Supplementary information

Roved J., Hansson B., Stervander, M., Hasselquist D., & Westerdahl H. (2022). MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms.

Table of contents

Supplementary methods
 PCR amplification and library preparation for Illumina MiSeq p. 2
 Technical replicates & filtering p. 2
 Purifying putative MHC-I haplotypes p. 3
 Phylogenetic analyses p. 4
 Estimating positive selection p. 5
 References p. 5

Supplementary figures
 Fig. S1 p. 6
 Fig. S2 p. 8
 Fig. S3 p. 9
 Fig. S4 p. 10
 Fig. S5 p. 11
 Fig. S6 p. 12
 Fig. S7 p. 13
 Fig. S8 p. 14
 Fig. S9 p. 15
 Fig. S10 p. 16
 Fig. S11 p. 17
 Fig. S12 p. 18

Supplementary tables
 Table S1 p. 19
 Table S2 p. 20
 Table S3 p. 21
 Table S4 p. 22
 Table S5 p. 26
 Table S6 p. 34
 Table S7 p. 41
 Table S8 p. 42
 Table S9 p. 47
 Table S10 p. 48
 Table S11 p. 49
 Table S12 p. 51

Haplotype tables pp. 55-84
Supplementary methods

PCR amplification and library preparation for Illumina MiSeq
We prepared both amplicon libraries for Illumina sequencing in a two-step amplification. First, individual samples were amplified using the HNalla and HN46, modified with 5′-overhangs designed to match the Illumina sequencing adapters and molecular identifiers (MIDs) of the Nextera® XT v2 Index Kit (Illumina Inc., San Diego, CA, USA). The reactions comprised 25 μl and used 25 ng template DNA, 0.5 μM of each primer, and 12.5 μl 2X Phusion High-Fidelity PCR Master Mix (ThermoFisher Scientific, Waltham, USA). The PCR was initiated with a 30 s denaturation step at 98°C followed by 25 cycles of 10 s denaturation at 98°C, 10 s annealing at 66.8°C, and 15 s elongation at 72°C. A 10 min final extension 72°C completed the program.

The PCR product was cleaned with Agencourt AMPure XP-PCR Purification Kit (Beckman Coulter, Indianapolis, USA), following the manufacturer’s instruction with some modifications: The ratio of PCR product to beads was 1:0.8, 80% ethanol was used in the bead cleaning steps, and the elution was made with 43 μl double-distilled water, which incubated at room temperature for two minutes. An aliquot of the clean PCR product was run on a 2% agarose gel, to verify fragment length and to roughly estimate concentration of the PCR product based on band intensity. The individual PCR products were then differentially evaporated at room temperature, to achieve even concentrations.

To be able to assign sequences to individual samples after multiplexing, we added unique combinations of forward and reverse Illumina indices to each sample using the Nextera XT v2 Index Kit (Illumina Inc., San Diego, CA, USA). A second PCR was run in 50 μl reactions that contained 25 μl 2X Phusion High-Fidelity PCR Master Mix (ThermoFisher Scientific, Waltham, USA), 5 μl of each index primer, and a varying amount of cleaned PCR product depending on estimated concentration (5, 10, or 15 μl for the first library; 5, 7.5, or 10 μl for the second library). The PCRs were initiated with a 30 s heating phase at 98°C, followed by eight cycles of 10 s denaturation at 98°C, 15 s annealing at 62°C, and 15 s elongation at 72°C, and ended with 10 min final extension at 72°C.

The indexed amplicons were cleaned with Agencourt AMPure XP-PCR Purification Kit (Beckman Coulter, Indianapolis, USA), following the manufacturer’s instruction with some modifications: The ratio of PCR product to beads was 1:1.12, 80% ethanol was used in the bead cleaning steps, and the elution was made with 43 μl double-distilled water and incubated at room temperature for two minutes. The cleaned PCR products were checked on a 2% agarose gel, and quantified using a Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher Scientific/Invitrogen, Waltham, USA) modified for a 96-well plate, measured on a plate reader.

For each library, we pooled an equimolar quantity of each of 384 samples (including samples unrelated to this study) into pools (nine for the first library and four for the second library), depending on amplicon length, concentration, and primer combination. These pools were then quantified with Qubit Broad Range and High Sensitivity kits (ThermoFisher Scientific, Waltham, USA), after which we ran them on a Bioanalyzer DNA 2100 chip for validation of quality and size. In a final step, equimolar quantities of all pools were combined in a 20 nM library.

Technical replicates & filtering
The data set that was sequenced using the Roche 454 platform included 50 sets of technical replicates, see Roved et al. 2018 for details.

The first Illumina MiSeq data set did not incorporate formal technical replicates, but as the data set included samples from 69 complete great reed warbler families, we were able to identify 52 samples that had identical genotypes to one or more other samples (predominantly full...
siblings). We grouped these samples into 25 replicate sets. The inference of these genotype replicates was done after preliminary filtering of the data set using DADA2 and it allowed us to optimize the final settings for filtering this data set (see main text). The filtering settings were applied uniformly on the entire data set and were thus independent of variation in e.g. coverage or error rates between individual samples. We were therefore able to perform all optimizations and repeatability evaluations using sets of genotype replicates, and we proceeded to treat these equivalently to formal technical replicates.

The second Illumina MiSeq data set included 30 samples in total, of which 3 were technical replicates. Two of the replicated samples failed due to low read numbers, leaving one replicated sample. Given that these were samples of the same species, population, and time period (i.e., age of the DNA material), and were genotyped with identical primers and protocols, we proceeded to filter this data set with the settings that we identified when optimizing for the first Illumina MiSeq data set. Filtering the second Illumina MiSeq with these settings resulted in a complete match between the two copies of the replicated sample. Because the two failed samples were both replicated, all 30 individuals included in this sequencing run were successfully genotyped.

Purifying putative MHC-I haplotypes

1. We used the HpltFind function in MHCtools to construct putative haplotypes for each individual in 67 concurrent families of the 1998 and 1999 cohorts in our study population, one family from 1991, and one family from 1996.
2. We constructed putative haplotypes for each individual in ancestral families of 26 parents, that we were able to trace in the pedigree of our study population (Table S1). This step was also carried out using HpltFind.
3. We then traced the inheritance of putative haplotypes through generations as far as data was available within each family line. When a haplotype mismatched between generations by alleles that had been marked as unresolved by HpltFind, we manually reconstructed the allele segregation within each family to resolve the allele assignments and corrected the putative haplotypes accordingly.
4. We then applied each corrected haplotype in all families where it occurred and resolved lateral mismatches of unresolved alleles between concurrent families by manually reconstructing the allele segregation within each family.
5. If incongruences were found between individuals that shared a putative haplotype, and these incongruences could not be resolved by manual inspection of the segregation patterns within families (steps 3–4), we investigated whether the incongruences were caused by genotyping errors. We considered the following types of genotyping errors:
 a. Null alleles (i.e., alleles that failed to amplify during PCR or had low PCR amplification success, and therefore had been deleted from samples in the filtering process).
 b. Sequencing errors that survived the filtering process. We only assigned an incongruent allele to this category, if it had low read numbers (relative, within each sample) and could be derived from more abundant alleles in the same sample by single nucleotide substitutions.

Each such incongruence was investigated by manually inspecting the raw sequencing output files for presence or absence (and read numbers, if present) of the mismatching allele prior to filtering. In cases of multiple solutions to an incongruence, the solution involving the fewest assumptions was applied. By comparing haplotypes both vertically through family
lines and laterally between concurrent families (steps 3–5), we were able to resolve a large proportion of the unresolved allele assignments (Table S2).

6. Finally, we identified sets of haplotypes that overlapped by a proportion of at least 0.66 of the assigned alleles. Whenever a set of haplotypes only mismatched by alleles that had been assigned as unresolved, we manually inspected the segregation patterns of the unresolved alleles to determine whether we could assume identity between the potentially matching haplotypes. This enabled us to resolve some additional unresolved allele assignments (Table S2).

We repeated steps 3–6, further improving the accuracy of our haplotype inference by reapplying corrected haplotypes both within and between families and family lines. This process was repeated until all incongruences had been addressed and no more unresolved allele assignments could be settled with the available data.

Our stepwise protocol for haplotype inference and purification is outlined in the flow chart in Fig. 1. The number of corrections applied in the purification of putative haplotypes in our data set is summarized in Table S2.

Phylogenetic analyses

For phylogenetic inference and selection analyses, we first aligned the MHC-I exon 3 alleles in open reading frame according to conserved residues and sequence motifs (Bjorkman et al., 1987; Hughes & Nei, 1989) and trimmed them to a length of 261 nucleotides. We then tested 12 different substitution models in PhyML version 3.1 (Guindon et al., 2010; Guindon & Gascuel, 2003) using maximum likelihood estimation of the nucleotide frequencies and tree topology optimization (Table S3). The generalized time-reversible (GTR) model with no additional parameters had the lowest Akaike Information Criterion (AIC) value and a tree with Shimodaira–Hasegawa-like approximate likelihood ratio test (SH-aLRT) support values was created using this model. The phylogenetic tree was visualized using the R package ggtree version 3.0.2 (Yu, Smith, Zhu, Guan, & Lam, 2017). We indicated MHC-I supertype associations (see below) in the phylogenetic tree with coloured circles at the tip of each branch. Note that when plotting the tree, we flipped a central node in group N.C. to make it easier to distinguish the different groups. This did not alter the topology of the tree.

In the phylogenetic tree, we identified five tentative groups based on the tree topology and SH-aLRT support values, which may typically be interpreted to confer clade support from a level of ~0.8 (Anisimova, Gil, Dufayard, Dessimoz, & Gascuel, 2011; Guindon et al., 2010; Minh, Nguyen, & Von Haeseler, 2013). The five groups were distinguished by the following properties of the phylogeny of our MHC-I alleles: (i) Group A forms a monophyletic clade which separates from the rest of the tree with a support value of 1. (ii) A large monophyletic clade with a support value of 0.96 is formed by the groups B, C, D, and E. Within this large clade, group E and groups B–D form two monophyletic clades, both with support value 0.79. (iii) Groups C and D are monophyletic sister clades with individual supports of 0.72 and 0.82, respectively, and are grouped together with a support of 0.82. (iv) Note that the group of alleles denoted B are paraphyletic and given the tree topology and support values, they may or may not form a clade. While most alleles of group B are included in a monophyletic clade representing MHC-I supertypes 3 and 14, its SH-aLRT support value (0.59) is poor and we therefore chose to maintain all of group B as a working definition for reference throughout this paper. (v) Finally, seven alleles remain that form a diverse paraphyletic group between the well-supported monophyletic clades A and B–E (Fig. 2).
Estimating positive selection
We used codeml from the PAML software package (Yang, 1997, 2007) to test for positive selection on an alignment of all alleles in our data set, using our GTR tree as input for codeml. We set codeml to calculate codon frequencies from the average nucleotide frequencies at the three codon positions and to assume a single Ω (i.e., dN/dS) ratio for all branches in the phylogeny. We specified the nested site models (as defined in Yang et al. (2000)) M1 (nearly neutral selection) vs. M2 (some sites evolved under positive selection ($\Omega > 1$)), and M7 (Ω following a beta distribution) vs. M8 (Ω following a beta distribution while allowing some sites to evolve under positive selection ($\Omega > 1$)). We tested the nested models using likelihood ratio tests with the formula: $2 \times \Delta\ln(L) \sim \chi^2$, where the degrees of freedom of the χ^2 distribution equals the difference in the number of parameters between the models (Anisimova, Bielawski, & Yang, 2001; Yang et al., 2000). Codons under positive selection from model M8 were inferred by Bayes Empirical Bayes analysis (Yang, Wong, & Nielsen, 2005).

References
Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Molecular Biology and Evolution, 18(8), 1585–1592. https://doi.org/10.1093/oxfordjournals.molbev.a003945
Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C., & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology, 60(5), 685–699. https://doi.org/10.1093/sysbio/syr041
Bjorkman, P. J., Saper, M. a, Samraoui, B., Bennett, W. S., Strominger, J. L., & Wiley, D. C. (1987). The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature, 329(6139), 512–518. https://doi.org/10.1038/329512a0
Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. (U. Bastolla, M. Porto, H. E. Roman, & M. Vendruscolo, Eds.). New York: Springer Verlag.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520
Hughes, A. L., & Nei, M. (1989). Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Molecular Biology and Evolution, 6(6), 559–579. Retrieved from http://mbe.oxfordjournals.org/content/6/6/559.abstract
Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/msm024
Wright, E. S. (2016). Using DECIPHER v2.0 to analyze big biological sequence data in R. R Journal, 8(1), 352–359. https://doi.org/10.32614/rj-2016-025
Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics, 13(5), 555–556. https://doi.org/10.1093/bioinformatics/13.5.555
Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088
Yang, Z., Nielsen, R., Goldman, N., & Pedersen, A.-M. K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 155(1), 431–449.
Yang, Z., Wong, W. S. W., & Nielsen, R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution, 22(4), 1107–1118. https://doi.org/10.1093/molbev/msi097
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. Y. (2017). GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628
Fig. S1

a Repeatability obtained by filtering in DADA2 with truncQ settings between 18 and 30;

b Repeatability obtained by filtering in DADA2 with MaxEE fw and rv settings between 0.05 and 2.0 (truncQ = 20);

c Repeatability obtained by filtering the DADA2 output (truncQ = 20, MaxEE fw/rv = 0.1) by per amplicon frequency thresholds between 0.005 and 0.03. Note: Repeatability was calculated as 1 minus the mean across all replicate sets of the mean proportion of mismatching sequence variants within each replicate set.

a

![truncQ & repeatability graph](image)

b

![MaxEE & repeatability graph](image)
Fig. S2 Stepwise protocol for haplotype inference and resolution of problematic allele segregation patterns.

