Impact of stirring time and the corresponding growth mechanism in the solvothermal synthesis of WO₃ nanostructures

Changhyun Jin, Jong-Chan Lim, Min Young Kim, Myung Sik Choi, Sang-II Kim, Seung-Hyub Baek, Sun-Jae Kim, Seung Yong Lee, Hyun-Sik Kim and Kyu Hyoung Lee

1. Introduction

The fabrication of semiconducting metal oxide (SMO) nanostructures by chemical reactions depends on several process parameters such as temperature [1,2], pressure [3,4], chemical properties [5,6], and the type and amount of catalyst [7,8]. In contrast, the growth of SMO nanostructures after nucleus formation is based on growth factors such as adsorbed species [9,10], incident species [11,12], growth rate [13,14], and supersaturation [15,16]. This enables the use of different growth factors even under the same process variable conditions; thus, the features related to the morphology [17], elemental composition [18], crystallinity [19], energy band structure [20], and surface-interaction interactions [21] of SMO nanostructures can be controlled. Moreover, it is possible for the crystallographic characteristics of SMO nanostructures to transition between the amorphous [22], polycrystalline [23], and monocristalline [24] states before, during, and after the process. As a result, the energy band state of the entire system must be changed because of the variation in the stable phases according to the process conditions. The number of variables to be considered increases exponentially; however, many parameters can be excluded because morphological characteristics provide information on growth.

Changes in morphology of SMO can be frequently observed in many nanomaterial synthesis methods with metals [25], oxides [26], and metallic salts [27] as precursors. Various nanostructures can be obtained by acidification [28], thermal oxidation [29], magnetron sputtering [30], sol-gel [31], and the soft-chemistry route [32], as well as the case of WO₃ which is a widely used functional material in gas sensors [33], photocatalysts [34], displays [35], information storage media [36], smart windows [37], and electrochromic processes [38]. A simple and efficient synthesis route for WO₃ nanostructures with desired morphological and crystallographic characteristics is always favorable for cost-effective production. Therefore, many researchers have employed the most accessible hydrothermal and solvothermal methods [39–47]. For example, Song et al. [41] reported the effect of alkali salts such as K₂SO₄, KNO₃, NaNO₃, and Na₂SO₄ on the morphology of WO₃ nanocrystals under hydrothermal conditions. Therese et al. [42] proposed a large-scale method to synthesize WO₃ nanorods, through which they can be reduced to multi-walled WS₂ nanorods. Zhou et al. [43]
also demonstrated the simple preparation of disk-shaped WO$_3$-0.33H$_2$O nanostructures by the hydrothermal treatment of an aqueous peroxopolytungstic acid solution. In the present study, a distinct method has been developed. We fabricated WO$_3$ nanostructures through a solvothermal synthesis method, which is one of the simplest routes for producing metal oxides and focused on the clarification of the reaction behavior in each step of the protocol that allows the identification of elusive process conditions related to the formation of WO$_3$ nanostructures. We noted that controlling the stirring time (1–120 min) was an essential factor in changing the growth mechanism of WO$_3$. Four cases were observed for the WO$_3$ nanostructures, which were classified according to the color of the solution and their corresponding variations in the morphology. With increasing stirring time, the morphology of WO$_3$ changed from nanoparticles (NPs) to three-dimensionally clustered jointed-nanosheets (NSs), suggesting a change in the growth mechanism from radial to unidirectional. The NO$_2$ gas sensing properties of WO$_3$ nanostructures were also measured to evaluate their surface reactivity. Although there have been reports on the NO$_2$ gas sensing of WO$_3$ nanostructures with the same microstructure, most of them, such as structures with nanorods [48] or microspheres [49], have a limited scope to change in terms of the morphology. Particularly, there are only a few reports on the relationship between the dimensional change of WO$_3$ from zero to three dimensions and the corresponding gas sensor performance. Hence, this approach of adjusting the process parameters of solvothermal synthesis to control crystal nucleation and growth provides a simple and efficient route for fabricating nanostructures of various metal oxides with targeted shapes and dimensions.

