A new species, new host records and life cycle data for lepocreadiids (Digenea) of pomacentrid fishes from the Great Barrier Reef, Australia

Berilin Duong · Scott C. Cutmore · Thomas H. Cribb · Kylie A. Pitt · Nicholas Q.-X. Wee · Rodney A. Bray

Abstract A new species of lepocreadiid, *Opechonoides opisthoporus* n. sp., is described infecting 12 pomacentrid fish species from the Great Barrier Reef, Australia, with *Abudefduf whitleyi* Allen & Robertson as the type-host. This taxon differs from the only other known member of the genus, *Opechonoides gure* Yamaguti, 1940, in the sucker width ratio, cirrus-sac length, position of the testes, position of the pore of Laurer’s canal, and relative post-testicular distance. The new species exhibits stenoxenic host-specificity, infecting pomacentrids from seven genera: *Abudefduf* Forsskål, *Amphiprion* Bloch & Schneider, *Neoglyphidodon* Allen, *Neopomacentrus* Allen, *Plectroglyphidodon* Fowler & Ball, *Pomacentrus* Lacépède and *Stegastes* Jenyns. Phylogenetic analyses of 28S rDNA sequence data demonstrate that *O. opisthoporus* n. sp. forms a strongly supported clade with *Prodistomum orientale* (Layman, 1930) Bray & Gibson, 1990. The life cycle of this new species is partly elucidated on the basis of ITS2 rDNA sequence data; intermediate hosts are shown to be three species of Ctenophora. New host records and molecular data are reported for *Lepocreadium oyabitcha* Machida, 1984 and *Lepotrema amblyglyphidononis* Bray, Cutmore & Cribb, 2018, and new molecular data are provided for *Lepotrema acanthochromidis* Bray, Cutmore & Cribb, 2018 and *Lepotrema adlardi* (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996. Novel cox1 mtDNA sequence data showed intraspecific geographical structuring between Heron Island and Lizard Island for *L. acanthochromidis* but not for *L. adlardi* or *O. opisthoporus* n. sp.

Introduction

The Lepocreadiidae Odhner, 1905 is the largest family of the Lepocreadioidea Odhner, 1905, a group of digeneans primarily infecting fishes of shallow marine systems (Bray & Cribb, 2012). Eleven species in three lepocreadiid genera have been reported from the Pomacentridae (Table 1): *Lepocreadium* Stossich, 1904 (three species), *Lepotrema* Ozaki, 1932 (five species) and *Preptetos* Pritchard, 1960 (three species). Of these eleven species, it is likely that the infections of *Lepocreadium album* (Stossich, 1890) Stossich, 1904, *Preptetos canoni* Barker, Bray & Cribb, 1993, *P. trulla* (Linton, 1907) Bray & Cribb, 1996, and *P. xesuri* (Yamaguti, 1940) Pritchard, 1960 are...
Species	Host-specificity	Host and locality	References
Lepocreadium album (Stossich, 1890) Stossich, 1904	Euryxenic	*Chromis chromis* (Linnaeus); Saronic Gulf, Greece; Blenniidae Rafinesque; Centracanthidae Gill; Sparidae Rafinesque	Papoutsoglou (1976)
Lepocreadium oyabitcha Machida, 1984	Stenoxenic	*Abudelfad vaigiensis* (Quoy & Gaimard); Off Ryukyu Islands, Japan; *Abudelfad whiteyi* Allen & Robertson; Off Lizard Island, GBR, Australia	Machida (1984); Bray & Cribb (1998)
Lepocreadium sogandaresi Nahhas & Powell, 1971	Oioxenic	*Stegastes leucostictus* (Müller & Troschel); Gulf of Mexico	Nahhas & Powell (1971)
Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018	Oioxenic	*Acanthochromis polyacanthus* Bleeker; Off Lizard and Heron Islands, GBR, Australia	Barker et al. (1993); Barker et al. (1994); Bray et al. (2009); Bray et al. (2018b)
Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996	Oioxenic	*Abudelfad bengalensis* (Bloch); Off Lizard and Heron Islands, GBR, Australia; *Amphiprion akindynos* Allen; Ningaloo Reef, WA, Australia	Bray et al. (1993); Barker et al. (1994); Bray et al. (2018b)
Lepotrema ambylgyphidodon Bray, Cutmore & Cribb, 2018	Stenoxenic	*Amblygypheidodon curacao* (Bloch); Off Heron Island, GBR, Australia; *Amphiprion akindynos* Allen	Bray et al. (1993); Barker et al. (1994); Bray et al. (2018b)
Lepotrema clavatum Ozaki, 1932	Euryxenic	*Dascyllus albisella* Gill; Off Hawaii, United States; Balistidae Rafinesque; Chaetodontidae Rafinesque; Monacanthidae Nardo; Paralichthyidae Regan; Pomacanthidae Jordan & Evermann	Pritchard (1963)
Lepotrema monile Bray & Cribb, 1998	Stenoxenic	*Pomacentrus amboinensis* Bleeker; Off Lizard Island, GBR, Australia; *Pomacentrus chrysurus* Cuvier; Off Lizard Island, GBR, Australia; *Stegastes apicalis* (De Vis); Off Heron Island, GBR, Australia; *Pomacentrus wardi* Whiteley; Off Heron Island, GBR, Australia	Bray et al. (1993); Barker et al. (1994); Bray & Cribb (1998); Sun et al. (2012); Bray et al. (2018b)
Lepotrema sp. 4 of Bray et al. (2018b)	Unknown	*Parma polylepis* Günther; Off Heron Island, GBR, Australia	Bray et al. (1993); Barker et al. (1994); Bray et al. (2018b)
Preptetos cannoni Barker, Bray & Cribb, 1993	Stenoxenic	*Pomacentrus bankanensis* Bleeker; Off Heron Island, GBR, Australia; *Siganidae Richardson*	Bray et al. (1993); Barker et al. (1994)
Preptetos trulla (Linton, 1907) Bray & Cribb, 1996	Stenoxenic	*Chromis multilineata* (Guichenot); Off Puerto Rico; *Labridae Cuvier; Lutjanidae Gill; Sparidae Rafinesque*	See Barker et al. (1993) and Bray et al. (2022)

Dyer et al. (1985)

See Claxton et al. (2017)
incidental infections, as each of these species has been reported primarily from fishes in other families: *L. album* in the Sparidae (Bartoli et al., 2005), *P. cannoni* in the Siganidae (Barker et al., 1993; Bray et al., 2022), *P. trulla* in the Lutjanidae (Claxton et al., 2017) and *P. xesuri* in the Acanthuridae (Bray et al., 1993; Bray & Cribb, 1996). On the Great Barrier Reef (GBR), there are reports of five lepocreadiid species occurring in pomacentrids (excluding infections of *Preptetos* spp.): *Lepotrema acanthochromidis* Bray, Cutmore & Cribb, 2018, *L. adlardi* (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996, *L. amblyglyphidodonis* Bray, Cutmore & Cribb, 2018, *L. monile* Bray & Cribb, 1998, and *Lepocreadium oyabitcha* Machida, 1984. Additionally, there is a report of an undescribed *Lepotrema* species from the banded scalyfin, *Parma polylepis* Günther (as *Lepotrema* sp. 4 in Bray et al., 2018b).

In this study, we describe a new species of lepocreadiid from GBR pomacentrid fishes using morphological and molecular data, and use molecular data to identify its second intermediate hosts. New hosts are reported for *L. amblyglyphidodonis* and *Lepocreadium oyabitcha*, and novel molecular data are reported for *Lepotrema acanthochromidis*, *L. adlardi*, and *Lepocreadium oyabitcha*.

Material and methods

Specimen collection

Pomacentrid fishes were collected at three Australian localities: off Heron Island, southern GBR (23°26′S, 151°54′E) and off Lizard Island, northern GBR (14°40′S, 145°28′E) and in Moreton Bay, southeast Queensland (27°24′S, 153°26′E). Fishes were collected by line fishing, spearfishing, anaesthetic (using a clove oil solution), and barrier netting, and were euthanised immediately prior to dissecting. The gastrointestinal tract of each fish was removed and examined for trematodes under a stereo-microscope; trematodes were collected, and the gut was re-examined after a gut-wash, following the protocols of Cribb & Bray (2010). Live trematodes were fixed in near boiling saline and immediately preserved in 80% ethanol.

Ctenophores were sampled along the east coast of Australia between Brisbane, Queensland and Hobart, Tasmania on the Research Vessel *Investigator* between the 8th and 27th of May 2021. Ctenophores were collected at night by towing a bongo net (mouth diameter = 0.7 m; mesh size = 500 µm) obliquely from the surface to approximately 30 m and back to the surface. The duration of each tow ranged from 10–15 minutes and tow speed ranged from 1–1.5 m·s⁻¹. Ctenophores were immediately removed from the cod end, measured, and inspected for trematode metacercariae. Metacercariae were collected and preserved in 96% ethanol.

Morphological analysis

Specimens for morphological examination were rinsed with distilled water, overstained with Mayer’s haematoxylin, destained in a 1% hydrochloric acid solution and neutralised in a 1% ammonium hydroxide solution. Specimens were then dehydrated in a graded series of ethanol solutions (50%, 70%, 80%, 90%, 95% and twice in 100%) and cleared in methyl salicylate, before being mounted on glass slides in Canada balsam. Morphometric data were taken using a camera (Olympus SC50) mounted on a compound microscope (Olympus BX-53) and cellSens Standard imaging software. Measurements are in micrometres.

Table 1 continued
Species
Preptetos xesuri (Yamaguti, 1940)

Pomacentrid hosts are listed in full with locality information and other taxa are listed at family level.

Abbreviations: GBR, Great Barrier Reef; WA, Western Australia.
and are presented as a range, where length is followed by width, with the mean in parentheses. Drawings were made using a drawing tube attachment and digitised in Adobe Illustrator. Type- and voucher specimens are lodged in the Queensland Museum (QM), Brisbane, Australia, and the Natural History Museum (NHMUK), London, United Kingdom. To comply with the guidelines set out in article 8.5 of the amended 2012 version of the International Code of Zoological Nomenclature (ICZN, 2012), details of the new species have been submitted to ZooBank and registered with a Life Science Identifier (LSID), which is provided in the taxonomic summary.

