Accurate Excited-State Geometries: a CASPT2 and Coupled-Cluster Reference Database for Small Molecules: SI

Šimon Budzák,† Giovanni Scalmani,‡ and Denis Jacquemin*,¶,§

†Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic
‡Gaussian Inc, 340 Quinnipiac St,Bldg 40, Wallingford, CT 06492 USA.
¶Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
§Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5, France

E-mail: Denis.Jacquemin@univ-nantes.fr

This SI contains GS and ES geometrical parameters for all considered levels of theory and provides comparison with previous theoretical and/or experimental works when possible. Note that we do not intend to list all previous theoretical works and generally limit ourselves to the most recent/highest level results published previously. For all molecules, we provide the Cartesian coordinates with the “best” level of theory that was accessible. We also give the EOM-CCSD/def²-TZVPP Cartesian coordinates as this stands as the highest level of theory for which frequency calculations were performed. For all (EOM-)CCSD/def²-TZVPP structures, we have reported the T_1 diagnostic computed on the GS CCSD wavefunction.
Acetylene

Table S1: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE).

Method	State	PG	ZPVE	C≡C	C-H	C≡C-H	Ref.
ADC(2)/def2-TZVPP	GS	D∞h	0.026789	1.209	1.059	180.0	This work
	ES (A_u)	C_2h	0.022922	1.373	1.090	122.0	
	∆		-0.105	0.164	0.031	-58.0	
	ES (B_u)	C_2h	0.020753\(^a\)	1.335	1.072	140.0	
	∆		-0.164	0.126	0.013	-31.0	
	ES (A_2)	C_2v	0.022448	1.351	1.092	131.8	
	∆		-0.118	0.142	0.033	-48.2	
ADC(2)/aug-cc-pVTZ	GS	D∞h	1.206	1.058	180.0		
	ES (A_u)	C_2h	1.369	1.086	122.1		
	∆		0.022922	0.028	-57.9		
	ES (B_u)	C_2h	1.330	1.068	150.5		
	∆		0.124	0.010	-29.5		
	ES (A_2)	C_2v	1.345	1.087	132.1		
	∆		0.139	0.030	-47.9		
CC2/def2-TZVPP	GS	D∞h	0.026498	1.214	1.060	180.0	This work
	ES (A_u)	C_2h	1.377	1.086	124.0		
	∆		0.022922	0.030	-55.9		
	ES (B_u)	C_2h	1.333	1.068	150.5		
	∆		0.120	0.012	-29.5		
	ES (A_2)	C_2v	1.349	1.088	135.0		
	∆		0.136	0.032	-47.8		
CC2/aug-cc-pVTZ	GS	D∞h	1.213	1.056	180.0		
	ES (A_u)	C_2h	1.377	1.086	122.0		
	∆		0.022922	0.032	-49.1		
	ES (B_u)	C_2h	1.333	1.068	150.5		
	∆		0.120	0.012	-29.5		
	ES (A_2)	C_2v	1.349	1.088	135.0		
	∆		0.136	0.032	-47.8		
CCSD/def2-TZVPP	GS	D∞h	0.027114	1.201	1.060	180.0	This work
	ES (A_u)	C_2h	1.372	1.094	122.2		
	∆		0.022922	0.032	-49.1		
	ES (B_u)	C_2h	1.333	1.076	148.3		
	∆		0.126	0.014	-31.7		
	ES (A_2)	C_2v	1.342	1.098	132.0		
	∆		0.135	0.036	-48.0		
CCSD/aug-cc-pVTZ	GS	D∞h	1.207	1.062	180.0		
	ES (A_u)	C_2h	1.372	1.094	122.2	This work	
	∆		0.022922	0.032	-49.1		
	ES (B_u)	C_2h	1.333	1.076	148.3		
	∆		0.126	0.014	-31.7		
	ES (A_2)	C_2v	1.342	1.098	132.0		
	∆		0.135	0.036	-48.0		

\(^a\)Gives an imaginary frequency.
Continuation of Table S1

Method	State	PG	ZPVE	C=CC	C-H	C=CC-H	Ref.
CC3/def2-TZVPP	GS	D_{∞}	1.208	1.062	180.0	This work	
	ES (Au) C$_{2h}$		1.376	1.095	122.1		
	Δ		0.168	0.033	-57.9		
	ES (Bu) C$_{2h}$		1.337	1.076	148.1		
	Δ		0.129	0.014	-31.9		
	ES (A$_2$) C$_{2v}$		1.345	1.097	132.5		
	Δ		0.137	0.035	-47.5		
CC3/aug-cc-pVTZ	GS	D_{∞}	1.207	1.058	180.0	This work	
	ES (Au) C$_{2h}$		1.371	1.090	122.2		
	Δ		0.164	0.032	-57.8		
	ES (Bu) C$_{2h}$		1.331	1.071	149.7		
	Δ		0.124	0.013	-30.3		
	ES (A$_2$) C$_{2v}$		1.342	1.093	132.9		
	Δ		0.135	0.035	-47.1		
CASPT2(10e,10o)/ANO-L-VQZP	GS	D_{∞}	1.209	1.064	180.0	This work	
	ES (Au) C$_{2h}$		1.374	1.096	122.0		
	Δ		0.165	0.032	-58.0		
	ES (Bu) C$_{2h}$		1.325	1.068	163.0		
	Δ		0.116	0.004	-17.0		
	ES (A$_2$) C$_{2v}$		1.345	1.099	132.2		
	Δ		0.137	0.035	-47.8		
CASPT2(10e,10o)/aug-cc-pVTZ	GS	D_{∞}	1.207	1.060	180.0	This work	
	ES (Au) C$_{2h}$		1.370	1.092	122.2		
	Δ		0.163	0.032	-57.8		
	ES (Bu) C$_{2h}$		1.324	1.071	151.7	a	
	Δ		0.117	0.011	-28.3		
	ES (A$_2$) C$_{2v}$		1.342	1.094	132.4		
	Δ		0.135	0.034	-47.6		
EOM-CCSD/TZ2P	ES (Au) C$_{2h}$		1.358	1.091	123.6	1	
CASPT2/ANO[14,9,4,3]	GS	D_{∞}	1.217	1.066	180.0	2	
	ES (Au) C$_{2h}$		1.382	1.094	122.0		
	Δ		0.165	0.028	-58.0		
	ES (A$_2$) C$_{2v}$		1.353	1.097	132.0		
	Δ		0.136	0.031	-48.0		
MR-AQCC/Extrap.	GS	D_{∞}	1.205	1.067	180.0	3	
	ES (Au) C$_{2h}$		1.369	1.091	123.2		
	Δ		0.164	0.024	-56.8		
	ES (Bu) C$_{2h}$		1.327	1.071	149.9		
	Δ		0.122	0.004	-30.1		
	ES (A$_2$) C$_{2v}$		1.339	1.093	132.9		
	Δ		0.134	0.026	-47.1		
Mk-MRCCSD/cc-pVCTZ	GS	D_{∞}	1.200	1.062	180.0	4	
	ES (Au) C$_{2h}$		1.368	1.093	123.3		
	Δ		0.168	0.031	-56.7		
	ES (A$_2$) C$_{2v}$		1.347	1.095	132.5		
	Δ		0.137	0.033	-47.5		
Experiment	GS	D_{∞}	1.21	1.06	180.0	5	
	ES (Au) C$_{2h}$		1.38	120.0			
	Δ		0.17	-60.0			
	ES (Au) C$_{2h}$		1.375	1.097	122.5	6	

*aNon-standard IPEA of 0.4.
CASPT2 active space

The full valence shell, i.e., the pairs of bonding/antibonding σ(C-H), σ(C≡C) and π(C≡C) orbitals were used as an active space.

Cartesian coordinates

CC3

$CC3/\text{aug-cc-pVTZ}$ total energies (au) and Cartesian coordinates (Å).

Ground-state

$E = -77.22863807$

| | | | | |
|---|---|---|---|
| 6 | 0 | 0.000000 | 0.000000 | -0.603518 |
| 6 | 0 | 0.000000 | 0.000000 | 0.603518 |
| 1 | 0 | 0.000000 | 0.000000 | 1.661664 |
| 1 | 0 | 0.000000 | 0.000000 | -1.661664 |

Excited-state (A_u)

$E = -77.03393107$

| | | | | |
|---|---|---|---|
| 6 | 0.685643 | 0.000000 | -0.009769 |
| 6 | -0.685643 | 0.000000 | 0.009769 |
| 1 | 1.280284 | 0.000000 | 0.904267 |
| 1 | -1.280284 | 0.000000 | -0.904267 |

Excited-state (A_2)

$E = -77.02012256$

| | | | | |
|---|---|---|---|
| 6 | 0 | 0.000000 | 0.671179 | -0.062052 |
| 6 | 0 | 0.000000 | -0.671179 | 0.062052 |
| 1 | 0 | 0.000000 | 1.414397 | 0.738886 |
| 1 | 0 | 0.000000 | -1.414397 | 0.738886 |

CASPT2

$CASPT2(10e,10o)/\text{ANO-L-VQZP}$ total energies (au) and Cartesian coordinates (Å).

Ground-state

$E = -77.18133276$

| | | | | |
|---|---|---|---|
| 6 | 0 | 0.000000 | 0.000000 | 0.604389 |
| 6 | 0 | 0.000000 | 0.000000 | -0.604389 |
| 1 | 0 | 0.000000 | 0.000000 | -1.668079 |
| 1 | 0 | 0.000000 | 0.000000 | 1.668079 |
Excited-state (B_u)
\[E = -76.92673187 \]

	6	6	1	1
6	0.338760	-0.569152	0.000000	
6	-0.338760	0.569152	0.000000	
1	-0.593072	1.606750	0.000000	
1	0.593072	-1.606750	0.000000	

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -77.211018410 \quad (T_1^{\text{diag}} = 0.011) \]

	6	6	1	1
6	0.000000	0.000000	0.600377	
6	0.000000	0.000000	-0.600377	
1	0.000000	0.000000	1.660213	
1	0.000000	0.000000	-1.660213	

Excited-state (A_u)
\[E = -77.00621174 \quad (T_1^{\text{diag}} = 0.019) \]

	6	6	1	1
6	0.000000	0.677795	0.000000	
6	0.000000	-0.677795	0.000000	
1	0.903942	1.287328	0.000000	
1	-0.903942	-1.287328	0.000000	

Excited-state (B_u)
\[E = -76.95200337 \quad (T_1^{\text{diag}} = 0.015) \]

	6	6	1	1
6	0.000000	0.660237	0.000000	
6	0.000000	-0.660237	0.000000	
1	0.519901	1.596886	0.000000	
1	-0.519901	-1.596886	0.000000	

Excited-state (A_2)
\[E = -76.9924319374 \quad (T_1^{\text{diag}} = 0.016) \]

	6	6	1	1
6	0.000000	0.661756	-0.110394	
6	0.000000	-0.661756	-0.110394	
1	0.000000	1.434286	0.662366	
1	0.000000	-1.434286	0.662366	
S2 Formaldehyde
Table S2: Selected geometrical parameters (bond lengths in Å, valence and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the ΔZPVE). The considered ES is the lowest A\textprime state of n → π\textstar nature. η measures how the CO bond is out of the HCH plane.

Method	State	PG	ZPVE	C=O	C-H	H-C-H	η	Ref.
ADC(2)/def2-TZVPP	GS	C\textsubscript{2v}	0.026974	1.209	1.098	116.4	0.0	This work
	ES	C\textsubscript{s}	0.022530	1.380	1.082	123.4	19.8	
	Δ		-0.121	0.171	-0.016	7.0	19.8	
ADC(2)/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.026641	1.216	1.098	116.4	0.0	This work
	ES	C\textsubscript{s}	0.022982	1.354	1.086	120.9	30.8	
	Δ		-0.110	0.138	-0.013	4.6	30.8	
CC2/def2-TZVPP	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CC2/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CCSD/def2-TZVPP	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CCSD/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CCSDR(3)/def2-TZVPP	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CCSDR(3)/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CC3/def2-TZVPP	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CC3/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CASPT2(12e,10o)/ANO-L-VQZP	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CASPT2(12e,10o)/aug-cc-pVTZ	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CCSD/6-311++G(d,p)	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
MR-AQCC/Extrapol.	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	
CR-EOM-CCSD(T)/cc-pVXZa	GS	C\textsubscript{2v}	0.027100	1.201	1.099	116.4	0.0	This work
	ES	C\textsubscript{s}	0.023645	1.305	1.088	119.0	31.8	
	Δ		-0.094	0.104	-0.011	2.6	31.8	

acc-pVTZ for the ES, cc-pVQZ for the GS; bDeduced by rotational analysis from the 00 data; cDeduced by rotational analysis from the 41 data; dGiven the fact that Ref. 12 refers to Ref. 13 for the excited-state structure, the origin of the differences between the two is rather unclear; eA 34o value is also reported in the best fit of Ref. 14.

S7
CASPT2 active space

The full valence shell, i.e., the pairs of bonding/antibonding σ(C-H), σ(C=O) and π(C=O) orbitals and two oxygen lone pairs were used as an active space.

Cartesian coordinates

CC3

$CC3/aug$-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	E= -114.37705348
6	0.000000 0.000000 -0.602985
8	0.000000 0.000000 0.605394
1	0.000000 0.934673 -1.182175
1	0.000000 -0.934673 -1.182175

Excited-state	E= -114.24549682
6	-0.052615 0.000000 0.672431
8	0.010516 0.000000 -0.652373
1	0.226376 0.935213 1.156098
1	0.226376 -0.935213 1.156098

EOM-CCSD

EOM-CCSD/$def2$-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state	E= -114.34654983 ($T_{1}^{\text{diag}}= 0.013$)
6	0.000000 0.000000 -0.528028
8	0.000000 0.000000 0.672819
1	0.000000 0.933449 -1.107191
1	0.000000 -0.933449 -1.107191

Excited-state	E= -114.221824159 ($T_{1}^{\text{diag}}= 0.017$)
6	-0.032577 0.591312 0.000000
8	-0.032577 -0.713140 0.000000
1	0.228037 1.078622 0.937247
1	0.228037 1.078622 -0.937247
Excited-state (constrained C_{2v})

When constraining the ES in the C_{2v} point group, the lowest ES belongs to the A_2 representation. It is a transition-state like minimum with an imaginary vibrational mode of 439 cm$^{-1}$ at the EOM-CCSD level (the same is obtained with CC2) corresponding to an out-of-plane deformation. The EOM-CCSD energy is only 0.017 eV (or 141 cm$^{-1}$) higher than in the true minimum. The corresponding CC2 barrier is 243 cm$^{-1}$.

$$E = -114.221182812 \quad (T_1^{\text{diag}} = 0.018)$$

6	0.000000	0.000000	-0.588954
8	0.000000	0.000000	0.718074
1	0.000000	0.952269	-1.105434
1	0.000000	-0.952269	-1.105434
Table S3: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A_2 state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C=S	C-H	H-C-H	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.025051	1.606	1.084	116.2	This work
	ES	C_{2v}	0.021979	1.719	1.080	121.0	This work
	Δ		-0.084	0.113	-0.004	4.8	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.610	1.082	116.1	This work	
	ES	C_{2v}	1.725	1.079	121.0	This work	
	Δ		0.115	-0.003	4.9		
CC2/def2-TZVPP	GS	C_{2v}	0.024844	1.614	1.084	116.3	This work
	ES	C_{2v}	0.021964	1.706	1.080	120.9	This work
	Δ		-0.078	0.091	-0.004	4.6	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.618	1.082	116.1	This work	
	ES	C_{2v}	1.710	1.079	120.8	This work	
	Δ		0.092	-0.003	4.7		
CCSD/def2-TZVPP	GS	C_{2v}	1.605	1.083	116.0	This work	
	ES	C_{2v}	1.679	1.079	119.5	This work	
	Δ		0.074	-0.004	3.5		
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.690	1.081	115.9	This work	
	ES	C_{2v}	1.682	1.077	119.4	This work	
	Δ		0.073	-0.004	3.5		
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.618	1.083	116.1	This work	
	ES	C_{2v}	1.709	1.080	120.4	This work	
	Δ		0.090	-0.005	4.1		
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.618	1.083	116.1	This work	
	ES	C_{2v}	1.705	1.078	120.1	This work	
	Δ		0.087	-0.005	4.0		
CC3/def2-TZVPP	GS	C_{2v}	1.620	1.085	116.3	This work	
	ES	C_{2v}	1.713	1.080	120.5	This work	
	Δ		0.093	-0.005	4.2		
CC3/aug-cc-pVTZ	GS	C_{2v}	1.619	1.083	116.1	This work	
	ES	C_{2v}	1.709	1.078	120.2	This work	
	Δ		0.090	-0.005	4.2		
CASPT2(12e,15o)/ANO-L	GS	C_{2v}	1.618	1.087	116.4	This work	
a	ES	C_{2v}	1.709	1.082	120.7	This work	
	Δ		0.091	-0.005	4.3		
CASPT2(12e,15o)/aug-cc-pVTZ	GS	C_{2v}	1.620	1.084	116.1	This work	
a	ES	C_{2v}	1.711	1.079	120.3	This work	
	Δ		0.091	-0.005	4.2		
CCSD/6-311++G(d,p)	GS	C_{2v}	1.615	1.096	116.2	7	
	ES	C_{2v}	1.698	1.087	119.7	7	
	Δ		0.083	-0.009	3.5		
CC2/aug-cc-pVQZ	ES	C_{2v}	1.706	1.083	121.2	15	
Theor. Best Estimateb	GS	C_{2v}	1.609	1.085	121.8	16	

\(^a \) Maximum contraction of ANO-L basis set was used, i.e., H: 6s4p3d, C: 7s7p4d5f, S: 7s7p5d4f; \(^b \) CCSD(T)-F12b with CBS and extra corrections, see Ref. 16; \(^c \) In this earlier study, a slightly out-of-plane structure is deduced; \(^d \) Considering the 0\(^0\) band, out-of-plane estimate: 8.9\(^o\); \(^e \) Considering the 4\(^1\) band, out-of-plane estimate: 27.8\(^o\).
CASPT2 active space

The full valence shell, i.e., the pairs of bonding/antibonding σ(C-H), σ(C=S) and π(C=S) orbitals and two sulfur lone pairs were used as active space. This active space was further expanded by adding low lying d orbitals on sulfur, their occupation numbers at optimized geometry are ca. 0.02 electron.

Cartesian coordinates

CC3

CC3/\textit{aug}-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E= -436.99803030$
6	0.000000 0.000000 -1.104273
16	0.000000 0.000000 0.514631
1	0.000000 0.918957 -1.677563
1	0.000000 -0.918957 -1.677563

Excited-state	$E= -436.92084978$
6	0.000000 0.000000 -1.165548
16	0.000000 0.000000 0.543556
1	0.000000 0.934708 -1.703471
1	0.000000 -0.934708 -1.703471

EOM-CCSD

(EOM)-CCSD/\textit{def2}-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state	$E= -437.08912015$ ($T_1^{\text{diag}} = 0.011$)
6	0.000000 0.000000 -1.022305
16	0.000000 0.000000 0.582884
1	0.000000 0.918395 -1.596159
1	0.000000 -0.918395 -1.596159

Excited-state	$E= -437.007126729$ ($T_1^{\text{diag}} = 0.014$)
6	0.000000 0.000000 -1.074119
16	0.000000 0.000000 0.604983
1	0.000000 0.932493 -1.617506
1	0.000000 -0.932493 -1.617506

S11
Table S4: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees).

PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A_2 state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C=Se	C-H	H-C-H	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.024412	1.744	1.081	117.2	This work
	ES	C_{2v}	0.021823	1.876	1.079	121.9	
	Δ		-0.070	0.132	-0.002	4.7	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.737	1.079	116.6	This work	
	ES	C_{2v}	1.863	1.078	121.3		
	Δ		0.126	-0.001	4.7		
CC2/def2-TZVPP	GS	C_{2v}	0.024175	1.757	1.081	117.3	This work
	ES	C_{2v}	0.021740	1.855	1.079	121.8	
	Δ		-0.066	0.098	-0.002	4.5	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.749	1.080	116.7	This work	
	ES	C_{2v}	1.843	1.078	121.2		
	Δ		0.094	-0.002	4.5		
CCSD/def2-TZVPP	GS	C_{2v}	0.024452	1.746	1.078	116.8	This work
	ES	C_{2v}	1.838	1.077	120.1		
	Δ		0.005	0.007	3.3		
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.759	1.078	116.2	This work	
	ES	C_{2v}	1.813	1.076	119.5		
	Δ		0.074	-0.002	3.3		
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.757	1.082	117.0	This work	
	ES	C_{2v}	1.849	1.078	120.7		
	Δ		0.092	-0.004	3.7		
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.750	1.080	116.5	This work	
	ES	C_{2v}	1.838	1.077	120.1		
	Δ		0.088	-0.003	3.6		
CC3/def2-TZVPP	GS	C_{2v}	1.759	1.082	117.0	This work	
	ES	C_{2v}	1.854	1.079	120.8		
	Δ		0.095	-0.003	3.8		
CC3/aug-cc-pVTZ	GS	C_{2v}	1.751	1.080	116.5	This work	
	ES	C_{2v}	1.843	1.077	120.3		
	Δ		0.092	-0.003	3.8		
CASPT2(12e,15o)/aug-cc-pVTZ	GS	C_{2v}	1.753	1.082	116.6	This work	
	ES	C_{2v}	1.845	1.077	120.3		
	Δ		0.092	-0.005	3.7		
Experiment	GS	b	1.759	1.082	117.0		21a
	ES		1.856	1.075c	121.6c		22d
	Δ		0.097	1.2			

aMicrowave results assuming a C-H bond length of 1.090 Å; bThough the authors concluded that the ES was planar, the FC fit yields a slightly out-of-plane structure. The parameters reported are those deduced from the 0^0 level which is thus considered of C_s symmetry in this fit (out-of-plane angle: 12.2o). An analysis of 1 yields a C-Se bond length of 1.858 Å and an out-of-plane angle of 29.2o, using a C-H distance of 1.093 Å and a H-C-H angle of 116.8o, fixed at their corresponding thioformaldehyde value. See the discussion in Ref. 22; cFixed at the thioformaldehyde value in the fit.
CASPT2 active space

The full valence shell, i.e., the pairs of bonding/antibonding σ(C-H), σ(C=Se) and π(C=Se) orbitals and two selenium lone pairs were used as active space. This active space was further expanded by adding low lying d orbitals on selenium, their occupation numbers at optimized geometry are ca. 0.02 electron. As in this case we did not find the ANO-L basis set for selenium we applied the aug-cc-pVTZ basis set only.

