Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices

Lev Vysotsky1,2 | Maxim Rakhuba1

1Department of CS, HSE University, Moscow, Russia
2Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia

Correspondence
Maxim Rakhuba, HSE University, Pokrovsky Boulevard 11, Moscow 109028 Russia.
Email: mrakhuba@hse.ru

Funding information
Russian Science Foundation, Grant/Award Number: 21-71-00119

Abstract
In this paper, we are concerned with the inversion of circulant matrices and their quantized tensor-train (QTT) structure. In particular, we show that the inverse of a complex circulant matrix A, generated by the first column of the form $(a_0, \ldots, a_{m-1}, 0, \ldots, 0, a_{-n}, \ldots, a_{-1})^\top$ admits a QTT representation with the QTT ranks bounded by $(m + n)$. Under certain assumptions on the entries of A, we also derive an explicit QTT representation of A^{-1}. The latter can be used, for instance, to overcome stability issues arising when numerically solving differential equations with periodic boundary conditions in the QTT format.

KEYWORDS
circulant matrices, QTT, robust solver

1 | INTRODUCTION

Tensor-train (TT) decomposition1 is a nonlinear representation of multidimensional arrays (tensors) that in many cases leads to significant compression ratios while maintaining high approximation accuracy. Notably, TT can also be applied to low-dimensional data. For example, a vector (one-dimensional array) from \mathbb{C}^2 can be reshaped into an element of $\mathbb{C}^{2 \times \cdots \times 2}$ (L-dimensional tensor) and then TT decomposition becomes applicable. This idea was proposed in References2 and3 and is known under the name quantized TT (QTT) decomposition. QTT decomposition has proven useful in various applications and in particular, for approximating functions and solving partial differential equations (PDEs).4

QTT decomposition can also be applied to linear operators in the form of matrices. This is essential for constructing solvers for linear systems when the right-hand side is given in the QTT format and the goal is to approximate the solution also in the QTT format with the desired accuracy. In this paper, we are interested in studying the QTT representation of the inverse of a band circulant matrix:

$$A = \begin{bmatrix} a_0 & a_{-1} & \cdots & a_{-n} & 0 & \cdots & 0 & a_{m-1} & \cdots & a_1 \\ a_1 & \ddots \\ \vdots & \ddots \\ a_{m-1} & \ddots \\ 0 & \ddots \\ \vdots & \ddots \\ 0 & \ddots \\ a_{-n} & \ddots \\ \vdots & \ddots \\ a_{-1} & \cdots & a_{-n} & 0 & \cdots & 0 & a_{m-1} & \cdots & a_1 & a_0 \end{bmatrix} \in \mathbb{C}^{N \times N},$$

(1)
which we will also denote as \(A = \text{circ}(a_0, \ldots, a_{m-1}, 0, \ldots, 0, a_{-n}, \ldots, a_{-1}) \). We are concerned with obtaining accurate QTT rank bounds for \(A^{-1} \) and its explicit QTT representation when \(N = 2^L \). We emphasize the fact that the considered QTT ranks of matrices are not related to the standard matrix rank and, hence, small QTT ranks do not imply that the matrix under consideration is singular. The QTT rank bounds of \(A^{-1} \) can be useful, for example, for obtaining rank bounds for the solution of linear systems with \(A \), while the explicit QTT representation of \(A^{-1} \) can be used for constructing efficient solvers.

To formally introduce the QTT decomposition of a matrix, let us first introduce QTT decomposition of a vector \(x = \{x_i\}_{i=0}^{2^L-1} \in \mathbb{C}^{2^L} \). Let us represent \(x \) as a multidimensional array \(X = [X_{i_1 \ldots i_L}]_{i_1 \ldots i_L=0}^{1 \ldots 1} \in \mathbb{C}^{2^L \times 2^L} \) by the following bijection between an integer \(i = 0, \ldots, 2^L - 1 \), and \(L \) binary indices \((i_1, \ldots, i_L) \):

\[
i = i_L \cdots i_1 \equiv \sum_{k=1}^{L} 2^{L-k} i_k,
\]

which is similar to a binary representation of \(i \). Then we apply the TT decomposition to \(X \):

\[
x_{i_1 \cdots i_L} \equiv X_{i_1 \ldots i_L} = \sum_{a_1, \ldots, a_{L-1}=1}^{r_1 \cdots r_{L-1}} G^{(1)}_{a_1 i_1 a_2} G^{(2)}_{a_2 i_2 a_3} \cdots G^{(L-1)}_{a_{L-2} i_{L-2} a_{L-1}} G^{(L)}_{a_{L-1} i_L},
\]

where the minimal values of \(r_1, \ldots, r_{L-1} \) are called TT-ranks. Storing the so-called core tensors \(G^{(k)}, k = 1, \ldots, L \) requires \(\mathcal{O}(L r^2) \) bytes (here \(r = \max_i r_i \)). We note that the total storage depends linearly on \(L \) (assuming \(r \) is independent of \(L \)) and, hence, logarithmically on the vector size \(N = 2^L \). For function-related vectors, one can obtain bounds on the rank \(r \), see Reference 4 and the reference therein.

Similarly, we introduce QTT decomposition of a matrix \(B = [B_{i,j}]_{i,j=0}^{2^L-1} \in \mathbb{C}^{2^L \times 2^L} \), by binarizing two indices: \(i = i_L \cdots i_1 \), \(j = j_L \cdots j_1 \) and merging \(i_k, j_k \) into pairs:

\[
B_{i_1 \cdots i_L,j_1 \cdots j_L} = \sum_{a_1, \ldots, a_{L-1}=1}^{r_1 \cdots r_{L-1}} G^{(1)}_{a_1 i_1 a_2} G^{(2)}_{a_2 i_2 a_3} \cdots G^{(L-1)}_{a_{L-2} i_{L-2} a_{L-1}} G^{(L)}_{a_{L-1} i_L}.
\]

As an example, one can consider an identity matrix \(I \in \mathbb{C}^{2^L \times 2^L} \), whose elements can be expressed in terms of the Kronecker delta \(\delta_{\alpha \beta} \) as follows:

\[
I_{i_1 \cdots i_L,j_1 \cdots j_L} = \delta_{i_1 j_1} \delta_{i_2 j_2} \cdots \delta_{i_L j_L},
\]

that is, without any summation. Hence, the QTT ranks of the identity matrix are all equal to 1, even though the matrix is of full rank.

Asymptotically, representation (2) leads to the same number of bytes in the core tensors \(G^{(k)}, k = 1, \ldots, L \) as for the QTT representation of a vector: \(\mathcal{O}(L r^2) \). Fortunately, matrices arising after discretization of PDEs are also often of low rank.\(^5\) Having access to both matrices and vectors in the QTT format, one can construct efficient algorithms for solving, for example, linear systems that avoid forming full matrices and vectors (see, e.g., Reference 6).

To derive the QTT rank bounds of \(B = A^{-1} \), where \(A \) is as in (1), we show that the elements of its first column \(b \) have the form (Section 2):

\[
b_i = \sum_{k=1}^{s} P_k(i) z_k^i,
\]

where \(z_k \) are the roots of \(g(z) = 0 \) and \(h(z) = 0 \):

\[
g(z) = \sum_{k=-n}^{m-1} a_k z^{k+n}, \quad h(z) = \sum_{k=-n}^{m-1} a_k z^{m-k-1},
\]

located inside \(U = \{z : |z| < 1\} \), and where \(P_k(i) \) is a certain polynomial of \(i \) with the degree less than the multiplicity of \(z_k \). We note that in Reference 7, the same formulas were obtained, but for the roots with all multiplicities equal to 1 and
in, for example, Reference 8 multiplicities greater than 1 were considered, but only for the case \(m = 2, n = 1 \). To overcome these limitations, we have generalized the result to the case of arbitrary multiplicities. We impose only one restriction on \(A \) that is fundamental to the proposed approach: the polynomials \(g(z) \) and \(h(z) \) from (4) must not have roots with absolute value 1, as it happens for singular matrices (but not only for them).

The structure of (3) is utilized to estimate the QTT ranks of \(B = A^{-1} \), which appear (Section 3) to be bounded by \((m + n)\). As an alternative, one may derive the QTT representation of \(b \) and apply the result from Reference 9 to generate a QTT representation of a circulant matrix from its first column in the QTT format. Nevertheless, we note that such an approach leads to overestimated QTT rank values of \(B \). The developed techniques are applied to several examples of circulant matrices (Section 5), including the case of pseudoinverses.

In the case of simple roots \(z_k \), we additionally derive explicit formulas for the QTT representation of \(B \) (Section 4). Finally, we test the stability of our formulas numerically (Section 6) on the example of a one-dimensional convection-reaction-diffusion boundary value problem with periodic boundary conditions. The numerical results suggest that we can apply the proposed explicit formulas for large values of \(L \) without any stability issues. This is by contrast to naively applying TT solvers for linear systems directly to the matrix \(A \), explicitly assembled in the QTT format.

Related work

For the QTT approximation of function-related vectors, we mention.3,10-12 The techniques for deriving explicit QTT representations of QTT matrices were developed in Reference 5 and applied to specific matrices, arising in discretization of the Laplacian operator on a uniform grid. In Reference 5, there were also provided the inverses of these matrices in special cases of Neumann and Dirichlet boundary conditions. In the case of a Fourier matrix, no low-rank QTT representation exists, but the matrix-vector product can still be approximated efficiently in the QTT format.13 In Reference 9, the QTT rank bounds and explicit formulas were derived for multilevel Toeplitz and circulant matrices. The rank bounds for band Toeplitz matrices were obtained in Reference 14.

In References 15-17, it was observed that the straightforward application of TT optimization-based solvers to linear systems arising from PDEs with matrices in the QTT format, leads to severe numerical instabilities. This problem was formalized in Reference 18 and originates from both ill conditioning of discretized differential operators and the ill conditioning of the tensor representations themselves. To overcome these issues, an explicit QTT representation of BPX-preconditioned systems was proposed in the same work, which was later used for multiscale and singularly-perturbed problems in References 19 and 20. In Reference 21, a robust and efficient solver based on the alternating direction implicit method (ADI) and explicit inversion formulas for tridiagonal Toeplitz matrices was developed. This solver was applied to three-dimensional Schroedinger-type eigenvalue problems.22

To the best of our knowledge, no QTT rank bounds or explicit QTT formulas were derived either for inverses of general band circulant matrices or their special cases, such as one-dimensional Laplacian discretization with the periodic boundary conditions.

2 CIRCULANT MATRIX INVERSE

In this section, we derive formulas for the inverse of a band circulant matrix, without imposing a QTT structure. The main results of this section are Theorem 1 and Corollary 1. This section is mostly based on Reference 7, but we also take into account multiplicities of polynomial roots.

