Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium

Maria E. Faricelli · Miroslav Valárik · Jorge Dubcovsky

Abstract The earliness per se gene Eps-Am1 from diploid wheat Triticum monococcum affects heading time, spike development, and spikelet number. In this study, the Eps1 orthologous regions from rice, Aegilops tauschii, and Brachypodium distachyon were compared as part of current efforts to clone this gene. A single Brachypodium BAC clone spanned the Eps-Am1 region, but a gap was detected in the A. tauschii physical map. Sequencing of the Brachypodium and A. tauschii BAC clones revealed three genes shared by the three species, which showed higher identity between wheat and Brachypodium than between them and rice. However, most of the structural changes were detected in the wheat lineage. These included an inversion encompassing the wg241-VatpC region and the presence of six unique genes. In contrast, only one unique gene (and one pseudogene) was found in Brachypodium and none in rice. Three genes were present in both Brachypodium and wheat but were absent in rice. Two of these genes, Mot1 and FtsH4, were completely linked to the earliness per se phenotype in the T. monococcum high-density genetic map and are candidates for Eps-Am1. Both genes were expressed in apices and developing spikes, as expected for Eps-Am1 candidates. The predicted MOT1 protein showed amino acid differences between the parental T. monococcum lines, but its effect is difficult to predict. Future steps to clone the Eps-Am1 gene include the generation of mot1 and ftsH4 mutants and the completion of the T. monococcum physical map to test for the presence of additional candidate genes.

Keywords Comparative genomics · Earliness per se · Flowering · Wheat · Brachypodium

Introduction

Positional cloning of genes in wheat is hampered by its large genome size with abundant repetitive elements and its polyploid nature. Common wheat Triticum aestivum L. has a 16.4-Gb genome (Arumuganathan and Earle 1991) with a large proportion of repetitive elements (approximately 80%, Moore 1995) and three different genomes (2n = 6x = 42, AABBDD genomes). These three genomes originated from the hybridization of diploid Aegilops tauschii Coss. (2n = 2x = 14, DD genome) and tetraploid Triticum turgidum L. (2n = 4x = 28, AABB genomes). The AA genome from tetraploid wheat was contributed by Triticum urartu Tumanian ex Gandilyan (2n = 2x = 14, AA genome), which is closely related to cultivated diploid wheat Triticum monococcum L. (2n = 2x = 14, AAmAmm genome, Dvorak et al. 1993; Johnson and Dhaliwal 1976). The BB genome was contributed by a species from the

Sequences deposited in this study EU358770 (BAC clone RI101M3), EU358773 (BAC clone HI6P23), EU358772 (BAC clone DH027O19), GQ422598 (Mot1 T. monococcum DV92), EU358774 (Mot1 T. monococcum G3116), GQ422597 (FtsH4 T. monococcum DV92), EU379332 (FtsH4 T. monococcum G3116).

Electronic supplementary material The online version of this article (doi:10.1007/s10142-009-0146-7) contains supplementary material, which is available to authorized users.

M. E. Faricelli · M. Valárik · J. Dubcovsky

Department of Plant Sciences, University of California, Mail Stop 1, One Shields Avenue, Davis, CA 95616-8780, USA
e-mail: jdubcovsky@ucdavis.edu

Present Address:
M. Valárik
Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic

© The Author(s) 2009. This article is published with open access at Springerlink.com
Sitopsis group, likely related to *Aegilops speltoides* (Tausch) Löve (Dvorak and Zhang 1990; Huang et al. 2002; Liu et al. 2003).

The use of wheat diploid ancestors (or other diploid *Triticaceae* species) provides a viable alternative to overcome the complications imposed by polyploidy to positional cloning projects. The development of molecular markers and the construction of high-density genetic maps are considerably simpler in diploid genomes. Examples of the use of this strategy are provided by the cloning of the powdery mildew resistance locus *Pm3* of hexaploid wheat using both tetraploid and diploid wheat (Yahiaoui et al. 2004), and by the use of *T. monococcum* to clone the vernalization genes *Vrn1* and *Vrn2* (Yan et al. 2003, 2004) and the leaf rust resistance locus *Lr10* (Stein et al. 2000).

The large size of the *Triticaceae* genomes has delayed the sequencing of these species and limited the number of successful positional cloning projects in this economically important group of plants. Fortunately, there is good colinearity among species of the Poaceae family (Devos 2005; Devos and Gale 2000; Feuillet and Keller 2002; Paterson et al. 2000; Van Deynze et al. 1995). The available genomic sequences of rice (Goff et al. 2002; Yu et al. 2002) and *Brachypodium* (http://www.brachypodium.org) provide parallel road maps, which are useful to generate markers in the *Triticaceae*-targeted regions, and in some cases, to identify potential candidate genes (Yan et al. 2003, 2006). This comparative genomics approach has been used in most of the positional cloning projects in wheat (Bossolini et al. 2006; Feuillet et al. 2003; Fu et al. 2009; Uauy et al. 2006; Yan et al. 2003, 2004, 2006).

Whereas the initial low-resolution restriction fragment length polymorphism (RFLP) maps were sufficient to reveal the existence of large colinear chromosome blocks between rice and wheat, they were unable to detect small rearrangements affecting this colinear frame (Devos 2005; Dubcovsky et al. 1996; Guyot and Keller 2004; Linkiewicz et al. 2004; Peng et al. 2004; Sorrells et al. 2003). The development of high-density maps and the first comparative sequencing of targeted orthologous regions revealed numerous exceptions to the broad RFLP colinearity previously observed along large blocks of rice and wheat chromosomes. These alterations were generated by gene duplications, deletions, and inversions as well as gene insertions associated with transposition of linked retroelements (Bennetzen and Ma 2003; Bennetzen and Ramakrishna 2002; Brunner et al. 2003; Dubcovsky et al. 2001; Guyot et al. 2004).

