Synthesis of Di-, Tri-, and Tetrasubstituted Oxetanes by Rhodium-Catalyzed O–H Insertion and C–C Bond-Forming Cyclization**

Owen A. Davis and James A. Bull*

Abstract: Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2-dicarboxylates were accessed in high yields, including functionalized 3-/4-aryl- and alkyl-substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.

Oxetanes are widely used compounds in numerous branches of science. As strained cyclic ethers, they find uses in polymer and materials science, as monomers for cationic ring-opening polymerizations,[11] and as crosslinkers.[3] Oxetanes are employed as intermediates in synthetic chemistry in processes featuring ring expansion,[3] ring opening,[4] or rearrangement processes.[5] The oxetane motif is also found in natural products and other biologically active compounds (Figure 1).[6]

Recently, oxetanes have received considerable attention in drug discovery and have been widely adopted in medicinal chemistry.[7, 8] In this context, they are considered stable adjuncts to improve solubility, lipophilicity, and other physicochemical properties toward drug-like molecules. Pioneering studies by Carreira and co-workers demonstrated oxetane motifs to be effective polar replacements for gem-dimethyl groups and carbonyl derivatives.[7, 9] Furthermore, compared to larger oxygen heterocycles, the small ring displays a metabolic robustness which is linked to its inherent lower lipophilicity.[10]

Classical oxetane synthesis includes intramolecular Williamson ether synthesis [11] and Paterno–Buchi [2+2] photocycloadditions (Scheme 1a). [12] More recently, ring-opening/closing from epoxides using sulfonium ylides has been developed,[13] though this approach has not been extended to more functionalized derivatives. Current medicinal chemistry investigations are largely focused on 3-substituted oxetanes (Scheme 1b). These are often derived from Carreira’s oxetan-3-one,[14] or from 3-iodooxetane by Suzuki cross-coupling[15] or other methods.[16, 17] We recently reported a cyclization strategy for oxetane synthesis involving C–C bond formation in order to prepare 2-(arylsulfonyl)oxetanes as fragments for fragment-based drug discovery (Scheme 1c).[18]

We considered that efficient methods to access more highly substituted and chiral oxetanes would afford interesting novel appendages or core scaffolds for drug discovery.[19] Oxetanes offer six possible vectors from which to develop a compound in three dimensions,[20] and such derivatives would constitute new chemical space for exploration in medicinal chemistry. However, the synthesis of diversely substituted oxetanes bearing functional groups remains closing from epoxides using sulfonium ylides has been developed,[13] though this approach has not been extended to more functionalized derivatives. Current medicinal chemistry investigations are largely focused on 3-substituted oxetanes (Scheme 1b). These are often derived from Carreira’s oxetan-3-one,[14] or from 3-iodooxetane by Suzuki cross-coupling[15] or other methods.[16, 17] We recently reported a cyclization strategy for oxetane synthesis involving C–C bond formation in order to prepare 2-(arylsulfonyl)oxetanes as fragments for fragment-based drug discovery (Scheme 1c).[18]

We considered that efficient methods to access more highly substituted and chiral oxetanes would afford interesting novel appendages or core scaffolds for drug discovery.[19] Oxetanes offer six possible vectors from which to develop a compound in three dimensions,[20] and such derivatives would constitute new chemical space for exploration in medicinal chemistry. However, the synthesis of diversely substituted oxetanes bearing functional groups remains...
a challenge. We proposed that applying a C–C bond-forming strategy would provide access to such oxetane derivatives. Here we report a mild and efficient O–H insertion and C–C bond-forming cyclization strategy for oxetane synthesis (Scheme 1d). Functionalized di-, tri-, and tetrasubstituted oxetane derivatives are rapidly generated as building blocks and potential scaffolds of interest for medicinal chemistry. Further elaboration of these motifs is also reported.

A key aspect of our strategy was to develop a mild and widely applicable approach to the cyclization precursor. The activation of X–H bonds (X = N, O, S) through metal-catalyzed diazo decomposition and carbeneoid insertion is a powerful approach to C–X bond construction.[21] We envisaged that insertion of a diazo compound that bears anion-stabilizing groups into the O–H bond of functionalized alcohols could rapidly deliver the required cyclization precursors. We targeted the synthesis of oxetane 2,2-dicarboxylates to facilitate the cyclization and install the ester functionality for further manipulation. A functional-group-tolerant O–H insertion would permit a convergent strategy with the required leaving group in place, as well as the incorporation of useful functionality to decorate the oxetane core.

