Providing rehabilitation to patients recovering from COVID-19: A scoping review

Marina B. Wasilewski PhD | Stephanie R. Cimino MSc | Kristina M. Kokorelias PhD | Robert Simpson PhD, MD | Sander L. Hitzig PhD | Lawrence Robinson MD, FABPMR

Abstract

Objective: To synthesize the nature and extent of research on rehabilitation care provision to patients with COVID-19. Specifically, we aimed to (1) describe the impact of COVID on patients and associated rehabilitation needs, (2) outline the adaptations and preparations required to enable the provision of COVID rehabilitation, (3) describe the types of rehabilitation services and treatments provided to COVID patients, and (4) identify barriers and facilitators to delivering COVID rehabilitation.

Literature Survey: We searched Medline, PsychINFO, Embase, and CINAHL on June 26, 2020 using key words such as “rehabilitation,” “physical medicine,” “allied health professionals,” and variations of “COVID.” The search was updated on October 13, 2020. We included articles published in English and that focused on some aspect of COVID rehabilitation for adults. We excluded articles focused on pediatric populations and those not focused (or minimally focused) on rehabilitation for COVID patients.

Methodology: Data were charted based on article type (ie, primary data, secondary data, guidelines). Key information extracted included (1) COVID sequelae; (2) rehabilitation adaptations; (3) structure, function, and content of rehabilitation services/programs; (4) facilitators and/or barriers to providing COVID rehabilitation; and (5) recommendations for COVID rehabilitation programming. Data were synthesized narratively.

Synthesis: In total, 128 articles were included in the review that reported primary data (n = 33), secondary data (n = 82), and clinical practice/patient self-management guidelines (n = 13). Evidence begins to suggest that rehabilitation is necessary and valuable for addressing COVID-related declines in health, function, and well-being. Most articles recommended that an individualized rehabilitation program be provided across the continuum of care by an interdisciplinary team of professionals and that the nature and extent of rehabilitation be informed by the care setting and COVID severity. Most issues that challenged COVID rehabilitation delivery were directly addressed by the facilitators and adaptations identified.

Conclusions: Future recommendations include a greater emphasis on the psychosocial aspects of COVID rehabilitation, inclusion of families in rehabilitation planning, and the use of qualitative approaches to complement clinical data.
BACKGROUND

The COVID-19 pandemic has required a rapid and drastic response by health care systems worldwide, including major changes in how organizations and staff function and deliver patient care. Growing evidence indicates that many survivors are experiencing “long COVID” (ie, lasting and debilitating symptoms that impede both physical and emotional recovery). In turn, rehabilitation is being recognized as a pivotal aspect of the postacute COVID response. Critically ill patients with COVID are typically ventilated for longer than other patients requiring care in the intensive care unit (ICU), which can lead to higher levels of physical deconditioning. They also experience neurological and respiratory impairments, increasing the likelihood of a more complex and prolonged recovery. Existing evidence on sepsis (which has an inpatient mortality rate similar to that of COVID) indicates that 30% of hospitalized patients require posacute care. In the United Kingdom, it is estimated that 45% of COVID patients will need some form of rehabilitation and that 4% will require more specialized and long-term rehabilitation in an inpatient setting.

Unfortunately, rehabilitation is often underemphasized in global disaster planning and responses, and the need for rehabilitation is often not recognized until many months after a disaster. Yet rehabilitation is a key component of standard care delivery pathways and in other populations improves independence, facilitates community reintegration, and mitigates long-term disability. For patients with COVID, rehabilitation can improve functional capacity, address the effects of deconditioning after prolonged ICU stays, and alleviate stress by providing patients with needed support throughout recovery. Collectively, this can potentially facilitate patients’ return to home and vocational activities. Rehabilitation has been described as a necessity and right in the context of the COVID pandemic, and it is recommended that it be routinely incorporated into pandemic response plans early on before widespread disability.

The COVID care pathway is complicated by several issues including (1) a lack of clarity around the patients’ eligibility for rehabilitation, (2) the ability of rehabilitation facilities/units to adapt and prepare for COVID patients, and (3) the impact of physical distancing on the provision of rehabilitation treatments and community discharge support. In light of the mounting recognition that rehabilitation will play a key role in COVID patients’ recovery, many studies and practice guidelines have begun to address these issues. By synthesizing information across these data sources, our scoping review aims to provide rehabilitation practitioners with a comprehensive review of the evidence to support the ongoing rehabilitation response to the pandemic.

STUDY GOAL AND OBJECTIVES

Our goal was to synthesize the nature and extent of research on rehabilitation care provision to COVID patients. Specifically, we aimed to:

1. Describe the impact of COVID on patients and associated rehabilitation needs;
2. Outline the adaptations and preparations required to enable the provision of COVID rehabilitation;
3. Describe the types of rehabilitation services and treatments provided to patients with COVID; and
4. Identify barriers and facilitators to delivering COVID rehabilitation.

METHODS

We followed Arksey and O’Malley’s methodological framework for conducting scoping reviews. The framework entails five stages: (1) identifying the research questions; (2) identifying relevant studies; (3) study selection; (4) charting the data; and (5) collating, summarizing, and reporting the results. We searched Medline, PsychINFO, Embase, and CINAHL on June 26, 2020. For stage 2, the search strategy was tailored to each database using key terms that included “rehabilitation,” “physical medicine,” “allied health professionals,” and variations of “COVID-19” (see Appendix A for Medline search strategy). For stage 3, articles were included if they were in English and focused on some aspect of rehabilitation care specifically for COVID patients. Research articles reporting both primary and secondary data were included. Articles were excluded if they were (1) not focused on the COVID pandemic, (2) not focused on the field of rehabilitation, (3) not focused on rehabilitation for COVID patients (ie, focused on some aspect of rehabilitation in the context of the pandemic but not on care for COVID patients themselves), and (4) focused on a pediatric population.

The database searches produced 1399 studies for consideration. After duplicates were eliminated, 1167 articles remained. A two-phase screening process was undertaken. For phase 1, M.B.W. reviewed the title and abstracts to determine if they were eligible for full-text review. This resulted in the identification of 252 articles for full-text review. For phase 2, M.B.W. and S.R.C. first screened 10% of the articles to establish interrater reliability ($k = 0.746$, 88% agreement). Discrepancies were resolved by discussing the abstract(s) in question and coming to a consensus. M.B.W. and S.R.C. then proceeded to screen the remainder of the articles, where 57 met the inclusion/exclusion criteria and were included in the review. Our hand search identified an additional 11 articles for inclusion in the review. In total, 68 studies were included. We conducted an updated...
search on October 13, 2020. After screening and full-text review (conducted by S.R.C. and K.M.K.), we identified an additional 60 articles for inclusion. In total, we included 128 articles in our review. See Figure 1 for a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Flow Diagram of article selection.

For stage 4, we used a data abstraction chart to extract relevant information from studies (eg, sample details, rehabilitation program details). For stage 5, we employed a narrative synthesis of the included studies to answer the research questions. Analysis was an iterative process of combining, categorizing, summarizing, and comparing information across studies.

RESULTS

Study demographics

The initial search on June 26, 2020 produced 1167 articles after deduplication, of which 68 met the inclusion/exclusion criteria. Our updated search on October 13, 2020 produced 2501 articles after deduplication, of which 60 met the inclusion/exclusion criteria. In total, we included 128 articles in our review (see Figure 1 for PRISMA diagram). With respect to article type, 33 were primary data articles (ie, observational studies, case reports), 22, 24, 33, 41, 51, 55, 57, 63, 69, 78-89, 115, 117, 119, 127-129, 131, 132, 134, 136-138 82 were secondary articles (ie, reviews, letters to the editor that did not report results of an original research project, commentaries), 3, 4, 14, 17-21, 25, 27-31, 34-40, 42-48, 53, 54, 58-60, 62, 64-68, 70, 71, 73-75, 90, 92-114, 116, 118, 120-126, 130, 133, 135 and 13 were articles reporting guidelines for rehabilitation in COVID patients. 13, 15, 16, 23, 26, 32, 50, 52, 61, 72, 76, 77, 91 Details pertaining to the geographic distribution of research can be found in Table 1.