The whole rice genomic sequence provided the framework for additional comparative studies with orthologous regions in the *Triticaceae* genomes. These studies showed that the intergenic regions in the large *Triticaceae* genomes are mainly composed of repetitive elements that evolve rapidly and are not conserved with rice (Bennetzen and Ma 2003; Dubcovsky et al. 2001; SanMiguel et al. 2002). A low conservation of the intergenic regions was also reported among different *Triticaceae* genomes (Dubcovsky and Dvorak 2007; Gu et al. 2004; Kong et al. 2004; Wicker et al. 2003). In maize, some intergenic regions were shown to be highly variable even between inbred lines of the same species as a result of independent retrotransposon invasions in different maize progenitor plants (Fu et al. 2002; Song and Messing 2003).

An additional source of exceptions to the broad gene colinearity observed between rice and the *Triticaceae* genomes is the existence of an ancestral polyploidization event that predated the divergence of the rice and wheat lineages (Paterson et al. 2004). Deletions in the duplicated regions occurred independently after the divergence of the two lineages, generating numerous alterations to the initial colinear regions. A well-studied example of this phenomenon is the chromosome region including the thermosensitive earliness per se gene *Eps-A*m1 located on the distal region of *T. monococcum* chromosome 1AmL. Searches of the most similar rice genes using wheat genes from this region returned orthologues from both rice chromosomes 1 and 5, which originally belong to a single region duplicated in the ancestral polyploidization event (Valárík et al. 2006).

The current interest in the cloning of the *Eps-A*m1 gene has recently increased with the discovery that, in addition to its effect on heading time, this gene affects the number of spikelets and grains per spike in diploid wheat (Lewis et al. 2008). The effect on heading time was explained by differences in the timing of the transition between the vegetative and reproductive stages and the duration of spike development (no significant effects were found in the stem elongation period; Lewis et al. 2008). The *Eps-A*m1 gene was initially mapped distal to marker *wg241* on the telomeric region of diploid wheat chromosome 1AmL (Bullrich et al. 2002) and later mapped more precisely to a 0.8-cM interval between genes *VatpC* and *Adk1* (Valárík et al. 2006). Colinearity between the ends of both rice chromosome 5 and wheat chromosome 1AmL was interrupted by a small inversion, several non-colinear genes, and a non-colinear region between markers *VatpC* and *Adk1* (Valárík et al. 2006). Even after using all the available genes from the rice colinear region, the interval between the markers flanking the *Eps-A*m1 locus was not small enough to start a chromosome walk to ultimately clone the gene.

In this study, the physical map of *A. tauschii* (http://wheat.pw.usda.gov/PhysicalMapping/) and the diploid *Brachypodium distachyon* (L.) Beauv sequence were utilized to generate additional markers in the *Eps-A*m1 region and identify potential candidate genes. *Brachypodium* has recently emerged as an alternative model species for *Triticaceae* because of its closer phylogenetic distance to these species than rice (Draper et al. 2001). The estimated 355-Mb
genome of *Brachypodium* places it in an intermediate position between *Arabidopsis* and rice in terms of genome size (Bennett et al. 2000). Additional genomic resources for this species are already available, such as 20,449 expressed sequence tags (ESTs) from five *B. distachyon* cDNA libraries (Vogel et al. 2006).

Materials and methods

Mapping populations

Mapping populations used in the construction of the *T. monococcum* high-density genetic map are all derived from the cross between cultivated *T. monococcum* ssp. *monococcum* accession DV92 (spring growth habit) carrying the *Eps-Am1* allele for late heading, and wild *T. monococcum* ssp. *aegilopoides* accession G3116 (winter growth habit) carrying the *Eps-Am1* allele for early heading. These mapping populations included 74 F2 lines, 343 F3:2 additional families, 96 F5 single-seed descent (SSD) lines, and 3,298 BC5F2 near isogenic lines (NILs), all of them described before (Lewis et al. 2008; Valárik et al. 2006). Plants were screened with polymerase chain reaction (PCR) markers flanking the *Eps-Am1* region (Table 1), and only those with recombination events within the targeted region were retained. Progeny tests for heading time were performed for plants carrying critical recombination events within the *Eps-Am1* region (Lewis et al. 2008; Valárik et al. 2006).

Table 1 Polymerase chain reaction markers developed in the *Eps-Am1* region of *Triticum monococcum*

Marker type	Locus	EST	Primers	Restriction enzyme
CAP	P23_4	No	GTCGCTTTGGGATTGTTGGT GGTCCCCAGGAAAGTCAG	Cac8I
CAP	Mot1	CJ698500	AAGGACTGTTTCTAGCCCTCATA GTGAGCTTCGCCAGAACT	BsrNI
CAP	FtsH4	No	GACATTATGAGCCACCCCA TGGTGCATGATTCTCCTGAA	Tsp509I
RFLP	Cf2.1	DV854615	TTTTGAGCTACTGCACACCT TCTAAAACAGCAGGGGACCT	XbaI
CAP	Rbp1	BQ806744	CTGTTTATGATTCTCATTGC ATACATGAAACTGTCCTGAAGGAGC	TseI
LP	A-C	No	GGCGATATTTCTCCACTGGTA CGTCCTAGGTTGATCTT	

CAP cleavage amplified polymorphism, RFLP restriction fragment length polymorphism; LP length polymorphism.
Plants were grown in a growth chamber at a constant temperature (16°C) and a long-day photoperiod (16 h light, 602 μE m⁻² s⁻¹). Shoot apical regions were dissected using magnifying glasses, and multiple apices from the same genotype and at the same developmental stage were pooled for RNA extraction. Apices were collected at the double-ridge stage and at the terminal spikelet stage. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, USA), and cDNA was then synthesized using the Quantitect® Reverse Transcription Kit (Qiagen, USA).

