The differential expression of protein kinase C genes in normal human neonatal melanocytes and metastatic melanomas.

Permalink
https://escholarship.org/uc/item/3j12c855

Journal
Carcinogenesis, 12(1)

ISSN
0143-3334

Authors
Yamanishi, DT
Graham, M
Buckmeier, JA
et al.

Publication Date
1991

DOI
10.1093/carcin/12.1.105

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
The differential expression of protein kinase C genes in normal human neonatal melanocytes and metastatic melanomas

D.T. Yamanishi, M. Graham, J.A. Buckmeier and F.L. Meyskens, Jr.

Clinical Cancer Center and Department of Medicine, University of California, Irvine, CA 92717, USA

Expression of protein kinase C (PKC) genes (α, β, γ and ε) was measured in cultured normal human neonatal melanocytes and metastatic melanoma cell strains. Three of the PKC isotypes (α, β and ε) were constitutively expressed in neonatal melanocytes. Protein kinase C β RNA transcripts were induced in neonatal melanocytes cultivated in medium with serum and 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, PKC α and ε RNA transcripts were detected in melanocytes cultivated in medium without serum and TPA, but were repressed in melanocytes cultivated in medium with serum and TPA. Only PKC α and ε RNA transcripts were detected in the melanoma cell strains and the PKC RNA transcript expression levels varied among the five metastatic melanomas. In four metastatic melanoma cell strains, PKC α and ε RNA transcript expression levels were repressed by serum, but in one melanoma cell strain, PKC α and ε RNA transcript expression levels were induced by serum. Protein kinase C γ RNA transcripts were not detected in either the melanocytes or melanoma cell strains. These data suggest an alteration of PKC isotype gene expression in the progression of primary melanocytes to metastatic melanomas. The absence of the PKC β RNA transcripts and altered expression of PKC α and ε isotypes in particular may be a feature in the transformation of human primary melanocytes.

Introduction

Within the past decade, the cultivation of human primary melanocytes in vitro has become possible. The requirements for growth were phorbol esters (e.g. 12-O-tetradecanoylphorbol-13-acetate, TPA*), fetal calf serum, calcium ions, agents that elevated cAMP levels, insulin, epidermal growth factor and basic fibroblast growth factor (1,2).

The intracellular receptor of phorbol esters is protein kinase C (PKC). This enzyme is a serine/threonine protein kinase which interacts with calcium ions, phospholipids and diglycerides to form a complex associated with a cellular membrane structure (3). PKC represents a multigene family and seven different cDNA clones have been isolated to date (4). Northern blot analysis has suggested tissue-specific expression of the PKC subspecies (5–7).

PKC has been implicated in the regulation of many cellular processes including growth, differentiation, neuronal function and gene expression (4,8,9). Although the role of each PKC isotype in cellular processes is unknown, investigations of the over-expression of a PKC gene (10,11) or expression of a mutated PKC gene in mouse fibroblasts (12) have demonstrated either altered growth regulation or complete transformation of the transfected cells. Protein kinase C has also been implicated in the in vitro transformation processes induced by the oncogenes ras, sis, fms, src, jps and fes (13–15). Researchers have observed either elevated levels of sn-1,2-diacylglycerol or phosphorylation of a transformation-related protein and a PKC substrate in cells transformed by these oncogenes.

To investigate the role of the PKC isotypes in the transformation of human primary neonatal melanocytes, Northern blot analysis was carried out on total RNA isolated from human primary neonatal melanocytes and metastatic melanoma cell strains. We demonstrate the expression of PKC α, β and ε RNA transcripts in proliferating melanocytes. In contrast, PKC β RNA transcripts were undetectable in human metastatic melanomas, and were not inducible by serum.

