FINITE ELEMENT APPROXIMATIONS
FOR A LINEAR CAHN-HILLIARD-COOK EQUATION
DRIVEN BY THE SPACE DERIVATIVE OF A SPACE-TIME WHITE NOISE

GEORGIOS T. KOSSIORIS‡ AND GEORGIOS E. ZOURARIS‡

Abstract. We consider an initial- and Dirichlet boundary- value problem for a linear Cahn-Hilliard-
Cook equation, in one space dimension, forced by the space derivative of a space-time white noise. First,
we propose an approximate regularized stochastic parabolic problem discretizing the noise using linear
splines. Then fully-discrete approximations to the solution of the regularized problem are constructed
using, for the discretization in space, a Galerkin finite element method based on H^2-piecewise polyno-
mials, and, for time-stepping, the Backward Euler method. Finally, we derive strong a priori estimates
for the modeling error and for the numerical approximation error to the solution of the regularized
problem.

1. Introduction

Let $T > 0$, $D = (0,1)$ and (Ω, \mathcal{F}, P) be a complete probability space. Then we consider the following
model initial- and Dirichlet boundary- value problem for a linear Cahn-Hilliard-Cook equation: find a
stochastic function $u : [0,T] \times D \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\partial_t u + \partial_x^4 u + \mu \partial_x^2 u &= \partial_x \dot{W}(t,x) \quad \forall (t,x) \in (0,T) \times D, \\
\partial_x^{2m} u(t,\cdot) \big|_{\partial D} &= 0 \quad \forall t \in (0,T), \ m = 0,1, \\
u(0,x) &= 0 \quad \forall x \in D,
\end{aligned}
$$

(1.1)
a.s. in Ω, where \dot{W} denotes a space-time white noise on $[0,T] \times D$ (see, e.g., [23], [11]) and μ is a real
constant for which there exists $\kappa \in \mathbb{N}$ such that

$$
(\kappa - 1)^2 \pi^2 \leq \mu < \kappa^2 \pi^2,
$$

(1.2)
where \mathbb{N} is the set of all positive integers. The above stochastic partial differential equation combines two
independent characteristics. On the one hand it corresponds to the linearization of the Cahn-Hilliard-
Cook equation around a homogeneous initial state, in the spinodal region, that governs the dynamics
of spinodal decomposition in metal alloys; see e.g. [4], and references therein. On the other hand the
forcing noise is a derivative of a space-time white noise that physically arises in generalized Cahn-Hilliard
equations, which are equations of conservative type describing the evolution of an order parameter in
phase transitions (see [10]; cf. [12], [2], [19]).

The mild solution of the problem above (cf. [9]) is given by the formula

$$
u(t,x) = \int_0^t \int_D \Psi(t-s;x,y) dW(s,y),
$$

(1.3)
where

$$
\Psi(t;x,y) = -\sum_{k=1}^{\infty} e^{-\lambda_k^2 (\xi_k^2 - \mu) t} \varepsilon_k(x) \varepsilon_k^*(y) \quad \forall (t,x,y) \in (0,T] \times D \times D,
$$

(1.4)

1991 Mathematics Subject Classification. 65M60, 65M15, 65C20.

Key words and phrases. finite element method, space derivative of space-time white noise, Backward Euler time-stepping,
fully-discrete approximations, a priori error estimates.

‡Department of Mathematics, University of Crete, GR–714 09 Heraklion, Crete, Greece.
with \(\lambda_k := k \pi \) for \(k \in \mathbb{N} \), and \(\varepsilon_k(z) := \sqrt{2} \sin(\lambda_k z) \) for \(z \in \overline{D} \) and \(k \in \mathbb{N} \). Observe that \(\Psi(t; x, y) = -\partial_x G(t; x, y) \), where \(G(t; x, y) = \sum_{k=1}^{\infty} e^{-\lambda_k^2 (x - y)^2} \varepsilon_k(x) \varepsilon_k(y) \) for all \((t, x, y) \in (0, T) \times \overline{D} \times \overline{D} \), is the space-time Green kernel of the corresponding deterministic parabolic problem: find a deterministic function \(w : [0, T] \times \overline{D} \rightarrow \mathbb{R} \) such that

\[
\begin{align*}
\partial_t w + \partial_x^2 w + \mu \partial_x^2 w &= 0 \quad \forall (t, x) \in (0, T) \times D, \\
\partial_x^2 w(t, \cdot) \big|_{\partial D} &= 0 \quad \forall t \in (0, T], \quad m = 0, 1, \\
w(0, x) &= w_0(x) \quad \forall x \in D.
\end{align*}
\]

(1.5)

The goal of the paper at hand is to propose and analyze a methodology of constructing finite element approximations to \(u \).

1.1. The regularized problem. Our first step is to construct below an approximate to (1.1) regularized problem getting inspiration from the work [1] for the stochastic heat equation with additive space-time white noise (cf. [13, 15]).

Let \(N_* \in \mathbb{N} \), \(\Delta t := \frac{T}{N}, J_\ast \in \mathbb{N} \) and \(\Delta x := \frac{x}{J} \). Then, consider a partition of the interval \([0, T]\) with nodes \((t_n)_{n=0}^{N} = \frac{n \Delta t}{N} \) and a partition of \(\overline{D} \) with nodes \((x_j)_{j=0}^{J} \) given by \(t_n := n \Delta t \) for \(n = 0, \ldots, N_* \) and \(x_j := j \Delta x \) for \(j = 0, \ldots, J_* \). Also, set \(T_n := (t_{n-1}, t_n) \) for \(n = 1, \ldots, N_* \), and \(D_j := (x_{j-1}, x_j) \) for \(j = 1, \ldots, J_* \).

First, let \(S_* \) be the space of functions which are continuous on \(\overline{D} \) and piecewise linear over the above specified partition of \(D \), i.e.,

\[
S_* := \left\{ s \in C(\overline{D}; \mathbb{R}) : s \big|_{D_j} \in \mathbb{P}^1(D_j) \quad \text{for} \quad j = 1, \ldots, J_* \right\} \subset H^1(D).
\]

It is well-known that \(\text{dim}(S_*) = J_* + 1 \) and that the functions \((\psi_i)_{i=1}^{J_*+1} \subset S_* \) defined by:

\[
\psi_1(x) := \frac{1}{\Delta x} (x_1 - x)^+, \quad \psi_{i+1}(x) := \frac{1}{\Delta x} (x - x_{i-1})^+, \\
\psi_i(x) := \frac{1}{\Delta x} \left[(x - x_{i-2}) \chi_{e_{i-2},e_{i-1}} + (x - x_i) \chi_{e_{i-1},e_i} \right], \quad i = 2, \ldots, J_*
\]

consist the well-known hat functions basis of \(S_* \), where, for any \(A \subset \mathbb{R} \), by \(\chi_A \) we denote the indicator function of \(A \). Next, consider the fourth-order linear stochastic parabolic problem:

\[
\begin{align*}
\partial_t \tilde{u} + \partial_x^4 \tilde{u} + \mu \partial_x^2 \tilde{u} &= \partial_x \tilde{W} \quad \text{in} \quad (0, T] \times D, \\
\partial_x^2 \tilde{u}(t, \cdot) \big|_{\partial D} &= 0 \quad \forall t \in (0, T], \quad m = 0, 1, \\
\tilde{u}(0, x) &= 0 \quad \forall x \in D,
\end{align*}
\]

(1.6)
a.e. in \(\Omega \), where:

\[
\tilde{W}(t, x) := \frac{1}{\Delta x} \sum_{n=1}^{N_*} \sum_{i=1}^{J_*+1} \chi_{T_n}(t) \left[\sum_{\ell=1}^{J_*+1} \left(\sum_{m=1}^{J_*+1} G_{\ell,m}^{-1} R_{n,m} \right) \psi_\ell(x) \right], \quad \forall (t, x) \in [0, T] \times \overline{D},
\]

\(G \) is a real, \((J_*+1) \times (J_*+1)\), symmetric and positive definite matrix with

\[
G_{i,j} := (\psi_j, \psi_i)_{0,D}, \quad i, j = 1, \ldots, J_* + 1,
\]

and

\[
R_{n,i} := \int_{T_n} \int_D \psi_i(x) \, dW(t,x), \quad i = 1, \ldots, J_* + 1, \quad n = 1, \ldots, N_*
\]

The solution of the problem (1.6), has the integral representation (see, e.g., [17])

\[
\tilde{u}(x, t) = \int_{0}^{t} \int_{D} G(t - s; x, y) \partial_y \tilde{W}(s, y) \, ds \, dy \\
= \int_{0}^{t} \int_{D} \Psi(t - s; x, y) \tilde{W}(s, y) \, ds \, dy,
\]

(1.7)
Remark 1.1. A simple computation verifies that G is a tridiagonal matrix with $G_{1,1} = G_{J+1,J+1} = \frac{\Delta x}{3}$, $G_{i,i} = \frac{2\Delta x}{3}$ for $i = 2, \ldots, J$, and $G_{i,i+1} = \frac{-\Delta x}{6}$ for $i = 1, \ldots, J+1$. Since G is symmetric we have in addition that $G_{i-1,i} = \frac{-\Delta x}{6}$ for $i = 2, \ldots, J+1$.

Remark 1.2. Let $\mathcal{I} = \{(n,i) : n = 1, \ldots, N, i = 1, \ldots, J+1\}$. Using the properties of the stochastic integral (see, e.g., [23]), we conclude that $R_{n,i} \sim N(0, \Delta t G_{i,i})$ for all $(n,i) \in \mathcal{I}$. Also, we observe that $\mathbb{E}[R_{n,i} R_{n',j}] = 0$ for $(n,i), (n',j) \in \mathcal{I}$ with $n \neq n'$, and hence they are independent since they are Gaussian. In addition, we have that $\mathbb{E}[R_{n,i} R_{n',j}] = \Delta t G_{i,j}$ for $(n,i), (n,j) \in \mathcal{I}$. Thus, for a given n the random variables $(R_{n,i})_{i=1}^{J+1}$ are Gaussian and correlated, with correlation matrix $\Delta t G$.

1.2. The numerical method. Our second step is to construct finite element approximations of the solution \hat{u} to the regularized problem.

Let $M \in \mathbb{N}$, $\Delta t := T/M$, $\tau_m := m \Delta t$ for $m = 0, \ldots, M$, and $\Delta m := (\tau_{m-1}, \tau_m)$ for $m = 1, \ldots, M$. Also, let $r \in \{2,3\}$, and $M_h^r \subset H^2(D) \cap H^1_0(D)$ be a finite element space consisting of functions which are piecewise polynomials of degree at most r over a partition of D in intervals with maximum mesh-length h. Then, computable fully-discrete approximations of \hat{u} are constructed by using the Backward Euler finite element method, which first sets

$$
\hat{U}_h^0 := 0
$$

and then, for $m = 1, \ldots, M$, finds $\hat{U}_h^m \in M_h^r$ such that

$$
(\hat{U}_h^m - \hat{U}_h^{m-1}, \chi)_{0,D} + \Delta t \left[\left(\left(\hat{U}_h^m \right)' \hat{U}_h^m, \chi \right)_{0,D} + \mu \left(\left(\hat{U}_h^m \right)', \chi \right)_{0,D} \right] = \int_{\Delta m} \left(\partial_x \hat{W}, \chi \right)_{0,D} d\tau
$$

for all $\chi \in M_h^r$, where $(\cdot, \cdot)_{0,D}$ is the usual $L^2(D)$-inner product.

1.3. An overview of the paper and related references. Our analysis first focus on the estimation of the modeling error, i.e. the difference $u - \hat{u}$, in terms of the discretization parameters Δt and Δx. Indeed, working with the integral representation of u and \hat{u}, we obtain (see Theorem 3.1)

$$
\max_{t \in [0,T]} \left\{ \int_D \left| u(t,x) - \hat{u}(t,x) \right|^2 dx \right\}^{\frac{1}{2}} \leq C_{me} \left(\epsilon^{-\frac{1}{2}} \Delta x^{\frac{1}{2} - \epsilon_1} + \Delta t^{\frac{1}{2} - \epsilon_2} \right), \quad \forall \epsilon \in (0, \frac{1}{2}],
$$

where C_{me} is a positive constant that is independent of Δx, Δt and ϵ. Next target in our analysis, is to provide the fully discrete approximations of \hat{u} defined in Section 1.2 with a convergence result, which is achieved by proving the following strong error estimate (see Theorem 5.3)

$$
\max_{0 \leq m \leq M} \left\{ \int_D \left(\int_D \left| \hat{U}_h^m(x) - \hat{u}(\tau_m,x) \right|^2 dx \right) d\tau \right\}^{\frac{1}{2}} \leq C_{ne} \left(\epsilon_1^{-\frac{1}{2}} \Delta t^{-\epsilon_1} + \epsilon_2^{-\frac{1}{2}} \Delta x^{-\epsilon_2} \right),
$$

for all $\epsilon_1 \in (0, \frac{1}{8}]$ and $\epsilon_2 \in (0, \nu(r))$ with $\nu(2) = \frac{1}{3}$ and $\nu(3) = \frac{1}{2}$, where C_{ne} is a positive constant independent of ϵ_1, ϵ_2, Δt, h, Δx and Δt. To get the error estimate (1.1), we use as an auxilliary tool the Backward-Euler time-discrete approximations of \hat{u} which are defined in Section 4. Thus, we can see the numerical approximation error as a sum of two types of error: the time-discretization error and the space-discretization error. The time-discretization error is the approximation error of the Backward Euler time-discrete approximations which is estimated in Theorem 1.2 while the space-discretization error is the error of approximating the Backward Euler time-discrete approximations by the Backward Euler finite element approximations, which is estimated in Proposition 5.2.

