Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response

Matthew Clark1†, Charles J. Kroger1† and Roland M. Tisch1,2*

1Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, 2Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.

Keywords: autoimmunity, type 1 diabetes, immunoregulation, inflammation, T cells

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease characterized by the chronic inflammation of the pancreatic islets of Langerhans (1–4). Islet inflammation is typically marked by infiltrating adaptive and innate immune effectors. Insulitis progresses over time and when a sufficient amount of β cell mass has been rendered nonfunctional and/or destroyed, hyperglycemic blood levels are achieved, and clinical diabetes established. The immune mechanisms mediating β cell autoimmunity are heterogeneous, as reflected by the nature of the islet infiltrate and the age of clinical onset. Nevertheless, T1D is generally viewed as a T cell-driven autoimmune disease, particularly for the more prevalent and aggressive type of T1D that develops in children and adolescents (5–17). A T cell-independent subtype of T1D, however, may also exist that is thought to be largely mediated by innate immune effectors (18, 19). The events leading to the loss of β cell-specific tolerance and chronic islet inflammation are complex, and influenced by both genetic and environmental factors (20–22).

Type 1 diabetes is polygenic with more than 20 insulin-dependent diabetes mellitus (IDDm) genetic loci identified that are associated with increased or decreased risk for T1D (23–28). The strongest genetic association is with the human leukocyte antigen locus (IDDM1), and particular...
class I and II haplotypes, consistent with a key role for T cells in T1D (29, 30). A number of genes regulating T, B, and innate cell immunobiology are also linked with T1D, as are genetic variants intrinsic to β cells, which deleteriously affect β cell function and/or responses to inflammation (31–37).

The identity and role of environmental factors in T1D are poorly understood. The most common hypothesis is that microbial infections initiate and/or exacerbate islet inflammation in genetically susceptible individuals (38, 39). For instance, T1D is associated with enteroviruses such as coxsackievirus B1 (40–44). Viral infection of β cells may result in direct cytolysis and/or eliciting local inflammation that initiates and/or drives autoimmunity (45–47). The gut microbiota also has a profound regulatory effect on β cell autoimmunity (48, 49). In the nonobese diabetic (NOD) mouse, a spontaneous model of T1D, β cell destruction can be either promoted or prevented by changes in the composition of the gut microbiota (50, 51). Here bacterial components and metabolites are thought to impact the activation and/or differentiation status of innate and adaptive immune effectors. Longitudinal studies of at risk subjects also indicate a role for gut microbiota in human T1D (52–54).

The T cell-related events that drive chronic islet inflammation in T1D stem from dysregulation of central and peripheral tolerance, alterations in self-antigen processing, and modified β cell responses (Figure 1). Here, we discuss how events critical for initiating and amplifying the development of T cell-mediated islet inflammation are regulated in NOD mice and human T1D.

Thymic Origins of Diabetogenic T Cells: Setting the Stage for Islet Inflammation

The generation of an autoreactive T cell receptor (TCR) repertoire in the periphery is established in part by inefficient negative selection of anti-self-single positive thymocytes (SP) in the thymus (55, 56). Early in ontogeny negative selection is lax, resulting in increased escape of anti-self-SP (57–59). This temporal decrease in negative selection and elevated survival of β cell-specific clonotypes may help explain the predominance of T1D onset in childhood. With time, changes in thymic structural organization and maturation of thymic antigen-presenting cells (APC) leads to more efficient negative selection and increased death of autoreactive SP (57).

Key mediators of negative selection are medullary thymic epithelial cells (mTEC) and dendritic cells (DC). Notably, mTEC

![Figure 1](https://example.com/figure1.png)

FIGURE 1 Dysregulated thymic and peripheral events culminate in chronic islet inflammation. In general, overt diabetes results from the gradual loss of functional insulin producing β cells due to the inflammatory environment driven by infiltrating self-reactive T cells and antigen-presenting cell (APC). Although β cell-specific T cell clones are detected in both healthy and type 1 diabetes (T1D) susceptible individuals, a number of factors promote T1D development in the latter population. Decreased efficiency of negative selection in the thymus, either due to altered tissue-specific antigen expression or due to T cell receptor (TCR) signaling, allows for the increased escape of β cell-specific T cell clones into the periphery. In addition, β cell-specific Foxp3+Treg development may also be suboptimal due to dysregulation of TCR signaling. In the periphery, β cell-specific T cells are stimulated in the pancreatic lymph nodes (pLN) by APC derived from the islets, leading to effector T cell (Teff) differentiation. These pathogenic Eff then infiltrate the islets and drive inflammation leading to reduced β cell function and/or survival. Not all islets are infiltrated potentially due to an immature phenotype and reduced autoantigen expression by β cells. Ongoing islet inflammation also leads to the generation of neoautoantigens either directly in β cells or during antigen processing by APC. The presentation of neoautoantigens within the pLN promotes the activation and expansion of additional Eff pools. These events amplify and drive a chronic state of islet inflammation leading to impaired functional β cell mass and clinical onset of T1D.
express and present several tissue-specific antigens (TSA) (60–63). Recognition of MHC-self-peptide complexes with increasing avidity/affinity results in elevated TCR signaling and SP apoptosis. Dysregulation of negative selection generates a peripheral pool of anti-self-T cells displaying increased avidity/affinity, and likely an enhanced “pathogenic potential.”

Parameters influencing the efficiency of negative selection both intrinsic and extrinsic to thymocytes have been linked to the development of β cell-specific T cells and T1D. Thymocyte intrinsic properties reported in NOD mice have included reduced SP sensitivity to apoptosis and altered double positive thymocyte differentiation to SP (64–67). In humans, TCR signaling needed to drive apoptosis of β cell-specific SP may be limited by a T1D-associated variant of the protein tyrosine phosphatase non-receptor 22 (PTPN22) gene (31, 32). PTPN22 is a negative regulator of TCR signaling, and elevated phosphatase activity by PTPN22 is predicted to reduce TCR signaling strength and diminish apoptosis induction in SP (68). An increase in PTPN22 activity may also limit thymic development of β cell-specific FoxP3-expressing regulatory CD4+ T cells (FOXP3+Treg), which is dependent on high(er) avidity/affinity recognition of self-peptide.

