REVIEW

562 Sudden cardiac death in patients with rheumatoid arthritis
Masoud S, Lim PB, Kitas GD, Panoulas V

MINIREVIEWS

574 Vascular complications of transcatheter aortic valve replacement: A concise literature review
Chaudhry MA, Sardar MR

583 Peripheral interventions and antiplatelet therapy: Role in current practice
Singh P, Harper Y, Oliphant CS, Morsy M, Skelton M, Askari R, Khouzam RN

594 Is Entresto good for the brain?
Patel N, Gluck J

600 Cardiac and pericardial tumors: A potential application of positron emission tomography-magnetic resonance imaging
Fathala A, Abozied M, AlSugair AA

SYSTEMATIC REVIEWS

609 Hand dysfunction after transradial artery catheterization for coronary procedures
Ul Haq MA, Rashid M, Kwok CS, Wong CW, Nolan J, Mamas MA

620 Infective endocarditis and thoracic aortic disease: A review on forgotten psychological aspects
Suárez Bagnasco M, Núñez-Gil JJ

CASE REPORT

629 Endovascular treatment of paravisceral mycotic aneurysm: Chimmeny endovascular sealing the end of de road
Rabellino M, Moltini PN, Di Caro VG, Chas JG, Marenchino R, Garcia-Monaco RD

634 Percutaneous closure of congenital Gerbode defect using Nit-Occlud® Lê VSD coil
Phan QT, Kim SW, Nguyen HL
AIM AND SCOPE

World Journal of Cardiology (WJC) is a peer-reviewed open access journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJC covers topics concerning arrhythmia, heart failure, vascular disease, stroke, hypertension, prevention and epidemiology, dyslipidemia and metabolic disorders, cardiac imaging, pediatrics, nursing, and health promotion. Priority publication will be given to articles concerning diagnosis and treatment of cardiology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJC. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.
Is Entresto good for the brain?

Nirav Patel, Jason Gluck

Nirav Patel, Jason Gluck, Department of Cardiology, University of Connecticut, Harford Hospital, Hartford, CT 06102, United States

Author contributions: Patel N made substantial contributions to conception and design and writing the manuscript; Gluck J participated drafting the manuscript and revising it critically for important intellectual content; Gluck J was also involved in editing the content; Patel N and Gluck J gave final approval of the submitted content as well as the revised content.

Conflict-of-interest statement: None.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Nirav Patel, MD, Department of Cardiology, University of Connecticut, Harford Hospital, 80 Seymour Street, Hartford, CT 06102, United States. nirav.patel@hhchealth.org
Telephone: +1-860-9721793
Fax: +1-860-5453422

Received: March 13, 2017
Peer-review started: March 14, 2017
First decision: April 14, 2017
Revised: May 19, 2017
Accepted: May 22, 2017
Article in press: May 24, 2017
Published online: July 26, 2017

Abstract

The main stay pharmacotherapy for heart failure (HF) is targeted towards rennin-angiotensin-aldosterone (RAAS) and nepriylisin pathways (NP). Both therapeutic strategies decreases morbidity and mortality but also carry considerable adverse effects. This review of the literature highlights the new generation of HF drug, sacubitril-valsartan (SV), trade name Entresto (researched as LCZ696, Novartis) which simultaneously blocks RAAS and NP. This dual action of angiotensin receptors blocker and nepriylisin inhibitor (NPi) has improved HF prognosis and it is an evolution in the management of HF. Although the initial follow-up of patients treated with SV has yielded promising results, there are concerns regarding potential side effects especially an increase in the risk of Alzheimer’s disease (AD) and young onset of AD. NPi interferes with the breakdown and clearing of beta-amyloid peptides, the plaques seen in AD, raising concern for AD in SV patients. On the other hand, hypertension and cardiovascular diseases are established risk factors for AD which can be decreased by SV therapy. It is therefore essential that SV treated patients are followed up over an extended period of time to detect any adverse cognitive changes.

Key words: Heart failure; Sacubitril-valsartan; Entresto; LCZ696; Nepriylisin inhibitor; Alzheimer’s disease

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We are discussing an innovative and exciting new treatment for heart failure (HF). This advance in pharmacotherapy has shown promising results and is rapidly incorporating into standard medical therapy for HF. There is, however, a theoretical concern for cognitive dysfunction and early onset Alzheimer's disease particularly in the young. This review informs clinicians of the mechanism and potential for cognitive dysfunction, thereby increasing awareness and promoting informed prescribing.