Let us consider a nondegenerate circulant matrix \(A \in \mathbb{C}^{N \times N} \) of the form (1) with the additional assumption that

\[
m \geq 1, \quad n \geq 0, \quad a_{m-1} \neq 0, \quad a_{-n} \neq 0.
\]

Let \(B \in \mathbb{C}^{N \times N} \) denote the inverse of \(A \): \(B \equiv A^{-1} \). It is well-known\(^{21}\) that the inverse of a circulant matrix is also a circulant. For \(j = 0, \ldots, N - 1 \), let \(b_j \) be the \(j \)th element of the first column of \(B \), that is, \(B_{j,0} \). Using definition of the inverse, we may write for all \(k, \ell \in \{0, \ldots, N - 1\} \):

\[
\sum_{j=0}^{N-1} A_{k,j} B_{j,\ell} = \delta_{k,\ell} \equiv \begin{cases} 1, & k = \ell, \\ 0, & \text{otherwise}. \end{cases}
\]

For circulants \(A \) and \(B \) this system of equations is equivalent to
\[
\sum_{j=0}^{N-1} A_{k-j \mod N, 0} B_{(j-\ell) \mod N, 0} = \delta_{k, \ell}, \quad k, \ell \in \{0, \ldots, N - 1\}
\]

or

\[
\sum_{j=0}^{N-1} A_{(k-j) \mod N, 0} B_{(j-\ell) \mod N} = \delta_{k, \ell}, \quad k, \ell \in \{0, \ldots, N - 1\}.
\] (5)

Next, we consider a biinfinite Toeplitz matrix \(A^{(\infty)}\) with the elements

\[
A_{i,j}^{(\infty)} = \begin{cases}
 a_{i-j}, & \text{if } -n \leq i-j \leq m-1, \\
 0, & \text{otherwise}.
\end{cases}
\]

In other words,

\[
A^{(\infty)} = \begin{bmatrix}
 \ddots & \ddots & \ddots & \ddots & \ddots \\
 \ddots & a_0 & a_{-1} & \ldots & a_{-n} & 0 & \ldots \\
 \ddots & a_1 & \ddots & \ddots & \ddots & \ddots & \ddots \\
 \ddots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 a_{m-1} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{bmatrix}.
\]

Consider the equation

\[
A^{(\infty)} \xi = \beta,
\] (6)

where \(\xi\) and \(\beta\) are biinfinite vectors with the elements \(\xi_j = b_j \mod N\) and

\[
\beta_j = \begin{cases}
 1, & \text{if } j \mod N = 0, \\
 0, & \text{otherwise}.
\end{cases}
\]

The notation \(A^{(\infty)} \xi\) implies biinfinite matrix-by-vector multiplication:

\[
\beta_k = \sum_{j=-\infty}^{\infty} A_{k,j}^{(\infty)} \xi_j, \quad k \in \mathbb{Z}.
\]

Note that these series are not truly infinite, as there are no more than \(m + n\) nonzero elements in each row of \(A^{(\infty)}\). Thus, each of these series is convergent. We can also rewrite Equation (6) in a more verbose and, possibly, comprehensible form:
Lemma 1. Equations (5) and (6), considered as equations for \(b_0, \ldots, b_{N-1}\) are equivalent.

Proof. See the proof in Appendix A.

We will denote by \(U\) the unit circle on the complex plane, that is, \(U = \{z \in \mathbb{C} : |z| = 1\}\). Let us consider the Laurent polynomial \(f(z)\):

\[
f(z) \equiv a_{-n}z^{-n} + \cdots + a_{-1}z^{-1} + a_0 + a_1z + \cdots + a_{m-1}z^{m-1}.
\]

(7)

Let us additionally assume that \(f(z)\) does not have roots on \(U\) (i.e., \(f(z) \neq 0\) for all \(z \in U\)). Note that this implies the same property for Laurent polynomial \(f(z^{-1})\), as if \(f(z^{-1}) = 0\) for some \(z^{-1} \in U\), then \(f(z) = 0\) for \(z = z^{-1} \in U\). Now consider biinfinite matrix \(B^{(\infty)}\) with the elements:

\[
B^{(\infty)}_{j,e} = \frac{1}{2\pi i} \int_U \frac{z^j}{f(z)} dz.
\]

(8)

Lemma 2. Matrix \(B^{(\infty)}\) is the right inverse of \(A^{(\infty)}\):

\[
A^{(\infty)}B^{(\infty)} = I^{(\infty)},
\]

where \(I^{(\infty)}\) is a biinfinite identity matrix: \(I^{(\infty)}_{k,e} = \delta_{k,e}\).

Proof. See the proof in Appendix A.

Now we can prove the main result of this section.

Theorem 1. Let \(m, n\) be nonnegative integers such that \(m \geq 2\) and \(A \in \mathbb{C}^{N \times N}\) be the circulant matrix of the form (1). Denote by \(g(z)\) and \(h(z)\) the polynomials

\[
g(z) \equiv \sum_{k=-n}^{m-1} a_k z^{k+n}, \quad h(z) \equiv \sum_{k=-m}^{m-1} a_k z^{m-k-1}.
\]

Assume that \(g(z)\) does not have roots on the unit circle \(U\). Denote \(z_1, \ldots, z_s\) the roots of \(g(z)\) located inside \(U\) and \(p_1, \ldots, p_k\) their respective orders. Similarly, denote \(w_1, \ldots, w_t\) the roots of \(h(z)\) located inside \(U\) and \(q_1, \ldots, q_t\) their respective orders.

Under these conditions \(A\) is invertible and its inverse is the circulant matrix \(B \in \mathbb{C}^{N \times N}\) with the elements \(B_{j,e} = b_{(j-e) \mod N}\):

\[
b_j = \sum_{k=1}^{p_k-1} \sum_{p=0}^{p_k} c_{k,p'}(-j + n - 1 + N'q_j^r z_k^{e-j+n-1+N'-q'} + \sum_{k=1}^{q_k-1} \sum_{q'=0}^{q_k-1} c_{h,k,q'}(j + m - 2)w_k^{e+m-2-q'},
\]

where

\[
c_{k,p'} = \sum_{p'=p}^{p_k-1} \frac{1}{p_k - 1} \left(\begin{array}{c} p_k - 1 \\ p \\ \end{array} \right) \left(\begin{array}{c} p' \\ p \\ \end{array} \right) \left(\begin{array}{c} 1 \\ g_k(z) \\ \end{array} \right)_{z=z_k}^{p_k-1-p} \frac{1}{1 - z_N^N} \left(\begin{array}{c} 1 \\ \end{array} \right)_{z=z_k}^{p-p'},
\]

\[
c_{h,k,q'} = \sum_{q'=q}^{q_k-1} \frac{1}{q_k - 1} \left(\begin{array}{c} q_k - 1 \\ q \\ \end{array} \right) \left(\begin{array}{c} q \\ q' \\ \end{array} \right) \left(\begin{array}{c} 1 \\ h_k(z) \\ \end{array} \right)_{z=w_k}^{q-1-q} \frac{1}{1 - z_N^N} \left(\begin{array}{c} 1 \\ \end{array} \right)_{z=w_k}^{q-q'},
\]

where \(f(z)^{(p)}|_{z=w}\) denotes the \(p\)th derivative of \(f(z)\) at \(z = w\) and \(M^r\) denotes the falling factorial:

\[
M^r = \begin{cases} 1, & \text{if } r = 0, \\ M(M-1) \ldots (M-r+1), & \text{otherwise}. \end{cases}
\]
Proof. Note that the Laurent polynomial \(f(z) \) corresponding to \(A \) does not have roots on \(U \), because \(g(z) = f(z)z^n \) by the Theorem’s condition does not have such roots. Thus, the matrix \(B^{(\infty)} \) is defined correctly. Moreover, it means that \(h(z) \) also does not have roots on \(U \).

Let us express the elements of \(B^{(\infty)} \) through the roots of \(g(z) \) and \(h(z) \). As \(B^{(\infty)} \) is a (biinfinite) circulant, it suffices to compute only its first column. First, let us perform the substitution \(w = z^{-1} \) in the integral (8):

\[
\begin{align*}
B^{(\infty)}_{j,0} &= \frac{1}{2\pi i} \oint_U z^{-j-1} \frac{dz}{f(z)} = \frac{1}{2\pi i} \oint_U \frac{w^{j+1}}{f(w^{-1})} \cdot \frac{-dw}{w^2} = \frac{1}{2\pi i} \oint_U \frac{w^{j+1} dw}{f(w^{-1})}.
\end{align*}
\]

Note that there appeared two minuses (one from the differential \(d(w^{-1}) \) and one from the change of the integral direction) that gave a plus. Now we can split the formula for \(B^{(\infty)}_{j,0} \) into two cases:

\[
\begin{align*}
B^{(\infty)}_{j,0} = \begin{cases}
\frac{1}{2\pi i} \oint_U z^{-j-1} \frac{dz}{f(z)} = \frac{1}{2\pi i} \oint_U z^{j+1} \frac{dz}{g(z)}, & \text{if } j < 0, \\
\frac{1}{2\pi i} \oint_U z^{-j-1} \frac{dz}{f(z)} = \frac{1}{2\pi i} \oint_U z^{j+1} \frac{dz}{h(z)}, & \text{if } j \geq 0.
\end{cases}
\end{align*}
\]

Note that \(g(0) = a_{-n} \neq 0 \) and \(h(0) = a_{m-1} \neq 0 \), so zero is not a root of \(g(z) \) and \(h(z) \). Moreover, as \(m \geq 2 \) and \(n \geq 0 \), both powers \(j + m - 2 \) and \(-j + n - 1 \) are nonnegative for the corresponding values of \(j \). Thus the integrands above have singularities only at the roots of \(g(z) \) and \(h(z) \) respectively. We will transform the expression for \(j < 0 \), as the case of \(j \geq 0 \) is handled analogously.

Using the residue theorem and the formula for the residue at the pole of order \(p_k \), we can write (for \(j < 0 \)):

\[
\begin{align*}
B^{(\infty)}_{j,0} &= \frac{1}{2\pi i} \oint_U z^{-j+n-1} \frac{dz}{g(z)} = \sum_{k=1}^{\infty} \operatorname{Res} \left(\frac{z^{-j+n-1}}{g(z)}, z_k \right) = \sum_{k=1}^{\infty} \frac{1}{(p_k - 1)!} \left(\frac{1}{g_k(z)} \right)_{z=z_k}^{(p_k-1)}.
\end{align*}
\]

Using the higher order product rule, we obtain

\[
\begin{align*}
B^{(\infty)}_{j,0} &= \sum_{k=1}^{\infty} \frac{1}{(p_k - 1)!} \sum_{p=0}^{p_k-1} \binom{p_k - 1}{p} \left(z^{-j+n-1} \right)^{(p_k-1-p)}_{z=z_k} \left(\frac{1}{g_k(z)} \right)_{z=z_k}^{(p_k-1-p)}.
\end{align*}
\]

For \(j \geq 0 \) the formula is very similar:

\[
\begin{align*}
B^{(\infty)}_{j,0} &= \sum_{k=1}^{\infty} \frac{1}{(q_k - 1)!} \sum_{q=0}^{q_k-1} \binom{q_k - 1}{q} \left(z^{j+m-2} \right)^{(q_k-1-q)}_{z=w_k} \left(\frac{1}{h_k(z)} \right)_{z=w_k}^{(q_k-1-q)}.
\end{align*}
\]

Let us now demonstrate that \(\xi = B^{(\infty)} \beta \) is a solution of (6) and is \(N \)-periodic. First,

\[
\begin{align*}
\sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j,\ell} \beta_\ell &= \sum_{\ell = -N \ell \ell'}^{N \ell \ell'} B^{(\infty)}_{j,\ell} = \sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j,-N \ell,0}.
\end{align*}
\]

The periodicity of this expression is obvious: if \(j = j_1 + N j_2 \), we can write using the change of the summation variable:

\[
\begin{align*}
\sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j,-N \ell,0} &= \sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j_1,-N(j_2),0} = \sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j_1,-N \ell,0}.
\end{align*}
\]

