Effect of support material on the catalytic combustion of diesel soot particulates
Joep van Doorn, Jean Varloud, Paul Mériaudeau, Vincent Perrichon, Michèle Chevrier, Catherine Gauthier

To cite this version:
Joep van Doorn, Jean Varloud, Paul Mériaudeau, Vincent Perrichon, Michèle Chevrier, et al.. Effect of support material on the catalytic combustion of diesel soot particulates. Applied Catalysis B: Environmental, Elsevier, 1992, 1, pp.117-127. 10.1016/0926-3373(92)80037-Z . hal-00006296

HAL Id: hal-00006296
https://hal.archives-ouvertes.fr/hal-00006296
Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Effect of support material on the catalytic combustion of diesel soot particulates

J van Doorn, J Varloud, P Mériaudeau and V Perrichon
Institut de Recherches sur la Catalyse, CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne, Cédex (France)

and

M Chevrier and C Gauthier
Régie Nationale des Usines Renault, 8-10 avenue Emile Zola, 92109 Boulogne Billancourt, Cédex (France)

Abstract

Several potential support materials were mixed with soot and subsequently the combustion temperature of the soot in 15% O₂ was determined. Al₂O₃ and SiO₂ showed no catalytic effect, TiO₂ and ZrO₂ lowered the soot combustion temperature with 80-90 K, whereas CeO₂, La₂O₃CO₃ and V₂O₅ (reference catalyst) showed a substantial activity for soot combustion. After poisoning with sulfur dioxide, the catalytic effect of CeO₂ was strongly inhibited, whereas La₂O₃CO₃ and V₂O₅ retained their high activity.

Keywords soot combustion, total oxidation

INTRODUCTION

Diesel engine powered vehicles are a major source for the emission of soot particulates in urban areas. Due to their small size, soot particulates can penetrate into the lung and they can form a serious health problem because of the presence of adsorbed (carcinogenic) hydrocarbons on their surfaces [1,2].

Soot emissions can be reduced by placing a filter in the exhaust pipe. To prevent pressure build-up, the accumulated soot particulates must be (periodically) removed from the filter. As the combustion temperature of the soot is much higher than the operational temperature found in the exhaust pipe, either the temperature in the exhaust pipe must be increased or the combustion temperature of the soot must be decreased.

Correspondence to Dr P Mériaudeau, Institut de Recherches sur la Catalyse, CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cédex, France Fax (+33) 78894769
The combustion temperature of the soot particulates can be lowered by the addition of an oxidation catalyst in the form of fuel additives (organo-metal compounds) [3], by spraying a metal salt solution on the accumulated soot [4] or by impregnation of the filter walls with an oxidation catalyst [5]. For the last option, supported metal oxides are considered to be the most promising candidates. In general, the search for the “ideal” soot combustion catalyst is performed by mixing supported metal (oxides) with soot, followed by the measurement of soot combustion. Several studies of this type have been published, generally focused on alumina-supported oxidation catalysts [5–8].

If we exclude ref 7 and a recent patent concerning Pt/SiO2 [9], the reported studies were performed in the absence of SO2, although diesel fuels contain a considerable amount of sulfur. Since it is known that SO2 can act as a poison for many catalysts, the objective of this study was to re-investigate a series of different materials which might serve as a support for metal oxides or noble metals in order to classify their catalytic activity on the combustion of soot in the absence and in the presence of SO2.

EXPERIMENTAL

Oxides/supports

Table 1 lists the materials applied (all potential supports), with their specific surface areas. Additionally, V2O5 is used as a reference material. Owing to its low melting point, it cannot be considered as a support but it was found to be one of the most active catalysts for the combustion of diesel soot [7].

TiO2 and ZrO2 were calcined in flowing air at 975 K for 2 h in order to remove any chlorine present. Lanthanum oxide was prepared by heating lanthanum citrate precursor in air at 773 K. The only phase detected by X-ray analysis

Support material	Manufacturer	Specific surface area (m²/g)
Al2O3	Degussa Oxid C	100
SiO2	Degussa Aerosil 130	130
TiO2	Degussa P25	50
ZrO2	Degussa 137	90
CeO2	Rhône-Poulenc	5
La2O3CO3	IRC*	20
V2O5	IRC*	34

*Prepared at the IRC
after storage under ambient air is \(\text{La}_2\text{O}_3\text{CO}_3 \). \(\text{V}_2\text{O}_5 \) was prepared by decomposing \(\text{N}_2\text{O}_3 \) in \(\text{a} \) at 773 K

Soot

The soot was obtained from Renault-France. The particulates were produced by a diesel fuel burner and collected with a cordierite filter. They contained 1 wt.-% ash and the amount of adsorbed hydrocarbons was \(\leq 1\% \). The composition of the inorganic material was determined by AAS (atomic absorption spectrometry) and ICP (inductively coupled plasma) analysis. The carbon, hydrogen, nitrogen, sulfur and oxygen contents were determined by elemental analysis. The results of these analyses are listed in Tables 2 and 3.

