EVOLUTION OF DWARF SPHEROIDAL SATELLITES IN THE COMMON SURFACE-DENSITY DARK HALOS

YUSUKE OKAYASU AND MASASHI CHIBA
Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; y.okayasu@astr.tohoku.ac.jp, chiba@astr.tohoku.ac.jp

Received 2015 December 29; revised 2016 June 1; accepted 2016 June 2; published 2016 August 11

ABSTRACT

We investigate the growth histories of dark matter halos associated with dwarf satellites in Local Group galaxies and the resultant evolution of the baryonic component. Our model is based on the recently proposed property that the mean surface density of a dark halo inside a radius at maximum circular velocity \(V_{\text{max}} \) is universal over a large range of \(V_{\text{max}} \). Given that a surface density of 20 \(M_\odot \text{pc}^{-2} \) well explains dwarf satellites in the Milky Way and Andromeda, we find that the evolution of the dark halo in this common surface-density scale is characterized by the rapid increase of the halo mass assembled by the redshift \(z_{\text{T}} \) of the tidal truncation by its host halo, at early epochs of \(z_{\text{T}} \lesssim 6 \) or \(V_{\text{max}} \gtrsim 22 \text{ km s}^{-1} \). This mass growth of the halo is slow at lower \(z_{\text{T}} \) or larger \(V_{\text{max}} \). Taking into account the baryon content in this dark halo evolution, under the influence of the ionizing background radiation, we find that the dwarf satellites are divided into roughly two families: those with \(V_{\text{max}} \lesssim 22 \text{ km s}^{-1} \) having high star formation efficiency and those with larger \(V_{\text{max}} \) having less efficient star formation. This semianalytical model is in agreement with the high-resolution numerical simulation for galaxy formation and with the observed star formation histories for Fornax and Leo II. This suggests that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellites.

Key words: dark matter – galaxies: dwarf – galaxies: formation – galaxies: structure – Local Group

1. INTRODUCTION

Standard \(\Lambda \) cold dark matter (LCDM) theory is successful at explaining the large-scale structure of the universe, including the temperature fluctuations of the cosmic microwave background and the spatial distributions of galaxies and their clusters, on scales larger than about 1 Mpc (Tegmark et al. 2004). However, our understanding of structure formation is still incomplete on scales smaller than 1 Mpc, i.e., scales of galaxies like our own and their satellite galaxies, which are basic luminous parts of the universe.

The tension between theory and observation on small scales includes the missing satellite problem (Klypin et al. 1999; Moore et al. 1999), the too-big-to-fail problem (Boylan-Kolchin et al. 2011, 2012), and the problems for explaining cored central densities (e.g., Moore 1994; Burkert 1995; de Blok et al. 2001; Swaters et al. 2003; Gilmore et al. 2007; Oh et al. 2011) and anisotropic spatial distribution of dwarf satellites (e.g., Kroupa et al. 2005; McGaugh & Irwin 2006; Pawlowski et al. 2012, 2013, 2015; Ibata et al. 2013). Solutions to these small-scale issues in LCDM theory have been considered from two different aspects. One is to modify the standard theory of dark matter on small scales, such as theories based on warm or self-interacting dark matter (e.g., Moore et al. 1999; Moore et al. 1999), the too-big-to-fail problem (Boylan-Kolchin et al. 2011, 2012; Vogelsberger et al. 2012). Another way to solve the issues is to rely on the role of baryonic physics in the formation of galaxies and their satellites, including the suppression effects of the ionizing UV background and stellar feedback such as supernova explosion on galaxy formation and tidal effects of a centrally concentrated host galaxy on its satellites (e.g., Di Cintio et al. 2014; Madau et al. 2014; Pawlowski et al. 2015; Sawala et al. 2016; Zhu et al. 2016).

In this context, nearby dwarf spheroidal (dSph) galaxies as satellites of the Milky Way and Andromeda galaxies provide ideal sites for studying the nature of dark matter, because stellar dynamics of the resolved member stars suggest that these galaxies are significantly dominated by associated dark matter halos with mass-to-light ratios of 10–1000 or more (Gilmore et al. 2007; Simon & Geha 2007). For this reason, extensive dynamical analyses for these local dSphs have been performed to set constraints on the detailed internal structures of their dark halos and ultimately to get important insights into the nature of dark matter on small scales.

