Prevalence and Genotype Analysis of Blastocystis hominis in Iran: A Systematic Review and Meta-Analysis

Ebrahim Badparva,1 Behrouz Ezatpour,2 Hossein Mahmoudvand,1 Masoud Behzadifar,3 Meysam Behzadifar,4 and Farnaz Kheirandish1

1Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, IR Iran
2Razi Herbal Medicines Research Center, Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, IR Iran
3Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, IR Iran
4Department of Public Health, Faculty of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, IR Iran

Corresponding author: Behrouz Ezatpour, Razi Herbal Medicines Research Center, Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, IR Iran. Tel: +98-6633204005, E-mail: bezatpour@gmail.com

Received 2016 January 26; Revised 2016 June 16; Accepted 2016 June 19.

Abstract

Context: Blastocystis hominis is a unicellular protozoan found commonly in the intestinal tract of humans and many other animals with multiple subtypes, which tend to be specific to the host. We aimed to apply a meta-analysis for studies of protozoan pathogens in order to obtain a general overview of the prevalence and genotype analysis of Blastocystis spp. in Iran.

Evidence Acquisition: International electronic databases such as PubMed, Scopus, ISI Web of Science, Ovid, Google scholar, and national databases including SID, Iranmedex and Magiran were searched from 2003 to 2015 for studies that reported the prevalence of B. hominis in Iran. We calculated prevalence estimates with 95% CIs and assessed heterogeneity between studies using the I2 statistic and the Cochran Q test.

Results: We included 40 eligible studies in this review. The pooled prevalence of Blastocystis hominis was 38% (95% CI: 33 - 43).

Conclusions: Unlike the world, a ST5 subtype of human cases is common and the reservoir seems to be cattle. ST2 has been found in birds in Iran. Further studies are needed to confirm these important findings and to clarify the possible pathogenesis and reveal whether this is an exception or the rule.

Keywords: Blastocystis hominis, Subtype, Epidemiology, Iran

1. Context

Blastocystis spp. is a unicellular, obligate anaerobic protozoan, which is observed in the human intestinal tract, and colonizes many vertebrates and invertebrates (1), which are considered as a reservoir host for humans (2). Over the past 100 years, Blastocystis spp. has had a varied taxonomic history, being described as a non-pathogenic yeast. In the 1970s to 1980s its biological and clinical properties were considered for the first time (3, 4). Despite a century has passed since its detection, only four morphological forms (cyst, granular, Vacuolar and amoeboid) and two transient stages (multi vacuolar and vacuolar) were detected, and there are many unknowns about it (5-7). Although many researchers have given credit to Blastocystis spp. as a pathogen (3, 8) and attributed symptoms such as abdominal pain, diarrhea, constipation, fatigue, vomiting, headaches, skin rash, joint pain and psychiatric illness to it (9-41), yet there is still much debate about the pathogenicity of this protozoan in humans. Many studies have verified water resistant thin-walled cysts (responsible for autoinfection) and water resistant thick-walled cysts in feces and contaminated water and food (12); this explains the importance of the oral-fecal route as the main form of transmission of Blastocystis spp. in human-human or animal- human transmission. Zoonotic transmission was reported in animals such as chicken, horse and pig (6, 12, 13). Blastocystis was recommended as one of the indicators of fecal contamination of source water by the World Health Organization (14). Based on morphological criteria, Blastocystis spp. isolates from animals and humans are almost indiscernible (3).

Based on differences in some properties such as host source, morphology, in vitro culture characteristics and/or phylogenetic analysis of SSU rRNA gene sequences of Blastocystis isolates, 17 subtypes (STs) from different mammalian, avian and amphibian species have been described, with subtype 1-9 being found in humans (15-17). Seven standardized ST-specific STS primers (STSγ) have been used in epidemiological studies and other studies on relevant factors such as hosts, transmission and zoonoses (15, 17). Only four of them are prevalent (ST1, ST2, ST3 and ST4) and show around 90% of the subtyped isolates. The majority of infections with Blastocystis spp. in humans are attributable to ST1, but infections with ST1, ST2 and ST4 are also frequent (18-20). ST1 to ST9 have been isolated only rarely from humans (2, 21, 22) while ST10 - ST17 have not been found in humans (23-25). Blastocystis hominis is a suggested name for the organism isolated from human fecal by Brumpt (26). Various studies have demonstrated that humans with close animal contact (food and animal handlers) have a higher risk of infection with Blastocystis spp. (2, 3, 27, 28).

