Crystallographic Detection of the Spin State in FeIII Complexes

Conor T. Kelly,† Michael Griffin,† Kane Esien,‡ Solveig Felton,‡ Helge Müller-Bunz,† Grace G. Morgan.*†

Addresses:

†School of Chemistry, University College Dublin, Belfield, Dublin 4, D04 N2E5, Ireland.
‡School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom.

Email: grace.morgan@ucd.ie
Table of Contents

S1 Experimental Methods...4

S1.1 Synthesis of [Fe^{III}(4-OMe-sal_{323})]NO_{3} (1a) and [Fe^{III}(4-OMe-sal_{323})]NO_{3}·0.75MeCN·0.25MeOH (1a·S) 8

S1.2 Synthesis of [Fe^{III}(4-OMe-sal_{323})]PF_{6}·0.45H_{2}O (1b) ...8

S1.3 Synthesis of [Fe^{III}(4-OMe-sal_{323})]OTf·0.27H_{2}O (1c) ...8

S1.4 Synthesis of [Fe^{III}(4-OMe-sal_{323})]ClO_{4} (1d) ...8

S1.5 Synthesis of [Fe^{III}(4-OMe-sal_{323})]BF_{4} (1e) ...8

S1.6 Synthesis of [Fe^{III}(4-OMe-sal_{323})]SbF_{6}·0.31H_{2}O (1f) ...9

S1.7 Synthesis of [Fe^{III}(4-OMe-sal_{323})]I_{2} (1g) ...9

S1.8 Synthesis of [Fe^{III}(4-OMe-sal_{323})]Cl·EtOH·0.25H_{2}O (1h) ...9

S1.9 Synthesis of [Fe^{III}(3-OMe-sal_{323})]NO_{3} (2a) ...9

S1.10 Synthesis of [Fe^{III}(3-OMe-sal_{323})]BF_{4}·H_{2}O (2b) ...9

S1.11 Synthesis of [Fe^{III}(3-OMe-sal_{323})]PF_{6}·H_{2}O (2c) ..10

S1.12 Synthesis of [Fe^{III}(5-OMe-sal_{323})]NO_{3} (3a) ...10

S1.13 Synthesis of [Fe^{III}(5-OMe-sal_{323})]BF_{4} (3b) ...10

S1.14 Synthesis of [Fe^{III}(4,6-diOMe-sal_{323})]NO_{3}·MeOH (4a) ...10

S1.15 Synthesis of [Fe^{III}(4,6-diOMe-sal_{323})]BF_{4}·0.5MeOH (4b) ...10

S1.16 Synthesis of [Fe^{III}(4,6-diOMe-sal_{323})]ClO_{4}·0.5MeOH (4c) ...11

S1.17 Synthesis of [Fe^{III}(3-OEt-sal_{323})]PF_{6}·EtOH (5a) ...11

S1.18 Synthesis of [Fe^{III}(3-OEt-sal_{323})]BF_{4}·0.32H_{2}O (5b) ..11

S1.19 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]PF_{6} (6b) ...11

S1.20 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]PF_{6}·0.78MeOH·0.1EtOH (6b·S) ...11

S1.21 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]OTf (6c) ...12

S1.22 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]BF_{4} (6d) ...12

S1.23 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]BF_{4}·EtOH (6d·S) ...12

S1.24 Synthesis of [Fe^{III}(4-Et_{2}N-sal_{323})]NO_{3}·CH_{2}Cl_{2} (6e) ...12

S1.25 Synthesis of [Fe^{III}(3-sal_{323})]ClO_{4} (7a) ...13

S1.26 Synthesis of [Fe^{III}(3-Me-sal_{323})]PF_{6}·0.68H_{2}O (7b) ...13
S1.27 Synthesis of [FeIII(3-Me-sal\textsubscript{2}323)]BF\textsubscript{4} (7c) ...13
S1.28 Synthesis of [FeIII(3-Allyl-sal\textsubscript{2}323)]NO\textsubscript{3}:MeCN (8) ..13
S1.29 Synthesis of [FeIII(3'-Bu-sal\textsubscript{2}323)]PF\textsubscript{6}:EtOH (9a) ..13
S1.30 Synthesis of [FeIII(3'-Bu-sal\textsubscript{2}323)]BF\textsubscript{4} (9b) ..14
S1.31 Synthesis of [FeIII(sal\textsubscript{2}323)]FeCl\textsubscript{4} (10e) ..14
S1.32 Synthesis of [FeIII(sal\textsubscript{2}323)]BF\textsubscript{4} (10f) ..14
S1.33 Synthesis of [FeIII(5-Br-sal\textsubscript{2}323)]PF\textsubscript{6} (11a) ..14
S1.34 Synthesis of [FeIII(5-Br-sal\textsubscript{2}323)]BF\textsubscript{4}:EtOH (11b) ..14
S1.35 Synthesis of [FeIII(5-Br-sal\textsubscript{2}323)]NO\textsubscript{3}:PrOH (11c) ..15
S1.36 Synthesis of [FeIII(3,5-diBr-sal\textsubscript{2}323)]NO\textsubscript{3}:PrOH (12) ..15
S1.37 Synthesis of [FeIII(3,5-diCl-sal\textsubscript{2}323)]BF\textsubscript{4}:PrOH (13a) ..15
S1.38 Synthesis of [FeIII(3,5-diCl-sal\textsubscript{2}323)]PF\textsubscript{6} (13b) ..15
S1.39 Synthesis of [FeIII(3,5-dil-sal\textsubscript{2}323)]PF\textsubscript{6} (14) ..15
S1.40 Synthesis of [FeIII(3-NO\textsubscript{2}-sal\textsubscript{2}323)]PF\textsubscript{6}:MeCN (15a) ..16
S1.41 Synthesis of [FeIII(3-NO\textsubscript{2}-sal\textsubscript{2}323)]NO\textsubscript{3} (15b) ..16
S1.42 Synthesis of [FeIII(5-NO\textsubscript{2}-sal\textsubscript{2}323)]PF\textsubscript{6}:EtOH (16a) ..16
S1.43 Synthesis of [FeIII(5-NO\textsubscript{2}-sal\textsubscript{2}323)]BF\textsubscript{4}:EtOH (16b) ..16
S1.44 Synthesis of [FeIII(5-NO\textsubscript{2}-sal\textsubscript{2}323)]ClO\textsubscript{4}:EtOH (16c) ..16
S1.45 Synthesis of [FeIII(3,5-NO\textsubscript{2}-sal\textsubscript{2}323)]ClO\textsubscript{4}:EtOH (17) ..17

S2 Single Crystal X-ray Diffraction Details ..18
S2.2 Bond Lengths and Distortion Parameters ...29
S2.3 Intermolecular Interactions ..33
S2.4 Hirshfeld Surface Analysis ..38

S3 Magnetic Measurements ...39

S4 Quantum Chemistry Calculations ..41

S5 Powder X-ray Diffraction ...44

S6 Author Contribution ...44

S6 References ..45
S1 Experimental Methods

Table S1.1. Summary of complex families 1–17 compared in this study.

Complex	Salicylaldehyde	Molecular Formula	S.G.	T (K)	Σ(°)	Θ(°)	Spin State		
1a	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]NO$_3$	$P2_1/2$	100	34.26	127.29	SCO		
				293	52.06	200.78			
1a-S	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]NO$_3$·0.75MeCN·0.25MeOH	$P2_1/n$	100	24.13	58.94	LS		
				293	25.22	63.53			
1b	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]PF$_6$·0.45H$_2$O	$P2_1/c$	100	24.13	58.94	LS		
				293	25.22	63.53			
1c	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]OTf·0.27H$_2$O	$P2_1/c$	100	25.63	68.02	LS		
				293	25.63	68.02			
1d	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]ClO$_4$	$P2_1/c$	100	21.83	59.15	LS		
				200	27.34	73.46			
1e	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]ClO$_4$	$P2_1/c$	100	21.83	59.15	LS		
				200	27.34	73.46			
1f	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]BF$_4$·H$_2$O	$P2_1/c$	100	25.33	58.11	LS		
				293	28.62	72.86			
1g	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]BF$_4$·H$_2$O	$P2_1/c$	100	25.33	58.11	LS		
				293	28.62	72.86			
1h	![4-OMe](image)	[FeIII(4-OMe-sal$_2$323)]Cl·EtOH·0.25H$_2$O	$P2_1/c$	100	29.23	77.52	LS		
				293	29.23	77.52			
2a	![3-OMe](image)	[FeIII(3-OMe-sal$_2$323)]NO$_3$	Pccn	100	35.59	99.98	LS		
				293	29.20	80.03			
2b	![3-OMe](image)	[FeIII(3-OMe-sal$_2$323)]BF$_4$·H$_2$O	$P2_1/c$	100	26.62	72.86	LS		
				293	28.65	80.74			
2c	![3-OMe](image)	[FeIII(3-OMe-sal$_2$323)]BF$_4$·H$_2$O	$P2_1/c$	100	28.65	80.74	LS		
				293	28.65	80.74			
2d	![3-OMe](image)	[FeIII(3-OMe-sal$_2$323)]FeCl$_4$	$P2_1/c$	100(II)	29.92	78.11	LS		
				293	29.92	78.11			
2e	![3-OMe](image)	[FeIII(3-OMe-sal$_2$323)]ClO$_4$	$P2_1$	100(I)	21.94	50.17	LS		
				293	23.86	61.35			
3a	![5-OMe](image)	[FeIII(5-OMe-sal$_2$323)]NO$_3$	$P2_1/c$	100(I)	21.94	50.17	LS		
				293(I)	23.86	61.35			
3b	![5-OMe](image)	[FeIII(5-OMe-sal$_2$323)]BF$_4$	$P2_1/c$	100(I)	28.51	79.56	LS		
				293(I)	29.92	73.33			
#	Structure	Chemical Formula	Space Group	Temperature (K)	Crystallographic Data	Literature Ref.			
----	-----------	-----------------------------------	-------------	-----------------	-----------------------	----------------			
4a	![4a](image)	$\text{[Fe}^{\text{(III)}(4,6-\text{diOMe-sal}232)]\text{NO}_3\cdot\text{MeOH}}$	$P2_1/c$	100	29.29	LS			
4b	![4b](image)	$\text{[Fe}^{\text{(III)}(4,6-\text{diOMe-sal}232)]\text{BF}_4\cdot0.5\text{MeOH}}$	$P2_1/n$	100	29.11	LS			
4c	![4c](image)	$\text{[Fe}^{\text{(III)}(4,6-\text{diOMe-sal}232)]\text{ClO}_4\cdot0.5\text{MeOH}}$	$P2_1/n$	100	28.51	LS			
5a	![5a](image)	$\text{[Fe}^{\text{(III)}(3-\text{OEt-sal}232)]\text{PF}_6\cdot\text{EtOH}}$	$P2_1/n$	100	25.32	LS			
5b	![5b](image)	$\text{[Fe}^{\text{(III)}(3-\text{OEt-sal}232)]\text{BF}_4\cdot0.32\text{H}_2\text{O}}$	Pn	100	24.95	LS			
6a	![6a](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{ClO}_4$	$P-1$	100	27.87	LS			
6b	![6b](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{PF}_6$	$P-1$	100	27.62	LS			
6b-S	![6b-S](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{PF}_6\cdot0.78\text{MeCN}\cdot0.1\text{EtOH}$	$P-1$	100 (I)	27.69	LS			
				100 (II)	31.36	LS			
6c	![6c](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{OTf}$	$P-1$	100	28.78	LS			
6d	![6d](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{BF}_4$	$P2_1/n$	100	30.17	LS			
6d-S	![6d-S](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{BF}_4\cdot\text{EtOH}$	$P2_1/2_1$	100	26.2	LS			
6e	![6e](image)	$\text{[Fe}^{\text{(III)}(4-\text{NEt}_2-sal}232)]\text{NO}_3\cdot\text{CH}_2\text{Cl}_2$	$P2_1/2_1$	100	26.07	LS			
7a	![7a](image)	$\text{[Fe}^{\text{(III)}(3-\text{Me-sal}232)]\text{ClO}_4}$	$P2_1/2_1$	100	26.82	LS			
7b	![7b](image)	$\text{[Fe}^{\text{(III)}(3-\text{Me-sal}232)]\text{PF}_6\cdot0.68\text{H}_2\text{O}}$	$C2/c$	100	24	LS			
7c	![7c](image)	$\text{[Fe}^{\text{(III)}(3-\text{Me-sal}232)]\text{BF}_4}$	$P2_1/2_1$	100	27.18	LS			
8	![8](image)	$\text{[Fe}^{\text{(III)}(3-\text{Allyl-sal}232)]\text{NO}_3\cdot\text{MeCN}}$	$P2_1/c$	100	25.72	LS			
9a	![9a](image)	$\text{[Fe}^{\text{(III)}(3-\text{Bu-sal}232)]\text{PF}_6\cdot\text{EtOH}}$	$P2_1/c$	100(I)	21.94	LS			
No.	Compounds	Formula	Space Group	Temperature	α (°)	β (°)	γ (°)	LS	
-----	---	--------------------	-------------	-------------	-------	-------	-------	-------	
9b	[Fe(3′-Bu-sal232)]BF₄		P4_22	293	19.58	44.76	LS		
10a	[Fe(sal232)]NO₃		P2_1/c	100	28.27	80.76	LS		
10b	[Fe(sal232)]BPh₄		P2_1/n	293	28.43	74.16	LS		
10c	[Fe(sal232)]Cl		Pccn	100	30.1	88.4	LS		
10d	[Fe(sal232)]ClO₄		P2_1/c	100	27.29	69.38	LS		
10e	[Fe(sal232)]FeCl		P2_2_2_1	100	30.69	68.49	LS		
10f	[Fe(sal232)]BF₄		P2_1/c	100	25.3	63.64	LS		
11a	[Fe(5-Br-sal232)]PF₆		P2_1	293	25.94	65.46	LS		
11b	[Fe(5-Br-sal232)]BF₄·EtOH		P-1	100	22.38	59.2	LS		
11c	[Fe(5-Br-sal232)]NO₃·PrOH		P2_1/n	100 (I)	25.95	71.41	LS		
12	[Fe(3,5-diBr-sal232)]NO₃·PrOH		P2_1/n	100	24.74	63.01	LS		
13a	[Fe(3,5-diCl-sal232)]BF₄·PrOH		P2/n	293(I)	23.63	60.99	LS		
					293(II)	29.9	78.11	LS	
13b	[Fe(3,5-diCl-sal232)]PF₆		P2_1/n	100	24.54	60.26	LS		
---	---	---	---	---	---	---			
14	![Structure](image1)	[FeIII(3,5-diI-sal$_2$323)]PF$_6$	$P2_1/c$	100	25.7	64.96	LS		
15a	![Structure](image2)	[FeIII(3-NO$_2$-sal$_2$323)]PF$_6$·MeCN	$P2_1/n$	293	27.96	65.59	LS		
15b	![Structure](image3)	[FeIII(3-NO$_2$-sal$_2$323)]NO$_3$	Cc	100	29.94	72.17	LS		
16a	![Structure](image4)	[FeIII(5-NO$_2$-sal$_2$323)]PF$_6$·EtOH	P-1	293	24.05	63.44	LS		
16b	![Structure](image5)	[FeIII(5-NO$_2$-sal$_2$323)]BF$_4$·EtOH	P-1	293	22.36	58.7	LS		
16c	![Structure](image6)	[FeIII(5-NO$_2$-sal$_2$323)]ClO$_4$·EtOH	P-1	100	21.02	56.65	LS		
17	![Structure](image7)	[FeIII(3,5-diNO$_2$-sal$_2$323)]ClO$_4$·EtOH	$P2_1/n$	100	27.75	76.98	LS		

