Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Humoral and cellular responses after COVID-19 vaccination in anti-CD20-treated lymphoma patients

Nora Liebers,1,2 Claudius Speer,3 Louise Benning,3 Peter-Martin Bruch,1 Isabelle Kraemer,1 Julia Meissner,1 Paul Schnitzler,4 Hans-Georg Kräusslich,4 Peter Dreger,1 Carsten Mueller-Tidow,1,2 Isabel Poschke,5,* and Sascha Dietrich1,2,6,*

1Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; 2National Center for Tumor Diseases Heidelberg, Heidelberg, Germany; 3Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany; 4Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; 5Immune Monitoring Unit, German Cancer Research Center, Heidelberg, Germany; and 6European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

Patients with hematological neoplasms, including lymphoma patients, have a high risk for severe COVID-19 diseases.1-4 COVID-19 vaccinations induce strong serologic and T-cell responses in immunocompetent humans and thereby effectively prevent severe COVID-19 disease courses.5-8 There is accumulating evidence that humoral immune responses after vaccination are impaired in patients with hematological malignancies, especially if they were treated with B-cell-depleting therapies such as anti-CD20 antibodies.9-11 However, there is limited information about the T-cell-mediated vaccine responses after anti-CD20 treatment. In this study, we investigated the humoral and cellular responses after COVID-19 vaccination in lymphoma patients who had received anti-CD20 treatment.

TO THE EDITOR:

Humoral and cellular responses after COVID-19 vaccination in anti-CD20-treated lymphoma patients

Nora Liebers,1,2 Claudius Speer,3 Louise Benning,3 Peter-Martin Bruch,1 Isabelle Kraemer,1 Julia Meissner,1 Paul Schnitzler,4 Hans-Georg Kräusslich,4 Peter Dreger,1 Carsten Mueller-Tidow,1,2 Isabel Poschke,5,* and Sascha Dietrich1,2,6,*

1Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; 2National Center for Tumor Diseases Heidelberg, Heidelberg, Germany; 3Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany; 4Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; 5Immune Monitoring Unit, German Cancer Research Center, Heidelberg, Germany; and 6European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

Patients with hematological neoplasms, including lymphoma patients, have a high risk for severe COVID-19 diseases.1-4 COVID-19 vaccinations induce strong serologic and T-cell responses in immunocompetent humans and thereby effectively prevent severe COVID-19 disease courses.5-8 There is accumulating evidence that humoral immune responses after vaccination are impaired in patients with hematological malignancies, especially if they were treated with B-cell-depleting therapies such as anti-CD20 antibodies.9-11 However, there is limited information about the T-cell-mediated vaccine responses after anti-CD20 treatment. In this study, we investigated the humoral and cellular responses after COVID-19 vaccination in lymphoma patients who had received anti-CD20 treatment.

DOl 10.1182/blood.2021013429 © 2022 by The American Society of Hematology

142 | blood® 6 JANUARY 2022 | VOLUME 139, NUMBER 1

LETTERS TO BLOOD
Seroconversion rates and timing of last anti-CD20 treatment

C Multivariate analysis for seroconversion after V2

Continuous covariates	Odds ratio (95% confidence interval)	P-value
Age (per 10 years)	0.5 (0.2–0.8)	0.008
Interval between last anti-CD20 treatment and first vaccination (per 1 year)	2.2 (1.3–4.7)	0.02
B cell count (per 100/μl)	0.94 (na–0.98)	0.05
CD4 cell count (per 100/μl)	1.6 (1.2–2.3)	0.005