Thymocyte extrinsic factors that impact negative selection include aberrant expression of TSA in the medulla. The importance of thymic expression and presentation of TSA is readily evident in mice and humans deficient of the transcription factor autoimmune regulator (AIRE) (60, 69). Lack of AIRE, which drives expression of select TSA by mTEC, results in inefficient thymic negative selection and reduced development of tissue-specific Foxp3+Treg, leading to multioorgan autoimmunity in mice (70–74). Similarly, aberrant AIRE expression and function in humans results in the development of autoimmune polyendocrinopathy candidiasis and ectodermal dysplasia (APECED) in which a variety of organs are targeted by T cells; notably a subset of APCED patients develop T1D (75, 76). Reduced AIRE expression has been reported in NOD mice, which reflects not only T1D development but also T cell-mediated inflammation of other tissues such as the thyroid, salivary, and lacrimal glands (77).

In human T1D, a strong genetic association is linked to the insulin encoding gene INS2 found in IDDM2 (78). Insulin is believed to be a key autoantigen driving human T1D, which is supported by studies in NOD mice (79–81). INS2 is preceded by a variable number of tandem repeats (VNTRs). Individuals that have 26–63 VNTRs, associated with decreased thymic INS2 expression, have an increased risk of developing T1D. In contrast, INS2 expression is increased with VNTRs ranging between 140 and 210, which in turn is associated with a protective phenotype (82, 83). Reduced thymic insulin expression is expected to both limit negative selection and development of insulin-specific SP and FOXP3+Treg, respectively. Future studies are needed to directly demonstrate that thymic selection is dysregulated, and contributes to an expanded β cell-specific peripheral T cell pool in human T1D. Whether defects in thymic selection and development of β cell-specific T cells are necessary only early on or required throughout the disease process is another issue that needs to be tackled.

It is noteworthy that β cell-specific T cells are detected in the blood of healthy individuals, likely reflecting in part the reduced efficiency of healthy negative selection early in ontogeny. However, the phenotype of circulating β cell-specific T cells is distinct in T1D patients versus healthy subjects (84–89). The former exhibit mostly an effector/memory phenotype and expression of proinflammatory cytokines consistent with ongoing β cell autoimmunity (84–88). These findings indicate that in addition to the TCR repertoire, other factors contribute to the differentiation and expansion of diabetogenic effector T cells (Teff). For instance, the extent of tissue destruction and lethality of AIRE deficiency in mice is influenced by genotype with AIRE-deficient NOD versus C57BL/6 mice exhibiting more severe systemic autoimmunity (90, 91). Additionally, distinct TCR repertoires have been found in NOD mice in contrast to MHC matched C57BL/6 mice (92). Overall, dysregulation of thymic selection events in NOD mice acts as a precursor for islet inflammation.

EXTRINSIC AND INTRINSIC FACTORS PROMOTE PATHOGENIC EFFECTOR T CELLS IN T1D

The initiation of islet inflammation in NOD mice and humans is ill-defined. In NOD mice pancreatic remodeling shortly after birth is thought to play a key role starting the diabetogenic response (93, 94). Remodeling of the pancreas results in a wave of β cell apoptosis and release of antigens which are endocytosed by resident macrophages and DC (95). These APC then traffic to the draining pancreatic lymph nodes (pLN) to prime β cell-specific T cells and promote Teff differentiation (96, 97). Once established Teff migrate into the islets and mediate inflammation (97–99).

As alluded to above, shifts in the composition of the gut microbiota early in ontogeny are also believed to play a key role in regulating Teff differentiation in both mice and humans. Systemic release of microbiota-derived products can activate APC that in turn prime β cell-specific T cells providing an “environmental trigger” to incite T1D development (48). NOD mice in which the response to the microbiome is limited due to a deficiency in the Toll-like receptor adaptor protein MyD88, exhibit reduced β cell-specific Teff reactivity and diabetes incidence (50, 100). Strikingly, diabetes is prevented in NOD mice housed under germ-free conditions and inoculated with microbiota derived from MyD88-deficient animals (50), demonstrating that the microbiota also has a protective role in T1D. A less diverse gut microbiota in young individuals at risk for T1D is associated with progression to clinical diabetes (54). Changes in the gut microbiome have also been linked to the female bias of T1D in NOD mice (100). Interestingly, studies show that the lymphopenic environment in neonatal mice induces naïve T cells to rapidly expand and transition into a memory-like phenotype, that in turn is influenced by gut microbiota (101–104). Expansion of memory-like T cells, also seen in newborn humans, may enhance the pathogenic potential of the peripheral T cell pool and favor the development of autoimmunity in susceptible individuals.
Both CD4+ and CD8+ T cells are required for efficient β cell destruction in NOD mice (105). Islet CD8+ T cells primarily mediate β cell destruction by a cognate interaction involving perforin and granzyme B-, and Fas-Fas ligand-mediated killing (106, 107). On the other hand, islet CD4+ T cells drive β cell destruction in a bystander manner via secretion of proinflammatory cytokines. CD4+ and CD8+ T cells are also detected in the islets of diabetic subjects, with CD8+ T cells often predominating (6, 106). Several β cell autoantigens are recognized by the islet infiltrating T cells, and a number of these are similarly targeted in both the NOD and human diabeticogenic responses including glutamic acid decarboxylase 65, proinsulin, insulin B chain, islet antigen-2, and islet-specific glucose-6-phosphatase catalytic subunit-related protein (108).

