TIE-POINTS AND FIXED-POINTS IN \mathbb{N}^*

ALAN DOW AND SAHARON SHELAH

Abstract. A point x is a (bow) tie-point of a space X if $X \setminus \{x\}$ can be partitioned into (relatively) clopen sets each with x in its closure. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of $\beta\mathbb{N} \setminus \mathbb{N}$ (e.g. [10]) and in the recent study of (precisely) 2-to-1 maps on $\beta\mathbb{N} \setminus \mathbb{N}$. In these cases the tie-points have been the unique fixed point of an involution on $\beta\mathbb{N} \setminus \mathbb{N}$. This paper is motivated by the search for 2-to-1 maps and obtaining tie-points of strikingly differing characteristics.

1. Introduction

A point x is a tie-point of a space X if there are closed sets A, B of X such that $\{x\} = A \cap B$ and x is an adherent point of each of A and B. We picture (and denote) this as $X = A \bowtie_B x$ where A, B are the closed sets which have a unique common accumulation point x and say that x is a tie-point as witnessed by A, B. Let $A \equiv_x B$ mean that there is a homeomorphism from A to B with x as a fixed point. If $X = A \bowtie_B x$ and $A \equiv_x B$, then there is an involution F of X (i.e. $F^2 = F$) such that $\{x\} = \text{fix}(F)$. In this case we will say that x is a symmetric tie-point of X.

An autohomeomorphism F of $\beta\mathbb{N} \setminus \mathbb{N}$ (or \mathbb{N}^*) is said to be trivial if there is a bijection f between cofinite subsets of \mathbb{N} such that $F = \beta f \upharpoonright \beta\mathbb{N} \setminus \mathbb{N}$. If F is a trivial autohomeomorphism, then $\text{fix}(F)$ is clopen; so of course $\beta\mathbb{N} \setminus \mathbb{N}$ will have no symmetric tie-points in this case if all autohomeomorphisms are trivial.

If A and B are arbitrary compact spaces, and if $x \in A$ and $y \in B$ are accumulation points, then let $A \bowtie_{x\to y} B$ denote the quotient space of

\date{February 2, 2008.}
\subjclass{03A35.}
\keywords{automorphism, Stone-Cech, fixed points.}

Research of the first author was supported by NSF grant No. NSF-. The research of the second author was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, and by NSF grant No. NSF-. This is paper number 916 in the second author’s personal listing.
A ⊕ B obtained by identifying x and y and let xy denote the collapsed point. Clearly the point xy is a tie-point of this space.

We came to the study of tie-points via the following observation.

Proposition 1.1. If x, y are symmetric tie-points of βN \ N as witnessed by A, B and A’, B’ respectively, then there is a 2-to-1 mapping from βN \ N onto the space A ⊖ xy ⊖ B'.

The proposition holds more generally if x and y are fixed points of involutions F, F' respectively. That is, replace A by the quotient space of βN \ N obtained by collapsing all sets \{z, F(z)\} to single points and similarly replace B' by the quotient space induced by F'. It is an open problem to determine if 2-to-1 continuous images of βN \ N are homeomorphic to βN \ N [5]. It is known to be true if CH [3] or PFA [2] holds.

There are many interesting questions that arise naturally when considering the concept of tie-points in βN \ N. Given a closed set A ⊂ βN \ N, let \mathcal{I}_A = \{a ⊂ N : a^* ⊂ A\}. Given an ideal \mathcal{I} of subsets of N, let \mathcal{I} = \{b ⊂ N : (\forall a ∈ \mathcal{I}) a ∩ b = ∅\} and \mathcal{I} = \{d ⊂ N : (\forall a ∈ I) d \setminus a ∈ \mathcal{I}\}. If \mathcal{J} ⊂ [N]^ω, let J = \bigcup_{J \in \mathcal{J}} P(J). Say that \mathcal{J} ⊂ \mathcal{I} is unbounded in \mathcal{I} if for each a ∈ \mathcal{I}, there is a b ∈ \mathcal{J} such that b \setminus a is infinite.

Definition 1.1. If \mathcal{I} is an ideal of subsets of N, set cf(\mathcal{I}) to be the cofinality of \mathcal{I}; b(\mathcal{I}) is the minimum cardinality of an unbounded family in \mathcal{I}; δ(\mathcal{I}) is the minimum cardinality of a subset \mathcal{J} of \mathcal{I} such that \mathcal{J} is dense in \mathcal{I}.

If βN \ N = A ⊖ B, then \mathcal{I}_B = \mathcal{I}_A and x is the unique ultrafilter on N extending \mathcal{I}_A ⊕ \mathcal{I}_B. The character of x in βN \ N is equal to the maximum of cf(\mathcal{I}_A) and cf(\mathcal{I}_B).

Definition 1.2. Say that a tie-point x has (i) b-type; (ii) δ-type; respectively (iii) bδ-type, (κ, λ) if βN \ N = A ⊖ B and (κ, λ) equals: (i) (b(\mathcal{I}_A), b(\mathcal{I}_B)) (ii) (δ(\mathcal{I}_A), δ(\mathcal{I}_B)); and (iii) each of (b(\mathcal{I}_A), b(\mathcal{I}_B)) and (δ(\mathcal{I}_A), δ(\mathcal{I}_B)). We will adopt the convention to put the smaller of the pair (κ, λ) in the first coordinate.

Again, it is interesting to note that if x is a tie-point of b-type (κ, λ), then it is uniquely determined (in βN \ N) by λ many subsets of N since x will be the unique point extending the family ((\mathcal{J}_A)^+ \cap ((\mathcal{J}_B)^+)^+ where \mathcal{J}_A and \mathcal{J}_B are unbounded subfamilies of \mathcal{I}_A and \mathcal{I}_B.

Question 1.1. Can there be a tie-point in βN \ N with δ-type (κ, λ) with κ ≤ λ less than the character of the point?
Question 1.2. Can \(\beta \mathbb{N} \setminus \mathbb{N} \) have tie-points of \(\delta \)-type \((\omega_1, \omega_1)\) and \((\omega_2, \omega_2)\)?

Proposition 1.2. If \(\beta \mathbb{N} \setminus \mathbb{N} \) has symmetric tie-points of \(\delta \)-type \((\kappa, \kappa)\) and \((\lambda, \lambda)\), but no tie-points of \(\delta \)-type \((\kappa, \lambda)\), then \(\beta \mathbb{N} \setminus \mathbb{N} \) has a 2-to-1 image which is not homeomorphic to \(\beta \mathbb{N} \setminus \mathbb{N} \).

One could say that a tie-point \(x \) was radioactive in \(X \) (i.e. \(\triangleright \)). If \(X \setminus \{ x \} \) can be similarly split into 3 (or more) relatively clopen sets accumulating to \(x \). This is equivalent to \(X = A \triangleright \diamondsuit B \) such that \(x \) is a tie-point in either \(A \) or \(B \).

Each point of character \(\omega_1 \) in \(\beta \mathbb{N} \setminus \mathbb{N} \) is a radioactive point (in particular is a tie-point). P-points of character \(\omega_1 \) are symmetric tie-points of \(\theta \delta \)-type \((\omega_1, \omega_1)\), while points of character \(\omega_1 \) which are not P-points will have \(\theta \)-type \((\omega, \omega_1)\) and \(\delta \)-type \((\omega_1, \omega_1)\). If there is a tie-point of \(\delta \)-type \((\kappa, \lambda)\), then of course there are \((\kappa, \lambda)\)-gaps. If there is a tie-point of \(\delta \)-type \((\kappa, \lambda)\), then \(p \leq \kappa \).

Proposition 1.3. If \(\beta \mathbb{N} \setminus \mathbb{N} = A \triangleright \diamondsuit B \), then \(p \leq \delta(I_A) \).

Proof. If \(J \subset I_A \) has cardinality less than \(p \), there is, by Solovay’s Lemma (and Bell’s Theorem) an infinite set \(C \subset \mathbb{N} \) such that \(C \) and \(\mathbb{N} \setminus C \) each meet every infinite set of the form \(J \setminus (\bigcup J') \) where \(\{ J \} \cup J' \in [J]^\omega \). We may assume that \(C \notin x \), hence there are \(a \in I_A \) and \(b \in I_B \) such that \(C \subset a \cup b \). However no finite union from \(J \) covers \(a \) showing that \(J \) can not be dense in \(I_A \). \(\square \)

Although it does not seem to be completely trivial, it can be shown that PFA implies there are no tie-points (the hardest case to eliminate is those of \(\theta \delta \)-type \((\omega_1, \omega_1)\)).

Question 1.3. Does \(p > \omega_1 \) imply there are no tie-points of \(\theta \)-type \((\omega_1, \omega_1)\)?

