Intra-domain Cross-talk Regulates Serine-arginine Protein Kinase 1-dependent Phosphorylation and Splicing Function of Transformer 2β1*

Michael A. Jamros‡1, Brandon E. Aubol‡1, Malik M. Keshwani‡, Zhaiyi Zhang‡, Stefan Stamm§, and Joseph A. Adams‡2

From the ‡Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636 and the §Molecular and Cellular Biochemistry Department, University of Kentucky, Lexington, Kentucky 40536

Background: Serine-arginine-rich (SR)-like proteins regulate the alternative splicing of human genes.

Results: The serine-arginine protein kinase 1 (SRPK1) phosphorylates transformer 2β1 (Tra2β1) at numerous sites regulating RNA binding, splicing of the survival motor neuron 2 gene, and catalytic function of the kinase domain.

Conclusion: The two RS domains interact and regulate Tra2β1 activity in a phosphorylation-dependent manner.

Significance: SRPK1 is a regulator of Tra2β1.

Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.

The splicing of precursor mRNA transcripts is dependent on an essential group of splicing factors known as SR3 proteins.

* This work was supported, in whole or in part, by National Institutes of Health Grants RO1 GM067969 (to J. A. A.) and a supplement to GM067969. The authors declare that they have no conflicts of interest with the contents of this article.

† Both authors contributed equally to this work.

‡ To whom correspondence should be addressed: Dept. of Pharmacology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0636; Tel.: 858-822-3360; Fax: 858-822-3361; E-mail: j2adams@ucsd.edu.

§ The abbreviations used are: SR, splicing factor containing arginine-serine repeat; ESE, exonic splicing enhancer; kdSRPK1, kinase-dead SRPK1 with K109M, MALDI-TOF, matrix assisted laser desorption/ionization-time of flight; RRM, RNA recognition motif; RS domain, domain rich in arginine-serine repeats; RS1, N-terminal RS domain of Tra2β1; RS2, C-terminal RS domain of Tra2β1; SMN, survivor motoneuron gene; SRPK1(6M), SRPK1 with six mutations in docking groove.

For the full text, please refer to the original article in the Journal of Biological Chemistry.
Phosphorylation of Tra2β1

(SRPKs and CLKs) have been linked to SR protein-dependent splicing (8, 9, 13). In recent years, peptide mapping and kinetic methods have been employed to better define the phosphorylation state and mechanism for SRSF1. The RS domain in this splicing factor is the smallest within the SR protein family (50 residues) and contains both long and short Arg-Ser dipeptide repeats that are phosphorylated differentially. SRPK1 (serine-arginine protein kinase 1) efficiently targets a long repeat region in the N-terminal half of the RS domain phosphorylating it in a strict C- to N-terminal direction (14). This unique mechanism is semi-processive, and is driven by an electronegative docking groove in the kinase domain that sequentially feeds dipeptides into the active site (14–16). SRPK1 can rapidly phosphorylate about 9–12 serines on this Arg-Ser dipeptide stretch, a modification that directs SRSF1 attachment to a specific transportin (TRN-SR) and subsequent entry into the nucleus (17, 18). Detailed structure-function studies indicate that SRPK1 mostly targets longer Arg-Ser repeats in the RS domain of SRSF1 (15).

Although these studies have opened a window into RS domain phosphorylation, SRSF1 is one of 12 members of the SR protein family (SRSF1–12) that differ considerably in the position, number, and length of their Arg-Ser repeat regions (19). How SRPKs target these diverse RS domains and affect splicing function is still not understood.

Several splicing factors depart from the traditional SR proteins and fall into the category of SR-like proteins. Unlike classic SR proteins, SR-like proteins do not complement SR protein-deficient HeLa cell S100 extracts indicating that they are not essential for splicing (20). However, they control splice-site usage and antagonize the actions of traditional SR proteins (21). One member of the SR-like family is transformer 2 (Tra2), a protein first identified as a sex-determining factor in Drosophila (22). Although human Tra2 contains an RRM and a C-terminal RS domain, it also contains a long, N-terminal RS domain distinguishing it from the traditional SR proteins. One isoform, Tra2β1 (β isoform of Tra2 protein), has been shown to regulate gene splicing by binding to precursor mRNA and working cooperatively with other splicing factors, including SR proteins (23, 24). Tra2β1 has been implicated in neurodegenerative diseases by controlling specific exon usage in the tau gene. Several tauopathies, including frontotemporal dementia and Alzheimer disease correlate with a mis-balanced in the 3R/4R isoforms of the Tau protein (13, 25). The up-regulation of Tra2β1 may have some therapeutic value in spinal muscle atrophy which results from a loss of the survival motor neuron-1 gene (SMN1). Patients have a second copy of the gene (SMN2) that does not rescue the disease phenotype because one exon (exon 7) is alternatively spliced producing a truncated, unstable protein (26). This alternatively spliced form of SMN2 is the result of a single C-to-T change in the ESE of exon 7 (27). Interestingly, Tra2β1 expression promotes inclusion of exon 7 resulting in a full-length SMN protein (28).

Although Tra2β1 is important for splicing, the role of phosphorylation is still not well understood. Prior studies have shown that Tra2β1 hyper-phosphorylation, identified by a gel shift, inhibits RNA binding suggesting a role for kinase-mediated changes in spliceosome assembly and splice-site selection (29). Although SR protein phosphorylation facilitates nuclear entry of SR proteins, hyper-phosphorylated forms of Tra2β1 are predominantly localized to the cytoplasm in the brain rather than the nucleus (30, 31). Furthermore, nuclear import of Tra2β1 by TRN-SR1 can occur in a phosphorylation-independent manner (32). Structure-function studies indicate that the N-terminal RS domain is necessary for Tra2β1 localization in nuclear speckles and that phosphorylation promotes cytoplasmic accumulation (31). These findings illustrate that the cytoplasmic-nuclear distribution of Tra2β1 is regulated differently than that for most SR proteins. However, despite its functional significance, little is know about the mechanism of Tra2β1 phosphorylation. In this study, we show that SRPK1 enhances Tra2β1-dependent splicing of the SMN2 gene. Based on mass spectrometric and kinetic methods, we found that SRPK1 rapidly phosphorylates 21 serines in Tra2β1 using a docking groove in the kinase domain. Interestingly, although SRPK1 can phosphorylate five serines in the C-terminal RS domain (RS2) in the splice variant lacking RS1 (Tra2β3), the presence of RS1 in the full-length form inhibits RS2 phosphorylation suggesting RS domain cross-talk. Nonetheless, RS2 is not a silent domain. Based on viscosometric and rapid quench experiments, RS2 coordinately up-regulates phosphorylation rates in RS1 of Tra2β1 by increasing the association rate of the substrate and dissociation rate for ADP in SRPK1. The two RS domains serve coordinate roles in regulating SRPK1-dependent splicing and RNA binding. Although the unphosphorylated RS2 enhances binding to an ESE, the phosphorylated RS1 blocks this interaction. These studies provide the first detailed analysis of the phosphorylation of the SR-like protein Tra2β1. The results show that the two RS domains in this atypical splicing factor communicate and mutually regulate function.

