Who were the tuberculosis patients who died precociously due to the disease in Southern Brazil? A retrospective cohort study

Danielle Talita dos Santos (✉ danielletalita@hotmail.com)
Universidade de Sao Paulo https://orcid.org/0000-0001-9817-7979

Luana Seles Alves
Universidade de Sao Paulo

Juliane Almeida Crispim
Universidade de Sao Paulo

Josilene Dália Alves
Universidade de Sao Paulo

Denisse Andrea Cartagena Ramos
Universidade de Sao Paulo

Jonas Bodini Alonso
Universidade de Sao Paulo

Ivaneliza Simionato de Assis
Universidade de Sao Paulo

Antonio Vieira Ramos
Universidade de Sao Paulo

Elma Mathias Dessunti
Universidade Estadual de Londrina Centro de Ciencias da Saude

Ione Carvalho Pinto
Universidade de Sao Paulo

Pedro Fredemir Palha
Universidade de Sao Paulo

Ricardo Alexandre Arcêncio
Universidade de Sao Paulo

Carla Nunes
Universidade Nova de Lisboa

Research article

Keywords: survival analysis, tuberculosis, HIV, mortality, risk factors
Abstract

BACKGROUND A diagnosis of tuberculosis (TB) is no sign that the disease will be treated successfully, as death still occurs among those who are diagnosed by health services. The study aimed to identify the TB patients who died precociously due to the disease and associated factors in Southern Brazil. METHODS We conducted a retrospective cohort study, where all deaths from TB were gathered, including cases of TB/HIV joint infection (ICD A15.0–A15.9 and ICD B20.0), which occurred between 2008 and 2015 in Southern Brazil. Techniques for survival analysis were applied, including the Kaplan-Meier test and Cox’s regression, from which the mean, median and IC 95 of survival (in days) were estimated; the hazard ratio (HR) obtained and the associated causative factors identified. RESULTS A total of 205 were found: 131 of these resulted from TB alone, while 74 had origins in joint infection of TB/HIV and only 179 deaths were included in the survival analysis. The first group had a median survival of 19 days, and the second group had a median survival of 28 days; however, the difference was not statistically significant. The median survival for the whole sample was 22 days, with 59.1% of these individuals dying within 30 days and 72.5% passing away within 60 days after diagnosis (minimum = 1, maximum = 349, SD = 68.8 and mean = 50 days). The use of alcohol (HR 1.9, IC 95 1.2–3.1) was associated with precocious death in the studied patients. CONCLUSION Most of the deaths occurred prematurely (within 2 months), which evidenced that the diagnoses have been made too late, when the disease was already in its advanced stages. The use of alcohol was associated with the precocious deaths. Although the diagnostic and treatment are free in Brazil and the patients have gotten the diagnosis, they died. Early, sensitive diagnosis, with social support and a comprehensive care might reduce the early mortality among with patients with addiction problems.

Background

Even though the treatment of tuberculosis (TB) has been established since the late 1940s, the illness is still one of the top 10 causes of death by disease globally [1]. In 2017, a total of 1.3 million HIV-negative people, in addition to some 300 000 people living with HIV/AIDS (PLWHA), died as a result of TB [1]. At present, a group of 30 countries accounts for 84% of TB cases worldwide, and Brazil is currently in 19th place in this world ranking [1]. In Brazil, the mortality rate as a result of TB was 2.2 deaths for every 100,000 people in 2017, and the prevalence of the disease was 32.4/100,000 inhabitants [2].

TB is the main cause of death among PLWHA [1,3], and the risk of dying from TB is up to 10.6-fold higher in this group, when compared with the general population under study [3]. Mortality from TB is also higher among people with comorbidities such as diabetes mellitus and risk factors such as alcohol consumption and tobacco smoking [4,5,6]. Other factors have also been identified as possible causes, such as age, being male, having a lower educational level, as well as socio-economic factors such as the location of one’s abode and social conditions [4,7].

Studies using the technique of survival analysis have found that death from TB was most common in the first 3 months after diagnosis among patients with coinfection with human immunodeficiency virus and
TB (TB/HIV) [8], while another study observed that the majority of deaths took place within 2 months after the start of treatment for TB [3]. A study with an HIV-negative population found that the median survival was 12 days, considering those who died of TB [9].

