On almost \((m, n)\)-ideals and fuzzy almost \((m, n)\)-ideals in semigroups

Sudaporn Suebsung\(^a\), Khwancheewa Wattanatripop\(^b\) and Ronnason Chinram\(^\circ\)^a

\(^a\)Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; \(^b\)Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

ABSTRACT

In this paper, we define almost \((m, n)\)-ideals of semigroups by using the concepts of \((m, n)\)-ideals and almost ideals of semigroups. An almost \((m, n)\)-ideal is a generalization of \((m, n)\)-ideals and a generalization of almost one-sided ideals. We investigate properties of almost \((m, n)\)-ideals of semigroups. Moreover, we define fuzzy almost \((m, n)\)-ideals of semigroups and give relationships between almost \((m, n)\)-ideals and fuzzy almost \((m, n)\)-ideals.

1. Introduction and preliminaries

This notion of \((m, n)\)-ideals of semigroups was first introduced and studied by Lajos in [1]. He investigated remarkable properties of \((m, n)\)-ideals of semigroups in [2–6]. Let \(m \) and \(n \) be non-negative integers. A sub-semigroup \(A \) of a semigroup \(S \) is called an \((m, n)\)-ideal of \(S \) if \(A^{m+n} \subseteq A \). Note that a left ideal of a semigroup \(S \) is a \((0, 1)\)-ideal of \(S \) and a right ideal of \(S \) is a \((1,0)\)-ideal of \(S \). An \((m, n)\)-ideal is a one of generalizations of one-sided ideals. Furthermore, the theory of \((m, n)\)-ideals in other structures have also been studied by many authors, for example, \((m, n)\)-ideals in ordered semigroups were studied by Bussaban and Changphas in [7] and in LA-semigroups were studied by Akram et al. in [8], etc. In [9], Omidi and Davaz defined \((m, n)\)-hyperideals and \((m, n)\)-bi-hyperideals in ordered semihyperrings and investigate some of their related properties. Recently, Khan and Mahboob characterized \((m, n)\)-filters of \((m, n)\)-regular ordered semigroups in terms of its prime generalized \((m, n)\)-ideals in [10].

In 1965, Zadeh introduced the fundamental fuzzy set concept in [11]. Since then, fuzzy sets are now applied in various fields. A fuzzy subset of \(S \) is a function from \(S \) into the closed interval \([0, 1]\). For any two fuzzy subsets \(f \) and \(g \) of \(S \),

\[f \cap g \text{ is a fuzzy subset of } S \text{ defined by } \]

\[(f \cap g)(x) = \min\{f(x), g(x)\} = f(x) \wedge g(x) \]

for all \(x \in S \),

\[f \cup g \text{ is a fuzzy subset of } S \text{ defined by } \]

\[(f \cup g)(x) = \max\{f(x), g(x)\} = f(x) \lor g(x) \]

for all \(x \in S \) and

\[f \subseteq g \text{ if } f(x) \leq g(x) \text{ for all } x \in S. \]

For a fuzzy subset \(f \) of \(S \), the support of \(f \) is defined by

\[\text{supp}(f) = \{x \in S \mid f(x) \neq 0\}. \]

The characteristic mapping of a subset \(A \) of \(S \) is a fuzzy subset of \(S \) defined by

\[C_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases} \]

The definition of fuzzy points was given by Pu and Liu [12]. For \(x \in S \) and \(\alpha \in (0, 1) \), a fuzzy point \(x_\alpha \) of a set \(S \) is a fuzzy subset of a set \(S \) defined by

\[x_\alpha(y) = \begin{cases} \alpha, & y = x, \\ 0, & y \neq x. \end{cases} \]

