Certain subclass of harmonic univalent functions defined by
q-differential operator

G. M. Birajdar
School of Mathematics & Statistics,
Dr. Vishwanath Karad MIT World Peace University,
Pune (M.S) India 411038
Email: gajanan.birajdar@mitwpu.edu.in

N. D. Sangle
Department of Mathematics,
D. Y. Patil College of Engineering & Technology,
Kasaba Bawada, Kolhapur, (M.S.), India 416006
Email: navneetsangle@rediffmail.com

Abstract

In this paper, we define certain subclass of harmonic univalent function in the unit disc
$U = \{z \in \mathbb{C} : |z| < 1 \}$ by using q-differential operator. Also we obtain coefficient inequalities, growth and distortion theorems for this subclass.

2000 Mathematics Subject Classification: 30C45, 30C50

Keywords: Harmonic, Univalent, Salagean q-differential operator.

1 Introduction

Clunie and Sheil-Small [1] investigated the class S_H as well as its geometric subclasses and established some coefficient bounds. Since then, there have been several related papers on S_H and its subclasses. In fact, by introducing new subclasses, Silverman [11], Silverman and Silvia [12], Jahangiri [7], Sangle and Yadav [8], Dixit and Porwal [4], Singh and Porwal [13] and Ravindar et.al [14] etc. presented a systematic and unified study of harmonic univalent functions.

The concepts of q-calculus has many applications in subfields of science, some of them are q-difference equations and geometric function theory. Motivated by the research work done by Jahangiri [2, 3], Joshi and Sangle [5, 9], Purohit et al. [6], we define some subclasses of harmonic mappings using the Salagean q-differential operator.

Also, we determine extreme points and coefficient estimates of $\mathcal{S}_H^q(m, \alpha, u)$ and $\overline{\mathcal{S}}_H^q(m, \alpha, u)$.

1
Let A be family of analytic functions in unit disk U and A^0 be the class of all normalized analytic functions. For $0 < q < 1$ and for positive integer u, the q-integer number is denoted by $[u]_q$ and also it is written as

$$[u]_q = \frac{1 - q^u}{1 - q} = \sum_{k \geq 0} q^k. \quad (1.1)$$

By making use of differential calculus, we can check that

$$\lim_{q \to 1^-} [u]_q = u$$

For $h \in A$, the q-difference operator [6] is specified as

$$\partial_q h(z) = \frac{h(z) - h(qz)}{(1 - q) z} \quad (1.2)$$

where

$$\lim_{q \to 1^-} \partial_q h(z) = h'(z).$$

Let the functions $h \in A$ be of the form

$$h(z) = z + \sum_{u \geq 2} a_u z^u. \quad (1.3)$$

J. M. Jahangiri [3] defined the Salagean q-differential operator for the above functions h as

$$D_q^0 h(z) = h(z)$$

$$D_q^1 h(z) = z \partial_q h(z) = \frac{h(z) - h(qz)}{(1 - q) z}, ...$$

$$D_q^m h(z) = z \partial_q D_q^{m-1} h(z) = h(z) \ast \left(z + \sum_{u \geq 2} [u]_q^m z^u \right) = z + \sum_{u \geq 2} [u]_q^m a_u z^u \quad (1.4)$$

where m is a positive integer. The operator D_q^m is called Salagean q-differential operator. The complex-valued harmonic functions can be written as $f = h + \overline{g}$ in where h and g have the following power series expansions

$$h(z) = z + \sum_{u \geq 2} a_u z^u, \quad g(z) = \sum_{u \geq 1} b_u z^u, |b_1| < 1. \quad (1.5)$$

Clunie and Sheil-Small [1] defined the function of form $f = h + \overline{g}$ that are locally univalent, sense-preserving and harmonic in U. A sufficient condition for the harmonic functions f to be univalent in U is that $|h'(z)| \geq |g'(z)|$ in U.

