Velocity dispersions estimates of APM galaxy clusters

M. Victoria Alonso, Carlos Valotto †, Diego G. Lambas, and Hernán Muriel

Grupo de Investigaciones en Astronomía Teórica y Experimental (IATE), Observatorio Astronómico de Córdoba, Laprida 854 (5000), Córdoba, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

ABSTRACT

We present 83 new galaxy radial velocities in the field of 18 APM clusters with redshifts between 0.06 and 0.13. The clusters have Abell identifications and the galaxies were selected within 0.75 h⁻¹ Mpc in projection from their centers. We derive new cluster velocity dispersions for 13 clusters using our data and published radial velocities.

We analyze correlations between cluster velocity dispersions and cluster richness counts as defined in Abell and APM catalogs. The correlations show a statistically significant trend although with a large scatter suggesting that richness is a poor estimator of cluster mass irrespectively of cluster selection criteria and richness definition. We find systematically lower velocity dispersions in the sample of Abell clusters that do not fulfill APM cluster selection criteria suggesting artificially higher Abell richness counts due to contamination by projection effects in this subsample.

Key words: galaxies: clustering – galaxies: dynamics – cosmology: observations – cosmology: theory.

1 INTRODUCTION

Studies of the dynamics of clusters of galaxies play an important role in the analysis of large scale structure formation. Cluster velocity dispersion measurements σ provide cluster mass estimates and a direct normalization of the primordial mass power spectrum (see for instance Eke et al. 1996). Samples of Abell clusters have been extensively used in these analyses. However, studies of selection effects in the Abell catalog (Sutherland 1988, Dalton 1992) have shown the presence of serious projection effects and plate calibration systematics. On the other hand, numerical simulations (van Haarlem et al. 1997) provide evidence that cluster surveys in two dimensions are subject to strong projection biases if the cluster search radius is as large as Abell’s radius R_A=1.5 h⁻¹ Mpc. Thus, clusters selected with this criteria are subject to a frequent superposition of groups that may produce artificial large velocity dispersions. Nevertheless, these authors find that clusters obtained from two dimensional analysis but with a significantly smaller search radius, R=0.5 h⁻¹ Mpc, have similar distributions of velocity dispersions than those clusters selected in three dimensions. Several studies based on different observational samples Frenk et al. (1990), Girardi et al. (1993), Zabludoff et al. (1993), Collins et al. (1995), Mazure et al. (1996), Fadda et al. (1996) have provided insights on the kinematics of galaxies in clusters. These works have been based on Abell clusters where spurious high velocity dispersions may be expected due to projection effects.

The Edinburgh–Durham cluster catalog (Lumsden et al. 1992) although free from subjective visual systematics, would also be biased toward artificial large velocity dispersions due to superpositions given that the same search radius than in Abell’s catalog is used in the cluster identifications. Other automated survey, the APM cluster catalog (Dalton et al. 1994, 1997) has an intermediate search radius 0.75 h⁻¹ Mpc although galaxies in the outer ring 0.50–0.75 h⁻¹ Mpc have a smaller weight in the calculation of cluster richness. Thus, it might be expected that the distribution of APM cluster velocity dispersions would be more representative of the true distribution. There are 31 APM identifications (Mazure et al. 1996) in the ESO Nearby Abell Cluster Survey (ENACS). In a quantitative analysis of these data the authors conclude that the large spread between velocity dispersion and richness, both APM and Abell, is probably or at least partially intrinsic to the clusters.

In order to improve the sample of APM clusters with velocity dispersion estimates we have undergone an obser-
vational program to obtain radial velocities of galaxies in the field of APM clusters. We present in this paper new measurements of radial velocities of galaxies in the fields of 18 APM clusters. Our data combined with radial velocities from the literature allow us to determine cluster velocity dispersions for 17 APM clusters (13 of these without previous estimates). In section 2 we present the galaxy data set and a statistical analysis of the new velocity dispersion estimates and those from the literature providing correlations between σ and richness counts C. A brief discussion of the results is given in section 3.

