WEIGHTED TANGO BUNDLES ON \mathbb{P}^n AND THEIR MODULI SPACES

PAOLO CASCINI

Abstract. We define a new class of algebraic $(n-1)$-bundles on \mathbb{P}^n, that contains the bundles introduced by Tango [14] and their stable generalized pull-backs; we show that these bundles are invariant under small deformations and that they correspond to smooth points of moduli spaces.

It is a very difficult problem to find examples of non-splitting algebraic vector bundles on the complex projective space \mathbb{P}^n whose rank is less than n. In particular for $n \geq 6$ the only known examples are essentially the mathematical instantons \mathbb{B} (for odd n) and the bundles introduced by Tango $[14]$; all of them have rank $n-1$. Of course, pulling back the Tango bundles by a finite morphism $\mathbb{P}^n \rightarrow \mathbb{P}^n$ gives other examples of rank $n-1$ bundles.

In [9], Horrocks introduced a new technique of constructing new bundles from old ones, which generalizes the pull-back. This method, that we can call generalized pull-back, has been extensively studied in [1] and [2] and it applies only to bundles whose symmetry group contains a copy of \mathbb{C}^*. In this paper we show that, for any $n \geq 3$, there exists a Tango bundle that is $\text{SL}(2)$-invariant: hence the generalized pull-back allows us to define a new class of $(n-1)$-bundles on \mathbb{P}^n.

More precisely, let α, γ be integer numbers such that $\gamma > n\alpha \geq 0$ and let $Q_{\alpha,\gamma}$ be the bundles on \mathbb{P}^n described by the exact sequence:

$$0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-\gamma) \rightarrow \bigoplus_{k=0}^n \mathcal{O}_{\mathbb{P}^n}((n-2k)\alpha) \rightarrow Q_{\alpha,\gamma} \rightarrow 0.$$

$Q_{\alpha,\gamma}$ can also be defined as the generalized pull-back of the quotient bundle on \mathbb{P}^n and, in particular, $Q_{0,1}$ is the quotient bundle. Let us define the rank $2n-1$ vector bundle:

$$\mathcal{V} = S^{2(n-1)}(\mathcal{O}_{\mathbb{P}^n}(\alpha) \oplus \mathcal{O}_{\mathbb{P}^n}(-\alpha)) = \bigoplus_{k=0}^{2(n-1)} \mathcal{O}_{\mathbb{P}^n}((2n-1-2k)\alpha).$$

It will be proven that there exists an exact sequence of algebraic vector bundles over \mathbb{P}^n:

$$0 \rightarrow Q_{\alpha,\gamma}(-\gamma) \rightarrow \mathcal{V} \rightarrow F_{\alpha,\gamma}(\gamma) \rightarrow 0. \tag{1}$$

The $(n-1)$-bundles $F_{\alpha,\gamma}$ are called weighted Tango bundles of weights α and γ and they are stable if and only if $\gamma > 2(n-1)\alpha$. The bundles $F_{0,1}$ are the classical Tango bundles.

1991 Mathematics Subject Classification. 14F05.
Key words and phrases. moduli space, vector bundle.
bundles, moreover the generalized pull-backs of the Tango bundles are contained in the sequence (I). The main result of this paper is the following:

Theorem 0.1. Let \(F_{\alpha,\gamma}^o \) be a stable weighted Tango bundle on \(\mathbb{P}^n \) of weights \(\alpha \) and \(\gamma \) and let \(c_i \) be the \(i \)-th Chern class of \(F_{\alpha,\gamma}^o \) (in particular \(c_1 = 0 \)). There exists a smooth neighborhood of the point of the moduli space \(\mathcal{M}_{\mathbb{P}^n}(0, c_2, \ldots, c_{n-1}) \) corresponding to \(F_{\alpha,\gamma}^o \) entirely consisting of weighted Tango bundles of weights \(\alpha \) and \(\gamma \).

I would like to express my gratitude to professor V. Ancona for his invaluable guidance and to professor G. Ottaviani for his insightful suggestions.

