On decomposition of intuitionistic fuzzy prime submodules

P. K. Sharma¹, Kanchan² and D. S. Pathania³

¹ Post Graduate Department of Mathematics, D.A.V. College
Jalandhar, Punjab, India
e-mail: pksharma@davjalandhar.com

² Research Scholar, IKG PT University
Jalandhar, Punjab, India
e-mail: kanchan4usoh@gmail.com

³ Department of Applied Sciences, GNDEC
Ludhiana, Punjab, India
e-mail: despathania@yahoo.com

Received: 23 July 2020
Accepted: 8 September 2020

Abstract: This article is in continuation of the first author’s previous paper on intuitionistic fuzzy prime submodules, [13]. In this paper, we explore the decomposition of intuitionistic fuzzy submodule as the intersection of finite many intuitionistic fuzzy prime submodules. Many other forms of decomposition like irredundant and normal decomposition are also investigated.

Keywords: Intuitionistic fuzzy prime ideal (submodule), Residual quotient, Intuitionistic fuzzy prime decomposition, Irredundant and normal decomposition.

2010 Mathematics Subject Classification: 03F55, 16D10, 46J20.

1 Introduction

Prime ideals play a central role in commutative ring theory. One of the natural generalizations of prime ideals which have attracted the interest of several authors is the notion of prime submodules (see for example [1,2,7,8] and [9]). These have led to more information on the structure of the R-module M. A proper submodule P of M is called prime if r ∈ R and x ∈ M, with rx ∈ P implies that r ∈ (P : M) or x ∈ P, where (P : M) = {r ∈ R : rM ⊆ N}, which is clearly an ideal of R. Also, if P is a prime submodule of M, then (P : M) is a prime ideal of R.
The decomposition of an ideal (submodule) into prime ideal (prime submodule) is a traditional pillar of ideal (module) theory. It provides the algebraic foundation for decomposing an algebraic variety into its irreducible components. From another point of view, prime decomposition provides a generalization of the factorization of an integer as a product of prime-powers. In this paper, we study intuitionistic fuzzy prime decomposition, irredundant intuitionistic fuzzy prime decomposition and normal intuitionistic fuzzy prime decomposition.

2 Preliminaries

Throughout the paper, R is a commutative ring with unity $1, 1 \neq 0$, M is a unitary R-module and θ is the zero element of M.

Definition 2.1 ([3]). Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS) A in X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$.

Remark 2.2.
(i) When $\mu_A(x) + \nu_A(x) = 1$, i.e., $\nu_A(x) = 1 - \mu_A(x) = \mu_{A^c}(x)$. Then A is called a fuzzy set.
(ii) The class of intuitionistic fuzzy subsets of X is denoted by IFS(X).

For $A, B \in \text{IFS}(X)$ we say $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$. Also, $A \subset B$ if and only if $A \subseteq B$ and $A \neq B$.

The following are two very basic definitions given in [5, 6] and [11].

Definition 2.3. Let $A \in \text{IFS}(R)$. Then A is called intuitionistic fuzzy ideal (IFI) of R if for all $x, y \in R$, the followings are satisfied
(i) $\mu_A(x - y) \geq \mu_A(x) \land \mu_A(y)$;
(ii) $\mu_A(xy) \geq \mu_A(x) \lor \mu_A(y)$;
(iii) $\nu_A(x - y) \leq \nu_A(x) \lor \nu_A(y)$;
(iv) $\nu_A(xy) \leq \nu_A(x) \land \nu_A(y)$.

Definition 2.4. Let $A \in \text{IFS}(M)$. Then A is called an intuitionistic fuzzy module (IFM) of M if for all $x, y \in M, r \in R$, the followings are satisfied
(i) $\mu_A(x - y) \geq \mu_A(x) \land \mu_A(y)$;
(ii) $\mu_A(rx) \geq \mu_A(x)$;
(iii) $\mu_A(\theta) = 1$;
(iv) $\nu_A(x - y) \leq \nu_A(x) \lor \nu_A(y)$;
(v) $\nu_A(rx) \leq \nu_A(x)$;
(vi) $\nu_A(\theta) = 0$.

26
Let \(IFM(M) \) denote the set of all intuitionistic fuzzy \(R \)-modules of \(M \) and \(IFI(R) \) denote the set of all intuitionistic fuzzy ideals of \(R \). We note that when \(R = M \), then \(A \in IFM(M) \) if and only if \(\mu_A(\theta) = 1, \nu_A(\theta) = 0 \) and \(A \in IFI(R) \).