Experimental Procedures

Materials—ATP, Mops, Tris, MgCl2, NaCl, EDTA, glycerol, sucrose, acetic acid, Phenix imaging film, BSA, Whatman P81 grade filter paper, and liquid scintillant were obtained from Fisher. [γ-32P]ATP was obtained from PerkinElmer Life Sciences. RNA (AAGAAC) was purchased from Integrated DNA Technologies; Hybrid ECL nitrocellulose blotting membrane was purchased from Amersham Biosciences; KinaseMax™ kit was purchased from Ambion; and Zip-tip C4 tips were purchased from Millipore. Phos-tag reagent was a generous gift from Dr. K.-L. Guan, University of California at San Diego.

Protein Expression and Purification—SRPK1, kdSRPK1, and SRPK1(6M) were expressed from a PET19b vector containing a His10 tag at the N terminus (33). Tra2β1, Tra2β1(ΔRS1), and Tra2β1(ΔRS2) were expressed from a PET28a vector containing a C-terminal His6 tag. All mutations were generated using the QuickChange mutagenesis kit (Stratagene, La Jolla, CA). All deletion constructs were generated using the Thermo Scientific Phusion site-directed mutagenesis kit (Integrated DNA Technologies, San Diego). The plasmids for wild-type and mutant forms of Tra2β1 and SRPK1 were transformed into the BL21 (DE3) Escherichia coli strain and grown at 37 °C in LB broth supplemented with 50 μg/ml kanamycin and 100 μg/ml ampicillin. Protein expression was induced with 1 μg/ml isopropyl 1-thio-β-D-galactopyranoside at room temperature for 4 h for all Tra2β1 proteins and with 2.5 μg/ml isopropyl 1-thio-β-D-
galactopyranoside for 12 h for SRPK1 proteins. SRPK1, SRPK1(6M), and all Tra2β1 proteins were purified by nickel resin affinity chromatography using previously published procedures (34).

SMN2 Minigene Splicing Assay — The in vivo splicing of the SMN2 minigene was carried out using a previously published procedure (35). Briefly, the SMN2 minigene was transfected into HEK293 cells with or without Myc-SRPK1 and varying amounts of EGFP-C2 vector containing the Tra2β1 cDNAs. Splice products were analyzed using RT-PCR.

Mass Spectrometry and RNA Binding Experiments — MALDI-TOF analyses were carried out using a Voyager DE-STR spectrometer. Tra2β1 constructs (1 μM) were incubated with SRPK1 (200 nM) and 0.3 mM ATP in 25 mM Mops (pH 7.2) and 10 mM free Mg²⁺ for 10 min or 2 h in a total volume of 100 μl. Reaction quenching and desalting were performed according to a prior method (34). The binding of RNA to the Tra2 proteins was measured using a nitrocellulose membrane and a Bio-Dot apparatus (Bio-Rad) according to a previously published protocol (36).

Single-turnover, Manual-mixing Experiments — Tra2 proteins (0.2 μM) were incubated with SRPK1 (1 μM) and [³²P]ATP (100 μM) in a buffer containing 100 mM Mops (pH 7.4), 10 mM free Mg²⁺, and 5 mg/ml BSA at 23 °C. All reactions were initiated with the addition of enzyme in a total reaction volume of 10 μl and quenched with SDS loading buffer. Phosphorylated protein was cut from an SDS-polyacrylamide gel (12%) and quantitated on the ³²P channel in liquid scintillant using previously published methods (34).

Viscosity Experiments — Steady-state phosphorylation was monitored using a filter-binding assay in 0–30% sucrose according to previously published procedures (37). The relative solvent viscosity (η_rel) of the buffers (100 mM Mops (pH 7.4)) was measured using an Ostwald viscometer and a previously published protocol (38). η_rel values of 1.44, 1.83, 2.32, and 3.43 were measured for buffer containing 10, 20, 25, and 30% sucrose at 23 °C.

Rapid Quench Flow Experiments — Tra2 protein phosphorylation by SRPK1 was monitored using a filter-binding assay in 0–30% sucrose according to previously published procedures (37). The relative solvent viscosity (η_rel) of the buffers (100 mM Mops (pH 7.4)) was measured using an Ostwald viscometer and a previously published protocol (38). η_rel values of 1.44, 1.83, 2.32, and 3.43 were measured for buffer containing 10, 20, 25, and 30% sucrose at 23 °C.

Results

SRPK1 Promotes Tra2β1-dependent Exon Inclusion in SMN2 — Tra2β1 has been shown previously to enhance exon 7 inclusion in the SMN2 gene in a concentration-dependent manner (38). Because SR and SR-like proteins are subject to phosphorylation-dependent regulation, we wished to determine whether SRPK1 could affect Tra2β1-dependent splicing. To accomplish this, we used a minigene in which an alternative exon is positioned by two constitutive exons in an SMN2 reporter construct (Fig. 1A). We expressed this reporter construct in the absence and presence of enhanced GFP-tagged Tra2β1 (EGFP-C₂-Tra2β1) and Myc-tagged SRPK1 (Myc-SRPK1) vectors in HEK293 cells and monitored changes in alternative splicing by RT-PCR (30). We found that Tra2β1 increases exon inclusion in the SMN2 minigene in a concentration-dependent manner (Fig. 1B). This splicing change correlates with increases in Tra2β1 protein expression based on Western blotting (Fig. 1D). Importantly, the extent of exon 7 inclusion increases with SRPK1 co-expression (Fig. 1B). Tra2β1-induced SMN2 exon inclusion is abolished by expression of an inactive kinase (Myc-kdSRPK1) implying that catalytic activity is required for splicing function (Fig. 1C). These findings indicate that SRPK1 promotes inclusion of the alternative SMN2 exon 7 most likely by phosphorylating Tra2β1.

