Chemical and Biological Studies on *Allium sativum* L. (1952-2020): A Comprehensive Review

Shereen S. T. Ahmed¹, John R. Fahim¹, Usama R. Abdelmohsen¹², Ashraf N. E. Hamed¹¹

¹ Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
² Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt.

Received: August 18, 2021; revised: October 10, 2021; accepted: October 25, 2021

Abstract

Medicinal plants provide a variety of secondary metabolites with varied chemical structures and biological activities. Among them, *Allium sativum* L. (garlic) is one of the most common edible and traditional plant that is used for the prevention and treatment of several diseases. *A. sativum* belongs to the family Liliaceae and it demonstrated diverse groups of natural compounds (184 compounds), such as organosulfur compounds, amino acids, selenium derivatives, saponins, phenyl propanoids, flavonoids, alkaloids, fatty acids, sterols and others. Therefore, this review focuses on the different classes of secondary metabolites that have been isolated from *A. sativum*, along with their valued pharmacological and therapeutic effects, e.g., anti-infective (antiprotozoal, antibacterial, antifungal and antiviral activities), anti-diabetic, anti-hyperlipidemic, anti-hypertensive, heart protective, neuroprotective, hepatoprotective, antioxidant, anticancer, anti-obesity, wound and scar healing, anti-anxiety, antiedepressant, immunostimulant and memory enhancing properties. The potential of garlic in the treatment of many diseases such as gastrointestinal disorders, nephropathic encephalopathy and osteoarthritis has been also reported.

Keywords

Allium sativum, Amaryllidaceae, Biological activities, Liliaceae, Organosulfur compounds, Phytochemical constituents.

1. Introduction

Liliaceae is a family of about 280 genera and 4000 species [1]. It has been divided into three subfamilies, Lilioideae, Calochortoideae and Streptopoideae [2]. Family Liliaceae members have six–segmented flowers and capsular fruits, that are three-chambered. The leaves always have veins, that are parallel to each other and are clustered at the plant base. Most species have bulb, that is considered as an underground storage structure [3]. *Veratrum* and *Fritillaria* are two main genera in the family Liliaceae. Native Americans utilized the *Veratrum* species to treat various diseases, including sore throats, inflamed tonsils, wounds, coughing, mania, epilepsy, snake bites and venereal illness. The alkaloids of *Veratrum* decreased high blood pressure and were prescribed until the nineteenth century, when emetic side effects restricted its use. For centuries in China, the rhizomes and roots of numerous *Veratrum* species known as “Li-lu” have been used to cure aphasia caused by apoplexy, chronic malaria, jaundice, scabies and dysentery [4]. Many species of *Fritillaria* have also been employed in traditional Japanese, Southeast Asian and Pakistani herbal medicine. For more than 2000 years, the bulbs of various *Fritillaria* species have been used as anti-asthematics, expectorants and antitussives under the Chinese name “Bei-mu” [4]. Plants of the family Liliaceae contain structurally complex and biologically active steroidal alkaloids [4].

One of the most important Liliaceae plants is garlic (*Allium sativum* L.) [5]. According to recent taxonomic classifications, garlic is now in the plant family Amaryllidaceae [6]. Garlic has different biological activities, such as hypolipidemic, antitumor, anti-tartritic, hypoglycemic, anti-thrombotic and anti-infective activities (antiprotozoal, antibacterial, antifungal and antiviral). Also, it shows potent anti-diabetic, cardioprotective and antioxidant activities [5]. Such wide and interesting chemical and biological diversities of garlic have provoked us to prepare this work as a comprehensive overview on this valued plant species.

2. Methodology

We performed a systematic search on the previous literature (100 peer-reviewed articles) with *Allium sativum* as a key search word on different databases such as PubMed, Google Scholar, ACS Publications, SciFinder, DNP, which was also assembled using The Plant List, Global Biodiversity Information Facility and Scopus for bioactive compounds, chemistry, biological and pharmacological properties of *A. sativum*.

3. Phytochemical review

Garlic is one of the most common edible or medicinal plant species. It contains various classes of active secondary metabolites represented by about 184 compounds. A comprehensive list of the isolated compounds from *A. sativum* is presented in Table 1 and their structures are shown in Figure 1. Most of the characterized metabolites are organosulfur compounds (70 compounds, representing 38%) and saponins (29...
Table 1: A list of the previously reported compounds from *A. sativum* (1952-2020).

No.	Name	Molecular weight	Molecular formula	Organ	Ref.
A) Acyclic organosulfur compounds					
I) Acyclic monosulfides					
1	Diallyl sulfide	114.21	C₅H₁₀S	Bulb	[7-9]
2	2-Propenesulfenic acid	90.14	C₃H₇O₂S	Bulb	[10]
3	2-Propenesulfenic acid	106.14	C₃H₇O₂S	Bulb	[10]
4	Methilin [syn.: S-Methylcysteine sulfoxide]	151.19	C₃H₇NO₂S	Bulb	[11]
5	(+)-S-Methyl-L-cysteine sulfoxide	151.19	C₃H₇NO₂S	Leaf	[12]
6	S-1-Propenyl cysteine	161.22	C₅H₁₀NO₂S	Bulb	[13]
7	Etihiin [syn.: S-Ethylcysteine sulfoxide]	165.21	C₅H₁₀NO₂S	Bulb	[11]
8	Isoalliiin [syn.: (E)-S-(1-propenyl) cysteine sulfoxide]	177.22	C₅H₁₀NO₂S	Bulb	[11]
9	(+)-S-(E-1-propenyl)-L-cysteine sulfoxide	177.22	C₅H₁₀NO₂S	Leaf	[12]
10	Alliiin [syn.: S-allylcysteine sulfoxide]	177.22	C₅H₁₀NO₂S	Leaf	[5,12]
11	N-γ-L-Glutamyl-S-(E-1-propenyl)-L-cysteine	289.33	C₁₁H₁₇N₂O₂S	Bulb	[14]
12	γ-L-Glutamyl-S-allyl-L-cysteine	289.33	C₁₁H₁₇N₂O₂S	Bulb	[14]
13	Alliiin-N-(1-deoxy-β-D-fructopyranosyl) [syn.: (+)-(1'-Deoxy-1',β-D-	339.36	C₁₂H₁₃NO₂S	Leaf	[12]
	fructopyranosyl)-S-allyl-L-cysteine sulfoxide				
14	S-(2-Carboxypropyl) glutathione	393.42	C₆H₁₃N₂O₂S	Bulb	[15]
II) Acyclic disulfides					
15	Dimethyl disulfide	94.20	C₄H₁₀S₂	Bulb	[9]
16	2-Propeneperthiol	106.21	C₄H₁₀S₂	Bulb	[10]
17	Allyl methyl disulfide	120.24	C₅H₁₂S₂	Bulb	[9]
18	Methyl-(Z)-1-propenyl disulfide	120.24	C₅H₁₀S₂	Bulb	[9]
19	Methyl-(E)-1-propenyl disulfide	120.24	C₅H₁₀S₂	Bulb	[9]
20	Di-2-propenyl disulfide [syn.: Diallyl disulfide]	146.27	C₅H₁₀S₂	Bulb	[5,10]
21	(E)-1-Propenyl-2-propenyl disulfide [syn.: Allyl (E)-1-propenyl	146.30	C₅H₁₀S₂	Bulb	[9]
	disulfide]				
22	(Z)-1-Propenyl-2-propenyl disulfide [syn.: Allyl-(Z)-1-propenyl	146.30	C₅H₁₀S₂	Bulb	[16]
	disulfide]				
23	Methyl methanethiosulfinate	110.20	C₅H₁₂O₂S	Bulb	[10]
24	(Z)-Methyl-1-propenyl disulfide-5-Oxide	136.24	C₅H₁₂O₂S	Bulb	[10]
25	(E)-Methyl-1-propenyl disulfide-5-Oxide	136.24	C₅H₁₂O₂S	Bulb	[10]
26	Allyl methyl thiosulfinates	136.24	C₅H₁₂O₂S	Bulb	[10]
27	Isoallyl methyl thiosulfinates	136.24	C₅H₁₂O₂S	Bulb	[10]
28	Dihydroasparagusic acid	152.20	C₅H₁₂O₂S	Bulb	[17]
29	2-Propene-1-sulfinothioic acid-S-1-propenyl ester	162.27	C₅H₁₂O₂S	Bulb	[18]
30	Allicin [syn.: 2-Propene-1-sulfonic acid-S-2-propenyl ester]	162.27	C₅H₁₂O₂S	Bulb	[18,19]
31	2-Propenyl propyl disulfide-4-Oxide	164.29	C₅H₁₂O₂S	Bulb	[20]
32	2-Propenyl propyl disulfide-5-Oxide	164.29	C₅H₁₂O₂S	Bulb	[20]
33	S,S-Dioxide-di-2-propenyl disulfide [syn.: S-2-Propenyl-2-propene-1-	178.30	C₅H₁₀O₂S	Bulb	[21]
	sulfonothioate]				
34	S-Allylmercapto-L-cysteine	193.30	C₅H₁₀N₂O₂S	Bulb	[22]
35	γ-L-Glutamyl-S-allylthio-L-cysteine	322.40	C₁₃H₁₃N₂O₂S	Bulb	[14]
36	Alliithiamine	354.50	C₁₅H₂₂N₂O₂S	Bulb	[23]
III) Acyclic trisulfides					
37	Dimethyl trisulfide	126.30	C₆H₁₂S₃	Bulb	[9]
38	Methyl-2-propenyl trisulfide [syn.: Allyl methyl trisulfide]	152.30	C₆H₁₂S₃	Bulb	[18]
39	Diallyl trisulfide [syn.: Di-2-propenyl trisulfide]	178.30	C₆H₁₂S₃	Bulb	[24]
40	Allyl-1-propenyl trisulfide	178.30	C₆H₁₂S₃	Bulb	[24]
41	Allyl propyl trisulfide	180.40	C₆H₁₂S₃	Bulb	[9]
42	(Z)-Methyl-3-(methylthio)-1-propenyl disulfide-7-Oxide [syn.: (Z)-	182.30	C₆H₁₀O₂S	Bulb	[25]
	Methyl-3-(methylsulfinyl)-1- propenyl disulfide]				
43	Diallyl trisulfane-S-oxide	194.30	C₆H₁₂O₂S	Bulb	[10]
44	Ajoene	234.40	C₆H₁₀O₂S	Bulb	[26]
45	Ajocysteine	281.40	C₆H₁₂NO₂S	Bulb	[26]
Table 1: Continued.

