Review

Integrin Linked Kinase (ILK) and its Role in Liver Pathobiology

Nicole Martucci, George K. Michalopoulos, and Wendy M. Mars

Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Integrin linked kinase (ILK) is a vital signaling protein ubiquitously expressed throughout the body. It binds to intracellular integrins to help promote signaling related to cell adhesion, apoptosis, proliferation, migration, and a plethora of other common cellular functions. In this review, ILK’s role in the liver is detailed. Studies have shown ILK to be a major participant in hepatic ECM organization, liver regeneration, insulin resistance, and hepatocellular carcinoma.

Key words: Partial hepatectomy; Hepatocyte proliferation; Termination of liver regeneration; Hepatocellular carcinoma; Glucose/carbohydrate metabolism

INTRODUCTION

Integrin Linked Kinase and Integrins

The integrins encompass a large family of adhesion molecules that regulate a myriad of intracellular signaling pathways related to cell migration, survival, proliferation, and differentiation. Integrins are vital proteins as they are responsible for communicating between the intracellular actin cytoskeleton and the extracellular matrix (ECM). These transmembrane heterodimeric proteins are made up of alpha and beta chain subunits with the extracellular tail of the alpha chain binding the cell to the ECM, and the cytoplasmic tail on the beta chain interacting with various adaptor and signaling proteins.

Integrin linked kinase (ILK) is a crucial signaling protein that interacts with the cytoplasmic domains of the β1 and β3 integrin chains. ILK, a PI3-kinase-dependent protein, is considered an adaptor that propagates signal transduction from the extracellular adhesion sites to the intracellular signaling targets. Along with PINCH, and Parvin, ILK forms a heterotrimeric focal adhesion (FA) complex that passes signals down through the cell from the integrins (Fig. 1). ILK has been shown to profoundly affect cell morphology, proliferation, migration, adhesion, and assembly of ECM proteins.

Discovery of ILK and the Debate Over its Kinase Activity

ILK was initially discovered in 1996 by Hannigan et al., where the authors proposed that ILK is a receptor-proximal protein kinase regulating integrin-mediated signal transduction. Initial studies showed ILK expression was vital during embryonic development and tissue homeostasis as it was found to be involved in signaling pathways involving cell adhesion, apoptosis, proliferation, migration, and a plethora of other common cell functions.

Based on the fact that ILK has an amino acid sequence suggestive of kinase functionality, for the next 10 years, debate in the scientific community occurred regarding whether ILK was a bona fide kinase, as ILK was thought to phosphorylate Akt. However, following extensive studies, it was revealed that ILK lacks several important conserved kinase motifs, specifically the amino acid residues essential for phosphotransferase activity. Hence, it is now accepted that when integrins signal through ILK, Akt phosphorylation occurs indirectly through regulation of the protein kinase mechanistic target of rapamycin (mTOR), and not directly through ILK. Additional studies have not been able to prove that ILK can phosphorylate any other substrate, and consequently, ILK is
considered to be a pseudokinase. Currently, there are thought to be about 60 different pseudokinases in existence. Pseudokinases, such as ILK, generally lack one or more amino acids required to phosphorylate protein substrates, rendering them structurally similar but functionally inactive.

Functions of ILK

Previous studies have revealed that ILK’s main function as a ubiquitously expressed protein is to organize the actin cytoskeleton during development. This has been observed in both Caenorhabditis elegans and Drosophila, where deletion of the ILK ortholog, PAT-4, causes muscle detachment and early lethality. Similar results were observed in mice, where deletion of ILK causes failure to organize the actin cytoskeleton, resulting in embryonic lethality.

The most commonly observed cellular localization of ILK is below the cellular membrane, where integrin adhesion sites occur. However, ILK has also been observed to be present in the nucleus; COS-1, MCF-7, HeLa cells, and keratinocytes all reportedly contain nuclear ILK. Despite various studies showing nuclear ILK expression, the nuclear aspect of its function is not well understood. Accconcia et al. hypothesized that ILK is important for nuclear integrity as ILK disruption led to altered morphology and abnormal lamin A/C distribution and, further, that ILK can associate with chromatin and act as a suppressor for the CNKSR3 gene in MCF-7 cells. The authors also described a nuclear localization sequence that, when mutated, inhibits ILK’s ability to translocate to the nucleus.