From Table 2, the main elements are Si, Al and Mg; they originate from cordierite particles. In addition, the analysis shows considerably lower P, Ca and Zn contents than those reported in the literature [10,11]. This was due to the absence of oil consumption in the fuel burner. Since the soluble oil fraction (SOF) was quite low (ca. 1% by weight), the elemental composition of the organic part was not determined.

The BET surface area of the soot was 300 \(\text{m}^2/\text{g} \), as measured by nitrogen adsorption.

TABLE 2

Chemical composition of the inorganic material in the soot AAS and ICP analyses

Element	Ash (%)
Al	14.6
Ca	1.8
Mg	4.0
V	0.28
Cr	0.17
Ti	0.25
Fe	3.54
K	1.4
Na	1.2
Co	0.04
Ni	0.20
Zn	0.28
Cu	0.29
Mn	0.06
Pb	1.8
Si	23.4 (by difference)
S (inorganic)	1.16
P	0.24
TABLE 3

Elemental composition of the soot

Element	wt-%
C	80.5
H	1.2
N	<0.16
S	<0.36
O	15.9 by difference
C/H ratio	5.8

Mixing catalyst with soot

In a first series of experiments, it was observed that mechanical mixing of the soot and the catalyst in an agate mortar gave unrepeatable results Consequently we used the following method: 400 mg of catalyst and 100 mg of soot were placed in a 100-ml steel holder together with four small steel balls (8 mm I D.), either under argon or air Subsequently, the mixture was ball-milled for 30 or 60 min Combustion tests proved that this procedure gave reproducible results

Combustion measurements

The combustion of the soot was determined thermogravimetrically in a Setaram TGA-DTA-92 thermobalance coupled to a Balzers 420 QMG mass spectrometer. 25–35 mg of the support–soot mixture was placed in an alumina crucible suspended from one arm of the balance. All experiments were performed using a heating rate of 5 K/min in either 15% O2 in N2 or, for the combustion experiments of SO2-poisoned samples, in 15% O2/100 ppm SO2 in Ar Both the O2 and SO2 content represented realistic diesel exhaust-gas compositions The combustion rates were obtained from the weight losses. The heat effects showed that the weight changes were due to soot combustion The mass spectrometer (MS) was also used to check combustion by monitoring the gaseous reactant and any possible reaction products, namely O2, CO, CO2, H2, H2O, SO2, SO3, NO and NO2 No quantitative MS data could be obtained In particular, it was not possible to obtain a correct estimate of the relative proportions of CO and CO2

The CO/(CO+CO2) ratio was determined separately by temperature-programmed oxidation (TPO) in air of identical soot-catalyst mixtures (total sample size: 100 mg) placed in a micro-reactor, with a heating rate of 0.8 K/min The CO and CO2 content of the product mixture was determined with a gas chromatograph equipped with a thermal conductivity detector
SO₂ poisoning

Approximately 400 mg catalyst was placed in a U-shaped quartz reactor and heated to 625 or 925 K under a flow of 15% O₂/100 ppm SO₂ in N₂ (50 ml/min). After 6 or 20 h at the final temperature, the catalyst was cooled to room temperature, mixed with soot and subsequently the reactivity was measured with the thermobalance.

RESULTS

Mixing

In Table 4 the reaction rates at 625 and 730 K, expressed as mg soot combusted per minute, is given for (Al₂O₃ + soot) and (TiO₂ + soot) mixtures. The duration of the mixing procedure and the atmosphere was varied.

The variation of the mixing conditions shows that the reactivity was strongly influenced by this procedure. Longer milling times resulted in higher reactivities. At high temperatures the combustion reactivity of a (Al₂O₃ + soot) mixture after mixing in argon was lower than after mixing in air. A standard mixing procedure was adopted in order to make a comparison between the different catalysts. All further combustion experiments were performed after 30 min ball-milling of the (support + soot) mixtures under a flow of argon.