IV) Acyclic tetrasulfides

46	Methyl-2-propenyl tetrasulfide [syn.: Allyl methyl tetrasulfide]	184.40	C₆H₄S₄	Bulb	[27]
47	Di-2-propenyl tetrasulfide	210.40	C₆H₅S₄	Bulb	[9]

V) Acyclic pentasulfides

48	Methyl-2-propenyl pentasulfide [syn.: Allyl methyl pentasulfide]	216.40	C₆H₈S₅	Bulb	[28]
49	Di-2-propenyl pentasulfide	242.50	C₆H₉S₅	Bulb	[29]

VI) Acyclic hexasulfides

50	Di-2-propenyl hexasulfide	274.53	C₆H₁₀S₆	Bulb	[29]

VII) Acyclic heptasulfides

51	Di-2-propenyl heptasulfide	306.60	C₆H₁₀S₇	Bulb	[29]

B) Cyclic organosulfur compounds

52	Cyclic octaatomic sulfur	256.50	S₈	Bulb	[16]
53	1,2-Dithioline	104.20	C₂H₂S₂	Bulb	[9]
54	1,2-Dithiolene	106.21	C₂H₂S₂	Bulb	[9]
55	3-Vinyl-[4H]-1,2-dithiin	144.30	C₃H₄S₂	Bulb	[24]
56	2-Vinyl-[4H]-1,3-dithiin	144.30	C₃H₄S₂	Bulb	[24]
57	2-Vinyl-1,3-dithiane	146.30	C₄H₆S₂	Bulb	[9]
58	3,5-Diethyl-1,2,4-trithiolane	180.40	C₅H₁₀S₂	Bulb	[24]
59	Garlicin D [syn.: 3,4-Dihydro-1-mercapto-1-methyl-3-vinyl-1,2-dithiin-5-oxide]	208.40	C₅H₁₀OS₂	Bulb	[30]
60	Garlicin B	220.35	C₅H₁₀O₂S₂	Bulb	[30]
61	5-Hexyl-2-thiopheneoctanoic acid	310.49	C₅H₁₀O₂S	Bulb	[31]
62	2,3,4,5-Tetrahydro-5-hexyl-2-thiopheneoctanoic acid	314.53	C₅H₁₀O₂S	Bulb	[31]
63	8-[(6-Pentyl-5H-tetrahydro-2H-thiopyran-2-yl) octanoic acid]	314.53	C₅H₁₀O₂S	Bulb	[31]
64	Foliogarlic disulfanes A1	320.38	C₅H₁₀O₂S₂	Leaf	[32]
65	Foliogarlic disulfanes A2	320.38	C₅H₁₀O₂S₂	Leaf	[32]
66	Foliogarlic disulfanes A3	320.38	C₅H₁₀O₂S₂	Leaf	[32]
67	Garlicin A	324.55	C₅H₁₀O₂S₂	Bulb	[30]
68	Garlicin C1 [syn.: (25,35,45,55)-2,3,5,5,6,6,7,7,7-Octasubstituted-N,N'-sulfino[12]dodecanesulfanyldisulfanyl]-2,2,6,6-tetramethylenesulfinothiolane 1-oxide]	324.55	C₅H₁₀O₂S₂	Bulb	[30]
69	Foliogarlic trisulfane A1	352.45	C₅H₁₂O₂S₃	Leaf	[32]
70	Foliogarlic trisulfane A2	352.45	C₅H₁₂O₂S₃	Leaf	[32]

C) Aminoacids

71	α-Aminobutyric acid	103.12	C₃H₇NO₂	Bulb	[8]
72	Choline	104.17	C₃H₇NO	Bulb	[33]
73	Proline	115.13	C₃H₇NO	Bulb	[33]
74	Valine	117.15	C₄H₈NO₂	Bulb	[33]
75	5-Oxoproline	129.11	C₄H₈NO	Bulb	[33]
76	Leucine	131.17	C₄H₈NO₂	Bulb	[33]
77	Aspartic acid	133.10	C₄H₇NO	Bulb	[33]
78	Lysine	146.19	C₅H₁₀N₂O	Bulb	[33]
79	Glutamic acid	147.13	C₅H₁₀NO	Bulb	[33]
80	Hydroxylysine	162.19	C₅H₁₀N₂O	Bulb	[33]
81	Arginine	174.20	C₅H₁₀N₂O	Bulb	[33]
82	L-L-N-γ-Glutamylphenylalanine	294.38	C₆H₁₃N₂O₅	Bulb	[14]

D) Selenium derivatives

83	Se-Methylselenocysteine	182.09	C₆H₅NO₂Se	Bulb	[34]
84	γ-Glutamyl-Se-methylselenocysteine	310.20	C₆H₅N₂O₂Se	Bulb	[34]

D) Saponins

85	Diosgenin	414.60	C₂₇H₄₂O₃	Clove	[35]
86	Laxogenin	430.60	C₂₇H₄₂O₄	Bulb	[36]
87	Gitogenin	432.60	C₂₇H₄₂O₄	Bulb	[35]
88	β-Chlorogenin	432.64	C₂₇H₄₂O₄	Bulb	[35,36]
89	Agigenin	448.60	C₂₇H₄₂O₄	Bulb	[36]
90	Agapanthagenin	448.60	C₂₇H₄₂O₄	Clove	[35]
No.	Compound Name	Molecular Formula	Sample Type	Reference	
-----	------------------------	-------------------	-------------	-----------	
91	Ampeloside B1	C_{48}H_{64}O_{30}	Bulb	[36]	
92	Degalactotigonin	C_{50}H_{62}O_{22}	Root	[35,37]	
93	Chinenoside F	C_{40}H_{62}O_{13}	Bulb	[36]	
94	F-Gitonin	C_{50}H_{62}O_{22}	Root	[37]	
95	Eruboside B	C_{52}H_{62}O_{23}	Bulb	[18]	
96	Isoeruboside B	C_{52}H_{62}O_{24}	Bulb	[18]	
97	Ampeloside B1	C_{59}H_{62}O_{30}	Bulb	[36]	
98	Sativoside R2	C_{50}H_{62}O_{27}	Root	[37,38]	
99	Proto-desgalactotigonin	C_{52}H_{62}O_{28}	Clove	[35,38]	
100	Proto-eruboside B	C_{52}H_{62}O_{29}	Bulb	[38]	
101	Proto-isooruboside B	C_{52}H_{62}O_{30}	Bulb	[38]	
102	Sativoside R1	C_{52}H_{62}O_{31}	Bulb	[37,38]	
103	Sativoside B1	C_{52}H_{62}O_{32}	Bulb	[37]	

Continued

Table 1: Continued.