Let us expose some related bibliography. The work [18] contains a general convergence analysis for a class of time-discrete approximations to the solution of stochastic parabolic problems, the assumptions of which may cover problem (1.1). However, the approach we adopt here is different since first we introduce a space-time discretization of the noise and then we analyze time-discrete approximations to the solution. We would like to note that we are not aware of another work providing a rigorous convergence analysis for fully discrete finite element approximations to a stochastic parabolic equation forced by the space derivative of a space-time white noise. We refer the reader to our previous work [14], [15] and to [16] for the construction and the convergence analysis of Backward Euler finite element approximations of the solution to the problem (1.1) when $\mu = 0$ and an additive space-time white noise \hat{W} is forced instead of
\[\frac{\partial}{\partial t} \hat{W}. \] Finally, we refer the reader to [8], [1], [13], [3], [22] and [24] for the analysis of the finite element method for second order stochastic parabolic problems forced by an additive space-time white noise.

We close the section by an overview of the paper. Section 2 introduces notation, and recalls or proves several results often used in the paper. Section 3 is dedicated to the estimation of the modeling error. Section 4 defines the Backward Euler time-discrete approximations of \(\hat{u} \) and analyzes its convergence. Section 5 contains the error analysis for the Backward Euler fully-discrete approximations of \(\hat{u} \).

2. Notation and Preliminaries

2.1. Function spaces and operators.

Let \(I \subset \mathbb{R} \) be a bounded interval. We denote by \(L^2(I) \) the space of the Lebesgue measurable functions which are square integrable on \(I \) with respect to Lebesgue’s measure \(dx \), provided with the standard norm \(\| g \|_{0,I} := \left(\int_I |g(x)|^2 \, dx \right)^{1/2} \) for \(g \in L^2(I) \). The standard inner product in \(L^2(I) \) that produces the norm \(\| \cdot \|_{0,I} \) is written as \((\cdot, \cdot)_{0,I} \), i.e., \((g_1, g_2)_{0,I} := \int_I g_1(x) g_2(x) \, dx \) for \(g_1, g_2 \in L^2(I) \). Let \(\mathbb{N}_0 \) be the set of the nonnegative integers. For \(s \in \mathbb{N}_0 \), \(H^s(I) \) will be the Sobolev space of functions having generalized derivatives up to order \(s \) in the space \(L^2(I) \), and \((\cdot, \cdot)_{s,I} \) its usual norm, i.e. \(\| g \|_{s,I} := \left(\sum_{\ell=0}^{s} \| \partial^{\ell} g \|_{0,I}^2 \right)^{1/2} \) for \(g \in H^s(I) \). Also, by \(H_0^1(I) \) we denote the subspace of \(H^1(I) \) consisting of functions which vanish at the endpoints of \(I \) in the sense of trace. We note that in \(H_0^1(I) \) the, well-known, Poincaré-Friedrich inequality holds, i.e., there exists a nonegative constant \(C_{PF} \) such that

\[
\| g \|_{0,I} \leq C_{PF} \| \partial g \|_{0,I} \quad \forall g \in H_0^1(I).
\]

The sequence of pairs \(((\lambda_k^2, \varepsilon_k))_{k=1}^{\infty} \) is a solution to the eigenvalue/eigenfunction problem: find nonzero \(\varphi \in H^2(D) \cap H_0^1(D) \) and \(\sigma \in \mathbb{R} \) such that \(-\partial^2 \varphi = \sigma \varphi \) in \(D \). Since \((\varepsilon_k)_{k=1}^{\infty} \) is a complete \((\cdot, \cdot)_{0,D}-\)orthonormal system in \(L^2(D) \), for \(s \in \mathbb{R} \), a subspace \(V^s(D) \) of \(L^2(D) \) is defined by

\[
V^s(D) := \left\{ v \in L^2(D) : \sum_{k=1}^{\infty} \lambda_k^2 (v, \varphi_k)_{0,D}^2 < \infty \right\}
\]

which is provided with the norm \(\| v \|_{V^s} := \left(\sum_{k=1}^{\infty} \lambda_k^2 (v, \varphi_k)_{0,D}^2 \right)^{1/2} \) \(\forall v \in V^s(D) \). For \(s \geq 0 \), the pair \((V^s(D), \| \cdot \|_{V^s})\) is a complete subspace of \(L^2(D) \) and we set \((\hat{V}^s(D), \| \cdot \|_{\hat{V}^s}) := (V^s(D), \| \cdot \|_{V^s})\). For \(s < 0 \), we define \((\hat{V}^s(D), \| \cdot \|_{\hat{V}^s})\) as the completion of \((V^s(D), \| \cdot \|_{V^s})\), or, equivalently, as the dual of \((\hat{V}^s(D), \| \cdot \|_{\hat{V}^s})\). Let \(m \in \mathbb{N}_0 \). It is well-known (see [21]) that

\[
\hat{H}^m(D) = \left\{ v \in H^m(D) : \partial^2 v \big|_{\partial D} = 0 \quad \text{if} \quad 0 \leq i < \frac{m}{2} \right\}
\]

and there exist positive constants \(C_{m,a} \) and \(C_{m,b} \) such that

\[
C_{m,a} \| v \|_{m,a} \leq \| v \|_{H^m} \leq C_{m,b} \| v \|_{m,b}, \quad \forall v \in \hat{H}^m(D).
\]

Also, we define on \(L^2(D) \) the negative norm \(\| \cdot \|_{a,D} \) by

\[
\| v \|_{-m,D} := \sup \left\{ \frac{(v, \varphi)_{0,D}}{\| \varphi \|_{m,D}} : \varphi \in \hat{H}^m(D) \quad \text{and} \quad \varphi \neq 0 \right\}, \quad \forall v \in L^2(D),
\]

for which, using (2.3), it is easy to conclude that there exists a constant \(C_{-m} > 0 \) such that

\[
\| v \|_{-m,D} \leq C_{-m} \| v \|_{H^{-m}}, \quad \forall v \in L^2(D).
\]

Let \(L_2 = (L^2(D), (\cdot, \cdot)_{0,D}) \) and \(L(L_2) \) be the space of linear, bounded operators from \(L_2 \) to \(L_2 \). We say that, an operator \(\Gamma \in L(L_2) \) is Hilbert-Schmidt, when \(\| \Gamma \|_{HS} := \left(\sum_{k=1}^{\infty} \| \Gamma (\varepsilon_k) \|_{0,D}^2 \right)^{1/2} < +\infty \), where \(\| \Gamma \|_{HS} \) is the so called Hilbert-Schmidt norm of \(\Gamma \). We note that the quantity \(\| \Gamma \|_{HS} \) does not change when we replace \((\varepsilon_k)_{k=1}^{\infty} \) by another complete orthonormal system of \(L_2 \), as it is the sequence \((\varphi_k)_{k=0}^{\infty} \) with \(\varphi_0(z) := 1 \) and \(\varphi_k(x) := \sqrt{2} \cos(k \pi z) \) for \(k \in \mathbb{N} \) and \(z \in \mathbb{T} \). It is well known (see, e.g., [7]) that an operator \(\Gamma \in L(L_2) \) is Hilbert-Schmidt iff there exists a measurable function \(g : D \times D \to \mathbb{R} \) such that \((\Gamma(v))(\cdot) = \int_D g(\cdot, y) v(y) \, dy \) for \(v \in L^2(D) \), and then, it holds that

\[
\| \Gamma \|_{HS} = \left(\int_D \int_D g^2(x, y) \, dxdy \right)^{1/4}.
\]
Let $\mathcal{L}_{\text{hs}}(\mathbb{L}_2)$ be the set of Hilbert Schmidt operators of $\mathcal{L}(\mathbb{L}^2)$ and $\Phi : [0, T] \rightarrow \mathcal{L}_{\text{hs}}(\mathbb{L}_2)$. Also, for a random variable X, let $E[X]$ be its expected value, i.e., $E[X] := \int_\Omega X dP$. Then, the Itô isometry property for stochastic integrals, which we will use often in the paper, reads

$$
(2.6) \quad E\left[\left\| \int_0^T \Phi(t) dW \right\|_{\mathbf{H}_D}^2\right] = \int_0^T \|\Phi(t)\|_{\mathbf{H}_D}^2 dt.
$$

Let $\hat{\Pi} : L^2((0, T) \times D) \rightarrow L^2((0, T) \times D)$ be a projection operator defined by

$$
(2.7) \quad \hat{\Pi} g(t, x) := \frac{1}{N^4} \sum_{n=1}^N \sum_{i=1}^{J_n-1} \sum_{\ell=1}^{J_{\ell+1}} G_{i,\ell}^{-1} \int_{T_n \times D} g(s, y) \psi_{\ell}(y) dsdy \psi_i(x), \quad \forall \ (t, x) \in T_n \times D,
$$

for $n = 1, \ldots, N_*$ and for $g \in L^2((0, T) \times D)$, for which holds that

$$
(2.8) \quad \left(\int_0^T \int_D (\hat{\Pi} g)^2 dx dt \right)^{\frac{1}{2}} \leq \left(\int_0^T \int_D g^2 dx dt \right)^{\frac{1}{2}}, \quad \forall \ g \in L^2((0, T) \times D).
$$

Now, in the lemma below, we relate the stochastic integral of the projection $\hat{\Pi}$ of a deterministic function to its space-time L^2-inner product with the discrete space-time white noise kernel \hat{W} defined in Section 1.1 (cf. Lemma 2.1 in [14]).

Lemma 2.1. For $g \in L^2((0, T) \times D)$, it holds that

$$
(2.9) \quad \int_0^T \int_D \hat{\Pi} g(t, x) dW(t, x) = \int_0^T \int_D \hat{W}(s, y) g(s, y) dsdy.
$$

Proof. To obtain (2.9) we work, using (2.7) and the properties of the stochastic integral, as follows:

$$
\begin{align*}
\int_0^T \int_D \hat{\Pi} g(t, x) dW(t, x) & = \int_0^T \int_D \left(\hat{\Pi} g \right)^2 dW(t, x) \\
& = \frac{1}{N^4} \sum_{n=1}^N \sum_{i=1}^{J_n-1} \sum_{\ell=1}^{J_{\ell+1}} G_{i,\ell}^{-1} \int_{T_n \times D} \left(\sum_{i=1}^{J_n-1} \sum_{\ell=1}^{J_{\ell+1}} G_{i,\ell}^{-1} \psi_i(x) \psi_{\ell}(y) \right) dsdy \\
& = \frac{1}{N^4} \sum_{n=1}^N \int_{T_n \times D} \hat{\Pi} g(s, y) \left(\sum_{i=1}^{J_n-1} \sum_{\ell=1}^{J_{\ell+1}} G_{i,\ell}^{-1} \psi_i(x) \psi_{\ell}(y) \right) dsdy \\
& = \int_0^T \int_D \hat{W}(s, y) g(s, y) dsdy.
\end{align*}
$$

We close this section by observing that: if $c_* > 0$, then

$$
(2.10) \quad \sum_{k=1}^{\infty} \lambda_k^{-1} (1+c_* \epsilon) \leq \left(\frac{1+2c_*}{c_* \epsilon^2} \right) \frac{1}{\epsilon}, \quad \forall \epsilon \in (0, 2],
$$

and if $(\mathcal{H}, (\cdot, \cdot)_\mathcal{H})$ is a real inner product space, then

$$
(2.11) \quad (g - v, g)_\mathcal{H} \geq \frac{1}{2} \left[(g, g)_\mathcal{H} - (v, v)_\mathcal{H} \right], \quad \forall \ g, v \in \mathcal{H}.
$$

2.2. Linear elliptic and parabolic operators. Let us define the elliptic differential operators $\Lambda_B, \tilde{\Lambda}_B : \dot{\mathbf{H}}^4(D) \rightarrow L^2(D)$ by $\Lambda_B v := \partial^4 v + \mu \partial^2 v$ and $\tilde{\Lambda}_B v := \Lambda_B v + \mu^2 v$ for $v \in \dot{\mathbf{H}}^4(D)$, and consider the corresponding Dirichlet fourth-order two-point boundary value problems: given $f \in L^2(D)$ find $v_B, \tilde{v}_B \in \dot{\mathbf{H}}^4(D)$ such that

$$
(2.12) \quad \Lambda_B v_B = f \quad \text{in} \ D
$$

and

$$
(2.13) \quad \tilde{\Lambda}_B \tilde{v}_B = f \quad \text{in} \ D.
$$
Assumption (2.12) yields that when \(\kappa = 1 \) or \(\kappa \geq 2 \) and \(\mu \neq \lambda_{s-1}^2 \), the operator \(\Lambda_B \) is invertible and thus the problem (2.13) is well-posed. However, the problem (2.13) is always well-posed. Letting \(T_B, \tilde{T}_B : L^2(D) \to \hat{H}^2(D) \) be the solution operator of (2.12) and (2.13), respectively, i.e. \(T_B f := \Lambda_B^{-1} f = v_B \) and \(\tilde{T}_B f := \tilde{\Lambda}_B^{-1} f = \tilde{v}_B \), it is easy to verify that

\[
T_B f = \sum_{k=1}^{\infty} \frac{(\varepsilon_k f)_{m,r}}{\lambda_k^2(\lambda_k^2 - \mu)} \cdot \varepsilon_k \quad \text{and} \quad \tilde{T}_B f = \sum_{k=1}^{\infty} \frac{(\varepsilon_k f)_{m,r}}{\lambda_k^2(\lambda_k^2 - \mu) + \mu^2} \cdot \varepsilon_k, \quad \forall f \in L^2(D),
\]

and

\[
\|T_B f\|_{m,D} + \|\tilde{T}_B f\|_{m,D} \leq C_{r,m} \|f\|_{m-4,D}, \quad \forall f \in H^{m+4,m-4}(D), \quad \forall m \in \mathbb{N}_0,
\]

where \(C_{r,m} \) is a positive constant which depends on \(f \) but depends on the \(D \) and \(m \). Observing that

\[
(\tilde{T}_B v_1, v_2)_{0,D} = (v_1, \tilde{T}_B v_2)_{0,D}, \quad \forall v_1, v_2 \in L^2(D),
\]

and in view (2.14), the map \(\tilde{\gamma}_B : L^2(D) \times L^2(D) \to \mathbb{R} \) defined by

\[
\tilde{\gamma}_B(v,w) = (\tilde{T}_B v, w)_{0,D} \quad \forall v, w \in L^2(D),
\]

is an inner product on \(L^2(D) \).

