Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern
Shivani Tiwari\(^1,\)\(^a\), Subhavna Juneja\(^2,\)\(^a\), Anujit Ghosal\(^3,\)\(^4\), Nandika Bandara\(^3,\)\(^4\), Raju Khan\(^5\), Scott L. Wallen\(^6\), Seeram Ramakrishna\(^7\) and Ajeet Kaushik\(^6\)

Abstract
The increased severity of the COVID-19 infection due to new SARS-CoV-2 variants has resonated pandemic impact which made health experts to re-evaluate the effectiveness of pandemic management strategies. This becomes critical owing to the infection in large population and shortcomings in the existing global healthcare system worldwide. The designing of high-performance nanosystems (NS) with tunable performances seems to be the most efficient method to tackle infectious SARS-CoV-2 variants including recently emerged omicron mutation. In this direction, experts projects the versatile functionalized NS and their capabilities to mitigate SARS-CoV-2 propagation pathways by sensitization, anti-pathogenicity, photocatalysis, photothermal effects, immune response, developing efficient diagnostics assays or associated, selective biomarkers detection, and targeted drug delivery systems. To achieve these tasks, this opinion article project the importance of the fabrication of nano-enabled protective gear, masks, gloves, sheets, filtration units, nano-emulsified disinfectants, antiviral/bacterial paints, and therangostics to facilitate quarantine strategies via protection, detection, and treatment needed to manage COVID-19 pandemic in personalized manners. These functional protective high-performance antibacterial and antiviral NS can efficiently tackle the SARS-CoV-2 variants transmission through respiratory fluids and pollutants within water droplets, aerosols, air, and particulates along with their severe infection via neutralizing or eradicating the virus.

Introduction: emergence to manage COVID-19 pandemic
The recent viral infection outbreak namely coronavirus diseases 2019 (COVID-19 pandemic/endemic or both) is not still in control because severe acute respiratory syndrome coronavirus 2 (COVID-19, Coronavirus diseases 2019; FDA, Food and Drug Administration; FET, Field-effect-transistor; LBL, Layer-by-Layer.

Abbreviations
NS, Nanosystem; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; COVID-19, Coronavirus diseases 2019; FDA, Food and Drug Administration; FET, Field-effect-transistor; LBL, Layer-by-Layer.

Keywords
Multifunctional nanosystem, Trapping and mitigation of COVID-19, Intelligent nano-healthcare, Effective management of virus.
the number of affected people is still growing even after the vaccination [5]. All the infectious SARS-CoV-2 variants are now characterized as variants of high concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2) and Omicron (B.1.1.529), whereas few others are under variants of interest (VOIs): Lambda: C.37, Mu: B.1.621, Epsilon: B.1.427/B.1.429, Zeta: P2, Eta: B.1.525, Theta: P3, Iota: B.1.526, and Kappa: B.1.617.1; and variants under monitoring (VUMs) [5]. Moreover, highly infectious and easily transmissible new SARS-CoV-2 variants, such as delta and omicron (B.1.1.529) variant, have a wider reach and probably can further mutate to affect the global younger population. Although the pandemic situation in many countries such as China, USA, Canada, UK, New Zealand, and others were relatively better owing to proper vaccination drives and public health orders. It is observed that a small underestimation of the COVID-19 pandemic situation may lead to catastrophe, as observed by a sudden rise in the number of cases all over India during the second and third wave, which was similar to the rapid spread at the first stage in Italy, Brazil, China, and the USA [6–8]. Presently, a highly infectious and transmissible omicron variant is spreading globally (more than 80 countries by Dec. 18, 2021). Therefore effective treatment (vaccines and boosters) and precautions are required to avoid the next wave of COVID-19 infections.

A viral outbreak is not new to human existence, but what makes SARS-CoV-2 a significant threat is its 40-fold higher transmission efficiency than SARS-CoV-1 and a 3.3% higher fatality rate. All statistics highlight the mutation or evolution of infectious diseases over earlier infections, such as the 1967 or 1918 Influenza (0.6% or 2%, respectively) pandemics. Moreover, the consistent genetic mutations in the viral genome make it difficult to subdue its effect. The coronavirus SARS-CoV-2 infection is not limited to the lungs infection, but also causes biological complications, syncytia, and an unpredictable increase in blood clotting chemicals. Different drug formulations are under trial, while some have already been approved by the Food and Drug Administration (FDA) for vaccination (Emergency Use Authorization, EUA) against the catastrophic effects of COVID-19 infection. However, limited efficacy, safety, and adverse immune responses have restricted the generalized application of few of these vaccines. The strategy to revive the essential facilities during/after pandemic situations involves the innovation in health care industry imbuing the very essence of nanotechnology. The imbalance in population and the rate of vaccine production, vaccine stocks, and other medical facilities, especially in developing or economically challenged countries, has also suggested the requirement of alternate ways to utilize small quantity of functional material for a larger population without compromising the efficacy [9–12]. Nanotechnology supported strategies such as nanostructured high-performance materials, development of ultrasensitive diagnostic platforms, improved bioimaging modalities, advanced point-of-care devices, antiviral therapies, and drug formulations in response to manage emerging viral diseases are abundant in the scientific literature [3,13]. We hypothesize that the consequences and impact of new SARS-CoV-2 variants could be managed more efficiently using advanced nano-assisted approaches, as illustrated in Figure 1a. Although prevalent for a few decades, nanotechnology has found new relevance in health care due to the present scenario when controlling SARS-CoV-2 and managing preinfecion/postinfection consequences are the main priority of health agencies and experts, as illustrated in Figure 1b. [14–16].