We initially attempted an O–H insertion reaction using ethylene glycol and diazomalonic 1 (Scheme 2). This transformation provided ether 2a in 77 % yield using catalytic [Rh2(OAc)4] and excess ethylene glycol. Treatment with TscCl afforded 2b in high yield. Alternatively, tosylate 2b was accessed by O–H insertion on ethylene glycol monotosylate to obtain the cyclization precursor.

To our delight, tosylate 2b cyclized successfully to oxetane 3 through the formation of the C–C bond by using NaH in DMF. Despite extensive examination of the reaction conditions, the yield of 43 % could not be improved.[22] Therefore, we examined alternative leaving groups, using functionalized alcohol derivatives. Following optimization, bromide 2c was obtained in 90 % yield by O–H insertion using 2-bromoethanol.[23] Iodoethanol was also successful but with reduced yields because of the instability of iodo 2d. The bromide leaving group was shown to be most effective for the cyclization and full optimization was conducted with bromide 2c. The developed conditions (NaH (1.2 equiv) in DMF (0.025 M) for 1 h at 0 °C) afforded oxetane 3 in 73 % yield on a 1.0 mmol scale.[22] This sequence constitutes an efficient two-step oxetane synthesis from readily available starting materials.

With these optimized conditions, the introduction of substituents onto bromoethanol was examined in order to form chiral oxetanes. Aryl substituents were examined using readily available β-bromohydrins to prepare 2,2,4-substituted oxetanes (Table 1).[23] For the phenyl-substituted bromo-

![Table 1: Synthesis of diethyl 4-aryl-2,2-oxetane dicarboxylates.](https://example.com/table1.png)

Entry	Ar	Yield 5 [%]	Yield 6 [%]
1		81	84
2		83	85
3		77	76
4		81	
5		76	77
6		83	
7		88 (85 % ee)	
8		88	
9		82	

[a] O–H insertion conditions: 4 (1.0–3.0 mmol), 1 (1.5 equiv), [Rh2(OAc)4] (0.5 mol %), PhH, 0.1 m, 80 °C. [b] Cyclization conditions: 5 (0.5–1.0 mmol), NaH (1.2 equiv), DMF, 0.025 m, 25 °C, 16 h. [c] Enantioenriched (5) 4a (85 % ee). [d] Reaction on 9.0 mmol scale. [e] Reaction on 6.5 mmol scale.

[p-tolyl derivative] gave high yields through both steps, as did aryl fluoride, chloride, and bromide derivatives (Table 1, entries 3–7). To demonstrate the scalability of the procedure, chlorophenyl derivative 6d was prepared on a larger scale, affording over 1.5 g of the oxetane. Electron-rich and electron-poor aromatic substituents gave similarly high yields (Table 1, entries 8 and 9).

Next, alkyl substituents were examined to generate trisubstituted 4-alkyloxetanes (Table 2). Under the conditions...
Table 2: Synthesis of diethyl 4-alkyl-2,2-oxetane dicarboxylates.

Entry	X	Y	Yield I [%]	Yield II [%]
1	Br	CH₂OBn	67	89
2	Br	CH₂OPh	92	65
3	Br	CH₃Br	51	81
4	Br	CH₂Cl	80	45/7
5	Cl	CH₂Cl	86	77 (9)
6	Cl	CH₂OPf	97	75
7	Cl	CH₂OTBS	65	71
8	Br	CF₃	28	43
9	Br	CH₃Cl	98	82/4

[a] O–H insertion conditions: 7 (1.0–3.0 mmol), 1 (1.5 equiv), [Rh₂(OAc)₄] (0.5 mol %), PhH, 0.1 M, 80°C. [b] Cyclization conditions: 8 (0.4–1.0 mmol), NaH (1.2 equiv), DMF, 0.025 M, 25°C, 16 h. [c] Heated at 80°C for 3 d. [d] Yield over two steps from 3-bromo-1,1,1-trifluoroacetone. [e] From technical grade 1-bromo-2-propanol. [f] Mixture of regioisomers (4:1). [g] Mixture of regioisomers (4-Me/3-Me oxetanes 5.4:1). Bn = benzyl, TBS = tert-butylimidemethylsilyl.

employed with the aryl substituents, both steps were effective. Benzyl and phenyl ethers were well tolerated (Table 2, entries 1 and 2).

