Development of atenolol-tin complexes as PVC photostabilizers for outdoor applications

Ali H. Jawad¹, Dina S. Ahmed², Azal U. Ahmed³, Baneen Salam⁴, Mustafa Abdallh⁴, Muna Bafaroosha⁵, Seenar Saad Hamed², Emad Yousif²

¹Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; ali288@uitm.edu.my
²Department of Medical Instrumentation Engineering, Al-Mansour University College, 64021 Baghdad, Iraq; dinasaadi86@gmail.com
³College of Medical Sciences and Health Technology, Uruk University, Baghdad, Iraq; azelosama@uruk.edu.iq
⁴Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
⁵Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain 1818, UAE

Corresponding author: emad_yousif@hotmail.com; dinasaadi86@gmail.com

Abstract
New tin complexes were made from the reaction of various tin reagents with atenolol. These complexes were mixed with PVC to produce the stabilized polymeric films. The stability of the films was evaluated using UV/Vis absorption spectroscopy and field emission scanning electron microscopy.

The rate of photodecomposition constant have been calculated for PVC films as a method for evaluating the efficiency of atenolol-tin complexes that used as a photostabilizers after 300 hour of irradiation. The results have showed that the additives had reduced the rate of photodecomposition significantly with comparison to PVC (blank). The rate constant of photodecomposition (kd) value for PVC films was higher than that after addition of atenolol tin complexes as photostabilizers.

Keywords: poly(vinyl chloride); atenolol-tin complexes; photostabilization

1. Introduction
Polyvinyl chloride (PVC) is one of the most abundant polymers used in different industries with respect to commercially available polymers. It is rated as the second polymer in the plastic industry just after polyethylene due to its characteristics and performance under use as well as the ease of processing for different applications [1]. Commonly, PVC used in piping, packaging, insulation, frames, doors, medical devices textile and cleansing materials and many other applications [2]. The variety and growing number of applications where PVC is
essential raised a question about the waste disposal of PVC in order to protect our environment [3].

The increasing demand for PVC products, even though its products are long life under service conditions, will increase its waste progressively raising not only environmental issues but economic problems in term of energy required to deal with PVC waste [4, 5].

One of the suggested solutions for such problem is to introduce a tin complex to reduce the effect of the UV light on PVC, in addition to increase it lifetime under working condition [6]. When the hydrochloric (HCl) molecules release from the polymer chain, they react with the double bond to produce organic chlorinated compound. The degradation process of the PVC is almost dehydrochlorination to produce a polyene compounds with large amount of HCl and small amount of organic molecules such as benzene ring, anthracene. In comparison, the C–C bond is stronger than C–Cl bond and the Cl atom is more electronegative than the C atom. Therefore, formation of Cl radicals is more preferred than formation of primary C radicals [7-14].

Additives must have different characteristics to considerate as suitable stabilizers such as manufacturing cost. In addition to its chemical properties like its chemical stability and the effective concentration of stabilizer in use. The physical properties are important as well i.e., the stabilizer dose not effect the mechanical properties or the color of the final product, also has the ability to disperse homogenously within the polymer matrices. [15]. Our group have been previously reported a number of Schiff base [18–21], aromatic [22, 23], polyphosphates [24, 25] in addition to tin complexes [26–31] as a photostabilizers for PVC polymer. In this work, four stabilizers have been synthesized, atenolol organotin(IV), to examine the kinetic of the reaction by measuring the k_d (photodecomposition constant) of the new polymeric system. UV spectrophotometric analysis was utilized to evaluate the efficiency of atenolol complexes as a new photostabilizers for PVC polymer via measuring their k_d values.

2. Materials and Methods

2.1. General

PVC was purchased from Petkim Petrokimya (Istanbul, Turkey). A QUV- accelerated weather-meter tester used for the irradiation. This device was supplied by Q-Panel Company, Homestead, FL, USA. The wavelength centered at 313nm with intensity of 6.43×10^{-9} ein dm$^{-3}$ s$^{-1}$ at room temperature. Field emission scanning electron microscopy (FESEM) images were recorded using a Tescan MIRA3 LMU instrument (Tescan Orsay Holding; Brno-Kohoutovice, Czech Republic.