In this report, our focus is on exploring the potential routes of NS-assisted strategies such as antibacterial/viral coating and membranes, lipid-encapsulated drug formulations of improved efficacy, and immune capture assisted sensors to combat COVID-19 infection and a way forward to assess the limitations of nanotechnology [17–19].

NS-supported COVID-19 pandemic/endemic mitigation

The potential of high-performance NS with desired functional properties in biomedicine is well documented. However, their clinical application is still under consideration, but their prospects are immense, specifically in antiviral research [20]. Some common advantages of nanomaterials against viral diseases include, i) tunable physicochemical properties with inherent antiviral/anti-microbial abilities, ii) improved drug loading efficacy owing to high specific surface areas, iii) increased circulation time in the body, modulating drug circulation time in-vivo, iv) assistance in delivery of water-insoluble drugs, and v) ultrasensitive detection capabilities based on superior optical/electronic behavior such as localized surface plasmon resonance (LSPR).

The current antiviral strategies, include neutralizing antibodies, vaccines, and encapsulated drug based nanoformulations, are driven using the NS-supported approaches (Figure 2a) which can be scaled up according to global demand. For example, the limited efficacy of dexamethasone to treat hyperactive immune cells is subjugated by intravenous delivery of nanoformulations in patients with SARS-CoV-2. Similarly, the neutralizing antibodies (LY3819252/REGN10933/REGN10987) and fragments (INOSARS) have been developed for fighting SARS-CoV-2 consisting of nanoscaled Ab fragments, known as nanobodies. Nano-enabled antiviral vaccines have the most sought out, strongest, and efficient response to the viral outbreak. The efficacy
predominately depends on the stability of its delivery vehicle, which are in the nano regime [21,22]. For example, the lipid molecules in the mRNA-1273 from Moderna Inc. or the ChAdOx1 nCoV-19 from Oxford University require a nonreplicating adenovirus vector, all of these can be considered as NS. The objective is mostly the implementation of a nano-enabled medical platform to trap the virus, enhance detection capability, and improve the protection efficiency, thereby restricting the viral propagation.

Before vaccination, rapid detection of the viral strain within or outside the body has been a challenge. NS-based methodologies have been reported which can overcome this limitation in the detection of viral load concentration. These NS become highly suitable for quick response strategies at airports, hospitals, and quarantine centers owing to shorter response time, lower detection limit, biofunctionality, tunability, and other enhanced surface phenomena [23]. One such example includes the development of a testing kit by eidgenossische polytechnische schule (ETH) Zurich in Switzerland, thereby tapping the multiplexing effect of the nanomaterials [24]. A combination of photothermal and LSPR characteristics of the plasmonic nanoparticles allowed true SARS-SARS-CoV-2 detection with promising potential for sensitive clinical diagnosis. The graphene-based field effect transistor (FET) system...
could detect SARS-CoV-2 spike in proteins at a concentration as low as femtomolar (fM) levels in a clinical transport medium. Furthermore, the two-dimensional gold (Au) nano-islands, functionalized with complementary DNA receptors selective for SARS-CoV-2, allowed detection through nucleic acid hybridization, which was affirmed using thermoplasmonic heat mapping in the picomolar (pM) range [3]. The aspects of the nano-enabled biosensor to manage COVID-19 infection intelligently and in a personalized manner are illustrated in Figure 2b. These technologies should be further optimized for a broader future application where the detection of virus at point-of-care (POC) applications is crucial.

NS-infused surface coatings, protective sieves, and disinfectants

The NS with highly sensitive multifunctional properties can check the pathogens’ genesis, replication, and genetic makeup. Thus, they can be highly effective in containment protocols, drug formulation, rapid testing kits, and mitigation strategies. Nanotechnology addresses most of the present concerns for viral infections. It has also proven to be a successful alternative against existing viral pathogens such as human immunodeficiency virus (HIV), herpes, and other respiratory viruses [25–27]. The NS are distinguished by their high specific surface area, functional values, optical and electrical tunability, efficient charge transfer abilities, and inherent photocatalytic and antiviral/microbial properties. They have rightfully drawn researchers’ interest around the world to tackle adversities.