Materials and methods

Culture of melanocytes

Primary melanocytes and melanoma cells were cultivated in melanocyte complete medium or medium without serum. Incubation of melanocytes in medium without serum induces the cells to proliferate at a very low rate. There was no change in cell morphology when the human melanocytes and melanomas were cultivated in the medium without either serum and TPA or serum for 24 h. Melanomas are 100% viable if kept in medium without serum and TPA for 1–3 days. Melanomas are viable, but were repressed in melanocytes cultivated in medium with serum and TPA. Only PKC α and ε RNA transcripts were detected in the melanoma cell strains and the PKC RNA transcript expression levels varied among the five metastatic melanomas. In four metastatic melanoma cell strains, PKC α and ε RNA transcript expression levels were repressed by serum, but in one melanoma cell strain, PKC α and ε RNA transcript expression levels were induced by serum. Protein kinase C γ RNA transcripts were not detected in either the melanocytes or melanoma cell strains. These data suggest an alteration of PKC isotype gene expression in the progression of primary melanocytes to metastatic melanomas. The absence of the PKC β RNA transcripts and altered expression of PKC α and ε isotypes in particular may be a feature in the transformation of human primary melanocytes.

Isolation of RNA and Northern blot analysis

The procedure was a modification of that described by Chirgwin et al. (22). Two to six T-175 flasks were used per growth condition. The cells were pelleted and lysed using a 4 M guanidine thiocyanate/1% Sarkosyl solution. The sheared homogenate was layered on top of a 5.7 M CsCl cushion and centrifuged at 55 000 r.p.m. for 3 h. The RNA pellet was resuspended in TE with 0.1% SDS, extracted, ethanol precipitated and resuspended in sterile water. The Northern blot was prepared as described by Fournier et al. (23). Total RNA (10 µg/sample) was electrophoresed on a denaturing formaldehyde agarose gel, transferred by capillary action overnight to a nylon filter (Nytran, Schleicher and Schuell, Keene, NH), and prehybridized for 2–4 h at 42°C. The probe was labeled by method of Feinberg and Vogelstein (24) using a random priming kit (Promega, Madison, Wisconsin).
compared to primary melanocytes cultivated in medium without TPA. Also the PKC α 4.3 kb RNA transcript was increased in the melanomas [c8M6a (9.9-fold) and c81-61x (7.4-fold)] compared to primary melanocytes cultivated in medium without serum and melanomas cultivated in medium without serum compared to increase in the PKC α 9.5 kb RNA transcript in c81-46a cells c81-46a and c81-61x compared to primary melanocytes. An levels of PKC α RNA transcripts were detected in cell strains a RNA transcript (37%) when the cells were cultivated in medium with serum compared to medium without serum. In contrast, c83-2cy cells expressed both PKC α RNA transcripts at a similarly low level compared to medium without serum and TPA. Expression of PKC α RNA transcripts was different in the metastatic melanomas cultivated in medium with serum. Expression of PKC α 9.5 kb RNA transcript was repressed (45, 76 and 80% respectively) in melanoma strains (c81-46a, c81-46c and c81-61x) when the cells were cultivated in medium with serum compared to medium without serum. Expression of the PKC α 4.3 kb RNA transcript was also repressed in three melanoma strains [c81-46a (59%), c81-46c (72%) and c81-61x (49%)] when the cells were cultivated in medium with serum compared to medium without serum. In contrast, c83-2cy cells expressed both PKC α RNA transcripts at a similarly low level when the cells were cultivated in medium with or without serum. Interestingly, in c81-61x cells the expression of the PKC α RNA transcripts was induced [9.5 kb RNA transcript (83%), 4.3 kb RNA transcript (37%)] when the cells were cultivated in medium with serum compared to medium without serum. Expression of both PKC α RNA transcripts was different in the melanomas compared to melanocytes. High basal expression levels of PKC α RNA transcripts were detected in cell strains c81-46a and c81-61x compared to primary melanocytes. An increase in the PKC α 9.5 kb RNA transcript in c81-46a cells (7.6-fold) and in c81-61x cells (5-fold) was observed in the melanomas cultivated in medium without serum compared to primary melanocytes cultivated in medium without serum and TPA. Also the PKC α 4.3 kb RNA transcript was increased in the melanomas [c81-46a (9.9-fold) and c81-61x (7.4-fold)] compared to primary melanocytes cultivated in medium without serum and TPA. In melanoma c83-2cy, expression of the PKC α RNA transcripts was reduced. Reduction in the expression of the PKC α RNA transcripts [9.5 kb (80%), 4.3 kb (at least 30%)] were detected in cell strain c83-2cy cultivated in medium with or without serum compared to melanocytes cultivated in medium without serum and TPA. Passage of cultured melanoma cells (c-81-61 cell strain) through a nude mouse changed the expression level of PKC α RNA transcripts. A similar level of both PKC α RNA transcripts was detected in c81-61x cells compared to c81-61 cells cultivated in medium without serum and TPA. In melanoma c83-2cy, expression of the PKC α RNA transcripts was reduced. Reduction in the expression of the PKC α RNA transcripts [9.5 kb (80%), 4.3 kb (at least 30%)] were detected in cell strain c83-2cy cultivated in medium with or without serum compared to melanocytes cultivated in medium without serum and TPA.