Analogous to tie-points, we also define a tie-set: say that \(K \subset \beta \mathbb{N} \setminus \mathbb{N} \) is a tie-set if \(\beta \mathbb{N} \setminus \mathbb{N} = A \triangleright \diamondsuit B \) and \(K = A \cap B \), \(A = A \setminus K \), and \(B = B \setminus K \). Say that \(K \) is a symmetric tie-set if there is an involution \(F \) such that \(K = \text{fix}(F) \) and \(F[A] = B \).

Question 1.4. If \(F \) is an involution on \(\beta \mathbb{N} \setminus \mathbb{N} \) such that \(K = \text{fix}(F) \) has empty interior, is \(K \) a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact spaces can (or can not) be homeomorphic to the fixed point set of some involution of \(\beta \mathbb{N} \setminus \mathbb{N} \)?

Again, we note a possible application to 2-to-1 maps.
Proposition 1.4. Assume that F is an involution of $\beta N \setminus N$ with $K = \text{fix}(F) \neq \emptyset$. Further assume that K has a symmetric tie-point x (i.e. $K = A \sqsupset x B$), then $\beta N \setminus N$ has a 2-to-1 continuous image which has a symmetric tie-point (and possibly $\beta N \setminus N$ does not have such a tie-point).

Question 1.6. If F is an involution of N^*, is the quotient space N^*/F (in which each $\{x, F(x)\}$ is collapsed to a single point) a homeomorphic copy of $\beta N \setminus N$?

Proposition 1.5 (CH). If F is an involution of $\beta N \setminus N$, then the quotient space N^*/F is homeomorphic to $\beta N \setminus N$.

Proof. If $\text{fix}(F)$ is empty, then N^*/F is a 2-to-1 image of $\beta N \setminus N$, and so is a copy of $\beta N \setminus N$. If $\text{fix}(F)$ is not empty, then consider two copies, (N_1^*, F_1) and (N_2^*, F_2), of (N^*, F). The quotient space of $N_1^*/F_1 \oplus N_2^*/F_2$ obtained by identifying the two homeomorphic sets $\text{fix}(F_1)$ and $\text{fix}(F_2)$ will be a 2-to-1-image of N^*, hence again a copy of N^*. Since $N_1^* \setminus \text{fix}(F_1)$ and $N_2^* \setminus \text{fix}(F_2)$ are disjoint and homeomorphic, it follows easily that $\text{fix}(F)$ must be a P-set in N^*. It is trivial to verify that a regular closed set of N^* with a P-set boundary will be (in a model of CH) a copy of N^*. Therefore the copy of N_1^*/F_1 in this final quotient space is a copy of N^*.

2. A SPECTRUM OF TIE-SETS

We adapt a method from [1] to produce a model in which there are tie-sets of specified $b\delta$-types. We further arrange that these tie-sets will themselves have tie-points but unfortunately we are not able to make the tie-sets symmetric. In the next section we make some progress in involving involutions.

Theorem 2.1. Assume GCH and that Λ is a set of regular uncountable cardinals such that for each $\lambda \in \Lambda$, T_λ is a $<\lambda$-closed λ^+-Souslin tree. There is a forcing extension in which there is a tie-set K (of $b\delta$-type (c, c)) and for each $\lambda \in \Lambda$, there is a tie-set K_λ of $b\delta$-type (λ^+, λ^+) such that $K \cap K_\lambda$ is a single point which is a tie-point of K_λ. Furthermore, for $\mu \leq \lambda < c$, if $\mu \neq \lambda$ or $\lambda \notin \Lambda$, then there is no tie-set of $b\delta$-type (μ, λ).

We will assume that our Souslin trees are well-pruned and are ever ω-ary branching. That is, if T_λ is a λ^+-Souslin tree, we assume that for each $t \in T$, t has exactly ω immediate successors denoted $\{t^\ell : \ell \in \omega\}$ and that $\{s \in T_\lambda : t < s\}$ has cardinality λ^+ (and so has successors on every level). A poset is $<\kappa$-closed if every directed subset
of cardinality less than κ has a lower bound. A poset is \prec-distributive if the intersection of any family of fewer than κ dense open subsets is again dense. For a cardinal μ, let μ^- be the minimum cardinal such that $$(\mu^-)^+ \geq \mu \text{ (i.e. the predecessor if } \mu \text{ is a successor)}.$$ The main idea of the construction is nicely illustrated by the following.

Proposition 2.2. Assume that $\beta\mathbb{N}\setminus\mathbb{N}$ has no tie-sets of $b\delta$-type (κ_1, κ_2) for some $\kappa_1 \leq \kappa_2 < c$. Also assume that $\lambda^+ < c$ is such that λ^+ is distinct from one of κ_1, κ_2 and that T_λ is a λ^+-Souslin tree and $$\{(a_t, x_t, b_t) : t \in T_\lambda\} \subset (\mathbb{N}^\omega)^3$$ satisfy that, for $t < s \in T_\lambda$:

1. $\{a_t, x_t, b_t\}$ is a partition of \mathbb{N},
2. $x_{t-j} \cap x_{t-j} = \emptyset$ for $j < \ell$,
3. $x_s \subset^* x_t, a_t \subset^* a_s$, and $b_t \subset^* b_s$,
4. for each $\ell \in \omega, x_{t+\ell} \subset^* a_{t+\ell}$ and $x_{t+\ell} \subset^* b_{t+\ell}$,
then if $\rho \in [T_\lambda]^{\lambda^+}$ is a generic branch (i.e. $\rho(\alpha)$ is an element of the α-th level of T_λ for each $\alpha \in \lambda^+$), then $K_\rho = \bigcap_{\alpha \in \lambda^+} x^*_\rho(\alpha)$ is a tie-set of $\beta\mathbb{N}\setminus\mathbb{N}$ of $b\delta$-type (λ^+, λ^+), and there is no tie-set of $b\delta$-type (κ_1, κ_2).

5. Assume further that $\{(a_\xi, x_\xi, b_\xi) : \xi \in c\}$ is a family of partitions of \mathbb{N} such that $\{x_\xi : \xi \in c\}$ is a mod finite descending family of subsets of \mathbb{N} such that for each $Y \subset \mathbb{N}$, there is a maximal antichain $A_Y \subset T_\lambda$ and some $\xi \in c$ such that for each $t \in A_Y$, $x_t \cap x_\xi$ is a proper subset of either Y or $\mathbb{N} \setminus Y$, then $K = \bigcap_{\xi \in c} x^*_\xi$ meets K_ρ in a single point z_λ.

6. If we assume further that for each $\xi < \eta < c, a_\xi \subset^* a_\eta$ and $b_\xi \subset^* b_\eta$, and for each $t \in T_\lambda, \eta$ may be chosen so that x_t meets each of $(a_\eta \setminus a_\xi)$ and $(b_\eta \setminus b_\xi)$, then z_λ is a tie-point of K_ρ.

Proof. To show that K_ρ is a tie-set it is sufficient to show that $K_\rho \subset \bigcup_{\alpha \in \lambda^+} a_\alpha^* \cap \bigcup_{\alpha \in \lambda^+} b_\alpha^*$. Since T_λ is a λ^+-Souslin tree, no new subset of λ is added when forcing with T_λ. Of course we use that ρ is T_λ generic, so assume that $Y \subset \mathbb{N}$ and that some $t \in T_\lambda$ forces that $Y^* \cap K_\rho$ is not empty. We must show that there is some $t < s$ such that s forces that $a_s \cap Y$ and $b_s \cap Y$ are both infinite. However, we know that $x_{t-\ell} \cap Y$ is infinite for each $\ell \in \omega$ since $t-\ell \Vdash_{T_\lambda} "K_\rho \subset x^*_t"$. Therefore, by condition 4, for each $\ell \in \omega, Y \cap a_{t-\ell}$ and $Y \cap b_{t-\ell}$ are both infinite.