NS-supported approaches such as nanosensors, nano-assisted assays, delivery agents, and antiviral agents/sterilizers are addressing various challenged associated with viral infection [4,13,23,28,29]. Drugs with poor aqueous solubility but high inhibition abilities can be easily delivered intravenously with controlled concentration and lowered toxicity. Drug nanocarriers such as nanoeumulsions, polysomesomes, nanosomes, lipid-protein based vehicles, etc., have been established for high drug encapsulations, ability to influence the drug pharmacokinetics, and sustained drug release. Moreover, improved surface binding ability of nanoparticles nanoparticles with specific recognizing molecules bring specificity and are known to boost antiviral properties [18,30]. The encapsulation of drugs within the nanocarriers improved their shelf lives and therapeutic effect during *in-vivo* applications. These strategies would certainly work well with COVID-19 and cytokine storm or excessive proinflammatory cytokines [31,32]. Composite materials such as boric-acid-carbon quantum dot composite can target HCoV-229 E human coronavirus by readily interacting with the viral receptors and the viral S protein interference with cellular binding restricts replication [33]. Modified Au-NS, mimicking heparan sulfate proteoglycan (HSPGs), have inhibited viral attachment, entry, and spread [34]. The siRNA-assisted approach or nanoencapsulation-cum-delivery can contain SARS-CoV-2 spread by targeting pathogenicity caused by S protein and 3’UTR of the virus [30,35]. CRISPR-based systems have also been highlighted as an alternative for SARS-CoV-2 inhibition. Viral degradation and inhibition were brought about with Cas13d RNA endonucleases and targeted RNA synthesis using guide RNA [36]. The siRNA and CRISPR might not directly involve nanoparticles for viral restriction, but they have been identified as nanomachinery working toward antivirulence. Other than blocking the viral entry and replication, nanoparticles can also assist in improving the drug efficacy by improving bioavailability.

Viral infection in the atmosphere may affect others and can be responsible for the rapid spread of the disease.
Kampf [37] and van Doremalen [38] have reported the persistence of SARS-CoV-2 in the air and on various surfaces for days at temperatures above 30 °C [37,38]. Strong disinfectants or chemicals can kill the pathogens, but their overuse can also make them resistant or cause mutations. At the same time, nanomaterials with high specific surface areas, localized drug release, slow disinfectant release profiles, stimuli responsiveness, and indigenous antimicrobial or self-cleaning properties could be one of the effective alternatives. They could address major concerns such as deparaffination, volatilization, and degradation associated with the conventional alcohol-based disinfectants [39,40]. The NS composed of ZnO, Mn, Fe, CuO, CeO₂, graphene oxide, Ti, Ni, Ag, Au, etc., can be spray coated on cloth or maybe infused within the fiber to develop the anticontaminated platforms. These NS promote oxidation reactions on their surfaces with the help of the trapped oxygen moieties, are stimuli (light/electrochemical) responsive, and can undergo several charge-discharge cycles. Functionalized nanostructures can trap the virus or other germ particles and disinfect the same by inherent variation in the magnetic field (hyperthermia), electric, or optical fields. Nano-enabled surface coatings based on titanium dioxides, silica composites, nanocellulose fibers, graphene, and metal ions with inherent antiviral abilities could be very effective even at low concentration. Such as silver nanoparticle/nanocluster-based disinfectants, have been recently used to clean the buildings in Milan (NanoTech Surface, product.statnano.com) and was reported to be an effective self-sterilizing formulation limiting microbial buildup [2,41]. The TiO₂-based photocatalytic coatings developed by FN Nano Inc., also have been tested to be an effective antiviral agent owing to the ability to damage viral membranes upon light activation (Figure 3a) [42]. The coating of such viable functional materials over metal surfaces, air conditioner vents, hospital floor mats, and equipment can enhance the protection mechanism.

Figure 3

Few mechanisms (external stimulation, restricted transmission, filtration, and delivery) involved in the eradication of SARS-CoV-2. (a) Nano (TiO₂)-assisted approaches to eradicate micro-organisms on light stimulation [52]. (b) Antiviral biopolymer–coated surface to eradicate virus (Copyright ACS 2020) [45]. (c) Cloth-based mask (three-layered, a combination of cotton silk, chiffon, and flannel fabric) to trap SARS-CoV-2 containing aerosol (<300 nm and efficiency of 85%) for avoiding transmission (Copyright ACS 2020) [47]. (d) Fabric (synthetic/cotton blend, wool, cotton, synthetic, and synthetic blend)-dependent performance of a mask to trap aerosol virus useful to avoid infection transmission (Copyright ACS 2020) [46]. (e) NSs-assisted approach to deliver vaccine inside the viral infected cell.
Alternatively, fabricating nano-scaled three-dimensional (3D) structures with hydrophobic nanomaterials has also been known to prevent droplet accumulation through indulging a self-cleaning abilities. Nanomaterials can be used to develop antimicrobial textiles for use in personal protective equipment (PPE), masks, and sheets. Nano-engineered polymers, quaternary ammonium salts, peptides, and metal oxides restrict microbial growth by facilitating microbial membrane dissociation through oxidation. The high surface area of NS enables them to be easily functionalized with other nanomaterials to restrict viral replication on the surface. The ability to generate reactive oxygen species through photothermal and photocatalytic properties present them as a potential disinfectant with high viability [29]. Similarly, LIGC Applications Ltd. developed reusable masks made out of graphene foam (Guardian G-Volt), which can protect and be sterilized against SARS-CoV-2 [43,44]. Even biopolymers in nano-assemblies have been reported to generate potential antiviral properties, such as nanocellular sponges fabricated from human epithelial cells (Type-II) functionalized with inherent protein receptors can neutralize the SARS-CoV-2 (Figure 3b) [45]. The films or surface coating over the PPE kit can produce optimum inhibition sites against viruses and other inflammatory diseases.

