Supplementary Material

Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study in the Northeast of Brazil

Sophia Dobkowitz 1*, Ariane Walz 1, Gabriele Baroni 2 and Aldrin M. Pérez-Marín 3

1 Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam - Golm, Germany; ariane.walz@uni-potsdam.de (A.W.)
2 Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy; g.baroni@unibo.it
3 Instituto Nacional do Semiárido (INSA), Programa de Pós-Graduação em Ciência do Solo da Universidade Federal da Paraíba, Av. Francisco Lopes de Almeida, s/n, Serrotão, Campina Grande, Paraíba CEP 58429-970, Brazil. aldrinmartinp@gmail.com
* Correspondence: sophidobko@web.de

Table S1. Reviewed indices for region, farm and field scale.

Reference	Region	Concept*	Data availability	Dryland Brazil	Northeast Brazil	Climate sensitive
Awolala & Ajibefun 2015	Nigeria	V=f(Exposure, sensitivity, adaptive capacity)	0	1	0	1
Bouroncle 2017	Guatemala, El Salvador, Honduras, Nicaragua	V=f(Exposure, sensitivity, adaptive capacity)	1	1	0	1
Gomez 2013	Philippines	V=f(Exposure, sensitivity, adaptive capacity)	0	0	0	1
Harvey 2014	Madagascar	V=f(Exposure, sensitivity, adaptive capacity)	0	0	0	1
Hiremath and Shiyan 2013	India	V=f(Exposure, sensitivity, adaptive capacity)	0	1	0	1
Legese et al 2016	Ethiopia	V=f(Exposure, sensitivity, adaptive capacity)	0	1	0	1
Lindoso et al 2011, 2012, 2014	Ceará, Brazil	V=f(Exposure, sensitivity, adaptive capacity)	1	1	1	1
Pandey and Jha 2012	Lower Himalaya, India	V=f(Exposure, sensitivity, adaptive capacity)	0	0	0	1
Reference	Region	Concept*	Data availability	Dryland	Northeast Brazil	Climate sensitive
----------------------	---	--	-------------------	----------	------------------	-------------------
Pandey et al 2015	Himalaya Mountains, India	$V = f(\text{Exposure, sensitivity, adaptive capacity})$	0	0	0	1
Panthi 2015	Nepal	$V = f(\text{Exposure, sensitivity, adaptive capacity})$	0	0	0	1
Rosendo 2014	Paraíba, Brazil	$V = f(\text{Exposure, sensitivity, adaptive capacity})$	1	1	1	1
Sabino 2013	Ceará, Brazil	$V = f(\text{social, environmental, economic, institutional aspects})$	1	1	1	0
Sietz et al 2006	Ceará, Piauí, Pernambuco, Brazil	vulnerability dynamics = $f(\text{trends of resource quality and yield oriented labour})$	1	1	1	0
Tesso et al 2012	Ethiopia	$V = f(\text{Exposure, sensitivity, adaptive capacity})$	0	0	0	1

Farm Scale

Reference	Region	Concept*	Data availability	Dryland	Northeast Brazil	Climate sensitive
Bishop & Fuller 2015	Nicaragua	resilience = $f(\text{livelihood viability, innovation potential, contingency resources, environment, social capability})$	1	0	0	0
Blesh & Wittman 2015	Mato Grosso, Brazil	resilience = $f(\text{control over production and consumption})$	0	0	0	0
Finan and Nelson 2001	Ceará, Brazil	$V = f(\text{subsistence production, income from agriculture and livestock})$	0	1	1	0
Luers et al 2003	Mexico	$V = f(\text{Exposure, sensitivity, adaptive capacity})$	0	1	0	1
Oxfam 2013	Nepal	resilience = $f(\text{livelihood viability, innovation potential, contingency resources, environment, social capability})$	1	1	0	0
Oxfam 2013	Ethiopia	resilience = $f(\text{livelihood viability, innovation potential, contingency resources, environment, social capability})$	1	1	0	0
Petersen et al 2017	northeast Brazil	sustainability	1	1	1	0

