The path to microRNA therapeutics in psychiatric and neurodegenerative disorders

Anthony Chan, Emory University
Jannet Kocerha, Yerkes National Primate Research Center

Journal Title: Frontiers in Genetics
Volume: Volume 3, Number 82
Publisher: Frontiers Research Foundation | 2012-05-17, Pages 1-10
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3389/fgene.2012.00082
Permanent URL: http://pid.emory.edu/ark:/25593/d947d

Final published version: http://www.frontiersin.org/Non-Coding_RNA/10.3389/fgene.2012.00082/abstract

Copyright information:
© 2012 Chan and Kocerha
This is an Open Access work distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/).

Accessed June 22, 2020 2:26 PM EDT
The path to microRNA therapeutics in psychiatric and neurodegenerative disorders

Anthony W. S. Chan1,2 and Jannet Kocerha1,2*

1 Yerkes National Primate Research Center, Atlanta, GA, USA
2 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA

INTRODUCTION
The multi-functional role of RNA as a molecular regulator spans a broad range of classifications as protein-coding and non-protein coding RNA transcripts. Notably, the microRNA (miRNA) class of non-coding RNAs have been implicated in a vast majority of the established signaling cascades (Bartel, 2009). Brain-localized miRNAs are of particular interest for neurological diseases which have a complex etiology and no currently effective therapeutic options. The transcriptomic targets of an miRNA can encompass numerous cellular pathways, consistent with the extensive molecular disruption linked to neurological disease onset. In this review, we discuss how various model systems can be integrated into the translation of miRNAs as novel clinical targets in the treatment of neuropsychiatric and neurodegenerative disorders.

CONSERVED ROLE OF NEURONAL miRNAs
The conserved role of miRNAs in neuronal functions underscores their relevance in the molecular dynamics between normal and pathogenic mechanisms. Indeed, Drosophila, rodents, monkeys, and humans have all shown significant sensitivity to microRNA modulation (Jin et al., 2004; Ashraf et al., 2006; Elmen et al., 2008; Hollander et al., 2010). Notably, some core components of the miRNA processing machinery, guided by the RNA-induced silencing complex (RISC), are shared between lower vertebrates and primates, such as the Argonaute-interacting proteins, GW182 and primates, such as the Argonaute-interacting proteins, GW182

The microRNA (miRNA) class of non-coding RNAs exhibit a diverse range of regulatory roles in neuronal functions that are conserved from lower vertebrates to primates. Disruption of miRNA expression has compellingly been linked to pathogenesis in neuropsychiatric and neurodegenerative disorders, such as schizophrenia, Alzheimer’s disease, and autism. The list of transcript targets governed by a single miRNA provide a molecular paradigm applicable for therapeutic intervention. Indeed, reports have shown that specific manipulation of a miRNA in cell or animal models can significantly alter phenotypes linked with neurological disease. Here, we review how a diverse range of biological systems, including Drosophila, rodents, and primates such as monkeys and humans, can be integrated into the translation of miRNAs as novel clinical targets.

miRNA REGULATION IN NEUROPSYCHIATRIC AND NEURODEGENERATIVE DISORDERS
In the past few years, an extensive list of published reports have emerged to support a significant role for miRNAs in the pathogenesis of psychiatric and neurodegenerative disease (Bilen et al., 2006; Lukiw, 2007; Hebert et al., 2008, 2009; Li et al., 2008, 2011; Wang et al., 2009, 2010, 2011; Beveridge et al., 2010; Nelson and Wang, 2010; Nunez-Iglesias et al., 2010; Shioya et al., 2010; Chandrasekar and Dreyer, 2011; Kocerha et al., 2011; Lee et al., 2011; Santarelli et al., 2011; Smith et al., 2011; Liu et al., 2012b). The pathogenic mechanisms underlying the development of psychiatric deficits and neurodegeneration are not always distinct, suggesting they may be ideally suited for therapeutic targeting by pleiotropic miRNAs. Reports have shown that the precursor and mature miRNA transcripts as well as the precursor miRNA processing machinery itself, such as Drosha and Dicer, are all subject to disruption with neurological disease progression (Sun et al., 2009; Beveridge et al., 2010; Babiarz et al., 2011; Fenelon et al., 2011; Schofield et al., 2011). Notably, the miRNA-linked pathology can be provoked through either genetic or non-genetic (sporadic) anomalies (Rademakers et al., 2008; Kocerha et al., 2011).

Schizophrenia, autism, Fragile X syndrome, depression, addiction, and anxiety are a few examples of psychiatric diagnoses where...
altered miRNA profiles have been identified, and a summary of the
dysregulated miRNAs and the biological source they were profiled
from are outlined in Table 1 (Jin et al., 2004; Abu-Elneel et al.,
2008; Li et al., 2008; Pietrzykowski et al., 2008; Hunsberger et al.,
2009; Yang et al., 2009; Zhou et al., 2009; Zhu et al., 2009;
Beveridge et al., 2010; Hollander et al., 2010; Im et al., 2010; Sarachana et al.,
2010; Saus et al., 2010; Xu et al., 2010a; Baudry et al., 2011a; Efipper-Mains et al., 2011;
Ghahramani Seno et al., 2011; Haramati et al., 2011; Mouillet-Richard et al., 2011;
O’Connor et al., 2011; Shaltiel et al., 2012). In schizophrenia, miRNA profiling has now
been completed in several patient populations, primarily focused
within the cortex (Perkins et al., 2007; Beveridge et al., 2010; Kim
et al., 2010; Moreau et al., 2011; Santarelli et al., 2011). Although
a majority of the miRNA profiling studies for neurological dis-
ease have been performed from brain, miRNA dysregulation has
also been observed in other sources such as cerebral spinal fluid
(CSF), plasma, serum, and peripheral blood (Schipper et al., 2007;
Cogswell et al., 2008; Gardiner et al., 2011; Ghidoni et al., 2011;
Lai et al., 2011). Beveridge and Cairns (2011) recently reviewed the
various studies to compare and contrast the collection of miRNA
results in schizophrenia. Interestingly, a few of the miRNA fami-
lies, including the miR-15 and miR-30 families, have consistently
shown disruption in several of the population analyses (Beveridge
and Cairns, 2011). We examined the bioinformatic mRNA tar-
gets of miR-15 and miR-30 with Targetscan and found several
mRNAs which are strongly linked with schizophrenia, includ-
ing neuregulin and synaptotagmin (Kim et al., 2007; Kao et al.,
2010).