Support and soot combustion

In Figs. 1–2, the derivatives of the weight loss curves [differential thermogravimetry (DTG) curves] of the combustion of (support + soot) mixtures are shown. The temperatures of the maxima of these curves and the CO/(CO + CO₂) ratios measured by TPO at this maximum are listed in Table 5.

These results show that the combustion temperature was substantially low-

TABLE 4
Combustion rate of soot as measured by TGA in the presence of different supports as a function of mixing time and atmosphere

Support material	Atmosphere	Combustion rate at 625 K (mg/min) mixing time	Combustion rate at 730 K (mg/min) mixing time		
		30 min	60 min	30 min	60 min
Al₂O₃	Air	0.014	0.033	0.098	0.154
	Argon	0.013	0.035	0.080	0.129
TiO₂	Air	0.047	0.113	0.154	0.180
Fig 1 DTG curves of the combustion (15% O₂ in N₂) of soot (•••), in the presence of Al₂O₃ (- - - -), in the presence of TiO₂ (---) and in the presence of ZrO₂ (-----)

Fig 2 DTG curves of the combustion (15% O₂ in N₂) of soot in the presence of V₂O₅ (), in the presence of CeO₂ (-----) and in the presence of La₂O₃CO₃ (---)

计入在15% O₂ in N₂的燃烧中，使用V₂O₅（），CeO₂（-----）或La₂O₃CO₃（---）200 K，CeO₂（-190 K）或La₂O₃CO₃（-150 K）200 K。TiO₂和ZrO₂的添加导致燃烧温度下降80-90 K，燃烧温度的（Al₂O₃+soot）和(SiO₂+soot)混合物（Fig 1）类似于纯soot的燃烧温度。

煅烧过程中La₂O₃CO₃的DTG曲线显示一个三峰型模式（Fig 2）。低温重量损失（640-645 K）伴随着水的生产，由在线质谱分析确定。

第二重量损失峰位于715-730 K，由高温-
TABLE 5

Characteristics of the soot combustion in the presence of supports

Support	Temp of max (K) (TGA)	CO/(CO + CO₂) (TPO)	Temp. of max (K) after SO₂ treatment (TGA)*
None	865-880	0.30	-
Al₂O₃	845-865	0.31	840-860
SiO₂	865-875	0.29	-
ThO₂	775-790	0.16	805-825
ZrO₂	785-795	0.17	815-835
CeO₂	670-690	0.04	765-775
La₂O₂CO₃	715-730	0.08	725-735
V₂O₅	645-655	0.12	675-685

*For samples pretreated with SO₂, combustions were performed in the presence of O₂ (15%) + Ar + 100 ppm SO₂

![Soot Combustion Rate Graph](image)

Fig. 3 DTG curves of the combustion of soot in the presence of CeO₂ (15% O₂ in N₂) (-----) and in the presence of SO₂-treated CeO₂ (100 ppm SO₂, 15% O₂ in Ar) (---)

temperature weight loss, which starts at 935 K. Both weight losses were accompanied by CO₂ production as evidenced by MS. In order to determine the DTG curve of La₂O₂CO₃ itself, a sample without soot was submitted to similar experimental conditions. A low-temperature (605 K) weight loss accompanied by water production and a high-temperature peak (975 K) accompanied by CO₂ production accounted for two of the weight losses found during soot combustion in the presence of La₂O₂CO₃.

Apart from La₂O₂CO₃, all (support + soot) mixtures show a single combustion peak, as confirmed by DTA and MS.
Fig 4 DTG curves of the combustion of soot in the presence of La$_2$O$_2$CO$_3$ 15% O$_2$ in N$_2$ (---) 100 ppm SO$_2$, 15% O$_2$ in Ar, after SO$_2$ pretreatment (6 h at 625 K) (• •) 100 ppm SO$_2$, 15% O$_2$ in Ar, after SO$_2$ pretreatment (6 h at 925 K) (--- ---) 100 ppm SO$_2$, 15% O$_2$ in Ar, after SO$_2$ pretreatment (20 h at 925 K) (- -) 100 ppm SO$_2$, 15% O$_2$ in Ar, after SO$_2$ pretreatment (6 h at 925 K after heat treatment at 975 K) (---)

CO oxidation

The CO/(CO+CO$_2$) ratios in Table 5 indicate that TiO$_2$, ZrO$_2$ and even V$_2$O$_5$ are moderate CO oxidation catalysts, whereas CeO$_2$ and La$_2$O$_2$CO$_3$ are relatively good catalysts for this reaction. None of the used supports is capable of complete CO conversion.

Sulfur dioxide poisoning of the supports

An important parameter for testing the applicability of catalysts for the combustion of soot is resistance towards SO$_2$ poisoning.

