Effect of environmental and spatial factors on small-sized fish assemblages in a tropical river

Izaías Médice FERNANDES1,2*, Katiele de Jesus SACOMAN1,2, José Paulo de FARIAS-NETO1,3, Hugmar Pains da SILVA4, Jhony VENDRUSCOLO5, Luzia da Silva LOURENÇO6

1Universidade Federal de Rondônia, Laboratório de Biodiversidade e Conservação, Av. Norte Sul, Nova Morada,7300, Nova Morada, Rolim de Moura, Rondônia, Brazil
2Universidade Federal de Rondônia, Programa de Pós-Graduação em Ciências Ambientais, Av. Norte Sul, Nova Morada,7300, Nova Morada, Rolim de Moura, Rondônia, Brazil
3Universidade Federal de Rondônia, Programa Institucional de Bolsas de Iniciação Científica (PIBIC/CNPq), Av. Norte Sul, Nova Morada,7300, Nova Morada, Rolim de Moura, Rondônia, Brazil
4Universidade Federal de Mato Grosso, Instituto de Biociências, Laboratório de Citogenética e Genética Animal, Av. Fernando Comê da Costa, s/n, Boa Esperança, Cuiabá, Mato Grosso, Brazil
5Universidade Federal do Amazonas, Departamento de Engenharia Agrícola e Solos, Av. General Rodrigo Octavio Jordão Ramos, 1200 – Coroado I, Manaus, Amazonas, Brazil
6Faculdade Estácio São Paulo de Rondônia, Av. 25 de Agosto, 6961, São Cristovão, Rolim de Moura, Rondônia, Brazil

* Corresponding author: biomedice@gmail.com; https://orcid.org/0000-0003-0402-2891

ABSTRACT

The river continuum concept predicts that gradual changes in river geomorphology and hydrology can drive longitudinal changes in aquatic community structure. Accordingly, we evaluated how environmental variables (electrical conductivity, pH, water transparency and water velocity), spatial factors (distance from headwaters and Moran’s eigen vector maps – MEMs), and the presence of dams affect small-sized fish assemblages along a 105-km stretch of the upper Branco River, a tributary in the Madeira River, Amazonas Basin, Brazil. Seine-net based collections were carried out at 15 sites up- and downstream from dams during the 2019 dry season. We captured a total of 4,330 individual fish belonging to three orders, nine families and 26 species (and a hybrid individual). Electrical conductivity and pH were affected by the presence of dams and the distance from headwaters. Species richness and abundance did not vary in response to environmental variables. While species richness showed no significant variation along the sampled river section, abundance showed a negative relationship with distance from headwaters. Species composition varied significantly in response to pH, linear spatial factors and the presence of dams. Our results suggest that change in species composition of small-sized fish assemblages in the upper Branco River occurs due to variation in water characteristics, inherent dispersal limitation, and in response to the presence of dams.

KEYWORDS: distance from headwaters, pH, longitudinal gradient, Amazonas basin

Effect of fatores ambientais e espaciais sobre assembléias de peixes de pequeno porte em um rio tropical

RESUMO

O conceito de rio contínuo prediz que mudanças graduais na geomorfologia e hidrologia de um rio podem causar mudanças longitudinais na estrutura de comunidades aquáticas. Nesse contexto, avaliamos como variáveis ambientais (condutividade elétrica, pH, transparência e velocidade da água), fatores espaciais (distância da cabeceira e Moran’s eigen vector maps – MEMs) e presença de barragens afetam as assembleias de peixes de pequeno porte ao longo de um trecho de 105 km do alto Rio Branco, um tributário do Rio Madeira, bacia Amazônica, Brasil. Coletas com rede de arrasto foram realizadas em 15 pontos a jusante e montante de barragens durante a estação seca de 2019. Capturamos um total de 4.330 indivíduos, distribuídos em três ordens, nove famílias e 26 espécies (e um indivíduo híbrido). Condutividade elétrica e pH foram afetados significativamente pela presença de barragens e pela distância da cabeceira. A riqueza de espécies e a abundância não variaram em função das variáveis ambientais. Ao contrário da riqueza de espécies, que não variou ao longo do trecho amostrado, a abundância apresentou uma relação negativa com a distância da cabeceira. A composição de espécies variou significativamente em resposta ao pH, a fatores espaciais lineares e à presença de barragens. Nossos resultados sugerem que mudanças na composição de espécies de peixes de pequeno porte no alto Rio Branco ocorre devido à variação em características da água, em função da limitação na dispersão inerente das espécies e em resposta à presença de barragens.

PALAVRAS-CHAVE: distância da cabeceira, pH, gradiente longitudinal, bacia do Rio Amazonas

CITE AS: Fernandes, I.M.; Sacoman, K.J.; Farias-Neto, J.P.; SILVA, H.P.; Vendruscolo, J.; LOURENÇO, L.S. 2021. Effect of environmental and spatial factors on small-sized fish assemblages in a tropical river. Acta Amazonica 51: 129-138.
INTRODUCTION

The river continuum concept (Vannote et al. 1980) predicts changes in community structure and ecosystem processes accompanying the gradual changes in geomorphology and hydrology that occur from a river’s headwaters to its mouth (Foubert et al. 2018). This vision of a longitudinal gradient has dominated riverine ecological studies in recent years (Benda et al. 2004). However, this linear perspective does not take into account the presence of natural (waterfalls), anthropogenic (dams) barriers (Ward and Stanford 1995; Torrente-Vilara et al. 2011) and the spatial and temporal dynamics that regulate riverine ecosystem diversity (Altermitt 2013; Tonkin et al. 2017).

