METHODS AND PROTOCOLS

Development of SCAR markers for rapid and specific detection of *Pseudomonas syringae* pv. *morsprunorum* races 1 and 2, using conventional and real-time PCR

Monika Kałużna¹ · Pedro Albuquerque²,³ · Fernando Tavares²,³ · Piotr Sobieczewski¹ · Joanna Pulawska¹

Received: 21 October 2015 / Revised: 16 December 2015 / Accepted: 26 December 2015 / Published online: 1 February 2016

© The Author(s) 2016. This article is published with open access at SpringerLink.com

Abstract Specific primers were developed to detect the causal agent of stone fruit bacterial canker using conventional and real-time polymerase chain reaction (PCR) methods. PCR melting profile (PCR MP) used for analysis of diversity of *Pseudomonas syringae* strains, allowed to pinpoint the amplified fragments specific for *P. syringae* pv. *morsprunorum* race 1 (Psm1) and race 2 (Psm2), which were sequenced. Using obtained data, specific sequence characterised amplified region (SCAR) primers were designed. Conventional and real-time PCRs, using genomic DNA isolated from different bacterial strains belonging to the *Pseudomonas* genus, confirmed the specificity of selected primers. Additionally, the specificity of the selected DNA regions for Psm1 and Psm2 was confirmed by dot blot hybridisation. Conventional and real-time PCR assays enabled accurate detection of Psm1 and Psm2 in pure cultures and in plant material. For conventional PCR, the detection limits were the order of magnitude ~10⁰ cfu/reaction for Psm1 and 10¹ cfu/reaction for Psm2 in pure cultures, while in plant material were 10⁰–10¹ cfu/reaction using primers for Psm1 and 3 × 10² cfu/reaction using primers for Psm2. Real-time PCR assays with SYBR Green I showed a higher limit of detection (LOD) – 10⁰ cfu/reaction in both pure culture and in plant material for each primer pairs designed, which corresponds to 30–100 and 10–50 fg of DNA of Psm1 and Psm2, respectively. To our knowledge, this is the first PCR-based method for detection of the causal agents of bacterial canker of stone fruit trees.

Keywords Dot blot hybridisation · Stone fruit tree pathogens · PCR MP · SCAR primers · Real-time PCR

Introduction

Bacterial canker of fruit trees occurs in stone fruit growing areas all over the world (Agrios 2005). In Poland, the disease incidence on stone fruit trees orchards is observed every year with different intensity and is becoming more economically significant. Moreover, in the last vegetative seasons, bacterial canker was dangerous not only to stone fruit trees, but also to apple and pear trees. The causal agents of the disease belong to the polyphagous *Pseudomonas syringae* species, able to infect more than 180 plant species, both annual and perennial, including fruit trees, ornamental plants and vegetables. *P. syringae* affects all organs of the aboveground parts of trees (i.e. the branches and main trunk as well as buds, blossoms, leaves and fruits), which causes reduction of yield and sometimes leads to death of the trees.

P. syringae is composed of plant pathogens divided into 60 pathovars (Young 2010) belonging to nine genomospecies, as determined by DNA:DNA hybridisation (Gardan et al. 1999). On King’s B medium, the majority of these bacteria produce a fluorescent pigment visible under UV light (King et al. 1954). Bacteria that cause bacterial canker on stone fruit trees belong to three genomospecies (gs): gs 1—*P. syringae* pv. *syringae* (Pss); gs 2—*P. syringae* pv. *morsprunorum* race 1 (Psm1); and gs 3—*P. syringae* pv. *morsprunorum* race 2 (Psm2),
P. syringae pv. avii (Psa) and P. syringae pv. persicae (Psp) (reviewed in Bultreys and Kałużna 2010). In Poland, three taxa were already described as present: Pss, Psm1 and Psm2. Recently, the new atypical taxon including bacteria that infect only cherries (mainly sour cherry) was also found (Kałużna data not published).

The diagnostics of bacterial canker are commonly based on isolation and phenotypic characterisation of the causal agent, including pathogenicity (Bultreys and Gheysen 1999; Vicente et al. 2004). The phenotypic tests LOPAT (Lelliott et al. 1966), GATTa and L-lactate utilisation (Lattore and Jones 1979) enable the determination of morphological, physiological and biochemical features of the bacteria. These features are used for identification of species and their discrimination into pathovars and races. However, this methodology requires the implementation of a high number of often laborious and time-consuming tests. Moreover, the obtained results can sometimes be ambiguous or difficult to interpret, and they are often not sufficient for proper strain classification (Vicente et al. 2004).

Concerning serological methods, the slide agglutination test, immunofluorescence and indirect-enzyme-linked immunosorbent assay (ELISA), with the antisera produced from live whole-cell antigens, were widely adopted for routine bacterial identification. However, nowadays these methods are less frequently used for the identification of bacteria that cause bacterial canker because of frequent cross-reactions with non-pathogenic bacteria. Furthermore, serological tests do not always provide a response in distinguishing isolates of P. syringae (Vicente et al. 2004).

Molecular methods are currently the most widely adapted and are considered very useful for the identification of bacterial canker causal agents and for studying their genetic diversity. For many years, the identification of the pathogen has been based on detection of genes encoding the toxins coronatine, syringomycin and the siderophore yersiniabactin (Bereswill et al. 1994; Sorensen et al. 1998; Bultreys and Gheysen 1999). However, it should be noted that the determination of presence of genes encoding for toxin production is not reliable for identification in itself and thus cannot be the only criterion for the classification of strains. In fact, strains of Psm1 and Pss, which do not have the ability to produce coronatine or syringomycin, respectively, are quite common (Ullrich et al. 1993; Renick et al. 2008; Kałużna et al. 2010a). On the other hand, although production of the siderophore yersiniabactin is now considered a stable feature of all Psm2 strains and could be a criterion for their identification, is should be mentioned that it is not an exclusive feature of strains of Psm2, since positive amplification with primers for the irp1 gene (encoding this siderophore) was also confirmed in other pathovars of P. syringae, including the following: antirrhini, apiii, berberidis, delphinii, lachrymans, passiflorae, persicae, tomato, viburni, helianthi, tagetis and theae (Bultreys et al. 2006).

In recent years, fingerprinting methods have been widely applied for the identification and genotyping of P. syringae through the analysis of repetitive regions (i.e. Enterobacterial Repetitive Intergenic Consensus (ERIC), BOX, Repetitive Extragenic Palindromic Elements (REP) and Insertion Sequence (IS50) sequences) (Ullrich et al. 1993; Weingart and Völksch 1997) and through PCR MP (Kałużna et al. 2010b). However, it should be taken into account that all fingerprinting methods require inclusion of the reference strains for comparison of obtained amplification patterns (Vicente and Roberts 2007; Gilbert et al. 2009), and, in the case of heterogeneous strains of Pss (Vicente et al. 2004; Renick et al. 2008; Kałużna et al. 2010a, b), it is difficult to determine affiliation of analysed strains to this taxon.

Despite the availability of different approaches for characterisation and genotyping of P. syringae, they require time-consuming and labour-intensive classical microbiological methods or complex analyses including comparison of amplification patterns and housekeeping gene sequencing. Therefore, there is still the need to develop a rapid and specific method of diagnosis that would allow the detection and identification of the causal agent of stone fruit bacterial canker (López et al. 2010). This specific, fast diagnostic system would be invaluable in the study on etiology of cankers on trunks and branches, which are similar to those caused by fungi of the genus Leucostoma (Valsa) and Monilinia, and also necrotic spots on leaves, which may be mistaken with those caused by Prunus necrotic ring spot virus or Clasterosporium carphophilum, especially late in the growing season. Moreover, the occurrence of gummosis on woody tissue often associated with bacterial infection may be related to the physiological response of the trees to damage caused by abiotic factors, such as frost, sunburn, periodic water flooding or mechanical damage, and is not due to biotic factors only (Saniewski et al. 2006).

Ideally, a novel diagnostic system would apply specific primers and the PCR technique, both conventional and real-time, making them more useful for a wide group of researchers according to available lab equipment, which allows for the detection and identification of the pathogen within a short amount of time. Additionally, such a system would undoubtedly be very useful in enforcing appropriate programmes to prevent and control disease occurrence in nurseries and orchards of stone fruit trees, especially sweet and sour cherry, where the damage is the most severe.

