Probing the neutron-skin thickness by photon production from reactions induced by intermediate-energy protons

Gao-Feng Wei1,2,3,*

1Department of Applied Physics, Xi'an JiaoTong University, Xi'an 710049, China
2School of Physics and Mechatronics Engineering, Xi'an University of Arts and Science, Xi'an, 710065, China
3Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA

Photon from neutron-proton bremsstrahlung in p+Pb reactions is examined as a potential probe of the neutron-skin thickness in different centralities and at different proton incident energies. It is shown that the best choice of reaction environment is about 140MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with neutrons inside the skin of the target and thus leads to different photon production to maximal extent. Moreover, considering two main uncertainties from both photon production probability and nucleon-nucleon cross section in the reaction, I propose to use the ratio of photon production from two reactions to measure the neutron-skin thickness because of its cancellation effects on these uncertainties simultaneously, but the preserved about 13%-15% sensitivities on the varied neutron-skin thickness from 0.1 to 0.3fm within the current experimental uncertainty range of the neutron-skin size in 208Pb.

PACS numbers: 25.70.-z, 24.10.Lx, 21.65.-f

The neutron-skin of nuclei is a fundamental physical quantity in nuclear physics, and has received considerable attention due to its importance in determining the structure of neutron-rich nuclei in nuclear physics and the property of neutron-rich matter in astrophysics. To determine the neutron-skin thickness of nuclei, one should know the proton density distribution and neutron density distribution, and then determines the corresponding neutron-skin thickness by calculating the root-mean-square (rms) radius difference between proton and neutron. Presently, the proton rms radius can be determined precisely, typically with an error of 0.02fm or better for many nuclei11,12, the neutron rms radius is much less well-known although many efforts have been devoted to probing the neutron density distribution by theoretical and experimental methods such as the nucleon elastic scattering13,14, the inelastic excitation of the giant dipole and spin-dipole resonances8,9, the pygmy dipole resonance10,11 and experiments in exotic atoms12,17. This is because almost all of these probes are hadronic ones and need model assumptions to deal with the strong force introducing possible systematic uncertainties even if some of them reach small errors18. In this situation, the Parity Radius Experiment (PREX-I) at the Jefferson Laboratory (J-Lab)19 has been performed to measure the neutron-skin thickness of 208Pb using parity violating e-Pb scattering, the measured value of $0.33^{+0.16}_{-0.18}$ fm in 208Pb obviously differs from previous value of 0.11 ± 0.06 fm of 208Pb from π^+-Pb scattering20 albeit largely overlapping with each other within error bars. However, the obtained results from PREX-I experiment suffer from large uncertainties although the PREX-I experiment aims to a model-independent measurement of the neutron-skin thickness of 208Pb. It is interesting, however, to note that the neutron-skin for 208Pb as thick as $0.33+0.16$ fm reported by the PREX-I experiment cannot be ruled out within a relativistic mean-field model21. This situation stimulated the J-Lab to plan to remeasure the neutron-skin thickness of 208Pb and 48Ca, i.e., the PREX-II experiment and the Calcium Radius Experiment, which are expected to provide more accurate neutron-skin thickness for 208Pb and 48Ca22. While waiting the experimental data, theoretical efforts on this problem are required to indicate what are the sensitive probes of the neutron-skin thickness especially those of non-hadronic ones.

Similar to electrons, photons interact with nucleons only electromagnetically, and they escape almost freely from the nuclear environment once produced. In fact, photon production in heavy-ion reactions has been extensively studied in experiment and theory$^{23-25}$. For example, the hard photon from neutron-proton bremsstrahlung is employed to probe the nuclear caloric curve26, the dynamics of nucleon-nucleon interactions27,28, the time-evolution of the reaction process before nuclear break-up29 as well as the space-time extent of the photon emitting sources31; and the soft photon from giant dipole resonances in heavy-ion reactions is used to study the symmetry potential term of the nucleon-nucleon interactions32. A natural question is whether the photon can be used as a potential sensitive probe of the neutron-skin thickness in nuclear reactions. Before answer this question, let's first initialize the 208Pb target with different density distribution corresponding to two different neutron-skin size of $S=0.10$ and 0.30fm within the current experimental uncertainty range of the neutron-skin size of 208Pb, which are predicted by Hartree-Fock calculations based on the MSL

*Email address: wei.gaofeng@foxmail.com
model \[33, 34\]. Different values of neutron-skin thickness can be obtained by changing only the value of \(L \) in the MSL0 force \[34\] while keeping all the other macroscopic quantities the same. Shown in Fig. 1 are the density profiles corresponding to the neutron-skin thickness of 0.1 and 0.3 fm for \(^{208}\text{Pb}\) target \[33, 36\], the proton distributions are almost identical, while the neutrons distribute differently in the two cases considered.

