Heavy metals (Pb, Hg) in blood cockle (*Anadara granosa*) in Cengkok Waters, Banten Bay, Indonesia

A Dinulislam¹, Sulistiono¹,⁎, D T F Lumbanbatu¹ and R Affandi¹

¹Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University (Bogor Agricultural University), Jl. Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia

⁎Corresponding author: onosulistiono@gmail.com

Abstract. Blood cockle (*Anadara granosa*) is one of the biotas which has high economic and ecological value in Cengkok Waters, Banten Bay. Human activities such as settlements, agriculture, fisheries, mining, and industries are seen as main reasons for degrading the aquatic environment and have a negative impact on blood cockles. Pb and Hg from these human activities may pollute the Cengkok Waters and accumulate in the body of blood cockles. This research aims to analyze the content of heavy metals (Pb and Hg) in blood cockles' meat in Cengkok Waters, Banten Bay. Sampling was carried out monthly, from March to August 2019. Measurement of heavy metal contents was conducted using the AAS (Atomic Absorption Spectrophotometer). The result shows that the heavy metal contents (Pb and Hg) are still within the quality standard of Indonesian Food and Drug Authority (BPOM, 2018).

Keywords: Banten Bay; blood cockles (*Anadara granosa*); Cengkok Waters; heavy metals

1. Introduction

Cengkok Waters is one of the Banten Bay estuaries which is shallow water located 60 km west of Jakarta along the northern coastline of Java [1]. Cengkok waters are originating from the Cibanten River. Other rivers flowing into Banten Bay include Wadas and Pamong Rivers [2]. The types of fishery products found in these waters are not as many as those in the other estuaries. There are three types of dominant shells found in this area including blood cockles (*Anadara granosa*), feather shells (*Scapharca cornea*), and tofu shells (*Polimedosa bengalensis*). The presence of blood shells found reached 73.7% of the composition of shellfish in Serang waters, Banten [3].

Blood cockle (*Anadara granosa*) is one of the biotas which has high economic and ecological value in Cengkok Waters, Banten Bay. Human activities such as settlements, agriculture, fisheries, mining, and industries are seen as main reasons for degrading the aquatic environment in Cengkok Waters and have a negative impact on blood cockles. Pb and Hg from these activities pollute the Cengkok Waters and accumulate in the body of blood cockles [4].

Blood cockle is a benthic animal that has high economic and ecological value. Blood cockle is also consumed by the local community as an option in fulfilling the needs of protein and minerals. This biota is included in the group of biota that can accumulate heavy metals. Heavy metal accumulation can also occur from the food chain. Blood cockles have a suspension feeder feeding mechanism and deposit feeder. Blood cockles live in sandy, muddy, or hard substrates ecosystem. Due to this type of environment, blood cockles consume all substances in water and sediment. Blood cockles can survive...
in polluted aquatic environments, beyond the specified threshold, which makes this type of shellfish suitable as an environmental bioindicator [5].

Several types of research on blood cockles in Banten Bay have been conducted. One of the researchers examined morphometric characteristics, morphology, and spatial distribution of blood cockles [6]. However, research related to the contents of heavy metals in blood cockles in Cengkok Waters is still limited. Another comparable research related to heavy metals was focusing on the content of iron (Fe) in the meat of blood cockles, which was carried out in the Morosari River and Gonjol River, Demak Regency [7].

Therefore, research in analyzing the heavy metal contents of blood cockles in Cengkok Waters, Banten Bay needs to be conducted. This research aims to analyze the contents of heavy metals (Pb and Hg) that accumulate in the meat of blood cockles. The accumulation due to pressures from the surrounding environment. The process of accumulation and depuration of heavy metals enter the body of aquatic biota through the gills or the food chain [8]. These processes are called bioaccumulation or biomagnification [9]. As mentioned above, research about the content of heavy metals (Pb and Hg) in the meat of blood cockles in Cengkok Waters is still limited and needs to be updated. A database of heavy metal pollution in blood cockles needs to be created. Therefore, this research is useful as a parameter for estimating ecosystem health.