Cartesian coordinates

CC3

$\text{CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).}$

Ground-state	E= -2439.390961
6	0.000000 0.000000 -1.473191
34	0.000000 -0.000000 0.278162
1	0.000000 0.918606 -2.042081
1	-0.000000 -0.918606 -2.042081

Excited-state	E= -2439.32567795
6	0.000000 0.000000 -1.560136
34	0.000000 -0.000000 0.282637
1	0.000000 0.934079 -2.096655
1	-0.000000 -0.934079 -2.096655

EOM-CCSD

$(\text{EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).}$

Ground-state	E= -2439.3794439 (T_1^{diag} = 0.011)
6	0.000000 0.000000 -1.386422
34	0.000000 -0.000000 0.359512
1	0.000000 0.919714 -1.952431
1	-0.000000 -0.919714 -1.952431

Excited-state	E= -2439.31075471 (T_1^{diag} = 0.014)
6	0.000000 -0.000000 -1.449744
34	-0.000000 0.000000 0.372762
1	-0.000000 0.933421 -1.987724
1	-0.000000 -0.933421 -1.987724
Table S5: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the ΔZ). The considered ES is the lowest A^* state of $\pi \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C=O	C=C	C-H	C=H	C=C=O	C=C-H	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.031715	1.164	1.314	1.073	1.073	180.0	119.0	This work
ADC(2)/aug-cc-pVTZ	ES	C_s	0.031783	1.200	1.429	1.081	1.073	130.3	118.5	
	Δ	0.001	0.036	0.115	0.008	0.000	-49.7	-0.5		
CC2/def2-TZVPP	GS	C_{2v}	0.031295	1.164	1.311	1.073	1.073	180.0	119.0	This work
CC2/aug-cc-pVTZ	ES	C_s	0.031417	1.200	1.428	1.081	1.073	130.6	118.5	
	Δ	0.035	0.111	0.009	-0.001	-49.7	-0.5			
CCSD/def2-TZVPP	GS	C_{2v}	0.032030	1.157	1.312	1.074	1.074	180.0	119.1	This work
CCSD/aug-cc-pVTZ	ES	C_s	0.031999	1.190	1.416	1.083	1.075	131.4	119.5	
	Δ	0.003	0.036	0.119	0.008	0.000	-50.7	-0.2		
CASPT2(14e,13o)/ANO-L-VQZ	GS	C_{2v}	1.165	1.317	1.073	1.073	180.0	119.0	This work	
CASPT2(16e,14o)/ANO-L-VQZP	ES	C_s	1.199	1.430	1.084	1.076	129.8	119.4		
	Δ	0.035	0.113	0.008	-0.004	-50.2	0.3			
TD-CCSD/cc-pVTZ	GS	C_{2v}	1.166	1.317	1.073	1.073	180.0	119.0	This work	
MS-CASPT2/6-31+G(d)	ES	C_s	1.199	1.430	1.084	1.076	129.9	119.5		
	Δ	0.036	0.112	0.008	0.001	-50.1	0.5			

a Note that for the GS, using aug-cc-pVTZ and a larger active space yields shorter bonds, e.g., 1.166 and 1.319 Å for C-O and C-C, respectively. Both are closer to our CASPT2 (and CC) counterparts.
CASPT2 active space

All valence atomic orbitals were included in the active space, i.e. 16 electrons in 14 orbitals were used. We have tested the possibility of omitting the 2s lone pair on oxygen atom in the active space. This would be supported by its low energy compared to the rest of the active space and its high occupation numbers when included in CAS, around 1.99. For the aug-cc-pVTZ basis set we observed minimal change in geometries with respect to CAS size, nevertheless we report values obtain with full valence CAS as our best estimate on CASPT2 level of theory. For ANO-L basis set we observed larger difference especially for the CCO angle. We consider full valence CAS as our best estimate for given basis set.

Cartesian coordinates

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -152.42409065 \]

	6	6	8	1	1
	0.000000	-0.000000	1.295480		
6	0.000000	0.000000	0.018514		
8	0.000000	0.000000	1.183578		
1	0.000000	0.938930	-1.818814		
1	0.000000	-0.938930	-1.818814		

Excited-state

\[E = -152.32635151 \]

6	1.081142	-0.492435	0.000000		
6	0.002122	0.442029	0.000000		
8	-1.183824	0.248632	0.000000		
1	0.865753	-1.554127	0.000000		
1	2.096668	-0.141021	0.000000		
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -152.39461433 \ (T_1^{\text{diag}} = 0.014) \]

6	0.000000	-0.000000	-1.208085
6	0.000000	0.000000	0.104135
8	0.000000	0.000000	1.260597
1	0.000000	0.937929	-1.730540
1	-0.000000	-0.937929	-1.730540

Excited-state
\[E = -152.288242805 \ (T_1^{\text{diag}} = 0.016) \]

6	1.077299	-0.491655	0.000000
6	-0.000000	0.427593	-0.000000
8	-1.178337	0.259605	-0.000000
1	0.871207	-1.555054	0.000000
1	2.091691	-0.137411	0.000000

Excited-state (constrained \(C_{2v} \))
This structure (\(A_2 \) symmetry) presents an imaginary frequency of 761 cm\(^{-1}\) (789 cm\(^{-1}\) with CC2) and is 0.87 eV (0.99 eV with CC2) less stable than the actual minimum. The MS-CASPT2/6-31+G(d) value is 1.03 eV.\(^{24}\)

\[E = -152.256162739 \ (T_1^{\text{diag}} = 0.016) \]

6	0.000000	0.000000	-1.257107
6	-0.000000	-0.000000	0.117264
8	-0.000000	-0.000000	1.315494
1	0.000000	0.922150	-1.842446
1	-0.000000	-0.922150	-1.842446
S6 Thio ketene

Table S6: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered ES is the lowest $\pi^* \rightarrow \pi$ state of nature.

Method	State	PG	ZPVE	C=C=S	C=C-H	C-H$_1$	C-H$_2$	C=C=H$_1$	C=C=H$_2$	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.029067	1.551	1.314	1.078	1.078	180.0	120.1	This work
	ES	C_{s}	0.029258	1.615	1.363	1.085	1.079	139.2	120.2	This work
	Δ		-0.009	0.064	0.049	0.007	0.001	-40.8	0.1	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.555	1.309	1.076	1.076	180.0	120.2		This work
	ES	C_{s}	1.622	1.355	1.084	1.077	139.7	121.1		This work
	Δ		0.067	0.046	0.008	0.001	-40.3	0.1		
CC2/def2-TZVPP	GS	C_{2v}	0.029343	1.560	1.317	1.078	1.078	139.8	121.1	This work
	ES	C_{s}	0.029141	1.612	1.373	1.086	1.079	137.8	120.2	This work
	Δ		-0.005	0.052	0.056	0.008	0.001	-42.2	0.9	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.564	1.312	1.077	1.077	180.0	120.2		This work
	ES	C_{s}	1.617	1.365	1.084	1.078	138.2	121.1		This work
	Δ		0.067	0.046	0.008	0.001	-40.3	0.2		
CCSD/def2-TZVPP	GS	C_{2v}	0.029875	1.555	1.309	1.078	1.078	139.8	121.1	This work
	ES	C_{s}	0.029574	1.603	1.358	1.086	1.080	140.1	121.1	This work
	Δ		-0.008	0.048	0.049	0.008	0.002	-39.9	0.8	
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.558	1.304	1.076	1.076	180.0	120.2		This work
	ES	C_{s}	1.607	1.350	1.084	1.078	140.7	121.0		This work
	Δ		0.049	0.046	0.008	0.002	-39.3	0.7		
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.565	1.315	1.080	1.080	180.0	120.2		This work
	ES	C_{s}	1.621	1.369	1.086	1.081	136.8	121.0		This work
	Δ		0.056	0.054	0.006	0.001	-42.2	0.8		
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.565	1.311	1.078	1.078	180.0	120.3		This work
	ES	C_{s}	1.619	1.362	1.085	1.079	137.4	120.9		This work
	Δ		0.054	0.051	0.007	0.001	-41.6	0.6		
CC3/def2-TZVPP	GS	C_{2v}	1.567	1.316	1.080	1.080	180.0	120.3		This work
	ES	C_{s}	1.621	1.374	1.087	1.081	137.0	120.9		This work
	Δ		0.054	0.058	0.007	0.001	-43.0	0.6		
CC3/aug-cc-pVTZ	GS	C_{2v}	1.567	1.311	1.078	1.078	180.0	120.3		This work
	ES	C_{s}	1.619	1.367	1.086	1.080	137.6	120.8		This work
	Δ		0.052	0.056	0.008	0.002	-42.4	0.5		
CASPT2(16e,14o)/ANO-L-VQZP	GS	C_{2v}	1.563	1.315	1.079	1.079	180.0	120.6		This work
	ES	C_{s}	1.616	1.375	1.090	1.083	136.8	120.9		This work
	Δ		0.053	0.060	0.011	0.004	-43.2	0.3		
CASPT2(16e,14o)/aug-cc-pVTZ	GS	C_{2v}	1.562	1.310	1.076	1.076	180.0	120.6		This work
	ES	C_{s}	1.613	1.367	1.090	1.082	140.4	120.9		This work
	Δ		0.051	0.057	0.014	0.006	-39.6	0.3		

Experiment GS C_{2v} 1.554 1.314 1.080 1.080 180.0 120.1 25
CASPT2 active space

All valence atomic orbitals were taken into the active space, i.e., 16 electrons in 14 orbitals.

Cartesian coordinates

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -475.03688189 \]

6	0.000000	0.000000	-1.692512	
6	0.000000	0.000000	-0.381149	
16	0.000000	0.000000	1.185320	
1	0.000000	0.931042	-2.236042	
1	0.000000	-0.931042	-2.236042	

Excited-state
\[E = -474.95903178 \]

6	1.142234	-0.500790	0.000000	
6	0.107610	0.392421	0.000000	
16	-1.510910	0.347552	0.000000	
1	0.954334	-1.570031	0.000000	
1	2.168592	-0.166075	0.000000	

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -475.11575237 \ (T_{\text{diag}} = 0.013) \]

6	0.000000	0.000000	-1.752852	
6	0.000000	0.000000	-0.444055	
16	-0.000000	-0.000000	1.110782	
1	-0.000000	0.930865	-2.295538	
1	-0.000000	-0.930865	-2.295538	
Excited-state

\[E = -475.032961634 \left(T_1^{\text{diag}} = 0.015\right) \]

6	1.229595	1.180833	-0.000000
6	-0.000000	0.605443	-0.000000
16	-0.678500	-0.846700	0.000000
1	2.131052	0.575547	-0.000000
1	1.347384	2.253998	-0.000000

Excited-state (constrained \(C_{2v}\))

This structure (\(A_2\) symmetry) presents an imaginary frequency of 338\,\text{cm}^{-1} (359\,\text{cm}^{-1} with CC2) and is 0.24 eV (0.29 eV with CC2) less stable than the actual minimum. These values are significantly smaller than in ketene.

\[E = -475.024213222 \left(T_1^{\text{diag}} = 0.014\right) \]

6	0.000000	-0.000000	-1.794459
6	0.000000	-0.000000	-0.448337
16	0.000000	0.000000	1.137535
1	0.000000	0.921494	-2.371896
1	-0.000000	-0.921494	-2.371896
Table S7: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE). The considered ES is the lowest A state of π → π* nature.

Method	State	PG	ZPVE	N=N	C=N	C-H1	C-H2	C=NN=N	N=C-H1	Ref.
ADC(2)/def2-TZVPP	GS	C2v	0.031639	1.135	1.307	1.070	1.070	180.0	116.9	This work
	ES	Cs	0.030581	1.161	1.447	1.077	1.070	128.1	116.8	
	∆		-0.029	0.026	0.140	0.007	0.000	-51.9	-0.1	
ADC(2)/aug-cc-pVTZ	GS	C2v	1.134	1.305	1.070	1.070	180.0	116.9		This work
	ES	Cs	1.160	1.438	1.076	1.069	128.6	116.8		
	∆		0.026	0.133	0.006	-0.001	-51.4	-0.1		
CC2/def2-TZVPP	GS	C2v	0.031007	1.131	1.301	1.072	1.072	180.0	117.2	This work
	ES	Cs	0.030344	1.193	1.414	1.079	1.071	128.1	117.5	
	∆		-0.018	0.039	0.110	0.007	0.000	-51.5	0.3	
CC2/aug-cc-pVTZ	GS	C2v	1.152	1.301	1.071	1.071	128.5	117.5		This work
	ES	Cs	1.190	1.408	1.078	1.071	128.5	117.5		
	∆		0.038	0.107	0.007	0.000	-51.5	0.3		
CCSD/def2-TZVPP	GS	C2v	0.032074	1.131	1.295	1.071	1.071	180.0	117.5	This work
	ES	Cs	0.031280	1.193	1.361	1.079	1.073	126.2	119.3	
	∆		-0.022	0.062	0.066	0.008	0.002	-53.8	1.8	
CCSD/aug-cc-pVTZ	GS	C2v	1.130	1.292	1.070	1.070	180.0	117.5		This work
	ES	Cs	1.189	1.357	1.079	1.072	126.7	119.3		
	∆		0.059	0.065	0.009	0.002	-53.3	1.8		
CCSDR(3)/def2-TZVPP	GS	C2v	1.141	1.300	1.073	1.073	180.0	117.5		This work
	ES	Cs	1.197	1.382	1.080	1.074	125.6	119.0		
	∆		0.056	0.082	0.007	0.001	-54.4	1.5		
CCSDR(3)/aug-cc-pVTZ	GS	C2v	1.139	1.297	1.072	1.072	180.0	117.4		This work
	ES	Cs	1.193	1.378	1.080	1.073	126.1	118.9		
	∆		0.054	0.081	0.008	0.001	-53.9	1.5		
CC3/def2-TZVPP	GS	C2v	1.142	1.301	1.073	1.073	180.0	117.4		This work
	ES	Cs	1.197	1.390	1.080	1.074	125.7	118.9		
	∆		0.055	0.089	0.007	0.001	-54.3	1.5		
CC3/aug-cc-pVTZ	GS	C2v	1.140	1.298	1.073	1.073	180.0	117.5		This work
	ES	Cs	1.194	1.385	1.080	1.073	126.2	118.8		
	∆		0.054	0.087	0.007	0.000	-53.8	1.3		
CASPT2(16e,14o)/ANO-L-VQZP	GS	C2v	1.142	1.301	1.075	1.075	180.0	117.4		This work
	ES	Cs	1.196	1.386	1.083	1.077	126.5	118.9		
	∆		0.054	0.085	0.008	0.002	-53.5	1.5		
CASPT2(16e,14o)/aug-cc-pVTZ	GS	C2v	1.141	1.297	1.074	1.074	180.0	117.5		This work
	ES	Cs	1.194	1.382	1.081	1.075	126.5	118.9		
	∆		0.053	0.085	0.007	0.001	-53.5	1.4		
CASPT2 active space

All valence atomic orbitals were taken into the active space, i.e., 16 electrons in 14 orbitals.

Cartesian coordinates

CASPT2

CASPT2/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -148.52633656$
6	0.000000 0.000000 -1.141888
7	0.000000 0.000000 0.154691
7	0.000000 0.000000 1.295247
1	0.000000 -0.952848 -1.636982
1	0.000000 0.952848 -1.636982

Excited-state	$E = -148.45268214$
6	0.000000 0.952612 -0.546212
7	0.000000 -0.009376 0.446430
7	0.000000 -1.192590 0.287949
1	0.000000 0.636947 -1.579896
1	0.000000 1.981295 -0.234793

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -152.42409065$
6	0.000000 0.000000 -1.221500
7	0.000000 0.000000 0.076508
7	0.000000 0.000000 1.216701
1	0.000000 0.951859 -1.715975
1	0.000000 -0.951859 -1.715975

Excited-state	$E = -148.48759639$
6	0.000000 0.953610 -0.547113
7	0.000000 -0.009227 0.448437
7	0.000000 -1.191727 0.285941
1	0.000000 0.635624 -1.578960
1	0.000000 1.980608 -0.234827
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -148.50621235 \ (T_1^{\text{diag}} = 0.017) \]

6	7	7	1	1
0.000000	0.000000	0.000000	-1.138989	
0.000000	0.000000	0.000000	0.155828	
0.000000	-0.950264	0.950264	1.286936	
0.000000	0.000000	0.950264	-1.632708	

Excited-state

\[E = -148.446441014 \ (T_1^{\text{diag}} = 0.029) \]

6	7	7	1	1
0.944286	-0.539279	0.000000		
0.000000	0.440227	0.000000		
-1.181720	0.280259	0.000000		
0.633063	-1.572695	0.000000		
1.973258	-0.235035	0.000000		

Excited-state (constrained \(C_{2v} \))

This structure (\(A_2 \) symmetry) presents an imaginary frequency of 579 \(\text{cm}^{-1} \) (588 \(\text{cm}^{-1} \) with CC2) and is 0.78 eV (0.75 eV with CC2) less stable than the actual minimum.

\[E = -148.417690646 \ (T_1^{\text{diag}} = 0.022) \]

6	7	7	1	1
0.000000	0.000000	0.000000	-1.159185	
0.000000	0.000000	0.000000	0.146294	
0.000000	0.000000	0.000000	1.336137	
0.000000	-0.937310	0.937310	-1.710955	
0.000000	0.937310	0.937310	-1.710955	
Table S8: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE). The considered ES is the lowest A" state of n → π* nature. The values in italics corresponding to the CC3/aug-cc-pVTZ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	N=O	C-N	C=O-C	C-N=O	H₃-C-N	Ref.
ADC(2)/def2-TZVPP	GS	Cₛ	0.043625	1.222	1.470	1.085	112.8	111.2	This work
ADC(2)/aug-cc-pVTZ	ES	Cₛ	0.042200	1.284	1.465	1.080	114.2	107.4	This work
CC2 /def2-TZVPP	GS	Cₛ	0.042996	1.232	1.476	1.086	113.1	111.3	This work
CC2 /aug-cc-pVTZ	ES	Cₛ	0.042277	1.278	1.460	1.080	115.0	107.5	This work
CCSD/def2-TZVPP	GS	Cₛ	0.043954	1.200	1.477	1.086	113.2	111.1	This work
CCSD/aug-cc-pVTZ	ES	Cₛ	0.043451	1.226	1.474	1.081	117.1	107.3	This work
CCSDR(3)/def2-TZVPP	GS	Cₛ	0.044354	1.209	1.477	1.087	113.1	111.0	This work
CCSDR(3)/aug-cc-pVTZ	ES	Cₛ	0.044351	1.235	1.475	1.083	118.4	107.1	This work
CC3/def2-TZVPP	GS	Cₛ	0.044354	1.209	1.477	1.087	113.1	111.0	This work
CC3/aug-cc-pVTZ	ES	Cₛ	0.044351	1.235	1.475	1.083	118.4	107.1	This work
CASPT2(18e,15o)/ANO-L-VQZP^a	GS	Cₛ	1.213	1.482	1.090	113.1	111.1	This work	
CASPT2(18e,15o)/aug-cc-pVTZ^b	ES	Cₛ	1.219	1.480	1.085	118.7	107.2	This work	
MR-AQCC/cc-pVTZ	GS	Cₛ	1.212	1.483	1.087	112.9	111.0	This work	
MR-AQCC/cc-pVTZ	ES	Cₛ	1.212	1.483	1.087	112.9	111.0	This work	

Experiment	∆	Ref.
	0.11^c	±0.02
	0.08^c	±0.01
	0.04^c	±1

^aFrozen core option applied. ^bNote that the CASPT2 ES optimization fails to converge with this diffuse basis set. ^cNo frozen core orbitals used in order be comparable with CC methods. ^dMR-CI/cc-pVDZ result. ²⁶ ^eObtained performing “simple” FC calculations. ²⁸
CASPT2 active space

The full valence active space was used in CAS calculation with the largest basis set, i.e., 18 electrons in 15 orbitals.

Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -169.60836048 \]

6	-0.943824	-0.566993	0.000000
7	-0.002789	0.571534	0.000000
8	1.156578	0.229465	0.000000
1	-0.409277	-1.515123	0.000000
1	-1.573709	-0.457421	0.882488
1	-1.573709	-0.457421	-0.882488

Excited-state

\[E = -169.54180119 \]

6	0.984824	-0.560709	0.000000
7	0.002701	0.540074	0.000000
8	-1.198875	0.254307	0.000000
1	1.970145	-0.110800	0.000000
1	0.839381	-1.169636	0.893724
1	0.839381	-1.169636	-0.893724

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -169.57881354 \ (T^\text{diag}_1 = 0.013) \]

6	-0.942382	-0.567258	0.000000
7	0.000000	0.569955	0.000000
8	1.151234	0.230360	0.000000
1	-0.411100	-1.514121	0.000000
1	-1.572241	-0.457448	0.879243
1	-1.572241	-0.457448	-0.879243
Excited-state
\[E = -169.511088034 \ (T_1^{\text{diag}} = 0.014) \]

6	0.983749	-0.560080	0.000000
7	0.000000	0.537091	0.000000
8	-1.193758	0.256322	0.000000
1	1.966747	-0.110843	0.000000
1	0.840410	-1.169445	0.890579
1	0.840410	-1.169445	-0.890579

Ground-state (staggered)
In the GS, the staggered conformation yields an imaginary frequency mode of 185 \(\text{cm}^{-1} \) (190 \(\text{cm}^{-1} \) with CC2). This TS-like structure is 0.05 eV less stable than the eclipsed minimum. This corresponds to a rotational barrier of 419 \(\text{cm}^{-1} \) (429 \(\text{cm}^{-1} \) with CC2), in very good agreement with the experimental values of 400 \(\text{cm}^{-1} \),\(^{29}\) and 383 \(\text{cm}^{-1} \) (obtained for CD\(_3\)NO),\(^{29}\) as well as with the MR-AQCC/cc-pVTZ estimate of 397 \(\text{cm}^{-1} \).\(^{27}\)

\[E = -169.57690266 \ (T_1^{\text{diag}} = 0.013) \]

6	0.946700	-0.563813	0.000000
7	0.000000	0.584087	0.000000
8	-1.144900	0.225270	0.000000
1	1.959785	-0.180673	0.000000
1	0.759609	-1.163608	0.886295
1	0.759609	-1.163608	-0.886295

Excited-state (eclipsed)
In the ES, the eclipsed conformation yields an imaginary frequency mode of 201 \(\text{cm}^{-1} \). This TS-like structure is only 0.07 eV less stable than the eclipsed minimum, which corresponds to a rotational barrier of 541 \(\text{cm}^{-1} \) (618 \(\text{cm}^{-1} \) with CC2). The MR-AQCC/cc-pVTZ value attains 522 \(\text{cm}^{-1} \).\(^{26}\) The available experimental data are 475 \(\pm \) 50 \(\text{cm}^{-1} \),\(^{30}\) and an a former rather broad estimate of 500 \(\pm \) 100 \(\text{cm}^{-1} \) (all values between 450 and 700 \(\text{cm}^{-1} \) were found compatible with the measurements in that work).\(^{28}\)

\[E = -169.508623866 \ (T_1^{\text{diag}} = 0.014) \]

6	-0.988841	-0.572731	0.000000
7	0.000000	0.524759	0.000000
8	1.201977	0.280721	0.000000
1	-0.464979	-1.522919	0.000000
1	-1.608896	-0.479889	0.886355
1	-1.608896	-0.479889	-0.886355
Table S9: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered ES is the lowest A^+ state of $n \rightarrow \pi^*$ nature. The values in italics corresponding to the CC3/aug-cc-pVTZ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	N=N-C	C-N	N=O	N=N-C-N	C=N-O	Ref.
ADC(2)def2-TZVPP	GS	C_s	0.012766	1.171	1.412	1.222	172.1	113.0	This work
	ES	C_s	0.012801	1.180	1.313	1.250	174.7	129.0	
Δ			0.001	0.009	-0.099	0.028	2.6	16.0	
ADC(2)aug-cc-pVTZ	GS	C_s	1.170	1.404	1.221	171.2	113.3		This work
	ES	C_s	1.179	1.306	1.245	174.2	130.4		
Δ			0.009	-0.098	0.024		3.0	17.1	
CC2/def2-TZVPP	GS	C_s	0.011909	1.181	1.419	1.234	171.7	113.3	This work
	ES	C_s	0.011887	1.206	1.283	1.247	171.4	138.5	
Δ			-0.001	0.025	-0.136	0.013	-0.3	25.2	
CC2/aug-cc-pVTZ	GS	C_s	1.180	1.408	1.232	170.6	113.6		This work
	ES	C_s	1.207	1.272	1.240	170.3	141.9		
Δ			0.027	-0.136	0.008	-0.3	28.4		
CCSD/def2-TZVPP	GS	C_s	0.013714	1.153	1.429	1.198	172.8	113.1	This work
	ES	C_s	0.013872	1.163	1.318	1.216	174.8	130.5	
Δ			0.004	0.010	-0.111	0.018	2.0	17.4	
CCSD/aug-cc-pVTZ	GS	C_s	1.152	1.419	1.196	172.2	113.3		This work
	ES	C_s	1.162	1.310	1.211	174.3	132.1		
Δ			0.010	-0.109	0.015	2.1	18.8		
CCSDR(3)/def2-TZVPP	GS	C_s	1.163	1.431	1.210	172.0	113.1		This work
	ES	C_s	1.176	1.313	1.228	174.1	131.2		
Δ			0.013	-0.118	0.018	2.1	18.1		
CCSDR(3)/aug-cc-pVTZ	GS	C_s	1.161	1.420	1.209	171.1	113.4		This work
	ES	C_s	1.175	1.304	1.223	173.5	133.2		
Δ			0.014	-0.116	0.014	2.4	19.8		
CC3/def2-TZVPP	GS	C_s	1.164	1.433	1.211	171.9	113.1		This work
	ES	C_s	1.182	1.306	1.231	173.4	132.5		
Δ			0.016	-0.129	0.020	2.5	19.4		
CC3/aug-cc-pVTZ	GS	C_s	1.163	1.422	1.210	171.0	113.5		This work
	ES	C_s	1.181	1.297	1.226	172.8	134.5		
Δ			0.018	-0.125	0.016	1.8	21.0		
CASPT2(16e,14o)/ANO-L-VQZP	GS	C_s	1.165	1.429	1.212	170.4	113.5		This work
	ES	C_s	1.182	1.303	1.229	172.8	132.9		
Δ			0.017	-0.126	0.017	2.4	19.4		
CASPT2(16e,14o)/aug-cc-pVTZ	GS	C_s	1.162	1.416	1.211	170.8	113.5		This work
	ES	C_s	1.184	1.304	1.231	173.0	132.9		
Δ			0.022	-0.112	0.020	2.2	19.4		
Experiment	GS	C_s	1.163	1.418	1.217	170.0	113.6		31
	ES	C_s	1.198	1.316	1.221	162.0	126.9		
Δ			0.035	-0.102	0.004	-8.0	13.3		
CASPT2 active space

The active space used in our calculation included all valence orbitals on all atoms with exception of 2s orbitals on oxygen and cyano nitrogen which were kept inactive. In short CAS space was 16 electrons in 14 orbitals.

Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -222.44352599 \]

7 0.588965 0.618875 0.000000
6 -0.010782 -0.668667 0.000000
8 -0.214129 1.522271 0.000000
7 -0.332911 -1.784506 0.000000

Excited-state
\[E = -222.39048253 \]

7 0.434584 -0.542761 0.000000
6 -0.012162 0.682172 0.000000
8 -0.115239 -1.635341 0.000000
7 -0.287954 1.824178 0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -222.40578077 \quad (T_{1}^{\text{diag}} = 0.013) \]

7 0.591217 0.627316 0.000000
8 -0.218005 1.510176 0.000000
6 0.000000 -0.674005 0.000000
7 -0.342069 -1.775513 0.000000

Excited-state
\[E = -222.349626178 \quad (T_{1}^{\text{diag}} = 0.015) \]

7 0.457708 -0.551187 0.000000
8 -0.134603 -1.613034 0.000000
6 0.000000 0.684703 0.000000
7 -0.303877 1.807767 0.000000
Table S10: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees) for methylenecyclopropene. The C_{2v} point group was enforced for the excited-state in order to avoid reaching a conical intersection. This is why no ZPVE is provided here – all ES present imaginary frequencies. Δ gives the difference between the two states. The considered ES is the lowest B_2 state of $\pi \rightarrow \pi^\ast$ nature. The values in italics corresponding to the CC3/aug-cc-pVTZ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	C_2-C_2	C_1-C_3	C_3-C_4	$C_2-C_3-C_4$	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	1.328	1.439	1.323	152.6	This work
	ES	C_{2v}	1.465	1.350	1.519	145.8	
	Δ		0.137	-0.089	0.196	-6.8	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.325	1.436	1.322	152.6	This work
	ES	C_{2v}	1.458	1.348	1.515	145.8	
	Δ		0.133	-0.088	0.193	-6.8	
CC2/def2-TZVPP	GS	C_{2v}	1.332	1.441	1.327	152.6	This work
	ES	C_{2v}	1.461	1.353	1.512	146.0	
	Δ		0.129	-0.088	0.186	-6.5	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.329	1.437	1.326	152.5	This work
	ES	C_{2v}	1.454	1.351	1.508	146.1	
	Δ		0.125	-0.086	0.182	-6.4	
CCSD/def2-TZVPP	GS	C_{2v}	1.327	1.439	1.316	152.8	This work
	ES	C_{2v}	1.442	1.353	1.481	146.8	
	Δ		0.115	-0.086	0.164	-6.0	
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.324	1.436	1.315	152.7	This work
	ES	C_{2v}	1.455	1.351	1.476	146.9	
	Δ		0.111	-0.085	0.161	-5.8	
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.332	1.446	1.324	152.7	This work
	ES	C_{2v}	1.456	1.361	1.501	146.5	
	Δ		0.124	-0.085	0.177	-6.2	
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.329	1.442	1.323	152.7	This work
	ES	C_{2v}	1.450	1.358	1.498	146.5	
	Δ		0.121	-0.084	0.175	-6.2	
CC3/def2-TZVPP	GS	C_{2v}	1.333	1.446	1.325	152.7	This work
	ES	C_{2v}	1.460	1.363	1.502	146.6	
	Δ		0.127	-0.083	0.177	-6.1	
CC3/aug-cc-pVTZ	GS	C_{2v}	1.329	1.442	1.323	152.7	This work
	ES	C_{2v}	1.453	1.360	1.498	146.6	
	Δ		0.124	-0.082	0.175	-6.1	
CASPT2(4,4)/cc-pVTZ	GS	C_{2v}	1.331	1.442	1.324	152.7	This work
	ES	C_{2v}	1.460	1.360	1.495	146.7	
	Δ		0.129	-0.082	0.171	-6.0	
RASPT2(20,12)/cc-pVTZ	GS	C_{2v}	1.331	1.444	1.323	152.7	This work
	ES	C_{2v}	1.460	1.362	1.495	146.7	
	Δ		0.129	-0.082	0.172	-6.0	
RASPT2(20,12)/ANO-L-VQZP	GS	C_{2v}	1.331	1.440	1.321	152.7	This work
	ES	C_{2v}	1.456	1.360	1.489	146.8	
	Δ		0.125	-0.080	0.168	-5.9	
CASPT2(4,4)/aug-cc-pVTZ	GS	C_{2v}	1.326	1.435	1.320	152.6	This work
	ES	C_{2v}	1.451	1.360	1.488	146.7	
	Δ		0.125	-0.075	0.168	-5.9	
CC2/cc-pVTZ	GS	C_{2v}	1.328	1.438	1.325	152.6	32
	ES	C_{2v}	1.456	1.349	1.512	145.7	
	Δ		0.128	-0.089	0.187	-6.7	
CASPT2/cc-pVTZ	GS	C_{2v}	1.331	1.442	1.324	152.7	32
	ES	C_{2v}	1.461	1.360	1.496	146.6	
	Δ		0.130	-0.082	0.172	-6.0	
VMC/$pVTZ^\ast$	GS	C_{2v}	1.324	1.434	1.316	153.0	32
	ES	C_{2v}	1.456	1.351	1.483	146.7	
	Δ		0.132	-0.083	0.167	-6.3	
CASPT2 active space

For the MCP geometry optimization we used two significantly different active spaces. First, a small active space encompassing the π orbitals only was tested. Later we selected the full valence as active space, which means 20 electrons in 20 orbitals. Due to the size of this space we partitioned orbitals using three restricted active spaces. The RAS1 space included all σ occupied orbitals while RAS3 included the respective σ anti-bonding orbitals. Maximally two holes in RAS1 and two electrons in RAS3 space were allowed. The π orbitals were included in RAS2 space and here all possible configurations were allowed. The geometry of both GS and ES were optimized using both spaces using the diffuse-less cc-pVTZ basis set. The differences between the obtained geometries are trifling (max 0.002 Å) and we therefore used only the smaller active space (4 electrons in 4 orbitals) for augmented basis set calculation.

Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -154.49064214 \]

6	0.000000	0.000000	0.283701
6	0.000000	0.000000	1.612577
6	0.000000	0.661285	-0.997221
6	0.000000	-0.661285	-0.997221
1	0.000000	1.570584	-1.566882
1	0.000000	-1.570584	-1.566882
1	0.000000	0.927782	2.162128
1	0.000000	-0.927782	2.162128
Excited-state \((C\textsubscript{2v} \text{ constrained})\)

\[E = -154.37044439 \]

6	0.000000	0.000000	0.175905	
6	0.000000	0.000000	1.625887	
6	0.000000	0.748755	-0.956917	
6	0.000000	-0.748755	-0.956917	
1	0.000000	1.689898	-1.460290	
1	0.000000	-1.689898	-1.460290	
1	0.000000	0.933052	2.162753	
1	0.000000	-0.933052	2.162753	

EOM-CCSD

(EOM)-CCSD/\textit{def2-TZVPP} total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -154.45302037 \ (T\textsubscript{1}^{\text{diag}} = 0.011) \]

6	0.000000	0.000000	0.262167	
6	0.000000	0.000000	1.588970	
6	0.000000	0.658200	-1.017900	
6	0.000000	-0.658200	-1.017900	
1	0.000000	1.568274	-1.584343	
1	0.000000	-1.568274	-1.584343	
1	0.000000	0.926321	2.138333	
1	0.000000	-0.926321	2.138333	

Excited-state \((C\textsubscript{2v} \text{ constrained})\)

\[E = -154.319237867 \ (T\textsubscript{1}^{\text{diag}} = 0.015) \]

6	0.000000	0.000000	0.151701	
6	0.000000	0.000000	1.593173	
6	0.000000	0.740260	-0.981178	
6	0.000000	-0.740260	-0.981178	
1	0.000000	1.683282	-1.478252	
1	0.000000	-1.683282	-1.478252	
1	0.000000	0.931740	2.130699	
1	0.000000	-0.931740	2.130699	
S11 Carbonyl Difluoride

Table S11: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ΔZPVE). The considered ES is the lowest A^- state of $n \rightarrow \pi^*$ nature. η is the angle between the CO bond and the F-C-F plane.

Method	State	PG	ZPVE	C=O	C-F	F-C-F	η	Ref.
ADC(2)/def2-TZVPP	GS	C_2v	0.014154	1.174	1.314	107.6	0.00	This work
	ES	C_s	0.012071	1.359	1.317	115.8	50.2	
	Δ		-0.057	0.185	0.003	8.2	50.2	
ADC(2)/aug-cc-pVTZ	GS	C_2v	1.174	1.313	107.5	0.00	This work	
	ES	C_s	1.357	1.315	115.9	50.5		
	Δ		0.183	0.002	8.4	50.5		
CC2/def2-TZVPP	GS	C_2v	0.013748	1.181	1.321	107.4	0.00	This work
	ES	C_s	1.369	1.325	115.2	52.0		
	Δ		0.188	0.004	7.8	52.0		
CC2/aug-cc-pVTZ	GS	C_2v	1.180	1.320	107.2	0.00	This work	
	ES	C_s	1.367	1.324	115.3	52.3		
	Δ		0.183	0.002	8.4	52.3		
CCSD/def2-TZVPP	GS	C_2v	0.014551	1.168	1.306	107.9	0.00	This work
	ES	C_s	1.328	1.316	113.0	53.9		
	Δ		0.158	0.010	5.1	53.9		
CCSD/aug-cc-pVTZ	GS	C_2v	1.167	1.305	107.8	0.00	This work	
	ES	C_s	1.324	1.314	112.9	54.0		
	Δ		0.157	0.009	5.1	54.0		
CCSDR(3)/def2-TZVPP	GS	C_2v	1.173	1.313	107.8	0.00	This work	
	ES	C_s	1.352	1.321	113.1	55.9		
	Δ		0.179	0.008	5.3	55.9		
CCSDR(3)/aug-cc-pVTZ	GS	C_2v	1.172	1.312	107.6	0.00	This work	
	ES	C_s	1.348	1.320	113.1	56.1		
	Δ		0.176	0.008	5.5	56.1		
CC3/def2-TZVPP	GS	C_2v	1.175	1.315	107.7	0.00	This work	
	ES	C_s	1.357	1.324	113.4	56.0		
	Δ		0.182	0.009	5.7	56.0		
CC3/aug-cc-pVTZ	GS	C_2v	1.174	1.313	107.6	0.00	This work	
	ES	C_s	1.353	1.323	113.2	56.2		
	Δ		0.179	0.010	5.6	56.2		
CASPT2(18e,14o)/ANO-L-VQZP	GS	C_2v	1.174	1.315	107.7	0.00	This work	
	ES	C_s	1.360	1.325	113.1	56.9		
	Δ		0.186	0.010	5.4	56.9		
CASPT2(18e,13o)/aug-cc-pVTZ	GS	C_2v	1.172	1.313	107.7	0.00	This work	
	ES	C_s	1.355	1.322	113.0	52.4		
	Δ		0.183	0.009	5.5	52.4		
CASPT2(24e,16o)/ANO-L-VQZP	GS	C_2v	1.175	1.320	107.6	0.00	This work	
	ES	C_s	1.358	1.330	112.9	52.3		
	Δ		0.183	0.010	5.3	52.3		
CASPT2(24e,16o)/aug-cc-pVTZ	GS	C_2v	1.172	1.313	107.5	0.00	This work	
	ES	C_s	1.353	1.322	113.0	52.3		
	Δ		0.183	0.009	5.5	52.3		
QCISD/6-31G(d)	GS	C_2v	1.183	1.324	117.0	33		
	ES	C_s	1.367	1.337	112.7	33		
	Δ		0.184	0.013	-4.3	33		
MR-AQCC/cc-pVTZ	ES	C_s	1.364	1.324	112.9	52.6	9	
Experiment	Δ		0.26	0.06	31.8	34		
Experiment	Δ		0.30	0.40	50.4	14		
CASPT2 active space

All valence atomic orbitals were taken into the active space for all atoms this leads to an active space of 24 electrons in 16 orbitals. We tested also smaller space in which the 2s orbitals of both oxygen and fluorine atoms are set as inactive, i.e., 18 electrons in 13 orbitals. The main reason for this test is their low energy which usually prevents them from mixing with 2p orbitals in active space. For the aug-cc-pVTZ basis set the differences between geometries optimized by these two active spaces are negligible. The ANO-L basis set is more sensitive to the change of the active space although the occupation numbers of the lone pairs included in the larger active space are around 1.99. The difference in bond lengths and FCF angle are both minimal but the size of the active space influences the bending potential quite significantly. Indeed, η varies from 56.9° to 52.3° in the larger active space. For the benchmark purposes we report aug-cc-pVTZ basis set results which are converged with respect to active space size. For the ANO-L basis set we consider larger active space results as more accurate.

Cartesian coordinates

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

ground-state	$E= -312.73143551$		
6	0.000000	0.000000	-0.162207
8	0.000000	0.000000	-1.336011
9	0.000000	1.059704	0.613862
9	0.000000	-1.059704	0.613862

excited-state	$E= -312.55693508$		
6	0.025851	0.000000	-0.316825
8	1.320526	0.000000	0.076566
9	-0.574756	1.104601	0.094452
9	-0.574756	-1.104601	0.094452
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -312.70030245 \ (T_{1}^{\text{diag}} = 0.012) \]

\[\begin{array}{ccc}
6 & 0.000000 & 0.000000 & 0.140412 \\
8 & 0.000000 & 0.000000 & 1.307952 \\
9 & 0.000000 & 1.056464 & -0.628116 \\
9 & -0.000000 & -1.056464 & -0.628116 \\
\end{array} \]

Excited-state
\[E = -312.511761805 \ (T_{1}^{\text{diag}} = 0.018) \]

\[\begin{array}{ccc}
6 & -0.249775 & 0.189752 & -0.000000 \\
8 & 0.749325 & 1.064885 & -0.000000 \\
9 & -0.249775 & -0.536533 & 1.097338 \\
9 & -0.249775 & -0.536533 & -1.097338 \\
\end{array} \]

Excited-state (constrained \(C_{2v} \))

This structure (\(A_{2} \) symmetry) presents an imaginary frequency of 1184 cm\(^{-1}\) (1213 cm\(^{-1}\) with CC2). It is much less stable than the global minimum and corresponds to a barrier of 8614 cm\(^{-1}\) (8120 cm\(^{-1}\) with CC2).

\[E = -312.472513000 \ (T_{1}^{\text{diag}} = 0.017) \]

\[\begin{array}{ccc}
6 & 0.000000 & 0.000000 & 0.028598 \\
8 & 0.000000 & 0.000000 & 1.381145 \\
9 & 0.000000 & 1.136017 & -0.623375 \\
9 & -0.000000 & -1.136017 & -0.623375 \\
\end{array} \]
Table S12: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest A state of $n \rightarrow \pi^*$ nature. η is the out-of-plane angle of the hydrogen. The values in italics corresponding to the CC3/\textit{aug}-cc-pVTZ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	C=O	C-F	C-H	F-C-H	F-C=O	η	Ref.
ADC(2)/\textit{def2}-TZVPP	GS	C_s	0.021012	1.181	1.343	1.088	109.1	123.0	0.0	This work
	ES	C_1	0.018143	1.405	1.323	1.085	117.9	109.7	40.8	
	Δ		-0.078	0.224	-0.020	-0.003	8.8	-13.2	40.8	
ADC(2)/\textit{aug}-cc-pVTZ	GS	C_s	1.181	1.344	1.085	108.9	122.9	0.0	This work	
	ES	C_1	1.405	1.321	1.083	116.4	109.3	40.4		
	Δ		0.224	-0.023	-0.002	9.4	-13.6	40.4		
CC2/\textit{def2}-TZVPP	GS	C_s	0.020595	1.188	1.354	1.087	108.8	123.0	0.0	This work
	ES	C_1	1.187	1.356	1.086	116.7	108.8	44.8		
	Δ		-0.075	0.207	-0.023	0.001	7.6	-13.7	45.0	
CC2/\textit{aug}-cc-pVTZ	GS	C_s	1.181	1.344	1.085	108.9	122.9	0.0	This work	
	ES	C_1	1.405	1.321	1.083	116.4	109.3	40.4		
	Δ		0.224	-0.023	-0.002	9.4	-13.6	40.4		
CCSD/\textit{def2}-TZVPP	GS	C_s	0.019009	1.332	1.336	1.085	115.0	110.1	45.8	
	ES	C_1	1.355	1.339	1.087	114.7	109.3	45.8		
	Δ		0.157	0.003	-0.003	5.3	-12.7	45.8		
CCSD/\textit{aug}-cc-pVTZ	GS	C_s	1.174	1.333	1.085	109.5	122.8	0.0	This work	
	ES	C_1	1.329	1.335	1.083	115.0	109.9	45.6		
	Δ		0.155	0.002	-0.002	5.5	-12.9	45.6		
CCSDR(3)/\textit{def2}-TZVPP	GS	C_s	1.180	1.341	1.090	109.5	122.8	0.0	This work	
	ES	C_1	1.355	1.339	1.087	114.7	109.3	48.4		
	Δ		0.172	-0.003	-0.002	5.4	-13.7	48.3		
CC3/\textit{def2}-TZVPP	GS	C_s	1.182	1.344	1.090	109.4	122.8	0.0	This work	
	ES	C_1	1.364	1.340	1.088	114.7	109.3	48.6		
	Δ		0.182	-0.004	-0.002	5.3	-13.5	48.3		
CC3/\textit{aug}-cc-pVTZ	GS	C_s	1.182	1.344	1.090	109.4	122.8	0.0	This work	
	ES	C_1	1.364	1.340	1.088	114.7	109.3	48.6		
	Δ		0.182	-0.004	-0.002	5.3	-13.5	48.3		
CASPT2(4e,3o)/\textit{aug}-cc-pVTZ	GS	C_s	1.177	1.340	1.084	109.0	123.1	0.0	This work	
	ES	C_1	1.360	1.340	1.086	114.7	109.0	49.4		
	Δ		0.179	-0.004	-0.001	5.5	-13.8	48.5		
CASPT2(14e,11o)/\textit{aug}-cc-pVTZ	GS	C_s	1.182	1.346	1.089	109.1	123.1	0.0	This work	
	ES	C_1	1.362	1.338	1.085	114.7	109.3	49.4		
	Δ		0.180	-0.008	-0.004	5.6	-13.8	49.4		
CCSD/DZP	GS	C_s	1.187	1.340	1.010	123.1	0.0	35		
	ES	C_1	1.346	1.346	1.098	109.8	46.3			
	Δ		0.159	0.006	-0.002	3.9	-13.6	46.3		
MR-CISD/\textit{cc-pVTZ}	GS	C_s	1.374	1.324	1.081	114.9	109.5	45.8		
	ES	C_1	1.344	1.346	1.098	109.7	36.0			
	Δ		0.179	0.002	0.005	-12.8	30–35			
CASPT2 active space

Two types of active spaces were used. First, all valence atomic orbitals were taken into the active space for carbon and hydrogen atoms. The 2s orbitals of the oxygen and fluorine atoms were set as inactive. Next, we compared this with a much smaller active space compromising oxygen lone pair, and two π orbitals. The results are similar but we kept the one with the largest active space below.

Cartesian coordinates

CASPT2

CASPT2(14e,11o)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

	Ground-state	Excited-state	
	$E = -213.52527766$	$E = -213.32989208$	
6	0.0033096	0.3980957	0.000000
8	1.1498469	0.1198249	0.000000
1	-0.4431430	1.3854944	0.000000
9	-0.9745585	-0.5229190	0.000000

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

	Ground-state	Excited-state	
6	$E = -213.56197208$	$E = -213.38680621$	
8	0.397970	0.002169	0.000000
1	0.118022	1.148529	0.000000
9	1.389501	-0.443103	0.000000

S35
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -213.53898591 \ (T_{1}^{\text{diag}} = 0.014) \]

6	0.000000	0.395251	0.000000
8	1.142131	0.118718	0.000000
1	-0.440380	1.390000	0.000000
9	-0.966296	-0.523473	0.000000

Excited-state
\[E = -213.356381413 \ (T_{1}^{\text{diag}} = 0.018) \]

6	-0.056444	0.487543	-0.139747
8	-1.133934	-0.277104	0.029897
1	-0.056351	1.446942	0.366810
9	1.051832	-0.239486	0.025833

Excited-state (constrained \(C_s \))

As in formyl chloride, constraining the molecule in the planar conformation yields an imaginary frequency of 901 cm\(^{-1}\) (920 cm\(^{-1}\) with CC2) for the lowest excited-state of \(A'' \) symmetry. This geometry is a TS like structure that corresponds to a barrier of 1872 cm\(^{-1}\) (1822 cm\(^{-1}\) with CC2) compared to the true minimum.

\[E = -213.347849130 \ (T_{1}^{\text{diag}} = 0.018) \]

6	-0.000000	0.477122	0.000000
8	1.181303	-0.152506	0.000000
1	-0.124789	1.539744	0.000000
9	-1.036182	-0.353603	0.000000
Table S13: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A^\ast state of $n \rightarrow \pi^\ast$ nature. η is defined as in formaldehyde.

Method	State	PG	ZPVE	C=O	C-Cl	Cl-C-Cl	η	Ref.
ADC(2)/def2-TZVPP	GS C$_2v$	0.010550	1.182	1.735	111.8	0.0	This work	
	ES C$_a$	0.007734	1.398	1.702	122.3	42.9		
	Δ	-0.077	0.216	-0.033	10.5	42.9	This work	
ADC(2)/aug-cc-pVTZ	GS C$_2v$	1.181	1.734	111.7	0.0	This work		
	ES C$_a$	1.394	1.701	122.6	43.3			
	Δ	0.213	-0.033	10.9	43.3	This work		
CC2/def2-TZVPP	GS C$_2v$	0.010256	1.191	1.740	111.6	0.0	This work	
	ES C$_a$	0.007480	1.369	1.725	121.1	46.7		
	Δ	-0.076	0.178	-0.014	9.5	46.7	This work	
CC2/aug-cc-pVTZ	GS C$_2v$	1.180	1.739	111.5	0.0	This work		
	ES C$_a$	1.365	1.723	121.3	46.1			
	Δ	0.176	-0.016	9.8	46.1	This work		
CCSD/def2-TZVPP	GS C$_2v$	0.010839	1.173	1.738	112.3	0.0	This work	
	ES C$_a$	0.008562	1.303	1.729	119.0	47.6		
	Δ	-0.062	0.130	-0.009	6.7	47.6	This work	
CCSD/aug-cc-pVTZ	GS C$_2v$	1.171	1.737	112.2	0.0	This work		
	ES C$_a$	1.297	1.729	119.0	48.0			
	Δ	0.126	-0.008	6.8	48.0			
CCSDR(3)/def2-TZVPP	GS C$_2v$	1.179	1.748	112.1	0.0	This work		
	ES C$_a$	1.319	1.743	118.7	50.4			
	Δ	0.140	-0.005	6.6	50.4			
CCSDR(3)/aug-cc-pVTZ	GS C$_2v$	1.178	1.743	111.9	0.0	This work		
	ES C$_a$	1.314	1.738	118.8	50.3			
	Δ	0.136	-0.005	6.9	50.3			
CC3/def2-TZVPP	GS C$_2v$	1.180	1.745	111.8	0.0	This work		
CC3/aug-cc-pVTZ	GS C$_2v$	1.181	1.746	111.7	0.0	This work		
	ES C$_a$	1.326	1.741	118.5	47.3			
	Δ	0.145	-0.005	6.8	47.3			
CASPT2(24e,16o)/ANO-L-VQZP	GS C$_2v$	1.178	1.742	111.7	0.0	This work		
	ES C$_a$	1.319	1.738	118.6	51.6			
	Δ	0.141	-0.004	6.9	51.6			
CCSD/cc-pVDZ	GS C$_2v$	1.182	1.759	110.0	0.0	This work		
	ES C$_a$	1.311	1.759	119.3	49.3			
	Δ	0.129	0.000	49.3				
CASPT2/cc-pVQZ	ES C$_a$	1.340	1.713	119.4	44.5	9		
Experiment	Δ	0.17	32.5	39				
	ES C$_a$	0.42	14					

aThis is the angle between the C=O and the bisector of the Cl-C-Cl angle, θ, it is ca. 4 degrees smaller than η.

