Research of 5 extracts of wild Amur grape *Vitis amurensis* Rupechr. and identification of its polyphenolic composition by tandem mass spectrometry (HPLC-MS / MS)

Mayya P. Razgonova¹,²*, Alexander M. Zakharenko ¹,², Irina V. Derbush¹, Andrey S. Sabitov¹, and Kirill S. Golokhvast¹,²,³,⁴

¹N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya, 42-44, 190000 Saint-Petersburg, Russian Federation
²Far Eastern Federal University, Sukhanova, 8, 690950 Vladivostok, Russian Federation
³Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio, 7, 690041 Vladivostok, Russian Federation
⁴Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk

Abstract. *Vitis amurensis* Rupechr contains a large number of polyphenolic compounds which are biologically active components. For the most efficient and safe extraction supercritical carbon dioxide was used. In this work, for the first time, a comparative metabolomic study of biologically active substances of wild grapes collected from five different places of the Primorsky and Khabarovsk territories is carried out. To identify target analytes in ethanol extracts of grape berries, high performance liquid chromatography (HPLC) was used in combination with an amaZon SL ion trap (manufactured by BRUKER DALTONIKS, Germany) equipped with an ESI electrospray ionization source in negative and positive ion modes. The mass spectrometer was used in the scan range m/z 100 - 1.700 for MS and MS / MS. Used fragmentation of the 4th order. Primary mass spectrometric results showed the presence of 89 biologically active compounds corresponding to the species *V. amurensis*, moreover, salvianolic acids F, D and G, oleanolic, ursolic, myristoleic acids, berberinicin, mearisetin, esculin, nevadensin, stigmasterol, fucosterol, phlorizin, L-tryptophan identified for the first time in *V. amurensis*.

1 Introduction

Researchers attribute the appearance of the first representatives of the *Vitaceae* family, belonging to the genus *Vitis*, to the Upper Cretaceous period, when there were already types of plants that were very similar in leaves to vines. The absence of seeds does not allow, however, to have complete confidence in their belonging to the genus *Vitis* [1, 2]. To these types, researchers include the *Vitis dakotana* Berry vine found in the Upper Cretaceous
sediments in Harding County in South Dakota, which is very similar in appearance to modern vines [3, 4].

The evolution of grape plants approaching the cultivated vine, judging by the fossil finds, took place especially intensively in Central and Southern Europe during the second half of the Tertiary period and then especially in the Quaternary period. On the territory of Russia, quite a lot of finds of fossils are also known belonging to the genera *Cissites, Ampelopsis, Parthenocissus* and especially to the genus *Vitis*: *V. sachalinensis* Krysht. and *V. crenata* Heer on Sakhalin, *V. teutonica* A. Br. – near Taganrog and on the Irtysh River, as well as *V. praevinifera* Sap. - on the Krynka river. All these data show that the evolution of the vine on the territory of Russia proceeded from ancient times. And now in Russia in many areas wild grapes *V. sylvestris* Gmel grow [5, 6, 7].

Very little information is available about the culture of East Asian grape varieties. *V. lanata* Roxb is cultivated in eastern India. and *V. tomentosa* Heyne, in Japan and in Korea – *V. Thunbergii* Sieb. et Zucc. called *V. Seiboldii* hort [8]. More complete information is available regarding *V. amurensis* Rupr., which was first introduced into the culture by I.V. Michurin. In his work "Results of half a century of work" I.V. Michurin describes four forms of *V. amurensis* Rupr., which were isolated in the Far East [9, 10].

For the isolation of biologically active substances, ripe fruits, fruit skins, combs, leaves, seeds, vine bark, red grape wine are used. Fruits contain 65-85% water, 10-33% sugar (glucose and fructose), phlobaphene, gallic acid, quercetin, enin, glycosides - monodelphinidin and didelphinidin, acids (malic, silicic, salicylic, phosphoric, tartaric, citric, etc.) pectin and tannins, potassium, magnesium, calcium, manganese, cobalt, iron and vitamins: B1, B2, Ba, B12, A, C, P, PP, folic acid, and enzymes.

The dominant class of biologically active compounds of fruits, and especially grape ridges, are bioflavonoids and, in particular, the so-called complexes of oligomeric proanthocyanidins or condensed tannins, which are polymeric forms of flavonoids from the group of catechins [11].

In European medicine, until recently, grapes were widely used as a means of therapy and rehabilitation for a wide range of diseases: chronic recurrent inflammatory processes, tuberculosis, kidney disease, arterial hypertension, etc.