Results

PKC α RNA transcript expression

The expression of the PKC α, β, γ and ε genes in human primary neonatal melanocytes and metastatic melanoma cell strains was measured. The densitometric scans of the Northern blots of the PKC data (Figures 1—4) are summarized in Table I.

Northern blot analysis indicated that the PKC α gene was expressed as two major RNA transcripts of 9.5 and 4.0 kb with the 9.5 kb RNA transcript more abundant. Primary melanocytes expressed both PKC α RNA transcripts in medium without serum and TPA. (Figures 1). A decrease in the expression of the 9.5 kb RNA transcript (by 30%) and in the 4.3 kb RNA transcript (by 20%) was observed when the melanocytes were cultivated in medium with serum and TPA compared to medium without serum and TPA.

Expression of both PKC α RNA transcripts was different in the metastatic melanomas cultivated in medium with serum. Expression of PKC α 9.5 kb RNA transcript was repressed (45, 76 and 80% respectively) in melanoma strains (c81-46a, c81-46c and c81-61x) when the cells were cultivated in medium with serum compared to medium without serum. Expression of the PKC α 4.3 kb RNA transcript was also repressed in three melanoma strains [c81-46a (59%), c81-46c (72%) and c81-61x (49%)] when the cells were cultivated in medium with serum compared to medium without serum. In contrast, c83-2cy cells expressed both PKC α RNA transcripts at a similarly low level when the cells were cultivated in medium with or without serum. Interestingly, in c81-61x cells the expression of the PKC α RNA transcripts was induced [9.5 kb RNA transcript (83%), 4.3 kb RNA transcript (37%)] when the cells were cultivated in medium with serum compared to medium without serum. Expression of both PKC α RNA transcripts was different in the melanomas compared to melanocytes. High basal expression levels of PKC α RNA transcripts were detected in cell strains c81-46a and c81-61x compared to primary melanocytes. An increase in the PKC α 9.5 kb RNA transcript in c81-46a cells (7.6-fold) and in c81-61x cells (5-fold) was observed in the melanomas cultivated in medium without serum compared to primary melanocytes cultivated in medium without serum and TPA. Also the PKC α 4.3 kb RNA transcript was increased in the melanomas [c81-46a (9.9-fold) and c81-61x (7.4-fold)] compared to primary melanocytes cultivated in medium without serum and TPA. In melanoma c83-2cy, expression of the PKC α RNA transcripts was reduced. Reduction in the expression of the PKC α RNA transcripts [9.5 kb (80%), 4.3 kb (at least 30%)] were detected in cell strain c83-2cy cultivated in medium with or without serum compared to melanocytes cultivated in medium without serum and TPA.

Passage of cultured melanoma cells (c-81-61 cell strain) through a nude mouse changed the expression level of PKC α RNA transcripts. A similar level of both PKC α RNA transcripts was detected in c81-61x cells compared to c81-61 cells cultivated in medium without serum and TPA.

