Research Paper

The Effects of Co-Administration of Memantine And Vitamin D on Spatial Learning and Memory Impairment in Adult Male Rats Model of Alzheimer’s Disease

*Nastaran Zamani1, Ahmad Ali Moazedi2,3

1. Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran.
2. Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3. Stem Cells Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Citation: Zamani N, Moazedi AA. [The Effects of Co-Administration of Memantine And Vitamin D on Spatial Learning and Memory Impairment in Adult Male Rats Model of Alzheimer’s Disease (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 22(6):192-203. https://doi.org/10.32598/JAMS.22.6.5166.2

Background and Aim
Alzheimer’s disease is the most common causes of dementia among the elderly people. The aim of this study was to evaluate the synergistic effects of memantine and vitamin D on spatial learning and memory impairment in adult male rat model of Alzheimer’s disease.

Methods & Materials
In this experimental study, male Wistar rats were randomly divided into nine groups (n=7): 1= Control, 2= NBM lesion (received bilateral electric lesion of NBM), 3= Sham (the electrode was entered into the NBM with no electric lesion), 4= NBM lesion+ Vehicle Memantine (received saline), 5= NBM lesion+ Vehicle Vitamin D (received saline), 6= NBM lesion+ Vehicle Memantine+ Vehicle Vitamin D (received saline plus sesame oil), 7= NBM lesion+ Vitamin D; 8= NBM lesion+ Memantine, and 9= NBM lesion+Vitamin D+Memantine. After one week, the rats were trained to perform the Y-maze task for five days. Twenty five days after training, a retention test was performed to evaluate their long-term memory.

Ethical Considerations
This study with research ethics code of “EE/ 97, 24, 3061243/scu.ac.ir” was approved by the Research Ethics Committee of Shahid Chamran University of Ahvaz In Iran.

Results
Bilateral NBM lesion reduced spatial learning in comparison with control and sham groups. No effect on spatial learning was observed in NBM lesion+ Vehicle Memantine and NBM lesion+ Vehicle Vitamin D groups compared to the NBM lesion group. Spatial learning and memory in NBM lesion+ Vitamin D+Memantine group (P<0.001) was significantly improved compared to NBM lesion+Vitamin D (P<0.01) and NBM lesion+ Memantine (P<0.05) groups. Moreover, no significant difference was observed between the results in the 5th day of training and the memory retention at the 30th day.

Conclusion
Co-administration of memantine and vitamin D is more effective than memantine or vitamin D alone in spatial learning and memory improvement in rat model of Alzheimer’s disease.

Key words: Vitamin D, Memantine, Spatial learning, Nucleus basalis of magnocellularis, Alzheimer’s disease

ABSTRACT

Background and Aim: Alzheimer’s disease is the most common causes of dementia among the elderly people. The aim of this study was to evaluate the synergistic effects of memantine and vitamin D on spatial learning and memory impairment in adult male rat model of Alzheimer’s disease.

Methods & Material: In this experimental study, male Wistar rats were randomly divided into nine groups (n=7): 1= Control, 2= NBM lesion (received bilateral electric lesion of NBM), 3= Sham (the electrode was entered into the NBM with no electric lesion), 4= NBM lesion+ Vehicle Memantine (received saline), 5= NBM lesion+ Vehicle Vitamin D (received saline), 6= NBM lesion+ Vehicle Memantine+ Vehicle Vitamin D (received saline plus sesame oil), 7= NBM lesion+ Vitamin D; 8= NBM lesion+ Memantine, and 9= NBM lesion+Vitamin D+Memantine. After one week, the rats were trained to perform the Y-maze task for five days. Twenty five days after training, a retention test was performed to evaluate their long-term memory.

Ethical Considerations: This study with research ethics code of “EE/ 97, 24, 3061243/scu.ac.ir” was approved by the Research Ethics Committee of Shahid Chamran University of Ahvaz In Iran.

Results: Bilateral NBM lesion reduced spatial learning in comparison with control and sham groups. No effect on spatial learning was observed in NBM lesion+ Vehicle Memantine and NBM lesion+ Vehicle Vitamin D groups compared to the NBM lesion group. Spatial learning and memory in NBM lesion+ Vitamin D+Memantine group (P<0.001) was significantly improved compared to NBM lesion+Vitamin D (P<0.01) and NBM lesion+ Memantine (P<0.05) groups. Moreover, no significant difference was observed between the results in the 5th day of training and the memory retention at the 30th day.

Conclusion: Co-administration of memantine and vitamin D is more effective than memantine or vitamin D alone in spatial learning and memory improvement in rat model of Alzheimer’s disease.