The aim of this work was a comparative metabolomic study of biologically active substances of wild grapes harvested in five different places in the Russian Far Eastern taiga in the Primorsky and Khabarovsk territories. High performance liquid chromatography (HPLC) in combination with a BRUKER DALTONIKS ion trap (tandem mass spectrometry) was used to identify target analytes in extracts. This paper presents a detailed study of the metabolomic composition of grape juice from fruits taken from five habitats of *V. amurensis* in the Far East: Pakhtusov Islands and Rikord Island (Peter the Great Bay, Sea of Japan), the vicinity of Artem (Primorsky Territory), the vicinity of the river Arsenyevka (Primorsky Territory), environs of Vyazemsky (Khabarovsk Territory).

2 Materials and methods

2.1 Materials

The object of the study was the berries of the wild grape *V. amurensis*, collected in the floodplain of the Arsenyevka River, Primorsky Territory (N. 44 ° 52'18 ”, E 133 ° 35'12”; brown-gley bleached soils) in the vicinity of Vyazemsky, Khabarovsk Territory (N47 ° 32'15 ”, E 134 ° 45'20”; podzolic-brown forest heavy loamy soils), in the vicinity of Artem, Primorsky Territory (St. lat. 43 ° 21'34 ”, E 132 ° 11'19”; yellow-brown earth soils), on Rikord Island, Peter the Great Bay (N 42 ° 52'54 ”, E 131 ° 40'06 ”; yellow-brown earth
soils), on Pakhtusov Islands, Peter the Great Bay (N 42 ° 53’57”, E 131 ° 38’45”; yellow-
brown soil). The grapes were harvested at the end of August and September 2020. All
samples morphologically corresponded to the pharmacopoeial standards of the State
Pharmacopoeia of the Russian Federation [12].

2.2 Methods

2.2.1 Fractional maceration
To obtain highly concentrated extracts, fractional maceration was applied. In this case, the
total amount of the extractant (ethyl alcohol of reagent grade) is divided into 3 parts and is
consistently infused with grapes with the first part, then with the second and third. The
infusion time of each part of the extractant was 7 days.

2.2.2 High performance liquid chromatography
To perform the separation of multicomponent mixtures, a Shimadzu LC-20 Prominence
HPLC high pressure liquid chromatograph (Shimadzu, Japan) was used, equipped with a UV
detector and a Shodex ODP-40 4E reverse phase column. The gradient elution program is as
follows: 0.0 – 4 min, 100% CH₃CN; 4 - 60 min, 100% – 25% CH₃CN; 60 - 75 min, 25% –
0% CH₃CN; control wash 75 - 120 min 0% CH₃CN. All HPLC analysis was done with an
SPD-20A UV-VIS detector (Kanda-Nishikicho 1-chrome, Shimadzu, Chiyoda-ku, Tokyo,
Japan) at 230 ηm and 330 ηm; temperature 17 °C. The injection volume was 1 ml.

2.2.3 Tandem mass spectrometry
Mass spectrometric data were obtained using an amaZon SL ion trap (manufactured by
BRUKER DALTONIKS, Germany) equipped with an ESI electrospray ionization source in
negative and positive ion modes. The optimized parameters are obtained as follows:
ionization source temperature: 70 °C, gas flow: 4 L / min, nebulizer gas (nebulizer): 7.3 psi,
capillary voltage: 4500 V, end plate bend voltage: 1500V, fragmentary: 280V, collision
energy: 60 eV. The mass spectrometer was used in the scan range m / z 100 – 1.700 for MS
and MS / MS. Used fragmentation of the 4th order.

3 Research results
Clarification of the metabolomic composition is an extremely important result in the system
of biochemical analysis. In this work, the HPLC-MS / MS method was used with additional
ionization and analysis of fragmented ions. High-precision mass spectrometric data were
recorded on an AMAZON SL BRUKER DALTONIKS ion trap equipped with an ESI source
in the negative / positive ion mode. A total of 300 peaks of the isolated target analytes were
found on the ion chromatogram (Fig. 1).
Fig. 1. Distributed graph of tandem mass spectrometry of the analyzed target analytes of the EtOH extract of *V. amurensis* (Vyazemsky, Khabarovsk Territory), represented by an ion chromatogram (Brown line – graph of the intensity of the signal of positive ions; blue line – graph of the intensity of the signal of negative ions; black line – total intensity of positive ions; blue line – total intensity of negative ions).

Based on the measurement results, a unified system table of molecular masses and fragmented ions of target analytes isolated in extracts of *V. amurensis* was compiled. (Table 1).