Primary study details

Of the 33 articles that reported primary data, most were cross-sectional in nature and aimed to describe the development and delivery of a rehabilitation program for patients with COVID (n = 13). 22, 24, 33, 41, 51, 63, 69, 78, 81, 88, 127, 129, 138 Additionally, one article described a physician’s experience with being treated for COVID, 57 a second outlined the organizational changes made to accommodate COVID patients, 53 and a third estimated the postacute rehabilitation needs of COVID patients. 55 Three studies aimed to describe the demographics, clinical characteristics, and level of rehabilitation of patients with COVID at their institutions. 79, 80, 85 One additional study investigated the rehabilitation needs of COVID patients at their institution. 13 The only one study...
implemented a randomized control trial (RCT) design to investigate the outcomes of a pulmonary rehabilitation program for COVID patients.41

Study sample characteristics

In total, 30 studies reported sample sizes. Seventeen case report studies reported on 1 to 9 patients,33,51,78,79,81,83-86,88,117,119,128,131,132,137,138 and the remaining 16 studies reported sample sizes ranging from 9 to 312, with a mean of 101. The mean age of patients in the case reports was 53 years old (range: 41-69). Five of the cross-sectional studies22,24,63,127,129 reported the mean age of patients in the sample (50-73 years old; mean = 63) and one study55 reported the median (66 years old; interquartile range: 45; 85). A third cross-sectional study reported age groups for their participants (ie, ≤35, 36-50, 51-65, ≥76).134 The RCT reported a mean of 69.4 years old for the intervention group and 68.9 for the control group. Twenty-seven studies reported participants’ gender. All but five of the case reports83,115,128,131,132 reported on male patients33,51,78,79,81,84-86,88,117,119,137,138 and the RCT study included only men in both the intervention (n = 24) and control groups (n = 25). The remaining six cross-sectional studies reported a mean of 61 women and 101 men. Ten studies reported information pertaining to patients’ ICU length of stay (LOS). The manner of reporting varied, with two studies reporting a mean of 522 and 16.4 days24 and one reporting a median of 15 days (interquartile range: 2;30).55 whereas two studies were similar at 14 days.83,136 Another study mean reported a mean of 19 days (± 10 days).80 The mean ICU LOS across the case report studies was 18.8 days.33,51,78,115,119,131

Continent	Country	Articles (N)	Citations
Europe (n = 54)	Italy	24	3, 14, 18, 19, 24, 29, 36, 43, 44, 48, 51, 54, 60, 63, 66, 69, 94, 110, 111, 114, 117, 119, 121, 122
	United Kingdom	17	16, 23, 25, 30, 34, 52, 57, 61, 70-72, 80, 95, 97, 104, 108, 109
	Turkey	4	15, 20, 67, 118
	Spain	2	90, 100
	France	2	38, 55
	Denmark	1	26
	Greece	1	33
	Switzerland	1	84
	Netherlands	1	17
	Multi-country	1	21
Asia (n = 33)	China	14	22, 40, 41, 56, 74, 75, 77, 78, 89, 96, 98, 128, 134, 135
	Japan	6	47, 49, 85, 103, 136, 137
	India	4	31, 99, 126, 127
	Singapore	3	87, 132, 138
	Korea	1	115
	Taiwan	1	120
	Iran	1	58
	Nepal	1	107
	Philippines	1	37
	Israel	1	133
The Americas (n = 31)	United States	21	27, 28, 39, 42, 45, 46, 64, 65, 73, 79, 81-83, 86, 92, 102, 112, 123, 125-131
	Canada	4	4, 32, 62, 93
	Brazil	4	53, 59, 101, 125
	Multicountry	2	50, 91
Australia (n = 5)	Australia	4	13, 35, 66, 88
	New Zealand	1	76
Africa (n = 3)	Nigeria	2	105, 106
	Morocco	1	113
Multi-content (n = 2)	—	2	116, 124

Note: Citations bolded correspond to articles reporting primary data. The remaining references correspond to secondary data articles and guidelines.
Only one study reported a 25-day postacute rehabilitation LOS.51 Other studies reported an overall rehabilitation LOS of 10 days to 14 weeks.81,84,87,88,119,127,136 COVID sequelae

In total, 19 of the 33 articles reporting primary data discussed COVID sequelae that would warrant the need for rehabilitation for this population.22,33,51,55,57,82,87,119,127-129,131,136,137 Table 2 outlines the specific sequelae reported.

Comorbidities

Eleven articles mentioned common comorbidities that COVID patients presented with, including cardiovascular comorbidities (eg, hypertension, arrhythmias, heart disease),24,41,69,80,83,85,86,115,117,131,134 overweight/obesity,83,86,119,128,131 mental health diagnosis (eg, depression),86,115,119 preexisting respiratory disease (eg, chronic obstructive pulmonary disease [COPD]),117,132,134 type 2 diabetes,24,41,80,83,85,117,131,134 and other chronic diseases (eg, liver disease, hyperthyroidism, polyneuropathy).117,129,134 Rehabilitation admission criteria

Six articles discussed potential criteria and associated assessments that could be used to identify COVID patients for postacute rehab. The most commonly discussed criteria were as follows:

1. Age (>65 years)41
2. Respiratory presentation138:
 o Forced expiratory volume (FEV1): ≥70%41
 o Oxygen needs: (1) patients wearing nonrebreather mask, Venturi mask, or oxygen mask (FiO2 ≥ 40 and < 60%); (2) patients without oxygen support devices or wearing nasal cannula (FiO2 ≥ 21 and < 40%)24
3. Mechanical ventilation and tracheostomy status (ie, those who were ventilated are expected to need rehab)80
4. Functional status51,55,138 (eg, high level of dependency as determined by an activities of daily living [ADL] score < 4)
5. Dyspnea51,138 (eg, using Medical Research Council Dyspnea Scale24)

Other considerations for identifying eligible COVID patients included body composition, muscle function, and quality of life.51,138 Two articles suggested that patients might potentially be excluded from rehab because of other comorbidities (eg, stroke, neurodegenerative diseases, additional respiratory complications).24,41 Adaptations to rehabilitation

Six studies discussed the adaptations made to provide rehabilitation to COVID patients.1,22,33,51,52,57,63,69,79-81,87,115,117,119,127-129,131,136,137 These adaptations included (1) modifying tasks, roles, and scheduling of the rehabilitation teams; (2) creating multidisciplinary COVID teams including the physicians, nurses, respiratory physiotherapists (RPTs), and physiotherapists (PTs); (3) scheduling changes, including scaling back staff numbers to address personal protective equipment (PPE) shortages; (4) delegating tasks based on expertise (eg, RPTs trained in management of chronic respiratory failure and noninvasive ventilation); (5) organizing an online communication system to facilitate email and printing of documents (so as to minimize contact between care team members); and (6) mandating PPE for patients undergoing rehabilitation. Some studies described moving from in-person rehabilitation to telerehabilitation.84,88,136

TABLE 2	COVID sequelae details from primary data articles (n = 22)
COVID sequelae	**Manifestation**
Respiratory (n = 15)	Obstructive respiratory dysfunction, pneumonia, deterioration and/or failure of respiratory function, dyspnea, cough, and intensive care unit-acquired weakness.22,33,51,55,57,82,87,119,127-129,131,136-138
Physical (n = 11)	Muscle weakness and fever22,51,57,63,83,87,129,137
COVID-related fatigue and pain were discussed and included overall fatigue, nausea, vomiting, and myalgia57,82,119	
One case study described lower-limb amputation as the result of COVID related coagulopathy.117	
Psychosocial (n = 7)	Anxiety, depression, sense of abandonment, isolation, fear, posttraumatic stress syndrome.69,83,87,115,119,128,138
Cognitive (n = 3)	Delirium.80,84,86
Cardiovascular (n = 2)	Coagulopathy, stroke, and myocarditis.117,127
Organ system(s) failure (n = 2)	Renal failure was mentioned by one article,55 and another mentioned multiorgan failure.127
Communication/swallowing (n = 1)	One study reported dysphagia.84
Table 3: Nature of rehabilitation program (primary data articles)

