Review Article
Phytochemistry and Biological Activities of *Poria*

Jie Lu, Jing Tian, Li Zhou, Lijun Meng, Situn Chen, Changyang Ma, Jinmei Wang, Zhenhua Liu, Changqin Li, and Wenyi Kang

1National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China
2Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China
3Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan, China

Correspondence should be addressed to Zhenhua Liu; liuzhenhua623@163.com, Changqin Li; lcq@vip.henu.edu.cn, and Wenyi Kang; kangweny@hotmail.com

Received 20 December 2020; Revised 11 March 2021; Accepted 17 March 2021; Published 29 March 2021

Academic Editor: Wagdy Eldehna

Copyright © 2021 Jie Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Poria is a common Traditional Chinese Medicine in clinic. In recent years, the chemical and pharmacological studies of *Poria* have made great progress, triterpenes and polysaccharides have been isolated, and various types of compounds containing lipids, octanoic acids, fatty acids, and trace elements have been found. In this paper, we reviewed the literature, summarized the main compound types, and reviewed in detail their pharmacological effects in antitumor, immunomodulatory, effects on kidney, hepatoprotective activity, effects on blood sugar, antioxidant effects, anti-inflammatory effects, effects on the gut, antidepressant, and so on, and also categorized the compounds with the same or similar pharmacological effects to provide a reference for the in-depth study of the material basis of the pharmacological effect, quality standards, and pharmacological activity of *Poria*.

1. Introduction

Poria is the dry sclerotia of Basidiomycota, Agaricomycetes, Polyporaceae, and fungus *Poria cocos* (Schw.) Wolf. It is cultivated in many regions of China, mainly in Anhui, Yunnan, and Hubei Province [1, 2]. *Poria* has a long history, which was the first recorded in Shennong Materia Medica [3, 4]. During the Qin and Han Dynasties, people often used *Poria* as a tea drink with the belief that it could prolong life [5, 6].

So far, the triterpenes, polysaccharides, sterols, fatty acids, and volatile oil are the main chemical components found in *Poria*, and the triterpenes and polysaccharides are the most active compounds, according to previous pharmacological studies. Moreover, pharmacological research showed that *Poria* had antitumor, antioxidation, anti-inflammation, diuresis, immune regulation, and intestinal regulation [2, 7]. It is also used to treat uterine fibroids, chronic pelvic inflammatory disease, endometriosis, ovarian cyst, early pregnancy abortion, menstrual abdominal pain, medical abortion, cold, headache, colitis, arthritis, urinary tract infection, nephritis, and some tumor diseases, such as esophageal cancer and ovarian cancer [7, 8]. Therefore, this paper summarized the chemical composition and pharmacological activity of *Poria* based on comprehensive literature analysis, hoping to provide a reference for the in-depth research of scientific researchers and the clinical application of medical workers.

2. Chemical Composition Study

The chemical composition of *Poria* was collected from relevant literature through Web of Science, Wanfang.com, CNKI.com, BaiduAcademic.com, and Duxiu.com. Compounds obtained from *Poria* during the period from 1939 to 2020 were collected and classified according to the structural type. It is evidenced that *Poria* contains terpenes, sterols, pachymaran, fatty acids, volatile oil, and some inorganic elements, and the effective active components are mainly triterpenes and pachymaran. The triterpenes make up most of the *Poria* [9], while pachymaran accounts for the majority of the sclerotia (over 80%) in dry *Poria* [7].
2.1. Terpenoids. In 1939, Japanese scientists boiled the mixture of *Poria* with pyridine, acetic anhydride, and some other compounds in methanol and obtained one triterpene substance, pachymic acid (1) [10]. Subsequently, a new triterpene compound, dehydrotrametenolic acid (39), was found in *Poria* sclerotia in 1970 [11], and ganoderic acid (11) was isolated from *Poria* powder in 1998 [12]. So far, a total of 163 terpenoids have been identified, and they are mainly triterpenoids, diterpenoids, and sterols. According to the basic skeleton, 4 categories of terpenoids in *Poria*, lanoster-8-ene triterpenes, lanoster-7,9(11)-dienes triterpenes, 3,4-ring-opening lanoster-8-ene triterpenes, and 3,4-ring-opening lanoster-7,9(11)-dienes triterpenes [13] are separated as shown in Table 1. Besides, their molecular structures are presented in Figure 1.

2.2. Polysaccharides. Polysaccharides account for 70%–90% of the dry weight of *Poria*, and until now, 35 kinds of PAC from *Poria* have been reported (Table 2) [63]. Many scholars have found that the physicochemical properties and biological activities of polysaccharides would change to a certain extent after the chemical modification or the introduction of some specific chemical groups [64], which are taken as one efficient way to treat some human diseases [65–67].

2.3. Other Compounds. Besides triterpenes and polysaccharides, there are some other components in *Poria*, mainly including octanoic acid, lauric acid, undecanoic acid, fatty acid, palmitic acid, carotene, choline, adenosine [1, 16], and some inorganic elements such as calcium, magnesium, iron, sodium, manganese, etc.

3. Bioactivity of *Poria*

In this paper, articles related to the pharmacological activity of *Poria* after 2011 were selected as references. And its pharmacological effects are summarized (Table 3).

3.1. Antitumor Action. The antitumor effect of *Poria* has been attracting many researchers for a long time. Many studies found that triterpenes and polysaccharides in *Poria* had obvious antitumor activity, especially to the colon cancer cells, lung adenocarcinoma cells, kidney cancer cells, human prostate cancer cells, cervical cancer cells, and human breast cancer cells.

3.1.1. The Antitumor Effect of Poria Triterpenes. Lin proved that total triterpenes of *Poria* had a significant inhibitory effect on the RKO cell line by inducing apoptosis through caspase 9 and caspase 3 activated by the combination of Cyt C and Apaf-1 [68]. Triterpenes from *Poria* could inhibit the proliferation of the A549 cell line by increasing the protein expression levels of Nrf2, GST, and NQO1 [69]. PA induced apoptosis of human renal cell carcinoma 786–0 cell line by inhibiting the activation of the Wnt signaling pathway [70]. PA could inhibit the expression of trim29 mRNA, activate caspase-9, and inhibit the expression of cyclin D1, which indicated that PA could induce apoptosis of Caski cells through inhibition [71]. Jiang found that PA could promote the apoptosis of human breast cancer MDA-MB-231 cells by enhancing the activity of caspase and the expression of cleaved PARP [72]. *Poria* ethanol extract could induce apoptosis by decreasing the expression of Bcl-2 and increasing the expression of Bax, increasing the content of cytoplasm, the active forms of cleaved caspase-9 and caspase-3, and cleaved PARP, which proved that pachymic acid had an inhibitory effect on MDA-MB-231 cells. *Poria* ethanol extract treatment alleviated the damage to the liver and normalized the serum levels of ALT and AST in mice compared with the mice with cisplatin treatment [73]. The study showed that PA could induce apoptosis of SGC-7901 cells by inactivating the JAK2/STAT3 signaling pathway, which proved that PA was a potential bioactive substance for the treatment of gastric cancer [74]. PA could induce caspase 3-mediated apoptosis of HOS and primary osteosarcoma cells by increasing PTEN expression and inhibiting Akt activation [75].

3.1.2. The Antitumor Effect of PAC. Tang proved that PAC could inhibit the phosphorylation of the ERK signaling pathway by downregulating the expression of p-ERK1/2, which indicated that PAC could inhibit the proliferation and promote apoptosis of HeLa cells [52]. Lin et al. demonstrated that FMGP inhibited the migration of lung cancer CL1-5 cells by downregulating TGFβRII expression and simultaneously decreasing the phosphorylation levels of FAK and Akt [53]. CMP3 induced HepG2 cell apoptosis through two pathways. The first pathway was to promote HepG2 cell apoptosis by upregulating the release of pro-apoptotic proteins Bax, Caspase-3, p53, and cyto C. The other pathway was to upregulate the expression of Fas, FasL, and FADD mRNA, and promote the expression of caspase-3, caspase-8, and caspase-9 [54]. PPSW-1 and Sul-W-1 inhibit the migration of MDA-MB-231 cells by inhibiting SATB1 gen [56]. In summary, *Poria* plays an antitumor role mainly by inhibiting tumor cell proliferation, inducing cell apoptosis, and inhibiting tumor cell metastasis.