Preliminary experiments showed that adding 100 ppm SO$_2$ to the reaction mixture caused only a minor increase in the combustion temperature of (support + soot) mixtures, suggesting that a more severe poisoning procedure should be used. Therefore, the solids, prior to mixing with soot, were treated for 6 h at 625 K in a flow of 100 ppm SO$_2$/15% O$_2$/N$_2$. After such a treatment, the catalyst was mixed with soot following the procedure described previously, and subsequently the reactivity was determined gravimetrically in 15%O$_2$/100 ppm SO$_2$ in balance Ar with this poisoning pretreatment. The sulfate formation was promoted. However, the absence of deactivation after the reactivity test was not a guarantee that a support would remain active under more realistic conditions. In fact our poisoning procedure acted as a negative test. The results are reported in Table 5.

A slight increase of the combustion temperature (10–30 K) was observed.
for all the active supports, except CeO₂ for which the combustion curve was shifted by about 100 K (Fig. 3). La₂O₃CO₃ being the less affected by the poisoning procedure at 625 K, was further tested by submitting the solid to a 6- or 20-h SO₂ pretreatment at 925 K. Furthermore, a La₂O₃CO₃ sample was heated in air to 975 K in order to decompose the carbonate groups, followed by SO₂ poisoning at 925 K for 6 h. As shown in Fig. 4, in all cases, the catalytic activity was slightly lowered after exposure to SO₂, but remained at the high level obtained for the unpoisoned sample.

DISCUSSION

As can be seen in Table 4, increased mixing times result in higher combustion rates. This effect was found for all the catalysts studied and was largest for the most active catalyst. Furthermore, the combustion rate was somewhat higher, when the (catalyst + soot) mixture was mixed in air. The soot combustion is a reaction of a solid (soot) with oxygen, catalyzed by a solid catalyst. If one accepts that the rate of the soot combustion is dependent on the contact zones between the soot and the catalyst, it is obvious that the method used to mix the two solids influenced the rate of soot combustion. The increased reactivity with increased mixing time can be explained by a more intimate contact and also by a structural modification of the soot, especially in the presence of air. According to Barthe et al. [12], the reactivity of demineralized coke increased after 24 h grinding time due to the formation of carboxylic surface groups during ball-milling and subsequent exposure to air.

Although this mixing procedure does not reflect the actual soot–catalyst contact on a soot filter it answers to the desired purposes for this study which is to establish a reactivity scale for the different oxides; it allows a reproducible mechanical mixing of catalysts with soot and, as is shown, the mixing efficiency is high enough to show differences in catalytic activity for different catalysts. Based on these results, a standard mixing procedure (30 min under argon atmosphere in order to minimize structural modifications of the soot [12]) is used throughout this study.

The combustion experiments of the (support + soot) mixtures clearly show that some supports can act as a catalyst for the combustion of soot and simultaneously for CO oxidation. The results permit a division of the supports into three groups. (1) Little or no catalytic effect: Al₂O₃ and SiO₂. (2) Moderate activity TiO₂ and ZrO₂. (3) High activity: CeO₂ and La₂O₃CO₃.

The lack of activity of Al₂O₃ and SiO₂ is in agreement with the results of McKee [13], who measured the effect on the oxidation of graphite. The combustion temperature of the (Al₂O₃ + soot) and (SiO₂ + soot) mixtures are similar to those of pure soot.

The order of reactivity found in this study corroborates the results for graphite oxidation reported by Heintz and Parker [14]. The catalyzed oxidation of
graphite at 975 K in their study followed the order: V ~ Ce > La > Zr > Ti. The relatively high activity of La$_2$O$_2$CO$_3$ is slightly unexpected since it was reported earlier that La$_2$O$_3$ is a poor oxidation catalyst [15]: this discrepancy could be due to the use in ref. 15 of a La$_2$O$_3$ material having a low specific area.

The low- and high-temperature peaks in the three peak pattern of the weight loss curve of (La$_2$O$_2$CO$_3$ + soot) are also present when the support is heated under similar conditions in the absence of soot. The low-temperature peak is accompanied by water production as evidenced by MS and can be ascribed to the decomposition of –OH groups [16]. This peak is very intense when La(OH)$_3$ is submitted to a temperature program. The high-temperature maximum is due to the decomposition of the carbonate group of La$_2$O$_2$CO$_3$, resulting in La$_2$O$_3$ and CO$_2$ [16,17]. It is known that, even at room temperature, the reverse reaction can take place. Therefore, under diesel exhaust conditions, lanthanum oxide will probably be in the carbonated form.

