Changes in species ranges are anticipated with climate change, where in alpine settings, fragmentation and contraction are likely. This is especially true in high altitude biodiversity hotspots, where warmer growing seasons and increased drought events may negatively impact populations by limiting regeneration. Here, we test for high-altitude species responses to the interactive effects of warming and drought in Heterotheca brandegeei, a perennial cushion plant endemic to alpine outcroppings in Sierra de San Pedro Mártir National Park, Baja California, México. We exposed H. brandegeei seedlings to experimental warming and drought conditions to document early life history responses and the species ability to tolerate climate change. Drought negatively influenced seedling growth, with overall reductions in above- and belowground biomass. Warming and drought each led to substantial reductions in leaf development. At the same time, individuals maintained high specific leaf area and carbon investment in leaves across treatments, suggesting that existing phenotypic variation within populations may be high enough to withstand climate change. However, warming and drought interacted to negatively influence leaf-level water-use efficiency (WUE). Seedling mortality rates were nearly three times higher in warming and drought treatments, suggesting bleak prospects for H. brandegeei populations in future climate conditions. Overall, our results suggest H. brandegeei populations may experience substantial declines under future warmer and drier conditions. Some individuals may be able to establish, albeit, as smaller, more stressed plants. These results further suggest that warming alone may not be as consequential to populations as drought will be in this already water-limited system.

Key words: Baja California, chasmophyte, cushion, endemic, germination, Heterotheca, México, outcropping, phenotypic variation, regeneration niche, seedling establishment, Sierra de San Pedro Mártir
Introduction

High-elevation systems are predicted to be especially sensitive to climate change (Nagy and Grabherr, 2009; Stocker et al., 2013). These include alpine ecosystems that exist at or near the terminus of mountains, suggesting that upward range shifts in response to climate warming will be limited by habitat availability (Canone et al., 2007; Rixen and Wipf, 2017). Here, a majority of plant species are specialists adapted to cold temperatures, high levels of solar radiation, and seasonally available water, together leading to oftentimes short growing seasons (Körner, 2003; Winkler et al., 2019a). As a result, rare and endemic species usually account for a substantial portion of high-elevation plant community richness (Casaza et al., 2005, 2008). These species may be more susceptible to climate change as the main drivers of establishment and growth shift, negatively impacting existing populations and potentially preventing regeneration (Klanderud and Tolland, 2005; Dickinson et al., 2007; Schwartz et al., 2006).

Upward shifts in high-elevation species ranges have already occurred and oftentimes coincide with a decrease in overall species richness (Pauli et al., 2007; Chen et al., 2011; but see Cannone and Pignatti, 2014; Rixen et al., 2014). This is largely the result of evaporation-driven declines in available soil water as temperatures increase without a concurrent increase in precipitation (Elmendorf et al., 2012; Wahren et al., 2013). Increased temperature is predicted to enhance terrestrial productivity (Nemani et al., 2003) but experimental evidence varies (Scheffers et al., 2016), with some research suggesting that water-limited systems may not be able to respond positively unless warming-induced moisture stress is alleviated (Winkler et al., 2016a). Some high-elevation species may be able to acclimate to changing conditions by shifting resource allocations to withstand stress (Theodore et al., 1996; Gratani, 2014; Winkler et al., 2016b) but the extent to which this is possible for alpine endemics or rare species remains largely unexplored (but see Ashton et al., 2010; Graae et al., 2011). Furthermore, it is unknown how population regeneration will be impacted by changing conditions experienced by long-lived perennial species (Williams et al., 2015) and whether early life history strategies will determine specific responses to climate change (Pearson et al., 2014; Salguero-Gómez et al., 2016; Harrison and LaForgia, 2019). Determining the separate and combined effects of climate change on individual plant performance and survival can help infer how populations persist may be structured under future scenarios (Le Roux et al., 2005; Thuiller et al., 2008). Plant species that exhibit plastic morphologies and a suitable degree of physiological compensation may be better able to buffer populations from climate change, while those with relatively fixed life history strategies may experience population declines with little opportunity for regeneration (Franks et al., 2014; Válladares et al., 2014; Peterson et al., 2018).

Making predictions and evaluating the level of susceptibility of endemic species to global change is further complicated when little is known about their basic biology and by the limited amount of research published on them (Casaza et al., 2014; Gómez et al., 2015). The high-altitude rock outcroppings that sit atop Sierra de San Pedro Mártir (SSPM) National Park in Baja California, México exist in a botanically rich area at the southern boundary of the California Floristic Province where relatively little ecological research has been carried out beyond natural history observations and research on the fire ecology of the park’s conifer species (Minnich et al., 2000; Stephens et al., 2003; Riemann and Ezcurre, 2005; Holmgren et al., 2011; Rivera-Huerta et al., 2016; Rebman et al., 2018). Many of the species in SSPM have not been observed in situ, collected or deposited into herbaria in 30+ years (Riemann and Ezcurre, 2005), leaving little known about the current status of these species. Baja California contains approximately 3100 plant species of which 23.7% are endemic to the peninsula (Rebman et al., 2016), with at least 66 species endemic to SSPM (Riemann and Ezcurre, 2005, 2007; Vanderplank et al., 2018). Furthermore, SSPM possesses high levels of genetic isolation and environmental heterogeneity as a result of its abrupt topography relative to the surrounding Mediterranean and Sonoran desert systems often characteristic of the Baja California peninsula (Riemann and Ezcurre, 2007).

SSPM sits at the southern boundary of the California Floristic Province and is also located near the southern boundary of the subtropical jet stream, suggesting species in the park may be at increased risk of being negatively impacted by climate change as the jet stream and westerlies are expected to shift northward in response to warmer temperatures (Shindell et al., 1999; Lu et al., 2008). Historic climate reconstructions from tree-rings suggest that SSPM has experienced long, extreme drought events in the 1950s and has more recently experienced the single most intense drought year, 2007, since the tree-ring record began in 1658 (Meko et al., 2013). Tree species in SSPM may be well equipped to tolerate climate period punctuated by extreme drought but the extent to which this translates to the smaller stunted plant species is unknown. Additionally, temperatures are expected to increase 2–4 °C and precipitation is expected to decrease 30–50% in parts of Baja California by 2100 (Chen et al., 2003; Cavazos and Arriaga-Ramirez, 2012;). Furthermore, upward shifts in elevation distributions are predicted for species respond to increasing temperature (Lenoir et al., 2008). This includes forecasts of large increases in plant diversity in and around SSPM (Loarie et al., 2008). Together, these changes will surely have an impact on species already confined to the sky islands of SSPM, especially those restricted to the limited patches of alpine rock outcroppings there.

