Design and Development of AI-based Mirror Neurons Agent towards Emotion and Empathy

Faisal Rehman
Department of Computer Science
Government College University
Faisalabad, Pakistan

Awais Qasim
Department of Computer Science
Government College University, Lahore, Pakistan
School of Science, Engineering and Environment
University of Salford, UK

Adeel Munawar, Aqsa Iftikhar, Jawad Hassan
Fouzia Samiullah, Muhammad Basit Ali Gilani
Department of Computer Science
Lahore Garrison University, Lahore, Pakistan

Neelam Qasim
Lahore Business School
The University of Lahore, Lahore, Pakistan

Abstract—Since numerous years, researchers have to outline keen operators to accomplish the Artificial General Intelligence. Each new science revelation is an open challenge to all researchers. More than twenty years prior to a group of researchers discovered exceptional cerebrum cells, called reflect neurons in monkeys. These cells gave off an impression of being actuated both when the monkey accomplished something itself and when the monkey basically watched another monkey do a similar thing. This new discovery opened a new door for a scientist because of Mirror Neurons functionalities that can be huge contribute to cognitive science, neuroscience, impacting on Artificial General Intelligence. Mirror neuron functionality improves the Machine’s learning. This research paper develops models for social interaction in which a machine may have the ability to learn the next person emotional state using mirror neurons and show empathy towards emotions.

Keywords—Mirror neurons functionalities; emotions; empathy; machine learning; artificial intelligence

I. INTRODUCTION

For many years scientists are designing intelligent agents to achieve the target of Artificial General Intelligence. Hence every new scientific discovery is an open challenge to all scientists. More than twenty years, a scientist's team, at the University of Parma led by Giacomo Rizzolatti, find out special brain cells, which is called mirror neurons, in monkeys. Mirror neurons cells are activated when the monkey did anything itself and also when the monkey just watched another monkey do the same thing.

Different experiments have been done on the human brain using fMRI (Function Magnetic Resonance Imaging) that have shown that the human superior parietal lobe and inferior frontal lobe of human brain region neurons get activate when any action done by any person and also when any human experience another individual doing that same action. This has been recommended that these brain sections hold mirror neurons, so this is called the human mirror neuron system [1].

Mirror neurons have a direct communication link system between the sender and receiver of a message [2]. Mirror neurons mechanism develops very helpfully for understanding the message actions of one individual perform [3]. Some researchers believe that Mirror neurons have a link with Autism because Brain area that is having mirror properties experimented by EEG was less in children with autism [4].

Ramachandran was claimed that human self-awareness neurological basis was obtained from mirror neurons. Mirror neurons are not just to mirror outside but it can be helpful to know inward. In 2009 Ramachandran was written an essay for the Edge Foundation that provided the clarification theory for this “I additionally bet that these neurons can help emulate other individuals' conduct as well as can be turned 'internal' so to speak to make second-arrange portrayals or meta-portrayals of your own prior cerebrum forms. This could be the neural premise of contemplation, and of the correspondence of mindfulness and different mindfulness. There is clearly a chicken-or-egg question here as to which developed, to begin with, however... The fundamental point is that the two co-advanced, commonly enhancing each other to make the develop portrayal of self that describes current people” [5]. Behavior Recognition and Generation are basically referring when an individual observes another person's action, then deliberately performs that same action. Numerous specialists trust that programmed impersonation is intervened by the mirror neurons framework. Although automatic impersonation gets contribution by attentional procedures and yield by inhibitory procedures that is the reason it is long haul sensorimotor affiliation that can't be modified by deliberate procedures [6]. The combination of research on engine mimicry and programmed impersonation could uncover conceivable signs that these wonders rely upon the same mental and neural procedures [6] [7].

Nevertheless, due to the similarity of mirror neurons and automatic imitation, some researcher's need to suggest that programmed impersonation that is driven by the Mirror neurons framework. Programmed impersonation can be utilized as an apparatus to examine how the mirror neuron framework adds to subjective working and how engine mimicry advances mundanely demeanors and conduct [8] [9].
Many scientists have been performing experiments using different brain scanning techniques e.g. using FMRI (Functional Magnetic Resonance Imaging), EEG (Electroencephalography), and MEG (Magnetoencephalography). These experiments have shown that brain regions are active when participants experiencing an emotion and when they see that same emotion experienced by another person [10] [11] [12]. According to [13] that people who are empathic nature have strong activation in the mirror system for emotions.

In this paper, we propose a model by which Machines can improve learning by mirror neuron functionality in which a machine may have the ability to learn the next person emotional state using mirror neurons and show empathy towards emotions. In this proposed model, human-machine interaction is created to test mirror functionalities. One human agent is interacting with a motivational agent. For instance, when any person is happy than another person mental state also gets changed due to mirror neurons. This can be for some seconds or last for more time depending on its intensity. Many experiments have been performed to know another person’s mental state with respect to emotional conditions. Empathy is an ability to understand other’s feelings as own emotions. The proposed Model agent must have the ability to learn the next person’s emotional state by using mirror neurons through observation and experiences also Man-machine social interaction can predict the opponent’s emotional state and respond with the same feelings depending on the intensity of emotional state.