SRPK1 Phosphorylates Numerous Sites in Tra2β1 — To understand how SRPK1 alters SMN2 splicing, we investigated Tra2β1 phosphorylation by SRPK1. Tra2β1 contains two RS domains with 26 (RS1) and 8 (RS2) Arg-Ser dipeptides that are potential SRPK1 consensus sites (Fig. 2A). Whether all of these serines can be modified is not certain. We showed in a previous study that SRPK1 specifically phosphorylates the last 5 serines in a splice variant of Tra2β1 that lacks RS1 (Tra2β3) suggesting that the kinase may prefer to target serines in Arg-Ser stretches rather than isolated dipeptides (34). In this study we will refer to the splice variant Tra2β3 as Tra2β1(ΔRS1). To determine how many phosphates are added to Tra2β1, we expressed the full-length protein in *E. coli* and analyzed its purity and phosphorylation using a Phos-tag procedure (40). Tra2β1 phosphorylation by SRPK1 decreases mobility on Phos-tag SDS-PAGE (~160 kDa) compared with Tra2β1(ΔRS1) (~70 kDa) suggesting that more sites are modified in the full-length than the truncated substrate (Fig. 2B). Using MALDI-TOF, a lengthy 2-h incubation with SRPK1 increased the molecular mass of Tra2β1.
Phosphorylation of Tra2β1

Tra2β1 (35.1 to 37.1 kDa), corresponding to the addition of about 26 phosphates (Fig. 2C). To determine what subset of serines is rapidly phosphorylated and likely to be specific sites, we decreased the incubation time and found that SRPK1 added 21 phosphates in only 10 min (Fig. 2D). These phosphates are added rapidly with a half-life of ~1 min in manual mixing, single-turnover experiments (Fig. 2E). Overall, these findings show that SRPK1 can rapidly and specifically modify 21 of the 34 potential phosphorylation sites in Tra2β1.

SRPK1 Uses a “Hit and Run” Strategy for Multisite Tra2β1 Phosphorylation—The SR protein SRSF1 stays physically associated with SRPK1 during multiple turnover events, whereas Tra2β1 (ΔRS1) dissociates after each round of phosphorylation (40, 41). To determine whether the kinase uses a similar mechanism for Tra2β1, we performed a single-turnover experiment in which kdSRPK1 is added to the reaction to trap any phospho-intermediates (42). In this experiment, ATP is added to the SRPK1-Tra2β1 complex with and without kdSRPK1 to monitor any changes in the reaction progress curve using the gel-based assay. If Tra2β1 does not dissociate from SRPK1 during multisite phosphorylation, kdSRPK1 will not affect the reaction when added simultaneously with ATP. However, if Tra2β1 dissociates then kdSRPK1 will trap the intermediates inhibiting the reaction. We found that the coordinate addition of kdSRPK1 and ATP to the active enzyme-substrate complex caused significant reductions in phosphorylation rate compared with the reaction lacking kdSRPK1 (Fig. 3A). In a trap-start control experiment, we pre-equilibrated the SRPK1-Tra2β1 complex with kdSRPK1 before the addition of ATP to make sure that the trap effectively inhibits the reaction. Pre-equilibration with kdSRPK1 lowered the initial velocity of the progress curve from 6.5 to 0.3 sites/min (95% inhibition). Overall, we found that the start-trap and trap-start experiments were very similar suggesting that Tra2β1 is phosphorylated using a hit and run strategy where SRPK1 dissociates from the substrate after each round of catalysis.

Phosphoryl Transfer Step Limits Tra2β1 Turnover—To determine what limits Tra2β1 phosphorylation, we initially performed viscosometric experiments and found no changes in k_{cat} or k_{cat}/K_{SR} up to 30% sucrose, a relative viscosity increase of over 3-fold ($\eta^{rel} = 3.4$) (Fig. 3B). These findings can be understood using the mechanism in Scheme 1, where k_2 is the substrate association rate constant; k_p is the phosphoryl transfer rate constant, and k_4 is the net product release rate constant (ADP and phosphoprotein). We showed previously that these rate constants can be measured from the relative changes in kinetic parameters versus relative viscosity (η^{rel}) using Equations 1–3. Thus, in the absence of a viscosity effect on k_{cat} (i.e. $-(k_{cat})^{\eta^{rel}} = 0$), k_p limits maximum turnover (0.36 s$^{-1}$), and k_4 is fast (>4 s$^{-1}$) (Table 2). The absence of a viscosity effect on k_{cat}/K_{SR} implies that the association rate constant for the protein is much larger than k_{cat}/K_{SR} and $k_2 > 40 \mu M^{-1} s^{-1}$ (Table 2). To confirm these results, we showed that the production of phospho-Tra2β1 is linear in rapid quench flow experiments and shows no signs of a burst phase (Fig. 3C). Enzyme-normalized slopes close to k_{cat} (0.3 s$^{-1}$) were obtained, implying that the phosphoryl transfer step fully limits k_{cat}. Finally, to better define multisite phosphorylation, we performed a single-turnover experiment in the rapid quench flow machine and showed that the first five phosphates are added in a time frame consistent with the steady-state and pre-steady state kinetic data (Fig. 3D). Interestingly, the phosphorylation rate per site declines...
from 0.38 s\(^{-1}\) in the first five additions to 0.11 s\(^{-1}\) in the remaining additions suggesting that later phosphorylation events become slightly more difficult (Fig. 3D). Overall, the combined viscosimetric and pre-steady-state kinetic data confirm that the phosphoryl transfer step limits Tra2\(\beta1\) turnover.

RS1 Down-regulates RS2 Phosphorylation— Although we showed previously that SRPK1 modifies 5 serines in the splice variant Tra2\(\beta1(\Delta RS1)\) (40), it is unclear whether these sites or any others in RS2 are also phosphorylated in the full-length Tra2\(\beta1\). To address this, we initially removed a cluster of four possible phosphorylation sites in RS2 in Tra2\(\beta1(QM)\) (Fig. 4A).