The cliff-dwelling cushion plant H. brandegeei (B.L. Rob. & Greemn.) Semple is a long-lived, perennial endemic to SSPM and only found on uncommon alpine outcroppings on the peaks of SSPM, making it a chasmophytic specialist (i.e. a plant growing in the crevices of rocks) with a narrow distribution and highly restricted range (Moran, 1969). This alone suggests this is a species worthy of concern and would
likely be categorized at a high level of extinction risk (Thomas et al., 2004; Dirnböck et al., 2011). Little is known about *H. brandegeei* aside from locality information and descriptions of the species’ morphology based on type specimens (Robinson and Freeman, 1896; Moran, 1969). *H. brandegeei* may provide valuable insights into the potential responses of rare, high altitude species experiencing climate change, their ability to utilize micro-retugia, and how ranges may shift when upward migration is not an option. Furthermore, existing levels of phenotypic variation in the species may also buffer it from increasing stressors (Jump and Peñuelas, 2005; Aitken et al., 2008) but this may only be temporary if climate change pushes populations past a tipping point beyond which compensation is improbable (Doak and Morris, 2010; Botero et al., 2015). Thus, understanding early life history strategies and mortality rates during establishment may be suitable for identifying species’ regeneration niche while also predicting future population dynamics (Shimoto and Kudo, 2003; Cochrane et al., 2015).

In this study, we used environmentally controlled growth chambers to document the early life history responses of *H. brandegeei* to simulated climate warming and drought during its first growing season. We hypothesized that this high-elevation, long-lived, slow-growing, perennial cushion would decrease productivity in response to warming and show signs of drought stress in a warmer, drier climate. We characterized seed germination and survival of *H. brandegeei* during its first year of growth. We hypothesized *H. brandegeei* would undergo various morphological and physiological changes when exposed to stressors, including utilizing a higher WUE strategy and reducing aboveground growth. We quantified phenotypic trait variation and investigated responses in allocation to above (agb)- and belowground (bgb) structures to test morphological responses. We also measured responses in specific leaf area, WUE and carbon content of leaves to test leaf-level physiological responses. Our study also expands the known range distribution of *H. brandegeei* and provides data on the species in its native habitat.

Materials and methods

Study site and species

SSPM National Park was founded in 1947 and is the fourth largest National Park in Mexico (63 000 ha; Fig. 1). It is also the southern terminus of the Peninsular mountain ranges and, as a result, serves as the lower latitudinal boundary for many montane species (Minnich et al., 1997; Riemann and Ezcurra, 2007; Burge et al., 2016). SSPM contains the highest point of elevation in Baja California (Picacho del Diablo, 3096 m), intercepting northwesterly winds to create the Mediterranean climate on its western slopes and a rainshadow that gives way to Sonoran desert on its eastern slopes (Vanderplank et al., 2018). SSPM also receives the highest amount of annual precipitation on the peninsula (approximately 600–700 mm; Hastings and Turner, 1965; Minnich et al., 1997). The majority of substrate in the park is granitic, with soils currently un-described. The park’s granitic substrate also creates sparse alpine-like outcroppings where the sub-alpine conifer forest cannot persist and, instead, alpine chasmophytic specialists occur. A well-studied feature of SSPM is its unmanaged fire regime history that make it one of the most pristine wildlands with intact mixed-conifer forests (Minnich et al., 2000; Bojórquez-Tapia et al., 2004; Skinner et al., 2008). Few studies exists on the shorter-statured plants of SSPM beyond species descriptions, phylogenies and reporting of locality data (Moran et al., 1969; Semple et al., 1988; Thorne et al., 2010; Simpson and Rebman, 2013; Rebman et al., 2018).

H. brandegeei is a mat-forming, rhizomatous perennial first described in 1896 (Robinson and Freeman, 1896 as *Chrysopsis brandegeei* then as *H. martirensis* in Moran, 1969 and later reclassified in Semple et al., 1988). The species was described as flowering May to September, with thick, hirsute, spatulate leaves growing in clusters close to the ground (Fig. 2). This trait combination is somewhat unique to the genus but most similar morphologically to the similarly rare, endemic *H. jonesii* in Utah (Welsh et al., 1975). Semple et al. (1988) note that *H. brandegeei* is most similar to *H. viscida*, which occurs on cliff crevices in the Sky Islands of Southern Arizona through to West Texas. Solitary flowers sit on relatively slender, glandular peduncles up to 6 cm tall and produce disc achenes that are similar to related wind-dispersed asters (Fig. 2; Robinson and Freeman, 1896; Moran, 1969). The species was said to be common in crevices on flat granitic surfaces above 2800 m when it was described in 1969. *H. brandegeei* is common on rocks in full sun or partial shade from 2050 to 2800 m asl and, before this study, was known from only six sites (Moran, 1969; but see Rebman et al., 2018). These rock outcroppings are often dominated by other endemics including *Stephanomeria monocophala*, *Sphaeromeria martirensis*, *Stenotus pulvinatus*, and non-endemics *Sedum niveum* and *Myriopteris voootoni* among others (Moran, 1969; Delgadillo, 2004; Thorne et al., 2010). Communities in which *H. brandegeei* is found are more similar to damp meadows than to snowbed communities (Peinado et al., 2005).

Field sampling

We collected *H. brandegeei* seeds from 63 individual maternal plants from ten locations along a approximately 20 km transect in May 2014 (the beginning of the flowering period described in Moran 1969). We systematically surveyed rock outcroppings along the crest of SSPM as well as forested areas in between, revisiting historic localities while documenting new sites with GPS (Fig. 1). Seeds from individual plants were placed in separate coin envelopes and stored in a dry, low humidity environment (ca. 10% RH) until experimentation began the following year.

We also measured site-level characteristics for a subset of locations where *H. brandegeei* were observed, regardless of...
seed availability, in an effort to expand knowledge of this species in its natural habitat in SSPM. For 12 individual plants, we measured the maximum width of the plant (cm), azimuth (°) and slope (°) of the rock outcropping where each individual occurred. Since it was often difficult to delineate individual plants, we measured the entire length of individuals that formed a continuous mat in a given fissure and only collected seeds from within this measured area. We recorded phenological observations across these sites and noted whether individuals within a site had flower buds present, were flowering, had seeds present or had already set seed. We also noted species in proximity of the focal individual.

Laboratory methods

We first soaked *H. brandegeei* seeds in a 1% bleach solution for 3 min prior to sowing to decrease the occurrence of mould. We initially ran germination trials in growth chambers to infer optimal requirements for germination by replicating typical conditions the seeds would experience in SSPM if they germinated early in the spring after snowmelt (8.1 °C during the day and 1.0 °C at night on a 12:12 day:night cycle), during the early summer (13.2 °C during the day and 6.0 °C at night on a 14:10 day:night cycle), or during late summer when monsoonal precipitation reaches its peak (17.6 °C during the day and 11.9 °C at night with a 13.5:10.5 day:night cycle; *Douglas et al.*, 1993; *UNAM*, 2017). After 2 weeks, no germination had occurred in either the early spring or early summer chambers but seedlings had emerged in late summer conditions, which matched conditions in the UC Irvine greenhouse in May–June when this experiment began. Thus, to maximize space, 1200 *H. brandegeei* seeds were sown in the UC Irvine greenhouse into individual 5 × 5 × 8-cm containers filled with a custom made 3:3:2:3 soil mix of redwood chips:dried moss:sand:perlite. Seeds were buried in the top 2 cm of soil and were watered regularly to keep containers moist until germination occurred and seedlings established up to 1 month. The ten sampling sites and maternal lineages were randomly placed on greenhouse benches, and containers were randomly rotated weekly to control for potential spatial heterogeneity in conditions in the greenhouse. Greenhouse temperatures during germination and the first month of growth were similar to August temperatures in SSPM (averaging 18 °C daily and 12 °C nightly in the greenhouse; *UNAM*, 2017). We chose a greenhouse in part not only due to constraints on conducting such an experiment.
in the field but also in an effort to more rapidly and accurately simulate climate change conditions and reduce variability in biotic and abiotic factors that may have reduced treatment effects (Gibson et al., 1999).

