Thompson Sampling for Combinatorial Semi-Bandits

Siwei Wang 1 Wei Chen 2

Abstract
We study the application of the Thompson sampling (TS) methodology to the stochastic combinatorial multi-armed bandit (CMAB) framework. We analyze the standard TS algorithm for the general CMAB, and obtain the first distribution-dependent regret bound of $O(m \log T/\Delta_{\min})$ for TS under general CMAB, where m is the number of arms, T is the time horizon, and Δ_{\min} is the minimum gap between the expected reward of the optimal solution and any non-optimal solution. We also show that one cannot use an approximate oracle in TS algorithm for even MAB problems. Then we expand the analysis to matroid bandit, a special case of CMAB and for which we could remove the independence assumption across arms and achieve a better regret bound. Finally, we use some experiments to show the comparison of regrets of CUCB and CTS algorithms.

1. Introduction
Multi-armed bandit (MAB) (Berry & Fristedt, 1985; Sutton & Barto, 1998) is a classical online learning model typically described as a game between a learning agent (player) and the environment with m arms. In each step, the environment generates an outcome, and the player uses a policy (or an algorithm), which takes the feedback from the previous steps as input, to select an arm to pull. After pulling an arm, the player receives a reward based on the pulled arm and the environment outcome. In this paper, we consider stochastic MAB problem, which means the environment outcome is drawn from an unknown distribution (Lai & Robbins, 1985), not generated by an adversary (Auer et al., 2002b). The goal of the player is to cumulate as much reward as possible over a total of T steps (T may be unknown). The performance metric is the (expected) regret, which is the cumulative difference over T steps between always playing the arm with the optimal expected reward and playing the arms according to the policy.

MAB models the key tradeoff between exploration — continuing exploring new arms not observed often, and exploitation — sticking to the best performed arm based on the observation so far. A famous MAB algorithm is the upper confidence bound (UCB) policy (Gittins, 1989; Auer et al., 2002a), which achieves $O(m \log T/\Delta)$ distribution-dependent regret, where Δ is the minimum gap in the expected reward between an optimal arm and any non-optimal arm, and it matches the lower bound (Lai & Robbins, 1985).

Combinatorial multi-armed bandit (CMAB) problem has recently become an active research area (Gai et al., 2012; Chen et al., 2016b; Gopalan et al., 2014a; Kveton et al., 2014; 2015a;b; Wen et al., 2015; Combes et al., 2015; Chen et al., 2016a; Wang & Chen, 2017). In CMAB, the environment contains m base arms, but the player needs to pull a set of base arms S in each time slot, where S is called a super arm (or an action). The kind of reward and feedback varies in different settings. In this paper, we consider the semi-bandit setting, where the feedback includes the outcomes of all base arms in the played super arm, and the reward is a function of S and the observed outcomes of arms in S. CMAB has found applications in many areas such as wireless networking, social networks, online advertising, etc. Thus it is important to investigate different approaches to solve CMAB problems.

An alternative approach different from UCB is the Thompson sampling (TS) approach, which is introduced much earlier by Thompson (1933), but the theoretical analysis of the TS policy comes much later — Kaufmann et al. (2012) and Agrawal & Goyal (2012) give the first regret bound for the TS policy, which essentially matches the UCB policy theoretically. Moreover, TS policy often performs better than UCB in empirical simulation results, making TS an attractive policy for further studies.

TS policy follows the Bayesian inference framework to solve the MAB problems. The unknown distribution of environment outcomes is parameterized, with an assumed prior distribution. TS updates the prior distribution in each step with two phases: first it uses the prior distribution to sample a parameter, which is used to determine the action to

1Tsinghua University, Beijing, China 2Microsoft Research, Beijing, China. Correspondence to: Siwei Wang wangsw15@mails.tsinghua.edu.cn, Wei Chen weic@microsoft.com.

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).
play in the current step; second it uses the feedback obtained in the current step to update the prior distribution to posterior distribution according to the Bayes’ rule. To avoid confusion on these two kinds of random variables, in the rest of this paper, we use the word “sample” to denote the variable in the first phase, i.e. the random variable coming from the prior distribution. The word “observation” represents the feedback random variable, which follows the unknown environment distribution.

In this paper, we study the application of the Thompson sampling approach to CMAB. The reason that we are interested in this approach is that it has good performance in experiments. We found out that TS-based policy performs better than many kinds of UCB-based policy in experiments. We also adjust the parameters of UCB-based policy to make it behave better, but those parameters do not have theoretical guarantees. Thompson sampling policy behaves almost the same as UCB-based policies with no-guarantee parameters, and much better than those with parameters that have theoretical guarantees. Thompson sampling policy behaves almost the same as UCB-based policies with no-guarantee parameters, and much better than those with parameters that have theoretical guarantees. Thompson sampling policy behaves almost the same as UCB-based policies with no-guarantee parameters, and much better than those with parameters that have theoretical guarantees.

We consider a general CMAB case similar with (Chen et al., 2016b), i.e. we assume that (a) the problem instance satisfies a Lipschitz continuity assumption to handle non-linear reward functions, and (b) the player has access to an exact oracle for the offline optimization problem. We use the standard TS policy together with the offline oracle, and refer it as the combinatorial Thompson sampling (CTS) algorithm.

CTS policy would first derive a set of parameters $\theta = (\theta_1, \cdots, \theta_m)$ as sample set for the base arms, and then select the optimal super arm under θ. The original analysis for TS on MAB model then faces a challenge in addressing the dependency issue: it essentially requires that different super arms be related with independent samples so that when comparing them and selecting the optimal super arm, the actual optimal one is selected with high probability. But when super arms are based on the same sample set θ, dependency and correlation among super arms may likely fail the above high probability analysis.

One way to get around this is to independently derive a sample set $\theta(S)$ for every super arm S and compute its expected reward under $\theta(S)$, and then select the optimal super arm. Obviously this solution incurs exponential sampling cost and is what we want to avoid when solving CMAB.

To address the dependency challenge, we adapt an analysis of (Komiyama et al., 2015) for selecting the top-k arms to the general CMAB setting. The adaptation is nontrivial since we are dealing with arbitrary combinatorial constraints while they only deal with super arms containing k arms.

We show that CTS achieves $O(\sum_{i \in [m]} \log T / \Delta_{i, min}) + O((2/\varepsilon)^{2k^*})$ distribution-dependent regret bound for some small ε, where $\Delta_{i, min}$ is the minimum gap between the optimal expected reward and any non-optimal expected reward containing arm i, and k^* is the size of the optimal solution. This is the first distribution-dependent regret bound for general CMAB using TS-based policy, and the result matches the theoretical performance of the UCB-based solution CUCB in (Chen et al., 2016b). When considering CMAB with linear reward functions, the other complexity factors in the leading log T term also matches the regret lower bound for linear CMAB in (Kveton et al., 2015a). For the exponential constant term, we show an example that it is unavoidable for Thompson sampling.

Comparing to the UCB-based solution in (Chen et al., 2016b), the advantages of CTS is that: a) we do not need to assume that the expected reward is monotone to the mean outcomes of the base arms; b) it has better behaviour in experiments. CTS also suffers from some disadvantages. For example, CTS policy can not adapt an approximation oracle as in (Chen et al., 2016b) (the regret becomes to approximate regret as well). However, we claim that it is because of the difference between TS-based algorithm and UCB-based algorithm. To show this, we provide a counter example for origin MAB problem, which cause an approximate regret of $\Theta(T)$ when using TS policy.

Another disadvantage is that we need to assume that all the outcomes of all base arms are mutually independent. This is because TS policy maintains a prior distribution for every base arm’s mean value μ_i. Only when the distributions are independent, we can use a simple method to update those prior distributions; otherwise the update method will be much more complicated for both the implementation and the analysis. This assumption is still reasonable, since many real applications satisfy this assumption.

However, when applying on some further combinatorial structures, we do not need such an assumption, such as in matroid bandit. Matroid bandit is a special class of CMAB (Kveton et al., 2014), in which the base arms are the elements in the ground set and the super arms are the independent sets of a matroid. The reward function is the sum of all outcomes of the base arms in the super arm. We show that the regret of CTS is upper bounded by $O(\sum_{i \in S^*} \log T / \Delta_i) + O(m/\varepsilon^4)$ for some small ε, where S^* is an optimal solution and Δ_i is the minimum positive gap between the mean outcome of any arms in S^* and the mean outcome of arm i. This result does not need to assume that all arm distributions are independent, and do not have a constant term exponential with k^*. It matches both the theoretical performance of the UCB-based algorithm.
We further conduct empirical simulations, and show that CTS performs much better than the CUCB algorithm of (Chen et al., 2016b) and C-KL-UCB algorithm based on KL-UCB of (Garivier & Cappé, 2011) on both matroid and non-matroid CMAB problem instances.

In summary, our contributions include that: (a) we provide a novel analysis for the general CMAB problem, and provides the first distribution-dependent regret bound for general CMAB problems and matroid bandit problems based on Thompson sampling; (b) we show that approximation oracle can not be used in TS-based algorithms; and (c) we show that the exponential constant in our regret bound for general CMAB problems is unavoidable.

Due to space constraint, complete proofs are moved to the supplementary material.

1.1. Related Work

A number of related works on the general context of multi-armed bandit and Thompson sampling have been given, and we focus here on the most relevant studies related to CMAB. Our study follows the general CMAB framework of (Chen et al., 2016b), which provides a UCB-style algorithm CUCB and show a $O(\sum_{i=1}^{m} \log T / \Delta_i)$ regret bound. Comparing with our CTS, both use an offline oracle, assume a Lipschitz continuity condition, and the bound essentially match asymptotically on time horizon T. Their differences include: (a) CTS does not need the monotonicity property but CUCB requires that to use the offline oracle; (b) CUCB allows an approximation oracle (and uses approximate regret), but CTS requires an exact oracle; (c) the regret bound of CTS has some additional terms not related to T, which is common in TS-based regret bounds (See Section 3 for more details). Combes et al. (2015) propose ESCB algorithm to solve CMAB with linear reward functions and independent arms, and their regret is a factor $O(\sqrt{m})$ better than our corresponding regret bound for CTS. However, their ESCB algorithm requires an exponential-time for computation, which is what we want to avoid when designing CMAB algorithms.

Matroid bandit is defined and studied by Kveton et al. (2014), who provide a UCB-based algorithm with regret bound almost exactly matches CTS algorithm. They also prove a matching lower bound using a partition matroid bandit.

Thompson sampling has also been applied to settings with combinatorial actions. Gopalan et al. (2014b) study a general action space with a general feedback model, and provide analytical regret bounds for the exact TS policy. However, their general model cannot be applied to our case. In particular, they assume that the arm outcome distribution is from a known parametric family and the prior distribution on the parameter space is finitely supported. We instead work on arbitrary nonparametric and unknown distributions with bounded support, and even if we work on a parametric family, we allow the support of prior distributions to be infinite or continuous. The reason is that in our CMAB setting, we only need to learn the means of base arms (same as in (Chen et al., 2016b)). Moreover, their regret bounds are high probability bounds, not expected regret bounds, and their bounds contain a potentially very large constant, which will turn into a non-constant term when we convert them to expected regret bounds.

In (Komiyama et al., 2015), the authors consider the TS-based policy for the top-k CMAB problem, a special case of matroid bandits where the super arms are subsets of size at most k. Thus we generalize top-k bandits to matroid bandits, and our regret bound for matroid bandit still matches the one in (Komiyama et al., 2015).

Wen et al. (2015) analyze the regret of using TS policy for contextual CMAB problems. The key difference between their work and ours is that they use the Bayesian regret metric. Bayesian regret takes another expectation on the prior distribution of parameters, while our regret bound works for any given parameter. This leads to very different analytical method, and they cannot provide distribution-dependent regret bounds. Russo & Van Roy (2016) also use Bayesian regret to analyze the regret bounds of TS policy for any kind of MAB problems. Again, due to the use of Bayesian regret, their analytical method is very different and cannot be used for our purpose.
\(F_{t-1} = \{(S(\tau), Q(\tau)) : 1 \leq \tau \leq t - 1\} \), which is the input to the learning algorithm to select the action \(S(t) \). Similar to (Chen et al., 2016b), we make the following two assumptions. For a parameter vector \(\mu \), we use \(\mu_S \) to denote the projection of \(\mu \) on \(S \), where \(S \) is a subset of all the base arms.

Assumption 1. The expected reward of a super arm \(S \in I \) only depends on the mean of all base arms in \(S \). That is, there exists a function \(r \) such that \(\mathbb{E}[R(t)] = \mathbb{E}_X(t) \mathbb{E}_D[R(S(t), X(t))] = r(S(t), \mu_{S(t)}) \).

The expected reward function is

\[
\mathbb{E}[R(t)] = \mathbb{E}_X(t) \mathbb{E}_D[R(S(t), X(t))] = r(S(t), \mu_{S(t)}).
\]

This assumption is not necessary in CUCB algorithms. However, when using TS method, this assumption is needed. This is because that we are using the Bayes’ Rule, thus we need the exact likelihood function (as we can see in (Gopalan et al., 2014b)). Only when the distributions for all base arms are independent, we can use the \(\text{Update} \) procedure (Algorithm 2) to update their mean vector’s prior distribution. When the distributions are correlated, the update procedure will also be much more complicated.

This assumption is not necessary in CUCB algorithms. However, when using TS method, this assumption is needed. This is because that we are using the Bayes’ Rule, thus we need the exact likelihood function (as we can see in (Gopalan et al., 2014b)). Only when the distributions for all base arms are independent, we can use the \(\text{Update} \) procedure (Algorithm 2) to update their mean vector’s prior distribution. When the distributions are correlated, the update procedure will also be much more complicated.

