How alginate properties influence in situ internal gelation in Crosslinked Alginate Microcapsules (CLAMs) formed by spray drying

Tina Jeoh, Dana E. Wong, Scott Strobel, Kevin Hudnall, Nadia Pereira, Kyle Williams, Benjamin Arbaugh, Julia Cunniffe, Herbert Scher

Submitted date: 04/07/2020 • Posted date: 06/07/2020
Licence: CC BY-NC-ND 4.0

Citation information: Jeoh, Tina; Wong, Dana E.; Strobel, Scott; Hudnall, Kevin; Pereira, Nadia; Williams, Kyle; et al. (2020): How alginate properties influence in situ internal gelation in Crosslinked Alginate Microcapsules (CLAMs) formed by spray drying. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12611057.v1

Alginates gel rapidly under ambient conditions and have widely documented potential to form protective matrices for sensitive bioactive cargo. Most commonly, alginate gelation occurs via calcium mediated electrostatic crosslinks between the linear polyuronic acid polymers. A recent breakthrough to form crosslinked alginate microcapsules (CLAMs) by in situ gelation during spray drying (“CLAMs process”) has demonstrated applications in protection and controlled delivery of bioactives in food, cosmetics, and agriculture. The extent of crosslinking of alginates in CLAMs impacts the effectiveness of its barrier properties. For example, higher crosslinking extents can improve oxidative stability and limit diffusion of the encapsulated cargo. Crosslinking in CLAMs can be controlled by varying the calcium to alginate ratio; however, the choice of alginates used in the process also influences the ultimate extent of crosslinking. To understand how to select alginates to target crosslinking in CLAMs, we examined the roles of alginate molecular properties. A surprise finding was the formation of alginic acid in the CLAMs that is a consequence of simultaneous and rapid pH reduction and moisture removal that occurs during spray drying. Thus, spray dried CLAMs gelation is due to calcium crosslinking and alginic acid formation, and unlike external gelation methods, is insensitive to the molecular composition of the alginates. The ‘extent of gelation’ of spray dried CLAMs is influenced by the molecular weights of the alginates at saturating calcium concentrations. Alginate viscosity correlates with molecular weight; thus, viscosity is a convenient criterion for selecting commercial alginates to target gelation extent in CLAMs.
How alginate properties influence in situ internal gelation in Crosslinked Alginate Microcapsules (CLAMs) formed by spray drying

Tina Jeoh a*, Dana E. Wong a, Scott A. Strobel a, Kevin Hudnall a, Nadia R. Pereira a,b, Kyle A. Williams c, Benjamin M. Arbaugh a, Julia C. Cunniffe a and Herbert B. Scher a

Affiliation

aDepartment of Biological and Agricultural Engineering
University of California, Davis
Davis, CA 95616
USA

bLaboratory of Food Technology
Universidade Estadual do Norte Fluminense Darcy Ribeiro
Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602
BRAZIL

cMalvern Panalytical
117 Flanders Rd
Westborough, MA 01581
USA

Dana E. Wong: dewwong@ucdavis.edu
Scott A. Strobel: sastrobel@ucdavis.edu
Kevin Hudnall: kahudnall@ucdavis.edu
Nadia R. Pereira: nrpereira@ucdavis.edu, nadiar@uenf.br
Kyle Williams: kyle.williams@malvern.com
Benjamin M. Arbaugh: bmarbaugh@ucdavis.edu
Julia C. Cunniffe: jccunniffe@ucdavis.edu
Herbert B. Scher: scherfx@aol.com
Tina Jeoh: tjeoh@ucdavis.edu

* Corresponding Author

Tina Jeoh
Department of Biological and Agricultural Engineering
University of California, Davis
2044 Bainer Hall
One Shields Avenue
Davis, CA 95616
USA

tjeoh@ucdavis.edu

phone: +1 (530)752-1020
ABSTRACT

Alginates gel rapidly under ambient conditions and have widely documented potential to form protective matrices for sensitive bioactive cargo. Most commonly, alginate gelation occurs via calcium mediated electrostatic crosslinks between the linear polyuronic acid polymers. A recent breakthrough to form crosslinked alginate microcapsules (CLAMs) by in situ gelation during spray drying ("CLAMs process") has demonstrated applications in protection and controlled delivery of bioactives in food, cosmetics, and agriculture. The extent of crosslinking of alginites in CLAMs impacts the effectiveness of its barrier properties. For example, higher crosslinking extents can improve oxidative stability and limit diffusion of the encapsulated cargo. Crosslinking in CLAMs can be controlled by varying the calcium to alginate ratio; however, the choice of alginates used in the process also influences the ultimate extent of crosslinking. To understand how to select alginates to target crosslinking in CLAMs, we examined the roles of alginate molecular properties. A surprise finding was the formation of alginic acid in the CLAMs that is a consequence of simultaneous and rapid pH reduction and moisture removal that occurs during spray drying. Thus, spray dried CLAMs gelation is due to calcium crosslinking and alginic acid formation, and unlike external gelation methods, is insensitive to the molecular composition of the alginates. The ‘extent of gelation’ of spray dried CLAMs is influenced by the molecular weights of the alginates at saturating calcium concentrations. Alginate viscosity correlates with molecular weight; thus, viscosity is a convenient criterion for selecting commercial alginates to target gelation extent in CLAMs.
GRAPHICAL ABSTRACT

HIGHLIGHTS

- Crosslinked alginate microcapsules (CLAMs) formed in one step during spray drying
- Rapid moisture removal during spray drying promotes alginic acid formation in CLAMs
- Calcium crosslinking and alginic acid formation contribute to gelation in CLAMs
- Gelation extent in CLAMs is insensitive to alginate molecular composition
- Alginate molecular weight impact CLAMs gelation at saturating calcium concentration

KEYWORDS (3-6 words)

Crosslinking
Gelation
Viscosity
Spray drying
Crosslinked Alginate Microcapsules/Microencapsulation (CLAMs)
Alginic acid
1. INTRODUCTION

Alginate is a linear polyuronic acid derived from macroalgae and bacteria with useful industrial applications due to its ability to form reversible crosslinked matrices in the presence of divalent cations (Draget and Taylor, 2011; Lee and Mooney, 2012; Rehm, 2009).

