This review article addresses the nexus between two seemingly disparate disciplines, namely solid-state chemistry (SSC) and photoelectrochemistry (PEC) using copper-based complex (ternary and quaternary) oxides as a discussion framework. The two disciplines, SSC and PEC, have more or less developed in a parallel fashion since their halcyon days in the mid-1970s. Both SSC and PEC shared an interest in similar materials (mainly oxides and chalcogenides) but for rather different applications. While SSC has focused mainly on magnetic or electronically and ionically conductive solid materials, and eventually evolving to superconducting (so-called high Tc) materials, PEC has dealt mainly with inorganic semiconductors. However, and interestingly enough, the two disciplines have coalesced in the area of energy conversion. The past couple decades have thus witnessed remarkable advances in the development of solid-state materials for solar fuels photogeneration and environmental (e.g., azo dye) remediation.

We are not aware of a similar, overarching review on this topic although copper(I)-based p-type oxides were recently reviewed for photoelectrochemical and photovoltaic solar energy conversion applications.\(^\ast\) Tantalum- and niobium-based ternary oxides were discussed in this particular article, as were copper(II) delafossites and two Cu-V-O oxides (Cu$_3$VO$_4$ and Cu$_2$V$_2$O$_7$). Areas where the present article overlaps with this precedent review are identified later. The synthetic aspects of ternary metal oxide nanostructures have been reviewed as were their applications in supercapacitors.\(^8\) While not focusing per se on solar fuels generation, three recent articles\(^9-11\) may be cited that share a similar objective to the present review: namely, targeted materials development for a specific application. Thus, we note a recent article that discusses how simple chemical concepts can be turned into viable strategies for thermoelectric materials development.\(^13\)

Another article\(^10\) focuses on the accuracy of density functional theory in predicting the formation energetics of ternary oxides from their binary oxide counterparts. Finally, ab initio global structural prediction, and specifically the minima hopping method, was used to study 183 different compositions of the form, M$_x$O$_y$Z$_z$, where M = Cu, Ag, or Au (coinage metal), and Z is an element in the Periodic Table.\(^11\) The application target in this particular study was p-type transparent conducting oxide (TCO) development.\(^11\) While the materials’ application focus in the present discussion is mostly on solar water splitting, closely allied technology aspects related to photoelectrochemical CO$_2$ reduction and heterogeneous photocatalytic environmental remediation are also peripherally addressed, for the sake of completeness. It is worth noting that the photocatalysis application has seen the light of day, in terms of commercial realization, sooner than the other applications.

Tables Ia and Ib summarize the oxide candidates considered in the present review article; the two compilations relate to compounds based on copper in the +1 and +2 oxidation states respectively.

Tables Ia and Ib summarize the oxide candidates considered in the present review article; the two compilations relate to compounds based on copper in the +1 and +2 oxidation states respectively.
Phase diagrams can also represent thermodynamically stable ternary and quaternary compounds based on their simpler components; this is depicted in Figure 2. The generic ternary phase diagram is shown in Figure 2a and a specific Cu-Bi-V-O system is considered in Figure 2b. Consider Figure 2a first. Each corner of the (equilateral) triangle represents 100% of one component (i.e., a binary compound). Points along each edge of the equilateral triangle represent a combination of two binaries on either end of the triangle. Any point on the edge must follow the lever rule; for example, the mid-point constitutes the 1:1 ternary compound, and AB2O3 is represented as a point that is located 1/3 of the length toward the corner labeled “A-oxide” and 2/3 of the length toward the corner labeled “B-oxide.” For example, a point in the middle of the triangle represents an oxide with the chemical formula, AB2O3, where one expects 33.3% each of the A-oxide, B-oxide and C-oxide. The convex hull formalism, commonly used for thermodynamic predictions, logically derives from similar ideas.

The Cu-V-O phase space is particularly rich and the four known compounds (Table I) are shown in Figure 2b. The 1:1 compound between Bi2O3 and V2O5, positioned at the mid-point on the bottom horizontal edge in Figure 2b, is the well-studied BiV2O7. While not directly relevant for this review on Cu-based oxides, this particular compound is only shown in this diagram because it is a “champion” ternary oxide in terms of performance in solar water splitting.76

The CuO-V2O5 edge shows four stable ternary compounds that lie on the CuO-rich side of the edge, while the Bi2O3-CuO edge reveals one compound, CuBi2O4, with a 1:1 molar ratio of Bi2O3 and CuO. The interior of the triangle in Figure 2 represents the quaternary phase space and one specific Cu-Bi-V-O compound (4:1:1 ratio of CuO-Bi2O3-V2O5) is depicted in Figure 2b. Compositions beyond the quaternary case will necessitate the use of 3-D objects for visualization and their rarity puts them beyond the scope of the present discussion.

A final way to consider ternary compositions is to consider them as comprising of ionic fragments of the A cation (i.e., Cu+ or Cu2+) and the BO cluster. Indeed the compound name, in many cases, is derived from the BO cluster. For example, Cu2O or “copper chromate” and CuO or “copper ferrate” respectively. There are other also more well-known such examples amongst non-Cu systems, e.g., bismuth titanates etc. Nonetheless, we favor the visualization based on component oxides instead, especially because the “ionic approach” is difficult to apply to quaternary cases and beyond.

Synthetic Aspects

As may be expected, a wide range of synthetic methodologies have been deployed for the preparation of ternary oxides based on Cu(I) and Cu(II). Figure 3 captures the distribution of a random sampling of these methods in the literature focusing only PEC or photocatalysis applications. Interestingly, ceramic preparation routes account for a significant number of instances in these studies. This trend is entirely in line with the theme of this review on the close relationship between solid-state chemistry and PEC. Worthy also of note is the fact that the “catch-all” (Others) category is the dominant category of methods in these methods in the literature focusing only PEC or photocatalysis applications. Interestingly, ceramic preparation routes account for a significant number of instances in these studies. This trend is entirely in line with the theme of this review on the close relationship between solid-state chemistry and PEC. Worthy also of note is the fact that the “catch-all” (Others) category is the dominant category of methods in these studies.

Given that the set of materials attributes needed for a given technological application (e.g., solar water splitting) is rather well understood,38 it would have been ideal if a given synthesis set of conditions could be tailored a priori to yield the material with precisely those attributes. Unfortunately, this is not the case given the present state-of-the-art. The targeted attributes may even be contradictory. For example, solar energy conversion applications dictate the use of very large active material area to compensate for the diluteness of the incoming energy source (i.e., sunlight), unless of course concentrator strategies are employed. On the other hand, when nanoparticles of the active material are used, larger crystallite sizes (approaching single crystal behavior!) must be sought to minimize the role of defects and optimize carrier collection.

Table I. Copper oxide-based ternary oxides considered in this review. a) Copper(I) oxide-based. b) Copper(II) oxide-based.