2.2. Synthesis of atenolol-tin complexes 1–4

Four organotin(IV) complexes, 1–4 (Figure 1) were synthesized from the reaction of atenolol with suitable tin (IV) chloride salts as previously reported [8]. These complexes have been characterized by FTIR, 1H- and 13C-NMR spectroscopies, elemental analysis atomic force microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM), as reported [8].

![Figure 1. Atenolol-tin complexes 1–4.](image-url)
2.3. The preparation of polymeric Films

5 g of PVC solubilized in 100 mL of THF, then left to stir for 30 min at 25 °C. After that, 0.5 wt% of atenolol-tin complexes 1–4 was added to the above solution. The reaction mixture was left to stir for additional more 30 min. Reaction mixture poured onto glass plates mold. The film which were left for (24 h) at 25 °C to give a polymer film.

2.4. UV-Weathering measurements

A self-prepared chamber was used to test the accelerated UV-weathering. The films were exposed to continuous UV light with average irradiation wavelength of 313 nm. The accelerated irradiation test was done after total of 300 h.

2.5. UV/Vis absorption Spectroscopy

To determine the variations in the UV-Vis spectra of prepared polymer films, the 160A-Ultraviolet/Visible (UV-Vis) (Shimadzu, Japan) Spectrophotometer was used [9]. The Equation (1) was utilized to measure the rate constant \((k_d)\) of photodecomposition for prepared films.

\[
\ln(a - x) = \ln a - k_d t
\]

(1)

Where, \(a = A_0 - A_\infty, x = A_0 - A_t, a = PVC \) concentration prior the exposure to UV light, \(x = \) the change in PVC concentration at a certain time \(t\) during the exposure to UV light as presented in Equation (2), \(A_0 = PVC \) absorption intensity at \(t_0, A_\infty = PVC \) absorption intensity at \(t_\infty\) and \(A_t = PVC \) absorption intensity after irradiation time \(t\).

\[
a - x = A_0 - A_\infty - A_0 + A_t = A_t - A_\infty
\]

(2)

Equation (3) was got by replacing \(a - x\) and a Equation (2) by their values from Equation (2).

\[
\ln(A_t - A_\infty) = \ln(A_0 - A_\infty) - k_d t
\]

(3)

\(k_d\). Photodecomposition was calculated from the slope of the strait line obtained from \(\ln(A_t - A_\infty) \) versus time \((t)\) of irradiation with UV light.[10].

Results and discussion

The effect of atenolol-tin compounds (1–4) as new photostabilizers on the prepared PVC films was investigated. After irradiation, an obvious alteration in the PVC prepared films and the photo degradation was observed. Figures 2-6 show the plots between \(\ln(A_t - A_\infty)\) against \(t\) (irradiation time) which presented as straight lines. Diagrams confirmed first order kinetics reactions where the slope represents \(k_d\) of prepared films. The plot between \(\ln(A_t - A_\infty)\) against time of exposing to UV light \((t)\) for PVC films, without any stabilizers, illustrated in Figure 2.

![Figure 2](image-url)

Figure 2. Plot for \(\ln(A_t - A_\infty)\) versus time of UV light exposure of blank PVC.
While, the alternations between the $\ln(A_t - A_\infty)$ versus the irradiation time of PVC prepared films mix with the new photostabilizers atenolol-tin complexes 1–4 are shown in Figure 3-6. The additive stabilizers percentage was 0.5% by weight.

Figure 3. Plot for $\ln(A_t - A_\infty)$ versus time of UV light exposure of PVC + 1 prepared film.

Figure 4. Plot for $\ln(A_t - A_\infty)$ versus time of UV light exposure of PVC + 2 prepared film.
Figure 5. Plot for $\ln(A_t - A_\infty)$ versus time of UV light exposure of PVC + 3 prepared film.

Figure 6. Plot for $\ln(A_t - A_\infty)$ versus time of UV light exposure of PVC + 4 prepared film.

