Materials Research Express

PAPER

Nonlinear bending and vibration analyses of FG nanobeams considering thermal effects

Wubin Shan1,2, Bangyan Li1, Shigang Qin1 and Hu Mo3

1 Hunan Electrical College of Technology, School of elevator engineering, Xiangtan 411201, People’s Republic of China
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, People’s Republic of China
E-mail: shanwubin2020@163.com and 645370240@qq.com

Abstract

Nonlinear bending and nonlinear free vibration analysis are presented for FG nanobeams based on physical neutral surface concept and high-order shear deformation beam theory with a von Kármán-type equations and including thermal effects. The material properties are temperature-dependent and vary in the thickness direction. Nonlinear bending approximate solutions and free vibration solutions for present model with fixed supported boundary conditions are given out by a two-step perturbation method. Some comparisons are presented to valid the reliability of the present study. In numerical analysis, the effects of the volume fraction, nonlocal parameter, strain gradient parameter, and temperature changes on nonlinear bending and vibration are investigated.

1. Introduction

Nanostructure refers to the tiny structure with the size of 0.1 nm–100 nm, that is, a new system is constructed or assembled according to certain rules based on the material units at the nanoscale. It includes one-dimensional, two-dimensional, and three-dimensional systems. Because of its excellent mechanical and thermal properties of nanostructures in mechanical engineering, aerospace engineering has been widely applied in such fields as [1], such as nanoscale energy harvester, nano resonator, the structure of the generator [1], the use of nanostructures under the extrinsic motivation produces vibration and bending, which can lead to structure failure and destruction. Therefore, the study of vibration and bending of nanostructures has important theoretical value and engineering background. Generally speaking, the properties of materials involved in the nanoscale will be different due to the different locations of the points, resulting in different properties of the materials, so as to achieve better mechanical properties. The nanoscale structures of such materials that uniformly change in the spatial domain are called functional gradient (FG) nanostructures. FG nanostructures contribute to improving the performance of many nanoelectromechanical systems [2], FG nanostructures whose material properties vary in at least one direction. For example, in FG nanobeams, the material properties change gradually along the direction of length or thickness, and the designers can adjust the contours of the material properties change to achieve better mechanical properties of the nanostructures. There are a variety of nanostructures, such as nanorods, nanobeams, nanotubes and nanoplates [3].

For the linear analysis of isotropic nanobeams and FG nanobeams, based on different higher order beam theory, Lu et al [4, 5] analyzed the buckling, bending and vibration of nanobeams. Li et al [6] discussed the vibrations of FG nanobeams based on Euler beam theory. Ebrahimi and Barati [7] explored the hygrothermal effects on vibration behavior of viscoelastic FG nanobeams. Wang et al [8] presented the complex modal analysis of free vibrations for axially moving nanobeams. Mohammad et al [9] presented the damped forced vibration analysis of nanobeams resting on viscoelastic foundation in thermal environment. It should be pointed out that, in above works [4–9], the nonlocal strain gradient theory is adopted. Lu [10] performed the dynamic analysis of axially prestressed nanobeam. Alshorbagy [11] used the finite element method to analyze the linear vibration of Euler nanobeams. Lei et al [12] studied the vibrations of nonlocal Kelvin–Voigt viscoelastic damped...
Timoshenko nanobeams. Kiani and Wang [13] studied on the interaction of a nanobeams using nonlocal different beam theories. It should be pointed out that, in above works [10–13], the nonlocal theory is adopted. For the nonlinear analysis of isotropic nanobeams and FG nanobeams, Ke and his co-workers [14] discussed the nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Ansari et al [15] presented the nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based on the nonlocal elasticity theory. Shafiee et al [16] investigated the nonlinear vibration of porous and imperfect FG tapered nanobeams. Li and Hu [17] presented the nonlinear bending and vibration analyses of FG nanobeams. Şimşek [18] discussed the nonlinear free vibration of FG nanobeams using the novel Hamiltonian approach and nonlocal strain gradient theory. Gao and his partners [19] analyzed the nonlinear vibration of different types of FG nanobeams using nonlocal strain gradient theory. Liu and his partners [20] discussed the nonlinear vibration of geometrically imperfect FG sandwich nanobeams. Zarepour et al [21] discussed the geometrically nonlinear vibrations of Timoshenko piezoelectric nanobeams. Sarafratz et al [22] studied the nonlinear secondary resonance of nanobeams subjected to subharmonic and superharmonic excitations considering surface free energy effects. Sun et al [23] performed the nonlinear frequency analysis of buckled nanobeams in longitudinal magnetic fields. Yang et al [24] discussed the nonlinear bending, buckling and vibration of bi-directional FG nanobeams. Tang et al [25] investigated the effects of neutral surface deviation on nonlinear resonance of embedded FG nanobeams. Gholami and Ansari [26] discussed the nonlinear resonance responses of geometrically imperfect nanobeams including surface stress effects. Lv and Liu [27] presented the nonlinear bending response of FG nanobeams with material uncertainties. Rouhi et al [28] discussed the nonlinear free and forced vibrations of Timoshenko nanobeams. Lv et al [29] presented the nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium. Shafiee et al [30] discussed the nonlinear vibration of axially FG non-uniform nanobeams. She et al [31] studied the snap-buckling of FG non-uniform nanobeams.

