RHEB methylation in white blood cell, a novel candidate marker for breast cancer screening

Sutasinee Asayut a,b,+, Charoenchai Puttipanyaears c,d,+, Prakashit Rattanatanyong c,d, Somchai Thanasitthichai c, Nakarin Kitkumthorn f,*, Apiwat Mutirangura c,d,+

a Program of Medical Science, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
b Research Division, National Cancer Institute, Bangkok 10400 Thailand
c Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
d Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
e Institute of Medical Research and Technology Assessment, Department of Medical Services, Ministry of Public Health, Nonthaburi 11000 Thailand
f Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400 Thailand

*Corresponding authors, e-mail: mapiwat@chula.ac.th, nakarinkit@gmail.com, + S. A. and C. P. are co-first authors

Received 22 Oct 2020
Accepted 11 Dec 2020

ABSTRACT: Aberrant DNA methylation of tumor surrounding stromal cells is one of epigenetic changes, partly caused by the secretion of tumor cells. Here, we searched the tumor-induced DNA methylation profile in white blood cells (WBCs) caused by the secretion of breast cancer cell, that will be possible marker for breast cancer screening. Using DNA methylation microarray, we identified aberrant DNA methylated genes from co-culture model between healthy controls peripheral blood mononuclear cells (PBMCs) with 3 breast cancer cell lines. From bioinformatics analysis, six methylated CpG sites in 3 validation genes were selected for preliminary test to determine the most effective CpG sites for detection in breast cancer patient WBCs using methylation-specific polymerase chain reaction (MSP). After test, the cg03998173 of **RHEB** was selected as a validation gene with the result of 100% sensitivity and 80% specificity. Later, this methylation marker determined in the WBCs from 200 breast cancer patients and 200 healthy controls by SYBR green-based real-time MSP (RT-MSP). The **RHEB** methylation were detected in WBCs from 188 (94%) breast cancer patients and 59 (29.50%) healthy controls with high sensitivity of 94% and specificity of 70.50% (P-value < 0.0001). In conclusion, tumor-induced DNA methylation in WBCs caused by the secretion of breast cancer cells can be effective tumor marker for breast cancer screening. The **RHEB** methylation is a new highly sensitive and specific tumor marker from DNA methylation change in white blood cells of breast cancer patient blood. Therefore, the **RHEB** methylation may be considered as a tumor marker for breast cancer screening.

KEYWORDS: breast cancer, WBCs, **RHEB** methylation, tumor marker, breast cancer screening

INTRODUCTION

Breast cancer is the most common cancer and the number one cause of death from cancer in women. The incidence of cancer across all countries of the world, including Thailand, from the GLOBOCAN 2018 database produced by the International Cancer Research Organization (IARC) showed that there were 2.1 million new cases of breast cancer accounting for almost a quarter of all female cancer cases worldwide. The global age standardized rate (ASR) of breast cancer incidence was 46.3 per 100 000 person-years and the global ASR for breast cancer mortality was 13.0 per 100 000 person-years [1]. The female breast cancer ASR incidence in Thailand during 2013–2015 from cancer registry database by National Cancer Institute (NCI, Thailand) was 31.4 per 100 000 person-years [2]. The mortality from breast cancers was 4177 persons according to the Public Health Statistics A.D. 2017 [3].

There are three appropriate breast cancer screening methods for Thailand: breast self-examination (BSE), clinical breast examination (CBE) and examination combined with mammography and ultrasound for more accurate diagnosis [4–6]. Currently, the breast cancer screening with blood biomarker has come into play a role, or
may replace the old screening methods [6]. Blood-based biomarkers were an alternative non-invasive strategy for cancer screening. Although none of the currently used blood-based biomarkers are sensitive enough for the early detection of breast cancer, an abundance of significant findings to develop the screening tools using blood-based biomarkers have emerged in recent years [7].

Alteration of the epigenome resulting in differential gene expression without a change in DNA sequence is a common phenomenon in tumorigenesis [7]. Aberrant DNA methylation is an epigenetic change which is partly caused by the secretion of tumor cells to surrounding stromal cells. In a previous study, LINE-1 hypermethylation in micrometastatic lymph nodes and surrounding cells in breast cancer patients, the secretions from breast cancer cells increase LINE-1 methylation in cancer stromal cells [8]. DNA methylation is one of the most important epigenetic signatures in cancer because of its influence on gene transcriptional activities, including epigenetic silencing of tumor suppressor genes through hypermethylation at the CpG regions and activation of oncogenes through gene-wide hypomethylation [7]. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of cancer patients may be a promising quantitative and non-invasive method for cancer diagnosis [9].

Variety of techniques have been developed to detect the DNA methylation; each has its own advantages and limitations. Genome-wide methylation sequencing or microarray-based profiling is often used to identify candidate biomarkers. The performance of a specific biomarker or a limited panel of biomarkers in larger cohorts is typically assessed using locus-specific assays such as quantitative MSP (qMSP), one-step MSP (OS-MSP) assay, MethLight assay, and pyrosequencing, which can detect methylation of known loci with high sensitivity and specificity [10]. The blood-based DNA methylation biomarkers of breast cancer from cell-free DNA are as follows: DNA repair associated (BRCA1) [11–14], BRCA2 [12], adenomatous polyposis coli (APC) [11,13], ataxia telangiectasia mutated (ATM) [11,12], Tumor Protein P53 (TP53) [12], glutathione S-transferase pi 1 (GSTM1), retinoic acid receptor beta 2 (RARβ2) [11,14], and Ras association domain family member 1A (RASSF1A) [11,13,14]. A previous study shows that the intragenic MMP9 methylation in WBCs, caused by the secretions of colorectal cancer cells, is a promising biomarker to be tested in future screening studies of colorectal cancer [15]. However, the molecular mechanisms underlying DNA methylation changes in circulating cells, cancer cells or WBCs remain unclear [8, 9, 15, 16].

In the present study, we aimed to search the tumor-induced DNA methylation in WBCs caused by the secretion of breast cancer cells to be an effective tumor marker for breast cancer screening with high sensitivity and specificity.

MATERIALS AND METHODS

Study participants

The study participants for the co-culture method consisted of 9 healthy women, as shown in Table S1. The study participants for preliminary test of methylated CpG sites validation genes using MSP consisted of 5 breast cancer patients and 5 healthy women, which are the same participants of the SYBR green-based RT-MSP of RHEB, as shown in Table S1. The study participants for SYBR green-based RT-MSP of RHEB consisted of 200 female breast cancer patients in all stages and 200 healthy women. They were recruited between March 2015 to October 2017. Ethics approval and consent to participate were approved by the Ethics Committee of NCI, Thailand (029/2559) and the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Thailand (IRB No. 562/62). In healthy control group, the inclusion criteria were healthy female, no previous history of breast cancer and no family history of breast cancer. In breast cancer group, the inclusion criteria were new cases of female breast cancer, treatment not started, no previous history of breast cancer or recurrent tumor and no history of other cancers. The exclusion criteria of two groups were other cancer patients or other serious diseases. Sample size was calculated from the results of preliminary test of validation genes using MSP and threshold cycle of methylation values (C_{T_{Methyl}}) using a two-tailed independent t-test with 90% power and alpha = 0.05, 4 participants per group were required.

Sample collection

The blood samples for the co-culture method were collected in 4 × 6 ml K3 EDTA tubes (VACUETTE, Greiner Bio-One GmbH, Kremsmünster, Austria) per person. All 400 blood samples (3 ml) for validation and testing of DNA methylation biomarkers were collected and centrifuged at 1500 rpm for 10 min to collect WBCs.
Identification of aberrant DNA methylated genes in breast cancer

The methods used to identify aberrant DNA methylated genes in breast cancer consist of co-culture method and DNA methylation microarray. Laboratory experiments and analyses of the results of the two methods were performed by Dr. Charoenchai Puttipanyalears in 2016.