Drainage basins are dendritic structures, where rivers function as corridors through which energy, matter and living organisms are transported (Rodriguez-Iturbe et al. 2009). In this structure, headwater sites, being less productive and more isolated, tend to have high endemism, lower species richness and species assemblages that are more structured by environmental variables than assemblages located downstream, which have higher connectivity and are structured by dispersal (Henriques-Silva et al. 2019). In riverine systems, longitudinal connectivity is considered an important aspect as it allows fish and other organisms to disperse through a water course and migrate between upstream and downstream habitats (Fullerton et al. 2010; Branco et al. 2012), especially during the reproductive period (Lucas and Batley 1996).

Among the main factors responsible for the modification of longitudinal connectivity within the dendritic structure of a riverine network, is the construction of dams for reservoir formation and power generation (Fukushima et al. 2007; Fullerton et al. 2010; Winemiller et al. 2016). River damming causes changes in the natural flow of rivers and their associated physical and chemical characteristics (Shao et al. 2019). This is likely to negatively affect organisms not capable of adapting to the new environmental conditions, such as large and migratory fish, and positively impact those species that can take advantage of the new environments, such as small-sized or sedentary fish species with parental care (Agostinho et al. 2016).

In spite of the small-sized fish being dominant in tropical rivers, large-sized migratory fish have received more attention (Fullerton et al. 2010; Torrente-Vilara et al. 2011), as they are more important to commercial and recreational fisheries (Agostinho et al. 2007a; Santos et al. 2018). Small-sized fish are found mainly in marginal regions associated with aquatic vegetation, where a complex habitat structure composed by leaves, stems and roots provides suitable shelter and food (Dias et al. 2011). Besides this, small-sized fish need a small area to complete their life cycle (Agostinho et al. 2007b), and respond to fine-scale environmental variations rather than to spatial factors (Fernandes et al. 2015).

Within this context, this study aimed to evaluate how the structure of small-sized fish assemblages in the Branco River, a tributary in the Madeira River basin in the southwestern Brazilian Amazon, are influenced by: i) environmental factors (electrical conductivity, pH, water transparency and water velocity); ii) linear spatial factors (distance from headwaters and Moran’s eigen vector map predictors); and iii) the presence of barriers (dams).

MATERIAL AND METHODS

Study area

The Branco River is a tributary of the Madeira River (Figure 1), one of the main tributaries in the Amazonas River basin. The Branco River has an extension of 391.88 km and a drainage basin of 9,340,615 km2. The regional climate is of the Am type (tropical monsoon), according to the Köppen classification, with an annual precipitation that varies from 1800 to 2300 mm, and average annual temperature between 22 and 26 °C (Alvares et al. 2014). A dry period lasts from May to October, and the rainy season from November to April (Butt et al. 2011). Due to an altimetric variation of 368 m between the headwaters and the mouth of the river, rapids and waterfalls are formed, which confer a great potential...
for energy generation (Reis et al. 2020). So far, four small hydroelectric power plants (SHPs) are active along the Branco River (Figure 1), with generation capacity of 5 MW (SHP Alta Floresta, in operation since 2000), 6.9 MW (SHP Rio Branco, in operation since 2005), 3.6 MW (SHP Angelo Cassol, in operation since 2011) and 8.9 MW (SHP Cachimbo Alto, in operation since 2017).

Fish sampling
Small fish (adults up to 15 cm in length; Castro and Polaz 2020) samples were collected in June, 2019 (dry season) at 15 sampling sites (P1 – P15) distributed along approximately 105 km of the upper Branco River (eight upstream from the four dams, four in dam reservoirs (one at SPH Alta Floresta, two at SHP Angelo Cassol, and one at SHP Cachimbo Alto) and three downstream from the dams) (Figure 1; Table 1). The dry season was chosen for sampling due to the low flow and reduced water volume of the river, increasing the concentration of fish, and hence sampling efficiency. To collect fish, we used a seine net of 6 m in length, 2 m in height, and a mesh size of 2.5 mm between opposing knots. Each site was sampled once during daylight hours using a standardized effort of three throws. We used only active fishing gear because small fish are mostly sedentary and do not conduct reproductive migrations, so that they are found in the same environment throughout the year and are not efficiently sampled by passive fishing gear. At all sites, we sampled close to the river margin, in the presence of aquatic vegetation and on sandy substrates (Lapointe et al. 2011).

Captured fish were anesthetized using eugenol (0.20 mL, equivalent to 200 mg, of clove oil per 500 mL of water; Fernandes et al. 2017), fixed in 10% formalin solution, preserved in 70% alcohol, identified and later deposited in the ichthyological collection of Universidade Federal de Mato Grosso (UFMT), Cuiabá, Mato Grosso state, Brazil. Fish identification was carried out with the help of regional keys (Queiroz et al. 2013), and articles describing specific species. Collection was authorized by SISBIO license # 57920–2 issued by the Brazilian national environmental agency (Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio) and by the Ethics Committee on Animal Use of Universidade Federal de Rondônia (protocol # 001/2021 - CEUA/UNIR).

Environmental factors
Geographical coordinates of each sampling location were taken using GPS devices (Datum WGS84). pH, and electrical conductivity (µS cm⁻¹) were measured in situ with an AK88 multiparameter probe inserted to an approximate depth of 20 cm. Water transparency was measured with a Secchi disk and graduated cord. Water velocity (m s⁻¹) was measured by calculating the time a small styrofoam ball took to float from one end to the other of a 50-cm wooden rod (average of three measures). Water temperature and oxygen concentration were measured, but were subsequently discarded due to a technical problem with the AK88 multiparameter probe sensor.