Molecular sequencing

Specimens for molecular analyses were either prepared as hologenophores, whereby a portion of the trematode is used for DNA sequencing and the remainder is used as a morphological voucher, or as paragenophores, whereby the trematode used for DNA sequencing is collected from the same individual host as the morphological voucher (Pleijel et al., 2008). Genomic DNA was extracted using a standard phenol/chloroform extraction method (Sambrook & Russell, 2001) and sequence data were generated for two ribosomal DNA (rDNA) markers, the large ribosomal subunit RNA coding region (28S) and the second ribosomal DNA (rDNA) markers, the large ribosomal subunit coding region (28S) and the second internal transcribed spacer region (ITS2), and one mitochondrial DNA (mtDNA) marker, the cytochrome c oxidase subunit 1 (cox1). These regions were amplified using the following primers: LSU5 (5’-TAG GTC GAC CCG CTG AAY TTA AGC-3’, Littlewood, 1994) and 1500R (5’-GCT ATC CTG AGG GAA ACT TCG-3’, Snyder & Tkach, 2001) for 28S, 3S (5’-GCT ACC GGT GGA TCA CGT GGC TAG TG-3’, Morgan & Blair, 1995) and ITS2.2 (5’-CCT GGT TAG TTT CTT TTC CTC CGC-3’, Cribb et al., 1998) for ITS2, and Dig_cox1Fa (5’-ATG ATW TTY TTY YTD ATG CC-3’, Wee et al., 2017) and Dig_cox1R (5’-TCN GGR TGH CCR AAR AAY CA AA-3’, Wee et al., 2017) for cox1.

A polymerase chain reaction (PCR) for each region was performed with a total of 20 µl comprising of 2 µl of DNA template for ITS2 or 4 µl for cox1 and 28S, 5 µl of MyTaq Reaction Buffer (Bioline), 0.75 µl of each primer for ITS2 and 28S or 2 µl for cox1, 0.25 µl of Taq DNA polymerase (Bioline MyTaq™ DNA Polymerase) and made up with Invitrogen™ ultraPURE™ distilled water. A TaKaRa PCR Thermal Cycler was used to amplify each region using the following profiles: 28S: an initial 95°C denaturation for 4 minutes, 30 cycles of 95°C denaturation for 1 minute, 56°C annealing for 1 minute, 72°C extension for 2 minutes, 95°C denaturation for 1 minute, 55°C annealing for 45 seconds and a final 72°C extension for 4 minutes; ITS2: an initial 95°C denaturation for 3 minutes, 45°C annealing for 2 minutes, 72°C extension for 90 seconds, four cycles of 95°C denaturation for 45 seconds, 50°C annealing for 45 seconds, 72°C extension for 90 seconds, 30 cycles of 95°C denaturation for 20 seconds, 52°C annealing for 20 seconds, 72°C extension for 90 seconds and a final 72°C extension for 5 minutes; cox1: an initial 94°C denaturation for 3 minutes, 40 cycles of 94°C denaturation for 30 seconds, 50°C annealing for 30 seconds, 72°C extension for 30 seconds and a final 72°C extension for 10 minutes. Amplified DNA was sent to the Australian Genome Research Facility for purification and dual direction Sanger sequencing using the amplification primers for the ITS2 and cox1 regions, and the internal primers 300F (5’-CAA GTA CCG TGA GGG AAA GTT-3’, Littlewood et al., 2000) and ECD2 (5’-CTT GGG CCG TGT TTC AAG ACG GG-3’, Littlewood et al., 1997) for the 28S region. Sequences were assembled and edited in Geneious Prime version 2021.11.0.9 (https://www.geneious.com).

Phylogenetic analyses

Newly generated ITS2 rDNA and cox1 mtDNA sequences were aligned with sequences of other lepocreadiid taxa available on GenBank (Table 2) in MEGA X (Kumar et al., 2018) using MUSCLE, with UPGMA clustering for iterations 1 and 2. The cox1 alignment was translated (echinoderm/flatworm mitochondrial code) and examined in Mesquite version 3.61 (Maddison & Maddison, 2021) for internal stop codons and to determine the correct reading frame. The alignment was trimmed after the correct reading frame was determined. All codon positions were then tested for non-stationarity in PAUP* version 4.0a (Swofford, 2003), and substitution saturation using the “Test of substitution saturation by Xia et al.” function (Xia et al., 2003; Xia & Lemey, 2009) implemented in DAMBE version 7.2 (Xia, 2018); non-stationarity and substitution saturation were not detected, and as such, all codons were used in subsequent analyses.
Species	Host	Locality	GenBank accession #	References	
			cox1 mtDNA	**ITS2 rDNA**	
Lepocreadium oyabitcha Machida, 1984	*Abudefduf sexfasciatus* (Lacépède)	LI	OM791389	OM777007	Present study
	Abudefduf sordidus (Forsskål)	LI	OM791390	OM777008	Present study
	Abudefduf whitleyi Allen & Robertson	LI	OM791391	OM777009	Present study
Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018	*Acanthochromis polyacanthus* (Bleeker)	HI LI	MH730025	MH729999	Bray et al. (2018b)
			OM791392	OM777010	Present study
			OM791393	OM777011	Present study
			OM791394	OM777012	Present study
			OM791395		Present study
Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996	*Abudefduf bengalensis* (Bloch)	HI LI	MH730027	MH730000	Bray et al. (2018b)
			MH730028		Bray et al. (2018b)
			OM791396		Bray et al. (2018b)
			OM791397		Bray et al. (2018b)
			OM791398		Present study
Lepotrema amansis Bray, Cutmore & Cribb, 2018	*Amanses scopas* (Cuvier)	HI	MH730029		Bray et al. (2018b)
			MH730030		Bray et al. (2018b)
			MH730031		Bray et al. (2018b)
			MH730032		Bray et al. (2018b)
Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018	*Amphiprion akindynos* Allen	HI	MH730033	MH730002	Bray et al. (2018b)
	Amblyglyphidodon curacao (Bloch)	HI	MH730034	MH730003	Bray et al. (2018b)
	Stegastes apicalis (De Vis)	HI	MH730035	MH730004	Bray et al. (2018b)
	Plectroglyphidodon dickii (Liénard)	HI	MH730036	MH730005	Present study
Lepotrema cirripectis Bray, Cutmore & Cribb, 2018	*Cirripectis chelomatus* Williams & Maugé	HI	MH730037	MH730006	Bray et al. (2018b)
	Cirripectis filamentosus (Alleyne & MacLeay)	HI LI	MH730038	MH730007	Bray et al. (2018b)
			MH730039	MH730008	Bray et al. (2018b)
			MH730040	MH730009	Bray et al. (2018b)
			MH730041	MH730010	Bray et al. (2018b)
Lepotrema hemitaurichthydis Bray, Cutmore & Cribb, 2018	*Hemitaurichthys polylepis* (Bleeker)	PA FP	MH730042	MH730011	Bray et al. (2018b)
			MH730043	MH730012	Bray et al. (2018b)
			MH730044	MH730013	Bray et al. (2018b)
			MH730045	MH730014	Bray et al. (2018b)
Lepotrema melichthydis Bray, Cutmore & Cribb, 2018	*Melichthys vidua* (Richardson)	PA	MH730046	MH730015	Bray et al. (2018b)
			MH730047	MH730016	Bray et al. (2018b)
Lepotrema monile Bray & Cribb, 1998	*Pomacentrus wardi* Whitley	HI	MH730048	MH730017	Bray et al. (2018b)
Neighbour-joining analyses were conducted for each alignment with the following parameters: “Test of Phylogeny = Bootstrap method”, “No. of Bootstrap Replications = 10,000”, “Model/Method = No. of differences”, “Substitutions to Include = d: Transitions + Transversions”, “Rates among Sites = Uniform rates” and “Gaps/Missing Data Treatment = Pairwise deletion”. Pairwise differences for each alignment were estimated using the following parameters: “Variance Estimation Method = None”, “Model/Method = No. of differences”, “Substitutions to Include = d: Transitions + Transversions”, “Rates among Sites = Uniform rates” and “Gaps/Missing Data Treatment = Pairwise deletion”.

Newly generated partial 28S rDNA sequences were aligned with sequences from GenBank of related lepocreadiids using MUSCLE version 3.7 (Edgar, 2004) through the CIPRES Portal (Miller et al., 2010) with UPGMB clustering for iterations 1 and 2. Using Mesquite, the alignment was then refined by trimming and removing indels (with three or more base pairs) affecting at least 5% of sequences. To estimate the best-fitting nucleotide substitution model for the dataset, the refined alignment was analysed in jModelTest 2.1.10 (Darriba et al., 2012). The model ‘GTR + I + Γ’ was predicted to be the best estimator by the corrected Akaike Information Criterion and Bayesian Information Criterion. Phylogenetic analysis of the 28S dataset were conducted using maximum likelihood and Bayesian inference analyses on the CIPRES Portal. The maximum likelihood analysis was run using RAxML version 8.2.12 (Stamatakis, 2014) with 1,000 bootstrap pseudoreplicates, and the Bayesian inference analysis was run using MrBayes version 3.2.7a (Ronquist et al., 2012) with the following parameters: “ngen = 10,000,000”, “nruns = 2”, “nchains = 4”, “samplefreq = 1,000”, “nst = 6”, “rates = invgamma”, “ngammacat = 4”, “ratepr = variable”, “sumt burnin value = 3,000”, “smp burnin value = 3,000” and “burninfrac = 0.3”. Species of the Aepnidiogenidae Yamaguti, 1934 and the Gorgocephalidae Manter, 1966 were designated as outgroup taxa (Table 3).