Psychiatric symptoms can also co-exist in patients with neu-
rodegenerative pathology, such as Huntington’s disease (HD),
Frontotemporal dementia (FTD), Alzheimer’s disease (AD),
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS),

Table 1	miRNAs associated with neuropsychiatric disease.		
Disease	**Associated miRNAs**	**Biological profiling source**	**Reference**
Schizophrenia	106b, 107, 128a, 134, 150, 15a, 15b, 16, 17, 181a, 181b, 195, 199a*, 19a, 20a, 20b, 212, 219, 24, 25, 26b, 27a, 29a, 29b, 30a-5p, 30b, 30d, 32b, 346, 382, 487a, 9-3p, 92, let-7d, let-7e, 652, 7	Human cortex (temporal and prefrontal)	Beveridge et al. (2008, 2010), Zhu et al. (2009), Perkins et al. (2007), Santarelli et al. (2011)
Schizophrenia	137, 30a, 30e, 34a, 449a, 564, 432, 548d, 572, 652	Cortex from mouse model of schizophrenia	Kocerha et al. (2009)
Schizophrenia	106b, 132a, 132b, 133b, 138, 140-3p, 145a, 145b, 148b, 151, 154a*, 15a, 181a, 186, 190, 192, 193a, 193b, 210	Human genomic DNA	Ripke et al. (2011), Xu et al. (2010a)
Schizophrenia	212, 22*, 22, 27b, 29a, 301, 32, 324-3p, 33, 330, 338, 339, 34a, 425, 454*, 504, 520c-3p, 544, 545, 573, 639, 7, 767-5p, 874, 889, 99a	Human blood	Xu et al. (2010a), Lai et al. (2011)
Schizophrenia	103, 106b, 107, 10a, 125b, 132, 133b, 136, 139, 148b, 153-1, 16-2, 182-AS, 185, 186, 189, 190, 191, 194, 195, 196a, 199a-5p, 199b, 199b-5p, 205, 211, 219, 23a, 23b, 25, 29b, 30c, 326, 338-3p, 346, 367, 376a-AS, 451, 455, 455-3p, 486-3p, 486-5p, 495, 518a, 519c, 520b, 524, 577, 650, 93	Lymphoblastoid cell lines	Sarachana et al. (2010), Ghahramani Seno et al. (2011)
Autism	106a, 106b, 128, 129, 132, 140, 146b, 148b, 15a, 15b, 181d, 193b, 21, 212, 23a, 27a, 320a, 381, 431, 432, 484, 539, 550, 596, 652, 7, 93, 95	Human cerebellum	Abu-Elneel et al. (2008)
Depression	16, 82, 30a, 101a, 10a, 130a, 137, 142-3p, 142-5p, 146a, 148b, 155, 190, 20a, 20b, 27a, 301a, 324-5p, 335, 376a*, 489, 494, 497, 660	Mouse serotonergic raphe nuclei, Human genomic DNA (blood), Human prefrontal cortex	Baudry et al. (2011a,b), Saus et al. (2010), Xu et al. (2010b), Smalheiser et al. (2012)
Addiction	212, 122, 124, let-7d, 181a, 103, 125b-5p, 127, 138, 181a, 24, 26a, 29a, 29b, 30a, 30c, 30d, 30e, 7a, 7b, 7c, 7c, 9, let-7a, let-7f, let-7g, 9	Brain tissue from rat cocaine addiction model, Brain tissue from mouse cocaine addiction model, Striatal neuronal cultures for model of alcohol exposure	Hollander et al. (2010), Chandrasekar and Dreyer (2011), Eipper-Mains et al. (2011), Pietrzykowski et al. (2008)
Anxiety	132, 34	Brain tissue from mouse model of anxiety	Shaltiel et al. (2012), Haramati et al. (2011)
A selection of cell and animal models have been engaged in the AD (Cogswell et al., 2008), and progressive supranuclear palsy associated behavioral phenotype (Kocerha et al., 2009). Likewise, clinical trials. Our group examined the regulation of miRNAs tetrahydropyridine; MPTP) for Parkinson's disease (PD) was used knock-out and knock-in mice have also been valuable in vivo. 2011; Li et al., 2011). Animal studies are a critical step in neurological disease. Cell lines, primary cell cultures, differentiated neurons, and induced pluripotent stem (iPS) cells are a few of the resources (Lee et al., 2011; Tao et al., 2011). Indeed, transgenic expression of the AD-causative amyloid precursor protein (APP) gene in mice provoked significant disruption in neuronal miRNA expression (Schonrock et al., 2010).

In addition to mice, rats as well as zebrafish and other vertebrate species have been integral in the study of neuronal miRNA pathways prior to testing in primate models (Yang et al., 2011; Tal et al., 2012). Indeed, recent reports identified miRNAs in zebrafish directly linked to neurobehavioral responses and neuronal differentiation (Tal et al., 2012). The exploration of miRNAs which regulate central nervous system functions, however, is not limited to vertebrate species. Drosophila, an invertebrate model, have been widely used for many years to examine or further define molecular mechanisms. Moreover, studies in Drosophila recently revealed that the conserved miRNA miR-34 mediates aging and neurodegenerative processes (Liu et al., 2012a), further substantiating that all biological models are applicable in the investigation of non-coding RNAs. Additionally, as each miRNA may regulate a number of transcripts and therefore off-target effects may result when altered, animal and cell models may help to filter out those candidates.

PRIMATE MODELS AND miRNA PRE-CLINICAL EVALUATION

Arguably, a principal goal in the field of non-coding RNAs, including miRNAs, is to uncover transcripts which can ultimately lead to advancements in human health. Correspondingly, there are numerous studies which have profiled miRNA expression from humans with and without a disease diagnosis. Although some of those reports have focused on peripheral tissues, a subset of those analyses have specifically examined miRNA transcripts in distinct brain regions (Hebert et al., 2008; Kocerha et al., 2011; Santarelli et al., 2011). Genome-wide association (GWAS) studies and microarray profiling have both been used to identify miRNAs which are potential disease risk factors for neurodegenerative and psychiatric disorders (Rademakers et al., 2008; Hollander et al., 2010; Kocerha et al., 2011; Richardson et al., 2011; Ripke et al., 2011). Furthermore, there can be disruption of a cluster or multiple members within an miRNA family, such as with miR-29. In brain tissue from a cohort of Alzheimer's patients, miR-29a and miR-29b expression were both significantly repressed in patients with increased levels of beta-secretase/ BACE1 (Hebert et al., 2008). BACE1 is a direct mRNA target for the miR-29 family and has consistently been linked to AD pathology. Therefore, correlation of expression for a miRNA and its targets in the transcriptome, as well as identification of disruption in miRNA families, can all contribute to effective discovery of new treatment alternatives for diagnosed patients.