Step 1 Construct putative MHC haplotypes by analyzing segregation of MHC alleles in concurrent families using HpltFind (MHCtools).

Step 2 Construct putative MHC haplotypes by analyzing segregation of MHC alleles in ancestral families using HpltFind (MHCtools).

Step 3 Trace putative MHC haplotypes vertically through lines of ancestry and manually inspect the segregation of unresolved alleles in each family. Correct unresolved allele assignments to putative haplotypes when possible.

Step 4 Apply corrected MHC haplotypes laterally among concurrent families and manually inspect the segregation of unresolved alleles in each family. Correct unresolved allele assignments when possible.

Step 5 Resolve incongruences among samples that share MHC haplotypes by inspecting raw sequencing output files to identify potential genotyping errors.

Step 6 Identify sets of potentially identical MHC haplotypes, e.g. by applying a threshold for the proportion of overlapping allele assignments. For each set, manually inspect the segregation of unresolved alleles in families and correct unresolved allele assignments, when identity between haplotypes can be inferred. *Repeat steps 3-6, until all incongruences have been addressed and no more unresolved allele assignments can be settled.*

Final haplotypes
Fig. S3 Family table from nest number 12 of the 1998 cohort showing MHC-I allele segregation patterns with inferred segregating MHC-I haplotypes including a recombination event (indicated by the arrow). Dark gray color indicates that a segregation pattern could not be determined for an allele (uncertain allele).

Nest 12 of the 1998 cohort	Alleles	Mother	Father	Offspring 1	Offspring 2	Offspring 3	Offspring 4	Offspring 5
Acar-UA*144	X	X		X	-	-	-	-
Acar-UA*9	X	X		X	X	-	-	-
Acar-UA*14	X	X		-	-	-	-	-
Acar-UA*54	-	X		-	-	-	-	-
Acar-UA*30	-	X		-	-	-	-	-
Acar-UA*39	-	X		-	-	-	-	-
Acar-UA*61	X	X		-	-	-	-	-
Acar-UA*12	X	-		-	-	-	-	-
Acar-UA*136	X	-		-	-	-	-	-
Acar-UA*241	X	-		-	-	-	-	-
Acar-UA*364	X	-		-	-	-	-	-
Acar-UA*300	-	X		-	-	-	-	-
Acar-UA*133	-	X		-	-	-	-	-
Acar-UA*153	-	X		-	-	-	-	-
Acar-UA*157	-	X		-	-	-	-	-
Acar-UA*201	-	X		-	-	-	-	-
Acar-UA*223	-	X		-	-	-	-	-
Acar-UA*239	-	X		-	-	-	-	-
Acar-UA*296	-	X		-	-	-	-	-
Acar-UA*107	X	-		-	-	-	-	-
Acar-UA*110	X	-		-	-	-	-	-
Acar-UA*143	X	-		-	-	-	-	-
Acar-UA*304	X	-		-	-	-	-	-
Acar-UA*368	X	-		-	-	-	-	-
Acar-UA*392	X	-		-	-	-	-	-
Acar-UA*51	X	-		-	-	-	-	-
Acar-UA*52	X	-		-	-	-	-	-
Acar-UA*55	X	-		-	-	-	-	-
Acar-UA*186	X	-		-	-	-	-	-
Acar-UA*231	X	-		-	-	-	-	-
Acar-UA*255	X	-		-	-	-	-	-

Final haplotypes	Mother A	Mother B	Recombinant
Acar-UA*144	Acar-UA*144	Acar-UA*144	
Acar-UA*4	Acar-UA*9	Acar-UA*4	
Acar-UA*9	Acar-UA*107	Acar-UA*9	
Acar-UA*12	Acar-UA*110	Acar-UA*136	
Acar-UA*136	Acar-UA*143	Acar-UA*107	
Acar-UA*191	Acar-UA*304	Acar-UA*143	
Acar-UA*241	Acar-UA*368	Acar-UA*304	
Acar-UA*364	Acar-UA*392	Acar-UA*368	
Acar-UA*51	Acar-UA*51	Acar-UA*51	
Acar-UA*52	Acar-UA*52	Acar-UA*52	
Acar-UA*55	Acar-UA*55	Acar-UA*55	
Acar-UA*186	Acar-UA*186	Acar-UA*186	
Acar-UA*231	Acar-UA*231	Acar-UA*231	
Acar-UA*255	Acar-UA*255	Acar-UA*255	
Fig. S4 Family table from nest number 8 of the 1999 cohort showing MHC-I allele segregation patterns with inferred segregating MHC-I haplotypes including a recombination event (indicated by the arrow). Dark gray color indicates that a segregation pattern could not be determined for an allele (uncertain allele).

Alleles	Mother	Father	Offspring 1	Offspring 2	Offspring 3	Offspring 4	Offspring 5	Offspring 6
Acar-UA*4	X	X	X	X	X	X	X	X
Acar-UA*55	X	X	X	X	X	X	X	X
Acar-UA*9	X	X	X	X	X	X	X	X
Acar-UA*129	-	-	-	-	-	-	-	-
Acar-UA*42	-	-	X	X	X	-	-	-
Acar-UA*144	X	X	-	-	X	-	X	X
Acar-UA*143	-	-	X	X	-	X	-	-
Acar-UA*155	-	X	-	X	-	X	-	-
Acar-UA*255	-	X	-	X	-	X	-	-
Acar-UA*59	-	X	-	X	-	X	-	-
Acar-UA*65	-	X	-	X	-	X	-	-
Acar-UA*12	X	-	-	X	-	X	-	-
Acar-UA*122	X	-	-	X	-	X	-	-
Acar-UA*145	X	-	-	X	-	X	-	-
Acar-UA*163	X	-	-	X	-	X	-	-
Acar-UA*33	X	-	-	X	-	X	-	-
Acar-UA*391	X	-	-	X	-	X	-	-
Acar-UA*74	X	-	-	X	-	X	-	-
Acar-UA*8	X	-	-	X	-	X	-	-
Acar-UA*95	X	-	-	X	-	X	-	-
Acar-UA*192	X	-	-	X	-	X	-	-
Acar-UA*31	X	X	-	X	-	X	-	-
Acar-UA*332	X	X	-	X	-	X	-	-
Acar-UA*285	X	-	-	X	-	-	-	X
Acaru_UA_23	X	-	-	X	-	-	-	X
Acar-UA*349	-	X	X	-	X	-	-	X
Acar-UA*94	-	X	X	-	X	-	-	X

Final haplotypes

Mother A	Mother B
Acar-UA*285	Acar-UA*12
Acar-UA*4	Acar-UA*122
Acar-UA*55	Acar-UA*144
Acar-UA*129	Acar-UA*145
Acar-UA*23	Acar-UA*163

Father A	Father B	Recombinant
Acar-UA*129 | Acar-UA*143 | Acar-UA*129 |
Acar-UA*31 | Acar-UA*144 | Acar-UA*42 |
Acar-UA*332 | Acar-UA*155 | Acar-UA*349 |
Acar-UA*95 | Acar-UA*255 | Acar-UA*94 |
Acar-UA*4 | Acar-UA*4 | Acar-UA*94 |
Acar-UA*55 | Acar-UA*55 | Acar-UA*95 |
Acar-UA*9 | Acar-UA*65 | Acar-UA*94 |
Acar-UA*94 | Acar-UA*59 | Acar-UA*65 |
Acar-UA*8 | Acar-UA*9 | Acar-UA*94 |
Fig. S5 Elbow plot showing BIC in relation to the number of clusters (k) in model 575 of our bootstrapped k-means clustering approach. The stippled red line indicates the smallest value of k for which \(\Delta \text{BIC} \) was < 1% of the largest \(\Delta \text{BIC} \) observed in the model. Model 575 was one of the six final selected models.
Fig. S6 Scatterplot of cluster assignments for each MHC-I allele in two different k-means clustering models. This plot compares two models with $k_{est} = 14$. Individual clusters within each model are designated by index numbers on the x- and y-axis, and each data point represents one MHC-I allele ($N = 390$). Jitter was used to separate individual data points. In this comparison, three allele assignments fell outside of the 14 most abundant clusters. Model 575 was one of the six final selected models.
Fig. S7 Distribution of the number of different MHC-I alleles per individual in our data set. The line shows a normal distribution with the observed mean (14.3) and standard deviation (3.42).
Fig. S8 Distribution of the number of different MHC-I alleles on haplotypes. The line shows a normal distribution with the observed mean (9.2) and standard deviation (2.80).
Fig. S9 Amino acid codons estimated to be under positive selection in the MHC-I exon 3 sequences in our data set. The upper line indicates which codons were estimated to be under positive selection, when the selection analysis was carried out using all sequences in our data set, and the remaining lines indicate which codons were estimated to be under positive selection, when selection analyses were carried out using the sequences belonging to each MHC-I exon 3 supertype. The supertypes Acar-ST*3, Acar-ST*5, and Acar-ST*14 did not show evidence of positive selection. * indicates $p < 0.05$ for each site; † indicates $0.05 < p < 0.10$. Estimated dN/dS and p-values for each site are specified in Table S6a–l.

Codon position	10	20	30	40	50	60	70	80
All sequences	*	*	*	*	*	*	*	*
Acar-ST*1	*	*	*	*	*	*	*	*
Acar-ST*2	*	*	*	*	*	*	*	*
Acar-ST*3	*	*	*	*	*	*	*	*
Acar-ST*4	*	*	*	*	*	*	*	*
Acar-ST*5								
Acar-ST*6	*	*	*	*	*	*	*	*
Acar-ST*7	*	*	*	*	*	*	*	*
Acar-ST*8	*	*	*	*	*	*	*	*
Acar-ST*9			*	*	*	*	*	*
Acar-ST*10		*	*	*	*	*	*	*
Acar-ST*11		*	*	*	*	*	*	*
Acar-ST*12	*	*	*	*	*	*	*	*
Acar-ST*13	*	*	*	*	*	*	*	*
Acar-ST*14								
Fig. S10 Barplot showing the number of different MHC-I alleles associated with each MHC-I supertype.
Fig. S11 The relationship between the number of different MHC-I alleles per haplotype and the number of MHC-I supertypes per haplotype. Correlation coefficient = 0.86 (Pearson’s product-moment correlation).

Next page:
Fig. S12 a Histogram showing the distribution of mean Sandberg distance between centroids of positively selected (pos. sel.) MHC-I supertypes within MHC-I haplotypes. b Histogram showing the distribution of mean Sandberg distance overlap between pos. sel. MHC-I supertypes within MHC-I haplotypes. Notes: Haplotypes that harboured fewer than two pos. sel. MHC-I supertypes were excluded from the analysis. Values were calculated based on 14 amino acid codons that showed evidence of positive selection.
This page contains a table and a chart. The table appears to be a pedigree chart with symbols indicating relationships and breeding years. The chart is not clearly visible due to the resolution and angle of the image.

The table includes columns for different generations and relationships, such as 'Pat pat great grandmother', 'Mat mat great grandmother', 'Pat mat great grandfather', and so on. Each row seems to represent a specific individual or relationship, with entries such as '554_ad' and dates like '1991'.

The chart has a patterned background that might represent different generations or statuses, such as '371_ad' and '547_ad', which could indicate family lines or other categorizations.

The chart and table are likely used to document family relationships and breeding information over time, possibly for a study or genetic analysis.
Table S2 *Summary of the corrections applied to putative MHC-I haplotypes.*

Steps 1–2	
Initial number of putative haplotypes	225
Initial mean proportion of unresolved alleles in putative haplotypes	0.446

Steps 3–5	
Number of putative haplotypes shared within lines of ancestry	165
Number of unresolved alleles settled in putative haplotypes	358
Number of alleles added to putative haplotypes	162
Number of alleles removed from putative haplotypes	154
Number of null alleles added to individual samples	430
– *proportion of the total number of allele assignments to genotypes*	0.051
Number of sequencing errors called as alleles, removed from individual samples	15
– *proportion of the total number of allele assignments to genotypes*	0.0019

Step 6	
Number of haplotypes inferred to be identical to other haplotypes	41
Number of unresolved alleles verified in putative haplotypes	128

Final number of putative haplotypes | 107

Final mean proportion of unresolved alleles in putative haplotypes | 0.255
Table S3 Log likelihood, number of parameters, and AIC values for 12 different substitution models evaluated in PhyML: JC69, HKY85, and generalized time-reversible model (GTR), each with no additional parameters, and with the additional estimation of the gamma shape parameter (gamma distribution with 4 classes; G), the proportion of invariable sites (I), or both (G + I). The number of parameters in each model was estimated using the formula: no. parameters in model = (2 × no. sequences – 3) + no. parameters in substitution model + extra parameters, where no. sequences = 390 and no. substitution model parameters are: JC = 0 parameters, HKY = 4 parameters, GTR = 8 parameters. Extra parameters are: Invariable sites = +1 parameter, and gamma rates = +1 parameter. AIC values were calculated for each model by the formula: $AIC = 2k - 2 \times \log(L)$, where $\log(L)$ is the log-likelihood ratio value obtained for each model.