Within the context of the liver, ILK has been observed to play various roles in phenomena including fibrosis, regeneration, insulin resistance, and cancer. INTEGRIN LINKED KINASE AND THE LIVER

ILK and the Hepatic ECM

The ECM in the liver plays a major role in the overall microenvironment for hepatocytes as well as other hepatic cells. ECM components are responsible for dictating the stiffness of the matrix and can have an effect on the homeostasis within the liver through basic functions of proliferation, migration, differentiation, and cell–cell or cell–matrix adhesion.

In the presence of persistent damage, whether that be through exposure to a virus or chemical/toxic agents such as drugs or alcohol, hepatic ECM responds with continuous remodeling of the matrix and excessive accumulation of matrix proteins, such as collagens, fibronectins, and laminins, as well as proteoglycans and carbohydrates. Because of the critical role ILK plays in intracellular signal transduction from the ECM, studies have been conducted to elucidate the possible involvement of ILK in the regulation of the hepatic matrix in the context of injury.

In a study that observed stellate cell activation in fibrogenesis, it was detailed that ILK overexpression in stellate cells mediates Rho-GTPase-dependent effects on collagen and smooth muscle alpha actin expression. The expression of ILK was greatly increased between quiescent and activated stellate cells, suggesting that the ECM–cell crosstalk could be highly dependent on ILK to regulate matrix changes.
In fact, the potential important relationship between the ECM and ILK within the liver prompted us to study the effects of specifically deleting ILK from hepatocytes (hep-ILK-KO) in mice. Within the context of hepatocytes, the ECM is an important determinant of differentiation and proliferation. In our previous research, we showed that after deletion of ILK by use of the LoxP/Cre system with Cre recombinase under the control of the alpha fetoprotein enhancer/albumin promoter, mice were born normal but soon developed histological abnormalities. These abnormalities included a massive deposition of ECM surrounding each hepatocyte, as evidenced by a simple reticulin stain. However, there was no formation of nodules or any other histological evidence of cirrhosis. Interestingly, liver weight-to-body ratio was increased by approximately 50%.

In order to further understand how the ECM of the liver was responding to deletion of ILK in the hepatocytes, we have now investigated the gene expression patterns for the general ECM (all proteins except collagen) and the various collagen proteins in hep-ILK-KO and wild-type (WT) mice (Fig. 2). Mice were generated, and microarray analysis was performed as previously described.

In hep-ILK-KO mice, there was decreased mRNA expression of syndecans 1, 2, and 4. A decrease in syndecans, proteins involved in cell–cell and cell–matrix adhesion, can point to ILK playing a vital role in the communication between hepatocytes and cells associated with synthesis of components of the hepatic ECM. However, there was also an increase in the RNAs encoding perlecan, also involved in cell–ECM adhesion, as well as a massive increase in the presence of various collagen RNAs, especially those of Col3a1, Col4a1, and Col1a2. These collagens are synthesized exclusively by stellate cells, correlate well with the increased matrix deposition of collagen we previously observed throughout the parenchyma of the liver in the hep-ILK-KO mice, and demonstrate that ILK provides a crucial signaling link from hepatocytes to stellate cells, regulating the quantity and kind of ECM proteins produced by stellate cells in order to maintain their quiescence in normal liver. In the absence of such signaling, stellate cells appear to become activated and enhance their production of collagens, a finding that has major implications for the pathogenesis of liver cirrhosis as cirrhosis/fibrosis only occurs in conditions associated with persistent loss of hepatocytes. Hence, it is reasonable to hypothesize that chronic loss

![Figure 2. Differences in expression of mRNAs between hep-ILK knockout (KO) and wild-type (WT) mice at 14 weeks of age for (A) general ECM proteins (except collagens) and (B) collagens. Each protein is depicted in a different color. Size represents the absolute value from the array.](image-url)
of hepatocytes in disease states leads to the generation of “orphan” stellate cells that have minimal contact with hepatocytes. We suggest these “orphan” stellate cells could behave similarly to the stellate cells in the hep-ILK-KOs (i.e., “orphan” stellate cells in disease states), devoid of any regulation by hepatocyte ILK, become “uninhibited,” and continue to produce excess collagen proteins, as seen in the hep-ILK-KO mice.