3.2. Immune Regulation. *Poria* also has immunological activity in vitro and in vivo. Triterpenes and polysaccharides from *Poria* were found with extensive immunomodulatory effects and could improve the immune function of the body. Xie et al. study showed that total triterpenes of *Poria* could reduce the metabolic activity of spleen cells in mice stimulated by LPS and Con A and reduce the levels of IgG, IgM, IL-2, and IFN-γ. Total triterpenes can reduce the levels of serum hemolysin and IL-4 in humoral immune response model mice. The spleen index was decreased in high doses (400 mg/kg) and medium doses (200 mg/kg), indicating that total triterpenes had inhibitory effects on the immune function of mice in vitro and in vivo [76]. Wang et al. study showed that S-CMP could significantly reduce the content of MDA and significantly increase the titer of serum hemolysin antibody and the production of spleen antibody. This
No.	Name	Ref.
	Lanoster-8-ene triterpenes (1–38)	
(1)	Pachymic acid	[14]
(2)	Tumulosic acid	[14]
(3)	Trametenolic acid	[9]
(4)	Eburicoic acid	[9]
(5)	3-O-acetyl-16α-hydroxyxymenetlenic acid	[15]
(6)	16α-Hydroxyxymenetlenic acid	[16]
(7)	O-acetylpachymic acid	[12]
(8)	O-acetylpachymic acid-25-ol	[12]
(9)	Methyl-O-acetylpachymate	[12]
(10)	Pachymic acid methyl ester	[12]
(11)	Ganoderic acid	[12]
(12)	25-Hydroxypachymic acid	[16]
(13)	25-Hydroxy-3-epitumulosic acid	[17]
(14)	16α,25-Dihydroxyeburicoic acid	[17]
(15)	16α-Hydroxyeburicoic acid	[17]
(16)	3β,16α-Dihydroxy-7-0xo-24-methyllanosta-8,24(31)-dien-21-oic acid	[18]
(17)	3α,16α-Dihydroxy-7-0xo-24-methyllanosta-8,24(31)-dien-21-oic acid	[18]
(18)	Oxotrametenolic acid	[19]
(19)	Acetyl erubicoic acid	[20]
(20)	Poricoic acid ZH	[2]
(21)	Poricoic acid ZU	[2]
(22)	Poricoic acid ZW	[2]
(23)	3β,15α-Dihydroxy-24-oxolanosta-8-en- 21-oic acid	[16]
(24)	3β-Acetylxylo-16α-hydroxy-24-oxolanost-8-en-21-oic acid	[16]
(25)	Daedaleamic acid B	[16]
(26)	15α-Hydroxyeburicoic acid	[16]
(27)	3α,16α,25-Trimethoxylanosta-8,24-dien- 21-oic acid	[16]
(28)	16α,29-Dihydroxyeburicoic acid	[16]
(29)	3β-Acetylxylo-16α,26-dihydroxylanosta-8,24-dien-21-oic acid	[16]
(30)	15α-Hydroxy-3-oxolanosta-8,24-dien-21-oic acid	[16]
(31)	16α-Hydroxy-3-oxolanosta-8,24-dien-21-oic acid	[16]
(32)	3β,16α-Bis(acetylxylo)-29-hydroxylanosta-8,24-dien-21-oic acid	[16]
(33)	Hispindic acid B	[16]
(34)	3β,15α-Bis(acetylxylo)-24- methylenelanost-8-en-21-oic acid	[16]
(35)	16α-Acetylxyuburicoic acid	[16]
(36)	3-Epi-pachymic acid	[16]
(37)	Ceanphytamic acid A	[21]
(38)	Ceanphytamic acid B	[21]
	Lanoster-7,9(11)-diene triterpenes (39–82)	
(39)	Dehydrotrametenolic acid	[14]
(40)	Dehydropachymic acid	[22]
(41)	Dehydroeburicoic acid	[9]
(42)	6α-Hydroxypolyxenonic acid C	[2]
(43)	3-Epi-dehydroxenonic acid	[15]
(44)	25-Hydroxy-3-epi-dehydroxenonic acid	[15]
(45)	Dehydroxenonic acid	[15]
(46)	Dehydroeburicoic acid	[15]
(47)	3-O-Acetyl-16α-hydroxydehydroxenonic acid	[15]
(48)	3-Epidehydroxenonic acid	[15]
(49)	3β,16α-Dihydroxyxanosta-7,9(11),24-trien-21-oic acid	[23]
(50)	6α-Hydroxydehydroxenonic acid	[16]
(51)	3β-p-Hydroxybenzoyledehydroxenonic acid	[24]
(52)	3β-Hydroxy-16α-acetoxy-lanosta-7,9(11),24-trien-21-oic acid	[12]
(53)	Polyxenonic acid C	[17]
(54)	Dehydrotrametenonic acid	[23]
(55)	15α-Hydroxydehydroxenonic acid	[25]
(56)	16α,25-Dihydroxydehydroxenonic acid	[25]
(57)	29-Hydroxypolyxenonic acid	[16]
(58)	Poriacosones A	[26]
Table 1: Continued.

No.	Name	Ref.
(59)	Poriacosones B	[26]
(60)	16α,27-Dihydroxydehydrotrametenonic acid	[17]
(61)	3β,16α,30-Trihydroxy-24-methyllanosta-7,9(11),24(31)-triene-21-oic acid	[18]
(62)	3β-Acetoxy-16α,24β-dihydroxylanosta-7,9(11),25-trien-21-oic acid	[18]
(63)	29-Hydroxydehydrotumulosic acid	[27]
(64)	29-Hydroxydehydrophaonym acid	[28]
(65)	3β,15α-Dihydroxylanosta-7,9(11),24-triene-21-oic acid	[29]
(66)	Dehydrosulphurenic acid	[29]
(67)	Dehydroeburicoic acid monoacetate	[18]
(68)	3β-Acetoxylanosta-7,9(11),24-trien-21-oic acid	[18]
(69)	Poricoic acid ZE	[2]
(70)	Poricoic acid ZI	[2]
(71)	Poricoic acid ZL	[2]
(72)	Poricoic acid ZV	[2]
(73)	Coriacoic acid B	[30]
(74)	Coriacoic acid C	[30]
(75)	6,16α-Dihydroxydehydrotrametenonic acid	[16]
(76)	16α-Dihydroxydehydrotrametenonic acid	[16]
(77)	25,26-Dihydroxydehydropharmic acid	[16]
(78)	3β,16α-Dihydroxy-24-hydroxymethyllanosta-7,9(11)-dien-21-oic acid	[16]
(79)	15α-Hydroxydehydrotrametenolic acid	[16]
(80)	16α-Hydroxydehydrotrametenonic acid	[16]
(81)	16-Hydroxy-3,24-dioxolanosta-7,9(11)-dien-21-oic acid	[16]
(82)	16α-Acetyloxy-24-methylen-3-oxolanosta-7,9(11)-dien-21-oic acid	[16]
	3,4-Ring-opening lanoster-8-ene triterpenes (83–93)	
(83)	Poricoic acid G	[26]
(84)	Poricoic acid H	[26]
(85)	25-Hydroxyporicoic acid H	[25]
(86)	Poricoic acid GM	[17]
(87)	Poricoic acid HM	[17]
(88)	Poricoic acid GE	[29]
(89)	Poricoic acid ZA	[31]
(90)	Poricoic acid ZI	[2]
(91)	Poricoic acid ZK	[2]
(92)	Poricoic acid ZR	[21]
(93)	25-Methoxy-29-hydroxyporicoic acid HM	[16]
	3, 4-Ring-opening lanoster-7,9(11)-dien triterpenes (94–122)	
(94)	Poricoic acid A	[27]
(95)	Poricoic acid B	[27]
(96)	Poricoic acid C	[24]
(97)	Poricoic acid D	[24]
(98)	Poricoic acid DM	[24]
(99)	Poricoic acid AM	[24]
(100)	Poricoic acid E	[15]
(101)	Poricoic acid BM	[15]
(102)	Poricoic acid F	[15]
(103)	16-Deoxyporicoic acid B	[25]
(104)	Poricoic acid CM	[25]
(105)	25-Methoxyporicoic acid A	[17]
(106)	26-Hydroxyporicoic acid DM	[17]
(107)	25-Hydroxyporicoic acid C	[17]
(108)	Poricoic acid AE	[32]
(109)	Poricoic acid CE	[32]
(110)	3,4-Seccolanosta-4(28),7,9,24Z-tetraen-3,26-dioic acid	[33]
(111)	Poricoic acid BE	[29]
(112)	16α-Hydroxy-3,4-seccolanosta-4(28),7,9(11),24(31),25(27)-pentaene-3,21-dioic acid	[29]
(113)	Poricoic acid ZB	[2]
(114)	Poricoic acid ZC	[21]
(115)	Poricoic acid ZD	[21]
(116)	Poricoic acid ZG	[21]
Table 1: Continued.