Seedlings were transplanted to larger containers (12 × 13 × 12 cm) after 1 month in the greenhouse and assigned to treatment conditions in growth chambers. We randomly assigned 30 individuals to each of four treatments (n = 120):
ambient control, warming, drought and warming + drought (W + D). Treatments were carried out in experimental growth chambers, and plants were rotated weekly to account for potential small-scale variation in chambers. Ambient temperature and precipitation levels were determined using historical climate data for August averaged over 7 years (2007–2014; UNAM, 2017). All chambers were set to a 13-h light and 11-h dark cycle that also matched August cycles in SSPM (UNAM, 2017). The control chamber was set to simulate late summer growing season conditions in SSPM and was set to a daytime temperature of 17.6 °C and a night-time temperature of 11.9 °C. We simulated ambient precipitation by watering plants with 20 mm of water weekly (ambient and warming treatments). Heating treatments simulated a predicted +4 °C temperature increase for the region of Baja California that includes SSPM (Cavazos and Arriaga-Ramírez, 2012), and chambers were set to 21.6/15.9 °C (day/night; warming and W + D treatments). Drought treatments followed the highest predictions of a 50% decrease in mean annual precipitation, and plants received 20 mm of water every other week (drought and W + D treatments; Cavazos and Arriaga-Ramírez, 2012).

Measurements

We measured phenological, morphological and physiological traits to capture treatment responses of individuals and summarized the natural history of this unstudied species. We chose traits that have previously been shown to be sensitive to environmental changes experienced by other alpine cushion species (Yang et al., 2011; Soudzilovskaia et al., 2013; Spasojevic et al., 2013; Winkler et al., 2016a). Phenological traits included time to germination and leaf expansion of up to the first five true leaves during the establishment phase in the greenhouse. We surveyed daily for germination once seeds were sown and tracked individual plants until mortality occurred or plants were harvested for measurements.

We measured morphological traits throughout the experiment to test individual stress responses in each treatment and quantify phenotypic trait variation across maternal lineages and sites. We harvested two individuals from each age and site. We harvested two individuals from each maternal lineage and measured the first five true leaves during the establishment phase of each plant are reported in Supplemental Table S2. These include: total, average, minimum and maximum leaf area, stem dry weight, total and average leaf dry weight, total root length, average specific leaf area for each of the five largest leaves, and maximum and minimum specific leaf area.

Lastly, we measured leaf chemistry including △13C and leaf carbon (C_mass). Leaf △13C and C_mass were analyzed at the University of California, Davis Stable Isotope Facility via an elemental analyser interfaced to a mass spectrometer (PDZ Europa, ANCA-GSL and PDZ Europa 20–20, Secron Ltd, UK). We converted carbon isotope ratios to discrimination values (Δ, per mil—a time-integrated measure of WUE (Farquhar et al., 1989; Dawson et al., 2002). Lower values of Δ indicate higher intrinsic WUE values (Dawson et al., 2002). We also converted C_mass values to reflect the % carbon content of leaves using the dry weight of leaf tissues sampled and measured C_mass.

Statistical methods

We visualized germination patterns using dose–response curve fitting to model the proportion of seeds that germinated through time. Data were fitted to a three-parameter logistic regression model using the drc package in R (Ritz and Streibig, 2005). We explored the relative contributions of sampling locations, maternal lines and individual seeds in explaining variances in the number of days until germination occurred with a linear mixed effects model. Location, maternal line and individual plant ID were included as nested random effects in an intercept-only model. We then extracted the variance components from the model using the VarCorr function in the lme4 package (Bates et al., 2011). Variance components were then calculated following Crawley (2012) where each variance component (σ²) is a proportion of the sum of the standard deviations. We followed this same procedure to explore variation in the phenological timing of leaf emergence for the first true leaf. We calculated these values as the number of days since a given individual had germinated. Metrics for the four additional leaves measured for each plant are reported in Supplemental Table S2.

Next, we compared linear mixed effects models to determine the most appropriate combination of factors that predict treatment responses in our experiment (Aho et al., 2014). Models included warming, drought and their interaction as fixed effects, and plant age as a covariate to control for potential effects of age on the response variables. We included the site, where seeds were collected, maternal line and individual plant ID as random effects to account for pseudo-replication across sites and maternal lineages. We also included plant ID as a random effect nested within maternal lineages (Harrison et al., 2018). We tested the predictive ability of each of the main effects by comparing the Akaike Information Criterion scores corrected for small sample sizes (AICc) of the full model to simpler versions (Johnson and Omland, 2004; Aho et al., 2014). We used ΔAICc to calculate Akaike weights (w_i) as
the relative likelihood that a given model was the best. For the best model, we calculated marginal r^2 to estimate the predictive power of explanatory variables and conditional r^2 to estimate the total predictive power of fixed and random effects together (Nakagawa and Schielzeth, 2013). We tested all variables for pairwise correlation across the study and retained variables that had correlation coefficients under 0.75 (Supplemental Table S1). When variables were highly correlated, we retained those variables related most directly to our hypotheses. Thus, we did not test abg or bg biomass as these were strongly correlated with total biomass and this was suitable for testing our primary hypothesis. We built separate models to test treatment responses in total biomass, number of leaves, leaf carbon content, average specific leaf area of the five largest leaves and leaf-level WUE ($Δ$). We also tested treatment effects on plant mortality using a logistic mixed effects model with mortality, warming, drought and their interaction as binary fixed effects, and location, maternal line and individual plant ID as random effects.

The best model for each response variable was subsequently used to test treatment effects. We did this by employing the ANOVA function in the lmerTest package (Kuznetsova et al., 2017) with Satterthwaite approximations for degrees of freedom. We again extracted the variance components from each model to determine how much of the observed variation in each response variable could be attributed to maternal effects (environmental, genetic or error) from locations and maternal lines that seeds were collected from. To test fixed effects for our mortality model, we used a type-III ANOVA using Wald $χ^2$ tests in the car package (Fox and Weisberg, 2011). Finally, we used post hoc pairwise comparison tests and accounted for multiple comparisons by adjusting P values with the Holm method to determine significance among treatment groups using the lsmeans package in R (Lenth, 2017). We did this for all variables used in mixed models as well as abg and bgb biomass in order to explore potential variable responses to treatments. All mixed models were built using the nlme package in R 3.3.2 (Pinheiro et al., 2018; R Core Team, 2014), except the mortality model that was built using the lme4 package (Bates et al., 2011).