Table 1. Metabolome analysis of biologically active substances isolated from extracts of *V. amurensis*

№	Identification	Formula	Observed mass [M-H]-	Observed mass [M+H]+	MS/MS Stage 1 fragmentation	MS/MS Stage 2 fragmentation	MS/MS Stage 2 fragmentation	References	
1	Malic acid	C₄H₆O₅	133	115				[22, 32, 57, 66]	
2	Tartaric acid	C₄H₆O₆	149	131				[32, 66]	
3	Umbelliferone	C₁₉H₉O₅	161	115				[29, 36]	
4	*p*-Coumaric acid	C₉H₇O₃	165	146	119			[13, 21, 22, 26, 29, 46]	
5	Gallic acid	C₁₇H₁₀O₇	171	126				[13, 20, 29, 36, 53]	
6	Indole-3-carboxylic acid	C₁₀H₉NO₂	176	130				[50]	
7	Esculetin	C₁₆H₁₂O₅	179	133	115			[29, 71]	
8	Caffeic acid	C₁₅H₁₀O₄	179	133				[13, 15, 29, 46, 55]	
9	Citric acid	C₇H₆O₇	191	111; 173; 143; 127				[42, 57, 59, 66]	
10	Quinic acid	C₉H₁₂O₅	191	111; 173; 111				[22, 29, 30, 42, 53, 57, 61]	
No.	Compound	Molecular Formula	MW	Molar Mass	Data References				
-----	--------------------------------	-------------------	-----	-------------	----------------				
11	Dihydroferulic acid	C_{10}H_{12}O_{4}	195	159; 129; 113; 122	[27, 30, 38]				
12	Ethyl gallate	C_{9}H_{10}O_{5}	197	169; 125	[31]				
13	L-Tryptophan	C_{11}H_{12}N_{2}O_{2}	205	188; 146; 170; 118; 144; 118	[43, 59]				
14	Sinapic acid	C_{11}H_{10}O_{5}	225	179; 153; 115; 133; 115; 115	[13, 19, 29, 56, 57]				
15	Myristoleic acid	C_{14}H_{26}O_{2}	227	209; 181; 155; 199; 181; 127	[30]				
16	Resveratrol	C_{14}H_{12}O_{3}	229	142; 184; 114	[30, 60]				
17	Apigenin	C_{15}H_{10}O_{5}	271	253; 181; 137	[13, 34, 43, 58, 67]				
18	Naringenin	C_{15}H_{12}O_{5}	273	227; 155; 209; 139	[29, 53, 60, 62]				
19	Linolenic acid	C_{18}H_{36}O_{2}	279	260; 176; 120	[19, 71]				
20	Kaempferol	C_{15}H_{10}O_{4}	287	269; 227; 153	[29, 42, 45, 68]				
21	Luteolin	C_{15}H_{10}O_{4}	287	271; 225; 175; 158	[34, 43, 60, 67]				
22	Dihydrokaempferol	C_{15}H_{12}O_{6}	289	271; 199; 127; 243; 189; 118	[24, 41, 54]				
23	Catechin	C_{15}H_{14}O_{6}	289	245; 205; 203; 188	[13, 25, 29, 53, 57, 60]				
24	Epicatechin	C_{15}H_{16}O_{6}	291	272; 175; 130; 157; 140	[13, 29, 46, 53]				
25	9-Oxo-10E,12Z-octadecanoic acid	C_{18}H_{30}O_{3}	295	249; 165; 220; 125	[30, 71]				
26	Caffeoylmalic acid	C_{12}H_{12}O_{8}	295	133; 179; 148; 119; 115	[57]				
27	Coutaric acid	C_{13}H_{12}O_{8}	295	163; 119; 119	[29]				
28	Kaempferide	C_{16}H_{12}O_{6}	301	283; 265; 239; 211; 185; 133; 211; 151	[45, 70, 74]				
29	Ellagic acid	C_{14}H_{6}O_{8}	303	172; 158; 144; 127; 116	[29, 46, 52, 59]				
30	Quercetin	C_{15}H_{10}O_{7}	303	285; 163; 267; 159; 239	[13, 25, 29, 51, 56, 60, 62, 68]				
31	Hesperitin	C_{15}H_{14}O_{6}	301	257; 151; 228; 189	[16, 29, 60]				
No.	Compound	Formula	MW	M/z	Literature				
-----	---	--------------	-----	------	------------				
32	Dihydroquercetin	C_{15}H_{12}O_{7}	305	259; 149	[29, 60, 64]				
33	Caftaric acid	C_{13}H_{12}O_{6}	311	149; 221	[17, 22, 29, 55]				
34	Salvianolic acid F	C_{17}H_{14}O_{6}	315	269; 243; 213; 185; 144	[22]				
35	Protocatechuic acid-O-hexoside	C_{13}H_{10}O_{6}	315	153; 298	[22, 57, 62]				
36	Dihydroxybenzoylhexoside	C_{13}H_{16}O_{6}	315	153; 253	[44]				
37	Myricetin	C_{15}H_{16}O_{8}	317	273; 191	[29, 30, 36, 51, 60]				
38	Fertaric acid [Fertarate]	C_{14}H_{14}O_{5}	325	193; 149	[29]				
39	p-Coumaric acid-O-hexoside	C_{15}H_{15}O_{8}	325	193; 163	[30, 50, 51, 57, 62]				
40	Galloyl glucose	C_{13}H_{16}O_{10}	331	313; 195	[59]				
41	Gallic acid hexoside	C_{13}H_{16}O_{10}	331	271; 169; 125	125	[48]			
42	Mearnsetin	C_{15}H_{12}O_{8}	333	318; 301; 273; 245; 193; 165; 139	301; 289; 271; 219; 192; 153; 136	[52]			
43	Esculin	C_{15}H_{10}O_{9}	339	177; 293	[29, 30, 34, 71]				
44	Salvianolic acid G	C_{16}H_{12}O_{7}	341	323; 295; 255; 195; 159	305	[35, 69]			
45	Nevadensin	C_{16}H_{16}O_{7}	343	328; 259	313	269	[45, 69]		
46	Palmatine	C_{21}H_{22}NO_{4}	353	335; 235	317; 235; 137	[18, 71]			
47	Hexose-hexose-N-acetyl	C_{14}H_{26}NO_{10}	366	186; 142	142	[40]			
48	Fraxin	C_{14}H_{18}O_{10}	371	208; 352	135	[29]			
49	Fraxetin-7-O-beta-glucuronide	C_{16}H_{16}O_{11}	385	367; 272; 209; 175; 143	158	[73]			
