The block mutual coherence property condition for signal recovery

Jianwen Huang¹, Hailin Wang²,³, Feng Zhang²,³, Jianjun Wang³ *, Jinping Jia⁴

¹School of Mathematics and Statistics, Tianshui Normal University, Tianshui, 741001, China
²School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
³College of Artificial Intelligence, Southwest University, Chongqing, 400715, China

Abstract. Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1 - \alpha \ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. Sufficient conditions based on block mutual coherence property and associating upper bound estimations of error are established to ensure that block-sparse signals can be stably recovered in the presence of noise via the $\ell_2/\ell_1 - \alpha \ell_2$ minimization method. For all we know, it is the first block mutual coherence property condition of stably reconstructing block-sparse signals by the $\ell_2/\ell_1 - \alpha \ell_2$ minimization method. Additionally, the numerical experiments implemented verify the performance of the $\ell_2/\ell_1 - \alpha \ell_2$ minimization.

Key words. Compressed sensing; block-sparse recovery; block mutual coherence property; $\ell_2/\ell_1 - \alpha \ell_2$ minimization method

1 Introduction

Compressed sensing (CS) is a novel genre of sampling theory, which has attracted a large number of attention in different areas including applied mathematics, machine learning, pattern recognition, image processing, and so forth. The sparsity of signal is elementary precondition of compressed sensing. In general, one thinks over the model as follows:

$$y = \Phi x + z,$$

where Φ is an $M \times N$ measurement matrix ($M \ll N$) and $z \in \mathbb{R}^M$ is a vector of measurement errors. The aim is to reconstruct the unknown signal $x \in \mathbb{R}^N$ based on y and Φ.

*Corresponding author, E-mail: wjjmath@gmail.com, wjj@swu.edu.cn(J.J. Wang), E-mail: hjw13039872976126.com (J. Huang), wanghailin97@163.com (H. Wang), zhangf@email.swu.edu.cn (F. Zhang).
Now we all understand that the ℓ_1 minimization method presents an efficient approach for recovery of the sparse signal in numerous scenarios. The ℓ_1 minimization problem in this settings is

$$\min_{\tilde{x}} \|\tilde{x}\|_1 \text{ subject to } y - \Phi \tilde{x} \in \mathcal{B}. \quad (1.2)$$

In the noise-free situation, we get $\mathcal{B} = \{0\}$. In the noisy situation, we can put $\mathcal{B}^{\ell_2} = \{z : \|z\|_2 \leq \epsilon\}$ [1] or $\mathcal{B}_{DS}^{\ell_2} = \{z : \|\Phi^T z\|_{\infty} \leq \epsilon\}$, where Φ^T stands for the conjugate transpose of the matrix Φ [2]. Now it is well known that the problem of sparse signal recovery has been well investigated in the framework of the mutual coherence property (written as MIP) introduced in [3], which is defined as

$$\mu = \max_{i \neq j} \frac{\|\Phi_i^T \Phi_j\|}{\|\Phi_i\|_2 \|\Phi_j\|_2}. \quad (1.3)$$

It has been shown that a sparse signal can been reconstructed by ℓ_1 minimization with a small or zero error under some appropriate conditions regarding MIP[3] [1] [4] [5] [6]. In order to further enhance the reconstruction performance, Yin et al. [7] has recently proposed the approach (i.e., ℓ_{1-2} minimization method) as follows:

$$\min_{\tilde{x}} \|\tilde{x}\|_1 - \|\tilde{x}\|_2 \text{ subject to } y - \Phi \tilde{x} \in \mathcal{B}. \quad (1.4)$$

Additionally, Yin et al. conducted simulation experiments to show that the method (1.4) behaves better than the method (1.2) in recovering sparse signals. Based on this fact, numerous researches [8] [9] [10] on the ℓ_{1-2} minimization approach have been developed. Besides, for recovering $x \in \mathbb{R}^N$, the researchers [11] [12] proposed an $\ell_1 - \alpha \ell_2$ $(0 < \alpha \leq 1)$ minimization method:

$$\min_{\tilde{x}} \|\tilde{x}\|_1 - \alpha \|\tilde{x}\|_2 \text{ subject to } y - \Phi \tilde{x} \in \mathcal{B}. \quad (1.5)$$

When $\alpha = 1$, (1.5) degenerates to the ℓ_{1-2} minimization method (1.4).

However, in practical applications, there exist signals which have special structure form, where the nonzero coefficients appear in some blocks. Such structural signal is called block-spare signal in this paper. Such structural sparse signals commonly arise in all kinds of applications, e.g. foetal electrocardiogram (FECG) [13], motion segmentation[15], color image [14], and reconstruction of multi-band signals [16] [17]. Without loss of generality, suppose that there exist n blocks with block size $d = N/n$ in x. Then, x can be expressed as

$$x = \begin{bmatrix} x[1] \\ x[2] \\ \vdots \\ x[n] \end{bmatrix} = \begin{bmatrix} x_1, \ldots, x_d, x_{d+1}, \ldots, x_{2d}, \ldots, x_{N-d}, \ldots, x_N \end{bmatrix}^T, \quad (1.6)$$

where $x[i] \in \mathbb{R}^d$ represents the ith block of x. We call a vector $x \in \mathbb{R}^N$ block s-sparse signal if x has at most s nonzero blocks, i.e., $\|x\|_{2,0} = \sum_{i=1}^n I(\|x[i]\|_2) \leq s$. Therefore, the measurement matrix $\Phi \in \mathbb{R}^{M \times N}$ can also be described as

$$\Phi = \begin{bmatrix} \Phi_1, \ldots, \Phi_d, \Phi_{d+1}, \ldots, \Phi_{2d}, \ldots, \Phi_{N-d}, \ldots, \Phi_N \end{bmatrix}, \quad (1.7)$$

where Φ_i and $\Phi[j]$ respectively stand for the ith column vector and jth sub-block matrix of Φ.