No.	Name	Ref.
(117)	Poricoic acid ZM	[21]
(118)	Poricoic acid ZO	[21]
(119)	Poricoic acid ZP	[21]
(120)	Poricoic acid ZN	[21]
(121)	Poricoic acid ZT	[2]
(122)	Poricoic acid ZQ	[21]

Cyclodioxy tetracyclic triterpenes (123, 124)

| (123)| $5\alpha,8\alpha$-Peroxydehydrotumulosic acid | [25] |
| (124)| 3α-(2-Hydroxyacetoxy)-$5\alpha,8\alpha$-peroxydehydrotumulosic acid | [34] |

4, 5-ring-opening triterpenes (125, 126)

| (125)| Daedaleanic acid A | [35] |
| (126)| 11β-Ethoxydaedaleanic acid A | [21] |

Other tetracyclic triterpenoids (127–131)

(127)	β-Amyrin acetate	[12]
(128)	Oleanolic acid	[36]
(129)	3-O-acetyloleanolic acid	[1]

Pentacyclic triterpenes (132–134)

(132)	7-oxo-15-Hydroxydehydroredisteric acid	[16]
(133)	Dehydroabietic acid methyl ester	[37]
(134)	Dehydroabietic acid	[2]

Diterpenes (135–140)

(135)	7α-Hydroxydehydroredisteric acid	[1]
(136)	Ergosterol peroxide	[2]
(137)	Ergost-7-en-3β-ol	[1]
(138)	Pimaric acid	[2]

Sterols (141–162)

(141)	Ergosterol	[1]
(142)	Ergosta-5,7,9(11),22-tetraen-3α-ol	[1]
(143)	Ergosta-5,7-dien-3α-ol	[1]
(144)	Ergosta-8(14),22-dien-3α-ol	[1]
(145)	Ergosta-6,8(14),22-trien-3α-ol	[1]
(146)	Ergosta-22-dien-3α-ol	[16]
(147)	Ergost-7-en-3α-ol	[1]
(148)	Ergosterol peroxide	[2]
(149)	Daucosterol	[38]
(150)	Cerevisterol	[20]
(151)	Biemnasterol	[1]
(152)	B-Sitosterol	[38]
(153)	$3\beta,5\alpha$-Dihydroxy-ergosta-7,22-diene-6-one	[1]
(154)	$3\beta,5\alpha,9\alpha$-Trihydroxy-ergosta-7,22-diene-6-one	[1]
(155)	Ergosta-7,22-diene-3-one	[1]
(156)	Ergosta-7,22-diene-3-one	[1]
(157)	Ergosta-4,22-diene-3-one	[1]
(158)	Ergosta-5,6-epoxy-7,22-diene-3-one	[36]
(159)	Preg-7-ene-3β,3α,15α,20-tetrol	[2]
(160)	Peroxy-ergosterol	[2]
(161)	Ergot sterone	[2]
(162)	$9,11$-Dehydroergosterol peroxide	[2]
1. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
2. $R_1 = \beta$-OH, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
3. $R_1 = \beta$-OH, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-H, $R_5 = b$
4. $R_1 = \beta$-OH, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-H, $R_5 = a$
5. $R_1 = \beta$-OAc, $R_2 = \alpha$-H, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = b$
6. $R_1 = \beta$-OH, $R_2 = \alpha$-OH, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = e$
7. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OAc, $R_5 = a$
8. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = e$
9. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = b$
10. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
11. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
12. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
13. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
14. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
15. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
16. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
17. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
18. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$
19. $R_1 = \beta$-OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$-OH, $R_5 = a$

Figure 1: Continued.
Figure 1: Continued.
83 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
84 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = a
85 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = e
86 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
87 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = α-OH R₅ = a
88 R₁ = COOCH₃CH₂R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
89 R₁ = COOH R₂ = H R₃ = H R₄ = α-OH R₅ = d
90 R₁ = COOH R₂ = α-H R₃ = α-OH R₄ = H R₅ = a'
91 R₁ = COOCH₃ R₂ = H R₃ = α-H R₄ = H R₅ = α-OH R₆ = b'
92 R₁ = COOCH₃ R₂ = H R₃ = α-H R₄ = H R₅ = α-OH R₆ = d'
94 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = a'
95 R₁ = COOH R₂ = H R₃ = H R₄ = α-OH R₅ = b'
96 R₁ = COOH R₂ = H R₃ = H R₄ = α-H R₅ = a'
97 R₁ = COOH R₂ = H R₃ = H R₄ = α-OH R₅ = b'
98 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
99 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = a'
100 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = d'
101 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
102 R₁ = COOCH₂R₂ = OH R₃ = H R₄ = H R₅ = α-OH R₆ = a
103 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-H R₆ = b'
104 R₁ = COOCH₃ R₂ = H R₃ = H R₄ = H R₅ = α-H R₆ = a'
107 R₁ = COOH R₂ = H R₃ = H R₄ = H R₅ = α-H R₆ = b'
108 R₁ = COOCH₂CH₂R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = a'
109 R₁ = COOCH₂CH₂R₂ = H R₃ = H R₄ = H R₅ = α-H R₆ = a'
111 R₁ = COOCH₂CH₃ R₂ = H R₃ = H R₄ = H R₅ = α-OH R₆ = b'
114 R₁ = COOCH₂R₂ = OH R₃ = α-H R₄ = H R₅ = α-OH R₆ = b'
119 R₁ = COOCH₂R₂ = OH R₃ = α-H R₄ = H R₅ = α-OH R₆ = a'
120 R₁ = COOCH₂R₂ = H R₃ = α-H R₄ = H R₅ = H R₆ = a'
122 R₁ = COOCH₃ R₂ = OH R₃ = α-H R₄ = H R₅ = α-OH R₆ = a'

(c)

Figure 1: Continued.
Figure 1: Continued.
131

132 133 R = OH 134 R = OAc

136 R1 = α-COOCH3; R2 = H; R3 = H
137 R1 = H; R2 = O(CH2)7CH3; R3 = COOH
138 R1 = α-COOH; R2 = R1 = H
139 R1 = α-COOH; R2 = O; R3 = H

141

143

144 145

146 R3 = R2 = H
150 R1 = R2 = OH

(e)

Figure 1: Continued.
Figure 1: Structures of terpenoids isolated from *Poria*.
indicated that S-CMP had a good immune activity [57]. The results of TIAN showed that *Poria* polysaccharide could exert immunomodulatory activity through TLR4/TRAf6/NF-κB signaling pathway [77]. Pu et al. found that *Poria* polysaccharide could exert immunomodulatory effects in Ca²⁺/PKC/p38/NF-κB signaling pathway [78].

All of the above studies confirm that *Poria* played an immunological regulatory role through various ways, which can lay a solid foundation for subsequent studies on immunity and benefit the exploitation of potential clinical application value.

3.3. Effects on Kidney. Studies have found that *Poria* can effectively resist renal injury, and the protection of diabetic nephropathy is a research hotspot. Li et al. study found that *Poria* polysaccharide treatment group could reduce serum IL-6 and TGR-β1 in DN rats (*P* < 0.01), reduce inflammatory infiltration, and protect kidney tissue to a certain extent [79]. Wu et al. experiment showed that *Poria* polysaccharides could reduce hepatocyte apoptosis and inflammatory stress by inhibiting the NF-κB pathway, which indicated that *Poria* polysaccharides had a protective effect on acetaminophen-induced liver injury in mice [80]. Another experiment showed that WRP could enhance the antioxidant level by increasing superoxide dismutase and glutathione peroxidase and significantly reducing malondialdehyde level in mice kidney tissue. Another experiment showed that WRP could significantly reduce malondialdehyde level and enhance the antioxidant level of the body through increasing superoxide dismutase and glutathione peroxidase in kidney tissue of type 2 diabetic mice, and reduce the expression of the Bax gene in kidney tissue and reduce the apoptosis of renal tissue cells [58]. Zhang et al. experiment showed that WRP could inhibit the expression of the Bax gene in kidney tissue of type 2 diabetic mice and reduce the apoptosis of renal tissue cells. The mechanism of action still needs further study [81]. PPC could increase uric acid excretion by upregulating rOAT1 expression and downregulating rURAT1 expression. It was proved that PPC had anti-hyperuricemia activity [59].

