Optimization of Cooling Fan Speed for Heat Transfer Enhancement of Electronic Chip Using CFD

Sanjeev Kumar Gupta, Nitin Kukreja

Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University Mathura, UP, India -281406
corresponding author’s e-mail: sanjeev.mnnita@gmail.com

Abstract. Demand of high-performance personal computers have highly increased today which in turn has increased the need for the efficient cooling system. In heat transfer through forced convection phenomenon, the former depends upon the variation in fluid velocity. The analysis of this paper results that variation in fluid velocity plays a key role in increasing the heat transfer rate and helps to meet the desired cooling environment for the safe performance of electronic components. The fan location is fixed above the chip and fluid velocity is varied and behavior of heat transfer rate is visualized for better design of the cooling system. Simulation has been carried out on ANSYS 15.0 (modeling on ICEM CFD & results from FLUENT). The k-ε turbulence model has been applied.

Keywords: Computational Fluid Dynamics (CFD), ANSYS, Forced Convection, Chip Cooling, Heat Transfer

1. Introduction

Global industries today are hugely demanding the innovations and developments in design processes and engineering methods. Prototyping of large and complex engineering equipment is costly as well as time taking. Thus, computational simulation techniques are gaining importance in research and development area. Computational fluid dynamics is an effective tool in analyzing the fluid forces their behavior and their effects on the victimized components. Fluid as a source of energy, its use in heating and cooling applications is in huge demand today. Advancement in technology has provided a better platform to use different types of fluid for effective cooling [1-9].

Technology today is seeking compactness which promotes the use of small ICs and chips. These small electronic components though are fast but emit huge bumps of heat, which if not cast off the device can cause a lot of harm to the parent device. Thus the advancement and development of cooling systems have become a need of the hour. Cooling system requirements are not only limited to the electronic components. All the machine components generate heat and require cooling systems. In personal computers, the cooling is carried out using fans or other systems like a heat pipe. The proper visualization and analysis of these systems are very necessary as otherwise may make the parent device bulky or if could not fulfill cooling requirements may destroy the device.

Some researchers have done their work on-chip cooling and cooling through the extended surfaces. Saroj Kumar Patra analyzed the flow through a channel via an obstruction for laminar, transient flow and plotted different contours for pressure, temperature, velocity and Nusselt number [10]. Arularasan R. and Velraj R. found the optimal design of the heat sink carried out on a parallel plate heat sink considering the geometric parameters [11]. R. Boukhanouf and A. Haddad simulated an electronics
enclosure cooling system to be used as part of a larger radar control system using CFD [12]. N. Hariharan, A.S. Manirathnam, S. Vellingiri, and R.S. Mohankumar founded the better cooling solution for notebook computers using miniature loop heat pipe with the help of CFD [13]. M.A.I. Rashid, M.F Ismail, and M. Mahbub found that circular pin fin carbon nano-tube based micro-channel heat sink shows better thermal performance than the rectangular pin fins [14]. Randeep Singh, Aliakbar Akbarzadeh, and Masataka Mochizuki calculated the various design parameters for the design of future laptops based on the miniature loop heat pipe (mLHP) [15]. Gupta S. K. et al. analyze heat transfer enhancement of electronic chip using computational fluid dynamics technique. He concluded that the heat transfer rate increases drastically by changing the location of cooling fan [16-20].

2. Governing Equations

The governing equations considered for the analysis of the convective heat transfer coefficient through the flow over cylinder are as follows:

2.1. Continuity Equation

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0
\]

(1)

2.2. Momentum Equation

\[
\frac{Du}{Dt} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]
\]

\[
\frac{Dv}{Dt} = Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{\mu}{\rho} \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right]
\]

(2)

(3)

2.3. Energy Equation

\[
\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)
\]

(4)

2.4. \(k - \varepsilon \) Equation

\[
\frac{\partial k}{\partial t} + \text{div}(\rho u k) = \text{div} \left[\left(\mu_t + \frac{\rho \mu_t}{\varepsilon} \right) \text{grad} \right] + \rho \mu_t S - \rho \varepsilon
\]

(5)

\[
\frac{\partial \varepsilon}{\partial t} + \text{div}(\rho u \varepsilon) = \text{div} \left[\left(\mu_t + \frac{\rho \mu_t}{\varepsilon} \right) \text{grad} \right] + C_{\mu_t} \rho \mu_t \left(\frac{\varepsilon}{\mu_t} \right) - C_{\mu_t} \rho \mu_t \varepsilon^2
\]

(6)

