Study the effects of epoxy/tri functional mercaptan resins structure based PDLC films

M Ellahi¹, H Ullah¹, M F Ali² and N N Panezai¹

¹Department of Chemistry, Faculty of Arts & Basic Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87100 Pakistan.
²Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China

Email. mujtaba.ellahi@gmail.com

Abstract. The present investigation is focused on to find out the effects of the structure of epoxy/tri functional mercaptan resins based polymer dispersed liquid crystal (PDLC) films on the morphology of polymer matrix via heat curing system. The interaction between epoxy reaction and polythiol group (-SH) resins turn played an essential role in step-growth polymerization reaction for the preparation of PDLC films. In addition to this, the polymer morphologies in this heat curing system have been regulated from polymer beads to porous polymer matrix by changing the liquid crystals (LCs) contents, chemical structures of epoxy tri functional mercaptan resins, and functionality of thiol hardeners. On the other hand, the thiol group (-SH) fractured the PDLC films continuously with changing driving voltage radically. With the enhancing content of the epoxy resins, the LC domain size decreased, while the thiol had a various effect on the LC domain size. It was of great importance for the optimisation and the possible applications of the PDLC films.

Keywords. epoxy/tri, mercaptan resins, PDLC films

1. Introduction
Polymer dispersed liquid crystal (PDLC) are a kind of functional macro molecular composite, that consist of haphazardly dispersed liquid crystal (LC) domain size entrenched in a polymer network [1,2]. In the off state, PDLC films have a milk-white form when the LC droplets with a +ve dielectric anisotropy are haphazardly leaning in the films. Electronic or charismatic field, the LC domain size arranges in a line direction parallel (||) to the electric or magnetic field, and the PDLCs films will switch to a clear state just about matches the polymer matrix refractive index (np) [3]. Based on this E-O property, their possible application as the active substrate in displays has been first projected [4], other E-O properties are important for Bathrooms/Shower enclosures, Projection displays, Hurricane resistant windows, and other devices which is increasing regularly [5-8]. Usually, there are three properties required for PDLC film (smart glass) based tool applications: a low threshold voltage for the transition between on/off states, a high on/off contrast in transmittance and a fast response time for the transition between on/off states. These E-O properties depend mainly on the structures of the heat curing epoxy monomers [9-13]; the physical characteristics of the LC such as birefringence [14] and viscosity the interface and compatibility of LC and epoxy monomers; experimental conditions [15]; the electric field conditions [16]; and fastening energy of the domain size in PDLCs system (smart glass) [17, 18].

In current years, a number of studies on the influence of the dielectric anisotropy (Δε) of the LC E-O PDLCs system have been done[19, 20]. Since the Δε of the LC is free of the polymer, results point out that driving voltage is a falling function of the Δε of the LC, as in the case of pure LC in cells[21]. Furthermore, it seems natural that a higher viscosity of the LC should increase both response times , other than the right viscosity of the LC inside the composite is hard to assess and it depends on a lot on the nature of the polymer, because of dissolved oligomers. In summary, LC as one main
PDLC films constitute play a significant role in the growth of the PDLCs system E-O characteristics. In addition, polar CN-group joined by means of on the side substitutes like F atoms in various combinations generates high dipole moments (µ) which provide the increase to Δε standards that are extra functional for dropping the threshold voltage of the PDLC films.

At nearby, despite the fact that many studies have focused on the reactive polymer catalyst to fabricate PDLC films, and a small number of researches have focal point on belongings of the LC mixture physical parameters, such as Δn, Δε on the E-O characteristics of PDLCs systems. However, no research has been reported on effects of the LC molecular structures on the E-O characteristics of PDLCs system. In this article, NLCs has been selected due to its Characteristics for the PDLC films such as strong binding, optical clarity, strong adhesion, toughness, and flexibility effects on the terminal chain length of PDLC films. It is important to mention that adding the percentage of the thiol group (-SH) hardener, fractured the PDLC films continuously with best possible preparation condition was 40% LC, curing time 5.0 hrs at 70°C temperature. The effects of epoxy/tri functional mercaptan resins structure & E-O characteristics consequential PDLCs system cautiously examined. Similarly, the E-O substituting performance was straight dependent on LC domain. We think this study helps us not only to comprehend the relationship between the LC molecules & E-O characteristics of PDLCs system but also to find a new way to optimize the epoxy/tri functional thiol behaviour visions in structure & enhancing the E-O characteristics in curing thin glass system.

