Critical $Sp(N)$ Models in $6 - \epsilon$ Dimensions and Higher Spin dS/CFT

Lin Fei, Simone Giombi, Igor R. Klebanov, and Grigory Tarnopolsky

Abstract

Theories of anti-commuting scalar fields are non-unitary, but they are of interest both in statistical mechanics and in studies of the higher spin de Sitter/Conformal Field Theory correspondence. We consider an $Sp(N)$ invariant theory of N anti-commuting scalars and one commuting scalar, which has cubic interactions and is renormalizable in 6 dimensions. For any even N we find an IR stable fixed point in $6 - \epsilon$ dimensions at imaginary values of coupling constants. Using calculations up to three loop order, we develop ϵ expansions for several operator dimensions and for the sphere free energy F. The conjectured F-theorem is obeyed in spite of the non-unitarity of the theory. The $1/N$ expansion in the $Sp(N)$ theory is related to that in the corresponding $O(N)$ symmetric theory by the change of sign of N. Our results point to the existence of interacting non-unitary 5-dimensional CFTs with $Sp(N)$ symmetry, where operator dimensions are real. We conjecture that these CFTs are dual to the minimal higher spin theory in 6-dimensional de Sitter space with Neumann future boundary conditions on the scalar field. For $N = 2$ we show that the IR fixed point possesses an enhanced global symmetry given by the supergroup $OSp(1|2)$. This suggests the existence of $OSp(1|2)$ symmetric CFTs in dimensions smaller than 6.
1 Introduction and Summary

Among the classic models of quantum field theory, a prominent role is played by the $O(N)$ invariant theories of N massless scalar fields ϕ^i, which interact via the potential $\frac{\lambda}{4}(\phi^i\phi^i)^2$. For any positive N these models possess interacting IR fixed points in dimensions $2 < d < 4$ [1]. These theories contain $O(N)$ singlet current operators with all even spin, and when N is large the current anomalous dimensions are $\sim 1/N$ [2]. Since all the higher spin currents are nearly conserved, the $O(N)$ models possess a weakly broken higher spin symmetry. In the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [3–5], each spin s conserved current in a d dimensional CFT is mapped to a massless spin s gauged field in $d+1$ dimensional AdS space. For these reasons, it was conjectured [6] that the singlet sector of the critical $O(N)$ models in $d = 3$ is dual to the interacting higher spin theory in $d = 4$ containing massless gauge fields of all even positive spin [7–10]. This minimal Vasiliev theory also contains a scalar field with $m^2 = -2/\ell_{AdS}^2$, and the two admissible boundary conditions on this field [11, 12] distinguish the interacting $O(N)$ model from the free one (in the latter all the higher spin currents are conserved exactly). A review of the higher spin AdS/CFT dualities may be be found in [13].

A remarkable feature of the Vasiliev theories [7–10] is that they are consistent not only in Anti-de Sitter, but also in de Sitter space. On general grounds one expects a CFT dual to quantum gravity in dS_4 to be a non-unitary theory defined in three dimensional Euclidean space [14]. In [15] it was proposed that the CFT dual to the minimal higher spin theory in dS_4 is the theory of an even number N of anti-commuting scalar fields χ^i with the action

$$S = \int d^3x \left(\frac{1}{2} \Omega_{ij} \partial_{\mu} \chi^i \partial^{\mu} \chi^j + \frac{\lambda}{4} (\Omega_{ij} \chi^i \chi^j)^2 \right).$$

(1.1)

This theory possesses $Sp(N)$ symmetry, and Ω_{ij} is the invariant symplectic matrix. This model was originally introduced and studied in [16, 17], where it was shown to possess an IR fixed point in $4 - \epsilon$ dimensions. The beta function of this model is related to that of the
O(N) model via the replacement $N \rightarrow -N$. According to the proposal of [15], the free UV fixed point of (1.1) is dual to the minimal higher spin theory in dS_4 with the Neumann future boundary conditions on the $m^2 = 2/\ell_{dS}^2$ bulk scalar field, and its interacting IR fixed point to the same higher spin theory but with the Dirichlet boundary conditions on the scalar field. In the latter case, the higher spin symmetry is slightly broken at large N, and the de Sitter higher spin gauge fields are expected to acquire small masses through quantum effects. A discussion of the de Sitter boundary conditions from the point of view of the wave function of the Universe was given in [21,22].