The aim of this study was to design and validate novel specific primers and to develop conventional and real-time PCR-based methodologies for rapid and specific detection of Psm1 and Psm2, with the aim of enhancing bacterial canker diagnostic procedures.
Materials and methods

Bacterial strains

Species and pathovar identification of previously uncharacterised *Pseudomonas* strains from our collection, obtained from stone fruit trees in Poland, was determined on the basis of phenotypic tests (i.e. Gram reaction with 3 % KOH (Suslow et al. 1982), LOPAT (Lefliott et al. 1966), GATTa and L-lactate utilisation (Lattore and Jones 1979). A total of 168 isolates were analysed. The reference strains *P. syringae* pv. *syringae*—LMG 1247, *P. syringae* pv. *morsprunorum* race 1—LMG 2222 and *P. syringae* pv. *morsprunorum* race 2—CFBP 3800 were included in all tests (Table 1). Additionally, type and non-type strains of other *P. syringae* pathovars (79) and related species (three) were included in the analysis (Table 2). The strains were kept at −75 °C in a mixture of glycerol (200 μl/ml) and phosphate-buffered saline (PBS) and streaked on King’s B medium (3.8 % *Pseudomonas* Agar F Difco, 1 % glycerol) (King et al. 1954) for routine culturing.

DNA isolation

Bacterial DNA was isolated using the method described by Aljanabi and Martinez (1997), with slight modifications described by Kaužna et al. (2012). DNA was diluted to a final concentration of 10 ng/μl and kept at −20 °C for further analysis.

PCR melting profile

A slightly modified method of PCR MP described by Masny and Plucienniczak (2003) was used. An amount of 100 ng of DNA from 23 *Pseudomonas* strains (Figs. 1 and 2) was digested with *Pst*I endonuclease (10 U/μl; Promega Corporation, Madison, WI, USA) or *Taq*I (10 U/μl; Thermoscientific, Vilnius, Lithuania) according to the manufacturer’s instructions. Digested DNA was ligated with two oligonucleotides forming an adaptor: DNA digested by *Pst*I endonuclease with a *Pst*I adaptor—5′-TGTACGAGTCTCAG-3′/5′-CTCGTAGACTGCATGAC-3′ (Waugh et al. 1997) and DNA digested by *Taq*I endonuclease with a *Taq*I adaptor—5′-GACGATGAGTCCTGAC-3′/5′-CGTGTCAGACTCATGCAG-3′ (Ajmone-Marsan et al. 1997). PCR amplification was performed separately for *Pst*I- or *Taq*I-digested DNA in a 25-μl reaction mixture containing the following: 1 μl of ligation mixture; 0.4 μl of GoTaq DNA polymerase (Promega, Madison, WI, USA) for *Pst*I and 0.4 μl of Dream Taq Green DNA Polymerase (Thermo Scientific, Vilnius, Lithuania) for *Taq*I; and 1× of appropriate Taq polymerase buffer, 0.2 mM of dNTPs and 1 μM of each primer (PstI-0—5′-GACTGCGTACATGCAG-3′ for *Pst*I-digested DNA (Waugh et al. 1997) or TaqI-0—5′-GACGATGAGTCTCCTGAC-3′ for *Taq*I-digested DNA (Ajmone-Marsan et al. 1997)). The amplification reactions were conducted in a Biometra T3000 thermocycler (Biometra, Göttingen, Germany) with the following conditions: initial step of 72 °C for 5 min; 30 cycles at 86.5 °C for *Pst*I and 83 °C for *Taq*I for 40 s, 55 °C for 40 s and extension at 72 °C for 90 s; and final extension at 72 °C for 10 min. PCR products from each reaction and the O’GeneRuler 100-bp DNA Ladder Plus (Thermo Scientific, Vilnius, Lithuania) were separated on a 1.5 % agarose gel in 0.5× TBE buffer (0.045 M tris-boric acid, 0.001 M EDTA, pH 8.0) and electrophoresis was run at 5–7 V/cm of gel. After staining with an ethidium bromide solution (0.5 μg/ml), the obtained amplification profiles were visualised under UV light. The same conditions were used in all subsequent electrophoroses.

Selection of specific fragments

Based on the results of genetic analyses using PCR MP, DNA fragments characteristic of *Psm1* and *Psm2* strains were selected. The fragments were excised from the gel, purified with the DNA AxyPrep Gel Extraction Kit (Axygen Scientific, Inc. Union City, CA, USA) and cloned into the pGEM T-Easy vector (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The resulting ligation mixture was used to transform *Escherichia coli* JM109 competent cells (Promega, Madison, WI, USA). The cloned fragments were sequenced with universal primers M13Rev 5′-CAGGAAACAGCTATGAC-3′ and M13 (−40) 5′-GTTTTCCCAGTCAGTAC-3′ at Genomed S.A. (Warsaw, Poland). The sequences obtained were assembled using the SeqMan software package LASERGENE (DNASTAR, Madison, USA).