Some studies that evaluated survival in relation to TB focused mainly on people with TB/HIV coinfection [3,8,10,11] and on the delay in commencement of treatment for TB, considering the period from diagnosis to the start of antituberculosis activities [8,12]. Some studies have addressed the issue of premature deaths from TB [9,11,13], considering those deaths which occurred in the intensive stage of treatment, which comprises the first 2 months of treatment [9,14].

Analysis of premature death from the moment of diagnosis up to the moment of death from TB, as well as the associated factors, will serve to advance existing knowledge on the topic and improve the control of this disease in Brazil[15,16]. It is also relevant to establish the factors related to premature mortality among TB patients. In the light of the points here raised, this study aimed to identify the TB patients who died precociously due to the disease and associated factors in Southern Brazil.

Methods

Study design and population

This is a retrospective cohort study, consisting of survival analysis. The population was made up of cases of death from a basic cause registered under CID 10 codes: A 15.0 to 19.0 (tuberculosis) and B 20.0 (HIV disease resulting in tuberculosis—TB/HIV) which occurred between 2008 and 2015.

Place of study

The region of the study was the south of Brazil, and the cohort studied corresponded to the municipality of Curitiba, the capital of the State of Paraná, with an estimated population of 1,971,185 people and a demographic density of 4,027.04 people per square kilometre [17]. This is a Brazilian state capital with a Human Development Index (HDI) of 0.823, placing Curitiba in tenth place on the national ranking. The percentage of people considered poor stood at 1.73%, while 7.93% of the population was vulnerable to poverty, and the GINI Index stood at 0.55 [18]. Within the municipality of Curitiba, the municipality had the following coefficients: prevalence of 14 cases per 100,000 people, and mortality of 1.2 per 100,000 people [19]. The deaths were clustered in the southern region of the municipality and were associated with low HDIs in the respective regions [20].

Data source and procedures

The data were obtained from the Mortality Information System (MIS) and from the Disease Notification Information System (DNIS), from the Secretariat of Health of the State of Paraná (SESA), and information from the latter source completed the clinical and operational picture regarding TB.

Variables under study
The main variable under analysis was the total time (in days) which elapsed between the date on which the diagnosis of TB was confirmed and the date of death as a result of TB. Deaths which occurred within the first 60 days after diagnosis were considered as premature [9,14]. The independent variables are described in Table 1 and include social and demographic dimensions, as well as clinical and operational variables.

Linkage of databases

We established linkage between the MIS and DNIS databases, so as to obtain the clinical and operational variables in addition to the date of diagnosis of TB as obtained from SINAN. In this procedure, we considered the keys, which are the elements of information that identify the registration number, date of birth, and identification of the mother, in a unique manner. For the application of this technique, we used the SPSS software, version 24.0 (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.).

Data analysis

We applied descriptive statistics in order to obtain the absolute values and percentage frequencies of the categorical variables. In the case of continuous variables (time in days and age) we obtained the minimum and maximum values, arithmetic mean, median and standard deviation (SD).

The Kaplan-Meier method was used to estimate the probability of survival, thereby allowing a comparison of the groups through application of the non-parametric log-rank test, when we obtained the median and mean values of survival (in days), distributed according to the independent variables[21,22].

We carried out bivariate analysis to estimate the effect of the independent variables and also to obtain the hazard ratio (HR). After this stage was completed, we performed Cox's multiple regression [23], including in the model the clinically relevant variables and those with p < 0.2. The results were shown as hazard ratios (HR), with confidence intervals of 95% (CI). A type I error rate of 5% was also established, considering results with p < 0.05 as statistically significant. The analysis was carried out using the SPSS software, version 24.0 (IBM).

The study was approved by the Research Ethics Committee of São Paulo University (USP), under number CAAE No. 64515717.9.0000.5393.

Results

We studied a total of 205 cases, of which 131 (63.9%) had a diagnosis of TB (ICD A15–A19) and 74 (36.1%) were diagnosed with TB and HIV coinfection (ICD B20.0) as the main cause of death in the files. Linkage was also established between MIS and DNIS for 179 (87.3%) of the cases. In the descriptive analysis, we considered the 179 cases of death (Table 1), while in the survival analysis, we considered 149 deaths which contained information regarding dates within the criteria as established. In Figure 1, we show the Flow Chart presenting the cases of the death analysed in the study.
Out of the 179 deaths which occurred and were analysed in the period studied, 105 (58.6%) of them had a diagnosis of TB (ICD A15.0 to A19) and 74 were diagnosed with TB and HIV coinfection (ICD B20.0). The descriptive results are shown in Table 2, where one can see that most cases, 138 (77.1% of the total), occurred in males. The White race prevailed among the deaths, with 120 cases (67%), while the mean age was 47 (minimum 20, maximum 94, median 44 and SD = 14).

