Luminal B is the Most Common Intrinsic Molecular Subtypes of Invasive Ductal Breast Carcinoma Patients in East Kalimantan, Indonesia

Swandari Paramita¹,²*, Eko Nugroho Raharjo³, Maria Niasari³, Fieska Azizah⁴, Nur Ahlina Hanifah⁴

Abstract

Objective: Breast carcinoma has no longer been considered as a single and standalone disease. Its subtypes have been known to vary in terms of risk factors, natural histories, and responses to therapies. In particular, intrinsic molecular subtypes based on St. Gallen International Expert Consensus 2013 have classified breast carcinoma into luminal A, luminal B, HER2+, and triple-negative, depending on the expression of ER, PgR, HER2, and Ki-67. Research on intrinsic molecular subtypes of breast carcinoma in Indonesia, however, are rarely conducted, which then triggers the intention to conduct this study. Methods: In this work, a retrospective study was conducted on 92 formalin-fixed paraffin-embedded samples of invasive ductal breast carcinoma patients. These samples were from patients at Abdul Wahab Sjahranie County General Hospital Samarinda, East Kalimantan, Indonesia, in 2016. Next, immunohistochemical staining using anti-ER, PgR, HER2, and Ki-67 antibodies was applied to classify intrinsic molecular subtypes. Then, an association between clinical and immunohistochemical factors with intrinsic molecular subtypes of breast carcinoma were analyzed using Chi-square test. Results: Looking at results of the retrospective study, luminal B was discovered as the most common intrinsic molecular subtypes of breast carcinoma (42.39%) in East Kalimantan, Indonesia. The next ranks of breast carcinoma subtypes in the region included HER2+ (39.13%), triple-negative (10.87%), and luminal A (7.61%). In fact, there was a significant association between age (p = 0.019) with intrinsic molecular subtypes of breast carcinoma. Conclusion: The study found luminal B as the most common intrinsic molecular subtypes of Indonesian breast carcinoma in the region under investigation. In the future, the higher positivity rate of luminal B in breast carcinoma patients compared to prior studies would require further investigations.

Keywords: Luminal B- intrinsic molecular subtypes- breast carcinoma

Introduction

Currently, breast carcinoma has been recognized as the world’s most commonly occurring cancer type. It has been estimated to cause deaths of over 500,000 women annually all around the world. Besides, estimated 1.7 million cases of breast carcinoma are diagnosed every year (DeSantis et al., 2014). In fact, almost a quarter of breast carcinoma are diagnosed in Asia-Pacific regions, in which Indonesia is in third place. Among globally estimated 500,000 deaths of females annually, about 22% deaths occur throughout the Asia-Pacific region. Ranking third in the region, Indonesia accounted for 17% of breast carcinoma deaths in second place after China. Breast carcinoma has also estimated to account for 9% of cancer-related deaths among females in the Asia-Pacific, ranking fourth behind lung, liver, and stomach cancers (Youlden et al., 2014).

In current advances, breast carcinoma has been posited a heterogeneous disease. In other words, it has no longer been considered as a single and standalone one. Breast carcinoma subtypes can be determined by applying immunohistochemistry methods. These subtypes have been known to vary in terms of risk factors, natural histories, and responses to therapies (Goldhirsch et al., 2011). In 2013, St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer has determined a classification of intrinsic molecular subtypes of breast carcinoma based of their clinicopathologic surrogate definitions. The classification includes luminal A, luminal B, HER2+, and triple-negative (Goldhirsch et al., 2013).

In general, each subtypes group is characterized as having different prognosis and response to therapy (Tao et al., 2015). Luminal A particularly has a smaller tumor...
size, the best prognosis and the lowest recurrence rate than other subtypes. Technically, it is characterized by higher levels of ER and lower levels of the proliferation-related genes, including Ki-67. In practices, recommendations for luminal A are mainly based on endocrine therapy (Prat et al., 2013). Furthermore, Luminal B has an aggressive phenotype and worse prognosis compared to luminal A. It is characterized by higher levels of growth factor receptor such as HER2, which activates signaling pathways (Yan et al., 2015). In details, HER2+ subtypes have a poor prognosis, and characterized by high proliferation rates. Therapy for luminal B subtype includes the uses of anti-HER2 such as Trastuzumab. In terms of recommended therapies, luminal B delivers its best responses to neoadjuvant chemotherapy (Asif et al., 2016). Moreover, the triple-negative subtype has been recognized to show the most aggressive behavior with the worst outcome. This subtype is not responding well to either endocrine or adjuvant chemotherapy. Requiring a specific-targeted therapy, chemotherapy is hence stated as the only choice of treatment. Then, these subtypes have been actively studied by various researchers (Keam et al., 2011).