Even nanomaterial-infused face masks, lab coats, gloves, and instrument surfaces are engineered to include new features such as antimicrobial, hydrophobic, self-cleaning, and healing properties (Figure 3c and d) [46–49]. Toxicity is a big concern since the development of these functional materials; however, the adhered nano-entities on the surface of such material would only enhance the beneficial aspects over others. It increases the reusability, improves the active surface regeneration via stimuli-responsive mechanisms, and even reduces the cost of the material in the long run. Tuned nanomaterials with high hydrophobic characteristics can act as an effective barrier against aerosol-mediated viral transfer, which happens to be the most probable infection route at the present moment. Compared with regular cotton/three-layered cloth face masks, combining a billion smaller fragments builds up significant surface tension allowing prevention of droplet absorption simultaneously with antiviral/bacterial response to the environment. Engineered nanodisinfectants based on nanostructured water with active agents can significantly reduce viral reduction, including influenza H1N1. The high surface areas allowed a significant reduction in dosage to nanograms indicating high viability [50]. NanoSeptic formulated self-cleaning, crystal nanoparticles have also presented environmentally sustainable alternatives with no residual discharge [51]. However, consequential effects on prolonged use, wear—off properties during washing, possible skin irritations, and allergies require testing for nanotechnology-enabled materials for broader applications.

Antiviral nanovaccines and delivery vehicles

High-performance NS contribute to vaccines by acting as adjuvants or carriers as well as effective barriers. NS-supported vaccines (i.e., nanomedicine) protect antigens against premature degradation, can cross cell membranes, allow sustained release, enhance stability, and encourage targeted immunogen delivery [41]. The BNT162b, one of the effective COVID-19 vaccines, BioNTech and Pfizer, contains lipid-based nanof ormulation. As a result, the prefusion conformation of S protein and the receptor-binding domain are maintained, allowing the effective neutralization of immune cells (Figure 3e) [29]. Imperial College, London, and Aucitas Therapeutics, Canada, also jointly developed a self-amplifying RNA—lipid nanoparticle encapsulated with prefusion SARS-CoV-2 protein to produce a second-generation vaccine variant [30]. Encapsulation of genetic matter in lipid nanoparticles allows protection from enzymatic degradation while increasing cellular uptake. Moderna (Patent WO2017070626 and WO2018115527), the very first mRNA-based nanovaccine, encapsulates an mRNA mix into lipid nanoparticles, such that it could encode MERS-CoV S protein in mice to elicit an immune response. Novavax Inc. developed a recombinant SARS-CoV-2 vaccine with mutations at different sites in S protein to protect it from cleavage and to maintain the previrulence stage configuration. The NVX-CoV2373 is presently in Phase III of clinical trials. In addition to the commonly targeted S protein, a mix of proteins, such as nucleoproteins and nonstructural antigens, also make good candidates for vaccine production [41,53]. The Epivax works on this concept of a ‘cocktail’ vaccine that aims to provide partial protection against the SARS-CoV-2, whereas the specific vaccines are underway. In another such effort, Matrix-M adjuvant improves immunological response by stimulating the antigen-presenting cells at the injection site. Different immunomodulatory therapies are prevalent to induce passive immunity, neutralizing antibodies, or convalescent plasma to mankind to achieve mass immunization against the SARS-CoV-2 [29,30,41]. However, the critical needs of more effective vaccine against all COVID-19 variants, understating immune parameters governing the host and precluding any adverse reactions, is still required. Careful observation and more clinical studies are needed to develop widely acceptable antiviral nanovaccine.

