A STUDY OF COUSIN COMPLEXES THROUGH THE DUALIZING COMPLEXES

MOHAMMAD T. DIBAEI

Abstract. For the Cousin complex of certain modules, we investigate finiteness of cohomology modules, local duality property and injectivity of its terms. The existence of canonical modules of Noetherian non-local rings and the Cousin complexes of them with respect to the height filtration are discussed.

Introduction

This Paper is the continuation of [DT1] and [DT2]. We have seen in [DT2] that if M is a finitely generated module over a local ring A which possesses the fundamental dualizing complex I^\bullet, then, under certain conditions on M, $\text{Hom}_A(M, I^\bullet)$ represents the Cousin complex of the module $H^{\text{dim}A - \text{dim}A(M)}(\text{Hom}_A(M, I^\bullet))$, the $(\text{dim}A - \text{dim}A(M))$-th cohomology module of the complex $\text{Hom}_A(M, I^\bullet)$, with respect to an appropriate filtration of $\text{Spec}(A)$; and that we can reconstruct the Cousin complex of the module M by means of the fundamental dualizing complex (see the proof of [DT2, Lemma 3.1]). In section 2, we pursue our expectation that the Cousin complexes of such modules will inherit some properties of the dualizing complex of the ring itself. We will show that if (A, \mathfrak{m}) is a Noetherian local ring (not necessarily possessing a dualizing complex) such that all of its formal fibres are Cohen-Macaulay rings, M is a finitely generated A-module which satisfies the condition (S_2) of Serre and $\text{Min}_A(\widehat{M}) = \text{Ass}_A(\widehat{M})$, then all the cohomology modules of $C_A(M)$, the Cousin complex of M with respect to the M-height filtration, are finitely generated A-modules (a result proved also, under different hypotheses, by T. Kawasaki in [K, Theorem 1.1]), and also they satisfy a local duality property which is analogous to that of the Grothendieck local duality. Here, \widehat{M} denotes the completion of M with respect to the \mathfrak{m}-adic topology. We present, in section 3, a number of applications.

2000 Mathematics Subject Classification. 13D25; 13H10; 13D45.

Key words and phrases. Cousin complexes, dualizing complexes, Gorenstein modules.

This research is supported in part by MIM Grant P82–104.

Address: Mosaheb Institute of Mathematics, Teacher Training University, 599 Taleghani Avenue, 19165 Tehran, Iran.

E–mail address: dibaeimt@ipm.ir.
which come out of these results and those of [DT1] and [DT2].

In the remainder of the paper we study the Cousin complex of certain modules over Noetherian non-local ring R. In section 4 we recall the notion of canonical modules for such a ring R and prove the existence of them when R possesses a dualizing complex and satisfies (S_2). As a result we present a partial generalization of [BH, Proposition 3.3.18]. In section 5, we generalize [DT1, Corollary 3.4] for non-local case and give a characterization for the Cousin complex of a canonical module w.r.t. the height filtration to be a dualizing complex. Finally, we give an explicit description for all indecomposables injective modules which improves [DT1, Corollary 3.3].

1. Preliminaries

Throughout A is a Noetherian local ring of dimension d with the maximal ideal m, and M is a finitely generated A–module of dimension s. A finitely generated A-module K_M (if it exists) is called the canonical module of M if $K_M \otimes_A \tilde{A} \cong \text{Hom}_A(H^s_{m}(M), E(A/m))$, where $H^s_{m}(M)$ is the s–th local cohomology module of M w.r.t. m, and $E(A/p)$ is the injective envelope of the A–module A/p with $p \in \text{Spec}(A)$. The canonical module of M (if exists) is unique up to isomorphism (see [HK, Lemma 5.8]).

1.1. Some remarks. If A possesses a dualizing complex, then it possesses the fundamental dualizing complex

$$I^\bullet : 0 \longrightarrow I^0 \overset{\delta^0}{\longrightarrow} I^1 \overset{\delta^1}{\longrightarrow} \cdots \overset{\delta^{d-1}}{\longrightarrow} I^d \longrightarrow 0,$$

which we call “ the dualizing complex ” (see [H]), with the following properties:

(i) for each $i \geq 0$, $H^i(I^\bullet)$, the i-th cohomology module of I^\bullet, is finitely generated.

(ii) $I^i = \bigoplus_{p \in \text{Spec}(A), \dim(A/p) = d-i} E(A/p)$, $i = 0, 1, \ldots, d$.

If A possesses the dualizing complex I^\bullet, then the module $K_M := H^{d-s}(\text{Hom}_A(M, I^\bullet))$ is the canonical module of M. If K_M is the canonical module of M, it is easy to see that $(\overline{K_M}) \cong K_M$ is the canonical module of \tilde{M}, as \tilde{A}-module. For the module M, we set $\text{Min}_A(M)$ to denote the set of all minimal elements of $\text{Supp}_A(M)$, and

$$\text{Assh}_A(M) = \{p \in \text{Supp}_A(M) : \dim_A(A/p) = \dim_A(M)\}.$$

Also M is said to satisfy (S_n) if $\text{depth}_{A_p}(M_p) \geq \min\{n, \text{ht}_M(p)\}$ for all $p \in \text{Supp}_A(M)$. A filtration of $\text{Spec}(A)$ is a descending sequence $F = (F_i)_{i \geq 0}$ of subsets of $\text{Spec}(A)$, so that,

$$F_0 \supseteq F_1 \supseteq \cdots \supseteq F_i \supseteq \cdots,$$
with the property that, for each \(i \geq 0 \), each member of \(\partial F_i = F_i - F_{i+1} \) is a minimal member of \(F_i \), with respect to inclusion. We say that \(\mathcal{F} \) admits \(M \) if \(\text{Supp}_A(M) \subseteq F_0 \). Suppose that \(\mathcal{F} \) is a filtration of \(\text{Spec}(A) \) that admits \(M \). The Cousin complex \(C(\mathcal{F}, M) \) for \(M \) with respect to \(\mathcal{F} \) has the form

\[
0 \to M^{d-2} \to M^{d-1} \to M^0 \to M^1 \to \cdots \to M^{n-1} \to M^n \to \cdots
\]

with \(M^n = \bigoplus_{p \in \partial F_n} (\text{Coker} d^{n-2})_p \) for all \(n \geq 0 \), and with differentiation \(d^n \), as recalled in [T].