2. Matroid Bandit

In matroid bandit settings, \(([m], I) \) is a matroid, which means that \(I \) has two properties:

- If \(A \in I \), then \(\forall A' \subseteq A, A' \in I \);
- If \(A_1, A_2 \in I, |A_1| > |A_2| \), then there exists \(i \in A_1 \setminus A_2 \) such that \(A_2 \cup \{i\} \in I \).

The reward function is \(R(S, x) = \sum_{i \in S} x_i \), and thus the expected reward function is \(r(S, \mu) = \sum_{i \in S} \mu_i \).

3. Combinatorial Thompson Sampling

We first consider the general CMAB setting. For this setting, we assume that the player has an exact oracle \(\text{Oracle}(\theta) \) that takes a vector of parameters \(\theta = (\theta_1, \ldots, \theta_m) \) as input, and output a super arm \(S = \arg\max_{S \in I} r(S, \theta) \).

The combinatorial Thompson sampling (CTS) algorithm is described in Algorithm 1. Initially, we set the prior distribution of the means of all base arms as the Beta distribution \(\beta(1, 1) \), which is the uniform distribution on \([0, 1]\). After we get observation \(Q(t) \), we update the prior of all base arms in \(S(t) \) using procedure \(\text{Update} \) (Algorithm 2): for each observation \(X_i(t) \), we generate a Bernoulli random variable \(Y_i(t) \) (the value of \(Y_i \) at time \(t \)) independently with mean \(X_i(t) \), and then we update the prior Beta distribution of base arm \(i \) using \(Y_i(t) \) as the new observation. It is easy to see that \(\{Y_i(t)\}_i \)’s are i.i.d. with the same mean \(\mu_i \) as the samples \(\{X_i(t)\}_i \)’s. Let \(a_i(t) \) and \(b_i(t) \) denote the values of \(a_i \) and \(b_i \) at the beginning of time step \(t \). Then, following the Bayes’ rule, the posterior distribution of parameter \(\mu_i \) after observation \(Q(t) \) is \(\beta(a_i(t) + 1, b_i(t) + 1 - Y_i(t)) \), which is what the \(\text{Update} \) procedure does for updating \(a_i \) and \(b_i \). When choosing a super arm, we simply draw independent samples from all base arms’ prior distributions, i.e., \(\theta_i(t) \sim \beta(a_i(t), b_i(t)) \), and then send the sample vector \(\theta(t) = (\theta_1(t), \ldots, \theta_m(t)) \) to the oracle. We use the output from the oracle \(S(t) \) as the super arm to play.

Algorithm 1 CTS Algorithm for CMAB

1: For each arm \(i \), let \(a_i = b_i = 1 \)
2: for \(t = 1, 2, \ldots \) do
3: For all arm \(i \), draw a sample \(\theta_i(t) \) from Beta distribution \(\beta(a_i, b_i) \); let \(\theta(t) = (\theta_1(t), \ldots, \theta_m(t)) \)
4: Play action \(S(t) = \text{Oracle}(\theta(t)) \), get the observation \(Q(t) = \{(i, X_i(t)) : i \in S(t)\} \)
5: Update \(\{(a_i, b_i) : i \in S(t)\}, Q(t) \)
6: end for

Algorithm 2 Procedure Update

1: Input: \(\{(a_i, b_i) : i \in S\}, Q = \{(i, X_i) : i \in S\} \)
2: Output: updated \(\{(a_i, b_i) : i \in S\} \)
3: for all \((i, X_i) \in Q \) do
4: \(Y_i \leftarrow 1 \) with probability \(X_i \), 0 with probability \(1 - X_i \)
5: \(a_i \leftarrow a_i + Y_i; b_i \leftarrow b_i + 1 - Y_i \)
6: end for

Theorem 1. Under Assumptions 1, 2, and 3, for all \(D, K, \)}
Algorithm 1 has regret upper bound

$$\sum_{i=1}^{m} \max_{S : \mu \in S} \frac{8B^2 |S| \log T}{\Delta_S} - 2B(k^2 + 2)\varepsilon + \left(\frac{mK^2_{\max}}{\varepsilon^2} + 3m \right) \Delta_{\max} + \alpha_1 \cdot \left(\frac{8\Delta_{\max}}{\varepsilon^2} \left(\frac{4}{\varepsilon^2} + 1 \right) k^* \log k^* \right)$$

(1)

for any ε such that $\forall S, \Delta_S > 2B(k^2 + 2)\varepsilon$, where B is the Lipschitz constant in Assumption 2, and α_1 is a constant not dependent on the problem instance.

When ε is sufficiently small, the leading log T term in the regret bound is comparable with the regret bound for CUCB in (Chen et al., 2016b). The term related to ε is to handle continuous Beta prior — since we will never be able to sample a $\theta^{(k)}(t)$ to be exactly the true value μ, we need to consider the ε-neighborhood of μ. This ε term is common in most Thompson sampling analysis.

The constant term has an exponential dependency on k^*. This is because we need all the k^* base arms in the best super arm to have samples close to their means to make sure that it is the best super arm in sampling. In contrast, for the top-k MAB of (Komiyama et al., 2015), there is no such exponential dependency, because they only compare one base arm at a time (this can also be seen in our matroid Bandit analysis). When dealing with the general actions, the regret result of (Gopalan et al., 2014b) also contains an exponentially large constant term without a close form, which is likely to be much larger than ours. In Section 3.3, we show that this exponential constant is unavoidable for the general CTS.

We now provide the proof outline for Theorem 1. First we define the following four events:

- $A(t) = \{ S(t) \notin \text{OPT} \}$
- $B(t) = \{ \exists i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon |\hat{\theta}_i(t)| \}^c$
- $C(t) = \{ \| \theta_S(t) - \mu_S(t) \|_1 > \frac{\Delta_S}{B} - (k^* + 1)\varepsilon \}$
- $D(t) = \{ \exists i \in S(t), |\hat{\theta}_i(t) - \bar{\mu}_i(t)| > \sqrt{\frac{2 \log N_i(T)}{N_i(t)}} \}$

Then the total regret can be written as:

$$\sum_{t=1}^{T} \mathbb{E} \left[[A(t)] \times \Delta_{S(t)} \right]$$

$$\leq \sum_{t=1}^{T} \mathbb{E} \left[[B(t) \land A(t)] \times \Delta_{S(t)} \right]$$

$$+ \sum_{t=1}^{T} \mathbb{E} \left[[\neg B(t) \land C(t) \land D(t) \land A(t)] \times \Delta_{S(t)} \right]$$

The first term can be bounded by Chernoff Bound, which is $\left(\frac{mK^2_{\max} + m}{\varepsilon^2} \right) \Delta_{\max}$. The second term can be bounded by some basic results of Beta distribution, the upper bound is $2m\Delta_{\max}$.

The third term is a little bit tricky. Notice that under $C(t)$, we can use $B(\| \theta_S(t) - \mu_S(t) \|_1)$ as an approximation of $\Delta_{S(t)}$. However, it is hard to bound $\sum_{i \in S(t)} |\theta_i(t) - \mu_i|$. To deal with this, we say one base arm $i \in S(t)$ is sufficiently learned if $N_i(t) > L_i(S(t)) = 2 \log T / \left(\frac{\Delta_{S(t)}}{2B} - \frac{k^* + 2}{2} \varepsilon \right)^2$. When computing $\sum_{i \in S(t)} |\theta_i(t) - \mu_i|$, we do not count all the sufficiently learned arms in. To compensate their contributions, we double all the insufficiently learned arms’ contributions from $\sqrt{\frac{2 \log T}{N_i(t)}}$ to $2 \sqrt{\frac{2 \log T}{N_i(t)}}$.

One can check that the sum of contributions from insufficiently learned arms is an upper bound for the regret $\Delta_{S(t)}$ under $\neg B(t) \land C(t) \land \neg D(t)$. Thus, we can upper bound the total contribution of base arm i as: $\sum_i 4B \sqrt{2 \log TL_i^{\max}}$ where $L_i^{\max} = \max_{S \subseteq i \in S} L_i(S)$.

The difficulty comes mainly from the last term. Although the $\theta_i(t)$’s of all base arms are mutually independent, when it comes to super arms, the value $r(S, \theta_S(t))$’s for different super arms S are not mutually independent, because super arms may overlap one another. For example, Lemma 1 in (Agrawal & Goyal, 2013) is not true for considering super arms because of the lack of independence. This means that we cannot simply use the technique of (Agrawal & Goyal, 2013). Dealing with the dependency issue for this case is the main novelty in our analysis, as we now explain.

Let $\theta = (\theta_1, \ldots, \theta_m)$ be a vector of parameters, $Z \subseteq [m]$ and $Z \neq \emptyset$ be some base arm set and Z^c be the complement of Z. Recall that θ_Z is the sub-vector of θ projected onto Z, and we use notation $(\theta_Z^\prime, \theta_Z^{\prime c})$ to denote replacing θ_i’s with θ_i^\prime’s for $i \in Z$ and keeping the values θ_i for $i \in Z^c$ unchanged.

Given a subset $Z \subseteq S^*$, we consider the following property for θ_Z^\prime. For any $\| \theta_Z^\prime - \mu_Z^\prime \|_\infty \leq \varepsilon$, let $\theta^\prime = (\theta_Z^\prime, \theta_Z^{\prime c})$:

- Either $\mathbf{Oracle}(\theta^\prime) \in \text{OPT}$ or $\| \theta^\prime_{\text{Oracle}} - \mu_{\text{Oracle}}(\theta^\prime) \|_1 > \frac{\Delta_{\text{Oracle}(\theta^\prime)}}{B} - (k^* + 1)\varepsilon$.

The first one is to make sure that if we have normal samples in Z at time t, then arms in Z will be played and observed.
These observations would update the Beta distributions of these arms to be more accurate, such that it is easier next time that the samples from these arms are also within ε of their true value. This fact would be used later in the quantitative regret analysis. The second one says that if the samples in Z are normal, then $\neg C(t) \land A(t)$ can not happen (similar to the analysis in (Agrawal & Goyal, 2013) and (Komiyama et al., 2015)). As time going on, the probability that $\neg C(t) \land A(t)$ happens will become smaller and smaller, thus the expectation on its sum has a constant upper bound.

We use $\mathcal{E}_{Z,1}(\theta)$ to denote the event that the vector θ_Z has such a property, and emphasize that this event only depends on the values in vector θ_Z. What we want to do is to find some exact Z such that $\mathcal{E}_{Z,1}(\theta)$ occurs when $\neg C(t) \land A(t)$ happens. The following lemma shows that such Z must exist, it is the key lemma in this section.

Lemma 1. Suppose that $\neg C(t) \land A(t)$ happens, then there exists $Z \subseteq S^*$ and $Z \neq \emptyset$ such that $\mathcal{E}_{Z,1}(\theta(t))$ holds.

By Lemma 1, for some nonempty Z, $\mathcal{E}_{Z,1}(\theta(t))$ occurs when $\neg C(t) \land A(t)$ happens. Another fact is that $||\theta_Z(t) - \mu_Z||_\infty > \varepsilon$. The reason is that if $||\theta_Z(t) - \mu_Z||_\infty \leq \varepsilon$, by definition of the property, either $t \in \text{OPT}$ or $||\theta_{S(t)}(t) - \mu_{S(t)}||_1 > \frac{\Delta_{S(t)}}{\delta} - (k^2 + 1)\varepsilon$, which means $\neg C(t) \land A(t)$ can not happen. Let $\mathcal{E}_{Z,2}(\theta)$ be the event $||\theta_Z - \mu_Z||_\infty > \varepsilon$. Then $\neg C(t) \land A(t) \rightarrow \forall Z \subseteq S^*, Z \neq \emptyset (\mathcal{E}_{Z,1}(\theta(t)) \land \mathcal{E}_{Z,2}(\theta(t)))$.

Using similar techniques in (Komiyama et al., 2015) we can get the upper bound $O\left(\left\lfloor \frac{8}{\varepsilon^2} \right\rfloor |Z| \log \frac{|Z|}{\varepsilon} \right)$ for $\sum_{t=1}^{T} \mathbb{E}[\{\mathcal{E}_{Z,1}(\theta(t)), \mathcal{E}_{Z,2}(\theta(t))\}]$.

3.2. Approximation Oracle

We consider using an approximation oracle in our CTS algorithm as well, like what the author did in (Chen et al., 2016b) or (Wen et al., 2015). However, we found out that Thompson sampling does not work with an approximation oracle even in the original MAB model, as shown in Theorem 2. Notice that here we do not consider the Bayesian regret, so it does not contradict with the results in (Wen et al., 2015).

To make it clear, we need to show the definitions of approximation oracle and approximation regret here.

Definition 1. An approximation oracle with rate λ for MAB problem is a function $\text{Oracle} : [0, 1]^m \rightarrow \{1, \cdots, m\}$ such that $\mu_{\text{Oracle}(\mu)} \geq \lambda \max_i \mu_i$.

Definition 2. The approximation regret with rate λ of MAB problem on mean vector μ is defined as:

$$
\sum_{i=1}^{T} (\lambda \max_i \mu_i - \mu_{i(t)}),
$$

where $i(t)$ is the arm pulled on time step t.

The TS algorithm using approximation oracle Oracle works just as Algorithm 1.

Theorem 2. There exists an MAB instance with an approximation oracle such that when using Algorithm 1, the regret is $\Omega(T)$.

