Review

Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes

Konstantin I. Galkin 1,2 and Valentine P. Ananikov 1,*

Abstract: A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as “platform chemicals” that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a “green” process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.

Keywords: biobased furans; renewable building blocks; plant biomass; Diels-Alder cycloaddition; selectivity; sustainable chemistry; biorefining

1. Introduction

To date, the development of efficient technologies for catalytic or biocatalytic conversion of renewable plant biomass into viable targeted products remains one of the most important and challenging tasks for modern chemical science [1–5]. The primary advantage of biorefining based on renewable carbon sources over traditional refining using exhaustible resources is the realization of a carbon-neutral cycle, leading to zero total carbon emissions into the environment during chemical production and consumption. Biobased furans—furfural (FF) and 5-(hydroxymethyl)furfural (HMF)—can be obtained by acid-catalyzed dehydration of carbohydrates and are recognized as “platform chemicals”. As expected, the key role of biobased technologies is to replace the key existing products of oil-based refinement with renewables [4,6,7]. The tremendous synthetic potential explains the unprecedented scale of research in the fields of synthesis and application of furanic platform chemicals for the production of biofuels, chemicals, polymers and other industrially important products, which was evidenced by the increasing number of relevant publications (partially since 2010, Figure 1) and was highlighted in many recent reviews [7–20].
Figure 1. Number of publications mentioning biobased furans per year. Source: Scopus. Keyword: “furfural”.

One of the focused reactions of furan chemistry is the [4+2]-cycloaddition, well known as the Diels-Alder (DA) reaction, in the classic mechanism based on the interaction of the highest occupied molecular orbital of furanic diene (HOMO$_{\text{diene}}$) and the lowest unoccupied molecular orbital of dienophile (LUMO$_{\text{dienophile}}$). The DA reaction may proceed with high efficiency under solvent-free and/or noncatalytic conditions, representing the ideal example of a “green” process characterized by a 100% atom economy and a low to moderate E-factor [21,22]. Intermolecular furan/alkene DA reactions have a high potential for application in fine organic synthesis, biomedical areas, materials sciences, polymers and bio-organic chemistry (Figure 2) [23–30].

![Diagram of Diels-Alder cycloaddition](image)

Figure 2. Diels-Alder cycloaddition with biobased furans as an approach towards practically important products. Summarizing and analyzing scientific data about the regio- and diastereoselectivity of intermolecular Diels-Alder cycloadditions between furfural derivatives and alkenes was a general aim of this review.

The direct Diels-Alder reaction of FF or HMF with common alkenes is thermodynamically unfavorable [31–33], but this type of cycloaddition can be performed after decreasing the HOMO–LUMO gap through reduction of the aldehyde group into more donor functionality. Another approach is redox-neutral chemical activation through modification of aldehyde into acetal or hydrazone with the possibility of aldehyde deprotection. In general, the nature of the substituent at the C2 position in the furan ring strongly affects reactivity in DA cycloadditions; furans with electron-donating groups are well-suited as substrates, while electron-poor furans display low reactivity [34,35].
In the case of highly active dienophiles, DA adducts may be formed under noncatalytic conditions; for other substrates, catalysis by Lewis acids is usually needed. Reactions of furans with alkene dienophiles are often characterized by facile retro-DA (rDA) reactions due to the low reactivity of furan as a diene that leads to low diastereo- and regioselectivity of the cycloaddition (Scheme 1). The orbital $\text{HOMO}_{\text{diene}}$ and $\text{LUMO}_{\text{dienophile}}$ energy difference seems to control the diastereomer distribution [32,36]. Charge interactions between diene and dienophile favor orthoselectivity, while steric hindrance promotes metaselectivity but without strong kinetic or thermodynamic preference for a single regioisomer [32,37].

Scheme 1. Possible regio- and diastereomers in Diels-Alder cycloaddition of C-2-substituted furans with mono-substituted alkenes.

Information about the selectivity of DA reactions is helpful to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science. The regio- and diastereoselectivity of DA cycloaddition are important parameters for the high-yielding synthesis of chemically pure products, especially in the development of drugs, because diastereomers may exhibit different biological activities [38]. The endo- and exo-DA adducts have different steric properties and convert to furan and alkene components at different temperatures, which may be important in the development of various dynamic systems [39,40]. Moreover, the stereo structure of cyclic alkenes may influence the reactivity in ring-opening metathesis polymerization used for the synthesis of stereoregular polymers [41]. This difference for furan-derived oxanorbornanes was clearly demonstrated by Kilbinger and coworkers. They showed in several examples that furan/maleimide DA adducts react quickly and selectively with the G3 catalyst, resulting in the formation of monomolecular carbene complexes that display low reactivity with the second molecule of oxanorbornane (both endo or exo) due to unfavorable steric factors (Scheme 2a). In contrast, exo-oxanorbornane counterparts undergo efficient homopolymerization under the same reaction conditions (Scheme 2b) [41].

Several approaches may be used to increase the regio- and diastereoselectivity of DA reactions: fine-tuning of steric and electronic properties of dienes or dienophiles; variation of reaction conditions such as temperature, time, type of solvent and pressure; and catalysis by Lewis acids. Generally, for furan/alkene cycloadditions, exo isomers are more stable and form under thermodynamic control of the reaction (at high temperature), while endo isomers are kinetically preferred [36,42–44].
2.1. 2-Methylfuran

2-Methylfuran (2-MF) is the simplest 2-substituted furan produced by the reduction of the aldehyde group in FF. The selectivity of IMDA reactions of 2-MF with common cyclic and acyclic alkenes is presented in Tables 1 and 2. Noncatalytic reactions of 2-MF with maleic or citraconic anhydride led to cycloadducts with exo configurations even at room temperature (Table 1, entries 1–3). The current literature provides scarce information about the selectivity of reactions of 2-MF with maleimides under kinetic conditions. In the case of maleimides reacting with 2-MF at room temperature, the formation of >20% endo isomer was observed (entry 4), while at temperatures more than 60 °C, exclusive formation of the exo isomer was found for most maleimides (Table 1). However, in a water medium for some N-substituted maleimides, the content of endo isomers was higher even under high temperature (entries 8, 10). For N-carboxyethyl maleimide reacting with furan, 2-MF or 2,5-dimethylfuran, the best exoselectivity was obtained in the case of furan, while 2,5-dimethylfuran showed the best endoselectivity under kinetic conditions (entries 16–19) [65]. The cycloadduct of 2-MF with N-phenyl maleimide was isolated in a pure, optically active form with 90% ee using dynamic enantioselective crystallization by continuous suspension in heptane or hexane solution with glass beads at 80 °C in the presence of trifluoroacetic acid (TFA) to accelerate the deracemization (entry 13) [44].
Table 1. IMDA cycloadditions of 2-MF with cyclic alkenes.

