Forensic Implications of Saliva: An Overview

Debesh Nilendu¹, Arjun Kundu¹, Avaish Chand¹, Abraham Johnson²

¹Postgraduate Student, ²Assistant Professor, Laboratory of Forensic Odontology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India

Abstract

Over past years, investigators and researchers have been repeatedly attracted by possible applications of saliva related evidence in forensics. It is specifically looked for in cases of sexual assault, drug abuse, driving while intoxicated, and in cases involving animal bites. Oral fluid has a role in linking suspects or victims to a crime scene, as well as in profiling of the unknown individual. Collection of salivary evidence should thus be given deserved importance and should be carried out using scientific methods, considering the progression of time, type of case, sequence and type of analytical methods to be performed, nature of surface etc. This review emphasizes the comprehensive use of saliva in forensics.

Key words: Identification, Investigation, Forensics, Analysis, Oral Fluid, Saliva

Introduction

Mandel in 1990 quoted that “saliva lacks the drama of blood, the sincerity of sweat and the emotional appeal of tears”. [1] An exocrine secretion from the salivary glands, saliva is the predominant secretion in the oral cavity. With an average secretion of about a litre per day, and a slightly alkaline pH, it has a multifunctional role. [2] Having a range of molecules in content, saliva has an indispensable role in forensic odontology. [3]

Although with few solutes, saliva is has a varied scope in drug detection, identification, DNA fingerprinting, cases of abuse, analysis of psyche, and so on. Saliva can be collected from bite-marks on skin and edible items, from stains in surfaces, and from various items like utensils, straws, phones, cigarette butts, stamps etc. [4]

In the past, forensic investigations have revealed saliva in lip-prints, bite-marks, and other objects, helping in identification to a greater extent. [5] As saliva enters the oral cavity, it coalesces with blood cells, oral microflora, food, and upper airway secretions. This increases the chance of saliva containing information about a person. [6]

The current article will summarise on the use of saliva in various context of forensics.

Presence of Saliva at the Crime Scene

In numerous crimes, saliva is stored in ‘nibble marks’. [7] The advantages of using saliva its ease of access, ease of handling, its non-invasive collection, and economical analysis. [3] On the other hand, oral fluid deposited on substrate can’t be specifically submitted to extraction procedures. [8]

Recovery and Detection:

- Visual Examination: As dry colourless stains, saliva is difficult to identify in a crime scene. However with the use of alternate light sources and ultraviolet lights, discovery becomes easier. Under ALS, ranging 415–490nm (using orange/red goggles) [9], quartz arch tube or argon ion laser, saliva presents soft edged white spots, less intense than other stains. [4] Saliva stains will appear bluish-white under an ultraviolet light. However, it degrades the DNA in the sample. [10]

- Presumptive tests: Due to lack of solutes, there are no confirmatory tests for saliva. [8] The presence of saliva stains can be detected through test for amylase, present in high concentrations in saliva, pancreatic...
fluid, and faeces. Detection of amylase is particularly important in cases involving fellatio. [11]

Test for saliva involves starch and Florence iodine solution (~1:100), with the sample. Starch and iodine form a deep blue complex. Amylase hydrolyses starch and the colour fades (time: 15 mins, temperature: 37°C). However, albumin, gamma-globulin, semen, etc. may give a false positive result. [10] Elevated amylase levels may also be from oral sex/fellatio or from vaginal cavity. [9]

The method has limitations and variable sensitivity depending upon the age of the stain and quantity of deposit. [9]

- **Collection:** Collection involves three aspects: the crime scene, the victim and from suspect(s). The classical technique is using a single wet cotton swab/filter paper laid passively on the surfaces. [4]

 Sweet et al developed the double swab technique, to provide a better yield through rehydration of the saliva traces by swabbing with a sterile swab, wetted in nuclease free water with moderate pressure in a rolling motion for about ten seconds, followed by a second dry swab. [4, 12]

 Stimulated saliva can be collected from the suspect using paraffin or citric acid crystals, and non-stimulated saliva by simple rinse with mouthwash. While these samplings are considered as diluted saliva, whole saliva is directly milked from the opening of Stenson’s duct. Commercial kits like Oragene are also available, when salivary DNA is required.

 FTA cards (Fritz Technology Associates) are useful for the collection and storage of DNA from body fluids, including saliva.

 Laboratory analysis: Amylase mapping is performed for saliva stains on samples of larger area [Figure-1]. [9]

Figure 1: Procedure for amylase mapping

A radial diffusion assay has been used to distinguish sources of AMY1 (amylase found in saliva, breast milk, perspiration) and AMY2 (amylase in the pancreas, semen, and vaginal secretions) [Figure-2]
Immunological methods: ELISA is not widely used. α-amylase is detected using a horseradish peroxidase conjugate combined with monoclonal antibodies. The Phadebas1 test reagent, used in tube and press tests, with sensitivity up to 1:12810, incorporates procion red amylopectin.