Set \(H_M = (H_i)_{i \geq 0} \) to be the \(M \)-height filtration of \(\text{Spec}(A) \), i.e. \(H_i = \{ p \in \text{Supp}_A(M) : \text{ht}_A(p) \geq i \} \). We denote the Cousin complex of \(M \) with respect to \(H_M \) by \(C_A(M) \).

Set \(\tilde{A} = A/0 : A \). Then \(M \) has a natural structure as \(\tilde{A} \)-module. It is straightforward to see that each term of the complex \(C_A(M) \) has a natural \(\tilde{A} \)-module structure and each differentiation of \(C_A(M) \) is an \(\tilde{A} \)-homomorphism. Moreover, it is straightforward to see that:

1.2. **Lemma.** If \(M \) is a finitely generated \(A \)-module and \(\tilde{A} := A/0 : A \), then there exists an isomorphism of complexes \(C_A(M) \cong C_A(M) \).

The following lemma will be used later.

1.3. **Lemma.** [P, Theorem 3.5] Suppose that all formal fibres of \(A \) are Cohen-Macaulay. If \(M \) is a finitely generated \(A \)-module, then there is a morphism of complexes \(u^* : C_A(M) \otimes_A \tilde{A} \to C_{\tilde{A}}(\tilde{M}) \) which is a monomorphism. Moreover the quotient complex \(Q^* \), in the exact sequence

\[
0 \to C_A(M) \otimes_A \tilde{A} \xrightarrow{u^*} C_{\tilde{A}}(\tilde{M}) \to Q^* \to 0,
\]

is an exact complex, so that, for each \(i \geq 0 \), there exists an \(\tilde{A} \)-isomorphism \(H^i(C_A(M)) \otimes_A \tilde{A} \cong H^i(C_{\tilde{A}}(\tilde{M})) \).

1.4. **Convention.** For a complex \(C^* : 0 \to C^{-1} \xrightarrow{\theta^{-1}} C^0 \xrightarrow{\theta^0} C^1 \xrightarrow{\theta^1} \cdots \) of \(A \)-module and \(A \)-homomorphisms, we denote \(C' : 0 \to C^0 \xrightarrow{\theta^0} C^1 \xrightarrow{\theta^1} \cdots \) and \((C')^* : 0 \to H^0(C') \to C^0 \to C^1 \to \cdots \).

2. **Some properties of Cousin complexes**

In this section we establish some properties of certain complexes by means of dualizing complexes. First we show that these Cousin complexes have finitely generated cohomologies.
2.1. Theorem. Let \(A \) be a ring with Cohen-Macaulay formal fibres. Assume that \(M \) satisfies \((S_2)\) and \(\text{Min}_A(\widehat{M}) = \text{Assh}_A(\widehat{M}) \). Then \(C_A(M)' \) has finitely generated cohomology modules.

Proof. Since \(M \) satisfies \((S_2)\), the Cousin complex \(C_A(M) \) is exact at \(M \) and \(M^0 \) (see [SSc, Example 4.4]). Thus \(H^0(C_A(M)) = M \). So it is enough to prove that \(H^i(C_A(M))' \) is finitely generated for all \(i > 0 \). Note that, for \(i > 0 \), we have \(H^i(C_A(M))' = H^i(C_A(M)) \). By 1.3, we have \(H^i(C_A(M)) \otimes_A \widehat{A} \cong H^i(C_A(\widehat{M})) \). Therefore \(C_A(\widehat{M}) \) is also exact at \(\widehat{M} \) and \((\widehat{M})^0 \); so that \(\widehat{M} \) satisfies \((S_2)\) as \(\widehat{A} \)-module. Since \(\text{Min}_A(\widehat{M}) = \text{Assh}_A(\widehat{M}) \), by [DT2, Theorem 3.2], all cohomology modules \(H^i(C_A(\widehat{M})) \) are finitely generated \(\widehat{A} \)-module. Now, by [M, Exercise 7.3], the claim follows. □

2.2. Corollary. Assume that the ring \(A \) satisfies \((S_2)\) and all formal fibres of \(A \) are Cohen-Macaulay. Then \(C_A(A) \), the Cousin complex of \(A \), has finitely generated cohomology modules.

Proof. By [M, Theorem 23.9], \(\widehat{A} \) satisfies \((S_2)\) and thus \(\text{Min}(\widehat{A}) = \text{Assh}(\widehat{A}) \) (see[DT1, Remark 1.3]). □

For a ring \(A \) and a property \(P \), the \(P \) locus of \(A \) is defined to be the set \(P(A) = \{ p \in \text{Spec}(A) : P \text{ holds for } A_p \} \). We show that the \((S_n)\) locus of any \((S_2)\) local ring with Cohen-Macaulay formal fibres is an open subset of \(\text{Spec}(A) \) for all \(n \geq 2 \).

2.3. Corollary. If \(A \) satisfies \((S_2)\) and all formal fibres of \(A \rightarrow A \) are Cohen-Macaulay, then for each \(n \geq 0 \), \(S_n(A) \) is an open subset of \(\text{Spec}(A) \), in the Zariski topology. In particular, \(CM(A) \) is an open subset of \(\text{Spec}(A) \).

Proof. It follows that \(\widehat{A} \) is \((S_2)\). We assume that \(n \geq 3 \). Set \(U_i = \text{Spec}(A - \text{Supp}_A(H^i(C_A(A)))) \), \(1 \leq i \leq n - 2 \). Each \(U_i \) is an open subset of \(\text{Spec}A \), because \(\text{Supp}_A(H^i(C_A(A))) = V(0 :_A H^i(C_A(A))) \) by 2.2. Set \(W = \cap_{i=1}^{n-2} U_i \). We show that \(S_n(A) = W \). Let \(p \in S_n(A) \); so that \(A_p \) is \((S_n)\). Thus, by [SSc, Example 4.4], \(H^n(C_A(A_p)) = 0 \) for \(1 \leq i \leq n - 2 \). Therefore, by [S1, Theorem 3.5], we have that \(p \in U_n \) for all \(i, 1 \leq i \leq n - 2 \); that is \(p \in W \). In a similar way, we have \(W \subseteq S_n(A). □ \)

Next, we state a local duality property for the Cousin complexes of certain modules.

