PAPER

Speed limits of the trace distance for open quantum system

Satoshi Nakajima and Yasuhiro Utsumi

Department of Physics Engineering, Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan

* Author to whom any correspondence should be addressed.

E-mail: nakajima@eng.mie-u.ac.jp

Keywords: speed limit, trace distance, open quantum system, quantum master equation

Abstract

We investigate the speed limit of the state transformation in open quantum systems described by the Lindblad type quantum master equation. We obtain universal bounds of the total entropy production described by the trace distance between the initial and final states in the interaction picture. Our bounds can be tighter than the bound of Vu and Hasegawa (2021 Phys. Rev. Lett. 126 010601) which measures the distance by the eigenvalues of the initial and final states: this distance is less than or equal to the trace distance. For this reason, our results can significantly improve Vu–Hasegawa’s bound. The trace distance in the Schrödinger picture is bounded by a sum of the trace distance in the interaction picture and the trace distance for unitary dynamics described by only the Hamiltonian in the quantum master equation.

1. Introduction

In recent years, studies of time-dependent open systems have been active [1]. These studies relate to quantum pumps [2, 3], excess entropy production [4–6], the information geometric approach [7, 8], the efficiency and power of heat engines [9–11], shortcuts to adiabaticity [12–16], and speed limits [16–28]. Obtaining a fundamental bound on the speed of state transformation is an important issue relevant to broad research fields including quantum control theory [29] and foundations of nonequilibrium statistical mechanics [30]. Speed limits for time-dependent closed quantum systems have been studied for more than a half-century [1]. Since 1945, the Mandelstam–Tamm relation [31]

\[
\frac{L}{\int_0^\tau dt \Delta E} \leq 1
\]

has been known (appendix A. In this paper, we set \(\hbar = 1\)). Here, \(L\) is the distance between the initial and final states (the Bures angle, see appendix A), and \(\Delta E\) is the energy fluctuation. About a decade ago, speed limits of open quantum systems had been intensively studied by adopting various distance measures between two quantum states [17–20]. Reference [17] derived the upper bound of the Bures angle expressed by the quantum Fisher information. For systems described by the quantum master equation \(d\rho/dt = \hat{K}(\rho)\) \((\rho(t)\) is the density operator (the state) of the system\), reference [18] provided the upper bound of the relative purity \(\text{tr}[\rho(t)\rho(0)]/\text{tr}[\rho(0)^2]\) expressed with the adjoint of the generator of the dynamical map \(\hat{K}\). Reference [19] estimated Margolus–Levitin-type and Mandelstam–Tamm-type bounds by using the Bures angle for pure initial state and several norms of \(\hat{K}(\rho)\). A review of quantum speed limits for closed and open systems until around 2017 is given by reference [20]. More recently, the speed limits on observables of open quantum systems are discussed [28].

Recently, even in classical systems, it turns out that there exist speed limits expressed in terms of the distance between states [21]. Remarkably, the classical speed limits connect the distance and the thermodynamic entropy. Shiraishi et al [21] demonstrated that

\[
\sigma \geq \frac{p^2}{\int_0^\tau dt 2A_n(t)}
\]

(1)

for a system described by a classical master equation \(d_p(t) = \sum_m W_{nm} p_n(t)\). \(W_{nm}\) is the transition matrix satisfying the local detailed balance condition [32] and \(p_n(t)\) is the probability of state \(n\) at time \(t\). \(\sigma\) is the
total entropy production, the distance \(d := \sum_{n} |p_n(\tau) - p_n(0)| \) is the \(L^1 \) norm, and
\[A_c(t) := \sum_{n \neq m} W_{nm} p_n(t) \] is the activity (total number of transitions per unit time).

The speed limits in terms of the entropy production for the open quantum systems described by the Lindblad type quantum master equation (the Gorini–Kossakowski–Sudarshan–Lindblad equation),
\[
\frac{d}{dt} \rho(t) = -i[H(t), \rho(t)] + \mathcal{D}(\rho(t)),
\]
have been researched actively in recent years. Here, \(H(t) := H_S(t) + H_l(t) \), where \(H_S \) is the system Hamiltonian and \(H_l \) is the Lamb shift Hamiltonian, which satisfies \([H_S(t), H_S(t)] = 0. \) \(\mathcal{D}(\rho) \) represents dissipation and is given by \(\mathcal{D}(\rho) = \sum_{k} \gamma_k \slashed{D}[L_k]|\rho| \) with \(\slashed{D}[X](Y) := (XY^\dagger - \frac{1}{2}X^\dagger XY - \frac{1}{2}XY^\dagger X) \). In this paper, \(X \) and \(Y \) denote linear operators of the system. \(\gamma_k \) are non-negative real numbers which describe the strength of the dissipation. The label \(k \) is a tuple \((b, a, \omega)\) where \(b \) is the label of the bath. The jump operators \(L_{b,a,\omega} \) satisfy
\[
[L_{b,a,\omega}, H_S] = \omega L_{b,a,\omega}, \quad L_{b,a,-\omega} = L_{b,a,\omega}^\dagger.
\]
We assume the local detailed balance condition
\[
\gamma_{b,a,-\omega} = e^{-\beta_b} \gamma_{b,a,\omega},
\]
where \(\beta_b \) is the inverse temperature of the bath \(b \). Note that \(L_b, \omega, \gamma_b \) and \(\beta_b \) can depend on time. The total entropy production is given by \(\sigma := \int_0^t dt \sigma \) where
\[
\sigma := - \text{tr} \left[\frac{d\rho}{dt} \ln \rho \right] - \sum_b \beta_b \text{tr}[\mathcal{D}_b(\rho)H_S]
\]
is the entropy production rate. Here, \(\mathcal{D}_b(\rho) \) denotes the contribution from the bath \(b \) of \(\mathcal{D}(\rho) \).

For the system described by (2), there are two approaches to speed limits. The first approach is Funo et al’s approach [22], which treats the first and second terms of the right-hand side of (2) equally. Funo et al [22] demonstrated that
\[
||\rho(\tau) - \rho(0)||_1 \leq c_1 + c_2 + c_3,
\]
with
\[
c_1 \leq 2 \int_0^\tau dt \Delta E,
\]
\[
c_3 \leq \sqrt{2} \sigma \int_0^\tau dt A(t).
\]
Here, \(||\rho(\tau) - \rho(0)||_1 \) is the trace distance and \(||X||_1 := \text{tr} \sqrt{XX^\dagger} \) is the trace norm. \(c_1 \) corresponds to the contribution from the first term of the right-hand side of (2), \(c_2 \) and \(c_3 \) correspond to the contribution from the second term of the right-hand side of (2) [33]. \(\Delta E := \sqrt{\text{tr}(\rho(t)H(t)^2) - [\text{tr}(\rho(t)H(t))]^2} \) is the energy fluctuation. \(A(t) \) is defined by
\[
A(t) := \sum_{n \neq m} \mathcal{W}_{nm} p_n(t)
\]
with \(\mathcal{W}_{nm} := \sum_k \gamma_k |m(t)|L_k|n(t)||^2. \) Here, we used the spectral decomposition of \(\rho(t) \):
\[
\rho(t) = \sum_n p_n(t) |n(t)\rangle \langle n(t)|.
\]
If the quantum master equation reduces to the classical master equation [34], (6) reduces to (1) because \(c_1 = c_2 = 0. \) For no dissipation limit \(\gamma_k = 0, \) (6) becomes a Mandelstam–Tamm type relation because of \(c_2 = c_3 = 0. \)

