One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study

N Matveeva and G E Astrakharchik

1 Université Grenoble Alpes, CNRS, LPMCC, UMR 5493, F-38042 Grenoble, France
2 Departament de Física, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
3 Author to whom any correspondence should be addressed.

E-mail: grigori.astrakharchik@upc.edu

Keywords: quantum Monte Carlo method, multicomponent Fermi gas, Tonks–Girardeau gas, Tan’s contact

Abstract
A one-dimensional world is very unusual as there is an interplay between quantum statistics and geometry, and a strong short-range repulsion between atoms mimics Fermi exclusion principle, fermionizing the system. Instead, a system with a large number of components with a single atom in each, on the opposite acquires many bosonic properties. We study the ground-state properties of a multicomponent repulsive Fermi gas trapped in a harmonic trap by a fixed-node diffusion Monte Carlo method. The interaction between all components is considered to be the same. We investigate how the energetic properties (energy, contact) and correlation functions (density profile and momentum distribution) evolve as the number of components is changed. It is shown that the system fermionizes in the limit of strong interactions. Analytical expressions are derived in the limit of weak interactions within the local density approximation for an arbitrary number of components and for one plus one particle using an exact solution.

1. Introduction
Quantum one-dimensional systems can be realized in ultracold gases confined in cigar-shaped traps [1–6]. At ultracold temperatures atoms manifest different behavior, depending if they obey Fermi–Dirac or Bose–Einstein statistics. In terms of the wave function, a different symmetry is realized with respect to an exchange of two particles, bosons having a symmetric wave function and fermions an antisymmetric one. A peculiarity of one dimension is that reduced geometry imposes certain limitations on probing the symmetry due to an exchange. The only way of exchanging two particles on a line is to move one particle through the other. This leads to important consequences when particles interact via an infinite repulsion. In this case, known as the Tonks–Girardeau limit, systems might acquire some fermionic properties. The energy of a homogeneous Bose gas with contact interaction (Lieb–Liniger model) can be exactly found [7] using the Bethe ansatz method and follows a crossover from a mean-field Gross–Pitaevskii gas to a Tonks–Girardeau gas, in which the energetic properties are the same as for ideal Fermions [3, 8, 9]. The equation of state can be probed [2, 4, 5] by exciting the breathing mode in a trapped gas, as the frequency of collective oscillations depends on the compressibility. This allowed the observation of a smooth crossover from the mean-field Gross–Pitaevskii to the Tonks–Girardeau/ideal Fermi gas value [4]. For a large number of particles, the breathing mode frequency in the crossover is well described [10] within the local density approximation (LDA) which relies on knowledge of the homogeneous equation of state [7]. Instead for a small number of particles, the LDA approach misses the reentrant behavior in the Gross–Pitaevskii–Gaussian crossover, which was first observed experimentally [4] and later quantitatively explained [11] using quantum Monte Carlo method.

The interplay between repulsive interactions and statistics was clearly demonstrated in a few-atom experiments in Selim Jochim’s group [12, 13] where it was shown that two component fermions with a single atom in each component fermionize when the interaction between them becomes infinite. The question becomes more elaborate when the number of components becomes large [14]. A system of N_c component
fermions with a single atom in each component should have similar energetic properties as a single component Bose gas consisting of \(N_f \) atoms [15]. Recently a six-component mixture of one-dimensional fermions was realized in LENS group [16]. The measured frequency of the breathing mode approaches that of a Bose system as \(N_f \) is increased from 1 to 6. It was observed that the momentum distribution increases its width as the number of components is increased, keeping the number of atoms in each spin component fixed.

The Bethe ansatz theory is well suited for finding the energetic properties in a homogeneous geometry, predicting the equation of state for the case of \(N_c = 2 \) components [17, 18] and an arbitrary \(N_f \) [19, 20]. Unfortunately the Bethe ansatz method is not applicable in the presence of an external potential. The use of LDA is generally good for energy but misses two-body correlations. Instead, quantum Monte Carlo methods can be efficiently used to tackle the problem. Recently, lattice and path integral Monte Carlo algorithms were successfully used to study the properties of trapped bosons [21], trapped fermions with attraction [22] and fermions in a box with periodic boundary [23]. The properties of a balanced two-component Fermi gas in a harmonic trap were studied by means of the coupled-cluster method [24]. The lattice Hubbard model and its continuum limit for trapped two component gas was studied by the DMRG method [25]. The limit of strong interactions is special and allows different approaches. The three-particle system can be studied analytically in this regime [26]. Multicomponent gases were analyzed in the same regime using a spin-chain model in Ref. [27], resulting in an effective Hamiltonian description for that regime. The spin-chain model permitted the study of the effect of population imbalance on the momentum distribution in a two-component trapped system [28]. For bosonic systems the regime of strong repulsion corresponds to the vicinity of the Tonks–Girardeau limit and the system can be mapped to \(S = 1/2 \) XXZ Heisenberg spin chain [29].

In the following we study the energetic and structural properties of a trapped multicomponent system of one dimensional fermions.