Field Scale

Reference	Region	Concept*	Data availability	Dryland	Northeast Brazil	Climate sensitive
Amara et al 2014	Sierra Leone	soil fertility (soil degradation rate, potential vulnerability)	1	0	0	0
Akpan-Idiok & Ofem 2014	Nigeria	soil quality (soil degradation rate, potential vulnerability)	0	0	0	0
Cherubin et al 2016	Brazil, Goiás, São Paulo	sustainability = $f(\text{soil quality impact of land use change})$	1	0	0	0
Reference	Region	Concept	Data availability	Dryland Brazil	Northeast Brazil	Climate sensitive
-----------------------	----------------------	---	-------------------	----------------	------------------	------------------
Fialho 2013	Ceará, Brazil	soil quality = f(water retention+nutrients supply + promotion of biological activity), soil resistance & resilience	0	1	1	0
Gelaw et al 2015	Ethiopia	Soil quality = ability to 1) accommodate water entry, 2) facilitate water movement and availability, 3) resist degradation, 4) supply nutrients for plant growth	0	1	0	0
Silva et al 2011	Ceará, Brazil	physical soil quality	0	1	1	0
Stefanoski et al 2016	Piauí, Brazil	soil quality = f(physical, chemical, biological indicators)	0	0	1	0
Ukabiala et al 2016	Nigeria	sustainability = f(soil degradation rate, potential vulnerability)	0	0	0	0
Uquetan et al 2017	Nigeria	landuse change effect on soil quality (soil degradation rate, potential vulnerability)	0	0	0	0
Vendruscolo and Perez Marin (2017)	Brazil, Northeast	soil quality = f(degraded/preserved soils)	1	1	1	0

* V: Vulnerability
Table S2. Results of municipality index 1.

Municipality	inco	engag	water	rainf	p div	land	read	assoc	techn	electr	Al	S	AC	E	M1
Alagoa Nova	87.2	19.0	79.8	96.7	56.8	85.8	56.8	64.9	1.5	92.9	0.69	0.64	0.56	0.11	0.40
Algodão de Jandaíra	35.7	18.8	65.5	100.0	58.6	80.0	33.6	70.7	12.1	85.7	0.28	0.41	0.48	1.00	0.65
Arara	32.1	27.5	75.9	99.7	77.5	81.0	43.6	68.9	1.3	82.9	0.66	0.54	0.54	0.17	0.39
Areia	63.6	20.2	88.1	98.4	38.9	61.6	50.7	60.1	8.6	86.3	0.72	0.68	0.32	0.03	0.47
Areial	33.1	23.2	63.6	100.0	63.9	57.1	58.6	77.7	51.3	84.7	0.41	0.41	0.63	0.71	0.50
Borborema	98.0	13.7	84.7	93.9	69.1	76.0	54.0	65.8	9.5	76.4	0.74	0.64	0.50	0.00	0.38
Campina Grande	57.1	1.3	78.5	97.7	48.3	55.8	62.6	35.2	7.3	86.9	0.38	0.47	0.27	0.78	0.66
Casserengue	39.2	28.7	74.4	100.0	68.1	73.4	40.4	52.1	9.8	82.1	0.38	0.56	0.41	0.78	0.64
Esperança	30.4	16.6	69.7	98.6	71.5	64.6	50.6	74.0	4.7	84.9	0.48	0.40	0.50	0.56	0.48
Lagoa Seca	87.3	16.1	64.0	86.8	77.7	89.9	74.3	43.0	4.0	93.8	0.51	0.30	0.67	0.50	0.38
Massaranduba	29.2	30.0	79.6	99.3	72.1	58.7	50.5	58.3	4.2	74.9	0.55	0.57	0.36	0.41	0.54
Matinhas	91.7	50.7	79.9	98.9	71.7	66.3	64.3	66.5	0.8	89.1	0.63	0.86	0.54	0.24	0.52
Montadas	29.7	28.5	65.5	99.2	67.3	80.9	67.3	66.7	9.0	86.8	0.40	0.43	0.62	0.74	0.52
Pilões	94.5	27.3	90.8	99.3	40.6	62.0	44.7	59.2	4.2	84.5	0.73	0.86	0.28	0.02	0.53
Puxinanã	40.8	20.6	67.0	97.7	62.1	90.5	79.8	39.6	6.7	97.6	0.38	0.41	0.64	0.78	0.52
Queimadas	41.6	21.5	77.0	97.9	51.6	63.4	61.0	41.3	2.8	92.3	0.38	0.51	0.36	0.78	0.64
Remígio	64.1	14.2	74.1	99.6	77.6	65.2	43.6	65.8	8.4	80.8	0.51	0.55	0.47	0.49	0.52
S. Sebastião L.R.	31.5	29.7	72.4	95.8	61.3	82.7	60.7	69.8	8.3	94.1	0.56	0.44	0.63	0.38	0.40
Serra Redonda	16.7	31.2	79.1	99.7	72.4	79.2	51.8	61.9	0.3	79.5	0.52	0.54	0.49	0.47	0.51
Serraria	65.9	28.6	76.1	99.0	71.4	64.7	51.0	66.8	5.5	77.1	0.74	0.63	0.44	0.00	0.40
Solânea	22.7	16.6	76.1	99.4	73.8	78.2	37.0	72.2	6.8	74.2	0.59	0.45	0.47	0.32	0.43

