Ag$_3$PO$_4$ nanoparticle-decorated Ni/C nanocapsules with tunable electromagnetic absorption properties

Caiyun Cui, Pingping Zhou, Xianguo Liu, Siu Wing Or, and S. L. Ho

Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe$_2$O$_4$/NiFe$_2$O$_4$ nanocapsules
AIP Advances 7, 056403 (2017); https://doi.org/10.1063/1.4972805

Interchange core/shell assembly of diluted magnetic semiconductor CeO$_2$ and ferromagnetic ferrite Fe$_3$O$_4$ for microwave absorption
AIP Advances 7, 055811 (2017); https://doi.org/10.1063/1.4973204

Phase-sensitive dc magnetometer based on magnetic-electromagnetic-magnetostrictive-piezoelectric heterostructure
AIP Advances 7, 056642 (2017); https://doi.org/10.1063/1.4975133
Ag$_3$PO$_4$ nanoparticle-decorated Ni/C nanocapsules with tunable electromagnetic absorption properties

Caiyun Cui,1,2 Pingping Zhou,1,2 Xianguo Liu,1,2,3 Siu Wing Or,2,3,a and S. L. Ho2,3

1School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, People’s Republic of China
2Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
3Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center, Hong Kong

(Presented 4 November 2016; received 22 September 2016; accepted 2 November 2016; published online 25 January 2017)

Core/shell-structured nickel/carbon (Ni/C) nanocapsules with Ag$_3$PO$_4$ nanoparticle decoration (Ag$_3$PO$_4$@Ni/C) are prepared by an arc-discharge process and an ion-exchange process. The Ag$_3$PO$_4$@Ni/C nanocapsules show a clear decoration of Ag$_3$PO$_4$ nanoparticles of 4–20 nm diameter on the C shell of the Ni/C nanocapsules of ~60 nm diameter. The amount of Ag$_3$PO$_4$ nanoparticles that can be decorated on the Ni/C nanocapsules depends on the volume of Na$_2$HPO$_4$ reactant used in the ion-exchange process. The Ag$_3$PO$_4$@Ni/C nanocapsules demonstrate interestingly high and tunable electromagnetic absorption properties with different amounts of Ag$_3$PO$_4$ nanoparticle decoration in the paraffin-bonded composites over the 2–18 GHz microwave range. The nanocapsules prepared with 100 ml Na$_2$HPO$_4$ exhibit much enhanced dielectric and magnetic losses for an improved electromagnetic impedance match. These result in a large reflection loss (RL) of -31.4 dB at 12.3 GHz for a small absorber thickness of 2.6 mm in conjunction with a very wide effective absorption bandwidth (for $RL<-10$ dB) of 14 GHz (4–18 GHz) at a wide absorber thickness range of 1.4–5.0 mm. © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975053]

I. INTRODUCTION

The rapid development and utilization of electronic and communication devices have caused serious electromagnetic (EM) radiation and interference problems in our society.1 High-performance EM absorbers, featuring simultaneously strong absorption, wide absorption bandwidth, small thickness, and low density in the gigahertz microwave range, have become increasingly important and demanding.$^{2-4}$ Core/shell-structured nanocapsules, comprising a magnetic nanoparticle core and a dielectric shell of nanometer size, have attracted considerable attention because of their synergetic effects between dielectric and magnetic losses for absorbing EM waves.$^1-^7$ Among various types of core/shell-structured nanocapsules, nickel/carbon (Ni/C) nanocapsules are regarded as a high-potential candidate due to their simple material type, simple preparation process, interesting dielectric and magnetic properties, good EM impedance match, and high EM absorption properties, etc.1,2,6 For instance, a Ni/C nanocapsule absorber with 2.0 mm thickness exhibits a large reflection loss (RL) of ~32 dB at ~13 GHz and a wide effective absorption bandwidth (for $RL<-10$ dB) of ~4.3 GHz (i.e.,11.2–15.5 GHz).6 However, the major obstacle to widespread use of the core/shell-structured nanocapsules in EM absorbers is their almost untunable EM absorption properties constrained by the

aAuthor to whom correspondence should be addressed. Electronic mail: eeswor@polyu.edu.hk
limited material phase variety in the single core/shell structure.1 In fact, once the material phases are fixed for the core and the shell in such a nanocapsule (e.g., Ni/C nanocapsule), its EM absorption properties are unable to be further tuned.