The most common clinical presentation was pulmonary TB, with 132 cases (73.7%). There was a total of 139 new cases (77.7%), and in 144 of the cases (80.4%), the diagnosis was confirmed by radiographic examination.

The results of survival analysis are shown in Table 3. The median survival from diagnosis up to death, among those who died from a basic cause of either TB alone or coinfection of TB and HIV, was 22 days; it was also observed that 88 of the patients (59.1% of the total) died within 30 days after diagnosis, and 107 (72.5%) died within 60 days after diagnosis (minimum survival 1 day; maximum 349 days; standard deviation (SD) = 68.8 and mean = 50 days).

In Table 3 we can see that the survival of the group with TB/HIV was higher than that of the group with only TB; however, the log-rank test showed no statistical significance. The variables gender, age bracket, educational level and marital status, as well as the other clinical and operational variables did not show statistically significant correlations with survival. The sole exception was the variable alcohol use, which showed statistical significance (p < 0.05) in the Kaplan-Meier log-rank test, being associated with lower survival. The clinical variables, especially TB/HIV coinfection, type of entry, use of other drugs, and use of alcohol, all had p < 0.20. These variables were then subjected to bivariate analysis (Table 3), while only two variables, namely use of alcohol and use of other drugs, were inserted in Cox's regression analysis. Cox's regression analysis produced a hazard ratio (HR) of 1.0, IC95% = 1.2 to 3.0 and a P value of 0.004 for the use of alcohol variable, which continued to be the only statistically significant variable within the model (see Figure 2).

Discussion

The study identified that precocious deaths due to tuberculosis were associated with alcohol consumption. Most of the deaths occurred within 2 months, which evidenced that the diagnoses have
been made too late, when the disease was already in its advanced stages. Some studies[9,13,14] investigated the phenomenon of premature death among patients with TB, one such study observing similar results with a median survival time of 21 days in Korea[13]; another study found that 19% of the patients died within 7 days and 41% died within the first month after the start of treatment for TB[14]. Another study, this time developed in Africa, found a mean survival span of 2 months in 53.3% of the people who started their TB treatment, and in this case, mortality among HIV-positive people was higher than for those who were HIV-negative or whose HIV status was unknown[3].

The short survival period found (less than a month) points to the severity of the disease at the moment of diagnosis, suggesting that the diagnosis was very tardy[9,10], which makes us wonder whether the control measures used, such as the directly observed treatment strategy (DOTS), as well as others such as active search, are effectively being implemented in order to achieve effective control of this disease. Another study found a higher percentage of treatment abandonment and a lower rate of cure in those Brazilian municipalities where the DOTS strategy was more widely applied; in contrast, those municipalities that made less use of the strategy obtained poorer results [24].

The difficulty in accessing services at the moment of symptom onset [13], especially in vulnerable groups or when health service providers are not qualified to recognize a cough as being a clinical sign of TB should be borne in mind; one study showed that only 42.2% of all TB patients were diagnosed correctly at their first visit to the health services [25]. This result suggests the need for an attention model that gives higher value to the active search for patients within the territories, and the tracking of TB among the population at large, and in regular appointments for patients living with HIV, not to mention the search for latent TB infection (ITLB) [15,16,24].

Other factors may also be related to the progression and worsening of TB, and these may involve issues that are more specifically related to any one individual patient, such as the decision to seek health advice, which is arrived at through a decision-making process based on prior knowledge and on the ability to judge their own state of health. A study found that 68% of patients living with TB in Zambia took a long time to seek health care, even if they recognised the symptoms of the disease and suspected that they were ill [26]. Health education helps to improve knowledge and also build awareness in the population about their own state of health; in this regard, a randomised study[27] found that after an educational session, the group that had received advice and guidance about TB showed better knowledge, attitudes and practices.