S. Sebastião L.R.: São Sebastião de Lagoa de Roça; M1: municipality index 1; Subindices S: Sensitivity; AC: Adaptive capacity; E: Exposure; Indicators inco: dependence of farm income on crop and animal production; engag: Municipal population engaged in agriculture; water: Farms without access to water storage; rainf: Farms with rainfed farming; p div: Product diversification; land: Farms in which the producer is the landowner; read: Farms whose heads can read and write; assoc: Farms whose heads are engaged in associations or unions; techn: Farms receiving technical assistance; electr: Farms with access to electric energy supply; Al: Aridity Index. All indicators refer to smallholder farming/agriculture.
Table S3. Results of municipality index 2.

Municipality	2002 - 2006		2012 - 2016		Bex (%)						
	Trend(ly)	Trend(rq)	R²(ly)	R²(rq)	State	Trend(ly)	Trend(rq)	R²(ly)	R²(rq)	State	
Alagoa Nova	1827.7	0.0007	0.87	0.00	III	-2140.6	0.0423	0.77	0.24	II	8.7
Algodão de Jandaíra	564.1	0.0077	0.41	0.04	III	-460.5	-0.0336	0.94	0.53	I	5.3
Arara	1626.4	0.1270	0.91	0.75	III	435.8	-0.0576	0.30	0.14	IV	10.3
Areia	1962.6	0.0917	0.49	0.95	III	1195.9	0.0286	0.62	0.49	III	13.4
Areial	290.1	0.0903	0.49	0.45	III	-612.2	-0.0673	0.97	0.16	I	12.4
Borborema	638.1	0.0174	0.86	0.65	III	159.1	-0.0007	0.18	0.00	IV	8.7
Campina Grande	-99.1	0.0105	0.04	0.22	II	-460.4	-0.0095	0.05	0.01	I	29.0
Casserengue	1980.4	0.1068	0.74	0.89	III	583.0	-0.0749	0.29	0.30	IV	4.6
Esperança	2310.4	0.1526	0.82	0.80	III	82.0	-0.0409	0.02	0.23	IV	12.0
Lagoa Seca	859.7	0.0249	0.85	0.24	III	-66.1	-0.0109	0.01	0.01	I	12.5
Massaranduba	-3590.8	-0.0588	0.89	0.44	I	-2009.5	-0.0474	0.86	0.45	I	7.8
Matinhos	1087.3	-0.0049	0.95	0.01	IV	-593.9	-0.0493	0.47	0.07	I	5.0
Montadas	-78.8	0.1107	0.03	0.91	II	-151.8	0.0470	0.25	0.05	II	10.9
Pilões	-74.9	-0.0314	0.01	0.28	I	-0.3	0.0862	0.00	0.65	II	10.3
Puxinanã	1283.0	0.1494	0.59	0.75	III	-2154.3	0.0207	0.86	0.02	II	9.9
Queimadas	477.3	0.0509	0.36	0.40	III	-1508.2	-0.0248	0.96	0.19	I	10.6
Remígio	1895.4	0.1489	0.86	0.95	III	178.7	0.0538	0.13	0.18	III	13.3
São Sebastião de Lagoa de Roça	-1201.2	0.0297	0.80	0.38	II	-914.2	-0.0295	0.93	0.12	I	10.0
Serra Redonda	-24.2	0.0474	0.04	0.50	II	27.4	0.0308	0.01	0.27	III	9.3
Serraria	-254.1	0.0095	0.27	0.13	II	-1778.6	-0.0041	0.73	0.27	I	6.6
Solânea	572.4	0.0365	0.18	0.94	III	1181.8	-0.0397	0.57	0.32	IV	11.0

Bex: existential budget (% of municipal population earning at least one minimum wage); ly: yield oriented labor; R²: coefficient of determination; rq: resource quality.
Table S4. Results of farm index 1.