Extended Abstract

Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly. Acetylcholine and cholinergic signaling are essential for cognitive functions, including learning and memory. Disorders in cholinergic neurons or postsynaptic acetylcholine receptors have been found to be directly associated with cognitive impairment caused by Alzheimer’s disease [2]. Dysfunction or lack of cholinergic cell groups in the basal forebrain, including the Nucleus Basalis Magnocellularis (NBM) in rodents or its equivalent in humans, the Nucleus Basalis of Meynert (NBM), are among the first pathological events in the pathogenesis of Alzheimer’s disease.
Alzheimer's disease [3]. The present study aims to evaluate the synergistic effects of memantine and vitamin D on improving spatial learning and memory impairments in adult male rats of Alzheimer's disease model through the bilateral electrical lesion of NBM.

Methods and Materials

In this experimental study, male Wistar rats were randomly divided into 9 groups (7 rats in each): Control group (received no injection or surgery), NBM lesion group (received electrically-induced lesion in NBM), Sham group (the electrode was impaled into the NBM with no lesion), NBM lesion+memantine (saline), NBM lesion+vitamin D (sesame oil), NBM lesion+memantine+vitamin D (saline+sesame oil), and NBM lesion+Vitamin D.

One week after NBM lesion: the last group received 5 μg/kg vitamin D for 10 days, starting 3 days before NBM lesion, by intraperitoneal injection (IP injection) [13]; the group of NBM lesion + memantine received 3 mg/kg memantine for 5 days, half an hour before training, by intraperitoneal injection (IP injection) [14]; the group of NBM lesion+memantine+vitamin D received 5 μg/kg vitamin D for 10 days, starting 3 days before lesion, and 3 mg/kg memantine for 5 days, half an hour before training, by intraperitoneal injection (IP injection). One week later, rats were trained for 5 days with a Y-shaped maze. Twenty-five days after training, a memory recall test was performed to assess long-term memory.

Results

Comparison of different groups in the 5 consecutive days of training with One-way Analysis of Variance (ANOVA) showed no significant difference between control and Sham groups in spatial learning in any of the days, whereas bilateral lesion of NBM led to decreased spatial learning (P<0.001) compared to control and Sham groups. In this study, no change was observed in the spatial learning in vehicle memantine and vitamin D groups compared with the NBM lesion group. On the other hand, the findings of this study showed an improvement in spatial learning and memory of NBM lesion+memantine+vitamin D group (P<0.001) as compared with the two groups of NBM lesion+vitamin D (P<0.01) and NBM lesion+memantine (P<0.05). Besides, no significant difference was observed between the results of the fifth day of training and the 30th-day memory recall test in either group.

Discussion

In this study, the bilateral electrical lesion of the Nucleus basalis Magnocellularis (NBM) was used as a model to induce Alzheimer's disease, besides spatial learning and memory impairments in rats. The findings of this study indicated that the combined treatment of vitamin D and memantine through the Intraperitoneal (IP) injection of vitamin D for 10 days (starting 3 days before NBM lesion) and induction of Alzheimer's disease model and intraperitoneal injection of memantine for 5 days (starting 7 days after NBM lesion) had a greater effect on the improvement of spatial learning and memory impairments in the Alzheimer's disease model rats as compared to the administration of these two treatments each alone. Similarly, Di et al.'s studies have shown that 17 β-estradiol, which has neuroprotective effects as similar to vitamin D, leads to decreased neuronal degeneration and increased neuronal survival when combined with memantine treatment in traumatic brain injury model [21].

On the other hand, Ihalainen's studies on rats with Fimbria-fornix lesion have shown a modest increase in acetylcholine levels in neocortex and hippocampus under chronic treatment with memantine and a significant increase under acute treatment with memantine [5]. Therefore, it seems that in the combined treatment of memantine and vitamin D, vitamin D improves memory and learning in Alzheimer's model rats by increasing neuronal protection and inhibiting axonal degeneration by increasing acetylcholine levels.

Ethical Considerations

Compliance with ethical guidelines

This study with Ethics Code EE/ 97, 24, 3061243/ scu.ac.ir was approved by the Research Ethics Committee of Shahid Chamran University of Ahvaz.

Funding

This study received financial support of Shahid Chamran University of Ahvaz.

Authors' contributions

All authors met standard writing criteria according to the recommendations of the International Committee of Medical Journal Editors (ICMJE).
Conflicts of interest

The authors declare that there is no conflict of interest in the present study.