In the literature, prior studies on intrinsic molecular subtypes of breast carcinoma in Indonesia have been focusing on ER, PgR, HER2, and Ki-67 markers. They are, however, largely produce different results (Prihantono et al., 2017a, 2017b; Rahmawati et al., 2018; Widodo et al., 2017, 2014).

Materials and Methods

Patients

A retrospective study was performed at Abdul Wahab Sjahranie County General Hospital, Samarinda, East Kalimantan, Indonesia, involving samples from patients between January-December 2016. An ethical clearance was obtained from the Ethical Review Committee of the Faculty of Medicine, Mulawarman University, Samarinda, Indonesia (49/KEPK-FK/VI/2017) before conducting the study. In addition to ER, PgR and HER2 status and Ki67 index, clinical information used in this included ages at diagnosis, tumor sizes, and histological grades. After data gathering, there were 92 cases during the period under investigation. These cases had formalin-fixed paraffin-embedded blocks available for immunohistochemical staining.

Immunohistochemical

In this study, immunohistochemical staining method was performed on formalin-fixed paraffin-embedded blocks. Technically, a section of blocks was stained with primary antibodies for ER, PgR, HER2, and Ki-67 (all from Leica Biosystenm, Newcastle, UK). An automated immunohistochemical staining was conducted and assessed in Leica BOND MAX (Leica Biosystem, Newcastle, UK). Tumors with ≥ 1% positively nuclear-stained cells were considered positive for both ER and PgR expression (Hammond et al., 2010). Besides, HER2 positive was scored if the staining occured for > 10% of tumor cells (Wolff et al., 2013). Then, tumors containing ≥ 14% of nuclear Ki-67 expression was considered as having a high Ki-67 rate (Cheang et al., 2009).

Definition of intrinsic molecular subtypes

According to the 2013 St. Gallen Consensus, samples could be distinguished based on their ER, PgR, HER2, and Ki-67 expressions. Technically speaking, samples were stated as luminal A (ER+, PgR+, HER2-, and Ki-67 low), luminal B (ER+, PgR+, any HER2, and any Ki-67), HER2+ (ER-, PgR-, and HER2 over-expressed) or triple negative (ER-, PgR-, and HER2-) (Goldhirsch et al., 2013).

Statistical analysis

In this study, a chi-square test was employed to examine the association of breast carcinoma intrinsic molecular subtypes with clinical and immunohistochemical factors. The test applied values of p < 0.05 as considerably significant. All statistical analyses were performed in PSPIRE 1.0.1 software.

Results

Characteristics of patients

A total of 92 cases of breast carcinoma were included in this study with the following clinical information. First, the mean of patient’s age was 48.29 years old (ranged between 23-83 years old), while the mean of tumor size was 5 cm (ranged between 1-17 cm). Besides, the majority of patient’s histological grade was in the third group (68.48%). After the immunohistochemical staining process, the ER, PgR, and HER2 positive expressions were

Table 1. Clinical and Immunohistochemical Characteristics of Patients

Characteristics	Mean ± SD	Min – Max	Min – Max
Tumor size (cm)	5.00 ± 3.1	1 – 17	23 – 83
Histological Grade	24 (29.09%)	63 (68.48%)	7 (7.61%)
Molecular Subtypes	Luminal A	Luminal B	HER2+
ER	Negative	46 (50%)	46 (50%)
PgR	Negative	47 (51.09%)	45 (48.91%)
HER2	Negative	39 (42.39%)	53 (57.61%)
Ki-67	<14 %	15 (16.30%)	18 (19.67%)
>30 %	59 (64.13%)	58 (63.04%)	66 (71.48%)
Table 2. Association between Clinical and Immunohistochemical Factors with Intrinsic Molecular Subtypes