PBMC isolation

The healthy control PBMCs were isolated from whole blood by Ficoll-Paque PLUS (Stemcell Technologies, BC, Canada). In the first step, the whole blood was diluted with an equal volume of phosphate buffered saline (PBS) (Gibco, MA, USA) and carefully layered the diluted blood on top of 4 ml Ficoll-Paque PLUS. Centrifuged at 2800 rpm for 15 min at 16 °C and carefully transferred the cloudy interface layer to a 1.5 ml tube. The PBMCs platelets were separated by centrifuged at $500 \times g$ for 7 min at 16 °C. Washed the PBMCs platelets with 1 ml of PBS. Resuspended the PBMCs platelets with 1 ml of Dulbecco’s Modified Eagle's medium (DMEM) (Gibco, MA, USA).

Cell line culture and co-culture

Cultured 3 breast cancer cell lines are representatives of different types of breast cancer patients. MCF7 (Luminal A: ER+, PR+, HER2−, and wild type p53) (HTB-22™), MDA-MB-231 (Triple negative: ER−, PR−, HER2−, and mutant p53) (HTB-26™) and T47D (Luminal A: ER+, PR+, HER2−, and mutant p53) (HTB-133™) were obtained from ATCC (VA, USA). All cell lines were grown in DMEM supplemented with 10% fetal bovine serum (FBS) (Gibco, MA, USA) and 1% penicillin (10 000 Units/ml)-streptomycin (10 000 µg/ml) (Gibco, MA, USA). The cell lines were grown in a humidified incubator with 95% air/5% CO$_2$ atmosphere at 37 °C. Harvested the cell lines with 500 µl of 0.25% Trypsin-EDTA (1X) (Gibco, MA, USA) and centrifuged at 500 × g for 5 min.

The co-culture method was used to study the effects of the secretion from breast cancer cells on healthy control PBMCs. The breast cancer cell lines and the healthy control PBMCs were co-cultured in 24 mm Transwell with 0.4 µm pore Polycarbonate membrane cell culture inserts (Corning, NY, USA). The 5×10^4 cells/well of breast cancer cells were seeded in 24-well plates in DMEM supplemented with 10% FBS for 24 h. Subsequently, the 1×10^5 cells/well of healthy control PBMCs were co-cultured into each Transwell for 4 h. In the final steps, the induced PBMCs were harvested. Washed the induced PBMCs twice with 500 µl PBS.

DNA methylation microarray

DNA was extracted from the induced PBMCs and bisulfite converted before the process of DNA methylation microarray, which was performed at the Department of Epigenetics, NCCRI, Tokyo, Japan. The microarray-based DNA methylation profiling was performed by using Illumina Infinium Human Methylation 450K BeadChip Kit (Illumina, CA, USA). The Infinium HD Methylation process was done according to the Infinium HD Methylation process using Infinium Methylation BeadChips in Illumina 15019519 Revision B manual. The types of experiment were as follows: GSE was DNA methylation profiling by array, GPL was GPL8490 and GSM was bisulfite converted DNA from whole blood. The Illumina GenomeStudio Methylation Module (Illumina, CA, USA) was used to analyze intensities to assign site-specific DNA methylation P-values to each CpG site.

Retrieving GenBank data

Microarray-based DNA methylation profiles were retrieved via the National Center for Biotechnology Information (NCBI) GEO database (http://www.ncbi.nlm.nih.gov/geo). “DNA methylation”, “Breast cancer” and “Blood” were used to search. The search was restricted to the following specific fields: GSE was DNA methylation profiling by array, GPL was GPL8490 and GSM was bisulfite converted DNA from whole blood. GSE32396 [17] and GSE57285 [18] were used to represent the DNA methylation profiles of blood from breast cancer. GSE32396, containing 60 blood samples, was divided into two groups of the women: BRCA1 mutation and BRCA1 wild type. Each group consisted of 15 breast cancer patients and 15 healthy controls. GSE57285 contained 84 blood samples consisting of 42 healthy women with BRCA1 wild type, 7 healthy women with BRCA1 methylation and 35 breast cancer patients with BRCA1 methylation.

CU-DREAM X

Connection Up- or Down- Regulation Expression Analysis of Microarrays X (CU-DREAM-X) program was used to compare between the DNA methylation profiles.
profiles of healthy control PBMCs after co-culturing with 3 breast cell lines (The content of this table can be obtained by sending a request to the authors.) and the DNA methylation profiles of WBCs from breast cancer patients. At the beginning, the GSE32396 and GSE57285 template files, in *.xlsx format, were prepared according to the form. The two-tailed hypothesis test was used to analyze the results at statistical significance of 0.05 and the differential methylation was Infragenic Up-Up. All analyzed files were introduced in CU-DREAM X folder on drive C. The program was started by running Command Prompt with “cd c:\CU-DREAMX”. The result was an intersect table of upregulated DNA methylation profiles of healthy control PBMCs after co-culturing with 3 breast cell lines and the DNA methylation profiles of WBCs from breast cancer patients in 2 GSEs.

Preliminary test of methylated CpG sites in validation genes using MSP

DNA extraction and bisulfite treatment

Genomic DNA (gDNA) was extracted from 100 µl of WBC pellets using QuickGene DNA whole blood kit S (DB-S) (KURABO, Osaka, Japan) in Nucleic Acid Isolation System QuickGene-810 (FUJIFILM, Tokyo, Japan) according to the manufacturer’s protocol. About 750 ng of gDNA in 20 µl total volume was bisulfite converted using the EZ DNA Methylation-Gold™ Kit (D5006) (Zymo Research, CA, USA) according to the manufacturer’s instructions. Bisulfite conversion was performed on the Thermal Cycler 480 (Perkin Elmer, MA, USA). The thermocycling conditions were as follows: 98 °C for 10 min, 64 °C for 2.5 h and 4 °C for 10 min.

Preliminary tests of all methylated CpG sites in validation genes were performed to determine the most effective CpG sites and probes for detection of DNA methylation in breast cancer patient bloods using MSP. The primer sequences, annealing temperature and PCR product sizes of all 6 methylated CpG sites were shown in Table S2. The PCR reaction mixture was prepared in 20 µl total volume containing 10 µl of QPCR Green Master Mix LRoxx, 2x (Biotechrabbit GmbH, Berlin, Germany), 8.8 µl of nuclease free water, 0.1 µl of 20 µM forward and reverse primer, and 1 µl of bisulfite converted DNA. The amplifications were performed on Mastercycler pro S (Eppendorf, Hamburg, Germany). The thermocycling conditions were as follows: initial denaturation at 94 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 1 min, annealing at 53–58 °C for 1 min, extension at 72 °C for 1 min, and final extension at 72 °C for 7 min. The amplified PCR products were run in 8% acrylamide gel electrophoresis and stained with GelStar Nucleic Acid Gel Stain (Lonza Rockland, ME, USA) for 20 min.