2.4. Theorem. (Local duality for certain Cousin complexes). Assume that all formal fibres of \(A \) are Cohen-Macaulay, \(M \) satisfies \((S_2)\), and that \(\text{Min}_A(\widehat{M}) = \).
Assh \(\hat{A}(\hat{M}) \). Then, for each \(i \geq 0 \), \(D_{\hat{A}}H^i(C_{\hat{A}}(M)') \cong H_{\hat{m}}^{s-i}(K_{\hat{M}}) \), where \(D_\hat{A} := \text{Hom}_\hat{A}(-, E(\hat{A}/\hat{m})) \). Moreover, if \(M \) admits a canonical module, then the completion signs on the right hand side of the above isomorphism can be removed.

Proof. Set \(\tilde{A} = A/0 :_A M \) and \(\hat{\tilde{A}} = \hat{A}/0 :_{\hat{A}} \hat{M} \). It is straightforward to see that \(\tilde{A} \) and \(\hat{\tilde{A}} \) are isomorphic rings. Let \(J^\bullet \) be the dualizing complex for \(\tilde{A} \) and assume that \(I^\bullet = \text{Hom}_{\hat{\tilde{A}}}((\hat{\tilde{A}}, J^\bullet) \) such that \(I^0 = \text{Hom}_{\hat{\tilde{A}}}((\hat{\tilde{A}}, J^{d-s}) \). Hence \(I^\bullet \) is the dualizing complex for \(\hat{\tilde{A}} \). As seen in the proof of 2.1, \(\hat{M} \) satisfies \((S_2) \) as \(\hat{A} \)-module. It is easy to see that \(\hat{M} \) also satisfies \((S_2) \) as \(\hat{A} \)-module. Since \(\dim_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M}) = \dim(\hat{\tilde{A}}) \), we have, by the proof of [DT2, Lemma 3.1], the isomorphism of complexes

\[
C_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M})') \cong \text{Hom}_{\hat{\tilde{A}}}(K_{\hat{\tilde{M}}}, I^\bullet).
\]

Therefore, by 2.1 and [B-ZS, Corollary 2.5], we have

(1) \[D_{\hat{\tilde{A}}}H^i(C_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M})')) \cong H_{\hat{\tilde{m}}}^{s-i}(K_{\hat{\tilde{M}}}) \]

for all \(i \geq 0 \).

On the other hand each formal fibre of \(\tilde{A} \) is also a formal fibre of \(A \) and \(\hat{\tilde{A}} \cong \hat{\tilde{A}} \). Hence, from 1.3, we have

(2) \[H^i(C_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M})')) \cong H^i(C_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M}))) \otimes_{\hat{\tilde{A}}} \hat{\tilde{A}}, \]

for all \(i > 0 \). From (1) and (2), we obtain

(3) \[\text{Hom}_{\hat{\tilde{A}}}(H^i(C_{\hat{\tilde{A}}}((\hat{\tilde{A}}, \hat{M}))) \otimes_{\hat{\tilde{A}}} \hat{\tilde{A}}, \hat{\tilde{E}}(\hat{\tilde{A}}/\hat{\tilde{m}})) \cong H_{\hat{\tilde{m}}}^{s-i}(K_{\hat{\tilde{M}}}). \]

The left hand side of (3) is isomorphic to

\[\text{Hom}_{\hat{\tilde{A}}}(H^i(C_{\hat{\tilde{A}}}(M)'), \hat{\tilde{E}}(\hat{\tilde{A}}/\hat{\tilde{m}})) \]

which, in turn, is isomorphic to \(\text{Hom}_{\hat{\tilde{A}}}(H^i(C_{\hat{\tilde{A}}}(M)'), \hat{\tilde{E}}(\hat{\tilde{A}}/\hat{\tilde{m}})) \). Thus, we have from (3), the isomorphism

(4) \[\text{Hom}_{\hat{\tilde{A}}}(H^i(C_{\hat{\tilde{A}}}(M)'), \hat{\tilde{E}}(\hat{\tilde{A}}/\hat{\tilde{m}})) \cong H_{\hat{\tilde{m}}}^{s-i}(K_{\hat{\tilde{M}}}). \]

Assume that \(N \) is an \(A, \hat{\tilde{A}} \)-bimodule such that, for \(a \in A \) and \(x \in N \), \(ax = \hat{a}x \), where \(- : A \longrightarrow \hat{\tilde{A}} \) is the natural map. Then we have

\[
\text{Hom}_{\hat{\tilde{A}}}(N, \hat{\tilde{E}}(\hat{\tilde{A}}/\hat{\tilde{m}})) \cong \text{Hom}_{\hat{\tilde{A}}}(N, \text{Hom}_{\hat{\tilde{A}}}(\hat{\tilde{A}}, E(\hat{A}/\hat{m})))
\cong \text{Hom}_{\hat{\tilde{A}}}(N \otimes_{\hat{\tilde{A}}} \hat{\tilde{A}}, E(\hat{A}/\hat{m}))
\cong \text{Hom}_{\hat{\tilde{A}}}(N, E(\hat{A}/\hat{m})).
\]
By Independence Theorem for the local cohomologies, we have $H^s_{\hat{m}}(K_{\hat{M}}) \cong H^{s-i}_{\hat{m}}(K_{\hat{M}})$. Put all these together, we obtain, from (4) and 1.2, that
\[
\text{Hom}_A(H^i(C_A(M)'), E(A/\hat{m})) \cong H^s_{\hat{m}}(K_{\hat{M}}), \quad i = 0, 1, \ldots,
\]
as A and \hat{A}–modules.

If M admits a canonical module K_M, we then have $(K_{\hat{M}}) \cong K_{\hat{M}}$, and by the Artinianness of $H^s_{\hat{m}}(K_{\hat{M}})$, we get the final claim. □

3. Applications

First we show that over a local ring with Cohen–Macaulay formal fibres, certain f–modules are also generalized Cohen–Macaulay modules. Recall that M is called generalized Cohen–Macaulay (abbr. g.CM) if there exists $r \geq 1$ such that, for each system of parameters x_1, \ldots, x_s for M and for all $i = 1, \ldots, s$,
\[
m^r[((x_1, \ldots, x_{i-1})M : x_i)/(x_1, \ldots, x_{i-1})M] = 0.
\]
Note that, by [ScTC, (3.2) and (3.3)], M is a g.CM module if and only if $H^i_{m}(M)$ is of finite length for all $i = 0, 1, \ldots, s-1$.

An A–module M is called an f–module if for each system of parameters x_1, \ldots, x_s for M
\[
\text{Supp}_A[((x_1, \ldots, x_{i-1})M : x_i)/(x_1, \ldots, x_{i-1})M] \subseteq \{m\}
\]
for all $i = 1, \ldots, s$. It is clear that if M is g.CM module then it is an f–module.