2. Experimental section

Tungsten hexachloride (WC$_6$, 99.9%, Sigma Aldrich) and ethanol (95%, Duksan Reagents) were used as the precursor and solvent, respectively. First, 3 g of WC$_6$ was added to 150 mL of ethanol and the solution was mixed using a magnetic stirrer at 200 rpm. The difference in stirring conditions has a significant impact on the solvothermal synthesis reaction, leading to variations in the crystal nucleation, growth direction, and growth rate. The color of the solution changed according to the stirring time: green (1 min), yellow (5 min), white (10 min), blue (10 min 10s), and blue-black (40, 60, and 120 min). The solutions were placed in an oven preheated to 80°C in a closed state and the temperature was increased to 200°C and maintained for 24 h. The old solvent was removed and filled with fresh ethanol when the solution was cooled after 24 h. The resulting suspension was sufficiently dispersed by sonication and subsequently centrifuged at 9000 rpm for 10 min for three repeated cycles. The precipitates were then redispersed by sonication with DI water, poured into a Petri dish, and dried in the oven at 80°C for 12 h. The dried powders were further calcined in a box furnace at 500°C for 2 h. Most WO$_3$ samples were yellowish in color, but with a change in the stirring condition, there was a slight difference in the brightness and chroma (Figure S1).

To characterize the WO$_3$ nanostructures, we carried out various analyses, including (1) scanning electron microscopy (SEM) for morphological characterization, (2) X-ray diffraction (XRD) for crystallographic characterization, and (3) X-ray photoelectron spectroscopy (XPS) for the determination of surface composition. In addition, gas sensing properties were measured using an in-house system to evaluate the adsorption and desorption between the gas and the WO$_3$ nanostructures. We used NO$_2$, H$_2$S, C$_2$H$_5$OH, C$_2$H$_2$O, H$_2$, and NH$_3$ as target gases, and the responses of the nanostructures were expressed as the ratio of their reactivities to air (R_a) and to the target gas (R_g). The response and recovery times were taken as reference points until 90% saturation occurred after target gas adsorption or desorption.

3. Results and discussions

3.1. Change in color of precursor solution with stirring time

The solutions (mixture of ethanol and the WCl$_6$ precursor) used for the solvothermal synthesis exhibited a clear difference in color with varying stirring times, as shown in Figure 1(a) and Video S1. A dark green color appeared approximately 1 min after the start of stirring. When the mixing time was increased to approximately 5 and 10 min, the color of the solution turned yellow and white, respectively. It is noted that the color of the solution suddenly turned blue within 10s. The solution finally turned blue-black after stirring for approximately 10 min 20s, and no further color change was observed, even after stirring for 120 min. This color change in solution was due to the conversion of the kinetic energy from stirring into thermal energy, thereby resulting in physicochemical changes in the bonding characteristics between the solvent and the solute. The duration of the retention of a particular color depended on the stability of different chemical bonds in the solution. In fact, the color of the solution can be easily changed even by a few minutes of stirring when the activation energy is low. In other words, the rapid color change indicates that the chemical conditions for maintaining the original chemical state were unstable. Based on a previous report [44], the morphology of WO$_3$ can be changed depending on the concentration of the precursor solution, reaction temperature, and reaction time. Zheng et al. [44]
reported that small WO₃ nuclei can spontaneously aggregate into larger spheres at high concentrations of H⁺, while at the same time, the high concentration of Cl⁻ can cause it to preferentially adhere to the side face as a capping agent. In addition, the color of the solution can be changed depending on the amounts of the precursor and solvent that participate in the reaction. Choi et al. [39] suggested that the color of the solvent could be changed to dark blue (0 vol% water), light blue (10 vol% water), and yellow (100 vol% water) depending on the ratio of ethanol and water, and that the color of tungsten oxide could be changed to brown (WO₃), blue (W), and yellow (WO₂) depending on the ratio of W and O. As a result, the color change in the system depending on the stirring time is inevitably closely related to the morphologies and crystalline phases of the final WO₃ samples. Changes in the morphology and crystallinity of the WO₃ nanostructures prepared from solutions of different colors are described in the following sections.