All the k_d data for PVC (blank) film and PVC films mixed with atenolol-tin compounds 1–4 are listed in Table 1.

Table 1. k_d data for PVC prepared films after irradiation by UV light for 300 h.

Film	k_d (sec$^{-1}$)
PVC (blank)	10.0×10^{-3}
PVC + 1	6.20×10^{-3}
PVC + 2	7.20×10^{-3}
PVC + 3	8.70×10^{-3}
PVC + 4	9.10×10^{-3}

Table 1 and Figures 3–6 demonstrate the effectiveness of the existence of atenolol-tin complexes and its type on the k_d values for the prepared PVC films. As shown in
Table 1, the highest k_d value (10.0×10^{-3} sec$^{-1}$) belongs to blank PVC film without any stabilizers. The rate constant decreased considerably ($9.10 - 6.20 \times 10^{-3}$ sec$^{-1}$) when atenolol-tin complexes were used as UV stabilizers. The highest k_d value was recorded for the blank PVC and the lowest value was recorded in the existence of 1 atenolol-tin complex. Adding atenolol-tin complexes to the PVC films as photostabilizers show high efficiency through reducing the rate of photodecomposition constant compared to blank PVC that showed highest value.

The surface of PVC blends was investigated further using the FESEM. The FESEM images provide information about the morphological characteristics of the polymer surface such as shape, size as well as to homogeneity and cross section of the particle [11]. Previous reports showed that FESEM images of PVC films before irradiation have a high level of homogeneity with more or less smooth surface [12]. The FESEM images of blank PVC film after irradiation (Figure 7) showed rough surface with a number of cracks due to bonds breaking and elimination of HCl [11,12].

![FESEM images of blank PVC film after irradiation.](image)

Figure 7. FESEM images of blank PVC film after irradiation.

The irradiated blank PVC, roughness and heterogeneity were very noticeable along with formation of cracks that are long and deep. However, the surface of PVC containing additives 1–4 after irradiation were smoother with a limited number of cracks. The film containing complex 1 exhibit a homogeneous and clear smooth surface before irradiation in comparison to other films. It was clear from that complexes 1–4 acted as PVC stabilizers (Figure 8).
The new atenolol complexes contain an aromatic moiety within its structure which increase the ability of the polymeric system to absorb the harmful UV light via the resonance process, followed by the harmless release of energy over a long period of time [16]. Since tin are characterized by highly acidic (Lewis acid) features, it has the ability to effectively capture the HCl formed through the dehydrochlorination of PVC [17]. The degradation of PVC in the presence of oxygen will generate a peroxide resulted from the radicals formed during the degradation process. Tin complexes can act as a peroxide decomposers via the reaction with peroxide and converting it to a harmless side products(Fig. 9), therefor; tin complexes can extended the polymer lifetime under working conditions via enhancing its stability against photolysis [13,14].
Conclusion
Addition of atenolol-tin complexes 1–4 to the PVC films as photostabilizers shows high efficiency through reducing the rate of photodecomposition constant compared to blank PVC. PVC films containing atenolol-tin complexes 1–4 showed lower values.

Acknowledgments
We thank Universiti Teknologi MARA, Al-Nahrain, Al-Mansour and Uruk Universities for their supports.