Machines can improve learning by mirror neuron functionality. Therefore, there is a need to develop models for social interaction in which a machine may have the ability to learn the next person emotional state using mirror neurons and show empathy towards emotions.

II. LITERATURE REVIEW

This segment presents a brief introduction of the Mirror Neurons concept and structure. Human Brain performing Mirror Neurons functionality is also discussed. It reviews related work of Mirror Neurons in Neuro Science terms and cognitive Science. Proposed models for Mirror Neurons having different functionalities also discusses.

In the 1980s the neurophysiologist, Giacomo Rizzolatti with his colleagues was working on macaque monkeys to study neurons. The experiments were to allow the monkey to reach for a piece of food and meanwhile neurons were recorded. In this experiment, the researchers have been found that some neurons recorded while the monkey saw for a piece of food as well as when reach for that piece of food [14] [15].

The first experiment of Mirror neurons was carried on Macaque Monkeys. Mirror neurons are found in the inferior frontal gyrus (F5) and the inferior parietal lobe [16]. A recent experiment by Ferrari and his colleagues exposed that infant macaques can imitate a human face with a temporal period [17].

In the first experiment the monkey was just watching a piece of peanut, the pre-motor cortical cells that have been active when the monkey was reaching toward the piece of peanut. In Fig. 1 shows that same brain area gets active when monkey observing someone doing the same activity. A strong activation is present in F5 during observation of the experimenter’s grasping movements, and while the same action is performed by the monkey [18].

Different experiments have been done on the human brain using functional magnetic resonance imaging (fMRI) that have shown that the human superior parietal lobe and inferior frontal lobe of human brain region neurons get active when the person does an action and also when the person experiences another individual doing that same action. It has been suggested that these brain regions contain mirror neurons, and they have been defined as the human mirror neuron system as shown in Fig. 2 [1].

Many experiments have been done on the Human Brain to know the Mirror neurons functionality. Their experiments have been done by functional magnetic resonance imaging (fMRI), EEG and MEG.

According to cortical homunculus that is a representation of the functional divisions of the primary motor cortex of the human brain that is directly responsible for the motor information of body movement and same as the primary somatosensory cortex that is directly responsible for the movement and exchange of sensory information of the body in the human brain. Brain activation in frontal and parietal areas during the observation of mouth, hand and foot actions.

The experiment held by [19] on 14 healthy right-handed volunteers. This experiment using fMRI found that the secondary cortex is activated when the participants observe someone or someone getting touched by some object.
Fig. 3. Experiment Result using fMRI.

Fig. 3 illustrates the extent of the over-lap between touch and vision-of-touch. Brain area is activated in red color is showing when someone is touched. Blue areas of the brain get activated when vision-of-touched performed. While white color indicated overlap of these both actions.

Mirror Neurons in Neuro Science an adaptive agent model was proposed that provides an evolutionary link between imitation and Mirror Neurons [20].

The recent research is conducting by a researcher that’s the focus is the visual recognition of goal-directed movements. The basic idea is to understand the intentions and action goals of others that can be possible by Mirror neurons. [21].

A neural and cognitive Model was proposed that gives an abstract neural model that is mapped on the cognitive level model [22].

The emotional Module maintained an emotional state of a machine. This module had a bidirectional link with the drive and behavior module. A behavior module was used to take action in order to meet the aim. Simulation of Glucose and Insulin Theories for the Implementation of Psychophysiology Drive Regulatory System in QuBIC Agents model is proposed by [23].

Many Researchers have been argued that Mirror Neurons are involved in Empathy. Many scientists have been performed experiments using different brain scanning methods e.g. using fMRI (Functional Magnetic Resonance imaging), EEG (Electroencephalography), and MEG. These experiments have shown that brain regions are active when participants experiencing an emotion and when they see that same emotion experiencing by another person. [10] [11] [12]. According to [13] that people who are empathic nature have strong activation in the mirror system for emotions. Mirror neuron’s functionality is being performed by using emotions and empathy behavior.

Empathy is an ability to understand other’s feelings as own emotions. In Fig. 4 an experiment was held to know participants’ neural basis for understanding others’ emotions. In these experiments, fMRI (Functional Magnetic Resonance Imaging) is used that scanned the human brain at once to know about the activated areas of the brain with respect to current activity [24].

Six basic emotions were proposed by [25] which is also known as Universal emotions. Emotion extraction from NLP has significant importance in Artificial Intelligence. Emotions have been having importance in psychological and behavioral sciences. There are different types of approaches used for emotion detection. This can be categorized mainly in keyword-based approaches, linguistic rules-based and can be machine learning techniques. The keyword-based approach can be applied to simple models because it cannot handle all the cases [26].

However, linguistic rules-based is computational linguistics rules that define language structure. In this regard, ESNA system was developed to classify news headlines [27]. The latest rule-based approach can recognize nine emotions [28]. Another approach is used in linguistic rule-based was metaphorical which was more practical as there was any set of emotions [29].