2. The model Hamiltonian and parameters

We consider a multicomponent one-dimensional Fermi gas at \(T = 0 \), trapped in a harmonic confinement of frequency \(\omega \). Inspired by the LENS experiment [16], we consider \(N_c \) spin components of the same atomic species of mass \(m \), with \(N_{fp} \) particles in each component, the total number of particles being equal to \(N = N_c N_p \). The system Hamiltonian is given by

\[
H = -\frac{\hbar^2}{2m} \sum_{\alpha=1}^{N_c} \sum_{i=1}^{N_p} \frac{\partial^2}{\partial x_i^\alpha \partial x_i^\alpha} + g \sum_{\alpha=1}^{N_c} \sum_{\beta=\alpha}^{N_c} \delta (x_i^\alpha - x_j^\beta) + \frac{m \omega^2}{2} \sum_{\alpha=1}^{N_c} \sum_{i=1}^{N_p} (x_i^\alpha)^2,
\]

where \(g \) is the coupling constant. Here we consider the case of the equal interaction between all spin components. In the LENS experiment \(g \) was not changed. However, in a more general case, its value can be fine-tuned by changing the magnetic field and exploiting the Feshbach and Olshanii [30] resonances.

In the LENS experiment [16] the number of particles in each spin component was around \(N_{fp} = 20 \). Such a number is rather small, so it is questionable if all quantities can be precisely described within the local density approximation (LDA). At the same time, this number is already larger than the system sizes which can be accessed with the direct diagonalization methods, as there the complexity grows exponentially with the system size. On the contrary, quantum Monte Carlo methods work very efficiently with the system sizes of interest.

The harmonic confinement defines a characteristic length scale, \(a_{osc} = \sqrt{\hbar/(m \omega)} \) which we adopt as a unit of length. We use the inter level spacing of a free confinement, \(\hbar \omega \), as a unit of energy. Another length scale is associated with the coupling constant, \(g = -2\hbar^2/(ma) \), namely the \(s \)-wave scattering length \(a_s \). We remind that in one-dimension, the \(s \)-wave scattering length has a different sign compared to the usual three-dimensional case, that is \(a_s \) is negative for a repulsive interaction, \(g > 0 \). It is worth to stress here that within the present article only the case of the repulsive interaction is considered. Another peculiarity of a one-dimensional world is that the \(s \)-wave scattering length is inversely proportional to the coupling constant, for example, \(a_s = 0 \) corresponds to an infinite value of \(g \). The third characteristic length is the size of the system. Within the local density approximation it is the Thomas–Fermi size, \(R_{TF} \). While in a homogenous system the system properties are governed by a single dimensionless parameter, namely the gas parameter \(na_s \), the presence of an external confinement requires, in general, an additional parameter. Within the local density approximation, which cannot describe the Friedel oscillations and is expected to be applicable for large system sizes, \(R_{TF} \gg a_{osc} \), the properties depend on the LDA parameter [31, 32]

\[
\Lambda_{LDA} = \frac{N a_s^2}{a_{osc}^2}
\]

At \(Na_s^2/a_{osc}^2 \rightarrow 0 \) the interaction is infinitely strong and the ground-state energy of \(N_c \)-system becomes equal to the one of ideal one-component fermions. In the opposite limit of \(a_s^2/a_{osc}^2 \rightarrow \infty \) the interaction vanishes and the system behaves as \(N_c \)-component noninteracting Fermi gas.
3. Methods

We resort to the fixed-node diffusion Monte Carlo (FN-DMC) technique to find the ground-state properties of the system. The proper fermionic symmetry of the wave function are imposed by using an antisymmetric trial wave function. For a given nodal surface the FN-DMC provides a rigorous upper bound to the ground state energy. If the nodal surface of the trial wave function is exact, the FN-DMC obtains the statistically exact ground-state properties of the system. Importantly, the nodal surface in one dimension is known exactly as the fermionic wave function must vanish when any two fermions approach each other.

We chose the trial wave function as a product of determinants \(S \) of a single-component Fermi gas and correlation terms which ensure Bethe–Peierls boundary condition [33] between different species \(\alpha \) and \(\beta \),

\[
\psi_F(R) = \prod_{\alpha=1}^N \prod_{i<j} \left(x_i^\alpha - x_j^\alpha \right) \prod_{i=1}^N \left| \sum_{\alpha=1}^N \psi_{c,i}^{\alpha} \right|^2, \tag{3}
\]

Here \(R \) is the multidimensional vector which contains the coordinates \(x_i^\alpha \) of all particles and \(R_\alpha \) contains all particles of component \(\alpha \). The Slater determinant in a harmonic trap is constructed from Hermite polynomials and has a special structure of the van der Monde determinant which can be explicitly evaluated [34] into a \(N_p \times N_p \) pair product:

\[
\det S(R_\alpha) = \prod_{i=1}^{N_p} \prod_{j=1}^{N_p} \left(x_i^\alpha - x_j^\alpha \right) \prod_{i=1}^{N_p} e^{-\left(\gamma x_i^\alpha / a_\text{osc} \right)^2}, \tag{4}
\]

with \(\gamma = 1/2 \) value corresponding to the ground-state wave function of a single-component Fermi gas. Slater determinants (4) are antisymmetric with respect to exchange of same-component fermions and define the nodal surface of the total wave function (3). We consider \(\gamma \) as a variational parameter and optimize its value by minimizing the variational energy. The nodal surface of the \(\psi_F(R) \) is not affected by \(\gamma \), but a proper choice of the variational parameter significantly reduces the statistical noise in the ground-state energy and in the correlation functions.

For comparison, we also consider a system of \(N \) trapped bosons interacting via a contact potential. In this case the trial wave function is chosen the following form

\[
\psi_B(R) = \prod_{i<j} \left| x_i - x_j \right| - a_i \prod_{\alpha=1}^N e^{-\left(\frac{\gamma x_i^\alpha / a_\text{osc}}{} \right)^2}, \tag{5}
\]

which differs from equation (4) by an absolute value which converts an antisymmetric function into a symmetric one, according to the bosonic symmetry, and by presence of the \(s \)-wave scattering length \(a_i \) in the interspecies two-body terms.

