Physics Beyond Standard Model in Neutron Beta Decay

Michał Ochman

Institute of Physics, University of Silesia, Katowice

in collaboration with:
Jacek Holeczek, Elżbieta Stephan, Marek Zrałek

"MATTER TO THE DEEPEST" 18 IX 2011
Outline

1. Hamiltonians describing physics beyond Standard Model
2. Decay parameters
3. Selection of the data and fits
Historical outlook

Compare: T. D. Lee, C. N. Yang, Phys. Rev. 104, 254 (1956) and e.g. N. Severijns, M. Beck and O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006) [arXiv:nucl-ex/0605029].

\[H_\beta = (\bar{p}n) (\bar{e} (C_S + C'_S \gamma_5) \nu) \]
\[+ (\bar{p} \gamma_\mu n) (\bar{e} \gamma_\mu (C_V + C'_V \gamma_5) \nu) \]
\[+ \frac{1}{2} (\bar{p} \sigma_{\lambda \mu} n) (\bar{e} \sigma_{\lambda \mu} (C_T + C'_T \gamma_5) \nu) \]
\[+ (\bar{p} \gamma_\mu \gamma_5 n) (\bar{e} \gamma_\mu \gamma_5 (C_A + C'_A \gamma_5) \nu) \]
\[+ (\bar{p} \gamma_5 n) (\bar{e} \gamma_5 (C_P + C'_P \gamma_5) \nu) \]
\[+ \text{H.c.} \]

Standard Model (SM): \[C_A = C'_A = - \frac{V_{ud} G_F}{\sqrt{2}} g_A, \]
\[C_V = C'_V = \frac{V_{ud} G_F}{\sqrt{2}} g_V \quad \text{for } g_A > 0 \text{ and all other 0.} \]
Historical outlook

Compare: G. Konrad, W. Heil, S. Baessler, D. Pocanic and F. Gluck, arXiv:1007.3027 [nucl-ex].

\[\mathcal{H}_\beta = \frac{V_{ud} G_F}{\sqrt{2}} \sum_{j=S,V,A,T} \left\{ L_j (\bar{p} \Gamma_j n) \left(\bar{e} \Gamma_j \frac{1 - \gamma_5}{2} \nu \right) \right. \\
\left. + R_j (\bar{p} \Gamma_j n) \left(\bar{e} \Gamma_j \frac{1 + \gamma_5}{2} \nu \right) \right\} + \text{H.c.}, \]

\[\Gamma_S = 1, \quad \Gamma_V = \gamma_\mu, \quad \Gamma_A = \gamma_5 \gamma_\mu, \quad \Gamma_T = \frac{i}{2 \sqrt{2}} [\gamma_\mu, \gamma_\nu]. \]

SM: \(L_A = -g_A, \quad L_V = g_V \) for \(g_A > 0 \) and all other 0.
\[H_\beta = 4 \sum_{a,b = L,R} \left\{ a_{ab} \bar{e}\gamma_\mu P_a \nu^{(a)} \bar{u}\gamma^\mu P_b d
right.
\]
\[+ A_{ab} \bar{e}P_a \nu^{(a)} \bar{u}P_b d
right.
\]
\[+ \alpha_{aa} \bar{e} \frac{\sigma_{\mu\nu}}{\sqrt{2}} P_a \nu^{(a)} \bar{u} \frac{\sigma^{\mu\nu}}{\sqrt{2}} P_a d \right\} + \text{H.c.,}
\]

\[\nu^{(L)} = \sum_i U_{ei} P_L \nu_i, \quad P_L = \frac{1}{2} (1 - \gamma_5), \]
\[\nu^{(R)} = \sum_i V_{ei} P_R \nu_i, \quad P_R = \frac{1}{2} (1 + \gamma_5). \]

Note: we work in the basis in which mass matrix of charged leptons is diagonal – after the P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.

\[\sigma_{\mu\nu} = \frac{i}{2} [\gamma_\mu, \gamma_\nu], \quad \text{SM: } a_{LL} = \frac{V_{ud} G_F}{\sqrt{2}} \text{ and all other 0.} \]
Neutron beta decay at $q^2 = 0$