Microencapsulation in crosslinked alginate provides long-term shelf stability and controlled delivery of bioactives in a broad array of industries. For example, encapsulation of pharmaceuticals in crosslinked alginate can facilitate drug delivery, wound healing and cell transplantation (Lee and Mooney, 2012; Sachan et al., 2009). Crosslinked alginate can protect oxygen sensitive ingredients, mask unwanted flavors and confer enteric delivery of nutrients and nutraceuticals in foods (Houghton et al., 2014; Santa-Maria et al., 2012; Strobel et al., 2016; Scott A. Strobel et al., 2020). Crosslinked alginate encapsulation can increase shelf stability and facilitate controlled release of Gram negative plant beneficial bacteria on seed or in soil for sustainable industrial agriculture (Rehm, 2009; Strobel et al., 2018). The success of encapsulation in alginate in these and other applications relies on being able to control the matrix properties by regulating gelation during formation.

Typically mediated by calcium, gelation by electrostatic crosslinking of alginates is rapid at physiological conditions, and reversible. Crosslinking imparts insolubility to the alginate matrix in water, but the resulting gel can easily dissolve in the presence of chelators that sequester calcium ions. Crosslinked alginates can be selective barriers, controlling exiting rates of encapsulated cargo or entering rates of moisture or oxygen. One effective handle to control alginate matrix barrier properties in both the dry and hydrated state is by regulating the extent of crosslinking (Strobel et al., 2019, 2018). Higher crosslinking extents can decrease swelling/water...
uptake and slow matrix erosion in water, thus minimizing diffusion losses of the encapsulated cargo (Aslani and Kennedy, 1996; Strobel et al., 2019; Wong et al., 2019).

Ion-mediated crosslinking of alginates can be achieved by internal or external gelation, where crosslinking extents can be controlled at the process level by varying calcium salt concentrations and alginate-calcium contact times (Hu et al., 2020). Commonly used gelation processes, however, require multiple steps, long processing times and specialized equipment (Sohail et al., 2011; Sugiura et al., 2005; Tu et al., 2005). Difficulties and cost of scaling the process limits the commercial use of crosslinked alginate encapsulation despite its wide research presence (Ching et al., 2017; S. A. Strobel et al., 2020). A recent breakthrough enabling in situ gelation during spray drying, however, paves the way for low-cost industrial-scale crosslinked alginate microcapsule (CLAMs) production (Jeoh-Zicari et al., 2017; S. A. Strobel et al., 2020).

The “CLAMs process” uses a calcium salt that is insoluble at the feed pH to prevent gelation before spray drying; when the finely divided suspension is spray atomized, a pH drop due to volatilization of the base in the formulation solubilizes the calcium salt and releases calcium ions to facilitate crosslinking of the alginates. Thus, the multi-step process of particle formation, crosslinking and drying is collapsed into a single, industrially ubiquitous spray drying operation (S. A. Strobel et al., 2020). Alginate gelation in CLAMs is controlled by the concentration of the calcium salt in the feed formulation (Strobel et al., 2019).

In addition to process controls, alginate properties are well-documented to impact its gelling propensity (Braccini and Pérez, 2001; Draget and Taylor, 2011; Hecht and Srebnik, 2016; Stokke et al., 1993). While alginates are commercially available for purchase, the alginate product is typically sold with little to no details of the molecular properties. The information
provided with commercial alginates is generally limited to its bulk viscosity in aqueous solutions and recommended use (e.g. Table 1). Commercial alginates are primarily extracted from macroalgae and processed to varying degrees (McHugh, 2003; Sachan et al., 2009), influencing the molecular size and composition of the alginate product (Beata Łabowska et al., 2019; McHugh et al., 2001). The ambiguity of the properties of alginates complicate the predictability of resulting CLAMs matrix properties.

The aim of this work was to examine how molecular properties of alginates impact crosslinking in CLAMs formed by in situ gelation during spray drying. While molecular composition impacts crosslinking in externally gelled alginates, we hypothesized that crosslinking in spray dried CLAMs may be limited by different factors. We characterized a selection of commercial alginates and examined the influence of molecular weight, size distribution and composition on the extent of crosslinking in CLAMs. The CLAMs were also examined by Fourier transformed infrared (FTIR) spectroscopy to confirm crosslinking. Ultimately, this work aimed to understand the appropriate criteria for selecting commercial alginates to influence the extent of crosslinking in CLAMs.

2. EXPERIMENTAL

2.1 Materials

Sodium alginate from Millipore Sigma (Cat# A1112) (LV), BASF (Hydagen 588P) (HV1), TIC (Algin 400) (HV2), and DuPont Danisco (GRINDSTED Alginate FD 155) (HV3) were used in this study (Table 1). Calcium phosphate, succinic acid, sodium citrate, glacial acetic acid, sodium carbonate, β-D-glucose, sodium bicarbonate, L-serine, sodium hydroxide,
ammonium hydroxide, hydrochloric acid, calcium carbonate, and methanol were purchased from Thermo Fisher. Schiff’s fuchsin sulfite reagent, sodium metabisulfate, periodic acid, anthrone, D-(-)-galacturonic acid, concentrated sulfuric acid, disodium 2,2-bicinchoninate (BCA), copper (II) sulfate, chloroform, 1-phenyl-3-methyl-5-pyrazolone (PMP), and D-(-)-mannuronic acid were purchased from Millipore Sigma. The polymannuronic acid (YP31737) and polyguluronic acid (YP03135) was obtained from Carbosynth Ltd. (Berkshire UK) at a minimum of 85% purity and 10% water content with an average molecular weight of 6 – 8 kDa.

Table 1: Commercially sourced alginates used in this study.

Alginate ID	Commercial Source and Name	Manufacturer informed characteristics and/or use
LV	Sigma A1112	Low viscosity
HV1	BASF Hydagen 588P	Thickening agent for cosmetic preparations
HV2	TIC-Algin ® 400	Medium viscosity: gelling agent for food
HV3	DuPont Danisco GRINDSTED ® Alginate FD155	Gelling agent for food

2.2 Methods

2.2.1 Characterization of Alginates

2.2.1.1 Alginate molecular weights

Commercial alginate samples were dissolved to 5 mg/mL in aqueous 0.05 M sodium sulfate at ambient temperature with gentle rocking overnight, and filtered through a 0.2 μm nylon syringe into autosampler vials. The molecular weight distributions of the alginate samples were determined by size exclusion chromatography with refractive index, in line viscometer, and
right angle/low angle light scattering detectors (OMNISEC SEC/GPC Malvern Panalytical).

Samples were separated in 0.05 M sodium sulfate as the mobile phase, using a set of 2 x A6000M 300x8mm columns, flow rate of 1.0 mL/min, 100 µL injection volume, column/detector temperature of 25°C, and autosampler temperature of 20°C.

