Nanometric skyrmion lattice from anisotropic exchange interactions in a centrosymmetric host

Max Hirschberger\(^{1,2,}\ast\), Satoru Hayami\(^{1}\) and Yoshinori Tokura\(^{1,2,3}\)

\(^{1}\) Department of Applied Physics and Quantum-Phase Electronics Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
\(^{2}\) RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
\(^{3}\) Tokyo College, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

\ast\ Author to whom any correspondence should be addressed.
E-mail: hirschberger@ap.t.u-tokyo.ac.jp

Keywords: skyrmions, Ruderman–Kittel–Kasuya–Yosida interaction, topological Hall effect, anisotropic exchange interaction

Abstract
Skyrmion formation in centrosymmetric magnets without Dzyaloshinskii–Moriya interactions was originally predicted from unbiased numerical techniques. However, no attempt has yet been made, by comparison to a real material, to determine the salient interaction terms and model parameters driving spin-vortex formation. We identify a Hamiltonian with anisotropic exchange interactions, local ion anisotropy, and four-spin interactions, which is generally applicable to this class of compounds. In the representative system Gd₃Ru₄Al₁₂, anisotropic exchange drives a fragile balance between helical, skyrmion lattice (SkL), and transverse conical (cycloidal) orders. The model is severely constrained by the experimentally observed collapse of the SkL with a small in-plane magnetic field. For the zero-field helical state, we further anticipate that spins can be easily rotated out of the spiral plane by a tilted magnetic field or applied current.

1. Introduction

The modern push to realize complex magnetism with strong coupling to the electronic degrees of freedom is underpinned, to a large extent, by ever more powerful computational techniques. Among these are unbiased numerical simulations, such as Monte-Carlo methods, for magnetic ground states, excitation spectra, and spin dynamics starting from an (effective) spin–spin Hamiltonian. Monte-Carlo studies originally predicted that centrosymmetric triangular lattice magnets, be they insulators with (superexchange) interactions \([1, 2]\) or metals with effective Ruderman–Kittel–Kasuya–Yosida (RKKY) couplings \([3–5]\), can host nanometer-sized magnetic spin vortices with net topological charge (i.e. skyrmions), and a multitude of even more complex states \([3, 6, 7]\). The theoretical work has introduced a new playground for the application of concepts from topology in condensed matter, but only with the observation of skyrmion lattices in the hexagonal intermetallics Gd₂PdSi₃ \([8]\) and Gd₃Ru₄Al₁₂ \([9]\) has a more systematic comparison of theory and experiment become possible.

In this article, we demonstrate via a combination of theory and experiments that moderately weak anisotropic exchange from dipolar and spin–orbit interactions is sufficient to realize the SkL state in centrosymmetric magnets. Anisotropic exchange hence represents a new, third avenue toward the SkL in bulk crystals with inversion center, beyond frustrated exchange and higher-order RKKY interactions. Next to the present focus on intermetallic systems, this notion may have implications also for spin–vortex formation in insulating materials, e.g. on the magnetic diamond lattice of MnSc₂S₄ \([10, 11]\). In noncentrosymmetric magnets and at interfaces, spin–orbit coupling (SOC) provides the crucial underpinning of spin-spiral and skyrmion formation via the Dzyaloshinskii–Moriya interaction \([12–15]\). Likewise, we here show that SOC can play an important role in centrosymmetric magnets with SkL, as a driver of anisotropic exchange. Our work on weakly anisotropic exchange also creates a conceptual link

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
Figure 1. Magnetic interactions in centrosymmetric Gd$_3$Ru$_4$Al$_{12}$. (a) Hexagonal crystal structure with Al, Ru, and Gd atoms marked by white, blue, and magenta spheres, respectively. (b) Magnetic phase diagram for magnetic field applied along the c-axis. (c) The distorted Kagome motif of rare earth sites is approximated as a triangular lattice of trimer plaquettes (magenta triangles). Three possible directions, equivalent by symmetry, of the magnetic ordering vector q ($\nu = 1, 2, 3$) are indicated in the figure. Specifically for q_1, we illustrate the anisotropy of parallel and perpendicular magnetic exchange interactions by black arrows. Data points in (b) adopted from reference [9].

between SkL formation and the movement to realize new quantum-disordered states in frustrated magnets via strongly bond-anisotropic exchange [16, 17].