Characteristics	All cases	Luminal A	Luminal B	HER2+	Triple negative	P value
Age						
≤ 35 ys	6 (6.5)	1 (14.3)	4 (10.3)	1 (2.8)	0 (0)	0.019†
> 35 ys	36 (93.5)	6 (85.7)	35 (89.7)	35 (97.2)	10 (100)	
Size						
≤ 2 cm	19 (20.7)	2 (28.6)	8 (20.5)	7 (19.4)	2 (20)	0.978
> 2 cm	73 (79.3)	5 (71.4)	31 (79.5)	29 (80.6)	8 (80)	
Grade						
1,2	29 (31.5)	3 (42.9)	13 (33.3)	7 (19.4)	6 (60)	0.091
3	63 (68.5)	4 (57.1)	26 (66.7)	29 (80.6)	4 (40)	
ER						
Negative	46 (50)	0 (0)	0 (0)	36 (100)	10 (100)	0.000†
Positive	46 (50)	7 (100)	39 (100)	0 (0)	0 (0)	
PgR						
Negative	48 (52.2)	0 (0)	3 (7.7)	36 (100)	9 (90)	0.000†
Positive	44 (47.8)	7 (100)	36 (92.3)	0 (0)	1 (10)	
HER2						
Negative	39 (42.4)	7 (100)	22 (56.4)	0 (0)	10 (100)	0.000†
Positive	53 (57.6)	0 (0)	17 (43.6)	36 (100)	0 (0)	
Ki-67						
Low	15 (16.3)	7 (100)	1 (2.6)	4 (11.1)	3 (30)	0.000†
High	77 (83.7)	0 (0)	38 (97.4)	32 (88.9)	7 (70)	

†Chi-square, p value < 0.05

Association between clinical and immunohistochemical factors with intrinsic molecular subtypes

Looking at the chi-square test, a significant result (p = 0.019) was revealed for the association of between age with intrinsic molecular subtypes of breast carcinoma. In this study, luminal B was discovered as the most commonly occurring subtype in patients aged ≤ 35 years, while HER2+ was most common subtypes in older patients. Table 2 exhibits the association between clinical and immunohistochemical factors with intrinsic molecular subtypes of breast carcinoma.

Discussion

This research had evaluated the distribution of intrinsic molecular subtypes of breast carcinoma and studied their association and correlation with clinical and immunohistochemical factors. In this study, samples under investigation included 92 breast carcinoma patients. The mean age of these samples was 48.29 years old (ranged between 23-83 years old), which was in fact similar to prior study in Makassar, Indonesia (Prihantono et al., 2017b). Besides, the majority of patient's histological grade in this research was in the high group (83.7%), which was similar to previous results of the study in Makassar with Ki-67 positive index at about 54.2% (Prihantono et al., 2017a). Next, this study discovered luminal B to comprise the most commonly occurring intrinsic molecular subtypes among observed population (42.39%). After luminal B, the following ranks were HER2+ (39.13%), luminal A (10.87%), and triple-negative (7.61%).

Furthermore, positive ER, PgR, and HER2 expression were discovered at 50%, 48.91%, and 76.09%, respectively. It was parallel with the high frequency of positive HER2 expressions (56.6%) found in prior study conducted in Makassar, Indonesia (Prihantono et al., 2017b). Besides, the majority of Ki-67 expressions were in the high group (83.7%), which was similar to previous results of the study in Makassar with Ki-67 positive index at about 54.2% (Prihantono et al., 2017a).

This research had evaluated the distribution of intrinsic molecular subtypes of breast carcinoma and studied their association and correlation with clinical and immunohistochemical factors. In this study, samples under investigation included 92 breast carcinoma patients. The mean age of these samples was 48.29 years old (ranged between 23-83 years old), which was in fact similar to prior study in Makassar, Indonesia, with 46 years old as the average age at diagnosis (Prihantono et al., 2017a). Besides, studies in Malaysia and Indonesia indicated breast carcinoma to present at a younger age with intrinsic molecular subtypes of breast carcinoma. In this practice, histological grading was the predictive and prognostic factor of breast carcinoma (Rahmawati et al., 2018; Widodo et al., 2014).

