Materials Research Express

PAPER

Enhanced emission from CH$_3$NH$_3$PbBr$_3$ perovskite films by graphene quantum dot modification

Xi Guo, Bingquan Han, Yu Gao, Dan Liu, Jiayao Chen, Pengyun Chen, Lingbo Xu1 and Can Cui1

Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China

1 Authors to whom any correspondence should be addressed.

E-mail: xlb@zstu.edu.cn and cancui@zstu.edu.cn

Keywords: organic–inorganic hybrid perovskite, graphene quantum dot, crystal growth, defects, luminescence

Abstract

Organic–inorganic hybrid perovskites have emerged as promising emitters with the benefits of low cost and high color purity, but their low luminescence efficiency is a drawback for practical application on light emitting devices. Here we show that by incorporating proper amount of graphene quantum dots (GQDs) into perovskite precursor, dense CH$_3$NH$_3$PbBr$_3$ films with reduced grain size and well passivated grain boundaries could be obtained. This gives rise to enhanced emission from GQD modified perovskite films. Our work thus provides a viable way to prepare highly luminescent perovskite films for optoelectronic applications.

Introduction

Organic–inorganic hybrid perovskites have attracted significant interest in solution processed high-performance optoelectronic devices [1–18]. Besides the great success in photovoltaics, their unique optical and electrical properties make hybrid perovskites promising candidates for next generation light emitting diodes (LEDs) [19–26]. Many efforts have been made to enhance the luminescence from hybrid perovskites, such as passivating defects [27–31], constructing multiple quantum wells [30], utilizing plasmonic structures [31, 32], and so on. Among these methods, growth of dense and low-defect films is most essential [33, 34]. Additive-assisted growth method has been widely studied to modulate the morphology of hybrid perovskites [34–36]. For example, Himchan Cho et al introduced 2,2′,6′-(1,3,5-benzinetriyl)-tris(1-phenyl-1′-H-benzimidazole) (TPBi) into precursor to inhibit the growth of perovskite crystals [34]. Our previous report shows that n-butyl amine would terminate the grain surface and inhibit crystal growth [35]. Lewis base additives such as dimethyl sulfoxide (DMSO) could form adduct with PbI$_2$ and delay the crystallization of perovskites, promoting the formation of large grains [36]. Due to the low exciton binding energy in hybrid perovskites, small nanograins could help confine excitons and enhance radiative recombination, while large grains would facilitate dissociation of excitons [34]. In this regard, perovskite LEDs would favor films with small grains and well passivated grain boundaries.

As a kind of star materials with unique optoelectronic properties, two-dimensional (2D) materials have been used to improve the performance of perovskite optoelectronic devices, mostly as interfacial layers to enhance carrier transportation [37–39]. 2D material quantum dots have also been incorporated into iodide perovskite films to passivate grain boundaries and to improve photovoltaic performances [40, 41]. However, there are few reports about incorporation of 2D materials into bromide perovskites as well as its effect on optical properties. Here we introduce graphene quantum dots (GQDs) into the methylammonium lead bromide (MAPbBr$_3$) perovskite precursor and evaluate the effects of GQD addition on the film morphology and optical characteristics. We found that GQD incorporation could significantly increase the luminescence of MAPbBr$_3$ films.

© 2020 The Author(s). Published by IOP Publishing Ltd
Experimental sections

Materials
Methylammonium bromide (MABr) and lead bromide (PbBr₂) were purchased from Xi’an Polymer Light Technology Corp. DMSO and dimethylformamide (DMF) were purchased from Sigma-Aldrich. Ethyl acetate was purchased from Aladdin. Graphene quantum dots were purchased from Nanjing XFNANO Materials Tech Co., Ltd. The GQDs were dissolved in DMF and the concentration was 1 mg ml⁻¹. All the materials were used as received without further purification.

Perovskite film fabrication
PbBr₂ and MABr (1:1 molar ratio) were dissolved in DMF/DMSO mixed solvent, and then different amount of GQD solution was added into precursor solution. The concentration of MAPbBr₃ in precursor was 40 wt%. The concentrations of GQDs normalized by the weight of MAPbBr₃ in precursor were 0 wt%, 0.03 wt%, 0.07 wt%, 0.1 wt%, and 0.2 wt%, respectively. The perovskite precursor was spin-coated at 300 rpm for 10 s and 3000 rpm.
for 60 s. Ethyl acetate as anti-solvent was dropped in the second step. Afterwards, the perovskite films were annealed at 120 °C for 10 min on a hotplate.

