PACKING AND COVERING PROPERTIES OF SEQUENCES OF CONVEX BODIES

GÁBOR FEJES TÓTH

Abstract. This paper surveys different variants of the following problem: Given a convex set K and a sequence $\{C_i\}$ of convex bodies in E^n, is it possible to pack the sequence of bodies in K or cover K with the bodies? Algorithmic versions of these problems are on-line packing and on-line covering: The bodies of the sequence are given one at a time and the algorithm is to decide on the placement of the arriving body before the next body is revealed; once placed, the body cannot be moved.

Consider the following problem: Given a convex set K and a sequence $\{C_i\}$ of convex bodies in E^n, is it possible to pack the sequence of bodies in K or cover K with the bodies? More specifically, is it possible to find for each i a congruent copy C_i of each C_i, so that the bodies $\{C_i\}$ form a packing in, or a covering of, K? If so, then we say that the sequence $\{C_i\}$ permits an isometric packing in K, or an isometric covering of K, respectively. If translates of the bodies C_i are used, then we say that $\{C_i\}$ permits a translative packing in K, or a translative covering of K.

Problem 10.1 from the Scottish Book (see MAULDIN [1981, p. 74]) reads as follows:

"PROBLEM 10.1: MAZUR, AUERBACH, ULAM, BANACH
Theorem. If $\{K_n\}_{n=1}^\infty$ is a sequence of convex bodies, each of diameter $\leq a$ and the sum of their volumes is $\leq b$, then there exists a cube with the diameter $c = f(a,b)$ such that one can put all the given bodies in it disjointly.
Corollary. One kilogram of potatoes can be put into a finite sack. Determine the function $c = f(a,b)$.”

Because of the corollary, packing problems of this type are sometimes called potato-sack problems.

The Scottish Book does not give a proof of the theorem. A proof was later described by KOŚNISKI [1957], who presented an explicit bound on $f(a,b)$. The main idea is to enclose each C_i in a box, that is in a rectangular parallelepiped, whose volume is greater than that of C_i at most by a constant factor independent from C_i, and whose diameter is not too much larger than the diameter of C_i, thereby reducing the problem to packing a sequence of boxes in a box. Then it is shown that every sequence of n-dimensional boxes of edges at most D and total volume at most V can be packed in a box whose $n-1$ edges are of length $3D$ and the n-th one is of length $(V + D^n)/D^{n-1}$. MOON and MOSER [1967] improved the above
bound. They proved that such a family of boxes can be packed in a box of sides $2D, 2D, \ldots, 2D, (2V + D^n)/D^{n-1}$.

Moon and Moser also addressed the problem of covering and proved that a family of n-dimensional boxes of edges at most D and total volume V can cover a cube of side D if $V \geq c_n(2D)^n$, where $c_n = \frac{2 \cdot 4 \cdot 8 \cdot \cdots \cdot 2^n}{1 \cdot 3 \cdot 7 \cdot \cdots \cdot (2^n - 1)} < 2.463$. MEIR and MOSER [1968] slightly improved this result. In particular, they showed that any family of n-dimensional cubes of total volume V can transitively cover a cube of volume $V/(2^n - 1)$. Concerning packing cubes in a cube they proved that a family of cubes of total volume V can be transitively packed in a cube of volume $2^{n-1}V$ provided that the side-lengths of the cubes do not exceed $2^{n-1}/\sqrt{V}$. The bound $2^{n-1}V$ is best possible, since two cubes of volume $V/2$ cannot be transitively packed in a cube of volume smaller than $2^{n-1}V$.

Let \mathcal{F} be a family of convex bodies. For a given convex body C we define $p_i(C|\mathcal{F})$ as the greatest number such that every sequence of members of \mathcal{F} whose diameter does not exceed the diameter of C and whose total volume is at most $p_i(C|\mathcal{F}) \text{vol}(C)$, permits an isometric packing in C. Further, we define $c_i(C|\mathcal{F})$ as the smallest number such that every sequence of members of \mathcal{F} with total volume at least $c_i(C|\mathcal{F}) \text{vol}(C)$ permits an isometric covering of C. We define similarly $p_t(C|\mathcal{F})$ and $c_t(C|\mathcal{F})$ where the extreme values of the total volume are taken for translative packings and translative coverings, respectively.

In most of the investigated cases \mathcal{F} consists of homothetic or similar copies of a convex body. For a given convex body C let C_h and C_s denote the family of (positive and negative) homothetic copies of C and the family of similar copies of C, respectively. Further, let C_h^+ and C_h^- be the families of positive homothetic copies and negative homothetic copies of C, respectively.

0.1. Packing and covering cubes and boxes. Let $I^n(s)$ denote an n-dimensional cube of edge length s. If the size is irrelevant, we simply write I^n. Then the theorems of MEIR and MOSER [1968] mentioned above state that

\[p_i(I^n|I_h^n) = 2(1/2)^n \]

and

\[c_i(I^n|I_h^n) = 2^n - 1. \]

The latter equality was independently proved also by A. BEZDEK and K. BEZDEK [1984].