Patel N, Gluck J. Is Entresto good for the brain? World J Cardiol 2017; 9(7): 594-599. Available from: URL: http://www.wjgnet.com/1949-8462/full/v9/i7/594.htm DOI: http://dx.doi.org/10.4330/wjc.v9.i7.594
INTRODUCTION

Heart failure (HF) is typified by the reduced ability of the heart to deliver an adequate supply of blood and oxygen to the tissues. Its causes are numerous including ischemic heart disease, diabetes, hypertension, cigarette smoking, obesity and valvular heart disease. Over 5 million individuals worldwide suffer from HF and its incidence is rising with 550000 new diagnoses annually. With a steadily aging population, HF incidence is projected to increase to 46% by the year 2030. HF is associated with increased morbidity, mortality and cost.

HF occurring due to depressed left ventricular function [ejection fraction (EF) ≤ 40%] is known as HF with reduced EF (HFrEF). Pharmacological intervention for HF largely depended on angiotensin inhibitors such as angiotensin receptor blockers (ARBs) and angiotensin converter enzyme inhibitors (ACEi). Recently, a new strategy using a Neprilysin inhibitor (NIs) and recombinant natriuretic peptides was proven as a therapeutic option to target HF pathophysiology. The new generation of HF pharmacotherapy entails the simultaneous inhibition of both the angiotensin and Neprilysin pathways, the latest version of which is Entresto® - the combination of sacubitril and valsartan (SV) (researched as LCZ696). In this concise review, we highlight the mechanisms of SV activity, the results of the successful clinical trial and the potential adverse effects, highlighting those on cognitive function.

METHODS

The search for the relevant articles was conducted on Medline. The following terms “Entresto”, “neprilysin inhibitors”, “angiotensin inhibitors”, “dementia” and “Alzheimer’s Disease” “cognitive impairment” were searched in different combinations. The search was limited to articles in English language but no search filters were used for timeline and subjects.

INCLUSION CRITERIA

Articles that met our following inclusion criteria were included in this review: (1) discussed pathophysiology of HF and target pharmacotherapy mechanism; (2) discussed pathophysiology of development of AD; (3) ongoing trials of Entresto; (4) reported link between neprilysin inhibitors and development of AD; and (5) articles that were published full and in English language.

PATHOPHYSIOLOGY OF HF

The pathophysiology of HFrEF results mainly from the activation of the renin-angiotensin-aldosterone (RAAS) neuro-hormonal compensatory mechanism. Although the peripheral vasoconstriction initiated by the RAAS mechanism maintains blood pressure and cardiac output for a short time, sustained activation of RAAS leads to ventricular hypertrophy, hypertension and angioedema, ultimately worsening myocardial dysfunction. A second compensatory mechanism, the natriuretic peptide (NP) system, counteracts the vasoconstrictive and sodium/water retentive effects of the RAAS system.

GOALS OF PHARMACOTHERAPY

The initial HF pharmacotherapy targeted the RAAS circuit using ARBs, ACEi, beta-blockers, diuretics and aldosterone inhibitors. All of these drugs have proven to be effective in lowering the morbidity and mortality in HFrEF. The NP system consists of four related peptides (Atrial, Brain, C-Type, and Dendroaspis NP) and a membrane bound peptidase called Neprilysin that degrades these vasoactive peptides. NP system targeting drugs have included a recombinant form of BNP (Nesiritide) as well as NIs, e.g., candesartan, rececodotril, etc. HF pharmacotherapy targeting the NP system and the respective clinical trials are summarized in Table 1. Although strategies blocking either of these two pathways have reduced mortality and morbidity in HFrEF, the prognosis still remains poor due to long term ineffectiveness of the drugs as well as adverse physiological effects.

The newest strategy in HFrEF pharmaco-intervention is the combination of ARB and NI (ARNI) that causes a dual inhibition of the RAAS pathway and Neprilysin: The prototype drug was LCZ696, which is made up of 1:1 ratio of the ARB valsartan and the NI sacubitril (AHU 377). The action of SV is multimodal. Sacubitril is a pro-drug which is activates to Sacubitrilat (LBQ657), the active metabolite that inhibits NP while valsartan simultaneously blocks the angiotensin receptor. The dual action of Sacubitril and valsartan augment the beneficial actions of the NPs and inhibits the deleterious effects of the RAAS system. The PARADIGM-HF trial was conducted by McMurray et al. to determine the efficacy of SV compared to the ACE inhibitor Enalapril, which improves mortality and morbidity. The median follow-up duration was 27 mo and SV reduced HF related symptoms and overall survival by 20%. Additionally, the ARNI approach avoids the common side-effects of ACEi such as cough and angioedema that result from impaired degradation and elevated levels of bradykinin. In the ONTARGET trial, ARBs were documented to result in a lower rate of cough and angioedema compared to ACEi: Therefore, combination therapy prefers ARBs over ACEi.