2. Materials and Methods

2.1 Materials

Fig. 1 shows the chemical structures of the materials used. In this study, the LC used contained of NLC (SLC-1717, Shijiazhuang ChengzhiYonghua Display Material Co., Ltd., Shijiazhuang, P.R.China). The curable epoxy resins used were Diglycidyl ether of bisphenol A (DGEBA)(Sigma-Aldrich Company), Ethylene glycol diglycidyl ether (EGDE) resin (XY 669, Anhui Hengyuan Chemical Co., Ltd.), and Tri-methylol propane tris (3mercaptopropionate), Sigma-Aldrich Company). 3S-Thiol used as hardener for epoxy resins. Without cleansing, we used the compounds. The compositions of heating resins/3S-Thiol/NLC, as shows in Table 1.

2.2 Sample preparation

Ready samples contained of resins, tri-functional poly thiol hardener, and a constant amount of nematic liquid crystals (NLCs, 40.0wt %). First, carefully mixed in the particular mol ratio till a same blend was created. After that, based on rising liquid, the blend was packed in to the NLC cell whose internal appearances had been layered with ITO. Film thickness was controlled by a 15.0 ± 1.0 µm PET spacer. Then, prepared samples A1-A5 according to the mol ratios listed in Table 1.
1. MONOMERS

![DGEBA](image)

![EGDE](image)

2. LC

SLC-1717

\[T_{N_1} = 365.2 \text{K} \quad n_u = 1.519 \quad n_e = 1.720 \]

3. HARDENER

![TRITHIOL](image)

Figure 1. Chemical structures, names, and abbreviations of the materials

Sample	Epoxy Resins/3S-Thiol (60 wt%)	SLC-1717/wt%
	(5.0 hours at 70°C) EGDE/TRITHIOL/DGEBA/mol%	
A1	1.0/1.0/1.0	40
A2	2.0/1.0/2.0	40
A3	3.0/1.0/3.0	40
A4	4.0/1.0/4.0	40
A5	5.0/1.0/5.0	40

2.3 Analysis technique

LCD parameter tester (LCT-5016C, Changchun) used to require the E-O characteristics of the samples at ambient temperature. An electric field square wave (110 Hz) was functional and the space b/w the PDLCs system and photodiode was 350 mm. A schematic diagram of the E-O characteristics shown in scheme 1.
3. Experimental Results and Discussion

3.1 Morphologies of the PDLCs System at 5.0 hrs at 70°C

With the purpose of appropriately quantity the droplet structure, Figure 2 shown the morphology of SEM pictures of the contract monomer network of A1-A5. The morphology of PDLCs system are reliant on the feed %age, heating situations, chemical arrangements, and on the particulars of the thin system development method [22]. The arrangement mol% of A1-A5 through 40% NLC contented & 700C curing heats is recorded in table 1. As the Figure 3 shown that the oval type droplet of the polymer matrix of PDLCs system A1-A5. 3S-Thiol responds through the epoxy group to arrange polymeric morphology scheme. Initially, the (-OH) gp: unlocked & improves another oxirane ring to arrange cross linked network chain of the PDLCs system. Furthermore, the increasing mol ratio % of the rigid chain segment and di functional epoxy resin increasing the cross-linking density consistently in all.
3.2. E-O Characteristics of PDLCs system at 5.0 hrs at 70°C

Gradually, additional oxirane and 3S-Thiol reacted shape domain size & NLCs divided from droplets, making extra and bigger droplet; before the PDLCs system became to develop easy to steer. A1 prepare with 1% each in EGDE, DGEBA, and poly thiol hardener respectively to take 5.0 hrs to acquire a PDLCs system through high-quality reaction current. At the same time, 3S-Thiol & 5.0 hrs: heating bands of samples A2, A3, A4, and A5 with constant mol ratio 1%. It shows that the samples heating for 5.0 hrs: have different E-O characteristics as sample A1-A5, As a result; it signifying to 3S-Thiol, the heating method essential merely 5.0 hrs.

The E-O effect in NLCs with an even director is not an essential condition in the presence of a warped director. Our findings have revealed a change in domain shape on the driving voltage of a PDLCs shutter with bipolar domain and investigated their effects on the polymer network, E-O characteristics, and conductivity the PDLCs system. Hence, thin film can be further successfully applied in display industries for the enhancement of E-O contrast with the specifically change of ON-scattering at minimum time. The transmission-applied voltage bands of A1-A5 are shows Figure 3.

Figure 3. Applied voltage dependence of transmittance for samples A1-A5.