Brazil has a special protocol in place for monitoring the deaths that occur with some mention of TB as one of the causes, a protocol which, among other aims, seeks to investigate these patients’ individual health conditions and their access to health services, as well as analysing and correcting the information that appears in the different information systems used, namely SIM, SINAN and the TB Site [16]. This is a strategic initiative to improve the qualification of the data; however, according to evidence from the study itself, it is important to verify the phase at which the patient passed away, in stratified fashion, whether the case was being monitored by the service and if this happened in the early or the later phase of
treatment. This is important because, depending on the phase at which the patient met his or her demise, actions also need to be modulated, as premature death makes us think about whether measures and protocols have been effectively implemented so as to impact on mortality from TB [28].

The difference in survival between people with TB and those with TB/HIV did not show any statistical significance, even though the median of the group with coinfection was higher, meaning that they survived longer than the group that only had TB. One point that could justify this result is the fact that people living with HIV/AIDS often receive ongoing medical monitoring from a multiprofessional team, including medical appointments, examinations and regular administration of medication, which leads to intermittent contact with health professionals and also increases opportunities for recognition of signs and symptoms of TV, which is, in fact, recommended as part of the protocol of caring for these patients: the investigation of TB in every medical appointment [15].

Most people who met their end through TB and coinfection from TB and HIV were male and had a low education level, which agrees with the findings of other studies [13,29]. The most common clinical manifestation was the pulmonary variety, even though there was no association with survival in this particular study. As well as being the most common clinical form, it is also the most relevant, as this is a transmittable form of the disease. A study found that individuals with the pulmonary form had a longer survival period than those with the extrapulmonary form of the disease [30].

The present study found that the use of alcohol increased the chances of premature death from TB. The evidence pointing to the effects of alcohol, within specialised literature, has shown harmful effects with regard to over 200 illnesses and diseases [31] (WHO, 2013), and a metanalysis [32] also found that the use of alcohol was linked to a greater risk (RR 1.35, IC 95% 1.09–1.68) of getting full-blown TB when compared with those who abstained from alcohol. In addition, the risk of the disease developing increased together with an increase in the consumption of ethanol (in grams per day).

There are also other factors which could be linked to the use of alcohol, such as malnutrition, overcrowded housing, and use of other substances [33,34]. Low immunity has already been documented as an explanation which assigns an increased risk for development of TB and of dying of this disease [35]. A study found that patients who died from TB, or who showed an important clinical worsening, also showed low levels of the alpha tumoral necrosis factor (TNF-α), this being a cytokine present in the inflammatory response, which would suggest a low immune response [9], thus showing a progression and worsening of the disease.

The use of drugs other than top-of-the-range drugs for the treatment of TB showed an inverse relationship, i.e. patients using other drugs as supportive therapy survived longer. A study carried out in Brazil showed that the deaths from TB that occurred were in fact associated with other bacterial infections in PLWGA, which could be addressed with the use of complementary therapies, apart from TB itself [11]. Due to monitoring in health services and antiretroviral therapy, PLWHA could be afforded some protection when compared with groups that did not receive any monitoring, which would justify the longer survival within this group, in the present report [15].
In Brazil, there was an increase in primary resistance to isoniazid, from 4.4% to 6.0%, and there were 583 cases of MDRTB (II National Investigation into Resistance to Antituberculosis Medications), which indicates the need to use other medications for the treatment of TB [36]. Treatment of MDRTB is a current challenge that requires the development of other safe and efficient medications.

Regarding the use of top-line drugs, rifampicin (R), isoniazid (H) Pyrazinamide (Z) (scheme: RHZ) and Ethambutol (E) were present in most cases, and only Ethambutol seems to have been used less often, which could be due to the fact that this medication was only included in the initial treatment scheme as of 2009 [36,37] (first 2 months), which would justify the lower occurrence of this drug within the study when compared to the frequency of use of RHZ.

One of the limitations of this study refers to the use of secondary data that were entered into the form in advance, as there were gaps in form-filling or missing information. Only recently (2017) the protocol launched for monitoring deaths with a mention of TB, one of the purposes of this being that of correcting, both quantitatively and qualitatively, the information that appeared in the different information systems, DNIS and MIS.