In this paper, we propose the following $\ell_2/\ell_1 - \alpha \ell_2$ minimization to recover block-sparse signal:

$$\min_{\tilde{x}} \|\tilde{x}\|_{2,1} - \alpha \|\tilde{x}\|_2 \quad \text{subject to} \quad y - \Phi \tilde{x} \in B,$$

where $\|x\|_{2,1} = \sum_{i=1}^n \|x[i]\|_2$. Furthermore, mixed norm $\|x\|_{2,2} = (\sum_{i=1}^n \|x[i]\|_2^2)^{1/2}$. Observe that $\|x\|_{2,2} = \|x\|_2$. When $\alpha = 1$, (1.8) returns to $\ell_2/\ell_1 - \ell_2$ minimization [18]. And when the block size $d = 1$, (1.8) reduces to the $\ell_1 - \alpha \ell_2$ minimization (1.5).

In this paper, we study the block mutual coherence conditions for the stable recovery of signals with blocks structure from (1.6) via the $\ell_2/\ell_1 - \alpha \ell_2$ minimization in noise case. Sufficient conditions for stable signal reconstruction with block pattern by the $\ell_2/\ell_1 - \alpha \ell_2$ minimization are established. Moreover, we also gain upper bound estimation of error concerning the recovery of block-sparse signal. As far as we know, this is the first block mutual coherence based sufficient condition of stably reconstructing x via solving (1.8).

The remainder of the paper is constructed as follows. In Section 2, we present some notations and lemmas that will be used. The main theoretical results and their proofs are given in Section 3. The numerical experiments are given in Section 4 to hold out the theoretical results. Finally, the conclusion is summarized in Section 5.

2 Preliminaries

In this section, we primarily present several lemmas to prove our main results. Before giving these lemmas, we first of all explain some symbols in this paper.

Notations: $T \subset \{1, 2, \ldots, n\}$ denotes block indices, and T^c is the complement of T in $\{1, 2, \ldots, n\}$. For any vector $x \in \mathbb{R}^N$, denote x_T to imply that x_T maintains the blocks indexed by T of x and displaces other blocks by zero. $E = \{i : \|x[i]\|_2 \neq 0\}$ represents the block support of x. In addition, we often assume that $h = \hat{x} - x$, where \hat{x} is the solution of (1.8) and x is the signal to be recovered.

Definition 2.1. (block mutual coherence) Given matrix $\Phi \in \mathbb{R}^{M \times N}$, we define its block mutual coherence as

$$\mu_T = \max_{1 \leq i < j \leq n} \frac{1}{d} \frac{\| (\Phi[i])^\top \Phi[j] \|_2}{\| \Phi[i] \|_2 \cdot \| \Phi[j] \|_2}.$$

(2.9)

Lemma 2.2. ([19], Lemma 3) For any block s-sparse vector x, we have

$$(1 - (s - 1)d\mu_T) \|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + (s - 1)d\mu_T).$$

(2.10)

Lemma 2.3. We have

$$\|h_E\|_{2,1} \leq \|h_E\|_{2,1} + \alpha \|h\|_2.$$

(2.11)

Proof. Recollect that $h = \hat{x} - x$. Since \hat{x} is a minimizer of (1.8), we get

$$\|h + x\|_{2,1} - \alpha \|h + x\|_2 = \|\hat{x}\|_{2,1} - \alpha \|\hat{x}\|_2$$

$$\leq \|x\|_{2,1} - \alpha \|x\|_2.$$
By the reverse triangular inequality of $\| \cdot \|_2$, we get

$$\|h + x\|_{2,1} - \|x\|_{2,1} \leq \alpha \|h + x\|_2 - \alpha \|x\|_2 \leq \alpha \|h\|_2.$$

Note that x is block s-sparse and $E = \{i: \|x[i]\|_2 \neq 0\}$, then

$$\alpha \|h\|_2 \geq \|h + x\|_{2,1} - \|x\|_{2,1} = \|(h + x)_E\|_{2,1} + \|(h + x)_{E^c}\|_{2,1} - \|x\|_{2,1} = \|h_E + x_E\|_{2,1} + \|h_{E^c} + x_{E^c}\|_{2,1} - \|x\|_{2,1} \geq \|x_E\|_{2,1} - \|h_E\|_{2,1} + \|h_{E^c}\|_{2,1} - \|x\|_{2,1} = \|h_{E^c}\|_{2,1} - \|h_E\|_{2,1},$$

which brings about the result.

\[\square\]

3 Main results

With the preparations provided in Section 2, we establish the main results in this section-block mutual coherence conditions for the stable reconstruction of block s-sparse signals. We will reveal that the measurement matrix Φ satisfies the block mutual coherence property with $\mu_\tau < 1/3sd$, then every block s-sparse signal can be stably reconstructed via the $\ell_2/\ell_1 - \alpha \ell_2$ minimization method in the presence of noise. We first think about stable reconstruction of block s-sparse signals with ℓ_2-error.

Theorem 3.1. Consider the model (1.1) with $\|z\|_2 \leq \epsilon$. Let \hat{x} be the solution of (1.8) with $B^{\ell_2} = \{z: \|z\|_2 \leq \eta\}$, and $\epsilon \leq \eta$. Assume that x is block s-sparse with $\mu_\tau < 1/3sd$. Then \hat{x} fulfills

$$\|\hat{x} - x\|_2 \leq \left\{ \begin{array}{ll}
\frac{2(1-d\mu_\tau)(1+3d\mu_\tau)}{(1+\alpha^2)d\mu_\tau + (1-\alpha^2)d\mu_\tau^2} (\epsilon + \eta), & s = 1, \\
\frac{(1-3d\mu_\tau)(1+3d\mu_\tau)}{(1+\alpha^2)d\mu_\tau + (1-\alpha^2)d\mu_\tau^2} (\epsilon + \eta), & s = 2, \\
\frac{24\sqrt{3}d\mu_\tau + \sqrt{17(1+9\alpha^2)d\mu_\tau}}{1+(1-9\alpha^2)d\mu_\tau} (\epsilon + \eta), & s \geq 3.
\end{array} \right.$$ (3.12)

Remark 3.2. In the case of $d = 1$ and $\alpha = 1$ (namely for standard compressed sensing), the result of Theorem 3.1 is the same as that of Theorem 1 [8].