Dimension	Characteristic	Threshold: HH scores positively if…	Score	Farm 1, Areial	Farm 2, Remigio
Livelihood viability (30 %)	Land ownership	HH owns at least 4 ha.	0.02	8.5 ha	10.5 ha (+2.5 in collective area)
	HH wealth status	HH owns ≥ 3 large assets or ≥ 6 small assets*	0.02	Big assets: motorcycle, fridge, F1: pigs. F2: horse	No problems with food supply
	HH food security	HH reports having enough food for all HH members.	0.02		
	Livelihood diversification	HH engages in ≥ 2 livelihood activities with ≥ 50% dependency on activities assumed to be significantly drought tolerant.	0.02	Crops, drought tolerant fodder plants, fodder and water stocks for livestock, pension	F1: man is mason. F2: woman repairs clothes.
	Crop diversification	HH cultivated at least 3 crop types, including at least one drought-resistant crop.	0.02	Beans, maize, manioc (drought resistant)	Beans, maize, sweet potato, potato, fodder cactus (drought resistant)
	Crop production	HH sold crops during the past 12 months (i.e. the HH produced enough to be able to sell the surplus).	0.02	Sold beans, maize	
	Livestock diversification	HH is dependent on at least 3 types of animals, including some cattle.	0.02	Cattle, pigs, chicken	Cattle, traction horse, chicken, guineafowls
	Livestock herd size	HH owns at least 5 cattle or 40 pigs, sheep or goats.	0.02	7 heads of cattle	15 heads of cattle
	Ownership of means of transport	It owns at least 1 traction animal (horse, ox or donkey) or motorcycle	0.02	Motorcycle	F1: traction ox, F2 traction horse
	Livestock lost to drought or diseases	No large livestock (bull, cow, horse donkey) AND < 3 medium livestock (goat, sheep, pig) AND < 6 poultry birds	0.02	Silo helps to supply good feed to the cattle even in drought periods, production cistern supplies water, reported no problems with diseases	Cattle are vaccinated.
	Livestock vaccination	At least two-thirds of the livestock types (mammals) owned by the HH are vaccinated	0.02		F1: pigs treated against parasites
	Drought preparedness practice	HH did at least two of the “good” practices during the last years. **	0.02	Silo, cisterns, reservoirs; buys feed for chicken and pigs; cultivates maize, fodder cactus and different pastures	Silo, cisterns, reservoirs; can use pasture of children for grazing; cultivates maize, fodder cactus, agave and different pastures
	Access to markets	HH members take less than 90 minutes to travel to the nearest town.	0.02	Access to local market of municipality, agroecological markets of Borborema territory and bigger market of Arara	
Dimension	Characteristic	Threshold: HH scores positively if...	Score	Farm 1, Areial	Farm 2, Remigio
--------------------	---	--------------------------------------	-------	--	--
Innovation potential (20 %)					
Attitudes towards new livelihood practices	Interest in new livelihood practices.	**0.04**	Interested in learning new practices; experimental farmer, participate in farmers exchanges and research projects		
Adoption of improved production techniques	HH applies at least 4 improved agricultural production techniques. ***	**0.04**	Manure compost, living fences, crop rotation, storing grain for food, silo and seed for future planting, kitchen garden	Manure, biofertilizer, nim tree as pesticide, living fences, crop rotation, storing grain for food, silo, seed for future planting, kitchen garden, agroforestry system	
Access to credit	HH took out loan in last years Or could borrow in the event it was needed from a money lender, non-local family members, savings group, or bank/credit institution.	**0.04**	Participates in FRS for manure, tarpaulin, fences ecologic stove, 2013 credit from Pronaf, children send some money	2013 credit from Pronaf to build a new reservoir and plant 1 ha of brachiara grass	
Access to state innovative support	HH accessed state extension support in new techniques in the last years and finds the support at least moderately helpful	**0.04**	2012 P1+2 to build a production cistern	2009 P1+2 to build production cistern, 2012 P1+2 to build the seed bank	
Ability to influence others	Respondent shares knowledge of production techniques with other HH members or with others in the community, at least sometimes they applied what they had told them.	**0.04**	After observing that the silo was a useful feed supply for droughts, some community members wanted to learn to prepare silo, now they prepare silo together every year.		
Access to contingency resources and support (20 %)					
Group participation	Respondent reports being an active participant in at least 2 groups with medium involvement in decision making in at least one.	**0.03**	Participation in STR, since 2001 in the direction, 2001 Association of Sitio Furnas	Since 1998 involved with MST, 1999 Association Oziel Pereira, 2002 participation in STR	
Access to government emergency support	Applied government emergency support measures.	**0.03**	Seguro safra (harvest insurance)	1 registered community cistern to get water from the military	
Savings	HH has enough savings to survive for at least 30 days in a drought or support costs of an immediate need (e.g. hospital).	**0.03**	Pension is independent from drought, cattle serves as saving for an immediate need.		
Grain storage	HH has stored grain for future use as food in the past 12 months.	**0.03**	beans		
Access to remittances or state support	HH has some income from remittances or payments from government.	**0.03**	Pension, F1: children send some money		
Dimension	Characteristic	Threshold: HH scores positively if...	Score	Farm 1, Areial	Farm 2, Remigio
-----------	----------------	-------------------------------------	-------	----------------	----------------
Ownership of fungible livestock	HH owns at least 20 poultry birds.	0.03	80 chicken	30 chicken+ 4 guineafowls	
Extent of soil erosion	It does not report experiencing severe erosion.	0.03	No severe erosion observed		
Access to irrigation	At least some of the land cultivated by the HH is irrigated OR only a small portion of its crops was lost during the last years of drought.	0.00	No irrigation, yield decreased considerably in drought years.		
Access to water for livestock/consumption	It did not report experiencing serious difficulties in accessing water for domestic or livestock use during the last years.	0.03	Cisterns and reservoirs allow to store water for livestock and consumption		
Access to grazing land	HH experienced no/only small problems in accessing suitable grazing lands during the last dry season.	0.03	enough grazing land increased own grazing land and can use grazing land of children		
Tree planting	HH has planted at least 10 trees in the last 3 years.	0.03	Planted living fences, fruit and other trees F2: Agroforestry system		
Access to drought warning information	HH receives information about the drought situation from community leaders, committee, government or radio.	0.04	Access to information by STR, Association, radio, TV		
Drought preparedness plan	There is a drought preparedness plan for the region made by the local government or other institutions.	0.00	There are some programs but rather to remediate the direct damages than to make farmers less vulnerable to droughts. ASA, AS-PTA, STR, Borborema Polo		
Institutions supporting adaptation	There are programs from local leaders or community institutions supporting adaptation to drought.	0.04			
Solidarity in the community	HH provided support to others and/or received support from others in the community at least 1 time during the past 12 months.	0.04	Help on relatives’ farm when they get sick Always care about their grandchildren, share products with neighbors and family		