The second approach is Vu’s approach [24, 25], which focuses on the second term of the right-hand side of (2). Vu and Hasegawa [24] demonstrated that
\[
\sigma \geq \sigma_{V1} := \frac{d\tau \rho(\tau), \rho(0)|^2}{\int_0^\infty dt 2B(t)}.
\]
Here,

\[B(t) := \text{tr} \left[\rho(t) \sum_{k} \gamma_k L_k^\dagger L_k \right] = \mathcal{A}(t) + \sum_{a} \sum_{k} p_a(t) \gamma_k |\langle n(t)|L_k|n(t)\rangle|^2 \]

(12)

corresponds to the activity [35] (a similar quantity appears in references [36, 37] in the context of decoherence times). \(d_T \) is defined by \(d_T(\rho(\tau), \rho(0)) := \sum \{a_n - a_0\} \) where \(\{a_n\} \) and \(\{b_n\} \) are increasing eigenvalues of \(\rho(0) \) and \(\rho(\tau) \). For no dissipation limit, \(\langle 11 \rangle \) is consistent because \(d_T(\rho(\tau), \rho(0)) = 0 \) holds with \(B(t) = 0 \) and \(\sigma = 0 \). \(\langle 11 \rangle \) is improved as [26]

\[\sigma \geq \sigma_{VB} := \frac{d_T(\rho(\tau), \rho(0))^2}{\int_0^\infty dt \mathcal{A}(t)} \]

(13)

with

\[M(t) := \sum_{k} \sum_{m \neq n} \Psi(a_{mn}^{(k)}, a_{mn}^{(-k)}) \]

(14)

\[a_{mn}^{(k)} := \gamma_k |\langle m(t)|L_k|n(t)\rangle|^2 p_n(t). \]

(15)

Here, we used \(\langle 10 \rangle \) and \(-k := (b, a, -\omega). \Psi(\alpha, \beta) \) is the logarithmic mean of \(\alpha \) and \(\beta \) given by \(\Psi(\alpha, \beta) := (\beta - \alpha)/(\ln \beta / \alpha) \) (\(\alpha \neq \beta \)) and \(\Psi(\alpha, \alpha) := \alpha \). The relation \(\Psi(\alpha, \beta) \leq (\alpha + \beta)/2 \) leads to \(M(t) \leq \mathcal{A}(t) \leq B(t) \) and thus \(\sigma_{VB} \geq \sigma_{V1} \).

For a system of which Hilbert space is \(d \)-dimensional, Vu and Saito [25] demonstrated that

\[\sigma \geq \frac{||\rho(\tau) - \rho_0||_1^2}{\int_0^\infty dt \mathcal{A}(t)} \]

(16)

under the condition that the initial state is completely mixed as \(\rho(0) = \rho_0 := 1/d \). For no dissipation limit, \(\langle 16 \rangle \) is also consistent because of \(||\rho(\tau) - \rho_0||_1 = 0 \).

We consider \(\langle 11 \rangle \) and \(\langle 16 \rangle \) possess the following shortcomings, which we would like to improve in the present paper. (i) \(d_T \) can be zero between different states: when there is an unitary operator \(U \) such that \(\rho(\tau) = U \rho(0) U^\dagger \), \(d_T \) becomes zero and thus cannot distinguish between the two states. (ii) Even in the classical master equation limit [34], \(\langle 11 \rangle \) does not lead to \(\langle 1 \rangle \): \(d_T(\rho(\tau), \rho(0)) \) does not become \(l \) [38] and \(B(t) > A_1(t) \) in general. (iii) In \(\langle 16 \rangle \), we can not replace \(\rho_0 \) by an any initial state \(\rho(0) \). In fact, in the weak dissipation limit \(\gamma_k \rightarrow 0 \), although \(\sigma \) and \(B(t) \) vanish, \(||\rho(\tau) - \rho(0)||_1 \) remains.

The structure of the paper is as follows. First, we summarize our main results (section 2). Next, we explain derivations (section 3). We apply our speed limits to a general system of which Hilbert space is two-dimensional (section 4.1): it includes a spinless quantum dot coupled to a single lead (section 4.2) and a qubit system (section 4.3). In section 5, we summarize this paper. In appendix A, we derive the Mandelstam–Tamm relation for mixed state. Appendix B is for the detailed calculations for section 3. In appendix C, we derive a bound for the trace distance in the Schrödinger picture. We prove \(dv \geq d_T \) in appendix D. Appendix E is for the detailed calculations for section 4.3.

2. Main results

The main results of this paper are

\[\sigma \geq \sigma_0 \geq \sigma_1 \geq \sigma_2, \]

(17)

\[\sigma_0 := \frac{||\bar{\rho}(\tau) - \bar{\rho}(0)||_1^2}{\int_0^\infty dt \mathcal{A}_\omega(t)} \]

(18)

\[\sigma_1 := \frac{||\bar{\rho}(\tau) - \bar{\rho}(0)||_1^2}{\int_0^\infty dt [B(t) + B'(t)]} \]

(19)

\[\sigma_2 := \frac{||\bar{\rho}(\tau) - \bar{\rho}(0)||_1^2}{\int_0^\infty dt [B(t) + B_\infty(t)]} \]

(20)
where \(\tilde{\rho}(t) := U^\dagger(t)\rho(t)U(t) \) denotes the interaction picture. Here, \(U(t) \) is defined by \(\frac{d}{dt} U(t) = -iH(t)U(t) \) and \(U(0) = 1 \). \(A_\varphi(t) \), \(B' \), and \(B_\infty \) are quantum extensions of the activity. \(A_\varphi(t) \) is given by

\[
A_\varphi(t) := \text{tr} \left(\tilde{\rho}(t)^\dagger \frac{1}{4} \sum_k \gamma_k [\varphi, \hat{L}_k^\dagger][\varphi, \hat{L}_k] \right). \tag{21}
\]

\(\varphi(t) \) is defined by

\[
\varphi(t) := \Phi(\tilde{\rho}(t) - \tilde{\rho}(0)). \tag{22}
\]

Here, \(\Phi \) maps a self-adjoint operator \(X \) to a self-adjoint operator as \(\Phi(X) := \sum_n \text{sign}(x_n)|n\rangle\langle n| \), where the spectral decomposition of \(X \) is \(X = \sum_n x_n|n\rangle\langle n| \); \(\text{sign}(x) \) is the sign of \(x \). \(B' \) and \(B_\infty \) are defined by

\[
B'(t) := \text{tr} \left(\varphi \tilde{\rho} \varphi \sum_k \gamma_k \hat{L}_k^\dagger \hat{L}_k \right), \tag{23}
\]

\[
B_\infty(t) := \sum_k \gamma_k ||\hat{L}_k||_\infty^2 \geq B'(t), \tag{24}
\]

where \(||\hat{L}_k||_\infty^2 \) equals to the maximum eigenvalues of \(\hat{L}_k^\dagger \hat{L}_k \). \(||Y||_\infty \) is called the spectral norm.

The second inequality of \((17) \) \(\sigma \geq \sigma_1 \) leads to \((16) \) for \(\rho(0) = \rho_0 \) because \(B'(t) = B(t) \) and \(||\tilde{\rho}(\tau) - \tilde{\rho}_0||_1 = ||\rho(\tau) - \rho_0||_1 \) hold and thus \(\sigma_1 = \sigma_2 \). In the classical master equation limit, the first inequality of \((17) \) \(\sigma \geq \sigma_0 \) leads to \((1) \): in this limit, \(||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 = 1 \) and \(A_\varphi \leq A_1 \) hold (appendix B.3) and thus \(\sigma_0 \) is larger than the right-hand side of \((1) \). Even for no dissipation limit, \((17) \) is consistent because \(||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 = 0 \) holds with \(\sigma = 0 \) and \(A_\varphi(t) = B(t) = B'(t) = B_\infty(t) = 0 \).