Results

Habitat characteristics and field observations

Plants were typically found on the northeasterly exposures with an average azimuth of 91.64 ± 11.18° and on granite outcroppings with 55.77 ± 7.92° slopes. Most *H. brandegeei* plants were flowering, while fewer had not produced flower buds yet or had already set seed. Individual plants produced anywhere from 1 to 142 flowers (median = 22, mean = 24.5 ± 1.92 SEM). *H. brandegeei* cushions had a maximum width of 20 ± 2.87 cm (mean ± SEM). This included cushions that spanned large portions of both shaded and exposed crevices and fissures (Supplemental Figure S1). Other species that were frequently observed in associated with *H. brandegeei* included *S. monocephala*, *P. wheeleri*, *S. asprella*, *S. niveum*, *S. martirensis*, *M. woostonii* and *S. pulvinatus*.

Greenhouse germination and leaf phenology

In total, 171 *H. brandegeei* seeds germinated from 16 maternal lines and six locations. Time-to-germination was 8.85 days ± 0.33 (mean ± SEM; Fig. 3; Table S3). Germination rates began to decline approximately 10 days after seed sowing (Fig. 3). Most of the variation in time-to-germination was explained by residual error ($σ^2 = 0.71$; Table S4), though differences between individuals within maternal lines also explained a relatively high amount of variation ($σ^2 = 0.19$). This suggested maternal lines contributed to the variation observed in germination timing across the seeds a given line produced in SSPM. Differences between maternal lines or locations explained smaller amounts of variation (between maternal lines: $σ^2 = 0.04$; between locations: $σ^2 = 0.05$; Table S4). The emergence of the first true leaf occurred 8.07 days ± 0.23 after seeds had germinated (Table S3). Variation in leaf emergence was explained by differences between individuals within maternal lines ($σ^2 = 0.15$; Table S4) and between maternal lines ($σ^2 = 0.05$), though most of the variation was residual error ($σ^2 = 0.81$). None of the observed variation was explained by sampling location ($σ^2 = 0.00$; Table S4).

Trait responses to warming and drought

Total biomass and leaf traits (# of leaves, SLA, % C in leaves, WUE) were best predicted by the interaction of warming and drought treatments with plant age as a covariate (marginal
the number of leaves were significant ($F_{1,7} = 12.48, P = 0.010$), but the interaction of the two treatments was not ($F_{1,7} = 2.01, P = 0.199$; Table 1). Random effects explained additional variance compared to only fixed effects (conditional $r^2 = 0.62$; marginal $r^2 = 0.43$; Table 1). A majority of the variation was explained by error ($\sigma^2 = 0.66$) but variability between individuals within maternal lines also explained a portion of the observed variance ($\sigma^2 = 0.34$; Table 3), suggesting that genetic variance or maternal effects partially explain treatment responses.

The average specific leaf area of the five largest leaves produced by each plant remained unchanged in warming ($F_{1,7} = 1.11, P = 0.328$), drought ($F_{1,7} = 3.02, P = 0.126$), and $W + D$ treatments ($F_{1,7} = 0.07, P = 0.780$; Fig. 5, Tables 1–2). Plant age was the only predictor to explain specific leaf area across treatments ($F_{1,7} = 34.38, P < 0.001$; Table 1). This makes sense, considering that plant age is a typical driver of leaf size, and likely overshadowed treatment effects. Random effects did not improve the explanatory power of this model (both marginal and conditional $r^2 = 0.45$; Table 3).

The % carbon content of leaves increased in response to drought treatments ($F_{1,6} = 7.42, P = 0.034$; Fig. 5), but effect size was relatively small, such that pairwise t-tests across treatments were not significant (Table 2). Percent carbon content of leaves was the only trait that plant age did not help predict (Table 1), suggesting the warming and drought treatments accounted for most of the variance explained by the fixed effects (marginal $r^2 = 0.22$). However, the amount of variance explained was more than twice as much when both fixed and random effects were considered (conditional $r^2 = 0.95$). Most of the variance in % carbon content of leaves was explained by variation among individuals within maternal lines ($\sigma^2 = 0.84$; Table 3). Additional variability was explained by differences between maternal lines within locations ($\sigma^2 = 0.10$; Table 3), suggesting microhabitat differences experienced by maternal lines may have influenced how individuals responded to treatments.

Leaf-level WUE did not respond to warming ($F_{1,6} = 2.58, P = 0.159$) or drought ($F_{1,6} = 1.25, P = 0.306$) but did respond to their interaction ($F_{1,6} = 25.02, P = 0.002$; Table 1). WUE decreased in the $W + D$ treatment by 12% relative to ambient (Fig. 5, Table 2) but was largely explained by random effects (conditional $r^2 = 0.98$) especially maternal line ($\sigma^2 = 0.95$; Table 3). This further suggests that maternal influence, in part, predicted the ability of plants to adjust WUE in response to warming and drought.

Mortality responses to warming and drought

Seedling mortality was prevalent across all treatments (Fig. 6), with approximately 30% of seedlings dying during the experiment. Seedling mortality was best predicted by a model without an interaction of fixed effects ($\nu = 0.53$), but the full model had nearly the same AICc value (ΔAICc = 1.23; Table 1). Seedling mortality was best predicted by a model without an interaction of fixed effects ($\nu = 0.53$), but the full model had nearly the same AICc value (ΔAICc = 1.23; Table 1).
Table 1: Linear mixed effects model results for the best-supported models with fixed effects including warming, drought, the interaction of the two (\(w \times d\)) and plant age. \(F\) statistics and degrees of freedom are reported with \(P\) values. Values showing significant differences at \(\alpha = 0.05\) are shown in bold font. Marginal and conditional \(r^2\) are reported for each model.

	Warming	Drought	\(w \times d\)	Plant age
	\(F\)	\(P\)	\(F\)	\(P\)
Total biomass (g)	5.87	0.046	20.57	\(0.003\)
# leaves	10.25	0.015	12.48	0.010
SLA (mm\(^2\) mg\(^{-1}\))	1.11	0.328	3.02	0.126
% C in leaves	1.59	0.254	7.42	0.034
WUE (\(\Delta\))	2.58	0.159	1.25	0.306

Table 2: Biomass and leaf-level trait means (± SEM) at the end of the 120 days of experiment in ambient, warming, drought and \(W + D\) treatments. Sample sizes (\(n\)) are also provided. Subscript letters indicate differences based on pairwise comparisons at \(\alpha = 0.05\).

	Ambient	Warming	Drought	
agb (g)	1.10 ± 0.14\(_a\)	12	0.66 ± 0.16\(_ab\)	11
bgb (g)	3.30 ± 0.59\(_a\)	12	2.17 ± 0.45\(_ab\)	11
Total biomass (g)	4.40 ± 0.68\(_a\)	12	2.83 ± 0.57\(_ab\)	11
# leaves	41.50 ± 5.81\(_a\)	12	22.09 ± 5.45\(_ab\)	11
SLA (mm\(^2\) mg\(^{-1}\))	17.37 ± 1.81\(_a\)	12	18.56 ± 2.61\(_a\)	11
% C in leaves	46.91 ± 2.48\(_a\)	12	49.51 ± 3.41\(_a\)	10
WUE (\(\Delta\))	30.02 ± 0.77\(_a\)	6	29.01 ± 0.87\(_a\)	5

Table 3: Variance (\(r^2\)) explained by nested random effects from best-supported linear mixed effects models. Variance components include the amount of variation explained by differences between locations, between maternal lines within locations, between individuals within maternal lines, and by residual error.