3.1. Theorem. (Compare [ScTC, (3.8)]). Assume that all formal fibres of A are Cohen–Macaulay. Let M be an A–module such that $\text{Min}_A(\hat{M}) = \text{Assh}_A(\hat{M})$. If M is an f–module with depth$_A(M) \geq 2$, then M is a g.CM module.

Proof. By a straightforward argument and using the equivalent definition of f–module [T, Lemma 1.2 (ii)], it can be shown that M is (S_2) and that $\text{Min}_A(M) = \text{Assh}_A(M)$.

Now, by [T, Lemma 1.2 (iv)], the M–height filtration of Spec(A) is the same as the M–dimension filtration \mathcal{D} of Spec(A), where $\mathcal{D} = (D_i)_{i \geq 0}, D_i = \{p \in \text{Supp}_A(M) : \text{dim}(A/p) \leq s - i\}$. Thus, by [DT1, Lemma 3.1], there exists an isomorphism
\[
C_A(M) = C(\mathcal{D}, M) \cong C(\mathcal{U}, M)
\]
(over Id_M), where $C(\mathcal{U}, M)$ is the complex of modules of generalized fractions on M with respect to the chain of triangular subsets $\mathcal{U} = (U_i)_{i \geq 1}$ on A, defined by
\[
U_i = \{(x_1, \cdots, x_i) \in A^i : \text{there exists } j \text{ with } 0 \leq j \leq i \text{ such that } x_1, \cdots, x_j \text{ is an s.s.o.p. for } M \text{ and } x_{j+1} = \cdots = x_i = 1\}
\]
(See [DT1] for details). By [SZ, Corollary 2.3 and Theorem 2.4],
\[H^{i-1}(C_A(M)) \cong H^i_m(M), i = 1, \ldots, s - 1. \]

Therefore, by Theorem 2.1, \(H^i_m(M) \) is of finite length for all \(i = 0, 1, \ldots, s - 1 \). □

3.2. **Corollary.** Assume that all formal fibres of \(A \) are Cohen-Macaulay. If \(A \) is an \(f \)-ring with \(\text{depth}(A) \geq 2 \), then \(A \) is a \(g.CM \) ring.

Proof. As we have seen in the proof of 3.1, \(A \) is \((S_2) \). By [M, Theorem 23.9], \(\hat{A} \) satisfies \((S_2) \). Thus \(\text{Min}(\hat{A}) = \text{Assh}(\hat{A}) \) (see [AG, Lemma 1.1]). Now the result follows from Theorem 3.1. □

Our next application studies the injectivity of the terms of the Cousin complex \(C_A(M) \).

In [S2], a finitely generated \(A \)-module \(M \) is defined to be a Gorenstein \(A \)-module whenever its Cousin complex provides a minimal injective resolution. It is also proved that if \(A \) admits a canonical module \(\Omega \), then any Gorenstein \(A \)-module is isomorphic to the direct sum of a finite number of copies of \(\Omega \) [S3, Theorem 2.1].

It is known that if \(A \) does not have a canonical module and has a Gorenstein module, then it has a unique indecomposable Gorenstein module \(G \) and every Gorenstein \(A \)-module is isomorphic to a direct sum of a finite number of copies \(G \) (see [FFGR and S2]). Here we extend this result and show that for any finitely generated module \(M \), over a complete \((S_2) \) local ring \(A \) which satisfies \((S_2) \), if \(0 :_A M = 0 \) and \(C_A(M)' \) is an injective complex, then \(M \) is isomorphic to a direct sum of copies of a uniquely determined indecomposable one.

3.3. **Theorem.** Let \(A \) satisfy \((S_2) \) and suppose that it possesses a dualizing complex. Assume that \(M \) satisfies \((S_2) \) and \(0 :_A M = 0 \). The following statements are equivalent:

(i) \(C_A(M)' \) is an injective complex;

(ii) \(M \) is isomorphic to a direct sum of a finite number of copies of the canonical module \(K \) of the ring \(A \).

Proof. \((i) \Rightarrow (ii) \). We do not need \(A \) to satisfy \((S_2) \) in this part. The proof is a straightforward adaptation of the argument in [S3, Theorem 2.1(v)]. Let \(K \) denote the canonical module of \(A \).

Let

\[I^\bullet : 0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots \rightarrow I^d \rightarrow 0 \]
be the dualizing complex for \(A \) so that \(K = H^0(I^\bullet) \). By the proof of [DT2, Lemma 3.1], \(C_A(M) \cong \text{Hom}_A(K_M, I^\bullet)^* \), where \(K_M = \text{Hom}_A(M, K) \). Hence all cohomology modules of \(C_A(M) \) are finitely generated (see [S4, Lemma 3.4(ii)]). By [S5, Theorem], \(\text{Hom}_A(K_M, I^d) \cong H^d_m(M) \). As \(H^d_m(M) \) is an Artinian injective \(A \)-module, we may write \(H^d_m(M) \cong \oplus_{i=1}^n E(A/m) \), say. Using the Matlis functor \(\text{Hom}_A(\cdot, E(A/m)) \) and that \(I^d = E(A/m) \), we obtain \(K_M \otimes_A \hat{A} \cong (\oplus_{i=1}^n A) \otimes_A \hat{A} \). This implies, by [HK, Lemma 5.8], that \(K_M \cong \oplus_{i=1}^n A \). Hence we have \(H^d_m(K_M) \cong \oplus_{i=1}^n H^d_m(A) \).

On the other hand, by Grothendieck’s Local Duality Theorem [B-ZS, Corollary 2.5] and the fact that \(M \) satisfies \((S_2) \) so \(C_A(M) \) is exact at point \(-1, 0 \) (see [SSc, Example 4.4]), we obtain

\[
H^d_m(K_M) \cong \text{Hom}_A(H^0(C_A(M)'), E(A/m)) \cong \text{Hom}_A(M, E(A/m)).
\]

By applying the Matlis functor again, we get \(M \otimes_A \hat{A} \cong \text{Hom}_A(H^d_m(K_M), E(A/m)) \cong \text{Hom}_A(\oplus_{i=1}^n H^d_m(A), E(A/m)) \cong (\oplus_{i=1}^n K) \otimes_A \hat{A} \). Now, by [HK, Lemma 5.8], \(M \cong \oplus_{i=1}^n K \).