50	Polydatin	C_{26}H_{12}O_{6}	389	227; 343	184	143	[46, 60]		
	Compound	Formula	Molecular Weight	Mass (Da)					
---	------------------------------	--------------	------------------	-------------------	-----	-----	-----	-----	-----
51	Fucosterol	C_{29}H_{48}O	413	395; 355; 271; 194; 119	297; 199	268; 187		[30]	
52	Stigmasterol	C_{29}H_{48}O	413	301; 259; 189	171	287; 209		[14, 20, 30]	
53	Salvianolic acid D	C_{20}H_{18}O_{10}	417	373; 329	287; 209			[21, 22]	
54	Apigenin-7-O-glucoside	C_{21}H_{20}O_{10}	433	414; 287; 186	241; 158			[15, 17, 29, 34, 42, 43, 58]	
55	Pelargonidin-3-O-glucoside (callistephin)	C_{21}H_{21}O_{10}	433	414; 271; 172	172; 226	116		[23, 59, 65]	
56	Phlorizin	C_{22}H_{12}O_{10}	437	397; 217	377			[26, 29, 30, 46, 53, 57]	
57	Catechin gallate	C_{22}H_{18}O_{10}	441	289; 169	245; 205	203		[29, 33]	
58	Kaempferol-3-O-galactoside	C_{21}H_{20}O_{11}	449	287	269; 217			[25, 29]	
59	Eriodictyol-7-O-glucoside	C_{21}H_{21}O_{11}	449	269	207; 251	165		[16, 29, 42, 63]	
60	Dihydrokaempferol glucoside	C_{21}H_{22}O_{11}	449	287	227; 269	225; 149		[46]	
61	Oleanoic acid	C_{10}H_{48}O_{3}	457	439; 411; 365; 337; 293; 248; 205	364; 337; 309; 219	337; 319; 301; 279; 247; 232; 219		[45, 61]	
62	Ursolic acid	C_{10}H_{45}O_{3}	457	411; 393; 365; 337; 279; 247	365; 337; 292; 279; 247; 219; 205			[20, 44, 61, 69]	
63	Isorhamnetin 3-O-rhamonoside	C_{22}H_{22}O_{11}	461	315; 152; 219				[52, 53]	
64	Peonidin-3-O-glucoside	C_{21}H_{23}O_{11}	463	301	286; 258	268; 258; 230; 202; 174; 121		[28, 29, 37, 59, 65]	
65	Hyperoside	C_{21}H_{20}O_{12}	463	301; 179	257; 179	255; 147		[13, 25, 26, 29, 51, 60, 63]	
66	Quercetin 3-O-glucoside	C_{21}H_{20}O_{12}	465	303	285; 257; 229; 201; 150	229; 201; 155		[15, 25, 29, 34, 43, 46]	
No.	Compound	Molecular Formula	M (Da)	m/z (relative intensity)	Retention Time (s)	Refs.			
-----	--------------------------------------	-------------------	--------	-------------------------	-------------------	-------			
67	Taxifolin-3-O-glucoside	C_{12}H_{22}O_{12}	467	449; 303; 188; 287; 132; 260	29	[29]			
68	Quercetin-3-O-glucuronide	C_{21}H_{19}O_{13}	477	301; 179; 273; 179; 151	25, 29, 57, 65				
69	Isorhamnetin 3-O-glucoside	C_{22}H_{22}O_{12}	479	317; 287; 301; 257; 274; 228; 149	15, 29, 52				
70	Myricetin-3-O-galactoside	C_{21}H_{20}O_{13}	479	299; 153; 271; 243; 171	13, 25, 29, 51, 63				
71	Dimethyllellagic acid hexose	C_{22}H_{20}O_{12}	493	331; 299; 270; 242; 179; 150; 270; 225	59				
72	Malvidin 3-O-glucoside	C_{23}H_{25}O_{12}	493	331; 315; 179; 315; 179	29, 37, 65				
73	5-O-(4'-O-p-coumaroyl glucosyl)quinic acid	C_{22}H_{26}O_{13}	501	339; 277; 323; 257; 277	34				
74	P-Coumaroylcaffaoylquinic acid	C_{22}H_{26}O_{11}	501	355; 483; 181; 409; 391; 367; 339; 293; 323; 293; 233; 205	61				
75	Coumaric acid derivative	C_{20}H_{18}O_{7}	503	457; 411; 382; 339; 293; 409; 391; 367; 339; 293; 323; 293; 233; 205	57				
76	Malvidin acetyl hexoside	C_{24}H_{27}O_{13}	537	331; 299; 261; 243; 211; 154; 111	30				
77	Procyanidin A-type dimer	C_{30}H_{24}O_{12}	577	425; 397; 373; 287; 245; 181; 245; 218; 189; 123	13, 25, 51, 61				
78	Isovitexin 6"-O-deoxyhexoside	C_{27}H_{30}O_{14}	579	415; 297; 177; 397; 344; 362	44				
79	Vitexin 2"-O-glucoside	C_{27}H_{28}O_{15}	595	415; 353; 283; 265; 176	44				
80	Kaempferol-3,7-Di-O-glucoside	C_{27}H_{26}O_{16}	611	449; 287; 229; 165; 213; 111	39, 47				
81	Cyanidin 3,5-O-dihexoside	C_{27}H_{31}O_{16}	611	287; 449; 287; 287	23, 49				
82	Cyanidin 3,5-O-diglucoside	C_{27}H_{31}O_{16}	611	287; 449; 287; 269; 231; 199; 161; 231; 213; 189; 175; 147	37, 65				
83	Apigenin 6-C-[6"-acetyl-2"-O-deoxyhexoside]-glucoside	C_{29}H_{32}O_{15}	621	561; 547; 461; 533; 461; 433; 433	44				
Research carried out using tandem mass spectrometry showed the presence of 89 biologically active compounds corresponding to the *V. amurensis* species. Salvianolic acids F, D and G, oleanolic, ursolic, myristoleic acids, berbercinin, mearnsetin, esculin, nevadensin, stigmasterol, fucosterol, Phlorizin, L-Tryptophan are identified for the first time in *V. amurensis*.