Based on Phos-tag SDS-PAGE, Tra2\(\beta1(QM)\) migrates similarly with and without SRPK1 treatment (Fig. 4B), suggesting that SRPK1 may phosphorylate the mutant substrate as well as Tra2\(\beta1\). In MALDI-TOF experiments, Tra2\(\beta1(QM)\) and Tra2\(\beta1(\Delta RS1)\) were equally phosphorylated after a 10-min incubation with SRPK1 suggesting that RS2 is unlikely to be phosphorylated (Fig. 4C). To support this, we expressed a form of Tra2\(\beta1\) lacking RS2 and all eight serines, Tra2\(\beta1(\Delta RS2)\) (Fig. 4A), and we found that SRPK1 induced a large mobility shift (~120 kDa; Fig. 4D). The magnitude of this shift is lower than that for Tra2\(\beta1\), which could be the result of either a change in protein size and gel shift or a true decrease in overall phosphorylation. To address this, we measured the phosphoryl content of Tra2\(\beta1(\Delta RS2)\) using MALDI-TOF and showed that after a 10-min or 2-h incubation with SRPK1, the molecular mass increased to a level consistent with about 21 or 27 phosphates (Fig. 4, E and F). These results are similar to those for the full-length substrate (Fig. 1) suggesting that SRPK1 phosphorylates RS1 rather than RS2 in Tra2\(\beta1\). In summary, we conclude that RS1 not only is the major site for SRPK1 phosphorylation in Tra2\(\beta1\) but also down-regulates phosphorylation in RS2.

RS2 Enhances ADP Release and Substrate Association Rates in SRPK1— Although RS2 plays no role in controlling the Tra2\(\beta1\) phosphoryl content, we wished to determine whether it could affect the phosphorylation mechanism. In steady-state kinetic assays, we found that \(k_{cat}\) and \(k_{cat}/K_{SR}\) values for Tra2\(\beta1(\Delta RS2)\) are about 3- and 9-fold lower than that for Tra2\(\beta1\) (Table 1). To determine the cause of these decreases, we performed viscosity experiments. Whereas sucrose had
Phosphorylation of Tra2β1

FIGURE 3. Kinetic analysis of Tra2β1. A, start-trap experiment. SRPK1 (1 μM) and Tra2β1 (0.2 μM) are pre-equilibrated before addition of ATP (50 μM) in the absence (□) and presence (○) of kdsSRPK1 (60 μM). The data in the absence of kdsSRPK1 are fit to a rate constant of 0.31 min⁻¹ and an end point of 21 sites. A control reaction is run by pre-equilibrating SRPK1, kdsSRPK1, and Tra2β1 prior to ATP addition (●) and fit to a slope of 0.29 sites/min. B, viscosity experiments. Tra2β1 (3 μM) is pre-equilibrated with 0.2 (▲) and 0.5 μM (●) SRPK1 and then reacted with 50 μM ATP. The data are fit to slopes of 0.06 and 0.14 μM/s at 0.2 and 0.5 μM SRPK1. D, single turnover experiment. SRPK1 (2 μM), Tra2β1 (0.4 μM), and ATP (100 μM) are reacted in the rapid quench flow instrument, and the number of sites are plotted with time (0.1–240 s). The data are fit to a double exponential with rate constants of 5.0 and 16 sites and 0.075 and 0.0065 s⁻¹.

E•ATP ⇌ E•ATP-SR

SCHEME 1

no effect on Tra2β1, both k_{cat} and k_{cat}/K_{SR} values for Tra2β1(ΔRS2) were significantly reduced (Fig. 5A). Ratio plots of k_{cat} and k_{cat}/K_{SR} in the absence and presence of sucrose (relative parameter) versus relative viscosity (η^{rel}) are linear with slopes close to the theoretical upper limit of 1 (Fig. 5B). This suggests that, unlike the full-length substrate, Tra2β1(ΔRS2) phosphorylation is limited by net product release (k_{p}) (Table 2). Using Equation 3 and the viscosity effects on k_{cat}/K_{SR}, we show that this parameter directly measures the substrate association rate constant (k_{a}) (Table 2). These findings indicate that RS2 increases the substrate association rate to SRPK1 by about 2 orders of magnitude (Table 2). To confirm that the phosphoryl transfer step is not rate-limiting for k_{cat}, we performed pre-steady-state kinetic experiments. We found that Tra2β1(ΔRS2), unlike the full-length substrate, is phosphorylated in a biphasic manner with an initial burst phase ($k_{pb} = 1 \text{ s}^{-1}$) followed by a linear steady-state phase ($k_{p} = 0.11 \text{ s}^{-1}$) (Fig. 5C). The presence of a burst indicates that the phosphoryl transfer step for Tra2β1(ΔRS2) is fast and does not limit k_{cat}. Overall, these data show that the addition of RS2 increases substrate association and net product release rates.

To isolate the rate-limiting step for Tra2β1(ΔRS2) phosphorylation, we performed a catalytic trapping experiment in which the SRPK1-Tra2β1(ΔRS2) complex is pre-equilibrated with ADP before mixing with excess [32P]ATP in the rapid quench flow machine (43). Without ADP pre-equilibration, we observed burst kinetics that were simulated using the mechanism in Scheme 2 and the program DynaFit (Fig. 5D) (44). Using a fixed value for the ATP k_{on} (0.013 μM⁻¹ s⁻¹) based on k_{cat}/K_{ATP}, we obtained values of 0.45 and 0.11 s⁻¹ for k_{p} and k_{s} (Table 2). The latter reflects the net rate constant for product release, and its value is consistent with k_{cat} (Table 1). Pre-equilibration of the complex with ADP leads to a loss of the burst phase and the generation of a small lag prior to resumption of steady-state turnover (Fig. 5D). The linear phases with and without ADP are similar indicating that sufficient ATP traps any free complex. The data in the presence of ADP were simulated using the mechanism in Scheme 2. By fixing k_{on}, k_{p}, and k_{s}, we obtained a value of 0.16 s⁻¹ for the ADP k_{off} (k_{ADP}). These findings indicate that maximum turnover of Tra2β1(ΔRS2) is mostly limited by ADP release. By considering the simulated values of k_{p} (0.45 s⁻¹) and k_{ADP} (0.16 s⁻¹), we can calculate a lower limit for the release rate of phospho-product (k_{pSR}) of 2 s⁻¹ (Table 2). By comparing Tra2β1 and Tra2β1(ΔRS2), we conclude that RS2 enhances overall RS domain phosphorylation by increasing k_{ADP} from 0.16 to >4 s⁻¹ and by increasing k_{p} from 0.41 to >40 μM⁻¹ s⁻¹ (Table 2). Despite these changes, RS2 has no detectable effect on the phosphoryl transfer rate.