Better bounds have been obtained under the assumption that the sets used for packing and covering are uniformly bounded and the container is large. Let \mathcal{B}^n denote the family of n-dimensional boxes of edge length at most 1. GROEMER [1982] proved that for $s \geq 3$

\[p_i(I^n(s)|\mathcal{B}^n) \geq (s - 1)^n - \frac{s - 1}{s - 2}((s - 1)^{n-2} - 1) \]

and

\[c_i(I^n(s)|\mathcal{B}^n) \leq (s + 1)^n - 1. \]
1. Results for General Convex Bodies

Macbeath [1951] proved that to every \(n\)-dimensional convex body \(C\) there exist two boxes, \(Q_1\) and \(Q_2\), with

\[n^n V(Q_1) \geq V(C) \geq \frac{1}{n!} V(C),\]

such that \(Q_1 \subset C \subset Q_2\). Let \(\mathcal{F}^n\) denote the family of \(n\)-dimensional convex bodies whose diameters are at most 1. The combination of Macbeath’s theorem with the above mentioned theorems of Groemer yields

\[p_i(I^n(s)|\mathcal{F}^n) \geq \frac{1}{n!}((s - 1)^n - \frac{s - 1}{s - 2}((s - 1)^n - 2))\]

and

\[c_i(I^n(s)|\mathcal{F}^n) \leq n^x((s + 1)^n - 1).\]

Macbeath’s theorem was also proved by Hadwiger [1955a]. The part about the box containing \(C\) was proved also by Kosiński [1957] and the part about the box contained in \(C\) by Chakerian [1975]. Lassak [1993] improved the bound for the volume of the box \(Q_1\) by a factor of \(2\). In particular, every \(n\)-convex disk \(C\) of area \(a\) in the plane is contained in a rectangle of area \(2a\). This was previously proved also by Radziszewski [1952] and Süss [1955].

Since two copies of \((\frac{1}{2} + \varepsilon)C\) cannot be packed transitively in \(C\) we have \(p_i(C|\mathcal{C}^n_h) \leq \frac{1}{2}\). Soifer [1999a] and Novotný [2001] conjectured that \(p_i(C|\mathcal{C}^n_h) = \frac{1}{2}\) for every convex disk \(C\). We are far from being able to prove or disprove this conjecture. The best known lower bound for general convex disks is \(p_i(C|\mathcal{C}^n_h) \geq \frac{1}{2}\) due to Januszewski [2007a]. Concerning packing positive and negative homothetic copies in a convex disk Januszewski [2008a] established the inequality \(p_i(C|\mathcal{C}^n_h) \geq \frac{7}{39}\).

The stronger conjecture of Soifer [1999a] that we have even \(p_i(C|\mathcal{C}^n_h) = \frac{1}{2}\) for every convex disk \(C\) was refuted by Novotný [2001] by showing that for the rectangle \(R\) with sides \(3^{1/4}\) and \(2^{1/4}\), \(p_i(R|R_h) = \sqrt{3/8}\).

L. Fejes Tóth conjectured (see Brass, Moser and Pach [2005, p. 131]) that \(c_i(C|\mathcal{C}^n_h) \leq 3\) for every convex disk \(C\). The first upper bound of \(c_i(C|\mathcal{C}^n_h) \leq 12\) for general convex disks \(C\) is due to A. Bezdek and K. Bezdek [1984]. Bálint Bálintová, Branická, Grešák, Hrínko, Novotný and Stacho [1993] lowered this bound to \(9(9 - \sqrt{17})/4\). Further improvements were achieved by Januszewski [1998a, 2001, 2003a] bringing down the upper bound to \(6.5\). Januszewski [1998a] considered the \(n\)-dimensional case as well, and showed that \(c_i(C|\mathcal{C}^n_h) \leq (n + 1)^n - 1\) for every convex body \(C\) in \(E^n\). Naszódi [2010] improved this bound to \(6^n\) for general convex bodies and to \(3^n\) if \(C\) is centrally symmetric. A further improvement was achieved recently by Livshyts and Tikhomirov [2020b]: \(c_i(C|\mathcal{C}^n_h) \leq 2^n n \log n(1 + o(n))\) if \(C\) is centrally symmetric, and \(c_i(C|\mathcal{C}^n_h) \leq \frac{1}{\sqrt{\pi n}} 4^n n \log n(1 + o(n))\) otherwise.

Solnán (see Brass, Moser and Pach [2005, Sect. 3.2, Conjecture 2]) formulated the following conjecture: If \(C\) is a convex body in \(E^n\) and \(C \subset \cup \lambda_i C_i\) for some positive coefficients \(\lambda_i < 1\) then \(\sum \lambda_i = n\). Solnán and Vásárhelyi [1993] proved the conjecture for \(n = 2\) and showed that equality characterizes parallelograms. The special case of the conjecture when \(C\) is a triangle or a parallelogram was also proved by Dumitrescu and Jiang [2008]. Solnán and Vásárhelyi settled the conjecture also for the case when the number of copies covering \(C\) is at most \(n + 1\). Naszódi [2010] proved the following asymptotic version of the conjecture:
For any $\nu < 1$ there is an n_0 such that if $n > n_0$ then for every n-dimensional convex body C, if some homothetic copies of C of ratios $0 < \lambda_1, \lambda_1, \ldots, \lambda_m < 1$ cover C then $\sum_{i=1}^{m} \lambda_i \geq \nu n$. GLAZYRIN [2019] proved the conjecture for balls.

AMBRUS [2022] proved that if an n-dimensional simplex is covered by its negative homothetic copies then the sum of the absolute values of the coefficients is at least n. Suggested by this result we raise the question: Is it true that if C is a convex body in E^n and $C \subseteq \cup \lambda_i C_i$ for some coefficients $-1 < \lambda_i < 0$ then $\sum |\lambda_i| \geq n$?

Since, in general, it is more difficult to cover a convex body by its negative than by its positive homothetic copies, we risk the conjecture that the answer is affirmative. Maybe, the same conclusion holds if we only suppose that the absolute value of the coefficients is less than 1.

2. On-line packing and covering

The problem of packing a container with a sequence of convex bodies has an algorithmic version: The bodies of the sequence are given one at a time, as on a conveyor belt, and the algorithm is to decide on the placement of the arriving body before the next body is revealed; once placed, the body cannot be moved. We call this an on-line packing problem. On-line covering problems are defined similarly.

Research in this direction was initiated by LASSAK and ZHANG [1991] for packing and by W. KUPERBERG [1994] for covering. Analogously to the quantities $p_t(C|\mathcal{F})$, $c_t(C|\mathcal{F})$, $p_t(C|\mathcal{F})$ and $c_t(C|\mathcal{F})$ we define $p^*_t(C|\mathcal{F})$, $c^*_t(C|\mathcal{F})$, $p^*_t(C|\mathcal{F})$ and $c^*_t(C|\mathcal{F})$ where the extreme values are taken for on-line arrangements only.