Table 2 continued

Species	Host	Locality	GenBank accession #	References
			coxl mtDNA	
Lepotrema moretonense Bray, Cutmore & Cribb, 2018	Prionurus maculatus Ogilby	MB	MH730051	Bray et al. (2018b)
	Prionurus microlepidotus Lacépède	MB	MH730052 MH730053 MH730054	Bray et al. (2018b)
	Selenotoca multifasciata (Richardson)	MB	MH730055	Bray et al. (2018b)
Opechonoides opisthoporus n. sp.	Abudefauf septemfasciatus (Cuvier)	HI	OM791405 OM777013	Present study
	Abudefauf sexfasciatus	HI	OM791401 OM777014	Present study
	Abudefauf whitleyi	LI	OM791403 OM777015	Present study
	Pomacentrus chrysurus Cuvier	HI	OM791402 OM777016	Present study
	Pomacentrus moluccensis Bleeker	HI	OM791404 OM777017	Present study

Abbreviations: FP, French Polynesia; HI, off Heron Island; LI, off Lizard Island; MB, Moreton Bay; PA, off Palau
Species	Host	GenBank accession #	References
Bianium arabicum Sey, 1996	*Lagocephalus lunaris* (Bloch & Schneider)	MH157076	Bray et al. (2018a)
Bianium plicitum (Linton, 1928) Stunkard, 1931	*Torquigener pleurogramma* (Regan)	MH157066	Bray et al. (2018a)
Clavogalea trachinoti (Fischthal & Thomas, 1968) Bray & Gibson, 1990	*Trachinotus coppingeri* Günther	FJ788471	Bray et al. (2009)
Deraiotrema platacis Machida, 1982	*Platax pinnatus* (Linnaeus)	MN073841	Bray et al. (2019)
Diplocreadium tsontso Bray, Cribb & Barker, 1996	*Balistoides conspicillum* (Bloch & Schneider)	FJ788472	Bray et al. (2009)
Diploproctodaeum momoaafata Bray, Cribb & Barker, 1996	*Ostracion cubicum* Linnaeus	FJ788474	Bray et al. (2009)
Diploproctodaeum monstrosum Bray, Cribb & Justine, 2010	*Arothron stellatus* (Anonymous)	FJ788473	Bray et al. (2009)
Echeneidocoelium indicum Simha & Pershad, 1964	*Echeneis naucrates* Linnaeus	FJ788475	Bray et al. (2009)
Hypocreadium lamelliforme (Linton, 1907) Bravo Hollis & Manter, 1957	*Balistes capriscus* Gmelin, 1789	MZ345680	Curran et al. (2021)
Hypocreadium cf. patellare Yamaguti, 1938	*Balistoides viridescens* (Bloch & Schneider)	FJ788478	Bray et al. (2009)
Hypocreadium picasso Bray, Cribb & Justine, 2009	*Rhinicanthus aculeatus* (Linnaeus)	FJ788479	Bray et al. (2009)
Hypocreadium toombo Bray & Justine, 2006	*Pseudobalistes fuscus* (Bloch & Schneider)	FJ788480	Bray et al. (2009)
Lepidapedoides angustus Bray, Cribb & Barker, 1996	*Epinephelus cyanopodus* (Richardson)	FJ788482	Bray et al. (2009)
Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996	*Abufedaf sordidus* (Forsskål)	OM777006	Present study
Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018	*Acanthochromis polyacanthus* (Bleeker)	MH730014	Bray et al. (2018b)
Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018	*Abufedaf bengalensis* (Bleeker)	MH730015	Bray et al. (2018b)
Lepotrema monile Bray & Cribb, 1998	*Amphiprion akindynos* Allen	MH730017	Bray et al. (2018b)
Lobatocreadium exiguum (Manter, 1963) Madhavi, 1972	*Pomacentrus wardi* Whiteley	MH730024	Bray et al. (2018b)
Mobahincia teira Bray, Cribb & Cutmore, 2018	*Platax teira* (Forsskål)	FJ788484	Bray et al. (2009)
Multitestis magnacetabulum Mamaev, 1970	*Platax teira*	MH157068	Bray et al. (2018a)

Table 3 Sequence data for the Lepocreadioidea taxa analysed in this study (GenBank accession numbers for 28S rDNA reference sequences and sequences generated in the present study, and host information)
Table 3 continued

Species	Host	GenBank accession #	References
Neohypocreadium dorsoporum Machida & Uchida, 1987	Chaetodon flavirostris Günther	FJ788487	Bray et al. (2009)
Neomultistes aspidogasteriformis Bray & Cribb, 2003	*Platax teira*	FJ788489	Bray et al. (2009)
Neopreptetos arusettae Machida, 1982	*Pomacanthus sexstriatus* (Cuvier)	FJ788490	Bray et al. (2009)
Opechona austrobacillaris Bray & Cribb, 1998	*Pomatomus saltatrix* (Linnaeus)	MH157073	Bray et al. (2018a)
Opechona chloroscombris Nahhas & Cable, 1964	*Chloroscombrus chrysurus* (Linnaeus)	MZ345679	Curran et al. (2021)
Opechona kahawai Bray & Cribb, 2003	*Arripis trutta* (Forster)	FJ788491	Bray et al. (2009)
Opechona cormumi Curran, Martorelli & Overstreet, 2021	*Peprilus burti* Fowler	MZ345683	Curran et al. (2021)
Opechona olsoni (Yamaguti, 1934) Yamaguti, 1938	*Scomber japonicus* Houttuyn	MT30947	Sokolov et al. (2020)
Opechonoides opisthoporus n. sp.	*Abudefaf whiteleyi* Allen & Robertson	OM777005	Present study
Pelopscreadium spongiosum (Bray & Cribb, 1998) Dronen, Blend, Khalifa, Mohamadain & Karer, 2016	*Ostracion cubicum*	FJ788469	Bray et al. (2009)
Preptetos laguncula Bray & Cribb, 1996	*Naso unicornis* (Forskål)	MZ701988	Bray et al. (2021)
Preptetos paracaballeroi Bray, Cutmore & Cribb, 2022	*Naso annulatus* (Quoy & Gaimard)	MZ702003	Bray et al. (2021)
Preptetos prudhoei Bray, Cutmore & Cribb, 2022	*Zebrasoma scopas* (Cuvier)	MZ701995	Bray et al. (2021)
Preptetos trulla (Linton, 1907) Bray & Cribb, 1996	*Ocyurus chrysurus* (Bloch)	AY222237	Olson et al. (2003)
Prodistomum alaskense (Ward & Fillingham, 1934) Bray & Merrett, 1998	*Aptocyclus ventricosus* (Pallas)	MT303950	Sokolov et al. (2020)
Prodistomum keyam Bray & Cribb, 1996	*Monodactylusargentius* (Linnaeus)	FJ788493	Bray et al. (2009)
Prodistomum orientale (Layman, 1930) Bray & Gibson, 1990	*Scomber japonicus*	MT299625	Sokolov et al. (2020)
Prodistomum priedei Bray & Merrett, 1998	*Epiphanus telescopus* (Risso)	AJ405272	Bray et al. (1999)
Aepnidiogenidae Yamaguti,1934			
Aepnidiogenes major Yamaguti, 1934	*Diagramma labiosum* MacLeay	FJ788468	Bray et al. (2009)
Austrohoorchis spreti (Gibson, 1987) Bray & Cribb, 1997	*Sillago ciliata* Cuvier	MH157075	Bray et al. (2018a)
Holorchis castex Bray & Justine, 2007	*Diagramma pictum* (Thunberg)	FJ788476	Bray et al. (2009)
Gorgocephalidae Manter, 1966			
Gorgocephalus graboides Huston, Cutmore, Miller, Sasal, Smit & Cribb, 2021	*Kyphosus cinerascens* (Forskål)	MW353905	Huston et al. (2021)
Gorgocephalus yaaji Bray & Cribb, 2005	*Kyphosus cinerascens*	KU951489	Huston et al. (2016)
Table 4 Prevalence of *Opechonoides opisthoporus* n. sp. in Great Barrier Reef and Moreton Bay pomacentrid fishes

Genus	Species	Moreton Bay	Heron Island	Lizard Island
Abudefduf	*bengalensis* (Bloch)	0/65	2/50	0/10
	septemfasciatus (Cuvier)		1/2	1/5
	sexfasciatus (Lacépède)	0/3	3/33	1/26
	sordidus (Forsskål)	0/3	0/3	
	vaigiensis (Quoy & Gaimard)	0/29	0/1	0/4
	whitleyi Allen & Robertson	0/29	1/290	2/17
Acanthochromis	*polyacanthus* (Bleeker)	0/80	0/89	
Amblyglyphidodon	*curacao* (Bloch)	0/64	0/32	
	leucogaster (Bleeker)	0/2		
Amphiprion	*akindynos* Allen	0/14	1/2	0/2
	melanopus Bleeker			
	perideraion Bleeker	0/10		
Chromis	*amboinensis* (Bleeker)	0/1		
	atripectoralis Welander & Schultz	0/17	0/31	
	nitida (Whitley)	0/10		
	ternatensis (Bleeker)	0/2		
	viridis (Cuvier)	0/11	0/31	0/10
	weberi Fowler & Bean			
Chrysiptera	*biocellata* (Quoy & Gaimard)	0/5		
	cyanea (Quoy & Gaimard)	0/6		
	flavipinnis (Allen & Robertson)	0/3		
	rex (Snyder)	0/1		
	rollandi (Whitley)	0/7		
	taupou (Jordan & Seale)	0/1		
	unimaculata (Cuvier)	0/1		
Dascyllus	*aruanus* (Linnaeus)	0/54	0/19	
	reticulatus (Richardson)	0/1	0/17	0/24
	trimaculatus (Rüppell)	0/2		
Dischistodus	*melanotus* (Bleeker)	0/22	0/6	
	perspicillatus (Cuvier)	0/24	0/11	
	pseudochrysopeocilus (Allen & Robertson)	0/5	0/5	
Hemiglyphidodon	*plagiometapon* (Bleeker)	0/5		
Neoglyphidodon	*melas* (Cuvier)	0/14	1/27	
	nigroris (Cuvier)	0/1		
Neopomacentrus	*azysron* (Bleeker)	0/14		3/30
	cyanomos (Bleeker)	0/5		0/2
Parma	*oligolepis* Whitley	0/3		
	polyplepis Günther	0/6		
Plectroglyphidodon	*dickii* (Liénard)	0/6		
	lacrymatus (Quoy & Gaimard)	0/6	0/12	1/2
	leucozonas (Bleeker)	0/5		
Pomacentrus	*adelus* Allen	0/1	0/4	0/43
	amboinensis Bleeker	0/1	0/4	0/43
	bankanensis Bleeker	0/12		
	brachialis Cuvier	0/1	0/2	
Results