We notice that

\[
d_T(\tilde{\rho}(\tau), \tilde{\rho}(0)) \leq ||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1, \tag{25}
\]

for finite dimensional Hilbert space (p 512 in reference [39]) and \(d_T(\tilde{\rho}(\tau), \tilde{\rho}(0)) = d_T(\rho(\tau), \rho(0)) \). (25) can be also derived from [26]

\[
d_T(\rho_2, \rho_1) = \min_{V \in \{U|\|U\|_1 = 1\}} ||V\rho_2 V^\dagger - \rho_1||_1. \tag{26}
\]

(25) indicates that our bounds \(\sigma_k \) \((k = 0, 1, 2) \) can be better than \((11) \).

Similarly to \((6) \), we can separate contributions from unitary dynamics and dissipation. By the triangle inequality, the trace distance in the Schrödinger picture is bounded as [40]:

\[
||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 \leq ||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 + ||\rho(\tau) - \tilde{\rho}(\tau)||_1
= ||\rho(\tau) - \rho(0)||_1 + ||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1. \tag{27}
\]

Here, \(\tilde{\rho}(t) := U(t)\rho(0)U^\dagger(t) \). The first term of the right-hand side of \((27) \) is related to the unitary time evolution and is bounded by the Mandelstam–Tamm type relation (appendix A, [22])

\[
||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 \leq 2 \int_0^T dt \Delta \tilde{E}. \tag{28}
\]

Here, \(\Delta \tilde{E} := \sqrt{\text{tr}(\tilde{\rho}(t)H(t)^2)} - |\text{tr}(\tilde{\rho}(t)H(t))|^2 \). Using \((17) \) and \((18) \), the second term of the right-hand side of \((27) \) is bounded as

\[
||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 \leq \sqrt{2\sigma} \int_0^T dt A_\varphi(t). \tag{29}
\]

In appendix C, we explain an alternative bound for the trace distance in the Schrödinger picture which does not refer to the virtual isolated system.

We discuss the meaning of the two distances when the Hilbert space is two-dimensional. In this case, the state of the system can be written as \(\tilde{\rho}(t) = \frac{1}{2}(1 + r(t) \cdot \tau) \). Here, \(\tau = (\tau_x, \tau_y, \tau_z) \), \(\tau_i \) is the Pauli matrix, and \(r(t) \) is the Bloch vector. The trace distance and \(d_T \) are given by

\[
||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 = |r(\tau) - r(0)|, \tag{30}
\]

\[
d_T(\tilde{\rho}(\tau), \tilde{\rho}(0)) = ||r(\tau)| - |r(0)||. \tag{31}
\]

with \(|x| := \sqrt{x \cdot x} \). \(d_T \) measures the difference between the length of the two Bloch vectors and does not quantify the coherence.
3. Derivation of the main results

Our key idea is the use of the trace distance in the interaction picture within Vu’s framework [24, 25]. We introduce a semi-inner product by

\[\langle X, Y \rangle_{\tilde{\rho}, k} := \text{tr}[X^\dagger \{ \tilde{\rho} \}_k(Y)] \]

with

\[\{ \rho \}_k(X) := \int_0^1 ds (\gamma_{-k} \rho)^t X (\gamma_k \rho)^{1-t}. \]

Here, \(\gamma_{-k} = \gamma_{\beta_k, -\omega_k} \). \(\{ \rho \}_k(X) \) is the logarithmic mean transformation [41]. The semi-inner product satisfies \((\langle X, Y \rangle_{\tilde{\rho}, k})^* = \langle Y, X \rangle_{\tilde{\rho}, k} \) and \(||X||_{\tilde{\rho}, k}^2 := \langle X, X \rangle_{\tilde{\rho}, k} \geq 0 \). This semi-inner product differs from Vu’s semi-inner product \(\text{tr}[X^\dagger \tilde{O}^b(Y)] \) where \(\tilde{O}^b(X) := \frac{1}{2} \sum_{\omega_k} [\tilde{L}_\omega^k \{ \tilde{\rho} \} \{ \tilde{L}_\omega X \}] \) [24]. The super-operator \(\tilde{O}^b \) corresponds to the Laplacian of a weighted graph [42] (see (35) and appendix B.2). We consider the semi-inner product (32) provides more transparent descriptions (appendix B).

Using the semi-inner product, we can obtain

\[\frac{d}{dt} ||\tilde{\rho}(t) - \tilde{\rho}(0)||_1 = \text{tr} = \frac{1}{2} \sum_k \delta_k \text{tr} [\tilde{L}_k(\tilde{\rho})] \]

\[= \frac{1}{2} \sum_k [\tilde{L}_k^\dagger \{ \tilde{\rho} \}_k([\tilde{L}_k, -\ln \tilde{\rho} - \beta_k \tilde{H}_S], [\tilde{L}_k, -\ln \tilde{\rho} - \beta_k \tilde{H}_S])]]. \]

(35)

Further, (34) leads to

\[||\tilde{\rho}(t) - \tilde{\rho}(0)||_1 \leq \frac{1}{2} \sum_k \int_0^t dt \langle [\tilde{L}_k, \varphi(t)], [\tilde{L}_k, -\ln \tilde{\rho} - \beta_k \tilde{H}_S] \rangle_{\tilde{\rho}, k} \]

\[\leq \frac{1}{2} \sum_k \int_0^t dt \sqrt{||[\tilde{L}_k, \varphi]||^2_{\tilde{\rho}, k} ||[\tilde{L}_k, -\ln \tilde{\rho} - \beta_k \tilde{H}_S]||^2_{\tilde{\rho}, k}} \]

\[\leq \sqrt{\int_0^t dt \sum_k \langle [\tilde{L}_k, \varphi]|^2_{\tilde{\rho}, k} \rangle} \cdot \sqrt{\sigma}. \]

(36)

Here, we used the Cauchy–Schwarz inequalities

\[||\langle X, Y \rangle_{\tilde{\rho}, k}|| \leq \sqrt{||X||_{\tilde{\rho}, k}^2 ||Y||_{\tilde{\rho}, k}^2} \]

(37)

and

\[\sum_k \int_0^t dt \sqrt{\alpha_k(t) \beta_k(t)} \leq \sqrt{\sum_k \int_0^t dt \alpha_k(t)} \sqrt{\sum_k \int_0^t dt \beta_k(t)}. \]

(38)

Here, \(\alpha_k(t) \) and \(\beta_k(t) \) are non-negative real numbers. The entropy production rate can be written by using the semi-inner product [24]:

\[\dot{\Sigma} = \frac{1}{2} \sum_k ||[\tilde{L}_k, -\ln \tilde{\rho} - \beta_k \tilde{H}_S]||^2_{\tilde{\rho}, k}. \]

(39)

In (36), we can demonstrate (appendix B.3)

\[\frac{1}{2} \sum_k ||[\tilde{L}_k, \varphi]|^2_{\tilde{\rho}, k} \leq 2A_\varphi(t), \]

(40)
which leads to the tightest inequality of (17). We can demonstrate

\[2A_\varphi(t) \leq B(t) + B'(t) \leq B(t) + B_\infty(t) \]

(41)

using \(\text{tr}\{\hat{\rho}(t)\{\varphi, \hat{L}_k\}\{\varphi, \hat{L}_k\}\} \geq 0, \varphi(t)^2 = 1 \), and \(B_\infty(t) \geq B'(t) \). Here, \(\{X, Y\} = XY + YX \). Then, we obtain the other inequalities of (17).