ILK and Liver Regeneration

The hepatic matrix is a main regulator of cellular proliferation in the liver. Upon partial hepatectomy (PHx), an increase of hepatocyte growth factor (HGF), activation of the MET (HGF) receptor, and concomitant activation of epidermal growth factor receptor (EGFR) occur within 30 min after PHx and induce hepatocyte proliferation. Proliferation of hepatocytes and other nonparenchymal cells ceases within 6–8 days37, an event that is highly dependent on the communication between the ECM, hepatocytes, and hepatic stellate cells37–39.

In normal mice, after PHx, these regenerative activities cease when liver has grown back exactly to the original mass and without exceeding it. However, in hep-ILK-KO mice, following PHx, we observed an enhanced cell proliferation of both hepatocytes and cholangiocytes, as well as hepatomegaly, with the final liver size at the end of regeneration (14 days) exceeding the original prehepatectomy liver mass23,25. Our data show that at 14 days post-PHx, hep-ILK-KO livers grew back to 158% of the original weight, indicating that there was an altered process for termination of regeneration. This enhanced hepatocyte proliferation in the hep-ILK-KO mice was supported by changes in various cell cycle genes. There was an increased expression of c-Myc and decreased levels of CDK2. Additionally, we saw activation of the hippo pathway, with an increase in phosphorylated YAP, which has been associated with higher cellular proliferation25.

Similar results were observed in hep-ILK-KO mice that were subjected to phenobarbital (PB) administration37. Over a 10-day course of PB administration, there was a threefold increase in liver-to-body weight ratios compared to control mice as well as a significant increase in the number of mitotic cells.

The role of ILK in ECM signaling via acetaminophen (APAP) toxicity and compensatory regeneration was also investigated46. Using the hep-ILK-KO mice, it was observed that there was attenuated injury after 6 and 24 h of APAP overdose in the KO mice compared to control. By histological examination, there was lower centrilobular necrosis. Measurement of alanine aminotransferase (ALT) corroborated these data showing extensive damage in WT mice compared to hep-ILK-KO. Interestingly, there was improved liver regeneration after APAP-induced injury by Ki-67 staining and Western blot analysis of PCNA, cyclin D1, CDK4, and phosphorylated Rb40. These data strongly correlate with the previous study that shows ILK removal promotes the proliferation of hepatocytes and regeneration of the liver after PHx.

The results of removal of ILK in hepatocytes clearly indicate the essential role that ILK plays in successfully transmitting signals between cells and the hepatic ECM.

ILK and Hepatic Insulin Resistance

Inhibition of hepatic gluconeogenesis mediates insulin-stimulated clearance of blood glucose and is, overall, a major contributor to glycemic regulation41. With worldwide obesity rates tripling in the past 50 years, studies surrounding insulin resistance and type 2 diabetes, both considered consequences of obesity, have been extensively studied. It has been shown that with consumption of a high-fat diet (HFD), hepatic insulin resistance occurs, which then disrupts the process of gluconeogenesis and overall clearance of blood glucose42.

As discussed, the hepatic ECM is a regulator of various liver functions that maintain homeostasis, including whole-body glucose levels. On an HFD, there is increased hepatic triglyceride synthesis and storage and, therefore, an increase in the accumulation of hepatic lipids43,44. This results in the expansion of the hepatic ECM28 and liver damage associated with increases in ECM proteins45.