Overview

We have examined over 1,800 pomacentrids from Moreton Bay, off Heron Island and off Lizard Island since 1990 (Table 4). These specimens comprise 61 species from 16 genera: *Abudefduf* Forsskål, six species (570 individuals); *Acanthochromis* Gill, one species (169 individuals); *Amblyglyphidodon* Bleeker, two species (98 individuals); *Amphiprion* Bloch & Schneider, three species (28 individuals); *Chromis* Cuvier, six species (113 individuals); *Chrysiptera* Yamaguti, seven species (24 individuals); *Dascyllus* Cuvier, six species (113 individuals); *Dischistodus* Gill, three species (73 individuals); *Hemiglyphidodon* Bleeker, one species (five individuals); *Neoglyphidodon* Allen, two species (42 individuals); *Neopomacentrus* Allen, two species (32 individuals); *Parma* Günther, two species (9 individuals); *Plectroglyphidodon* Fowler & Bean, three species (31 individuals); *Pomacentrus* Lacépède, 15 species (429 individuals); *Premnas* Cuvier, one species (one individual); and *Stegastes* Jenyns, four species (128 individuals).

We collected adult trematodes consistent with the Lepocreadiidae from pomacentrids off Heron Island and Lizard Island; no adult lepocreadiids were found in Moreton Bay pomacentrids. Of the pomacentrids collected since 1990, we found specimens of an unknown species of *Opechonoides* Yamaguti, 1940 in species of multiple pomacentrid genera off Heron Island and Lizard Island. In more recent collections (between July 2019 to April 2021, 662 individuals), new specimens of four known species of lepocreadiids were also collected. *Lepotrema acanthochromidis* and *L. adlardi* were collected from known hosts, *Acanthochromis polyacanthus* (Bleeker) and *Abudefduf bengalensis* (Bloch), respectively (off both Heron Island and Lizard Island). *Lepotrema amblyglyphidodonis* was collected from known hosts, *Amblyglyphidodon curacao* (Bloch) and *Amphiprion akindynos* Allen, and two new hosts, *Plectroglyphidodon dickii* (Liénard) and *Stegastes apicalis* (De Vis) off Heron Island. *Lepotrema oyabitcha* was collected from a known host, *Abudefduf whitleyi* Allen & Robertson, and three new hosts, *A. bengalensis* (Bloch), *A. sexfasciatus* (Cuvier) and *A. sordidus* (Forsskål) at Lizard Island. Prevalence data in taxonomic summaries are based on new collections (July 2019 to April 2021) for all taxa except for the new species of *Opechonoides*.

Four ctenophore species were collected: *Hormiphora* (?) sp. (20 individuals), *Ocyropsis* (?) sp. (32 individuals) and *Pukia falcata* Gershwin, Zeidler &
Davie (32 individuals) over the continental shelf of southeast Queensland and *Bolinopsis* (?) sp. (20 individuals) off the east coast of Tasmania.

Metacercariae consistent with the Lepocreadiidae were collected from *Bolinopsis* sp., *Ocyropsis* sp. and *P. falcata*. Although we are confident that three
species of ctenophore were infected, only *P. falcata* could be identified reliably to species. The other two species were unidentifiable due to the combination of damage to the specimens at the time of collection, inability to generate informative DNA sequences, and the unsettled nature of the taxonomy of ctenophores in Australian waters. As such, on the basis of their general morphology, we tentatively identified these specimens as relating to *Bolinopsis* and *Ocyropsis*. Unfortunately, the difficulties of preservation of ctenophores precludes the lodgement of morphologically informative voucher specimens in a museum.

Molecular results

ITS2 sequence data were generated for the new species of *Opechonoides*, *Lepotrema acanchnochromidis*, *L. amblyglyphidodonis*, and *Lepocreadium oyabitcha*. Newly generated sequences of *Lepotrema acanchnochromidis* from off Heron Island were identical to those available on GenBank, also from off Heron Island, and differed from sequences of Lizard Island specimens by up to 18 base pairs, showing clear geographical structuring (Fig. 1). In contrast, the *cox1* sequences of *L. adlardi* from off Heron Island and Lizard Island differed by up to only two base pairs and showed no geographical structuring. New *cox1* sequences of *L. amblyglyphidodonis* from the two new hosts from off Heron Island were identical to those collected from *Amblyglyphidodon curacao* and *Amphiprion akindynos* (available on GenBank and also from off Heron Island). The *cox1* sequences for specimens of *Lepocreadium oyabitcha* and the new species of *Opechonoides* showed no intraspecific genetic variation.

Family Lepocreadiidae Odhner, 1905

Genus *Opechonoides* Yamaguti, 1940

Type-species: *Opechonoides gure* Yamaguti, 1940, by original designation.

Opechonoides opisthoporus n. sp.

Fig. 2 *Opechonoides opisthoporus* n. sp. from off Lizard Island, Great Barrier Reef, Australia; a holotype ex *Abudefduf whitleyi* ventral view; b paratype ex *Abudefduf septemfasciatus* ventral view; c paratype ex *Amphiprion akindynos* ventral view. Scale bars: 200 μm
Type-host: Abudefduf whitleyi Allen & Robertson, Whitley’s sergeant (Pomacentridae).

Type-locality: Off Lizard Island, northern Great Barrier Reef, Australia.

Other hosts: Abudefduf bengalensis (Bloch), Bengal sergeant; A. septemfasciatus (Cuvier), Banded sergeant; A. sexfasciatus (Lacépède), Scissortail sergeant; Amphiprion akindynos Allen, Barrier Reef anemonefish; Neoglyphidodon melas (Cuvier), Bowtie damsel; Neopomacentrus azysron (Bleeker), Lemon damsel; Plectroglyphidodon leucozonus (Bleeker), Whiteband damsel; P. adelus Allen, Obscure damsel; P. chrysurus Cuvier, Whitetail damsel; P. moluccensis Bleeker, Lemon damsel; Stegastes apicalis (De Vis), Australian gregory (Pomacentridae).

Other locality: Off Heron Island, southern Great Barrier Reef, Australia.

Site in host: Intestine.

Abundance and prevalence: Off Lizard Island: four specimens from one of five A. septemfasciatus; two specimens from one of 26 A. sexfasciatus; eight specimens from two of 17 A. whitleyi; two specimens from one of two A. akindynos; one specimen from one of 27 N. melas; seven specimens from three of 30 N. azysron; one specimen from one of two P. leucozonus; four specimens from two of 33 P. adelus; one specimen from one of 32 P. chrysurus. Off Heron Island: two specimens from two of 50 A. bengalensis; nine specimens from one of two A. septemfasciatus; six specimens from three of 33 A. sexfasciatus; six specimens from one of 290 A. whitleyi; four specimens from three of 34 P. chrysurus; two specimens from two of 58 P. moluccensis; one specimen from one of 83 S. apicalis.

Type-material: Holotype (QM G240016) and 28 paratypes (QM G240017–42, NHMUK 2022.2.25.1–2), including five hologenophores.

Representative DNA sequences: ITS2 rDNA, five identical sequences; 28S rDNA, one sequence; cox1 mtDNA, five identical sequences (See Tables 2 and 3 for GenBank accession numbers).

ZooBank LSID: urn:lsid:zoobank.org:act:1A4C1EB6-DE1D-4F2B-958C-0BD2AF3B7D9E.

Etymology: The epithet opisthoporus refers to the unusually posterior position of the dorsal pore of Laurer’s canal.

Description (Fig. 2)

[Based on 24 whole mounts and five hologenophores.] Body small, fusiform, 502–706 × 233–324 (581 × 256). Tegmentum spined; extent of spines variable, to anterior hindbody, level of testes or close to posterior extremity. Eye-spot pigment scattered widely around prepharynx and pharynx. Oral sucker transversely oval, subterminal, 65–89 × 75–97 (72 × 85). Ventral sucker rounded, 84–121 × 94–115 (100 × 104), in mid-region of body. Prepharynx distinct, 20–40 (33), narrow. Pharynx oval, 37–50 × 42–53 (40 × 44). Oesophagus distinct, 14–34 (24). Intestinal bifurcation in posterior forebody. Caeca short, terminating at level of testes. Testes two, oval, entire, oblique, in mid-hindbody, 47–92 × 47–92 (66 × 65). External seminal vesicle not detected. Cirrus-sac claviform or dumbbell-shaped, 64–164 × 31–50 (118 × 36). Internal seminal vesicle oval. Pars prostatica vesicular, lined with anuclear cell-like bodies. Ejaculatory duct long. Genital atrium distinct. Genital pore sinistrally
submedian, post-bifurcal, in posterior forebody. Ovary entire or slightly indented, 34–59 × 34–65 (40 × 44), often obscured by eggs. Laurer’s canal runs diagonally from dorsal to testes to sinistrally submarginal dorsal pore close to posterior extremity. Uterus from midtesticular level to ventral sucker, mostly intracaecal. Eggs few, large, tanned, operculate, 30–49 × 57–79 (35 × 67). Metraterm muscular, short. Vitellarium follicular; follicles relatively large, with fields reaching from anterior oesophagus to anterior post-testicular region, not reaching close to posterior extremity. Excretory pore dorsally sub-terminal; vesicle narrow posteriorly, widens and reaches to intestinal bifurcation or just anterior, often contains corpuses in highly characteristic single column.