SYBR green-based RT-MSP of RHEB

The RHEB methylation status was determined by SYBR green-based RT-MSP. The primers were designed to specifically amplify methylated bisulfite converted DNA for the methylation and used unmethylated bisulfite converted DNA as an internal control. RHEB methylation and unmethylation primers (BIONEER, Victoria, Australia) were designed from cg03998173 location in intragenic region. The RHEB methylation primers were: forward primer 5’–CGTATGTTTGGTTGTCTTC–3’ and reward primer 5’–CGAGCTATTCCAAAATACG–3’. The RHEB unmethylation primers were: forward primer 5’–GTTTTGTAGTTTTGGTTGTGTTT–3’ and reward primer 5’–CCCCAACACTATTCCAAAAATAACA–3’. The PCR reaction mixture was prepared according to the MSP method. Each of the methylated and unmethylated reactions was performed in separate reaction wells in triplicate. The RHEB unmethylation was used as internal control. The amplifications were performed on QuantStudio6 Flex Real-Time PCR System (Applied Biosystems, CA, USA). The experimental setup of the instrument for reaction: fast 96-well (0.1 ml) block, Comparative Cₜ (ΔΔCₜ), SYBR® Green Reagents, and run standard including melt curve. The thermocycling conditions were as follows: initial denaturation at 95 °C for 2 min, followed by 40 cycles of denaturation at 95 °C for 15 s, annealing/extension at 60 °C for 30 s and melt curve at 95 °C for 15 s, 60 °C for 1 min, 95 °C for 30 s.

Statistical analysis

All statistical analyses were performed using SPSS (Statistical Package for the Social Sciences for Windows (IBM, NY, USA). The chi-squared statistic was used to test the independence of two populations between breast cancer patients and healthy controls. The two-tailed hypotheses testing was performed to analyze the results from CU-DREAM X and determine significant differences in DNA methylation changes in WBCs from breast cancer patients and healthy controls. Receiver operating characteristic (ROC) curve was used to evaluate the RHEB methylation as tumor marker for breast cancer screening.
Table 1 Baseline characteristics of breast cancer patients (n = 200).

Characteristic	N (%)
Age (years)	
21–30	2 (1.0)
31–40	33 (16.5)
41–50	64 (32.0)
51–60	66 (33.0)
61–70	29 (14.5)
71–80	5 (2.5)
81–90	1 (0.5)
Histological type	
Invasive ductal carcinoma	154 (77.0)
Invasive lobular carcinoma	9 (4.5)
Invasive carcinoma	3 (1.5)
Invasive ductal carcinoma and mucinous carcinoma	2 (1.0)
Invasive papillary carcinoma	1 (0.5)
Invasive micropapillary carcinoma	1 (0.5)
Ductal carcinoma in situ (DCIS)	11 (5.5)
Mucinous carcinoma	5 (2.5)
Lobular carcinoma	1 (0.5)
Intracystic papillary carcinoma	1 (0.5)
Metaplastic carcinoma with chondroid differentiation	1 (0.5)
Malignant phyllodes tumor	1 (0.5)
Fibroadenoma	1 (0.5)
Unknown	9 (4.5)
Stage	
Fibroadenoma	1 (0.5)
Stage 0	9 (4.5)
Stage 1A	29 (14.5)
Stage 1B	1 (0.5)
Stage 2A	36 (18.0)
Stage 2B	36 (18.0)
Stage 3A	20 (10.0)
Stage 3B	22 (11.0)
Stage 3C	14 (7.0)
Stage 4	32 (16.0)
Molecular subtype	
Luminal A	11 (5.5)
Luminal B (Her-2 Negative)	34 (17.0)
Luminal B (Her-2 Positive)	78 (39.0)
Her-2 Positive	28 (14.0)
Luminal A or B	3 (1.5)
Triple Negative	20 (10.0)
Unknown	26 (13.0)

RESULTS

Characteristics of study participants

The study participants consisted of 200 female breast cancer patients in all stages with mean age of 50.88 ± 10.66 years (ranged between 26 and 85 years) and 200 healthy controls with mean age of 39.01 ± 11.32 years (ranged between 19 and 68 years). 65% of the breast cancer patients were between 41 and 60 years old. The histological type in 77% of breast cancer patients was invasive ductal carcinoma. The stages of breast cancer patients according to the Tumor-Node-Metastasis (TNM) classification were 36% of stages 2A and 2B (18% per stage), 16% of stage 4, 14.5% of stage 1A, and other stages. The baseline characteristics of 200 breast cancer patients were shown in Table 1.

Identification of aberrant DNA methylated genes in breast cancer

The flowchart of our study was illustrated in Fig. 1. The DNA methylation profiles of 9 healthy control PBMCs after co-culturing with 3 breast cell lines (MCF7, MDA-MB-231 and T47D) (The content of this table can be obtained by sending a request to authors.) and the DNA methylation profiles of WBCs from breast cancer patients in 2 GSEs (GSE32396 and GSE57285) were bioinformatics analyzed using CU-DREAM X to identify the aberrant DNA methylated genes in breast cancer. The candidate genes were collected from the overlapping genes of 3 DNA methylation profiling, which were methylated at the same intragenic locations with statistical significance (P-values < 0.05 and odd ratio > 1). The results were presented in Table 2.

The validation genes were selected from the most common genes in the same blood type in both GSEs and all 3 breast cancer cell lines of all experiments. All 40 candidate genes from all 12 experiments were statistically significant (P-values < 0.05 and odd ratio > 1). Nine in Like (NINL), the most common gene in 9 out of 12 experiments, was selected as a validation gene. G Protein-Coupled Receptor 39 (GPR39) and MTORC1 Binding (RHEB) of a Ras Homolog gene family were selected as validation genes as they were the most common genes in all 6 experiments of BRCA1 wild type in both GSEs and all 3 breast cancer cells line. Each validation gene had two methylated CpG sites as follows: (1) cg09088834 and cg17729667 located in NINL, (2) cg07785936 and cg24659201 located in GPR39 and (3) cg03998173 and cg21134096 located in RHEB.

Preliminary test of methylated CpG sites in validation genes using MSP

The most effective CpG sites and probes for detection of DNA methylation in breast cancer pa-
DNA methylation profiles of healthy control PBMCs were co-cultured with / without 3 breast cell lines (MCF7, MDA-MB-231 and T47D) for 40 days.

Candidate genes

DNA methylation profiles of induced PBMCs
DNA methylation profiles of WBCs from breast cancer patients

GSE32396; MA4: BRCA1
GSE32396; MA3: BRCA1
GSE57285; MA2: BRCA1
GSE57285; MA1: BRCA1

Preliminary test of methylated CpG sites in validated genes using MSP

Validation of methylation status in WBCs from breast cancer patients and healthy controls by SYBR green-based RT-MSP

Fig. 1 The flowchart depicting the methodology employed in this study. We identified the aberrant DNA methylated genes in breast cancer by co-culture the healthy controls PBMCs with 3 breast cancer cell lines. Microarray-based DNA methylation profiles of induced PBMCs (The content of this table can be obtained by request to authors) and the DNA methylation profiles of WBCs from breast cancer patients in 2 GSEs (GSE32396 and GSE57285) were bioinformatic analyzed using CU-DREAM X. The 40 candidate genes were collected from the overlapping genes of the 3 data groups, which were hypermethylated genes with P-values < 0.05 and odd ratio > 1. All methylated CpG sites in validation genes were selected for preliminary test to determine the most effective CpG sites and probes for detection of DNA methylation in breast cancer patient bloods using MSP. Validation of methylation status in WBCs from breast cancer patients and healthy controls by SYBR green-based RT-MSP.

Table 2 Connection upregulation analysis of microarrays of DNA methylation changes in healthy control PBMCs after co-culturing with 3 breast cell lines and WBCs from breast cancer patients in 2 GSEs (GSE32396 and GSE57285).