J. M. Jahangiri [3] defined the Salagean q-differential operator for the harmonic functions f by

$$D_q^m f(z) = D_q^m h(z) + (-1)^m D_q^m g(z) \quad (1.6)$$

where D_q^m is defined by (1.4).

Now, for $0 \leq \alpha < 1$, $m \in \mathbb{N}_0$ and $z \in U$, suppose that $S^q_H(m, \alpha, u)$ denote the family of harmonic univalent function f of the form $f = h + \overline{g}$ such that

$$\text{Re}\left(\frac{D_q^m h(z) + D_q^m g(z)}{z} \right) > \alpha \quad (1.7)$$
where $D^m_f(z)$ is defined by J. M. Jahangiri [3].

Further let the subclass $S_{H}(m, \alpha, u)$ consisting harmonic functions $f = h + \overline{\eta}$ in $S_{H}(m, \alpha, u)$ so that h and g are of the form

$$h(z) = z - \sum_{u \geq 2} |a_u| z^u \quad \text{and} \quad g(z) = \sum_{u \geq 1} |b_u| z^u. \quad (1.8)$$

2 Main Results

Theorem 2.1. Let the function $f = h + \overline{\eta}$ be such that h and g are given by (1.5), Furthermore

$$\sum_{u \geq 2} |u|^m_q |a_u| + \sum_{u \geq 1} |u|^m_q |b_u| \leq (1 - \alpha) \quad (2.1)$$

where $0 \leq \alpha < 1$ and $m \in N_0$. Then f is harmonic univalent, sense-preserving in U and $f \in S_{H}(m, \alpha, u)$.

Proof: If $z_1 \neq z_2$ then,

$$\frac{|f(z_1) - f(z_2)|}{|h(z_1) - h(z_2)|} \geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right|$$

$$= 1 - \left| \frac{\sum_{u \geq 1} b_u (z_1^u - z_2^u)}{z_1 - z_2 + \sum_{k \geq 2} a_u (z_1^u - z_2^u)} \right|$$

$$\geq 1 - \frac{\sum_{u \geq 1} |b_u|}{1 - \sum_{u \geq 1} |a_u|} \geq 1 - \left(\frac{\sum_{u \geq 1} |u|^m_q |b_u|}{1 - \sum_{u \geq 1} |u|^m_q |a_u|} \right) \geq 0.$$

Hence f is univalent in U.

3
Now, we show that $f \in \mathcal{S}_{H}^{m}(m, \alpha, u)$. Using the fact that $\text{Re}(w) > \alpha$ if and only if $|1 - \alpha + w| > |1 + \alpha - w|$, it suffices to show that

$$
\left| (1 - \alpha) + \frac{D_{q}^{m}h(z) + D_{q}^{m}g(z)}{z} \right| - \left| (1 + \alpha) - \frac{D_{q}^{m}h(z) + D_{q}^{m}g(z)}{z} \right| > 0 \tag{2.2}
$$

Substituting for $D_{q}^{m}h(z)$ and $D_{q}^{m}g(z)$ in (2.2), we obtain

$$
= \left| (2 - \alpha) + \sum_{u \geq 2}^{\infty} \frac{[u]_{q}^{m} a_{u}}{1 - \alpha} z^{u-1} + \sum_{u \geq 1}^{\infty} \frac{[u]_{q}^{m} b_{u}}{1 - \alpha} z^{u-1} \right| - \left| \alpha - \sum_{u \geq 2}^{\infty} \frac{[u]_{q}^{m} a_{u}}{1 - \alpha} z^{u-1} - \sum_{u \geq 1}^{\infty} \frac{[u]_{q}^{m} b_{u}}{1 - \alpha} z^{u-1} \right|
$$

$$
\geq 2(1 - \alpha) \left\{ \left| 1 - \sum_{u \geq 2}^{\infty} \frac{[u]_{q}^{m} a_{u}}{1 - \alpha} |z|^{u-1} \right| - \left| \sum_{u \geq 1}^{\infty} \frac{[u]_{q}^{m} b_{u}}{1 - \alpha} |z|^{u-1} \right| \right\}
$$

$$
> 2(1 - \alpha) \left\{ \sum_{u \geq 2}^{\infty} \frac{|u|}{1 - \alpha} |a_{u}| - \sum_{u \geq 1}^{\infty} \frac{|u|}{1 - \alpha} |b_{u}| \right\}
$$