Challenges, viewpoint, and future aspects

We anticipate more approvals by FDA to antiviral/bacterial NS for managing COVID-19 or other infections via trapping and neutralizing, thus effectively eradicating existing VOCs. The existing NS are smart,
affordable, acceptable, and have shown the potential (i) as a protective agent in forms of surface coverings, membranes, masks, and gloves, (ii) for enhancing drug efficacy by increasing the retention, bio-circulation, and bio-availability of drug, targeted delivery (i.e., nano-medicine toward personalized treatment), and (iii) as an efficient biosensor for early-stage diagnostics suitable for POC application. Overall, these approaches could be considered as an intelligent COVID-19 management in a personalized manner. However, such NS are limited, and scaling up must be a future direction owing to the significance of demonstrated applications. Advanced techniques including microfluidics, cold plasma, and supercritical formulation methodologies could also be explored for the rapid fabrication of such nanoformulations. Furthermore, engineered lipid-based nanoformulation would be largely exploited in the recent future in biomedicines, antiviral/antibacterial, and coating technologies with possible biomodifications using proteins or other biodegradable plant-based macromolecules.

In this unprecedented scenario of the COVID-19 pandemic, avoiding SARS-CoV-2 transmission is a top priority, as new VOCs and VOIs have emerged with rapid transmission and severity. Additionally, the airborne and particulate-assisted transmission of SARS-CoV-2 is detrimental. This raised concerns and projected the need of developing new approaches such as NS-assisted antiviral/antibacterial devices for protection against infection. We believe that using these NS in filter technology, air conditioners, exhaust, masks, hydrophobic coverings, sheets, clothes, and in other forms of disinfectant would be revolutionary. This approach may not seem fully functional owing to limited resources and lack of execution, but the potential of NS in improving these strategies cannot be ruled out. Table 1 highlights few of the many NS which have been proved to be highly efficient against pandemic situations. However, there are several challenges to overcome which include the high cost of specific biomarkers, storage infrastructures, and skilled personals to improve nanomedicines implication at various stages for example from laboratory to home.

The spread of nanobiotechnology tools and techniques improving our lives is undoubtedly fascinating. However, efficient drug packaging in nanovesicles/nanopores or simply on their surfaces and prolonged retention in the tissues are still to be perfected for large-scale production/population. In this regard, protein-based nano-emulsions which can simultaneously neutralize SARS-CoV-2 and deliver essential drug molecules could be one of the alternatives. Due to similarity with cancer, viral infection showing severe heterogeneity due to a certain degree of mutation over alternating physiological parameters thereby emphasizing the need for personalized nanomedicine. The possibilities of sensing platform failure due to fundamental alteration on recognition sites of SARS-CoV-2 structure is an additional roadblock. To overcome selective sensing related concerns, developing alternative approaches such as smart artificial intelligence (AI) driven nanosensors would be suitable for early-stage selective diagnostic of infection associated with new SARS-CoV-2 variants. Besides, re-evaluating the state-of-art, treatments, and neutralizing capabilities is required to overcome the severity of SARS-CoV-2 VOCs to combat COVID-19 infections globally.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

S.No.	Platform	Inhibition activity/functionality	Ref.
1.	Plasmonic gold nanoparticles	Naked-Eye Detection of SARS-CoV-2	[28]
2.	Functionalized gold nanoparticles	Limit of detection as 0.18 ng/μL	[13]
3.	Silver nanocluster/silica composite coatings	Femto molar detection with ultranarrow line shapes in the terahertz (THz) frequencies	[16]
4.	Lipid nanoparticles	Virucidal effect on SARS-CoV-2, flexible ceramic with practical applications	[30]
5.	Carbon quantum dots	Immunization response against pseudotyped and wild-type SARS-CoV-2 virus	[33]
6.	Electrosyn nanoparticles, ZnO Nanorods and Ag Nanoparticles	Inactivation of CoV strain through inhibition of protein S–receptor interaction	[39]
7.	Nanostructure substrate (cellular nanosponges)	Antibacterial, antiviral, self-cleaning, and sensing mats for clothing applications	[45]
Acknowledgements
The authors acknowledge respective departments and institutions for providing facilities and support.

References
Papers of particular interest, published within the period of review, have been highlighted as:
* of special interest
** of outstanding interest