Through literature search, we can find that, most of the existing literature only focuses on the vibration and bending of simply supported nanobeams, and there is a lack of research on the nonlinear bending and vibration of FG nanobeams with fixed supports in thermal environments at both ends. Therefore, this paper is to solve this problem. In the present work, nonlinear bending and vibration of FG nanobeams with two clamped ends based on physical neutral surface including thermal effects are investigated via two-step perturbation method [32].

2. Mathematical model

Figure 1 shows an FG nanobeam with length L and thickness h, which is made from an anisotropic material of ceramics and metals.

The effective material properties, like Young’s modulus E_f, Poisson’s ratio ν_f and thermal expansion coefficient α_f are assumed to be the function of the uniform temperature distribution T and the thickness z, as [33, 34]

$$E_f = E_0(E_{11}T^{-1} + 1 + E_{12}T + E_{13}T^2 + E_{14}T^3)$$

$$\rho_f = \rho_0(\rho_{11}T^{-1} + 1 + \rho_{12}T + \rho_{13}T^2 + \rho_{14}T^3)$$

$$\nu_f = \nu_0(\nu_{11}T^{-1} + 1 + \nu_{12}T + \nu_{13}T^2 + \nu_{14}T^3)$$

(1)

$$E_f = \left(\frac{1}{2} + \frac{z}{h}\right)^N [E_m(T) - E_c(T)] + E_m(T)$$

$$\rho_f = \left(\frac{1}{2} + \frac{z}{h}\right)^N [\rho_m(T) - \rho_c(T)] + \rho_m(T)$$

$$\nu_f = \left(\frac{1}{2} + \frac{z}{h}\right)^N [\nu_m(T) - \nu_c(T)] + \nu_m(T)$$

(2)

where m, c represent metal and ceramic, and the volume fraction index is represented by $N (0 \leq N \leq +\infty)$.

![Figure 1. An FG nanobeam.](image-url)
Due to being transversely non-uniform in the material properties, there exists tension-bending coupling effects in FG beams even in uniform temperature rise in the thickness direction, by introduction of physical neutral surface concept [33–40], there will be no stretching-bending coupling. As pointed out by Barretta et al [41], in the functional gradient section, the geometric center of the section does not coincide with the elastic center. This problem should be considered and used when determining the inertia term and stiffness parameters.

Based on physical neutral surface concept, the displacement fields have the form [33, 34]:

\[
\begin{align*}
 u(x, z) &= u_0 + \left(z - \frac{\int_{-h/2}^{h/2} z E(z, T) dz}{\int_{-h/2}^{h/2} E(z, T) dz} \right) \psi - \frac{4}{3h^2} \left(z^3 - \frac{\int_{-h/2}^{h/2} z^3 E(z, T) dz}{\int_{-h/2}^{h/2} E(z, T) dz} \right) \left(\frac{\partial w}{\partial x} + \psi \right) \\
 w(x, z) &= w(x)
\end{align*}
\]