*Refers to the temperature of the diffraction experiment. *Structures with more than one independent FeIII site in the asymmetric unit are indicated as (I) and (II). *Distortion parameters Σ and Θ are described in the main text. *Those structures previously reported in the literature are indicated with the appropriate reference. *Where OTf is CF$_3$SO$_3$.
S1.1 Synthesis of [FeIII(4-OMe-sal\textsubscript{2}323)]NO\textsubscript{3} (1a) and [FeIII(4-OMe-sal\textsubscript{2}323)]NO\textsubscript{3}·0.75MeCN·0.25MeOH (1a·S)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol/acetonitrile (1:1, 5 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (40.4 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\textsubscript{24}H\textsubscript{32}N\textsubscript{5}O\textsubscript{7}Fe, Theory % (Found %): C 51.62 (51.49); H 5.78 (5.54); N 12.54 (12.52).

S1.2 Synthesis of [FeIII(4-OMe-sal\textsubscript{2}323)]PF\textsubscript{6}·0.45H\textsubscript{2}O (1b)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and potassium hexafluorophosphate (27.6 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\textsubscript{24}H\textsubscript{32.90}N\textsubscript{4}O\textsubscript{4.45}F\textsubscript{6}PFe, Theory % (Found %): C 44.39 (44.23); H 5.11 (5.11); N 8.63 (8.55).

S1.3 Synthesis of [FeIII(4-OMe-sal\textsubscript{2}323)]OTf·0.27H\textsubscript{2}O (1c)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and lithium trifluoromethanesulfonate (23.4 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\textsubscript{25}H\textsubscript{32.52}N\textsubscript{4}O\textsubscript{7.26}F\textsubscript{3}SFe, Theory % (Found %): C 46.18 (46.19); H 5.04 (5.01); N 8.62 (8.55).

S1.4 Synthesis of [FeIII(4-OMe-sal\textsubscript{2}323)]ClO\textsubscript{4} (1d)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) perchlorate hexahydrate (36.3 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\textsubscript{24}H\textsubscript{32}N\textsubscript{4}O\textsubscript{8}Cl\textsubscript{Fe}, Theory % (Found %): C 48.38 (48.16); H 5.41 (5.31); N 9.40 (9.28).

S1.5 Synthesis of [FeIII(4-OMe-sal\textsubscript{2}323)]BF\textsubscript{4} (1e)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week.
Elemental analysis, calculated for C_{24}H_{32}BN_{4}O_{4}F_{4}Fe, Theory % (Found %): C 49.43 (49.55); H 5.53 (5.50); N 9.61 (9.44).

S1.6 Synthesis of [Fe^{III}(4-OMe-sal_{323})SbF_{6}·0.31H_{2}O] (1f)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and sodium hexafluoroantimonate (38.9 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C_{24}H_{32}N_{4}O_{4.31}FeF_{6}Sb, Theory % (Found %): C 39.08 (37.97); H 4.46 (4.41); N 7.59 (7.55).

S1.7 Synthesis of [Fe^{III}(4-OMe-sal_{323})]I_{3} (1g)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and sodium iodide (22.5 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.8 Synthesis of [Fe^{III}(4-OMe-sal_{323})]Cl·EtOH·0.25H_{2}O (1h)

4-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.9 Synthesis of [Fe^{III}(3-OMe-sal_{323})]NO_{3} (2a)

3-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (40.4 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C_{24}H_{32}N_{5}O_{7}Fe, Theory % (Found %): C 51.62 (50.71); H 5.78 (5.48); N 12.54 (12.11).

S1.10 Synthesis of [Fe^{III}(3-OMe-sal_{323})]BF_{4}·H_{2}O (2b)

3-Methoxysalicylaldehyde (304 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (338 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of
solvent over a week. Elemental analysis, calculated for C_{24}H_{34}BN_{4}O_{5}F_{4}Fe, Theory % (Found %): C 47.95 (48.06); H 5.70 (5.58); N 9.32 (9.28).

S1.11 Synthesis of [Fe^{III}(3-OMe-sal_{232}3)]PF_{6}·H_{2}O (2c)
3-Methoxysalicylaldehyde (304 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C_{24}H_{34}BN_{4}O_{5}F_{4}Fe, Theory % (Found %): C 43.72 (43.60); H 5.20 (5.02); N 8.50 (8.68).

S1.12 Synthesis of [Fe^{III}(5-OMe-sal_{323}3)]NO_{3} (3a)
5-Methoxysalicylaldehyde (30.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (40.4 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C_{24}H_{32}N_{5}O_{7}Fe, Theory % (Found %): C 51.62 (51.38); H 5.78 (5.73); N 12.54 (12.38).

S1.13 Synthesis of [Fe^{III}(5-OMe-sal_{323}3)]BF_{4} (3b)
5-Methoxysalicylaldehyde (304 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (404 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C_{24}H_{32}BN_{5}O_{7}Fe, Theory % (Found %): C 49.43 (47.60); H 5.53 (5.34); N 9.61 (9.43).

S1.14 Synthesis of [Fe^{III}(4,6-diOMe-sal_{323}3)]NO_{3}·MeOH (4a)
4,6-Dimethoxysalicylaldehyde (36.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (10 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (404 mg, 1 mmol) was added, a deep red color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.15 Synthesis of [Fe^{III}(4,6-diOMe-sal_{323}3)]BF_{4}·0.5MeOH (4b)
4,6-Dimethoxysalicylaldehyde (36.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (10 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep red color was observed. The solution was briefly
stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.16 Synthesis of [Fe(4,6-diOMe-sal$_2$)$_3$]ClO$_4$·0.5MeOH (4c)

4,6-Dimethoxysalicylaldehyde (36.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (10 mL), a yellow color was immediately observed. To this solution iron(II) perchlorate hexahydrate (36.3 mg, 0.1 mmol) was added, a deep red color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.17 Synthesis of [Fe(3-OEt-sal$_2$)$_3$]PF$_6$·EtOH (5a)

3-Ethoxysalicylaldehyde (33.2 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (10 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and potassium hexafluorophosphate (27.6 mg, 0.15 mmol) was added, a deep red color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.18 Synthesis of [Fe(3-OEt-sal$_2$)$_3$]BF$_4$·0.32H$_2$O (5b)

3-Ethoxysalicylaldehyde (33.2 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (10 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep red color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.19 Synthesis of [Fe(4-Et$_2$N-sal$_2$)$_3$]PF$_6$ (6b)

4-(Diethylamino)salicylaldehyde (38.6 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and sodium hexafluorophosphate (27.6 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{30}$H$_{46}$N$_6$O$_2$F$_6$PFe, Theory % (Found %): C 49.80 (49.79); H 6.41 (6.45); N 11.62 (11.50).

S1.20 Synthesis of [Fe(4-Et$_2$N-sal$_2$)$_3$]PF$_6$·0.78MeOH·0.1EtOH (6b·S)

4-(Diethylamino)salicylaldehyde (38.6 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in ethanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and sodium hexafluorophosphate (27.6 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was refluxed at 110 °C for 3 hours, and subsequently filtered. The solvent was removed by
rotary evaporation. Recrystallisation of the crude solid in the minimum acetonitrile/ethanol (1:1) yielded crystals suitable for SCXRD. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.21 Synthesis of [Fe^{III}(4-Et$_2$N-sal$_2$323)]OTf (6c)

4-(Diethylamino)salicylaldehyde (38.6 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and lithium trifluoromethanesulfonate (23.4 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for $C_{31}H_{46}N_6O_5F_3SFe$, Theory % (Found %): C 51.17 (51.07); H 6.37 (6.41); N 11.55 (11.43).

S1.22 Synthesis of [Fe^{III}(4-Et$_2$N-sal$_2$323)]BF$_4$ (6d)

4-(Diethylamino)salicylaldehyde (38.6 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for $C_{30}H_{46}N_6O_2F_4Fe$, Theory % (Found %): C 54.15 (54.27); H 6.97 (6.98); N 12.63 (12.56).

S1.23 Synthesis of [Fe^{III}(4-Et$_2$N-sal$_2$323)]BF$_4$·EtOH (6d·S)

4-(Diethylamino)salicylaldehyde (38.6 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in ethanol (5 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was refluxed at 110 °C for 3 hours, and subsequently filtered. The solvent was removed by rotary evaporation. Recrystallisation of the crude solid in the minimum acetonitrile/ethanol (1:1) yielded crystals suitable for SCXRD. Elemental analysis, calculated for $C_{32}H_{52}N_6O_3F_4Fe$, Theory % (Found %): C 54.02 (53.90); H 7.37 (7.54); N 11.81 (11.93).

S1.24 Synthesis of [Fe^{III}(4-Et$_2$N-sal$_2$323)]NO$_3$·CH$_2$Cl$_2$ (6e)

4-(Diethylamino)salicylaldehyde (193 mg, 1 mmol) and 1,2-bis(3-aminopropylamino)ethane (87 mg, 0.5 mmol) were briefly stirred in acetonitrile (20 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (202 mg, 0.5 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. A crude powder was collected which was recrystallized in dichloromethane. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for $C_{30}H_{46}N_7O_5Fe$, Theory % (Found %): C 56.25 (55.91); H 7.24 (7.54); N 15.31 (14.37).
S1.25 Synthesis of [Fe^{III}(3-Me-sal$_2$323)]ClO$_4$ (7a)

3-Methylsalicylaldehyde (27.2 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) perchlorate hexahydrate (36.3 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.26 Synthesis of [Fe^{III}(3-Me-sal$_2$323)]PF$_6$·0.68H$_2$O (7b)

3-Methylsalicylaldehyde (27.2 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (12.7 mg, 0.1 mmol) and potassium hexafluorophosphate (27.6 mg, 0.15 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. C$_{24}$H$_{33.36}$N$_4$O$_2$F$_{6.68}$PFe, Theory % (Found %): C 46.37 (46.74); H 5.41 (5.66); N 9.01 (8.75).

S1.27 Synthesis of [Fe^{III}(3-Me-sal$_2$323)]BF$_4$ (7c)

3-Methylsalicylaldehyde (27.2 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.28 Synthesis of [Fe^{III}(3-Allyl-sal$_2$323)]NO$_3$-MeCN (8)

3-Allylsalicylaldehyde (32.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 5 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (40.4 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.29 Synthesis of [Fe^{III}(3-Bu-sal$_2$323)]PF$_6$·EtOH (9a)

3-Tert-butyl salicylaldehyde (356 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{31}$H$_{47}$N$_4$O$_{2.5}$F$_3$PFe, Theory % (Found %): C 51.96 (51.23); H 6.61 (6.59); N 7.82 (8.19).
S1.30 Synthesis of [Fe\text{III}(3'-Bu-sal\text{2}323)]BF\text{4} (9b)

3-Tert-butyl salicylaldehyde (356 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (338 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\text{30}H\text{44}N\text{4}O\text{2}F\text{4}BFe, Theory % (Found %): C 55.03; H 5.53; N 7.77.