Remark 3.3. Combining with $\mu_\tau < 1/3sd$ and the inequality (23) [6], we can derive a condition using the restricted isometry constant (RIC) [20], i.e.,

$$\delta_{2s} < \frac{2s - 1}{3sd}. \quad (3.13)$$

Recently, Wang et al. [18] also obtained a RIC-based condition which is described as follows:

$$\delta_{2s} + \frac{\sqrt{s} + 1}{\sqrt{s} - 1} \delta_{3s} < 1, \quad (3.14)$$

which combines with the fact that $\delta_s \leq \delta_{s1}$ for $s \leq s_1 \leq n$ [16] implies

$$\delta_{2s} < \frac{\sqrt{s} - 1}{2\sqrt{s}}. \quad (3.15)$$
Fig. 3.1 depicts the upper bounds of δ_2 versus the block sparsity s in (3.13) and (3.15). It is easy to see that our condition (3.13) is much better than (3.15) for all s.

![Comparison of conditions (3.13) and (3.15) for $d = 1$](image)

Corollary 3.4. Under the same conditions as in Theorem 3.1, suppose that $z = 0$. Then x can be accurately reconstructed via

$$
\min_{\hat{x}} \|\hat{x}\|_{2,1} - \alpha\|\hat{x}\|_2 \quad \text{subject to} \quad \Phi\hat{x} = y.
$$

(3.16)

We then consider stable reconstructing of block s-sparse signals with error in the bounded set $B^{DS} = \{z: \|\Phi^T z\|_\infty \leq \epsilon\}$.

Theorem 3.5. Let $y = \Phi x + z$ be noisy measurement of a signal x with $\|\Phi^T z\|_\infty \leq \epsilon$. If the block s-sparse signal x obeys the block mutual coherence property with $\mu_\tau < 1/3sd$, then the solution \hat{x} of (1.8) with $B^{DS} = \{z: \|\Phi^T z\|_\infty \leq \eta\}$ fulfills

$$
\|\hat{x} - x\|_2 \leq \begin{cases}
\sqrt{\frac{1}{(2+\sqrt{s})d\mu_\tau + (1-\alpha^2)sd\mu_\tau^2}} (\epsilon + \eta), & s = 1, \\
\sqrt{\frac{1}{(6+\sqrt{s})d\mu_\tau + (9-\alpha^2)sd\mu_\tau^2}} (\epsilon + \eta), & s = 2, \\
\sqrt{\frac{1}{15+3\sqrt{2s}} (\epsilon + \eta)}, & s \geq 3.
\end{cases}
$$

(3.17)

Remark 3.6. When $d = 1$ and $\alpha = 1$, Theorem 3.5 reduces to Theorem 2 [8].

Proof of Theorem 3.1.

Due to the feasibility of \hat{x}, we get

$$
\|\Phi\hat{x}\|_2 \leq \|\Phi x - \Phi\hat{x}\|_2 \leq \|\Phi x - y\|_2 + \|\Phi\hat{x} - y\|_2 \leq \epsilon + \eta.
$$

(3.18)

Notice that $E = \{i: \|x[i]\|_2 \neq 0\}$. It follows from the facts $\|\Phi[i]\|_2 = 1$, $\|\Phi[i]^T \Phi[j]\|_2 \leq d\mu_\tau$ for $i \neq j$, $i, j = 1, 2, \cdots, n$, and (2.10) that

$$
|\langle \Phi h, \Phi h_E \rangle| \geq |\langle \Phi h_E, \Phi h_E \rangle| - |\langle \Phi h_{E'}, \Phi h_{E'} \rangle| \\
\geq (1 - (s - 1)d\mu_\tau)\|h_E\|_2^2 - \sum_{j \in E'} \sum_{i \in E} \langle \Phi[j] \rangle^T \Phi[i] h[i] |h[i]|
$$
It follows from the Cauchy-Schwarz inequality, (3.18) and (3.20) that

\[\sum_{i \in E} \sum_{j \in E} \| (\Phi[i])^\top \Phi[j] \|_2 \| h[i] \|_2 \| h[j] \|_2 \]
\[\geq (1 - (s - 1)d_{\mu_r}) \| h_E \|_2^2 - \sum_{i \in E} \sum_{j \in E} \| (\Phi[i])^\top \Phi[j] \|_2 \| h[i] \|_2 \| h' \|_2 \]
\[\geq (1 - (s - 1)d_{\mu_r}) \| h_E \|_2^2 - d_{\mu_r} \| h_E \|_2 \| h' \|_{2,1} \]
\[\geq (1 - (s - 1)d_{\mu_r}) \| h_E \|_2^2 - \sqrt{3d_{\mu_r}} \| h_E \|_2 (\| h_E \|_{2,1} + \alpha \| h \|_2) \]
\[\geq (1 - (2s - 1)d_{\mu_r}) \| h_E \|_2^2 - \alpha \sqrt{3d_{\mu_r}} \| h_E \|_2 \| h \|_2. \] (3.19)

On the other hand, by (2.10), we get

\[\| \Phi h_E \|_2^2 \leq (1 + (s - 1)d_{\mu_r}) \| h_E \|_2^2. \] (3.20)

It follows from the Cauchy-Schwarz inequality, (3.18) and (3.20) that

\[| \langle \Phi h, \Phi h_E \rangle | \leq \| \Phi h \|_2 \| \Phi h_E \|_2 \leq (\epsilon + \eta) \sqrt{1 + (s - 1)d_{\mu_r}} \| h_E \|_2. \] (3.21)

Combining with (3.19) and \(\mu_r < 1/3d \), it implies

\[\| h_E \|_2 \leq \frac{\sqrt{1 + (s - 1)d_{\mu_r}} (\epsilon + \eta) + \frac{\alpha \sqrt{3d_{\mu_r}}}{1 - (2s - 1)d_{\mu_r}} \| h \|_2}{1 - (2s - 1)d_{\mu_r}} \]
\[\leq \frac{\sqrt{1 + (s - 1)/3s} (\epsilon + \eta) + \frac{\alpha \sqrt{3d_{\mu_r}}}{1 - (2s - 1)d_{\mu_r}} \| h \|_2}{1 - (2s - 1)d_{\mu_r}}. \]