№	Dienophile	Conditions	Selectivity	Yield of DA Adducts (%)	[Ref.]
1	X = O	Neat, RT, N₂, 24 h	Exo	91, [66]	
2	X = O	Neat, RT, 10–15 °C, 2–3 h	Exo	96 (crude), [67]	
3	Citraconic anhydride	CH₂Cl₂, RT, 15 kbar	Exo (ortho/meta 1:1)	65 ¹, [68]	
4	X = NH	Et₂O, RT, 3 days	Endo/exo ²	21 (for endo), [69]	
5	X = NH	THF, reflux, 4 h	Exo	94, [70]	
6	X = NMe	Toluene, 90 °C	Exo	92, [71]	
7	X = NMe	Et₂O, 90 °C	Exo	66, [72]	
8	X = NEt	H₂O₂, 65 °C	Endo/exo 1:4:1	100, [73]	
9	X = N(Bu)	H₂O₂, 65 °C	Exo	100, [73]	
10	X = NPh	4:1 Toluene/benzene, RT, 1.1 GPa	Endo/exo 1.6:1	100, [73]	
11	X = NPh	4:1 Toluene/benzene, RT, 1.1 GPa	Endo/exo 1.6:1	85, [74]	
12	X = NPhF₃	CDCl₃, 60 °C	Exo with traces of endo	90, [44]	
13	X = NPhF₃	Hexane or heptane, TFA, glass beads, 80 °C, 5–8 days ³	(-)-Exo, 86–90 ee	80, [44]	
14	X = NPhF₃	Neat, reflux	Exo	50, [75]	
15		THF, 65 °C	Exo	64, [70]	
16	X = NCH₂CH₂COOH	CHCl₃, 38 °C, 5 days	Endo/exo 28:72	100, [65]	
17	X = NCH₂CH₂COOH	CHCl₃, 38 °C, 5 days	Exo	100, [65]	
18	X = NCH₂CH₂COOH	CH₂Cl₂, RT, overnight	Endo/exo 78:22	100, [65]	
19	X = NCH₂CH₂COOH	CH₂CN, 60 °C, 6 h	Endo/exo 22:78	100, [65]	

¹ Yield of DA adduct after hydrogenation. ² Ratio of diastereomers was not provided. ³ The reaction was conducted under dynamic enantiomeric crystallization conditions. ⁴ Furan as a substrate. ⁵ 2,5-Dimethylfuran as a substrate.

An important possible application of 2-MF is the protection of double bonds in functionalized alkenes against nucleophiles using the DA reaction. For example, modification of the 2-MF/maleimide DA adduct by alkylation or a Mitsunobu reaction, followed by thermal deprotection, was used for the synthesis of N-alkylated maleimides (Scheme 3) [69,70].

![Scheme 3. Synthesis of N-substituted maleimides from 2-MF and maleimide using the DA approach.](image-url)

Representative reactions of 2-MF with acyclic alkenes containing one or two electron-withdrawing groups (EWGs) are covered in Table 2. High endoselectivity was obtained for the HfCl₄-catalyzed reaction of 2-MF with dimethyl maleate at low temperatures (Table 2,
entries 1, 2). However, under the same conditions, benzyl acrylate showed exoselectivity for cycloaddition (entries 7, 8). An adduct of 2-MF and trans-4,4,4-trifluorocrotonic acid formed with high regio- and diastereoselectivity (entry 3). An enantioselective version of DA reactions with some fluorinated alkene dienophiles was implemented using chiral oxazaborolidine organocatalysts, which affords corresponding chiral oxabicyclic products with high yields and selectivity (entries 4–6). In the case of acrylonitrile reacting with 2-MF, regio- and diastereoselectivity was poor even in the presence of Lewis acid catalysts (entries 9, 10). Orthoadducts of 2-MF with 1-cyanovinyl acetate or 2-chloroacrylonitrile that are favored over meta-isomers due to electronic reasons were obtained under kinetic conditions with high regioselectivity (entries 11–15). A shift towards endo-products was found for reactions of 2-MF with allenic esters in the presence of Eu(fod) as the catalyst (entries 16–19).

Table 2. IMDA cycloadditions of 2-MF with acyclic alkenes.

№	Dienophile	Conditions	Selectivity	Yield of Adducts (%)
1	Dimethyl maleate	HfCl₄, CH₂Cl₂, −30 °C	Endo/exo 84:16	94, [76]
2	Dimethyl maleate	HfCl₄, CH₂Cl₂, −50 °C	Endo/exo > 98:2	82, [76]
3				90, [77]
4				99 [78]
5				74, [78]
6			Ortho (Endo/exo 94:6), 98 ee (for endo isomer)	74, [79]
7	Benzyl acrylate	HfCl₄, CH₂Cl₂, −78 °C	Endo/exo 28:72 (mixture of regio isomers)	84, [76]
8	Benzyl acrylate	HfCl₄, CH₂Cl₂, −50 °C	Endo/exo 31:69 (mixture of regio isomers)	85, [76]
Table 2. Cont.

№	Dienophile	Conditions	Selectivity	Yield of Adducts (%)	[Ref.]
9	Acrylonitrile	ZnI₂, neat, 50 °C	N.d.	69 [80]	
10	Acrylonitrile	Neat, 60 °C		69 [31,32]	
11	1-Cyanovinyl acetate	ZnI₂, neat, 0 °C, 8 days	Ortho (endo/exo 1:1)²	52 [81]	
12	1-Cyanovinyl acetate	ZnI₂, neat, 20 °C, 26 h	Ortho endo²	17 [81]	
13	1-Cyanovinyl acetate	ZnI₂, neat, RT, 24 h	Ortho (endo/exo 3:1)²	30 [82]	
14	1-Cyanovinyl acetate	MgI₂, neat, RT, 24 h	Ortho (endo/exo 4:1)²	57 [82]	
15	2-Chloroacrylonitrile	ZnI₂, neat, 0 °C	Ortho/meta 10:1 (mixture of endo/exo)	91 [3,83]	

1 Yield of DA adduct after hydrogenation. ² Endo- and exoconformation with regard to the position of the OAc group. ³ Structure of regio- and diastereomers in DA cycloaddition of C-2-substituted furans with itaconic anhydride are provided in Scheme 5. ⁴ Was detected by NMR. N.d.—not determined.

2.2. Furanic Acetals

With rare exceptions, furfural does not react with dienophiles, but the introduction of aldehyde groups by DA reaction may be performed using an acetalization strategy that reduces the electron-withdrawing character of the carbonyl group. Table 3 highlights the results of reactions of furanic acetals with cyclic and linear alkenes. Literature data about the stereoselectivity of reactions of furanic acetals with cyclic alkenes are scarce. Predominant formation of endoadducts under kinetic conditions was detected by NMR when N-methyl maleimide was used as a dienophile (entry 1). For reactions of furfural acetals with mono-substituted acrylic alkenes, regioselectivity significantly depended on the type of substrates and reaction conditions. For dioxolane acetal reacting with methyl vinyl ketone, methyl acrylate or acrolein at 60 °C, a mixture of regio- and stereoisomers was obtained with predominant meta- and endoselectivity. In the case of acrylonitrile reacting with furanic acetals, the selectivity of cycloadditions was poor even in the presence of Lewis acid catalysts (entries 5–9). For the ZnCl₂-catalyzed reaction of ethylthioacetal with acrylonitrile at 30 °C, 91% ortho selectivity and moderate endoselectivity were observed (entry 10). According to DFT calculations, the regioselectivity of reactions of furanic acetals with alkenes is a result of two opposite factors: charge interactions between the furan and alkene favor orthoselectivity, while steric factors promote metaselectivity [32].
Table 3. IMDA cycloadditions of furfural acetals with alkenes.

