Introduction

Apodemus species are among the most common small rodents inhabiting woodlands and forests of the Palaearctic and Oriental Region [1,2,3,4]. The genus has been subdivided into four subgenera, *Apodemus*, *Sylvaeous*, *Alsonsus* and *Kastomys* [5] and comprises 20–22 extant species [2,4,6].

There are 12 extant *Apodemus* species in the Oriental Region [2], but only four forms are reported from the Eastern Trans-Himalayas [4], including *A. peninsular*, *A. latronum*, *A. chevieri* and the *A. draco* complex. The *Apodemus draco* complex includes *A. draco*, *A. ilex*, and *A. orestes* and are distributed in mountainous areas in China, Myanmar, and India [2]. These taxa have been treated as three valid species, subspecies of a single species, or synonyms of *Apodemus draco* in different taxonomic revisions [2,3,5,7,8]. The fossil records and phylogenetic analysis suggested an initial radiation of *Apodemus* in East Asia into a Japanese endemic (*A. argentatus*), a Nepalese endemic (*A. gurkha*) and the ancestral lineage of the remaining eastern Asian species (subgenus *Apodemus*) after a two-step radiation process associated with the recent tectonic movements that occurred 5–7 Mya (million years ago) and 2–5 Mya, respectively [9,10,11]. The phylogeography of *Apodemus* in the Far East of Asia showed extensive isolations within *Apodemus* species and could be linked to the presence of many biogeographic barriers such as mountains, rivers, seas, and deserts [1], similar to many other species [9,12,13,14].

The Hengduan Mountains (i.e. the mountains of Southwest China) have the most complex river systems and a profoundly complex and dynamic geological history. The uplifting of the Himalayas and the Qinghai-Tibet Plateau and the successive alternation of glaciation and interglaciation in the Pleocene-Pleistocene contributed to the formation of natural geographical barriers and habitat heterogeneity [15]. This made it not only an important center of relic survival but also decisive evolutionary localities exist. Hence it is an excellent model system for biogeographic studies [16]. Previous studies of *Apodemus* considered this region to be the Pleistocene refugium or the radiation center for the East Asian *Apodemus* species [1,8,17,18]. However, there has not been sufficient evidence from morphometric and molecular studies to describe the phylogenetic relationship...
between *A. draco* and *A. ilex*, especially the biogeography in the south of the Hengduan Mountains and the Yunnan-Guizhou Plateau.

In this study, the complete cytochrome *b* gene sequences (cyt-*b*) were determined from 203 samples of *A. draco/ilex* that were collected from southwest China, including the Hengduan Mountains and the Yunnan-Guizhou Plateau. Using phylogenetic and phylogeographical approaches, we examined the different revisions regarding the taxonomic status of *A. ilex*, the effect of the complex geological structures in the Himalayan regions on the genetic diversity of *A. ilex*, as well as the hypotheses of the biogeographic patterns and colonization history of *A. ilex*. In addition, a Bayesian method with a “relaxed” clock model [19] was applied to co-estimate the phylogenetic relationships and divergence times of *Apodemus*.

Methods

Ethics Statement

All animal samples were obtained following the regulations for the implementation of China on the protection of terrestrial wild animals (State Council Decree [1992] No. 13) and approved by Wildlife Protection Office, Yunnan and Sichuan Provincial Forestry Departments, China as well as the Ethics Committee of Kunming Institute of Zoology, Chinese Academy of Sciences, China.

Sampling and sequencing

A total of 203 samples of *Apodemus draco/ilex* were collected from 51 localities in the southern Hengduan-Mountains and the Yunnan-Guizhou Plateau in China (Table S1, Figure 1). Specimens were identified based on the description of Thomas [20] and Barrett-Hamilton [21].