Efficient RS1 Phosphorylation Requires the Docking Groove

In previous studies we showed that although efficient phosphorylation of SRSF1 requires the docking groove in SRPK1, the shorter repeat in Tra2β1(ΔRS1) does not (40). We wished to learn whether RS1 phosphorylation in the full-length Tra2β1 also requires this docking groove. We initially confirmed that
Tra2β1(ΔRS1) does not require this groove, as reported previously (40), by showing that phosphorylation is not diminished by a mutant SRPK1, SRPK1(6M), that lacks a functioning docking groove (Fig. 6A). SRPK1(6M) contains alanine mutations in six electronegative residues in the docking groove of the kinase domain (33). In contrast to Tra2β1(ΔRS1), we found that the

TABLE 1
Steady-state kinetic parameters for the phosphorylation of wild type and mutant Tra2β1 proteins

Substrate	k_{cat}	K_{MM}	k_{cat}/K_{MM}	K_{ATP}	k_{cat}/K_{ATP}
Tra2β1	0.36 ± 0.02	110 ± 16	3.6 ± 0.53	10 ± 2	40 ± 8.1
Tra2β1(ΔRS2)	0.11 ± 0.01	270 ± 60	0.41 ± 0.10	9 ± 4	12 ± 5.4
Tra2β1(ΔRS1)	0.032*	35*	0.91*	11*	2.9*

* Data were reported previously (34).
FIGURE 5. Kinetic analysis of Tra2β1(ΔRS2). A, viscosity experiments. Initial velocity of SRPK1 is measured as a function of Tra2β1(ΔRS2) at varying sucrose amounts. The data fits at 0% sucrose are displayed in Table 1. B, viscosity plot. The relative parameters for k_{cat}/K_{M} (○) and k_{cat}/K_{M} (○) in the absence and presence of viscosogen are plotted as a function of relative viscosity (θ_{rel}). Theoretical slope values of 0 and 1 are shown as dashed lines. C, rapid quench flow experiments. Tra2β1(ΔRS2) (1 μM) is pre-equilibrated with 0.2 μM SRPK1 before 50 μM ATP addition. The data are fit to Equation 4 to obtain values of 0.12 ± 0.01 μM, 1.0 ± 0.2 s⁻¹, and 0.11 ± 0.04 s⁻¹ for k_{cat}, k_{o}, and k_{o}, respectively. D, catalytic trapping (CATTRAP) experiments. SRPK1 (0.4 μM) and Tra2β1(ΔRS2) (1 μM) are pre-equilibrated with (△) and without (●) ADP (60 μM) before ATP addition (600 μM). The data are simulated using the mechanism in Scheme 2 to obtain values of 0.45, 0.11, and 0.16 s⁻¹ for k_{cat}, k_{o}, and k_{ADP}, respectively (Table 2).

TABLE 2

Rate constant	Tra2β1	Tra2β1(ΔRS2)	Tra2β1(ΔRS1)
k_{o} (μM⁻¹s⁻¹)	≥40⁺	0.41⁺	1.1⁺
k_{o} (s⁻¹)	0.30 (0.36⁺)	0.45⁺	0.23⁺
k_{ADP} (μM⁻¹s⁻¹)	≥4⁺	0.11⁻,⁺	0.028⁻,⁺
k_{ADP} (s⁻¹)	>4⁺	0.16⁺	0.34⁺
k_{ADP} (s⁻¹)	>4⁺	>2⁺	0.030⁺

*⁺ Data were determined using viscometric experiments and Equations 1–3.
*⁻ Data were previously reported (34).
⁺ Data were determined using rapid quench flow experiments.

rate for Tra2β1 was much lower for SRPK1(6M) compared with the wild-type kinase over the assay time course suggesting that the lengthy repeats in RS1 require the docking groove (Fig. 6B). Tra2β1(ΔRS2) also requires the docking groove for rapid multisite phosphorylation (Fig. 6C). Overall, these findings suggest that the docking groove plays an important role in regulating the efficiency of RS1 phosphorylation and that RS2, although not phosphorylated, likely plays a role in positioning RS1 in this groove.

RS2 Enhances RNA Binding to Tra2β1—Having shown that RS2 augments the rate of Tra2β1 phosphorylation by SRPK1, we next wondered whether this C-terminal RS domain could also impact RM function. To accomplish this, we monitored the interaction of Tra2β1 and the two RS domain deletion constructs with an RNA sequence based on the consensus ESE for Tra2β1 (AAGAAC) using a filter binding assay (22). We found that Tra2β1 along with Tra2β1(ΔRS1) and Tra2β1(ΔRS2) bind cooperatively to the ESE (Fig. 7A and Table 3). Because of the small length of the RNA strand, the observed cooperativity is likely the result of protein-protein interactions that enhance RNA association with the RRM. Although the three proteins showed similar Hill coefficients, they displayed differences in overall binding affinities (K_{0.5}). Whereas Tra2β1(ΔRS1) binds with similar affinity as the full-length protein, Tra2β1(ΔRS2) displayed reduced binding affinity (Fig. 7A and Table 3). Because of the high level of cooperativity, this 2-fold change in binding has significant impact on the bound states. For example, at concentrations near K_{0.5} (8 μM), 10 times more Tra2β1 is bound to RNA compared with Tra2β1(ΔRS2) (Fig. 7A). These findings suggest that the ability of the RRM to associate with RNA is enhanced by the presence of RS2. To determine whether the RS domain could bind in the absence of the RRM, we expressed and purified a His-tagged form of RS2. We found essentially no binding up to 14 μM RS2, the highest concentration achievable for this construct, whereas 90% of the RNA is bound at a similar concentration of Tra2β1(ΔRS1) or Tra2β1(ΔRS2) (Fig. 7A). These results indicate that RS2 does not interact directly with RNA but instead induces a higher affinity form of the RRM.

Phosphorylation Dissociates the Tra2β1-RNA Complex—To ascertain whether phosphorylation alters RNA binding, we pre-formed RNA-protein complexes and asked whether
SRPK1 phosphorylation affects their bound states. For these experiments, we fixed the total protein concentrations near $K_{0.5}$ so that we could sensitively measure small increases/decreases in phosphorylation-dependent RNA binding. We found that SRPK1 phosphorylation of all three proteins significantly reduced RNA binding (Fig. 7B). To ensure that this reduction is not due to a secondary binding event, we showed that the addition of SRPK1 or ATP to the protein-RNA complex did not induce dissociation (Fig. 7B). Assuming similar levels of binding cooperativity, these findings suggest that SRPK1 phosphorylation reduces RNA affinity by ∼2-fold to Tra2β1(ΔRS1) and Tra2β1(ΔRS2) and 4-fold to Tra2β1. These results demonstrate that the two RS domains serve opposing, phosphorylation-dependent roles with regard to RNA binding. Whereas RS2 supports RNA binding in unphosphorylated Tra2β1, RS1 inhibits binding in phosphorylated Tra2β1.