Semiconductor materials are known to have complex and rich electronic transport properties.3 By introducing appropriate semiconductor nanoparticles onto/into the core/shell-structured nanocapsules, it can modify their EM absorption properties and lead to new physics. Ag\textsubscript{3}PO\textsubscript{4}, which has complex and rich electronic transport properties with a wide bandgap of 2.45 eV, is regarded as a simple and important type of photocatalytic semiconductor materials.2 It was recently reported to possess a high relative permittivity of \(~20\) in the 100 Hz–10 MHz range at room temperature due to the existence of a strong space charge polarization.3 By introducing controlled amounts of Ag\textsubscript{3}PO\textsubscript{4} nanoparticles onto/into the Ni/C nanocapsules, it is likely to tune/fine-tune their EM absorption properties and to realize tunable EM absorbers.

In this paper, we aim to study the effect of decoration of Ag\textsubscript{3}PO\textsubscript{4} nanoparticles on the EM absorption properties of the core/shell-structured Ni/C nanocapsules. Accordingly, Ni/C nanocapsules decorated with different amounts of Ag\textsubscript{3}PO\textsubscript{4} nanoparticles (denoted as Ag\textsubscript{3}PO\textsubscript{4}@Ni/C) are prepared by an arc-discharge process followed by an ion-exchange process. The amount of Ag\textsubscript{3}PO\textsubscript{4} nanoparticle decoration is adjusted using different volumes of Na\textsubscript{2}HPO\textsubscript{4} reactant in the ion-exchange process. The phase, morphology, microstructure, composition, and charge state of Ni element of the Ag\textsubscript{3}PO\textsubscript{4}@Ni/C nanocapsules are investigated, while their EM absorption properties are evaluated in the corresponding paraffin-bonded composites with 50 wt.% Ag\textsubscript{3}PO\textsubscript{4}@Ni/C over the 2–18 GHz microwave range. Interestingly high and tunable EM absorption properties are observed and discussed at different amounts of Ag\textsubscript{3}PO\textsubscript{4} nanoparticle decoration to provide a new prospective for realizing tunable EM absorbers in general and for fine-tuning their properties to meet application requirements in specific.

II. EXPERIMENTS

Ni/C nanocapsules were prepared by an arc-discharge process.1,8 A Ni ingot of 99.99% purity was placed in a water-cooled copper crucible as the anode, while a tungsten needle of 5 mm diameter was employed as the cathode. After evacuating the arc-discharge chamber to 5 mPa, ethanol of 40 ml was introduced into the chamber as the C source. Meanwhile, Ar gas of 20 kPa and H\textsubscript{2} gas of 10 kPa were added into the chamber as the plasma source. An arc-discharge current of 110 A was applied to the chamber for \(~30\) min to ensure a sufficient evaporation of the Ni ingot. The residual gas was then pumped out, and the black powders formed on the inner surface of the chamber were collected as the Ni/C product after they were passivated in N\textsubscript{2} gas for 10 h.

