A CRITERION FOR HOMOGENEOUS PRINCIPAL BUNDLES

INDRANIL BISWAS AND GÜNTER TRAUTMANN

Abstract. We consider principal bundles over G/P, where P is a parabolic subgroup of a semisimple and simply connected linear algebraic group G defined over \mathbb{C}. We prove that a holomorphic principal H–bundle $E_H \rightarrow G/P$, where H is a complex reductive group, is homogeneous if the adjoint vector bundle $\text{ad}(E_H)$ is homogeneous. Fix a faithful H–module V. We also show that E_H is homogeneous if the vector bundle $E_H \times^H V$ associated to it for the H–module V is homogeneous.

1. Introduction

Let G be a semisimple and simply connected linear algebraic group defined over \mathbb{C} and $P \subset G$ a parabolic subgroup. So the quotient G/P is a rational complete homogeneous variety. Let H be any complex algebraic group. A holomorphic principal H–bundle $E_H \rightarrow G/P$ is called homogeneous if the left–translation action of G on G/P lifts to an action of G on E_H that commutes with the right action of H. The category of holomorphic homogeneous principal H–bundles coincides with the category of algebraic homogeneous principal H–bundles (see Lemma 2.1).

Now assume that H is reductive. Fix a finite dimensional faithful H–module V. The following is the main result proved here (see Theorem 2.2).

Theorem 1.1. A principal H–bundle $E_H \rightarrow G/P$ is homogeneous if and only if the associated vector bundle $E_H \times^H V$ is homogeneous.

The method of proof of Theorem 1.1 yields the following (see Lemma 4.1):

Lemma 1.2. A principal H–bundle $E_H \rightarrow G/P$ is homogeneous if and only if its adjoint vector bundle $\text{ad}(E_H)$ is homogeneous.

Application 1.3. In [Sa2], Sato proved that any infinitely extendable vector bundle on a nested sequence of homogeneous spaces is homogeneous (see [Sa2] p. 171, Main Theorem I] and [Sa2] p. 171, Main Theorem II] for the details). In view of Theorem 2.2 we conclude that the results of [Sa2] extend to principal bundles. In particular, any principal H–bundle on an infinite Grassmannian is homogeneous (see also [Sa1] and [DP]). Similarly, the results of Penkov and Tikhomirov (see [PT1], [PT2]) extend to principal bundles.

2000 Mathematics Subject Classification. 14L30, 14F05, 14M17.

Key words and phrases. Homogeneous bundle, principal bundle, homogeneous space.
2. Homogeneous principal bundles and homogeneous vector bundles

Let G be a semisimple and simply connected linear algebraic group defined over \mathbb{C}, and let $P \subset G$ be a proper parabolic subgroup. So

$$M := G/P$$

is a rational complete homogeneous variety. In the following, all morphisms, as well as all bundles on M, are supposed to be in the holomorphic category; they eventually may also be algebraic.

The left translation action of G on itself defines an action of G on the quotient space M. For any $g \in G$, let

$$f_g : M \rightarrow M$$

be the holomorphic automorphism given by the action of g.

Let H be a linear algebraic group defined over \mathbb{C}. A principal H–bundle E_H on M is called homogeneous if the action of G on M lifts to a holomorphic action of G on E_H that commutes with the right action of H. Equivalently, E_H is the extension of structure group of the principal P–bundle $G \rightarrow G/P$ by a homomorphism $P \rightarrow H$.

A vector bundle F on M is called homogeneous if the action of G on M lifts to an action of G on the total space of F which is linear on the fibers. Thus a vector bundle of rank n over M is homogeneous if and only if the corresponding principal $\text{GL}(n, \mathbb{C})$–bundle is homogeneous.

The following lemma shows that homogeneous principal H–bundles are algebraically homogeneous.

Lemma 2.1. Let $E_H \rightarrow M$ be a homogeneous principal H–bundle. Then the action of G on M lifts to an algebraic action of G on E_H satisfying the condition that it commutes with the right action of H.

Proof. Since E_H is homogeneous, for each $g \in G$, the pulled back principal H–bundle $f_g^* E_H$ is holomorphically isomorphic to E_H, where f_g is constructed in (2.2). Therefore, $f_g^* E_H$ is algebraically isomorphic to E_H for all $g \in G$. Now from Proposition 3.1 of [Bi] we conclude that the action of G on M lifts to an algebraic action of G on E_H satisfying the condition that it commutes with the right action of H.

Let H be a connected reductive linear algebraic group defined over \mathbb{C}. Fix a finite dimensional complex representation

$$\rho_0 : H \rightarrow \text{GL}(V)$$

such that $\text{kernel}(\rho_0)$ is a finite group. So the homomorphism of Lie algebras induced by ρ

$$\mathfrak{h} := \text{Lie}(H) \rightarrow \text{End}(V)$$

is injective.