Now let κ_1, κ_2 be regular cardinals at least one of which is distinct from λ^+. Recall that forcing with T_λ preserves cardinals. Assume that in $V[\rho], K \subset \mathbb{N}^* \text{ and } \mathbb{N}^* = C \bowtie^K D$ with $b(I_C) = \delta(I_C) = \kappa_1$ and $b(I_D) = \delta(I_D) = \kappa_2$. In V, let $\{c_\gamma : \gamma \in \kappa_1\}$ be T_λ-names for the increasing cofinal sequence in I_C and let $\{d_\xi : \xi \in \kappa_2\}$ be T_λ-names for the increasing cofinal sequence in I_D. Again using the fact that T_λ adds
no new subsets of \(N \) and the fact that every dense open subset of \(T_\lambda \) will contain an entire level of \(T_\lambda \), we may choose ordinals \(\{\alpha_\gamma : \gamma \in \kappa_1\} \) and \(\{\beta_\xi : \xi \in \kappa_2\} \) such that each \(t \in T_\lambda \), if \(t \) is on level \(\alpha_\gamma \) it will force a value on \(c_\gamma \) and if \(t \) is on level \(\beta_\xi \) it will force a value on \(d_\xi \). If \(\kappa_1 < \lambda^+ \), then \(\sup \{\alpha_\gamma : \gamma \in \kappa_1\} < \lambda^+ \), hence there are \(t \in T_\lambda \) which force a value on each \(c_\gamma \). If \(\lambda^+ < \kappa_2 \), then there is some \(\beta < \lambda^+ \), such that \(\{\xi \in \kappa_2 : \beta_\xi \leq \beta\} \) has cardinality \(\kappa_2 \). Therefore there is some \(t \in T_\lambda \) such that \(t \) forces a value on \(d_\xi \) for a cofinal set of \(\xi \in \kappa_2 \). Of course, if neither \(\kappa_1 \) nor \(\kappa_2 \) is equal to \(\lambda^+ \), then we have a condition that decided cofinal families of each of \(\mathcal{I}_C \) and \(\mathcal{I}_D \). This implies that \(N^* \) already has tie-sets of \(\mathfrak{b}\delta \)-type \((\kappa_1, \kappa_2) \).

If \(\kappa_1 < \kappa_2 = \lambda^+ \), then fix \(t \in T_\lambda \) deciding \(\mathcal{C} = \{c_\gamma : \gamma \in \kappa_1\} \), and let \(\mathcal{D} = \{d \subseteq \mathbb{N} : (\exists s > t)s \Vdash_{T_\lambda} "d^* \subseteq D\"\}. \) It follows easily that \(\mathcal{D} = \mathcal{C}^\perp \). But also, since forcing with \(T_\lambda \) can not raise \(\mathfrak{b}(\mathcal{D}) \) and can not lower \(\delta(\mathcal{D}) \), we again have that there are tie-sets of \(\mathfrak{b}\delta \)-type in \(V \).

The case \(\kappa_1 = \lambda^+ < \kappa_2 \) is similar.

Now assume we have the family \(\{(a_\xi, x_\xi, b_\xi) : \xi \in c\} \) as in (5) and (6) and set \(K = \bigcap_\xi x_\xi^* \), \(A = \{K\} \cup \bigcup\{a_\xi^* : \xi \in c\}, \) and \(B = \{K\} \cup \bigcup\{b_\xi^* : \xi \in c\}. \) It is routine to see that (5) ensures that the family \(\{x_\xi \cap x_{\rho(\alpha)} : \xi \in c \) and \(\alpha \in \lambda^+\} \) generates an ultrafilter when \(\rho \) meets each maximal antichain \(A_Y \) (\(Y \subseteq \mathbb{N} \)). Condition (6) clearly ensures that \(A \setminus K \) and \(B \setminus K \) each meet \((x_\xi \cap x_{\rho(\alpha)})^* \) for each \(\xi \in c \) and \(\alpha \in \lambda^+ \). Thus \(A \cap K_\rho \) and \(B \cap K_\rho \) witness that \(z_\lambda \) is a tie-point of \(K_\rho \).

Let \(\theta \) be a regular cardinal greater than \(\lambda^+ \) for all \(\lambda \in \Lambda \). We will need the following well-known Easton lemma (see [4, p234]).

Lemma 2.3. Let \(\mu \) be a regular cardinal and assume that \(P_1 \) is a poset satisfying the \(\mu \)-cc. Then any \(< \mu \)-closed poset \(P_2 \) remains \(< \mu \)-distributive after forcing with \(P_1 \). Furthermore any \(< \mu \)-distributive poset remains \(< \mu \)-distributive after forcing with a poset of cardinality less than \(\mu \).

Proof. Recall that a poset \(P \) is \(< \mu \)-distributive if forcing with it does not add, for any \(\gamma < \mu \), any new \(\gamma \)-sequences of ordinals. Since \(P_2 \) is \(< \mu \)-closed, forcing with \(P_2 \) does not add any new antichains to \(P_1 \). Therefore it follows that forcing with \(P_2 \) preserves that \(P_1 \) has the \(\mu \)-cc and that for every \(\gamma < \mu \), each \(\gamma \)-sequence of ordinals in the forcing extension by \(P_2 \times P_1 \) is really just a \(P_1 \)-name. Since forcing with \(P_1 \times P_2 \) is the same as \(P_2 \times P_1 \), this shows that in the extension by \(P_1 \), there are no new \(P_2 \)-names of \(\gamma \)-sequences of ordinals.
functions of posets, then we will use \(\Pi \).

Definition 2.1. If \(\Lambda \) is a set of cardinals and \(\{ P_\lambda : \lambda \in \Lambda \} \) is a set of posets, then we will use \(\Pi_{\lambda \in \Lambda} P_\lambda \) to denote the collection of partial functions \(p \) such that

1. \(\text{dom}(p) \subseteq \Lambda \),
2. \(|\text{dom}(p) \cap \mu| < \mu \) for all regular cardinals \(\mu \),
3. \(p(\lambda) \in P_\lambda \) for all \(\lambda \in \text{dom}(p) \).

This collection is a poset when ordered by \(q < p \) if \(\text{dom}(q) \supseteq \text{dom}(p) \) and \(q(\lambda) \leq p(\lambda) \) for all \(\lambda \in \text{dom}(p) \).

Lemma 2.4. For each cardinal \(\mu \), \(\Pi_{\lambda \in \Lambda \cap \mu} T_\lambda \) is \(\mu^+ \)-closed and, if \(\mu \) is regular, \(\Pi_{\lambda \in \Lambda \cap \mu} T_\lambda \) has cardinality at most \(2^{<\mu} \leq \min(\Lambda \setminus \mu) \).

Lemma 2.5. If \(P \) is ccc and \(G \subseteq P \times \Pi_{\lambda \in \Lambda} T_\lambda \) is generic, then in \(V[G] \), for any \(\mu \) and any family \(\mathcal{A} \subseteq [\mathbb{N}]^\omega \) with \(|\mathcal{A}| = \mu \):

1. if \(\mu \leq \omega \), then \(\mathcal{A} \) is a member of \(V[G \cap P] \);
2. if \(\mu = \lambda^+ \), \(\lambda \in \Lambda \), then there is an \(\mathcal{A}' \subseteq \mathcal{A} \) of cardinality \(\lambda^+ \) such that \(\mathcal{A}' \) is a member of \(V[G \cap (P \times T_\lambda)] \);
3. if \(\mu^- \notin \Lambda \), then there is an \(\mathcal{A}' \subseteq \mathcal{A} \) of cardinality \(\mu \) which is a member of \(V[G \cap P] \).

Corollary 2.6. If \(P \) is ccc and \(G \subseteq P \times \Pi_{\lambda \in \Lambda} T_\lambda \) is generic, then for any \(\kappa \leq \mu < \mathfrak{c} \) such that either \(\kappa \neq \mu \) or \(\kappa \notin \{ \lambda^+ : \lambda \in \Lambda \} \), if there is a tie-set of \(\mathfrak{d}\)-type \((\kappa, \mu) \) in \(V[G] \), then there is such a tie-set in \(V[G \cap P] \).

Proof. Assume that \(\beta \mathbb{N} \setminus \mathbb{N} = A \not\leq_{k} B \) in \(V[G] \) with \(\mu = b(A) \) and \(\lambda = b(B) \). Let \(\mathcal{J}_A \subseteq \mathcal{I}_A \) be an increasing mod finite chain, of order type \(\mu \), which is dense in \(\mathcal{I}_A \). Similarly let \(\mathcal{J}_B \subseteq \mathcal{I}_B \) be such a chain of order type \(\lambda \). By Lemma 2.5, \(\mathcal{J}_A \) and \(\mathcal{J}_B \) are subsets of \([\mathbb{N}]^\omega \cap V[G \cap P] = [\mathbb{N}]^\omega \).

Choose, if possible \(\mu_1 \in \Lambda \) such that \(\mu_1^+ = \mu \) and \(\lambda_1 \in \Lambda \) such that \(\lambda_1^+ = \lambda \). Also by Lemma 2.5, we can, by passing to a subcollection, assume that \(\mathcal{J}_A \subseteq V[G \cap (P \times T_{\mu_1})] \) (if there is no \(\mu_1 \), then let \(T_{\mu_1} \) denote...
the trivial order). Similarly, we may assume that $\mathcal{J}_B \in V[G \cap (P \times T_\lambda)]$. Fix a condition $q \in G \subset (P \times \Pi_{\lambda \in A} T_\lambda)$ which forces that $(\mathcal{J}_A)^1$ is a \subset-dense subset of \mathcal{I}_A, that $(\mathcal{J}_B)^1$ is a \subset-dense subset of \mathcal{I}_B, and that $(\mathcal{I}_A)^2 = \mathcal{I}_B$.