The United States Food and Drug Administration had approved SV for clinical use and at present it is produced under the name of Entresto® by Novartis. The recommended dose of Entresto is 49 mg sacubitril/51 mg valsartan twice daily increased to 97 mg sacubitril/103 mg valsartan after 2-4 wk. It is contraindicated in patients with history of angioedema, hypotension, hyperkalemia or renal dysfunction and in pregnant women due to fetal toxicity. In the
PARADIGM-HF trial, 10.7% of the patients reported at least one of the following adverse effects: hypotension, renal failure, hyperkalemia, fatigue, and dizziness.

In clinical practice, approximately 50% of the HF patients have a preserved left ventricular ejection fraction (HFpEF) and present with similar morbidity and mortality as seen in patients with HFrEF. Sacubitril/valsartan is validated in HFrEF but is being evaluated for HFpEF in the PARAMOUNT-HF (The Prospective comparison of ARNI with ARB on Management of Heart Failure with Preserved Ejection Fraction) trial. Patients who treated with sacubitril/valsartan showed a reduction in NYHA class and left atrial volumes. At present, the PARAGON-HF trial is ongoing comparing the effects of sacubitril/valsartan versus valsartan in the HFpEF patients.

NEPRILYSIN INHIBITORS AND ALZHEIMER’S DISEASE

An interesting facet of the use of NIs in the treatment of cardiovascular diseases is their potential role in the development or progression of Alzheimer’s disease (AD), as there is considerable overlap between the populations suffering from HF and AD. The hallmark of AD is the accumulation of beta amyloid (Aβ) peptide in the brain causing neurotoxic plaques that are supposedly responsible for the pathology of AD. Under normal physiological conditions, the Aβ peptide is degraded by proteases such as ACE, NP and insulin degrading enzyme. NP has a broad range of substrates apart from the NPs such as bradykinin, enkephalins as well as the Aβ peptide. Additionally, patients with AD have lower expression of NP compared to healthy subjects, and NP deficient mice develop the murine form of AD. This possible correlation was further highlighted when intracerebral infusion of NPI lead to the development of AD-like lesions in rabbits. Lastly, certain polymorphisms in the NP gene (NEP) were associated with a higher propensity for AD in a Finnish cohort. Therefore, NP is as much a pharmaceutical target for the treatment of AD as for HF, except that the strategies are opposite for both pathologies (Figure 1). Indeed, NP centered therapies have been developed independently for AD and tested at the pre-clinical levels. CNS targeted recombinant human NP was able to reduce Aβ peptide toxicity in the mouse model of AD.

ENTRESTO® AND ALZHEIMER’S DISEASE

Clinicians should be aware of the possible inhibitory action of SV in the clearing of Aβ peptide while considering it for HF treatment. In patients who are at the risk of developing AD, whether due to age or genetic predisposition, the chronic exposure to SV may accelerate the clinical onset of the disease. Critical to this hypothesis is the ability of SV to cross the blood brain barrier in order to block brain NP. There is evidence that certain NIs like S-acetylthiorphan can cross the BBB while some like candoxatril cannot. Both Sacubitril and its active metabolite LBQ657 are under the threshold size of 400 kD which makes them fit to cross the BBB. It is noteworthy that the PARADIGM-HF trial had excluded patients with AD and did not include any cognitive function tests to evaluate drug safety. McMurray et al. have confirmed some correlation between EN treatment and Aβ peptide levels in a recent review article. While cynomolgus monkeys treated with SV had increased levels of Aβ peptide in the CSF, the healthy volunteers treated with EN for two weeks had no change in Aβ peptide levels. McMurray et al. showed that the dementia and cognitive defects were not increased in the EN treated patients during the trial. However, it should be noted that the earliest symptoms of AD can take as long as 8-10 years to manifest. If there is a correlation between EN therapy and AD, one would predict an earlier onset of symptoms.

It is therefore imperative that patients on SV are followed up for cognitive abilities and potentially
evaluated for AD. One can consider cerebrospinal fluid (CSF) analysis for βA peptide levels and amyloid plaques through PET scans if early signs of dementia ensue. In the ongoing PARAGON-HF trial, AD patients have not been excluded and serial cognitive tests have also been included as part of initial follow-up.

Another concern is that the proportion of HF patients younger than 40 years old is increasing. Younger patient’s receiving SV have the potential for a longer term exposure and the consequent potential for increased risk of young onset Alzheimer’s disease (YOAD) is noteworthy. YOAD is described in subjects less than 65 years of age and has a more rapid progression than the typical late onset Alzheimer’s.