№	Furfural Acetal	Dienophile	Conditions	Selectivity	Yield of Adducts (%)	Ref.
1	![Furfural Acetal](image1)	N-Methylmaleimide	CH_2Cl_2, 23 °C	Endo/exo 87:13	N.d., [86]	
2	![Furfural Acetal](image2)	Methyl vinyl ketone	Neat, 60 °C	Ortho 13 (endo/exo 74:26), meta 87 (endo/exo 65:35)	36, [32]	
3	![Furfural Acetal](image3)	Methyl acrylate	Neat, 60 °C	Ortho 33 (endo/exo 87:13), meta 67 (endo/exo 77:23)	40, [32]	
4	![Furfural Acetal](image4)	Acrolein	Neat, 60 °C	Ortho 38 (endo/exo 71:29), meta 62 (endo/exo 43:57)	28, [32]	
5	![Furfural Acetal](image5)	Acrylonitrile	Neat, 60 °C, 120 h	Ortho 48 (endo/exo 72:28), meta 52 (endo/exo 42:56)	76, [32]	
6	![Furfural Acetal](image6)	Acrylonitrile	ZnCl_2, neat, 60 °C	Ortho 50 (endo/exo 70:30), meta 50 (endo/exo 56:44)	75, [32]	
7	![Furfural Acetal](image7)	Acrylonitrile	ZnI_2, neat, 60 °C	Ortho 53 (endo/exo 70:30), meta 67 (endo/exo 60:40)	75, [31]	
8	![Furfural Acetal](image8)	Acrylonitrile	ZnCl_2, neat, 60 °C	Ortho 43 (endo/exo 85:15), meta 57 (endo/exo 56:44)	68, [32]	
9	![Furfural Acetal](image9)	Acrylonitrile	ZnCl_2, neat, 60 °C	Ortho 39 (endo/exo 67:33), meta 61 (endo/exo 54:46)	67, [32]	
10	![Furfural Acetal](image10)	Acrylonitrile	ZnCl_2, neat, 30 °C	Ortho 91 (endo/exo 66:33), meta 9 (endo/exo 53:47)	73, [32]	
11	![Furfural Acetal](image11)	Acrylonitrile	ZnCl_2, neat, 60 °C	Ortho 53 (endo/exo 60:40), meta 47 (endo/exo 54:46)	81, [32]	
12	![Furfural Acetal](image12)	Acrylonitrile	ZnCl_2, neat, 60 °C	Ortho 52 (endo/exo 62:38), meta 48 (endo/exo 56:44)	85, [32]	

N.d.—not determined.
2.3. Functionalyzed Furfural Derivatives

Mild reduction of the aldehyde group in FF is a path to important furanic building blocks furfuryl alcohol (FA) and furfuryl amine (FAM), which are widely used for the development of functional or dynamic molecular and biomolecular systems. Examples of possible areas of applications include but are not limited to the synthesis of biologically active compounds [87–90], oxanorbornane-based amphiphiles [91–94], supramolecular systems [95], self-assemblies [96], self-healing polymers and other dynamic systems [28].

The diastereoselectivity of DA reactions of FA, FAM and some common derivatives with cyclic and acyclic alkenes is shown in Tables 4–6. Preferable formation of exo-adducts was observed for reactions of maleic and citraconic anhydrides with selected furanic substrates even at low temperatures (Tables 5 and 6), except for the vinylated derivative of FA, which showed preferable endo-selectivity (Table 5, entries 5–10).

Table 4. IMDA cycloadditions of FA with alkenes.

№	Dienophile	Conditions	Selectivity	Yield of Adducts (%)	[Ref.]
1	Maleimide	Ethyl acetate, 24 °C	Endo/exo 96:4	87, [33]	
2	Maleimide	Ethyl acetate, 24 °C	Endo/exo 97:3	42, [32]	
3	N-Me-maleimide	Et₂O, 90 °C	Endo/exo 21:79	43, [72]	
4	N-Bn-maleimide	CH₃CN, 35 °C	Endo/exo 70:30	75, [96]	
5	N-Propargylmaleimide	CH₃CN, 35 °C	Endo/exo 80:20	72, [96]	
6	N-(2-Hydroxyethyl)maleimide	Ethyl acetate, 80 °C	Endo/exo 76:30	76, [97]	
7	N-(3-Hydroxypropyl)maleimide	Benzene, reflux	Endo/exo 86:14	86, [98]	
8	N-(4-Hydroxyphenyl)maleimide	Toluene, 80 °C	Endo/exo 77:23	77, [99]	
9	N-(4-Hydroxyphenyl)maleimide	Acetone, 55 °C	Endo/exo 71:29	71, [40]	
10	N-(4-Hydroxyphenyl)maleimide	Acetone, 35 °C	Endo/exo 80:20	N.d., [40]	
11	N-(p-Methoxyphenyl)maleimide	CH₃CN, 40 °C, 18 h	Mostly endo	89, [100]	
12	N-(p-Nitrophenyl)maleimide	CH₃CN, 60 °C	Endo/exo 70:23	52, [100]	
13	BMI ⁴	Toluene, 75–80 °C, 2 days	Mostly endo	92, [101]	
14	Acrylonitrile	Neat, 60 °C	Ortho 56 (endo/exo	69:31), meta 44	81, [32]
			(endo/exo 56:44)		
15	CO₂CH(CF₃)₂	Neat, RT, 96 h	N.d.	66, [37]	

1 2,5-bis(Hydroxymethyl)furan (BHMF) as a substrate. 2 2,5-bis(Acetoxymethyl)furan (BAMF) as a substrate. 3 Slowly transformed to the exo isomer over a period of several months. ⁴ 4,4′-bis(Maleimido)diphenylmethane. N.d.—not determined.

The adduct of FA with maleic anhydride (1-exo) is unstable and undergoes irreversible intramolecular cyclization during storage or warming, yielding the corresponding thermodynamically stable lactone 2-exo (Scheme 4) [102].

![Diagram of IMDA cycloadditions of FA with alkenes.](image-url)
The diastereoselectivity of the reactions with N-alkyl- and N-benzyl-substituted maleimides was in accordance with typical kinetic profiles demonstrating a shift towards endo- and exo-products under kinetic or thermodynamic conditions, respectively (Tables 4–6). However, this relationship was disrupted for some N-aryl maleimides reacting with various furanic substrates under both kinetic and thermodynamic conditions. For example, the diastereoselectivity of the cycloaddition of vinyl-substituted FA and N-Ph-maleimide shifted from a 1:2.8 endo/exo ratio under kinetic conditions to Et₂O to a 4:1 endo/exo ratio in toluene at 80 °C (Table 5, entries 11, 12).

Table 5. IMDA cycloadditions of FA derivatives with cyclic alkenes.