Conclusion

The study found deaths from TB occurring prematurely, which points to a possibility of tardy diagnosis of the disease, then in a more advanced phase. The consumption of alcohol also increased the risk of premature death from TB. These deaths should be avoided through adoption of the actions mentioned in the programmes for control of TB, such as application of the DOTS supervised treatment, the intensification of active screening, and the tracking of possible cases that could lead to worsening and premature death. The identification of possible patients prone to this worsening process and eventually death could be a way of improving this outcome. TB is an old disease, yet one that is still present; at one time it was a synonym for death, and it is not acceptable that this disease should continue to end lives in this day and age, especially considering patients who have already been diagnosed and who could have received the necessary intervention, so that the outcome of death could be avoided.

Declarations

Ethics approval and consent to participate:

The study was approved by the Institutional Review Board at the University of Sao Paulo (USP) under CAAE No. 64515717.9.0000.5393. Informed consent was not required, as data were based on official data sets and were previously anonymous.

Consent for publication: Not Applicable

Availability of data and material:
The database is carried out by the Epidemiological Surveillance Division and Secretary of Health of the State of Parana, Brazil and restrictions apply to the availability of these data, which were used under license for the current study, so are not publicly available. The first author had registered with details as well as contact data in case of interest in collaborative work or further information.

Competing interests:

The authors declare that they have no competing interests.

Funding:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Processo: Programa de Doutorado Sanduíche no Exterior –88881.132524/2016–01) and CNPQ (Bolsa produtividade em pesquisa - Grant 305236/2015–6); Fundação de Amparo a Pesquisa do Estado de São Paulo -FAPESP (process 2015/17586–3) support for collection data.

Authors’ contributions:

Nunes C and Santos DT conceived the study. Santos DT, Alves LS, collected and initially computed the data. Santos, DT, Nunes C, Alonso JB and Arcencio RA analyzed and constructed the results from the data. Santos DT, Nunes C, Arcencio RA and Cartagena D writing the manuscript. Crispim, J, Alves JD, Ramos AV, Dessunti EM, Pinto IC, Palha PF reviewed and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the Epidemiological Surveillance Division and Secretary of Health of the State of Parana for making the data available, mainly for Betina M. Alcantara Gabardo and Viviane Serra Melanda for the support.

References

1 Global tuberculosis report 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. WHO/CDS/TB/2018.20.

2 Brasil, Ministério da Saúde. Boletim Epidemiológico 2017. Secretaria de Vigilância em Saúde - Departamento de Vigilância, Prevenção e Controle das Infecções Sexualmente Transmissíveis, do HIV/Aids e das Hepatites Virais. Brasil, 2017.

3 Onyango DO, Yuen CM, Cain KP, Ngari F, Masini EO, Borgdorff MW. Reduction of HIV-associated excess mortality by antiretroviral treatment among tuberculosis patients in Kenya. PLoS One. 2017;12 (11):e0188235.
4 Silva DR, Muñoz-Torrico M, Duarte R, Galvão T, Bonini EH, Ferlin F, et al. Fatores de risco para tuberculose: diabetes, tabagismo, álcool e uso de outras drogas. J Bras Pneumol 2018; 44(2):145–152.

5 Parry C, Ferreira-Borges C, Poznyak V, Lönnroth K, Rehm J. The international study on alcohol and infectious diseases: three priorities for research. Addiction 2013; 108:1–2.

6 Marais BJ, Lönnroth K, Lawn SD, Migliori GB, Mwaba P, Glaziou P, et al. Tuberculosis comorbidity with communicable and non-communicable diseases: integrating health services and control efforts. Lancet Infect Dis 2013; 13:436–48.

7 Berra TZ, Queiroz AAR, Yamamura M, Arroyo LH, Garcia MCC, Popolin MP, et al. Spatial risk of tuberculosis mortality and social vulnerability in Northeast Brazil. Rev Soc Bras Med Trop 2017; 50(5):693–697.

8 Nogueira BMF, Rolla VC, Akrami KM, Kiene SM. Factors associated with tuberculosis treatment delay in patients co-infected with HIV in a high prevalence area in Brazil. PLoS ONE 2018; 13(8): e0202292.

9 Waitt CJ, Banda NPK, White SA, Kampmann B, Kumwenda J, Heyderman RS, et al. Early Deaths During Tuberculosis Treatment Are Associated With Depressed Innate Responses, Bacterial Infection, and Tuberculosis Progression. J Infect Dis 2001; 204(3):358–362.