Ag\textsubscript{3}PO\textsubscript{4} nanoparticles were prepared on the surface of the as-prepared Ni/C product using an ion-exchange process.8 Ni/C product of 0.25 g was dispersed into Na\textsubscript{2}HPO\textsubscript{4} hydrate solution of controlled volume under mechanical stirring. AgNO\textsubscript{3} solution of 12 mol/ml was added into the mixture of Ni/C product and Na\textsubscript{2}HPO\textsubscript{4} hydrate solution of 3 mol/ml using an AgNO\textsubscript{3}:Na\textsubscript{2}HPO\textsubscript{4} volume ratio of 1:2 at a titration rate of 100 ml/h under vigorous stirring for 1 h. The precipitates were collected by centrifugation, washed several times with distilled water and absolute ethanol, and dried in a vacuum at 60°C for 12 h as the Ag\textsubscript{3}PO\textsubscript{4}@Ni/C product. The amount of Ag\textsubscript{3}PO\textsubscript{4} nanoparticles being decorated on the Ni/C product was adjusted using different volumes of Na\textsubscript{2}HPO\textsubscript{4} reactant. For ease of discussion, the Ag\textsubscript{3}PO\textsubscript{4}@Ni/C products (or nanocapsules) prepared in 100, 200, and 300 ml Na\textsubscript{2}HPO\textsubscript{4} are denoted as NC\textsubscript{100}, NC\textsubscript{200}, and NC\textsubscript{300}, respectively.

The phase analysis of NC\textsubscript{100}, NC\textsubscript{200}, and NC\textsubscript{300} was performed by an X-ray diffractometer (XRD, Bruker D8 Advance) with monochromatic Cu Kα radiation (\(\lambda = 1.54\) Å). Their morphology and microstructure were evaluated by a transmission electron microscope (TEM, JEOL 2010) at an emission voltage of 200 kV. Their compositions were analyzed using an energy dispersive spectrometer (EDS) integrated with the TEM. The charge state of Ni element in the cores was examined using an X-ray photoelectron spectroscopy (XPS, ESCALAB-250) after the products were etched for 20 s. To enable measurements of the EM absorption properties of NC\textsubscript{100}, NC\textsubscript{200}, and NC\textsubscript{300}, 50 wt.% of NC\textsubscript{100}, NC\textsubscript{200}, and NC\textsubscript{300} was respectively mixed with 50 wt.% of EM wave-transparent liquid paraffin and hexane by ultrasonic waves,3 and the mixtures were pressed into toroidal composites.
with an outer diameter of 7.00 mm, an inner diameter of 3.04 mm, and a thickness of 2.00 mm after the evaporation of hexane. For convenient discussion, the composites fabricated with NC$_{100}$, NC$_{200}$, and NC$_{300}$ are denoted as PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$, respectively. The complex relative permittivity ($\varepsilon_r = \varepsilon'_r - j\varepsilon''_r$) and permeability ($\mu_r = \mu'_r - j\mu''_r$) of PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$ were measured by a transmission/reflection coaxial line method in the 2–18 GHz microwave range covering the full S, C, X, and Ku bands of microwaves using a vector network analyzer (Anritsu 37269D) with short, open, load, and thru calibrations. The frequency (f) dependence of reflection loss (RL) was determined from the measured ε_r and μ_r spectra using

$$RL = 20\log\left(\frac{Z_{in} - Z_0}{Z_{in} + Z_0}\right)$$

where $Z_{in} = Z_0(\mu_r/\varepsilon_r)^{1/2}\tanh\left[j(2\pi fd/c)(\mu_r\varepsilon_r)^{1/2}\right]$ is the input impedance of composite, $Z_0 \sim 377$ Ω is the characteristic impedance of air, $c = 3 \times 10^8$ m/s is the velocity of light, and d is the thickness of composite.