P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.

\[g_V \bar{u}_p \gamma_\mu u_n = \langle p | \bar{u} \gamma_\mu d | n \rangle, \]
\[g_A \bar{u}_p \gamma_\mu \gamma_5 u_n = \langle p | \bar{u} \gamma_\mu \gamma_5 d | n \rangle, \]
\[g_S \bar{u}_p u_n = \langle p | \bar{u} d | n \rangle, \]
\[g_T \bar{u}_p \sigma_{\mu\nu} u_n = \langle p | \bar{u} \sigma_{\mu\nu} d | n \rangle. \]

In the quark model with spherically symmetric wave functions of quarks

S. L. Adler et al., Phys. Rev. D11, 3309 (1975).

\[g_V = 1, \quad g_S = -\frac{1}{2} + \frac{9}{10} g_A \approx 0.64, \]
\[g_A \approx 1.27, \quad g_T = \frac{5}{3} \left(\frac{1}{2} + \frac{3}{10} g_A \right) \approx 1.47. \]
Decay Parameters

Given an amplitude A:

$$d\Gamma \sim \sum_{\lambda, \lambda'} \int d_{LIPS} \ (A_\lambda \ \rho_{\lambda, \lambda'} \ A^{*}_{\lambda'}) ,$$

where

$$\rho = U(R_{\bar{n}}) \begin{pmatrix} p_+ & 0 \\ 0 & p_- \end{pmatrix} [U(R_{\bar{n}})]^+ ,$$

$$p_+ + p_- = 1, \quad |\bar{n}| = 1, \quad \tilde{\lambda}_n = (p_+ - p_-) \bar{n}.$$

We are working at tree-level (except: calculation of $\langle E^{-1}_e \rangle$ – see next slides) and with approximate formulas.
\[
\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} = p_e E_e E_\nu^2 \xi \left\{ 1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} \right. \\
+ \left. \vec{\lambda}_n \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu} \right] \right\},
\]

\[E_\nu = E_0 - E_e, \quad N_{+/-} - \text{number of events, e.g. for } A:\]

\[N_{+/-} \sim \frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} \bigg|_{\vec{\lambda}_n \cdot \vec{p}_e \sim +/}, \quad A \sim \frac{N_+ - N_-}{N_+ + N_-}.\]

We will consider cases when \(a_{ab}, A_{ab}, \alpha_{aa}\) for \(a, b = L, R\) are real then \(D \equiv 0\) and time reversal symmetry is preserved.

PDG 2010/2011 average: \(D = (-4 \pm 6) \cdot 10^{-4}\).
e.g. N. Severijns, M. Beck and O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006) [arXiv:nucl-ex/0605029], G. Konrad, W. Heil, S. Baessler, D. Pocanic and F. Gluck, arXiv:1007.3027 [nucl-ex].

\[
\bar{a} = \frac{a}{1 + \langle W^{-1} \rangle b}, \quad \bar{A} = \frac{A}{1 + \langle W^{-1} \rangle b},
\]

\[
\bar{B} = \frac{B_I + B_{II} \langle W^{-1} \rangle}{1 + \langle W^{-1} \rangle b}, \quad \langle W^{-1} \rangle = m_e \langle E_e^{-1} \rangle.
\]

Note that \(b = 0 \) and \(B_{II} = 0 \) in SM and for some cases of physics beyond SM.