10 Schmaltz CA, Santoro-Lopes G, Lourenço MC, Morgado MG, Velasque LS, Rolla VC. Factors impacting early mortality in tuberculosis/HIV patients: differences between subjects naïve to and previously started on HAART. PLoS One 2012;7(9):e45704.

11 Escada ROS, Velasque L, Ribeiro SR, Cardoso SW, Marins LMS, Ginsztejn E, et al. Mortality in patients with HIV-1 and tuberculosis co-infection in Rio de Janeiro, Brazil - associated factors and causes of death. BMC Infect Dis 2017; 17: 373.

12 Seid A, Metaferia Y. Factors associated with treatment delay among newly diagnosed tuberculosis patients in Dessie city and surroundings, Northern Central Ethiopia: a cross-sectional study. BMC Public Health 2018;18(1):931–9.

13 Lee J, Nam HW, Choi SH, Yoo SS, Lee SY, Cha SI, et al. Comparison of Early and Late Tuberculosis Deaths in Korea. J Korean Med Sci 2017;32:700–703.

14 Harries AD, N J Hargreaves, F Gausi, JH Kwanjana, FM Salaniponi. High early death rate in tuberculosis patients in Malawi. Int J Tuberc Lung Dis 2011; 5(11):1000–1005.

15 Ministério da Saúde. Recomendações para o manejo da coinfecção TB-HIV em serviços de atenção especializada a pessoas vivendo com HIV/AIDS / Ministério da Saúde. Secretaria-Executiva. Brasília: Ministério da Saúde, 2013.
16 Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Plano nacional pelo fim da tuberculose. Brasília: Ministério da Saúde; 2017.

17 Instituto Brasileiro de Geografia e Estatística. Panorama cidades.
https://cidades.ibge.gov.br/brasil/pr/curitiba/panorama (acessado em 08/Nov/2018).

18 Programa das Nações Unidas para o Desenvolvimento PNUD. Instituto de pesquisa Economica Aplicada IPEA. Atlas do Desenvolvimento Humano no Brasil.
http://www.atlasbrasil.org.br/2013/pt/perfil_m/curitiba_pr (acessado em 10/Nov/2018).

19 Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim Epidemiológico nº 11. mar 2018, v 44.

20 Santos DT, Nunes C, Alves LS, Queiroz AAR, Miranda M J, Arroyo LH, et al. Is there association between human development index and tuberculosis mortality risk? Evidence from a spatial analysis study in the south of Brazil. Epidemiology and Infection 2018;1–8.

21 Guo S, Zeng D. An overview of semiparametric models in survival analysis. Journal of Statistical Planning and Inference 2014; 151–152.

22 Ferreira JC, P CM. O que é análise de sobrevida e quando devo utilizá-la? J Bras Pneumol. 2016;42(1):77–77.

23 Glantz SA. How to analyse survival data. In: Glantz SA. Primer in Biostatistics. 7th ed. New York: McGraw-Hill Medical; 2011. p 229–44.

24 Arakawa T, Magnabosco GT, Andrade RLP, Brunello MEF, Monroe AA, Ruffino-Netto A, et al. Programa de controle da tuberculose no contexto municipal: avaliação de desempenho. Rev. Saúde Pública 2017; 51(23):1–9.

25 Loureiro RB, Villa TCS, Runo-Netto A, Peres RL, Braga JU, Zandonade E, et al. Acesso ao diagnóstico da tuberculose em serviços de saúde do município de Vitória, ES, Brasil. Ciênc. saúde coletiva 2014;19 (04)1233–1244.

26 Mulenga C, Mwakazanga D, Vereecken K, Khondowe S, Kapata N, Chola I, et al. Management of pulmonary tuberculosis patients in an urban setting in Zambia: a patient’s perspective. BMC Public Health 2010;10 (756):1–8.

27 Bisallah CI, Rampal L, Lye MS, Mohd SS, Ibrahim N, Iliyasu Z, et al. Effectiveness of health education intervention in improving knowledge, attitude, and practices regarding Tuberculosis among HIV patients in General Hospital Minna, Nigeria—A randomized control trial. PLoS ONE (2018); 13(2): e0192276.