Working in the model $V[G \cap P]$ then, there is a family $\{\dot{a}_\alpha : \alpha \in \mu\}$ of T_{μ_1}-names for the members of \mathcal{J}_A; and a family $\{\dot{b}_\beta : \beta \in \lambda_1\}$ of T_{λ_1}-names for the members of \mathcal{J}_B. Of course if $\mu = \lambda$ and T_{μ_1} is the trivial order, then \mathcal{J}_A and \mathcal{J}_B are already in $V[G \cap P]$ and we have our tie-set in $V[G \cap P]$.

Otherwise, we assume that $\mu_1 < \lambda_1$. Set \mathcal{A} to be the set of all $a \subset \mathbb{N}$ such that there is some $q(\mu_1) \leq t \in T_{\mu_1}$ and $\alpha \in \mu$ such that $t \forces_{T_{\mu_1}} "a = \dot{a}_\alpha"$. Similarly let \mathcal{B} be the set of all $b \subset \mathbb{N}$ such that there is some $q(\lambda_1) \leq s \in T_{\lambda_1}$ and $\beta \in \lambda$ such that $s \forces_{T_{\lambda_1}} "b = \dot{b}_\beta"$. It follows from the construction that, in $V[G]$, for any $(a', b') \in \mathcal{A} \times \mathcal{J}_B$, there is an $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a' \subset^* a$ and $b' \subset^* b$. Therefore the ideal generated by $\mathcal{A} \cup \mathcal{B}$ is certainly dense. It remains only to show that $\mathcal{B} \subset (\mathcal{A})^2$. Consider any $(a, b) \in \mathcal{A} \times \mathcal{B}$, and choose $(q(\mu_1), q(\lambda_1)) \leq (t, s) \in T_{\mu_1} \times T_{\lambda_1}$ such that $t \forces_{T_{\mu_1}} "a \in \mathcal{J}_A"$ and $s \forces_{T_{\lambda_1}} "b \in \mathcal{J}_B"$. It follows that for any condition $\bar{q} \leq q$ with $\bar{q} \in (P \times \Pi_{\lambda \in A} T_\lambda)$, $\bar{q}(\mu_1) = t$, $\bar{q}(\lambda_1) = s$, we have that

$$\bar{q} \forces_{(P \times \Pi_{\lambda \in A} T_\lambda)} "a \in \mathcal{J}_A \text{ and } b \in \mathcal{J}_B".$$

It is routine now to check that, in $V[G \cap P]$, \mathcal{A} and \mathcal{B} generate ideals that witness that $\bigcap\{(\mathbb{N} \setminus (a \cup b))^* : (a, b) \in \mathcal{A} \times \mathcal{B}\}$ is a tie-set of $b\delta$-type (μ, λ). \hfill \qed

Let T be the rooted tree $\{\emptyset\} \cup \bigcup_{\lambda \in A} T_\lambda$ and we will force an embedding of T into $\mathcal{P}(\mathbb{N})$ mod finite. In fact, we force a structure $\{(a_t, x_t, b_t) : t \in T\}$ satisfying the conditions (1)-(4) of Proposition 2.2.

Definition 2.2. The poset Q_0 is defined as the set of elements $q = (n^q, T^q, f^q)$ where $n^q \in \mathbb{N}$, $T^q \in [T]^{<\omega}$, and $f^q : n^q \times T^q \to \{0, 1, 2\}$. The idea is that x_t will be $\bigcup_{q \in G} \{j \in n^q : f^q(j, t) = 0\}$, a_t will be $\bigcup_{q \in G} \{j \in n^q : f^q(j, t) = 1\}$ and $b_t = \mathbb{N} \setminus (a_t \cup x_t)$. We set $q < p$ if $n^q \geq n^p$, $T^q \supseteq T^p$, $f^q \supseteq f^p$ and for $t, s \in T^p$ and $i \in [n^p, n^q]$

1. if $t < s$ and $f^q(i, t) \in \{1, 2\}$, then $f^q(i, s) = f^q(i, t)$;
2. if $t < s$ and $f^q(i, s) = 0$, then $f^q(i, t) = 0$;
3. if $t \perp s$, then $f^q(i, t) + f^q(i, s) > 0$.
4. if $j \in \{1, 2\}$ and $\{t-\ell, t-(\ell+j)\} \subset T^p$ and $f^q(i, t-(\ell+j)) = 0$, then $f^q(i, t-\ell) = j$.

The next lemma is very routine but we record it for reference.
Lemma 2.7. The poset Q_0 is ccc and if $G \subset Q_0$ is generic, the family $X_T = \{(a_t, x_t, b_t) : t \in T\}$ satisfies the conditions of Proposition 2.2.

We will need some other combinatorial properties of the family X_T.

Definition 2.3. For any $\tilde{T} \in [T]^{<\omega}$, we define the following (Q_0-names).

1. for $i \in \mathbb{N}$, $[i]_{\tilde{T}} = \{j \in \mathbb{N} : (\forall t \in \tilde{T}) i \in x_t \iff j \in x_t\}$,
2. the collection fin(\tilde{T}) is the set of $[i]_{\tilde{T}}$ which are finite.

We abuse notation and let fin(\tilde{T}) $\subset n$ abbreviate fin(\tilde{T}) $\subset P(n)$.

Lemma 2.8. For each $q \in Q_0$ and each $\tilde{T} \subset T^q$, fin(\tilde{T}) $\subset n^q$ and for $i \geq n_q$, $[i]_{\tilde{T}}$ is infinite.

Definition 2.4. A sequence $S_W = \{(a_\xi, x_\xi, b_\xi) : \xi \in W\}$ is a tower of T-splitters if for $\xi < \eta \in W$ and $t \in \tilde{T}$:

1. $\{a_\xi, x_\xi, b_\xi\}$ is a partition of \mathbb{N},
2. $a_\xi \subset^* a_\eta$, $b_\xi \subset^* b_\eta$,
3. $x_t \cap x_\xi$ is finite.

Definition 2.5. If S_W is a tower of T-splitters and Y is a subset \mathbb{N}, then the poset $Q(S_W,Y)$ is defined as follows. Let E_Y be the (possibly empty) set of minimal elements of T such that there is some finite $H \subset W$ such that $x_t \cap Y \cap \bigcup_{\xi \in H} x_\xi$ is finite. Let $D_Y = E_Y^\perp = \{t \in T : (\forall s \in E_Y) t \perp s\}$. A condition $q \in Q(S_W,Y)$ is a tuple $(n^q, a^q, x^q, b^q, T^q, H^q)$ where

1. $n^q \in \mathbb{N}$ and $\{a^q, x^q, b^q\}$ is a partition of n^q,
2. $T^q \in [T]^{<\omega}$ and $H^q \in [W]^{<\omega}$,
3. $(a_\xi \setminus a_\eta)$, $(b_\xi \setminus b_\eta)$, and $(x_\eta \setminus x_\xi)$ are all contained in n^q for $\xi < \eta \in H^q$.

We define $q < p$ to mean $n^p \leq n^q$, $T^p \subset T^q$, $H^p \subset H^q$, and

4. for $t \in T^p \cap D_Y$, $x_t \cap (x^q \setminus x^p) \subset Y$,
5. $x^q \setminus x^p \subset \bigcap_{\xi \in H^p} x_\xi$,
6. $a^q \setminus a^p$ is disjoint from $b_{\max(H^p)}$,
7. $b^q \setminus b^p$ is disjoint from $a_{\max(H^p)}$.

Lemma 2.9. If $W \subset \gamma$, S_W is a tower of T-splitters, and if G is $Q(S_W,Y)$-generic, then $S_W \cup \{(a_\gamma, x_\gamma, b_\gamma)\}$ is also a tower of T-splitters where $a_\gamma = \bigcup\{a_q : q \in G\}$, $x_\gamma = \bigcup\{x_q : q \in G\}$, and $b_\gamma = \bigcup\{b_q : q \in G\}$. In addition, for each $t \in D_Y$, $x_t \cap x_\xi \subset^* Y$ (and $x_t \cap x_\xi \subset^* \mathbb{N} \setminus Y$ for $t \in E_Y$).

Lemma 2.10. If W does not have cofinality ω_1, then $Q(S_W,Y)$ is σ-centered.
As usual with \((\omega_1,\omega_1)\)-gaps, \(Q(S_W,Y)\) may not (in general) be ccc if \(W\) has a cofinal \(\omega_1\) sequence.

Let \(0 \notin C \subset \theta\) be cofinal and assume that if \(C \cap \gamma\) is cofinal in \(\gamma\) and \(\text{cf}(\gamma) = \omega_1\), then \(\gamma \in C\).