No.	Ternary Oxide	A oxide	B oxide	A oxide: B oxide	Ref(s).
a) Copper(I) oxide-based					
1	CuAl2O4	Cu2O	Al2O3	1:1	12-15
2	CuCr2O4	Cr2O3	1:1	16,17	
3	CuFe2O4	Fe2O3	1:1	5,18-21	
4	α-CuGa2O4	Ga2O3	1:1	22-26	
5	β-CuGa2O4	Ga2O3	1:1	27,28	
6	CuNb2O5	Nb2O5	1:1	29,30	
7	CuNb2O3	Nb2O3	1:3	31,32	
8	CuNb2O3	Nb2O3	1:4	33	
9	CuRh2O4	Rh2O3	1:1	34	
10	α-Cu2Ta2O5	Ta2O5	1:2	35	
11	β-Cu2Ta2O5	Ta2O5	1:2	36	
12	Cu2Ta2O5	Ta2O5	3:7	37,38	
13	Cu2Ta2O5	Ta2O5	5:1	37,39	
14	Cu2V2O5	V2O5	3:1	40	
b) Copper(II) oxide-based					
1	CuAl2O4	Al2O3	1:1	41-44	
2	CuBi2O4	Bi2O3	1:1	45-56	
3	CuCo2O4	Co2O3	1:1	44,57-59	
4	CuCr2O4	Cr2O3	1:1	44,60-66	
5	CuFe2O4	Fe2O3	1:1	44,67-69	
6	CuGa2O4	Ga2O3	1:1	70	
7	CuMn2O4	Mn2O3	1:1	44,71	
8	CuMn2O4	Mn2O3	1:1	72,73	
9	CuNb2O6	Nb2O6	1:1	73	
10	CuNb2O6	Nb2O6	3:1	74	
11	Cu2V2O5	V2O5	1:1	76-78	
12	α-Cu2V2O5	V2O5	2:1	79	
13	β-Cu2V2O5	V2O5	2:1	76,77,79	
14	β-Cu2V2O5	V2O5	3:1	80-83	
15	γ-Cu2V2O5	V2O5	3:1	79,84	
16	Cu11V2O32	V2O5	11:3	79,85	
17	CuWO4	WO3	1:1	86-94	

Figures 1a and 1b illustrate the materials’ scope from a Periodic Table perspective.

Visualizing Ternary and Quaternary Oxide Compositions and Their Relationship to the Binary Oxide Components

In this paper, A, B, and C represent metal cations in a ternary or quaternary oxide compound. Of course, for the present discussion, A = Cu in all the cases. At first glance, the various oxide compositions in Tables Ia and Ib appear to be complicated in terms of the combinations of formula subscripts, especially in the Cu-Nb-O, Cu-Ta-O, and Cu-V-O cases. However, a simple way to visualize these is to break up each ternary compound into a combination of the component binaries.

Thus the two binaries are shown in columns 3 and 4 of Tables Ia and Ib and their combining ratios is shown in column 5 in each case. Thus the vast majority of the compounds considered are rather simple 1:1 molar combinations, although combinations such as 11:3 are observed in the Cu-V2O5 systems. Polymorphs of the same compound are also observed in many cases (designated in Tables Ia and Ib by α, β, etc.) and they will be further considered in the section below on structural aspects.

A final point to note is that the prescribed visualization of ternary compounds as combinations of corresponding binaries, is by no means, unique to oxides. This approach works equally well for non-oxides, e.g., chalcogenides, phosphides, arsenides etc. By extrapolation, quaternary compounds may be visualized as derived from the component binaries in the same manner. Thus, the quaternary compound, Ag2BiW2O8, studied by one of us recently, is really a 1:1:4 combination of the three component oxides, namely, Ag2O, Bi2O3, and WO3. Certainly, this is not readily apparent from the above formula! Other Cu-based quaternary compounds are considered below.
Figure 1. The ternary compounds based on Cu(I) (a) and Cu(II) (b) considered in this study and their component elements with respect to the Periodic Table (see also Tables Ia and Ib). As in the crystal structures below, the elements are color-coded, blue being the A cation (Cu) while green is the B cation in the ternary oxide compound.

Figure 2. Graphical visualization of ternary and quaternary oxides, for the generic (a) and Bi$_2$O$_3$-CuO-V$_2$O$_5$ (b) cases.
The polyhedral representations are particularly illuminating in this regard, and we begin with the structure of the perovskite prototype—a veritable “mother” of all structure types that are important in wide range of technological materials science applications. This is illustrated in Figure 4, with the Cu cation, the B cation, and the oxygens color coded the same way everywhere (c.f., Figure 1) for easy visualization. Rational and deliberate structure modifications, designed, to impart a certain characteristic (for example, a lowered optical bandgap), may be conveniently discussed with reference to this structural framework. Chemical alterations may be made either to the cationic sub-lattice or to the anionic framework (Figure 4). Thus the B cation or the oxygens in the perovskite structure may be substituted with another cation or anion with comparable ionic radii respectively. Nitrogen ($r_N = 1.5$ Å) readily substitutes for oxygen ($r_O = 1.4$ Å) affording the corresponding oxynitrides, although note that the charges are not the same in the two cases. Rational and simultaneous chemical alterations of this sort, targeting both the sub-lattices, have been reported for ABO$_2$N type compounds, although such examples seem to be as yet sparse, for Cu-based oxides. Indeed, the so-called heteroionic systems (e.g., oxynitrides, oxysulfides) have garnered much interest in recent years, spurred by applications in solar fuels, thermoelectrics etc. However, these mixed anionic compounds are beyond the scope of the present review.

If two B cations are within $\sim 15\%$ of the size of one another, a range of solid solutions may be derived with interesting gradation in structural (e.g., unit cell dimension) or optical (energy bandgap, E_g) attributes. This behavior is exemplified by the Cu-Fe-Cr-O system (Figures 5 and 6); these new materials were prepared via SCS by simple compositional tuning of the precursor mixture. Note that both the lattice parameter (a, b with black and c with blue traces in Figure 5) and E_g value (Figures 6) vary, albeit not in the same manner – the change in E_g with the extent of substitution, x being much more drastic (c.f., Figures 5b and 6b). The linear change of the lattice parameter with composition confirmed that this ternary alloy followed Vegard’s law.

It is worth noting that literature examples of solid solutions within the ternary compound space are not as common as within the binary compound space. Therefore, these new and interesting examples provide a guiding template for future studies on chemical composition-property relationships.

Consider now the structures of the two parents: Cu$_2$O and CuO (Figures 7a and 7b respectively). The unit cells are also superimposed on the ball-and-stick representation in the two cases as dotted lines. While the Cu$_2$O structure consists of a cubic unit cell, it is hexagonal for the CuO case. The local coordination geometry is also clearly seen to differ switching from linear in the former case to tetrahedral in the latter. Further structure details may be found for Cu$_2$O in a preceding review article. Table II lists all the crystallographic attributes for the two parent structures as well as the 31 derivatives considered in this study.

Delafossites (Figure 8) are an important structural type for the Cu(I) case and several of these were also considered by previous authors; therefore, their discussion is much abbreviated here. Interestingly, variant local coordination environments for the two cations are seen in the structural framework: linear for Cu(I) but octahedral for the B(III) cation. This structure type is observed for CuBO$_2$ (B = Rh, Fe, Al) (Table IIA). By contrast, the two cations experience a similar pyramidal coordination environment in the wurztite structure (not shown), typical of CuGaO$_2$.

The structures of the other Cu(I) based oxides with Nb, Ta, or V as the B cation (see Table IIA) have been extensively discussed elsewhere by previous authors, and therefore are not further considered here. Instead, we now turn to structures based on Cu(II): two common structure types are spinels and wolframite, shown in Figures 9a and 9b respectively. Copper-containing spinels with the general chemical formula, Cu$_2$O$_5$+xB$_{2-x}$O$_4$ have a tetragonal unit cell while Cu-containing wolframites (general formula: CuBO$_4$) possess a unit cell of much lower symmetry: either, monoclinic or triclinic, depending on the particular compound (Table IIb). Once again, the local coordination

Figure 3. A sampling of the literature on PEC and photocatalysis for the examples of the choice of synthesis approaches for Cu(I) (a) and Cu(II) (b) compounds respectively. Refer also to text.