S13 Phosgene

Table S13: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A^\ast state of $n \rightarrow \pi^\ast$ nature. η is defined as in formaldehyde.
CASPT2 active space

Valence orbitals of all atoms were taken into the active space, i.e. 24 electrons in 16 orbitals.

Cartesian coordinates

CASPT2

CASPT2/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	\(E = -1032.68277337\)
6	0.0000000 0.0000000 0.4916078
8	0.0000000 0.0000000 1.6694510
17	0.0000000 1.4418188 -0.4856407
17	0.0000000 -1.4418188 -0.4856407

Excited-state	\(E = -1032.52990680\)
6	0.3654079 0.3600955 0.0000000
8	1.5992804 -0.1057674 0.0000000
17	-0.4284562 -0.0375964 1.4944731
17	-0.4284562 -0.0375964 -1.4944731

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	\(E = -1032.74664055\)
6	0.000000 0.000000 -0.504795
8	0.000000 0.000000 -1.682849
17	0.000000 1.444634 0.471093
17	0.000000 -1.444634 0.471093

Excited-state	\(E = -1032.59089593\)
6	0.121331 -0.324111 0.000000
8	1.378495 0.057387 0.000000
17	-0.651481 0.107684 1.495777
17	-0.651481 0.107684 -1.495777
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -1032.9377709 \quad (T^\text{diag}_1 = 0.010) \]

6	0.000000	0.000000	0.490080
8	0.000000	0.000000	1.663153
17	0.000000	1.443568	-0.477815
17	0.000000	-1.443568	-0.477815

Excited-state

\[E = -1032.77527880 \quad (T^\text{diag}_1 = 0.013) \]

6	-0.149143	0.463354	0.000000
8	0.745717	1.410545	0.000000
17	-0.149143	-0.413661	1.490096
17	-0.149143	-0.413661	-1.490096

Excited-state (constrained \(C_2\varepsilon\))

This structure (\(A_2\) symmetry) presents an imaginary frequency of 501\(\tilde{\text{cm}}^{-1}\) (541\(\tilde{\text{cm}}^{-1}\) with CC2). It is significantly less stable than the global minimum and corresponds to a barrier of 2262 cm\(^{-1}\) (2502 cm\(^{-1}\) with CC2).

\[E = -1032.76497277 \quad (T^\text{diag}_1 = 0.013) \]

6	0.000000	0.000000	0.322620
8	0.000000	0.000000	1.651653
17	0.000000	1.500012	-0.445557
17	0.000000	-1.500012	-0.445557
Table S14: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees).

PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest A state of $n \rightarrow \pi^*$ nature. η is the out-of-plane angle of the hydrogen atom. The values in italics corresponding to the CC3/aug-cc-pVTZ structures have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	C=O	C-Cl	C-H	Cl-C-H	Cl-C=O	η	Ref.
ADC(2)/def2-TZVPP	GS	Cs	0.019249	1.187	1.759	1.090	110.1	123.7	0.0	This work
	ES	C_1	0.015919	1.410	1.688	1.083	120.4	112.4	33.7	This work
	Δ	-0.091	0.223	-0.071	-0.007	10.3	-11.3	33.7		
ADC(2)/aug-cc-pVTZ	GS	Cs	1.186	1.760	1.086	110.0	123.7	0.0	This work	
	ES	C_1	1.410	1.687	1.079	121.2	111.8	32.9		
	Δ	-0.080	0.224	-0.073	-0.007	11.2	-11.9	32.9		
CC2/def2-TZVPP	GS	Cs	0.018924	1.195	1.769	1.089	109.8	110.5	41.0	
	ES	C_1	0.016991	1.310	1.733	1.086	116.2	110.8	41.8	
	Δ	-0.069	0.130	-0.025	-0.006	5.6	-12.7	41.8		
CC2/aug-cc-pVTZ	GS	Cs	1.184	1.767	1.086	110.4	123.6	0.0	This work	
	ES	C_1	1.304	1.742	1.083	115.6	109.1	45.2		
	Δ	0.139	-0.025	-0.005	5.5	-14.5	45.2			
CCSD/def2-TZVPP	GS	Cs	1.181	1.760	1.086	110.0	123.6	0.0		
	ES	C_1	1.335	1.741	1.089	115.3	109.2	45.5		
	Δ	0.154	-0.019	-0.007	5.2	-14.3	46.6			
CCSD/aug-cc-pVTZ	GS	Cs	1.184	1.769	1.089	109.9	123.7	0.0		
	ES	C_1	1.331	1.739	1.085	115.3	109.2	50.0		
	Δ	0.147	-0.030	-0.004	5.4	-14.5	50.0			
CCSDR(3)/def2-TZVPP	GS	Cs	1.185	1.770	1.091	110.3	123.6	0.0		
	ES	C_1	1.324	1.742	1.083	115.6	109.1	45.2		
	Δ	0.139	-0.025	-0.005	5.5	-14.5	45.2			
CC3/def2-TZVPP	GS	Cs	1.187	1.773	1.092	110.2	123.6	0.0		
	ES	C_1	1.335	1.741	1.089	115.2	109.3	46.6		
	Δ	0.154	-0.026	-0.005	5.1	-14.2	45.9			
CC3/aug-cc-pVTZ	GS	Cs	1.186	1.770	1.088	110.0	123.7	0.0		
	ES	C_1	1.331	1.744	1.083	115.5	109.8	45.5		
	Δ	0.145	-0.026	-0.005	5.5	-13.9	45.5			
CASPT2(18e,13o)/ANO-L-VQZP	GS	Cs	1.181	1.760	1.082	110.0	123.6	0.0		
	ES	C_1	1.335	1.741	1.089	115.2	109.3	46.6		
	Δ	0.154	-0.019	-0.007	5.2	-14.3	46.6			
CASPT2(18e,13o)/aug-cc-pVTZ	GS	Cs	1.184	1.769	1.089	109.9	123.7	0.0		
	ES	C_1	1.331	1.739	1.085	115.3	109.2	50.0		
	Δ	0.147	-0.030	-0.004	5.4	-14.5	50.0			
MR-CISD/cc-pVTZ	ES	C_1	1.356	1.715	1.078	116.5	111.8	39.4	9	
Experiment	ES	C_1	1.308	1.76a	1.10a	119.7	109.0a	39.4	40	
	ES	C_1	1.345	1.725	1.084	116.4	110.2	39.4	41	

Fixed during the fit; bThe experimental data of Ref. 41 were refitted in that work to account for the theoretical estimates. See Ref. 9 for details.
CASPT2 active space

Valence orbitals of all atoms were taken into the active space, i.e., 18 electrons in 13 orbitals.

Cartesian coordinates

CASPT2

CASPT2/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -573.52364786$		
6	0.0022055	0.7928431	0.000000
8	1.1297643	1.1535152	0.000000
1	-0.8807044	1.4308879	0.000000
17	-0.4828923	-0.9086042	0.000000

Excited-state	$E = -573.37320101$		
6	-0.6224457	0.5615764	-0.1553258
8	-1.5174248	-0.4041505	0.0385553
1	-0.7979200	1.4952937	0.3680241
17	0.9777165	-0.0972256	0.0163904

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -573.56947713$		
6	0.465838	0.073400	0.000000
8	0.202463	1.228377	0.000000
1	1.464065	-0.358726	0.000000
17	-0.751871	-1.207596	0.000000

Excited-state	$E = -573.41599904$		
6	-0.097711	-0.604294	-0.654480
8	0.016648	0.362025	-1.552142
1	0.480375	-1.505370	-0.817690
17	0.016309	0.084730	0.941703
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -573.65644799 \ (T_{1}^{\text{diag}} = 0.012) \]

\[
\begin{array}{cccc}
6 & 0.000000 & 0.788694 & 0.000000 \\
8 & 1.123121 & 1.148953 & 0.000000 \\
1 & -0.877859 & 1.434419 & 0.000000 \\
17 & -0.476889 & -0.903424 & -0.000000 \\
\end{array}
\]

Excited-state

\[E = -573.497311881 \ (T_{1}^{\text{diag}} = 0.015) \]

\[
\begin{array}{cccc}
6 & -0.623197 & 0.546690 & -0.128486 \\
8 & -1.517288 & -0.397017 & 0.030166 \\
1 & -0.800655 & 1.500185 & 0.355737 \\
17 & 0.981067 & -0.094364 & 0.010226 \\
\end{array}
\]

Excited-state (constrained \(C_{s}\))

As expected, constraining the molecule in the planar conformation yields an imaginary
frequency of 627 \(\text{cm}^{-1}\) or 653 \(\text{cm}^{-1}\) with CCSD and CC2, respectively, for the lowest
excited-state of \(A^{+}\) symmetry. This geometry is a TS like structure that corresponds to an
inversion barrier of 847 \(\text{cm}^{-1}\) or 865 \(\text{cm}^{-1}\) with CCSD and CC2, respectively.

\[E = -573.493452976 \ (T_{1}^{\text{diag}} = 0.015) \]

\[
\begin{array}{cccc}
6 & -0.000000 & 0.797486 & 0.000000 \\
8 & 1.316025 & 0.902143 & 0.000000 \\
1 & -0.646203 & 1.655822 & 0.000000 \\
17 & -0.581294 & -0.803405 & 0.000000 \\
\end{array}
\]
S15 Thiocarbonyl Difluoride

Table S15: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A^\ast state of $n \rightarrow \pi^\ast$ nature. θ is the angle between the CS bond and the bisector of the F-C-F angle. The values in italics corresponding to the CC3/aug-cc-pVTZ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	C=S	C-F	F-C-F	θ	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.011534	1.588	1.313	107.1	0.0	This work
	ES	C_s	0.010304	1.758	1.326	112.2	38.4	
	Δ		-0.033	0.170	0.013	5.1	38.4	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.591	1.311	107.1	0.0	This work	
	ES	C_s	1.759	1.323	112.2	38.6		
	Δ		0.168	0.012	5.1	38.6		
CC2/def2-TZVPP	GS	C_{2v}	0.011203	1.595	1.320	106.9	0.0	This work
	ES	C_s	1.739	1.322	110.8	40.1		
	Δ		-0.037	0.170	0.013	5.0	40.1	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.598	1.318	106.9	0.0	This work	
	ES	C_s	1.765	1.331	111.7	40.4		
	Δ		0.167	0.013	4.8	40.4		
CCSD/def2-TZVPP	GS	C_{2v}	0.011742	1.590	1.305	107.4	0.0	This work
	ES	C_s	1.739	1.322	110.8	39.9		
	Δ		-0.0391	0.149	0.017	3.4	39.9	
CCSD/def2-TZVPP	GS	C_{2v}	1.592	1.302	107.4	0.0	This work	
	ES	C_s	1.740	1.319	110.7	40.1		
	Δ		0.148	0.017	3.3	40.1		
CC3/def2-TZVPP	GS	C_{2v}	1.600	1.312	107.3	0.0	This work	
	ES	C_s	1.775	1.327	111.1	43.3		
	Δ		0.175	0.015	3.8	43.3		
CC3/aug-cc-pVTZ	GS	C_{2v}	1.599	1.310	107.3	0.0	This work	
	ES	C_s	1.769	1.325	110.8	43.4		
	Δ		0.170	0.015	3.5	43.4		
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.602	1.314	107.3	0.0	This work	
	ES	C_s	1.776	1.329	111.2	43.3		
	Δ		0.174	0.015	3.9	43.3		
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.600	1.312	107.2	0.0	This work	
	ES	C_s	1.769	1.328	110.9	43.4		
	Δ		0.169	0.016	3.7	43.4		
CASPT2(24e,16o)/ANO-L-VQZP	GS	C_{2v}	1.598	1.321	107.3	0.0	This work	
	ES	C_s	1.772	1.336	111.3	44.9		
	Δ		0.174	0.015	4.0	44.9		
CASPT2(24e,16o)/aug-cc-pVTZ	GS	C_{2v}	1.596	1.314	107.4	0.0	This work	
	ES	C_s	1.770	1.328	111.2	44.9		
	Δ		0.174	0.014	3.8	44.9		
Experiment	ES	C_s	~ 0.1	0.12	ca. 0.118	30.5 a, 34.1	42	
	Δ					18		
	Δ					43		

a Assuming other parameters: C-S=1.63 Å and C-F=1.32 Å.
CASPT2 active space

All s and p valence orbitals were included in the active space, i.e., 24 electrons in 16 orbitals.

Cartesian coordinates

CASPT2

CASPT2$/aug$-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	E = -635.27663710
6	0.000000 0.000000 -0.262543
16	0.000000 0.000000 1.333227
9	0.000000 1.059161 -1.040172
9	0.000000 -1.059161 -1.040172

Excited-state	E = -635.17347077
6	-0.478688 -0.197374 0.000000
16	0.682064 1.139703 0.000000
9	-0.426770 -0.946220 1.095850
9	-0.426770 -0.946220 -1.095850

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	E = -635.32495455
6	0.000000 0.000000 -0.263798
16	0.000000 0.000000 1.334765
9	0.000000 1.055044 -1.040455
9	0.000000 -1.055044 -1.040455

Excited-state	E = -635.21752369
6	-0.473166 -0.196572 0.000000
16	0.682496 1.142510 0.000000
9	-0.439757 -0.947890 1.091106
9	-0.439757 -0.947890 -1.091106
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[
E = -635.40403000 \quad (T_1^{\text{diag}} = 0.012)
\]

6	16	9	9
-0.000000	0.000000	0.288187	
0.000000	-0.000000	1.301536	
0.000000	1.052164	-1.060859	
-0.000000	-1.052164	-1.060859	

Excited-state

\[
E = -635.287102778 \quad (T_1^{\text{diag}} = 0.017)
\]

6	16	9	9
-0.446789	-0.195418	-0.000000	
0.670183	1.137477	0.000000	
-0.446789	-0.945951	1.087913	
-0.446789	-0.945951	-1.087913	

Excited-state (constrained \(C_{2v} \))

This structure (\(A_2 \) symmetry) presents an imaginary frequency of 645\(\text{ cm}^{-1} \) (688\(\text{ cm}^{-1} \) with CC2). It is slightly less stable than the global minimum and corresponds to a barrier of 2981\(\text{ cm}^{-1} \) (3265\(\text{ cm}^{-1} \) with CC2).

\[
E = -635.273521129 \quad (T_1^{\text{diag}} = 0.015)
\]

6	16	9	9
0.000000	-0.000000	-0.361548	
-0.000000	0.000000	1.348236	
0.000000	1.108493	-1.077916	
-0.000000	-1.108493	-1.077916	

S45
Thiophosgene

Table S16: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the \(\Delta_{\text{ZPVE}} \)). The considered ES is the lowest \(A^\ast \) state of \(n \rightarrow \pi^\ast \) nature. \(\eta \) is the angle between the CS bonds and CCl\(_2\) plane.

Method	State	PG	ZPVE	C=S	C-Cl	Cl-C-Cl	\(\eta \)	Ref.
ADC(2)/def2-TZVPP	GS	\(C_{2v} \)	0.008236	1.599	1.723	111.1	0.0	This work
	ES	\(C_s \)	0.006735	1.773	1.699	119.8	27.3	
	\(\Delta \)		-0.041	0.174	-0.024	8.7	27.3	
ADC(2)/aug-cc-pVTZ	GS	\(C_{2v} \)	1.602	1.722	111.1	0.0	This work	
	ES	\(C_s \)	1.774	1.698	119.9	27.6		
	\(\Delta \)		0.172	-0.024	8.8	27.6		
CC2/def2-TZVPP	GS	\(C_{2v} \)	1.606	1.728	110.8	0.0	This work	
	ES	\(C_s \)	1.754	1.708	119.0	30.7		
	\(\Delta \)		0.006671	0.148	-0.020	8.2	30.7	
CC2/aug-cc-pVTZ	GS	\(C_{2v} \)	1.609	1.727	110.8	0.0	This work	
	ES	\(C_s \)	1.755	1.706	119.1	31.0		
	\(\Delta \)		0.146	-0.021	8.3	31.0		
CCSD/def2-TZVPP	GS	\(C_{2v} \)	1.606	1.729	111.4	0.0	This work	
	ES	\(C_s \)	1.739	1.723	117.9	33.7		
	\(\Delta \)		0.007104	0.110	-0.016	7.1	33.7	
CCSD/aug-cc-pVTZ	GS	\(C_{2v} \)	1.606	1.730	111.3	0.0	This work	
	ES	\(C_s \)	1.732	1.715	118.0	32.9		
	\(\Delta \)		0.131	-0.012	6.5	32.9		
CCSDR(3)/def2-TZVPP	GS	\(C_{2v} \)	1.607	1.731	111.2	0.0	This work	
	ES	\(C_s \)	1.734	1.715	117.8	32.1		
	\(\Delta \)		0.126	-0.015	6.7	32.1		
CCSDR(3)/aug-cc-pVTZ	GS	\(C_{2v} \)	1.602	1.729	111.1	0.0	This work	
	ES	\(C_s \)	1.734	1.715	117.8	32.1		
	\(\Delta \)		0.132	-0.014	6.7	32.1		
CC3/def2-TZVPP	GS	\(C_{2v} \)	1.607	1.731	111.2	0.0	This work	
	ES	\(C_s \)	1.734	1.715	117.8	32.1		
	\(\Delta \)		0.126	-0.015	6.7	32.1		
CC3/aug-cc-pVTZ	GS	\(C_{2v} \)	1.603	1.728	111.1	0.0	This work	
	ES	\(C_s \)	1.736	1.714	117.8	36.1		
	\(\Delta \)		0.133	-0.014	6.7	36.1		
CASPT2(24e,16o)/ANO-L\(^a\)	GS	\(C_{2v} \)	1.615	1.772	0.0			44
	ES	\(C_s \)	1.793	1.758	35.8			
	\(\Delta \)		0.178	-0.014	35.8			
Experiment	\(\Delta \)		0.103	0.022	8.0	32.0		45
	\(\Delta \)		0.114	0.013	-3.5	32.0		
	ES\(^b\)	\(C_s \)	1.73	1.745	112.3	27.2		46
	ES\(^b\)	\(C_s \)	1.69	1.756	111.8	26.0		
	GS	\(C_{2v} \)	1.600	1.727	111.2	0.0		47
	ES	\(C_s \)	1.694	1.720	117.6	23.9		
	\(\Delta \)		0.094	-0.007	6.4	23.9		

\(^a\) Maximum contraction of ANO-L basis set (C: 7s7p4d3f, Cl and S: 7s7p5d4f) instead of ANO-L-VQZP one due to convergence difficulties during the geometry optimization.

\(^b\) In these works, two different analysis of the experimental output are performed, so two sets of parameters are proposed.
CASPT2 active space

All valence atomic orbitals were included in the active space, i.e., 24 electrons in 16 orbitals.

Cartesian coordinates

CASPT2

CASPT2/\textit{aug}-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state						
E	-1355.27816908					
6	0.000000	0.000000	0.133586			
16	0.000000	0.000000	1.737067			
17	0.000000	1.424557	-0.844232			
17	0.000000	-1.424557	-0.844232			

Excited-state						
E	-1355.19142999					
6	-0.250048	0.083517	0.000000			
16	0.487013	1.655138	0.000000			
17	-0.143949	-0.795480	1.468109			
17	-0.143949	-0.795480	-1.468109			

CCSDR(3)

CCSDR(3)/\textit{aug}-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state						
E	-1355.34955603					
6	0.000000	0.000000	-0.148617			
16	0.000000	0.000000	-1.754370			
17	0.000000	1.427690	0.827852			
17	0.000000	-1.427690	0.827852			

Excited-state						
E	-1355.26117558					
6	-0.237565	0.000000	0.083924			
16	0.484262	0.000000	1.658621			
17	-0.169857	1.470608	-0.796580			
17	-0.169857	-1.470608	-0.796580			
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -1355.6490637 \ (T_{1}^{\text{diag}} = 0.010) \]

	x	y	z
6	0.000000	0.000000	0.134153
16	0.000000	0.000000	1.730113
17	0.000000	1.425544	-0.837845
17	0.000000	-1.425544	-0.837845

Excited-state

\[E = -1355.55550110 \ (T_{1}^{\text{diag}} = 0.011) \]

	x	y	z
6	-0.186033	0.080262	0.000000
16	0.465082	1.656702	0.000000
17	-0.186033	-0.793789	1.468861
17	-0.186033	-0.793789	-1.468861

Excited-state (constrained \(C_{2v} \))

This structure (\(A_{2} \) symmetry) presents an imaginary frequency of 191 cm\(^{-1} \) (247 cm\(^{-1} \) with CC2). It is slightly less stable than the global minimum and corresponds to a barrier of 138 cm\(^{-1} \) (326 cm\(^{-1} \) with CC2).

\[E = -1355.55487086 \ (T_{1}^{\text{diag}} = 0.012) \]

	x	y	z
6	0.000000	0.000000	0.030411
16	0.000000	0.000000	1.733084
17	0.000000	1.471894	-0.820935
17	0.000000	-1.471894	-0.820935

S48
Table S17: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A'/A state of $n \rightarrow \pi^*$ nature. η is the out of plane angle of the hydrogen atom.