Semi-quantitative and real-time quantitative PCR using SYBR® Green JumpStart™ Taq ReadyMix™ (Sigma-Aldrich®, USA) were performed using primers 5'-TTTTT GCTCAACATAAGGCTTTC-3' and 5'-CTGGAGAT-3' for T. monococcum gene Mot1, and primers 5'-CCCGCTGCTTAAGACATTGCAGA-3' and 5'-CTCTTATGCACATCCAGACAGCATTACCCTCCAA-3', and Actin was amplified using primers forward 5'-ACCTTCAATGGCCCATCAAGAGGCAAGGCTTTC-3' and reverse 5'-CCACCTACCACACTCCAAC-3', and Actin was amplified using primers forward 5'-ACCTTCAATGGCCCATCAAGAGGCAAGGCTTTC-3' and reverse 5'-ACCTTCAATGGCCCATCAAGAGGCAAGGCTTTC-3' (Uayu et al. 2006). The 2⁻ΔΔCT method (Livak and Schmittgen 2001) corrected for primer amplification efficiency was used to normalize and calibrate the Mot1 and FtsH4 Cₚ values relative to the Actin endogenous controls.

The real-time quantitative PCR data was analyzed as a 2 × 2 factorial analysis of variance (ANOVA) with genotype (Eps-A′m1-early (G3116) and Eps-A′m1-late (DV92) alleles, four different recombinant lines) and developmental stage (double-ridge and terminal spikelet) as factors. Replications including all four treatments were performed in two different growth chambers under the same conditions described above, which were included in the analysis as blocks (Randomized Complete Block Design).

Results

A. tauschii genes and physical map

A chromosome walk was initiated in A. tauschii to take advantage of the available physical map (http://wheatdb.ucdavis.edu:8080/wheatdb/index.jsp). The A. tauschii BAC library was screened with probes derived from both proximal and distal markers flanking the Eps-A′m1 locus, and the new genes identified in each region are described below.
Cf2/Cf5-like disease resistance protein ACE86403.1 from the LRR_RI (leucine-rich repeat, ribonuclease inhibitor)-like subfamily (cl02423), respectively.

Eps-Am1 distal side The hybridization of the A. tauschii BAC library with a probe developed from the single-copy gene Adk1 (91% identical to rice putative protein kinase ADK1, AAT44307.1) yielded BAC clones RI3H10, HD66L22, and HI6P23. The clone RI3H10 is part of the A. tauschii contig 9849 (D genome assembly 1.1), which includes nine BAC clones and covers a region of approximately 245 kb. The other two BAC clones were assigned to the same contig by HindIII-fingerprinting. Among these three BAC clones, HI6P23 (approximately 145 kb) was the one that extended further into the proximal region, and it was selected for sequencing. The sequence of the BAC clone HI6P23, which was annotated and deposited in GenBank (EU358773), revealed two genes that were not colinear with rice in addition to the colinear Adk1 gene (Fig. 1a, d). The first one (from the proximal to the distal end of the BAC clone) was designated Mot1 based on a phylogenetic analysis of the conserved domains of the predicted protein (Fig. S1a, supplemental online material). Mot1 encodes a protein 84% identical to rice SNF2 domain-containing protein BAD25208.1, and 36% identical to Saccharomyces cerevisiae protein MOT1. This last protein is a TATA-binding protein-associated factor involved in transcriptional regulation. The second gene, designated FtsH4 according to a phylogenetic tree constructed from the conserved domains of the predicted protein (Fig. S1b), encodes a protein that is 80% and 81% identical to rice proteins NP_001043384.1 (FtsH4) and NP_001043385.1 (FtsH5). These two proteins are encoded by genes recently duplicated in rice, which are both homologous to Arabidopsis gene FstH4 (Fig. S1b).

In an attempt to extend the A. tauschii physical map from the distal side, the probe P23_4 was designed from a non-repetitive sequence located 29 kb from the proximal end of the BAC clone HI6P23 (Table 1, Fig. 1d). The re-screening of the BAC library with this probe failed to identify any new A. tauschii BAC clone, which interrupted the chromosome walk from this direction in this library.

B. distachyon genes and physical map

As an alternative strategy to bridge the gap identified in the A. tauschii BAC library, a second chromosome walk was initiated in B. distachyon. The B. distachyon BAC library was first hybridized with a probe developed from the single-copy gene Mot1. A total of 17 positive BAC clones was detected, and the ends of six of them (DH022N11, DH025B20, DH026A02, DH027O19, DH035A19, and DH042C06) were sequenced. The T7-end of the clone DH027O19 was 89% identical to gene cdo393, and the SP6-end was 87% identical to gene FtsH4, at the DNA level, which suggested that this BAC clone was spanning the complete Eps1 orthologous region (Fig. 1b).

The BAC clone DH027O19 (approximately 118 kb) was sequenced and deposited in GenBank (EU358772). The annotation of this clone revealed ten genes and one pseudogene (NADH). The predicted protein from the
pseudogene NADH shows 98% identity with B. distachyon NADH dehydrogenase 27 kDa subunit (ACF08644.1), but it includes a premature stop codon and a truncation of the last approximately 23 amino acids. The ten genes present in this BAC clone include nine previously found in either rice or A. tauschii (cdo393, Pp2C, Unp30, VatpC, CD892187, CA608558, wg241, Mot1, and FisH4), and a non-collinear gene designated Rbp1 (Fig. 1b). The protein sequence encoded by gene Rbp1 shows 74% identity with a rice putative RNA-binding protein (BAC79567) from the Mak16 multi-copy gene superfamily (pfam04874).

T. monococcum high-density genetic and physical maps

The new genes identified in the A. tauschii and B. distachyon sequences were used to generate molecular markers (Table 1), which were incorporated into the high-density genetic map of the Eps-Am1 region in T. monococcum (Lewis et al. 2008; Valárik et al. 2006).