Recall that $p_t(I^n|\mathcal{I}^n_k) = 2(\frac{1}{2})^n$. Improving on an earlier result by LASSAK [1997], JANUSZEWSKI and LASSAK [1997] proved that for $n \geq 5$ an equally efficient on-line algorithm exists:

$$p^*_t(I^n|\mathcal{I}^n_k) = 2(1/2)^n.$$

For $n = 3$ and $n = 4$ they proved the somewhat weaker result $p^*_t(I^n|\mathcal{I}^n_k) \geq \frac{3}{2}(\frac{1}{2})^n$. The 4-dimensional case was settled recently by JANUSZEWSKI and ZIELONKA [2018a]: $p^*_t(I^4|\mathcal{I}^n_k) = 1/8$. The question whether $p^*_t(I^n|\mathcal{I}^n_k) = 2(\frac{1}{2})^n$ for $n = 2$ and $n = 3$ remains open.

Concerning packing boxes in a cube, LASSAK [1997c] proved that $p^*_t(I^n|\mathcal{B}_{nh}) \geq (1 - \sqrt{3}/2)^{n-1}$, which was improved by JANUSZEWSKI and ZIELONKA [2020] to $p^*_t(I^n|\mathcal{B}_{nh}) \geq (3-2\sqrt{2})^{-n}$. It is an open question whether $p^*_t(I^n|\mathcal{B}_{nh}) = p_t(I^n|\mathcal{B}_{nh}) = 2(\frac{1}{2})^n$ for $n \geq 2$.

The algorithm by W. KUPERBERG [1994] yields $c^*_t(I^n|\mathcal{I}^n_k) \leq 4^n$. Better algorithms by JANUSZEWSKI and LASSAK [1994] and by LASSAK [1995] provide the bound $c^*_t(I^n|\mathcal{I}^n_k) \leq 2^n (1+o(n))$. The breakthrough was achieved by JANUSZEWSKI, LASSAK, ROTE and WOEINGER [1996a], who constructed an on-line algorithm showing that $c^*_t(I^n|\mathcal{I}^n_k) \leq 2^n + 3 - \frac{2^{n+2} - 8}{2^{n+2} - 2}$. This bound comes astoundingly close to the best value for off-line coverings. LASSAK [2002] further improved this bound to

$$c^*_t(I^n|\mathcal{I}^n_k) \leq 2^n + \frac{5}{3} (1 + 2^{-n}).$$

For the 3-dimensional case this yields $c^*_t(I^3|\mathcal{I}^n_k) \leq 8 + 15/8 = 9.875$.

The main tool used in the two articles cited above is the q-adic on-line algorithm for covering the interval $[0,1]$ with a sequence of segments S_i of length δ_i ($i = 1, 2, \ldots$), where $q \geq 2$ is an integer, $\delta_i \in \{q^{-1}, q^{-2}, \ldots\}$, and each S_i must be placed on one of the intervals of the form $[k\delta_i, (k+1)\delta_i] \subseteq [0,1]$, for some integer k. This
approach was earlier suggested by W. Kuperberg [1994], explicitly for \(q = 2 \) and implicitly for all \(q \geq 2 \). The suggestion was put in the form of a question asking for the existence of a winning algorithm in a 2-adic interval covering game between two players. The solution of the problem appeared in Januszewski, Lassak, Rote and Woeginger [1996b].

3. Special convex disks

A considerable amount of research has been devoted to packing and covering problems involving sequences of special convex disks, such as squares, rectangles, or triangles.

For the special case of a square \(S \) the theorem of Meir and Moser [1968] mentioned above states that \(p_t(S|S_h) = \frac{1}{2} \) and \(c_t(S|S_h) = 3 \). Januszewski [2002a] proved that

\[
c_t(S|S_h) = 2
\]

and in his papers [2007b, 2008b] he proved that \(c_t(S|S_h) = 3 \).

Let \(S' \) be the family of squares with diagonals parallel to the sides of \(S \). Januszewski [2010b, 2002b] proved that \(p_t(S|S') = \frac{4}{9} \) and

\[
c_t(S|S') = 2.5.
\]

Concerning packing rectangles into rectangles Yuan, Xu and Ding [2004] proved the following: If \(R_a \) denotes the family of rectangles of side lengths not greater than \(a \), and \(R_{ab} \) denotes a rectangle with sides \(a \) and \(b \geq a \), then

\[
p_i(R_{ab}|R_a) = \frac{ab}{2}.
\]

The case \(a = b \) was proved earlier by Januszewski [2000].

For on-line packing squares into a square Januszewski and Lassak [1997] established the bound \(p^*_t(S|S_h) \geq \frac{5}{16} \). The lower bound on \(p^*_t(S|S_h) \) was subsequently improved to \(\frac{1}{2} \) by Han, Iwama and Zhang [2008], to \(\frac{11}{27} \) by Fekete and Hoffmann [2017] and, finally, to \(\frac{2}{3} \) by Brubach [2013]. Concerning on-line packing rectangles in a square, Lassak [1997c] proved the bound \(p^*_t(S|R) \geq \frac{5}{32} \), which was improved by Januszewski and Zielonka [2018b] to \(p^*_t(S|R) \geq 0.28378 \).

For on-line covering a square with squares Januszewski and Lassak [1995a] proved \(c^*_t(S|S_h) \leq \frac{7}{2} \sqrt{39} + \frac{13}{8} \approx 5.265 \). This was improved to \(c^*_t(S|S_h) \leq 4 \) by Januszewski [2009a]. Concerning on-line covering a square by rectangles Januszewski [1996] proved \(c^*_t(S|R) \leq \frac{17}{9} \).