The machine learning approach is based on statistical techniques that can be further divided into supervised learning or unsupervised techniques. A large amount of information is required to train data sets in supervised learning. Support Vector Machines have been used to classify different blog sentences [30]. One research is conducted to compare three machine learning algorithms that concluded that Support Vector Machine performance was best [31]. While unsupervised learning is another approach; using these techniques ‘LSA Single word’ is proposed that calculates the similarity between texts. This approach was using WordNet synsets [32].

III. MIRROR NEURON FUNCTIONALITY IN MOTIVATIONAL ARCHITECTURE

This segment presents a model extension to implement mirror neurons functionality using its emotional empathy concept. It discusses different existing modules of the model and also introducing new modules as an extension of the model.

A. Mirror Neuron Motivational Model Extension

This model which is shown in Fig. 5 is an extension of Simulation of Glucose and Insulin Theories for the Implementation of Psychophysiology Drive Regulatory System in the QuBIC Agents model is proposed by (Khan) discussed
in chapter two. This model has been extended by external input from the environment to achieve the mirror neurons functionality by communicating the existing agent.

B. Mirror Neurons- Emotions and Empathy

In this architecture, human-machine interaction is created to test mirror functionalities. One human agent is interacting with a motivational agent. For instance, when any person is happy then another person’s mental state also gets changed due to mirror neurons. This can be for some seconds or last for more time depending on its intensity. Many experiments have been performed to know another person's mental state with respect to emotional conditions. Empathy is an ability to understand other’s feelings as own emotions.

1) Environment: According to human- machine-based interaction, there is an environment that creates a link between humans and machines. This link provides interaction between humans and machines to act accordingly. A Human from the environment can have interacted with the machine agent through this environment. The environment is also responsible to define a rule for any social interaction.

Emotion is an aspect of a person’s mental state that is a person’s internal (physical) and external (social) sensory feeling [33]. This architecture is providing some input from the environment and its effect on internal drives of physical states. This is word-based for emotion calculations. There is input which is a sentence or a collection of words. This information is calculated on measures to find proper emotions that hidden in words and expressions.

2) Universal emotions: As discussed in Section 2, six basic emotions were proposed by (Ekman) which was Happiness, Sadness, Fear, Disgust, and Anger. Four out of these six emotions are negative while just two are positive. This information was gathered from different cultures. This research revealed that there is a Universal Set of Emotions categorized in six [25].

WordNet effect is a list of words that are categorized into six basic emotions which were called the Universal Set of Emotions [34]. In this architecture, the WordNet Affect list is being used to identify emotions from the text. Emotions can be extracted easily from facial expressions and even from voice data. Emotions extraction from text is something different. The same words can have different senses. In this architecture, emotion is recognized from text input. Firstly text is analyzed and tagged with emotionally identified words with intensity.

3) Sentence analysis: Input can be a word or combination of words in the form of a sentence. There can be different kinds of sentences, Interrogative sentences, negative sentences, declarative sentences, or a simple sentence. The purpose of this research is to simulate the mirror neuron’s functionality and create a Human-Machine interaction. The input sentence is information in the text that will be a break in words, there are two types of the corpus that is helping in identifying emotions in the text.

WordNet Affect list is used as a built-in corpus for emotional recognition. Another corpus is implemented based on context analysis of the text. The same sentence can vary in a sense. To make the system work efficiently, it is necessary to make its context analysis. Sometimes sentence means a normal feeling but to what person is said matters. Human interacts with each other according to relations and social environment. Mirror neuron’s emotions can have different intensity levels depending upon relationships with the next person.

For instance, if we see someone in pain, then it is obvious our mirror neurons will active our painful emotions. While with friends we mimic their activities and make fun of each other by mirror neurons functionality, but this same attitude cannot be followed for respected level persons. So it is very important to know the next person context while analyzing sentences. In this architecture, there is an agent who is regulating its drives and goals to perform some specific behavior against goal achieved. Therefore, a context is related to this agent to know and evaluate its behavior that can change drives.

The input sentence is providing an emotional response that is changing agent emotional state with respect to its intensity level. This changing emotional state is having a link with agent internal drives such as Glucose, insulin, etc.

4) Emotion extraction: In this architecture, six basic emotions are targeted which has been discussed in pervious section. These emotions are also known as Universal emotions. There are two positive and four negative emotions. Emotion can be recognized by facial expressions, from voice analysis and text. In this architecture, text emotions are used to simulate mirror neuron’s behavior.

Fig. 6 shows the text of input from the environment section module. This module is basically implemented to achieve mirror neuron’s functionality. An agent or human from the environment is interacting with the existing system agent to know its mirror behavior towards drives and goals. This emotion can change the next agent’s feelings with respect to its intensity level. The model agent has own emotional state;
which is regulating its drives and goals to perform specific functions. Meanwhile, environment interaction with the model agent can change the whole scenario if the environment emotion intensity level is high than model emotions intensity. High-intensity emotion can change internal drives which are Hunger, Thirst, and Sleep. Emotions are also attached to physiological parameters. These changes can change the goals and behavior of a model agent accordingly.

This task is achieved by a Human-Machine interaction to know the mirror functionality. An environment agent talks with the model agent in text form. This text is the basic information that will change model agent behavior to know mirror functionality. The process flow of this module will be as follows.