Remarks

The features that suggest that this new species belongs in Opechonoides include the possession of a uterus that overlaps the testes, short caeca, a long excretory vesicle containing corpuscles, and oblique testes. It differs from the only other species of the genus, O. gure Yamaguti, 1940, in having a greater ventral to oral sucker width ratio (1:1.18–1.25 vs 1:0.80), a shorter cirrus-sac (118 mm vs 190 mm), contiguous testes (vs separated), and a longer post-testicular distance (14–19% vs 6% of body length) with a distinct posterior region lacking vitelline follicles. Additionally, the position and course of Laurer’s canal is unusual and not exactly as described for O. gure. In the latter species, Laurer’s canal does not reach the posterior extremity, but extends only to the level of the posterior testis, and opens ‘a little to the left of the median line’, not submarginally. Molecular data were generated for specimens collected from five of the 12 host species; the remaining specimens were identified based on morphology.

Intermediate hosts

Second intermediate hosts: Bolinopsis (?) sp. (Bolinopsidae); Ocyropsis (?) sp. (Ocyropsidae); Pukia falcata Gershwin, Zeidler & Davie (Pukiidae).

Localities: Off the continental shelf of southeast Queensland, Australia; off the east coast of Tasmania, Australia (see Table 5).

Site of infection: Mesogloea.

Representative DNA sequences: ITS2 rDNA, seven identical sequences (see Table 5 for GenBank accession numbers).

Remarks

Metacercariae recovered from three ctenophore species were genetically matched to O. opisthoporus n. sp. on the basis of identical ITS2 sequences. No morphological vouchers were available for examination as all specimens were used for molecular sequencing due to their small size.

Genus Lepocreadium Stossich, 1904

Type-species: Lepocreadium album (Stossich, 1890) Stossich, 1904, by original designation.

Lepocreadium oyabitcha Machida, 1984

Type-host: Abudedefduf vaigiensis (Quoy & Gaimard), Indo-Pacific sergeant (Pomacentridae).

Type-locality: Off Okinawa, Japan.

Other host: Abudedefduf witeleyi Allen & Robertson, Whitley’s sergeant (Pomacentridae).

Other locality: Off Lizard Island, northern Great Barrier Reef, Australia.

Records: Machida (1984); Bray & Cribb (1998).

New material

New hosts: Abudedefduf bengalensis (Bloch), Bengal sergeant; A. sexfasciatus (Cuvier), Scissortail sergeant; A. sordidus (Forsskål), Blackspot sergeant (Pomacentridae).

Known host: A. witeleyi.

Known locality: Off Lizard Island.

Site in host: Gall bladder.

Abundance and prevalence: Two specimens from two of 10 A. bengalensis; 21 specimens from eight of 26 A. sexfasciatus; five specimens from one of three A. sordidus; 18 specimens from six of 15 A. witeleyi.

Voucher material: Six specimens (QM G240043–8), including three hologenophores.

Representative DNA sequences: ITS2 rDNA, five identical sequences (three submitted to GenBank); 28S rDNA, one sequence; cox1 mtDNA, five identical sequences (three submitted to GenBank; see Tables 2 and 3 for GenBank accession numbers).
Remarks

Morphologically, the new specimens closely resemble the descriptions of Machida (1984) and Bray & Cribb (1998), especially in the distinctive tri-lobed ovary and the ramifying vitellarium. All specimens were collected from the gall bladder, which is consistent with the original report of Machida (1984); Bray & Cribb (1998) reported their specimen from the intestine, but we suspect that the worm had been relocated to the intestine from the gall bladder during dissection. Although Machida (1984) reported this worm to occur in pairs, Bray & Cribb (1998) reported a single worm from an individual host, and in the present study, up to five specimens were recovered from a single host.

Genus Lepotrema Ozaki, 1932
Type-species: Lepotrema clavatum Ozaki, 1932, by original designation.

Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018
Syn. L. clavatum of Bray et al. (1993), Barker et al. (1994) in part
Type-host: Acanthochromis polyacanthus (Bleeker, 1855), Spiny chromis (Pomacentridae).
Type-locality: Off Heron Island, southern Great Barrier Reef, Australia.
Other localities: Off Lizard Island, northern Great Barrier Reef, Australia.
Records: Bray et al. (1993); Barker et al. (1994); Bray et al. (2009); Bray et al. (2018b).

New material

Known host: A. polyacanthus.
Known localities: Off Heron Island; off Lizard Island.
Site in host: Intestine.
Abundance and prevalence: Off Heron Island: six specimens from two of 15 A. polyacanthus. Off Lizard Island: 12 specimens from eight of 15 A. polyacanthus.
Voucher material: Five specimens (QM G240049–53), including two hologenophores.
Representative DNA sequences: ITS2 rDNA, two identical sequences; cox1 mtDNA, six sequences (four submitted to GenBank; see Table 2 for GenBank accession numbers).

In the present study, specimens of L. acanthochromidis were collected from the type-host in two known localities, off Heron and Lizard Islands. The new specimens from each locality are morphologically similar but show slight variation in some morphometrics, i.e., egg length [47–56 (51.2) vs 49–68 (55)] and body size [973–1,364 (1,165) vs 914–1,510 (1,194)]. However, comparable levels of morphological variation were also reported by Bray et al. (2018b). Newly generated cox1 sequence data for Heron Island specimens were identical to those published by Bray et al. (2018b). New sequences for Lizard Island specimens show that this species exhibits a strong intraspecific genetic variation that is structured geographically. Infection prevalences reported here differed from those reported by Bray et al. (2018b) in that fewer A. polyacanthus were infected at Heron Island (two of 15 vs 21 of 65) and more were infected at Lizard Island (eight of 15 vs 21 of 74).

Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996
Syn. Lepocreadium adlardi Bray, Cribb & Barker, 1993
Type-host: Abudefduf bengalensis (Bloch), Bengal sergeant (Pomacentridae).
Type-locality: Off Heron Island, southern Great Barrier Reef, Australia.
Other localities: Off Lizard Island, northern Great Barrier Reef, Australia; Ningaloo Reef, Western Australia, Australia.
Records: Bray et al. (1993); Barker et al. (1994); Bray et al. (2018b).

New material

Known host: A. bengalensis.
Known localities: Off Heron Island; off Lizard Island.
Site in host: Intestine.
Abundance and prevalence: Off Heron Island: nine specimens from four of seven A. bengalensis. Off Lizard Island: six specimens from three of five A. bengalensis.
Voucher material: Four specimens (QM G240054–7), including two hologenophores.
Fig. 3 Inferred relationships of *Lepocreadium oyabitcha* and *Opechonoides opisthoporus* n. sp. within the Lepocreadiidae based on a maximum likelihood analysis of the 28S rDNA dataset. The newly generated sequences are in bold. Bootstrap support values are shown above the nodes, and where relationships were replicated in the Bayesian inference analysis, posterior probabilities are shown below. Support values below 0.85 or 85 are not shown. Outgroup taxa are species of the Aephnidiogenidae and Gorgocephalidae. The scale bar indicates the number of substitutions per site.
Representative DNA sequences: cox1 mtDNA, three sequences (See Table 2 for GenBank accession numbers).

Remarks

New specimens of *L. adlardi* were collected from *A. bengalensis* at two known localities, Heron Island and Lizard Island. New cox1 sequences show no geographical structuring between these sites. In the present study, prevalences were similar to those reported by Bray et al. (2018b), who reported 20 of 43 *A. bengalensis* from off Heron Island and two of five from off Lizard Island to be infected.

Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018

Syn. Lepocreadium sp. of Bray et al. (1993) and Barker et al. (1994)

Type-host: Amblyglyphidodon curacao (Bloch), Staghorn damselfish (Pomacentridae).

Type-locality: Off Heron Island, southern Great Barrier Reef, Australia.

Other host: Amphiprion akindynos Allen, Barrier Reef anemonefish (Pomacentridae).

Records: Bray et al. (1993); Barker et al. (1994); Bray et al. (2018b).

New material

New hosts: Plectroglyphidodon dickii (Liénard), Dick’s damsel; Stegastes apicalis (De Vis), Australian gregory (Pomacentridae).

Known hosts: A. curacao; Amphiprion akindynos.

Known locality: Off Heron Island.

Site in host: Intestine.

Abundance and prevalence: Five specimens from three of 23 *A. curacao*; one specimen from one of seven Amphiprion akindynos; one specimen from one of three *P. dickii*; one specimen from one of 55 *S. apicalis*.

Voucher material: Two specimens (QM G240058–9), both hologenophores.

Representative DNA sequences: ITS2 rDNA, one sequence; cox1 mtDNA, two identical sequences (See Table 2 for GenBank accession numbers).

Remarks

The specimens collected in the present study were genetically identical to those of Bray et al. (2018b). Although the single specimen collected from *S. apicalis* resembles *L. monile*, which was reported in the same host by Bray et al. (2018b), the new specimen differs slightly by having a muscular pad at the distal metraterm. The infection prevalences reported here are low and similar to those of Bray et al. (2018b), who reported low infection prevalences in *A. curacao* (five of 71) and *Amphiprion akindynos* (one of seven).