2. Methodology
A sampling of blood cockles (Anadara granosa) was conducted from March to August 2019 in Cengkok Waters, Banten Bay (figure 1). It was carried out at five stations that have their own characteristics. The blood cockles used as samples in this study were found only at Station 3 which is assumed to be its natural habitat.

![Figure 1. Map of blood cockles sampling location blood cockles (Anadara granosa) in the Cengkok Waters, Banten Bay.](image)
2.1. Materials and equipment

The materials needed in this study were aluminum foil, nitric acid, perchloric acid, and blood cockles (Anadara granosa). The equipment used in this study were cool boxes, ruler, surgical instruments, analytical scales, freezers, and Shimadzu atomic absorption spectrophotometer (AAS) type AA-7000.

2.2. Research methods

Blood cockles were captured using dredges. First, they were sorted into two sizes criteria: large (>3 cm) and small (≤3 cm). Second, the samples were then packaged separately based on size of the plastic. Third, the samples were put into a cool box containing ice. Thus, the cool box was used in maintaining the quality of the samples to be analyzed. Forth, morphometry is done by measuring blood cockles’ length and total weight. Fifth, the blood cockles were then dissected and approximately 50 grams of its meat were taken. Sixth, the meat was wrapped using aluminum foil and put in the freezer to maintain the durability of the samples. Seventh, the samples taken were labeled and analyzed in a laboratory according to the standard method, APHA [10].

Pb and Hg heavy metals in blood cockles’ meat were analyzed in two stages, wet destruction and measurement of Pb and Hg concentrations. The wet destruction was done by adding nitric acid-perchloric acid to separate the fat from the solution [11]. The solution was then analyzed by a spectrophotometric method using Atomic Absorption Spectrophotometer (AAS). The wavelengths used for each analysis of the heavy metal contents of Pb and Hg were 217.0 nm and 253.7 nm. The content of Pb and Hg in the water and sediment samples were also determined by the spectrophotometric method using AAS.

3. Result and discussion

3.1. Content of Pb and Hg in water

This study shows the Pb content in the water of Cengkok Beach, Banten Bay. The Pb and Hg content in the water of Cengkok Beach, Banten Bay ranged from 0.000-0.002 ppm (table 1). Overall, the Pb and Hg content in the water is still within the standard quality of Decree of Minister of Environment 2004.

Parameter/Month	Pb (ppm)	Hg (ppm)
April	0.002	0.000
May	0.002	0.000
June	0.002	0.000
July	0.002	0.002
August	0.002	0.002

Standard quality Decree of the Minister of Environment 2004 0.008 0.001

Parameter/Month	Pb (ppm)	Hg (ppm)
April	0.005	0.005
May	0.005	0.005
July	0.108	0.020
August	0.020	0.020

ANZECC 2000 50 0.150
3.2. Content of Pb and Hg in sediment
This study also identified the Pb content in the sediment of Cengkok Beach, Banten Bay. The Pb and Hg content in the water of Cengkok Beach, Banten Bay ranged from 0.005-0.108 ppm (table 2). Overall, the Pb and Hg content in the sediment is still within the standard quality of ANZECC 2000.

3.3. Content of Pb and Hg in the meat of blood cockles (Anadara granosa)
This study revealed that the Pb content in the meat of blood cockles (A. granosa) taken in Cengkok Beach, Banten Bay was low as all of the monthly values were below the (<0.005 ppm). It can be stated that the Pb content was still within the quality standard of BPOM 2018, i.e., 0.20 ppm.

The values of Hg content in blood cockles’ meat observed for six months varied. The present study showed that the Hg content in the meat taken in Cengkok Beach, Banten Bay ranged from 0.002 to 0.447 ppm (Fig. 2). It can be stated that the Hg content was still within the standard quality of BPOM 2018, i.e., 0.50 ppm maximum.

![Figure 2](image)

Figure 2. Content of Hg in blood cockles’ meat, large and small, in March, April, May, June, July, and August 2019 in Cengkok Beach, Banten Bay.