Fig. 7 shows process flow of emotion extraction from text. There is an input text from the environment that can be sentenced. In the first step, the sentence will be analyses contextually. Contextual analysis has significant importance in the Mirror Neurons functionality. Because while performing Mirror activity, it cannot be the same with all the agents. For instance, the behavior of a student with teachers and friends will be change. In the case of mimic as major functionality of mirror neurons can depend on a relationship with the next person. While emotions and empathy is a sub functionality of Mirror neurons that can depend on intensity level with respect to the relationship with the next person. Sometimes while going on the road, if we saw anyone in pain by having some accident; then this can affect our internal emotional feelings but the time period of this feeling can be varied. However, if we see this same situation with our close one then it can be for a longer time period. Further, the sentence will be a break in words; as discussed in chapter two that WordNet effect is a list of words that are categorized into six basic emotions. This list provides help in identifying words with a direct emotional category. Some words have high-intensity levels while some have normal or medium. This process will tag words with emotional feelings. After this, both level intensity is analyses and assigned one final emotion.

Now the model agent is having own emotional feelings, and an environment Human interacts with another emotional feeling. This is the main step to finalize the mirror functionality. Now it is depending on the intensity level of the model agent emotion and environment emotion. For example, if the model agent is feeling hungry with high intensity of negative emotion; and environment emotional intensity is low or medium; this can affect model agent physiological drives with slight increase or decline, but high-intensity feelings will be performed first.

High-intensity emotion will be set that will affect on physiological parameters. These parameters can change the model agent drives. There are three basic drives, Hunger, Thirst or Sleep. These drives can set goals specifically and the behavior of the model can be changed accordingly. Each drive has its own level which is depending on physiological parameters. For instance, the glucose level is low then the model agent starts feeling hungry. Similarly, the volume parameter is linked with feeling thirst, a low level of volume can arise thirst feeling; while after drinking water this level gets maintained and the model agent got happy.

![Fig. 6. Abstract view of Emotion Extraction.](image)

![Fig. 7. Process flow of Emotion Extraction from Text.](image)

C. Motivational Architecture

Several modules such as emotional state, biological clock, level of glucose or insulin, target orientation or attitude module work in a system. Each of them has its own role to perform when it comes to generating inspiration in a system. The motivational model functions in a circadian clock in order to maintain a certain level of drive in a system. The human body thus works according to a clock that is linked up to the solar system and hence a person craves or sleeps accordingly. Such activity ends up maintaining a certain level of glucose and insulin.

A stable range of insulin/glucose level, the temperature state, sodium level and its volume, concentration of the solution, etc are few of the parameter which drives module to manage so that the hunger, thirst and sleep works at an optimum level. Setting a module set is most important to monitor the drive state.

1) Circadian clock: The circadian clock is an internal biological clock that helps to organize internal and external
activities of the human body shown in Fig. 8. It’s a 24-hour cycle that regulates basic human drives and functions and used in motivational architecture to generate motivation in a continuous manner a clock was needed to simulate a natural drive regulatory system in machines. The circadian clock is running in the background of our brain and create a cycle of sleepiness and alertness at regular intervals. The circadian clock is utilizing as a clock that ticked on consistent premise to motivate machine. It is controlled by the release of hormones that are regulated by the brain. It operated on a minimal model module to get levels of insulin and glucose continuously.

2) **Drive module**: The drive module is supposed to basically support three physiological needs i.e. Hunger, Thirst and Sleep. It keeps a proper check at every measure that can have an influence over any of the above-mentioned drive. The drive status can be noted in numeric range and hence that range should be maintained stable or else the instability of the drive state can lead to many health issues. The insignificant model module helps to measure the required parameters. The parameters tend to change as shown by the insignificant model. The level of glucose and insulin has a strong impact on physiological needs (Hunger, Thirst, and Sleep). Thus, it has been concluded that the level of glucose and insulin are the two main factors that stimulate the feelings of being hungry, thirsty or sleep.

3) **Goal setting module**: There are three main goals in a motivational machine:
 - Hunger
 - Thirst
 - Sleep

Drive strengths were compared and a drive with the high strength was selected as a goal. For Example, if thirst has the highest drive value other than remaining elements, then all the other drivers will search for water, in the order to quench the thirst.

The goal-setting module is shown in Fig. 9 by an Artificial Neural Network (ANN). Inputs are received from the Drive model and calculated from all physiological parameters on the basis of glucose and insulin. The input of the goals setting model is received from six physiological parameters such as Osmolarity, Glucose, Volume, Sodium, Insulin, and Temperature.

4) **Emotion module**: Emotions are derived from feelings and are divided into two categories:
 - Negative Emotions
 - Positive Emotions

The current emotional state is delivered by Drive state. There is a bidirectional link with the Behavior module and drive. Drive module helps to strengthen different drives based on physiological parameters. These strengths can be low, medium or high. High and low strength presents and sets a negative state and while medium-strength presents a positive state. A low value can create a negative emotional state which can make a machine angry while balanced glucose set a positive emotional state which makes a machine happy. As discussed above along with drive state emotional is also set by Behavioral module. The behavior module is responsible for taking action after the goal has been set by goal setting module.