No.	Compound Name	Molecular Formula	Sample Type	Reference
104	Voghieroside E1	C_{57}H_{64}O_{29}	Bulb	[39]
105	Voghieroside E2	C_{57}H_{64}O_{29}	Bulb	[39]
106	Voghieroside B1	C_{57}H_{64}O_{31}	Bulb	[39]
107	Voghieroside B2	C_{57}H_{64}O_{31}	Bulb	[39]
108	Voghieroside C1	C_{57}H_{64}O_{31}	Bulb	[39]
109	Voghieroside C2	C_{57}H_{64}O_{31}	Bulb	[39]
110	Voghieroside D1	C_{60}H_{64}O_{34}	Bulb	[39]
111	Voghieroside D2	C_{60}H_{64}O_{34}	Bulb	[39]
112	Voghieroside A1	C_{60}H_{64}O_{36}	Bulb	[39]
113	Voghieroside A2	C_{60}H_{64}O_{36}	Bulb	[39]

No.	Compound Name	Molecular Formula	Sample Type	Reference
114	p-Coumaric acid	C_{16}H_{12}O_{3}	Garlic husk waste	[40]
115	Caffeic acid	C_{18}H_{14}O_{4}	Garlic husk waste	[40]
116	Ferulic acid	C_{18}H_{14}O_{4}	Garlic husk waste	[40]

E) Phenyl propanoids

No.	Compound Name	Molecular Formula	Sample Type	Reference
114	p-Coumaric acid	C_{16}H_{12}O_{3}	Garlic husk waste	[40]
115	Caffeic acid	C_{18}H_{14}O_{4}	Garlic husk waste	[40]
116	Ferulic acid	C_{18}H_{14}O_{4}	Garlic husk waste	[40]

J. Adv. Biomed. & Pharm. Sci.
Table 1: Continued.

Compound Description	MW	Molecular Formula	Location
Carvacrol	152	C10H14O2	Bulb
Aminoacrylic acid	132	C7H12NO2	Bulb
4-Hydroxypropanamide	128	C5H10N2O	Bulb
Lactic acid	108	C4H6O3	Bulb
Malic acid	134	C4H6O3	Bulb
1-Octacospiro(2.5)oct-5-ene, 8,8-dimethyl-4-methylene	232	C18H32O2	Bulb
Carvacrol	152	C10H14O2	Bulb
Carvone	152	C10H14O2	Bulb
p-Tert-butylphenol	152	C10H14O2	Bulb
Geraniol	152	C10H14O2	Bulb
Linalool	152	C10H14O2	Bulb

F) Flavonoids

F-1) Flavane and its derivatives

Compound	MW	Molecular Formula	Location
Naringin	313	C18H16NO4	Root
Rutin	357	C19H16NO6	Root

F-2) Flavone and its derivatives

Compound	MW	Molecular Formula	Location
Apigenin	270	C15H10O5	Bulb
Quercetin	302	C15H10O5	Bulb
Myricetin	318	C15H10O5	Bulb
3,5,6,7-Tetramethoxyflavone	342	C18H16O5	Bulb
5,6,7,8,4'-Pentamethoxyflavone	372	C20H20O5	Bulb
Tangeretin	372	C20H20O5	Bulb
Nobiletin	402	C21H22O6	Bulb
Rutin	610	C27H33O16	Bulb

F-3) Anthocyanins

Compound	MW	Molecular Formula	Location
Anthocyanin	207	C15H10O5	Bulb
Pelargonidin	271	C15H10O5	Bulb
Cyanidin	287	C15H10O5	Bulb
Delphinidin	338	C15H10ClO5	Bulb

G) Alkaloids

Compound	MW	Molecular Formula	Location
Theophylline	180	C12H14N2O2	Bulb
Nicotine	162	C10H14N2	Bulb
(3S)-1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid	216	C12H15N2O3	Bulb
(1S,3S)-1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid	230	C12H14N2O2	Bulb
(1R,3S)-1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid	230	C12H14N2O2	Bulb
(1R,3S)-1-Methyl-1,2,3,4-tetrahydro-β-carboline-3,3-dicarboxylic acid	274	C14H14N2O3	Bulb
(1S,3S)-1-Methyl-1,2,3,4-tetrahydro-β-carboline-3,3-dicarboxylic acid	274	C14H14N2O3	Bulb

H) Fatty acids

Compound	MW	Molecular Formula	Location
Myristic acid [syn.: n-Tetradecanoic acid]	228	C14H26O2	Bulb
Palmitic acid [syn.: n-Hexadecanoic acid]	256	C16H32O2	Bulb
Oleic acid [syn.: (9Z)-Octadecenoic acid]	282	C18H32O2	Bulb

I) Sterol

Compound	MW	Molecular Formula	Location
Campesterol	400	C26H40O2	Bulb

J) Miscellaneous compounds

Compound	MW	Molecular Formula	Location
2-Propen-1-ol	58	C3H6O	Bulb
Aminoacrylic acid	87	C5H10N2O	Bulb
2-Hydroxypropanamide	89	C5H11O2	Bulb
Lactic acid	90	C4H6O3	Bulb
Malic acid	134	C4H6O3	Bulb
1-Octacospiro(2.5)oct-5-ene, 8,8-dimethyl-4-methylene	150	C16H26O2	Bulb
Carvacrol	150	C10H14O2	Bulb
Carvone	150	C10H14O2	Bulb
p-Tert-butylphenol	150	C10H14O2	Bulb
Mandelic acid	152	C4H6O3	Bulb
Geraniol	154	C10H14O2	Bulb
Linalool	154	C10H14O2	Bulb
4-(1,1-Dimethylpropyl) phenol	164	C11H14O2	Bulb
compounds, representing 16%), while other classes, such as flavonoids (16 compounds, representing 9%), amino acids (12 compounds, representing 6%), phenyl propanoids (10 compounds, representing 5%), alkaloids (7 compounds, representing 4%), fatty acids (3 compounds, representing 2%), selenium derivatives (2 compounds, representing 1%) and sterol (one compound, representing less than 1%). Bulbs and cloves were the most phytochemically investigated parts (166 compounds, representing 90% of the identified compounds), followed by the leaves (9 compounds, representing 5%), roots (6 compounds, representing 3%) and husk wastes (3 compounds, representing 2%). These results are displayed in Figures 2-3.

4. Biological review

4.1. Anti-infective

Active constituents from garlic exhibited anti-infective activity such as antiprotozoal, antibacterial, antiviral and antifungal activities.

4.1.1. Antiprotozoal

The extract was found to be effective against protozoa hosts such as Opalina ranarum, Opalina dimidicita, Balantidium entozoon, Entamoeba histolytica, Crithidia, Leptomonas, Leishmania and Trypanosomes in several studies. Often, it was used in giardiasis therapy, alleviating symptoms throughout 24 h and suggesting, that giardiasis is fully eliminated from the stool throughout 72 h (1 mg/L twice daily from the aqueous extract) or (0.6 mg/mL garlic capsule, that was prepared). The crude extract of garlic showed inhibitory activity against E. histolytica (25 μg/mL) and the lethal dosage was 50 μg/mL [5,47].