28 Getahun B, Ameni G, Biadgilign S, Medhin G. Mortality and associated risk factors in a cohort of tuberculosis patients treated under DOTS programme in Addis Ababa, Ethiopia. BMC Infect Dis
29 Dizaji MK, Kazemnejad A, Tabarsi P, Zayeri F. Risk Factors Associated with Survival of Pulmonary Tuberculosis. Iran J Public Health. 2018;47(7):980–987.

30 Miller TL, Wilson FA, Pang JW, Beavers S, Hoger S, Shamprapai S, et al. Mortality hazard and survival after tuberculosis treatment. American journal of public health 2015; 105(5): 930–7.

31 World Health Organization. Definitions and reporting framework for tuberculosis 2013 Revision. World Health Organization; 2013.

32 Imtiaz S, Shield KD, Roerecke M, Samokhvalov AV, Lönnroth K, Rehm J. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur Respir J. 2017;50(1):1700216.

33 Lönnroth K, Williams B, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis - a systematic review. BMC Public Health 2008;8:289.

34 Rehm J, Samokhvalov AV, Neuman MG, Room R, Parry C, Lönnroth K, et al. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009;9:450.

35 Molina PE, Happel KI, Zhang P, Kolls JK, Nelson S. Focus on: Alcohol and the immune system. Alcohol Res Health. 2010;33(1–2):97–108

36 Rabahi MF, Silva Júnior JLR, Ferreira ACG, Tannus-Silva DGS, Conde MB. Tratamento da tuberculose. J Bras Pneumol. 2017;43(5):472–486.

37 Nota técnica sobre as mudanças no tratamento da tuberculose no Brasil para adultos e adolescentes. Ministério da Saúde. Brasília, 2009.

Tables

Table 1 Source of data and independent variables under study
	Independent Variables	Classes
Date of Death	Date	
Gender	Female	Male
Age	Continuous	
Ethnicity	White / Oriental	Afrodescendant
Educational Level	8 years of schooling or more	7 years of schooling or less
Marital Status	Married / Common-Law Marriage	Single / Widowed / Separated or Divorced
Type of Entry	New case	Re-entry or Retreatment
Institutionalised	No	Yes
Examination: X-ray	Normal	Yes, suspicious results
Clinical category	Pulmonary	Extrapulmonary
Aggravation – Use of alcohol	No	Yes
Aggravation - *Diabetes Mellitus* (DM)	No	Yes
Examination: Bacilloscopy	Negative	Positive
Culture	Negative	Positive
Medication used: Rifampicin	Yes	No
Medication used: Isoniazid	Yes	No
Medication used: Pyrazinamide	Yes	No
Medication used: Ethambutol	Yes	No
Medication used: Streptomycin	Yes	No
Medication used: Other drugs	Yes	No
Supervised treatment -DOTS	Yes	No

*Source: Mortality Information System – MIS

**Source: Disease Notification Information System – DNIS
Table 2: Distribution of social, clinical and operational characteristics of the patients who died as a result of TB and TB/HIV in Curitiba (2008-2015).
Variables (n=179)	Categories	n	(%)
Coinfection (Basic cause)	Yes TB/HIV	74	41,3
	No (TB)	105	58,7
Sex	Female	41	22,9
	Male	138	77,1
Ethnicity	White or Oriental	120	67,0
	Afrodescendant	45	25,1
	Not informed	14	7,9
Educational Level	0-7 years of schooling	104	58,1
	8 or more years of schooling	50	27,9
	Not informed	25	14,0
Marital Status	Married / Common-Law Marriage	50	27,9
	Single / Widowed / Separated or Divorced	113	63,1
	Not informed	16	9,0
Type of entry	New case	139	77,7
	Re-entry or Retreatment	29	16,2
	Not informed	11	6,1
Institutionalised	No	141	78,8
	Yes	17	9,5
	Not informed	17	9,5
X-Ray confirmation of diagnosis	Normal	35	19,6
	Yes/suspicious	144	80,4
Clinical Form	Pulmonary	132	73,7
	Extrapulmonary	47	26,3
Use alcohol	No	108	60,3
	Yes	63	35,2
	Not informed	8	5,0
Diabetes Mellitus (DM)	No	167	93,3
	Yes	3	1,7
	Not informed	9	5,0
Bacilloscopy	Negative	46	25,7
	Positive	96	53,6
	Not informed	37	20,7
Sputum culture	Negative	23	12,8
	Positive	25	14,0
	Not informed	131	73,2
Rifampicin	No	14	7,8
	Yes	149	83,2
	Not informed	16	8,9
Isoniazid	No	14	7,8
	Yes	149	83,2
	Not informed	16	8,9
Pyrazinamide	No	14	7,8
	Yes	149	83,2
	Not informed	16	8,9
Ethambutol	No	51	28,4
	Yes	112	62,6
--------------------------	---------	--------	-------
	Not informed	16	9,0
Streptomycin	No	159	88,8
	Yes	4	2,2
	Not informed	16	9,0
Etionamida	No	161	89,9
	Yes	1	0,6
	Not informed	17	9,5
Medication used: Other drugs	No	148	82,7
	Yes	9	5,0
	Not informed	22	12,3
Supervised treatment	No	28	15,6
	Yes	133	74,3
	Not informed	18	10,1