GSEs and blood type	Experiment	No. of genes	OR (95% CI)	P-value
GSE57285; MA1: BRCA1 mutation	MCF7_Intragenic_Up_MA1_Up	262	1.53 (1.31–1.77)	2.52 × 10⁻⁸
GSE57285; MA2: BRCA1 wild type	MCF7_Intragenic_Up_MA2_Up	265	1.28 (1.11–1.48)	9.15 × 10⁻⁴
GSE32396; MA3: BRCA1 mutation	MCF7_Intragenic_Up_MA3_Up	118	1.71 (1.39–2.11)	3.78 × 10⁻⁷
GSE32396; MA4: BRCA1 wild type	MCF7_Intragenic_Up_MA4_Up	79	1.85 (1.43–2.38)	1.58 × 10⁻⁶
GSE57285; MA1: BRCA1 mutation	M231_Intragenic_Up_MA1_Up	243	1.42 (1.22–1.67)	1.19 × 10⁻⁵
GSE57285; MA2: BRCA1 wild type	M231_Intragenic_Up_MA2_Up	258	1.25 (1.07–1.46)	4.08 × 10⁻³
GSE32396; MA3: BRCA1 mutation	M231_Intragenic_Up_MA3_Up	125	1.62 (1.30–2.02)	1.60 × 10⁻⁵
GSE32396; MA4: BRCA1 wild type	M231_Intragenic_Up_MA4_Up	85	1.45 (1.13–1.86)	3.68 × 10⁻³
GSE57285; MA1: BRCA1 mutation	T47D_Intragenic_Up_MA1_Up	237	1.56 (1.34–1.82)	1.05 × 10⁻⁸
GSE57285; MA2: BRCA1 wild type	T47D_Intragenic_Up_MA2_Up	244	1.66 (1.42–1.93)	5.44 × 10⁻¹¹
GSE32396; MA3: BRCA1 mutation	T47D_Intragenic_Up_MA3_Up	113	1.52 (1.24–1.88)	7.57 × 10⁻⁵
GSE32396; MA4: BRCA1 wild type	T47D_Intragenic_Up_MA4_Up	78	1.85 (1.44–2.38)	9.12 × 10⁻⁷

MA = microarray; OR = odds ratio; 95% CI = 95% confidence interval. Each GSE was separated by blood types into BRCA1 mutation and BRCA1 wild type.
tient blood samples were determined by preliminary test in all 6 methylated CpG sites using MSP. The preliminary test of 6 methylated CpG sites were estimated from the bands in 8% acrylamide gel from 5 breast cancer patients and 5 healthy controls, which were the same samples in all methylated CpG sites. The sensitivity and specificity of each methylated CpG probe were calculated from number of methylated and unmethylated bands. The sensitivity and specificity of 6 methylated CpG probes were as follows: 100% and 20%, respectively, for cg09088834, cg24659201 and cg21134096; 100% and 40%, respectively, for cg17729667; 100% and 80%, respectively, for cg03998173; and no detected bands for cg07785936. Therefore, the cg03998173 probe located in RHEB was the most effective CpG probe for detection of DNA methylation in breast cancer patient blood samples in this study. The RHEB (cg03998173) probe was selected as a validation gene to determine the methylation status for detection of breast cancer in blood.

SYBR green-based RT-MSP of RHEB

The RHEB (cg03998173) methylation status was determined in the WBCs from 200 breast cancer patients in all stages and 200 healthy controls by RT-MSP. RHEB methylation was detected in WBCs from 188 (94%) breast cancer patients and 59 (29.50%) healthy controls with high sensitivity of 94% and specificity of 70.50%. The amplification plots of DNA methylation and DNA unmethylation of RHEB were shown in Fig. 2. The melting temperature (Tm) of RHEB unmethylation was 73°C and RHEB methylation 77°C. The RHEB unmethylation was used as internal control. The scatter plots and ROC curve of RHEB methylation between breast cancer patients and healthy controls, as shown in Fig. 3. The 200 female breast cancer patients in all stages had mean 40 - C_T and SEM of 2.89 ± 0.11 and the 200 healthy controls mean 40 - C_T and SEM of 1.88 ± 0.21. A higher 40 - C_T represents a higher methylation level of RHEB. It is represented as 0 if the RHEB methylation was not detectable after 40 cycles. ROC curve analysis was performed to determine the performance of the RHEB methylation as tumor marker for breast cancer screening. ROC curve was constructed using cutoff value of 40 - C_T with area under the ROC curve (AUC) of 0.9453 (P-value < 0.001), as shown in Fig. 3(b). The age difference did not affect RHEB methylation pattern.

DISCUSSION

DNA methylation is one of the most important epigenetic modification associated with target gene silencing and is correlated with cancer carcinogenesis and progression [7, 19]. Aberrant DNA methylation is the earliest molecular alteration occurring during carcinogenesis and specific for the malignant state. DNA methylation has been used as a noninvasive biomarker for cancer detection and diagnosis. Therefore, aberrant DNA methylation has been considered as powerful potential biomarkers for cancer diagnosis [20].

Individual cancers have characteristic mechanisms to release the tumor DNA into closely related body fluids. These biological fluids are sources for biomarker investigation. Blood is the most common sample used to detect the circulating cell-free DNA as cancer biomarkers because blood contains a high volume of genetic materials [10]. A recent study shows that plasma cell-free DNA can be used to predict the prognosis of advanced gastric cancer patients and screening patients with benefit-assisted neoadjuvant chemotherapy for advanced gastric cancer [21]. In another study, the WBCs receive secretory molecules from cancer cells irrespective of the tumor size. The results, between WBCs and PBMCs, indicated similar levels. But to examine methylation status, WBCs isolation is easier and faster than PBMCs. Therefore, WBCs were used, instead of PBMCs. The secretions from cancer cells could alter circulating WBCs and these changes could be used as sensitive circulating tumor markers [15].

We identified the aberrant DNA methylated genes in breast cancer by co-culture the healthy controls PBMCs with 3 breast cancer cell lines (MCF7, MDA-MB-231 and T47D). NINL, GPR39 and RHEB were selected as validation genes.

Nlp (ninein-like (NINL) protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis; and its abnormal expression was recently observed in human breast and lung cancers [22]. Nlp is a member of the γ-tubulin complex binding proteins (GTBPs) and is essential in the process of mitosis. Nlp exhibited certain biological characteristics, including promoting breast tumorigenesis and development [23].

GPR39 is a zinc sensing receptor, which is expressed in several cell types including intestinal epithelial cells (IECs) [24]. GPR39 plays a role in cellular and physiological processes, such as insulin
Fig. 2 Amplification plots of RHEB methylation and RHEB unmethylation in breast cancer patients and healthy controls by SYBR green-based RT-MSP (a) The amplification plot of methylation positive in breast cancer patients. (b) The amplification plot of methylation negative in healthy controls.

Fig. 3 Scatter plots and ROC curve of RHEB methylation between breast cancer patients and healthy controls: (a) RHEB methylation (40 - C T) and (b) ROC curve of RHEB methylation.

secretion, tumorigenesis, obesity, wound healing, cell death inhibition, and proliferation and differentiation of colonocytes [25]. GPR39 is in signaling by GPCR pathways. GPR39 hypermethylation was found in MDA-MB-231 cells after treatment with resveratrol at 24 h and 48 h [26].

RHEB, a member of the Ras family of GTPases, has been implicated as an oncogene and may be involved in estrogen-dependent breast cancer [27]. RHEB binds and activates the key metabolic regulator mTORC1, which has an important role in cancer cells. RHEB overexpression in breast and head and neck cancers was a risk factor for cancer progression, independent of HER2 amplification or Phosphatase and Tensin Homolog (PTEN) loss of function in breast cancer or EGFR amplification/overexpression in head and neck cancer [28]. Elevated RHEB expression has been reported in a wide variety of tumors and coupled with mTORC1 hyper-activation, including human breast cancers. RHEB downregulation by FADD deficiency was validated in human breast cancer cell lines MCF-7 and MDA-MB-231. Like FADD, high RHEB expression is also correlated to poor prognosis in human breast cancer [29]. When Rheb mutants were analyzed in blood, it was found that Rheb deficiency had induced a significant increase in the total number of WBCs in peripheral blood, and especially in the Mac-1+ myeloid population [30].