Total genomic DNAs were extracted from muscle or liver preserved in 95% ethanol at −20°C by using the phenol/proteinase K/sodium dodecyl sulphate method [22]. Mitochondrial cyt-*b* sequences (1,140 bp) were amplified with the universal primers of L14724 and H15915 [23]. The 50 μl PCR reaction contained 5 μl of 10X PCR buffer, 2 μl of 2 mM dNTP mixture, 2 μl of bovine serum albumin (1 mg/ml), 1 μl of 10 mM of each primer, 2.5 μl of 25 mM MgCl₂, 1.25 U Taq DNA Polymerase (Takara, Dalian, China) and approximately 100 ng total genomic DNA as template, and DNase/RNase free water diluted to a final volume of 50 μl. A touchdown PCR protocol [24] was used to prevent non-specific amplification, including an initial denaturation at 94°C for 10 min, 10 cycles of denaturation at 94°C for 40 s, annealing at 52.5°C but...
Phylogenetic and molecular divergence analysis

The DNA sequences were edited with Segman and EditSeq (DNASTAR, Lasergene v.7.1) and aligned with ClustalX v.1.83 [25]. Genetic distance was calculated with MEGA v.4.0 [26] with the Kimura 2-parameter (K2P) model [27].

We apply Bayesian inference (BI) and maximum likelihood (ML) to reconstruct phylogenetic relationships. We used RAxML v.7.2.8 [28,29] for ML analyses on the CIPRES Science Gateway (ML) to reconstruct phylogenetic relationships. We used RAxML [25]. Genetic distance was calculated with MEGA v.4.0 [26], with the 95% CI. The third calibration date was 12.3–11.0 Mya, the divergence of Apodemus flavicollis, the common ancestor of Mus and Rattus was included in analyses (Table S2).

Results

Phylogeography of Apodemus ilex

Because A. draco and A. ilex are morphologically indistinguishable, the sequences of the samples were identified based on the pairwise comparison with the sequences of the specimens collected at or near their type localities. The type locality for A. draco is located at Kuatum, Fujian, China, while the type locality for A. ilex is at Salween - Mekong divide (28° 20′ N) [20]. In analysis, the sequences determined from the topotype specimen of A. draco by Liu et al. [8] (Accession number : AY389009) and the specimen from near the type locality of A. ilex from Mt. Meili, China (28° 23.8′ N) were serve as the reference sequences for A. draco and A. ilex, respectively. Of the 203 sequences generated in this study, 6 were identified as A. draco and 197 as A. ilex (Tables S1, S2). Haplotype analysis of 201 cyt-b sequences of A. ilex, including 4 sequences from GenBank, identified 134 haplotypes. The new identified haplotypes were submitted to GenBank (Accession numbers: JF503102–JF503107 (A. draco) and JF503109–JF503198, JF503200–JF503228, JF503230–JF503240 (A. ilex)).

The phylogeny estimated by RAxML and BEAST were congruent with each other and the topologies were overall highly supported. Thus, only the Bayesian trees were given and both Bayesian posterior probabilities and ML bootstrap support values (BS) were represented (Figures 2, 3). All populations of A. ilex and
A. draco formed strongly supported (BS = 94, PP = 1.0) reciprocal monophyletic groups. The sister relationship between A. draco and A. ilex was also supported (BS = 90, PP = 0.87), with 9.0% of a K2P distance. All 201 A. ilex samples were grouped into the Eastern (E) and Western (W) clades, each containing two subclades: E1/E2 and W1/W2 (Figures 2, 3). All clades and subclades were significantly supported by BI analyses (PP = 1.0) and at least moderately supported by ML analyses (BS = 62). The K2P distances between clades and subclades were: E/W = 3.1%, E1/E2 = 1.9% and W1/W2 = 1.6%.

Table 1 presents the divergence times based on the Bayesian relaxed molecular dating estimation. A. ilex and A. draco diverged from their common ancestor at about 2.25 Mya (95% CI = 1.69–2.82). The earliest split within A. draco occurred about 1.15 Mya (95% CI = 0.84–1.46), much earlier than the split of the clades E and W of A. ilex at about 0.62 Mya (95% CI = 0.44–0.84). The divergence times of subclades E1/E2 and W1/W2 were at about 0.33 Mya (95% CI = 0.23–0.45) and 0.32 Mya (95% CI = 0.22–0.45), respectively.

Genetic diversity and structure of A. ilex

Phylogenetics analysis of 201 cyt-b sequences of A. ilex detected 963 conserved sites (84.6% of all sites) and 175 variable sites (15.4% of all sites). The K2P distances between haplotypes of A. ilex ranged from 0.0% to 4.1% (average 2.1%). The overall haplotype diversity (Hd) and nucleotide diversity (Pi) were 0.993 and 0.021, respectively. The pairwise Fst estimation among populations ranged widely from 0.00 to 1.00. Most populations are strongly differentiated from each other (Fst > 0.25) indicating restricted gene flow. High levels of gene flow are more often observed within geographically close populations (e.g. population 16 and 18, Fst < 0.001; Table S3).