Program element	Details
Timing	• No consensus on timing of rehabilitation initiation.
	• Individual studies indicated that:
	o Pulmonary rehabilitation was initiated on day 16 of 25 for patient in ICU.
	o General rehabilitation initiated on day 30 post-COVID diagnosis.
	o Physiotherapy began within 24 hours of admission to ICU.
	o Rehabilitation therapy was started immediately, based on the patient’s general condition.
Duration and frequency of rehabilitation activities	• Most studies reported on exercise-based rehabilitation performed by a physical therapist, with individual exercise sessions lasting 10-45 minutes.
	• Exercise sessions took place 1-2 times a day.
	• There was less consistency in the overall duration of activities needed to help patients resume a relatively normal level of daily function:
	o One study suggested 2-3 weeks.
	o One study suggested at least 6-8 weeks.
Modality	• ICU-based rehabilitation predominantly taking place at the bedside.
	• Modality of post-acute rehabilitation not clear in many articles but seems most took place in the patient’s room, later shifting to telehealth after discharge.
Disciplines involved	• Physiotherapists and respiratory therapists most common.
	• Other disciplines involved included:
	o Occupational therapy.
	o Psychiatry and/or psychology.
	o Speech-language pathology.
	o Physiatry.
Rehabilitation treatments/services provided	• Respiratory Therapy Interventions:
	• Mostly respiratory muscle training through various exercises including cough exercise, diaphragmatic training and stretching.
	• Exercises included sit-to-stand training, walking, balance and aerobic training.
	• Interval training for those who could not tolerate sustained aerobic exercise.
	• Equipment used included commercial hand-held resistance devices, neuromuscular electrical stimulation via squared electrodes, cycle ergometer, with elastic bands or free weights, and an inspiratory volumetric exerciser.
	• Pulmonary Therapy Interventions:
	• Mostly posturing and prone positioning strategies.
	• Pulmonary therapy strategies to be provided according to patients’ oxygen support needs:
	o Those requiring oxygen support: breathing control and chest clearance techniques.
	o Those not requiring oxygen support: thoracic expansion training and forced inspiration/expiration.
	• Musculoskeletal Therapy Interventions:
	• Mostly passive and active-assisted range of motion, stretching and pumping exercises for limbs.
	• These included exercises like balance training, walking, and limb strengthening exercises.
	• Psychosocial Therapy Interventions:
	• Psychological counseling and sleep-promotion activities such as providing patients with earplugs, eyeshades, and sleep medications.
	• Speech-Language Therapy Interventions:
	• Swallowing rehabilitation and nutritional support.

Abbreviation: ICU, intensive care unit.

Nature of rehabilitation programs

All of the articles provided information on what a rehabilitation program for COVID patients could entail (Table 3).

Secondary data article details

Of the 82 secondary articles, 57 articles specified the place of rehabilitation (i.e., acute care/ICU (n = 39), postacute/ICU discharge (n = 10), inpatient rehabilitation (n = 15), and community-based setting (n = 20)). The most common rehabilitation profession to be involved in care for COVID patients was physiotherapy (n = 29), with three studies highlighting the inclusion of RPTs. Other rehabilitation professionals included physiatrists/physical medicine and rehabilitation (PMR) specialists (n = 11), etc.
In total, 60 articles discussed COVID sequelae (see Table 4).

Comorbidities

Only 11 secondary articles identified comorbidities observed in individuals with COVID. The most commonly discussed comorbidities were cardiovascular diseases, including coronary artery disease, hypertension, and stroke. Other conditions included diabetes, bladder dysfunction, chronic pulmonary diseases, cancer, autoimmune diseases, and neurological conditions.

Rehabilitation admission criteria

Only 12 of the secondary articles explicitly outlined criteria that could be used to determine COVID patients' eligibility for rehabilitation: (1) negative COVID status of the patient (eg, two consecutive negative nasal swabs within 24 hours or 7+ since diagnosis), (2) stable cardiovascular function, respiratory function (eg, stable oxygen saturation with no need for respiratory assistance), nervous system function and general parameters (eg, no fever), and (3) functional status of the patient should reflect some independence (as determined by the Functional Independence Measure). However, patients should receive rehabilitation to address any functional deficits they may be experiencing (eg, unable to complete some activities/instrumental activities of daily living, residual functional deficits owing to hospital-acquired weakness). Only two studies addressed ventilation status, with one suggesting that ventilator-dependent patients to be tracheotomized at least 24 hours before admission and the other recommending that rehabilitation not begin unless there is absence of ventilator resistance.

Adaptations to rehabilitation

Eighteen articles described adaptations to rehabilitation services that facilitated the provision of rehabilitation to COVID patients. These adaptations included (1) modifying the physical space of the rehabilitation unit/center (eg, to enable isolation of infectious COVID patients or to create additional space for ICU patients—many who could receive early rehabilitation as a result) or modifying tasks, roles, and schedules of the rehabilitation teams, (2) creating multidisciplinary COVID teams including physicians, nurses, RPTs, and PTs, (3) scheduling changes to address PPE shortages, (4) delegating tasks based on expertise (eg, matching approaches to the right profession, using best mix of skills), and (5) using technology to facilitate communication between providers and to deliver rehabilitation at a distance.
Nature of rehabilitation programs across the continuum

All of the included articles discussed the nature of rehabilitation. Fourteen articles touched on what rehabilitation may look like in a broader context rather than within a specific area (ie, acute care).

The articles highlighted how rehabilitation is a vital component of care and recovery for persons with COVID. Articles suggested that the COVID rehabilitation program include pulmonary, physical, respiratory, medical, and swallowing aspects. Postural positioning was discussed as an important technique to help mitigate the impacts of prolonged bedrest. Only two studies described specific techniques that could be used in this population (eg, Zheng’s recumbent exercises, airway clearance, bed mobility, sit to stand, walking, etc) but did not describe specific prescription information. Articles also suggested that severity of the illness be considered when developing a therapy regimen. Lopez and colleagues suggested that a registry be created to document symptoms and recovery trajectories over time of COVID patients to help inform rehabilitation practices going forward. Finally, one study recommend the use of telehealth but did not describe a protocol. An additional 12 articles provided specific suggestions for frequency, duration, and modality of COVID rehabilitation (see Table 5). Most of the suggestions were adapted from respiratory rehabilitation guidelines for COVID patients specifically or for similar populations (eg, COPD, acute respiratory distress syndrome). One article made recommendations based on front-line expert consensus and references and another adapted general exercise principles from the American College of Sports Medicine. Three articles did not specify what they based their recommendations on.

Acute care

Thirty-one articles provided information on what rehabilitation in the acute phase may look like. Four studies identified that rehabilitation in the acute phase would be helpful to mitigate sequelae of COVID but did not provide any additional information regarding the rehabilitation program itself. Nearly all the articles recommended in-person rehabilitation at the bedside, with one specifying techniques that minimize handling of patients (eg, mechanical assisted limb exercises, remote controlled mechanical tilting beds).

Respiratory rehabilitation was most commonly discussed (n = 18). In the acute stage, early mobilization (ie, postural management) was suggested by articles to improve respiratory function and maintain oxygen saturation levels.

Articles proposed that for unconscious or sedated patients, passive range of motion mobilization exercises and electrical muscle stimulation (EMS) could be used in an attempt to counteract deconditioning and immobilization deficits. Airway clearance techniques such as stimulated cough maneuvers and airway suctioning were also discussed in nine studies for those who were on invasive mechanical ventilation. These techniques were not recommended for patients with significant bronchial obstruction. One study described exercise training, breathing exercises and chest care and airway secretion for those who were ventilated but had “clear cognitive status” (not defined in article). Further details about articles’ recommendations for COVID rehabilitation in the acute care setting can be found in Table 6.

Postacute care (exact setting unspecified)

It was recommended by all articles that COVID patients receive rehabilitation after discharge from the acute care setting—though a subset did not specify the exact setting. With respect to what a postacute program might look like, details were scarce. Articles suggested that post-ICU discharge exercise therapy and multimodal physiotherapy treatment and respiratory therapy be prescribed but did not provide further details. For individuals who have functional deficits and physical barriers to discharge (eg, inability to navigate steps to enter home, needing assistance with transfers), continued physical and occupational therapy as well as access to a physiatrist can help with discharge planning and symptom management. Few described a postacute care rehabilitation program in more detail. These articles focused on respiratory therapy, mobilization and postural management, strength training, endurance training, balance training, EMS, and chest physiotherapy. Articles recommended that prescribed exercise be of low intensity (<3.0 metabolic equivalents). Psychological support, nutritional support and ADL guidance was also suggested for this phase of recovery. Finally, it was recommended that the rehabilitation program be tailored based on disease severity.