D Neutralizing antibodies after V2

E Neutralizing antibodies and timing of last anti-CD20 treatment

Figure 1. Humoral responses after COVID-19 vaccination in anti-CD20-treated lymphoma patients. (A) Seroconversion rates after the first and second COVID-19 vaccination (post V1: n = 57, post V2: n = 76). The median time from the first and second vaccination to serology testing was 15 days (IQR: 14–17 days) and 16 days (IQR: 14–24.2 days), respectively. The anti-SARS-CoV-2-S1 antibody response rate after the second vaccination was significantly higher than after the first vaccination (V2 vs V1: 41% [31/76] vs 9% [5/57], McNemar test P < .001). A semiquantitative index of <1 was classified as negative, and a value of ≥1 was classified as positive. All patients with an available sample prior to vaccination (n = 70, median sample collection prior to first vaccination: 254 days, IQR: 17–448 days) were tested negatively for anti-SARS-CoV-2-S1 and anti-SARS-CoV-2-N antibodies. (B) Seroconversion rates after the first and second COVID-19 vaccination according to the interval between the last anti-CD20 treatment and first COVID-19 vaccination (<3 months: post V1: n = 17, post V2: n = 19; >3 months and <12 months: post V1: n = 19, post V2: n = 23; >12 months: post V1: n = 21, post V2: n = 34). The seroconversion rate after the second vaccination was significantly increased when the interval between the last...
The measurement of anti-SARS-Cov-2-S1 and anti-SARS-Cov-2-N antibody levels was performed as previously described. Patients with a known history of SARS-CoV-2 infection or detected response against the nucleocapsid protein (anti-SARS-CoV-2-N) were excluded from this study. For a subset of patients for whom additional samples were available, we assessed the neutralizing antibody capacity and T-cell responses. A detailed description of data collection and analysis can be found in the supplemental Methods, available on the Blood Web site.

Patient characteristics of all 80 patients are summarized in supplemental Table S1. The majority of patients were diagnosed with an aggressive (40%) or indolent (40%) form of B-cell lymphoma. A smaller cohort of 14% was diagnosed with chronic lymphocytic leukemia. Anti-CD20 treatment (rituximab or obinutuzumab) was combined with chemotherapy or novel agents in 41% and 15% of patients, respectively. Twenty-nine percent of patients were treated with an anti-CD20 monotherapy predominantly as maintenance after immunochemotherapy. Fifty-six percent of patients had received their last anti-CD20 treatment within <12 months prior to COVID-19 vaccination. Vaccines were largely mRNA-based. The median time from the first or second vaccination to serology testing was 15 days (interquartile range [IQR]: 14–17 days) and 16 days (IQR: 14–24.2 days), respectively. Within a median follow-up of 151 days (range 88–239 days) from the first COVID-19 vaccination, no breakthrough infection was reported by patients.

The overall seroconversion rate after 2 vaccination doses, defined as an index of anti-SARS-CoV-2-S1 ≥1, was 41% in our cohort. The seroconversion rate and antibody levels after the second vaccination were significantly higher than after the first vaccination (seroconversion rate: 41% vs 9%, P < .001; antibody levels: median [range], 0.2 [0–572] vs 0.09 [0–12], P = .004) (Figure 1A). This indicates that at least 2 vaccinations are key in lymphoma patients with anti-CD20 treatment. However, the median antibody levels of patients with seroconversion after the second vaccination (median 67.7, range: 1.6–572) were still remarkably lower than the antibody levels which were reported in healthy mRNA-vaccinated cohorts (116.2). Therefore, studies that investigate the efficacy of booster vaccination in this vulnerable patient cohort are urgently needed.

We aimed to assess which factors contributed to the impaired antibody response after COVID-19 vaccination. The interval between the last anti-CD20 treatment and dosing of the COVID-19 vaccine was positively associated with increasing seroconversion rates. Patients with their last anti-CD20 treatment at least 12 months prior to their first vaccination benefited most with an overall response (OR) rate of 68% (Figure 1B). In contrast, response rates in patients who had received their last anti-CD20 treatment within 3 months to 12 months or <3 months were decreased with 22% (>12 vs 3 months to 12 months; P = .001) and 16% (>12 months vs <3 months; P < .001), respectively. We further investigated if antibody response rates were different between patients who received anti-CD20 monotherapy or combination treatment with chemotherapy (supplemental Table S2; supplemental Figure S1). No statistically significant difference was found between these subgroups (anti-CD20 monotherapy 36%, anti-CD20/chemotherapy 56%, P = .2). Patients who received anti-CD20 treatment and novel agents (n = 12) or novel agents after failure of anti-CD20 containing treatments (n = 4) had very low seroconversion rates (17% and 0%, respectively). The seroconversion rate after homologous mRNA-based vaccination was 41% (26/67), 0% after non-mRNA-based vaccination (0/2), and 71% after heterologous vaccination (5/7) (supplemental Table S3).

We performed a multivariate analysis which confirmed the interval from the last anti-CD20 treatment to vaccination as an independent predictor and further revealed high CD4 cell counts as an additional independent predictor to develop a serologic response (Figure 1C, univariate analysis; supplemental Table S4).