Allicin, which degrades to give diallyl trisulfide (DATS), that is more stable than allicin and is highly volatile. It is prescribed for Trichomonas vaginalis and E. histolytica infections [5, 48].

4.1.2. Antibacterial

Garlic has broad spectrum antibiotic properties towards Gram-negative, acid-fast and Gram-positive bacteria such as, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Mycobacterium, Pseudomonas, Klebsiella, Salmonella, Micrococcus, Proteus and Clostridium. Growth inhibition seen in E. coli was 10 times or greater than, that observed in Lactobacillus casei for the same dose of garlic. This may be due to the difference in compositions of bacterial membranes and their permeability for antibacterial constituent allicin. On vancomycin-resistant enterococci, allicin and garlic extract have bacteriostatic properties, when they were coupled with vancomycin, an inhibitory synergistic effect was seen [5, 48, 49].

4.1.3. Antifungal

Garlic has antifungal properties against many fungal genera including Candida, Aspergillus, Trichophyton, Cryptococcus, Torulopsis, Trichosporon and Rhodotorula. Garlic extracts decrease the oxygen uptake, resulting in decreasing the organism growth through inhibition of the synthesis of lipids, nucleic acids and proteins and hence membranes damages were occurred. Pure allicin was seen to have antifungal effect. DATS demonstrated also antifungal activity against Cryptococcal meningitis and Aspergillus. Furthermore, Candida adhesion is considerably reduced in the presence of garlic extract [5, 50-53]. Garlic was also effective in treating oral candidiasis and recurrent aphtous ulcers without the side effects associated with standard medication. Researchers should investigate the usage of garlic in vivo to see if it could be used to treat oral illness [54].
Figure 1: Chemical structures of the previously reported compounds from *A. sativum* (1-14 Acyclic monosulfides, 15-36 Acyclic disulfides and 37-39 Acyclic trisulfides).
Figure 1: Continued (40-45 Acyclic trisulfides, 46-47 Acyclic tetrasulfides, 48-49 Acyclic pentasulfides, 50 Acyclic hexasulfides, 51 Acyclic heptasulfides, 52-70 Cyclic organosulfur compounds and 71-72 Aminoacids).
Figure 1: Continued (73-82 Aminoacids, 83-84 Selenium derivatives and 85-92 Saponins).
Figure 1: Continued (93-97 Saponins).
Figure 1: Continued (98-101 Saponins).
Figure 1: Continued (102-113 Saponins).
Figure 1: Continued (114-123 Phenyl propanoids and 124-130 Flavonoids).
Figure 1: Continued (131-139 Flavonoids, 140-146 Alkaloids, 147-149 Fatty acids and 150 Sterol).
Figure 1: Continued (151-184 Miscellaneous compounds).
Figure 2: Different classes of secondary metabolites reported from *A. sativum*.

Figure 3: Distribution of the reported secondary metabolites in the different parts *A. sativum*.
4.1.4. Antiviral

Alllicin, ajoene and DATS had in vitro antiviral activity against influenza A and B, HIV, cytomegalovirus, herpes simplex virus, viral pneumonia, rhinovirus and rotavirus. S-allylcysteine sulfoxide (alliin) or S-allylcysteine (SAC) had no activity [5,51,55]. Garlic is a powerful natural antimicrobial that can fight many viruses and bacteria. Organosulfur (e.g. allilin and alliin) and flavonoid (e.g. quercetin) components are responsible for the immunomodulatory properties of garlic. According to the World Health Organization, Coronavirus illness (COVID-19), caused by the novel coronavirus (SARS-CoV-2), has spread rapidly over the globe, affecting 213 countries or territories and resulting in more than six million confirmed cases and 0.37 million deaths. Fever, cough and shortness of breath are common symptoms of the infection and severe cases reveal acute respiratory infection and multiple organ failure. The likelihood of these serious indications increases with age, as well as underlying comorbidities including diabetic, cardiovascular, or thoracic problems, as well as an immunocompromised state [56]. Reduced immune system cells, such as reduced regulatory T cells, cytotoxic and helper T cells, natural killer cells, monocytes/macrophages and enhanced pro-inflammatory cytokines, are common characteristics [57]. Garlic provides therapeutic benefits for acute respiratory tract infections like pulmonary fibrosis, diffuse alveolar damage, pneumonia, acute respiratory distress syndrome, as well as septic shock, lung and kidney injury, all of which are signs of COVID-19 infection [56]. Compounds derived from garlic have the potential to lower pro-inflammatory cytokine expression and revert immunological abnormalities to more acceptable levels. Before becoming infected with the SARS CoV2 virus, garlic is indicated as a useful prophylactic intervention. Finally, garlic may be used as a COVID-19 infection prevention strategy by boosting immune system cells and suppressing the generation and secretion of pro-inflammatory cytokines, as well as the pro-inflammatory hormone leptin produced from adipose tissue [57].

4.2. Antidiabetic

The effect of aqueous extract of garlic was tested against normal and alloxan-induced diabetic rabbits. The aqueous extract of garlic has great hypoglycemia effect [58]. Also, many studies of garlic oil (GO) on diabetic animals were done, in order to confirm the hypoglycemic properties of garlic, alliin, allyl sulfide, had the same hypoglycemic action as that of glibenclamide. In streptozotocin-induced diabetic rats, the hypoglycemic effect of GO (10 mg/kg i.p.) and organosulfur constituents of garlic as DATS, displayed higher secretion and sensitivity of insulin (60 mg/kg, i.p.) [34,59,60].

4.3. Cardiovascular activity

4.3.1. Antihyperlipidemic

When compared to placebo, garlic preparations may result in minor reductions in total cholesterol levels after 1 month [0.03-0.45 mmol/L (1.2-17.3 mg/dL)] and 3 months [0.32-0.66 mmol/L (12.4-25.4 mg/dL)], but not after 6 months. Low-density lipoprotein (LDL) and triglyceride (TG) levels changed in perfect agreement with total cholesterol levels, but there were no statistically significant changes in high-density lipoprotein levels. In trials, significant reductions in platelet aggregation and mixed effects on blood pressure were also documented. On glycemic-related outcomes, there were no findings. Breath and body odour that is offensive has been proved to be dangerous. Other side effects included flatulence, esophageal & stomach pain, allergic responses and bleeding [61].

4.3.2. Antihypertensive

Garlic can also lower blood pressure via reducing oxidative stress, increasing nitric oxide (NO) and hydrogen sulphide (H2S) production and inhibiting angiotensin converting enzyme [62]. In the separated rat aortic rings, aged garlic extract (AGE) appears to enhance NO production, leading to endothelial-dependent vasodilatation. Furthermore, L-arginine in AGE was critical for NO synthase-mediated NO production [63]. Within 3 h of treatment with S-1-propenylcysteine (6.5 mg/kg), the systolic blood pressure of a suddenly hypertensive rat was reduced by around 10% and the systolic blood pressure returned to the normal level within 24 h. S-1-Propenylcysteine had a dose-dependent effect, with the maximum effect occurring within 3 h at a dosage of 6.5 mg/kg. Other AGE agents such as SAC and S-allylmercaptocysteine (SAMC) were ineffective in any case. S-1-Propenylcysteine had no effect on the systolic blood pressure of control Wistar Kyoto rats after expansion. Furthermore, at a dose of 6.5 mg/kg, S-1-propenylcysteine enhanced blood flow within 3 h of administration [13]. According to a meta-analysis of 12 research with 553 hypertensive participants, garlic supplements drop systolic blood pressure (SBP) by an average of 1.9-8.3 mmHg and diastolic blood pressure (DBP, n=8 trials, n=374 patients) by 1.9-5.5 mmHg, which is comparable to standard antihypertensive drugs. Blood pressure lowering was connected to a 16-40% reduction in the risk of cardiovascular events. Blood pressure response to garlic is influenced by vitamin B12 levels in the body. Furthermore, AGE significantly reduced central blood pressure, pulse pressure, pulse wave velocity and arterial stiffness [64].