To answer the question mentioned above, one has to confront two main uncertainty factors because they can significantly influence the photon production in our reaction model IBUU \[37\]. One is the in-medium nucleon-nucleon cross section defined as,

\[
\sigma_{\text{NN}}^{\text{med}} = \sigma_{\text{NN}}^{\text{free}} \left(\frac{\mu_{\text{NN}}^*}{\mu_{\text{NN}}} \right)^2 ,
\]

(1)

where the \(\mu_{\text{NN}}^* \) and \(\mu_{\text{NN}} \) are the in-medium and free-space reduced nucleon-nucleon mass. The scaling factor \(\left(\mu_{\text{NN}}^*/\mu_{\text{NN}} \right)^2 \) reduces significantly the relative cross sections of nucleon-nucleon collisions due to the momentum dependence of the nuclear interactions \[38\]. Another is the photon production probability, since this probability is very small, i.e., just one photon producing roughly in a thousand nucleon-nucleon collisions. Therefore, photon production in dynamical calculations of nuclear reactions at intermediate energy is usually treated in a perturbative manner \[23, 25\]. In this approach, one calculates the photon production as a probability at each proton-neutron collision and then sums over all such collisions over the entire history of the reaction \[33, 39, 40\]. Two kinds of probability formula are commonly used to predict the photon production in nuclear reactions. One is based on the semiclassical hard sphere collision model \[23, 25\], its definition is,

\[
p_{\gamma}^b = \frac{dN}{d\varepsilon_{\gamma}} = 1.55 \times 10^{-3} \times \frac{1}{\varepsilon_{\gamma}} (\beta_i^2 + \beta_f^2),
\]

(2)

where \(\varepsilon_{\gamma} \) is the energy of emitting photon, \(\beta_i \) and \(\beta_f \) are the initial and final velocities of the proton in the proton-neutron center of mass frame. Another is based on the one-boson exchange model involving more quantum mechanical effects \[41\] as follows,

\[
p_{\gamma}^b = \frac{dN}{d\varepsilon_{\gamma}} = 2.1 \times 10^{-6} \times \frac{(1 - y^2)^{\alpha}}{y},
\]

(3)

where \(y = \varepsilon_{\gamma}/E_{\text{max}} \), \(\alpha = 0.7319 - 0.5898\beta_i \), and \(E_{\text{max}} \) is the energy available in the center of mass of the colliding proton-neutron pairs.

Now let’s check the sensitivities of photon production from neutron-proton bremsstrahlung on the neutron-skin thickness in p+Pb reaction. Shown in Fig. 2 is the time evolution of photon multiplicity with different energies (upper panel) and total photon multiplicity (lower panel) in p+Pb reaction with 95%-100% centrality at the proton incident energy of 140MeV within the neutron-skin thickness of 0.1 and 0.3fm. Here, the centrality is defined as the percent of impact parameter over the size of reaction system. First, it can be seen from the upper panel of Fig. 2 that the photon multiplicity is decreasing with the proton energy increasing, and thus the production of photon with energy beyond about 50MeV can be ignored in the intermediate energy p+Pb reaction. Second, the photon multiplicity with the thicker neutron-skin is larger than that with the thinner neutron-skin especially for those of lower energy photon, this is because the larger neutron densities inside the thicker neutron-skin get these neutrons with higher probability to repeatedly collide with incident proton and thus leads to higher

![FIG. 1: (Color online) The neutron and proton density profiles for \(^{208}\text{Pb}\) target with the neutron-skin thickness of 0.1 and 0.3 fm.](image1)