2.2.1.2 Guluronic Acid to Mannuronic Acid (G/M) Ratio in Alginate Samples

Average G/M ratios for the alginates were determined from measured concentrations of guluronic (G) and mannuronic (M) acid residues in fully hydrolyzed samples. Alginate hydrolysis was conducted by two-step acid hydrolysis where 0.3 – 1.0 g of alginates were mixed with 3 mL of 72% sulfuric acid in glass pressure tubes in a 30°C water bath for 1 h, and stirred every 10 min. Subsequently, 84 mL of water was added to each tube before autoclaving at 121°C for an hour. A sugar recovery standard containing predetermined concentrations of glucose and galactose was processed in parallel to account for degradation losses. After cooling, 20 mL of DI water was added to the hydrolysate, then vacuum filtered through Gooch crucibles which had been dried overnight at 575°C. The hydrolysate was neutralized with calcium carbonate to pH 5-6, then filtered through 0.45 µm syringe filters and stored at 4°C.

The uronic acids in the filtered hydrolysates were tagged with 1-phenyl-3-methyl-5-pyrazolone (PMP) to increase the sensitivity by UV detection (Honda et al., 1989; Wang et al., 2015). A 500 µL sample of neutralized hydrolysate was mixed with 500 µL of 0.3 M sodium hydroxide and 600 µL of 0.5 M PMP (in methanol). After incubation for 1 h at 70°C and cooling, samples were re-neutralized with 500 µL of 0.3 M hydrochloric acid. Tagged samples were separated and extracted with three rounds of 2.5 mL chloroform. The aqueous layer
containing solubilized uronic acids was removed and filtered through 0.45 µm syringe filters before HPLC analysis.

Monomer concentrations in hydrolyzed alginate samples were analyzed by HPLC (Shimadzu Scientific Instruments, Columbia, MD) with a BioRad Aminex HPX-87P column (BioRad, Hercules, CA) and Carbo-P guard column deashing, at 0.6 mL/min pump rate, 80°C and filtered nanopure water mobile phase. Refractive index and PDA(UV) detectors monitored the sample retention times compared to tagged mannuronate standards in DI water between 0 µg/mL to 1 µg/mL.

2.2.1.3 Alginate Solution Density and Viscosity Measurements

Alginate solution density was determined as the ratio of the mass of 50 mL of alginate solution in a 50 mL volumetric flask to 50 mL volume. Alginate solution viscosities were measured using a Gilmont, size No. 3 Falling-Ball Viscometer (Cole-Parmer, Barrington, Illinois) with a size 3 glass or stainless steel ball according to manufacturer specifications.

2.2.2 Crosslinked Alginate Microcapsules (CLAMs) formation

2.2.2.1 CLAMs formed by internal gelation during spray drying

Spray-dried CLAMs were produced as previously described (Jeoh-Zicari et al., 2017. p.; Strobel et al., 2016). Feed suspensions were prepared by mixing calcium with succinic acid titrated to pH 5.6 or pH 8 with ammonium hydroxide, and alginites hydrated for ≥ 40 min. Succinic acid was at half the concentration of alginate. CLAMs using HV1, HV2 or HV3 alginites were made with a feed solution of 0.5% (w/w), while CLAMs using LV alginites were
at a feed solution of 2% (w/w). Feed suspensions contained mass ratios of 0.25, 0.125, 0.1, 0.083, or 0.05 calcium phosphate to alginites.

CLAMs were formed in a Büchi B-290 benchtop spray dryer (New Castle, DE) using an inlet temperature of 150°C, aspirator air flow at 35 m³/hr, feed peristaltic pump at 20% of the maximum, and air nozzle flow at 40 mm (Figure 1). Resulting dry powder samples were stored in desiccators until analysis.

Figure 1: Schematic of the spray-dried CLAMs process. A alginate formulation containing insoluble calcium and a weak acid titrated with a volatile base is atomized in a spray dryer to produce crosslinked alginate microcapsules (CLAMs) in one step. The solution pH drops upon volatilization of the base after atomization, solubilizing calcium to interact with and crosslink negatively charged alginites.
2.2.2 *Alginate crosslinking by external gelation*

External gelation of alginites was carried out by dripping a 1% solution of polymannuronates (PolyM), polyguluronates (PolyG) or varying ratios of PolyM and PolyG alginites at pH 5.8 into a solution of 0.25% calcium chloride in a beaker at room temperature (Hudnall, 2019). Alginate solutions were dripped from a burette into a slow and continuously stirred calcium chloride solution on a stir plate. The rate of dripping was controlled to form distinct drops into the solution. The final contents in the beaker was targeted to 0.5% alginate and a calcium to alginate ratio of 0.25.

The entire solution was poured into petri dishes and dried at 50°C for 48 hours in an oven. Dried solids were collected in 50 mL conical tubes with a small stir bar, and rotated for 2 h on a benchtop rotator to generate homogenous powders. The powders were stored in a desiccator at room temperature.

2.2.3 *Characterization of CLAMs*

2.2.3.1 *Extent of Cross-linking – Soluble Alginate Assay*

The extent of cross-linking in CLAMs and alginites crosslinked by external gelation was determined as previously described (Strobel et al., 2019). The extent of crosslinking is the percentage of alginites that remain insoluble when CLAMs are suspended in water under agitation for 2 h. The insoluble fraction was calculated from measurements of the solubilized alginate fraction relative to the total (soluble and insoluble) alginate present. Alginate concentrations were determined by periodic acid Schiff assay as described previously (Strobel et
CLAMs created with varying alginate sources were measured against standard curves of their respective alginate types.

2.2.3.2 Attenuated Total Reflectance (ATR) – FTIR Characterization of Alginates and CLAMs

ATR-FTIR spectra of sodium alginate, calcium phosphate, succinic acid and CLAMs were collected using a single bounce total reflectance attenuation (ATR) cell equipped with a diamond internal reflection element and DMCTA detector (PIKE Technologies GladiATR). The spectra were recorded on a Thermo Nicolet 6700 FTIR spectrometer (Thermo Scientific) in the absorption mode in the range of 600-4000 cm$^{-1}$, with 128 scans at a resolution of 4 cm$^{-1}$.