Inpatient rehabilitation

Three of the nine studies that suggested that persons with COVID undergo inpatient rehabilitation did not provide additional details. Overall, it was recommended that care be provided by a multidisciplinary team included OTs and PTs. Some articles proposed that rehabilitation programs in the inpatient setting include mobilization, strength training, endurance training, and balance exercises to help
Article	Modality	Program components	Frequency	Intensity	Duration	Timing
Mukaino et al.47	Telehealth	Exercise program	Once	NR	20 min	Community rehabilitation
Qu et al.56	Telehealth	Exercise program	Daily	1.0 MET - <3.0 METS	15-45 min	Community rehabilitation
Rayegani et al.58	NR	Physical activity	2x per day, 1 h after eating	NR	15-45 min	NR
Righetti et al.59	In person	Prone ventilation	Once per day	NR	12-16 h	Acute care
Ronconi et al.60	In person	Head and arm	Once per day	NR	12 h	Acute care
Sheehy62	In person	Strength training	3 x per week, for 6 weeks	8-12 RM, 1-3 sets	NR	Across continuum
Wang et al.,73	In-person	Prone positioning	3 x per day	NR	2 min	Acute care
Yang and Yang74	Telehealth	Aerobic exercises	3-5 x per week	Progressive increase from low intensity	Increase up to 20-30 min	Community rehabilitation
		Strength training	2-3 x per week	8-12 RM, 1-3 groups each time; increase load 5%-10% every week	2 min per group	
Abdullahi105,106	In person	Postural management	Once per day	NR	30-50 min	Within 72 h of endotracheal intubation
Ahmed and Haji109	Telehealth	Aerobic exercises	3-5 x per week	Build toward 12-14/20 RPE	Baseline tolerance build to 60 min	At home
		Resistance training	2+ days per week	40%-50% 1 RM, 1-4 sets, 10-15 reps	NR	At home
Cheng et al.120a	Telehealth	Aerobic exercises	5 x +/week	40%-59% HRR	30-60 min	At home
		Resistance training	2-3 days/week, 48 h intervals	Strength—60% 1 RM, 2-4 sets, 8-12 reps	10-30 s per stretch	
Demeco et al.122	Telehealth	Aerobic exercises	3-5 x per week	Low intensity with steady increase	20-30 min	At home
		Strength training	2-3 x per week	Weekly intensity increases by 5%-10%	NR	

*aRecommended for mild COVID with no preexisting risk factors.

Abbreviations: HRR, heart rate reserve; METS, metabolic equivalents; NR, not reported; RM, repetition maximum; RPE, rate of perceived exertion.
with recovery from deconditioning and generalized weakness. The main goal of rehabilitation discussed for inpatient settings was for the patient to regain enough physical functioning to be independent. The three articles suggested that assessments be done to identify deficits in activities of daily living. With respect to respiratory training, only three articles described the use of this type of therapy at this stage. One article proposed that oxygen therapy be provided to support COVID patients with chronic pulmonary diseases during exercises. Another suggestion was that respiratory functioning be assessed and if the muscles are found to be weak, respiratory training could be included. Carda et al recommended breathing training in line with published guidelines for primary lung fibrosis. Other areas of consideration for an inpatient rehabilitation program for COVID included cognitive rehabilitation, smoking cessation, dietary and nutritional counseling, psychological support, and supports to improve quality of life. One article described the need to address voice or communication impairments. Telerehab was recommended for consultations once approved by a consultant on the unit.

Guideline details

A total of 13 guideline documents were included in the review. Each of these outlined an actionable set of recommendations that targeted patients with COVID.
rehabilitation practitioners or policy makers. The guidelines were published by organizations and researchers from the United Kingdom, Australia, Turkey, Denmark, Canada, China, and New Zealand.

Nature of rehabilitation programs across the continuum

Nearly all of the guidelines suggested that COVID rehabilitation programs be provided by an interdisciplinary team of practitioners including physiatrists, PTs, OTs, SLPs, and dietitians. Guidelines recommended that COVID rehabilitation begin early (ie, as soon as the patient has stable system(s) functioning) and be sustained throughout the patient’s recovery and across the continuum of care.

Acute care
Guidelines suggested that rehabilitation in the acute care setting focus primarily on respiratory management, mobility, and nutrition. Respiratory management is likely provided by respiratory therapists and SLPs who can help COVID patients resume normal breathing patterns through oxygenation, airway secretion clearance, and ventilation weaning. PTs and OTs can support early mobility by mitigating the effects of deconditioning using both passive and active range of motion exercises, positioning, and strength training. SLPs are well positioned to support patients’ nutrition by screening for malnutrition, addressing swallowing difficulties, and providing appropriate diet and fluid modifications.

Inpatient rehabilitation
Guidelines suggested that postacute care focus on addressing ongoing impairments in mobility, respiratory function, nutrition, and communication with the goal of promoting independence with activities of daily living. Both mobility and respiratory function can be managed using aerobic exercises that are tailored to patients’ abilities (eg, slow jogging, swimming, brisk walking), strength training, and breathing exercises. Nutritional needs can be monitored in terms of oral intake and muscle function. Specifically, SLPs can help manage swallowing issues and promote communication ability.

Community-based rehabilitation
Most guidelines recognized that COVID recovery is a complex and ongoing process that will likely extend into the community. The suggested goal of community-based rehabilitation is to optimize COVID patients’ functional recovery and quality of life. This entails continuing to provide rehabilitation support to manage respiratory function, mobility, nutrition, and communication (eg, through tailored exercise programs, energy/fatigue management plans, SLP support for diet plans). Importantly, it is recommended that patients be supported and empowered to manage their own health and reintegrate into the community. This can be facilitated by rehabilitation practitioners providing patient education, virtual rehabilitation, home safety assessments.

Key recommendations (across article types)

Five primary articles, 12 guidelines, and 40 secondary data articles provided recommendations to inform the ongoing rehabilitation response to the COVID pandemic (Table 7).

Barriers and facilitators of COVID rehabilitation provision (across article types)

Factors that act as barriers or facilitators of COVID rehabilitation provision were discussed across primary data articles (n = 7), secondary data articles (n = 42), and guidelines (n = 6).

DISCUSSION

The goal of this scoping review was to provide a comprehensive and up-to-date synthesis of evidence pertaining to rehabilitation for COVID patients. We included 128 articles, with 26% reporting primary data (n = 33), 64% reporting secondary data (n = 82), and 10% outlining practice/self-management guidelines (n = 13). A quarter of the included articles came from Italy and China, which were among the first countries to experience and begin responding to the impact of the COVID pandemic.

Rehabilitation programs to meet the needs of patients with COVID

The emerging body of literature on COVID rehabilitation has begun to elucidate the important role that rehabilitation can play in addressing COVID-related declines in health, function, and well-being. Most articles agreed that an individualized rehabilitation program be provided across the continuum of care by an interdisciplinary team of professionals and that the nature and extent of rehabilitation be informed by the care setting and COVID severity.
Only a small number of articles (29%) made mention of the psychosocial impacts of COVID (eg, anxiety, depression, posttraumatic stress disorder, reduced quality of life) and very few (5%) presented evidence pertaining to rehabilitation’s role in addressing them. A number of psychosocial factors (eg, distress, mental health) have been found to be significantly associated with an elevated risk of COVID hospitalization. It is likely that these psychosocial vulnerabilities that predispose individuals to COVID hospitalization are the same vulnerabilities exacerbated post hospitalization. In turn, psychosocial rehabilitation programming warrants further attention. Our review begins to elucidate what psychosocial rehabilitation might entail, including psychological counseling/interventions to address issues such as depression, anxiety, and sleep deprivation; collaboration between physical medicine and rehabilitation specialists and psychiatrists/psychologists; and education to promote patients’ participation in valued activities.

None of the articles discussed what community-based psychosocial rehabilitation should entail or how it should be delivered. Telehealth was widely discussed and endorsed by studies in our review but its potential for providing psychosocial rehabilitation was not considered. Telehealth and computer-mediated consultations with other chronic illness populations have been shown to be beneficial and to foster closeness and communication amongst care providers, patients, and families. Although telerehab interventions have been demonstrated to be comparable in effectiveness to in-person therapy with other disease populations such as...
stroke, they disproportionately focus on physical recovery and have been underused to provide social support to patients and their family caregivers in the community setting. To this end, we suggest that telehealth and other virtual care modalities have high potential for facilitating outpatient counseling and education to community-residing COVID patients. Rehabilitation professionals can also leverage virtual modalities to facilitate peer-led support and education for COVID patients. Despite peer support being recognized as an important aspect of psychosocial rehabilitation, it was not discussed by studies in our review. Peer support has been demonstrated to promote community reintegration in other patient populations and may be particularly beneficial for COVID patients who are already reporting that online groups are a valuable source of experiential knowledge and support—especially in the absence of other community/home care services.

Adaptations to enable the provision of COVID rehabilitation

Several of the adaptations and facilitators we identified directly resolved issues that challenged the provision of COVID rehabilitation. For example, modifying physical spaces, schedules, and teams was done to limit the spread of COVID and to address PPE shortages. Providing professional development opportunities was considered one way of addressing staff wellness and burnout. These solution-oriented adaptations should continue to be optimized so as to break down barriers to rehabilitation provision.

Notably, three aspects identified as challenging the provision of COVID care were not explicitly addressed by any of the adaptations or facilitators: (1) the paucity of evidence and guidelines for COVID rehabilitation, (2) patients’ health status, and (3) health system issues. The first two issues are interconnected as the variability in COVID severity and impact has made it difficult to establish eligibility criteria and to generate a broad rehabilitation prescription. At a minimum, articles in our review recommend that eligibility criteria entail (1) negative COVID status (as determined by two negative nasal swabs or patient being 7+ days from diagnosis), (2) stability in respiratory and cardiovascular function as well as general health parameters (eg, stable oxygen saturation, no fever), and (3) functional need (one article suggested rehabilitation need be determined by a functional independence measure.