	Between locations	Between maternal lines within locations	Between individuals within maternal lines	Residual error
Total biomass (g)	0.03	0.00	0.00	0.97
# leaves	0.00	0.34	0.66	
SLA (mm\(^2\) mg\(^{-1}\))	0.00	0.00	0.00	1.00
% C in leaves	0.00	0.10	0.84	0.06
WUE (\(\Delta\))	0.00	0.95	0.00	0.05

Discussion

The ability of rare, endemic populations to regenerate in the face of climate change is poorly understood both from the perspective of biological constraints on performance and from the geometry of the environmental template. This is particularly true in high-altitude biodiversity hotspots like SSPM National Park in Baja California, México. There, fragmented alpine outcrops dot mountain peaks and contain plant communities composed of chasmophytic specialists of which little is known beyond species descriptions and sparse locality data. We tested if phenotypic variation in early life history strategies may buffer populations of the cushion \(H.\) brandegeei by exposing seedlings to experimental warming and drought conditions. Overall reductions in biomass corresponded to reduced investment in photosynthetic surfaces, which likely served to reduce potential water stress, but constrained plant size. Individuals maintained high specific leaf area and similar carbon concentrations in leaves across treatments, further suggesting that plants were able to at least temporarily respond to the negative effects of treatments by conditions whereas 54–56% of plants died under the individual warming and drought treatments (Fig. 6). \(W + D\) saw the highest mortality with 65% of individuals dying before the experiment ended.
altering morphologies. Individual plants exhibited decreased leaf-level WUE in response to combined warming and drought treatments but maintained relatively high WUE in response to warming and drought separately, suggesting that the species may be able to tolerate warming or drought but not both. Seedling mortality was three times higher in warming and drought treatments, further suggesting that *H. brandegeei* will likely experience population declines as new seedlings fail to persist in a warmer, drier climate. Overall, these phenotypic adjustments may be enough to enable the species to respond to climate change in the short term, but the overall impacts of climate change at the population-level may not be enough to persist across longer timescales.

Shifting how biomass is allocated during the seedling establishment phase can be crucial for survivorship (Lloret *et al.*, 1999; Harrison and LaForgia, 2019). Seedling plasticity, however, can be limited by maternal investment, epigenetic effects and environmental stress imposed by future climate conditions (e.g. Lazarus *et al.*, 2018). Although *H. brandegeei* produced fewer leaves in individual and combined warming and drought treatments, the leaves they did produce were similar in specific leaf area and % of carbon compared to ambient treatment. We also found that *H. brandegeei* seedlings were able to maintain high WUE in response to the individual warming and drought treatments, which matched the compensating response in specific leaf area and carbon content. However, this relationship broke down in the combined warming and drought treatments, where *H. brandegeei* WUE was lower than ambient and warming and drought treatments. This matches expectations that intrinsic WUE decreases with increasing evaporative demand.

Figure 5: Leaf-level responses to warming and drought treatments including (A) the number of leaves produced, (B) leaf carbon content (%) in leaf tissue, (C) SLA (mm² mg⁻¹) and (D) intrinsic WUE (Δ). Mean values and SEM bars are denoted for each treatment (grey = ambient, orange = warming, yellow = drought, pink = warming + drought).
tion declined overall, suggesting that increased root length was the only trait that predicted seedling survival in response to drought in an annual grassland (Harrison and LaForgia, 2019). We found no change in root length in response to drought treatments. Recent work suggested that increased root length was the only trait that predicted seedling survival in response to drought in an annual grassland (Harrison and LaForgia, 2019). We found no change in root length in response to drought treatments (Supplemental Table S2) and bgb allocation declined overall, suggesting H. brandegeei bgb strategies may be relatively fixed compared to leaf strategies. This could be attributed to the specialized root system of H. brandegeei, which is adapted to outcrop crevices and fissures (Houle and Phillips, 1989) and relatively variable bgb conditions ranging from fully exposed surfaces to nooks shaded by rock ledges (Supplemental Figure S1).

Drought is already having marked impacts on plant populations across the southwestern USA and northeastern México (Miriti et al., 2007; Bullock et al., 2010; Winkler et al., 2018, 2019b; but see Peters et al., 2012). Individual plants may be able to tolerate short-term drought by adjusting strategies, as we demonstrated here, but these adjustments may not be enough to compensate for the negative population effects brought by increased plant mortality within a population (e.g. Ogle and Reynolds, 2004; Le Roux et al., 2005). For example, alpine grass species in Switzerland were able to maintain bgb production in response to experimental short-term warming when adequate soil moisture was maintained, but experienced biomass declines and mortality when short-term warming coincided with drought (De Boeck et al., 2016). High levels of alpine plant mortality were also observed in response to natural drought in Australia, suggesting that the seasonal timing of drought events may be more important than their duration (Griffin and Hoffmann, 2012). Timing of seasonal precipitation plays a major role in Baja California systems (Douglas et al., 1993) and has shaped the fire history of SSPM (Skinner et al., 2008). We demonstrate that drought during the seedling establishment phase can reduce survival rates of H. brandegeei. Surely, the timing of drought in systems like the sky islands of SSPM will not only influence establishment, but also phenological traits and performance of already established individuals (Crimmins et al., 2011; present study). These patterns share similarities with how the sub-Antarctic cushion Azorella selago responds to experimental drought (Le Roux et al., 2005). Reduced rainfall treatments caused increased stem mortality and accelerated senescence. Our study also showed increased mortality, albeit on single-stemmed seedlings. The response of older, multi-stemmed H. brandegeei would likely have produced results similar to A. selago, whereby individual plants were unable to support biomass at current levels and, thus, lose individual stems to compensate for reduced water availability (Le Roux et al., 2005; Barbeta et al., 2013).

Additionally, increased temperature can compound the effects of water-deficit stress (i.e. drought; De Boeck et al., 2016). High-altitude cushions like H. brandegeei can tolerate intense solar radiation and exposure to high temperatures (Cavieres et al., 2006; Kleier and Randel, 2009; Graham et al., 2012), but only until heat-tolerance limits are met, beyond which cellular damage or mortality occurs (Neuner et al., 2000). At the same time, H. brandegeei has characteristic features shared with alpine cushion species around the globe (Fischer and Kuhn, 1984; Cavieres et al., 2006; Kleier and Randel, 2009; Sklenář et al., 2016). These include hirsute leaves and a prostrate growth that enables individuals to

Figure 6: Total % mortality of Heterotheca brandegeei individuals in each treatment (grey = ambient, orange = warming, yellow = drought, pink = warming + drought). Final mortality was calculated after 120 days of treatment or until no plants remained in growth chambers.
withstand intense daily temperatures that also likely capture heat to prevent damage when seasonal or night-time temperatures drop near freezing.