References
[1] Garcia D, Balart R, Crespo JE, Lopez J. Mechanical properties of recycled PVC blends with styrenic polymers. J Appl Polym Sci 2006;101:2464-2471.
[2] La Mantia FP. Recycling of PVC and mixed plastic waste. Toronto: ChemTec Publishing; 1996.
[3] Braun D. Recycling of PVC. Prog Polym Sci 2002;27:2171-2195.
[4] Yarahmadi N, Jakubowicz I, Martinsson L. PVC floorings as post consumer products for mechanical recycling and energy recovery. Polym Degrad Stabil 2003;79:439-448.
[5] Omer R.M., Al-Tikrity E.T.B., Yousif E., El-Hiti G.A., Ahmed D.S. and Ahmed A.A., 2020. Spectroscopic and Morphological Study of Irradiated PVC Films Doped with Polyporphosphates Containing 4, 4'-Methylenedianiline. Russian Journal of Applied Chemistry, 93(12), pp.1888-1898.
[6] Davis A, Sims D. Weathering of polymers. London: Elsevier Applied Science Publishers; 1983.
[7] Blazso M., Jakab E., Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly (vinyl chloride). J. Anal. Appl. Pyrol. 49, 125-143, 1999.
[8] Salam, B.; El-Hiti, G.A.; Bufaroosha, M.; Ahmed, D.S.; Ahmed, A.; Alotaibi, M.H.; Yousif, E. Tin Complexes Containing an Atenolol Moiety as Photostabilizers for Poly(Vinyl Chloride). Polymers 2020, 12, 2923. https://doi.org/10.3390/polym12122923
[9] Ghazi D., Yousif E., Ahmed D.S., Thamer H., Noaman R., Hussien N.J., Yusop R.M., Jawad A.H., Photo-Physical Studies of PVC Mixed with Organotin (IV) Complexes. Al-Nahrain Journal of Science, 22, 1-7, 2019.
Ahmed D.S., El-Hiti G.A., Hashim H., Noaman R., Hameed A.S., Yousif E., Physical and morphological properties of poly(vinyl chloride) films upon irradiation in the presence of tetra schiff bases as photostabilizers. Arab Journal of Physical Chemistry. 5, 1-6, 2018.

Watheq, Baraa; Yousif, Emad; Al-Mashhadani, Mohammed H.; Almohammed, Aala; Ahmed, Dina S.; Kadhom, Mohammed; Jawad, Ali H. 2020. "A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibufrofen Tin Complexes against Ultraviolet Radiation" Surfaces 3, no. 4: 579-593. https://doi.org/10.3390/surfaces3040039

Yousif, E., Ahmed, A., Ahmed, D.S. et al. Ice rock-resembling PHB thin films doped with TiO2 NPs as photocatalyst. SN Appl. Sci. 2, 1401 (2020). https://doi.org/10.1007/s42452-020-2588-4.

B. Liu, Y. Wang, Y. Gao, R. Zhong, F. Zhang, M. Zhang, and H. Zhang, J. Polym. Eng., 37, 239 (2017).

J. Pospilil and P.P. Klemchuk, Oxidation Inhibition in Organic Materials, CRC Press, Boca Raton, FL, 48 (1989)

Chai RD, Zhang J (2013) Synergistic effect of hindered amine light stabilizers/ultraviolet absorbers on the polyvinyl chloride/powder nitrile rubber blends during photodegradation. Polym Eng Sci 53: 1760–1769.

Mohamed SH, Hameed AS, El-Hiti GA, Ahmed DS, Kadhom M, Baashen MA, Bufarosa M, Ahmed AA, Yousif E. A Process for the Synthesis and Use of Highly Aromatic Organosilanes as Additives for Poly(Vinyl Chloride) Films. Processes. 2021; 9(1):91. https://doi.org/10.3390/p90101091

Mousa O.G., El-Hiti G.A., Baashen M.A., Bufarosa M. Ahmed A. Ahmed A.A., Ahmed D.S., Yousif E. Synthesis of Carvedilol–Organotin Complexes and Their Effects on Reducing Photodegradation of Poly(Vinyl Chloride). Polymers 2021, 13, 500. https://doi.org/10.3390/polym13040500

Shaalan N, Laftah N, El-Hiti GA, Alotaibi MH, Muslih R, Ahmed DS, Yousif E (2018) Poly(vinyl chloride) photostabilization in the presence of Schiff bases containing a thiazolazo moiety. Molecules 23:913

Hashim H, El-Hiti GA, Alotaibi MH, Ahmed DS, Yousif E (2018) Fabrication of ordered honeycomb porous poly(vinyl chloride) thin film doped with a Schiff base and nickel(II) chloride. Heliyon 4: e00743

