Development of Stochastic Models of Window State Changes in Educational Buildings

Jing Liu\textsuperscript{1,2,*}, Running Yao\textsuperscript{2}, Rechel McCloy\textsuperscript{3}

\textsuperscript{1}School of Engineering, Zunyi Normal University, Zunyi 563002, China
\textsuperscript{2}School of Construction Management and Engineering, University of Reading, Reading RG6 6AW, UK
\textsuperscript{3}School of Psychology, University of Reading, Reading RG6 6AW, UK
*jlmlau@vip.126.com

Abstract. How people would like to interact with surrounding environment will subsequently influence indoor thermal conditions and further impact building energy performance. In order to understand occupants’ adaptive behaviours in terms of environmental control utilization from the point of view of quantification, an investigation on windows operation was carried out in non-air-conditioned educational buildings in the UK during summer time considering the effects of occupant type (active and passive) and the time of a day. Outdoor air temperature was a better predictor of window operation than indoor air temperature. Window operation was found to be time-evolving event. The purpose or criteria of adjusting window states were different at different occupancy stages. Active occupants were more willing to change window states in response to outdoor air temperature variations. Sub-models predicting transition probabilities of window state for different occupant type and occupancy stages were developed. The results derived from this field study are helpful with improving building simulation accuracy by integrating sub-models into simulation software and further providing guideline on building energy reduction without sacrificing indoor thermal comfort.

1. Introduction

The behavioural adaptation of occupants plays a significant role in enabling subjects to achieve thermal comfort and consequently influences building energy consumption [1-2]. Adaptive behaviours in terms of personal (e.g., adding an item of clothing) and technological (e.g., turning on air conditioner, opening windows) dimensions induce a change in the heat balance of the human body [3]. Occupants’ interaction with environmental controls in turn impact building energy performance. Brager et al [4] concluded that behavioural adaptation could be viewed as the immediate and conscious feedback loop, where the discomfort played the role of start point rather than end point. Therefore, in order to satisfy most of people with indoor thermal environment in an environmental-friendly way, the understanding of people’s responses with respect to environmental controls utilization is essential.

Due to the observable characteristic of behavioural adaptation, the investigations on adaptive behaviours, particularly the environmental controls operation, attract more attention in world-wide. The researches in this field can mainly be classified into qualitative and quantitative aspects. The qualitative studies focus on revealing the utilization of environmental controls under real environment [5-7], restrictions [8] and impact factors [9-10] including both physical and non-physical factors. In terms of
quantitative dimension, researchers tend to develop models for predicting occupants’ adaptive behavior [11-14] and consequently influences on energy consumption [15-17].

As aforementioned, the current models mainly focus on the probability that a certain performance (opening of closing) has been taken under a given thermal condition. The probabilities of window state transitions (e.g. from closed to open or from open to closed) are seldom considered. Nowadays, in order to improve the software simulation accuracy of building energy consumption and further to provide guidelines on regional thermal comfort conditions and building energy reduction, simulation considering time-evolving dynamic process of window state changing is vital. Therefore, this study aims to address: (1) an attempt to understand occupants’ interaction with window control, particularly the window state transitions, is made by conducting a field study; (2) the effect of occupant type on the behavioural of occupants is clarified; (3) the influence of time of a day is also verified; (4) a stochastic model which can be integrated into building performance simulation software is developed.

2. Methodology
A field study was performed in naturally ventilated office buildings in University of Reading, UK during summer season and comprised environmental parameter measurement and questionnaire survey.

2.1. The basic information on Surveyed Buildings
The surveyed buildings were located on the Whiteknights campus of the University of Reading. All of them were south-north orientation, of brick-concrete structure, single-glazed with aluminium alloy frames and non-air-conditioned with heating supplied in winter. Figure 1 demonstrates the façades of the surveyed buildings.

Figure 1. Surveyed buildings.

2.2. Environmental Parameters Measurement
In order to reflect the real-time variation of thermal conditions in the studied workplaces, TinyTag (TGU-4500), which recorded temperature and relative humidity using self-contained sensors, was employed to perform successive 24-hour indoor thermal environmental monitoring at 5-minute intervals.

2.3. Questionnaire Survey
The thermal diary used in this field study aimed at collecting information on clothing levels and mean thermal sensation, and gathering detailed information on the performance of window operation in real workplace environments and then for the further development of predictive models.
2.4. Experiment Procedure
Subjects were requested to report their arrival time and thermal sensation on-arrival first and then to record the initial states of windows in their offices. After that, they needed to observe and recorded the start and end time of window operation behaviour and report their mean thermal sensations on an hourly basis until departure.