Definition 2.5 ([11]). For \(A, B \in IFS(M) \) and \(C \in IFS(R) \), define the residual quotient \((A : B)\) and \((A : C)\) as follows:

\[
(A : B) = \bigcup \{ D : D \in IFS(R) \text{ such that } D \cdot B \subseteq A \}
\]

and

\[
(A : C) = \bigcup \{ E : E \in IFS(M) \text{ such that } C \cdot E \subseteq A \}.
\]

Theorem 2.6 ([11]). For \(A, B \in IFS(M) \) and \(C \in IFS(R) \). Then, we have:

(i) \((A : B) \cdot B \subseteq A \);

(ii) \((A : C) \subseteq A \);

(iii) \(C \cdot B \subseteq A \Leftrightarrow C \subseteq (A : B) \Leftrightarrow B \subseteq (A : C) \).

Theorem 2.7 ([11]). For \(A_i(i \in J), B \in IFS(M) \) and \(C \in IFS(R) \). Then, we have:

(i) \(\bigcap \{ A_i : B \} = \bigcap \{ A_i : C \} \);

(ii) \(\bigcap \{ A_i : B \} = \bigcap \{ A_i : C \} \).

Theorem 2.8 ([11]). For \(A, B \in IFS(M) \) and \(C \in IFS(R) \),

(i) if \(A \in IFM(M) \), then \((A : B) = \bigcup \{ D : D \in IFI(R) \text{ such that } D \cdot B \subseteq A \} \);

(ii) if \(C \in IFI(R) \), then \((A : C) = \bigcup \{ E : E \in IFS(M) \text{ such that } C \cdot E \subseteq A \} \).

Theorem 2.9 ([11]). For \(A, B \in IFM(M) \) and \(C \in IFI(R) \). Then \((A : B) \in IFI(R) \) and \((A : C) \in IFM(M) \).

Theorem 2.10 ([11]). For \(A, B_i \in IFS(M) \) and \(C_i \in IFS(R), (i \in J) \). Then, we have:

(i) \((A : \bigcup \{ B_i \}) = \bigcap \{ A_i : B_i \} \);

(ii) \((A : \bigcup \{ C_i \}) = \bigcap \{ A_i : C_i \} \).

Definition 2.11 ([4, 12]). An intuitionistic fuzzy ideal \(P \) of a ring \(R \), not necessarily nonconstant, is called **intuitionistic fuzzy prime ideal**, if for any intuitionistic fuzzy ideals \(A \) and \(B \) of \(R \) the condition \(AB \subseteq P \) implies that either \(A \subseteq P \) or \(B \subseteq P \).

Definition 2.12 ([13]). A non-constant intuitionistic fuzzy submodule \(A \) of \(M \) is said to be prime if for \(C \in IFI(R) \) and \(D \in IFM(M) \) such that \(C \cdot D \subseteq A \) then either \(D \subseteq A \) or \(C \subseteq (A : \chi_M) \).

The set of intuitionistic fuzzy prime submodules of \(M \) is denoted by \(IF - Spec(M) \).

Theorem 2.13 ([13]). Let \(A \) be an intuitionistic fuzzy prime submodule of \(M \). Then \(A^* = \{ x \in M : \mu_A(x) > 0 \text{ and } \nu_A(x) < 1 \} \) is the support of \(A \).

Theorem 2.14 ([13]). If \(M = R \), then \(B \in IFM(M) \), is an intuitionistic fuzzy prime submodule of \(M \) if and only if \(B \) is an intuitionistic fuzzy prime ideal.
Theorem 2.15 ([13]). (a) Let N be a prime submodule of M and $\alpha, \beta \in (0, 1)$ such that $\alpha + \beta < 1$. If A is an IFS of M defined by

$$
\mu_A(x) = \begin{cases}
1, & \text{if } x \in N \\
\alpha, & \text{if otherwise}
\end{cases};
\nu_A(x) = \begin{cases}
0, & \text{if } y \in N \\
\beta, & \text{otherwise}
\end{cases}
$$

for all $x \in M$. Then A is an intuitionistic fuzzy prime submodule of M.

(b) Conversely, any intuitionistic fuzzy prime submodule can be obtained as in (a).