TABLE 8 Barriers to providing COVID rehabilitation

Barriers	Details
COVID infectivity	- Limited patients’ access to rehabilitation because of isolation procedures and rehabilitation facility closures.27,64,122 - Physical distancing difficult to implement.13 - Constrained therapists’ ability to provide rehabilitation in common areas as they typically would.24 - Restricted use of usual therapies owing to potential aerosol transmission.58,59,65,74 - Prevented the involvement of families in the care of COVID patients.127
Patients’ health status	- Variability in severity of COVID infection made prescribing and initiating rehabilitation challenging.4,49,56,65,70 - Severe disability heightens risk of fatigue and respiratory decompensation, which limits the range of therapies that can be provided.24,34,40 - Lack of clarity about which patients are stable enough to receive rehabilitation using a virtual modality, thereby limiting the use of telerehab.69
Lack of evidence/guidelines	- Makes reorganizing care difficult since it is not clear which patients require rehabilitation and the type(s) of rehabilitation to be provided.21,30,34,53,63,78,110,123 - Absence of evidence pertaining to virtual care especially challenging for provision of telerehab.69,74
Personal protective equipment	- Insufficient personal protective equipment causes rationing of supplies and thereby challenges team assembly, shift schedules, and the overall ability to provide rehabilitation in an infectious environment.4,13,27,35,49,63-65,73,76,106,107,127 - Use of personal protective equipment also affects communication between clinicians and patients.127
Staff-related issues	- Declines in staff wellness, increased burnout, and staff shortages limit the extent and quality of rehabilitation provision to COVID patients.20,34,35,104,107,127 - Increased workloads.80 - Health care provider fear of infection and transmission to own families was challenging.138
Health system issues	- Lack of coordination across all levels of the health care system limits effective delivery of rehabilitation to patients across care settings (e.g., in hospital, at home).27,56,70,71 - Existing billing procedures are stringent and burdensome for physicians and take away from patient care time and quality.5,65 - Key challenge for developing nations is that they may not have an existing comprehensive rehabilitation system or disaster-response systems that include rehabilitation.13,106 - Lack of funding to support telerehab and other infrastructure.86,107

Note: Citations bolded correspond to articles reporting primary data. The remaining references correspond to secondary data articles and guidelines.
[FIM] score of <100).29 As mentioned earlier, the rehabilitation prescription itself is best tailored to each patient to ensure that it holistically meets individual needs.

The health system issues we identified centered on poor system coordination that limited the continuity of COVID rehabilitation across the care continuum. Challenges with rehabilitation continuity—especially as patients transition back to the community—are not new.147 However, several aspects of the COVID pandemic exacerbate these challenges (eg, physical distancing restrictions, closing outpatient services, and early discharge from inpatient rehabilitation), suggesting that a multipronged approach is needed. Many actionable strategies to promote COVID rehabilitation continuity can be leveraged from articles in our review and adapted from research that has focused on maintaining rehabilitation for non-COVID patients in the wake of the pandemic. These include (1) capitalizing on telemedicine to provide remote rehabilitation—particularly using accessible tools such as Skype, FaceTime, and Zoom without penalty to health care providers for noncompliance with privacy regulations149; (2) creating strong partnerships with home care130 and ensuring that rehabilitation services are viewed as “essential” —particularly for those returning to congregate care settings where lockdowns may restrict nonessential care148; and (3) ensuring that health care providers can bill and/or be reimbursed for telehealth visits using appropriate billing codes and in a streamlined way that does not detract from their time with patients.4,65,149 It is important to note that these suggestions will not universally apply to health systems and organizations across geographic boundaries. In turn, they should be adapted to countries’ national and regional contexts and health system capacities.

Future directions

Many aspects of COVID rehabilitation were difficult to summarize across articles given the vast variability in reporting. Thus, there is a need for more consistent reporting to ensure that future studies can be meaningfully aggregated to inform COVID rehabilitation programming and evaluation. Based on our review, we suggest standardized reporting parameters for the following data elements: patient populations, rehabilitation admission, service adaptations, and rehabilitation programming. For patient populations, capturing demographic information such as age, gender, hospital/ICU/ rehabilitation LOS, comorbidities, and COVID sequelae would provide important contextual information and enable detailed program evaluations. There was not a great deal of consistency in rehabilitation admission criteria reported but, at a minimum, our review elucidates that COVID status at admission, respiratory function (eg, oxygen saturation), and functional ability (eg, using the FIM) should be outlined. Some degree of consistency was observed in the reporting of adaptations to enable COVID rehabilitation according to the broad categories of modifications to physical space, staffing,
scheduling, and communication modalities/procedures. Although information pertaining to rehabilitation programming was inconsistently reported across articles, we were able to extract data from at least one article for each of the following categories and thus suggest them as a good starting point for more streamlined reporting: (1) timing (ie, when program was initiated), (2) duration (ie, duration from start to end of program), (3) frequency, (4) modality (eg, bedside, virtual), (5) setting (ie, acute care, ICU, inpatient/outpatient/community rehabilitation), and (6) content (ie, rehabilitation disciplines involved, number of rehabilitation professionals involved, specific therapies provided).

The role of families in supporting COVID patients’ rehabilitation and recovery was not a focus of any articles included in our review. This is potentially because of ongoing public health restrictions that limit the physical presence of families for hospitalized patients. However, it has been pointed out that physical restrictions on family presence should not undermine family-centered care efforts. Distressing times like those experienced during the pandemic intensify patients’ need to feel safe and connected to their loved ones, making family-centered rehabilitation more important now than ever. Like other complex illnesses, COVID leads to a large and diverse set of needs requiring active participation and support from families. Family-centered COVID rehabilitation ensures the involvement of both patients and families in treatment planning and can thus facilitate the individualized type of rehabilitation that COVID patients need. Several strategies for engaging families in the overall care of COVID patients can be adapted and implemented in the rehabilitation setting. These include (1) facilitating synchronous patient-family communication (eg, using videoconferencing) as well as asynchronous engagement (eg, prerecorded videos, pictures, patient journaling), (2) ensuring environmental familiarity for patients (eg, arranging for family to bring in objects from home) and describing this environment to families, and (4) prioritizing family-care provider communication (eg, establishing a family communication plan, daily videoconferencing). Engaging families early on when COVID patients are in hospital can enable smoother transitions to home and greater continuity in care.

Sociocultural factors were considered by only one article in our review, highlighting the need for further investigation into their impact on COVID rehabilitation provision and outcomes. For example, those with lower socioeconomic status (SES) may have reduced access to telerehab, which may differentially affect their recovery and other outcomes. Future research should capture variations in age, race, gender, and SES as it is becoming increasingly apparent that COVID disproportionately affects older adults, people of color, women, and those with lower SES.

Our review identified only one qualitative study pertaining to COVID rehabilitation. Qualitative approaches are an important complement to epidemiological and clinical research and can provide insight into behaviors and perceptions. In the context of COVID rehabilitation research, qualitative approaches can elucidate stakeholders’ (eg, patients, families, care providers) lived experiences with rehabilitation care and recovery, thereby moving us beyond the “what” of COVID rehabilitation (eg, what aspects of rehabilitation to provide? what outcomes to measure?) to the “why” and “how” (eg, why are certain aspects of a rehabilitation program beneficial? How do the unique circumstances of COVID patients and families influence care needs and experiences?).

STRENGTHS AND LIMITATIONS

To the best of our knowledge, this is the first scoping review to systematically identify and synthesize a diverse set of evidence sources (ie, primary data, secondary data, guidelines) pertaining to rehabilitation for COVID patients. Our comprehensive synthesis of 128 articles has the potential to provide rehabilitation practitioners with a range of evidence to support their ongoing response to the COVID pandemic. Although the authors have expertise in scoping review conduct, the present review may have been strengthened by an academic librarian designing and deploying the search strategy. The search strategy did not include any terms explicitly related to psychological rehabilitation, which may account to some extent for the lack of data on psychosocial rehabilitation programming for COVID patients. Given that this review was conducted during the early stages of the COVID pandemic, the large majority (74%) of articles we included reported only secondary data (eg, reviews, opinion papers). As such, we were limited in our ability to synthesize primary evidence and make recommendations based on world data that capture COVID rehabilitation “in action.”