Definition 2.6. Fix any well-ordering \(\prec\) of \(H(\theta)\). We define a finite support iteration sequence \(\{P_\gamma, \dot{Q}_\gamma : \gamma \in \theta\} \subset H(\theta)\). We abuse notation and use \(Q_0\) rather than \(\dot{Q}_0\) from definition 2.2. If \(\gamma \notin C\), then let \(\dot{Q}_\gamma\) be the \(\prec\)-least among the list of \(P_\gamma\)-names of ccc posets in \(\dot{Q}_\gamma \in Q(\theta) \setminus \{Q_\xi : \xi \in \gamma\}\). If \(\gamma \in C\), then let \(\dot{Y}_\gamma\) be the \(\prec\)-least \(P_\gamma\)-name of a subset \(\mathbb{N}\) which is in \(H(\theta) \setminus \{Y_\xi : \xi \in C \cap \gamma\}\). Set \(\dot{Q}_\gamma\) to be the \(P_\gamma\) name of \(Q(S_{C \cap \gamma}, \dot{Y}_\gamma)\) adding the partition \(\{\dot{a}_\gamma, \dot{x}_\gamma, \dot{b}_\gamma\}\) and, where \(S_{C \cap \gamma}\) is the \(P_\gamma\)-name of the \(T\)-splitting tower \(\{(a_\xi, x_\xi, b_\xi) : \xi \in C \cap \gamma\}\).

We view the members of \(P_\theta\) as functions \(p\) with finite domain (or support) denoted \(\text{dom}(p)\).

The main difficulty to the proof of Theorem 2.1 is to prove that the iteration \(P_\theta\) is ccc. Of course, since it is a finite support iteration, this can be proven by induction at successor ordinals.

Lemma 2.11. For each \(\gamma \in C\) such that \(C \cap \gamma\) has cofinality \(\omega_1\), \(P_{\gamma+1}\) is ccc.

Proof. We proceed by induction. For each \(\alpha\), define \(p \in P_\alpha^*\) if \(p \in P_\alpha\) and there is an \(n \in \mathbb{N}\) such that

\[
(1) \text{ for each } \beta \in \text{dom}(p) \cap C, \text{ with } H^\beta = \text{dom}(p) \cap C \cap \beta, \text{ there are subsets } a^\beta, x^\beta, b^\beta \text{ of } n \text{ and } T^\beta \in [T]^{<\omega} \text{ such that } p \upharpoonright \beta \models_{P_\beta} \text{“}p(\beta) = (n, a^\beta, x^\beta, b^\beta, T^\beta, H^\beta)\text{”}
\]

Assume that \(P_\beta^*\) is dense in \(P_\beta\) and let \(p \in P_{\beta+1}\). To show that \(P_{\beta+1}^*\) is dense in \(P_{\beta+1}\) we must find some \(p^* \leq p\) in \(P_{\beta+1}^*\). If \(\beta \notin C\) and \(p^* \in P_\beta^*\) is below \(p \upharpoonright \beta\), then \(p^* \cup \{(\beta, p(\beta))\}\) is the desired element of \(P_{\beta+1}^*\). Now assume that \(\beta \in C\) and assume that \(p \upharpoonright \beta \in P_\beta^*\) and that \(p \upharpoonright \beta\) forces that \(p(\beta)\) is the tuple \((n_0, a, x, b, \bar{T}, \bar{H})\). By an easy density argument, we may assume that \(\bar{H} \subset \text{dom}(p)\). Let \(n^*\) be the integer witnessing that \(p \upharpoonright \beta \in P_\beta^*\). Let \(\zeta\) be the maximum element of \(\text{dom}(p) \cap C \cap \beta\) and let \(p \upharpoonright \zeta \models_{P_\beta^*} \text{“}p(\zeta) = (n^*, a^\zeta, x^\zeta, b^\zeta, T^\zeta, H^\zeta, \zeta)\text{”}\) as per the definition of \(P_{\zeta+1}^*\). Notice that since \(\bar{H} \subset H^{\zeta}\) we have that

\[
p \upharpoonright \beta \models_{P_\beta^*} \text{“(}n^*, a^*, x, b^*, T^\zeta \cup \bar{T}, H^\zeta \cup \{\zeta\}\text{) ≤ }p(\beta)\text{”}
\]

where \(a^* = a \cup ([n_0, n^*) \setminus b^\zeta]\) and \(b^* = b \cup ([n_0, n^*) \cap b^\zeta]\). Defining \(p^* \in P_{\beta+1}\) by \(p^* \upharpoonright \beta = p \upharpoonright \beta\) and \(p^*(\beta) = (n^*, a^*, x, b^*, T^\zeta \cup \bar{T}, H^\zeta \cup \{\zeta\})\)
completes the proof that P^*_β is dense in $P^*_{\beta+1}$, and by induction, that this holds for $\beta = \gamma$.

Now assume that $\{p_\alpha : \alpha \in \omega_1\} \subset P^*_{\gamma+1}$. By passing to a subcollection, we may assume that

1. the collection \(\{T^{p_\alpha(\gamma)} : \alpha \in \omega_1\}\) forms a Δ-system with root T^*;
2. the collection \(\{\text{dom}(p_\alpha) : \alpha \in \omega_1\}\) also forms a Δ-system with root R;
3. there is a tuple \((n^*, a^*, x^*, b^*)\) so that for all $\alpha \in \omega_1$, \(a^{p_\alpha(\gamma)} = a^*, x^{p_\alpha(\gamma)} = x^*, \) and \(b^{p_\alpha(\gamma)} = b^*\).

Since $C \cap \gamma$ has a cofinal sequence of order type ω_1, there is a $\delta \in \gamma$ such that $R \subset \delta$ and, we may assume, \(\text{dom}(p_\alpha) \setminus \delta \subset \min(\text{dom}(p_\beta) \setminus \delta)\) for $\alpha < \beta < \omega_1$. Since P_δ is ccc, there is a pair $\alpha < \beta < \omega_1$ such that $p_\alpha \upharpoonright \delta$ is compatible with $p_\beta \upharpoonright \delta$. Define $q \in P_{\gamma+1}$ by

1. $q \upharpoonright \delta$ is any element of P_δ which is below each of $p_\alpha \upharpoonright \delta$ and $p_\beta \upharpoonright \delta$.
2. if $\delta \leq \xi \in \gamma \cap \text{dom}(p_\alpha)$, then $q(\xi) = p_\alpha(\xi)$,
3. if $\delta \leq \xi \in \text{dom}(p_\beta) \setminus C$, then $q(\xi) = p_\beta(\xi)$,
4. if $\delta \leq \xi \in \text{dom}(p_\beta) \cap C$, then $q(\xi) = (n^*, a^{p_\beta(\xi)}, x^{p_\beta(\xi)}, b^{p_\beta(\xi)}, T^{p_\beta(\xi)}, H^{p_\beta(\xi)} \cup H^{p_\alpha(\gamma)})$.

The main non-trivial fact about q is that it is in $P_{\gamma+1}$ which depends on the fact that, by induction on $\eta \in C \cap \gamma$, $q \upharpoonright \eta$ forces that

\[(a_\eta \setminus a_\xi) \cup (b_\eta \setminus b_\xi) \cup (x_\xi \setminus x_\eta) \subset n^* \text{ for } \xi \in C \cap \eta.\]

It now follows trivially that q is below each of p_α and p_β. \qed

Proof of Theorem 2.7 This completes the construction of the ccc poset Π (or P_θ as above). Let $G \subset (\Pi \times \Pi_{\lambda \in \Lambda} T_\lambda)$ be generic. It follows that $V[G \cap P]$ is a model of Martin’s Axiom and $\mathfrak{c} = \theta$. Furthermore, by applying Lemma 2.3 with $\mu = \omega$ and Lemma 2.3 we have that $P_2 = \Pi_{\lambda \in \Lambda} T_\lambda$ is ω_1-distributive in the model $V[G \cap P]$. Therefore all subsets of \mathbb{N} in the model $V[G]$ are also in the model $V[G \cap P]$.

Fix any $\lambda \in \Lambda$ and let p_λ denote the generic branch in T_λ given by G. Let G^λ denote the generic filter on $\Pi \times \Pi_{\mu \neq \lambda} T_\mu$ and work in the model $V[G^\lambda]$. It follows easily by Lemma 2.3 and Lemma 2.3 that T_λ is a λ^+-Souslin tree in this model. Therefore by Proposition 2.2, $K_\lambda = \bigcap_{\alpha < \lambda} x^*_\alpha$ is a tie-set of \mathfrak{b}-type (λ^+, λ^+) in $V[G]$. By the definition of the iteration in P, it follows that condition (4) of Lemma 2.2 is also satisfied, hence the tie-set $K = \bigcap_{\xi \in \mathcal{C}} x^*_\xi$ meets K_λ in a single point z_λ. A simple genericity argument confirms that conditions (5) and (6) of Proposition 2.2 also holds, hence z_λ is a tie-point of K_λ.
It follows from Corollary 2.6 that there are no unwanted tie-sets in \(\beta \mathbb{N} \setminus \mathbb{N} \) in \(V[G] \), at least if there are none in \(V[G \cap P] \). Since \(p = c \) in \(V[G \cap P] \), it follows from Proposition 1.3 that indeed there are no such tie-sets in \(V[G \cap P] \).