Gradually, additional oxirane and 3S-Thiol reacted shape domain size & NLCs divided from droplets, making extra and bigger droplet; before the PDLCs system became to develop easy to steer. A1 prepare with 1% each in EGDE, DGEBA, and poly thiol hardener respectively to take 5.0 hrs to acquire a PDLCs system through high-quality reaction current. At the same time, 3S-Thiol & 5.0 hrs: heating bands of samples A2, A3, A4, and A5 with constant mol ratio 1%. It shows that the samples heating for 5.0 hrs: have different E-O characteristics as sample A1-A5, As a result; it signifying to 3S-Thiol, the heating method essential merely 5.0 hrs.

The E-O effect in NLCs with an even director is not an essential condition in the presence of a warped director. Our findings have revealed a change in domain shape on the driving voltage of a PDLCs shutter with bipolar domain and investigated their effects on the polymer network, E-O characteristics, and conductivity the PDLCs system. Hence, thin film can be further successfully applied in display industries for the enhancement of E-O contrast with the specifically change of ON-scattering at minimum time. The transmission-applied voltage bands of A1-A5 are shows Figure 3.

The enhancing the applied voltage, the transmission A1-A5 decreases progressively due to the increasing mol% of rigid chain segment of DGEBA.
The curves of transmissibility-voltage and transmissibility-time can be obtained by the system. Analyzing the curves, the threshold voltage, saturation voltage, contrast ratio, steepness, and response time can be calculated from them as figure.4. The eq: (1) specifies the E-O characteristics of PDLCs system can be organised by LC domain size and other factors, such as film thickness, resistivity and dielectric anisotropy of LC. Hence, as shows in figure 4; V_{th} and V_{sat} increased with decreasing the LC domain size. As for samples A1-A5, increasing the rigid chain segment and increasing the crosslinking density altering the values of V_{th} and V_{sat}, which changes from 6.593V to 28.571V and 17.826V to 48.979V; correspondingly.

4. Conclusions
In this study, the optimized condition for fabricating smart glass thin PDLC films containing class nematic liquid crystals (NLCs) linear chain polymer mixtures. We have been examined two PDLCs system. At 5.0 hrs at 70°C using heating oxiran resins with heat heating processes mol%, composition feed ratio, numerous molecular structures and at different mol feed ratio hardener Tri-methylol propane tris (3mercaptopropionate), which affects the E-O characteristics of the PDLC systems. Moreover, an effect on of the smart glass thin films systems was powerfully prejudiced through rigid chain segment (DGEBA), while prejudiced morphology smart films system. The outcome of the combination and thermotropic hotness on the domain size of smart glass films were studied. Additionally, using constant mol% 3S-Thiol variable driving voltages were optimized. Our findings have revealed a change in droplet shape on the driving voltage of a PDLC shutter with bipolar droplets and investigated their effects on the morphology, E-O properties, and conductivity of the PDLC thin films. The thiol group (-SH) fractured the PDLC films continuously with changing driving voltage radically. With the enhancing content of the epoxy resins, the LC domain size decreased, while the thiol had a various effect on the LC droplet size. Hence, this thin film can be further successfully applied in display industries for the enhancement of E-O and contrast with the specifically change of ON-scattering at minimum time.

\[V_{th} = \frac{d}{3\alpha} \times \left(\frac{p_0 + 2}{\rho Lc} \right) \times \left(\frac{K(l^2 - 1)}{\Delta \varepsilon \varepsilon_0} \right)^{1/2} \]
5. Acknowledgment
This work was supported by the HEC fund for BUITEMS Funded Research Project No. 01/ ORIC/ BUITEMS/2011/610. The authors wish to express appreciation to the State Key Laboratory of Chemical Resource Engineering (BUITEMS) and BUITEMS for laboratory experiment support and technical assistance.