Furthermore, positive ER, PgR, and HER2 expression were discovered at 50%, 48.91%, and 76.09%, respectively. It was parallel with the high frequency of positive HER2 expressions (56.6%) found in prior study conducted in Makassar, Indonesia (Prihantono et al., 2017b). Besides, the majority of Ki-67 expressions were in the high group (83.7%), which was similar to previous results of the study in Makassar with Ki-67 positive index at about 54.2% (Prihantono et al., 2017a). Furthermore, the mean of tumor size in this study was 5 cm (ranged between 1-17 cm). In fact, similar results were discovered by other studies in Indonesia. It confirmed a behavior among breast carcinoma patients in Indonesia, who, in most cases, reported their health condition when their tumor had already become larger in size (Widodo et al., 2017). On the other hand, the majority of patient’s histological grade in this research was in the high group (68.48%). Different results were revealed by other studies in Indonesia, in which moderate differentiation was the most common grade compared to high and low group. In practices, histological grading was the predictive and prognostic factor of breast carcinoma (Rahmawati et al., 2018; Widodo et al., 2014).
In terms of clinical information, this study revealed a significant association between patients’ age with intrinsic molecular subtypes of breast carcinoma. Apparently, luminal B was the most common subtype in patients aged ≤35 years, while HER2+ was the most common subtype in older patients. Results as such indicated younger patients to generally have the worst prognosis. Similar results were discovered by a previous study conducted in Turkey, in which older age was found to act as a risk factor for HER2+ overexpressing subtype. Compared to other subtypes, luminal B cases were more likely to occur on patients with younger age at diagnosis (Turkoz et al., 2013).

However, of this study differed from previous reports in other provinces in Indonesia, which found luminal A as the most frequently occurring subtype (Rahmawati et al., 2018; Widodo et al., 2017, 2014). Also, it was different from prior research in Malaysia and Indonesia, which showed tumors suffered by Indonesian women to more likely be HER2+ compared to Malaysian women (Ng et al., 2011). The higher HER2 positivity rate in Indonesia has been previously reported about 64.2% (Aryandono et al., 2006).

According to the 2013 St. Gallen Consensus, luminal B could be further distinguished by looking at ER, PgR, HER2, and Ki-67 expressions. The classification of luminal B included luminal B-like HER2- (ER+, HER2-, and at least one of Ki-67 high or PgR-) and luminal B-like HER2+ (ER+, any PgR, HER2 over-expressed, and any Ki-67) (Goldhirsh et al., 2013). Practically, estrogen and progesterone receptors (ER and PgR) and HER2 had been stated as having critical influences on the management of breast cancer. Estrogen had particularly been posited as an important mitogen exerting its activity by being bound to its estrogen receptor (ER), which found in almost 80% of breast cancer cases (Azizun-Nisa et al., 2008). Meanwhile, PgR had been recognized as a surrogate marker of a functional ER, which would be valuable in predicting the behavior of breast carcinoma. It had been discovered in almost 70% invasive breast carcinomas with a higher positivity in postmenopausal women. The presence of hormone receptors (ER and PgR) in the tumor tissues were then stated as being well correlated with expected responses to chemotherapy (Shaikh et al., 2016).

Furthermore, HER2 had been recognized as a proto-oncogene located on chromosome 17q. Besides, it encoded a 185 kDa transmembrane phosphoglycoprotein with tyrosine kinase activity, which had mainly been found at the cell surface of tumor cells. It is amplified and HER2 overexpressed in almost 25% of invasive breast carcinoma with associated poor prognosis (Tan et al., 2006). Another research in Mexico found HER2 marker to considerably be associated with a number of pregnancies (Cindy et al., 2015). Meanwhile, prior research in Malaysia discovered women with HER2+ tumors to significantly and more likely be parous than those with luminal A tumors (Devi et al., 2012). Then, a previous work conducted in East Kalimantan, Indonesia, had also associated risk factors of other cancer types with a number of pregnancies (Paramita et al., 2010).

In general, the limitation of this study included additional focuses on other factors such as genetic background, while ethnical and risk factors were also not evaluated. Further investigations of those factors would hence be necessary. Theoretically speaking, extensive distributions of intrinsic molecular subtypes among worldwide population suggested the critical role of human races or ethnicities in distinguishing breast carcinoma subtypes.

As the conclusion, this study discovered the frequency of intrinsic molecular subtypes of breast carcinoma to vary among different human populations. In particular, the current work had confirmed luminal B as the most commonly occurring intrinsic molecular subtypes of breast carcinoma in East Kalimantan, Indonesia. In terms of clinical information, age was found to be associated with intrinsic molecular subtypes of breast carcinoma. Therefore, the higher luminal B positivity rates in Indonesian patients would require a further study. Findings of this study highlighted an urgent need for a set of comprehensive breast carcinoma awareness programs particularly in East Kalimantan, Indonesia. It should particularly be designed to encourage women to be aware of their breast carcinoma-related health conditions at earlier stages.

Acknowledgments

Acknowledgments to the Faculty of Medicine, Mulawarman University, Samarinda, Indonesia, for financing this research, as part of the implementation of Research Grant of Mulawarman University year of 2017. All procedures followed were following the ethical standards from the Ethical Review Committee of the Faculty of Medicine, Mulawarman University, Samarinda, Indonesia. The authors declare that they have no competing interests.

