Lorenz qubit

MICHAEL R. GELLER

Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA

(Dated: December 26, 2021)

Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation. This would extend engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and possible application to quantum information processing.
Several recent papers [1–7] have considered nonlinear generalizations of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation [8, 9] for qudits. The superoperators resulting from these evolutions each take the form of a positive trace-preserving (PTP) channel $X \mapsto \phi(X)/\text{tr}[\phi(X)]$, with X a density matrix and ϕ a positive map. The positivity of this normalized PTP channel follows from the positivity of ϕ and $\text{tr}[\phi(X)] > 0$. It’s trace preservation property is actually a trace fixing one, but these are physically equivalent when applied to normalized initial states. Kowalski and Rembieliński [1], and also Rembieliński and Caban [3], considered cases with linear ϕ and $\text{tr}[\phi(X)] \neq 1$, extending Gisin’s 1981 model [12] to mixed states. We call these channels nonlinear in normalization only (NINO) to emphasize that the nonlinearity in this case serves only to conserve trace. We might think of NINO channels as being “mildly” nonlinear. In particular, they satisfy a convex quasilinearity property [13], preventing superluminal signaling [14–18]. The main difference between linear CPTP and NINO channels are that the generators of linear CPTP evolution are negative definite, leading to strictly nonexpansive dynamics, whereas NINO channels support non-CP [19–22] and entropy decreasing [1] processes that amplify the Bloch vector [1, 6]. Hence we can interpret the NINO master equation as extending the GKSL equation to non-Hermitian Hamiltonians. Fernengel and Drossel [2] studied cases where ϕ is nonlinear and $\text{tr}[\phi(X)] = 1$, a family of state-dependent CPTP channels obtained by adding state-dependence to a Hamiltonian and set of Lindblad jump operators. This is a stronger form of nonlinearity, supporting rich dynamical phenomena such as such Hopf bifurcations and strange attractors usually associated with classical nonlinear systems [2]. State-dependent CPTP channels also support Bloch-ball torsion. Torsion can be created from the product of an SO(3) rotation generator J_μ with the projection of the Bloch vector along the twist axis. Abrams and Lloyd [23] and Childs and Young [24] investigated state discrimination with z-axis torsion. Klobus et al. [7] observed Feigenbaum’s universal period doubling in a mean field model simulating torsion. Torsion also arises in a qubit friendly extension [25] of a rigorous duality between nonlinear mean field theory and the BBGKY hierarchy for n interacting bosons in the $n \to \infty$ limit [26–30].

1 Specifically, $\phi : B(\mathcal{H}, \mathbb{C}) \to B(\mathcal{H}, \mathbb{C})$ is a linear or nonlinear map on bounded linear operators satisfying:

(i) $\phi(X)^\dagger = \phi(X^\dagger)$ for every $X \in B(\mathcal{H}, \mathbb{C})$;
(ii) $\phi(X) \succeq 0$ for every $X \in \text{Her}^{\geq 0}(\mathcal{H}, \mathbb{C})$;
(iii) $\text{tr}[\phi(X)] \neq 0$ for every $X \in \text{Her}^{\geq 0}(\mathcal{H}, \mathbb{C})$. Here $B(\mathcal{H}, \mathbb{C})$ is the complex vector space of bounded linear operators $X : \mathcal{H} \to \mathcal{H}$ on our Hilbert space \mathcal{H}, and $\text{Her}^{\geq 0}(\mathcal{H}, \mathbb{C}) = \{ X \in B(\mathcal{H}, \mathbb{C}) : X = X^\dagger, X \succeq 0 \}$ is the positive semidefinite (PSD) subset.
In this paper we investigate qubit PTP channels with both nonlinear ϕ and $\text{tr}[\phi(X)] \neq 1$ that support generalized Lorenz attractors. The first version, which we call Lor63, implements Lorenz’s 1963 model [31]

$$
\begin{align*}
\frac{dx}{dt} &= \sigma(y - x), \\
\frac{dy}{dt} &= \rho x - y - gxz, \\
\frac{dz}{dt} &= -\beta z + gxy,
\end{align*}
$$

where $r = (x, y, z) = \text{tr}(X\sigma)$ is the Bloch vector. However here we increase the nonlinearity by a factor of $g \gg 1$ to shrink the attractor sufficiently as to contain it within the Bloch sphere. The master equation for the Lor63 qubit in the Pauli basis is

$$
\frac{dX}{dt} = \frac{\sigma}{2} \left(\frac{dr_a}{dt} \right), \quad \frac{dr_a}{dt} = \text{tr} \left(\frac{dX}{dt} \sigma^a \right) = G^{ab}(r) r^b = (L + gxJ_x)^{ab} r^b,
$$

where $a, b \in \{1, 2, 3\}$ and

$$
L = \begin{pmatrix}
-\sigma & \sigma & 0 \\
\rho & -1 & 0 \\
0 & 0 & -\beta
\end{pmatrix} = L_+ + L_-,
L_+ = \begin{pmatrix}
-\sigma & \frac{\rho + \sigma}{2} & 0 \\
\frac{\rho + \sigma}{2} & -1 & 0 \\
0 & 0 & -\beta
\end{pmatrix}, \quad \lambda_1 = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
D = \begin{pmatrix}
\sigma & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \beta
\end{pmatrix},
J_x = \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix},
J_z = \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
$$