1. Palivalw P, Sargolzaei S, Bhardwaj SK, Bhardwaj V, Dixit C, ** Kaushik A: Grand challenges in bio-nanotechnology to manage the COVID-19 pandemic. Front. Nanotechnol. 2020, 2. https://doi.org/10.3389/fnano.2020.571294.
2. Varahachalam SP, Lahooti B, Chamanesh M, Bagchi S, ** Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A: Nanomaterials for the SARS-CoV-2: state-of-the-art and future prospects. Int J Nanomed 2021, 16:590–560. https://doi.org/10.2147/IJN.S283686.
3. Sharma PK, Kim ES, Mishra S, Garbod E, Seong RS, ** Kaushik AK, Kim NY: Ultrasensitive and Reusable Graphene Oxide-Modified Double-Interdigitated Capacitive (DIDC) Sensing Chip for Detecting SARS-CoV-2. ACS Sens. 2021, 6: 3468–3476. https://doi.org/10.1021/acsensors.1c01437.
4. Kaushik A: Manipulative magnetic nanomaterials: the future of COVID-19 pandemic/endemic therapy. Expert Opin Drug Deliv 2020. https://doi.org/10.1080/17425247.2021.1860938.
5. WHO report on the novel coronavirus (SARS-CoV-2) and the disease it causes COVID-19 [Internet]. WHO; 2020 [Cited 2021 May 7]. Available from: http://www.who.int/docs/default-source/sars/coronavirus-with-factsheet.pdf?
6. Gupta RK: Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol. 2021:1–2. https://doi.org/10.1038/s41577-021-00556-5.
7. Hoffmann M, Arora P, Groß R, Seidel A, Höhnich BF, Hahn AS, Krüger N, Grächen L, Hofmann-Winkler H, Kempf A, Winkler MS, Schultz S, Jack HM, Jahnstädter DL, Schrezenmeier H, Müller M, Kieger A, Münch J, Pöhllmann S: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021, 184: 2384–2393. https://doi.org/10.1016/j.cell.2021.03.036.
8. Article explores new SARS-CoV-2 variants and related health consequences.
9. Abdoll Karim SS, de Oliveira T: New SARS-CoV-2 variants — clinical, public health, and vaccine implications. N Engl J Med 2021, 384:1866–1868. https://doi.org/10.1056/nejmc2100362.
10. Article exploring impact of SARS-CoV-2 variants on public health.
11. Yamamoto V, Bolanos JF, Fiallos J, Strand SE, Morris K, Shahrokhiha S, Cushing TR, Hopp L, Tiwari A, Harini R, Sokolov R, Wheeler C, Kaushik A, Elsayegh A, Eliaishv D, Hedrick R, Jafari B, Johnson JP, Khorsand M, Gonzalez N, Balakhani G, Lahini S, Ghasvilde K, Amaya M, Kloor H, Hussain N, Huang E, Cormier J, Wesson Ashford J, Wang JC, Yaghobian S, Khrami P, Shamlo B, Moon C, Shadi P, Kateb B: COVID-19: review of a 21st century pandemic from etiology to neuro-psychiatric implications. J Alzheim Dis 2020, 77. https://doi.org/10.3233/JAD-200831.
12. Article explores the emergence of SARS-CoV-2 and strategies to manage it effectively.
13. Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A: ** Biosensors for epilepsy management: state-of-art and future aspects. Sensors 2019, 19. https://doi.org/10.3390/s19071525.
14. Ghosal A, Ahmad S: High performance anti-corrosive epoxy-titania hybrid nanocomposite coatings. New J Chem. 2017, 41: 4599–4610. https://doi.org/10.1039/c6nj03090e.
15. Article explores the role of coating.
16. Zafar F, Khan S, Ghosal A, Azam M, Sharmin E, Rizwanul Haq QM, Nishat N: Clean synthesis and characterization of green nanostructured polymeric thin films from endogenous Mg (II) ions coordinated methylolated-Cashew nutshell liquid. J Clean Prod 2019, 238:117716. https://doi.org/10.1016/j.jclepro.2019.117716.
17. Article explores the role of green nanotechnology to develop efficient nanosystem.
18. Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, ** Manickam P, Ghorashi SA: Functionalized terahertz plasmonic metasensors: femtometer-level detection of SARS-CoV-2 spike proteins. Biosens Bioelectron 2021, 177. https://doi.org/10.1016/j.bios.2021.112971.
19. Article reports a magneto-plasmonic biosensor to detect SARS-CoV-2 at fm.
20. Bidram E, Esmaeili Y, Amini AM, Sartorius R, Tay FR, Shariati L, ** Makvandi P: Nanobased platforms for diagnosis and treatment of COVID-19: from benchtop to bedside. ACS Biomater Sci Eng 2021, 7. https://doi.org/10.1021/acsbiomaterials.1c00318.
21. Article explores the role nanotechnology to manage COVID-19 infection.
22. Kouhpayeh S, Shariati L, Booshtam M, Rahimmanesh I, Mirani M, ** Esmaeili Y, Najafi M, Khamanad N, Zenaialn M, Trovato M, Tay FR, Khamahmad H, Makvandi P: The molecular basis of covid-19 pathogenesis, conventional and nanomedicine therapy. Int J Mol Sci 2021, 22. https://doi.org/10.3390/ijms2115438.
23. Article explores the pathogenesis of SARS-CoV-2 infection.
24. Balaica C, Perero S, Perovilla E, Nepita EV, Ferraris M: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram 2020, 1. https://doi.org/10.1016/j.oceceram.2020.100006.
25. Article explores the role of Ag nanosystems to neutralize or eradicate SARS-CoV-2.
26. Sadique MA, Yadav S, Ranjan P, Verma S, Shabi T, Khan MA, ** Kaushik AK, Khan R: High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as model case study. J Mater Chem B 2021. https://doi.org/10.1039/d1tb00472g.
27. Article explore the role antiviral nanosystem to manage COVID-19 infection.
28. Yalcin HC, Kaushik A: Support of intelligent emergent materials to combat COVID-19 pandemic. Emergent Mater 2021, 4. https://doi.org/10.1039/s42247-021-00189-3.
29. This article summarize the role of functional nano platforms investigated for managing SARS-CoV-2.
30. Hou X, Zaks T, Langer R, Dong Y: Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021. https://doi.org/10.1038/s41578-021-00358-0.
31. This article presents lipid nanoparticle for mRNA delivery.
32. VahediFard F, Chakravarty K: Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 2021, 4. https://doi.org/10.1039/s42247-021-00168-8.
33. This article presented the role of nanomedicine to manage COVID-19 infection.
34. Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, ** Banothu AK, Chhabra D, Joshi K, Bharani KK: High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as model case study. J Mater Chem B 2021. https://doi.org/10.1039/d1tb00472g.
35. This article presents lipid nanoparticle for mRNA delivery.
36. VahediFard F, Chakravarty K: Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 2021, 4. https://doi.org/10.1039/s42247-021-00189-3.
37. This article summarizes the role of functional nanoplatforms for managing SARS-CoV-2.
38. Hou X, Zaks T, Langer R, Dong Y: Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021. https://doi.org/10.1038/s41578-021-00358-0.
39. This article presents lipid nanoparticle for mRNA delivery.
40. VahediFard F, Chakravarty K: Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 2021, 4. https://doi.org/10.1039/s42247-021-00168-8.
41. This article presented the role of nanomedicine to manage COVID-19 infection.
42. Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, ** Banothu AK, Chhabra D, Joshi K, Bharani KK: Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021, 38. https://doi.org/10.1016/j.jnandot.2021.101142.
43. This article presents functional nanomaterials for COVID-19 infection management.
44. Nel AE, Miller JF: Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and innate escape. ACS Nano 2021, 15. https://doi.org/10.1021/acsnano.1c01845.
45. This article presents nano-supported COVID-19 vaccines.
This article resented the role efficient sensing system to manage COVID-19 infection in personalized manner.