Method	State	PG	ZPVE	C=S	C-Cl	C-H	Cl-C-H	Cl-C=S	η	Ref.
ADC(2)/def2-TZVPP	GS	C_s	0.017156	1.597	1.725	1.082	110.3	125.7	0.0	This work
	ES	C_1	0.014341	1.753	1.698	1.078	119.1	117.9	9.5	
Δ	GS	C_s	-0.077	0.156	-0.027	-0.004	8.8	-7.8	9.5	
	ES	C_1	1.600	1.725	1.077	110.3	125.5	0.0	This work	
ADC(2)/aug-cc-pVTZ	GS	C_s	1.757	1.699	1.073	119.3	117.2	8.9		
	ES	C_1	0.157	-0.026	-0.004	9.0	-8.3	8.9		
Δ	GS	C_s	1.608	1.733	1.078	110.0	125.7	0.0	This work	
	ES	C_1	1.737	1.708	1.074	118.4	116.6	18.6		
Δ	GS	C_s	-0.063	0.130	-0.026	-0.005	8.2	-8.5	18.0	
	ES	C_1	0.129	-0.025	-0.004	8.4	-9.1	18.6		
CC2/def2-TZVPP	GS	C_s	1.598	1.727	1.075	110.5	125.6	0.0	This work	
	ES	C_1	1.695	1.711	1.069	117.9	118.7	0.0		
Δ	GS	C_s	1.608	1.737	1.082	110.4	125.7	0.0	This work	
	ES	C_1	1.727	1.722	1.078	116.9	117.4	23.2		
Δ	GS	C_s	0.119	-0.015	-0.004	6.5	-8.3	23.2		
	ES	C_1	0.097	-0.016	-0.006	7.4	-6.9	0.0		
CC2/aug-cc-pVTZ	GS	C_s	1.608	1.734	1.077	110.3	125.5	0.0	This work	
	ES	C_1	1.721	1.717	1.077	117.1	117.1	21.9		
Δ	GS	C_s	1.607	1.739	1.082	110.3	125.7	0.0	This work	
	ES	C_1	1.728	1.718	1.081	116.5	116.4	28.4		
Δ	GS	C_s	1.606	1.734	1.077	110.3	125.5	0.0	This work	
	ES	C_1	1.725	1.714	1.074	116.7	116.5	25.8		
Δ	GS	C_s	1.605	1.735	1.079	110.1	125.5	0.0	This work	
	ES	C_1	1.725	1.714	1.074	116.7	116.5	25.8		
CASPT2(18e,13o)/ANO-L-VQZP	GS	C_s	1.609	1.739	1.082	110.3	125.7	0.0	This work	
	ES	C_1	1.728	1.718	1.081	116.5	116.4	28.4		
Δ	GS	C_s	1.607	1.739	1.082	110.3	125.7	0.0	This work	
	ES	C_1	1.728	1.718	1.081	116.5	116.4	28.4		
Δ	GS	C_s	1.606	1.740	1.085	110.1	125.3	0.0	This work	
	ES	C_1	1.728	1.718	1.081	116.5	116.4	28.4		
Δ	GS	C_s	1.605	1.735	1.079	110.1	125.5	0.0	This work	
	ES	C_1	1.725	1.714	1.074	116.7	116.5	25.8		
Δ	GS	C_s	1.605	1.735	1.079	110.1	125.5	0.0	This work	
	ES	C_1	1.725	1.714	1.074	116.7	116.5	25.8		

Experiment | ES | C_1 | 25.0 | 48 |
CASPT2 active space

All valence atomic s and p orbitals were included in the active space, i.e., 18 electrons in 13 orbitals.

Cartesian coordinates

CASPT2

CASPT2/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

	x	y	z
Ground-state	E		
6	0.001836	0.610051	0.000000
16	1.519483	0.087831	0.000000
1	-0.285069	1.650468	0.000000
17	-1.409766	-0.398967	0.000000

	x	y	z
Excited-state	E		
6	0.056392	-0.740935	0.056354
16	-0.008838	0.167477	1.521737
1	-0.268883	-1.763878	0.010317
17	-0.008637	0.155564	-1.403240

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

	x	y	z
Ground-state	E		
6	0.000138	0.609671	0.000000
16	1.519806	0.089571	0.000000
1	-0.282887	1.649013	0.000000
17	-1.410573	-0.398869	0.000000

	x	y	z
Excited-state	E		
6	0.040733	-0.736862	0.057832
16	-0.002681	0.166713	1.522354
1	-0.265512	-1.764010	0.015827
17	-0.002506	0.152386	-1.410844
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -896.37372105 \ (T_1^{\text{diag}} = 0.011) \]

6	-0.000000	0.605506	-0.000000	
16	1.510857	0.092849	0.000000	
1	-0.278790	1.649134	-0.000000	
17	-1.405583	-0.398103	-0.000000	

Excited-state
\[E = -896.281089126 \ (T_1^{\text{diag}} = 0.013) \]

6	-0.000000	0.685346	0.000000	
16	1.512442	-0.075332	0.000000	
1	-0.118364	1.753574	0.000000	
17	-1.416512	-0.274138	0.000000	
S18 Selenocarbonyl Difluoride

Table S18: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered ES is the lowest A^* state of $n\rightarrow\pi^*$ nature. θ is the angle between the CSe bond and the bisector of the F-C-F angle.

Method	State	PG	ZPVE	C-Se	C-F	F-C-F	θ	Ref.
ADC(2)/def2-TZVPP	GS	C_{2v}	0.010722	1.734	1.311	107.5	0.0	This work
	ES	C_{s}	0.009852	1.894	1.327	112.2	36.1	
	Δ		-0.024	0.160	0.016	4.7	36.1	
ADC(2)/aug-cc-pVTZ	GS	C_{2v}	1.726	1.310	107.3	0.0	This work	
	ES	C_{s}	1.884	1.325	112.0	36.7		
	Δ		0.156	0.015	4.7	36.7		
CC2/def2-TZVPP	GS	C_{2v}	0.010369	1.745	1.318	107.4	0.0	This work
	ES	C_{s}	0.009393	1.908	1.333	111.7	38.5	
	Δ		-0.027	0.163	0.015	4.3	38.5	
CC2/aug-cc-pVTZ	GS	C_{2v}	1.736	1.317	107.2	0.0	This work	
	ES	C_{s}	1.896	1.331	111.4	39.1		
	Δ		0.160	0.014	4.2	39.1		
CCSD/def2-TZVPP	GS	C_{2v}	0.010869	1.741	1.303	107.8	0.0	This work
	ES	C_{s}	0.009810	1.891	1.321	110.4	39.5	
	Δ		-0.029	0.150	0.018	2.6	39.5	
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.733	1.301	107.7	0.0	This work	
	ES	C_{s}	1.879	1.318	110.2	39.7		
	Δ		0.146	0.017	2.5	39.7		
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.749	1.310	107.8	0.0	This work	
	ES	C_{s}	1.922	1.327	110.7	42.8		
	Δ		0.173	0.017	2.9	42.8		
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.740	1.309	107.6	0.0	This work	
	ES	C_{s}	1.910	1.325	110.4	48.7		
	Δ		0.170	0.016	2.8	48.7		
CC3/def2-TZVPP	GS	C_{2v}	1.750	1.312	107.7	0.0	This work	
	ES	C_{s}	1.908	1.328	110.8	44.5		
	Δ		0.172	0.017	3.2	44.5		
Experiment	Δ		ca. 0.077		30.1			43
CASPT2 active space

All valence atomic s and p orbitals were included in the active space, i.e., 24 electrons in 16 orbitals.

Cartesian coordinates

CASPT2

CASPT2/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

$E = -2637.67194175$

	6	34	9	9
	0.000000	0.000000	-0.777539	0.958647
34	0.000000	0.000000	1.058348	-1.552076
9	0.000000	-1.058348	-1.552076	0.958647
9	0.000000	-1.058348	-1.552076	1.058348

Excited-state

$E = -2637.58676879$

	6	34	9	9
	-0.738245	0.000000	-0.618673	0.829713
34	0.504329	0.000000	0.829713	-0.618673
9	-0.687319	1.092930	-1.371002	0.504329
9	-0.687319	-1.092930	-1.371002	1.092930

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

$E = -2637.71309384$

	6	34	9	9
	0.000000	0.000000	-0.779222	0.960594
34	0.000000	0.000000	1.055714	-1.552340
9	0.000000	-1.055714	-1.552349	0.960594
9	0.000000	-1.055714	-1.552349	1.055714

Excited-state

$E = -2637.62363910$

	6	34	9	9
	-0.731241	0.000000	-0.620303	0.835637
34	0.505170	0.000000	0.835637	-0.620303
9	-0.695164	1.088258	-1.375296	0.505170
9	-0.695164	-1.088258	-1.375296	1.088258
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -2637.6894391 \left(T_{1}^{\text{diag}} = 0.012 \right) \]

6	-0.000000	0.000000	-0.782405
34	0.000000	-0.000000	0.958509
9	0.000000	1.052744	-1.549715
9	-0.000000	-1.052744	-1.549715

Excited-state

\[E = -2637.59308945 \left(T_{1}^{\text{diag}} = 0.017 \right) \]

6	-0.704584	-0.621771	0.000000
34	0.497354	0.838081	-0.000000
9	-0.704584	-1.375784	1.084040
9	-0.704584	-1.375784	-1.084040

Excited-state (constrained \(C_{2v}\))

This ES of \(A_{2}\) symmetry presents an imaginary frequency of 602 cm\(^{-1}\) (620 cm\(^{-1}\) with CC2), which represents a barrier of 2703 cm\(^{-1}\) (2636 cm\(^{-1}\) with CC2) compared to the true minimum. The available experimental estimate for this barrier is 2483 cm\(^{-1}\).\(^{43}\)

\[E = -2637.58077207 \left(T_{1}^{\text{diag}} = 0.015 \right) \]

6	0.000000	0.000000	-0.863346
34	0.000000	0.000000	0.991763
9	0.000000	1.105233	-1.585547
9	-0.000000	-1.105233	-1.585547
Table S19: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest A^* state of $n \rightarrow \pi^*$ nature. η measures how the CO bond is out of the CCH$_{ald}$ plane.

Method	State	PG	ZPVE	C=O	C-C	C-C-H$_{ald}$	C-C=O	C-C-H$_{ald}$	η	Ref.
CCSD/def2-TZVPP	GS	C_s	0.056277	1.203	1.501	1.103	124.4	115.4	0.0	This work
	ES	C_1	0.053557	1.310	1.507	1.089	116.2	119.6	34.8	
	Δ		-0.074	0.107	0.006	-0.014	-8.2	4.2	34.8	
CCSDR(3)/def2-TZVPP	GS	C_s	1.209	1.503	1.105	124.3	115.4	0.0	This work	
	ES	C_1	1.331	1.508	1.091	115.2	119.3	38.7		
	Δ		0.122	0.005	-0.014	-9.1	3.9	38.7		
CASSCF/ANO	GS	C_s	1.222	1.501	1.092	124.2	116.3	0.0	49	
	ES	C_1	1.383	1.501	1.080	114.5	120.3	37.5		
	Δ		0.161	0.000	-0.012	-9.7	4.0	37.5		
P-EOM-MP2/6-31G(d)	ES	C_1	1.359	1.494	1.095	116.0	114.3	30.1	50	
Experiment	GS	C_s	1.21						0	51
	ES	C_1	1.32					26		
	Δ		0.11					26		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/\textit{def2-TZVPP} total energies (au) and Cartesian coordinates (Å).

Atom	\(E\)	\(x\)	\(y\)	\(z\)
6	-0.090227	-0.516399	-0.085451	
6	0.009961	0.187889	1.243954	
8	0.011908	0.270656	-1.153526	
1	0.385206	-1.489897	-0.210548	
1	-0.138446	-0.538363	2.038825	
1	0.988598	0.662464	1.366700	
1	-0.754285	0.960043	1.319246	

Excited-state

Atom	\(E\)	\(x\)	\(y\)	\(z\)
6	-0.000030	0.000000	0.463393	
6	-0.932837	0.000000	-0.715582	
8	1.206546	0.000000	0.379488	
1	-0.488394	0.000000	1.454609	
1	-1.578770	0.877925	-0.665947	
1	-1.578770	-0.877925	-0.665947	
1	-0.368995	0.000000	-1.644059	

EOM-CCSD

(EOM)-CCSD/\textit{def2-TZVPP} total energies (au) and Cartesian coordinates (Å).

Atom	\(E\)	\(x\)	\(y\)	\(z\)
6	0.000000	0.462302	0.000000	
6	-0.931747	-0.714272	0.000000	
1	-0.486735	1.451506	0.000000	
8	1.199998	0.379128	0.000000	
1	-1.576508	-0.665421	0.876613	
1	-1.576508	-0.665421	-0.876613	
1	-0.369750	-1.641868	0.000000	

\[T_{1}^{\text{diag}} = 0.012\]
Excited-state
\[E = -153.4806236 \ (T_1^{\text{diag}} = 0.016) \]

6	-0.200205	0.484031	-0.110265
6	1.156242	-0.160146	0.014279
1	-0.352952	1.494842	0.264953
8	-1.232978	-0.310297	0.023018
1	1.918679	0.589030	-0.171928
1	1.301962	-0.582701	1.011387
1	1.259914	-0.962108	-0.712638
Table S20: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A^π state of $n \rightarrow \pi^*$ nature. η measures how the CO bond is out of the CCC plane.

Method	State	PG	ZPVE	C=O	C-C	C-C-C	η	Ref.
CCSD/def2-TZVPP	GS	C_{2v}	0.084568	1.207	1.510	116.3	0.0	This work
	ES	C_{s}	0.082538	1.314	1.506	119.7	39.7	This work
Δ			-0.055	0.107	-0.004	3.4	39.7	
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.213	1.513	116.3	0.0		This work
	ES	C_{s}	1.336	1.507	119.5	42.3		
Δ			0.123	-0.006	3.2	42.3		
CC2/cc-pVTZ	GS	C_{2v}	1.222	1.504				32
	ES	C_{s}	1.404	1.477				
Δ			0.182	-0.027				
CASPT2/cc-pVTZ	GS	C_{2v}	1.214	1.509				32
	ES	C_{s}	1.350	1.496				
Δ			0.136	-0.013				
VMC/pVTZ'	GS	C_{2v}	1.205	1.502				32
	ES	C_{s}	1.344	1.489				
Δ			0.139	-0.013				
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
$E = -192.92059411$
6
6
6
8
1
1
1
1
1
1

Excited-state
$E = -192.77949130$
6
6
6
8
1
1
1
1
1
1
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -192.88844078 \quad (T_{1}^{\text{diag}} = 0.012) \]

6	0.000000	1.282877	-0.611721		
6	0.000000	-1.282877	-0.611721		
6	0.000000	0.000000	0.185210		
8	0.000000	0.000000	1.392088		
1	0.000000	2.133711	0.059851		
1	-0.876575	1.319344	-1.256757		
1	0.876575	1.319344	-1.256757		
1	0.000000	-2.133711	0.059851		
1	0.876575	-1.319344	-1.256757		
1	-0.876575	-1.319344	-1.256757		

Excited-state

\[E = -192.740983075 \quad (T_{1}^{\text{diag}} = 0.015) \]

6	-0.191434	-0.562180	1.301879		
6	-0.191434	-0.562180	-1.301879		
6	-0.191434	0.194440	0.000000		
8	0.573795	1.262750	0.000000		
1	-0.404809	0.102891	2.134137		
1	0.784281	-1.027604	1.477309		
1	-0.951748	-1.336527	1.259750		
1	-0.404809	0.102891	-2.134137		
1	-0.951748	-1.336527	-1.259750		
1	0.784281	-1.027604	-1.477309		
Table S21: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE). The considered ES is the lowest A* state of n→π* nature.

Method	State	PG	ZPVE	C=O	C-C	C=C	O=C-C	C=C=C	Ref.
CCSD/def2-TZVPP	GS	C_s	0.062076	1.205	1.476	1.332	124.1	120.5	This work
	ES	C_s	0.058620	1.304	1.413	1.357	124.5	123.6	
	∆		-0.094	0.099	-0.063	0.025	0.4	3.2	
CCSDR(3)/def2-TZVPP	GS	C_s	1.213	1.476	1.340	124.2	120.3		This work
	ES	C_s	1.324	1.395	1.377	125.1	123.3		
	∆		0.111	-0.081	0.037	0.9	3.0		
CASPT2/6-31G(d)	GS	C_s	1.226	1.469	1.345	123.6	121.1		52
	ES	C_s	1.345	1.384	1.392	124.2	123.4		
	∆		0.119	-0.085	0.047	0.6	2.3		
SAC-CI/[4s2p1d/2s] + [2s2p]	GS	C_s	1.214	1.475	1.341	123.8	120.3		53
	ES	C_s	1.288	1.435	1.350	124.4	125.0		
	∆		0.074	-0.040	0.009	0.6	4.7		
CC2/cc-pVTZ	GS	C_s	1.220	1.462	1.335	124.4	120.0		32
	ES	C_s	1.371	1.369	1.382	126.7	122.2		
	∆		0.151	-0.093	0.047	2.3	2.2		
CASPT2/cc-pVTZ	GS	C_s	1.211	1.468	1.337	122.7	120.3		32
	ES	C_s	1.332	1.375	1.389	124.4	123.3		
	∆		0.121	-0.093	0.052	1.7	3.0		
VMC/pVTZ'	GS	C_s	1.205	1.464	1.328	123.7	120.9		32
	ES	C_s	1.327	1.368	1.383	125.8	122.6		
	∆		0.122	-0.096	0.055	2.1	1.7		
Experiment	GS	C_s	1.22	1.45	1.36	122	122		54
	ES	C_s	1.32	1.35	1.46	125	125		
	∆		0.10	-0.10	0.10	3	3		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -191.67994137 \]

	x	y	z
6	0.027067	-0.015935	0.000000
6	1.366616	-0.021406	0.000000
6	2.116417	1.249827	0.000000
8	3.326694	1.326746	0.000000
1	-0.551364	-0.927768	0.000000
1	-0.518681	0.919209	0.000000
1	1.945760	-0.934498	0.000000
1	1.486493	2.158283	0.000000

Excited-state

\[E = -191.55445006 \]

	x	y	z
6	-0.017125	-0.024704	0.000000
6	1.359319	0.028393	0.000000
6	2.079483	1.223667	0.000000
8	3.400641	1.315762	0.000000
1	-0.529034	-0.973240	0.000000
1	-0.614542	0.875500	0.000000
1	1.932833	-0.888737	0.000000
1	1.587428	2.197817	0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -191.64571278 \ (T_{1}^{\text{diag}} = 0.013) \]

	x	y	z
6	1.211427	-1.277138	0.000000
6	0.000000	-0.722546	0.000000
6	-0.151326	0.745683	0.000000
8	-1.212850	1.316281	0.000000
1	1.352755	-2.345898	0.000000
1	2.099878	-0.661755	0.000000
1	-0.907198	-1.307168	0.000000
1	0.796766	1.308582	0.000000
Excited-state

\[E = -191.51182693 \ (T_1^{\text{diag}} = 0.016) \]

	1.175646	1.364826	0.000000
6	0.000000	0.686615	0.000000
6	-0.090665	-0.723242	0.000000
8	-1.210407	-1.391762	0.000000
1	1.185431	2.441194	0.000000
1	2.124888	0.852502	0.000000
1	-0.935888	1.224908	0.000000
1	0.798943	-1.353703	0.000000
Table S22: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The values in italics corresponding to the CC3/aug-cc-pVTZ ∆ ES geometry have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	N≡C	C-C	C≡C	C-H	N≡C-C	C-C≡C	C≡C-H	Ref.
CCSD/def2-TZVPP	GS	C_{occ}	0.027258	1.155	1.385	1.262	1.060	180.0	180.0	180.0	This work
	ES (A')	C_{s}	0.023023	1.179	1.350	1.336	1.088	173.0	141.8	123.6	
	∆		-0.115	0.024	-0.035	0.134	0.028	-7.1	-39.2	-56.4	
	ES (Δ)	C_{occ}	0.023390	1.209	1.306	1.275	1.060	180.0	180.0	180.0	This work
CCSD/aug-cc-pVTZ	GS	C_{occ}	1.153	1.377	1.199	1.059	180.0	180.0	180.0	This work	
	ES (A')	C_{s}	1.179	1.335	1.328	1.085	173.8	145.7	124.1		
	∆		0.026	-0.042	0.129	0.026	6.2	-34.3	-55.9		
	ES (Δ)	C_{occ}	1.207	1.301	1.272	1.060	180.0	180.0	180.0		
CCSDR(3)/def2-TZVPP	GS	C_{occ}	1.163	1.381	1.210	1.062	180.0	180.0	180.0	This work	
	ES (A')	C_{s}	1.186	1.359	1.355	1.092	172.5	153.5	122.1		
	∆		0.023	-0.022	0.145	0.030	-7.5	-44.3	-55.9		
	ES (Δ)	C_{occ}	1.221	1.308	1.283	1.062	180.0	180.0	180.0		
CCSDR(3)/aug-cc-pVTZ	GS	C_{occ}	1.162	1.374	1.208	1.061	180.0	180.0	180.0	This work	
	ES (A')	C_{s}	1.186	1.346	1.347	1.088	173.0	138.9	122.4		
	∆		0.024	-0.028	0.135	0.027	-7.0	-41.1	-55.9		
	ES (Δ)	C_{occ}	1.219	1.303	1.280	1.062	180.0	180.0	180.0		
CC3/def2-TZVPP	GS	C_{occ}	1.165	1.381	1.211	1.062	180.0	180.0	180.0	This work	
	ES (A')	C_{s}	1.227	1.305	1.285	1.063	180.0	180.0	180.0		
	∆		0.062	-0.076	0.073	0.001	0.0	0.0	0.0		
CC3/aug-cc-pVTZ	GS	C_{occ}	1.163	1.374	1.209	1.061	180.0	180.0	180.0	This work	
	ES (A')	C_{s}	1.225	1.300	1.282	1.062	180.0	180.0	180.0		
	∆		0.062	-0.074	0.073	0.001	0.0	0.0	0.0		
CASSCF/6-31G(d)	GS	C_{occ}	1.175	1.387	1.210	1.078	180.0	180.0	180.0	55	
	ES (A')	C_{s}	1.191	1.377	1.388	1.081	173.0	129.7	121.0		
	∆		0.016	-0.010	0.178	0.003	-7.0	-50.3	-59.0		
CIS/6-31G(d)	GS	C_{occ}	1.136	1.391	1.185	1.058	180.0	180.0	180.0	55	
	ES (A')	C_{s}	1.187	1.311	1.273	1.056	180.0	180.0	180.0		
	∆		0.051	-0.080	0.088	-0.002	0.0	0.0	0.0		
CASSCF/cc-pVTZ	GS	C_{occ}	1.167	1.333	1.203	1.074	180.0	180.0	180.0	56	
	ES (A')	C_{1}	1.182	1.396	1.341	1.103	172.4	131.0	124.1	a	
	∆		0.015	0.013	0.138	0.029	-7.6	-49.0	-55.9		
Experiment	GS	C_{occ}	1.159	1.378	1.205	1.057	180.0	180.0	180.0	57	
	ES (A')	C_{s}	1.159 b	1.400	1.250	1.08 b	180.0 b	143.2	164		
	∆		0.022	0.045			-36.8	-16			
	ES (Δ)	C_{occ}	180.0 c	180.0 c	180.0 c						

a Very slight distortion from planarity with a NCCC dihedral angle of 179.4 degrees; b Assumed during the fit; c Found to be linear.
Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -169.36101518 \]

n	x	y	z
6	0.000000	0.000000	-1.899799
6	0.000000	0.000000	-0.692004
6	0.000000	0.000000	0.682146
7	0.000000	0.000000	1.844105
1	0.000000	0.000000	-2.960608

Excited-state (\(\Delta \))

\[E = -169.17922891 \]

n	x	y	z
6	1.062025	1.490489	0.000000
6	-0.030462	0.703250	0.000000
6	-0.335929	-0.607482	0.000000
7	-0.744194	-1.721298	0.000000
1	0.998278	2.577061	0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -169.32269797 (T^\text{diag}_1 = 0.012) \]

n	x	y	z
6	0.000000	0.000000	-1.867252
6	0.000000	0.000000	-0.587260
6	0.000000	0.000000	0.715433
7	0.000000	0.000000	1.934143
1	0.000000	0.000000	-2.929179

S65
Excited-state \((A^-)\)
\[E = -169.13387713 \quad (T_1^{\text{diag}} = 0.020) \]

6	1.060296	1.501250	0.000000
6	0.000000	0.688207	0.000000
6	-0.333916	-0.618662	0.000000
7	-0.763604	-1.715998	0.000000
1	0.986943	2.587222	0.000000

Excited-state \((\Delta)\)
\[E = -169.10987713 \quad (T_1^{\text{diag}} = 0.014) \]

6	0.000000	0.000000	-1.869507
6	0.000000	0.000000	-0.594693
6	0.000000	0.000000	0.711577
7	0.000000	0.000000	1.920796
1	0.000000	0.000000	-2.929836
S23 Cyanoformaldehyde

Table S23: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest A^* state.