Table I. Quantification of PKC RNA transcripts in primary melanocytes and metastatic melanomas

	PKC α	PKC β	PKC γ	PKC ε
Melanocytes	9.5 kb	4.3 kb	10.0 kb	4.0 kb
+	1.0	1.0	1.0	1.0
−	0.7	0.8	1.7	1.7
Melanomas	ND	ND	ND	ND
c81-46a	7.6	9.9	ND	ND
+	4.2	4.1	ND	ND
c81-46c	4.2	3.5	ND	ND
+	1.0	1.0	ND	ND
c81-61	0.6	2.7	ND	ND
+	1.1	3.7	ND	ND
c81-61x	5.0	7.4	ND	ND
+	1.0	3.8	ND	ND
c83-2cy	0.2	0.5	ND	ND
+	0.2	0.6	ND	ND

Primary melanocytes were cultivated in medium without serum and TPA (−) or with serum and TPA (+). Metastatic melanoma cell strains were cultivated in medium without serum (−) or with serum (+). Values are standardized to PKC RNA transcript expression levels in primary melanocytes cultivated in medium without serum and TPA. ND, not detected.

Fig. 1. Expression of PKC α RNA transcripts in various growth medium for primary melanocytes and metastatic melanomas. Cells were cultivated and treated for 24 h in various conditions described in Materials and Methods. Melanocytes were cultivated in complete medium with (+) or without serum and TPA (−). Melanomas were cultivated in medium with (+) or without serum (−). Total RNA (10 μg) was hybridized with the 32P-labeled restriction of the PKC α cDNA insert. Numbers on the left show the positions of migration by RNA standards with indicated kilobase length.
Expression of PKC in human melanocytes and melanomas

PKC γ RNA transcript expression
The expression of a 3 kb PKC γ RNA transcript was examined in melanocytes and melanomas. A 3 kb PKC γ RNA transcript was detected in rat brain RNA, which served as a positive control (data not shown). No 3 kb PKC γ RNA transcripts were detected in melanocytes cultivated in medium with or without serum and TPA nor in any of the metastatic melanomas cultivated in medium with or without serum (data not shown).

PKC ε RNA transcript expression
The 7.1 and 9.3 kb PKC ε RNA transcripts were observed in the adult rat brain and glioblastoma U138. Expression of PKC ε RNA transcripts was detected in primary melanocytes and metastatic melanoma cell strains. Only the 7.1 kb RNA transcript was detected in primary melanocytes and metastatic melanoma cells. Protein kinase C ε RNA transcripts were observed in melanocytes cultivated in medium without serum and TPA, but were repressed when the melanocytes were cultivated in medium with serum and TPA and were not detectable.

Expression of PKC ε RNA transcripts was also detected in melanomas. Melanoma c81-61 expressed higher levels of PKC ε RNA transcripts (by 36%) when cultivated in medium with serum compared to medium without serum. Repression of PKC ε RNA transcript expression levels was observed in the other four melanomas (c81-46a (50%), c81-46c (72%), c81-61x (69%) and c83-2cy (20%)) cultivated in medium with serum compared to medium without serum. Protein kinase C ε RNA transcripts were faintly detected in c81-46c cells when cultivated in medium with serum.

Discussion
We have investigated the expression of PKC (α, β, γ and ε) RNA transcripts in human primary neonatal melanocytes and metastatic melanoma cell strains. The constitutive expression of three PKC isotypes (α, β and ε) was measured in normal human melanocytes. PKC α and β RNA transcripts were detected in melanocytes cultivated in medium with or without serum and TPA. PKC γ RNA transcripts were not observed in primary melanocytes cultivated in medium with or without serum and TPA. PKC ε RNA transcripts were detected in melanocytes cultivated in medium without serum and TPA, but were undetectable when the cells were cultivated in medium with serum and TPA.

The expression of PKC isotypes in metastatic melanoma cell strains was different from normal human melanocytes. PKC β and γ RNA transcripts were undetectable using Northern blot analysis in any of the melanomas cultivated in medium with or without serum. Weinstein has shown that overexpression of the PKC β gene in murine fibroblast cell lines induced altered growth control (10). However, using HT29 colon cancer cells, overexpression of the PKC β gene was found to act as a tumor suppressor gene (29).