Detection of Chemicals: Dried saliva stains can be identified with soluble phosphatase, starch and amylase resulting in a red precipitate. Nitrates and thiocyanates can also be detected. Tryptophan also helps recognize dried oral fluid, giving a trademark emanation range on fluorescent spectroscopy. [13]

Near-infrared (NIR) Raman spectroscopy has been used to measure spectra of pure dried human saliva samples, showing its heterogeneity. [14]

The RSID (Rapid Stain Identification) test, specific for human salivary α-amylase, has been very useful and quick to identify saliva. It is similar to a pregnancy test (parallel stream immuno-chromatography) and is the principal high sensitivity specific non- enzymatic test for amylase. [12]

Investigation of Drugs of Abuse in Saliva

Oral fluid is second only to urine for checking medications. [15] Medications enter the salivation by the passive exchange. [16] Most illicit and addictive drugs of abuse can be distinguished in saliva. [17] Radioimmunoassay (RIA) has also proved useful [1, 18]. Recently, Drug wipe, an immunochemical based test strip has been introduced to detect medications of mishandle in the fluid. [19]

Peel et al. discovered quantifiable amounts of medications in salivation removed with methanol and broke down by immunoassay and gas chromatography/ mass spectrophotometry, which can be adjunct to serological testing. [20]

Deoxyribonucleic Acid Profiling/Fingerprinting

DNA analysis is of great dependency when traditional identification methods fail. [21] In spite of affecting the security of human DNA dirt and microscopic organisms don’t pose much threat as the tests utilized for profiling are particular to person only. [22]

Saliva contains leukocytes and exfoliated epithelial cells as a useful DNA source. [23] Since secretory genes are present, saliva can also be used for blood grouping. [9]

Saliva yields a very small amount of DNA. However, DNA tests are intensified by polymerase chain response for DNA writing utilizing short tandem repeats (STRs), unique, lifelong and durable markers consisting of repeated DNA sequences. STRs are suitable for maternity/paternity assurance and scientific examination, requiring only 0.5ng of DNA template. [26]

Mitochondrial DNA (mtDNA) is present in cells found in saliva, which has a high copy number proves useful when nuclear DNA testing fails, due to degradation. [27] mtDNA is maternally inherited [28], thus, distant maternal relatives can be used as a reference source for identification. [29]

Methylation and telomere shortening, has been observed in salivary DNA to estimate age. [32]

Salivary DNA lasts even after about fifteen days.

Sex Determination from Saliva

The peeled epithelial cells present in salivation have expanded the likelihood of sex assurance of the culprit. Even in degraded samples, sex chromatin like Barr bodies (in females) and F bodies (in males) can be observed; and sex hormones detected using fluorescent dyes or radioimmunoassay. [22]

Salivary Biomarkers

Salivary nucleic acids and proteins contain vital information. Saliva biomarkers have been used in diagnosis of various diseases but they have wider role in forensics. Markers for any particular disease can be matched and on tracking that disease to hospital visits, positive identification can be achieved. [6]

Determining Psychology

Different hormones in saliva helps in deciding the mind of a person. [11] Salivary level of steroid hormones reflects the free, unbound circulating fraction, [30] helps in determining mind-set of a person. High testosterone in spit has demonstrated people as rough, less consistent and related with individual mischief. [11] Low salivary cortisol could likewise be related with fierce criminal conduct. [31]

Conclusion

Rarely, people think of saliva, as a convenience,
handy for licking stamps and sealing envelopes. Practicing dentists find it’s a nuisance, to be sponged, evacuated or dammed. However, over the years, the need and importance of saliva as an investigative body fluid is increasing rapidly in forensics. With constant examination, and a communitarian work in serological and odontological fields, salivation is developing as a fundamental device for scientific examination. A careful learning of what at a dentist faces each time he/she works in a mouth, may increase the significance of an odontologist in a criminal examination group by manifolds. One can only ponder what more is behind each drop of spit in the mouth.

