Supplement of

Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile

Annelies Voordendag et al.

Correspondence to: Shelley MacDonell (shelley.macdonell@ceaza.cl) and Stef Lhermitte (s.lhermitte@tudelft.nl)

The copyright of individual parts of the supplement might differ from the article licence.
S1 Albedo and fresh snow density parameterizations

Table S1.1: Fresh snow density parameterizations SNOWPACK

Parameterization	Equation
Lehning (old)	$\rho_{fs} = 70 + 30TA + 10TSS + 0.4RH + 30WS + 6TATSS - 3TAW - 0.5RH \times WS$
Lehning (new)	Lehning et al. (2002, eq. 2) with $\alpha = 90$
Zwart	Zwart (2007)
Bellaire	$\rho_{fs} = e^{3.946 + 0.07703TA + 0.0001701HH + 0.02222 \log(WS) - 0.05371TA \log(WS)}$
	HH is the altitude above sea level
Pahaut	Vionnet et al. (2012, eq. 1)

Table S1.2: Albedo parameterizations SNOWPACK. The exact equations can be found in SNOWPACK’s code.

Parameterization	Description
Lehning (0)	Statistical model of surface snow albedo based on measurements from Weissfluhjoch study plot
Lehning (2)	Statistical model of surface snow albedo based on measurements from Weissfluhjoch study plot
Schmucki (GSZ)	Statistical model based on S_{\downarrow} and S_{\uparrow} at 4 Swiss stations and the grain size
Schmucki (OGZ)	Statistical model based on S_{\downarrow} and S_{\uparrow} at 4 Swiss stations and the optical equivalent grain size

Table S1.3: Fresh snow density parameterizations SnowModel

Parameterization	Equation
Lehning (old)	$\rho_{fs} = 70 + 30TA + 10TSS + 0.4RH + 30WS + 6TATSS - 3TAW - 0.5RH \times WS$ with $\rho_{fs} = 50$ if $\rho_{fs} < 50$ and $\rho_{fs} = 158.8$ if $\rho_{fs} > 158.8$
Lehning (new)	Lehning et al. (2002, eq. 2) with $\alpha = 90$ and $\rho_{fs} = 50$ if $\rho_{fs} < 50$ and $\rho_{fs} = 158.8$ if $\rho_{fs} > 158.8$

Table S1.4: Albedo parameterizations SnowModel

Parameterization	Equation
Default	$\alpha = 0.9$ for $TA < 0$
	$\alpha = 0.6$ for $TA > 0$
	$\alpha = 0.15$ for no snow
Time-evolution	Strack et al. (2004, eq. 3-4)
Figure S2.1: a-b) SD, c-d) SWE and e-f) the cumulative assimilated precipitation for SNOWPACK (a,c,e) and SnowModel (b,d,f) and observations (black). The different forcing parameters are given in the legend. The simulations with SNOWPACK for every different input set were done with five different fresh snow density parameters and the simulations with SnowModel for every input set were done with six combinations out of three fresh snow density and two albedo parameterizations. PSWE is equal for z_0 is 1 mm and 1 cm and thus only the red line is visible in e-f). The solid (dotted) line in c-d) indicates the more (less) reliable SWE measurement from potassium (thallium) rays.
Figure S3.1: Observed cumulative precipitation, precipitation corrected from SWE (PSWE) and precipitation corrections (MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015). The two SWE observations with potassium (K, solid line) and thallium (Tl, dotted line) gamma rays are also given.
Table S4.1: **RMSE** of ensemble of parameterizations of SNOWPACK with $z_0 = 1$ cm. Lehning 0, Lehning 1, Schmucki GSZ and Schmucki OGS are the albedo parameterizations as named in the model and Lehning (old), Lehning (new), Bellaire, Zwart and Pahaut are the fresh snow density parameterizations. The ensemble chosen as reference is given in bold.

Lehning (old)	Lehning 1	Schmucki GSZ	Schmucki OGS
0.090	0.136	0.128	0.112
0.126	0.136	0.131	0.112
0.128	0.132	0.127	0.131
0.114	0.135	0.130	0.108
0.101	0.133	0.130	0.128

Table S4.2: **R^2** of ensemble of parameterizations of SNOWPACK with $z_0 = 1$ cm. Lehning 0, Lehning 1, Schmucki GSZ and Schmucki OGS are the albedo parameterizations as named in the model and Lehning (old), Lehning (new), Bellaire, Zwart and Pahaut are the fresh snow density parameterizations. The ensemble chosen as reference is given in bold.