Then, one can easily check that

\[\| h_E \|_2 \leq \begin{cases} \frac{3}{2} (\epsilon + \eta) + \frac{\alpha \sqrt{3d_{\mu_r}}}{1 - (2s - 1)d_{\mu_r}} \| h \|_2, & s = 1, \\ \frac{\sqrt{1 + (s - 1)/3s} (\epsilon + \eta) + \frac{\alpha \sqrt{3d_{\mu_r}}}{1 - (2s - 1)d_{\mu_r}} \| h \|_2}{1 - (2s - 1)d_{\mu_r}}, & s = 2, \\ \frac{2 \sqrt{3} (\epsilon + \eta) + \frac{\alpha \sqrt{3d_{\mu_r}}}{1 - (2s - 1)d_{\mu_r}} \| h \|_2}{1 - (2s - 1)d_{\mu_r}}, & s \geq 3. \end{cases} \] (3.22)

Because of the fact \(\| \Phi[i] \|_2 = 1, \| (\Phi[i])^\top \Phi[j] \|_2 \leq d_{\mu_r} \) for \(i \neq j, i, j = 1, 2, \ldots, n \), we get

\[\| \Phi h \|_2^2 = \langle \Phi h, \Phi h \rangle = \sum_{i,j} \langle \Phi[i] h[i], \Phi[j] h[j] \rangle \]
\[= \sum_i \langle (\Phi[i])^\top \Phi[i] h[i], \sum_{i \neq j} (\Phi[i])^\top \Phi[j] h[j] \rangle \]
\[\geq \sum_i \| (\Phi[i])^\top \Phi[i] \|_2 \| h[i] \|_2^2 - \sum_{i \neq j} \| (\Phi[i])^\top \Phi[j] \|_2 \| h[i] \|_2 \| h[j] \|_2 \]
\[\geq \| h \|_{2,2}^2 - d_{\mu_r} \sum_{i \neq j} \| h[i] \|_2 \| h[j] \|_2 \]
\[= \| h \|_{2,2}^2 + d_{\mu_r} \| h \|_2^2 - d_{\mu_r} \| h \|_{2,1}^2 \]
\[= (1 + d_{\mu_r}) \| h \|_2^2 - d_{\mu_r} (\| h_E \|_{2,1} + \| h_E \|_{2,1})^2 \]
\[\geq (1 + d_{\mu_r}) \| h \|_2^2 - d_{\mu_r} (2 \| h_E \|_{2,1} + \alpha \| h \|_2)^2 \]
\[\geq (1 + d_{\mu_r}) \| h \|_2^2 - d_{\mu_r} (2 \sqrt{3} \| h_E \|_2 + \alpha \| h \|_2)^2, \] (3.23)
where (a) follows from (2.11), and (b) is due to the Cauchy-Schwarz inequality.

Next, we estimate (3.12) by discussing three cases: \(s = 1, s = 2, \) and \(s \geq 3. \) We first of all discuss the situation that \(s = 1. \) A combination of (3.18), (3.22) and (3.23), we get

\[
(1 + d_{\mu})(\|h\|_{2}^{2} - d_{\mu}) \left[3(\epsilon + \eta) + \frac{\alpha(1 + d_{\mu})}{1 - d_{\mu}} \right]^{2} \leq (\epsilon + \eta)^{2}.
\]

The equation above can be adapted as

\[
[1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}]\|h\|_{2}^{2} - 6\alpha d_{\mu}(1 - d_{\mu})(\epsilon + \eta)\|h\|_{2} - (1 + 9d_{\mu})(1 - d_{\mu})^{2}(\epsilon + \eta)^{2} \leq 0.
\]

Therefore, due to \(\mu_{r} < 1/3d, \) we get

\[
[1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}]\|h\|_{2}^{2} - 6\alpha d_{\mu}(1 - d_{\mu})(\epsilon + \eta)\|h\|_{2} - \frac{4(1 - d_{\mu})^{2}}{1 + d_{\mu}^{2}}(\epsilon + \eta)^{2} \leq 0.
\]

Accordingly, by Quadratic Formula, we get

\[
\|h\|_{2} \leq \frac{1}{2[1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}]} \left\{ 6\alpha d_{\mu}(1 - d_{\mu})(\epsilon + \eta) \\
\left\{ (2(1 - d_{\mu})(\epsilon + \eta) + \frac{3\alpha d_{\mu} + \sqrt{1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}}}{1 + d_{\mu}} \right\}^{1/2}
\right\}^{(a)}
\]

\[
\leq \frac{2(1 - d_{\mu})(\epsilon + \eta)}{1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}} \left(1 + d_{\mu}^{2} \right) \left\{ 3\alpha d_{\mu} + \sqrt{1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}} \right\}
\]

\[
\leq \frac{2(1 - d_{\mu})(1 + 3\alpha d_{\mu})}{1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}}(\epsilon + \eta),
\]

where (a) is from the fact \((a + b)^{1/2} \leq a^{1/2} + b^{1/2}\) for any nonnegative constants \(a\) and \(b,\) and (b) is because both \(1 - (2 + \alpha^{2})d_{\mu} + (1 - \alpha^{2})d_{\mu}^{2}\) and \(1/(1 + d_{\mu})\) are monotonically reducing when \(0 < \mu_{r} < 1/3d.\)

In the case of \(s = 2, \) it follows from (3.18), (3.22) and (3.23) that

\[
(1 + d_{\mu})(\|h\|_{2}^{2} - d_{\mu}) \left[4\sqrt{21} \frac{(\epsilon + \eta) + \frac{\alpha(1 + d_{\mu})}{1 - 3d_{\mu}}}{2} \right]^{2} \leq (\epsilon + \eta)^{2}.
\]