3. Computational Methodology

3.1. Geometrical Modelling

The computational methodology has been employed to analyze the rate of heat transfer achieved through the cooling fan with a change in its velocity. The two integrated chips system is allowed to cool using the fan installed at the top wall which is considered to be the inlet. The computational domain, considering which the analysis has been carried out is shown in figure 1.
3.2. Meshing

For the accurate and exact analysis of the computational domain, it is divided into many a number of small finite elements. This so generated is called as a mesh. The analysis work carried out on the small elements is integrated to the results of whole geometry. Geometry and mesh are generated on the ICEM CFD 15.0. Thus mesh generation helps in finding out the précised results. Exponential1, Exponential2, Bi-geometric, uniform etc. are the mesh laws used to for mesh generation. The mesh information is given in table 1.

Table – 1 Mesh Information

Mesh Information	Value
Quadrilateral Cells	122588, Zone 12
Interior Faces	244195, Zone 13
Velocity-inlet Faces	218, Zone 14
Pressure-outlet Faces	218, Zone 15
Wall Faces	237, Zone 16
Wall Faces	237, Zone 17
Wall Faces	358, Zone 18
Wall Faces	267, Zone 19
Nodes	123570
Min. Orthogonal Quality	1.00000e+00
Maximum Aspect Ratio	1.70209e+02

3.3. Boundary Condition

![Figure 1 Computational Domain](image1.png)

![Figure 2 Quadrilateral Mesh Grid](image2.png)
The boundary conditions are given in certain regions in a domain where the flow is needed to be analyzed. Cooling of chips is achieved using the ambient air. Boundary conditions information is given in table 2. Setup is initialized and run to reach the convergence rate required.

Table – 2 Boundary Conditions for the domain

Zone	Boundary Condition
Inlet	Velocity-inlet
Outlet	Pressure-outlet
Wall	No-slip condition with adiabatic wall
Chip 1	Heat Flux
Chip 2	Heat Flux

3.4. Solution and Discussion

An implicit algebraic multigrid method of the solution along with second-order upwind scheme is used in the discretization to converge the results with higher accuracy. Pressure-velocity correlation is used to establish velocity-pressure coupling using Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Continuous residual monitoring is done to keep a check on all parameters for proper convergence rate.

4. Results

The heat transfer variations on the chips for various air flow velocities have been plotted and shown in fig 3. Contours of pressure and velocity are generated using the software package to determine the flow behaviour and its thermal effects on chips are shown in table 4 and table 5. The calculated values are shown in the table-3

![Figure 3](image-url)
Figure 3 Variation of Surface Heat Transfer Coefficient for Chip 1 and Chip 2 at different air velocities

Table – 3 Results obtained for different velocities

Velocity	Parameter		
	Heat Transfer Coefficient, h (W/m²-K)	Minimum Temperature (K)	Maximum Temperature (K)
	120	5	10
	140	7	15
Table – 4 Velocity and temperature contours

Velocity (m/sec)	Chip 1	Chip 2	Chip 1	Chip 2	Chip 1	Chip 2
2	69.529	69.283	231.495	3173.00	5185.52	5185.522
3	69.572	69.283	2023.006	288.511	5185.524	5185.524
5	69.620	72.439	1735.502	259.007	5185.524	5185.524
6	71.662	70.989	1448.002	231.507	5185.524	5185.524
8	76.159	79.100	1160.502	116.502	5185.524	5185.524
9	81.072	85.528	873.0009	873.000	5185.524	5185.429

![Contour of Velocity Magnitude](#)

![Contour of Velocity Magnitude](#)

![Contour of Velocity Magnitude](#)
Table – 5 Temperature contours

Velocity (m/sec)	Temperature Contour
2	![Temperature Contour 2](image)
5	![Temperature Contour 5](image)
8	![Temperature Contour 8](image)
5. Conclusion

The following conclusions can be made from this analysis:
The increase in cooling rate is achieved with increasing velocity of fluid.
The heat transfer coefficient for chip 1 and chip 2 are increased by 16.6 % & 23.44 % respectively for velocity variation of 2 m/s to 10 m/s.