1. **Introduction.**

Let \(V \) be a \((n+1)\)-dimensional vector space over \(\mathbb{C} \), and let \(\mathbb{P}^n = \mathbb{P}(V) \): it is possible to show (cf. [11]) that a Tango bundle \(F \) on \(\mathbb{P}^n \) is contained in the following exact sequence:

\[
0 \to Q(-1) \to \frac{\Lambda^2 V}{W} \otimes \mathcal{O}_{\mathbb{P}^n} \to F(1) \to 0;
\]

here \(Q \) is the quotient bundle (cf. [13]) on \(\mathbb{P}^n \) and \(W \subseteq \Lambda^2 V \) is a linear subspace such that:

\[
\begin{aligned}
\text{dim}_\mathbb{C} \mathbb{P}(W) &= m - 1 \\
\mathbb{P}(W) \cap \mathbb{G}(1, n) &= \emptyset
\end{aligned}
\]

where \(m = \frac{(n-2)(n-1)}{2} \) and \(\mathbb{G}(1, n) \) is the Grassmannian of the lines in \(\mathbb{P}^n = \mathbb{P}(V) \); hence \(W \) does not contain any decomposable bivectors. Moore [12] has shown that \(F \) is uniquely determined by the subspace \(W \subseteq \Lambda^2 V \) and so by a point of the variety \(\mathbb{G}(m - 1, N - 1) \), with \(N = \frac{n(n+1)}{2} \); furthermore if \(W \) is invariant under the action of a group \(G \subseteq \text{GL}(n+1) \) then the Tango bundle, associated to \(W \), is \(G \)-invariant too, i.e. \(G \subseteq \text{Sym} F \).

2. **Action of SL(2).**

Let \(U \) be a 2-dimensional vector space over \(\mathbb{C} \) and let us consider the complex projective space \(\mathbb{P}^n = \mathbb{P}(S^nU) \): in this way, we have a natural action of \(\text{SL}(2) = \text{SL}(U) \) over \(\mathbb{P}^n \).

We want to find a subspace \(W \subseteq \Lambda^2 S^nU \), \(\text{SL}(2) \)-invariant and that satisfies (2). For this purpose we prove the following:

Proposition 2.1. The decomposition of \(\Lambda^2 S^nU \) into irreducible representations is given by \(\text{S}^{2(n-1)}U \oplus \text{S}^{2(n-3)}U \oplus \text{S}^{2(n-5)}U \oplus \ldots \); moreover if \(W = \text{S}^{2(n-3)}U \oplus \text{S}^{2(n-5)}U \oplus \ldots \), then \(W \) satisfies (3).

This proposition immediately implies that for any \(n \in \mathbb{N} \), such a subspace \(W \) defines a \(\text{SL}(2) \)-invariant Tango bundle \(F \) on \(\mathbb{P}^n \), which is described by the exact sequence:

\[
0 \to Q(-1) \to \text{S}^{2(n-1)}U \otimes \mathcal{O}_{\mathbb{P}^n} \to F(1) \to 0.
\]

Before proceeding with the proof of the proposition, we prove the following lemma:
Lemma 2.2. Let \(\{v_0, \ldots, v_n\} \) be a basis of \(V \) and \(\omega \in G(1, n) \subseteq \wedge^2 V \) a non-vanishing decomposable bivector, then:

\[
\omega = x_{i_0,j_0}(v_{i_0} \wedge v_{j_0}) + \sum_{i+j>i_0+j_0} x_{i,j}(v_i \wedge v_j)
\]

where \(x_{i,j} \in \mathbb{C} \) and \(x_{i_0,j_0} \neq 0 \).

Remark. In order to simplify the notations, we will often write \(v_{i,j} \) instead of \(v_i \wedge v_j \).

Proof. We proceed by induction on \(n \). For \(n = 1 \), there is nothing to prove.

Let us suppose now \(n > 1 \) and let \(\omega = v \wedge v' \) where \(v = \sum x_i v_i \) and \(v' = \sum y_i v_i \).

Let \(z_{i,j} = x_i y_j - x_j y_i \) then

\[
\omega = \sum_{i<j} z_{i,j} v_{i,j},
\]

where \(k_0 = \min \{ k | z_{i,j} = 0 \text{ if } i + j = k \} \).

If there exist \(i_0, j_0 \neq 0 \) such that \(i_0 + j_0 = k \), and \(z_{i_0,j_0} \neq 0 \) then, since \(z_{0,0} = 0 \) it easily follows \(x_0 = y_0 = 0 \) : thus the lemma is true by induction.