The O–H insertion reaction with 1,3-dibromo-2-propanol (7e) occurred cleanly to generate dibromide 8c, but required a longer reaction time and gave a slightly reduced yield, presumably as a result of increased steric demands (Table 2, entry 3). Treatment of 8c with NaH afforded bromomethyl-oxetane 9c in a high yield, providing an alkyl bromide handle for further derivatization (see below).

In order to generate the corresponding chloromethyl-oxetane, bromide 8d was formed from 1-bromo-3-chloro-2-propanol (7d). When the cyclization was attempted, both chloromethyloxetane 9d (major product) and bromomethyl-oxetane 9c were isolated (Table 2, entry 4). This result demonstrated that chlorides were also viable leaving groups for oxetane synthesis. Subsequently, 1,3-dichloro-2-propanol (7e) was employed to generate dichloride 8e in high yield, which successfully underwent cyclization to chloromethyl-oxetane 9d (Table 2, entry 5). Similarly, a single chloride as leaving group also gave high yields in both O–H insertion and cyclization steps (Table 2, entries 6 and 7), including TBS ether 9g. 4-Trifluoromethyl-substituted oxetane 9h was successfully prepared from 3-bromo-1,1,1-trifluoroacetone (Table 2, entry 8). We examined the installation of a methyl substituent starting from commercially available 1-bromo-2-propanol (7f), consisting of a 4:1 mixture with 2-bromo-1-propanol (technical grade, Table 2, entry 9). The O–H insertion occurred in high yield and was equally effective for both isomers. Pleasingly, the cyclization occurred for both regioisomers to afford a mixture of 3-methyl- and 4-methyl-substituted oxetanes in a high yield without a significant change in ratio (5:4:1), indicating that the cyclization was not limited to primary halides.

The scope of substituted oxetanes was then expanded to a variety of sterically congested tetrastubstituted oxetanes using olefins as precursors (Scheme 3). 2,2,4,4-Substituted derivative 12a was prepared from α-methylstyrene in three steps, including bromohydram formation with NBS/H₂O. We next investigated the 2,2,3,4-substituted derivatives from trans-stilbene: bromohydram 10b was formed as a single diastereoisomer. This was converted to the corresponding 3,4-anti-substituted oxetane 12b through the same process, with sterosepecific intramolecular displacement from benzyllic bromide 11b. We then considered cyclic alkenes to access fused oxetane derivatives. Treating cyclohexene with NBS/H₂O afforded the anti-substitution in bromohydram 10c, as required for the proposed cyclization. Installation of the malonate group occurred effectively to provide 11c, and cyclization proceeded without incident to afford the oxabicyclo[4.2.0]octane derivative 12c in an excellent yield. From cyclopentene, the fused [3,2,0] ring system of bicycle 12d could be effectively obtained. Moreover, from 2,5-dihydrofuran, dioxabicyclo[3.2.0]heptane 12e was readily prepared in excellent yields. These oxetane-containing bicycles, readily accessible from simple alkenes in three steps, may provide interesting rigid motifs for medicinal chemistry.

Elaboration of the oxetane products was then examined toward oxetane-containing fragments and building blocks. Initial investigations into the derivatization of the diester functionality were undertaken with oxetane 6d (Scheme 4). The diester 6d could be reduced using LiBH₄, generated in situ, to give diol 13 in 91% yield (Scheme 4). From this diol, monosilylation gave 14, then treatment with NaH afforded the unusual bisoxetane spirocycle 15 through classical oxetane cyclization. Monohydrolysis of the diester moiety occurred quantitatively when treated with 1 M NaOH, affording the monocarboxylate sodium salt 16. This compound successfully underwent amide coupling with both primary (17) and secondary (18) amines using HATU. Krapcho decarboxylation using LiCl afforded trans- and cis-2,4-substituted oxetanes in a 1:1 ratio (19a:19b), which were readily separable.
Scheme 4. Derivatization of oxetanes 6d. Conditions: a) NaBH₄, LiCl, MeOH, THF, 0°C—RT; b) nBuLi, THF, 0°C, 1 h; then TsCl, THF, 30°C; c) NaH, DMF, 0°C—25°C; d) NaOH, EtOH, 30°C; e) amine (BnNH₂ for 18, morpholine for 17). HATU, DMF, 40°C; f) LiCl, DMSO, 150°C. HATU = N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]-pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide, DMSO = dimethyl sulfoxide.