The RHEB (cg03998173) methylation status was determined in the WBCs from 200 breast cancer patients in all stages and 200 healthy controls by SYBR green-based RT-MSP. The RHEB methylation were detected in WBCs from 94% of breast cancer patients and 29.50% of healthy controls with high sensitivity of 94% and specificity of 70.50% (P-value < 0.0001).

There were variety of breast cancer screening biomarkers; but their specificity and sensitivity
were not high enough for early detection of breast cancer. The Fragile Histidine Triad Diadenosine Triphosphatase (FHIT) hypermethylation in breast cancer was 8.4-folds higher than normal breast tissues [31]. In previous studies, whole-blood DNA methylation markers had been suggested as potential biomarkers for early detection of breast cancer. Hyaluronidase 2 (HYAL2) showed the best discriminative performance with specificity of 90% and sensitivity of 58.50% (Validation I), and 63.88% (Validation II). Another promising candidate is S100 calcium binding protein P (S100P) with sensitivity of 71.60% and specificity of 76.60% [32]. The integration analysis of methylation using the 4-gene (RAD50 Double Strand Break Repair Protein (RAD50), Regulator of Telomere Elongation Helicase 1 (RTEL), Telomerase RNA Component (TERC), and Telomeric Repeat Binding Factor 1 (TRF1)) panel as biomarkers for breast cancer detection showed sensitivity of 79.4% and specificity of 86.2%. When used the methylation and expression of the 4-gene panel showed sensitivity of 83.2% and specificity of 89% [33]. The APC/Forkhead Box A1(FOXA1)/RASSF1A methylation panel for detection of breast cancer in plasma achieved 81.82% sensitivity and 76.92% specificity. Therefore, the differences in performance of the biomarkers are most likely related to biological sample type (tissue vs. body fluids) and methylation assessment methods [13].

CONCLUSION

Tumor-induced DNA methylation in WBCs caused by the secretion of breast cancer cells can be an effective tumor marker for breast cancer screening. The RHEB methylation is a new highly sensitive and specific tumor marker from DNA methylation change in white blood cells of breast cancer patient. Therefore, the RHEB methylation may be considered as a tumor marker for breast cancer screening.

Appendix A. Supplementary data

Supplementary data associated with this article can be found at http://dx.doi.org/10.2306/scienceasia1513-1874.2021.017.

Acknowledgements: This work was supported by Dr. Kanwalat Chalertpet for technical assistance in MSP and SYBR green-based RT-MSP and Ms. Siriporn Khunsri for technical assistance in bisulfite conversion and SYBR green-based RT-MSP. The present study was supported by the National Research Council of Thailand.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jamel A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424.
2. Issamran W, Pattatang A, Supattagorn P, Chiawiriyabunya I, Namthaisong K, Wongsema M, Puttawibul P, Chitapanarux I, et al (2018) Cancer in Thailand vol. IX, 2013–2015, National Cancer Institute, Bangkok, Thailand.
3. Strategy and Planning Division (2018) Public Health Statistics A.D. 2017, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand.
4. National Cancer Institute (2018) Recommendations of Appropriate Breast Cancer Screening for Thailand, Clinical Practice Guidelines, National Cancer Institute, Bangkok, Thailand.
5. Hocaoglu M, Ersahin AA, Akdeniz E (2017) Evaluation on the practice and behaviour of women applied for gynecology outpatient clinics about screening methods for early diagnosis of breast cancer. Eur J Breast Health 13, 150–155.
6. Coleman C (2017) Early detection and screening for breast cancer. Semin Oncol Nurs 33, 141–155.
7. Loke SY, Lee ASG (2018) The future of blood-based biomarkers for the early detection of breast cancer. Eur J Cancer 92, 54–68.
8. Puttipanyalears C, Kitkumthorn N, Buranapraditkun S, Keelawat S, Mutirangura A (2016) Breast cancer upregulating genes in stromal cells by LINE-1 hypermethylation and micrometastatic detection. Epigenomics 8, 475–486.
9. Cheuk IWY, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20, 12–19.
10. Leygo C, Williams M, Jin H, Chan M, Chu W, Grusch M, Cheng YY (2017) DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer. Dis Markers 2017, ID 3726595.
11. Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, Pan KF, You WC, et al (2012) DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol 22, 384–394.
12. Joo JE, Dowty JG, Milne RL, Wong EM, Dugué PA, English D, Hopper JL, Goldgar DE, et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9, ID 867.
13. Salta S, Nunes SP, Fontes-Sousa M, Lopes P, Freitas M, Caldas M, Antunes L, Castro F, et al (2018) A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J Clin Med 7, ID 420.
14. Cui X, Cao L, Huang Y, Bai D, Huang S, Lin M, Yang Q, Lu TJ, et al (2018) In vitro diagnosis of DNA
methylation biomarkers with digital PCR in breast tumors. *Analyst* **143**, 3011–3020.

15. Boonsongserm P, Angsuwatcharakon P, Puttipanyalears C, Apornthewan C, Kongruttanachok N, Akornkitti V, Kitkumthorn N, Mutirangura A (2019) Tumor-induced DNA methylation in the white blood cells of patients with colorectal cancer. *Oncol Lett* **18**, 3039–3048.

16. Jiang Z, Lai Y, Beaver JM, Tsegay PS, Zhao ML, Hortorn JK, Zamora M, Rein HL, et al (2020) Oxidative DNA damage modulates DNA methylation pattern in human breast cancer 1 (BRCA1) gene via the crosstalk between DNA polymerase β and a de novo DNA methyltransferase. *Cells* **9**, ID 225.

17. Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, et al (2012) The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. *PLoS Genet* **8**, e1002517.

18. Anjum S, Fourkala EO, Zikan M, Wong A, Gentry-Maharaj A, Jones A, Hardy R, Cibula D, et al (2014) A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. *Genome Med* **6**, ID 47.

19. Ye M, Huang T, Ying Y, Li J, Yang P, Ni C, Zhou C, Chen S (2017) Detection of 14-3-3 sigma (σ) promoter methylation as a noninvasive biomarker using blood samples for breast cancer diagnosis. *Oncotarget* **8**, 9230–9242.

20. Vu TL, Nguyen TT, Doan VTH, Vo LTT (2018) Methylation profiles of BRCA1, RASSF1A and GSTP1 in Vietnamese women with breast cancer. *Asian Pac J Cancer Prev* **19**, 1887–1893.

21. Lin X, Haiyang Z, Bo Y, Hai H, Ke Z, Zou K, Wu XY (2020) Plasma cell-free DNA for screening patients with benefit-assisted neoadjuvant chemotherapy for advanced gastric cancer. *ScienceAsia* **46**, 462–471.

22. Zhao W, Song Y, Xu B, Zhan Q (2012) Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel. *Cancer BiolTher* **13**, 156–163.

23. Liu Q, Wang X, Lv M, Mu D, Wang L, Zuo W, Yu Z (2015) Effects of the ninein-like protein centrosomal protein on breast cancer cell invasion and migration. *Mol Med Rep* **12**, 1659–1664.

24. Pongkorpsakol P, Buasakdi C, Chantivas T, Chatsudhipong V, Muanprasat C (2019) An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. *Eur J Pharmacol* **842**, 306–313.

25. Qiao J, Zhao H, Zhang Y, Peng H, Chen Q, Zhang H, Zheng X, Jin Y, et al (2017) GPR39 is region-specifically expressed in mouse oviduct correlating with the Zn²⁺ distribution. *Theriogenology* **88**, 98–105.