№	R	Dienophile	Conditions	Selectivity	Yield of Adducts (%)	Ref.
1	Allyl	N-Me-maleimide	Toluene, 50 °C, 24 h	Endo	65 (endo), [103]	
2	Allyl	N-Ph-maleimide	Toluene, 50 °C, 24 h	Endo	26 (exo), [103]	
3	Bn	Maleic anhydride	Toluene, RT, 3 days	Exo	43, [91]	
4	Bn	Maleic anhydride	15 kbar, CH₂Cl₂, 60 h	Exo (ortho/meta 5:7)	31, [68]	
5	Vinyl	Maleic anhydride	Et₂O, 22-24 °C, 48 h	Endo	72, [104]	
6	Vinyl	Maleic anhydride	Et₂O, 35 °C, 48 h	Endo/exo 8:1	66, [104]	
7	Vinyl	Maleic anhydride	THF, 22-24 °C, 90 h	Endo/exo 8:1	66, [104]	
8	Vinyl	Maleic anhydride	MeCN, 22-24 °C, 48 h	Endo/exo 4:1	68, [104]	
9	Vinyl	Maleic anhydride	Toluene, 22-24 °C	Endo/exo 12:1	64, [104]	
10	Vinyl	Maleic anhydride	Toluene, 80 °C	Endo/exo 4:1	66, [104]	
11	Vinyl	N-Ph-maleimide	Et₂O, 22-24 °C	Endo/exo 1:2:8	47, [104]	
12	Vinyl	N-Ph-maleimide	Toluene, 80 °C	Endo/exo 4:1	66, [104]	
13	Ac	Maleic anhydride	Et₂O, 25 °C, 7 days	Exo	34, [105]	
14	Ac	Maleic anhydride	Toluene, RT, 97 h	Exo	74, [88]	
15	Ac	Maleic anhydride	15 kbar, CH₂Cl₂, 60 h	Exo (ortho/meta 6:5)	59, [68]	
16	Ac	N-Me-maleimide	CH₂Cl₂, 23 °C	Endo/exo 77:23	N.d., [86]	
17	Ac	N-Dodecylmaleimide	THF, 23 °C	Endo/exo 64:36	N.d., [86]	
18	Ac	N-Ph-maleimide	CH₂Cl₂, 23 °C	Endo/exo 65:35	N.d., [86]	
19	Ac	N-(p-Nitrophenyl)maleimide	CH₂Cl₂, 23 °C	Endo/exo 55:45	N.d., [86]	
20	Ac	N-(p-Methoxyphenyl)maleimide	CH₂Cl₂, 23 °C	Endo/exo 67:33	N.d., [86]	
21	Ac	N-(p-Methoxy-2-propyl)maleimide	CH₂Cl₂, 23 °C	Endo/exo 76:24	N.d., [86]	
22	Ac	N-(2-Methoxyethyl)maleimide	CH₂Cl₂, 23 °C	Endo/exo 75:25	N.d., [86]	
23	Bz	Maleic anhydride	Toluene, 80 °C, 456 h	Exo	46, [88]	
Table 5. Cont.

№	R	Dienophile	Conditions	Selectivity	Yield of Adducts (%)	Ref.
24	Bz	Maleic anhydride	Et₂O, 24 °C, 24 h	Endo	N.d., [106]	
25	Bz	N-Me-maleimide	CH₂Cl₂, 23 °C	Endo/exo	70:30	
26	Bz	N-Dodecylmaleimide	THF, 23 °C	Endo/exo	63:37	
27	CO'Bu	N-iPr-maleimide	CHCl₃, 55 °C	Endo/exo	60:40	
28	CO'Bu	N,N'-Bu-maleimide	CHCl₃, 55 °C	Endo/exo	45:55	
29	CO'Bu	N,N'-Bu-maleimide	CHCl₃, 55 °C	Endo/exo	51:49	
30	CO'Bu	N-Bn-maleimide	CHCl₃, 55 °C	Endo/exo	44:56	
31	CO'Bu	2-Methylphenyl-maleimide	CHCl₃, 55 °C	Endo/exo	26:74	
32	CO'Bu	N-(2-Methylphenyl)-maleimide	CHCl₃, 55 °C	Endo/exo	67:33	
33	CO'Bu	BMI	CHCl₃, 55 °C	Endo/exo	19:81	
34	CO'Bu	N-Me-maleimide	CH₂Cl₂, 23 °C	Endo/exo	71:29	
35	CO'Bu	N-Dodecylmaleimide	THF, 23 °C	Endo/exo	62:38	

1 Yield of DA adduct after hydrogenation. 2 BHMF dibenzoate as a substrate. N.d.—not determined.

Information about the regio- and diastereoselectivity of functional FF derivatives with acyclic alkenes is scarce. A mixture of regio- and diastereoisomers with approximately equal distribution was detected after the noncatalytic reaction of FA with acrylonitrile (Table 4, entry 14). A mixture of regio- and diastereomers with ortho (endo/exo)/meta (endo/exo) 2:1/8:6 ratio was formed from itaconic anhydride reacting with FA acetate (Scheme 5) [85]. However, unfavorable thermodynamic parameters of cycloaddition with this dienophile were overcome using FA as a substrate, where proximal (ortho) DA adducts undergo further intramolecular cyclization, shifting the reaction equilibrium towards metastable lactone 5, which was isolated in 94% yield (Scheme 5) [85].

![Scheme 5](image)

Scheme 5. Diels—Alder reactions of FA and FA acetate with itaconic anhydride.

Overall, the diastereoselectivity of DA reactions of alkenes with FF derivatives containing donor substituents at the C2 position is not always predictable, because it strongly depends on the structure of both the diene and dienophile. More predictable diastereoselective construction of functionalized oxabicyclic structures may be performed using HMF-derived 2,5-disubstituted furans that predominantly react with cyclic alkenes with high endoselectivity (Table 4, entries 1–2; Table 5, entry 24) [33,43,106,108].
Examples of DA reactions of furfural derivatives containing acceptor-type substituents with alkenes are rare. After the reaction of 2-furoic acid with β-alanine-substituted maleimide, only a small amount of one isomer was detected at 40 °C after 128 h [26]. Interestingly, a very low equilibrium constant for this reaction was observed in DMF media, while the equilibrium constant in water was at least two orders of magnitude greater. This difference was explained by the statement that water has a significant effect on the entropy of the reaction. The model reaction of methyl furoate with 1,6-bis(N-maleimido)hexane was investigated by NMR. Only approximately 20% conversion was detected after 4 days at 70 °C in a DMSO-d6 medium [35]. However, despite the low reactivity of furans with acceptor substituents, dynamic materials containing furanic ester-[35] or oxime-[114] functionalized polymers and maleimide functionalities showed moderate self-healing efficiency based on the DA reaction.

Bruijnincx and coworkers reported a new strategy for the direct introduction of furans containing aldehyde groups into DA cycloaddition [34]. Reactions of furanic aldehydes with water-soluble maleimides at 60 °C in a water medium led to the formation of DA adducts with good selectivity (Table 7). In the case of furfural, good exoselectivity of cycloaddition was achieved, while for some HMF derivatives, endoselectivity was preferable. In-water formation of the DA adduct was also detected for 2-acetylfuran, which reacts with N-methylmaleimide with the formation of only the exoadduct (entry 9). DFT calculations showed that the formation of furan/maleimide DA adducts through hydration of the aldehyde group is thermodynamically possible if hydration occurs both prior to (which increases the rate of the forward DA reaction) or after the cyclization step (which decreases the rate of the retro-DA reaction) [34].
Table 7. Direct DA reaction of furanic aldehydes with maleimides in water medium.

№	Furanic Substrate	R¹	Products, Selectivity ¹
1	R = H	Me	6a (endo/exo 18:40), 7a (endo/exo 1:3)
2	R = H	H	6b (endo/exo 8:30), 7b (endo/exo 0:6)
3	R = H	Et	6c (endo/exo 8:28), 7c (endo/exo 1:6)
4	R = H	³Pr	6d (endo/exo 1:7), 7d (endo/exo 1:11)
5	R = H	Ph	6e (endo/exo 0:1), 7e (endo/exo 1:5)
6	R = Me	Me	6f (endo/exo 3:8), 7f (endo/exo 0:3)
7	R = CH₂OH	Me	6g (endo/exo 37:13), 7g (endo/exo 0:0)
8	R = CH₂OMe	Me	6h (endo/exo 7:5), 7h (endo/exo 3:3)
9	2-Acetylfuran	Me	7i (endo/exo traces:32)

Reaction conditions: H₂O, 60 °C, 16 h. ¹ Determined by ¹H NMR (data were obtained from reference [34]).