Structural Aspects

Oxides display a remarkable array of structural variations that could be visualized at different levels. At the outset, we can accommodate a particular structure within a mineral type such as perovskite, spinel, delafossite etc. Another approach derives from crystallographic examination and description of the solid-state arrangement in terms of a particular space group and unit cell dimensions. A localized (“inorganic chemist’s”) view considers the A-O or B-O clusters that are building blocks within the overall framework and the coordination environment around the Cu cations. All three descriptions are complementary and are adopted herein, see Tables Ila and IIb for the thirty-one compounds considered in this review.

It is clear that in cases where an energy-harvesting material is to be synthesized, the energy investment for the synthesis itself, must be minimized such that the energy payback time is shortened. Solid-state (i.e., ceramic) synthesis routes are handicapped in this regard because they involve rather high temperatures. On the other hand, techniques such as solution combustion synthesis (SCS) are attractive because the thermal energy required for the synthesis is contained within the heat of combustion of the fuel–oxidizer precursor mixture. Another important advantage of SCS is the versatility it offers for tuning the range of composition of the end product simply by varying the precursor ratio. Thus, an entire range of oxide compositions from neat CuO on the one side to the 1:1 ternary, Cu$_2$Bi$_2$O$_6$, and to Bi_2O_3 on the other, could be generated using SCS. Nanocomposites containing CuO and CuBi$_2$O$_4$ nanoparticles in electronic contact or the Bi_2O_3/CuBi$_2$O$_4$ material could also be synthesized. Even more significantly, SCS has also afforded the scope for preparing doped oxides or solid solutions as elaborated later in this review.

Materials discovery in its current state of evolution has to rely on either tedious trial-and-error methodologies or more efficiently, the combinatorial variant. In this regard, synthesis methods that are time-efficient (such as SCS) hold a significant advantage over prolonged techniques (spanning several hours) such as sol-gel or solid-state routes.
No.	Compound	Structure type	Crystal system	ICSD #	PDF card #	Space group	a (Å)	b (Å)	c(Å)	α (deg)	β (deg)	γ (deg)	V (Å³)
1	CuAlO₂	Delafossite	Trigonal	31701	01-075-1988	R3̄m (166)	2.8604	2.8604	16.953	90.00	90.00	120.00	120.12
2	CuCrO₂	Delafossite	Trigonal	402290	01-089-6744	R3̄m (166)	2.9734	2.9734	17.100	90.00	90.00	120.00	130.93
3	CuFeO₂	Delafossite	Trigonal	92184	01-070-6670	R3̄m (166)	3.0328	3.0328	17.160	90.00	90.00	120.00	136.73
4	α-CuGaO₂	Delafossite	Trigonal	60846	01-077-2495	R3̄m (166)	2.977	2.977	17.171	90.00	90.00	120.00	131.79
5	β-CuGaO₂	Wurtzite	Orthorhombic	291233	-	Pnma (23)	5.46004	6.61013	5.27417	90.00	90.00	90.00	190.35
6	CuNbO₃	Monoclinic	-	201899	01-084-0971	C2̄m (12)	9.488	8.484	6.763	90.00	90.00	90.00	541.5
7	CuNb₂O₅	Monoclinic	Not found in	14099	01-071-1927	P2₁/c (14)	15.365	5.0717	7.5266	90.00	107.18	90.00	560.35
8	Cu₂Nb₂O₅₂⁺	Monoclinic	-	-	-	C2̄m (12)	10.5325	6.4306	10.173	90.00	100.212	90.00	678.11
9	CuRhO₂	Delafossite	Trigonal	29214	01-075-0521	R3̄m (166)	3.075	3.075	17.165	90.00	90.00	120.00	140.56
10	α-Cu₂Ta₄O₁₁	Monoclinic	-	252576	-	Cc (9)	10.7337	6.2506	12.869	90.00	106.07	90.00	830.82
11	β-Cu₂Ta₄O₁₁	Trigonal	-	72179	01-081-0815	R3c(167)	6.23	6.23	37.34	90.00	90.00	120.00	1255.11
12	Cu₁Ta₃O₉	Hexagonal	-	247277	-	P6₃/m (176)	6.2278	6.2278	20.1467	90.00	90.00	120.00	676.71
13	Cu₃Ta₄O₃₀	Hexagonal	-	421398	01-075-2355	P6₂c (190)	6.6297	6.2297	32.55	90.00	90.00	120.00	1094.00
14	Cu₃VO₄	Stannite	Tetragonal	418372	-	I42₁ m (121)	4.57531	4.57531	8.9918	90.00	90.00	90.00	188.23

Table II. Structural details of copper(I)- and copper(II)-based oxides.

a) Copper(I)-oxide-based

- CuAlO₂ (Trigonal)
- CuCrO₂ (Trigonal)
- CuFeO₂ (Trigonal)
- α-CuGaO₂ (Trigonal)
- β-CuGaO₂ (Orthorhombic)
- CuNbO₃ (Monoclinic)
- CuNb₂O₅ (Monoclinic)
- Cu₂Nb₂O₅₂⁺ (Monoclinic)
- CuRhO₂ (Trigonal)
- α-Cu₂Ta₄O₁₁ (Monoclinic)
- β-Cu₂Ta₄O₁₁ (Trigonal)
- Cu₁Ta₃O₉ (Hexagonal)
- Cu₃Ta₄O₃₀ (Hexagonal)
- Cu₃VO₄ (Stannite)

b) Copper(II)-oxide-based

- CuAl₂O₄ (Spinel)
- Cu₂B₂O₄ (Kasachiite)
- Cu₂O₃ (Spinel)
- Cu₂Cr₂O₇ (Spinel)
- Cu₂Fe₂O₇ (Spinel)
- Cu₂Ga₂O₄ (Spinel)
- Cu₂Mn₂O₄ (Spinel)
- Cu₂MoO₄ (Triclinic)
- Cu₂Nb₂O₆ (Triclinic)
- Cu₂V₂O₇ (Triclinic)
- α-Cu₂V₂O₇ (Blossite)
- β-Cu₂V₂O₇ (Ziesite)
- β-Cu₂V₂O₇ (Orthorhombic)
- Cu₂V₂O₈ (Pseudolysite)
- Cu₂V₂O₈ (Mcberneyite)
- Cu₁V₂O₂₆ (Fingerite)
- CuWO₄ (Distorted wolframite)
geometries are distinctly different for the two types of cations in the structure in both cases shown in Figures 9. In spinel structures, the Cu(II) species occupy the tetrahedral sites while the B(III) cations occupy the octahedral sites. On the other hand, both Cu(II) and B(VI) are found in octahedral geometry. Distortions from perfect geometry are common in these structures, as exemplified by CuWO4.94

The Cu-V-O ternary system offers a remarkably diverse array of structures, particularly for the Cu(II) case. Thus the crystal structures of three Cu(II) compounds, namely, CuV2O6, Cu2V2O7, and Cu3V2O8 are shown in Figures 10–12; recall that these are the 1:1, 2:1 and 3:1 combinations of CuO and V2O5 (c.f., Table Ib and Figure 2b above). Interestingly, the Cu(II) cations are in three distinctly different coordination environments in the three cases: octahedral CuO6 in CuV2O6 (Figure 10a), (distorted) trigonal octahedral, CuO5 in α-Cu3V2O8 (Figure 11), and planar CuO4 in γ-Cu3V2O8 (Figures 12). By contrast, V5+ occurs as VO6 or VO4 clusters in the three cases.