Lehning (old)	Lehning 1	Schmucki GSZ	Schmucki OGS
0.856	0.436	0.507	0.569
0.652	0.502	0.585	0.789
0.645	0.465	0.642	0.602
0.766	0.478	0.564	0.813
0.832	0.484	0.547	0.585

Table S4.3: **RMSE** of ensemble of parameterizations of SNOWPACK with $z_0 = 1$ mm. Lehning 0, Lehning 1, Schmucki GSZ and Schmucki OGS are the albedo parameterizations as named in the model and Lehning (old), Lehning (new), Bellaire, Zwart and Pahaut are the fresh snow density parameterizations.

Lehning (old)	Lehning 1	Schmucki GSZ	Schmucki OGS
0.121	-	0.104	0.111
0.137	-	0.106	0.108
0.127	-	0.105	0.123
0.108	-	0.106	0.106
0.129	-	0.105	0.119

Table S4.4: **R^2** of ensemble of parameterizations of SNOWPACK with $z_0 = 1$ mm. Lehning 0, Lehning 1, Schmucki GSZ and Schmucki OGS are the albedo parameterizations as named in the model and Lehning (old), Lehning (new), Bellaire, Zwart and Pahaut are the fresh snow density parameterizations.

Lehning (old)	Lehning 1	Schmucki GSZ	Schmucki OGS
0.694	-	0.315	0.398
0.468	-	0.424	0.455
0.434	-	0.409	0.737
0.804	-	0.401	0.450
0.452	-	0.425	0.466
Table S4.5: RMSE of ensemble of parameterizations of SnowModel with $z_0 = 1$ cm. Default and Strack (Strack et al., 2004) are the albedo parameterizations as named in the model and Default, Lehning (old) and Lehning (new) are the fresh snow density parameterizations. The ensemble chosen as reference is given in bold.

	Default	Strack
Default	0.185	0.150
Lehning (old)	0.185	0.150
Lehning (new)	0.185	0.150

Table S4.6: R^2 of ensemble of parameterizations of SnowModel with $z_0 = 1$ cm. Default and Strack (Strack et al., 2004) are the albedo parameterizations as named in the model and Default, Lehning (old) and Lehning (new) are the fresh snow density parameterizations. The ensemble chosen as reference is given in bold.

	Default	Strack
Default	0.585	0.600
Lehning (old)	0.584	0.595
Lehning (new)	0.583	0.599

Table S4.7: RMSE of ensemble of parameterizations of SnowModel with $z_0 = 1$ mm. Default and Strack (Strack et al., 2004) are the albedo parameterizations as named in the model and Default, Lehning (old) and Lehning (new) are the fresh snow density parameterizations.

	Default	Strack
Default	0.187	0.147
Lehning (old)	0.195	0.148
Lehning (new)	0.188	0.147

Table S4.8: R^2 of ensemble of parameterizations of SnowModel with $z_0 = 1$ mm. Default and Strack (Strack et al., 2004) are the albedo parameterizations as named in the model and Default, Lehning (old) and Lehning (new) are the fresh snow density parameterizations.

	Default	Strack
Default	0.558	0.541
Lehning (old)	0.539	0.560
Lehning (new)	0.545	0.540
References

Gascoin, S., Lhermitte, S., Kinnard, C., Bortels, K., and Liston, G. E.: Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile, Advances in Water Resources, 55, 25–39, https://doi.org/10.1016/j.advwatres.2012.11.013, 2013.

Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation, Cold Regions Science and Technology, 35, 169–184, https://doi.org/10.1016/s0165-232x(02)00072-1, 2002.

MacDonald, J. and Pomeroy, J.: Gauge undercatch of two common snowfall gauges in a prairie environment, in: Proceedings of the 64th Eastern Snow Conference, vol. 29, pp. 119–126, 2007.

Smith, C. D.: Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield, in: 87th American Meteorological Society Annual Meeting, San Antonio, TX, 2007.

Strack, J. E., Liston, G. E., and Pielke Sr, R. A.: Modeling snow depth for improved simulation of snow-vegetation-atmosphere interactions, Journal of Hydrometeorology, 5, 723–734, 2004.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Moigne, P. L., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geoscientific Model Development, 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrology and Earth System Sciences, 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015.

Zwart, C.: Significance of new-snow properties for snowcover development, Master’s thesis, Institute for Marine and Atmospheric Research; University of Utrecht, 2007.