In this paper we consider an extension of the proposed higher spin dS/CFT correspondence [15] to higher dimensional de Sitter spaces, and in particular to dS_6. Our construction mirrors our recent work [23,24] on the higher dimensional extensions of the higher spin AdS/CFT. It was observed long ago [25–27] that in $d > 4$ the quartic $O(N)$ models possess UV fixed points which can be studied in the large N expansion. The UV completion of the $O(N)$ scalar theory in $4 < d < 6$ was proposed in [23]; it is the cubic $O(N)$ symmetric theory of $N + 1$ scalar fields σ and ϕ^i:

$$ S = \int d^d x \left(\frac{1}{2} (\partial_\mu \phi^i)^2 + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} g_1 \sigma (\phi^i)^2 + \frac{1}{6} g_2 \sigma^3 \right). \tag{1.2} $$

For sufficiently large N, this theory has an IR stable fixed point in $6 - \epsilon$ dimensions with real values of g_1 and g_2. The beta functions and anomalous dimensions were calculated to three loop order [23,24], and the available results agree nicely with the $1/N$ expansion of the quartic $O(N)$ model at its UV fixed point [28–32] when the quartic $O(N)$ model continued to $6 - \epsilon$ dimensions. The conformal bootstrap approach to the higher dimensional $O(N)$ model was explored in [33–35].

To extend the idea of [15] to dS_{d+1} with $d > 4$, we may consider non-unitary CFTs (1.1) which in $d > 4$ possess UV fixed points for large N. The $1/N$ expansion of operator scaling dimensions may be developed using the generalized Hubbard-Stratonovich transformation, and one finds that it is related to the $1/N$ expansion in the $O(N)$ models via the replacement $N \rightarrow -N$. In $d = 5$ this interacting fixed point should be dual to the higher spin theory in dS_6 with Neumann boundary conditions on the $m^2 = 6/\ell_{dS}^2$ scalar field (corresponding to the}

\footnote{A potential difficulty with this picture is that unitarity in dS_{d+1} space requires that a massive field of spin $s > 1$ should satisfy $m^2 > (s - 1)(s + d - 3)/\ell_{dS}^2$ [18,20]. In other words, there is a finite gap between massive fields and massless ones (the latter are dual to exactly conserved currents in the CFT). However, since the masses are generated by quantum effects and are parametrically small at large N, this is perhaps not fatal for bulk unitarity. It would be interesting to clarify this further.}
conformal dimension $\Delta = 2 + O(1/N)$ on the CFT side. In search of the UV completion of these quartic CFTs in $4 < d < 6$, we introduce the cubic theory of one commuting real scalar field σ and N anti-commuting scalar fields χ^i:

$$S = \int d^d x \left(\frac{1}{2} \Omega_{ij} \partial_\mu \chi^i \partial^{\mu} \chi^j + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} g_1 \Omega_{ij} \chi^i \chi^j \sigma + \frac{1}{6} g_2 \sigma^3 \right).$$

(1.3)

Alternatively, we may combine the fields χ^i into $N/2$ complex anti-commuting scalars θ^α, $\alpha = 1, \ldots, N/2$ [16,17]; then the action assumes the form

$$S = \int d^d x \left(\partial_\mu \theta^\alpha \partial^{\mu} \bar{\theta}^\alpha + \frac{1}{2} (\partial_\mu \sigma)^2 + g_1 \sigma \theta^\alpha \bar{\theta}^\alpha + \frac{1}{6} g_2 \sigma^3 \right).$$

(1.4)

We study the beta functions for this theory in $d = 6 - \epsilon$ and show that they are related to the beta functions of the theory (1.2) via the replacement $N \rightarrow -N$. For all N there exists an IR fixed point of the theory (1.3) with imaginary values of g_1 and g_2. This is similar to the IR fixed point of the single scalar cubic field theory (corresponding to the $N = 0$ case of our models), which was used by Fisher [36] as an approach to the Lee-Yang edge singularity. The fact that the couplings are purely imaginary makes the integrand of the path integral oscillate rapidly at large σ; this should be contrasted with real couplings giving a potential unbounded from below.