Funding Statement

This research was funding by Research Grant of Mulawarman University, Samarinda, Indonesia.

Statement conflict of Interest

The authors do not have any conflicts of interest to declare.

References

Ali Tamimi DM, Shawarby MA, Ahmed A, et al (2010). Protein expression profile and prevalence pattern of the molecular classes of breast cancer - a Saudi population based study. *BMC Cancer*, 10, 223.

Aryandono T, Harjjadi H, Soeripto S (2006). Breast cancer in young women: Prognostic factors and clinicopathological features. *Asian Pac J Cancer Prev*, 7, 451-4.

Asif HM, Sultana S, Ahmed S, et al (2016). HER-2 positive breast cancer - a mini-review. *Asian Pac J Cancer Prev*, 17, 1609-15.

Azizun-Nisa A, Bhurgri Y, Raza F, Kayani N (2008). Comparison of ER, PR and HER-2/neu (C-erb B 2) reactivity pattern with histologic grade, tumor size and lymph node status in breast
Asian Pac J Cancer Prev, Vol 20, 553-6.

Caldarella A, Buzzoni C, Crocetti E, et al (2013). Invasive breast cancer: a significant correlation between histological types and molecular subgroups. J Cancer Res Clin Oncol, 139, 617-23.

Cheang MCU, Chia SK, Vodic D, et al (2009). Ki67 Index, HER2 status, and prognosis of patients with Luminal B breast cancer. J Natl Cancer Inst, 101, 1356-50.

Chuangswanhich T, Pongpruttipan T, Ocharoenrat P, et al (2014). Clinicopathologic features of breast carcinomas classified by biomarkers and correlation with microvessel density and VEGF expression: A study from Thailand. Asian Pac J Cancer Prev, 15, 1187-92.

Cindy B, Paloma DG-M, Alfredo C-A, et al (2015). Association of histopathological markers with clinicopathological factors in Mexican women with breast cancer. Asian Pac J Cancer Prev, 16, 8397-403.

Desantis C, Ma J, Bryan L, et al (2014). Breast cancer statistics, 2013. CA Cancer J Clin, 64, 52-62.

Devi CRB, Tang TS, Corbex M (2012). Incidence and risk factors for breast cancer subtypes in three distinct South-East Asian ethnic groups: Chinese, Malay and natives of Sarawak, Malaysia. Int J Cancer, 131, 2869-77.

Doval DC, Sharma A, Sinha R, et al (2015). Immunohistochemical profile of breast cancer patients at a tertiary care Hospital in New Delhi, India. Asian Pac J Cancer Prev, 16, 4959-64.

Fatemih HE, Chabouni S, Jaiy S, et al (2012). Luminal B tumors are the most frequent molecular subtype in breast cancer of North African women: an immunohistochemical profile study from Morocco. Diag Pathol, 7, 170.

Goldhirsch A, Winer EP, Coates AS, et al (2013). Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol, 24, 2206-23.

Goldhirsch A, Wood WC, Coates AS, et al (2011). Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol, 2, 1736-47.

Hammond MEH, Hayes DF, Dowsett M, et al (2010). American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med, 134, 48-72.

Hennigs A, Riedel F, Gondos A, et al (2016). Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study. BMC Cancer, 16, 734.

Howlader N, Attekeusr SF, Li CI, et al (2014). US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst, 106, dju055.

Keam B, Im SA, Lee KH, et al (2011). Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res, 13, R22.

Keyhani E, Muhammednejad A, Karimlou M (2012). Prevalence of HER-2-positive invasive breast cancer: A systematic review from Iran. Asian Pac J Cancer Prev, 13, 5477-82.

Munjal K, Ambaye A, Evans MF, et al (2009). Immunohistochemical analysis of ER, PR, Her2 and CK5/6 in infiltrative breast carcinomas in Indian patients. Asian Pac J Cancer Prev, 10, 773-8.

Ng CH, Pathy NB, Taib NA, et al (2011). Comparison of breast cancer in Indonesia and Malaysia – A clinico-pathological study between Dharmais cancer centre Jakarta and University Malaya Medical Centre, Kuala Lumpur. Asian Pac J Cancer Prev, 12, 2943-6.
Zhu X, Ying J, Wang F, et al (2014). Estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status in invasive breast cancer: a 3,198 cases study at National Cancer Center, China. *Breast Cancer Res Treat*, **147**, 551-5.