Phylogenetic results

Maximum likelihood and Bayesian inference analyses of the partial 28S sequences produced phylogenetic trees with almost identical topologies but varying levels of nodal support (Fig. 3). While both analyses show strong support for two major clades within the Lepocreadiidae, the key difference between the two phylogenies is the placement of *Mobahincia teirae* Bray, Cribb & Cutmore, 2018 and *Neohypocreadium dorsoporum* Machida & Uchida, 1987 in the first major clade. In the maximum likelihood analysis, *M. teirae* is sister to a clade containing *Neomultitestis aspidogastriiformis* Bray & Cribb, 2003, *Multitestis magnacetabulum* Mamaev, 1970 and *Neopreptetos arusettae* Machida, 1982. *Neohypocreadium dorsoporum* is sister to the previously mentioned clade, four species of *Hypocreadium* Ozaki, 1936, *Echeneidoceolium indicum* Simha & Pershad, 1964 and *Deraiotrema platacis* Machida, 1982. In the Bayesian inference analysis, *M. teirae* and *N. dorsoporum* formed a polytomy with all the taxa in this first clade. In both analyses, *Lepocreadium oyabitcha* and *Opechonoides opisthoporus n. sp.* fall within the second major clade. *Opechonoides opisthoporus n. sp.* is sister to *Prodistomum orientale* (Layman, 1930) Bray & Gibson, 1990 (with strong support) and both formed a polytomy with *P. priedei* Bray & Merrett, 1998, *P. alaskense* (Ward & Fillingham, 1934) Bray & Merrett, 1998 and *Clavogalea trachinoti* (Fischthal & Thomas, 1968) Bray & Gibson, 1990. *Lepocreadium oyabitcha* is sister to *Lepidapedoides angustus* Bray, Cribb & Barker, 1996 (with strong support), and is separated from *Lepocreadium opsanusi* Sogandares & Hutton, 1960.
Discussion

Phylogeny

The phylogeny and systematics of the Lepocreadioidea have been extensively reviewed by Bray et al. (2009), Bray & Cribb (2012) and Bray et al. (2018a); these studies show that the Lepocreadiidae divides into two major clades, Clade VII and Clade VIII of Bray et al. (2009). Our analyses demonstrate that Lepocreadium appears to be polyphyletic, with L. oyabitcha separated from L. opsanusi, and sister to Lepidapedoides angustus. With genetic data for only two of 27 recognised Lepocreadium species and one of seven recognised Lepidapedoides species (WoRMS Editorial Board, 2021), it is difficult to interpret this relationship, especially given that L. oyabitcha and Lepidapedoides angustus are quite distinct morphologically and infect hosts from different families (L. angustus infects species of the Serranidae). It is noteworthy, however, that both species infect the gall bladders of their hosts (Bray et al., 1996; Justine et al., 2010). The only other species of Opechonoides, O. gure, was described from a single specimen collected from the large-scale blackfish, Girella punctata Gray (Kyphosidae) off Japan (Yamaguti, 1940), and, to our knowledge, it has not been reported elsewhere and no genetic data exist. Although the analyses show that O. opisthopor us n. sp. is embedded within a clade of Prodistomum species, it is clear that at best Prodistomum is paraphyletic and requires molecular study of its type-species P. gracile Linton, 1910.

Mitochondrial DNA

Interestingly, the two species of Le波特ema collected from two localities (Heron Island and Lizard Island), showed differing patterns of genetic variation. Based on cox1 sequences, specimens of L. acanthochromidis have a high level of intraspecific variation between samples collected from the two sites, differing by a minimum of 17 base pairs. A similar level of intraspecific variation was reported for specimens of L. hemitaaurichthydis Bray, Cutmore & Cribb, 2018, which differed by 14 base pairs between samples from French Polynesian waters and off Palau (Bray et al., 2018b). Comparable intraspecific cox1 variation has been reported for several trematode species in Indo-Pacific fishes: six species of the Aporocotylidae Odhner, 1912 (see Cutmore et al., 2021), three species of the Gorgocephalidae Manter, 1966 (see Huston et al., 2021), three species of the Lepocreadiidae (see Bray et al., 2018b; 2022) and seven species of the Monorchidae Odhner, 1911 (see McNamara et al., 2014). Conversely, sequences of L. adlardi collected from off Heron and Lizard Islands differed by up to two base pairs, but with no geographical structuring. A similarly low level of variation was reported for L. cirripectis Bray, Cutmore & Cribb, 2018 (see Bray et al., 2018b). Several trematode species also show little to no differences in cox1 sequences from sites at least as distant as Heron and Lizard Islands: one species of the Aporocotylidae (see Cutmore et al., 2021), two species of the Fellodistomidae Nicoll, 1909 (see Cribb et al., 2021), five species of the Lepocreadiidae (see Bray et al., 2018b; 2022) and three species of the Monorchidae (see McNamara et al., 2014). These varying patterns of intraspecific genetic variation suggest that trematodes are likely differentially affected by geographical or host-related factors which either limit or benefit their dispersal; however, no synthesis of explanation has emerged so far.

In the case of L. acanthochromidis, it is possible that host-related factors play a role in the high level of intraspecific genetic variation that we see in the cox1 region [and the 28S region (Bray et al., 2018b)]. Populations of the host, Acanthochromis polyacanthus, exhibit strong levels of phenotypic and genetic variation across the GBR (Doherty et al., 1994; Planes et al., 2001; van Herwerden & Doherty, 2006). This species is unique among GBR pomacentrids as it lacks a dispersive pelagic larval stage (Robertson, 1973) and adults exhibit low rates of migration between reefs (Miller-Sims et al., 2008). Populations separated by large areas of deep water (e.g., the Swain Reefs and the Capricorn Bunker Group reefs, which are approximately 150 km apart) show strong levels of genetic structuring, whereas populations on patch reefs separated by shallow water (e.g., Heron Island reefs and Sykes reefs which are less than 2 km apart) show no population differentiation (Miller-Sims et al., 2008). Furthermore, groups of juvenile A. polyacanthus only travel between 50–100 metres between patch reefs (Kavanagh, 2000). These low rates of movement may be effective in limiting the gene flow of L.
acanthochromidis, as parasite gene flow is expected to reflect or be determined by hosts with the highest dispersal ability (Prugnolle et al., 2005). Indeed, it is possible that L. acanthochromidis relies on intermediate hosts for dispersal, as there is evidence that gelatinous organisms (with high dispersal capabilities) are used by another species of Lepotrema (Kondo et al., 2016). However, given the distinct geographical genetic structuring, it is likely that L. acanthochromidis uses intermediate host taxa that also have limited dispersal capabilities. It is plausible that historic patterns of sea level resulting in the connectivity (via shallow water ‘crossings’) of distant present-day reefs allowed for the dispersal of A. polyacanthus (see Miller-Sims et al., 2008), L. acanthochromidis and the latter’s intermediate hosts. With changes in sea level, host and trematode populations have become isolated and likely show variation within the cox1 region due to the non-recombinant nature of mitochondrial genes (Morgan-Richards et al., 2017).

Host-specificity

The new collections show that Lepotrema amblyglyphidon, Lepocreadium oyabitcha and Opechonoides opisthporus n. sp. all exhibit stenoxenic host-specificity (Miller et al., 2011); however, each pattern is quite distinct. Lepocreadium oyabitcha has been reported from species of a single genus (Abudefduf), Lepotrema amblyglyphidon has been reported from four species belonging to four genera (Amblyglyphidon, Amphirion, Plectroglyphidon and Stegastes), and O. opisthporus n. sp. has been reported from 12 species belonging to seven genera (Abudefduf, Amphirion, Neoglyphidon, Neopomacentrus, Plectroglyphidon, Pomacentrus and Stegastes). Such stenoxenicity is also exhibited by L. monile, which has been reported from four species belonging to two genera (Pomacentrus and Stegastes). Of the remaining pomacentrid-infecting lepocreadiids, three are oioxenic (L. acanthochromidis, L. adlardi and Lepocreadium sogandaresi) and one is euryxenic (Lepotrema clavatum). However, as Bray et al. (2018b) noted, it is unlikely that the reported euryxenicity of L. clavatum is valid, given the strict oioxenic-stenoxenic patterns of host-specificity seen for species of Lepotrema specifically, and other lepocreadiids generally.

Infections of O. opisthporus n. sp. were never common in any pomacentrid species. They were most frequent in species of Abudefduf and Pomacentrus; only single species of the other five genera were infected. However, this could be an artefact of our sampling efforts; species of Abudefduf and Pomacentrus make up over 50% of the pomacentrids that we have examined. Given that we have collected O. opisthporus n. sp. in other pomacentrid genera, albeit at lower prevalences and abundances, it is likely that with further sampling, more pomacentrid hosts will be discovered. In contrast, the host range of Lepocreadium oyabitcha is unlikely to increase to include other pomacentrid genera, as our current collection records indicate that this species is restricted to species of Abudefduf only. Although the second intermediate host of L. oyabitcha remains unknown, we have examined multiple pomacentrid species that share a similar habitat and diet (planktonic organisms and algae) without finding infections of L. oyabitcha. It is possible that the restriction of L. oyabitcha to species of Abudefduf is related to the size of these fishes and the trematode itself. Lepocreadium oyabitcha is substantially larger than other pomacentrid-infecting lepocreadiids and its size may restrict it from infecting the gall bladder of small pomacentrid species.

Geographical distribution

In the present study, specimens of Lepotrema acanthochromidis, L. adlardi and O. opisthporus n. sp. were collected from off both Heron and Lizard Islands, which are almost 1,200 km apart. Bray et al. (2018b) also reported the same distribution for L. acanthochromidis, L. adlardi (with an additional locality: Ningaloo Reef in Western Australia) and L. monile. Lepotrema amblyglyphidon has only been found off Heron Island; however, the southern restriction of this species in the GBR may be an artefact of our sampling. To date, we have examined over 160 individuals of the host species, A. curacao, Amphirion akindynos, P. dickii and S. apicalis at Heron Island whereas in comparison, fewer than 70 individuals have been examined at Lizard Island. Given the relatively broad geographical distribution of the other Lepotrema species, it is plausible that more sampling off Lizard Island and elsewhere will increase the geographic range of L. amblyglyphidon. In contrast, it is unlikely that the distribution of Lepocreadium
ooyabitcha includes Heron Island or Moreton Bay, as we have sampled extensively for species of *Abudefduf* in those regions without detecting it.

