ON SYMMETRIES IN THE THEORY OF FINITE RANK SINGULAR PERTURBATIONS

SEppo Hassi and Sergii Kuzhel

Abstract. For a nonnegative self-adjoint operator \(A_0 \) acting on a Hilbert space \(\mathcal{H} \) singular perturbations of the form \(A_0 + V \), \(V = \sum_{i,j=1}^{n} b_{ij} < \psi_j, \cdot > \psi_i \) are studied under some additional requirements of symmetry imposed on the initial operator \(A_0 \) and the singular elements \(\psi_j \). A concept of symmetry is defined by means of a one-parameter family of unitary operators \(\mathcal{U} \) that is motivated by results due to R. S. Phillips. The abstract framework to study singular perturbations with symmetries developed in the paper allows one to incorporate physically meaningful connections between singular potentials \(V \) and the corresponding self-adjoint realizations of \(A_0 + V \). The results are applied for the investigation of singular perturbations of the Schrödinger operator in \(L_2(\mathbb{R}^3) \) and for the study of a (fractional) \(p \)-adic Schrödinger type operator with point interactions.

1. Introduction

Let \(A_0 \) be an unbounded nonnegative self-adjoint operator acting on a Hilbert space \(\mathcal{H} \) and let \(\mathcal{H}_2(A_0) \subset \mathcal{H}_1(A_0) \subset \mathcal{H} \subset \mathcal{H}_{-1}(A_0) \subset \mathcal{H}_{-2}(A_0) \) be the standard scale of Hilbert spaces associated with \(A_0 \). More precisely,

\[
\mathcal{H}_k(A_0) = \mathcal{D}(A_0^{k/2}), \quad k = 1, 2, \tag{1.1}
\]

equipped with the norm \(\|u\|_k = \|(A_0 + I)^{k/2}u\| \). The dual spaces \(\mathcal{H}_{-k}(A_0) \) can be defined as the completions of \(\mathcal{H}_k \) with respect to the norms \(\|u\|_{-k} = \|(A_0 + I)^{-k/2}u\| \) (\(u \in \mathcal{H} \)). The resolvent operator \((A_0 + I)^{-1} \) can be continuously extended to an isometric mapping \((A_0 + I)^{-1} \) from \(\mathcal{H}_{-2}(A_0) \) onto \(\mathcal{H} \) and the relation

\[
< \psi, u >= ((A_0 + I)u, (A_0 + I)^{-1}\psi), \quad u \in \mathcal{H}_2(A_0) \tag{1.2}
\]

enables one to identify the elements \(\psi \in \mathcal{H}_{-2}(A_0) \) as linear functionals on \(\mathcal{H}_2(A_0) \).

Consider the heuristic expression

\[
A_0 + \sum_{i,j=1}^{n} b_{ij} < \psi_j, \cdot > \psi_i, \quad b_{ij} \in \mathbb{C}, \quad n \in \mathbb{N}, \tag{1.3}
\]

where elements \(\psi_j \) (\(1 \leq j \leq n \)) form a linearly independent system in \(\mathcal{H}_{-2}(A_0) \). In what follows it is supposed that the linear span \(\mathcal{X} \) of \(\{\psi_j\}_{j=1}^{n} \) satisfies the condition \(\mathcal{X} \cap \mathcal{H} = \{0\} \), i.e., elements \(\psi_j \) are \(\mathcal{H} \)-independent. In this case, the perturbation \(V = \sum_{i,j=1}^{n} b_{ij} < \psi_j, \cdot > \psi_i \) is said to be singular and the formula

\[
A_{\text{sym}} = A_0 \upharpoonright \mathcal{D}(A_{\text{sym}}), \quad \mathcal{D}(A_{\text{sym}}) = \{ u \in \mathcal{D}(A_0) : < \psi_j, u > = 0, \quad 1 \leq j \leq n \} \tag{1.4}
\]

2000 Mathematics Subject Classification. Primary 47A55, 47B25; Secondary 47A57, 81Q15.

Key words and phrases. Self-adjoint operator, singular perturbation with symmetries, Friedrichs and Krein-von Neumann extensions, scaling transformation, \(p \)-adic analysis.
determines a closed densely defined symmetric operator in H.

In the theory of singular perturbations, cf. e.g. [3, 4, 23], each intermediate extension A of A_{sym}, i.e., $A_{\text{sym}} \subset A \subset A_{\text{sym}}^*$, can be viewed to be singularly perturbed with respect to A_0 and, in general, such an extension can be regarded as an operator-realization of (1.3) in H. In this context, the natural question arises whether and how one could establish a physically meaningful correspondence between the parameters b_{ij} of the singular potential V and the intermediate extensions of A_{sym}. The investigation of this problem is one of goals of the present paper. In the approach developed in [4, 5] one considers an operator realization A of (1.3) by setting

$$A = \mathbb{A}_R \mid \mathcal{D}(A), \quad \mathcal{D}(A) = \{ f \in \mathcal{D}(A_{\text{sym}}^*) : \mathbb{A}_R f \in H \},$$

where

$$\mathbb{A}_R = A_0 + \sum_{i,j=1}^{n} b_{ij} < \psi_j^{\text{ex}}, \cdot > \psi_i$$

(1.6)

is seen as a regularization of (1.3).

Formula (1.6) involves a construction of the extended functionals $< \psi_j^{\text{ex}}, \cdot >$ defined on $\mathcal{D}(A_{\text{sym}}^*)$. These functionals are uniquely determined by the choice of a Hermitian matrix $\mathbf{R} = (r_{jp})_{j,p=1}^{n}$. Since for elements $\psi \in \mathcal{X} \cap H^{-1}(A_0)$ the functionals $< \psi, \cdot >$ admit extensions by continuity onto $\mathcal{H}_1(A_0) \cap \mathcal{D}(A_{\text{sym}}^*)$, a lot of natural restrictions appears in the choice of \mathbf{R}. For their preservation the concept of admissible matrices \mathbf{R} for the regularization of (1.3) has been introduced in [5, Definition 3.1.2]. However, this definition involves certain spectral measures and, in what follows, their calculation will be avoided. In fact, an equivalent concept of admissible operators is introduced in the form convenient for the further studies in the present paper.

If the singular potential V in (1.3) is not form-bounded (i.e., $\mathcal{X} \not\subset H^{-1}(A_0)$), then an admissible operator cannot be determined uniquely and one needs to impose some extra assumptions to achieve the uniqueness. For instance, in many applications, the condition of extremality [3, 10] allows one to select a unique admissible operator (see Theorem 3.11). It should be noted that the concept of extremality is physically reasonable. For example, extremal operators determine free evolutions in the Lax–Phillips scattering theory [31].

Another approach inspired by [3, 5, 30] deals with the preservation of initially existing symmetries of singular elements ψ_j in the definition of the extended functionals ψ_j^{ex}. To study this problem in an abstract framework, one needs to define the notion of symmetry for the unperturbed operator A_0 and for the singular elements ψ_j in (1.3). Generalizing the ideas suggested in [4, 26, 36], the required definitions will be formulated here as follows:

Let \mathcal{T} be a subset of the real line \mathbb{R} and let $\mathcal{U} = \{ U_t \}_{t \in \mathcal{T}}$ be a one-parameter family of unitary operators acting on H with the following property:

$$U_t \in \mathcal{U} \iff U_t^* \in \mathcal{U}$$

(1.7)

Definition 1.1. [20] A linear operator $A(\neq 0)$ acting in H is said to be $p(t)$-homogeneous with respect to \mathcal{U} if there exists a real function $p(t)$ defined on \mathcal{T} such that

$$U_t A = p(t) A U_t, \quad \forall t \in \mathcal{T}.$$

(1.8)
In other words, the set \mathcal{U} determines the structure of a symmetry and the property of A to be $p(t)$-homogeneous with respect to \mathcal{U} means that A possesses a certain symmetry with respect to \mathcal{U}.

Definition 1.2. [20] A singular element $\psi \in \mathcal{H}_{-2}(A_0) \setminus \mathcal{H}$ is said to be $\xi(t)$-invariant with respect to \mathcal{U} if there exists a real function $\xi(t)$ defined on \mathbb{T} such that

$$\mathcal{U}_t \psi = \xi(t) \psi, \quad \forall t \in \mathbb{T}, \quad (1.9)$$

where \mathcal{U}_t is the continuation of \mathcal{U} onto $\mathcal{H}_{-2}(A_0)$ (see Section 4 for details).

The main aim of the paper is to study (1.3) assuming that the initial operator A_0 is $p(t)$-homogeneous and the singular elements ψ_j are $\xi_j(t)$-invariant with respect to \mathcal{U}. It appears that the preservation of $\xi_j(t)$-invariance for the extended functionals $\langle \psi_j^{\text{ex}}, \cdot \rangle$ is equivalent to the $p(t)$-homogeneity of the operator \tilde{A} which is used for the regularization of (1.3) (Theorem 4.8). Combining this result with the complete description of admissible operators (Theorem 5.6) allows one to select a unique admissible operator by imposing the condition of $p(t)$-homogeneity (Theorems 4.13, 4.14). One of interesting properties discovered here is the possibility to get the Friedrichs and the Krein-von Neumann extension (and more generally, all $p(t)$-homogeneous self-adjoint extensions transversal to A_0) as solutions of a system of equations involving the functions $p(t)$ and $\xi_j(t)$ (Corollary 4.10, Proposition 4.17).

The choice of a $p(t)$-homogeneous admissible operator for the regularization of (1.3) immediately gives a new specific relation for the corresponding Weyl function $M(z)$ (Theorem 5.5) and enables one to establish simple relations involving the functions $p(t)$ and $\xi_j(t)$, and the properties of operator realizations of (1.3) (Theorem 5.1, Proposition 5.3).

It is well known, see e.g. [2, 13, 25, 30] that the Schrödinger operators perturbed by potentials homogeneous with respect to a certain set \mathcal{U} of unitary operators might possess a lot of interesting properties. Obviously, such properties became even more meaningful if, in addition to (1.7), the set \mathcal{U} has further algebraic group properties. In particular, if \mathcal{U} is the set of scaling transformations, then the additional multiplicative property $U_1 U_2 = U_2 U_1 = U_{12}$ of it elements enables one to get simple solutions of many problems (like description of nonnegative operator realizations, spectral properties, completeness of the wave operators, explicit form of the scattering matrix) for Schrödinger operators with singular potentials $\xi(t)$-invariant with respect to scaling transformations in \mathbb{R}^3 (Section 6).

The abstract approach to the notion of symmetry developed in the paper can be also useful for the study of supersingular perturbations [30], for applications in the non-Archimedean analysis (Example 5.5), and for the investigation of Weyl families of boundary relations [15].

In a very recent paper [38], K. A. Makarov and E. Tsekanovskii considered the so-called μ-scale invariant operators, which can be seen as a special case of $p(t)$-homogeneous operators in the present paper. The main result of [38] is intimately related to [20, Lemma 4.5], see also Section 4 below.

Throughout the paper $\mathcal{D}(A)$, $\mathcal{R}(A)$, and ker A denote the domain, the range, and the null-space of a linear operator A, respectively, while $A \upharpoonright \mathcal{D}$ stands for the restriction of A to the set \mathcal{D}.

ON SYMMETRIES IN THE THEORY OF FINITE RANK SINGULAR PERTURBATIONS 3
2. Preliminaries on Operator Realizations

Following [4, 5] an operator realization \(A \) of (1.3) in \(\mathcal{H} \) are defined by (1.5), (1.6). To clarify the meaning of \(\mathcal{H}_0 \) and \(\psi_j^{ex} \) in (1.6), observe that \(\mathcal{H}_0 \) stands for the continuation of \(A_0 \) as a bounded linear operator acting from \(\mathcal{H}_1 \) into \(\mathcal{H}_2(A_0) \). Using the extended resolvent \((A_0 + I)^{-1}\) this continuation can be determined also by the formula

\[
A_0f = [(A_0 + I)^{-1}]^{-1}f - f, \quad \forall f \in \mathcal{H}.
\]

The linear functionals \(<\psi_j^{ex}, \cdot>\) are extensions of \(<\psi_j, \cdot>\) onto \(\mathcal{D}(A_{sym}^*) \). Using the well-known relation

\[
\mathcal{D}(A_{sym}^*) = \mathcal{D}(A_0) \perp \mathcal{H}, \quad \text{where} \quad \mathcal{H} = \ker (A_{sym}^* + I),
\]

one concludes that \(<\psi_j, \cdot>\) can be extended onto \(\mathcal{D}(A_{sym}^*) \) by fixing their values on \(\mathcal{H} \). It follows from (1.2) and (1.4) that the vectors

\[
h_j = (A_0 + I)^{-1}\psi_j, \quad j = 1, \ldots, n,
\]

form a basis of the defect subspace \(\mathcal{H} = \ker (A_{sym}^* + I) \) of \(A_{sym} \). Hence, the functionals \(<\psi_j^{ex}, \cdot>\) are well-defined by the formula

\[
<\psi_j^{ex}, f> = <\psi_j, u> + \sum_{p=1}^{n} \alpha_p r_{jp}
\]

for all elements \(f = u + \sum_{p=1}^{n} \alpha_p h_p \in \mathcal{D}(A_{sym}^*) \) \((u \in \mathcal{D}(A_0), \alpha_p \in \mathbb{C})\) if the entries \(r_{jp} = <\psi_j, (A_0 + I)^{-1}\psi_p> = <\psi_j, h_p> \) of the matrix \(R = (r_{jp})_{j,p=1}^{n} \) are known.

If all \(\psi_j \in \mathcal{H}_1(A_0) \), then \(r_{jp} \) are well defined and \(R \) is a Hermitian matrix [4]. Otherwise, the matrix \(R \) is not uniquely determined. In what follows, it is assumed that \(R \) is already chosen as a Hermitian matrix. The problem of an appropriate choice of \(R \) will be discussed in Section 4.

In order to describe an operator realization \(A \) of (1.3) in terms of parameters \(b_{ij} \) of the singular perturbation \(V \), the method of boundary triplets (see [16, 18] and the references therein) is now incorporated.

Definition 2.1. [18] A triplet \((N, \Gamma_0, \Gamma_1)\), where \(N \) is an auxiliary Hilbert space and \(\Gamma_0, \Gamma_1 \) are linear mappings of \(\mathcal{D}(A_{sym}^*) \) into \(N \), is called a boundary triplet of \(A_{sym}^* \) if \((A_{sym}^* f, g) - (f, A_{sym}^* g) = (\Gamma_1 f, \Gamma_0 g)N - (\Gamma_0 f, \Gamma_1 g)N \) for all \(f, g \in \mathcal{D}(A_{sym}^*) \) and the mapping \((\Gamma_0, \Gamma_1) : \mathcal{D}(A_{sym}^*) \rightarrow N \oplus N \) is surjective.

The next two results (Lemma 2.2 and Theorem 2.3) are known (see e.g. [6, 14]). For the convenience of the reader some principal steps of their proofs are repeated.