Our results allow us to study the $6 - \epsilon$ expansion of the theory (1.3) with arbitrary N, and we observe that at finite N there are qualitative differences between the $Sp(N)$ and $O(N)$ models which are not seen in the $1/N$ expansion. In fact, for the $Sp(N)$ model there is no analogue of the lower bound N_{crit} that was found in the $O(N)$ case [23]. For the lowest value, $N = 2$, we observe some special phenomena. In this theory, which contains two real anti-commuting scalars, it is impossible to formulate the quartic interaction (1.1); thus, the cubic lagrangian (1.3) seems to be the only possible description of the interacting theory with global $Sp(2)$ symmetry. Furthermore, it becomes enhanced to the supergroup $OSp(1|2)$ because at the IR fixed point the two coupling constants are related via $g_2^* = 2 g_1^*$. The enhanced symmetry implies that the scaling dimensions of σ and χ^i are equal, and we check this to order ϵ^3.

Using the results of [37], we also compute perturbatively the sphere free energies of the models (1.3). In terms of the quantity $\tilde{F} = \sin(\frac{\pi d}{2}) \log Z_{S^d}$, which was introduced in [37] as
a natural way to generalize the F-theorem to continuous dimensions, we find that
the RG flow in the cubic $Sp(N)$ models in $d = 6 - \epsilon$ satisfies $\tilde{F}_{UV} > \tilde{F}_{IR}$
for all $N \geq 2$. We show that the same result holds in the model (1.1) in $d = 4 - \epsilon$. This is somewhat surprising, since for non-unitary CFTs the inequality $\tilde{F}_{UV} > \tilde{F}_{IR}$ is not always satisfied. It would be interesting to understand if this is related to the “pseudo-unitary” structure discussed in [17], and to the fact that these models are presumably dual to unitary higher spin gravity theories in de Sitter space.

2 The IR fixed points of the cubic $Sp(N)$ theory

The beta functions and anomalous dimensions for the $Sp(N)$ symmetric model (1.3) can be obtained by replacing $N \rightarrow -N$ in the corresponding results for the cubic $O(N)$ model (1.2), which were computed in [23,24] to three loop order. Indeed, writing the action in the complex basis (1.4), we see that the Feynman rules and propagators are identical to those of the $O(N)$ theory written in the $U(N/2)$ basis, the only difference being that the $N/2$ complex scalars are anticommuting. Hence, for each closed loop of the θ^α we get an extra minus sign, thus explaining the replacement $N \rightarrow -N$.

Using the results in [23,24], the beta functions for the $Sp(N)$ model are then found to be:

$$\beta_1 = - \frac{\epsilon}{2} g_1 - \frac{1}{12 (4\pi)^3} g_1 \left((N + 8) g_1^2 + 12 g_1 g_2 - g_2^2 \right)$$
$$- \frac{1}{432 (4\pi)^6} g_1 \left((536 - 86 N) g_1^4 + 12 (30 + 11 N) g_1^3 g_2 + (628 - 11 N) g_1^2 g_2^2 + 24 g_1 g_2^3 - 13 g_2^4 \right) + \ldots,$$

$$\beta_2 = - \frac{\epsilon}{2} g_2 + \frac{1}{4 (4\pi)^3} \left(4 N g_1^3 - N g_1^2 g_2 - 3 g_2^3 \right)$$
$$+ \frac{1}{144 (4\pi)^6} \left(24 N g_1^5 + 322 N g_1^4 g_2 + 60 N g_1^3 g_2^2 - 31 N g_1^2 g_2^3 - 125 g_2^5 \right) + \ldots$$