Interestingly, one can also describe SV as having protective effect against AD since hypertension and cardiovascular diseases are established risk factors for AD, is decreased by SV therapy. ACEi or ARBs have also been shown to decrease in dementia and other symptoms of AD through reducing hypertension and cardiovascular disease. It will be interesting to follow the neuro-cognitive outcomes from PARAGON-HF trial.

CONCLUSION

Clinicians should be aware of the potential adverse effects of SV and make informed decisions in prescribing SV, particularly to patients with existing neurodegenerative diseases or the very young. As there are no definitive answers yet about the long term effects of SV, we await the results from PARAGON-HF and reports to follow with interest. Patients who are currently receiving SV treatment should be well monitored for potential adverse events with particular attention to dementia. A low threshold for testing for AD if/when dementia symptoms occur seems warranted. More study on the implications for young HF patients is warranted.

REFERENCES

1. American Heart Association. Classes of heart failure. [updated 2015 Apr 23]. Available from: URL: http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-Failure_UCM_306328_Article.jsp

2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, Matchar DB, Mozaffarian D, Mozaffarian D, Mozaffarian D, Mozaffarian D. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015; 131: e29-322 [PMID: 25520374 DOI: 10.1161/CIR.0000000000000152]

3. Mayo Clinic staff. Diseases and conditions: heart failure. [accessed 2015 Jan 17]. Available from: URL: https://www.mayoclinic.org/diseases/conditions/heart-failure/basics/definition/con-20029801

4. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McGurie JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai ET, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128: 1810-1852 [PMID: 23741057 DOI: 10.1161/CIR.0b013e31829e8807]

5. Singh JS, Lang CC. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond. Vasc Health Risk
Effects of UK 69 578: a novel atriopeptidase inhibitor.

Patel N et al. Entrace and brain
Gerard C, Hama E, Lee HJ, Saido TC. Metabolic regulation of neprilysin in high plaque areas of Alzheimer brain: a possible therapeutic for Alzheimer’s disease. C. Engineering neprilysin activity and specificity to create a novel therapeutic split? A review of the literature. PLoS One 2011; 6: e16575 [PMID: 21304989 DOI: 10.1371/journal.pone.0016575]

Lecomte JM, Costentin J, Valicuacescu A, Chaillet P, Marcai-Collado H, Llorens-Cortes C, Leboyer M, Schwartz JC. Pharmacological properties of acorphan, a parenterally active enkephalinase inhibitor. J Pharmacol Exp Ther 1986; 237: 937-944 [PMID: 3519939]

Becker M, Siems WE, Kluge R, Gembardt F, Schultheiss HP, Rockenstein E, Verma IM, Masliah E. Peripheral delivery of a CNS targeted, metalo-protease reduces α7 toxicity in a mouse model of Alzheimer’s disease. PLoS One 2011; 6: e16575 [PMID: 21304989 DOI: 10.1371/journal.pone.0016575]

Byrd JB, Adam A, Brown NJ. Angiotensin-converting enzyme inhibitor-associated angioedema. Immuno Allergy Clin North Am 2006; 26: 725-737 [PMID: 17085297 DOI: 10.1016/j.iac.2006.08.001]

Yusuf S, Teo KK, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008; 358: 1547-1559 [PMID: 18378520 DOI: 10.1056/NEJMoa0801317]

Novartis. Novartis’ new heart failure medicine LCZ696, now called Entresto, approved by FDA to reduce risk of cardiovascular death and heart failure hospitalization. Press release. [released 2015 July 8]. Available from: URL: http://www.novartis.com/news/media-releases/novartis-new-heart-failure-medicine-lc696-now-called-entresto-00f756c620af-df4b-8f0b-9f8f-5c5c1216991d.approvedda.

Entresto (sacubitril and valsartan) tablets [prescribing information]. East Hanover, NJ: Novartis; July 2015. Available from: URL: https://www.entrestohcp.com/dosing

Cermakova P, Burrell M, Olsson LL, Fowler SB, Digby S, Sandercock P, Song XX. Effects of enalapril on mortality and heart failure hospitalization. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429-1435 [PMID: 2883575 DOI: 10.1056/NEJM198706043162301]

Novel therapies for Alzheimer’s disease. Eur J Intern Med 2009; 20: 406-425 [PMID: 25041352 DOI: 10.1016/j.ejim.2009.04.009]

Alternatively, the authors do not provide specific references for the sentences they mention. Their statements are not cited from any particular source, which is a notable oversight since the context appears to be based on previous research findings.