Otherwise, if such \(i_0, j_0 \) do not exist, then:

\[
\omega = z_{0,k} v_{0,k} + \sum_{i+j > k_0} z_{i,j} v_{i,j}.
\]

\[\square\]

Proof of proposition 2.4.

Let \(V = S^n U \) and let \(\{x, y\} \) be a basis of \(V \): if \(v_0 = x^n, \ldots, v_n = y^n \), then \(\{v_0, \ldots, v_n\} \) is a basis of \(V \). The weights of \(S^n U \) are \(\{n, n-2, \ldots, -n\} \) (cf. II. pag. 146–153) and since the weights of \(\wedge^2 S^n U \) are given by the sums of couples of different weights of \(S^n U \), it easily follows:

\[
\wedge^2 S^n U = S^{2(n-1)} U \oplus S^{2(n-3)} U \oplus S^{2(n-5)} U \oplus \ldots
\]

Indeed if \(W = S^{2(n-3)} U \oplus S^{2(n-5)} U \oplus \ldots \), then \(\dim_{\mathbb{C}} W = m \).

Let us prove now that \(W \) does not contain any decomposable bivector, as required. We suppose that there exists \(\omega \in W \cap G(1, n) \), such that \(\omega \neq 0 \); by the previous lemma, we get:

\[
\omega = x_{i_0,j_0} v_{i_0,j_0} + \sum_{i+j > i_0+j_0} x_{i,j} v_{i,j}
\]

where \(x_{i_0,j_0} \neq 0 \). We want to show that, in this case, there exists a vector of weight \(2(n-1) \) in \(W \): this contradicts with the fact that \(S^{2(n-1)} U \cap W = \{0\} \).

Let \(Y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \), \(H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) \(\in \mathcal{S}(2) \), and let \(\tilde{Y}, \tilde{H} \) be the corresponding endomorphisms of \(\wedge^2 S^n U \). If we suppose \(v_{n+1} = 0 \), we have:

\[
\tilde{Y}(v_{i,j}) = (n-i) v_{i+1,j} + (n-j) v_{i,j+1} \quad \text{for any } i, j = 0, \ldots, n.
\]

Hence if \(k = (2n-1) - i_0 - j_0 \), then \(x_{i_0,j_0} \tilde{Y}(v_{i_0} \wedge v_{j_0}) = \tilde{Y}(k)(\omega) \in W \). On the other hand it results that \(\tilde{Y}(k)(v_{i_0,j_0}) = m v_{n,n-1} \), where \(m \) is a positive integer: this implies that \(v_{n,n-1} \in W \) and since \(\tilde{H}(v_{n,n-1}) = -2(n-1)v_{n,n-1} \), we see that \(W \) contains a vector of weight \(2(n-1) \).

\[\square\]
Remark. Moore [12] has shown that the Tango bundles on \mathbb{P}^4 have all symmetry groups isomorphic to $\mathbb{P}O(3)$ and that $\mathbb{P} GL(5)$ acts transitively on the moduli space of the Tango bundles $\mathcal{M}_{\mathbb{P}^4}(0,2,2)$. In higher dimensions the situation is different: in fact, with the help of the software Macaulay 2 [7], it has been possible to prove that on \mathbb{P}^5 the generic Tango bundle has a discrete symmetry group and that there exist Tango bundles with the symmetry group isomorphic to \mathbb{C}^* (for instance the one defined by $W = \langle v_{0,5} + 5v_{2,3}, v_{1,4} + 3v_{2,3}, v_{0,4} - 2v_{1,3}, v_{2,5} + v_{3,4}, v_{0,3} + 3v_{1,2}, 2v_{2,5} - 3v_{3,4} \rangle$).

The algorithm needed to calculate the dimension of the orbit of a subspace $W_0 \subseteq \wedge^2 V$ (where $n = 5$) under the action of $\mathbb{P} GL(6)$ was communicated to the author by G. Ottaviani. We describe the fundamental steps of it:

1. Let us choose m as a (6×15)-matrix whose rows represent the generators of the subspace $W_0 \subseteq \wedge^2 V$.
2. We denote by $g = \{g_{i,j}\}$ a generic (6×6)-matrix and let’s define $m’ = m \ast \wedge^2 g$: $m’$ represents the image gW_0 of the matrix $g \in \mathbb{P} GL(6)$ by the map $\eta : \mathbb{P} GL(6) \to \mathbb{G}(6, \wedge^2 V)$; By the Plucker embedding $\phi : \mathbb{G}(m, \wedge^2 V) \to \mathbb{P}^{5004}$, the dimension of the orbit of W_0 is equal to the dimension of the ideal generated by the minors 6×6 of $m’$, but its calculation is, computationally, too difficult. Therefore in order to make the computation easier, we first calculate the derivative $d(\phi \circ \eta)$ at the identity matrix and then we compute the dimension of its image: this number is exactly the dimension of the orbit. We proceed as follows:

3. Let $v_1(g), \ldots, v_6(g)$ be the rows of $m’$, and let $v_i(g)_{g_{i,j}} = \frac{\partial v_i(g)}{\partial g_{i,j}}$.

In order to compute the derivative $d(\phi \circ \eta)$, we remind that, for any $I \subseteq \{1, \ldots, 15\}$ such that $\# I = 6$, we have:

$$\frac{\partial}{\partial g_{i,j}} \det \begin{pmatrix} v^I_1(g) \\ \vdots \\ v^I_6(g) \end{pmatrix} = \det \begin{pmatrix} v^I_1(g)_{g_{i,j}} \\ \vdots \\ v^I_6(g)_{g_{i,j}} \end{pmatrix} + \cdots + \det \begin{pmatrix} v^I_1(g) \\ \vdots \\ v^I_6(g)_{g_{i,j}} \end{pmatrix}$$

where $v^I_i(g)$ denotes the vector composed by the components of $v_i(g)$ with index in I.

4. Let’s define $M^k_{i,j} = \begin{pmatrix} v_1(Id_6) \\ \vdots \\ v_k(Id_6)_{g_{i,j}} \\ \vdots \\ v_6(Id_6) \end{pmatrix}$; let $p_{i,j}$ be the sum of the vectors in \mathbb{P}^{5004} defined by the minors of $M^k_{i,j}$ with $k = 1, \ldots, 6$;

5. The rank of the matrix $\begin{pmatrix} p_{1,1} \\ p_{1,2} \\ \vdots \\ p_{6,6} \end{pmatrix}$ is the dimension of the orbit of W_0.

\[\begin{pmatrix} v_1(Id_6) \\ \vdots \\ v_k(Id_6)_{g_{i,j}} \\ \vdots \\ v_6(Id_6) \end{pmatrix} \]
3. Weighted Tango Bundles.

We have shown that for any n, there exists a Tango bundle F on $\mathbb{P}(S^nU)$ that is invariant under the \mathbb{C}^*-action defined by:

$$(t^n \quad t^{n-2} \quad \cdots \quad t^{-n}) \in \mathbb{P} \text{GL}(n + 1) \quad \text{for any } t \in \mathbb{C}^*$$

This map induces an embedding of \mathbb{C}^* in $\text{Sym} F$ and so it is possible to study the pull-backs over $\mathbb{C}^{n+1} \setminus 0$ of such bundles (cf. [1, 2]).

Let us fix $\alpha, \gamma \in \mathbb{N}$ such that $\gamma > n\alpha$ and let $f_0, \ldots, f_n \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous polynomial of degree:

$$\deg f_k = \gamma + (n - 2k) \alpha \quad \text{for each } k = 0, \ldots, n$$

and without common roots.

Let $\phi = (f_0, \ldots, f_n)$ and let us take into account the following diagram:

$$\begin{array}{ccc}
\mathbb{C}^{n+1} \setminus 0 & \xrightarrow{\phi} & S^nU \setminus 0 \\
\pi_1 \downarrow & & \downarrow \pi_2 \\
\mathbb{P}^n & & \mathbb{P}^n
\end{array}$$

According to [1, 3], there exists an algebraic vector bundle $F_{\alpha,\gamma}$ on \mathbb{P}^n such that $\pi_1^* F_{\alpha,\gamma} = \phi^* \pi_2^* F$. Furthermore, since Q is an homogeneous bundle [13], there exists $Q_{\alpha,\gamma}$ such that $\pi_1^* Q_{\alpha,\gamma} = \phi^* \pi_2^* Q$. Such a bundle is contained in the weighted Euler sequence:

$$(3) \quad 0 \to O_{\mathbb{P}^n}(-\gamma) \to S^nU \to Q_{\alpha,\gamma} \to 0$$

where $\mathcal{U} = O_{\mathbb{P}^n}(-\alpha) \oplus O_{\mathbb{P}^n}(\alpha)$. In general, we will call weighted quotient bundle of weights α and γ any bundles $Q_{\alpha,\gamma}$ contained in a sequence (3).