3. Regioselectivity in the Synthesis of Aromatics Using the IMDA Reaction of Furfural Derivatives with Alkenes

The dehydration of furan/alkene adducts is an important sustainable approach to accessing renewable aromatic chemicals (Scheme 6) [7,30,37,115–117]. Utilization of HMF-derived C6 renewable furans (especially 2,5-dimethylfuran or 2,5-furandicarboxylic acid) provides access to para-substituted aromatics (as a route towards “green” polymers) and various polysubstituted aromatic products (Scheme 6) [116]. The presence of only one substituent in furfural increases the diversity of possible aromatic products to ortho- and meta-xylene derivatives as well as various 1,2,3-trisubstituted compounds (Scheme 6).
following the DA reaction stage. The tandem Diels-Alder cycloaddition/dehydration reaction of 2-MF with ethylene is an important approach to renewable toluene (Table 8). This type of DA cycloaddition is thermodynamically difficult and therefore requires the use of a catalyst, high temperature and pressure. Heterogeneous Brønsted-acidic catalysts, mainly zeolites or MOFs, are beneficial for these reactions [118]. Significant problems include side reactions such as the formation of furanic dimers (benzofurans), larger oligomers, products of furan hydrolysis and other reactions [115,118–120]. The introduction of acrylic acid instead of ethylene in reactions with 2-MF over zeolites or using ionic liquid catalysts showed good efficiency in the formation of aromatics [121]. Fast pyrolysis of a mixture of 2-MF and propylene using various zeolites under continuous flow conditions gives a mixture of monocyclic and polycyclic aromatic hydrocarbons with low selectivity [122].

Table 8. Synthesis of toluene by DA reaction of 2-MF with alkenes.

№	R	Conditions	Products Yield (%)	[Ref.]
1	H	H-BEA zeolite, heptane, 62 bar, 250 °C	Toluene (46%), [119]	
2	H	H-Beta-22 zeolite, 300 °C, 20 h	Toluene (50%), [123]	
3	COOH	Bi-BTC, 160 °C, 24 h	Toluene (65%), 2-methyl benzoic acid (23%), [121]	
4	COOH	[Emim]NTf2, Sc(OTf)3, 15 °C, 0.5 h	Toluene (12%), 2-methyl benzoic acid (2%), 3-methyl benzoic acid (9%), [124]	
5	COOH	[BSO3HIm]HSO4, 100 °C, 2h	Toluene (12%), 2-methyl benzoic acid (30%), 3-methyl benzoic acid (3%), [125]	

Furfural dimethyl hydrazone reacts with active dienophiles such as maleic anhydride or maleimides, yielding corresponding arene derivatives through noncatalytic in situ DA cycloaddition followed by spontaneous dehydration (Table 9) [126–128]. One-pot synthesis of arenes starting from furfural using a hydrazine strategy was carried out with good yields in water (entries 7–11) [129].

Table 9. Preparation of phthalimides from furfural using a hydrazine strategy.

№	Substrates	Conditions	Yield of Aromatic Product, [%]	[Ref.]
5	2-Furaldehyde dimethylhydrazone, maleic anhydride	CHCl3, RT	94, [126]	
6	2-Furaldehyde dimethylhydrazone, N-Et-maleimide	CHCl3, RT	90, [126]	
7	2-Furaldehyde, N,N-dimethylhydrazone, N-Et-maleimide	H2O2, 50 °C	97, [129]	
8	2-Furaldehyde, N,N-dimethylhydrazone, maleimide	H2O2, 50 °C	86, [129]	
9	2-Furaldehyde, N,N-dimethylhydrazone, N-cyclopropylmaleimide	H2O2, 50 °C	80, [129]	
10	2-Furaldehyde, N,N-dimethylhydrazone, N-Ph-maleimide	H2O2, 50 °C	73, [129]	
11	2-Furaldehyde, N,N-dimethylhydrazone, N-(4-Methylbenzyl)maleimide	H2O2, 50 °C	68, [129]	

Acid-catalyzed dehydration of furan-derived oxanorbornenes to aromatic products requires strong reaction conditions and therefore may be used only for a narrow range...
of substrates. Renewable 3-methylphthalic anhydride (MPA) was obtained using acid-catalyzed dehydration of the corresponding 2-MF-derived DA adduct 8 with only 48% maximum yield (Scheme 7) [130]. An important problem in this synthetic approach is the facile retro-DA reaction, which is forced to carry out these transformations at industrially non-practical temperatures (−30 °C and lower) [124,125]. A novel approach to MPA synthesis that overcomes the problem of the rDA reaction is the introduction of oxanorbornane 9 (which is unable to recycle) instead of 8 into the aromatization stage (Scheme 7) [67,131,132]. Aromatization of 9 by solid acid catalysts led to MPA with 67% maximum yield. Some important byproducts, such as 2-methyl benzoic acid and 3-methyl benzoic acid, were also formed during this reaction, and their ratio depended on the catalyst used [67,131]. Higher selectivity of aromatization was achieved by oxidative dehydrogenation of 9 into phthalate 10 using a silicomolybdic acid catalyst in diethyl carbonate (Scheme 7) [132].

Scheme 7. Synthesis of arenes by aromatization of 2-MF-derived tricycles.

The deprotonation of DA adducts formed from 2-(furan-2-yl)-1,3-dioxolane and acrylonitrile by CH₃ONa/DMSO superbase affords aromatic products at 30 °C with high total yield and a good ortho/meta ratio (Table 10, entries 1, 2) [31]. The study of kinetic features of the aromatization stage showed that the meta-adduct is more reactive than the ortho-isomer, which made it possible to isolate pure meta-adducts from the reaction mixture at 50% conversion, with subsequent regeneration of the ortho-isomer. Aromatization of DA adducts by tBuONa/DMSO superbase was also efficient for 2-MF and methyl group-protected FA but showed a low yield of aromatics in the case of unprotected FA (Table 10, entries 3–5) [31].

Table 10. Preparation of aromatics by base-catalyzed dehydration of acrylonitrile-derived oxanorbornenes.

No	Oxanorbornene	Yield of DA Adducts	Yield of Aromatic Products
1	R = dioxolane acetal	76 (ortho/meta ~1:1)	84 (ortho/meta ~1:1.5)
2	R = dioxolane acetal	76 (ortho/meta ~1:1)	86 (ortho/meta ~1:1.8)
3	R = Me	53 (ortho), 13 (meta)	97 (ortho), 62 (meta)
4	R = CH₂OEt	36 (ortho), 18 (meta)	94 (ortho), 100 (meta)
5	R = CH₂OH	47 (ortho), 26 (meta)	21 (ortho), 42 (meta)

1 Data were obtained from reference [31]. 2 After 120 h of the reaction. 3 CH₃ONa as a base. 4 Relative to the corresponding ortho- or meta-DA cycloadduct.