The identification of compounds (m/z values and fragmented ions) was carried out by comparing the obtained experimental data with known scientific results or mass spectrometric libraries. Anthocyanins have been identified in the extracts: Malvidin-3-O-glucoside, Pelargonidin-3-O-glucoside (callistephin), Peonidin-3-O-glucoside, Cyanidin-3,5-dihexoside, Cyanidin-3,5-diglucoside, Peonidin-3,5-diglucoside, Malvidin 3-(6-O-coumaroyl) glucoside, Petunidin-3-O-glucoside-5-O-glucoside, Malvidin 3-(6'-p-caffeoyl glucoside), Malvidin 3,5-diglucoside. Obtained mass spectrometry data correlate with scientific sources [13, 23, 28, 29, 37, 49, 51, 59, 61, 65]. A large group of flavonoids identified; flavonols Kaempferol, Aromadendrin, Kaempferide, Quercetin, Dihydroquercetin, Kaempferol-3-O-galactoside, Quercetin 3-O-galactoside, Taxifolin-3-O-glucoside, Quercetin-3-O-glucuronic acid, Isorhamnetin-3-O-rhamonoside, Isorhamnetin-3-O-glucoside, Myricetin-3-O-galactoside, Kaempferol-3,7-Di-O-glucoside [13, 24, 25, 29, 41, 42, 45, 51, 54, 56, 57, 60, 62, 64, 65, 68, 70, 74]; flavones: Apigenin, Luteolin, Nevadensin, Apigenin-7-O-glucoside, Isovitexin 6"-O-deoxyhexoside, Vitexin 2"-O-glucoside, Apigenin 6-C-[6"-acetyl-2"-O-deoxyhexoside]-glucoside [13, 15, 17, 34, 43, 44, 45, 48, 58, 60, 67, 69]; flavanones: Naringenin, Hesperitin, Eriodictyol-7-O-glucoside [16, 29, 42, 53, 60, 62, 63]; Flavan-3-ols: Catechin, Epicatechin [13, 25, 29, 46, 53, 57, 60].