4. System energy and contact

It is of a large interest to understand how the interplay between interactions and the quantum statistics affects the energetic properties of the system. The release energy can be measured by suddenly removing the trapping potential and measuring the kinetic energy of the spreading gas. Furthermore, the short-range interactions result in a very intrinsic relation between the interaction energy and the correlation functions, a phenomenon which is truly unique for dilute ultracold gases and is absent in condensed matter. Namely, it was shown in 2008 by Shina Tan [35–37] that in three-dimensional Fermi gases many short-range properties of correlation function are related to a universal number, commonly referred as Tan’s contact \(C \), which, in turn, is related to the equation of state as

\[
C = \frac{dE_0}{da_i}. \tag{6}
\]

In one dimension a similar relation was anticipated in 2003 by Maxim Olshanii and Vanja Dunko [38] (on 1D, see also [39]). Generally, the contact provides a number of universal relations which connect the short-range correlations to the thermodynamics of the whole many-body system. The universality of the contact was experimentally verified in Bose [40] and Fermi [41, 42] gases.

In order to obtain the FN-DMC value of contact \(C \) we calculate derivative (6) of the ground-state energy \(E_0 \) using finite difference. The resulting dependence of the contact on parameter \(N \sigma_i^2 / a_\text{osc}^2 \) is reported in figure 1. The corresponding numerical data are shown in tables 1 and 2 in the appendix.

It is convenient to begin the analysis with the simplest case of a two-component system, \(N_p = 2 \). For a single particle in each component, \(N_p = 1 \) (green solid squares), the many-body problem reduces to an exactly solvable
two-body problem [43] (green solid line). A very good agreement between quantum Monte Carlo data and the analytic result verifies the used numerical approach. For a single particle in each component, the quantum statistics is not yet important. Instead, for \(N_p = 5 \) (purple down triangles) and \(N_p = 20 \) (yellow up triangles), particles in each component obey the Fermi–Dirac statistics. Our numerical finding is that the rescaled contact \(C/N^{5/2} \) has a negligible dependence on the number of particles in the component \(N_p \), for the considered values of \(N_a^2/a_{0c}^2 \). From a practical point of view this allows to use the analytic two-particle result as a good approximation to the contact in a two-component system. This finding is consistent with [24], where it was shown that the energies for arbitrary \(N_p \) basically coincide for all couplings (even negative) with the Busch result. As a consequence, derivatives of the energy and the contact itself are well predicted by the two-body result.

For fermions with three components, \(N_c = 3 \) (pink left triangles), and six components, \(N_c = 6 \) (red right triangles), the absolute value of the contact is increased. At the same time the qualitative dependence on \(N_a^2/a_{0c}^2 \) remains the same. Inspired by a good agreement between the contact in a two component fermions and two bosons, we also perform the simulations for the case of one-component bosons. In this case the trial wave function has the form (5). The DMC results for 3 and 6 bosons are shown in figure 1 (black open circles and squares, correspondingly). One can see that also in the case of a multicomponent fermions the contact is similar to that of a gas of \(N_c \) bosons in the considered range of parameters.

The interaction energy, \(E_{\text{int}} = \sum_{\alpha=0}^{N_c} \sum_{\beta=1}^{N_p} \delta (x_\alpha^2 - x_\beta^2) \), can be calculated by using the Hellmann–Feynman theorem as \(E_{\text{int}} = -a_i dE_0/da_i \). In other words, there is a close relation between the contact (6) and the interaction energy for a contact potential,

\[
E_{\text{int}} = -a_i C.
\]

We show the interaction energy in figure 2. The corresponding numerical data are shown in tables 3 and 4 in the appendix. The interaction energy vanishes in the limit of non-interacting species, \(g \rightarrow 0 \), which corresponds to \(N_a^2/a_{0c}^2 \rightarrow \infty \). In the opposite limit of very strong interspecies interactions, \(g \rightarrow +\infty \), there is a node in the wave function when particles approach each other (refer to equation (3) with \(a_i = 0 \)). As a result the interaction energy vanishes also in the limit \(N_a^2/a_{0c}^2 \rightarrow 0 \). The maximum in the interaction energy is observed for \(N_a^2/a_{0c}^2 \approx 1 \).

Similarly to the contact, we find that the most important effect is the number of components \(N_c \) and not the number of particles in each of them, at least for the considered parameter range.

5. Correlation functions

In one-dimensional geometry an unusual relation exists between the interactions and statistics, which is absent in higher dimensions. By tuning the interspecies interaction strength it is possible to change the correlations from an uncorrelated ‘ideal boson-like’ case to the ‘ideal fermion-like’ case.

According to Girardeau’s mapping [44], infinite repulsion between one-dimensional particles mimics the Pauli principle and the absolute value of the wave function is the same. This holds true both for a system of one-
component bosons (Tonks–Girardeau gas) but also a system of two-component Fermions. For the case \(N_c = N_p = 1 \) the fermionization of two distinguishable fermions was experimentally demonstrated in Selim Jochim’s group [12]. From the Girardeau’s mapping it immediately follows that the diagonal properties, which depend on the square of the absolute value of the wave function, are the same in both systems. Instead, off-diagonal properties are different. From that it is highly instructive to analyze the evolution of both one- and two-body correlation functions. We consider the density profile \(n(x) \) and the density–density correlation function \(g(x) \), which obeys Girardeau’s mapping, and experimentally relevant momentum distribution \(n(k) \), for which the mapping does not apply.