3.2. Change in morphology and crystallographic character of the WO₃ nanostructures with stirring time

Figure 1(b) shows the changes in the morphology and dimensions of the acquired WO₃ nanostructures as a function of the stirring time. WO₃ NPs (30–120 nm) were obtained from a solution prepared by short-time stirring for 1 (dark green) and 5 min (yellow). In contrast, formation of thin and elongated NSs of WO₃ [50–52] was initiated when the stirring time was increased to 10 min (white), suggesting that two-dimensional (2D) growth occurred. The NSs were several microns in length and 150–200 nm in thickness. The 2D growth observed in the WO₃ nanostructures was activated with increasing stirring time over 10 min, resulting in a mixture of NSs and NPs obtained from the solution with a stirring time of 10–40 min. Jointed-NSs with some attached NPs and randomly aggregated jointed-NSs were obtained from the solutions stirred for 60 min and 120 min, respectively. These results suggest that stirring time is a critical processing parameter for controlling the characteristics of WO₃ nanostructures. Hence, the sequential production of (1) NPs (stirring times of 1 and 5 min), (2) mixture of NSs and NPs (stirring time of 10–40 min), (3) jointed-NSs (stirring time of 60 min), and (4) three-dimensionally clustered joined-NSs (stirring time of 120 min) was due to the variation in the nucleation and growth processes during solvothermal synthesis.

The overall reaction to generate WO₃ nanostructures from the precursors is as follows [53]:

\[
\text{WO}_6 + 2\text{H}_2\text{O} \rightarrow \text{WO}_3 \times (\text{OC}_2\text{H}_5)_x + x\text{HCl} \quad (1)
\]

\[
\text{WO}_6 \times (\text{OC}_2\text{H}_5)_x + 3\text{O}_2 \rightarrow \text{WO}_3 + \text{H}_2\text{O} + \text{CO}_2 + \text{HCl} + \text{Cl}_2 \quad (2)
\]

However, the varying stirring times influenced the chemical state of the WCl₆ precursor in solution, which then resulted in the changes in morphology and dimensions of the WO₃ nanostructures. Consequently, it has been reported that oxygen plays a crucial role in these reactions [39,41]. Therefore, based on these reports, each step reaction of our samples, up to the overall reaction, can be approximately divided into four steps: Formation of (1) tungstic acid (H₃WO₄) at 5 min (yellow), (2) WO₃ by
dehydration at 10 min (white), (3) tungsten bronze (HₓWO₃ₓ, 0 ≤ x ≤ 1) at 10 min 10s (blue), (4) tungsten bronze (HₓWO₃ₓ, x ≤ y ≤ 1) at 40 min (dark blue). At shorter stirring times (1–5 min), the conversion of the kinetic energy from mixing to heat caused the separation of Cl from WCl₆ and the W central atom then combined with O, resulting in the formation of NPs. Increasing the stirring time triggers another growth mechanism (2D growth) as heterogeneous growth is a simpler mode of growth than homogeneous [34,55]. Here, since heterogeneous growth involves the use of the pre-generated WO₄ new precursors can help in reducing the resistance to the growth of WO₃ through continuous chemical adsorption on the surface of WO₃.

On the other hand, homogeneous growth is energy-intensive because each time, the energy barrier required for WO₃ nucleation must be overcome through a specific redox chemical method [55].