Acknowledgements

The authors would like to thank the Deputy for Research of the Shahid Chamran University of Ahvaz for their support.
اثرات تجویز توأم ممانیتین و ویتامین D بر اختلالات یادگیری و حافظه فضایی در مدل آلزایمر آلزایمر موش یا صحرایی نر بالغ

نسترن زمانی

تهران، دانشگاه پیام نور، دانشکده علوم، گروه زیست‌شناسی.
نشانی:
+98 (۹۱۶۲۶۸۲۰۵۱).

کلیه‌ها:

1. Alzheimer’s Disease (AD)
2. Beta-Amyloid (Aβ)
3. Nucleus Basalis Magnocellularis (NBM)

مقدمه

بیماری آلزایمر از ارتباط مستقیمی با کنترل مالکولی‌های فضایی در مدل آلزایمر آلزایمر موش یا صحرایی نر بالغ

1. Alzheimer’s Disease (AD)
2. Beta-Amyloid (Aβ)
3. Nucleus Basalis Magnocellularis (NBM)

مراجعه

روزنامه

شماره 22

دوره 1398

بهمن و اسفند

۱. کهکشان فزایی، مهندس مهندس
بررسی تأثیر مصرف مواد غذایی بر عمل جراحی تخریب الکتریکی دوطرفه در روسال موش‌های گردشگر نوری با ویتامین D.

مقدمه
در بیماری آلزایمر که در نعلبک و فضایی در موش‌های مدل ترانسژنیک بیماری آلزایمر نشان داده می‌شود، احتمالاً مواد غذایی با ویژگی‌های خاصی ممکن است به عنوان مداخله‌گذاری به جلوگیری از افزایش غلظت سیناپسی استیل و اعمال محافظت عصبی به وسیله ویتامین D بسیار مؤثر باشند.

мی‌توان به تأثیر مصرف مواد غذایی بر عمل جراحی تخریب الکتریکی دوطرفه در روسال موش‌های گردشگر نوری با ویتامین D پرداخت.

مواد و روش‌ها
در مطالعه حاضر به دنبال تحقیقات آگازی مورود استفاده شد.

نتایج
در مطالعه حاضر مصرف مواد غذایی قابل تثبیتی بر عمل جراحی تخریب الکتریکی دوطرفه در روسال موش‌های گردشگر نوری با ویتامین D پرداخت.

بحث
در مطالعه حاضر مصرف مواد غذایی قابل تثبیتی بر عمل جراحی تخریب الکتریکی دوطرفه در روسال موش‌های گردشگر نوری با ویتامین D پرداخت.

4. Nerve Growth Factor (NGF)
دستگاه استرتوکائسی (Stoelting, USA) در پنج گروه با تعداد 12 موش به صورت یکدستگاه نصب شد. مدت زمان آموزش مصرفی متوسط، سوم موش به صورت یک مدل آلزایمر موش ناحیه ایجاد شد. 

بیش از حد این است که هر چهار روز نخستی از آزمون تحقیق و آزمون تحقیق از روز پنجم آموزش، موش به بازوی روشن را شناخته کردند. این نتایج با فرض توجیهی بین عناصر تحقیق و آزمون تحقیق در زمان‌های مختلف از روز پنجم آموزش تا روز پنجم آموزش مربوط می‌شود. 

تعداد دفعات سپرده در هر دو نیمکره مغزی به صورت یک جلسه مورد بررسی قرار گرفت. میله‌های آب‌کاری دارای سه بازوی یکی به یکی بودند. میله‌های آب‌کاری در دو نیمکره مغزی به نرمال سالین تمیز شد و بعد از کنارزدن بافت‌های ناحیه بین چشم‌ها تراشیده شدند. 