Glycosylated coumarins have also been identified: Umbelliferone, Esculin, Fraxin, Fraxetin-7-O-beta-glucuronide [29, 30, 34, 36, 71, 73], berberine Palmatine [18, 71], stilbenes Polydatin and trans-Resveratrol, [30, 46, 60], sterols: Fucosterol, Stigmasterol [14, 20, 30], dihydrochalcone Phlorizin [26, 29, 30, 46, 53, 57].

It should be noted that compounds such as coumarins Umbelliferone, Fraxin and Esculin, flavone Nevadensin, flavan-3-ol Epicatechin, sterol Fucosterol, flavanol Taxifolin-3-O-glucoside were identified by mass spectrometry only in island samples of wild grapes. *V. amurensis* (Pakhtusov Islands and Rikord Island, Peter the Great Bay, Sea of Japan).
4 Conclusions

Amur grape *V. amurensis* Ruprecht contains a large number of polyphenolic complexes, which are biologically active compounds. In this work, we have tried for the first time to conduct a comparative metabolic study of biologically active substances of wild grapes obtained from five different places in the Primorsky and Khabarovsk territories. HPLC in combination with a BRUKER DALTONIKS ion trap (tandem mass spectrometry) was used to identify target analytes in extracts. The results showed the presence of 89 biologically active compounds corresponding to the species *V. amurensis*, and Salvianolic acids F, D and G, Oleanolic, Ursolic, Myristoleic acids, Berbericinin, Mearsetin, Esculin, Nevadensin, Stigmasteryl, Fucosterol, Phlorizin, L-Tryptophan were identified for the first time in *V. amurensis*.

The findings may support future research into the production of various pharmaceutical and dietary supplements containing *V. amurensis* extracts. A wide variety of biologically active polyphenolic compounds opens up rich opportunities for the creation of new drugs and biologically active additives based on extracts from this family of grapes (*Vitaceae*).