* Large assets: bulls, pigs, horses, fridge, satellite dish, oven, motorcycle or other vehicle; small assets: radio, mobile phone, TV, mattress, horse/ox cart, solar panel, bicycle. ** “Good” livestock practices: Migrated with animals; destocked livestock; split herds; purchased feed or water to store; gave some animals to others to care for. *** Improved agricultural production techniques: use of organic fertilizer or insecticide, living fences, crop rotation, storing grain for food and feed, seed for planting. ASA: Partnership for the Brazilian Semi-Arid Region (Articulação Semiárido Brasileiro); AS-PTA: Family Agriculture and Agroecology (Agricultura Familiar e Agroecologia); F1, F2: farm 1, farm 2; FR5: Rotating Solidarity Fund (Fundo Rotativo Solidário); HH: household; MST: Landless Workers’ Movement (Movimento dos trabalhadores rurais Sem Terra); P1+2: Program one land and two waters (Programa Uma Terra e Duas Águas), for the construction of production cisterns, seed banks and other infrastructure to store water for plants and animals, for food, feed and seed sovereignty; Pronaf: National Program of Empowerment of Family Farming (Programa Nacional de Fortalecimento da Agricultura Familiar); STR: union of rural workers (Sindicato dos Trabalhadores Rurais).
Table S5. Results of farm index 2, farm 1 (adapted from ASA/INSA research project, unpublished material).

Indicator	before 2000	Innovations during the period	Explanation
Seed autonomy	3 4	Seed bank	Through farmers exchanges increased genetic diversity of plant varieties adapted to the local conditions
Water autonomy	2 4	Construction of more cisterns and reservoirs	They had already some water infrastructure and the access to public policies allowed to increase the water storage capacity (P1+2)
Feed autonomy	2 4	Silo, afforestation, fodder cactus	Learnt practices to store feed and prepare silo. Stronger integration of crops and livestock, harvest residues to feed the cattle and pigs
Food security	3 4	More food stocks	They produce a considerable part of their own food, storage of beans, manioc flour
Soil Fertility	2 3	Manure compost system, living fences	Low natural soil fertility (sandy soils), living fences and a manure compost system help to increase soil fertility
Production diversity	2 4	Higher production diversity	They increased the diversity of crops and integrated them with the practices of animal husbandry
Market diversity	2 3	Local market with regular customers.	They produce cheese and sell it on the local market to regular customers
Income diversity	3 4	Pension, family allowance (Bolsa Familia)	Production is more for self-consumption than for monetary income, man works as mason, pension, family allowance
Gender equity	3 3	Partial division of work and decision making, participation in women marches	Man helps with some domestic work but still the woman does most of cooking and cleaning; in decision making, the man seems to have a stronger decision power; since 2012 the woman participates in the women marches
Social participation	2 4	STR, Borborema Polo, AS-PTA	Man participates in direction of STR, they participate in activities of the STR, network of organic farmers of Borborema, experimental farmer of AS-PTA
Access to public policies	2 4	P1+2, Pronaf, Seguro Safra (harvest insurance)	Since Carlinhos participates in the direction of STR the family accessed a greater number of public policies
Mean 2.36			
F2 0.47			