Spatial factors
The distance from headwaters was estimated as the distance from each sampling site along the river to the most distant point in the headwater region considered as the source of the Branco River. We also used Moran’s eigen vector maps

Table 1. Sampling sites, environmental variables and spatial factors measured for each of 15 sampling sites of small-sized fish assemblages in the upper Branco River, Madeira River basin, Brazilian Amazon.

Sampling site	Latitude	Longitude	Regions	Environmental variables	Spatial factors				
				Electrical conductivity (µS cm⁻¹)	pH	Transparency (cm)	Water velocity (m s⁻¹)	Distance from headwaters (km)	MEM2
P1	12°11’57.24”S	61°44’53.78”W	Upstream	14.3	7.2	79	0	40.400	-0.2782
P2	12°9’54.27”S	61°46’11”W	Upstream	8.8	6.48	160	0.13	45.239	0.2396
P3	12°8’25.14”S	61°46’53.83”W	Upstream	11.1	6.94	115	0.08	50.493	0.0350
P4	11°58’51.53”S	61°51’11.95”W	Upstream	35.7	7.02	82	0.07	79.928	-0.0017
P5	11°58’71.71”S	61°53’6.85”W	Upstream	34.3	7.19	58	0.12	86.377	0.0084
P6	11°58’18.41”S	61°57’47.80”W	Upstream	41.11	7.3	67	0.17	100.804	-0.0074
P7	11°57’13.68”S	62°04’49.98”W	Upstream	43.9	7.3	50	0.5	108.731	-0.0384
P8	11°56’35.35”S	62°12’58.88”W	Upstream	44.5	7.54	62	0.15	110.684	0.2051
P9	11°56’20.20”S	62°13’18.4”W	Reservoir	50.5	7.61	66	0.12	112.062	-0.1690
P10	11°55’49.23”S	62°2’52.30”W	Reservoir	46.4	7.75	71	0	115.457	-0.0018
P11	11°56’89.86”S	62°4’28.26”W	Reservoir	48.1	7.66	88	0	118.929	0.6238
P12	11°55’22.47”S	62°6’50.80”W	Reservoir	50.4	7.71	101	0.13	124.611	-0.6343
P13	11°54’22.31”S	62°11’44.33”W	Downstream	50.2	7.53	96	0.1	136.526	0.0048
P14	11°54’34.70”S	62°14’12.32”W	Downstream	50.2	7.72	84	0.3	142.209	0.0023
P15	11°54’12.90”S	62°15’29.40”W	Downstream	51.2	7.6	102	0.12	145.602	0.0116
MEMs (Borcard et al., 2004), which are spatial predictors generated using a topological distance matrix (distances among all the sampling sites along the river), to assess the magnitude of fish dispersal along the water course (Altermatt 2013). To build the spatial predictors, the “pcnm” function of the vegan package (Oksanen et al. 2019) from the R Program was used. This procedure resulted in eight spatial predictors ranging from broad (MEM1) to fine scale (MEM8), representing both the effect of dispersal limitation and variables that were not measured but are spatially structured (Peres-Neto and Legendre 2010; Fernandes et al. 2014).

Data analysis

To assess the effect of dam presence, the data were grouped in three regions: sites downstream from the dams, sites within reservoirs and sites upstream from the dams. Water electrical conductivity, pH, transparency and velocity were compared between regions with a Kruskal-Wallis analysis, as the data were not normally distributed (according to a Shapiro-Wilk test) and did not show homogeneity of variance (according to a Bartlett test) (Sokal and Rohlf 1995). When test results were significant (p < 0.05), the post hoc test proposed by Siegel and Castellan (1988) was used to determine in which region the environmental variables differed significantly. This analysis was made using the “kruskalmc” function of the RVAideMemoire package (Hervé 2020). All analyses were performed in the R Program environment (R Core Team 2020).

RESULTS

Ichthyofauna

A total of 4,330 individuals were captured, distributed among three orders, nine families and 26 species (Table 2). The only species that fell outside the small-fish size criterion was Hoplias malabaricus, that has adults that can reach up to 65 cm. The dominant order was Characiformes, with 22 species, followed by Siluriformes and Cichliformes, with two species each. Serrapinnus cf. microdon, with 2,459 individuals (56.8%), Serrapinnus micropterus, with 804 (18.6%), Moenkhausia sp. 2, with 265 (6.1%) and Bryconops cf. caudomaculatus, with 211 (4.9%) were the most abundant species (Table 2). A sole hybrid individual (locally known as jurandita) resulting from a cross between Leporinus marmoratus and Pseudoplatystoma punctifer was captured in the SHP Angelo Cassol reservoir (P10 in Table 2 and Figure 1).

Fish abundance varied from 12 individuals at P11 to 762 at P2 (Table 1), with an mean of 288 individuals per site. On average, 4.4 species were captured per sampling site. The highest species richness (S = 7) was found at P10, and the lowest at P4 (S = 2).

Environmental characteristics

The water in the studied stretch of the Branco River was relatively alkaline with low electrical conductivity (Table 1). Significantly higher values for these variables were found in the reservoirs and in the downstream region (Table 3). In the three regions, the water was transparent and with low velocity (Table 1), and the two variables did not differ significantly among the regions (Table 3). Conductivity ($r^2 = 0.90$, $p < 0.001$; Figure 2) and pH ($r^2 = 0.68$, $p < 0.001$; Figure 3) increased significantly with the distance from the headwaters. Transparency ($r^2 = 0.03$, $p = 0.24$) and water velocity ($r^2 = 0.01$, $p = 0.34$) did not show any relationship with distance from the headwaters.
Table 2. List of small-sized fish species captured at 15 sampling sites along the upper Branco River, Madeira River basin, in the southwestern Brazilian Amazon. Values are the number of individuals captured at each site and overall (TTL).