The majority of CD4+ and CD8+ T cells infiltrating the islets of NOD mice and T1D subjects exhibit a T helper 1 (Th1) effector phenotype, marked by IFNγ secretion (109). Increased Th17 cells are seen in the islets of NOD mice and the pLN of T1D subjects (109–111). The role of Th17 cells in mediating islet inflammation, however, is ill-defined. Elevated local levels of IFNγ are believed to establish a feed-forward loop that drives islet pathology. Based on NOD mouse studies, IFNγ secreted by islet CD4+ (and CD8+) Teff results in local upregulation of chemotactic cues that induce additional T, B, and innate cells to migrate into the islets, as well as promote islet retention of these effectors (109, 112). IFNγ also activates islet resident APC and stromal cells to produce additional inflammatory mediators, such reactive oxygen species, which impair function and mediate β cell necrosis (107, 113, 114). Furthermore, IFNγ in the context of IL-1β and TNFα induces β cell apoptosis (113, 114).

Another proinflammatory cytokine thought to contribute to islet inflammation is IL-21 which is elevated in T1D patient serum (115). Notably, the murine IL-21 gene is located in the Idd3 locus and IL-21 receptor (R) deficiency prevents T1D in NOD mice (116). CD4+ T follicular helper cells, which are increased in the pLN of NOD mice, are the primary source of IL-21 (112, 117–119). IL-21 has a critical role in supporting B cell development and antibody production. B cells, serving as APC, are required for efficient β cell destruction in NOD mice and likely in human T1D (117, 118, 120, 121). IL-21 also enhances maintenance of CD8+ Teff by preventing exhaustion during chronic inflammation (122, 123). Interestingly, the pathogenicity of β cell-specific CD8+ T cells is dependent on IL-21R expression (124, 125).

Defects intrinsic to Teff are also thought to facilitate chronic islet inflammation. Variants of the CTLA4 gene are linked to T1D susceptibility in both NOD mice (Idd5.1) and human T1D (IDDM12) (33, 126). CTLA4 binds to the costimulatory molecules CD80 and CD86 expressed on APC, is a negative regulator of T cell activation and proliferation (34). Polymorphisms in the human CTLA4 gene region are associated with reduced mRNA levels and a decrease in expression of the soluble (s) CTLA-4 isoform (33, 34, 126). sCTLA-4 also negatively regulates TCR signaling (33, 34, 126). Reduced expression of CTLA-4 and sCTLA-4 is expected to facilitate expansion of β cell-specific T cells. This scenario is consistent with the exacerbated β cell autoimmunity seen in NOD mice expressing a diabetogenic TCR transgene and lacking CTLA-4 expression (127). Noteworthy is that both NOD-derived and human T1D Teff also exhibit reduced sensitivity to Foxp3+Treg-mediated suppression (128, 129).

In sum, the culmination of a variety of extrinsic and intrinsic factors enables Teff to expand, persist, and in turn amplify islet inflammation.

DEFECTS IN THE Foxp3+Treg POOL CONTRIBUTE TO T1D

In addition to Teff that are resistant to regulatory mechanisms that limit expansion and function, evidence indicates that the Foxp3+Treg pool is compromised in T1D (130, 131). Here, dysregulation of Foxp3+Treg homeostasis is thought to permit preferential differentiation and expansion of pathogenic β cell-specific Teff. Foxp3+Treg have an essential role in regulating immune homeostasis and reactivity to self (132–135). The lack of thymic development of Foxp3+Treg due to deficient expression or function of the Foxp3 transcription factor, results in systemic autoimmunity in both mice and humans. Foxp3+Treg mediate suppression of T cells and other immune effectors via multiple mechanisms including cell–contact dependent suppression, and secretion of anti-inflammatory cytokines and mediators such as IL-10, TGFβ1, and IL-35, and adenosine, respectively (136). Foxp3+Treg also function as an “IL-2 depot” to deprive Teff of IL-2 needed for expansion (136). The latter is mediated by constitutive expression of CD25, the α subunit of the IL-2R (136). Therefore, Foxp3+Treg, expressing the high affinity IL-2R, are able to out compete Teff for IL-2, which transiently express high affinity IL-2R.

IL-2 is essential for Foxp3+Treg homeostasis, expansion, and function (136). Unlike conventional T cells, Foxp3+Treg do not produce IL-2 due to FoxP3-mediated negative regulation of IL2 transcription. Therefore, Foxp3+Treg are dependent on T cells and DC as IL-2 sources (136). This dependency is thought to enable Foxp3+Treg to more readily sense and respond to ongoing inflammation. Accordingly, defects in the IL-2/IL-2R axis have been described in the NOD model and human T1D (137–142). In NOD mice, an IL2 variant located in Idd3 results in reduced levels of IL-2 expression by Teff, and impaired survival and function of islet resident Foxp3+Treg (130, 143). Increased levels of proinflammatory cytokines, such as IFNγ and IL-6 that down-regulate FoxP3 expression may also promote dedifferentiation of islet Foxp3+Treg into a Teff-like subsets (144, 145). These events lead to a progressive loss of islet Foxp3+Treg suppression, thereby “releasing the brakes” and favoring pathogenic Teff expansion.

The frequency of FOXP3+Treg found in blood is largely unaffected in T1D subjects (140, 141, 146–148). However, FOXP3+Treg from T1D subjects exhibit reduced suppressor function measured in vitro (128, 129). This aberrant activity is linked to T1D risk variants of IL2RA (CD25) and PTPN2, a phosphatase involved in IL-2R signaling (149). Notably, FOXP3+Treg expressing these variants display reduced IL-2R signaling that in turn correlates with limited suppressor activity (149, 150). Defects in IL-2R signaling have led to clinical studies testing whether low-dose IL-2 therapy enhances the FOXP3+Treg pool.
in T1D subjects (149, 151). This approach has been effective in preventing and/or reversing diabetes in NOD mice by increasing the number and function of islet Foxp3+Treg (149, 152). One key question not addressed is the specificity of FOXP3+Treg in T1D subjects. Reduced thymic development of β cell-specific influence islet inflammation. For instance, CXCL10 is produced by Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1898