S1.31 Synthesis of [Fe\text{III}(sal\text{2}323)]Fe\text{Cl}\text{4} (10e)

Salicylaldehyde (244 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.32 Synthesis of [Fe\text{III}(sal\text{3}23)]BF\text{4} (10f)

Salicylaldehyde (24.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (33.8 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.33 Synthesis of [Fe\text{III}(5-Br-sal\text{3}23)]PF\text{6} (11a)

5-Bromosalicylaldehyde (402 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\text{22}H\text{26}N\text{4}O\text{2}F\text{6}PF\text{6}FeBr2, Theory % (Found %): C 36.63; H 3.91; N 7.60.

S1.34 Synthesis of [Fe\text{III}(5-Br-sal\text{3}23)]BF\text{4}·EtOH (11b)

5-Bromosalicylaldehyde (402 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (338 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C\text{24}H\text{32}N\text{4}O\text{3}BF\text{4}FeBr2, Theory % (Found %): C 38.07; H 4.44; N 7.71.
S1.35 Synthesis of [Fe^{III}(5-Br-sal$_{2}$323)]NO$_{3}$·iPrOH (11c)

5-Bromosalicylaldehyde (402 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (404 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{25}$H$_{34}$N$_{5}$O$_{6}$FeBr$_{2}$, Theory % (Found %): C 41.92 (41.84); H 4.50 (4.33); N 9.78 (7.90).

S1.36 Synthesis of [Fe^{III}(3,5-diBr-sal$_{2}$323)]NO$_{3}$·PrOH (12)

3,5-Dibromosalicylaldehyde (560 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (404 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{25}$H$_{32}$N$_{5}$O$_{6}$FeBr$_{4}$, Theory % (Found %): C 34.36 (33.15); H 3.69 (3.44); N 8.01 (8.02).

S1.37 Synthesis of [Fe^{III}(3,5-diCl-sal$_{2}$323)]BF$_{4}$·PrOH (13a)

3,5-Dichlorosalicylaldehyde (382 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (338 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{25}$H$_{32}$N$_{4}$O$_{3}$F$_{4}$Cl$_{4}$Fe, Theory % (Found %): C 41.65 (41.27); H 4.47 (4.54); N 7.79 (7.72).

S1.38 Synthesis of [Fe^{III}(3,5-diCl-sal$_{2}$323)]PF$_{6}$ (13b)

3,5-Dichlorosalicylaldehyde (382 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{25}$H$_{32}$N$_{4}$O$_{3}$F$_{6}$Cl$_{4}$Fe, Theory % (Found %): C 36.75 (37.58); H 3.36 (4.47); N 7.79 (9.93).

S1.39 Synthesis of [Fe^{III}(3,5-diI-sal$_{2}$323)]PF$_{6}$ (14)

3,5-Diiodosalicylaldehyde (748 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained
through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{22}$H$_{24}$N$_4$O$_2$FePFeI$_4$, Theory % (Found %): C 24.36 (24.54); H 2.23 (2.28); N 5.16 (4.93).

S1.40 Synthesis of [FeIII(3-NO$_2$-sal$_2$323)]PF$_6$·MeCN (15a)

3-Nitrosalicylaldehyde (334 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{24}$H$_{29}$N$_7$O$_6$F$_6$PFe, Theory % (Found %): C 40.47 (40.29); H 4.10 (4.06); N 13.76 (13.44).

S1.41 Synthesis of [FeIII(3-NO$_2$-sal$_2$323)]NO$_3$ (15b)

3-Nitrosalicylaldehyde (334 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) nitrate nonahydrate (404 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{22}$H$_{26}$N$_7$O$_8$Fe, Theory % (Found %): C 44.91 (44.02); H 4.45 (4.38); N 16.67 (16.75).

S1.42 Synthesis of [FeIII(5-NO$_2$-sal$_2$323)]PF$_6$·EtOH (16a)

5-Nitrosalicylaldehyde (334 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(III) chloride (162 mg, 1 mmol) and ammonium hexafluorophosphate (163 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{24}$H$_{32}$BN$_6$O$_7$Fe, Theory % (Found %): C 43.75 (43.60); H 4.89 (4.76); N 12.75 (12.68).

S1.43 Synthesis of [FeIII(5-NO$_2$-sal$_2$323)]BF$_4$·EtOH (16b)

5-Nitrosalicylaldehyde (334 mg, 2 mmol) and 1,2-bis(3-aminopropylamino)ethane (174 mg, 1 mmol) were briefly stirred in IMS and acetonitrile (1:1, 20 mL), a yellow color was immediately observed. To this solution iron(II) tetrafluoroborate hexahydrate (338 mg, 1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Elemental analysis, calculated for C$_{24}$H$_{32}$BN$_6$O$_7$F$_4$Fe, Theory % (Found %): C 43.75 (43.60); H 4.89 (4.76); N 12.75 (12.68).

S1.44 Synthesis of [FeIII(5-NO$_2$-sal$_2$323)]ClO$_4$·EtOH (16c)

5-Nitrosalicylaldehyde (33.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) perchlorate
hydrate (36.3 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.

S1.45 Synthesis of [Fe^{III}(3,5-NO_2-sal_2)]ClO_4·EtOH (17)

3,5-Dinitrosalicylaldehyde (42.4 mg, 0.2 mmol) and 1,2-bis(3-aminopropylamino)ethane (17.4 mg, 0.1 mmol) were briefly stirred in methanol (5 mL), a yellow color was immediately observed. To this solution iron(II) perchlorate hydrate (36.3 mg, 0.1 mmol) was added, a deep purple color was observed. The solution was briefly stirred to dissolve all solids, and subsequently filtered. Crystals were obtained through slow evaporation of solvent over a week. Too few crystals were obtained to carry out elemental analysis on the bulk sample.
S2 Single Crystal X-ray Diffraction Details

Table S2.1. Crystallographic details for 1 – 17.