Order/Family/Species	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	TTL	Voucher
CHARACIFORMES																	
Curimatidae																	
Steindachnerina guentheri (Eigenmann & Eigenmann, 1889)	0	0	0	0	0	0	1	1	2	0	0	0	0	0	4	CPUFMT6900	
Crenuchidae																	
Characidion zebra (Eigenmann, 1909)	1	10	13	0	59	2	0	0	1	0	0	0	1	0	87	CPUFMT694	
Iguanodectidae																	
Byconops cf. caudomaculatus (Günther, 1864)	60	0	142	0	7	2	0	0	0	0	0	0	0	0	211	CPUFMT692	
Byconops cf. geocaprin (Fernández-Yépez, 1950)	0	116	0	0	0	0	29	0	3	0	0	0	0	0	158	CPUFMT6903	
Characidae																	
Aphyocharax sp.	0	0	0	0	0	0	0	0	0	0	0	18	63	20	101	CPUFMT6887	
Astyanax sp.	0	0	0	0	0	0	0	0	8	0	0	0	0	8	CPUFMT6897		
Hemigrammus lunatus (Durbin, 1918)	0	0	0	0	0	0	0	0	0	0	0	1	1	CPUFMT6907			
Hemigrammus stictus (Durbin, 1909)	1	CPUFMT6889															
Knodus cf. heterothes (Eigenmann, 1908)	0	0	19	29	0	0	0	0	10	0	0	0	0	0	58	CPUFMT698	
Knodus cf. orteguasae (Fowler, 1943)	0	0	0	0	3	52	0	0	0	0	0	3	0	58	CPUFMT6989		
Knodus cf. smithi (Fowler, 1913)	0	0	0	0	0	0	1	0	0	0	0	0	0	1	CPUFMT6905		
Moenkhausia sp.	0	0	0	0	0	0	0	0	0	0	0	33	0	33	CPUFMT6888		
Moenkhausia sp. 1	0	0	0	0	0	0	0	0	0	5	0	5	CPUFMT6890				
Moenkhausia sp. 2	0	0	0	0	0	0	0	0	36	0	228	1	0	0	256	CPUFMT6901	
Moenkhausia oligolepis (Günther, 1864)	0	0	0	0	0	0	0	0	0	0	0	1	1	CPUFMT6906			
Odontostirba nerauda (Bührnheim & Malabarba, 2006)	0	0	0	0	0	0	0	0	1	0	12	11	5	29	CPUFMT6891		
Roeboides affinis (Günther, 1888)	0	0	0	0	0	0	0	0	0	0	0	1	1	CPUFMT6908			
Serrapinnus cf. microdon (Eigenmann, 1915)	0	631	371	393	491	531	41	10	0	0	0	0	0	0	2459	CPUFMT6989	
Serrapinnus cf. rotomelas (Eigenmann, 1915)	0	0	0	0	0	0	0	0	1	0	0	0	0	1	CPUFMT698		
Serrapinnus micropterus (Eigenmann, 1907)	695	0	0	0	0	0	105	0	0	1	3	0	0	804	CPUFMT6885		
Acestrorhynchiidae																	
Acestrorhynchus falcatus (Bloch, 1794)	1	0	0	0	0	0	0	0	0	1	2	0	0	0	1	CPUFMT6883	
Erythrinidae																	
Hoplias malabaricus (Bloch, 1794)	0	0	0	0	0	0	0	1	1	2	0	0	0	1	5	CPUFMT6896	
CICHLIFORMES																	
Cichlidae																	
Crenicichla lepidota Heckel, 1840	1	0	0	0	2	0	0	0	0	0	0	0	0	0	3	CPUFMT6884	
Satanogarca curupira Ota, Kullander, Deprá, da Graça & Pavanelli, 2018	0	3	0	0	0	0	6	0	0	1	5	0	0	0	15	CPUFMT6902	
SULURIFORMES																	
Heptapteridae																	
Pimelodella boliviana (Eigenmann, 1917)	0	0	0	0	0	18	0	0	0	0	0	0	0	0	18	CPUFMT6904	
Loricariidae																	
Rineloricaria sp.	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	CPUFMT6886	
Total abundance	758	760	545	422	552	561	95	38	108	64	12	234	36	116	29	4330	
Effect of environmental and spatial factors on fish assemblages

Fish abundance (Kruskal-Wallis $X^2 = 6.02, p = 0.05$) and species richness (Kruskal-Wallis $X^2 = 6.04, p = 0.05$) did not vary significantly between the three regions, and were not significantly related to water transparency (abundance: $r^2 = 0.52, p = 0.98$; species richness: $r^2 = -0.004, p = 0.66$), or water velocity (abundance: $r^2 = 0.52, p = 0.32$; species richness: $r^2 = -0.004, p = 0.38$). Fish abundance showed a significantly negative relationship with distance from headwaters ($r^2 = 0.52, p = 0.001$; Figure 4), while species richness showed no significant variation along the longitudinal gradient ($r^2 = -0.004, p = 0.41$).

Of the environmental factors, only pH was selected using the "forward.sel" function, while, of the spatial factors, only MEM2 was selected. Accordingly, both MEM2 and distance from headwaters were used as spatial predictors. Variance partitioning (pRDA) indicated that environmental factors [E] contributed 12% of the variance in species composition ($r^2_{\text{adjusted}} = 0.12, p = 0.003$), spatial factors [S] contributed 15% of the variance ($r^2_{\text{adjusted}} = 0.15, p = 0.001$) while 3% of the variance in species composition was shared between environmental and spatial factors [E|S], and 70% of the variance was not explained by any of the variables considered in this study (Residual = 0.70). Species composition varied significantly between regions (PERMANOVA: $r^2 = 0.44$, $F = 4.72, p = 0.001$; $p < 0.01$ for all pairwise comparisons).