Model	Log likelihood	No. parameters	AIC
GTR	-7059.73	787	15693.47
GTR + I	-7060.23	788	15696.46
GTR + G + I	-7093.55	789	15765.10
HKY + I	-7105.83	784	15779.65
HKY	-7125.53	783	15817.07
GTR + G	-7121.32	788	15818.65
HKY + G	-7147.98	784	15863.95
HKY + G + I	-7162.26	785	15894.52
JC + I	-7293.09	780	16146.18
JC + G + I	-7307.02	781	16176.03
JC	-7315.96	779	16189.92
JC + G	-7329.97	780	16219.94
Table S4 a–f Specification of allele associations with phylogenetic groups.

a. Group A	b. Group B
Acar-UA*54	Acar-UA*4
Acar-UA*55	Acar-UA*217
Acar-UA*105	Acar-UA*6
Acar-UA*108	Acar-UA*218
Acar-UA*109	Acar-UA*9
Acar-UA*114	Acar-UA*219
Acar-UA*115	Acar-UA*31
Acar-UA*116	Acar-UA*222
Acar-UA*117	Acar-UA*41
Acar-UA*118	Acar-UA*224
Acar-UA*129	Acar-UA*60
Acar-UA*130	Acar-UA*61
Acar-UA*131	Acar-UA*225
Acar-UA*132	Acar-UA*69
Acar-UA*133	Acar-UA*71
Acar-UA*134	Acar-UA*142
Acar-UA*135	Acar-UA*148
Acar-UA*136	Acar-UA*152
Acar-UA*137	Acar-UA*199
Acar-UA*138	Acar-UA*201
Acar-UA*139	Acar-UA*204
Acar-UA*144	Acar-UA*205
Acar-UA*159	Acar-UA*206
Acar-UA*393	Acar-UA*207
Acar-UA*394	Acar-UA*208
Acar-UA*395	Acar-UA*209
Acar-UA*396	Acar-UA*210
Acar-UA*397	Acar-UA*211
Acar-UA*399	Acar-UA*212
Acar-UA*400	Acar-UA*213
Acar-UA*401	Acar-UA*214
Acar-UA*402	Acar-UA*215
Acar-UA*423	Acar-UA*216
Acar-UA*446	
c. Group C	
--------------------	--------
Acar-UA*42	Acar-UA*270
Acar-UA*44	Acar-UA*271
Acar-UA*45	Acar-UA*272
Acar-UA*47	Acar-UA*273
Acar-UA*88	Acar-UA*274
Acar-UA*125	Acar-UA*275
Acar-UA*128	Acar-UA*276
Acar-UA*155	Acar-UA*277
Acar-UA*157	Acar-UA*278
Acar-UA*164	Acar-UA*279
Acar-UA*185	Acar-UA*280
Acar-UA*186	Acar-UA*281
Acar-UA*223	Acar-UA*282
Acar-UA*228	Acar-UA*283
Acar-UA*234	Acar-UA*284
Acar-UA*235	Acar-UA*285
Acar-UA*238	Acar-UA*317
Acar-UA*239	Acar-UA*318
Acar-UA*240	Acar-UA*331
Acar-UA*241	Acar-UA*364
Acar-UA*242	Acar-UA*365
Acar-UA*245	Acar-UA*367
Acar-UA*248	Acar-UA*368
Acar-UA*250	Acar-UA*409
Acar-UA*251	Acar-UA*416
Acar-UA*254	Acar-UA*419
Acar-UA*262	Acar-UA*420
Acar-UA*263	Acar-UA*428
Acar-UA*265	Acar-UA*432
Acar-UA*266	Acar-UA*456
Acar-UA*267	Acar-UA*457
Acar-UA*268	Acar-UA*458
Acar-UA*269	Acar-UA*462

d. Group NC	
Acar-UA*13	
Acar-UA*110	
Acar-UA*112	
Acar-UA*127	
Acar-UA*140	
Acar-UA*141	
Acar-UA*158	
e. Group D	

Acar-UA*11	Acar-UA*260
Acar-UA*12	Acar-UA*306
Acar-UA*30	Acar-UA*308
Acar-UA*48	Acar-UA*309
Acar-UA*49	Acar-UA*310
Acar-UA*51	Acar-UA*311
Acar-UA*52	Acar-UA*312
Acar-UA*53	Acar-UA*313
Acar-UA*59	Acar-UA*314
Acar-UA*62	Acar-UA*315
Acar-UA*63	Acar-UA*316
Acar-UA*64	Acar-UA*320
Acar-UA*65	Acar-UA*321
Acar-UA*66	Acar-UA*322
Acar-UA*67	Acar-UA*324
Acar-UA*68	Acar-UA*325
Acar-UA*72	Acar-UA*326
Acar-UA*73	Acar-UA*327
Acar-UA*74	Acar-UA*328
Acar-UA*77	Acar-UA*329
Acar-UA*78	Acar-UA*330
Acar-UA*79	Acar-UA*332
Acar-UA*83	Acar-UA*333
Acar-UA*84	Acar-UA*334
Acar-UA*91	Acar-UA*335
Acar-UA*93	Acar-UA*336
Acar-UA*94	Acar-UA*337
Acar-UA*95	Acar-UA*338
Acar-UA*96	Acar-UA*339
Acar-UA*123	Acar-UA*340
Acar-UA*124	Acar-UA*341
Acar-UA*154	Acar-UA*342
Acar-UA*156	Acar-UA*344
Acar-UA*168	Acar-UA*345
Acar-UA*169	Acar-UA*346
Acar-UA*171	Acar-UA*347
Acar-UA*187	Acar-UA*348
Acar-UA*188	Acar-UA*349
Acar-UA*189	Acar-UA*350
f. Group E	
------------	-----------------
Acar-UA*8	Acar-UA*145
Acaru-UA*23	Acar-UA*146
Acar-UA*32	Acar-UA*147
Acar-UA*33	Acar-UA*149
Acar-UA*34	Acar-UA*150
Acar-UA*35	Acar-UA*151
Acar-UA*36	Acar-UA*153
Acar-UA*37	Acar-UA*160
Acar-UA*38	Acar-UA*161
Acar-UA*39	Acar-UA*162
Acar-UA*40	Acar-UA*163
Acar-UA*43	Acar-UA*165
Acar-UA*46	Acar-UA*166
Acar-UA*50	Acar-UA*173
Acar-UA*57	Acar-UA*174
Acar-UA*58	Acar-UA*175
Acar-UA*75	Acar-UA*177
Acar-UA*80	Acar-UA*178
Acar-UA*81	Acar-UA*181
Acar-UA*82	Acar-UA*182
Acar-UA*85	Acar-UA*183
Acar-UA*86	Acar-UA*184
Acar-UA*87	Acar-UA*190
Acar-UA*89	Acar-UA*191
Acar-UA*90	Acar-UA*192
Acar-UA*97	Acar-UA*195
Acar-UA*99	Acar-UA*196
Acar-UA*100	Acar-UA*200
Acar-UA*101	Acar-UA*233
Acar-UA*102	Acar-UA*236
Acar-UA*103	Acar-UA*243
Acar-UA*107	Acar-UA*247
Acar-UA*111	Acar-UA*255
Acar-UA*119	Acar-UA*257
Acar-UA*120	Acar-UA*258
Acar-UA*122	Acar-UA*264
Acar-UA*126	Acar-UA*298
Acar-UA*143	Acar-UA*299
Table S5 Results from tests of positive selection on our great reed warbler MHC-I exon 3 sequences using codeml from the software package PAML (Yang, 1997, 2007) a across all sequence variants in our data set, and b–o among the sequences belonging to each MHC-I exon 3 supertype. P-values were obtained by the formula \(2 \times \Delta \ln L \sim \chi^2\) (d.f. = difference in no. parameters between the models) and indicate the probability that two models have similar log likelihood (i.e., that \(2 \times \Delta \ln L = 0\)).

a. Selection models – all sequences

Model	Parameter estimates	Log likelihood (ln L)	\(2\Delta\ln L\)	P-value	Sign. level
M1	\(p = 0.701, dN/dS = 0.084\) \(p = 0.299, dN/dS = 1\)	-7915.96	353.5	< 0.0001	***
M2	\(p = 0.655, dN/dS = 0.116\) \(p = 0.182, dN/dS = 1\) \(p = 0.163, dN/dS = 3.73\)	-7739.21	-	-	-
M7	\(p = 0.247, q = 0.389\)	-7901.34	342.7	< 0.0001	***
M8	\(p0 = 0.835, p = 0.356, q = 0.826\) \(p1 = 0.165, dN/dS = 3.44\)	-7729.94	-	-	-

b. Selection models – Acar-ST*1

Model	Parameter estimates	Log likelihood (ln L)	\(2\Delta\ln L\)	P-value	Sign. level
M1	\(p = 0.725, dN/dS = 0.037\) \(p = 0.275, dN/dS = 1\)	-907.99	10.04	0.0066	**
M2	\(p = 0.798, dN/dS = 0.089\) \(p = 0.070, dN/dS = 1\) \(p = 0.132, dN/dS = 2.84\)	-902.97	-	-	-
M7	\(p = 0.012, q = 0.024\)	-908.32	10.67	0.0048	**
M8	\(p0 = 0.853, p = 0.523, q = 3.27\) \(p1 = 0.147, dN/dS = 2.73\)	-902.98	-	-	-
c. Selection models - Acar-ST*2

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.662, dN/dS = 0.033				
 | p = 0.338, dN/dS = 1 | -1041.84 | 27.33 | < 0.0001 | *** |
| M2 | p = 0.632, dN/dS = 0.045
 | p = 0.240, dN/dS = 1
 | p = 0.128, dN/dS = 4.94 | -1028.17 | 28.79 | < 0.0001 | *** |
| M7 | p = 0.018, q = 0.035 | -1042.47 | 28.79 | < 0.0001 | *** |
| M8 | p0 = 0.864, p = 0.115, q = 0.292
 | p1 = 0.136, dN/dS = 4.70 | -1028.08 | 28.79 | < 0.0001 | *** |

d. Selection models - Acar-ST*3

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.54, dN/dS = 0.033				
 | p = 0.46, dN/dS = 1 | -1010.79 | 0.37 | 0.83 | n.s. |
| M2 | p = 0.57, dN/dS = 0.054
 | p = 0.27, dN/dS = 1
 | p = 0.15, dN/dS = 1.46 | -1010.61 | 0.87 | 0.65 | n.s. |
| M7 | p = 0.073, q = 0.084 | -1010.86 | 0.87 | 0.65 | n.s. |
| M8 | p0 = 0.75, p = 0.226, q = 0.771
 | p1 = 0.25, dN/dS = 1.44 | -1010.42 | 0.87 | 0.65 | n.s. |
e. Selection models - Acar-ST*4

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	$p = 0.75, dN/dS = 0.04$	-1185.63	48.09	< 0.0001	***
	$p = 0.25, dN/dS = 1$				
M2	$p = 0.71, dN/dS = 0.047$	-1161.59			
	$p = 0.24, dN/dS = 1$				
	$p = 0.05, dN/dS = 7.61$				
M7	$p = 0.017, q = 0.034$	-1188.08			
M8	$p0 = 0.88, p = 0.135, q = 0.445$	-1162.74			
	$p1 = 0.12, dN/dS = 4.99$				

f. Selection models - Acar-ST*5

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	$p = 0.54, dN/dS = 0.14$	-831.27	0	1	n.s.
	$p = 0.46, dN/dS = 1$				
M2	$p = 0.54, dN/dS = 0.14$	-831.27	0	1	n.s.
	$p = 0.32, dN/dS = 1$				
	$p = 0.14, dN/dS = 1$				
M7	$p = 0.324, q = 0.310$	-831.24	0	1	n.s.
M8	$p0 = 1, p = 0.324, q = 0.310$	-831.24	0	1	n.s.
	$p1 = 0, dN/dS = 1$				
g. Selection models - Acar-ST*6

Model	Parameter estimates	Log likelihood (ln L)	$2\Delta\ln L$	P-value	Sign. level
M1	$p = 0.72$, $dN/dS = 0.062$				
$p = 0.28$, $dN/dS = 1$	-985.81	7.32	0.026	*	
M2	$p = 0.82$, $dN/dS = 0.127$				
$p = 0$, $dN/dS = 1$					
$p = 0.18$, $dN/dS = 2.23$	-982.15	7.32	0.026	*	
M7	$p = 0.093$, $q = 0.175$	-987.07	7.32	0.026	**
M8	$p = 0.83$, $p = 0.996$, $q = 5.63$				
$p = 0.17$, $dN/dS = 2.36$ | -982.03 | 7.32 | 0.026 | ** |

h. Selection models - Acar-ST*7

Model	Parameter estimates	Log likelihood (ln L)	$2\Delta\ln L$	P-value	Sign. level
M1	$p = 0.70$, $dN/dS = 0.043$				
$p = 0.30$, $dN/dS = 1$	-928.69	34.63	< 0.0001	***	
M2	$p = 0.62$, $dN/dS = 0.035$				
$p = 0.32$, $dN/dS = 1$					
$p = 0.06$, $dN/dS = 9.72$	-911.37	34.63	< 0.0001	***	
M7	$p = 0.018$, $q = 0.035$	-929.27	34.63	< 0.0001	***
M8	$p = 0.94$, $p = 0.052$, $q = 0.091$				
$p = 0.06$, $dN/dS = 9.72$ | -911.47 | 34.63 | < 0.0001 | *** |
i. Selection models - Acar-ST*8

Model	Parameter estimates	Log likelihood (ln L)	$2^\Delta ln L$	P-value	Sign. level
M1	$p = 0.74$, dN/dS = 0.046				
$p = 0.26$, dN/dS = 1	-936.87	25.16	< 0.0001	***	
M2	$p = 0.69$, dN/dS = 0.046				
$p = 0.25$, dN/dS = 1					
$p = 0.06$, dN/dS = 6.41	-924.29	25.16	< 0.0001	***	
M7	$p = 0.017$, q = 0.033	-937.04	26.59	< 0.0001	***
M8	$p_0 = 0.93$, $p = 0.177$, q = 0.526				
$p_1 = 0.07$, dN/dS = 5.60 | -923.75 | 26.59 | < 0.0001 | *** |

j. Selection models - Acar-ST*9

Model	Parameter estimates	Log likelihood (ln L)	$2^\Delta ln L$	P-value	Sign. level
M1	$p = 0.79$, dN/dS = 0.017				
$p = 0.21$, dN/dS = 1	-919.68	28.53	< 0.0001	***	
M2	$p = 0.77$, dN/dS = 0.020				
$p = 0.16$, dN/dS = 1					
$p = 0.07$, dN/dS = 4.91	-905.42	28.53	< 0.0001	***	
M7	$p = 0.009$, q = 0.030	-920.17	27.87	< 0.0001	***
M8	$p_0 = 0.83$, $p = 5.23$, q = 99.00				
$p_1 = 0.17$, dN/dS = 3.47 | -906.24 | 27.87 | < 0.0001 | *** |
k. Selection models - Acar-ST*10