We compare the derivations of (11) and (17). (11) can be derived as follows [24, 25]. For the spectral decomposition \(\hat{\rho}(t) = \sum_n p_n(t) |\tilde{n}(t)\rangle \langle \tilde{n}(t)| \), we put

\[\tilde{\varphi}(t) := \sum_n c_n(t) |\tilde{n}(t)\rangle \langle \tilde{n}(t)|, \quad c_n(t)^2 = 1. \]

(42)

Then, \([\hat{\rho}(t), \tilde{\varphi}(t)] = 0 \) and \(\tilde{\varphi}(t)^2 = 1 \) hold. For \(c_n(t) = \text{sign}(p_n(t) - p_n(0)) \) or \(c_n(t) = \text{sign}(p_n(t) - p_n(0)) \),

\[d_V(\tilde{\varphi}(t), \tilde{\varphi}(0)) := \sum_n |p_n(\tau) - p_n(0)| = \text{tr} \int_0^\tau \frac{d\tilde{\varphi}(t)}{dt} \end{align} \]

(43)

holds [43]. By repeating similar calculations from (36) and by exploiting \(d_V(\tilde{\varphi}(t), \tilde{\varphi}(0)) \geq d_T(\tilde{\varphi}(t), \tilde{\varphi}(0)) \) (appendix D) and \(d_V(\tilde{\varphi}(t), \tilde{\varphi}(0)) = d_V(\tilde{\varphi}(t), \tilde{\varphi}(0)) \), we derive (11) (appendices B.3 and B.4). Note that \(\tilde{\varphi}(t) \neq \varphi \) for any \(c_n(t) \) in general.

4. Application

4.1. General two-dimensional system

In this subsection, we consider a general system of which Hilbert space is two-dimensional. In general, the jump operators are written as [44]

\[\hat{L}_k = (R_k + iI_k) \cdot \tau. \]

(44)

Here, the components of \(R_k \) and \(I_k \) are real numbers. The equation of the motion of the Bloch vector of \(\hat{\rho} \) is given by

\[\frac{d\tilde{\varphi}}{dt} = 2\sum_k \gamma_k \left[- (R_k^2 + I_k^2)\tilde{\varphi} + (R_k \cdot \tilde{\varphi})R_k + (I_k \cdot \tilde{\varphi})I_k + 2R_k \times I_k \right]. \]

(45)

The activities are given by

\[A_\varphi = \sum_k \gamma_k \left[R_k^2 - (\varphi \cdot R_k)^2 + I_k^2 - (\varphi \cdot I_k)^2 - 2(\varphi \cdot (R_k \times I_k))\varphi \cdot r \right], \]

(46)

\[B = \sum_k \gamma_k \left[R_k^2 + I_k^2 - 2(R_k \cdot I_k) \cdot r \right], \]

(47)

\[B' = \sum_k \gamma_k \left[R_k^2 + I_k^2 - 2(R_k \cdot I_k) \cdot r' \right], \]

(48)

\[B_\infty = \sum_k \gamma_k \left[R_k^2 + I_k^2 + 2|R_k \times I_k| \right]. \]

(49)

Here, we expanded \(\varphi = \varphi \cdot \tau \) with \(\varphi := \frac{1}{|r - r(0)|} (r - r(0)). r' = (x'(t), y'(t), z'(t)) \) is the Bloch vector of \(\varphi(t) = \tilde{\varphi}(t) \):

\[r' = -r + 2\frac{|(r - r(0)) \cdot r|}{|r - r(0)|^2} (r - r(0)). \]

(50)

(46) is simplified as

\[A_\varphi = \frac{B + B'}{2} - \sum_k \gamma_k \left[(\varphi \cdot R_k)^2 + (\varphi \cdot I_k)^2 \right]. \]

(51)

Because \(\varphi \) depends on the initial state, \(A_\varphi \) and \(B' \) depend on it. One can check for \(\rho(0) = \rho_0 \), i.e., \(r(0) = 0, B = B', \) and \(||\tilde{\rho}(\tau) - \tilde{\rho}(0)||_1 = d_F(\rho(\tau), \rho(0)) \), and thus \(\sigma_1 = \sigma_{V_1} \).

4.2. Quantum dot

We analyze our inequality (17) for a spinless quantum dot coupled to a single lead [2, 6]. The quantum matter equation is given by

\[\frac{d\rho}{dt} = -i[H_S, \rho] + \gamma [1 - f(\varepsilon)] \hat{D}[a]|(\rho) + \gamma f(\varepsilon) \hat{D}[a^\dagger](\rho) \]

(52)
We calculate the trace distance and $|\gamma|$. For $|\gamma|$ with W we compare our bounds and Vu–Hasegawa’s bound in the system studied in reference [25]. We consider 4.3. Qubit system, f. The entropy production is calculated as $\frac{d}{dt} = -\gamma z$. Here, a is the annihilation operator of the electron of the system, ε is the energy level of the system, $f(\varepsilon) = \frac{1}{e^{\beta\varepsilon} - 1}$ is the Fermi distribution, β is the inverse temperature of the lead, and γ is the coupling strength. From (52), we obtain $L_1 = 2a$, $\gamma_1 = \frac{1}{4}\gamma[1 - f(\varepsilon)]$, $L_2 = 2a^\dagger$, and $\gamma_2 = \frac{1}{4}\gamma f(\varepsilon)$. These lead to $R_1 = R_2 = (0, 0, 1)$, and $I_1 = -I_2 = (0, 1, 0)$. The equation of the motion of the Bloch vector $r = (x, y, z)$ is given by

$$\frac{d}{dt}x = -\gamma y, \quad \frac{d}{dt}y = -\gamma z, \quad \frac{d}{dt}z = -\gamma(z - [1 - 2f(\varepsilon)])] \tag{53}$$

We calculate the trace distance and d_T by (30) and (31). The activity $B(t)$ and its upper limit $B_\infty(t)$ are given by using $B(t) = \gamma(1 + [2f(\varepsilon) - 2]z(t))/2$ and $B_\infty(t) = \gamma$. $B'(t)$ is obtained from $B(t)$ by replacing $z(t)$ with $z'(t)$. $A(\varepsilon)$ is given by

$$A(\varepsilon) = \frac{\gamma}{4} \left(1 + \frac{|z - z(0)|^2}{|r - r(0)|^2} + 2[2f(\varepsilon) - 1] \frac{|z - z(0)||r - r(0)| \cdot r}{|r - r(0)|^2} \right). \tag{54}$$

The entropy production is calculated as

$$\sigma = H_2 \left(\frac{1 + |r(\tau)|}{2} \right) - H_2 \left(\frac{1 + |r(0)|}{2} \right) + \int_0^\tau dt \beta f(t). \tag{55}$$

Here, $H_2(p) := -p \ln p - (1-p) \ln (1-p)$ is the binary entropy. The heat current $J(t) := -tr[H_2 D(\rho)]$ is given by

$$J(t) = \frac{1}{2} \gamma \varepsilon \left([1 - 2f(\varepsilon)] - z(t) \right). \tag{56}$$

For $\gamma t \gg 1$ and $\beta \varepsilon(t) \gg 1$, $B(t) \approx 0$ holds, however, $A(\varepsilon)$ and $B'(t)$ remain finite in general. Figure 1(a) shows that the direction of the Bloch vector changes from the y-direction to the z-direction. In this process, the norm of the Bloch vector and then $d_T(\tilde{\rho}(t), \tilde{\rho}(0))$ change only slightly, see (31). At $\gamma t = 0.547 \ldots$, although $\tilde{\rho}(t) \neq \tilde{\rho}(0)$, the distance $d_T(\tilde{\rho}(t), \tilde{\rho}(0))$ becomes zero. On the other hand, $||\tilde{\rho}(t) - \tilde{\rho}(0)||^2$ is much larger than $d_T(\tilde{\rho}(t), \tilde{\rho}(0))^2$. Figure 1(b) shows that our bounds σ_0, σ_1 and σ_2 are superior to Vu–Hasegawa’s bound σ_{V1}. The Vu–Saito relation (16) is not applicable in this case.