Proposition 2.16 ([13]). Let A, B be two intuitionistic fuzzy prime submodules of M. Then $A \cap B$ is also an intuitionistic fuzzy prime submodule of M.

Corollary 2.17 ([13]). If $A_i (i \in J)$ are intuitionistic fuzzy prime submodules of M. Then $\bigcap_{i \in J} A_i$ is also an intuitionistic fuzzy prime submodule of M.

Theorem 2.18 ([13]). If $B \in IFS(M)$ and $A \in IF - Spec(M)$, then:

(i) if $B \subseteq A$, then $(A : B) = \chi_R$; and

(ii) if $B \nsubseteq A$, then $(A : B) = (A : \chi_M)$.

Theorem 2.19 ([13]). Let $A \in IFM(M)$ and $C \in IFI(R)$. If A is an intuitionistic fuzzy prime submodule of M, then:

(i) if $C \nsubseteq (A : \chi_M)$, then $(A : C) = A$; and

(ii) if $C \subseteq (A : \chi_M)$, then $(A : C) = \chi_M$.

Theorem 2.20 ([13]). Let A be an intuitionistic fuzzy prime submodule of M and $B \in IFM(M)$. If $(A : B) \neq \chi_R$, then $(A : B)$ is an intuitionistic fuzzy prime ideal of R.

Corollary 2.21 ([13]). If A is an intuitionistic fuzzy prime submodule of M, then $(A : \chi_M)$ is an intuitionistic fuzzy prime ideal of R.

Theorem 2.22 ([13]). Let $A \in IFM(M)$ and $C \in IFI(R)$. If A is an intuitionistic fuzzy prime submodule of M and $(A : C) \neq \chi_M$, then $(A : C)$ is an intuitionistic fuzzy prime submodule of M.

Corollary 2.23 ([13]). If A is an intuitionistic fuzzy prime submodule of M, then $(A : \chi_R)$ is an intuitionistic fuzzy prime submodule of M.

3 Decomposition of intuitionistic fuzzy prime submodules

Definition 3.1. Let $A \in IFM(M)$. A decomposition of A as a finite intersection $A = \cap_{i=1}^n A_i$ of intuitionistic fuzzy prime submodules of M is called intuitionistic fuzzy prime decomposition of A and the intuitionistic fuzzy prime ideals $\{(A_i : \chi_M) | i = 1, 2, \ldots, n\}$ are called the set of associated intuitionistic fuzzy prime ideals of A.

An intuitionistic fuzzy prime decomposition $A = \cap_{i=1}^n A_i$ is called irredundant if no A_i contains $\bigcap_{j=1, j \neq i} A_j$, and an irredundant intuitionistic fuzzy prime decomposition of A is called normal if the distinct A_i have distinct associated intuitionistic fuzzy prime ideals.
Definition 3.2. An intuitionistic fuzzy prime submodule A_i in the normal prime decomposition $A = \bigcap_{i=1}^n A_i$ is called isolated if the associated intuitionistic fuzzy prime ideal $(A_i : \chi_M)$ is minimal in the set of associated intuitionistic fuzzy prime ideals of A.

Theorem 3.3. If A_i, $(i = 1, 2, 3, \ldots, n)$ are intuitionistic fuzzy prime submodules of M, then $(\bigcap_{i=1}^n A_i : \chi_M)$ is an intuitionistic fuzzy prime ideal of R.

Proof. Since A_i, $(i = 1, 2, 3, \ldots, n)$ are intuitionistic fuzzy prime submodules of M, by Corollary 2.17, $\bigcap_{i=1}^n A_i$ is also an intuitionistic fuzzy prime submodule of M. Also by Corollary 2.21, $(\bigcap_{i=1}^n A_i : \chi_M)$ is an intuitionistic fuzzy prime ideal of R. □

Theorem 3.4. Let $A \in IFM(M)$, and $A = \bigcap_{i=1}^n A_i$ be an irredundant intuitionistic fuzzy prime decomposition of A, where A_i are intuitionistic fuzzy prime submodules of M. Then an intuitionistic fuzzy prime ideal $C \in \{(A_i : \chi_M)|i = 1, 2, \ldots, n\}$ if and only if there exist $B \in IFM(M)$ such that $(A : B) = C$. Hence the set of intuitionistic fuzzy prime ideals $\{(A_i : \chi_M)|i = 1, 2, \ldots, n\}$ is independent of the particular irredundant intuitionistic fuzzy prime decomposition of A.