Lemma 2.2. The triplet \((\mathbb{C}^n, \Gamma_0, \Gamma_1)\), where the linear operators \(\Gamma_1 : \mathcal{D}(A_{sym}^*) \rightarrow \mathbb{C}^n \) are defined by the formulas

\[
\Gamma_0 f = \begin{pmatrix} <\psi_1^{ex}, f> \\ \vdots \\ <\psi_{n}^{ex}, f> \end{pmatrix}, \quad \Gamma_1 f = -\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix},
\]

where \(f = u + \sum_{j=1}^{n} \alpha_j h_j \in \mathcal{D}(A_{sym}^*) \) \((u \in \mathcal{D}(A_0), \alpha_j \in \mathbb{C})\) and \(<\psi_j^{ex}, f>\) is defined by (2.4), forms a boundary triplet for \(A_{sym}^* \).
Theorem 2.3. The operator realization only if the corresponding matrix of coefficients
Therefore, the operator realization
A
triplet for

A
V
A
f ∈ D
f
sym
f
sym
\begin{equation}
\hat{\Gamma}_0 f = \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}, \quad \hat{\Gamma}_1 f = \begin{pmatrix}
< \psi_1, u > \\
\vdots \\
< \psi_n, u >
\end{pmatrix}, \quad f = u + \sum_{j=1}^{\infty} \alpha_j h_j \tag{2.6}
\end{equation}

satisfy the conditions of Definition 2.1. Thus \((C^n, \hat{\Gamma}_0, \hat{\Gamma}_1)\) is a boundary triplet for
\(A^{\text{sym}}\). It follows from (2.4), (2.5), and (2.6) that
\(\Gamma_0 f = \hat{\Gamma}_1 f + f \Gamma_0 f, \quad \Gamma_1 f = -\hat{\Gamma}_0 f, \quad f \in D(A^{\text{sym}}). \tag{2.7}
\)
These relations between \(\Gamma_i\) and \(\hat{\Gamma}_i\) and the fact that \((C^n, \hat{\Gamma}_0, \hat{\Gamma}_1)\) is a boundary triplet for \(A^{\text{sym}}\) imply that \((C^n, \Gamma_0, \Gamma_1)\) also is a boundary triplet for \(A^{\text{sym}}\). □

Theorem 2.3. The operator realization \(A\) of \((\cdot, \cdot)_D\) is an intermediate extension of
\(A^{\text{sym}}\) which coincides with the operator
\(A_B = A^{\text{sym}} \upharpoonright D(A_B), \quad D(A_B) = \{ f \in D(A^{\text{sym}}) : B \Gamma_0 f = \Gamma_1 f \}, \tag{2.8}
\)
where \(\Gamma_i\) are defined by (2.4) and \(B = (b_{ij})_{i,j=1}^{n} \) is the coefficient matrix of the
singular perturbation \(V = \sum_{i,j=1}^{n} b_{ij} < \psi_j, \cdot > \psi_i\) in (1.3).

If \(V\) is symmetric, i.e., \(< Vu, v > = < u, Vv >\) \((u, v \in H_2(A_0))\), then the corre-
sponding operator realization \(A_B\) becomes self-adjoint.

Proof. It follows from (2.1) that \(A_0 h_j = \psi_j - h_j\) for all \(h_j\) defined by (2.3). Rewriting
\(f \in D(A^{\text{sym}})\) in the form \(f = u + \sum_{i=1}^{n} \alpha_i h_i\), where \(u \in D(A_0)\), \(h_i \in H\), \(\alpha_i \in C\),
and using (1.6) and (2.6) leads to
\[A_B f = A^{\text{sym}} f + (\psi_1, \ldots, \psi_n)(B \Gamma_0 f - \Gamma_1 f).\]
This equality and (1.5) show that \(f \in D(A)\) if and only if \(B \Gamma_0 f - \Gamma_1 f = 0\).
Therefore, the operator realization \(A\) of (1.3) is an intermediate extension of \(A^{\text{sym}}\) and \(A\) coincides with the operator \(A_B\) defined by (2.8).

To complete the proof it suffices to finally observe that \(V\) is symmetric if and only if the corresponding matrix of coefficients \(B = (b_{ij})_{i,j=1}^{n}\) is Hermitian. In this case (2.8) immediately implies the self-adjointness of \(A_B\). □

Remark 2.4. Another approach, also involving the use of boundary triplets, to
determine self-adjoint operator realizations of finite rank singular perturbations of
the form \(A_0 + G \alpha G^*\), where \(G\) is an injective linear mapping from \(C^n\) to \(H_{-k}(A_0)\)
was presented in [14, Section 4].

3. Admissible matrices and admissible operators

There are certain natural requirements for the determination of the entries \(r_{jp}\)
of the matrix \(R\) in (2.4). Indeed, if the linear span \(X\) of \(\{\psi_j\}_{j=1}^{n}\) has a nonzero
intersection with \(H_{-1}(A_0)\), then for any \(\psi \in X \cap H_{-1}(A_0)\), the corresponding
element \(h = (A_0 + I)^{-1}\psi\) belongs to \(H_1(A_0)\) and, hence, the functional \(< \psi, \cdot >\)
defined by (2.2) admits the following extension by continuity onto \(H_1(A_0)\):
\[< \psi, f > = ((A_0 + I)^{1/2} f, (A_0 + I)^{1/2} h), \quad \forall f \in H_1(A_0).\]
To preserve such natural extensions of $<\psi, \cdot>$ onto $\mathcal{D}(A^*_{\text{sym}}) \cap \mathcal{F}_1(A_0)$ in the definition (2.4), the concept of admissible matrices R as introduced in [5] is used.

Definition 3.1. A Hermitian matrix $R = (r_{jp})_{j,p=1}^n$ is called admissible for the regularization \mathcal{A}_R of (1.3) if its entries r_{jp} are chosen in such a way that if a singular element $\psi = c_1\psi_1 + \cdots + c_n\psi_n$ belongs to $\mathcal{F}_1(A_0)$, then for all $f \in \mathcal{D}(A^*_{\text{sym}}) \cap \mathcal{F}_1(A_0)$

$$<\psi_{\text{ex}}, f> = ((A_0 + I)^{1/2}f, (A_0 + I)^{1/2}h) = \sum_{j=1}^n c_j <\psi_{\text{ex}}^j, f>, \quad (3.1)$$

where $<\psi_{\text{ex}}^j, f>$ are defined by (2.4) and $h = (\mathcal{A}_0 + I)^{-1}\psi$.

It is convenient to describe the set of admissible matrices in terms of a certain associated operators. It follows from relations (2.4) that the choice of a matrix R in (2.4) is equivalent to the choice of an operator \tilde{A} defined by

$$\tilde{A} := A^*_{\text{sym}} | \mathcal{D}(\tilde{A}), \quad \mathcal{D}(\tilde{A}) = \ker \Gamma_0 = \{ f \in \mathcal{D}(A^*_{\text{sym}}) : -\Gamma_0 f = \tilde{\Gamma}_1 f \}. \quad (3.2)$$

Definition 3.2. An operator \tilde{A} is called admissible for the regularization of (1.3) if \tilde{A} is defined by (3.2) with an admissible matrix R.

Since R is Hermitian, Definition 3.2 and the general theory of boundary triplets [16] imply that an admissible operator \tilde{A} is a self-adjoint extension of A_{sym}. In general, \tilde{A} need not be nonnegative. It is nonnegative if and only if

$$(A_F + I)^{-1} \leq (\tilde{A} + I)^{-1} \leq (A_N + I)^{-1}, \quad (3.3)$$

where A_F is the Friedrichs extension and A_N is the Krein-von Neumann extension of A_{sym} (see e.g., [21] and the references therein).

The next lemma gives some useful facts concerning the (unperturbed) nonnegative self-adjoint operator A_0 and its relation to the Friedrichs extension A_F of A_{sym}. They can be considered to be well known from the extension theory of nonnegative operators, therefore details for the present formulations with their proofs are left to the reader; see e.g., [8, 17, 21, 22, 29, 32].

Lemma 3.3. Let $C = (A_0 + I)^{-1} - (A_F + I)^{-1}$ and let $S_0 = A_0 \cap A_F$. Moreover, denote $\mathcal{H} = \ker (A^*_{\text{sym}} + I)$ and $\mathcal{H}' = \ker (S_0^* + I)$. Then:

(i) $\mathcal{R}(C) = \mathcal{H}';$
(ii) $\ker C = \mathcal{R}(S_0 + I) = \mathcal{R}(A_{\text{sym}} + I) \oplus \mathcal{H}'$, where $\mathcal{H}' = \mathcal{H} \ominus \mathcal{H}';$
(iii) $\mathcal{R}(C^{1/2}) = \mathcal{D}(A_0^{1/2}) \cap \mathcal{H} = \mathcal{H}';$
(iv) $\mathcal{D}(A_0^{1/2}) = \mathcal{D}(A_F^{1/2}) \ominus \mathcal{R}(C^{1/2}).$

Using the spaces introduced in (1.1) and (iii) in Lemma 3.3 one can rewrite the decomposition in part (iv) of Lemma 3.3 as follows:

$$\mathcal{F}_1(A_0) = \mathcal{D} \oplus_1 \mathcal{H}', \quad \mathcal{H}' = \mathcal{H} \cap \mathcal{F}_1(A_0) = (\mathcal{A}_0 + I)^{-1}[\mathcal{X} \cap \mathcal{F}_1(A_0)], \quad (3.4)$$

where $\mathcal{D} (= \mathcal{D}(A_F^{1/2}))$ stands for the completion of $\mathcal{D}(A_{\text{sym}})$ in $\mathcal{F}_1(A_0)$, \oplus_1 denotes the orthogonal sum in $\mathcal{F}_1(A_0)$, and \mathcal{X} is the linear span of $\{\psi_j\}_{j=1}^n$.

The set of all admissible operators can now be characterized in 'coordinate free' manner as follows.
Theorem 3.4. A self-adjoint extension \(\tilde{A} \) of \(A_{\text{sym}} \) is an admissible operator for the regularization of (1.3) if and only if \(\tilde{A} \) is transversal to \(A_0 \) (i.e., \(\mathcal{D}(A_0) + \mathcal{D}(\tilde{A}) = \mathcal{D}(A^*_{\text{sym}}) \)) and

\[
\mathcal{D}(\tilde{A}) \cap \mathcal{S}_1(A_0) \subset \mathcal{D}(A_F),
\]

where \(A_F \) is the Friedrichs extension of \(A_{\text{sym}} \).

Proof. Assume that the self-adjoint extension \(\tilde{A} \) of \(A_{\text{sym}} \) is transversal to \(A_0 \) and it satisfies the condition (3.5). In view of (2.6), \(\mathcal{D}(A_0) = \ker \tilde{\Gamma}_0 \). Therefore, the transversality of \(\tilde{A} \) and \(A_0 \) is equivalent to the representation of \(\mathcal{D}(\tilde{A}) \) in the form (3.2) with an \(n \times n \) Hermitian matrix \(R \) (here \(A_{\text{sym}} \) has finite defect numbers \((n, n) \)), cf. [17] Proposition 1.4.

Since

\[
\mathcal{D}(A_F) = \mathcal{D} \cap \mathcal{D}(A^*_{\text{sym}}),
\]

the decomposition (3.1) shows that the condition (3.5) is equivalent to the relation

\[
((A_0 + I)^{1/2} \tilde{f}, (A_0 + I)^{1/2} h) = 0, \quad \forall \tilde{f} \in \mathcal{D}(\tilde{A}) \cap \mathcal{S}_1(A_0), \quad \forall h \in \mathcal{H}'.
\]

Now it is shown that \(R \) is an admissible matrix in the sense of Definition 3.1 by verifying (3.1) for all \(\psi \in \mathcal{X} \cap \mathcal{S}_2(A_0) \). Observe, that the mapping \(\Gamma_0 \) defined in Lemma [2.2] see also (2.7), determines the extended functionals \(\langle \psi^{\text{ex}}, f \rangle \) in (2.4).

The transversality of \(\tilde{A} \) and \(A_0 \) yields the following decomposition for the elements \(f \in \mathcal{D}(A^*_{\text{sym}}) \):

\[
f = \tilde{f} + u,
\]

where \(\tilde{f} \in \mathcal{D}(\tilde{A}) \) and \(u \in \mathcal{D}(A_0) \) are uniquely determined modulo \(\mathcal{D}(A_{\text{sym}}) \). If

\[
\psi = \sum_{j=1}^n c_j \psi_j \in \mathcal{S}_2(A_0),
\]

then by (3.2) \(h = (A_0 + I)^{-1} \psi \in \mathcal{H}' \). Now with \(f \in \mathcal{D}(A^*_{\text{sym}}) \cap \mathcal{S}_1(A_0) \) decomposed as in (3.8) one obtains:

\[
\langle \psi^{\text{ex}}, f \rangle = \sum_{j=1}^n c_j \langle \psi_j^{\text{ex}}, f \rangle = c \Gamma_0 f = \langle c E \Gamma_0 f, h \rangle
\]

where \(c := (c_1, \ldots, c_n) \). On the other hand, it follows from (3.7) that

\[
((A_0 + I)^{1/2} \tilde{f}, (A_0 + I)^{1/2} h) = ((A_0 + I)^{1/2} (\tilde{f} + u), (A_0 + I)^{1/2} h) = ((A_0 + I)u, h),
\]

which combined with (3.9) proves (3.1). Thus, \(R \) is an admissible matrix and \(\tilde{A} \) is an admissible operator.

Conversely, assume that \(\tilde{A} \) is an admissible operator. Then the relation (3.2) ensures the transversality of \(\tilde{A} \) and \(A_0 \) and \(R \) determines the extended functionals \(\langle \psi_j^{\text{ex}}, \cdot \rangle \) via (2.4). Reasoning as in (3.9) it is seen that (3.1) implies

\[
0 = ((A_0 + I)^{1/2} \tilde{f}, (A_0 + I)^{1/2} h) - \langle \psi^{\text{ex}}, f \rangle = ((A_0 + I)^{1/2} \tilde{f}, (A_0 + I)^{1/2} h)
\]

for all \(f \in \mathcal{D}(A^*_{\text{sym}}) \cap \mathcal{S}_1(A_0) \) and \(h \in \mathcal{H}' \). Thus, the relation (3.7) and, equivalently, the relation (3.5) is satisfied. Theorem 3.4 is proved.

For some further study of admissible operators the following lemma is needed.
Lemma 3.5. Let \(\tilde{\mathcal{H}} \) be a subspace of \(\mathcal{H} = \ker (A_{\text{sym}}^* + I) \). Then the symmetric operator
\[
S = A_F \upharpoonright_{\mathcal{D}(S)}, \quad \mathcal{D}(S) = (A_F + I)^{-1}[\mathcal{R}(A_{\text{sym}} + I) \oplus \tilde{\mathcal{H}}]
\] (3.10)
satisfies the relations
\[
\mathcal{D}(S) \cap \mathcal{D}(A_0) = \mathcal{D}(A_{\text{sym}}) \quad \text{and} \quad \mathcal{D}(S) + \mathcal{D}(A_0) = \mathcal{D}(A_F)^{\perp} \mathcal{H}'
\] (3.11)
if and only if
\[
\dim \tilde{\mathcal{H}} = \dim \mathcal{H}' \quad \text{and} \quad \tilde{\mathcal{H}} \cap \mathcal{H}'' = \{0\},
\] (3.12)
where \(\mathcal{H}' = \mathcal{H} \cap \mathcal{F}_1(A_0) \) and \(\mathcal{H}'' = \mathcal{H} \ominus \mathcal{H}' \). In this case, the domain of \(S \) admits the description
\[
\mathcal{D}(S) = \mathcal{D}(A_{\text{sym}}) + \{h' + u : h' \in \mathcal{H}', \ u = u(h')\},
\] (3.13)
where \(u = u(h') \in \mathcal{D}(A_0) \) is (uniquely) determined by \(h' \in \mathcal{H}' \) and satisfies the relation
\[
((A_0 + I)u, h\perp) = \langle \psi, u \rangle > 0, \quad \forall h\perp \in \tilde{\mathcal{H}} \ominus \mathcal{H}, \quad \psi = (A_0 + I)h\perp.
\] (3.14)

Proof. Denote \(S_0 = A_F \cap A_0 \). By Lemma 3.3
\[
\mathcal{D}(S_0) = (A_0 + I)^{-1}[\mathcal{R}(A_{\text{sym}} + I) \oplus (\tilde{\mathcal{H}} \cap \mathcal{H}'')] = (A_F + I)^{-1}[\mathcal{R}(A_{\text{sym}} + I) \oplus \mathcal{H}'],
\] (3.15)
where \(\mathcal{H}' = \mathcal{H} \ominus \mathcal{H}' \). Comparing (3.10) and (3.15), one concludes that
\[
\mathcal{D}(S) \cap \mathcal{D}(A_0) = \mathcal{D}(S) \cap \mathcal{D}(S_0) = (A_F + I)^{-1}[\mathcal{R}(A_{\text{sym}} + I) \oplus (\tilde{\mathcal{H}} \cap \mathcal{H}'')].
\]
Thus,
\[
\mathcal{D}(S) \cap \mathcal{D}(A_0) = \mathcal{D}(A_{\text{sym}}) \iff \tilde{\mathcal{H}} \cap \mathcal{H}'' = \{0\}.
\]
The relations (3.10) and (3.15) also show that
\[
\mathcal{D}(S) + \mathcal{D}(A_0) = (A_F + I)^{-1}[\mathcal{R}(A_{\text{sym}} + I) \oplus (\tilde{\mathcal{H}} \cap \mathcal{H}'')] \cap (A_0 + I)^{-1}\mathcal{H}'.
\] (3.16)
Here \((A_0 + I)^{-1}\mathcal{H}' \) can be represented as
\[
(A_0 + I)^{-1}\mathcal{H}' = \{ (A_F + I)^{-1}h' + Ch' : h' \in \mathcal{H}' \},
\] (3.17)
where \(C = (A_0 + I)^{-1} - (A_F + I)^{-1} \). It follows from Lemma 3.3 that
\[
\mathcal{R}(C) = \mathcal{H}', \quad \ker C = \text{ran} (A_{\text{sym}} + I) \oplus \mathcal{H}''.
\] (3.18)
Relations (3.10), (3.17), and (3.18) show that the second identity in (3.11) holds if and only if \(\tilde{\mathcal{H}} \cap \mathcal{H}'' = \mathcal{H} \). Obviously, this representation is possible only in the case where \(\dim \tilde{\mathcal{H}} = \dim \mathcal{H}' \).