On the other hand $F_{\alpha,\gamma}$ is contained in the exact sequence:

$$(4) \quad 0 \to Q_{\alpha,\gamma}(-\gamma) \to \mathcal{V} \to F_{\alpha,\gamma}(\gamma) \to 0$$

where $\mathcal{V} = S^{2(n-1)}\mathcal{U}$ and $Q_{\alpha,\gamma}$ is the pull-back over $\mathbb{C}^{n+1} \setminus 0$ of the quotient bundle Q defined by the map ϕ. Also in this case, we will call weighted Tango bundle of weights α and γ any bundles $F_{\alpha,\gamma}$ contained in the sequence (4), where $Q_{\alpha,\gamma}$ is any weighted quotient bundle of weights α and γ.

By these sequences, it immediately follows that $c_1(F_{\alpha,\gamma}) = 0$ and that $c_i(F_{\alpha,\gamma}) = c_i(\alpha, \gamma)$ for any $i = 2, \ldots, n - 1$ (i.e. the Chern classes do not depend on the map ϕ).

Proposition 3.1. A weighted Tango bundle $F_{\alpha,\gamma}$ is stable if and only if $\gamma > 2(n - 1)\alpha$.

Proof. Let $\gamma > 2(n - 1)\alpha$. By the Hoppe criterion [3], it suffices to show that $H^0(\wedge^q F_{\alpha,\gamma}) = 0$ for any $q = 1, \ldots, n - 2$. By the sequence:

$$0 \to S^{k-1}S^nU(-\gamma) \to S^kS^nU \to S^kQ_{\alpha,\gamma} \to 0$$

obtained raising the sequence (3) to the k-th symmetric power, we see that: $H^i(S^kQ_{\alpha,\gamma}(t)) = 0$ for any $i = 1, \ldots, n - 2$ and $t \in \mathbb{Z}$.
On the other hand by (4), we have the long exact sequence:

\[
0 \rightarrow S^qQ_{\alpha,\gamma}(-q\gamma) \rightarrow \cdots \rightarrow S^kQ_{\alpha,\gamma}(-k\gamma) \otimes \wedge^{q-k}V \rightarrow \cdots
\]
\[
\cdots \rightarrow Q_{\alpha,\gamma}(-\gamma) \otimes \wedge^{q-1}V \rightarrow \wedge^qV \rightarrow \wedge^qF_{\alpha,\gamma}(q\gamma) \rightarrow 0
\]

This sequence immediately implies that \(H^0(\wedge^qF_{\alpha,\gamma}) \subseteq H^0(\wedge^qV(-q\gamma))\), and since

\[
\max\{t \in \mathbb{Z} | \mathcal{O}_{\mathbb{P}^n}(t) \subseteq \wedge^qV(-q\gamma)\} = q((2n-q-1)\alpha - \gamma) < 0
\]

we have that \(H^0(\wedge^qF_{\alpha,\gamma}) = 0\) for any \(q = 1, \ldots, n-2\), and so \(F_{\alpha,\gamma}\) is stable.

Let us prove now that the condition is necessary. By the sequence s:

\[
0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-3\gamma) \rightarrow S^nU(-2\gamma) \rightarrow Q_{\alpha,\gamma}(-2\gamma) \rightarrow 0
\]
\[
0 \rightarrow Q_{\alpha,\gamma}(-2\gamma) \rightarrow V(-\gamma) \rightarrow F_{\alpha,\gamma} \rightarrow 0
\]

it follows that if \(\gamma \leq 2(n-1)\alpha\), then \(H^0(F_{\alpha,\gamma}) \neq 0\) and so \(F_{\alpha,\gamma}\) cannot be stable. \(\square\)

4. Small deformations of \(F_{\alpha,\gamma}\).

Let \(E\) be a vector bundle on \(\mathbb{P}^n\): we will indicate with \((\text{Kur}E, e)\) the Kuranishi space of \(E\) (cf. [5]), where \(e \in \text{Kur}E\) is the point corresponding to the bundle \(E\).