The focus of our study is Gd$_3$Ru$_4$Al$_{12}$, a representative of the new class of centrosymmetric skyrmion hosts with coupled local moments and itinerant electrons. The Gd$^{3+}$ magnetic moments in this structure are arranged in quasi-layered Kagome nets, which are distorted by alternate stretching and compression of Kagome bond distances [18–20]—termed breathing Kagome lattice [figure 1(a)]. The magnetic phase diagram for field along the crystallographic c-axis (perpendicular to the Kagome plane) harbors five distinct regimes [9, 21]: helical order (HE), a transverse conical state (TC), fan-like order (F), the SkL, and the as-yet uncharacterized pocket labeled by the roman numeral V [figure 1(b)]. In our analysis, a key guiding factor for the numerical simulation is the stability range of the SkL as compared to TC.

2. Model Hamiltonian

Motivated by the structural feature of rare earth triangles, and by previous considerations of the specific heat [22], we approximately treat Gd$_3$Ru$_4$Al$_{12}$ as a two-dimensional triangular lattice of strongly coupled superspin trimers [small triangles in the projection plane of figure 1(a)]. Figure 1(b) shows that the zero-field magnetic ground state of hexagonal Gd$_3$Ru$_4$Al$_{12}$ is a spiral, where the magnetic modulation vector q is aligned within the basal plane. In fact, three q_ν with $\nu = 1, 2, 3$ must be degenerate by symmetry, and previous work has shown that the q_ν point along the a^* axis and equivalent directions [9, 21]. Backed by the knowledge that the directors \hat{q}_ν are identical in all phases experimentally studied so far, we choose a minimal Hamiltonian consistent with the six-fold symmetry of the lattice and suitable for discussion of the magnetic phase transitions [23]. Only the dominant Fourier components $S^\alpha_{q\nu}$ of the local spin S_i at lattice site i are carried over [24], so that

$$\mathcal{H}/J = 2 \sum_{\nu} \left[-\mathcal{H}_\nu + (K/N)(\mathcal{H}_\nu)^2 - A \sum_i (S^\alpha_i)^2 - h \sum_i \hat{h} \cdot S_i \right],$$

with $\mathcal{H}_\nu = \sum_{\alpha, \beta} \Gamma_{q\nu}^{\alpha\beta} S^\alpha_{q\nu} S^\beta_i$. Here, J is the energy scale for the dominant two-spin interaction, while $(K/N), A_\alpha$ and h are dimensionless parameters corresponding to the strength of four-spin interaction, local ion anisotropy, and external magnetic field, respectively (normalized by J in all three cases). N is the number of spins in the system, and the direction of the applied magnetic field is labeled as \hat{h}. The matrices $\Gamma_{q\nu}^{\alpha\beta}$ are also dimensionless and characterize the anisotropic exchange interactions. For example for $\nu = 1$,
we have $\Gamma_{q_i} = \text{diag}(I_0 - I_{ani}, I_0 + I_{ani}, I_2)$; the other Γ_{q_c} are obtained from Γ_{q_i} by a simple rotation operation of $\pm 120^\circ$. In contrast to models of magnetic interactions in real space [25], the present (momentum–space) approach for the two-spin and four-spin terms is not sensitive to the choice of boundary conditions. For simplicity of the numerical treatment, the calculations were carried out for q_1 rotated by 90° from those in figure 1(c), i.e. for q_1 along the triangular lattice’s bond direction.