The definition (3.10) shows that \(\mathcal{D}(S) = \mathcal{D}(A_{\text{sym}}) + (A_F + I)^{-1}\tilde{\mathcal{H}}, \) where
\[
(A_F + I)^{-1}\tilde{\mathcal{H}} = \{ (A_0 + I)^{-1}h - Ch : h \in \tilde{\mathcal{H}} \}.
\]
Since \(\tilde{\mathcal{H}} \) satisfies (3.12), it follows from (3.18) that \(C\tilde{\mathcal{H}} = \mathcal{H}' \). Now, setting \(u = (A_0 + I)^{-1}h \) and \(h' = -Ch \), one obtains (3.13) and (3.14). Note that the preimage \(h = C^{-1}h' \in \tilde{\mathcal{H}} \), and therefore also \(u \), is uniquely determined by \(h' \in \mathcal{H}' \). \(\square \)

The next theorem gives a description of all admissible operators.

Theorem 3.6. Let \(\tilde{A} \) be a self-adjoint extension of \(A_{\text{sym}} \) and let the symmetric operator \(S = \tilde{A} \cap A_F \) be represented as in (3.10) with some subspace \(\mathcal{H} \) of \(\mathcal{H} \). Then the following statements are equivalent:

(i) \(\tilde{A} \) is an admissible operator for the regularization of (1.3);
(ii) \tilde{A} is a self-adjoint extension of S transversal to the Friedrichs extension \mathcal{S}_F of S and the subspace \mathcal{H} satisfies the conditions in (3.12).

Proof. Let \tilde{A} be an admissible operator. Since \tilde{A} and A_0 are transversal, one has

$$\mathcal{D}(\tilde{A}) \cap \mathcal{D}(A_0) = \mathcal{D}(A_{\text{sym}}), \quad \mathcal{D}(\tilde{A}) + \mathcal{D}(A_0) = \mathcal{D}(A_F) + \mathcal{H} = \mathcal{D}(A_{\text{sym}}').$$

The condition (3.5) is equivalent to

$$\mathcal{D}(\tilde{A}) \cap \mathcal{S}_1(A_0) = \mathcal{D}(\tilde{A}) \cap \mathcal{D}(A_F) = \mathcal{D}(\tilde{A} \cap A_F).$$

Thus, intersecting all parts of (3.19) with $\mathcal{S}_1(A_0)$ one concludes that the relations (3.11) are true for $S = \tilde{A} \cap A_F$. By Lemma 3.5, the subspace \tilde{H} satisfies (3.12). Furthermore, since the Friedrichs extension S_F of S coincides with A_F, one gets $\mathcal{D}(S_F) \cap \mathcal{D}(\tilde{A}) = \mathcal{D}(A_F) \cap \mathcal{D}(\tilde{A}) = \mathcal{D}(S)$. This implies the transversality of S_F and \tilde{A}. The implication (i) \Rightarrow (ii) is proved.

Now, assume that (ii) is satisfied. Since $S \supset A_{\text{sym}}$, the operator \tilde{A} is a self-adjoint extension of A_{sym}. It follows from (3.10) that $\ker (S^* + I) = \mathcal{H} \cap \tilde{H}$ and hence, $\mathcal{D}(S^*) = \mathcal{D}(S_F) + \ker (S^* + I) = \mathcal{D}(A_F) + (\mathcal{H} \cap \tilde{H})$. On the other hand, the transversality of S_F and \tilde{A} gives $\mathcal{D}(S^*) = \mathcal{D}(A_F) + \mathcal{D}(\tilde{A})$. Therefore, $\mathcal{D}(A_F) + \mathcal{D}(\tilde{A}) = \mathcal{D}(A_F) + (\mathcal{H} \cap \tilde{H})$. This equality and the second relation in (3.11) yield

$$\mathcal{D}(A_0) + \mathcal{D}(\tilde{A}) = \mathcal{D}(S) + \mathcal{D}(A_0) + \mathcal{D}(\tilde{A}) = (\mathcal{D}(A_F) + \mathcal{H}') + \mathcal{D}(\tilde{A}) = (\mathcal{D}(A_F) + \mathcal{H}') + (\mathcal{H} \cap \tilde{H}).$$

The conditions (3.12) imply that $\mathcal{H}' + (\mathcal{H} \cap \tilde{H}) = \mathcal{H}$. Hence, (3.20) shows that $\mathcal{D}(A_0) + \mathcal{D}(\tilde{A}) = \mathcal{D}(A_F) + \mathcal{H} = \mathcal{D}(A_{\text{sym}}')$, i.e., \tilde{A} and A_0 are transversal. Furthermore, by Lemma 3.3 see also (3.6), $\mathcal{D}(A_F) + \mathcal{H}' = A_1(A_0) \cap \mathcal{D}(A_{\text{sym}})$. Now, employing the second relation in (3.11) one obtains

$$\mathcal{D}(\tilde{A}) \cap A_1(A_0) = \mathcal{D}(\tilde{A}) \cap (\mathcal{D}(S) + \mathcal{D}(A_0)) = \mathcal{D}(S) + \mathcal{D}(A_{\text{sym}}) = \mathcal{D}(S) \subset \mathcal{D}(A_F).$$

According to Theorem 3.6 this means that \tilde{A} is an admissible operator for the regularization of (1.3). Thus, the implication (ii) \Rightarrow (i) is proved.

It follows from Theorem 3.6 that there is at least one admissible operator for the regularization of (1.3).

Corollary 3.7. If all the elements ψ_j in (1.3) belong to $A_1(A_0)$, then there exists a unique admissible operator for the regularization of (1.3) and it coincides with the Friedrichs extension A_F of A_{sym}.

Proof. Assume that $\psi_j \in A_1(A_0)$ for all $j = 1, \ldots, n$. Then $\mathcal{D}(A_{\text{sym}}') \subset A_1(A_0)$ and $\mathcal{H}' = \mathcal{H}$. Let \tilde{A} be an admissible operator for the regularization of (1.3) and let $S = \tilde{A} \cap A_F$. By Theorem 3.6 the corresponding subspace \tilde{H} satisfies (3.12) in Lemma 3.5 so that $\tilde{H} = \mathcal{H}$. Now (3.10) gives $S = A_F$ and since $S = \tilde{A} \cap A_F$, one concludes that $\tilde{A} = A_F$. This completes the proof.

Corollary 3.8. If all the elements ψ_j in (1.3) are $\mathcal{F}_1(A_0)$-independent (i.e. $\mathcal{X} \cap \mathcal{F}_1(A_0) = \{0\}$), then every self-adjoint extension \tilde{A} of A_{sym} transversal to A_0 is admissible for the regularization of (1.3). The Friedrichs extension of A_{sym} coincides with A_0.
Proof. The condition of $\mathcal{H}_{-1}(A_0)$-independency means that $\mathcal{H}' = \{0\}$. In this case, only the zero subspace $\mathcal{H} = \{0\}$ can satisfy (3.12). The corresponding operator S coincides with A_{sym}. Moreover, since $\mathcal{H}' = \{0\}$, Lemma 3.3 shows that $S_F = A_F = A_0$. Thus, by Theorem 3.6 \tilde{A} is admissible if and only if it is transversal to A_0. □

The properties of admissible operators are closely related to the transversality of the Friedrichs and the Krein-von Neumann extensions of A_{sym}.

Theorem 3.9. There exists a nonnegative admissible operator \tilde{A} for the regularization of (1.3) if and only if the Friedrichs extension A_F and the Krein-von Neumann extension A_N of A_{sym} are transversal.

Proof. Let \tilde{A} be a nonnegative admissible operator. Then \tilde{A} is a nonnegative extension of A_{sym} and therefore $(A + I)^{-1}$ satisfies the inequalities (3.3). Recall that transversality of self-adjoint extensions \tilde{A}_1 and \tilde{A}_2 of A_{sym} is equivalent to

$$[(\tilde{A}_1 + I)^{-1} - (\tilde{A}_2 + I)^{-1}]\mathcal{H} = \mathcal{H}$$

(see e.g. [16]). Hence, if A_F and A_N are not transversal then $(A_F + I)^{-1}h = (A_N + I)^{-1}h$ for some nonzero $h \in \mathcal{H}$. Then nonnegativity of A and A_0 yields $(\tilde{A} + I)^{-1}h = (A_0 + I)^{-1}h$ due to (3.3) (with similar inequalities for A_0), so that

$$[(\tilde{A} + I)^{-1} - (A_0 + I)^{-1}]\mathcal{H} \subset \mathcal{H} \subset \langle h \rangle$$

and by (3.21) \tilde{A} and A_0 cannot be transversal. This is a contradiction to the admissibility of \tilde{A}. Thus A_F and A_N are transversal.

To prove the converse statement assume that A_F and A_N are transversal. Let $\tilde{\mathcal{H}}$ be a subspace of \mathcal{H}, which satisfies (3.12) and let the symmetric operator S be defined by (3.10) in Lemma 3.3. Moreover, let \tilde{A} be the Krein-von Neumann extension of \tilde{A}. Clearly, \tilde{A} is a nonnegative self-adjoint extension of A_{sym}. It remains to prove that the operator \tilde{A} is admissible for the regularization of (1.3). To see this, observe that the Friedrichs extension of S coincides with A_F. Then it follows from [10] Proposition 7.2 that the Friedrichs extension $S_F = A_F$ and the Krein-von Neumann extension \tilde{A} of S are transversal with respect to S. Therefore, by Theorem 3.6 \tilde{A} is an admissible operator. □

Observe that S in Theorem 3.9 is a restriction of the Friedrichs extension A_F of A_{sym}. Since the admissible operator \tilde{A} constructed in Theorem 3.9 is the Krein-von Neumann extension of S it is a consequence of [10] Theorem 6.4 that \tilde{A} is an extremal extension of A_{sym} in the sense of the following definition

Definition 3.10. [9, 10] A self-adjoint extension \tilde{A} of A_{sym} is called extremal if it is nonnegative and satisfies the condition

$$\inf_{u \in \mathcal{D}(A_{\text{sym}})} \langle \tilde{A}(f - u), f - u \rangle = 0 \quad \text{for all} \quad f \in \mathcal{D}(\tilde{A}).$$

Theorem 3.11. Let the Friedrichs extension A_F and the Krein-von Neumann extension A_N of A_{sym} be transversal, and let S be defined by (3.10) and (3.12). Then among all self-adjoint extensions of S there exists a unique extremal admissible operator \tilde{A} for the regularization of (1.3).
Proof. In view of Theorem 3.9 it suffices to show that the Krein-von Neumann extension \tilde{A} of S is the only extremal extension of A_{sym} which is admissible for the regularization of (1.3).

To prove this assume that \tilde{A} is extremal and admissible. Then by [10, Theorem 6.4] \tilde{A} as an extremal extension of A_{sym} is the Krein-von Neumann extension of the symmetric operator $\hat{S} := \tilde{A} \cap A_F$. Moreover, by Theorem 3.9 the admissibility of \tilde{A} means that \hat{S} is determined via (3.10) where the corresponding subspace \hat{H} satisfies (3.12).

Since A is an extension of S, one has $S \subseteq \hat{S}$ or, equivalently, $\hat{H} \subseteq \hat{H}$, where the subspaces \hat{H} and \hat{H} correspond to S and \hat{S} in (3.10). Now the first equality in (3.12) forces that $\hat{H} = \hat{H}$ and hence $S = \hat{S}$. Therefore, $\tilde{A} = \hat{A}$ and this completes the proof. \hfill \square

Remark 3.12. The selection of a self-adjoint operator \tilde{A} transversal to the initial one A_0 (but without the admissibility condition (3.5)) is also a key point of the approach used in [11] to the determination of self-adjoint realizations of a formal expression $A_0 + V$, where a singular perturbation V is assumed to be (in general) an unbounded self-adjoint operator $V : \mathcal{H}_2(A_0) \to \mathcal{H}_{-2}(A_0)$ such that $\ker V$ is dense in \mathcal{H}. In this case, the regularization of $A_0 + V$ takes the form $A_{\mathcal{P},V} = A_0 + V\mathcal{P}$ and it is well defined on the domain $\mathcal{D}(A_{\mathcal{P},V}) = \{ f \in \mathcal{D}(A_{\text{sym}}^*) : \mathcal{P} f \in \mathcal{D}(V) \}$, where \mathcal{P} is the skew projection onto $\mathcal{H}_2(A_0)$ in $\mathcal{D}(A_{\text{sym}}^*)$ that is uniquely determined by the choice of A.

4. Singular perturbations with symmetries and uniqueness of admissible operators

According to (2.4) and (3.2) the regularization $A_{\mathcal{R}}$ of (1.3) depends on the choice of an admissible operator A. Apart from the case of form bounded singular perturbations, admissible operators are not determined uniquely, cf. Theorem 3.9. However, in many cases (see e.g., [4, 5]), the uniqueness can be attained by imposing extra assumptions of symmetry motivated by the specific nature of the underlying physical problem. In this section, we study this problem in an abstract framework.

4.1. Preliminaries. First some general facts concerning $p(t)$-homogeneous operators are given. Let an operator A in \mathcal{H} be $p(t)$-homogeneous with respect to a one-parameter family $\mathcal{U} = \{U_t\}_{t \in \mathcal{I}}$ of unitary operators acting on \mathcal{H}, cf. Definition 1.3. It follows from (1.7) and (1.8) that

$$p(t)p(g(t)) = 1, \quad \forall t \in \mathcal{I},$$

where the function of conjugation $g(t) : \mathcal{I} \to \mathcal{I}$ is determined by the formula

$$U_{g(t)} = U_{t^*}, \quad \forall t \in \mathcal{I}.\quad (4.2)$$

Lemma 4.1. Let A be a $p(t)$-homogeneous operator with respect to a family $\mathcal{U} = \{U_t\}_{t \in \mathcal{I}}$. Then for all $t \in \mathcal{I}$ and all $z \in \mathbb{C}$,

$$U_t(\ker (A - zI)) = \ker (p(t)A - zI).\quad (4.3)$$

In particular, ker A is a reducing subspace for every U_t, $t \in \mathcal{I}$. Furthermore, $z \in \sigma_a(A) \iff z p(t)^n \in \sigma_a(A), \quad n \in \mathbb{Z}, \quad t \in \mathcal{I}, \quad a \in \{p, r, c\}$.