Let $E_H \rightarrow M$ be a principal H–bundle. Let

$$E_V := E_H \times^H V \rightarrow M$$
be the vector bundle associated to E_H for the H–module V in \([2.3]\).

Theorem 2.2. Assume that the associated vector bundle E_V is homogeneous. Then the principal H–bundle E_H is homogeneous.

3. Proof of Theorem 2.2

Let $E_{GL(V)} \rightarrow M$ be the principal $GL(V)$–bundle corresponding to E_V. By assumption, we have an action $G \times E_{GL(V)} \rightarrow E_{GL(V)}$ of G on $E_{GL(V)}$ that commutes with the action of $GL(V)$ making $E_{GL(V)}$ a homogeneous principal $GL(V)$–bundle. Our aim is to prove that E_H is homogeneous.

Let $At(E_{GL(V)})$ (respectively, $At(E_H)$) be the Atiyah bundle over M for the principal $GL(V)$–bundle $E_{GL(V)}$ (respectively, principal H–bundle E_H). We recall that $At(E_{GL(V)})$ (respectively, H–invariant vector fields on $E_{GL(V)}$) is the holomorphic vector bundle defined by the sheaf of $GL(V)$–invariant vector fields on $E_{GL(V)}$ (respectively, H–invariant vector fields on E_H); see [At].

Using the properties of the Atiyah bundle and the injectivity of the homomorphism in \((2.3)\) we have the following diagram with exact rows

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \text{ad}(E_H) & \rightarrow & \text{At}(E_H) & \rightarrow & TM & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \text{ad}(E_{GL(V)}) & \rightarrow & \text{At}(E_{GL(V)}) & \rightarrow & TM & \rightarrow & 0
\end{array}
\]

(3.1)

Since H is reductive, the homomorphism of H–modules in \((2.3)\) splits. In other words, there is a submodule S of the H–module $\text{End}(V)$ such that the natural homomorphism

\[
\mathfrak{h} \oplus S \rightarrow \text{End}(V)
\]

(3.2)

is an isomorphism of H–modules. Fix such a direct summand S, and let

\[E_S := E_H \times^H S\]

be the vector bundle over M associated to the principal H–bundle E_H for the H–module S. From \((3.2)\) we obtain an isomorphism

\[
\text{ad}(E_H) \oplus E_S \cong \text{ad}(E_{GL(V)})
\]

of associated vector bundles. Hence from \((3.1)\) we have the commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \text{ad}(E_H) \oplus E_S & \rightarrow & \text{At}(E_H) \oplus E_S & \rightarrow & TM & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \text{ad}(E_{GL(V)}) & \rightarrow & \text{At}(E_{GL(V)}) & \rightarrow & TM & \rightarrow & 0
\end{array}
\]

(3.3)

where $\iota : \text{ad}(E_H) \rightarrow \text{At}(E_H)$ is the inclusion in \((3.1)\). Let

\[
\sigma : H^0(M, \text{At}(E_{GL(V)})) \rightarrow H^0(M, \text{At}(E_H))
\]

(3.4)

be the surjective homomorphism induced by the projection $\text{At}(E_{GL(V)}) \rightarrow \text{At}(E_H)$ constructed from \((3.3)\).
Let \mathfrak{g} denote the Lie algebra of G. Let
\[\varphi: \mathfrak{g} \to H^0(M, \text{At}(E_{GL(V)})) \quad \text{and} \quad \varphi_H: \mathfrak{g} \to H^0(M, \text{At}(E_H)) \]
be the homomorphisms of Lie algebras given by the actions of G on $E_{GL(V)}$ and E_H respectively. Note that
\[\varphi_H = \sigma \circ \varphi, \]
where σ is constructed in (3.4). We have the following commutative diagram of Lie algebras
\[\begin{array}{ccc} \mathfrak{g} & \to & H^0(M, \text{At}(E_{GL(V)})) \\
\varphi \downarrow & & \downarrow \varphi_H \\
H^0(M, TM) & \to & H^0(M, \text{At}(E_H)) \\
\beta \downarrow & & \downarrow \alpha \\
H^0(M, TM) & \to & H^0(M, \text{Ad}(E_H)) \\
\end{array} \]
where β is the injective Lie algebra homomorphism induced by the natural action of G on G/P, and φ, σ are defined above; the remaining two homomorphisms are obtained from (3.1). Consequently, $\beta(\mathfrak{g}) \subset \alpha(H^0(M, \text{At}(E_H)))$. Defining
\[H^0(M, \text{At}(E_H)) := \alpha^{-1}(\beta(\mathfrak{g})), \]
from (3.5) and (3.1), we have a short exact sequence of Lie algebras
\[0 \to H^0(M, \text{Ad}(E_H)) \to H^0(M, \text{At}(E_H)) \to \mathfrak{g} \to 0. \]

Since \mathfrak{g} is semisimple, there is a homomorphism of Lie algebras
\[\hat{\alpha}: \mathfrak{g} \to H^0(M, \text{At}(E_H)) \]
such that $\alpha \circ \hat{\alpha} = \text{Id}_\mathfrak{g}$; see [Bo, p. 91, Corollaire 3]. Fix such a splitting $\hat{\alpha}$.