Anisotropic interactions of the I_{ani}-type can be caused by relativistic SOC [23], but we note that dipolar interactions at the nearest neighbor level are also included in this term. In Discussion, we comment on the prospect of fully ab initio calculations of I_{ani} in this class of compounds. More broadly speaking, Hamiltonians analogous to equation (1) are believed to be a good starting point as well for the description of phase transitions in centrosymmetric metallic magnets of different symmetries, such as tetragonal or cubic, if the q_a are strongly pinned to preferred crystal axes. Moreover, the formalism can be adapted to the description of non-centrosymmetric materials [26] by inclusion of antisymmetric terms $\Gamma_{q_c} \neq \Gamma_{q_c}^*$, although this implies a larger number of adjustable parameters. When allowing for moderate ($\%$-scale) changes of the modulus $q_{0} = |q_{1}|$ at phase boundaries—including transitions from orders incommensurate with the underlying crystal lattice, to commensurate ones—the energy landscape is modified but weakly due to the typically very broad magnetic susceptibility (Lindhard function) $\chi(q)$ in metallic magnets with large, localized magnetic moments [27].

Without loss of generality, $I_z = I_0 = 1$ is used in the following, as small differences between I_0 and I_z can be absorbed into A, where large (small) I_z corresponds to positive (negative) A. Previous magnetization measurements indicated mild easy-plane anisotropy $A < 0$ of local ions in Gd$_3$Ru$_4$Al$_{12}$ [9, 22]. As $A < 0$ favors the TC state already in zero magnetic field, $I_{ani} > 0$ is crucial to obtain phase HE with spiral vectors q_{a}, q_{0} at $h = 0$. In other words, weaker interactions parallel to the propagation vector q_{a} are necessary to obtain phase HE in the present compound [figure 1(c)].

Detailed supporting calculations show that excess I_{ani} strongly favors multi-q phases, promoting the SkL over the TC state at all temperatures and eventually causing an instability of HE toward a multi-q state [28]. To describe Gd$_3$Ru$_4$Al$_{12}$, we focus on $0 < I_{ani} < 0.1$ and set $K = 0$, the latter choice being revisited below. Within this range of parameters, the phase boundaries at $h // c$ are rather robust. For example, the simulations demonstrate that in absence of single ion anisotropy ($A = 0$), the overall properties of the c-axis phase diagram are nearly unchanged as compared to $(I_{ani}, A) = (0.01, -0.007)$. As we will show now, a good match of experiment and theory is obtained for $I_{ani} = 0.01$ and $A = -0.007$, especially when aiming to also describe the case of h tilted away from the c-axis.

3. Unbiased modeling of magnetic phase transitions for $h // c$

Figure 2(a) shows the components $S_n(q_c)$ of the calculated magnetic structure factor, which is proportional to the squared Fourier component of the magnetic moment $m_n(q_c)^2$. We use $S_n(q_c)$ and $m_n(q_c)^2$
The general characteristics of the calculated phase diagram for the SkL phase is only 10–15°. In the experiment, we use the Hall conductivity σ_{xy} as a sensor for the SkL phase. This observable is the transverse element of the conductivity tensor $\sigma_{\alpha\beta}$ relating electric field E_α and resulting charge current via $J_\alpha = \sigma_{\alpha\beta}E_\beta$. The Hall conductivity acquires an additional contribution in the SkL phase, the topological Hall effect (THE), which effectively measures the winding number of a single skyrmion [29–31]. In our measurements of angle-dependent σ_{xy}, the THE emerges as a bell-shaped anomaly on top of a smooth background.

Outside the SkL phase, the curves of $\sigma_{xy}(\theta)$ collapse nicely onto a cosine-shaped profile. This behavior is consistent with the understanding that the oscillating background, on top of which the topological Hall signal $\sigma_{xy} \approx 250 \ \Omega^{-1} \ cm^{-1}$ of the SkL develops, is due to spin-orbit coupling and the Karplus–Luttinger type anomalous Hall effect σ_{KL}^{xy} [32, 33]. For σ_{KL}^{xy}, temperature dependence is not expected as long as the conduction electron’s spin polarization remains unchanged [34]. Moreover, σ_{KL}^{xy} is proportional to the c-component of the net magnetization, consistent with the cosine-law observed here [32].

The experimental σ_{xy} data is reported as a function of the applied magnetic field $\mu_0 H$ in units of Tesla, where μ_0 is the vacuum permeability. We corrected for the demagnetization effect by determining the internal field $\mu_0 H_{int} = \mu_0 (H - NM)$, where M is the magnetization per unit volume, measured independently, and $0 \leq N \leq 1$ is the demagnetization factor calculated in elliptical approximation [28].
Given the presence of Gd$^{3+}$ ions with a moment of seven Bohr magneton (μ_B) in this material, the corresponding dimensionless Zeeman energy is $h = 7 \mu_B \cdot (\mu_B H_{\text{int}})/J$ [28].