The brain structure and related functions of humans and monkeys are strikingly similar (King and Wilson, 1975; McConkey and Variki, 2000; Paabo, 2001; Perkins et al., 2010; de Araujo et al., 2012), suggesting that monkeys are a relevant primate model for pre-clinical investigation of miRNAs in neurological dysfunction. Notably, certain key cell types in the brain linked to disease pathology, such as mirror neuron disruption in autism (Perkins et al., 2010), are primarily specific to primate physiology. Moreover, there is extensive conservation in miRNAs between primates, including those which are localized in the central nervous system all of which have shown miRNA disruption and is summarized in Table 2 (Wang et al., 2000; Hebert et al., 2008; Packer et al., 2008; Hebert and De Strooper, 2009; Williams et al., 2009; Haramati et al., 2010; Jiao et al., 2010; Lau and de Strooper, 2010; Buckley and Johnson, 2011; Gaughwin et al., 2011; Kocerha et al., 2011; Lee et al., 2011; Martins et al., 2011; Minones-Moyano et al., 2011; Smith et al., 2011; Enciu et al., 2012; Mouradian, 2012). A pivotal role for miRNAs in neurodegenerative disease is further supported by numerous reports linking miRNAs with neurogenesis and neurodegenerative signaling cascades, and thus, overall neuronal density (Patel et al., 2008; Boissonneault et al., 2009; Gao, 2010; Magill et al., 2010; Schonrock et al., 2010; Shi et al., 2010; Cho et al., 2011; Shibata et al., 2011; Tao et al., 2011; Han et al., 2012; Persengiev et al., 2012). Some miRNAs, such as miR-132, have been shown to be dysregulated in both psychiatric and neurodegenerative disease. miR-132 has been linked with schizophrenia (Perkins et al., 2007; Kim et al., 2010), addiction (Hollander and Holland, 2010), HD (Lee et al., 2011), AD (Cossedge et al., 2008), and progressive supranuclear palsy (PSP; Smith et al., 2011). Indeed, the wide range of neurological diseases in which miR-132 is disrupted is consistent with its principal role in neuronal plasticity and related functions (Magill et al., 2010; Remenyi et al., 2010; Mellios et al., 2011; Shaltiel et al., 2012).

NON-PRIMATE MODELS AND miRNA THERAPEUTIC DISCOVERY

A selection of cell and animal models have been engaged in the preliminary search for miRNAs with clinical relevance for neurological disease. Cell lines, primary cell cultures, differentiated neurons, and induced pluripotent stem (iPS) cells are a few of the platforms that have effectively been utilized for in vitro analyses (Cole et al., 2008; Agostini et al., 2011; Arias-Carrion and Salama, 2011; Kim et al., 2011; Saba et al., 2012). Indeed, cell-based systems have led to successful large-scale screening studies as well as in-depth molecular analysis of functional miRNAs (Vo et al., 2005; Cole et al., 2008; Connelly et al., 2012). For example, the discovery that neuronally enriched miR-132 is regulated by cAMP-response element binding protein (CREB) was initiated through a genome-wide screen in rat PC12 neuronal cells (Vo et al., 2005). Not all miRNAs will have a functional biological role, however, cell-based screens can facilitate the identification of promising candidates.