The Artificial Neural Network (ANN) of the emotional module is given in Fig. 10. This module takes input from the drive module and behavior module that is in physiological parameters. This parameter strength used to select appropriate emotion.

5) **Behaviour module**: The basic function of this module is to relate to any feature that is most desirable to achieve a target. The behavior module works in an imitated
environment. For further elaboration an experiment is been quoted here- Behavior module is tested in a path puzzle called a maze. With several cracks down along the path, some food and water were placed in a maze. On three different positions, food and water were placed with different levels of glucose and sodium in it. The subject (who has to get to the food in a maze) wanders here and there in complete hustle before he decided on which position to go to get the food. Hence proven, the goal is required to have a motivation. The subject showed a few kinds of behaviors for the purpose of getting food, water and go for rest.

D. Working of Architecture

This architecture is recording the feeling and response of a person according to the release of neurons in his body. The human psychological parameters tend to maintain his three basic drives. The biological clock that works with the sunrise and sunset supports the need drive of the human body. On each specific time, a specific range of glucose and insulin is being produced by the body on a daily basis. The minimal model helps to note down the value of the level of glucose and insulin. The goal-setting module received the values and strength of each drive been calculated by the drive module. The emotional module analysis the strength of drive and sets the emotional statistics, for instance, if the strength is in normal range then the emotional state will be positive and when strength is in high range the emotional state will be negative. The emotional state of a system influences his three basic drives. The level of the drive strength varies e.g. when a person is mad at something, he might feel hungry or if when he is pleased, he doesn’t care much about his food. Drive strength works for goal setting module. This module already had a regular range for each drive. The behavior module stimulates the actions that are needed to achieve a target. The human interaction can change the drive state of the subject and can also lead him to a different course of action.

E. Application View

This section displays variants states of Mirror Neuron functionality in screenshots with Motivational Model application. This section also shows the screenshots of the application when this model is communicated by environmental agents that can change existing goals such as hungry, thirsty and sleepy depending on physiological parameters change.

![Fig. 10. Neural Network of Emotional Module.](www.ijacsa.thesai.org)

![Fig. 11. Mirror Neurons and Motivational Architecture-Application view.](www.ijacsa.thesai.org)

Fig. 11 shows the view of the application. The application is divided into different sections. There are physiological parameters that are changing with respect to model agent movements. These internal parameters regulate internal drives and set goals that activate the behavior of the agent. Behaviour is a specific action against the targeted goal.

Drives with moderate strength set positive emotions on the other hand drivers with intense strength set negative emotions.

The results were as below:

- The emotional state was also affected by Hunger which created different feelings such as anger, distress, anxiety, and sadness.
- Thirst also changed the emotional state and created negative emotions.
- Lack of sleep created anxiety, sadness, and fear [35-43].

It has been argued in [44-46] that the use of intelligent agents for the implementation of intelligent systems is highly desirable. The main objective of this Actions Selection Module was to achieve the goal by adopting a behavior.

IV. RESULTS AND DISCUSSION

Experiments have been performed to simulate the Mirror Neurons functionality and its effect on motivational architecture. Some experiments have been stated here showing the results of different modules. These experiments are discussed in changing all the parameters and their effects on existing states. Changing behavior is also observed and discussed with results.

A. Experiment 1

1) Analysis of experiment 1: Table I shows a simple scenario when the system is having nil goals and feeling is also having a medium intensity level. Agent existing mode of goal and behavior plays an important role in behavior. Goal and behavior can be changed by the intensity level of emotion. This intensity can be high, medium or low depending upon the current state of the agent.

B. Experiment 2

1) Analysis of experiment 2: Experiment 2 results are shown in Table II. This experiment is observed to know the
values of parameters without environment agent communication. In this experiment verify the supposition and literature made in this research. The experiment exposed the results whenever the normal condition of physiological parameters and homeostatic range maintained then expose the moderate behavior. During normal conditions it showed off the emotion of happiness, joy, and relief with positive emotions. It was also proved with experiment results in Table II in which the homeostatic range model did not set any certain goal. According to drive priority, mostly occurring drive was thirst and felt before any primary drive especially before sleep and hunger. This model feels thirst before any other drive, it can be seen in experiments.

TABLE I. EMOTION AND GOAL EXPERIMENT

Sentences	Emotion	Goals
I was excited when was opening my gift.	Surprise	Nil
Some students like to study in the morning	Happiness	Nil
She was sad because of low grades in exams.	Sadness	Nil
I like to hang out with my friends or family.	Happiness	Nil

TABLE II. EXPERIMENT RESULTS

Glucose	Insulin	Sodium	Volume	Osmolarity	Temperature	Tiredness	Emotion	Goal
170.89	23.4	139.87	37.7	290	37.2	No	Positive	Nil
155.10	22.2	140.11	37.8	290	37.2	No	Positive	Nil
142.23	19.7	141.17	37.1	290	37.2	No	Positive	Nil
117.15	19.0	142.28	36.5	290	37	No	Positive	Nil
111.67	12.3	142.47	36.1	290	37	Low	Positive	Nil
101.35	11.5	143.05	36.0	291	37.2	Medium	Negative	Thirst