26. Medina-Aguilar R, Pérez-Plasencia C, Marchat LA, Gariglio P, García-Mena J, Cuevas SR, Ruiz-García E, de la Vega HA, et al (2016) Methylation landscape of human breast cancer cells in response to dietary compound resveratrol. *PloS One* **11**, e0157866.

27. Hanker AB, Der CJ (2010) Handbook of cell signaling. In: *The Roles of Ras Family Small GTPases in Breast Cancer*, 2nd edn, Elsevier, The Netherlands, pp 2763–2772.

28. Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, et al (2010) mTOR activator Rheb is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. *Cancer Res* **70**, 3287–3298.

29. He L, Ren Y, Zheng Q, Wang L, Lai Y, Guan S, Zhang X, Zhang R, et al (2016) Fas-associated protein with death domain (FADD) regulates autophagy through promoting the expression of Ras homolog enriched in brain (Rheb) in human breast adenocarcinoma cells. *Oncotarget* **7**, 24572–24584.

30. Peng H, Kasada A, Ueno M, Hoshii T, Tadokoro Y, Nomura N, Ito C, Takase Y, et al (2018) Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. *Biochem Biophys Res Commun* **495**, 1129–1135.

31. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, et al (2017) Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. *Cancer Epidemiol Biomarkers Prev* **28**, 496–505.

32. Heng J, Zhang F, Guo X, Tang L, Peng L, Luo X, Xu X, Wang S, et al (2017) Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. *Oncotarget* **8**, 25442–25454.
Appendix A. Supplementary data

Table S1 Data of all study participants in 3 methods consisted of co-culture, preliminary test of methylated CpG sites in validation genes using MSP and SYBR green-based RT-MSP of RHEB.

Experiment	Code	Sex	Age	Histological type	Stage	Molecular subtype
Co-culture	A	Female	23	–	–	–
	B	Female	35	–	–	–
	C	Female	40	–	40	–
	D	Female	33	–	–	–
	E	Female	40	–	–	–
	F	Female	28	–	–	–
	G	Female	34	–	–	–
	H	Female	42	–	–	–
	I	Female	30	–	–	–
Preliminary test of methylated CpG sites in validation genes using MSP	BrCUN 1	Female	38	Invasive carcinoma of no special type	2B	Luminal B (Her-2 Positive)
	BrCUN 2	Female	42	Invasive carcinoma NST with medullary features	2A	Triple Negative
	BrCUN 3	Female	25	Invasive ductal carcinoma	2A	Triple Negative
	BrCUN 4	Female	50	Invasive ductal carcinoma	2A	Triple Negative
	BrCUN 5	Female	42	Invasive ductal carcinoma	2A	Triple Negative
	BrCU 1	Female	57	Mixed invasive ductal carcinoma and mucinous carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 2	Female	42	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 3	Female	51	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 4	Female	45	Fibroadenoma	–	–
	BrCU 5	Female	85	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
SYBR green-based RT-MSP of RHEB	BrCU 6	Female	58	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 7	Female	70	Invasive lobular carcinoma	1A	Luminal B (Her-2 Positive)
	BrCU 8	Female	35	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 9	Female	40	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 10	Female	54	Invasive ductal carcinoma with extensive DCIS	2B	Her-2 Positive
	BrCU 11	Female	70	–	2A	–
	BrCU 12	Female	43	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 13	Female	51	Invasive ductal carcinoma	2B	Luminal B (Her-2 Negative)
	BrCU 14	Female	44	Invasive ductal carcinoma and DCIS	3A	Luminal B (Her-2 Positive)
	BrCU 15	Female	68	Invasive ductal carcinoma	2B	Triple Negative
	BrCU 16	Female	47	Mucinous carcinoma	1A	Luminal A
	BrCU 17	Female	48	Poorly differentiated adenocarcinoma	3B	Her-2 Positive
	BrCU 18	Female	48	Invasive ductal carcinoma and minimal DCIS	2B	Luminal B (Her-2 Positive)
	BrCU 19	Female	38	Invasive ductal carcinoma	2A	Luminal B (Her-2 Positive)
	BrCU 20	Female	59	Invasive ductal carcinoma and DCIS	2B	Luminal B (Her-2 Positive)
	BrCU 21	Female	57	Nonpalpable breast mass	2A	–
	BrCU 22	Female	44	Invasive carcinoma of no special type	4	Her-2 Positive
	BrCU 23	Female	52	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)
	BrCU 24	Female	46	Invasive ductal carcinoma	3B	Her-2 Positive
	BrCU 25	Female	54	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)
	BrCU 26	Female	35	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)
	BrCU 27	Female	33	Invasive ductal carcinoma	3B	Luminal B (Her-2 Negative)
	BrCU 28	Female	36	Invasive carcinoma of no special type	3A	Luminal B (Her-2 Positive)
	BrCU 29	Female	43	Invasive lobular carcinoma	1A	Luminal B (Her-2 Positive)
	BrCU 30	Female	55	Invasive ductal carcinoma	2A	Her-2 Positive
	BrCU 31	Female	51	–	1A	–
	BrCU 32	Female	67	Invasive ductal carcinoma	1A	Luminal B (Her-2 Negative)
	BrCU 33	Female	49	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)
	BrCU 34	Female	57	Invasive ductal carcinoma	3B	Luminal B (Her-2 Negative)
	BrCU 35	Female	72	Invasive ductal carcinoma	3B	Luminal B (Her-2 Negative)
	BrCU 36	Female	51	Invasive ductal carcinoma	2A	Triple Negative
	BrCU 37	Female	59	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 38	Female	45	Invasive lobular carcinoma	2B	Luminal B (Her-2 Negative)
	BrCU 39	Female	37	Ductal carcinoma in situ	0	–
	BrCU 40	Female	55	Invasive ductal carcinoma	4	Her-2 Positive
	BrCU 41	Female	66	Invasive ductal carcinoma	2A	Luminal A
	BrCU 42	Female	51	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)
	BrCU 43	Female	46	Invasive lobular carcinoma	1A	–
	BrCU 44	Female	62	Invasive ductal carcinoma	4	Her-2 Positive
	BrCU 45	Female	37	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 46	Female	48	Invasive ductal carcinoma	3A	Luminal B (Her-2 Negative)
	BrCU 47	Female	49	Invasive ductal carcinoma	1A	Luminal B (Her-2 Positive)
Table S1 Continued . . .