In fact, Williams et al. detailed a study in which hepatocyte-specific deletion of ILK (hep-ILK-KO, ILK^{loxp_{Albcre}}) in mice on an HFD led to insulin sensitization28. Results showed that hepatic insulin action improved in HFD hep-ILK-KO mice as shown by a 50% increase in the glucose infusion rate, as well as reductions in liver lipid and triglyceride accumulation28. Additionally, the gluconeogenic genes, G6pc and Pepck, were observed to be increased at basal levels in the HFD hep-ILK-KO mice compared to controls and were then greatly suppressed with an insulin stimulus.

Multiple studies have shown that global transgenic downregulation or deletion of ILK in mouse models showed initiation of insulin resistance29,46. In the global ILK downregulation model, the authors observed an inversely correlated increase in hepatic gluconeogenesis in accordance with other studies28. Hepatic expression of ILK in the control mice was also observed to decrease while on the HFD28,29, suggesting that expression is downregulated as a consequence of overnutrition and is directly related to hepatic insulin action25. Another study demonstrated that GSK3β inhibition improved hepatic insulin resistance, which correlates well with the previous studies as ILK normally promotes inhibition of GSK3β47,48.

Trefts et al.49 detailed the metabolic and glucoregulatory role of ILK and showed that hepatocyte ILK is required for glucose homeostasis through cellular signaling events...
concerning the ECM functions. RNA-seq data in hep-ILK-KO mice revealed an increase in genes involved with integrin functions, FAs, and actin cytoskeleton regulation. There was also a decrease in RNA of proteins associated with mitochondrial function, which resulted in decreased ATP levels, and therefore stimulation of glycolysis, as well as an increase in AMP-activated protein kinase activation. Overall, the results support the hypothesis that disruption of hepatic glucose homeostasis can result from the inability of ECM signals to be transmitted through ILK and integrin receptors.

ILK and Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is one of the most common types of cancer, resulting in over 750,000 deaths in the US in 2018, with the incidence tripling over the last four decades. Patients with underlying liver diseases such as fibrosis or hepatitis B or C infection are at an increased risk of developing HCC, with the main treatment option being liver transplantation. In parallel with the increase in obesity and development of type 2 diabetes, there has been an increase in HCC. Subsequently, the incidence of HCC has been rising exponentially worldwide over the past 20 years. Efforts to understand the molecular mechanisms behind the development of HCC have pointed to ILK as being an important player.

ILK has been implicated in various different cancers as being a useful prognostic marker, with expression correlating with tumor stage and patient survival. However, within the context of HCC, no correlation has been observed with tumor grade, and ILK expression is not standard across human patient samples, potentially suggesting different cellular mechanisms occurring simultaneously. Interestingly, data do support a complex role for ILK in the signaling pathway for HCC as there is a significant correlation between ILK expression and ser473 protein kinase B (PKB) phosphorylation in HCC samples. PKB activation and phosphorylation, of which ILK plays a role, have been implicated in promoting carcinogenesis in various different organs by stimulating cell proliferation and inhibiting apoptosis. Taken together, ILK is most likely playing a role in promoting HCC by activating PKB but should not be used to assess the tumor stage and patient survival.

Additionally, patients that present with steatosis either through nonalcoholic or alcoholic liver disease are also at an increased risk for liver cancer. Literature suggests that lipid accumulation in hepatocytes causes changes to the ECM and supports tumor growth and that aberrant Wnt signaling is a major player in steatosis-induced tumorigenesis. Interestingly, ILK is known to interact with Wnt to stimulate β-catenin expression and promote proliferation of tumor cells.

CONCLUSIONS

Integrin linked kinase continues to show up in the literature as an essential player in the physiology and pathobiology of liver and other organs. Since the initial discovery of ILK 25 years ago, it has proven itself to be an extremely vital protein involved in regulation of signals between cells and the ECM.

In the context of the liver, the majority of studies have focused on the role of ILK in hepatocytes, while only few have focused on nonparenchymal cells of the liver. Other functions that have been found to be linked to ILK in the liver have been nitric oxide synthase in hepatic sinusoidal endothelial cells and epithelial-to-mesenchymal transition. Future studies revolving around ILK and the liver should focus on its role on other hepatic cells, especially stellate cells.