Proof Sketch. Consider the following MAB instance:

Problem Instance 1. $m = 3$, $\mu = [0.9, 0.82, 0.7]$, approximate rate $\lambda = 0.8$. The Oracle works as following: if $\mu_3 \geq \lambda \max_i \mu_i$, $\text{Oracle}(\mu) = 3$; else if $\mu_2 \geq \lambda \max_i \mu_i$, $\text{Oracle}(\mu) = 2$; otherwise $\text{Oracle}(\mu) = 1$.

The key idea is that we may never play the best arm (arm 1 above) when using the approximation oracle. When the sample from the prior distribution of the best arm is good, we choose an approximate arm (arm 2 above) but not the best arm; otherwise we choose an bad arm (arm 3 above) with positive approximation regret. Thus the expected regret of each time slot depends on whether the prior distribution of the best arm at the beginning is good or not. Since the best arm is never observed, we never update its prior distribution. Thus the expected regret in each time slot can remain a positive constant forever.

3.3. The Exponential Constant Term

Since every arm’s sample $\theta_i(t)$ is chosen independently, the worst case is that we need all the samples for base arms in the best super arm to be close to their true means to choose that super arm. Under this case, the probability that we have no regret in each time slot is exponentially with k^3, thus we will have such a constant term.

Theorem 3. There exists a CMAB instance such that the regret of Algorithm 1 on this instance is at least $\Omega(2^{k^3})$.

Proof Sketch. Consider the following CMAB instance:

Problem Instance 2. $m = k^* + 1$, there are only two super arms in I, where $S_1 = \{1, 2, \cdots, k^*\}$ and $S_2 = \{k^* + 1\}$. The mean vector $\mu_{S_1} = [1, \cdots, 1]$. The reward function R follows $R(S_1, X) = \prod_{i \in S_1} X_i$, and $R(S_2, X) = 1 - \Delta$, while $\Delta = 0.5$. The distributions D_i are all independent Bernoulli distributions with mean μ_i (since $\mu_i = 1$, the observations are always 1).

One can show that the expected time until Algorithm 1 plays the optimal super arm S_1 for the first time is $\Omega(2^{k^3})$.

The exponential term comes from the bad prior distribution at the beginning of the algorithm. In fact, from the proof of Theorem 1 we know that if we can pull each base arm for $\tilde{O}(\frac{1}{\varepsilon^2})$ times at the beginning and then use the CTS policy
whose prior distribution at the beginning is the posterior distribution after those observations, then we can reduce the exponential constant term to $O(\frac{m}{\varepsilon^2})$. However, since ε depends on Δ_{\min}, which is unknown to the player, we can not simply run each base arm for a few time steps to avoid the exponential constant regret term. Perhaps an adaptive choice can be used here, and this is a further research item.

4. Matroid Bandit Case

In matroid bandit, we suppose the oracle we use is the greedy one since the greedy algorithm gives back the exact best super arm.

4.1. Regret Upper Bound

Let $S^* \in \arg\max_{S \in \mathcal{I}} r(S, \mu)$ be one of the optimal super arm. Define $\Delta_i = \min_{j \in S^* \setminus \{j_i \}} \mu_j - \mu_{i}$. If $i \notin S^*$ but $\{j \mid j \in S^*, \mu_j > \mu_i\} = \emptyset$, we define $\Delta_i = \infty$, so that $\frac{1}{\Delta_i} = 0$. Let $K = \max_{S \in \mathcal{I}} |S| = |S^*|$. We have the following theorem for CTS algorithm under the matroid bandit case:

Theorem 4. Under Assumptions 1 and 2, the regret upper bound of Algorithm 1 for a matroid bandit is:

$$\text{Reg}(T) \leq \sum_{i \notin S^*} \frac{\log T}{\Delta_i - 2\varepsilon} \frac{\Delta_i - \varepsilon}{\Delta_i - 2\varepsilon} + O_2 \left(\frac{m}{\varepsilon^2} \right) + m^2,$$

for any $\varepsilon > 0$ such that $\forall i \notin S^*, \Delta_i - 2\varepsilon > 0$, where O_2 is a constant not dependent on the problem instance.

Notice that we do not need the distributions of all the base arms to be independent due to the special structure of matroid. When ε is small, the leading log T term of the above regret bound matches the regret lower bound $\sum_{i \notin S^*} \frac{1}{\Delta_i} \log T$ given in (Kveton et al., 2014). For the constant term, we have an $O\left(\frac{1}{\varepsilon^2}\right)$ factor while Agrawal & Goyal (2013) have an $O\left(\frac{1}{\varepsilon}\right)$ factor in their theorem. However, even following their analysis, we can only obtain $O\left(\frac{1}{\varepsilon^2}\right)$ and cannot recover the $O\left(\frac{1}{\varepsilon}\right)$ in their analysis.

We now provide a proof outline. The difference from Theorem 1 is that we can use the special combinatorial structure of matroid to improve the analysis.

Firstly, we introduce a fact from (Kveton et al., 2014).

Fact 1. (Lemma 1 in (Kveton et al., 2014)) For each $S(t) = \{i^{(1)}(t), \cdots, i^{(K)}(t)\}$ chosen by Algorithm 1 (the superscript is the order when they are chosen), we could find a bijection L_i from $\{1, 2, \cdots, K\}$ to S^* such that:

1) If $i^{(k)}(t) \in S^*$, then $L_i(k) = i^{(k)}(t)$;
2) $\forall 1 \leq k \leq K$, $\{i^{(1)}(t), \cdots, i^{(k-1)}(t), L_i(k)\} \in \mathcal{I}$.

With a bijection L_i, we could decouple the regret of playing one action $S(t)$ to each pair of mapped arms between $S(t)$ and S^*. For example, the regret of time t is $\sum_{k=1}^{K} \mu_{L_i(k)} - \mu_{i^{(k)}(t)}$.

We use $N_{i,j}(t)$ to denote the number of rounds that $j^{(k)}(t) = i$ and $L_i(k) = j$ for $i \notin S^*, j \in S^*$ within in time slots $1, 2, \cdots, T$, then

$$\text{Reg}(T) \leq \sum_{i \notin S^*} \sum_{j \in S^*, \mu_{j} > \mu_i} \mathbb{E}[N_{i,j}(t)](\mu_j - \mu_i).$$

We can see that if $\{j : j \in S^*, \mu_j > \mu_i\} = \emptyset$, then $\sum_{i \notin S^*} \sum_{j \in S^*, \mu_j > \mu_i} \mathbb{E}[N_{i,j}(t)](\mu_j - \mu_i) = 0$, thus we do not need to consider the regret from base arm i, so we set $\Delta_i = \infty$ to make $\frac{1}{\Delta_i} = 0$.

Now we just need to bound the value $N_{i,j}(t)$, similarly, we can defined the following three events:

- $A_{i,j}(t) = \{\exists k, i^{(k)}(t) = i \land L_i(k) = j\}$
- $B_i(t) = \{\hat{\mu}_i(t) > \mu_i + \varepsilon\}$
- $C_{i,j}(t) = \{\theta_i(t) > \mu_j - \varepsilon\}$

Thus

$$\mathbb{E}[N_{i,j}(t)] = \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t)] \right]$$

$$\leq \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land B_i(t)] \right] + \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land \neg B_i(t) \land C_{i,j}(t)] \right] + \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land \neg C_{i,j}(t)] \right]$$

We can use Chernoff Bound to get an upper bound of the first term as $(m - K)(1 + \frac{1}{\Delta_i})$. As for the second term, basic properties of Beta distribution give an upper bound: $(m - K)K + \sum_{i \notin S^*} \frac{\log T}{\Delta_i^2}$.

The largest difference appears in the third term, instead of Lemma 1, here we can have some further steps in matroid bandit.

Lemma 2. Suppose the vector $\theta(t)$ satisfy that $A_{i,j}(t) \land \neg C_{i,j}(t)$ happens. Then if we change $\theta_i(t)$ to $\theta'_i(t) > \mu_j - \varepsilon$ and set other values in $\theta(t)$ unchanged to get $\theta'(t)$, then arm j must be chosen in $\theta'(t)$.

We use the notation θ_{-i} to be the vector θ without θ_i.

For any $j \in S^*$, let W_j be the set of all possible values of θ satisfies that $A_{i,j}(t) \land \neg C_{i,j}(t)$ happens for some i, and $W_{-j} = \{\theta_{-j} : \theta \in W_j\}$.
From Lemma 2, we know \(\theta(t) \in W_j \) only if \(\theta_{-j}(t) \in W_{-j} \) and \(\theta_j(t) \leq \mu_j - \varepsilon \). Then similar with the analysis of Theorem 1, we can bound the value \(\sum_{t=1}^{T} \mathbb{E}[\theta(t) \in W_j] \leq O(\frac{1}{\varepsilon}) \).

5. Experiments

We conduct some preliminary experiments to empirically evaluate the performance of CTS versus CUCB and C-KL-UCB. The reason that we choose C-KL-UCB is that: a) in classical MAB model, KL-UCB behaves better than UCB; b) similar with TS, it is also a policy based on Bayesian Rule. We also make simulations on CUCB and C-KL-UCB with chosen parameters, represented by CUCB-m and C-KL-UCB-m. In CUCB, we choose the confidence radius to be \(\text{rad}_i(t) = \sqrt{\frac{3 \log t}{2N_i(t)}} \), while in CUCB-m, it is \(\sqrt{\frac{\log t}{2N_i(t)}} \).

In C-KL-UCB we choose \(f(t) = \log t + 2 \log \log t \), while in C-KL-UCB-m it is \(\log t \). Those chosen parameters in CUCB-m and C-KL-UCB-m make them behave better, but lack performance analysis.

5.1. Matroid Bandit

It is well known that spanning trees form a matroid. Thus, we test the maximum spanning tree problem as an example of matroid bandits, where edges are arms, and super arms are forests.

We first generate a random graph with \(M \) nodes, and each pair of nodes has an edge with probability \(p \). If the resulting graph has no spanning tree, we regenerate the graph again. The mean of the distribution is randomly and uniformly chosen from \([0, 1]\). The expected reward for any spanning tree is the sum of the means of all edges in it. It is easy to see that this setting is an instance of the matroid bandit.

The results are shown in Figure 1 with the probability \(p = 0.6 \) and \(M = 30 \). In Figure 1(a), we set all the arms to have independent distributions. In Figure 1(b), each time slot we generate a global random variable \(\text{rand} \) uniformly in \([0, 1]\), all edges with mean larger than \(\text{rand} \) will have outcome 1, while others have outcome 0. In other words, the distributions of base arms are correlated. We can see that CTS has smaller regret than CUCB, CUCB-m and C-KL-UCB in both two experiments. As for C-KL-UCB-m algorithm, it behaves better with small \(T \), but loses when \(T \) is very large. We emphasize that C-KL-UCB-m policy uses parameters without theoretical guarantee, thus CTS algorithm is a better choice.

5.2. General CMAB

In the general CMAB case, we consider the shortest path problem. We build two graphs for this experiment, the results of them are shown in Figure 2(a) and Figure 2(b).

The cost of a path is the sum of all edges’ mean in that path, while the outcome of each edge \(e \) follows a independent Bernoulli distribution with mean \(\mu_e \). The objective is to find the path with minimum cost. To make the problem more challenging, in both graphs we construct a lot of paths from the source node \(s \) to the sink node \(t \) that only have a little larger cost than the optimal one, and some of them are totally disjoint with the optimal path.

Similar to the case of matroid bandit, the regret of CTS is also much smaller than that of CUCB, CUCB-m and C-KL-UCB, especially when \(T \) is large. As for the C-KL-UCB-m algorithm, although it behaves best in the four UCB-based policies, it still has a large difference between CTS.

6. Future Work

In this paper, we apply combinatorial Thompson sampling to combinatorial multi-armed bandit and matroid bandit problems, and obtain theoretical regret upper bounds for those two settings.

There are still a number of interesting questions that may worth further investigation. For example, pulling each base arm for a number of time slots at the beginning of the game can decrease the constant term to non-exponential, but the point is that the player does not know how many time slots are enough. Thus how can we use an adaptive policy or some further assumptions to do so is a good question. In this paper, we suppose that all the distributions for base arms are independent. Another question is how to find analysis for using CTS under correlated arm distributions.
References

Agrawal, S. and Goyal, N. Analysis of thompson sampling for the multi-armed bandit problem. In COLT, pp. 39–1, 2012.

Agrawal, S. and Goyal, N. Further optimal regret bounds for thompson sampling. In AISTATS, pp. 99–107, 2013.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. The non-stochastic multi-armed bandit problem. Siam Journal on Computing, 32(1):48–77, 2002b.

Berry, D. A. and Fristedt, B. Bandit problems: sequential allocation of experiments (Monographs on statistics and applied probability). Springer, 1985.

Chen, W., Hu, W., Li, F., Li, J., Liu, Y., and Lu, P. Combinatorial multi-armed bandit with general reward functions. In NIPS, 2016a.

Chen, W., Wang, Y., Yuan, Y., and Wang, Q. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. Journal of Machine Learning Research, 17(50):1–33, 2016b. A preliminary version appeared as Chen, Wang, and Yuan, “combinatorial multi-armed bandit: General framework, results and applications”, ICML'2013.

Combes, R., Talebi, M. S., Proutiere, A., and Lelarge, M. Combinatorial bandits revisited. In NIPS, 2015.

Gai, Y., Krishnamachari, B., and Jain, R. Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20, 2012.

Garivier, A. and Cappé, O. The kl-ucb algorithm for bounded stochastic bandits and beyond. Mathematics, 2011.

Gittins, J. Multi-armed bandit allocation indices. wiley-interscience series in systems and optimization. 1989.