Recently, a new dynamic kinetic trapping strategy was developed for the construction of “drop-in” phthalide systems using tandem IMDA/lactonization and then aromatization reactions (Scheme 8) [37]. The first stage of this process is the reversible formation of
unstable adducts (mixture of regio- and stereoisomers) of FA (11a–c) or BAMF (14) with acrylates substituted by EWGs (HFIP, TFE or 4NP) at an oxygen atom. The role of EWG in the dienophile was the activation of both double bonds for the IMDA reaction and the carbonyl group towards diastereoselective intramolecular cyclization and into a more thermodynamically stable exo-lactone (the next step). The last aromatization stage was performed using an Ac₂O/strong acid mixture yielding phthalides 13 or 16 with maximum 98% and 60% yields, respectively.

Scheme 8. Synthesis of phthalides from furanic alcohols using a dynamic kinetic trapping strategy. HFIP = 1,1,1,3,3,3-hexafluoroisopropyl. TFE = 2,2,2-trifluoroethyl. 4NP = 4-nitrophenyl.

4. Conclusions

The IMDA reactions of biobased furans with alkene dienophiles are an important strategy for accessing practically important products, such as fundamental building blocks, fine chemicals, biologically active compounds or various organic and hybrid dynamic systems. Based on the literature highlighted in this review, we can assume that the problem of low regio- and stereoselectivity, which significantly reduces the synthetic potential of furan/alkene DA cycloaddition in fine organic synthesis and materials development, is still not solved for many functional furfural derivatives and alkene substrates. The reactivity of furfural-derived acceptor furans towards common alkenes, as well as the synthesis and aromatization of DA adducts of functional furfural derivatives with acyclic alkenes, are very poorly represented in the current literature. However, these types of reactions are important sustainable approaches towards functional aliphatic or aromatic products and therefore require further scientific investigations.

Rapid progress in this area can be anticipated, taking into account emerging trends in sustainable development towards the incorporation of bioderived chemicals and materials into the chemical industry. The focus of this review clearly shows that selectivity issues are far from solved and do not match current requirements. More studies are needed to develop practical and easy-to-use procedures to achieve high selectivity in reactions involving simple bioderived furanic starting materials.

Author Contributions: K.I.G., literature search, review and original draft writing; V.P.A., revision and supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 17-13-01176-p.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations

2-MF 2-methylfuran
Ac acetate
BAMF 2,5-bis(acetoxymethyl)furan
BHMF 2,5-bis(hydroxymethyl)furan
BMI 4,4′-bis(maleimido)diphenylmethane
BOC tert-butyloxycarbonyl
Bn benzyl
Bz benzoyl
DA Diels–Alder
DFT density functional theory
DMF dimethylformamide
DMSO dimethyl sulfoxide
Emim 1-ethyl-3-methylimidazolium
EWG electron-withdrawing group
FAM furfuryl amine
FF furfural
HMF 5-(hydroxymethyl)furfural
HOMO highest occupied molecular orbital
IMDA intermolecular Diels–Alder
LUMO lowest unoccupied molecular orbital
MOF metal organic framework
MPA 3-methylphthalic anhydride
N.d. not determined
NMR nuclear magnetic resonance
PEG polyethylene glycol
rDA retro-Diels–Alder
RT room temperature
Tf triflate
TFA trifluoroacetic acid
THF tetrahydrofuran

References

1. Gérardy, R.; Debecker, D.P.; Estager, J.; Luis, P.; Monbaliu, J.-C.M. Continuous flow upgrading of selected C2–C6 Platform chemicals derived from biomass. *Chem. Rev.* **2020**, *120*, 7219–7347. [CrossRef] [PubMed]
2. Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. *Chem. Soc. Rev.* **2020**, *49*, 6198–6223. [CrossRef]
3. Khokhlova, E.A.; Kachala, V.V.; Ananikov, V.P. The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. *B2O3*-An efficient dual-function metal-free promoter for environmentally benign applications. *ChemSusChem* **2012**, *5*, 783–789. [CrossRef]
4. Mika, L.T.; Cséalvay, E.; Nemeth, A. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. *Chem. Rev.* **2017**, *118*, 505–613. [CrossRef]
5. Sudarsanam, P.; Zhong, R.; Bosch, S.V.D.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. *Chem. Soc. Rev.* **2018**, *47*, 8349–8402. [CrossRef] [PubMed]
6. Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. *Green Chem.* **2010**, *12*, 539. [CrossRef]
7. Galkin, K.I.; Ananikov, V.P. When Will 5-Hydroxymethylfurfural, the “Sleeping Giant” of sustainable chemistry, awaken? *ChemSusChem* **2019**, *12*, 2976–2982. [CrossRef] [PubMed]
8. Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M.L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. *Energy Environ. Sci.* **2016**, *9*, 1144–1189. [CrossRef]
9. Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. *ACS Catal.* **2016**, *6*, 7621–7640. [CrossRef]
10. Van Putten, R.J.; van der Waal, J.C.; de Jong, E.; Rasendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. *Chem. Rev.* **2013**, *113*, 1499–1597. [CrossRef]
11. Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. *ACS Sustain. Chem. Eng.* **2018**, *6*, 8064–8092. [CrossRef]
12. Galkin, K.I.; Ananikov, V.P. The increasing value of biomass: Moving from C6 carbohydrates to multifunctionalized building blocks via 5-(hydroxy)methyl)furfural. *ChemistryOpen* 2020, 9, 1135–1148. [CrossRef]

13. Khemthong, F.; Yimsukpan, C.; Narkkun, T.; Srifa, A.; Witoon, T.; Pongchaiphol, S.; Kiatphuengporn, S.; Faungnawakij, K. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. *Biomass Bioenergy* 2021, 148, 106033. [CrossRef]

14. Shen, G.; Andriioletti, B.; Queneau, Y. Furfural and 5-(hydroxy)methyl)furfural: Two pivotal intermediates for bio-based chemistry. *Curr. Opin. Green Sustain. Chem.* 2020, 26, 100384. [CrossRef]

15. Xu, C.; Paone, E.; Rodriguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. *Chem. Soc. Rev.* 2020, 49, 4273–4306. [CrossRef] [PubMed]

16. Zhao, Y.; Lu, K.; Xu, H.; Zhu, L.; Wang, S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. *Renew. Sustain. Energy Rev.* 2021, 139, 110706. [CrossRef]

17. Fang, W.; Rissager, A. Recent advances in heterogeneous catalytic transfer hydrogenation/hydrogenolysis for valorization of biomass-derived furanic compounds. *Green Chem.* 2021, 23, 670–688. [CrossRef]

18. Gupta, K.; Rai, R.K.; Singh, S.K. Metal catalysts for the efficient transformation of biomass-derived HMF and furfural to value added chemicals. *ChemCatChem* 2018, 10, 2326–2349. [CrossRef]

19. Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-Hydroxymethylfurfural. *Chem. Rev.* 2018, 118, 11023–11117. [CrossRef]

20. Draut, F.; Snoussi, Y.; Paul, S.; Itabaiana, I.; Wojcieszak, R. Recent advances in carboxylation of furfural into 2,5-furandicarboxylic acid: Pathways towards bio-based polymers. *ChemSusChem* 2020, 13, 5164–5172. [CrossRef] [PubMed]

21. Dakshinamoorthy, D.; Weinstock, A.K.; Damodaran, K.; Iwig, D.F.; Mathers, R.T. Diglycerol-based polyesters: Melt polymerization with hydrophobic anhydrides. *ChemSusChem* 2014, 7, 2923–2929. [CrossRef] [PubMed]