Richardson [1995] proved that \(p_i(T|T_s) \geq \frac{1}{2} \) for every triangle \(T \). In fact, his algorithm used only positive and negative homothetic copies of \(T \) and he conjectured that the packing is possible by using positive homothetic copies only. This conjecture is equivalent to the statement that \(p_t(T|T_h^+) = \frac{1}{2} \). In 2002c Januszewski established the bound \(p_t(T|T_h^+) \geq \frac{10}{69} \) and later in 2009b he refined the method and confirmed the Richardson’s conjecture. On the other hand, Januszewski disproved Soifer’s conjecture [1999b] that \(p_t(T|T_s) = \frac{1}{2} \) for every triangle \(T \). In 2003b he showed that \(p_i(T|T_s) = \frac{1}{2} \) if and only if \(T \) is equilateral. Moreover, in 2003c he proved that if \(T \) is an isosceles right triangle then
0.511 ≤ \frac{1}{5}(5 - 1\sqrt{3}) ≤ p_t(T|\mathcal{T}_h) ≤ \frac{7}{5} - 2\sqrt{2} ≤ 0.6715. For translative packing of positive and negative homothetic copies of a triangle JANUSZEWSKI [2006] proved
\[p_t(T|\mathcal{T}_h) = \frac{2}{9}. \]

Concerning covering a triangle \(T\) with homothetic copies VÁSÁRHELYI [1984] proved that
\[c_l(T|\mathcal{T}_h^-) = 4 \]
and FÜREDI [2003] proved that
\[c_l(T|\mathcal{T}_h^+) = 2. \]

JANUSZEWSKI [1998b] strengthened Vásárhelyi’s result by showing that
\[c_l(T|\mathcal{T}_h) = 4. \]

For a right isosceles triangle \(T\) FÜREDI [2007] established the equality
\[c_t(T|\mathcal{T}_h) = \frac{1 + \sqrt{2}}{2}. \]

Denote by \(T_\varphi\) the triangle obtained from \(T\) by a rotation through the angle \(\varphi\). VÁSÁRHELYI [1993] proved that
\[c_l(T_{30^\circ}|T_{30^\circ}h) = 4 \]
and \(c_l(T_\varphi|T_\varphi h) < 4\) for every triangle that is not regular.

JANUSZEWSKI [2009c] proved that for an equilateral triangle \(T\) and a square \(S\) having a side parallel to a side of \(T\) we have
\[p_t(T|S_h) = 2\sqrt{3} - 3 \]
and
\[c_t(T|S_h) = 2\sqrt{3}. \]

The theorem concerning covering was extended by LU and SU [2018] to covering an isosceles triangle \(T(h)\) with base length 1 and with height \(h\) by homothetic copies of a square \(S\) one side of which is parallel to the base of \(T(h)\). They showed that
\[c_t(T(h)|S_h) = \begin{cases} \frac{2}{h} & \text{if } \frac{\sqrt{2}}{2} \leq h \leq 1, \\ 4h & \text{if } \frac{\sqrt{2}}{2} \leq h \leq 1, \\ \frac{h}{2} & \text{if } 1 \leq h < \sqrt{2}, \\ 2 & \text{if } \sqrt{2} \leq h. \end{cases} \]

For a right triangle \(T_0\) with legs 1 and \(\sqrt{2}\) and a square \(S\) with sides parallel to the legs of \(T\) FU, LIAN and ZHANG [2019] proved the inequality
\[p_t(T_0|S_h) \geq \frac{16 - 6\sqrt{2}}{23}. \]

These authors also investigate the problem of covering a tetrahedron \(T_r\) with three mutually perpendicular edges of lengths 1, 1, and \(\sqrt{2}\) by homothetic copies of a cube \(C\) with sides parallel to the edges of \(T_r\). They prove that \(c_l(T_r|C_h) \leq 6\sqrt{2} + 1\).

Concerning packing circles in a circle FEKETE, KELDENICH and SCHIEFER [2019] proved that
\[p_t(B^2|B^2_h) = \frac{1}{2}. \]

For the on-line case JANUSZEWSKI [2011] established the bound
\[p_t^*(B^2|B^2_h) > 0.197. \]

For the corresponding covering problem DUMITRESCU and JIANG [2010] proved that \(c_t(B^2|B^2_h) \leq 2.97\) thereby confirming the conjecture of L. Fejes Tóth
for the first convex disk that is not a polygon. They also considered the on-line version of the problem and proved that \(c^*_t(B^2_2|B^2_2) \leq 9.763 \). Januszewski \(2011 \) improved the latter bound to \(c^*_t(B^2_2|B^2_2) < 6.488 \).

Fekete, Morr and Scheffer \(2019 \) investigated the problem of packing sequences of circles in a square or triangle. They proved that
\[
 p_t(S|B^2_h) = \frac{\pi}{3 + 2\sqrt{2}}.
\]
Further, if \(T \) is a non-acute triangle with an incircle of area \(a \) then
\[
 p_t(T|B^2_h) = a.
\]
For on-line packing circles in a square Fekete, von Höveling and Scheffer \(2019 \) proved the inequality
\[
 p^*_t(S|B^2_h) \leq 0.350389.\]
For packing squares in a circle Fekete, Gurunathan, Juneja, Keldenich, Kleist, and Scheffer \(2019 \) established the equality
\[
 p_t(B^2_2|S_h) = \frac{8}{5\pi}.
\]
The problem of covering the square by a sequence of circular disks was solved by Fekete, Gupta, Keldenich, Scheffer and Shah \(2020 \). They proved that
\[
 c_t(S|B^2_h) = \frac{195\pi}{256}.
\]
More generally, they gave an algorithm for covering the rectangle \(R(1, \lambda) \) with sides 1 and \(\lambda \geq 1 \), and showed that there is a threshold value \(\lambda_0 = \sqrt{7}/2 - 1/4 = 1.035797 \ldots \), such that for \(\lambda < \lambda_0 \)
\[
 c_t(R(1, \lambda)|B^2_h) = 3\pi \left(\frac{\lambda^2}{16} + \frac{5}{32} + \frac{9}{256}\lambda^2 \right),
\]
and for \(\lambda \geq \lambda_0 \)
\[
 c_t(R(1, \lambda)|B^2_h) = \frac{(\lambda^2 + 2)\pi}{4}.
\]