Let \((S(t)w_0)_{t \in [0, T]} \) be the standard semigroup notation for the solution \(w \) of (1.3). Then, the following a priori bounds hold (see Appendix A): for \(t \in \mathbb{N}_0 \), \(\beta \geq 0 \) and \(p \geq 0 \), there exists a constant \(C_{\beta,\ell,p,\mu_T} > 0 \) such that:

\[
\int_t^{t_b} (\tau - t_a)^{\beta} \|\partial_t^i S(\tau)w_0\|^2_{H^p} d\tau \leq C_{\beta,\ell,p,\mu_T} \|w_0\|^2_{H^{p+4\ell-2\beta-2}} \quad \forall w_0 \in H^{p+4\ell-2\beta}(D) \quad \text{and} \quad t_a, t_b \in [0, T] \quad \text{with} \quad t_b > t_a.
\]

2.3. Discrete spaces and operators. For \(r \in \{2, 3\} \), let \(M_h^r \subset H^1_0(D) \cap H^r(D) \) be a finite element space consisting of functions which are piecewise polynomials of degree at most \(r \) over a partition of \(D \) in intervals with maximum mesh-length \(h \). It is well-known (cf., e.g., [5]) that the following approximation property holds:

\[
\inf_{\chi \in M_h^r} \|v - \chi\|_{2,D} \leq C_{FM,r} h^{s-1}\|v\|_{s+1,D}, \quad \forall v \in H^{s+1}(D) \cap H^1(D), \quad \forall s \in \{2, 3\},
\]

where \(C_{FM,r} \) is a positive constant that depends on \(r \) and is independent of \(h \) and \(v \). Then, we define the discrete elliptic operators \(\Lambda_{B,h}, \tilde{\Lambda}_{B,h} : M_h^r \to M_h^r \) by

\[
(\Lambda_{B,h}^\varphi, \chi)_{0,D} := (\partial^2 \varphi, \partial^2 \chi)_{0,D} + \mu (\partial^2 \varphi, \chi)_{0,D}, \quad \forall \varphi, \chi \in M_h^r,
\]

and

\[
\tilde{\Lambda}_{B,h}^\varphi := \Lambda_{B,h}^\varphi + \mu^2 \varphi, \quad \forall \varphi \in M_h^r.
\]

Also, let \(P_h : L^2(D) \to M_h^r \) be the usual \(L^2(D) \)-projection operator onto \(M_h^r \) for which it holds that

\[
(P_h f, \chi)_{0,D} = (f, \chi)_{0,D}, \quad \forall \chi \in M_h^r, \quad \forall f \in L^2(D),
\]

A finite element approximation \(\tilde{v}_{B,h} \in M_h^r \) of the solution \(\tilde{v}_B \) of (2.13) is defined by the requirement

\[
\tilde{\Lambda}_{B,h} \tilde{v}_{B,h} = P_h f,
\]

where the operator \(\tilde{\Lambda}_{B,h} \) is invertible since

\[
(\tilde{\Lambda}_{B,h} \chi, \chi)_{0,D} \geq \frac{r^2}{2} \left(\|\partial^2 \chi\|^2_{0,D} + \mu^2 \|\chi\|^2_{0,D} \right), \quad \forall \chi \in M_h^r.
\]

Thus, we denote by \(\tilde{T}_{B,h} : L^2(D) \to M_h^r \) the solution operator of (2.20), i.e.

\[
\tilde{T}_{B,h} f := \tilde{v}_{B,h} = \tilde{\Lambda}_{B,h}^{-1} P_h f, \quad \forall f \in L^2(D).
\]

Next, we derive an \(L^2(D) \) error estimate for the finite element method (2.20).
Proposition 2.1. Let \(r \in \{2, 3\} \). Then we have

\[
\| \widetilde{T}_B f - \widetilde{T}_{B,h} f \|_{0,D} \leq C \left\{ \begin{array}{ll}
h^4 \| f \|_{0,D}, & r = 3, \\
h^3 \| f \|_{-1,D}, & r = 3, \\
h^2 \| f \|_{-1,D}, & r = 2,
\end{array} \right.
\tag{2.22}
\]

where \(C \) is a positive constant independent of \(h \) and \(f \).

Proof. Let \(f \in L^2(D) \), \(e = \widetilde{T}_B f - \widetilde{T}_{B,h} f \) and \(\widetilde{v} = \widetilde{T}_B e \). To simplify the notation we define \(B : H^2(D) \times H^2(D) \rightarrow \mathbb{R} \) by \(B(v,w) := \langle \partial^2 v, \partial^2 w \rangle_{o,D} + \mu (\partial^2 v, w)_{o,D} + \mu^2 (v, w)_{o,D} \) for \(v, w \in H^2(D) \). It is easily seen that

\[
B(v,w) \leq \sqrt{2} (1 + \mu) \left(\| \partial^2 v \|_{0,D}^2 + \mu^2 \| v \|_{0,D}^2 \right)^{\frac{1}{2}} \| w \|_{2,D} \quad \forall v, w \in H^2(D),
\tag{2.23}
\]

Later in the proof we shall use the symbol \(C \) for a generic constant that is independent of \(h \) and \(f \), and may changes value from one line to the other.

First, we observe that \(\| e \|_{0,D}^2 = B(e, \widetilde{v}) \). Then, we use the Galerkin orthogonality to get

\[
\| e \|_{0,D}^2 = B(e, \widetilde{v} - \chi), \quad \forall \chi \in M^r_h,
\]

which, along with (2.23), leads to

\[
\| e \|_{0,D}^2 \leq C \left(\| \partial^2 e \|_{0,D}^2 + \mu^2 \| e \|_{0,D}^2 \right)^{\frac{1}{2}} \inf_{\chi \in M^r_h} \| \widetilde{v} - \chi \|_{2,D}.
\tag{2.24}
\]

Using again (2.23) and the Galerkin orthogonality, we obtain

\[
\| \partial^2 e \|_{0,D}^2 + \mu^2 \| e \|_{0,D}^2 \leq 2 B(e, e)
\leq 2 B(e, \widetilde{T}_B f - \chi)
\leq C \left(\| \partial^2 e \|_{0,D}^2 + \mu^2 \| e \|_{0,D}^2 \right)^{\frac{1}{2}} \| \widetilde{T}_B f - \chi \|_{2,D}, \quad \forall \chi \in M^r_h,
\]

which yields that

\[
\| e \|_{0,D}^2 \leq C \inf_{\chi \in M^r_h} \| \widetilde{T}_B f - \chi \|_{2,D}.
\tag{2.25}
\]

Combining (2.24), (2.25) and (2.17), we arrive at

\[
\| e \|_{0,D}^2 \leq C \inf_{\chi \in M^r_h} \| \widetilde{T}_B f - \chi \|_{2,D} \inf_{\chi \in M^r_h} \| \widetilde{v} - \chi \|_{2,D}
\leq C h^{s+s'-2} \| \widetilde{T}_B f \|_{s+1,D} \| \widetilde{T}_B e \|_{s'+1,D}, \quad \forall s, s' \in \{2, r\}.
\tag{2.26}
\]

Let \(r = 2 \). We use (2.26) and (2.15) to get

\[
\| e \|_{0,D}^2 \leq C h^2 \| \widetilde{T}_B f \|_{3,D} \| \widetilde{T}_B e \|_{3,D}
\leq C h^2 \| f \|_{-1,D} \| e \|_{-1,D}
\leq C h^2 \| f \|_{-1,D} \| e \|_{0,D},
\]

from which we conclude (2.22) for \(r = 2 \).

Let \(r = 3 \). We use (2.26) with \(s' = 3 \) and (2.15) to obtain

\[
\| e \|_{0,D}^2 \leq C h^{s+1} \| \widetilde{T}_B f \|_{s+1,D} \| \widetilde{T}_B e \|_{4,D}
\leq C h^{s+1} \| f \|_{-3,D} \| e \|_{0,D}, \quad s = 2, 3,
\]

from which we conclude (2.22) for \(r = 3 \).
Let $\tilde{\gamma}_{b,h} : L^2(D) \times L^2(D) \to \mathbb{R}$ be defined by

$$\tilde{\gamma}_{b,h}(f,g) = \langle \tilde{T}_{b,h}f, g \rangle_{0,D} \quad \forall f, g \in L^2(D).$$

Then, as a simple consequence of (2.21), the following inequality holds

$$(2.27) \quad \tilde{\gamma}_{b,h}(f,f) \geq \frac{1}{2} \left(\| \partial^2 \tilde{T}_{b,h}f \|^2_{0,D} + \mu^2 \| \tilde{T}_{b,h}f \|^2_{0,D} \right), \quad \forall f \in L^2(D).$$

Thus, observing that

$$(2.28) \quad \tilde{\gamma}_{b,h}(f,f) \leq C \| f \|^2_{-2,D}, \quad \forall f \in L^2(D).$$

Proof. Let $f \in L^2(D)$, $\psi = \tilde{T}_{b}f$ and $\psi_h = \tilde{T}_{b,h}f$. Then, we have

$$(2.29) \quad (\tilde{T}_{b,h}f, f)_{0,D} = (\tilde{\Lambda}_b \psi, \psi)_h$$

$$= (\tilde{T}_{b,h}f, f)_{0,D} + \mu (\tilde{T}_{b,h}f, \psi_h)_{0,D} + \mu^2 \langle \psi_h, \psi \rangle_h$$

$$\leq \frac{1}{2} \left(\| \partial^2 \tilde{T}_{b,h}f \|^2_{0,D} + \mu^2 \| \tilde{T}_{b,h}f \|^2_{0,D} \right) + \varepsilon \left(\| \partial^2 \psi_h \|^2_{0,D} + \mu^2 \| \psi_h \|^2_{0,D} \right), \quad \forall \varepsilon > 0.$$

Setting $\varepsilon = \frac{1}{4}$ in (2.24) and then combining it with (2.27), we obtain

$$(2.30) \quad \| \partial^2 \psi_h \|^2_{0,D} + \mu^2 \| \psi_h \|^2_{0,D} \leq 16 \left(\| \partial^2 \psi \|^2_{0,D} + \mu^2 \| \psi \|^2_{0,D} \right).$$

Finally, (2.29) with $\varepsilon = \frac{1}{2}$, (2.30) and (2.15) yield

$$\tilde{\gamma}_{b,h}(f,f) \leq 8 \left(\| \partial^2 \psi \|^2_{0,D} + \mu^2 \| \psi \|^2_{0,D} \right)$$

$$\leq 8 \left(1 + \mu^2 \right) \| \tilde{T}_{b}f \|^2_{2,D}$$

$$\leq 8 \left(1 + \mu^2 \right) C_{R,D} \| f \|^2_{-2,D}.$$

Thus, we arrived at (2.28). \hfill \Box

3. An Estimate for the Modeling Error

In this section, we estimate the modeling error in terms of Δt and Δx (cf. Theorem 3.1 in [14]).

Theorem 3.1. Let u be the solution of (1.1) and \tilde{u} be the solution of (1.6). Then, there exists a real constant $C > 0$, independent of Δt and Δx, such that

$$(3.1) \quad \max_{[0,T]} \mathbb{E} \left[\left\| u - \tilde{u} \right\|^2_{0,D} \right] \leq C \left(\omega_0(\Delta t) \Delta t \frac{1}{2} + e^{-\frac{1}{2} \Delta x} \right), \quad \forall \epsilon \in (0, \frac{1}{2}],$$

where $\omega_0(\Delta t) := \sqrt{1 + \Delta t^2}$.

Proof. Using (1.3), (1.7) and Lemma 2.1, we conclude that

$$(3.2) \quad u(t,x) - \tilde{u}(t,x) = \int_0^T \int_D \left[X_{(t,x)}(s) \Psi(t; s; x, y) - \tilde{\Psi}(t; x, y) \right] dW(s, y), \quad \forall (t, x) \in [0, T] \times \bar{D},$$

where $\tilde{\Psi} : (0, T) \times D \to L^2((0, T) \times D)$ is given by

$$\tilde{\Psi}(t; x, y) := \frac{1}{\Delta T} \int_{T_n} \int_{T_n} X_{(t,x)}(s') \left[\sum_{i=1}^{j_n} \psi_i(y) \sum_{t=1}^{j_n} G_{t,k}^{-1} \int_D \Psi(t; s'; x, y') \psi_i(y') dy' \right] ds', \quad \forall (s, y) \in T_n \times D,$$

for $n = 1, \ldots, N_*$. Let $\Theta := \mathbb{E} \left[\left\| u - \tilde{u} \right\|^2_{0,D} \right]^{\frac{1}{2}}$ and $t \in (0, T)$. Using (3.2) and Itô isometry (2.6), we obtain

$$\Theta(t) = \left\{ \int_0^T \int_D \left[X_{(t,x)}(s) \Psi(t; s; x, y) - \tilde{\Psi}(t; x, y) \right]^2 dx dy ds \right\}^{\frac{1}{2}}.$$
Now, we introduce the splitting
\begin{equation}
\Theta(t) \leq \Theta_A(t) + \Theta_B(t),
\end{equation}
where
\begin{align*}
\Theta_A(t) := & \left\{ \sum_{n=1}^{N_1} \int_D \int_D \int_{T_n} \left[\frac{1}{\Delta t} \int_{T_n} \mathcal{X}_{(0,t)}(s') \Psi(t-s'; x, y) ds' - \Psi(t; x, y) \right] dx dy ds \right\}^{\frac{1}{2}} \\
\Theta_B(t) := & \left\{ \sum_{n=1}^{N_1} \int_D \int_D \int_{T_n} \mathcal{X}_{(0,t)}(s) \Psi(t-s; x, y) - \frac{1}{\Delta t} \int_{T_n} \mathcal{X}_{(0,t)}(s') \Psi(t-s'; x, y) ds' \right\}^{\frac{1}{2}} dx dy ds.
\end{align*}

Also, to simplify the notation in the rest of the proof, we set \(\mu_k := \lambda^2_k (\lambda^2_k - \mu) \) for \(k \in \mathbb{N} \), and use the symbol \(C \) to denote a generic constant that is independent of \(\Delta t \) and \(\Delta x \) and may change value from one line to the other.