Chen et al. study showed that Poricoic acid ZC (115), Poricoic acid ZD (116), and Poricoic acid ZE (69) could prevent tubulointerstitial fibrosis by blocking the interaction between TGFβR1 and Smad3, selectively inhibiting TGFβ1 and vaso-induced Smad3 phosphorylation [82]. Another of their experiments found that Poricoic acid ZG (117) and Poricoic acid ZH (20) could reduce renal fibrosis by preventing tubulointerstitial fibrosis by blocking the interaction between TGFβR1 and Smad3, selectively inhibiting TGFβ1 and Smad3 phosphorylation [83]. Another of their experiments found that Poricoic acid ZC (115), Poricoic acid ZD (116), and Poricoic acid ZE (69) could prevent tubulointerstitial fibrosis by blocking the interaction between TGFβR1 and Smad3, selectively inhibiting TGFβ1 and vaso-induced Smad3 phosphorylation [82]. Another of their experiments found that Poricoic acid ZG (117) and Poricoic acid ZH (20) could reduce renal fibrosis by blocking the interaction between TGFβR1 and Smad3, selectively inhibiting TGFβ1 and Smad3 phosphorylation [83].

Studies showed that *Poria* had diuretic effect. The results of Yong et al. showed that poricoic acid A (94) had a significant diuretic effect on rats with water retention. The results showed that the urine volume of the poricoic acid A group was greater than the spironolactone group in the first hour, indicating that the effect of poricoic acid A was good for the diuretic effect. Reabsorption of electrolyte Na⁺ and water increases urination [84]. Ni et al. selected triterpenoids extracted from *Poria* as ligands and selected three aquaporins AQP1, 4, 5 as target proteins. The results of screening with software and molecular docking showed that methyl dehydroabietate had a strong binding activity with AQP1, 4, and 5, respectively. It was speculated that dehydroabietic acid methyl ester (137) could be the active substance of *Poria* for diuresis and spleen strengthening, which provided a reference for the follow-up study of active ingredients [85]. Intravenous injection of *Poria* aqueous extract (1.5 g/kg)
Table 3: Summary table of *Poria cocos* activity.

Type of the activities	Subjects	Activities	Mechanisms	Ref.
Total triterpenoids	In vitro, the concentration of 80 μg/mL extract could induce RKO cell line apoptosis, IC₅₀ was 34.14 μg/mL	Inhibits the proliferation of colon cancer RKO cells and induces the apoptosis of colon cancer RKO cells through the mitochondrial apoptosis pathway	[68]	
Triterpenes	In vitro, the concentration of 30 μg/mL extract could inhibit the proliferation of A549 cell line, IC₅₀ was 109.9 μg/mL	Inhibition of the Nrf2-ARE signaling pathway can prolong the duration of metastasis from early to advanced lung cancer	[69]	
PA	In vitro, compared with 0 μg/mL group, 10, 20, 40, and 80 μg/mL groups could significantly increase the apoptosis rate of 786–0 renal carcinoma cells	Inhibit the survival of cervical cancer Caski cells and promote apoptosis by inhibiting TRIM29 expression and downregulating Wnt pathway activity	[70]	
PA	In vitro, 1, 2, 5 μmol/L PAC inhibited the proliferation and induced apoptosis of MDA-MB-231 cells	The mechanism of action is related to the activation of PARP	[71]	
Poria ethanol extract	In vitro, PAC (30, 40, 50 mg/mL) can significantly reduce the migration rate and increase the apoptosis rate of human cancer HeLa cells (IC₅₀ is 60 mg/mL)	The proapoptotic mechanism may be related to inhibition of phosphating of the ERK signaling pathway	[72]	
Antitumor action	In vitro, the concentration of FMGP at 400 μg/mL significantly inhibited the migration of highly metastatic human lung cancer cell line CL1-5 cells	By inhibiting the TGFβRI mediated signaling pathway	[73]	
FMGP	In vitro, the IC₅₀ value was 26.34 ± 0.77, and the concentration of CMP3 was 100 μg/mL, which had the highest inhibitory rate on HepG2 cells	Apoptosis is induced through the mitochondrial pathway and the death receptor pathway	[74]	
CMP3	The concentration of PPSW-1 and Sul-W-1 at 100 μg/mL had a strong inhibitory effect on the migration of MDA-MB-231 cells in vitro	Inhibition of the expression of the SATB1 gene reduces the migration ability of cancer cells	[75]	
PPSW-1 and Sul-W-1	Total triterpenes of *Poria* can improve the immune function of mice in vitro (at 40, 20, 10 μg/mL) and in vivo (at 400, 200, 100 mg/kg)	—	[76]	
Immune regulation	S-CMP (at 100, 200 mg/kg) showed immunomodulatory activity in BALB/c mice	Immunoregulatory activity is exerted through TLR4/TRAF6/NF-κB signaling pathway in vitro and in vivo	[77]	
Poria polysaccharide	*Poria* polysaccharide showed immunomodulatory activity in vivo (at 200 mg/kg) and in vitro (at 200 g/mL)	Immunoregulatory activity is exerted through Ca²⁺/PKC/p38/NF-κB signaling pathway in macrophages	[78]	

Table continued...
Type of the activities	Subjects	Activities	Mechanisms	Ref.
Poria polysaccharide	Poria polysaccharide (at 50, 100, 200 mg/kg) significantly reduced the inflammatory response of diabetic nephropathy rats in vivo	In vivo Poria polysaccharides (at 200, 400 mg/kg) had a protective effect on acetaminophen-induced liver injury in mice	Inhibition of hepatocyte apoptosis and inflammatory stress induced by NF-κB pathway plays a protective role in the kidney	[79]
	WRP	In vivo, WRP (200 mg/kg) can inhibit the trend of renal cell apoptosis in the diabetic states	Inhibition of Bax gene overexpression in renal tissue decreased apoptosis of renal cells	[58]
	Pachymaran	Pachymaran can prevent renal interstitial fibrosis in rats with type 2 diabetic nephropathy in vivo at doses of 3, 6, and 12 mg/kg, respectively	—	[81]
Effects on kidney	PPC	In vivo, PPC at 2 g/kg has anti-hyperuricemia activity	Uric acid excretion was increased by upregulating rOAT1 expression and downregulating rURAT1 expression	[59]
	Poricoic acid ZC, Poricoic acid ZD, and Poricoic acid ZE	Poricoic acid ZC, poricoic acid ZD, and Poricoic acid ZE can prevent tubulointerstitial fibrosis in vivo (at 10 mg/kg) and in vitro (at 10 μM)	By inhibiting the activation of the Wnt/β-catenin pathway and blocking Smad3 phosphorylation, renal tubulointerstitial fibrosis was reduced	[82]
	Poricoic acid ZG and Poricoic acid ZH	Poricoic acid ZG and poricoic acid ZH (at 10 μM) can inhibit renal fibrosis in vitro	Attenuate renal fibrosis via a Wnt/β-catenin pathway and targeted phosphorylation of smad3 signaling	[83]
	Poricoic acid A	Poricoic acid A (at 5, 10, 20 mg/kg) has diuretic activity in vivo	—	[84]
	Dehydroabietic acid methyl ester	The authors found that methyl dehydroabietic acid may be the diuretic substance of Poria	—	[85]
	Poria aqueous extract	In vivo, Poria aqueous extract can increase the urine volume of rabbits	—	[86]
Hepatoprotective activity	Poria polysaccharides	Effects of Poria polysaccharides on liver protection against acetaminophen-injured hepatocytes in vitro (at 200 and 400 mg/kg) and in vivo (at 20 and 40 g/L)	Through the molecular mechanisms of reducing hepatocellular inflammatory stress and Hsp90 bioactivity	[87]
	Carboxymethyl pachyman	Carboxymethyl pachyman in vivo (at 50 mg/kg) can alleviate liver injury of CT26 mice induced by 5-FU	Hepatoprotective activity through regulation of NF-κB, Nrf2-ARE and MAPK/P38/INK pathways	[88]
Effects on blood sugar	Pachymic acid	In vitro pachymic acid (at 1 μM) can increase glucose uptake in 3T3-L1 adipocytes	Hypoglycemic activity through regulation of PINK and AMPK pathways	[89]
	WRP	WRP (200 mg/kg) had hypoglycemic effects on NIDDM mice in vitro Insoluble polysaccharide (at 1.0 g/kg and 0.5 g/kg) can improve the symptoms of hyperglycemia in ob/ob mice in vivo	—	[90]
	Insoluble polysaccharide	Hypoglycemic activity through regulation of intestinal flora	—	[91]
Type of the activities	Subjects	Activities	Mechanisms	Ref.
------------------------	----------	------------	------------	------
Antioxidant effects	Carboxymethyl sulfate *Poria* polysaccharide	had the strongest scavenging effect on OH and O$_2$\(^{-}\) and there was an agent-activity relationship.	—	[64]
	PCP-M	PCP-M polysaccharides (at 2.0 mg/mL) had antioxidant activity in vitro	—	[60]
	Carboxymethyl-pachyman	In vivo, carboxymethyl-pachyman (at 200 mg/kg) has antioxidant activity	—	[92]
	Poricoic acid A	The concentration of 10, 20, 50 μM showed anti-inflammatory activity in vitro	Anti-inflammatory activity through downregulation of iNOS and COX-2 expression and inhibition of NO and PGE2 production	[93]
	PA	In vitro PA (at 25, 50, 100 mg/L) inhibits TNF-α-induced inflammation and oxidative stress damage in SH-SYSY	It may be a mechanism of action to inhibit apoptosis by downregulating Nrf2 of the ERK/Nrf2 signaling pathway into the nucleus	[94]
Anti-inflammatory effects	Poricoic acid C	Poricoic acid C (50, 100 μM) had anti-inflammatory activity on RAW264.7 cells stimulated by LPS in vitro	Anti-inflammatory effects	[30]
	CMP33	CMP33 (62.5–1000 μg/mL) has anti-inflammatory activity in vitro	Anti-inflammatory activity by inhibiting the overproduction of NO, IL-6, TNF-α, and IL-1β in LPS-stimulated RAW264.7 cells	[51]
	Poria polysaccharide	In vivo, *Poria* polysaccharide (at 5, 100, 200 mg/kg) can reduce the infiltration degree of colitis	Anti-inflammatory activity through inhibition of IL-33/ST2 signaling pathway activation	[95]
	16α-Hydroxytrametenolic Acid	In vitro, 16α-hydroxytrametenolic Acid (60 μM) can improve intestinal barrier function	Improving intestinal barrier function via PI3K/Akt/NF-κB pathway	[96]
Effects on the gut	*Poria* ethanol extract	*Poria* ethanol extract (at 32 g/mL) inhibited intestinal contraction in vitro	Inhibits spontaneous and spastic contractions of the small intestine by inhibiting M receptors and regulating potassium and calcium channels	[97]
	Poria powder and water-soluble polysaccharide	In vivo, *Poria* powder (at 2.0 g/kg) and water-soluble polysaccharide (at 7.6 mg/kg) can protect against intestinal damage caused by cisplatin *Poria* powder (at 50 μg/kg) can increase the level of intestinal bifidobacteria in mice in vivo	Water-soluble polysaccharides exert enteroprotective activity through intestinal flora and metabolic regulation	[16]
	Poria powder			
Antidepressant	Sulfated pachyman	In vivo, sulfated pachyman (25 mg/kg, 50 mg/kg, 100 mg/kg) had an antidepressant effect compared with the depression model group	Antidepressant activity through increased protein expression of p-CREB and BDNF	[61]
	PCWPW and PCWPS	(300 mg/kg) possess antidepressant-like effects		[62]
increased the urine volume in rabbits within 20 and 30 minutes, which was much higher than that of the control groups [86].