In parallel with the in vitro findings, studies in non-primate animal models have significantly advanced our understanding of miRNA biology in psychiatric and neurodegenerative disorders (Kocerha et al., 2009; Hollander et al., 2010; Lee et al., 2011; Li et al., 2011). Animal studies are a critical step in the progression toward testing of miRNA-based therapeutics in clinical trials. Our group examined the regulation of miRNAs in mice with pharmacological induction of a schizophrenia-associated behavioral phenotype (Kocerha et al., 2009). Likewise, a neurotoxin induced mouse model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP) for Parkinson's disease (PD) was used to uncover a role for miR-7 in PD pathology (Junn et al., 2009). In addition to pharmacologically treated animal models, transgenic, knock-out and knock-in mice have also been valuable in vivo keys are strikingly similar (King and Wilson, 1975; McConkey and Variki, 2000; Paabo, 2001; Perkins et al., 2010; de Araujo et al., 2012), suggesting that monkeys are a relevant primate model for pre-clinical investigation of miRNAs in neurological dysfunction. Notably, certain key cell types in the brain linked to disease pathology, such as mirror neuron disruption in autism (Perkins et al., 2010), are primarily specific to primate physiology. Moreover, there is extensive conservation in miRNAs between primates, including those which are localized in the central nervous system.
Disease	Associated miRNAs	Biological profiling source	Reference
Huntington’s disease (HD)	100, 125b, 127-3p, 135a, 135b, 138, 145, 146, 146a, 148a, 150, 181c, 190, 199a-3p, 199a-5p, 200a, 205, 214, 218, 221, 222, 335, 339-3p, 9*, 9 34b 1-1, 124a, 128, 132, 133a, 135b, 138, 203, 204, 21, 218, 22, 222, 29a, 29b-1, 29c, 330, 344, 346, 674*, 9-1, 9-3 100, 151, 16, 219-2-3p, 27b, 451, 92a, 128, 139-3p, 222, 382, 433, 485-3p, 9, 9*, 29b, 124a, 132	Human plasma, Brain tissue from transgenic HD mice, Human brain regions	Ghose et al. (2011), Sinha et al. (2010), Lee et al. (2011), Johnson et al. (2008), Marti et al. (2010), Packer et al. (2008)
Frontotemporal dementia (FTLD)	922, 516a-3p, 571, 548b-5p, 548c-5p	Human cortex and cerebellum	Kocerha et al. (2011)
		Cell cultures	Wang et al. (2010), Jiao et al. (2010)
		Human genomic DNA	Rademakers et al. (2008)
Parkinson’s disease (PD)	1, 126*, 126, 147, 151-3p, 151-5p, 16-2*, 199a-3p, 19b, 22*, 26a, 26a*, 28-5p, 29a, 29b, 29c, 301a, 30a, 30b, 30c, 335, 374a, 374b 34b, 34c, 133b 50, 83, 57, 238, 1, 48, 65, 64, 80, 84, let-7, 236, 51, 241, 230, 10a, 10b, 212, 132, 495 let-7, 184*	Human blood	Martins et al. (2011), Margis and Rieder. (2011)
Amyotrophic lateral sclerosis (ALS)	206	Mouse model for PD, Drosophila	Gehrike et al. (2010)
Alzheimer’s disease (AD)	137, 181c, 9, 29a, 29b, 34a, 181b	Human blood	Geekiyanage et al. (2011), Schipper et al. (2007)
	137, 181c, 9, 29a, 29b	Human serum	Geekiyanage et al. (2011)
	101, 106b, 107, 125b, 137, 142-3p, 142-5p, 145, 151-5p, 15a, 181c, 184, 185, 194, 197, 19b, 210, 212, 214, 219-2-3p, 22, 223, 26b, 27b, 29b, 29a, 29b-1, 29b-1, 300, 301a, 320, 326, 330-5p, 338-3p, 338-5p, 361-3p, 363, 382, 424, 425, 509-5p, 511, 516a-5p, 516b, 525-5p, 551b, 576-5p, 583, 9, 93, 98, let-7e, let-7f, let-7i 9, 125b, 128, 124a 105, 10a, 10b, 125a, 126*, 126, 127, 135a, 138, 141, 142-5p, 143, 146b, 151, 154, 15b, 181a, 181c, 186, 191, 194, 195, 197, 199a*, 204, 205, 214, 216, 221, 302b, 30a-3p, 30a-5p, 30b, 30d, 32, 338, 345, 362, 371, 374, 375, 380-3p, 422b, 429, 448, 449, 451, 455, 494, 497-1, 517a, 517b, 518b, 519b, 520a*, 526a, 7f, 99a 125b, 106b, 107, 124, 132, 145, 146b, 148a, 17-5p, 200c, 20a, 210, 212, 26a, 27a, 29b, 30c, 30e-5p, 34a, 381, 422a, 432, 425, 9, 92, let-7b, 100 106a, 106b, 125b, 137, 146a, 147, 148b, 153, 17-17p, 181c, 187, 20a, 20b, 21, 212, 26a, 27a, 29b, 301, 30b, 30c, 30e-5p, 323-3p, 328, 34a, 361, 365, 376b, 381, 409, 422a, 432, 433, 520c, 644, 655, 664, 700, 7g, 7i, 9, 92 34a, 103, 107, 146a, 106b, 16, 34c, 20a, 17-5p 214, 23a, 23b, 486-3p, 30e*, 143, 128, 17a, 27b, 324-5p, 422a	Human hippocampus, Human CSF, Cell cultures, AD mice models, Bioinformatic single nucleotide polymorphism (SNP) analysis	Cogswell et al. (2008), Hebert et al. (2009), Smith et al. (2011), Wang et al. (2008), Long and Lahiri. (2011), Kim et al. (2011), Boissonneault et al. (2009), Patel et al. (2008), Schonrock et al. (2010), Delay et al. (2011), Hebert et al. (2009), Smith et al. (2011), Yao et al. (2010), Li et al. (2011), Wang et al. (2009, 2010), Liu et al. (2012b), Zovoilis et al. (2011), Hebert et al. (2009), Mallick and Ghosh. (2011)
Viral and antisense-mediated targeting of non-coding transcripts

As discussed above, a considerable number of miRNAs expressed in human brain, 366 of those transcripts are also detectable in rhesus macaque brain (Hu et al., 2011). Correspondingly, a number of those miRNAs are also detectable in mouse cortex and hippocampus by microarray and sequencing efforts, such as miR-9, miR-124, miR-128, and miR-132 (Juhila et al., 2011), suggesting that mouse models can be effective prior to testing in primates.

There have been considerable technological advancements in recent years with primate focused research, including with non-coding RNA biology. Groups have successfully delivered modified-antisense oligonucleotides (ASO) into monkeys to inhibit the function of specific miRNAs with minimal off-target effects (Elmen et al., 2008; Petri et al., 2009; Lanford et al., 2010). To date, the ability to modulate miRNAs in primates is restricted to peripheral administration, however, delivery of potential therapeutics across the blood brain barrier could be a future attainable milestone. Progress has also been made in other capacities with primates, including with the generation of transgenic monkeys. Our group established the first transgenic rhesus macaques in 2001 (Chan et al., 2001), which subsequently led to the development of a cohort for HD transgenic monkeys (Yang et al., 2008), a resource directly applicable to assess miRNA functions in a primate model of neurodegenerative disease. Moreover, from the HD monkeys we derived iPS cells which display a progressive cellular phenotype (Chan et al., 2010), providing an in vitro platform to complement the in vivo analyses for therapeutic and biomarker discovery, including non-coding RNA targets.

In primates, the progression of neurodegeneration and psychiatric deficits is typically gradual, developing over years, rather than weeks or months. Correspondingly, longitudinal analyses of molecular and neurobehavioral changes are fundamental to the monitoring and subsequent discovery of new treatments (Insel, 2009; Thompson et al., 2011). Indeed, longitudinal studies are readily implementable in primate species such as monkeys and humans, including collection of peripheral blood samples for molecular analysis throughout disease progression and parallel correlation with brain morphology by magnetic resonance imaging (MRI; Thompson et al., 2011; Waber et al., 2012; Zhang et al., 2012). The correlation of miRNA expression with disease trajectories may help identify functional non-coding RNA transcripts involved in neuronal pathogenesis.

APPROACHES FOR miRNA MODULATION AND CLINICAL TRANSLATION

As discussed above, a considerable number of in vitro and in vivo models are increasingly becoming available for miRNA functional studies. In conjunction, there have also been significant advances in the approaches to modulate or detect specific miRNAs. Viral and antisense-mediated targeting of non-coding transcripts are routinely applied to alter expression levels, however, technical improvements have allowed for increased effectiveness and efficacy. For example, locked nucleic-modified antisense oligonucleotides (LNA-ASO) significantly enhance the specificity and stability of miRNA silencing (Elmen et al., 2008; Stenvang et al., 2008; Kocerha et al., 2009; Hollander et al., 2010; Obad et al., 2011).