(2.1)

We have omitted the explicit three loop terms, which can be obtained from [23,24]. Similarly,
the anomalous dimensions of the fields χ^i and σ take the form

$$
\gamma_{\chi} = \frac{g_1^2}{6(4\pi)^3} + \frac{g_1^2}{432(4\pi)^6} \left(g_1^2(11N + 26) + 48g_1g_2 - 11g_2^2 \right) + \ldots,
$$

$$
\gamma_{\sigma} = -\frac{Ng_1^2 - g_2^2}{12(4\pi)^3} - \frac{1}{432(4\pi)^6} \left(2Ng_1^4 + 48Ng_1^3g_2 - 11Ng_1^2g_2^2 - 13g_2^4 \right) + \ldots.
$$

With the beta functions at hand, we can look for non-trivial fixed points of the RG flow satisfying $\beta_1(g_1^*, g_2^*) = 0, \beta_2(g_1^*, g_2^*) = 0$. For all positive N, we find two physically equivalent fixed points with purely imaginary coupling constants, hence all operator dimensions remain real. These fixed points are IR stable for all N (the stability matrix $M_{ij} = \frac{\partial \beta_i}{\partial g_j}$ has positive eigenvalues). Note that this is different from the $O(N)$ versions of these models [23, 24], where one finds a critical N, whose one loop value is $\simeq 1038$, below which the IR stable fixed points with real coupling constants disappear. However, to all orders in the $1/N$ expansion, the fixed point couplings and conformal dimensions in the $Sp(N)$ models are related to the ones in the $O(N)$ models by the replacement $N \rightarrow -N$.

Figure 1 shows the RG flow directions for $N = 2$. The arrows indicate how the coupling constants flow towards the IR. The two IR fixed points are physically equivalent because they are related by $g_i \rightarrow -g_i$. At higher values of N, the qualitative behavior of the RG flows and fixed points remain the same. We still have a UV Gaussian fixed point, and two stable IR fixed points.

A special structure emerges for $N = 2$. In this case we find the fixed point solution

$$
g_2^* = 2g_1^*, \quad g_1^* = i\sqrt{\frac{(4\pi)^3\epsilon}{5}} \left(1 + \frac{67}{180} \epsilon + O(\epsilon^2) \right),
$$

and the conformal dimensions of the fundamental fields are equal (the three loop term given below can be obtained from the results in [23, 24])

$$
\Delta_{\sigma} = \Delta_{\chi} = 2 - \frac{8}{15} \epsilon - \frac{7}{450} \epsilon^2 - \frac{269 - 702\zeta(3)}{33750} \epsilon^3 + \ldots.
$$

We show in the next section that the equality of dimensions is a consequence of a symmetry enhancement from $Sp(2)$ to the supergroup $OSp(1|2)$.

It is natural to ask whether symmetry enhancement can occur at other values of N. For instance, we can explicitly check for which N the dimensions of σ and χ are equal. A direct calculation using the beta functions and anomalous dimensions up to three loops shows that this only happens for $N = 2$ and $N = -1$. The latter case corresponds to the 3-state Potts
Figure 1: The zeroes of the one loop β functions and the RG flow directions for the $OSp(1|2)$ model. The coordinates are defined via $g_1 = i\sqrt{\frac{(4\pi)^3}{5}}x$, $g_2 = i\sqrt{\frac{(4\pi)^3}{5}}y$, and the red dots correspond to the stable IR fixed points.