3. Behaviour Models

3.1. Data Processing
Based on the literature review, the pattern of environmental control using was different from people to people[18-20]. Happle et al [21] considered using of distinct models for distinct person types (e.g. active and passive subjects) to account for inter-individual diversity of occupant behaviour on the person-level. Therefore, occupants in this study were divided into two classifications, active and passive, respectively, on the basis of responses to the question ‘if you could adjust the window, how often would you do so?’. Subjects whose answers were ‘0-never, 1- rarely’ or ‘3-frequently or 5-always’ on 5-point scale were regarded as ‘passive’ or ‘active’ subjects. Meanwhile, the time of a day was also found by many researcher to be crucial factor influencing occupants’ adaptive behaviour. The whole occupancy period on working hours was consequently divided into three stages, at arrival, during occupancy and departure, respectively.

In order to present the real dynamic window use behaviour, Markov process is applied to both indoor and outdoor temperatures. 5 minutes time step is set up in agreement with environmental parameters measurement intervals of both University of Reading atmospheric observatory and TinyTag. The probabilities of windows state changes are represented by $P_{ij}$. The whole datasets are allocated to each sub-stage.

3.2. Models based on Markov Process

3.2.1. Sub-models on Arrival Stage. The first 30 minutes after occupant arriving at their offices is regarded as at arrival stage. Since all subjects closed when they left their offices on the previous working day for security reason. Then, there are two possible windows state changing during the on-arrival stage, from closed to open or keep closed, respectively. The predicted models for active and passive subjects with either outdoor or indoor air temperature as predictor at on-arrival stage are:

For active subjects:

$$P_{0-1, \text{arrive}} = \frac{e^{-0.447t_{\text{out}} + 6.406} + e^{-0.406t_{\text{out}}}}{1 + e^{-8.567t_{\text{in}} + 0.432t_{\text{in}}}}$$

(1)

$$P_{0-1, \text{arrive}} = \frac{e^{-8.567t_{\text{out}} + 0.432t_{\text{in}}}}{1 + e^{-9.510t_{\text{out}} + 0.522t_{\text{out}}}}$$

(2)

For passive subjects:

$$P_{0-1, \text{arrive}} = \frac{e^{-9.510t_{\text{out}} + 0.522t_{\text{out}}}}{1 + e^{-145t_{\text{in}} + 0.235t_{\text{in}}}}$$

(3)

$$P_{0-1, \text{arrive}} = \frac{e^{-145t_{\text{in}} + 0.235t_{\text{in}}}}{1 + e^{-6.145t_{\text{out}} + 0.427t_{\text{out}}}}$$

(4)

The values of each constant and corresponding statistical test results are shown in table 1.

| Occupant type | Overall Test | Nagelkerke $R^2$ | Variables | Independent variable test |
|---------------|--------------|-----------------|-----------|--------------------------|
|               | $\chi^2$     | P-value         | Coefficient | S.E. | Wald | P-value |
| Active        | 23.732       | <0.001          | $T_{\text{out}}$ | 0.447 | 0.103 | 18.799 | <0.001 |
|               |              |                 | Constant   | -6.406 | 1.646 | 15.15  | <0.001 |
17.255 <0.001 0.279 T<sub>in</sub><sup>b</sup> 0.432 0.113 14.732 <0.001
Constant -0.856 2.418 12.554 <0.001
5.134 0.023 0.273 T<sub>out</sub> 0.522 0.253 4.246 0.039
Constant -9.51 4.304 4.882 0.027
17.255 <0.001 0.279 T<sub>in</sub> 0.235 0.298 0.623 0.43
Constant -6.145 6.81 0.814 0.367

<sup>a</sup>Outdoor air temperature.  
<sup>b</sup>Indoor air temperature.

Figure 2 demonstrates the windows transition probabilities from closed to open at on-arrival stage. It is clear that passive subjects are reluctant to open their windows until outdoor air temperature increases up to 18°C. For active subjects, the temperature corresponding to 50% transition probability decreases to around 15°C.

Based on the results shown in table 1, outdoor air temperature is a better predictor than indoor air temperature. The significant relationship between window use behaviour and outdoor air temperature is confirmed by the greater values of Nagelkerke’s $R^2$. The P-values for both $G(\chi^2)$ and Wald statistics imply that including outdoor air temperature in the transition probability model makes a significant contribution.