Gopalan, A., Mannor, S., and Mansour, Y. Thompson sampling for complex online problems. In Proceedings of the 31st International Conference on Machine Learning (ICML), 2014a.

Gopalan, A., Mannor, S., and Mansour, Y. Thompson sampling for complex online problems. In ICML, volume 14, pp. 100–108, 2014b.

Kaufmann, E., Korda, N., and Munos, R. Thompson sampling: an asymptotically optimal finite-time analysis. In Proceedings of the 23rd international conference on Algorithmic Learning Theory, pp. 199–213, 2012.

Komiyama, J., Honda, J., and Nakagawa, H. Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays. In Proceedings of The 32nd International Conference on Machine Learning, pp. 1152–1161, 2015.

Kveton, B., Wen, Z., Ashkan, A., Eydgahi, H., and Eriksson, B. Matroid bandits: Fast combinatorial optimization with learning. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI), 2014.

Kveton, B., Wen, Z., Ashkan, A., and Szepesvári, C. Tight regret bounds for stochastic combinatorial semi-bandits. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 2015a.

Kveton, B., Wen, Z., Ashkan, A., and Szepesvari, C. Combinatorial cascading bandits. In Advances in Neural Information Processing Systems, pp. 1450–1458, 2015b.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1): 4–22, 1985.

Russo, D. and Van Roy, B. An information-theoretic analysis of thompson sampling. Journal of Machine Learning Research, 17(68):1–30, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.

Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Wang, Q. and Chen, W. Improving regret bounds for combinatorial semi-bandits with probabilistically triggered arms and its applications. In Advances in Neural Information Processing Systems, 2017.

Wen, Z., Kveton, B., and Ashkan, A. Efficient learning in large-scale combinatorial semi-bandits. In ICML, pp. 1113–1122, 2015.
Supplementary Material

A. Notations

We use \(\bar{\mu}_i(t) = \frac{a_i(t)}{N_i(t)} = \frac{1}{N_i(t)} \sum_{\tau: t-1 \leq \tau < t} Y_i(\tau) \) to denote the empirical mean of arm \(i \) until time step \(t \). Notice that for fixed arm \(i \), in different time \(t \) with \(i \in S(t) \), \(X_i(t)'s \) are i.i.d.s with mean \(\mu_i \), and \(Y_i(t) \) is a Bernoulli random variable with mean \(\bar{\mu}_i(t) \), thus the Bernoulli random variables \(Y_i(t)'s \) are also i.i.d.s with mean \(\mu_i \).

B. Proof of Theorem 1

B.1. Proof of Lemma 1

Lemma 1. Suppose that \(\neg C(t) \land A(t) \) happens, then there exists \(Z \subseteq S^* \) and \(Z \neq \emptyset \) such that \(\mathcal{E}_{Z,1}(\theta(t)) \) holds.

Proof. Firstly, consider the case that we choose \(Z \subseteq S^* \), i.e. we change \(\theta_{S'}(t) \) to some \(\theta'_{S'} \). With \(\|\theta'_{S'} - \mu_{S'}\|_\infty \leq \varepsilon \) and get a new vector \(\theta' = (\theta'_{S'}, \theta_0' \cdot t) \). We claim that for any \(S' \) such that \(S' \cap S^* = \emptyset \), Oracle\((\theta') \neq S' \). This is because:

\[
\begin{align*}
r(S', \theta') &= r(S', \theta(t)) \\
&\leq r(S(t), \theta(t)) \quad (2) \\
&\leq r(S(t), \mu) + B(\Delta S(t)/B) - (k^* + 1)\varepsilon \quad (3) \\
&\leq r(S^*, \mu) - B(k^* + 1)\varepsilon \quad (4) \\
&\leq r(S^*, \mu) - B k^* \varepsilon \quad (5) \\
&\leq r(S^*, \theta'). \quad (6)
\end{align*}
\]

Eq. (2) is because \(\theta' \) and \(\theta(t) \) only differs on arms in \(S^* \) but \(S' \cap S^* = \emptyset \). Eq. (3) is by the optimality of \(S(t) \) on input \(\theta(t) \). Eq. (4) is by the event \(\neg C(t) \) and Lipschitz continuity (Assumption 2). Eq. (5) is by the definition of \(\Delta S(t) \). Eq. (6) again uses the Lipschitz continuity. Thus, the claim holds.

So we have two possibilities for Oracle\((\theta') \): 1a) for all \(\theta'_{S'} \) with \(\|\theta'_{S'} - \mu_{S'}\|_\infty \leq \varepsilon \), \(S^* \subseteq \text{Oracle}(\theta') \); 1b) for some \(\theta'_{S'} \) with \(\|\theta'_{S'} - \mu_{S'}\|_\infty \leq \varepsilon \), Oracle\((\theta') = S_1 \) where \(S_1 \cap S^* = Z_1 \) and \(Z_1 \neq \emptyset \).

In 1a), let \(S_0 = \text{Oracle}(\theta') \). Then we have \(r(S_0, \theta') \geq r(S^*, \theta') \geq r(S^*, \theta) - B k^* \varepsilon \). If \(S_0 \notin \text{OPT} \), then we have \(r(S_0, \mu) = r(S_0, \mu) + \Delta S_0 \). Together we have \(r(S_0, \theta') \geq r(S_0, \mu) + \Delta S_0 - B k^* \varepsilon \). By the Lipschitz continuity assumption, this implies that \(\|\theta'_{S_0} - \mu_{S_0}\|_1 \geq \frac{\Delta S_0}{B} - k^* \varepsilon \geq \frac{\Delta S_0}{B} - (k^* + 1)\varepsilon \). That is, we conclude that either \(S_0 \in \text{OPT} \) or \(\|\theta'_{S_0} - \mu_{S_0}\|_1 \geq \frac{\Delta S_0}{B} - k^* \varepsilon \). This means \(\mathcal{E}_{S_0,1}(\theta'(t)) = \mathcal{E}_{S_0,1}(\theta(t)) \) holds.

Then we consider 1b). Fix a \(\theta'_{Z_1} \) with \(\|\theta'_{Z_1} - \mu_{Z_1}\|_\infty \leq \varepsilon \). Let \(S_1 = \text{Oracle}(\theta') \). Then \(r(S_1, \theta') \geq r(S^*, \theta') \geq r(S^*, \mu) - B k^* \varepsilon \).

For all \(\theta'_{Z_1} \) with \(\|\theta'_{Z_1} - \mu_{Z_1}\|_\infty \leq \varepsilon \), consider \(\theta' = (\theta'_{Z_1}, \theta_{Z_1} \cdot \cdot \cdot (t)) \). We see that \(\|\theta'_{Z_1} - \theta'_{Z_1}\|_1 \leq 2(k^* - 1)\varepsilon \). Thus \(r(S_1, \theta') \geq r(S^*, \theta) - B k^* \varepsilon - 2 B (k^* - 1)\varepsilon = r(S^*, \mu) - B (3k^* - 2)\varepsilon \). Similarly, we have the following inequalities for any \(S' \cap Z_1 = \emptyset \):

\[
\begin{align*}
r(S', \theta') &= r(S', \theta(t)) \\
&\leq r(S(t), \theta(t)) \quad (2) \\
&\leq r(S(t), \mu) + B(\Delta S(t)/B) - (k^* + 1)\varepsilon \quad (3) \\
&\leq r(S^*, \mu) - B(k^* + 1)\varepsilon \quad (4) \\
&\leq r(S^*, \mu) - B k^* \varepsilon \quad (5) \\
&\leq r(S^*, \theta'). \quad (6)
\end{align*}
\]

That is, Oracle\((\theta') \cap Z_1 \neq \emptyset \). Thus we will also have two possibilities for Oracle\((\theta') \): 2a) for all \(\theta'_{Z_1} \) with \(\|\theta'_{Z_1} - \mu_{Z_1}\|_\infty \leq \varepsilon, Z_1 \subseteq \text{Oracle}(\theta') \); 2b) for some \(\theta'_{Z_2} \) with \(\|\theta'_{Z_2} - \mu_{Z_2}\|_\infty \leq \varepsilon, \text{Oracle}(\theta') = S_2 \) where \(S_2 \cap Z_1 = Z_2 \) and \(Z_2 \neq Z_1 \).
We could repeat the above argument and each time the size of Z_i is decreased by at least 1. Thus, after at most $k^* - 1$ steps, $(k^* + 2(k^* - 1) + \cdots + 2 \times 1 = k^*^2$ is still less than $k^*^2 + 1$) we could reach the end and find a $Z_i \subseteq S^*$ and $Z_i \neq \emptyset$ such that $E_{Z_i,t}(\Theta(t))$ occurs.

\[\Box\]

B.2. Other Lemmas and Facts for Proving Theorem 1

\textbf{Lemma 3.} In Algorithm 1, we have:

$$E[|t : 1 \leq t \leq T; i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon|] \leq 1 + \frac{1}{\varepsilon^2}$$

for any $1 \leq i \leq m$.

\textbf{Proof.} Let τ_1, τ_2, \ldots be the time slots such that $i \in S(t)$ and define $\tau_0 = 0$, then

$$E[|t : 1 \leq t \leq T; i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon|] = E \left[\sum_{t=1}^{T} \mathbb{1}_i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon \right]$$

$$\leq E \left[\sum_{w=0}^{T} E \left[\sum_{t=\tau_w}^{\tau_{w+1}-1} \mathbb{1}_i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon \right] \right]$$

$$\leq E \left[\sum_{w=0}^{T} \Pr[|\hat{\mu}_i(t) - \mu_i| > \varepsilon, N_i = w] \right]$$

$$\leq 1 + \sum_{w=0}^{T} \Pr[|\hat{\mu}_i(t) - \mu_i| > \varepsilon, N_i = w]$$

$$= 1 + \sum_{w=1}^{T} \exp(-wD(\mu_i + \varepsilon||\mu_i)) + \sum_{w=1}^{\infty} \frac{\exp(-D(\mu_i + \varepsilon||\mu_i))}{1 - \exp(-D(\mu_i + \varepsilon||\mu_i))}$$

$$\leq 1 + 1 + \frac{1}{D(\mu_i + \varepsilon||\mu_i)} \leq 1 + \frac{1}{\varepsilon^2}$$

\[\Box\]

\textbf{Fact 2.} (Beta-Binomial Trick) Let $F_{a,b}^{\text{Beta}}(x)$ be the cdf of Beta distribution with parameters (a, b), let $F_B^{a,b}(x)$ be the cdf of Binomial distribution with parameters (n, p). Then for any positive integers (a, b), we have

$$F_{a,b}^{\text{Beta}}(x) = 1 - F_{a+b-1,x}^{B}(a-1)$$

\textbf{Lemma 4.} In Algorithm 1, for any base arm i, we have the following two inequalities:

$$\Pr \left[\theta_i(t) - \hat{\mu}_i(t) > \sqrt{\frac{2 \log T}{N_i(t)}} \right] \leq \frac{1}{T},$$

$$\Pr \left[\hat{\mu}_i(t) - \theta_i(t) > \sqrt{\frac{2 \log T}{N_i(t)}} \right] \leq \frac{1}{T},$$
To calculate that, we divide it into three parts: a) \(\ell \leq 1 \). Similarly, from the definition of Chernoff bound, when \(q \geq \frac{8}{e} \), we have

\[
\text{Pr}[\theta_i(t) > \mu_i(t) + r_i(t)] = 1 - F_{\text{Beta}}^{B}(\alpha_i(t), \beta_i(t)) (\hat{\mu}_i(t) + r_i(t)) (\alpha_i(t) - 1)
\]

\[
= 1 - (1 - F_{\text{Beta}}^{B} (\alpha_i(t) + \beta_i(t) - 1, \mu_i(t) + r_i(t), \alpha_i(t) - 1))
\]

\[
\leq \exp(- (\alpha_i(t) + \beta_i(t) - 1) K L (\hat{\mu}_i(t), \mu_i(t) + r_i(t)))
\]

\[
\leq \exp\left(- \frac{2 \log T}{N_i(t)} r_i(t)^2 \right)
\]

Eq. (7) is given by Beta-Binomial Trick (Fact 2), Eq. (8) is given by Chernoff-Hoeffding Inequality, and Eq. (9) follows the fact that \(K L (p, q) \geq \frac{|p - q|^2}{2} \).

Lemma 5. Let \(p_{i,q,\varepsilon}(t) \) be the probability of \(|\theta_i(t) - \mu_i| \leq \varepsilon \) when there are \(q \) observations of base arm \(i \), then for \(q > \frac{8}{e} \),

\[
\mathbb{E} \left[\frac{1}{p_{i,q,\varepsilon}} \right] \leq 1 + 6 \alpha'_i \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{2}} + \frac{2}{e^{\frac{\varepsilon^2}{2}} - 2},
\]

where \(\alpha'_i \) is a constant which does not depend on any parameters of the MAB model, i.e. \(m, k, T, M, \mu \), and the expectation is taken over all possible \(q \) observations of base arm \(i \).

Proof. From the definition of \(p_{i,q,\varepsilon} \) and the results in (Agrawal & Goyal, 2013), we know that

\[
\mathbb{E} \left[\frac{1}{p_{i,q,\varepsilon}} \right] = \sum_{\ell=0}^{q} F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell),
\]

where \(F_{q,p}(\ell) \) and \(f_{q,p}(\ell) \) are the cumulative distribution function and probability distribution function of binomial distribution with parameters \(q, p \). \(F_{q,\mu_i,\varepsilon}(\ell) \) is the probability that there are \(\ell \) positive feedbacks for \(i \) in totally \(q \) observations, and \(F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell) \) is the probability for \(|\theta_i(t) - \mu_i| \leq \varepsilon \) under this Beta Distribution \(\beta(\ell + 1, q - \ell + 1) \).