On the distal side, genes Mot1 and FisH4 were mapped 0.03 cM proximal to Adk1 and completely linked to each other and to the Eps-Am1 locus (Table 1, Fig. 1c). This result indicates that the A. tauschii BAC clone HI6P23 covers the distal side of the physical map of the Eps-Am1 region. Since Mot1 and FisH4 are completely linked to the earliness per se phenotype, they are both valid candidate genes for Eps-Am1.

On the proximal side, gene Cj2.1 was mapped 0.05 cM distal to VatpC, but still 0.75 cM proximal to the Eps-Am1 locus (Table 1, Fig. 1c). This distance was too long to continue the chromosome walk from Cj2.1, and therefore, additional efforts to develop a marker closer to Eps-Am1 were focused on the distal contig, specifically on the A. tauschii BAC clone HI6P23. Marker P23_4 (Table 1, Fig 1d), developed from the proximal end of the clone HI6P23, was incorporated into the high-density map, but unfortunately, it was still completely linked to genes Mot1 and FisH4 and to the Eps-Am1 phenotype (Fig. 1c).

Since it was not possible to continue the chromosome walk from the A. tauschii distal BAC clone, an additional marker was developed from B. distachyon gene Rbp1 (Table 1). This gene was located in the B. distachyon BAC clone DH027019 between Mot1 and the genes mapped on the other side of the proximal gap of the Eps-Am1 region (Fig. 1b) and, therefore, was an interesting candidate to generate a marker within the proximal 0.75-cM gap. Unfortunately, marker Rbp1 was mapped in a non-collinear region on T. monococcum chromosome 7Am, 5 cM from the RFLP marker wg420 (Dubcovsky et al. 1996).

The use of both A. tauschii and B. distachyon was a useful strategy to develop markers completely linked to the Eps-Am1 locus and complete the distal side of the T. monococcum physical map, but it was insufficient to identify a marker tightly linked to the Eps-Am1 locus on the proximal side (Fig. 1). Therefore, a chromosome walk was initiated in T. monococcum from the closest markers to Eps-Am1 on the distal side. The screening of the BAC library with probes Mot1 and P23_4 yielded positive BAC clones 707L18, 273G2, 653H20, 67B4, and 43J16. Using BAC-end sequencing, HindIII-fingerprinting, hybridization (for gene Mot1), and PCR markers (for both genes FisH4 and Adk1), these five BAC clones were organized into a single contig spanning approximately 400 kb (Fig. 1c).

An additional marker was then developed from the proximal SP6-end of the BAC clone 43J16. One of the primers for this marker included the junction between retrotransposons Angola (LTR, Gypsy) and Caspar (TIR, CACTA; Table 1, Fig. 1e), and was designated A-C. This marker failed to amplify a PCR product from the other four BAC clones from the T. monococcum contig, confirming its proximal position. Unfortunately, this marker was also completely linked to the Eps-Am1 locus in the T. monococcum high-density genetic map (Fig. 1c), indicating that additional chromosome walk steps are still necessary to complete the proximal side of the Eps-Am1 physical map in T. monococcum.

Comparison of the wheat, rice, and Brachypodium Eps-Am1 colinear regions

The regions between genes cdo393 and Adk1 in rice (approximately 58 kb) and cdo393 and FisH4 in B. distachyon (approximately 117 kb) resulted to be much smaller than the orthologous regions in either T. monococcum or A. tauschii (Fig. 1). Although the physical length of this region is unknown in the Triticeae species, it can be roughly estimated. The sequenced A. tauschii BAC clones RI101M3 and HI6P23 (approximately 265 kb) plus the estimated length of the non-overlapping region of the T. monococcum BAC clone 43J16 (based on the HindIII-fingerprint) covered a region of approximately 350 kb, which corresponds to a genetic distance of 0.14 cM (Fig. 1c-e). Assuming a constant ratio between genetic and physical lengths across this region, the 2.2-cM region between genes cdo393 and Adk1 in T. monococcum can be estimated to be approximately 5,600 kb.

The difference in the size of the Eps1 orthologous regions from wheat, rice, and Brachypodium was determined mainly by the expansion of some intergenic regions in the large Triticeae genomes due to the insertion of repetitive elements. In spite of this big size difference, the Eps1 region revealed a relatively good level of conservation of gene content and order across species, altered by an inversion of the region flanked by genes wg241 and VatpC in the wheat lineage, and by several gene insertions/deletions (indels) and duplications (Figs. 1 and 2). Both A. tauschii and B. distachyon shared three genes that were absent in the orthologous region on rice chromo-
some 5 (CD892187, Mot1, and FtsH4, Figs. 1 and 2). The most similar rice gene to *T. monococcum* gene FtsH4 was found to be present on chromosome 1 between the paralogous copies of genes *Pp2C* and *Adk1*, a region previously identified as the result of the ancestral polyploidization event that occurred before the divergence of the *Poaceae* genomes (Valák et al. 2006). This suggested that the orthologous copy of *T. monococcum* gene *FtsH4* on chromosome 5 was deleted in the rice lineage, but that the orthologous copy of *Brachypodium* was not. The other two genes (CD892187 and *Mot1*) were absent in the rice genome. Some introns showed a significant BLASTN alignment along a conserved exon length across species. Intron size, however, was more variable across species. Thirty-four out of the 35 exon–intron boundaries found for the three orthologous genes in the three species contained the canonical GT and AG motifs, but the 15th intron of gene *wg241* contained the alternative GC splicing site at the 5′ end in both wheat and rice, but not in *Brachypodium*.