Unfortunately the next result shows that the construction does not provide us with our desired variety of tie-points (even with variations in the definition of the iteration). We do not know if \(b \delta \)-type can be improved to \(\delta \)-type (or simply exclude tie-points altogether).

Proposition 2.12. In the model constructed in Theorem 2.1, there are no tie-points with \(b \delta \)-type \((\kappa_1, \kappa_2)\) for any \(\kappa_1 \leq \kappa_2 < c \).

Proof. Assume that \(\beta \mathbb{N} \setminus \mathbb{N} = A \upharpoonright \mathbb{N} \) and that \(\delta(A) = \kappa_1 \) and \(\delta(I) = \kappa_2 \). It follows from Corollary 2.6 that we can assume that \(\kappa_1 = \kappa_2 = \lambda^+ \) for some \(\lambda \in \Lambda \). Also, following the proof of Corollary 2.6, there are \(P \times T_\lambda \)-names \(J_A = \{ \tilde{a}_\alpha : \alpha \in \lambda^+ \} \) and \(P \times T_\lambda^+ \)-names \(J_B = \{ \tilde{b}_\beta : \beta \in \lambda^+ \} \) such that the valuation of these names by \(G \) result in increasing (mod finite) chains in \(I_A \) and \(I_B \) respectively whose downward closures are dense. Passing to \(V[G \cap P] \), since \(T_\lambda \) has the \(\theta \)-cc, there is a Boolean subalgebra \(B \in [\mathcal{P}(\mathbb{N})]^{<\theta} \) such that each \(\tilde{a}_\alpha \) and \(\tilde{b}_\beta \) is a name of a member of \(B \). Furthermore, there is an infinite \(C \subseteq \mathbb{N} \) such that \(C \notin x \) and each of \(b \cap C \) and \(b \setminus C \) are infinite for all \(b \in B \). Since \(C \notin x \), there is a \(Y \subseteq \mathbb{N} \) (in \(V[G] \)) such that \(C \cap Y \in I_A \) and \(C \setminus Y \in I_B \). Now choose \(t_0 \in T_\lambda \) which forces this about \(C \) and \(Y \). Back in \(V[G \cap P] \), set

\[
\mathcal{A} = \{ b \in B : (\exists t_1 \leq t_0) \ t_1 \vdash_{T_\lambda} "b \in J_A \cup J_B" \}.
\]

Since \(V[G \cap P] \) satisfies \(p = \theta \) and \(A^1 \) is forced by \(t_0 \) to be dense in \([\mathbb{N}]^{\omega} \), there must be a finite subset \(\mathcal{A}' \) of \(A \) which covers \(C \). It also follows easily then that there must be some \(a, b \in \mathcal{A}' \) and \(t_1, t_2 \) each below \(t_0 \) such that \(t_1 \vdash_{T_\lambda} "a \in J_A" \), \(t_2 \vdash_{T_\lambda} "b \in J_B" \), and \(a \cap b \) is infinite. The final contradiction is that we will now have that \(t_0 \) fails to force that \(C \cap a \subseteq^* Y \) and \(C \cap b \subseteq^* (\mathbb{N} \setminus Y) \).

3. \(T \)-INVLATIONS

In this section we strengthen the result in Theorem 2.1 by making each \(K \cap K_\lambda \) a symmetric tie-point in \(K_\lambda \) (at the expense of weakening Martin’s Axiom in \(V[G \cap P] \)). This is progress in producing involutions with some control over the fixed point set but we are still not able to make \(K \) the fixed point set of an involution. A poset is said to be \(\sigma \)-linked if there is a countable collection of linked (elements are pairwise compatible) which union to the poset. The statement MA(\(\sigma \) – linked)
Let D be the (possibly empty) set of minimal elements of λ. Thus, for each $\lambda \in \Lambda$, there is a λ-closed λ^+-Souslin tree.

Our approach is to replace T-splitting towers by the following notion. If f is a (partial) involution on \mathbb{N}, let $\text{min}(f) = \{ n \in \mathbb{N} : n < f(n) \}$ and $\text{max}(f) = \{ n \in \mathbb{N} : f(n) < n \}$ (hence $\text{dom}(f)$ is partitioned into $\text{min}(f) \cup \text{fix}(f) \cup \text{max}(f)$).

Definition 3.1. A sequence $\mathcal{T} = \{ (A_\xi, f_\xi) : \xi \in W \}$ is a tower of T-involutions if W is a set of ordinals and for $\xi < \nu \in W$ and $t \in T$

1. $A_\nu \subset^* A_\xi$;
2. $f_\xi^2 = f_\xi$ and $f_\xi \upharpoonright (\mathbb{N} \setminus \text{fix}(f_\xi)) \subset^* f_\eta$;
3. $f_\xi[x_t] = x_t$ and $\text{fix}(f_\xi) \cap x_t$ is infinite;
4. $f_\xi([n, m)) = [n, m)$ for $n < m$ both in A_ξ.

Say that \mathcal{T}, a tower of T-involutions, is **full** if $K = K_\mathcal{T} = \bigcap \{ \text{fix}(f_\xi)^* : \xi \in W \}$ is a tie-set with $\beta \mathbb{N} \setminus \mathbb{N} = A \upharpoonright^K B$ where $A = K \cup \bigcup \{ \text{min}(f_\xi)^* : \xi \in W \}$ and $B = K \cup \bigcup \{ \text{max}(f_\xi)^* : \xi \in W \}$.

If \mathcal{T} is a tower of T-involutions, then there is a natural involution $F_\mathcal{T}$ on $\bigcup_{\xi \in W} (\mathbb{N} \setminus \text{fix}(f_\xi))^*$, but this $F_\mathcal{T}$ need not extend to an involution on the closure of the union - even if the tower is full.

In this section we prove the following theorem.

Theorem 3.1. Assume GCH and that Λ is a set of regular uncountable cardinals such that for each $\lambda \in \Lambda$, T_λ is a $<\lambda$-closed λ^+-Souslin tree. Let T denote the tree sum of $\{ T_\lambda : \lambda \in \Lambda \}$. There is forcing extension in which there is \mathcal{T}, a full tower of T-involutions, such that the associated tie-set K has $\mathfrak{b}\delta$-type (c, c) and such that for each $\lambda \in \Lambda$, there is a tie-set K_λ of $\mathfrak{b}\delta$-type (λ^+, λ^+) such that $F_\mathcal{T}$ does induce an involution on K_λ with a singleton fixed point set $\{ z_\lambda \} = K \cap K_\lambda$. Furthermore, for $\mu \leq \lambda < c$, if $\mu \neq \lambda$ or $\lambda \notin \Lambda$, then there is no tie-set of $\mathfrak{b}\delta$-type (μ, λ).

Question 3.1. Can the tower \mathcal{T} in Theorem 3.1 be constructed so that $F_\mathcal{T}$ extends to an involution of $\beta \mathbb{N} \setminus \mathbb{N}$ with $\text{fix}(F) = K_\mathcal{T}$?

We introduce T-tower extending forcing.

Definition 3.2. If $\mathcal{T} = \{ (A_\xi, f_\xi) : \xi \in W \}$ is a tower of T-involutions and Y is a subset of \mathbb{N}, we define the poset $Q = Q(\mathcal{T}, Y)$ as follows. Let E_Y be the (possibly empty) set of minimal elements of T such that there is some finite $H \subset W$ such that $x_t \cap Y \cap \bigcap_{\xi \in H} \text{fix}(f_\xi)$ is finite. Let $D_Y = E_Y^\perp = \{ t \in T : (\forall s \in E_Y) t \perp s \}$. A tuple $q \in Q$ if $q = (a^q, f^q, T^q, H^q)$ where:
We define $p < q$ if $n^p \leq n^q$, and for $t \in T^p$ and $i \in [n^p, n^q)$:

1. $a^p = a^q \cap n^p$, $T^p \subset T^q$, and $H^p \subset H^q$,
2. $a^q \setminus a^p \subset A_{a^p}$,
3. $f^q(i) \neq i$ implies $f^q(i) = f_{a^p}(i)$,
4. $f^q((n, m)) = [n, m)$ for $n < m$ both in $a^q \setminus a^p$,
5. $f^q(x_t \cap [n^p, n^q)) = x_t \cap [n^p, n^q)$,
6. if $t \in D^p$ and $i \in x_t \cap \text{fix}(f^q)$, then $i \in Y$

It should be clear that the involution f introduced by $Q(\xi, Y)$ satisfies that for each $t \in D_Y$, $\text{fix}(f) \cap x_t \subset^* Y$, and, with the help of the following density argument, that $\xi \cup \{(\gamma, A, f)\}$ is again a tower of T-involutions where A is the infinite set introduced by the first coordinates of the conditions in the generic filter.