Table 3 – Survival: Kaplan-Meier and bivariate Cox analysis of patients who died of TB and TB/HIV and social, clinical and operational variables, Curitiba (2008-2016).
Variables	Categories	n	Median	SD	CI95%	p-value **	HR	CI95%	p-value
Basic Cause	TB*	86	19	4.6	9.9-28.1	0.11	0.1	0.4-1.1	0.12
	TB/HIV	63	28	10.7	6.8-49.1				
Sex	Female*	33	16	6.6	2.8-29.1	0.34			
	Male	116	23	4.1	15.1-30.9				
Ethnicity	White or Oriental	98	20	4.5	11.2-28.8	0.28			
	Afrodescendant	41	33	8.9	15.4-50.5				
Educational Level	8 or more years of schooling *	42	23	6.4	10.2-35.7				
	0-7 years of schooling	86	17	4.6	7.9-26.1	0.67			
Marital Status	Married / Common-Law Marriage*	45	26	6.7	12.8-39.1	0.45			
	Single / Widowed / Separated or Divorced	88	16	3.7	8.6-23.3				
Type of entry	New case*	117	19	3.8	11.4-26.5	0.08	0.6	0.3-1.1	0.97
	Re-entry or Retreatment	26	46	20.3	6.1-85.9				
Institutionalised	No*	119	22	4.6	12.8-31.1	0.35			
	Yes	16	23	9.9	3.5-42.4				
X-Ray confirmation of diagnosis	Normal*	11	22	6.1	10.1-33.8				
	Yes/suspicious	113	23	4.6	13.8-32.1	0.95			
Clinical Form	Pulmonary*	103	21	7.8	6.5-37.4	0.68			
	Extrapulmonary	43	22	4.4	12.3-29.6				
Alcohol use	No*	93	23	6.5	10.1-35.8	1.5	1.1-2.2	0.04	
	Yes	50	20	7.1	6.1-33.8	0.03			
DM	No*	139	23	3.6	15.7-30.2	0.83			
	Yes	3	7	1.6	3.7-10.2				
Bacilloscopy	Negative*	12	58	-	-	0.94			
	Positive	24	-	-					
	Negative	41	46	-	-	0,69			
--------------	----------	-----	-----	-----	------	------			
Sputum culture	Positive	79	35	20,1	0-74,4				
	Negative	5	17	10,9	0-38,4				
Rifampicin	Não*	5	17	10,9	0-38,5				
	Sim	132	23	4,5	14,1-31,8	0,78			
Isoniazid	Não*	5	17	10,9	0-38,5				
	Sim	132	23	4,5	14,2-31,8	0,78			
Pyrazinamide	Não*	6	7	7,8	0-22,6				
	Sim	131	23	4,6	14,0-31,9	0,30			
Ethambutol	Não*	36	25	6,8	11,8-38,2	0,76			
	Sim	101	22	5,4	11,3-32,7				
Streptomycin	Não*	134	22	4,6	12,9-31,1	0,21			
	Sim	3	-	-	-				
Medication used: Other drugs	Não*	123	23	3,9	12,2-30,8	0,4			
	Sim	8	-	-	-	0,09			
Supervised treatment -DOTS	Não *	18	24	12,7	0-48,9				
	Sim	117	22	4,6	12,9-31,1	0,48			

Figures
Figure 1

Flow chart of deaths as analysed in the study
Figure 2

Curves obtained by Kaplan-Meier survival analysis, with regard to aggravation by alcohol consumption in patients who died of TB and TB-HIV. Curitiba (2008-2016).