Method	State	PG	ZPVE	C=O	C-C	C-H	C≡N	H-C=O	C-C=O	Ref.
ADC(2)/def2-TZVPP	GS	C_s	0.026125	1.208	1.467	1.094	1.169	123.1	122.1	This work
	ES	C_s	0.022621	1.399	1.383	1.083	1.180	114.9	121.0	This work
	∆		-0.095	0.191	-0.084	-0.011	0.011	-8.2	-1.1	
ADC(2)/aug-cc-pVTZ	GS	C_s	1.208	1.459	1.092	1.168	122.9	122.3		
	ES	C_s	1.399	1.377	1.080	1.179	114.7	121.0		
	∆		0.191	-0.082	-0.008	0.011	-8.2	-1.3		
CC2/def2-TZVPP	GS	C_s	0.025535	1.215	1.468	1.095	1.177	123.2	122.1	This work
	ES	C_s	0.022480	1.371	1.381	1.084	1.191	114.7	121.4	
	∆		-0.083	0.156	-0.087	-0.011	0.014	-8.5	-0.7	
CC2/aug-cc-pVTZ	GS	C_s	1.215	1.459	1.093	1.176	123.0	122.2		
	ES	C_s	1.370	1.375	1.082	1.189	114.5	121.4		
	∆		0.155	-0.084	-0.011	0.013	-8.5	-0.8		
CCSD/def2-TZVPP	GS	C_s	0.026878	1.197	1.476	1.093	1.152	123.4	122.1	This work
	ES	C_s	0.024118	1.309	1.405	1.084	1.160	116.8	120.8	
	∆		-0.075	0.112	-0.071	-0.009	0.008	-6.6	-1.3	
CCSD/aug-cc-pVTZ	GS	C_s	1.196	1.467	1.091	1.150	123.1	122.3		This work
	ES	C_s	1.309	1.405	1.084	1.160	116.8	120.8		
	∆		0.113	-0.064	-0.007	0.010	-6.3	-1.5		
CCSDR(3)/def2-TZVPP	GS	C_s	1.204	1.476	1.095	1.161	123.3	122.1		This work
	ES	C_s	1.330	1.398	1.084	1.171	116.2	121.0		
	∆		0.126	-0.078	-0.011	0.010	-7.1	-1.1		
CCSDR(3)/aug-cc-pVTZ	GS	C_s	1.204	1.466	1.093	1.159	123.1	122.3		This work
	ES	C_s	1.326	1.391	1.082	1.168	116.0	121.2		
	∆		0.122	-0.075	-0.011	0.009	-7.1	-1.1		
ROHF/6-31G(d)	GS	C_s	1.179	1.479	1.085	1.134	123.6	122.0		59
	ES	C_1	1.351	1.421	1.072	1.137	115.5	117.6		
	∆		0.172	-0.058	-0.013	0.003	-8.1	-4.4		
CASSCF/cc-pVTZ	GS	C_s	1.178	1.479	1.175					60
	ES	C_1	1.346	1.412	1.167					
	∆		0.168	-0.067	-0.008					

aA out-of-plane structure is predicted with a H atom 25° out of the CCO plane, but a very low torsion potential (barrier for planarity: 113 cm$^{-1}$). bA out-of-plane structure is predicted with a H atom 24.9° out of the CCO plane.
Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	E = -206.50154953
6	-0.483865 -0.648215 0.000000
6	-0.003961 0.737471 0.000000
8	0.267796 -1.589135 0.000000
7	0.337260 1.845148 0.000000
1	-1.571684 -0.753175 0.000000

Excited-state	E = -206.37659806
6	0.547721 -0.551779 0.000000
6	0.003933 0.728732 0.000000
8	-0.226777 -1.627533 0.000000
7	-0.442450 1.808448 0.000000
1	1.614513 -0.734467 0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state	E = -206.46641073 ($T_1^{\text{diag}} = 0.013$)
6	-0.483697 -0.652648 0.000000
6	0.000000 0.741850 0.000000
8	0.265053 -1.586080 0.000000
7	0.336261 1.844076 0.000000
1	-1.572071 -0.755103 0.000000

Excited-state	E = -206.33463140 ($T_1^{\text{diag}} = 0.015$)
6	0.548262 -0.560324 0.000000
6	0.000000 0.733278 0.000000
8	-0.225090 -1.616442 0.000000
7	-0.443770 1.804487 0.000000
1	1.617538 -0.737598 0.000000
Table S24: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered state is the lowest ES ($\Sigma^{-}\text{u}$).

Method	State	PG	ZPVE	C≡N	C-C	Ref.
ADC(2)/def2-TZVPP	GS	$D_{\infty h}$	0.015300	1.172	1.377	This work
	ES	$D_{\infty h}$	0.012656	1.254	1.293	
	Δ		-0.072	0.082	-0.084	
ADC(2)/aug-cc-pVTZ	GS	$D_{\infty h}$	1.170	1.370		This work
	ES	$D_{\infty h}$	1.251	1.288		
	Δ		0.081	-0.082		
CC2/def2-TZVPP	GS	$D_{\infty h}$	0.014817	1.180	1.377	This work
	ES	$D_{\infty h}$	0.012306	1.266	1.288	
	Δ		-0.068	0.086	-0.089	
CC2/aug-cc-pVTZ	GS	$D_{\infty h}$	1.178	1.369		This work
	ES	$D_{\infty h}$	1.263	1.283		
	Δ		0.085	-0.086		
CCSD/def2-TZVPP	GS	$D_{\infty h}$	0.016327	1.153	1.392	This work
	ES	$D_{\infty h}$	0.013626	1.223	1.305	
	Δ		-0.073	0.070	-0.087	
CCSD/aug-cc-pVTZ	GS	$D_{\infty h}$	1.150	1.383		This work
	ES	$D_{\infty h}$	1.220	1.299		
	Δ		0.070	-0.084		
CCSDR(3)/def2-TZVPP	GS	$D_{\infty h}$	1.162	1.389		This work
	ES	$D_{\infty h}$	1.235	1.308		
	Δ		0.073	-0.081		
CCSDR(3)/aug-cc-pVTZ	GS	$D_{\infty h}$	1.160	1.381		This work
	ES	$D_{\infty h}$	1.232	1.302		
	Δ		0.072	-0.079		
CC3/def2-TZVPP	GS	$D_{\infty h}$	1.163	1.389		This work
	ES	$D_{\infty h}$	1.240	1.306		
	Δ		0.077	-0.083		
CC3/aug-cc-pVTZ	GS	$D_{\infty h}$	1.161	1.380		This work
	ES	$D_{\infty h}$	1.237	1.299		
	Δ		0.076	-0.081		
CASSCF/6-31G(d)	GS	$D_{\infty h}$	1.173	1.395		55
	ES	$D_{\infty h}$	1.255	1.296		
	Δ		0.082	-0.099		
CASSCF/10s6p	GS	$D_{\infty h}$	1.167	1.391		61
	ES	$D_{\infty h}$	1.254	1.292		
	Δ		0.087	-0.099		

aThis work hints that the symmetry of the GS and ES are equivalent.
Cartesian coordinates

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -185.43636292
\]

6	0.000000	0.000000	0.690057
6	0.000000	0.000000	-0.690057
7	0.000000	0.000000	1.850978
7	0.000000	0.000000	-1.850978

Excited-state
\[E = -185.22623796
\]

6	0.000000	0.000000	0.649746
6	0.000000	0.000000	-0.649746
7	0.000000	0.000000	1.886319
7	0.000000	0.000000	-1.886319

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[E = -185.39743709 \ (T_{1}^{\text{diag}} = 0.013)
\]

6	0.000000	0.000000	0.695815
6	0.000000	0.000000	-0.695815
7	0.000000	0.000000	1.848335
7	0.000000	0.000000	-1.848335

Excited-state
\[E = -185.176305575 \ (T_{1}^{\text{diag}} = 0.014)
\]

6	0.000000	0.000000	0.652704
6	0.000000	0.000000	-0.652704
7	0.000000	0.000000	1.876127
7	0.000000	0.000000	-1.876127
Table S25: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the ΔZPVE).

Method	State	PG	ZPVE	C≡C	C-C	C-H	C≡C-C	C≡C-H	Ref.
CCSD/def2-TZVPP	GS	D_{och}	0.037864	1.204	1.380	1.060	180.0	180.0	This work
	ES (A_u)	C_{2h}	0.033103	1.287	1.298	1.078	167.3	133.1	
	Δ		-0.130	0.083	-0.082	0.018	-12.7	-46.9	
	ES (Δ_u)	D_{och}	0.032376	1.266	1.301	1.059	180.0	180.0	
	Δ		-0.149	0.062	-0.079	-0.001	0.0	0.0	
CCSD/aug-cc-pVTZ	GS	D_{och}	1.292	1.374	1.059	180.0	180.0		This work
	ES (A_u)	C_{2h}	1.283	1.294	1.075	167.0	133.9		
	Δ		0.081	-0.080	0.016	-13.0	-46.1		
	ES (Δ_u)	D_{och}	1.263	1.297	1.059	180.0	180.0		
	Δ		0.061	-0.077	0.000	0.0	0.0		
CCSDR(3)/def2-TZVPP	GS	D_{och}	1.213	1.377	1.062	180.0	180.0		This work
	ES (A_u)	C_{2h}	1.301	1.301	1.082	165.5	130.5		
	Δ		0.088	-0.076	0.020	-14.5	-49.5		
	ES (Δ_u)	D_{och}	1.275	1.302	1.061	180.0	180.0		
	Δ		0.062	-0.075	-0.001	0.0	0.0		
CCSDR(3)/aug-cc-pVTZ	GS	D_{och}	1.211	1.371	1.061	180.0	180.0		This work
	ES (A_u)	C_{2h}	1.296	1.296	1.079	165.2	131.2		
	Δ		0.085	-0.075	0.018	-14.8	-48.8		
	ES (Δ_u)	D_{och}	1.272	1.298	1.061	180.0	180.0		
	Δ		0.061	-0.073	0.000	0.0	0.0		
CC3/def2-TZVPP	GS	D_{och}	1.214	1.376	1.062	180.0	180.0		This work
	ES (A_u)	C_{2h}	1.277	1.301	1.062	168.0	180.0		
	Δ		0.063	-0.075	0.000	0.0	0.0		
CC3/aug-cc-pVTZ	GS	D_{och}	1.212	1.370	1.061	180.0	180.0		This work
	ES (Δ_u)	D_{och}	1.275	1.297	1.062	180.0	180.0		
	Δ		0.063	-0.073	0.001	0.0	0.0		
CI/TZ+d	GS	D_{och}	1.198	1.378	1.062	180.0	180.0		63^c
	ES (A_u)	C_{2h}	1.288	1.286	1.082	167.1	131.4		
	Δ		0.090	-0.092	0.020	-12.9	-48.6		
CASSCF/6-31G(d)	GS	D_{och}	1.212	1.383	1.077	180.0	180.0		55
	ES (A_u)	C_{2h}	1.303	1.295	1.097	163.9	129.9		
	Δ		0.091	-0.088	0.020	-16.1	-50.1		
Experiment	ES (A_u)	C_{2h}							135^c
	ES (Δ_u)	D_{och}				~180^c	~180^c		64

*aIn this work, a B_u ES close to a ∆_u one (angles > 165°) is also reported, but it was obtained with a smaller basis set, namely, 4-31G; ^bAssuming 180° for the C≡C angle; ^cReported to be mostly linear with some cumulenic character.
Cartesian coordinates

CC3

CC3/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -153.28161102$		
6	0.000000 0.000000 0.685008		
6	0.000000 0.000000 -0.685008		
6	0.000000 0.000000 1.896827		
6	0.000000 0.000000 -1.896827		
1	0.000000 0.000000 2.957799		
1	0.000000 0.000000 -2.957799		

Excited-state (Δ_u)	$E = -153.09238859$		
6	0.000000 0.000000 0.648263		
6	0.000000 0.000000 -0.648263		
6	0.000000 0.000000 1.923287		
6	0.000000 0.000000 -1.923287		
1	0.000000 0.000000 2.985066		
1	0.000000 0.000000 -2.985066		

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E = -153.27946330$		
6	0.000000 0.000000 0.685369		
6	0.000000 0.000000 -0.685369		
6	0.000000 0.000000 1.896260		
6	0.000000 0.000000 -1.896260		
1	0.000000 0.000000 2.957059		
1	0.000000 0.000000 -2.957059		

Excited-state (A_u)	$E = -153.11459388$		
6	-0.081220 1.928309 0.000000		
6	0.084627 0.642563 0.000000		
6	-0.084627 -0.642563 0.000000		
6	0.081220 -1.928309 0.000000		
1	0.632710 2.737929 0.000000		
1	-0.632710 -2.737929 0.000000		
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -153.24037940 \quad (T_1^{\text{diag}} = 0.012) \]

6	0.000000	0.000000	1.894407
6	0.000000	0.000000	0.689976
6	0.000000	0.000000	-0.689976
6	0.000000	0.000000	-1.894407
1	0.000000	0.000000	2.954086
1	0.000000	0.000000	-2.954086

Excited-state \((A_u)\)

\[E = -153.06770842 \quad (T_1^{\text{diag}} = 0.016) \]

6	-0.071249	1.924696	0.000000
6	0.071249	0.645205	0.000000
6	-0.071249	-0.645205	0.000000
6	0.071249	-1.924696	0.000000
1	0.630278	2.743402	0.000000
1	-0.630278	-2.743402	0.000000

Excited-state \((\Delta_u)\)

\[E = -153.04365092 \quad (T_1^{\text{diag}} = 0.013) \]

6	0.000000	0.000000	1.915946
6	0.000000	0.000000	0.650270
6	0.000000	0.000000	-0.650270
6	0.000000	0.000000	-1.915946
1	0.000000	0.000000	2.975250
1	0.000000	0.000000	-2.975250
Table S26: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered ES is the lowest A_u state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C=O	C-C	C-H	C-C=O	C-C-H	Ref.
CCSD/def2-TZVPP	GS	C_{2h}	0.037744	1.201	1.519	1.098	121.4	115.1	This work
	ES	C_{2h}	0.034916	1.226	1.491	1.092	123.7	113.8	
	∆		-0.077	0.025	-0.027	-0.006	2.3	-1.3	
CCSDR(3)/def2-TZVPP	GS	C_{2h}	1.208	1.520	1.100	121.4	115.1	This work	
	ES	C_{2h}	1.238	1.485	1.094	123.5	114.3		
	∆		0.030	-0.035	-0.006	2.1	-0.8		
CCSD/TZ2P	GS	C_{2h}	1.203	1.524	1.098	121.2	115.4	66	
	ES	C_{2h}	1.229	1.496	1.098	123.5	114.0		
	∆		0.026	-0.028	0.000	2.3	-1.4		
SAC-CI/[4s2p1d/2s] + [2s2p]	GS	C_{2h}	1.208	1.527	121.1	114.9	53		
	ES	C_{2h}	1.227	1.500	123.8	113.6			
	∆		0.019	-0.027	2.7	-1.3			
Experiment	GS	C_{2h}	1.22	1.50	1.07	122	120	54	
	ES	C_{2h}	1.32	1.40	1.07	125	120		
	∆		0.10	-0.10	0.00	3	0		
Experiment	GS	C_{2h}	1.202	1.527	1.109	121.2	115.5	67	
	ES	C_{2h}	1.252	1.460	1.115	123.7	114.4		
	∆		0.050	-0.067	0.006	2.5	-1.1		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/\textit{def2}-TZVPP total energies (au) and Cartesian coordinates (Å).

\begin{tabular}{cccc}
\textbf{Ground-state} & & \\
$E= -227.57233864$ & & \\
6 & 0.328117 & 0.000000 & 0.685413 \\
6 & 0.328117 & 0.000000 & -0.685413 \\
8 & 0.330606 & 0.000000 & 1.698437 \\
8 & -0.330606 & 0.000000 & -1.698437 \\
1 & -1.428958 & 0.000000 & 0.675442 \\
1 & 1.428958 & 0.000000 & -0.675442 \\
\end{tabular}

\begin{tabular}{cccc}
\textbf{Excited-state} & & \\
$E= -227.46768112$ & & \\
6 & 0.318173 & 0.000000 & 0.670611 \\
6 & 0.318173 & 0.000000 & -0.670611 \\
8 & 0.319770 & 0.000000 & 1.731629 \\
8 & -0.319770 & 0.000000 & -1.731629 \\
1 & -1.412063 & 0.000000 & 0.649357 \\
1 & 1.412063 & 0.000000 & -0.649357 \\
\end{tabular}

EOM-CCSD

(EOM)-CCSD/\textit{def2}-TZVPP total energies (au) and Cartesian coordinates (Å).

\begin{tabular}{cccc}
\textbf{Ground-state} & & \\
$E= -227.53681420$ ($T_1^{\text{diag}} = 0.014$) & & \\
6 & -0.327553 & 0.685066 & 0.000000 \\
6 & 0.327553 & -0.685066 & 0.000000 \\
8 & 0.327553 & 1.691471 & 0.000000 \\
8 & -0.327553 & -1.691471 & 0.000000 \\
1 & -1.425864 & 0.675808 & 0.000000 \\
1 & 1.425864 & -0.675808 & 0.000000 \\
\end{tabular}

\begin{tabular}{cccc}
\textbf{Excited-state} & & \\
$E= -227.42743418$ ($T_1^{\text{diag}} = 0.014$) & & \\
6 & -0.317190 & 0.674875 & 0.000000 \\
6 & 0.317190 & -0.674875 & 0.000000 \\
8 & 0.317190 & 1.724385 & 0.000000 \\
8 & -0.317190 & -1.724385 & 0.000000 \\
1 & -1.408993 & 0.647776 & 0.000000 \\
1 & 1.408993 & -0.647776 & 0.000000 \\
\end{tabular}
S27 Maleimide
Table S27: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest B_1 state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	N-C	C=O	C-C	C=C	N-H	C-H	C-N-C	N-C=O	C-C=O	Ref.
CCSD/def2-TZVPP	GS	C_{2v}	0.069528	1.388	1.199	1.500	1.331	1.002	1.075	111.8	126.5	108.8	This work
	ES	C_{2v}	0.064739	1.400	1.237	1.436	1.371	1.003	1.072	110.0	119.6	108.7	This work
	Δ		-0.130	0.012	0.038	-0.064	0.040	0.001	-0.003	-1.8	-6.9	-0.1	
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.393	1.207	1.502	1.339	1.005	1.077	111.8	126.4	108.8		
	ES	C_{2v}	1.404	1.248	1.432	1.386	1.006	1.074	109.8	119.3	108.5		
	Δ		0.011	0.041	-0.070	0.047	0.001	-0.003	-2.0	-7.1	-0.3		
CASSCF/[4s3p1d/2s1p]	GS	C_{2v}	1.383	1.193	1.492	1.339	0.994	1.071	111.8	126.2	108.6	69	
	ES	C_{2v}	1.407	1.214	1.419	1.384	0.995	1.068	109.0	117.4	108.8		
	Δ		0.024	0.021	-0.073	0.045	0.001	-0.003	-2.8	-8.8	0.2		
CC2/TZVP	ES	C_{2v}	1.406	1.278	1.421	1.399	1.077	109.2	117.8	108.3			

This work

69

70
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

| Ground-state | | | |
|--------------|--------------------------|--------------------------|
| | | | |
| | | | |
| 7 | 0.000000 | 0.000000 | -0.915399 |
| 6 | 0.000000 | 1.153337 | -0.135024 |
| 6 | 0.000000 | -1.153337 | -0.135024 |
| 6 | 0.000000 | 0.669606 | 1.286494 |
| 6 | 0.000000 | -0.669606 | 1.286494 |
| 8 | 0.000000 | 2.290933 | -0.537913 |
| 8 | 0.000000 | -2.290933 | -0.537913 |
| 1 | 0.000000 | 0.000000 | -1.920406 |
| 1 | 0.000000 | 1.351770 | 2.119378 |
| 1 | 0.000000 | -1.351770 | 2.119378 |

| Excited-state | | | |
|---------------|--------------------------|--------------------------|
| | | | |
| 7 | 0.000000 | 0.000000 | -0.876795 |
| 6 | 0.000000 | 1.148083 | -0.069346 |
| 6 | 0.000000 | -1.148083 | -0.069346 |
| 6 | 0.000000 | 0.692977 | 1.288779 |
| 6 | 0.000000 | -0.692977 | 1.288779 |
| 8 | 0.000000 | 2.273538 | -0.609107 |
| 8 | 0.000000 | -2.273538 | -0.609107 |
| 1 | 0.000000 | 0.000000 | -1.882367 |
| 1 | 0.000000 | 1.364983 | 2.126662 |
| 1 | 0.000000 | -1.364983 | 2.126662 |
EOM-CCSD

(EOM)-CCSD/\textit{def2}-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -358.95581207 \quad (T_{1}^{\text{diag}} = 0.014) \]

7	0.000000	0.000000	0.936101
6	0.000000	1.149288	0.158629
6	0.000000	-1.149288	0.158629
6	0.000000	0.665674	-1.261424
6	0.000000	-0.665674	-1.261424
8	0.000000	2.280263	0.557992
8	0.000000	-2.280263	0.557992
1	0.000000	0.000000	1.938303
1	0.000000	1.346591	-2.092673
1	0.000000	-1.346591	-2.092673

Excited-state

\[E = -358.81511923 \quad (T_{1}^{\text{diag}} = 0.015) \]

7	0.000000	0.000000	0.899202
6	0.000000	1.146226	0.096031
6	0.000000	-1.146226	0.096031
6	0.000000	0.685367	-1.263469
6	0.000000	-0.685367	-1.263469
8	0.000000	2.263799	0.625681
8	0.000000	-2.263799	0.625681
1	0.000000	0.000000	1.902141
1	0.000000	1.357294	-2.099100
1	0.000000	-1.357294	-2.099100
Table S28: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the $\Delta ZPVE$). The considered ES is the lowest A^* state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C-O1	C=O2	C-C	C=C	C-C=O2	C=C=O	O2=C-O1	Ref.
CCSD/def2-TZVPP	GS	C_s	0.054448	1.249	1.246	1.534	1.332	116.4	123.7	129.7	This work
	ES	C_s	0.051258	1.292	1.296	1.398	1.393	126.3	124.8	105.8	
	Δ		-0.087	0.043	0.050	-0.136	0.061	9.9	1.1	-23.9	
CCSDR(3)/def2-TZVPP	GS	C_s	1.256	1.253	1.536	1.339	116.3	123.5	129.7	This work	
	ES	C_s	1.300	1.307	1.398	1.411	126.6	124.0	105.2		
	Δ		0.044	0.054	-0.138	0.072	10.3	0.5	-24.5		
CASPT2/6-31+G(d)	GS	C_s	1.272	1.266	1.526	1.343	116.8	124.0	129.0	52	
	ES	C_s	1.272	1.394	1.401	1.409	117.3	126.7	111.8		
	Δ		0.000	0.128	-0.125	0.066	0.5	2.7	-17.2		
CC2/cc-pVTZ	GS	C_s	1.265	1.261	1.521	1.324	123.5	129.6	102.3	32	
	ES	C_s	1.311	1.331	1.385	1.415	123.4	129.6	102.3		
	Δ		0.046	0.070	-0.136	0.091	0.01	-27.3	-27.3		
CASPT2/cc-pVTZ	GS	C_s	1.260	1.253	1.531	1.338	123.7	129.7	104.0	32	
	ES	C_s	1.309	1.299	1.387	1.412	124.7	104.0			
	Δ		0.049	0.046	-0.144	0.074	1.0	-25.7	-25.7		
VMC/pVTZ'	GS	C_s	1.245	1.241	1.526	1.324	124.0	129.7	107.2	32	
	ES	C_s	1.291	1.284	1.379	1.401	124.5	107.2			
	Δ		0.046	0.043	-0.147	0.077	0.5	-22.5	-22.5		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

6	-0.574782	-0.797222	0.000000
6	0.000038	0.627351	0.000000
6	0.183068	-1.900735	0.000000
8	-0.873438	1.529975	0.000000
8	1.249103	0.722684	0.000000
1	-1.657836	-0.872473	0.000000
1	-0.242896	-2.898101	0.000000
1	1.259927	-1.790885	0.000000

Excited-state
\(E= -266.17678301\)

6	-0.716572	-0.704457	0.000000
6	-0.003516	0.497537	0.000000
6	-0.113605	-1.979663	0.000000
8	-0.473032	1.710021	0.000000
8	1.296498	0.632527	0.000000
1	-1.796073	-0.606637	0.000000
1	-0.711668	-2.880100	0.000000
1	0.962249	-2.083083	0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

6	-0.570722	-0.798142	0.000000
6	0.000000	0.626077	0.000000
6	0.182196	-1.896744	0.000000
8	-0.870659	1.521563	0.000000
8	1.242008	0.724644	0.000000
1	-1.651405	-0.871775	0.000000
1	-0.245695	-2.891149	0.000000
1	1.257461	-1.793879	0.000000
Excited-state

\[E = -266.118696756 \ (T_{1}^{\text{diag}} = 0.017) \]

	\(-0.703577 \)	\(-0.709700\)	\(0.000000\)
6	0.000000	0.498416	0.000000
6	\(-0.115357\)	\(-1.972390\)	\(0.000000\)
8	\(-0.481791\)	1.697675	\(0.000000\)
8	1.288989	0.635500	\(0.000000\)
1	\(-1.780808\)	\(-0.609178\)	\(0.000000\)
1	\(-0.719783\)	\(-2.865998\)	\(0.000000\)
1	0.956608	\(-2.088182\)	\(0.000000\)
Table S29: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest B_{3u} state of n → π* nature.