Characterization

Transmission electron microscope (TEM) images of GQDs were recorded on a JEM2100 (Japan). Field emission scanning electron microscope (FE-SEM) images of perovskite films were recorded on a Hitachi S4800 (Japan). X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance x-ray diffractometer (Germany). Steady-state, time-resolved photoluminescence (PL) and PL quantum yield (PLQY) were recorded on an Edinburgh FLS920 spectrometer (United Kingdom), with a xenon lamp and a 405 nm pulsed laser diode as excitation source.

Results and discussion

Figure 1(a) shows the TEM images of GQDs. The size of GQDs is about 5 nm. Figures 1(b)–(f) show the SEM images of MAPbBr₃ films with different amounts of GQDs. For the control sample without GQDs, the crystals are large with a wide size distribution (figure S1 is available online at stacks.iop.org/MRX/7/016415/mmedia). The average grain size for the control sample is 383 nm. With the addition of GQDs, the grains become small with a narrower size distribution. The average grain size decreases continuously with the increase of GQD concentration, from 337 nm for the sample with 0.03 wt% GQDs to 138 nm for the sample with 0.1 wt% GQDs. All the films are dense without pinholes except for the sample with 0.2 wt% GQDs. Many pinholes emerge on that sample and the surface is fuzzy, making it difficult to extract the average grain size. We believe that GQDs act as either heterogeneous nucleation centers that accelerate the nucleation of perovskites, or terminators that inhibit the growth of perovskite crystals [40]. In each case, the grain size of perovskite films would decrease with the increase of GQD concentration.

Figure 2 shows the x-ray diffraction patterns of perovskite films with different amount of GQDs. The control sample have two XRD peaks at 15.0° and 30.2°, which correspond to (100) and (200) lattice planes of cubic structure for MAPbBr₃. With the addition of GQDs, the intensity of these peaks decreases and the full width at half maximum increases, consistent with the decrease of grain size. Moreover, new peaks emerge at 21.3°, 33.9°, 37.5°, which correspond to (011), (021), and (211) lattice planes of cubic structure. Notably, the (211) peak becomes more intense than the (100) peak in the sample with 0.2 wt% GQDs. This indicates that the incorporation of GQDs would affect the orientation of perovskite crystals, promoting a preferential orientation of (211) plane. Due to the low concentration of GQDs in the precursor, no XRD peaks corresponding to GQDs could be observed.

Figure 3(a) shows the PL spectra of MAPbBr₃ films with different amount of GQDs. All the spectra show similar shape with peaks at about 535 nm. The PL intensity increases with the increase of GQD concentration, peaking at 0.1 wt%. The PL intensity of the sample with 0.1 wt% GQDs is about 2.7 times that of the control sample. However, the PL intensity decreases when the GQD concentration exceeds 0.2 wt%. This might be due to increased nonradiative recombination in such a film with deteriorated morphology. To verify this hypothesis,

![Figure 2. XRD patterns of MAPbBr₃ films prepared by precursors with different amount of GQDs.](image-url)
we have conducted time-resolved PL spectra measurement, as shown in figure 3(b). The spectra are fitted with a bi-exponential decay function [34], which gives a short lifetime τ_1 and a long lifetime τ_2, as listed in table 1. The short lifetime τ_1 is related to recombination at grain boundaries or surfaces, while the long lifetime τ_2 is related to recombination inside the grains. Both τ_1 and τ_2 increase with the increase of GQD concentration until it reaches 0.1 wt%. After that, τ_1 and τ_2 start to decrease. The evolution of PL lifetime with GQD concentration is consistent with that of PL intensity. This indicates that GQDs could effectively passivate defects in MAPbBr₃ films and result in enhanced emission. On the other hand, GQD overload could deteriorate the morphology of MAPbBr₃ films, inducing defects and causing nonradiative recombination. The PLQY is 2.5%, 3.1%, 5.6%, 9.6%, and 0.9% for the sample with GQD concentration of 0 wt%, 0.03 wt%, 0.07 wt%, 0.1 wt%, and 0.2 wt%, respectively.