Thus, it is sufficient to consider the case \(j = 0, \ldots, N - 1 \). For these values of \(j \) we split the sum in the following way:

\[
\begin{align*}
\sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j,-N \ell,0} &= \sum_{\ell = 1}^{\infty} B^{(\infty)}_{j,-N \ell,0} + \sum_{\ell = 0}^{\infty} B^{(\infty)}_{j,-N \ell,0}.
\end{align*}
\]
In the first sum the row index \(j - N\ell \) is negative for all values of \(\ell \) and in the second sum the row index is nonnegative for all values of \(\ell \). Thus, we can use the formulas for \(B_{j,0} \) obtained above to write

\[
\sum_{\ell = -\infty}^{\infty} B_{j-N\ell,0} = \sum_{\ell = -\infty}^{\infty} \sum_{k=1}^{s} \sum_{p=0}^{p_k-1} \sum_{q=0}^{q_k-1} \left(\frac{1}{q_k(z)} \right) \left(q_k - 1 \right) \left(\frac{1}{h_k(z)} \right) \left(q_k - 1 - q \right) \sum_{\ell = -\infty}^{\infty} \left(z^{-j+n+\ell-1} \right) |_{z = z_k}.
\]

As \(|z_k| < 1 \) and \(|w_k| < 1 \), the series \(\sum_{\ell = -\infty}^{\infty} P(\ell) z^{-j+n+\ell+1} \) and \(\sum_{\ell = -\infty}^{\infty} P(\ell) z^{j+n} \) converge uniformly in the (small enough) neighborhood of \(z_k \) and \(w_k \), respectively for any polynomial \(P(\ell) \). Thus, the summation and the \(p \)th derivative can be swapped, so we can obtain

\[
\sum_{\ell = -\infty}^{\infty} \left(z^{-j+n+\ell+1} \right) |_{z = z_k} = \left(\frac{1}{1 - z^{\ell}} \right) |_{z = z_k}.
\]

The other series is computed in the same manner:

\[
\sum_{\ell = -\infty}^{\infty} \left(z^{j+n} \right) |_{z = w_k} = \sum_{\ell = -\infty}^{\infty} \left(z^{j+n} \right) |_{z = w_k}.
\]

Plugging these expression in (9), we finally get

\[
\sum_{\ell = -\infty}^{\infty} B_{j-N\ell,0} = \sum_{\ell = -\infty}^{\infty} \sum_{k=1}^{s} \sum_{p=0}^{p_k-1} \sum_{q=0}^{q_k-1} \left(\frac{1}{q_k(z)} \right) \left(q_k - 1 \right) \left(\frac{1}{h_k(z)} \right) \left(q_k - 1 - q \right) \sum_{\ell = -\infty}^{\infty} \left(z^{-j+n+\ell-1} \right) |_{z = z_k}.
\]

Changing the summation order and using the formula for \(c_{g,k,p'} \) and \(c_{h,k,q'} \), we can write:

\[
\sum_{\ell = -\infty}^{\infty} B^{(\infty)}_{j-N\ell,0} = \sum_{\ell = -\infty}^{\infty} \sum_{k=1}^{s} \sum_{p=0}^{p_k-1} \sum_{q=0}^{q_k-1} \left(\frac{1}{q_k(z)} \right) \left(q_k - 1 \right) \left(\frac{1}{h_k(z)} \right) \left(q_k - 1 - q \right) \sum_{\ell = -\infty}^{\infty} \left(z^{-j+n+\ell-1} \right) |_{z = z_k}.
\]

Now, the \(p' \)th derivative of a monomial can be written using the falling factorial:

\[
\left(z^{-j+n+\ell-1} \right) |_{z = z_k} = (-j + n - 1 + N) \left(z^{-j+n+\ell-1} \right)^{(-j+n+\ell-1+p')},
\]

the similar holds for \(\left(z^{j+n} \right)^{(q-q')} |_{z = w_k} \). So finally we come to

\[
\sum_{\ell = -\infty}^{\infty} B_{j-N\ell,0}^{(\infty)} = \sum_{\ell = -\infty}^{\infty} \sum_{k=1}^{s} \sum_{p=0}^{p_k-1} c_{g,k,p'}(-j + n - 1 + N) \left(z^{-j+n+\ell+1+N-p'} \right) + \sum_{\ell = -\infty}^{\infty} \sum_{k=1}^{s} \sum_{q=0}^{q_k-1} c_{h,k,q'}(j + m - 2N) \left(z^{j+n} \right)^{(q-q')}.
\]

Note that we have implicitly shown that the series \(\sum_{\ell} B_{j-N\ell,0}^{(\infty)} \) converge and, therefore, the bi-infinite vector \(\xi = B^{(\infty)} \beta \) is correctly defined (its \(N \)-periodicity has been shown above). Now it remains to demonstrate that \(\xi \) is the solution of (6):

\[
A^{(\infty)} \xi = A^{(\infty)} (B^{(\infty)} \beta) = (A^{(\infty)} B^{(\infty)}) \beta = I^{(\infty)} \beta = \beta.
\]

We have used the fact that multiplication of bi-infinite matrices \(A^{(\infty)} \), \(B^{(\infty)} \) and \(\beta \) is associative. Generally, such multiplication is not associative, but in our case multiplication by \(A^{(\infty)} \) involves only finite number of
summands for each element of the product, so the associativity property holds. Application of Lemma 1 finishes the proof.

Corollary 1. Under the conditions of Theorem 1, if both \(g(z) \) and \(h(z) \) have only simple roots inside the unit circle \(U \), then \(A \) is invertible and its inverse is the circulant matrix \(B \in \mathbb{C}^{N \times N} \) with elements \(B_{j,\ell} = b_{j-\ell \mod N} \):

\[
b_j = \sum_{k=1}^{s} \frac{1}{g_k(z_k)(1 - z_k^N)} z_k^{-j+n+1+N} + \sum_{k=1}^{t} \frac{1}{h_k(w_k)(1 - w_k^N)} w_k^{j+m-2},
\]

where

\[
g_k(z) = \frac{g(z)}{z - z_k}, \quad h_k(z) = \frac{h(z)}{z - w_k}.
\]

We have proven that if \(f(z) \) (or, equivalently, \(g(z) \) or \(h(z) \)) does not have roots on \(U \), then \(A \) is invertible. The reverse, however, is not generally true, as is demonstrated by the following result and a counterexample.

Proposition 1. The circulant \(A \in \mathbb{C}^{N \times N} \) is invertible if and only if the corresponding polynomial \(g(z) \) does not have roots of the form \(e^{-\frac{2\pi i}{N}}s \), \(s \in \{0, \ldots, N-1\} \).

Proof. It is well known that the eigenvalues \(\lambda_s \) of \(A \) are the elements of column \(F_N A_{:,0} \), where \(F_N \in \mathbb{C}^{N \times N} \) is the Fourier matrix: \((F_N)_{s,t} = e^{-\frac{2\pi i}{N}st} \). Thus,

\[
\lambda_s = \sum_{t=0}^{N-1} e^{-\frac{2\pi i}{N}st} A_{t,0} = \sum_{t=0}^{m-1} e^{-\frac{2\pi i}{N}st} A_{t,0} + \sum_{t=-n}^{-1} e^{-\frac{2\pi i}{N}st} A_{t,0} + \sum_{t=-n}^{-1} e^{-\frac{2\pi i}{N}st} A_{t,0} + \sum_{t=-n}^{-1} e^{-\frac{2\pi i}{N}st} A_{t,0} = f(e^{-\frac{2\pi i}{N}s}).
\]

\(A \) is invertible if and only if \(\lambda_s \neq 0 \) or, equivalently, \(f(e^{-\frac{2\pi i}{N}s}) \neq 0 \) for all \(s = 0, \ldots, N-1 \). This property is equivalent to the statement that \(g(z) = z^s f(z) \) does not have roots of the described form.

Example 1. Let us also construct a counterexample. Consider the following circulant:

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

It is invertible:

\[
A^{-1} = \frac{1}{2} \begin{bmatrix}
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{bmatrix}
\]

But \(f(z) = 1 + z \) has a root \((-1) \in U \), so Theorem 1 is not applicable.

3 QTT Rank Bounds of Circulants

This section is devoted to the derivation of QTT rank bounds of the circulant matrix inverse. The following theorem gives us a general result for tensor rank bounds of circulants with a specific first column, which belongs to a low-dimensional space of discrete functions.

Note that in the current and following sections we use letter \(i \) to denote indices instead of imaginary unit in contrast to Section 2. For the latter we will use the notation \(\sqrt{-1} \).
Theorem 2. Consider a function \(f : \mathbb{Z} \rightarrow \mathbb{C} \) and let \(f_q(i) \equiv f(i + q) \) for every fixed \(q \in \mathbb{Z} \). Assume that the following linear space of functions is finite-dimensional:

\[
V \equiv \text{span}(f_q \mid q \in \mathbb{Z}).
\]

Consider a circulant \(A \in \mathbb{C}^{(N_1 N_2) \times (N_1 N_2)} \) with the elements \(A_{ij} = f((i - j) \mod N_1 N_2) \), and a following “reshaped” matrix \(\hat{A} \in \mathbb{C}^{N_2 \times N_2} \):

\[
\hat{A}_{i_1 N_1 + j_1, i_2 N_2 + j_2} = A_{i_1 N_2 + j_1, i_2 N_2 + j_2}, \quad i_1, j_1 \in \{0, \ldots, N_1 - 1\}, \quad i_2, j_2 \in \{0, \ldots, N_2 - 1\}.
\]

Then

\[
\text{rank} \hat{A} \leq 1 + \dim V.
\]

Proof. Let us transform the formula for an element of \(\hat{A} \):

\[
\hat{A}_{i_1 N_1 + i_2, i_2 N_2 + i_1} = f(((i_1 N_2 + i_2) - (j_1 N_2 + j_2)) \mod N_1 N_2)
\]

\[
= f(((i_1 - j_1) N_2 + (i_2 - j_2)) \mod N_1 N_2)
\]

\[
= f((\Delta_1 N_2 + \Delta_2) \mod N_1 N_2),
\]

where

\[
\Delta_1 = \Delta_1(i_1, j_1) \equiv i_1 - j_1,
\]

\[
\Delta_2 = \Delta_2(i_2, j_2) \equiv i_2 - j_2.
\]

Note that \(\Delta_1 \in [-N_1 + 1, N_1 - 1] \) and \(\Delta_2 \in [-N_2 + 1, N_2 - 1] \). Thus, \(\Delta_1 N_2 + \Delta_2 \in [-N_1 N_2 + 1, N_1 N_2 - 1] \), so

\[
(\Delta_1 N_2 + \Delta_2) \mod N_1 N_2 = \begin{cases}
\Delta_1 N_2 + \Delta_2, & \text{if } \Delta_1 > 0, \\
\Delta_1 N_2 + \Delta_2 + N_1 N_2, & \text{if } \Delta_1 < 0, \\
\Delta_2 \mod N_1, & \text{if } \Delta_1 = 0.
\end{cases}
\]

Now it can be seen that the row \(u \equiv \hat{A}_{i_1 N_1 + j_1, \ldots} \), corresponding to any \(\Delta_1 \neq 0 \) (i.e., \(i_1 \neq j_1 \)) has the form

\[
u_{i_2 N_2 + j_2} = f(\Delta_2(i_2, j_2) + \varphi(\Delta_1))
\]

for some \(\varphi(\Delta_1) \in \mathbb{Z} \). Let us fix a basis \(\{g^{(1)}, \ldots, g^{(r)}\} \) of the function space \(V \). Each row \(u \) of the form (10) can be expressed as a linear combination of columns \(v^{(1)}, \ldots, v^{(r)} \in \mathbb{C}^{N_2} \):

\[
v_{i_2 N_2 + j_2}^{(i)} = g^{(i)}(\Delta_2(i_2, j_2)).
\]

On the other hand, the rows of \(\hat{A} \) corresponding to \(\Delta_1 = 0 \) (i.e., \(i_1 = j_1 \)) are all equal to each other and to the vector \(v^{(r+1)} \in \mathbb{C}^{N_2} \) with the elements

\[
u_{i_2 N_2 + j_2}^{(r+1)} = f(\Delta_2(i_2, j_2) \mod N_1).
\]

We have proven that \(\text{Im}(\hat{A}) \subseteq \text{span}(v^{(1)}, \ldots, v^{(r+1)}) \). Thus, the rank of \(\hat{A} \) does not exceed \(1 + \dim V \).