2 DATA AND ANALYSIS

We aim to estimate velocity dispersions of APM clusters for a wide range of richness. Therefore, we have selected a sample of APM clusters (Dalton et al. 1994, 1997, hereafter APM IV and APM V respectively) with redshifts between 0.06 and 0.13 and uniformly distributed in richness. To avoid confusion, cluster names are as in NASA/IPAC Extragalactic Database (NED). Our sample comprises 23 APM clusters for which we have selected galaxies with $b_j < 19.5$ from the Edinburgh–Durham Southern Galaxy Catalogue (Heydon-Dumbleton et al. 1989, hereafter COSMOS) within 0.75 Mpc h^{-1} in projection from the cluster centers (Dalton et al. 1994).

We have chosen the APM clusters in our sample to have Abell identifications (Abell 1958, Abell et al. 1989) in order to perform a comparative analysis between the cluster dynamics and richness. In Table 1 we show basic information of our original sample. We list in column 1 and 2, the cluster identifications (APM and Abell respectively); columns 3 and 4, coordinates of cluster centers; columns 5 and 6, mean cluster redshift and the number of objects used in these calculations from Ebeling & Maddox (1995); and columns 7 and 8, the richness parameter from Abell and APM V. As it can be seen from the Table, most of the mean cluster redshifts are based on measurements of two members and it is very important to improve these cluster redshifts.

The spectroscopic observations were carried out during 1996 and 1997 using a REOSC spectrograph in the 2.15 m telescope at CASLEO Observatory, Argentina. We have used a 600 line mm$^{-1}$ grating with a resolution of 3.3 Å. We observed the galaxies twice with typical exposure times of about 20 minutes to avoid collecting many cosmic rays. The spectral range was 4000 Å to 7500 Å and the spectra were calibrated using comparison lines from a He–Ne–Ar lamps with an accuracy of 15 km s$^{-1}$. We also observed galaxies with known radial velocities to be used as templates.

The data reductions were performed using the standard procedure to remove bias images, correct by flat-field and make illumination corrections using IRAF routines. Radial velocities were obtained following the cross-correlation method of Tonry & Davis (1979).

Table 2 shows radial velocities obtained with galaxies in common with other authors, listing the identification, coordinates, b_j magnitude, our heliocentric radial velocities and the measurements from other authors, respectively. Our measurements are in good agreement with those from literature, with a mean difference of 52 ± 60 km s$^{-1}$, lesser than quoted errors.

We provide in Table 3 our new radial velocity measurements of galaxies in the fields of our selected APM clusters. For each cluster, column 1 lists galaxy identification, using names taken from the Guide Star Catalog (Leeget et al. 1990), APM (Maddox et al. 1990a, Maddox et al. 1990b), APMBGC (Loveday 1999) or the catalogue of principal galaxies (Paturel 1989, PGC) whenever available; columns 2 and 3, the equatorial coordinates; column 4, b_j magnitude when available; column 5, the observed heliocentric radial velocity, V, and the associated standard deviation. Those galaxies marked with an asterisk in column 2 are not in COSMOS Survey. Quoted coordinates are from our own identification.

We have also searched for available redshifts in the area of APM clusters using the NASA/IPAC Extragalactic Database in order to improve our σ estimates. We have identified 52 galaxies from The Las Campanas Redshift Survey (Schectman et al. 1994) within 0.75h$^{-1}$ Mpc in projection in the fields of the clusters APMCC 160, APMCC 173, APMCC 352, APMCC 746, APMCC 042 and APM 221539.0-390817.

Based on the ROSTAT routine (see Beers et al. 1990) we have used robust mean and scale estimators. We have applied relativistic corrections and we have taken into account velocity errors. Considering the typical number of redshift confirmed cluster members (usually <20) we have considered the trimmed estimator for the mean velocity and the gapper for the velocity dispersion. Errors are based on the statistical jackknife.

When possible, we have analyzed the velocity and the projected distributions in order to detect subclustering. In the cluster APMCC 746 we find a substructure separated from the main cluster in both radial velocity and projected coordinates. This structure was previously identify as the group of galaxies AM 2159-224 (Arp and Madore, 1987). We obtained a mean radial velocity for this group $V = 21124$ km/s, with a difference of 476 km/s with respect to the main cluster. Thus, mean radial velocity and σ of cluster APMCC 746 were computed after removing this structure.