Let $\mathcal{G}(E_H)$ denote the group of all biholomorphisms of E_H that commute with the right action of H. It is a complex Lie group, and its Lie algebra coincides with $H^0(M, \text{At}(E_H))$ (see [Br] for a proof). The group G being simply connected, the homomorphism of Lie algebras $\hat{\alpha}$ in (3.7) lifts to a homomorphism
\[\rho: G \to \mathcal{G}(E_H). \]
Since $\alpha \circ \hat{\alpha} = \text{Id}_\mathfrak{g}$, it follows that the action of G on E_H defined by ρ makes E_H a homogeneous principal H–bundle. This completes the proof of Theorem 2.2.

4. ADJOINT BUNDLE CRITERION

The above proof of Theorem 2.2 also gives the following lemma.

Lemma 4.1. Assume that the adjoint vector bundle $\text{ad}(E_H)$ is homogeneous. Then E_H is homogeneous.

Proof. Define $Z := H/[H, H]$. Any holomorphic principal Z–bundle on G/P is homogeneous because Z is a product of copies of \mathbb{C}^* and G is simply connected (so any line bundle on G/P is homogeneous). The H–module \mathfrak{h} decomposes as
\[\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}] \oplus z(\mathfrak{h}), \]
where \(z(\mathfrak{h}) \) is the Lie algebra of \(Z \). The adjoint homomorphism \(\mathfrak{h} \rightarrow \text{End}_C(\mathfrak{h}) \) is injective. So, the homomorphism of Lie algebras corresponding to the homomorphism

\[
H \rightarrow \text{GL}(\mathfrak{h}) \times Z =: \tilde{H}
\]

is injective. Let \(E_{\tilde{H}} \) be the principal \(\tilde{H} \)-bundle on \(M \) obtained by extending the structure group of \(E_H \) using the above homomorphism. Since \(\text{ad}(E_H) \) and all holomorphic line bundles on \(G/P \) are homogeneous, and \(Z \) is a product of copies of \(\mathbb{C}^* \), it follows that \(E_{\tilde{H}} \) is homogeneous. After replacing the principal bundle \(E_{\text{GL}(V)} \) by \(E_{\tilde{H}} \), it is straightforward to check that the proof of Theorem 2.2 also gives a proof of the lemma.

Remark 4.2. Let \(E_H \) be a principal \(H \)-bundle on \(M \), and let \(H \rightarrow \text{GL}(V) \) be a faithful representation as in (2.2). If the associated vector bundle \(E_V \) is trivial, then it can be shown that \(E_H \) itself is trivial. To prove this, consider the induced morphism \(E_H \rightarrow E_{\text{GL}(V)} \). The principal \(\text{GL}(V) \)-bundle \(E_{\text{GL}(V)} \) is trivial because \(E_V \) is trivial. Since \(M \) is complete and \(\text{GL}(V)/H \) affine, there are no non-constant maps from \(M \) to \(\text{GL}(V)/H \). This implies that there are trivializing sections of \(E_{\text{GL}(V)} \) which factor through \(E_H \). By this remark, the result of [PT1] on the triviality of vector bundles on twisted ind–Grassmannians can be extended to principal bundles. (See [BCT] for principal bundles on projective spaces.)

References

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, *Trans. Amer. Math. Soc.* 85 (1957) 181–207.

[Bi] I. Biswas, Homogeneous principal bundles and stability, *Forum Math.* 22 (2010) 603–617.

[BCT] I. Biswas, I. Coandă and G. Trautmann, A Babylonian tower theorem for principal bundles over projective spaces, *Jour. Math. Kyoto Univ.* 49 (2009) 69–82.

[Bo] N. Bourbaki, *Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie*, Actualités Sci. Ind. No. 1285, Hermann, Paris, 1960.

[DP] J. Donin and I. Penkov, Finite rank vector bundles on inductive limits of Grassmannians, *Int. Math. Res. Not.* (2003) 1871–1887.

[PT1] I. Penkov and A. S. Tikhomirov, Triviality of vector bundles on sufficiently twisted ind–Grassmannians, *arXiv:0706.3912*.

[PT2] I. Penkov and A. S. Tikhomirov, Rank 2 vector bundles on ind–Grassmannians, *arXiv:0710.0905*.

[Sa1] E.-i. Sato, On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties, *Jour. Math. Kyoto Univ.* 17 (1977) 127–150.

[Sa2] E.-i. Sato, On infinitely extendable vector bundles on \(G/P \), *Jour. Math. Kyoto Univ.* 19 (1979) 171–189.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

FB Mathematik, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany

E-mail address: trm@mathematik.uni-kl.de