The anomalous dimensions of some composite operators may be similarly obtained from the results in [23,24]. Let us quote the explicit result for the quadratic operators arising from the mixture of σ^2 and $\Omega_{ij}\chi^i\chi^j$. These operators have the same classical dimension, so we expect them to mix. The 2×2 anomalous dimension mixing matrix γ^{ab} was given in [23,24] up to one-loop order. Extending those results to two loops, we find the mixing matrix

$$
\begin{pmatrix}
\frac{g_1^2(21N-134)-6g_1g_2(2N+5)+5g_2^2}{108(4\pi)^d} & \frac{g_1^2(N+4)}{6(4\pi)^{d/2}} \\
\frac{g_1(g_2-6g_1)}{6(4\pi)^{d/2}} & \frac{g_1^2(11N+20)-g_1^2g_2(11N-324)+12g_1g_2^2-13g_2^3}{216(4\pi)^d}
\end{pmatrix}
+ \begin{pmatrix}
\frac{N_2g_1(6g_1-g_2)}{6(4\pi)^{d/2}} & \frac{N_2g_1^2(18g_1^2+16g_1g_2+15g_2^2)}{108(4\pi)^d} \\
\frac{Ng_1^2(160g_1^2+36g_1g_2-41g_2^2)-181g_2^4}{216(4\pi)^d} & \frac{Ng_1^2+4g_2^2}{6(4\pi)^{d/2}}
\end{pmatrix}
\tag{2.5}
$$

where index ‘1’ corresponds to the operator $\Omega_{ij}\chi^i\chi^j$, and index ‘2’ corresponds to σ^2. The model fixed point of the the theory with two commuting scalars [24]: it has $g_1^* = -g_2^*$ and enhanced Z_3 symmetry.[3]

For $N = -1$, there is also a (non-unitary) solution with $g_1^* = g_2^*$ which corresponds to two decoupled Fisher models [36], and hence the dimensions of the fundamental fields are trivially equal. [4]
The two eigenvectors of γ^{ab} give the two linear combinations of σ^2 and $\Omega_{ij}\chi^i\chi^j$, and the eigenvalues γ_{\pm} give their anomalous dimensions, so that $\Delta_{\pm} = d - 2 + \gamma_{\pm}$. We find that one of these combinations is a conformal primary, and the other one is a descendant of σ. Indeed, after plugging in the fixed point couplings, we find $\Delta_- = \Delta_\sigma + 2$. For instance, in the large N expansion we find the results

$$\Delta_- = \Delta_\sigma + 2 = 4 + \frac{-40\epsilon + \frac{104}{3}\epsilon^2}{N} + \frac{6800\epsilon - \frac{34190}{3}\epsilon^2}{N^2} + \ldots$$

$$\Delta_+ = 4 + \frac{100\epsilon - \frac{395}{3}\epsilon^2}{N} + \frac{-49760\epsilon + \frac{237476}{3}\epsilon^2}{N^2} + \ldots$$

It is also interesting to compute the sphere free energy at the IR fixed point in $d = 6 - \epsilon$. The leading order term in the ϵ expansion for the corresponding $O(N)$ models was computed in [37]. Sending $N \rightarrow -N$, we find the following result for $\tilde{F} = \sin(\frac{\pi d}{2}) \log Z_{S^d}$ in the cubic $Sp(N)$ models

$$\tilde{F}_{IR} = \tilde{F}_{UV} - \frac{\pi}{17280} \left(\frac{g_2^*}{(4\pi)^3} \right)^2 - 3N(g_1^*)^2 \epsilon + O(\epsilon^3)$$

where $\tilde{F}_{UV} = (1 - N)\tilde{F}_s$, and \tilde{F}_s the value corresponding to a free conformal scalar. Plugging in the explicit solutions for the fixed point couplings g_1^*, g_2^*, it is straightforward to verify that, for all $N \geq 2$, we have

$$\tilde{F}_{UV} > \tilde{F}_{IR}.$$

For instance, for $N = 2$ we find

$$\tilde{F}_{IR} = \tilde{F}_{UV} - \frac{\pi}{43200} \epsilon^2 + O(\epsilon^3).$$

Note that for the Fisher model [36] of the Lee-Yang edge singularity, corresponding to $N = 0$ and imaginary g^*_2, the inequality (2.8) does not hold. For general non-unitary theories the inequality does not have to hold; remarkably, it does hold for the $Sp(N)$ models with positive N.