TABLE 3

Protein	$K_{0.5}$ (μM)	N
Tra2β1	7.7 ± 0.32	3.3 ± 0.44
Tra2β1(ΔRS1)	8.0 ± 0.16	3.1 ± 0.20
Tra2β1(ΔRS2)	18 ± 0.35	3.7 ± 0.20

SRPK1 Activation of Tra2β1-dependent SMN2 Splicing Requires RS1 and RS2—Previous studies demonstrated that removal of either RS1 or RS2 reduces exon 7 inclusion in the SMN2 minigene by about 30% suggesting that both RS domains are required for efficient Tra2β1-dependent splicing (45). We wished to address whether both RS domains are required for SRPK1-dependent splicing activation. We found that SRPK1 expression did not increase exon 7 inclusion in the SMN2 minigene when co-expressed with either Tra2β1(ΔRS1) or Tra2β1(ΔRS2) (Fig. 8). Deletion of either RS1 or RS2 lowered exon 7 inclusion by 20–40% indicating that SRPK1 does not rescue this phenotype. These findings suggest that both RS domains are required for SRPK1-dependent activation of Tra2β1-induced splicing.
Discussion

Detailed studies of the prototype SR protein SRSF1 suggest that SRPKs target lengthy Arg-Ser repeats phosphorylating them in a C-to-N directional manner (15). The efficiency of this process is guided by a docking groove in the kinase domain of SRPK1 that feeds Arg-Ser dipeptides to the active site. In this work we address how SRPK1 phosphorylates Tra2β1, an SR-like protein that contains two RS domains and controls gene splicing in a phosphorylation-dependent manner (10, 46). Interestingly, although most SR proteins gain entry into the nucleus through a phosphorylation-dependent process, hyperphosphorylation drives Tra2β1 into the cytoplasm (30, 31), similar to that for the splicing regulator hnRNP1 (47). We show for the first time that SRPK1 directly phosphorylates Tra2β1, a modification that regulates the alternative splicing of the SMN2 gene. Because of the role of this gene in spinal muscle atrophy, SRPK1 expression and its Tra2β1-dependent phosphorylation activity could serve a positive role in tipping the balance from truncated to full-length SMN proteins, leading to possible therapeutic avenues for treating this disease. We show that the two RS domains in Tra2β1 engage in extensive cross-talk that regulates not only protein phosphorylation of the domains but also RNA binding and ligand exchange events in SRPK1.

Eliminating the Competition by Changing Strategies—Although we showed in a previous study that RS2 in the splice variant Tra2β1(ΔRS1) is a good substrate for SRPK1 (34), the introduction of RS1 in the full-length splicing factor profoundly affects access to RS2. The switch from RS2 to RS1 phosphorylation in Tra2β1 is surprising for two reasons. First, Tra2β1(ΔRS1) binds with 4-fold higher affinity than the full-length Tra2β1 to SRPK1 (Table 1) suggesting the formation of a highly productive enzyme-RS2 complex. Second, the phospho-ryl transfer rate in the active site of SRPK1 (kₚ) is the same for Tra2β1 and Tra2β1(ΔRS1) (Table 1), an observation suggesting that RS2 is well aligned for efficient in-line transfer. If we compare the catalytic efficiencies of SRPK1 for Tra2β1(ΔRS1) and Tra2β1(ΔRS2) using kₕ/Kₐ as a metric (Table 1), we would anticipate that RS2 is more likely to be phosphorylated than RS1, the opposite of our findings. To explain this paradox, we propose that the two RS domains interact differentially.
with the central RRM (Fig. 9). In the splice variant lacking RS1 (Tra2β1(ΔRS1)), the RRM may be weakly associated with the full RS2 segment such that SRPK1 can readily phosphorylate serines on the C-terminal end explaining the efficient kinetic parameters for Tra2β1(ΔRS1) (Fig. 9A). However, RS1 may induce a conformational change that imposes closer ties between RS2 and the RRM, thus, limiting kinase access (Fig. 9B). This mechanism is supported by the RNA binding assays that show that RS2 removal in Tra2β1(ΔRS2) weakens interactions with an ESE compared with the RS2-containing substrates Tra2β1 and Tra2β1(ΔRS1) (Table 3). By coupling RS2 with the RRM, Tra2β1 offers unequal access to the two RS domains. Thus, RS1 may not behave as a free competitor but instead may alter the conformation of the protein to eliminate its competition.

Embedding a Phosphorylation-dependent Switch in Tra2β1—Phosphorylation is important for the regulation of many splicing factors from both the SR and SR-like families. SR proteins have been shown to undergo rounds of phosphorylation and dephosphorylation during spliceosome assembly (4, 48). Furthermore, localization of these factors is controlled by phosphorylation-dependent interactions with a specific transportin (TRN-SR) that promotes entry through the nuclear pore and deposition in nuclear speckles (18, 49). In the case of the SR-like Tra2β1, the alternative splicing of several genes has been linked to both hypo- and hyper-phosphorylation levels (29, 46, 50). Although the details of these processes are not well understood at a molecular level, it is anticipated that large phosphorylation-dependent structural changes in these splicing factors may be required for any biological regulatory mechanism. Previous studies showed a connection between RNA binding and RS domain phosphorylation. The RRM of Tra2β1 harbors a protein phosphatase 1 (PP1)-binding site, which facilitates dephosphorylation of Tra2β1. Inhibition of PP1 promotes hyper-phosphorylation and SMN2 exon 7 inclusion (46), similar to SRPK1 overexpression (Fig. 1B). In our studies, we now present a mechanism whereby the two RS domains provide a means for both up- and down-regulation of RNA binding (Fig. 9B). We show that the central RRM in Tra2β1 is not an efficient binder of RNA unless RS2 is present, suggesting close ties between the RRM and RS2. Furthermore, these interactions could position RS2 for favorable electrostatic contacts with RNA. Although RS1 does not modulate RNA binding in its unphosphorylated state, SRPK1 phosphorylation of RS1 significantly impairs interactions of the RRM with the ESE. This could result from electrostatic repulsion between the phospho-RS1 and ESE and/or repulsion of the two RS domains that move toward each other after RNA binding (45). Thus, the two RS domains and their phosphorylation states regulate RNA interactions. Changes in RNA binding affinity are likely necessary during the splicing reaction that entails multiple changes in RNA interactions. We propose that the phosphorylation-dependent affinity switch of Tra2β1 fine-tunes the affinity of the protein and the pre-mRNA.