Analyses of predicted proteins for these three orthologous genes revealed higher amino acid identity between wheat and *Brachypodium* than between these two species and rice (Fig. 3a–c). The combined exon regions for the three genes were more similar between wheat and *Brachypodium* (83% identity) than between wheat and rice (75% identity) or *Brachypodium* and rice (80% identity) along the 6.5 to 7.0-kb high-scoring segment pairs (HSP) aligned by BLASTN (Fig. 3d). These differences were even larger for the combined intron regions. Wheat and *Brachypodium* introns showed a significant BLASTN alignment along a 1,909-bp HSP (68% identical), which was much smaller in the comparisons between wheat and rice (280-bp HSP, 67% identical) or *Brachypodium* and rice (140-bp HSP, 74% identical; Fig. 3c).

Characterization of *Eps-A*" candidate genes

Both candidate genes *Mot1* and *FtsH4* were sequenced from the two parental lines of *T. monococcum* mapping population to test if the DV92 and G3116 *Eps-A*" alleles were associated with changes in the coding regions of these genes.

Alignment of the predicted MOT1 proteins showed two amino acid polymorphisms between the two parental lines:
isoleucine (I) vs threonine (T) at position 362 (BLOSUM62 score −2), and aspartic acid (D) vs glutamic acid (E) at position 460 (BLOSUM62 score 2). Alignment of wheat, rice, and Arabidopsis MOT1 proteins indicated that the amino acid changes occurred at non-conserved positions in the protein (Fig. S2).

Alignment of the predicted FtsH4 proteins from DV92 and G3116 showed no amino acid polymorphism.

To test if the phenotypic differences between the DV92 and G3116 Eps-Am1 alleles were associated with changes in the expression of the candidate genes, transcript levels of both candidates Mot1 and FtsH4 were compared between NILs carrying either DV92 or G3116 alleles by semi-quantitative (Fig. 4a) and real-time quantitative PCR (Fig. 4b). Transcripts of both genes Mot1 and FtsH4 were observed in apices, crowns, leaves, and spikes, but were not detected in roots (Fig. 4a). A comparison of the Mot1 and FtsH4 transcript levels in shoot apical regions by semi-quantitative PCR showed no apparent differences between NILs carrying the either DV92 or G3116 Eps-Am1 alleles (Fig. 4a). Similar results were obtained at the initiation of the transition between the vegetative and reproductive stages.
(double-ridge stage) and at the terminal spikelet stage (Fig. 4a). These results were confirmed by real-time quantitative PCR (Fig. 4b). The 2×2 ANOVAs showed non-significant interactions between genotypes (Eps-A^m1 early and late alleles) and developmental stages (double-ridge and terminal spikelet; $P = 0.86$ for Mot1 and $P = 0.94$ for FtsH4) and, therefore, the effects of the Eps-A^m1 alleles were analyzed across developmental stages. Non-significant differences in the Mot1 and FtsH4 transcript levels ($P = 0.64$ and $P = 0.74$, respectively) were found between NILs carrying the DV92 or G3116 Eps-A^m1 alleles.

Discussion

Brachypodium as a closer model species than rice for the large *Triticeae* genomes

Since the completion of the rice genomic sequence (Goff et al. 2002; Yu et al. 2002) several studies demonstrated a high level of colinearity between rice and the *Triticeae* genomes, which turned rice into the most commonly used model species for positional cloning projects in wheat (Bossolini et al. 2006, 2007; Dubcovsky et al. 2001; Faris et al. 2008; Yan et al. 2003, 2004, 2006). Even in those projects where the targeted gene was not present in the rice colinear region, the rice genome was still useful as a stepping stone to develop molecular markers in the wheat region (Fu et al. 2009; Uauy et al. 2006; Yan et al. 2004). However, the overall colinear gene framework between rice and the *Triticeae* genomes has been shown to be frequently interrupted by inversions, deletions, and insertions of genes, which sometimes complicates the use of rice as a model for the larger and more complex *Triticeae* genomes (Griffiths et al. 2006).

In 2001, Draper et al. questioned the value of rice as a model species for the temperate cereals and forage grasses given its relatively distant phylogenetic relation, its subtropical nature, and its specialized growth habit. He proposed *Brachypodium* as a better model than rice for both wheat and barley. *Brachypodium* is a temperate grass, and its small genome contains only approximately 15% of highly repetitive elements (Catalán et al. 1995).

In a phylogenetic tree of the Poaceae family based on combined data from chloroplast restriction sites and morphology, Kellogg (2001) showed that *Brachypodium* is more closely related to oat, *Bromus*, and wheat (subfamily Pooideae) than rice (subfamily Ehrhartoideae). This observation was also supported by sequence comparisons of ESTs (Vogel et al. 2006) and genes from both the leaf rust resistance locus *Lr34* (Bossolini et al. 2007) and the domestication locus *Q* (Faris et al. 2008) regions. Bossolini et al. (2007) estimated that the divergence of *Brachypodium* from the *Triticeae* lineage occurred approximately 35 to 40 million years ago (Mya), significantly earlier than the divergence of these two groups of species from the rice lineage, which took place approximately 50 Mya (Paterson et al. 2004).

The present comparison of exon and intron sequences of the orthologous genes wg241, CA608558, and VatpC from the wheat, rice, and *Brachypodium* Eps1 regions supported the previous conclusions. In all three cases, the predicted proteins were more similar between wheat and *Brachypodium* than between these two species and rice (Fig. 3). In addition, the comparison of the intron regions showed longer significantly similar segments between wheat and *Brachypodium* than between these two species and rice. This better conservation of the intron regions is important because it improves the ability of probes developed from *Brachypodium* genes to hybridize to wheat genomic DNAs or BAC clones.