Notably, the LNA-ASO can be administered in vivo to animal models through different routes, such as intracerebroventricular (icv) delivery to penetrate multiple brain regions (Kocerha et al., 2009; He et al., 2010), or local stereotactic injections for site-specific miRNA silencing (Gao et al., 2010; Hollander et al., 2010). LNA-modified probes also intensify the detectability of non-coding RNAs for in situ localization (Havelda, 2010), which facilitates examination of less abundant transcripts. There are other chemical modifications available for ASO, such as 2′-O-methyl RNA, 2′-O-methoxyethyl RNA, and phosphorothioate RNA (Ruberti et al., 2011), some of which have also been successfully utilized in the context of in vivo silencing (Cheng et al., 2009).

In addition to viral and antisense methods, nanoparticle delivery of neurogenic miRNAs provide a means for brain distribution of selected transcripts. Just recently, reports showed that rabies virus glycoprotein (RGV)-labeled nanomaterials resulted in specific delivery of miR-124 to neuronal cells (Hwang do et al., 2011). Nanotechnology has also been employed to silence miRNA function, such as with miR-122 conjugated to gold nanoparticles in myeloma cells (Crew et al., 2012), suggesting this technology is effective in the repression or stimulation of miRNA expression.

Importantly, silencing of miRNAs in animal embryos have also provided significant insight to their role in brain development. Recent reports have shown that injection of morpholinos to block miR-9 activity in the embryos of Xenopus tropicalis (Bonev et al., 2011) or zebrafish (Tel et al., 2012) substantially altered neuronal functions in the developing animals. Furthermore, overexpression or silencing of miR-9 via electroporation in mouse embryos revealed that Cajal Retzius neuronal cell differentiation is regulated through Forkhead box protein G1 (FOXG1; Shibata et al., 2008). Collectively, these reports indicate that miRNA activity can be modulated in vivo at various developmental stages to assess their implications in brain functions.

Overall, the technical developments in miRNA biology mentioned above facilitate the translation of select miRNA transcripts for future clinical intervention. Indeed, there are human trials currently being conducted to assess miRNA-modulation in disease pathogenesis, including the use of LNA-ASO (Seto, 2010; Montgomery and van Rooij, 2011). To date, the reported human trials have focused on miRNA regulation in peripheral organs, however, therapeutic targeting of the brain remains a future objective. Polymer (Cheng and Saltzman, 2012), lipid (Shi et al., 2012), and polylysine (Jin et al., 2012) based nanoparticle modulation of miRNAs has also been reported. Although a majority of the nanodelivery methods for miRNA studies have focused on non-neuronal cells, there is great potential for their application to the central nervous system.

CONCLUSION

The discovery and development of miRNA-based therapeutics, as well as the diverse range of molecular cascades they can regulate, offer a new approach for treating diseases with a heterogenic or epigenetic origin. There are numerous psychiatric and neurodegenerative diseases with no effective treatments due to their
complex etiology and therefore may be ideally positioned for clinical targeting of pleiotropic miRNAs.

ACKNOWLEDGMENTS

We thank Yerkes National Primate Research Center (YNPRC) veterinary and animal care staff in providing outstanding services. YNPRC is supported by the National Center for Research Resources PS1RR165 and is currently supported by the Office of Research and Infrastructure Program (ORIP)/OD PS1OD11132. This study is supported by grant awarded by the ORIP/NIH (RR018827) and the American Recovery and Reinvestment Act (ARRA) Fund to Anthony W. S. Chan.

REFERENCES

Abu-Eneel, K., Liu, T., Gazzaniga, F. S., Nishimura, Y., Wall, D. P., Geschwind, D. H., Lao, K., and Kosik, K. S. (2008). Heterogeneous dysregulation of microRNAs across the autism spectrum. *Neurogenetics* 9, 153–161.

Agostini, M., Tucci, P., Steinert, J. R., Shalom-Feuerstein, R., Rouleau, M., Aberdam, D., Forsythe, I. D., Young, K. W., Ventura, A., Concepcion, C. P., Han, Y. C., Candi, E., Knight, R. A., Mak, T. W., and Melino, G. (2011). MicroRNA-34a regulates neurite outgrowth, spinal morphology, and function. *Proc. Natl. Acad. Sci. U.S.A.* 108, 21099–21104.

Arias-Carrion, O., and Salama, M. (2011). Reprogramming neurons by microRNAs into iPSCs to treat Parkinson’s disease. *Med. Hypotheses* 77, 312–313.

Ashraf, S. I., McLoon, A. L., Sclarsic, S. M., and Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in *Drosophila*. *Cell* 124, 191–205.

Asikainen, S., Rudgalvyte, M., Heikkinen, L., Louhiranta, K., Lakso, M., and Schneider, B. P., Laquaglia, M. J., Diskin, S. J., Connelly, C. M., Thomas, M., and Gogos, J. A. (2011). miRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. *Dev. Cell* 20, 19–32.

Bade, D. P. (2009). MicroRNAs: target recognition and regulatory functions. *Cell* 136, 215–233.

Baudry, A., Mouillet-Richard, S., Schneider, B., Launay, J. M., and Kellermann, O. (2011a). miR-16 is a key for adaptive responses of neurons to fluoxetine. *Med. Sci. (Paris)* 27, 128–131.

Baudry, A., Mouillet-Richard, S., Schneider, B., Launay, J. M., and Kellermann, O. (2011b). miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. *Science* 329, 1537–1541.

Beveridge, N. I., and Cairns, M. J. (2012). MicroRNA dysregulation in schizophrenia. *Neuropsychopharmacology* 37, 1149–1164.

Chekulaeva, M., and Filipowicz, W. (2009). Mechanisms of microRNA-mediated post-transcriptional regulation in animal cells. *Curr. Opin. Cell Biol.* 21, 452–460.

Chekulaeva, M., Mathys, H., Zipprich, J. T., Attig, J. C., Colic, M., Parker, R., and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CC44-NOT through conserved W-containing motifs. *Nat. Struct. Mol. Biol.* 18, 1218–1226.

Cheng, C. J., and Saltzman, W. M. (2012). Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. *Mol. Pharm.*

Cheng, L. C., Panstrana, E., Tava- zioe, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. *Nat. Neurosci.* 12, 399–408.

Cho, J. A., Park, H., Lim, E. H., and Lee, K. W. (2011). MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. *J. Genet.* 90, 81–93.