Experiment Code	Sex	Age	Histological type	Stage	Molecular subtype	
BrCU 48	Female	52	Invasive ductal carcinoma and DCIS	3A	Luminal B (Her-2 Positive)	
BrCU 49	Female	51	Invasive ductal carcinoma and DCIS	3A	Luminal B (Her-2 Positive)	
BrCU 50	Female	35	Invasive ductal carcinoma	1A	Luminal B (Her-2 Positive)	
BrCU 51	Female	60	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 52	Female	40	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)	
BrCU 53	Female	43	Invasive ductal carcinoma	3B	–	
BrCU 54	Female	37	Invasive ductal carcinoma	4	Triple Negative	
BrCU 55	Female	61	Invasive ductal carcinoma and DCIS	1A	Her-2 Positive	
BrCU 56	Female	54	Invasive ductal carcinoma	3B	Her-2 Positive	
BrCU 57	Female	48	Invasive ductal carcinoma	3C	Triple Negative	
BrCU 58	Female	35	Invasive ductal carcinoma	1A	Triple Negative	
BrCU 59	Female	34	Invasive ductal carcinoma	3A	Luminal B (Her-2 Positive)	
BrCU 60	Female	66	Invasive ductal carcinoma	3A	Luminal B (Her-2 Positive)	
BrCU 61	Female	71	Invasive ductal carcinoma	3B	Her-2 Positive	
BrCU 62	Female	66	Invasive ductal carcinoma	3A	Luminal B (Her-2 Negative)	
BrCU 63	Female	37	Invasive ductal carcinoma	1A	Luminal B (Her-2 Positive)	
BrCU 64	Female	45	Invasive ductal carcinoma	1A	Luminal B (Her-2 Positive)	
BrCU 65	Female	32	Invasive ductal carcinoma	2B	Luminal B (Her-2 Negative)	
BrCU 66	Female	53	Invasive ductal carcinoma	1A	Lumin A	
BrCU 67	Female	49	Invasive ductal carcinoma	4	Luminal B (Her-2 Negative)	
BrCU 68	Female	56	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)	
BrCU 69	Female	38	Invasive ductal carcinoma	2A	Triple Negative	
BrCU 70	Female	50	Invasive lobular carcinoma	4	Luminal B (Her-2 Negative)	
BrCU 71	Female	48	Invasive ductal carcinoma	2B	Luminal B (Her-2 Negative)	
BrCU 72	Female	31	Invasive ductal carcinoma	2B	Her-2 Positive	
BrCU 73	Female	55	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 74	Female	41	Invasive lobular carcinoma	3A	Luminal B (Her-2 Negative)	
BrCU 75	Female	52	Ductal carcinoma in situ	0	Luminal B (Her-2 Negative)	
BrCU 76	Female	43	Invasive ductal carcinoma with DCIS	3B	Triple Negative	
BrCU 77	Female	68	Invasive ductal carcinoma with DCIS	4	Luminal B (Her-2 Negative)	
BrCU 78	Female	56	Invasive ductal carcinoma	2A	Luminal B (Her-2 Positive)	
BrCU 79	Female	59	Invasive ductal carcinoma with DCIS	3A	Lumin A	
BrCU 80	Female	45	Lobular carcinoma	2B	–	
BrCU 81	Female	39	Invasive ductal carcinoma	2B	Triple Negative	
BrCU 82	Female	59	–	2B	–	
BrCU 83	Female	63	Metastatic carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 84	Female	40	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)	
BrCU 85	Female	45	Mucinous carcinoma	2A	Luminal B (Her-2 Negative)	
BrCU 86	Female	48	Invasive ductal carcinoma	3C	–	
BrCU 87	Female	55	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)	
BrCU 88	Female	69	Residual invasive ductal carcinoma with DCIS	2B	Her-2 Positive	
BrCU 89	Female	47	Invasive ductal carcinoma	3C	Triple Negative	
BrCU 90	Female	50	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)	
BrCU 91	Female	51	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 92	Female	39	Invasive ductal carcinoma with DCIS	2B	Luminal B (Her-2 Positive)	
BrCU 93	Female	45	Invasive ductal carcinoma and DCIS	3B	Luminal B (Her-2 Negative)	
BrCU 94	Female	47	Invasive ductal carcinoma	3A	Luminal B (Her-2 Positive)	
BrCU 95	Female	54	Invasive ductal carcinoma	4	Her-2 Positive	
BrCU 96	Female	51	Invasive ductal carcinoma	3C	Her-2 Positive	
BrCU 97	Female	71	Invasive ductal carcinoma	2A	Lumin A	
BrCU 98	Female	55	Intraductal carcinoma	4	–	
BrCU 99	Female	50	Invasive ductal carcinoma and DCIS	3A	Her-2 Positive	
BrCU 100	Female	58	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 101	Female	52	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 102	Female	60	Invasive ductal carcinoma	3A	Her-2 Positive	
BrCU 103	Female	55	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)	
BrCU 104	Female	70	Invasive ductal carcinoma	1A	Triple Negative	
BrCU 105	Female	45	Invasive ductal carcinoma	1A	–	
BrCU 106	Female	44	Invasive lobular carcinoma	2A	Luminal B (Her-2 Negative)	
BrCU 107	Female	53	Invasive ductal carcinoma	2B	Her-2 Positive	
BrCU 108	Female	48	–	4	–	
BrCU 109	Female	47	Invasive ductal carcinoma	3C	Triple Negative	
BrCU 110	Female	59	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)	
BrCU 111	Female	61	–	4	–	
BrCU 112	Female	48	–	2B	–	
BrCU 113	Female	48	Invasive ductal carcinoma	1A	Luminal B (Her-2 Negative)	
BrCU 114	Female	39	Invasive ductal carcinoma and DCIS	3A	Triple Negative	
BrCU 115	Female	56	Malignant phyllodes tumor	3B	–	
BrCU 116	Female	55	Invasive ductal carcinoma with DCIS	2A	Luminal B (Her-2 Positive)	
BrCU 117	Female	52	Invasive ductal carcinoma with DCIS	2B	Lumin A	
BrCU 118	Female	46	Invasive ductal carcinoma	3A	Luminal B (Her-2 Positive)	
BrCU 119	Female	41	Invasive ductal carcinoma	3B	Triple Negative	
BrCU 120	Female	42	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)	
BrCU 121	Female	38	Invasive ductal carcinoma with DCIS	2A	Luminal B (Her-2 Negative)	
BrCU 122	Female	59	Invasive ductal carcinoma	3A	Triple Negative	
BrCU 123	Female	70	Invasive ductal carcinoma	1A	Triple Negative	
BrCU 124	Female	48	Invasive ductal carcinoma	2B	–	
BrCU 125	Female	56	Invasive ductal carcinoma with DCIS	2A	Luminal B (Her-2 Positive)	
Experiment Code	Sex	Age	Histological type	Stage	Molecular subtype	
-----------------	-----	-----	-------------------	-------	-------------------	
SYBR green-based RHEB	BrCU 126	Female	53	Invasive ductal carcinoma and DCIS	2A	Luminal B (Her-2 Positive)
	BrCU 127	Female	47	Invasive ductal carcinoma with DCIS	2B	Luminal A
	BrCU 128	Female	48	Invasive ductal carcinoma	2B	Luminal A
	BrCU 129	Female	44	Invasive ductal carcinoma	3C	Luminal B (Her-2 Negative)
	BrCU 130	Female	36	Invasive ductal carcinoma and DCIS	2A	Luminal B (Her-2 Negative)
	BrCU 131	Female	47	Invasive ductal carcinoma with DCIS	4	Luminal B (Her-2 Negative)
	BrCU 132	Female	58	Invasive ductal carcinoma with DCIS	0	Luminal B (Her-2 Negative)
	BrCU 133	Female	33	Ductal carcinoma in situ	0	Luminal B (Her-2 Negative)
	BrCU 134	Female	78	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 135	Female	42	Invasive ductal carcinoma	2B	Luminal B (Her-2 Negative)
	BrCU 136	Female	41	Mucinous carcinoma	3B	Luminal B (Her-2 Negative)
	BrCU 137	Female	67	Invasive ductal carcinoma	1A	Luminal B (Her-2 Positive)
	BrCU 138	Female	61	Solid papillary carcinoma in situ	1A	Luminal B (Her-2 Positive)
	BrCU 139	Female	53	Infiltrating duct carcinoma	4	Her-2 Positive
	BrCU 140	Female	53	Invasive ductal carcinoma	3A	–
	BrCU 141	Female	47	Invasive ductal carcinoma	2B	Her-2 Positive
	BrCU 142	Female	46	Invasive ductal carcinoma	2A	–
	BrCU 143	Female	51	Invasive ductal carcinoma and DCIS	1A	–
	BrCU 144	Female	58	Invasive ductal carcinoma and DCIS	3C	–
	BrCU 145	Female	53	Invasive ductal carcinoma	3A	–
	BrCU 146	Female	36	Invasive ductal carcinoma and DCIS	3A	Luminal B (Her-2 Positive)
	BrCU 147	Female	66	Invasive ductal carcinoma	3C	Luminal B (Her-2 Positive)
	BrCU 148	Female	50	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 149	Female	55	Invasive ductal carcinoma with DCIS	1B	Her-2 Positive
	BrCU 150	Female	44	Invasive ductal carcinoma with DCIS	2B	Luminal B (Her-2 Positive)
	BrCU 151	Female	57	Ductal carcinoma in situ	0	Luminal A
	BrCU 152	Female	51	Invasive lobular carcinoma	2A	Luminal B (Her-2 Positive)
	BrCU 153	Female	47	DCIS with lobular carcinzeration	1A	Luminal B (Her-2 Positive)
	BrCU 154	Female	64	Invasive micropapillary carcinoma with invasive ductal carcinoma and DCIS	2B	Luminal B (Her-2 Positive)
	BrCU 155	Female	32	Invasive ductal carcinoma with DCIS	2A	Luminal B (Her-2 Negative)
	BrCU 156	Female	63	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 157	Female	35	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 158	Female	34	Microinvasive carcinoma and DCIS	1A	Her-2 Positive
	BrCU 159	Female	34	Invasive carcinoma of no special type with DCIS	2B	Luminal B (Her-2 Positive)
	BrCU 160	Female	60	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 161	Female	49	Invasive ductal carcinoma with extensive DCIS	2A	Luminal B (Her-2 Positive)
	BrCU 162	Female	36	Ductal carcinoma in situ	0	Luminal B (Her-2 Positive)
	BrCU 163	Female	67	Mucinous carcinoma	1A	Luminal B (Her-2 Positive)
	BrCU 164	Female	60	Metaplastic carcinoma with chondroid differentiation	2A	Her-2 Positive
	BrCU 165	Female	55	Invasive ductal carcinoma and DCIS	2A	Luminal B (Her-2 Positive)
	BrCU 166	Female	47	Mixed invasive ductal carcinoma and mucinous carcinoma	3B	Luminal B (Her-2 Positive)
	BrCU 167	Female	53	Invasive ductal carcinoma	3A	Her-2 Positive
	BrCU 168	Female	66	Ductal carcinoma in situ	0	Her-2 Positive
	BrCU 169	Female	60	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 170	Female	46	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 171	Female	59	Invasive carcinoma of no special type	1A	Luminal B (Her-2 Positive)
	BrCU 172	Female	45	Invasive carcinoma of no special type	2B	Luminal B (Her-2 Negative)
	BrCU 173	Female	43	Infiltrating ductal carcinoma	2A	–
	BrCU 174	Female	60	Ductal carcinoma in situ	1A	Luminal B (Her-2 Positive)
	BrCU 175	Female	53	Ductal carcinoma in situ	0	Her-2 Positive
	BrCU 176	Female	56	Invasive ductal carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 177	Female	45	Invasive ductal carcinoma	2A	Luminal B (Her-2 Positive)
	BrCU 178	Female	39	Invasive ductal carcinoma	2A	Luminal B (Her-2 Positive)
	BrCU 179	Female	48	Invasive ductal carcinoma	3B	Triple Negative
	BrCU 180	Female	42	Invasive ductal carcinoma and DCIS	2B	Triple Negative
	BrCU 181	Female	45	Invasive ductal carcinoma	2A	Her-2 Positive
	BrCU 182	Female	71	Invasive ductal carcinoma	3B	Her-2 Positive
	BrCU 183	Female	49	Invasive ductal carcinoma	3B	Luminal B (Her-2 Positive)
	BrCU 184	Female	65	Invasive lobular carcinoma	2A	Luminal A
	BrCU 185	Female	38	Ductal carcinoma in situ	0	Luminal A or B
	BrCU 186	Female	62	Fibroadenoma	1A	Luminal B (Her-2 Negative)
	BrCU 187	Female	26	Invasive ductal carcinoma and DCIS	2A	Luminal B (Her-2 Positive)
	BrCU 188	Female	66	Invasive ductal carcinoma	3A	Her-2 Positive
	BrCU 189	Female	51	Invasive ductal carcinoma	4	Luminal A or B
	BrCU 190	Female	59	Ductal carcinoma in situ	0	Luminal A or B
	BrCU 191	Female	64	Invasive ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 192	Female	46	Invasive mammary carcinoma	4	Luminal B (Her-2 Positive)
	BrCU 193	Female	40	Invasive ductal carcinoma and DCIS	1A	Luminal B (Her-2 Positive)
	BrCU 194	Female	48	Invasive ductal carcinoma with extensive DCIS	4	Luminal A
	BrCU 195	Female	52	Residual invasive ductal carcinoma and intraductal carcinoma	2A	Luminal B (Her-2 Positive)
	BrCU 196	Female	26	Invasive ductal carcinoma with DCIS	3C	Luminal B (Her-2 Negative)
	BrCU 197	Female	32	Infiltrating ductal carcinoma	2B	Luminal B (Her-2 Positive)
	BrCU 198	Female	34	Invasive ductal carcinoma	2A	Luminal B (Her-2 Negative)
	BrCU 199	Female	58	Invasive papillary carcinoma	1A	Luminal B (Her-2 Positive)
	BrCU 200	Female	65	–	1A	–
Table S2 Primer sequences, annealing temperatures and PCR product sizes of all 6 methylated CpG sites in 3 genes.