![FIG. 2: (Color online) The time evolution of photon multiplicity with different energies (upper panel) and total photon multiplicity (lower panel) in p+Pb reaction with 95%-100% centrality and at the proton incident energy of 140MeV within the neutron-skin thickness of 0.1 and 0.3fm. Here, the centrality is defined as the percent of impact parameter over the size of reaction system. First, it can be seen from the upper panel of Fig. 2 that the photon multiplicity is decreasing with the proton energy increasing, and thus the production of photon with energy beyond about 50MeV can be ignored in the intermediate energy p+Pb reaction. Second, the photon multiplicity with the thicker neutron-skin is larger than that with the thinner neutron-skin especially for those of lower energy photon, this is because the larger neutron densities inside the thicker neutron-skin get these neutrons with higher probability to repeatedly collide with incident proton and thus leads to higher](image2)
photon production, especially for emitting lower energy photon. However, considering that photon production is insufficient large after all, I thus check the sensitivity of total photon multiplicity with energy from about 10 to 50 MeV on the neutron-skin thickness. It can be seen from the lower panel of Fig. 3 that the total photon multiplicity is also sensitivity to the neutron-skin thickness, and shows about 15% relative sensitivity. Nevertheless, is the 140 MeV the best proton incident energy in probing the neutron-skin thickness using photon production in p+Pb reaction, and whether the 95%-100% centrality is the best choice for the reaction system? Shown in Figs. 3 and 4 are the total photon multiplicity and corresponding relative sensitivity on the neutron-skin thickness in different centralities but the given proton incident energy of 140 MeV, and in different proton incident energies but the given centrality of 95%-100%, respectively, within the neutron-skin thickness of 0.10 and 0.30 fm. It can be seen that the best choice of reaction environment is about 140 MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with the neutron inside the skin of the target and thus leads to different photon production to maximal extent. Certainly, with the incident proton energy increasing the higher photon production may be reachable, but the produced π0 mesons can also produce photon and thus bring in more complicated physics process. Therefore, I employ the proton incident energy of 140 MeV and the centrality of 95%-100% as the best reaction environment in probing the neutron-skin thickness using the photon production.

However, the influence of two main uncertainties from both nucleon-nucleon cross section and photon production probability may change the effects of the neutron-skin thickness on the total photon multiplicity. Shown in Figs. 3 and 4 are the time evolution of total photon multiplicity with free-space and in-medium nucleon-nucleon cross section in the proton incident energy of 140 MeV and the centrality of 95%-100% within the probability formula p_n and neutron-skin thickness of 0.10 and 0.30 fm. First, the total photon multiplicity with
100% within the in-medium nucleon-nucleon cross section and the incident energy of 140MeV and the centrality of 95%-100% within the in-medium nucleon-nucleon cross section and neutron-skin thickness of 0.10 and 0.30fm. It is fortunate to see that the sensitivity of total photon multiplicity with probability within the probability formula that with in-medium nucleon-nucleon cross section be-

Second, the total photon multiplicity with probability relative cross sections of nucleon-nucleon collisions [38].

cause the scaling factor (s encountered in the neutronskin thickness with free-space and in-medium two reactions and the corresponding relative sensitivity on the neutron-skin thickness with different photon production probability within the in-medium nucleon-nucleon cross section and neutron-skin thickness of 0.10 and 0.30fm.

changed no matter how the nucleon-nucleon cross section and/or photon production probability change. However, the influence of these uncertainties on photon production is much more than the effects from the neutron-skin thickness. This will significantly prevent one to extract useful information about the neutron-skin thickness from photon production. How to cancel out the influence of these uncertainties on photon production is the main task I shall discuss in the following.

To reduce these uncertainties, I propose to use the ratio of photon production from two reactions to probe the neutron-skin thickness, its definition is changed no matter how the nucleon-nucleon cross section

\[R_{p^{+208\text{Pb}}/p^{+40\text{Ca}}} (\gamma) = \frac{N_{\gamma}(p + \text{208Pb})}{N_{\gamma}(p + \text{40Ca})} \] (4)

In above equation, the p+40Ca reaction with the centrality of 0-100% is used as a referential reaction to cancel out the uncertainties from both nucleon-nucleon cross section and/or photon production probability. This is because the photon production is mainly determined by proton-neutron colliding number; the proton-neutron colliding inside the \text{208Pb} target can be cancelled out by the proton-neutron colliding inside the \text{40Ca}, it is naturally that the difference of the photon production from the incident proton interacting with neutrons inside the skin of \text{208Pb} can be shown to maximal extent. In fact, ratio from two reactions which is usually used in experiments searching for minute but interesting effects, can reduce maximally not only the systematic errors but also some 'unwanted' effects [39-41]. Shown in Figs. 7 and 8 are the ratio of the photon multiplicity from two reactions and the corresponding relative sensitivity on the neutron-skin thickness with different nucleon-nucleon cross section, free-space nucleon-nucleon cross section is higher than that with in-medium nucleon-nucleon cross section because the scaling factor \((s_{\gamma})^2\) reduces significantly the relative cross sections of nucleon-nucleon collisions [38]. Second, the total photon multiplicity with probability formula \(p^b\) is higher than that with probability formula \(p^a\) similar to the results reported in previous Refs. [39-41]. It is fortunate to see that the sensitivity of total photon multiplicity on the neutron-skin thickness is not

FIG. 6: (Color online) The time evolution of total photon multiplicity with probability formulae \(p^a\) and \(p^b\) in the proton incident energy of 140MeV and the centrality of 95%-100% within the in-medium nucleon-nucleon cross section and neutron-skin thickness of 0.10 and 0.30fm.