References
[1] Drzaic, P.S. Polymer dispersed nematic liquid crystal for large area displays and light valves. J. Appl. Phys. 1986 60 2142-48.
[2] Kurihara, S.; Masumoto, K.; Nonaka, T. Optical shutter driven photo chemically from anisotropic polymer network containing liquid crystalline and azo benzene molecules. Appl. Phys. Lett. 1998 73 160-62.
[3] Doane, J.W.; Vaz, N.A.; Wu, B.G.; Žumer, S. Field controlled light scattering from nematic micro droplets. Appl. Phys. Lett. 1986 48 269-71.
[4] Cheng, Z.; Wang, T.; Li, X.; Zhang, Y.; Yu, H.F. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nano composites. ACS Appl. Mater. Interfaces. 2015 7 27494-01.
[5] Yu, L.; Cheng, Z.; Dong, Z.; Zhang, Y.; Yu, H.F. Photo mechanical Response of Polymer-Dispersed Liquid Crystals/Graphene Oxide Nano composites. J. Mater. Chem. C. 2014 2 8501-06.
[6] Kim, S.H.; Heo, C.P.; Park, K.S.; Kim, B.K. Effect of pre polymer structure on the electro-optic performance of polymer dispersed liquid crystals. Polym. Int. 1998 46 143-149.
[7] Malik, P.; Raina, K.K. Droplet orientation and optical properties of polymer dispersed liquid crystal composite films. Opt. Mater. 2004 27 613-17.
[8] Liu, F.; Cao, H.; Mao, Q.; Song, P.; Yang, H. Effects of monomer structure on the morphology of polymer networks and the electro-optical properties of polymer-dispersed liquid crystal films. Liq. Cryst. 2012 39 419-24.
[9] Mujtaba Ellahi, Fang Liu, Ping Song, Yanzi Gao, Hui Cao, M.Y. Rafique, Murad Ali Khaskheli, M. Zubair Iqbal, Huai Yang. Influence of the multi-functional epoxy monomers structure on the electro-optical properties and morphology of polymer-dispersed liquid crystal films. Polym. Bull. 2013 70 2967-80.
[10] Mujtaba Ellahi, Fang Liu, Ping Song, Yanzi Gao, M.Y. Rafique, DilFaraz Khan, Hui Cao, Huai Yang. Characterization and Morphology of Polymer-Dispersed Liquid Crystal Films. Soft Mater. 2014 12 339-45.
[11] Mucha, M. Polymer as an important component of blends and composites with liquid crystals. Prog. Polym. Sci. 2003 28 837-73.
[12] Humaira Masood Siddiqi, Adeel Afzal, Samia Sajid, Zareen Akhter. Synthesis, characterization and thermal oxidative stability of rigid epoxy polymers cured from aromatic mono and diamines. Journ. Of Polym. Reserh. 2013 20 41-52.
[13] Tomohisa, G; Hideya, M. Preparation and characteristics of new reverse mode film of polymer dispersed liquid crystal type. Appl. Phy. Lettr. 1992 60 392-94.
[14] Mujtaba Ellahi, M.Y. Rafique, Shagufat Shtiaque, M. Furqan Ali, Jameel Memon. Study on the effects of epoxy resin based PDLC films using polythiol group (-SH) as hardener and catalyst. J. of Optic. Focus. 2015 4 197-01.
[15] Mujtaba Ellahi, et al. Study on the effects of isotropic cross-linked pristine morphology and electro-optical properties of PDLC films, Polym. Bull. 2015 72 2917-30.
[16] Farzana A, Muhammad J, Jae JY, et al. Comparative study on the electrooptical properties of polymer-dispersed liquid crystal films with different mixtures of monomers and liquid crystals. Appl. Polym. Sci. 2011 121 1424-30.
[17] Yu, H.F.; Liu, H.; Kobayashi, T. Fabrication and Photo response of Supra molecular Liquid-Crystalline Micro particles. ACS Appl. Mater. Interfaces. 2011 3 1333-40.
[18] H. Murai and T. Gotoh, Stabilization of Epoxy-Based Polymer-Dispersed Liquid Crystal Films by Addition of Excess Hardener. *Mol. Cryst. & Liq. Cryst.* 1993 **226** 13-26.

[19] Song P, Cao H, Wang F, Liu F, Wang J, Ellahi M, Li F, Yang H. The UV polymerisation temperature dependence of polymer-dispersed liquid crystals based on epoxies/acrylates hybrid polymer matrix components. *Liq. Cryst.* 2012 **39** 1131-40.

[20] Mujtaba Ellahi, et al. Effects of di and tetra functional epoxy monomers structure on the morphology and the electro-optical properties of polymer-dispersed liquid crystal films. *Inter. J. of Scien. & Tech. Reseh.* 2013 **2** 127-31.

[21] Senyurt, A.F.; Warren, G.; Whitehead, J.B.; Hoyle, C.E. Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films. *Polym.* 2006 **47** 2741-49.

[22] Mujtaba Ellahi, Yanzi Gao and M. Y. Rafique,. Influence of enhanced curing temperature of epoxy monomers structure on the electro-optical properties and morphology of polymer-dispersed liquid crystal films. *J. of Amer. Engg. Reserh.* 2013 **2** 01-06.