The present experimental observations contrast previous findings on a far more stable SKL with larger $\theta_c \sim 45^\circ$ in the related hexagonal compound Gd$_3$PdSi$_3$, with a triangular net of rare earth moments [8]. In Gd$_3$Ru$_4$Al$_{12}$, the delicate interplay between TC and SKL for H_{\parallel}/ϵ, and also the low value of θ_c, are both consequences of a fine balance between the parameters A and I_{ani}.

5. Modeling the phase diagram in tilted field

Let the in-plane component of \mathbf{h} be aligned along \mathbf{q}_1. We use the simulated annealing framework to first discuss the character of magnetic order above the critical angle θ_c. Figures 4(a) and (b) show how only a single modulation direction, \mathbf{q}_1, survives under these conditions, with spins arranged in a conical fashion around the axis \mathbf{n}. In the simulation, $\mathbf{n} \parallel H$ in this regime, so that the conical axis rotates smoothly as θ is changed. The resulting dependences $m_{\parallel}^\parallel \sim \cos^2 \theta$ and $m_{\parallel}^\perp \sim \sin^2 \theta$ are indicated by black solid lines in figure 4(a).

We are now in a position to explore the parameter range of I_{ani} and A suitable to describe the experimental situation in Gd$_3$Ru$_4$Al$_{12}$, when using the trimer approximation (figure 5). The calculations demonstrate that for each $I_{\text{ani}} > 0$ there is a critical A_c which separates the stability regime of two zero-field ground states: for $A > A_c$, a helical spiral is the preferred spin configuration, but it succumbs to the transverse conical state when $A < A_c$. Figure 5 shows the A_c values as dashed vertical lines for $I_{\text{ani}} = 0.01, 0.02, 0.03$. The key point here is that only for small $I_{\text{ani}} = 0.01–0.02$, the critical angle θ_c of the SKL can be continuously tuned to zero before the collapse of the zero-field HE state. Following Fig. 5, we conclude that the experimental situation in Gd$_3$Ru$_4$Al$_{12}$ is well described using the trimer approximation and $0 < I_{\text{ani}} < 0.02$ with correspondingly small, finely tuned A.

We return to a question which was postponed earlier: what is the role of the four-spin term K in equation (1), or rather: could $K \neq 0$ explain the experiments for Gd$_3$Ru$_4$Al$_{12}$? K is well known to strongly favor multi-1/2 order such as the SKL [4], and it comes as no surprise that $K > 0$ enhances the critical angle θ_c for a variety of combinations of (A, I_{ani}). For example when $I_{\text{ani}} = 0.01$ and $K = 0.03$, the SKL is stable even when \mathbf{h} is fully aligned along the in-plane direction x. As this is inconsistent with the observed small critical angle, we maintain that $K = 0$ is suitable for the present breathing Kagome compound.

6. Discussion

Many previous numerical studies have relied on Heisenberg Hamiltonians which yield, in a certain parameter range, a SKL phase when aided by thermal fluctuations or easy-axis anisotropy $A > 0$ [1, 2, 35]. These models are not well suited to the present material, where the SKL is realized despite $A < 0$. Likewise, RKKY Hamiltonians with biquadratic interactions ($K \neq 0$) [3, 4] are inconsistent, in our simulations, with the very small critical angle θ_c observed experimentally for Gd$_3$Ru$_4$Al$_{12}$. Hence, a new approach, emphasizing the role of anisotropic exchange $I_{\text{ani}} > 0$ together with easy-plane anisotropy of rare earth ions,
is used to model the stability ranges of helical, transverse conical, and SkL phases on the triangular lattice of superspin trimers, corresponding to the trimerized limit of the breathing Kagome network in Gd$_3$Ru$_4$Al$_{12}$ [21, 22]. SOC [23] and next-neighbor dipolar interactions both contribute to I_{ani}. Note that easy-plane single-ion anisotropy was previously thought to be detrimental to skyrmion formation in magnets with inversion center [2, 35]. However, $A < 0$ can stabilize Neel skyrmions in noncentrosymmetric polar materials [36, 37].