4. Packing in and covering of the whole space

The investigation of covering the whole space by sequences of convex bodies was initiated by Chakerian \(1975 \). Clearly, for a sequence \(\{C_i\} \) of convex bodies to permit a covering of space it is necessary that the sum of the volumes \(V(C_i) \), as well as the sum of the widths \(w(C_i) \) be divergent. These conditions are not sufficient. Chakerian and Groemer \(1974 \) gave necessary and sufficient conditions for a sequence of convex disks to permit a covering of the plane. A sequence \(\{C_i\} \) of convex disks permits a covering of the plane if and only if either the total area of the subsequence with diameter at most 1 is infinite or the total width of the subsequence with diameter greater than 1 is infinite. The sequence \(\{C_i\} \) of convex bodies is **bounded** if the set of the diameters of the bodies is bounded. In particular, it follows that a bounded sequence of convex disks permits a covering of the plane if and only if the total area of the disks is infinite. The analogous statement for \(E^n \), \(n \geq 3 \) was proved by Groemer \(1976 \). Chakerian and Groemer \(1978 \) gave necessary and sufficient conditions for a sequence of convex bodies to permit a covering of \(E^n \). Groemer \(1979 \) proved that for a sequence of convex bodies to permit a covering of \(E^n \) it is necessary and sufficient that the sequence permits a transitive covering of almost all points of \(E^n \). Groemer \(1980, 1983a \) investigated
coverings of space by finite sequences of unbounded convex sets and in [1983b] he gave an upper bound for the total volume of a sequence of convex bodies permitting a covering of the \(n \)-dimensional sphere.

As consequences of the results of Groemer [1982] mentioned in Section 1.1, we note the following. If \(\{C_i\} \) is a bounded sequence of \(n \)-dimensional convex bodies such that \(\sum V(C_i) = \infty \), then it permits an isometric covering of the \(n \)-dimensional space with density \(\frac{1}{n} \) and an isometric packing with density \(\frac{1}{n^2} \). Moreover, if all the sets \(C_i \) are boxes, then \(\{C_i\} \) permits a translative covering of space and a translative packing in space with density \(\frac{1}{n} \) and \(\frac{1}{n^2} \), respectively. It is an open problem whether for \(n > 2 \) every bounded sequence \(\{C_i\} \) of \(n \)-dimensional convex bodies of infinite total volume permits a translative covering of \(\mathbb{E}^n \).

Groemer [1988] investigated the question under which conditions a sequence of convex bodies \(\{C_i\} \) in \(\mathbb{E}^n \) permits an isometric packing or covering of density 1. He showed that the conditions \(\sum V(C_i) \) and \(\lim_{i \to \infty} d(C_i) = 0 \) on the volume and diameter of the sets \(C_i \) are sufficient for constructing such packings and coverings.

5. Covering with slabs

Concerning the problem of covering space with a sequence of slabs, Groemer [1981a, 1981b] proved that every sequence of slabs of widths \(w_i \) in \(\mathbb{E}^n \) for which \(\sum w_i^{(n+1)/2} = \infty \) permits a translative covering. Makai and Pach [1983] conjectured that a sequence of slabs in \(\mathbb{E}^n \) permits a translative covering if and only if the sum of their widths is infinite. They verified the conjecture for the case of the plane. In higher dimensions the conjecture is still unresolved. Kupavskii and Pach [2017] proved that if \(w_1 \geq w_2 \geq \ldots \) is an infinite sequence of positive numbers such that

\[
\limsup_{i \to \infty} \frac{w_1 + w_2 + \ldots + w_i}{\ln(1/w_i)} > 0,
\]

then every sequence of slabs of width \(w_i \) \((i = 1, 2, \ldots) \) permits a translative covering of \(\mathbb{E}^n \). With this result they got rather close to the proof of the conjecture: For example, it implies that a sequence of slabs of width \(w_i = 1/i \) \((i = 1, 2, \ldots) \) permits a translative covering, while this is false for the sequence of widths \(w_i = 1/i^{1+\varepsilon} \) for any \(\varepsilon > 0 \).

A detailed account on the topic of packing and covering properties of sequences of convex bodies is found in the survey by Groemer [1985]. For surveys on on-line algorithms see Lassak [1997a] and Csirik and Woeginger [1998].

References

Ambrus, G:
[2022] A generalization of Bang’s lemma. arXiv:2201.08823v1 [math.MG] 21 Jan 2022.

Bálint, V.; Bálintová, A.; Branická, M.; Grešák, P.; Hrško, I.; Novotný, P. and Stacho, M.
[1993] Translative covering by homothetic copies. Geom. Dedicata 46 (1993) no. 2, 173–180.
MR1218313, DOI 10.1007/BF01264916

Bezdek A. and Bezdek K.
[1984] Eine hinreichende Bedingung für die Überdeckung des Einheitswürfels durch homothetische Exemplare im \(n \)-dimensionalen euklidischen Raum. Beiträge Algebra Geom. 17 (1984) 5–21.
MR0755762

Brass, P.; Moser, W. and Pach, J.
[2005] Research problems in discrete geometry. Springer, New York, 2005. xii+499 pp. ISBN: 978-0387-23815-8; 0-387-23815-8. MR2163782

Brubach, B.
[2015] Improved bound for online square-into-square packing. Approximation and online algorithms, 47–58, Lecture Notes in Comput. Sci., 8952, Springer, Cham, 2015. MR3368364

