Search for light scalar Dark Matter candidate with AURIGA detector

Antonio Branca,^1^ Michele Bonaldi,^2,3^ Massimo Cerдонio,^1^ Livia Conti,^1^ Paolo Falferi,^3,4^ Francesco Marin,^5,6,7^ Renato Mezzena,^3,8^ Antonello Ortola,n,^9^ Giovanni A. Prodi,^3,8^ Luca Taffarello,^1^ Gabriele Vedovato,^1^ Andrea Vinante,^4^ Stefano Vitale,^3,8^ and Jean-Pierre Zendri^1^

^1^INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy;
^2^Institute of Materials for Electronics and Magnetism,
TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy;
^3^TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy;
^4^Istituto di Fotonica e Nanotecnologie, CNR—Fondazione Bruno Kessler, I-38123 Povo, Trento, Italy;
^5^Dipartimento di Fisica e Astronomia, Università di Firenze,
Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy;
^6^Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze,
Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy;
^7^European Laboratory for Non-Linear Spectroscopy (LENS),
Via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy;
^8^Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento, Italy;
^9^INFN - Laboratori Nazionali di Legnaro, I-35020 Legnaro (PD), Italy;

A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark matter (DM) component of our universe. If this is the case, the interaction of ordinary matter with the local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency corresponding to the mass of moduli. In the sensitive band of AURIGA, some modulation of the moduli coupling to ordinary matter may be observed. The coupling to Earth, roughly equal to the virial velocity in our Galaxy with local DM density ranging from 0.05 to 0.15 times the mean density of the Universe, will be of the order of 10^{-6} cm/s~Hz^{-1/2}. This implies a variation of 10^{-21} Hz for each moduli mass, usually assumed to be close to 1 GeV, which corresponds to a relative deformation of 10^{-16} of the length of a body, corresponding to a relative deformation with respect to its equilibrium length, L_0, given by:

$$h(t) = \frac{\Delta L(t)}{L_0} = \frac{\sqrt{4\pi}}{M_{Pl}} (d_{\text{m}} + d_e) \Phi(t)$$

where M_{Pl} is the Planck mass and $\Phi(t)$ the moduli field. To calculate the power spectrum of relative deformation, we use the so-called Standard Halo Model (SHM) that assumes a spherical DM halo for the Galaxy with local DM density $\rho_{DM} = 0.3$ GeV/cm3, and an isotropic Maxwell-Boltzmann speed distribution. In this framework, if moduli account for a significant fraction of DM in our Universe then the corresponding field $\Phi(t)$ can be described as a zero mean stochastic process with a Maxwell-Boltzmann power spectrum density, consequently the spectrum of relative deformation h is given by:

$$h(f) = h_0 \frac{(d_{\text{m}} + d_e)}{a^2 f_0 (|f| - f_0)^{1/2} e^{-\frac{(|f| - f_0)^2}{2a^2}} \Theta(|f| - f_0)}$$

where $h_0 = 1.5 \times 10^{-16}$ Hz is a constant, $f_0 = m_{\Phi}/2\pi$ is the frequency corresponding to moduli with a given mass, $a = 1/3f_0 \langle v^2 \rangle$ and $\langle v^2 \rangle / c^2 \sim 10^{-6}$ the mean
squared velocity of the DM halo. Eq. 5 tells us that the signal strain is a monopole (isotropic strain) and approximately monochromatic.

In this work, we analyze the data of the resonant-mass gravitational wave detector AURIGA [4], searching for the strain induced by an hypothetical moduli DM, expressed by eq. 5. AURIGA represents the state-of-art in the class of gravitational wave cryogenic resonant-mass detectors. It is located at INFN National Laboratory of Legnaro (Italy) and has been in continuous operation since year 2004. The detector is based on a 2.2 × 10^3 kg, 3 m long bar made of low-loss aluminum alloy (Al5056), cooled to liquid helium temperatures. The fundamental longitudinal mode of the bar, sensitive to the moduli induced oscillation, has an effective mass \(M = 1.1 \times 10^3 \) kg and a resonance frequency \(\omega_B/2\pi \approx 900 \) Hz. The bar resonator motion is detected by a displacement sensor with a sensitivity of order several \(10^{-28} \) m Hz^{-1/2} over a \(\sim 100 \) Hz bandwidth. The spectral noise floor in the relative deformation for the fundamental longitudinal mode, for the frequency interval of maximum sensitivity is given in fig. 2. This sensitivity is accomplished by a multimode resonant capacitive transducer [5] combined with a very low noise dc SQUID amplifier [9] (Fig. 1). In this scheme, the bar resonator is coupled to the fundamental flexural mode of a mushroom-shaped lighter resonator, with 6 kg effective mass and the same resonance frequency. As the mechanical energy is transferred from the bar to the lighter resonator, the motion is magnified by a factor of roughly 15. A capacitive transducer, biased with a static electric field of \(10^7 \) V/m, converts the differential motion between bar and mushroom resonator into an electrical current, which is finally detected by a low noise dc SQUID amplifier through a low-loss high-ratio superconducting transformer [7]. The transducer efficiency is further increased by placing the resonance frequency of the electrical LC circuit close to the mechanical resonance frequencies [5], at 930 Hz. The detector can then be simply modeled as a system of three coupled resonators: its dynamics is described by three normal modes at separate frequencies, each one being a superposition of the bar and transducer mechanical resonators and the LC electrical resonator [8].