Proof. Let $A \in IFM(M)$, and $A = \bigcap_{i=1}^n A_i$ be an irredundant intuitionistic fuzzy prime decomposition of A, where A_i are intuitionistic fuzzy prime submodules of M. Now for any $B \in IFM(M)$, we have

$$(A : B) = (\bigcap_{i=1}^n A_i : B) = \bigcap_{i=1}^n (A_i : B)$$

Then by Theorem 2.18. and Corollary 2.21., we have $(A_i : B) = \chi_R$ if $B \subseteq A_i$ and $(A_i : B)$ is an intuitionistic fuzzy prime ideal of R if $B \nsubseteq A_i$. Hence $(A_i : B) \in IFI(R)$. Thus

$$(A : B) = \bigcap_{i=1}^n (A_i : B) = \bigcap_{j=1}^m (A_{s_j} : \chi_M),$$

where the intersection is taken over those s_j such that $B \nsubseteq A_{s_j}$.

Also $(A : B)$ is an intuitionistic fuzzy prime ideal of R. We suppose that $(A : B) = C$. Then by [6, Theorem 3.18], we get

$$C = \bigcap_{j=1}^m (A_{s_j} : \chi_M) \supseteq (A_{s_1} : \chi_M)(A_{s_2} : \chi_M) \cdots (A_{s_m} : \chi_M)$$

As $(A : B) = C$ is an intuitionistic fuzzy prime ideal of R, so $C \supseteq (A_{s_j} : \chi_M)$ for some s_j. Also $(A : B) \subseteq (A_{s_j} : \chi_M)$. It follows that $C = (A_{s_j} : \chi_M)$.

Next consider any one of the associated intuitionistic fuzzy ideal $(A_i : \chi_M)$ of $A = \bigcap_{i=1}^n A_i$.

Let $B = \bigcap_{j=1,j\neq i}^m A_j$. Then, we have:

$$(A : B) = (\bigcap_{k=1}^n A_k : (\bigcap_{j=1,j\neq i}^m A_j)) = \bigcap_{k=1}^n (A_k : \bigcap_{j=1,j\neq i}^m A_j),$$

by Theorem 2.7.

As $\bigcap_{j=1,j\neq i}^m A_j \subseteq A_j$, $\forall j, j \neq i$ implies $(A_j : \bigcap_{j=1,j\neq i}^m A_j) = \chi_R$, by Theorem 2.18.

By the irredundancy of the set of A_i, we have $\bigcap_{j=1,j\neq i}^m A_j \nsubseteq A_i$. Thus by Theorem 2.18. we get $(A_i : \bigcap_{j=1,j\neq i}^m A_j) = (A_i : \chi_M)$. Therefore, $(A : B) = (A_i : \chi_M)$.

Hence the set of intuitionistic fuzzy prime ideals $\{(A_i : \chi_M)|i = 1, 2, \ldots, n\}$ is independent of the particular irredundant intuitionistic fuzzy prime decomposition of A. □
Theorem 3.5. Let $A \in IFM(M)$. If A has an intuitionistic fuzzy prime decomposition, then A has a normal intuitionistic fuzzy prime decomposition.

Proof. We assume that A has an intuitionistic fuzzy prime decomposition $A = \bigcap_{i=1}^{n} A_i$. If $A_1, A_2, \ldots, A_k \in \{A_1, A_2, \ldots, A_n\}$ are such that $(A_i : \chi_M) = (A_j : \chi_M) = \cdots = (A_k : \chi_M)$, let $A' = \bigcap_{j=1}^{k} A_j$. Then A' is an intuitionistic fuzzy prime submodule of M and $(A_i : \chi_M) = (A_j : \chi_M)$, by Corollary 2.17. Thus $A = A_1 \cap A_2 \cap \cdots \cap A_m$, where the A_i have distinct associated intuitionistic fuzzy prime ideals. If $A_i \supseteq \bigcap_{j \neq i} A_j$, for some i, then A_i is deleted. Therefore A has a normal intuitionistic fuzzy prime decomposition. \hfill \Box

Theorem 3.6. Let $A \in IFM(M)$. Suppose that $A = \bigcap_{i=1}^{n} A_i$ is a normal intuitionistic fuzzy prime decomposition of A. Then there exists a finite set $\{(A_i : \chi_M) | i = 1, 2, \ldots, m\}$, $m \leq n$, where the $(A_i : \chi_M)$ are minimal in the set of associated intuitionistic fuzzy prime ideals of $A = \bigcap_{i=1}^{n} A_i$, such that $(A : \chi_M) = \bigcap_{i=1}^{m} (A_i : \chi_M)$ and $(A : (\bigcup_{i=1}^{m} (A_i : \chi_M))) = A$ when $m \geq 2$.