Design of SCAR primers

The sequences of specific fragments for *Psm1* and *Psm2* were used to design the SCAR primers, for both conventional and real-time PCR, with the PrimerSelect programme of the LASERGENE package (DNASTAR). Different primer pairs were designed for conventional PCR (five for *Psm1* and 7 for *Psm2*) and real time PCR (four for each taxa). All primer sequences and their potential amplification reaction products were checked for homology (June 2015) to other sequences deposited in the GenBank database using the ‘blastn’ algorithm (Altschul et al. 1997). Selected primers were synthesised at Genomed S.A.
Lp.	Strain number	Place (voivodeship/country) and year of isolation	Host-plant	Taxon based on LOPAT, GATTa/L
1.	58	Łódzkie, PL 2007	Sour cherry	Atypical taxon
2.	59	Łódzkie, PL 2007	Sour cherry	Atypical taxon
3.	61	Łódzkie, PL 2007	Sour cherry	Atypical taxon
4.	64	Łódzkie, PL 2007	Sour cherry	Atypical taxon
5.	65	Łódzkie, PL 2007	Sour cherry	Atypical taxon
6.	66	Łódzkie, PL 2007	Sour cherry	Atypical taxon
7.	69	Łódzkie, PL 2007	Sour cherry	Atypical taxon
8.	71	Łódzkie, PL 2007	Sour cherry	Atypical taxon
9.	72	Łódzkie, PL 2007	Sour cherry	Atypical taxon
10.	73	Łódzkie, PL 2007	Sour cherry	Atypical taxon
11.	74	Łódzkie, PL 2007	Sour cherry	Atypical taxon
12.	75	Łódzkie, PL 2007	Sour cherry	Atypical taxon
13.	76	Łódzkie, PL 2007	Sour cherry	Atypical taxon
14.	78	Łódzkie, PL 2007	Sour cherry	Atypical taxon
15.	80	Łódzkie, PL 2007	Sour cherry	Atypical taxon
16.	81	Łódzkie, PL 2007	Sour cherry	Atypical taxon
17.	82	Łódzkie, PL 2007	Sour cherry	Atypical taxon
18.	83	Łódzkie, PL 2007	Sour cherry	Atypical taxon
19.	86	Łódzkie, PL 2007	Sour cherry	Atypical taxon
20.	87	Łódzkie, PL 2007	Sour cherry	Atypical taxon
21.	88	Łódzkie, PL 2007	Sour cherry	Atypical taxon
22.	89	Łódzkie, PL 2007	Sour cherry	Atypical taxon
23.	90	Łódzkie, PL 2007	Sour cherry	Atypical taxon
24.	91	Łódzkie, PL 2007	Sour cherry	Atypical taxon
25.	93	Łódzkie, PL 2007	Sour cherry	Atypical taxon
26.	94	Łódzkie, PL 2007	Sour cherry	Atypical taxon
27.	95	Łódzkie, PL 2007	Sour cherry	Atypical taxon
28.	96	Łódzkie, PL 2007	Sour cherry	Atypical taxon
29.	118	Mazowieckie, PL 2007	Sour cherry	Atypical taxon
30.	119	Mazowieckie, PL 2007	Sour cherry	Atypical taxon
31.	120	Łódzkie, PL 2007	Sour cherry	Atypical taxon
32.	122	Łódzkie, PL 2007	Sour cherry	Atypical taxon
33.	211	Łódzkie, PL 2007	Sour cherry	Atypical taxon
34.	271	Silesian, PL 2007	Sour cherry	Atypical taxon
35.	374	Łódzkie, PL 2008	Sour cherry	Atypical taxon
36.	439	Łódzkie, PL 2008	Sour cherry	Atypical taxon
37.	909	Łódzkie, PL 2009	Sour cherry	Atypical taxon
38.	910	Łódzkie, PL 2009	Sour cherry	Atypical taxon
39.	949	Łódzkie, PL 2009	Sour cherry	Atypical taxon
40.	963	Lubelskie, PL 2009	Sweet cherry	Atypical taxon
41.	966	Lubelskie, PL 2009	Sour cherry	Atypical taxon
42.	967	Lubelskie, PL 2009	Sour cherry	Atypical taxon
43.	968	Lubelskie, PL 2009	Sour cherry	Atypical taxon
44.	969a	Lubelskie, PL 2009	Sour cherry	Atypical taxon
45.	969b	Lubelskie, PL 2009	Sour cherry	Atypical taxon
46.	970a	Lubelskie, PL 2009	Sour cherry	Atypical taxon
47.	970b	Lubelskie, PL 2009	Sour cherry	Atypical taxon
48.	971a	Lubelskie, PL 2009	Sour cherry	Atypical taxon
Lp.	Strain number	Place (voivodeship/country) and year of isolation	Host-plant	Taxon based on LOPAT, GATTa/L
-----	--------------	---	------------	-------------------------------
49.	971b	Lubelskie, PL 2009	Sour cherry	Atypical taxon
50.	972	Lubelskie, PL 2009	Sour cherry	Atypical taxon
51.	973	Lubelskie, PL 2009	Sour cherry	Atypical taxon
52.	981	Lubelskie, PL 2009	Sour cherry	Atypical taxon
53.	982	Lubelskie, PL 2009	Sour cherry	Atypical taxon
54.	1017	Łódzkie, PL 2009	Sour cherry	Atypical taxon
55.	1021	Łódzkie, PL 2009	Sour cherry	Atypical taxon
56.	791	No data 2001	Sour cherry	Atypical taxon
57.	441	Łódzkie, PL 2008	Plum	Psm1
58.	LMG 2222	No data, UK 1958	*Prunus avium*	Psm1
59.	25b	Łódzkie, PL 2007	Sweet cherry	Psm1
60.	28a	Łódzkie, PL 2007	Sweet cherry	Psm1
61.	29a	Łódzkie, PL 2007	Sweet cherry	Psm1
62.	38a	Łódzkie, PL 2007	Plum	Psm1
63.	98	Łódzkie, PL 2007	Sweet cherry	Psm1
64.	100	Łódzkie, PL 2007	Plum	Psm1
65.	107	Łódzkie, PL 2007	Plum	Psm1
66.	158	West Pomerania, PL 2007	Sweet cherry	Psm1
67.	174	West Pomerania, PL 2007	Sweet cherry	Psm1
68.	175	West Pomerania, PL 2007	Sweet cherry	Psm1
69.	177	West Pomerania, PL 2007	Peach	Psm1
70.	199	West Pomerania, PL 2007	Plum	Psm1
71.	201	West Pomerania, PL 2007	Plum	Psm1
72.	202	West Pomerania, PL 2007	Plum	Psm1
73.	203	West Pomerania, PL 2007	Plum	Psm1
74.	204	West Pomerania, PL 2007	Plum	Psm1
75.	205	West Pomerania, PL 2007	Plum	Psm1
76.	206	West Pomerania, PL 2007	Plum	Psm1
77.	209	West Pomerania, PL 2007	Plum	Psm1
78.	213	Świętokrzyskie, PL 2007	Plum	Psm1
79.	214	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
80.	215	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
81.	216	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
82.	217	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
83.	218	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
84.	219	Kuyavian-Pomeranian, PL 2007	Sweet cherry	Psm1
85.	220	Kuyavian-Pomeranian, PL 2007	Plum	Psm1
86.	221	Kuyavian-Pomeranian, PL 2007	Plum	Psm1
87.	250	Kuyavian-Pomeranian, PL 2007	Plum	Psm1
88.	274	Silesian, PL 2007	Plum	Psm1
89.	276	Silesian, PL 2007	Plum	Psm1
90.	280	Silesian, PL 2007	Plum	Psm1
91.	283	Silesian, PL 2007	Sweet cherry	Psm1
92.	291	Łódzkie, PL 2007	Sweet cherry	Psm1
93.	527	Mazowieckie, PL 2008	Sweet cherry	Psm1
94.	528	Mazowieckie, PL 2008	Sweet cherry	Psm1
95.	671	Lubelskie, PL 2008	Sweet cherry	Psm1
96.	1061	Łódzkie, PL 2009	Plum	Psm1
Lp.	Strain number	Place (voivodeship/country) and year of isolation	Host-plant	Taxon based on LOPAT, GATTa/L
-----	---------------	---	------------	-----------------------------
97.	701A	No data, PL 2005 Sweet cherry	Psm1	
98.	702	No data, PL 1994 Plum	Psm1	
99.	704	No data, PL 1994 Sweet cherry	Psm1	
100.	710	Lower Silesian, PL 1996 Sweet cherry	Psm1	
101.	755	No data, PL 1999 Plum	Psm1	
102.	771	Łódzkie, PL 1999 Plum	Psm1	
103.	782	No data, PL 2001 Sweet cherry	Psm1	
104.	787	Mazowieckie, PL 2001 Plum	Psm1	
105.	788	Łódzkie, PL 2001 Plum	Psm1	
106.	793	Łódzkie, PL 2001 Plum	Psm1	
107.	CFBP 3800	No data, UK ND Prunus cerasus	Psm2	
108.	77	Łódzkie, PL 2007 Sour cherry	Psm2	
109.	117	Mazowieckie, PL 2007 Sour cherry	Psm2	
110.	266	Silesian, PL 2007 Sour cherry	Psm2	
111.	417	Mazowieckie, PL 2008 Sour cherry	Psm2	
112.	701	No data, PL 1994 Sour cherry	Psm2	
113.	719	Łódzkie, PL 1997 Sour cherry	Psm2	
114.	732	Łódzkie, PL 1997 Sour cherry	Psm2	
115.	733	Łódzkie, PL 1997 Sour cherry	Psm2	
116.	745	Łódzkie, PL 1999 Sour cherry	Psm2	
117.	764	Mazowieckie, PL 1999 Sour cherry	Psm2	
118.	LMG 1247	No data, UK ND Syringa vulgaris	Pss	
119.	2905	No data/PL 1978 Sour cherry	Pss	
120.	68	Łódzkie, PL 2007 Plum	Pss	
121.	103	Łódzkie, PL 2007 Sour cherry	Pss	
122.	106	Łódzkie, PL 2007 Plum	Pss	
123.	109	Łódzkie, PL 2007 Plum	Pss	
124.	110	Łódzkie, PL 2007 Plum	Pss	
125.	112	Łódzkie, PL 2007 Plum	Pss	
126.	115	Łódzkie, PL 2007 Plum	Pss	
127.	141	West Pomerania, PL 2007 Peach	Pss	
128.	147	West Pomerania, PL 2007 Peach	Pss	
129.	165	West Pomerania, PL 2007 Sweet cherry	Pss	
130.	184	West Pomerania, PL 2007 Peach	Pss	
131.	192	West Pomerania, PL 2007 Plum	Pss	
132.	210	Łódzkie, PL 2007 Sour cherry	Pss	
133.	222	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
134.	226	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
135.	227	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
136.	229	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
137.	233	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
138.	234	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
139.	235	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
140.	236	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
141.	237	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
142.	239	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
143.	240	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
144.	242	Kuyavian-Pomeranian, PL 2007 Plum	Pss	
Dot blot hybridisation

High-throughput specificity assays were carried out using a dot blot platform, essentially as previously described (Albuquerque et al. 2011). PCR amplicons obtained using primers Psm1-6F/6R, with template DNA from strain Psm28a (race 1), and primers Psm2-8F/8R, with Psm77 (race 2), were purified using the GFX PCR and Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) and labelled with digoxigenin, using the DIG-High Prime DNA labelling kit (Roche, Basel, Switzerland) in order to obtain the two tested hybridisation probes Psm1 and Psm2, respectively.