Although B. hominis was obtained from many studies...
on fecal samples (29), no review study has been done on prevalence and genotype analysis in Iran. Against this background, we performed a systematic review of the literature to identify the situation of this parasite in Iran. This study could help policy makers with an evidence-based summary of the primary literature on decisions.

2. Evidence Acquisition

2.1. Search Strategy

PubMed, Scopus, ISI Web of Science, Ovid, Google scholar, and national databases including SID, Iranmedex and Magiran were searched for studies in English and Persian language to identify prevalence B. hominis in Iran, until July 2015. The following search terms were used: “Blastocystis hominis” OR “Blastocystis” AND “prevalence” OR “epidemiology” AND “Iran”. English and Persian language articles were recognized by two independent researchers and the appropriate studies were carefully chosen for evaluation.

2.2. Inclusion Criteria and Trial Selection

We included population-based studies that reported the prevalence of B. hominis among the Iranian population, including case reports, case-series, and letter to editor while non-Iranian studies were excluded.

2.3. Quality Assessment

The quality of the retrieved studies was assessed using the STROBE (30).

2.4. Data Extraction

Two of the authors independently extracted data from the selected papers and disagreements were resolved by discussions between the authors. The extracted information from the studies included the first author, year of publication, sample size, the study population, prevalence of intestinal parasites, prevalence of studies, and study region. Four hundred and thirteen potentially related studies were identified from the initial searches, but only 40 studies were included in the meta-analysis. The article selection procedure is shown in Figure 1.

2.5. Statistical Analysis

We estimated prevalence using the meta-analysis random effect models method (using the DerSimonian and Laird method) with confidence interval heterogeneity between studies assessed by using I square and Cochran’s Q tests. Publication bias was examined by egger test and funnel plot. P < 0.05 was considered significant. To ensure the robustness of the results, a sensitivity analysis was performed. This was done to demonstrate the impact of any study done on the final result. To this end, a study came out and then a sensitivity analysis was performed in its absence. The analyses were conducted with STATA software, version 12 (Produced by StataCorp, USA) (9, 31-69).

3. Results

In this meta-analysis, 40 studies published between 2003 and 2015 were identified and entered into the final analysis, to measure the prevalence of B. hominis among symptomatic patients and asymptomatic individuals. Quality assessment showed that 25 articles (62.5%) had good quality, eight articles (20%) had medium quality and seven articles (18.5%) had poor quality. It seemed that in the reported results, publication bias occurred (P = 0.001). The total prevalence of B. hominis was 3% (95% CI, 3 · 3). The results showed that this relationship was not statistically significant; however, B. hominis prevalence rate decreased during this period. The results showed that prevalence of blastocystosis had a decreasing trend in Iran. The performed studies are presented in Tables 1 and 2 along with three illustrations.

Blastocystis hominis is presumably the most common protozoan found in human faecal samples of both symptomatic patients and asymptomatic individuals worldwide. Blastocystis infection rate has a prevalence ranging from1.5% to 20% in industrialized countries, whereas in developing countries the rate is 30% to 50% (70). Blastocystis spp. is now recognized as an emerging zoonosis by many researchers (12). Regarding the pathogenic potential of Blastocystis, it was widely debated in the literature during the last two decades because the organism can be found in both symptomatic and asymptomatic patients. Our study demonstrated that the prevalence of Blastocystis spp. rate in Iran was 3% between 2003 and 2015. The prevalence of B. hominis in the USA has decreased significantly over the last two decades from 2.6 to 23%, which may be epidemiologically significant; and increasing prevalence rates were also noted in the recent years. This prevalence rate was in line with other studies from Switzerland (16.7% - 19.0%) (71) and Taiwan (20.4) (72), yet the rate reported from Chile (61.8%) (73) and Albanian (54.5%) (74) was considerably higher than our results.