Some interesting topics of fuzzy points were studied in [13–15]. Let \(F(S)\) be the set of all fuzzy subsets in a semigroup \(S\). The semigroup \(S\) itself is a fuzzy subset of \(S\) such that \(S(x) = 1\) for all \(x \in S\), denoted also by \(S\). For each \(f, g \in F(S)\), the product of \(f\) and \(g\) is a fuzzy subset \(f \circ g\).
almost ideals of semigroups were launched in 1980 by Grosek and Satko [16]. They characterized these ideals when a semigroup S contains no proper left, right, two-sided almost ideals in [16], and afterwards they discovered minimal almost ideals and smallest almost ideals of semigroups in [17,18], respectively. A nonempty subset A of a semigroup S is called a left almost ideal of S if $SA \cap A \neq \emptyset$ for any $s \in S$. A right almost ideal of a semigroup S is defined analogously. A nonempty subset A of a semigroup S is called an almost ideal of S if $SA \cap A \neq \emptyset$ and $At \cap A \neq \emptyset$ for all $s,t \in S$. In 1981, Bogdanovic [19] introduced the notion of almost bi-ideals in semigroups by using the concepts of almost ideals and bi-ideals of semigroups. Likewise, Wattanatripop, Chinram and Changphas examined quasi-almost-ideals of bi-ideals of semigroups. Likewise, Wattanatripop, Chinram and Changphas examined quasi-almost-ideals of bi-ideals of semigroups and gave properties of quasi-almost-ideals in [20]. Furthermore, they defined fuzzy almost ideals of semigroups in [20] and fuzzy almost bi-ideals of semigroups in [21] and provided relationship between almost ideals and fuzzy almost ideals of semigroups. Recently, Gaketem generalized results in [21] to study interval-valued fuzzy almost bi-ideals of semigroups in [22]. In [23], Solano, Suebsung and Chinram extended this idea to study almost ideals of n-ary semigroups.

Our purpose of this paper is to define the notion of almost (m,n)-ideals of semigroups by using the concepts of (m,n)-ideals and almost ideals of semigroups and study them. Moreover, we define the notion of fuzzy almost (m,n)-ideals of semigroups and give relationships between almost (m,n)-ideals and fuzzy almost (m,n)-ideals of semigroups.

2. Almost (m,n)-ideals

Let m and n be non-negative integers. Let A be a non-empty subset of a semigroup S and $s \in S$. Note that $A^0 := \{s\}$. For $k \in \mathbb{N}$, let $A^k := A^k s$ and $A^k Sa := s^k A$. Firstly, we define an almost (m,n)-ideal of semigroup by using the concepts of (m,n)-ideals defined in [1] and almost ideals of semigroups defined in [16].

Definition 2.1: Let S be a semigroup. A non-empty subset A of S is called an almost (m,n)-ideal of S if

$$A^m Sa^n \cap A \neq \emptyset$$

for all $s \in S$.

Remark 2.1: The following statements hold.

1. An almost $(1,0)$-ideal of a semigroup S is a right almost ideal of S defined in [15].
2. An almost $(0,1)$-ideal of a semigroup S is a left almost ideal of S defined in [15].
3. Every (m,n)-ideal of a semigroup S is an almost (m,n)-ideal of S.
4. Consider the semigroup \mathbb{Z}_6 under the usual addition. We have $A = \{1,4,5\}$ is an $(1,0)$-ideal of \mathbb{Z}_6 but A is not a subsemigroup of \mathbb{Z}_6. Therefore, an almost (m,n)-ideal of a semigroup S need not be a subsemigroup of S and need not be an (m,n)-ideal of S.

Proposition 2.2: If A is an almost (m,n)-ideal of a semigroup S, then every subset H of S such that $A \subseteq H$ is an almost (m,n)-ideal of S.

Proof: Assume that A is an almost (m,n)-ideal of S and H is a subset of S with $A \subseteq H$. Then $H \neq A^m Sa^n \cap A \subseteq H^m Sa^n \cap H$ for all $s \in S$. Therefore H is an almost (m,n)-ideal of S.

Corollary 2.3: The union of two almost (m,n)-ideals of a semigroup S is an almost (m,n)-ideal of S.

Proof: Let A_1 and A_2 be any two almost (m,n)-ideals of S. Then $A_1 \subseteq A_1 \cup A_2$. By Proposition 2.2, $A_1 \cup A_2$ is an almost (m,n)-ideal of S.

Note that in the proof of Corollary 2.3 is true if A_1 or A_2 is an almost (m,n)-ideal of S.