Complex	1a	1a	1aS	1aS	1b	
CCDC No.	2166978	2166979	2166980	2166981	2166982	
Molecular Formula	C₃₂H₃₂N₄O₄[NO₃]⁻	C₃₂H₃₂N₄O₄[NO₃]⁻	C₃₂H₃₂N₄O₄Fe⁺[NO₃]⁻ x 0.75 (C₂H₃N) x 0.25 (C₂H₆O)	C₃₂H₃₂N₄O₄Fe⁺[NO₃]⁻ x 0.73 (C₂H₃N) x 0.27 (C₂H₆O)	C₃₂H₃₂N₄O₄Fe⁺[F₆P]⁻ x 0.45 (H₂O)	
Mᵣ (g mol⁻¹)	558.39	558.39	597.24	596.99	649.42	
T (K)	100(2)	293(2)	100(2)	293(2)	100(2)	
Crystal System	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	
Space Group	P2₁2₁2 (#18)	P2₁2₁2 (#18)	P2₁/n (#14)	P2₁/n (#14)	P2₁/c (#14)	
a (Å)	7.5176(4)	7.6624(2)	7.50006(6)	7.60475(5)	7.99259(9)	
b (Å)	12.1717(8)	12.2069(3)	17.0390(2)	17.0965(2)	20.8108(2)	
c (Å)	13.336(1)	13.5167(4)	21.7744(2)	22.0910(2)	16.0625(2)	
α (°)	90	90	90	90	90	
β (°)	90	90	138.035(8)	128.307(6)	135.990(7)	
γ (°)	90	90	90	90	90	
V (Å³)	1220.27(14)	1264.27(6)	2752.75(5)	2833.99(5)	2653.02(5)	
Z, Z'	2, 0.5	2, 0.5	4, 1	4, 1	4, 1	
Radiation Type	Cu Ka	Cu Ka	Cu Kα	Cu Kα	Cu Kα	
p (mm⁻¹)	5.437	5.428	4.873	4.734	5.894	
Crystal Size	0.080 x 0.050 x 0.020	0.086 x 0.036 x 0.031	0.295 x 0.120 x 0.110	0.162 x 0.127 x 0.111	0.295 x 0.162 x 0.043	
Reflections Measured, Independent Reflections	5887, 2536	6555, 2628	56379, 5796	35189, 5944	31711, 5554	
Rint	0.0457	0.0334	0.0382	0.0202	0.0324	
Data / Restraints / Parameters	2536 / 0 / 184	2628 / 0 / 171	5796 / 2 / 374	5944 / 4 / 374	5554 / 0 / 421	
GooF on F²	1.033	1.029	1.047	1.051	1.042	
Final R Indices [I>2σ(I)]	R₁ = 0.0372, wR₂ = 0.0882	R₁ = 0.0394, wR₂ = 0.1046	R₁ = 0.0318, wR₂ = 0.0852	R₁ = 0.0312, wR₂ = 0.0877	R₁ = 0.0337, wR₂ = 0.0851	
Apmax, Apmin (e Å⁻³)	0.278, -0.340	0.299, -0.339	0.832, -0.482	0.397, -0.311	0.475, -0.502	
Flack Parameter	0.511(8)°	0.502(9)°	--	--	--	
Complex	1c	1d	1d	1e	1f	
---------	----	----	----	----	----	
CCDC	2166983	2166984	2166985	2166986	2166987	
Molecular Formula	$\text{[C}_{24}\text{H}_{32}\text{N}_{4}\text{O}_{6}\text{Fe}]^\text{+}$	$\text{[C}_{24}\text{H}_{32}\text{N}_{4}\text{O}_{6}\text{Fe}]^\text{-}$	$\text{[C}_{24}\text{H}_{32}\text{N}_{4}\text{O}_{6}\text{Fe}]^\text{-}$	$\text{[C}_{24}\text{H}_{32}\text{N}_{4}\text{O}_{6}\text{Fe}]^\text{-}$	$\text{[C}_{24}\text{H}_{32}\text{N}_{4}\text{O}_{6}\text{Fe}]^\text{-}$	
M_r (g mol$^{-1}$)	650.23	595.83	595.83	649.42	737.63	
T (K)	100(2)	100(2)	200(2)	293(2)	100(2)	
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
Space Group	$P2_1/c$ (#14)					
a (Å)	8.05017(5)	7.39852(9)	7.47123(5)	7.4540(9)	8.13318(5)	
b (Å)	20.9777(2)	16.1939(2)	17.5694(2)	17.537(2)	21.0366(2)	
c (Å)	16.2883(1)	21.4358(3)	20.5528(2)	20.521(3)	16.0425(1)	
α (°)	90	90	90	90	90	
β (°)	97.8371(6)	95.064(1)	96.1464(6)	96.344(2)	96.3820(5)	
γ (°)	90	90	90	90	90	
V (Å3)	2724.98(4)	2558.22(6)	2682.35(4)	1640.96(2)	2727.77(4)	
Z, Z'	4, 1	4, 1	4, 1	4, 1	4, 1	
Radiation Type	Cu $K\alpha$	Cu $K\alpha$	Cu $K\alpha$	Mo $K\alpha$	Cu $K\alpha$	
μ (mm$^{-1}$)	5.818	6.183	5.897	0.631	12.856	
Crystal Size	0.193 × 0.118 × 0.071	0.207 × 0.104 × 0.045	0.252 × 0.149 × 0.114	0.40 × 0.10 × 0.10	0.119 × 0.085 × 0.028	
Reflections Measured, Independent Reflections	55717, 5729	26655, 5372	54881, 5654	14397, 3260	37818, 5744	
R_{int}	0.0543	0.0354	0.0309	0.0347	0.0327	
Data / Restraints / Parameters	5729 / 0 / 394	5372 / 0 / 345	5654 / 0 / 364	3260 / 0 / 354	5744 / 0 / 404	
GooF on F^2	1.066	1.037	1.075	1.031	1.040	
Final R Indices / I>2$s(I)$	$R_1 = 0.0347$, $wR_2 = 0.0947$	$R_1 = 0.0281$, $wR_2 = 0.0728$	$R_1 = 0.0344$, $wR_2 = 0.0942$	$R_1 = 0.0444$, $wR_2 = 0.1020$	$R_1 = 0.0243$, $wR_2 = 0.0588$	
$\Delta\rho_{max}$, $\Delta\rho_{min}$ (e Å$^{-3}$)	0.707, -0.654	0.284, -0.433	0.607, -0.435	0.469, -0.397	0.562, -1.474	
Complex	1g	1h	2a	2a	2b	
---------	----	----	----	----	----	
CCDC	2166988	2166989	2166990	2166991	2166992	
Molecular Formula	[C$_{24}$H$_{32}$N$_{4}$O$_{4}$Fe]$^{+}$[I$_{3}$$^{-}$] x C$_{2}H_{4}$O x 0.25 (H$_{2}$O)$_{p}$	[C$_{24}$H$_{32}$N$_{4}$O$_{4}$Fe]$^{+}$[Cl$^{-}$]	[C$_{24}$H$_{32}$N$_{4}$O$_{4}$Fe]$^{+}$[N O$_{3}$$^{-}$]	[C$_{24}$H$_{32}$N$_{4}$O$_{4}$Fe]$^{+}$[N O$_{3}$$^{-}$]	[C$_{24}$H$_{32}$N$_{4}$O$_{4}$Fe]$^{+}$[B F$_{4}$$^{-}$] x H$_{2}$O	
M_r (g mol$^{-1}$)	877.08	582.41	558.39	558.39	601.21	
T (K)	100(2)	100(2)	100(2)	100(2)	100(2)	
Crystal System	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic	
Space Group	P2$_1$/c (#14)	P2$_1$/c (#14)	Pccn (#56)	Pccn (#56)	P2$_1$/c (#14)	
a (Å)	18.8904(5)	7.3320(1)	8.2203(2)	7.5246(1)	7.6802(7)	
b (Å)	8.0120(1)	16.5758(2)	17.9327(3)	18.3978(2)	20.4717(19)	
c (Å)	20.1289(4)	22.3775(3)	17.1866(3)	19.1075(3)	16.5641(15)	
α (°)	90	90	90	90	90	
β (°)	108.588(3)	90.404(2)	90	90	99.897(2)	
γ (°)	90	90	90	90	90	
V (Å3)	2887.59(11)	2719.55(6)	2533.51(9)	2645.17(6)	2565.64(9)	
Z, Z'	4, 1	4.1	4, 0.5	4, 0.5	4, 1	
Radiation Type	Mo Ka	Cu Ka	Cu Kα	Cu Kα	Mo Ka	
μ (mm$^{-1}$)	3.766	5.720	5.237	5.016	0.661	
Crystal Size	0.143 x 0.060 x 0.042	0.321 x 0.048 x 0.036	0.272 x 0.050 x 0.042	0.158 x 0.103 x 0.064	1.00 x 0.60 x 0.50	
Reflections Measured, Independent Reflections	57637, 5893	27639, 5665	24801, 2660	12686, 2772	29091, 7471	
R_{int}	0.0779	0.0428	0.0980	0.0295	0.0399	
Data / Restraints / Parameters	5893 / 0 / 327	5665 / 0 / 309	2660 / 0 / 170	2772 / 0 / 171	7471 / 0 / 488	
Goof on F2	1.093	1.049	1.070	1.038	1.035	
Final R Indices [I>2σ(I)]	$R_I = 0.0391$, wR$_2 = 0.0996$	$R_I = 0.0325$, wR$_2 = 0.0849$	$R_I = 0.0636$, wR$_2 = 0.1564$	$R_I = 0.0316$, wR$_2 = 0.0877$	$R_I = 0.0358$, wR$_2 = 0.0853$	
Δp$_{max}$, Δp$_{min}$ (e Å$^{-3}$)	1.981, -1.475	0.479, -0.583	1.368, -1.265	0.265, -0.223	0.488, -0.471	
Complex	2c	3a	3a	3b	4a	
---------	----	----	----	----	----	
CCDC	2166993	2166994	2166995	2166996	2166997	
Molecular Formula	[C$_{24}$H$_{32}$N$_4$O$_4$Fe]·[F$_6$P]·xH$_2$O	[C$_{24}$H$_{32}$N$_4$O$_4$Fe]·[N O$_3$]·	[C$_{24}$H$_{32}$N$_4$O$_4$Fe]·[N O$_3$]·	[C$_{26}$H$_{36}$N$_4$O$_6$Fe]·[N O$_3$]··x(H$_2$O)	[C$_{26}$H$_{38}$N$_4$O$_6$Fe]·[N O$_3$]··x(H$_2$O)	
M_r (g mol$^{-1}$)	659.37	558.39	558.39	583.20	650.49	
T (K)	293(2)	100(2)	293(2)	100(2)	100(2) K	
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
Space Group	P2$_1$/c (#14)	P2/c (#13)	P2/c (#13)	P2/c (#13)	P2$_1$/c (#14)	
a (Å)	7.9224(6)	17.2266(3)	17.44550(10)	17.5340(15)	7.3600(2)	
b (Å)	20.7034(15)	8.2713(2)	8.33440(10)	8.408(7)	25.3852(5)	
c (Å)	17.0178(12)	17.9701(4)	17.91840(10)	17.3701(15)	15.8505(4)	
α (°)	90	90	90	90	90	
β (°)	101.514(1)	101.129(2)	100.5440(10)	96.424(2)	102.530(2)	
γ (°)	90	90	90	90	90	
V (Å3)	2735.1(3)	2512.34(9)	2561.30(4)	2544.4(4)	2890.90(12)	
Z, Z'	4, 1	4, 1	4, 1	4, 1	4, 1	
Radiation Type	Mo Kα	Mo Kα	Cu Kα	Mo Kα	Cu Kα	
μ (mm$^{-1}$)	0.694	0.655	5.180	0.661	4.754	
Crystal Size	0.60 × 0.50 × 0.40	0.237 × 0.149 × 0.111	0.214 × 0.077 × 0.052	0.80 × 0.20 × 0.20	0.090 × 0.060 × 0.040	
Reflections Measured, Independent Reflections	44903, 5975	36039, 8644	51335, 5380	16401, 6169	32913, 6025	
F$_{int}$	0.0234	0.0344	0.0196	0.0271	0.0734	
Data / Restraints / Parameters	5975 / 1 / 543	8644 / 0 / 337	5380 / 0 / 337	6169 / 0 / 472	6025 / 0 / 374	
Goof on F2	1.059	1.072	1.057	1.057	1.045	
Final R Indices	$R_f = 0.0336$, w$R_2 = 0.0868$	$R_f = 0.0372$, w$R_2 = 0.0821$	$R_f = 0.0286$, w$R_2 = 0.0827$	$R_f = 0.0422$, w$R_2 = 0.1005$	$R_f = 0.0515$, w$R_2 = 0.1181$	
Δmin, Δmax (e Å$^{-3}$)	0.397, -0.171	0.524, -0.495	0.29, -0.31	0.728, -0.319	0.658, -0.583	
Complex	4a	4b	4b	4c	5a	
----------	----	----	----	----	----	
CCDC	2166998	2167009	2167010	2167011	2167012	
Molecular Formula	[C\(_{26}\)H\(_{36}\)N\(_4\)O\(_6\)Fe]\(^+\)\([N O\(_3\)]\)\(^-\) \times C\(_4\)H\(_4\)O\(_2\)\)	[C\(_{26}\)H\(_{36}\)N\(_4\)O\(_6\)Fe]\(^+\)\([B F\(_4\)]\)\(^-\) \times C\(_4\)H\(_4\)O\(_2\)\)	[C\(_{26}\)H\(_{36}\)N\(_4\)O\(_6\)Fe]\(^+\)\([B F\(_4\)]\)\(^-\) \times C\(_4\)H\(_4\)O\(_2\)\)	[C\(_{26}\)H\(_{36}\)N\(_4\)O\(_6\)Fe]\(^+\)\([O_4\)Cl\)]\(^-\) \times C\(_4\)H\(_4\)O\(_2\)\)	[C\(_{26}\)H\(_{36}\)N\(_4\)O\(_6\)Fe]\(^+\)\([F_6P\)]\(^-\) \times C\(_2\)	
\(M_r\) (g mol\(^{-1}\))	638.47	659.27	659.27	715.47	715.47	
\(T\) (K)	298(2) K	100(2) K	100(2) K	100(2) K	100(2) K	
Crystal System	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	
Space Group	P2\(_1\)/c (#14)	P2\(_1\)/n (#14)	P2\(_1\)/n (#14)	P2\(_1\)/n (#14)	P2\(_1\)/n (#14)	
\(a\) (Å)	7.4389(3)	7.3608(1)	7.4703(2)	7.3704(1)	20.0400(2)	
\(b\) (Å)	25.334(1)	25.5467(5)	25.783(1)	25.957(1)	7.70456(7)	
\(c\) (Å)	16.0847(9)	15.9111(4)	16.1483(5)	15.8498(7)	20.7074(2)	
\(\alpha\) (°)	90	90	90	90	90	
\(\beta\) (°)	102.361(6)	103.313(2)	103.353(3)	102.906(4)	96.5038(8)	
\(\gamma\) (°)	90	90	90	90	90	
\(V\) (Å\(^3\))	2961.0(2)	2911.58(10)	3026.19(17)	2955.7(2)	3176.63(5)	
\(Z, Z'\)	4, 4	4, 1	4	1	4, 1	
Radiation Type	Cu Ka					
\(\mu\) (mm\(^{-1}\))	4.621	4.823	4.641	5.485	4.990	
Crystal Size	0.090 × 0.060 × 0.040	0.180 × 0.040 × 0.020	0.180 × 0.040 × 0.020	0.150 × 0.050 × 0.020	0.256 × 0.204 × 0.185	
Reflections Measured, Independent Reflections	14246, 4533	23209, 6013	28967, 5205	20771, 6204	37576, 6685	
\(R_{int}\)	0.0493	0.0462	0.0490	0.0735	0.0295	
Data / Restraints / Parameters	4533 / 0 / 374	6013 / 0 / 397	5205 / 28 / 407	6204 / 0 / 382	6685 / 0 / 407	
GoF on \(F^2\)	1.020	1.058	1.039	1.052	1.082	
Final \(R\) Indices \([I>2\sigma(I)]\)	\(R_I = 0.0557, wR_I = 0.1370\)	\(R_I = 0.0479, wR_I = 0.1287\)	\(R_I = 0.0596, wR_I = 0.1659\)	\(R_I = 0.0758, wR_I = 0.2043\)	\(R_I = 0.0720, wR_I = 0.1962\)	
\(\Delta \rho_{max}, \Delta \rho_{min} \) (e Å\(^{-3}\))	0.521, -0.372	0.729, -0.846	0.435, -0.550	0.871, -0.643	1.623, -0.850	
Complex	5b	6b	6b-S	6c	6c	
---------	----	----	------	----	----	
CCDC	2167013	2044253	2167014	2044252	2167015	
Molecular Formula	[C$_{26}$H$_{36}$N$_4$O$_4$Fe]·[BF$_4$]·x(H$_2$O)	0.315 (H$_2$O)	[C$_{30}$H$_{46}$N$_6$O$_2$Fe]·[BF$_4$]·y(P$_6$F$_6$)	0.78(C$_2$H$_2$N) x 0.1(C$_2$H$_6$O)	[C$_{30}$H$_{46}$N$_6$O$_2$Fe]·[BF$_4$]·y(P$_6$F$_6$)	0.78(C$_2$H$_2$N) x 0.1(C$_2$H$_6$O)
M_r (g mol$^{-1}$)	616.92	723.55	759.94	727.65	727.65	
T (K)	100(2)	100(2)	100(2)	100(2)	293(2)	