3.4. Hepatoprotective Activity. Wu et al. research demonstrated that *Poria* polysaccharides could reduce the inflammatory stress of liver cells and the biological activity of HSP90, which proved that *Poria* polysaccharides had a liver protective effect against acetaminophen-damaged liver cells [87]. Wang et al. found that carboxymethyl pachyman could reduce liver injury of CT26 mice by regulating NF-κB, Nrf2-ARE, and MAPK/P38/JNK pathways [88].

3.5. Effects on Blood Sugar. Sun et al. proved that pachymic acid could stimulate glucose uptake in 3T3-L1 adipocytes by enhancing GLUT4 expression and transport [89]. Not only that, PAC could also reduce blood glucose in diabetic rats [90]. Sun et al. reported for the first time that insoluble polysaccharide could improve and regulate hyperglycemia and hyperlipidemia in ob/ob mice through intestinal flora [91].

3.6. Antioxidant Effects. Wang et al. experiment showed that PCP-M had the scavenging ability of hydroxyl radical and DPPH radical [60]. Zhang et al. experiment showed that carboxymethyl-pachyman could reduce the generation of MDA in liver tissue and serum of mice and increase the activity of SOD in serum and liver, which indicated that carboxymethyl-pachyman had antioxidant activity [92].

3.7. Anti-Inflammatory Effects. A large number of studies have shown that *Poria* has anti-inflammatory activity. Five compounds were isolated from *Poria* by Rak et al. They were poricoic acid A (94), 3-O-acetyl-16α-hydroxydehydrotrametenolic acid (47), polypropenic acid C (53), 3β-hydroxylanosta-7,9(11),24-trien-21-oic acid (39), and trametenolic acid (3). These compounds could downregulate the expression of COX-2 and PGE2 by inhibiting the production of NO and the expression of iNOS in RAW264.7 cells stimulated by LPS; poricoic acid A exerted the highest anti-inflammatory activity and reduced PGE2 levels via downregulation of COX-2 protein expression, indicating that they had anti-inflammatory activities [93]. Qin’s study found that PA could inhibit TNF-α induced oxidative stress and inhibit apoptosis of SH-SY5Y cells by inhibiting ERK/Nrf2 pathway [94].

Coriacoic acid A (131), Coriacoic acid B (73), dehydrobucuric acid (46), acetyl eburicoic acid (19), and Poricoic acid C (97) could inhibit NO production, among which the
activities of Poricoic acid C were the strongest. Its mechanism was to exert anti-inflammatory activity by down-regulating NF-kappaB to inhibit the expression of iNOS and COX-2. Coriacoic acid A and Coriacoic acid B were isolated for the first time and found to have anti-inflammatory activity for the first time [30]. CMP33 (35) could inhibit the release of NO, IL-1β, IL-6, and TNF-α in RAW264.7 macrophages stimulated by LPS, indicating that PPS had anti-inflammatory activity [51]. Liang et al. found that Poria polysaccharide could inhibit the activation of IL-33/ST2 signaling pathway, reduce the activation of UC, inhibit the expression of inflammatory factors, and reduce the infiltration degree of colitis, which indicated that Poria polysaccharide had an obvious therapeutic effect on ulcerative colitis [95].

3.8. Effects on the Gut. Studies showed that Poria had a protective effect on the intestinal tract. 16α-hydroxytrametenolic acid (6) could improve intestinal barrier function through glucocorticoid receptor-mediated PI3K/Akt/NF-kB pathway, suggesting that 16α-hydroxytrametenolic acid could strengthen the intestinal barrier [96]. Xiao et al. study showed that the alcohol extract of Poria could inhibit intestinal contraction in vitro by blocking the M receptor and regulate intestinal peristalsis function, which provided a new theoretical basis for the treatment of diarrhea type IBS [97]. Zou showed that watersoluble polysaccharides could increase the relative content of probiotic bacteria and decrease the relative content of pathogenic bacteria to regulate the change of intestinal flora structure caused by cis-uranium, and water-soluble polysaccharides could also reduce the intestinal damage caused by cis-uranium by regulating the disturbance of metabolic pathways such as lipid metabolism, amino acid metabolism, and purine metabolism [16]. The experimental results of Song et al. showed that Poria powder exerted a regulatory effect on intestinal flora by significantly increasing the level of intestinal bifidobacteria in mice [98].

3.9. Antidepressant. Poria has antidepressant activity. Zhang et al. study demonstrated that sulfated pachymaran had antidepressant-like effects in rats, which may be mediated by enhancing GluR1 receptor function and upregulating the protein expression of p-CREB and BDNF in the hippocampus [61]. Zhang et al. experiments showed that the resting time of animals treated with 300 mg/kg PCWPW and PCWPS was also significantly shortened (P < 0.001), suggesting that PCWPW and PCWPS have antidepressant effects. PCWPWs had a good protective effect on H2O2-induced cell death in vitro. Its neuroprotective effect could reduce nerve damage in patients with depression [62].

3.10. Other Biological Activities. Poria also showed effect on tyrosinase activity [99–101]. In addition, pachymic acid (1) had protective effects against cerebral ischemia-reperfusion injury and neuronal apoptosis [102]; epidermis extract could be a potential treatment for epilepsy [103]. Poria’s aqueous extract, alcohol extract, and polysaccharide showed the protective effects on acute liver injury caused by carbon tetrachloride [104].

4. Conclusion and Prospect

In recent years, many researches have been conducted on the extracts of Poria and their multiple biological activities. Poricoic acid A (95), for example, not only showed its impact on the tyrosinase activity but also has a diuretic effect. These active compounds have enormous potential to be developed to treat some diseases with multi-targets safely and effectively. In this paper, both the chemical composition and biological activity of Poria were discussed in detail to provide abundant theoretical guidance for the further development of Poria as a potential medicinal and edible resource.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was supported by National Key R&D Program of China (2018YFD0400200), Major Public Welfare Projects in Henan Province (201300110200), and the Key Project in Science and Technology Agency of Henan Province (192102110214 and 202102110283).