The prediction of I_{ani} for itinerant electron systems through fully \textit{ab initio} electronic structure calculations remains an open challenge in this field. I_{ani} is expected to be strongly dependent on the shape of Fermi surface sheets, as well as on the atomic spin-orbit coupling parameter λ_{SOC} of the orbitals constituting the conduction bands.

It is worth reiterating that the conical axis \hat{n} in Gd$_3$Ru$_4$Al$_{12}$ may be easily tilted away from being parallel to \mathbf{q} (figures 4 and 5). This experimental condition has potential applications in the field of reading and writing skyrmions by very weak external perturbations. Our study also indicates that depinning of the SkL using an applied DC electrical current should be achievable in this material class.

A recent focus of research on spiral magnets is the detection of the emergent electric field resulting from spin dynamics driven by electrical currents, i.e. the realization of an emergent (or quantum) inductor [38]. In fact, the emergent inductance signal was recently observed by some of us in Gd$_3$Ru$_4$Al$_{12}$ [39], exploring the zero-field HE phase—discussed above—as a prototypical spiral order of large local moments coupled to the Fermi sea. The present model indicates that the spiral plane in Gd$_3$Ru$_4$Al$_{12}$ is easily deinned and rotated, enabled by a balance of anisotropic exchange and local-ion anisotropy. This property facilitates spin dynamics, helping to make the emergent electric field observable in transport experiments. Beyond shedding light on the issue of skyrmion formation, we hope that our work can guide the ongoing search for room-temperature material hosts of the emergent inductance effect.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We acknowledge discussions with J Masell and T-h Arima. SH benefited from support by JSPS KAKENHI Grants Nos. JP18K13488, JP19K03752, and JP19H01834. This work was partially supported by JST CREST Grant No. JPMJCR1874 (Japan) and JST PREST Grant No. JPMJPR20L8.
ORCID iDs

Max Hirschberger https://orcid.org/0000-0002-1780-1619
Satoru Hayami https://orcid.org/0000-0001-9186-6958
Yoshinori Tokura https://orcid.org/0000-0002-2732-4983