5.1. Density profile

We calculate the density profile \(n(x) \) in a two-component Fermi gas, \(N_c = 2 \), with \(N_p = 5 \) particles in each component, as a function of the interaction parameter \(N a_i^2 / a_{ic}^2 \) and show it in figure 3. For no interaction between two species, \(N a_i^2 / a_{ic}^2 \rightarrow \infty \), the density profile is given by that of a spin-polarized Fermi gas with \(N_p \) particles (dashed line in figure 3). In this case, the interaction energy \(E_{int} = 0 \) (refer to figure 2). As the interaction strength is increased, the interaction energy increases and the system size becomes larger. Stronger repulsion pushes the particles to the edges of the trap, making the density in the center drop down. For infinite interaction strength, \(N a_i^2 / a_{ic}^2 \rightarrow 0 \), Girardeau’s arguments predict that wave function can be mapped to that of an ideal single-component Fermi gas of \(N_p \) particles. Indeed, we see that in this limit the density profile is that of an ideal Fermi gas with \(2N_p \) particles (solid line). In between we see a smooth crossover from one regime to the other. In other words we observe a fermionization of two fermion species, similarly to experimentally observed \(N_p = 1 \) case [12] (see also [45] for Bose–Fermi mixtures).

It is important to note that the Friedel oscillations, clearly seen in figure 3 are completely missed within local density approximation and cannot be predicted using Bethe solutions for homogeneous gas. Furthermore, here we observe an interesting parity effect. When interspecies interaction is absent, there is a maximum at \(n(x = 0) \). For infinite interspecies interaction, there is a minimum at \(n(x = 0) \). In addition we see a doubling in the number of peaks which sometimes is interpreted as a transition from 2\(k_F \)-Friedel to 4\(k_F \)-Wigner oscillations [46].

On the other hand, even if LDA misses the shell structure, it is still capable to predict the overall shape and the cloud size. As well a polytropic approximation to the equation of state permits to understand some basic features analytically. In the non-interacting limit, \(N a_i^2 / a_{ic}^2 \rightarrow \infty \), the density profile is a semicircle, \(n(x) \propto \sqrt{\mu - m \omega^2 x^2 / 2} \) with \(\mu = N_p/\hbar \omega \). In the strongly-interacting limit, \(N a_i^2 / a_{ic}^2 \rightarrow 0 \), the density profile is a semicircle, \(n(x) \propto \sqrt{\mu - m \omega^2 x^2 / 2} \). In the limit of a large number of components, \(N = N_c \) and \(N_p = 1 \), the density profile is a semicircle for infinite interaction, \(\mu = N/\hbar \omega \), is an inverted parabola for weak interactions, \(n(x) \propto (\mu - m \omega^2 x^2 / 2) \); and is a free-harmonic oscillator Gaussian profile for zero interactions (not captured by LDA).

5.2. Pair correlation function

The pair correlation function \(g(x) \) is proportional to the probability of finding a pair of particles separated by a distance \(x \). It is a diagonal quantity and is a subject to Girardeau’s mapping, so we expect to see fermionization
for strong repulsive interactions. In a trapped system the long-range decay to zero comes from vanishing particle density at the edges of the trap and is eventually a one-body effect. From the quantum-correlation perspective the most interesting behavior is that of short and intermediate distances. For the intra-component correlation function the Pauli exclusion principle implies that
\[g(x) \approx 1 \]
Instead, for inter-component correlation function \[g(x) \] the value at the contact, \(x = 0 \), is related to \(C \) using the following relations:

\[\frac{C}{N} = \frac{k^2 a_{osc}^2 g(0)}{m a_s^2} \]

(8)

In figure 4 we show the inter-component pair-correlation function \(g^{1+}(x) \) in a two-component system with \(N_p = 5 \), averaged over the center-of-mass position leaving only the dependence on the relative distance \(x \). The figure shows how with making the interactions stronger (i.e. by reducing the interaction parameter \(N_a/a_{osc}^2 \)) the probability of finding two particles close to each other is decreased. The value at zero, \(g^{1+}(x = 0) \), drops down until it reaches zero, corresponding to a fully fermionized system. The horizontal arrows in figure 4 shows the value at \(g(x = 0) \) calculated from the FN-DMC ground state energy. We observe a good agreement between these two methods of the calculation of the contact.

Figure 3. The density distribution \(n(x) \) for a two-component Fermi gas \(N_c = 2 \) at different values of parameter \(N_a/a_{osc}^2 = 14.31; 7.60; 2.24; 0.89 \) (decreasing the density in the center \(n(x = 0) \)). The dotted (solid) black line shows the density distribution for 5 (10) ideal spin-polarized fermions.

Figure 4. The pair-correlation function \(g^{1+}(x) \) in a two-component Fermi system, \(N_c = 2 \) and \(N_p = 5 \), for different values of parameter \(N_a/a_{osc}^2 = 14.31; 7.60; 2.24; 0.89 \) (decreasing the value at \(g(x = 0) \)). The horizontal arrows mark the value of the contact obtained from the numerical derivative of the FN-DMC ground state energy.
5.3. Momentum distribution

An important experimentally observable quantity is the momentum distribution \(n(k) \). Being an off-diagonal quantity, it will not fermionize in the limit of infinitely-strong repulsion and will be essentially different from \(n(k) \) of an ideal Fermi gas. Also, the use of the Bethe ansatz methods is very limited in calculation of \(n(k) \).