Corollary 2. If under the conditions of Theorem 2 the circulant \(A \) is of shape \(2^L \times 2^L \) for some positive integer \(L \), then it admits a QTT representation with the ranks not greater than \(1 + \dim V \).

Proof. First, we recall the fact that the \(k \)th QTT rank of \(A \), \(k = 1, \ldots, L - 1 \), is equal to the rank of unfolding matrix \(A_k \in \mathbb{C}^{2^k \times 2^{L-k}} \) (see Reference 1):
Let us denote $N_1 \equiv 2^k$, $N_2 \equiv 2^{L-k}$ and consider the matrix $\hat{A}_k \in \mathbb{C}^{N_1 \times N_2}$ from Theorem 2:

$$(\hat{A}_k)_{i_1 \ldots i_L, j_1 \ldots j_L} = A_{i-1, j-1}.$$

From the Theorem it follows that $\text{rank} \hat{A}_k \leq 1 + \dim V$. It remains to notice that A_k can be obtained from \hat{A}_k by permuting its rows and columns. In other words, $A_k = P_1 \hat{A}_k \hat{A}_k P_2$ where P_1 and P_2 are permutation matrices of appropriate size. Thus, $\text{rank} A_k = \text{rank} \hat{A}_k \leq \dim V + 1$.

Corollary 3. Let $A \in \mathbb{C}^{2^L \times 2^L}$ be a circulant with elements $f((i - j) \mod 2^L)$ where

$$f(i) = \sum_{k=1}^{s} P_k(i) z_k^j$$

for some polynomials $P_1(i), \ldots, P_s(i)$ of degrees p_1, \ldots, p_s respectively, and $z_1, \ldots, z_s \in \mathbb{C}$. Then QTT ranks of A do not exceed $s + 1 + p_1 + \cdots + p_s$.

Proof. Note that

$$f_j(i) = f(i + j) = \sum_{k=1}^{s} P_k(i + j) z_k^{i+j} = \sum_{k=1}^{s} P_{kj}(i) z_k^j$$

for some polynomials $P_{kj}(i)$ of degrees p_1, \ldots, p_s respectively. Thus, the set of functions

$$\{z_1^j, iz_1^j, \ldots, i^{p_1}z_1^j, \ldots, z_s^j, iz_s^j, \ldots, i^{p_s}z_s^j\}$$

contains the basis of space V, so $\dim V \leq (1 + p_1) + \cdots + (1 + p_s)$.

Corollary 4. Fix an arbitrary positive integer L and let $A \in \mathbb{C}^{2^L \times 2^L}$ be a circulant satisfying the conditions of Theorem 1. Then the QTT ranks of A^{-1} do not exceed $m + n$.

Proof. From Theorem 1 it follows that $(A^{-1})_{ij} = f((i - j) \mod 2^L)$, where

$$f(i) = \sum_{k=1}^{s} \sum_{p'=0}^{p_k-1} c_{g, k, p'} (-i + n - 1 + N) z_k^{i+n-1+N-p'} + \sum_{k=1}^{t} \sum_{q'=0}^{q_k-1} c_{h, k, q'} (i + m - 2)^q w_k^{i+m-2-q'}.$$

We can rewrite this equality in the following way:

$$f(i) = \sum_{k=1}^{s} P_k(i) \left(\frac{1}{z_k} \right)^i + \sum_{k=1}^{t} Q_k(i) w_k^i,$$

$$P_k(i) = \sum_{p'=0}^{p_k-1} c_{g, k, p'} z_k^{i+n-1+N-p'},$$

$$Q_k(i) = \sum_{q'=0}^{q_k-1} c_{h, k, q'} w_k^{i+m-2-q'}.$$

Obviously, $P_k(i)$ and $Q_k(i)$, viewed as functions of i, are polynomials of degree $p_k - 1$ and $q_k - 1$ respectively. From Corollary 3 it follows that QTT ranks of A^{-1} do not exceed

$$1 + \sum_{k=1}^{s} p_k + \sum_{k=1}^{t} q_k. \quad (11)$$
Consider all roots of \(g(z) \): \(z_1, \ldots, z_s, z_{s+1}, \ldots, z_{s'} \) with their respective multiplicities: \(p_1, \ldots, p_s, p_{s+1}, \ldots, p_{s'} \). Here \(z_k \) lies inside the unit circle \(U \) for \(k \leq s \) and outside of it for \(s < k \leq s' \). Next we note that \(h(z) = g(z^{-1})z^{m+n-1} \). Together with the facts that \(\deg h(z) = \deg g(z) \) and \(a_{m-1} \neq 0 \) and \(a_{n-1} \neq 0 \) it implies that the roots of \(h(z) \) are \(z_1^{-1}, \ldots, z_s^{-1}, z_{s+1}^{-1}, \ldots, z_{s'}^{-1} \) (with respective multiplicities \(p_1, \ldots, p_s, p_{s+1}, \ldots, p_{s'} \)). Thus we can conclude that \(s' = s + t \) and for some permutation \(\sigma \in S_t \) we have \(w_k = z_{s+\sigma(k)}^{-1} \) and \(q_k = p_{s+\sigma(k)} \).

As the sum of multiplicities of roots of a polynomial of degree \((m + n - 1)\) equals \((m + n - 1)\), we can use (11) to state that QTT ranks of \(A^{-1} \) do not exceed

\[
1 + \sum_{k=1}^{s} p_k + \sum_{k=1}^{t} p_{s+\sigma(k)} = 1 + \sum_{k=1}^{s'} p_k = 1 + (m + n - 1) = m + n.
\]

\[\Box\]

4 | Explicit QTT Representation

To derive an explicit QTT representation of a matrix, it is convenient to introduce the so-called strong Kronecker product. Before we define it, let us introduce the core matrices \(Q_k \), associated with the \(k \)th core \(G^{(k)} \), \(k = 1, \ldots, L \), as follows:

\[
Q_k = \begin{bmatrix}
G^{(k)}(1, 1, \ldots, 1) & \cdots & G^{(k)}(1, \ldots, 1, r_k) \\
\vdots & \ddots & \vdots \\
G^{(k)}(r_{k-1}, 1, \ldots, 1) & \cdots & G^{(k)}(r_{k-1}, \ldots, r_k)
\end{bmatrix} \in \mathbb{C}^{2^{r_k-1} \times 2r_k}. \tag{12}
\]

The strong Kronecker product, denoted as \(\bowtie \), is defined for such block matrices.

Definition 1. Let \(A \) and \(B \) be block matrices, both with \(p \times q \) and \(q \times r \) blocks \(A_{\gamma \beta}, B_{\gamma \beta} \) of the size \(2 \times 2 \), where \(a = 1, \ldots, p, \beta = 1, \ldots, r, \gamma = 1, \ldots, q \). Their strong Kronecker product \(A \bowtie B \) is a \(p \times r \) block matrix with the blocks of the size \(4 \times 4 \) such that:

\[
(A \bowtie B)_{\alpha \beta} = \sum_{\gamma=1}^{q} A_{\alpha \gamma} \otimes B_{\gamma \beta}.
\]

Now we can write the matrix \(B \), given by its QTT cores \(G^{(k)} \) and the respective core matrices \(Q_k \) (Equation 12) in terms of the strong Kronecker product as:

\[
B = Q_1 \bowtie Q_2 \bowtie \cdots \bowtie Q_L.
\]

Lemma 3 \((1.5) \). Let \(B_1 = Q_1^{(1)} \bowtie \cdots \bowtie Q_L^{(1)} \) and \(B_2 = Q_1^{(2)} \bowtie \cdots \bowtie Q_L^{(2)} \). Then for \(c_1, c_2 \in \mathbb{C} \), the QTT representation of \(c_1B_1 + c_2B_2 \) can be written in terms of its core matrices as

\[
c_1B_1 + c_2B_2 = \begin{bmatrix} Q_1^{(1)} \\ Q_1^{(2)} \end{bmatrix} \bowtie \begin{bmatrix} Q_2^{(1)} \\ Q_2^{(2)} \end{bmatrix} \bowtie \cdots \bowtie \begin{bmatrix} Q_{L-1}^{(1)} \\ Q_{L-1}^{(2)} \end{bmatrix} \bowtie \begin{bmatrix} c_1Q_L^{(1)} \\ c_2Q_L^{(2)} \end{bmatrix}.
\]

A direct consequence of Lemma 3 is that the QTT ranks of a sum of two QTT matrices are bounded by the sum of the QTT ranks of the summands.

Next, let us move to the derivation of the explicit QTT representation of a circulant matrix inverse. Let us introduce a cyclic permutation matrix

\[
P_L = \begin{bmatrix}
0 & 1 \\
1 & \ddots \\
\ddots & \ddots \\
1 & 0
\end{bmatrix} \in \mathbb{R}^{2^L \times 2^L},
\]

which allows us to naturally represent any circulant in terms of the powers of \(P_L \):
The following explicit QTT representation holds for the $i_1 \ldots i_L$th power of P_L.

Lemma 4 (9 (lemma 3.2)). Let $L \geq 2$. Then $P_L^{i_1 \ldots i_L}$ admits a QTT representation with the ranks $(2, 2, \ldots, 2)$:

$$P_L^{i_1 \ldots i_L} = U_0 \otimes V_{i_L-1} \otimes \cdots \otimes V_{i_2} \otimes W_{i_1},$$

where

$$U_0 = \begin{bmatrix} I & H \\ \end{bmatrix}, \quad U_1 = \begin{bmatrix} H & I \\ \end{bmatrix},$$

$$V_0 = \begin{bmatrix} I & J' \\ J \\ \end{bmatrix}, \quad V_1 = \begin{bmatrix} J' & J \\ J & I \\ \end{bmatrix},$$

$$W_0 = \begin{bmatrix} I \\ W_1 = \begin{bmatrix} J' \\ J \end{bmatrix} \end{bmatrix}, \quad W_1 = \begin{bmatrix} J' \\ J \end{bmatrix},$$

and

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad J' = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Corollary 1 provides an explicit formula in case of the simple roots of $g(z)$ and $h(z)$, which allows us to write b_j as a weighted sum of the exponents of the form z^{2^j}. The next proposition provides an explicit QTT representation in this case.