Conclusion

In summary, GQD incorporation would decrease the average grain size of perovskite films and modify the preferential crystal orientation from (100) to (211). A proper amount of GQDs (0.1 wt%) could lead to dense film with well passivated grain boundaries, boosting the luminescence as well as PL lifetime. On the contrary, GQD overload would induce pinholes on the films, decreasing the luminescence. Our work clarifies the effect of GQD incorporation on the morphological, structural, and optical properties of MAPbBr₃ films, and would provide a feasible way to fabricate high-quality perovskite films for light emission.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61704154), Natural Science Foundation of Zhejiang Province (No. LY20F040006, LY17F040005), Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q069), and Science Foundation of Zhejiang Sci-Tech University (No. 15062021-Y).

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
ORCID iDs

Lingbo Xu https://orcid.org/0000-0003-2730-0604
Can Cui https://orcid.org/0000-0002-8429-5875

References

[1] Wang Y, Wu T, Barbadji J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Stabilizing heterostructures of soft perovskite semiconductors Science 365 687–91
[2] Deschler F, Neher D and Schmidt–Mende L 2019 Perovskite semiconductors for next generation optoelectronic applications APL Mater. 7 080401
[3] Adjokate S, Kahmann S, Diuin H and Loi M A 2019 Effects of strontium doping on the morphological, structural, and photophysical properties of FA5In, perovskite thin films APL Mater. 7 031116
[4] Cai P, Wang X, Seo H J and Yan X 2018 Blush-white–light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbClBr3 Appl. Phys. Lett. 112 153901
[5] Liu G, Zhou C, Wan F, Li K, Yuan Y, Gao Y, Lu Y and Yang B 2018 Dependence of power conversion properties of perovskite solar cells on operating temperature APL Phys. Lett. 113 113501
[6] Liu H, Wang M, Jian F, Feng Y, Wang Z, Zhang B and Shi Y 2018 Enhanced stability of perovskite solar cells using hydrophobic organic fluoropolymer APL Phys. Lett. 113 023902
[7] Lu C et al 2018 Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells Appl. Phys. Lett. 112 193901
[8] Matsushima T, Leyden M R, Fujihara T, Qin C, Sandanayaka A S D and Adachi C 2019 Large metal halide perovskite crystals for field-effect transistor applications Appl. Phys. Lett. 115 120601
[9] Polyakov A Y et al 2018 Trap states in multilayer mesoscopic perovskite solar cells: a deep levels transient spectroscopy investigation Appl. Phys. Lett. 113 263501
[10] Prafullapani S, Bhargava P and Mallick S 2018 Electronic band structure and carrier concentration of formamidinium–cesium mixed cation lead mixed halide hybrid perovskites APL Phys. Lett. 112 092104
[11] Roy A, Jang H W and Cha P R 2018 Effects of mobile charged defects on current–voltage behavior in resistive switching memories based on organic–inorganic hybrid perovskite APL Phys. Lett. 113 113501
[12] Wei Y et al 2018 Efficient charge separation at multiple quantum well perovskite/PCBM interface APL Phys. Lett. 113 041103
[13] Xia H, Tong S, Zhang C, Wang C, Sun J, He J, Zhang J, Gao Y and Yang J 2018 Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C6HTTBT bulk heterojunction Appl. Phys. Lett. 112 233901
[14] Xu M et al 2019 A transient–electroluminescence study on perovskite light-emitting diodes Appl. Phys. Lett. 115 041102
[15] Yan J, Lin S, Qiu X, Chen H, Li K, Yuan Y, Long M, Yang B, Gao Y and Zhou C 2019 Accelerated hole-extraction in carbon–electrode based planar perovskite solar cells by moisture-assisted post-annealing Appl. Phys. Lett. 114 103503
[16] Chandrasekar P V, Yang S, Hu J, Sulaman M, Saleem M I, Tang Y, Jiang Y and Zou B 2019 A one-step method to synthesize CH3NH3PbI3/MoS2 nanohybrids for high-performance solution-processed photodetectors in the visible region Nanotechnology 30 085707