References

[1] Okubo T, Chung S and Kawamura H 2012 Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields Phys. Rev. Lett. 108 017206
[2] Leonov A O and Mostovoy M 2015 Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet Nat. Commun. 6 8275
[3] Ozawa R, Hayami S and Motome Y 2017 Zero-field skyrmions with a high topological number in itinerant magnets Phys. Rev. Lett. 118 147205
[4] Hayami S, Ozawa R and Motome Y 2017 Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets Phys. Rev. B 95 224424
[5] Wang Z, Su Y, Lin S-Z and Batista C D 2020 Skyrmion crystal from RKKY interaction mediated by 2D electron gas Phys. Rev. Lett. 124 207201
[6] Shimokawa T and Kawamura H 2019 Ripple state in the frustrated honeycomb-lattice antiferromagnet Phys. Rev. Lett. 123 057202
[7] Lohani V, Hickey C, Masell J and Rosch A 2019 Quantum skyrmions in frustrated ferromagnets Phys. Rev. X 9 041063
[8] Kurumaji T et al 2019 Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet Science 365 914–8
[9] Hirschberger M et al 2019 Skyrmion phase and magnetic ordering maps on a breathing Kagomé lattice Nat. Commun. 10 5831
[10] Gao S et al 2017 Spiral spin–liquid and the emergence of a vortex-like state in Mn3ScS4 Nat. Phys. 13 157–61
[11] Gao S et al 2020 Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings Nature 586 37–41
[12] Dzyaloshinskii I E 1957 Thermodynamical theory of ‘weak’ ferromagnetism in antiferromagnetic substances Sov. Phys. JETP 5 1259
[13] Moriya T 1960 Anisotropic superexchange interaction and weak ferromagnetism Phys. Rev. 120 91–8
[14] Bak P and Jensen M H 1980 Theory of helical magnetic structures and phase transitions in MnSi and FeGe Phys. Rev. Lett. 44 1381–5
[15] Röszler U K, Bogdanov A N and Pfleiderer C 2006 Spontaneous skyrmion ground states in magnetic metals Phys. Rev. B 74 104510
[16] Kitaev A 2006 Anyons in an exactly solved model and beyond Ann. Phys., NY. 321 2–111
[17] Jackeli G and Khaliullin G 2009 Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models Phys. Rev. Lett. 102 017205
[18] Gladyshevskii R E, Strusius O R, Cenzuai K and Parthé E 1993 Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters Acta Crystallogr. B 49 474–8
[19] Niermann J and jetschko W 2002 Ternary rare earth (R) transition metal Aluminides R3Ru4Al12 (T = Ru and Os) with Gd3Ru4Al12 type structure Z. Chem. 628 2849–56
[20] Chandragiri V, Iyer K K and Sampathkumaran E V 2016 Magnetic behavior of Gd3Ru4Al12, a layered compound with distorted Kagomé net J. Phys.: Condens. Matter. 28 286002
[21] Matsumura T, Ozono Y, Nakamura S, Kabeya N and Ochiai A 2019 Helical ordering of spin trimers in a distorted kagome lattice of Gd3Ru4Al12 studied by resonant x-ray diffraction J. Phys. Soc. Japan 88 023704
[22] Nakamura S, Kabeya N, Kobayashi M, Araki K and Ochiai A 2018 Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted Kagome lattice structure Phys. Rev. B 98 054410
[23] Li Y-D, Wang X and Chen G 2016 Anisotropic spin model of strong spin–orbit-coupled triangular antiferromagnets Phys. Rev. B 94 035107
[24] Hayami S and Motome Y 2018 Neél- and Bloch-type magnetic vortices in Rashba metals Phys. Rev. Lett. 121 137202
[25] Rybakov F N, Borisov A B, Blügel S and Kiselev N S 2016 New spiral state and skyrmion lattice in 3D model of chiral magnets New J. Phys. 18 045002
[26] Puphal P et al 2020 Topological magnetic phase in the candidate weyl semimetal ecalges Phys. Rev. Lett. 124 017202
[27] Nomoto T, Koresutaka T and Arita R 2020 Formation mechanism of the helical Q structure in Gd-based skyrmion materials Phys. Rev. Lett. 125 117204
[28] Supplementary information.
[29] Bruno P, Dugaev V K and Tálládeumír E 2004 Topological Hall effect and Berry phase in magnetic nanostructures Phys. Rev. Lett. 93 096806
[30] Neubauer A, Pfleiderer C, Binz B, Rosch A, Richter R, Nikolovitz P G and Böni P 2009 Topological Hall effect in the A phase of MnSi Phys. Rev. Lett. 102 186602
[31] Richter R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Pfleiderer C 2013 Giant generic topological Hall resistivity of MnSi under pressure Phys. Rev. B 87 134424
[32] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Anomalous Hall effect Rev. Mod. Phys. 82 1559–92
[33] Karpusch R and Luttinger J M 1954 Hall effect in ferromagnetics Phys. Rev. 95 1154
[34] Lee M, Onose Y, Tokura Y and Ong N P 2007 Hidden constant in the anomalous Hall effect of high-purity magnet MnSi Phys. Rev. B 75 172403
[35] Hayami S, Lin S-Z and Batista C D 2016 Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy Phys. Rev. B 93 184413
[36] Bordács S et al 2017 Equilibrium skyrmion lattice ground state in a polar easy-plane magnet Sci. Rep. 7 7584
[37] Leonov A O and Kézsméári I 2017 Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: the role of anisotropy and tilted magnetic fields Phys. Rev. B 96 224413
[38] Nagaosa N 2019 Emergent inductor by spiral magnets Japan J. Appl. Phys. 58 3
[39] Yokouchi T, Kagawa F, Hirschberger M, Otani Y, Nagaosa N and Tokura Y 2020 Emergent electromagnetic induction in a helical-spin magnet Nature 586 232–6