We are finally ready to introduce the main result of this paper:

Proposition 4.1. Let \(F_{\alpha,\gamma}^0\) be a weighted Tango bundle of weights \(\alpha\) and \(\gamma\). Every small deformation of \(F_{\alpha,\gamma}^0\) is still a weighted Tango bundle and its Kuranishi space is smooth at the point corresponding to \(F_{\alpha,\gamma}^0\).

Before proceeding with the proof of the proposition, let us look at some preliminaries:

Lemma 4.2. Let \(Q_{\alpha,\gamma}^0\) be a weighted quotient bundle. Every small deformation of \(Q_{\alpha,\gamma}^0\) is still a weighted quotient bundle and the Kuranishi space of \(Q_{\alpha,\gamma}^0\) is smooth at the point corresponding to its isomorphism class.

Proof. The proof of this lemma is very similar to the proof of prop. 3.1 of [4]. \(\square\)

Lemma 4.3. Let \(F_{\alpha,\gamma}\) and \(F'_{\alpha,\gamma}\) be two isomorphic weighted Tango bundles, defined by the sequences:

\[
0 \rightarrow Q_{\alpha,\gamma}(-\gamma) \rightarrow V \rightarrow F_{\alpha,\gamma}(\gamma) \rightarrow 0
\]
\[
0 \rightarrow Q'_{\alpha,\gamma}(-\gamma) \rightarrow V \rightarrow F'_{\alpha,\gamma}(\gamma) \rightarrow 0
\]

where \(Q_{\alpha,\gamma}\) and \(Q'_{\alpha,\gamma}\) are weighted quotient bundles. Then \(Q_{\alpha,\gamma}\) and \(Q'_{\alpha,\gamma}\) are isomorphic.

Proof. By joining together the sequences (3) and (4), we get:

\[
0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-2\gamma) \xrightarrow{\phi} S^nU(-\gamma) \rightarrow V \rightarrow F_{\alpha,\gamma}(\gamma) \rightarrow 0.
\]

By proposition 1.4 of [5] and by the fact that \(-2\gamma < -\gamma - n\alpha\), the last sequence is the minimal resolution of \(F_{\alpha,\gamma}(\gamma)\): hence \(Q_{\alpha,\gamma}(-2\gamma) = \text{Coker} \phi\) is directly defined by this resolution. \(\square\)
Lemma 4.4. Every isomorphism between two weighted Tango bundles \(F_{\alpha,\gamma} \rightarrow F'_{\alpha,\gamma} \) is induced by an isomorphism of sequences:

\[
\begin{array}{cccc}
0 & \rightarrow & Q_{\alpha,\gamma}(-\gamma) & \rightarrow \ V & \rightarrow & F_{\alpha,\gamma}(\gamma) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \rightarrow & Q'_{\alpha,\gamma}(-\gamma) & \rightarrow \ V & \rightarrow & F'_{\alpha,\gamma}(\gamma) & \rightarrow & 0
\end{array}
\]

Proof. By the sequence

\[
0 \rightarrow O_{\mathbb{P}^n}(-2\gamma) \otimes V \rightarrow S^nU(-\gamma) \otimes V \rightarrow Q_{\alpha,\gamma}(-\gamma) \otimes V \rightarrow 0,
\]

and since

\[h^1(S^nU(-\gamma) \otimes V) = h^2(O_{\mathbb{P}^n}(-2\gamma) \otimes V) = 0,\]

we get \(h^1(Q_{\alpha,\gamma}(-\gamma) \otimes V) = 0\); hence the lemma is proven.

Lemma 4.5. Two morphisms \(f, f' \in \text{Hom}(Q_{\alpha,\gamma}(-\gamma), V) \) give the same element of \(\text{Quot}_{\mathbb{P}^n} \) if and only if there exists an invertible \(h \in \text{End}(Q_{\alpha,\gamma}(-\gamma)) \) such that

\[f = f' \circ h.\]

Proof. It follows from the definition of \(\text{Quot}_{\mathbb{P}^n} \), (cf. [10]).

Proof of proposition 4.2.

For brevity’s sake, we will write \(\tilde{F}_0 \) instead of \(F^o_{\alpha,\gamma} \) and \(\tilde{Q}_o \) for \(Q^o_{\alpha,\gamma} \). Let also \(\sigma_0 \in \text{Hom}(\tilde{Q}_o(\gamma), V) \) be such that \(\tilde{F}_0 = \text{Coker} \sigma_0 \).