Considering nonlinear strain-displacement relationships and nonlocal strain gradient theory, the stress resultant and couples can be obtained as

\[
[1 - (ea)^2 \nabla^2] \begin{bmatrix} N_{xx} \\ M_{y(11)} \\ M_{y(12)} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \begin{bmatrix} e^{(0)}_x \\ e^{(1)}_x \\ e^{(2)}_x \end{bmatrix} - \begin{bmatrix} N_T \\ M_T \end{bmatrix} S_T
\]

\[
[1 - (ea)^2 \nabla^2] Q = [1 - l^2 \nabla^2]Q_{44}^{-1} \left(z \frac{\partial z}{\partial z} \right)
\]

In which, \(ea\) is the nonlocal parameter, \(f\) is the strain gradient parameter, \(N_T, M_T\) and \(S_T\) are the forces, moment and higher order moments caused by elevated temperature, and these appeared symbols are defined as

\[
\begin{align*}
Q_{12} &= Q_{21} = 0, \quad Q_{13} = Q_{31} = 0, \quad Q_{23} = Q_{32}, \\
(Q_{11}, Q_{12}, Q_{13}, Q_{22}, Q_{23}, Q_{33}) &= \int_{-h/2}^{h/2} E(z, T) \left[1, f, g, f^2, fg, g^2 \right] dz,
\end{align*}
\]

\[
(Q_{44}) = \int_{-h/2}^{h/2} E(z, T) \left[12 + 2v(z, T) \right] g \frac{\partial z}{\partial z} dz,
\]

\[
(N_T, M_T, S_T) = \int_{-h/2}^{h/2} E(z, T) \alpha \Delta T (1, f, g) dz
\]

and

\[
\begin{align*}
 f(z, T) &= \left(z - \frac{\int_{-h/2}^{h/2} z E(z, T) dz}{\int_{-h/2}^{h/2} E(z, T) dz} \right) \\
 g(z, T) &= \left(z - \frac{\int_{-h/2}^{h/2} z E(z, T) dz}{\int_{-h/2}^{h/2} E(z, T) dz} \right) - \frac{4}{3h^2} \left(z^3 - \frac{\int_{-h/2}^{h/2} z^3 E(z, T) dz}{\int_{-h/2}^{h/2} E(z, T) dz} \right)
\end{align*}
\]

Using the energy method, the motion equations can be obtained as

\[
\begin{align*}
\frac{\partial N_{xx}}{\partial x} &= 0, \quad [1 - l^2 \nabla^2] \left(\frac{\partial^2 M_x}{\partial x^2} - N_x \frac{\partial^2 w}{\partial x^2} - \frac{\partial Q}{\partial x} - q \right) \\
+ [1 - (ea)^2 \nabla^2] \left(l_0 \frac{\partial^4 w}{\partial t^2} - l_1 \frac{\partial^4 w}{\partial x^2 \partial t^2} - l_2 \frac{\partial^3 \varphi}{\partial x \partial t^2} \right) &= 0,
\end{align*}
\]

\[
[1 - l^2 \nabla^2] \left(\frac{\partial M_{y(11)}}{\partial x} - Q \right) - [1 - (ea)^2 \nabla^2] \left(l_0 \frac{\partial^4 w}{\partial x \partial t^2} - l_1 \frac{\partial^3 \varphi}{\partial x \partial t^2} \right) = 0
\]

If we substitute the expression for force and force couple into the above equation, we get

\[
\begin{align*}
[1 - l^2 \nabla^2] \left(\frac{d^2 w}{dx^2} + \frac{d^2 \varphi}{dx^2} \right) + [1 - (ea)^2 \nabla^2] \left(l_0 \frac{\partial^4 w}{\partial x^2 \partial t^2} - l_1 \frac{\partial^3 \varphi}{\partial x^2 \partial t} \right) &= 0
\end{align*}
\]
For static bending problems, the governing equations have the form

\[[1 - \rho^2 \nabla^2] \left(Q_{23} \frac{d^4 w}{dx^4} + Q_{33} \frac{d^2 \phi}{dx^2} - Q_{44} \left(\frac{\partial w}{\partial x} + \frac{d \phi}{dx} \right) \right) - [1 - (\rho^2 \eta)^2 \nabla^2] \left(E \frac{\partial^4 w}{\partial \xi^4} + \frac{\partial^2 \phi}{\partial \xi^2} - E \frac{\partial^2 \phi}{\partial \xi^2} \right) = 0 \]