In clade E, the haplotypes in both E1 and E2 are widely distributed in the east and some areas of the west of the Mekong basin.
River (populations 1, 14, 34, 36, 39 containing E1 haplotypes and population 1 containing E2 haplotypes; Figure 1). In clade W, the haplotypes in W1 were mainly distributed in the west of the Salween River and two localities east of the Mekong River (populations 10 and 26); while the haplotypes in W2 were distributed mainly in the southern part of the Yunnan-Guizhou Plateau and west of the Mekong River. In addition, sympatric distribution of different maternal lineages were observed in several localities (i.e., population 1, 2, 8, 10, 11, 16, 19, 34, 36, 39; Figure 1).

Further geographical structure was examined with AMOVA using three grouping options, including (1) the populations grouped by the subclades E1, E2, W1 and W2; (2) the populations grouped by geographical distributions, namely, the individuals from the west of the Salween River as group 1, the individuals from the east of the Mekong River as group 2, and the individuals from the east of the Mekong River as group 3; and (3) the populations grouped with the same way as (2) except for populations 1 and 14 which were included in group 3 (Figure 1). The results of AMOVA showed significant genetic structures at all hierarchical levels (P<0.001) and the largest proportion of variances were always found among groups (Table 2). In size order, the variances among groups were the second grouping variances were always found among groups (Table 2).

The network analyses generated eleven most parsimony trees that were similar to the gene tree inferred from the BEAST values from 0.715, 0.737 to 0.822, respectively. W group had the third grouping option (54.12%), with the corresponding increased BS. The network analyses generated eleven most parsimony trees that were similar to the gene tree inferred from the BEAST values from 0.715, 0.737 to 0.822, respectively. W group had the third grouping option (54.12%), with the corresponding increased BS. The network analyses generated eleven most parsimony trees that were similar to the gene tree inferred from the BEAST values from 0.715, 0.737 to 0.822, respectively. W group had the third grouping option (54.12%), with the corresponding increased BS.

Table 1. Divergence information within and between groups of *Apodemus*

Node	Age	95% CI range	Divergence Event
t1*	11.92	10.49–14.20	Rattus/Mus
t2*	10.84	10.18–11.95	Mus/Apodemus
t3	9.63	9.16–10.39	Sylvaemus Group/Apodemus Group
t4	3.97	3.41–4.63	sylvaemus/alpicola+flavicollis+tralenis
t5	2.87	2.21–3.63	tralenis/alpicola+flavicollis
t6	2.20	1.55–2.85	flavicollis/alpicola
t7	8.35	6.98–9.48	Apodemus Group/mystacinus
t8	7.06	5.94–8.38	agrarius subgroup/draco subgroup
t9	6.12	4.89–7.49	peninsularis/(agranius+chevrieri+spectabilis)
t10	5.13	3.95–6.45	speciosus/(agranius+chevrieri)
t11	1.56	1.12–2.08	chevrieri/agranius
t12	4.74	3.64–5.99	latrunum/(draco+ilex+semotus)
t13	2.67	2.02–3.34	semotus/(draco+ilex)
t14	2.25	1.69–2.82	draco/ilex
t15	1.15	0.84–1.46	draco MRCA
t16	0.62	0.44–0.84	igh E/W
t17	0.33	0.23–0.45	igh E1/E2
t18	0.32	0.22–0.45	igh W1/W2

*Nodes used for calibration.

doi:10.1371/journal.pone.0031453.t001

Discussion

The clade E1 has the most complex structure and can be further divided into 4 subgroups (E1a, E1b, E1c, and E1d). E1a consisted of the haplotypes from Caoqian (population 14). E1b consisted of the haplotypes from Mt. Haba, Mt. Yulong, Lushi and Mt. Bangma (populations 3 and 6, 10, 24 and 36, respectively). E1c mainly included the haplotypes from the Mt. Wuliang and Mt. Ailaos in central Yunnan (populations 15–22), and E1d contained the haplotypes from the northwest of Yunnan (Table S1). Star-like structures were found in E1c. E1d, W1 and W2 (Figure 4), though the original haplotypes were not found in W1 and W2. These structures are evidence of population expansion [52].