- **Estimation of \(\Theta_A(t) \):** Using (1.4) and the \((\cdot, \cdot)_{0,D} - \)orthogonality of \((\varepsilon_k)_{k=1}^\infty\), we have
\begin{align*}
\Theta_A^2(t) &= \frac{1}{\Delta t} \sum_{n=1}^{N_1} \int_D \int_D \int_{T_n} \mathcal{X}_{(0,t)}(s') \left[\Psi(t-s'; x, y) - \sum_{\ell, i=1}^{j+1} G_{i,\ell}^{-1} (\Psi(t-s'; x, \cdot), \psi_{\ell}(\cdot))_{0,D} \psi_i(y) \right] ds' \right) ^2 dy dx \\
&= \frac{1}{\Delta t} \sum_{n=1}^{N_1} \sum_{k=1}^\infty \left(\int_D \mathcal{X}_{(0,t)}(s) e^{-\mu_k (t-s)} ds \right)^2 \int_D \left(\varepsilon_k(y) - \sum_{\ell, i=1}^{j+1} G_{i,\ell}^{-1} (\varepsilon_{\ell}'(x), \psi_{\ell}(x))_{0,D} \psi_i(y) \right)^2 dy
\end{align*}
from which, using the Cauchy-Schwarz inequality, follows that
\begin{equation}
\Theta_A^2(t) \leq \sum_{k=1}^\kappa A_k(t) B_k + \sum_{k=\kappa+1}^\infty A_k(t) B_k,
\end{equation}
where
\begin{align*}
A_k(t) &:= 2 \lambda^2_k \int_0^t e^{-2\mu_k (t-s')} ds', \\
B_k &:= \int_D \left(\varphi_k(y) - \sum_{\ell, i=1}^{j+1} G_{i,\ell}^{-1} (\varphi_{\ell}(x), \psi_{\ell}(x))_{0,D} \psi_i(y) \right)^2 dy.
\end{align*}

First, we observe that
\begin{align*}
\sqrt{B_k} &\leq \max_{1 \leq j \leq j'} \sup_{x, y \in D_j} | \varphi_k(x) - \varphi_k(y) | \\
&\leq \min \{ 1, \lambda_k \Delta x \} \\
&\leq \min \left\{ 1, (\sqrt{2} \lambda_k \Delta x)^\theta \right\}, \quad \forall \theta \in [0, 1], \quad \forall k \in \mathbb{N}.
\end{align*}

Next, we use (1.2), to obtain
\begin{align*}
A_k(t) &\leq \frac{1-e^{-2\mu_k t}}{\lambda^2_k - \mu} \\
&\leq \frac{(\kappa+1)^2}{1+2\kappa} \frac{1}{\lambda^2_k}, \quad \forall k \geq \kappa + 1.
\end{align*}
Thus, from (3.4), (3.5) and (3.6), we conclude that
\begin{equation}
\Theta_A^2(t) \leq C \left((\Delta x)^2 \sum_{k=1}^\kappa \lambda^2_k + (\Delta x)^2 \sum_{k=\kappa+1}^\infty \frac{1}{\lambda^2_k} \right)^{\frac{1}{2}}
\end{equation}
which yields
\begin{equation}
\Theta_A(t) \leq C (\Delta x) \theta \left(\sum_{k=1}^\infty \frac{1}{\lambda^2_k} \right)^{\frac{1}{2}}, \quad \forall \theta \in [0, \frac{1}{2}).
\end{equation}
• Estimation of $\Theta_\beta(t)$: For $t \in (0, T]$, let $\hat{N}(t) := \min \{ \ell \in \mathbb{N} : 1 \leq \ell \leq N_{\ast} \text{ and } t \leq t_\ell \}$ and

$$\hat{T}_n(t) := T_n \cap (0, t) = \begin{cases} T_n, & \text{if } n < \hat{N}(t), \\ (t_{\hat{N}(t)-1}, t), & \text{if } n = \hat{N}(t), \end{cases} n = 1, \ldots, \hat{N}(t).$$

Thus, using (1.4) and the $(\cdot, \cdot)_{a, D}$-orthogonality of $(\varepsilon_k)_{k=1}^\infty$ and $(\varphi_k)_{k=1}^\infty$ as follows

$$\Theta^2_n(t) = \frac{1}{(\Delta t)^2} \sum_{n=1}^{N_{\ast}} \int_D \int_D \int_{T_n} \left[\int_{T_n} \left[X_{(0,t)}(s) \Psi(t-s; x, y) \right. \right. - \left. \left. \int_{T_n} X_{(0,t)}(s') e^{-\mu_k(t-s')} \right] ds' \left. \right] dx dy ds \right]^2 dxdyds$$

$$\Theta^2_n(t) = \frac{1}{(\Delta t)^2} \sum_{n=1}^{N_{\ast}} \int_D \int_D \int_{T_n} \left[\int_{T_n} \left[X_{(0,t)}(s) \right. \right. - \left. \left. \int_{T_n} X_{(0,t)}(s') e^{-\mu_k(t-s')} \right] ds' \right] dx dy ds \right]^2 dxdyds$$

we conclude that

$$\Theta^2_n(t) \leq \sum_{k=1}^{\infty} \lambda^2_k \left(\frac{1}{(\Delta t)^2} \sum_{n=1}^{\hat{N}(t)} \Psi^2_k(t) \right),$$

where

$$\Psi^k_n(t) := \int_{T_n} \left[\int_{T_n} \left[X_{(0,t)}(s) e^{-\mu_k(t-s')} \right. \right. - \left. \left. \int_{T_n} X_{(0,t)}(s') e^{-\mu_k(t-s')} \right] ds' \right] dx dy ds \right]^2 ds.$$

Let $k \in \mathbb{N}$ and $n \in \{1, \ldots, \hat{N}(t) - 1\}$. Then, we have

$$\Psi^k_n(t) = \int_{T_n} \left(\int_{T_n} \int_{s'} \mu_k e^{-\mu_k(t-s)} d\tau ds' \right)^2 ds$$

$$\leq \int_{T_n} \left(\int_{T_n} \int_{t_{n-1}}^{\max\{s', s\}} \mu_k e^{-\mu_k(t-s)} d\tau ds' \right)^2 ds$$

$$\leq 2 \int_{T_n} \left(\int_{T_n} \int_{t_{n-1}}^{s'} \mu_k e^{-\mu_k(t-s)} d\tau ds' \right)^2 ds + 2 \int_{T_n} \left(\int_{T_n} \int_{t_{n-1}}^{s} \mu_k e^{-\mu_k(t-s)} d\tau ds' \right)^2 ds$$

$$\leq 2 \Delta t \left(\int_{T_n} \int_{t_{n-1}}^{s'} \mu_k e^{-\mu_k(t-s)} d\tau ds' \right)^2 + 2 (\Delta t)^2 \int_{T_n} \left(\int_{t_{n-1}}^{s} \mu_k e^{-\mu_k(t-s)} d\tau \right)^2 ds,$$

from which, after using the Cauchy-Schwarz inequality, we arrive at

$$\Psi^k_n(t) \leq 4 (\Delta t)^2 \int_{T_n} \left(\int_{t_{n-1}}^{s} \mu_k e^{-\mu_k(t-s)} d\tau \right)^2 ds.$$
Considering, now, the case $n = \hat{N}(t)$, we have

\begin{equation}
(3.13) \quad \Psi_{\hat{N}(t)}^k(t) = \Psi_A^k(t) + \Psi_B^k(t)
\end{equation}

with

\begin{align*}
\Psi_A^k(t) & := \int_{\hat{N}(t)-1}^t \left(\int_{\hat{N}(t)-1}^s \mu_k e^{-\mu_k(t-\tau)} d\tau ds' + \int_{t}^{\hat{N}(t)} e^{-\mu_k(t-s')} ds' \right)^2 ds, \\
\Psi_B^k(t) & := \int_{\hat{N}(t)}^t \left(\int_{\hat{N}(t)-1}^t e^{-\mu_k(t-s')} ds' \right)^2 ds.
\end{align*}

For $k \leq \kappa$, we obtain

\begin{equation}
(3.14) \quad \frac{1}{(\Delta t)^2} \Psi_{\hat{N}(t)}^k(t) \leq C \Delta t.
\end{equation}

For $k \geq \kappa + 1$, we have

\begin{align*}
\Psi_B^k(t) & \leq \frac{\Delta t}{\mu_k} \left[1 - e^{-\mu_k(t-\hat{N}(t)-1)} \right]^2 \\
& \leq \frac{\Delta t}{\mu_k} (1 - e^{-\mu_k \Delta t})^2
\end{align*}

and

\begin{align*}
\Psi_A^k(t) & \leq \int_{\hat{N}(t)-1}^t \left[\int_{\hat{N}(t)-1}^s \mu_k e^{-\mu_k(t-\tau)} d\tau ds' + \Delta t e^{-\mu_k(t-s)} \right]^2 ds \\
& \leq 2 \int_{\hat{N}(t)-1}^t \left[\int_{\hat{N}(t)-1}^s \mu_k e^{-\mu_k(t-\tau)} d\tau ds' \right]^2 ds + \frac{(\Delta t)^2}{\mu_k} \left[1 - e^{-2\mu_k(t-\hat{N}(t)-1)} \right] \\
& \leq 2 \int_{\hat{N}(t)-1}^t \left[\int_{\hat{N}(t)-1}^{\max\{s,s'\}} \mu_k e^{-\mu_k(t-\tau)} d\tau ds' \right]^2 ds + \frac{(\Delta t)^2}{\mu_k} (1 - e^{-2\mu_k \Delta t}) \\
& \leq 8 (\Delta t)^2 \int_{\hat{N}(t)-1}^t \left[\int_{\hat{N}(t)-1}^s \mu_k e^{-\mu_k(t-\tau)} d\tau \right]^2 ds + \frac{(\Delta t)^2}{\mu_k} (1 - e^{-2\mu_k \Delta t}) \\
& \leq 8 (\Delta t)^2 \int_{N(t)-1}^t \left[e^{-\mu_k(t-s)} - e^{-\mu_k(t-\hat{N}(t)-1)} \right]^2 ds + \frac{(\Delta t)^2}{\mu_k} (1 - e^{-2\mu_k \Delta t}),
\end{align*}

which, along with (3.13), gives

\[\Psi_{\hat{N}(t)}^k(t) \leq \frac{5(\Delta t)^2}{\mu_k} (1 - e^{-2\mu_k \Delta t}) + \frac{\Delta t}{\mu_k} (1 - e^{-\mu_k \Delta t})^2. \]

Since the mean value theorem yields: $1 - e^{-\mu_k \Delta t} \leq \mu_k \Delta t$, the above inequality takes the form

\begin{equation}
(3.15) \quad \frac{1}{(\Delta t)^2} \Psi_{\hat{N}(t)}^k(t) \leq 6 \frac{1-e^{-2\mu_k \Delta t}}{\mu_k}.
\end{equation}

Combining (3.8), (3.12), (3.14) and (3.15) we obtain

\begin{align*}
\Theta_B^2(t) & \leq C \left[\Delta t + \sum_{k=\kappa+1}^{\infty} \lambda_k^2 \frac{1-e^{-2\mu_k \Delta t}}{\mu_k} \right] \\
& \leq C \left[\Delta t + \sum_{k=1}^{\infty} \frac{1-e^{-\mu_k \Delta t}}{\lambda_k^2} \right],
\end{align*}

(3.16)
with \(c_0 = \frac{2(1+2\kappa)}{(\kappa+1)^2} \). To get a convergence estimate we have to exploit the way the series depends on \(\Delta t \) in the above relation:

\[
\sum_{k=1}^{\infty} \frac{1-e^{-c_0 \lambda_k^2 \Delta t}}{\lambda_k^2} \leq \frac{1-e^{-c_0 \pi^4 \Delta t}}{\pi^4} + \int_1^{\infty} \frac{1-e^{-c_0 x^4 \Delta t}}{x^4} \, dx
\]

\[
\leq C \left((1-e^{-c_0 \pi^4 \Delta t}) + \Delta t \int_1^{\infty} x^2 \, e^{-c_0 x^4 \Delta t} \, dx \right)
\]

\[
\leq C \left[(\Delta t)^{\frac{3}{2}} + 1 \right] (\Delta t)^{\frac{1}{2}}.
\]

Using the bounds (3.10) and (3.17) we conclude that

\[
\Theta_B(t) \leq C \left[(\Delta t)^{\frac{3}{4}} + 1 \right] (\Delta t)^{\frac{1}{4}}.
\]

The error bound (3.11) follows by observing that \(\Theta(0) = 0 \) and combining the bounds (3.1), (3.7), (3.17) and (2.10). \(\square \)

4. Time-Discrete Approximations

The Backward Euler time-stepping method for problem (1.6) specifies an approximation \(\hat{U}^m \) of \(\hat{u}(\tau_m, \cdot) \) starting by setting

\[
\hat{U}^0 := 0,
\]

and then, for \(m = 1, \ldots, M \), by finding \(\hat{U}^m \in \hat{H}^1(D) \) such that

\[
\hat{U}^m - \hat{U}^{m-1} + \Delta \tau \Lambda_B \hat{U}^m = \int_{\Delta_m} \partial_x \hat{W} \, ds \quad \text{a} \text{.s}..\]

The method is well-defined when the differential operator \(Q_{B, \Delta \tau} := I + \Delta \tau \Lambda_B : \hat{H}^1(D) \to L^2(D) \) is invertible. It is easily seen that \(Q_{B, \Delta \tau} \) is invertible when \(1 + \Delta \tau \lambda_k^2 (\lambda_k^2 - \mu) \neq 0 \) for \(k \in \mathbb{N} \), or equivalently when: \(\kappa = 1 \) or \(\kappa \geq 2 \) and \(\Delta \tau \max_{1 \leq k \leq \kappa-1} \lambda_k^2 (\mu - \lambda_k^2) \neq 1 \). If \(\kappa \geq 2 \), then it is easily seen that \(\max_{1 \leq k \leq \kappa-1} \lambda_k^2 (\mu - \lambda_k^2) \leq \frac{4}{\kappa^2} \), so the condition \(\Delta \tau \frac{4}{\kappa^2} < 1 \) is a sufficient condition for the invertibility of \(Q_{B, \Delta \tau} \).