(i) \ ;-) (ii). We have \(\text{Supp}_A(M) = \text{Supp}_A(K) = \text{Spec}(A) \) (see [A, (1.8)] and [AG, Lemma 1.1]). It is routine to check that \(C_A(M) \cong \oplus_{i=1}^n C_A(K) \). As \(\text{Min}A = \text{Assh}A \) and the dimension filtration and the height filtration of \(\text{Spec}(A) \) are the same (see [A, (1.9)]), the claim follows by [DT1, Corollary 3.4]. \(\square \)

3.4. Corollary. Assume that \(\hat{A} \) satisfies \((S_2) \). Then the following statements are equivalent:

(i) \(C_\hat{A}(\hat{A})' \) is an injective complex of \(\hat{A} \)-modules;

(ii) \(A \) is the canonical module of \(A \).

Moreover, if \(A \) satisfies one of the above equivalent conditions, then \(A \) is Gorenstein if and only if \(\hat{A} \) satisfies \((S_n) \) for some \(n \geq (1/2)\text{dim}A + 1 \).

Proof. (i) \ ;-) (ii). Set \(\Omega \) for the canonical module of \(\hat{A} \). By 3.3, \(\hat{A} \cong \Omega^n \) for some \(n \). Thus \(H^d_m(\hat{A}) \cong \oplus_{i=1}^n H^d_m(\Omega) \cong \oplus_{i=1}^n E(\hat{A}/\hat{m}) \) and, by applying \(\text{Hom}_\hat{A}(\cdot, E(\hat{A}/\hat{m})) \), we get \(\Omega \cong \hat{A}^n \). Thus \(\hat{A}^{n^2} = \hat{A} \), which implies \(n = 1 \) and so \(A \) is the canonical module of \(A \).

(ii) \ ;-) (i). As \(\hat{A} \) is the canonical module of \(\hat{A} \) and \(\hat{A} \) satisfies \((S_2) \), \(C_\hat{A}(\hat{A})' \) is the dualizing complex of \(\hat{A} \) [DT1, Corollary 3.4].

For the last part, we may assume that \(A \) is complete. By [SSc, Example 4.4], \(C_A(A) \) is exact at points \(-1, 0, 1, \ldots, n - 2 \), from which it follows, by Theorem 2.4, that \(H^d_m(A) = 0 \) for \(0 < i \leq n - 2 \). On the other hand, as \(A \) satisfies \((S_n) \), \(H^d_m(A) = 0 \) for all \(i < \min\{d, n\} \). As \(\text{dim} A - (n - 2) \leq n \), it follows that \(H^i_m(A) = 0 \)
for all \(i < d \), which imply the exactness of \(C_A(A) \). The other side is trivial. □

4. Canonical modules of non–local rings

Recall that, for a Noetherian (not necessarily local) ring \(R \), the canonical module of \(R \) (if it exists) is a finite \(R \)– module \(K \) such that \(K_m \), the localization of \(K \) at any maximal ideal \(m \) of \(R \), is the canonical module of \(R_m \). In order to generalize our results to the non–local case one might ask whether a canonical module exists even when \(R \) possesses a dualizing complex. We will show that, if \(R \) satisfies \((S_2)\) and all formal fibres of \(R_m \), for any maximal ideal \(m \) of \(R \), are Cohen-Macaulay, then existence of a canonical module for \(R \) is equivalent to the statement that \(R \) possesses a dualizing complex.

Throughout, \(R \) is a Noetherian ring of finite dimension which is not necessarily local.

Assume that \(R \) possesses a dualizing complex \(I^{\bullet} \) and \(t(p; I^{\bullet}), p \in \text{Spec} R \), denotes the unique integer \(i \) for which \(p \) occurs in \(I^i \) (see [H, page 23]).

4.1. Proposition. Assume that \(R \) satisfies \((S_2)\) and that it possesses a dualizing complex \(I^{\bullet} \). If \(p, q \in \text{Min}(R) \) such that \(p \subseteq r \) and \(q \subseteq r \) for some \(r \in \text{Spec}(R) \), then \(t(p; I^{\bullet}) = t(q; I^{\bullet}) \).

Proof. We may assume that \(R \) is a local ring and that its maximal ideal is \(r \). As \(R \) satisfies \((S_2)\) and possesses a dualizing complex, then \(\text{Min}(R) = \text{Assh}(R) \) [A; 1.1]. Therefore \(t(p; I^{\bullet}) = t(q; I^{\bullet}) \). □

4.2. Notation. Assume that \(R \) satisfies \((S_2)\) and that

\[
I^{\bullet} : 0 \rightarrow I^0 \xrightarrow{\delta^0} I^1 \xrightarrow{\delta^1} \cdots \xrightarrow{\delta^{i-1}} I^I \rightarrow 0
\]

is a dualizing complex for \(R \). It follows that \(\text{Ass}_R(I^0) \subseteq \text{Min} R \). Assume that \(\text{Ass}_R(I^0) \neq \text{Min} R \). Let \(r \) be the greatest integer such that \(X := \text{Min}(R) \cap \text{Ass}_R(I^r) \neq \emptyset \). Set, for each \(i \geq 0 \),

\[
X_i = \{ p \in \text{Ass}_R(I^i) : p \text{ contains some element of } X \};
X'_i = \text{Ass}_R(I^i) \setminus X_i;
I_i^1 = \bigoplus_{p \in X_i} E(A/p), I_i^2 = \bigoplus_{p \in X'_i} E(A/p),
\]

so that we have \(I^i = I^i_1 \oplus I^i_2 \).
4.3. Proposition. With the notations as in 4.2,

\[\text{Hom}_R(I_1^i, I_2^{-1}) = 0 = \text{Hom}_R(I_2^i, I_1^i). \]

Proof. If \(\text{Hom}_R(I_1^i, I_2^{-1}) \neq 0 \), then \(\text{Hom}_R(I_1^i, E(R/p)) \neq 0 \) for some \(p \in X_i^i \). Assume that \(f : I_1^i \rightarrow E(R/p) \) is an \(R \)-homomorphism and that \(x \in I_1^i \). Let \(x = x_1 + \cdots + x_s \), where \(x_j \in E(R/p_j), 1 \leq j \leq s \). By definition of \(X_i^i \), we have \(p_1 \cap \cdots \cap p_s \not\subseteq p \). Take \(t \in p_1 \cap \cdots \cap p_s \setminus p \). Hence \(t^m x = 0 \) for some positive integer \(m \). On the other hand the map \(E(R/p) \xrightarrow{t^m} E(R/p) \) is an isomorphism. Thus \(t^m f(x) = f(t^m x) = 0 \) implies that \(f(x) = 0 \).