4.3. Qubit

We compare our bounds and Vu–Hasegawa’s bound in the system studied in reference [25]. We consider the qubit system described by the quantum master equation (see appendix E for detailed calculation)

$$\frac{d\rho}{dt} = -i[H_5(t), \rho] + \alpha \gamma \varepsilon(t) m(\varepsilon(t)) \hat{D}[\sigma_+ (\theta(t))]|\rho\rangle + \alpha \gamma \varepsilon(t) |m(\varepsilon(t)) + 1\rangle \hat{D}[\sigma_-(\theta(t))]|\rho\rangle \tag{57}$$

with

$$H_5(t) = \frac{1}{2} \varepsilon(t) \tau_z(\theta(t)) \tag{58}$$
Our results are applicable to an arbitrary initial state, beyond Vu–Saito’s bound [25] applicable only to the completely mixed initial state. In the classical master equation limit, our tightest inequality leads to the inequality by Shiraishi et al [21]. The trace distance in the Schrödinger picture is bounded by a sum of the trace distance for unitary dynamics described by the system Hamiltonian and the trace distance in the interaction picture.

5. Summary

In open quantum systems described by the Lindblad type quantum master equation, we obtained universal bounds of the total entropy production described by the trace distance between the initial and final states. We considered the trace distance in the interaction picture instead of the distance of reference [24] (measured by the eigenvalues of the initial and final states) and trace distance in the Schrödinger picture [25]. Our bounds can be tighter than the bound of Vu and Hasegawa [24]. Our results are applicable to an arbitrary initial state, beyond Vu–Saito’s bound [25] applicable only to the completely mixed initial state. In the classical master equation limit, our tightest inequality leads to the inequality by Shiraishi et al [21]. The trace distance in the Schrödinger picture is bounded by a sum of the trace distance for unitary dynamics described by the system Hamiltonian and the trace distance in the interaction picture.
Acknowledgments

We acknowledge helpful discussions with Kazutaka Takahashi. This work was supported by JSPS KAKENHI Grant Nos. 18KK0385 and 20H01827.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Mandelstam–Tamm relation

In this section, we demonstrate that the Mandelstam–Tamm relation for mixed state [18]

\(\mathcal{L}(\rho(\tau), \rho(0)) \leq \int_0^\tau dt \Delta E \quad \text{(A.1)} \)

and

\[\frac{1}{2} ||\rho(\tau) - \rho(0)||_1 \leq \int_0^\tau dt \Delta E \quad \text{(A.2)} \]

for a closed quantum system \(S \) (described by \(\frac{d\rho}{dt} = -i[H(t), \rho] \)). Here, \(\mathcal{L}(\rho, \sigma) := \cos^{-1} F(\rho, \sigma) \) is the Bures angle, \(F(\rho, \sigma) := \text{tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} \) is the fidelity [39], and \(\Delta E := \sqrt{\text{tr}(\rho H^2) - [\text{tr}(\rho H)]^2} \). First, we demonstrate (A.1). For the spectral decomposition

\[\rho(0) = \sum_i p_i |\phi_i\rangle_S \langle \phi_i|, \quad \text{(A.3)} \]

we define a state

\[|\rho(t)\rangle := U(t) \sum_i \sqrt{p_i} |\phi_i\rangle_S \otimes |\tilde{i}\rangle_A. \quad \text{(A.4)} \]

Here, \(U(t) \) is given by \(dU(t)/dt = -iH(t)U(t) \) and \(U(0) = 1. \{ |\tilde{i}\rangle_A \} \) is an orthonormal basis of the ancilla system \(A \). Because \(\text{tr}_A(|\rho(t)\rangle \langle \rho(t)|) = \rho(t) \) holds, \(|\rho(t)\rangle \) is a purification of \(\rho(t) \). We consider the Robertson inequality

\[\Delta X \Delta E \geq \frac{1}{2} \langle [iH, X] \rangle, \quad \text{(A.5)} \]

with \(X = |\rho(0)\rangle \langle \rho(0)| \). Here, \(\Delta Y := \sqrt{\langle Y^2 \rangle - \langle Y \rangle^2} \) and \(\langle Y \rangle := \langle \rho(t) | Y | \rho(t) \rangle \). For an operator \(Y_S \) of system \(S \), \(\langle Y_S \rangle = \text{tr}_S(|\rho(t)\rangle \langle \rho(t)|) \) holds. Using \(d|\rho(t)\rangle /dt = -iH|\rho(t)\rangle \) and (A.5), we obtain

\[\Delta E \geq \left| \frac{\frac{d}{dt}\langle X \rangle_t}{\sqrt{1 - \langle X \rangle_t}} \right|. \quad \text{(A.6)} \]

Then,

\[L := \int_0^\tau dt \left| \frac{\frac{d}{dt}\langle X \rangle_t}{\sqrt{1 - \langle X \rangle_t}} \right| \leq \int_0^\tau dt \left| \frac{\frac{d}{dt}\langle X \rangle_t}{\sqrt{1 - \langle X \rangle_t}} \right| \leq \int_0^\tau dt \Delta E \quad \text{(A.7)} \]

holds. Here,

\[L = |\cos^{-1} \sqrt{\langle X \rangle}_a - \cos^{-1} \sqrt{\langle X \rangle}_0| = \cos^{-1} \langle |\rho(\tau)| |\rho(0)\rangle \rangle. \quad \text{(A.8)} \]

Because \(|\langle |\rho(\tau)| |\rho(0)\rangle \rangle| \leq F(\rho(t), \rho(0)) \) (theorem 9.4 in reference [39]), we obtain the Mandelstam–Tamm relation

\[\mathcal{L}(\rho(\tau), \rho(0)) \leq \cos^{-1} \langle |\rho(\tau)| |\rho(0)\rangle \rangle \leq \int_0^\tau dt \Delta E. \quad \text{(A.9)} \]

Next, we demonstrate (A.2). We utilize the following inequality (9.110 in reference [39])

\[\frac{1}{2} ||\rho - \sigma||_1 \leq \sqrt{1 - [F(\rho, \sigma)]^2}. \quad \text{(A.10)} \]

This leads to

\[\frac{1}{2} ||\rho - \sigma||_1 \leq \sin \mathcal{L}(\rho, \sigma) \leq \mathcal{L}(\rho, \sigma). \quad \text{(A.11)} \]

This relation and (A.9) lead to (A.2).
Appendix B. Total entropy production rate and activities