[17] Zheng H, Pan W and Shen W 2018 One-step synthesis of colloidal CH3NH3PbBr3 nanoplatelets via chlorobenzene to realize nonsolvent crystallization Nanotechnology 29 455601
[18] Tai C L, Lu Y C and Chang S H 2018 Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering Nanotechnology 29 275704
[19] Anon 2016 Research update: challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing APL Mater. 4 091507
[20] Liu S, Sun S, Gan C K, del Aguila A G, Fang Y, Xing J, Do T T H, White T J, Li H, Huang W and Xiong Q 2019 Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation Sci. Adv. 5 eaaq9445
[21] Shang Y, Liao Y, Wei Q, Wang Z, Xiang B, Ke Y, Liu W and Ning Z 2019 Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure Sci. Adv. 5 eaaq8072
[22] Ahmed T, Seth S and Samanta A 2018 Boosting the photoluminescence of CaPbO3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by post-synthetic treatment with tetrafluoroborate salts Chem. Mater. 30 3633–7
[23] Bohn B J et al 2018 Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair Nano Lett. 18 5231–8
[24] Sun C, Gao Z, Liu H, Wang L, Deng Y, Li P, Li H, Zhang Z H and Fan C and Bi W 2019 One stone, two birds: high-efficiency blue-emitting perovskite nanocrystals for LED and security ink applications Chem. Mater. 31 5116–23
[25] Liu F et al 2017 Highly luminescent phase-stable C6BrI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield ACS Nano 11 10373–83
[26] Sun C, Wang L, Su S, Gao Z, Wu H, Zhang Z and Bi W 2019 Highly efficient Mn-doped CaPb(Cl/Br)3 quantum dots for white light-emitting diodes Nanotechnology 31 085605
[27] Diuin H, Fang H H, Adjokate S, Ten Brink G H, Marques M A L, Kooi B J, Blake G R, Botti S and Loi M A 2019 Mechanism of surface passivation of methylammonium lead triiodide single crystals by benzenylamine Appl. Phys. Rev. 6 035101
[28] Abidi–Jalebi M et al 2018 Maximizing and stabilizing luminescence from halide perovskites with potassium passivation Nature 555 497–501
[29] Lin C, Chen P, Xiong Z, Liu D, Wang G, Meng Y and Song Q 2018 Interfacial engineering with ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PF0) layer for high efficient perovskite light-emitting diodes Nanotechnology 29 075203
[30] Yuan M et al 2016 Perovskite energy funnels for efficient light-emitting diodes Nat. Nanotechn. 11 872–7
[31] Xu L et al 2017 Surface plasmon enhanced luminescence from organic–inorganic hybrid perovskites Appl. Phys. Lett. 110 235113
[32] Makarov S, Furasova A, Tigituntsve E, Hemmetter A, Berestennikov A, Pushkarev A, Zakhidov A and Kvissar Y 2019 Halide-perovskite resonant nanophotonics Adv. Opt. Mater. 7 1800784
[33] Xu L et al 2019 Towards green antisolvent for efficient CH3NH3PbI3 perovskite light emitting diodes: a comparison of toluene, chlorobenzene, and ethyl acetate Appl. Phys. Lett. 115 033101
[34] Cho H et al 2015 Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes Science 350 1222–5
[35] Xu L et al 2019 Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes Nanotechnology 30 105703
[36] Lee J-W, Kim H-S and Park N-G 2016 Lewis acid–base adduct approach for high efficiency perovskite solar cells Acc. Chem. Res. 49 311–9
[37] Zhu Z et al 2014 Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots J. Am. Chem. Soc. 136 5760–3
[38] You P, Tang G and Yan F 2019 Two-dimensional materials in perovskite solar cells Mater. Today Energy 11 128–58
[39] Balis N, Stratakis E and Kymakis E 2016 Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells Mater. Today 19 580–94
[40] Zhang J, Tong T, Zhang L, Li X, Zou H and Yu J 2018 Enhanced performance of planar perovskite solar cell by graphene quantum dot modification ACS Sustainable Chem. Eng. 6 8631–40
[41] Fang X, Ding J, Yuan N, Sun P, Lv M, Ding G and Zhu C 2017 Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction Phys. Chem. Chem. Phys. 19 6057–63