Table 3. Variation of limnological variables by sampling region along the upper Branco River, Madeira River basin, in the southwestern Brazilian Amazon. Values are the median followed by the range.

Limnological variable	Upstream	Reservoir	Downstream	X^2	p-value
Electrical conductivity (μS cm$^{-1}$)	35.0 (8.8 - 44.5)a	49.2 (46.4 - 50.5)a	50.2 (50.2 - 51.2)a	10.6	0.004
pH	7.1 (6.4 - 7.5)a	7.6 (7.6 - 7.7)b	7.6 (7.5 - 7.7)b	10.1	0.006
Transparency (cm)	73.0 (50 - 160)	79.5 (66 - 101)	96.0 (84 - 102)	1.8	0.395
Water velocity (m s$^{-1}$)	0.12 (0.0 - 0.50)	0.06 (0.0 - 0.13)	0.12 (0.1 - 0.3)	1.6	0.447

Different superscript letters in a line indicate significant differences according to a Kruskal-Wallis test and a Tukey post-hoc test.
DISCUSSION

Ichthyofauna

The dominance of members of the order Characiformes in our samples is in accordance with other studies carried out in the Amazon (Lowe-McConnel 1999; Torrente-Vilara et al. 2011), and can be explained by the dominance of this order in the Amazon region (there are approximately 1,063 known valid species of Characiformes in this region; Dagosta and De Pinna 2019). The presence of one hybrid individual of *jundiara* in the Branco River is probably the result of the rupture of fish ponds, which are built close to the banks of rivers or through the damming of small watercourses. The impact of *jundias* on aquatic ecosystems is still uncertain, however, their high growth rates (Barros et al. 2020) and morphological, ecological, and reproductive similarity to native species (Nobile et al. 2020) can facilitate their settlement and may pose a threat to native species. This the first record of the hybrid *jundiara* captured in nature in the Amazon basin.

Environmental characteristics

The highest electrical conductivity and pH values were found in the regions furthest from the headwaters, in the reservoirs and in the downstream region. Electrical conductivity and pH quantify the volume of total ions dissolved in the water and vary depending on the rock type forming a basin’s soil, the amount of organic matter, and the rate of oxygen input from photosynthesis (Niemistö et al. 2011; Hayashi et al. 2012). Additionally, the concentration of nutrients, sediment, pollutants and organic matter increases towards the river mouth, so that sampling sites located in downstream regions show higher nutrient concentrations (Swanson et al. 2006; Altermatt 2013; Forsberg et al. 2017) and, consequently, higher electrical conductivity.

The uppermost sampling locations (P1 to P3) lie on the Casa Branca Formation, composed mainly of micaceous sandstones, while sites P4 and P5 lie on the São Felipe Formation, formed by gneiss and granite subtypes (Quadros and Rizzotto 2007). These rocks are acidic, and, when weathered, tend to lower soil pH (Scandolara et al. 1999). Sites P6 to P15 were located on the Rio Branco Formation, which has a predominance of metagabro and amphibolites, basic rocks, which, when weathered, tend to raise soil pH (Scandolara et al. 1999). Thus, the downstream increase in pH and electrical conductivity is likely linked to the input of nutrients from agricultural effluents and primary productivity mediated by the geological formations underlying the study area.

Effect of environmental and spatial factors on fish assemblages

Although some studies have shown that within-assemblage abundance increases in downstream direction (Henriques-Silva et al. 2019; Borthagaray et al. 2020), we found a negative relationship between abundance and distance from headwaters. This was due to that three of the most abundant species (*Serrapinnus cf. microdon*, *Serrapinnus micropeterus* and *Bryconops cf. caudomaculatus*), which accounted for 80.3% of catches, dominated in the headwater sites, probably owing to higher abundance of subaquatic vegetation at these sites, favouring higher fish density. Due to their small body size, these species have low dispersal capacity and often live in association with aquatic plants, where they find food resources and protection from predators (Petry et al. 2003; Agostinho et al. 2007b).

The spatial distribution of small-sized fish assemblages in the Branco River was influenced by environmental filters, dispersal limitation, distance from headwaters and presence of dams. Effects of pH on fish-assemblage composition has been documented in both tropical and temperate regions (Rahel 1984; Lourenço et al. 2012). Water with high pH (basic water) or low pH (acidic water) can affect gill function (Wurts and Durborow 1992) and, consequently, gas exchange and osmoregulation, impairing biological process (Rahel 1984). Despite having explained only 12% of the variance in species composition, pH was the most relevant of the evaluated environmental filters to influence small-fish species composition in the upper Branco River.

The effect of the spatial factor (MEM2) may be related to the limited dispersal capacity of small-sized fish species at larger scales (Griffiths 2006; Bie et al. 2012; Henriques-Silva et al. 2013; Fernandes et al. 2014). Small fish are mostly short-distance migrants, and respond mainly to fine-scale environmental variations like water depth and habitat structure (Lamouroux et al. 1999; Fernandes et al. 2015). Likewise, the effect of the distance from headwaters also points to limited dispersal capacity, as predicted by the network position hypothesis (Henriques-Silva et al. 2019; Borthagaray et al. 2020). Environmental and spatial factors explained only 30% of the variation in our data, which indicates that important variables, such as functional connectivity, and ecological interactions, such as competition, known to be important in regulating composition and structure of local assemblages (Cadotte and Tucker 2017) were not considered.