Figure 2(a) shows the XRD patterns of the WO₃ nanostructures fabricated from the solutions prepared with different stirring times. All the peaks were fully indexed against the reference peaks of monoclinic WO₃ (JCPDS No. 43–1035), suggesting that a single phase of WO₃ was formed in all the samples. It is noted that the ratio of the intensity of (002) to that of (020) or (200) (denoted as I_{002}/I_{020} or I_{002}/I_{200}) increased with stirring time until 60 min, since there was a preferential 2D growth along the (200) plane. The decrease in I_{002}/I_{200} in WO₃ with a stirring time of 120 min was due to the random directional agglomeration of jointed WO₃ NPs, as clearly shown in Figure 1(b). Hence, we can determine whether the solution reached nucleation [56,57] for WO₃ or remained in the embryo [58,59] depending on the stirring time, and found the stirring time is one of the key process variables to control the probability of nucleation in the same solution.

3.3. Gas sensing properties of WO₃ nanostructures

We studied the response of WO₃ nanostructures to 1 ppm NO₂ gas at different temperatures to demonstrate the effects of the crystallographic and morphological characteristics of WO₃ nanostructures on the surface chemistry. As shown in Figure 3(a), the response of the WO₃ nanostructures obtained from the solutions prepared with stirring times of 1, 40, 60, and 120 min to 1 ppm of NO₂ at 200°C were at 17.04, 68.33, 15.52, and 21.40, respectively. The highest surface reactivity was observed for the mixture of NSs and NPs (stirring time of 40 min). To clarify this, we examined the gas sensing behavior for oxidizing and reducing gases (Figure 3(b)). WO₃ nanostructures is a typical n-type semiconductor where the majority charge carriers are electrons. When NO₂ gas (2.28 eV), which has a higher electron affinity than O (0.43 eV), reacts with the O in WO₃, it extracts electrons from O [60,61] and the following reactions occur [62,63].

\[
\text{NO}_2 + e^- \rightarrow \text{NO}_2^-
\]

(3)

\[
\text{NO}_2 + \text{O}^- \rightarrow \text{NO}_2^- + 1/2\text{O}_2
\]

(4)

Reactions (3) and (4) determine the thickness of the electron depletion layer (EDL) formed on the surface of WO₃ nanostructures, as illustrated in Figure 3(c) [64,65]. A relatively thin EDL was formed on the surface of the material in the vacuum state; however, both the thickness of the EDL and the corresponding conduction band interface increased when the oxygen ion species adsorbed on the surface of the WO₃ nanostructures. Therefore, the movement of electrons in the conduction band became more difficult and the resistance consequently increased. When NO₂ gas (an oxidizing gas) was introduced and adsorbed on the surface of the WO₃ nanostructures, it extracted electrons from O and the EDL of WO₃ became thicker. That is, since the mobile

![Figure 2](image-url)
Figure 2. (a) XRD patterns of WO₃ nanostructures obtained from solutions of different colors (1–120 min stirring time). (b) Intensity ratio of (002) to (200) of the WO₃ nanostructures as a function of stirring time.
Figure 3. (a) Comparison of responses to 1 ppm NO₂ gas at 200°C for various types of WO₃ nanostructures obtained from solutions of different colors (1–120 min stirring time). (b) Selectivity under different gases with a concentration of 20 ppm at 200°C. (c) EDL thickness under vacuum, air, and target gas (NO₂) and the corresponding changes in the conduction energy band.

Figure 4. Responses of the WO₃ sample (stirring time: 40 min) to 1 ppm NO₂ gas based on the operating temperature of the sensor: (a) 8.41 at 30°C, (b) 26.04 at 100°C, (c) 68.33 at 200°C, (d) 11.87 at 250°C.
electron carriers moved from the internal WO₃ to the external oxygen or NO₂, the EDL by immobile charges becomes thicker on the surface of the existing WO₃. Therefore, the surface area is an important factor in determining the NO₂ sensing properties, and NPs are more suitable for gas sensing [66,67]. Additionally, the process temperature may be an important factor in semiconductor-based gas sensing, as the number of activated carriers involved in the chemical reaction during gas sensing may change sensitively with the process temperature. As shown in Figure 4, the process temperature of 200°C provides the best response owing to the highly activated carrier transport phenomenon. The oxygen vacancies formed on the surface of WO₃ are another important factor in gas sensing applications because these can activate the adsorption of the target gas [68,69]. Figure 5 shows the types of oxygen defects and their fractions generated at different stirring times. For example, first, oxygen defects associated with the oxygen lattice correspond to 83.32%, 68.19%, 77.37%, and