Phase transitions have been studied in the Cu-V-O ternary system since the 1960s.102,103 Polymorphs of both Cu2V2O7 and Cu3V2O8 are shown in Figures 11 and 12 respectively. These have been observed in recent SCS studies (as yet, unpublished) in our laboratories, and have been studied by thermal analysis and high-temperature XRD by previous authors.102,103 Three polymorphs are known and their transitions (often reversible) occur at temperatures ranging from ~500°C to ~700°C. Other examples of polymorphism may be found in Table II. The wurtzite-derived β-CuGaO2 structure has been studied using synchrotron X-ray radiation.28 This structure irreversibly transforms to the delafossite α-phase at temperatures higher than ~460°C in an Ar atmosphere.28 In general, there is much scope for similar detailed studies on phase transitions in ternary copper oxides. It is also worth noting that the impact of these polymorphs on the corresponding optoelectronic characteristics, has not been adequately explored.

Other interesting structural questions remain, at least on a semantic level. For example, one can envision a thought experiment wherein the two component binary oxide structures are completely dismantled and then reassembled into a ternary compound framework. What dictates the ultimate crystal structure and does that have a relationship to the initial binary compound structures?

Figure 4. The perovskite structure; the unit cell is shown as a dotted line.

Figure 5. X-ray powder diffractograms for CuFeO2, CuCr0.5Fe0.5O2, and CuCrO2 (A) Lattice parameter dependence on solid solution composition (B). (Unpublished results.).

Figure 6. UV-vis spectra for the CuCr1-xFe2O2 alloys (A). Direct bandgap values for the solid solutions (as derived from Tauc plots) and their dependence on composition (B). (Unpublished results.).
Optoelectronic Aspects

Being semiconductors, an important optoelectronic property is the optical bandgap value, \(E_g \). Other details on the nature of the optical transition, whether direct or indirect, has a bearing on the strength of absorption of the excitation light by the semiconductor. Tables IIIa and IIIb assemble the available data on the 31 compounds. Methods for estimating \(E_g \) have been reviewed elsewhere,\(^{104}\) two of these are shown under the categories: “Absorption edge” and “Tauc plot” respectively. Again, for reasons outlined elsewhere,\(^{104}\) values derived from the latter are considered to be more reliable. Nonetheless, in cases where both methods have been used, the two sets of results are in reasonable accord (see entry #2 in Table IIIb, for example). Copper tungstate and niobate are exceptions to this trend and considerable variability (as much as 1 eV or more!) exists in the reported values for reasons, again discussed elsewhere.\(^{104}\) The \(E_g \) values have been quoted to varying precision between 2 and 3 significant figures in Table III. Given the variability, however, only 2 significant figures may be justifiable. It is worth noting that, with rare exceptions, the vast majority of the \(E_g \)
values also lie within the “sweet spot” of optimal overlap with the solar spectrum.

Many of the compounds listed in Table III feature both types of optical transitions; therefore two separate sets of values for E_g have been listed. However, unlike in the notable case of BiVO$_4$, few questions have been raised on the nature of the fundamental bandgap in these materials. While theory can contribute much to an understanding electronic band structures, we have avoided consideration of theoretically-derived E_g values for the compilations in Table III. Accurate prediction of E_g values remains an Achilles heel of methods such as DFT, although improvements may be anticipated in the future.

As in the preceding section, interesting questions remain on the electronic nature of the resultant ternary structures after they are assembled from the binary components. Unlike in the case of solid solutions of the two components (c.f., Figure 5b), the E_g values for the ternaries are not bracketed by the values for the end (binary) members. Another way of looking at this is to appreciate that in many cases, the B oxide is not even a semiconductor. A case in point is entry #1 in Tables Ia and Ib above: Al$_2$O$_3$ is an insulator. In other cases, e.g., entry #7 in Table Ib, the B oxide is an electronic conductor. In most of the cases, however, the B oxide indeed is a semiconductor.

Bonding or electronic band structure theory can contribute much to an understanding of how the ternary (or higher) compound band structures involve from the binary compound cases. For example, distortions in the cation or oxygen tetrahedra have been considered as a function of the $r_{M(I)}/r_{M(III)}$ ratio in the β-NaFeO$_2$ structure (characteristic of wurtzite-derived β-CuGaO$_2$). This distortion influences the energy splitting of d-orbitals in compounds containing the Cu(I) species, and in these cases, the Cu 3d orbitals strongly contribute to the top of the valence band. In general, the role of ions such as Cu$^+$ (or Ag$^+$) for that matter, as an effective electronic structure regulator, has been the topic of much recent interest in the PEC and photocatalysis communities. This is because these ions affect the fundamental nature of the optical transition from the valence band to the conduction band. Strategies for “optoelectronic engineering” of the band structure to intensify the light absorption strength or even the nature of the optical transition (e.g., switch from indirect to direct), are only at a rudimentary level at present. Such efforts (e.g., doping with a rare earth element) have been attempted only with binary oxides, at least to our knowledge.

Carrier transport through the semiconductor bulk follows after the initial optical excitation of the inorganic semiconductor. The dynamics of this process exerts much influence on the overall efficiency of the energy conversion or catalysis process. In most instances (unless we are considering devices of the dye-sensitized variety), it is the minority carrier diffusion length (L_D) that is the crucial parameter. The larger the L_D value is, the better is the material quality in terms of defects, traps etc. Thus for an n-type semiconductor, holes are the minority carriers while electrons are the minority carriers for p-type materials. Unfortunately, data on L_D appear to be rather sparse of the compounds considered in this review.

One exception to this trend is the Cu(II) ternary oxide, CuBi$_2$O$_4$. Time-resolved microwave conductivity (TRMC) and surface photovoltage (SPV) measurements were performed to assess the optoelectronic quality of this semiconductor. The TRMC transient decays showed the presence of two time constants leading to L_D values of \sim10 nm and \sim52 nm respectively. The coincidence of the SPV signal onset with the optical bandgap cut off wavelength was interpreted to signal the absence of optically active defects in the material. The electrical transport mechanism has been studied and modeled as variable range small-polaron hopping at low temperatures (below 300 K) and phonon-assisted small polaron hopping at high temperatures. In general, the need for more studies (both experimental and theoretical) aimed at understanding charge transport mechanism(s) in CuBi$_2$O$_4$, has been stressed in the literature. The situation is even more pressing for the other 30 compounds in Table I.

Figure 11. Crystal structures of two polymorphs of Cu$_2$V$_2$O$_7$: The β- (a) and α-modifications (b) are shown. Unit cells are shown as dotted lines.

Figure 12. As in Figure 11 but for β-Cu$_3$V$_2$O$_8$ (a) and γ-Cu$_3$V$_2$O$_8$ (b). Unit cells are shown as dotted lines.
Table III. Optical bandgaps for copper oxide-based ternary oxides. a) Copper(I)-based compounds. b) Copper(II)-based compounds.