Analysis workflow and data-set — Output from the read-out chain of the AURIGA detector is digitized with a sampling frequency of \(f_s = 4882.8 \) Hz through an ADC. As stated above, the motion of the bar from the equilibrium length is converted into an electrical signal. A calibration function obtained by a thorough mechanical characterization of the system [5] is then used to convert data from electrical potential difference to relative deformation \(h \) of the AURIGA bar length. Eq. 5 shows that the relative deformation induced by a signal moduli, would be a sharp resonance around the frequency corresponding to the moduli mass. Therefore, a possible signal could be spotted by analyzing the noise power spectrum of the calibrated AURIGA output \(P_{\text{cal}}(f) \). \(P_{\text{cal}}(f) \) gives the information concerning the relative deformation of the bar:

\[
h^2 = \int_{\Delta f} P_{\text{cal}}(f) df
\]

The expected signal [5] has a bandwidth of about \(\Delta f \sim 1 \) mHz in the sensitive band of AURIGA. Therefore, we split the analyzed dataset into one hour long data streams and perform power spectrum computation on each stream to achieve the proper spectrum resolution. Computed power spectrums are averaged to reduce the noise standard deviation and achieve a better sensitivity. If \(N \) is the number of averaged power spectrums, the variance of the noise is \(N^{1/2} \), and the corresponding standard deviation on \(h \) decreases with the number of averages as \(N^{1/4} \). Thus, a good sensitivity on the moduli signal is already achieved with few weeks of data. Using the entire dataset acquired by AURIGA (~10 years) would improve the sensitivity just by a factor of 3. So that, for this analysis we focused on a dataset corresponding to data acquired during August 2015. AURIGA detector has been running in stable conditions during this period: stability of the detector is inferred by the stable frequencies and shape of the three main detector’s modes, checked by studying the evolution of the detector power spectrum on the analyzed dataset. Spikes in time due to energetic background events could hide a possible signal from moduli and must be removed from the dataset: for each data stream in the time domain the rms is computed, obtaining a distribution of the rms value for the whole dataset; data affected by energetic background lie in the high value tail of the distribution. A cut on the rms is then set to discard data with large rms values. This cut still allows to maintain a 86% duty-cycle of the detector.

After cleaning data streams with rms cut, they are windowed in time domain using a Hann window type, which allows a good frequency resolution and reduced spectral leakage. The measured bar relative deformation spectrum is shown in fig. 2. As shown by the figure, the measured noise is in excellent agreement with the predicted noise behaviour. The latter has been ob-

![Figure 1. (color online). Scheme of the gravitational wave detector AURIGA. The system comprises three coupled resonators with nearly equal resonant frequency of about 900 Hz: the first longitudinal mode of the cylindrical bar, the first flexural mode of the mushroom-shaped resonator, which is also one of the plates of the electrostatic capacitive transducer, and the low-loss electrical LC circuit. The electrical current of the LC resonator is detected by a low noise dc SQUID amplifier.](image)
tained out of the sum of computed contributions from each noise source, in turn derived by measured experimental parameters \[8\]. Few spurious peaks, known to be associated to external background sources, have been excluded from the analysis.

Simulation — To prove we are able to detect this signal with AURIGA, a simulation has been performed to study the actual signal bandwidth within the detector sensitive region and to fine-tune the analysis workflow. Eq. (4) is exploited to simulate a signal with \(f_0 \simeq 867\,\text{Hz}\) and coupling \(d_{\text{m}} = 5 \cdot 10^{-4}\), which is smaller than the natural values expected for \(d_{\text{m}}\) [11]. \(f_0\) lies close to the first minimum of the AURIGA noise curve, shown in fig. [2]. Given the narrow bandwidth of this signal, we assumed the noise to be white, \(\langle n_i \rangle = 0\), \(\langle n_in_j \rangle = \sigma^2 \delta_{ij}\), around the signal peak, with a standard deviation \(\sigma = 2 \cdot 10^{-21}\,\text{Hz}^{-1/2}\), equal to the noise level at \(f_0 \simeq 867\,\text{Hz}\) (see fig. [2]). We have generated an amount of data comparable to the real dataset and applied our analysis pipeline obtaining the result shown in fig. [2]. The spectrum of the simulated signal is spread around \(\sim 10\) bins of the spectrum as shown in fig. [2] - blue-triangles. The simulated data have been injected into the real dataset and in fig. [3] - red-circles we show that the injected signal is well reconstructed at the frequency \(f_0\) and it is not removed by the rms cut applied to the data streams. We also show the theoretical signal plus noise, fig. [3] - green-line, obtained using same parameters as for the simulation. The little discrepancy between theory and simulation (injection), can be attributed to the minimal leakage due to the windowing of data.