4.3.3. Heart protection

In streptomycin-induced diabetic rats (250 mg/kg/day), AGE activated the sirtuin 3-manganese superoxide dismutase (SOD) pathway by deacetylating manganese SOD, ensuring heart function [65]. Another study found that dietary mediations containing (10% fenugreek seed powder), (2% freeze-dried garlic powder) and (10% fenugreek seed powder with 2% garlic powder) promoted obsessive cardiac tissue alterations in rats. Myocardial infarction was induced with isoproterenol (80 mg/kg, i.p.) twice at 12-hour intervals after the diet regimen was completed [66].

4.4. Antioxidant

AGE owns more antioxidant effects than fresh garlic and other garlic supplements on the market. Organosulfur compounds, that are water soluble as SAC and SAMC have higher antioxidant activity. SAC and SAMC are the main organosulfur components, that are present in AGE. There are some other components, which have an antioxidant potential as fat-soluble allylsulphides as diallyl disulfide (DADS), DATS and diallyl sulphide (DAS) [34,43].

4.5. Anticancer

Both water and fat-soluble organosulfur compounds present in garlic have anticarcinogenic properties as DATS, DADS, DATS, SAC and diallyl sulphoxide. SAC, DADS, DATS, ajone and methin can stimulate apoptosis in many cells in human as human leukemia cells. Steroidal saponin as eruboside B extracted from bulb of garlic also has anticancer activity. The pure selenium compounds have great anticancer potential than S-analogues as diallyl selenide, that has activity of about 300 times greater than DATS in the mammal cancer treatment [67,68]. Selenium-methyl selenocysteine and γ-glutamyl-5e-methyl selenocysteine are the
main two selenium compounds, that have anticancer potential [34].

4.5.1. Regulation of metabolism of carcinogenic substances

Garlic and its sulfur components have been shown to reduce the activation of carcinogens, lowering cancer risk. Furthermore, garlic allyl sulfides can prevent DNA alkylation, which is a key step in nitrosamine carcinogenesis [69]. Garlic and its natural allyl sulfides can also reduce the production of nitrosamines, a type of carcinogen produced during cooking [70,71].

4.5.2. Induction of apoptosis

Admissions of crude and crushed garlic were found to upregulate apoptotic-associated genes such as receptor of aryl hydrocarbon, hypoxia-inducible factor 1 and proto-oncogene c-Jun, which influenced the expression of genes connected to immunity and cancer in human blood [72]. DATS induced tumor apoptosis in SGC-7901 gastric cancer cells in a mouse model [73]. SAC may induce apoptosis in A2780 human epithelial ovarian cancer cells, decrease pro-caspase-3, poly (ADP-ribose) polymerase-1 (PARP-1) and Bcl-2 expression and increase dynamic caspase-3 and Bax protein production [74]. In SW620 cells of human colorectal cancer, SAMC induced apoptosis via the Jun N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38 MAPK) pathways [75].

4.5.3. Inhibition of invasion and migration

Tumor cells engage in malignant behaviors such as invasion and migration. Garlic extract inhibited the invasion and migration of bladder cancer EJ cells by suppressing MMP-9 expression, decreasing the binding activity of the translation factor activator protein 1 (AP-1) (specificity the protein-1 and NF-kB themes) and increasing the expression of A6 (heat shock protein) [76]. By inhibiting cell motility and proliferation, AGE reduced the capacity of colorectal cancer cells SW480 and SW620 to invade [77]. SAC also inhibited the migration of A2780 epithelial ovarian tumor cells by lowering the expression of the wingless-type MMTV integration location family member 5A (Wnt5a), phosphor-protein kinase B and c-Jun proteins [74].

4.6. Neuroprotective

Neuroprotective effects of AGE and SAC against neuroinflammation and neurodegeneration are possible. Despite the fact that little is known about the metabolic function of N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg), it is another bioactive component in AGE. Both AGE and FruArg are involved in gene transcription and protein expression regulation. In a cell-based neuroinflammation worldview fortified by lipopolysaccharide (LPS) in murine BV-2 microglial cells, AGE has been shown to turn around 67% of the transcriptome change triggered by endotoxins LPS, while FruArg has been shown to account for the defensive effects by turning around 55% of qualities changed. AGE and FruArg can reduce neuroinflammatory reactions via a variety of signaling pathways, including Toll-like receptor and interleukin (IL-6) signaling, as well as upregulation of the nuclear factor erythroid 2-related calculate 2 (Nrf2)-mediated oxidative stretch pathways, which have been shown to increase microglial resistance to neuroinflammation and neurodegeneration. FruArg’s capacity to cross the blood-brain barrier (BBB) suggests that it could be used as a medicinal drug [78]. DADS and DATS were found to have neuroprotective properties. However, the potential of these organosulfur compounds in the treatment of neuropathic pain has yet to be examined. A study examined the pain-relieving abilities of DADS and DATS in rats with chronic constriction injury (CCI)-induced neuropathic pain. The pain-attenuating mechanisms of H2S, brain-derived neurotrophic factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2) were studied using their modulation. CCI rats were administered DADS (25 and 50 mg/kg) and DATS (20 and 40 mg/kg) for 14 days and showed a significant reduction in discomfort. After treatment with these organosulfur compounds, the levels of H2S, BDNF and Nrf2 in the sciatic nerve and dorsal root ganglia were likewise recovered. Without affecting H2S levels, administration of ANA-12 (a BDNF blocker) abolished pain-relieving effects in addition to BDNF and the Nrf2 restorative actions of DADS and DATS [79].

4.7. Obesity

Garlic or sulfur-containing compounds derived from garlic, can help people lose weight. Garlic-derived compounds have an anti-adipogenic action in vitro, reducing 3T3-L1 adipocyte development via adenosine monophosphate-activated protein kinase (AMPK) activation, acetyl-CoA carboxylase (ACC-1) suppression and carnitine palmitoyltransferase upregulation (CPT-1) [80]. Alllicin was found to improve the expression of brown adipocyte-specific genes, including UCP-1, via the kruppel like factor 15 (KLF15) flag cascade, which may help to avoid obesity and related metabolic disorders [81]. In diet-induced obese mice, oral administration of fermented garlic extract (250 and 500 mg/kg) for 8 weeks showed to have anti-obesity effects by lowering body weight, adiposity, triglyceride and cholesterol levels, as well as suppressing adipogenesis [82]. The administration of GO (80 mg/kg, p.o.) reduced body weight gain and white adipose tissue (WAT) mass, which had been raised by eating a high-fat diet based on AIN76 (vitamin mixture, 60% kcal fat). However, carbohydrate oxidation was unaltered by the GO treatment, which increased O2 consumption during the dark period (at night) and increased energy expenditure during the light period (during the day) [83].

4.8. Anti-inflammatory

Garlic supplementation significantly lowered circulating C-reactive protein (CRP) (p < 0.05), but had little effect on IL-6 levels (p > 0.05). A sub-group study revealed that AGE significantly reduced CRP and tumor necrosis factor-α (TNF-α) (p < 0.05) [84]. The effects of garlic supplementation on blood levels of several inflammatory biomarkers, clinical symptoms and exhaustion in women with active rheumatoid arthritis were investigated in a study, based on the anti-inflammatory characteristics of garlic. Seventy women with rheumatoid arthritis were divided into 2 groups at random: For 8 weeks, the intervention group received 1000 mg of garlic and the control group received a placebo. Clinical complaints, fatigue, CRP, TNF-α and erythrocyte sedimentation rate (ESR) were measured at the start and end of the trial. When compared to the placebo group, CRP (p=0.018) and TNF-α (p < 0.001) levels in the garlic group declined sharply after treatment. Furthermore, pain intensity, painful joint count, disease activity score and tiredness were all significantly lower in the intervention group than in the control group (p < 0.001 for all). The garlic group had a significantly reduced number of swollen joints (p < 0.001) than the placebo group (p= 0.123). Garlic supplementation, which reduced inflammatory mediators and improved clinical symptoms in rheumatoid arthritis patients, could be utilized as an adjuvant treatment [85]. DADS is the major organosulfur constituent in garlic. Through its powerful anti-inflammatory and antioxidant effects, DADS could be employed as an alternate

Ahmed et al.