No.	Oxide	Absorption edge	Optical bandgap (eV)	Tauc plot	Ref.	(s)
			Direct transition	Indirect transition		
a) Copper(I) oxide-based						
1	CuAlO₂	-	3.01	1.87	12	
2	CuCrO₂	3.1	-	1.32	16,17	
3	CuFeO₂	1.55	-	1.47	18,19	
4	α-CuGaO₂	-	3.75	2.55	22	
5	β-CuGaO₂	1.47	-	-	27	
6	CuNbO₃	-	2.09	1.89	30	
7	CuNb₂O₆		-	1.26	31	
8	Cu₂Nb₃O₈		1.6–3.0	1.43–1.65	33	
9	CuRhO₂	1.9	-	-	34	
10	α-Cu₃Ta₄O₁₁	-	2.7	2.6	35	
11	β-Cu₃Ta₄O₁₁	-	2.7	2.6	36	
12	Cu₃Ta₇O₁₉	2.59	-	-	37	
13	Cu₅Ta₁₁O₃₀	2.47	-	-	37	
14	Cu₅VO₄	-	1.17	1.14	40	
b) Copper(II) oxide-based						
1	CuAl₂O₄	1.77	1.8	-	41,42	
2	CuBi₂O₄	1.4–1.8	1.48–1.80	1.42–1.84	45–55	
3	CuCo₂O₄	-	1.49–1.74	-	58	
4	CuCr₂O₄	-	1.40	-	66	
5	CuFe₂O₄	-	1.24–1.42	-	68,69	
6	CuGa₂O₄	~1.7	-	-	70	
7	CuMn₂O₄	-	-	1.4	71	
8	CuMoO₄	-	~2.8	-	72	
9	CuNb₂O₆	-	-	1.77	74	
10	Cu₂Nb₃O₈	2.5	-	-	75	
11	Cu₂V₂O₅	-	-	1.96	76	
12	α-Cu₂V₂O₇	-	-	1.9 ± 0.1	79	
13	β-Cu₂V₂O₇	-	-	1.98	76	
14	γ-CuV₂O₆	-	2.05–2.11	2.0–2.05	81–83	
15	γ-Cu₂V₂O₆	-	2.74	1.8 ± 0.1	79,84	
16	Cu₁₁V₂O₂₆	1.9	-	-	85	
17	CuWO₄	-	1.8–2.4	88,90,94		

Indirect insights into the optoelectronic characteristics may be gleaned from photoelectrochemical and photocatalytic activity measurements; these are considered next.

Photoelectrochemical and Photocatalytic Aspects

At the outset, it is worth mentioning that comparisons of the efficacy of a given photoelectrode (or photocatalyst powder) material with other candidates in a given application, are immediately handicapped by the absence of an agreed-upon framework for reporting PEC data or a photocatalysis figure-of-merit. This stands in contrast to photovoltaic devices where such standards exist and cell efficiencies are certified. Nonetheless, with this caveat in mind, reported data on how the 31 ternary oxides fare in either water splitting, CO₂ photoreduction, or pollutant degradation can still be made.

An immediate assessment of the photoelectrochemical quality of the oxide material may be obtained either via a photovoltammetry scan or by measuring the photocurrent at a fixed bias potential in a suitable aqueous medium. For an n-type material, the expectation is that the photocurrent arises from the (anodic) oxidation of solution species such as water (i.e., the oxygen evolution reaction (OER). For the p-type material in a de-oxygenated aqueous medium, the corresponding water-splitting reaction would be the hydrogen evolution reaction or HER. Such data on 13 Cu(I)-based ternary oxides were reported by previous authors (see Table I, Ref. 6); available data on the Cu(II) counterparts are contained in Table IV.

The above assumption of the source of the photocurrent rooted in OER or HER, hinges on the fact that the extent of photoelectrochemical corrosion of the oxide semiconductor itself is negligible in the particular medium. This must be carefully verified by product (i.e., O₂ or H₂) collection and quantification, and comparison with the quantity expected from the charge passed (i.e., the current efficiency). In many of the cases in Table IV, this has not been done.

The other important variables in these data are the medium pH and the photon flux, both of which are specified in the compilation. Taken as a whole, CuBi₂O₄ is easily seen to outperform the other compounds, and the photocurrent level is at least an order of magnitude higher in this case (entry #1, Table IV).

Table V lists instances where the OER data have indeed been reported in studies on copper-based ternary oxides. The entries in this tabulation all pertain to Cu(II)-based compounds. The faradaic efficiency values indeed approach 100% except at lower bias potentials (e.g., entries # 1, 2 in Table V). Corresponding HER data are tabulated in Table VI, once again for Cu(II)-based ternary oxides. Unlike in Table V, these performance metrics pertain to powder suspensions of the oxide and not photoelectrodes. Therefore, it is more difficult to assess the efficacy in these cases, given that faradaic efficiency values, obviously, are not accessible.

Finally, CO₂ photoreduction data are summarized in Table VII; clearly, examples are rather sparse, especially for Cu(II)-based compounds. Both modes of operation, i.e., using photocathode (entry #1) or using powder suspensions (entries # 2, 3) are considered in this tabulation on three ternary oxides based on Cu(II). A range of reduction products appear depending on the specific conditions used.
Table IV. Performance of Cu(II)-based ternary oxides in water splitting.

Entry No.	Oxide	Electroytes	pH	Light source and intensity \(^a^)	Photocurrent, \(j/\mu A \text{ cm}^{-2}\)	Potential, V vs RHE	Semiconductor type	Comments	Ref.
1	CuBi2O4	0.3 M K2SO4 with 0.2 M phosphate buffer	6.65	Solar simulator	2500	0.6	\(p\)	-	56
2	CuNb2O6	0.1 M NaHCO3 solution, bubbled CO2	7.0	150 W tungsten–halogen	\(\sim 150\)	0.2	\(p\)	-	74
3	Cu3Nb2O8	0.5 M NaHCO3 solution, bubbled CO2	7.3	Solar simulator	180	0.3	\(p\)	-	75
4	CuV2O6	0.1 M borate buffer with 0.1 M Na2SO3	9.2	150 W xenon lamp	\(\sim 220\)	1.58	\(n\)	-	76
5	\(\alpha\)-Cu2V2O7	0.1 M borate buffer with 0.1 M Na2SO3	9.2	385 nm light emitting diode, illumination power was 3.0 mW	600	1.0	\(n\)	PEC was performed in scanning droplet cell.	77
6	\(\beta\)-Cu2V2O7	0.1 M borate buffer with 0.1 M Na2SO3	9.2	150 W xenon lamp	\(\sim 120\)	1.58	\(n\)	-	76
7	\(\beta\)-Cu3V2O8	0.1 M borate buffer with 0.1 M Na2SO3	9.2	300 W Xe arc lamp	\(\sim 100\)	1.0	\(n\)	-	82
		0.1 M borate buffer with 0.1 M Na2SO4	9.2	300 W Xe arc lamp	\(\sim 150\)	1.0	\(n\)	Mo-doped sample	82
		0.1 M borate buffer with 0.1 M Na2SO3	9.2	300 W Xe arc lamp	\(\sim 100\)	1.0	\(n\)	Cr-doped sample	83
8	\(\gamma\)-Cu3V2O8	0.1 M borate buffer with 0.1 M Na2SO3	9.2	150 W Xe arc	91	1.23	\(n\)	-	84
		0.1 M borate buffer with 0.1 M Na2SO3	9.2	150 W Xe arc lamp	\(\sim 53\)	1.0	\(n\)	-	84
9	Cu11V6O26	0.1 M borate buffer with 0.1 M Na2SO3	9.2	300 W Xe arc lamp	55	1.0	\(n\)	-	85
		0.1 M borate buffer with 0.1 M Na2SO3	9.2	300 W Xe arc lamp	85	1.0	\(n\)	Mo-doped sample	85
		0.1 M borate buffer with 0.1 M Na2SO3	9.2	300 W Xe arc lamp	145	1.0	\(n\)	W-doped sample	85
10	CuWO4	0.1 M potassium phosphate	7.0	150 W Xe arc lamp	200	1.23	\(n\)	-	89

\(^a^\)The light intensity was 100 mW cm\(^{-2}\) in entries #1–4 and in #6–10.