Population historical demography of *A. ilex*

The analysis of MDA suggested that all four groups showed multimodal distributions (Figure S1) but with small SSD and rg values (Table 3). Moreover, Fu’s and R2 test showed the large populations have significant negative Fs (i.e., E1, W1, W2) when small populations have significant small R2 (i.e., E2) (Table 3). Further analyses of the subgroups E1c and E1d revealed smooth unimodal mismatch distributions and significant negative Fu’s Fs values (Table 3, Figure S1). The insensitive values of PSSD and Prg (P>0.05) in E1c, E1d and W2 confirmed the expansions within these group/subgroups; while the significant PSSD/Prg (P<0.05) of W1 might be due to insufficient sample size [53]. Group E2 had multimodal distribution and insignificant negative Fu’s Fs value, but the significant small R2 value and the insignificant values of PSSD and Prg implied the possibility of expansion in congruent with the network topologies. Because the divergence time between group E and W was at about 0.62 Mya, the population expansions of E1c, E1d and W1 were approximately at 0.064, 0.038 and 0.039 Mya, respectively (Table 3).

Taxonomic implication of *Apodemus ilex*

The taxonomic status of *A. draco, A. ilex* and *A. orestes* have been controversial for a long time. *Apodemus ilex* was named based on specimens collected from the Salween-Mekong divide (28°20’N), China [20] but was treated as a synonym of *A. orestes* [7] or *A. draco* [5,54]. Musser et al. [6] included *orestes* within *A. draco*, but, after comparing the cranial characteristics between *A. orestes* and *A. draco* that are distributed in Wuliang Mountain, China, Jiang and Wang considered *A. orestes* as a valid species [3]. Patterns of genetic variations observed in the complex of *A. draco* based on cyt-b genes suggested that *A. orestes* was a subspecies of *A. draco*, and *A. ilex*, which is distributed in the Yunnan-Guizhou Plateau, is a valid species [8]. However, Musser et al. [2] still considered *A. ilex* and *A. orestes* as synonyms of *A. draco*.

With inclusion of 214 samples of *A. draco/ilex* that were widespread in the southern Hengduan Mountains and Yunnan-Guizhou Plateau, two major phylogroups were identified within the *A. draco* complex, one representing *A. draco* that consists of the specimens from eastern and western China, including all specimens from the western Sichuan Plateau, and another representing *A. ilex* that contains the samples mainly from the southern Hengduan Mountains and the western Yunnan Plateau. The average genetic distance between *A. draco* and *A. ilex* was 0.09 (K2P). The molecular dating estimation suggested that the divergence between *A. draco* and *A. ilex* was at about 2.25 Mya,
earlier than the split of A. alpicola and A. flavicollis or A. agrarius and A. chevrieri at 2.20–1.56 Mya (Table 1, Figure 2). These results support the recognition of A. ilex as a valid species under genetic and phylogenetic species concepts [55,56]. The taxonomic status of A. orestes will be discussed elsewhere (Chen et al. in preparation).

Phylogeographic structure in A. ilex and topography of mountains and rivers

The Hengduan Mountains have long been recognized as a refugial area for animals [57,58]. Previous analyses either focused on the northern Hengduan Mountain [59,60,61] or treated this area as one refugium Only a few studies have addressed the effect of the extremely complex topography of the southern Hengduan Mountains and the Yunnan Plateau [62,63]. Our research revealed the significant internal genetic structure within the mountains which is relevant to the “microrefugia” [64] or “refugia within refugia” [65,66]. These concepts are usually used to explain the phylogenetic structure in the refugia such as the Iberian Peninsula or disjunctive populations surviving in isolated microhabitats. The extremely complex topography [67], climate [68] and habitats [69] in the mountains as well as the mid-high elevation distributed pattern of A. ilex could have lead to the geographically isolation of A. ilex among different mountain areas and the subsequently restricted gene flow, which are respond for the strong geographic structure and the high pairwise F_{st} values [70].