We have not computed velocity dispersions for several clusters in our sample. APMCC 107 has several substructures and more redshifts are needed to derive an accurate velocity dispersion. The clusters: APM 032010.5-454456, APMCC 604 and APMCC 864 have few redshift measurement to estimates the velocity dispersion.

Finally, we have computed new velocity dispersion estimates for 13 clusters. In 11 clusters, the estimates rely on our new radial velocity measurements, and in 2 of them on the Las Campanas Redshift Survey (Schectman et al. 1996). In Table 4 we list cluster identification; our new estimates of mean cluster redshift and velocity dispersions; and the number of objects used in these measurements. The mean redshifts, given in this Table, provide a more confident source of APM cluster redshifts given a larger number of members. There is a general good agreement between the cluster mean redshifts and the estimates quoted in Ebeling & Maddox (1995). Redshift uncertainties are smaller than 0.001 and are not quoted in the Table.

We also present velocity dispersions for four APM clusters in common with Fadda et al. (1999), the largest survey for determination of cluster velocity dispersions. Table 5 shows our results for these clusters listing cluster identifi-
the same area and redshifts of the APM cluster survey that were not identified by the APM selection criteria.

Figure 1 shows the correlation between σ and C. Figure 1a corresponds to APM richness counts C_{APM}, with solid circles representing our new velocity dispersions and open circles those obtained from the literature. Figure 1b and 1c correspond to Abell richness count C_{Abell}, where only richness class $R > 0$ are considered in 1c. In Figures 1b and 1c are also shown as crosses Abell clusters in the same survey area and redshift range than the APM survey that did not fulfill the APM V cluster selection criteria. In these Figures there is a clear tendency of these clusters to have systematically lower values of velocity dispersion compared to those clusters in the APM survey, suggesting that "non-APM" clusters have artificially larger Abell richness counts.

In Figure 1a, b and c are also shown the corresponding least-squares power-law fits. The values of the best fitting parameters of the form $\log(\sigma) = a \times \log(C) + b$ for the correlations shown in this Figure are: APM $a=0.307\pm0.134$, $b=2.242\pm0.256$; Abell $a=0.068\pm0.048$, $b=2.680\pm0.084$ and Abell ($C_{\text{Abell}} > 30$) $a=0.180\pm0.097$, $b=2.471\pm0.180$. The corresponding rms scatter around these fits are 0.016, 0.018 and 0.017 respectively. It can be appreciated a poor correlation between σ and richness counts irrespective of the different procedures indicating that this scatter is partially intrinsic to the clusters. This should be taken into account when deriving mass estimates and abundances from cluster richness (Bahcall and Cen 1993), which could introduce spurious biasing effects against low σ objects as discussed by Mazure et al. (1996).

3 DISCUSSION

The measurements of galaxy redshifts in the field of APM clusters contribute to our understanding of the dynamics of these systems and provide a deeper insight in the problem of cluster identification from projected data. The estimated velocity dispersions obtained from our analysis with typical number of galaxies $\approx 10 - 20$ are in good agreement with estimates derived from the literature as seen in Table 5.

The new observations presented in this paper together with previous published data allows for a comparative analysis of the correlation between cluster velocity dispersion and richness defined by different selection algorithms. The correlation between Abell cluster richness and velocity dispersions is very poor. Automated cluster catalogs such as APM are free from subjective effects which may blur significantly the correlation between richness and σ. However, APM richness counts do not provide a significantly better correlation with σ, suggesting the presence of an intrinsic spread related to galaxy formation or evolution in clusters. Therefore, the observed spread in the richness - σ correlations raise serious concern on the use of richness in cluster mass determinations irrespectively of cluster selection criteria and richness definition.

We observe a systematic trend to lower values of σ in the sample of Abell clusters that did not satisfy APM cluster selection criteria. This effect may be related to the fact that these objects are subject to larger contamination by projection effects as has been previously determined (Sutherland 1988, Dalton 1992, Van Haarlem et al. 1997).
ACKNOWLEDGMENTS

The authors are specially grateful to C. Caretta who obtained some spectra for this project in 1996 and C. N. A. Willmer for his help in reducing the data. The authors acknowledge use of the CCD and data acquisition system supported under U.S. National Science Foundation grant AST-90-15827, to R. M. Rich.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

This research was supported by grants from CONICET, CONICOR, Agencia Nacional de Promoción Científica y Tecnológica, Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba and Fundación Antorchas, Argentina.