CONCLUSION

It is clear that rehabilitation will need to play an important role in the recovery of COVID patients, many of whom have long-lasting symptoms that do not permit return to full community participation. Research to date has begun to elucidate the criteria that can be used to identify patients for rehabilitation as well as the nature, extent, timing, and mode of this rehabilitation. However, a large majority of articles reported secondary data, underscoring that we know little about actual COVID patients receiving rehabilitation, the rehabilitation program itself, and the effectiveness...
of COVID rehabilitation across the continuum of care. Organization- and system-level adaptations have the potential to facilitate COVID rehabilitation delivery by mitigating barriers to rehabilitation provision. Additionally, engaging families in COVID rehabilitation may serve to optimize the continuity of care for patients. Future research should prioritize the reporting of primary data and subsequently the synthesis of studies reporting on the effectiveness of rehabilitation interventions as they are developed and delivered over time.

ORCID
Marina B. Wasilewski https://orcid.org/0000-0003-1198-2292
Stephanie R. Cimino https://orcid.org/0000-0002-4744-5520
Kristina M. Kokorelias https://orcid.org/0000-0002-1277-472X
Robert Simpson https://orcid.org/0000-0002-7107-8679
Sander L. Hitzig https://orcid.org/0000-0002-9139-9250
Lawrence Robinson https://orcid.org/0000-0002-9590-8745

REFERENCES
1. Jaime CY, McIntyre M, Dow H, Robinson L, Winston P. Changes to rehabilitation service delivery and the associated physician perspectives during the COVID-19 pandemic: a mixed methods needs assessment study. Am J Phys Med Rehabil. 2020;99(9):775-782.
2. Mahase E. Covid-19: what do we know about “long covid”? BMJ. 2020;370.
3. Coraci D, Fusco A, Frizziiero A, Giovannini S, Biscotti L, Padua L. Global approaches for global challenges: the possible support of rehabilitation in the management of COVID-19. J Med Virol. 2020;92:1739-1740.
4. Simpson R, Robinson L. Rehabilitation after critical illness in people with COVID-19 infection. Am J Phys Med Rehabil. 2020;99(6):470-474.
5. Thornton J. Covid-19: the challenge of patient rehabilitation after intensive care. BMJ. 2020;369.
6. Grabowski DC, Maddox KEJ. Postacute care preparedness for COVID-19: thinking ahead. JAMA. 2020;323(20):2007-2008.
7. Rathore FA, Gosney JE, Reinhardt JD, Haig AJ, Li J, DeLisa JA. Medical rehabilitation after natural disasters: why, when, and how? Arch Phys Med Rehabil. 2012;93(10):1875-1881.
8. Phillips M, Turner-Stokes L, Wade D, Walton K. Rehabilitation in the Wake of Covid-19: A Phoenix from the Ashes. London, UK; British Society of Rehabilitation Medicine (BSRM); 2020.
9. Pattanakuhar S, Sukasathien R, Thirapatarapong W. Recommendations for preparedness of medical rehabilitation services in Thailand during COVID-19 outbreak. ASEAN J Rehabil Med. 2020;30(1):2-7.
10. Gitkind Al, Levin S, Dohle C, et al. Redefining pathways into acute rehabilitation during the COVID-19 crisis. Phys Med Rehabil. 2020;12(8):837-841.
11. Arksey H, O’Malley L. Scoping Studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32.
12. Khan KS, ter Riet G, Glanville J, Rowden AJ, Kleijnen J. Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. 2001;4. 2nd edition. NHS Centre for Reviews and Dissemination.
33. Karamouzos V, Fligor F, Gogos C, Velissaris D. High flow nasal cannula oxygen therapy in adults with COVID-19 respiratory failure. A case report. Monaldi Arch Chest Dis. 2020;90(2).

34. Kemp HI, Corner E, Colvin LA. Chronic pain after COVID-19: implications for rehabilitation. Br J Anaesth. 2020;125(4):436-440.

35. Khan F, Amaty B. Medical rehabilitation in pandemics: towards a new perspective. J Rehabil Med. 2020;52(4):1-4.

36. Lazzeri M, Lanza A, Bellini R, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch Chest Dis. 2020;90(1).

37. Leochico CFD. Adoption of telerehabilitation in a developing country before and during the COVID-19 pandemic. Ann Phys Rehabil Med. 2020;63(6):563-564.

38. Levy J, Leotard A, Lawrence C, et al. A model for a ventilator-weaning and early rehabilitation unit to deal with post-ICU impairments with severe COVID-19. Ann Phys Rehabil Med. 2020;63(4):376-378.

39. Lew HL, Oh-Park M, Cifu DX. The War on COVID-19 Pandemic: role of Rehabilitation Professionals and Hospitals. Am J Phys Med Rehabil. 2020;99(7):571-572.

40. Zeng B, Chen D, Qiu Z, et al. Expert consensus on protocol of COVID-19 patients using framework and approaches of WHO International Family Classifications. Aging Med. 2020;3(2):82-94.

41. Liu K, Zhang W, Yang Y, Zhang J, Li Y, Chen Y. Respiratory rehabilitation in elderly patients with COVID-19: a randomized controlled study. Complement Ther Clin Pract. 2020;39:101166.

42. Lopez M, Bell K, Annaswamy T, Juengst S, Ifejika N. COVID-19 manifestations and complications. Am J Phys Med Rehabil. 2020;99(8):669-673.

43. Mammi P, Ranza E, Petraglia F, et al. In response to: Simpson R and Robinson L: rehabilitation following critical illness in people with COVID-19 infection. Am J Phys Med Rehabil. 2020;99(8):679-680.

44. Masiero S, Zampieri D, Del Felice A. The place of early rehabilitation in ICU for Covid-19. Am J Phys Med Rehabil. 2020;99(8):677-687.

45. McNeary L, Maltser S, Verdunco-Gutierrez M. Navigating Coronavirus Disease 2019 (Covid-19) in Physiatry: a CAN report for inpatient rehabilitation facilities. Phys Med Rehabil. 2020;12(5):512-515.

46. Mohan R, Mohapatra B. Shedding light on Dysphagia associated with COVID-19: the What and Why. OTO Open. 2020;4(2):2473974X20934770.

47. Mukaino M, Tatamoto T, Kumazawa N, et al. Staying active in isolation: Telerehabilitation for individuals with the severe acute respiratory syndrome Coronavirus 2 infection. Am J Phys Med Rehabil. 2020;99(6):478-479.

48. Mureddu GF, Ambrosetti M, Venturini E, et al. Cardiac rehabilitation activities during the COVID-19 pandemic in Italy. Position Paper of the AICPR (Italian Association of Clinical Cardiology, Prevention and Rehabilitation). Monaldi Arch Chest Dis. 2020;90(2).

49. Nakamura K, Nakano H, Naraba H, Mochizuki M, Hashimoto H. Early rehabilitation with dedicated use of belt-type electrical muscle stimulation for severe COVID-19 patients. Crit Care. 2020;24(1):342.

50. Pan American Health Organization. Rehabilitation Considerations during the COVID-19 Outbreak. Washington, D.C., USA 8 Apr; World Health Organization (WHO): 2020.

51. Pancera S, Galeri S, Porta R, et al. Feasibility and Efficacy of the Pulmonary Rehabilitation Program in a Rehabilitation Center: case report of a Young Patient Developing Severe COVID-19 Acute Respiratory Distress Syndrome. J Cardiopulm Rehabil Prev. 2020;40(4):205-208.

52. Chartered Society of Physiotherapy. Rehabilitation and COVID-19—CSP Policy Statement. London, UK; Chartered Society of Physiotherapy; 2020.

53. Pinto TF, CRFe C. SARS CoV-2 (COVID-19): lessons to be learned by Brazilian Physical Therapists. Braz J Phys Ther. 2020;24(3):185-186.

54. Polastri M, Nava S, Cini E, Vitaccia M, Gosselink R. COVID-19 and pulmonary rehabilitation: preparing for phase three. Eur Respir J. 2020;55(6):2001822.

55. Poussardin C, Oulehri W, Issner ME, Mertes PM, Collange O. In-ICU COVID-19 patients’ characteristics for an estimation in post-ICU rehabilitation care requirement. Anaesth Crit Care Pain Med. 2020;39(4):479-480.

56. Qu J-M, Wang C, Cao B. Guidance for the management of adult patients with coronavirus disease 2019. Chin Med J. 2020;133(13):1575-1594.

57. Ramachandran S. A junior doctor’s experience of critical illness: from treating patients to becoming a patient with COVID-19. Anaesth Rep. 2020;8(1):59-62.

58. Rayegami SM, Raessadat SA, Fakharian A, et al. Role of rehabilitation medicine in the COVID-19 pandemic: an Iranian consensus. Eur J Phys Rehabil Med. 2020:309-310.