Amounts of 100 ng of heat-denatured DNA from each bacterial strain were transferred to a nylon membrane using a Bio-Dot apparatus (Bio-Rad, Hercules, USA). Hybridisation was carried out overnight at 68 °C with a final probe concentration of 100 ng/mL, and the washing and detection steps were carried out according to the DIG application manual (Roche). The chemiluminescent signal indicative of probe–target hybrids was detected using a Molecular Imager ChemiDoc XRS+ System (Bio-Rad), with all pixels below saturation point.

Conventional and real-time PCR amplifications

Amplification reactions with the two selected primer pairs, one specific for the strains of Psm1 and the second specific for Psm2, were performed in a Biometra T3000 thermocycler (Biometra, Göttingen, Germany). The reaction mixture in 15 μl of total reaction volume contained 10 ng of DNA, 0.4 U of Dream DNA Polymerase (Promega, Madison, WI, USA), 1× reaction Dream Taq Green buffer (Thermo Scientific, Vilnius, Lithuania), 0.15 mM dNTPs and 0.7 mM of each primer. The following

Table 1 (continued)

Lp.	Strain number	Place (voivodeship/country) and year of isolation	Host-plant	Taxon based on LOPAT, GATTA/L
145.	244	Kuyavian-Pomeranian, PL 2007	Plum	Pss
146.	245	Kuyavian-Pomeranian, PL 2007	Plum	Pss
147.	247	Kuyavian-Pomeranian, PL 2007	Plum	Pss
148.	248	Kuyavian-Pomeranian, PL 2007	Plum	Pss
149.	256	Kuyavian-Pomeranian, PL 2007	Plum	Pss
150.	257	Kuyavian-Pomeranian, PL 2007	Sour cherry	Pss
151.	258	Kuyavian-Pomeranian, PL 2007	Sour cherry	Pss
152.	259	Łódzkie, PL 2007	Sweet cherry	Pss
153.	264	Łódzkie, PL 2007	Peach	Pss
154.	286	Ślęsian, PL 2007	Sweet cherry	Pss
155.	373	Łódzkie, PL 2008	Sour cherry	Pss
156.	376	Łódzkie, PL 2008	Sour cherry	Pss
157.	415	Świętokrzyskie, PL 2008	Plum	Pss
158.	420a	Mazowieckie, PL 2008	Sour cherry	Pss
159.	435	Mazowieckie, PL 2008	Sour cherry	Pss
160.	437	Łódzkie, PL 2008	Sour cherry	Pss
161.	442	Łódzkie, PL 2008	Plum	Pss
162.	460	Podkarpackie, PL 2008	Sour cherry	Pss
163.	663	Lubelskie, PL 2008	Sour cherry	Pss
164.	914	Kuyavian-Pomeranian, PL 2009	Sour cherry	Pss
165.	959	Lubelskie, PL 2009	Sour cherry	Pss
166.	702A	Łódzkie, PL 2005	Plum	Pss
167.	753	Łódzkie, PL 1999	Apricot	Pss
168.	757	Mazowieckie, PL 1999	Plum	Pss
169.	760	Mazowieckie, PL 1999	Sour cherry	Pss
170.	762	No data, PL 1999	Apricot	Pss
171.	763	No data, PL 1999	Sour cherry	Pss

LOPAT—levan production from sucrose (L), presence of oxidase (O), ability to cause rot on potato tubers (P; pectolytic activity), presence of arginine dihydrolase (A), hypersensitive reaction (HR) on tobacco plants; GATTA—gelatine hydrolysis (G), aesculin hydrolysis (A, activity of the β-glucosidase), tyrosinase activity (T), utilisation of tartrate (Ta); test of L-lactate utilisation (L); PL Poland, UK United Kingdom
Table 2 Results of specificity of designed primers in reactions with DNA of different pathovars of *Pseudomonas syringae* and other *Pseudomonas* species tested

Pathovar of *P. syringae*	Strain number*	Host	Origin-place/year of isolation	PCR result with primers	Reference/source
aceris	CFBP 2339^{PT}	Acer sp.	1961	** CFBP***	
actinidiae	CFBP 4909^{PT}	Actinidia deliciosa	Japan/1984	–	CFBP
	MAFF 302135	Actinidia argute	Japan/1987	–	MAFF
	MAFF 302145	Actinidia deliciosa	Japan/1988	–	MAFF
	MAFF 613005	Actinidia deliciosa	Japan/1986	–	MAFF
aesculi	CFBP 2894^{PT}	Aesculus indica	India/1980	–	CFBP
	6617	Aesculus hippocastanum	UK/2006	–	R. W. Jackson
	2250	Aesculus hippocastanum	UK/2008	–	(UK)
	H3	Aesculus hippocastanum	Germany/2007	–	Schmidt et al.,
	H4	Aesculus hippocastanum	Germany/2007	–	2008
	2190	Aesculus hippocastanum	UK	–	
antirrhini	CFBP 1620^{PT}	Antirrhinum majus	UK/1956	–	CFBP
apii	CFBP 2103^{PT}	Apium graveolens	USA/1942	–	CFBP
	BS 426	Petroselinum crispum	USA/2003	–	Bull et al. 2011
	BS 463	Flat-leaf parsley	USA/2002	–	
aptata	CFBP 1617^{PT}	Beta vulgaris	USA/1959	–	CFBP
atrofaciens	CFBP 2213^{PT}	Triticum aestivum	New Zealand/1968	–	CFBP
atropurpurea	CFBP 2340^{PT}	Lolium multiflorum	ND/1967	–	CFBP
	1304			–	K.Geider
					(Germany)
avii	CFBP 3846^{PT}	Prunus avium	France/1991	–	CFBP
berberidis	CFBP 1727^{PT}	Berberis sp.	New Zealand/1972	–	CFBP
broussonetiae	CFBP 5140^{PT}	Broussonetia kazinoki Sieb. X Broussonetia papryrif a Vent.	Japan/1980	–	CFBP
	MAFF 810038	Broussonetia kazinoki Sieb.	Japan/1996	–	MAFF
	MAFF 810044	Broussonetia kazinoki Sieb.	Japan/1996	–	MAFF
castaneae	CFBP 4217^{PT}	Castanea crenata	Japan/1977	–	CFBP
cerasicola	CFBP 6109^{PT}	Prunus X yedoensis	Japan/1995	–	CFBP
ciccaronei	CFBP 2342^{PT}	Ceratonia siligua	Italy/1942	–	CFBP
coriandricola	CFBP 5010^{PT}	Coriandrum sativum	Germany/1990	–	CFBP
	BS 456	Curled-leaf parsley	USA/2003	–	Carolee T. Bull
	BS 462	Flat-leaf parsley	USA/2002	–	(USA)
Species	Accession	Host Species	Location	Notes	Host Code
-----------------	-----------	-----------------------------------	----------	-----------	-----------
coronafaciens	CFBP 2216	*Avena sativa*	UK/1958	–	CFBP
cunninghamiae	CFBP 4218	*Cunninghamia lanceolata*	China/1995	–	CFBP
daphniphylli	CFBP 4219	*Daphniphyllum teigmanni*	Japan/1981	–	CFBP
delphinii	CFBP 2215	*Delphinium sp.*	New Zealand/1957	–	CFBP
dendropanacis	CFBP 3226	*Dendropanax trifidus*	Japan/1979	–	CFBP
dysoxyli	CFBP 2356	*Dysoxylum spectabile*	New Zealand/1949	–	CFBP
eriobotryae	CFBP 2343	*Eriobotrya japonica*	USA/1970	–	CFBP
garcae	CFBP 1634	*Coffea arabica*	Brasil/1958	–	CFBP
helianthi	CFBP 2067	*Helianthus annuus*	Mexico/ND	–	CFBP
hibisci	CFBP 2895	*Hibiscus rosa-sinensis*	USA/1984	–	CFBP
japonica	MAFF 301159	*Triticum aestivum* (L.) Thell.	Japan/ND	–	MAFF
lapsa	CFBP 1731	*Zea sp.*	ND/1968	–	CFBP
lachrymans	CFBP 6463	*Cucumis sativus*	Hungary/1958	–	CFBP
maculicola	LMG 5071	*Brassica oleracea*	New Zealand/1965	–	LMG
mellea	CFBP 2344	*Nicotiana tabacum*	Japan/1968	–	CFBP
mori	CFBP 1642	*Morus alba*	Hungary/1958	–	CFBP
morsprunorum	CFBP 2351	*Prunus domestica*	USA/1931	– (Psm1)	CFBP
				+ (Psm2)	M. Hevesi (Hungary)
				– (Psm1)	J.D. Janse (Netherlands)
				+ (Psm1)	LMG
				– (Psm2)	CFBP
				– (Psm1)	MAFF
				+ (Psm1)	MAFF
myricae	CFBP 2897	*Myrica rubra*	Japan/1978	–	CFBP
	MAFF 302457	*Myrica rubra Sieb. et Zucc.*	Japan/ND	–	MAFF
	MAFF 302944	*Myrica rubra Sieb. et Zucc.*	Japan/ND	–	MAFF
oryzae	CFBP 3228	*Oryza sativa*	Japan/1983	–	CFBP
papulans	CFBP 1754	*Malus sylvestris*	Canada/1973	–	CFBP
passiflorae	CFBP 2346	*Passiflora edulis*	New Zealand/1962	–	CFBP
persicae	LMG 5184	*Prunus persica*	France/1974	–	LMG
philadelphii	CFBP 2898	*Philadelphus coronarius*	UK/1985	–	CFBP
photiniaae	CFBP 2899	*Photinia glabra*	Japan/1976	–	CFBP
pisi	CFBP 2105	*Pisum sativum*	New Zealand/1969	–	CFBP
					M. Hevesi
Experimentally determined amplification conditions were used: initial denaturation at 94 °C for 4 min; 30 cycles at 94 °C for 45 s, 55–62 °C for 45 s for primers Psm1-6F and Psm1-6R (for detection of Psm1 strains) and 50–58 °C for 45 s for primers Psm2-8F and Psm2-8R (for detection of Psm2 strains) and 72 °C for 1 min; and final extension at 72 °C for 10 min. The resulting PCR products were separated by electrophoresis on 1.5 % agarose gels as described above.