4.1. The Deterministic Case.

The Backward Euler time-discrete approximations of the solution \(w \) to the deterministic problem (1.5) are defined as follows: first we set

\[
W^0 := w_0,
\]

and then, for \(m = 1, \ldots, M \), we find \(W^m \in \hat{H}^1(D) \) such that

\[
W^m - W^{m-1} + \Delta \tau \Lambda_B W^m = 0.
\]

Obviously, the Backward Euler time-discrete approximations are well-defined when \(Q_{B, \Delta \tau} \) is invertible. Our next step, is to derive an error estimate in a discrete in time \(L^2(D) \) norm, taking into account that, in contrast to the case \(\mu = 0 \) considered in [14], the operator \(\Lambda_B \) is not always invertible.

Proposition 4.1. Let \((W^m)_{m=0}^M \) be the Backward Euler time-discrete approximations of the solution \(w \) of the problem (1.5) defined in (1.3) - (1.4). Also, we assume that \(\kappa = 1 \), or \(\kappa \geq 2 \) and \(\Delta \tau \mu^2 < \frac{1}{4} \). Then, there exists a constant \(C > 0 \), independent of \(\Delta \tau \), such that

\[
\left(\sum_{m=1}^{M} (\Delta \tau \| W^m - w(\tau_m, \cdot) \|_{3/2}^{2}) \right)^{\frac{1}{2}} \leq C (\Delta \tau)^{\theta} \| w_0 \|_{3/2}^{\theta - 2}, \quad \forall w_0 \in \hat{H}^2(D), \quad \forall \theta \in [0, 1].
\]
Proof. The estimate (4.5) will be established by interpolation, after proving it for $\theta = 1$ and $\theta = 0$.

Let $w_0 \in \dot{H}^2(D)$. According to the discussion in the beginning of this section, when $\kappa = 1$ or $\kappa \geq 2$ and $\Delta \tau \mu^2 < \frac{1}{4}$, the existence and uniqueness of the time-discrete approximations $(W^m)^{m=0}$ is secured. We omit the case $\kappa = 1$ since then the operator Λ_B is invertible and the proof of (4.3) follows moving along the lines of the proof of Proposition 1.1 in [13], or alternatively moving along the lines of the proof below using the operator T_B instead of \bar{T}_B. Here, we will proceed with the proof of (4.3) under the assumption $\Delta \tau \mu^2 < \frac{1}{4}$, without using somewhere a possible invertibility of Λ_B. In the sequel, we will use the symbol C to denote a generic constant that is independent of Δt and may changes value from one line to the other.

Let $E^m(\cdot) := w(\tau_m, \cdot) - V^m(\cdot)$ for $m = 0, \ldots, M$ and $\sigma_m := \int_{\Delta_m} [w(\tau_m, \cdot) - w(\tau, \cdot)] d\tau$ for $m = 1, \ldots, M$. Then, combining (4.9) and (4.4), we conclude that

$$\tilde{\gamma}_B(E^m - E^{m-1}) + \Delta \tau E^m = \Delta \tau \mu^2 \bar{T}_B E^m + \left(\sigma_m - \mu^2 \bar{T}_B \sigma_m \right), \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.6)

Now, take the $L^2(D)$—inner product with E^m of both sides of (4.6), to obtain

$$\tilde{\gamma}_B(E^m - E^{m-1}, E^m) + \Delta \tau \|E^m\|^2_{0,D} = \Delta \tau \mu^2 E^m - \gamma_B(E^m, E^m)$$

$$+ (\sigma_m - \mu^2 \bar{T}_B \sigma_m, E^m)_{0,D}, \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.7)

Using (2.11), (4.7) and (2.15), we arrive at

$$\tilde{\gamma}_B(E^m, E^m) - \tilde{\gamma}_B(E^{m-1}, E^{m-1}) + \Delta \tau \|E^m\|^2_{0,D} \leq 2 \Delta \tau \mu^2 \tilde{\gamma}_B(E^m, E^m)$$

$$+ C \Delta \tau^{-1} \|\sigma_m\|^2_{0,D}, \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.8)

Since $2 \Delta \tau \mu^2 < 1$, (4.8) yields

$$\tilde{\gamma}_B(E^m, E^m) \leq C \Delta \tau^{-1} \sum_{\ell = 1}^{m} \|\sigma\|_{0,D}^2 \frac{1}{(1 - 2 \Delta \tau \mu^2)^{\ell-1}},$$

$$\leq C e^{4\Delta \tau^2 \Delta \tau^{-1} \sum_{\ell = 1}^{m} \|\sigma\|_{0,D}^2}, \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.9)

Next, we use the Cauchy-Schwarz inequality to bound σ_m as follows:

$$\|\sigma_m\|_{0,D}^2 \leq C \int_B \left(\int_{\Delta_m} \int_{\Delta} |\partial_{x,x} w(s, x)| ds d\tau \right)^2 dx$$

$$\leq C \Delta \tau^{-1} \int_{\Delta} \|\partial_{x} w(s, \cdot)\|^2_{0,D} ds, \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.10)

Thus, (4.10) and (4.9) yield

$$\tilde{\gamma}_B(E^m, E^m) \leq C \Delta \tau^2 \int_{0}^{T} \|\partial_{x} w(s, \cdot)\|^2_{0,D} ds, \quad m = 1, \ldots, M.$$ \hspace{1cm} (4.11)

Combining (4.8), (4.11) and (4.10), we have

$$\tilde{\gamma}_B(E^m, E^m) - \tilde{\gamma}_B(E^{m-1}, E^{m-1}) + \Delta \tau \|E^m\|^2_{0,D} \leq C \Delta \tau^2 \int_{0}^{T} \|\partial_{x} w(s, \cdot)\|^2_{0,D} ds$$

$$+ C \Delta \tau^3 \int_{0}^{T} \|\partial_{x} w(s, \cdot)\|^2_{0,D} ds$$ \hspace{1cm} (4.12)

for $m = 1, \ldots, M$. Summing with respect to m from 1 up to M and using the fact that $E^0 = 0$, (4.12) yields

$$\tilde{\gamma}_B(E^M, E^M) + \sum_{m=1}^{M} \Delta \tau \|E^m\|^2_{0,D} \leq C \Delta \tau^2 \int_{0}^{T} \|\partial_{x} w(s, \cdot)\|^2_{0,D} ds.$$ \hspace{1cm} (4.13)
Finally, use (4.13) and (2.16) (with $\beta = 0$, $\ell = 1$, $p = 0$) to obtain

$$
(4.14) \quad \left(\sum_{m=1}^{M} \Delta \tau \| E^m \|_{\omega,D}^2 \right)^{1/2} \leq C \Delta \tau \| w_0 \|_{H^2},
$$

which establishes (4.5) for $\theta = 1$.

First, we observe that (4.4) is written equivalently as

$$
\tilde{T}_B(W^m - W^{m-1}) + \Delta \tau W^m = \Delta \tau \mu^2 \tilde{T}_B W^m, \quad m = 1, \ldots, M,
$$

from which, after taking the $L^2(D)$--inner product with W^m, we obtain

$$
\tilde{\gamma}_B(W^m - W^{m-1}, W^m)_{\omega,D} + \Delta \tau \| W^m \|^2_{\omega,D} = \Delta \tau \mu^2 \tilde{\gamma}_B(W^m W^m), \quad m = 1, \ldots, M.
$$

Then, we combine (2.11) and (4.15) to have

$$
(4.16) \quad (1 - 2 \Delta \tau \mu^2) \tilde{\gamma}_B(W^m, W^m) + 2 \Delta \tau \| W^m \|^2_{\omega,D} \leq \tilde{\gamma}_B(W^{m-1}, W^{m-1}), \quad m = 1, \ldots, M.
$$

Since $4 \mu^2 \Delta \tau < 1$, (4.16) yields that

$$
\tilde{\gamma}_B(W^m, W^m) \leq \frac{1}{1 - 2 \mu^2 \Delta \tau} \tilde{\gamma}_B(W^{m-1}, W^{m-1})
\leq e^{4\mu^2 \Delta \tau} \tilde{\gamma}_B(W^{m-1}, W^{m-1}), \quad m = 1, \ldots, M,
$$

from which, applying a simple induction argument, we conclude that

$$
(4.17) \quad \max_{0 \leq m \leq M} \tilde{\gamma}_B(W^m, W^m) \leq C \tilde{\gamma}_B(w_0, w_0).
$$

Now, summing with respect to m from 1 up to M, and using (4.17), (4.16) yields

$$
(4.18) \quad \sum_{m=1}^{M} \Delta \tau \| W^m \|^2_{\omega,D} \leq C \| \tilde{T}_B w_0, w_0 \|_{\omega,D}
\leq \| w_0 \|_{-2,D} \| \tilde{T}_B w_0 \|_{2,D}.
$$

Thus, using (4.18), (2.16) and (2.24), we obtain

$$
(4.19) \quad \left(\sum_{m=1}^{M} \Delta \tau \| W^m \|^2_{\omega,D} \right)^{1/2} \leq C \| w_0 \|_{-2,D}
\leq C \| w_0 \|_{H^{-2}}.
$$

In addition we have

$$
\sum_{m=1}^{M} \Delta \tau \| w(\tau_m, \cdot) \|^2_{\omega,D} \leq \sum_{m=1}^{M} \int_{\Omega} \left(\int_{\Delta_m} \partial_\tau \left[(\tau - \tau_{m-1}) w^2(\tau, x) \right] d\tau \right) dx
\leq \sum_{m=1}^{M} \int_{\Omega} \left[w^2(\tau, x) + 2 (\tau - \tau_{m-1}) w_\tau(\tau, x) w(\tau, x) \right] dx
\leq \sum_{m=1}^{M} \int_{\Delta_m} \left[2 \| w(\tau, \cdot) \|^2_{\omega,D} + (\tau - \tau_{m-1})^2 \| w_\tau(\tau, \cdot) \|^2_{\omega,D} \right] d\tau
\leq 2 \int_{0}^{T} \left[\| w(\tau, \cdot) \|^2_{\omega,D} + \tau^2 \| w_\tau(\tau, \cdot) \|^2_{\omega,D} \right] d\tau,
$$

which, along with (2.16) (taking $(\beta, \ell, p) = (0, 0, 0)$ and $(\beta, \ell, p) = (2, 1, 0)$) and (2.24), yields

$$
(4.20) \quad \left(\sum_{m=1}^{M} \Delta \tau \| w(\tau_m, \cdot) \|^2_{\omega,D} \right)^{1/2} \leq C \| w_0 \|_{H^{-2}}.
$$

Thus, the estimate (4.5) for $\theta = 0$ follows easily combining (4.19) and (4.20). □
4.2. The Stochastic Case. Next theorem combines the convergence result of Proposition 4.1 with a discrete Duhamel’s principle in order to prove a discrete in time $L^\infty_t(L^2_x)$ convergence estimate for the time discrete approximations of \hat{u} (cf. [14], [22]).

Theorem 4.2. Let \hat{u} be the solution of (1.5) and $(\hat{U}^m)^*_m=0$ be the time-discrete approximations defined by (4.1) - (4.2). Also, we assume that $\kappa = 1$, or $\kappa \geq 2$ and $\Delta \tau \mu^2 < \frac{1}{4}$. Then, there exists a constant $C > 0$, independent of Δt, Δx and $\Delta \tau$, such that

$$(4.21) \quad \max_{1 \leq m \leq M} \mathbb{E} \left[\left\| \hat{U}^m - \hat{u}(\tau, \cdot) \right\|_{0, D}^2 \right]^{\frac{1}{2}} \leq C \omega_1(\Delta \tau, \epsilon) \Delta \tau^{-\epsilon}, \quad \forall \epsilon \in (0, \frac{1}{8}],$$

where $\omega_1(\Delta \tau, \epsilon) := \epsilon^{-\frac{1}{4}} + (\Delta \tau)^{c} (1 + (\Delta \tau)^{\frac{1}{4}} + (\Delta \tau)^{\frac{3}{4}})^{\frac{1}{4}}$.