Proposition 2. Let $L > 2$ and consider a circulant $B_L \in \mathbb{C}^{2^L \times 2^L}$ defined by its first column

$$(B_L)_{ij} = \alpha_1 w_1^j + \cdots + \alpha_r w_r^j,$$

where $\alpha_t, w_t \in \mathbb{C}$, $t = 1, \ldots, r$, are given constants. Then B_L admits an explicit QTT representation with the ranks $(2, r+1, r+1 \ldots, r+1)$:

$$B_L = Q_1 \otimes Q_2 \otimes \cdots \otimes Q_L,$$

where

$$Q_1 = \begin{bmatrix} I & H \end{bmatrix},$$

$$Q_2 = \begin{bmatrix} I & K_{1,2} & \cdots & K_{r,2} \\ M_{1,2} & \cdots & M_{r,2} \end{bmatrix},$$

$$Q_k = \begin{bmatrix} I & K_{1,k} & \cdots & K_{r,k} \\ M_{1,k} & \cdots & & \cdots \end{bmatrix}, \quad k = 3, \ldots, L-1,$$

$$Q_L = \begin{bmatrix} \left(\sum_t \alpha_t \right) I + \left(\sum_t \alpha_t w_t \right) J' + \left(\sum_t \alpha_t w_t^{2^L-1} \right) J \\ \alpha_1 w_1 M_{1,L} \\ \vdots \\ \alpha_r w_r M_{r,L} \end{bmatrix}$$

and where for all $t = 1, \ldots, r$, $k = 1, \ldots, L$.
Proof. See the proof in Appendix B. □

Despite the fact that Proposition 2 provides explicit QTT formulas for the circulant inverse in the case of simple roots, it is not robust in this form. Indeed, some of the exponents will have the form \(w_i^{-j} \), \(j = 0, \ldots, 2^L - 1 \), and since \(|w_i| < 1 \), we will get \(|w_i^{-2^j}| \gg 1 \) for large \(L \). To avoid this issue, we modify Proposition 2 as follows.

Corollary 5. Let \(L > 2 \) and consider a circulant \(B_L \in \mathbb{C}^{2^L \times 2^L} \) defined by its first column

\[
(B_L)_j = \alpha_1 w_1^j + \cdots + \alpha_n w_n^j + \beta_1 z_1^{2^j - j} + \cdots + \beta_{r_2} z_{r_2}^{2^j - j},
\]

where \(\alpha_i, w_i \in \mathbb{C}, t = 1, \ldots, r_1 \) and \(\beta_i, z_i \in \mathbb{C}, t = 1, \ldots, r_2 \), are given constants. Then \(B_L \) admits an explicit QTT representation with the ranks \((2, r_1 + r_2 + 1, r_1 + r_2 + 1, \ldots, r_1 + r_2 + 1) \):

\[
B_L = Q_1 \otimes Q_2 \otimes \cdots \otimes Q_L,
\]

where

\[
Q_1 = \begin{bmatrix} I & H \end{bmatrix},
Q_2 = \begin{bmatrix} I & K_{1,2} & \cdots & K_{r_1,2} & \tilde{K}_{1,2} & \cdots & \tilde{K}_{r_2,2} \\ M_{1,2} & \cdots & M_{r_1,2} & \tilde{M}_{1,2} & \cdots & \tilde{M}_{r_2,2} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ I & K_{1,k} & \cdots & K_{r_1,k} & \tilde{K}_{1,k} & \cdots & \tilde{K}_{r_2,k} \\ M_{1,k} & \cdots & M_{r_1,k} & \tilde{M}_{1,k} & \cdots & \tilde{M}_{r_2,k} \end{bmatrix},
Q_k = \begin{bmatrix} \gamma_1 I + \gamma_2 J' + \gamma_3 J \\ \alpha_1 w_1^1 M_{1,k} \\ \vdots \\ \alpha_n w_n^1 M_{r_1,k} \\ \beta_1 z_1^1 \tilde{M}_{1,k} \\ \vdots \\ \beta_{r_2} z_{r_2}^1 \tilde{M}_{r_2,k} \end{bmatrix},
Q_L
\]

and where

\[
K_{i,k} = J' + a_i^{i-k} J, \quad M_{i,k} = q_{i,k} I + a_i^{i-k} J' + J, \quad q_{i,k} = w_i^{i-k},
\]

\[
\tilde{K}_{i,k} = \tilde{a}_i^{i-k} J + J, \quad \tilde{M}_{i,k} = \tilde{q}_{i,k} I + \tilde{a}_i^{i-k} J, \quad \tilde{q}_{i,k} = z_i^{i-k},
\]

\[
\gamma_j = \sum_{i=1}^{r_1} a_i + \sum_{i=1}^{r_2} \beta_i z_i^{i-k}.
\]
Thus, with the desired ranks:

\[
\gamma_2 = \sum_{i=1}^{r_1} a_i w_i + \sum_{i=1}^{r_2} \beta_i z_i^{2^i-1},
\]

\[
\gamma_3 = \sum_{i=1}^{r_1} a_i w_i^{2^i-1} + \sum_{i=1}^{r_2} \beta_i z_i.
\]

Proof. Let us denote \(r \equiv r_1 + r_2 \) and \(\beta'_i \equiv \beta_i z_i^{2^i}, z'_i \equiv z_i^{-1}. \) Now we can apply Proposition 2 and obtain a QTT decomposition with the desired ranks:

\[
B_L = Q'_1 \Join Q'_1 \Join \cdots \Join Q'_L.
\]

Note that the cores \(Q'_1, \ldots, Q'_{L-1} \) already have the required structure, but instead of \(\bar{K}_{k,i} \) and \(\bar{M}_{k,i} \) we have \(K'_{k,i} \) and \(M'_{k,i} \):

\[
K'_{k,i} \equiv J' + z_i^{-2^i+2^{i+k+1}} J, \quad M'_{k,i} \equiv z_i^{-2^i} I + z_i^{-2^{i+k+1}} J' + J.
\]

Note the following identities:

\[
\bar{K}_{k,i} = K'_{k,i} z_i^{-2^{i+k+1}} = k'_{i,k} q_i^{2^i-2},
\]

\[
\bar{M}_{k,i} = M'_{k,i} z_i^{-2^{i+k+1}} = M'_{i,k} q_i^{2^i-1-2},
\]

Thus,

\[
Q'_L \Join [1 \ \cdots \ 1 \] \Join q_{1,k}^{2^{i-2}} \Join \cdots \Join q_{r_L,k}^{2^{i-2}} \Join Q_k = \Join [1 \ \cdots \ 1 \] \Join q_{1,k-1}^{2^{i-1}-2} \Join \cdots \Join q_{r_L,k-1}^{2^{i-1}-2} \Join Q_k.
\]

Propagating the above diagonal matrix from right to left, we can prove that

\[
Q'_1 \Join \cdots \Join Q'_{L-1} \Join [1 \ \cdots \ 1 \] \Join q_{1,L-1}^{2^{i-1}-2} \Join \cdots \Join q_{r_L,L-1}^{2^{i-1}-2} = Q_1 \Join \cdots \Join Q_{L-1}.
\]

Now consider \(Q'_L. \) Its elements differing from those of \(Q_L \) are \(\beta' z_i^{-1} M'_{L,i} = z_i^{-2^i-4} \beta_i z_i \bar{M}_{L,i}. \) It remains to notice that \(q_{i,L-1}^{2^{i-1}-2} \equiv z_i^{2^{i-4}}, \) so

\[
Q'_L = [1 \ \cdots \ 1 \] \Join q_{1,L-1}^{2^{i-1}-2} \Join \cdots \Join q_{r_L,L-1}^{2^{i-1}-2} \Join Q_L.
\]

Thus, \(B_L = Q'_1 \Join \cdots \Join Q'_L = Q_1 \Join \cdots \Join Q_L. \)
5 \ INVERSION OF ONE-DIMENSIONAL STIFFNESS AND MASS MATRICES

In this section, we consider several well-known examples of matrices, arising from the discretization of second order one-dimensional periodic boundary value problem with constant coefficients on uniform grids and piecewise linear finite elements. Namely in this section, we consider the inversion of a mass matrix $A_M \in \mathbb{R}^{N \times N}$ and a stiffness matrix $A_S \in \mathbb{R}^{N \times N}$, shifted by $\mathcal{S} \geq 0$:

$$ A_M = \text{circ}(4, 1, 0, \ldots, 0, 1), \quad A_S + \mathcal{S}I = \text{circ}(2 + \mathcal{S}, -1, 0, \ldots, 0, -1). $$

Note that A_S is singular, so we consider its pseudoinverse separately in Section 5.3.

5.1 \ Inversion of the mass matrix A_M

To apply Theorem 1, we first write down the polynomials $g(z)$ and $h(z)$. Obviously,

$$ g(z) = 1 \cdot z^0 + 4 \cdot z^1 + 1 \cdot z^2. $$

Note that due to the symmetry of matrix A_M, we have $g(z) = h(z)$. The roots of $g(z)$ are

$$ z_1 = -2 + \sqrt{3} \quad \text{and} \quad z_2 = -2 - \sqrt{3}. $$

The root z_1 lies inside the unit circle, z_2 lies outside, so according to Corollary 1, we get

$$ (A_M^{-1})_{i,0} = \frac{1}{(z_1 - z_2)(1 - \mathcal{S}N)} z_1^{i+N} + \frac{1}{(z_1 - z_2)(1 - \mathcal{S}N)} z_2^i \frac{1}{2\sqrt{3}}(1 - (\sqrt{3} - 2)^N + (\sqrt{3} - 2)^i). $$

Thanks to Corollary 3, the QTT ranks of A_M^{-1} do not exceed 3 (if $N = 2^L$) and we can directly apply Corollary 5 to obtain the explicit QTT representation of A_M^{-1}.

5.2 \ Inversion of the shifted stiffness matrix $A_S + \mathcal{S}I$, $\mathcal{S} > 0$

Now consider the discretization of a shifted periodic Laplacian operator:

$$ A_S + \mathcal{S}I = \text{circ}(2 + \mathcal{S}, -1, 0, \ldots, 0, -1) \in \mathbb{R}^{N \times N}, \quad \mathcal{S} > 0. $$

This circulant is also symmetric, so $g(z) = h(z) = -\mathcal{S}^2 + (2 + \mathcal{S})z - 1$. The roots are:

$$ z_1 = 1 + \frac{\mathcal{S}}{2} - \sqrt{\frac{\mathcal{S}^2}{4} + \mathcal{S}}, \quad z_2 = 1 + \frac{\mathcal{S}}{2} + \sqrt{\frac{\mathcal{S}^2}{4} + \mathcal{S}}. $$

Again, z_1 lies inside U and z_2 lies outside of it (this holds for any $\mathcal{S} > 0$: obviously, $z_2 > 1$, and the product z_1z_2 must be equal to 1 by Vieta’s formulas).

$$ ((A_S + \mathcal{S}I)^{-1})_{i,0} = \frac{1}{-(z_1 - z_2)(1 - \mathcal{S}N)} z_1^{i+N} + \frac{1}{-(z_1 - z_2)(1 - \mathcal{S}N)} z_2^i \frac{1}{\sqrt{\mathcal{S}^2 + 4\mathcal{S}(1 - \mathcal{S}N)}} (z_1^{N-i} + z_2^i). $$
Due to Corollary 3, the QTT ranks of \((A_S + \delta I)^{-1}\) do not exceed 3 (if \(N = 2^l\)) and we can directly apply Corollary 5 to obtain the explicit QTT representation of \((A_S + \delta I)^{-1}\).

5.3 Pseudoinversion of the stiffness matrix \(A_S\)

In this section, we discuss the rank bounds of the explicit pseudoinverse of \(A_S^+\). The explicit formula for the pseudoinverse is by no means new, and is available, for example, in Reference 24. Nevertheless, we still provide the derivation to illustrate that the proposed approach of finding pseudoinverses can be automated with the help of \texttt{Sympy} Python package25 or \texttt{Wolfram Mathematica}.26

We start with the well-known formula:27

\[
A^+ = \lim_{\alpha \to 0^+} (A^*A + \alpha I)^{-1}A^*.
\]

(13)

If the circulant \(A^*A + \alpha I\) satisfies the conditions of Theorem 1, we can find an explicit formula the elements of \((A^*A + \alpha I)^{-1}\) and then for \((A^*A + \alpha I)^{-1}A^*\). Computing the limit for \(\alpha \to 0^+\) is a tedious but solely technical task, and the aforementioned symbolic algebra libraries can facilitate it. In particular, we have used \texttt{Sympy} for this purpose.