B.1. Semi-inner product
If we diagonalize \(\hat{\rho}(t) \) as
\[
\tilde{\rho}(t) = \sum_n p_n(t) |n(t)\rangle \langle n(t)| ,
\]
we obtain
\[
\langle[X, Y] \rangle_{\tilde{\rho}} = \text{tr} \left[X^1 \int_0^1 ds \ (\gamma_{-k} \tilde{\rho}^2 Y \gamma_k \tilde{\rho})^{-1-s} \right] = \sum_{n,m} \langle n|X|m\rangle \langle m|Y|n\rangle \int_0^1 ds \ (\gamma_{-k} \rho_m)^2 (\gamma_k \rho_n)^{-1-s} = \sum_{n,m} M_k(m,n) \langle n|X|n\rangle^s \langle m|Y|n\rangle .
\]
Here, \(M_k(m,n) := \Psi(\gamma_{-k} \rho_m, \gamma_k \rho_n) \) is a weight and \(\Psi(a,b) \) is the logarithmic mean. Then, the semi-inner product corresponds to a weighted inner product introduced for the master equation in reference [42]. Note that \(||X||_{\tilde{\rho}}^2 = 0 \) does not lead to \(X = 0 \). Even if \(||X||_{\tilde{\rho}}^2 = 0 \), \(\langle m|X|n\rangle \) can remain for \((m,n) \) such that \(M_k(m,n) = 0 \).

B.2. Total entropy production rate
In this subsection, we demonstrate that
\[
\hat{\sigma} = \frac{1}{2} \sum_k \|[\hat{L}_k, -\ln \tilde{\rho} - \beta_b \hat{H}_S]||^2_{\tilde{\rho}}.
\]
As we will prove in the end of this section,
\[
\{\rho\}_k(\{X, \ln \rho\} + \beta_b \omega X) = \gamma_k X \rho - \gamma_{-k} \rho X
\]
holds. Using (B.4), we obtain
\[
\gamma_k \hat{L}_k \tilde{\rho} = \gamma_{-k} \tilde{\rho} \hat{L}_k = \{\tilde{\rho}\}_k(\{\hat{L}_k, \ln \tilde{\rho}\} + \beta_b \omega \hat{L}_k) = \{\tilde{\rho}\}_k(\{\hat{L}_k, \ln \tilde{\rho} + \beta_b \hat{H}_S\}) .
\]
Here, we used (3) in the second line. Using this, we obtain
\[
\frac{1}{2} \sum_{\alpha, \omega} [\hat{L}_k, \{\tilde{\rho}\}_k(\{\hat{L}_k, -\ln \tilde{\rho} - \beta_b \hat{H}_S\})] = \frac{1}{2} \sum_{\alpha, \omega} [\hat{L}_k, -\gamma_k \hat{L}_k \tilde{\rho} + \gamma_{-k} \tilde{\rho} \hat{L}_k] = \frac{1}{2} \sum_{\alpha, \omega} \left(-\gamma_k \{\hat{L}_k^\dagger \hat{L}_k \tilde{\rho} - \tilde{\rho} \hat{L}_k \hat{L}_k^\dagger\} + \gamma_{-k} \{\hat{L}_k^\dagger \tilde{\rho} \hat{L}_k - \tilde{\rho} \hat{L}_k \hat{L}_k^\dagger\} \right) = \frac{1}{2} \sum_{\alpha, \omega} \gamma_k \left(-\hat{L}_k^\dagger \hat{L}_k \tilde{\rho} + \hat{L}_k \tilde{\rho} \hat{L}_k^\dagger + \tilde{\rho} \hat{L}_k \hat{L}_k^\dagger - \tilde{\rho} \hat{L}_k \hat{L}_k^\dagger \right) = \hat{D}_b(\tilde{\rho}).
\]
\[\dot{\sigma} = \sum_b \text{tr}\{(-\ln \rho - \beta_b H_b) \mathcal{D}_b(\rho)\} \]
\[= \sum_b \text{tr}\{(-\ln \tilde{\rho} - \beta_b \tilde{H}_b) \tilde{\mathcal{D}}_b(\tilde{\rho})\} \]
\[= \sum_b \text{tr}\left\{(-\ln \tilde{\rho} - \beta_b \tilde{H}_b) \frac{1}{2} \sum_{\omega} [\tilde{L}_k^{\dagger}, \{\tilde{\rho}\}_{k}([\tilde{L}_k, -\ln \tilde{\rho} - \beta_b \tilde{H}_k])]\right\} \]
\[= \frac{1}{2} \sum_k \|[\tilde{L}_k, -\ln \tilde{\rho} - \beta_b \tilde{H}_k]\|^2_{j,k}. \quad (B.7) \]

The equality (B.4) is derived as follows:
\[\{\rho\}_{k}([X, \ln \rho] + \beta_b \omega X) = \int_{0}^{1} \text{d}s (\gamma_{-k} p^{s}(X \ln \rho - \ln \rho X - \beta_b \omega X)(\gamma_{-k} \rho)^{1-s} \cdot \rho) \]
\[= -\gamma_{k} \int_{0}^{1} \text{d}s \frac{d}{ds}[e^{-s\beta_b \omega} e^{s \ln \rho X} e^{(1-s) \ln \rho}] \]
\[= \gamma_{k} \rho X - \gamma_{-k} \rho X. \quad (B.8) \]

Here, we used (4). (B.8) corresponds to (S5e) of reference [24].

B.3. Activity
In this subsection, we demonstrate that
\[\mathcal{B}(t) := \frac{1}{2} \sum_k \|[\tilde{L}_k, \varphi]\|^2_{j,k} \leq 2 A_{\varphi}(t). \quad (B.9) \]

Using (B.2) and \(\Psi(a, b) \leq \frac{\frac{1}{2}}{1} \), we obtain [24, 25]
\[||X||^2_{j,k} \leq \frac{1}{2} \sum_{n,m} (\gamma_{-k} p_{n|m} \langle n|X|n\rangle \langle m|X|m\rangle + \gamma_{k} p_{n} \langle n|X|n\rangle \langle m|m\rangle) \]
\[= \frac{1}{2} \left[\gamma_{-k} \text{tr}(\tilde{\rho}X\tilde{X}^{\dagger}) + \gamma_{k} \text{tr}(\tilde{\rho}X^{\dagger}X) \right]. \quad (B.10) \]

Then, for \(X_{k} := [\tilde{L}_k, \varphi] \),
\[\mathcal{B}(t) \leq \frac{1}{4} \sum_k \left[\gamma_{k} \text{tr}(\tilde{\rho}X^{\dagger}_{k}X_{k}) + \gamma_{-k} \text{tr}(\tilde{\rho}X_{k}X^{\dagger}_{k}) \right] \]
\[= \frac{1}{2} \sum_k \gamma_{k} \text{tr}(\tilde{\rho}X^{\dagger}_{k}X_{k}) \]
\[= 2 A_{\varphi}(t). \quad (B.11) \]

holds. Here, we used (3) in the second line of (B.11). Further by using
\[\text{tr}(\tilde{\rho}(t)\{\varphi, \tilde{L}_k\} \{\varphi, \tilde{L}_k\}) \geq 0, \quad (B.12) \]
\(\varphi(t)^{2} = 1 \), and \(B_{\infty}(t) \geq B'(t) \), we obtain (41).