Table V. Photoelectrochemical oxygen evolution on Cu(II)-oxides.

No.	Oxide	Medium	Light intensity	Applied potential bias (V vs RHE)	Faradaic efficiency (%)	Ref.
1	CuV2O6	0.1 M borate buffer, pH 9.2	300 mW cm\(^{-2}\)	1.58	70 (20 min)	77
2	\(\beta\)-Cu2V2O7		1.58	80 (20 min)		77
3	\(\beta\)-Cu3V2O8 (0.75 wt% Mo doped)		1.6	100 (5 min)		83
4	Cu11V6O26	0.1 M borate buffer with 0.1 M Na2SO3, pH 9.2	1.6	95 (2 h)		86
5	CuWO4	0.1 M potassium borate buffer, pH 7.0	1.23	96 (3 h)		89
Table VI. Photocatalytic HER data on Cu(II)-oxide suspensions.

No.	Oxide	Medium	Catalyst loading (g/L)	Light source	Gas evolution rate (μmol mg⁻¹ h⁻¹)	Quantum yield (%)	Ref.
1	CuAl₂O₄	40 ml containing 0.025 M SO₃²⁻ and 1.0 M KOH	1.25	600 W tungsten lamp	0.74	0.064	44
2	CuBi₂O₄	100 ml 0.075 M KI solutions containing 0.05 M NaH₂PO₄/0.05 M Na₂HPO₄, pH 7.2	0.5	300 W xenon lamp	0.32	-	51
3	CuCo₂O₄	40 ml containing 0.025 M SO₃²⁻ and 1 M KOH	1.25	600 W tungsten lamp	1.73	0.098	44
4	CuCr₂O₄	40 ml containing 0.025 M S₂O₃²⁻ with 0.5 M NaOH	1.25	600 W tungsten lamp	0.49	0.2	60
5	CuFe₂O₄	100 ml containing 0.05 M oxalic acid	1.0	250 W xenon lamp	9.0	-	67
6	CuGa₂O₄	250 ml of 0.5 M aqueous KOH with H₂S passed at a flow rate of 2.5 ml/min	2.0	450 W xenon lamp	3.2	5.3	70
7	CuMn₂O₄	40 ml containing 0.025 M SO₃²⁻ and 1 M KOH	1.25	600 W tungsten lamp	0.81	0.1	71

Corresponding reports on the use of Cu(I)-based ternaries for CO₂ photoreduction are contained in Refs. 5 and 26. A more general review on flow-based CO₂ photoreduction schemes, may be found in Ref. 108.

In general, the problems with the stability of Cu-based oxide semiconductors have been addressed by rapidly transferring the photogenerated electrons to a second phase, for example, carbon. Carbon has the advantage that the injected electrons are rapidly delocalized in the π-electron manifold. Further, many forms of nanocarbons are available. Two recent example studies on Cu₂O, may be cited. 109,110 Corresponding examples for ternary oxides are as yet lacking, at least to our knowledge.

A second type of application of inorganic oxide semiconductors is in pollutant degradation. For this environmental remediation, n-type semiconductors are better suited in that highly oxidizing species such as holes or hydroxyl radicals can be generated at the semiconductor-medium interface. However, the potential for simultaneously treating reducible pollutants (such as toxic metal ions) also exists with heterogeneous photocatalysis, and this feature is a bonus that is not available with advanced oxidation processes (AOPs) based on ozone, H₂O₂, and the like.

Table VIII lists examples in the literature where Cu(II)-based ternary oxides have been deployed for such an application. All these examples concern the destruction of an azo dye such as methyl orange or methylene blue. While four of the reported cases show almost complete dye destruction (presumably to mineralized products), four other studies reveal only modest performance where amounts, even as low as only ∼42% of the initial dye was degraded. Even the simultaneous presence of H₂O₂, as a generator of reactive oxygen species (ROS) did not seem to have helped matters to a significant extent.

The combination of optoelectronic (i.e., bandgap) data and photoelectrochemical measurements (e.g., capacitance voltage or photocurrent spectroscopy) allows us to map the band edge positions...
of the various Cu-containing ternary oxides on a common energy scale. This is shown in Figure 13; a few of these cases for the Cu(I) compounds were considered by previous authors in their review article. The compilation in Figure 13 is more extensive; 24 compounds are considered here along with the two parent oxides, Cu$_2$O and CuO.

The thermodynamic utility of diagrams such as those in Figure 13 resides with the fact that predictions may be made for a given compound’s ability to oxidize (or reduce) a targeted solution species such as water, protons, or CO$_2$. Since the band edges move with pH, pH dependence on chemical composition. Although much more nascent, the compounds have been evaluated for their propensity to evolve H$_2$ (from H$_2$S), O$_2$, or decompose a dye (e.g., rhodamine B) for ternary copper-based semiconductors. Are the ternary compounds more stable in a photoelectrochemical sense? The jury is still out on this aspect although there are encouraging signs that insertion of the B cation (to the copper oxide framework) can perturb the parent electronic band structure sufficiently to stabilize the compound against photocorrosion.

Returning to the two questions posed earlier, this review demonstrates that major strides have been made in the fundamental understanding of ternary oxide semiconductors. That being said, much more must be accomplished in selected areas, and identified in the preceding sections of this article. In a practical sense, more optimization has to be done in aspects related to materials quality etc., before performance levels (e.g., photocurrents in the 10–20 mA/cm2) can be achieved in a PEC environment (c.f., Tables IV; the maximum observed to date is 2.5 mA/cm2, entry #1). Only then will the engineering community be motivated to tackle aspects related to photoreactor design, scale-up etc., and a viable technology emerge from all the science that would have been done up to that juncture.

Admittedly, this review has given short shrift to how theory can contribute to materials discovery, properties, and use. This reflects the authors’ bias, more than anything else. Clearly, methods such as DFT (in spite of their well-recognized handicaps) and as briefly alluded to above, continue to provide much guidance to experimentalists as well as theoretical efforts could provide crucial support to the experimentalists in the continuing search and optimization of oxide semiconductors (such as the Cu-based compounds considered in this review) for solar fuels photogeneration and environmental remediation applications.

Concluding Remarks

Any research endeavor may be evaluated on the basis of two yard sticks: a) has it pushed the knowledge boundary forward in a transformative sense? And b) has it spawned a new technology? Recall also that the extension of the search for optimal inorganic semiconductors into the ternary (or higher) compound domain, was largely spurred by the perceived handicaps associated with the binary oxide counterparts. In the present instance, the lack of adequate photoelectrochemical stability of Cu$_2$O was the major driver for the search for ternary copper-based semiconductors. Are the ternary compounds more stable in a photoelectrochemical sense? The jury is still out on this aspect although there are encouraging signs that insertion of the B cation (to the copper oxide framework) can perturb the parent electronic band structure sufficiently to stabilize the compound against photocorrosion.

Acknowledgments

K.R., R.T.M. and M.K.H. thank the University of Texas at Arlington for partial support of this research project. C.J. thanks the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant Agreement No. 716539), and the “Széchenyi 2020” program in the framework of GINOP-2.3.2-15-2016-00013. P.J.K. appreciates support by the National Science Center (Poland) under Maestro Project 2012/04/A/ST4/00287. Finally, we appreciate the constructive criticisms of two anonymous reviewers on an earlier version of this manuscript.