Proof. Suppose that $A = \bigcap_{i=1}^{n} A_i$ is a normal intuitionistic fuzzy prime decomposition of A. Then

$$(A : \chi_M) = \bigcap_{i=1}^{n} (A_i : \chi_M) = \bigcap_{i=1}^{n} (A_i : \chi_M), \text{ by Theorem 2.7}.$$

Let C be an intuitionistic fuzzy prime ideal of R such that $C \supseteq (A : \chi_M)$. Then

$$C \supseteq \bigcap_{i=1}^{n} (A_i : \chi_M) \supseteq (A_1 : \chi_M)(A_2 : \chi_M) \cdots c(A_n : \chi_M), \text{ by [6, Theorem 3.18.]}$$

So $C \supseteq (A_i : \chi_M)$ for some i. Thus C contains some $(A_i : \chi_M)$ that is minimal among $(A_1 : \chi_M), (A_2 : \chi_M), \ldots, (A_n : \chi_M)$. Hence if we select those $(A_i : \chi_M)$ in $\{(A_1 : \chi_M), (A_2 : \chi_M), \ldots, (A_n : \chi_M)\}$ that are minimal and reindex, then we have

$$(A : \chi_M) = \bigcap_{i=1}^{m} (A_i : \chi_M).$$

If $m \geq 2$, then $(A : \bigcup_{i=1}^{m} (A_i : \chi_M)) = \bigcap_{i=1}^{m} (A_i : (A_i : \chi_M))$, by Theorem 2.10. As $(A_i : \chi_M) \not\subseteq (A : \chi_M) = \bigcap_{i=1}^{m} (A_i : (A_i : \chi_M))$, $(A : (A_i : \chi_M)) = A, \forall i \in \{1, 2, \ldots, n\}$, by Theorem 2.19.

Hence $A = (A : \bigcup_{i=1}^{m} (A_i : \chi_M))$. \hfill \Box

Theorem 3.7. Let $A = \bigcap_{i=1}^{n} A_i$ be a normal intuitionistic fuzzy prime decomposition of A and A_i be isolated intuitionistic fuzzy prime submodules of M. Then

$$A = (A : \bigcap_{j=1, j \neq i}^{n} (A_j : \chi_M)), \forall i = 1, 2, \ldots, n.$$

Proof. Since $(A_1 : \chi_M) \cdots (A_{i-1} : \chi_M)(A_{i+1} : \chi_M) \cdots (A_n : \chi_M) \subseteq \bigcap_{j=1, j \neq i}^{n} (A_j : \chi_M)$, it follows from the normality of $(A_i : \chi_M)$ that $\bigcap_{j=1, j \neq i}^{n} (A_j : \chi_M) \not\subseteq (A_i : \chi_M)$ and hence

$$\bigcap_{j=1, j \neq i}^{n} (A_j : \chi_M) \not\subseteq \bigcap_{j=1}^{n} (A_j : \chi_M) = (A : \chi_M).$$

Thus by Theorem 2.18., we have $(A : \bigcap_{j=1, j \neq i}^{n} (A_j : \chi_M)) = A, \forall i = 1, 2, \ldots, n$. \hfill \Box
Example 3.8. Let G be any finite abelian group of order $n = p_1 p_2 \ldots p_k$, where p_i are distinct primes. Then by the structure theorem of finitely generated group we have

$$G \cong \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \cdots \oplus \mathbb{Z}_{p_k}.$$

Take $M = G$, then M is a \mathbb{Z}-module. Let $M = \langle x_1, x_2, \ldots, x_k \rangle$ such that $o(x_i) = p_i$, for $1 \leq i \leq k$. Let $M_0 = \langle 0 \rangle$, $M_1 = \langle x_1 \rangle$, $M_2 = \langle x_1, x_2 \rangle$, \ldots, $M_k = \langle x_1, x_2, \ldots, x_k \rangle = M$ be the chain of maximal submodules of M such that $M_0 \subset M_1 \subset \cdots \subset M_{k-1} \subset M_k$.