Cogwell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., Kel- nar, K., Kemppainen, J., Brown, D., Chen, C., Prinjha, R. K., Richard- son, J. C., Saunders, A. M., Roses, A. D., and Richards, C. A. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. *J. Alzheimers Dis.* 14, 27–41.

Cohan, K. A., Atiyeh, E. F., Bosse, Y. P., Laquaglia, M. J., Diskin, S. J., Brodeur, G. M., and Maris, J. J. (2008). A functional screen identifies miR-34a as a candidate neuroblas-toma tumor suppressor gene. *Mol. Cancer Res.* 6, 735–742.

Connelly, C. M., Thomas, M., and Deiters, A. (2012). High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. *J. Biomol. Screen.*

Crew, E., Rahman, S., Razzak-Jaffar, A., Mott, D., Kamundi, M., Yu, G., Tchah, N., Lee, J., Bellavia, M., and Zhong, C. I. (2012). MicroRNA conjugated gold nanoparticles and cell transfection. *Anal. Chem.* 84, 26–29.
MicroRNAs in neuropsychiatry and neurodegeneration

Haramati, S., Navon, I., Issler, O., Ezra-Nevo, G., Gil S., Zwang, R., Hornstein, E., and Chen, A. (2011). MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J. Neurosci. 31, 14191–14203.

Havelda, Z. (2010). In situ detection of miRNAs using LNA probes. Methods Mol. Biol. 592, 127–136.

He, Y., Yang, C., Kirkmire, C. M., and Wang, Z. J. (2010). Regulation of opioid tolerance by let-7 family miRNAs targeting the mu opioid receptor. J. Neurosci. 30, 10231–10238.

Hebert, S. S., and De Strooper, B. (2009). Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 32, 199–206.

Hebert, S. S., Horne, K., Nicolai, L., Bergmans, B., Papadopoulos, A. S., Delacourte, A., and De Strooper, B. (2009). MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol. Dis. 33, 422–428.

Hebert, S. S., Horne, K., Nicolai, L., Papadopoulos, A. S., Mande-makers, W., Silhatharoglu, A. N., Kauppinen, S., Delacourte, A., and De Strooper, B. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U.S.A. 105, 6415–6420.

Hollander, J. A., Im, H. L., Amolio, A. L., Kocerha, J., Bari, P., Lu, Q., Willoughby, D., Wahlestedt, C., Konkright, M. D., and Kenny, P. F. (2010). Striatal microRNA controls cocaine intake through CREB signalling. Nature 466, 197–202.

Huang, X., Guo, S., Xi, J., Yan, Z., Fu, N., Zhang, X., Menzel, C., Liang, H., Yang, H., Zhao, M., Zeng, R., Chen, W., Paabo, S., and Khaitovich, P. (2011). MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet. 7, e1002327. doi:10.1371/journal.pgen.1002327

Hunsberger, J. G., Austin, D. R., Chen, C. H., Chen, H. Y., Wen, J., Lee, S. Y., Jeong, J. M., Kim, W. J., and Lee, D. S. (2011). A brain-targeted rations virus glycoprotein-disulfide linked PDI nanocarrier for delivery of neurogenic microRNA. Biomaterials 32, 4968–4975.

Im, H. I., Hollander, J. A., Bari, P., and Kenny, P. F. (2010). McCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13, 1120–1127.

Ijichi, H. (2012). Measuring scientific opportunity into public health impact: a strategic plan for research on mental illness. Arch. Gen. Psychiatry 66, 128–133.

Jiao, J., Hertl, L. D., Farese, R. V., and Gao, F. B. (2010). MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE 5, e10551. doi:10.1371/journal.pone.0010551

Jin, H., Yu, Y., Chrisler, W. B., Xiong, Y., Hu, D., and Lei, C. (2012). Delivery of microRNA-10b with polylisine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer (Auckl.) 6, 9–19.

Jin, P., Zarcuscu, D. C., Ceman, S., Nakamoto, M., Movrey, J., Jongens, T. A., Nelson, D. L., Moses, K., and Warren, S. T. (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113–117.

Johnson, R., Zaccato, C., Belyaev, N. D., Guest, D. J., Cattaneo, E., and Buckley, N. I. (2008). A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol. Dis. 29, 438–445.

Juhila, J., Sipila, T., Icay, K., Nicorici, D., Illenon, P., Kallo, A., Kor pelainen, E., Greco, D., and Hovatta, I. (2011). MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PLoS ONE 6, e21495. doi:10.1371/journal.pone.0021495

Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y., and Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc. Natl. Acad. Sci. U.S.A. 106, 13052–13057.

Kao, W. T., Wang, Y., Kleinman, J. E., Lipska, B. K., Hyde, T. M., Weineberen, D. R., and Law, A. J. (2010). Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc. Natl. Acad. Sci. U.S.A. 107, 15619–15624.

Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H., and Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173.

Kim, A. H., Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J. L., van den Oord, E. J., Riley, B. P., Kendler, K. S., and Vladimirov, V. I. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr. Res. 124, 183–191.

Kim, H., Lee, G., Ganat, Y., Papapetrou, E. P., Lichipha, L., Soci, N. D., Sade lain, M., and Studer, L. (2011). miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8, 695–706.

Kim, J., Inoue, K., Isih, J., Vanti, W. B., Voronov, S. V., Murchison, E., Han non, G., and Abielovich, A. (2007). A MicroRNA feedback circuit in mid brain dopaminergic neurons. Science 317, 1220–1224.

King, M. C., and Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science 188, 107–116.

Kocerha, J., Faghihi, M. A., Lopez-Toledano, M. A., Huang, J., Ramsey, A. J., Caron, M. G., Sales, N., Willoughby, D., Elmen, J., Hansen, H. F., Orum, H., Kauppinen, S., Kenny, P. J., and Wahlestedt, C. (2009). MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc. Natl. Acad. Sci. U.S.A. 106, 5507–3512.

Kocerha, J., Krom, N., Baker, M., Finch, N., DeJesus-Hernandez, M., Gonzalez, J., Chidambaram, K., Josephs, K. A., Beeve, B. F., Graff-Radford, N. R., Crook, J., Dickson, D. W., and Rademakers, R. (2011). Altered microRNA expression in frontotem poral lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics 12, 527. doi:10.1186/1471-2164-12-527

Konopka, W., Kyrk, A., Novak, M., Her werth, M., Parkitsa, J. R., Wawrzy niak, M., Kowarsch, A., Michaluk, P., Dzownek, J., Arnspurger, T., Wilczyński, G., Merkenschlager, M., Theis, F. J., Koor, G., Kazemkze, L., and Schütz, G. (2010). MicroRNA loss enhances learning and mem ory in mice. J. Neurosci. 30, 14835–14842.

Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., Huang, Y. H., Hsiao, P. C., Hsiao, C. K., Liu, C. M., Yang, P. C., Hwu, H. G., and Chen, W. I. (2011). MicroRNA expression aberra tion as potential peripheral blood biomarkers for schizophrenia. PLoS ONE 6, e21635. doi:10.1371/journal.pone.0021635

www.frontiersin.org
Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., Kauppinen, S., and Orum, H. (2010). Therapeutic silencing of microRNA-122 in pri-mates with chronic hepatitis C virus infection. Science 327, 198–201.

Lau, P., and de Strooper, B. (2010). Dys-regulated microRNAs in neurode-generative disorders. Semin. Cell Dev. Biol. 21, 768–773.

Lee, S. T., Chu, K., Im, W. S., Yoon, H. J., Im, J. Y., Park, J. E., Park, K. H., Jung, K. H., Lee, S. K., Kim, M., and Roh, J. K. (2011). Altered microRNA regulation in Huntington’s disease models. Exp. Neurol. 227, 172–179.

Li, Y., Lin, L., and Jin, P. (2008). The microRNA pathway and fragile X mental retardation protein. Biochim. Biophys. Acta 1779, 702–705.

Li, Y. Y., Cui, J. G., Hill, J. M., Bhat-tacharjee, S., Zhao, Y., and Lukiw, W. J. (2011). Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci. Lett. 487, 94–98.

Liu, N., Landreh, M., Cao, K., Abe, M., Magill, S. T., Cambronne, X. A., Luikart, G., Li, Y., Lin, L., and Jin, P. (2011). Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378.

O’Connor, R. M., Dinan, T. G., and Cryan, J. F. (2011). Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol. Psychiatry 17, 359–376.

Park, S. (2001). Genomics and society. The human genome and our view of ourselves. Science 291, 1219–1220.

Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., and Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and is downregulated in Huntington’s disease. J. Neurosci. 28, 14341–14346.

Park, J. E., Heo, I., Tian, Y., Simanshu, M., Chang, H., Jee, D., Patel, D. I., and Kim, V. N. (2011). Dicer recognizes the 5’ end of RNA for efficient and accurate processing. Nature 475, 201–205.

Patel, N., Hoang, D., Miller, N., Ansa-loni, S., Huang, Q., Rogers, T. J., Lee, J. C., and Saunders, A. J. (2008). MicroRNAs can regulate human APP levels. Mol. Neuregul. 3, 10.

Perera, Y. D., Fratelli, G., Reeve, A., Nunez-Iglesias, J., Liu, C. C., Morgan, J. H., Lee, S. K., Kim, M., and Hammond, S. M. (2007). MiR-34 is a 5’ end control of RNA for efficient and accurate processing. New. J. Genet. 20, 3067–3078.

Montgomery, R. L., and van Rooij, E. (2011). Therapeutic advances in microRNA targeting. J. Cardiacc. Pharmacol. 57, 1–7.

Moreau, M. P., Bruse, S. E., David-Rus, R., Buyske, S., and Brustowicz, L. M. (2011). Altered microRNA expression profiles in postmortem brain samples from individuals with schizophenia and bipolar disorder. Biol. Psychiatry 69, 188–193.

Mouillet-Richard, S., Baudry, A., Lau-nay, J. M., and Kellermann, O. (2011). MicroRNAs and depression. Neurobiol. Dis. 46, 272–278.

Mouradian, M. M. (2012). MicroRNAs in Parkinson’s disease. Neurobiol. Dis. 46, 279–284.

Nelson, P. T., and Wang, W. X. (2010). Mit-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J. Alzheimers Dis. 21, 75–79.

Nunez-Iglesias, J., Liu, C. C., Morgan, T. E., Finch, C. E., and Zhou, X. J. (2010). Joint genome-wide profiling of miRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE 5, e100889. doi:10.1371/journ-2008998

Obad, S., dos Santos, C. O., Petri, A., Heidenblad, M., Broom, O., Ruse, C., Fu, C., Lindow, M., Stenvang, J., Straarrup, E. M., Hansen, H. F., Koch, T., Pappin, D., Hannon, G. J., and Kauppinen, S. (2011). Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378.

O’Connor, R. M., Dinan, T. G., and Cryan, J. F. (2011). Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol. Psychiatry 17, 359–376.

Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuroon 59, 274–287.

Rademakers, R., Erikson, J. L., Baker, M., Robinson, T., Ahmad, H., Lincoln, 3, S. F., Finch, N., Rutherford, N. J., Crook, R. J., Josephs, K. A., Boeve, B. F., Knopman, D. S., Petersen, R. C., Parisi, J. E., Casselli, R. J., Wszolek, Z. K., Uitti, R. J., Feldman, H., Hut-ton, M. L., Mackenzie, I. R., Graff-Radford, N. R., and Dickson, D. W. (2008). Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet. 17, 3631–3642.

Rajasethupathy, P., Fiumara, E., Sheri-dan, R., Betel, D., Pathanveettil, S. V., Anderson, G., Madur, R. J., Amini, T., and Kandel, E. (2009). Charac-terization of small RNAs in Aplysia reveals a role for miR-124 in con-straining synaptic plasticity through CREB. Neuron 63, 803–817.

Remenyi, J., Hunter, C. J., Cole, C., Anda, H., Impey, S., Monck, C. E., Martin, K. J., Barton, G. J., Huttvagner, G., and Arthur, J. S. (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem. J. 428, 281–291.