If $p(t) \neq 1$ at least for one point $t \in \mathcal{I}$, then the essential spectrum of A contains the point $z = 0$.

ON SYMMETRIES IN THE THEORY OF FINITE RANK SINGULAR PERTURBATIONS 11
Proof. In view of (4.1), \(p(t) \neq 0 \) for all \(t \in \mathcal{T} \). Using (1.8) one gets
\[
U_t(A - zI) = (p(t)A - zI)U_t = p(t) \left(A - \frac{z}{p(t)}I \right) U_t
\]
that gives \(U_t(\ker (A - zI)) \subset \ker (p(t)A - zI) \). The reverse inclusion is obtained by using (4.1). The property of \(\ker A \) to be a reducing subspace for every \(U_t \) follows from (1.3) with \(z = 0 \) if one takes into account that \(p(t) \neq 0 \).

The remaining assertions of the lemma immediately follow from (4.4). \(\square \)

Lemma 4.2. Let \(A \) be a closed densely defined \(p(t) \)-homogeneous operator with respect to a family \(\mathcal{U} = \{U_t\}_{t \in \mathcal{T}} \). Then also its adjoint \(A^* \) is \(p(t) \)-homogeneous with respect to \(\mathcal{U} \).

Proof. Since \(A \) is \(p(t) \)-homogeneous one has \(U_t A = p(t)A U_t \) for all \(t \in \mathcal{T} \). As a unitary operator \(U_t \) is bounded with bounded inverse, and therefore, the previous equality is equivalent to \(A^* U_t^* = p(t)U_t^*A^* \iff U_tA^* = p(t)A^*U_t, \forall t \in \mathcal{T}, \)
which means that \(A^* \) is \(p(t) \)-homogeneous with respect to \(\mathcal{U} \). \(\square \)

In the case that \(A \) is symmetric the formula (4.3) in Lemma 4.1 shows how the unitary operators \(U_t, t \in \mathcal{T} \), transform the defect subspaces \(\ker (A^* - zI) \) of \(A \).

Corollary 4.3. Let \(A \) in Lemma 4.2 be nonnegative and \(p(t) \)-homogeneous with respect to \(\mathcal{U} = \{U_t\}_{t \in \mathcal{T}} \) and let \(A_0 \) be a nonnegative selfadjoint extension of \(A \). Then \((p(t)A_0 + I)(A_0 + I)^{-1}U_t(\ker (A^* + I)) = \ker (A^* + I) \).

Proof. By Lemma 4.2 the adjoint \(A^* \) of \(A \) is also \(p(t) \)-homogeneous and (4.3) implies that \(U_t(\ker (A^* + I)) = \ker (A^* + 1/p(t)I) \). Moreover, the equality
\[
(p(t)A_0 + I)(A_0 + I)^{-1}\ker \left(A^* + \frac{1}{p(t)}I \right) = \ker (A^* + I)
\]
is always satisfied for a nonnegative self-adjoint extension \(A_0 \) of \(A \). \(\square \)

For the next result recall that if \(A \) is a nonnegative operator (or in general a nonnegative relation) in a Hilbert space \(\mathcal{H} \), then the Friedrichs extension \(A_F \) and the Krein-von Neumann extension \(A_N \) of \(A \) can be characterized as follows (see [10] for the densely defined case and [13] [21] [22] for the general case):

If \(\{f, f'\} \in A^* \), then \(\{f, f'\} \in A_F \) if and only if
\[
\inf \left\{ \|f - h\|^2 + (f' - h', f - h) : \{h, h'\} \in A \right\} = 0. \tag{4.5}
\]
If \(\{f, f'\} \in A^* \), then \(\{f, f'\} \in A_N \) if and only if
\[
\inf \left\{ \|f' - h'\|^2 + (f' - h', f - h) : \{h, h'\} \in A \right\} = 0. \tag{4.6}
\]

Lemma 4.4. Let \(A \) be a nonnegative densely defined \(p(t) \)-homogeneous operator with respect to \(\mathcal{U} \). Then the Friedrichs extension \(A_F \) and the Krein-von Neumann extension \(A_N \) of \(A \) are also \(p(t) \)-homogeneous with respect to \(\mathcal{U} \). Moreover, \(U_t(D(A_F^{1/2})) \subset D(A_F^{1/2}) \) and \(U_t(R(A_N^{1/2})) \subset R(A_N^{1/2}) \) for all \(t \in \mathcal{T} \).

Proof. By Lemma 4.2 \(A^* \) is \(p(t) \)-homogeneous with respect to \(\mathcal{U} \). Hence, in view of (1.7) and (1.8), an intermediate extension \(\tilde{A} \) of \(A \) is \(p(t) \)-homogeneous with respect to \(\mathcal{U} \) if and only if
\[
U_t : D(\tilde{A}) \to D(\tilde{A}), \forall t \in \mathcal{T}. \tag{4.7}
\]
To prove that A_F is $p(t)$-homogeneous with respect to \mathcal{U}, assume that $f \in D(A_F)$. Then $g = U_t f \in D(A^*)$ and there is a sequence $h_n \in D(A)$ attaining the infimum in (4.5). Then $U_t h_n \in D(A)$, $U_t h_n \to U_t f = g$, and

$$(A^* U_t f - A U_t h_n, f - h_n) = (p(g(t)) (A^* f - Ah_n, f - h_n) \to 0,$$ (4.8)

so that $g \in D(A_F)$ by (1.5). Therefore, $U_t(D(A_F)) \subset D(A_F)$ and A_F is $p(t)$-homogeneous with respect to \mathcal{U}.

To prove the $p(t)$-homogeneity of A_N assume that $f \in D(A_N)$. Then again $g = U_t f \in D(A^*)$ and there is a sequence $h_n \in D(A)$ attaining the infimum in (4.6). In particular, $Ah_n \to A^* f$, $U_t h_n \in D(A)$, and

$$A U_t h_n = p(g(t)) U_t h_n \to p(g(t)) U_t A^* f = A * U_t f = A^* g.$$ Moreover, (4.8) is satisfied. Therefore, (1.6) shows that $g \in D(A_N)$. This proves that $U_t(D(A_N)) \subset D(A_N)$ and thus A_N is $p(t)$-homogeneous with respect to \mathcal{U}.

Finally, recall that the domain $\mathcal{D} = D(A_F^{1/2})$, see (3.4), can be characterized as the set of vectors $f \in \mathcal{F}$ satisfying

$$h_n \to f, \quad (A(h_n - h_m), h_n - h_m) \to 0, \quad m, n \to \infty,$$

and the range $\mathcal{R}(A_N^{1/2})$ as the set of vectors $g \in \mathcal{F}$ satisfying

$$Ah_n \to g, \quad (A(h_n - h_m), h_n - h_m) \to 0, \quad m, n \to \infty,$$

with $h_n \in D(A)$. The last statement is clear from these characterizations using similar arguments as above with the sequence h_n. This completes the proof. \square

Let the operator A_0 in (1.3) be $p(t)$-homogeneous with respect to $\mathcal{U} = \{U_t\}_{t \in \mathbb{T}}$. Define a family of self-adjoint operators on \mathcal{F} by

$$G_t = (p(t)A_0 + I)(A_0 + I)^{-1}, \quad t \in \mathbb{T}. \tag{4.9}$$

Clearly, G_t is positive and bounded with bounded inverse for all $t \in \mathbb{T}$. Moreover, it follows from (1.3) and (1.1) that $(A_0 + I)^{-1} U_t = U_t (p(g(t)) A_0 + I)^{-1}$ and

$$G_t U_t = U_t G_t^{-1} = (G_t U_t)^{-1}. \tag{4.10}$$

Since $\|u\|^{-2} = \|(A_0 + I)^{-1} u\|$, the identity $(A_0 + I)^{-1} U_t = G_t U_t (A_0 + I)^{-1}$ implies that $\|U_t u\|^{-2} \leq \|G_t\| \|u\|^{-2}$ for all $u \in \mathcal{F}$. Hence, the operators U_t can be continuously extended to bounded operators U_t in $\mathcal{F}_{-2}(A_0)$ and, furthermore,

$$(A_0 + I)^{-1} U_t \psi = G_t U_t (A_0 + I)^{-1} \psi \tag{4.11}$$

for all $\psi \in \mathcal{F}_{-2}(A_0)$ and $t \in \mathbb{T}$. The equality (1.2) shows that U_t has a bounded inverse which satisfies $U_t^{-1} = U_t(g(t))$. The operator U_t can be characterized as the dual mapping (adjoint) of $U(g(t))$ with respect to the form defined in (1.2). In fact, using (1.2), (1.9), (1.2), and (1.11), it is seen that the action of the functional $< U_t \psi, \cdot >$ on the elements $u \in \mathcal{F}_{2}(A_0)$ is determined by the formula

$$< U_t \psi, u > = ((A_0 + I)u, G_t U_t h) = (U(g(t)) (A_0 + I) u, h) \tag{4.12}$$

where $h = (A_0 + I)^{-1} \psi$.

Now consider a singular element $\psi \in \mathcal{F}_{-2}(A_0)$, cf. (1.3). The assumption that ψ is $\xi(t)$-invariant with respect to \mathcal{U}, i.e. $U_t \psi = \xi(t) \psi$ for all $t \in \mathbb{T}$ (see Definition (1.2)), implies some relations between $\xi(t)$, $p(t)$, and $g(t)$.
Proposition 4.5. Let the operator A_0 in (1.3) be $p(t)$-homogeneous with respect to the family \mathcal{U} and let $\psi \in \mathcal{F}_{-2}(A_0) \setminus \mathcal{F}$ be $\xi(t)$-invariant with respect to \mathcal{U}. Then for all $t \in \mathcal{T}$ one has

$$\xi(t)\xi(g(t)) = 1$$

(4.13)

and, moreover, $|\xi(t)| = 1$ if $p(t) = 1$ and $\min\{1, p(t)\} < |\xi(t)| < \max\{1, p(t)\}$ if $p(t) \neq 1$.

Proof. It follows from (1.9) and (4.11) that $\psi \in \mathcal{F}_{-2}(A_0) \setminus \mathcal{F}$ is $\xi(t)$-invariant with respect to \mathcal{U} if and only if

$$G_tU_t \psi = \xi(t)\psi, \quad \forall t \in \mathcal{T},$$

(4.14)

where $h = (A_0 + I)^{-1}\psi$. This together with (4.10) implies that

$$h = (G_{g(t)}U_{g(t)})(G_tU_t)h = \xi(t)G_{g(t)}U_{g(t)}h = \xi(t)\xi(g(t))h,$$

which proves (4.13). Moreover, (4.14) shows that $|\xi(t)||h| = |G_tU_t||h|$. In particular, if $p(t) = 1$, then $G_t = I$ and $|\xi(t)||h| = |U_t||h| = ||h||$ that gives $|\xi(t)| = 1$.

In the case where $p(t) \neq 1$ the formula for G_t in (1.9) with an evident reasoning leads to the estimates

$$\alpha(t)||h|| = \alpha(t)||U_t|| < ||G_tU_t|| < \beta(t)||U_t|| = \beta(t)||h||,$$

where $\alpha(t) = min\{1, p(t)\}$ and $\beta(t) = max\{1, p(t)\}$. This completes the proof. \qed

4.2. $p(t)$-homogeneous self-adjoint extensions of A_{sym}. Let A_{sym} be defined by (1.4). This means that A_{sym} is a nonnegative symmetric operator with finite defect numbers.

Lemma 4.6. If $p(t) \neq 1$ at least for one point $t \in \mathcal{T}$, then an arbitrary $p(t)$-homogeneous self-adjoint extension A of A_{sym} and that $p(t) \neq 1$ for $t \in \mathcal{T}$. Then, according to Lemma 4.4 there exists infinite series of negative eigenvalues $zp(t)^n$ ($n \in \mathbb{Z}$) of A that contradicts to the assumption of finite defect numbers of A_{sym}. Hence, A is a nonnegative extension of A_{sym}. \qed

Lemma 4.7. Let A_0 be $p(t)$-homogeneous and let ψ_j be $\xi_j(t)$-invariant with respect to \mathcal{U}, $j = 1, \ldots, n$. Then the symmetric operator A_{sym} defined by (1.4) and its adjoint A_{sym}^* are also $p(t)$-homogeneous with respect to \mathcal{U}.

Proof. It follows from (1.4) and (4.12) that

$$<\psi_j, U_tu> = <U_{g(t)}\psi_j, u> = \xi_j(g(t)) <\psi_j, u> = 0$$

for every $u \in D(A_{sym})$. Thus $U_t : D(A_{sym}) \rightarrow D(A_{sym})$ and hence by (1.8) A_{sym} is $p(t)$-homogeneous: $U_tA_{sym} = p(t)A_{sym}U_t$. By Lemma 4.2 also the adjoint A_{sym}^* is $p(t)$-homogeneous with respect to \mathcal{U}. \qed

In view of (1.9) and (4.12) the $\xi_j(t)$-invariance of ψ_j is equivalent to the relation

$$\xi_j(t) <\psi_j, u> = <\psi_j, U_{g(t)}u>, \quad \forall u \in \mathcal{F}_2(A_0), \quad \forall t \in \mathcal{T},$$

(4.15)

where the linear functionals $<\psi_j, \cdot>$ are defined by (1.12). The next theorem shows that the preservation of (4.11) for the extended functionals $<\psi^{ex}, \cdot>$ is closely related to the existence of $p(t)$-homogeneous self-adjoint extensions of A_{sym} transversal to A_0.

Theorem 4.8. Let A_0 be $p(t)$-homogeneous, let ψ_1, \ldots, ψ_n be $\xi_j(t)$-invariant with respect to Ω, and let $<\psi_j^{ex}, f>$ be defined by (2.4). Then the relations

$$\xi_j(t) <\psi_j^{ex}, f> = <\psi_j^{ex}, U_{g(t)}f>, \quad 1 \leq j \leq n, \quad \forall t \in \mathcal{T}, \quad (4.16)$$

are satisfied for all $f \in \mathcal{D}(A^*_\text{sym})$ if and only if the corresponding self-adjoint operator \hat{A} defined by (3.2) is $p(t)$-homogeneous with respect to Ω.

Proof. Denote

$$\Xi(t) = \begin{pmatrix} \xi_1(t) & 0 & \ldots & 0 \\ 0 & \xi_2(t) & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \xi_n(t) \end{pmatrix}. \quad (4.17)$$

Then $\det \Xi(t) \neq 0, t \in \mathcal{T}$, by Proposition 4.5, since ψ_i is $\xi_j(t)$-invariant with respect to Ω. By using (2.5) in Lemma 2.2, the relations (4.16) can be rewritten as follows:

$$\Xi(t)\Gamma_0f = \Gamma_0U_{g(t)}f, \quad \forall f \in \mathcal{D}(A^*_\text{sym}), \quad \forall t \in \mathcal{T}. \quad (4.18)$$

Since $\mathcal{D}(\hat{A}) = \ker \Gamma_0$, (4.18) immediately implies that $U_{i(D(\hat{A}))} \subset \mathcal{D}(\hat{A})$, cf. (4.2). Thus the equalities (4.16) ensure the $p(t)$-homogeneity of \hat{A} with respect to Ω.