Blood cockles can stay in one location for a long time, due to the slow movement. Its ability, stay longer in one location, makes blood cockles as a biota that has a high tolerance for heavy metal contamination. In addition, they accumulate heavy metals and still alive; thus, they can be used as bioindicators in aquatic environments [12].

The effect of the dry and rainy season causes variations in the content of heavy metals in water, sediments, and blood cockles. The blood cockles’ samples were taken from March to September. In general, the samples were taken during the dry season (April-August). Therefore, the accumulation of heavy metals should ideally increase in water, sediments, and blood cockles. This is because water input is reduced. When water input is reduced, source of heavy metals contamination is also reduced. Therefore, heavy metal contamination from water input into the body of biota is also reduced. On the
contrary, during the rainy season, the tendency for heavy metals to settle will decrease. This can occur because the dilution of heavy metals is higher in the rainy season [13]. The dilution causes the concentration to decrease in the water. However, the sedimentation and the entry of metals to the biota will still occur as long as a number of metals available in the water.

The accumulation of heavy metals in large blood cockles (>3 cm) is ideally higher than that of small blood shells (≤3 cm). Riani [14] states that small size shells have high heavy metal accumulation ability. The process of heavy metals accumulation will continue with increasing age of shellfish. Therefore, old age or large size blood cockles tend to accumulate higher heavy metals.

The value of the AAS detection limit for Pb used in the analysis is 0.005 ppm. All results obtained reached the detection limit value so that the Pb content read is less than 0.005 ppm. This indicates that the Pb heavy metal content in Cengkok Beach, Banten Bay is very low; thus, the method unable to detect the Pb content. Therefore, the Pb content in the meat is still within the quality standard of BPOM 2018, i.e., 0.20 ppm. The low result can be caused by low sources of contamination. The source of Pb contamination can come from industrial activities [15]. The low content of Pb in the meat is due to the location of blood cockles sampling which is far from industrial activities. The location of blood cockles sampling is surrounded by plantations.

The Pb content in water and sediment ranged from 0.000-0.002 ppm for water and 0.005-0.020 ppm for sediment (table 1 and 2). Overall, the Pb content in water and sediment still within the standard quality of Decree of Minister of Environment 2004 for water and ANZECC 2000 for sediment. The content Pb in sediment is higher than the Pb content in water and blood cockles. As stated by Irawati et al. [16], sediment is a place where heavy metal accumulates in waters.

Mercury (Hg) is a heavy metal that forms is liquid at normal temperatures. The content of Hg in the meat of blood cockle ranged from 0.002-0.047 ppm. This shows that the Hg content is still within the quality standard of BPOM 2018, i.e. 0.500 ppm. It shows that the source of contamination is low. The Hg content can come from the industrial wastes in the manufactures of paints and electrical components, batteries, and photography [17]. The Hg content of April, July, August is higher in small blood cockles. This can occur because it is influenced by the weight gain of blood cockles that is more dominant than the accumulation of heavy metals [16].

A sixfold decrease in Hg content occurred from April to May in large blood cockles (figure 2). This can be caused by blood cockles excrete heavy metals from their bodies to waters [12]. In addition, an eightfold increase occurred from June to July in large blood cockles. It shows that there are an accumulation and depuration of heavy metal Hg in large blood cockles. According to Yap et al. [18], the accumulation rate and depuration rate in blood cockles can be determined by control treatment.

The Hg content in water and sediment ranged from 0.000-0.002 ppm for water and 0.005-0.020 ppm for sediment (table 1 and 2). Overall, the result is still within the standard quality. The Hg content in the meat of blood cockles is higher than the Hg content in water and sediment. According to Effendi [17], heavy metal Hg that enter waters will be accumulated by blood cockles directly or indirectly. The Hg content that came from water and sediment can be accumulated by blood cockles through food nets [3].

4. Conclusion
The Pb and Hg content in the meat of blood cockles, water, and sediment still within the quality standards of BPOM 2018. Heavy metal content in large blood cockles tends to be higher than small blood cockles. The concentration of heavy metal fluctuated which is dependent on the amount of source of contamination and ability blood cockles to accumulate and eliminate heavy metal.