J. Adv. Biomed. & Pharm. Sci.
therapy for alleviating the pathophysiological alterations associated with the genesis of paw edema [86].

BPH (benign prostatic hyperplasia) is a benign prostate enlargement that affects a high number of older men. To produce BPH in rats, daily subcutaneous injections of testosterone propionate (TP) (3 mg/kg, s.c.) were given for 4 weeks. Finasteride (Fin) (5 mg/kg, p.o.) or DAS (50 mg/kg, p.o.) were given orally throughout BPH induction. On the other hand, DAS or Fin treatment, reversed all testosterone-induced abnormalities. Fin and DAS treatment significantly lowered prostate weight, with Fin reducing it by 53% and DAS reducing it by 60%. Furthermore, in line with decreased protein expression of androgen receptor (AR) and prostate-specific antigen (PSA), blood testosterone and dihydrotestosterone (DHT) levels were reduced by 55% and 52%, respectively, with Fin and by 68% and 75%, respectively, with DAS (PSA). Finally, DAS can be used as a dietary preventative agent for BPH due to its anti-inflammatory and immunomodulatory properties [87].

4.9. Wound healing and scarring
According to patients and the onsite physician, the garlic site healed better in 59% of the wounds and 65% of the wounds, respectively at 2 weeks. After 4 weeks, patients and the onsite physician agreed that the garlic site healed better in 76% of wounds and 88% of wounds, respectively. Surgical wounds treated with 30% garlic ointment healed with more visually appealing scars than those treated with vaseline [88].

4.10. Anxiety and depression
Raw garlic extract improved anxiety and depression-related behaviors in diabetic rats, possibly by lowering oxidative stress and increasing antioxidant defenses against diabetes. For 10 days, garlic extract (0.1, 0.25 and 0.5 g/kg) was fed to the animals. At the end of the treatments, the elevated plus maze (EPM) and forced swimming test (FST) were employed to assess anxiety and depressive-related behaviors. In the brain, the activities of SOD and glutathione peroxidase (GPx) were investigated, as well as malondialdehyde (MDA) levels. When compared to diabetic rats, the diabetic + garlic (0.5 g/kg) group exhibited less anxiety and depressive-like behaviors. Garlic therapy (0.5 g/kg) also reduced MDA levels, while increased SOD and GPx activity in the brain [89]. Depression is a psychiatric condition in which oxidative stress is a key cause of damage. An increase in oxidative stress indicators and a decrease in endogenous antioxidants, or antioxidant enzymes, characterize this condition. Antioxidants may therefore have antidepressant effects. SAC is a free radical scavenger as well as an antioxidant. Male BALB/c mice were given SAC (30, 70, 120, 250 mg/kg, i.p.) daily for 17 days, followed by the Porsolt forced swim test (FST) on day 18. Oxidative stress markers were examined in the midbrain, prefrontal cortex and hippocampus (reactive oxygen species, superoxide generation, lipid peroxidation and antioxidant enzyme activity). The immobility scores in the FST were reduced by 44% when SAC (120 mg/kg) was used. Changes in locomotor activity had no effect on protection. Reduced oxidative stress, as demonstrated by lipid peroxidation and manganese-superoxide dismutase (MnSOD) activity in the hippocampus, was connected to this antidepressant-like effect. SAC has been linked to the prevention of oxidative damage in the hippocampus and had an antidepressant-like effect [90].

4.11. Hepatoprotective
Sixty male Wistar albino rats were separated into 4 groups: control, AGE (250 mg/kg), ethephon (200 mg/kg orally) and (AGE with ethephon), which received ethephon for 4 weeks before receiving AGE at the same dosage for another 4 weeks. AGE administration attenuated the histological deformations and biochemical alteration caused by ethephon. Through its antioxidant activity, AGE supplementation could be employed to reverse hepatic damage caused by ethephon exposure [91]. Garlic and its bioactive components may help to prevent hepatic steatosis by modulating hepatic lipid metabolism, according to new research. Adult patients with ultrasound-diagnosed non-alcoholic fatty liver disease (NAFLD) were enrolled in a clinical research. Eligible participants were randomly assigned to receive 800 mg garlic or placebo for 15 weeks using the stratified blocked technique. The primary outcome was an improvement in hepatic steatosis as evaluated by ultrasonography after 15 weeks of treatments. Garlic intake resulted in significant weight loss and reductions in blood ALT, AST, FBS, Hb A1C, total cholesterol, LDL-cholesterol and TG concentrations when compared to placebo (p < 0.05). After controlling for weight loss, energy intake and physical activity, the results were still significant. Garlic consumption did not cause any major side effects [92].

4.12. Gastrointestinal disorders
Inflammatory bowel disease (IBD) is a health problem. The most important explanations for the pathophysiology of this disease are the weakening of immune responses and the loss of tolerance to bacteria in the intestinal flora. A study was conducted to see how GO affected an experimental colitis model. Group 1 (sham), group 2 (negative control), group 3 (topical treatment) and group 4 (topical and systemic treatment) were chosen at random from a total of 28 rats. Normal saline, topical GO, topical and systemic GO were delivered to groups 2, 3 and 4, respectively, in an acetic acid-induced colitis model. GO decreased intestinal damage and inflammation, with effects on both local and systemic treatment, but with a stronger effect on local treatment [93]. The gut microbiota improved after 3 months of treatment, as seen by increased microbial richness and diversity, as well as a significant increase in the number of Lactobacillus and Clostridia species found [64].

4.13. Nephropathic encephalopathy
DAS is a garlic-derived organosulfur compound. Rats were given DAS (100 mg/kg) orally for 4 days, then injected with cyclophosphamide (CP) (150 mg/kg) 60 min later. When compared to CP-treated rats, DAS therapy reduced serum urea, creatinine, sodium, potassium, calcium, blood urea nitrogen (BUN), CRP, IL-6, interleukin-1β and TNF-α. In the renal tissues, when compared to CP-treated rats, DAS treatment reduced malondialdehyde (MDA), increased SOD and reduced glutathione (GSH) levels, as well as significantly lowering elevated neurotransmitters N-methyl-D-aspartate/adenosine triphosphate (NMDA), γ-aminobutyric acid (GABA) and restoring neuronal NO level and NO synthase activity in the brain. DAS for 4 days before CP resulted in moderate positive immunohistochemical expression of glial fibrillary acidic protein (GFAP) in the brain and renal tissues, similar to CP-treated rats. Due to its ability to improve the aforementioned biochemical markers, DAS provided renal and neuroprotection against CP-induced nephropathic encephalopathy, which was validated by histological and immunohistochemical testing [94]. By stimulating the Nrf2/ARE signaling pathway, DATS, a garlic
poly sulfide, protects rats from oxidative nephrotoxicity, apoptosis and inflammation caused by arsenic [95].

4.14. Osteoarthritis

X-ray, staining, ELISA and immunoblotting were used to investigate the effect of SAMC in a surgically induced osteoarthritis (OA) model. The role of Nrf2 in IL-1 stimulated chondrocytes in vitro was next examined using a gene knockdown approach. SAMC targeted Nrf2 to defend against OA in vivo and in vitro, which could lead to a new pharmaceutical approach to OA treatment [96].

4.15. Uterine activity

DAS (10^{-5} - 10^{-6} M) reduced spontaneous peristaltic activity in uterine strips and caused KC1 (60 mM)-induced contractions to relax in a concentration-dependent manner (p < 0.05). Any of the following antagonists (p > 0.05) had no effect on the inhibitory effect of DAS on both KC1-precontracted uterine strips and spontaneous peristaltic activity of the uterus: NO synthase inhibitor N(o)-nitro-L-arginine methyl ester (L-NAME, 10^-4 M), aminoxyacetic acid (10^{-4} M), H,S-producing enzymes cystation β synthase and cystation γ-lyase inhibitors, propargyglycine (10^{-3} M) and none selective cytochrome oxidase inhibitor indomethacin (10^{-4} M). DAS, in a calcium-free Krebs solution containing high KC1 (30 mM), on the other hand, considerably reduced CaCl2 (10^{-5} - 10^{-4} M)-induced uterine contractions in a concentration-dependent manner (p < 0.05) [97].