Real-time PCR with SYBR Green I was conducted in the Bio-Rad CFX96 with SsoAdvanced SYBR Green Supermix (Bio-Rad, Hercules, USA). The reaction mixture in 20 µl of total volume contained 1× reaction SYBR
Green Supermix and 0.5 mM of each of the following primers: Psm1-1F-RT/Psm1-1R-RT for Psm1 and Psm2-1F-RT/Psm2-1R-RT for Psm2. Bacterial DNA was used as a template (10 ng per PCR reaction). No-template reactions were used as negative controls. The PCR programme was started from one cycle of denaturation at 98 °C for 130 s, followed by 35 cycles at 95 °C for 10 s and then 60 °C for 15 s, finished by a melting curve analysis for verification of the specificity of amplification in real-time PCR products. Progressive denaturation of products was carried out at a rising temperature, starting from 65 °C and continuing to 95 °C, with 0.5 °C of increment for 5 s each.

Specificity of designed primers and their usefulness in detection in plant material

In the first stage of this part of the study, the specificity of the two designed primer pairs was determined with PCR using DNA from all strains of Psm1, Psm2 and Pss as well as strains of atypical taxa (Table 1). In the second stage, the primers were tested with DNA from other P. syringae pathovars and related species (Table 2).

In order to assess the suitability of the designed primers for the detection of Psm1 and Psm2 strains in plant material, several leaves, shoots and fruits of sweet cherry, sour cherry and plum were collected. Amounts of 100 mg of crushed/cut plant tissue of each organ were placed in 1.9 ml of PBS buffer. For each type of tissue (organ) and host plant, two tubes were prepared (18 tubes in total). One hundred microlitres of bacterial suspension (10^5 cfu/ml) of the Psm1 reference strain (LMG 2222) or the Psm2 reference strain (CFBP 3800) were added to nine of the samples (one of each organ and of each plant). One hundred microlitres of sterile water were added to the remaining nine samples, which were tested to verify the purity of the plant material. After 1 h of shaking incubation at 26 °C, 1 ml of washing liquid separate from each of all 18 samples was centrifuged; the resulting pellet was suspended in 100 μl of TE buffer, and the DNA was isolated using a Genomic Mini DNA Extraction Kit (A&A Biotechnology, Gdynia, Poland) according to the manufacturer’s instructions. The sensitivity of gDNA detection was checked using 2-fold serial dilutions of gDNA isolated (11 ng to ~11 fg per PCR reaction for Psm1 and 14 ng to ~14 fg per PCR reaction for Psm2) using the method described by Aljanabi and Martinez (1997), with slight modifications described by Kalužna et al. (2012). The PCR efficiency was calculated from the slope of the standard curve generated for each run in the following equation $E = 10^{(-1/slope)}$ where $E \approx 2$ and corresponds to 100 % efficiency (Ramakers et al. 2003).

Results

Phenotypic characterisation

All 168 isolates have been classified into species P. syringae LOPAT group Ia. GATTa and L-lactate utilisation tests allowed further discrimination of pathovars and races: 49 isolates were identified as P. syringae pv. morsprunorum race 1 (Psm1), 10 as race 2 of this pathovar, 53 as pathovar syringae (Pss) and 56 as belonging to atypical taxa, having most of the features of Pss without, however, the ability of esculine hydrolysis (lack of β-glucosidase activity) (Table 1).

PCR MP

To select specific fragments of the taxon, the PCR MP method was applied using DNA from different strains of P. syringae (Figs. 1 and 2; Table 1). The obtained PCR MP patterns corresponded to phenotypically determined pathovars and races. Similar electrophoretic patterns were obtained for races within pathovar morsprunorum, confirming their homogeneity; however, different patterns were observed for strains belonging to pathovar syringae. For Psm1 and Psm2, the products that were specific and were shared between all strains of each taxa were selected, cloned and sequenced. Two products specific for Psm1 (after digestion by Psrl) had sizes of 1,208 and 1,128 bp, while the unique amplification product (after digestion by TaqI) for strains of Psm2 was 781 bp long. No specific and unique band was found for strains of Pss.
Fig. 1 Electrophoretic patterns obtained after polymerase chain reaction melting profile (PCR MP) of fluorescent Pseudomonads with primer Pst1:

Lane 1—M—marker 100-bp ladder (Genoplast, Rokocin, Poland); pathovar *morsprunorum* race 1 isolates: 2—LMG 2222, 3—702, 4—710, 5—755, 6—787, 7—782, 8—793, 9—701A; pv. *morsprunorum* race 2 isolates: 10—CFBP 3800, 11—719, 12—733, 13—732, 14—745, 15—764, 16—701; pv. *syringae* isolates: 17—LMG 1247, 18—2905, 19—760; 20—762, 21—702A, 22—757, 23—753, 24—763, 25—M—marker 100-bp PCR Molecular Ruler (Bio-Rad, Hercules, USA)

Fig. 2 Electrophoretic patterns obtained after polymerase chain reaction melting profile (PCR MP) of fluorescent Pseudomonads with primer Taq1:

Lane 1—M—marker 100-bp ladder (Genoplast, Rokocin, Poland); pathovar *morsprunorum* race 1 isolates: 2—LMG 2222, 3—25b, 4—28a, 5—107, 6—201, 7—701A, 8—755, 9—771; pv. *morsprunorum* race 2 isolates: 10—CFBP 3800, 11—77, 12—701, 13—732, 14—733, 15—745, 16—764; pv. *syringae* isolates: 17—LMG 1247, 18—2905, 19—68; 20—110, 21—141, 22—286, 23—415, 24—763, 25—M—marker 100-bp PCR Molecular Ruler (Bio-Rad, Hercules, USA)
Design of SCAR primers

The nucleotide sequences obtained for the \(Psm_1 \) and \(Psm_2 \) fragments were used to design different SCAR primers. After validation, the most specific primers for conventional and real-time PCR were selected (Table 3). A BLAST analysis of selected primer sequences showed no similarity to any bacterial sequences in GenBank.