In epidemiological studies, genomic researches are more advantageous than other methods; because, firstly they are more sensitive and able to detect all the morphological forms, live and dead microorganisms (22), secondly, these studies are the only way to identify the subtypes of microorganisms (2, 15, 27) and thirdly, they can act as a complement to previous studies. Moreover, diagnoses of

Arch Clin Infect Dis. 2017; 12(1):e36648.
Table 1. The Incidence and Prevalence of the Intestinal Parasite Blastocystis Relative to Other Parasites and Year of Distribution

Reference	Region	Number of Stool Samples	The Study Population	Prevalence of Intestinal Parasites	Prevalence of Blastocystis	Level
(Arani et al. 2008)	Tehran	4371	Patients	10.7	54.5	First
(Ebadi et al. 2007)	Yazd	1500	Children ≤ 14 years	8.5	40.3	First
(Daryani et al. 2006)	Northwest of Iran	1070	School children	52	26.2	First
(Karehkanani et al. 2011)	Buarder Abian	856	Rural inhabitants	48.8	25.5	First
(Noghavi et al. 2006)	Shiraz	39	Food handlers	59.6	25.4	First
(Khalili et al. 2004)	Shahre Kord	160	Hospitalized children	36.25	21	First
(Darast et al. 2005)	Ardabil	286	Mental disabilities	44	19	First
(Rostami et al. 2002)	Gorgan	800	School children	28.8	15.2	First
(Abedi et al. 2006)	Tehran	1000	Patients	26.2	12.8	First
(Sabati et al. 2004)	Ahvaz	420	School children	25.5	12.5	First
(Jafari et al. 2006)	Isfahan	652	Patients	10.42	7.36	First
(Neghab et al. 2006)	Shiraz	59.4	Food handlers	25.4	12.5	First
(Khalili et al. 2004)	Shahre Kord	160	Hospitalized children	36.25	21	First
(Daryani et al. 2005)	Ardabil	286	Mental disabilities	44	19	First
(Kia et al. 2006)	Isfahan	652	School children	27.7	10.2	Second
(Rostami et al. 2007)	Yazd	2858	Patients	10.4	6.1	First
(Ebadi et al. 2008)	Yazd	13388	Patients	8.6	15.51	Third
(Khoosha, Bagherian et al.)	Khorramshad	174	Subtype 1	48 (27.5%)	-	-
(Akhlaghi et al. 2009)	Tehran	1070	Primary school students	27.7	10.2	Second
(Lorestan (Badparva, 2014)	Ardabil	1055	Rural inhabitants	25	9.0	Second
(Kia et al. 2008)	Khorramshad	1555	Rural inhabitants	25	9.0	Second
(Tehran (Lorestan, 2015))	Tehran	1070	Primary school students	27.7	10.2	Second
(Kheirandish et al. 2014)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Zali et al. 2004)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Mafi et al. 2014)	Tehran	4200	Patients	2.4	0.5	Third
(Jafari et al. 2015)	Khorramshad	511	Patients	6.5	15.51	Third
(Kheirandish et al. 2014)	Khorramshad	101	Patients	19.8	5.9	Second
(Haghighi et al. 2009)	Urmia	410	Patients	7.6	2.5	Second
(Hamidian, Saderian, 2011)	Urmia	1308	Patients	6.5	15.51	Third
(Kia et al. 2008)	Khorramshad	1070	Primary school students	27.7	10.2	Second
(Haghighi et al. 2009)	Khorramshad	1555	Rural inhabitants	25	9.0	Second
(Tehran (Lorestan, 2015))	Tehran	1070	Primary school students	27.7	10.2	Second
(Kheirandish et al. 2014)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Zali et al. 2004)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Mafi et al. 2014)	Tehran	4200	Patients	2.4	0.5	Third
(Jafari et al. 2015)	Khorramshad	511	Patients	6.5	15.51	Third
(Kheirandish et al. 2014)	Khorramshad	101	Patients	19.8	5.9	Second
(Haghighi et al. 2009)	Urmia	410	Patients	7.6	2.5	Second
(Hamidian, Saderian, 2011)	Urmia	1308	Patients	6.5	15.51	Third
(Kia et al. 2008)	Khorramshad	1070	Primary school students	27.7	10.2	Second
(Haghighi et al. 2009)	Khorramshad	1555	Rural inhabitants	25	9.0	Second
(Tehran (Lorestan, 2015))	Tehran	1070	Primary school students	27.7	10.2	Second
(Kheirandish et al. 2014)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Zali et al. 2004)	Khorramshad	280	Hospitalized children	10.5	5	Second
(Mafi et al. 2014)	Tehran	4200	Patients	2.4	0.5	Third
(Jafari et al. 2015)	Khorramshad	511	Patients	6.5	15.51	Third
(Kheirandish et al. 2014)	Khorramshad	101	Patients	19.8	5.9	Second
(Haghighi et al. 2009)	Urmia	410	Patients	7.6	2.5	Second
(Hamidian, Saderian, 2011)	Urmia	1308	Patients	6.5	15.51	Third