(9)

Defining:

\[
\xi = \frac{\pi x}{L}, \quad W = \frac{w}{L}, \quad \Phi = \frac{\phi}{\pi}, \quad (\gamma_0, \gamma_2, \gamma_3) = \frac{1}{D} (Q_{23}, Q_{33}, Q_{44}), \quad \lambda_T = \Delta T, \\
\gamma_T = E_0 \frac{L^2}{D \rho_0}, \quad (\gamma_0, \gamma_0) = \frac{1}{D \rho_0} (Q_{11}, Q_{44}), \quad \gamma_{10} = E_0 \frac{L^2 \rho_0}{D}, \quad \alpha = \frac{\pi a}{L}, \quad \beta = \frac{\pi l}{L}, \\
(\gamma_{11}, \gamma_{12}, \gamma_{13}) = \frac{E_0}{D \rho_0} (I_1, I_2, I_3), \quad \lambda_q = \frac{qL^3}{D \pi^4}, \quad \tau = \frac{\pi t}{L \sqrt{E_0}}, \quad \omega_L = \frac{\Omega L}{\pi \sqrt{E_0}}
\]

(10)

where \(E_0 \) is Young's modulus and \(\rho_0 \) is mass density of SUS304 at 300 K,

\[D = \int_{-h/2}^{h/2} z^2 Edz, \quad A_{C} = \int_{-h/2}^{h/2} Eodz. \]

Substituting equations (10) into (8) and (9), we have

\[
\gamma_1 \frac{\partial^4 W}{\partial \xi^4} + \gamma_2 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \]

\[-\beta^2 \frac{\partial}{\partial \xi^2} \left(\gamma_1 \frac{\partial^4 W}{\partial \xi^4} + \gamma_2 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \right) = 0\]

\[
\gamma_2 \frac{\partial^4 W}{\partial \xi^4} + \gamma_3 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \right) = 0\]

(11)

3. For the bending problems

For static bending problems, the governing equations have the form

\[
\gamma_1 \frac{\partial^4 W}{\partial \xi^4} + \gamma_2 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \]

\[-\beta^2 \frac{\partial}{\partial \xi^2} \left(\gamma_1 \frac{\partial^4 W}{\partial \xi^4} + \gamma_2 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \right) = 0\]

\[
\gamma_2 \frac{\partial^4 W}{\partial \xi^4} + \gamma_3 \frac{\partial^2 \Phi}{\partial \xi^2} - \left[\int_0^\pi \left(\frac{\partial W}{\partial \xi} \right)^2 d\xi - \gamma_T \lambda_T \right] \frac{\partial^2 W}{\partial x^2} = \gamma_0 \left(\frac{\partial^2 W}{\partial \xi^2} + \frac{\partial \Phi}{\partial \xi} \right) - \lambda_q \right) = 0\]

(12)

Using the two step perturbation method, the following asymptotic solutions up to third order can be obtained as

\[W(\xi, \phi) = \varepsilon A_{10}^{(1)} (1 - \cos 2m \xi) + O(\xi^4) \]

(13)

\[\Phi(\xi, \phi) = -\frac{2m(4m^2\gamma_2 + \gamma_4)}{4m^2\gamma_3 + \gamma_4} \varepsilon \sin 2m \xi + O(\xi^4) \]

(14)

\[\lambda_q = \frac{qL^3}{D \pi^4} = \lambda_q^{(1)} (\varepsilon A_{10}^{(1)} + \lambda_q^{(2)} (\varepsilon^2 A_{10}^{(2)})^3) + O(\xi^4) \]

(15)

Taking [\xi = \pi/(2m)] in equation (13), one can obtain

\[W_m = W|_{\xi = \pi/(2m)} = 2A_{10}^{(1)} = \frac{W_m}{L} \]

(16)
Putting equations (16) into (15), then, the load-central deflection relationship can be obtained as

$$\frac{qL^3}{D\pi^4} = A_w^{(1)} \left(\frac{w_m}{2L} \right) + A_w^{(3)} \left(\frac{w_m}{2L} \right)^3 + ...$$