Crystal System	Monoclinic	Triclinic	Triclinic	Triclinic	Triclinic	
Space Group	Pn (#7)	P-1 (#2)	P-1 (#2)	P-1 (#2)	P-1 (#2)	
a (Å)	7.46133(5)	7.80570(7)	13.0164(2)	14.6609(2)	14.0529(1)	
b (Å)	11.00091(7)	13.8253(2)	16.1629(2)	14.6609(2)	14.0529(1)	
c (Å)	17.2247(1)	16.6288(2)	17.6941(2)	16.2660(2)	17.4409(1)	
α (°)	90	90	90	90	90	
β (°)	102.4789(6)	85.2660(7)	80.0716(8)	99.1600(7)	82.0484(7)	
γ (°)	90	88.3907(7)	89.3125(7)	91.9331(7)	89.7708(7)	
V (Å3)	1380.427(5)	1664.92(4)	3587.04(8)	1690.88(3)	1775.88(2)	
Z, Z'	2, 1	2, 1	2, 1	2, 1	2, 1	
Radiation Type	Cu Ka	Mo Ka	Cu Ka	Cu Ka	Cu Ka	
μ (mm$^{-1}$)	4.984	0.572	4.412	4.712	4.487	
Crystal Size	0.216 x 0.157 x 0.073	0.327 x 0.220 x 0.151	0.209 x 0.110 x 0.028	0.344 x 0.093 x 0.069	0.328 x 0.103 x 0.066	
Reflections Measured, Independent Reflections	27616, 5557	106699, 11880	91164, 15049	53375, 7090	69770, 7455	
R_{int}	0.0191	0.0338	0.0485	0.0370	0.0418	
Data / Restraints / Parameters	5557 / 2 / 376	11880 / 0 / 419	15049 / 0 / 907	7090 / 0 / 428	7455 / 0 / 428	
Goof on F^2	1.048	1.071	1.067	1.080	1.102	
Final R Indices [I>2σ(I)]	$R_I = 0.0208$, w$R_2 = 0.0548$	$R_I = 0.0316$, w$R_2 = 0.0767$	$R_I = 0.0466$, w$R_2 = 0.1277$	$R_I = 0.0273$, w$R_2 = 0.0735$	$R_I = 0.0391$, w$R_2 = 0.1132$	
Δρ$_{max}$/Δρ$_{min}$ (e Å$^{-3}$)	0.166, -0.253	0.525, -0.485	0.975, -0.651	0.423, -0.391	0.444, -0.417	
Flack Parameter	-0.0095(11)	---	---	---	---	
Complex	6d	6d-S	6e	7a	7b	
---------	----	------	----	----	----	
CCDC	2044257	2167016	2167017	2167018	2167019	
Molecular Formula	[C_{30}H_{46}N_{6}O_{2}Fe]\cdot[BF_4]-	[C_{30}H_{46}N_{6}O_{2}Fe]\cdot[BF_4]- x C_{2}H_{4}O\cdot	[C_{30}H_{46}N_{6}O_{2}Fe]\cdot[N O_{3}]- x C H_{2}Cl_{2}	[C_{24}H_{32}N_{4}O_{2}Fe]\cdot[BF_4]-	[C_{24}H_{32}N_{4}O_{2}Fe]\cdot[BF_4]- x 0.68 (H_{2}O)	
M_r (g mol^{-1})	665.39	711.45	725.51	563.83	621.69	
T (K)	100(2)	100(2)	100(2)	100(2)	100(2)	
Crystal System	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic	Monoclinic	
Space Group	P2_{1}/n (#14)	P2_{1}2_{1}2_{1} (#19)	P2_{1}2_{1}2_{1} (#19)	P2_{1}2_{1}2_{1} (#19)	C2/c (#14)	
a (Å)	7.6682(1)	7.6914(2)	7.65722(8)	8.42810(9)	13.3659(2)	
b (Å)	19.6632(4)	19.7983(4)	19.4470(2)	16.5915(2)	11.2845(2)	
c (Å)	21.3813(4)	23.0219(4)	23.1185(3)	17.8926(2)	17.3363(2)	
a (°)	90	90	90	90	90	
β (°)	91.087(2)	90	90	90	100.708(1)	
γ (°)	90	90	90	90	90	
V (Å^3)	3223.32(10)	3505.70(13)	3442.57(7)	2502.01(5)	2569.26(7)	
Z, Z'	4, 1	4, 1	4, 1	4	4, 0.5	
Radiation Type	Cu Kα					
μ (mm^{-1})	4.2470	3.981	5.348	6.225	6.003	
Crystal Size	0.248 × 0.073 × 0.050	0.178 × 0.039 × 0.023	0.305 × 0.047 × 0.038	0.144 × 0.037 × 0.023	0.204 × 0.188 × 0.084	
Reflections Measured, Independent Reflections	35206, 6776	17939, 7309	18331, 7175	26098, 5239	12503, 2674	
R_{int}	0.0627	0.0616	0.0346	0.0705	0.0191	
Data / Restraints / Parameters	6776 / 0 / 401	7309 / 0 / 401	7175 / 0 / 425	5239 / 0 / 327	2674 / 0 / 192	
GoF on F^2	1.040	0.967	1.051	1.019	1.124	
Final R Indices [I>2σ(I)]	R_I = 0.0487, wR_I = 0.1254	R_I = 0.0381, wR_I = 0.0743	R_I = 0.0608, wR_I = 0.1709	R_I = 0.0339, wR_I = 0.0778	R_I = 0.0259, wR_I = 0.0718	
Δρ_{max}, Δρ_{min} (e Å^{-3})	1.077, -0.659	0.246, -0.272	1.016, -1.380	0.264, -0.289	0.351, -0.448	
Flack Parameter	---	-0.006(3)	0.212(7)*	-0.023(3)	---	
Complex	7c	8	9a	9b	10e	
---------	----	---	----	----	-----	
CCDC	2167020	2167021	2167022	2167023	2167024	
Molecular Formula	[C_{24}H_{32}N_4O_2Fe]([BF_4])	[C_{30}H_{44}N_4O_2Fe]([NO_3])[F_6P]_2	[C_{30}H_{44}N_4O_2Fe]([BF_4])	[C_{22}H_{30}N_4O_2Fe]([Cl_4Fe])		
M_r (g mol$^{-1}$)	551.19	619.52	1433.09	635.35	633.98	
T (K)	100(2)	100(2)	293(2)	100(2)	100(2)	
Crystalline System	Orthorhombic	Monoclinic	Monoclinic	Tetragonal	Orthorhombic	
Space Group	P2_12_1_2 (#19)	P2_1/c (#14)	P2_1/c (#14)	P4_2_2_2 (#95)	P2_12_1_2 (#19)	
a (Å)	8.2990(1)	7.90357(9)	11.1204(9)	8.7437(16)	8.7437(16)	
b (Å)	16.6365(2)	17.0622(2)	34.653(3)	17.4070(3)	17.4070(3)	
c (Å)	17.9173(2)	22.6549(3)	17.6469(15)	42.142(15)	19.7425(3)	
α (°)	90	90	90	90	90	
β (°)	90	96.780(1)	103.925(2)	90	90	
γ (°)	90	90	90	90	90	
V (Å3)	2473.78(5)	3033.70(6)	6600.4(10)	3221.8(16)	2647.95(7)	
Z, Z'	4, 1	4, 1	4, 2	4, 0.5	4, 1	
Radiation Type	Cu Ka	Mo Ka	Mo Ka	Mo Ka	Mo Ka	
μ (mm$^{-1}$)	5.419	0.546	0.576	0.524	1.527	
Crystal Size	0.515 x 0.046 x 0.039	0.284 x 0.191 x 0.069	0.80 x 0.30 x 0.20	0.50 x 0.50 x 0.40	0.285 x 0.111 x 0.075	
Reflections Measured, Independent Reflections	25661, 5188	52588, 7801	10341, 10341	17421, 3800	18710, 6338	
R_{int}	0.0578	0.0259	0.0481	0.0625	0.0260	
Data / Restraints / Parameters	5188 / 0 / 335	7801 / 0 / 390	10341 / 0 / 855	3800 / 0 / 195	6338 / 0 / 312	
Goof on F^2	1.014	1.051	1.091	1.166	1.091	
Final R Indices [$I>2\sigma(I)$]	$R_f = 0.0315, wR_f = 0.0775$	$R_f = 0.0458, wR_f = 0.1291$	$R_f = 0.0487, wR_f = 0.1094$	$R_f = 0.0839, wR_f = 0.1875$	$R_f = 0.0295, wR_f = 0.0645$	
$\Delta P_{max}, \Delta P_{min}$ (e Å$^{-3}$)	0.267, -0.475	0.496, -0.703	0.606, -0.499	0.67, -1.08	0.648, -0.458	
Flack Parameter	-0.017(2)	---	---	0.44(6)a	-0.017(12)a	
Complex	10f	11a	11b	11c	12	
---------	-----	-----	-----	-----	----	
CCDC	2167025	2167026	2167027	2167028	2166999	
Molecular Formula	[C\textsubscript{22}H\textsubscript{28}N\textsubscript{4}O\textsubscript{2}Fe\textsubscript{2}]+B\textsubscript{F}_4-	[C\textsubscript{22}H\textsubscript{28}N\textsubscript{4}O\textsubscript{2}FeBr\textsubscript{2}]+Fe\textsubscript{2}P-	[C\textsubscript{22}H\textsubscript{28}N\textsubscript{4}O\textsubscript{2}FeBr\textsubscript{2}]+N\textsubscript{O}\textsubscript{3}-	[C\textsubscript{22}H\textsubscript{28}N\textsubscript{4}O\textsubscript{2}FeBr\textsubscript{2}]+N\textsubscript{O}\textsubscript{3}-	[C\textsubscript{22}H\textsubscript{28}N\textsubscript{4}O\textsubscript{2}FeBr\textsubscript{2}]+N\textsubscript{O}\textsubscript{3}-	
\(M\) (g mol\(^{-1}\))	523.14	739.11	727.02	716.24	874.05	
\(T\) (K)	100(2)	293(2)	293(2)	100(2)	100(2)	
Crystal System	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	
Space Group	P\textsubscript{2}1/c (#14)	P\textsubscript{2}1 (#4)	P\textsubscript{1} (#2)	P\textsubscript{2}1/n (#14)	P\textsubscript{2}1/n (#14)	
\(a\) (Å)	7.4795(2)	7.889(4)	8.5033(6)	18.7006(18)	10.6549(13)	
\(b\) (Å)	15.2664(4)	17.883(9)	9.8037(7)	8.0056(8)	14.3738(17)	
\(c\) (Å)	20.2861(6)	9.483(5)	17.5760(13)	38.606(4)	20.851(3)	
\(\alpha\) (°)	90	90	84.3930(10)	90	90	
\(\beta\) (°)	93.155(3)	92.588(8)	81.8850(10)	96.466(2)	103.324(2)	
\(\gamma\) (°)	90	90	90	90	90	
\(V\) (Å\(^3\))	2312.86(11)	1336.6(12)	1431.44(18)	5742.9(10)	3107.4(6)	
\(Z, Z'\)	4	2.1	2.1	4.2	4.1	
Radiation Type	Mo Ka					
\(\mu\) (mm\(^{-1}\))	0.712	3.684	3.378	3.356	5.676	
Crystal Size	0.291 x 0.188 x 0.177	0.50 x 0.30 x 0.20	0.50 x 0.30 x 0.10	0.80 x 0.80 x 0.30	0.60 x 0.50 x 0.40	
Reflections Measured, Independent Reflections	25697, 5944	22230, 6194	30801, 7599	104961, 13870	27008, 6785	
\(R_{int}\)	0.0323	0.0222	0.0244	0.0599	0.0742	
Data / Restraints / Parameters	5944 / 0 / 324	6194 / 1 / 344	7599 / 0 / 362	13870 / 0 / 731	6785 / 0 / 391	
GooF on \(F^2\)	1.054	1.040	1.032	1.103	1.029	
Final \(R\) Indices \([I \geq 2\sigma(I)]\)	\(R_I = 0.0330, wR_2 = 0.0767\)	\(R_I = 0.0329, wR_2 = 0.0854\)	\(R_I = 0.0387, wR_2 = 0.1041\)	\(R_I = 0.0409, wR_2 = 0.0960\)	\(R_I = 0.0447, wR_2 = 0.1025\)	
\(\Delta\rho_{max}, \Delta\rho_{min}\) (e Å\(^{-3}\))	0.387, -0.496	0.820, -0.302	0.941, -0.639	1.180, -0.899	1.270, -1.027	
Flack Parameter	---	0.497(6)*	---	---	---	
Complex	13a	13b	14	15a	15b	
-----------	------	------	------	-------	-------	
CCDC	2167000	2167001	2167002	2167003	2167004	
Molecular Formula	$[\text{C}_{32} \text{H}_{30} \text{N}_4 \text{O}_2 \text{Cl}_4 \text{Fe}^2]^+ \cdot [\text{B} \text{F}_4]^-$	$[\text{C}_{32} \text{H}_{30} \text{N}_4 \text{O}_2 \text{Cl}_4 \text{Fe}^2]^+ \cdot [\text{F}_6 \text{P}_3]^-$	$[\text{C}_{32} \text{H}_{30} \text{N}_4 \text{O}_2 \text{Cl}_4 \text{Fe}^2]^+ \cdot [\text{F}_6 \text{P}_3]^-$	$[\text{C}_{22} \text{H}_{26} \text{N}_6 \text{O}_6 \text{Fe}]^+ \cdot [\text{B} \text{F}_4]^-$	$[\text{C}_{22} \text{H}_{26} \text{N}_6 \text{O}_6 \text{Fe}]^+ \cdot [\text{F}_6 \text{P}_3]^-$	
M_r (g mol$^{-1}$)	721.01	719.07	1084.87	712.36	588.35	
T (K)	293(2)	100(2)	100(2)	293(2)	100(2)	
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
Space Group	P2/n (#13)	P2/n (#14)	P21/c (#14)	P21/n (#14)	Cc (#9)	
a (Å)	17.633(4)	10.8760(8)	9.0211(7)	8.8737(7)	10.3078(14)	
b (Å)	8.4837(17)	18.6961(13)	17.5555(14)	13.9089(11)	12.9869(17)	
c (Å)	21.240(4)	13.6869(9)	18.4041(15)	24.3218(19)	17.856(2)	
α (°)	90	90	90	90	90	
β (°)	96.596(4)	95.7120(10)	96.692(2)	93.6640(10)	99.035(2)	
γ (°)	90	90	90	90	90	
V (Å3)	3156.2(11)	2769.3(3)	2894.8(4)	2995.7(4)	2360.7(5)	
Z, Z'	4, 1	4, 1	4, 1	4, 1	4, 1	
Radiation Type	Mo Ka					
μ (mm$^{-1}$)	0.874	1.059	4.911	2.995(74)	2.3607(5)	
Crystal Size	1.00 x 0.50 x 0.30	0.60 x 0.50 x 0.02	0.30 x 0.10 x 0.03	0.60 x 0.30 x 0.03	0.50 x 0.40 x 0.02	
Reflections Measured, Independent Reflections	56846, 6890	62599, 8081	64939, 8443	49140, 6531	10803, 5513	
R_{int}	0.0204	0.0325	0.0335	0.0238	0.0324	
Data / Restraints / Parameters	6890 / 0 / 479	8081 / 0 / 457	8443 / 0 / 361	6531 / 0 / 440	5513 / 2 / 352	
Goof on F2	1.034	1.058	1.114	1.036	1.016	
Final R Indices [I>2σ(I)]	$R_I = 0.0402$, $wR_2 = 0.1055$	$R_I = 0.0413$, $wR_2 = 0.1008$	$R_I = 0.0332$, $wR_2 = 0.0803$	$R_I = 0.0465$, $wR_2 = 0.1237$	$R_I = 0.0404$, $wR_2 = 0.0836$	
$\Delta \rho_{max}$ / $\Delta \rho_{min}$ (e Å$^{-3}$)	0.472, -0.367	1.421, -0.647	2.429, -0.855	0.547, -0.398	0.749, -0.324	
Flack Parameter	---	---	---	---	0.015(14)	
The structure was refined as a two-component inversion twin. The solvent could not be modelled in terms of atomic sites. PLATON SQUEEZE was used to compensate for the spread electron density. The hydrogen atoms of the water molecules could not be detected.
S2.2 Bond Lengths and Distortion Parameters