ACKNOWLEDGMENT: This work was supported in part by the National Institutes of Health (NIH) grant 1P30DK120531-01, which provides funds for the Pittsburgh Liver Research Center (PLRC) and its core services. The authors declare no conflicts of interest.

REFERENCES

1. Widmaier M, Rognoni E, Radoevanac K, Babak Azimifar S, Fä R. Integrin-linked kinase at a glance. J Cell Sci. 2015;128:1839–43. doi:10.1242/jcs.193864
2. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002;110(6):673–87. doi:10.1016/S0092-8674(02)00971-6
3. Legate KR, Fässler R. Mechanisms that regulate adapter binding to β-integrin cytoplasmic tails. J Cell Sci. 2009;122(2):187–98. doi:10.1242/jcs.041624
4. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, et al. Regulation of cell adhesion and anchorage-dependent growth by a new β-integrin-linked protein kinase. Nature 1996;379(6560):91–6. doi:10.1038/379091a0
5. Radeva G, Petrocelli T, Behrend E, et al. Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. J Biol Chem. 1997;272(21):13937–44. doi:10.1074/jbc.272.21.13937
6. Wu C, Keightley SY, Leung-Hagesteijn C, et al. Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem. 1998;273(1):528–36. doi:10.1074/jbc.273.1.528
7. Sakai T, Li S, Docheva D, et al. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev. 2003;17(7):926–40. doi:10.1101/gad.255603
8. Hannigan GE, McDonald PC, Walsh MP, Dedhar S. Integrin-linked kinase: Not so pseudo after all. Oncogene 2003;22(3):4375–85. doi:10.1038/sj.onc.1206777
9. McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase—Essential roles in physiology and cancer biology. J Cell Sci. 2008;121(19):3121–32. doi:10.1242/jcs.017996
10. Dobrev I, Fielding A, Foster LJ, Dedhar S. Mapping the integrin-linked kinase interactome using SILAC. J Proteome Res. 2008;7(4):1740–9. doi:10.1021/pr700852r
11. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase
B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 1998;95(19):11211–6. doi:10.1073/pnas.95.19.11211

12. Hanks SK, Quinn AM, Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 1988;241(4861):42–52. doi:10.1126/science.3291115

13. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell Biol. 2006;16(9):443–52. doi:10.1016/j.tcb.2006.07.003

14. Fukuda K, Gupta S, Chen K, Wu Č, Qin J. The pseudoactive site of ILK is essential for its binding to α-Parvin and localization to focal adhesions. Mol Cell 2009;36(5):819–30. doi:10.1016/j.molcel.2009.11.028

15. Dos DS, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302. doi:10.1016/j.cub.2004.06.054

16. McDonald PC, Oloumi A, Mills J, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res. 2008;68(6):1618–24. doi:10.1158/0008-5472.CAN-07-5869

17. Byrne DP, Foulkes DM, Eyers PA. Pseudokinases: Update on their functions and evolution as new drug targets. Future Med Chem. 2017;9(2):245–65. doi:10.4155/fmc-2016-0207

18. Mackinnon AC, Qadota H, Norman KR, Moerman DG, Mackinnon AC. Phosphorylation-dependent regulation of nuclear localization to focal adhesions. Mol Cell 2009;36(5):819–30. doi:10.1016/j.molcel.2009.11.028

19. Zervas CG, Gregory SL, Brown NH. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol. 2001;152(5):1007–18. doi:10.1083/jcb.152.5.1007

20. Chun J, Hyun S, Kwon T, Lee EJ, Hong SK, Kang SS. The subcellular localization control of integrin-linked kinase 1 through its protein–protein interaction with caveolin-1. Cell Signal. 2005;17(6):751–60. doi:10.1016/j.cellsig.2004.10.016

21. Accofia F, Barnes CJ, Singh RR, Talukder AH, Kumar R. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. Proc Natl Acad Sci USA 2007;104(16):6782–7. doi:10.1073/pnas.0701999104

22. Nakriedo KA, Vespa A, Mason D, Irvine TS, D’Souza SJA, Dagnino L. Modulation of integrin-linked kinase nucleocyttoplasmic shuttling by ILKAP and CRM1. Cell Cycle 2008;7(14):2157–66. doi:10.4161/cc.7.14.2624