Cushion and mat-forming species such as *H. brandegeei* create microclimates that promote their own growth, and likely the growth of other plant species (Reid et al., 2010; Kleier et al., 2015). This is especially important in many alpine and rock outcrop communities where suitable micro-habitat created by cushion and mat-forming plants facilitate their own productivity while increasing community diversity (Reid et al., 2010). This results in relatively low ratios of agb:bgb competition (Wiser et al., 1996; Lavergne et al., 2003) and also potentially increases the need for physiological integration, or sharing resources among stems within an individual (Roiloa et al., 2014). We found that variation between maternal lineages or individuals within lineages helped explain responses to warming and drought (e.g. number of leaves produced, % C in leaves and WUE). This level of phenotypic variation created by maternal lineages may buffer *H. brandegeei* from the negative impacts of climate change, as has been shown to be the case in the alpine cushion *Silene acaulis* (Peterson et al., 2018).

Some of the between-maternal-line differences could be attributed to micro-habitat differences that were not measured (Frei et al., 2012). It is also possible that the same maternal lineage was unintentionally sampled multiple times within a site and presumed to be separate maternal lineages. For example, Liu et al. (2007) found the cliff-dwelling herb *Oxyria sinensis* has ramets that can occupy an area of 7–9 m and can be separated by distinct individuals that form their own patchwork of ramets, exploiting patchy resources within bedrock fissures (Liu et al., 2007; Poot et al., 2012). Sampling related individuals or the same individuals at a site would increase n^2, which was small for most measures (Table 3). As such, our sampling seems independent and appropriate for the species.

Cliff-dwelling endemics like *H. brandegeei* and *O. sinensis* have their own root morphologies and strategies that include investing a larger portion of their biomass in roots (Fig. 4), a relatively fast distribution of roots, and lower specific root length to allow them to efficiently exploit the edaphic conditions their roots encounter (Poot et al., 2012). Although relatively unique, non-cliff-dwelling plants can employ related rooting strategies to exploit bedrock resources, even to access resources in fissures as small as 100 μm (Zwieniecki and Newton, 1995). Once established, microhabitats may buffer populations from future climate change if available moisture persists (e.g. Patsiou et al., 2014). Furthermore, the rooting patterns of individual plants as well as neighbouring species require further investigation since biotic interactions have been shown to shape communities in un-related outcrop systems (Houle and Phillips, 1989; Wiser et al., 1996) and alpine cushion species globally (Cavieres et al., 2007; Antonsson et al., 2009; Reid et al., 2010). This may help to explain the observed-within maternal line variability we documented in the present study of *H. brandegeei*.

Only approximately 12% of seeds germinated in our experiment. This may be due to dormancy that has yet to be studied in *H. brandegeei* or a stratification requirement that was not sufficiently met. These low rates of viability are similar to other alpine species (Bliss, 1958; Stanton and Galen, 1997). It is likely that seed germination was at least partially hindered by dark conditions the seeds experienced under soil. Chasmophytic alpine species are typically exposed to intense light that stimulates germination in their natural setting (Shimono and Kudo, 2003; Brusa et al., 2007). Nonetheless, *H. brandegeei* individuals produce large numbers of seeds that are wind dispersed. This likely determines population structure and individual plant occurrence across the landscape (Nathan and Muller-Landau, 2000). *H. brandegeei* produces only disc achenes with thin pericarps, which facilitates wind dispersal and allows for relatively rapid germination (Flint and Palmblad, 1978). This seed type and dispersal strategy likely reduces some of the negative effects of inbreeding that are expected in a range-restricted endemic like *H. brandegeei* (Gibson and Tomlinson, 2002); though no known genetic studies have been conducted on *H. brandegeei* to date.

Our study demonstrates the role the phenotypic variation can play in shaping individual and population responses of a rare, endemic alpine plant experiencing warming and drought. *H. brandegeei* reduced overall investment in building plant structures and, instead, maintained fewer tissues in responses to simulated climate change. The combined effects of warming and drought increased responses, though these were not significant for most traits measured. However, the individual effects of warming and drought stress were overall too much for the species and caused high mortality. This is most clearly owed to the already sensitive life history of *H. brandegeei* and that establishment is dependent on seeds landing in a suitable crevice or fissure across disparate rock outcroppings. This alone likely makes *H. brandegeei* populations more susceptible to human impacts like climate change (Jump and Peñuelas, 2005).

Finally, it seems imperative that rare, endemic species should be assigned high priority for research efforts. Successful conservation efforts for rare and endemic taxa are dependent upon population estimates, distribution surveys and habitat characterizations that are currently lacking for many of Baja California’s endemic species (Vanderplank et al., 2018) and other sensitive plant and animal species around the globe (Kruckenberg and Rabinowitz, 1985; Harper et al., 2016). Studies like ours provide a small glimpse at species responses during a particular life stage, albeit an important phase for this likely long-lived cushion species. Additional work is required to examine *H. brandegeei* in its natural environment. Research should address the role microhabitats play in germination and establishment and the
subsequent abiotic and biotic interactions that occur throughout an individual plant’s life cycle. Future research should also determine current population structure and potential impacts climate change may have on gene flow across this fragmented landscape.

Author contributions

D.W. and M.L. conceived and designed the experiments. D.W., K.C. and M.L. collected the data. D.W. and M.L. analyzed the data. D.W. and M.L. drafted the manuscript. All authors contributed to writing the final version of the manuscript.

Acknowledgements

We thank G. de Leon, I. Fabian and F. Leon for help in SSPM National Park, and J. Rebman and J. Gregory for help utilizing the San Diego Natural History Museum’s Herbarium. Materials were collected under a permit from the Ministry of Environment and Natural Resources (SEMARNAT-03-039) to J. Delgadillo. We also thank V. Gottlieb, K. Huxman, A. Sakai, S. Vanderplank, and W. Yang for help in planning, designing and carrying out the experiment.

Funding

This work was supported by the Annetta Carter Memorial Fund from the California Botanical Society, a UC MEXUS Student Research Grant, the Explorers Club Exploration Fund, an American Alpine Club Research Grant, the University of California, Irvine’s Center for Environmental Biology, the Department of Ecology and Evolutionary Biology, and UCI’s School of Biological Sciences. Additional funding was provided by the University of California, Irvine Summer Undergraduate Research Program [to M.L.].

Supplementary material

Supplementary material is available at Conservation Physiology online.

References

Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecol 95: 631–636.

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1: 95–111.

Antonsson H, Björk RG, Molau U (2009) Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. In an alpine environment in the subarctic Scandes, Sweden. Plant Eco & Div 2: 17–25.

Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91: 3252–3260.

Barbeta A, Ogaya R, Peñuelas J (2013) Dampening effects of long-term experimental drought on growth and mortality rates of a holm oak forest. Glob Chang Biol 19: 3133–3144.

Bates D, Maechler M, Bolker B (2011) Lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42 http://CRAN.R-project.org/package=lme4..

Bliss LC (1958) Seed germination in arctic and alpine species. Arctic 11: 180–188.

Bojórez-Tapia LA, de la Cueva H, Diaz S, Melgarejo D, Alcantar G, Solares MJ, Grobet G, Cruz-Bello G (2004) Environmental conflicts and nature reserves: redesigning Sierra San Pedro Mártir National Park, Mexico. Biol Conserv 117: 111–126.

Botero CA, Weissing FJ, Wright J, Rubenstein DR (2015) Evolutionary tipping points in the capacity to adapt to environmental change. Proc Natl Acad Sci 112: 184–189.