Lemma 3.2. If $W \subset \gamma$, $Y \subset \mathbb{N}$, and $\xi = \{(A_\xi, f_\xi) : \xi \in W\}$ is a tower of T-involutions and $p \in Q(\xi, Y)$, then for any $\tilde{T} \in [T]^\omega$, $\zeta \in W$, and any $m \in \mathbb{N}$, there is a $q < p$ such that $n^q \geq m$, $\zeta \in H^q$, $T^q \supset \tilde{T}$, and $\text{fix}(f^q) \cap (x_t \setminus n^q)$ is not empty for each $t \in T^p$.

Proof. Let β denote the maximum α^p and ζ and let η denote the minimum. Choose any $n^\eta \in A_{a^q} \setminus m$ large enough so that

1. $f_{a^p}[x_t \setminus n^q] = x_t \setminus n^q$ for $t \in \tilde{T}$,
2. $f_{\eta}[\mathbb{N} \setminus (n^q \cup \text{fix}(f_\eta))] \subset f_\beta$,
3. $A_\beta \setminus A_\eta$ is contained in n^q,
4. $n^q \cap [i]_{T^p} \cap \text{fix}(f_{a^p})$ is non-empty for each $i \in \mathbb{N}$ such that $[i]_{T^p}$ is in the finite set $\{[i]_{T^p} : i \in \mathbb{N}\} \setminus \text{fin}(T^p)$,
5. if $i \in x_t \cap n^q \setminus n^p$ for some $t \in D_Y \cap T^p$, then Y meets $[i]_{T^p} \cap n^q \setminus n^p$ in at least two points.

Naturally we also set $H^q = H^p \cup \{\zeta\}$ and $T^q = T^p \cup \tilde{T}$. The choice of n^q is large enough to satisfy (3), (4), (5) and (6) of Definition 3.2. We will set $a^q = a^p \cup \{n^q\}$ ensuring (1) of Definition 3.2. Therefore for any $f^q \supset f^p$ which is an involution on n^q, we will have that $q = (a^q, f^q, T^q, H^q)$ is in the poset. We have to choose f^q more carefully to ensure that $q \leq p$. Let $S = [n^p, n^q) \cap \text{fix}(f_{a^p})$, and $S' = [n^p, n^q) \setminus S$. We choose \tilde{f} an involution on S and set $f^q = f^p \cup (f_{a^p} \upharpoonright S') \cup \tilde{f}$. We leave
it to the reader to check that it suffices to ensure that \(\bar{f} \) sends \([i]_{Tp} \cap S\) to itself for each \(t \in T^p \) and that \(\text{fix}(\bar{f}) \cap x_t \subset Y \) for each \(t \in T^p \cap D_Y \).

Since the members of \(\{[i]_{Tp} \cap S : i \in \mathbb{N}\} \) are pairwise disjoint we can define \(\bar{f} \) on each separately.

For each \([i]_{Tp} \cap S\) which has even cardinality, choose two points \(y_i, z_i \) from it so that if there is a \(p \in D_Y \cap T^p \) such that \([i]_{Tp} \subset x_t\), then \(\{y_i, z_i\} \subset Y \). Let \(\bar{f} \) be any involution on \([i]_{Tp} \cap S\) so that \(y_i, z_i \) are the only fixed points. If \([i]_{Tp} \cap S\) has odd cardinality then choose a point \(y_i \) from it so that if \([i]_{Tp}^p\) is contained in \(x_t \) for some \(t \in D_y \cap T^p \), then \(y_i \in Y \cap [i]_{Tp} \cap S \). Set \(\bar{f}(y_i) = y_i \) and choose \(\bar{f} \) to be any fixed-point free involution on \([i]_{Tp} \cap S \setminus \{y_i\}\).

Let \(P_\gamma \) now be the finite support iteration defined as in Definition 2.6 except for two important changes. For \(\gamma \in C \), we replace \(T\)-splitting towers by the obvious inductive definition of towers of \(T \)-involutions when we replace the posets \(\dot{Q}(S_{\mathcal{C}\gamma}, \dot{Y}_\gamma) \) by \(\dot{Q}(\Sigma_{\mathcal{C}\gamma}, \dot{Y}_\gamma) \). For \(\gamma \notin C \) we require that \(\Vdash_{P_\gamma} \dot{Q}_\gamma \) is \(\sigma \)-linked.

Special (parity) properties of the family \(\{x_t : t \in T\} \) are needed to ensure that \(\Vdash_{P_\gamma} \dot{Q}(S_{\mathcal{C}\gamma}, \dot{Y}_\gamma) \) is ccc even for cases when \(\text{cf}(\gamma) \) is not \(\omega_1 \).

The proof of Theorem 3.1 is virtually the same as the proof of Theorem 2.11 (so we skip) once we have established that the iteration is ccc.

Lemma 3.3. For each \(\gamma \in C \), \(P_{\gamma+1} \) is ccc.

Proof. We again define \(P_\alpha^* \) to be those \(p \in P_\alpha \) for which there is an \(n \in \mathbb{N} \) such that for each \(\beta \in \text{dom}(p) \cap C \), there are \(n \in a^\beta \subset n+1 \), \(f^\beta \in n^n \), \(T^\beta \in [T]^{<\omega} \), and \(H^\beta = \text{dom}(p) \cap C \cap \beta \) such that \(p \upharpoonright \beta \Vdash_{P_\beta} p(\beta) = (a^\beta, f^\beta, T^\beta, H^\beta) \). However, in this proof we must also make some special assumptions in coordinates other than those in \(C \). For each \(\xi \in \gamma \setminus C \), we fix a collection \(\{\dot{Q}(\xi, n) : n \in \omega\} \) of \(P_\xi \)-names so that

\[
1 \Vdash_{P_\xi} \dot{Q}_\xi = \bigcup_n \dot{Q}(\xi, n) \text{ and } (\forall n) \dot{Q}(\xi, n) \text{ is linked.}
\]

The final restriction on \(p \in P_\alpha^* \) is that for each \(\xi \in \alpha \setminus C \), there is a \(k_\xi \in \omega \) such that \(p \upharpoonright \xi \Vdash_{P_\xi} \text{"} p(\xi) \in \dot{Q}(\xi, k_\xi) \".

Just as in Lemma 2.11, Lemma 3.2 can be used to show by induction that \(P_\alpha^* \) is a dense subset of \(P_\alpha \). This time though, we also demand that \(\text{dom}(f^{p(0)}) = n \times T^{p(0)} \) is such that \(T^\beta \subset T^{p(0)} \) for all \(\beta \in \text{dom}(p) \cap C \) and some extra argument is needed because of needing to decide values in the name \(\dot{Y}_\gamma \) as in the proof of Lemma 3.2. Let \(p \in P_{\beta+1} \) and assume that \(P_\beta^* \) is dense in \(P_\beta \). By density, we may assume that \(p \upharpoonright
$\beta \in P^*_\beta$, $H^{p(\beta)} \subseteq \dom(p)$, $T^{p(\beta)} \subseteq T^{p(0)}$, and that $p \upharpoonright \beta$ has decided the members of the set $D_\beta \cap T^{p(\beta)}$. We can assume further that for each $t \in D_\beta \cap T^{p(\beta)}$, $p \upharpoonright \beta$ has forced a value $y_t \in \hat{Y}_\beta \cap x_t \setminus \bigcup \{ x_s : s \in T^p \text{ and } s \not\subseteq t \}$ such that $y_t > n^{p(\beta)}$. We are using that T is not finitely branching to deduce that if $t \in D_\beta$, then $p \upharpoonright \beta \Vdash_{P_\beta}$ "$\hat{Y}_\beta \cap x_t \setminus \bigcup \{ x_s : s \in T^p \text{ and } s \not\subseteq t \}$ is non-empty" (which follows since \hat{Y}_β must meet x_s for each immediate successor s of t). Choose any m larger than y_t for each $t \in T^{p(\beta)}$. Without loss of generality, we may assume that the integer n^* witnessing that $p \upharpoonright \beta \in P^*_\beta$ is at least as large as m and that $n^* \in \bigcap_{\xi \in H^{p(\beta)} A_\xi}$. Construct \bar{f} just as in Lemma 3.2 except that this time there is no requirement to actually have fixed points so one member of \hat{Y}_β in each appropriate $[i]_{T^{p(\beta)}}$ is all that is required. Let $\zeta = \max(\dom(p) \cap \beta)$. No new forcing decisions are required of $p \upharpoonright \beta$ in order to construct a suitable \bar{f}, hence this shows that $p \upharpoonright \beta \cup \\{ (\beta, q) \}$ (where q is constructed below $p(\beta)$ as in Corollary 3.2) in which $H^{p(\zeta)} \cup \{ \zeta \}$ is add to H^q is the desired extension of p which is a member of $P^*_{\beta+1}$.