After Satiation of Thirst								
95.25	7.25	135.27	44.2	290	37.2	No	Positive	Nil
89.1	7.01	135.88	43.7	290	37.3	No	Positive	Nil
87.3	6.55	136.16	42.5	290	37	No	Negative	Hunger

After Satiation of Hunger								
350.37	94.2	137.11	41.9	290	38	No	Positive	Sleep

After Waking Up								
190.80	29.0	133.66	41.8	290	37	No	Positive	Nil
188.05	27.2	140.40	41.5	290	37	No	Positive	Nil
168.05	26.6	140.94	41.3	290	37	No	Positive	Nil

C. **Experiment 3**

This experiment is implemented to know the changing behavior of the system by environment communication. This experiment is giving mirror neurons functionality. The external text input can change the behavior, feelings, and goals for some specific time period. In these experiment shows examples with results and variation in internal parameters.

1) **Mirror neuron and sleeping state:** Table III shows result for Mirror Neuron and sleeping state. A high level of glucose causes sleep. And glucose increased by taking food. After fulfilling hunger glucose level got high that is the reason for feeling sleepy. The model started feeling sleep when glucose level was above 300 mgdl. While the sleeping agent is communicated by the external environment with negative emotion. The intensity was high of external emotion so the model agent felt empathy towards and came in sadness feelings. This change of feelings causes of changing all the physiological internal parameters. These parameters set goals and behavior with respect to the current situation.

2) **Mirror neuron and hunger state:** Table IV shows result for mirror neurons effect on hunger state. Glucose level maintains the food level. With the decline in glucose and insulin, the hunger level gets activated with anger emotion. Even the consumption of water failed to raise the level of glucose and insulin. The values of glucose and insulin were down at the time thirst but due to high priority of thirst model set thirst as a goal. Glucose theory says that a low level of glucose makes us hungry. Results show that when glucose was its low level of 87.34 mgdl, the model started feeling hungry.

Glucose has a positive relation with insulin, high glucose raises the level of insulin and vice versa. That’s why the hunger level of insulin was also at its lowest point of 6.55. The experiment confirmed all theories. It also showed that during the intense sensation of hunger emotional state of hunger becomes negative. After the fulfillment of desire glucose and insulin get back to their normal range and the Emotional state also becomes positive.

When the model was in a hunger state with a low level of glucose and insulin; then an agent is communicated with the architecture agent to simulate its mirror functionality. The external agent from the environment gives input text which was positive. After taking positive influence from environment physiological parameters values got changed. However, internal feelings were having high intensity so the emotion remained negative but the mood of the architecture agent is enhanced. Mirror neurons can have a significant impact on human internal drives that can change internal physiological parameters even though when drives are activated in high-level demand.

3) **Mirror neuron and thirst state:** Table V shows the result for mirror neurons and thirst state. The experiment suggested that before the environment interaction model started feeling thirsty. Thirst feelings become passionate when osmolality got high and greater than 290 mmol/kg. Osmolarity defined the number of osmoles (concentration of salts) per kg. Table V showed that osmolality was 291 mmol/kg at the time of thirst. Thirst was also dependent on the level of sodium; sodium kept on increasing with time, thirst was felt when the concentration of sodium level was higher than 142 mEq/l.
Experiment result presented that while at a state of thirst sodium level was 143.6 mEq/l; which proved that higher concentration salts caused thirst. The volume of water was another factor that affected thirst. A low volume of water created thirst which was already proved in the experiment table. The result also shows that intense drives created negative emotions. The Parameters get back into their homeostatic range when the thirst was quenched. The volume of water also went up to 43.38. Osmolarity became 290 and the level of sodium also decreased to 135.66.

The model was thirsty when an agent from the environment interacted with the model in a positive way. Due to these interactions mirror neurons get activated that changed the internal physiological parameters. Osmolarity was on its same level 290 mmol/kg, which means that that interaction just helped to change the physiological parameters from negative to positive but the model remains still thirsty. The demand for water was reduced by stabiling the Sodium level by 141.62 mEq/l and emotion become positive. Mirror Neuron had a great impact on physiological parameters that helps to normalize internal drives.

| TABLE. III. MIRROR NEURONS EFFECT ON SLEEPING STATE |
|------------------|-----|-----|-----|-----|-----|-----|-----|
Glucose	Insulin	Sodium	Volume	Osmolarity	Temperature	Tiredness	Emotion	Goal
350.37	94.2	137.11	41.92	290	38	No	Positive	Sleep

Parameters after Human interaction with an agent with the following input sentence:

Input sentence: She was sad because of low grades in exams.

| TABLE. IV. MIRROR NEURONS EFFECT ON HUNGER STATE |
|------------------|-----|-----|-----|-----|-----|-----|-----|
Glucose	Insulin	Sodium	Volume	Osmolarity	Temperature	Tiredness	Emotion	Goal
95.23	7.25	139.27	44.2	290	37.2	No	Positive	Nil

Parameters after Human interaction with agent with following input sentence:

Input sentence: Why are you down? You can do it.

| TABLE. V. MIRROR NEURONS AND THIRST STATE |
|------------------|-----|-----|-----|-----|-----|-----|-----|
Glucose	Insulin	Sodium	Volume	Osmolarity	Temperature	Tiredness	Emotion	Goal
206.42	36.2	137.66	39.58	290	37.7	No	Positive	Nil

4) Analysis of experiment 3: The results of experiment 3 showed that Mirror neurons functionality has a strong impact on physiological parameters. These changes regulate the internal drives; that effect in goal setting of the model and behavior can be changed. Feelings can be changed to positive with environment changes.