Proof. Let $I : L^2(D) \rightarrow L^2(D)$ be the identity operator, $\Lambda : L^2(D) \rightarrow \hat{H}^4(D)$ be the inverse elliptic operator $\Lambda := (I + \Delta \tau \Lambda_0)^{-1}$ which has Green function $G_{\Lambda}(x, y) = \sum_{k=1}^{\infty} \frac{\gamma_k(x)\gamma_k(y)}{1 + \Delta \tau \lambda_k^2}$, i.e. $\Lambda f(x) = \int_D G_{\Lambda}(x, y)f(y) dy$ for $x \in D$ and $f \in L^2(D)$. Also, we set $G_{\phi}(x, y) := -\partial_y G_{\Lambda}(x, y) = -\sum_{k=1}^{\infty} \frac{\gamma_k(x)\gamma_k(y)}{1 + \Delta \tau \lambda_k^2}$, and define $\Phi : L^2(D) \rightarrow \hat{H}^4(D)$ by $\Phi(f)(x) := \int_D G_{\Lambda}(x, y)f(y) dy$ for $f \in L^2(D)$. Also, for $m \in \mathbb{N}$, we denote by $G_{\Lambda, \phi, m}$ the Green function of the operator $\Lambda^{-1}\Phi$. In the sequel, we will use the symbol C to denote a generic constant that is independent of Δt, $\Delta \tau$ and Δx, and may changes value from one line to the other.

Using (4.2) and a simple induction argument, we conclude that

$$\hat{U}^m = \sum_{j=1}^{m} \int_{\Delta_j} \Lambda^{m-j} \Phi \hat{W}(\tau, \cdot) d\tau, \quad m = 1, \ldots, M,$$

which is written, equivalently, as follows:

$$(4.22) \quad \hat{U}^m(x) = \int_0^{\tau_m} \int_D \hat{K}_m(\tau; x, y) \hat{W}(\tau, y) dyd\tau, \quad \forall x \in D, \quad m = 1, \ldots, M,$$

where $\hat{K}_m(\tau; x, y) := \sum_{j=1}^{m} \chi_{\Delta_j}(\tau) G_{\lambda, \phi, m-j+1}(x, y)$, $\forall \tau \in (0, T)$, $\forall x, y \in D$.

Let $m \in \{1, \ldots, M\}$ and $E^m := \mathbb{E} \left[\|\hat{U}^m - \hat{u}(\tau_m, \cdot)\|_{0, D}^2 \right]$. First, we use (1.5), (1.4), (4.1), (4.2) and (2.9) to obtain

$$E^m = \mathbb{E} \left[\int_D \left(\int_0^{\tau_m} \int_D \chi_{(0, \tau_m]}(\tau) \left[\hat{K}_m(\tau; x, y) - \Psi(\tau_m - \tau; x, y) \right] \hat{W}(\tau, y) dyd\tau \right)^2 dx \right]$$

$$\leq \int_0^{\tau_m} \left(\int_D \left(\int_D \left[\hat{K}_m(\tau; x, y) - \Psi(\tau_m - \tau; x, y) \right]^2 dy \right) dx \right) d\tau$$

$$\leq \sum_{\ell=1}^{m} \int_{\Delta_\ell} \left(\int_D \left[G_{\lambda, \phi, m-\ell+1}(x, y) - \Psi(\tau_m - \tau; x, y) \right]^2 dy \right) dx d\tau.$$

Now, we introduce the splitting

$$(4.23) \quad \sqrt{E^m} \leq \sqrt{B^m_1} + \sqrt{B^m_2},$$

where

$$B^m_1 := \sum_{\ell=1}^{m} \int_{\Delta_\ell} \left(\int_D \left[G_{\lambda, \phi, m-\ell+1}(x, y) - \Psi(\tau_m - \tau_{\ell-1}; x, y) \right]^2 dy \right) dx d\tau,$$

$$B^m_2 := \sum_{\ell=1}^{m} \int_{\Delta_\ell} \left(\int_D \left[\Psi(\tau_m - \tau_\ell; x, y) - \Psi(\tau_m - \tau; x, y) \right]^2 dy \right) dx d\tau.$$
By the definition of the Hilbert-Schmidt norm, we have

\[
B_1^m \leq \Delta \sum_{k=1}^m \sum_{\ell=1}^\infty \int_D \left(\int_D \left[G_{\Lambda \Phi, m-\ell+1}(x, y) \varphi_k(y) \, dy \right] \Psi(\tau_m - \tau_{\ell-1}; x, y) \varphi_k(y) \, dy \right)^2 \, dx
\]

\[
\leq \sum_{k=1}^m \sum_{\ell=1}^\infty \Delta \| A^{\ell} \Phi \varphi_k - S(\tau_m - \tau_{\ell-1}) \varphi_k' \|_{0, D}^2
\]

\[
\leq \sum_{k=1}^m \lambda_k^2 \sum_{\ell=1}^\infty \Delta \| A^{\ell} \varepsilon_k - S(\tau_{\ell}) \varepsilon_k \|_{0, D}^2
\]

Let \(\theta \in [0, \frac{1}{4}) \). Using the deterministic error estimate (4.5) and (2.10), we obtain

\[
\sqrt{B_1^m} \leq C (\Delta \tau)^\theta \left(\sum_{k=1}^m \lambda_k^2 \| \varepsilon_k \|_{L^{2+\theta-2}}^2 \right)^{\frac{1}{2}}
\]

(4.24)

\[
\leq C (\Delta \tau)^\theta \left(\sum_{k=1}^m \frac{1}{\lambda_k^{1+8(\frac{1}{4}-\theta)}} \right)^{\frac{1}{2}}
\]

\[
\leq C \frac{1}{\sqrt{\tau}} (\Delta \tau)^\theta.
\]

Using, again, the definition of the Hilbert-Schmidt norm we have

\[
B_2^m = \sum_{k=1}^\infty \sum_{\ell=1}^m \int_{\Delta \tau} \| S(\tau_m - \tau_{\ell-1}) \varphi_k' - S(\tau_m - \tau) \varphi_k' \|_{0, D}^2 \, d\tau
\]

(4.25)

\[
= \sum_{k=1}^\infty \lambda_k^2 \sum_{\ell=1}^m \int_{\Delta \tau} \| S(\tau_m - \tau_{\ell-1}) \varepsilon_k - S(\tau_m - \tau) \varepsilon_k \|_{0, D}^2 \, d\tau
\]

Observing that \(S(t) \varepsilon_k = e^{-\lambda_k^2 (\lambda_k^2 - \mu)^t} \varepsilon_k \) for \(t \geq 0 \), (4.25) yields

\[
B_2^m = \sum_{k=1}^\infty \lambda_k^2 \sum_{\ell=1}^m \int_{\Delta \tau} \left(\int_D \left[e^{-(\lambda_k^2 + \mu \lambda_k^2)(\tau_m - \tau_{\ell-1})} - e^{-(\lambda_k^2 - \mu \lambda_k^2)(\tau_m - \tau)} \right] \varepsilon_k^2(x) \, dx \right) \, d\tau
\]

(4.26)

\[
= \sum_{k=1}^\infty \lambda_k^2 \sum_{\ell=1}^m \int_{\Delta \tau} e^{-2(\lambda_k^2 - \mu \lambda_k^2)(\tau_m - \tau)} \left[1 - e^{-(\lambda_k^2 - \mu \lambda_k^2)(\tau - \tau_{\ell-1})} \right]^2 \, d\tau
\]

\[
\leq B_{2,1}^m + B_{2,2}^m,
\]

where

\[
B_{2,1}^m := \sum_{k=1}^K \lambda_k^2 \sum_{\ell=1}^m \int_{\Delta \tau} e^{-2\lambda_k^2(\lambda_k^2 - \mu)(\tau_m - \tau)} \left[1 - e^{-(\lambda_k^2 - \mu \lambda_k^2)(\tau - \tau_{\ell-1})} \right]^2 \, d\tau,
\]

\[
B_{2,2}^m := \sum_{k=K+1}^\infty \lambda_k^2 \sum_{\ell=1}^m \int_{\Delta \tau} e^{-2\lambda_k^2(\lambda_k^2 - \mu)(\tau_m - \tau)} \left[1 - e^{-(\lambda_k^2 - \mu \lambda_k^2)(\tau - \tau_{\ell-1})} \right]^2 \, d\tau.
\]
First, we estimate $B_{2,1}^m$ and $B_{2,2}^m$ as follows

\begin{align}
B_{2,1}^m & \leq \sum_{k=\kappa+1}^{\infty} \lambda_k^2 \left(1 - e^{-\lambda_k^2 (\lambda_k^2 - \mu) \Delta \tau} \right)^2 \left[\int_0^{\tau_m} e^{-2(\lambda_k^2 - \mu) (\tau_m - \tau)} \, d\tau \right] \\
& \leq \frac{1}{2} \sum_{k=\kappa+1}^{\infty} \frac{1 - e^{-2(\lambda_k^2 - \mu) \Delta \tau}}{\lambda_k^2 - \mu} \\
& \leq \frac{(\kappa + 1)^2}{2(1 + 2\kappa)} \sum_{k=\kappa+1}^{\infty} \frac{1 - e^{-2(\lambda_k^2 - \mu) \Delta \tau}}{\lambda_k^2} \\
& \leq C \sum_{k=1}^{\infty} \frac{1 - e^{-c_0 \lambda_k^4 \Delta \tau}}{\lambda_k}
\end{align}

with $c_0 = \frac{2(1 + 2\kappa)}{(\kappa + 1)^2}$, and

\begin{align}
B_{2,2}^m & \leq C \sum_{k=1}^{\kappa} \sum_{\ell=1}^{m} \int_{2\kappa}^{2\kappa + 1} \left[1 - e^{-((\lambda_k^2 - \mu) \lambda_k^2) (\tau - \tau_\ell)} \right]^2 \, d\tau \\
& \leq C \sum_{k=1}^{\kappa} \sum_{\ell=1}^{m} \int_{2\kappa}^{2\kappa + 1} \left[(\lambda_k^2 - \mu \lambda_k^2) (\tau - \tau_\ell) \right]^2 \, d\tau \\
& \leq C \left(\Delta \tau \right)^2.
\end{align}

Finally, we combine (4.28), (4.27), (4.26) and (3.17), to obtain

\begin{align}
\sqrt{B_2^m} & \leq C \left(1 + (\Delta \tau)^{\frac{3}{2}} + (\Delta \tau)^{\frac{3}{2}} \right)^{\frac{1}{2}} (\Delta \tau)^{\frac{1}{2}}.
\end{align}

The estimate (4.24) follows by (4.23), (4.21) and (4.29).

5. Convergence of the Fully-Discrete Approximations

To get an error estimate for the fully-discrete approximations of \hat{u} defined by (1.12)-(1.13), we proceed by comparing them with their time-discrete approximations defined by (4.1)-(4.2) and using a discrete Duhamel principle (cf. [14, 22]).

5.1. The Deterministic Case. The Backward Euler finite element approximations of the solution to (1.5) are defined as follows: first, set

\begin{align}
W_0^h & := P_h w_0,
\end{align}

and then, for $m = 1, \ldots, M$, find $W_h^m \in M_h^r$ such that

\begin{align}
W_h^m - W_h^{m-1} + \Delta \tau \Lambda_{B,h} W_h^m = 0,
\end{align}

which is possible when $\mu^2 \Delta \tau < 4$.

Next, we derive a discrete in time $L_r^2(L_{\theta}^2)$ estimate for the error approximating the Backward Euler time-discrete approximations of the solution to (1.5) defined in (4.3)-(4.4), by the Backward Euler finite element approximations defined in (5.1)-(5.2). The main difference with the case $\mu = 0$, which has been considered in [14], is that, our assumption (1.2) on μ, can not ensure the coerciveness of the discrete elliptic operator $\Lambda_{B,h}$.

Theorem 5.1. Let $r = 2$ or 3, w be the solution to the problem (1.5), $(W^m)_m=0$ be the time-discrete approximations of w defined in (4.3)-(4.4), and $(W_h^m)_m=0 \subset M_h^r$ be the fully-discrete approximations of w defined in (5.1)-(5.2). Also, we assume that $\mu^2 \Delta \tau < \frac{1}{4}$. If $w_0 \in \tilde{H}^2(D)$, then, there exists a nonnegative constant \tilde{c}_1, independent of h and $\Delta \tau$, such that

\begin{align}
\left(\sum_{m=1}^{M} \Delta \tau \|W^m - W_h^m\|_{0,D}^2 \right)^{\frac{1}{2}} \leq \tilde{c}_1 \lambda^{\ell_i(r)} \|w_0\|_{\tilde{H}^r}, \quad \forall \theta \in [0,1],
\end{align}
where

\begin{equation}
\ell_\ast(r) := \begin{cases}
2 & \text{if } r = 2 \\
4 & \text{if } r = 3
\end{cases} \quad \text{and} \quad \xi_\ast(r, \theta) := (r + 1) \theta - 2.
\end{equation}

Proof. The error estimate \((5.3)\) follows by interpolation, after showing that holds for \(\theta = 0\) and \(\theta = 1\). In the sequel, we will use the symbol \(C\) to denote a generic constant that is independent of \(\Delta \tau\) and \(h\), and may change value from one line to the other.