Now to show that $P_{\gamma+1}$ is ccc, let $\{ p_\alpha : \alpha \in \omega_1 \} \subseteq P^*_{\gamma+1}$. Clearly we may assume that the family $\{ p_\alpha(0) : \alpha \in \omega_1 \}$ are pairwise compatible and that there is a single integer n such that, for each $\alpha \in \omega_1$, $\dom(p_\alpha(0)) = n \times T^\alpha$ for some $T^\alpha \subseteq \gamma$. Also, we may assume that there is some (a, h) such that, for each α,

$$p_\alpha \upharpoonright \gamma \Vdash_{P_\gamma} " p(\gamma) = (a, h, T^\alpha, H^\alpha)"$$

where $H^\alpha = \dom(p_\alpha) \cap C \cap \gamma$.

The family $\{ \dom(p_\alpha) \cap \gamma : \alpha \in \omega_1 \}$ may be assumed to form a Δ-system with root R. For each $\xi \in R$, we may assume that, if $\xi \notin C$, there is a single $k_\xi \in \omega$ such that, for all α, $p_\alpha \upharpoonright \xi \Vdash_{P_\xi} " p_\alpha(\xi) \in \hat{Q}(\xi, k_\xi)"$, and if $\xi \in C$, then there is a single (a_ξ, h_ξ) such that $p_\alpha \upharpoonright \xi \Vdash_{P_\xi} " p_\alpha(\xi) = (a_\xi, h_\xi, T^\alpha, H^\alpha \cap \xi)"$. For convenience, for each $\xi \notin C$ let \tp_ξ be a P_ξ-name of a function from $\omega \times \hat{Q}_\xi^2$ such that, for each $k \in \omega$,

$$1 \Vdash_{P_\xi} " \tp_\xi(k, q, q') \leq q, q' \ (\forall q, q' \in \hat{Q}(\xi, k))".$$

Fix any $\alpha < \beta < \omega_1$ and let $H = H^\alpha \cup H^\beta$. Recall that $p_\alpha(0)$ and $p_\beta(0)$ are compatible. Recursively define a P_ξ-name $q(\xi)$ for $\xi \in \omega_1$
Now we check that \(C \) in this show that condition (4) of Definition 3.2 will hold in all coordinates \(q \) that \(H \) in and \(A \max(\ q \inductive\ hypothesis\ above). \) It follows then that \("q(\xi) + 1. \)

By the definition of the ordering on \(\dot{q} \), \(\xi \in dom(\ p_\alpha) \ \setminus\ (R \cup C) " \).

Remark 2. We also prove, by induction on \(\xi \), that \(q \upharpoonright \xi \) forces that for \(\eta < \delta \) both in \(H \cap \xi \) and \(t \in T^\alpha \cup T^\beta \), \(f_\delta[x_t \setminus n] = x_t \setminus n, f_\eta \upharpoonright (N \setminus (fix(f_\eta) \cup n)) \subset f_\delta \) and \(A_\delta \setminus n \subset A_\eta. \)

Given \(\xi \in H \) and the assumption that \(q \upharpoonright \xi \in P_\xi \), and \(\alpha = \alpha^{\xi(q)} = \max(H \cap \xi), \) condition (3), (5), and (6) of Definition 3.2 hold by the inductive hypothesis above. It follows then that \(q \upharpoonright \xi \models P_\xi "q(\xi) \in \dot{Q}_\xi " \).

By the definition of the ordering on \(\dot{Q}_\xi \), given that \(H \cap \xi = H^{\alpha(\xi)} \) and \(T^\alpha \cup T^\beta = T^{\alpha(\xi)} \), it follows that the inductive hypothesis then holds for \(\xi + 1. \)

It is trivial for \(\xi \in dom(q) \setminus C, \) that \(q \upharpoonright \xi \in P_\xi \) implies that \(q \upharpoonright \xi \models P_\xi "q(\xi) \in \dot{Q}_\xi " \). This completes the proof that \(q \in P_\gamma + 1, \) and it is trivial that \(q \) is below each of \(p_\alpha \) and \(p_\beta. \)

Remark 1. If we add a trivial tree \(T_1 \) to the collection \(\{T_\lambda : \lambda \in \Lambda\} \) (i.e. \(T_1 \) has only a root), then the root of \(T \) has a single extension which is a maximal node \(t, \) and with no change to the proof of Theorem 3.1 one obtains that \(F \) induces an automorphism on \(x^*_t \) with a single fixed point. Therefore, it is consistent (and likely as constructed) that \(\beta \in \setminus \) \(N \) will have symmetric tie-points of type \((\xi, \xi) \) in the model \(V[G \cap P] \) and \(V[G]. \)

Remark 2. In the proof of Theorem 2.1 it is easy to arrange that each \(K_\lambda (\lambda \in \Lambda) \) is also \(K_{\xi_\lambda} \) for a \((T_\lambda\text{-generic}) \) full tower, \(\xi_\lambda, \) of \(\in\text{-}\)involutions. However the generic sets added by the forcing \(P \) will prevent this tower of involutions from extending to a full involution.

4. Questions

In this section we list all the questions with their original numbering.
Question 1.1. Can there be a tie-point in $\beta\mathbb{N} \setminus \mathbb{N}$ with δ-type (κ, λ) with $\kappa \leq \lambda$ less than the character of the point?

Question 1.2. Can $\beta\mathbb{N} \setminus \mathbb{N}$ have tie-points of δ-type (ω_1, ω_1) and (ω_2, ω_2)?

Question 1.3. Does $p > \omega_1$ imply there are no tie-points of b-type (ω_1, ω_1)?

Question 1.4. If F is an involution on $\beta\mathbb{N} \setminus \mathbb{N}$ such that $K = \text{fix}(F)$ has empty interior, is K a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact spaces can (or can not) be homeomorphic to the fixed point set of some involution of $\beta\mathbb{N} \setminus \mathbb{N}$?

Question 1.6. If F is an involution of \mathbb{N}^*, is the quotient space \mathbb{N}^*/F (in which each $\{x, F(x)\}$ is collapsed to a single point) a homeomorphic copy of $\beta\mathbb{N} \setminus \mathbb{N}$?

Question 3.1. Can the tower \mathcal{T} in Theorem 3.1 be constructed so that $F_{\mathcal{T}}$ extends to an involution of $\beta\mathbb{N} \setminus \mathbb{N}$ with $\text{fix}(F) = K_{\mathcal{T}}$?

References

[1] Jörg Brendle and Saharon Shelah, *Ultrafilters on ω—their ideals and their cardinal characteristics*, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2643–2674. MR 1686797 (2000m:03111)
[2] Alan Dow, *Two to one images and PFA*, Israel J. Math. 156 (2006), 221–241. MR 2282377
[3] Alan Dow and Geta Techanie, *Two-to-one continuous images of \mathbb{N}^**, Fund. Math. 186 (2005), no. 2, 177–192. MR 2162384 (2006f:54003)
[4] Thomas Jech, *Set theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)
[5] Ronnie Levy, *The weight of certain images of ω*, Topology Appl. 153 (2006), no. 13, 2272–2277. MR MR2238730 (2007e:54034)
[6] S. Shelah and J. Steprāns. *Non-trivial homeomorphisms of $\beta\mathbb{N} \setminus \mathbb{N}$ without the Continuum Hypothesis*. Fund. Math., 132:135–141, 1989.
[7] S. Shelah and J. Steprāns. *Somewhere trivial Autohomeomorphisms*. J. London Math. Soc. (2), 49:569–580, 1994.
[8] Saharon Shelah and Juris Steprāns, *Martin’s axiom is consistent with the existence of nowhere trivial automorphisms*, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2097–2106 (electronic). MR 1896046 (2003k:03063)

[9] B. Veličković. Definable automorphisms of $\mathcal{P}(\omega)/\text{fin}$. Proc. Amer. Math. Soc., 96:130–135, 1986.

[10] Boban Veličković. OCA and automorphisms of $\mathcal{P}(\omega)/\text{fin}$. Topology Appl., 49(1):1–13, 1993.

__Department of Mathematics, Rutgers University, Hill Center, Piscataway, New Jersey, U.S.A. 08854-8019__

__Current address__: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel

__E-mail address__: shelah@math.rutgers.edu