The above equation can be recast as

\[
(1 + d_{\mu}) \left[1 - \frac{\alpha d_{\mu}(1 + d_{\mu})}{(1 - 3d_{\mu})^{2}} \right] \|h\|_{2}^{2} - \frac{8\sqrt{21}\alpha d_{\mu}(1 + d_{\mu})(\epsilon + \eta)}{3(1 - 3d_{\mu})}\|h\|_{2} - \left(\frac{112}{3} d_{\mu} + 1 \right)(\epsilon + \eta)^{2} \leq 0.
\]

Owing to the condition of Theorem 3.1, \(\mu_{r} < 1/6d, \) thereby,

\[
[1 - (6 + \alpha^{2})d_{\mu} + (9 - \alpha^{2})d_{\mu}^{2}]\|h\|_{2}^{2} - \frac{25}{2} \alpha d_{\mu}(1 - 3d_{\mu})(\epsilon + \eta)\|h\|_{2} - \frac{15}{2} (\epsilon + \eta)^{2} \frac{(1 - 3d_{\mu})^{2}}{1 + d_{\mu}} \leq 0.
\]

By utilizing Quadratic Formula, we obtain

\[
\|h\|_{2} \leq \frac{1}{2[1 - (6 + \alpha^{2})d_{\mu} + (9 - \alpha^{2})d_{\mu}^{2}]} \left\{ \frac{25}{2} \alpha d_{\mu}(1 - 3d_{\mu})(\epsilon + \eta) + \left\{ \frac{25}{2} \alpha d_{\mu}(1 - 3d_{\mu})(\epsilon + \eta) \right\} \right\}^{1/2}
\]

\[
\leq \frac{1}{2[1 - (6 + \alpha^{2})d_{\mu} + (9 - \alpha^{2})d_{\mu}^{2}]} \left\{ \frac{30}{2} \alpha d_{\mu}(1 - 3d_{\mu})(\epsilon + \eta) \right\}^{1/2}
\]

\[
\leq \frac{30}{2[1 - (6 + \alpha^{2})d_{\mu} + (9 - \alpha^{2})d_{\mu}^{2}]} \left\{ \frac{30}{2} \alpha d_{\mu}(1 - 3d_{\mu})(\epsilon + \eta) \right\}^{1/2}
\]
Thus, it is easy to check that
\[(1 - 3d\mu_r)(25\alpha d\mu_r + \sqrt{30}) \leq \frac{(1 - (6 + \alpha^2)d\mu_r + (9 - \alpha^2)d^2\mu_r^2)}{2[1 - (6 + \alpha^2)d\mu_r + (9 - \alpha^2)d^2\mu_r^2]}(\epsilon + \eta), \]
where (a) is from the fact that both \(1 - (6 + \alpha^2)d\mu_r + (9 - \alpha^2)d^2\mu_r^2\) and \(1/(1 + d\mu_r)\) are monotonically descending when \(0 < \mu_r < 1/6d\).

When \(s \geq 3\), through (3.18), (3.22) and (3.23), we gain
\[(1 + d\mu_r)\|h\|_2^2 - d\mu_r(4\sqrt{3s}(\epsilon + \eta) + 3\alpha\|h\|_2)^2 \leq (\epsilon + \eta)^2. \]
The above equation can be reworded as
\[[1 + (1 - 9\alpha^2)d\mu_r]\|h\|_2^2 - 24\sqrt{3s}d\mu_r(\epsilon + \eta)\|h\|_2 - (1 + 48sd\mu_r)(\epsilon + \eta)^2 \leq 0. \]
From \(\mu_r \leq 1/3sd\), \(1 + (1 - 9\alpha^2)d\mu_r > 0\) and \(48sd\mu_r < 16\) when \(s \geq 3\), hence
\[[1 + (1 - 9\alpha^2)d\mu_r]\|h\|_2^2 - 24\sqrt{3s}d\mu_r(\epsilon + \eta)\|h\|_2 - 17(\epsilon + \eta)^2 \leq 0. \]
Consequently,
\[\|h\|_2 \leq \frac{1}{2[1 + (1 - 9\alpha^2)d\mu_r]} \left\{ \begin{array}{l}
24\sqrt{3s}d\mu_r(\epsilon + \eta) \\
+ \left\{ [24\sqrt{3s}d\mu_r(\epsilon + \eta)]^2 + 68[1 + (1 - 9\alpha^2)d\mu_r](\epsilon + \eta)^2 \right\}^{1/2} \end{array} \right\} \]
\[\leq \frac{24\sqrt{3s}d\mu_r + \sqrt{17[1 + (1 - 9\alpha^2)d\mu_r]}(\epsilon + \eta)}{1 + (1 - 9\alpha^2)d\mu_r}. \]

Proof of Theorem 3.5.

Notice that from the first portion of the proof of Theorem 3.1, we get
\[|\langle \Phi h, \Phi h_E \rangle| \geq (1 - (2s - 1)d\mu_r)\|h_E\|_2^2 - \alpha\sqrt{sd}\mu_r\|h_E\|_2\|h\|_2. \]
(3.24)

Employing the fact \(\|\langle \Phi E \rangle^\top \Phi h\|_2 \leq \sqrt{sd}(\epsilon + \eta)\), where \(E = \{i: \|x[i]\|_2 \neq 0\}\), we have
\[|\langle \Phi h, \Phi_E h_E \rangle| \leq \|h_E\|_2\|\langle \Phi E \rangle^\top \Phi h\|_2 \leq \|h_E\|_2\sqrt{sd}(\epsilon + \eta), \]
which combines with (3.24) and the condition \(\mu_r \leq 1/3sd\), it leads to
\[\|h_E\|_2 \leq \frac{\sqrt{sd}}{1 - (2s - 1)d\mu_r}(\epsilon + \eta) + \frac{\alpha\sqrt{sd}\mu_r}{1 - (2s - 1)d\mu_r} \|h\|_2 \]
\[\leq \frac{\sqrt{sd}}{1 - (2s - 1)/3s}(\epsilon + \eta) + \frac{\alpha\sqrt{sd}\mu_r}{1 - (2s - 1)d\mu_r} \|h\|_2. \]