V. CONCLUSION AND FUTURE WORK

This paper represented the Mirror Neurons functionality which has different aspects and it also focused on emotions and empathy. Motivational architecture is used to validate its functionality of mirror neurons. In the next version of this architecture can be improved by making more generic interaction with the agent. This paper helps the machine interaction with human and also provide an architecture design to learn from human by getting meaningful information from a sentence. This model is initially designed for the English language, it can be enhanced for more languages like Urdu, Arabic, Turkish and Hindi in the future.

REFERENCES

[1] Iacoboni, Marco, Roger P. Woods, Marcel Brass, Harold Bekkering, John C. Mazziotta, and Giacomo Rizzolatti. "Cortical mechanisms of human imitation." science 286, no. 5449 (1999): 2526-2528.

[2] Rizzolatti, Giacomo, and Michael A. Arbib. "Language within our grasp." Trends in neurosciences 21, no. 5 (1998): 188-194.

[3] Rizzolatti, Giacomo, and Maddalena Fabbri-Destro. "The mirror system and its role in social cognition." Current opinion in neurobiology 18, no. 2 (2008): 179-184.

[4] Oberman, Lindsay M., Edward M. Hubbard, Joseph P. McCleery, Eric L. Altschuler, Vilayanur S. Ramachandran, and Jaime A. Pineda. "EEG evidence for mirror neuron dysfunction in autism spectrum disorders." Cognitive brain research 24, no. 2 (2005): 190-198.

[5] Oberman, Lindsay M., and Vilayanur S. Ramachandran. "Reflections on the mirror neuron system: Their evolutionary functions beyond motor representation.” In Mirror neuron systems, pp. 39-59. Humana Press, 2008.

[6] Longo, Matthew R., Adam Kosobud, and Bennett I. Bertenthal. "Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals.” Journal of Experimental Psychology: Human Perception and Performance 34, no. 2 (2008): 489.

[7] Van Baaren, Rick B., William W. Maddux, Tanya L. Chartrand, Cris De Bouter, and Ad Van Kaippenberg. "It takes two to mimic: behavioral consequences of self-construals.” Journal of personality and social psychology 84, no. 5 (2003): 1093.

[8] Heyes, Cecilia. "Automatic imitation." Psychological bulletin 137, no. 3 (2011): 463.
Neviarouskaya, Annika, Stephen J. Suomi, Elisabetta Visalberghi, and Pier F. Ferrari. "Capuchin monkeys display affiliation toward humans who imitate them." Science 325, no. 5942 (2009): 880-883.

Botvinick, Matthew, Amishi P. Jha, Lauren M. Blysame, Sara A. Fabian, Patricia E. Solomon, and Kenneth M. Prkachin. "Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain." NeuroImage 25, no. 1 (2005): 312-319.

Cheng, Youwei, Chia-Yen Yang, Ching-Po Lin, Po-Lei Lee, and Jean Decety. "The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study." NeuroImage 40, no. 4 (2008): 1833-1840.

Jabbi, Mbemba, Marte Swart, and Christian Keyser. "Empathy for positive and negative emotions in the gustatory cortex." NeuroImage 34, no. 4 (2007): 1744-1753.

Gazzola, Valeria, Lisa Aziz-Zadeh, and Christian Keyser. "Empathy and the somatotopic auditory mirror system in humans." Current biology 16, no. 18 (2006): 1824-1829.

Di Pellegrino, Giuseppe, Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese, and Giacomo Rizzolatti. "Understanding motor events: a neurophysiological study." Experimental brain research 91, no. 1 (1992): 176-180.

Rizzolatti, Giacomo, Luciano Fadiga, Vittorio Gallese, and Leonardo Fogassi. "Premotor cortex and the recognition of motor actions." Cognitive brain research 3, no. 2 (1996): 131-141.

Rizzolatti, Giacomo, and Laila Craighero. "The mirror-neuron system." Annu. Rev. Neurosci. 27 (2004): 169-192.

Ferrari, Pier F., Elisabetta Visalberghi, Annika Paukner, Leonardo Fogassi, Angela Ruggiero, and Stephen J. Suomi. "Neonatal imitation in rhesus macaques." PLoS biology 4, no. 9 (2006).

Pollick, Frank E. "Humanoids 2001 Tutorial on the Visual Perception of Human Movement."

Keyser, Christian, Bruno Wicker, Valeria Gazzola, Jean-Luc Anton, Leonardo Fogassi, and Vittorio Gallese. "A touching sight: SII/PV activation during the observation and experience of touch." Neuron 42, no. 2 (2004): 335-346.