We show the momentum distribution of a two component system at \(N_p = 5 \) in Figure 5. One observes that with the decrease of the parameter \(N_a \) (increasing the interactions) the amplitude of \(n(k) \) increases and the distribution becomes narrower. This latter effect is opposite to the particle distribution becoming wider in the real space, see Figure 3. The value of the Tan's contact can be extracted from the high-momentum tail of \(n(k) \) according to

\[
n(k) = \frac{1}{\hbar \omega_{a_{osc}}} \frac{C}{k^4}, \quad |k| \to \infty
\]

To see that we plot the same results on a double logarithmic scale in Figure 5(b). The black lines at large \(k \) show the function \(C/k^4 \), where \(C \) is the value of the contact obtained from the derivative of the energy, equation (1).

Figure 5. The momentum distribution \(n(k) \) in a two-component Fermi system, \(N_c = 2 \) and \(N_p = 5 \), for different values of parameter \(Na_{osc} \): 7.60; 2.24; 0.89 (decreasing the height of the last peak), (a) on linear scale (b) on log-log scale. The black lines at large \(k \) shows the function \(C/k^4 \), where \(C \) is the value of the contact obtained from the derivative of the energy, equation (1).

6. Conclusions

To conclude, we studied the ground-state properties of a one-dimensional multicomponent Fermi gas in presence of a harmonic confinement (\(N_c \) components with \(N_p \) particles each). Interspecies interaction is considered to be of a contact form, \(g^s(x^c - x^s) \).
We used fixed-node diffusion Monte Carlo (FN–DMC) method to calculate the energy and correlation functions. An unusual feature of one-dimensional geometry is that there is an interpaly between quantum statistics and contact-interaction. According to Girardeau’s mapping [44], the wave function in the limit of infinite repulsion, \(g \to +\infty \), can be mapped to the wave function of an ideal Fermi gas. In this regime, the multicomponent gas fermionizes having the same energy and diagonal properties as a single-component ideal Fermi gas of \(N = N_c N_p \) particles. The fermionization is observed in the energy, the density profile, the pair correlation function but not in the momentum distribution.

We calculate the Tan’s contact \(C \) for different number of particles \(N_p \) in each of \(N_c \) components. We find that for a given number of components \(N_c \), the \(C / N^{3/2} \) has an almost universal dependence on parameter \(N_p a_{\text{osc}}^2 \) for the considered interaction and number of particles. Importantly, we discover that in our case the contact can be well approximated by considering only one particle in each component \(N_p = 1 \). For a two-component Fermi gas \(N_c = 2 \) in harmonic confinement this allows to use analytic result of Busch et al [43]. Also we check numerically that for \(N_c = 3 \) and \(N_c = 6 \) components the value of the Tan’s contact is close to that of a Bose system with 3 and 6 particles. We verify that the Tan’s contact, calculated from the derivative of the ground-state energy (6), as well provides the description of the interaction energy (7), value of the pair-correlation function at zero distance (8), and large-momentum tail of the momentum distribution (9).

Acknowledgments

NM would like to acknowledge the Nanosciences Foundation of Grenoble for financial support. GEA acknowledges partial financial support from the MICINN (Spain) Grant No. FIS2014-56257-C2-1-P. The Barcelona Supercomputing Center (The Spanish National Supercomputing Center—Centro Nacional de Supercomputación) is acknowledged for the provided computational facilities.

Appendix: Contact for weak interaction, LDA

The limit of weak interaction can be analyzed assuming ideal Fermi gas density profile for each component and taking into account the interaction potential perturbatively. For energetic calculations it is sufficient to assume the LDA shape, which for a single component provides the correct energy even for \(N_p = 1 \)

\[
n(x) = \frac{1}{\pi a_{\text{osc}}^2} \sqrt{2N_p - (x/a_{\text{osc}})^2}
\]

The interaction energy is

\[
E_{\text{int}} = g \sum_{i<j} \int dx, n(x_i)n(x_j)\delta(x_i - x_j) = g \frac{N_c(N_c - 1)}{2} \int n^2(x) dx
\]

Considering an unperturbed LDA density profile (10) we get from (11) the interaction energy

\[
E_{\text{int}} = \frac{8\sqrt{2}}{3\pi^2} (N_c - 1)N_p N_c^{3/2} \frac{\hbar^2}{ma_{\text{osc}}|a|}
\]

and the contact

\[
C = \frac{8\sqrt{2}}{3\pi^2} (N_c - 1)N_p N_c^{3/2} \frac{\hbar^2}{ma_{\text{osc}} a_s^2}.
\]

We note that equations (12–13) are derived assuming weak interaction, \(a_s \to -\infty \) and a large number of particles \(N_p \) in each component. A priori, it is not obvious that LDA equations can be used for only \(N_p = 1 \) particle in each component. Expression (13) reduces in this case to \(E_{\text{int}}/(\hbar\omega) = -0.77a_{\text{osc}}/a_s \). A comparison with the exact expression (16) shows that LDA misses less than 5% in the coefficient of the asymptotic expansion. The major difference between multiple-components and two-particle cases is the presence of a combinatoric \(N_c (N_c - 2)/2 \) term in equation (12).