In spite of the closer phylogenetic distance between *Brachypodium* and the *Triticeae* genomes relative to rice, the larger *Triticeae* genomes seem to have a higher proportion of colinearity exceptions when compared with the other two species. One inversion, one gene duplication, two gene insertions, and one gene insertion and duplication that were unique to the *Triticeae* species were found in this study (in addition to the non-colinear genes that might be present in the 0.75-cM proximal gap of the *T. monococcum* physical map), whereas only one gene insertion (*Rbp1*) was unique to *B. distachyon*, and none of the rice genes was simultaneously absent in both *Triticeae* species and *Brachypodium*. Similarly, the comparative study of the *Q* locus region among wheat, rice, and *Brachypodium* showed multiple duplications of the *T. monococcum* gene *FB* (from only one copy present in *Brachypodium sylvaticum* and none in rice to four copies present in *T. monococcum*), and a small inversion including one of the *FB* copies (Faris et al. 2008). The comparison of the *Lr34* locus orthologous regions among the same species revealed a large inversion in rice. However, excluding this main structural change, the gene content was more similar between rice and *Brachypodium* than between these two species and wheat. Thirty-nine out of the 43 genes present in *Brachypodium* were present in rice (91%), whereas only ten out of the 19 genes found in wheat (53%) showed orthologues in either rice or *Brachypodium*. Interestingly, four of the wheat non-colinear genes showed evidence of movements associated with linked retroelements (Bossolini et al. 2007).

These last results suggest that the higher numbers of exceptions to gene colinearity observed in the *Triticeae* genomes might be associated with their larger genome size and their higher proportion of repetitive elements, many of which are actively transcribed (Echenique et al. 2002). Dubcovsky et al. (1996) pointed out that the RFLP maps of
species with large genomes exhibited a higher proportion of duplicated loci (28% in T. monococcum, 30% in barley, Kleinhofs et al. 1993) than the RFLP maps of species with smaller genomes, such as rice (6%, Saito et al. 1991) or common bean (9%, Nodari et al. 1993). Dubcovsky and Dvorak (2007) indicated that the high rate of turnover of repetitive elements in the intergenic regions of wheat was associated with faster changes in the gene regions. A recent study comparing a high-density SNP map of A. tauschii with the rice and sorghum genomes confirmed that 80% of the structural changes observed among these species occurred in the large genome of A. tauschii, whereas only 20% occurred in the smaller rice and sorghum genomes (Luo et al. 2009).

The higher rate of change associated with the large Triticeae genomes provides an explanation for the limitations of the Brachypodium genome as a better model than rice for the complex Triticeae genomes. Even though some changes are shared by Brachypodium and wheat relative to rice (e.g., the presence of genes CD892187, Mot1, and FtsH4 in this comparative study), most of the changes are unique to the Triticeae species. A corollary of this higher rate of structural changes in the large genomes (such as barley or A. tauschii) is that the sequencing of some of these large genomes is still necessary to better support positional cloning projects in the Triticeae species.

Eps-A”1 candidate genes

The use of both A. tauschii and B. distachyon as bridge species for the positional cloning of the Eps-A”1 gene in T. monococcum yielded two valuable results. First, the markers identified proximal to AdkI and completely linked to the Eps-A”1 locus were sufficient to reveal T. monococcum BAC clones covering this region and complete the distal side of the Eps-A”1 physical map. Second, and even more importantly, the mapping of genes Mot1 and FtsH4 completely linked to both the earliness per se and spikelet number phenotypes indicated that these two genes are valid candidates for Eps-A”1.

Mot1 The Mot1 gene has SNF2_N (pfam00176) and HELICc (cd00079) domains characteristic of the SNF2 family of transcriptional regulators. A phylogenetic analysis of these conserved domains from different protein members of this family in Arabidopsis, rice, and S. cerevisiae indicated that wheat and Brachypodium MOT1 proteins are more closely related to rice protein OsXP464189 and S. cerevisiae protein MOT1 than to other members of this family. This cluster was supported by 100% bootstrap values (Fig. S1a).

In yeast, MOT1 has been found to both activate and repress transcription by ATPase-dependent mechanisms (Dasgupta et al. 2002; Muldrow et al. 1999; Sprouse et al. 2006; Sudarsanam et al. 2000). Another member of the SNF2 family, the **PHOTOPERIOD-INDEPENDENT EARLY FLOWERING** gene 1 (PIE1; Fig. S1a), was shown to be required for the activation of both **FLOWERING LOCUS C (FLC)** and **FRIGIDA (FRI)** from the vernalization pathway, and also by the autonomous pathway that regulate flowering time in Arabidopsis (Noh and Amasino 2003). **PIE1** was found to be expressed preferentially in the shoot apical meristem and to increase **FLC** expression repressing the transition of the shoot apex from the vegetative to reproductive stages and delaying flowering time (Noh and Amasino 2003). Gene **BRM**, another Arabidopsis member of the same SNF2 family (Fig. S1a), was also shown to be expressed in meristems and to be required for normal vegetative and reproductive development (Farrona et al. 2004). **BRM**-silenced plants exhibited a smaller overall size with reduced stems and leaves, defects in floral organ size, number, and identity, and they flowered significantly earlier (Farrona et al. 2004). It was demonstrated that **BRM** controlled the transition of the shoot apical meristem from the vegetative to reproductive stages by affecting **CONSTANS (CO)**, a transcription factor from the photoperiod pathway that promotes flowering (Farrona et al. 2004).

The involvement of both genes **PIE1** and **BRM** in the regulation of flowering time and in the normal vegetative and reproductive development in Arabidopsis suggests that gene **Mot1** is a potentially interesting candidate for Eps-A”1. Gene Mot1 was found to be expressed both in the vegetative shoot apical meristem and in the developing spike in T. monococcum, which are the predicted tissues and developmental stages where Eps-A”1 is expected to act. However, non-significant differences were found by real-time quantitative PCR in the transcript levels of this gene between BC2F2 NILs carrying either the Eps-A”1 allele for late heading from DV92 or the Eps-A”1 allele for early heading from G3116 (Fig. 4).