23. Gkretsis V, Apte U, Mars WM, et al. Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology 2008;48(6):1932–41. doi:10.1002/hep.22537

24. Shafiei MS, Rockey DC. The function of integrin-linked kinase in normal and activated stellate cells: Implications for fibrogenesis in wound healing. Lab Investig. 2012;92(2):305–16. doi:10.1038/labinvest.2011.155

25. Apte U, Gkretsis V, Bowen WC, et al. Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology 2009;50(3):844–51. doi:10.1002/hep.23059

26. Borger P, Schneider M, Frick L, et al. Exploration of the transcriptional landscape of ALPPS reveals the pathways of accelerated liver regeneration. Front Oncol. 2019;9:1206. doi:10.3389/fonc.2019.01206

27. Donthamsetty S, Bowen W, Mars W, et al. Liver-specific ablation of integrin-linked kinase in mice results in enhanced and prolonged cell proliferation and hepatomegaly after phenobarbital administration. Toxicol Sci. 2009;113(2):338–66. doi:10.1093/toxsci/kfp281

28. Williams AS, Trefz E, Lantier L, et al. Integrin-linked kinase is necessary for the development of diet-induced hepatic insulin resistance. Diabetes 2017;66(2):325–34. doi:10.2337/db16-0484

29. Hatem-Vaquero M, Giera M, Garcia-Ayuso D, et al. Integrin linked kinase (ILK) downregulation as an early event during the development of metabolic alterations in a short-term high-fat diet mice model. Cell Physiol Biochem. 2020;54:71–87. doi:10.33594/000000206

30. Trefz E, Hughey CC, Lantier L, et al. Energy metabolism couples hepatocyte integrin-linked kinase to liver glucoregulation and postsorptive responses of mice in an age-dependent manner. Am J Physiol Metab. 2019;316(6):E1118–35. doi:10.1152/ajpendo.00496.2018

31. Intaraprason P, Assi K, Owen DA, Huntsman DG, Chung SW, Scudamore CH, Yoshida EM, Salh B. Expression of integrin-linked kinase is not a useful prognostic marker in resected hepatocellular cancer. Anticancer Res. 2007;27:4371–6.

32. Perea-Tudisca V, Bravo V, Varakis I, Alexopoulos C, Kalofonos H, Papadaki H. ILK overexpression in human hepatocellular carcinoma and liver cirrhosis correlates with activation of Akt. Oncol Rep. 2008;20(6):1337–44. doi:10.3892/or_0000149

33. Chan J, Ko CFC, Yeung YS, Ng IOL, Yam JWP. Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma. PLoS One 2011;6(2). doi:10.1371/journal.pone.0016984

34. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008;47(4):1394–400. doi:10.1002/hep.22193

35. Baozhi C, Montaldo C, Coniglio A, et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One. 2016;11(3). doi:10.1371/journal.pone.0151736

36. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209–18. doi:10.1172/JCI24282

37. Michalopoulos GK, Bhushan B. Liver regeneration: Biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18:40–55. doi:10.1038/s41575-020-0342-4

38. Lenhard Rudolph K, Trautwein C, Kubicka S, et al. Differential regulation of extracellular matrix synthesis during liver regeneration after partial hepatectomy in rats. Hepatology 1999;30(5):1159–66. doi:10.1002/hep.510300502

39. Gallai M, Sebestyén A, Nagy P, Koválszky I, Őnody T, Thorgeirsson SS. Proteoglycan gene expression in rat liver after partial hepatectomy. Biochem Biophys Res Commun. 1996;228(3):690–4. doi:10.1016/0006-291X.1996.1718

40. Bhushan B, Edwards G, Desai A, Michalopoulos GK, Apte U. Liver-specific deletion of integrin-linked kinase in mice attenuates hepatototoxicity and improves liver regeneration after acetaminophen overdose. Gene Expr. 2016;17(1):35–45. doi:10.3727/105221616X691578