Some studies have shown that hydroelectric dams alter the characteristics of the aquatic environment (Forsberg et al. 2017) and reduce up- and downstream connectivity, further limiting the large-scale dispersal of fish (Falké and Gido 2006; Barbosa et al. 2015), resulting in changes in fish assemblage structure (Torrente-Vilara et al. 2011; Vitorino Júnior et al. 2016; Cella-Ribeiro et al. 2017), and reductions in fishery stocks (Santos et al. 2018). Previous studies have generally focused on species with larger body size, which are more likely to be migratory and rheophilic (Couto et al. 2021), unlike the small-sized fish considered in our study, which are mostly...
short-distance migrants (Castro and Polaz 2020). Our results indicate that the presence of dams also affects small-sized margin-dwelling fish assemblages. However, the unbalanced sampling design between the three regions, with a higher number of sites and range of distances among sites in the upstream region, may have influenced species composition, richness and abundance estimates.

CONCLUSIONS

The small-sized fish assemblage from the upper Branco River was dominated by order Characiformes and the variance in species composition was explained mainly by environmental (pH) and spatial factors (MEM2 and distance from headwaters), as well as the presence of dams. Environmental and spatial factors explained 30% of the variation in our data, which indicates that important variables were not measured. Future studies that assess the longitudinal gradient in the riverine landscape in the Amazon basin should take into account the effect of other environmental variables and further evaluate the effect of the alterations in the natural river dynamics on the connectivity in small-sized fish species.

ACKNOWLEDGMENTS

We thank Fundação Rondônia de Amparo ao Desenvolvimento das Ações Científicas e Tecnológicas e de Pesquisa do Estado de Rondônia - FAPERO (proc. # 01.1331.00032.031/2015) for financial support, and Elaine Almeida Delarmelinda Honoré for geological information on the study area. Adrian Barnett helped with the English.

REFERENCES

Agostinho, A.A.; Pelice, F.M.; Petry, A.C.; Gomes, L.C.; Júlio Jr, H.F. 2007a. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management, 10: 174-186.

Agostinho, A.A.; Thomaz, S.M.; Gomes, L.C.; Balart, S.L. 2007b. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquatic Ecology, 41: 611-619.

Agostinho, A.A.; Gomes, L.C.; Santos, N.C.; Ortega, J.C.; Pelice, F.M. 2016. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research, 173: 26-36.

Altermatt, F. 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology, 47: 365-377.

Alvares, C.A.; Sampaio, J.L.; Sentelhas, P.C.; de Moraes, G.; Leonardo, J.; Sparovek, G. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728.

Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. 2006 Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9: 683-693.

Barbosa, T.A.P.; Benone, N.L.; Bego, T.O.R.; Gonçalves, A.; Sousa, L.; Giarrizzo, T.; Juen, L.; Montag, L.F.D.A. 2015. Effect of waterfalls and the flood pulse on the structure of fish assemblages of the middle Xingu River in the eastern Amazon basin. Brazilian Journal of Biology, 75: 78-94.

Barros, R.P.; Luz, J.R.; de Souza Ramos, A.P.; Costa, D.S.; Braga, L.G.T. 2020. Crude protein requirements in feeding for hybrid jundiara (Pseudoplatystoma fasciatum x Lebiasinus marmonito), Research, Society and Development, 9: e978986866-e978986866.

Benda, L.E.E.; Poff, N.L.; Miller, D.; Dunne, T.; Reeves, G.; Pess, G.; Pollock, M. 2004. The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience, 54: 413-427.

Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Van der Gucht, K.; Van Wichen, J. 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15: 740-747.

Borcard, D.; Legendre, P.; Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology, 73: 1045-1055.

Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85: 1826-1832.

Borthagaray, A.I.; Teixeira de Mello, F.; Testore, G.; Ortiz, E.; Illarze, M.; Pinelli, V.; et al. 2020. Community isolation drives lower fish biomass and species richness, but higher functional evenness, in a river metacommunity. Freshwater Biology, 65: 2081-2095.

Branco, P.; Segurado, P.; Santos, J.M.; Pinheiro, P.; Ferreira, M.T. 2012. Does longitudinal connectivity loss affect the distribution of freshwater fish?. Ecological Engineering, 48: 70-78.

Burt, N.; De Oliveira, P.A.; Costa, M.H. 2011. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. Journal of Geophysical Research: Atmospheres, 116: D11.

Cadotte, M.W.; Tucker, C.M. 2017. Should environmental filtering be abandoned?. Trends in Ecology & Evolution, 32: 429-437.

Castro, R.; Polaz, C.N. 2020. Small-sized fish: the largest and most threatened portion of the megadiverse neotropical freshwater fish fauna. Biota Neotropica, 20: e20180683.

Clarke, K.R.; Warwick, W.M. 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Primer-E Ltd, Plymouth. 256 p.

Cella-Ribeiro, A.; Doria, C.R.C.; Dutka-Gianelli, J.; Alves, H.; Torrente-Vilara, G. 2017. Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin. Ecolhydrology, 10: e1889.

Couto, T.B.; Messager, M.L.; Olden, J.D. 2021. Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nature Sustainability, 4: 1-8. doi.org/10.1038/s41893-020-00665-4.

Dagosta, F.C.; De Pinna, M. 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bulletin of the American Museum of Natural History. 2019: 1-163.