B.4. Partial activity
Because of (43),
\[\sigma \geq \frac{d_{V}(\rho(\tau), \rho(0))^{2}}{\int_{0}^{\tau} dt 2 A_{\rho}(t)} \quad \text{(B.13)} \]

can be derived in the same way as (36) and appendix B.3. \(d_{V}(\rho(\tau), \rho(0)) \) is defined by
\[d_{V}(\rho(\tau), \rho(0)) := \sum_{n} |p_{n}(\tau) - p_{n}(0)| \quad \text{(B.14)} \]

using the spectral decomposition
\[\rho(t) = \sum_{n} p_{n}(t)|n(t)\rangle \langle n(t)| \quad \text{(B.15)} \]
with differentiable eigenstates \(\{|n(t)\}\). \(A_\phi(t) \) is given by (21) replacing \(\varphi \) with \(\phi \):

\[
A_\phi(t) = \text{tr} \left(\rho(t) \frac{1}{4} \sum_k \gamma_k \left[\phi, L^*_k \right] \left[\phi, L_k \right] \right). \tag{B.16}
\]

Here,

\[
\phi(t) := \sum_n c_n(t) |n(t)\rangle \langle n(t)|,
\]

and \(c_n(t) = \text{sign}(p_n(t) - p_n(0)) \) or \(c_n(t) = \text{sign}(p_n(\tau) - p_n(0)) \). We obtain

\[
A_\phi(t) = \sum_{n,m} \frac{1}{4} \{c_m(t) - c_n(t)\}^2 p_n(t) \sum_k \gamma_k |\langle m(t)|L_k|n(t)\rangle|^2
\]

\[
= \sum_{c(i) \neq c(n(t))} p_n(t) \sum_k \gamma_k |\langle m(t)|L_k|n(t)\rangle|^2
\]

\[
\leq \sum_{n \neq m} p_n(t) \sum_k \gamma_k |\langle m(t)|L_k|n(t)\rangle|^2 = A(t). \tag{B.18}
\]

Here, \(A(t) \) is given in (9). \(A_\phi(t) \) corresponds to the partial activity [24]. In the classical master equation limit, \(A_\phi(t) \) becomes \(A_\psi(t) \) with \(c_n(t) = \text{sign}(p_n(t) - p_n(0)) \).

Appendix C. Supplement for (27)

We derive a bound for the trace distance in the Schrödinger picture. This bound does not refer to the virtual isolated system, as opposed to the first term of the right-hand side of (27) referencing it.

From the quantum master equation (2) and the triangle inequality, we obtain [16, 22]

\[
||\rho(\tau) - \rho(0)||_1 \leq \int_0^\tau dt \left\| \frac{d\rho}{dt} \right\|_1
\]

\[
\leq \int_0^\tau dt \left(|| - i[H_\phi, \rho] ||_1 + ||D(\rho)||_1 \right). \tag{C.1}
\]

For simplicity, in this section, we suppose that the dimension of the Hilbert space of the system is finite. The polar decomposition [39] of \(D(\rho) \) is given by \(D(\rho) = V^\dagger \sqrt{||D(\rho)||D(\rho)} \) \((V^\dagger V = 1) \). This decomposition leads to

\[
||D(\rho)||_1 = \text{tr}(VD(\rho)). \tag{C.2}
\]

By repeating similar calculations from (34), we obtain

\[
\text{tr}(VD(\rho)) \leq \sqrt{\sigma} \sqrt{\frac{1}{2} \sum_k ||[L_k, V]||^2_{\rho,k}} \tag{C.3}
\]

with

\[
\frac{1}{2} \sum_k \||L_k, V]\||^2_{\rho,k} \leq 2A_V(t) \leq B(t) + B_V(t) \leq B(t) + B_\infty(t) \tag{C.4}
\]

where

\[
A_V(t) := \text{tr} \left(\rho \sum_k \gamma_k \frac{1}{4} [V, L^*_k] [V, L_k] \right) \tag{C.5}
\]

and

\[
B_V(t) := \text{tr} \left(VpV^\dagger \sum_k \gamma_k L^*_k L_k \right). \] Thus, we obtain a bound for the trace distance in the Schrödinger picture:

\[
||\rho(\tau) - \rho(0)||_1 \leq \int_0^\tau dt || - i[H_\phi, \rho] ||_1 + \sqrt{\sigma} \sqrt{\int_0^\tau dt 2A_V(t)}. \tag{C.6}
\]

Because \(|| - i[H_\phi, \rho] ||_1 \leq 2\Delta E \tag{22} \), the first term of the right-hand side is bounded by the Mandelstam–Tamm type term. The second term of the right-hand side corresponds to Shiraishi et al’s...
relation (1) and $c_2 + c_3$ in (6). In the classical master equation limit, V becomes a diagonal matrix of which components are $\text{sgn}(\frac{da}{dt}) = \pm 1$. In this case, the first term of the right-hand side of (C.6) vanishes and $A_V \leq A_c$.

Appendix D. Distances d_T and d_V

The distance d_T is defined by

$$d_T(\rho(\tau), \rho(0)) := \sum_n |b_n - a_n|$$

(E.D.1)

where \{a_n\} and \{b_n\} are increasing eigenvalues of $\rho(0)$ and $\rho(\tau)$, $d_V(\rho(\tau), \rho(0))$ is defined by (B.14) and can be rewritten as

$$d_V(\rho(\tau), \rho(0)) = \sum_n |\chi(n) - a_n|.$$

(E.D.2)

Here, χ is a permutation. For any two increasing sequences $\{x_n\}$ and $\{y_n\}$, we can demonstrate that

$$\sum_n |y_{\sigma(n)} - x_n| \geq \sum_n |y_n - x_n|$$

for an arbitrary permutation σ. Then, we obtain

$$d_V(\rho(\tau), \rho(0)) \geq d_T(\rho(\tau), \rho(0)).$$

If the eigenvalues of $\rho(t)$ do not intersect, $d_V(\rho(\tau), \rho(0)) = d_T(\rho(\tau), \rho(0))$ holds.

We prove (D.3). For $i < j$ with $\sigma(i) > \sigma(j)$, we can prove that

$$|y_{\sigma(i)} - x_i| + |y_{\sigma(j)} - x_j| \geq |y_{\sigma(i)} - x_j| + |y_{\sigma(j)} - x_i|.$$

(E.D.5)

The above equation leads to (D.3) because $\{y_{\sigma(n)}\}$ becomes the increasing sequence $\{y_n\}$ by repeating this type of exchanging.

Appendix E. Detailed calculation for section 4.3

From (57), we obtain $L_1 = 2\sigma(\theta(t)), \gamma_1 = \frac{1}{4} \alpha \gamma \varepsilon(t) n(\varepsilon(t)), L_2 = 2\sigma(\theta(t)), \gamma_2 = \frac{1}{4} \alpha \gamma \varepsilon(t)[n(\varepsilon(t)) + 1]$. Denoting $U(t) = U(t) \theta(t) U(t)$ by $\sum_k T_{ik}(t) r_k$, we obtain $(R_1)_i = (R_2)_i = T_{i1}, (I_1)_i = - (I_2)_i = T_{2i},$ and $(R_1 \times I_1)_i = T_{3i}$. The equations of motion of T_{ik} are given by

$$\frac{dT_{ij}}{dt} = - \varepsilon(t) T_{2j} - T_{3j} \frac{d\theta(t)}{dt},$$

(E.E.1)

$$\frac{dT_{2j}}{dt} = \varepsilon(t) T_{2j},$$

(E.E.2)

$$\frac{dT_{3j}}{dt} = T_{1j} \frac{d\theta(t)}{dt}.$$

(E.E.3)

