Identification of Potential Donors for Higher β - Glucan Content in Oats Avena sativa L. Germplasm

Gagandeep Kaur, Rahul Kapoor* and Ashlesha Singla

Department of Plant Breeding and Genetics, PAU, Ludhiana, India

*Corresponding author

Abstract

The common oat (Avena sativa) is a cereal grain species considered to be the most economical and the richest source of the soluble dietary fiber. Soluble fiber content in oats is the main reason of the valuable effects of the crop. It is. In the present study, the estimation of β - glucan content was carried out on a total of 95 genotypes of oat which were procured from NBPGR, New Delhi. The isolation and estimation of the β - glucan content was done by using the alkaline extraction method. The β - glucan content in the studied genotypes ranged from 0.43 % to 6.90%. Only 4 germplasm lines had significantly higher β - glucan over standard check OL 10 (5.79%). These were the exotic germplasm lines viz. EC 537851, EC 246158, EC 528874, EC 372463. These could serve as the donors for higher β - glucan content in the oat breeding programmes.

Keywords: Estimation, β - glucan, Dietary fiber, Alkaline extraction

Introduction

Avena sativa L. is a cereal grain species which is prominently cultivated for consumption as a human food as well as animal feed (Daou and Zhang 2012). Oat usage in human foods has increased as information on its beneficial nutritional properties has come to light. This wonder cereal grain is referred to as ‘Super grain’ because of its impressive health benefits (Smulders et al., 2016). These beneficial effects are attributed to the soluble fiber content present in the oat grain. β - glucan, a class of polysaccharides is the major component of soluble fiber in oats.

β - glucan is a hemicellulose which makes up about 75 percent of endosperm cell walls of oat grain (Miller et al., 1995). In barley and oats, β - glucan is consists of mixed-linkage (1, 3) (1, 4) - β- D- glucose units (Tohamy et
Scientific research has constantly been emphasizing on the importance of oat β-glucan in the human diet. Oat β-glucan is directly related to health improvements like blood pressure, lowering bad cholesterol, improving diabetes and immune response (Keenan et al., 2002, Braaten et al., 1994, Jenkins et al., 2002, Estrada et al., 1997, Kaur et al., 2019). Oat crop is gaining economical interest because of its unmatched health implications.

As a result of this substantial breeding efforts have focused on increased β-glucan content. Therefore, identification of the genotypes having high β-glucan content can be useful for enhancing the β-glucan content of local germplasm lines by different breeding strategies (Ahmad et al., 2014).

In this study, we carried out the estimation of β-glucan content of oat genotypes and screened those for higher β-glucan content, so that these could be useful for different breeding programs for oat improvement.

Materials and Methods

A total of 95 genotypes of hexaploid oats were used for the present research. These genotypes included germplasm lines of exotic and indigenous origin. 65 genotypes were of exotic origin and remaining 30 were indigenous collection. All of these were made available by National Bureau of Plant Genetic Resources, New Delhi.

Estimation of β-glucan content

The process of extraction and estimation of β-glucan content is extremely difficult. Despite this, it has been continued to be developed over the years. There are several methods of isolation of β-glucan i.e., acid extraction, alkaline extraction and enzymatic extraction (Daou and Zhang, 2012). Here, in our study, we used alkaline extraction method outlined by Woods et al., 1977. The reagents used in this method were sodium carbonate, sodium bicarbonate, 2 mol/L HCl and isopropanol (Fig. 1).

Table 1: Cataloguing of germplasm on the basis of β-glucan content values

Beta glucan %	Frequency of individuals	Accession Names
0-2	28	IC 372489, EC 246200, EC 537924, HFO 504, EC 246131, EC 537875, IC 372437, IC 372466, EC 537815, HFO 865, EC 528864, EC 209452, EC 537853, EC 528908, IC 372482, EC 246179, IC 372496, IC 372457, EC 537811, IC 372441, EC 528871, IC 372424, EC 209524, OL 11, IC 372442, P 7 295932, IC 372563, IC 372527
2-4	44	EC 537834, EC 528899, EC 537867, EC 246147, HFO 873, IC 372467, HFO 868, EC 528906, EC 537825, EC 209346, EC 108477, IC 372510, EC 246181, EC 537885, EC 537855, EC 246120, EC 533788, HFO 864, IC 372478, EC 528925, EC 528919, EC 537819, EC 528907, EC 537836, EC 528923, EC 246166, EC 246176, IC 372477, EC 537878, EC 209589, EC 537869, IC 372474, EC 131639, EC 246178, HFO 870, P 7 292561, EC 537849, EC 528902, IC 372529, IC 372462, IC 372452, IC 372503, EC 209272, EC 209576
4-6	20	IC 372415, IC 372481, EC 537850, IC 372458, IC 372493, EC 246112, EC 528916, IC 372502, EC 246132, EC 528905, IC 372497, HFO 505, EC 528896, EC 209402, IC 372530, IC 372531, EC 537856, EC 537808, IC 372523, EC 528888
Above 6	4	EC 537851, EC 246158, EC 528874, IC 372463
Fig. 1 The extraction procedure of β-glucan (Wood et al., 1977)

1. 2 g of ground and sieved whole oat flour
2. Suspended vigorously in sodium carbonate bicarbonate buffer (pH = 10) at 45°C
3. Centrifugation at 15,000 rpm for 15 minutes
4. Supernatant retained. Two similar extractions performed
5. All the three extracts combined and the pH adjusted to 4.5 by 2 M/L HCl
6. Centrifugation at 15,000 rpm for 15-20 minutes at 4°C
7. Supernatant collected in separate tubes and heated at 100°C for 10 minutes
8. Equal volume of isopropanol added to the tubes after cooling and left overnight
9. Precipitates collected by centrifugation and then placed on filter paper for drying
10. Crude β-glucan was estimated by weighing the ppt placed on filter paper. This gave % β-glucan content in 100 g of sample
Results and Discussion

The genotypes were catalogued on the basis of β-glucan content. It ranged from 0.43% to 6.90%. Accessions viz; IC 372415, IC 372481, EC 537850, IC 372458, IC 372493, EC 246112, EC 528916, IC 372502, EC 246132, EC 528905, IC 372497, HFO 505, EC 528896, EC 209402, IC 372530, IC 372531, EC 537856, EC 537808, IC 372523 and EC 528888 were estimated to have the β-glucan content in the high range i.e. 4.0 % to 6.0 %. A total of four genotypes viz. EC 537851, EC 246158, EC 528874, EC 372463 yielded highest β-glucan content even higher than standard check i.e., above 6.0 %.