Similarly, using the results of [37] for the quartic $O(N)$ theory in $d = 4 - \epsilon$, we can
compute the sphere free energy at the IR fixed point of the model (1.1) in $d = 4 - \epsilon$. We find

$$\tilde{F}_{\text{quartic}} = \tilde{F}_{\text{free}} - \frac{\pi}{576} \frac{N(N-2)}{(N-8)^2} \epsilon^3 + O(\epsilon^4),$$

(2.10)

where $\tilde{F}_{\text{free}} = -N \tilde{F}_s$. We observe that $\tilde{F}_{\text{free}} > \tilde{F}_{\text{quartic}}$ is satisfied for all $N > 2$.

The case $N = 8$ is special and needs to be treated separately. Here the one-loop term in the beta function vanishes, and we have

$$\beta_\lambda = -\epsilon \lambda + \frac{15}{32\pi^4} \lambda^3 + O(\lambda^4)$$

(2.11)

Therefore, at the IR fixed point $\lambda^2_* = \frac{32\pi^4}{15} \epsilon + O(\epsilon^{3/2})$, and we get

$$\tilde{F}_{\text{quartic}} = \tilde{F}_{\text{free}} - \frac{\pi}{360} \epsilon^2 + \ldots$$

(2.12)

3 Symmetry enhancement for $N = 2$

Let us write the cubic $Sp(2)$ model in terms of a real scalar σ and a single complex anti-commuting fermion θ:

$$S = \int d^d x \left(\partial_\mu \theta \partial^\mu \bar{\theta} + \frac{1}{2} (\partial_\mu \sigma)^2 + g_1 \sigma \theta \bar{\theta} + \frac{1}{6} g_2 \sigma^3 \right).$$

(3.1)

For $g_2 = 2g_1$, i.e. the fixed point relation (2.3), this action possesses a fermionic symmetry with a complex anti-commuting scalar parameter α

$$\delta \theta = \sigma \alpha , \quad \delta \bar{\theta} = \sigma \bar{\alpha} , \quad \delta \sigma = -\alpha \bar{\theta} + \bar{\alpha} \theta .$$

(3.2)

As a consequence of this symmetry, the scaling dimensions of σ and θ are equal, as seen explicitly in eq. (2.4). This complex fermionic symmetry enhances the $Sp(2)$ to $OSp(1|2)$, which is the smallest supergroup. The full set of supergroup generators can be given in the form

$$Q^+ = \frac{1}{2} \left(\sigma \frac{\partial}{\partial \bar{\theta}} + \theta \frac{\partial}{\partial \sigma} \right), \quad Q^- = \frac{1}{2} \left(\sigma \frac{\partial}{\partial \bar{\theta}} - \bar{\theta} \frac{\partial}{\partial \sigma} \right),$$

$$J^+ = \theta \frac{\partial}{\partial \bar{\theta}}, \quad J^- = \bar{\theta} \frac{\partial}{\partial \theta}, \quad J^3 = \frac{1}{2} \left(\theta \frac{\partial}{\partial \bar{\theta}} - \bar{\theta} \frac{\partial}{\partial \theta} \right),$$

(3.3)

For $\epsilon < 0$ the interacting theory has a UV fixed point. So, in this case $\tilde{F}_{\text{free}} < \tilde{F}_{\text{quartic}}$, again in agreement with the conjectured \tilde{F} theorem.
and it is not hard to check that they satisfy the algebra of $OSp(1|2)$:

$$[J^3, J^\pm] = \pm J^\pm, \quad [J^+, J^-] = 2J^3 \quad (3.4)$$

$$[J^3, Q^\pm] = \pm \frac{1}{2} Q^\pm, \quad [J^\pm, Q^\mp] = -Q^\pm \quad (3.5)$$

$$\{Q^\pm, Q^\pm\} = \pm \frac{1}{2} J^\pm, \quad \{Q^\pm, Q^\mp\} = \frac{1}{2} J^3 \quad (3.6)$$