Chakerian, G. D.
[1973] Minimum area of circumscribed polygons. Elem. Math. 28 (1973) 108–111. MR0322682
[1975] Covering space with convex bodies. The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974) pp. 187–193. Lecture Notes in Math., Vol. 490, Springer, Berlin, 1975. MR0407722

Chakerian, G. D. and Groemer, H.
[1974] On classes of convex sets that permit plane coverings. Israel J. Math. 19 (1974) 305–312. MR0367818, DOI 10.1007/BF02757494
[1978] On coverings of Euclidean space by convex sets. Pacific J. Math. 75 (1978) no. 1, 77–86. MR0500558, DOI 10.2140/pjm.1978.75.77

Csirik, J. and Woeginger, G. J.
[1998] On-line packing and covering problems. In: Online algorithms, 147–177 Lect. Notes Comput. Sc. 1442 (1998). MR1676836

Dumitrescu, A. and Jiang, M.
[2008] On a covering problem for equilateral triangles. Electron. J. Combin. 15 (2008), no. 1, Research Paper 37, 7 pp. MR2383457
[2010] Covering a disk by disks. Beiträge Algebra Geom. 51 (2010) no. 1, 91–109. MR2650479

Fekete, S. P.; Gupta, U.; Keldenich, P.; Scheffer, C. and Shah, S.
[2020] Worst-case optimal covering of rectangles by disks. In: 36th International Symposium on Computational Geometry (SoCG 2020) Leibniz International Proceedings in Informatics 164 DOI 10.4230/LIPIcs.SoCG.2020.42, arXiv:2003.08236

Fekete, S. P.; Gurunathan, V.; Juneja, K.; Keldenich, Ph.; Kleist, L. and Scheffer, Ch.
[2019] Packing squares into a disk with optimal worst-case density. In: 35th International Symposium on Computational Geometry, Art. No. 35, 19 pp., LIPIcs. Leibniz Int. Proc. Inform., 129, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019. MR3968621, DOI 10.4230/LIPIcs.SoCG.2019.35, arXiv:1903.07908

Fekete, S. P. and Hoffmann, H.-F.
[2017] Online square-into-square packing. Algorithmica 77 (2017) no. 3, 867–901. MR3604396, DOI 10.1007/s00453-016-0114-2

Fekete, S. P.; von Höveling, S. and Scheffer, C.
[2019] Online circle packing. Algorithms and data structures, 366–379, Lecture Notes in Comput. Sci., 11646, Springer, Cham, 2019. MR3992973, DOI 10.1007/978-3-030-24766-9_27

Fekete, S. P.; Keldenich, P. and Scheffer, C.
[2019] Packing disks into disks with optimal worst-case density. 35th International Symposium on Computational Geometry, Art. No. 35, 19 pp., LIPIcs. Leibniz Int. Proc. Inform., 129, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019. MR3968621, DOI 10.4230/LIPIcs.SoCG.2019.35, arXiv:1903.07908

Fekete, S. P.; Morr, S. and Scheffer, Ch.
[2019] Splitacking: algorithms for aching circles with optimal worst-case density. Discrete Comput. Geom. 61 (2019) no. 3, 562–594. MR3918548, DOI 10.1007/s00454-018-0020-2

Fu, M.; Lian, Y. and Zhang, Y.
[2019] On parallel packing and covering of squares and cubes. Results Math. 74 (2019) no. 4, Art. 158, 13 pp. MR3998754, DOI 10.1007/s00025-019-1078-8

Füredi, Z.
[2003] Covering a triangle with homothetic copies. Discrete geometry, 435–445. Monogr. Textbooks Pure Appl. Math., 253, Dekker, New York, 2003. MR2034735
[2007] Covering a triangle with positive and negative homothetic copies. Discrete Comput. Geom. 38 (2007) no. 2, 273–288. MR2343308, DOI 10.1007/s00454-007-1338-3

Glazyrin, A.
[2019] Covering a ball by smaller balls. Discrete Comput. Geom. 62 (2019) no. 4, 781–787. MR4027615, DOI 10.1007/s00454-018-0010-4

GROEMER, H.
[1976] On a covering property of convex sets. Proc. Amer. Math. Soc. 59 (1976) no. 2, 346–352. MR0412970, DOI 10.1090/S0002-9939-1976-0412970-2
[1979] Space coverings by translates of convex sets. Pacific J. Math. 82 (1979) no. 2, 379–386. MR0551697, DOI 10.2140/pjm.1979.82.379
[1980] On finite classes of convex sets that permit space coverings. Amer. Math. Monthly 87 (1980) no. 4, 286–288. MR0567712, DOI 10.1080/00029890.1980.11995016
[1981a] On coverings of plane convex sets by translates of strips. Aequationes Math. 22 (1981) no. 2-3, 215–222. MR0645420, DOI 10.1007/BF02190181
[1981b] On coverings of convex sets by translates of slabs. Proc. Amer. Math. Soc. 82 (1981) no. 2, 261–266. MR0609663, DOI 10.1090/S0002-9939-1981-0609663-7
[1982] Covering and packing properties of bounded sequences of convex sets. Mathematika 29 (1982) no. 1, 18–31. MR0673502, DOI 10.1112/S0025579300012122
[1983a] On space coverings by unbounded convex sets. J. Combin. Theory Ser. A 34 (1983) no. 1, 89–96. MR0713672, DOI 10.1016/0097-3165(83)90041-9
[1983b] Covering and packing by sequences of convex sets. Arch. Math. (Basel) 41 (1983) no. 1, 89–96. MR0713672, DOI 10.1007/BF01193827
[1985] Covering and packing properties of bounded sequences of convex sets. Mathematika 35 (1988) no. 2, 172–179. MR0986626, DOI 10.1112/S0025579300015163

HADWIGER, H.
[1955b] Volumsch¨ atzung f¨ ur die einen Eik¨ orper ¨ uberdeckenden und unterdeckenden Parallelotope. Elem. Math. 10 (1955) 122–124. MR0077154