59. Righetti RF, Onoue MA, Politi FVA, et al. Physiotherapy care of patients with Coronavirus Disease 2019 (COVID-19)—A Brazilian experience. Clinics. 2020;75:e2017.

60. Ronconi G, Ferrara PE, Codazza S, Cerulli S. Is the rehabilitation ready for COVID-19 patients’ care? Minerva Med. 2020.

61. Ross D, Allport F, Carter R, et al. COVID-19 Patient Rehabilitation Booklet—Information for Patients. Leeds, UK; National Health Service (NHS): 2020.

62. Sheehy LM. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMR Public Health Surveill. 2020;6(2):e19462.

63. Simonelli C, Paneroni M, Fokom AG, et al. How the COVID-19 infection tsunami revolutionized the work of respiratory physiotherapists: an experience from the Italian North. Monaldi Arch Chest Dis. 2020;90(2).

64. Smith SR, Jenq G, Clafin T, Magnant C, Haig AJ, Hurvitz E. Proposed Workflow for Rehabilitation in a Field Hospital Setting during the COVID-19 Pandemic. Phys Med Rehabil. 2020;12:823-828.

65. Stein J, Visco CJ, Barbuto S. Rehabilitation Medicine Response to the COVID-19 Pandemic. Am J Phys Med Rehabil. 2020;99(7):573-579.

66. Thomas P, Baldwin C, Bissett B, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73-82.

67. Tur BS, Evcik D. Is physical medicine and rehabilitation needed for COVID-19 patients? Turk J Phys Med Rehabil. 2020;66(2):101-103.

68. Vitaccia M, Carone M, Cini EM, et al. Joint Statement on the Role of Respiratory Rehabilitation in the COVID-19 Crisis: the Italian Position Paper. Respiration. 2020;99(6):493-499.

69. Vitaccia M, Lazzeri M, Guffanti E, et al. Italian suggestions for pulmonary rehabilitation in COVID-19 patients recovering from acute respiratory failure: results of a Delphi process. Monaldi Arch Chest Dis. 2020;90(2).

70. Wade DT. Rehabilitation after COVID-19: an evidence-based approach. Clin Med. 2020;20:359-365.

71. Wainwright TW, Low M. Beyond acute care: why collaborative self-management should be an essential part of rehabilitation pathways for COVID-19 patients. J Rehabil Med. 2020;52(5):1-2.

72. Wallace S, Behenna K, Bolton L, et al. COVID-19 Speech and Language Therapy Rehabilitation Pathway. London, UK; Royal College of Speech & Language Therapists: 2020.

73. Wang TJ, Chau B, Lui M, Lam G-T, Lin N, Humbert S. PM&R and Pulmonary Rehabilitation for COVID-19. Am J Phys Med Rehabil. 2020;99(9):769-774.
74. Yang L-L, Yang T. Pulmonary Rehabilitation for Patients with Coronavirus Disease 2019 (COVID-19). Chron Dis Transl Med. 2020;6(2):79-86.
75. Yu P, Wei Q, He C. Early rehabilitation for critically ill patients with COVID-19: more benefits than risks. Am J Phys Med Rehabil. 2020;99(6):468-469.
76. Ministry of Health and Allied Health Aotearoa New Zealand. Guidance for the Rehabilitation of People with or Recovering from COVID-19 in Aotearoa New Zealand. Wellington, New Zealand; Ministry of Health and Allied Health Aotearoa New Zealand; 2020.
77. Zhao H-M, Xie Y-X, Wang C. Recommendations for respiratory rehabilitation in adults with COVID-19. Chin Med J. 2020;133(13):1595-1602.
78. Zhu C, Wu Y, Liu H, Ban Y, Ma X, Zhang Z. Early pulmonary rehabilitation for SARS-CoV-2 pneumonia: experience from an intensive care unit outside of the Hubei province in China. Heart Lung. 2020;49(5):449-450.
79. Negrini F, Ferrario I, Mazziotti D, et al. Neuropsychological features of severe hospitalized COVID-19 patients at clinical stability and clues for post-acute rehabilitation. Arch Phys Med Rehabil. 2020;102(1):155–158.
80. McWilliams D, Weblin J, Hodson J, Veenith T, Whitehouse T, Snelson C. Rehabilitation levels in COVID-19 patients admitted to intensive care requiring invasive ventilation: an observational study. Ann Am Thorac Soc. 2020;18(1):122–129.
81. Ng JA, Miccile LA, Iracheta C, et al. Prone positioning of patients with acute respiratory distress syndrome related to COVID-19: a Rehabilitation-Based Prone Team. Phys Ther. 2020;100(10):1737-1745.
82. Rosen K, Patel M, Lawrence C, Mooney B. Delivering telehabilitation to COVID-19 Inpatients: a retrospective chart review suggests it is a viable option. HSS J. 2020;16(Suppl 1):1-7.
83. Shan MX, Tran YM, Vu KT, Eapen BC. Postacute inpatient rehabilitation for COVID-19. BMJ Case Rep. 2020;13(8):e237406.
84. Sterli S, Buss I, Redecker H, et al. Insights from an interprofessional post-COVID-19 rehabilitation unit: a speech and language therapy and respiratory medicine perspective. J Rehabil Med. 2020;52(9):1-4.
85. Suzuki E, Sakai T, Hoshino C, Hirao M, Yamaguchi R, Nakahara R. Assessment of the need for early initiation of rehabilitation treatments in patients with Coronavirus Disease 2019. Prog Rehabil Med. 2020;5:1-9.
86. Steere HK, Polich G, Silver JK, et al. Ambulatory rehabilitation of patients hospitalized with SARS CoV-2 infections: early pandemic experience in New York City and Boston. Phys Med Rehabil. 2020. Epub ahead of print.
87. Tay SS, Neo E Jr, Tan MM, Tan PL. Post-critical care COVID-19 patient benefits from a robotic patient-guided suspension system for pulmonary rehabilitation. Ann Acad Med Singapore. 2020;49(6):401-404.
88. Wootton SL, King M, Alison JA, Mahadev S, Chan ASL. COVID-19 rehabilitation delivered via a telehealth pulmonary rehabilitation model: a case series. Respir Case Rep. 2020;8(8):e00669.
89. Zha L, Xu X, Wang D, Qiao G, Zhuang W, Huang S. Modified rehabilitation exercises for mild cases of COVID-19. Ann Palliat Med. 2020;9(5):3100-3106.
90. Roman-Belmonte JM, De La Corte-Rodriguez H, Rodriguez-Merchan EC, La Torre EMD, Vazquez-Sasot A. Strengthening with blood flow restriction: can it be a useful option in the rehabilitation of patients with coronavirus? Arch Bone Jt Surg. 2020;8(4):552-555.
91. Namasevayam-MacDonald AM, Riquelme LF. Speech-language pathology management for adults with COVID-19 in the acute hospital setting: initial recommendations to guide clinical practice. Am J Speech Lang Pathol. 2020;29(4):1-16.
92. Odonkor CA, Sholas MG, Verduzzo-Gutierrez M, Zafonte RD, Silver JK. African American Patient Disparities in COVID-19 Outcomes: a call to action for physiatrists to provide rehabilitation care to black survivors. Am J Phys Med Rehabil. 2020;99(1):986-987.
93. Papathanassoglou E, Pohar Manhas K, Kusi-Appiah E. Beyond acute respiratory distress: multiple organ effects and early rehabilitation in COVID-19. CONNECT: The World of Critical Care Nursing. 2020;13:155-161.
94. Pincherle A, Johr J, Pancini L, et al. Intensive care admission and early neuro-rehabilitation. Lessons for COVID-19? Front Neurol. 2020;11:880.
95. Sivan M, Halpin S, Hollingworth L, Snook N, Hickman K, Clifton U. Development of an integrated rehabilitation pathway for individuals recovering from COVID-19 in the community. J Rehabil Med. 2020;52(8):1-5.
96. Shah SZA, Nasb M, Lu M, Huang L, Wang Y, Chen H. Scaling the need, benefits, and risks associated with COVID-19 acute and postacute care rehabilitation: a review. Rehabil Pract Res. 2020;2020:1-9.
97. Rooney S, Webster A, Paul L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome–Related Coronavirus infection: implications for COVID-19 rehabilitation. Phys Ther. 2020;100(10):1717-1729.
98. Sun T, Guo L, Tian F, et al. Rehabilitation of patients with COVID-19. Expert Rev Respir Med. 2020;14(12):1249-1256.
99. Uppal H, Rai S. Role of rehabilitation during COVID-19 pandemic: an Indian perspective. Disaster Med Public Health Prep. 2020;1-4.
100. Valenzuela PL, Joyner M, Lucia A. Early mobilization in hospitalized patients with COVID-19. Am J Phys Med Rehabil. 2020;63(4):384-385.
101. Vargara J, Skoretz SA, Brodsky MB, et al. Assessment, diagnosis, and treatment of Dysphagia in patients infected with SARS-CoV-2: a review of the Literature and International Guidelines. Am J Speech Lang Pathol. 2020;29(4):2242-2253.
102. Yonter SJ, Alter K, Bartels MN, et al. What now for rehabilitation specialists? Coronavirus Disease 2019 (COVID-19) Questions and Answers. Arch Phys Med Rehabil. 2020;101:2233-2242.
103. Zhu Y, Wang Z, Zhou Y, et al. Summary of rehabilitation and physiotherapy guidelines for patients with COVID-19 based on recommendations of World Confederation for Physical Therapy and National Association of Physical Therapy. J Phys Ther Sci. 2020;32(8):545-549.
104. Salawu A, Green A, Crooks MG, Brixey N, Ross DH, Sivan M. A proposal for multidisciplinary tele-rehabilitation in the assessment and rehabilitation of COVID-19 survivors. Int J Environ Res Public Health. 2020;17(13):1-13.
105. Abdullahi A. Safety and efficacy of chest physiotherapy in patients with COVID-19: a critical review. Front Med. 2020;7:454.
106. Abdullahi A, Bello B, Mukhtar NB, et al. Physiotherapy management of COVID-19 in Africa: ongoing efforts, challenges, and future directions. Physiother Theory Pract. 2020;36(8):871-872.
107. Adhikari SP, Dev R, Sandorh M. Alternatives to routinely used physiotherapy interventions for achieving maximum patients' benefits and minimising therapists' exposure in treatment of COVID-19-a commentary. Eur J Physiother. 2020;22:373-378.
108. Ahmed I. Covid-19: prioritising rehabilitation when mortality figures dominate the headlines. BMJ. 2020;370:m3381.
109. Ahmed I, Haji G. COVID-19—Is it time for exercise clinicians to prehabilitate “high risk” respiratory patients? Curr Sports Med Rep. 2020;19(8):281-283.
110. Ambrosino P, Papa A, Maniscalco M, Di Minno MND. COVID-19 and functional disability: current insights and rehabilitation strategies. Postgraduate Med J. 2020;469-470.
111. Antonelli M, Donelli D. Respiratory rehabilitation for post-COVID19 patients in spa centers: first steps from theory to practice. *Int J Biometeorol*. 2020;64(10):1811-1813.