Table 2. The Relative Distribution of Blastocystis spp. Subtypes (1 - 7) Infecting Humans in Different Geographic Regions of Iran, Based on Four Studies

Province [Reference]	Number of Stool Samples	Subtype 1	Subtype 2	Subtype 3	Subtype 4	Subtype 5	Subtype 6	Subtype 7	Unknown Subtype/Mixed Subtype
Tehran (Mousavi, 2012)	174	48 (27.5%)	7 (4%)	51 (30.3%)	-	33 (19%)	-	-	16 (9.2%)
Lorestan (Badparva, 2014)	30	-	4 (13.3%)	7 (23%)	-	6 (20%)	-	-	3 (10%)
Hamadan (Saderian, 2011)	46	23 (51.7%)	17 (37.2%)	8 (17.3%)	-	-	-	-	3 (6.5%)
Total	285 (100%)	91 (31.8%)	14 (4.9%)	90 (31.8%)	-	43 (15.0%)	-	-	40 (14.1%)
subtypes that in special conditions tend to specific host only perform in genomic studies (2, 15, 17, 27, 28). To the best of our knowledge, this is the first review study on epidemiology of *Blastocystis* spp. in Iran. In this study, we reviewed all studies focusing on the prevalence and significance of intestinal parasite infections among different age groups, geographical, continental and cultural conditions in Iran in the last decade. In addition, we also investigated a few studies about the genomic properties of *Blastocystis* that were done in this region. The results showed that the average prevalence rate of *B. hominis* by common diagnostic methods (wet mount, concentration assays and in some cases staining methods) is 12.25%. Previous studies demonstrated that this rate in industrialized countries is 1.5 to 20% (70, 75), while it is 30% - 50% in developing countries (75). In 38.9% of studies, which investigated parasitic infection, *B. hominis* was the most common intestinal parasite and in 94.3%, it was the first to third most common parasite. Accordingly, the prevalence rate of *B. hominis* is higher than other intestinal parasites in Iran. In the USA, the prevalence of this protozoan increased from 2.6 to 23% in the recent 20 years. In some states it is known as an emerging parasite and a hygiene warning (12, 76, 77). The interesting point is that, despite hygiene promotion, the prevalence of parasites, which have been transmitted in similar ways, has decreased (32). This may be due to unknown transmission pathways and it needs more studies to clarify the matter. There has been less attention to *B. hominis* in the diagnostic and training field in Iran and clinicians do not believe in pathogenicity and its treatment that may play a role in increasing its prevalence.

Result of only three genomic studies that were performed in Iran (36, 60, 64) are similar to many studies performed in other regions of the world that have reported ST3 as the most common subtype of *B. hominis* in the world (7% - 92%) (78, 79). Some researchers have attributed ST3 to urticaria, HIV and cancer (80). However, 13.3% of bovine *Blastocystis* subtypes are ST3 in Iran (81) that may influence the dissemination and transmission between the two hosts. Although, the second and third subtypes were ST1 and ST5, they have not been reported in all studies in Iran. Furthermore, ST1 is known as a pathogenic subtype in patients with gastrointestinal symptoms (20, 78, 79). Mostly, ST5 has been found in cattle and pigs (2) and it has been reported in some regions such as Sweden (82). Since 98% of the Iranian population are Muslims and pork is rarely consumed because it goes against Islamic law, and on the other hand, 60% of bovine subtypes is ST3 in Iran (81), it is inferred that cattle can be the host of ST5 in the region.