To calculate that, we divide it into three parts: a) \(\ell = 0 \) to \(\ell = (\lfloor \mu_i - \frac{e}{2} \rfloor q) \); b) \(\ell = (\lfloor \mu_i - \frac{e}{2} \rfloor q) \) to \(\ell = (\lfloor \mu_i + \frac{e}{2} \rfloor q) \); c) \(\ell = (\lfloor \mu_i + \frac{e}{2} \rfloor q) \) to \(\ell = q \).

For part a), we need an inequality from (Agrawal & Goyal, 2013):

\[
\forall q > \frac{8}{e} \sum_{\ell=0}^{\lfloor (\mu_i - \frac{e}{2}) q \rfloor} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \leq \alpha'_i \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{2}} q.
\]

Using Chernoff bound, when \(q > \frac{8}{e} \), we have

\[
F_{q+1,\mu_i,\varepsilon} \left(\left(\lfloor \mu_i - \frac{e}{2} \rfloor q \right) \right) \geq 1 - e^{-2(\mu + \frac{e}{2}q + \varepsilon)^2/(q+1)} \geq 1 - e^{-\frac{\varepsilon^2}{2} q}.
\]

Similarly,
We have proved that for

Thus,

Then we consider the part b), notice that

Then we come to the last part, notice that

This means for all \(\ell \leq \floor{(\mu_i - \frac{\varepsilon}{2})q} \), we have

\[
\frac{F_{q+1,\mu_i-\varepsilon}(\ell)}{F_{q+1,\mu_i+\varepsilon}(\ell)} \geq \frac{1}{e^{-\frac{\varepsilon^2}{8}q}} \geq \frac{3}{2}.
\]

and

\[
\sum_{\ell=0}^{\floor{(\mu_i - \frac{\varepsilon}{2})q}} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell)} \leq 3 \sum_{\ell=0}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell)} \leq 3\alpha_1 \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{8}q}.
\]

Then we consider the part b), notice that \(F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell) \) is first increasing and then decreasing. Thus, the minimum value of \(F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell) \) for \(\floor{(\mu_i - \frac{\varepsilon}{2})q} \leq \ell \leq \ceil{(\mu_i + \frac{\varepsilon}{2})q} \) is taken at the endpoints, i.e. \(\ell = \floor{(\mu_i - \frac{\varepsilon}{2})q} \) or \(\ell = \ceil{(\mu_i + \frac{\varepsilon}{2})q} \).

We have proved that for \(q > \frac{\varepsilon}{\alpha} \), \(F_{q+1,\mu_i-\varepsilon}(\floor{(\mu_i - \frac{\varepsilon}{2})q}) - F_{q+1,\mu_i+\varepsilon}(\floor{(\mu_i - \frac{\varepsilon}{2})q}) \geq 1 - 2 e^{-\frac{\varepsilon^2}{8}q}
\]

Using the same way, we can also get \(F_{q+1,\mu_i-\varepsilon}(\ceil{(\mu_i + \frac{\varepsilon}{2})q}) - F_{q+1,\mu_i+\varepsilon}(\ceil{(\mu_i + \frac{\varepsilon}{2})q}) \geq 1 - 2 e^{-\frac{\varepsilon^2}{8}q}
\]

Thus,

\[
\sum_{\ell=\floor{(\mu_i + \frac{\varepsilon}{2})q}}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell)} \leq \sum_{\ell=\floor{(\mu_i + \frac{\varepsilon}{2})q}}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} \frac{f_{q,\mu_i}(\ell)}{1 - 2 e^{-\frac{\varepsilon^2}{8}q}} \leq \frac{1}{1 - 2 e^{-\frac{\varepsilon^2}{8}q}} \sum_{\ell=\floor{(\mu_i + \frac{\varepsilon}{2})q}}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} f_{q,\mu_i}(\ell) \leq \frac{1}{1 - 2 e^{-\frac{\varepsilon^2}{8}q}} \leq 1 + \frac{2}{e^{\frac{\varepsilon^2}{8}q}}.
\]

Then we come to the last part, notice that \(F_{q+1,\mu}(\ell) = 1 - F_{q+1,1-\mu}(q - \ell) \) and \(f_{q,\mu}(\ell) = f_{q,1-\mu}(q - \ell) \). Thus,

\[
\sum_{\ell=\floor{(\mu_i + \frac{\varepsilon}{2})q}}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} \frac{f_{q,\mu}(\ell)}{F_{q+1,\mu_i-\varepsilon}(\ell) - F_{q+1,\mu_i+\varepsilon}(\ell)} = \sum_{\ell=\floor{(\mu_i + \frac{\varepsilon}{2})q}}^{\ceil{(\mu_i + \frac{\varepsilon}{2})q}} \frac{f_{q,1-\mu}(q - \ell)}{F_{q+1,1-\mu_i-\varepsilon}(q - \ell) - F_{q+1,1-\mu_i+\varepsilon}(q - \ell)} \leq 3\alpha_1 \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{8}q}.
\]

Summing up the three parts, for \(q > \frac{\varepsilon}{\alpha} \), we have the upper bound:
\begin{equation*}
\mathbb{E}\left[\frac{1}{p_{i,q,\varepsilon}}\right] \leq 1 + 6\alpha_1' \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{2}} + \frac{2}{e^{4\varepsilon^2} - 2}.
\end{equation*}

\textbf{Lemma 6.} For any value \(q \), we have

\begin{equation*}
\mathbb{E}\left[\frac{1}{p_{i,q,\varepsilon}}\right] \leq \frac{4}{\varepsilon^2}.
\end{equation*}

\textbf{Proof.} From Lemma 2 in (Agrawal & Goyal, 2013), for any \(q > 0 \), we have

\begin{equation*}
\sum_{\ell=0}^{q} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \leq \frac{3}{\varepsilon}.
\end{equation*}

Now we consider the value \(\sum_{\ell=0}^{q} F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell) \). Since \(F_{q+1,\mu}(\ell + 1) = \mu F_{q,\mu}(\ell) + (1 - \mu) F_{q,\mu}(\ell + 1) \), we have the following equations:

\begin{align*}
\sum_{\ell=0}^{q+1} (F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell)) &= \sum_{\ell=0}^{q} (F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell)) \\
&= \sum_{\ell=0}^{q} \left((\mu - \varepsilon) F_{q,\mu_i,\varepsilon}(\ell - 1) - (\mu + \varepsilon) F_{q,\mu_i,\varepsilon}(\ell - 1) \\
&\quad + (1 - \mu + \varepsilon) F_{q,\mu_i,\varepsilon}(\ell) - (1 - \mu - \varepsilon) F_{q,\mu_i,\varepsilon}(\ell) \right) \\
&= \sum_{\ell=0}^{q} (F_{q,\mu_i,\varepsilon}(\ell) - F_{q,\mu_i,\varepsilon}(\ell)) + \varepsilon \sum_{\ell=0}^{q} (F_{q,\mu_i,\varepsilon}(\ell) \\
&\quad - F_{q,\mu_i,\varepsilon}(\ell - 1) + F_{q,\mu_i,\varepsilon}(\ell) - F_{q,\mu_i,\varepsilon}(\ell - 1)) \\
&= \sum_{\ell=0}^{q} (F_{q,\mu_i,\varepsilon}(\ell) - F_{q,\mu_i,\varepsilon}(\ell)) + 2\varepsilon.
\end{align*}

When \(q = 1 \), \(F_{1,\mu,\varepsilon}(0) - F_{1,\mu,\varepsilon}(0) = 2\varepsilon \), so \(\sum_{\ell=0}^{q+1} (F_{q+1,\mu_i,\varepsilon}(\ell) - F_{q+1,\mu_i,\varepsilon}(\ell)) = 2(q+1)\varepsilon \).

Thus \(\max_{\ell} F_{q+1,\mu_i,\varepsilon}(\ell - 1) - F_{q+1,\mu_i,\varepsilon}(\ell) \geq 2\varepsilon \), let \(L = \arg\max_{\ell} F_{q+1,\mu_i,\varepsilon}(\ell - 1) - F_{q+1,\mu_i,\varepsilon}(\ell) \)

Then we can write the value \(\sum_{\ell=0}^{q} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \) as:

\begin{equation*}
\sum_{\ell=0}^{L-1} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} + \sum_{\ell=L+1}^{q} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} + \frac{f_{q,\mu_i}(L)}{F_{q+1,\mu_i,\varepsilon}(L)}.
\end{equation*}

Since \(\frac{F_{q+1,\mu_i,\varepsilon}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \) is decreasing, then for \(0 \leq \ell \leq L - 1 \), \(\frac{F_{q+1,\mu_i,\varepsilon}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \geq \frac{F_{q+1,\mu_i,\varepsilon}(\ell - 1)}{F_{q+1,\mu_i,\varepsilon}(\ell - 1)} \geq \frac{1}{1 - 2\varepsilon} \)

Thus

\begin{align*}
\sum_{\ell=0}^{L-1} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} &\leq \frac{1}{2\varepsilon} \sum_{\ell=0}^{L-1} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)} \\
&\leq \frac{1}{2\varepsilon} \sum_{\ell=0}^{q} \frac{f_{q,\mu_i}(\ell)}{F_{q+1,\mu_i,\varepsilon}(\ell)}
\end{align*}
and
\[
\sum_{\ell = L+1}^{q} F_{q+1, \mu_i - \varepsilon}(\ell) - F_{q+1, \mu_i + \varepsilon}(\ell) = \sum_{\ell = L+1}^{q} F_{q+1, 1 - \mu_i - \varepsilon}(q - \ell) - F_{q+1, 1 - \mu_i + \varepsilon}(q - \ell) = \sum_{\ell' = 0}^{q-L-1} F_{q+1, 1 - \mu_i}(\ell') - F_{q+1, 1 - \mu_i}(\ell').
\]

Since \(F_{q+1, 1 - \mu_i - \varepsilon}(\ell') - F_{q+1, 1 - \mu_i + \varepsilon}(\ell') \) is the same as \(F_{q+1, 1 - \mu_i - \varepsilon}(q - \ell) - F_{q+1, 1 - \mu_i + \varepsilon}(q - \ell) \), when \(\ell' = q - L \) it takes the maximum value which is also larger than \(2\varepsilon \).

Then
\[
\sum_{\ell' = 0}^{q-L-1} F_{q+1, 1 - \mu_i}(\ell') \leq \frac{1}{2\varepsilon} \sum_{\ell' = 0}^{q-L-1} F_{q+1, 1 - \mu_i}(\ell') \leq \frac{1}{2\varepsilon} \sum_{\ell' = 0}^{q} F_{q+1, 1 - \mu_i}(\ell') \leq \frac{3}{2\varepsilon^2}.
\]

From the fact that \(F_{q+1, \mu_i - \varepsilon}(L) - F_{q+1, \mu_i + \varepsilon}(L) \geq 2\varepsilon \), we know \(\frac{f_{q, \mu_i}(L)}{F_{q+1, \mu_i - \varepsilon}(L) - F_{q+1, \mu_i + \varepsilon}(L)} \leq \frac{1}{2\varepsilon} \).

Thus,
\[
\mathbb{E} \left[\frac{1}{p_{i, q, \varepsilon}} \right] \leq \frac{3}{2\varepsilon^2} + \frac{3}{2\varepsilon^2} + \frac{1}{2\varepsilon} \leq \frac{4}{\varepsilon^2}.
\]

\(\square \)

Lemma 7. In Algorithm 1, under Assumption 3, for all \(Z \subset S^* \) and \(Z \neq \emptyset \)

\[
\sum_{t=1}^{T} \mathbb{E}[\mathbb{E}\{\mathcal{E}_{Z,1}(\theta(t)), \mathcal{E}_{Z,2}(\theta(t))\}] \leq 13 \alpha_2' \left(\frac{2|Z| + 3 \log \frac{|Z|}{\varepsilon^2}}{\varepsilon^2 |Z| + 2} \right).
\]

Proof. First we consider a setting that we only update the prior distribution when \(\mathcal{E}_{Z,1}(\theta(t)) \) occurs but \(\mathcal{E}_{Z,2}(\theta(t)) \) does not occur. If \(\mathcal{E}_{Z,1}(\theta(t)) \) occurs but \(\mathcal{E}_{Z,2}(\theta(t)) \) does not occur, we know we will have a feedback for all \(i \in Z \). Let these time steps be \(\tau_1, \tau_2, \cdots \) (let \(\tau_0 = 0 \)). Then at time \(\tau_q + 1 \), the number of feedbacks for any \(i \in Z \) is \(q \).

Let \(N_{Z}(t) = [N_{Z_1}(t), \cdots, N_{Z_k}(t)] \) denote the number of feedbacks of base arms in \(Z \) until time slot \(t \), and \(p_{Z, N_{Z}(t), \varepsilon} \) be the probability that \(\mathcal{E}_{Z,2}(\theta(t)) \) does not occur at time \(t \). Since \(\mathcal{E}_{Z,1}(\theta(t)), \mathcal{E}_{Z,2}(\theta(t)) \) are independent conditioned on the observation history \(F_{\tau_q-1} \), and the observation history does not change from time steps \(\tau_q + 1 \) to \(\tau_q + 1 - 1 \), \(p_{Z, N_{Z}(\tau_q + 1), \varepsilon} \) is also the probability that \(\mathcal{E}_{Z,2}(\theta(t)) \) does not occur conditioned on \(\mathcal{E}_{Z,1}(\theta(t)) \) occurs for any \(t \) between \(\tau_q + 1 \) and \(\tau_q + 1 \). Then the expected number of time steps for both \(\mathcal{E}_{Z,1}(\theta(t)) \) and \(\mathcal{E}_{Z,2}(\theta(t)) \) occur from \(\tau_q + 1 \) to \(\tau_q + 1 \) is \(\mathbb{E}[\sum_{t=1}^{T} \mathbb{E}[\mathbb{E}\{\mathcal{E}_{Z,1}(\theta(t)), \mathcal{E}_{Z,2}(\theta(t))\}]] \), where the expectation is taken over the observation history \(F_{\tau_q} \).