Type of oxygen	Stirring time	1 min	40 min	60 min	120 min
O_L, 530.6eV (lattice oxygen)	1 min	83.32%	68.19%	77.37%	64.49%
O_V, 532eV (vacancy oxygen)	40 min	15.98%	30.54%	20.09%	13.22%
O_C, 533.1eV (Chemisorbed oxygen species)	60 min	0.70%	1.27%	2.54%	22.29%

Figure 5. XPS spectra showing O1f on the surface for WO₃ nanostructures obtained from solutions of different colors (1–120 min stirring time) and types of oxygen defects in each condition.
64.49% for stirring times of 1 min, 40 min, 60 min, and 120 min, respectively. Second, oxygen vacancies typically develop in the WO$_3$ nanostructures prepared under 40 min of stirring. Despite the smaller surface area (-2.89 m2/g) of the mixture of NSs and NPs than that (-16.27 m2/g) of NPs alone (Figure 52), the highest response is obtained for the former (Figure 3(a)). In other words, in gas sensing, the disadvantage of the surface area can be overcome because the role of defects such as oxygen vacancies on the surface is more dominant. For example, Shouli Bai et al. [70] and Yihan Liu et al. [71] reported that the more oxygen vacancy occurs, the more W$^{5+}$ and W$^{6+}$ in the non-equilibrium state lacking oxygen are generated on the surface of WO$_3$ from W$^6^+$ of WO$_3$ in equilibrium. Therefore, oxygen vacancies prevent the movement of electrons, which are main carriers, from the WO$_3$ point of view in NO$_2$ gas sensing, and ultimately plays a role in increasing the response to resistance. Finally, the oxygen defects related to chemical adsorption are greatest at a stirring time of 120 min. Selectivity was also confirmed using different target gases (NO$_2$, H$_2$S, C$_2$H$_5$OH, C$_2$H$_6$O, H$_2$, and NH$_3$, each with a concentration of 20 ppm) at 200°C for WO$_3$ nanostructures prepared by 40 min of stirring (mixture of NSs and NPs). The responses for NO$_2$, H$_2$S, C$_2$H$_5$OH, C$_2$H$_6$O, H$_2$, and NH$_3$ were 801.93, 2.54, 2.23, 2.17, 2.19, and 2.88 (Figure 3(b)), respectively. These findings indicate that the WO$_3$ nanostructures were able to discriminate NO$_2$ from other interfering gases. Furthermore, the response and recovery times are much shorter for NO$_2$ than the other gases (Table S1). We simultaneously evaluated the stability and repeatability of the WO$_3$ gas sensor by exposing it to 1 ppm NO$_2$ gas after storage periods of 2 weeks and 5 weeks, respectively. Figure S3 compares the responses of the as-synthesized and stored WO$_3$ sensors. As-synthesized WO$_3$ shows a response of 68.33 (Figure 4), whereas WO$_3$ after 2 and 5 weeks of storage shows responses of 47.65 and 43.01, respectively. Over time, the response decreases compared to that of the initial sample; nevertheless, it is still acceptable for the sensing device to show a response of 40 or more at a low concentration (1 ppm NO$_2$). Table S2 shows the average responses of stored WO$_3$ obtained from 9 repeatability tests. Each response is stable without significant deviation from the average response. The main cause of the decrease in the response of the WO$_3$ sample over time is moisture in the atmosphere. Therefore, the effect of the relative humidity (RH) on gas sensing was investigated and compared (Figure S4). The responses of WO$_3$ samples exposed to 0%, 30%, and 60% RH to NO$_2$ gas are 68.33, 57.51, and 70.91, respectively. When the RH is low, the response slightly decreases, whereas when the RH is high, the response slightly increases. It can be considered that the WO$_3$ sample is not significantly affected by the humidity.