Method	State	PG	ZPVE	C=C	C=N	C-H	C=N=C	Ref.
CCSD/def2-TZVPP	GS	D_{2h}	0.077723	1.390	1.331	1.079	115.7	This work
	ES (B_{3u})	D_{2h}	0.069771	1.391	1.338	1.078	119.7	
	Δ		-0.216	0.001	0.007	-0.001	4.0	
CCSDR(3)/def2-TZVPP	GS	D_{2h}	1.395	1.338	1.081	115.4		This work
	ES (B_{3u})	D_{2h}	1.396	1.346	1.080	119.5		
	Δ		0.001	0.008	-0.001	4.1		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/\textit{def2}-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E= -263.97826962\]

6	0.000000	0.697706	1.130422
6	0.000000	-0.697706	1.130422
6	0.000000	0.697706	-1.130422
6	0.000000	-0.697706	-1.130422
7	0.000000	1.412960	0.000000
7	0.000000	-1.412960	0.000000
1	0.000000	1.249272	2.060689
1	0.000000	-1.249272	2.060689
1	0.000000	1.249272	-2.060689
1	0.000000	-1.249272	-2.060689

Excited-state

\[E= -263.82667276\]

6	0.000000	0.698005	1.162566
6	0.000000	0.698005	-1.162566
6	0.000000	-0.698005	1.162566
6	0.000000	-0.698005	-1.162566
7	0.000000	1.376506	0.000000
7	0.000000	-1.376506	0.000000
1	0.000000	1.222433	2.106518
1	0.000000	1.222433	-2.106518
1	0.000000	-1.222433	2.106518
1	0.000000	-1.222433	-2.106518
EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -263.92104990 \ (T_{1}^{\text{diag}} = 0.010) \]

6	0.000000	1.126153	0.695167
6	0.000000	1.126153	-0.695167
6	0.000000	-1.126153	-0.695167
6	0.000000	-1.126153	0.695167
7	0.000000	0.000000	-1.403646
7	0.000000	0.000000	1.403646
1	0.000000	2.054503	1.245639
1	0.000000	2.054503	-1.245639
1	0.000000	-2.054503	-1.245639
1	0.000000	-2.054503	1.245639

Excited-state

\[E = -263.76516835 \ (T_{1}^{\text{diag}} = 0.010) \]

6	0.000000	1.157047	0.695354
6	0.000000	1.157047	-0.695354
6	0.000000	-1.157047	-0.695354
6	0.000000	-1.157047	0.695354
7	0.000000	0.000000	-1.367960
7	0.000000	0.000000	1.367960
1	0.000000	2.099318	1.218231
1	0.000000	2.099318	-1.218231
1	0.000000	-2.099318	-1.218231
1	0.000000	-2.099318	1.218231
Table S30: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). The C_{2v} point group was enforced for the excited-state. This is why no ZPVE is provided here - all ES present imaginary frequencies. Δ gives the difference between the two states. The considered ES is the lowest B_2 state of $\pi \rightarrow \pi^*$ nature.

Method	State	PG	C-N	C-H	N-H$_1$	N-H$_2$	N-C-N	Ref.
CCSD/def2-TZVPP	GS	C_{2v}	1.305	1.079	1.007	1.005	125.1	This work
	ES	C_{2v}	1.412	1.067	1.010	1.009	108.1	This work
	Δ		0.107	-0.012	0.003	0.004	-17.0	
CCSD/aug-cc-pVTZ	GS	C_{2v}	1.303	1.078	1.005	1.006	125.2	This work
	ES	C_{2v}	1.404	1.067	1.010	1.010	108.3	
	Δ		0.101	-0.011	0.005	0.004	-16.9	
CCSDR(3)/def2-TZVPP	GS	C_{2v}	1.309	1.081	1.007	1.009	125.0	This work
	ES	C_{2v}	1.426	1.070	1.012	1.011	107.7	
	Δ		0.115	-0.011	0.005	0.002	-17.3	
CCSDR(3)/aug-cc-pVTZ	GS	C_{2v}	1.308	1.079	1.007	1.008	125.1	This work
	ES	C_{2v}	1.418	1.068	1.012	1.012	107.8	
	Δ		0.110	-0.011	0.005	0.004	-17.2	
CC3/def2-TZVPP	GS	C_{2v}	1.310	1.081	1.007	1.009	125.0	This work
	ES	C_{2v}	1.428	1.070	1.012	1.012	107.6	
	Δ		0.118	-0.011	0.005	0.003	-17.4	
CC3/aug-cc-pVTZ	GS	C_{2v}	1.309	1.079	1.007	1.009	125.1	This work
	ES	C_{2v}	1.420	1.069	1.012	1.012	107.7	
	Δ		0.111	-0.010	0.005	0.003	-17.4	
Cartesian coordinates

CCSDR(3)
CCSDR(3)/\textit{aug}-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -150.2073345 \]

	x	y	z
6	0.000000	0.000000	0.425509
7	0.000000	1.160622	-0.425509
7	0.000000	-1.160622	-0.425509
1	0.000000	0.000000	1.504585
1	0.000000	1.160622	-1.181715
1	0.000000	-1.160622	-1.181715
1	0.000000	2.007051	0.367411
1	0.000000	-2.007051	0.367411

Excited-state

\[E = -149.97641225 \]

	x	y	z
6	0.000000	0.000000	0.599834
7	0.000000	1.145269	-0.235591
7	0.000000	-1.145269	-0.235591
1	0.000000	0.000000	1.668191
1	0.000000	1.049253	-1.242668
1	0.000000	-1.049253	-1.242668
1	0.000000	2.081660	0.147374
1	0.000000	-2.081660	0.147374

EOM-CCSD

(EOM)-CCSD/\textit{def}2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -150.18225360 \]

\[T_{1}^{\text{diag}} = 0.012 \]

	x	y	z
6	0.000000	0.000000	0.426290
7	0.000000	1.158150	-0.174843
7	0.000000	-1.158150	-0.174843
1	0.000000	0.000000	1.505660
1	0.000000	1.252313	-1.176928
1	0.000000	-1.252313	-1.176928
1	0.000000	2.002779	0.369129
1	0.000000	-2.002779	0.369129
Excited-state

\[E = -149.93960246 \ (T_{1}^{\text{diag}} = 0.016) \]

6	0.000000	0.000000	0.603587
7	0.000000	1.143283	-0.225486
7	0.000000	-1.143283	-0.225486
1	0.000000	0.000000	1.672170
1	0.000000	1.053101	-1.230444
1	0.000000	-1.053101	-1.230444
1	0.000000	2.075699	0.162000
1	0.000000	-2.075699	0.162000
Table S31: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ^{ZPVE}). The considered ES is the lowest B_{3u} state of $n \rightarrow \pi^*$ nature. The values in italics corresponding to the CC3/aug-cc-pVTZ geometries have been extrapolated (see the main text for details).

Method	State	PG	ZPVE	N=N	C=N	C-H	N=C=N	Ref.
CCSD/def2-TZVPP	GS	D_{2h}	0.052185	1.314	1.330	1.077	126.4	This work
	ES	D_{2h}	0.049001	1.310	1.325	1.075	121.1	
	Δ		-0.087	-0.004	-0.005	-0.002	-5.3	
CCSDR(3)/def2-TZVPP	GS	D_{2h}	1.326	1.338	1.079	126.8	This work	
	ES	D_{2h}	1.320	1.332	1.077	121.4		
	Δ		-0.006	-0.006	-0.002	-5.4		
CCSDR(3)/aug-cc-pVTZ	GS	D_{2h}	1.321	1.335	1.077	126.7	This work	
	ES	D_{2h}	1.316	1.330	1.075	121.2		
	Δ		-0.005	-0.005	-0.002	-5.5		
CC3/def2-TZVPP	GS	D_{2h}	1.327	1.339	1.079	126.9	This work	
	ES	D_{2h}	1.323	1.334	1.077	121.6		
	Δ		-0.004	-0.005	-0.002	-5.3		
CC3/aug-cc-pVTZ	GS	D_{2h}	1.323	1.336	1.078	126.7	This work	
	ES	D_{2h}	1.319	1.331	1.077	121.4		
	Δ		-0.004	-0.005	-0.001	-5.3		
CASPT2/[14s9p4d/4s3p2d]	GS	D_{2h}	1.325	1.339	1.074	126.6	71	
	ES	D_{2h}	1.321	1.333	1.073	121.5		
	Δ		-0.004	-0.006	-0.001	-5.1		
CCSD/TZ2P	GS	D_{2h}	1.320	1.334	1.077	126.6	72	
	ES	D_{2h}	1.317	1.328	1.075	121.5		
	Δ		-0.003	-0.006	-0.002	-5.1		
Mk-MRCCSD/cc-pVCTZ	GS	D_{2h}	1.313	1.330	1.078	126.5	4	
	ES	D_{2h}	1.309	1.325	1.076	121.1		
	Δ		-0.004	-0.005	-0.002	-5.4		
Experiment	Δ		-0.043	0.007		2.4	73	
Experiment	GS	D_{2h}	1.334	1.338		126.5	74	
	ES	D_{2h}	1.280	1.358		118		
	Δ		-0.054	0.020		-8.5		
Experiment	GS	D_{2h}	1.326	1.341	1.073	126.4	75	
	ES	D_{2h}	1.349	1.324	1.063	123.2		
	Δ		0.023	-0.017	-0.010	-3.2		
Experiment	Δ		0.045	-0.008	0.003	-2.8	76	
Cartesian coordinates

CCSDR(3)

CCSDR(3)/aug-cc-pVTZ total energies (au) and Cartesian coordinates (Å).

Ground-state	$E= -295.97040064$
6	0.000000 0.000000 1.259862
6	0.000000 0.000000 -1.259862
7	0.000000 1.193213 0.660709
7	0.000000 -1.193213 0.660709
7	0.000000 1.193213 -0.660709
7	0.000000 -1.193213 -0.660709
1	0.000000 0.000000 2.337205
1	0.000000 0.000000 -2.337205

Excited-state	$E= -295.88218833$
6	0.000000 0.000000 1.310707
6	0.000000 0.000000 -1.310707
7	0.000000 1.158537 0.658138
7	0.000000 -1.158537 0.658138
7	0.000000 1.158537 -0.658138
7	0.000000 -1.158537 -0.658138
1	0.000000 0.000000 2.386001
1	0.000000 0.000000 -2.386001

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state	$E= -295.86053114$ ($T_1^{\text{diag}} = 0.010$)
6	0.000000 0.000000 1.256607
6	0.000000 0.000000 -1.256607
7	0.000000 1.187551 0.656767
7	0.000000 -1.187551 0.656767
7	0.000000 1.187551 -0.656767
7	0.000000 -1.187551 -0.656767
1	0.000000 0.000000 -2.333237
1	0.000000 0.000000 2.333237
Excited-state

\[E = -295.813263393 \quad (T_1^{\text{diag}} = 0.010) \]

6	0.000000	0.000000	1.306670
6	0.000000	0.000000	-1.306670
7	0.000000	1.153407	0.654996
7	0.000000	1.153407	-0.654996
7	0.000000	-1.153407	0.654996
7	0.000000	-1.153407	-0.654996
1	0.000000	0.000000	-2.381186
1	0.000000	0.000000	2.381186
S32 Thioacrolein

Table S32: Selected geometrical parameters (bond lengths in Å, valence angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A^* state of $n \rightarrow \pi^*$ nature.

Method	State	PG	ZPVE	C=S	C-C	C=C	S=C-C	C-C=C	Ref.
CCSD/def2-TZVPP	GS	C_s	0.060074	1.617	1.456	1.337	125.1	121.7	This work
	ES	C_s	0.058050	1.697	1.420	1.353	124.7	123.7	This work
	∆		-0.055	0.080	-0.036	0.016	-0.4	2.0	
CCSR(3)/def2-TZVPP	GS	C_s	1.632	1.453	1.345	124.9	121.6	This work	
	ES	C_s	1.731	1.405	1.370	124.8	123.4	This work	
	∆		0.099	-0.048	0.035	-0.1	1.8		
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -514.28366209 \]

	X	Y	Z
6	2.264785	-0.468333	0.000000
6	0.933384	-0.661462	0.000000
6	0.002311	0.454598	0.000000
16	-1.623780	0.313592	0.000000
1	2.956986	-1.297316	0.000000
1	2.681320	0.530276	0.000000
1	0.509345	-1.656571	0.000000
1	0.461186	1.441229	0.000000

Excited-state

\[E = -514.21041405 \]

	X	Y	Z
6	2.339689	-0.279132	0.000000
6	0.995631	-0.543605	0.000000
6	0.009275	0.457746	0.000000
16	-1.696605	0.163231	0.000000
1	3.062645	-1.079600	0.000000
1	2.709182	0.736821	0.000000
1	0.668904	-1.576125	0.000000
1	0.297936	1.503138	0.000000

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -514.37424797 \] \((T_{\text{diag}} = 0.013) \)

	X	Y	Z
6	2.259081	-0.467821	0.000000
6	0.935969	-0.661123	0.000000
6	0.000000	0.453966	0.000000
16	-1.610719	0.314591	0.000000
1	2.950764	-1.294917	0.000000
1	2.677187	0.528018	0.000000
1	0.513693	-1.654651	0.000000
1	0.459562	1.437949	0.000000
Excited-state

\[E = -514.293960766 \ (T_{1}^{\text{diag}} = 0.015) \]

6	2.330005	-0.280787	0.000000
6	1.003053	-0.543926	0.000000
6	0.000000	0.461490	0.000000
16	-1.670130	0.162243	0.000000
1	3.052991	-1.079263	0.000000
1	2.701973	0.732431	0.000000
1	0.674862	-1.573923	0.000000
1	0.293904	1.504210	0.000000
S33 Thiocarbonyl Dibromide

Table S33: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). Δ gives the difference between the two states (in eV for the Δ_{ZPVE}). The considered ES is the lowest A' state of n → π* nature. θ is the angle between the CS bond and the bisector of the Br-C-Br angle.

Method	State	PG	ZPVE	C=S	C-Br	Br-C-Br	θ	Ref.	
CCSD/def2-TZVPP	GS	C_2v	0.007235	1.593	1.891	111.9	0.0	This work	
	ES	C_s	0.006063	1.693	1.870	119.4	25.9		
	Δ		-0.032	0.100	-0.021	7.5	25.9		
CCSDR(3)/def2-TZVP	GS	C_2v	1.606	1.898	111.7	0.0		This work	
	ES	C_s	1.725	1.880	118.9	29.4			
	Δ		0.119	-0.018	7.2	29.4			
Experiment	Δ						19 ± 1	77	
Experiment	Δ						0.12	17.5 ± 1	78
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -5581.33106703 \]

6	0.000000	0.000000	-0.576306	
16	0.000000	0.000000	-2.181927	
35	0.000000	1.570519	0.489762	
35	0.000000	-1.570519	0.489762	

Excited-state

\[E = -5581.24712967 \]

6	-0.169247	0.450725	-0.000000	
16	0.563263	2.012703	-0.000000	
35	-0.097418	-0.501788	1.618714	
35	-0.097418	-0.501788	-1.618714	

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state

\[E = -5581.4110021 \] \((T^\text{diag}_1 = 0.008) \)

6	0.000000	-0.000000	0.529014	
16	0.000000	-0.000000	2.121618	
35	0.000000	1.566952	-0.530285	
35	-0.000000	-1.566952	-0.530285	

Excited-state

\[E = -5581.32254326 \] \((T^\text{diag}_1 = 0.009) \)

6	-0.113817	0.446456	-0.000000	
16	0.540630	2.007768	-0.000000	
35	-0.113817	-0.497186	1.614232	
35	-0.113817	-0.497186	-1.614232	
Excited-state (constrained \(C_{2v} \))

This ES of \(A_2 \) symmetry presents an imaginary frequency of 168i cm\(^{-1}\). At this level of theory, it represents a barrier of 125 cm\(^{-1}\) compared to the planar structure. The available experimental estimates for this barrier are 465 ± 30 cm\(^{-1}\),\(^{77}\) and 524 ± 10 cm\(^{-1}\).\(^{78}\)

\[
E = -5581.32197264 \quad (T_1^{\text{diag}} = 0.009)
\]

6	-0.000000	0.000000	0.404100
16	-0.000000	0.000000	2.095581
35	0.000000	1.616799	-0.513627
35	-0.000000	-1.616799	-0.513627
Table S34: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE). The considered ES is the lowest A state of n → π* nature. η is the angle between CS and F-C-Cl plane.

Method	State	PG	ZPVE	C=\(\text{S}\)	C-F	C-Cl	F-C-Cl	F-C=\(\text{S}\)	η	Ref.
CCSD/\(\text{def2-TZVPP}\)	GS	\(C_s\)	0.009971	1.592	1.318	1.715	109.1	123.8	0.0	This work
	ES	\(C_1\)	0.008683	1.720	1.331	1.712	114.4	116.3	38.3	
	∆		-0.035	0.128	0.013	-0.003	5.3	-7.3	38.3	
CCSDR(3)/\(\text{def2-TZVPP}\)	GS	\(C_s\)	1.603	1.325	1.725	109.0	127.1	0.0		This work
	ES	\(C_1\)	1.756	1.334	1.726	114.2	115.1	42.4		
	∆		0.153	0.009	0.001	5.2	-12.0	42.4		
CCSD/6-311++G(2d)	GS	\(C_s\)	1.597	1.325	1.732	123.1				79
	ES	\(C_1\)	1.735	1.336	1.731	115.9				
	∆		0.138	0.011	-0.001	-7.2				
Experiment	ES	\(C_1\)						37.0		80
	∆			0.20 or 0.15						18

S34 Thiocarbonyl Chlorofluoride
Cartesian coordinates

CCSDR(3)

CCSDR(3)/\textit{def}2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[
E = -995.30380766
\]

	0.000368	0.281098	0.000000
6			
16	1.596179	0.128271	0.000000
9	-0.630584	1.446267	0.000000
17	-1.167370	-0.988321	0.000000

Excited-state
\[
E = -995.20432290
\]

	0.301529	-0.335088	-0.044126
6			
16	-0.042391	0.550642	-1.520810
9	-0.077920	-1.614034	-0.050188
17	-0.037135	0.497737	1.429288

EOM-CCSD

(EOM)-CCSD/\textit{def}2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
\[
E = -995.52457786 \quad (T_{\text{diag}} = 0.011)
\]

	0.000000	0.280746	-0.000000
6			
16	1.584181	0.128461	0.000000
9	-0.626013	1.440963	-0.000000
17	-1.159575	-0.982854	-0.000000

Excited-state
\[
E = -995.417716528 \quad (T_{\text{diag}} = 0.014)
\]

	-0.034688	0.335421	0.268764
6			
16	-1.500347	-0.514288	-0.030756
9	-0.017875	1.621773	-0.070737
17	1.433798	-0.492934	-0.028462
Excited-state (constrained C_s)

This structure (A^+ symmetry) presents an imaginary frequency of 390 cm$^{-1}$. It is slightly less stable than the global minimum and corresponds to a barrier of 1002 cm$^{-1}$. This value is quite similar to the 1154 cm$^{-1}$ reported in Ref. 79 at the EOM-CCSD/6-311++G(2d) level. The available experimental estimate for this barrier is 1556 ± 45 cm$^{-1}$.

\[E = -995.413148906 \ (T^\text{diag}_{1} = 0.013) \]

6	0.000000	0.306243	0.000000
16	-1.574384	-0.356795	0.000000
9	0.154617	1.627954	0.000000
17	1.399917	-0.634136	-0.000000
S35 Trifluoronitrosomethane

Table S35: Selected geometrical parameters (bond lengths in Å, valence angles and dihedral angle in degrees). PG is the point group and ZPVE is the zero-point vibrational energy (in au). ∆ gives the difference between the two states (in eV for the ∆ZPVE). The considered ES is the lowest A” state of n → π* nature.

Method	State	PG	ZPVE	N=O	C-N	F-F-C	C-N=O	F-F-C-N	Ref.
ADC(2)/def2-TZVPP	GS	C₄s	0.021031	1.206	1.515	1.315	112.0	113.6	This work
	ES	C₄s	0.020165	1.256	1.464	1.313	116.9	107.7	
	∆		-0.024	0.050	-0.051	-0.002	4.9	-5.9	
ADC(2)/aug-cc-pVTZ	GS	C₄s	1.204	1.509	1.314	112.0	113.7		This work
	ES	C₄s	1.252	1.458	1.313	117.1	107.8		
	∆		0.048	-0.051	-0.001	5.1	-5.9		
CC2/def2-TZVPP	GS	C₄s	0.020340	1.217	1.527	1.319	111.9	113.5	This work
	ES	C₄s	0.019725	1.261	1.465	1.318	117.7	107.6	
	∆		-0.017	0.044	-0.062	-0.001	5.8	-5.9	
CC2/aug-cc-pVTZ	GS	C₄s	1.215	1.520	1.318	112.0	113.7		This work
	ES	C₄s	1.257	1.459	1.318	117.9	107.7		
	∆		0.043	-0.061	0.000	5.9	-6.0		
CCSD/def2-TZVPP	GS	C₄s	0.021863	1.189	1.514	1.311	112.3	113.5	This work
	ES	C₄s	0.021315	1.220	1.460	1.309	118.8	107.7	
	∆		-0.015	0.031	-0.054	0.002	6.5	-5.8	
CCSD/aug-cc-pVTZ	GS	C₄s	1.187	1.507	1.309	112.3	113.6		This work
	ES	C₄s	1.216	1.453	1.308	119.0	107.8		
	∆		0.029	-0.054	-0.001	6.7	-5.8		
CCSDR(3)/def2-TZVPP	GS	C₄s	1.199	1.524	1.315	112.0	115.5		This work
	ES	C₄s	1.233	1.467	1.314	118.0	107.7		
	∆		0.034	-0.057	-0.001	6.0	-7.8		
MR-AQCC/cc-pVTZ(-f)	GS	C₄s	1.207	1.524	1.316	111.9	113.5		81
	ES	C₄s	1.245	1.481	1.315	116.7	107.4		
	∆		0.038	-0.043	-0.001	4.8	-6.1		

Experiment ∆ 0.05 6.5 82
Cartesian coordinates

CCSDR(3)

CCSDR(3)/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
$E = -467.09083587$

7	0.553712	-1.093108	0.000000
8	-0.349273	-1.882229	0.000000
6	0.054293	0.346889	0.000000
9	-1.257309	0.446369	0.000000
9	0.550077	0.923430	1.082651
9	0.550077	0.923430	-1.082651

Excited-state
$E = -467.02645139$

7	-1.153161	0.224067	0.000000
8	-1.773850	-0.841573	0.000000
6	0.312483	0.166560	0.000000
9	0.759618	1.401877	0.000000
9	0.753343	-0.470174	1.075572
9	0.753343	-0.470174	-1.075572

EOM-CCSD

(EOM)-CCSD/def2-TZVPP total energies (au) and Cartesian coordinates (Å).