To elaborate on the proposed idea, we need to understand the form of Laurent polynomial of the product of circulants \(A\) and \(B\) with known polynomials \(f_A(z)\) and \(f_B(z)\). The proof of this proposition is technical and straightforward, but for completeness we provide it in Appendix C since we have not been able to find the proof in this specific setting of the proposition.

Proposition 3. Let \(A, B \in \mathbb{C}^{N \times N}\) be circulants of the form (1) (with parameters \(m_A, n_A\) and \(m_B, n_B\) respectively). Moreover, let’s assume that \(N \geq m_A + n_A + m_B + n_B\). Then the circulant \(C \equiv AB\) also has form (1) with parameters \(m = m_A + m_B\) and \(n = n_A + n_B\) and its corresponding Laurent polynomial of the form (7) is \(f_C(z) = f_A(z)f_B(z)\), where \(f_A(z)\) and \(f_B(z)\) are Laurent polynomials corresponding to \(A\) and \(B\).

Proof. See the proof in Appendix C.

Corollary 6. Let \(A \in \mathbb{R}^{N \times N}\) be a real symmetric circulant of the form (1) with corresponding Laurent polynomial \(f_A(z)\). If \(N \geq 2(m + n)\), then \(C \equiv A^*A + \alpha I\) is a real symmetric circulant of the form (1) with \(m = 2m_A\), \(n = 2n_B\) and Laurent polynomial \(f_C(z) = (f(z))^2 + \alpha\).

Now we can demonstrate the steps of the proposed method on \(A_S\). The corresponding Laurent polynomial is \(f_S(z) = 2 - z - z^{-1}\). According to Corollary 6, the polynomial corresponding to \(R_s \equiv A_S^*A_S + \alpha I\) is \(f_S(z) = (2 - z - z^{-1})^2 + \alpha^4\) (obviously, we can use \(\alpha^4\) in Equation (13) instead of \(\alpha\)). To apply Theorem 1 we need to solve the equation \(f_S(z) = 0\) (it is equivalent to \(f_S(z)z^2 = 0\)). It reduces to two equations \(f_S(z) = \pm \alpha^2 z^2\). The resulting roots are

\[
z_{1,2} = 1 - \frac{\alpha}{2} \sqrt{\pm 4i - a^2} \pm \frac{ia^2}{2}, \quad z_{3,4} = 1 + \frac{\alpha}{2} \sqrt{\pm 4i - a^2} \pm \frac{ia^2}{2}.
\]

It is not difficult to check that for all sufficiently small \(\alpha > 0\) the roots \(z_1\) and \(z_2\) lie inside the unit circle \(U\), whereas \(z_3\) and \(z_4\) lie outside of it. Moreover, it is obvious that all four roots are distinct for any \(\alpha > 0\), so to compute the elements of \(R_s^{-1}\) we can apply Corollary 1:

\[
(R_s^{-1})_{i0} = \frac{\zeta_1^{N-i+1} \zeta_2^{N-i+1}}{(1 - z_1^N)(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)} + \frac{\zeta_2^{N-i+1}}{(1 - z_2^N)(-z_1 + z_2)(z_2 - z_3)(z_2 - z_4)}
\]

\[
+ \frac{\zeta_1^{i+1}}{(1 - z_1^N)(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)} + \frac{\zeta_2^{i+1}}{(1 - z_2^N)(-z_1 + z_2)(z_2 - z_3)(z_2 - z_4)}.
\]

Reducing to a common denominator, we come to

\[
(R_s^{-1})_{i0} = \frac{(\zeta_1^N - 1)(z_1 - z_3)(z_1 - z_4)(z_2^{i+1} + z_2^{N-i+1}) - (\zeta_2^N - 1)(z_1^{i+1} + z_1^{N-i+1})(z_2 - z_3)(z_2 - z_4)}{(\zeta_1^N - 1)(z_2^N - 1)(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)(z_2 - z_3)(z_2 - z_4)}.
\]
The first column of \(R^{-1}_a S \) is simply

\[
(R^{-1}_a S)_{:,0} = 2(R^{-1}_a)_{:,0} - (R^{-1}_a)_{:,1} - (R^{-1}_a)_{:,N-1},
\]

and the explicit expression for it can be written down. After this we have used the Sympy library to compute the Taylor series of both the numerator and denominator. It turned out that the numerator is

\[
N \left(96\sqrt{2}t^2 - 96\sqrt{2}Nt + 16\sqrt{2}N^2 - 16\sqrt{2} \right) \sqrt{-1} a^7 + O(a^8)
\]

and the denominator is \((8\sqrt{2}N^2\sqrt{-1})a^7 + O(a^8)\). Here \(\sqrt{-1} \) denotes the imaginary unit. Dividing and taking limit of \((R^{-1}_a S)_{:,0}\) for \(a \to 0 \) we conclude that \((S^+)_{:,0} = (6t^2 - 6Nt + N^2 - 1)/(12N)\). Thus, we arrive to the same expression as in Reference 24.

Proposition 4. The pseudoinverse of \(A_S \) is a circulant \(A^+_S \) with elements \((A^+_S)_{i,j} = f((i - j) \mod N)\) where

\[
f(i) = \frac{6i^2 - 6Nt + N^2 - 1}{12N}.
\]

Corollary 7. For any positive integer \(L \) the QTT ranks of pseudoinverse \(A^+_S \) of stiffness matrix \(A_S \in \mathbb{R}^{2^L \times 2^L} \) do not exceed 4.

6 | NUMERICAL EXPERIMENTS

6.1 | One-dimensional convection-reaction-diffusion equation

The goal of these numerical experiments is to justify the robustness of the derived explicit QTT formulas for large values of \(L \). As an example, we consider the one-dimensional convection-reaction-diffusion boundary value problem with periodic boundary conditions:

\[
- u''(x) + u'(x) + u(x) = f(x), \quad x \in (0, 1)
\]

\[
u(0) = u(1).
\]

(14)

In particular, we set \(u(x) = \cos(2\pi x) \) and obtain the right-hand side:

\[
f(x) = (4\pi^2 + 1) \cos(2\pi x) - 2\pi \sin(2\pi x),
\]

which we use to recover the \(u(x) \).

The finite-difference discretization of (14) on a uniform grid with the grid step size \(h \equiv 2^{-L} \) and forward differences applied to the convection term \(u' \) leads to the following system of \(2^L \) linear equations: \(A_h u_h = h^2 f_h \), where

\[
A_h \equiv \text{circ}(2 - h + h^2, -1, 0, \ldots, -1 + h)
\]

is a nonsymmetric circulant matrix. The right-hand side \(f_h \) is assembled in the QTT format using the cross approximation method.\(^6\) If we obtain a QTT decomposition for the matrix \(A^{-1}_h \), the solution \(u_h = A^{-1}_h f_h \) may be found efficiently through QTT matrix-vector product, which admits explicit representation in terms of the QTT cores of both \(A^{-1}_h \) and \(f_h^{-1} \).

Thanks to Theorem 1, we know that the first column of \(A^{-1}_h \) has elements \(b_j = c_1 z_1^{N-j} + c_2 w_1^j \) where \(c_1, c_2, z_1 \) and \(w_1 \) can be found analytically. Next, we apply Proposition 5 to construct the explicit QTT decomposition of \(A^{-1}_h \) with the ranks \((2, 3, \ldots, 3) \).

The comparison of the black-box optimization-based TT solver AMEn (alternating minimal energy method)\(^6\) with the proposed approach is shown in Figure 1. As expected, the proposed approach appears to be stable for a wide range of \(L \), while the AMEn solver, applied to \(A_h u_h = f_h \), becomes unstable for \(L \geq 20 \). We note that the instabilities arising for AMEn are not related to the solver itself, but rather to the ill conditioning of \(A_h \).
Remark 1. To construct the cores of the QTT decomposition of A_h^{-1}, we need to compute the numbers of the form z^M for $z = 1 - \gamma_1 h + \gamma_2 h^2 + O(h^3)$. For large values of M (e.g., $M = 2^L$) and small values of h (e.g., $h \approx \sqrt[2]{\varepsilon_{\text{machine}}}$), the direct computation of z^M gives rise to the error of the order $\sqrt[2]{\varepsilon_{\text{machine}}}$. It happens as the $\gamma_2 h^2$ term is “lost” during the computation of z, whereas the following shows that it has $O(h)$ impact on z^M:

$$z^M = z^1 = \exp \left(\frac{1}{h} \ln(1 - \gamma_1 h + \gamma_2 h^2 + O(h^3)) \right)$$

$$= \exp \left(\frac{1}{h} (-\gamma_1 h + (\gamma_2^2 - \gamma_1^2) h^2 + O(h^3)) \right) = \exp(-\gamma_1 + (\gamma_2^2 - \gamma_1^2) h + O(h^2)).$$

To retain accuracy of order $\varepsilon_{\text{machine}}$, we have used the above expansion instead of the naive computation of z^M.

6.2 Three-dimensional screened Poisson equation

For $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, let us denote $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. We consider a three-dimensional screened Poisson equation:

$$-\Delta u + u = 2|x|^{-1} e^{-|x|}, \quad x \in \Omega = (-a, a)^3,$$

(15)

with periodic boundary conditions on all opposite faces of the cube Ω. It can be straightforwardly verified that $u(x) = e^{-|x|}$ satisfies (15). To ensure that it also satisfies boundary conditions with high precision, we select $a = 40$, which implies that both values and gradients of $u(x)$ on $\partial \Omega$ are zeroes up to machine epsilon: $e^{-40} \approx 4.2 \cdot 10^{-18}$.

We discretize the equation using finite difference method on a uniform $2^L \times 2^L \times 2^L$ grid, which leads to a linear system with a matrix of the form

$$A = A_S \otimes I \otimes I + I \otimes A_S \otimes I + I \otimes I \otimes A_S + h^2 I \otimes I \otimes I, \quad A_S = \text{circ}(2, -1, 0, \ldots, -1),$$

(16)

where $h = 2a/2^L$. The right-hand side is assembled using exponential sums as described in Reference 21. To robustly solve equation with the matrix (16), we utilize the idea from Reference 21 and apply the tensor version of the alternating direction implicit (ADI) method. This method is based on explicit inversions of shifted discretized one-dimensional operators in the QTT format. In our case, to run the ADI method, we need to have access to the explicit QTT representation of matrices of the form $(A_S + \delta I)^{-1}, \delta > 0$, which we have already derived in Section 5.2. The explicit inversions are then used to construct the ADI transition operator 21 in the combined Tucker and QTT (TQTT) format, which is more efficient for three-dimensional problems compared with the original QTT format. The code for the TQTT-ADI method with the proposed explicit formulas is available at https://bitbucket.org/rakhuba/tttcirc.

In Figure 2, we present L_2-errors with respect to $e^{-|x|}$ and maximum ranks for the TQTT-ADI method (combined with the proposed circulant inversion formulas) and the AMEn solver, applied to (16) in the QTT format. Similarly to the
FIGURE 2 Relative L₂-errors (left) and maximum ranks of the solution (right) against the number of grid levels L (the total number of grid points is 2^L) to solve the discretized equation (15) with periodic boundary conditions. ADI stands for the solver21 in the TQTT format, combined with the proposed circulant inversion formulas. The AMEn solver is performed in the QTT format. For both solvers the rank truncation parameter $\varepsilon = 10^{-9}$ is utilized.