3.2.2. Sub-models During Occupancy. Figure 3 depicts the windows transition probabilities from closed to open and from closed to open to closed. The probability of windows transition from closed to open is higher for active subjects in summer. With the increasing of outdoor air temperature, the transition probabilities accordingly goes up dramatically, especially the outdoor air temperature exceeds 10°C. The transition probabilities for passive subjects begin to increase significantly until the outdoor air temperature reaches 15 °C. In terms of the transition probabilities of windows changes from open to closed are similar for active and passive subjects. In general, both two types of occupants are reluctant to close opened windows during occupancy in summer.
The predicted models for active and passive subjects with either outdoor or indoor air temperature as predictor during occupancy stage are:

For active subjects (from closed to open):

$$P_{0 \rightarrow 1, \text{occupancy}} = \frac{e^{-3.637 + 0.224 t_{out}}}{1 + e^{-3.637 + 0.224 t_{out}}}$$ \(\text{Eq. (5)}\)

$$P_{0 \rightarrow 1, \text{occupancy}} = \frac{e^{-8.567 + 0.432 t_{out}}}{1 + e^{-8.567 + 0.432 t_{out}}}$$ \(\text{Eq. (6)}\)

For passive subjects (from closed to open):

$$P_{0 \rightarrow 1, \text{occupancy}} = \frac{e^{-6.542 + 0.204 t_{out}}}{1 + e^{-6.542 + 0.204 t_{out}}}$$ \(\text{Eq. (7)}\)

$$P_{0 \rightarrow 1, \text{occupancy}} = \frac{e^{-21.558 + 0.825 t_{in}}}{1 + e^{-21.558 + 0.825 t_{in}}}$$ \(\text{Eq. (8)}\)

For active subjects (from open to closed):

$$P_{1 \rightarrow 0, \text{occupancy}} = \frac{e^{16.623 - 1.042 t_{out}}}{1 + e^{16.623 - 1.042 t_{out}}}$$ \(\text{Eq. (9)}\)

$$P_{1 \rightarrow 0, \text{occupancy}} = \frac{e^{22.738 - 1.122 t_{in}}}{1 + e^{22.738 - 1.122 t_{in}}}$$ \(\text{Eq. (10)}\)

For passive subjects (from open to closed):

$$P_{1 \rightarrow 0, \text{occupancy}} = \frac{e^{14.791 - 0.891 t_{out}}}{1 + e^{14.791 - 0.891 t_{out}}}$$ \(\text{Eq. (11)}\)

$$P_{1 \rightarrow 0, \text{occupancy}} = \frac{e^{-2.908 + 0.006 t_{in}}}{1 + e^{-2.908 + 0.006 t_{in}}}$$ \(\text{Eq. (12)}\)

The values of each constant and corresponding statistical test results are shown in table 2 and table 3.
Table 2. Summaries of statistical tests of window operation from closed to open during occupancy period.

| Occupant type | Overall Test | Nagelkerke R² | Variables | Independent variable test |
|---------------|--------------|---------------|-----------|--------------------------|
|               | χ²           | P-value       |           | Coefficient | S.E. | Wald | P-value |
| Active        | 350.74       | 0.001         | Tₜₜ   | -1.042      | 0.094 | 123.61 | 0.001  |
|               | 110.68       | <0.001        | Constant | 16.623      | 1.591 | 109.1  | 0.001  |
|               |              |               | Tₜₕ   | -1.122      | 0.096 | 137.99 | 0.001  |
|               |              |               | Constant | 22.738      | 2.035 | 124.87 | 0.001  |
|               |              |               | Tₜₜ   | -0.891      | 0.324 | 7.571  | 0.006  |
|               |              |               | Constant | 14.791      | 5.845 | 6.405  | 0.011  |
|               |              |               | Tₜₕ   | -0.006      | 0.012 | 0.209  | 0.647  |
|               |              |               | Constant | -2.908      | 0.216 | 180.74 | 0.001  |

Table 3. Summaries of statistical tests of window operation from open to closed during occupancy period.

| Occupant type | Overall Test | Nagelkerke R² | Variables | Independent variable test |
|---------------|--------------|---------------|-----------|--------------------------|
|               | χ²           | P-value       |           | Coefficient | S.E. | Wald | P-value |
| Active        | 23.732       | <0.001        | Tₜₜ   | 0.447       | 0.103 | 18.799 | <0.001 |
|               | 17.255       | <0.001        | Constant | -6.406      | 1.646 | 15.15  | <0.001 |
|               |              |               | Tₜₕ   | 0.432       | 0.113 | 14.732 | <0.001 |
|               |              |               | Constant | -0.856      | 2.418 | 12.554 | <0.001 |
|               |              |               | Tₜ₟   | 0.522       | 0.253 | 4.246  | 0.039  |
|               |              |               | Constant | -9.51       | 4.304 | 4.882  | 0.027  |
|               |              |               | Tₜₕ   | 0.235       | 0.298 | 0.623  | 0.43   |
|               |              |               | Constant | -6.145      | 6.81  | 0.814  | 0.367  |