The harmonic mappings

$$f(z) = z + \sum_{u \geq 2}^{\infty} \frac{1 - \alpha}{|u|_{q}^{m}} x_{u} z^{u} + \sum_{u \geq 1}^{\infty} \frac{1 - \alpha}{|u|_{q}^{m}} y_{u} z^{u},$$

where $\sum_{u \geq 2}^{\infty} |x_{u}| + \sum_{u \geq 1}^{\infty} |y_{u}| = 1$, show that coefficient bound given by (2.1) is sharp.

In the following theorem, it is proved that the condition (2.1) is also necessary for functions $f = h + \overline{g}$ where h and g are of the form (1.8).

Theorem 2.2. Let $f = h + \overline{g}$ be given by (1.8). Then $f \in \mathcal{S}_{H}^{m}(m, \alpha, u)$ if and only if

$$
\sum_{u \geq 2}^{\infty} \frac{|u|^{m}}{1 - \alpha} |a_{u}| + \sum_{u \geq 1}^{\infty} \frac{|u|^{m}}{1 - \alpha} |b_{u}| \leq 1 \tag{2.3}
$$

where $0 \leq \alpha < 1$ and $m \in N_{0}$.

4
Proof: The if part follows from Theorem 2.1. For the only if part, we show that $f \in \overline{S}_H^q(m, \alpha, u)$ if the condition (2.3) holds. We notice that the condition

$$\text{Re}\left\{ \frac{D_q h(z) + D_q g(z)}{z} \right\} > \alpha$$

is equivalent to

$$\text{Re}\left\{ 1 - \sum_{u \geq 2} [u]_q^m |a_u| |z|^{u-1} - \sum_{u \geq 1} [u]_q^m |b_u| |z|^{u-1} \right\} > \alpha.$$

The above required condition must hold for all values of z in U. Taking the values of z on the positive real axis, where $0 \leq |z| = r < 1$, we must have

$$1 - \sum_{u \geq 2} [u]_q^m |a_u| - \sum_{u \geq 1} [u]_q^m |b_u| \geq \alpha$$

which is precisely the assertion (2.3).

Next, we determine the extreme points of closed convex hulls of class $\overline{S}_H^q(m, \alpha, u)$.

Theorem 2.3. Let f be given by (1.8). Then $\overline{S}_H^q(m, \alpha, u)$ if and only if

$$f(z) = \sum_{u=1}^{\infty} (x_u h_u(z) + y_u g_u(z)),$$

where $h_1(z) = z$,

$$h_k(z) = z - \frac{1 - \alpha}{[u]_q^m} z^u, \quad (u = 2, 3, 4, ...),$$

$$g_k(z) = z - \frac{1 - \alpha}{[u]_q^m} z^u, \quad (u = 1, 2, 3, 4, ...),$$

$x_u \geq 0, y_u \geq 0, \sum_{u=1}^{\infty} x_u + y_u = 1$. In particular the extreme points of $\overline{S}_H^q(m, \alpha)$ are $\{h_u\}$ and $\{g_u\}$.

The following theorem gives the bounds for functions in $\overline{S}_H^q(m, \alpha, u)$ which yields a covering result for this class.