(17)

in which

$$A_w^{(1)} = 2m^3m^2(1 + m^2\beta^2) \left[4m^2\gamma_1 - \gamma_2 - \frac{4m^2\gamma_2 + \gamma_4}{4m^2\gamma_3 + \gamma_4} - \gamma_4 \frac{\gamma_2 - \gamma_3}{4m^2\gamma_3 + \gamma_4} \right] - \lambda T \gamma T$$

$$A_w^{(3)} = 2m_0 \pi^2m^4$$

(18)

To prove the authenticity of the present study, Figure 2 compare the load-deflection curves of the isotropic beam ($L = 100$ in, $b = h = 1$ in) in with two clamped ends. The results of Ranjan [42] and Reddy [43] by using finite element method are also displayed, from which a good agreement can be seen. In the following study, the material are adopted as in table 1.

Figure 2 shows effect of the temperature variation on the nonlinear bending behavior of FG nanobeams with two clamped ends subjected to a uniform pressure. During the calculation, $I = \int_{h/2}^{-h/2} z^2 dz$. E_0 is the value of E_m at 300 K. It can be seen that the deflections are increased with increase in temperature.

The effects of temperature (volume fraction index N, and nonlocal parameter α) on the nonlinear bending of FG nanobeams are analyzed in figures 3–5. As seen, the deflection increases as the temperature (volume fraction index, nonlocal parameter α) increases, which is due to the reduction of stiffness as the temperature (volume fraction index, nonlocal parameter α) rises. Apparently, the strain gradient parameter l have the opposite effect compared to the nonlocal parameter when we see figure 6.
4. For nonlinear vibrations

In the present case, the displacement and the transverse load q can be expanded as [32]

$$W(\xi, t, \varepsilon) = \sum_{k=1} \varepsilon^k w_k(\xi, t), \quad \Phi(\xi, t, \varepsilon) = \sum_{k=1} \varepsilon^k \varphi_k(\xi, t), \quad \lambda_q(\xi, t, \varepsilon) = \sum_{k=1} \varepsilon^k \lambda_k(\xi, t)$$

(19)

With the use of perturbation expansion, the corresponding first-order, the second-order and third-order equation can be obtained, solve those equations step by step, the asymptotic solutions can be obtained as

$$W(\xi, t, \varepsilon) = \varepsilon A_{10}^{(1)} (1 - \cos 2m\xi) + O(\xi^4)$$

(20)

$$\Phi(\xi, t, \varepsilon) = \varepsilon B_{10}^{(1)} \sin 2m\xi + \varepsilon^3 B_{10}^{(3)} \sin 2m\xi + O(\xi^4)$$

(21)

$$\lambda_q(\xi, t, \varepsilon) = \varepsilon A_{10}^{(1)} g_{30} (1 - \cos 2m\xi) + \varepsilon A_{10}^{(1)} g_{31} \cos 2m\xi + (\varepsilon^3 A_{10}^{(1)})^3 \cos 2m\xi + O(\xi^4)$$

(22)
Applying the Galerkin procedure to equation (22), one has

\[
\left(2\pi m^2\gamma_{11} + \frac{3\pi}{2} \gamma_{10} + \frac{2\pi m^2\gamma_{12}(4m^2\gamma_2 + \gamma_4)^2}{(4m^2\gamma_3 + \gamma_4)^2} - \frac{4\pi m^2\gamma_{12}(4m^2\gamma_2 + \gamma_4)}{4m^2\gamma_3 + \gamma_4}\right) \frac{d^2\varepsilon A_{10}^{(1)}}{dt^2} \\
+ \frac{(1 + m^2\beta^2)}{(1 + m^2\alpha^2)} 8\pi m^4 \left(\gamma_1 - \gamma_2 \frac{4m^2\gamma_2 + \gamma_4}{4m^2\gamma_3 + \gamma_4} - \gamma_4 \frac{\gamma_2 - \gamma_3}{4m^2\gamma_3 + \gamma_4} \right) - 2\pi m^2\lambda_0 \gamma_1 = 0
\]

\[\omega_{NL} = \omega_L \sqrt{\frac{1 + \frac{3}{4} \frac{(1 + m^2\beta^2)}{(1 + m^2\alpha^2)} 8\pi m^4 \left(\gamma_1 - \gamma_2 \frac{4m^2\gamma_2 + \gamma_4}{4m^2\gamma_3 + \gamma_4} - \gamma_4 \frac{\gamma_2 - \gamma_3}{4m^2\gamma_3 + \gamma_4} \right) - 2\pi m^2\lambda_0 \gamma_1}{2L}} \]