Let \(Q \) be the sub-variety of the irreducible component of \(\text{Quot}_{\mathbb{P}^n} \) composed by all the quotients of the maps \(0 \rightarrow Q_{\alpha,\gamma}(-\gamma) \overset{\sigma}{\rightarrow} V \) for some weighted bundle \(Q_{\alpha,\gamma} \) and containing the point \(\sigma_0 \) corresponding to \(\tilde{F}_0 \): the morphisms \(\Phi : (Q, \sigma_0) \rightarrow (\text{Kur} \tilde{Q}_o, q_0) \) and \(\Psi : (Q, \sigma_0) \rightarrow (\text{Kur} \tilde{F}_0, f_0) \) are canonically defined.

A generic fiber of \(\Phi \) is given by all the cokernels of the morphisms \(Q_{\alpha,\gamma}(-\gamma) \rightarrow V \) with a fixed \(Q_{\alpha,\gamma} \), and so, by lemma 4.3, its dimension is constantly equal (\(\alpha \) and \(\gamma \) are fixed) to \(h^0(Q_{\alpha,\gamma}^o(\gamma) \otimes V) \rightarrow h^0(\text{End} Q_{\alpha,\gamma}) \). Hence, since lemma 4.2 implies that \(\dim_{\sigma_0}(\text{Kur} \tilde{Q}_o) = h^1(\text{End} \tilde{Q}_o) \), we get:

\[
\dim_{\sigma_0} Q = h^0(\tilde{Q}_o^*(\gamma) \otimes V) - h^0(\text{End} \tilde{Q}_o) + h^1(\text{End} \tilde{Q}_o)
\]

Let us study now the morphism \(\Psi : Q \rightarrow \text{Kur} \tilde{F}_0 \): if \(\Sigma = \{ \sigma \in \text{Quot}_{\mathbb{P}^n}[F_{\sigma} \simeq \tilde{F}_0] \} \), then it results \(\Psi^{-1}(f_0) \subseteq \Sigma \) and by lemma 4.3, 4.4 and 4.5, it follows:

\[
\dim_{\sigma_0} \Sigma = h^0(\text{End} V) - \dim\{ \varphi \in \text{End} V| \varphi \cdot \sigma_0 = \sigma_0 \} - h^0(\text{End} \tilde{Q}_o).
\]

By the sequence:

\[
0 \rightarrow \tilde{F}_0^*(\gamma) \otimes V \rightarrow \text{End} V \rightarrow \tilde{Q}_o^*(\gamma) \otimes V \rightarrow 0
\]

obtained tensoring the dual sequence of \([4] \) with \(V \), we have that:

\[
\dim\{ \varphi \in \text{End} V| \varphi \cdot \sigma_0 = \sigma_0 \} = h^0(\tilde{F}_0^*(\gamma) \otimes V)
\]

and so:

\[
\dim_{\sigma_0} \Psi^{-1}(f_0) \leq \dim_{\sigma_0} \Sigma = h^0(\text{End} V) - h^0(\tilde{F}_0^*(\gamma) \otimes V) - h^0(\text{End} \tilde{Q}_o).
\]

Hence:

\[
h^1(\text{End} \tilde{F}_0) \geq \dim_{f_0}(\text{Kur} \tilde{F}_0) \geq h^1(\text{End} \tilde{Q}_0) + h^1(\tilde{F}_0^*(\gamma) \otimes V).
\]
To prove the proposition it suffices to show that
\[h^1(\text{End} \, \widetilde{F}_o) \leq h^1(\text{End} \, \tilde{Q}_o) + h^1(\tilde{F}_o^*(-\gamma) \otimes \mathcal{V}). \]
In fact this implies that \(h^1(\text{End} \, \widetilde{F}_o) = \dim_{f_0}(\text{Kur} \, \tilde{F}_o), \) i.e. \(\text{Kur} \, \tilde{F}_o \) is smooth at the point \(f_0, \) and that \(\dim_{f_0}(\text{Kur} \, \tilde{F}_o) = \dim_{c_0} \mathcal{Q} - \dim \Psi^{-1}(f_0), \) i.e. \(\Psi \) is surjective.