Ground-state
$E = -467.04010710 \ (T_{1}^{\text{diag}} = 0.012)$

7	0.548055	-1.087389	0.000000
8	-0.344384	-1.873107	0.000000
6	0.054154	0.343641	0.000000
9	-1.252359	0.445279	0.000000
9	0.548055	0.918179	1.078247
9	0.548055	0.918179	-1.078247

Excited-state
$E = -466.974447277 \ (T_{1}^{\text{diag}} = 0.012)$

7	-1.147655	0.216027	0.000000
8	-1.772638	-0.831836	0.000000
6	0.311312	0.165004	0.000000
9	0.753586	1.397067	0.000000
9	0.753586	-0.467840	1.070849
9	0.753586	-0.467840	-1.070849
Ground-state (staggered)

In the GS, the staggered conformation yields an imaginary frequency mode of 69\textit{i} cm−1. This TS-like structure is only 0.03 eV less stable than the eclipsed minimum. This corresponds to a barrier of 265 cm−1, agreeing very well with both MR-AQCC results (251 cm−1),81 and the available experimental values are 250 cm−1,83 and 238 cm−1.84

\[E = -467.03890141 \ (T_{1}^{\text{diag}} = 0.012) \]

\[
\begin{array}{cccc}
7 & -1.211153 & 0.211771 & 0.000000 \\
8 & -1.649879 & -0.895641 & 0.000000 \\
6 & 0.303925 & 0.173224 & 0.000000 \\
9 & 0.735317 & 1.413756 & 0.000000 \\
9 & 0.735317 & -0.448912 & 1.077432 \\
9 & 0.735317 & -0.448912 & -1.077432 \\
\end{array}
\]

Excited-state (eclipsed)

In the ES, the eclipsed conformation yields an imaginary frequency mode of 122\textit{i} cm−1. This TS-like structure is only 0.08 eV less stable than the eclipsed minimum. This corresponds to a barrier of 656 cm−1, agreeing very well with the MR-AQCC result (628 cm−1),81 and slightly overestimating the available experimental estimates of 550–575 cm−1,83 and 601.5 \pm 10 cm−1.82,85

\[E = -466.971456673 \ (T_{1}^{\text{diag}} = 0.012) \]

\[
\begin{array}{cccc}
7 & 0.522203 & -1.037754 & 0.000000 \\
8 & -0.258935 & -1.973897 & 0.000000 \\
6 & 0.056554 & 0.349059 & 0.000000 \\
9 & -1.258102 & 0.405904 & 0.000000 \\
9 & 0.522203 & 0.961553 & 1.068964 \\
9 & 0.522203 & 0.961553 & -1.068964 \\
\end{array}
\]
References

(1) Stanton, J. F.; Gauss, J.; Ishikawa, N.; Head-Gordon, M. A Comparison of Single Reference Methods for Characterizing Stationary Points of Excited State Potential Energy Surfaces. *J. Chem. Phys.* **1995**, *103*, 4160–4174.

(2) Malsch, K.; Rebentisch, R.; Swiderek, P.; Hohlneicher, G. Excited States of Acetylene: A CASPT2 Study. *Theor. Chem. Acc.* **1998**, *100*, 171–182.

(3) Ventura, E.; Dallos, M.; Lischka, H. The Valence-Excited States $T_1–T_4$ and $S_1–S_2$ of Acetylene: A High-Level MR-CISD and MR-AQCC Investigation of Stationary Points, Potential Energy Surfaces, and Surface Crossings. *J. Chem. Phys.* **2003**, *118*, 1702–1713.

(4) Jagau, T.-C.; Gauss, J. Ground and Excited State Geometries via Mukherjee’s Multireference Coupled-Cluster Method. *Chem. Phys.* **2012**, *401*, 73–87.

(5) Herzberg, G. *Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules*; D. Van Nostrand Company: London, UK, 1966.

(6) Huet, T.; Godefroid, M.; Herman, M. The \tilde{A} Electronic State of Acetylene: Geometry and Axis-Switching Effects. *J. Mol. Spectrosc.* **1990**, *144*, 32–44.

(7) Wilberg, K. B.; de Oliveria, A. E.; Trucks, G. A Comparison of the Electronic Transition Energies for Ethene, Isobutene, Formaldehyde, and Acetone Calculated Using RPA, TDDFT, and EOM-CCSD. Effect of Basis Sets. *J. Phys. Chem. A* **2002**, *106*, 4192–4199.

(8) Dallos, M.; Müller, T.; Lischka, H.; Shepard, R. Geometry Optimization of Excited Valence States of Formaldehyde Using Analytical Multireference Configuration Interaction Singles and Doubles and Multireference Averaged Quadratic Coupled-Cluster
Gradients, and the Conical Intersection Formed by the $1^1B_1(\sigma - \pi^*)$ and $2^1A_1(\pi - \pi^*)$ States. *J. Chem. Phys.* **2001**, *114*, 746–757.

(9) Bokarev, S. I.; Dolgov, E. K.; Bataev, V. A.; Godunov, I. A. Molecular Parameters of Tetraatomic Carbonyls X_2CO and $XYCO$ ($X, Y = H, F, Cl$) in the Ground and Lowest Excited Electronic States, Part 1: A Test of Ab Initio Methods. *Int. J. Quantum Chem.* **2009**, *109*, 569–585.

(10) Job, V.; Sethuraman, V.; Innes, K. The 3500 Å $1^1A_2 - X^1A_1$ Transition of Formaldehyde-h_2, d_2, and hd: Vibrational and Rotational Analyses. *J. Mol. Spectrosc.* **1969**, *30*, 365–426.

(11) Jones, V.; Coon, J. Rotational Constants and Geometrical Structure of the 1^1A_2 and 3^3A_2 States of H_2CO and D_2CO. *J. Mol. Spectrosc.* **1969**, *31*, 137–154.

(12) Clouthier, D. J.; Ramsay, D. A. The Spectroscopy of Formaldehyde and Thioformaldehyde. *Annu. Rev. Phys. Chem.* **1983**, *34*, 31–58.

(13) Jensen, P.; Bunker, P. The Geometry and the Inversion Potential Function of Formaldehyde in the $\tilde{A}^1 A_2$ and $\tilde{a}^3 A_2$ Electronic States. *J. Mol. Spectrosc.* **1982**, *94*, 114–125.

(14) Godunov, I. A.; Abramenko, A. V.; Bataev, V. A.; Pupyshev, V. I. Potential Functions of Inversion of R_2CO ($R=H, F, Cl$) Molecules in the Lowest Excited Electronic States. *Russ. Chem. Bull.* **1999**, *48*, 640–646.

(15) Köhn, A.; Hättig, C. Analytic Gradients for Excited States in the Coupled-Cluster Model CC2 Employing the Resolution-Of-The-Identity Approximation. *J. Chem. Phys.* **2003**, *119*, 5021–5036.

(16) Yachmenev, A.; Yurchenko, S. N.; Ribeyre, T.; Thiel, W. High-level ab initio potential energy surfaces and vibrational energies of H2CS. *J. Chem. Phys.* **2011**, *135*, 074302.

(17) Judge, R.; King, G. Thioformaldehyde. *J. Mol. Spectrosc.* **1979**, *78*, 51–88.
(18) Steer, R. P. Structure and Decay Dynamics of Electronic Excited States of Thiocarbonyl Compounds. *Rev. Chem. Interm.* **1981**, *4*, 1–41.

(19) Jensen, P.; Bunker, P. The Geometry and the Out-Of-Plane Bending Potential Function of Thioformaldehyde in the $\tilde{\text{A}}^1A_2$ and $\tilde{\text{a}}^3A_2$ Electronic States. *J. Mol. Spectrosc.* **1982**, *95*, 92–100.

(20) Dunlop, J. R.; Karolczak, J.; Clouthier, D. J.; Ross, S. C. Pyrolysis Jet Spectroscopy: The $S_1 - S_0$ Band System of Thioformaldehyde and the Excited-State Bending Potential. *J. Phys. Chem.* **1991**, *95*, 3045–3062.

(21) Brown, R.; Godfrey, P.; McNaughton, D. The microwave spectrum of selenoformaldehyde. *Chem. Phys. Lett.* **1985**, *118*, 29–30.

(22) Clouthier, D. J.; Judge, R.; Moule, D. Selenoformaldehyde: Rotational Analysis of the $\tilde{\text{A}}^1A_2$-$\tilde{\text{X}}^1A_1$ 735 nm Band System of H$_2$C78Se, H$_2$C80Se, and D$_2$C78Se from High-Resolution Laser Fluorescence Excitation Spectra. *J. Mol. Spectrosc.* **1990**, *141*, 175–203.

(23) Szalay, P. G.; Császár, A. G.; Nemes, L. Electronic States of Ketene. *J. Chem. Phys.* **1996**, *105*, 1034–1045.

(24) Xiao, H.; Maeda, S.; Morokuma, K. CASPT2 Study of Photodissociation Pathways of Ketene. *J. Phys. Chem. A* **2013**, *117*, 7001–7008.

(25) Jarman, C. N.; Kroto, H. W. High-resolution Fourier-transform infrared spectroscopy of [small nu]3+[small nu]8 H2CCS, [small nu]1 HDCCS and [small nu]1 D2CCS in the gas phase: an improved rS structure for thioketene. *J. Chem. Soc., Faraday Trans.* **1991**, *87*, 1815–1826.

(26) Dolgov, E. K.; Bataev, V. A.; Pupyshev, V. I.; Godunov, I. A. Ab Initio Description
of the Structure and Dynamics of the Nitrosomethane Molecule in the First Excited Singlet and Triplet Electronic States. *Int. J. Quantum Chem.* **2004**, *96*, 589–597.

(27) Dolgov, E. K.; Bataev, V. A.; Godunov, I. A. Structure of the Nitrosomethane Molecule (CH$_3$NO) in the Ground Electronic State: Testing of Ab Initio Methods for the Description of Potential Energy Surface. *Int. J. Quantum Chem.* **2004**, *96*, 193–201.

(28) Ernsting, N. P.; Pfab, J.; Romelt, J. Geometry Changes Accompanying Electronic Excitation of Nitrosomethane in the 650 nm Region. *J. Chem. Soc., Faraday Trans. 2* **1978**, *74*, 2286–2294.

(29) Turner, P. H.; Cox, A. P. Microwave Spectrum, Structure, Dipole Moment and Centrifugal Distortion of Nitrosomethane. Dipole Moment of Acetaldehyde. *J. Chem. Soc., Faraday Trans. 2* **1978**, *74*, 533–559.

(30) Gordon, R. D.; Luck, P. Conformational Changes Accompanying Electronic Excitation of CD$_3$NO. *Chem. Phys. Lett.* **1979**, *65*, 480–483.

(31) Dixon, R. N.; Johnson, P. A Rotational Analysis of the \tilde{A}^1A'' – \tilde{X}^1A' Electronic Origin Band of NCNO near 882 nm. *J. Mol. Spectrosc.* **1985**, *114*, 174–184.

(32) Guareschi, R.; Filippi, C. Ground- and Excited-State Geometry Optimization of Small Organic Molecules with Quantum Monte Carlo. *J. Chem. Theory Comput.* **2013**, *9*, 5513–5525.

(33) Francisco, J. S.; Li, Z. J. Theoretical Characterisation of the Lowest $n \rightarrow \pi^*$ Electronic State of CF$_2$O. Is it Planar or Non-Planar? *Chem. Phys. Lett.* **1993**, *214*, 591–597.

(34) Judge, R. H.; Moule, D. C. Analysis of the 254.7 nm Absorption System of Carbonyl Fluoride. *J. Chem. Phys.* **1983**, *78*, 4806–4810.
(35) Stanton, J. F.; Gauss, J. Analytic energy derivatives for the equation-of-motion coupled-cluster method: Algebraic expressions, implementation and application to the S_1 state of HFCO. *Theor. Chim. Acta* **1995**, *91*, 267–289.

(36) Fischer, G. The 2670 Å Absorption System of Formyl Fluoride. *J. Mol. Spectrosc.* **1969**, *29*, 37–53.

(37) Crane, J. C.; Nam, H.; Beal, H. P.; Clauberg, H.; Choi, Y. S.; Moore, C.; Stanton, J. F. Vibrational Assignment of the S_1 Fluorescence Excitation Spectrum of Formyl Fluoride. *J. Mol. Spectrosc.* **1997**, *181*, 56–66.

(38) Fang, Q.; Zhang, F.; Shen, L.; Fang, W.-H.; Luo, Y. Photodissociation of Phosgene: Theoretical Evidence for the Ultrafast and Synchronous Concerted Three-Body Process. *J. Chem. Phys.* **2009**, *131*.

(39) Moule, D. C.; Foo, P. D. Analysis of the 2973 Å Absorption System of Phosgene. *J. Chem. Phys.* **1971**, *55*, 1262–1268.

(40) Judge, R.; Moule, D. The $\tilde{A}^1A'' \leftrightarrow \tilde{X}^1A'$ Electronic Transition in Formyl Chloride, CHClO. *J. Mol. Spectrosc.* **1985**, *113*, 302–309.

(41) Ding, H.; J. Orr-Ewing, A.; N. Dixon, R. Rotational Structure in the $\tilde{A}^1A'' - \tilde{X}^1A'$ Spectrum of Formyl Chloride. *Phys. Chem. Chem. Phys.* **1999**, *1*, 4181–4185.

(42) Moule, D.; Mehra, A. The $^1A_2 - ^1A_1$ Transition in Thiocarbonyl Difluoride at 23477.1 cm$^{-1}$. *J. Mol. Spectrosc.* **1970**, *35*, 137–148.

(43) Boluk, M. Y.; Moule, D. C.; Clouthier, D. J. Selenoketone Spectroscopy: Vibronic Analysis of the and $n \rightarrow \pi^*$ Electronic Transitions in F$_2$CSe. *Can. J. Chem.* **1983**, *61*, 1743–1748.

(44) Lin, L.; Zhang, F.; Ding, W.-J.; Fang, W.-H.; Liu, R.-Z. Striving To Understand the
Photophysics and Photochemistry of Thiophosgene: A Combined CASSCF and MRCI Study. *J. Phys. Chem. A* **2005**, *109*, 554–561.

(45) Brand, J. C. D.; Callomon, J. H.; Moule, D. C.; Tyrrell, J.; Goodwin, T. H. The 5340 Å Band System of Thiocarbonyl Chloride. *Trans. Faraday Soc.* **1965**, *61*, 2365–2382.

(46) Lombardi, J. R. 5142 Å Transition in Thiophosgene ($\pi^* \leftarrow n$); Rotational Analysis and Excited-State Structure. *J. Chem. Phys.* **1970**, *52*, 6126–6129.

(47) Fujiwara, T.; Lim, E. C.; Kodet, J.; Judge, R. H.; Moule, D. C. The Isotopic Dependence of Axes Switching in Thiophosgene Induced by $A^1A_2(n\pi^*) \leftarrow X^1A_1$ Electronic Excitation. *J. Mol. Spectrosc.* **2005**, *232*, 331–340.

(48) Judge, R.; Moule, D. Thiocarbonyl Spectroscopy: The $\tilde{A}^1A'' \leftarrow \tilde{X}^1A'$ and $\tilde{a}^3A'' \leftarrow \tilde{X}^1A'$ Electronic Transitions in Thioformyl Chloride, CHCIS. *J. Mol. Struct.* **1985**, *113*, 77–84.

(49) Angeli, C.; Borini, S.; Ferrighi, L.; Cimiraglia, R. A {CASSCF} theoretical study of the vibrational frequencies and structure of formaldehyde, acetaldehyde and acetone valence excited states. *Journal of Molecular Structure: THEOCHEM* **2005**, *718*, 55–69.

(50) Gwaltney, S. R.; Bartlett, R. J. Gradients for the Partitioned Equation-Of-Motion Coupled-Cluster Method. *J. Chem. Phys.* **1999**, *110*, 62–71.

(51) Hubbard, L. M.; Bocian, D. F.; Birge, R. R. The Nature of the $^1n\pi^* \leftarrow S_0$ Transition. 4. The First Excited Singlet State of Acetaldehyde. *J. Am. Chem. Soc.* **1981**, *103*, 3313–3320.

(52) Page, C. S.; Olivucci, M. Ground and Excited State CASPT2 Geometry Optimizations of Small Organic Molecules. *J. Comput. Chem.* **2003**, *24*, 298–309.
(53) Saha, B.; Ehara, M.; Nakatsuji, H. Singly and Doubly Excited States of Butadiene, Acrolein, and Glyoxal: Geometries and Electronic Spectra. J. Chem. Phys. 2006, 125.

(54) Hollas, J. The electronic Absorption Spectrum of Acrolein Vapour. SpectroChim. Acta 1963, 19, 1425–1441.

(55) Fischer, G.; Ross, I. G. Electronic Spectrum of Dicyanoacetylene. 1. Calculations of the Geometries and Vibrations of Ground and Excited States of Diacetylene, Cyanoacetylene, Cyanogen, Triacetylene, Cyanodiacyetylene, and Dicyanoacetylene. J. Phys. Chem. A 2003, 107, 10631–10636.

(56) Luo, C.; Du, W. N.; Duan, X. M.; Li, Z. S. A theoretical Study of the Photodissociation Mechanism of Cyanoacetylene in its Lowest Singlet and Triplet Excited States. Astrophys. J. 2008, 687, 726–730.

(57) Job, V.; King, G. The Electronic Spectrum of Cyanoacetylene: Part I. Analysis of the 2600-Å System. J. Mol. Spectrosc. 1966, 19, 155–177.

(58) Job, V.; King, G. The Electronic Spectrum of Cyanoacetylene: Part II. Analysis of the 2300-Å System. J. Mol. Spectrosc. 1966, 19, 178–184.

(59) Clouthier, D. J.; Karolczak, J.; Rae, J.; Chan, W.; Goddard, J. D.; Judge, R. H. Pyrolysis Jet Spectroscopy: The $S_1 - S_0$ Band System of Formyl Cyanide, HCOCN, and DCOCN. J. Chem. Phys. 1992, 97, 1638–1648.

(60) Ding, W.-J.; Fang, W.-H.; Liu, R.-Z. A Combined CASSCF and TDDFT Study on the Structures and Properties of Formyl Cyanide in Low-Lying Electronic States. Chem. Phys. Lett. 2003, 369, 570–578.

(61) Chaudhuri, R. K.; Krishnamachari, S.; Freed, K. F. Ab Initio Description of the Ground and Excited States of Cyanogen Isomers. Journal of Molecular Structure: THEOCHEM 2006, 768, 119–126.
(62) Fish, G.; Cartwright, G.; Walsh, A.; Warsop, P. Rotational Structure in the $^1\Sigma_u^+ \leftarrow ^1\Sigma_g^+$ Transition of Cyanogen at 2200 Å. *J. Mol. Spectrosc.* **1972**, *41*, 20–32.

(63) Karpfen, A.; Lischka, H. Ab Initio Calculations on the Excited States of π-Systems. II. Valence Excitations in Diacetylene. *Chem. Phys.* **1986**, *102*, 91–102.

(64) Hardwick, J. L.; Ramsay, D. A. The Near Ultraviolet Band System of Diacetylene. *Chem. Phys. Lett.* **1977**, *48*, 399–401.

(65) Bandy, R. E.; Lakshminarayan, C.; Zwier, T. S. Spectroscopy and Photophysics of the $^1\Delta \leftarrow ^1\Sigma_g^+$ Transition of Jet-Cooled C$_4$H$_2$, C$_4$HD, and C$_4$D$_2$. *J. Phys. Chem.* **1992**, *96*, 5337–5343.

(66) Stanton, J. F.; Gauss, J. Ab Initio and Ab Initio Derived Force Fields: State of the Science Theoretical study of electronically excited cis- and trans-glyoxal. *SpectroChim. Acta A* **1997**, *53*, 1153–1162.

(67) Padrus, J.; Ramsay, D. A. The 4550 Å Band System of Glyoxal I. Rotational Analyses of the (0-0) Bands for C$_2$H$_2$O$_2$, C$_2$HDO$_2$, and C$_2$D$_2$O$_2$. *Can. J. Phys.* **1967**, *45*, 1389–1412.

(68) Birss, F. W.; Braund, D. B.; Cole, A. R. H.; Engleman Jr, R.; Green, A. A.; Japar, S. M.; Nanes, R.; Orr, B. J.; Ramsay, D. A.; Szyszka, J. The 4550 Å Band System of Glyoxal. IV. Vibration–Rotational Analyses for 11 Bands of 13C$_2$H$_2$O$_2$ and Determination of Molecular Geometries. *Can. J. Phys.* **1977**, *55*, 390–395.

(69) Climent, T.; González-Luque, R.; Merchán, M. Theoretical Analysis of the Excited States in Maleimide. *J. Phys. Chem. A* **2003**, *107*, 6995–7003.

(70) Tuna, D.; Lu, Y.; Koslowski, A.; Thiel, W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States. *J. Chem. Theory Comput.* **2016**, *12*, 4400–4422.
(71) Schütz, M.; Hutter, J.; Lüthi, H. P. The Molecular and Electronic Structure of sTrizine in the Ground and First Excited State: A Theoretical Investigation. *J. Chem. Phys.* **1995**, *103*, 7048–7057.

(72) Stanton, J. F.; Gauss, J. The First Excited Singlet State of s-Tetrazine: A Theoretical Analysis of Some Outstanding Questions. *J. Chem. Phys.* **1996**, *104*, 9859–9869.

(73) Meyling, J. H.; van der Werf, R. P.; Wiersma, D. A. Excited State Geometry of and Radiationless Processes in The Lowest B_{3u} ($n\pi^*$) Singlet State of s-Tetrazine. *Chem. Phys. Lett.* **1974**, *28*, 364–372.

(74) Smalley, R. E.; Wharton, L.; Levy, D. H.; Chandler, D. W. The Fluorescence Excitation Spectrum of s-Tetrazine Cooled in a Supersonic Free Jet. *J. Mol. Spectrosc.* **1977**, *66*, 375–388.

(75) Job, V. A.; Innes, K. K. The Geometric Structure of s-Tetrazine and Its Change on Electronic Excitation. *J. Mol. Spectrosc.* **1978**, *71*, 299–311.

(76) Innes, K. K.; Brumbaugh, D. V. Franck-Condon Analysis of Visible Absorption of s-Tetrazine Vapor. *Chem. Phys.* **1981**, *59*, 439–442.

(77) Simard, B.; Hackett, P.; Steer, R. $\tilde{a} \leftarrow \tilde{X}$ Laser Excitation Spectroscopy of BrClCS and Br$_2$CS at Room Temperature and in Cold Supersonic Jets. *J. Mol. Spectrosc.* **1987**, *126*, 307–328.

(78) Simard, B.; Steer, R. P.; Judge, R. H.; Moule, D. C. Vibrational Analysis of the Low Resolution $\tilde{a} \leftarrow \tilde{X}$ Absorption Spectra of BrClCS and Br$_2$CS. *Can. J. Chem.* **1988**, *66*, 359–366.

(79) Lee, K.; Baeck, K. K. A theoretical study of the low-lying excited electronic states of thiocarbonyl chlorofluoride and their dissociation pathways. *J. Chem. Phys.* **2007**, *127*, 234301.
(80) Subramaniam, C.; Moule, D. Analysis of the $\tilde{A}^1A'' \leftarrow \tilde{X}^1A'$ Electronic Transition in Thiocarbonyl Chlorofluoride. *J. Mol. Spectrosc.* **1974**, *53*, 443–454.

(81) Dolgov, E. K.; Bataev, V. A.; Pupyshev, V. I.; Godunov, I. A. Structure and Vibrations of the CF$_3$NO Molecule in the Ground and Lowest Excited Electronic States: A Test of Ab Initio Methods. *Int. J. Quantum Chem.* **2004**, *100*, 509–518.

(82) Dyet, J.; McCoustra, M.; Pfab, J. The Visible Spectrum of Jet-Cooled CF$_3$NO. *Chem. Phys. Lett.* **1987**, *135*, 534–538.

(83) Gordon, R. D.; Dass, S. C.; Robins, J. R.; Shurvell, H. F.; Whitlock, R. F. Conformational Changes Accompanying Electronic Excitation of Trifluoronitrosomethane. *Can. J. Chem.* **1976**, *54*, 2658–2668.

(84) Knight, D. W.; Cox, A. Combined Microwave-Optical Barrier Determination for Molecules with a Heavy Symmetric Internal Top: CF$_3$NO and CF$_3$CHO. *Chem. Phys. Lett.* **1986**, *132*, 103–107.

(85) Dyet, J. A.; McCoustra, M. R. S.; Pfab, J. The spectroscopy, Photophysics and Photodissociation Dynamics of Jet-Cooled CF$_3$NO[$\tilde{A}(n,\pi^*)$]. *J. Chem. Soc., Faraday Trans.* 2 **1988**, *84*, 463–482.