3. RESULTS AND DISCUSSION

3.1 The ‘extent of cross-linking’ in CLAMs formed by in situ internal gelation during spray drying

Crosslinked alginate microencapsulation by in situ internal gelation during spray drying (the ‘CLAMs process’) relies on pH-responsive solubility of calcium salts to allow ion-mediated gelling of alginates only under lower pH conditions after volatilization of the base upon spray atomization of the feed (Figure 1) (Jeoh-Zicari et al., 2017). One measure of the ‘extent of crosslinking’ achieved in the crosslinked alginate microcapsules (CLAMs) is the insoluble fraction of the powder in water (Santa-Maria et al., 2012; Strobel et al., 2018). For example, when a CLAMs sample is suspended in water and equilibrated under agitation, dissolution of 20% of alginates from the powder sample is taken as an indication that the remaining 80% of the
13 alginates were insoluble because of calcium crosslinking. Thus, in this example, the extent of crosslinking of the CLAMs sample is 80%. The extent of crosslinking assessed by this insolubility metric can be controlled by varying the calcium content (i.e. the calcium to alginate ratio) in the spray drying feed formulation (Strobel et al., 2019). Within a finite range, higher calcium loadings lead to greater extents of crosslinking (Strobel et al., 2019) (Figure 2).

The range and the maximum extents of crosslinking achievable by varying calcium loading in the feed, however, depends on the source of alginates used. For example, four commercially-sourced alginates (Table 1) resulted in different crosslinking extents under similar preparation conditions and calcium loading ranges (Figure 2). The alginate obtained from Sigma (LV, Table 1) exhibited a narrow range of 58 – 75% crosslinking for calcium/alginate ratios of 0.05 – 0.25. In contrast, for the same calcium/alginate ratios, the alginate from DuPont Danisco (HV3, Table 1) resulted in CLAMs with crosslinking extents of 33 to 100%. The BASF Hydagen alginate (HV1, Table 1) trended similarly to HV3 with a broad range of crosslinking.

![Figure 2: The extent of crosslinking measured as the % of insoluble alginates in CLAMs samples as a function of calcium/alginate ratios in the spray dryer feed. Error bars represent standard deviations of four replicates.](image)
from 33 – 94 %. The TIC Algin 400 alginate (HV2, Table 1) resulted in a crosslinking range of
58 – 96 %. Interestingly, for all four alginates, the extents of crosslinking plateaued at 0.125
calcium/alginate ratios, suggesting a saturation calcium loading within the parameters of this
study. This is also the case for the LV alginate despite only reaching 75 % crosslinking.

What influences an alginate’s potential to form calcium-mediated crosslinks? Average
polymer size, composition, and viscosity have all been demonstrated to impact the ability of
alginites to gel in the presence of multivalent ions (Draget and Taylor, 2011; Goh et al., 2012).
The general lack of available information on the properties of commercial alginates, however,
poses a challenge in achieving predictable extents of crosslinking in CLAMs.

3.2 Commercial alginate properties influencing crosslinking potential

The commercial alginates tested in these studies were all isolated from the cell walls of
marine macroalgae, but are marketed for various end-uses (Table 1). The algae source can
influence the composition of alginates such as the ratio of guluronates to mannuronates (G/M
ratio) (McHugh, 2003; Smidsrod and Skjakbraek, 1990); purification processing conditions can
influence polymer size and size distributions (Beata Łabowska et al., 2019; Gomez et al., 2009).
We measured these properties to assess their role in influencing crosslinking in the CLAMs
(Table 2).

Table 2: Properties of alginates used in this study (commercial source of alginates provided in Table 1).
Standard deviations in parentheses (number of replicates (n) for each measurement are given in the
footnotes). Similar superscript letters within each column signify no statistically significant differences
between sample means with a 95 % CI (p<0.05) by One-Way ANOVA with Tukey’s pairwise
comparisons.
Sample ID	M_w 1 (kDa)	Disperisty M_w/M_n 2	R_h 3 (nm)	Intrinsic viscosity 4 (dL/g)	Apparent viscosity at feed concentration (mPa*s) 5	pH 6	G/M ratio 7
LV	51 (0.3)	1.9 (0.003)	11 (0.03)	2.3 (0.009)	74 (0.4)	5.5	3a
HV1	149 (0.09)	1.6 (0.02)	27 (0.2)	9.3 (0.1)	26 (0.2)	6.4	3a
HV2	164 (0.4)	1.4 (0.02)	30 (0.01)	11.1 (0.05)	45 (0.3)	7.0	3a
HV3	173 (0.5)	1.4 (0.02)	29 (0.1)	10.6 (0.05)	37 (0.3)	6.3	3a

1Weight averaged molecular weight, M_w, determined by SEC with right angle light scattering.

2Dispersity determined as a ratio of M_w to the number averaged molecular weight (M_n).

3Hydrodynamic radius, R_h, is obtained by integrating under the curve calculated from the molecular weight (M) and intrinsic viscosity by Einstein’s viscosity equation: $[\eta]M = \frac{18\pi R_h^3}{N_A}$ at each data slice

4Intrinsic viscosity was measured by inline solution viscometry.

5LV at 2% (w/w), and HV1, HV2 and HV3 at 0.5% (w/w) in water, measured by falling ball viscometry (n=6). Apparent viscosities at varying solution concentrations given in supplementary information.

$^61\%$ solution in nanopure water (n=3).

7From HPLC analysis of M residues and total monomers of acid hydrolysates (see supplemental information) (n=8).

The (weight averaged) molecular weights of the alginates ranged from 51 – 173 kDa, within previously reported ranges for commercial alginates (Wedlock et al., 1986) (Table 2). The LV alginates (51 kDa) were three-folds smaller than the HV1, HV2 or HV3 alginates (149, 164, and 173 kDa, respectively). Correspondingly, the hydrodynamic radius of LV alginates of 11 nm was nearly 3-folds smaller than the ~ 30 nm of HV1, HV2 and HV3 alginates. CLAMs formed with LV1 alginates exhibited a maximum crosslinking extent of 75%, while HV1, HV2 and HV3 CLAMs achieved ≥ 94% crosslinking (Figure 2).

The maximum potential crosslinking extent appear to correlate positively with alginate molecular weights above saturation calcium content in the feed (Figure 3A). While it also
appears that narrower size range favors higher crosslinking extents (Figure 3B), decreasing dispersities trended strongly with increasing molecular weights ($R^2 = 0.94$, plot not shown), which precludes independent conclusions about the role of alginate size distribution on crosslinking from this sample set. The correlation between molecular weight and crosslinking only manifested at or above saturating calcium to alginate ratios. A possible explanation for the little to no correlation between molecular weights and crosslinking below saturation ratios of calcium in the formulation (Figure 3A) is because of fewer and more sparsely distributed CaHPO$_4$ salt crystals in each atomized droplet at lower concentrations in the feed. The CaHPO$_4$ used in this study has a broad size distribution ranging from ~0.1 - ~60 µm (Strobel et al., 2019).