HAN, X.; IWAMA, K. and ZHANG, G.
[2008] Online removable square packing. Theory Comput. Syst. 43 (2008) no. 1, 38–55. MR2385692, DOI 10.1007/s00224-007-9039-0

JANUSZEWSKI, J.
[1996] On-line covering of the unit square by a sequence of convex bodies. Demonstratio Math. 29 (1996) no. 1, 155–158. MR1398737, DOI 10.1515/dema-1996-0119
[1998a] Translative covering of a convex body with its positive homothetic copies. International Scientific Conference on Mathematics (Zilina, 1998), 29–34, Univ. Zilina, Zilina, 1998. MR1739912
[1998b] Covering a triangle with sequences of its homothetic copies. Period. Math. Hungar. 36 (1998) no. 2-3, 183–189. MR1694593, DOI 10.1023/A:1004685810326
[2000] Packing rectangles into the unit square. Geom. Dedicata 81 (2000) no. 1-3, 13–18. MR1772192, DOI 10.1023/A:1005263703808
[2001] Translative covering by sequences of convex bodies. Acta Math. Hungar. 91 (2001) no. 4, 337–342. MR1912009, DOI 10.1023/A:1010624119852
[2002a] Covering the unit square by squares. Beitr¨ age Algebra Geom. 43 (2002) no. 2, 411–422. MR1957748
[2002b] Covering by sequences of squares. Studia Sci. Math. Hungar. 39 (2002) no. 1-2, 179–188. MR1909156
[2002c] A simple method of translative packing triangles in a triangle. Geombinatorics 12 (2002) no. 2, 61–68. MR1932415
[2003a] Translative covering a convex body by its homothetic copies. Studia Sci. Math. Hungar. 40 (2003) no. 3, 341–348. MR2036964
[2003b] Packing clones in triangles. Geombinatorics 13 (2003) no. 2, 73–78. MR2007495
[2003c] Packing similar triangles into a triangle. Period. Math. Hungar. 46 (2003) no. 1, 61–65. MR1975346, DOI 10.1023/A:1025753709777
[2006] A note on translative packing a triangle by sequences of its homothetic copies. Period. Math. Hungar. 52 (2006) no. 2, 27–30. MR2265648, DOI 10.1007/s10998-006-0010-7
[2007a] Translative packing of a convex body by sequences of its positive homothetic copies. Acta Math. Hungar. 117 (2007) no. 4, 349–360. MR2357419, DOI 10.1007/s10744-007-6121-7
[2007b] Translative covering of a square by a sequence of arbitrary-oriented squares. Demonstratio Math. 40 (2007), no. 3, 681–700. MR2360428, DOI 10.1515/dema-2007-0318

[2008a] Translative packing of a convex body by sequences of its homothetic copies. Arch. Math. (Brno) 44 (2008) no. 2, 89–92. MR2343284

[2008b] Translative covering of a square by a sequence of arbitrary-oriented squares. II. Demonstratio Math. 41 (2008) no. 2, 441–454. MR2419920, DOI 10.1515/dema-2008-0220

[2009a] On-line covering the unit square with squares. Bull. Polish Acad. Sci. Math. 57 (2009) no. 1, 57–62. MR2520450, DOI 10.4064/ba57-1-6

[2009b] Optimal translative packing of homothetic triangles. Studia Sci. Math. Hungar. 46 (2009) no. 2, 185–203. MR2656737, DOI 10.1556/SScMath.46.2009.2.1083

[2009c] Parallel packing and covering of an equilateral triangle with sequences of squares. Acta Math. Hungar. 125 (2009) no. 3, 249–260. MR2557034, DOI 10.1007/s10474-009-9015-z

[2010b] Translative packing of a square with sequences of squares. Colloq. Math. 121 (2010) no. 2, 273–280. MR2738943, DOI 10.4064/cm121-2-9

[2011] On-line packing and covering a disk with disks. Beitr. Algebra Geom. 52 (2011) no. 2, 305–314. MR2842631

Januszewski, J. and Lassak, M.

[1994] On-line covering the unit cube by cubes. Discrete Comput. Geom. 12 (1994) no. 4, 433–438. MR1296138, DOI 10.1007/BF02574390

[1995a] On-line covering the unit square by squares and the three-dimensional unit cube by cubes. Demonstratio Math. 28 (1995) no. 1, 143–149. MR1330088, DOI 10.1515/dema-1995-0117

[1995b] Efficient on-line covering of large cubes by convex bodies of diameters at most one. Bull. Polish Acad. Sci. Math. 43 (1995) no. 4, 305–315. MR1414787

[1997] On-line packing sequences of cubes in the unit cube. Geom. Dedicata 67 (1997) no. 3, 285–293. MR1475873, DOI 10.1007/BF01119550

[2000a] On-line covering of the unit cube by boxes and by convex bodies. Bull. Polish Acad. Sci. Math. 51 (2003) no. 3, 309–317. MR2017007

[2003b] On-line 2-adic covering of the unit square by boxes. Discrete geometry, 359–366, Monogr. Textbooks Pure Appl. Math., 253, Dekker, New York, 2003. MR2034727

[2003a] On-line covering of the unit cube by boxes and by convex bodies. Bull. Polish Acad. Sci. Math. 51 (2003) no. 3, 309–317. MR2017007

[2003b] On-line 2-adic covering of the unit square by boxes. Discrete geometry, 359–366, Monogr. Textbooks Pure Appl. Math., 253, Dekker, New York, 2003. MR2034727

[2017] From Tarski's plank problem to simultaneous approximation. Amer. Math. Monthly 124 (2017) no. 6, 494–505. MR3654828, DOI 10.4169/amer.math.monthly.124.6.494

[1994] On-line covering a cube by a sequence of cubes. Discrete Comput. Geom. 12 (1994) no. 1, 83–90. MR1280578, DOI 10.1007/BF02574367

[1994] Problem 74: Ein Intervallüberdeckungsspiel, Math. Semesterber. 41 (1994) 207.