Dias, M.S.; Toledo, J.J.; Jardim, M.M.; Figueiredo, F.O.G.; Oliveira Cordeiro, C.L.; Gomes, A.C.S.; Zuanon, J. 2011. Congruence
between fish and plant assemblages in drifting macrophyte rafts in Central Amazonia. *Hydrobiologia*, 661: 457–461.

Dray, S.; Blanchet, G.; Borcard, D.; Guenard, G.; Jonhant, T.; Larouque, G.; Legendre, P.; Madi, N.; Wagner, H.H.; Dray, M.S. 2020. Package ‘adespatial’. *R* package version.

Falke, J.A.; Gido, K.B. 2006. Spatial effects of reservoirs on fish assemblages in Great Plains streams in Kansas, USA. *River Research and Applications*, 22: 55-68.

Fernandes, I.M.; Lourenço, L.S.; Ota, R.P.; Moreira, M.M.M.; Zawadzki, C.H. 2013. Effects of local and regional factors on the fish assemblage structure in Meridional Amazonian streams. *Environmental Biology of Fish*, 96: 837–848.

Fernandes, I.M.; Henriques-Silva, R.; Penha, J.; Zuanon, J.; Peres-Neto, P.R. 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. *Ecography*, 37: 464-475.

Fernandes, I.; Penha, J.; Zuanon, J. 2015. Size-dependent response of tropical wetland fish communities to changes in vegetation cover and habitat connectivity. *Landscape ecology*, 30: 1421-1434.

Fernandes, I.M.; Bastos, Y.P.; Barreto, D.S.; Lourenço, L.S.; Penha, J.M. 2017. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. *Brazilian Journal of Biology*, 77: 444-450.

Forsberg, B.R.; Melack, J.M.; Dunne, T.; Barthem, R.B.; Goulding, M.; Paiva, R.C.; Sorrivas, M.V.; Silva JR, U.L.; Weisser, S. 2017. The potential impact of new Andean dams on Amazon fluvial ecosystems. *PLoS One*, 12: e0182254.

Fouhert, A.; Lecomte, F.; Legendre, P.; Cusson, M. 2018. Spatial organisation of fish communities in the St. Lawrence River: a test for longitudinal gradients and spatial heterogeneities in a large river system. *Hydrobiologia*, 809: 155-173.

Fukushima, M.; Kameyama, S.; Kaneko, M.; Nakao, K.; Ashley Steel, E. 2007. Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. *Freshwater Biology*, 52: 1511-1524.

Fullerton, A.H.; Burnett, K.M.; Steel, E.A.; Flitcroft, R.L.; Pess, G.R.; Feist, B.E.; Torgersen, C.E.; Miller, D.J.; Sanderson, B.L. 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. *Freshwater Biology*, 55: 2215-2237.

Giraudoux, P.; Antonietti, J.P.; Beale, C.; Pleydell, D.; Treglia, M. 2018. pgirmess: Spatial analysis and data mining for field ecologists. *R* package version, 1.9(9).

Griffiths, D. 2006. Pattern and process in the ecological biogeography of European freshwater fish. *Journal of Animal Ecology*, 75: 734-751.

Hayashi, M.; Vogt, T.; Mächler, L.; Schirmer, M. 2012. Diurnal fluctuations of electrical conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange. *Journal of Hydrology*, 450: 93-104.

Henriques-Silva, R.; Lindo, Z.; Peres-Neto, P.R. 2013. A community of metacommunities: exploring patterns in species distributions across large geographical areas. *Ecology*, 94: 627-639.

Henriques-Silva, R.; Logez, M.; Reynaud, N.; Tedesco, P.A.; Brosse, S.; Januchowski-Hartley, S.R.; Oberdorff, T.; Argillier, C. 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities. *Ecography*, 42: 284-294.

Hervé, M. 2020. RVAdMemeoire: Testing and Plotting Procedures for Biostatistics. (https://cran.r-project.org/web/packages/RVAideMemoire). Accessed on 15 Jun 2020.

Lamouroux, N.; Olivier, J.M.; Persat, H.; Pouillly, M.; Souchon, Y.; Statzner, B. 1999. Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. *Freshwater Biology*, 27: 275-299.

Lapointe, N.W.; Corkum, L.D.; Mandrak, N.E. 2006. A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. *North American Journal of Fisheries Management*, 26: 503-513.

Legendre, P.; Legendre, L. 2012. *Numerical Ecology*. 2nd ed. Elsevier, Amsterdam. 865p.

Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? *Ecology*, 74: 1659 -1673.

Legendre, P.; Gallagher, E.D. 2001. Ecologically Meaningful Transformations for Ordination of Species Data. *Oecologia*, 129: 271-80.

Legendre, P.; Borcard, D.; Peres-Neto, P.R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. *Ecological Monographs*, 75: 435e450.

Lourenço, L.S.; Fernandes, I.M.; Penha, J.; Mateus, L.A. 2012. Persistence and stability of cichlid assemblages in neotropical floodplain lagoons. *Environmental Biology of Fishes*, 93: 427-437.

Lowe-McConnell, R.H. 1999. *Estudos Ecológicos de Comunidades de Peixes*. Universidade de São Paulo, São Paulo, 535p.

Lucas, M.C.; Batley, E. 1996. Seasonal movements and behaviour of adult barbel Barbusbarbus, a riverine cyprinid fish: implications for river management. *Journal of Applied Ecology*, 33: 1345-1358.

Niemišō, J.; Holmroos, H.; Hoppila, J. 2011. Water pH and sediment resuspension regulating internal phosphorus loading in a shallow lake–field experiment on diurnal variation. *Journal of Limnology*, 70: 3-10.