Figure 3: The extent of crosslinking achieved in CLAMs at varying calcium to alginate ratios with respect to A) molecular weight and B) polydispersity of the alginites. Calcium to alginate ratios given in the legends. The R^2 values for linear regressions shown in the graphs are next to the corresponding legend.
Once the feed is atomized in the spray dryer, calcium dissolution and diffusion must occur within the few seconds residence time in the evaporation chamber of the spray dryer, where rapid moisture removal is occurring simultaneously. At low loadings, calcium crosslinking most likely only occurs between alginates in the immediate vicinity of the salt crystals. Thus in the CLAMs process, alginate molecular weight may only limit crosslinking at higher calcium loadings not dominated by dissolution, diffusion and drying kinetics.

3.3 The role of alginate composition on crosslinking in CLAMs

Polyguluronate (PolyG) segments of alginates preferentially electrostatically crosslink via calcium or other divalent cations in the “egg-box” conformation (Grant et al., 1973). Conversely, the more extended and ‘flatter’ chain configuration of polymannuronate (PolyM) segments is thought to disfavor calcium crosslinking (Braccini et al., 1999). While crosslinks between PolyG segments contribute to gel stiffness, PolyM segments along with mixed M G segments have been shown to moderate elasticity and contribute to overall chain associations (Hecht and Srebnik, 2016). The four commercial alginates had similar average ratios of G to M residues (G/M ratio ~ 3) (Table 2), though the molecular arrangement was not determined.

To study the contribution of G/M ratios and molecular arrangements to crosslinking, CLAMs were formed using varying ratios of PolyM and PolyG alginates (Hudnall, 2019). The expectation was that CLAMs with lower fractions of PolyG would exhibit less crosslinking. Two methods of CLAMs formation were tested – the conventional external gelation method where solutions of alginates were dripped into a calcium chloride bath then dried, and the CLAMs process. Indeed, by external gelation, only 5 ± 1% crosslinking was achieved with PolyMs while
93 ± 1% was seen for PolyGs (Figure 4A). Dripping PolyM alginates into a calcium bath resulted in minimal gelation, while dripping PolyG alginates rapidly formed stiff gels. When the CLAMs were formed by spray drying however, no significant differences in crosslinking between PolyM and PolyG CLAMs were found (50 ± 12% and 65 ± 13% for PolyM and PolyG CLAMs, respectively) (Figure 4A). Contrary to expectations, PolyM CLAMs formed by spray drying were significantly gelled and insoluble in water.

Figure 4: Crosslinking as a function of polyguluronate (PolyG) fraction. A) Crosslinking of external gelation formed and spray-dried powders with 100% PolyM or 100% PolyG (n=3); B) Crosslinking of spray dried CLAMs formed with ratios ranging from PolyG fraction of 0 (0:1 PolyG to PolyM) to 1 (1:0 PolyG to PolyM). The difference in crosslinking between PolyG = 0 (100 % PolyM) and PolyG = 1 (100% PolyG) cross-linking was not found to be statistically significant (p-value = 0.0563).

In fact, when comparing crosslinking extent for CLAMs made entirely of PolyM, or entirely of PolyG, or varying ratios of PolyG to PolyM, no statistical difference was found (Figure 4B). This is a surprising result, because if the microcapsule wall was composed mostly of calcium ion-mediated linkages, the PolyM chains should show essentially no ability to gel.
3.4 Simultaneous \textit{in situ} gelation and drying facilitates calcium crosslinking and acid gel formation

The FTIR spectra of the alginates and the spray dried CLAMs offered key insights into alginate interactions in CLAMs. In the 1200 – 1800 cm\(^{-1}\) wavenumber region of the FTIR spectra, LV and HV3 alginates, as well as the CLAMs formed with these alginates absorbed strongly at 1595 cm\(^{-1}\) (peak 2) and 1410 cm\(^{-1}\) (peak 4) due to the symmetric and asymmetric stretching of the ionized carboxylate. The presence of COO\(^-\) groups are expected in the sodium alginates (\(-\text{COO}^\text{- Na}^+\)) (Xiao et al., 2014), and in electrostatically crosslinked CLAMs (\(-\text{COO}^-\text{Ca}^{++}\)). In the CLAMs spectra (but absent in the alginate spectra) is an additional strongly absorbing peak centered at 1710 cm\(^{-1}\) (peak 1) indicating the presence of carboxylic acid. Under high acid concentrations and as the pH of the surrounding solution approaches the pK\(_a\) of alginates, protonation of the carboxyl groups occurs. The FTIR spectra of CLAMs indicate that a fraction of the carboxyl groups become protonated during formation; i.e., alginic acid is formed.
While the formulation also contained succinic acid, the absorption maximum of its carbonyl peak is at 1685 cm\(^{-1}\) and offset from that of the CLAMs sample (supplementary information).

Calcium-mediated electrostatic crosslinking in spray dried CLAMs occur when the pH decreases in each atomized droplet to solubilize the calcium salt. The pH drop is due to the volatilization of the base, and the pH in the droplet is buffered by the pK\(_a\) of a weak acid. When the spray dried powder is dissolved in water, the supernatant pH poises near the pK\(_a\) of the weak acid, confirming the role of the acid in the particles. The weak acid, in this case succinic acid (pK\(_{a,2}\) = 4.2), was chosen to maintain the pH above the alginate pK\(_a\) (~3.5) such that the polyuronates are negatively charged and available for electrostatic associations with divalent calcium ions. In the spray drying process, pH decrease and salt dissolution occur at the same time that the droplets are rapidly drying and shrinking (in a matter of seconds in the bench scale).
We speculate that the rapid removal of water from the droplets result in localized regions of highly concentrated protons; i.e. while the average pH remain near the pKₐ of the acid, there may be localized regions where pH << pKₐ, simply due to water removal. Additionally, hydrostatic pressures by rapid particle shrinkage facilitate chain-chain associations that do not occur when alginate solutions are dripped or sprayed into calcium baths. Taken together, we speculate that during spray dry CLAMs formation, in addition to calcium crosslinking, insoluble alginic acids form.