AS-PTA: Family Agriculture and Agroecology (Agricultura Familiar e Agroecologia); FRS: Rotating Solidarity Fund (Fundo Rotativo Solidário); INCRA: National Institute of Colonization and Land Reform (Instituto Nacional de Colonização e Reforma Agrária); MST: Landless Workers’ Movement (Movimento dos trabalhadores rurais Sem Terra); P1+2: Program one land and two waters (Programa Uma Terra e Duas Águas); P1MC: Program 1 Million Cisterns (Programa Um Milhão de Cisternas); Pronaf: National Program of Empowerment of Family Farming (Programa Nacional de Fortalecimento da Agricultura Familiar); STR: union of rural workers (Sindicato dos Trabalhadores Rurais).
Table S6. Results of farm index 2, farm 2 (adapted from ASA/INSA research project, unpublished material).

Indicator	before 2000	2014	Innovations during the period	Explanation
Autonomy				
Seed autonomy	3	5	Seed bank, exchange with seed network, seed experiments	They always stored their seeds, with communitarian seed bank quantity and diversity of seeds increased; seed change at farmers’ exchanges and workshops
Water autonomy	1	4	Construction of reservoirs and cisterns	When they occupied the land, there was no water infrastructure; they built 3 reservoirs, 2 cisterns for drinking water (16 000 l each), 1 production cistern (52 000 l)
Feed autonomy	2	4	Fodder cactus, agave, fodder trees, fodder melon, silo	Fodder cactus and agave grow with very few water, the fodder melon grows anywhere on the fields; silo supplies high quality feed for dry periods
Food security	2	4	Increased crop area, diversity of plants and poultry birds	Increased crop area and food diversity, especially in the agroforestry system; production cistern improves water supply for poultry birds and some plants around the house
Soil Fertility	1	3	Afforestation, agroforestry system, biofertilizer, manure, living fences	When they arrived the land was bare soil; started afforestation; planted agroforestry system and living fences around the fields; applied manure and biofertilizer
Responsivity				
Production diversity	2	5	Diversified food and feed production	The family increased plant and animal diversity: fruits, vegetables and medicinal plants in the Agrovila, agave, fodder cactus
Market diversity	3	4	Agroecological market	The family started to sell fruits, vegetables and seeds at agroecological market
Income diversity	2	4	Different markets, pension, clothing repair	Income from the different markets, family allowance (Bolsa Familia), pension and clothing repair
Gender equity	2	3	Woman participates in FRS, in women assemblies and marches, farmer exchanges	Woman became more integrated in social movement; participates in FRS for wire mesh and for an ecologic stove; participates in women assemblies and marches and in the farmers’ exchanges
Social participation	2	5	MST, STR, Association, seed bank, Borborema Polo, farmers’ exchanges, AS-PTA	Participation in MST, Assentamento (fiscal of the association, vice president of the co-operative, seed commission of Borborema Polo, STR, education dynamics of AS-PTA
Access to public policies	1	5	Land Reform, INCRA, family allowance (Bolsa Familia), Pronaf, P1MC, P1+2	Since 2000 the family accessed various public policies: access to land, build their house, cisterns and reservoirs, a house for the seed bank
Mean	1.91	4.18		
F2	0.38	0.84		

Abbreviations see Table S5.
Analyzed and calculated soil characteristics.