4. Conclusions

Another subtype, which was found in this study, was ST2 that is considered as the second most common subtype around the world (27), but the relationship between human and monkeys is infrequent in Iran. Since geographical distribution of ST2 is similar to ST3 in Iran, it is likely that their ways of transmission is very similar. Some conflicting reports have been published on the pathogenesis of ST2. There are several studies verifying its high degree.
of infectivity (19), whereas some others have not confirmed the infectivity of ST2 (17). Although, ST6 and ST7 are known as the bird subtypes (83), in a study on birds, ST2 was also reported as a bird subtype (84). Future studies should reveal whether this is an exception or the rule. It should be pointed out that in the study conducted on birds of Khor-
To ensure strong results, we removed one of the studies to analyze the sensitivity. When the Asghari et al. study (31) was excluded, the overall prevalence did not change.

Although Blastocystis genomic studies on humans and animals are common in many regions of the world, these studies are rare in Iran and belong to the recent years.
and limited to some specific areas in the country (36, 60, 64). We hope that similar investigations will be expanded in the future to collect more useful information to help health policy makers in this region to better understand the prevalence and pattern of the disease.

Acknowledgments

This study was financially supported by the Deputy of Research and Technology Affairs, Lorestan University of Medical Sciences.

Footnote

Conflict of Interest: None of the authors had conflict of interest.

References

1. Yoshikawa H, Wu Z, Howe J, Hashimoto T, Geok-Choo N, Tan KS. Ultrastructural and phylogenetic studies on Blastocystis isolates from cockroaches. J Eukaryot Microbiol. 2007;54(1):33-7. doi: 10.1111/j.1550-7408.2006.00041.x. [PubMed: 17300516].

2. Yan Y, Su S, Ye J, Lai X, Lai R, Liao H, et al. Blastocystis sp. subtype 5: a possibly zoonotic genotype. Parasitol Res. 2007;101(6):1527-32. doi: 10.1007/s00436-007-0672-y. [PubMed: 17665214].

3. Tan KS. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev. 2008;21(4):639-65. doi: 10.1128/CMR.00022-08. [PubMed: 18854485].

4. Zierdt CH. Blastocystis hominis-past and future. Clin Microbiol Rev. 1999;11(4):61-79. [PubMed: 20043448].

5. Dunn LA, Boreham PF, Stenzel DJ. Ultrastructural variation of Blastocystis hominis stocks in culture. Int J Parasitol. 1989;19(1):43-56. [PubMed: 2707692].

6. Singh M, Suresh K, Ho LC, Ng GC, Yap EH. Elucidation of the life cycle of the intestinal protozoon Blastocystis hominis. Parasitol Res. 1995;81(5):446-50. [PubMed: 7501648].

7. Tan TC, Suresh KG. Evidence of plasmotomy in Blastocystis hominis. Parasitol Res. 2007;101(6):1521-5. doi: 10.1007/s00436-007-0670-0. [PubMed: 17701428].

8. Andiran N, Akcikgoz ZC, Turkyil S, Andiran F. Blastocystis hominis: an emerging and imitating cause of acute abdomen in children. Parasitol Vectors. 2014;7(1):261-5. doi: 10.1186/1756-3305-7-261. [PubMed: 24169810].
30. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. [The Strengthening the Reporting of Observational Studies in Epidemiology [STROBE] statement: guidelines for reporting observational studies]. *Gac Sanit.* 2008;22(2):144–50. [PubMed: 18420004].

31. Asgari G, Nateghpour M, Rezaian M. Prevalence of intestinal parasites in the inhabitants of Islam-Shahr district. *J School Public Health Inst* Public Health Res. 2003;1(3):67–74.

32. Akhlaghi L, Shamseddin J, Meamar AR, Razmjou E, Oormazdi H. Frequency of intestinal parasites in Tehran. *Iranian J Parasitol.* 2009;4(2):44–7.

33. Arani AS, Alaghebehbandan R, Akhlaghi L, Shahi M, Lari AR. Prevalence of intestinal parasites in a population in south of Tehran, Iran. *Rev Inst Med Trop Sao Paulo.* 2008;50(3):345–9. [PubMed: 18604414].

34. Asmar M, Ashrafi K, Amintahmashi H, Rahmati B, Masahi A, Hadjani MR. Prevalence of Intestinal Parasitic Infections in the Urban Areas of Bandar Anzali, Northern Iran. *J Guilan Unive Med Sci.* 2014;22(8):28–25.

35. Badparva E, Pornia Y, Fallahi S H.. Prevalence of Blastocystis hominis in Lorestan Province, West of Iran. *Asian J Biol Sci.* 2012;5(1):57–61.