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.56, dN/dS = 0 p = 0.44, dN/dS = 1	-661.14	8.93	0.011	*
M2	p = 0.88, dN/dS = 0.257 p = 0, dN/dS = 1 p = 0.12, dN/dS = 4.80	-656.67			
M7	p = 0.005, q = 0.006	-661.20	9.05	0.011	*
M8	p0 = 0.88, p = 34.55, q = 99.00 p1 = 0.12, dN/dS = 4.81	-656.68			

l. Selection models - Acar-ST*11

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.66, dN/dS = 0.040 p = 0.34, dN/dS = 1	-1124.07	67.67	< 0.0001	***
M2	p = 0.53, dN/dS = 0.013 p = 0.38, dN/dS = 1 p = 0.09, dN/dS = 9.53	-1090.23			
M7	p = 0.017, q = 0.022	-1124.98	69.38	< 0.0001	***
M8	p0 = 0.91, p = 0.013, q = 0.017 p1 = 0.09, dN/dS = 9.39	-1090.29			
Selection models - Acar-ST*12

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.78, dN/dS = 0.046				
	p = 0.22, dN/dS = 1				
	-772.89				
	31.67				
	< 0.0001	***			
M2	p = 0.87, dN/dS = 0.146				
	p = 0.13, dN/dS = 5.94				
	-757.06				
M7	p = 0.014, q = 0.027				
	-774.00				
M8	p0 = 0.87, p = 17.31, q = 99.00				
	p1 = 0.13, dN/dS = 5.94				
	-757.06				

Selection models - Acar-ST*13

Model	Parameter estimates	Log likelihood (ln L)	2*ΔlnL	P-value	Sign. level
M1	p = 0.66, dN/dS = 0.075				
	p = 0.34, dN/dS = 1				
	-883.98				
M2	p = 0.71, dN/dS = 0.147				
	p = 0.22, dN/dS = 1				
	p = 0.08, dN/dS = 4.36				
	-878.12				
M7	p = 0.021, q = 0.026				
	-884.43				
M8	p0 = 0.92, p = 0.466, q = 0.992				
	p1 = 0.08, dN/dS = 4.14				
	-877.92				

| | 13.01 |
| | 0.0015 | ** |
Model	Parameter estimates	Log likelihood (ln L)	$2\Delta \ln L$	P-value	Sign. level
M1	$p = 1$, dN/dS = 0.208	-441.23	0	1	n.s.
	$p = 0$, dN/dS = 1				
M2	$p = 1$, dN/dS = 0.208	-441.23	0	1	n.s.
	$p = 0$, dN/dS = 1				
	$p = 0$, dN/dS = 1				
M7	$p = 26.35$, q = 99.00	-441.23	0	1	n.s.
M8	$p^0 = 1$, $p = 26.05$, q = 99.00	-441.23	0	1	n.s.
Table S6 Results of Bayes Empirical Bayes analyses (Yang et al., 2005) of positively selected sites (i.e. sites for which dN/dS is estimated to be greater than 1) in our great reed warbler MHC-I exon 3 sequences. a Results of a Bayes Empirical Bayes analysis across all sequence variants in our data set, b–l Results of Bayes Empirical Bayes analyses among the sequences belonging to each of the MHC-I exon 3 supertypes, that showed evidence of positive selection. P-values indicate the probability that dN/dS ≤ 1.

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	3.500 ± 0.000	< 0.001	***
3	3.500 ± 0.000	< 0.001	***
5	3.500 ± 0.000	< 0.001	***
18	3.494 ± 0.120	0.002	**
21	3.500 ± 0.000	< 0.001	***
34	3.481 ± 0.220	0.007	**
40	3.499 ± 0.039	< 0.001	***
44	3.500 ± 0.007	< 0.001	***
58	3.500 ± 0.002	< 0.001	***
61	3.500 ± 0.000	< 0.001	***
62	3.500 ± 0.000	< 0.001	***
69	3.500 ± 0.000	< 0.001	***
76	3.498 ± 0.071	< 0.001	***
79	3.500 ± 0.014	< 0.001	***
b. Positively selected sites – Acar-ST*1

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
16	2.495 ± 1.062	0.18	n.s.
18	2.854 ± 0.793	0.037	*
19	2.267 ± 1.075	0.26	n.s.
20	2.766 ± 0.850	0.069	
21	2.705 ± 0.913	0.095	
26	2.412 ± 1.038	0.20	n.s.
32	2.918 ± 0.724	0.010	**
34	2.778 ± 0.867	0.068	
37	2.423 ± 1.090	0.20	n.s.
40	2.936 ± 0.712	0.003	**

c. Positively selected sites – Acar-ST*2

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	4.347 ± 0.962	0.011	*
3	4.385 ± 0.908	0.002	**
5	4.392 ± 0.894	< 0.001	***
18	3.623 ± 1.588	0.19	n.s.
19	4.369 ± 0.928	0.006	**
21	4.329 ± 0.987	0.016	*
26	2.692 ± 1.790	0.42	n.s.
34	2.732 ± 1.864	0.41	n.s.
36	2.913 ± 1.739	0.36	n.s.
40	4.294 ± 1.029	0.024	*
44	4.248 ± 1.119	0.038	*
61	4.338 ± 0.987	0.015	*
76	3.185 ± 1.807	0.30	n.s.
79	4.246 ± 1.119	0.039	*
d. Positively selected sites – Acar-ST*4

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	4.789 ± 0.977	< 0.001	***
3	4.770 ± 1.008	0.004	**
5	4.789 ± 0.977	< 0.001	***
18	4.577 ± 1.142	0.039	*
19	3.638 ± 1.710	0.244	n.s.
21	4.789 ± 0.977	< 0.001	***
34	4.245 ± 1.431	0.111	n.s.
40	4.656 ± 1.043	0.022	*
44	4.210 ± 1.517	0.124	n.s.
55	3.716 ± 1.709	0.228	n.s.
61	2.980 ± 1.922	0.404	n.s.
69	4.344 ± 1.299	0.084	.

e. Positively selected sites – Acar-ST*6

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	1.965 ± 1.000	0.293	n.s.
3	1.962 ± 1.099	0.296	n.s.
5	2.430 ± 0.834	0.092	.
19	2.420 ± 0.817	0.092	.
21	2.478 ± 0.772	0.065	.
51	1.717 ± 0.978	0.404	n.s.
55	2.572 ± 0.722	0.024	*
57	1.997 ± 0.964	0.278	n.s.
58	2.578 ± 0.712	0.020	*
61	2.073 ± 0.974	0.25	n.s.
62	2.549 ± 0.735	0.034	*
f. Positively selected sites – Acar-ST*7

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	8.229 ± 1.725	< 0.001	***
3	8.222 ± 1.739	0.001	***
5	8.205 ± 1.771	0.003	**
21	8.210 ± 1.759	0.003	**
61	8.231 ± 1.719	< 0.001	***

g. Positively selected sites – Acar-ST*8

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	3.039 ± 2.406	0.498	n.s.
3	5.907 ± 1.535	0.005	**
5	5.872 ± 1.569	0.010	**
18	5.559 ± 1.843	0.060	.
19	5.499 ± 1.854	0.067	.
21	5.929 ± 1.497	< 0.001	***
h. Positively selected sites – Acar-ST*9

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	3.420 ± 1.306	0.153	n.s.
5	4.035 ± 0.844	< 0.001	***
18	3.335 ± 1.419	0.178	n.s.
19	3.990 ± 0.871	0.010	**
21	4.036 ± 0.844	< 0.001	***
34	2.669 ± 1.648	0.357	n.s.
39	2.937 ± 1.511	0.283	n.s.
40	2.777 ± 1.550	0.328	n.s.
44	3.511 ± 1.327	0.134	n.s.
57	3.974 ± 0.875	0.013	*
58	3.586 ± 1.159	0.106	n.s.
62	4.036 ± 0.844	< 0.001	***
69	3.475 ± 1.229	0.135	n.s.

i. Positively selected sites – Acar-ST*10

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
5	5.173 ± 2.232	0.059	
19	4.458 ± 2.436	0.176	n.s.
21	5.412 ± 2.061	0.013	*
44	4.432 ± 2.560	0.197	n.s.
57	2.955 ± 2.428	0.449	n.s.
69	5.091 ± 2.242	0.069	
79	4.525 ± 2.544	0.181	n.s.
j. Positively selected sites – Acar-ST*11

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
3	8.623 ± 1.323	< 0.001	***
21	8.624 ± 1.319	< 0.001	***
44	8.514 ± 1.590	0.014	*
58	8.624 ± 1.318	< 0.001	***
61	4.643 ± 3.806	0.484	n.s.
69	8.624 ± 1.318	< 0.001	***
76	5.909 ± 3.704	0.328	n.s.
79	8.267 ± 2.031	0.043	*
82	8.593 ± 1.396	0.004	**

k. Positively selected sites – Acar-ST*12

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	6.629 ± 1.438	< 0.001	***
3	5.850 ± 2.349	0.122	n.s.
5	6.614 ± 1.462	0.002	**
19	6.594 ± 1.496	0.006	**
21	4.498 ± 2.922	0.328	n.s.
26	6.164 ± 1.981	0.067	
34	4.413 ± 2.919	0.339	n.s.
40	4.869 ± 2.743	0.264	n.s.
58	6.626 ± 1.443	< 0.001	***
61	6.595 ± 1.495	0.005	**
I. Positively selected sites – Acar-ST*13

a.a. codon	post mean ± SE for dN/dS	P-value	sign. level
1	4.352 ± 1.567	0.038	*
5	4.396 ± 1.540	0.029	*
21	4.497 ± 1.451	0.004	**
44	2.505 ± 2.011	0.478	n.s.
58	4.311 ± 1.587	0.047	*
61	3.055 ± 1.960	0.334	n.s.
Table S7 Summary of model statistics from bootstrapped k-means clustering models for each estimated value of k. No. models specifies the number of models that estimated each value of k. Mean no. ass. low-ranking clusters and Mean prop. ass. low-ranking clusters are the number and proportion of allele assignments to low-ranking clusters.

k	No. models	Mean residual total within SS	Mean residual AIC	Mean residual BIC
13	14	21605.52	23425.52	27034.71
14	54	20598.90	22558.90	26445.72
15	86	19749.09	21849.09	26013.55
16	123	18960.16	21200.16	25642.24
17	191	18231.97	20611.97	25331.69
18	184	17573.44	20093.44	25090.78
19	188	16954.26	19614.26	24889.24
20	110	16399.76	19199.76	24752.36
21	37	15868.94	18808.94	24639.17
22	12	15359.48	18439.48	24547.35
23	1	14922.99	18142.99	24528.49

Table S7 cont.

k	Mean prop. ΔBIC	Mean ΔBIC/k	Mean no. ass. low-ranking clusters	Mean prop. ass. low-ranking clusters
13	0.926	2475.86	27.85	0.036
14	0.944	2341.08	24.97	0.032
15	0.956	2213.82	44.99	0.058
16	0.966	2098.66	51.25	0.066
17	0.976	1993.48	58.78	0.075
18	0.983	1896.12	64.45	0.083
19	0.988	1806.93	64.50	0.083
20	0.992	1723.43	63.29	0.081
21	0.995	1646.75	61.21	0.078
22	0.996	1576.07	50.30	0.064
23	1.000	1508.36	NA	NA
Table S8 a–n Allele associations with MHC-I supertypes.