3.5 Linking alginate molecular property with bulk property influencing gelation in CLAMs

The water-insoluble fraction of CLAMs formed by in situ internal gelation during spray drying is due to both calcium crosslinked alginates and alginic acids. Thus, for spray dried CLAMs, the ‘extent of gelation’ is a more appropriate characterization of the insoluble fraction that accounts for both gelation mechanisms. At or above saturating calcium ratios, the extent of gelation of CLAMs can be controlled on the basis of the alginate molecular weights. However, commercial alginates rarely include molecular weight information; instead, bulk solution viscosities are more commonly provided. The molecular weight of polymers is typically closely correlated to the viscosity of the polymer solution (Harland, 1952). The alginates in this study were no exception where both the intrinsic viscosity and the apparent viscosities trended with
molecular weight (Figure 6). Thus, one can use viscosity as an alginate selection criterion to target higher or lower gelation extents in CLAMs.

Figure 6: Intrinsic viscosity of alginates (primary axis) and apparent viscosities of alginate solutions at varying concentrations (secondary axis) plotted with respect to average molecular weights. \(R^2 \) values of regression lines are shown next to the corresponding legend. See supplementary information for additional information on alginate solution viscosities.

4. CONCLUSIONS

The purpose of this work was to understand limiting factors controlling crosslinking extents in CLAMs formed by in situ gelation during spray drying. While molecular weights, alginate size distributions and molecular compositions were explored, the surprise finding was the formation of alginic acids in CLAMs. In conventional external gelation methods, where alginate solutions are dripped into calcium salt solutions, alginic acids do not form at the typical neutral pHs used. In the case of spray-dried CLAMs, however, small aliquots of alginates, calcium salt and organic acids are concentrated rapidly, giving rise to the possibility of localized spikes in proton concentrations to protonate the alginates. Alginic acids, being insoluble in water, thus likely contribute to the measure of the extent of crosslinking in spray-dried CLAMs. Moreover, the combination of calcium crosslinking and alginic acid formation in CLAMs was
not influenced by the molecular composition of alginates. It thus appears that while conventional
external gelation methods require careful consideration of the alginate composition to control the
extents of crosslinking achieved, molecular composition is not an important property for the
insolubility of spray-dried CLAMs. Rather, ‘crosslinking’ or more accurately the ‘gelation’ of
spray-dried CLAMs, can best be controlled by careful selection of alginate molecular weights at
saturating calcium salt concentrations. As molecular weights and viscosity of alginates are
closely correlated, the selection criterion for commercial alginates to influence gelation in the
CLAMs process is viscosity.

5. ACKNOWLEDGMENTS

The authors acknowledge Dr. Sanjai Parikh for the use of his ATR-FTIR, and Ted
Diesenroth and Rupa Darji at BASF for valuable discussions. This work was partially supported
by BASF (CARA). Scott Strobel was supported the Agriculture and Food Research Initiative
grant 2018-67012-28029 from the USDA National Institute of Food and Agriculture.

6. REFERENCES

Aslani, P., Kennedy, R.A., 1996. Studies on diffusion in alginate gels. I. Effect of cross-linking
with calcium or zinc ions on diffusion of acetaminophen. J. Controlled Release 42, 75–82.
Beata Łabowska, M., Michalak, I., Detyna, J., 2019. Methods of extraction, physicochemical
properties of alginates and their applications in biomedical field – a review. Open Chem.
17, 738–762. https://doi.org/10.1515/chem-2019-0077
Braccini, I., Grasso, R.P., Pérez, S., 1999. Conformational and configurational features of acidic
polysaccharides and their interactions with calcium ions: a molecular modeling
investigation. Carbohydr. Res. 317, 119–130. https://doi.org/10.1016/S0008-6215(99)00062-2
Braccini, I., Pérez, S., 2001. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2, 1089–1096. https://doi.org/10.1021/bm010008g

Ching, S.H., Bansal, N., Bhandari, B., 2017. Alginate gel particles—A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 57, 1133–1152. https://doi.org/10.1080/10408398.2014.965773

Draget, K.I., Taylor, C., 2011. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 25, 251–256. https://doi.org/10.1016/j.foodhyd.2009.10.007

Goh, C.H., Heng, P.W.S., Chan, L.W., 2012. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 88, 1–12. https://doi.org/10.1016/j.carbpol.2011.11.012

Gomez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A., 2009. Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371. https://doi.org/10.1016/j.ijbiomac.2009.02.005

Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D., 1973. Biological Interactions Between Polysaccharides and Divalent Cations - Egg-Box Model. FEBS Lett. 32, 195–198.

Harland, W.G., 1952. Relation between intrinsic viscosity and degree of polymerization. Nature 667.

Hecht, H., Srebnik, S., 2016. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 17, 2160–2167. https://doi.org/10.1021/acs.biomac.6b00378

Honda, S., Akao, E., Suzuki, S., Okuda, M., Kakehi, K., Nakamura, J., 1989. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal. Biochem. 180, 351–357. https://doi.org/10.1016/0003-2697(89)90444-2

Houghton, D., Wilcox, M.D., Brownlee, I.A., Chater, P., Seal, C.J., Pearson, J.P., 2014. Method for quantifying alginate and determining release from a food vehicle in gastrointestinal digesta. Food Chem. 151, 352–357. http://dx.doi.org/10.1016/j.foodchem.2013.11.070

Hu, M., Zheng, G., Zhao, D., Yu, W., 2020. Characterization of the structure and diffusion behavior of calcium alginate gel beads. J. Appl. Polym. Sci. 137, 48923. https://doi.org/10.1002/app.48923

Hudnall, K., 2019. Cross-linking of polymannuronate during spray-drying to form microcapsules (Master of Science). University of California, Davis.

Jeoh-Zicari, T., Scher, H., Santa-Maria, M., Strobel, S., 2017. Spray Dry Method for Encapsulation of Biological Moieties and Chemicals in Polymers Cross-Linked by Multivalent Ions for Controlled Release Applications. US9700519B2.

Lee, K.Y., Mooney, D.J., 2012. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37, 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

McHugh, D. J., 2003. FAO Fisheries Technical Paper 441: A guide to the seaweed industry, in: Food and Agriculture Organization of the United Nations. Presented at the Food and Agriculture Organization of the United Nations, Rome, Italy.
McHugh, D.J., Hernandez-Carmona, G., Arvizu-Higuera, D.L., Rodriguez-Montesinos, Y.E., 2001. Pilot plant scale extraction of alginates from Macrocystis pyrifera 3. Precipitation, bleaching and conversion of calcium alginate to alginic acid 13, 471–479.