III. RESULTS AND DISCUSSION

Figure 1 shows the XRD patterns of typical NC$_{100}$, NC$_{200}$, and NC$_{300}$. The Ni phase is identified by the characteristic diffraction peaks of Ni (JCPDS card No. 04-0850), while the other diffraction peaks match well with the body-centered cubic phase of Ag$_3$PO$_4$ (JCPDS card No. 06-0505). The observation suggests a constitution of Ni and Ag$_3$PO$_4$ in the Ag$_3$PO$_4$@Ni/C products. The intensity ratio of Ni (111) peak to Ag$_3$PO$_4$ (210) peak in NC$_{100}$, NC$_{200}$, and NC$_{300}$ is found to be 1.34, 1.00, and 0.55, respectively, indicating an increase in the amount of Ag$_3$PO$_4$ nanoparticle decoration with increasing the volume of Na$_2$HPO$_4$ reactant used for preparing NC$_{100}$ (100 ml), NC$_{200}$ (200 ml), and NC$_{300}$ (300 ml) in the ion-exchange process. The weaker Ag$_3$PO$_4$ diffraction peaks in NC$_{100}$ and then NC$_{200}$ compared to NC$_{300}$ implies the existence of a lower degree of crystallization in Ag$_3$PO$_4$ for NC$_{100}$ and NC$_{200}$ than for NC$_{300}$. No diffraction peaks in relation to Ni oxides are detected in all products so that the C shells are effective in protecting the Ni cores from oxidation.1,7 Also, no diffraction peaks are observed for C due to the breaking of the translational symmetry along the radial direction.1,7

Figures 2(a), 2(b), and 2(c) illustrate the TEM images of typical NC$_{100}$, NC$_{200}$, and NC$_{300}$, respectively. It is clear that NC$_{100}$, NC$_{200}$, and NC$_{300}$ consist of different amounts of small spherical nanoparticles of 4–20 nm diameter decorated on the surface of the relatively larger spherical nanoparticle of ~60 nm diameter. Our in-situ TEM observation found that the amount of small nanoparticle decoration increases from 12 in NC$_{100}$ to 25 in NC$_{200}$ and then 35 in NC$_{300}$ (not shown), so that it can be effectively controlled by the volume of Na$_2$HPO$_4$ reactant adopted in the ion-exchange process. The diameter of the small nanoparticles was observed to be 4–6 nm in NC$_{100}$, 15–20 nm in NC$_{200}$, and 8–15 nm in NC$_{300}$. The reason why NC$_{300}$ has smaller particle sizes than NC$_{200}$ may be

![XRD patterns of typical NC$_{100}$, NC$_{200}$, and NC$_{300}$](image-url)
explained by the saturation of solutions under the given concentrations and conditions. Figure 2(d) displays the HRTEM image of NC100 in Fig. 2(a). It is seen that a small spherical nanoparticle of ∼5nm diameter is firmly grown on the shell of a relatively larger spherical nanoparticle having a typical core/shell structure in which the nanoparticle core is encapsulated by an onion-like shell of ∼2nm thickness. The variation of onion-like shell thickness was found to have no obvious correlation with the nanoparticle core size based on statistical approach. Nonetheless, the lattice plane spacing of the decorated small nanoparticles is found to be ∼0.24nm. This value agrees with the d-spacing of \{211\} planes of Ag3PO4, confirming the successful preparation of Ag3PO4 nanoparticles of 4–20nm diameter on the C shell of the Ni/C nanocapsules of ∼60nm diameter. Figure 2(e) gives a typical XPS spectrum of the Ni cores after etching NC100 for 20s. The two XPS peaks observed at 582.5 and 870.0 eV, corresponding to the Ni 2p3/2 and Ni 2p1/2 electron states, respectively, indicate the existence of zero charge state of Ni element in the Ni cores. Figure 2(f) provides a typical EDS pattern of NC100. The detection of Ag, P, O, Ni, and C elements further evidences the co-existence of Ag3PO4 and Ni/C in our Ag3PO4@Ni/C products.