Recall that event \(\neg \mathcal{E}_{Z,2}(\theta(t)) = \{ ||\theta_Z(t) - \mu_Z||_\infty \leq \varepsilon \} = \{ \forall i \in Z, |\theta_i(t) - \mu_i| \leq \varepsilon \}. \) Then we can write \(\mathbb{E}[\frac{1}{p_{Z, N_{Z}(\tau_q + 1), \varepsilon}}] \) as:
\[
\mathbb{E}[\frac{1}{p_{Z, N_{Z}(\tau_q + 1), \varepsilon}}] = \sum \frac{\text{Pr}[\mathbb{E}[\mathcal{E}_{Z,1}(\theta(t))|a_Z(\tau_q + 1), b_Z(\tau_q + 1), N_Z(\tau_q + 1)]]}{\text{Pr}[\neg \mathcal{E}_{Z,2}(\theta(t))]},
\]
where
where $a_Z(t), b_Z(t)$ represent the value vector of $a_i(t)$ and $b_i(t)$ in base arm set Z, respectively. Pr $[\{a_Z(\tau_q + 1), b_Z(\tau_q + 1), N_Z(\tau_q + 1)\}]$ is the probability that $N_i(\tau_q + 1)$ observations form pair $(a_i(t), b_i(t))$ for any arm $i \in Z$.

Since we draw independent samples in each time slot, and the sample $\theta_i(t)$ only depends on $a_i(t), b_i(t)$, we have

$$\Pr [-\mathcal{E}_{Z,2}(\theta(\tau_q + 1)) | a_Z(\tau_q + 1), b_Z(\tau_q + 1), N_Z(\tau_q + 1)] = \prod_{i \in Z} \Pr [\{ \theta_i(\tau_q + 1) - \mu_i \leq \varepsilon | a_i(\tau_q + 1), b_i(\tau_q + 1) \}].$$

Only if for all the arms $i \in Z$, the first $N_i(\tau_q + 1)$ observations $\{Y_i(\tau_k)\}_{k=1}^q$ contains $a_i(\tau_q + 1) - 1$ 1’s and $b_i(\tau_q + 1) - 1$ 0’s, $I[a_Z(\tau_q + 1), b_Z(\tau_q + 1), N_Z(\tau_q + 1)]$ can happen. Then by Assumption 3, we know that:

$$\Pr [\{a_Z(\tau_q + 1), b_Z(\tau_q + 1), N_Z(\tau_q + 1)\}] \leq \prod_{i \in Z} \left(\frac{N_i(\tau_q + 1)}{a_i(\tau_q + 1)} \right)^{a_i(\tau_q + 1) - 1} \left(1 - \frac{1}{a_i(\tau_q + 1)} \right)^{b_i(\tau_q + 1) - 1}.$$

Thus,

$$\mathbb{E} \left[\frac{1}{p_{Z,N_Z(\tau_q + 1),\varepsilon}} \right] \leq \sum_{a_Z(\tau_q + 1), b_Z(\tau_q + 1)} \left(\prod_{i \in Z} \Pr [\{ \theta_i(\tau_q + 1) - \mu_i \leq \varepsilon | a_i(\tau_q + 1), b_i(\tau_q + 1) \}] \right) \leq \prod_{i \in Z} \sum_{a_i(\tau_q + 1), b_i(\tau_q + 1)} \mathbb{E} \left[\frac{1}{p_{i,q,\varepsilon}} \right].$$

where $p_{i,q,\varepsilon}$ is the probability of $|\theta_i(t) - \mu_i| \leq \varepsilon$ when there are q observations of base arm i. Let B_q be the upper bound for $\mathbb{E} [\frac{1}{p_{i,q,\varepsilon}}]$ (from Lemma 5 and Lemma 6).

Thus in this setting, we have: (we choose $R = \frac{8}{\varepsilon^2} (\log(12\alpha' \lvert Z \rvert) + 4 \lvert Z \rvert + 2) + \log \frac{1}{\varepsilon^2}$)

$$\sum_{t=1}^{T} \mathbb{E} [\mathcal{E}_{Z,1}(\theta(t)), \mathcal{E}_{Z,2}(\theta(t))] \leq \sum_{q=0}^{T} \left(\prod_{i \in Z} \mathbb{E} \left[\frac{1}{B_q} \right] \right) - 1$$

$$\leq \sum_{q=0}^{T} \left(\prod_{i \in Z} B_q - 1 \right)$$

$$\leq \sum_{q=0}^{R} \left(\frac{4}{\varepsilon^2} \lvert Z \rvert \right) + \sum_{q=R+1}^{\infty} \left(\prod_{i \in Z} \left(1 + 6\alpha' \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{2} q} + \frac{2}{e^{\frac{\varepsilon^2}{2} q} - 2} \right) \right) - 1$$

$$\leq R \left(\frac{4}{\varepsilon^2} \lvert Z \rvert \right) + \sum_{q=R+1}^{\infty} \left(1 + \lvert Z \rvert^2 \left(6\alpha' \frac{1}{\varepsilon^2} e^{-\frac{\varepsilon^2}{2} q} + \frac{2}{e^{\frac{\varepsilon^2}{2} q} - 2} \right) - 1 \right)$$

$$\leq R \left(\frac{4}{\varepsilon^2} \lvert Z \rvert \right) + \sum_{q=R+1}^{\infty} \left(\frac{1}{\varepsilon} \left(\frac{1}{\varepsilon} \left(\frac{2}{\varepsilon^2} \right)^2 \right) \right)$$

$$= \frac{2\lvert Z \rvert^3 (\log(12\alpha' \lvert Z \rvert) + 4 \lvert Z \rvert + 2) + \log \frac{1}{\varepsilon^2})}{\varepsilon^2 \lvert Z \rvert^2} + \frac{12\lvert Z \rvert^3 \alpha' \varepsilon^4}{\varepsilon^4} + \frac{24\lvert Z \rvert^2}{\varepsilon^4}$$
Although we do not know what the exact weights are, we can see that

Recall that:

B.3. Main Proof of Theorem 1

In the real setting, the priors in E and Z can be updated at any time step. Then the expected time slots for both $E_{Z,1}(\theta(t))$ and $E_{Z,2}(\theta(t))$ occur from $\tau_q + 1$ to τ_{q+1} is not $E[\frac{1}{p_{Z,N_{q+1}}}] - 1$, but a weighted mean of $E[\frac{1}{p_{Z,N_{q+1}'}}] - 1$ for all $N_{q}' \geq N_{Z}(\tau + 1)$.

Notice that $E[\frac{1}{p_{Z,N_{q},\epsilon}}] \leq \prod_{i \in Z} E[\frac{1}{p_{i,N_{i}',\epsilon}}]$ and B_q is non-increasing, then we have:

$$\prod_{i \in Z} E[\frac{1}{p_{i,N_{i}',\epsilon}}] \leq \prod_{i \in Z} B_{N_{i}'} \leq \prod_{i \in Z} B_{N_{i}(\tau_q + 1)} \leq \prod_{i \in Z} B_q$$

Although we do not know what the exact weights are, we can see that $\sum_{q=0}^{T} (\prod_{i \in Z} B_q - 1)$ is still an upper bound. Thus, in the real setting, $\sum_{t=1}^{T} E[I\{E_{Z,1}(\theta(t)), E_{Z,2}(\theta(t))\}]$ should still be smaller than $13\alpha_{2}' \left(\frac{2^{2(E_{Z,1})+3} \log |Z|}{\epsilon^{2|Z|+2}} \right)$.

B.3. Main Proof of Theorem 1

Recall that:

- $A(t) = \{ S(t) \notin \text{OPT} \}$
- $B(t) = \{ \exists i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \frac{\epsilon}{|S(t)|} \}$
- $C(t) = \{ ||\theta(t) - \mu_S(t)||_1 > \frac{\Delta_S(t)}{B} - (k^2 + 1)\epsilon \}$
- $D(t) = \{ \exists i \in S(t), |\theta_i(t) - \hat{\mu}_i(t)| > \sqrt{\frac{2 \log T}{N(t)}} \}$

The total regret can be written as:

$$\sum_{t=1}^{T} E[I\{A(t)\} \times \Delta_S(t)] \leq \sum_{t=1}^{T} E[I\{B(t) \land A(t)\} \times \Delta_S(t)] + \sum_{t=1}^{T} E[I\{-B(t) \land C(t) \land D(t) \land A(t)\} \times \Delta_S(t)] + \sum_{t=1}^{T} E[I\{-B(t) \land C(t) \land \neg D(t) \land A(t)\} \times \Delta_S(t)] + \sum_{t=1}^{T} E[I\{-C(t) \land A(t)\} \times \Delta_S(t)]$$

Now we bound these terms one by one.

B.3.1. The first term

By Lemma 3,

$$\sum_{t=1}^{T} E[I\{B(t) \land A(t)\} \times \Delta_S(t)] \leq \Delta_{\text{max}} \sum_{i=1}^{m} E[I(t) : 1 \leq t \leq T, i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \frac{\epsilon}{K_{\text{max}}}]$$

$$\leq \left(m + \frac{mK_{\text{max}}^2}{\epsilon^2} \right) \Delta_{\text{max}}$$
B.3.2. The second term

By Lemma 4, we know that

\[
\sum_{t=1}^{T} \mathbb{E} \left[I[\neg B(t) \land C(t) \land D(t) \land A(t)] \times \Delta_{S(t)} \right] \leq \Delta_{\max} \sum_{i=1}^{m} \sum_{t=1}^{T} \text{Pr}[|\theta_i(t) - \hat{\mu}_i(t)| > \sqrt{\frac{2 \log T}{N_i(t)}}] \\
\leq 2m\Delta_{\max}
\]

B.3.3. The third term

We set \(L_i(S) = \frac{2 \log T}{\left(\frac{\Delta_{\max}}{B} - \frac{1}{\log m} - \epsilon \right)^2} \). If \(\forall i \in S(t), N_i(t) > L_i(S(t)) \), then we claim that \(\neg B(t) \land C(t) \land \neg D(t) \land A(t) \) can not happen.

To prove this, we use the following inequality:

\[
||\theta_{S(t)}(t) - \hat{\mu}_{S(t)}||_1 = \sum_{i \in S(t)} |\theta_i(t) - \hat{\mu}_i(t)| \\
\leq \sum_{i \in S(t)} \sqrt{\frac{2 \log T}{N_i(t)}} \\
\leq \sum_{i \in S(t)} \sqrt{\frac{2 \log T}{L_i(t)}} \\
= \sum_{i \in S(t)} \frac{\Delta_{S(t)}}{2B|S(t)|} - \frac{k^*^2 + 2}{|S(t)|} \epsilon \\
= |S(t)||\frac{\Delta_{S(t)}}{2B|S(t)|} - \frac{k^*^2 + 2}{|S(t)|} \epsilon \\
= \frac{\Delta_{S(t)}}{2B} - (k^*^2 + 2)\epsilon,
\]

where Eq. (10) is because of the definition of \(D(t) \). By definition of \(\neg B(t) \), we know that \(||\hat{\mu}_{S(t)} - \mu_{S(t)}||_1 \leq \epsilon \). Then \(||\theta_{S(t)}(t) - \mu_{S(t)}||_1 \leq ||\theta_{S(t)}(t) - \hat{\mu}_{S(t)}||_1 + ||\hat{\mu}_{S(t)} - \mu_{S(t)}||_1 \leq \frac{\Delta_{S(t)}}{2B} - (k^*^2 + 1)\epsilon < \frac{\Delta_{S(t)}}{B} - (k^*^2 + 1)\epsilon \), which implies \(\neg C(t) \).

Thus there are always some \(i \in S(t) \) such that \(N_i(t) \leq L_i(S(t)) \), which means we can use the following way to count the regret: for all such arms \(i \), each one contributes \(2B \sqrt{\frac{2 \log T}{N_i(t)}} \) to total regret, and for the arms \(i \) with \(N_i(t) > L_i(S(t)) \), they do not contribute to regret.

First we claim that this sum is an upper bound for \(\Delta_{S(t)} \). To see this, let \(S_1(t) \) be the base arms \(i \) such that \(N_i(t) > L_i(S(t)) \), and \(S_2(t) \) be the other base arms in \(S(t) \). Then

\[
\frac{\Delta_{S(t)}}{B} - (k^*^2 + 1)\epsilon < \sum_{i \in S(t)} |\theta_i(t) - \mu_i(t)| \\
\leq \sum_{i \in S(t)} (|\theta_i(t) - \hat{\mu}_i(t)| + |\hat{\mu}_i(t) - \mu_i(t)|) \\
\leq \sum_{i \in S_1(t)} |\theta_i(t) - \hat{\mu}_i(t)| + \sum_{i \in S_2(t)} |\theta_i(t) - \hat{\mu}_i(t)| + \epsilon
\]
Thus \(\sum_{i \in S_2(t)} 2B \sqrt{\frac{2 \log T}{N_i(t)}} \geq \sum_{i \in S_2(t)} 2B |\theta_i(t) - \hat{\mu}_i(t)| \geq \Delta_{S(t)} \), and we finish the proof for the claim.