Rehm, B.H.A. (Ed.), 2009. Alginates: Biology and Applications, Microbiology Monographs. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92679-5

Sachan, N.K., Pushkar, S., Jha, A., Bhattacharya, A., 2009. Sodium alginate: the wonder polymer for controlled drug delivery. J. Pharm. Res. 9.

Santa-Maria, M., Scher, H., Jeoh, T., 2012. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying. J Microencapsul 29, 286–95. https://doi.org/10.3109/02652048.2011.651494

Smidsrod, O., Skjak-Bræk, G., 1990. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 8, 71–78.

Sohail, A., Turner, M.S., Coombes, A., Bostrom, T., Bhandari, B., 2011. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol. 145, 162–168. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007

Stokke, B.T., Smidsrod, O., Zanetti, F., Strand, W., Skjåk-Bræk, G., 1993. Distribution of uronate residues in alginate chains in relation to alginate gelling properties -- 2: Enrichment of fl-D-mannuronic acid and depletion of a-L-guluronic acid in sol fraction. Carbohydr. Polym. 21, 39–46.

Strobel, S.A., Allen, K., Roberts, C., Jimenez, D., Scher, H.B., Jeoh, T., 2018. Industrially-Scalable Microencapsulation of Plant Beneficial Bacteria in Dry Cross-Linked Alginate Matrix. Ind. Biotechnol. 14, 138–147. https://doi.org/10.1089/ind.2017.0032

Strobel, Scott A., Hudnall, K., Arbaugh, B., Cunniffe, J.C., Scher, H.B., Jeoh, T., 2020. Stability of Fish Oil in Calcium Alginate Microcapsules Cross-Linked by In Situ Internal Gelation During Spray Drying. Food Bioprocess Technol. 13, 275–287. https://doi.org/10.1007/s11947-019-02391-y

Strobel, S. A., Knowles, L., Nitin, N., Scher, H.B., Jeoh, T., 2020. Technoeconomic Analysis of Industrial-Scale Microencapsulation of Bioactives in Cross-Linked Alginate. J. Food Eng. 266. https://doi.org/10.1016/j.jfoodeng.2019.109695

Strobel, S.A., Scher, H.B., Nitin, N., Jeoh, T., 2019. Control of physicochemical and cargo release properties of cross-linked alginate microcapsules formed by spray-drying. J. Drug Deliv. Sci. Technol. 49, 440–447. https://doi.org/10.1016/j.jddst.2018.12.011

Strobel, S.A., Scher, H.B., Nitin, N., Jeoh, T., 2016. In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocoll. 58, 141–149. https://doi.org/10.1016/j.foodhyd.2016.02.031

Sugiura, S., Oda, T., Izumida, Y., Aoyagi, Y., Satake, M., Ochiai, A., Ohkohchi, N., Nakajima, M., 2005. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26, 3327–3331. https://doi.org/10.1016/j.biomaterials.2004.08.029

Tu, J., Bolla, S., Barr, J., Miedema, J., Li, X., Jasti, B., 2005. Alginate microparticles prepared by spray–coagulation method: Preparation, drug loading and release characterization. Int. J. Pharm. 303, 171–181. https://doi.org/10.1016/j.ijpharm.2005.07.008
Wang, H., Zhao, J., Li, D., Song, S., Song, L., Fu, Y., Zhang, L., 2015. Structural investigation of a uronic acid-containing polysaccharide from abalone by graded acid hydrolysis followed by PMP-HPLC–MSn and NMR analysis. Carbohydr. Res. 402, 95–101. https://doi.org/10.1016/j.carres.2014.10.010

Wedlock, D.J., Fasihuddin, B.A., Phillips, G.O., 1986. Comparison of molecular weight determination of sodium alginate by sedimentation-diffusion and light scattering. Int. J. Biol. Macromol. 8, 57–61. https://doi.org/10.1016/0141-8130(86)90072-3

Wong, D.E., Cunniffe, J.C., Scher, H.B., Jeoh, T., 2019. Controlling swelling and release of hyaluronic acid during aqueous storage by in situ cross-linking during spray drying with alginate. bioRxiv 679589. https://doi.org/10.1101/679589

Xiao, Q., Gu, X., Tan, S., 2014. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chem. 164, 179–184. https://doi.org/10.1016/j.foodchem.2014.05.044
Supplementary Information

How alginate properties influence in situ internal gelation in Crosslinked Alginate Microcapsules (CLAMs) formed by spray drying

Tina Jeoh a*, Dana E. Wong a, Scott A. Strobel a, Kevin Hudnall a, Nadia R. Pereira a,b, Kyle A. Williams c, Benjamin M. Arbaugh a, Julia C. Cunniffe a and Herbert B. Scher a

Affiliation
a Department of Biological and Agricultural Engineering
University of California, Davis
Davis, CA 95616
USA

b Department of Food Technology
Universidade Estadual do Norte Fluminense
BRAZIL

Mc Malvern Panalytical
117 Flanders Rd
Westborough, MA 01581
USA

Dana E. Wong: dewwong@ucdavis.edu
Scott A. Strobel: sastrobel@ucdavis.edu
Kevin Hudnall: kahudnall@ucdavis.edu
Nadia R. Pereira: nrpereira@ucdavis.edu, nadiar@uenf.br
Kyle Williams: kyle.williams@malvern.com
Benjamin M. Arbaugh: bmarbaugh@ucdavis.edu
Julia C. Cunniffe: jccunniffe@ucdavis.edu
Herbert B. Scher: scherfx@aol.com
Tina Jeoh: tjeoh@ucdavis.edu

* Corresponding Author
Tina Jeoh
Department of Biological and Agricultural Engineering
University of California, Davis
2044 Bainer Hall
One Shields Avenue
Davis, CA 95616
USA
tjeoh@ucdavis.edu
phone: +1 (530)752-1020
S1. Apparent viscosities of commercial alginates

Apparent viscosities of solutions of commercial alginates (Table 1 in main text) at varying concentrations were measured by falling ball viscometry (Figure S. 1). Overall, solution viscosity increased with increasing concentrations of alginate in water. LV alginate, sold as a “low viscosity” alginate by the manufacturer, indeed exhibited the lowest viscosity at all concentrations between 0.5 % and 4 % in water relative to the other alginates. For example, at a concentration of 0.5 %, LV exhibited a viscosity of 6 ± 0.5 mPa*s compared to 45 ± 0.3 mPa*s of HV2, the highest viscosity at this concentration. HV3 had the highest viscosity at a narrow margin over that of HV2 at all concentrations. In fact, viscosity for HV2 and HV3 could only be determined up to 1.5 % because higher concentrations exceeded the range maximum of the falling ball viscometer.