Brusa G, Cerianni R, Cerabolini B (2007) Seed germination in a narrow endemic species (Telekia speciosissima, Asteraceae): implications for ex situ conservation. Plant Biosys 141: 56–61.

Bullock SH, Turner RM (2010) Plant population fluxes in the Sonoran Desert shown by repeat photography. In Webb, ed, Repeat Photography: Methods and Applications in the Natural Sciences. University of Arizona Press, Tucson, Arizona, USA, pp. 119–132.

Burge DO, Thorne JH, Harrison SP, O’Brien BC, Rebman JP, Shevock JR, Oberbauer TA (2016) Plant diversity and endemism in the California Floristic Province. Madrana 63: 3–206.

Cannone N, Pignatti S (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim Chang 123: 201–214.

Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5: 360–364.

Casazzza G, Barberis G, Minuto L (2005) Ecological characteristics and rarity of endemic plants of the Italian maritime Alps. Biol Conserv 123: 361–371.

Casazza G, Zappa E, Mariotti MG, Médail F, Minuto L (2008) Ecological and historical factors affecting distribution pattern and richness of endemic plant species: the case of the maritime and Ligurian Alps hotspot. Divers Distrib 14: 47–58.

Casazza G, Giordani P, Benesperi R, Foggi B, Viciani D, Filigheddu R, Mariotti MG (2014) Climate change hastens the urgency of conservation for range-restricted plant species in the Central-Northern Mediterranean region. Biol Conserv 179: 129–138.

Casper BB, Forseth IN, Kempenich H, Seltzer S, Xavier K (2001) Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava. Funct Ecol 15: 740–747.
Cavazos T, Arriaga-Ramírez S (2012) Downscaled climate change scenarios for Baja California and the North American monsoon during the twenty-first century. *J Clim* 25: 5904–5915.

Cavieres LA, Badano EL, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant *Laretia acaulis* do not increase with elevation in the Andes of Central Chile. *New Phytol* 169: 59–69.

Cavieres LA, Badano EL, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of Central Chile. *Arct Antarct Alp Res* 39: 229–236.

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. *Science* 333: 1024–1026.

Chen M, Pollard D, Barron EJ (2003) Comparison of future climate change over North America simulated by two regional models. *J Geophys Res Atmos* 108: 4348.

Cochrane A, Yates CJ, Hoyle GL, Nicotra AB (2015) Will among-population variation in seed traits improve the chance of species persistence under climate change? *Glob Ecol Biogeogr* 24: 12–24.

Crawley MJ (2012) *The R book*. John Wiley & Sons, West Sussex, United Kingdom.

Crimmins TM, Crimmins MA, Bertelsen CD (2011) Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. *New Phytol* 191: 468–479.

Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. *Annu Rev Ecol Syst* 33: 507–559.

De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E (2016) Simulated heat waves affected alpine grassland only in combination with drought. *New Phytol* 209: 531–541.

Delgadillo J (2004) El bosque de coníferas de la Sierra de San Pedro Mártir, Baja California, Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología, México, D.F.

Dickinson KJ, Kelly D, Mark AF, Wells G, Clayton R (2007) What limits a rare alpine plant species? Comparative demographic of three endemic species of *Myosotis* (Boraginaceae). *Austral Ecol* 32: 155–168.

Dimböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. *Glob Chang Biol* 17: 990–996.

Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. *Nature* 467: 959–962.

Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. *J Clim* 6: 1665–1677.

Elmendorf SC et al. (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. *Ecol Lett* 15: 164–175.

Escudero A, Mediavilla S, Heilmeier H (2008) Leaf longevity and drought: avoidance of the costs and risks of early leaf abscission as inferred from the leaf carbon isotopic composition. *Funct Plant Biol* 35: 705–713.

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. *Annual review of plant biology* 40: 503–537.

Fischer H, Kuhn HW (1984) Diurnal courses of temperatures in cushion plants. *Flora* 175: 117–134.

Flint SD, Palmblad IG (1978) Germination dimorphism and developmental flexibility in the ruderal weed *Heterotheca grandiflora*. *Oecologia* 36: 33–43.

Fox J, Weisberg S (2011) *Multivariate Linear Models*. R. Sage Publications, Thousand Oaks, California, USA.

Franks SJ, Weber JJ, Atiksen SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. *Evol Appl* 7: 123–139.

Frei ES, Scheepens JF, Armbruster GF, Stöcklin J (2012) Phenotypic differentiation in a common garden reflects the phylogeography of a widespread alpine plant. *J Ecol* 100: 297–308.

Gibson DJ, Connolly J, Hartnett DC, Weidenhamer JD (1999) Designs for greenhouse studies of interactions between plants. *J Ecol* 87: 1–16.

Gibson JP, Tomlinson AD (2002) Genetic diversity and mating system comparisons between ray and disc achene seed pools of the hemicarpic species *Heterotheca subaxillaris* (Asteraceae). *Int J Plant Sci* 163: 1025–1034.

Gómez JM, González-Megías A, Lorite J, Abdelaziz M, Perfectti F (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. *Biodivers Conserv* 24: 1843–1857.

Graae BJ, Ejmaes R, Lang SI, Meineri E, Ibara PT, Bruun HH (2011) Strong microsite control of seedling recruitment in tundra. *Oecologia* 166: 565–576.

Graham EA, Rundel PW, Kaiser W, Lam Y, Stealey M, Yuen EM (2012) Fine-scale patterns of soil and plant surface temperatures in an alpine fellfield habitat, White Mountains, California. *Arct Antarct Alp Res* 44: 288–295.

Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. *Advances in Botany* 2014: 208747.

Griffin PC, Hoffmann AA (2012) Mortality of Australian alpine grasses (*Poa* spp.) after drought: species differences and ecological patterns. *J Plant Ecol* 5: 121–133.

Harper A, Mellink E, Tremor S, Vanderplank S (2016) Rediscovery of a high-altitude vole, *Microtus californicus*, in Baja California, Mexico. *Southwest Nat* 61: 333–339.

Harrison S, LaForgia M (2019) Seedling traits predict drought-induced mortality linked to diversity loss. *Proc Natl Acad Sci* 116: 5576–5581.
Harrison XA, Donaldson L, Correa-Canø ME, Evans J, Fisher DN, Goodwin CE, Robinson BS, Hodgson DJ, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6: e4794.

Hastings JR, Turner RM (1965) Seasonal precipitation regimes in Baja California, Mexico. Geogr Ann Ser B 8: 204–223.

Holmgren CA, Betancourt JL, Rylander KA (2011) Vegetation history along the eastern, desert escarpment of the Sierra San Pedro Mártir, Baja California, Mexico. Quat Res 75: 647–657.

Houle G, Phillips DL (1989) Seed availability and biotic interactions in granite outcrop plant communities. Ecol 70: 1307–1316.

Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19: 101–108.

Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8: 1010–1020.

Klanderud K, Totland O (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecol 86: 2047–2054.

Kliper C, Rundel P (2009) Energy balance and temperature relations of Azorella compacta, a high-elevation cushion plant of the Central Andes. Plant Biol 11: 351–358.