The minimum-spanning network and AMOVA analyses indicated the geographic structure of A. ilex was also shaped by the Mekong and Salween river systems. When the two rivers were setup as the genetic barriers in the AMOVA analyses, the

Groups	Φ_{ST}	Φ_{SC}	Φ_{CT}	%among groups	%among populations within groups	%within populations
Four subclades	0.822*	0.603*	0.551*	55.17	27.05	17.78
Divided by two river	0.715*	0.497*	0.433*	43.30	28.20	28.50
Third choice	0.737*	0.427*	0.541*	54.12	19.57	26.31

*P < 0.05.
doi:10.1371/journal.pone.0031453.t002

Figure 4. The median-joining network of A. ilex based on cyt-b sequences. The circle size is proportional to the haplotype frequency and the branch length is proportional to the number of mutations.
doi:10.1371/journal.pone.0031453.g004
variances existed mainly among populations in different regions ($\Phi_{ST} = 0.715$) (Table 2). This result is congruent with the recent proposed hypothesis that deep river valleys may have acted as barriers to *Apodemus* species [1] as well as to other animals [71]. However, another montane mammal, the Yunnan hare (*Lepus conus*) has no phylogeographic pattern in the same area. Neither the area of low-elevation nor the river systems seem to be the barrier for the hares [72]. On the other hand, the paleo-drainage systems have facilitated dispersal of a frog species [62]. The discrepancy may due to the different habitats, dispersal abilities and colonization histories. The *Nanorana yunnanensis* is a semi-aquatic anuran living in cold montane streams [62]; the *L. conus* is much larger than *A. ilex* and may have colonized this area only recently [72].

Effect of glaciation

The biogeographic histories of the montane inhabitants are usually affected by Pleistocene glacial cycles [73,74,75]. Generally, animals respond to climate change in different ways [76]. First is by changing their distribution. The montane animals usually have larger distribution during glacial periods (but see [77,78]) when they spread to lowland [79,80], and the glacial and interglacial climate fluctuation can result in population isolation and reconnection [73,74,78,83,84]. Second is by adapting to new environments [75,76,81]. Apparently, *A. ilex* occupies the same habitats as its relatives (i.e. *A. draco* and *A. semotus*) and hasn’t adapted to a new environment, thus it had to shift distribution responding to climate change.

With a Bayesian method under a “relaxed” clock model, *A. ilex* diverged from *A. draco* at around 2.25 Mya. Therefore, the ancestor of *A. ilex* probably expanded southward from the northern Hengduan Mountains during global cooling in the period 2.7–2.5 Mya [85]. After that, divergence of *A. draco/ilex* may be attributed to the accelerated uplift of the Qinghai-Tibet Plateau and the resulting geomorphic changes of the plateau and the surrounding areas [86] as well as to turnover of vegetation and habitats [87]. The divergence between the eastern and western populations of *A. ilex* (~0.62 Mya) was within the Yulong glaciation (0.73–0.5 Mya) [88] and the simultaneous divergences of the subclades E1/E2 (0.33 Mya) and W1/W2 (0.32 Mya) were consistent with the Lijiang glaciation (0.31–0.13 Mya) [89]. Because the calibration points we used are old (4 Mya to 0.01 Mya) [90,91], our research has, however, revealed significant internal genetic structure which suggests that the “microrefugia” or “refugia within refugia” models are more relevant.

Conclusion and Perspectives

The Hengduan Mountains are the most important refugial region in China. Other studies have regarded the mountains as a single refugium, our research has, however, revealed significant internal genetic structure which suggests that the “microrefugia” or “refugia within refugia” models are more relevant.

Our finding suggests that both the low-elevation areas and deep river valleys are strong geographic barriers for *A. ilex*. However, for aquatic animals in this area, the drainage system is more likely to facilitate dispersal rather than prohibit it [62]. Thus, it seems the drainage system did play a role in shaping geographic patterns, but in different ways for different animals. Furthermore, the evolution of the drainage system may have led to a more complex geographic pattern.

Paleoclimatic change has also shaped genetic structure. The glacial-interglacial cycles not only resulted in inter- and intraspecific divergence, but also led to population expansion and secondary contact.

Our study has shed light on the biodiversity in this area. However, because of the complex topography of the mountains, complicated geological history of the drainage system, Pleistocene climate fluctuation and habitat turnover, it is far from clear how the high endemic biodiversity came into existence. It would be necessary to use comparative phylogeographic approaches of animals distributed in different habitats and with different dispersal abilities to examine how the topography, geographic
events and climate change have shaped the biodiversity in the mountains of Southwest China [74,93,94].

Supporting Information

Figure S1 MDA and Fu’s Fs test for four subclades of A. ilex.

Table S1 Sampling information and genetic variability of A. draco/ilex used in this study.