Thus, it is easy to check that
\[\|h_E\|_2 \leq \begin{cases}
\frac{3\sqrt{sd}}{2}(\epsilon + \eta) + \frac{\alpha d\mu_r}{1 - d\mu_r} \|h\|_2, & s = 1, \\
2\sqrt{sd}(\epsilon + \eta) + \frac{\sqrt{2sd\mu_r}}{1 - 3d\mu_r} \|h\|_2, & s = 2, \\
3\sqrt{sd}(\epsilon + \eta) + \frac{\alpha}{\sqrt{s}} \|h\|_2, & s \geq 3.
\end{cases} \]
(3.25)

8
By (3.23), we get
\[\langle \Phi h, \Phi h \rangle \geq (1 + d \mu_\tau) \|h\|_2^2 - d \mu_\tau (2\sqrt{\sigma} \|h_E\|_2 + \alpha \|h\|_2)^2. \]
(3.26)

By (2.11), the fact that \(\| \Phi^T \Phi h \|_\infty = \| \Phi^T (\Phi x - y) - (\Phi \hat{x} - y) \|_\infty \leq \epsilon + \eta \) and Cauchy-Schwarz inequality, we get
\[\langle \Phi h, \Phi h \rangle = h^T \Phi^T \Phi h \leq \|h\|_1 \| \Phi^T \Phi h \|_\infty = \sum_{i=1}^n \|h[i]\|_1 (\epsilon + \eta) \leq (\epsilon + \eta) \sum_{i=1}^n \sqrt{d} \|h[i]\|_2 = \sqrt{d} (\epsilon + \eta) \|h\|_2 \]
\[= \sqrt{d} (\epsilon + \eta) (\|h\|_2 + \|h_{E'}\|_2, 1) \leq \sqrt{d} (\epsilon + \eta) (2 \|h_E\|_2, 1 + \alpha \|h\|_2) \]
\[\leq \sqrt{d} (\epsilon + \eta) (2 \|h_E\|_2, 1 + \alpha \|h\|_2) \leq \sqrt{d} (\epsilon + \eta) (2 \sqrt{\sigma} \|h_E\|_2, 1 + \alpha \|h\|_2) \]
\[= \sqrt{d} (\epsilon + \eta) (2 \sqrt{\sigma} \|h_E\|_2 + \alpha \|h\|_2), \]

which combines with (3.26), it implies that
\[\sqrt{d} (\epsilon + \eta) (2 \sqrt{\sigma} \|h_E\|_2 + \alpha \|h\|_2) \geq (1 + d \mu_\tau) \|h\|_2^2 - d \mu_\tau (2 \sqrt{\sigma} \|h_E\|_2 + \alpha \|h\|_2)^2. \]
(3.27)

Hereafter, we give the proof of (3.17) by taking into account three situations: \(s = 1, s = 2, \) and \(s \geq 3. \)

Firstly, we think over the situation that \(s = 1. \) Due to (3.25) and (3.27), we get
\[(1 + d \mu_\tau) \|h\|_2^2 - d \mu_\tau \left[3(\epsilon + \eta) \sqrt{d} + \frac{\alpha (1 + d \mu_\tau)}{1 - d \mu_\tau} \|h\|_2 \right]^2 \leq \sqrt{d} (\epsilon + \eta) \left[3(\epsilon + \eta) \sqrt{d} + \frac{\alpha (1 + d \mu_\tau)}{1 - d \mu_\tau} \|h\|_2 \right]. \]

The above equation can be adapted as
\[(1 + d \mu_\tau) \left[1 - \frac{\alpha^2 d \mu_\tau (1 + d \mu_\tau)}{(1 - d \mu_\tau)^2} \right] \|h\|_2^2 - \alpha \sqrt{d} (6 d \mu_\tau + 1)(\epsilon + \eta) \frac{1 + d \mu_\tau}{1 - d \mu_\tau} \|h\|_2 - (9 d \mu_\tau + 3) d (\epsilon + \eta)^2 \leq 0. \]

By the condition \(\mu_\tau < 1/3sd, \mu_\tau < 1/3d, \) accordingly,
\[[1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2] \|h\|_2^2 - 3 \alpha \sqrt{d} (\epsilon + \eta) (1 - d \mu_\tau) \|h\|_2 - 6d (\epsilon + \eta)^2 \frac{(1 - d \mu_\tau)^2}{1 + d \mu_\tau} \leq 0. \]

Therefore, it is not hard to check that
\[\|h\|_h \leq \frac{1}{2[1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2]} \left\{ 3 \alpha \sqrt{d} (\epsilon + \eta) (1 - d \mu_\tau) + \left\{ [3 \alpha \sqrt{d} (\epsilon + \eta) (1 - d \mu_\tau)]^2 + 24[1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2] d (\epsilon + \eta)^2 \frac{(1 - d \mu_\tau)^2}{1 + d \mu_\tau} \right\}^{1/2} \right\}
\[\leq \frac{\sqrt{d} (1 - d \mu_\tau) (\epsilon + \eta)}{[1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2]} \left\{ 3 \alpha + \sqrt{[6(1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2)]} \right\}
\[\leq \frac{\sqrt{d} (1 - d \mu_\tau)(3 \alpha + \sqrt{6})}{[1 - (2 + \alpha^2) d \mu_\tau + (1 - \alpha^2) d^2 \mu_\tau^2]} (\epsilon + \eta). \]

In the situation of \(s = 2, \) a combination of (3.25) and (3.27), it leads to
\[(1 + d \mu_\tau) \|h\|_2^2 - d \mu_\tau \left[8 \sqrt{d} (\epsilon + \eta) + \frac{\alpha (1 + d \mu_\tau)}{1 - 3d \mu_\tau} \|h\|_2 \right]^2 \leq \sqrt{d} (\epsilon + \eta) \left[8 \sqrt{d} (\epsilon + \eta) + \frac{\alpha (1 + d \mu_\tau)}{1 - 3d \mu_\tau} \|h\|_2 \right]. \]
We can rewrite the above equation as
\[
[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]||h||^2_2 - \alpha\sqrt{d}(\epsilon + \eta)(1 + 16d\mu + 3d\mu^2)||h||_2
- 8d(\epsilon + \eta)^2(1 + 8d\mu)(1 - 3d\mu)\leq 0.
\]