The solution of equation (23) can be written as, that is to say, the dimensionless nonlinear frequency can be obtained as

\[
\omega_{NL} = \omega_L \sqrt{\frac{1 + \frac{3}{4} \frac{(1 + m^2\beta^2)}{(1 + m^2\alpha^2)} 8\pi m^4 \left(\gamma_1 - \gamma_2 \frac{4m^2\gamma_2 + \gamma_4}{4m^2\gamma_3 + \gamma_4} - \gamma_4 \frac{\gamma_2 - \gamma_3}{4m^2\gamma_3 + \gamma_4} \right) - 2\pi m^2\lambda_0 \gamma_1}{2L}}
\]
In which, the dimensional linear frequency can be expressed as,

\[
\omega_L = \sqrt{\frac{(1 + m^2)^3}{(1 + m^2a^2)^3}} \left(\frac{\pi m^4}{2}\frac{\gamma_1 - \gamma_2}{4m^2\gamma_3 + \gamma_4} - \frac{\gamma_2 - \gamma_3}{4m^2\gamma_3 + \gamma_4} \right) \frac{2\pi m^2\gamma_{11}}{L^2h} + \frac{3\pi}{2}\frac{m^2}{h} + \frac{2\pi m^2\gamma_{13}(4m^2\gamma_2 + \gamma_4)}{(4m^2\gamma_3 + \gamma_4)^2} - \frac{4\pi mn^2\gamma_{12}(4m^2\gamma_2 + \gamma_4)}{4m^2\gamma_3 + \gamma_4}
\]

To guarantee the correctness of the present research, some examples are presented for nonlinear vibration analysis.

As the first example, the relations of nonlinear-to-linear fundamental frequency ratio \(\omega_{NL}/\omega_L\) and dimensionless vibration amplitudes \(w_{\text{max}}/h\) for Si\(_3\)N\(_4\)/SUS304 beams (\(ea = l = 0\)) with two clamped ends are presented in table 2. In this example, the dimensionless linear fundamental frequency is defined by \(\omega_L^* = \Omega_L/(L^2/h)\). The Ritz method results of Zhang [33] are also displayed for comparisons, it is clear that our results agree well with the results of Zhang [33].

As the second example, the fundamental linear dimensionless frequency is compared with the results of Ebrahimi and Salari [44] based on the differential transforms method in figures 7-8, in this example, the strain gradient parameter is set to zero, it is clear that our results agree well with the results of Ebrahimi and Salari [44].

Table 3 presents the natural frequencies of Si\(_3\)N\(_4\)/SUS304 beams in thermal environments. It can be seen that, with the increase of the temperature, the modal frequencies are decreased. Also, the natural frequencies decreases as the volume fraction index increase. The relations of nonlinear-to-linear fundamental frequency ratio \(\omega_{NL}/\omega_L\) and dimensionless vibration amplitudes \(w_{\text{max}}/h\) for Si\(_3\)N\(_4\)/SUS304 beams with two clamped ends are presented in table 4. It can be concluded that the amplitude have great effect on nonlinear frequencies.
The effects of volume fraction index N (nonlocal parameter ea) on the nonlinear vibration of FG nanobeams are analyzed in tables 5 and 6. The figure shows that the frequency decrease when the nonlocal parameter ea rises, which is due to the reduction of stiffness as nonlocal parameter ea rises. Apparently, the strain gradient parameter have the opposite effect compared to the nonlocal parameter when we see table 6.