AMPLIFYING THE PATHOGENIC EFFECTOR T CELL RESPONSE VIA NEOAUTOANTIGENS

Recent findings have demonstrated that the proinflammatory milieu of the islets promotes processing of “neoautoantigens” (153). Importantly, these neoautoantigens are only found in the periphery so that corresponding T cell clonotypes, not deleted in the thymus and possibly expressing high affinity TCR, can be recruited into the inflammatory response. Neoautoantigens are generated via posttranslational modifications (PTM), such as deamidation by tissue transglutaminase (tTG) (154). PTM can occur during APC antigen processing or directly in β cells (154). TGG-dependent deamidation of a proinsulin C-peptide for instance is detected in both human DC and islets under inflammatory conditions (154). Notably the resulting modified peptide is recognized by CD4+ T cells derived from T1D subjects. The MHC binding and in turn T cell stimulatory properties of peptides can also be enhanced by deamidation (155).

Neoautoantigens consisting of hybrid peptides have recently been identified. In NOD mice hybrid insulin peptides are generated via covalent crosslinking of a proinsulin C peptide with peptides derived from naturally occurring cleavage products produced in the β cell secretory granules (156). In addition to ongoing inflammation, PTM occurs via endoplasmic reticulum stress, which can be induced in β cells by the normal physiological demands associated with high levels of insulin secretion (157). Therefore, it is possible that β cell neoautoantigens in addition to amplifying inflammation, play a role in initiating the diabeticogenic response. Neoautoantigens are also generated at a transcriptional level. A mutation in the open reading frame of insulin mRNA generates a neoautoantigen that stimulates CD8+ T cells from T1D subjects causing β cells lysis in vitro (158). Alternative RNA splicing may be another mechanism leading to neoautoantigen expression, particularly since ~30% of genes in inflamed β cells undergo aberrant alternative splicing (159). In sum, β cell neoautoantigens serve as bona fide targets of pathogenic CD4+ and CD8+ T cells. The breadth of the peptidome of neoautoantigens produced and presented, and the properties of neoautoantigen-specific T cells, in terms of frequency, avidity/affinity, subset phenotype (e.g., pathogenic versus regulatory), and overall contribution to islet inflammation require further investigation.

β CELL-INTRINSIC PROPERTIES THAT REGULATE ISLET INFLAMMATION

Studies have demonstrated that intrinsic properties of β cells also influence islet inflammation. For instance, CXCL10 is produced by β cells although the role of this chemokine in disease is controversial (160). CXCL10 regulates migration of CXCR3 expressing Teff and Foxp3+Treg into the islets (97–99, 161). Overexpression of CXCL10 in β cells accelerates T1D progression, and antibody blockade of CXCL10 prevents Teff migration into the islets of NOD mice (97–99, 161). On the other hand, Cxcr3 deficiency accelerates T1D by reducing islet resident Foxp3+Treg (162, 163). Therefore, depending on the context, β cells may affect inflammatory and immunoregulatory events via CXCL10 production. The chemokine CCL2 is also secreted by β cells, and over-expression of ectopic CCL2 recruits tolerogenic CCR2-expressing DC and blocks T1D progression in NOD mice (164). Interestingly, NOD APC shows defective migration in response to CCL2, and human T1D patients have reduced serum levels of CCL2 (164–166). Additionally, β cells produce CXCL1 and CXCL2 that recruit CXCR2-expressing neutrophils to the islets, which contribute to stimulating β cell-specific T cell reactivity (167, 168). Overall, β cell produced chemotactic cues regulate the progression of the diabeticogenic response.

Along with chemokines, β cells secrete the cytokine IL-1β, which at low levels promotes β cell proliferation, and enhances production of CCL2, CXCL1, CXCL2, and insulin (169, 170). However, IL-1β also primes leukocyte effector-mediated inflammation, and as noted above, IL-1β in the context of TNFα and/or IFN-γ induces β cell apoptosis in vitro (113, 114). Notably, glucagon-secreting α cells also produce IL-1β, indicating that other islet resident endocrine cells may also contribute to local inflammation (171, 172). Islet inflammation also induces upregulation of MHC class I and II on β cells to further increase β cell immunogenicity (173). Interestingly, a subpopulation of β cells have been identified which under inflammatory conditions acquires resistance to immune-mediated destruction in NOD mice (174). The latter is associated with a more immature β cell phenotype coupled with reduced expression of autoantigens and upregulation of immunomodulatory molecules such as PD-L1, an inducer of T cell exhaustion. A similar phenotype is seen for human β cells (174). Therefore, β cells not only contribute to islet inflammation but also adapt under the inflammatory conditions in order to persist. A better understanding of the events regulating this dichotomy has important implications for the treatment of T1D patients via β cell replacement strategies for instance.