a. Acar-ST*1	
Acar-UA*11	Acar-UA*348
Acar-UA*12	Acar-UA*349
Acar-UA*123	Acar-UA*350
Acar-UA*154	Acar-UA*351
Acar-UA*308	Acar-UA*352
Acar-UA*309	Acar-UA*354
Acar-UA*310	Acar-UA*355
Acar-UA*311	Acar-UA*356
Acar-UA*312	Acar-UA*357
Acar-UA*313	Acar-UA*358
Acar-UA*314	Acar-UA*359
Acar-UA*315	Acar-UA*360
Acar-UA*316	Acar-UA*361
Acar-UA*320	Acar-UA*362
Acar-UA*321	Acar-UA*363
Acar-UA*322	Acar-UA*364
Acar-UA*324	Acar-UA*365
Acar-UA*325	Acar-UA*366
Acar-UA*326	Acar-UA*367
Acar-UA*327	Acar-UA*368
Acar-UA*328	Acar-UA*369
Acar-UA*329	Acar-UA*370
Acar-UA*330	Acar-UA*371
Acar-UA*332	Acar-UA*372
Acar-UA*333	Acar-UA*373
Acar-UA*334	Acar-UA*374
Acar-UA*335	Acar-UA*375
Acar-UA*336	Acar-UA*376
Acar-UA*337	Acar-UA*377
Acar-UA*338	Acar-UA*378
Acar-UA*339	Acar-UA*379
Acar-UA*340	Acar-UA*380
Acar-UA*341	Acar-UA*381
Acar-UA*342	Acar-UA*382
Acar-UA*344	Acar-UA*383
Acar-UA*345	Acar-UA*384
Acar-UA*346	Acar-UA*385
Acar-UA*347	Acar-UA*386

b. Acar-ST*2		
Acar-UA*111		
Acar-UA*122		
Acar-UA*123		
Acar-UA*146		
Acar-UA*153		
Acar-UA*164		
Acar-UA*185		
Acar-UA*186		
Acar-UA*195		
Acar-UA*196		
Acar-UA*223		
Acar-UA*299		
Acar-UA*300		
Acar-UA*302		
Acar-UA*303		
Acar-UA*304		
Acar-UA*356		
Acar-UA*357		
Acar-UA*358		
Acar-UA*359		
Acar-UA*360		
Acar-UA*361		
Acar-UA*362		
Acar-UA*363		
Acar-UA*364		
Acar-UA*365		
Acar-UA*366		
Acar-UA*367		
Acar-UA*368		
Acar-UA*369		
Acar-UA*370		
Acar-UA*371		
Acar-UA*372		
Acar-UA*373		
Acar-UA*374		
Acar-UA*375		
Acar-UA*376		
Acar-UA*377		
Acar-UA*378		
Acar-UA*379		
Acar-UA*380		
Acar-UA*381		
Acar-UA*382		
Acar-UA*383		
Acar-UA*384		
Acar-UA*385		
Acar-UA*386		
Acar-UA*426		
Acar-UA*429		
Acar-UA*440		
Acar-UA*452		
c. Acar-ST*3	d. Acar-ST*4	e. Acar-ST*5
-------------	-------------	-------------
Acar-UA*127	Acar-UA*101	Acar-UA*105
Acar-UA*13	Acar-UA*102	Acar-UA*108
Acar-UA*140	Acar-UA*112	Acar-UA*109
Acar-UA*142	Acar-UA*141	Acar-UA*114
Acar-UA*148	Acar-UA*151	Acar-UA*115
Acar-UA*158	Acar-UA*155	Acar-UA*116
Acar-UA*199	Acar-UA*156	Acar-UA*117
Acar-UA*201	Acar-UA*230	Acar-UA*118
Acar-UA*204	Acar-UA*231	Acar-UA*129
Acar-UA*205	Acar-UA*276	Acar-UA*130
Acar-UA*206	Acar-UA*360	Acar-UA*131
Acar-UA*207	Acar-UA*367	Acar-UA*132
Acar-UA*208	Acar-UA*368	Acar-UA*133
Acar-UA*209	Acar-UA*384	Acar-UA*134
Acar-UA*210	Acar-UA*387	Acar-UA*135
Acar-UA*211	Acar-UA*388	Acar-UA*136
Acar-UA*212	Acar-UA*390	Acar-UA*137
Acar-UA*213	Acar-UA*391	Acar-UA*138
Acar-UA*214	Acar-UA*53	Acar-UA*139
Acar-UA*215	Acar-UA*80	Acar-UA*144
Acar-UA*216	Acar-UA*81	Acar-UA*159
Acar-UA*217	Acar-UA*82	Acar-UA*248
Acar-UA*218	Acar-UA*86	Acar-UA*254
Acar-UA*219	Acar-UA*87	Acar-UA*393
Acar-UA*222	Acar-UA*89	Acar-UA*394
Acar-UA*224	Acar-UA*439	Acar-UA*395
Acar-UA*241	Acar-UA*444	Acar-UA*396
Acar-UA*392	Acar-UA*445	Acar-UA*397
Acar-UA*4		Acar-UA*399
Acar-UA*41		Acar-UA*400
Acar-UA*6		Acar-UA*401
Acar-UA*407		Acar-UA*402
Acar-UA*443		Acar-UA*54
Acar-UA*450		Acar-UA*55
Acar-UA*461		Acar-UA*423
		Acar-UA*446
f. Acar-ST*6	g. Acar-ST*7	h. Acar-ST*8
---------------	---------------	---------------
Acar-UA*110	Acar-UA*147	Acar-UA*143
Acar-UA*128	Acar-UA*200	Acar-UA*168
Acar-UA*157	Acar-UA*228	Acar-UA*169
Acar-UA*229	Acar-UA*233	Acar-UA*171
Acar-UA*245	Acar-UA*255	Acar-UA*242
Acar-UA*261	Acar-UA*257	Acar-UA*30
Acar-UA*263	Acar-UA*258	Acar-UA*306
Acar-UA*265	Acar-UA*268	Acar-UA*31
Acar-UA*266	Acar-UA*298	Acar-UA*59
Acar-UA*273	Acar-UA*362	Acar-UA*60
Acar-UA*274	Acar-UA*366	Acar-UA*61
Acar-UA*275	Acar-UA*372	Acar-UA*62
Acar-UA*277	Acar-UA*373	Acar-UA*63
Acar-UA*278	Acar-UA*39	Acar-UA*64
Acar-UA*279	Acar-UA*40	Acar-UA*65
Acar-UA*280	Acar-UA*43	Acar-UA*66
Acar-UA*281	Acar-UA*425	Acar-UA*67
Acar-UA*282	Acar-UA*438	Acar-UA*68
Acar-UA*283		Acar-UA*69
Acar-UA*284		Acar-UA*71
Acar-UA*45		Acar-UA*72
Acar-UA*409		Acar-UA*77
Acar-UA*412		Acar-UA*78
Acar-UA*416		Acar-UA*79
Acar-UA*428		Acar-UA*83
Acar-UA*432		Acar-UA*84
Acar-UA*456		Acar-UA*404
Acar-UA*458		Acar-UA*411
Acar-UA*462		
Table i. Acar-ST*9

Acar-UA*124	Acar-UA*234
Acar-UA*238	Acar-UA*239
Acar-UA*240	Acar-UA*250
Acar-UA*251	Acar-UA*260
Acar-UA*262	Acar-UA*267
Acar-UA*270	Acar-UA*285
Acar-UA*375	Acar-UA*376
Acar-UA*379	Acar-UA*386
Acar-UA*42	Acar-UA*44
Acar-UA*418	Acar-UA*419
Acar-UA*420	Acar-UA*459

Table j. Acar-ST*10

Acar-UA*73	Acar-UA*74
Acar-UA*88	Acar-UA*91
Acar-UA*93	Acar-UA*94
Acar-UA*95	Acar-UA*96
Acar-UA*10	Acar-UA*11
Acar-UA*14	Acar-UA*22
Acar-UA*25	Acar-UA*26
Acar-UA*30	Acar-UA*31
Acar-UA*35	Acar-UA*36
Acar-UA*42	Acar-UA*43
Acar-UA*45	Acar-UA*46
Acar-UA*49	Acar-UA*50
Acar-UA*55	Acar-UA*56
Acar-UA*60	Acar-UA*61
Acar-UA*63	Acar-UA*64

Table k. Acar-ST*11

Acar-UA*107	Acar-UA*162	
Acar-UA*163	Acar-UA*165	
Acar-UA*166	Acar-UA*173	
Acar-UA*174	Acar-UA*175	
Acar-UA*177	Acar-UA*178	
Acar-UA*181	Acar-UA*187	
Acar-UA*188	Acar-UA*189	
Acar-UA*225	Acar-UA*226	
Acar-UA*32	Acar-UA*33	
Acar-UA*34	Acar-UA*57	
Acar-UA*58	Acar-UA*75	
Acar-UA*99	Acar-UA*433	
Acar-UA*435	Acar-UA*441	
Acar-UA*451		
l. Acar-ST*12	m. Acar-ST*13	n. Acar-ST*14
--------------	---------------	---------------
Acar-UA*120	Acar-UA*100	Acar-UA*152
Acar-UA*125	Acar-UA*103	Acar-UA*288
Acar-UA*235	Acar-UA*119	Acar-UA*289
Acar-UA*236	Acar-UA*145	Acar-UA*290
Acar-UA*243	Acar-UA*149	Acar-UA*292
Acar-UA*269	Acar-UA*150	Acar-UA*293
Acar-UA*271	Acar-UA*160	Acar-UA*294
Acar-UA*272	Acar-UA*161	Acar-UA*296
Acar-UA*307	Acar-UA*182	Acar-UA*9
Acar-UA*317	Acar-UA*183	Acar-UA*405
Acar-UA*318	Acar-UA*184	Acar-UA*415
Acar-UA*319	Acar-UA*190	Acar-UA*436
Acar-UA*323	Acar-UA*191	
Acar-UA*331	Acar-UA*192	
Acar-UA*364	Acar-UA*247	
Acar-UA*365	Acar-UA*264	
Acar-UA*380	Acar-UA*35	
Acar-UA*47	Acar-UA*36	
Acar-UA*50	Acar-UA*85	
Acar-UA*453	Acar-UA*90	
Acar-UA*454	Acar-UA*97	
Acar-UA*457	Acaru-UA*23	
	Acar-UA*408	
	Acar-UA*413	
	Acar-UA*421	
	Acar-UA*427	
	Acar-UA*434	
Table S9 Number of different alleles, mean Grantham distance, mean amino acid p-distance, and mean Sandberg distance measured between alleles within each MHC-I supertype.

No. alleles	Mean Grantham distance	Mean a.a. p-distance	Mean Sandberg distance	
Acar-ST*1	55	9.90	0.128	0.599
Acar-ST*2	32	27.26	0.378	1.985
Acar-ST*3	35	12.39	0.186	0.806
Acar-ST*4	28	32.44	0.405	2.136
Acar-ST*5	36	3.80	0.081	0.263
Acar-ST*6	29	14.67	0.190	1.031
Acar-ST*7	18	29.33	0.357	1.944
Acar-ST*8	28	27.79	0.333	1.831
Acar-ST*9	22	26.95	0.290	1.722
Acar-ST*10	19	16.40	0.203	1.085
Acar-ST*11	27	29.35	0.408	1.959
Acar-ST*12	22	23.07	0.266	1.573
Acar-ST*13	27	25.59	0.293	1.692
Acar-ST*14	12	0.31	0.012	0.028
Table S10 Pairwise Sandberg distances between MHC-I supertype centroids (upper right matrix) and pairwise overlap between MHC-I supertypes (lower left matrix). The pairwise overlap between supertypes was calculated as the sum of the mean Sandberg distances between the alleles in each supertype (Table S9) minus the Sandberg distance between the supertype centroids.

	Acar-ST*1	Acar-ST*2	Acar-ST*3	Acar-ST*4	Acar-ST*5	Acar-ST*6	Acar-ST*7	Acar-ST*8	Acar-ST*9	Acar-ST*10	Acar-ST*11	Acar-ST*12	Acar-ST*13	Acar-ST*14
Acar-ST*1	3.211	3.106	2.948	4.754	2.727	3.088	2.049	3.189	3.076	3.041	3.786	3.736	2.570	
Acar-ST*2	-0.626	2.734	2.849	2.430	3.321	2.231	2.684	2.133	2.850	2.388	2.494	3.009	3.036	
Acar-ST*3	-1.700	0.057	2.445	2.576	2.041	3.189	2.393	2.302	3.111	3.278	3.280	3.815	2.317	
Acar-ST*4	-0.212	1.272	0.497	3.482	2.296	2.876	2.620	2.489	3.056	2.310	2.556	1.934	3.007	
Acar-ST*5	-3.892	-0.182	-1.507	-1.083	3.229	2.286	4.275	2.247	3.627	3.201	2.197	3.041	4.094	
Acar-ST*6	-1.097	-0.305	-0.204	0.870	-1.936	3.190	2.473	1.734	2.563	2.757	3.543	3.540	2.557	
Acar-ST*7	-0.544	1.698	-0.439	1.204	-0.079	-0.215	2.987	2.275	2.860	2.227	3.076	2.489	4.076	
Acar-ST*8	0.381	1.133	0.245	1.347	-2.181	0.389	0.789	2.902	2.555	2.421	4.125	3.278	3.206	
Acar-ST*9	-0.868	1.574	0.227	1.369	-0.262	1.019	1.391	0.651	1.912	2.948	2.327	2.534	2.950	
Acar-ST*10	-1.391	0.220	-1.220	0.165	-2.280	-0.448	0.169	0.362	0.894	2.482	3.622	2.351	2.908	
Acar-ST*11	-0.483	1.557	-0.513	1.786	-0.979	0.233	1.676	1.370	0.733	0.562	3.824	2.367	3.465	
Acar-ST*12	-1.613	1.064	-0.900	1.153	-0.362	-0.939	0.441	-0.721	0.968	-0.965	-0.292	2.195	3.671	
Acar-ST*13	-1.444	0.668	-1.317	1.894	-1.086	-0.817	1.147	0.245	0.880	0.426	1.285	1.069	4.036	
Acar-ST*14	-1.942	-1.023	-1.482	-0.842	-3.803	-1.499	-2.104	-1.346	-1.200	-1.795	-1.478	-2.070	-2.316	
Table S11