Example 2.4: Consider the semigroup \mathbb{Z}_6 under the usual addition. We have $A_1 = \{1,4,5\}$ and $A_2 = \{1,2,5\}$ are almost $(1,0)$-ideals of \mathbb{Z}_6 but $A_1 \cap A_2 = \{1,5\}$ is not an almost $(1,0)$-ideal of S.

Example 2.4 implies that, in general, the intersection of two almost (m,n)-ideals of a semigroup S need not be an almost (m,n)-ideal of S.

Theorem 2.5: Let S be a semigroup such that $|S| > 1$. A semigroup S has no proper almost (m,n)-ideal if and only if for any $a \in S$ there exists $s_a \in S$ such that $(S \setminus \{a\})^m s_a (S \setminus \{a\})^n = \{a\}$.

Proof: Assume that S has no proper almost (m,n)-ideal and let $a \in S$. Then $S \setminus \{a\}$ is not an almost (m,n)-ideal of S. Then there exists $s_a \in S$ such that $((S \setminus \{a\})^m s_a (S \setminus \{a\})^n) \cap (S \setminus \{a\}) = \emptyset$. This implies that $(S \setminus \{a\})^m s_a (S \setminus \{a\})^n = \{a\}$. Conversely, let $a \in S$. Then there exists $s_a \in S$ such that

$$(S \setminus \{a\})^m s_a (S \setminus \{a\})^n = \{a\}.$$
Then $B \subseteq S \setminus \{a'\}$ for some $a' \in S$. By Theorem 2.2, $S \setminus \{a'\}$ is also an almost (m, n)-ideal of S, this is contradiction. Therefore S has no proper almost (m, n)-ideal. ■

Theorem 2.6: Let S be a semigroup such that $|S| > 1$ and $a \in S$. If $S \setminus \{a\}$ is not an almost (m, n)-ideal of S, then at least one of them is true.

1. $a = a^{m+n+1}$.
2. $a = a^{(m+n)^3+1}$.
3. $a = a^{(m+n+1)^{m+n}+1}$.

Proof: Assume that $S \setminus \{a\}$ is not an almost (m, n)-ideal of S. Then there exists $s_a \in S$ such that $[(S \setminus \{a\})^m s_a (S \setminus \{a\})^n] \cap (S \setminus \{a\}) = \emptyset$.

Case 1: $s_a \neq a$. Then $s_a \in S \setminus \{a\}$. This implies that $(s_a)^n s_a = s_a = a$. So $a = (s_a)^{m+n+1}$. Suppose that $a \neq a^{m+n+1}$. Then $a^{m+n+1} \in S \setminus \{a\}$, so $(a^{m+n+1})^m s_a (a^{m+n+1})^n = a$. Hence $a = (a^{m+n+1})^{m+n} s_a$.

Case 1.1: If $a^{(m+n)^2} s_a = a$, then

$$a = (a^{m+n+1})^{m+n} s_a = a^{m+n+1} + n s_a = a^{m+n+1}$$

which is a contradiction.

Case 1.2: If $a^{(m+n)^2} s_a \neq a$, then $a^{(m+n)^2} s_a \in S \setminus \{a\}$.

Thus

$$(a^{(m+n)^2} s_a) s_a (a^{(m+n)^2} s_a) = a.$$

This implies that

$$a = (s_a)^{m+n+1} a^{(m+n)^3} = a^{m+n+1+3}.$$

Case 2: $s_a = a$. Suppose that $a \neq a^{m+n+1}$. Then $a^{m+n+1} \in S \setminus \{a\}$. So $(a^{m+n+1})^m s_a (a^{m+n+1})^n = a$. Therefore,

$$a = (a^{m+n+1})^m a (a^{m+n+1})^n = a^{m+n+1+1}.$$

Proposition 3.1: Let f, g and h be fuzzy subsets of S.

1. If $f \subseteq g$, then $f^n \subseteq g^n$ for all $n \in \mathbb{N} \cup \{0\}$.
2. If $f \subseteq g$, then $f \circ h \subseteq g \circ h$.
3. If $f \subseteq g$, then $f \cap h \subseteq g \cap h$.