4.16. Lead toxicity

Lead is a common heavy metal that has toxicological effects on a wide range of animal and human tissues. Lead has been shown to have a number of toxic effects the renal system, the central nervous system, on reproductive organs, the liver, blood parameters and the lungs [98]. Several studies showed that garlic causes reduction in lead absorption in both bones and soft tissues. Vitamins (C and E) together improved the biological recovery caused by lead and help to mobilize heavy metals like lead from intracellular sites [98].

4.17. Immunostimulant

The effect of aqueous garlic extract on immunological parameters in Poecilia reticulata skin mucus was examined. In 12 experimental glass tanks, 240 P. reticulata juveniles weighing 1-3 mg were randomly stocked at a density of 30 fish each tank. The fish were fed garlic extract diets comprising concentrations of 0, 0.10, 0.15 and 0.20 mL/kg of feed three times a day at a ratio of 2.5 percent of their body weight for 80 days. The researchers discovered that lysozyme activity increased sharply (p < 0.05) in the skin mucus of garlic-treated Guppies. ACH50 values in fish were significantly increased (p < 0.05) by increasing the concentration of garlic extract in the meal from 0 to 0.15 mL/kg. Air changes per hour at 50 pascals (Pa) pressure differential (ACH50) decreased significantly (p < 0.05) when the concentration of garlic extract was increased from 0.15 to 0.20 mL/kg. Total immunoglobulin (Ig) content was also significantly increased in the 0.15 and 0.20 mL/kg treatments. In comparison to the control, garlic-fed treatments had considerably higher alkaline phosphatase (ALP) activity. The effects of garlic extract in the diet on final body weight and weight gain were determined to be insignificant. According to the findings, 0.15 mL of extract of garlic/kg diet should be given to P. reticulata to achieve optimal skin mucus immunity [99].

4.18. Memory improvement

A study examined the effect of garlic treated with subcritical water on memory impairment in ovariec tomized (OVX) rats. Garlic powder was given to OVX rats for 84 days. The Morris water maze test was used to examine hippocampus-dependent spatial memory. When compared to sham-operated rats, the OVX animals’ escape latency increased. Following the injection of garlic powder, the OVX rats' delayed escape latency was reduced to that of sham-operated rats (0.5% in feed). Garlic powder administration had no effect on the weights of the body, uterus, or brain. These findings imply that garlic powder mixed with subcritical water helps OVX rats remember things [100].

5. Conclusion

This review afforded a comprehensive overview on the phytochemical and biological profiles of A. sativum as one of the most important food and medicinal plant species. The reviewed data indicated the availability of a cornucopia of organosulfur compounds, which have been extensively reported from garlic, while further phytochemical attention should be paid to the other classes of metabolites, including flavonoids, phenylpropanoids, sterols, and non-polar metabolites, among others. Moreover, most of the reported phytoconstituents in garlic have been primarily identified from the bulbs and cloves, and to a much less extent from the leaves, roots, and husks; highlighting the necessity for a detailed chemical exploration of these plant parts of A. sativum in the future.

Conflict of Interests

The authors declare that there is no conflict of interests regarding this review.

Orcid

Asnaf N. E. HamedID:0000-0003-2230-9909
John FahimID:0000-0002-2425-0819
Shereen AhmedID:0000-0002-4864-9154
Usama R. AbdelmohsenID:0000-0010-6492

References

[1] Eker I, Babac MT, Koyuncu M. Revision of the genus Tulipa L. (Liliaceae) in Turkey. Phytotaxa. 2014;157(1):1-12.
[2] Kim JS, Kim JH. Updated molecular phylogenetic analysis, dating and biogeographical history of the Lily family (Liliaceae: Liliales). Botanical Journal of the Linnean Society. 2018;187(4):579-93.
[3] Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Eslami B. Antioxidant activity of the bulb and aerial parts of Ornithogalum sintenisii L. (Liliaceae) at flowering stage. Tropical Journal of Pharmaceutical Research. 2010;9(2):141-48.
[4] Li HJ, Jiang Y, Li P. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Natural Product Reports. 2006;23(5):735-52.
[5] Harris JC, Cottrell SL, Plummer S, Lloyd D. Antimicrobial properties of Allium sativum (garlic). Applied Microbiology and Biotechnology. 2001;57(3):282-6.
[6] Jimenez HJ, da Silva AD, Martins LS, de Carvalho R, De Moraes Filho RM. Comparative genomics plastomes of the Amaryllidaceae family species. Scientia Plena. 2020;18(6):1-11.
[7] Wargovich MJ. Diallyl sulfide, a flavor component of garlic (Allium sativum), inhibits dimethylhydrazine-induced colon cancer. Carcinogenesis. 1987;8(3):487-9.
[8] Block E, Naganathan S, Puttan D, Zhao SH. Organosulfur chemistry of garlic and onion: recent results. Pure and Applied Chemistry. 1993;65(4):625-32.
[9] Ustünler T, Kordali S, Bozhüyük AU. Herbicidal and fungicidal effects of Cuminum cyminum, Mentha longifolia and Allium sativum essential oil on some weeds and fungi. Records of Natural Products. 2018;12(6):619-29.
[10] Block E, Dane AJ, Thomas S, Cody RB. Applications of direct analysis in real time mass spectrometry (DART-MS) in Allium chemistry. 2-Propanesulfenic

J. Adv. Biomed. & Pharm. Sci.
and 2-propanesulfenic acids, diallyl trisulfane methylx S-oxide and other reactive sulfur compounds from crushed garlic and other Alliums. Journal of Agricultural and Food Chemistry. 2010;58(8):4617-25.

[11] Horníčková J, Kubec R, Cejpek K, Velíšek J, Ovšená J, Stavelíková H. Profiles of S-Al(en)enylycysteine sulfoxides in various garlic genotypes. Czech Journal of Food Science. 2010;29(4):298-308.

[12] Mitsch-Eckner M, Erdemlejer CAJ, Sticher O, Reuter HD. A novel amino acid glycodes and three amino acids from Allium sativum. Journal of Natural Products. 1993;56(6):864-9.

[13] Ushijima M, Takashima M, Kuninuma K, Kodeya Y, Morikura N, Tamura K. Efficacy of S-1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. Journal of Pharmacology and Pharmacology. 2018;70(4):559-65.

[14] Mitsch-Eckner M, Meier B, Wright AD, Sticher O. γ-Glutamyl peptides from Allium sativum bulb. Phytochemistry. 1992;31(7):2389-91.

[15] Suzuki T, Tsuchiya M, Itoh T. Metabolites of L-valine-[14C] into S-(2-carboxypropyl) glutathione and S-(2-carboxypropyl) cysteine in garlic. Chemical and Pharmaceutical Bulletin. 1962;10(4):328-31.

[16] Thuy BT, My TT, Hai NT, Hieu LT, Hoa TT, Thi Phuong Loan H, Triet NT, Anh TT, Quy PT, Tat PV, Hue NV. Investigation in to SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega. 2020;5(14):8312-20.

[17] Venditti A, Bianco A. Sulfur-containing secondary metabolites as neuroprotective agents. Current Medicinal Chemistry. 2020;27(26):4421-36.

[18] Balagis, Wido, Lakbati A, Bamin M. Active Compounds with antioxidant potential in boiled local Papua-Indonesian garlic. AIP Conference Proceedings. 2018;2019(1):020012-4.

[19] Anch J, Siroli E, Mirelman D. Antimicrobial properties of allilic from garlic. Microbes and Infection. 1999;1(12):125-9.

[20] Lawson DW, Wood SG, Hughes BG. HPLC analysis of allilic and other thiolsulfines in garlic clove homogenates. Planta Medica. 1991;57(3):263-70.

[21] Zhou W, Zhou X, Lu Y, Xia L, Huang C, Chen S, Chen X, Chu Y. Chemical composition of volatiles in garlic and the beneficial health effect after garlic ingestion by on-line atmosphere pressure photoionization quadrupole time-of-flight mass spectrometry. Food Science and Technology Research. 2017;23(4):613-20.