112. Arenivas A, Carter KR, Hartik LM, Hays KM. COVID-19 neuropsychological factors and considerations within the acute physical medicine and rehabilitation setting. *Brain Inj*. 2020;34(8):1136-1137.

113. Asly M, Hazim A. Rehabilitation of post-covid-19 patients. *Pan Afr Med J*. 2020;36:1-3.

114. Battaglini D, Robba C, Caiffa S, et al. Chest physiotherapy: an important adjuvant in critically ill mechanically ventilated patients with COVID-19. *Respir Physiol Neurobiol*. 2020;282:103529.

115. Beom J, Jung J, Hwang I-C, et al. Early rehabilitation in a critically ill inpatient with coronavirus disease 2019: a case report. *Eur J Phys Rehabil Med*. 2020;6(6):858–861.

116. Brown DA, O’sullivan H, Friel MA, et al. Six lessons for COVID-19 rehabilitation from HIV rehabilitation. *Phys Ther*. 2020;100(11):1906-1909.

117. Brugliera L, Spina A, Castellazzi P, et al. Rehabilitative of COVID-19 patients with acute lower extremity Ischemia and amputation. *J Rehabil Med*. 2020;52(9):jrm00094.

118. Candemir I, Ergun P. COVID-19 infections and pulmonary rehabilitation. *Tuberk Toraks*. 2020;68(2):192-194.

119. Cavalaghi A, Pelti G, Conti C, Penati R, Vavassori F, Taveggia G. Cranial nerves impairment in post-acute oropharyngeal Dysphagia after COVID-19: a case report. *Eur J Phys Rehabil Med*. 2020;56(6):853–857.

120. Cheng Y-Y, Chen C-M, Huang W-C, et al. Rehabilitation programs for patients with CoCoronaVirus Disease 2019: consensus statements of Taiwan Academy of Cardiovascular and Pulmonary Rehabilitation. *J Formos Med Assoc*. 2020;120(1 Pt 1):83–92.

121. Cacciari E, Pisanò F, Negri F, De Sire A. Which are the main assessment tools of functional capacity in post-acute COVID-19 patients admitted to Rehabilitation Units? *Eur J Phys Rehabil Med*. 2020. Epub ahead of print.

122. Demeco A, Marotta N, Barletta M, et al. Rehabilitation of patients post-COVID-19 infection: a literature review. *J Int Med Res*. 2020;48(8):300060520948382.

123. Exum E, Hull BL, Lee ACW, Gumieny A, Villarreal C, Prieto J. Six lessons for COVID-19 outpatient management for patients with and at high risk for cardiovascular disease during the COVID-19 pandemic: a scientific statement from the American Society for Preventive Cardiology. *Am J Prev Cardiol*. 2020;20(1):1144.

124. Falvey JR, Krafft C, Kornetti D. The essential role of home-and community-based physical therapists during the COVID-19 pandemic. *Am J Phys Med Rehabil*. 2020;100(9):1465-1468.

125. Farrokhi A, Benasuk S, Inoshita S, et al. Remote rehabilitation for patients with COVID-19. *Eur J Phys Med Rehabil*. 2020;109:1-3.

126. Fathipour N, Rezaei A, Farasati B, et al. Remote rehabilitation for COVID-19 patients using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;56(3):335-338.

127. Feng T, Huang H, Cai N, et al. Rehabilitation therapy for a patient after severe Covid-19 pneumonia-A case report. *Ann Thorac Med*. 2020;15(3):103-106.

128. Fernandez J, Sanchis J, Torre M, et al. Tele-rehabilitation after stroke: an updated systematic review of the literature. *Stroke Cerebrovasc Dis*. 2018;27(9):2306-2318.

129. Feng T, Huang H, Cai N, et al. Tele-rehabilitation therapy for COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. *Stroke Cerebrovasc Dis*. 2020;15(12):2660-2668.

130. Fierz W, Knechel W, Monn A, et al. Continuity of rehabilitation services in post-acute care from the ambulatory outpatient's perspective: a qualitative study. *J Rehabil Med*. 2011;43(1):58-64.

131. Fiez WR, Knechel W, Monn A, et al. Continuity of rehabilitation services in post-acute care from the ambulatory outpatient's perspective: a qualitative study. *J Rehabil Med*. 2011;43(1):58-64.

132. Farrokhi A, Benasuk S, Inoshita S, et al. Remote rehabilitation for patients with COVID-19 using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;100(9):1465-1468.

133. Fizipour N, Rezaei A, Farasati B, et al. Remote rehabilitation for COVID-19 patients using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;109:1-3.

134. Fizipour N, Rezaei A, Farasati B, et al. Remote rehabilitation for COVID-19 patients using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;109:1-3.

135. Fizipour N, Rezaei A, Farasati B, et al. Remote rehabilitation for COVID-19 patients using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;109:1-3.

136. Fizipour N, Rezaei A, Farasati B, et al. Remote rehabilitation for COVID-19 patients using telemedicine: a single-center, observational study. *Am J Phys Med Rehabil*. 2020;109:1-3.
153. Creasy KR, Lutz BJ, Young ME, Stacciarini JMR. Clinical implications of family-centered care in stroke rehabilitation. *Rehabil Nurs.* 2015;40(6):349-359.

154. Connor J, Madhavan S, Mokashi M, et al. Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: A review. *Soc Sci Med.* 2020;266:113364.

155. Tai DBG, Shah A, Doubeni CA, Sia IG, Wieland ML. The disproportionate impact of COVID-19 on racial and ethnic minorities in the United States. *Clin Infect Dis.* 2020;72(4):703–706.

156. Burström B, Tao W. Social determinants of health and inequalities in COVID-19. *Eur J Public Health.* 2020;30(4):317-318.

157. Vindrola-Padros C, Chisnall G, Cooper S, et al. Carrying out rapid qualitative research during a pandemic: emerging lessons from COVID-19. *Qual Health Res.* 2020;30(14):2192-2204.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Wasilewski MB, Cimino SR, Kokorelias KM, Simpson R, Hitzig SL, Robinson L. Providing rehabilitation to patients recovering from COVID-19: A scoping review. *PM&R.* 2022;14(2):239-258. https://doi.org/10.1002/pmrj.12669