Proof: The proof is straightforward. ■

Definition 3.2: A fuzzy subset f of a semigroup S is called a fuzzy almost (m, n)-ideal of S if

$$(f^m \circ (x)_{\alpha} \circ f^n) \cap f \neq 0$$

for all fuzzy point $(x)_{\alpha}$ of S.

This implies that f is a fuzzy almost (m, n)-ideal of S if for all fuzzy point $(x)_{\alpha}$ of S, there exists $y \in S$ such that $[(f^m \circ (x)_{\alpha} \circ f^n) \cap f](y) \neq 0$.

Proposition 3.3: Let f be a fuzzy almost (m, n)-ideal of S and g be a fuzzy subset of S such that $f \subseteq g$. Then g is a fuzzy almost (m, n)-ideal of S.

Proof: Assume that f is a fuzzy almost (m, n)-ideal of S and g is a fuzzy subset of S such that $f \subseteq g$. Let $(x)_{\alpha}$ be a fuzzy point in S. We have

$$0 \neq (f^m \circ (x)_{\alpha} \circ f^n) \cap f \subseteq (g^m \circ (x)_{\alpha} \circ g^n) \cap g.$$

Therefore, g is a fuzzy almost (m, n)-ideal of S. ■

Corollary 3.4: Let f and g be fuzzy almost (m, n)-ideals of S. Then $f \cup g$ is a fuzzy almost (m, n)-ideal of S.

Proof: Since $f \subseteq g \cup f$, by Proposition 3.3, $f \cup g$ is a fuzzy almost (m, n)-ideal of S.

Note that in the proof of Corollary 3.4 it is true if f or g is a fuzzy almost (m, n)-ideal of S.

Example 3.5: Consider $n = 1, m = 0$ and the semigroup \mathbb{Z}_6 under the usual addition $f : \mathbb{Z}_6 \rightarrow [0, 1]$ is defined by

$$f(0) = 0, \quad f(1) = 0.2, \quad f(2) = 0, \quad f(3) = 0,$$

$$f(4) = 0.5, \quad f(5) = 0.3$$

and $g : \mathbb{Z}_6 \rightarrow [0, 1]$ defined by

$$g(0) = 0, \quad g(1) = 0.8, \quad g(2) = 0.4, \quad g(3) = 0,$$

$$g(4) = 0, \quad g(5) = 0.3.$$

We have f and g are fuzzy almost $(1, 0)$-ideals of \mathbb{Z}_6 but $f \cap g$ is not a fuzzy almost $(1, 0)$-ideal of \mathbb{Z}_6.

Example 3.5 implies that, in general, the intersection of two fuzzy almost (m, n)-ideals of S need not be a fuzzy almost (m, n)-ideal of S.
Note that for a subset A of S, define $A^0 := S$.

Lemma 3.6: Let A be a subset of S and $n \in \mathbb{N} \cup \{0\}$. Then $(CA)^n = CA^n$.

Proof: The proof is straightforward. ■

Theorem 3.7: Let A be a nonempty subset of a semigroup S. Then A is an almost (m, n)-ideal of S if and only if CA is a fuzzy almost (m, n)-ideal of S.

Proof: Assume that A is an almost (m, n)-ideal of S. Then $A^n s A^n \cap A \neq \emptyset$ for all $s \in S$. Let $s \in S$ and $\alpha \in (0, 1]$. Thus there exists $x \in A^n s A^n \cap A$. So

$$[(CA)^n \circ (s)_\alpha \circ CA^n] \cap CA(x) \neq 0.$$ By Lemma 3.6, we have

$$[[CA]] \circ (s)_\alpha \circ CA^n \cap CA(x) \neq 0.$$

Hence, CA is a fuzzy almost (m, n)-ideal of S.