REFERENCES

Abell, G. O. 1958, ApJS, 3, 211
Abell, G. O., Corwin, H. G., Jr. & Olowin, R. P. 1989, ApJS, 70, 1
Arp, H.C. and Madore, B.F. 1987. A Catalogue of Southern Peculiar Galaxies and Associations. Cambridge University Press.
Ba�all, N.A.; Cen, R. 1993. ApJ Lett. 407, 49.
Beers, T. C., Flynn, K. & Gebhardt, K. 1990, AJ, 100, 32
Collins, C. A., Guzzo, L., Nichol, R. C. & Lumsden, S. L. 1995, MNRAS, 274, 1071
Dalton G. 1992. D.Phil thesis. Oxford University.
Dalton, G. B., Efstathiou, G., Maddox, S. J. & Sutherland, W. J. 1994, MNRAS, 269, 151
Di Nella, H., Couch, W. J., Paturel, G. & Parker, Q. A. 1996, MNRAS, 283, 367
Ebeling, H. & Maddox, S. J. 1995, MNRAS, 275, 1155
Eke V.R, Cole S., Frenk C. 1996. MNRAS, 282, 263.
Fadda, D., Girardi, M., Giuricin, G., Mardirossian, F. & Mezzetti, M. 1996, ApJ, 473, 670
Girardi, M.; Biviano, A.; Giuricin, G.; Mardirossian, F.; Mezzetti, M. 1993. ApJ 404, 38
Heydon-Dumbleton, N. H., Collins, C. A. & MacGillivray, H. T. 1989, MNRAS, 238, 379
Katgert P., Mazure A., den Hartog R., Biviano A., Escalera E., Focardi P., Gerbal D., Giuricin G., Jones B., Le Fevre O., Moles M., Perea J., Rhee G. 1996. A & A, 310, 31.
Mazure A., Katgert P., Adami C., Biviano A., Couch W. 1992. D.Phil thesis. Oxford University.

Zabludoff A. I., Geller M. J., Huchra J. P., Ramella M. 1993. AJ 106, 1301.
Table 1. APM cluster sample

APM Id.	Abell Id.	α(2000)	δ(2000)	<z>	N	C_{Abell}	C_{APMCC}
APMCC 015	A2734	00 11 30.07	-28 51 29.74	0.062	2	58	63.6
APMCC 042	A2755	00 17 44.70	-35 09 30.30	0.095	3	120	124.0
APMCC 050	A0022	00 20 35.10	-25 41 57.30	0.131	141	58	108.6
APMCC 073	A0042	00 28 37.72	-23 36 43.89	0.109	154	83.2	
APMCC 107	A2819	00 46 04.10	-63 35 13.00	0.087	2	90	128.9
APMCC 123	S0106	00 56 24.95	-37 53 43.71	0.118	2	53.7	
APMCC 132	S0112	00 57 56.70	-66 48 05.60	0.067	2	16	51.1
APMCC 160	S0144	01 17 35.15	-37 59 55.99	0.077	26	51.8	
APMCC 173	A2911	01 26 17.83	-37 55 25.16	0.079	2	72	77.9
APMCC 352	A3098	03 13 38.60	-38 18 20.90	0.083	2	38	48.2
APMCC 359	S0333	03 15 32.43	-29 15 27.50	0.067	2	24	41.6
APM 031451.8-510556	A3110	03 16 23.30	-50 54 57.20	0.075	37		
APMCC 369	S0336	03 17 39.10	-44 31 27.10	0.076	1	5	77.5
APM 032010.5-454456	S0345	03 21 51.60	-45 34 16.20	0.069	3		
APMCC 400	S0356	03 29 30.00	-46 00 32.30	0.072	2	10	64.2
APMCC 604	A3703	20 39 44.50	-61 13 59.60	0.071	52	42.4	
APMCC 746	S0987	22 02 07.60	-22 35 52.10	0.070	15	20	54.4
APM 221539.0-390817	A3856	22 18 36.22	-38 53 14.03	0.126	2	125	
APMCC 815	A3910	22 45 55.30	-45 54 45.70	0.091	3	47	79.7
APMCC 824	A3922	22 49 45.90	-51 47 58.40	0.085	2	51	87.5
APMCC 864	S1096	23 11 50.23	-29 03 49.04	0.117	1	63.0	
APMCC 988	A2599	23 26 47.02	-23 50 59.10	0.098	2	51	58.5
APMCC 915	S1140	23 39 39.20	-45 59 08.20	0.067	1	3	54.7