$X \in \mathbb{C}^{2 \times 2}$ is a Hermitian positive-semidefinite matrix with unit trace. Model parameters ρ, σ, β, g are given in Table [I]. The nonlinear generator $G^{ab}(r)$ is a 3×3 real matrix that depends on the Bloch vector r. We decompose it into a linear (r independent) operator L plus x-axis torsion. The J^s are SO(3) generators: $(J_a)_{bc} = -\varepsilon_{abc}$ with ε the Levi-Civita symbol. L is decomposed into symmetric and antisymmetric parts implementing a non-Hermitian Hamiltonian iL. λ_1 is a Gell-Mann matrix. Note that λ_1 has a positive eigenvalue corresponding to an amplifying and entropy decreasing non-CP process [I]. Techniques for constructing Gell-Mann matrices and other symmetric generators from jump operators are
FIG. 1. Bloch ball dynamics of the Lor63 qubit. The faint yellow wireframe shows the Bloch sphere. Equator states $|\pm\rangle = 2^{-1/2}(|0\rangle \pm |1\rangle)$ and $|\pm i\rangle = 2^{-1/2}(|0\rangle \pm i|1\rangle)$ are also indicated with black dots and cyan lines. The model parameters used in the simulation are given in Table I.

given in [6]. The Lor63 qubit is simulated in Fig. 1. The blue points indicate random initial conditions. Trajectories rapidly approach one of the two disc-shaped sets (pink or cyan) and bounce back and forth between them in an unpredictable manner, mirroring the aperiodic reversals of the Malkus waterwheel lying in its Fourier representation [32].

Table I. Lor63 model parameters.
Original
ρ
σ
β
g
A Lorenz-like attractor can also be created from the z-axis torsion coming from the Gross-Pitaevskii (GP) equation [24, 33, 34], leading to an aesthetic attracting set shown in Fig. 2. We call this channel the *GP butterfly*. The *GP butterfly* qubit has an especially simple master equation:

$$\frac{dr^a}{dt} = \text{tr}\left(\frac{dX}{dt} \sigma^a \right) = G^{ab}(r)r^b = (m\lambda_4 + gzJ_z)^{ab}r^b,$$

where $m = 10$, $g = 40$, and

$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

is another Gell-Mann matrix. The symmetric generator λ_4 can be implemented with Lindblad jump operators [6].
In conclusion, we have proposed nonlinear PTP channels for the generation of Lorenz-like attractors in the Bloch ball. Despite its early prominence the Lorenz system defied rigorous analysis until rather recently when, in 2002, Tucker [35] established the existence of a strange attractor. Classical electrical circuits have been used to implement the Lorenz attractor and other chaotic and hyperchaotic attractors [36–39], which might find cryptographic application [40, 41]. It is tempting to speculate that chaotic attractors will find application in quantum technology as well. However it is important to recognize the very large nonlinear coupling strengths required, making experimental realization especially challenging.

[1] K. Kowalski and J. Rembieliński, “Integrable nonlinear evolution of the qubit,” Ann. Phys. 411, 167955 (2019).
[2] B. Fernengel and B. Drossel, “Bifurcations and chaos in nonlinear Lindblad equations,” J. Phys. A: Math. Theor. 53, 385701 (2020).
[3] J. Rembieliński and P. Caban, “Nonlinear extension of the quantum dynamical semigroup,” Quantum 5, 420 (2020).
[4] K. Kowalski, “Linear and integrable nonlinear evolution of the qutrit,” Quant. Inf. Proc. 19, 145 (2020).
[5] E. Buks and D. Schwartz, “Stability of the Grabert master equation,” Phys. Rev. A 103, 052217 (2021).
[6] M. R. Geller, “Fast quantum state discrimination with nonlinear PTP channels,” , arXiv: 2111.05977.
[7] W. Kłobus, P. Kurzyński, M. Kuś, W. Laskowski, R. Przybycień, and K. Życzkowski, “Transition from order to chaos in reduced quantum dynamics,” arXiv: 2111.13477.
[8] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N-level systems,” J. Math. Phys. 17, 821 (1976).
[9] G. Lindblad, “On the generators of quantum dynamical semigroups,” Comm. Math. Phys. 48, 119 (1976).
[10] E. C. G. Sudarshan, P. M. Mathews, and Rau J., “Stochastic dynamics of quantum-mechanical systems,” Phys. Rev. 121, 920 (1961).
[11] K. Kraus, “General state changes in quantum theory,” Ann. Phys. 64, 311 (1971).
[12] N. Gisin, “A simple nonlinear dissipative quantum evolution equation,” J. Phys. A: Math. Gen. 14, 2259 (1981).