24. Qi G, Gai Z, Tao Y, Schmitt J, Kulkarni U-Blick GC, Wang J: Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14:5268–5277. https://doi.org/10.1021/acsnano.0c02439.

This article reports fabrication of photo thermal dual property based biosensor to detect SARS-CoV-2.

25. Yoon BK, Jeon WY, Sut TN, Cho NJ, Jackman JA: Stopping membranes: membrane-repaired viruses with nanotechnology strategies: toward antiviral drug development and pandemic preparedness. ACS Nano 2021, 15:125–148. https://doi.org/10.1021/acsnano.0c07489.

This article explores the nanomaterials - based membrane to develop antiviral drug development.

26. Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kurtitzkes RE, Langer R, Von Andrian U, Farokhzad OC: Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 2010, 5:293–295. https://doi.org/10.2217/nmn.10.1.

This article explore nanomedicine to manage HIV/AIDS.

27. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M: Antiviral activity of myco-synthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 2013, 8:4303–4314. https://doi.org/10.2147/IJNN.S50070.

This article explore antiviral properties of Ag nanoparticles.

28. Moitra P, Aalaeef M, Aalaeef M, Dighie K, Frieman MB, Pan D, Pan D, Pan D: Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020, 14. https://doi.org/10.1021/acsnano.0c03822.

This article explore a nanosensor to detect SARS-CoV-2 based on DNA as a recognizing biomolecule.

29. Campos EVR, Pereira AES, De Oliveira JL, Carvalho LB, Guliger-Caagrande M, De Lima R, Francisco F: How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnol 2020, 18. https://doi.org/10.1186/s12951-020-00685-4.

This article explore the possibilities of nanotechnology to manage COVID-19 infection.

30. McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Ł, Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, Von Andrian U, Farokhzad OC: Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 2010, 5:293–295. https://doi.org/10.2217/nmn.10.1.

This article presents nanoparticles based disinfectants to eradicate COVID-19 infection.

31. Pandhi S, Mahato DK, Kumar A: Overview of green nanofabrication technologies for food quality and safety applications. Food Rev Int 2021. https://doi.org/10.1080/1049885X.2021.1902654.

32. Machini J, Shafighi F, Das S, Patel M, Abdelmosty MM, Cohen JD, Singh PA, Bajwa J, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gandelman HE, Kevadiya BD: Nano carriers for COVID-19. Adv Drug Deliv Rev 2021, 171. https://doi.org/10.1016/j.addr.2021.01.002.

This article explore nanocarrier to delivery vaccine to manage SARS-CoV-2 infection.

33. Loczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen YT, Metzler-Nolte N, Boukherroub R, Dubuisson J, Sznurertis S, Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces 2019, 11:42964–42974. https://doi.org/10.1021/acsami.9b15032.

This article explore the role of carbon quantum dots to manage coronavirus infection.