Figure 3(a) shows the measured f dependence of \(\varepsilon_r^\prime = \varepsilon_r^\prime - j\varepsilon_r^\prime\prime \) of PCNC100, PCNC200, and PCNC300. Recalling that \(\varepsilon_r^\prime \) and \(\varepsilon_r^\prime\prime \) represent the amount of polarization and the level of energy dissipation, respectively.9 \(\varepsilon_r^\prime \) and \(\varepsilon_r^\prime\prime \) of all composites demonstrate similar quantitative decreasing trends with increasing f in the 2–6 GHz range, except for the broad dielectric resonance in the 6–18 GHz range. The weakening of the \(\varepsilon_r^\prime \) and \(\varepsilon_r^\prime\prime \) responses is mainly caused by the lagging of dipole polarization response with respect to the change in electric field at elevated frequencies.7,10 This is the typical behavior of a dielectric material outside the vicinity of a dielectric resonance. Following the effective-medium theory of three-phase inclusions, the dielectric resonance behavior originates mainly from the special geometries and structures of the inclusions of Ag3PO4@Ni/C nanocapsules, the intrinsic permittivity of each component in the composite (e.g., Ni, C, Ag3PO4, and paraffin), and the dispersion of the nanocapsules.1,11 Nevertheless, the values of \(\varepsilon_r^\prime \) and \(\varepsilon_r^\prime\prime \) in PCNC100 are generally larger than those of PCNC300 and PCNC200. According to the free electron theory,12 \(\varepsilon_r^\prime\prime \approx 1/2\pi\rho f \), where \(\rho \) is the resistivity. A small \(\varepsilon_r^\prime\prime \) implies a high \(\rho \). The largest \(\varepsilon_r^\prime\prime \) in PCNC100 compared to PCNC300 and then PCNC200 indicates the presence of the lowest \(\rho \) in PCNC100 than in PCNC300 and then in PCNC200. As the effective \(\rho \) depends on the distance between Ni/C nanocapsules, the size of Ag3PO4 nanoparticles shall have the determinative effect on the effective \(\rho \). Therefore, the use of smaller sized Ag3PO4 nanoparticles can induce a lower \(\rho \) and hence a larger \(\varepsilon_r^\prime\prime \).
FIG. 3. Measured f dependence of (a) $\varepsilon_r = \varepsilon'_r - j\varepsilon''_r$ and (b) $\mu_r = \mu'_r - j\mu''_r$ as well as calculated f dependence of (c) $\tan\delta_e = \varepsilon''_r/\varepsilon'_r$ and (d) $\tan\delta_m = \mu''_r/\mu'_r$ for PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$.

Figure 3(b) shows the measured f dependence of $\mu_r = \mu'_r - j\mu''_r$ of PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$. μ'_r of all composites shows similar quantitative decreasing trends in the 2–18 GHz range due to the relaxation of magnetic moment procession. However, μ''_r of all composites increases slightly in the 2–4.3 GHz range and then decreases in the 4.3–18 GHz range because the magnetic resonance peaks at \sim4 GHz. It is noted that μ'_r of PC$_{NC100}$ is smaller than that of PC$_{NC200}$ and PC$_{NC300}$, especially for $f > 10$ GHz. This is because the amount of Ag$_3$PO$_4$ nanoparticle decoration in PC$_{NC100}$ is relatively few (i.e., 12 for NC$_{100}$, 25 for NC$_{200}$, and 35 for NC$_{300}$) and the decorated Ag$_3$PO$_4$ nanoparticles are not strong enough to protect the magnetic Ni cores in the 10 GHz range. However, μ''_r of PC$_{NC100}$ is larger than that of PC$_{NC200}$ and PC$_{NC300}$ since the decoration of Ag$_3$PO$_4$ nanoparticles can dilute the effective magnetic response in the gigahertz range. In a general sense, the magnetic loss in a magnetic material can be attributed to domain-wall displacement, eddy-current loss, natural resonance, and/or exchange resonance. The domain-wall resonance occurs only in multi-domain materials in the 1–100 MHz range. The eddy-current loss is usually excluded because of the size effect. Thus, the magnetic resonance observed at \sim4 GHz is mainly due to natural resonance.