Table S2.2. Summary of bond lengths and distortion parameters for 1 – 17.

Complex	1a	1a·S	1b	1c	1d	1e	1f	1g	1h
Temperature (K)	100	293	100	293	100	100	200	293	100

Bond Lengths (Å)

	Fe–Ophen	Fe–Nimin	Fe–Namine									
Fe–Ophen	1.908(2)	1.923(3)	1.8785(11)	1.8768(10)	1.878(1)	1.879(1)	1.881(1)	1.8748(12)	1.875(2)	1.874(1)	1.877(3)	1.878(11)
Fe–Nimin	1.982(2)	2.048(4)	1.9514(12)	1.9487(12)	1.958(2)	1.961(2)	1.956(1)	1.9568(16)	1.950(3)	1.947(2)	1.945(4)	1.9567(14)
Fe–Namine	2.051(3)	2.102(4)	2.0154(12)	2.0166(12)	2.020(1)	2.025(1)	2.023(1)	2.0221(15)	2.017(3)	2.022(2)	2.023(4)	2.0142(13)

Distortion Parameters (°)

	Σ	Θ	α	τ								
1a	34.26	52.06	24.13	25.22	25.78	25.63	21.83	27.34	26.62	27.79	25.33	29.23
1a·S	127.29	200.78	58.94	63.53	71.98	68.02	59.15	73.46	72.86	71.75	58.11	77.52
1b	49.39	50.93	44.29	45.89	45.55	39.50	40.91	41.24	40.89	41.92	43.77	40.73
1c	30.80	30.02	26.04	25.17	31.78	32.27	29.08	29.35	29.19	30.74	25.25	28.61
1d	26.84	26.10	26.88	26.13	27.39	29.28	30.21	26.13	25.44	29.24		
Complex	2a	2b	2c	2d	2e	3a	3b					
---------	------	------	------	------	------	------	------					
Temperature (K)	100	293	100	293	100	100	100	293	100			
Comment	Site I	Site II	Site I	Site II	Site I	Site II						
Bond Lengths (Å)												
Fe–O\textsubscript{phen}	1.870(1)	1.8778(10)	1.855(1)	1.877(1)	1.861(2)	1.893(1)	1.876(1)	1.874(1)	1.8767(10)	1.8798(10)	1.873(1)	1.875(1)
Fe–N\textsubscript{iminie}	1.959(2)	1.9578(14)	1.953(1)	1.954(1)	1.944(2)	1.945(1)	1.943(1)	1.944(1)	1.9420(12)	1.9514(11)	1.951(2)	1.959(2)
Fe–N\textsubscript{amine}	2.017(2)	2.0170(14)	2.024(1)	2.019(1)	2.012(2)	2.025(1)	2.014(1)	2.012(1)	2.0188(13)	2.0180(12)	2.010(2)	2.014(2)
Bond Lengths (Å)												
Fe–O\textsubscript{phen}	1.8922(19)	1.889(2)	1.881(2)	1.883(3)	1.885(4)	1.862(2)	1.879(15)	1.884(2)	1.878(1)	1.8802(15)	1.8728(14)	1.878(1)
Fe–N\textsubscript{iminie}	1.955(2)	1.947(3)	1.963(5)	1.946(4)	1.947(5)	1.950(3)	1.952(18)	1.952(3)	1.952(1)	1.9438(17)	1.9416(18)	1.954(1)
Fe–N\textsubscript{amine}	2.020(2)	2.016(3)	2.019(3)	2.012(4)	2.012(5)	2.016(3)	2.0258(19)	2.020(3)	2.023(1)	2.026(2)	2.0157(19)	2.024(1)
Distortion Parameters (°)												
Σ	35.59	29.20	28.65	28.27	30.71	29.90	21.94	24.24	29.92	23.86	28.51	26.47
θ	99.98	80.03	80.74	78.45	79.62	78.11	50.17	58.49	73.33	61.35	79.56	70.26
α	66.64	40.95	40.66	39.22	45.97	36.79	38.15	38.86	37.71	37.49	35.47	32.41
τ	28.33	28.88	36.52	28.17	35.02	27.90	33.43	30.52	26.18	30.18	27.84	29.56
Distortion Parameters (°)												
Σ	29.29	27.79	29.11	27.26	28.51	25.32	24.95	27.87	27.62	27.69	31.36	28.78
θ	83.14	73.82	79.30	70.69	77.47	70.20	76.39	72.14	71.25	67.81	81.93	77.34
α	38.96	40.07	40.77	41.63	41.89	45.55	50.55	57.75	51.24	50.24	50.97	56.33
τ	31.37	28.44	28.66	27.99	28.75	27.49	29.82	29.38	30.23	21.19	19.43	29.03
Complex	6c	6d	6dS	6e	7a	7b	7c	8	9a	9b	10a	
---------	----	----	-----	----	----	----	----	---	----	----	-----	
Temperature	293	100	100	100	100	100	100	100	100	293	100	
Comment												

Bond Lengths (Å)

Complex	6c	6d	6dS	6e	7a	7b	7c	8	9a	9b	10a	
Fe–Ophen	1.8768(13)	1.8671(16)	1.884(2)	1.885(3)	1.869(3)	1.878(1)	1.873(2)	1.8845(13)	1.904(2)	1.896(3)	1.919(6)	1.873(3)
Fe–Namin	1.9551(16)	1.9463(18)	1.946(3)	1.951(4)	1.946(3)	1.950(1)	1.943(2)	1.9821(15)	1.920(3)	1.921(2)	1.924(8)	1.944(4)
Fe–Namine	1.9564(16)	1.9479(18)	1.952(3)	1.967(4)	1.949(3)	1.948(2)	1.9833(15)	1.924(2)	1.917(2)	1.926(7)	1.957(4)	

Distortion Parameters (°)

Complex	6c	6d	6dS	6e	7a	7b	7c	8	9a	9b	10a		
Site I	27.53	30.17	26.20	26.07	26.82	24.00	27.18	25.72	21.94	24.24	19.58	28.27	
Site II	25.70	79.92	68.86	68.45	65.95	61.26	65.94	76.93	50.17	58.49	44.76	80.76	
α	52.66	54.14	51.90	52.24	48.97	40.11	49.46	31.74	32.46	32.08	49.39		
τ	26.43	25.00	26.26	26.00	26.00	17.73	27.28	25.49	25.55	22.94	16.47	20.29	28.16
Σ	26.38	29.50	25.80	30.81	26.89	28.44	28.50	28.61	27.38	24.87	28.50	28.84	
Complex	13b	14	15a	15b	16a	16b	16c	17					
---------	-----	----	-----	-----	-----	-----	-----	----					
Temperature (K)	100	100	293	100	293	293	100	100					
Comment													

Bond Lengths (Å)

	Fe–O_phen	Fe–N_amine	Fe–N_imine	Fe–N_amine	Fe–N_imine	Fe–N_amine							
	1.874(1)	1.879(2)	1.880(1)	1.887(2)	1.881(2)	1.886(3)	1.887(2)	1.889(1)					
	1.863(1)	1.874(2)	1.884(1)	1.890(2)	1.890(2)	1.900(3)	1.896(2)	1.891(1)					
	1.946(2)	1.950(3)	1.941(2)	1.950(3)	1.955(2)	1.959(3)	1.957(2)	1.951(1)					
	1.949(2)	1.945(3)	1.933(2)	1.957(2)	1.959(2)	1.956(2)	1.958(2)	1.955(1)					
	2.021(2)	2.011(3)	2.005(2)	2.008(2)	2.001(2)	1.999(3)	2.006(2)	2.008(1)					
	2.016(2)	2.007(3)	2.006(2)	2.004(3)	2.007(2)	2.017(3)	2.009(2)	2.003(1)					

Distortion Parameters (°)

	Σ	Φ	α	τ
	24.54	25.70	27.96	29.94
	24.05	22.36	21.02	27.75
	60.26	64.96	65.59	72.17
	63.44	58.70	56.65	76.98
	45.13	20.18	34.51	44.74
	26.07	26.67	26.66	21.29
	27.62	26.12	19.42	29.06
	26.34	26.24	30.54	27.21
	22.40	25.80	26.06	29.30
	28.88	25.58	24.98	
S2.3 Intermolecular Interactions

Table S2.3. Intermolecular hydrogen bonds for all complexes. Symmetry operations used to generate equivalent atoms are shown beneath each set of hydrogen bonds.

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
1b [Fe(4-OH-Me$_2$-sal)$_3$]PF$_6$·0.45H$_2$O				
O(5)–H(205)···O(4)	0.84	2.18	2.96(4)	155.6
O(5)–H(105)···F(5B)	0.84	2.17	2.91(2)	174.7
O(5)–H(105)···F(4B)	0.84	2.22	2.95(6)	145.3
N(2)–H(2)···O(5)#1	1.00	2.35	3.15(5)	160.7
N(2)–H(2)···F(4A)#1	1.00	2.40	3.15(4)	131.6
#1 x,1-y,z; #2 1-x,1-y,2-z				
1c [Fe(4-OH-Me$_2$-sal)$_3$]OTf·0.27H$_2$O				
N(2)–H(1N2)···O(6A)#1	0.87(2)	2.44(2)	3.04(8)	127.3(19)
N(2)–H(1N2)···O(6B)#1	0.87(2)	2.44(2)	3.14(7)	138(2)
N(3)–H(1N3)···O(9)#2	0.91(2)	2.31(2)	3.20(6)	167.3(19)
#1 x,1-y,3/2,z-1/2; #2 x,-y+3/2,z-1/2				
1d [Fe(4-OH-Me$_2$-sal)$_3$]ClO$_4$				
N(3)–H(3)···O(5)#1	1.00	2.22	3.07(4)	143.1
100 K – #1 x,y,z+1				
N(3)–H(3)···O(5)#1	1.00	2.26	3.07(5)	138.0
N(2)–H(1N2)···O(5)#2	1.00	2.21	3.06(3)	142.1
200 K – #1 x,y,z+1; #2 x,1-y,2-z				
1e [Fe(4-OH-Me$_2$-sal)$_3$]BF$_4$				
N(3)–H(1N3)···F(1)#1	0.91	2.29	3.07(2)	144.4
N(2)–H(1N2)···F(1)#2	0.91	2.30	3.05(5)	140.7
#1 x,1-y,z; #2 1-x,1-y,2-z				
1f [Fe(4-OH-Me$_2$-sal)$_3$]SbF$_6$·0.31H$_2$O				
N(3)–H(1N3)···F(5A)#1	1.00	2.35	3.13(2)	134.9
N(3)–H(1N3)···O(7)#2	1.00	2.44	3.39(2)	158.4
N(2)–H(1N2)···O(5)	1.00	2.50	3.47(8)	166.9
#1 x,1/2+y,1/2-z; #2 1-x,y,z				
1g 1373 [Fe(4-OH-Me$_2$-sal)$_3$]I$_3$				
N(2)–H(2)···I(2)#1	1.00	2.98	3.86(1)	147.3
N(3)–H(3)···I(2)#2	1.00	2.93	3.73(3)	137.6
#1 x,1+y,1/2-z; #2 1-x,1-y,2-z				
1h [Fe(4-OH-Me$_2$-sal)$_3$]Cl·EtOH·0.25H$_2$O				
N(3)–H(1N3)···Cl#1	1.00	2.54	3.25(14)	127.9
N(2)–H(1N2)···Cl	1.00	2.39	3.17(14)	134.8
#1 x,1+y,z				