We further tested antibody neutralization responses and found that 87% of seroconverted patients and 4% of patients without seroconversion had viral neutralization capacities exceeding the cutoff of 30%. The median neutralization capacity in the cohort of seroconverted patients was 95% and was comparable with the neutralization capacities reported in healthy individuals. (Figure 1D). As expected, neutralizing antibody capacities followed similar trends as described for seroconversion rates (Figure 1E; supplemental Figure S2).

T-cell responses after COVID-19 vaccination were assessed with an IFNγ ELISpot assay in patients for whom peripheral blood mononuclear cells were available and in 7 fully vaccinated healthy donors (supplemental Table S5). The median time between second vaccination and sample collection was 17 days (IQR 14–21 days) in the vaccinated patient cohort and 18 days (IQR 14–80 days) in the healthy control cohort. A specific T-cell response after incubation with 2 overlapping peptide pools representing the complete spike protein was evident in 29 out of 50 vaccinated patients (58%) and in 5 out of...
ELISpot images were shown for a patient with diffuse large B-cell lymphoma who was treated with rituximab-CHOP and received the last cycle 48 days prior to vaccination. Out of the 26 patients, 20 patients had a negative T-cell response prior to vaccination. Representative T-cell responses pre and post vaccination are shown in Figure 2B. In contrast to serological responses, we did not find that vaccine-induced T-cell responses were dependent on the interval between the last anti-CD20 treatment and the vaccination (Figure 2C). The rate of T-cell responses was not reduced in patients receiving chemotherapy and anti-CD20 treatment.

7 vaccinated healthy controls (71%) (Figure 2A). Seventy percent of seroconverted patients exhibited a T-cell response, whereas 50% of patients without a seroconversion still showed a T-cell response (Figure 2B). In contrast to serological responses, we did not find that vaccine-induced T-cell responses were dependent on the interval between the last anti-CD20 treatment and the vaccination (Figure 2C). The rate of T-cell responses was not reduced in patients receiving chemotherapy and anti-CD20 treatment.
treatment compared with anti-CD20 monotherapy (Figure S3). SARS-CoV-2 specific T-cell responses in individuals without COVID-19 vaccination or a history of COVID-19 infection were previously reported and interpreted as a crossreactive response of memory T cells after prior infection with common cold coronaviruses.14,15 We therefore analyzed T-cell responses in a subset of patients (n = 26) prior to COVID-19 vaccination (median time of sample collection: 218.5 days [IQR 4.5–309 days] prior to vaccination) and after vaccination. In patients with a proven negative prevaccination T-cell response (n = 20), we observed a seroconversion independent T-cell response comparable to the complete cohort (seroconversion vs no seroconversion: 56% vs 45%, P = 1.0) (Figure 2D; supplemental Figure S4). It is noteworthy that we and others8,15 also observed that healthy community after COVID-19 vaccination.

Potential limitations of this study include the relatively small number of patients, the lack of a predefined sample collection, and the lack of large healthy reference cohorts. Thus, these initial data in anti-CD20-treated lymphoma patients need to be confirmed in larger prospective studies. However, our results suggest that patients with recent or ongoing anti-CD20 treatments who suffer from insufficient humoral immune responses after 2 COVID-19 vaccinations might still benefit from vaccination due to the cellular immune response. T-cell responses could be of particular importance for patients who get infected with COVID-19 because effective T-cell responses are essential for viral clearance.16 Of note, even if infections cannot be prevented, it is still possible that T-cell responses are sufficient to ensure a mild course of COVID-19 disease. Taken together, COVID-19 vaccinations might be beneficial for anti-CD20-treated patients due to T-cell immunity.

Acknowledgments
The authors thank the Biobank of the Department of Medicine V for processing patient samples. The authors thank the data manager and the laboratory staff of the Department of Medicine, the Department of Nephrology, the Department of Infectious Diseases, Virology, Heidelberg University Hospital, and the Immune Monitoring Unit, German Cancer Research Center. N.L. was supported by a Heidelberg School of Oncology (HSO7) fellowship from the National Center for Tumor Diseases (NCT) Heidelberg. C.S. is funded by the Physician Scientist Program of the Heidelberg Faculty of Medicine. L.B. is funded by the Rahel Goiten-Straus Program of the Heidelberg Faculty of Medicine. S.D. was supported by a grant from the Hairy Cell Leukaemia Foundation, Heidelberg Research Centre for Molecular Medicine (HRCMM) and an emed BMBF junior group grant and DFG through the SFB873 (project B7). Work by C.M.-T. on COVID-19 was partially funded by the BMBF 01Kl20152.