FIGURE 3 Computation times of the ADI method in the TQTT format with the proposed circulant inversion formulas against the number of grid levels L (the total number of grid points is 2^L) to solve the discretized equation (15) with periodic boundary conditions. Different lines correspond to different rank truncation parameters ε.

one-dimensional case, the errors from the AMEn solver start increasing after a certain number of grid levels. At the same time, the proposed approach is capable of maintaining the desired accuracy level for large L. The plot with maximum rank values also shows that the ranks using the ADI method stabilize, while for the AMEn solver they start increasing in the region of instabilities. We also note that the AMEn solver is available only for the QTT format. This explains why the rank values are larger even in the region with no stability issues. The fact that QTT ranks are larger than those in the TQTT format was also observed in Reference 22 and 21.

In Figure 3, we present computation times of the TQTT-ADI method for different rank truncation parameters ε. The figure suggests that for $L = 25$ we are able to solve the system within a minute of computation time for all considered ε. At the same time, in the given range of L it was not even possible to run methods that require storing full tensors: for $L = 10, 25$ storing a single tensor of the size $2^L \times 2^L \times 2^L$ would require ~ 8 Gb and $3 \cdot 10^{14}$ Gb respectively.

ACKNOWLEDGMENT
The work is supported by Russian Science Foundation grant No. 21-71-00119. This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Lev Vysotsky © https://orcid.org/0000-0002-9148-2839
REFERENCES

1. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. 2011;33(5):2295–317.
2. Oseledets IV. Approximation of 2×2^n matrices using tensor decomposition. SIAM J Matrix Anal Appl. 2010;31(4):2130–45.
3. Khoromskij BN. $O(d \log n)$–Quantics approximation of N–d tensors in high-dimensional numerical modeling. Constr Approx. 2011;34(2):257–80.
4. Khoromskij BN. Tensor Numerical Methods in Scientific Computing: Volume 19. Germany: Walter de Gruyter GmbH & Co KG; 2018.
5. Kazeev VA, Khoromskij BN. Low-rank explicit QTT representation of the Laplace operator and its inverse. SIAM J Matrix Anal Appl. 2012;33(3):742–58.
6. Dolgov SV, Savostyanov DV. Alternating minimum energy methods for linear systems in higher dimensions. SIAM J Sci Comput. 2014;36(5):A2248–71.
7. Fuyong L. The inverse of circulant matrix. Appl Math Comput. 2011;217(21):8495–503.
8. Searle SR. On inverting circulant matrices. Linear Algebra Appl. 1979;25:77–89.
9. Khoromskij BN. $𝒪(d \log n)$ -Quantics approximation of N–d tensors in high-dimensional numerical modeling. Constr Approx. 2011;34(2):257–80.
10. Dolgov S, Khoromskij B. Two-level QTT-Tucker format for optimized tensor calculus. SIAM J Matrix Anal Appl. 2013;34(2):593–623.
11. Grasedyck L. Polynomial approximation in hierarchical tucker format by vector–tensorization. DFG-SPP1324 Preprint 43, 2010.
12. Vysotsky LI. TT ranks of approximate tensorizations of some smooth functions. Comput Math Math Phys. 2021;61(5):750–60.
13. Dolgov SV, Khoromskij BN, Savostyanov DV. Superfast Fourier transform using QTT approximation. J Fourier Anal Appl. 2012;18(5):915–53.
14. Oseledets IV, Tyrtyshnikov EE, Zamarashkin NL. Tensor-train ranks of matrices and their inverses. Comput Meth Appl Math. 2011;11(3):394–403.
15. Oseledets IV, Rakhuba MV, Cheretkov AV. Black-Box Solver For Multiscale Modelling Using The Qtt Format. Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece; 2016.
16. Kazeev V, Schwab C. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. Numer Math. 2018;138(1):133–90.
17. Cheretkov AV, Oseledets IV, Rakhuba MV. Robust discretization in quantized tensor train format for elliptic problems in two dimensions. arXiv preprint 1612.01166. 2016.
18. Bachmayr M, Kazeev V. Stability of low-rank tensor representations and structured multilevel preconditioning for elliptic PDEs. Found Comput Math. 2020;20(5):1175–236.
19. Kazeev V, Oseledets I, Rakhuba M, Schwab C. Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions. arXiv preprint arXiv:2006.01455. 2020.
20. Marcati C, Rakhuba M, Ulander JEM. Low-rank tensor approximation of singularly perturbed boundary value problems in one dimension. CAL. 2022;59(1):1–32.
21. Rakhuba M. Robust alternating direction implicit solver in quantized tensor formats for a three-dimensional elliptic PDE. SIAM J Sci Comput. 2021;43(2):A800–27.
22. Marcati C, Rakhuba M, Schwab C. Tensor rank bounds for point singularities in \mathbb{R}^3. Adv Comput Math. 2022;48(3):1–57.
23. Tyrtyshnikov E. A Brief Introduction to Numerical Analysis. Switzerland: Springer Science & Business Media, 1997.
24. Plonka G, Hoffmann S, Weickert J. Pseudo-inverses of difference matrices and their application to sparse signal approximation. Linear Algebra Appl. 2016;503:26–47.
25. Meurer A, Smith CP, Paprocki M, Certík O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing in python. PeerJ Comput Sci. 2017;3(e103):1-27.
26. Wolfram Research, Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021.
27. Golub GH, Van Loan CF. Matrix Computations (4th ed.). Baltimore: The Johns Hopkins University Press; 2013.
28. Oseledets IV, Tyrtyshnikov EE. TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 2010;432(1):70–88.

How to cite this article: Vysotsky L, Rakhuba M. Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices. Numer Linear Algebra Appl. 2023;30(3):e2461. https://doi.org/10.1002/nla.2461

APPENDIX A. PROOFS OF SECTION 2

Lemma 5. For any function $f(j) : \{0, \ldots, N-1\} \rightarrow \mathbb{C}$ and integers s, t the following holds:

$$\sum_{j=s}^{s+N-1} f(j \mod N) = \sum_{j=t}^{t+N-1} f(j \mod N).$$
Proof of Lemma 5. For any integer \(s \) the sequence
\[
(s \mod N, \ldots, (s + N - 1) \mod N)
\]
is obviously a permutation of \((0, \ldots, N - 1)\), thus
\[
\sum_{j=s}^{s+N-1} f(j \mod N) = \sum_{j=0}^{N-1} f(j) = \sum_{j=t}^{t+N-1} f(j \mod N).
\]

Proof of Lemma 1. We start from (5) and substitute the summation index with \(j' = j - \ell' \):
\[
\sum_{j'=0}^{N-1-\ell'} A_{((k'-\ell') \mod N,0)} b_{j'} \mod N = \delta_{k',\ell'}, \quad k', \ell' \in \{0, \ldots, N-1\}.
\]

We can apply Lemma 5 to the left part of the equality as the summed expression is indeed a function of \(j' \mod N \). Therefore, we obtain:
\[
\sum_{j'=0}^{N-1} A_{((k'-\ell') \mod N,0)} b_{j'} = \delta_{k',\ell'}, \quad k', \ell' \in \{0, \ldots, N-1\}.
\]

The left part of the equality depends only on \((k - \ell) \mod N\) and thus instead of \(N^2\) equations we can equivalently write only \(N\):
\[
\sum_{j=0}^{N-1} A_{(k-j) \mod N,0} b_j = \delta_{k,0}, \quad 0 \leq k \leq N-1, \quad k, \ell' \in \{0, \ldots, N-1\}.
\]

If we substitute the summation index with \(j'' = k - j \) and take into account that \(x_j = \xi_j \) for \(0 \leq j \leq N - 1 \), we obtain
\[
\sum_{j''=k-m-n+1}^{k} A_{j'' \mod N,0} \xi_{k-j''} = \delta_{k,0}.
\]

We again apply Lemma 5 (the biinfinite vector \(\xi \) is \(N \)-periodic and thus depends only on \(j'' \mod N \)):
\[
\sum_{j''=-\infty}^{-n} A_{j'' \mod N,0} \xi_{k-j''} = \delta_{k,0}.
\]

It is obvious that for \(-n \leq j'' \leq m - 1\) it holds that \(A_{j'' \mod N,0} = A_{j''}^{(\infty)} \). Moreover, \(A_{j''}^{(\infty)} = 0 \) for \(j'' \notin [-n, m - 1] \), so we obtain
\[
\sum_{j''=-\infty}^{\infty} A_{j''}^{(\infty)} \xi_{k-j''} = \delta_{k,0}.
\]

Change the summation index back to \(j = k - j'' \):
\[
\sum_{j=-\infty}^{\infty} A_{k-j,0}^{(\infty)} \xi_j = \sum_{j=-\infty}^{\infty} A_{j}^{(\infty)} \xi_j = \delta_{k,0}, \quad 0 \leq k \leq N - 1.
\]

Now take any \(k' \in \mathbb{Z} \) and represent it as \(k' = k + Nq \), where \(q \) and \(k \) are integers such that \(0 \leq k \leq N - 1 \). By changing the summation index to \(j' = j - Nq \) we can write:
\[
\sum_{j=-\infty}^{\infty} A_{k,j}^{(\infty)} \xi_j = \sum_{j'=\infty}^{\infty} A_{k,j'+N_0}^{(\infty)} \xi_j = \sum_{j'=-\infty}^{\infty} A_{k,j'}^{(\infty)} \xi_j = \delta_{k,0}.
\]

Therefore, the system of equations (5) is equivalent to the infinite system of equations
\[
\sum_{j=-\infty}^{\infty} A_{k,j}^{(\infty)} \xi_j = \delta_{k \mod N,0}, \quad k \in \mathbb{Z},
\]
which is the same as \(A^{(\infty)} \xi = \beta\).

Proof of Lemma 2. Let us compute an element of matrix \(A^{(\infty)} B^{(\infty)}:\)
\[
\sum_{j=-\infty}^{\infty} A_{k,j}^{(\infty)} B_{j',\ell}^{(\infty)} = \sum_{j=-\infty}^{\infty} A_{k-j,0}^{(\infty)} P_{j,\ell}^{(\infty)} = \sum_{j'=-\infty}^{m-1} a_{j'} B_{k-j',\ell}^{(\infty)}
= \frac{1}{2\pi i} \int_U \frac{1}{g(z)} \sum_{j'=-n}^{m-1} a_{j'} z^{-k+j'-1} dz = \frac{1}{2\pi i} \int_U g(z) z^{l-k-1} dz.
\]
But for any integer \(q\) it holds:
\[
\int_U z^q dz = \begin{cases} 2\pi i, & \text{if } q = -1, \\ 0, & \text{otherwise}. \end{cases}
\]
Therefore, we finally obtain
\[
\sum_{j=-\infty}^{\infty} A_{k,j}^{(\infty)} B_{j',\ell}^{(\infty)} = \delta_{k,\ell} \iff A^{(\infty)} B^{(\infty)} = I^{(\infty)}.
\]