Conflicts of Interest: Nil

Source of Funding: Nil

Ethical Clearance: Nil

References

1. Aps JK, Martens LC. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 2005; 150:11931.
2. Allan Gunn, Essential Forensic Biology, Second Edition, Wiley-Blackwell, Sussex, UK, 2009, 72-73.
3. Mithun Rajshekar, Marc Tennant* and Thejaswini, Salivary biomarkers and their applicability in forensic identification. Sri Lanka Journal of Forensic Medicine, Science & Law- 2013- 4(1), 10-15.
4. Saxena S, Kumar S. Saliva in forensic odontology: A comprehensive update. J Oral Maxillofac Pathol 2015; 19:263-5.
5. Madall VBI, Basavaraddi SM, Burde K, Horatti P. Saliva- A Diagnostic Tool. IOSR J Dent Med Sci. 2013; 11(6):96-99
6. Rajshekar M, Tennant M, Thejaswini. Salivary biomarkers and their applicability in forensic identification. Sri Lanka Journal of Forensic Medicine, Science & Law- 2013- 4(1), 10-15.
7. Anzai Kanto E, Hirata MH, Hirata RD, Nunes FD, Melani RF, Oliveira RN. DNA extraction from human saliva deposited on skin and its use in forensic identification procedures. Braz Oral Res 2005; 19:21622.
8. Sweet D, Shutler GG. Analysis of salivary DNA evidence from a bite mark on a body submerged in water. J Forensic Sci.1999; 44:106972.
9. Richard Li, Forensic biology, CRC press, Florida, USA, 2012, 135-144.
10. Kelly Virkler, Igor K. Lednev. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Intl 2009; 188:1-17
11. James M. Dabbs, Timothy S. Carr, Robert L. Frady, Jasmin K. Riad, Testosterone, crime, and misbehaviour among 692 male prison inmates. Personality and Individual Differences, 18(5), 1995, 627-633.
12. Jennifer B. Old, Brett A. Schweers, Pravat W, Boonlayangoor, and Karl A. Reich, Developmental Validation of RSIDTM-Saliva: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Saliva. J Forensic Sci, 2009, 54 (4) 886-873.
13. Nanda KD, Ranganathan K, Umadevi K, Joshua E. A rapid and noninvasive method to detect dried saliva stains from human skin using fluorescent spectroscopy. J Oral Maxillofac Pathol 2011; 15:225.
14. Kelly Virklera and Igor K. Lednev, Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst, 135(3), 2010, 512-517
15. Vindenes V, Lund HM, Andresen W, Gjerde H, Ikdahl SE, Christophersen AS, et al. Detection of drugs of abuse in simultaneously collected oral fluid, urine and blood from Norwegian drug drivers. Forensic Sci Int 2012; 219:16571.
16. Mago J, Sidhu L, Kaur R, Kamal, Anurag T. Saliva in Forensics. WJPMR, 2016, 2(4), 196-198.
17. Cone EJ. Saliva testing for drugs of abuse. Ann N Y Acad Sci 1993; 694:91127.
18. Rai B. Oral fluid in toxicology. Internet J Toxicol.2006; 3(2):15.
19. Samyn N, van Haeren C. Onsite testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int J Legal Med 2000; 113:1504.
20. Peel HW, Perrigo BJ, Mikhael NZ. Detection of drugs in saliva of impaired drivers. J Forensic Sci 1984; 29:1859.
21. Silva RHA, Musse JDO, Melani RFH, Oliveira RN. Human bite mark identification and DNA
technology in forensic dentistry. Braz J Oral Sci. 2006; 5: 1193-1197.
22. Stimson PG, Mertz CA. Forensic Dentistry. Florida: CRC Press LLC; 1997.
23. Streckfus CF and Bigler LR. Saliva as a diagnostic fluid. Oral Diseases. 2002; 8: 69–76.
24. Sweet D, Lorente M, Lorente JA, Valenzuela A, Villanueva E. An improved method to recover saliva from human skin: The double swab technique. J Forensic Sci 1997; 42:3202.
25. Khare P, Chandra S, Raj V, Agarwal S. Salivary DNA For Sex Determination And Forensic Individualization. J Forensic Med Toxicol. 2012; 29(1):73-78
26. Gill P. Role of Short Tandem Repeat DNA in Forensic Casework in the UK-Past, Present, and Future Perspectives. BioTechniques. 2002; 32:366-385.
27. Pretty IA, Sweet D. A look at forensic dentistry – Part 1: The role of teeth in the determination of human identity. Br Dent J 2001; 190:35966.
28. Hutchison CA, Newbold JE, Potter SS, Edgell MH. Maternal inheritance of mammalian mitochondrial DNA. Nature 1974; 251:5368.
29. Stavrianos C, Eliades A, Kokkas A. The role of DNA in forensic odontology (Part 1) DNA analysis methods. Res J Med Sci 2010; 4:3349.
30. Bhandari R, Kakkar T, Bhullar RK, Bansal H, Sandhu SV, Jassar S. Saliva– An adjunct in forensic odontology. BFUDJ 2011; 2:1447.
31. Kathleen Brewer-Smyth, Ann Wolbert Burgess, Justine Shults, Physical and sexual abuse, salivary cortisol, and neurologic correlates of violent criminal behavior in female prison inmates. Biological psychiatry a journal of psychiatric neuroscience and therapeutics, 2004, 55(1), 21–31.
32. https://www.popsci.com/science/article/2011-06/saliva-science-new-forensics-tool-can-determine-age-suspects-spit, 31, 2018
33. Juusola J, Ballantyne J, Multiplex mRNA profiling for the identification of body fluids, Forensic Sci Int. 2005 11;152(1):1-12.
34. Auvdel, M. J. Amylase levels in semen and saliva stains. J Forensic Sci 1986. 31(2):426.
35. Comparison of laser and high-intensity quartz arc tubes in the detection of body secretions. J Forensic Sci 1988. 33 (4):929.
36. Barni, F. et al. Alpha-amylase kinetic test in bodily single and mixed stains. J Forensic Sci 2006. 51 (6):1389.
37. Culliford, B. J. Precipitin reactions in forensic problems: A new method for precipitin reactions on blood, semen, and saliva stains. Nature 1964. 201:1092.
38. DeLeo, D. et al. A sensitive and simple assay of saliva on stamps. Z Rechtsmed 1985. 95 (1):27.
39. Eckersall, P. D. et al. The production and evaluation of an antiserum for the detection of human saliva. J Forensic Sci Soc 1981. 21 (4):293.
40. Keating, S. M., and D. F. Higgs. The detection of amylase on swabs from sexual assault cases. J Forensic Sci Soc 1994. 34 (2):89.
41. Martin, N. C., N. J. Clayson, and D. G. Scrimger. The sensitivity and specificity of red-starch paper for the detection of saliva. Sci Justice 2006. 46 (2):97.
42. Miller, D. W., and J. C. Hodges. Validation of Abacus SALlgAE test for forensic identification of saliva. http://www.dnalabsinternational.com/SalivaValidation.pdf. 2005.
43. Pretty, I. A. The barriers to achieving an evidence base for bitemark analysis. Forensic Sci Int 2006. 159 Suppl 1:S110.
44. Quarino, L. et al. Differentiation of α-amylase from various sources: An approach using selective inhibitors. J Forensic Sci Soc, 1993; 33 (2):87.
45. Quarino, L. et al. An ELISA method for the identification of salivary amylase. J Forensic Sci 2005. 50 (4):873.
46. Rushton, C. et al. The distribution and significance of amylase-containing stains on clothing. J Forensic Sci Soc 1979. 19 (1):53.
47. Sabatini, L. M., Y. Z. He, and E. A. Azen. Structure and sequence determination of the gene encoding human salivary statherin. Gene 89 1990. (2):245.
48. Searcy, R. L. et al. The interaction of human serum protein fractions with the starch–iodine complex. Clin Chim Acta 1965. 12 (6):631.
49. Shaler, R. C. 2002. Modern forensic biology, in Forensic Science Handbook. Saferstein, R., Ed. Upper Saddle River, NJ: Person Education Inc.
50. Soukos, N. S. et al. A rapid method to detect dried saliva stains swabbed from human skin using fluorescence spectroscopy. Forensic Sci Int 2000.
51. Sweet, D. et al. An improved method to recover saliva from human skin: the double swab technique. J Forensic Sci 1997. 42 (2):320.