Statistical analysis — The procedure followed for the statistical analysis of the result shown in fig. [2] is the one proposed by Feldman and Cousin [10]. Each bin of the distribution in fig. [2] has a contribution from the noise and a possible contribution from the signal. The squared value of a bin is the result of averaging \(N\) power spectrums, then its distribution follows a non-central \(\chi^2\) with \(N\) degree of freedom. Since in our case \(N \sim 400\) the squared bin distribution can be approximated by the following gaussian:

\[
P(x|\mu) = C \cdot \exp \left(-\frac{(x - \sigma^2 - \mu^2)^2}{2 \sigma^4 \left(1 + 2 \frac{\mu^2}{\sigma^2}\right)}\right)
\]

with normalization factor:

\[
C = \frac{N^{1/2}}{\sigma^2 \sqrt{2\pi \left(1 + 2 \frac{\mu^2}{\sigma^2}\right)}}
\]

where \(\bar{x}\) is the squared bin content, \(\sigma^2\) is the expected noise level and \(\mu\) the signal strength. The statistical behavior of the bins in distribution of fig. [2] is confirmed by data as predicted by eq. (7). This is shown in fig. [3]. By means of eq. (7) we build the confidence belt in the parameter space \((\bar{x}, \mu^2)\), delimited by the values \((x_1(\mu), x_2(\mu))\) such that:

\[
\int_{x_1(\mu)}^{x_2(\mu)} P(\bar{x}|\mu) \, d\bar{x} = \alpha
\]

for each value of the signal strength \(\mu\) and a confidence level \(\alpha = 0.95\). The contributions to the integral in eq. (9) are ordered following a specific ordering function, as reported in [10], in order to avoid problems on the parameter estimation near the physical bounds of

Figure 2. (color online). Frequency spectrum of the bar relative deformation computed on August 2015 AURIGA data (blue curve), obtained by averaging \(N = 400\) power spectrums from 1 hour long data streams. The experimental result is compared to the predicted noise power spectrum density by Fluctuation-Dissipation theorem (red line), showing a good matching. The thickness of the data curve is due to the noise variance, reduced by averaging the power spectrums. Holes in data correspond to excluded spurious peaks associated to known external background. Moreover, these spurious peaks have shape and width not matching the expectation from moduli signal (see fig. [3]).

Figure 3. (color online). (blue-triangle) Simulation of a moduli signal with coupling \(d_{\text{m}} = 5 \cdot 10^{-4}\) and frequency \(f_0 \simeq 867\,\text{Hz}\) plus white noise with standard deviation \(\sigma = 2 \cdot 10^{-21}\,\text{Hz}^{-1/2}\), equal to the detector noise level at \(f_0\). (red-circle) Same simulated signal injected into the real data. The signal is a narrow peak with a \(\Delta f \approx 1\,\text{mHz}\) bandwidth and spread around about 10 bins. (green-line) Plot of the power density spectrum in eq. (5) plus a constant accounting for the white noise with same parameters of the simulation.
such parameters. Eq. 9 states that for a fixed hypothetical signal strength μ, the observed value of the bin content \bar{x} falls within the interval $(x_1(\mu), x_2(\mu))$ with a probability equal to α. Thus, for each measured value of \bar{x} the upper and lower limits on the measured signal strength, containing the true value μ with a 95% probability, is obtained by inversion of the constructed confidence belt. We set a threshold, \bar{x}_{th}, corresponding to a maximum false alarm probability of finding a signal, which is not actually there, equal to 3 standard deviations away from the background only hypothesis. For observed values of \bar{x} below \bar{x}_h we set an upper limit on the signal strain. Values above the threshold \bar{x}_{ih} would correspond to an observed signal. Since in our measurement in fig. 2 we do not observe values exceeding the threshold, we set upper limits on \hbar at 95% confidence level. Interpreting these upper limits as given by moduli through eq. 6, we convert these values in upper limits on the moduli coupling d_{m_e} to ordinary matter. To improve the upper limits, we exploited the noise curve obtained adding the thermal noise prediction from Fluctuation-Dissipation theorem and the noise contribution from the SQUID. By performing a least squares fit of data in fig. 2, we obtained the upper limits at 95% C.L. from the χ^2 distribution. This allows to get better upper limits by taking into account a more precise estimation of errors from the fit. Further improvement is obtained by averaging bins in groups of 10 for data in fig. 2, since the signal would be distributed around ~ 10 bins, as shown by fig. 3.

