J. Med.* **348**, 1365–1375
42. Gan, L., and Mucke, L. (2008) Paths of convergence: sirtuins in aging and neurodegeneration. *Neuron* **58**, 10–14
43. Haisig, M. C., and Guarente, L. P. (2006) Mammalian sirtuins—emerging mechanisms of cell killing by camptothecin. *Neuron* **58**, 551–563
44. Ayala, Y. M., D’Ambrogio, A., Xu, Y. F., Petrucelli, L., Buratti, E., and Baralle, F. E. (2008) Structural determinants of the cellular localization and shutting of TDP-43. *J. Cell Science* **121**, 3778–3875
45. Kim, S. H., Shanware, N. P., Bowler, M. J., and Tibbetts, R. S. (2010) Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA. *J. Biol. Chem.* **285**, 34097–34105
46. Abdelmohsen, K., Pullmann, R., Jr., Lal, A., Kim, H. H., Galban, S., Yang, X., Blethrow, J. D., Walker, M., Shubert, J., Gillespie, D. A., Furneaux, H., and Gorospe, M. (2007) Phosphorylation of HuR by Chk2 regulates SIRT1 expression. *Mol. Cell* **25**, 543–557
47. Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bulsma, Y., McBurney, M., and Guarente, L. (2004) Mammalian SIRT1 represses forkhead transcription factors. *Cell* **116**, 551–563
48. Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001) Negative control of p53 by Sir2 promotes cell survival under stress. *Cell* **107**, 137–148
49. Finkel, T., Deng, C. X., and Mostoslavsky, R. (2009) Recent progress in the biology and physiology of sirtuins. *Nature* **460**, 587–591
50. Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S. K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., Wright, S. M., Mills, K. D., Bonni, A., Yankner, B. A., Scully, R., Prolla, T. A., Alt, F. W., and Sinclair, D. A. (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. *Cell* **135**, 907–918
51. Hsang, Y. H., Lihou, M. G., and Liu, L. F. (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. *Cancer Research* **49**, 5077–5082
52. Martinez-Contreras, R., Cloutier, P., Skhreta, L., Fisette, J. F., Revil, T., and Chabot, B. (2007) InRNP proteins and splicing control. *Advances Exp. Med. Biol.* **623**, 123–147
53. Kiebler, M. A., and DesGroseillers, L. (2000) Molecular insights into mRNA transport and local translation in the mammalian nervous system. *Neuron* **25**, 19–28
54. Martinez Tosar, L. J., Thomas, M. G., Baez, M. V., Ibanez, I., Chernomoretz, A., and Boccaccio, G. L. (2012) Staufer: from embryo polarity to cellular stress and neurodegeneration. *Front. Biosci.* **4**, 432–452
55. Sokol, D. K., Maloney, B., Long, J. M., Ray, B., and Lahiri, D. K. (2011) Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. *Neurology* **76**, 1344–1352
56. Ayala, Y. M., de Conti, L., Avendaño-Vazquez, S. E., Dhir, A., Romanos, M., D’Ambrogio, A., Tollervey, J., Ule, J., Baralle, M., Buratti, E., and Baralle, F. E. (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. *EMBO J.* **30**, 277–288
57. Donmez, G., Wang, D., Cohen, D. E., and Guarente, L. (2010) SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. *Cell* **142**, 320–332
58. Kim, D., Nguyen, M. D., Dobbin, M. F., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, L., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A., and Tsai, L. H. (2007) SIRT1 deacetylates protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. *EMBO J.* **26**, 3169–3179
59. Donmez, G., Arun, A., Chung, C. Y., McLean, P. J., Lindquist, S., and Guarente, L. (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. *J. Neurosci.* **32**, 124–132
60. Kiebler, M. A., Henrrai, I., Verkade, P., Köhrmann, M., Fortes, P., Marión, R. M., Ortín, J., and Dotti, C. G. (1999) The mammalian tau6en protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. *J. Neurosci.* **19**, 288–297
61. Brunet, A., Sweeney, L. B., Sturgill, I. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H. L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W., and Greenberg, M. E. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. *Science* **303**, 2011–2015
62. Outeiro, T. F., Kontopoulos, E., Altman, S. M., Kufareva, I., Strathdee, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T., and Kazantsev, A. G. (2007) Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. *Science* **317**, 516–519
63. Araki, T., Sasaki, Y., and Milbrandt, J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. *Science* **305**, 1010–1013
64. Wang, C., Chen, L., Hou, X., Li, Z., Kabra, N., Ma, Y., Nemoto, S., Finkel, T., Gu, W., Cress, W. D., and Chen, J. (2006) Interactions between E2F and SirT1 regulate apoptotic response to DNA damage. *Nat. Cell Biol.* **8**, 1025–1031
65. Montie, H. L., Pestell, R. G., and Merry, D. E. (2011) SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. *J. Neurosci.* **31**, 17425–17436