4. Conclusions
In this study, we found that the nucleation and growth of WO$_3$ nanostructures can be controlled during solvothermal synthesis by varying the stirring time of the precursor solution. Various WO$_3$ nanostructures with different morphologies and dimensions, including 0D nanoparticles, 0D-2D mixture of NSs and NPs, 2D jointed-NSs, and 3D randomly clustered jointed-NSs, were fabricated. This simple approach was also effective in controlling the concentration of surface oxygen vacancies in WO$_3$ nanostructures and triggering the (002) plane-oriented growth in WO$_3$ nanosheets. The surface reactivity according to the characteristics of the obtained WO$_3$ nanostructures was confirmed by measuring their NO$_2$ gas sensing properties. Our results show that a fine control of the stirring conditions is a simple yet promising way of fabricating shape-, dimension-, and crystal orientation-controlled nanostructures of metal oxides through solvothermal synthesis.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This study was supported by Samsung Electronics Co., Ltd. (IO201216-08204-01). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2022R1A2C2005210) and the Ministry of Education (2019R1A6A1A11055660) and by the Technology Innovation Program (“20013621”, Center for Super Critical Material Industrial Technology) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea). C. Jin and S. Y. Lee were supported by the Korea Initiative for fostering University of Research and Innovation (KIURI) Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2020M3H1A1077207).

ORCID
Sang-il Kim http://orcid.org/0000-0003-0093-720X

Availability of data and materials
All the data are available from the corresponding author on reasonable request.

Author contributions
Changhyun Jin (conceptualization, investigation, visualization, writing-original draft), Jong-Chan Lim (conceptualization, investigation, visualization, writing-original draft), Min Young Kim (investigation, validation), Myung Sik Choi (investigation, validation), Sang-il Kim (data curation, investigation), Seung-Hyub...
Baek (data curation, investigation), Sun-Jae Kim (data curation, investigation), Seung Yong Lee (supervision, conceptualization, methodology, writing-review and editing), Hyun-Sik Kim (supervision, conceptualization, methodology, writing-review and editing), Kyu Hyo ung Lee (supervision, project administration, methodology, writing-review and editing).

Ethics declarations

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

References

[1] Klochko NP, Kopach VR, Tyukhov II, et al. Metal oxide heterojunction (NO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell. Sol Energy. 2018;164:149.

[2] Liu G, Tan Q, Kou H, et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors. 2018;18(5):1400.

[3] Flak D, Chen Q, Mun BS, et al. In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Appl Surf Sci. 2018;455:1019.

[4] Latu-Romain L, Parsa Y, Mathieu S, et al. Towards the growth of stoichiometric chromia on pure chromium by the control of temperature and oxygen partial pressure. Corros Sci. 2017;126:238.

[5] Cox PA. Transition metal oxides: an introduction to their electronic structure and properties. Oxford university press; 2010.

[6] Ogale SB, Venkatesan TV, Blamire M. Functional metal oxides: new science and novel applications. John Wiley & Sons; 2013.

[7] Liao P, Carter EA. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem Soc Rev. 2013;42(6):2401.

[8] Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010;10(2):577.

[9] Jia J, Qian C, Dong Y, et al. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering–perfecting imperfect. Chem Soc Rev. 2017;46(15):4631.

[10] Mirzaei A, Leonardi SG, Nerl G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int. 2016;42(14):13119.

[11] Zou Y, Zhang Y, Hu Y, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review. Sensors. 2018;18(7):2072.

[12] Czanderna AW. Methods of surface analysis. Elsevier. 2012.

[13] Leventis HC, King SP, Sudlow A, et al. Nanostructured hybrid polymer–inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett. 2010;10(4):1253.

[14] Liu G, Wang L, Yang HG, et al. Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem. 2010;20(5):831.

[15] Lee JC, Kim JO, Lee HJ, et al. Meniscus-guided control of supersaturation for the crystallization of high quality metal organic framework thin films. Chem Mat. 2019;31(18):7377.