To show that \(\text{Hom}_R(I_2^i, I_1^{-1}) = 0 \), we may assume, on the contrary, that \(\text{Hom}_R(I_2^i, E(R/p)) \neq 0 \) for some \(p \in X_i^i \). So we may assume that \(p' \subseteq p \), for some \(p' \in X_i^i \). By localizing at \(p \), we get \(\text{Min}(R_p) = \text{Assh}(R_p) \), because \(R_p \) satisfies \((S_2) \) and \(R_p \) possesses a dualizing complex. As \(p'R_p \) contains a minimal element \(q \in X. \) This contradicts with the definition of \(X_i^i \). \(\Box \)

4.4. Theorem. Assume that \(R \) satisfies \((S_2) \) and that it possesses a dualizing complex. Then \(R \) possesses a dualizing complex

\[J^\bullet : 0 \rightarrow J^0 \rightarrow J^1 \rightarrow \cdots \rightarrow J^d \rightarrow 0, d = \dim R, \]

such that \(\text{Ass}_R(J^0) = \text{Min}(R) \). In particular \(R \) admits a canonical module.

Proof. The proof is influenced by [H, Lemma 3.1]. Suppose that

\[I^\bullet : 0 \rightarrow I^0 \xrightarrow{\delta^0} I^1 \xrightarrow{\delta^1} \cdots \xrightarrow{\delta^{d-1}} I^d \rightarrow 0 \]

is the dualizing complex for \(R \). Assume further that \(\text{Ass}(I^0) \neq \text{Min}(R) \) and that \(r \) is the greatest integer with \(X := \text{Min}(R) \cap \text{Ass}_R(I^r) \neq 0 \). We set \(X_i^i, I_1^i, I_2^i \) as in 4.2. Note that \(I_1^i = 0 \) and \(I_2^i = I_i \) for \(0 \leq i < r \) (see [S6, Lemma 3.3]).

We construct a dualizing complex

\[J^\bullet : 0 \rightarrow J^0 \xrightarrow{\eta^0} J^1 \xrightarrow{\eta^1} \cdots \]

as follows. Set \(J^i = I_1^{i+r} \oplus I_2^i \) for all \(i \geq 0 \), and define \(\eta^i : J^i \rightarrow J^{i+1} \)

by \(\eta^i(x + y) = \delta_1^{i+r}(x) + \delta_2^i(y) \) for \(x \in I_1^{i+r}, y \in I_2^i \), where \(\delta_1^i := \delta_j^i |_{I_1^i} \) and \(\delta_2^j := \delta_j^i |_{I_2^i}, j \geq 0 \). It follows from Proposition 4.3 that \(J^\bullet \) is a complex. To show that \(H^i(J^\bullet) \) is a finitely generated \(R \)-module for all \(i \geq 0 \), we note that, by a straightforward argument, there are two natural isomorphisms

\[H^i(I^\bullet) \cong (\text{Ker}\delta_1^i/\text{Im}\delta_1^{i-1}) \oplus (\text{Ker}\delta_2^i/\text{Im}\delta_2^{i-1}), \]

\[H^i(J^\bullet) \cong (\text{Ker}\delta_1^{i+r}/\text{Im}\delta_1^{i+r-1}) \oplus (\text{Ker}\delta_2^i/\text{Im}\delta_2^i), i \geq 0. \]
Therefore J^\bullet is a dualizing complex for A. Now we have $J^0 = I^r_1 \oplus I^0$ and thus $\text{Ass}_R(I^0) \subsetneq \text{Ass}_R(J^0)$. So after a finite number of steps we are finished.

Finally, let J^\bullet be a dualizing complex with $\text{Min}(R) = \text{Ass}_R(J^0)$. For each $m \in \text{Max}(R)$, the complex

$$0 \longrightarrow (J^0)_m \longrightarrow (J^1)_m \longrightarrow \cdots \longrightarrow (J^{t(m;J^\bullet)})_m \longrightarrow 0$$

is the dualizing complex for R_m, so that, by Grothendieck’s Local Duality Theorem [B-ZS, Corollary 2.5], $(H^0(J^\bullet))_m$ is the canonical module of R_m. Thus $H^0(J^\bullet)$ is a canonical module of R. □

As an application, we can give a partial generalization of [BH, Proposition 3.3.18].

4.5. Theorem. Assume that R satisfies (S_2) and possesses a dualizing complex

$$I^\bullet : 0 \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots \longrightarrow I^d \longrightarrow 0,$$

with $d = \dim R$, $I^i = \bigoplus_{ht_p = i} E(R/p)$, $i = 0, 1, \cdots$ and that K_R is a canonical module of R.

(a) The following conditions are equivalent:

(i) K_R has a rank;

(ii) $\text{rank} K_R = 1$;

(iii) R is generically Gorenstein (that is R_p is a Gorenstein ring for all minimal prime ideals p of R).

(b) If K_R satisfies (S_3) and the equivalent conditions of (a) hold, then K_R can be identified with an ideal of height 1 or equals R. In the first case R/K_R, is an (S_2) ring with the canonical module R/K_R, the ring itself.

Proof. The proof is parallel to that of [BH, Proposition 3.3.18] and we present it for the convenience of the reader.

(a). (i)⇒(ii)⇒(iii). Set Q to be the ring of total fractions of R and let $K_R \otimes_R Q$ be a free Q–module of rank r, say. Let $p \in \text{Min}(R)$. As $\text{Min}(R) = \text{Ass}(R) = \text{Ass}_R(K_R)$ (see [DT1, 1.3]), we know that $K_{R_p} \cong (K_R)_p$ and, by [BH, Proposition 1.4.3], the R_p–module $(K_R)_p$ is free of rank r. As the dualizing complex of R_p is $(I^\bullet)_p : 0 \longrightarrow I^0_p \longrightarrow 0$, we get $(R_p)^r \cong (K_R)_p \cong E(R/p)$ from which it follows that $r = 1$, and thus R_p is Gorenstein.

(iii)⇒(i). Note that $\text{Min}(R) = \text{Ass}(R)$, and thus [BH, Proposition 1.4.3] implies that K_R has rank 1.