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
2a [Fe(3-OH-Me$_2$-sal)$_3$]NO$_3$				
N(2)–H(1N2)···O(3)#1	1.00	2.30	3.09(4)	149.0
N(2)–H(1N2)···O(4)#2	1.00	2.19	3.092(5)	149.2
100 K – #1 x,1/2-y,1/2-z; #2 2-x+1/2,y,z-1/2				
N(2)–H(1N2)···O(4)	0.98	2.01	2.907(16)	150.7
293 K				
2b [Fe(3-OH-Me$_2$-sal)$_3$]BF$_4$·H$_2$O				
O(5)–H(1O5)···O(1)#1	0.76(3)	2.10(3)	2.83(16)	163(2)
O(5)–H(1O5)···F(3)	0.81(3)	2.90(3)	2.87(6)	162(2)
#1 x,1+y,1/2,-z+3/2				
2c [Fe(3-OH-Me$_2$-sal)$_3$]PF$_6$·H$_2$O				
O(5)–H(1O5)···O(1)	0.91(3)	2.08(4)	2.86(4)	143(4)
O(5)–H(1O5)···F(3A)	0.93(3)	2.11(5)	2.99(12)	156(2)
#1 x,1+y,1/2,z+3/2				
3a [Fe(4-OH-Me$_2$-sal)$_3$]NO$_3$				
N(4)–H(1N4)···O(7)#1	1.00	2.10	2.99(7)	148.4
#1 x,1+y,1/2,z+3/2				
3b [Fe(5-OH-Me$_2$-sal)$_3$]BF$_4$				
N(2)–H(1N2)···F(1)#1	0.78(2)	2.16(3)	2.89(2)	158(2)
#1 x,1+y,1/2,z+3/2				
4a [Fe(4,6-diOH-Me$_2$-sal)$_3$]NO$_3$·MeOH				
N(2)–H(1N2)···O(7)#1	1.00	2.17	2.95(4)	139.1
N(3)–H(1N3)···O(7)#2	1.00	2.05	2.98(4)	154.9
100 K – #1 x,1-y,3/2,z+1/2; #2 x,1-y,3/2,z+1/2				
N(2)–H(1N2)···O(7)#1	0.98	2.18	2.99(6)	140.1
N(3)–H(1N3)···O(7)#2	0.98	2.09	2.97(6)	148(8)
293 K – #1 x,1-y,3/2,z+1/2; #2 x,1-y,3/2,z+1/2				
4b [Fe(4,6-diOH-Me$_2$-sal)$_3$]BF$_4$·0.5MeOH				
N(2)–H(1N2)···F(1)	1.00	2.21	3.01(7)	136.5
N(3)–H(1N3)···F(1)#1	1.00	2.10	3.014(3)	151.3
100 K – #1 x,1+y,z				
N(2)–H(1N2)···F(1)	0.98	2.28	3.067(6)	137.0
N(3)–H(1N3)···F(1)#1	0.98	2.16	3.039(6)	147.8
293 K – #1 x,1+y,z				
D–H...A	d(D–H)	d(H...A)	d(D...A)	<(DHA)
---	---	---	---	---
4c [FeIII(4,6-diOMe-sal323)]ClO4·0.5MeOH	N(3)–H(1N3)...O(7)#1	1.00	2.15	3.050(7)
		#1 x+y,z		
5a [FeIII(3-OEt-sal323)]PF6·EtOH	N(2)–H(3)...O(5)#1	1.00	2.38	3.209(5)
	N(3)–H(3)...O(5)#1	1.00	2.28	3.257(5)
	#1 –x+1,–y+1,z			
5b [FeIII(3-OEt-sal323)]BF4·0.32H2O	O(5)–H(2O5)...F(2)#1	0.84	1.80	2.609(7)
	O(5)–H(1O5)...O(3)	0.84	2.17	2.986(6)
	N(3)–H(3)...F(1)#1	1.00	2.22	3.142(2)
	N(2)–H(2)...F(1)	1.00	2.29	3.086(2)
	#1 x+y,z			
6b [FeIII(4-NEt-sal323)]PF6	N(3)–H(3)...F(2)	1.00	2.35	3.174(1)
	N(4)–H(4)...F(1)#1	1.00	2.37	3.331(1)
	#1 x+y,z			
6bS [FeIII(4-NEt-sal323)]PF6·0.78MeCN·0.1EtOH	N(3)–H(3)...F(1)	1.00	2.15	3.100(3)
	N(4)–H(4)...F(7)#1	1.00	2.44	3.221(3)
	N(9)–H(9)...F(9A)	1.00	2.10	3.097(3)
	N(10)–H(10)...F(5)	1.00	2.30	3.126(2)
	#1 x+y,z			
6c [FeIII(4-NEt-sal323)]OTf	N(4)–H(4)...O(5)#1	1.00	2.14	3.039(15)
	#100 K – #1 –x+2,–y+1,z+1			
	N(4)–H(4)...O(4)#1	0.98	2.39	3.180(2)
	297 K – #1 –x+1,–y+1,z+1			
6d [FeIII(4-NEt-sal323)]BF4	N(3)–H(1N3)...F(4)#1	1.00	2.20	3.050(2)
	#1 +x+3/2,y–1/2,z+1/2			
6dS [FeIII(4-NEt-sal323)]BF4·EtOH	N(3)–H(1N3)...F(1)	1.00	2.20	3.118(4)
	N(4)–H(1N4)...F(1)#1	1.00	2.08	3.020(4)
	#1 x+y,z			
6e [FeIII(4-NEt-sal323)]NO3·CH3Cl	N(3)–H(1N3)...O(3)#1	1.00	2.05	2.970(7)
	N(4)–H(1N4)...O(3)#2	1.00	2.09	3.035(7)
	#1 x,y+1,z #2 x–1,y+1,z			

D–H...A	d(D–H)	d(H...A)	d(D...A)	<(DHA)	
7a [FeIII(3-Me-sal323)]ClO4	N(2)–H(1N2)...O(3)#1	1.00	2.11	3.061(4)	158.5
	N(3)–H(1N1)...O(4)#2	1.00	2.18	3.049(4)	144.4
	#1 x,1–y,–1,z #2 x,y–1,z				
7b [FeIII(3-Me-sal323)]PF6·0.68H2O	N(2)–H(1N2)...F(3)#1	0.87(2)	2.46(2)	3.279(2)	157(2)
	#1 x,1–y,–1/2+z				
7b [FeIII(3-Me-sal323)]BF4	N(2)–H(1N2)...F(4)#1	0.85(4)	2.18(4)	2.993(3)	160(4)
	N(3)–H(1N3)...F(2)#2	0.93(5)	2.22(5)	3.013(3)	142(4)
	#1 –x,y+1/2,z+1/2 #2 –x+1,y+1/2,z–1/2				
80982 [FeIII(3-Allyl-sal323)]NO3·MeCN	N(2)–H(1N2)...O(3)	0.93	2.25	3.145(2)	162.2
	N(3)–H(1N3)...O(3)#1	0.93	2.18	3.033(2)	151.2
	#1 x+y,z				
9a [FeIII(3-Bu-sal323)]PF6·EtOH	N(6)–H(6)...O(5A)#1	0.93	2.07	2.930(6)	152.7
	N(6)–H(6)...O(5B)#1	0.93	2.07	2.749(18)	128.8
	O(5A)–H(5A)...F(1)	0.84	2.00	2.838(5)	172.0
	O(5B)–H(5B)...F(1)	0.84	1.92	2.711(17)	156.1
	N(2)–H(2)...F(5)	0.93	2.44	3.227(3)	142.1
	N(7)–H(7)...F(3)	0.93	2.36	3.229(4)	155.3
	N(7)–H(7)...F(6)	0.93	2.54	3.204(4)	128.1
	#1 –x,–y+1,z				
9b [FeIII(3-Bu-sal323)]BF4	N(2)–H(1N2)...F(2)#1	0.91	2.07	2.913(9)	154.6
	N(3)–H(1N3)...F(1)#2	0.91	2.07	2.925(9)	155.3
	#1 x–1,y+1,z #2 x–1,y,z				
10e [FeIII(sal323)]FeCl3	N(2)–H(2)...Cl(3B)#1	0.93	2.55	3.365(7)	147.3
	N(3)–H(3)...Cl(3B)#2	0.93	2.41	3.287(6)	157.2
	N(2)–H(2)...Cl(3A)#1	0.93	2.54	3.398(2)	154.2
	N(3)–H(3)...Cl(3A)#2	0.93	2.47	3.304(2)	148.9
	#1 –x+1,y+1/2,z+1/2 #2 –x+1,y+1/2,z–1/2				
10f [FeIII(sal323)]BF4	N(3)–H(3)...F(3)#1	1.00	2.13	2.935(2)	136.4
	N(2)–H(2)...F(3)#2	1.00	2.26	3.069(2)	136.9
	#1 –x,y+1,z+1 #2 –x+1,y–1,z+1				
D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)	
---------	---------	---------	---------	---------	
11a [Fe(II)(5-Br-sal)]PF₆	N(2)-H(N2)...Br(2)#1	0.91	2.99	3.784(3)	146.0
	N(3)-H(N3)...Br(2)#2	0.91	2.95	3.635(3)	133.8
#1 -x,-2+y,1-z; #2 1-x,-1/2+y,1-z					
11b [Fe(II)(5-Br-sal)]BF₃ EtOH	O(3)-H(O3)...F(3)#1	0.82	2.12	2.902(4)	158.6
	N(3)-H(N3)...O(3)	0.83(4)	2.08(4)	2.899(4)	168(3)
	N(2)-H(N2)...F(3)#2	0.82(4)	2.24(3)	3.021(4)	159(3)
#1 x,y,-1,x #2 1+x,-1+y,z					
11c [Fe(II)(5-Br-sal)]NO₃ PrOH	N(2)-H(N2)...O(9)#1	0.84(3)	2.20(4)	2.980(3)	155(3)
	N(6)-H(N6)...O(7)	0.85(4)	2.16(4)	2.978(3)	163(3)
	O(11)-H(O11)...O(10)	0.78(4)	2.03(4)	2.812(3)	179(4)
	O(12)-H(O12)...O(5)#2	0.83(5)	2.00(5)	2.827(4)	173(4)
	N(3)-H(N3)...O(10)#1	0.84(3)	2.36(3)	3.036(3)	138(3)
	N(7)-H(N7)...O(5)#3	0.82(4)	2.41(4)	3.067(3)	138(3)
#1 -x,-y,-z+1; #2 -x+1,-y+1,-z+1; #3 x,1+y,z					
12 [Fe(III)(5-diBr-sal)]NO₃ PrOH	O(6B)-H(6B)...O(3)#1	0.84	2.18	2.879(5)	140.7
	O(6A)-H(6A)...O(3)#1	0.84	2.04	2.879(5)	175.8
	N(3)-H(N3)...O(5)	0.82(6)	2.17(6)	2.961(5)	161(5)
	N(2)-H(N2)...O(4)#2	0.77(6)	2.33(6)	3.064(5)	159(6)
#1 -x+1/2,y+1/2,-z+3/2; #2 3/2-x,-1/2+y,3/2-z					
13a [Fe(III)(5-diCl-sal)]BF₃ PrOH	O(3)-H(O3)...F(1)#1	0.82	1.99	2.801(3)	167.3
	N(4)-H(N4)...O(3)	0.88(3)	2.15(3)	2.933(3)	148(2)
	N(2)-H(N2)...F(2)#2	0.81(3)	2.17(3)	2.863(2)	144(2)
#1 -x+1,-y,-z+1; #2 x+1/2,-y+1,z,-1/2					
13b [Fe(III)(5-diCl-sal)]PF₆	N(3)-H(N3)...F(4)	0.82(3)	2.50(3)	3.269(3)	157(3)
	N(3)-H(N3)...F(4)	0.82(3)	2.50(3)	3.269(3)	157(3)
	N(2)-H(N2)...F(5)#1	0.80(3)	2.49(3)	3.263(3)	163(3)
#1 1/2+x,1/2-y,-1/2+z					
14 [Fe(III)(3,5-di-sal)]PF₆	N(2)-H(N2)...I(3)#1	0.93	3.11	3.989(3)	157.9
	N(3)-H(N3)...I(3)#2	0.93	3.08	3.947(3)	156.4
#1 x,1+y,z; #2 -x,y,1/2,-z+1/2					

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)	
15a [Fe(III)(5-NO₂-sal)]PF₆ MeCN	N(4)-H(N4)...O(6)#1	0.81(3)	2.25(3)	3.000(3)	155(3)
	N(3)-H(N3)...O(7)	0.93	2.05	2.927(3)	157.8
#1 -x+2,-y+1,-x+2					
15b [Fe(III)(5-NO₂-sal)]NO₃	N(3)-H(N3)...O(7)	0.93	2.00	2.922(3)	172.5
#1 x-1/2,y+1/2,x					
16a [Fe(III)(5-NO₂-sal)]BF₃ EtOH	N(3)-H(3)...O(7)#1	0.77(3)	2.24(3)	2.995(3)	167(3)
	O(7)-H(7)...F(5A)#2	0.82	2.33	3.117(6)	160.2
	N(4)-H(4)...F(5A)#1	0.81(3)	2.42(3)	3.209(5)	166(2)
#1 x+1,y,z; #2 x,y-1,z; #3 x,1+y,z					
16b [Fe(III)(5-NO₂-sal)]BF₃ EtOH	O(7)-H(7)...F(3)	0.82	2.16	2.945(7)	161.6
	N(3)-H(3)...O(7)#1	0.91	2.03	2.933(6)	171.4
	N(4)-H(4)...F(3)	0.91	2.12	3.010(6)	164.1
#1 x+1,y,z					
16c [Fe(III)(5-NO₂-sal)]ClO₄ EtOH	N(3)-H(1N3)...O(11)	1.00	1.91	2.905(3)	170.5
	N(4)-H(1N4)...O(7)#1	1.00	2.03	3.021(3)	172.6
	O(11)-H(11)...O(7)#2	0.84	2.05	2.860(3)	163.0
#1 x-1,y+1,z; #2 x,y+1,z					
17 [Fe(III)(3,5-diNO₂-sal)]ClO₄ EtOH	O(15)-H(15).O(13)#1	0.82(3)	2.04(3)	2.8485(19)	171(2)
	N(5)-H(5)...O(15)#2	0.87(2)	2.03(2)	2.8496(17)	156(2)
	N(4)-H(4)...O(12)#	0.85(2)	2.44(2)	3.035(2)	128(2)
	N(4)-H(4)...O(6)#	0.85(2)	2.55(2)	3.283(2)	146(2)
#1 -x+1,-y+1,-z+1; #2 x+1/2,-y+1/2,z+1/2; #3 x-1/2,-y+1/2,z-1/2					
Figure S2.1. Molecular structure of 3a showing the two unique cations, and the N–H…O hydrogen bonding existing between the amine N(2) and O(7) of the NO$_3^-$ anion. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms, except those involved in hydrogen bonding have been omitted for clarity. A similar motif is observed in 3b.

Figure S2.2. Partial packing diagram showing the formations of hydrogen bonding dimers through N–H…O interactions. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms, except those involved in hydrogen bonding have been omitted for clarity.
Table S2.4 Summary of bond lengths and distortion parameters of high spin FeIII cations with similar hexadentate ligands of differing backbone lengths.7,9

Complex	[Fe(5-Me-sal$_2$222)]PF$_6$	[Fe(4,6-diOMe-sal$_2$322)]ClO$_4$	[Fe(5-F-sal$_3$333)]Cl
Refcode	WOBWOA	ELANOV	FONFAS
Bond Length (Å)			
Fe–O$_{phen}$	1.9315(13)	1.906(2)	1.9426(9)
Fe–N$_{imine}$	2.1245(14)	2.045(3)	2.1398(11)
Fe–N$_{amine}$	2.2179(15)	2.144(3)	2.1837(11)
Distortion Parameters (°)			
Σ	93.87	74.62	57.97
Θ	325.88	301.84	230.34
S2.4 Hirshfeld Surface Analysis

Table S2.5. Relative contribution (%) of the various intermolecular interactions to the Hirshfeld surface in 1a – 1h.