Finally, bromomethylloxetane 9c was treated with nitrogen nucleophiles, resulting in the successful displacement of the bromide without affecting the oxetane ring (Scheme 5). Reaction with NaN₃ afforded azide 20 in 92% yield, which underwent cycloaddition with phenyl acetylene to afford triazole 21. Treatment of 9c with imidazole and NaI under basic conditions displaced the primary bromide, thus affording 22 in a 62% yield.

Scheme 5. Bromide displacement from oxetane 9c. a) NaN₃, DMF, 60°C; b) phenylacetylene, CuSO₄, 5 H₂O (10 mol%), sodium ascorbate (30 mol%), H₂O/O₂/CH₂Cl₂ (1:1:1), RT; c) imidazole, NaI, K₂CO₃, DMF, 80°C.

In summary, we have developed an efficient protocol for the preparation of 2,2-disubstituted, 2,2,4-trisubstituted, and 2,2,3,4-tetrasubstituted oxetanes. These oxetane structures contain functionalities that can be further derivatized to an array of oxetane containing motifs. We anticipate that these will provide interesting new structural elements for synthesis, materials science, and medicinal chemistry programs in particular. Further advances of this strategy in the synthesis of small rings will be reported in due course.

Received: September 9, 2014
Published online: October 14, 2014

Keywords: cyclization - diazo compounds - heterocycles - O–H insertion - oxetanes