By the exact sequence:
\[0 \to \tilde{Q}_o(-2\gamma) \otimes \tilde{F}_o^* \to \tilde{Q}_o(-\gamma) \otimes \mathcal{V} \to \text{End} \, \tilde{Q}_o \to 0 \]
and by the vanishing of \(H^1(\tilde{Q}_o(-\gamma) \otimes \mathcal{V}) \) and \(H^2(\tilde{Q}_o(-\gamma) \otimes \mathcal{V}), \) we have that \(H^1(\text{End} \, \tilde{Q}_o) = H^2(\tilde{Q}_o(-2\gamma) \otimes \tilde{F}_o^*). \) Hence by the sequence:
\[0 \to \tilde{Q}_o(-2\gamma) \otimes \tilde{F}_o^* \to \tilde{F}_o^*(-\gamma) \otimes \mathcal{V} \to \text{End} \, \tilde{F}_o \to 0 \]
and for what we have seen, we get the sequence of cohomology groups:
\[\cdots \to H^1(\tilde{F}_o^*(-\gamma) \otimes \mathcal{V}) \to H^1(\text{End} \, \tilde{F}_o) \to H^1(\text{End} \, \tilde{Q}_o) \to \cdots \]
In particular \(h^1(\text{End} \, \tilde{F}_o) \leq h^1(\text{End} \, \tilde{Q}_o) + h^1(\tilde{F}_o^*(-\gamma) \otimes \mathcal{V}), \) as required. \(\square \)

Theorem 0.1 easily follows from the previous proposition. In fact if \(\gamma \geq 2(n-1)\alpha, \) we can consider the canonical algebraic map \(\mathcal{Q} \to \mathcal{M}(0, c_2, \ldots, c_{n-1}). \) The image of this map is a smooth quasi projective set composed uniquely by weighed Tango bundles and it is an open neighborhood of \(F_{\alpha, \gamma}^o \) in \(\mathcal{M}(0, c_2, \ldots, c_{n-1}). \)

\textbf{References}

[1] V.Ancona, G.Ottaviani, The Horrocks bundles of rank three on \(\mathbb{P}^5, \) J.reine angew. Math. 460 (1995), 69–92.
[2] V.Ancona, G.Ottaviani, On singularities of \(\mathcal{M}_{\mathfrak{pS}}(c_1, c_2), \) International Journal of Math. Volume 9, 4 (1998), 407–419.
[3] V.Ancona, G.Ottaviani, Stability of special instanton bundles on \(\mathbb{P}^{2n+1}, \) Trans. Amer. Math Soc. 341 (1994), 677–693.
[4] G.Bonhorst, H.Spindler, The stability of certain vector bundles on \(\mathbb{P}^n, \) Proc. Bayreuth Conference Complex Algebraic Varieties, Lect. Notes Math. 1507 (1992), 39–50.
[5] O.Forster, K.Knorr, Über die Deformationen von Vectorraumbündeln auf Kompakten Komplexen Räumen, Math. Ann. 209 (1974), 291–346.
[6] W.Fulton, J.Harris Representation theory, a first course, Graduate Text in Math. 133, Springer (1991).
[7] D.Grayson, M.Stillman, Macaulay 2, version 0.8, available at \texttt{http://www.math.uic.edu/Macaulay2}.
[8] H.J.Hoppe, Stable generischer spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf \(\mathbb{P}^4, \) Math. Zeitschrift bF 187 (1984), 345–360.
[9] G.Horrocks, Examples of rank three vector bundles on five-dimensional projective space, J.London Math.Soc. 18 (1978), 15–27.
[10] D.Huybrechts, The geometry of moduli spaces of sheaves, Aspects of Mathematics 31.
[11] K.Jaczewska, M.Szurek, J.Wisniewski, Geometry of the Tango bundle, Teubner Texte zur Math. 92 (1986), 177–185.
[12] R.Moore, Linear equivalence of Tango bundle on \(\mathbb{P}^4, \) J.reine angew. Math. 351 (1984), 12–19.
[13] C.Okonek, M. Schneider and H. Spindler, Vector Bundles on complex projective space, Birkhäuser, Basel and Boston, Mass. (1980)
[14] H. Tango, *An example of indecomposable vector bundles of rank \(n - 1 \) on \(\mathbb{P}^n \)*, J. Math. Kyoto Univ. 16 (1976), 137–141.

Dipartimento di Matematica, Viale Morgagni 67 A, 50134 Firenze, Italy
E-mail address: cascini@math.unifi.it