Sources from radial velocities, V_r(lit)
1. Dalton et al. (1994)
2. Schectman et al. (1996)
3. Collins et al. (1995)
4. Paturel et al. (1995, LEDA)
5. Loveday et al. (1996)
6. Di Nella et al. (1996)
7. Katgert et al. (1998)

Table 2. Radial velocities in common with other authors

Name	α(2000)	δ(2000)	b_j	V_r	V_r(lit)
APMBGC 409-109-058	00 11 55.2	-28 43 50.3	15.85	19741±147	19871(7)
B011514.6-381709	01 17 31.1	-38 01 20.0	17.38	22405±296	22457±120(2)
PGC 0012161	01 26 09.9	-37 56 42.6	17.38	24334±209	24307±39(3)
APMBGC 248-116+062	03 16 31.1	-50 54 41.0	13.88	22065±149	22050(4)
APM 232411.28-240749	23 26 49.3	-23 51 18.0	17.23	26874±254	26591(1)
Table 3. New radial velocities for galaxy in APM clusters

Name	α(2000)	δ(2000)	b_j	V_r
APMCC 015				
00 10 24.3	-28 49 35.1	16.75	17886±199	
00 10 32.4	-28 51 54.2	16.85	17819±286	
00 12 04.9	-28 47 05.3	17.15	19366±215	
00 11 35.0*	-29 01 24.0	–	17436±225	
00 11 18.5*	-28 50 22.0	–	18188±428	
APMCC 050				
00 20 38.9	-25 35 30.0	15.80	19351±169	
00 20 35.0	-25 39 26.8	17.70	34254±181	
APMCC 073				
00 28 51.6	-23 36 24.9	16.40	17659±204	
00 27 53.8	-23 41 47.6	17.50	33573±131	
00 28 59.1	-23 31 56.3	17.50	19561±281	
00 28 11.9	-23 42 07.8	17.60	27035±224	
APMCC 107				
8844.0365	00 45 12.9	-63 33 13.0	15.37	22423±289
8844.0574	00 45 22.1	-63 37 27.0	15.16	23492±395
8844.0773	00 44 56.9	-63 28 36.0	15.05	23100±350
8845.0436	00 46 20.3	-63 28 06.0	14.20	25912±365
APMCC 123				
00 55 30.7	-37 49 52.6	16.82	30759±558	
APMCC 132				
8848.0146	00 57 11.9	-66 43 49.0	14.78	19949±280
8848.0287	00 58 20.7	-66 48 00.0	14.77	19863±269
8848.0376	00 57 46.1	-66 47 50.0	15.12	18771±298
8848.1300	00 58 11.9	-66 48 17.0	14.86	20850±309
APMCC 160				
01 17 12.9	-38 04 17.2	17.78	23421±276	
01 17 26.0*	-38 01 40.0	–	32923±298	
APMCC 359				
03 16 08.9	-29 18 20.3	15.96	19354±127	
03 16 13.9	-29 13 50.2	16.96	20109±181	
APM 031451.8-510556				
Table 3 – continued