Appendix: Contact for weak interaction, two particles

The problem of two particles in a harmonic trap can be solved analytically [43]. The harmonic confinement permits to separate the problem into center of mass (CM) and relative motion (rel). The ground-state energy of the CM motion is \(E_{\text{CM}} = \hbar\omega/2 \). The energy of the relative motion \(E_{\text{rel}} \) is defined as a solution to the following equation (harmonic oscillator units are used)
\[
\sqrt{\frac{2}{\pi}} \frac{\Gamma[-E_{\text{rel}}/2 + 3/4]}{\Gamma[-E_{\text{rel}}/2 + 1/4]} = \frac{1}{a_s}.
\]
(14)

For the same value of the s-wave scattering length \(a_s\), equation (14) permits multiple solutions for the energy, which correspond to multiple level structure. For a weakly interacting case, \(a_s \rightarrow -\infty\), the energy of the relative motion is close to \(\hbar \omega/2\) value and Gamma functions in equation (14) can be expanded into series around this point. The resulting total energy \(E = E_{\text{rel}} + E_{\text{CM}}\) is
\[
E = 1 - \sqrt{\frac{2}{\pi}} \frac{1}{a_s} - \frac{2 \ln 4}{\pi} \frac{1}{a_s^2} + \ldots
\]
\[
= -\frac{0.797885}{a_s} - \frac{0.441271}{a_s^2} + \frac{0.471548}{a_s^3} - \frac{0.0784608}{a_s^4} + \frac{0.0645712}{a_s^5}
\]
(15)

The interaction energy can be obtained using Hellmann–Feynman theorem
\[
E_{\text{int}} = \sqrt{\frac{2}{\pi}} \frac{1}{a_s} - \frac{2 \ln 4}{\pi} \frac{1}{a_s^2} + \ldots
\]
\[
= -\frac{0.797885}{a_s} - \frac{0.441271}{a_s^2} + \frac{0.471548}{a_s^3} - \frac{0.0784608}{a_s^4} + \frac{0.0645712}{a_s^5}
\]
(16)

And, finally, the contact is
\[
C = \sqrt{\frac{2}{\pi}} \frac{\hbar^2}{ma_{\text{osc}} a_s} + \frac{2 \ln 4}{\pi} \frac{\hbar^2}{ma_s^2}
\]
(17)

Appendix: Data for the contact and interaction energy

Table 1. The FN-DMC values of the contact \(C_s^{N_F}\) for fermions in the units of \(N^{1/2} \hbar \omega/ma_{\text{osc}}\).

\(N_{a_s}/a_{\text{osc}}^2\)	\(C_s^1\)	\(C_s^2\)	\(C_s^{10}\)	\(C_s^3\)	\(C_s^4\)
0.08	-0.1191(2)	-0.133(5)	-0.128(8)	-0.152(9)	-0.170(12)
0.5	-0.0887(3)	-0.089(8)	-0.100(5)	-0.112(6)	-0.124(5)
1.28	-0.0634(3)	-0.065(5)	-0.069(3)	-0.082(5)	-0.093(5)
2.42	-0.0433(3)	-0.046(6)	-0.041(2)	-0.060(3)	-0.067(4)
3.92	-0.0337(3)	-0.033(3)	-0.0329(15)	-0.043(2)	-0.053(3)
5.78	-0.0258(3)	-0.025(2)	-0.0267(12)	-0.035(2)	-0.042(2)
8.0	-0.0203(4)	-0.0203(15)	-0.0203(9)	-0.0284(15)	-0.035(2)
10.58	-0.0172(4)	-0.0160(12)	-0.0159(6)	-0.0227(12)	-0.0287(15)
13.52	-0.0132(2)	-0.0133(9)	-0.0135(6)	-0.0192(9)	-0.0263(12)
16.82	-0.0113(2)	-0.0110(9)	-0.0109(6)	-0.0162(9)	-0.0215(9)
20.48	-0.0101(2)	-0.0096(6)	-0.0097(3)	-0.0136(6)	-0.0188(9)
24.5	-0.0082(2)	-0.0079(6)	-0.0082(3)	-0.0123(6)	-0.0157(9)
28.88	-0.0073(2)	-0.0073(6)	-0.0070(3)	-0.0102(6)	-0.0145(6)
33.62	-0.0066(2)	-0.0064(3)	-0.0065(3)	-0.0091(6)	-0.0127(6)
38.72	-0.0058(2)	-0.0055(3)	-0.0057(3)	-0.0081(3)	-0.0112(6)
44.18	-0.0051(15)	-0.0049(3)	-0.0047(3)	-0.0072(3)	-0.0104(6)
50.0	-0.00460(15)	-0.0047(3)	-0.0044(3)	-0.0066(3)	-0.0094(3)
Table 2. The FN-DMC values of the contact \(C_{N}^{a} \) for bosons in the units of \(N^{3/2} \hbar \omega / a_{mc}^{2} \).

\(N a_{i}^{2} / a_{mc}^{2} \)	\(C_{1}^{b} \)	\(C_{1}^{4} \)
0.08	-0.150(9)	-0.168(14)
0.5	-0.109(4)	-0.124(5)
1.28	-0.078(3)	-0.089(4)
2.42	-0.056(2)	-0.067(3)
3.92	-0.0434(15)	-0.054(2)
5.78	-0.0351(12)	-0.042(2)
8.0	-0.0282(9)	-0.034(15)
10.58	-0.0229(9)	-0.028(12)
13.52	-0.0197(6)	-0.024(12)
16.82	-0.0164(6)	-0.022(9)
20.48	-0.0138(6)	-0.019(9)
24.5	-0.0121(3)	-0.0165(6)
28.88	-0.0107(3)	-0.0142(6)
33.62	-0.0094(3)	-0.0131(6)
38.72	-0.0084(3)	-0.0112(6)
44.18	-0.0076(3)	-0.0103(3)
50.0	-0.0067(3)	-0.0093(3)

Table 3. The FN-DMC values of the interaction energy \(E_{int}^{N} \) for fermions in the units of \(N^{3/2} \hbar \omega \).