FIG. 7: (Color online) The ratio of photon multiplicity from two reactions and the corresponding relative sensitivity on the neutron-skin thickness with different photon production probability within the in-medium nucleon-nucleon cross section and neutron-skin thickness of 0.10 and 0.30fm.

FIG. 8: (Color online) The ratio of photon multiplicity from two reactions and the corresponding relative sensitivity on the neutron-skin thickness with different photon production probability within the in-medium nucleon-nucleon cross section and neutron-skin thickness of 0.10 and 0.30fm.
and different photon production probability, respectively, within the neutron-skin thickness of 0.10 and 0.30fm. It can be found that the ratio of photon multiplicity from two reactions can almost completely cancel out the uncertainties from nucleon-nucleon cross section and photon production probability, respectively, but can keep about 13%-15% sensitivity on the neutron-skin thickness.

![Graph](image)

FIG. 9: (Color online) The ratio of photon multiplicity from two reactions and the corresponding relative sensitivity on the neutron-skin thickness with two kinds of setting in p+Pb reaction, i.e., free-space cross section with photon production probability formula \(p^{b}_{\gamma} \) and in-medium nucleon-nucleon cross section with photon production probability formula \(p^{a}_{\gamma} \). It is clear to see that this ratio can almost completely cancel out these uncertainties from both nucleon-nucleon cross section and photon production probability simultaneously, but can preserve about 13%-15% sensitivity on the neutron-skin thickness within the neutron-skin thickness of 0.10 and 0.30fm. On the other hand, considering the experimental technology limitation of sorting events according to the centrality criteria, the similar plot with Fig. 9 but with 90%-100% centrality is shown in Fig. 10.

![Graph](image)

FIG. 10: (Color online) Same as Fig. 9 but with centrality of 90%-100%.

Finally, it is necessary to check whether the ratio of photon multiplicity from two reactions can simultaneously cancel out these uncertainties from both nucleon-nucleon cross section and photon production probability since the uncertainties from nucleon-nucleon cross section and photon production probability exist simultaneously in p+Pb reaction. Shown in Fig. 11 are the ratio of photon multiplicity from two reactions and the corresponding relative sensitivity on the neutron-skin thickness with two kinds of setting in p+Pb reaction, i.e., free-space cross section with photon production probability formula \(p^{b}_{\gamma} \) and in-medium nucleon-nucleon cross section with photon production probability formula \(p^{a}_{\gamma} \).

In summary, I have carried out an investigation about the feasibility of probing the neutron-skin thickness by photon production from neutron-proton bremsstrahlung in intermediate energy proton-induced reactions. Within the current experimental uncertainty range of the neutron-skin size of \(^{208} \text{Pb} \), the p+Pb reaction is performed in different centralities and at different proton incident energies within a transport model. It is shown that the energy of about 140MeV for the incident proton and about 95%-100% centrality for the reaction system are the best reaction environment to probe the neutron-skin thickness using photon production. While the sensitivity of photon production on the neutron-skin thickness is much smaller than those due to possible uncertainties from both nucleon-nucleon cross section and photon production probability, the ratio of photon production from two reactions can almost completely cancel out the influence of these uncertainties simultaneously but can preserve about 13%-15% sensitivity on the neutron-skin thickness. Compared to other probes involved in nucleon elastic and/or inelastic scattering, photon once produced can escape almost freely from the strong force environment, it thus can be as a potential sensitive probe of the neutron-skin thickness in intermediate energy proton-induced reaction.