Conversely, assume that \hat{A} is $p(t)$-homogeneous with respect to Ω. According to (3.2), (4.2), and (4.7) this is equivalent to

$$- R\hat{\Gamma}_0U_{g(t)}f = \hat{\Gamma}_1U_{g(t)}f, \quad \forall f \in \mathcal{D}(\hat{A}), \quad \forall t \in \mathcal{T}. \quad (4.19)$$

Using (4.19), (4.13), and (4.14) it is seen that

$$U_{g(t)}h_j = p(t)G_{g(t)}U_{g(t)}h_j + (I - p(t)G_{g(t)})U_{g(t)}h_j$$

$$= p(t)\xi_j(t)h_j + (1 - p(t))(A_0 + I)^{-1}U_{g(t)}h_j, \quad (4.20)$$

where $h_j = (A_0 + I)^{-1}\psi_j$, $j = 1, \ldots, n$. This expression and relations (2.9), (4.12) yield the following equalities for all $f = u + \sum_{j=1}^n \alpha_j h_j \in \mathcal{D}(A^*_\text{sym})$ and $t \in \mathcal{T}$:

$$\hat{\Gamma}_0U_{g(t)}f = p(t)\Xi^{-1}(t)\hat{\Gamma}_0f, \quad \hat{\Gamma}_1U_{g(t)}f = \Xi(t)\hat{\Gamma}_1f + (1 - p(t))G^T(t)\hat{\Gamma}_0f, \quad (4.21)$$

where $G^T(t)$ is the transpose of the matrix $G(t) = ((h_i, U_{i(t)})_{\alpha_j})_{i,j=1}$. Now with $f \in \mathcal{D}(\hat{A})$ substituting these expressions into (4.19), using (3.2), and taking into account that $\hat{\Gamma}_0(D(\hat{A})) = \mathbb{C}^n$, one concludes that the $p(t)$-homogeneity of \hat{A} is equivalent to the matrix equality

$$\Xi(t)R - p(t)R\Xi^{-1}(t) = (1 - p(t))G^T(t), \quad \forall t \in \mathcal{T}. \quad (4.22)$$

Finally, employing (2.7) and (4.21) it is easy to see that equality (4.22) is equivalent to (4.18). Therefore, the extended functionals $<\psi_j^{ex}, \cdot>$ satisfy the relations (4.16). Theorem 1.1 is proved.

Remark 4.9. In the particular case where $p(t) = t^\beta$ and $\xi(t) = t^\theta$ with $\beta, \theta \in \mathbb{R}$, another condition for the preservation of $\xi(t)$-invariance for $<\psi_j^{ex}, \cdot>$ has been obtained in [H Lemma 1.3.2].
Corollary 4.10. Let \tilde{A} be a self-adjoint extension of A_{sym} transversal to A_0. Then \tilde{A} is $p(t)$-homogeneous if and only if \tilde{A} is defined by (3.2) and the entries r_{ij} of R in (3.2) satisfy the following system of equations for all $t \in \mathbb{T}$:

$$
\beta_{ij}(t)r_{ij} = (1 - p(t))(h_{ij}, U_i h_i), \quad \beta_{ij}(t) = \left(\xi_i(t) - \frac{p(t)}{\xi_j(t)} \right), \quad 1 \leq i, j \leq n. \quad (4.23)
$$

Proof. Since $\ker \tilde{A}_0 = \mathcal{D}(A_0)$, formula (3.2) describe all self-adjoint extensions of A_{sym} transversal to A_0 when the parameter $R = (r_{ij})^{n}_{i,j=1}$ runs the set of all Hermitian matrices. Hence, $\tilde{A} = A_R$ for some choice of R in (3.2). The proof of Theorem 4.8 shows that A_R is $p(t)$-homogeneous if and only if R is a solution of (3.2) that does not depend on $t \in \mathbb{T}$. Rewriting (4.22) componentwise one gets (4.23). \hfill \Box

Remark 4.11. In the case that $p(x) \equiv 1$, the right-hand side of (1.23) vanishes and (4.23) reduces to $\beta_{ij}(t)r_{ij} = 0$, $1 \leq i, j \leq n$. Moreover, by Proposition 1.5 $\beta_{ii}(t) \equiv 0$ and, therefore, the entries r_{ii} cannot be uniquely determined from (4.23). This implies the existence of infinitely many 1-homogeneous self-adjoint extensions of A_{sym} transversal to A_0.

Example 4.12. Let $\alpha > 0$ and let \tilde{A} be defined by

$$
\tilde{A}_\alpha = A_{\text{sym}}^* | \mathcal{D}(\tilde{A}_\alpha), \quad \mathcal{D}(\tilde{A}_\alpha) = \mathcal{D}(A_{\text{sym}}^*) + \ker (A_{\text{sym}}^* + \alpha I).
$$

Then for all $\alpha > 0$, \tilde{A}_α is a 1-homogeneous self-adjoint extensions of A_{sym} transversal to A_0.

4.3. Uniqueness of $p(t)$-homogeneous admissible operators. Let the operator A_0 be $p(t)$-homogeneous and let the singular elements ψ_j appearing in (1.3) be $\xi_j(t)$-invariant with respect to U. If all ψ_j belong to $\mathcal{F}_{-1}(A_0)$, then the extended functionals $< \psi_j^{ex}, \cdot >$ are determined by continuity onto $\mathcal{D}(A_{\text{sym}}^*)$ and they automatically possess the property of $\xi_j(t)$-invariance (4.10), since $U_i | \mathcal{D}(A_0)$ can be extended by continuity onto $\mathcal{F}_1(A_0)$. In this case, the set of admissible operators consists of a unique element (the Friedrichs extension A_F, see Corollary 3.7) and this admissible operator is $p(t)$-homogeneous.

If $\mathcal{F}_{-1}(A_0)$ does not contain all ψ_j, then admissible operators for the regularization of (1.3) are not determined uniquely. In this case, the natural assumption of $\xi_j(t)$-invariance for the extended functionals $< \psi_j^{ex}, \cdot >$ can be used to select a unique admissible operator \tilde{A}. By Theorem 4.8 the $\xi_j(t)$-invariance of $< \psi_j^{ex}, \cdot >$ is equivalent to the $p(t)$-homogeneity of the corresponding operator \tilde{A} defined by (4.23). Therefore, instead of assumption of $\xi_j(t)$-invariance one can use the requirement of $p(t)$-homogeneity imposed on the set of admissible operators to achieve their uniqueness.

Theorem 4.13. Assume that the singular elements ψ_j in (1.3) are $\mathcal{F}_{-1}(A_0)$-independent and the system of equations (4.23) has a unique solution $R = (r_{ij})^{n}_{i,j=1}$ that does not depend on $t \in \mathbb{T}$. Then there exists a unique $p(t)$-homogeneous admissible operator \tilde{A} for the regularization of (1.3) and it coincides with the Krein-von Neumann extension A_N of A_{sym}.

Proof. Let \(R = (r_{ij})_{i,j=1}^n \) be a unique solution of (4.23) and let \(\tilde{A} \) be the corresponding self-adjoint extension of \(A_{\text{sym}} \) determined by (3.2).

Since (4.23) has a unique solution, \(p(t) \neq 1 \) for at least one point \(t \in \mathcal{T} \) (see Remark 4.11). In this case, Lemma 4.6 and relation (4.23) imply that \(\tilde{A} \) is a nonnegative extension of \(A_{\text{sym}} \) transversal to \(A_0 \). Then also \(A_F \) and \(A_N \) are transversal extensions of \(A_{\text{sym}} \); cf. the proof of Theorem 3.9. These extensions are also \(p(t) \)-homogeneous (see Lemmas 4.7, 4.4).

Since elements \(\psi_j \) in (1.3) form an \(\mathcal{H}_1(A_0) \)-independent system, Corollary 3.8 gives that any self-adjoint extension of \(A_{\text{sym}} \) transversal to \(A_0 \) is admissible for the regularization of (1.3) and \(A_0 = A_F \). The unique solution of (4.23) allows one to select a unique \(p(t) \)-homogeneous self-adjoint extension \(\tilde{A} \) of \(A_{\text{sym}} \) transversal to \(A_0 = A_F \). Obviously, it coincides with the Krein-von Neumann extension \(A_N \). □

The next statement concerns to the general case.

Theorem 4.14. Let \(A_F \) and \(A_N \) be transversal, let the operator \(S \) defined in (3.10) be \(p(t) \)-homogeneous for some choice of \(\tilde{H} \) satisfying conditions (3.12), and assume that for every \(\beta_{ij}(t) \) in (4.23) there exists at least one point \(t_{ij} \in \mathcal{T} \) such that \(\beta_{ij}(t_{ij}) \neq 0 \). Then there exists a unique \(p(t) \)-homogeneous admissible operator for the regularization of (1.3).

Proof. Let \(\tilde{A} \) be the Krein-von Neumann extension of \(S \). The second part of the proof of Theorem 3.9 shows that \(\tilde{A} \) is an admissible operator. By Lemma 4.4, \(\tilde{A} \) is \(p(t) \)-homogeneous. Its uniqueness follows from the fact that condition \(\beta_{ij}(t_{ij}) \neq 0 \) ensures in view of (4.23) the uniqueness of \(p(t) \)-homogeneous self-adjoint extensions of \(A_{\text{sym}} \) transversal to \(A_0 \). □

The next statement contains conditions for the \(p(t) \)-homogeneity of the symmetric operator \(S \) defined by (3.10) in Lemma 3.9 which appear to be useful in applications.

Proposition 4.15. Let \(A_0 \) be \(p(t) \)-homogeneous, let the singular elements \(\psi_j \) in (1.3) be \(\xi_j(t) \)-invariant with respect to \(U_t \), and let \(\mathcal{V} = (A_0 + I)(\mathcal{H} \ominus \tilde{H}) \). Then:

(i) \(S \) is \(p(t) \)-homogeneous if and only if \(\mathcal{V} \) is invariant under \(U_t \), \(t \in \mathcal{T} \), and

\[
(h', U_t h) = 0, \quad \forall h' \in \mathcal{H}', \quad \forall h \in \mathcal{H} \ominus \tilde{H}, \quad \forall t \in \mathcal{T} : \quad p(t) \neq 1.
\]

(ii) If \(G_t U_t, t \in \mathcal{T} \), is self-adjoint, then \(S \) with \(\tilde{H} = \mathcal{H}' \) is \(p(t) \)-homogeneous if and only if (4.24) holds.

(iii) If \(\mathcal{V} \) is a linear span of some singular elements \(\psi_j \) in (1.3), then \(S \) is \(p(t) \)-homogeneous if and only if (4.24) holds.

Proof. (i) The definition (3.10) shows that \(\ker (S^* + I) = \mathcal{H} \ominus \tilde{H} \). Hence, if \(S \) is \(p(t) \)-homogeneous with respect to \(U_t \) then \(G_t U_t(\mathcal{H} \ominus \tilde{H}) = \mathcal{H} \ominus \tilde{H} \) by Corollary 4.3. According to (4.11) the subspace \(\mathcal{H} \ominus \tilde{H} \) is invariant under \(G_t U_t \) if and only if \(\mathcal{V} = (A_0 + I)(\mathcal{H} \ominus \tilde{H}) \) is invariant under the operator \(U_t \), \(t \in \mathcal{T} \). Thus, if \(S \) is \(p(t) \)-homogeneous with respect to \(U_t \) then \(\mathcal{V} \) is invariant under \(U_t \), \(t \in \mathcal{T} \).

By Lemma 4.7, \(A_{\text{sym}}^* \) is \(p(t) \)-homogeneous with respect to \(U_t \). Since \(S \) is an intermediate extension of \(A_{\text{sym}} \) its \(p(t) \)-homogeneity is equivalent to the relation \(U_{g(t)}(\mathcal{D}(S)) \subset \mathcal{D}(S), t \in \mathcal{T} \), see (4.7).
The definition of S in \(3.10\) implies that

\[U_{g(t)}f \in D(S) \iff ((A_F + I)U_{g(t)}f, \tilde{h}^+) = 0, \quad \forall \tilde{h}^+ \in \mathcal{H} \cap \tilde{\mathcal{H}}. \tag{4.25} \]

Now let \(f = h' + u \in D(S) \) be decomposed as in Lemma 3.5, see \(3.13, 3.14\). It follows from \(4.20\) that

\[(A_F + I)U_{g(t)}f = \langle (A_F^* + I)U_{g(t)}f, \tilde{h}' \rangle + (A_0 + I)U_{g(t)}u. \]

By taking \(4.12\) into account one obtains

\[((A_F + I)U_{g(t)}f, \tilde{h}^+) = (1 - p(t))\langle (U_{g(t)}h')\tilde{h}^+, \tilde{h}^+ \rangle + (A_0 + I)\langle U_{g(t)}u, \tilde{h}^+ \rangle + < U_{g(t)}u, \tilde{h}^+ >. \tag{4.26} \]

If \(\mathcal{Y} \) is invariant under \(U_t \), \(t \in \mathbb{T} \), then \(< U_t \psi, u > = 0 \) for all \(f = h' + u \in D(S) \). Now \(4.25\) and \(4.26\) show that \(S \) is \(p(t) \)-homogeneous if and only if \(\mathcal{Y} \) is invariant under \(U_t \) and \(4.23\) holds.

(ii) Since \(A_0 \) and \(A_F \) are \(p(t) \)-homogeneous, the symmetric restriction \(S_0 := A_F \cap A_0 \) and its adjoint \(S_0^* \) are also \(p(t) \)-homogeneous, see Lemma 3.2 It follows from \(4.15\) that \(f \in D(S_0) \) if and only if \(f \in D(A_0) \) and

\[((A_0 + I)f, h') = 0, \quad \forall h' \in \mathcal{H}' = \mathcal{H} \cap \tilde{\mathcal{H}}_1(A_0). \]

Hence, \(\ker (S_0^* + I) = \mathcal{H}' \) and \(G_tU_t^* \mathcal{H}' = \mathcal{H}' \) for all \(t \in \mathbb{T} \) by Corollary 3.3. Similarly \(G_tU_t^* \mathcal{H} = \mathcal{H} \) for all \(t \in \mathbb{T} \), since \(A_0 \) is \(p(t) \)-homogeneous. Therefore, if \(G_tU_t^* \) is self-adjoint, then \(\mathcal{H} \) and \(\mathcal{H}' \) are reducing subspaces for the operators \(G_tU_t^* \) and consequently \(G_tU_t^* \mathcal{H}' \subset \mathcal{H}'' \) is satisfied for all \(t \in \mathbb{T} \). Then, according to \(4.11\), \(\mathcal{Y} = (A_0 + I)\mathcal{H}'' \) is invariant under \(U_t \). Now the claim follows from part (i) with \(\tilde{\mathcal{H}} = \mathcal{H}' \) and \(\mathcal{H} \cap \tilde{\mathcal{H}} = \mathcal{H}''. \)

(iii) If \(\mathcal{Y} \) has a basis formed by some \(\xi_j(t) \)-invariant singular elements \(\psi_j \), then \(\mathcal{Y} \) is invariant under \(U_t \), see \(4.20\). So, the statement is reduced to (i).

\[\square \]

Example 4.16. A general zero-range potential. A one-dimensional Schrödinger operator corresponding to a general zero-range potential at the point \(x = 0 \) can be given by the expression

\[A_0 + b_{11} \delta < \delta, \cdot \delta + b_{12} < \delta', \cdot \delta \delta(x) + b_{21} < \delta, \cdot \delta' \delta'(x) + b_{22} < \delta', \cdot \delta' \delta'(x), \]

where \(A_0 = -d^2/dx^2 \) (\(D(A_0) = W^2_0(\mathbb{R}) \)) acts in \(\tilde{\mathcal{H}} = L^2_2(\mathbb{R}) \), \(\delta'(x) \) is the derivative of the Dirac \(\delta \)-function (with support at 0).