41. Solits AR, Kennedy NJ, Xin X, et al. Hepatic dysfunction caused by consumption of a high-fat diet. Cell Rep. 2017;21(11):3317–28. doi:10.1016/j.celrep.2017.11.059
42. Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992;54:855–909.
43. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007;46(4):1081–90. doi:10.1002/hep.21763
44. Samuel VT, Liu ZX, Xu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. doi:10.1074/jbc.M313478200
45. Williams AS, Kang L, Zheng J, et al. Integrin a1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J Biol Chem. 2015;290(10):6546–57. doi:10.1074/jbc.M114.615716
46. Hatem-Vaquero M, Griea M, García-Jerez A, et al. Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression. J Endocrinol. 2017;234(2):115–28. doi:10.1530/JOE-16-0662
47. Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP, Breyer MD. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6j mice. Diabetologia 2007;50(2):452–60. doi:10.1007/s00125-006-0552-5
48. Yen CF, Wang HS, Lee CL, Liao SK. Roles of integrin-linked kinase in cell signaling and its perspectives as a therapeutic target. Gynecol Minim Invasive Ther. 2014;3(3):67–72. doi:10.1016/j.gmit.2014.06.002
49. Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Wspolczesna Onkol. 2018;22(3):141–50. doi:10.5114/wo.2018.78941
50. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jamal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
51. Graff JR, Deddens JA, Konicek BW, et al. Integrin-linked kinase expression increases with prostate tumor grade. Clin Cancer Res. 2001;7(7):1987–91.
52. Ahmed N, Riley C, Oliva K, Stutt E, Rice GE, Quinn MA. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. J Pathol. 2003;201(2):229–37. doi:10.1002/path.1441
53. Bravou V, Klimonimos G, Papadaki E, Taraviras S, Varaklis J. ILK over-expression in human colon cancer progression correlates with activation of β-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol. 2006;208(1):91–9. doi:10.1002/path.1860
54. Pinkse GGM, Jiawal-Lalai R, Brujin JA, De Heer E. RGD peptides confer survival to hepatocytes via the b1-integrin–ILK–pAkt pathway. J Hepatol. 2005;42(1):87–93. doi:10.1016/j.jhep.2004.09.010
55. Persad S, Attwell S, Gray V, et al. Regulation of protein kinase B/Akt–serine 473 phosphorylation by integrin-linked kinase: Critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem. 2001;276(29):27462–9. doi:10.1074/jbc.M102940200
56. Alessi MAL and DR. PKB/Akt: A key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001;114:2903–10.
57. Singh R, Czaja MJ. Capitalizing on AKT signaling to inhibit hepatocellular carcinoma cell proliferation. Cancer Biol Ther. 2005;4(12):1419–21. doi:10.4161/cbt.4.12.2422
58. Nakanishi K, Sakamoto M, Yamasaki T, Todo S, Hirohashi S. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 2005;103(2):307–12. doi:10.1002/cncr.20774
59. Qian Y, Fan JG. Obesity, fatty liver and liver cancer. Hepatobiliary Pancreat Dis Int. 2005;4(2):173–7.
60. Debebe A, Medina V, Chen CY, et al. Wnt/β-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene 2017;36(43):6020–9. doi:10.1038/onc.2017.207
61. Takigawa Y, Brown A. Wnt signaling in liver cancer. Curr Drug Targets 2008;9(11):1013–24. doi:10.2174/138945008786786127
62. Zheng C-C, Hu H-F, Hong P, et al. Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer. Am J Cancer Res. 2019;9(1):186–97.
63. Shafiei MS, Rockey DC. The function of integrin-linked kinase in normal and activated stellate cells: Implications for fibrogenesis in wound healing. Lab Investig. 2012;92(2):305–16. doi:10.1038/labinvest.2011.155
64. Shafiei MS, Lui S, Rockey DC. Integrin-linked kinase regulates endothelial cell nitric oxide synthase expression in hepatic sinusoidal endothelial cells. Liver Int. 2015;35(4):1213–21. doi:10.1111/liv.12606
65. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9. doi:10.1158/0008-5472.CAN-07-2460