Complex	1a	1aS	1b	1c	1d	1e	1f	1g	1h		
T (K)	100	293	100	293	100	100	100	100	100		
H···H	54.5	56.7	55.2	55.8	48	44.2	53.2	52.6	46.6	55.9	65.2
O···O	24	21.9	19.4	19.2	12.2	25.5	26.4	9.5	11.3	8.6	10.4
C···H	18.9	18.5	18.2	17.9	15.9	14.4	18.3	17.5	15.8	15.9	16.2
O···O	1.3	1.3	0.1	0.2	0.2	0.7	0.4	0	0.2	0	0
N···H	0.8	1	5.6	5.6	0.4	0.3	0.1	0.3	0.4	0	0
C···C	0.1	0.2	0.7	0.7	1.1	1.2	0.1	0	0.8	0.7	0
C···O	0.4	0.5	0.8	0.6	1.1	1.9	1.4	1.3	0.8	1.1	0
F···H	0	0	0	0	21.2	11.6	0	18.8	23.9	0	0
I···H	0	0	0	0	0	0	0	0	0	0	0
O···I	0	0	0	0	0	0	0	0	0	0	0
Cl···H	0	0	0	0	0	0	0	0	0	0	8

Figure S2.3. Hirshfeld surface analysis for 1a (i) and 1a-S (ii) at 293 K with two views of the cation for both. The surface is mapped with $d_{	ext{norm}}$ values of -0.4374 to 1.3143 a.u. (i) and -0.4014 to 1.3143 a.u. (ii). Contacts which are shorter than the van der Waals (vdW) radii of the contact atoms are shown in red on the surface and contacts longer than the vdW radii in blue. Contacts which are shorter than the vdW radii are indicated with a dashed blue line and labelled according to the contact atoms inside (white) and outside the surface (colored). Two-dimensional fingerprint plots delineated into H···O, H···C and C···H contacts, with d_e on the x-axis (distance from the surface to the closest internal atom) and d_i on the y-axis (distance from the surface to the closest external atom). The dashed lines on the plots refer to the vdW radii of the selected atoms.\(^{10}\)
S3 Magnetic Measurements

Figure S3.1. Magnetic susceptibility of 1a (black circles) and fitted to the Boltzmann equation (red line), which reveals a $T_1/2$ of 265 K.

Figure S3.2. EPR spectrum of a polycrystalline sample of 1a. The multi-line spectrum was obtained as the sample was polycrystalline and not ground.
Figure S3.3. 1H NMR spectra of 1a (a) and 1d (b) showing the shift in the DMSO-d_6 peaks. The peaks are labelled with their chemical shift in Hz.
S4 Quantum Chemistry Calculations

Table S4.1. XYZ coordinates of the optimized geometries of the $[\text{Fe}^{\text{III}}(\text{sal233})]^+$ and $[\text{Fe}^{\text{III}}(4\text{-OMe-sal233})]^+$ cations.

	Spin Sextet (S = 5/2, HS)	Spin Doublet (S = 1/2, LS)				
Fe	0.753843003	11.3530522	Fe	0.754629586	11.36497342	11.83157739
O	1.564473465	9.594799204	O	1.714348933	9.801990325	11.41333129
C	2.231623391	8.872033774	C	2.235046663	9.004601609	12.313942
H	2.250860061	7.463809671	C	2.472918117	7.650576837	12.00621678
H	1.71580756	7.009617282	H	2.228810088	7.314639728	10.99791359
C	2.935033898	6.682765715	C	2.982328274	6.77224674	12.95234917
H	2.926869141	5.597111369	H	3.135310184	5.726160248	12.68358647
C	3.641729985	7.271286844	C	3.307189359	7.213882943	14.24872211
H	4.177398339	6.649168254	H	3.711006655	6.516445476	14.98138754
C	3.659161845	8.651969099	C	3.133828903	8.548200169	14.5710333
H	4.219855565	9.126726498	H	3.421918128	8.91712783	15.55386287
C	2.960446988	9.475171379	C	2.598154405	10.864539	13.93720682
H	3.087241479	10.8994208	H	3.24332112	11.18924058	14.76599929
N	2.433772564	11.79420145	N	1.99181937	11.78798387	13.24471196
C	2.852935303	13.1894081	C	2.453456402	13.17027604	13.4139586
H	3.617295664	13.29593639	H	3.080219908	13.23646519	14.31648182
H	1.983480706	13.80172168	H	1.593540958	13.83725998	13.5487496
C	3.427521662	13.68190653	C	3.26819453	13.58947523	12.18735557
H	3.84041564	14.68972452	H	3.689759732	14.59592796	12.38173086
H	4.278206144	13.04062856	H	4.123268026	12.9147215	12.05385467
C	2.428642999	13.7736193	C	2.453486654	13.68400967	10.90177418
H	1.560090753	14.37713799	H	1.593788011	14.35190596	11.04591414
H	2.911609519	14.27107637	H	3.037398111	14.09742974	10.0887822
N	1.899601938	12.45458575	N	1.898252343	12.3745516	10.47253674
C	2.686677681	11.82146821	C	2.667517511	11.71405756	10.30435341
C	1.059156956	12.5403566	C	1.08978286	12.30525381	9.23466718
C	1.645965177	12.83722213	C	1.717587509	12.76071181	8.366179384
C	0.313804719	13.33441334	C	0.384486357	13.33215721	9.400663137
C	0.368192837	11.21013882	C	0.34303081	11.20676005	9.00996884
C	-0.242936427	11.2410689	C	-0.309328395	11.26900413	8.12401745
H	1.114337489	10.41065252	H	1.048254413	10.37740387	8.856343517
N	-0.439888809	10.8681815	N	-0.431004559	10.89136194	10.23657284
H	-1.227783535	11.52275807	H	-1.200666061	11.56576881	10.33197718
C	-0.965491777	9.481363169	C	-0.981777752	9.512272947	10.19379732
H	-0.092740554	8.814917454	H	-0.12215229	8.840186819	10.0696476
H	-1.470075397	9.315266363	H	-1.626624408	9.408199856	9.304966501
C	-1.930516727	9.159384917	C	-1.760206275	9.137144274	11.44957222
Spin Sextet (S = 5/2, HS)	Spin Doublet (S = 1/2, LS)					
---------------------------	---------------------------					
Fe	-1.095538255	Fe	-1.099611924			
	5.351638493		5.370314373			
	16.5790609		16.6153123			
O	-2.506513973	O	-2.467439498			
	6.483064688		6.515649925			
	16.0416698		15.81167197			
C	-3.084968733	C	-3.167015288			
	6.402125567		6.328411195			
	14.85581829		14.71339884			
C	-3.732873252	C	-3.658245382			
	7.547033755		7.46628319			
	14.34628164		14.00764237			
H	-3.7285427	H	-3.447411206			
	8.445065451		8.433070489			
	14.95980818		14.41436832			
C	-4.340294818	C	-4.395145506			
	7.514027552		7.275124487			
	13.08914813		12.83180158			
O	-4.958670596	O	-4.889286276			
	8.569274533		8.29011699			
	12.51364267		12.0897535			
C	-5.029789274	C	-4.668054309			
	9.79795049		9.63371932			
	13.24787185		12.5390101			
H	-5.57248741	H	-5.11912661			
	9.65904125		9.7961095			
	14.19555437		13.52007395			
H	-5.578876655	H	-5.158048093			
	10.49327413		10.27532644			
	12.60596219		11.80048079			
H	-4.02244983	H	-3.591913494			
	10.19517699		9.864176935			
	13.44830359		12.57434281			
C	-4.338569277	C	-4.67581263			
	6.329680135		5.976799279			
	11.3451647		12.3384152			
H	-4.827210436	H	-5.256900934			
	6.329680135		5.877814118			
	11.3451647		11.42310561			
C	-3.748664184	C	-4.22232806			
	5.19224566		4.881339352			
	12.83013427		13.03634298			
H	-3.777557581	H	-4.451376089			
	4.262865256		3.87790421			
	12.25089626		12.6716635			
C	-3.099490802	C	-3.456990487			
	5.19134094		5.011296057			
	14.0915383		14.22268335			
C	-2.670524029	C	-3.09430955			
	3.961384999		3.835768162			
	14.668313		14.9430301			
H	-3.057638957	H	-3.555413948			
	3.03958188		2.897016061			
	14.21165632		14.5924488			
N	-1.938558362	N	-2.30703995			
	3.83927948		3.773319373			
	15.74514971		15.98289848			
C	-1.972218233	C	-2.24789324			
	2.5504948		2.522755918			
	16.44130280		16.73341192			
H	-0.952283387	H	-1.198715163			
	2.230839441		2.20782917			
	16.68980239		16.82701749			
H	-2.413742777	H	-2.798556645			
	1.789846651		1.731277489			
	15.77874149		16.19653982			

[FeII(4-OMe-sal:323)]+
Table S4.2. Calculated Gibbs free energies (ΔG_{SCO}) upon SCO from the LS to HS state for the [FeIII(sal$_2$323)]$^+$ and [FeIII(4-OMe-sal$_2$323)]$^+$ cations.

	[FeIII(sal$_2$323)]$^+$	[FeIII(4-OMe-sal$_2$323)]$^+$
ΔE	+40.7	+40.2
ΔG_{corr}	-21.9	-21.8
ΔG_{SCO} (HS-LS)	+18.8	+18.4

S5 Powder X-ray Diffraction

Figure S5.1 Micro-powder XRD spectrum of 1a/1a-S recorded on the sample used in the magnetic susceptibility measurement. The simulated spectra for 1a and 1a-S from the single crystal XRD data are provided in red and grey respectively.

S6 Author Contribution

Conor T. Kelly: Conceptualization, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. Michael Griffin: Conceptualization, Formal Analysis, Investigation. Kane Esien: Investigation. Solveig Felton: Resources, Supervision. Helge Müller-Bunz: Formal Analysis, Investigation. Grace G. Morgan: Conceptualization, Resources, Writing – Review & Editing, Supervision, Project Administration, Funding Acquisition.
S6 References

1. Tooke, D. M.; Spek, A. L.; Ramu, K.; Reedijk, J., CCDC 808899: Experimental Crystal Structure Determination. CSD Communication 2011.

2. Kannappan, R.; Tanase, S.; Mutikainen, I.; Turpeinen, U.; Reedijk, J., Low-spin iron(III) Schiff-base complexes with symmetric hexadentate ligands: Synthesis, crystal structure, spectroscopic and magnetic properties. Polyhedron 2006, 25 (7), 1646-1654.

3. Howard-Smith, K. J.; Craze, A. R.; Badbhide, M.; Marjo, C. E.; Murphy, T. D.; Castignolles, P.; Wuhrer, R.; Li, F., Syntheses and Structure Investigations of 3d Transition Metal Complexes with a Flexible N,O,O-Donor Hexadentate Schiff-Base Ligand. Aust. J. Chem. 2017, 70 (5), 581-587.

4. Ito, T.; Sugimoto, M.; Ito, H.; Toriumi, K.; Nakayama, H.; Mori, W.; Sekizaki, M., A chelate ring size effect of spin states of iron(III) complexes with hexadentate ligands derived from salicylaldehyde and 4,8-diazaundecane-1,11-diamine(3,3,3-tet) or 4,7-diazadecane-1,10-diamine(3,2,3-tet), and their X-ray structures Chem. Lett. 1983, 12 (1), 121-124.

5. Hayami, S.; Matoba, T.; Nomiyama, S.; Kojima, T.; Osaki, S.; Maeda, Y., Structures and Magnetic Properties of Some Fe(III) Complexes with Hexadentate Ligands: in Connection with Spin-Crossover Behavior. Bull. Chem. Soc. Jpn. 1997, 70 (12), 3001-3009.

6. Butcher, R. J.; Pourian, M.; Jasinski, J. P., [2,2’-(2,6,9,13-Tetraazatetradeca-1,13-diene-1,14-diyldiphenolato]iron(III) chloride. Acta Crystallogr., Sect. E: Struct. Rep. Online 2007, 63 (11), m2742-m2743.

7. Pritchard, R.; Barrett, S. A.; Kilner, C. A.; Halcrow, M. A., The influence of ligand conformation on the thermal spin transitions in iron(III) saltrien complexes. Dalton Trans. 2008, (24), 3159-3168.

8. Sundaresan, S.; Kühne, I. A.; Kelly, C. T.; Barker, A.; Salley, D.; Müller-Bunz, H.; Powell, A. K.; Morgan, G. G., Anion Influence on Spin State in Two Novel Fe(III) Compounds: [Fe(5F-sal333)]X. Crystals 2019, 9 (1), 19.

9. Griffin, M.; Shakespeare, S.; Shepherd, H. J.; Harding, C. J.; Letard, J. F.; Desplanches, C.; Goeta, A. E.; Howard, J. A.; Powell, A. K.; Mereacre, V.; Garcia, Y.; Naik, A. D.; Muller-Bunz, H.; Morgan, G. G., A symmetry-breaking spin-state transition in iron(III). Angew. Chem. Int. Ed. 2011, 50 (4), 896-900.

10. Batsanov, S. S., Van der Waals Radii of Elements. Inorg. Mater. 2001, 37 (9), 871-885.