Conversely, assume that CA is a fuzzy almost (m, n)-ideal of S. Let $s \in S$ and $\alpha \in (0, 1]$. Thus

$$[(CA)^m \circ (s)_\alpha \circ CA^n] \cap CA(x) \neq 0.$$

Then there exists $x \in S$ such that

$$[[CA]] \circ (s)_\alpha \circ CA^n \cap CA(x) \neq 0.$$

By Lemma 3.6, we have

$$[(CA)^m \circ (s)_\alpha \circ CA^n] \cap CA(x) \neq 0.$$

Hence, $x \in A^n s A^n \cap A$. Eventually, $A^n s A^n \cap A \neq \emptyset$. ■

Theorem 3.8: Let f be a fuzzy subset of S. Then f is a fuzzy almost (m, n)-ideal of S if and only if $\text{supp}(f)$ is an almost (m, n)-ideal of S.

Proof: Assume that f is a fuzzy almost (m, n)-ideal of S. Let $x \in S$. Then for any $\alpha \in (0, 1]$, we have

$$(f^n \circ (x)_\alpha \circ f^n) \cap f \neq 0.$$ Thus, there exists $y \in S$ such that

$$[(f^n \circ (x)_\alpha \circ f^n) \cap f] (y) \neq 0.$$ So, $f(y) \neq 0$ and

$$y = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

for some $a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_n \in S$ such that

$$f(a_1) \neq 0, \ f(a_2) \neq 0, \ldots, f(a_m) \neq 0, \ f(b_1) \neq 0, \ f(b_2) \neq 0, \ldots, f(b_n) \neq 0.$$ This implies that $a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_n, y \in \text{supp}(f)$.

Thus,

$$[(\text{supp}(f))^n \circ (x)_\alpha \circ (\text{supp}(f))^n] (y) \neq 0$$

and $\text{supp}(f) \neq 0$. Hence,

$$[(\text{supp}(f))^m \circ (x)_\alpha \circ (\text{supp}(f))^n \cap \text{supp}(f)] (y) \neq 0.$$ So, $\text{supp}(f)$ is a fuzzy almost (m, n)-ideal of S. By Theorem 3.7, $\text{supp}(f)$ is an almost (m, n)-ideal of S.

Conversely, assume that $\text{supp}(f)$ is an almost (m, n)-ideal of S. By Theorem 3.7, $\text{supp}(f)$ is a fuzzy almost (m, n)-ideal of S. Let $(x)_\alpha$ be a fuzzy point in S. Then

$$[((\text{supp}(f))^m \circ (x)_\alpha \circ (\text{supp}(f))^n \cap \text{supp}(f)] (y) \neq 0.$$ Then there exists $y \in S$ such that

$$[((\text{supp}(f))^m \circ (x)_\alpha \circ (\text{supp}(f))^n \cap \text{supp}(f)] (y) \neq 0.$$ Hence,

$$(\text{supp}(f))^m \circ (x)_\alpha \circ (\text{supp}(f))^n (y) \neq 0$$

and $\text{supp}(f) (y) \neq 0$. Then there exist $a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_n \in \text{supp}(f)$ and $y = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$. Thus

$$f(y) \neq 0, \ f(a_1) \neq 0, \ f(a_2) \neq 0, \ldots, f(a_m) \neq 0, \ f(b_1) \neq 0, \ f(b_2) \neq 0, \ldots, f(b_n) \neq 0.$$ Therefore,

$$f^n \circ (x)_\alpha \circ f^n \neq 0.$$ This implies that

$$[(f^n \circ (x)_\alpha \circ f^n) \cap f] (y) \neq 0.$$ Consequently, f is a fuzzy almost (m, n)-ideal of S. ■

3.1. Minimal almost (m, n)-ideals and minimal fuzzy almost (m, n)-ideals

In this subsection, we give relationship between minimal almost (m, n)-ideals and minimal fuzzy almost (m, n)-ideals.

Definition 3.9: A fuzzy almost (m, n)-ideal f is called minimal if for all nonzero fuzzy almost (m, n)-ideals g of S such that $g \subseteq f$, we have $\text{supp}(f) = \text{supp}(g)$.

Theorem 3.10: Let S be a non-empty subset of a semigroup S. Then A is a minimal almost (m, n)-ideal of S if and only if CA is a minimal fuzzy almost (m, n)-ideal of S.

