blood culture were sterile. Widal test was reactive up to a dilution of 1:320 for *Salmonella typhi* antigens (TO).

A high vaginal swab collected under aseptic conditions grew *Salmonella typhi*, suggesting a probable transplacental leakage secondary to bacteremia. The patient gave a history of fever 1 month back for which she was treated with some antibiotics by the local physician, details of which were not known. In the absence of any other evidences of spontaneous miscarriage, Salmonellosis can be presumed to be the most likely cause. According to Brion et al., *Salmonella typhi* should be considered in a pregnant woman with fever.

Hicks and French reported a high rate (65–85%) of abortion or premature labor with *Salmonella typhi*.

However, the major limitations of this case were that products of conception could not be subjected to culture and the inability to isolate *Salmonella* from the blood or stool samples, which could have been due to prior antibiotic treatment. We conclude that in pregnant woman with high-grade fever, the possibility of Salmonellosis should be considered to prevent fetal loss. This is especially true in endemic areas.

Kaur Ravneet, Barman Purabi

Super Religare Laboratories, Fortis Hospital, Noida, Uttar Pradesh, 1 Fortis Flt Lt Rajan Dhall Hospital, Vasant Kunj, New Delhi, India.

Address for correspondence: Dr. Purabi Barman, E-mail: purabi.barman@gmail.com

REFERENCES

1. Raveendran R, Wattal C, Sharma A, Kler N, Garg P, Gujral K, et al. Vertical transmission of *Salmonella paratyphi A*. Indian J Pediatr 2007;74:784-6.

2. Mohanty S, Gaind R, Sehgal R, Chellani H, Deb M. Neonatal sepsis due to *Salmonella Typhi* and Paratyphi A. J Infect Dev ctries 2009;3:633-8.

3. Smith JL. Foodborne infections during pregnancy. J Food Prot 1999;62:818-29.

4. Gluck B, Ramin KD, Ramin SM. *Salmonella typhi* and Pregnancy: A Case Report. Infect Dis Obstet Gynecol 1994;2:186-9.

5. Hicks HT, French H. Typhoid fever and pregnancy with special reference to foetal infection. Lancet 1905;1:1491-3.

Elizabethkingia meningosepticum: An Emerging Cause of Septicemia in Critically Ill Patients

Sir,

We report an uncommon case of nosocomial septicemia due to *Elizabethkingia meningoseptica* in a 60-year-old female with hepatic encephalopathy. The patient was admitted in the emergency ward with a history of hematemesis and melena. She was a known case of cryptogenic liver cirrhosis with portal hypertension. She was a known diabetic on regular follow-up since 2007. On admission, the patient was unconscious but responsive to painful stimuli. The pulse rate was 120/min and the blood pressure was 120/70 mmHg. The breath sounds were normal and the abdomen was soft. The patient was stabilized and endoscopic ligation of variceal bleed was performed. Further to the procedure, she was admitted in the Intensive Care Unit.

The laboratory investigations at the time of admission revealed a total leucocyte count of 11,860/dl, with a polymorph count of 71%, platelets 51 × 10^3/μl, bilirubin (total) 13.5 mg/dl, bilirubin (direct) 3.5 mg/dl, total protein 5.5 g/dl (albumin/globulin = 0.6), aspartate aminotransferase 436 U/L, alanine transaminase 541 U/L, gamma glutamyl transferase 41 U/L, alkaline phosphatase 151 U/L, urea 99 mg/dl, creatinine 0.80 mg/dl, Na 157 mmol/L and procalcitonin 0.36 ng/ml.