The poisoning of the CeO$_2$ with SO$_2$ results in a substantially higher combustion temperature. The deactivation of CeO$_2$ upon exposure to SO$_2$ was also found by Sultanov et al [18], who studied the effect of SO$_2$ on CO oxidation activity. The temperature at which 50% CO conversion was reached increased from 600 to 1020 K after exposure to SO$_2$. Only after heating the deactivated CeO$_2$ to 1175 K could the initial CO oxidation activity be restored [18].

V$_2$O$_5$ is more stable than CeO$_2$ towards SO$_2$. However, a deactivation is observed, in disagreement with ref. 7. It is probable that under test conditions vanadium sulfate is formed. Nevertheless, after the poisoning procedure, V$_2$O$_5$ remains the most active oxide of the series.

In contrast with CeO$_2$ and V$_2$O$_5$, soot combustion in the presence of La$_2$O$_2$CO$_3$ remained virtually unchanged after SO$_2$ poisoning. Also after prolonged poisoning (20 h) and at a higher poisoning temperature ($T=925$ K) the combustion temperature hardly changed. Thus, lanthanum oxide exhibited an higher activity than TiO$_2$ and could be used as a support. Apparently, La$_2$O$_2$CO$_3$ and La$_2$O$_3$ are stable towards SO$_2$ under the applied poisoning conditions. Even after decomposition of the carbonate groups and subsequent SO$_2$ exposure the high soot combustion activity is retained.

CONCLUSIONS

The mixing procedure and mixing conditions are important parameters, which influence the combustion characteristics of the catalysts. The applied mixing procedure is a reproducible method, which enables us to discriminate between the catalytic effect of different catalysts on the combustion of soot particulates.

In the absence of SO$_2$, the studied supports can be divided into three groups, based on their catalytic effect on soot combustion and CO oxidation (1) Not
active: SiO$_2$ and Al$_2$O$_3$. (2) Moderately active: TiO$_2$ and ZrO$_2$ (3) Active: La$_2$O$_2$CO$_3$ and CeO$_2$.

From the active supports, only La$_2$O$_2$CO$_3$ is unaffected by SO$_2$ poisoning and can be regarded as a promising support for oxidative diesel soot catalysts. V$_2$O$_5$ is slightly affected by SO$_2$ poisoning but still remains the most active oxide of our test. CeO$_2$ is easily deactivated by the SO$_2$ treatment, probably by the formation of sulfates.

REFERENCES

1. K Otto, M H Sieg, M Znbo and L Bartosewics, SAE Paper 800336 (1980)
2. G Hunter, J Scholl, F Hibler, S Bagley and D Leddy, SAE Paper 811192 (1981)
3. N Miyamoto, Z Hou and H Ogawa SAE Paper 881224 (1988)
4. Y Nura, K Ohkubo and K Yagi, SAE Paper 860290 (1986)
5. Y Watabe, K Ikako, T Miyajima, T Yoshimoto and Murakami, SAE Paper 830082 (1983)
6. P Cambelli, F Corbo, P Parrella, M Scialo and S Vaccaro, Thermochim Acta, 162 (1990) 83
7. A F Ahlstrom and C U I Odenbrand, Appl Catal, 60 (1990) 143
8. A F Ahlstrom and C U I Odenbrand, Appl Catal, 60 (1990) 157
9. E H Homeier and G C Joy, US Patent 4 759 918 (1988)
10. M J Murphy, L J Hiltenbrand, D A Traysor and J H Wasser, SAE Paper 810112 (1981)
11. A F Ahlstrom and C U I Odenbrand, Carbon, 27 (1989) 475
12. P Barthe, H Charcosset and J M Guet, Fuel, 65 (1986) 1330
13. D W McKee, in P L Walker, Jr and P A Thrower (Editors), Chemistry and Physics of Carbon, Vol 16, M Dekker, New York, 1981, p I
14. E A Heintz and W E Parker, Carbon, 4 (1966) 473
15. G De Soete, IFP Report 35991 (1988) Presented at the Western States Section Meeting of the Combustion Institute, Salt Lake City, March, 1988
16. M P Rosynek and D T Magnuson, J Catal, 46 (1977) 402
17. Y Watanabe, S Miyazaki, T Maruyama and Y Saito, J Mat Sci Lett, 5 (1986) 135
18. M Y Sultanov, I S Al'ptshel and Z Z Makhmudova, Kinet Katal, 28 (1987) 213