Let \(E^m := W_h^m - W^m\) for \(m = 0, \ldots, M\). First, use \((5.2)\) and \((5.4)\) to obtain

\begin{equation}
W_h^m - W_h^{m-1} + \Delta \tau \bar{\Lambda}_{B,h} W_h^m = \Delta \tau \mu^2 W_h^m,
\end{equation}

\begin{equation}
W^m - W^{m-1} + \Delta \tau \bar{\Lambda}_h W^m = \Delta \tau \mu^2 W^m
\end{equation}

for \(m = 1, \ldots, M\). Then, combine \((5.5)\) and \((5.6)\), to get the following error equation

\begin{equation}
\bar{T}_{B,h}(E^m - E^{m-1}) + \Delta \tau E^m = \Delta \tau \mu^2 \bar{T}_{B,h} E^m - \Delta \tau (\bar{T}_{B} - \bar{T}_{B,h}) \bar{\Lambda}_h W^m, \quad m = 1, \ldots, M.
\end{equation}

Taking the \(L^2(D)\)--inner product with \(E^m\) of both sides of \((5.7)\), it follows that

\begin{equation}
\bar{\gamma}_{B,h}(E^m - E^{m-1}, E^m) + \Delta \tau \|E^m\|_{0,D}^2 = \Delta \tau \mu^2 \bar{\gamma}_{B,h}(E^m, E^m)
\end{equation}

for \(m = 1, \ldots, M\). Applying a simple induction argument based on \((5.8)\) and then using that \(4 \Delta \tau \mu^2 < 1\), we get

\begin{equation}
\max_{0 \leq m \leq M} \bar{\gamma}_{B,h}(E^m, E^m) \leq C \left[\bar{\gamma}_{B,h}(E^0, E^0) + \Delta \tau \sum_{\ell = 1}^{M} \| (\bar{T}_{B} - \bar{T}_{B,h}) \bar{\Lambda}_h W^\ell \|_{0,D}^2 \right].
\end{equation}

Summing with respect to \(m\) from 1 up to \(M\), using \((5.10)\) and observing that \(\bar{T}_{B,h} E^0 = 0\), \((5.8)\) gives

\begin{equation}
\sum_{m=1}^{M} \Delta \tau \|E^m\|_{0,D}^2 \leq C \sum_{m=1}^{M} \Delta \tau \| (\bar{T}_{B} - \bar{T}_{B,h}) \bar{\Lambda}_h W^m \|_{0,D}^2.
\end{equation}

Let \(r = 3\). Then, by \((5.13)\), \((5.11)\) and the Poincaré-Friedrich inequality, we obtain

\begin{equation}
\left(\sum_{m=1}^{M} \Delta \tau \|E^m\|_{0,D}^2 \right)^{\frac{1}{2}} \leq C h^4 \left(\sum_{m=1}^{M} \Delta \tau \|\bar{\Lambda}_h W^m\|_{0,D}^2 \right)^{\frac{1}{2}}
\end{equation}

\begin{equation}
\leq C h^4 \left[\sum_{m=1}^{M} \Delta \tau \left(\|\partial^2 W^m\|_{0,D}^2 + \|\partial^2 W^m\|_{0,D}^2 + \|\partial^2 W^m\|_{0,D}^2 \right) \right]^{\frac{1}{2}}.
\end{equation}

Taking the \(L^2(D)\)--inner product of \((5.4)\) with \(\partial^4 W^m\) and then integrating by parts, we obtain

\begin{equation}
(\partial^2 W^m - \partial^2 W^{m-1}, \partial^2 W^m)_{0,D} + \Delta \tau \|\partial^4 W^m\|_{0,D}^2 + \mu \Delta \tau \|\partial^2 W^m, \partial^4 W^m\|_{0,D} = 0, \quad m = 1, \ldots, M.
\end{equation}

Using \((5.11)\), \((5.13)\) and the Cauchy-Schwarz inequality we obtain

\begin{equation}
\|\partial^2 W^m\|_{0,D}^2 + 2 \Delta \tau \|\partial^4 W^m\|_{0,D}^2 \leq \|\partial^2 W^{m-1}\|_{0,D}^2 + 2 \mu \Delta \tau \|\partial^2 W^{m-1}\|_{0,D} \|\partial^4 W^m\|_{0,D}, \quad m = 1, \ldots, M,
\end{equation}

which, after using the geometric mean inequality, yields

\begin{equation}
\|\partial^2 W^m\|_{0,D}^2 + \Delta \tau \|\partial^4 W^m\|_{0,D}^2 \leq \|\partial^2 W^{m-1}\|_{0,D}^2 + \Delta \tau \mu^2 \|\partial^2 W^m\|_{0,D}^2, \quad m = 1, \ldots, M.
\end{equation}
Since $2\mu^2 \Delta r < 1$, from (5.14) follows that
\[
\frac{\partial^2 W^m}{\partial^2 W^m} \leq \frac{1}{1 - \mu^2 \Delta r} \frac{\partial^2 W^{m-1}}{\partial^2 W^m}, \quad m = 1, \ldots, M,
\]
from which, applying a simple induction argument, we conclude that
\[
(5.15) \quad \max_{0 \leq m \leq M} \frac{\partial^2 W^m}{\partial^2 W^m} \leq C \| w_0 \|_{L^2(D)}^2.
\]
Next, sum both sides of (5.14) with respect to m, from 1 up to M, and use (5.15) to conclude that
\[
(5.16) \quad \sum_{m=1}^{M} \Delta \| \partial^4 W^m \|_{0, D}^2 \leq C \| w_0 \|_{L^2(D)}^2.
\]
Taking the $L^2(D)$–inner product of (5.1) with $\partial^2 W^m$, and then integrating by parts, it follows that
\[
(5.17) \quad (\partial W^m - \partial W^{m-1}, \partial W^m) + \Delta \| \partial^3 W^m \|_{0, D}^2 + \mu \Delta r (\partial W^m, \partial^3 W^m) = 0, \quad m = 1, \ldots, M.
\]
Using (2.11), (5.17), the Cauchy-Schwarz inequality and the geometric mean inequality, we obtain
\[
(5.18) \quad \| \partial W^m \|_{0, D}^2 + \Delta \| \partial^3 W^m \|_{0, D}^2 \leq \| \partial W^{m-1} \|_{0, D}^2 + \mu \Delta r \| \partial W^m \|_{0, D}^2, \quad m = 1, \ldots, M.
\]
Since $2 \mu^2 \Delta r < 1$, proceeding as in obtaining (5.15) and (5.16) from (5.14), we arrive at
\[
(5.19) \quad \left(\sum_{m=1}^{M} \Delta \| E^m \|_{0, D}^2 \right)^{1/2} \leq C \mu \| w_0 \|_{\mu^2}.
\]
Let $r = 2$. Then, by (2.22), (5.11) and the Poincaré-Friedrich inequality, we obtain
\[
(5.20) \quad \left(\sum_{m=1}^{M} \Delta \| E^m \|_{0, D}^2 \right)^{1/2} \leq C \mu^2 \left(\sum_{m=1}^{M} \Delta \| \bar{\Lambda}_b W^m \|_{1, D}^2 \right)^{1/2}
\leq C \mu^2 \left[\sum_{m=1}^{M} \Delta \left(\| \partial^3 W^m \|_{0, D}^2 + \| \partial W^m \|_{0, D}^2 \right) \right]^{1/2}.
\]
Combining, now, (5.20), (5.18) and (2.3), we obtain
\[
(5.21) \quad \left(\sum_{m=1}^{M} \Delta \| E^m \|_{0, D}^2 \right)^{1/2} \leq C \mu^2 \| w_0 \|_{\mu^4}.
\]
Thus, relations (5.19) and (5.21) yield (5.3) and (5.4) for $\theta = 1$.

Since $\mu^2 \Delta r < 1$, using (5.15), we have
\[
\bar{\gamma}_{b,h}(W^m_h - W^{m-1}_h) + \Delta r W^m_h = \Delta r \mu^2 \bar{\gamma}_{b,h} W^m_h, \quad m = 1, \ldots, M,
\]
from which, after taking the $L^2(D)$–inner product with W^m_h, we obtain
\[
(5.22) \quad \bar{\gamma}_{b,h}(W^m_h - W^{m-1}_h, W^m_h) + \Delta r \| W^m_h \|_{0, D}^2 = \Delta r \mu^2 \bar{\gamma}_{b,h}(W^m_h, W^m_h), \quad m = 1, \ldots, M.
\]
Then we combine (5.22) with (2.11) to have
\[
(5.23) \quad (1 - 2 \Delta r \mu^2) \bar{\gamma}_{b,h}(W^m_h, W^m_h) + 2 \Delta r \| W^m_h \|_{0, D}^2 \leq \bar{\gamma}_{b,h}(W^{m-1}_h, W^{m-1}_h), \quad m = 1, \ldots, M.
\]
Since $4 \mu^2 \Delta r < 1$, (5.22) yields that
\[
\bar{\gamma}_{b,h}(W^m_h, W^m_h) \leq \frac{1}{1 - 2 \mu^2 \Delta r} \bar{\gamma}_{b,h}(W^{m-1}_h, W^{m-1}_h)
\leq e^{4 \mu^2 \Delta r} \bar{\gamma}_{b,h}(W^{m-1}_h, W^{m-1}_h), \quad m = 1, \ldots, M,
\]
from which, applying a simple induction argument, we conclude that
\[
\max_{0\leq m\leq M} \tilde{\gamma}_{B,\delta}(W_h^m, W_h^m) \leq C \tilde{\gamma}_{B,\delta}(W_h^0, W_h^0).
\]
Summing with respect to \(m \) from 1 up to \(M \), and using (5.24), (5.23) gives
\[
\Delta \tau \sum_{m=1}^M \|W_h^m\|_{0,D}^2 \leq C (T_{B,\delta} w_0, w_0)_{0,D}
\]
Finally, using (5.25), (2.28) and (2.4) we obtain
\[
\tau \Delta \sum_{m=1}^M \|W_h^m\|_{0,D}^2 \leq C (T_{B,\delta} w_0, w_0)_{0,D}
\]
Finally, combining (5.26) with (5.19) to get
\[
\left(\sum_{m=1}^M \Delta \tau \|W_h^m-W_h^m\|_{0,D}^2 \right) \frac{1}{4} \leq C \|w_0\|_{H^2}^2,
\]
which yields (5.3) and (5.4) for \(\theta = 0 \).

5.2. The Stochastic Case. Our first step is to show the existence of a Green function for the solution operator of a discrete elliptic problem.

Lemma 5.1. Let \(r = 2 \) or \(3 \), \(\epsilon > 0 \) with \(\mu^2 \epsilon < 4 \), \(f \in L^2(D) \) and \(\psi_h \in M_h^r \) such that
\[
\psi_h + \epsilon \Lambda_{B,\delta} \psi_h = P_h f.
\]
Then there exists a function \(A_{\epsilon,h} \in H^2(D \times D) \) such that \(A_{\epsilon,h} \theta(D \times D) = 0 \) and
\[
\psi_h(x) = \int_D A_{\epsilon,h}(x,y) f(y) dy \quad \forall x \in \overline{D}
\]
and \(\psi_h(x,y) = A_{\epsilon,h}(x,y) \) for \(x,y \in \overline{D} \).

Proof. Let \(\delta_{\epsilon,h} : M_h^r \times M_h^r \rightarrow \mathbb{R} \) be the inner product on \(M_h^r \) given by
\[
\delta_{\epsilon,h}(\phi, \chi) := \epsilon (\Lambda_{B,\delta} \phi, \chi)_{0,D} + (\phi, \chi)_{0,D}
\]
We can construct a basis \((\chi_i)_{i=1}^{n_h} \) of \(M_h^r \) which is \(L^2(D) \)-orthonormal, i.e., \((\chi_i, \chi_j)_{0,D} = \delta_{ij} \) for \(i, j = 1, \ldots, n_h \), and \(\delta_{\epsilon,h} \)-orthogonal, i.e., there exist \((\lambda_{\epsilon,h,i})_{i=1}^{n_h} \subset (0, +\infty) \) such that \(\delta_{\epsilon,h}(\chi_i, \chi_j) = \lambda_{\epsilon,h,i} \delta_{ij} \) for \(i, j = 1, \ldots, n_h \) (see Section 8.7 in [9]). Thus, there are \((\mu_j)_{j=1}^{n_h} \subset \mathbb{R} \) such that \(\psi_h = \sum_{j=1}^{n_h} \mu_j \chi_j \), and (5.27) is equivalent to \(\mu_i = \frac{1}{\lambda_{\epsilon,h,i}} (f, \chi_i)_{0,D} \) for \(i = 1, \ldots, n_h \). Finally, we obtain (5.28) with \(A_{\epsilon,h}(x,y) = \sum_{j=1}^{n_h} \chi_j(x) \chi_j(y) / \lambda_{\epsilon,h,j} \).

Our second step is to compare, in a discrete in time \(L^\infty(T^\infty)(L^2(T^2)) \) norm, the Backward Euler time-discrete approximations of \(\tilde{u} \) with the Backward Euler finite element approximations of \(\tilde{u} \).

Proposition 5.2. Let \(r = 2 \) or \(3 \), \(\tilde{u} \) be the solution of the problem (1.4), \((\tilde{U}_h^m)_{m=0}^\infty \) be the Backward Euler finite element approximations of \(\tilde{u} \) defined in (1.8), (1.9), and \((\tilde{U}_h^m)_{m=0}^\infty \) be the Backward Euler time-discrete approximations of \(\tilde{u} \) defined in (1.1)–(1.2). Also, we assume that \(\mu^2 \Delta \tau \leq \frac{1}{4} \). Then, there exists a nonnegative constant \(\tilde{c}_2 \), independent of \(\Delta x, \Delta t, h \) and \(\Delta \tau \), such that
\[
\max_{0\leq m\leq M} \left(\mathbb{E} \left[\|\tilde{U}_h^m - \tilde{U}_h^m\|_{0,D}^2 \right] \right)^{1/2} \leq \tilde{c}_2 \epsilon \left(\|\tilde{U}_h^m\|_{1,D} \right)^{-\epsilon}, \quad \forall \epsilon \in (0, \nu(r)],
\]
where

\[\nu(r) := \begin{cases} \frac{1}{2} & \text{if } r = 2, \\ \frac{1}{4} & \text{if } r = 3. \end{cases} \]

Proof. Let \(I : L^2(D) \to L^2(D) \) be the identity operator and \(\Lambda_h : L^2(D) \to M_N^2 \) be the inverse discrete elliptic operator given by \(\Lambda_h := (I + \Delta h \Lambda_{A,h})^{-1} P_h \), having a Green function \(G_{\Lambda_h} = A_h^{-1} \) according to Lemma 5.1 and taking into account that \(\mu^2 \Delta h < 4 \). Also, we define an operator \(\Phi_h : L^2(D) \to M_N^2 \) by \((\Phi_h f)(x) := \int_D G_{\Lambda_h}(x,y) f(y) \, dy \) for \(f \in L^2(D) \) and \(x \in D \), where \(G_{\Lambda_h}(x,y) = -\partial_y A_h(x,y) \). Then, we have that \(\Lambda_h f = \Phi_h f \) for all \(f \in H^1(D) \). Also, for \(\ell \in \mathbb{N} \), we denote by \(\Lambda_{h\ell} \) the Green function of \(\Lambda_{h\ell} \).