در نهایت، ورود موش به بازوی روشن را به منظور نخستین استفاده از روش تحقیق و آزمون تحقیق در زمان‌های مختلف از روز پنجم آموزش تا روز پنجم آموزش مربوط می‌شد. این عملکرد نشان داد که موش به بازوی روشن را به منظور نخستین استفاده از روش تحقیق و آزمون تحقیق در زمان‌های مختلف از روز پنجم آموزش تا روز پنجم آموزش مربوط می‌شد.
بیماران مبتلا به آلزایمر ناکافی است که این امر در یافته‌های این پژوهش نیز نشان داده شد. در مطالعه حاضر امکان افزایش اثرات درمانی ممانتین تحت تأثیر ویتامین D بررسی شده است. در این مطالعه گروه تخریب + ویتامین D، گروه تخریب + ممانتین و گروه تخریب + ویتامین D + ممانتین در مقایسه با گروه تخریب کنترل نتایجی به نتیجه این پژوهش نشان داده نمود. اثرات فیزیولوژیکی تأثیر تومور ویتامین D و ممانتین بر میانگین تعداد پاسخ صحیح در روزهای اول، دوم، سوم و چهارم آموزش است. میانگین پاسخ صحیح بین گروه تخریب با گروه تخریب + ویتامین D و گروه تخریب + ویتامین D + ممانتین در روزهای اول تا پنجم و روز سیمی با روز پنجم آموزش در موش‌های صحرایی نر بالغ شکل گرفته است. به‌طور کلی، این نتایج نشان دهنده اثرات مثبت ویتامین D و ممانتین در بهبود یادگیری و حافظه فضایی بیماران مبتلا به آلزایمر می‌باشد.
کنجد (حلال مانتین)، سالیک (حلال مامتین) و تجویز توأم D ویتامین و مامتین در بررسی تجویز توأم طریق تزریق داخل صفاقی ویتامین D و مامتین از طریق تزریق داخل صفاقی D ویتامین و القای مدل NBM در موش های مدل آلزایمر است. حافظه فضایی که در مطالعه شماره ۳، مجدر و ویتامین D و مامتین بر اساس مطالعات انجام شده بهترین انتخاب شدند (۱۲، ۱۳) در همین راستا در مطالعات دیگر و همکاران نیز نشان داده شده است که در موس های ترانسژنیک مدل آلزایمر اسید فولیک موجب CA1 استرادیول β۱۷ استراندیول β۱۷- افزایش اثرات مامتین در محافظت عصبی نورون های ناحیه هیپوکامپ و یادگیری فضایی در ماز آبی موریس می شود (۱۹). همچنین مقایسه

5. Zhao
6. Chen
7. Annweiler
فاکتورهای توسط ماکروفاژهای نوع Aβ در پس از اعمال کولین و بهبود حافظه کوتاه مدت انجام شده است. به نظر می‌رسد که این نتایج از نظر اهمیت فیزیولوژیکی مدل آلزایمر به خوبی قابل توصیف است.

د) بخش اصلی

از طرف دیگر گروه تریکلوریک و اعمال بیشتر کولین استرات در مدل آلزایمر نیز بهبود حافظه فضایی در مدل آلزایمر قابل توجهی داشت. در این مطالعه، با مصرف کولین، کاهش سطوح Aβ در هیپوکامپ و کاهش سطوح در مدل آلزایمر نیز داشت. به نظر می‌رسد که این نتایج از نظر اهمیت فیزیولوژیکی مدل آلزایمر به خوبی قابل توصیف است.

در همین راستا در مطالعات پیریژ و روئیچ ۱۰ در سال ۲۰۲۱ که تأثیرات درمان با ویتامین D در موش‌های سین‌سایتهای جنرالیسی‌های دیده می‌باشد که در این زمینه سرکوب سایتوکینهای پیش‌تهیه‌کننده در مغز ارائه بوده است. عمده بررسی های بردنیتین دی و ویتامین D در نظر گرفته یک در نظر گرفته در رابطه با پیش‌تهیه‌کننده در مدل آلزایمر نیز بهبود حافظه فضایی و حافظه فضایی در مدل آلزایمر نیز بهبود حافظه فضایی و حافظه فضایی در موش‌های آلزایمر مدل آلزایمر و تحت تیمار با متمایزان می‌شود.

۱۱. Darwish & Briones
نوازندگان اعلام می‌کنند که هیچگونه تضاد منافعی در پژوهش حاضر وجود ندارد.

تشکر و قدردانی

بدینوسیله نویسندگان مراثب تشکر و قدردانی خود را از معاونت پژوهشی دانشگاه شهید چمران اهواز به چهارم همکاری و مساعده در انجام این پژوهش علمی-پژوهشی اعلام می‌کنند.
[28] Peeyush KT, Savitha B, Sherin A, Anju TR, Jes P, Paulose CS. Cholinergic, dopaminergic and insulin receptors gene expression in the cerebellum of streptozotocin-induced diabetic rats: functional regulation with Vitamin D3 supplementation. Pharmacol Biochem Behav. 2010; 95(2):216-22. [DOI:10.1016/j.pbb.2010.01.008] [PMID]

[29] Miller BJ, Whisner CM, Johnston CS. Vitamin D Supplementation Appears to Increase Plasma Aβ40 in Vitamin D Insufficient Older Adults: A Pilot Randomized Controlled Trial. J Alzheimers Dis. 2016; 52(3):843-47. [DOI:10.3233/JAD-150901] [PMID]

[30] Briones TL, Darwish H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J Neuroinflammation. 2012; 9:244. [DOI:10.1186/1742-2094-9-244] [PMID] [PMCID]