[1] a) J. V. Crivello, J. Polyn. Sci. Part A 2007, 45, 4531; b) H. Bouchéki, M. I. Philbin, E. Colcough, A. J. Amass, Macromolecules 2010, 43, 845; c) B. Schulte, C. A. Dannenberg, H. Keul, M. Moller, J. Polym. Sci. Part A 2013, 51, 1243; d) R. Shibutani, H. Tsutsumi, J. Power Sources 2012, 202, 369; e) H. Kado, T. Nishikubo, J. Polyn. Sci. Part A 2007, 45, 709.
[2] a) B. Ghosh, M. W. Urban, Science 2009, 323, 1458; b) B. Ghosh, K. V. Chellappan, M. W. Urban, J. Mater. Chern. 2011, 21, 14473; c) S. S. Müller, H. Frey, Macromol. Chem. Phys. 2012, 213, 1783; d) A. Charas, J. Morgado, Curr. Phys. Chem. 2012, 2, 241.
[3] For selected examples, see: a) S. A. Ruider, S. Müller, E. M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 11908; Angew. Chem. 2013, 125, 12125; b) G. Guo, G. Schwarzwald, T. J. Njarasson, Angew. Chem. Int. Ed. 2012, 51, 5775; c) G. Gronnier, S. Kramer, Y. Odabachian, F. Gagozoz, J. Am. Chem. Soc. 2012, 134, 828; d) R. N. Loy, E. N. Jacobson, J. Am. Chem. Soc. 2009, 131, 2786; e) M. M.-C. Lo, G. C. Fu, Tetrahedron 2001, 57, 2621.
[4] For selected recent examples, see: a) Z. Wang, Z. Chen, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 6685; Angew. Chem. 2013, 125, 6817; b) Z. Chen, Z. Wang, J. Sun, Chem. Eur. J. 2013, 19, 8426; c) Z. Chen, B. Wang, Z. Wang, G. Zhu, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 2027; Angew. Chem. 2013, 125, 2081; d) Z. Wang, Z. Chen, J. Sun, Org. Biomol. Chem. 2014, 12, 6028.
[5] a) A. Thakur, M. E. Facer, J. Louie, Angew. Chem. Int. Ed. 2013, 52, 12161; Angew. Chem. 2013, 125, 12383; b) J. A. Burkhard, B. H. Teitichanov, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 5379; Angew. Chem. 2011, 123, 5491.
[6] For selected examples, see: a) S. Omura, M. Murata, N. Imamura, Y. Iwai, H. Tanaka, A. Furusaki, T. Matsumoto, J. Antibiot. 1984, 37, 1324; b) H. Hoshino, N. Shimizu, N. Shimada, T. Takita, T. Takeuchi, J. Antibiot. 1987, 40, 1077; c) G. Holan, Nature 1971, 232, 644. For taxol see: M. C. Wani, H. L. Taylor, M. P. Wall, J. Am. Chem. Soc. 1971, 93, 2325.
[7] a) J. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Müller, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 9052; Angew. Chem. 2010, 122, 9236; b) G. Wuitschik, E. M. Carreira, B. Wagner, H. Fischer, I. Parrilla, F. Schuler, M. Rogers-Evans, K. Müller, J. Med. Chem. 2010, 53, 3227.
[8] a) J. Du, B.-K. Chun, R. T. Mosley, S. Bansal, H. Bao, C. Espirito, A. M. Lam, E. Murakami, C. Niu, H. M. Micolochick Steuer, et al., J. Med. Chem. 2014, 57, 1826; b) E. M. Skoda, J. R. Sacher, M. Z. Kazanciglu, J. Saha, P. Wipf, ACS Med. Chem. Lett. 2014, 5, 900; c) T. H. M. Jonckers, K. Vandyck, L. Vandekerckhove, L. Hu, A. Tahri, S. Van Hoof, T.-I. Lin, L. Vijgen, J. M. Berke, S. K. Estrada, B. K. Chan, C. Baker-Glenn, A. Beresford, D. J. Burdick, M. Chambers, H. Chen, S. L. Dominguez, J. Dotson, J. Drummond, et al., J. Med. Chem. 2014, 57, 921; d) E. M. Skoda, J. R. Sacher, M. Z. Kazanciglu, J. Saha, P. Wipf, ACS Med. Chem. Lett. 2014, 5, 900; e) A. M. Lam, C. Niu, H. M. Micolochick Steuer, et al., J. Med. Chem. 2014, 57, 1836; f) A. A. Estrada, B. K. Chan, C. Baker-Glenn, A. Beresford, D. J. Burdick, M. Chambers, H. Chen, S. L. Dominguez, J. Dotson, J. Drummond, et al., J. Med. Chem. 2014, 57, 921; e) J. E. Dowling, M. Alimzhanov, L. Bao, M. H. Block, C. Chuaqui, E. L. Cooke, C. R. Denz, A. Hird, S. Huang, N. A. Larsen, et al., ACS Med. Chem. Lett. 2013, 4, 800.
[9] a) G. Wuitschik, M. Rogers-Evans, K. Müller, H. Fischer, B. Wagner, F. Schuler, L. Polonchuk, E. M. Carreira, Angew. Chem. Int. Ed. 2006, 45, 7376; Angew. Chem. 2006, 118, 7900; b) G. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi, M. Mark, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, et al., Angew. Chem. Int. Ed. 2008, 47, 4512; Angew. Chem. 2008, 120, 4588; c) J. A. Burkhard, G. Wuitschik, J.-M. Plancher, M. Rogers-Evans, E. M. Carreira, Org. Lett. 2013, 15, 4312.
[10] a) A. F. Stepan, K. Karki, W. S. McDonald, P. H. Dorff, J. K. Dutra, K. J. DiRico, A. Won, C. Subramaniam, I. V. Efremov, C. J. O’Donnell, et al., J. Med. Chem. 2011, 54, 7772; b) A. F. Stepan, G. W. Kauffman, C. E. Keefler, P. R. Verhoest, M. Edwards, J. Med. Chem. 2013, 56, 6985.
[11] For example, see: a) T. Aftab, C. Carter, M. Christlieb, J. Hart, A. Nelson, \textit{J. Chem. Soc. Perkin Trans. 1} \textbf{2000}, 711; b) S.F. Jenkinson, G. W. J. Fleet, \textit{Chimia} \textbf{2011}, 65, 71.

[12] a) M. Abe, \textit{J. Chin. Chem. Soc.} \textbf{2008}, 55, 479; b) F. Vogt, K. Jodick, J. Schröder, T. Bach, \textit{Synthesis} \textbf{2009}, 4268.

[13] a) T. Sone, G. Lu, S. Matsunaga, M. Shibasaki, \textit{Angew. Chem. Int. Ed.} \textbf{2009}, 48, 1677; \textit{Angew. Chem.} \textbf{2009}, 121, 1705; b) E. D. Butova, A. V. Barabash, A. A. Petrova, C. M. Kleiner, P. R. Schreiner, A. A. Fokin, \textit{J. Org. Chem.} \textbf{2010}, 75, 6229; c) K. Okuma, Y. Tanaka, S. Kaji, H. Ohta, \textit{J. Org. Chem.} \textbf{1983}, 48, 5133.