Proof: Assume that A is a minimal almost (m, n)-ideal of S. By Theorem 3.7, CA is a fuzzy almost (m, n)-ideal of S. Let f be a fuzzy almost (m, n)-ideal of S such that $f \subseteq CA$. Then $\text{supp}(f) \subseteq \text{supp}(CA) = A$. By Theorem 3.8, $\text{supp}(f)$ is an almost (m, n)-ideal of S. Since A is minimal, $\text{supp}(f) = A = \text{supp}(CA)$. Therefore, CA is minimal.

Conversely, assume that CA is a minimal fuzzy almost (m, n)-ideal of S. Let B be an almost (m, n)-ideal of S such that $B \subseteq A$. Then B is a fuzzy almost (m, n)-ideal of S such that $B \subseteq CA$. Hence, $B = \text{supp}(CB) = \text{supp}(CA) = A$. Therefore, A is minimal. ■

Corollary 3.11: S has no proper almost (m, n)-ideal if and only if for all fuzzy almost (m, n)-ideals f of S, $\text{supp}(f) = S$.

Proof: This follows by Theorem 3.10. ■
3.2. Prime almost \((m, n)\)-ideals and prime fuzzy almost \((m, n)\)-ideals

In this subsection, we give relationship between prime almost \((m, n)\)-ideals and prime fuzzy almost \((m, n)\)-ideals.

Definition 3.12: Let \(S\) be a semigroup.

(1) An almost \((m, n)\)-ideal \(A\) of \(S\) is called prime if for all \(x, y \in S\), \(xy \in A\) implies \(x \in A\) or \(y \in A\).

(2) A fuzzy almost \((m, n)\)-ideal \(A\) of \(S\) is called prime if for all \(x, y \in S\), \(f(xy) \leq \max(f(x), f(y))\).

Theorem 3.13: Let \(A\) be a non-empty subset of \(S\). Then \(A\) is a prime almost \((m, n)\)-ideal of \(S\) if and only if \(CA\) is a prime fuzzy almost \((m, n)\)-ideal of \(S\).

Proof: Assume that \(A\) is a prime almost \((m, n)\)-ideal of \(S\). By Theorem 3.7, \(CA\) is a fuzzy almost \((m, n)\)-ideal of \(S\).

Let \(x, y \in S\). We consider two cases:

Case 1: \(xy \in A\). So, \(x \in A\) and \(y \in A\). Then \(\max(C_A(x), C_A(y)) = 1 \geq C_A(xy)\).

Case 2: \(xy \notin A\). Then \(C_A(xy) = 0 \leq \max(C_A(x), C_A(y))\).

Thus, \(CA\) is a prime fuzzy almost \((m, n)\)-ideal of \(S\).

Conversely, assume that \(CA\) is a prime fuzzy almost \((m, n)\)-ideal of \(S\). By Theorem 3.7, \(A\) is an almost \((m, n)\)-ideal of \(S\). Let \(x, y \in S\) such that \(xy \in A\). Then \(C_A(xy) = 1\). By assumption, \(C_A(xy) \leq \max(C_A(x), C_A(y))\). Therefore, \(\max(C_A(x), C_A(y)) = 1\). Hence, \(x \in A\) or \(y \in A\). Thus, \(A\) is a prime almost \((m, n)\)-ideal of \(S\).

3.3. Semiprime almost \((m, n)\)-ideals and semiprime fuzzy almost \((m, n)\)-ideals

In this subsection, we give relationship between semiprime almost \((m, n)\)-ideals and semiprime fuzzy almost \((m, n)\)-ideals.

Definition 3.14: Let \(S\) be a semigroup.

(1) An almost \((m, n)\)-ideal \(A\) of \(S\) is called semiprime if for all \(x \in S\), \(x^2 \in A\) implies \(x \in A\).

(2) A fuzzy almost \((m, n)\)-ideal \(f\) is called semiprime if for all \(x \in S\), \(f(x^2) \leq f(x)\).

Theorem 3.15: Let \(A\) be a non-empty subset of \(S\). Then \(A\) is a semiprime almost \((m, n)\)-ideal of \(S\) if and only if \(CA\) is a semiprime fuzzy almost \((m, n)\)-ideal of \(S\).