Richardson, K., Lai, C. Q., Parnell, L. D., Lee, Y. C., and Or dovaz, J. M. (2011). A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics 12, 504. doi:10.1186/1471-2164-12-504

Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., Lin, D. Y., Dunan, J., Ophoff, R. A., Andreasonn, O. A., Sisnolich, E., Chiron, S., St Clair, D., Corvin, A., Guirling, H., Werje, T., Rujescu, D., Blackwood, D. H., Pate, C. N., Malhotra, A. K., Purcell, S., Dudbridge, E., Neale, B. M., Rossin, L., Visscher, P. M., Posthumus, D., Ruder-fer, D. M., Fanous, A., Stefansson, H., Steinberg, S., Mörsy, B., Golimbet, V., De Hert, M., Jonsson, E. G., Biter, I., Pietiläinen, O. P., Collier, D. A., Tosato, S., Agartz, I., Albus, M., Alexander, M., Amdur, R. L., Amin, F., Bass, N., Bergen, S. E., Black, D. W., Borglum, A. D., Brown, M. A., Bruggeman, R., Buccola, N. G., Byerley, W. F., Cahn, W., Cantor, R. M., Carr, I. V., Catts, S. V., Cloudhury, K., Cloninger, C. R., Cornman, P., Craddock, N., Danoy, P. A., Datta, S., de Haan, L., Demontis, D., Diegoes, D., Djurovic, S., Donnelly, P., Donohoe, G., Duong, L., Dwyer, S., Fink-Jensen, A., Freedman, R., Freimer, N. B., Friedl, M., Georgieva,
area 46 in schizophrenia. Biol. Psychiatry 69, 180–187.

Sarachana, T., Zhou, R., Chen, G., Manji, H. K., and Hu, V. W. (2010). Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2, 23.

Saus, E., Soria, V., Escaramís, G., Vivarelli, F., Crespo, I., Kager, T., Alcami, J., and Koeberle, S. (2012). MicroRNA expression in the dorso-lateral prefrontal cortex Brodmann area in schizophrenia. Biol. Psychiatry 69, 180–187.

Sato, Y., 1640–1651.

Shibata, M., Nakao, H., Kiyonari, H., Abe, T., and Aizawa, S. (2011). MicroRNA-9 regulates neurogenesis in mouse telenephalon by targeting multiple transcription factors. J. Neurosci. 31, 3407–3422.

Shioyia, M., Obayashi, S., Tabunoki, H., Atima, K., Saito, Y., Ishida, T., and Sato, J. (2010). Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neuron 3. Neuropathol. Appl. Neurobiol. 36, 320–330.

Schröder, H. M., Maass, O. C., Lichtenstein, P., Lieb, R., and Altmann, T. G. (2011). Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976.

Ruberti, F., Barbato, C., and Cogoni, J. (2011). Targeting microRNAs in neurons tools and perspectives. Exp. Neurol. 235, 419–426.

Saba, R., Storchel, P. H., Aksoy-Aksel, A., Kepura, F., Lippi, G., Plant, T. D., and Schratt, G. M. (2012). Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol. Cell. Biol. 32, 619–632.

Santarelli, D. M., Beveridge, N. J., Tooney, P. A., and Cairns, M. J. (2011). Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol. Psychiatry 69, 180–187.

Sarachana, T., Zhou, R., Chen, G., Manji, H. K., and Hu, V. W. (2010). Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2, 23.

Saus, E., Soria, V., Escaramís, G., Vivarelli, F., Crespo, I., Kager, T., Alcami, J., and Koeberle, S. (2012). MicroRNA expression in the dorso-lateral prefrontal cortex Brodmann area in schizophrenia. Biol. Psychiatry 69, 180–187.

Sato, Y., 1640–1651.

Shibata, M., Nakao, H., Kiyonari, H., Abe, T., and Aizawa, S. (2011). MicroRNA-9 regulates neurogenesis in mouse telenephalon by targeting multiple transcription factors. J. Neurosci. 31, 3407–3422.

Shioyia, M., Obayashi, S., Tabunoki, H., Atima, K., Saito, Y., Ishida, T., and Sato, J. (2010). Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neuron 3. Neuropathol. Appl. Neurobiol. 36, 320–330.

Schröder, H. M., Maass, O. C., Lichtenstein, P., Lieb, R., and Altmann, T. G. (2011). Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976.

Ruberti, F., Barbato, C., and Cogoni, J. (2011). Targeting microRNAs in neurons tools and perspectives. Exp. Neurol. 235, 419–426.

Saba, R., Storchel, P. H., Aksoy-Aksel, A., Kepura, F., Lippi, G., Plant, T. D., and Schratt, G. M. (2012). Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol. Cell. Biol. 32, 619–632.

Santarelli, D. M., Beveridge, N. J., Tooney, P. A., and Cairns, M. J. (2011). Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol. Psychiatry 69, 180–187.

Sarachana, T., Zhou, R., Chen, G., Manji, H. K., and Hu, V. W. (2010). Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2, 23.
Bassel-Duby, R., Sanes, J. R., and Olson, E. N. (2009). MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554.

Xu, Y., Li, F., Zhang, B., Zhang, K., Zhang, F., Huang, X., Sun, N., Ren, Y., Sui, M., and Liu, P. (2010a). MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr. Res. 119, 219–227.

Xu, Y., Liu, H., Li, F., Sun, N., Ren, Y., Liu, Z., Cao, X., Wang, Y., Liu, P., and Zhang, K. (2010b). A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J. Affect. Disord. 127, 332–336.

Yang, S. H., Cheng, P. H., Banta, H., Piotrowska-Nitsche, K., Yang, J. J., Cheng, E. C., Snyder, B., Larkin, K., Liu, J., Orkin, J., Fang, Z. H., Smith, Y., Bachevalier, J., Zola, S. M., Li, S. H., Li, X. J., and Chan, A. W. (2008). Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453, 921–924.

Yang, Y., Xu, S., Xia, L., Wang, J., Wen, S., Jin, P., and Chen, D. (2009). The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet. 5, e1000444. doi:10.1371/journal.pgen.1000444

Yao, J., Hennessey, T., Flynt, A., Lai, E., Beal, M. F., Lin, M. T. (2010). MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 5:e15546.

Zhang, X. Y., Yang, Z. Y., Li, J. M., Li, H. X., Wang, L., Gong, Q. Y., and Zhou, D. (2012). Longitudinal (1) H MRS assessment of the thalamus in a Coriaria lactone-induced rhesus monkey status epilepticus model. NMR Biomed.

Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., Damschroder-Williams, P., Du, J., Chen, G., and Manji, H. K. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34, 1395–1405.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 March 2012; paper pending published: 10 April 2012; accepted: 26 April 2012; published online: 17 May 2012.

Citation: Chan AWS and Kocerha J (2012) The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front. Gene. 3:82. doi:10.3389/fgene.2012.00082

This article was submitted to Frontiers in Non-Coding RNA, a specialty of Frontiers in Genetics.

Copyright © 2012 Chan and Kocerha. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.