Let A be any intuitionistic fuzzy submodule of M defined by

$$
\begin{align*}
\mu_A(x) &= \begin{cases}
1 & \text{if } x \in M_0 \\
\alpha_1 & \text{if } x \in M_1 \setminus M_0 \\
\alpha_2 & \text{if } x \in M_2 \setminus M_1 \\
\vdots & \text{ } \\
\alpha_k & \text{if } x \in M_k \setminus M_{k-1}
\end{cases}, \\
\nu_A(x) &= \begin{cases}
0 & \text{if } x \in M_0 \\
\beta_1 & \text{if } x \in M_1 \setminus M_0 \\
\beta_2 & \text{if } x \in M_2 \setminus M_1 \\
\vdots & \text{ } \\
\beta_k & \text{if } x \in M_k \setminus M_{k-1}
\end{cases},
\end{align*}
$$

where $1 = \alpha_0 \geq \alpha_1 \geq \cdots \geq \alpha_k$ and $0 = \beta_0 \leq \beta_1 \leq \cdots \leq \beta_k$ and the pair (α_i, β_i) are called double pins and the set $\wedge(A) = \{ (\alpha_0, \beta_0), (\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k) \}$ is called the set of double pinned flags for the IFSM A of M (see [10, Theorem 3.4]).

Define IFSs A_i on M as follows:

$$
\begin{align*}
\mu_{A_i}(x) &= \begin{cases}
1, & \text{if } x \in < p_i > \\
\alpha_{i+1}, & \text{if otherwise}
\end{cases}, \\
\nu_{A_i}(x) &= \begin{cases}
0, & \text{if } x \in < p_i > \\
\beta_{i+1}, & \text{if otherwise}
\end{cases}
\end{align*}
$$

where $\alpha_i, \beta_i \in (0, 1)$ such that $\alpha_i + \beta_i \leq 1$, for $1 \leq i \leq k$ and $\alpha_{k+1} = \alpha_1$, $\beta_{k+1} = \beta_1$. Clearly, A_i are intuitionistic fuzzy prime submodules of M. It can be easily checked that $A = \bigcap_{i=1}^{n} A_i$ is an intuitionistic fuzzy prime decomposition of A.

Acknowledgements

The second author would like to thank IKG PT University, Jalandhar for providing the opportunity to do research work.

References

[1] Akray, I., & Hussein, H. S. (2017). I-Prime Submodules, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 33, 165–173.

[2] Amini, A., Amini, B. & Sharif, H. (2006). Prime and primary submodule of certain modules, Czechoslovak Mathematical Journal, 56 (131), 641–648.

[3] Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
[4] Bakhadach, I., Melliani, S. Oukessou, M., & Chadli, L. S. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, *Notes on Intuitionistic Fuzzy Sets*, 22 (2), 59–63.

[5] Basnet, D. K. (2011). *Topics in Intuitionistic Fuzzy Algebra*, Lambert Academic Publishing, ISBN: 978-3-8443-9147-3.

[6] Meena, K., & Thomas, K. V. (2011). Intuitionistic L-Fuzzy Subrings, *International Mathematical Forum*, 6 (52), 2561–2572.

[7] Lu, C. P. (1984). Prime Submodules of Modules, *Comment. Math. Univ. Sancti Pauli*, 33 (1), 61–69.

[8] McCasland, R. L., & Moore, M. E. (1992). Prime Submodules, *Comm. Algebra*, 20 (6), 1803–1817.

[9] Tiras, Y. & Harmanci, A. (2000). On Prime Submodules and Primary Decomposition, *Czech. Math. J.*, 50 (125), 83–90.

[10] Sharma, P. K. (2016). Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, *Annals of Fuzzy Mathematics and Informatics*, 11 (6), 885–898.

[11] Sharma P. K., & Kaur, G. (2017). Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, *International Journal of Computer Sciences and Information Technology*, 9 (4), 1–15.

[12] Sharma P. K., & Kaur, G. (2017). Intuitionistic fuzzy prime spectrum of a ring, *CiiT International Journal of Fuzzy Systems*, 9 (8), 167–175.

[13] Sharma P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules, *Notes on Intuitionistic Fuzzy Sets*, 24 (4), 97–112.