Dot blot hybridisation

The dot blot results confirmed the high specificity of the selected markers towards the target pathogens. Using probe Psm1, positive hybridisation results (dark dots) were observed with all tested Psm1 strains, and no unspecific hybridisation was observed with DNA from any non-Psm1 pseudomonads. Similarly, probe Psm2 was exclusively specific for the tested Psm2 strains. Additionally, the hybridisation results showed that the selected DNA regions were present in all their respective target strains, confirming their stability (Fig. 3).

Specificity of designed primers and usefulness in detection in plant material

The PCR assays using DNA from all tested \(P. syringae \) strains including reference strains (Table 1), as well as DNA from strains of other species within the \(Pseudomonas \) genus (Table 2), showed that all the designed primers were specific for their respective taxa. PCR assays using primers Psm1-6F/6R and Psm1-1F-RT/1R-RT, specific for Psm1, successfully amplified the expected PCR products 793 bp (Fig. 4) and 101 bp (Fig. 5), respectively, using DNA from all strains of Psm1. No amplification was observed when DNA from strains identified as Psm2 or Pss and strains of atypical taxa were used. Amplification using primers Psm2-8F/8R and Psm2-1F-RT/1R-RT, designed for detection of Psm2, was achieved with DNA from all strains of Psm2, resulting in PCR products of expected lengths of 410 bp (Fig. 6) and 104 bp, respectively. No increase in fluorescence was observed with DNA from Psm1 or Pss and strains of atypical taxa. The melting curves of the reaction products obtained from real-time PCR revealed a single peak with a melting temperature of 80 °C or 77 °C for Psm1 and Psm2, respectively. Also, neither unexpected nor additional peaks in the product melting curves were observed, which clearly excluded possibilities or tendency of the primers to form dimers. Moreover, none of the four tested primer pairs amplified the DNA of 79 strains of other pathovars of \(P. syringae \) and other species (Table 2).

The usefulness of the designed primers for detection of Psm1 and Psm2 strains in plant material was assessed with PCR assays using DNA extracted from a mixture of plant tissues and a suspension of target bacteria. The results confirmed the specificity of selected primer-pairs since positive amplification was achieved in mingled samples, while no nonspecific amplification was observed in samples without bacteria addition. Additionally, these assays showed that the proposed PCR detection methodology was not affected by potential inhibitors present in plant samples.

Limit of detection of \(P. syringae \) pv. morsprunorum for conventional and real-time PCR

Both tested primer pairs designed for conventional PCR allowed for the detection of \(10^0 \) cfu/reaction of Psm1 and \(10^1 \) Psm2 in pure culture. Regarding the presence of bacteria in different organs of sweet and sour cherries, it was possible to detect \(10^0 \) and \(10^1 \) cfu/reaction for sweet cherry leaves and shoots, respectively, using the Psm1-specific primers and \(10^2 \) cfu/reaction for sour cherry leaves and shoots using the Psm2-

Table 3	Primers specific for strains of Psm1 and Psm2		
Primer name	Primer sequence	\(T_m \)	Product length
Conventional PCR			
Psm1-6F	5′-TGTTCCCGGCCATCCAATA-3′	51.1 °C	793 bp
Psm1-6R	5′-ATCCGCATCAGTCAAAATAGTCAT-3′	52.3 °C	
Psm2-8F	5′-CTTTTATAGATGGTAGGTTTGTGTA-3′	50.6 °C	410 bp
Psm2-8R	5′-ACTTTCGGA TTCA TCGTTTTCTA-3′	49.2 °C	
Real-time PCR			
Psm1-1F-RT	5′-TCCCCGCCATCAAATCTTAC-3′	57.1 °C	101 bp
Psm1-1R-RT	5′-ACGGTCATCGTGCTCTGTTCA-3′	51.1 °C	
Psm2-1F-RT	5′-GGTTGGCTTCTTTTCCTAG-3′	48 °C	104 bp
Psm2-1R-RT	5′-ATTGCATTACTTTTGTGC-3′	46.5 °C	

F forward primer, R reverse primer, RT real-time, \(T_m \) melting temperature
specific primers. The sensitivity (LOD, limit of detection) of the detection in the conventional PCR assay was ~4 pg for Psm1 strain 199 and ~5 pg for Psm2 strain 745 when aliquots of serial 2-fold dilutions of purified DNA were used which corresponds to the order of magnitude ~10^1–10^2 cfu/reaction.

Both tested primer pairs designed for Psm1 and Psm2 strains using real-time PCR allowed the detection of 10^6 cfu/reaction of Psm1 or Psm2 in pure culture and in plant material. Only the expected products and a single peak with melting temperature were obtained. Standard curves using template DNA from bacterial suspensions, DNA from plant material with additions of bacterial suspensions and bacterial gDNA showed high amplification efficiency and linearity of the data (Table 4). An exception occurred for the products obtained from shoots of sweet cherry with additions of bacterial suspensions of Psm1. Although linearity was quite good, the noted efficiency of 83 % was not in the range considered acceptable (90–110 %). Moreover, the efficiency obtained for the mixture of shoots of sour cherry and Psm2 suspension when testing with primers for Psm2 was also lower compared to DNA template from sour cherry leaves and bacterial suspension alone. The sensitivity (LOD) of the detection in the real-time PCR assay when using gDNA ranged from ~30 to 100 fg for Psm1 strain 199 and ~10 to 50 fg for Psm2 strain 745 when 1.0-μl aliquots of serial 2-fold dilutions of
purified DNA were used which corresponds to the order
of magnitude \(\sim 10^0 \) cfu/reaction (Table 4).

Discussion

In this study, the methods and tools enabling the rapid and highly specific identification and detection of bacterial canker causal agent \textit{P. syringae pv. morsprunorum} races 1 and 2 were developed. The methods based on the use of specific primers designed for conventional and real-time PCR allow in routine testing for omitting the application of often time-consuming methods of classical microbiology, fingerprinting methods or housekeeping gene sequence analysis used until now by other authors (Vicente and Roberts 2007; Gilbert et al. 2009). Of course in critical cases (i.e. first reports, claims, etc.) these other methods are still indispensable. Our newly developed
methods and tools are very useful and invaluable in both epidemiological studies and in development of protection programmes for stone fruits against bacterial canker.

Using the genetic fingerprinting PCR MP method, we demonstrated the diversity of *P. syringae* strains, which was very important in the selection of specific DNA fragments for two races of *P. syringae pv. morsprunorum*. Based on the obtained nucleotide sequences of these fragments, *Psm1* and *Psm2*-specific SCAR primers were designed. The specificity of the designed primers for *Psm* and amplified regions was confirmed by BLAST, since the fragments did not show (at present) any significant similarity hits within the NCBI database. Due to the high electrophoretic profile heterogeneity obtained for *Pss* strains arising from their high genetic diversity confirmed already by other authors (Vicente and Roberts 2007; Gilbert et al. 2009; Kalużna et al. 2010a, b), it was not possible to find a common DNA fragment for all strains belonging to this taxon.

Commonly used methods for designing SCAR primers include rep-PCR (repetitive PCR) (Sangdee et al. 2013), randomly amplified polymorphic DNA (RAPD) (Liu et al. 2012; Cheng et al. 2015), amplified fragment length polymorphism (AFLP) (Zhang et al. 2012), PCR with universal rice primers (URP-PCR) (Lim et al. 2009) and intersimple sequence repeat (ISSR) (Giag Merlera et al. 2015). Although the PCR MP method was described so far as helpful in the study of genetic diversity of bacteria and yeast (Leibner-Ciszak et al. 2010; Kalużna et al. 2010b, 2014; Zasada et al. 2014), it has not been previously reported to be used for the selection of SCAR markers. In this work, the PCR MP is for the first time used for the design of SCAR primers specific for detection of plant pathogenic bacteria.