Haplotype	No. ST													
Acar-HPLT*01	9	Acar-HPLT*28	6	Acar-HPLT*55	6	Acar-HPLT*82	3							
Acar-HPLT*02	8	Acar-HPLT*29	9	Acar-HPLT*56	8	Acar-HPLT*83	6							
Acar-HPLT*03	6	Acar-HPLT*30	7	Acar-HPLT*57	4	Acar-HPLT*84	13							
Acar-HPLT*04	7	Acar-HPLT*31	6	Acar-HPLT*58	10	Acar-HPLT*85	6							
Acar-HPLT*05	4	Acar-HPLT*32	9	Acar-HPLT*59	6	Acar-HPLT*86	8							
Acar-HPLT*06	10	Acar-HPLT*33	8	Acar-HPLT*60	6	Acar-HPLT*87	5							
Acar-HPLT*07	7	Acar-HPLT*34	9	Acar-HPLT*61	4	Acar-HPLT*88	9							
Acar-HPLT*08	5	Acar-HPLT*35	9	Acar-HPLT*62	7	Acar-HPLT*89	7							
Acar-HPLT*09	6	Acar-HPLT*36	6	Acar-HPLT*63	9	Acar-HPLT*90	8							
Acar-HPLT*10	5	Acar-HPLT*37	5	Acar-HPLT*64	10	Acar-HPLT*91	8							
Acar-HPLT*11	6	Acar-HPLT*38	7	Acar-HPLT*65	10	Acar-HPLT*92	9							
Acar-HPLT*12	9	Acar-HPLT*39	7	Acar-HPLT*66	4	Acar-HPLT*93	7							
Acar-HPLT*13	5	Acar-HPLT*40	8	Acar-HPLT*67	4	Acar-HPLT*94	7							
Acar-HPLT*14	6	Acar-HPLT*41	7	Acar-HPLT*68	4	Acar-HPLT*95	10							
Acar-HPLT*15	10	Acar-HPLT*42	3	Acar-HPLT*69	8	Acar-HPLT*96	7							
Acar-HPLT*16	8	Acar-HPLT*43	7	Acar-HPLT*70	6	Acar-HPLT*97	7							
Acar-HPLT*17	6	Acar-HPLT*44	8	Acar-HPLT*71	8	Acar-HPLT*98	5							
Acar-HPLT*18	6	Acar-HPLT*45	6	Acar-HPLT*72	8	Acar-HPLT*99	8							
Acar-HPLT*19	8	Acar-HPLT*46	5	Acar-HPLT*73	7	Acar-HPLT*100	7							
Acar-HPLT*20	5	Acar-HPLT*47	6	Acar-HPLT*74	3	Acar-HPLT*101	7							
Acar-HPLT*21	6	Acar-HPLT*48	7	Acar-HPLT*75	8	Acar-HPLT*102	8							
Acar-HPLT*22	7	Acar-HPLT*49	4	Acar-HPLT*76	4	Acar-HPLT*103	7							
Acar-HPLT*23	6	Acar-HPLT*50	10	Acar-HPLT*77	7	Acar-HPLT*104	5							
Acar-HPLT*24	6	Acar-HPLT*51	8	Acar-HPLT*78	6	Acar-HPLT*105	7							
Acar-HPLT*25	8	Acar-HPLT*52	10	Acar-HPLT*79	7	Acar-HPLT*106	10							
Acar-HPLT*26	6	Acar-HPLT*53	7	Acar-HPLT*80	10	Acar-HPLT*107	8							
Acar-HPLT*27	7	Acar-HPLT*54	7	Acar-HPLT*81	7									
No. haplotypes	Acar-ST*1	Acar-ST*2	Acar-ST*3	Acar-ST*4	Acar-ST*5	Acar-ST*6	Acar-ST*7	Acar-ST*8	Acar-ST*9	Acar-ST*10	Acar-ST*11	Acar-ST*12	Acar-ST*13	Acar-ST*14
----------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
Table S12 Number of alleles from positively selected (pos. sel.) MHC-I supertypes, number of pos. sel. MHC-I supertypes, mean Sandberg distance between centroids of pos. sel. MHC-I supertypes, and mean Sandberg distance overlap between pos. sel. MHC-I supertypes observed in each haplotype.
Notes: Haplotypes that harboured fewer than two pos. sel. MHC-I supertypes were assigned NA. Distance values were calculated based on 14 amino acid codons that showed evidence of positive selection.

	No. alleles pos. sel. STs	No. pos. sel. STs	Mean centroid dist. pos. sel. STs	Mean overlap pos. sel. STs
Acar-HPLT*01	10	6	2.77	0.378
Acar-HPLT*02	6	5	2.96	0.020
Acar-HPLT*03	4	3	2.40	0.763
Acar-HPLT*04	4	4	2.97	-0.391
Acar-HPLT*05	1	1	NA	NA
Acar-HPLT*06	12	7	2.64	0.576
Acar-HPLT*07	4	4	2.96	0.159
Acar-HPLT*08	2	2	2.53	0.880
Acar-HPLT*09	4	3	3.10	-0.061
Acar-HPLT*10	2	2	4.12	-0.721
Acar-HPLT*11	4	3	2.83	0.406
Acar-HPLT*12	9	6	2.67	0.362
Acar-HPLT*13	2	2	3.28	0.245
Acar-HPLT*14	5	3	2.83	1.113
Acar-HPLT*15	10	7	2.70	0.582
Acar-HPLT*16	6	5	2.66	0.233
Acar-HPLT*17	4	3	3.32	-0.468
Acar-HPLT*18	6	4	2.73	0.549
Acar-HPLT*19	7	5	2.93	0.318
Acar-HPLT*20	3	2	2.99	0.789
Acar-HPLT*21	3	3	3.24	-0.663
Acar-HPLT*22	4	4	2.69	0.374
Acar-HPLT*23	4	3	2.50	0.423
Acar-HPLT*24	4	3	3.10	-0.280
Acar-HPLT*25	7	5	3.01	0.118
Acar-HPLT*26	4	3	3.35	-1.217
Acar-HPLT*27	5	4	2.61	0.005
No. alleles pos. sel. STs	No. pos. sel. STs	Mean centroid dist. pos. sel. STs	Mean overlap pos. sel. STs	
--------------------------	-------------------	---------------------------------	--------------------------	
Acar-HPLT*28	4	3	2.82	0.495
Acar-HPLT*29	6	6	3.06	-0.116
Acar-HPLT*30	4	4	3.17	-0.136
Acar-HPLT*31	4	3	3.32	-0.468
Acar-HPLT*32	7	6	2.81	0.296
Acar-HPLT*33	5	5	3.08	-0.020
Acar-HPLT*34	6	6	2.83	0.478
Acar-HPLT*35	6	6	2.93	0.060
Acar-HPLT*36	7	4	2.99	0.059
Acar-HPLT*37	2	2	3.74	-1.444
Acar-HPLT*38	4	4	2.72	-0.051
Acar-HPLT*39	5	4	2.66	0.927
Acar-HPLT*40	5	5	3.00	-0.147
Acar-HPLT*41	5	4	3.07	-0.147
Acar-HPLT*42	1	1	NA	NA
Acar-HPLT*43	7	4	3.26	-0.604
Acar-HPLT*44	5	5	3.04	-0.482
Acar-HPLT*45	3	3	2.55	-0.315
Acar-HPLT*46	2	2	2.55	0.362
Acar-HPLT*47	5	3	3.35	-1.217
Acar-HPLT*48	5	4	2.54	0.743
Acar-HPLT*49	2	1	NA	NA
Acar-HPLT*50	8	7	2.70	0.582
Acar-HPLT*51	6	5	2.85	-0.082
Acar-HPLT*52	8	7	2.79	0.455
Acar-HPLT*53	8	4	3.17	-0.477
Acar-HPLT*54	4	4	2.82	0.226
No. alleles pos. sel. STs	No. pos. sel. STs	Mean centroid dist. pos. sel. STs	Mean overlap pos. sel. STs	
--------------------------	------------------	----------------------------------	--------------------------	
Acar-HPLT*55	6	2.65	0.296	
Acar-HPLT*56	7	2.85	-0.082	
Acar-HPLT*57	1	NA	NA	
Acar-HPLT*58	9	2.80	0.106	
Acar-HPLT*59	3	3.09	-0.676	
Acar-HPLT*60	3	2.72	0.177	
Acar-HPLT*61	1	NA	NA	
Acar-HPLT*62	4	2.86	0.141	
Acar-HPLT*63	10	2.83	0.119	
Acar-HPLT*64	8	2.87	0.125	
Acar-HPLT*65	10	2.80	0.424	
Acar-HPLT*66	1	NA	NA	
Acar-HPLT*67	1	NA	NA	
Acar-HPLT*68	1	NA	NA	
Acar-HPLT*69	6	2.96	0.020	
Acar-HPLT*70	3	2.57	1.119	
Acar-HPLT*71	8	2.84	0.506	
Acar-HPLT*72	5	2.65	0.752	
Acar-HPLT*73	6	2.69	1.125	
Acar-HPLT*74	0	NA	NA	
Acar-HPLT*75	5	3.01	0.118	
Acar-HPLT*76	2	NA	NA	
Acar-HPLT*77	5	2.91	-0.120	
Acar-HPLT*78	4	3.17	-0.136	
Acar-HPLT*79	5	2.51	0.079	
Acar-HPLT*80	8	2.70	0.582	
Acar-HPLT*81	5	3.25	-0.807	
Allele	No. alleles	No. pos. sel.	Mean centroid dist.	Mean overlap pos. sel.
---------------------	-------------	---------------	---------------------	-----------------------
Acar-HPLT*82	0	0	NA	NA
Acar-HPLT*83	3	3	3.15	-0.477
Acar-HPLT*84	18	10	2.85	0.321
Acar-HPLT*85	4	3	3.00	-0.619
Acar-HPLT*86	6	6	2.96	0.097
Acar-HPLT*87	2	2	2.53	0.880
Acar-HPLT*88	8	6	2.89	-0.111
Acar-HPLT*89	8	4	2.79	0.509
Acar-HPLT*90	6	5	2.75	0.610
Acar-HPLT*91	6	5	2.93	-0.092
Acar-HPLT*92	8	6	3.07	-0.413
Acar-HPLT*93	6	5	2.93	0.318
Acar-HPLT*94	6	5	2.93	-0.114
Acar-HPLT*95	9	7	2.93	-0.055
Acar-HPLT*96	5	4	2.76	0.369
Acar-HPLT*97	5	5	3.04	-0.482
Acar-HPLT*98	2	2	1.73	1.019
Acar-HPLT*99	7	5	3.16	-0.404
Acar-HPLT*100	6	4	2.93	-0.273
Acar-HPLT*101	5	4	2.63	0.555
Acar-HPLT*102	6	5	2.95	-0.003
Acar-HPLT*103	4	4	3.00	-0.095
Acar-HPLT*104	3	2	2.05	0.381
Acar-HPLT*105	4	4	3.04	-0.358
Acar-HPLT*106	7	7	2.93	-0.055
Acar-HPLT*107	6	5	2.78	0.300
Haplotype tables

Unique haplotypes in our data set with the proportion of unresolved allele assignments on each haplotype. The tables show the alleles found on each haplotype, with specification of allele assignment status (1 = unresolved allele assignment, 0 = definite allele assignment).

Acar-HPLT*01

Allele	Unresolved
Acar-UA*4	0
Acar-UA*8	0
Acar-UA*9	1
Acar-UA*12	0
Acar-UA*33	0
Acar-UA*55	0
Acar-UA*74	0
Acar-UA*95	0
Acar-UA*122	0
Acar-UA*144	0
Acar-UA*145	0
Acar-UA*163	0
Acar-UA*192	0
Acar-UA*391	0

| Prop. unresolved alleles | 0.071429 |

Acar-HPLT*02

Allele	Unresolved
Acar-UA*9	1
Acar-UA*48	0
Acar-UA*55	0
Acar-UA*82	0
Acar-UA*126	0
Acar-UA*145	0
Acar-UA*157	0
Acar-UA*241	0
Acar-UA*330	0

| Prop. unresolved alleles | 0.111111 |

Acar-HPLT*03

Allele	Unresolved
Acar-UA*9	1
Acar-UA*54	0
Acar-UA*130	0
Acar-UA*133	0
Acar-UA*153	0
Acar-UA*157	0
Acar-UA*201	0
Acar-UA*223	0
Acar-UA*239	0
Acar-UA*296	0

| Prop. unresolved alleles | 0.1 |
Allele	Acar-HPLT*04 Prop. unresolved alleles	Acar-HPLT*05 Prop. unresolved alleles	Acar-HPLT*06 Prop. unresolved alleles	Acar-HPLT*07 Prop. unresolved alleles
	0.142857	0	0.2	0.125
Acar-UA*4	0	0	1	0
Acar-UA*9	0	0	1	1
Acar-UA*11	0	0	0	0
Acar-UA*55	1	0	1	0
Acar-UA*69	0	0	0	0
Acar-UA*157	0	0	0	0
Acar-UA*247	0	0	0	0

The table above shows the allele frequencies for different HLA alleles under the test conditions specified.
Allele	Prop. unresolved alleles	Unresolved
Acar-HPLT*08	0.2	Unresolved
Acar-UA*4	0	
Acar-UA*9	1	
Acaru-UA*23	0	
Acar-UA*55	0	
Acar-UA*285	0	

Allele	Prop. unresolved alleles	Unresolved
Acar-HPLT*09	0.285714	Unresolved
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*35	0	
Acar-UA*55	1	
Acar-UA*66	0	
Acar-UA*192	0	
Acar-UA*265	0	

Allele	Prop. unresolved alleles	Unresolved
Acar-HPLT*10	0.4	Unresolved
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*31	0	
Acar-UA*47	0	
Acar-UA*55	1	

Allele	Prop. unresolved alleles	Unresolved
Acar-HPLT*11	0.25	Unresolved
Acar-UA*9	1	
Acar-UA*31	0	
Acar-UA*55	1	
Acar-UA*78	0	
Acar-UA*208	0	
Acar-UA*265	0	
Acar-UA*357	0	
Acar-UA*397	0	
Allele	Unresolved	Prop. unresolved alleles
--------------	------------	--------------------------
Acar-HPLT*12		0.076923
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*11	0	
Acar-UA*12	0	
Acar-UA*55	0	
Acar-UA*62	0	
Acar-UA*173	0	
Acar-UA*214	0	
Acar-UA*233	0	
Acar-UA*279	0	
Acar-UA*328	0	
Acar-UA*336	0	
Acar-UA*419	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*13		0.333333
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*31	0	
Acar-UA*36	0	
Acar-UA*55	1	
Acar-UA*144	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*14		0.111111
Acar-UA*4	0	
Acar-UA*9	0	
Acar-UA*55	1	
Acar-UA*59	0	
Acar-UA*65	0	
Acar-UA*143	0	
Acar-UA*144	0	
Acar-UA*155	0	
Acar-UA*255	0	
Allele	Unresolved	
--------------	------------	
Acar-UA*9	1	
Acar-UA*51	0	
Acar-UA*52	0	
Acar-UA*55	0	
Acar-UA*107	0	
Acar-UA*110	0	
Acar-UA*143	0	
Acar-UA*144	0	
Acar-UA*186	0	
Acar-UA*231	0	
Acar-UA*255	0	
Acar-UA*304	0	
Acar-UA*368	0	
Acar-UA*392	0	