\(N a_{i}^{2} / a_{mc}^{2} \)	\(E_{int}^{1} \)	\(E_{int}^{3} \)	\(E_{int}^{20} \)	\(E_{int}^{3} \)	\(E_{int}^{4} \)
0.08	0.03369(3)	0.038(4)	0.036(2)	0.043(3)	0.051(5)
0.5	0.06274(3)	0.063(6)	0.071(3)	0.079(4)	0.087(4)
1.28	0.07169(3)	0.074(6)	0.078(4)	0.092(5)	0.105(6)
2.42	0.06739(6)	0.071(5)	0.063(4)	0.093(5)	0.105(6)
3.92	0.06675(6)	0.064(5)	0.065(3)	0.086(5)	0.104(6)
5.78	0.0619(6)	0.061(4)	0.064(3)	0.085(5)	0.101(6)
8.0	0.0574(4)	0.058(4)	0.057(3)	0.080(4)	0.099(6)
10.58	0.05579(9)	0.052(3)	0.052(3)	0.074(4)	0.094(5)
13.52	0.04857(9)	0.049(3)	0.050(2)	0.071(4)	0.097(5)
16.82	0.04626(9)	0.045(3)	0.045(2)	0.067(3)	0.088(5)
20.48	0.04559(9)	0.044(3)	0.044(2)	0.062(3)	0.085(4)
24.5	0.04056(9)	0.039(3)	0.040(2)	0.061(3)	0.078(4)
28.88	0.03945(9)	0.039(3)	0.0378(15)	0.055(3)	0.078(4)
33.62	0.03834(9)	0.037(3)	0.0375(15)	0.053(3)	0.074(3)
38.72	0.03621(12)	0.034(2)	0.0352(15)	0.050(3)	0.070(3)
44.18	0.03441(12)	0.032(2)	0.0314(12)	0.048(2)	0.069(5)
50.0	0.03253(12)	0.033(2)	0.0311(12)	0.046(2)	0.067(3)
Table 4. The FN-DMC values of the interaction energy E_{int}^{N} / N for bosons in the units of $N^{2}a_{00}^{2}$.

Na_{0}^{2} / a_{00}^{2}	E_{int}^{0}	E_{int}^{1}
0.08	0.042(4)	0.051(5)
0.5	0.077(3)	0.088(4)
1.28	0.088(3)	0.101(4)
2.42	0.087(4)	0.104(5)
3.92	0.086(3)	0.106(5)
5.78	0.085(3)	0.101(5)
8.0	0.080(3)	0.097(5)
10.58	0.075(3)	0.093(4)
13.52	0.072(3)	0.088(4)
16.82	0.067(2)	0.089(4)
20.48	0.063(2)	0.085(4)
24.5	0.060(2)	0.082(4)
28.88	0.057(2)	0.076(3)
33.62	0.055(2)	0.076(3)
38.72	0.053(2)	0.070(3)
44.18	0.050(2)	0.069(3)
50.0	0.048(2)	0.066(3)