As $\text{Ass}R = \text{Ass}(K_R), K$ is torsion free. Thus [BH, 1.4.18] implies that K_R is isomorphic to a sub–module of a free R–module of rank 1, and it may be identified with an ideal of R which we again denote by K_R.
If \(\dim R = 0 \), we get \(K_R \cong R \), so we may assume \(\dim R > 0 \), and also \(K_R \) is a proper ideal of \(R \). By [BH, Proposition 1.4.3], \(K_R \) has a free sub–module \(a \), which is also an ideal of \(R \) of rank 1. Assuming \(a = xR \) with \(x \) is a base for \(a \), \(x \) is \(R \)–regular and \(K_R \)–regular. Let \(p \) be a prime ideal containing \(K_R \). Applying the functor \(\text{Hom}_{R_p}(\cdot, (I^*)_p) \) on the exact sequence \(0 \rightarrow K_R R_p \rightarrow R_p \rightarrow R_p/K_R R_p \rightarrow 0 \), we get the exact sequence

\[
0 \rightarrow H^0(\text{Hom}_{R_p}(R_p/K_R R_p, (I^*)_p)) \rightarrow H^0((I^*)_p) \rightarrow H^0(\text{Hom}_{R_p}(K_R R_p, (I^*)_p)) \rightarrow H^1(\text{Hom}_{R_p}(R_p/K_R R_p, (I^*)_p)) \rightarrow H^1((I^*)_p) \rightarrow \cdots.
\]

Note that \(H^1(I^*)_p = 0 \) as \(K_R \) satisfies \((S_3)\) (see [DT2, Proposition 2.5]).

On the other hand, we have \(H^0(\text{Hom}_{R_p}(R_p/K_R R_p, (I^*)_p)) \cong \mathbb{Z} :_{K_R R_p} K_R R_p \leq 0 :_{K_R R_p} K_R R_p = 0 \) because \(K_R R_p \) is the canonical module of \(R_p \) and \(R_p \) satisfies \((S_2)\). Therefore we get the exact sequence

\[
o \rightarrow K_R R_p \rightarrow R_p \rightarrow H^1(\text{Hom}_{R_p}(R_p/K_R R_p, (I^*)_p)) \rightarrow 0
\]

which implies that \(H^1(\text{Hom}_{R_p}(R_p/K_R R_p, (I^*)_p)) \cong (R/K_R)_p \). It follows that \(\dim(R_p/K_R R_p) = \text{ht} p - 1 \). Using the Grothendieck local duality shows that \(R_p/K_R R_p \) is the canonical module of \(R_p/K_R R_p \). As \(K_R R_p \) contains an \(R_p \)–regular element, we have \(\text{ht}_{R_p}(K_R R_p) \geq 1 \). Since \(\dim(R_p/K_R R_p) = \text{ht} p - 1 \), we get \(\text{ht}(K_R) = 1 \).

For the final part, we may assume that \(\dim R > 3 \). As \(R \) is \((S_2)\) and \(K_R \) is \((S_3)\), from the exact sequence \(H^i_{pR_p}(R_p) \rightarrow H^i_{pR_p}(R_p/K_R R_p) \rightarrow H^{i+1}_{pR_p}(K_R R_p) \), we get \(H^i_{pR_p}(R_p/K_R R_p) = 0 \) for \(i = 0, 1 \). This shows that \(R_p/K_R R_p \) satisfies \((S_2)\). □

We can also generalize [DT1, Corollary 3.4].

4.6. Theorem. Assume that \(R \) satisfies \((S_2)\), and that \(\dim R < \infty \). The following statements are equivalent.

(i) \(R \) possesses a dualizing complex;

(ii) \(R \) admits a canonical module \(K \), and \(C(\mathcal{H}, K)' \), the induced complex of the Cousin complex of \(K \) with respect to the height filtration \(\mathcal{H} = (H_i)_{i \geq 0} \) with \(H_i = \{ p \in \text{Spec}(R) : \text{ht}(p) \geq i \} \), is a dualizing complex for \(R \);

(iii) \(R \) admits a canonical module \(K \) and \(H^1(C(\mathcal{H}, K)') \) is finitely a generated \(R \)–module for all \(i \geq 1 \).

Proof. (i) ⇒ (ii). By 4.4, there exists a dualizing complex

\[
I^\bullet : 0 \rightarrow I^0 \xrightarrow{\delta^0} I^1 \xrightarrow{\delta^1} \cdots
\]
for R such that $\text{Ass}_R(I^0) = \text{Min}(R)$. Set $K = \text{Ker}\delta^0$. As seen in 4.4, K is a canonical module of R and $\text{Ass}_R(K) = \text{Min}(R)$. Now, by [DT1, Theorem 2.4(iv)], $C(\mathcal{H}, K)'$ is a dualizing complex for R.

(ii)\Rightarrow(iii) is clear.

(iii)\Rightarrow(i). For each $m \in \text{Max}(R)$, we have, by [S1, Theorem 3.5], $C(\mathcal{H}, K)_m \cong C(\mathcal{H}_m, K_m)$, where \mathcal{H}_m is the height filtration of R_m. Therefore, by [DT1, Corollary 3.4], $C(\mathcal{H}, K)'_m$ is a dualizing complex for R_m. Since R_p satisfies (S_2) for all $p \in \text{Spec}(R)$, by the same argument as in the proof of [DT1, Corollary 3.4], each term of $C(\mathcal{H}, K)'$ is an injective module. Thus, by [S4, Theorem 4.2], $C(\mathcal{H}, K)'$ is a dualizing complex for R. □

5. Indecomposable injective modules structure

In this section, by using of a particular dualizing complex for an (S_2) Noetherian ring R of finite dimension, we give an explicit description for the structure of all indecomposable injective modules. In [DT1, Corollary 3.3], it is shown that for each $p \in \text{Spec}(R)$, there exists a finitely generated R–module T, depending on p, such that $E(R/p)$ is a module of generalized fractions of T. Here we will show that T can be replaced by a canonical module of R and that it does not depend on p.