The results obtained in this study showed that the designed SCAR primers can be applied for specific, direct detection of strains belonging to *Psm1* or *Psm2*, both in pure culture and infected plant material. Their specificity was confirmed by PCR, using DNA from several *Pseudomonas* spp. strains, which showed that positive amplification occurred only with DNA of the targeted taxa strains. This is especially significant in the case of strains of atypical taxa and pathovars of *P. syringae* (i.e. *pv. syringae* and *pv. avii*, which also infect cherry (Ménard et al. 2003; Renike et al. 2008)) to exclude that symptoms are connected to another taxa/pathogen or to abiotic factors. Importantly, when testing the developed primers in conventional PCR, using DNA isolated from a mixture of plant material and bacteria of *Psm1* or *Psm2*, the suppression of amplification by potential plant inhibitors like polyphenols and pesticide residues, as reported by Płużawska et al. (1997), was not found. Additionally, for DNA from the asymptomatic plant material without addition of bacterial DNA, no positive amplification was observed. This means that the designed primers did not react with DNA of potential bacteria naturally inhabiting the plant material, which is essential to prevent false-positive diagnostic results. However, in the case of real-time PCR, which is the more sensitive method, some effects of plant material were noted. Although standard curves using different template DNA showed the high amplification efficiency and linearity of the data for the majority of DNA tested, for shoots of sweet cherry with additions of bacterial suspensions the efficiency was below the range considered acceptable, indicating higher dilution of those templates than expected. Also, a decrease of efficiency (Table 4) in the case of sour cherry shoots was observed. The results therefore may indicate the influence of shoots for more sensitive real-time PCR reactions.

Table 4

Template	E (%)\(^a\)	R2 \(^b\)	Slope \(^c\)	Y = int \(^d\)
Psm1 (DNA from bacterial suspension)	103	0.998	-3.252	35.445
Psm1+sweet cherry leaves	99.7	0.965	-3.28	36.551
Psm1+sweet cherry shoots	83.0	0.989	-3.810	43.932
Psm1 gDNA	99.2	0.997	-3.342	18.425
Psm2 (DNA from bacterial suspension)	99.8	0.995	-3.326	33.093
Psm2+sour cherry leaves	99.3	0.999	-3.338	32.451
Psm2+sour cherry shoots	91.4	0.994	-3.548	35.130
Psm2 g DNA	99.2	0.991	-3.342	17.805

\(^a\) E = PCR efficiency; ideally the efficiency should be 100 %, meaning that for each cycle the amount of product doubles; high/acceptable amplification efficiency (90–110 %). Efficiency = 10\(^{-\text{R2}}\) \times \text{slope} + 1

\(^b\) R2 is a measure of data linearity amongst technical replicates of serial dilutions; indicates how good one value is in predicting another; R2 = 1 is perfect

\(^c\) The slope of the log-linear phase of the amplification reaction is a measure of reaction efficiency. To obtain accurate and reproducible results, reactions should have an efficiency as close to 100 % as possible, equivalent to a slope of -3.32

\(^d\) Y = int represents the value of Ct where the curve crosses the y-axis
The designing of primers for both systems, conventional and real-time PCR, makes the developed diagnosis system more accessible to a wider group of researchers, as many laboratories do not have access to special equipment or specialised personnel to perform the real-time PCR or have less funds. However, as described, the real-time PCR procedure is much faster (whole reaction with melting curve analysis is about 1 h from the beginning with SsoAdvanced SYBR Green Supermix); it allows the use of DNA quickly extracted from pure culture by the boiling method, without loss of detection resolution, and also excludes additional time-consuming post-PCR processes (i.e. agarose gel electrophoresis). Therefore, using this technique, it is possible to obtain a very fast response about the causal agent of the disease. However, it should be noted that this system is highly sensitive and that false-positive results can occur. The risk of false-positive results due to cross-contamination during preparation of the PCR can be minimised by using negative controls and high discipline during work (e.g., application of tips with filters during the DNA isolation step). Additionally, positive results obtained during those of the final PCR cycles should be treated as suspect only, for which additional, more detailed investigations should be conducted. Moreover, during all the assays the melting curve analysis is recommended to exclude nonspecific amplicons (as a consequence of which are visible in each run as the rest of the analysed specific ones). Dot blot hybridisation confirmed that the two selected DNA regions were highly specific for their target genomospecies and stable amongst all tested isolates of either Psm1 or Psm2, which is essential for preventing false-positive and false-negative results, respectively as much as possible.

In summary, when compared with so-far available methods for identification and differentiation of causal agents of stone fruit bacterial canker based on phenotypic characters, fingerprinting methods or MLST, the use of pathovar-specific primers allowed for greatly shortening the time required for diagnosis, while highly increasing assay accuracy and lowering detection limit. Moreover, this PCR-based method is relatively simple and inexpensive, and it does not require the time-consuming step of pre-incubation on microbiological media (Schaad et al. 1995). Even in the presence of potential inhibitors present in plant material, which can affect the limit of detection, we could detect 1 and 3×10^2 cfu/reaction using primers specific for Psm1 and Psm2 in conventional PCR. A similar detection sensitivity in conventional PCR was obtained by other authors in their identification systems for other phytopathogens (Catara et al. 2000; Kerkoud et al. 2002; Biondi et al. 2013). The sensitivity of real-time PCR was higher than in the case of conventional ones, as 1 cfu/reaction was detected when different templates were used. This is especially important in the case of naturally infected material in the presence of a small amount of pathogen DNA, which be detected in a very short time. The limit of detection when using gDNA was in the range from ~4–5 pg in conventional and ~10–100 fg in real-time PCR for both taxa, which are similar to results obtained for P. syringae pv. actinidiae (Gallelli et al. 2014) and Clavibacter michiganensis subsp. sepedonicus (Cho et al. 2015). The high sensitivity of the developed assay (obtained in our hands) will be invaluable for detecting the target bacteria in the early latent period of the disease, allowing growers to undertake appropriate prevention or protection programmes.

Acknowledgments This work was conducted within the framework of COST Action FA1104 and was partially financed by the National Science Centre, Poland, Grant DEC-2013/08/M/NZ9/00138 and by the Polish Ministry of Science and Higher Education Grant No. 118/N-COST/2008/0. The purchase of the strains from CFBP collection was financed by Polish Ministry of Science and Higher Education – special purpose grant for young scientists, decisions no: 210727/E-690/M/2013. Pedro Albuquerque was supported by the project “Genomics Applied to Genetic Resources”, co-financed by the North Portugal Regional Operational Programme 2007/2013 (ON.2 – O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund. The authors would like to thank Mrs. Halina Kijawska for excellent technical help. Authors want to thank Robert W. Jackson (University of Reading, UK); Carolee T. Bull (United States Department of Agriculture Agricultural Research Service, USA); Hiroyuki Sawada (National Institute of Agrobiological Sciences, Japan); Maria Hevesi (Corvinus University of Budapest, Hungary); Jaap. D. Janse (Department Laboratory Methods and Diagnostics Dutch General Inspection Service (NAK), The Netherlands); Andjelka Prokić and Aleksa Obradovic (University of Belgrade, Serbia); Olaf Schmidt (University of Hamburg, Germany); and Klaus Geider (Julius Kühn-Institute, Heidelberg, Germany) for kind supplying of some Pseudomonas strains.

Compliance with ethical standards
Conflict of interest The authors of the paper declare that they have no conflict of interest.