Studies on PKC genes have also found that the level of PKC β protein increases upon cell differentiation. An increase in PKC β protein was observed in HL-60 cells following differentiation induced by TPA, dimethyl sulfoxide and retinoic acid (30,31). Decreased expression of PKC β protein was observed in a HL-60 variant cell line resistant to TPA-induced differentiation (32). In murine erythroleukemia cells (MELC), hexamethylene bisacetamide (HMBA)-induced differentiation has been found to result in an increase in PKC β RNA transcript expression levels (33). Introduction of purified PKC β protein, but not purified PKC α protein into permeabilized MELC accelerates HMBA
induced differentiation (34). Thus expression of the PKC genes could vary in their transforming or tumor suppressor/differentiation activity depending on the target cell. Potentially, the PKC β gene may act as a tumor suppressor gene in human melanomas. Further studies using transfection of the PKC β gene into human metastatic melanoma cells may elucidate the functional role of this gene.

Expression of the PKC α and ε isotypes were of three distinct patterns. In the first case (c81-46a, c81-46c and c81-61x), PKC α and ε RNA transcript expression levels were repressed when the melanomas were cultivated in medium with serum compared to medium without serum. In the second case (c83-2cy), PKC α and ε RNA transcript expression levels were expressed at a low level and may reflect another type of metastatic melanoma. This melanoma strain (c83-2cy) may utilize another signal pathway, since the expression of all four PKC isotypes were either undetectable (PKC β and γ) or expressed at a low level (PKC α and ε) relative to normal melanocytes. In the third case (c81-61), PKC α and ε RNA transcript levels were induced when the melanoma cell strain was cultivated in medium with serum. Melanoma cell strain c81-61 was initially isolated from a pregnant woman and may have been influenced by exogenous growth factors. We have also observed the induced expression of c-fos and c-jun oncogenes in this melanoma (D.T.Yamanishi et al., in preparation), which suggests that genes can be induced via exogenous growth factors.

Interestingly, the expression of PKC isotype RNA transcripts was different in the cell strain c81-61 (isolated from soft agar) compared to cell strain c81-61x (isolated from a nude mouse). Although there was little difference in PKC gene expression for both melanomas cultivated in medium with serum, there were distinct changes in PKC gene expression when the melanomas were cultivated in medium without serum. In the low proliferation state (medium without serum), higher levels of PKC α and ε RNA transcripts were detected in c81-61x compared to c81-61. This change in PKC gene expression levels may allow a tumor to proliferate in low nutrient conditions; changes which may be required for growth in a nude mouse. Similarities and differences were also detected in PKC gene expression in the melanoma cell strains isolated from independent sites within the same patient (c81-46a and c81-46c). Both tumor cell strains displayed a similar repression of PKC α and ε RNA transcripts when the cell strains were cultivated in medium without serum compared to medium with serum. However, cell strain c81-46a had higher levels (at least 100%) of PKC α and ε RNA transcripts compared to cell strain c81-46c. These data would suggest that due to tumor heterogeneity, different metastases display similarities in general aspects of gene expression, but each metastasis is distinct with respect to specific aspects of gene expression.

Investigation of PKC isotype expression in other cell types has shown different patterns (5—7,29). PKC enzyme activity was observed to be, in general, higher in normal or non-transformed cells compared to their malignant or transformed cell counterpart (35). Altered growth control has been observed in cells transfected with either a mutated PKC α gene or an overexpressed PKC α or γ gene (10—12,36). We speculate that the overexpression of the PKC α and ε genes, and the repression in the expression of the PKC β gene may be one step in the transformation of human melanocytes. Further investigation into the protein phosphorylation targets and the regulatory mechanisms of the PKC isotypes is necessary to elucidate the functional role of the PKC genes in the transformation of human melanocytes and their potential use as a target for clinical treatment.

Acknowledgements

We are grateful to Dr. A. Ulrich for the PKC α, β and γ probes, Dr. J.L. Knopf for the PKC ε probe, and Dr. J.E. Sylwesteir for the IRS probe. This work was supported by grants from the National Cancer Institute (CA 27502 and CA 51610).