References

[1] P. F. Yang, P. C. Zhang, and R. Y. Chen, "Research advances on chemical constituents and bioactivities of Poria cocos (Schw.) Wolf," in Proceedings of the First National Poria cocos Conference 2014, Wu Han, China, October 2014.
[2] M. Wang, Effective Constituents and Mechanism of the Surface Layer of Poria cocos against Renal Fibrosis, Northwest University, Xian, China, 2019.
[3] G. P. Yang, "Poria cocos development prospect is broad," Human Linye, vol. 38, no. 2, p. 38, 2018.
[4] P. P. Sun, Study on the Pharmaceutical Research of Fuling San, Hubei University of Chinese Medicine, Wuhan, China, 2013.
[5] Y. Y. Shao, D. Zhu, G. H. Yang et al., “Recent advances in research on edible Poria cocos,” in Proceedings of the 9th Annual Conference of Chinese Medicine Chemistry Branch, Chinese Society of Traditional Chinese Medicine, Xiamen, China, July 2014.
[6] L. Ma, L. Yin, B. Wang et al., “Research progress of Poria cocos,” Asian-Pacific Traditional Medicine, vol. 11, no. 12, pp. 55–59, 2015.
[7] Z. P. Liang, “Advance in research on chemical constituents, pharmacological effects and clinical applications of Poria cocos,” China’s Urban and Rural Enterprise Health, vol. 33, no. 8, pp. 51–53, 2018.
[8] X. L. Zhuang, “Value of clinical application of traditional Chinese medical Poria cocos,” Smart Healthcare, vol. 4, no. 5, pp. 86–87, 2018.
[9] T. Tai, A. Akahori, and T. Shingu, “Triterpenes of Poria cocos,” Phytochemistry, vol. 32, no. 5, pp. 1239–1244, 1993.
[10] Z. J. Zhong, “Ingredients of Poria cocos (first report),” Yakugaku Zasshi, vol. 59, no. 10, pp. 725–729, 1939.
[11] A. Ken, “China root triterpenoid (1st report),” Yakugaku Zasshi, vol. 90, no. 4, pp. 473–479, 1970.
[12] L. Y. Wang and H. J. Wan, “Studies on the chemical constituents of fuling (Poria cocos),” Chinese Traditional and Herbal Drugs, vol. 29, no. 3, pp. 145–148, 1998.
[13] H. Z. Liu, S. L. Wu, D. Y. Zhang et al., “A review on separation and medicinal value of active pharmaceutical ingredients from Poria cocos,” Edible Fungi of China, vol. 34, no. 6, pp. 1–6, 2015.
[14] A. Kanematsu and S. Natori, “Triterpenoids of Hoelen (fuling),” sclerotic of Poria cocos (Schw. Wolf). I,” Yakugaku Zasshi, vol. 90, no. 4, pp. 475–479, 1970.
[15] T. Tai, T. Shingu, T. Kikuchi et al., “Triterpenes from the surface layer of Poria cocos,” Phytochemistry, vol. 39, no. 5, pp. 1165–1169, 1995.
[16] Y. T. Zou, Characterization of Chemical Constituents of Poria cocos and Primary Study of their Protective Effects against Cisplatin-Induced Intestinal Injury, Nanjing University of Chinese Medicine, Nanjing, China, 2019.
[17] T. Akihisa, E. Uchiyama, T. Tokuda, T. Suzuki, and Y. Kimura, “Anti-tumor-promoting effects of 25-methoxyporicoic acid A and other triterpene acids from Poria cocos,” Journal of Natural Products, vol. 72, no. 10, pp. 1786–1792, 2009.
[18] K.-H. Lai, M.-C. Lu, Y.-C. Du et al., “Cytotoxic lanostanoids from Poria cocos,” Journal of Natural Products, vol. 79, no. 11, pp. 2805–2813, 2016.
[19] D. Lee, S. Lee, S. H. Shim et al., “Protective effect of lanostane triterpenoids from the sclerotic of Poria cocos Wolf against cisplatin-induced apoptosis in LLC-PK1 cells,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 13, pp. 2881–2885, 2017.
[20] S. Wang, Y. Y. Jiang, N. L. Zhu et al., “Determination and isolation of the chemical constituents of Poria cocos,” Journal of Beijing University of Traditional Chinese Medicine, vol. 33, no. 12, pp. 841–844, 2010.
[21] T. Chen, L. Hua, G. Chou, X. Mao, and X. Zou, “A unique naphthone derivative and a rare 4,5-seco-lanostane triterpenoid from Poria cocos,” Molecules, vol. 23, no. 10, p. 2508, 2018.
[22] T. Shingu, T. Tai, and A. Akahori, “A lanostane triterpenoid from Poria cocos,” Phytochemistry, vol. 31, no. 7, pp. 2548-2549, 1992.
[23] T. Akihisa, Y. Mizushina, M. Ukiya et al., “Dehydrotrametenonic acid and dehydroduburic acid from Poria cocos and their inhibitory effects on eukaryotic DNA polymerase α and β,” Bioscience, Biotechnology, and Biochemistry, vol. 68, no. 2, pp. 448–450, 2004.
[24] N. Zhang, Z. X. Li, J. Li et al., “Advances in the research of constituents and pharmacological effects of Poria cocos (Schw. Wolf),” Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, vol. 21, no. 2, pp. 220–233, 2019.
[25] T. Akihisa, Y. Nakamura, H. Tokuda et al., “Triterpenes acids from Poria cocos and their anti-tumor-promoting effects,” Journal of Natural Products, vol. 70, no. 6, pp. 948–953, 2007.
[26] Y. Zheng and X. W. Yang, “Poriscosones A and B: two new lanostane triterpenoids from Poria cocos,” Journal of Asian Natural Products Research, vol. 10, no. 7-8, pp. 645–651, 2008.
[27] T. Tai, A. Akahori, and T. Shingu, “Triterpenoids from Poria cocos,” Phytochemistry, vol. 30, no. 8, pp. 2796-2797, 1991.
[28] T.-G. Cai and Y. Cai, “Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating protein-1 pathway,” Chemistry & Biodiversity, vol. 8, no. 11, pp. 2135–2143, 2011.
[29] H. J. Dong, Antitumor Activities of Triterpenes Isolated from the Epidermis of Poria cocos (Schw.) Wolf, China Academy of Chinese Medical Sciences, Beijing, China, 2015.
[30] S. Lee, D. Lee, S. H. Lee et al., “Anti-inflammatory activity of the sclerotic of edible fungus, Poria cocos Wolf and their active lanostane triterpenoids,” Journal of Functional Foods, vol. 32, pp. 27–36, 2017.
[31] M. Wang, D. Q. Chen, M. C. Wang et al., “Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway,” Phytomedicine, vol. 36, pp. 243–253, 2017.
[32] C.-H. Yang, S.-F. Zhang, W.-Y. Liu, Z.-J. Zhang, and J.-H. Liu, “Two new triterpenes from the surface layer of Poria cocos,” Helvetica Chimica Acta, vol. 92, no. 4, pp. 660–667, 2009.
[33] L. Yang, B. Qin, S. Feng, S. Liu, and X. Song, “A new triterpenoid from traditional Chinese medicine Poria cocos,” Journal of Chemical Research, vol. 34, no. 10, pp. 553-554, 2010.
[34] S. Li, Z. Wang, R. Gu et al., “A new epipodophyllotoxin triterpenoid from Poria cocos Wolf,” Natural Product Research, vol. 30, no. 15, pp. 1712–1717, 2016.
[35] H. Q. Lin, Y. Y. Song, and Y. C. Huang, “A 4,5-secolanostane triterpenoid from the sclerotium of Poria cocos,” Journal of Medical Sciences, vol. 30, no. 6, p. 273, 2010.
[36] D. P. Li, X. Y. Liang, H. S. Chen et al., “Studies on the chemical composition of Poria cocos peel in yunnan,” Guithia, no. 3, pp. 3–5, 1998.
[37] L. Li, E. D. Yuan, N. Gou et al., “Effects of water extract of poria on Helicobacter pylori inhibition and GES-1 cells proliferation,” Modern Food Science & Technology, vol. 35, no. 10, pp. 19–24+147, 2019.
[38] B. Hu, Y. P. Yang, and Y. Ye, “Chemical constituents from Poria cocos (Schw.) Wolf,” Chinese Traditional and Herbal Drugs, vol. 37, no. 5, pp. 655–658, 2006.
[39] G. C. Hoffmann, B. W. Simson, T. E. Timell et al., “Structure and molecular size of pachymann,” Carbohydrate Research, vol. 20, no. 1, pp. 185–188, 1971.
[40] H. Kanayama, N. Adachi, and M. Togami, “A new antitumor polysaccharide from the mycelia of Poria cocos Wolf,” Chemical and Pharmaceutical Bulletin, vol. 31, no. 3, pp. 1115–1118, 1983.
[41] L. N. Zhang, Q. Ding, P. Y. Zhang, and H.-Q. Feng, “Isolation and structural analysis of polysaccharides from the sclerotium of Poria cocos Wolf,” Gaodeng Xuexiao Huaxue Xue-bao, vol. 18, no. 6, pp. 990–993, 1997.
[42] Q. Ding, L. N. Zhang, and Z. Q. Zhang, “Isolation and structural analysis of polysaccharides from poria mycelia,” Acta Polymerica Sinica, vol. 70, no. 2, pp. 224–227, 2000.
[43] L. N. Zhang, L. Chen, Y. Jin et al., “Comparison of polysaccharides isolated from the mycelia of a cultivated strain of Poria cocos grown in different LIQUID culture media,” Acta Polymerica Sinica, vol. 338, no. 14, pp. 465–472, 2003.
[44] Y. Jin, L. Zhang, L. Chen, P. C. Keung Cheung, and L. Chen, “Effect of culture media on the chemical and physical characteristics of polysaccharides isolated from Poria cocos mycelia,” Carbohydrate Research, vol. 338, no. 14, pp. 1507–1515, 2003.
[45] Y. L. Lin, L. N. Zhang, Y. Jin et al., “Isolation, chemical components and molecular weights of polysaccharides from Poria cocos mycelia with cultivated strain,” Acta Polymerica Sinica, no. 1, pp. 97–103, 2003.
[46] Y. Wang, M. Zhang, D. Ruan et al., "Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of *Poria cocos*," *Carbohydrate Research*, vol. 339, no. 2, pp. 327–334, 2004.