On the second day of admission, the patient developed hepatic encephalopathy. Her condition gradually deteriorated and she had several episodes of hematemesis. The blood cultures sent at the time of admission were negative till 5 days of aerobic incubation. Subsequent blood cultures (three separate samples in duplicate) grew Gram negative bacilli after 48–72 h of incubation. The patient was started on Teicoplanin, Meropenem and Fluconazole along with supportive measures. She died before the identification and sensitivity of the isolates were reported. The identification and sensitivity was performed in the Vitek 2 automated system (Biomerieux, France) using the cards GN1 and AST-N090, respectively. The isolates were identified as *Elizabethkingia meningoseptica* and were sensitive to Ciprofloxacin (MIC 1 μg/ml), Tigecycline (MIC 2 μg/ml) and Trimethoprim/Sulfamethoxazole (MIC 40 μg/ml), but resistant to Ampicillin/Sulbactam, Piperacillin/Tazobactum, Ceftriaxone, Cefipime, Cefaperazone/Sulbactum, Imipenem, Meropenem, Amikacin, Gentamicin, Tobramycin and Colistin.
Elizabethkingia meningoseptica, formerly known as Flavobacterium meningosepticum, was first reported by King in 1959 at CDC Atlanta. It was reclassified in the genus Cryseobacterium and, later on, placed in the new genus Elizabethkingia named after the original discoverer. It is a Gram negative, obligate aerobic, non-spore forming, non-fermentative and non-motile rod that is catalase, oxidase and urease positive. It is widely distributed in nature. In the literature, most of the reported cases of Elizabethkingia meningosepticum infection are hospital acquired and usually occur in immunodeficient patients. In our case, the infection was presumed to be acquired from the hospital environment as the cultures were negative at the time of admission.

It has been reported as a causative agent of meningitis in premature and newborn infants. In adults, it has been isolated from cases of pneumonia, endocarditis and meningitis, usually in association with some underlying severe illness. On a Pubmed literature search, no case of Elizabethkingia meningosepticum septicemia in patients with hepatic encephalopathy has been reported from India. There were few reports of isolation of this organism from cases of renal failure, endocarditis and meningitis.

The organism is inherently resistant to many antimicrobial agents commonly used to treat infections caused by Gram negative bacteria (aminoglycosides, beta-lactam antibiotics, tetracyclines and chloramphenicol), but are often susceptible to agents generally used to treat infections caused by Gram positive bacteria (rifampicin, clindamycin, erythromycin, trimethoprim-sulfamethoxazole, quinolones and vancomycin). These resistance phenotypes could be explained by the presence of beta-lactamases, including extended-spectrum beta-lactamases and metallo-beta-lactamases.

The choice of an effective drug for the empirical treatment of nosocomial Elizabethkingia meningosepticum infections is difficult. Studies conducted by some authors have shown that the combination of vancomycin and rifampicin appears to be the most appropriate therapy based on clinical outcomes. On the other hand, there are few reports that show that vancomycin has a poor activity against Elizabethkingia meningosepticum. The rifampicin or fluoroquinolones alone are not commonly used in a country like India where tuberculosis is endemic. The clinical effectiveness of antibiotics could not be ascertained in our case as the patient died before the institution of appropriate antibiotics. Infection with this pathogen is potentially fatal unless diagnosed and treated early. The incidence of Elizabethkingia meningosepticum may be underreported as correct identification is difficult unless an automated system is used. All oxidase- and urease-positive non-lactose fermenters from immunocompromised or critically ill patients should be subjected to Quinolones/trimethoprim-sulfamethoxazole combinations until laboratory identification of the isolate is confirmed.

Thus, awareness about this organism in clinical samples along with correct identification and sensitivity testing is required to reduce the morbidity and mortality associated with such infections.

Smita Sarma, Navin Kumar, Arun Jha, Usha Baveja, Sunil Sharma
Department of Microbiology, Medanta The Medicity, Sector 38, Gurgaon, Haryana - 122 001, India

Address for correspondence: Dr. Smita Sarma, E-mail: sarma.smita@rediffmail.com

REFERENCES
1. Nisel O, Murat A, Neval A, Mehmet H, Seral S. Community acquired meningitis and sepsis caused by Cryseobacterium meningosepticum in a patient diagnosed with thalassemia major. J. Clin. Microbiol. 2006; 44: 3037-9.
2. Thong ML, Pudthucheary SD, Lee EL. Flavobacterium meningosepticum infection: An epidemiological study in a newborn nursery. J Clin pathol 1981;34:429-33.
3. Weaver KN, Jones RC, Albright R, Thomas Y, Zambrano CH, Costello M, et al. Acute emergence of Elizabethkingia meningoseptica infection among mechanically ventilated patients in a long term acute care facility. Infect Control Hosp Epidemiol 2010;31:54-8.
4. Fraser SL, Jorgensen JH. Reappraisal of antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and method for reliable susceptibility testing. Antimicrob Agents Chemother 1997;41:2738-41.
5. Lin PY, Chu C, Su LH, Huang CT, Chang WY, Chiu CH. Clinical and Microbiological analysis of bloodstream infections caused by Chryseobacterium meningosepticum in neonatal patients. J Clin Microbiol 2004;42:3353-5.