In this case, \(A_{sym} = -d^2/dx^2 \{ u(x) \in W^2_0(\mathbb{R}) : u(0) = u'(0) = 0 \} \) and the corresponding Friedrichs and Krein-von Neumann extensions are transversal (see, e.g., [10]). The functions

\[(A_0 + I)^{-1}\psi_1 = h'(x) = \frac{1}{2} \begin{cases} e^{-x}, & x > 0 \\ e^x, & x < 0 \end{cases}, \]

\[(A_0 + I)^{-1}\psi_2 = \delta''(x) = \frac{1}{2} \begin{cases} -e^{-x}, & x > 0 \\ e^x, & x < 0 \end{cases}, \]

where \(\psi_1 = \delta(x) \) and \(\psi_2 = \delta'(x) \), form an orthogonal basis of \(\mathcal{H} = \ker (A_{sym}^* + I) \) such that \(\mathcal{H}' = \langle h'(x) \rangle \) and \(\mathcal{H}' = \langle h''(x) \rangle \).

Define \(\mathcal{U} = \{ U_t \}_{t \in [0, \infty)} \) as a collection of the space parity operator \(U_0 f(x) = f(-x) \) (\(f(x) \in L^2_2(\mathbb{R}) \)) and the set of scaling transformations \(U_t f(x) = \sqrt{t} f(tx), \)

\[t > 0. \] In this case, \(A_0 \) is \(p(t) \)-homogeneous with respect to \(\mathcal{U} \), where \(p(0) = 1 \) and \(p(t) = t^{-2} \) if \(t > 0 \). The elements \(\psi_j \) \((j = 1, 2) \) are \(\xi_j(t) \)-invariant, where \(\xi_1(0) = 1, \).

\[\square \]
\(\xi_1(t) = t^{-1/2} \) \((t > 0)\) and \(\xi_2(0) = -1, \xi_2(t) = t^{-3/2} \) \((t > 0)\). Furthermore, for such a choice of \(\Psi, \Xi_0 = \{ t \in [0, \infty) : p(t) \neq 1 \} = (0, \infty) \) and

\[
(h', U_t h'') = t^{1/2} \int_{-\infty}^{\infty} h'(x) h''(tx) dx = 0, \quad \forall t \in \Xi_0.
\]

Let us put \(\mathcal{H} = \mathcal{H}' \). Then \(\mathcal{V} = (\mathcal{A}_0 + I)\mathcal{H}' = < \psi_2 > \) and part (iii) of Proposition 4.15 implies that the corresponding operator \(S \) defined by (3.10) is \(p(t) \)-homogeneous. Calculating \(\beta_{ij}(t) \) in (4.23) for \(\xi_1(t) \), \(\xi_2(t) \), and \(p(t) \) as given above, it is easy to see that \(\beta_{ij}(0) \neq 0 \) if \(i \neq j \) and \(\beta_{ii}(t) \neq 0 \) for all \(t > 0 \). In this case, by Theorem 4.14 there exists a unique \(p(t) \)-homogeneous admissible operator \(\bar{A} \).

To identify \(\bar{A} \) it suffices to determine the entries \(r_{ij} \) of the corresponding matrix \(\mathbf{R} \) in (4.2) with the aid of (4.26):

For \(t = 0 \), (4.26) takes the form

\[
\begin{pmatrix}
0 & 2r_{12} \\
-2r_{21} & 0
\end{pmatrix}
\]

and, hence, \(r_{12} = r_{21} = 0 \).

On the other hand, for \(t > 0 \) calculating both sides of (4.23) leads to

\[
t^{-3/2}(t - 1) \begin{pmatrix}
1 & 0 \\
0 & t^{-2}
\end{pmatrix} = (1 - t^{-2}) \begin{pmatrix} \frac{\sqrt{t}}{2(1+t)} & 0 \\ 0 & \frac{\sqrt{t}}{2(1+t)} \end{pmatrix}
\]

and thus \(r_{11} = 1/2, r_{22} = -1/2 \). Substituting the coefficients \(r_{ij} \) in (4.2) results in the well-known extensions of \(\delta(x) \) and \(\delta'(x) \) onto \(\mathcal{D}(A_{sym}^*) = W^2_{2}(\mathbb{R} \backslash \{0\}) \) (see [4]):

\[
< \delta_{ex}, f > = \frac{f(+0) + f(-0)}{2}, \quad < \delta'_{ex}, f > = -\frac{f'(+0) + f'(-0)}{2}.
\]

The corresponding \(p(t) \)-homogeneous admissible operator \(\bar{A} \) is the restriction of \(-d^2/dx^2\) to \(\mathcal{D}(\bar{A}) = \{ f(x) \in W^2_{2}(\mathbb{R} \backslash \{0\}) : -f(-0) = f(+0), -f'(-0) = f'(+0) \} \).

4.4. The case of rank one singular perturbations. In the case of rank one singular perturbations \(A_0 + b < \psi, \cdot > \psi \), where \(A_0 \) is \(p(t) \)-homogeneous and \(\psi \) is \(\xi(t) \)-invariant, the system (4.2) takes the form

\[
(\xi^2(t) - p(t)) r = \xi(t)(1 - p(t))(h, U_t h) \quad (h = (A_0 + I)^{-1})\psi, \quad \forall t \in \Xi.
\]

Proposition 4.17. 1. If (4.27) has no solutions, then there is only one \(p(t) \)-homogeneous extension \(A_0 = A_F = A_N \) and any self-adjoint extension of \(A_{sym} \) different from \(A_0 \) has a negative eigenvalue.

2. If (4.27) has at least two solutions, then all self-adjoint extensions of \(A_{sym} \) are \(p(t) \)-homogeneous.

3. If (4.27) has a unique solution \(r \in \mathbb{R} \) that does not depend on \(t \in \Xi \), then the symmetric operator \(A_{sym} \) associated with \(A_0 + b < \psi, \cdot > \psi \) possesses exactly two \(p(t) \)-homogeneous extensions: the Friedrichs \(A_F \) and the Krein-von Neumann \(A_N \) extensions. Of them coincides with \(A_0 \), another one is the unique \(p(t) \)-homogeneous admissible operator \(\bar{A} \) for the regularization of \(A_0 + b < \psi, \cdot > \psi \). More precisely, \(A_0 = A_F \) and \(\bar{A} = A_N \) if \(\psi \notin \mathcal{H}_{-2}(A_0) \backslash \mathcal{H}_{-1}(A_0) ; A_0 = A_N \) and \(\bar{A} = A_F \) if \(\psi \in \mathcal{H}_{-1}(A_0) \).

Proof. In the case of rank one perturbations, an arbitrary self-adjoint extension \(A(\neq A_0) \) of the symmetric operator \(A_{sym} = A_0 \ | \ u \in D(A_0) : < \psi, u > = 0 \) is transversal to \(A_0 \). This means that there is a one-to-one correspondence between the set of solutions \(r \in \mathbb{R} \) of (4.27) and the set of \(p(t) \)-homogeneous self-adjoint extensions \(A(\neq A_0) \) of \(A_{sym} \).
By Lemmas 4.4, 4.7 the symmetric operator A_{sym} and its Friedrichs A_F and Krein-von Neumann A_N extensions are $p(t)$-homogeneous. Therefore, if (4.27) has no solutions, then $A_N = A_F = A_0$ that justifies assertion 1.

Two different solutions of (4.27) may appear only in the case where $\xi^2(t) = p(t)$ and $(1 - p(t))(h, U_t h) = 0$ for all $t \in \mathcal{T}$. But these equalities are equivalent to the fact that any $r \in \mathbb{R}$ is a solution of (4.27). Therefore, an arbitrary self-adjoint extension of A_{sym} is $p(t)$-homogeneous. Assertion 2 is proved.

Finally, assume that (4.27) has a unique solution. It follows from Corollary 4.10 that the set of all $p(t)$-homogeneous extensions of A_{sym} is exhausted by the Friedrichs A_F and the Krein-von Neumann A_N extensions. One of them coincides with A_0, another one is the unique $p(t)$-homogeneous admissible operator \tilde{A}. To complete the proof it suffices to use Theorem 4.13 for $\psi \in \mathfrak{H}_{-2}(A_0) \setminus \mathfrak{H}_{-1}(A_0)$ and Corollary 5.1 for $\psi \in \mathfrak{H}_{-1}(A_0)$. \hfill \square

Example 4.18. One point interaction in \mathbb{R}^n ($n = 1, 2, 3$).

Consider the singular rank one perturbation $-\Delta + b < \delta \cdot > \delta(x)$, where $A_0 = -\Delta$ ($\mathcal{D}(A_0) = W^2_2(\mathbb{R}^n)$ is the Laplace operator in $\mathfrak{H} = L_2(\mathbb{R}^n)$ and the associated symmetric operator $A_{\text{sym}} = -\Delta \upharpoonright \{u(x) \in W^2_2(\mathbb{R}^n) : u(0) = 0\}$.

The operator A_0 is t^{-2}-homogeneous with respect to the set of scaling transformations $\mathcal{U} = \{U_t \}_{t \in (0, \infty)}$ in $L_2(\mathbb{R}^n)$, where $U_tf(x) = t^{|x|/2}f(tx)$. Furthermore, the singular element $\psi = \delta$ is $t^{-n/2}$-invariant (cf. [4]).

If $n = 1$, then $\delta(x) \in \mathfrak{H}_{-1}(A_0) = W^{-1}_2(\mathbb{R})$, the equation (4.27) has a unique solution and by Proposition 4.11 the free Laplace operator $-\Delta$ coincides with the Krein-von Neumann extension A_N of A_{sym}. The Friedrichs extension A_F has the form $A_F = -d^2/dx^2 \upharpoonright \{u(x) \in W^2_2(\mathbb{R} \setminus \{0\}) \cap W^1_2(\mathbb{R}) : u(0) = 0\}$.

If $n = 2$, then (4.27) has no solutions and there exists the unique nonnegative self-adjoint extension $-\Delta = A_N = A_F$ of A_{sym}. If $n = 3$, then $\delta(x) \in W^{-2}_2(\mathbb{R}^3) \setminus W^{-1}_2(\mathbb{R}^3)$, the equation (4.27) has a unique solution and $-\Delta = A_F$. The Krein-von Neumann extension A_N has the form

$$A_Nf(x) = -\Delta u(x) - u(0)\frac{e^{-|x|}}{|x|}, \quad \mathcal{D}(A_N) = \{f = u(x) + u(0)\frac{e^{-|x|}}{|x|} : u \in W^2_2(\mathbb{R}^3)\}.$$

Another description of the Krein-von Neumann extension of A_{sym} obtained with the aid of the Fourier transformation can be founded in [12].

5. OPERATOR REALIZATIONS IN THE CASE OF SINGULAR PERTURBATIONS WITH SYMMETRIES

In this section, operator realizations A_B of (1.3) given by formula (2.8) are studied under the condition that the unperturbed operator A_0 and the singular elements ψ_j in (1.3) are, respectively, $p(t)$-homogeneous and $\xi_j(t)$-invariant with respect to \mathcal{U}.

5.1. $p(t)$-Homogeneous operator realizations.

Theorem 5.1. Let an admissible operator \tilde{A} for the regularization of (1.3) be chosen to be $p(t)$-homogeneous. Then the operator A_B defined by (2.8) is $p(t)$-homogeneous if and only if the relations

$$\xi_i(t)\xi_j(t) = p(t), \quad \forall t \in \mathcal{T}$$

hold for all indices $1 \leq i, j \leq n$ corresponding to non-zero entries b_{ij} of B.
Proof. By Lemma 4.7, the operator A_0^+ is $p(t)$-homogeneous. Hence, in view of (1.7), A_0 is $p(t)$-homogeneous if and only if $U_{g(t)} : D(A_0) \to D(A_0)$. \(\forall t \in \mathfrak{A} \). By (2.8), this relation can be rewritten as

$$B \Gamma_0 U_{g(t)} f = \Gamma_1 U_{g(t)} f, \quad \forall t \in \mathfrak{A}, \quad \forall f \in D(A_0).$$

(5.1)

Since the admissible operator \hat{A} is $p(t)$-homogeneous, the boundary operator Γ_0 satisfies (1.18). Therefore, $B \Gamma_0 U_{g(t)} f = B \Xi(t) \Gamma_0 f$. On the other hand, relations (2.7) and (4.21) lead to the equality

$$\Gamma_1 U_{g(t)} f = p(t) \Xi^{-1}(t) \Gamma_1 f, \quad \forall f \in D(A_0^+).$$

(5.2)

The last two equalities and (2.8) show that the relation (5.1) is equivalent to the matrix equality $\Xi(t) B \Xi(t) = p(t) B$, $t \in \mathfrak{A}$. Rewriting this componentwise, one obtains the equalities $\xi_i(t) \xi_j(t) b_{ij} = p(t) b_{ij}$, $1 \leq i, j \leq n$.

Corollary 5.2. If there exists a point $t_0 \in \mathfrak{A}$ such that $p(t_0) \neq 1$ and relations $\xi_i(t_0) \xi_j(t_0) = p(t_0)$ hold for all indices $1 \leq i, j \leq n$ corresponding to non-zero entries b_{ij} of B, then: (i) the point $\lambda = 0$ belongs to the essential spectrum of A_0 and $\lambda \in \sigma(A_0) \iff \lambda p(t_0)^n \in \sigma(A_0)$, $n \in \mathbb{Z}$; (ii) the operator A_0 is nonnegative if and only if the matrix B is Hermitian.

Proof. If the matrix B satisfies the conditions above, then A_0 is $p(t)$-homogeneous with respect to the family $\mathcal{U}_0 := \{ U_t : U_t \in \mathcal{U} : t \in \{ t_0, g(t_0) \} \}$. Now, to establish (i), it suffices to use Lemma 4.1 with $A = A_0$.

Obviously, the matrix B is Hermitian if and only if the operator A_0 defined by (2.8) is self-adjoint. Using Lemma 4.6 and Theorem 5.1 one derives (ii).

Proposition 5.3. Assume that the singular elements ψ_j in (1.3) form a $\mathfrak{H}_{-1}(A_0)$-independent orthonormal system in $\mathfrak{H}_{-2}(A_0)$, the system (3.23) has a unique solution R, and a $p(t)$-homogeneous admissible operator \hat{A} is chosen for the regularization of (1.3). Then a self-adjoint operator realization A_B of (1.3) is nonnegative if and only if $\det(BR + E) \neq 0$ and $0 \leq -(BR + E)^{-1} B \leq -R^{-1}$, where E stands for the identity matrix.

Proof. By Theorem 4.13 the Krein-von Neumann extension A_N of A_{sym} coincides with a $p(t)$-homogeneous admissible operator \hat{A} and it is defined by (3.2), where R is the solution of (3.23). Furthermore, the Friedrichs extension A_F coincides with A_0. Combining these observations with [33, Theorem 3] the statement follows. For completeness some of the details are repeated here.

By (3.3) a self-adjoint operator A_B is nonnegative if and only if $-1 \in \rho(A_B)$ and

$$0 \leq C_B \leq C_N,$$

(5.3)

where $C_B = (A_B + I)^{-1} - (A_0 + I)^{-1}$ and $C_N = (A_N + I)^{-1} - (A_0 + I)^{-1}$ are self-adjoint operators in $\mathfrak{H} = \ker(A_{sym}^+ + I)$.