APPENDIX B. PROOFS OF SECTION 4

Proof of Proposition 2. First, we represent the circulant using the powers of permutation matrix \(P:\)
\[
B_L = \sum_{i_1, \ldots, i_{r_1}=0}^{1, \ldots, 1} \sum_{i_{r_1+1}, \ldots, i_{r_1+r_2}=0}^{r_1 \ldots r_2} a_{i_1} z_{i_1}^{(2^0-1) i_2 + \cdots + 2^r i_{r_1+r_2}} P_{L_{i_1} \ldots i_{r_1+r_2}}.
\]
Then use the result of Lemma 4 for \(P_{L_{i_1} \ldots i_{r_1+r_2}}\) and the polylinearity of the TT decomposition:
\[
B_L = \sum_{i_1, \ldots, i_{r_1}=0}^{1, \ldots, 1} \sum_{i_{r_1+1}, \ldots, i_{r_1+r_2}=0}^{r_1 \ldots r_2} a_{i_1} z_{i_1}^{(2^0-1) i_2 + \cdots + 2^r i_{r_1+r_2}} U_{i_1} \otimes V_{i_{r_1+1}} \otimes \cdots \otimes V_{i_{r_1+r_2}} \otimes W_{i_{r_1+r_2}}
= \sum_{i=1}^{r} \left(\sum_{i_1=0}^{1} z_{i_1}^{2^0-1} U_{i_1} \right) \otimes \cdots \otimes \left(a_{i} \sum_{i_1=0}^{1} z_{i_1}^{2^r} W_{i_1} \right)
= \sum_{i=1}^{r} \left(U_0 + z_1^{2^0-1} U_1 \right) \otimes \left(V_0 + z_1^{2^1-1} V_1 \right) \otimes \cdots \otimes \left(V_0 + z_1^{2^r-1} V_1 \right) \otimes \left(a_{i} (W_0 + z_1 W_1) \right)
= \widetilde{Q}_1 \otimes \widetilde{Q}_2 \otimes \cdots \otimes \widetilde{Q}_d,
\]
where thanks to Lemma 3, the cores \(\widetilde{Q}_k\) are block matrices of the block size \(2r \times 2r\) for \(k = 2, \ldots, L - 1, 1 \times 2r\) for \(k = 1\) and \(2r \times 1\) for \(k = L\), i.e., it is an explicit QTT representation with all ranks equal to \(2r\). In the next steps, our goal is to find linear dependencies and reduce the rank values to \((2, r+1, \ldots, r+1)\). For the ease of presentation, we provide the
proof for \(r = 2 \). The generalization to \(r > 2 \) is straightforward. We have

\[
\tilde{Q}_1 = \begin{bmatrix}
I + q_{1,1}H & H + q_{1,1}I \\
I + q_{2,1}H & H + q_{2,1}I
\end{bmatrix} = \begin{bmatrix}
1 & q_{1,1} \\
q_{1,1} & 1
\end{bmatrix} \otimes \begin{bmatrix}
1 & q_{2,1} \\
q_{1,1} & 1
\end{bmatrix}.
\]

Next, by denoting \(Q_1 = [I \ H] \), we have

\[
\tilde{Q}_1 \otimes \tilde{Q}_2 = \left(Q_1 \otimes \begin{bmatrix}
1 & q_{1,1} & 1 & q_{2,1} \\
q_{1,1} & 1 & q_{2,1} & 1
\end{bmatrix} \right) \otimes \tilde{Q}_2 = Q_1 \otimes \left(\begin{bmatrix}
1 & q_{1,1} & 1 & q_{2,1} \\
q_{1,1} & 1 & q_{2,1} & 1
\end{bmatrix} \otimes \tilde{Q}_2 \right),
\]

where

\[
\tilde{Q}_k = \begin{bmatrix}
I + q_{1,k}J' & J' \\
q_{1,k}J & J + q_{1,k}I
\end{bmatrix} = \begin{bmatrix}
I + q_{2,2}I' & q_{2,2}I' \\
q_{2,2}J & q_{2,2}J + J + q_{2,2}I
\end{bmatrix}, \quad k = 2, \ldots, L - 1. \tag{B1}
\]

Using the fact that \(q_{1,t} = q_{t,2}^2 \) for all \(t \), we get:

\[
\begin{bmatrix}
1 & q_{1,1} & 1 & q_{2,1} \\
q_{1,1} & 1 & q_{2,1} & 1
\end{bmatrix} \otimes \tilde{Q}_2 = \begin{bmatrix}
I + q_{1,1}J' + q_{1,1}^2J + q_{1,1}^3I & q_{1,1}^2J + q_{1,1}^3I \\
q_{1,1}^2I & q_{1,1}^3J + q_{1,1}^3I + q_{1,1}^3J + q_{1,1}^3I
\end{bmatrix} \otimes \begin{bmatrix}
1 & q_{1,2} & 1 & q_{1,3} \\
q_{1,2} & 1 & q_{1,3} & 1
\end{bmatrix} \otimes \begin{bmatrix}
1 & q_{2,1}^2 & 1 & q_{2,2}^2 \\
q_{2,1}^2 & 1 & q_{2,2}^2 & 1
\end{bmatrix} = \begin{bmatrix}
I + q_{1,3}J' & q_{1,3}J + q_{1,3}I \\
q_{1,3}J & q_{1,3}J + q_{1,3}I
\end{bmatrix} \otimes \tilde{Q}_3 = \begin{bmatrix}
1 & q_{1,3}^6 & 1 & q_{2,3}^6 \\
q_{1,3}^6 & 1 & q_{2,3}^6 & 1
\end{bmatrix} \otimes \begin{bmatrix}
I + q_{2,3}J' & q_{2,3}J + q_{2,3}I \\
q_{2,3}J & q_{2,3}J + q_{2,3}I
\end{bmatrix} \otimes \begin{bmatrix}
1 & q_{1,3}^7 & 1 & q_{2,3}^7 \\
q_{1,3}^7 & 1 & q_{2,3}^7 & 1
\end{bmatrix} \otimes \begin{bmatrix}
1 & q_{1,3} & 1 & q_{2,3} \\
q_{1,3} & 1 & q_{2,3} & 1
\end{bmatrix} \equiv Q_3 \otimes \begin{bmatrix}
1 & q_{1,3} & 1 & q_{2,3} \\
q_{1,3} & 1 & q_{2,3} & 1
\end{bmatrix}.
\]

In the last equation we obtained a factorization into a product of \(2 \times 3 \) block matrix, which we denote as \(Q_2 \), times a \(3 \times 4 \) matrix, which we propagate further to \(\tilde{Q}_3 \) (see (B1) for \(\tilde{Q}_3 \)).
By propagating it further, we obtain the following recurrence:

\[
\begin{bmatrix}
1 & q_{1,k-1}^{2^{e-1}} & 1 & q_{2,k-1}^{2^{e-1}} \\
q_{1,k-1} & 1 & 0 & 0 \\
0 & 0 & q_{2,k-1} & 1
\end{bmatrix} \times \tilde{Q}_k = Q_k \times \begin{bmatrix}
1 & q_{1,k}^{2^{e-1}} & 1 & q_{2,k}^{2^{e-1}} \\
q_{1,k} & 1 & 0 & 0 \\
0 & 0 & q_{2,k} & 1
\end{bmatrix},
\]

where

\[
Q_k = \begin{bmatrix}
I & J' + q_{1,k}^{2^e-2}J & J' + q_{2,k}^{2^e-2}I \\
q_{2,k}I + q_{2,k}^2J' & q_{1,k}I + q_{2,k}^2J' + J \\
q_{1,k}I + q_{1,k}^2J' + J
\end{bmatrix}.
\]

For the last core we obtain:

\[
Q_L = \begin{bmatrix}
1 & q_{1,L-1}^{2^{e-1}} & 1 & q_{2,L-1}^{2^{e-1}} \\
q_{1,L-1} & 1 & 0 & 0 \\
0 & 0 & q_{2,L-1} & 1
\end{bmatrix} \times \tilde{Q}_L = \begin{bmatrix}
1 & q_{1,L}^{2^{e-2}} & 1 & q_{2,L}^{2^{e-2}} \\
q_{1,L} & 1 & 0 & 0 \\
0 & 0 & q_{2,L} & 1
\end{bmatrix} \times \begin{bmatrix}
\alpha_1 (I + q_{1,L}J') \\
\alpha_1 q_{1,L}J \\
\alpha_2 (I + q_{2,L}J') \\
\alpha_2 q_{2,L}J
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(a_1 + a_2)I + (a_1 q_{1,L} + a_2 q_{2,L})J' + (a_1 q_{1,L}^{2^{e-1}} + a_2 q_{2,L}^{2^{e-1}})J \\
\alpha_1 q_{1,L} (J + q_{2,L}I + q_{2,L}^2J') \\
\alpha_2 q_{2,L} (J + q_{2,L}I + q_{2,L}^2J')
\end{bmatrix}.
\]

APPENDIX C. PROOFS OF SECTION 5

Proof of Proposition 3. Let us compute the first column of the circulant \(C = AB\).

\[
C_{s,0} = \sum_{t=0}^{N-1} A_{s,t} B_{t,0} = \sum_{t=0}^{N-1} A_{s-t \mod N,0} B_{t,0}
\]

\[
= \sum_{t=0}^{m_B-1} A_{s-t \mod N,0} B_{t,0} + \sum_{t=-(N+b)}^{(-1)} A_{s-(N+t) \mod N,0} B_{N+t,0}.
\]

If we denote \(a_i\) and \(b_i\) the coefficients of Laurent polynomials \(f_A(z)\) and \(f_B(z)\) respectively, we can simplify the above expression:

\[
C_{s,0} = \sum_{t=-n_B}^{m_B-1} A_{s-t \mod N,0} b_t.
\]

Now we split the set of row indices \(s\) into three parts:

\[
S_1 = \{0, \ldots, m_A + m_B - 2\},
S_2 = \{m_A + m_B - 1, \ldots, N - n_A - n_B - 1\},
S_3 = \{N - n_A - n_B, \ldots, N - 1\}.
\]

If \(s \in S_1\), then \((s-t) \in [-m_A, m_A + m_B - 2 + n_B]\) and we can write \(A_{s-t \mod N,0} = a_{s-t}\) (here we imply that \(a_i = 0\) for \(i \notin [-n_A, m_B - 1]\)). Next, if \(s \in S_2\), then \((s-t) \in [m_A, N - n_A - 1]\), thus \(A_{s-t \mod N,0} = 0\). Finally, if \(s \in S_3\), then \((s-t) \in [N - n_A - n_B - m_B + 1, N - 1 + n_B]\) and \(A_{s-t \mod N,0} = a_{s-t = N}\). Taking the three cases together and using the notation \(m = m_A + m_B\), \(n = n_A + n_B\), we can write
\[
C_{s,0} = \begin{cases}
\sum_{t=-n}^{m-1} a_{s-t} b_t, & \text{if } s \in [0, m - 1], \\
0, & \text{if } s \in [m, N - n - 1], \\
\sum_{t=-n}^{m-1} a_{s-t-N} b_t, & \text{if } s \in [N - n, N - 1].
\end{cases}
\]

(C1)

So the circulant \(C \) is indeed of the form (1) with parameters \(m \) and \(n \) (the properties \(c_{m-1} \neq 0 \) and \(c_{-n} \neq 0 \) will be checked a bit later). Moreover, as for \(s \in [-n, -1] \) we have by definition \(c_s = C_{N+s,0} \), from (C1) it follows that the general formula for \(c_s \) is

\[
c_s = \sum_{t=-n}^{m-1} a_{s-t} b_t \quad \text{for all } s \in \{-n, \ldots , m - 1\}.
\]

This is exactly the formula for product of Laurent polynomials \(f_A(z) \) and \(f_B(z) \).

Finally, we need to prove that \(c_{m-1} \) and \(c_{-n} \) are nonzero. By (C1), \(c_{m-1} = a_{m-1} b_{m-1} \neq 0 \) as \(a_{m-1} \), and \(b_{m-1} \) are nonzero. Similarly, \(c_{-n} = a_{-n} b_{-n} \neq 0 \).