In the sequel, we will use the symbol \(C \) to denote a generic constant that is independent of \(\Delta t, \Delta x, h \) and \(\Delta \tau \), and may changes value from one line to the other.

Applying, an induction argument, from (1.9) we conclude that

\[\hat{U}^m_h = \sum_{j=1}^m \int_{\Delta_j} \Lambda_h^{m-j} \Phi_h \hat{W}^m(\tau, \cdot) \, d\tau, \quad m = 1, \ldots, M, \]

which is written, equivalently, as follows:

\[\hat{U}^m_h(x) = \int_0^{\tau_m} \int_D \hat{D}_{h,m}(\tau; x, y) \hat{W}^m(\tau, y) \, dyd\tau \quad \forall x \in D, \quad m = 1, \ldots, M, \]

where \(\hat{D}_{h,m}(\tau; x, y) := \sum_{j=1}^m \Lambda_{h,\ell}(\tau) G_{\Lambda_{h,\ell}}(x,y) \) \(\forall \tau \in [0, T], \forall x, y \in D \). Using (4.22), (5.31), the Itô-isometry property of the stochastic integral, (2.5) and the Cauchy-Schwarz inequality, we get

\[
\begin{align*}
\mathbb{E} \left[\| \hat{U}^m - \hat{U}^m_h \|_{0,D}^2 \right] & \leq \int_0^{\tau_m} \left(\int_D \left[\hat{D}_{m}(\tau; x, y) - \hat{D}_{h,m}(\tau; x, y) \right]^2 \, dy dx \right) \, d\tau \\
& \leq \sum_{j=1}^m \int_{\Delta_j} \| \Lambda_h^{m-j} \Phi - \Lambda_h^{m-j} \Phi_h \|_{H^2}^2 \, d\tau, \quad m = 1, \ldots, M,
\end{align*}
\]

where \(\Lambda \) and \(\Phi \) are the operators defined in the proof of Theorem 4.2. Now, we use the definition of the Hilbert-Schmidt norm and the deterministic error estimate (5.3), to obtain

\[
\begin{align*}
\mathbb{E} \left[\| \hat{U}^m - \hat{U}^m_h \|_{0,D}^2 \right] & \leq \sum_{j=1}^m \Delta \tau \left[\sum_{k=1}^\infty \| \Lambda_h^{m-j} \Phi \varphi_k - \Lambda_h^{m-j} \Phi_h \varphi_k \|_{0,D}^2 \right] \\
& \leq \sum_{k=1}^\infty \Delta \tau \left[\sum_{\ell=1}^m \| \Lambda^\ell \varphi_k - \Lambda_h^\ell \varphi_k \|_{0,D}^2 \right] \\
& \leq \sum_{k=1}^\infty \lambda_k^2 \left[\sum_{\ell=1}^\infty \Delta \tau \| \Lambda^\ell \varepsilon_k - \Lambda_h^\ell \varepsilon_k \|_{0,D}^2 \right] \\
& \leq C h^2 \ell_*(\theta) \sum_{k=1}^\infty \lambda_k^2 \| \varepsilon_k \|_{H^2(\ell_*(\theta))}^2, \quad m = 1, \ldots, M, \quad \forall \theta \in [0, 1].
\end{align*}
\]

Thus, we arrive at

\[\max_{1 \leq m \leq M} \left(\mathbb{E} \left[\| \hat{U}^m - \hat{U}^m_h \|_{0,D}^2 \right] \right)^{\frac{1}{2}} \leq C h^2 \ell_*(\theta) \left(\sum_{k=1}^\infty \lambda_k^2 \left[\frac{1}{2} + \frac{2\ell_*(\theta)}{\ell_*(\theta) + \ell_*(\theta)} \right] \right)^{\frac{1}{2}}, \quad \forall \theta \in [0, 1]. \]

It is easily seen that the series in the right hand side of (5.32) convergences iff \(\nu(r) > \ell_*(r) \). Thus, setting \(\epsilon = \nu(r) - \ell_*(r) \theta \), requiring \(\epsilon \in (0, \nu(r)] \), and combining (5.32) and (2.10), we arrive at the estimate (5.29). \(\Box \)

The available error estimates allow us to conclude a discrete in time \(L^\infty_\tau (L^2_D(L^2_x)) \) convergence of the Backward Euler fully-discrete approximations of \(\hat{u} \).
Theorem 5.3. Let \(r = 2 \) or \(3 \), \(\nu(r) \) be defined by (5.30), \(\hat{u} \) be the solution of problem (1.6), and \(\hat{\hat{U}}_m^{(m)} \) be the Backward Euler finite element approximations of \(\hat{u} \) constructed by (1.8)-(1.9). Then, there exists a nonnegative constant \(C \), independent of \(h \), \(\Delta t \), \(\Delta \tau \) and \(\Delta x \), such that: if \(\mu^2 \Delta \tau \leq \frac{1}{4} \), then

\[
\max_{0 \leq m \leq M} \left\{ \mathbb{E} \left[\| \hat{\hat{U}}_m^{(m)} - \hat{u}(\tau_m, \cdot) \|_{0,s}^2 \right] \right\}^{\frac{1}{2}} \leq C \left[\omega_s(\Delta \tau, \epsilon_1) \Delta \tau^{\frac{3}{8} - \epsilon_1} + c_2^{-\frac{1}{2}} h^{\nu(r) - c_2} \right]
\]

forall \(\epsilon_1 \in (0, \frac{1}{4}] \) and \(c_2 \in (0, \nu(r)] \), where \(\omega_s(\Delta \tau, \epsilon_1) := c_1^{-\frac{1}{2}} + (\Delta \tau)^{\epsilon_1} (1 + (\Delta \tau)^{\frac{3}{4}} (\Delta \tau)^{\frac{3}{4}}) \).

Proof. The estimate is a simple consequence of the error bounds (5.29) and (1.21). \(\Box \)

ACKNOWLEDGMENTS

Work partially supported by the European Union’s Seventh Framework Programme (FP7-REGPOT-2009-1) under grant agreement no. 245749 Archimedes Center for Modeling, Analysis and Computation (University of Crete, Greece).

REFERENCES

[1] E.J. Allen, S.J. Novosel and Z. Zhang. Finite element and difference approximation of some linear stochastic partial differential equations. Stochastics Stochastics Rep., vol. 64, pp. 117–142, 1998.
[2] A. Are, M.A. Katsoulakis and A. Szepessy. Coarse-Grained Langevin Approximations and Spatiotemporal Acceleration for Kinetic Monte Carlo Simulations of Diffusion of Interacting Particles. Chin. Ann. Math., vol. 30B(6), pp. 653–682, 2009.
[3] L. Bin. Numerical method for a parabolic stochastic partial differential equation. Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden, June 2004.
[4] D. Blömker, S. Maier-Paape and T. Wanner. Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Transactions of the AMS, vol. 360, pp. 449–489, 2008.
[5] J.H. Bramble and S.R. Hilbert. Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal., vol. 7 (1970), pp. 112-124.
[6] A. Debussche and L. Zambotti. Conservative Stochastic Cahn-Hilliard equation with reflection. Annals of Probability, vol. 35, pp. 1706-1739, 2007.
[7] N. Dunford and J.T. Schwartz. Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space. Reprint of the 1963 original. Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.
[8] W. Grecksch and P.E. Kloeden. Time-discretised Galerkin approximations of parabolic stochastic PDEs. Bull. Austral. Math. Soc., vol. 54, pp. 79–85, 1996.
[9] G. H. Golub and C. F. Van Loan. Matrix Computations. Second Edition, The John Hopkins University Press, Baltimore, 1989.
[10] P. C. Hohenberg and B.I. Halperin. Theory of dynamic critical phenomena. J. Rev. Mod. Phys. vol. 49, pp. 435–479, 1977.
[11] G. Kallianpur and J. Xiong. Stochastic Differential Equations in Infinite Dimensional Spaces. Institute of Mathematical Statistics, Lecture Notes-Monograph Series vol. 26, Hayward, California, 1995.
[12] M.A Katsoulakis and D.G. Vlachos. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. J. Chem. Phys., vol. 119, pp. 9412–9427, 2003.
[13] P.E. Kloeden and S. Shot. Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs. Journal of Applied Mathematics and Stochastic Analysis., vol. 14, pp. 47–53, 2001.
[14] G.T. Kossioris and G.E. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise, Mathematical Modelling and Numerical Analysis 44, 289-322 (2010).
[15] G.T. Kossioris and G.E. Zouraris, Finite element approximations for a linear fourth-order parabolic SPDE in two and three space dimensions with additive space-time white noise, http://dx.doi.org/doi:10.1016/j.apnum.2012.01.003, Applied Numerical Mathematics (to appear).
[16] S. Larsson and A. Mesforush, Finite element approximation of the linearized Cahn-Hilliard-Cook equation,IMA J. Numer. Anal. 31, 1315-1333 (2011).
[17] J.L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Springer–Verlag, Berlin - Heidelberg, 1972.
[18] J. Printems. On the discretization in time of parabolic stochastic partial differential equations. Mathematical Modelling and Numerical Analysis, vol. 35, pp. 1055–1078, 2001.
[19] T.M. Rogers, K.R. Elder and R.C. Desai. Numerical study of the late stages of spinodal decomposition. Physical Review B, vol. 37, pp. 9638-9651, 1988.
Appendix A.

Let \(t > 0 \) and \(\mu_k := \lambda_k^2 (\lambda_k^2 - \mu) \) for \(k \in \mathbb{N} \) First, we recall that \(\mathcal{S}(t)w_0 = \sum_{k=1}^{\infty} e^{-\mu_k t} (w_0, \varepsilon_k)_{0,D} \varepsilon_k \) for \(t \geq 0 \), and set \(\tilde{\mathcal{S}}(t)w_0 = e^{-\mu^2 t} \mathcal{S}(t)w_0 \) for \(t \geq 0 \). Next, follow Chapter 3 in [21], to obtain

\[
\| \partial_t^\ell \tilde{\mathcal{S}}(t)w_0 \|_{\text{L}^2_{\text{HP}}} \leq \tilde{C}_{\mu,\ell} \sum_{k=1}^{\infty} \lambda_k^{2(p+4\ell)} e^{-\lambda_k^2 t} (w_0, \varepsilon_k)_{0,D}^2,
\]

where \(\tilde{C}_{\mu,\ell} := \left(1 + \frac{4\mu^2}{\pi^2} + \frac{4\mu^2}{\pi^2} \right)^{2\ell} \). Now, use (A.1), to have

\[
\int_{t_a}^{t_b} (\tau - t_a)^\beta \left\| \partial_t^\ell \tilde{\mathcal{S}}(\tau)w_0 \right\|_{\text{L}^2_{\text{HP}}}^2 d\tau \leq \tilde{C}_{\mu,\ell} \sum_{k=1}^{\infty} \lambda_k^{2(p+4\ell+2\beta)} \left(\int_{t_a}^{t_b} [\lambda_k^2 (\tau - t_a)]^\beta e^{-\lambda_k^2 \tau} d\tau \right) (w_0, \varepsilon_k)_{0,D}^2
\]

\[
\leq \tilde{C}_{\mu,\ell} \sum_{k=1}^{\infty} \lambda_k^{2(p+4\ell+2\beta-2)} \left(\int_{0}^{\infty} \rho^\beta e^{-(\rho+\lambda_k^2 t_a)} d\rho \right) (w_0, \varepsilon_k)_{0,D}^2
\]

\[
\leq \tilde{C}_{\mu,\ell} \left(\int_{0}^{\infty} \rho^\beta e^{-\rho} d\rho \right) \sum_{k=1}^{\infty} \lambda_k^{2(p+4\ell+2\beta-2)} (w_0, \varepsilon_k)_{0,D}^2,
\]

which yields

\[
\int_{t_a}^{t_b} (\tau - t_a)^\beta \left\| \partial_t^\ell \tilde{\mathcal{S}}(\tau)w_0 \right\|_{\text{L}^2_{\text{HP}}}^2 d\tau \leq \tilde{C}_{\beta,\ell,\mu} \| w_0 \|_{\text{H}^{p+4\ell+2\beta-2}}^2,
\]

where \(\tilde{C}_{\beta,\ell,\mu} = \tilde{C}_{\mu,\ell} \int_{0}^{\infty} x^\beta e^{-x} dx \). Observing that \(\partial_t^\ell \mathcal{S}(t)w_0 = e^{\mu^2 t} \sum_{m=0}^{\ell} \mu_m (\ell - m) \partial_t^m \mathcal{S}(t)w_0 \), and using (A.2), we conclude that

\[
\int_{t_a}^{t_b} (\tau - t_a)^\beta \left\| \partial_t^\ell \mathcal{S}(\tau)w_0 \right\|_{\text{L}^2_{\text{HP}}}^2 d\tau \leq e^{2\mu^2 T} C_{\beta,\ell,\mu} \sum_{m=0}^{\ell} \| w_0 \|_{\text{H}^{p+4m+2\beta-2}}^2
\]

which yields (2.16) with \(C_{\beta,\ell,\mu,T} = C_{\beta,\ell,\mu} e^{2\mu^2 T} \ell \). \(\square \)