Ethical statement This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References
Agrios GN (2005) Plant diseases caused by prokaryotes: bacteria and mollicutes, chapter 12. In: Agrios GN (ed) Plant Pathology, 5th edn. Elsevier Academic Press, San Diego, USA, p 616–703
Ajmone-Marsan P, Valentini A, Cassandro M, Vecchiotti-Antaldi G, Bertoni G, Kuijper M (1997) AFLP markers for DNA fingerprinting in cattle. Anim Genet 28:418–426
Albuquerque P, Caridade CMR, Marcal ARS, Cruz J, Cruz L, Santos CL, Mendes MV, Tavares F (2011) Novel markers for identification of Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans using a dot blot platform
coupled with automatic data analysis. Appl Environ Microbiol 77:5619–5628
Aljanabi SM, Martinez I (1997) Universal and rapid salt extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402
Berewill S, Bugert P, Volksch B, Ullrich M, Bender CL, Geider K (1994) Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol 60:2924–2930
Biondi E, Galeone A, Kuzmanovic N, Aridzzi S, Luchese C, Bertaccini A (2013) Pseudomonas syringae pv. actinidiae detection in kiwi-fruit plant tissue and bleeding sap. Ann Appl Biol 162:60–70
Bull CT, Manceau C, Lydon J, Kong H, Vinatzer BA, Fischer-Le Saux M (2010) Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. aphisalisen (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999. Syst Appl Microbiol 33:105–115
Bull CT, Clarke CR, Cai R, Vinatzer BA, Jardini TM, Koike ST (2011) Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apiii causing bacterial leaf spot on parsley. Phytopathology 101:847–858
Bulthuys A, Gheyse I (1999) Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Appl Environ Microbiol 65:1904–1909
Bulthuys A, Kalaža M (2010) Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J Plant Pathol 92:91–133
Bulthuys A, Gheyse I, de Hoffmann E (2006) Yersiniabactin production by Pseudomonas syringae and Escherichia coli and description of a second yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:3814–3825
Catara V, Arnold D, Cirvilleri G, Vivian A (2000) Specific oligonucleotide primers for the rapid identification and detection of the agent of tomato pith necrosis, Pseudomonas corrugata, by PCR amplification: evidence for two distinct genomic groups. Eur J Plant Pathol 106:753–762
Cheng J, Long Y, Khan MA, Wei C, Fu S, Fu J (2015) Development and significance of RAPD-SCAR markers for the identification of Litchi chinensis. S. On by improved RAPD amplification and molecular cloning. Electron J Biotechnol 18:35–39
Cho MS, Park DH, Namgung M, AHN T-Y, Park DS (2015) Validation and application of a real-time PCR protocol for the specific detection and quantification of Clavibacter michiganensis subsp. sepedonicus in potato. Plant Pathol J 31:123–131
Gallelli A, Talocci S, Pilotti M, Loresi S (2014) Real-time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker. Plant Pathol 63:264–276
Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478
Giaj Merlera G, Muñoz S, Coelho I, Cavagneri LR, Torres AM, Reynoso MM (2015) Diversity of black Aspergillus isolated from raisins in Argentina: polyphasic approach to species identification and development of SCAR markers for Aspergillus ibicicus. Int J Food Microbiol 210:92–101
Gilbert V, Legros F, Marait H, Bultrey A (2009) Genetic analyses of Pseudomonas syringae isolates from Belgian fruit orchards reveal genetic variability and isolate-host relationships within the pathovar syringae, and help identify both races of the pathovar morsprunorum. Eur J Plant Pathol 124:199–218
Kalužna M, Ferrante P, Sobiczewski P, Scortichini M (2010a) Characterization and genetic diversity of Pseudomonas syringae isolates from stone fruits and hazelnut using repetitive-PCR and MLST. J Plant Pathol 92:781–787
Kalužna M, Puławska J, Sobiczewski P (2010b) The use of PCR melting profile for typing of Pseudomonas syringae isolates from stone fruit trees. Eur J Plant Pathol 126:437–443
Kalužna M, Janse JD, Young JM (2012) Detection and identification methods and new tests as used and developed in the framework of COST 873 for bacteria pathogenic to stone fruits and nuts Pseudomonas syringae pathovars. J Plant Pathol 94:S1.117–S1.126
Kalužna M, Puławska J, Walenon M, Sobiczewski P (2014) The genetic characterization of Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight in Poland. Plant Pathol 63:1404–1416
Kerkoud M, Manceau C, Paulin JP (2002) Rapid diagnosis of Pseudomonas syringae pv. papulans, the causal agent of blight spot of apple, by polymerase chain reaction using specifically designed hrpL gene primers. Phytopathology 92:1077–1083
King EO, Raney MK, Ward DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307
Lattore BA, Jones AL (1979) Ligation mediated PCR performed at high temperature. J Bacteriol 138:351–355
Lim SH, Kim JG, Kang HW (2009) Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiol Res 164:451–460
Liu Y, Li S, Zhu T, Shao B (2012) Specific DNA markers for detection of bacterial canker of kiwifruit in Sichuan, China. Afr J Microbiol Res 6:7512–7519
López M, Roselló M, Palacio-Bielas A (2010) Diagnosis and detection of the main bacterial pathogens of stone fruit and almond. J Plant Pathol 92:S1.57–S1.66
Lelliott RA, Billing E, Hayward AC (1996) A determinative scheme for the fluorescent plant pathogenic Pseudomonads. J Appl Bacteriol 92:470–489
Lim SH, Kim JG, Kang HW (2009) Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiol Res 164:451–460
Liu Y, Li S, Zhu T, Shao B (2012) Specific DNA markers for detection of bacterial canker of kiwifruit in Sichuan, China. Afr J Microbiol Res 6:7512–7519
López M, Roselló M, Palacio-Bielas A (2010) Diagnosis and detection of the main bacterial pathogens of stone fruit and almond. J Plant Pathol 92:S1.57–S1.66
Masny A, Pluchenczyk A (2003) Ligation mediated PCR performed at low denaturation temperatures-PCR melting profiles. Nucl Acids Res 31(18), e114
Ménard M, Sutra L, Luissetti J, Prunier JP, Gardan L (2003) Pseudomonas syringae pv. avii (pv. nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France. Eur J Plant Pathol 109:565–576
Puławska J, Maes M, Deckers T, Sobiczewski P (1997) The influence of pesticide contamination on detection of epiphytic Erwinia amylovora using PCR. Meded Fac Landbouwkd Toegep Biol Wet Univ Gent 62:959–962
Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66
Renick LJ, Cogal AG, Sundin GW (2008) Phenotypic and genetic analysis of epiphytic Pseudomonas syringae populations from sweet cherry in Michigan. Plant Dis 92:372–378
Sangdee A, Natphosuk S, Srisathan A, Sangdee K (2013) Development of SCAR primers based on a repetitive DNA
fingerprint for *Escherichia coli* detection. J Microbiol 51:31–35
Saniewski M, Ueda J, Miyamoto K, Horbowicz M, Puchalski J (2006) Hormonal control of gummosis in Rosaceae. J Fruit Ornament Plant Res 14:137–144
Schaad NW, Cheong SS, Tamaki E, Hatziloukas E, Panopoulos NJ (1995) A combined biological and enzymatic amplification (BIOPCR) technique to detect *Pseudomonas syringae* pv. *phaseolicola* in bean seed extracts. Phytopathology 85:243–248
Schmidt O, Dujesiefken D, Stobbe H, Moreth U, Kehr R, Schröder T (2008) *Pseudomonas syringae* pv. *aesculi* associated with horse chestnut bleeding canker in Germany. For Pathol 38:124–128
Sorensen KN, Kim K-H, Takemoto JY (1998) PCR Detection of cyclic lipodepsinonapeptide-producing *Pseudomonas syringae* pv. *syringae* and similarity of strains. Appl Environ Microbiol 64:226–230
Suslow TV, Schrooth MN, Isaka M (1982) Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918
Ullrich M, Bereswill S, Volksch B, Fritsche W, Geider K (1993) Molecular characterization of field isolates of *Pseudomonas syringae* pv. *syringae* differing in coronatine production. J Gen Microbiol 139:1927–1937
Vicente JG, Roberts SJ (2007) Discrimination of *Pseudomonas syringae* isolates from sweet and wild cherry using rep-PCR. Eur J Plant Pathol 117:383–392
Vicente JG, Alves JP, Russell K, Roberts SJ (2004) Identification and discrimination of isolates from wild cherry in England. Eur J Plant Pathol 110:337–351
Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321
Weingart H, Völksch B (1997) Genetic fingerprinting of *Pseudomonas syringae* pathovars using ERIC-, REP-, and IS50-PCR. J Phytopathol 145:339–345
Young JM (2010) Taxonomy of *Pseudomonas syringae*. J Plant Pathol 92:5–14
Zasada AA, Formińska K, Wolkowicz T, Badell E, Guiso N (2014) The utility of the PCR melting profile technique for typing *Corynebacterium diphtheriae* isolates. Lett Appl Microbiol 59:292–298
Zhang M, Chen WQ, Liu D, Liu TG, Gao L, Shu K (2012) Identification of a specific SCAR marker for detection of *Tilletia foetida* (Wall) Liro pathogen of wheat. Russ J Genet 48:663–666