SUMMARY

Type 1 diabetes is complex involving genetic, epigenetic and environmental factors that influence adaptive and innate effector cell populations, which ultimately culminate in pathological, chronic islet inflammation (Figure 1). The heterogeneity associated with human T1D and in turn the nature of islet inflammation is expected to reflect the genotype of the individual, and type of environmental insult(s) encountered (20–22). These factors dictate which immune effectors are the key drivers of pathology, the pace of disease progression, and the degree of β cell dysregulation and/or death. We propose that the rapid and aggressive T1D seen early in life is marked by a broad β cell-specific TCR repertoire with increased avidity/affinity due to insufficient...
negative selection (57–59). This is coupled with β cell-specific T eff that are insensitive to peripheral tolerance inducing events, β cell-specific FOXP3+ Treg with impaired suppressor activity, and β cells which readily promote islet inflammation (128, 129, 147, 169, 170). Robust inflammation leads to increased β cell neoautoantigen production further amplifying the kinetics and overall inflammatory response (153, 154, 156, 158). Under these “ideal” conditions, early onset T1D develops. On the other hand, in individuals with only a partial complement of these key “disease components,” islet inflammation is less robust and the kinetics of T1D onset proportionately delayed. Defining the events driving early versus late(r) T1D onset is critical for a better understanding of how islet inflammation is regulated in humans. The latter is also important for developing rational and effective immunotherapies to prevent and/or treat T1D. Devising strategies to enhance thymic negative selection early in ontogeny for instance, would be expected to purge the diabetogenic TCR strategies to enhance thymic negative selection early in ontogeny for instance, would be expected to purge the diabetogenic TCR repertoire to prevent T1D. Indeed, approaches are currently expected to purge the diabetogenic TCR repertoire to prevent T1D. Indeed, approaches are currently expected to purge the diabetogenic TCR repertoire specific for self-tumor antigens (175–177). Altering the gut microbiome early in life may also prove to be an effective strategy to limit expansion of the anti-self-T cell repertoire and establish robust immunoregulation in the periphery. Administration of β cell neoautoantigens may augment the efficacy of antigen-based immunotherapies to block disease progression at later stages of T1D (157). Depending on the mode of administration, β cell neoautoantigens can be used to target the corresponding clonotypes by tolerizing pathogenic T eff and/or inducing/expanding FOXP3+ Treg. In view of the heterogeneity in the immunopathology of T1D, it is very likely these approaches and others currently being studied will need to be combined to effectively suppress the chronic islet inflammation and β cell autoimmunity long term.

AUTHOR CONTRIBUTIONS

MC, CJK, and RMT contributed to the preparation of the review article.

FUNDING

This work was supported by National Institutes of Health grants R01DK100256 and R01DK1035486 (RMT) and T32AI007273 (MC).
27. Noble JA, Erlich HA. Genetics of type 1 diabetes. *Cold Spring Harb Perspect Med* (2012) 2(1):article007732. doi:10.1101/cshperspect.a007732

28. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. *Nat Genet* (2015) 47(4):381–6. doi:10.1038/ng.3245

29. Singal DP, Blachman MA. Histocompatibility (HL-A) antigens, lymphocytoxic antibodies and tissue antibodies in patients with diabetes mellitus. *Diabetes* (1973) 22(6):429–32. doi:10.2337/diab.22.6.429

30. Nerup J, Platz P, Andersen OO, Christy M, Lyngey S, Poulsen JE, et al. HL-A antigens and diabetes mellitus. *Lancet* (1974) 2(7885):864–6. doi:10.1016/S0140-6736(74)91201-X

31. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. *Nat Genet* (2004) 36(4):337–8. doi:10.1038/ng1323

32. Smyth D, Cooper JD, Collins JE, Heward JM, Franklin JA, Howson JM, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. *Diabetes* (2004) 53(11):3020–3. doi:10.2337/diabetes.53.11.3020

33. Nisticò L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bossi E, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. *Belgian Diabetes Registry. Hum Mol Genet* (1996) 5(7):1075–80. doi:10.1093/hmg/5.7.1075

34. Ueda H, Howson JM, Espósito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmunity disease. *Nature* (2003) 423(6939):506–11. doi:10.1038/nature01621

35. Field LL, Larsen Z, Pociot F, Nerup J, Tobias R, Bonnevie-Nielsen V. Evidence for a locus (IDDM16) in the immunoglobulin heavy chain region on chromosome 14q23.2 producing susceptibility to type 1 diabetes. *Genes Immun* (2002) 3(6):338–44. doi:10.1038/sj.gene.6363857

36. Morahan G, Huang D, Ymer SI, Cancilla MR, Stephen K, Dabadghao P, et al. Oikarinen S, Tauriainen S, Hober D, Lucas B, Vazeou A, Sioofy-Khojine A, et al. Genetics of type 1 diabetes. *Nat Genet* et al. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. *Nat Genet* (2014) 56(5):1682–7. doi:10.1038/db13170

37. Krogsvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, et al. Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. *Diabetes* (2015) 64(5):1682–7. doi:10.2337/db14-1370

38. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. *Nat Rev Endocrinol* (2016) 12(3):154–67. doi:10.1038/nrendo.2015.218

39. Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. *Diabetes* (2008) 57(10):2555–62. doi:10.2337/db08-0331

40. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. *Nature* (2008) 455(7216):1109–13. doi:10.1038/nature07336

41. Markle JF, Frank DN, Mortin-Toth S, Robertson CE, Fezil AM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. *Science* (2013) 339(6213):1084–8. doi:10.1126/science.1234567

42. de Goffau MC, Luopajarvi K, Knip M, Ilenon J, Ruohutala T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. *Diabetes* (2013) 62(4):1238–44. doi:10.2337/db12-0526

43. Endesfelder D, Zu Castell W, Ardisone A, Davis-Richardson AG, Achenbach P, Hagen M, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. *Diabetes* (2014) 63(6):2006–14. doi:10.2337/db13-1676

44. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotyllainen T, Hamalainen AM, et al. The dynamics of the human infant gut microbiome during development and in progression toward type 1 diabetes. *Cell Host Microbe* (2015) 17(2):260–73. doi:10.1016/j.chom.2015.01.001

45. Takaba H, Takayanagi H. The mechanisms of T cell selection in the thymus. *Trends Immunol* (2017) 38(11):805–16. doi:10.1016/j.ti.2017.07.010

46. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). *Nat Rev Immunol* (2014) 14(6):377–91. doi:10.1038/nri3667

47. He Q, Morrill YM II, Spidale NA, Kroger CJ, Liu B, Sartor RB, et al. Thymic developmental autoreactive T cells in NOD mice is regulated in an age-dependent manner. *J Immunol* (2013) 191(12):5858–66. doi:10.4049/jimmunol.1302273

48. Kroger CJ, Wang B, Tisch R. Temporal increase in thymocyte negative selection parallels enhanced thymic SIRPalpha+ DC function. *Eur J Immunol* (2016) 46(10):2352–62. doi:10.1002/eji.20166354