36. Badparva E, Sadraee J, Kheirandish F, Frouzandeh M. Genetic diversity of human blastocystis isolates in khorramabad, central Iran. *Iran J Parasitol.* 2014;9(3):244–9. [PubMed: 25642259].

37. Daryani A, Etehad GH. Prevalence of Intestinal infection among primary school students in Ardabil, 2003. *J Ardabil Unive Med Sci.* 2005;5(3):229–34.

38. Davari A, Akhlaghi L, Memar AR, Namazi MJ, Hadighi R, Tabatabaei F, et al. Frequency of intestinal parasites on mental disabilities in rehabilitation centers in Ardabil city at 2011. 203

39. Ebadi M, Anvari MH, Rajabion A, Dehghani AA. Parasitic infections (helminth and protozoa) in cases referring to Yazd central laboratory, 2002-2004. *J Shahid Sadoughi Unive Med Sci.* 2005;15(2):111–4. doi: 10.1590/S0036-46652014000200004. [PubMed: 23039595].

40. Ebadi M, Anvari MH, Rajabion A, Dehghani AA. Parasitic infections among catering staff of students canteens in Ardabil, 2003. Prevalence of intestinal protozoan parasites in freeway road workers in Hamadan, west of Iran. *Iran J Public Health.* 2011;40(3):80–5. [PubMed: 23039595].

41. Ebadi M, Behravan F, Moghaddam SHH. Prevalence of intestinal parasitic infections among primary school students in Ardabil, 2003. 2005

42. Davari A, Akhlaghi L, Memar AR, Namazi MJ, Hadighi R, Tabatabaei F, et al. Frequency of intestinal parasites on mental disabilities in rehabilitation centers in Ardabil city at 2011. 203

43. Ebadi M, Anvari MH, Rajabion A, Dehghani AA. Parasitic infections (helminth and protozoa) in cases referring to Yazd central laboratory, 2002-2004. *J Shahid Sadoughi Unive Med Sci.* 2005;15(2):111–4. doi: 10.1590/S0036-46652014000200004. [PubMed: 23039595].

44. Haghighi A, Khorashad AS, Nazemalhosseini Mojarad E, Kazemi B, Rostami Nejad M, Rasti S. Frequency of enteric protozoan parasites among patients with gastrointestinal complaints in medical centers of Zahedan, Iran. *Trans R Soc Trop Med Hyg.* 2009;103(5):452–4. doi: 10.1006/trstm.2008.00174. [PubMed: 19084249].

45. Kheirandish F, Tarahi MJ, Haghjighi A, Nazemalhosseini-Mojard E, Kheirandish M. Prevalence of intestinal parasites in bakery workers in khorramabad, lorestan Iran. *Iran J Parasitol.* 2011;6(4):76–83. [PubMed: 22347316].

46. Kheirandish F, Tarahi MJ, Ezatpour B. Prevalence of intestinal parasites among food handlers in Western Iran. *Rev Inst Med Trop Sao Paulo.* 2014;56(2):221–4. doi: 10.1590/S0036-46552014000200004. [PubMed: 24262461].

47. Khalili B, Khani MR, Taghipour S. Blastocystis hominis infection among hospitalized children due to diarrhea in jahaj hospital, shahre-kord, Iran. *Arch Clin Infect Dis.* 2012;7(2):52–5.

48. Heidari A, Rokni MR. Prevalence of intestinal parasites among children in day-care centers in Damghan-Iran. *Iran J Publ Health.* 2003;32(1):3–4.

49. Hazrati TK, Maleki D, Mohammadzadeh H, Zarikar B. Evaluation of prevalence of intestinal parasites in adult patients with or without gastrointestinal manifestations referring to oncology clinic of ur-
ence of intestinal parasitic pathogens among HIV-positive individuals in Iran. Jpn J Infect Dis. 2004;57(6):268-70. [PubMed: 15623953].

70. Su FH, Chu FY, Li CY, Tang HF, Lin YS, Peng YJ, et al. Blastocystis hominis infection in long-term care facilities in Taiwan: prevalence and associated clinical factors. Parasitol Res. 2009;105(4):1007-11. doi: 10.1007/s00436-009-1509-7. [PubMed: 19488784].