The equation of motion of the Bloch vector is given by

$$\frac{dr_i}{dt} = - \alpha \varepsilon(t) \left([2n(\varepsilon(t)) + 1] \left[r_i - \sum_k \frac{1}{2} (T_{ik} T_{1i} + T_{2k} T_{3j} r_k) + T_{3i} \right] \right).$$

(E.E.4)

The activities $A_c(t), B(t), B'(t),$ and $B_{\infty}(t)$ are given by

$$A_c(t) = \frac{\alpha \gamma \varepsilon(t)}{4} \left([2n(\varepsilon(t)) + 1] \left[1 + (\varphi \cdot T_3)^2 \right] + 2(\varphi \cdot T_3)(\varphi \cdot r) \right),$$

(E.E.5)

$$B(t) = \frac{\alpha \gamma \varepsilon(t)}{2} [2n(\varepsilon(t)) + 1 + x_3],$$

(E.E.6)

$$B'(t) = \frac{\alpha \gamma \varepsilon(t)}{2} [2n(\varepsilon(t)) + 1 - x_3 + 2(\varphi \cdot T_3)(\varphi \cdot r)],$$

(E.E.7)

and $B_{\infty}(t) = \Gamma(t) := \alpha \gamma \varepsilon(t)[2n(\varepsilon(t)) + 1]$. Here, $(T_3)_i := T_{3i}$ and $x_i := \sum_k T_{ik} r_k$. The equations of motion of $x_i(t)$ are given by

$$\frac{dx_i}{dt} = \alpha \gamma \varepsilon(t) \left([2n(\varepsilon(t)) + 1] \left[x_i - \sum_k \frac{1}{2} (T_{ik} T_{1i} + T_{2k} T_{3j} r_k) + T_{3i} \right] \right).$$

(E.E.8)
The heat current is given by

\[
J(t) = -\frac{1}{2} \varepsilon(t) \sum_k \frac{d\varepsilon(t)}{dt} \Gamma(t) \leq x_k + \frac{1}{2} n(\varepsilon(t)) + 1, \tag{E.11}
\]

The entropy production is calculated by (55).

ORCID iDs

Satoshi Nakajima https://orcid.org/0000-0002-2211-2930

Yasuhiro Utsumi https://orcid.org/0000-0002-9762-157X

References

[1] Gong Z and Hamazaki R 2022 Bounds in nonequilibrium quantum dynamics (arXiv:2202.02011)

[2] Nakajima S, Taguchi M, Kubo T and Tokura Y 2015 Interaction effect on adiabatic pump of charge and spin in quantum dot Phys. Rev. B 92 195420

[3] Takahashi K, Hino Y, Fujii K and Hayakawa H 2020 Full counting statistics and fluctuation-dissipation relation for periodically driven two-state systems J. Stat. Phys. 181 2206

[4] Sagawa T and Hayakawa H 2011 Geometrical expression of excess entropy production Phys. Rev. E 84 051110

[5] Nakajima S and Tokura Y 2017 Excess entropy production in quantum system: quantum master equation approach J. Stat. Phys. 169 952

[6] Nakajima S 2017 Theoretical studies on quantum pump and excess entropy production: quantum master equation approach (arXiv:1710.05646)

[7] Ito S 2018 Stochastic thermodynamic interpretation of information geometry Phys. Rev. Lett. 121 030605

[8] Nicholson S B, del Campo A and Green J R 2018 Nonequilibrium uncertainty principle from information geometry J. Stat. Phys. 173 815

[9] Averin D V and Pekola J P 2017 Reversing the Landauer’s erasure: single-electron Maxwell’s demon operating at the limit of thermodynamic efficiency Phys. Status Solidi B 254 1600677

[10] Tajima H and Funo K 2021 Superconducting-like heat current: effective cancellation of current–dissipation trade off by quantum coherence Phys. Rev. Lett. 127 190604

[11] Kamimura S, Hakoshima H, Matsuzaki Y, Yoshida K and Tokura Y 2022 Quantum-enhanced heat engine based on superabsorption Phys. Rev. Lett. 128 180602

[12] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martinez-Garaot S and Muga J G 2019 Shortcuts to adiabaticity: concepts, methods, and applications Rev. Mod. Phys. 91 045001

[13] Takahashi K 2017 Shortcuts to adiabaticity applied to nonequilibrium entropy production: an information geometry viewpoint New J. Phys. 19 115007

[14] Dann R, Tobalina A and Kosloff R 2019 Shortcut to equilibration of an open quantum system Phys. Rev. Lett. 122 250402

[15] Funo K, Lambert N, Nori F and Flindt C 2020 Shortcuts to adiabatic pumping in classical stochastic systems Phys. Rev. Lett. 124 150603

[16] Alijor S, Chenu A, Rezakhani A T and del Campo A 2020 Shortcuts to adiabaticity in driven open quantum systems: unbalanced gain and loss and non-Markovian evolution Quantum 4 336

[17] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Quantum speed limit for physical processes Phys. Rev. Lett. 110 050403

[18] del Campo A, Eguíaquiza I L, Plenio M B and Huelga S F 2013 Quantum speed limits in open system dynamics Phys. Rev. Lett. 110 070601

[19] Defoer S and Lutz E 2013 Quantum speed limit for non-Markovian dynamics Phys. Rev. Lett. 111 010402

[20] Defoer S and Campbell S 2017 Quantum speed limit: from Heisenberg’s uncertainty principle to optimal quantum control J. Phys. A: Math. Theor. 50 453001

[21] Shiraiishi N, Funo K and Saito K 2018 Speed limit for classical stochastic processes Phys. Rev. Lett. 121 070601

[22] Funo K, Shiraiishi N and Saito K 2019 Speed limit for open quantum systems New J. Phys. 21 013006

[23] Nakajima S and Utsumi Y 2021 Asymptotic expansion of the solution of the master equation and its application to the speed limit Phys. Rev. E 104 054139

[24] Du T V and Hasegawa Y 2021 Geometrical bounds of the reversibility in Markovian systems Phys. Rev. Lett. 126 010601

[25] Du T V and Saito K 2022 Finite-time quantum Landauer principle and quantum coherence Phys. Rev. Lett. 128 010602

[26] Du T V and Saito K 2022 Thermodynamic unification of optimal transport: thermodynamic uncertainty relation, minimum dissipation, and thermodynamic speed limits (arXiv:2206.02684)
By the triangle inequality, we also obtain

\[|\langle \psi | \hat{A} | \psi \rangle - |\langle \psi | \hat{B} | \psi \rangle\rangle| \leq \sum_{n} |\langle \psi | n \rangle - |\langle \psi | \hat{B} | \psi \rangle\rangle| \]

and

\[|\langle \psi | \hat{A} | \psi \rangle - |\langle \psi | \hat{B} | \psi \rangle\rangle| \leq \sum_{n} |\langle \psi | n \rangle - |\langle \psi | \hat{B} | \psi \rangle\rangle| \]

for differentiable eigenstates \(|\hat{A}| \) with \(\hat{A} \) and \(\hat{B} \) satisfying the triangle inequality. A similar idea used to derive this equation and (27) has also been used in reference [27].

III. Triangular Inequality

In reference [24], \(e^{t} = \sum_{n} \langle \psi | n \rangle \langle n | \psi \rangle \) has been chosen.

From the first equation of (3), \(\{ 1_{k}, H_{k} \} = \omega_{k} \), if \(l_{k} \) satisfy \(|l_{k} |, H_{k} | = 0, l_{k} := l_{k} \), then, we can assume that \(|l_{k} |, c_{00} \) are also traceless.