49. Guerra-de-Arellano M, Martínic M, Benoist C, Mathis D. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. *J Exp Med* (2009) 206(6):1245–52. doi:10.1084/jem.20090300

50. Anderson MS, Su MA. AIRE expands: new roles in immune tolerance and beyond. *Nat Rev Immunol* (2016) 16(4):247–58. doi:10.1038/nri416.9

51. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. *Science* (2002) 298(5597):1395–401. doi:10.1126/science.1079598

52. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. *Nat Immunol* (2001) 2(1):1032–9. doi:10.1038/nij723

53. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates innate immunity and intestinal microbiota in the development of type 1 diabetes. *Diabetes* (2014) 63(2):655–62. doi:10.2337/db13-0620

54. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates innate immunity and intestinal microbiota in the development of type 1 diabetes. *Diabetes* (2014) 63(2):655–62. doi:10.2337/db13-0620

55. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates innate immunity and intestinal microbiota in the development of type 1 diabetes. *Diabetes* (2014) 63(2):655–62. doi:10.2337/db13-0620

56. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates innate immunity and intestinal microbiota in the development of type 1 diabetes. *Diabetes* (2014) 63(2):655–62. doi:10.2337/db13-0620
66. Mingueuena M, Jiang W, Feurer M, Mathis D, Benoist C. Thymic negative selection is functional in NOD mice. J Exp Med (2012) 209(3):623–37. doi:10.1084/jem.20112393
67. Zucchielli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity (2005) 23(2):385–96. doi:10.1016/j.immuni.2005.01.015
68. Yang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet (2005) 37(12):1317–9. doi:10.1038/ng1673
69. Abramson J, Husebye ES. Autoimmune regulator and self-tolerance – molecular and cellular clinical aspects. Immunity (2016) 271(1):127–40. doi:10.1111/imm.12419
70. Ramsey S, Winquist O, Puhakka L, Halonen M, Moro A, Kanpe O, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet (2002) 11(4):397–409. doi:10.1093/hmg/11.4.397
71. Zuklys S, Balcuniene A, Agarwala A, Faderl-Kan E, Palmer E, Holland GA. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J Immunol (2000) 165(4):1976–83. doi:10.4049/jimmunol.165.4.1976
72. Yang S, Fujikado N, Kolodka D, Benoist C, Mathis D. Immune tolerance. Science (2015) 348(6234):589–94. doi:10.1126/science.aaa7207
73. Arica R, Feferman T, Scott HS, Soroosh MC, Berrih-Aknin S, Fuchs S. The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun (2011) 36(1):16–24. doi:10.1016/j.jaut.2010.09.007
74. Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Iker LT, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thyimic dendritic cells and contributes to regulatory T cell development. J Exp Med (2011) 208(2):383–94. doi:10.1084/jem.20102327
75. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Diabetes (1997) 46(17):393–8. doi:10.2337/diabetes.46.12.2186
76. Finnish-German AC. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet (1997) 17(4):399–403. doi:10.1038/1297-399
77. Fornari TA, Donate PB, Macedo C, Marques MM, Magalhaes DA, Passos GA. Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1). Mol Cell Biochem (2010) 332(1):176–83. doi:10.1007/s11010-009-0166-z
78. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J Immunol (2007) 179(6):3158–63. doi:10.4049/jimmunol.179.6.3158
79. Skowron A, Ladell K, Barzynski JE, Dolton G, Matthews KK, Gostick E, et al. beta-cell-specific CD8+ T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes (2015) 64(3):916–25. doi:10.2337/db14-0332
80. Vigilietta V, Kent SC, Orban T, Haider DA. GAD65-reactive T cells are activated in patients with autoimmunity type 1a diabetes. J Clin Invest (2002) 109(7):895–903. doi:10.1172/JCI11141
81. Iaff S, TEE IT, Assil TF, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest (2004) 113(3):451–63. doi:10.1172/JCI1958
82. Luce S, Lemonnier B, Briand JP, Coste I, Lahlou N, Muller S, et al. Single insulin-specific CD4+ T cells show characteristic gene expression profiles in human type 1 diabetes. Diabetes (2011) 60(12):3289–99. doi:10.2337/db11-0270
83. Velthuis JH, Unger WW, Abreu JR, Dukerken G, Franken K, Peukman K, et al. Simultaneous detection of circulating autoantibody CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes (2010) 59(7):1271–30. doi:10.2337/db09-1486
84. Chen Z, Benoist C, Mathis D. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci U S A (2005) 102(14):4735–40. doi:10.1073/pnas.0507014102
85. Jiang W, Anderson MS, Bronson R, Mathis D, Benoist C. Modifier Loci condition autoimmunity provoked by Aire deficiency. J Exp Med (2005) 202(6):805–15. doi:10.1084/jem.20050693
86. Ferreira C, Singh Y, Furmanski AL, Wong FS, Garden OA, Dyson J. Non-obese diabetic mice select a low-diversity repertoire of natural regulatory T cells. Proc Natl Acad Sci U S A (2009) 106(20):8320–3. doi:10.1073/pnas.0808493106
87. St-Onge L, Wehr R, Gruss P. Pancreas development and diabetes. Curr Opin Genet Dev (1999) 9(3):295–300. doi:10.1016/S0959-437X(99)80044-6
88. Finegood DT, Scaglìs L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes (1994) 43(4):249–56. doi:10.2337/diabetes.43.3.249
89. Gagnonault M, Lu J, Lotton C, Lepault F. Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice. J Exp Med (2002) 196(3):369–77. doi:10.1084/jem.20011353
90. Turley S, Poiriot L, Hatton M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med (2003) 198(10):1527–37. doi:10.1084/jem.20030966
91. Rotondi M, Chiovato L, Romagnani S, Serio M, Romagnani P. Role of chemokines in endocrine autoimmune diseases. Endocr Rev (2007) 28(5):492–520. doi:10.1210/er.2006-0044
92. Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, Burchall A, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes (2012) 61(2):436–46. doi:10.2336/diabetes.11-0853
93. Rhode A, Pauza ME, Barral AM, Rodrigo E, Oldstone MB, von Herrath MG, et al. Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol (2005) 175(6):3516–24. doi:10.4049/jimmunol.175.6.3516
94. Yurkovetsky L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity (2013) 39(2):400–12. doi:10.1016/j.immuni.2013.08.013
95. Kawabe T, Jankovic D, Kawabe S, Huang Y, Lee PH, Yamane H, et al. Memory-phenotype CD4+ T cells spontaneously generated under steady-state conditions exert innate TH1-like effector function. Sci Immunol (2017) 2(12):eaam9304. doi:10.1126/sciimmunol.aam9304
96. Zhang X, Zhivaki D, Lo-Man R. Unique aspects of the peripheral innate immune system. Nat Rev Immunol (2017) 17(8):495–507. doi:10.1038/2017.54
97. Jameson SC, Lee YJ, Hogquist KA. Innate memory T cells. Adv Immunol (2015) 126:167–213. doi:10.1016/bs.ai.2014.12.001
98. Kipper WC, Troy A, Burghardt TT, Ramsey C, Lee YJ, Jiang HQ, et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol (2005) 174(6):3158–63. doi:10.4049/jimmunol.174.6.3158
105. Christianson SW, Shultz LD, Leiter EH. Adaptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD8+ and CD4+ T-cells from diabetic versus prediabetic NOD. NON-Thy-1a donors. *Diabetes* (1993) 42(1):44–55. doi:10.2337/ diab.42.1.44