[22] Lee Y. Induction of apoptosis by S-allilmercapto-L-cysteine, a biotransformed garlic derivative, on a human gastric cancer cell line. International Journal of Molecular Medicine. 2006;21(6):765-70.

[23] Fujisawa M, Watanabe A. Allilithiamine, a newly found compound from vitamin B1. Proceedings of the Japan Academy. 1952;28(3):156-8.

[24] Tomo R, Liang D, Lin Y, Huang D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Planta Medica. 2019;2:1-18.

[25] Kunza SS. Actividad captadora de radicales libres y efecto antioxidante de metabolitos secundarios del extracto acouso del Allium sativum var. Huaralino (AIO) en modelos in vitro. 2014. Doctorado Facultad de Farmacia y Bioquímica. Lima-Perú. https://hdl.handle.net/20.500.12672/3963.

[26] Lawson DW, Wang ZJ. Pre-hepatic fate of the organosulfur compounds derived from garlic propenylcysteine. Planta Medica. 1993;51(1):A688-9.

[27] Zoghbi MDGB, Ramos LS, Maia JGS, Da Silva ML, Luz AIR. Volatile metabolitos secundarios del extracto acuoso del Allium sativum var. Huaralino. Journa.

[28] Horie T, Awazu S, Itakura Y, Fuwa T. Identified diallyl polysulfides from Allium sativum. Journal of Agricultural and Food Chemistry. 1992;40(1):62.

[29] Fujiwara M, Watanabe H. Allxin, a stress compound from garlic. Chemical Society Transactions. 1994;66(11):1987.

[30] Jonkers D, Sluimer J, Stobberingh E. Effect of garlic on vancomycin-resistant Enterococci. Antimicrobial Agents and Chemotherapy. 1999;43(12):3045.

[31] Adetunji M, Javor GT, Lau BH. Allium sativum garlic inhibits lipid synthesis by Candida albicans. Antimicrobial Agents and Chemotherapy. 1986;30(3):499-501.

[32] Tsai Y, Cole LL, Davis LE, Lockwood SJ, Simmons V, Wild GC. Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Medica. 1985;51(5):460-4.

[33] Fromont RA, Border GV. In vitro effect of aqueous extract of garlic (Allium sativum) on the growth and viability of Cryptococcus neoformans. Mycologia. 1978;70(2):397-405.

[34] Ghannoum MA. Inhibition of Candida adhesion to buccal epithelial cells by an aqueous extract of Allium sativum (garlic). Journal of Applied Bacteriology. 1999;86(3):163-9.

[35] Hoglund KB, Barnett BK, Watson SA, Melgarero MB, Kang Y. Activity of bioactive garlic compounds on the oral microbiome: A literature review. General Dentistry. 2020;68(3):27-33.

[36] Yue-Sheng M, Tao-Pei L, Ai-Lan G, Li-Bi Z, Gui-Zhen S. Studies on the anti-HCMV effect of garlic components. Virologia Sinica. 1993;8(2):147-50.

[37] Tiota SM, Balan V, Sivaramakrishnan V, Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytotherapy Research. 2020;34(12):3148-7.

[38] Donna MM, Domna O. The effects of Allium sativum on immunity within the context of COVID-19 infection. Phytotherapy Research. 2020;14:100394.

[39] El-Demerdash FM, Yousef MI, Abou El-Naga NL. Biochemical study on the hypoglycemic effects of onion and garlic in alliloxan-induced diabetic rats. Food and Chemical Toxicology. 2005;43(1):57-63.

[40] Anwar MM, Meki ARM. Oxidative stress in streptozotocin-induced diabetic rats. Effects of garlic oil and melatonin. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology. 2005;135(4):132-7.

[41] Staba EJ, Lash L, Staba JE. A commentary on the effects of garlic extraction and formulation on product composition. The Journal of Nutrition. 2001;131(3):1185-9S.

[42] Ackerman RT, Mulrow CD, Ramirez G, Gardner CD, Morbidini L, Lawson D. Garlic showing promise for improving some cardiovascular risk factors. Archives of Internal Medicine. 2001;161(6):813-24.

[43] Shang A, Cao SY, Xu XY, Gan RY, Yue M, Corke H, Mavumengwana V, Li HB. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246.

[44] Takashima M, Kanamori Y, Kodeya Y, Morihara N, Tamura K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytotherapy. 2017;24:56-61.
following carrageenan injection-induced paw edema in mice. *Mediators of Inflammation*. 2020;2020:1-11.

[87] Elbaz EM, Amin HA, Kamel AS, Ibrahim SM, Helmy HS. Immunomodulatory effect of diallyl sulfoxide on experimentally-induced benign prostate hyperplasia via the suppression of CD4+ TIL-17 and TGF-β1/ERK pathways. *Inflammopharmacology*. 2020;28(5):1407-20.

[88] Alhashim M, Lombardo J. Effect of topical garlic on wound healing and scarring: A clinical trial. *Dermatologic Surgery*. 2020;46(5):618-27.

[89] Rahman G, Farajdokht F, Mohaddes G, Babri S, Ebrahimvi E, Ebrahimvi H. Garlic (*Allium sativum*) improves anxiety-and depressive-related behaviors and brain oxidative stress in diabetic rats. *Archives of Physiology and Biochemistry*. 2012;26(2):95-100.

[90] Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allly cysteine, a garlic compound, produces an antidepressant-like effect and exhibits antioxidant properties in mice. *Brain Sciences*. 2020;10(9):592-609.

[91] Ali-Brakatz A. Protective effect of aged garlic extracts against hepatotoxicity induced by ethanethiol in Wistar albino rat. *Environmental Science and Pollution Research*. 2020;27(6):6139-47.

[92] Soleiman D, Paknahad Z, Rouhani MH. Therapeutic effects of garlic on hepatic steatosis in nonalcoholic fatty liver disease patients: a randomized clinical trial. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy*. 2011;5:2389-97.

[93] Tannkulu Y, Šenn Tannkulu C, Kulínč, Can M, Köktürk F. Effects of garlic oil (*Allium sativum*) on acetic acid-induced colitis in rats: Garlic oil and experimental colitis. *Turkish Journal of Trauma and Emergency Surgery*. 2020;26(4):503-8.

[94] Galal SM, Mansour HH, Elkholya AA. Diallyl sulfide alleviates cyclophosphamide-induced nephropathic encephalopathy in rats. *Toxicology Mechanisms and Methods*. 2020;30(3):208-18.

[95] Miltonprabu S, Sumenetha NC, Senthiraraj P. Retraction note to “Diallyl trisulfide, a garlic polysulfide protects against As-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2ARE signaling pathway” *International Immunopharmacology*. 2020;50:107-120.

[96] Yang G, Sun S, Wang J, Li, Wang X, Yuan L, Li S. S-Alllymercaptocysteine targets Nrf2 in osteoarthritis treatment through NOX4/NF-κB pathway. *Drug Design, Development and Therapy*. 2020;14:4533-46.

[97] Efe OE, Lux KM, Emre Aydingöz S, Tuncer M. Relaxant effect of diallyl sulfide on nonpregnant rat uterus: Involvement of voltage-dependent calcium channels. *Journal of Obstetrics and Gynaecology Research*. 2021;47(1):88-95.

[98] Mumtaz S, Ali S, Khan R, Shakir HA, Tahir HM, Mumtaz S, Andleeb S. Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. *Environmental Science and Pollution Research*. 2020;27(9):8935-64.

[99] Motlagh HA, Safari O, Selahvarzi Y, Baghalian A, Kia E. Non-specific immunity promotion in response to garlic extract supplemented diets in female *Guppy (Poecilia reticulata)*. *Fish & Shellfish Immunology*. 2020;94:97-99.

[100] Minami A, Mikami Y, Kano T, Matsushita H, Fujita Y, Yoshimura M, Abe Y, Watanabe H, Hara M, Kurebayashi Y, Takahashi T. Mitigation of memory impairment in ovariectomized rats using garlic powder treated with subcritical water. *Biological and Pharmaceutical Bulletin*. 2020;43(3):546-9.