References

1. Halaban, R., Ghosh, S. and Baird, A. (1987) bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Biol. 23, 47—52.
2. Herlyn, M., Clark, W.H., Rodeck, U., Mancianti, M.L., Jambrosic, J. and Kompierme, H. (1987) Establishment of new human melanoma cell lines: biology of tumor progression in human melanomas. Lab. Invest, 56, 461—474.
3. Ganong, B.R., Loorin, C., Haman, Y.A. and Bell, R.M. (1986) Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc. Natl. Acad. Sci. USA, 83, 1187—1188.
4. Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science, 233, 305—312.
5. Kikkawa, U., Ogita, K., Shearman, M.S., Ake, K., Sekiguchi, K., Naor, Z., Kishimoto, A., Nishizuka, Y., Saijo, N., Tanaka, C., Ono, Y., Fugi, T. and Igarashi, A. (1988) The family of protein kinase C: its molecular heterogeneity and differential expression. Cold Spring Harbor Symp. Quant. Biol., LIII, 97—102.
6. Sposi, N.M., Bottero, L., Cosu, G., Russo, G., Testa, U. and Peschle, C. (1989) Expression of protein kinase C genes during ontogenic development of the central nervous system. J. Cell. Biol., 109, 2234—2238.
7. Yoshida, Y., Huang, F.L., Nakabayashi, H. and Huang, K.-P. (1988) Tissue distribution and developmental expression of protein kinase C isozymes. J. Biol. Chem., 263, 9686—9687.
8. Nairn, A.C.H., Hamnings, H.C. and Greengard, P. (1985) Protein kinases in the brain. Annu. Rev. Biochem., 54, 931—976.
9. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334, 661—665.
10. Housey, G.M., Johnom, M.D., Hsiao, W.L.W., O'Brian, C.A., Murphy, J.P., Kirschmeier, P. and Weinstein, I.B. (1988) Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell, 52, 343—354.
11. Persons, D.A., Willkton, W.O., Bell, R.M. and Finn, J.O. (1988) Altered growth regulation and enhanced tumorigenicity of NIH 3T3 fibroblasts transfected with protein kinase C-4 cDNA. Cell, 52, 447—458.
12. Mestaux, T. and Mazeruk, N. (1989) A mutant protein kinase C that can transform fibroblasts. Nature, 342, 807—811.
13. Jackowski, S., Rebetter, C.W., Sherr, C.J. and Rock, C.O. (1986) A guanine nucleotide-dependent phosphoryl transition 4,5-diphosphate phospholipase C in cells transformed by v-fms and v-fes oncogenes. J. Biol. Chem., 261, 4978—4985.
14. Preiss, J., Loomis, C., Bishop, W., Stein, R., Niedler, J. and Bell, R.M. (1986) Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras-sis-transformed normal kidney cells. J. Biol. Chem., 261, 8597—8600.
15. Sander, C., Joseph, C., Quelesi, S.A., Berg, K.L. and Foster, D.A. (1989) Evidence that v-srcc and v-fos genes use a protein kinase C-mediated pathway to induce expression of a transformation-related gene. Proc. Natl. Acad. Sci. USA, 86, 7017—7021.
16. Eisengen, M. and Marko, O. (1982) Selective proliferation of normal human melanocytes in vitro in presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. USA, 79, 2018—2022.
17. Halaban, R. and Alfonso, F.D. (1984) Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro, 20, 447—450.
18. Kaf, R., Rodeck, U., Mendenan, H.D., Mancianti, M.L., Linnenbach, A.J., Elder, D.E. and Herlyn, M. (1989) Tumor progression in the human melanocytic system. Anticancer Res., 9, 865—872.
19. Thomson, S.P. and Meylen, F.L. Jr, (1982) Methods for measurement of self-renewal capacity of clonogenic cells from biopsies of metastatic human malignant melanoma. Cancer Res., 42, 4606—4613.
20. Bregman, M.D. and Meylen, F.L. (1983) Inhibition of human malignant melanoma colony-forming cells in vitro by prostaglandin A1. Cancer Res., 43, 1642—1645.
21. Yohem, K.H., Sylmen, D.J., Bregman, M.D. and Meylen, F.L. (1987) Radiation survival of murine and human melanoma cells utilizing two assay systems: monolayer and soft agar. Br. J. Cancer, 57, 64—69.
22. Chirgwin, J.M., Przybyla, A.E., MacDonald, D.J. and Rutter, W.J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Anal Biochem., 18, 1572—1579.
23. Fourney, R.M., Miyakoshi, J., Day, R.S., Ill and Paterson, M.C. (1988) Northern blotting: efficient RNA staining and transfer. Focus, 10, 5—7.
24. Feinberg, A.P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132, 6—13.
Expression of PKC in human melanocytes and melanomas