52. Vandenberg, N., and R. A. van Oorschot. The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests. J Forensic Sci 2006. 51 (2):361.

53. Wawryk, J., and M. Odell. Fluorescent identification of biological and other stains on skin by the use of alternative light sources. J Clin Forensic Med 2005.12(6):296.

54. Whitehead, P. H., and A. E. Kipps. The significance of amylase in forensic investigations of body fluids. Forensic Sci 1975. 6 (3):137.

55. A test paper for detecting saliva stains. J Forensic Sci Soc. 1975. 15 (1):39.

56. Willott, G. M. An improved test for the detection of salivary amylase in stains. J Forensic Sci Soc 1974. 14 (4):341.

57. Willott, G. M., and M. Griffiths. A new method for locating saliva stains: Spotty paper for spotting spit. Forensic Sci Int 1980. 15 (1):79.

58. Sweet, D. and D. Hildebrand, Saliva from cheese bite yields DNA profile of burglar: a case report. Intl J legal med, 1999; 112:201-203.

59. Rousselet F. and P. Mangin, Mitochondrial DNA polymorphisms: a study of 50 French Caucasian individuals and application to forensic casework. Intl j legal med, 1998; 111:292-298.

60. Barbenel, J. and J. Evans, Bite-marks in skin—mechanical factors. J Forensic Sci Soc, 1974; 14:235-238.