Yousif E, Ahmed DS, El-Hiti GA, Alotaibi MH, Hashim H, Hameed AS, Ahmed A (2018) Fabrication of novel ball-like polystyrene films containing Schiff bases microspheres as photostabilizers. Polymers 10:1185

El-Hiti GA, Alotaibi MH, Ahmed AA, Hamad BA, Ahmed DS, Ahmed A, Hashim H, Yousif E (2019) The morphology and performance of poly(vinyl chloride) containing melamine Schiff bases against ultraviolet light. Molecules 24:803

Balakit AA, Ahmed A, El-Hiti GA, Smith K, Yousif E (2015) Synthesis of new thiopehne derivatives and their use as photostabilizers for rigid poly(vinyl chloride). Int J Polym Sci 2015:510390

Tomí IHR, Ali GQ, Jawad AH, Yousif E (2017) Synthesis and characterization of gallic acid derivatives and their utilized as organic photo-stabilizers for poly (vinyl chloride). J Polym Res 24(7): 119

Ahmed DS, El-Hiti GA, Yousif E, Hameed AS (2017) Polyphosphates as inhibitors for poly(vinyl chloride) photodegradation. Molecules 22:1849

El-Hiti GA, Ahmed DS, Yousif E, Alotaibi MH, Star HA, Ahmed AA (2020) Influence of polyphosphates on the physicochemical properties of poly(vinyl chloride) after irradiation with ultraviolet light. Polymers 12:193

Ali MM, El-Hiti GA, Yousif E (2016) Photostabilizing efficiency of poly(vinyl chloride) in the presence of organotin(IV) complexes as photostabilizers. Molecules 21:1151

Mohammed R, El-Hiti GA, Ahmed A, Yousif E (2017) Poly(vinyl chloride) doped by 2-(4-isobutylphenyl)propanoate metal complexes: enhanced resistance to UV irradiation. Arab J Sci Eng 42: 4307–4315

Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.

Ghazi D, El-Hiti GA, Yousif E, Ahmed DS, Alotaibi MH (2018) The effect of ultraviolet irradiation on the physicochemical properties of poly(vinyl chloride) films containing organotin(IV) complexes as photostabilizers. Molecules 23:254
[30] Hadi AG, Jawad K, Yousif E, El-Hiti GA, Alotaibi MH, Ahmed DS (2019) Synthesis of telmisartan organotin(IV) complexes and their use as carbon dioxide capture media. Molecules 24:1631

[31] Hadi AG, Yousif E, El-Hiti GA, Ahmed DS, Jawad K, Alotaibi MH, Hashim H (2019) Long-term effect of ultraviolet irradiation on poly(vinyl chloride) films containing naproxen diorganotin(IV) complexes. Molecules 24:2396

[32] Hadi AG, Jawad K, El-Hiti GA, Alotaibi MH, Ahmed AA, Ahmed DS, Yousif E (2019) Photostabilization of poly(vinyl chloride) by organotin(IV) compounds against photodegradation. Molecules 24: 3557.

[33] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[34] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 722 012008

[35] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756.

[36] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012075

[37] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water Footprint of Wheat in Iraq. Water 2019, 11, 535.

[38] Ahmed Alaa Kandoh et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012073

[39] Salah, A. (2020). The New Combination of Semi-Analytical Iterative Method and Elzaki Transform for Solving Some Korteweg-de Vries Equations. Al-Qadisiyah Journal Of Pure Science, 25(1), Math. 23 -26.

[40] Ali, W., & R. Annon, M. (2020). Biological Effective of organic solvent extracts of Mirabilis jalapa Leaves in the Non-cumulative for mortality of Immature stages Culex quinquefasciatus Say (Diptera : Culicidae). Al-Qadisiyah Journal Of Pure Science, 25(1), Bio 1-6.

[41] Sami Abd ali, mohammed, Shaker Hussein, A., & mohammed hadi, H. (2020). Study The Current Density-Voltage (J-V) Characteristics of α-Fe2O3 Thin Film Prepared by Spray Pyrolysis Technique. Al-Qadisiyah Journal Of Pure Science, 25 (1), Phys 1-7.