We expect the operators of the theory to form representations of $OSp(1|2)$. For example, let us study the mixing of the $Sp(2)$ singlet operators σ^2 and $\theta \bar{\theta}$. Setting $N = 2$ in (2.5), we find the scaling dimensions of the two eigenstates:

$$\Delta_+ = 4 - \frac{2}{3} \epsilon + \frac{1}{30} \epsilon^2 + O(\epsilon^3), \quad \Delta_- = 4 - \frac{8}{15} \epsilon - \frac{7}{450} \epsilon^2 + O(\epsilon^3) \quad (3.7)$$

The first of these dimensions corresponds to the conformal primary operator

$$O_+ = \sigma^2 + 2\theta \bar{\theta} \quad (3.8)$$

which is invariant under all the $OSp(1|2)$ generators. The second corresponds to $O_- = \sigma^2 + \theta \bar{\theta}$, which is a conformal descendant because at the fixed point it is proportional to $\partial \mu \partial^\mu \sigma$ by equations of motion. Indeed, we find $\Delta_- = \Delta_\sigma + 2$.

Continuation of the results for the cubic model with $OSp(1|2)$ global symmetry to finite ϵ points to the existence of such interacting CFTs in integer dimensions below 6. Some results on $OSp(1|2)$ symmetric theories are available (see, for example, [42]), and we hope that our approach can make contact with them.

Acknowledgments

We thank D. Anninos, D. Harlow and J. Maldacena for useful discussions. The work of LF and SG was supported in part by the US NSF under Grant No. PHY-1318681. The work of IRK and GT was supported in part by the US NSF under Grant No. PHY-1314198.

References

[1] K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,”

Phys.Rev.Lett. 28 (1972) 240–243.
[2] K. Wilson and J. B. Kogut, “The Renormalization group and the epsilon expansion,” *Phys.Rept.* **12** (1974) 75–200.

[3] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,” *Adv. Theor. Math. Phys.* **2** (1998) 231–252, hep-th/9711200.

[4] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge Theory Correlators from Non-Critical String Theory,” *Phys. Lett.* **B428** (1998) 105–114, hep-th/9802109.

[5] E. Witten, “Anti-de Sitter Space and Holography,” *Adv. Theor. Math. Phys.* **2** (1998) 253–291, hep-th/9802150.

[6] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical $O(N)$ vector model,” *Phys. Lett.* **B550** (2002) 213–219, hep-th/0210114.

[7] E. Fradkin and M. A. Vasiliev, “On the Gravitational Interaction of Massless Higher Spin Fields,” *Phys. Lett.* **B189** (1987) 89–95.

[8] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions,” *Phys.Lett.* **B243** (1990) 378–382.

[9] M. A. Vasiliev, “More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions,” *Phys. Lett.* **B285** (1992) 225–234.

[10] M. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” *Phys.Lett.* **B567** (2003) 139–151, hep-th/0304049.

[11] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” *Annals Phys.* **144** (1982) 249.

[12] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,” *Nucl.Phys.* **B556** (1999) 89–114, hep-th/9905104.

[13] S. Giombi and X. Yin, “The Higher Spin/Vector Model Duality,” *J.Phys.* **A46** (2013) 214003, 1208.4036.

[14] A. Strominger, “The dS / CFT correspondence,” *JHEP* **0110** (2001) 034, hep-th/0106113.

[15] D. Anninos, T. Hartman, and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” 1108.5735.
[16] A. LeClair, “Quantum critical spin liquids, the 3D Ising model, and conformal field theory in 2+1 dimensions,” cond-mat/0610639.

[17] A. LeClair and M. Neubert, “Semi-Lorentz invariance, unitarity, and critical exponents of symplectic fermion models,” JHEP 0710 (2007) 027, 0705.4657.

[18] A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time,” Nucl.Phys. B282 (1987) 397.

[19] A. Higuchi, “Symmetric Tensor Spherical Harmonics on the N Sphere and Their Application to the De Sitter Group SO(N,1),” J.Math.Phys. 28 (1987) 1553.