It follows from (2.7) and (2.8) that

$$\mathcal{D}(A_B) = \{ f \in \mathcal{D}(A_{sym}^+) : B \hat{\Gamma}_1 f = -(BR + E) \hat{\Gamma}_0 f \}. $$

(5.4)

Relations (2.30) and (5.24) imply $-1 \in \rho(A_B) \iff \mathcal{D}(A_B) \cap \mathcal{H} = \{ 0 \} \iff \det(BR + E) \neq 0$. Since the elements ψ_j are orthonormal in $\mathfrak{H}_{-2}(A_0)$, the corresponding vectors h_j in (3.3) form an orthonormal basis of \mathcal{H}. In that case, the domain $\mathcal{D}(A_B)$ can be also presented as $\mathcal{D}(A_B) = \{ f \in \mathcal{D}(\Delta_{sym}^+) : C_B \hat{\Gamma}_1 f = \hat{\Gamma}_0 f \}$.
where C_B is the matrix representation of C_B with respect to the basis $\{h_j\}_1^n$. Comparing this with (5.4) one gets $C_B = -(BR + E)^{-1}B$.

Similar reasoning for the operator A_N defined by \[5.2\] give $\det R \neq 0$ (since $-1 \in \rho(A_N)$) and $C_N = -R^{-1}$. By substituting the obtained expressions for C_B and C_N into (5.3) one completes the proof. □

Remark 5.4. A description of nonnegative self-adjoint operator realizations of (1.3) given above is based on the specific form of boundary operators Γ_i. A general approach to the description of nonnegative self-adjoint extensions of a symmetric operator has been proposed recently in [12].

5.2. The Weyl function and the resolvent formula. Let $(\mathbb{C}^n, \Gamma_0, \Gamma_1)$ be the boundary triplet of A_{sym}^T constructed in Lemma 2.2 and let \tilde{A} be a self-adjoint extension of A_{sym} defined by (3.2).

The γ-field $\gamma(z)$ and the Weyl function $M(z)$ associated with the boundary triplet $(\mathbb{C}^n, \Gamma_0, \Gamma_1)$ are defined by
\[
\gamma(z) = (\Gamma_0 \upharpoonright H_z)^{-1}, \quad M(z) = \Gamma_1 \gamma(z), \quad z \in \rho(\tilde{A}). \quad (5.5)
\]
Here $H_z = \ker (A_{sym}^T - zI)$, $z \in \mathbb{C}$ denote the defect subspaces of A_{sym}. The mappings Γ_i are defined by (2.23) and $M(z)$ is an $n \times n$-matrix function.

Theorem 5.5. The operator \tilde{A} is $p(t)$-homogeneous if and only if for at least one point $z = z_0 \in \mathbb{C} \setminus \mathbb{R}$ (and then for all non-real points z) the Weyl function $M(z)$ satisfies the relation
\[
p(t)M(z) = \Xi(t)M(p(t)z)\Xi(t), \quad \forall t \in \mathfrak{I}, \quad (5.6)
\]
where $\Xi(t)$ is defined by (4.17).

Proof. Let $f_z \in H_z$, $z \in \mathbb{C}$. Then Lemma 4.1 and relation (4.1) imply
\[
U_{g(t)}f_z \in \ker (A_{sym}^T - \frac{z}{p(g(t))}I) = \ker (A_{sym}^T - p(t)zI) = H_{p(t)z}. \quad (5.7)
\]

Putting $f = f_z \in H_z$, using (5.7), and observing that $M(z)\Gamma_0 f_z = \Gamma_1 f_z$, $z \in \mathbb{C}$ (see (5.5)), one can rewrite (5.2) as follows:
\[
M(p(t)z)\Gamma_0 U_{g(t)}f_z = p(t)\Xi^{-1}(t)M(z)\Gamma_0 f_z. \quad (5.8)
\]

If the identity (5.6) holds for some non-real $z = z_0$, then (5.8) implies that
\[
\Gamma_0 U_{g(t)}f = \Xi(t)\Gamma_0 f \quad (5.9)
\]
for all $f = f_{z_0} \in H_{z_0}$. Since $M^+(z) = M(z)$ \[16\] and hence, (5.9) holds for z_0, the relation (5.9) is also true for $f = f_{z_0} \in H_{z_0}$. Moreover, (5.9) holds for all $f \in D(A_{sym}^T)$ since $\Gamma_0 f = \Gamma_0 U_{g(t)}f = 0$ by (1.4). Consequently, (5.9) is true on the domain $D(A_{sym}^T) = D(A_{sym}) + H_{z_0} + H_{z_0}$. By Theorem 4.8 this provides the $p(t)$-homogeneity of \tilde{A}.

Conversely, assume that \tilde{A} is $p(t)$-homogeneous. In this case, (5.9) holds for all $f \in D(A_{sym}^T)$ (see (4.18)). But then, for all non-real z and all $f_z \in H_z$,
\[
M(p(t)z)\Xi(t)\Gamma_0 f_z \overset{\text{5.9}}{=} M(p(t)z)\Gamma_0 U_{g(t)}f_z \overset{\text{5.7}}{=} \Gamma_1 U_{g(t)}f_z \overset{\text{5.2}}{=} p(t)\Xi^{-1}(t)\Gamma_1 f_z = p(t)\Xi^{-1}(t)M(z)\Gamma_0 f_z
\]
that justifies (5.6). Theorem 5.5 is proved. □
Let A_B be a self-adjoint realization of (1.3) defined by (2.8). Then the resolvents of A_B and A are connected via Krein’s formula

$$(A_B - zI)^{-1} = (\tilde{A} - zI)^{-1} + \gamma(z)(B - M(z))^{-1}\gamma(\bar{\gamma})^*,$$

$z \in \rho(A_B) \cap \rho(\tilde{A}).$ \hfill (5.10)

The explicit form of $M(z)$ can be found as follows. By (2.7) it is easy to see that the Weyl functions $M(z)$ and $\tilde{M}(z)$ associated with the boundary triplets (2.5) and (2.6), respectively, are connected via the linear fractional transform

$M(z) = -(R + \tilde{M}(z))^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}.$ \hfill (5.11)

The boundary triplet (2.6) is one of the most used boundary triplets and the corresponding Weyl function $\tilde{M}(z)$ is studied well. In particular, if the singular elements ψ_j in (1.3) form an orthonormal system in \mathcal{F}_{-2}, then (see [10] Remark 4)

$$\tilde{M}(z) = (z + 1)P_H[I + (z + 1)(A_0 - zI)^{-1}]P_H.$$

By combining this relation with (5.11) one gets an explicit form for $M(z)$.

Example 5.6. A point interaction for p-adic Schrödinger type operator. Let p be a fixed prime number and let \mathbb{Q}_p be the field of p-adic numbers. The operation of differentiation is not defined in the p-adic analysis of complex-valued functions defined on \mathbb{Q}_p and the Vladimirov operator of the fractional p-adic differentiation

$$D^\alpha f(x) = \frac{p \alpha - 1}{1 - p^{-1 - \alpha}} \int_{\mathbb{Q}_p} \frac{f(x) - f(y)}{|x - y|_p^{\alpha + 1}} d\mu(y), \quad \alpha > 0$$

is used as an analog of it (see [27] for details). Here $|\cdot|_p$ and $d\mu(y)$ are, respectively, the p-adic norm and the Haar measure on \mathbb{Q}_p. The operator D^α is positive and self-adjoint in the Hilbert space $L^2_2(\mathbb{Q}_p)$ of complex-valued square integrable functions on \mathbb{Q}_p. P-adic Schrödinger-type operators with potentials $V(x) : \mathbb{Q}_p \to \mathbb{C}$ are defined as $D^\alpha + V(x)$.

Denote $\mathfrak{I} = \{ t = p^n : n \in \mathbb{Z} \}$ and consider a family $\Omega = \{ U_t \}_{t \in \mathfrak{I}}$ of unitary operators $U_t f(x) = t^{-1/2} f(tx)$ acting in $L^2_2(\mathbb{Q}_p)$. Obviously, U_t satisfies (1.7) with the function of conjugation $q(t) = 1/t$, c.f. (4.2). It follows from (28) that $U_t D^\alpha = t^\alpha D^\alpha U_t, t \in \mathfrak{I}$. Hence, D^α is t^α-homogeneous with respect to Ω.

Since D^α is a p-adic pseudo-differential operator its domain of definition $\mathcal{D}(D^\alpha)$ need not contain functions continuous on \mathbb{Q}_p and, in general, may happen that the formal expression

$$D^\alpha + b < \delta, \quad b \in \mathbb{R}$$ \hfill (5.12)

and the associated symmetric operator $A_{sym} = D^\alpha \upharpoonright \{ u(x) \in \mathcal{D}(D^\alpha) : u(0) = 0 \}$ are not defined on $\mathcal{D}(D^\alpha)$. It is known [35] that the domain $\mathcal{D}(D^\alpha)$ consists of continuous functions on \mathbb{Q}_p and the Dirac delta function $\delta(x)$ is well-defined on $\mathcal{D}_2(D^\alpha) = \mathcal{D}(D^\alpha)$ if and only if $\alpha > 1/2$. Furthermore, $\delta(x)$ is $\sqrt{\mathfrak{I}}$-invariant with respect to Ω and $\delta(x) \in \mathfrak{F}_{-2}(D^\alpha) \setminus \mathfrak{F}_{-1}(D^\alpha)$ if $1/2 < \alpha \leq 1$, while $\delta(x) \in \mathfrak{F}_{-1}(D^\alpha)$ if $\alpha > 1$.

It follows from [27] Lemma 3.7 and [35] Lemma 2.1 that

$$h(x) = (D^\alpha + I)^{-1} \delta = \sum_{N = -\infty}^{\infty} \sum_{j = 1}^{p-1} p^{-N/2} [p^{\alpha N} + 1]^{-1} \psi_{N,j,0}(x),$$

where the functions $\psi_{N,j,0}(x)$ ($N \in \mathbb{Z}, j = 1, \ldots, p - 1$) form a part of the p-adic wavelet basis $\{ \psi_{N,j}(x) \}$ recently constructed in [28].
The equation (4.27) takes the form
\[(t-t^\alpha)r = \sqrt{t(1-t^\alpha)}(h,U_t h), \quad \forall t \in \mathbb{T}. \tag{5.13}\]

A simple analysis shows that (5.13) has no solutions for \(\alpha = 1\). In that case the initial operator \(D^1\) is a unique nonnegative self-adjoint extension of \(A_{sym}\), see Proposition 4.17. If \(\alpha \neq 1\) (\(\alpha > 1/2\)), then (5.13) has a unique solution \(r \in \mathbb{R}\) that determines a unique \(t^\alpha\)-homogeneous admissible operator \(\tilde{A}\) for the regularization of (5.12) by the formula (cf. (3.2))
\[\tilde{A}f(x) = D^\alpha u(x) + \frac{u(0)}{r}h(x), \quad \mathcal{D}(\tilde{A}) = \{ f = u(x) - \frac{u(0)}{r}h(x) : u \in \mathcal{D}(D^\alpha) \}.\]

In view of Proposition 4.17 the operator \(\tilde{A}\) coincides with the Krein-von Neumann (Friedrichs) extension of \(A_{sym}\) for \(1/2 < \alpha < 1\) (resp. \(\alpha > 1\)).

Let \((\mathbb{C}^n, \Gamma_0, \Gamma_1)\) be the boundary triplet of \(A_{sym}\) constructed in Lemma 2.2, so that \(\ker \Gamma_0 = \mathcal{D}(\tilde{A})\). By Theorem 2.3 self-adjoint operator realizations of (5.12) in \(L_2(\mathbb{R})\) have the form \(A_0 f = A_0 (u + ch) = D^\alpha u - ch, \quad \forall u \in \mathcal{D}(D^\alpha)\), where the parameter \(c = ct(0, b) \in \mathbb{C}\) is uniquely determined by the relation \(bu(0) = -c[1+br]\). Since \(\xi^2(t) = t \neq t^\alpha = p(t) (\alpha \neq 1)\), Theorem 5.1 shows that \(A_0\) is \(t^\alpha\)-homogeneous if and only if \(b = 0 \) or \(b = \infty\) \((A_\infty \equiv \tilde{A})\).

Let \(\alpha > 1\). It follows from [7] that the Weyl function associated with \((\mathbb{C}^n, \Gamma_0, \Gamma_1)\) has the form
\[M(z) = -\frac{1}{(p-1) \sum_{N=-\infty}^{\infty} \frac{2}{(p(N^2-N)-z)}}.\]

By virtue of Theorem 5.5 \(M(z)\) satisfies the relation \(t^{\alpha-1}M(z) = M(t^\alpha z)\), \(\forall t \in \mathbb{T}\). This simplifies the spectral analysis of \(A_0\), see [7] for details.

6. SCHRÖDINGER OPERATORS WITH SINGULAR PERTURBATIONS \(\xi(t)\)-IN Variant WITH RESPECT TO SCALING TRANSFORMATIONS IN \(\mathbb{R}^3\)

It is well known (see, e.g. \[13\]) that the Schrödinger operator \(A_0 = -\Delta\), \((D(\Delta) = W^2_2(\mathbb{R}^3))\) is \(t^{-2}\)-homogeneous with respect to the set of scaling transformations \(\mathfrak{U} = \{(U_t)_{t \in (0, \infty)} : U_t f(x) = t^{3/2} f(tx) \in L_2(\mathbb{R}^3)\}\). It is clear that \(U_t\) satisfies \((1.7)\) with the function of conjugation \(g(t) = 1/t\).

The elements \(U_t\) of \(\mathfrak{U}\) possess the additional multiplicative property \(U_{t_1}U_{t_2} = U_{t_2}U_{t_1} = U_{t_1t_2}\) that enables one to describe all measurable functions \(\xi(t)\) for which there exist \(\xi(t)\)-invariant singular elements \(\psi \in W^{-2}_2(\mathbb{R}^3)\).

Theorem 6.1. Let \(\xi(t)\) be a real measurable function defined on \((0, \infty)\). Then \(\xi(t)\)-invariant singular elements \(\psi \in W^{-2}_2(\mathbb{R}^3) \setminus L_2(\mathbb{R}^3)\) exist if and only if \(\xi(t) = t^{-\alpha}\), where \(0 < \alpha < 2\).

Proof. Let \(\psi \in W^{-2}_2(\mathbb{R}^3) \setminus L_2(\mathbb{R}^3)\) be \(\xi(t)\)-invariant with respect to \(\mathfrak{U}\). Since \(U_{t_1}U_{t_2} = U_{t_2}U_{t_1} = U_{t_1t_2}\), equality (1.9) gives \(\xi(t_1)\xi(t_2) = \xi(t_1t_2)\) \((t_i > 0)\) that is possible only if \(\xi(t) = 0\) or \(\xi(t) = t^{-\alpha}\) \((\alpha \in \mathbb{R})\) \([24\Chap IV\]. Furthermore, Proposition 4.5 enables one to restrict the set of possible functions \(\xi(t)\) as follows: \(\xi(t) = t^{-\alpha}\), where \(0 < \alpha < 2\).

To complete the proof of Theorem 6.1 it suffices to construct \(t^{-\alpha}\)-invariant singular elements for \(0 < \alpha < 2\).
Fix \(m(w) \in L_2(S^2) \), where \(L_2(S^2) \) is the Hilbert space of square-integrable functions on the unit sphere \(S^2 \) in \(\mathbb{R}^3 \), and determine the functional \(\psi(m, \alpha) \in W_2^{-2}(\mathbb{R}^3) \) by the formula

\[
< \psi(m, \alpha), u > = \int_{\mathbb{R}^3} \frac{m(w)}{|y|^{3/2-\alpha}}(|y|^2 + 1)\hat{u}(y)dy \quad (y = |y|w \in \mathbb{R}^3),
\]

where \(\hat{u}(y) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{iy\cdot x}u(x)dx \) is the Fourier transformation of \(u(\cdot) \in W_2^3(\mathbb{R}^3) \).