106. Roep BO. The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. *Diabetologia* (2003) 46(3):305–21. doi:10.1007/s00125-003-1089-5

107. Pang S, Zhang L, Wang H, Yi Z, Li L, Gao L, et al. CD8(+) T-cells specific for beta cell antigens encounter their cognate antigens in the islets of NOD mice. *Eur J Immunol* (2009) 39(10):2716–24. doi:10.1002/eji.200939408

108. Mallone R, Brezart V, Boitard C. T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. *Clin Dev Immunol* (2011) 2011:513210. doi:10.1155/2011/513210

109. Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes. *Clin Exp Immunol* (2016) 183(1):16–29. doi:10.1111/cei.12672

110. Kuriya G, Uchida T, Akazawa S, Kobayashi M, Nakamura K, Satoh T, Yi JS, Du M, Zajac AJ. A vital role for interleukin-21 in the control of a CD4+ FOXP3+ regulatory T cells. *J Immunol* (2008) 181(10):7350–5. doi:10.4049/jimmunol.181.10.7350

111. D’Alise AM, Auyueung V, Feuerer M, Nishio J, Fontenot J, Benoist C, et al. The defect in T-cell regulation in NOD mice is an effect on the T-cell effector compartment. *Proc Natl Acad Sci U S A* (2008) 105(50):19857–62. doi:10.1073/pnas.0810731015

112. Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. *Immunity* (2008) 28(3):687–97. doi:10.1016/j.immuni.2008.03.016

113. Xufre C, Costa M, Roura-Mir C, Codina-Busquets E, Usero L, Pizarro E, et al. Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. *Int Immunol* (2013) 25(10):563–74. doi:10.1093/intimm/dxt020

114. Brunkow ME, Jeffery EW, Hjerrild KA, Paerke B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. *Nat Genet* (2001) 27(1):68–73. doi:10.1038/83784

115. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. *J Med Genet* (2002) 39(8):337–45. doi:10.1136/jmg.39.8.337

116. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. *Nat Immunol* (2003) 4(4):330–6. doi:10.1038/nri904

117. Collison LW, Chaturvedi V, Henderson AL, Giacomini PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. *Nat Immunol* (2010) 11(12):1093–101. doi:10.1038/ni.1952

118. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. *Nat Rev Immunol* (2008) 8(10):679–89. doi:10.1038/nri2343

119. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. *Nat Genet* (2007) 39(9):1074–82. doi:10.1038/ng2102

120. Maier LM, Anderson DE, Severson CA, Baecher-Allan C, Healy B, Liu DV, et al. Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. *J Immunol* (2008) 182(3):1541–7. doi:10.4049/jimmunol.182.3.1541

121. Giordano C, Panto F, Caruso C, Modica MA, Zambito AM, Sapienza N, et al. IL-21 production by CD4+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. *Diabetes* (2009) 58(4):781–90. doi:10.2334/diaab.09-0594

122. Sutherland AP, Joller N, Michaud M, Liu SM, Kuchroo VK, Grusby MJ. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. *J Immunol* (2013) 190(6):3977–84. doi:10.4049/jimmunol.1210730

123. Anjos S, Nguyen A, Onissi-Benkalha H, Tessier MC, Polychronakos C. A common autoimmune predisposing signal peptide variant of the cytopotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. *J Biol Chem* (2002) 277(48):46478–86. doi:10.1074/jbc.M206894200

124. D’Alise AM, Auyueung V, Feuerer M, Nishio J, Fontenot J, Benoist C, et al. Double deficiency in IL-17 and IFN-gamma signalling significantly suppresses the development of diabetes in the NOD mouse. *Diabetologia* (2013) 56(8):1773–80. doi:10.1007/s00125-013-2935-8

125. Yin JW, Jun HS. Autoimmune destruction of pancreatic beta cells. *J Immunol* (2009) 182(3):1541–7. doi:10.4049/jimmunol.0801731015

126. Anjos S, Nguyen A, Ounissi-Benkalha H, Tessier MC, Polychronakos C. A common autoimmune predisposing signal peptide variant of the cytopotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. *J Biol Chem* (2002) 277(48):46478–86. doi:10.1074/jbc.M206894200

127. Luhrer F, Chambers C, Allison JP, Benoist C, Mathis D. Pinpointing when T cell costimulator expression CTLA-4 must be engaged to dampen diabeticogenic T cells. *Proc Natl Acad Sci U S A* (2000) 97(22):12204–9. doi:10.1073/pnas.200043897

128. Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH. The effecter T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. *J Immunol* (2008) 181(10):7350–5. doi:10.4049/jimmunol.181.10.7350

129. Kenefeck R, Wang CJ, Kapadi T, Wardzinski L, Attridge K, Clough LE, et al. Double deficiency in IL-17 and IFN-gamma signalling significantly suppresses the development of diabetes in the NOD mouse. *Diabetologia* (2013) 56(8):1773–80. doi:10.1007/s00125-013-2935-8

130. D’Alise AM, Auyueung V, Feuerer M, Nishio J, Fontenot J, Benoist C, et al. IL-21R on T cells is critical for sustained functionality and control of NOD.Ig mu null mice. *Diabetes* (2003) 52(Suppl 2):S97–S107. doi:10.2334/dfvmlt2003-1089-5

131. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Regulatory T cells are critical in overcoming a checkpoint in T cell tolerance to islet beta cells is critical in overcoming a checkpoint in T cell tolerance to islet beta cells. *Diabetes* (2003) 52(Suppl 2):S97–S107. doi:10.2334/dfvmlt2003-1089-5

132. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. *Nat Genet* (2007) 39(9):1074–82. doi:10.1038/ng2102

133. Denny P, Lord CJ, Hill NJ, Goy JV, Levy ER, Podolin PL, et al. Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene. *Diabetes* (1997) 46(4):695–700. doi:10.2337/diab.46.4.695
144. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. *Nat Rev Immunol* (2017) 17(11):703–17. doi:10.1038/nri.2017.75

145. Hultkrantz A, Bluestone JA. Regulation of T cell: stability revisited. *Trends Immunol* (2011) 32(7):30–6. doi:10.1016/j.ti.2011.04.002

146. Lindley S, Dayan CM, Bishop A, Roep BO, Peckman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. *Diabetes* (2005) 54(1):92–9. doi:10.2337/diabetes.54.1.92

147. Ryba-Stanislawowska M, Rybarczyk-Kapturska K, Mysliwiec M, Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective regulatory T cells: stability revisited. *Diabetes* (2015) 64(12):3990–2. doi:10.2373/diabetes.15-0019

148. Yang JH, Cutler AJ, Downes K, Pekalski M, et al. CD45RA(-) FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. *Clin Exp Immunol* (2013) 173(2):207–16. doi:10.1111/cei.12116

149. Halme MA, Wasserfall CH, Atkinson MA, Brusko TM. Central role for interleukin-2 in type 1 diabetes. *Diabetes* (2012) 61(1):14–22. doi:10.2337/db11-1213

150. Garg G, Tyler JR, Yang JH, Cutler AJ, Downes K, Pekalski M, et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. *J Immunol* (2012) 188(9):4644–53. doi:10.4049/jimmunol.1100272

151. Fullerton A, Bensimhon G, Payan CA, Taqqueminet S, Bourron O, Nicolas N, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. *Lancet Diabetes Endocrinol* (2013) 1(4):295–305. doi:10.1016/S2213-8587(13)70113-X

152. Grinberg-Bleyer Y, Baeyens A, You S, Elbarg H, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. *J Exp Med* (2010) 207(9):1871–8. doi:10.1084/jem.20100209

153. Roep BO, Kracht MJ, van Lummel M, Zaldumbide A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. *Curr Opin Immunol* (2016) 43:67–73. doi:10.1016/j.coi.2016.09.007

154. McLaughlin RJ, de Haan A, Zaldumbide A, de Koning EJ, de Ru AH, van Veelen PA. Human islet and dendritic cells generate post-translational modified islet autoantigens. *Clin Exp Immunol* (2016) 185(2):133–40. doi:10.1111/cei.12775

155. van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. *Diabetes* (2014) 63(1):237–47. doi:10.2337/db12-1214

156. Delong T, Wiles TA, Baker RL, Bluealter JA. Regulation by T cell: stability revisited. *Trends Immunol* (2011) 32(7):30–6. doi:10.1016/j.ti.2011.04.002

157. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. *Diabetes* (2005) 54(1):92–9. doi:10.2337/diabetes.54.1.92

158. Ryba-Stanislawowska M, Rybarczyk-Kapturska K, Mysliwiec M, Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective regulatory T cells: stability revisited. *Diabetes* (2015) 64(12):3990–2. doi:10.2373/diabetes.15-0019

159. Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-\'\-\-van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Garg G, Tyler JR, Yang JH, Cutler AJ, Downes K, Pekalski M, et al. Regulatory T cells: stability revisited. *Diabetes* (2015) 64(12):3990–2. doi:10.2373/diabetes.15-0019

160. Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, et al. Aberrant accumulation of the diabetes autoantigen GAD65 in Golgi aad2791

161. Esteve M, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. *PLOS One* (2011) 6(4):e17822. doi:10.1371/journal.pone.0017822

162. Diana J, Lehuen A. Macrophages and beta-cells are responsible for CXC\(\text{+}\)mediated neutrophil infiltration of the pancreas during autoimmunity diabetes. *EMBO Mol Med* (2014) 6(8):1090–104. doi:10.15252/emmm.201404144

163. Citro A, Cantarelli E, Piemonti L. The CXCR1/2 pathway: involvement in diabetes pathophysiology and potential target for T1D interventions. *Curr Diab Rep* (2015) 15(10):68. doi:10.1007/s11892-015-0638-x

164. Kriegel MA, Rathinam C, Flavell RA. Pancreatic islet expression of C-(C motif) ligand 2 (CCL2) in sera of patients with type 1 diabetes and diabetic complications. *PLoS One* (2011) 6(4):e17822. doi:10.1371/journal.pone.0017822

165. Mysliweska J. Elevated levels of serum IL-12 and IL-18 are associated with financial relationships that are considered to be a conflict of interest. The authors have no personal, professional, or financial relationships that are considered to be a conflict of interest.