References

1. Ampelography USSR, 494 (1946)
2. N.I. Vavilov, *Origin and geography of cultivated plants*, 440 (1987)
3. E.W. Berry, *Lower Cretaceous. Baltimore, Maryland Geological Survey* (1911)
4. E.W. Berry, *Maryland Geological Survey* (1917)
5. A. N. Krishtofovich, Paleontological history of grapes, 23(5-6), 365 (1938)
6. Krishtofovich A. N. Sarmatian flora of the Krynka river, 98, 5 (1931)
7. A. N. Krishtofovich, M. I. Borsuk, Miocene plants from the Irysh River near the city Tara in Western Siberia, 5, 375 (1939)
8. G. Hegi *Vitaceae, Rebengewachse. Illustrierte Flora von Mittel-Europa. Munchen*, 5(1), 350 (1925)
9. I.V. Michurin, The results of half a century of work on the development of new varieties of fruit plants, I-II (1929)
10. I.V. Michurin, Bulletin of gardening, fruit growing and horticulture, 4-5 (1907)
11. V.G. Sprygin, N.F. Kushnerova, S.E. Fomenko, T.N. Gordeychuk, E.E. Solodova, Respiratory Physiology and Pathology Bulletin, 11, 1 (2002)
12. State Pharmacopeia XIV (2018) https://pharmacopoeia.ru
13. G. Abeywickrama, S.C. Debnath, P. Ambigaipalan, F. Shahidi, *Phenolics of selected cranberry genotypes and their antioxidant efficacy* (2016)
14. D. Bakir, M. Akdeniz, A. Ertas, M.A. Yilmaz, I. Yener, M. Firat, U. Kolak, Food Biochem (2020)
15. L. Barros, M. Duenas, A.M. Carvalho, Food and Chem. Toxicol, 50(5), 1576 (2012)
16. A. Bodalska, A. Kowalczyk, M. Wlodarczyk, I. Feska, Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint, 25, 69 (2020)
17. C. Carazzone, D. Mascherpa, G. Gazzani, A. Papetti, Food Chem, 138, 1062 (2013)
18. D.S.A. Cassiano, I.M.A. Reis, I. de Oliveira Estrela, H.F. de Freitas, S.S. da Rocha Pita, J.M. David, A. Branco, Comp. Biol. Chem, 83, 107129 (2019)
19. W. Chen, L. Gong, Z. Guo, W. Wang, H. Zhang, X. Liu, S. Yu, L. Xiong, J. Luo, Molecular Plant, 6(6), 1769 (2013)
20. X. Chen, P. Zhu, B. Liu, D. Ge, L. Wei, Y. Xu, J. Pharm. Biomed. Anal, 159, 490 (2018)
21. X. Chen, S. Zhang, Z. Xuan, D. Ge, X. Chen, J. Zhang, Q. Wang, Y. Wu, B. Liu, The Cells. Molecules, 22, 811 (2017)
22. M. Cirlini, P. Mena, M. Tassotti, K.A. Herrlinger, K. Nieman, C. Dall’Asta, D. Del Rio, Molecules, 21, 1007 (2016)
23. L.P. da Silva, E. Pereira, T.C.S.P. Pires, M.J. Alves, O.R. Pereira, L. Barros, I.C.F.R. Ferreira, Food Res. Int, 119, 34 (2019)
24. Daikonya, A.; Kitanaka, S. Constituents isolated from the roots of Rhodiola sacra S. H. Fu. Japan. J Food Chem Safety, 18(3), 183 (2011)
25. M. De Rosso, L. Tonidandel, R. Larcher, G. Nicolini, A. Dalla Vedova, F. De Marchi, M. Gardiman, M. Giust, R. Flamini, Food Chem, 163, 244 (2014)
26. Z. Fan, Y. Wang, M. Yang, J. Cao, A. Khan, G. Cheng, Food Chem, 318, 126512 (2020)
27. T. Farrell, L. Poquet, F. Dionisi, D. Barron, G. Williamson, J. Pharm. Biomed. Anal, 55, 1245 (2011)
28. M. Garg, M. Chawla, V. Chunduri, R. Kumar, S. Sharma, A. Sharma, N.K. Kaur, N. Kumar, J.K. Mundey, M.K. Saini, S.P. Singh, J. Cereal Sci, 71, 138e144 (2016)
29. P. Goufo, R.K. Singh, I. Cortez, Antioxidants, 9, 398 (2020)
30. A.R. Hamed, S.S. El-Hawary, R.M. Ibrahim, U.R. Abdelmohsen, A.M. El-Halawany, Bioassay Guided Approach. J. Chrom. Sci, 1 (2020)
31. F. Han, Y. Li, L. Ma, T. Liu, Y. Wu, R. Hu, A. Song, R. Yin, Talanta, 160, 183 (2016)
32. V. Ivanova-Petropulos, Z. Naceva, V. Sandor, L. Makszin, L. Deutsch-Nagy, B. Berkics, T. Stafilov, F. Kilar, Electrophoresis, 39, 1597 (2018)
33. R. Jaiswal, L. Jayasinghe, N. Kuhnert, J. Mass Spectrom, 47, 502 (2012)
34. R. Jaiswal, H. Muller, A. Muller, M.G.E. Karar, N. Kuhnert, Phytochem, 108, 252 (2014)
35. R.-W. Jiang, K.-M. Lau, P.-M. Hon, T.C.W. Mak, K.-S. Woo, K.-P. Fung, Current Med. Chem, 12, 237 (2005)
36. S. Kim, S. Oh, H.B. Noh, S. Ji, S.H. Lee, J.M. Koo, C.W. Choi, H.P. Jhun, L. Roots. Molecules, 23, 3001 (2018)