[14] For reductive amination, see for example: a) K. Kinoshita, T. Kobayashi, K. Asoh, N. Furuichi, T. Ito, H. Kawada, S. Hara, J. Ohwada, K. Hattori, T. Miyagi, et al., \textit{J. Med. Chem.} \textbf{2011}, 54, 6286; b) A. A. Estrada, D. G. Shore, E. Blackwood, Y.-H. Chen, G. Deshmukh, X. Ding, A. G. DiPasquale, J. A. Epler, L. S. Friedman, M. F. T. Koehler, et al., \textit{J. Med. Chem.} \textbf{2013}, 56, 3090. For other approaches, see: c) D. M. Allwood, D. C. Blakemore, A. D. Brown, S. V. Ley, \textit{J. Org. Chem.} \textbf{2014}, 79, 328; d) A.-C. Nassy, P. Raubo, J. P. A. Harrity, \textit{Tetrahedron Lett.} \textbf{2013}, 54, 3094.

[15] M. A. J. Duncton, M. A. Estiarte, D. Tan, C. Kaub, D. J. R. O’Mahony, R. J. Johnson, M. Cox, W. T. Edwards, M. Wan, J. Kincaid, et al., \textit{Org. Lett.} \textbf{2008}, 10, 3259.

[16] a) M. A. J. Duncton, M. A. Estiarte, R. J. Johnson, M. Cox, D. J. R. O’Mahony, W. T. Edwards, M. G. Kelly, \textit{J. Org. Chem.} \textbf{2009}, 74, 6354; b) G. A. Molander, K. M. Traister, B. T. O’Neill, \textit{J. Org. Chem.} \textbf{2014}, 79, 5771.

[17] For synthesis of oxetane derivatives by lithiation of oxetane compounds, see: a) J. V. Geden, B. O. Beasley, G. J. Clarkson, M. Shipman, \textit{J. Org. Chem.} \textbf{2013}, 78, 12243; b) D. I. Coppi, A. Salomone, F. M. Perna, V. Capriati, \textit{Angew. Chem. Int. Ed.} \textbf{2012}, 51, 7532; \textit{Angew. Chem.} \textbf{2012}, 124, 7650; c) D. I. Coppi, A. Salomone, F. M. Perna, V. Capriati, \textit{Chem. Commun.} \textbf{2011}, 47, 9918. Also see Ref. [18].

[18] K. F. Morgan, I. A. Hollingsworth, J. A. Bull, \textit{Chem. Commun.} \textbf{2014}, 50, 5203.

[19] Non-aromatic heterocyclic scaffolds were indicated to improve chances of success through the stages of drug development versus carbocyclic or (hetero)aromatic derivatives. T. J. Ritchie, S. J. F. Macdonald, R. J. Young, S. D. Pickett, \textit{Drug Discovery Today} \textbf{2011}, 16, 164.

[20] Reduction of planarity in drug-like compounds may aid factors such as toxicity/solubility. See: a) F. Lovering, J. Bikker, C. Hamblett, \textit{J. Med. Chem.} \textbf{2009}, 52, 6752; b) F. Lovering, \textit{Med. Chem. Commun.} \textbf{2013}, 4, 515; c) M. Ishikawa, Y. Hashimoto, \textit{J. Med. Chem.} \textbf{2011}, 54, 1539.

[21] D. Gillingham, N. Fei, \textit{Chem. Soc. Rev.} \textbf{2013}, 42, 4918.

[22] See the Supporting Information for further details and discussion.

[23] For the previous example of O–H insertion on bromoethanol, see: U. Trstenjak, J. Ilasˇ, D. Kikelj, \textit{Tetrahedron Lett.} \textbf{2013}, 54, 3341.

[24] a) S. Wei, R. Messerer, S. B. Tsogoeva, \textit{Chem. Eur. J.} \textbf{2011}, 17, 14380. For other recent examples of enantioselective synthesis of bromohydrins, see: b) J. Ren, W. Dong, B. Yu, Q. Wu, D. Zhu, \textit{Tetrahedron: Asymmetry} \textbf{2012}, 23, 497; c) Y. Zhou, G. Gao, Y. Song, J. Qu, \textit{Synth. Commun.} \textbf{2014}, 44, 1515.

[25] J. D. Goodreid, P. A. Duspara, C. Bosch, R. A. Batey, \textit{J. Org. Chem.} \textbf{2014}, 79, 943.

[26] Relative configuration of oxetanes 16–18 determined by NOE studies on compound 18.