Proof: Assume that \(A\) is a semiprime almost \((m, n)\)-ideal of \(S\). By Theorem 3.7, \(CA\) is a semiprime fuzzy almost \((m, n)\)-ideal of \(S\). Let \(x \in S\) such that \(x^2 \in A\). Then \(C_A(x^2) = 1\). By assumption, \(C_A(x^2) \leq C_A(x)\). Since \(C_A(x) = 1\), \(C_A(x^2) = 1\). Hence, \(x \in A\). Thus, \(A\) is a semiprime almost \((m, n)\)-ideal of \(S\).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This paper was supported by Algebra and Applications Research Unit, Prince of Songkla University.

ORCID

Ronnason Chinram
http://orcid.org/0000-0002-6113-3689

References

[1] Lajos S. On \((m, n)\)-ideals of semigroups. Abstracts of Second Hungar Math Congress I. 1960. p. 42–44.

[2] Lajos S. Generalized ideals in semigroups. Acta Sci Math. 1961;22:217–222.

[3] Lajos S. Notes on \((m, n)\)-ideals I. Proc Japan Acad. 1963;39:419–421.

[4] Lajos S. Notes on \((m, n)\)-ideals II. Proc Japan Acad. 1964;40:631–632.

[5] Lajos S. Notes on \((m, n)\)-ideals III. Proc Japan Acad. 1965;41:383–385.

[6] Lajos S. On \((m, n)\)-ideals in regular duo semigroups. Acta Sci Math (Szeged). 1970;31:179–180.

[7] Bussaban L, Changphas T. On \((m, n)\)-ideals on \((m, n)\)-regular ordered semigroups. Songkla university J Sci Tech. 2016;38(2):199–206.

[8] Akram M, Yaqoob N, Khan M. On \((m, n)\)-ideals in LA-semigroups. Appl Math Sci. 2013;7(44):2187–2191.

[9] Omidi S, Davvaz B. Contribution to study special kinds of hyperideals in ordered semihyperrings. J Taibah Univ Sci. 2017;11(6):1083–1094.

[10] Khan NM, Mahboob A. Left-\(m\)-filter, right-\(n\)-filter and \((m, n)\)-filter on ordered semifield semigroup. J Taibah Univ Sci. 2019;13(1):27–31.

[11] Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–353.

[12] Pu PM, Liu YM. Fuzzy topology. J Math Anal Appl. 1980;76:571–599.

[13] Hamouda EH. On some ideals of fuzzy points semigroups. Gen Math Notes. 2013;17:76–80.

[14] Kim KH. On fuzzy points in semigroups. Int J Math Sci. 2001;26:707–712.

[15] Solano JPF, Suesbsung S, Chinram R. On ideals of fuzzy points \(n\)-ary semigroups. Int J Math Comput Sci. 2018;13(2):179–186.

[16] Grosek O, Satko L. A new notion in the theory of semigroup. Semigroup Forum. 1980;20:233–240.

[17] Grosek O, Satko L. On minimal \(A\)-ideals of semigroups. Semigroup Forum. 1981;23:283–295.

[18] Grosek O, Satko L. Smallest \(A\)-ideals in semigroups. Semigroup Forum. 1981;23:297–309.

[19] Bogdanovic S. Semigroups in which some bi-ideal is a group. Rev Res Sci Fac Univ Novi Sad. 1981;11:261–266.
[20] Wattanatripop K, Chinram R, Changphas T. Quasi-A-ideals and fuzzy A-ideals in semigroups. J Discrete Math Sci Cryptogr. 2018;21(5):1131–1138.

[21] Wattanatripop K, Chinram R, Changphas T. Fuzzy almost bi-ideals in semigroups. Int J Math Comput Sci. 2018;13(1):51–58.

[22] Gaketem T. Interval valued fuzzy almost bi-ideals in semigroups. JP J Algebra Number Theory Appl. 2019;41(2):245–252.

[23] Solano JPF, Suebsung S, Chinram R. On almost i-ideals and fuzzy almost i-ideals in n-ary semigroups. JP J Algebra Number Theory Appl. 2018;40(5):833–842.