RS Domain Regulates Ligand Exchange in SRPK1—In addition to important internal contacts within Tra2β1, we found that the RS domains can also regulate the catalytic efficiency of SRPK1. In particular, the observation that RS2 raises both k_{cat} and k_{cat}/K_m implies that the C-terminal RS domain is a positive regulator of SRPK1 irrespective of any changes in the cellular levels of Tra2β1. The underlying causes of this concentration-independent enhancement are best described in a reaction-free energy profile (Fig. 9C). Although RS2 has no effect on the phosphoryl transfer rate, it greatly increases the rates of two ligand exchange events, substrate binding and product release. We showed that RS2 amplifies the association rate constant for Tra2β1 by at least 100-fold and increases ADP release by about 20-fold (Table 2). The former result could be due to an inductive effect across the substrate that helps align RS1 for productive encounters with SRPK1. Also, it is possible that the RRM-RS2 pair makes direct contacts with SRPK1 assisting RS1 into the active site. The latter mechanism may also provide a means for assisting ADP release. In previous studies we showed that the N-terminal extension and a helix in an insert domain in SRPK1 constitute a nucleotide release factor that accelerates ADP dissociation through interactions with a portion of the RS domain in SRSF1 (51, 52). Using this precedent, it is possible that the RRM-RS2 pair in Tra2β1 interacts with this factor accelerating ADP release from SRPK1. Our studies on the atypical splicing factor Tra2β1 now show that phosphorylation can also be accelerated by secondary RS domains distal from the primary RS domain target.

Conclusions—In this study we demonstrate for the first time that SRPK1 can phosphorylate Tra2β1 and induce exon inclusion in the SMN2 gene. The phosphorylation mechanism for Tra2β1 departs from the classic paradigm established for the prototype SR protein SRSF1. The two RS domains (RS1 and RS2) act in a synergistic manner not only to regulate the availability of serines for phosphorylation but also to manipulate the kinetic mechanism of SRPK1 (Fig. 9). Although both RS domains contain consensus serines for SRPK1, RS1 down-regulates phosphorylation of the RS2 serines. Both domains play phosphorylation-dependent and -independent functions in RNA binding. The unphosphorylatable RS2 domain enhances RNA binding to RRM, whereas the phosphorylated RS1 domain diminishes this activity. The phosphorylation-dependent release of RNA could then facilitate transport of Tra2β1 to the cytoplasm. Although not a target for SRPK1, RS2 can enhance the interactions of RS1 with the active site of SRPK1 and promote efficient substrate turnover by increasing product dissociation. The cooperativity between RS1 and RS2 is essential for the SRPK1-dependent effects on SMN2 splicing. These findings significantly broaden our understanding of how RS domains in this splicing factor are phosphorylated and how Arg-Ser repeats widely separated in sequence can cross-regulate function.