Our averages (\(E_e^{\text{min}} \) and \(E_e^{\text{max}} \) in general may be different for different experiments):

\[
\langle E_e^{-1} \rangle = \frac{\int_{E_e^{\text{min}}}^{E_e^{\text{max}}} dE_e \frac{d\Gamma}{dE_e} E_e^{-1}}{\int_{E_e^{\text{min}}}^{E_e^{\text{max}}} dE_e \frac{d\Gamma}{dE_e}}.
\]
Fermi function $F(E_e)$ (leading order QED correction) E. Fermi, Z. Phys. 88, 161 (1934) and e.g. P. Huber Phys. Rev. C84, 024617 (2011) [arXiv:1106.0687 [hep-ph]], M. Faber et al., Phys. Rev. C80 (2009) 035503 [arXiv:0906.0959 [hep-ph]], H. F. Schopper, in Weak interactions and nuclear beta decay, North–Holland Publishing Co., Amsterdam, 1966 – approximate $(d\Gamma/dE_e$ and $F(E_e))$ expressions:

$$\frac{d\Gamma}{dE_e} = (g_V^2 + 3g_A^2) \frac{G_F^2|V_{ud}|^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 F(E_e),$$

$$F(E_e) = \frac{2\pi \alpha E_e / p_e}{1 - e^{-2\pi \alpha E_e / p_e}}.$$
Selection of the data

Compare: PDG 2010/2011, N. Severijns et al., Rev. Mod. Phys. 78, 991 (2006).

PARAMETER	VALUE	ERROR	$\langle W^{-1} \rangle$	PAPER ID (PDG)
a	0.1054	0.0055	0.655	BYRNE 02
	0.1017	0.0051	0.655	STRATOWA 78
	0.091	0.039	0.604	GRIGOREV 68
A	0.11966	0.00166	0.557	LIU 10
	0.1189	0.0007	0.534	ABELE 02
	0.1160	0.0015	0.582	LIAUD 97
	0.1135	0.0014	0.558	YEROZOLIMSKY 97
	0.1146	0.0019	0.581	BOPP 86
B	0.980	0.005	0.599	SCHUMANN 07
	0.967	0.012	0.600	KREUZ 05
	0.9801	0.0046	0.594	SEREBROV 98
	0.9894	0.0083	0.554	KUZNETSOV 95
	0.995	0.034	0.655	EROZOLIMSKII 70C

not used: CHRISTENSEN 70 ($B = 1.00 \pm 0.05$)

We have used most of the $\langle W^{-1} \rangle$ calculated in

N. Severijns et al. Rev. Mod. Phys. 78, 991 (2006).
Why not neutron lifetime?

Figure (modified) from PDG 2010/2011.

Michał Ochman
Physics Beyond Standard Model in Neutron Beta Decay
Parameters

Compare: P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413. For $a, b = L, R$:

\[
V_{ab} = \frac{a_{ab} \kappa_{a}}{a_{LL} g_{V}}, \quad S_{ab} = \frac{A_{ab} \kappa_{a} g_{S}}{a_{LL} g_{V}}, \quad T_{ab} = \frac{\alpha_{ab} \kappa_{a} g_{T}}{a_{LL} g_{V}},
\]

\[
\kappa_{L} = 1, \quad \kappa_{R} = \left(\frac{\sum'_{i} |V_{ei}|^2}{\sum'_{i} |U_{ei}|^2}\right)^{1/2},
\]

(summation runs only over kinematically allowed states).

Since we are working in the limit:

\[
\bar{u}_{p} \gamma_{5} u_{n} = 0 \text{ then } \bar{u}_{p} (1 \pm \gamma_{5}) u_{n} = \bar{u}_{p} (1 \mp \gamma_{5}) u_{n}
\]

and we have:

constrains on $S_{LL} \equiv$ constrains on S_{LR},
constrains on $S_{RL} \equiv$ constrains on S_{RR}.
Decay Parameters in SM

Note that $\lambda = \frac{g_A}{g_V} > 0$ in our convention, whereas $\lambda = \frac{g_A}{g_V} < 0$ in PDG 2010/2011 convention (for g_A and g_V real).

$$a = -\frac{\lambda^2 - 1}{3\lambda^2 + 1}, \quad A = -\frac{2\lambda(\lambda - 1)}{3\lambda^2 + 1}, \quad B = \frac{2\lambda(\lambda + 1)}{3\lambda^2 + 1},$$

PDG 2010/2011 average:

$$\lambda = 1.2701 \pm 0.0025 \text{ (error scaled by 1.9).}$$

Our fit:

$$\lambda = 1.2702 \pm 0.0023 \text{ (90\% C.L.)}$$

$$\pm 0.0029 \text{ (95.45\% C.L.)}$$

Note that these are also limits in the case: $V_{ab} = S_{ab} = T_{aa} = 0$ for $a, b = L, R$ except V_{LR}:

$$\lambda = \frac{g_A}{g_V} \frac{1 - V_{LR}}{1 + V_{LR}}.$$
Limits in the case: $V_{ab} = S_{ab} = T_{aa} = 0$ for $a, b = L, R$
except one of these: V_{LR} or V_{RR}.