71. Steinmann E, di Gallo A, Ruttimann S, Loosli J, Dubach UC. [Etiology of diarrheal diseases in immunocompetent and HIV-positive patients]. Schweiz Med Wochenschr. 1990;120(35):1253-6. [PubMed: 2218447].

72. Cheng HS, Haung ZF, Lan WH, Kuo TC, Shin JW. Epidemiology of Blastocystis Hominis and Other Intestinal Parasites in a Vietnamese Female Immigrant Population in Southern Taiwan. The Kaohsiung J Med Sci. 2006;22(4):166-70. doi: 10.1016/s1607-551x(09)70302-x.

73. Torres P, Miranda J[C, Flores L, Riquelme J, Franjola R, Perez, et al. [Blastocystosis and other intestinal protozoan infections in human riverside communities of the Valdivia River basin, Chile]. Rev Inst Med Trop Sao Paulo. 1992;34(6):557-64. [PubMed: 1342125].

74. Amin OM. Seasonal prevalence of intestinal parasites in the United States during 2000. Am J Trop Med Hyg. 2002;66(6):799-803. doi: 10.4269/ajtmh.2002.66.799. [PubMed: 12224595].

75. Wu Z, Mirza H, Tan KS. Intra-subtype variation in enteroadhesin accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PloS Negl Trop Dis. 2004;8(5):ee2885. doi: 10.1371/journal.pntd.0002885. [PubMed: 2485944].

76. Dagci H, Kurt O, Demirel M, Ostan I, Azizi NR, Mandiracioglu A, et al. The prevalence of intestinal parasites in the province of Izmir, Turkey. Parasitol Res. 2008;100(4):389-45. doi: 10.1007/s00436-008-1065-6. [PubMed: 18604653].

77. Scanlan PD. Blastocystis: past pitfalls and future perspectives. Trends Parasitol. 2012;28(8):327-34. doi: 10.1016/j.pt.2012.05.001. [PubMed: 22738855].

78. Dogruoman-Al F, Yoshikawa H, Kustimur S, Balaban N. PCR-based subtyping of Blastocystis isolates from symptomatic and asymptomatic individuals in a major hospital in Ankara, Turkey. Parasitol Res. 2009;106(3):263-8. doi: 10.1007/s00436-009-1458-8. [PubMed: 19847459].

79. Abdel-Hameed DM, Hassanin OM. Protease activity of Blastocystis hominis subtype3 in symptomatic and asymptomatic patients. Parasitol Res. 2011;109(2):321-7. doi: 10.1007/s00436-011-2259-x. [PubMed: 21279183].

80. Tan TC, Ong SC, Suresh KG. Genetic variability of Blastocystis sp. isolates obtained from cancer and HIV/AIDS patients. Parasitol Res. 2009;105(5):1283-6. doi: 10.1007/s00436-009-1551-5. [PubMed: 19603882].

81. Badparva E, Sadraei J, Kheirandish F. Genetic diversity of Blastocystis isolated from cattle in khorramabad, iran. Jundishapur J Microbiol. 2015;8(3):ee14810. doi: 10.5812/jjm.14810. [PubMed: 25964845].

82. Forsell J, Granlund M, Stensvold CR, Clark GC, Evengard B. Subtype analysis of Blastocystis isolates in Swedish patients. Eur J Clin Microbiol Infect Dis. 2012;31(7):1689-96. doi: 10.1007/s10096-011-1416-6.

83. Arisue N, Hashimoto T, Yoshikawa H. Sequence heterogeneity of the small subunit ribosomal RNA genes among blastocystis isolates. Parasitology. 2003;126(1 Pt 1):1-9. [PubMed: 12613758].

84. Badparva E, Kheyrandish F, Sadraei J. Molecular study of zoonotic parasite of Blastocystis sp. in birds in Khorramabad, Lorestan provience, Iran. 2nd International and 9th National Congress of Parasitology and Parasitic Diseases of Iran (NICOPA 9) Guilan, Iran. Iran J Parasitol. 2015.

85. Badparva E, Ezatpour B, Azami M, Badparva M. First report of birds infection by intestinal parasites in Khorramabad, west Iran. J Parasit Dis. 2015;39(4):720-4. doi: 10.1007/s12639-014-0427-5. [PubMed: 26688641].