Authorship
Contribution: N.L. and S.D. initiated and designed the study; N.L., P.-M.B., I.K., J.M., and P.D. collected clinical data; C.S. and L.B. performed the measurement of neutralizing antibodies; P.S. performed the serologic antibody testing; I.P. performed and analyzed the cellular T-cell testing; N.L. and S.D. analyzed data and performed statistical analysis; N.L., S.D., S.C., and I.P. wrote the paper; and N.L., C.S., L.B., P.-M.B., I.K., J.M., P.S., H.-G.K., C.M.-T., P.D., and S.D. edited the manuscript.

Conflict-of-interest disclosure: N.L.: Takeda and Roche: Honoraria. P.S.: Janssen-Cilag: consultancy; MSD Sharp & Dohme: consultancy. C.M.-T.: Pfizer: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Janssen-Cilag GmbH: Membership on an entity’s Board of Directors or advisory committees; Deutsche Krebshilfe, BMBF, Deutsche Forschungsgemeinschaft, Wilhelm-Sander-Stiftung, Jose-Carreras-Stiftung, Bayer AG, Daiichi Sankyo, BiolineRx: Research Funding. I.K.: Janssen: training and travel grant. J.M.: BMS: travel support; MSD: travel support; Takeda: travel support. P.D.: Abbvie: Consultancy, Speakers Bureau; AstraZeneca: Consultancy, Speakers Bureau; bluebird bio: Consultancy; BMS: Consultancy. Gilead: Consultancy, Speakers Bureau; Janssen: Consultancy; Novartis: Consultancy, Speakers Bureau; Riemsy: Consultancy, Research Fundig, Speakers Bureau. S.D.: Roche: Membership on an entity’s Board of Directors or advisory committees; Janssen: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity’s Board of Directors or advisory committees; KITE: Membership on an entity’s Board of Directors or advisory committees. The remaining authors declare no competing financial interests.

ORCID iDs: L.B., 0000-0002-8366-2100; P.-M.B., 0000-0002-9992-3109; C.M.-T., 0000-0002-7166-5232; I.P., 0000-0002-4387-5566; S.D., 0000-0002-0648-1832.

Correspondence: Sascha Dietrich, Department of Hematology, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; e-mail: sascha.dietrich@med.uni-heidelberg.de.

Footnotes
Submitted 23 July 2021; accepted 13 October 2021; prepublished online on Blood First Edition 20 October 2021.

*I.P. and S.D. contributed equally to this study.

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

REFERENCES
1. Aries JA, Davies JK, Auer RL, et al. Clinical outcome of coronavirus disease 2019 in haematology-oncology patients. Br J Haematol. 2020;190(2):e64-e67.
2. Gaitzsch E, Passerini V, Khathamz E, et al. COVID-19 in patients receiving CD20-depleting immunomodulatory therapy for B-cell lymphoma. HemaSphere. 2021;5(7):e603.
3. Passamonti F, Cattaneo C, Arcaini L, et al; ITA-HEMA-COVID Investigators. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7(10):e737-e745.
4. Vijenthira A, Gong IY, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients. Blood. 2020;136(25):2881-2892.
5. Baden LR, El Sahly HM, Essink B, et al; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-416.
6. Polack FP, Thomas SJ, Kitchin N, et al. C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603-2615.
7. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S covid-19 vaccine. N Engl J Med. 2021;384(19):1824-1835.
8. Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T11 T cell responses. Nature. 2020;586(7830):594-599.
9. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165-3173.

10. Maneikis K, Sablauskas K, Ringleviciute U, et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. Lancet Haematol. 2021;8(8):e583-e592.

11. Roeker LE, Knorr DA, Thompson MC, et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia. 2021;35(9):2703-2705.

12. Speer C, Göth D, Benning L, et al. Early humoral responses of hemodialysis patients after COVID-19 vaccination with BNT162b2. Clin J Am Soc Nephrol. 2021;16(7):1073-1082.

13. Benning L, Töllner M, Hidmark A, et al. Heterologous ChAdOx1 nCoV-19/BNT162b2 prime-boost vaccination induces strong humoral responses among health care workers. Vaccines (Basel). 2021;9(8):857.

14. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462.

15. Reynolds CJ, Pade C, Gibbons JM, et al; UK COVIDsortium Immune Correlates Network; UK COVIDsortium Investigators. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;eabk1282.

16. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-880.

DOI 10.1182/blood.2021013445
© 2022 by The American Society of Hematology