So the third term is upper bounded by

\[
\sum_{t=1}^{T} E \left[[[\neg B(t) \land C(t) \land \neg D(t) \land A(t)] \times \Delta_{S(t)}] \right] \leq \sum_{i=1}^{L_i^{\text{max}}} \sum_{n=1}^{T_i} 2B \sqrt{\frac{2 \log T}{n}} \leq \sum_{i} 4B \sqrt{2 \log TL_i^{\text{max}}}, \tag{11}
\]

where \(L_i^{\text{max}} = \max_{S_i \in S} L_i(S) \), and Eq. (11) is because that \(\sum_{n=1}^{N} \sqrt{\frac{1}{N}} \leq 2\sqrt{N} \).

B.3.4. THE FOURTH TERM

From Lemma 1, we know that

\[
\sum_{t=1}^{T} E \left[[[\neg C(t) \land A(t)] \times \Delta_{S(t)}] \right] \leq \Delta_{\text{max}} \sum_{Z \subseteq S^*, Z \neq \emptyset} \left(\sum_{t=1}^{T} E \left[[[E_{Z,1}(\theta(t)), E_{Z,2}(\theta(t))]] \right] \right).
\]

From Lemma 7, we have:

\[
\sum_{Z \subseteq S^*, Z \neq \emptyset} \left(\sum_{t=1}^{T} E \left[[[E_{Z,1}(\theta(t)), E_{Z,2}(\theta(t))]] \right] \right) \leq 13\alpha'_2 \cdot \left(\frac{2^{2|Z| + 3} \log \frac{|Z|}{|Z|}}{\varepsilon^2 |Z|^2} \right) \\
\leq 13\alpha'_2 \frac{8}{\varepsilon^2} \log \frac{k^*}{\varepsilon^2} \sum_{Z \subseteq S^*, Z \neq \emptyset} \frac{2^{2|Z|}}{\varepsilon^2 |Z|} \\
\leq 13\alpha'_2 \frac{8}{\varepsilon^2} \left(\frac{4}{\varepsilon^2} + 1 \right)^{k^*} \log \frac{k^*}{\varepsilon^2}
\]

B.3.5. SUM OF ALL THE TERMS

Algorithm 1 have the regret upper bound:

\[
\sum_{i=1}^{m} 4B \sqrt{2 \log TL_i^{\text{max}}} + 13\alpha'_2 \frac{8\Delta_{\text{max}}}{\varepsilon^2} \left(\frac{4}{\varepsilon^2} + 1 \right)^{k^*} \log \frac{k^*}{\varepsilon^2} + (3m + \frac{mK_{\text{max}}^2}{\varepsilon^2}) \Delta_{\text{max}}.
\]

Now we consider the value \(\sqrt{2 \log TL_i^{\text{max}}} \), notice that it is \(\max_{S_i \in S} \frac{2B|S| \log T}{\Delta_S - 2B(k^* + 2)\varepsilon} \), so the total regret is upper bounded by:

\[
\sum_{i=1}^{m} \max_{S_i \in S} \frac{8B^2|S| \log T}{\Delta_S - 2B(k^* + 2)\varepsilon} + 13\alpha'_2 \frac{8\Delta_{\text{max}}}{\varepsilon^2} \left(\frac{4}{\varepsilon^2} + 1 \right)^{k^*} \log \frac{k^*}{\varepsilon^2} + (3m + \frac{mK_{\text{max}}^2}{\varepsilon^2}) \Delta_{\text{max}}.
\]

Let \(\alpha_1 = 13\alpha'_2 \), we know it is a constant that does not depend on the problem instance.
C. The proof of Theorem 2

In this section, we give the theoretical analysis of Theorem 2.

Theorem 2. There exists an MAB instance with an approximation oracle such that when using Algorithm 1, the regret is \(\Theta(T) \).

Proof. We analyze the regret of Algorithm 1 on the following MAB instance:

Problem Instance 1. \(m = 3 \), \(\mu_i = [0.9, 0.82, 0.7] \), approximate rate \(\lambda = 0.8 \). The Oracle works as following: if \(\mu_3 \geq \lambda \max_i \mu_i \), Oracle(\(\mu \)) = 3; else if \(\mu_2 \geq \lambda \max_i \mu_i \), Oracle(\(\mu \)) = 2; otherwise Oracle(\(\mu \)) = 1.

The approximation rate of the oracle is \(\lambda = 0.8 \), i.e. arm 2 is a feasible choice, while arm 3 is not. Playing arm 3 once will cause approximation regret of \(0.9 \times 0.8 = 0.72 \) at most. Also notice that playing arm 2 will cause approximation regret of \(0.8 - 0.82 = -0.1 \), this can compensate some positive regret of pulling arm 3.

Now we need to prove that under this setting on problem and oracle, TS algorithm (Algorithm 1) has regret \(\Theta(T) \).

Suppose that at the beginning of the game, we play arm 2 and 3 for \(T_0 = 10^7 \) times, but never play arm 1. This can happen with a certain constant probability \(p^* > 0 \). Now let \(T_1 = 2T_0 \), \(T_2 = 3T_0 \), \(T_3 = 3T_2 - T_1 + 1, \ldots, T_{n+1} = 2T_n - T_{n-1} + 1, \ldots \) be a series of time point; \(A_n \) be the event that for all \(T_n < t \leq T_{n+1} \), \(|\theta_2(t) - \mu_2| < 0.01 \), \(|\theta_3(t) - \mu_3| < 0.01 \); and \(B_n \), be the event that, \(N_2(T_{n+1}) - N_2(T_n) > 0.05(T_{n+1} - T_n) \), \(N_3(T_{n+1}) - N_3(T_n) > 0.05(T_{n+1} - T_n) \).

Let \(G \) be the event that for all \(t > T_1 \), \(|\mu_2(t) - \mu_2| < 0.005 \) and \(|\mu_3(t) - \mu_3| < 0.005 \). Then \(\Pr[G] \geq 1 - 2 \sum_{s=2T_0+1}^{\infty} e^{-0.5s \times 0.005 s} \geq 1 - 320000 \times e^{-2T_0/80000} \geq 0.5 \) since \(2T_0 > 80000 \log 640000 \).

Notice that if \(\wedge_{n>0} A_n \) happens, then for all \(t > 2T_0 \), \(\theta_2(t) \in (0.81, 0.83) \), and \(\theta_3(t) \in (0.69, 0.71) \). Since \(\theta_2(t) \) is always larger than 0.8 * max \(\mu_i \), \(\theta_2(t) \leq 1 \), from the properties of the oracle we can see that it never returns arm 1. As 0.69/0.8 = 0.8625, we know that when \(\theta_1(t) < 0.8625 \), the oracle must return arm 3. When we have no observations from arm 1, its Beta distribution is \(\beta(1, 1) \), which is uniform distribution on \([0, 1]\). Thus we have probability at least 0.8625 to play arm 3, and probability at most 0.1375 to play arm 2. So the expected regret of each time slot is at least 0.8625 * 0.02 - 0.1375 * 0.1 = 0.0035.

When stop time \(T \) comes to infinity, the expected regret is at least \(p^* \times \Pr[\wedge_{n>0} A_n] \times 0.0035 T \) (when \(T \to \infty \), we can ignore the regrets in the first \(T_1 \) rounds). Thus if we can find a constant upper bound (less than 0.5) for \(\Pr[\neg (\wedge_{n>0} A_n) \wedge G] \), we finish the proof of Theorem 2.

Since \(\wedge_{n>0} (A_n \wedge B_n) \to \wedge_{n>0} A_n \), we have \(\Pr[\neg (\wedge_{n>0} (A_n \wedge B_n)) \wedge G] \geq \Pr[\neg (\wedge_{n>0} A_n) \wedge G] \).

Thus,

\[
\Pr[\neg (\wedge_{n>0} (A_n \wedge B_n)) \wedge G] = 1 - \Pr[\neg A_1 \wedge G] - \Pr[A_1 \wedge B_1 \wedge G] - \Pr[A_1 \wedge B_1 \wedge \neg B_1 \wedge G] - \cdots
\]

Now we first consider the value \(\Pr[\neg A_1 \wedge G] \) and \(\Pr[A_1 \wedge \neg B_1 \wedge G] \).

\(\neg A_1 \wedge G \) means at least one of the following two events happens:

- \(\exists t \in (T_1, T_2) \) such that \(|\theta_2(t) - \hat{\mu}_2(t)| > 0.005 \)
- \(\exists t \in (T_1, T_2) \) such that \(|\theta_3(t) - \hat{\mu}_3(t)| > 0.005 \)

Since \(\frac{\log T_2}{\log 0.005} < N_2(T_1) = N_3(T_1) = T_0 \), from Fact 4 we know that for all \(t \in [T_1, T_2] \), \(\Pr[|\theta_2(t) - \hat{\mu}_2(t)| > 0.005] < \frac{1}{T_2} \) and \(\Pr[|\theta_3(t) - \hat{\mu}_3(t)| > 0.005] < \frac{1}{T_2} \). Thus \(\Pr[\neg A_1 \wedge G] \leq 2 \sum_{s=T_1+1}^{T_2} \frac{1}{T_2} \).

When \(A_1 \) happens, we know that during time period \([T_1, T_2] \), the probability that we play arm 3 is at least 0.8625, and when \(\theta_1(t) > 0.9 \), the oracle must return arm 2, thus the probability that we play arm 2 is at least 0.1. Then using Chernoff Bound, we know that \(\Pr[A_1 \wedge \neg B_1 \wedge G] \leq 2e^{-0.5 \times 0.005^2 (T_2 - T_1)} \).

Thompson Sampling for Combinatorial Semi-Bandits

Similarly, since \(\log \frac{T_2}{0.005^2} < T_0 + 0.05 \ast (T_2 - T_1) \leq \min_{i \in \{2, 3\}} N_i(T_2) \) under condition \(B_1 \), we know that \(\Pr[A_1 \land B_1 \land \neg A_2 \land G] \leq 2 \sum_{t=2}^{T_1} \frac{1}{t^2} \), and \(\Pr[A_1 \land B_1 \land A_2 \land \neg B_2 \land G] \leq 2e^{-0.5 \ast 0.05^2 (T_3 - T_2)} \) as well.

For all \(n > 1 \), it is easy to check that \(\log \frac{T_{n+1}}{0.005^2} < T_0 + 0.05 \ast (T_n - T_1) \), thus the value \(\Pr[\neg A_1 \land G] + \Pr[A_1 \land B_1 \land \neg A_2 \land G] + \cdots \) is upper bounded by \(\sum_{n=T_1+1}^{\infty} \frac{1}{n^{1.5}} \leq \frac{1}{1 - e^{-0.05}} < 0.1 \), and the value \(\Pr[A_1 \land \neg B_1 \land G] + \Pr[A_1 \land B_1 \land A_2 \land \neg B_2 \land G] + \cdots \) is upper bounded by \(\sum_{n=1}^{\infty} 2e^{-0.5 \ast 0.05^2 (T_{n+1} - T_n)} \).

Notice that \(T_{n+1} - T_n \) increases one when \(n \) increases one, thus \(\sum_{n=1}^{\infty} 2e^{-0.5 \ast 0.05^2 (T_{n+1} - T_n)} = \sum_{s=T_2 - T_1}^{\infty} 2e^{-0.5 \ast 0.05^2 s} \leq 1600e^{-(T_2 - T_1)/800} < 0.1 \)

Thus \(\Pr[\neg (\land_{n>0} A_n) \land G] \leq 0.2 \), which means \(\Pr[\land_{n>0} A_n] \land G = \Pr[G] - \Pr[\neg (\land_{n>0} A_n) \land G] \geq 0.5 - 0.2 = 0.3 \). Then the regret over time horizon \(T \) is at least \(\Theta(0.00105^mT) = \Theta(T) \).

\(\square \)

D. Proof of Theorem 3

Theorem 3. There exists a CMAB instance such that the regret of Algorithm 1 on this instance is at least \(\Omega(2^{k^*}) \).

Proof. We analyze the regret of Algorithm 1 on the following CMAB instance:

Problem Instance 2. \(m = k^* + 1 \), there are only two super arms in \(\mathcal{I} \), where \(S_1 = \{1, 2, \cdots, k^*\} \) and \(S_2 = \{k^* + 1\} \). The mean vector \(\mu_{S_i} = [1, \cdots, 1] \). The reward function \(R \) follows \(R(S_1, X) = \prod_{i \in S_1} X_i \), and \(R(S_2, X) = 1 - \Delta \), while \(\Delta = 0.5 \). The distributions \(D_i \) are all independent Bernoulli distributions with mean \(\mu_i \) (since \(\mu_i = 1 \), the observations are always 1).

We can use \(T_1 \) to represent the first time step that we choose to pull super arm \(S_1 \), and the regret is at least \(\Delta (\mathbb{E}[T_1] - 1) \). Thus it is sufficient to prove that \(\mathbb{E}[T_1] = \Omega(2^{k^*}) \).

Firstly, we know from \(R(S_1, X) = \prod_{i \in S_1} X_i \) that \(r(S_1, \mu) = \prod_{i \in S_1} \mu_i \).

Notice that \(R(S_2, \theta(t)) \) is always 0.5, so we only need to consider the probability that \(r(S_1, \theta(t)) \geq 0.5 \).