Sample	pH	OC	P	Al³⁺	H⁺Al³⁺	Ca²⁺	Mg²⁺	Na⁺	K⁺	BD	Sand	Silt	Clay	Tex	SB	T	m	ESP	SSI	
Farm 1	1	7.7	7.2	5.1	0.0	1.8	1.5	0.5	0.0	0.0	1.6	899	68	34	s	2.0	3.8	0.0	0.0	12.2
	2	8.0	5.9	21.0	0.0	1.7	1.6	0.4	0.0	0.0	1.6	893	77	31	s	2.0	3.7	0.0	0.0	9.5
	3	6.9	5.2	2.1	0.1	2.3	0.5	0.2	0.1	0.0	1.6	893	67	40	s	0.8	3.1	11.1	3.23	8.3
	4	5.9	21.8	3.5	0.1	4.3	1.4	0.6	0.0	0.1	1.4	724	158	118	sl	2.1	6.4	4.6	0.0	13.6
	5	7.3	7.0	23.0	0.0	1.7	1.5	0.4	0.0	0.2	1.6	893	81	27	s	2.1	3.8	0.0	0.0	11.2
	6	7.2	8.7	20.2	0.0	1.2	1.5	0.5	0.0	0.2	1.6	890	79	31	s	2.2	3.4	0.0	0.0	13.6
	7	6.8	5.4	8.6	0.0	1.3	1.0	0.3	0.0	0.2	1.7	880	90	30	s	1.5	2.8	0.0	0.0	7.7
	8	5.7	9.8	33.2	0.1	2.8	0.9	0.2	0.0	0.1	1.6	866.0	80.0	54.0	ls	1.2	4.0	7.7	0.0	12.7
Farm 2	1	7.5	16.6	149.1	0.0	1.8	3.9	0.4	0.0	0.9	1.5	859	90	51	ls	5.2	7.0	0.0	0.0	20.2
	2	6.5	12.9	14.6	0.1	2.0	1.8	0.4	0.0	0.5	1.5	857	65	78	ls	2.7	4.7	3.6	0.0	15.5
	3	6.1	12.3	7.6	0.1	2.6	1.3	0.5	0.0	0.5	1.5	830	85	85	ls	2.3	4.9	4.2	0.0	12.4
	4	6.1	13.5	3.7	0.1	2.8	1.2	0.4	0.0	0.4	1.4	834	89	77	ls	2.0	4.8	4.8	0.0	14.1
	5	6.1	14.1	6.8	0.2	2.6	1.6	0.4	0.0	0.5	1.4	842	85	73	ls	2.5	5.1	7.4	0.0	15.4
	6	6.6	14.4	13.0	0.0	2.6	2.1	0.5	0.0	0.9	1.5	845	104	52	ls	3.5	6.1	0.0	0.0	15.9
	7	6.2	14.2	9.2	0.1	2.8	1.9	0.5	0.0	0.5	1.5	842	97	61	ls	2.9	5.7	3.3	0.0	15.5
	8	5.8	13.4	3.8	0.1	3.0	1.5	0.4	0.0	0.5	1.4	847	77	77	ls	2.4	5.4	4.0	0.0	15.0
	9	5.4	11.9	3.0	0.2	3.1	0.7	0.2	0.0	0.2	1.4	863	68	68	ls	1.1	4.2	15.4	0.0	15.0
	10	5.7	11.4	2.5	0.1	3.6	1.1	0.3	0.0	0.3	1.4	865	79	56	ls	1.7	5.3	5.6	0.0	14.5
	11	6.0	18.5	6.6	0.1	4.1	1.3	1.1	0.0	0.9	1.4	754	74	172	sl	3.3	7.4	2.9	0.0	13.0
	12	5.4	11.9	2.3	0.2	4.5	0.9	0.3	0.0	0.4	1.5	850	75	75	ls	1.6	6.1	11.1	0.0	13.7
	13	6.2	13.2	12.4	0.1	3.6	1.6	0.5	0.0	0.5	1.4	850	81	69	ls	2.6	6.2	3.7	0.0	15.1
	14	6.0	12.4	5.3	0.1	4.3	1.2	0.4	0.0	0.5	1.4	837	93	70	ls	2.1	6.4	4.6	0.0	13.1
	15	5.4	18.4	4.0	0.1	4.5	1.5	0.5	0.0	0.7	1.4	814	106	80	ls	2.7	7.2	3.6	0.0	17.0
	16	5.7	19.3	21.4	0.1	4.3	1.5	0.5	0.0	0.5	1.4	854	56	90	ls	2.6	6.9	3.7	1.45	22.8