ORCID

Krishnan Rajeshwar https://orcid.org/0000-0003-4917-7790

References

1. A. Hamnett, M. P. Dare-Edwards, R. D. Wright, K. R. Seddon, and J. B. Goodenough, “Photosensitization of titanium(IV) oxide with tris(2,2'-bipyridine) ruthenium(II) chloride. Surface states of titanium(IV) oxide.” J. Phys. Chem., 83, 3280 (1979).
2. S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, “Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser.” Nature, 280, 571 (1979).
3. H. H. Kung, H. S. Jarrett, A. W. Sleight, and A. Ferretti, “Semiconducting oxide anodes in photoassisted electrolysis of water.” J. Appl. Phys., 48, 2463 (1977).
4. J. Baglio, E. Kamieniecki, N. DeCola, C. Struck, J. Marzik, K. Dwight, and A. Wold, “Growth and characterization of n-WS2 and niobium-doped p-WS2 single crystals.” J. Solid State Chem., 49, 166 (1983).
5. J. Gu, A. Wuttig, J. W. Krizan, Y. Hu, Z. M. Detweiler, R. J. Cava, and A. B. Bocarsly, “Mg-doped CuFeO2 photocathodes for photovoltaic short-circuit performance.” J. Phys. Chem., 117, 12415 (2013).
6. U. A. Joshi, A. Palasyuk, D. Arney, and P. A. Maggard, “Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels.” J. Phys. Chem. Lett., 1, 2719 (2010).
7. Y. Mao, T-J. Park, and S. S. Wong, “Synthesis of classes of ternary metal oxide nanostructures.” ChemComm, 5721 (2005).

Figure 13. Band edge positions for Cu(I) (a) and Cu(II) (b) ternary oxides. Data on the parent binary oxides and relevant redox potentials are also shown for comparison.
8. D. Chen, Q. Wang, R. Wang, and G. Shen, “Ternary oxide nanostructured materials for supercapacitors: a review.” *J. Mater. Chem. A*, 3, 10185 (2015).
9. W. G. Zeir, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, and G. Ceder, “Thinking like a chemist: intuition in thermoelectric materials.” *Angew. Chem. Int. Ed.*, 55, 6826 (2016).
10. G. Hautier, S. P. Ong, A. Jain, J. C. Moore, and M. G. Kanatzidis, “Accuracy of density functional theory in predicting formation energy of ternary oxides from binary oxide datasets and its implications for phase stability.” *J. Phys. Chem. B*, 116, 155208 (2012).
11. T. F. T. Cerejeira, S. Lin, M. Amstler, S. Goedecker, S. Botti, and M. A. L. Marques, “Identification of novel Cu3Ag, and Au ternary oxides from global structural prediction.” *Chem. Mater.*, 27, 4562 (2015).
12. J. Smith, T. H. Van Sleenkiste, and X. G. Wang, “Thermal photocatalytic generation of H2 over Cu2O nanoparticle catalysis in H2O.” *Phys. Rev. B*, 79, 041403-1-4 (2009).
13. J. R. Ahmed, C. K. Blakely, J. Prakash, S. R. Bruno, M. Yu, Y. Wu, and V. P. Pottavares, “Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells.” *ACS Nano*, 9, 2751 (2015).
14. N. Koriche, A. Bougueula, A. Aider, and M. M. Tari, “Photocatalytic hydrogen evolution over delafossite CuAlO2.” *Int. J. Hydrog. Energy*, 30, 693 (2005).
15. A. Nattestad, X. Zhang, U. Bach, and Y-B. Cheng, “Dye-sensitized CuAlO2 photoanodes for tandem solar cell applications.” *J. Photochem. Photobiol., A: Chem.*, 110, 101-109 (2011).
16. C. Reissen, J. Warman, and E. Reissner, “Solar H2 generation in water with a Cu2O/CuO photocathode modified with an organic dye and molecular Ni catalyst.” *Chem. Sci.*, 5, 3580 (2014).
17. S. Saadi, A. Bougueula, and M. M. Tari, “Photocatalytic hydrogen evolution over Cu2O/CuO.” *Solar Energy*, 80, 272 (2006).
18. C. G. Read, Y. Park, and K. S. Choi, “Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell.” *J. Phys. Chem. Lett.*, 3, 1872 (2012).
19. M. S. Prévot, N. Gujiaro, and K. Sivula, “Enhancing the performance of a robust sol–gel processed p-type delafossite CuFeO2 photocathode for solar water reduction.” *ChemSusChem*, 8, 1339 (2015).
20. Y. J. Yang, B. Y. Park, H. E. Kim, Y. H. Choi, S. H. Choi, and J. S. Lee, “Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production.” *Chem. Mater.*, 28, 6054 (2016).
21. M. S. Prévot, A. X. Jeanbourquin, W. S. Bourée, F. Abdi, Friedrich D. R. Van De Krol, N. Gujiaro, L. F. Formal, and K. Sivula, “Evaluating charge carrier transport and surface states in CuFeO2 photocathodes.” *Chem. Mater.*, 29, 4952 (2017).
22. J. W. Leske, M. K. Underwood, J. P. Lewis, and C. Matranga, “Synthesis, characterization, electronic structure, and photocatalytic behavior of Cu2O and Cu2O:FesOx (x = 0.05, 0.10, 0.15, 0.20) delafossites.” *J. Phys. Chem. C*, 116, 1865 (2012).
23. M. Yu, G. Natsu, Z. Ji, and Y. Wu, “P-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV.” *J. Phys. Chem. Lett.*, 3, 1074 (2012).
24. A. Renaud, B. Chavillon, L. Le Pleux, Y. Peflegrin, E. Blart, M. Bonjutia, T. Paupert, L. Darjo, S. Jobic, and F.obledele, “Cu2O: a promising alternative for NiO in p-type dye solar cells.” *J. Mater. Chem. A*, 22, 14353 (2012).
25. K. Gurunathan, J. Baeg, S. M. Lee, E. Subramanian, S. Moon, and K. Kong, “Visible light assisted highly efficient hydrogen production from H2S decomposition by Cu2O and Cu2O:SnO2 nanocomposites.” *J. Mater. Chem. A*, 1, 9905 (2015).
26. H. Kumagai, G. Sahara, K. Maeda, M. Higashi, R. Abe, and O. Ishitani, “Hybrid photodatabase consisting of a Cu2O photocathode and a Ru (II)−Ru (III) dye-sensitized molecular photocathode for non-biased visible-light-driven CO2 reduction with water oxidation.” *Chem. Sci.*, 8, 4242 (2017).
27. T. Omatra, H. Nagatani, I. Suzuki, M. Kita, H. Yaguchi, and N. Ohashi, “Wurtzite Cu2O: a new direct and narrow bandgap oxide semiconductor applicable as a solar cell absorber.” *J. Am. Chem. Soc.*, 136, 3378 (2014).
28. H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi, and T. Omatra, “Structural and thermal properties of ternary narrow-gap oxide semiconductor; wurtzite-derivated β-Cu2O:Ag.” *Inorg. Chem.*, 54, 1698 (2015).
29. U. A. Joshi, A. Palasyuk, and P. A. Maggard, “Photoelectrochemical investigation and electronic structure of a p-type Cu2O:photocathode.” *J. Phys. Chem. C*, 115, 13554 (2011).
30. H. Zollner, S. Stuart, C. Chung, D. B. Dougherty, J. L. Jones, and P. A. Maggard, “CuNbTaO3 (x ≤ 0.25) solid solutions: impact of Ta (v) substitution and Cu (i) deficiency on their structure, photocatalytic, and photoelectrochemical properties.” *J. Phys. Chem. C*, 4, 3115 (2016).
31. U. A. Joshi and P. A. Maggard, “Cu2O: a p-type semiconductor metal oxide photocatalyst.” *J. Phys. Chem. Lett.*, 3, 1577 (2012).
32. N. King, P. P. Sahoo, L. Fuoco, S. Stuart, D. Dougherty, Y. Liu, and P. A. Maggard, “Copper deficiency in the p-type semiconductor Cu4-xNi2O6.” *Chem. Mater.*, 26, 7279 (2014).
33. J. Choi, N. King, and P. A. Maggard, “Metastable Cu(I)–Niobate semiconductor with a low-temperature, nanoparticle-mediated synthesis.” *ACS Nano*, 7, 1699 (2013).
34. J. D. Zhao, X. Yan, J. W. Kriza, Q. D. Gibson, Z. M. Detweiler, R. J. Cava, and A. B. Carlyle, “P-type Cu2RbO3 as a self-healing photocathode for water re-duction under visible light.” *J. Am. Chem. Soc.*, 136, 830 (2014).
35. N. King, I. Sullivan, P. Watkins-Curry, J. Y. Chan, and P. A. Maggard, “Flux-mediated syntheses, structural characterization and low-temperature polymor-
63. K. Magshewari, R. Sathiyamoorthy, J. Y. Lee, and J. Park, “Novel Cu2CrO4 em- bedded CuO nanocomposites for efficient photoelectrodegradation of organic dyes.” Appl. Surf. Sci., 353, 95 (2015).