37. E.S. Lago-Vanzela, R. Da-Silva, E. Gomes, E. Garcia-Romero, E. Hermosin-Gutierrez, Agric. Food Chem., 59, 13136 (2011)
38. R. Lang, N. Dieminger, A. Beusch, Y.-M. Lee, A. Dunkel, B. Suess, T. Skurk, A. Wahl, H. Hauner, T. Hofmann, Anal. Bioanal. Chem. Sci., 8(08), 116 (2018)
39. G. Le Gall, M.S. DuPont, F.A. Mellon, A.L. Davis, G.J. Collins, M.E. Verhoeven, I.J. Colquhoun, J. Agricult. Food Chem, 51, 2438 (2003)
40. T. Levandi, T. Pussa, M. Vaher, A Ingver, R. Koppel, M. Kaljurand, Food Chem, 63(1), 86 (2014)
41. T.H. Lee, C.C. Hsu, G. Hsiao. J.Y. Fang, W.M. Liu, C.K. Lee, Planta Med., 82(8), 698 (2016)
42. X. Li, T. Tian, Frontiers in Pharm, 9, 1067 (2018)
43. M.M. Marzouk, S.R. Hussein, A. Elkhateeb, M. El-shabrawy, E.-S. S. Abdel-Hameed, S.A. Kawashty, J. Applied Pharm. Sci., 8(08), 116 (2018)
44. M. Ozarowski, A. Piasecka, A. Paszel-Jaworska, A. D. Siqueira de Chaves, A. Romaniuk, M. Rybczynska, A. Gryszcynska, A. Sawikowska, P. Kachlicki, P.L. Mikołajczak, A. Seremak-Mrozikiewicz, Braz. J. Pharmacol, 28, 179 (2018)
45. R. Pandey, B. Kumar, J. Liquid Chromatogr. & Related Technol, 39, 225 (2016)
46. L. Paudel, F.J. Wyzgowski, J.C. Scheerens, A.M. Chanon, R.N. Reese, D. Smiljanic, C.; C. Wesdemiotis, J.J. Blakeslee, K.M. Riedl, P.L. Rinaldi, J. Agricult. Food Chem, 61, 12032 (2013)
47. A. Petsalo, J. Jalonen, A. Tolonen, Chromatogr, 1112(1-2), 224 (2006)
48. S. Piccolella, G. Crescente, M.G. Volpe, M. Paolucci, S. Pacifico, Molecules. Chem, 24, 3630 (2019)
49. P.C. Pradhan, S. Saha, J Food Sci. Technol, 53(2), 1205 (2016)
50. P. Quifer-Rada, A. Vallverdu-Queralt, M. Martinez-Huelamo, G. Chiva-Blanch, O. Jauregui, R. Estruch, R. Lamuela-Raventos, Food Chem, 169, 336 (2015)
51. N. Rafsanjany, J. Senker, S. Brandt, U. Dobrindt, A. Hensel, J. Agric. Food Chem, 63, 8804 (2015)
52. S.A.O. Santos, C.S.R. Freire, M.R.M. Domingues, A.J.D. Silvestre, C.P. Neto, J. Agric. Food Chem, 59, 9386 (2011)
53. S.A.O. Santos, C. Vilela, C.S.R. Freire, C.P. Neto, A.J.D. Silvestre, J. Chromatogr. B. 938, 65 (2013)
54. A.J. Seukep, Y.-L. Zhang, Y.-B. Hu, M.-Q. Guo, Pharmaceut, 13, 59 (2020)
55. K. Schoedl, A. Forneck, M. Sulyok, R. Schuhmacher, J. Agric. Food Chem, 59, 10787 (2011)
56. M. Sharma, R. Sandhir, A. Singh, P. Kumar, A. Mishra, S. Jachak, S.P. Singh, J. Singh, J. Roy, Front. Plant. Sci., 7, 1870 (2016)
57. V. Spinola, J. Pinto, P.C. Castilho, Food Chemistry, 173, 14 (2015)
58. M. Suarez, A. Macia, M.-P. Romero, M.-J. Motiva, J. Chromatogr. A., 1214, 90 (2008)
59. J. Sun, X. Liu, T. Yang, J. Slovin, P. Chen, Food Chem, 146, 289 (2014)
60. J. Sun, F. Liang, Y. Bin, P. Li, C. Duan, Molecules, 12, 679 (2007)
61. L. Sun, S. Tao, S. Molecules, 24, 159 (2019)
62. A. Vallverdu-Queralt, O. Jauregui, A. Medina-Remon, R.M. Lamuela-Raventos, Food Chem., 60, 3373 (2012)
63. M.N. Viera, P. Winterhalter, G. Jerz, Phytochem. Anal., 27, 116 (2016)
64. I.V. Voskoboinikova, N.A. Tjukavkina, S.V. Geodakyan, Y.A. Kolesnik, V.K. Kolhir, V.A. Zjuzin, S.J. Sokolov, Phytotherapy Res., 7, 208 (1993)
65. H. Wang, E.J. Race, A.J. Shrikhande, Agric. Food Chem., 51, 1839 (2003)
66. S. Wang, C.Q. Fan, P. Wang, J. Chromatogr. B., 981, 1 (2015)
67. A. Wojakowska, J. Perkowski, T. Goral, M. Stobiecki, J. Mass. Spectrom, 48, 329 (2013)
68. J. Xiao, T. Wang, P. Li, R. Q. Liu, Li, K. Bi, J. Chromatogr. B., 1028, 33 (2016)
69. L. L. Xu, J. J. Xu, K. R. Zhong, Z. P. Shang, F. Wang, R. F. Wang, B. Liu, Molecules, 22, 1756 (2017)
70. X. Xu, B. Yang, D.Wang, Y. Zhu, X.Miao, W. Yang, Molecules, 25, 4612 (2020)
71. L. Yang, X. Meng, X. Yu, H. Kuang, J. Pharm. Biomed. Analys, 134, 43 (2017)
72. S.T. Yang, X. Wu, W. Rui, J. Guo, Y.F. Feng, Acta Chromatographica, 27, 711 (2015)
73. T. Yasuda, M. Fukui, T. Nakazawa, A. Hoshikawa, K. Ohsawa, J. Nat. Prod., 69, 755 (2006)
74. W.-H. Zhang, I.-Ch. Chao, D.-J. Hu, F. Shakerian, J. AOAC Int., 102(3) (2019)