Table S2 Information of outgroups used in this study.

Table S3 Pairwise FST values for all pair of populations.

References

1. Sakka H, Quere J, Kartavtseva I, Pavlenko M, Chelomina G, et al. (2010) Comparative phylogeny of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of Quaternary climatic changes in their genetic structure. Biological Journal of the Linnean Society 100: 797–821.
2. Musser GG, Carleton MD, Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. 4th ed. Smithsonian Institution Press, Washington, DC. pp 601–756.
3. Allen GM (1938) The mammals of China and Mongolia (Natural History of Mammals). Journal of Molecular Evolution 32: 128–144.
4. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the Cytochrome-B Gene to Circumvent Spurious Priming during Gene Amplification. Nucleic Acids Research 19: 4000–4008.
5. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment guided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.
6. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.
7. Kimura M (1980) A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide-Sequence. Journal of Molecular Evolution 16: 111–120.
8. Stamatikas A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2681–2689.
9. Stamatikas A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 756–771.
10. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. IEEE, pp 1–8.
11. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 1417–2149.
12. Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Systematic Biology 54: 373–390.
13. Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Bioinformatics, Oxford University Press, Oxford.
14. Heled J, Drummond AJ (2010) Bayesian Inference of Species Trees from Multilocus Data. Molecular Biology and Evolution 27: 570–580.
15. Huelenbeck JP, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904–913.
16. Ho SYM (2007) Calibrating molecular estimates of substitution rates and divergence times in birds, Journal of Avian Biology 38: 809–414.
17. Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution 22: 1561–1568.
18. Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ (2007) Evidence for time dependency of molecular rate estimates. Systematic Biology 56: 513–522.
19. Martin-Suarez E, Omis O, Freudenhal M, Agusti J, Parra JM (1996) Continental Mio-Pliocene transition in the Granada Basin. Lethaia 31: 161–166.
20. Ho SYW, Philippe H, Lohse M, Lartillot N, Larget B, et al. (2005) Bayesian estimation of species trees using coalescent simulations. Systematic Biology 54: 509–519.
21. Benton MJ, Donoghue PC (2004) Paleontological evidence to date the tree of life. Molecular Biology and Evolution 21: 1546–1553.
22. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 1417–2149.
23. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 1417–2149.
24. Wright S (1978) Evolution and the Genetics of Population. Variability within and among natural populations University of Chicago Press, Chicago.
48. Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569.

49. Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915.

50. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19: 2092–2100.

51. Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human biology, an international record of research 66: 591.

52. Forster P (2004) Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 253.

53. Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP (2002) Phylogeographic differentiation of mitochondrial DNA in Han Chinese. American Journal of Human Genetics 70: 635–651.

54. Musser GG, Brothers EM, Carleton MD, Hutterer R (1996) Taxonomy and distributional records of Oriental and European Apodemus, with a review of the Apodemus-Sylvaezus problem. Bonner Zoologische Beitrage 46: 143–190.

55. Nixon KC, Wheeler QD (1990) An Amplification of the Phylogenetic Species Concept. Cladistics-the International Journal of the Willi Hennig Society 6: 211–223.

56. Zhang RZ (1999) Zoogeography of China. Beijing: Science Press.

57. Zhang RZ (2002) Geological events and mammalian distribution in China. Acta Zoologica Sinica 48: 141–153.

58. Zhang RZ (1999) Zoogeography of China. Beijing: Science Press.

59. Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. Journal of Mammalogy 87: 643–662.

60. Chen W, Liu S, Liu Y, Hao H, Zeng B, et al. (2010) Phylogeography of the large white-bellied rat Niviventer excelsior suggests the influence of Pleistocene Glaciations in the Hengduan Mountains. Zoological Science 27: 487–493.

61. Fan Z, Liu S, Liu Y, Zhang X, Yue B (2011) How Quaternary geologic and climatic events in the southeastern margin of the Tibetan Plateau influence the genetic structure of small mammals: inferences from phylogeography of two rodents, Neodon Irene and Apodemus lataurinus. Genetica 139: 339–351.

62. Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, et al. (2010) Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the yunnan spiny frog, Nanorana yunnanensis [Dicroglossidae]. Molecular Ecology 19: 3406–3420.

63. Zhang M, Rao D, Yang J, Yu G, Wilkinson JA (2010) Molecular phyogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Molecular Phylogenetics and Evolution 54: 47–58.