Second intermediate hosts

The finding of metacercariae of *O. opisthoporus n. sp.* in ctenophores represents the first report of intermediate hosts for a species of *Opechonoides* and indeed for pomacentrid-infecting lepocreadiids. Several studies have reported gelatinous organisms as second intermediate hosts of other lepocreadiids, including species of *Lepocreadium, Lepotrema* and *Opechona* Looss, 1907 (see Stunkard, 1972, 1980; Martorelli, 2001; Ohtsuka et al., 2010; Browne et al., 2020). Interestingly, adult *O. opisthoporus n. sp.* have been found only in GBR pomacentrid fishes, whereas the infections of metacercariae were found in ctenophores collected as far south as off the coast of Tasmania, more than 2,000 km south of the closest known locality for the adults. We can speculate that infected ctenophores are dispersed great distances by the southward flowing East Australian Current or that infections in southern fishes have not yet been detected due to limited sampling. The dispersal capabilities of ctenophores likely influences the distribution of *O. opisthoporus n. sp.* and explains the lack of genetic variation seen for specimens collected from off Heron and Lizard Islands. Given that *Pukia falcata*, and species of *Bolinopsis* L. Agassiz and *Ocyropsis* Mayer have been reported at various locations along the eastern coast of Australia (Gershwin et al., 2010), it is plausible that they act as intermediate hosts on the GBR. Whilst pomacentrids are not generally known to feed on ctenophores, most are at least partly planktivorous (Pratchett et al., 2016; Cowan et al., 2019; Emslie et al., 2019) and so may well consume ctenophores; the low prevalence and intensity of infection of *O. opisthoporus n. sp.* in pomacentrids suggests that the consumption may be opportunistic. As other lepocreadiid metacercariae collected from gelatinous host organisms have been linked to definitive hosts that would be expected to consume gelatinous organisms (Ohtsuka et al., 2010), this study has identified a potentially novel trophic link between pomacentrid fishes and ctenophores, highlighting the potential of parasites as novel trophic tracers.

Acknowledgements We thank members of the Marine Parasitology Laboratory, the University of Queensland, Australia, for their support and assistance. We thank the staff and volunteers at Lizard Island, Heron Island, and Moreton Bay Research Stations, and the Marine National Facility and crew aboard the RV *Investigator* for their support in the field. We also thank chief scientist B. Slowan, C. Chapman, J. Arnold, N. Arafeh Dalmaz, C. Cao, P. Lindholm, C. Olguin Jacobson, I. Suthers and M. Suthers for assistance with collecting and dissecting ctenophore samples.

Funding This work was funded by the Holsworth Wildlife Research Endowment – Equity Trustees Charitable Foundation and the Ecological Society of Australia (awarded to BD), the PADI Foundation (awarded to BD), the Australian Biological Resources Study (ABRS National Taxonomy Research Grant RG19-37; awarded to SCC and THC) and the Sea World Research and Rescue Foundation (project number SWR12020; awarded to KAP, SCC and THC). Open Access funding enabled and organized by CAUL and its Member Institutions.

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All applicable institutional, national and international guidelines for the care and use of animals were followed.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barker, S. C., Bray, R. A., & Cribb, T. H. (1993). *Preptetos cannoni* n. sp. (Digenea: Lepocreadiidae) from *Siganus lineatus* (Teleostei: Siganidae) from the southern Great Barrier Reef, Australia. *Systematic Parasitology, 26*, 151–155. https://doi.org/10.1007/BF00009223

Barker, S. C., Cribb, T. H., Bray, R. A., & Adlard, R. D. (1994). Host-parasite associations on a coral reef: pomacentrid
fishes and digenean trematodes. *International Journal for Parasitology, 24*, 643–647. https://doi.org/10.1016/0020-7519(94)90116-3

Bartoli, P., Gibson, D. I., & Bray, R. A. (2005). Digenean species diversity in teleost fish from a nature reserve off Corsica and a comparison with other Mediterranean regions. *Journal of Natural History, 39*, 47–70. https://doi.org/10.1080/00222930510001613557

Bray, R. A., & Cribb, T. H. (1996). *Preptetos and Neopreptetos* (Digenea: Lepocreadiidae) from Australian marine fishes. *Folia Parasitologica, 43*, 209–226. https://doi.org/10.1007/BF00009386

Bray, R. A., & Cribb, T. H. (1998). Lepocreadiidae (Digenea) of Australian coastal fishes: new species of *Opechona Looss*, 1907, *Lepotrema Ozaki*, 1932 and *Bianium Stunkard*, 1930 and comments on other species reported for the first time or poorly known in Australian waters. *Systematic Parasitology, 41*, 123–148. https://doi.org/10.1007/A:1006055605808

Bray, R. A., & Cribb, T. H. (2012). Reorganisation of the superfamily Lepocreadioidea Odhner, 1905 based on an inferred molecular phylogeny. *Systematic Parasitology, 83*, 169–177. https://doi.org/10.1007/s11230-012-9386-3

Bray, R. A., Cribb, T. H., & Barker, S. C. (1993). The Lepocreadiidae (Digenea) of pomacentrid fishes (Pericormes) from Heron Island, Queensland, Australia. *Systematic Parasitology, 26*, 189–200. https://doi.org/10.1007/BF00009726

Bray, R. A., Cribb, T. H., & Barker, S. C. (1996). Four species of *Lepidapedoides Yamaguti, 1970* (Digenea: Lepocreadiidae) from fishes of the southern Great Barrier Reef, with a tabulation of host-parasite data on the group. *Systematic Parasitology, 34*, 179–195. https://doi.org/10.1007/BF00009386

Bray, R. A., Cribb, T. H., & Cutmore, S. C. (2018a). Lepocreadiidae Odhner, 1905 and Aepnidiodigenidae Yamaguti, 1934 (Digenea: Lepocreadioidea) of fishes from Moreton Bay, Queensland, Australia, with the erection of a new family and genus. *Systematic Parasitology, 95*, 479–498. https://doi.org/10.1007/s11230-018-9803-3

Bray, R. A., Cutmore, S. C., & Cribb, T. H. (2018b). *Lepotrema Ozaki, 1932* (Lepocreadiidae: Digenea) from Indo-Pacific fishes, with the description of eight new species, characterised by morphometric and molecular features. *Systematic Parasitology, 95*, 693–741. https://doi.org/10.1007/s11230-018-9821-9

Bray, R. A., Cutmore, S. C., & Cribb, T. H. (2019). An anomalous phylogenetic position for *Deraiotrema platacis* Machida, 1982 (Lepocreadiidae) from *Platxus pinnatus* on the Great Barrier Reef. *Diversity, 11*, 104. https://doi.org/10.3390/d11070104

Bray, R. A., Cutmore, S. C., & Cribb, T. H. (2022). A paradigm for the recognition of cryptic trematode species in tropical Indo-west Pacific fishes: the problematic genus *Preptetos* (Trematoda: Lepocreadiidae). *International Journal for Parasitology, 52*, 169–203. https://doi.org/10.1016/j.ijpara.2021.08.004

Bray, R. A., Littlewood, D. T. J., Herniou, E. A., Williams, B., & Henderson, R. E. (1999). Digenean parasites of deep-sea teleosts: a review and case studies of intrageneric phylogenies. *Parasitology, 119*, S125–S144. https://doi.org/10.1017/S0031182000084687

Bray, R. A., Waeschenbach, A., Cribb, T. H., Weedall, G. D., Dyal, P., & Littlewood, D. T. J. (2009). The phylogeny of the Lepocreadioidea (Plathyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. *Acta Parasitologica, 54*, 310–329. https://doi.org/10.2478/v11686-009-0045-z

Browne, J. G., Pitt, K. A., & Cribb, T. H. (2020). DNA sequencing demonstrates the importance of jellyfish in life cycles of lepocreadiid trematodes. *Journal of Helminthology, 94*, 1–10. https://doi.org/10.1017/ S0022149X20000632

Claxton, A. T., Fuehring, A. D., Andres, M. J., Moncrief, T. D., & Curran, S. S. (2017). Parasites of the Vermilion snapper, *Rhomboplites aurorubens* (Cuvier) from the Western Atlantic Ocean. *Comparative Parasitology, 84*, 1–14. https://doi.org/10.1654/1525-2647-84.1.1

Cowan, Z. L., Dworjanyn, S. A., Cabelles, C. F., & Pratchett, M. S. (2019). Predation on crown-of-thorns starfish larvae by damselfishes. *Coral Reefs, 35*, 1253–1262. https://doi.org/10.1007/s00338-016-1491-3

Cribb, T. H., Anderson, G. R., Adlard, R. D., & Bray, R. A. (1998). A DNA-based demonstration of a three-host life-cycle for the Bivesciculidae (Platyhelminthes: Digenea). *International Journal for Parasitology, 28*, 1791–1795. https://doi.org/10.1016/S0020-7519(98)00127-1

Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. *Systematic Parasitology, 76*, 1–7. https://doi.org/10.1007/s11230-010-9229-z

Cribb, T. H., Martin, S. B., Diaz, P. E., Bray, R. A., & Cutmore, S. C. (2021). Eight species of *Lintonium Stunkard & Nigrelli, 1930* (Digenea: Fellodistomidae) in Australian tetradontiform fishes. *Systematic Parasitology, 98*, 595–624. https://doi.org/10.1007/s11230-021-10000-w

Curran, S. S., Ksepk, S. P., Martorelli, S. R., Overstreet, R. M., Warren, M. B., & Bullard, S. A. (2021). *Opechona chloroscombri* and *Opechona corynii* n. sp. (Digenea: Lepocreadiidae) from the Northern Gulf of Mexico with phylogenetic analysis based on 28S rDNA. *Journal of Parasitology, 107*, 606–620. https://doi.org/10.1645/20-151

Cutmore, S. C., Yong, R. Q.-Y., Reimer, J. D., Shirakashi, S., Nolan, M. J., & Cribb, T. H. (2021). Two new species of *Acanthocharomis polyacanthus* (Aplocoytiidae), with a molecular revision of the genera *Ankistromece Nolan & Cribb, 2004* and *Plithinomita Bolan & Cribb, 2006*. *Systematic Parasitology, 98*, 641–664. https://doi.org/10.1007/s11230-021-10002-8

Darrida, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods, 9*, 772. https://doi.org/10.1038/nmeth.2109

Doherty, P. J., Mather, P., & Planes, S. (1994). *Acanthochromis polyacanthus*, a fish lacking larval dispersal, has genetically differentiated populations at local and regional scales on the Great Barrier Reef. *Marine Biology, 121*, 11–21. https://doi.org/10.1007/BF00349469
Dyer, W. G., Williams, E. H., & Williams, L. B. (1985). Digenean trematodes of marine fishes of the western and southwestern coasts of Puerto Rico. Proceedings of the Helminthological Society of Washington, 52, 85–94.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Emeslie, M. J., Logan, M., & Cheal, A. J. (2019). The distribution of planktivorous damselfishes (Pomacentridae) on the Great Barrier Reef and the relative influences of habitat and predation. Diversity, 11, 33. https://doi.org/10.3390/d11030033

Gershwin, L., Zeidler, W., & Davie, P. J. F. (2010). Ctenophora. In: Davie, P. J. F. & Phillips, J. A. (Eds) Proceedings of the Thirteenth International Marine Biological Workshops, the Marine Fauna and Flora of Moreton Bay, Queensland. Brisbane: Memoirs of the Queensland Museum, pp. 1–45.