[13] J. Rembieliński and P. Caban, “Nonlinear evolution and signaling,” Phys. Rev. Res. 2, 012027 (2020).

[14] N. Gisin, “Weinberg’s nonlinear quantum mechanics and supraluminal communication,” Phys. Lett. A 143, 1 (1990).

[15] J. Polchinski, “Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 66, 397 (1991).

[16] M. Czachor, “Mobility and non-separability,” Found. Phys. Lett. 4, 351 (1991).

[17] N. Gisin and M. Rigo, “Relevant and irrelevant nonlinear Schrödinger equations,” J. Phys. A 28, 7375 (1995).

[18] A. Kent, “Nonlinearity without superluminality,” Phys. Rev. A 72, 012108 (2005).

[19] P. Pechukas, “Reduced dynamics need not be completely positive,” Phys. Rev. Lett. 73, 1060 (1994).

[20] A. Shaji and E. C. G. Sudarshan, “Who’s afraid of not completely positive maps?” Phys. Lett. A 341, 48 (2005).

[21] H. A. Carteret, D. R. Terno, and K. Życzkowski, “Dynamics beyond completely positive maps: Some properties and applications,” Phys. Rev. A 77, 042113 (2008).

[22] J. M. Dominy, A. Shabani, and D. A. Lidar, “A general framework for complete positivity,” Quantum Inf. Process. 15, 465 (2016).

[23] D. S. Abrams and S. Lloyd, “Nonlinear quantum mechanics implies polynomial-time solution for NP-Complete and #P problems,” Phys. Rev. Lett. 81, 3992 (1998).

[24] A. M. Childs and J. Young, “Optimal state discrimination and unstructured search in nonlinear quantum mechanics,” Phys. Rev. A 93, 022314 (2016).

[25] M. R. Geller, “The universe as a nonlinear quantum simulation,” arXiv: 2112.09005.

[26] B. Nachtergaele, Y. Ogata, and R. Sims, “Propagation of correlations in quantum lattice systems,” J. Stat. Phys. 124, 1 (2006).

[27] J. Fröhlich, S. Graffi, and S. Schwarz, “Mean-field and classical limit of many-body schrödinger dynamics for bosons,” Comm. Math. Phys. 271, 681 (2007).

[28] I. Rodnianski and B. Schlein, “Quantum fluctuations and rate of convergence towards mean field dynamics,” Comm. Math. Phys. 291, 31 (2009).
[29] L. Erdős and B. Schlein, “Quantum dynamics with mean field interactions: A new approach,” J. Stat. Phys. 134, 859 (2009).

[30] C. Gokler, “Mean field limit for many-particle interactions,” arXiv: 2006.05486.

[31] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130 (1963).

[32] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (Springer, 1982).

[33] D. A. Meyer and T. G. Wong, “Nonlinear quantum search using the Gross-Pitaevskii equation,” New J. Phys. 15, 063014 (2013).

[34] D. A. Meyer and T. G. Wong, “Quantum search with general nonlinearities,” Phys. Rev. A 89, 012312 (2014).

[35] W. Tucker, “A rigorous ODE solver and Smale’s 14th problem,” Found. Comput. Math. 2, 52 (2002).

[36] K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65 (1993).

[37] G. Qi, M. A. van Wyk, B. J. van Wyl, and G. Chen, “A new hyperchaotic system and its circuit implementation,” Chaos, Solitons and Fractals 40, 2544 (2009).

[38] L. Liu, C. Du, X. Zhang, J. Li, and S. Shi, “Dynamics and entropy analysis for a new 4-D hyperchaotic system with coexisting hidden attractors,” Entropy 21, 287 (2019).

[39] H. Tian, Z. Wang, P. Zhang, M. Chen, and Y. Wang, “Dynamic analysis and robust control of a chaotic system with hidden attractor,” Complexity 2021, 8865522 (2021).

[40] T. A. Al-Maadeed, I. Hussain, A. Anees, and M. T. Mustafa, “An image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes,” arXiv: 2006.11847.

[41] A. G. Mafco, A. S. Martinez, and O. M. Bruno, “Fast, parallel, and secure cryptography algorithm using Lorenz’s attractor,” Int. J. Mod. Phys. C 21, 365 (2010), arXiv: 1201.3114.