64. Rull V (2009) Microrefugia. Journal of Biogeography 36: 481–484.

65. Grillo A, Amori G, Aloise G, Lisi I, Tosi G, et al. (2009) Molecular phylogeography of European Sciarus vulgaris: refuge within refuge? Molecular Ecology 18: 2607–2609.

66. Gomae A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. Phylogeography in southern European regions; Sun HL, ed. Beijing: Science Press.

67. Li BY (1989) Geomorphologic regionalization of the Hengduan Mountains and the modern Jinsha River valley. Geological Bulletin of China 26: 960–969.

68. Zhao E, Yang D (1997) Amphibians and reptiles of the Hengduan Mountain region; Sun HL, ed. Beijing: Science Press.

69. Yao YH, Zhang BP, Han F, Pang J, et al. (2009) Spatial Pattern and Exposure Effect against population growth. Molecular Biology and Evolution 19: 2092–2100.

70. Li BY (1989) Geomorphologic regionalization of the Hengduan Mountains and the modern Jinsha River valley. Geological Bulletin of China 26: 960–969.

71. Song G, Qiu Y, Yin Z, Li S, Liu N, et al. (2009) Phylogeography of the Akippe morrisonii [Aves: Timaliidae]: long population history beyond late Pleistocene glaciations. BMC Evolutionary Biology 9: 143.

72. Wu CH, Li HY, Wang YX, Zhang YP (2000) Low genetic variation of the Yunnan hare (Lepus comus G. Allen 1927) as revealed by mitochondrial cytochrome b gene sequences. Biochemical Genetics 38: 187–193.

73. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 183–195.

74. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.

75. Hewitt G (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society (United Kingdom) 58: 247–276.

76. Stewart JR (2009) The evolutionary consequence of the individualistic response to climate change. Journal of Evolutionary Biology 22: 2363–2375.

77. Betin O, Cornejo C, Edwards P, Holderegger R (2007) Phylogeography of the high alpine plant Serococci halleri (Asteraceae) in the European Alps: in situ glacial survival with postglacial stepwise dispersal into peripheral areas. Molecular Ecology 16: 2517–2524.

78. Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography 36: 476–480.

79. Stewart JR (2003) Comment on “Buffered Tree Population Changes in a Quaternary Refugium: Evolutionary Implications” Science 299: 825.

80. Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99: 133–142.

81. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences 277: 661.

82. Hewitt G (1999) Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

83. Yuan SL, Liu KL, Oshida T (2006) Phylogeography of the mole-shrew (Anoursororx Yamashinae) in Taiwan: implications of interglacial refugia in a high-elevation small mammal. Molecular Ecology 15: 2119–2130.

84. McCormack JE, Bowen DS, Smith TB (2008) Integrating paleoecology and genetics of bird populations in two sky island archipelagos. BMC Biology 6: 28.

85. Yamada K, Tanaka Y, Iizuki T (2005) Palaeoecographic shifts and global events recorded in late Pleocene shallow marine deposits (2.80–2.55 Ma) of the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 255–271.

86. An Z, Wang S, Wu X, Chen M, Sun D, et al. (1999) Eolian evidence from the Chinese Loess Plateau: The onset of the Late Cenozoic great glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing. Science in China Series D: Earth Sciences 42: 258–271.

87. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.

88. Wu Y, Cui Z, Liu G, Ge D, Yin J, et al. (2004) Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai-Xizang (Tibet) Plateau. Geomorphology 56: 203–216.

89. Zhao XT, Zhang YS, Qi Y, Guo CB (2007) Pleistocene glaciations along the western foot of the Yulong Mountains and their relationship with the formation and development of the Jinsha River. Quaternary sciences 27: 35–44.

90. Zhao X, Qi Y, Zhang Y, Hu D, Guo C (2007) Discovery of Shigs paleolake in the Lijiang area, northwestern Yunnan, China and its significance for the development of the modern Jinsha River valley. Geological Bulletin of China 26: 960–969.

91. Clark M, Schoenbohm L, Royden L, Whipple K, Burchfield B, et al. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23: 1006–1029.

92. Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, et al. (1997) Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276: 1821–1825.

93. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.

94. Qu Y, Lei Z, Zhang R, Lu X (2010) Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Molecular Ecology 19: 338–351.