22. Dakshinamoorthy, D.; Lewis, S.P.; Cavazza, M.P.; Hoover, A.M.; Iwig, D.F.; Damodaran, K.; Mathers, R.T. Streamlining the conversion of biomass to polyesters: Bicyclic monomers with continuous flow. *Green Chem.* 2014, 16, 1774–1783. [CrossRef]

23. Liu, X.; Du, P.; Liu, L.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Kinetic study of Diels-Alder reaction involving in maleimide–furan compounds and linear polyurethane. *Polym. Bull.* 2013, 70, 2319–2335. [CrossRef]

24. Liu, Y.-L.; Chuo, T.-W. “Self-healing” polymers based on thermally reversible Diels-Alder chemistry. *Polym. Chem.* 2013, 4, 2194–2205. [CrossRef]

25. Tasdelen, M.A. Diels-Alder “click” reactions: Recent applications in polymer and material science. *Polym. Chem.* 2011, 2, 2133–2145. [CrossRef]

26. Koehler, K.C.; Durackova, A.; Kloxin, C.J.; Bowman, C.N. Kinetic and thermodynamic measurements for the facile property catalysis for biomass-derived aromatic compounds. *Green Chem.* 2020, 22, 10510–10514. [CrossRef]

27. Briou, B.; Amédur, B.; Boutevin, B. Trends in the Diels-Alder reaction in polymer chemistry. *Chem. Soc. Rev.* 2021, 50, 11055–11097. [CrossRef]

28. Gandini, A. The furan/maleimide Diels-Alder reaction: A versatile click–unclick tool in macromolecular synthesis. *Prog. Polym. Sci.* 2013, 38, 1–29. [CrossRef]

29. Gevrek, T.N.; Sanyal, A. Furan-containing polymeric materials: Harnessing the Diels-Alder chemistry for biomedical applications. *Eur. Polym. J.* 2021, 153, 110514. [CrossRef]

30. Settle, A.E.; Berstis, L.; Rorrer, N.A.; Roman-Leshkov, Y.; Beckham, G.T.; Richards, R.M.; Vardon, D.R. Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds. *Green Chem.* 2017, 19, 3468–3492. [CrossRef]

31. Scodeller, I.; Mansouri, S.; Morvan, D.; Muller, E.; de Oliveira Vigier, K.; Wishert, R.; Jerome, F. Synthesis of renewable meta-xylendenediamine from biomass-derived furfural. *Angew. Chem. Int. Ed.* 2018, 57, 10510–10514. [CrossRef]

32. Scodeller, I.; Vigier, K.D.O.; Muller, E.; Ma, C.; Guégan, F.; Wishert, R.; Jérôme, F. A combined experimental–theoretical study on Diels-Alder reaction with bio-based furfural: Towards renewable aromatics. *ChemSusChem* 2021, 14, 313–323. [CrossRef] [PubMed]

33. Kucherov, F.A.; Galkin, K.I.; Gordeev, E.G.; Ananikov, V.P. Efficient route for the construction of poly cyclic systems from bioderived HMF. *Green Chem.* 2017, 19, 3827–3847. [CrossRef]

34. Cioc, R.C.; Lutz, M.; Pidko, E.A.; Crockett, M.; Van Der Waal, J.K.; Bruijnincx, P.C.A. Direct Diels-Alder reactions of furfural derivatives with maleimides. *Green Chem.* 2021, 23, 367–373. [CrossRef]

35. Ax, J.; Wenz, G. Thermoreversible networks by Diels-Alder reaction of cellulose furoates with bismaleimides. *Macromol. Chem. Phys.* 2012, 213, 182–186. [CrossRef]

36. Boutelle, R.C.; Northrop, B.H. Substituent effects on the reversibility of furan–maleimide cycloadditions. *J. Org. Chem.* 2011, 76, 7994–8002. [CrossRef]

37. Lancefield, C.S.; Folker, B.; Cioc, R.C.; Stanciakova, K.; Bulo, R.E.; Lutz, M.; Crockett, M.; Bruijnincx, P.C.A. Dynamic trapping as a selective route to renewable phthalide from biomass-derived furfuryl alcohol. *Angew. Chem. Int. Ed.* 2020, 59, 23480–23484. [CrossRef]

38. Salvati, M.E.; Balog, A.; Wei, D.D.; Pickering, D.; Attar, R.M.; Geng, J.; Rizzo, C.A.; Hunt, J.; Gottardis, M.M.; Weinmann, R.; et al. Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isooindole-1,3(2H)-dione nucleus. *Bioorg. Med. Chem. Lett.* 2005, 15, 389–393. [CrossRef]
39. Bakhtiari, A.B.; Hsiao, D.; Jin, G.; Gates, B.D.; Branda, N.R. An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces. *Angew. Chem. Int. Ed.* 2009, 48, 4166–4169. [CrossRef]

40. Park, J.; Heo, J.-M.; Seong, S.; Noh, J.; Kim, J.-M. Self-assembly using a retro Diels-Alder reaction. *Nat. Commun.* 2021, 12, 1–10. [CrossRef]

41. Pal, S.; Alizadeh, M.; Kong, P.; Kilbinger, A.F.M. Oxanorbornenes: Promising new single addition monomers for the metathesis polymerization. *Chem. Sci.* 2021, 12, 6705–6711. [CrossRef]

42. Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. *Angew. Chem. Int. Ed.* 2002, 41, 1668–1698. [CrossRef]

43. Chang, H.; Huber, G.W.; Dumesic, J.A. Chemical-switching strategy for synthesis and controlled release of norcantharimides from a biomass-derived chemical. *ChemSusChem* 2020, 13, 5213–5219. [CrossRef] [PubMed]

44. Uemura, N.; Toyoda, S.; Ishikawa, H.; Yoshida, Y.; Minoh, T.; Kasashima, Y.; Sakamoto, M. Asymmetric Diels-Alder reaction involving dynamic enantioselective crystallization. *J. Org. Chem.* 2018, 83, 9300–9304. [CrossRef]

45. Lewkowski, J. Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. *Arkivoc* 2005, 2001, 17. [CrossRef]

46. Wozniak, B.; Tin, S.; de Vries, J.G. Bio-based building blocks from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate. *Chem. Sci.* 2019, 10, 6024–6034. [CrossRef]

47. Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. *Green Chem.* 2011, 13, 754. [CrossRef]

48. Kong, X.; Zhu, Y.; Fang, Z.; Kozinski, J.A.; Butler, I.S.; Xu, L.; Song, H.; Wei, X. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. *Green Chem.* 2018, 20, 3657–3662. [CrossRef]

49. Hu, L.; Lin, L.; Wu, Z.; Zhou, S.; Liu, S. Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. *Renew. Sust. Energ. Rev.* 2017, 74, 230–257. [CrossRef]

50. Fan, W.; Verrier, C.; Queneau, Y.; Popowycz, F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A review of its recent applications towards fine chemicals. *Curr. Org. Synth.* 2019, 16, 583–614. [CrossRef]

51. Hu, L.; Xu, J.; Zhou, S.; He, A.; Tang, X.; Lin, L.; Xu, J.; Zhao, Y. Catalytic advances in the production and application of biomass-derived 2,5-Dihydroxymethylfurfural. *ACS Catal.* 2018, 8, 2959–2980. [CrossRef]