Theorem 2.4. Let $f \in \overline{S}_H^q(m, \alpha, u)$. Then for $|z| = r < 1$, we have

$$|f(z)| \leq (1 + |b_1|) r + \frac{1}{2^m} (1 - |b_1| - \alpha) r^2, \quad |z| = r < 1$$

and

$$|f(z)| \geq (1 - |b_1|) r - \frac{1}{2^m} (1 - |b_1| - \alpha) r^2, \quad |z| = r < 1.$$

Proof: Let $f \in \overline{S}_H^q(m, \alpha, u)$. Taking the absolute value of $f(z)$, we have

$$|f(z)| \leq (1 + |b_1|) r + \sum_{u \geq 2} (|a_u| + |b_u|) r^u$$

$$\leq (1 + |b_1|) r + \sum_{u \geq 2} (|a_u| + |b_u|) r^2$$

$$\leq (1 + |b_1|) r + \frac{1}{[2]_q} \sum_{u \geq 2} [u]_q^m (|a_u| + |b_u|) r^2$$

$$\leq (1 + |b_1|) r + \frac{1}{[2]_q} (1 - \alpha - |b_1|) r^2$$

5
and

\[|f(z)| \geq (1 - |b_1|) r - \sum_{u \geq 2}^{\infty} (|a_u| + |b_u|) r^u \]

\[\geq (1 - |b_1|) r - \sum_{u \geq 2}^{\infty} (|a_u| + |b_u|) r^2 \]

\[\geq (1 - |b_1|) r - \frac{1}{|a_1|^w} \sum_{u \geq 2}^{\infty} [u]^m ([a_u] + [b_u]) r^2 \]

\[\geq (1 - |b_1|) r - \frac{1}{|a_1|^w} (1 - \alpha - |b_1|) r^2 \]

The functions \(z + |b_1| \pi + \frac{1}{|a_1|^w} (1 - \alpha - |b_1|) \pi^2 \) and \(z - |b_1| z - \frac{1}{|a_1|^w} (1 - \alpha - |b_1|) z^2 \) for \(|b_1| \leq (1 - \alpha) \).
References

[1] J. Clunie as well as T. Sheil-Small, Harmonic univalent functionalities, Ann. Acad. Sci. Fenn. Ser. A I Mathematics. 9 (1984), 3-25.

[2] J. M. Jahangiri, Accordant features starlike in the unit disk, J. Mahematics. Anal. Appl. 235 (1999), no. 2, 470-477.

[3] J. M. Jahangiri, Harmonic univalent features determined next to q-calculus drivers, Int. J.Mathematics. Anal. and also Appl. 5 (2018), no. 2, 39-43.

[4] K.K Dixit. and Porwal Saurabh, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math., 41(3) (2010), 261-269.

[5] S.B. Joshi, and N.D.Sangle, New subclass of univalent functions defined by using generalised Salagean operator, J. Indones Mathematics Society (MIHMI.), 15 (2009), 79–89 .

[6] S.D. Purohit and R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), no. 1, 55-70.

[7] J.M.Jahangiri , Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477.

[8] N.D.Sangle,and Y.P. Yadav, On a subclass of harmonic univalent functions defined By generalized derivative operator, IJMER, Vol.2 (2012), Issue 3, 562-569.

[9] S.B. Joshi and N.D. Sangle, New subclass of Goodman-typep-valent harmonic functions, Filomat, 22(1) (2008), 193–204.

[10] G.S. Salagean , Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1(1983) 362-372.

[11] H. Silverman , Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289.

[12] H. Silverman and Silvia E.M. , Subclasses of Harmonic univalent functions, New Zealand J. Math., 28(1999), 275-284.

[13] Balvir Singh and Porwal Saurabh ,On A New Subclass of A Harmonic Univalent Functions, IJCRT, Vol.5(2017), Issue 4, Page 3465-3469.

[14] B. Ravindar, R.B.Sharma and N. Magesh, On Certain Subclass of Harmonic Univalent Functions Defined Q-Differential Operator, J.Mech.Cont.Math.Sci., Vol.14(2019), No.6, 45-53.

[15] N. D. Sangle and G. M. Birajdar, Certain subclass of analytic function with negative coefficients defined by Catas operator, Indian Journal of Mathematics(IJM), 62(3) (2020), 335-353.