Sequence comparison of the predicted MOT1 proteins from the DV92 and G3116 alleles revealed only two amino acid polymorphisms, both of them upstream the SNF2_N and HELICc conserved domains at non-conserved amino acid positions. Although the substitution of T in G3116 at position 362 (also conserved in A. tauschii) by I in DV92 has a negative BLOSUM62 score (–2), indicative of different biochemical properties of the substituted amino acid, the occurrence of this change at a non-conserved position complicates the prediction of the effect of this amino acid change in the function of the protein.
FtsH4 A phylogenetic analysis of the peptidase M41 (pfam01434) and the AAA (cd00009) domains from several members of the FtsH family of proteases, including all the Arabidopsis and rice homologues, revealed that wheat and *Brachypodium* FtsH4 proteins are more closely related to Arabidopsis protein FtsH4 and rice proteins FtsH4 and FtsH5. This clade was supported by 100% bootstrap values (Fig. S1b). Yu et al. (2005) indicated that both rice genes *FtsH4* and *FtsH5* are arranged in tandem on rice chromosome 1, likely being the result of a duplication of a gene homologous to Arabidopsis gene *FtsH4*.

T. monococcum gene *FtsH4*, the other *Eps-A*\(^{m}I*-candidate gene, is an ATP-dependent metalloprotease from the M41 family of peptidases, which belongs to a larger family of proteins called AAA (ATPases associated with diverse cellular activities; van der Hoorn 2008). The Arabidopsis nuclear genome was found to contain 12 *FtsH* genes, the products of three of which are targeted to mitochondria and the remaining nine to chloroplast (Sakamoto et al. 2003). In rice, at least nine *FtsH* genes have been found, and each of them corresponds to an Arabidopsis *FtsH* gene or gene pair, except for gene Arabidopsis *FtsH12*. Rice genes *FtsH4* and *FtsH5* correspond to Arabidopsis *FtsH4* and are targeted to the mitochondria (Yu et al. 2005; Fig. S1b).

Arabidopsis protein *FtsH4* (Fig. S1b) has been shown to be part of the i-AAA protease complex that functions in the internmembrane mitochondrial space (Urantowka et al. 2005). Mutants for this gene revealed morphological, anatomical, and developmental alterations when grown under a short-day photoperiod. The *FtsH4* gene was found to be highly expressed in seeds, and Arabidopsis *fsh4* mutants showed a delayed germination. A developmental delay was maintained throughout all the developmental cycle and resulted in plants with reduced leaf number, later flowering time, and lower fertility (Gibala et al. 2009).

Based on the role of *FtsH4* in Arabidopsis, this gene cannot be ruled out as a candidate for *Eps-A*\(^{m}I*. However, comparison of the predicted FtsH4 protein sequences from the DV92 and G3116 alleles revealed no amino acid substitution. In addition, semi-quantitative PCR analyses revealed that gene *FtsH4* is present in both the vegetative apical meristem and the developing spike in *T. monococcum*, with no major differences between BC\(_3\)F\(_2\) NILs carrying the DV92 or G3116 *Eps-A*\(^{m}I*) alleles (Fig. 4a). These last results were also confirmed by real-time quantitative PCR (Fig. 4b).

Although currently it is not possible to rule out any of the two candidate genes, the negative BLOSUM62 score of one of the amino acid changes in the MOT1 protein and the known role of related SNF2-domain containing proteins on flowering time and development suggest that *Mot1* might be a better candidate for *Eps-A*\(^{m}I*) than *FtsH4*.

Future work and conclusions

To determine whether genes *Mot1* or *FtsH4* have the expected effects of *Eps-A*\(^{m}I*) on heading time, spike development, and spikelet number, mutants for the wheat orthologues of these two genes are being generated using an available tetraploid Targeting Induced Local Lesions IN Genomes population (TILLING; Uauy et al. 2009). Mutants for both the A and B genome copies of each gene will be then combined to produce double mutants and test their effects on heading time and spikelet number.

Currently, the existence of additional candidate genes completely linked to *Eps-A*\(^{m}I*) in the proximal 0.75 cM-gap of the *T. monococcum* physical map cannot be ruled out. An approximate calculation of the number of additional candidate genes that might be expected in this region can be obtained by assuming a direct proportionality between number of genes and genetic distances. Since 11 genes were found to be present within the 0.14-cM region sequenced in *A. tauschii*, the additional 0.0125 cM required to find a marker proximal to *Eps-A*\(^{m}I*) (one recombination event from *Mot1/FtsH4*) is expected to yield only one more additional linked gene. If a constant ratio between genetic and physical distances is also assumed, this 0.0125 cM region is expected to represent approximately 300 kb, which can probably be covered in a limited number of additional chromosome walk steps in *T. monococcum*. However, ratios between recombination and gene number and between genetic and physical lengths are known to be variable along different chromosome regions, and therefore these predictions should be taken with caution.

The effect of the *Eps-A*\(^{m}I*) locus on heading time is known to be modulated by temperature (Bullrich et al. 2002). Therefore, the cloning of this gene has the potential to increase the understanding of complex interactions between temperature and plant development. In addition to this basic knowledge, the identification of the *Eps-A*\(^{m}I*) gene has highly relevant practical implications, since this gene affects both the duration of spike development and the number of spikelets per spike, which is an important component of potential grain yield in wheat. It is interesting to point out that the A genome of polyploid wheat was contributed by *T. urartu*, a related but separate species from *T. monococcum* (Johnson and Dhaliwal 1976). Therefore, 10,000 years of independent domestication may have resulted in the origin of new and valuable alleles in the *A*\(^{m}I*) genome of *T. monococcum* that are not present in the A genome of *T. urartu* or polyploid wheat species.
Acknowledgements This project was supported by the US Department of Agriculture, Cooperative State Research, Education, and Extension Services, grant number 2009-35304-05091.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Abbott J, Aanensen D, Rutherford K, Butcher S, Spratt B (2005) Web ACT—an online companion for the Artemis Comparison Tool. Bioinform Appl Note 21(18):3665–3666

Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–1622

Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:221–231

Bennet MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Ann Bot 86:859–909

Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals based on genomic sequence analysis. Curr Opin Plant Biol 6:128–133

Bennetzen JL, Ramakrishna W (2002) Exceptional haplotype variation in maize. Proc Natl Acad Sci USA 99(14):9093–9095

Bossolini E, Kragtanger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Ls34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1040–1062

Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

Brummer S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low copy DNA interruptions microlinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

Bulrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A*. Theor Appl Genet 105:585–593

Catalán P, Shi Y, Armstrong L, Draper J, Stace CA (1995) Molecular phylogeny of the grass genus Brachypodium P. Beauv. based on RFLP and RAPD analysis. Bot J Linn Soc 117:263–280

Dasgupta A, Darst RP, Martin KJ, Afshari CA, Aubele DT (2002) Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proc Natl Acad Sci USA 99(5):2666–2671

Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555

Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316 (5833):1862–1866

Dubcovsky J, Galvez J, Dvorak J (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

Dubcovsky J, Luo MC, Zhong G-Y, Bransteiner R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of collinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

Dvorak J, Di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of A genome donor species. Genome 36:21–31

Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

Eichenique V, Stamova B, Wolters P, Lazo G, Carollo V, Dubcovsky J (2002) Frequencies of Tyl-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

Ewing B, Green P (1998) Basecalling of automated sequencer traces using Phred II: error probabilities. Genome Res 8:186–194

Faris JD, Zhang Z, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication loci Q. Funct Integr Genomics 8:149–164

Farrona S, Hurtado L, Bowman JL, Reyes JC (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131:4965–4975

Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360

Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by two orders of magnitude. Proc Natl Acad Sci USA 99:1082–1087

Gibalda M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H (2009) The lack of mitochondrial AtFH1 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod. Plant J. doi:10.1111/j.1365-313X.2009.03907

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabude S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439 (7077):749–752

Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470
Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mossae conservation of genes within a novel collinear region in wheat chromosome 1AS and rice chromosome 5 S. Funct Integr Genomics 4:47–58

Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99(12):8133–8138

Huo N, Gu YQ, Lazo GR, Vogel JP, Coleman-Derr D, Luo MC, Thilmony R, Gavin DF, Anderson OD (2006) Construction and characterization of two BAR libraries from Brachypodium distachyon, a new model for grass genomes. Genome 49(9):1099–1108

Johnson BL, Dhaliwal HS (1976) Reproductive isolation of different habitats. Allelopathy J 13:233–240

Kong CH, Hu F, Liang WJ, Wang P, Jiang Y (2004) Allelopathic Kleinhofs A, Kilian A, Saghai MA, Biyashev RM, Hayes P, Chen FQ, Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1196–1205

Kleinhef A, Kilian A, Saghai MA, Biatshay RM, Hayes P, Chen FQ, Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1196–1205

Liu B, Segal G, Rong JK, Feldman M (2003) A chromosome-specific model for grass genomics. Genome 46(9):1099–1108

Liu B, Segal G, Rong JK, Feldman M (2003) A chromosome-specific model for grass genomics. Genome 46(9):1099–1108

Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘Lego’ genomes. Curr Opin Genet Dev 5:717–724

Muldrew TA, Campbell AM, Weil PA, Auble DT (1999) MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol Cell Biol 19:2835–2845

Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

Noh YS, Amasino RM (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15(7):1671–1682

Paterson AH, Bowers JE, Burrow MD, Draye X, Elsik CG, Jiang CX, Katser CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyplodization preverging divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S, Anderson OD, Qi LL, Echailer B, Gill BS, Dilbirigil M, Sandhu D, Gill KS, Greene RA, Sorrelles ME, Akhunov ED, Dvorak J, Linkiewicz AM, Dubcovsky J, Hossain KG, Kalvachalarva V, Kianian SF, Mahmoud AA, Miftahudin CEJ, Anderson JA, Patsch MS, Gueney HT, McGuire PE, Quaslet CO, Lapitan NLV (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetcs 168:609–623

Saito A, Yano M, Kishimoto N, Nakagahra M, Yoshimura A, Saito K, Kuhara S, Ukai Y, Kawase M, Nagamine T, Yoshimura S, Ideta O, Ohsawa R, Hayano Y, Iwata N, Sugura M (1991) Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed 41:655–670

Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, Chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15:2843–2855

SanMiguel P, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A. Funct Integr Genomics 2:70–80

Song R, Messing J (2003) Gene expression of a gene family in maize based on non-collinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060

Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma X, Gustafson PJ, Qi LL, Echailer B, Gill BS, Matthews DE, McGuire PE, Quaslet CO, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalvachalarva V, Kianian SF, Choi DW, Close T, Dilbirigil M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Quaslet CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

Sprouse RO, Brenowitz A, Aubele DT (2006) Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO J 25:1492–1504

Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97(24):13436–13441

Sudarshanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:3364–3369

Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301
Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology 9:115–129

Urantowka A, Knorpp C, Olczak T, Kolodziejczak M, Janska H (2005) Plant mitochondria contain at least two i-AAA-like complexes. Plant Mol Biol 59:239–252

Valárik M, Linkiewicz AM, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A^m1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet 112:945–957

Van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223

Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group I chromosomes of Triticaceae species and their relation to chromosomes in rice and oat. Genome 38:45–59

Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, Donze TJ, Viviana LA, Stanova B, Coleman-Derr D (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195

Wicker T, Yahiaoui N, Guyot R, Schлагenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A' genomes of wheat. Plant Cell 15:1186–1197

Yahiaoui N, Sirchumpa P, Dudley R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valárik M, Yasuda S, Dubcovsky J (2006) From the cover: the wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268

Yu F, Park S, Rodermel S (2005) Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes. Plant Physiol 138:1957–1966

Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Gong J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hoo B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zho L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92