No matter active or passive subjects, the increasing of probabilities of windows state changing from closed to open in response to outdoor air temperature rising during occupancy are not as quickly as that at the on-arrival stage. That means at different occupancy stages the purpose of opening windows is different. Due to the initial state of closed, occupants open their window mainly for fresh air at on-arrival stage. But during occupancy, the thermal stimuli may predominate occupants' interaction with window operation.  

3.2.3. Sub-models at Departure Stage. Since all windows will be closed on departure for security reason, the transition probabilities from open to closed or keeping closed are 100%. The development of any predictive models is thus not necessary.  

4. Conclusions  
The time-evolving window state changing process is mathematically demonstrated as several sub-models considering the factors of both person type and the time of a day by applying discrete-time Markov process. The findings obtained from this field study are summarized as below:  
- Thermal stimuli, particularly the outdoor air temperature, are found to be the driving force for operating windows.  
- The discrepancies of transition probability of window state between active and passive occupants are verified. Active subjects are more willing to adjust the windows state in response to the variations of outdoor air temperature.
The purpose and criteria of window operation may differ at various occupancy stages. For fresh air is the main purpose of window state changing from closed to open. But such criteria is promoted during occupancy and determined by thermal stimuli. The window states changing is found to be irrelevant to thermal environment but for security reason in this study.

Windows operations are demonstrated as time-dependent events. The models considering the time of a day and subject type are developed.

Acknowledgments
The authors would like to thank all the subjects who participate into this study. The authors would like thank the scholarship from the School of Construction Management and Engineering to support the research and the finance support from the UK China International Research Centre of Low Carbon Green Building and Eco-cities for the completion of the paper. This work was also supported by Department of Science and Technology of Guizhou Province, China (grant number [2017]1203) by Guizhou Innovative Experts Program (grant number [2017]27) and by Zunyi Normal University’s Doctoral Program (grant number BS[2016]04).

References
[1] Gabriel Happle G, Fonseca J A and Schlueter A 2018 Energy Build. 174 276-92
[2] Zhang Y, Bai X M, Franklin P and Mills F P 2018 Energy Build. 172 279-94
[3] Auliciems A 1986 Architectural Science Review 33: 43-48
[4] Brager G S and de Dear R J 1998 Energy Build. 27 83-96
[5] Indraganti M 2010 Energy Build. 42 1019-25
[6] Lai D Y, Jia S S, Qi Y and Liu J J 2018 Build Environ. 142 234-43
[7] Liu H, Zhang W Q, Li B Z and Tan M L 2011 Journal of Central South University (English Edition) 42 1805-12
[8] Indraganti M 2011 Renewable Energy 36 1182-89
[9] Humphreys M A and Nicol J F 1998 ASHRAE Trans. 104: 991-1004
[10] Zhou X, Liu T, Shi X, Jin X 2018 Energy Build. 165 15-24
[11] Jones R V, Fuertes A, Gregori E and Giretti A 2017 Build Environ. 118 144-58
[12] Li N, Li J C, Fan R J and Jia H Y 2015 Renewable Energy 73 84-91
[13] Haldi F and Robinson D 2010 Build Environ. 45 2440-57
[14] Pan S, Han Y Y, Wei S, Wei Y X, Xia L, Xie L, Kong X R and Yu W 2019 Build Environ. 149 210-9
[15] Wang L P and Greenberg S 2015 Energy Build. 92 313-21
[16] Sorgato M J, Melo A P, Lamberts R 2016 Energy Build. 133 1-13
[17] Rafsanjani H N, Ahn C R and Chen J Y 2018 Energy Build. 172 317-327
[18] O’Brien, William, Gunay H B, Tahmasebi F and Mahdavi A 2017 J Build Performance Simulation 10 509-26
[19] Haldi F 2013 Proc. BS2013 (Chambéry) p 1475
[20] Haldi F, Davide C, Andersen R K and Wesseling M 2017 J Build Performance Simulation 10 527-44
[21] Happle G, Fonseca J A and Schlueter A 2018 Energy Build. 174 276-292