[16] Arshadi-Rastabi S, Moghaddam J, Eskandarian MR. Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect. J Ind Eng Chem. 2015;22:34.

[17] Chen D, Hou X, Li T, et al. Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuator B-Chem. 2011;153(2):373.

[18] Blesa MA, Morando PJ, Regazzoni AE. Chemical dissolution of metal oxides. CRC press; 2018.

[19] Liu G, Yin LC, Pan J, et al. Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2. Adv Mater. 2015;27(23):3507.

[20] Cong S, Yuan Y, Chen Z, et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun. 2015;6(1):1.

[21] Ma H, Acton Q, Hutchins DO, et al. Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Phys Chem Chem Phys. 2012;14(41):14110.

[22] Kamiya T, Hosono H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010;2(1):15.

[23] Fuoco L, Joshi UA, Maggard PA. Preparation and photoelectrochemical properties of p-type Cu2OxTa1-x O2, and Cu2OxTa1-xO, semiconducting polycrystalline films. J Phys Chem C. 2012;116(19):10490.

[24] Sciaccia B, Mann SA, Tichelaar FD, et al. Solution-Phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires. Nano Lett. 2014;14(10):5891.

[25] Rai P, Majhi SM, Yu YT, et al. Noble metal/metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015;5(93):76229.

[26] Babar AR, Shinde SS, Moholkar AV, et al. Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide. J Alloy Compd. 2010;505(2):743.

[27] Jeong S, Lee JY, Lee SS, et al. Impact of metal salt precursor on low-temperature annealed solution-derived Ga-doped In2O3 semiconductor for thin-film transistors. J Phys Chem C. 2011;115(23):11773.

[28] Li Y, Hua Z, Wu Y, et al. Modified impregnation synthesis of Ru-loaded WO3 nanoparticles for acetone sensing. Sens Actuator B-Chem. 2018;265:249.

[29] Behera B, Chandra S. Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application. Mater Sci Semicond Process. 2018;86:79.

[30] Horprathum M, Limwichean K, Wisitsoontar A, et al. NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sens Actuator B-Chem. 2013;176:685.

[31] Lakshmi BB, Patrissi CJ, Martin CR. Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mat. 1997;9(11):2544.

[32] Pohreh S, Simion CE, Teodorescu VS, et al. Synthesis, mechanism, and gas-sensing application of surfactant tailored tungsten oxide nanostructures. Adv Funct Mater. 2009;19(11):1767.
[33] Wetchakun K, Samejai T, Tamaekong N, et al. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuator B-Chem. 2011;160(1):580.

[34] Szilágyi IM, Fórizs B, Rosseler O, et al. WO3 photocatalysts: influence of structure and composition. J Catal. 2012;294:119.

[35] Luo J, Zeng Q, Long Y, et al. Preparation of nano-poly crystalline WO3 thin films and their solid-state electrochromic display devices. J Nanosci Nanotechnol. 2013;13(2):1372.

[36] Wu X, Yao S. Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy. 2017;42:143.

[37] Pan J, Zheng R, Wang Y, et al. A high-performance electrochemical device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol Energy Mater Sol Cells. 2020;207:110337.

[38] Kalagi SS, Mali SS, Dalavi DS, et al. Transmission attenuation and chromatic contrast characterization of RF sputtered WO3 thin films for electrochromic device applications. Electrochim Acta. 2012;85:501.

[39] Choi HG, Jung YH, Kim DK. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc. 2005;88(6):1684.

[40] Ha JH, Muralidharan P, Kim PDK. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J Alloys Compd. 2009;475(1–2):446.

[41] Song XC, Zheng YF, Yang E, et al. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4. Mater Lett. 2007;61(18):1990-4.

[42] Therese HA, Li J, Kolb U, et al. Facile large scale synthesis of WO3 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sci. 2005;7(1):67.

[43] Zhou L, Zou J, Yu M, et al. Green synthesis of hexagonal-shaped WO3·0.33H2O nanodiscs composed of nanosheets. Cryst Growth Des. 2008;8:3993.