Our approach involves the concept of a chain of triangular subsets on R explained in [O, page 420]. Such a chain $\mathcal{U} = (U_i)_{i \geq 1}$ determines a complex $C(\mathcal{U}, M)$ of modules of generalized fractions on an R–module M, that is

$$C(\mathcal{U}, M) : 0 \longrightarrow M \overset{e^0}{\longrightarrow} U_1^{-1}M \overset{e^1}{\longrightarrow} \cdot \cdot \cdot \overset{e^{i-1}}{\longrightarrow} U_i^{-1}M \overset{e^i}{\longrightarrow} U_{i+1}^{-1}M \overset{e^{i+1}}{\longrightarrow} \cdot \cdot \cdot$$

in which $e^0(m) = \frac{m}{(1)}$ for all $m \in M$ and $e^i(\frac{m}{(u_1, \cdots, u_i)}) = \frac{m}{(u_1, \cdots, u_i, 1)}$ for all $i \geq 1$, $m \in M$, and $(u_1, \cdots, u_i) \in U_i$. Note that in the complex $C(\mathcal{U}, M)$, $U_{i+1}^{-1}M$ is regarded as the i–th term, so that $H^i(C(\mathcal{U}, M)) = \text{Ker}e^{i+1}/\text{Im}e^i$, $i \geq 0$, and $H^{-1}(C(\mathcal{U}, M)) = \text{Ker}^0$.

Assume that R satisfies (S_2) and possesses a dualizing complex, so that R possesses a dualizing complex

$$I^\bullet : 0 \longrightarrow I^0 \overset{\delta^0}{\longrightarrow} I^1 \overset{\delta^1}{\longrightarrow} \cdot \cdot \cdot \overset{\delta^{d-1}}{\longrightarrow} I^d \longrightarrow 0, d = \text{dim}R,$$

such that $\text{Ass}_R(I^0) = \text{Min}(R)$. Set $K = \text{Ker}\delta^0$, and consider the induced extended complex

$$I^* : 0 \longrightarrow K \hookrightarrow I^0 \overset{\delta^0}{\longrightarrow} I^1 \overset{\delta^1}{\longrightarrow} \cdot \cdot \cdot \overset{\delta^d}{\longrightarrow} I^d \longrightarrow 0.$$

For each $p \in \text{Ass}_R(I^0)$, the complex $0 \longrightarrow (I^0)_p \longrightarrow 0$ is the dualizing complex for R_p, so that $K_p \cong E(R/p)$. Hence $\text{Ass}_R(K) = \text{Min}(R)$. Thus, by [DT1, Proposition
there is a unique isomorphism of complexes (over \(Id_K\)) from \(I^*\) to \(C(\mathcal{V}, K)\), the complex of modules of generalized fractions on \(K\) with respect to the chain of triangular subsets \(\mathcal{V} = (V_i)_{i \geq 1}\) on \(R\), defined by

\[
V_i = \{(v_1, \ldots, v_i) \in R^i : \text{ht}_R((v_1, \ldots, v_j)) \geq j \text{ for all } j \text{ with } 1 \leq j \leq i\}.
\]

Now, we restate [DT1, Corollary 3.3] in a more appropriate form.

5.1. **Corollary.** Assume that \(R\) satisfies \((S_2)\) and that it possesses a dualizing complex, so that \(R\) admits a canonical module \(K\), say. Then, for each \(p \in \text{Spec}(R)\),

\[
E(R/p) \cong (V_{htp} \times (R \setminus p))^{htp-1}K
\]

where \(V_r\) is the triangular subset of \(R^r\) defined in the paragraph just before the corollary.

Acknowledgment. I thank M. Tousi for his comment on 2.3. I also thank the referee for the invaluable comments on the manuscript.

References

[A] Y. Aoyama, *Some basic results on canonical modules*, J. Math. Kyoto Univ. **23** (1983), 85–94.

[AG] Y. Aoyama and S. Goto, *On the endomorphism ring of the canonical module*, J. Math. Kyoto Univ. **25** (1985), 21–30.

[B-ZS] M. H. Bijan-Zadeh and R. Y. Sharp, *On Grothendieck’s local duality theorem*, Math. Proc. Cambridge Philos. Soc. **85** (1979), 431–437.

[BH] W. Bruns and J. Herzog, *Cohen–Macaulay Rings*, Cambridge University Press, 1996.

[DT1] M. T. Dibaei and M. Tousi, *The structure of dualizing complex for a ring which is \((S_2)\)*, J. Math. Kyoto Univ. **38** (1998), 503–516.

[DT2] M. T. Dibaei and M. Tousi, *A generalization of dualizing complex structure and its applications*, J. Pure and Applied Algebra, **155** (2001), 17–28.

[FFGR] R. Fossum, H.-B. Foxby, P. Griffith, and I. Reiten, *Minimal injective resolutions with applications to dualizing modules and Gorenstein modules*, Inst. Hautes Etudes Sci. Publ. Math., **45** (1976), 193–215.

[H] J. E. Hall, *Fundamental dualizing complexes for commutative Noetherian rings*, Quart. J. Math. Oxford **165** (1979), 21–32.

[HK] J. Herzog and E. Kunz, *Der Kaninische Modul eines Cohen–Macaulay Rings*, Lecture Notes Math. 238, Springer–Verlag, 1971.

[K] T. Kawasaki, *Finiteness of Cousin homologies*, preprint.

[M] H. Matsumura, *Commutative ring theory*, Cambridge University Press, 1992.

[O] L. O’Carrol, *On the generalized fractions of Sharp and Zakeri*, J. Lond. Math. Soc. **28** (1983) 417–427.

[P] H. Petzl, *Cousin complexes and flat ring extensions*, Comm. Algebra, **25** (1997), 311–339.
[ScTC] P. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73.

[S1] R. Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, Math. Z., 112 (1969), 340–356.

[S2] R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117–139.

[S3] R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen–Macaulay rings, London math. Soc. 25 (1972), 303–328.

[S4] R. Y. Sharp, Dualizing complexes for commutative Noetherian ring, Math. Proc. Cambridge Philos. Soc. 78 (1975), 369–386.

[S5] R. Y. Sharp, Local cohomology and the Cousin complex for a commutative Noetherian ring, Math. Z., 153 (1977), 19–22.

[S6] R. Y. Sharp, A commutative Noetherian ring which possesses a dualizing complex is acceptable, Math. Proc. Camb. Philos. Soc. 82 (1977), 197–213.

[SSc] R. Y. Sharp and P. Schenzel, Cousin complex and generalized Hughes complexes, Proc. London Math. Soc., 68 (1994), 499–517.

[SZ] R. Y. Sharp and H. Zakeri, Generalized fractions, Buchsbaum modules and generalized Cohen–Macaulay modules, Math. Proc. Cambridge Philos. Soc., 98 (1985), 429–436.

[T] N. V. Trung, Toward a theory of generalized Cohen–Macaulay modules, Nagoya Math. J. 102 (1986), 1–49.

Institute for Studies in Theoretical Physics and Mathematics, P.O.Box 19395-5746, Tehran, Iran.