64. F. Beshkar, O. Amir, M. Salavati-Niasari, and F. Beshkar, “Novel dendrite-like Cu2O photocatalyst prepared by a simple route in order to remove of azo dye in textile and dyeing wastewater.” J. Mater. Sci. Mater. Electron, 26, 8182 (2015).

65. L. Pan, L. Li, X. Bao, and Y. Chen, “Highly (sic) photocatalytic activity for p- n junction degradation with spinel-structured Cu2O4.” Nano Lett, 7, 415 (2012).

66. H. Lahmara, M. Kerhbir, N. Nasraillah, and M. Trari, “Photocatalytic reduction of Cr(VI) on the new hetero-system Cu2O4/ZnO.” J. Mol. Catal. A: Chem., 357, 74 (2011).

67. H. Yang, J. Yan, Z. Lu, X. Cheng, and Y. Tang, “Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation.” J. Alloys Compd., 476, 715 (2009).

68. A. Kezzim, N. Nasraillah, A. Abdi, and M. Trari, “Visible light induced hydrogen on the novel hetero-system Cu2O4/TiO2.” Energy Convers. Manage, 52, 2800 (2011).

69. M. R. Uddin, M. R. Khan, M. W. Rahman, A. Yousuf, and C. K. Cheng, “Photocatalytic reduction of CO2 into methanol over Cu2O4/TiO2 under visible light irradiation.” React. Kinet. Catal. Mech., 116, 589 (2015).

70. K. Gurunathan, J. O. Baeg, S. M. Lee, E. Subramanian, S. J. Moon, and K. J. Kong, “Visible light active pristine and Fe-doped Cu2O4 spinel photocatalysts for solar hydrogen production.” J. Alloys Compd., 651, 2646 (2015).

71. Y. Wang and M. Trari, “Photocatalytic hydrogen production from suspension of spinel powders AMn2O4 (A = Cu and Zn).” Int. J. Hydrog. Energy, 27, 357 (2002).

72. M. Sadeghi, “Investigation of the structural, optical and magnetic properties of Cu2O4 nanoparticles synthesized through a sonochemical method.” J. Mater. Sci. Mater. Electron, 27, 5796 (2016).

73. T. K. Ghoiri, D. Dhat, S. Dalai, and P. Pramanik, “Effect of photocatalytic activities of nano-sized copper molybdate (CuMoO4)-doped bismuth titinate (Bi2Ti3O9)CMFT alloy.” Mater. Res. Bull., 43, 1770 (2008).

74. A. Kornmányos, A. Thomas, M. N. Huda, P. Sarker, J. P. Liu, N. Poudyal, C. Janaky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photoelectrochemistry of Cu2O4N and ZnO:CuO2O4 nanoparticles.” J. Phys. Chem. C, 120, 16024 (2016).

75. S. Kamimura, N. Murakami, T. Tsuchiya, and T. Ohno, “Fabrication and characteri- zation of a p-type Cu2O2N2 photocathode toward photoelectrochemical reduction of carbon dioxide.” Appl. Catal. B: Environ., 174, 471 (2015).

76. W. Guo, W. D. Chen, K. Song, Y. P. Xiao, Y. Zhang, and C. B. Mullins, “Synthesis and characterization of Cu2O4N and Cu2O4O2: two photoanode can- didates for photoelectrocatalytic water oxidation.” J. Phys. Chem. C, 119, 27220 (2015).

77. P. F. Newhouse, D. A. Boyd, A. Shinde, D. Guevara, L. Zhou, E. Soedarmadji, G. Li, J. B. Neaton, and J. M. Gregoire, “Solar fuel photoanodes prepared by inkjet printing of copper vanadates.” J. Mater. Chem. A, 4, 7483 (2016).

78. M. W. Kim, B. Hos, J. Yoon, T. T. Ohm, K. Kim, S. S. Al-Deyab, and S. A. Gtob, “Electrodeposited copper hexahexavinadate (Cu6V6O24) and pyrovan- dates (Cu6V6O24) photoanodes for efficient solar water splitting.” J. Alloys Compd., 708, 444 (2017).

79. L. Zhou, Q. Yan, A. Shinde, D. Guevara, P. F. Newhouse, N. Becerra-Stasiewicz, S. M. Chatman, J. A. Haber, J. B. Neaton, and J. M. Gregoire, “High throughput discovery of solar fuels photoanodes in the Cu6V6O24 system.” Adv. Energy Mater., 5, 1500068 (2015).

80. M. Wang and Q. Liu, “Synthesis and photocatalytic property of Cu6V6O24 prepared by liquid phase precipitation.” Adv. Mater. Sci. Eng., 2015, 1 (2015).

81. S. Zhang, Y. Sun, C. Li, and L. Ci, “Cu6V6O24 hollow spheres in photocatalysis and primary lithium batteries.” Solid State Sci., 25, 15 (2015).

82. J. A. Seabold and N. R. Neale, “All first row transition metal oxide photoanode for efficient solar water splitting based on Cu6V6O24.” Chem. Mater, 27, 1005 (2015).

83. D. Cardenas-Morcoso, A. Peiro-Franch, I. Herraez-Cardona, and S. Gimenez, “Favorable recombination in Cu2V2O8 prepared by a simple route in order to remove of azo dye in textile and dyeing wastewater.” J. Alloys Compd., 528, 25490 (2011).

84. J. P. Dornich, J. Hejmanek, J. P. Chaminade, M. Pouchard, and M. Krussanova, “A Photocatalytical study of Cu2O4 single crystals.” Phys. Stat. Sol., 82, 285 –294 (1984).

85. J. E. Yourey and K. P. J. Hurst, J. K. Purser, and B. M. Bartlett, “Chemical stability of Cu2O4 for photocatalytic water oxidation.” J. Photochem. Photobiol. A: Chem., 117, 8708–8718 (2013).

86. J. E. Yourey and B. M. Bartlett, “Electrochemical deposition and photoelectrochemistry of Cu2O4, a promising photoanode for water oxidation.” J. Mater. Chem. A, 21, 6561–6566 (2013).