52. Xia, H.; Xu, S.; Hu, H.; An, J.; Li, C. Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. *RSC Adv.* 2018, 8, 30875–30886. [CrossRef]

53. Zhang, H.; Wang, K.; Zhang, M.; Xie, R.; Wang, L.; Chen, E.Y.-X. Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials. *Catal. Sci. Technol.* 2018, 8, 1777–1798. [CrossRef]

54. Liu, B.; Zhang, Z. One-pot conversion of carbohydrates into furan derivatives via furfural and 5-Hydroxymethylfurfural as intermediates. *ChemSusChem* 2016, 9, 2015–2036. [CrossRef]

55. Pal, P.; Saravanamurugan, S. Recent advances in the development of 5-Hydroxymethylfurfural oxidation with base (Nonprecious)-metal-containing catalysts. *ChemSusChem* 2019, 12, 145–163. [CrossRef]

56. Singh, S.K. Heterogeneous bimetallic catalysts for upgrading biomass-derivedfurans. *Asian J. Org. Chem.* 2018, 7, 1901–1923. [CrossRef]

57. Chernyshev, VM.; Kravchenko, O.A.; Ananikov, V.P. Conversion of plant biomass to furan derivatives and sustainable access to some value-added derivatives. *Russ. Chem. Rev.* 2019, 88, 357–387. [CrossRef]

58. Mascal, M. 5-(Chloromethyl)furfural (CMF): A platform for transforming cellulose into commercial products. *ACS Sustain. Chem. Eng.* 2019, 7, 5588–5601. [CrossRef]

59. Kong, Q.-S.; Li, X.-L.; Xu, H.-J.; Fu, Y. Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. *Fuel Process. Technol.* 2020, 209, 106528. [CrossRef]

60. Sauer, J. Diels-Alder reactions II: The reaction mechanism. *Angew. Chem. Int. Ed.* 1967, 6, 16–33. [CrossRef]

61. Sauer, J.; Sustmann, R. Mechanistic Aspects of Diels-Alder Reactions: A Critical Survey. *Angew. Chem. Int. Ed.* 1980, 19, 779–807. [CrossRef]

62. Craig, D. Stereochemical aspects of the intramolecular Diels-Alder reaction. *Chem. Soc. Rev.* 1987, 16, 187–238. [CrossRef]

63. Coxon, J.M.; Froese, R.D.; Ganguly, B.; Marchand, A.P.; Morokuma, K. On the origins of diastereofacial selectivity in diels-aldery cycloadditions. *Syntlett* 1999, 1999, 1681–1703. [CrossRef]

64. Fernandez, I.; Bickelhaupt, F.M. Deeper insight into the Diels-Alder Reaction through the activation strain model. *Chem. Asian J.* 2016, 11, 3297–3304. [CrossRef]

65. Sanchez, A.; Pedrero, E.; Grandas, A. Maleimide-dimethylfuran exo adducts: Effective maleimide synthesis in the presence of oligonucleotide conjugates. *Org. Lett.* 2011, 13, 4364–4367. [CrossRef] [PubMed]

66. Zhang, H.; Jiang, M.; Wu, Y.; Li, L.; Wang, Z.; Wang, R.; Zhou, G. Development of high-molecular-weight fully renewable biopolymers based on oxabicyclic diacid and 2,5-Furandicarboxylic acid: Promising as packaging and medical materials. *ACS Sustain. Chem. Eng.* 2021, 9, 6799–6809. [CrossRef]

67. Thiagarajan, S.; Genuino, H.C.; Sliwa, M.; van der Waal, J.C.; de Jong, E.; van Haveren, J.; Weekhuysen, B.M.; Bruijinincx, P.C.; van Es, D.S. Substituted phthalic anhydrides from biobased furanics: A new approach to renewable aromatics. *ChemSusChem* 2015, 8, 3052–3056. [CrossRef]
121. Yeh, J.Y.; Chen, S.S.; Li, S.C.; Chen, C.H.; Shishido, T.; Tsang, D.C.W.; Yamauchi, Y.; Li, Y.P.; Wu, K.C. Diels-Alder conversion of acrylic acid and 2,5-Dimethylfuran to para-Xylene over Heterogeneous Bi-BTC metal-organic framework catalysts under mild conditions. Angew. Chem. Int. Ed. 2021, 60, 624–629. [CrossRef] [PubMed]

122. Cheng, Y.T.; Wang, Z.; Gilbert, C.J.; Fan, W.; Huber, G.W. Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew. Chem. Int. Ed. 2012, 51, 11097–11100. [CrossRef]

123. Zhao, R.; Zhao, Z.; Li, S.; Parvulescu, A.-N.; Müller, U.; Zhang, W. Excellent performances of dealuminated H-Beta Zeolites from organotemplate-free synthesis in conversion of biomass-derived 2,5-Dimethylfuran to renewable p-Xylene. ChemSusChem 2018, 11, 3803–3811. [CrossRef]

124. Ni, L.; Xin, J.; Dong, H.; Lu, X.; Liu, X.; Zhang, S. A simple and mild approach for the synthesis of p-Xylene from Bio-Based 2,5-Dimethylfuran by using metal triflates. ChemSusChem 2017, 10, 2394–2401. [CrossRef]

125. Ni, L.; Xin, J.; Jiang, K.; Chen, L.; Yan, D.; Lu, X.; Zhang, S. One-step conversion of biomass-derived furanics into aromatics by brønsted acid ionic liquids at room temperature. ACS Sustain. Chem. Eng. 2018, 6, 2541–2551. [CrossRef]

126. Potts, K.T.; Walsh, E.B. Furfural dimethylhydrazone: A versatile diene for arene cycloaromatization. J. Org. Chem. 2002, 49, 4099–4101. [CrossRef]

127. Jacques, V.; Czarnik, A.W.; Judge, T.M.; Van der Ploeg, L.H.T.; DeWitt, S.H. Differentiation of antiinflammatory and antitumorigenic properties of stabilized enantiomers of thalidomide analogs. Proc. Natl. Acad. Sci. USA 2015, 112, E1471–E1479. [CrossRef]

128. Karaluka, V.; Murata, K.; Masuda, S.; Shiramatsu, Y.; Kawamoto, T.; Hailes, H.C.; Sheppard, T.D.; Kamimura, A. Development of a microwave-assisted sustainable conversion of furfural hydrazones to functionalised phthalimides in ionic liquids. RSC Adv. 2018, 8, 22617–22624. [CrossRef]

129. Higson, S.; Subrizi, F.; Sheppard, T.D.; Hailes, H.C. Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Green Chem. 2016, 18, 1855–1858. [CrossRef]

130. Mahmoud, E.; Watson, D.A.; Lobo, R.F. Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride. Green Chem. 2014, 16, 167–175. [CrossRef]

131. Thiyagarajan, S.; Genuino, H.C.; van der Waal, J.C.; de Jong, E.; Weckhuysen, B.M.; van Haveren, J.; Bruijnincx, P.C.; van Es, D.S. A facile solid-phase route to renewable aromatic chemicals from biobased furanics. Angew. Chem. Int. Ed. 2016, 55, 1368–1371. [CrossRef] [PubMed]

132. Liu, D.-H.; He, H.-L.; Zhang, Y.-B.; Li, Z. Oxidative aromatization of biobased chemicals to benzene derivatives through tandem catalysis. ACS Sustain. Chem. Eng. 2020, 8, 14322–14329. [CrossRef]