Allele	Unresolved
Acar-UA*9	0
Acar-UA*37	0
Acar-UA*55	0
Acar-UA*60	0
Acar-UA*94	0
Acar-UA*144	0
Acar-UA*224	0
Acar-UA*250	0
Acar-UA*349	0
Acar-UA*350	0

Allele	Unresolved		
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*55	1		
Acar-UA*191	0		
Acar-UA*304	0		
Acar-UA*363	0		
Allele	Unresolved	Prop. unresolved alleles	
-----------------	------------	--------------------------	
Acar-HPLT*18		0.444444	
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*31	1		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*86	0		
Acar-UA*122	0		
Acar-UA*144	1		
Acar-UA*330	0		
Acar-HPLT*19		0.166667	
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*55	1		
Acar-UA*79	0		
Acar-UA*122	0		
Acar-UA*125	0		
Acar-UA*133	0		
Acar-UA*201	0		
Acar-UA*276	0		
Acar-UA*296	0		
Acar-UA*340	0		
Acar-UA*348	0		
Acar-HPLT*20		0.285714	
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*30	0		
Acar-UA*39	0		
Acar-UA*54	0		
Acar-UA*61	0		
Acar-UA*144	0		
Acar-HPLT*21		0.125	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*136	0		
Acar-UA*144	0		
Acar-UA*191	0		
Acar-UA*241	0		
Acar-UA*364	0		
Allele	Unresolved	Acar-HPLT*22	Prop. unresolved alleles
----------------	------------	--------------	--------------------------
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*55	1		
Acar-UA*77	0		
Acar-UA*144	0		
Acar-UA*223	0		
Acar-UA*238	0		

Allele	Unresolved	Acar-HPLT*23	Prop. unresolved alleles
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*62	0		
Acar-UA*144	1		
Acar-UA*152	0		
Acar-UA*177	0		
Acar-UA*188	0		

Allele	Unresolved	Acar-HPLT*24	Prop. unresolved alleles
Acar-UA*9	1		
Acar-UA*41	0		
Acar-UA*55	1		
Acar-UA*103	0		
Acar-UA*144	0		
Acar-UA*192	0		
Acar-UA*200	0		
Acar-UA*342	0		

Allele	Unresolved	Acar-HPLT*25	Prop. unresolved alleles
Acar-UA*4	0		
Acar-UA*8	0		
Acar-UA*9	0		
Acar-UA*12	0		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*58	0		
Acar-UA*144	0		
Acar-UA*145	0		
Acar-UA*236	0		
Acar-UA*304	0		
Allele	Unresolved	Prop. unresolved alleles	
----------	------------	--------------------------	
Acar-HPLT*26		0.125	
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*47	0		
Acar-UA*137	0		
Acar-UA*144	0		
Acar-UA*208	0		
Acar-UA*279	0		
Acar-UA*280	0		
Acar-HPLT*27		0.111111	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*31	0		
Acar-UA*42	0		
Acar-UA*55	0		
Acar-UA*94	0		
Acar-UA*129	0		
Acar-UA*332	0		
Acar-UA*349	0		
Acar-HPLT*28		0.125	
Acar-UA*32	0		
Acar-UA*55	1		
Acar-UA*144	0		
Acar-UA*166	0		
Acar-UA*224	0		
Acar-UA*229	0		
Acar-UA*290	0		
Acar-UA*378	0		
Acar-HPLT*29		0	
Acar-UA*9	0		
Acar-UA*48	0		
Acar-UA*55	0		
Acar-UA*97	0		
Acar-UA*144	0		
Acar-UA*188	0		
Acar-UA*208	0		
Acar-UA*229	0		
Acar-UA*236	0		
Acar-UA*304	0		
Allele	Unresolved	Prop. unresolved alleles	
----------	------------	--------------------------	
Acar-HPLT*30	0	0	
Acar-UA*9	0		
Acar-UA*12	0		
Acar-UA*50	0		
Acar-UA*55	0		
Acar-UA*181	0		
Acar-UA*208	0		
Acar-UA*373	0		

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*31	0.333333	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*123	0	
Acar-UA*144	1	
Acar-UA*149	0	
Acar-UA*183	0	
Acar-UA*196	0	
Acar-UA*401	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*32	0.363636	
Acar-UA*9	1	
Acar-UA*31	1	
Acar-UA*55	1	
Acar-UA*77	0	
Acar-UA*82	0	
Acar-UA*91	0	
Acar-UA*144	1	
Acar-UA*183	0	
Acar-UA*196	0	
Acar-UA*204	0	
Acar-UA*349	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*33	0.125	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*12	0	
Acar-UA*30	0	
Acar-UA*33	0	
Acar-UA*55	0	
Acar-UA*145	0	
Acar-UA*235	0	
Allele	Unresolved	Prop. unresolved alleles
-----------------	------------	--------------------------
Acar-HPLT*34		
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*43	0	
Acar-UA*48	0	
Acar-UA*55	0	
Acar-UA*190	0	
Acar-UA*236	0	
Acar-UA*304	0	
Acar-UA*367	0	
Acar-HPLT*35		
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*40	0	
Acar-UA*55	1	
Acar-UA*144	0	
Acar-UA*191	0	
Acar-UA*281	0	
Acar-UA*290	0	
Acar-UA*310	0	
Acar-UA*380	0	
Acar-UA*384	0	
Acar-HPLT*36		
Acar-UA*9	1	
Acar-UA*31	0	
Acar-UA*48	0	
Acar-UA*122	0	
Acar-UA*123	0	
Acar-UA*145	0	
Acar-UA*217	0	
Acar-UA*241	0	
Acar-UA*306	0	
Acar-UA*325	0	
Acar-HPLT*37		
Acar-UA*9	1	
Acar-UA*11	0	
Acar-UA*55	1	
Acar-UA*144	0	
Acar-UA*183	0	
Allele	Unresolved	Prop. unresolved alleles
--------------	------------	--------------------------
Acar-HPLT*38		0.5
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*12	0	
Acar-UA*55	1	
Acar-UA*144	1	
Acar-UA*223	0	
Acar-UA*270	0	
Acar-UA*279	0	
Acar-UA*38		
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*12	0	
Acar-UA*55	1	
Acar-UA*144	1	
Acar-UA*146	0	
Acar-UA*223	0	
Acar-HPLT*39		0.444444
Acar-UA*4	1	
Acar-UA*8	0	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*73	0	
Acar-UA*144	1	
Acar-UA*156	0	
Acar-UA*175	0	
Acar-UA*225	0	
Acar-HPLT*40		0.333333
Acar-UA*4	0	
Acar-UA*9	1	
Acaru-UA*23	0	
Acar-UA*31	0	
Acar-UA*55	1	
Acar-UA*144	1	
Acar-UA*146	0	
Acar-UA*277	0	
Acar-UA*322	0	
Acar-HPLT*41		0.25
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*12	0	
Acar-UA*55	1	
Acar-UA*122	0	
Acar-UA*190	0	
Acar-UA*192	0	
Acar-UA*235	0	
Allele	Unresolved	Prop. unresolved alleles
--------------	------------	--------------------------
Acar-HPLT*42	0	0
Acar-UA*137	0	
Acar-UA*144	0	
Acar-UA*187	0	
Acar-UA*208	0	
Acar-HPLT*43	0.090909	
Acar-UA*9	1	
Acar-UA*48	0	
Acar-UA*55	0	
Acar-UA*122	0	
Acar-UA*144	0	
Acar-UA*164	0	
Acar-UA*208	0	
Acar-UA*229	0	
Acar-UA*304	0	
Acar-UA*330	0	
Acar-UA*408	0	
Acar-HPLT*44	0.111111	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*55	0	
Acar-UA*128	0	
Acar-UA*144	0	
Acar-UA*191	0	
Acar-UA*337	0	
Acar-UA*371	0	
Acar-UA*410	0	
Acar-HPLT*45	0.166667	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*44	0	
Acar-UA*45	0	
Acar-UA*55	0	
Acar-UA*347	0	
Allele	Unresolved	Prop. unresolved alleles
------------	------------	--------------------------
Acar-HPLT*46		0.333333
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*31	0	
Acar-UA*55	1	
Acar-UA*73	0	
Acar-UA*114	0	
Acar-UA*115	0	
Acar-UA*144	0	
Acar-UA*159	0	
Acar-HPLT*47		0.1
Acar-UA*4	0	
Acar-UA*9	0	
Acar-UA*12	0	
Acar-UA*55	1	
Acar-UA*144	0	
Acar-UA*208	0	
Acar-UA*279	0	
Acar-UA*280	0	
Acar-UA*318	0	
Acar-UA*326	0	
Acar-HPLT*48		0
Acar-UA*4	0	
Acar-UA*9	0	
Acar-UA*31	0	
Acar-UA*55	0	
Acar-UA*144	0	
Acar-UA*153	0	
Acar-UA*157	0	
Acar-UA*223	0	
Acar-UA*239	0	
Acar-HPLT*49		0.333333
Acar-UA*6	0	
Acar-UA*9	1	
Acar-UA*33	0	
Acar-UA*55	1	
Acar-UA*144	0	
Acar-UA*187	0	
Acar-HPLT*50

Allele	Unresolved
Acar-UA*9	1
Acar-UA*12	0
Acar-UA*41	0
Acar-UA*55	0
Acar-UA*107	0
Acar-UA*143	0
Acar-UA*144	0
Acar-UA*186	0
Acar-UA*231	0
Acar-UA*255	0
Acar-UA*277	0
Acar-UA*368	0

Prop. unresolved alleles: 0.083333

Acar-HPLT*51

Allele	Unresolved
Acar-UA*4	1
Acar-UA*12	0
Acar-UA*50	0
Acar-UA*54	0
Acar-UA*55	1
Acar-UA*128	0
Acar-UA*144	0
Acar-UA*250	0
Acar-UA*288	0
Acar-UA*304	0
Acar-UA*351	0

Prop. unresolved alleles: 0.181818

Acar-HPLT*52

Allele	Unresolved
Acar-UA*4	1
Acar-UA*9	1
Acar-UA*49	0
Acar-UA*55	1
Acar-UA*81	0
Acar-UA*122	0
Acar-UA*128	0
Acar-UA*144	1
Acar-UA*147	0
Acar-UA*160	0
Acar-UA*187	0
Acar-UA*229	0

Prop. unresolved alleles: 0.333333
Allele	Acar-HPLT*53	Unresolved	Pro. unresolved alleles
Acar-UA*4		0	
Acar-UA*9		1	
Acar-UA*11		0	
Acar-UA*12		0	
Acar-UA*48		0	
Acar-UA*50		0	
Acar-UA*53		0	
Acar-UA*55		1	
Acar-UA*91		0	
Acar-UA*241		0	
Acar-UA*330		0	
Acar-UA*336		0	
	Acar-HPLT*54		
Acar-UA*4		1	0.375
Acar-UA*9		1	
Acar-UA*30		0	
Acar-UA*48		0	
Acar-UA*55		1	
Acar-UA*57		0	
Acar-UA*144		0	
Acar-UA*145		0	
	Acar-HPLT*55		
Acar-UA*4		0	0.2
Acar-UA*9		1	
Acar-UA*31		1	
Acar-UA*48		0	
Acar-UA*55		0	
Acar-UA*122		0	
Acar-UA*144		0	
Acar-UA*164		0	
Acar-UA*304		0	
Acar-UA*330		0	
Allele	Prop. unresolved alleles	Unresolved	
------------	--------------------------	------------	
Acar-HPLT*56	0.090909		
Acar-UA*4	0		
Acar-UA*12	0		
Acar-UA*48	0		
Acar-UA*50	0		
Acar-UA*54	0		
Acar-UA*128	0		
Acar-UA*144	1		
Acar-UA*250	0		
Acar-UA*288	0		
Acar-UA*304	0		
Acar-UA*351	0		
Acar-HPLT*57	0		
Acar-UA*4	0		
Acar-UA*9	0		
Acar-UA*55	0		
Acar-UA*144	0		
Acar-UA*158	0		
Acar-UA*368	0		
Acar-HPLT*58	0.230769		
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*30	0		
Acar-UA*55	1		
Acar-UA*57	0		
Acar-UA*91	0		
Acar-UA*144	0		
Acar-UA*274	0		
Acar-UA*282	0		
Acar-UA*303	0		
Acar-UA*421	0		
Acar-UA*424	0		
Acar-HPLT*59	0.428571		
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*12	0		
Acaru-UA*23	0		
Acar-UA*55	1		
Acar-UA*122	0		
Acar-UA*277	0		
Allele	Unresolved	Prop. unresolved alleles	
------------	------------	--------------------------	
Acar-HPLT*60		0.166667	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*55	0		
Acar-UA*94	0		
Acar-UA*119	0		
Acar-UA*271	0		
Acar-HPLT*61		0.2	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*55	0		
Acar-UA*144	0		
Acar-UA*200	0		
Acar-HPLT*62		0.375	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*50	0		
Acar-UA*53	0		
Acar-UA*55	1		
Acar-UA*144	1		
Acar-UA*184	0		
Acar-UA*308	0		
Acar-HPLT*63		0.2	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*30	0		
Acar-UA*31	0		
Acar-UA*31	0		
Acar-UA*55	1		
Acar-UA*122	0		
Acar-UA*144	1		
Acar-UA*145	0		
Acar-UA*157	0		
Acar-UA*208	0		
Acar-UA*240	0		
Acar-UA*278	0		
Acar-UA*315	0		
Acar-UA*327	0		
Allele	Unresolved	Prop. unresolved alleles	
--------------	------------	--------------------------	
Acar-HPLT*64			
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*40	0		
Acar-UA*55	1		
Acar-UA*128	0		
Acar-UA*144	1		
Acar-UA*160	0		
Acar-UA*304	0		
Acar-UA*342	0		
Acar-UA*384	0		
Acar-UA*406	0		
Acar-UA*422	0		
Acar-HPLT*65		0.266667	
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*72	0		
Acar-UA*91	0		
Acar-UA*122	0		
Acar-UA*144	1		
Acar-UA*145	0		
Acar-UA*148	0		
Acar-UA*268	0		
Acar-UA*304	0		
Acar-UA*336	0		
Acar-UA*384	0		
Acar-HPLT*66		0.333333	
Acar-UA*9	1		
Acar-UA*55	1		
Acar-UA*124	0		
Acar-UA*138	0		
Acar-UA*144	0		
Acar-UA*208	0		
Acar-HPLT*67		0.4	
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*55	1		
Acar-UA*144	0		
Acar-UA*187	0		
Allele	Unresolved	Acar-HPLT*68	Prop. unresolved alleles
--------------	------------	--------------	--------------------------
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*55	1		
Acar-UA*365	0		
Acar-HPLT*68		Prop. unresolved alleles	0.75
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*82	0		
Acar-UA*126	0		
Acar-UA*145	0		
Acar-UA*157	0		
Acar-UA*241	0		
Acar-UA*330	0		