References
[1] Febrianessa N, Sulistiono, Samosir AM and Yokota M 2020 Heavy metal (Pb, Hg) contained in blue swimming crab (Portunus pelagicus Linnaeus, 1758) in Cengkok Coastal Waters, Banten Bay, Indonesia Indonesian Journal of Marine Sciences 25 157-164
[2] Sugiarti, Hariyadi S and Nasution H 2016 The relationship between water quality and fish catches at the river mouth of Banten Bay, Banten Province (in Bahasa Indonesia) J LINNOTEK 23 1-
[3] Wagioy K, Prihatiningsih and Budiarti TW 2015 The fishery of Shellfish on the North Coast of Java (in Bahasa Indonesia) Proc. National Conf. Catch Fisheries (Bogor) vol 6 pp 241-258

[4] Mawardi and Sarjani TM 2017 The quality of blood cockles (Anadara granosa) based on the cadmium metal test in the coastal area of Langsa City, Aceh Province (in Bahasa Indonesia) J Biology Education 9 39-43

[5] Herawati D and Soedaryo 2017 Effect of soaking blood cockles (Anadara granosa) with lime on mercury and cadmium levels (in Bahasa Indonesia) Jurnal SainHealth 1 30-35

[6] Broom MJ 1985 The biology and culture of marine bivalve mollusks of the genus Anadara (Manila: International Center for Living Aquatic Resources Management) pp 103-106

[7] Firmansyaf AD, Yulianto B and Sedjati S 2013 Study of heavy metal Pb content in water, sediment, and tissue of blood cockles in Morosari River and Gonjol River, Sayung, District of Demak (in Bahasa Indonesia) Journal of Marine Research 2 45-54

[8] Sulistiono, Sari C and Brodjo M 2009 The food habit of tongue fish in Ujung Pangkah Waters, Gresik, East Java (in Bahasa Indonesia) J Agricultural Science Indonesia 14 184-193

[9] Amriani, Hendrarto B and Hadiyarto A 2011 Bioaccumulation of heavy metals lead (Pb) and zinc (Zn) in blood cockles (Anadara granosa) and mangrove shells (Polymedosa bengalis L.) in Kendari Bay (in Bahasa Indonesia) J Environmental Science 9 45-50

[10] American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF) 2012 Standard Methods of the Examination of Water and Wastewater (Washington: American Public Health Association) 22nd Edition

[11] Association of Official Agriculture Chemists (AOAC) 2002 Official Methods of Analysis of AOAC International (Gaithersburg: AOAC International) 17th Edition

[12] Cordova R. 2016 The mechanism of genetic disorders and mutations in bivalvia influenced by the heavy metal lead (in Bahasa Indonesia) J Oseana 41 27-34

[13] Riani E, Johari HS and Cordova MR 2017 Bioaccumulation of Cadmium and Lead in Prickly Pen Shell in Seribu Archipelago Bioaccumulation of Cadmium and Lead in Prickly Pen Shell in Seribu Archipelago (in Bahasa Indonesia) JPHPI 20 131-142

[14] Riani E 2009 The small green shells as ‘vacuum cleaner’ for industrial area liquid waste that enter the waters of Jakarta Bay (in Bahasa Indonesia) J Natural 14 24-30

[15] Nur F and Karneli 2015 Heavy Metal Lead (Pb) Content in clam scallops (Tridacna squamosa) around the Bira Ferry Port (in Bahasa Indonesia) Proc. of National Conf. Microbiology Health and Environment pp 188-192

[16] Irawati Y, Lumban Batu DTF and Sulistiono 2018 Heavy Metal in Mud Clam (Geloina erosa) in east of Segara Anakan and west of Donan River, Cilacap (in Bahasa Indonesia) JPHPI 21 232-242

[17] Effendi H 2003 Study of Water Quality for Water Resources and Environmental Management (Yogyakarta: Kanisius) pp 78-89

[18] Yap CK, Azlan MAG, Cheng WH and Tan SG 2011 Accumulation and depuration of Cu dan Zn in the blood cockle (Anadara granosa L.) under laboratory controls J PERTANIKA Trop Agric Sci 34 75-82