Acknowledgements

The author is grateful to Prof. L.W. Chen for stimulating to work on this project, and Dr. G. C. Yong and Prof. B. A. Li for helpful discussion. This work is supported by the National Natural Science Foundation of China under grant No.11405128.
G. Fricke et al., At. Data Nucl. Data Tables \textbf{60}, 177 (1995).
B. A. Brown, Phys. Rev. Lett. \textbf{85}, 5296 (2000).
X. Y. Sun, D. Q. Fang, Y. G. Ma, X. Z. Cai, J. G. Chen, W. Guo, W. D. Tian, H. W. Wang, Phys. Lett. B \textbf{682}, 396 (2010).
G. W. Hoffmann et al., Phys. Rev. C \textbf{21}, 1488 (1980).
S. Karataglidis, K. Amos, B. A. Brown, and P. K. Deb, Phys. Rev. C \textbf{65}, 044306 (2002).
B. C. Clark, L. J. Kerr, and S. Hama, Phys. Rev. C \textbf{67}, 054605 (2003).
J. Zenihiro et al., Phys. Rev. C \textbf{82}, 044611 (2010).
A. Krasznahorkay et al., Phys. Rev. Lett. \textbf{82}, 3216 (1999).
A. Krasznahorkay et al., Nucl. Phys. A \textbf{731}, 224 (2004).
A. Klimkiewicz et al., Phys. Rev. C \textbf{76}, 051603(R) (2007).
A. Carbone, G. Colò, A. Bracco, L. G. Cao, P. F. Bortignon, F. Camera, and O. Wieland, Phys. Rev. C \textbf{81}, 041301 (2010).
A. Trzciński, J. Jastrzębski, P. Łubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Klos, Phys. Rev. Lett. \textbf{87}, 082501 (2001).
E. Friedman and A. Gal, Nucl. Phys. A \textbf{724}, 143 (2003).
J. Jastrzębski, A. Trzcińska, P. Łubiński, B. Klos, F. J. Hartmann, T. von Egidy, and S. Wycech, Int. J. Mod. Phys. E \textbf{13}, 343 (2004).
E. Friedman, A. Gal, and J. Mareš, Nucl. Phys. A \textbf{761}, 283 (2005).
B. Klos et al., Phys. Rev. C \textbf{76}, 014311 (2007).
E. Friedman, Hyperfine Interact. \textbf{193}, 33 (2009).
X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Phys. Rev. Lett. \textbf{106} 252501 (2011).
S. Abrahamyian et al., Phys. Rev. Lett. \textbf{108}, 112502 (2012).
E. Friedman, Nucl. Phys. A \textbf{896}, 46 (2012).
F. J. Fattoyev and J. Piekarewicz, Phys. Rev. Lett. \textbf{111}, 162501 (2013).
C. J. Horowitz, K. S. Kummar, and R. Michaels, Eur. Phys. J. A \textbf{50}, 48 (2014).
G. F. Bertsch and S. Das Gupta, Phys. Rep. \textbf{160}, 189 (1988).
H. Nifenecker and J. A. Pinston, Annu. Rev. Nucl. Part. Sci. \textbf{40}, 113 (1990).
W. Cassing, V. Metag, U. Mosel, and K. Niita, Phys. Rep. \textbf{188}, 363 (1990).
R. Ortega, TAPS Collaboration, Nucl. Phys. A \textbf{734}, 541 (2004).
Y. Schutz et al., TAPS Collaboration, Nucl. Phys. A \textbf{622}, 404 (1997).
G. Martinez et al., Phys. Lett. B \textbf{461}, 28 (1999).
D. d’Enterria et al., Phys. Lett. B \textbf{538}, 27 (2002).
R. Ortega et al., Eur. Phys. J. A \textbf{28}, 161 (2006).
M. Marqués et al., Phys. Rev. Lett. \textbf{73} 34 (1994).
G. Giuliani and M. Papa, Phys. Rev. C \textbf{73}, 031601 (2006).
L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Phys. Rev. C \textbf{80}, 014322 (2009).
L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Phys. Rev. C \textbf{82}, 024321 (2010).
G. F. Wei, B. A. Li, J. Xu, and L. W. Chen, Phys. Rev. C \textbf{90}, 014610 (2014).
G. F. Wei, Phys. Rev. C \textbf{91}, 014616 (2015).
B. A. Li, C. B. Das, S. Das Gupta, and C. Gale, Phys. Rev. C \textbf{69} (2004) 011603(R); Nucl. Phys. A \textbf{735} (2004) 563.
B. A. Li, and L. W. Chen, Phys. Rev. C \textbf{72}, 064611 (2005).
G. C. Yong, B. A. Li, and L. W. Chen, Phys. Lett. B \textbf{661}, 82 (2008).
G. C. Yong, W. Zuo, and X. C. Zhang, Phys. Lett. B \textbf{705}, 240 (2011).
N. Gan et al., Phys. Rev. C \textbf{49}, 298 (1994).