Gene	CpG sites	Primer	Primer sequence (5′–3′)	Annealing temp. (°C)	Product size (bp)
NINL	cg09088834 methylated	Forward:	GGGTATTAGTATTTAGGTACGATC	53	65
		Reward:	ACCATATAAAAATCTCTAATCGCG		
	unmethylated	Forward:	ATGGGGTATTAGTATTTAGGTATGATT	53	71
		Reward:	CACACCATAAAAAATCTCTAATCGCACA		
	cg17729667 methylated	Forward:	CGGTTTTCGTAAATTTAGGGC	58	86
		Reward:	ACTCCGACAAAAACCAACG		
	unmethylated	Forward:	AAGGTGTTTTTTGTAATTTTAGGGT	58	94
		Reward:	CAAAAACTCCCAACAAAAACCAACA		
GPR39	cg07785936 methylated	Forward:	GTTTTTTTTATGGTTTTATTTAGTTTTCC	58	92
		Reward:	AAATAACCACCTCAAACTCG		
	unmethylated	Forward:	GGTGTTTTTTTTTATGGTTTTATTTAGTTTTCT	58	97
		Reward:	CCAAATAACCACCTCAAAACTCA		
	cg24659201 methylated	Forward:	GGTGATTTTTGAGTAGC	58	56
		Reward:	TACCAAAAACAACTAAACTCTACG		
	unmethylated	Forward:	GGGTTTGATTTTTGAGTATGTTTATTTT	58	62
		Reward:	ATATTTCCAACAAAAACCAACTAAACTCA		
RHEB	cg03998173 methylated	Forward:	CGTTAGTTTTTGCTTGCATTTC	58	62
		Reward:	CGACGCTATTTCCCAAAATACG		
	unmethylated	Forward:	GTTTTGTTAGTTTTTGCTTTGTTTTTTT	58	69
		Reward:	CCCCAACACTTTCCAACAAAAATACG		
	cg21134096 methylated	Forward:	GTGGGTTGAGTATGAGATTTCGTC	56	51
		Reward:	AACAAAAAAACAGAATTTCCCCG		
	unmethylated	Forward:	GTATTTGTTGAGTATGAGATTTTTTTGT	56	61
		Reward:	CCTAAACAAAAATAAAAACAAATTCCTCCA		