It is easy to verify that

\[
(\hat{U}_t(u))(y) = (\hat{U}_t\hat{u})(y) = \frac{1}{(2\pi t)^{3/2}} \int_{\mathbb{R}^3} e^{iy\cdot x}u(x/t)dx = U_t\hat{u}(y) = t^{3/2}\hat{u}(ty),
\]

Using (6.1) and (6.2), one obtains \(< \psi(m, \alpha), U_tu > = t^{-\alpha} < \psi(m, \alpha), u > \) for all \(u \in W_2^3(\mathbb{R}^3) \). By (4.15) this means that the functional \(\psi(m, \alpha) \) is \(t^{-\alpha} \)-invariant with respect to \(U_t \). Theorem 6.1 is proved. \(\square \)

A more detailed study of functionals that are \(t^{-\alpha} \)-invariant with respect to scaling transformations and the results of [37] lead to the conclusion that the collection \(L_\alpha \) of all \(t^{-\alpha} \)-invariant singular elements \(\psi \in W_2^{-2}(\mathbb{R}^3) \setminus L_2(\mathbb{R}^3) \) can be described as follows: \(L_\alpha = \{ \psi = \psi(m, \alpha) : m(w) \in L_2(S^2), \ m(w) \neq 0 \} \).

Let us consider the formal expression

\[
-\Delta + \sum_{i,j=1}^n b_{ij} < \psi_j, \cdot > \psi_i, \quad b_{ij} \in \mathbb{C}, \ n \in \mathbb{N}, \quad (6.3)
\]

where all singular elements \(\psi_j \) are assumed to be \(t^{-\alpha} \)-invariant with respect to scaling transformations for a fixed \(\alpha \), i.e., \(\psi_j = \psi(m_j, \alpha) \). The symmetric operator

\[
-\Delta_{\text{sym}} = -\Delta_{\text{sym}}(\mathbb{R}^3), \quad D(\Delta_{\text{sym}}) = \{ u(x) \in W_2^3(\mathbb{R}^3) : < \psi_j, u > = 0, \ 1 \leq j \leq n \},
\]

where \(< \psi_j, u > \) are defined by (6.1).

Comparing (1.2) and (6.1), one sees that the functions \(h_j = (A_0 + 1)^{-1}\psi(m_j, \alpha) \) in (2.3) have the form

\[
h_j(x) = \left(\frac{m_j(w)}{|y|^{3/2-\alpha}(|y|^2 + 1)} \right)^\vee(x), \quad (6.5)
\]

where the symbol \(\vee \) denotes the inverse Fourier transformation.

A simple analysis of (6.5) shows that \(h_j \in L_2(\mathbb{R}^3) \setminus W_2^1(\mathbb{R}^3) \) for \(1 \leq \alpha < 2 \) and \(h_j \in W_2^3(\mathbb{R}^3) \) for \(0 < \alpha < 1 \). In the latter case, Corollary 3.7 and Lemma 4.4 imply that the Friedrichs extension \(-\Delta_F \) is a unique \(t^{-2} \)-homogeneous admissible operator for the regularization of (6.3).

Proposition 6.2. Let \(1 < \alpha < 2 \). Then the Krein-von Neumann extension \(-\Delta_N \) of \(-\Delta_{\text{sym}}\) is a unique \(t^{-2} \)-homogeneous admissible operator for the regularization of (6.3).

Proof. If \(1 < \alpha < 2 \), then all the elements \(\psi_j \) in (6.3) are \(W_2^{-1}(\mathbb{R}^3) \)-independent. Let us show that the system (4.23) has a unique solution \(R = (r_{ij})_{i,j=1}^n \) that does not depend on \(t > 0 \). Since the both parts of (4.23) are equal to zero for \(t = 1 \), one can suppose that \(t > 0 \) and \(t \neq 1 \).
It follows from \((6.2)\) and \((6.3)\) that
\[
U_t h_1(x) = U_t \left(\frac{m_i(w)}{|y|^{3/2-\alpha}(|y|^2 + 1)} \right)^\wedge (x) = \left(\frac{m_j(w)}{|y|^{3/2-\alpha}(|y|^2 + 1)} \right)^\wedge (x).
\]
\[
= t^{2-\alpha} \left(\frac{m_i(w)}{|y|^{3/2-\alpha}(|y|^2 + t^2)} \right)^\wedge (x).
\]
Hence,
\[
(h_j, U_t h_1) = t^{2-\alpha} \int_{\mathbb{R}^3} \frac{m_i(w)m_j(w)}{|y|^{3-2\alpha}(|y|^2 + t^2)(|y|^2 + 1)} \, dy
= (m_i, m_j)_{L^2} \int_0^\infty \frac{t^{2-\alpha}}{|y|^{1-2\alpha}(|y|^2 + t^2)(|y|^2 + 1)} \, d|y|
= c_{\alpha} t^{2\alpha - 2-\alpha} (m_i, m_j)_{L^2},
\]
where \(c_{\alpha} = \int_0^\infty \frac{|y|^{3-2\alpha}}{|y|^2 + 1} \, d|y|\) and \((m_i, m_j)_{L^2} = \int_{S^2} m_i(w)m_j(w) \, dw\) is the scalar product in \(L^2(S^2)\). Substituting the expression for \((h_j, U_t h_1)\) into \((4.23)\) one gets a unique solution \(R = (r_{ij})^n_{j=1}\), where \(r_{ij} = -c_{\alpha}(m_i, m_j)_{L^2}\). By Theorem 4.13 the obtained solution determines a unique \(t^{-\alpha}\)-homogeneous admissible operator \(A\) for the regularization of \((6.3)\) that coincides with \(-\Delta_N\).

Remark 6.3. If \(\alpha = 1\), then \((4.23)\) has no solution, there are no \(t^{-\alpha}\)-homogeneous admissible operators for \((6.3)\), and the Friedrichs \(-\Delta = -\Delta_F\) and the Krein-von Neumann \(-\Delta_N\) extensions of \(-\Delta_{sym}\) are not transversal.

Corollary 6.4. For a fixed \(1 < \alpha < 2\) assume that \(\psi_j = \psi(m_j, \alpha)\) in \((6.3)\) form an orthonormal system in \(W_2^{-\alpha}(\mathbb{R}^3)\) and self-adjoint operator realizations \(A_B = -\Delta_B\) of \((6.3)\) are defined by \((2.3)\) with \(\ker \Gamma_0 = \mathcal{D}(-\Delta_N)\). Then \(-\Delta_B\) is nonnegative if and only if \(\det(\beta_\alpha B - E) \neq 0\) and \(0 \leq \beta_\alpha B[\beta_\alpha B - E]^{-1} \leq E\), where
\[
\beta_\alpha = \left[\int_0^\infty \frac{|y|^{3-2\alpha}}{|y|^2 + 1} \, d|y| \right] \left[\int_0^\infty \frac{1}{|y|^{1-2\alpha}(|y|^2 + 1)} \, d|y| \right]^{-1}.
\]

Proof. Since \(\psi(m_j, \alpha)\) are orthonormal in \(W_2^{-\alpha}(\mathbb{R}^3)\) the functions \(h_j(x)\) determined by \((6.3)\) are orthonormal in \(L^2(\mathbb{R}^3)\). This means that \((m_i, m_j)_{L^2} = 0\) \((i \neq j)\) and \((m_i, m_j)_{L^2} \int_0^\infty \frac{1}{|y|^{1-2\alpha}(|y|^2 + 1)} \, d|y| = 1\). The obtained relations allows one to rewrite the unique solution \(R = -c_{\alpha}((m_i, m_j)_{L^2})^n_{j=1}\) of \((4.23)\) in a more explicit form: \(R = -\beta_\alpha E\), where \(\beta_\alpha\) is defined by \((6.6)\). Using Proposition 5.3 one completes the proof.

Note that the delta function \(\delta(\cdot)\) belongs to \(L_{3/2}\). For this reason, the expression \((6.3)\) where all \(\psi_j \in L_{3/2}\) can be considered as a generalization of the classical one-point interaction \(-\Delta + b < \delta, > \delta\). In that case the parameter \(\beta_\alpha\) in Corollary 6.4 can be easily calculated: \(\beta_{3/2} = 2\).

Theorem 6.5. Let \(\alpha = 3/2\). Then for any self-adjoint operator realization \(A_B = -\Delta_B\) of \((6.3)\) defined by \((2.3)\), the following statements are true:

(i) if \(-\Delta_B\) is nonnegative, then the wave operators \(W_\pm = \lim_{t \to \pm \infty} e^{-it\Delta_B} e^{it\Delta}\) exist and are unitary operators in \(L_2(\mathbb{R}^3)\);
(ii) if $-\Delta_B$ is nonnegative and the singular elements $\psi_j = \psi(m_j, 3/2)$ in $[6.3]$ form an orthonormal system in $W^{-2}_2(\mathbb{R}^3)$, then the S-matrix

$$S(-\Delta_B, -\Delta) = FW^{-1}_\Delta W_F$$

(F is the Fourier transformation in $L_2(\mathbb{R}^3)$) of the Schrödinger equation $iu_t = -\Delta_B u$ coincides with the boundary value $S(-\Delta_B, -\Delta)(\delta)$ ($\delta \in \mathbb{R}$) of the contractive operator-valued function

$$S(-\Delta_B, -\Delta)(z) = (E - 2izB)(E + 2izB)^{-1}, \quad z \in \mathbb{C}_+$$

(6.7) analytic in the upper half-plane \mathbb{C}_+.

Proof. The statements follow from [34, Theorem 3.3] and [33, Section 4]. □

Remark 6.6. In [33] the expression (6.7) was obtained by using the Lax–Phillips scattering scheme. Another description of $S(-\Delta_B, -\Delta)(z)$ in terms of the Krein’s resolvent formula was obtained in [1]. In that paper, the stationary scattering theory approach has been used.

Acknowledgements. The authors thank S. Albeverio, Yu. Arlinskii, and L. Nizhnik for useful discussions. The first author (S.H.) is grateful for the support from the Research Institute for Technology of the University of Vaasa. The second author (S.K.) expresses his gratitude to the Academy of Finland (projects 208056, 117656) for the support and the Department of Mathematics and Statistics of the University of Vaasa for the warm hospitality.

References

[1] V. Adamyan, B. Pavlov, Zero-radius potentials and M.G. Krein’s formula for generalized resolvents, Zap. Nauchn. Sem. LOMI 149 (1986) 7–23.

[2] S. Albeverio, L. Dabrowski, and P. Kurasov, Symmetries of Schrödinger operators with point interactions, Lett. Math. Phys. 45 (1998) 33–47.

[3] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988.

[4] S. Albeverio, P. Kurasov, Singular perturbations of differential operators. In: Solvable Schrödinger type operators, London Math. Soc. Lecture Note Ser. 271, Cambridge Univ. Press, Cambridge, 2000.

[5] S. Albeverio, P. Kurasov, Rank one perturbations, approximations and self-adjoint extensions, J. Funct. Anal. 148 (1997) 152–169.

[6] S. Albeverio, S. Kuzhel, and L. Nizhnik, Singularly perturbed self-adjoint operators in scales of Hilbert spaces, Ukrainian Math. J. 59 (2007) 723–744.

[7] S. Albeverio, S. Kuzhel, and S. Torba, P-adic Schrödinger-type operator with point interactions, J. Math. Anal. Appl. 338 (2008) 1267-1281.

[8] T. Ando, K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tôhoku Math. J. 22 (1970) 65–75.

[9] Yu. M. Arlinskii, Positive spaces of boundary values and sectorial extensions of nonnegative symmetric operators, Ukrainian Math. J. 40 (1988) 8–15.

[10] Yu. M. Arlinskii, S. Hassi, Z. Sebestyen, and H.S.V. De Snoo, On the class of extremal extensions of a nonnegative operator, Oper. Theory Adv. Appl. 127 (2001) 41–81.

[11] Yu. M. Arlinskii, E. R. Tsekanovskii, Some remarks of singular perturbations of self-adjoint operators, Methods Funct. Anal. Topol. 9 (2003) 287–308.

[12] Yu. M. Arlinskii, E. R. Tsekanovskii, On von Neumann’s problem in extension theory of nonnegative operators, Proc. Amer. Math. Soc. 131 (2003) 3143–3154.

[13] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer, Berlin, 1987.

[14] V. Derkach, S. Hassi, and H. de Snoo, Singular perturbations of self-adjoint operators, Math. Phys. Anal. Geometry, 6 (2003) 349–384.
28 S. Hassi AND S. Kuzhel

[15] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006) 5351–5400.
[16] V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991) 1–95.
[17] V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sciences, 73 (1995) 141–242.
[18] M. L. Gorbachuk, V. I. Gorbachuk, Boundary-Value Problems for Operator-Differential Equations, Kluwer, Dordrecht, 1991.
[19] S. Hassi, On the Friedrichs and the Krein-von Neumann extension of nonnegative relations, Acta Wasaensia, 122 (2004) 37–54.
[20] S. Hassi and S. Kuzhel, On symmetries in the theory of singular perturbations, Working papers of the University of Vaasa, 2006, 29pp. http://lipas.uwasa.fi/julkaisu/sis.html
[21] S. Hassi, M. Malamud, and H. de Snoo, On Krein’s extension theory of nonnegative operators, Math. Nachr. 274-275 (2004) 40–73.
[22] S. Hassi, A. Sandovici, H.S.V. de Snoo, and H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Theory (to appear).
[23] S. Hassi, H. de Snoo, One-dimensional graph perturbations of self-adjoint relations, Ann. Acad. Sci. Fenn. A.I. Math. 22 (1997) 123–164.
[24] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, 1957.
[25] A. A. Kiselev, B. S. Pavlov, N. N. Penkina, and M. G. Suturin, Interaction symmetry in the theory of extensions technique, Teor. Mat. Phys. 91 (1992) 179–191.
[26] A. N. Kochubei, About symmetric operators commuting with a family of unitary operators, Funk. Anal. Prilozh. 13 (1979) 77-78.
[27] A. N. Kochubei, Pseudodifferential Equations and Stochastics over Non-Archimedean Fields, Marcel Dekker, New York, 2001.
[28] S.V. Kozyrev, Wavelet analysis as a p-adic spectral analysis, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002) 149–158.
[29] M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, I, Mat. Sbornik 20 (1947) 431–495.
[30] P. Kurasov, Yu.V. Pavlov, On field theory methods in singular perturbation theory, Lett. Math. Phys. 64 (2003) 171–184.
[31] S. Kuzhel, On the determination of free evolution in the Lax–Phillips scattering scheme for second-order operator-differential equations, Math. Notes, 68 (2000) 724–729.
[32] A. Kuzhel, S. Kuzhel, Regular Extensions of Hermitian Operators, VSP, Utrecht, 1998.
[33] S. Kuzhel, L. Matsyuk, On an application of the Lax–Phillips scattering approach in the theory of singular perturbations, Ukrainian Math. J. 58 (2006) 232–241.
[34] S. Kuzhel, U. Moskalyova, The Lax–Phillips scattering approach and singular perturbations of Schrödinger operator homogeneous with respect to scaling transformations, J. Math. Kyoto Univ. 45 (2005) 265–286.
[35] S. Kuzhel, S. Torba, P-adic fractional differentiation operator with point interactions, Methods Funct. Anal. Topol. 13 (2007) 169–180.
[36] R. S. Phillips, The extension of dual subspaces invariant under an algebra, in: Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960), pp. 366-398, Jerusalem Academic Press, 1961.
[37] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, New Jersey, 1971.
[38] K. A. Makarov, E. Tsekanovskii, On μ-scale invariant operators, Methods Funct. Anal. Topol. 13 (2007) 181–186.

Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland

E-mail address: sha@uwasa.fi

Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tere-shchenkivska Street, 01601, Kiev-4, Ukraine

E-mail address: kuzhel@imath.kiev.ua