Borenstein, Elhanan, and Eytan Ruppin. "The evolutionary link between mirror neurons and imitation: An evolutionary adaptive agents model." Behavioral and Brain Sciences 28, no. 2 (2005): 127-128.

Oztop, Erhan, Mitsuo Kawato, and Michael Arbib. "Mirror neurons and imitation: A computationally guided review." Neural networks 19, no. 3 (2006): 254-271.

Bosco, Tiber, Zulfieg A. Memen, and Jan Treur. "A cognitive and neural model for adaptive emotion reading by mirroring preparation states and Hebbian learning." Cognitive Systems Research 13, no. 1 (2012): 39-58.

Khan, Faiz M., and John P. Gibbons. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.

Wicker, Bruno, Christian Keyser, Jane Pailly, Jean-Pierre Royet, Vittorio Gallese, and Giacomo Rizzolatti. "Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust." Neuron 40, no. 3 (2003): 655-664.

Matsumoto, David. "Cultural influences on the perception of emotion." Journal of Cross-Cultural Psychology 20, no. 1 (1989): 92-105.

Olveres, Jimena, Mark Billinghurst, Jesus Savage, and Alistair Holden. "Intelligent, expressive avatars." In Proceedings of the First Workshop on Embodied Conversational Characters, pp. 47-55. 1998.

Al Masum, Shaikh Mustafa, Helmut Prendinger, and Mitsuru Ishizuka. "Emotion sensitive news agent: An approach toward user centric emotion sensing from the news." In IEEE/WIC/ACM International Conference on Web Intelligence (WT07), pp. 614-620. IEEE, 2007.

Neviarouskaya, Alena, Helmut Prendinger, and Mitsuru Ishizuka. "Recognition of affect, judgment, and appreciation in text." In Proceedings of the 23rd international conference on computational linguistics, pp. 806-814. Association for Computational Linguistics, 2010.

Neuman, Yair, Gabi Kedma, Yohai Cohen, and Ophir Nave. "Using web-intelligence for excavating the emerging meaning of target-concepts." In 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 22-25. IEEE, 2010.

Aman, Saima, and Stan Szpakowicz. "Using roget’s thesaurus for fine-grained emotion recognition." In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I. 2008.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques." In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pp. 79-86. Association for Computational Linguistics, 2002.

Strapparava, Carlo, and Rada Mihalcea. "Learning to identify emotions in text." In Proceedings of the 2008 ACM symposium on Applied computing, pp. 1556-1560. 2008.

Zhang, Yu, Zhuming Li, Fuji Ren, and Shingo Kuroiwa. "A preliminary research of Chinese emotion classification model." Advances in Artificial Intelligence (2008): 95.

Strapparava, Carlo, and Alessandro Valitutti. "Wordnet affect: an affective extension of wordnet." In Lrec, vol. 4, no. 1083-1086, p. 40. 2004.

Macht, Michael. "How emotions affect eating: a five-way model." Appetite 50, no. 1 (2008): 1-11.

Izard, Carroll E. Human emotions. Springer Science & Business Media, 2013.

Izard, C. E. "Emotions, personality, and psychotherapy. The psychology of emotions. New York, NY, US." (1991).

Jain, Dreama. "A Comparative Framework for Emotion Driven Agent Based Modelling." (2011).

Baglioni, Chiara, Kai Spiegelhalder, Caterina Lombardo, and Dieter Riemann. "Sleep and emotions: a focus on insomnia." Sleep medicine reviews 14, no. 4 (2010): 227-238.

Scott, Brent A., and Timothy A. Judge. "Insomnia, emotions, and job satisfaction: A multilevel study." Journal of Management 32, no. 5 (2006): 622-645.

Thomsen, Dorthe Kirkegaard, Mimi Yung Mehlisen, Soren Christensen, and Robert Zachariae. "Rumination—relationship with negative mood and sleep quality." Personality and Individual Differences 34, no. 7 (2003): 1293-1301.

Uhde, Thomas W., and Bernadette M. Cortese. "Anxiety and insomnia." In Anxiety in Health Behaviors and Physical Illness, pp. 105-127. Springer, New York, NY, 2008.

Konidaris, George, and Andrew Barto. "An adaptive robot motivational system." In International Conference on Simulation of Adaptive Behavior, pp. 346-356. Springer, Berlin, Heidelberg, 2006.

Qasim, Awaïs, and Syed Asad Raza Kazmi. "MAPE-K interfaces for formal modeling of real-time self-adaptive multi-agent systems." IEEE Access 4 (2016): 4946-4958.

Qasim, Awaïs, Syed Asad Raza Kazmi, and Ilyas Fakhir. "Formal specification and verification of real-time multi-agent systems using timed-arc petri nets." Advances in Electrical and Computer Engineering 15, no. 3 (2015): 73-85.

Qasim, Awaïs, Z. U. H. Aziz, Syed Asad Raza Kazmi, Adnan Khalid, Ilyas Fakhir, and Jawad Hassan. "Intelligent agent for formal modelling of temporal multi-agent systems." International Journal on Smart Sensing and Intelligent Systems 13, no. 1 (2020): 1-13.