Nobile, A.B.; Cunico, A.M.; Vitule, J.R.; Queiroz, J.; Vidotto-Magnoni, A.P.; Garcia, D.A.; *et al.* 2020. Status and recommendations for sustainable freshwater aquaculture in Brazil. *Reviews in Aquaculture*, 12: 1495-1517.

Oksanen, J.; Blanchet, F.G.; Kindt, R.; Friendly, R. K.; Legendre, P.; McGill, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. Wagner, H. 2013. Vegan: Community ecology package, R package version 2.5-6.

Peres-Neto, P.R.; Legendre, P.; Dray, S.; Borcard, D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. *Ecology*, 87: 2614-2625.

Peres-Neto, P.R.; Legendre, P. 2010. Estimating and controlling for spatial structure in the study of ecological communities. *Global Ecology and Biogeography*, 19: 174-184.

Petry, P.; Bayley, P.B.; Markle, D.F. 2003. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. *Journal of Fish Biology*, 63: 547-579.

Quadros, M.D.E.; Rizzotto, G.J. 2007. Geologia e recursos minerais do Estado de Rondônia: texto explicativo do mapa geológico e
de recursos minerais do Estado de Rondônia-escala 1: 1.000. 000. CPRM, Porto Velho. 1p.
Queiroz, L.J.; Torrente-Vilara, G.; Ohara, W.M.; Pires, T.H. S.; Zuanon, J.; Doria, C.R.C. 2013. Peixes do Rio Madeira. v. I, II, III. Santo Antônio Energia, São Paulo. 1172p.
Rahel, F.J. 1984. Factors structuring fish assemblages along a bog lake successional gradient. *Ecology*, 65: 1276-1289.
Reis, R.M.; Lourenço, L.S.; Silva, H.P.; Vendruscolo, J.; Fernandes I.M. 2020. Length-weight relationships and condition factor of the predatory fish, *Cichla pleozaona* and *Serrasalmus rhombeus*, from two tropical reservoirs, Amazon basin, Brazil. *International Journal of Fisheries and Aquatic Studies*, 8: 355-360.
Rodríguez Iturbe, I.; Muneepeerakul, R.; Bertuzzo, E.; Levin, S.A.; Rinaldo, A. 2009. River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. *Water Resources Research*, 45: W01413.
R Core Team R. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. R version 3.6.1, (https://www.R-project.org/). Accessed on 15 Jun 2020.
Santos, R.E.; Pinto-Coelho, R.M.; Fonseca, R.; Simões, N.R.; Zanchi, F.B. 2018. The decline of fisheries on the Madeira River, Brazil: The high cost of the hydroelectric dams in the Amazon Basin. *Fisheries Management and Ecology*, 25: 380-391.
Scandolara, J.E.; Rizzotto, G.J.; Buhia, R.B.C.; Quadros, M.L.E.S.; Amorim, J.L.; Dall’Igna, L.G. 1999. *Geologia e Recursos Minerais do Estado de Rondônia: texto explicativo e mapa geológico na escala 1: 1.000. 000*. Programa Levantamentos Geológicos Básicos do Brasil. CPRM-Serviço Geológicos do Brasil, Brasília, 142p.
Shao, X.; Fang, Y.; Jawitz, J.W.; Yan, J.; Cui, B. 2019. River network connectivity and fish diversity. *Science of the Total Environment*, 689: 21-30.
Siegel, S.; Castellan, N.J. 1988. Non parametric statistics for the behavioural sciences. 2nd ed. MacGraw Hill Int., New York. 399p.
Sokal, R.R.; Rohlf, F.J. 1995. *Biometry*. WH Freeman and Co. New York, 880p.
Swanson, H.K.; Johnston, T.A.; Schindler, D.W.; Bodaly, R.A.; Whittle, D.M. 2006. Mercury bioaccumulation in forage fish communities invaded by rainbow smelt (*Osmerus mordax*). *Environmental Science & Technology*, 40: 1439-1446.
Tonkin, J.D.; Bogan, M.T.; Bonada, N.; Rios-Touma, B.; Lyrle, D.A. 2017. Seasonality and predictability shape temporal species diversity. *Ecology*, 98: 1201-1216.
Torrente-Vilara, G.; Zuanon, J.; Leprieur, F.; Oberdorff, T.; Tedesco, P.A. 2011. Effects of natural rapids and waterfalls on fish assemblage structure in the Madeira River (Amazon Basin). *Ecology of Freshwater Fish*, 20: 588-97.
Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. 1980. The river continuum concept. *Canadian Journal of Fisheries and Aquatic Sciences*, 37: 130-137.
Vittorino Júnior, O.B.; Fernandes, R.; Agostinho, C.S.; Pelicice, E.M. 2016. Riverine networks constrain β-diversity patterns among fish assemblages in a large Neotropical river. *Freshwater Biology*, 61: 1733-1745.
Ward, J.V.; Stanford, J.A. 1995. The serial discontinuity concept: extending the model to floodplain rivers. *Regulated Rivers: Research & Management*, 10: 159-168.
Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Sitassen, M. L.J. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. *Science*, 351: 128-129.
Wurts, W.A.; Durborow, R.M. 1992. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Southern Regional Aquaculture Center, SRAC Publication no. 464, 4p.
Zar, J.H. 1999. *Biostatistical Analysis*. Prentice-Hall, New Jersey. 634 p.
Zuur, A.F.; Ieno, E.N.; Elphick, C.S. 2010. A protocol for data exploration to avoid common statistical problems. *Methods in Ecology and Evolution*, 1: 3-14.

RECEIVED: 01/06/2020
ACCEPTED: 11/03/2021
ASSOCIATE EDITOR: Cristhiana Röpke