Figures 3(c) and 3(d) show the calculated f dependence of dielectric loss tangent ($\tan\delta_e = \varepsilon''_r/\varepsilon'_r$) and magnetic loss tangent ($\tan\delta_m = \mu''_r/\mu'_r$) of PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$ based on the data in Figs. 3(a) and 3(b), respectively. These loss tangents are the main loss contributors to the absorption ability of an EM absorber. The higher the value, the larger the loss is. It should be noted that $\tan\delta_e$ of all composites in Fig. 3(c) exhibits similar quantitative trends with their respective ε''_r in Fig. 3(a). This similarity supports our previous discussion that the size of Ag$_3$PO$_4$ nanoparticles has a crucial role in determining ρ and hence ε''_r and $\tan\delta_e$. On the other hand, $\tan\delta_m$ in Fig. 3(d) decreases steadily with increasing the amount of Ag$_3$PO$_4$ nanoparticle decoration so that it can be effectively tuned by the amount of Ag$_3$PO$_4$ nanoparticle decoration. Both $\tan\delta_e$ and $\tan\delta_m$ are generally larger in PC$_{NC100}$ than in PC$_{NC200}$ and PC$_{NC300}$, suggesting the existence of a higher EM absorption ability in PC$_{NC100}$.

Figures 4(a), 4(b), and 4(c) give the calculated 3D RL–f–d mapping plots for PC$_{NC100}$, PC$_{NC200}$, and PC$_{NC300}$ in the d range of 1–10 mm with 0.1 mm interval based on Eq. (1), while Figs. 4(d), 4(e), and 4(f) display the RL spectra extracted from Figs. 4(a), 4(b), and 4(c), respectively, at some selected d. It is clear that the optimized RL as strong as -31.4 dB is located at 12.3 GHz and 2.6 mm
in PC_{NC100}, but it is significantly weaker at lower f and larger d in both PC_{NC200} (-8.69 dB at 6.4 GHz and 5.0 mm) and PC_{NC300} (-15.2 dB at 6.1 GHz and 5.0 mm). PC_{NC100} demonstrates the most superior EM absorption performance, and this is followed by PC_{NC300} and PC_{NC200}, for the same d of 2.6 mm. Moreover, the effective absorption bandwidth for $RL<-10$ dB, corresponding to 90% absorption, is as wide as 14 GHz in PC_{NC100}, covering the whole C (4–8 GHz), X (8–12 GHz), and Ku (12–18 GHz) microwave bands and involving a broad range of d of 1.4–5.0 mm. In general, the optimal RL value and the effective absorption bandwidth of our samples exhibit a downward trend with an increase in the amount and/or size of Ag$_3$PO$_4$ nanoparticles. For comparison, Ni/C nanocapsule composites without any decoration have comparable optimized RL of -32 dB at 13 GHz and 2.0 mm at the expense of much narrower effective absorption bandwidth of 4.3 GHz in the 11.2–15.5 GHz range.

Recalling that the EM absorption performance of an absorber relies on the degree of EM impedance match, which can be characterized by the delta function expressed as $\Delta = |\sinh^2(Kfd/M)|$, where K and M depends on ε_r and μ_r. A smaller Δ value implies a higher degree of EM impedance match. Figure 5 presents the calculated 3D Δ–f–d mapping plots of PC_{NC100}, PC_{NC200}, and PC_{NC300}. The Δ values in PC_{NC100} are generally less than 0.6 (blue areas) (Fig. 5(a)), reflecting the presence of a high degree of EM impedance match. The degree of EM impedance match is comparatively lower in PC_{NC300} and then in PC_{NC200} (Figs. 5(b) and 5(c)). It is noted that these 3D Δ–f–d mapping plots show very similar tendency with the 3D RL–f–d mapping plots in Fig. 4. The high similarity confirms that the enhancement in EM absorption performance in PC_{NC100} is a result of the enhanced
dielectric and magnetic losses for an improved EM impedance match via the decoration of an appropriate amount of \(\text{Ag}_3\text{PO}_4 \) nanoparticles onto the Ni/C nanocapsules by using an appropriate volume of \(\text{Na}_2\text{HPO}_4 \) reactant in the ion-exchange process. \(\text{Ag}_3\text{PO}_4 \) nanoparticles may play a dual role in this case. First, they adjust the impedance between permittivity and permeability to make more EM waves traveling into the absorber. Second, they introduce additional interfaces to enhance dielectric and magnetic losses in the absorber.