Because of the requirement \(\mu < 1/3d\), \(\mu < 1/6d\), thereupon,
\[
[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]||h||^2_2 - 19d(\epsilon + \eta)^2(1 - 3d\mu)^2(1 + d\mu)\leq 0.
\]

It is not difficult to examine that
\[
||h||_2 \leq \frac{1}{2[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]} \left\{ 4\alpha\sqrt{d}(\epsilon + \eta)(1 - 3d\mu) + \left[4\alpha\sqrt{d}(\epsilon + \eta)(1 - 3d\mu) \right]^2 + 76[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]d(\epsilon + \eta)^2 \right\}^{1/2}
\leq \frac{\sqrt{d}(1 - 3d\mu)(\epsilon + \eta)}{[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]} \left\{ 4\alpha + \sqrt{19[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]} \right\} \leq \frac{\sqrt{d}(1 - 3d\mu)(4\alpha + \sqrt{19})}{[1 - (6 + \alpha^2)d\mu + (9 - \alpha^2)d^2\mu^2]}(\epsilon + \eta).
\]

In the situation of \(s \geq 3\), from (3.25) and (3.27), one can get
\[
(1 + d\mu)||h||^2_2 - d\mu[6\sqrt{d}(\epsilon + \eta) + 3\alpha||h||_2]^2 \leq \sqrt{d}(\epsilon + \eta)[6\sqrt{d}(\epsilon + \eta) + 3\alpha||h||_2].
\]

We can recast the above equation as
\[
[1 + (1 - 9\alpha^2)d\mu]||h||^2_2 - 3\alpha\sqrt{d}(\epsilon + \eta)(1 + 12sd\mu)||h||_2 - 6sd(\epsilon + \eta)^2(1 + 6sd\mu)\leq 0.
\]

Due to the condition \(\mu < 1/3d\), \(1 + (1 - 9\alpha^2)d\mu > 0\) and \(sd\mu < 1/3\) when \(s \geq 3\), so,
\[
[1 + (1 - 9\alpha^2)d\mu]||h||^2_2 - 15\alpha\sqrt{d}(\epsilon + \eta)||h||_2 - 18sd(\epsilon + \eta)^2\leq 0.
\]

One can easily check that
\[
||h||_2 \leq \frac{1}{2[1 + (1 - 9\alpha^2)d\mu]} \left\{ 15\alpha\sqrt{d}(\epsilon + \eta) + \left[15\alpha\sqrt{d}(\epsilon + \eta) \right]^2 + 72sd[1 + (1 - 9\alpha^2)d\mu](\epsilon + \eta)^2 \right\}^{1/2}
\leq \frac{\sqrt{d}(\epsilon + \eta)}{1 + (1 - 9\alpha^2)d\mu} \left\{ 15\alpha + 3\sqrt{2s}[1 + (1 - 9\alpha^2)d\mu] \right\}
\leq \frac{\sqrt{d}(\epsilon + \eta)}{1 + (1 - 9\alpha^2)d\mu}.
\]

\[\square\]
4 Numerical experiments

In this section, we carry out some numerical experiments to sustain the verification of our theoretical results, and all experiments are run in MATLAB R2016a on windows 10 running on a PC with Intel(R) Core(TM) i5-8300H CPU @2.30GHz. When \(\alpha = 1 \), the algorithms for (1.8) was downloaded at https://github.com/DongSylan/Block-L12-ADMM. It is based on alternating direction method of multipliers, and was exploited by Wang et al. [18]. We added the general parameter \(\alpha \) to Wang et al's algorithm.

In our experiments, no loss of generality, we think over the block-sparse signals with even block size \(d = 4 \), unless specified and set the length of signal \(N = 1024 \). For each experiment, we first of all at random generate block-sparse signal \(x \) with coefficients satisfying a mean 0 and variance 1 Gaussian distribution, and stochastically produce a \(128 \times 1024 \) measurement matrix \(\Phi \) with each element \(\Phi_{ij} \) following standard Gaussian distribution. Employing \(x \) and \(\Phi \), the measurements \(y \) are generated by \(y = \Phi x + z \), where \(z \) denotes the Gaussian noise. In each experiment, we provide the average results over 50 trials.

To look for the better general parameter \(\alpha \) that derives the minimal recovery error, we carry out a set of trails. In Fig. 4.2(a), the average normalised reconstruction error \(\|x - x^*\|_2/\|x\|_2 \) is drawn versus the values of \(\alpha \), and \(\alpha \) varies from 0.01 to 1, where \(x^* \) represents the signal recovered by the algorithm. The figure indicates that the parameter \(\alpha = 0.8 \) is a good choice. Fig. 4.2(b) provides the experimental results associated with the capability of the block algorithm and the nonblock algorithm when \(\alpha = 0.8 \).

Reconstruction error curves are given by the \(\ell_2/\ell_1 - \alpha \ell_2 \) minimization and the \(\ell_1 - \alpha \ell_2 \) minimization. Fig. 4.2(b) reveals that it is very important to fully mine the structural information of signal in signal recovery.

![Graph](image1)

Fig. 4.2: (a) Reconstruction performance of the \(\ell_2/\ell_1 - \alpha \ell_2 \) minimization versus \(\alpha \) for block size \(d = 4 \) and \(s = 8 \). (b) Reconstruction performance of the \(\ell_2/\ell_1 - \alpha \ell_2 \) minimization and the \(\ell_1 - \alpha \ell_2 \) minimization with \(\alpha = 0.8 \) and the number of nonzero entries \(K = 32 \).