Kliper C, Trenary T, Graham EA, Stenzel W, Rundel PW (2015) Size class structure, growth rates, and orientation of the central Andean cushion Azorella compacta. Peer 3: e843.

Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Ed 2nd. Springer, Basel.

Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88: 30–40.

Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16: 447–479.

Kuznetsova A, Brockhoff PD, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82.

Lavergne S, Garnier E, Debussche M (2003) Do rock endemic and widespread plant species differ under the leaf–height–seed plant ecology strategy scheme? Ecol Lett 6: 398–404.

Lazarus BE, Castanha C, Germino MJ, Kueppers LM, Moyes AB (2018) Growth strategies and threshold responses to water deficit modulate effects of warming on tree seedlings from forest to alpine. J Ecol 106: 571–585.

Le Roux PC, McGeoch MA, Nyakatya MJ, Chown SL (2005) Effects of a short-term climate change experiment on a sub-Antarctic keystone plant species. Glob Chang Biol 11: 1628–1639.

Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768–1771.

Lenth RV (2017) Using Ismeans. J Stat Softw 69: 1–33.

Liu FH, Yu FH, Liu WS, Krüsi BO, Cai XH, Schneller JJ, Dong M (2007) Large clones on cliff faces: expanding by rhizomes through crevices. Ann Bot 100: 51–54.

Lloret F, Casanovas C, Peñuelas J (1999) Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct Ecol 13: 210–216.

Lloyd J, Farquhar GD (1994) 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99: 201–215.

Loarie SR, Carter BE, Hayhoe K, McManus S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS ONE 3: e2502.

Lu J, Chen G, Frierson DM (2008) Response of the zonal mean atmospheric circulation to EI Niño versus global warming. J Clim 21: 5835–5851.

Meko DM, Touchan R, Diaz JV, Griffin D, Woodhouse CA, Castro CL, Carillo C, Leavitt SW (2013) Sierra San Pedro Mártir, Baja California, cool-season precipitation reconstructed from earlywood width of Abies concolor tree rings. J Geophys Res Biogeo 118: 1660–1673.

Minnich RA, Franco-Vizcaíno E, Sosa-Ramírez J, Burgh JK, Barry JW, Barbour MG, de la Cueva-Salcedo H (1997) A land above: protecting Baja California’s Sierra San Pedro Mártir within a biosphere reserve. Journal of the Southwest 39: 613–695.

Minnich RA, Barbour MG, Burgh JK, Sosa-Ramírez J (2000) California mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, Mexico. J Biogeogr 27: 105–129.

Miriti MN, Rodríguez-Buriticá S, Wright SJ, Howe HF (2007) Episodic death across species of desert shrubs. Ecol 88: 32–36.

Moran R (1969) Twelve new dicots from Baja California, Mexico. San Diego Society of Natural History 15: 265–295.

Morris WF, Doak DF (2004) Buffering of life histories against environmental stochasticity: accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. Am Nat 163: 579–590.

Nagy L, Grabherr G (2009) The Biology of Alpine Habitats. Oxford University Press, Oxford, United Kingdom.

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4: 133–142.

Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15: 278–285.

Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560–1563.

Neuner G, Buchner O, Braun V (2000) Short-term changes in heat tolerance in the alpine cushion plant Silene acaulis
Soudzilovskai NA, Elumeeva TG, Onipchenko VG, Shidakov II, Salpagarova FS, Khubiev AB, Cornliessen JH (2013) Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc Natl Acad Sci 110: 18180–18184.

Spasojevic MJ, Bowman WD, Humphries HC, Seastedt TR, Suding KN (2013) Changes in alpine vegetation over 21 years: are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4: 1–18.

Stanton ML, Galen C (1997) Life on the edge: adaptation versus environment mediated gene flow in the snow buttercup, Ranunculus adoneus. Am Nat 150: 143–178.

Stephens SL, Skinner CN, Gill SJ (2003) Dendrochronology-based fire history of Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir, Mexico. Can J For Res 33: 1090–1101.

Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change. Working Group I Contribution to the IPCC Fifth Assessment Report. Cambridge University Press, New York.

Theodose TA, Jaeger CH III, Bowman WD, Schardt JC (1996) Uptake and allocation of 15N in alpine plants: implications for the importance of competitive ability in predicting community structure in a stressful environment. 79: 59–66.

Thomas CD et al. (2004) Extinction risk from climate change. Nature 427: 145–148.

Thorne RF, Moran RV, Minnich RA (2010) Vascular plants of the high Sierra San Pedro Mártir, Baja California, Mexico: an annotated checklist. Aliso: A J Sys and Evolut Bot 28: 1–50.

Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Sykes MT (2008) Predicting global change impacts on plant species’ distributions: future challenges. Persp plant ecol, evol and system 9: 137–152.

UNAM (2017) Instituto de Astronomía, Universidad Nacional Autónoma de México. http://tango.astrosen.unam.mx/weather15/.

Valladares F, François SM, Araújo MB, Balague L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE et al. (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17: 1351–1364.

Vanderplank SE, Rebman JP, Ezcurra E (2018) Where to conserve? Plant biodiversity and endemism in mediterranean Mexico. Biodivers Conserv 27: 109–122.

Wahren CH, Camac JS, Jarrad FC, Williams RJ, Papst WA, Hoffmann AA (2013) Experimental warming and long-term vegetation dynamics in an alpine heathland. Aust J Bot 61: 36–51.

Welsh SL, Atwood ND, Reveal JL (1975) Endangered, threatened, extinct, endemic, and rare or restricted Utah vascular plants. The Great Basin Naturalist 35: 327–376.

Williams JL, Jacquemyn H, Ochocki BM, Brys R, Miller TE (2015) Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J Ecol 103: 798–808.

Winkler DE, Chapin KJ, Kueppers LM (2016a) Soil moisture mediates alpine life form and community productivity responses to warming. Ecol 97: 1553–1563.

Winkler DE, Amagai Y, Huxman TE, Kaneko M, Kudo G (2016b) Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. Plant Ecol 217: 1219–1234.

Winkler DE, Conver JL, Huxman TE, Swann DE (2018) The interaction of drought and habitat explain space–time patterns of establishment in saguaro (Carnegia gigantea). Ecol 99: 621–631.

Winkler DE, Lubetkin KC, Carrell AA, Jabis MD, Yang Y, Kueppers LM (2019a) Alpine plant community responses to climate warming. In Mohan, ed, Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna, and Soil Biogeochemistry. Academic Press, London, United Kingdom.

Winkler DE, Belnap J, Hoover D, Reed SC, Dunwini MC (2019b) Shrub persistence and increased grass mortality in response to drought in dryland systems. Global Change Biol. 25: 3121–3135. doi: https://doi.org/10.1111/gcb.14667.

Wiser SK, Peet RK, White PS (1996) High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. J Veg Sci 7: 703–722.

Yang Y, Wang G, Klanderud K, Yang L (2011) Responses in leaf functional traits and resource allocation of a dominant alpine sedge (Kobresia pygmaea) to climate warming in the Qinghai-Tibetan plateau permafrost region. Plant Soil 349: 377–387.

Zwieniecki MA, Newton M (1995) Roots growing in rock fissures: their morphological adaptation. Plant Soil 172: 181–187.