When there is no observations on base arms \(1, \cdots, k^* \), the prior distributions for them all have mean 0.5, thus \(\mathbb{E}[r(S_1, \theta(t))] = \frac{1}{2^{k^*}} \). By Markov inequality, \(\Pr[r(S_1, \theta(t)) \geq 0.5] \leq \frac{1}{0.5 \ast 2^{k^*}} \), which implies

\[
\mathbb{E}[T_1] \geq \frac{1}{2} \times 2^{k^*} = \Omega(2^{k^*})
\]

\(\square \)

E. Proof of Theorem 4

E.1. Proof of Lemma 2

Lemma 2. Suppose the vector \(\theta(t) \) satisfy that \(A_{i,j}(t) \land \neg C_{i,j}(t) \) happens. Then if we change \(\theta_j(t) \) to \(\theta_j'(t) \) > \(\mu_j - \varepsilon \) and set other values in \(\theta(t) \) unchanged to get \(\theta'(t) \), then arm \(j \) must be chosen in \(\theta'(t) \).

Proof. Since the oracle use greedy algorithm to get the result, then by Fact 1, there are two possibilities: (a) the steps remain until that one to choose arm \(i \), (b) those steps have changed because of \(\theta_j(t) \) is modified to \(\theta_j'(t) \).

If (a) happens, as now \(\theta_j'(t) > \mu_j - \varepsilon \geq \theta_i(t) \), we will choose arm \(j \) instead of arm \(i \).

If (b) happens, notice that arm \(j \) is always available during all the previous steps, and only its sample value becomes larger. So the only way is to choose arm \(j \) earlier.

\(\square \)
E.2. Lemmas and Facts for Proving Theorem 4

Lemma 8. In Algorithm 1, for any \(j \in S^* \), we have

\[
\mathbb{E} \left[\sum_{t=1}^{T} \Pr[\theta(t) \in W_j] \right] \leq \alpha_2' \cdot \frac{1}{\varepsilon},
\]

where \(\alpha_2' \) is a constant not dependent on the problem instance.

Proof. By Lemma 2, we have that \(\{ \theta(t) \in W_j \} \rightarrow \{ \theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j} \} \), thus we can use

\[
\mathbb{E} \left[\sum_{t=1}^{T} \Pr[\theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j}] \right]
\]

as an upper bound.

Denote the value \(p_{j,t} \) as \(\Pr[\theta_j(t) > \mu_j - \varepsilon | \mathcal{F}_{t-1}] \). Notice that given \(\mathcal{F}_{t-1} \), the value \(\theta_j(t) \) and the value set \(\theta_{-j}(t) \) are independent in our Algorithm 1, i.e.

\[
\Pr[\theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j} | \mathcal{F}_{t-1}] = p_{j,t} \Pr[\theta_j(t) \in W_{-j} | \mathcal{F}_{t-1}]
\]

Then we can use Lemma 1 in (Agrawal & Goyal, 2013),

\[
\Pr[\theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j} | \mathcal{F}_{t-1}] \leq \frac{1 - p_{j,t}}{p_{j,t}} \Pr[j \in S(t), \theta_{-j}(t) \in W_{-j} | \mathcal{F}_{t-1}].
\]

Then

\[
\begin{align*}
\mathbb{E} \left[\sum_{t=1}^{T} \Pr[\theta(t) \in W_j] \right] & \leq \mathbb{E} \left[\sum_{t=1}^{T} \Pr[\theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j}] \right] \\
& = \mathbb{E} \left[\sum_{t=1}^{T} \Pr[\theta_j(t) \leq \mu_j - \varepsilon, \theta_{-j}(t) \in W_{-j} | \mathcal{F}_{t-1}] \right] \\
& \leq \mathbb{E} \left[\sum_{t=1}^{T} \frac{1 - p_{j,t}}{p_{j,t}} \Pr[j \in S(t), \theta_{-j}(t) \in W_{-j} | \mathcal{F}_{t-1}] \right] \\
& = \sum_{t=1}^{T} \mathbb{E} \left[\frac{1 - p_{j,t}}{p_{j,t}} \mathbb{I}[j \in S(t), \theta_{-j}(t) \in W_{-j}] \right] \\
& \leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{1 - p_{j,t}}{p_{j,t}} \mathbb{I}[j \in S(t)] \right] \\
& \leq \sum_{q=0}^{T-1} \mathbb{E} \left[\frac{1 - p_{j,\tau_{j,q}+1}}{p_{j,\tau_{j,q}+1}} \sum_{t=\tau_{j,q}+1}^{\tau_{j,q}+1} \mathbb{I}(t^{(k)}(t) = j) \right] \\
& = \sum_{q=0}^{T-1} \mathbb{E} \left[\frac{1 - p_{j,\tau_{j,q}}}{p_{j,\tau_{j,q}}} \right],
\end{align*}
\]

where \(\tau_{j,q} \) is the time step that arm \(j \) is observed for the \(q \)-th time.

Eq. 12 is because the fact that the probability \(\Pr[\theta_j^{(k)}(t) \geq \mu_j - \varepsilon | \mathcal{F}_{t-1}] \) only changes when we get a feedback of base arm \(j \), but during time slots \([\tau_{j,q} + 1, \tau_{j,q+1}] \), we do not have any such feedback.

From analysis in (Agrawal & Goyal, 2013), we know \(\sum_{q=0}^{T-1} \mathbb{E}\left[1 - \frac{p_{j,\tau_{j,q}+1}}{p_{j,\tau_{j,q}}} \right] \leq \alpha_2' \cdot \frac{1}{\varepsilon} \) for some constant \(\alpha_2' \) that is not dependent on the problem instance, thus,
Thompson Sampling for Combinatorial Semi-Bandits

\[
E \left[\sum_{t=1}^{T} \Pr[\theta(t) \in W_j] \right] \leq \alpha_2 \cdot \frac{1}{\varepsilon_T}.
\]

Fact 3. (Lemma 3 in (Kveton et al., 2014)) For any \(\Delta_1 \geq \Delta_2 \geq \cdots \geq \Delta_K > 0 \),

\[
\Delta_1 \frac{1}{\Delta_1^2} + \sum_{k=2}^{K} \Delta_k \left(\frac{1}{\Delta_k^2} - \frac{1}{\Delta_{k-1}^2} \right) \leq \frac{2}{\Delta_K}.
\]

E.3. Main Proof of Theorem 4

With a bijection \(L_t \), we could decouple the regret of playing one action \(S(t) \) to each pair of mapped arms between \(S(t) \) and \(S^* \). For example, the regret of time \(t \) is

\[
\sum_{k=1}^{K} \mu_{L_t(k)} - \mu_{i^{(k)}(t)}.
\]

We use \(N_{i,j}(t) \) to denote the number of rounds that \(i^{(k)}(t) = i \) and \(L_t(k) = j \) for \(i \notin S^*, j \in S^* \) within in time slots 1, 2, \ldots, \(T \), then

\[
E \left[\sum_{t=1}^{T} r(S^*, \mu) - r(S(t), \mu) \right] = E \left[\sum_{t=1}^{T} \sum_{k=1}^{K} (\mu_{L_t(k)} - \mu_{i^{(k)}(t)}) \right] = \sum_{i \notin S^*} \sum_{j \in S^*, \mu_j > \mu_i} E[N_{i,j}(t)](\mu_j - \mu_i) \leq \sum_{i \notin S^*} \sum_{j \in S^*, \mu_j > \mu_i} E[N_{i,j}(t)](\mu_j - \mu_i).
\]

We can see that if \(\{ j : j \in S^*, \mu_j > \mu_i \} = \emptyset \), then \(\sum_{i \notin S^*} \sum_{j \in S^*, \mu_j > \mu_i} E[N_{i,j}(t)](\mu_j - \mu_i) = 0 \), thus we do not need to consider the regret from base arm \(i \), so we set \(\Delta_i = \infty \) to make \(\frac{1}{\Delta_i} = 0 \).

Now we bound the value \(N_{i,j}(t) \), recall that

- \(A_{i,j}(t) = \{ i^{(k)}(t) = i \wedge L_t(k) = j \} \)
- \(B_i(t) = \{ \hat{\mu}_i(t) > \mu_i + \varepsilon \} \)
- \(C_{i,j}(t) = \{ \theta_i(t) > \mu_j - \varepsilon \} \)

Then we have

\[
E[N_{i,j}(t)] = E \left[\sum_{t=1}^{T} I[A_{i,j}(t)] \right] \leq E \left[\sum_{t=1}^{T} I[A_{i,j}(t) \wedge B_i(t)] \right] + E \left[\sum_{t=1}^{T} I[A_{i,j}(t) \wedge -B_i(t) \wedge C_{i,j}(t)] \right] + E \left[\sum_{t=1}^{T} I[A_{i,j}(t) \wedge -C_{i,j}(t)] \right].
\]
E.3.1. The first term

Summing over all possible pairs \((i, j)\), the first term has upper bound

\[
\sum_{i \notin S, j \in S} E \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land B_i(t)] \right] = \sum_{i \notin S} E \left[\sum_{j \in S} \sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land B_i(t)] \right] \leq \sum_{i \notin S} E \left[\sum_{t=1}^{T} \mathbb{I}[B_i(t) \land \{i \in S(t)\}] \right]
\]

From Lemma 3, we can see that \(E[|t : 1 \leq t \leq T, i \in S(t), |\hat{\mu}_i(t) - \mu_i| > \varepsilon|] \leq 1 + \frac{1}{2\pi} \) for any base arm \(i \notin S^*\). Summing all the base arms up, the upper bound is \((m - K)(1 + \frac{1}{2\pi})\).

E.3.2. The second term

In the second term, let \(\mu_{j_1} \geq \mu_{j_2} \geq \cdots \geq \mu_{j_{(*)}} > \mu_i \geq \mu_{j_{(*)+1}} \geq \cdots \geq \mu_{j_K}\), where \(S^* = \{j_1, \cdots, j_K\}\), then we can write the total regret as:

\[
\sum_{i \notin S, j \in S} (\mu_j - \mu_i) E \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land \neg B_i(t) \land C_{i,j}(t)] \right]
\]

Notice that with probability \(1 - \frac{1}{T}, \theta_i(t) < \hat{\mu}_i(t) + \sqrt{\frac{2 \log T}{N_i(t)}}\) (Lemma 4), thus in expectation, the time steps that \(A_{i,j}(t) \land \neg B_i(t) \land C_{i,j}(t)\) occurs is upper bounded by \(\frac{2 \log T}{(\mu_{j_K} - \mu_i - 2\varepsilon)^2} + 1\)

Then the total expected regret due to choosing \(i\) in \(S(t)\) while \(A_{i,j}(t) \land \neg B_i(t) \land C_{i,j}(t)\) occurs is upper bounded by

\[
\frac{\log T}{2} \left(\frac{\mu_{j_1} - \mu_i}{(\mu_{j_1} - \mu_i - 2\varepsilon)^2} + \sum_{n=2}^{i(*)} (\mu_{j_n} - \mu_i) \left(\frac{1}{(\mu_{j_n} - \mu_i - 2\varepsilon)^2} - \frac{1}{(\mu_{j_{n-1}} - \mu_i - 2\varepsilon)^2} \right) \right) + K. \tag{13}
\]

The reason is that for any value of \(k\), \(\theta_i(t)\) can be larger than \(\mu_{j_k} - \varepsilon\) for at most the first \(\frac{\log T}{2(\mu_{j_k} - \mu_i - 2\varepsilon)^2}\) times with high probability, and the first term of Eq. (13) is the largest regret satisfying this constraint. The second term of Eq. (13) is the expectation on the small error probability.

By Fact 3, we have a upper bound:

\[
\frac{\log T}{2} \frac{2\Delta_i - 4\varepsilon + 2\varepsilon}{(\Delta_i - 2\varepsilon)^2} + K = \frac{\log T}{\Delta_i - 2\varepsilon} \frac{\Delta_i - \varepsilon}{\Delta_i - 2\varepsilon} + K.
\]

E.3.3. The third term

Lemma 8 shows that \(E \left[\sum_{t=1}^{T} \Pr[\theta(t) \in W_j] \right] \leq \alpha_2' \cdot \frac{1}{T}\). Then from definition of \(W_j\), we have

\[
\sum_{i \notin S, j \in S} E \left[\sum_{t=1}^{T} \mathbb{I}[A_{i,j}(t) \land \neg C_{i,j}(t)] \right] = \sum_{j \in S} E \left[\sum_{t=1}^{T} \sum_{i \notin S} \mathbb{I}[A_{i,j}(t) \land \neg C_{i,j}(t)] \right] \leq \sum_{j \in S} E \left[\sum_{t=1}^{T} \mathbb{I}[\theta(t) \in W_j] \right] \leq \alpha_2' \cdot \frac{K}{\varepsilon^4}.
\]
E.3.4. Sum of all the terms

Thus, the total regret upper bound is:

$$\sum_{i \in S^*} \sum_{j: j \in S^*, \mu_j > \mu_i} \mathbb{E}[N_{i,j}(t)](\mu_j - \mu_i) \leq \sum_{i \in S^*} \frac{\log T}{\Delta_i} \frac{\Delta_i - \varepsilon}{\Delta_i - 2\varepsilon} + \alpha'_2 \cdot \frac{K}{\varepsilon^4} + (m - K) \left(\frac{1}{\varepsilon^2} + K + 1 \right)$$

$$\leq \sum_{i \in S^*} \frac{\log T}{\Delta_i} \frac{\Delta_i - \varepsilon}{\Delta_i - 2\varepsilon} + (\alpha'_2 + 1) \cdot \frac{m}{\varepsilon^4} + m^2.$$

Let $\alpha_2 = \alpha'_2 + 1$, and we know it is also a constant not dependent on the problem instance.