References
1. Kohtz, J. D., Jamison, S. F., Will, C. L., Zuo, P., Lührmann, R., Garcia-Blanco, M. A., and Manley, J. L. (1994) Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124
2. Wu, J. Y., and Maniatis, T. (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070
3. Roscigno, R. F., and Garcia-Blanco, M. A. (1995) SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1, 692–706
4. Mermod, J. E., Cohen, P. T., and Lamon, A. I. (1994) Regulation of mammalian spliceosome assembly by a protein phosphorylation mecha-
nism. EMBO J. 13, 5679–5688
5. Haynes, C., and Jakoucheva, L. M. (2006) Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. Nucleic Acids Res. 34, 305–312
6. Xiang, S., Gapsys, V., Kim, H. Y., Bessonov, S., Hsiao, H. H., Möhlmann, S., Klaukien, V., Fischer, R., Becker, S., Urlaub, H., Lührmann, R., de Groot, B., and Zweckstetter, M. (2013) Phosphorylation drives a dynamic switch in serine/arginine-rich proteins. Structure 21, 2162–2174
7. Cho, S., Hoang, A., Sinha, R., Zhong, X. Y., Fu, X. D., Krainer, A. R., and Ghosh, G. (2011) Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1–70K snRNP protein determines early splicing assembly. Nat. Protoc. 6, 1023–1033
8. Keshwani, M. M., Aubol, B. E., Fattet, L., Ma, C. T., Qiu, J., Jennings, P. A., Fu, X. D., and Adams, J. A. (2015) Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. Biochem. J. 466, 311–322
9. Zhou, Z., Qiu, J., Liu, W., Zhou, Y., Plocinik, R. M., Li, H., Hu, Q., Ghosh, G., Adams, J. A., Rosenfeld, M. G., and Fu, X. D. (2012) The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433
10. Sumanasekera, C., Kelemen, O., Beullens, M., Aubol, B. E., Adams, J. A., Sarkar, M., Morris, A., Bollen, M., Andreadis, A., and Stamm, S. (2012) C6 pyridinium ceramide influences alternative pre-mRNA splicing by inhibiting protein phosphatase-1. Nucleic Acids Res. 40, 4025–4039
11. Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogetremen, B., and Hannun, Y. A. (2002) De novo ceramide regulates the alternative splicing of caspase 9 and Bel-1 in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12578–12595
12. Zahler, A. M., Lane, W. S., Stolk, J. A., and Roth, M. B. (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847
13. Glatz, D. C., Rujescu, D., Tacke, R., and Manley, J. L. (1998) Human Tra2hibiting protein phosphatase-1. J. Biol. Chem. 273, 10154–10159
14. Lynch, K. W., and Maniatis, T. (1995) Synergistic interactions between Splicing kinase SRPK1 conforms to the landscape of its SR protein substrate. Biochemistry 52, 7595–7605
15. Ma, C. T., Hagopian, J. C., Ghosh, G., Jennings, P. A., Fu, X. D., and Adams, J. A. (2008) Adaptable molecular interactions guide phosphorylation of the SR protein ASF/SF2 by SRPK1. J. Mol. Biol. 376, 55–68
16. Ngo, J. C., Giang, K., Chakrabarti, S., Ma, C. T., Huynh, N., Hagopian, J. C., Ghosh, G., Adams, J. A., Rosenfeld, M. G., and Fu, X. D. (2012) Ordered multi-site phosphorylation of the splicing factor ASF/SF2 by SRPK1. J. Mol. Biol. 376, 55–68
17. Stojil, D. F., and Bell, J. C. (1999) SR protein kinases: the splice of life. Biochem. Cell Biol. 77, 293–298
18. Tacke, R., Tominaga, M., Ogawa, S., and Manley, J. L. (1998) Human Tra2 protein is a sequence-specific activator of pre-mRNA splicing. Cell 93, 139–148
19. Cowper, E. A., Cáceres, J. F., Mayeda, A., and Sreecan, G. R. (2001) Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing. J. Biol. Chem. 276, 48908–48914
20. Hoshijima, K., Inoue, K., Higuchi, I., Sakamoto, H., and Shimura, Y. (1991) Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252, 833–836
21. Lynch, K. W., and Maniatis, T. (1995) Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9, 284–293
22. Singh, N. N., Androphy, E. J., and Singh, R. N. (2004) The regulation and regulatory activities of alternative splicing of the SMN gene. Crit. Rev. Eukaryot. Gene Expr. 14, 271–285
23. Velasquez-Dones, A., Hagopian, J. C., Ma, C. T., Zhong, X. Y., Zhou, H., Ghosh, G., and Adams, J. A. (2003) Mutations in TAF14 exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2β. J. Biol. Chem. 278, 18997–19007
24. Zhou, Z., and Adams, J. A. (2015) The pathobiology of splicing. J. Pathol. 222, 152–163
25. Lorson, C. L., Hahnen, E., Androphy, E. J., and Wirth, B. (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. U.S.A. 96, 6307–6311
26. Hofmann, Y., Lorson, C. L., Stamm, S., Androphy, E. J., and Wirth, B. (2000) Htra2-β stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl. Acad. Sci. U.S.A. 97, 9618–9623
27. Stoilov, P., Daoud, R., Nayler, O., and Stamm, S. (2004) Human Tra2β autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Hum. Mol. Genet. 13, 599–524
28. Yu, F. X., Zhang, Y., Park, H. W., Jewell, J. L., Chen, Q., Deng, Y., Pan, D., and Adams, J. A. (2003) Phosphorylation-dependent and-independent nuclear import of RS domain-containing splicing factors and regulators. J. Biol. Chem. 278, 18050–18055
29. Hagopian, J. C., Ma, C. T., Meade, B. R., Albuquerque, C. P., Ngo, J. C., Ghosh, G., Jennings, P. A., Fu, X. D., and Adams, J. A. (2008) Adaptable molecular interactions guide phosphorylation of the SR protein ASF/SF2 by SRPK1. J. Mol. Biol. 382, 894–909
30. Aubol, B. E., Jamros, M. A., McGlone, M. L., and Adams, J. A. (2013) Splicing kinase SRPK1 conforms to the landscape of its SR protein substrate. Biochemistry 52, 7595–7605
31. Stoss, O., Stoilov, P., Hartmann, A. M., Nayler, O., and Stamm, S. (1999) The in vivo minigenie approach to analyze tissue-specific splicing. Brain Res. Brain Res. Protoc. 4, 383–394
32. Aubol, B. E., Plocinik, R. M., Keshwani, M. M., McGlone, M. L., Hagopian, J. C., Ghosh, G., Fu, X. D., and Adams, J. A. (2014) N terminus of the protein kinase CLK1 induces SR protein hyperphosphorylation. Biochem. J. 462, 143–152
33. Abo, B. E., and Adams, J. A. (2011) Applying the braces to multisite SR protein phosphorylation: substrate-induced effects on the splicing kinase SRPK1. Biochemistry 50, 6888–6900
34. Adams, J. A., and Taylor, S. S. (1992) Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments. Biochemistry 31, 8516–8522
35. Grant, B. D., and Adams, J. A. (1996) Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Biochemistry 35, 2022–2029
36. Yu, F. X., Zhang, Y., Park, H. W., Jewell, J. L., Chen, Q., Deng, Y., Pan, D., Taylor, S. S., Lai, Z. C., and Guan, K. L. (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev. 27, 1223–1232
37. Aubol, B. E., Chakrabarti, S., Ngo, J., Shaffer, J., Nolen, B., Fu, X. D., Ghosh, G., and Adams, J. A. (2003) Processive phosphorylation of alternative splicing factor/splicing factor 2. Proc. Natl. Acad. Sci. U.S.A. 100, 12601–12606
38. Velasquez-Dones, A., Hagopian, J. C., Ma, C. T., Zhong, X. Y., Zhou, H., Ghosh, G., and Adams, J. A. (2005) Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Cdk/Sty. J. Biol. Chem. 280, 41761–41768
39. Zhou, Z., and Adams, J. A. (1997) Participation of ADP dissociation in the rate-determining step in cAMP-dependent protein kinase. Biochemistry 36, 7699–7705
Phosphorylation of Tra2β1

Adenosine phosphorothioates (ATPαS and ATPβS) differentially affect the two steps of mammalian pre-mRNA splicing. *J. Biol. Chem.* **267**, 4322–4326

Kataoka, N., Bachorik, J. L., and Dreyfuss, G. (1999) Transportin-SR, a nuclear import receptor for SR proteins. *J. Cell Biol.* **145**, 1145–1152

Zhang, Z., Kelemen, O., van Santen, M. A., Yelton, S. M., Wendlandt, A. E., Sviripa, V. M., Bollen, M., Beullens, M., Urlaub, H., Lührmann, R., Watt, D. S., and Stamm, S. (2011) Synthesis and characterization of pseudocantharidins, novel phosphatase modulators that promote the inclusion of exon 7 into the SMN (survival of motoneuron) pre-mRNA. *J. Biol. Chem.* **286**, 10126–10136

Aubol, B. E., Plocinik, R. M., McGlone, M. L., and Adams, J. A. (2012) Nucleotide release sequences in the protein kinase SRPK1 accelerate substrate phosphorylation. *Biochemistry* **51**, 6584–6594

36. Kuzmic, P. (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. *Anal. Biochem.* **237**, 260–273

44. Cléry, A., Jayne, S., Benderska, N., Dominguez, C., Stamm, S., and Allain, F. H. (2011) Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. *Nat. Struct. Mol. Biol.* **18**, 443–450

46. Novoyatleva, T., Heinrich, B., Tang, Y., Benderska, N., Butchbach, M. E., Lorson, C. L., Lorson, M. A., Ben-Dov, C., Fehlbaum, P., Bracco, L., Burgess, A. H., Bollen, M., and Stamm, S. (2008) Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. *Hum. Mol. Genet.* **17**, 52–70

47. Allemand, E., Guil, S., Myers, M., Moscat, J., Cáceres, J. F., and Krainer, A. R. (2005) Regulation of heterogeneous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 3605–3610

48. Tazi, J., Daugeron, M. C., Cathala, G., Brunel, C., and Jeanteur, P. (1992)