Table 3. Natural frequencies $\omega^2_k = \Omega_k(L^2/h)(\rho_b/E_b)^{1/2}$ for Si3N4/SUS304 beams with two clamped ends ($L = 20h, ea = 0$).
N

300
400

Table 4. (ω_{NL}/ω_k) for Si3N4/SUS304 beams with two clamped ends ($L = 20h, ea = 0$).
$T(\text{K})$

300
400

Table 5. Natural frequencies $\omega^2_k = \Omega_k(L^2/h)(\rho_b/E_b)^{1/2}$ for Si3N4/SUS304 nanobeams with different nonlocal parameter ea ($L = 20h, l = 0, T = 300 \text{K}$).
Modes

1
2
3
5. Concluding remarks

The nonlinear bending and vibration analyses for FG nanobeams with two clamped ends have been presented based on neutral surface and higher order shear deformation beam theory are analyzed in this paper. The nonlinear strain-displacement relation is introduced and the nonlinear governing equations are solved by two-step perturbation method, many examples are solved numerically and compared with existed results. The effects of volume fraction index, environmental temperature, nonlocal parameter and strain gradient parameter are discussed in detail. Through the above analysis, we can draw the following conclusions:

For nonlinear bending, firstly, the method adopted in this paper is very close to the results obtained by finite element method adopted in the existing literature. Secondly, the deflection increases as the temperature (volume fraction index, nonlocal parameter ea) increases, which is due to the reduction of stiffness as the temperature (volume fraction index, Apparently, the strain gradient parameter l have the opposite effect compared to the nonlocal parameter.

For nonlinear vibration, the method adopted in this paper is very close to the results obtained by Ritz method and the Differential transforms method adopted in the previous literature. Second, the frequency decreases as the temperature (volume fraction index, nonlocal parameter ea) increases, which is due to the reduction of stiffness as the temperature (volume fraction index, Apparently, the strain gradient parameter l have the opposite effect compared to the nonlocal parameter.

Acknowledgments

This work is supported by ‘Scientific research Fund project/General Project of Hunan Electrical Vocational College (2020ZK011)’ and ‘Hunan Natural Science Foundation Project (2020JJ7021)’.

ORCID iDs

Wubin Shan https://orcid.org/0000-0001-7807-1130

References

1. Ghayesh M H and Farajpour A 2019 A review on the mechanics of functionally graded nanoscale and microscale structures [J] Int. J. Eng. Sci. 137 8–36
2. Fu Y et al 2004 TiNi-based thin films in MEMS applications: a review [J] Sensors and Actuators A (Physical) 112 395–408
3. Farajpour A, Ghayesh M H and Farokhi H 2018 A review on the mechanics of nanostructures [J] Int. J. Eng. Sci. 133 231–63
4. Lu L, Guo X and Zhao J 2017 Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory [J] Int. J. Eng. Sci. 116 12–24
5. Lu L, Guo X and Zhao J 2017 A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms [J] Int. J. Eng. Sci. 119 265–77
6. Li L, Li X and Hu Y 2016 Free vibration analysis of nonlocal strain gradient beams made of functionally graded material [J] Int. J. Eng. Sci. 102 77–92
7. Ebrahimi F and Barati M R 2017 Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory [J] Compos. Struct. 159 433–44
8. Wang J et al 2018 Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory [J] Physica E 101 85–93
9. Mohammad M, Bace N V and Francesco T 2018 Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory [J] Engineering Science and Technology, an International Journal 21 778–86
10. Lu P 2007 Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory[J] J. Appl. Phys. 101 073504–073504
11. Alshorbagy A E M 2013 Vibration analysis of Euler–Bernoulli nanobeams by using finite element method[J]. Appl. Math. Modell. 37 4787–97

Table 6. Natural frequencies $\omega^2 = \Omega l^2 / (h)(\rho_i / E_i)^{1/2}$ for Si$_3$N$_4$/SUS304 nanobeams with different strain gradient parameter l ($L = 20h$, $ea =$0, $T = 300$ K).