References

[1] Greiner M, Bloch I, Mandel O, Hänsch T W and Esslinger T 2001 Exploring phase coherence in a 2d lattice of Bose–Einstein condensates Phys. Rev. Lett. 87 160405
[2] Moritz H, Stöferle T, Kohl M and Esslinger T 2003 Exciting collective oscillations in a trapped 1d gas Phys. Rev. Lett. 91 250402
[3] Kinoshita T, Wenger T and Weiss D S 2004 Observation of a one-dimensional Tonks–Girardeau gas Science 305 1125–8
[4] Haller E, Gustavsson M, Mark M I, Danzl J G, Hart R, Pupillo G and Nägerl H-C 2009 Realization of an excited, strongly correlated quantum gas phase Science 325 1224–7
[5] Fang B, Carleo G, Johnson A and Bouchoule I 2014 Quench-induced breathing mode of one-dimensional Bose gases Phys. Rev. Lett. 113 035301
[6] Guan X-W, Batchelor M T and Lee C 2013 Fermi gases in one dimension: from Bethe ansatz to experiments Rev. Mod. Phys. 85 1635–91
[7] Lieb E H and Liniger W 1963 Exact analysis of an interacting bose gas: I. The general solution and the ground state Phys. Rev. 130 1605–16
[8] Kinoshita T, Wenger T and Weiss D S 2005 Local pair correlations in one-dimensional bose gases Phys. Rev. Lett. 95 190406
[9] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac J I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 One-dimensional bosons and fermions in optical traps Nature 429 1224–7
[10] Menotti C and Stringari S 2002 Collective oscillations of a one-dimensional trapped Bose–Einstein gas Phys. Rev. A 66 043610
[11] Gudiva A I, Astrakharchik G E and Zvonarev M B Aug 2015 Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional boson gas Phys. Rev. A 92 021601
[12] Zürn G, Serwane F, Lompe T, Wenz A N, Ries M G, Bohn J E and Jochim S 2012 Fermionization of two distinguishable fermions Phys. Rev. Lett. 108 075303
[13] Murmann S, Deuretzbacher F, Zürn G, Riehle J, Reimann S M, Santos L, Lompe T and Jochim S 2015 Antiferromagnetic Heisenberg spin chain of a few cold atoms in a one-dimensional trap Phys. Rev. Lett. 115 215301
[14] Wu C 2005 Competing orders in one-dimensional spin-1/2 fermionic systems Phys. Rev. Lett. 95 266404
[15] Yang C N and Yi-Zhuang Y 2011 One-dimensional w-component fermions and bosons with repulsive delta function interaction Chin. Phys. Lett. 28 020503
[16] Pagano G et al 2014 A one-dimensional liquid of fermions with tunable spin Nat. Phys. 10 198
[17] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction Phys. Rev. Lett. 19 1312
[18] Krivnov V Y and Ovchinnikov A A 1975 Sov. Phys. JETP 40 781
[19] Liu X J, Hu H and Drummond P D 2008 Multicomponent strongly attractive fermi gas: a color superconductor in a one-dimensional harmonic trap Phys. Rev. A 77 013622
[20] Guan X-W, Ma Z-Q and Wilson B 2012 One-dimensional multicomponent fermions with \(\delta\)-function interaction in strong- and weak-coupling limits: \(\kappa\)-component fermi gas Phys. Rev. A 85 033633
[21] Xu W and Rigol M 2015 Universal scaling of density and momentum distributions in Lieb-Liniger gases Phys. Rev. A 92 063623
[22] Berger C, Anderson E R and Drut J E 2015 Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice monte carlo calculations Phys. Rev. A 91 053618
[23] Rammelmüller L, Porter W J, Loheac A C and Drut J E 2015 Few-fermion systems in one dimension: ground- and excited-state energies and contacts Phys. Rev. A 92 013651
[24] Grining T, Tomza M, Lesiak M, Przybytek M, Musial M, Mozszynski R, Lewenstein M and Massignan P 2015 Crossover between few and many fermions in a harmonic trap Phys. Rev. A 92 061601
[25] Angelone A, Campostrini M and Vicari E 2014 Universal behavior of interacting fermions in one-dimensional traps: from few particles to the trap thermodynamic limit Phys. Rev. A 89 023635
[26] Volosniev A G, Fedorov D V, Jensen A S, Zinner N T and Valiente M 2012 Multicomponent strongly interacting few-fermion systems in one dimension Few-Body Syst. 55 839–42 no. 8
[27] Deuretzbacher F, Becker D, Bjerlin J, Reimann S M and Santos I 2014 Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases Phys. Rev. A 90 013611
[28] Frank Deuretzbacher I S and Becker D 2016 Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases (arXiv:1602.06816)
[29] Massignan P, Levinsen J and Parish M M 2015 Magnetism in strongly interacting one-dimensional quantum mixtures Phys. Rev. Lett. 115 247202
[30] Olshanii M 1998 Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons Phys. Rev. Lett. 81 938
[31] Astrakharchik G E, Blume D, Giorgini S and Pitaevskii L P 2004 Interacting fermions in highly elongated harmonic traps Phys. Rev. Lett. 93 050402
[32] Astrakharchik G E 2005 Local density approximation for a perturbative equation of state Phys. Rev. A 72 063620
[33] Bethe H and Peierls R 1935 Quantum theory of the diplon Proc. R. Soc. Lond. A 148 146–56
[34] Girardeau M D, Wright E M and Triscari J M 2001 Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap Phys. Rev. A 63 033601
[35] Tan S 2008 Energetics of a strongly correlated Fermi gas Ann. Phys., NY 323 2952–70
[36] Tan S 2008 Large momentum part of a strongly correlated Fermi gas Ann. Phys., NY 323 2971–86
[37] Tan S 2008 Generalized virial theorem and pressure relation for a strongly correlated fermi gas Ann. Phys., NY 323 2987–90
[38] Olshanii M and Dunjko V 2003 Short-distance correlation properties of the lieb-liniger system and momentum distributions of trapped one-dimensional atomic gases Phys. Rev. Lett. 91 090401
[39] Barth M and Zwerger W 2011 Tan relations in one dimension Ann. Phys., NY 326 2544–65
[40] Wild J R, Makotyn P, Pino J M, Cornell E A and Jin D S 2012 Measurements of tan’s contact in an atomic Bose–Einstein condensate Phys. Rev. Lett. 108 145303
[41] Kuhnle E D, Hu H, Liu X-J, Dyke P, Mark M, Drummond P D, Hannaford P and Vale C J 2010 Universal behavior of pair correlations in a strongly interacting fermi gas Phys. Rev. Lett. 105 070402
[42] Sagi Y, Drake T E, Paudel R and Jin D S 2012 Measurement of the homogeneous contact of a unitary Fermi gas Phys. Rev. Lett. 109 220402
[43] Busch T, Englert B-G, Rzazewski K and Wilkens M 1998 Two cold atoms in a harmonic trap Found. Phys. 28 549–59
[44] Girardeau M D 1960 Relationship between systems of impenetrable bosons and fermions in one dimension J. Math. Phys. 1 515–23
[45] Fang B, Vignolo P, Miniatura C and Minguzzi A 2009 Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap Phys. Rev. A 79 023623
[46] Xianlong G 2012 2kF–Friedel to 4kF–Wigner oscillations in one-dimensional fermi gases under confinement Phys. Rev. A 86 023616