Name	α (2000)	δ (2000)	bj	\(V_r \)
APMCC 369	03 17 17.9	-44 21 22.2	17.17	24253±167
	03 17 01.7	-44 21 05.1	17.57	27165±303
APM 032010.5-454456	03 21 59.1	-45 33 22.3	16.77	18418±157
APMCC 400	03 28 58.7	-45 56 60.0	15.03	21994±153
	03 29 08.1	-45 58 24.0	14.71	20771±243
	03 30 00.4	-46 05 47.0	13.04	20219±176
	03 29 16.7	-46 04 50.1	17.67	21503±273
APMCC 604	9100.0418	-61 18 10.0	14.25	22300±305
	9100.0429	-61 17 38.0	14.39	21439±202
	9100.0519	-61 11 23.0	13.87	27392±199
	9100.0541	-61 10 54.0	13.40	22368±224
APMCC 815	8447.0322	-45 58 32.0	15.19	26954±245
	8447.0323	-45 54 58.0	15.26	15578±154
	8447.0324	-45 57 03.9	16.56	15235±154
	8447.0325	-45 58 17.8	16.96	24534±246
	8447.0326	-45 46 00.1	16.96	36441±191
	8447.0327	-45 59 51.9	17.36	35620±341
	8447.0328	-45 52 27.6	17.46	36578±177
	8447.0329	-45 58 29.8	17.46	26620±176
APMCC 824	8453.0439	-51 44 08.0	14.21	28884±223
	8453.0440	-51 44 21.5	17.13	12740±265
	8453.0441	-51 44 43.4	17.43	29634±226
	8453.0442	-51 46 25.9	17.43	28876±223
	8453.0443	-51 46 57.2	17.53	28644±201
	8453.0444	-51 47 32.5	17.73	30226±432
	8453.0445	-51 44 36.8	17.73	29886±353
	8453.0446	-51 44 36.0	17.81	30886±152
	8453.0447	-51 48 54.0	17.81	30550±169
	8453.0448	-51 49 27.0	17.81	29840±249
	8453.0449	-51 49 18.0	17.81	16630±382
APMCC 864	23 11 36.2	-28 59 53.4	17.22	31076±173
	23 12 17.6	-29 09 36.7	17.52	30902±241
APMCC 898	23 26 38.0	-23 46 04.0	17.33	37686±276
	23 27 12.5	-23 44 49.0	17.83	34467±228
	23 26 45.0	-23 56 56.8	18.13	32545±177
Table 3 – continued

Name	α(2000)	δ(2000)	bj	\(V_r\)
APMCC 915				
8456.0477	23 39 28.8	-45 57 59.0	12.70	19186±375
8456.0637	23 40 00.8	-45 52 33.0	15.20	17477±184
	23 39 51.5	-45 59 39.0	17.20	15942±206
	23 39 24.6	-46 03 17.8	17.20	20648±293
	23 40 15.9	-45 52 03.5	17.30	17293±169
	23 40 10.9	-45 59 38.0	17.30	20939±198
	23 39 30.8	-45 53 43.8	17.40	20654±196
	23 39 37.2	-46 02 25.4	17.70	19155±293
	23 39 21.5	-46 02 35.9	17.80	21298±261
	23 39 30.2	-46 00 56.4	17.80	19629±226
	23 39 54.5	-46 00 48.6	17.80	21222±138
	23 39 53.3	-46 00 11.9	17.80	33921±380

Table 4. New velocity dispersions in APM clusters. (†) Velocity data from Las Campanas Redshift Survey

Cl. Id.	\(<z_{\text{new}}\)	\(\sigma\)	N
APMCC 050	0.064	693±251	7
APMCC 073	0.112	867±260	7
APMCC 132	0.067	1123±233	12
APMCC 160	0.076	573±285	7
APMCC 352(†)	0.083	795±120	18
APMCC 359	0.067	399±180	9
APM 031451.8-510556	0.076	748±144	10
APMCC 369	0.075	700±98	29
APMCC 400	0.071	528±232	8
APM 221539.0-390817(†)	0.142	729±142	22
APMCC 815	0.090	425±158	8
APMCC 824	0.098	780±127	11
APMCC 915	0.068	751±179	10

Table 5. Comparison of Velocity dispersions with Fadda et al. (1996). (†) Velocity data from Las Campanas Redshift Survey

Cl. Id.	\(<z_{\text{new}}\)	\(\sigma\)	\(\sigma(\text{lit})\)	N
APMCC 015	0.061	652±248	628±61	80
APMCC 042(†)	0.098	790±167	768±139	20
APMCC 173(†)	0.080	416±87	547±159	30
APMCC 746(†)	0.072	509±127	677±141	29