Modes	0	1 nm	2 nm	3 nm
1	5.3300	5.4536	5.6001	5.9254
2	21.2113	21.6105	22.5582	24.2647
3	47.3281	49.1853	51.0852	53.4402
[12] Lei Y, Adhikari S and Friswell MI 2013 Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams[J] Int. J. Eng. Sci. 66–67 1–13
[13] Kiani K and Wang Q 2012 On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh–Timoshenko, and higher-order beam theories[J]. European Journal of Mechanics, A/Solids 31 179–202
[14] Ke L L, Wang Y S and Wang Z D 2012 Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory[J] Compos. Struct. 94 2038–47
[15] Ansari R, Ghokami R and Rouhi H 2015 Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory[J] Compos. Struct. 126 216–26
[16] Shafiei N and Ghadir M A 2016 On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams[J]. Int. J. Eng. Sci. 106 42–56
[17] Li L and Hu Y 2016 Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material[J] Int. J. Eng. Sci. 107 77–97
[18] Šimšek M 2016 Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach[J] Int. J. Eng. Sci. 105 12–27
[19] Gao Y, Xiao W S and Zhu H 2019 Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method[J] The European Physical Journal Plus 134 23
[20] Liu H, Lv Z and Wu H 2016 Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory[J] Compos. Struct. 214 47–61
[21] Zarepour M, Hosseini S A H and Akbarzadeh A H 2019 Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on eringen’s differential model[J] Appl. Math. Modell. 69 563–82
[22] Sarafraz A, Sahnami S and Aghdam M M 2018 Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects[J] Appl. Math. Modell. 66 195–226
[23] Sun X P et al 2017 Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field[J] Acta Mech. Solids Sin. 313 9–33
[24] Yang T et al 2018 Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams[J] Compos. Struct. 204 313–9
[25] Tang Y G, Liu Y and Zhao D 2017 Effects of neutral surface deviation on nonlinear resonance of embedded temperature-dependent functionally graded nanobeams[J] Compos. Struct. 184 969–79
[26] Gholami R and Ansari R 2017 Nonlinear resonance responses of geometrically imperfect shear deformable nanobeams including surface stress effects[J] Int. J. Non Linear Mech. 97 115–25
[27] Lv Z and Liu H 2017 Nonlinear bending response of functionally graded nanobeams with material uncertainties[J] Int. J. Mech. Sci. 134 123–35
[28] Rouhi H et al 2018 Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin’s second strain gradient theory[J] Eur. J. Mech. A. Solids 73 268–81
[29] Lv Z et al 2018 Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium[J] Compos. Struct. 202 675–85
[30] Safi M S et al 2016 Nonlinear vibration of axially functionally graded non-uniform nanobeams[J]. International journal of engineering science 106 77–94
[31] She G-L, Jiang X Y and Karami B 2019 On thermal snap–buckling of FG curved nanobeams. Materials Research Express 6.11 115008
[32] Shen H-S 2013 A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells (Singapore: John Wiley & Sons Inc)
[33] Da-Guang Z 2013 Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory, Compos. Struct. 100 121–6
[34] Da-Guang Z. 2014 Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49 283–93
[35] Fu Y, Wang J and Mao Y 2012 Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment Applied Mathematical Modeling 36 1324–40
[36] Paul A and Nonlinear D D 2016 thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness Engineering Science and Technology, an International Journal 19 1608–25
[37] Benhamra R, Daoudjdi T H and Mansour M S 2016 Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory. C. R. Mecanique 344 631–41
[38] Fekar A, Houari M S A, Touinsi A and Mahmoud S R 2014 A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates Meccanica 49 795–810
[39] Bellifa H, Benrahou K H, Hadji L, Houari M S A and Touinsi A 2016 Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept neutral surface position / J. Braz. Soc. Mech. Sci. Eng. 38 265–73
[40] Ma L S and Lee D W 2011 A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading Compos. Struct. 93 831–42
[41] Raffaele B, Luciano F, Raimondi L, Marotti de S F and Rosa P 2016 Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation J. Composites Part B 100 208–19
[42] Ranjan R 2011 Nonlinear finite element analysis of bending of straight beams using hp–spectral approximations / Solid Mech 3 96–113
[43] Reddy J N 2004 An introduction to non-linear finite element analysis. (New York: Oxford University Press)
[44] Ebrahimi F and Salari E 2015 Thermo–mechanical vibration analysis of nonlocal temperature dependent FG nanobeams with various boundary conditions J. Composites Part B 78 272–90