FIG. 4.3(a) and (b) respectively depict the logarithm of theoretical error bound and algorithm error bound \(\|x - x^*\|_2 \) versus the sparsity \(s \) with the block size \(d = 4 \) and the block size \(d \) with the number of nonzero entries \(K = 16 \). From 4.3(a) and (b), the algorithm error bound \(\|x - x^*\|_2 \) is smaller than the theoretical error bound.

In Fig.4.4 (a) and (b), we plot the average normalized reconstruction error versus the values of \(\alpha \) and the number of non-zero entries \(K \) with different \(d = 1, 2, 4, 8 \). In Fig.4.4 (a), the value of \(\alpha \) ranges from 0.1 to 1
Fig. 4.3: Logarithm of theoretical error bound and algorithm error bound $\|x - x^*\|_2$ versus the sparsity s and the block size d and in (a) and (b), respectively. In (a) $d = 4$ and in (b) $K = 16$.

and in Fig. 4.4 (b), the number of non-zero entries K varies from 8 to 48. Figs. 4.4 (a) and (b) indicate that the outperformance of the $\ell_2/\ell_1 - \alpha\ell_2$ minimization over the $\ell_1 - \alpha\ell_2$ minimization.

Fig. 4.4: Recovery performance of the $\ell_2/\ell_1 - \alpha\ell_2$ minimization, varying the values of α and the number of non-zero elements K in (a) and (b), respectively. In (a) $K = 32$ and in (b) $\alpha = 0.8$.

Fig. 4.5 describes the average normalized reconstruction error versus the number of measurements M in different $d = 1, 2, 4, 8$. In a word, the $\ell_2/\ell_1 - \alpha\ell_2$ minimization performs better than the $\ell_1 - \alpha\ell_2$ minimization.

5 Conclusion

In this paper, we propose an $\ell_2/\ell_1 - \alpha\ell_2$ minimization method for recovering block-sparse signal. Based on block mutual coherence property, we establish sufficient conditions and associating error estimates for stable recovery of block-sparse signal by $\ell_2/\ell_1 - \alpha\ell_2$ minimization method in the noisy case. Furthermore, when the block size $d = 1$ and the general parameter $\alpha = 1$, our results degenerate to those of Wen et al. [8]. Besides,
the numerical experiments are conducted to show the verification of our results, and they demonstrates that the performance of $\ell_2/\ell_1 - \alpha\ell_2$ minimization is better than that of $\ell_1 - \alpha\ell_2$ minimization for block-sparse signal recovery in the presence of noise.

Acknowledgements

This work was supported by the College Innovation Ability Promotion Project of Gansu Province (No. 2019A-100) and the Science Foundation Project of Tianshui Normal University (No. CXT2019-18).

References

[1] Donoho D, Elad E, Temlyakov V. N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans Information Theory, 2006, 52.

[2] Candes, Emmanuel J., and Terence Tao. "The Dantzig selector: Statistical estimation when p is much larger than n." Annals of Statistics 35.6 (2007): 2313-2351.

[3] Donoho, David L., and Xiaoming Huo. "Uncertainty principles and ideal atomic decomposition." IEEE Transactions on Information Theory 47.7 (2001): 2845-2862.

[4] Cai, T. T., Xu, G., & Zhang, J. (2009). On Recovery of Sparse Signals Via ℓ_1 Minimization. IEEE Transactions on Information Theory, 55(7), 3388-3397.

[5] Tseng, P. (2009). Further Results on Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise. IEEE Transactions on Information Theory, 55(2), 888-899.

[6] Cai, T. T., Wang, L., & Xu, G. (2010). Stable Recovery of Sparse Signals and an Oracle Inequality. IEEE Transactions on Information Theory, 56(7), 3516-3522.

[7] Yin, P., Lou, Y., He, Q., & Xin, J. (2015). Minimization of ℓ_{1-2} for Compressed Sensing. SIAM Journal on Scientific Computing, 37(1).
[8] Wen, J., Weng, J., Tong, C., Ren, C., & Zhou, Z. (2019). Sparse Signal Recovery With Minimization of 1-Norm Minus 2-Norm. IEEE Transactions on Vehicular Technology, 68(7), 6847-6854.

[9] Wang, W.D., and Wang, J.J.: An improved sufficient condition of ℓ_{1-2} minimisation for robust signal recovery, Electron. Lett., 2019, 55, (22), pp. 1199-1201

[10] Jing Zhang, Shuguang Zhang and Xuran Meng, 1C2 minimisation for compressed sensing with partially known signal support. Electron. Lett., 2020, Online publish

[11] T. Liu and T. K. Pong, Further properties of the forward-backward envelope with applications to difference-of-convex programming, Comput. Optim. Appl., 67(2017), 489-520.

[12] Y. Lou and M. Yan, Fast L1 - L2 minimization via a proximal operator, J. Sci. Comput., 74(2018), 767-785.

[13] Zhang, Z., Jung, T.P., Makeig, S., et al.: Compressed sensing for energyefficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning, IEEE Trans. Biomed. Eng., 2013, 60, (2), pp. 300C309

[14] Majumdar, A., & Ward, R. K. (2010). Compressed sensing of color images. Signal Processing, 90(12), 3122-3127

[15] Vidal, R., & Ma, Y. (2006). A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation and Estimation. Journal of Mathematical Imaging and Vision, 25(3), 403-421.

[16] Lin, J. H., & Li, S. (2013). Block sparse recovery via mixed l2/l1 minimization. Acta Mathematica Sinica, 29(7), 1401-1412.

[17] Chen, W., & Li, Y. (2019). The High Order Block RIP Condition for Signal Recovery. Journal of Computational Mathematics, 37(1), 61-75.

[18] Wang, W., Wang, J., & Zhang, Z. (2018). Block-sparse signal recovery via ℓ_2/ℓ_{1-2} minimization method. Iet Signal Processing, 12(4): 422-430.

[19] Wang, W., Wang, J., Wang, Y., & Zhang, Z. (2016). A coherence theory of nonconvex block-sparse compressed sensing. Scientia Sinica: Information Science, 2016, 46(3): 376-390.

[20] Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203-4215.