[44] Zheng F, Zhang M, Guo M. Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films. 2013;534:45.

[45] Hu L, Ji S, Jiang Z, et al. Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides. J Phys Chem C. 2007;111(42):15173.

[46] Yayapao O, Thongtem T, Phuruaungrat A, et al. CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers. J Alloys Compd. 2011;509(5):2294.

[47] Huirache-Acuna R, Paraguay-Delgado F, Albitzer MA, et al. Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Mater Charact. 2009;60(9):932.

[48] Bai S, Zhang K, Luo R, et al. Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J Mater Chem. 2012;22(25):12643.

[49] Liu Z, Miyachi M, Yamazaki T, et al. Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sens Actuator B-Chem. 2009;140(2):514.

[50] Liu J, Chen X, Wang W, et al. Self-assembly of [100] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity. CrystEngComm. 2011;13(10):3425.

[51] Renitta A, Vijayakumari K. Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sens Actuator B-Chem. 2016;237:912.

[52] Liu W, Yang T, Chen J, et al. Improvement in surface-enhanced Raman spectroscopy from cubic SiC semiconductor nanowhiskers by adjustment of energy levels. Phys Chem Chem Phys. 2016;18(39):27572.

[53] Lokhande VC, Hussain T, Shenke AR, et al. Substitutional doping of WO3 for Ca-based supercapacitor. Chem Eng J. 2021;424:130557.

[54] Pelizzetti E, Serpone N. Homogeneous and heterogeneous photocatalysis. Springer Science & Business Media: 2012.

[55] Zhang ZW, Peng HJ, Zhao M, et al. Heterogeneous/Homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv Funct Mater. 2018;28(38):1707536.

[56] Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114(15):7610.

[57] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere. Chem Rev. 2012;112(3):1957.

[58] Karpov VG, Niraula D. Resistive switching in nano-structures. Sci Rep. 2018;8(1):1.

[59] Karpov VG. Electrostatic theory of metal whiskers. Phys Rev Appl. 2014;1(4):044001.

[60] Liu Z, Yu L, Guo F, et al. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl Surf Sci. 2017;423:721.

[61] Bang JH, Lee N, Mirzaei A, et al. Exploration of ZrO2 -shelled nanowires for chemiresistive detection of NO2 gas. Sens Actuators B-Chem. 2020;319:128309.

[62] Kumar RR, Murugesan T, Dash A, et al. Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. Appl Surf Sci. 2021;536:147933.

[63] Yang Z, Jiang L, Wang J, et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx /ZnO spheres for room temperature application. Sens Actuators B-Chem. 2021;326:128828.

[64] Drmosh QA, Al Wajih YA, Al-Rammah R, et al. Surface-engineered WO3 thin films for efficient NO2 sensing. Appl Surf Sci. 2020;517:146235.

[65] Sun J, Sun L, Han N, et al. Ordered mesoporous WO3 /ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sens Actuators B-Chem. 2019;285:68.

[66] Liu X, Zhang J, Wang L, et al. 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J Mater Chem. 2011;21(2):349.

[67] Moshnikov VA, Gracheva IE, Kuzne佐V, et al. Hierarchical nanostructured semiconductor porous materials for gas sensors. J Non-Cryst Solids. 2010;356(37–40):2020.

[68] Zhou YJ, Bai JL, Zhao H, et al. Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes. Sens Actuators B-Chem. 2018;265:273.

[69] Al-Hashem M, Alkbar S, Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens Actuators B-Chem. 2019;301:126845.

[70] Bao S, Ma Y, Shu X, et al. Doping metal elements of WO3 for enhancement of NO2-sensing performance at room temperature. Ind Eng Chem Res. 2017;56(10):2616.

[71] Liu Y, Kong L, Guo X, et al. Surface oxygen vacancies on WO3 nanoplate arrays induced by Ar plasma treatment for efficient photoelectrochemical water oxidation. J Phys Chem Solids. 2021;149:109823.