![Alginate Viscosity Graph](image)

Figure S. 1: Alginate viscosity by source determined by falling ball viscometry. Measurements were performed on 0.5, 1, 1.5, 2, and 4% (w/w) hydrated sodium alginate solutions in water and represent n = 6 over two different days.
S2. Molecular weight reduction of alginates by partial acid hydrolysis

The HV1 and HV3 alginates (10% solutions) were partially hydrolyzed with 2 M sulfuric acid under agitation at room temperature to produce alginates of a range of smaller molecular sizes. The hydrolysis reactions were stopped after 30, 60, 90, and 120 min by neutralization to pH 7 with sodium carbonate. Over the course of 2 hours of acid hydrolysis, the molecular weights of HV1 and HV3 were reduced from 149 to 116 kDa and 172 to 145 kDa, respectively (Figure S. 2A). Consequently, the intrinsic viscosities and hydrodynamic radii of the two alginates were also reduced by acid hydrolysis (Figure S. 2B and D). While the dispersities of the alginates were narrowed by the acid treatment, the majority of the change occurred within the first 30 minutes of the reaction, where dispersities of HV1 and HV3 dropped from 1.6 to 1.3, and 1.4 to 1.2, respectively. The molecular weight analysis from light scattering coupled with refractive index detection accounted for 42 ± 3 % and 38 ± 4 % of the alginates in the sample;

![Graphs showing molecular weight, intrinsic viscosity, dispersity, and hydrodynamic radii over hydrolysis time for HV1 and HV3 alginates.](image)

Figure S. 2: The impact of acid hydrolysis over varying times A) molecular weight, B) intrinsic viscosity, C) dispersity, and D) hydrodynamic radii of two commercial alginates. Lines are drawn to guide the eye. Information on HV1 and HV3 alginates are given in Tables 1 and 2 in the main text. Partially hydrolyzed alginate samples were diluted to 4 mg/mL in 0.05 M sodium sulfate for these analyses.
i.e. significant fractions of the alginates were not accounted for in the molecular weight analysis, possibly due to degradation in the hydrolysis process.

S3. Crosslinking in CLAMs formed by partially hydrolyzed alginates

CLAMs were produced from partially hydrolyzed alginates in the same manner as described in the main text using commercial alginates, with a CaHPO$_4$ to alginate ratio of 0.125 and feed alginate concentration of 0.5% (w/w). The expectation was that reducing the molecular weights of the alginates would reduce the extents of crosslinking achieved in the CLAMs. Moreover, if molecular weight is the limiting factor in crosslinking, that the reduction would follow a generally linear trend at saturating calcium to alginate ratios as suggested in (Figure 3, main text). Indeed, partial hydrolysis of the alginate samples did reduce crosslinking in the CLAMs (Figure S. 3). However, the extents of crosslinking were reduced from nearly 90 % to ~20 %, far exceeding expectations set by trends in Error! Reference source not found.A (in the main text). As the extent of crosslinking in this study is measured as the insoluble fraction of the CLAMs in water, a possible contribution to the low extents of crosslinking is simply the dissolution of the smaller molecular weight fraction (~60%) in both sets of partially hydrolyzed alginate samples. Another possible explanation is the presence of an excess of sodium sulfate in the partially hydrolyzed alginate samples from the neutralization of sulfuric acid that prevented effective calcium crosslinking. In scanning electron micrographs (SEMs), the CLAMs formed with the partially hydrolyzed alginates appeared extensively damaged and hollow, which is highly uncharacteristic of spray dried CLAMs (Strobel et al., 2019b, 2016) (Figure S. 4). Despite the possibility of the interference to crosslinking, the CLAMs formed with partially hydrolyzed alginates had ~20 % insoluble fraction.
S4. SEMs of CLAMs formed using partially hydrolyzed HV1 and HV3 alginates

CLAMs have previously been described as having a ‘deflated ball’ or ‘bowl’ shaped morphology when formed without cargo (Strobel et al., 2019, 2016). The bowl shape of empty CLAMs is hypothesized to be due to rapid skin formation at the droplet interface, followed by collapse of the skin as internal moisture evaporates. Typical spray dried CLAMs have neither exhibited blowholes, nor appeared to be brittle. In contrast, CLAMs produced from the partially hydrolyzed alginates generated in this study appeared as hollow structures exhibiting significant fracturing (Figure S. 4).

Figure S. 3: The extents of crosslinking achieved in (0.125 calcium to alginate) CLAMs using partially hydrolyzed alginates plotted with respect to the molecular weights. Lines were drawn to guide the eye. Linear fit to the extent of crosslinking as a function of molecular weight for 0.125 CaHPO₄/alginate ratio CLAMs in Figure 3A of the main text is also shown here (solid line).
Comparing the FTIR spectra of CLAMs, succinic acid and CaHPO₄

The FTIR spectra of CLAMs exhibit a peak centered at 1710 cm⁻¹ suggesting the presence of alginic acids in the sample. The CLAMs formulation contains succinic acid that also has a carboxylic acid functionality. To confirm that the peak assigned to alginic acid in CLAMs is not due to the presence of succinic acid, the FTIR spectra for the succinic acid used in the formulation was collected and overlaid (Figure S. 5). The carbonyl peak associated with succinic acid absorbs maximally at 1685 cm⁻¹ and is offset from that of the carbonyl peak of the CLAMs sample. Moreover, the relative magnitude of the peaks in the succinic acid spectra compared to those of the CLAMs spectra suggest that the succinic acid contribution to the overall CLAMs spectra is small. We thus conclude that the 1710 cm⁻¹ absorption peak in the CLAMs spectra is...
unique to CLAMs and not a contribution of the succinic acid in the formulation. The FTIR spectra of CaHPO₄ is also overlaid in Figure S. 5 for reference.

![Figure S. 5: Overlay of FTIR spectra of HV3 CLAMs, succinic acid and CaHPO₄.](image)

S6. References

Strobel, S.A., Scher, H.B., Nitin, N., Jeoh, T., 2019. Control of physicochemical and cargo release properties of cross-linked alginate microcapsules formed by spray-drying. Journal of Drug Delivery Science and Technology 49, 440–447. https://doi.org/10.1016/j.jddst.2018.12.011

Strobel, S.A., Scher, H.B., Nitin, N., Jeoh, T., 2016. In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocolloids 58, 141–149. http://dx.doi.org/10.1016/j.foodhyd.2016.02.031