[20] S. Deser and A. Waldron, “Partial masslessness of higher spins in (A)dS,” Nucl.Phys. B607 (2001) 577–604, hep-th/0103198.

[21] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 0305 (2003) 013, astro-ph/0210603.

[22] D. Anninos, F. Denef, and D. Harlow, “Wave function of Vasilievs universe: A few slices thereof,” Phys.Rev. D88 (2013), no. 8 084049, 1207.5517.

[23] L. Fei, S. Giombi, and I. R. Klebanov, “Critical $O(N)$ Models in $6-\epsilon$ Dimensions,” Phys.Rev. D90 (2014) 025018, 1404.1094.

[24] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Three Loop Analysis of the Critical $O(N)$ Models in $6-\epsilon$ Dimensions,” 1411.1099.

[25] G. Parisi, “The Theory of Nonrenormalizable Interactions. 1. The Large N Expansion,” Nucl.Phys. B100 (1975) 368.

[26] G. Parisi, “On non-renormalizable interactions,” in New Developments in Quantum Field Theory and Statistical Mechanics Cargèse 1976, pp. 281–305. Springer US, 1977.

[27] X. Bekaert, E. Meunier, and S. Moroz, “Towards a gravity dual of the unitary Fermi gas,” Phys.Rev. D85 (2012) 106001, 1111.1082.

[28] A. Vasiliev, M. Pismak, Yu, and Y. Khonkonen, “Simple Method of Calculating the Critical Indices in the 1/N Expansion,” Theor.Math.Phys. 46 (1981) 104–113.

[29] A. Vasiliev, Y. Pismak, and Y. Khonkonen, “1/N Expansion: Calculation of the Exponent η in the Order 1/N3 by the Conformal Bootstrap Method,” Theor.Math.Phys. 50 (1982) 127–134.
[30] K. Lang and W. Ruhl, “Field algebra for critical $O(N)$ vector nonlinear sigma models at $2 < d < 4$,” Z.Phys. C50 (1991) 285–292.

[31] K. Lang and W. Ruhl, “The Critical $O(N)$ sigma model at dimensions $2 < d < 4$: Fusion coefficients and anomalous dimensions,” Nucl.Phys. B400 (1993) 597–623.

[32] A. Petkou, “Conserved currents, consistency relations and operator product expansions in the conformally invariant $O(N)$ vector model,” Annals Phys. 249 (1996) 180–221, hep-th/9410093.

[33] Y. Nakayama and T. Ohtsuki, “Five dimensional $O(N)$-symmetric CFTs from conformal bootstrap,” 1404.5201.

[34] S. M. Chester, S. S. Pufu, and R. Yacoby, “Bootstrapping O(N) Vector Models in $4 < d < 6$,” 1412.7746.

[35] J.-B. Bae and S.-J. Rey, “Conformal Bootstrap Approach to O(N) Fixed Points in Five Dimensions,” 1412.6549.

[36] M. Fisher, “Yang-Lee Edge Singularity and ϕ^3 Field Theory,” Phys.Rev.Lett. 40 (1978) 1610–1613.

[37] S. Giombi and I. R. Klebanov, “Interpolating between a and F,” 1409.1937.

[38] H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 1105 (2011) 036, 1102.0440.

[39] D. L. Jafferis, I. R. Klebanov, S. S. Pufu, and B. R. Safdi, “Towards the F-Theorem: $\mathcal{N} = 2$ Field Theories on the Three-Sphere,” JHEP 06 (2011) 102, 1103.1181.

[40] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, “F-Theorem without Supersymmetry,” JHEP 1110 (2011) 038, 1105.4598.

[41] S. Giombi, I. R. Klebanov, and B. R. Safdi, “Higher Spin AdS$_{d+1}$/CFT$_d$ at One Loop,” Phys.Rev. D89 (2014) 084004, 1401.0825.

[42] H. Saleur and B. Wehefritz Kaufmann, “Integrable quantum field theories with supergroup symmetries: The OSP (1/2) case,” Nucl.Phys. B663 (2003) 443, hep-th/0302144.