[47] Y. F. Wang and L. N. Zhang, "Chain conformation of carboxymethylated derivatives of (1 to 3)-β-D-glucan from *Poria cocos* sclerotium," *Carbohydrate Polymers*, vol. 65, no. 4, pp. 504–509, 2007.

[48] Q. Huang, Y. Jin, L. Zhang, P. C. K. Cheung, and J. F. Kennedy, "Structure, molecular size and antitumor activities of polysaccharides from *Poria cocos* mycelia produced in fermenter," *Carbohydrate Polymers*, vol. 70, no. 3, pp. 324–333, 2007.

[49] X. Chen, Q. Tang, Y. Chen, W. Wang, and S. Li, "Simultaneous extraction of polysaccharides from *Poria cocos* by ultrasonic technique and its inhibitory activities against oxidative injury in rats with cervical cancer," *Carbohydrate Polymers*, vol. 79, no. 2, pp. 409–413, 2010.

[50] C. Huang, Y. M. Wang, and J. Zhao, "Preparation, purification, and analysis of chemical composition of anti-tumor polysaccharide from *Poria cocos*," *Chinese Traditional and Herbal Drugs*, vol. 43, no. 11, pp. 2146–2149, 2012.

[51] X. F. Liu, X. Q. Wang, X. F. Xu, and X. Zhang, "Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from *Poria cocos*," *International Journal of Biological Macromolecules*, vol. 127, pp. 39–47, 2019.

[52] E. H. Tang and W. Cai, "Effects of pachymaran on proliferation, migration and pro-apoptosis of human cervical carcinoma HeLa cells and its mechanism," *Cancer Research on Prevention and Treatment*, vol. 46, no. 8, pp. 707–713, 2019.

[53] T.-Y. Lin, M.-K. Lu, and C.-C. Chang, "Structural identification of a fucose-containing 1,3-β-mannogluconan from *Poria cocos* and its anti-lung cancer CL-1-5 cells migration via inhibition of TGFβ/β-mediated signaling.,” *International Journal of Biological Macromolecules*, vol. 157, pp. 311–318, 2020.

[54] H. Z. Yang, F. Q. Xiong, L. Yang et al., "Effect of different components carboxymethyl pachymaran (CMP) on HepG2 cell proliferation," *Food and Nutrition in China*, vol. 25, no. 12, pp. 26–28, 2019.

[55] B. Song, X. L. Li, Y. Z. Wu et al., "Study on preparation and anti-tumor activity of carboxymethyl pachymaran," *Chinese Journal of Modern Applied Pharmacy*, vol. 36, no. 11, pp. 1328–1332, 2019.

[56] K. Hu, Q. Luo, X. F. Zhu et al., "Isolation of homogeneous polysaccharide from *Poria cocos* and effect of its sulfated derivatives on migration of human breast cancer MDA-MB-231 cells," *China Journal of Chinese Materia Medica*, vol. 44, no. 13, pp. 2835–2840, 2019.

[57] H. Wang, J. F. Mukerabigwi, Y. Zhang et al., "In vivo immunological activity of carboxymethylated-sulfated (1→3)-β-d-glucan from sclerotium of *Poria cocos*," *International Journal of Biological Macromolecules*, vol. 79, pp. 511–517, 2015.

[58] C. L. Huang, J. L. Zheng, F. L. Li et al., "Effect of pachymaran to the antioxidant capacity and Bax, bcl-2 protein expression of renal tissue in mice with type H diabetes," *Journal of Food Science and Biotechnology*, vol. 35, no. 1, pp. 82–88, 2016.

[59] L. J. Deng, J. X. Yan, P. Wang et al., "Effects of pachman on the expression of renal tubular transporters rURAT1, rOAT1 and rOCT2 of the rats with hyperuricemia," *Western Journal of Traditional Chinese Medicine*, vol. 32, no. 6, pp. 10–14, 2019.

[60] N. Wang, Y. Zhang, X. Wang et al., "Antioxidant property of water-soluble polysaccharides from *Poria cocos* Wolf using different extraction methods," *International Journal of Biological Macromolecules*, vol. 83, pp. 103–110, 2016.

[61] J. Y. Zhang, J. Tang, Q. Zhang et al., "Effects of sulfated pachymaran AMPA receptor expression in hippocampi of depression model rats," *Chinese Journal of Clinical Psychology*, vol. 27, no. 6, pp. 1086–1091, 2019.

[62] W. Zhang, L. Chen, P. Li, J. Zhao, and J. Duan, "Antidepressant and immunosuppressive activities of two polysaccharides from *Poria cocos* (Schw.) Wolf," *International Journal of Biological Macromolecules*, vol. 120, pp. 1696–1704, 2018.

[63] L. Chen, *Study on Optimization of Extraction Technology and Exploitation of Pachyman*, Guizhou University, Guiyang, China, 2007.

[64] Y. Cao, *Chemical Modification of Pachymaran and its Antioxidant Activity*, Tianjin University of Science and Technology, Tianjin, China, 2010.

[65] H. G. Qiang and Z. Q. Yang, "Study on the anti-HIV effect of carboxymethyl pachymaran in vitro," *China Medical Herald*, no. 10, pp. 1156–1158, 2008.

[66] N. Wang, "Effect of sodium carboxymethyl pachymaran on type I human herpesvirus 1 in vitro," *Journal of Aerospace Medicine*, vol. 30, no. 8, pp. 933–934, 2010.

[67] Y. R. Feng, W. Liu, and J. G. Yang, "Preparation of carboxymethylated pachymaran with different molecular weight and study on its antioxidant activity," *China Food Additives*, vol. 30, no. 3, pp. 67–74, 2019.

[68] J. Lin, *Study of Immunomodulating Activity and Apoptosis-Inducing Effect of Total Tripterpenoids from Poria cocos on Human Colorectal Carcinoma RKO Cells*, Southern Medical University, Guangzhou, China, 2016.

[69] P. Jin and F. P. Wu, "Regulation mechanism of triterpenes from *Poria cocos* in Jingzhou on Nrf2 signaling pathway in A549 cells," *China Pharmaceuticals*, vol. 28, no. 8, pp. 1–3, 2019.

[70] J. S. Dong, J. F. Zhao, L. C. Zhang et al., "Effect of pachymic acid on biological characteristics of renal carcinoma cells through Wnt signaling pathway," *Chinese Journal of Geronontology*, vol. 39, no. 9, pp. 2241–2244, 2019.

[71] L. Shen and D. H. Wong, "Pachymic acid regulated and controlled survival and apoptosis in cervical cancer cells through Wnt signaling pathway by inhibiting TRIM29 expression," *Journal of Guangzhou University of Traditional Chinese Medicine*, vol. 37, no. 1, pp. 140–146, 2020.

[72] W. Jiang, "Induction of pachymic acid on apoptosis of human breast cancer MDA-MB-231cells by activating poly ADP ribose polymerase," *Chinese Traditional and Herbal Drugs*, vol. 47, no. 21, pp. 3861–3865, 2016.