In the case of V_{RR} we have $b = 0$ and $B_{II} = 0$.
Limits in the case: $V_{ab} = S_{ab} = T_{aa} = 0$ for a, $b = L$, R
except one of these: S_{LL}, S_{LR}, S_{RL}, S_{RR}.

In the case of S_{RL} and S_{RR} we have $b = 0$ and $B_{ll} = 0$.

Scalars

Michael Ochman

Physics Beyond Standard Model in Neutron Beta Decay
Limits in the case: \(V_{ab} = S_{ab} = T_{aa} = 0 \) for \(a, b = L, R \)
except one of these: \(T_{LL} \) or \(T_{RR} \).

In the case of \(T_{RR} \) we have \(b = 0 \) and \(B_{ll} = 0 \).
Prospects: calculate the density matrix of antineutrinos from β^- decay of nucleus + detection in a near and in a far detector in the case of physics beyond SM:

$$\sigma_{\alpha \rightarrow \beta}(E, L) \sim \sum_{\lambda, \lambda'} \int d_{\text{LIPS}} \left(A_{\lambda}^\beta(E) \rho_{\lambda, \lambda'}^{\alpha}(E, L) (A_{\lambda'}^\beta(E))^* \right).$$
References and backup slides.
PDG 2010/2011 = K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010) and 2011 partial update for the 2012 edition, http://pdg.lbl.gov/

PARAMETER	PAPER ID (PDG)	JOURNAL REFERENCE
a	BYRNE 02	J. Phys. G28 (2002) 1325
	STRATOWA 78	Phys. Rev. D18 (1978) 3970
	GRIGOREV 68	Sov. J. Nucl. Phys. 6 (1968) 239
A	LIU 10	Phys. Rev. Lett. 105 (2010) 181803
	ABELE 02	Phys. Rev. Lett. 88 (2002) 211801
	LIAUD 97	Nucl. Phys. A612 (1997) 53
	YEROZOLIMSKY 97	Phys. Lett. B412 (1997) 240
	BOPP 86	Phys. Rev. Lett. 56 (1986) 919
B	SCHUMANN 07	Phys. Rev. Lett. 99 (2007) 191803
	KREUZ 05	Phys. Lett. B619 (2005) 263
	SEREBROV 98	Sov. Phys. ZETF 86 (1998) 1074
	KUZNETSOV 95	Phys. Rev. Lett. 75 (1995) 794
	CHRISTENSEN 70	Phys. Rev. C1 (1970) 1693
	EROZOLIMSKII 70C	Phys. Lett. 33B (1970) 351
\[\lambda = \frac{g_A}{g_V} \] Figure from PDG 2010/2011.

Weighted Average
-1.2701 ± 0.0025 (Error scaled by 1.9)

Table

Experiment	Value	Type	Value
LIU	10	UCNA	2.0
ABELE	02	SPEC	4.0
MOSTOVOI	01	CNTR	0.1
LIAUD	97	TPC	1.1
YEROZLIM...	97	CNTR	7.9
BOPP	86	SPEC	2.6

\[\chi^2 \]

\[\chi^2 = \frac{(17.7)}{(Confidence Level = 0.0033)} \]
\[\lambda = \frac{g_A}{g_V} \text{ on lattice} \]

H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008),
A. A. Khan et al., Phys. Rev. D 74, 094508 (2006) [arXiv:hep-lat/0603028]:

\[\lambda = -1.26 \pm 0.08_{\text{stat.}} \pm 0.07_{\text{syst.}} \]