25. Coussens, L., Parker, P.J., Rhein, L., Yang-Feng, T.L., Chen, E., Waterfield, M., Franke, U. and Ullrich, A. (1986) Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 233, 859–866.

26. Knopf, J.L., Lee, M.H., Sultzman, L.A., Kriz, R.W., Loomis, C.R., Hewick, R.M. and Bell, R.M. (1986) Cloning and expression of multiple protein kinase C cDNAs. Cell, 46, 491–502.

27. Schap, D., Parker, P.J., Bristol, A., Kriz, R. and Knopf, J. (1989) Unique substrate specificity and regulatory properties of PKC-c: a rationale for diversity. FEBS Lett., 243, 351–357.

28. Gonzalez, E.L., Sylvester, J.E. and Schmickel, R.D. (1988) Human 28S ribosomal RNA sequence heterogeneity. Nucleic Acids Res., 16, 10213–10224.

29. Choi, P.M., Tchou-Wong, K.-M. and Weinstein, I.B. (1990) Overexpression of protein kinase C in HT29 colon cells causes growth inhibition and tumor suppression. Mol. Cell. Biol., 10, 4650–4657.

30. Hashimoto, K., Kishimoto, A., Aihara, H., Yasuda, I., Mikawa, K. and Nishizuka, Y. (1990) Protein kinase C during differentiation of human promyelocytic leukemia cell line, HL-60. FEBS Lett., 263, 31–34.

31. Makowske, M., Ballester, R., Cayre, Y. and Rosen, O.M. (1988) Immunocytochemical evidence that three protein kinase C isozymes increase in abundance during HL-60 differentiation induced by dimethyl sulfoxide and retinoic acid. J. Biol. Chem., 263, 3402–3410.

32. Nishikawa, M., Komada, F., Uemura, Y., Hidaka, H. and Shirakawa, S. (1990) Decreased expression of type II protein kinase C in HL-60 variant cells resistant to induction of cell differentiation by phorbol ester. Cancer Res., 50, 621–626.

33. Melloni, E., Pontremoli, S., Viotti, P.L., Patrone, M., Marks, P.A. and Rifkind, R.A. (1989) Differential expression of protein kinase C isozymes and erythroleukemia cell differentiation. J. Biol. Chem., 264, 18414–18418.

34. Melloni, E., Pontremoli, S., Sparatore, B., Patrone, M., Grossi, F., Marks, P.A. and Rifkind, R.A. (1990) Introduction of the isozyme of protein kinase C accelerates induced differentiation of murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA, 87, 4417–4420.

35. Chida, K., Kato, N., Yamada, S. and Kuroki, T. (1988) Protein kinase C activities and bindings of a phorbol ester tumor promoter in 41 cell lines. Biochem. Biophys. Res. Commun., 157, 1–8.

36. Krauss, R.S., Housey, G.M., Johnson, M.D. and Weinstein, I.B. (1989) Disturbances in growth control and gene expression in a C3H10T1/2 cell line that stably overproduces protein kinase C. Oncogene, 4, 991–998.

Received on July 23, 1990; revised on September 19, 1990; accepted on October 1, 1990