Allele	Unresolved	Acar-HPLT*69	Prop. unresolved alleles
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*126	0		
Acar-UA*145	0		
Acar-UA*157	0		
Acar-UA*241	0		
Acar-UA*330	0		

Allele	Unresolved	Acar-HPLT*70	Prop. unresolved alleles
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*31	0		
Acar-UA*55	1		
Acar-UA*144	1		
Acar-UA*260	0		
Acar-UA*304	1		

Allele	Unresolved	Acar-HPLT*71	Prop. unresolved alleles
Acar-UA*4	0		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*55	1		
Acar-UA*82	0		
Acar-UA*122	0		
Acar-UA*144	1		
Acar-UA*147	0		
Acar-UA*160	0		
Acar-UA*208	0		
Acar-UA*233	0		
Acar-UA*304	1		
Acar-UA*384	0		
Allele	Unresolved	Prop. unresolved alleles	
------------	------------	--------------------------	
Acar-HPLT*72		0.333333	
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*51	0		
Acar-UA*107	0		
Acar-UA*136	0		
Acar-UA*143	0		
Acar-UA*144	1		
Acar-UA*304	0		
Acar-UA*368	0		

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*73		0.272727
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*42	0	
Acar-UA*55	1	
Acar-UA*59	0	
Acar-UA*65	0	
Acar-UA*129	0	
Acar-UA*143	0	
Acar-UA*144	0	
Acar-UA*155	0	
Acar-UA*255	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*74		0.142857
Acar-UA*4	0	
Acar-UA*9	0	
Acar-UA*55	0	
Acar-UA*144	1	
Acar-UA*199	0	
Acar-UA*254	0	
Acar-UA*394	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*75		0.111111
Acar-UA*6	0	
Acar-UA*9	0	
Acar-UA*48	0	
Acar-UA*55	0	
Acar-UA*97	0	
Acar-UA*144	1	
Acar-UA*188	0	
Acar-UA*243	0	
Acar-UA*304	0	
Allele	Unresolved	
--------------	------------	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*30	0	
Acar-UA*55	0	
Acar-UA*144	0	
Acar-UA*242	0	

Allele	Unresolved
Acar-UA*4	1
Acar-UA*9	1
Acar-UA*48	0
Acar-UA*55	1
Acar-UA*122	0
Acar-UA*144	1
Acar-UA*162	0
Acar-UA*174	0
Acar-UA*277	0

Allele	Unresolved
Acar-UA*12	0
Acar-UA*50	0
Acar-UA*55	0
Acar-UA*181	0
Acar-UA*208	0
Acar-UA*248	0
Acar-UA*373	0

Allele	Unresolved	
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*71	0	
Acar-UA*137	0	
Acar-UA*144	1	
Acar-UA*250	0	
Acar-UA*279	0	
Acar-UA*322	0	
Acar-UA*328	0	
Allele	Unresolved	Prop. unresolved alleles
-------------	------------	--------------------------
Acar-HPLT*80		0.230769
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*51	0	
Acar-UA*52	0	
Acar-UA*55	1	
Acar-UA*107	0	
Acar-UA*110	0	
Acar-UA*143	0	
Acar-UA*144	0	
Acar-UA*255	0	
Acar-UA*304	0	
Acar-UA*368	0	
Acar-UA*392	0	
Acar-HPLT*81		0.333333
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*11	0	
Acar-UA*47	0	
Acar-UA*55	1	
Acar-UA*128	0	
Acar-UA*144	0	
Acar-UA*150	0	
Acar-UA*332	0	
Acar-HPLT*82		0.75
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*254	0	
Acar-HPLT*83		0.333333
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*23	0	
Acar-UA*55	1	
Acar-UA*285	0	
Acar-UA*342	0	
Allele	Acar-HPLT*84 Unresolved	Prop. unresolved alleles
------------	-------------------------	--------------------------
Acar-UA*4	0	0.095238
Acar-UA*9	1	
Acar-UA*46	0	
Acar-UA*48	0	
Acar-UA*49	0	
Acar-UA*53	0	
Acar-UA*55	1	
Acar-UA*77	0	
Acar-UA*94	0	
Acar-UA*103	0	
Acar-UA*107	0	
Acar-UA*143	0	
Acar-UA*150	0	
Acar-UA*154	0	
Acar-UA*255	0	
Acar-UA*273	0	
Acar-UA*307	0	
Acar-UA*332	0	
Acar-UA*349	0	
Acar-UA*356	0	
Acar-UA*417	0	

Allele	Acar-HPLT*85 Unresolved	Prop. unresolved alleles
Acar-UA*4	1	0.5
Acar-UA*9	1	
Acar-UA*12	0	
Acar-UA*55	1	
Acar-UA*128	0	
Acar-UA*144	1	
Acar-UA*200	0	
Acar-UA*328	0	

Allele	Acar-HPLT*86 Unresolved	Prop. unresolved alleles	
Acar-UA*9	1	0.222222	
Acar-UA*33	0		
Acar-UA*55	1		
Acar-UA*94	0		
Acar-UA*144	0		
Acar-UA*151	0		
Acar-UA*341	0		
Acar-UA*364	0		
Acar-UA*404	0		
Allele	Unresolved	Acar-HPLT*87 Prop. unresolved alleles	0.333333
-----------------	------------	--------------------------------------	----------
Acar-UA*4	0		
Acar-UA*9	1		
Acaru-UA*23	0		
Acar-UA*55	1		
Acar-UA*144	0		
Acar-UA*285	0		

Allele	Unresolved	Acar-HPLT*88 Prop. unresolved alleles	0.25
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*12	0		
Acar-UA*48	0		
Acar-UA*55	1		
Acar-UA*96	0		
Acar-UA*145	0		
Acar-UA*173	0		
Acar-UA*214	0		
Acar-UA*279	0		
Acar-UA*304	0		
Acar-UA*330	0		

Allele	Unresolved	Acar-HPLT*89 Prop. unresolved alleles	0.384615
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*31	0		
Acar-UA*55	1		
Acar-UA*91	0		
Acar-UA*96	0		
Acar-UA*103	0		
Acar-UA*122	1		
Acar-UA*144	1		
Acar-UA*150	0		
Acar-UA*183	0		
Acar-UA*196	0		
Acar-UA*204	0		
Allele	Unresolved	Prop. unresolved alleles	
------------	------------	--------------------------	
Acar-HPLT*90		0.272727	
Acar-UA*4	0		
Acar-UA*8	0		
Acar-UA*9	1		
Acar-UA*12	1		
Acar-UA*33	0		
Acar-UA*42	0		
Acar-UA*55	1		
Acar-UA*144	0		
Acar-UA*156	0		
Acar-UA*163	0		
Acar-UA*248	0		
Acar-HPLT*91		0.363636	
Acar-UA*4	1		
Acar-UA*9	1		
Acar-UA*48	1		
Acar-UA*50	0		
Acar-UA*55	1		
Acar-UA*86	0		
Acar-UA*91	0		
Acar-UA*144	0		
Acar-UA*150	0		
Acar-UA*332	0		
Acar-UA*415	0		
Acar-HPLT*92		0.230769	
Acar-UA*9	1		
Acar-UA*55	1		
Acar-UA*126	0		
Acar-UA*144	1		
Acar-UA*150	0		
Acar-UA*208	0		
Acar-UA*229	0		
Acar-UA*328	0		
Acar-UA*349	0		
Acar-UA*380	0		
Acar-UA*407	0		
Acar-UA*412	0		
Acar-UA*414	0		
Allele	Unresolved	Prop. unresolved alleles	
---------	------------	--------------------------	
Acar-HPLT*93	0.555556		
Acar-UA*4	1		
Acar-UA*12	1		
Acar-UA*31	0		
Acar-UA*48	0		
Acar-UA*50	0		
Acar-UA*55	1		
Acar-UA*82	0		
Acar-UA*144	1		
Acar-UA*304	1		

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*94	0.222222	
Acar-UA*9	1	
Acar-UA*11	0	
Acar-UA*47	0	
Acar-UA*55	1	
Acar-UA*128	0	
Acar-UA*141	0	
Acar-UA*144	0	
Acar-UA*150	0	
Acar-UA*332	0	

Allele	Unresolved	Prop. unresolved alleles
Acar-HPLT*95	0.166667	
Acar-UA*4	0	
Acar-UA*9	1	
Acar-UA*40	0	
Acar-UA*55	1	
Acar-UA*91	0	
Acar-UA*191	0	
Acar-UA*230	0	
Acar-UA*281	0	
Acar-UA*313	0	
Acar-UA*360	0	
Acar-UA*380	0	
Acar-UA*384	0	
Allele	Unresolved	Prop. unresolved alleles
-----------	------------	--------------------------
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*11	0	
Acar-UA*12	1	
Acar-UA*31	0	
Acar-UA*55	1	
Acar-UA*144	1	
Acar-UA*183	0	
Acar-UA*387	0	
Acar-UA*9	1	0.555556
Acar-UA*55	1	
Acar-UA*128	0	
Acar-UA*144	0	
Acar-UA*191	0	
Acar-UA*337	0	
Acar-UA*371	0	
Acar-UA*410	0	
Acar-UA*9	1	0.25
Acar-UA*55	1	
Acar-UA*128	0	
Acar-UA*144	0	
Acar-UA*191	0	
Acar-UA*337	0	
Acar-UA*371	0	
Acar-UA*410	0	
Acar-UA*9	1	0.5
Acar-UA*55	1	
Acar-UA*144	1	
Acar-UA*210	0	
Acar-UA*229	0	
Acar-UA*375	0	
Acar-UA*9	1	0.333333
Acar-UA*48	0	
Acar-UA*50	0	
Acar-UA*55	1	
Acar-UA*90	0	
Acar-UA*144	0	
Acar-UA*146	1	
Acar-UA*216	0	
Acar-UA*265	0	
Acar-UA*266	0	
Acar-UA*378	0	
Allele	Unresolved	
-----------------	------------	
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*66	0	
Acar-UA*111	0	
Acar-UA*144	1	
Acar-UA*181	0	
Acar-UA*406	0	
Acar-UA*411	0	

Allele	Unresolved	
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*55	1	
Acar-UA*94	0	
Acar-UA*122	0	
Acar-UA*125	0	
Acar-UA*144	1	
Acar-UA*304	0	
Acar-UA*405	0	
Acar-UA*409	0	
Acar-UA*413	0	
Allele	Acar-HPLT*103	Prop. unresolved alleles
--------------	---------------	--------------------------
	Acar-UA*4	1
	Acar-UA*6	0
	Acar-UA*8	0
	Acar-UA*9	1
	Acar-UA*11	0
	Acar-UA*55	0
	Acar-UA*73	0
	Acar-UA*144	1
	Acar-UA*156	0
	Acar-HPLT*104	0.222222
	Acar-UA*4	1
	Acar-UA*9	0
	Acar-UA*31	0
	Acar-UA*48	0
	Acar-UA*109	0
	Acar-UA*144	1
	Acar-UA*241	0
	Acar-UA*330	0
	Acar-UA*400	0
	Acar-HPLT*105	0.5
	Acar-UA*4	1
	Acar-UA*9	1
	Acar-UA*40	0
	Acar-UA*55	1
	Acar-UA*144	1
	Acar-UA*191	0
	Acar-UA*337	0
	Acar-UA*371	0
	Acar-UA*410	0
	Acar-HPLT*106	0.25
	Acar-UA*4	1
	Acar-UA*9	1
	Acar-UA*40	0
	Acar-UA*55	1
	Acar-UA*91	0
	Acar-UA*144	0
	Acar-UA*191	0
	Acar-UA*281	0
	Acar-UA*290	0
	Acar-UA*310	0
	Acar-UA*380	0
	Acar-UA*384	0
Allele	Unresolved	
-----------	------------	
Acar-UA*4	1	
Acar-UA*9	1	
Acar-UA*33	0	
Acar-UA*48	1	
Acar-UA*55	1	
Acar-UA*122	0	
Acar-UA*144	0	
Acar-UA*163	0	
Acar-UA*277	0	
Acar-UA*384	0	

	Prop. unresolved alleles
Acar-HPLT*107	0.4