Twenty eight genotypes were found to have the β-glucan content in lower range i.e. from 0.43 % to 2.0 % (Table 1). The frequency distribution of the genotypes is also shown in Fig. 2. These results were within the range of previously reported studies.

The β-glucan content in oat grains of different accessions ranged 1.98 % - 6.24 % (Silveria et al., 2016), 2.93 % - 3.56 % (Mut et al., 2018), 1.02 % - 6.33 % (Rauf et al., 2019). The content of β-glucan in oats is affected by various factors such as oat cultivars, growing seasons and G X E interaction (Herrera et al., 2015, Lim et al., 1992, Anderson et al., 2011).

![Fig.2 Frequency distribution graph of individuals for β-glucan content]

The results of our study yielded a total of 24 promising genotypes which could be useful for future oat breeding programs. These are the lines with higher β-glucan content. They can serve as potential donors in oat improvement programs for developing the varieties with higher β-glucan values. These selected genotypes can be further characterized by using molecular approaches to find the genetic regions controlling the trait.

References

Ahmad, M., Zaffar, J., Dar, Z. A. and Habib, M. 2014. A review on Oat (Avena sativa L.) as a Dual-purpose Crop. Sci. Res. Essay., 9: 52-9.

Andersson, A. A. M. and Borjesdotter, D. 2011. Effects of Environment and Variety on Content and Molecular Weight of β-glucan in Oats. J. Cereal. Sci., 54: 122-28.

Braaten, T. J., Wood, P. J., Scott, F. W., Wolynetz, M. S., Lowe, M. K., Bradley-Whyte, P. 1994. Oat β-glucan reduces Blood Cholesterol Concentration in Hypercholesterolemic Subjects. Eur. J. Clin. Nutr., 48: 465–74.

Estrada, A., Yun, C. H., Van, Kessel, A., Li, B., Hauta, S., Laarveld, B. 1997. Immunomodulatory Activities of Oat β...
- glucan in vitro and in vivo. Microbiol. Immunol., 41: 991–98.

Herrera, M. P., Gao, J. J., Vasanthan, T., Temelli, F., Henderson, K. 2015. β-glucan Content, Viscosity and Solubility of Canadian Grown Oat as Influenced by Cultivar and Growing Location. Can. J. Plant. Sci., 96: 183-96.

Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., Wursch, P., Vuksan, V. 2002. Depression of the Glycemic Index by High Levels of β-glucan Fiber in Two Functional Foods Tested in Type 2 Diabetes. Eur. J. Clin. Nutr., 56: 622–28.

Kaur, S., Bhardwaj, R. D., Kapoor, R., Grewal, S. K. 2019. Biochemical Characterization of Oat (Avena sativa L.) Genotypes with High Nutritional Potential. Food. Sci. Tech., 110: 32-39.

Keenen, J. M., Pins, J. J., Frazel, C., Moran, A., Turnquist, L. 2002. Oat Ingestion Reduces Systolic and Diastolic Blood Pressure in Patients with Mild or Borderline Hypertension: A Pilot Study. J. Family Pract., 51: 369.

Lim, W. J., Liang, Y. T., Seib, P. A., Rao, C. S. 1992. Isolation of Oat Starch from Oat Flour. Cereal. Chem., 69: 233-36.

Miller, S. S., Fulcher, R. G., Sen, A. and Arnason, J. T. 1995. Oat Endosperm Cell Walls: Isolation, Composition, and Comparison with Other Tissues. Cereal. Chem., 72: 421-27.

Mut, Z., Akay, H., Kose, O. D. E. 2018. Grain Yield, Quality Traits and Grain Yield Stability of Local Oat Cultivars. J. Soil. Sci. Plant. Nutr., 18: 269-81.

Rauf, M., Yoon, H., Lee, S., Shin, M. J., Ko, H. C. et al., 2019. Evaluation of Major Dietary Ingredients in Diverse Oats (Avena sativa L.) Germplasm. J. Crop. Sci. Biotech., 22(5): 495-507.

Silveira, S. F. S., Oliveira, D. C. S., Wolter, D. D., Luche, H. S., de Oliveira, V. F., Figueiredo, R., et al., 2016. Performance of White Oat Cultivars for Grain Chemical Content. Can. J. Plant. Sci., 96: 530-38.

Smulders, M. J. M., Van de Wiel, C. C. M., Van de Broock, H. C., Van de Meer, I. M., et al., 2018. Oats in Healthy Gluten-Free and Regular Diets: A Perspective. Food. Res. Int., 110: 3-10.

Tohamy, A. A., El-Gohr, A. A., El-Nahas, S. M., Noshy, M. M. 2003. β-Glucan Inhibits the Genotoxicity of Cyclophosphamide, Adramycin, and Cisplatin. Mutat. Res., 541: 45–53.

Wood, P. J., Paton, D. and Siddiqui, I. R. 1977. Determination of β-Glucan in Oats and Barley. Cereal. Chem., 54: 524–33.