34. Baram-Pinto D, Shukla S, Gedanken A, Sarid R: Inhibition of * HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 2010, 6. https://doi.org/10.1002/sml.200902384.

This article explores the role of inanimate surfaces to control SARS-CoV-2 infection progression.

35. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Nix W, Griffiths A, de Wit E, Munster VJ: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020, 382. https://doi.org/10.1056/nejmc2004975.

This article explores the role of aerosol considering the situation of SARS-CoV-2 infection as air born.

36. Karagöz S, Burak Kiremitler N, Sarp G, Pekdemir S, Salem S, Goksu AG, Serdar Onses M, Sozdutizz M, Sahmettligu E, Ozkara ES, Ceylan A, Yilmaz E: Antibacterial, antiviral, and self-cleaning mats with sensing capabilities based on electropun nanofibers. Nanotechnology 2020, 31:405305. https://doi.org/10.1088/1361-6528/ab9ae0.

This article explores the role of functionalized ZnO and Ag nanoparticles as a protective systems.

37. Kumar S, Karmacharya M, Joshi SR, Gulenko O, Park J, Kim GH, Cho YK: Photocatalytic antimicrobial face mask with self-sterilization and reusability. Nano Lett 2021, 21. https://doi.org/10.1021/acs.nanolett.1c01715.

This article presented nanoparticle modified mask as a potential tool to avoid human to human SARS-CoV-2 transmission.

38. Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J: Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 2020, 15. https://doi.org/10.1038/s41565-020-0751-0.

This article presents nanoparticles based disinfectants to eradicate SARS-CoV-2.

39. Gage A, Brunson K, Morris K, Wallen SL, Dhu J, Gohel H, Kaushik A: Perspectives of manipulative and high-performance nanosystems to manage consequences of emerging new severe acute respiratory syndrome coronavirus 2 variants. Front Nanotechnol 2021, 3. https://doi.org/10.3389/fnano.2021.700888.

This article explores high-performance nanosystems investigated to manage SARS-CoV-2 infection.

40. LIGC Application | Graphene-Info, (n.d.). https://www.graphene-info.com/ligc-application (accessed May 30, 2021).

This article presents various graphene-supported mask investigated for COVID-19 management.

41. Zhang Q, Honko A, Zhou J, Gong H, Downs SN, Vasquez JH, Fang RH, Gao W, Griffiths A, Zhang L: Cellular nanospheres inhibit SARS-CoV-2 infection. Nano Lett 2020, 20. https://doi.org/10.1021/acs.nanolett.0c02278.
This article explores nanosponges as SARS-CoV-2 inhibitors.

46. Zangmeister CD, Radney JG, Vicenzi EP, Weaver JL: Filtration efficiencies of nanoscale Aerosol by cloth mask materials used to slow the spread of SARS-CoV-2. ACS Nano 2020, 14. https://doi.org/10.1021/acs.nano.0c05025.

This article exploring the efficiencies of masks developed to control aerosol based virus transmission.

47. Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S: Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 2020, 14. https://doi.org/10.1021/acs.nano.0c03252.

This article explore the role of fabrics based mask developed for SARS-CoV1 viral infection transmission.

48. Ghosal A, Iqbal S, Ahmad S: NiO nanofiller dispersed hybrid Soy epoxy anticorrosive coatings. Prog Org Coat 2019, 133:61–76. https://doi.org/10.1016/j.porgcoat.2019.04.029.

This article explore the role of NiO as an efficient coating materials.

49. Ferraris S, Perozo S, Miola M, Vernè E, Rosiello A, Ferrazzo V, Valletta G, Sanchez J, Ohrlander M, Tjörnhammar S, Fokine M, Laurell F, Blomberg E, Skoglund S, Odneval Wallinder I, Ferraris M: Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications. Appl Surf Sci 2014, 317. https://doi.org/10.1016/j.apsusc.2014.07.196.

This article explores the role of Ag nanostructures for advanced applications.

50. Vaze N, Pyrgiotakis G, McDevitt J, Menas L, Melo A, Bedugnis A, Kobzik L, Eleftheriadou M, Demokritou P: Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomed Nanotechnol Biol Med 2019, 18. https://doi.org/10.1016/j.nano.2019.03.003.

This article explores the role of nano-sensitizers to control hospital acquired infection.

51. NanoSeptic Continuously Self-Cleaning Surfaces, (n.d.). https://nanotouch.com/(accessed May 30, 2021).

52. Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim NY, Goswami DY: Electrochemical SARS-CoV-2 sensing at point-of-care and artificial intelligence for intelligent COVID-19 management. ACS Appl. Bio Mater. 2020. https://doi.org/10.1021/acsabm.0c01004.

This article explore the role of nanosensors in support for artificial intelligence for intelligent health wellness.

53. Chen F, Alphonse M, Liu Q: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2020, 12. https://doi.org/10.1002/wnan.1609.

This article explore the efficient drug delivery strategies based on CRISPR/Cas9.