Huston, D. C., Cutmore, S. C., & Cribb, T. H. (2016). The life-cycle of Gorgocephalus yaagi Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfAMILY Lepocreadioidea Odhner, 1905. Systematic Parasitology, 93, 653–665. https://doi.org/10.1007/s11230-016-9555-7

Huston, D. C., Cutmore, S. C., Miller, T. L., Sasal, P., Smit, N. J., & Cribb, T. H. (2021). Gorgocephalidae (Digenea: Lepocreadioidea) in the Indo-West Pacific: new species, life-cycle data and perspectives on species delineation across geographic range. Zoological Journal of the Linnean Society, 193, 1416–1455. https://doi.org/10.1093/zoolinmean/zlab002

ICZN. (2012). Amendment of articles 8 9 10 21 and 78 of the international code of zoological nomenclature to expand and refine methods of publication. ZooKeys, 219, 1–10. https://doi.org/10.3897/zookeys.219.3944

International Commission on Zoological Nomenclature. (2012). International Code of Zoological Nomenclature. International Trust for Zoological Nomenclature 1999, London.

Justine, J.-L., Beveridge, I., Boxshall, G. A., Bray, R. A., Moravec, F., Trilles, J.-L., & Whittington, I. D. (2010). An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish. Folia Parasitologica, 57, 237–262. https://doi.org/10.14411/fp.2010.032

Kavanagh, K. D. (2000). Larval brooding in the marine damselfish Acanthochromis polyacanthus (Pomacentridae) is correlated with highly divergent morphology, ontogeny and life-history traits. Bulletin of Marine Science, 66, 321–337.

Kondo, Y., Ohtsuka, S., Hirabayashi, T., Okada, S., Ogawa, N. O., Ohkouchi, N., Shimazu, T., & Nishikawa, J. (2016). Seasonal changes in infection with trematode species utilizing jellyfish as hosts: evidence of transmission to definitive host fish via medusivory. Parasite, 23, 16. https://doi.org/10.1051/parasite/2016016

Kumar, S., Stecher, G., Li, M., Kayaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

Littlewood, D. T. J. (1994). Molecular phylogenetics of cupped oysters based on partial 28S ribosomal RNA gene sequences. Molecular Phylogenetics and Evolution, 3, 221–229. https://doi.org/10.1006/mpev.1994.1024

Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466. https://doi.org/10.1006/mpev.2000.0802

Littlewood, D. T. J., Rohde, K., & Clough, K. A. (1997). Parasite speciation within or between host species?—phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology, 27, 1289–1297. https://doi.org/10.1016/S0020-7519(97)00086-6

Machida, M. (1984). Two new trematodes from gall bladder of tropical marine fishes, Myrichristis and Abudefduf. Bulletin of the National Science Museum, Tokyo. Series A. Zoology, 10, 1–5.

Maddison, W. P., & Maddison, D. R. 2021. Mesquite: a modular system for evolutionary analysis. Version 3.70. Available from: https://www.mesquiteproject.org

Martorelli, S. R. (2001). Digenea parasites of jellyfish and ctenophores of the southern Atlantic. Hydrobiologia, 451, 305–310. https://doi.org/10.1023/A:1017312201172

McNamara, M. K. A., Miller, T. L., & Cribb, T. H. (2014). Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific. International Journal for Parasitology, 44, 37–48. https://doi.org/10.1016/j.ijpara.2013.09.005

Miller-Sims, V. C., Gerlach, G., Kingsford, M. J., & Atema, J. (2008). Dispersal in the spiny damselfish, Acanthochromis polyacanthus, a coral reef fish species without a larval pelagic stage. Molecular Ecology, 17, 5036–5048. https://doi.org/10.1111/j.1365-294X.2008.03986.x

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp. 1–8.

Miller, T. L., Bray, R. A., & Cribb, T. H. (2011). Taxonomic approaches to and interpretation of host specificity of trematodes of fishes: lessons from the Great Barrier Reef. Parasitology, 138, 1710–1722. https://doi.org/10.1017/S0031182011000576

Morgan-Richards, M., Buglarella, M., Sivyer, L., Dowle, E. J., Hale, M., McKean, N. E., & Trewick, S. A. (2017). Explaining large mitochondrial sequence differences within a population sample Royal Society Open Science 4, 170730. https://doi.org/10.1098/rsos.170730

Morgan, J. A., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615. https://doi.org/10.1017/S003118200007709X

Nahhas, F. M., & Powell, E. C. (1971). Digenean trematodes of marine fishes from the Floridian northern Gulf of Mexico. Tulane Studies in Zoology and Botany, 17, 1–9.

Ohtsuka, S., Kondo, Y., Sakai, Y., Shimazu, T., Shimomura, M., Komai, T., Yanagi, K., Fujita, T., Nishikawa, J., Miyake,
Acanthochromis polyacanthus — divergence among populations of a marine fish with limited dispersal, *Acanthochromis polyacanthus*, within the Great Barrier Reef and the Coral Sea. *Evolution*, 55, 2263–2273. https://doi.org/10.1111/j.0014-3820.2001.tb00741.x

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., & Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. *Molecular Phylogenetics and Evolution*, 48, 369–371. https://doi.org/10.1016/j.ympev.2008.03.024

Pratchett, M. S., Hoey, A. S., Wilson, S. K., Hobbs, J. A., & Allen, G. R. (2016). Habitat-use and specialisation among coral reef damselfishes In: Parmentier, E. & Frédéric, B. (Eds) *Biology of Damselfishes*. Boca Raton: CRC Press LLC.

Pritchard, M. H. (1963). Studies on digenetic trematodes of Hawaiian fishes, primarily families Lepocreadiidae and Zoogonidae. *Journal of Parasitology*, 49, 578–587.

Prugnolle, F., Théron, A., Pointier, J. P., Jabbour-Zahab, R., Jarne, P., Durand, P., & de Meeeúls, T. (2005). Dispersal in a parasite worm and its two hosts: consequence for local adaptation. *Evolution*, 59, 296–303.

Robertson, D. R. (1973). Field observations on the reproductive behaviour of a pomacentrid fish, *Acanthochromis polyacanthus*. *Zeitschrift für Tierpsychologie*, 32, 319–324.

Ronquist, F., Teslenk, M., van der Mark, P., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. *Systematic Biology*, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Sambrook, J., & Russell, D. W. (2001). *Molecular cloning: a laboratory manual*. United States: Cold Spring Harbor Laboratory Press.

Snyder, S. D., & Tkach, V. V. (2001). Phylogenetic and biogeographical relationships among some Holarctic frog lung flukes (Digeneta: Haematoloechidae). *Journal of Parasitology*, 87, 1433–1440. https://doi.org/10.1645/0022-3395(2001)087[1433:PABRAS]2.0.CO;2

Sokolov, S. G., Gordeev, I. L., & Atopkin, D. M. (2020). Phylogenetic affiliation of the lepocreadiid trematodes parasitizing some marine fishes in the North-western Pacific. *Marine Biology Research*, 16, 380–389. https://doi.org/10.1080/17451000.2020.1758947

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stunkard, H. W. (1972). Observations on the morphology and life-history of the digenetic trematode, *Lepocreadium setiferoides* (Miller and Northup, 1926) Martin, 1938. *Biology Bulletin*, 142, 326–334.

Stunkard, H. W. (1980). The morphology, life-history, and taxonomic relations of *Lepocreadium areolatum* (Linton, 1900) Stunkard, 1969 (Trematoda: Digeneta). *Biology Bulletin*, 158, 154–163.

Sun, D., Blomberg, S. P., Cribb, T. H., McCormick, M. I., & Grutter, A. S. (2012). The effects of parasites on the early life stages of a damselfish. *Coral Reefs*, 31, 1065–1075. https://doi.org/10.1007/s00338-012-0929-5

Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Available from: https://paup.phylsoolutions.com/

van Herwerden, L., & Doherty, P. J. (2006). Contrasting genetic structures across two hybrid zones of a tropical reef fish, *Acanthochromis polyacanthus* (Bleecker 1855). *Journal of Evolutionary Biology*, 19, 239–252. https://doi.org/10.1111/j.1420-9101.2005.00969.x

Wee, N. Q-X., Cribb, T. H., Bray, R. A., & Cutmore, S. C. (2017). Two known and one new species of *Proctoeces* from Australian teleosts: Variable host-specificity for closely related species identified through multi-locus molecular data. *Parasitology International*, 66, 16–26. https://doi.org/10.1016/j.parint.2016.11.008

WoRMS. (2021). World Register of Marine Species. Available from: http://www.marinespecies.org at VLIZ. Accessed 27-09-2021. https://doi.org/10.14284/170

Xia, X. (2018). DAMBET: New and improved tools for data analysis in molecular biology and evolution. *Molecular Biology and Evolution*, 35, 1550–1552. https://doi.org/10.1093/molbev/msy073

Xia, X., & Lemey, P. (2009). Assessing substitution saturation with DAMBE. In: Lemey, P., Salemi, M. & Vandamme, A. M. (Eds) *Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny*. Cambridge: University Press, pp. 615–630.

Xia, X., Xie, Z., Salemi, M., Chen, L. U., & Wang, Y. (2003). An index of substitution saturation and its application. *Molecular Phylogenetics and Evolution*, 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3

Yamaguti, S. (1940). Studies on the helminth fauna of Japan, Part 31. Trematodes of fishes, VII. *Japanese Journal of Zoology*, 9, 35–108.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.