Analyzed soil characteristics pH: potential of hydrogen in solution of H2O 1:2.5; OC: soil organic carbon; P: phosphorus; Al³⁺: aluminum (III); H⁺Al³⁺: potential acidity; Ca²⁺: calcium; Mg²⁺: magnesium; Na⁺: sodium; K⁺: potassium; BD: bulk density; Tex: soil texture due to sand, silt and clay content with s: sand, ls: loamy sand, sl: sandy loam; calculated soil characteristics SB: sum of bases; T: potential cation exchange capacity; m: saturation of exchangeable Al³⁺; ESP: exchangeable sodium percentage; SSI: structural stability index.
Sample	OC	P	K⁺	SSI	BD	pH	S1
Farm 1							
1	0.10	0.50	0.15	1.00	0.70	0.42	0.44
2	0.09	1.00	0.15	1.00	0.71	0.33	0.48
3	0.08	0.24	0.15	0.92	0.62	0.78	0.42
4	0.89	0.31	0.98	1.00	1.00	1.00	0.88
5	0.10	1.00	1.00	1.00	0.37	0.59	0.55
6	0.12	1.00	1.00	1.00	0.43	0.64	0.57
7	0.08	0.98	1.00	0.75	0.30	0.83	0.51
8	0.15	1.00	1.00	1.00	0.65	0.98	0.65
Farm 2							
1	0.43	1.00	1.00	1.00	1.00	0.50	0.75
2	0.23	1.00	1.00	1.00	1.00	0.94	0.74
3	0.21	0.77	1.00	1.00	1.00	1.00	0.71
4	0.26	0.32	1.00	1.00	1.00	1.00	0.68
5	0.28	0.65	1.00	1.00	1.00	1.00	0.72
6	0.29	1.00	1.00	1.00	1.00	0.91	0.75
7	0.29	0.94	1.00	1.00	1.00	0.99	0.76
8	0.25	0.32	1.00	1.00	1.00	0.99	0.67
9	0.20	0.28	1.00	1.00	1.00	0.91	0.64
10	0.18	0.24	1.00	1.00	1.00	0.98	0.64
11	0.59	0.61	1.00	1.00	1.00	1.00	0.82
12	0.20	0.24	1.00	1.00	0.98	0.91	0.63
13	0.24	1.00	1.00	1.00	1.00	0.99	0.75
14	0.22	0.47	1.00	1.00	1.00	1.00	0.68
15	0.57	0.34	1.00	1.00	1.00	0.91	0.77
16	0.66	1.00	1.00	1.00	1.00	0.98	0.89

S1: soil index 1; soil indicators OC: soil organic carbon; P: phosphorus; K⁺: potassium; pH: potential of hydrogen in solution of H₂O 1:2.5; BD: bulk density; SSI: structural stability index.
Table S9. Results of soil index 2.

Sample	OC	P	K⁺	Ca²⁺	Na⁺	Mg²⁺	Al³⁺	H⁺+Al³⁺	m	ESP	S2	
Farm 1												
1	0.16	0.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.52	
2	0.11	1.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.61	
3	0.08	0.00	0.00	0.00	0.60	1.00	0.20	0.39	0.00	0.00	0.23	
4	0.75	0.00	0.00	0.00	1.00	1.00	1.00	0.20	1.00	0.00	0.49	
5	0.15	1.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.62	
6	0.22	1.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.62	
7	0.09	0.52	0.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.56	
8	0.27	1.00	0.00	0.00	1.00	1.00	1.00	0.20	0.81	0.00	1.00	0.53
Farm 2												
1	0.54	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.75	
2	0.39	1.00	1.00	0.00	1.00	1.00	0.20	0.14	0.00	1.00	0.57	
3	0.37	0.30	1.00	0.00	1.00	1.00	1.00	0.20	0.64	0.00	1.00	0.55
4	0.42	0.00	1.00	0.00	1.00	1.00	0.20	0.81	0.00	1.00	0.54	
5	0.44	0.13	1.00	0.00	1.00	1.00	0.00	0.64	0.00	1.00	0.52	
6	0.45	1.00	1.00	0.00	1.00	1.00	1.00	0.64	1.00	1.00	0.81	
7	0.45	0.64	1.00	0.00	1.00	1.00	0.20	0.81	0.00	1.00	0.61	
8	0.41	0.00	1.00	0.00	1.00	1.00	0.20	0.98	0.00	1.00	0.56	
9	0.35	0.00	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	0.44	
10	0.33	0.00	0.13	0.00	1.00	1.00	0.20	1.00	0.00	1.00	0.47	
11	0.62	0.10	1.00	0.00	1.00	1.00	0.20	1.00	0.00	1.00	0.59	
12	0.35	0.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	0.54
13	0.40	1.00	1.00	0.00	1.00	1.00	0.20	1.00	0.00	1.00	0.66	
14	0.37	0.00	1.00	0.00	1.00	1.00	1.00	0.20	1.00	0.00	1.00	0.56
15	0.61	0.00	1.00	0.00	1.00	1.00	0.20	1.00	0.00	1.00	0.58	
16	0.65	1.00	1.00	0.00	0.60	1.00	1.00	0.20	1.00	0.00	0.29	0.57

S2: soil index 2; soil indicators OC: soil organic carbon; P: phosphorus; K⁺: potassium; Ca²⁺: calcium; Na⁺: sodium; Mg²⁺: magnesium; Al³⁺: aluminum(III); H⁺+Al³⁺: potential acidity; m: saturation of exchangeable Al³⁺; ESP: exchangeable sodium percentage.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).