Results — Final upper limits are reported in fig. 5.

The upper limits set on the moduli coupling to ordinary matter are better then $d_i \approx 10^{-5}$ in the sensitive band of AURIGA, $\Delta f = [850, 950]$ Hz, and explore an interesting physical region of the parameter space, within the natural parameter space for moduli [11]. With this result we prove that AURIGA, a gravitational wave resonant detector, would be capable to detect light DM candidates with an interesting sensitivity within its bandwidth. We point out that this level of sensitivity can be achieved only by resonant mass detectors, and not by modern laser interferometers developed for gravitational wave detection, such as LIGO [11] and Virgo [12], even if these have better sensitivity than resonant mass detectors for gravitational waves and recently observed the first event due to a gravitational wave signal [13]. In fact, because of the monopole nature of the expected moduli strain, we do not expect an interference signal as output from the interferometer due to moduli. Instead, since ultralight scalars can mediate Yukawa forces between objects, one can explore which is the expected effect on the relative position between mirrors within an interferometer arm [14]. The moduli signal could be measured as a difference in the travel time between the mirrors. It turns out that the sensitivity is masked by detector noise, therefore resulting in a lower searching power with respect to resonant mass detectors.

MC is very grateful to Asimina Arvanitaki for calling attention to the matter and for initial discussions.

Figure 5. Upper limits on the coupling of both an electron mass modulus ($d_i = d_{m_e}$) and an electromagnetic gauge modulus ($d_i = d_{e}$) to ordinary matter (red-curve) obtained from AURIGA data and reported in the moduli parameter space: bottom and top horizontal axes represent the moduli mass m_ϕ and corresponding frequency $f_\phi = m_\phi/2\pi$, vertical axis represents the moduli coupling d_{m_e} values. Depicted green area shows the natural parameter space preferred by theory. Other regions and dashed curves represent 95% C.L. limits on fifth-force tests (SF, gray) and equivalence-principle tests (EP, orange).

AB, MC, AO, and LT thank Asimina Arvanitaki and Ken Van Tilburg for enlightening discussions and for a critical reading of the manuscript.

[1] A. Arvanitaki, S. Dimopoulos, K. V. Tilburg, Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors, Phys. Rev. Lett. 116, 031102 (2016).

[2] J. D. Lewin and P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter
experiments based on elastic nuclear recoil, Astropart.
Phys. 6 (1996) 87.
[3] L. Krauss, J. Moody, F. Wilczek, D. E. Morris, Calcula-
tions for cosmic axion detection, Phys. Rev. Lett. 55,
1797 (1985).
[4] M. Cerdonio, M. Bonaldi, D. Carlesso et al, The ultra-
cryogenic gravitational-wave detector AURIGA, Class.
Quantum Grav., 14 (1997) 1491.
[5] L. Baggio et al., 3-Mode Detection for Widening the
Bandwidth of Resonant Gravitational Wave Detectors,
Phys. Rev. Lett. 94, 241101 (2005).
[6] A. Vinante et al., Dc superconducting quantum inter-
ference device amplifier for gravitational wave detectors
with a true noise temperature of 16µ K, Appl. Phys.
Lett. 79, 2597 (2001).
[7] M. Bonaldi, P. Falferi, R. Dolesi et al, High Q tun-
able LC resonator operating at cryogenic temperature,
Review of Scientific Instruments 69 (1998) 3690;
[8] A. Vinante, Present performance and future upgrades
of the AURIGA capacitive readout, Classical Quantum
Gravity 23, S103 (2006).
[9] D. G. Manolakis, J. G. Proakis, Digital Signal Process-
ing: principles, algorithms and applications, 3rd ed.
(Upper Saddle River: Prentice-Hall, c1996), Chap. 12,
p. 908.
[10] G. J. Feldman, R. D. Cousin, A Unified Approach to the
Classical Statistical Analysis of Small Signals, Phys.
Rev. D 57, 3873-38891 (1998).
[11] LIGO Scientific Collaboration, Advanced LIGO, Class.
Quantum Grav., 32 (2015) 074001.
[12] Virgo Collaboration, Advanced Virgo: a second-
generation interferometric gravitational wave detector,
Class. Quantum Grav., 32 (2014) 024001.
[13] LIGO Scientific Collaboration and Virgo Collabora-
tion, Observation of Gravitational Waves from a Bi-
nary Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).
[14] A. Arvanitaki, J. Huang, K. V. Tilburg, Searching for
dilaton dark matter with atomic clocks, Phys. Rev. D
91, 015015 (2015).