IV. CONCLUSION

We have applied an arc-discharge method and an ion-exchange method to prepare three different types of \(\text{Ag}_3\text{PO}_4 \) nanoparticle-decorated, core/shell-structured Ni/C nanocapsules (\(\text{Ag}_3\text{PO}_4@\text{Ni/C} \) nanocapsules, denoted as NC\(_{100}\), NC\(_{200}\), and NC\(_{300}\)) having three different amounts of \(\text{Ag}_3\text{PO}_4 \) nanoparticles (12, 25, and 35) using three different volumes of \(\text{Na}_2\text{HPO}_4 \) reactant (100, 200, and 300 ml) in the ion-exchange process. We have also investigated the phase, morphology, microstructure, composition, and charge state of Ni element of NC\(_{100}\), NC\(_{200}\), and NC\(_{300}\) in addition to evaluating their EM absorption properties in the corresponding paraffin-bonded composites (PC\(_{\text{NC100}}\), PC\(_{\text{NC200}}\), and PC\(_{\text{NC300}}\)) in the 2–18 GHz microwave range. The \(\text{Ag}_3\text{PO}_4@\text{Ni/C} \) nanocapsules have been found to have a clear decoration of \(\text{Ag}_3\text{PO}_4 \) nanoparticles of 4–20 nm diameter on the C shell of the Ni/C nanocapsules of ~60 nm diameter as well as an interestingly high and tunable EM absorption properties with different amounts of \(\text{Ag}_3\text{PO}_4 \) nanoparticle decoration. Among them, the one prepared with 100 ml \(\text{Na}_2\text{HPO}_4 \) (NC\(_{100}\) or PC\(_{\text{NC100}}\)) has exhibited much enhanced dielectric and magnetic losses for an improved EM impedance match, giving rise to a large RL of -31.4 dB at 12.3 GHz and 2.6 mm as well as a very wide effective absorption bandwidth (for RL < -10 dB) of 14 GHz (4–18 GHz) at a wide \(d \) range of 1.4–5.0 mm. This tunable effect has been discussed to provide a new prospective for realizing tunable EM absorbers.

ACKNOWLEDGMENTS

This work was supported by the Innovation and Technology Commission of the HKSAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center (1-BBYF), The Hong Kong Polytechnic University (G-YBLL), and the National Training Program of Innovation and Entrepreneurship for College Student (201510360008).

1 N. D. Wu, X. G. Liu, C. Y. Zhao, C. Y. Cui, and A. L. Xia, J. Alloys Compd. 656, 628 (2016).
2 G. X. Zhu, X. W. Wei, and S. Jiang, J. Mater. Chem. 17, 2301 (2007).
3 M. Thomas, S. K. Ghosh, and K. C. George, Indian J. Phys. 77A, 425 (2003).
4 B. C. Wang, J. L. Zhang, T. Wang, L. Qiao, and F. S. Li, J. Alloys Compd. 567, 21 (2013).
5 P. Xu, X. Han, C. Wang, D. Zhou, Z. Lv, A. Wen, and B. Zhang, J. Phys Chem. B 112, 10443 (2008).
6 X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, and C. G. Lee, Appl. Phys. Lett. 89, 3115 (2006).
7 X. G. Liu, S. W. Or, C. M. Leung, and S. L. Ho, J. Phys Chem. B 112, 10443 (2008).
8 C. Y. Cui, P. P. Zhou, N. D. Wu, Y. H. Lv, and X. G. Liu, Mater. Lett. 161, 325 (2015).
9 B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, and J. P. Lei, J. Magn Magn. Mater 320, 1106 (2008).
10 Z. Ma, C. T. Cao, Q. F. Liu, and J. B. Wang, Chin. Phys. Lett. 29, 038401 (2012).
11 Z. H. Wang, Z. Han, D. Y. Geng, and Z. D. Zhang, Chem. Phys. Lett. 489, 187 (2010).
12 J. Xiang, J. L. Li, X. H. Zhang, Q. Ye, J. H. Xu, and X. Q. Shen, J. Mater. Chem. A 2, 16905 (2014).