Nomenclature

\(\rho \): Density of fluid flowing
\(u \): Velocity of flow in \(x \)-direction
\(v \): Velocity of flow in \(y \)-direction
\(p \): Pressure in the flow direction
\(X \): \(x \)-direction Body force
\(Y \): \(y \)-direction Body force
\(T \): Fluid temperature
\(T_\infty \): Ambient air temperature
\(k \): Thermal Conductivity of the fluid
\(Re \): Reynolds Number
\(h \): Heat transfer coefficient
\(\mu \): Dynamic Viscosity
\(\mu_t \): Eddy viscosity
\(\nu \): Kinematic Viscosity
\(k \): Turbulent kinetic energy
\(\varepsilon \): Turbulent dissipation rate
\(G \): Turbulent generation rate
\(\sigma_k \): Constant
\(\sigma_\varepsilon \): Constant
\(C_1 \varepsilon \): Constant
\(C_2 \varepsilon \): Constant

References

[1] Verma S K, Tiwari A K, Tiwari S, Chauhan D S 2018 Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid Solar Energy 167 231-241
[2] Singh R K, Sharma A K, Dixit A R, Mandal A, Tiwari A K 2017 Experimental investigation of thermal conductivity and specific heat of nanoparticles mixed cutting fluids Materials Today: Proceedings 4(8) 8587-8596
[3] Sharma A K, Tiwari A K, Dixit A R, Singh R K 2017 Investigation into Performance of SiO2
Nanoparticle Based Cutting Fluid in Machining Process *Materials Today: Proceedings* 4(2) 133-141

[4] Rathore P K S, Shukla S K, Gupta N K 2020 Potential of Microencapsulated PCM for Energy Savings in Buildings: A critical review *Sustainable Cities and Society* 53 101884

[5] Kumar K, Sharma K, Verma S, Upadhyay N 2019 Experimental investigation of graphene-paraffin wax nanocomposites for thermal energy storage *Materials Today: Proceedings* 18(7) 5158-5163

[6] Verma S K, Singhal P, Chauhan D S 2019 A synergistic evaluation on application of solar-thermal energy in water purification: Current scenario and future prospects *Energy conversion &Mangement* 180 372-390

[7] Kumar S, Rawat M K and Gupta S K 2019 An evaluation of current status of renewable energy sources in India *International Journal of Innovative Technology and Exploring Engineering* 8(10) 1234-39

[8] Kumar S, Gupta S K and Rawat M 2020 Resources and utilization of geothermal energy in India: An eco-friendly approach towards sustainability *Materials Today: Proceedings* 26(2) 1660-65

[9] Kukreja N, Gupta S K, Rawat M 2020 Performance analysis of phase change material using energy storage device *Materials Today: Proceedings* 26(2) 1660-1665

[10] Patra S. K., 2007 CFD Analysis of Electronics Chip Cooling *A thesis of M. Tech., Department of Mechanical Engineering, National Institute of Technology, Rourkela.*

[11] Arularasan R. and Velraj R., 2008 CFD Analysis in a Heat Sink for Cooling of Electronic Devices *International Journal of the Computer, the Internet and Management* 16(3) 1-11.

[12] Boukhanouf R., Haddad A., 2010 A CFD Analysis of an Electronics Cooling Enclosure for Application in Telecommunication Systems *Applied Thermal Energy* 36(16) 2426-2434.

[13] Hariharan N., Manirathnam A.S., Vellingiri S., Mohankumar R.S., 2014 CFD Thermal Analysis on Laptop Cooling System Using Loop Heat Pipe Technology *International Journal of Research in Engineering and Technology* 3(5) 676-682.

[14] Rashid M.A.I., Ismail M.F, Mahhub M., 2011, CFD Analysis in a Liquid-Cooled Carbon Nanotube Based Micro-channel Heatsink for Electronic Cooling *International Journal of Engineering and Technology* 3(5) 553-559.

[15] Singh R., Akbarzadeh A., Mochizuki M., 2010 Thermal Potential of Flat-Evaporator Miniature Loop Heat Pipes for Notebook Cooling *IEEE Transactions on Components and Packaging Technologies* 33(1) 32-45

[16] Gupta S. K., Rawat M. K., Kukreja N., 2019 Analysis Of Heat Transfer Enhancement of Electronic Chip Using CFD *International Journal of Scientific & Technology Research* 8 (12) 1017-1020.

[17] Gupta S. K., Dwivedi V. K., Sachdeva S., Singh S., 2016 Investigation of coefficient of skin friction and axial velocity of fully developed turbulent flow through pipe *Science & Technology Journals* 2(7) 312-318.

[18] Kukreja N, Gupta S K, Rawat M K 2020 performance analysis on biplane structure at different mach numbers *International Journal of Scientific & Technology Research* 9 (1) 3541-3546

[19] Kulshreshta A, Gupta S K, Singhal P 2020 FEM/CFD analysis of wings at different angle of attack *Materials Today: Proceedings* 26(2) 1638-1643

[20] Rawat M K, Gupta S K 2019 Effect of plane shear velocity profile over a streamline cylinder *International Journal of Engineering and Advanced Technology* 8(3) 396 – 399