Kosinski, A.

[1957] A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies. Colloq. Math. 4 (1957) 216–218. MR0086324, DOI 10.4064/cm-4-2-216-218

Kupavskii, A. and Pach, J.

[2017] From Tarski’s plank problem to simultaneous approximation. Amer. Math. Monthly 124 (2017) no. 6, 494–505. MR3654828, DOI 10.4169/amer.math.monthly.124.6.494

Kuperberg, W.

[1994] On-line covering a cube by a sequence of cubes. Discrete Comput. Geom. 12 (1994) no. 1, 83–90. MR1280578, DOI 10.1007/BF02574367

Lassak, M.

[1993] Estimation of the volume of parallelotopes contained in convex bodies. Bull. Polish Acad. Sci. Math. 41 (1993) no. 4, 349–353. MR1414984

[1995] On-line covering a box by cubes. Beiträge Algebra Geom. 36 (1995) no. 1, 1–7. MR1337117
[1997a] A survey of algorithms for on-line packing and covering by sequences of convex bodies. Intuitive geometry (Budapest, 1995), 129–157, Bolyai Soc. Math. Stud., 6, János Bolyai Math. Soc., Budapest, 1997. MR1470756

[1997b] On-line packing sequences of segments, cubes and boxes. Beiträge Algebra Geom. 38 (1997) no. 2, 377–384. MR1473115

[1997c] On-line potato-sack algorithm efficient for packing into small boxes. 3rd Geometry Festival: an International Conference on Packings, Coverings and Tilings (Budapest, 1996). Period. Math. Hungar. 34 (1997) no. 1-2, 105–110. MR1608322, DOI 10.1023/A:1004280725513

[2002] On-line algorithms for the q-adic covering of the unit interval and for covering a cube by cubes. Beiträge Algebra Geom. 43 (2002) no. 2, 537–549. MR1937757

LASSAK, M. and ZHANG, J.
[1991] An on-line potato-sack theorem. Discrete Comput. Geom. 6 (1991) no. 1, 1–7. MR1073069, DOI 10.1007/BF02574670

LVISHYTS, G. and TIKHOMIROV, K.
[2020] Randomized coverings of a convex body with its homothetic copies, and illumination. Proc. Amer. Math. Soc. DOI 10.1090/proc/14126

LU, M. and SU, Z.
[2018] Parallel covering of isosceles triangles with squares. Acta Math. Hungar. 155 (2018) no. 2, 266–297. MR3831297, DOI 10.1007/s10474-018-0846-3

MACBEATH, A. M.
[1951] A compactness theorem for affine equivalence-classes of convex regions. Canadian J. Math. 3 (1951) 54–61. MR0045406, DOI 10.4153/CJM-1951-008-7

MAKAI, E., JR. and PACH, J.
[1983] Controlling function classes and covering Euclidean space. Studia Sci. Math. Hungar. 18 (1983) no. 2-4, 435–459. MR0787949

MAULDIN, R. D. (Editor)
[1981] The Scottish–Book Mathematics from the Scottish Café. Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979. Birkhäuser, Boston, Mass., 1981. xiii+268 pp. MR666400

MEIR, A. and MOSER, L.
[1968] On packing of squares and cubes. J. Combinatorial Theory 5 (1968) 126–134. MR0229142, DOI 10.1016/S0021-9800(68)80047-X

MOON, J. W. and MOSER, L.
[1967] Some packing and covering theorems. Colloq. Math. 17 (1967) 103–110. MR0215197, DOI 10.4064/cm-17-1-103-110

NASZÓDI, M.
[2010] Covering a set with homothets of a convex body. Positivity 14 (2010) no. 1, 69–74. MR2596464, DOI 10.1007/s11117-009-0005-8

NOVOTNY, P.
[2001] A note on packaging clones. Geombinatorics 11 (2001) no. 1, 29–30 MR1837580

RADZISZEWSKI, K.
[1952] Sur un problème extrémal relatif aux figures inscrites et circonscrites aux figures convexes. Ann. Univ. Mariae Curie-Skłodowska Sect. A 6 (1952) 5–18. MR0062461

RICHARDSON, T. J.
[1995] Optimal Packing of Similar Triangles. J. Combin. Theory, Ser. A, 69 (1995) 288–300 MR1313898, DOI 10.1016/0097-3165(95)90054-3

SOIFER, A.
[1999a] Packing clones in convex figures. Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999). Congr. Numer. 136 (1999) 65–72. MR1744174

[1999b] Packing triangles in triangles. Geombinatorics, 8 (1999) 110–115. Zbl 0929.52013

SOLTAN, V. and VASÁRHELYI, E.
[1993] Covering a convex body by smaller homothetic copies. Geom. Dedicata 45 (1993) no. 1, 101–113. MR1199732, DOI 10.1007/BF01667407

SÜSS, W.
[1955] Über Parallelogramme und Rechtecke, die sich einen Eibereich einschreiben lassen. Rend. Mat. e Appl. (5) 14 (1955) 338–341. MR0069523

VÁSÁRHELVI, É.
[1984] Über eine Überdeckung mit homothetischen Dreiecken. Beiträge Algebra Geom. 17 (1984) 61–70. MR0755765

[1993] Covering of a triangle by homothetic triangles. Studia Sci. Math. Hungar. 28 (1993) no. 1-2, 163–172. MR1250806

YUAN, LIPING; XU, CHANGQING and DING, REN
[2004] Packing rectangles into a rectangle. Southeast Asian Bull. Math. 27 (2004) no. 5, 947–952. MR2175800

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, REALTANODA U. 13-15., H-1053, BUDAPEST, HUNGARY

Email address: gfejes@renyi.hu