[73] Y. Jiang and L. Fan, "Evaluation of anticancer activities of *Poria cocos* ethanol extract in breast cancer: in vivo and in vitro, identification and mechanism," *Journal of Ethnopharmacology*, vol. 257, p. 112851, 2020.

[74] K. X. Sun and H. W. Xia, "Pachymic acid inhibits growth and induces cell cycle arrest and apoptosis in gastric cancer SGC-7901 cells," *Oncology Letters*, vol. 16, no. 2, pp. 2517–2524, 2018.

[75] H. Wen, Z. Wu, H. Hu et al., "The anti-tumor effect of pachymic acid on osteosarcoma cells by inducing PTEN and Caspase 3/7-dependent apoptosis," *Journal of Natural Medicines*, vol. 72, no. 1, pp. 57–63, 2018.

[76] J. H. Xie, J. Lin, L. S. Lie et al., "Experimental study of the inhibitory effect of total triterpenoids from *Poria cocos* on..."
mouse immune response and therapeutic effect on rat adjuvant arthritis,” *Pharmacology and Clinicals of Chinese Materia Medica*, vol. 32, no. 6, pp. 89–92, 2016.

[77] H. Tian, *Poria cocos Polysaccharide Plays an Immunomodulatory Role through TLR4/TRAF6/NF-B Signaling Pathway*, Medical University, Chongqing, China, 2019.

[78] Y. Pu, Z. Liu, H. Tian, and Y. Bao, “The immunomodulatory effect of *Poria cocos* polysaccharides is mediated by the Ca2+/PKC/p38/NF-κB signaling pathway in macrophages,” *International Immunopharmacology*, vol. 72, pp. 252–257, 2019.

[79] J. W. Li, Y. Q. Pang, M. Zhou et al., “Effect of *Poria cocos* polysaccharide on inflammatory reaction in diabetic nephropathy rats,” *Diet Health*, vol. 6, no. 28, pp. 64–65, 2019.

[80] K. Wu, J. L. Fan, X. Y. Huang et al., “Hepatoprotective effects exerted by *Poria cocos* polysaccharides against acetaminophen-induced liver injury in mice,” *International Journal of Biological Macromolecules*, vol. 114, pp. 38–142, 2018.

[81] H. R. Zhang, X. H. Lv, X. Kang et al., “Effect of *Poria cocos* polysaccharide on renal interstitial fibrosis in rats with type 2 diabetic nephropathy,” *Contemporary Medicine*, vol. 22, no. 8, pp. 1-2, 2016.

[82] D. Q. Chen, L. Chen, M. Wang et al., “Novel inhibitors of the cellular renin-angiotensin system components, poricicic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis,” *British Journal of Pharmacology*, vol. 175, no. 13, pp. 2689–2708, 2018.

[83] M. Wang, D. Q. Chen, L. Chen et al., “Novel RA inhibitors poricicic acid ZG and poricicic acid ZH attenuate renal fibrosis via a Wnt/β-catenin pathway and targeted phosphorylation of Smad3 signaling,” *Journal of Agricultural and Food Chemistry*, vol. 66, no. 8, pp. 1828–1842, 2018.

[84] Y. Y. Yong, H. Chen and M. Wang. “Poricicic Acid A Is Used to Prepare Diuretic Drugs,” CNI106491622B [P/OL]. 2019-04-02.

[85] W. J. Ni, S. L. Yu, L. H. Zhang et al., “Virtual screening of hydrophilic effect of triterpenoids from *Poria cocos*, *China Pharmaceuticals*, vol. 28, no. 11, pp. 40–43, 2019.

[86] K. J. Ning, J. S. Yang, and P. P. Shi, “Observation of *Poria cocos* on diuretic effect in rabbits,” *Journal of Anhui Science and Technology University*, vol. 26, no. 4, pp. 1–3, 2012.

[87] K. Wu, C. Guo, B. Wang, X. Wu, and W. Wang, “Anti-hepatotoxic benefits of *Poria cocos* polysaccharides on acetaminophen-lesioned livers in vivo and in vitro,” *Journal of Cellular Biochemistry*, vol. 120, no. 5, pp. 7482–7488, 2019.

[88] C. Wang, X. Huo, L. Gao et al., “Hepatoprotective effect of carboxymethyl pachyman in fluorouracil-treated CT26-bearing mice,” *Molecules*, vol. 22, no. 5, p. 756, 2017.

[89] Y. C. Sun, W. L. Chang, S. F. Huang et al., “Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation,” *European Journal of Pharmacology*, vol. 648, no. 1–3, pp. 39–49, 2010.

[90] C. L. Huang, J. L. Zheng, F. L. Li et al., “Hypoglycemic effects of polysaccharides from *Wolfiporia cocos* (Schw.) Ryv. & Cilbn in type II diabetic mice,” *Food Research and Development*, vol. 37, no. 4, pp. 21–25, 2016.

[91] S.-S. Sun, K. Wang, K. Ma, L. Bao, and H.-W. Liu, “An insoluble polysaccharide from the sclerotium of *Poria cocos* improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota,” *Chinese Journal of Natural Medicines*, vol. 17, no. 1, pp. 3–14, 2019.

[92] P. Zhang, H. J. Hu, Y. Cheng et al., “Antioxidant activity of *Poria cocos* polysaccharides collected from different regions,” *Journal of Dongguan University of Technology*, vol. 25, no. 1, pp. 63–67, 2018.

[93] L. S. Rak, L. Seulah, M. Eunjun et al., *Chemistry-Bioorganic Chemistry; Findings from Sungkyunkwan University in Bioorganic Chemistry Reported (Bioactivity-Guided Isolation of Anti-inflammatory Triterpenoids from the Sclerotia of Poria cocos Using LPS-Stimulated Raw 264.7 Cells)*, Chemicals & Chemistry, 2017.

[94] S. C. Qin, A. M. Wang, and R. Y. Li, “Effects of pachymic acid on inflammation, oxidative stress injury and apoptosis of SH-SY5Y cells induced by TNF-α,” *Chinese Journal of Traditional Medical Science and Technology*, vol. 26, no. 6, pp. 854–857, 2019.

[95] T. E. Liang, Y. Y. Liu, and X. Wang, “Study on mechanisms of *Poria cocos* polysaccharide regulating mast cell activation in rats with ulcerative colitis based on IL-33/ST2 signaling pathway,” *Chinese Journal of Immunology*, vol. 36, no. 11, pp. 1324–1329+1337, 2020.

[96] H. Xu, Y. Wang, P. W. Jurutka et al., “16α-hydroxytrametenolic acid from *Poria cocos* improves intestinal barrier function through the glucocorticoid receptor-mediated PI3K/Akt/NF-κB signaling pathway,” *Journal of Agricultural and Food Chemistry*, vol. 67, no. 39, pp. 10871–10879, 2019.

[97] H. H. Xiao, M. B. Zhang, Z. Q. Guo et al., “Study on mechanism poria in inhibiting contraction of small intestine in vitro,” *Modern Chinese Medicine*, vol. 22, no. 9, pp. 1478–1484, 2020.

[98] K. Y. Song, Z. Y. Jiang, C. Q. Yan et al., “Experimental study on the effect of Radix codonopsis and *Poria* on intestinal flora in mice,” *Chinese Journal Clinical Pharmacology*, vol. 27, no. 2, pp. 142–145, 2011.

[99] S.-H. Hu, G. Zhou, and Y.-W. Wang, “Tyrosinase inhibitory activity of total triterpenes and poricicic acid A isolated from *Poria cocos*,” *Chinese Herbal Medicines*, vol. 9, no. 4, pp. 321–327, 2017.

[100] H. Lee and H. J. Cha, “*Poria cocos* Wolf extracts represses pigmentation in vitro and in vivo,” *Cellular and Molecular Biology*, vol. 64, no. 5, pp. 80–84, 2018.

[101] C. F. Shi, C. Liu, and R. Y. Yang, “Study on application of *Poria cocos* for treatment of patients with dark skin pigmentation,” *Modern Chinese Medicine*, vol. 19, no. 1, pp. 60–63, 2017.

[102] Y. Pang, S. Zhu, and H. Pei, “Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway,” *Metabolic Brain Disease*, vol. 35, no. 4, pp. 673–680, 2020.

[103] C. M. Yu, J. P. Li, and X. M. Hu, “*Poria cocos* peels inhibit epileptic activity,” *Chinese Traditional Patent Medicine*, vol. 39, no. 6, pp. 1288–1290, 2017.

[104] Y. Cheng, Z. X. Ding, Y. Cheng et al., “Protective effects of different Poria extracts on mice with acute liver injury,” *Journal of Anhui University of Chinese Medicine*, vol. 39, no. 4, pp. 73–77, 2020.