These dynamical analyses of dSphs revealed several universal structures of their dark halos. Mateo et al. (1993) and, more recently, Strigari et al. (2008) proposed, based on spherically symmetric mass models, that all the dSphs with luminosities in the range of \(10^3–10^7 \text{ L}_\odot \) have a common dark halo mass of \(M_{500} \sim 10^9 \text{ M}_\odot \) inside an inner 300 pc radius. Following this work, Macciò et al. (2009) showed that this constancy of \(M_{500} \) can be naturally explained in the framework of LCDM theory combined with galaxy formation physics, where the latter process narrows an allowed range of circular velocities of dark halos. More recently, Milosavljević & Bromm (2014) showed the growth history of dark halos in this common \(M_{300} \) scale and the resultant impacts on the star formation activity in dwarf satellite galaxies.

Other works, including Kormendy & Freeman (2004), Donato et al. (2009), and Gentile et al. (2009), have shown that for the assumed cored isothermal profile or so-called Burkert profile (Burkert 1995) with a density \(\rho_0 \) and radius \(r_0 \) of a core component, the central surface density of a cored dark halo, \(\rho_{3D} = \rho_0 r_0^3 \), is found to be constant, irrespective of the observed B-band luminosities of galaxies. The similar universality of a central surface density of a cored dark halo has been proposed by Salucci et al. (2012), arriving at \(\rho_{3D} \sim 140 \text{ M}_\odot \text{ pc}^{-2} \) for both cored isothermal and Burkert profiles. These works indeed provide important constraints on the structure of dark halos and thus on the nature of dark matter.

Recently, Hayashi & Chiba (2015a, hereafter HC15a) proposed yet another universal scale for the internal structure of dark halos, motivated by the facts that realistic dynamical analysis of nonspherical dSphs based on axisymmetric Jeans
equations yields a rather large dispersion in the values of M_{300} (Hayashi & Chiba 2012) and that the constancy of μ_\odot cannot be applicable to any density profiles including a dark halo with a central cusp. HC15a showed for galaxies spanning the circular velocities of 10–400 km s$^{-1}$ that a mean surface density of a dark halo within the radius of the maximum circular velocity, hereafter denoted as $\Sigma_{v_{\text{max}}}$, is remarkably constant, irrespective of the different density distributions in each of the galaxies. It is also shown that this constancy of $\Sigma_{v_{\text{max}}}$ is applied to all the galaxies with B-band luminosities over almost 14 orders of magnitude, $M_B = -8$ to -22 mag (Hayashi & Chiba 2015b), i.e., including faint dSphs to bright spiral/elliptical galaxies.

In this paper, we investigate the evolution of dark matter halos in this common surface-density scale and the resultant impacts on star formation activity in dwarf satellite galaxies, following the work of Milosavljević & Bromm (2014), in which the common mass scale of $M_{300} =$ const. for dark halos is assumed. We thus show how the growth histories of dark halos differ between the case of $\Sigma_{v_{\text{max}}}$ = const. and that of $M_{300} =$ const., and how these different assembly histories of dark matter affect the baryonic content and star formation rate of galaxies.

In Section 3, we consider the baryon content in such dark halos and the difference from $\Sigma_{v_{\text{max}}}$ = const. The horizontal solid line denotes $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$, the mean surface density of a dark halo. This line follows the NFW profile from HC15a. The horizontal solid line denotes $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$, the mean surface density of a dark halo. This line follows the NFW profile from HC15a. The horizontal solid line denotes $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$, the mean surface density of a dark halo. This line follows the NFW profile from HC15a. For the dSphs in the Milky Way (red diamonds) and Andromeda (blue diamonds) taken from HC15a. The horizontal solid line denotes $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$ (or log $\Sigma_{v_{\text{max}}}$ = 1.3).

2. STRUCTURE AND EVOLUTION OF DARK HALOS IN DWARF SATELLITES

2.1. The Common Surface-density Scale for Local Group Dwarf Galaxies

Our mass model for dark halos in Local Group dSphs is assumed to hold a common mean surface density within a radius at maximum circular velocity, $\Sigma_{v_{\text{max}}} =$ const., proposed by HC15a. In the limit of spherical symmetry, $\Sigma_{v_{\text{max}}}$ is given as

$$\Sigma_{v_{\text{max}}} = \frac{M(r_{\text{max}})}{\pi r_{\text{max}}^2},$$

(1)

where r_{max} is the radius at maximum circular velocity (denoted as V_{max}) for a given mass profile of a dark halo and $M(r_{\text{max}})$ is the mass enclosed within r_{max},

$$M(r_{\text{max}}) = \int_0^{r_{\text{max}}} 4\pi \rho(r') r'^2 \, dr',$$

(2)

where $\rho(r)$ denotes the mass density profile of a dark halo. This surface density is parameterized by a central density ρ_s, and a scale length r_s, for any density profile of a dark halo, such as the so-called Navarro–Frenk–White (NFW) profile (Navarro et al. 1996) and the Burkert profile (Burkert 1995), where the definition of ρ_s and r_s depends on a specified form of a given density profile.

HC15a shows that $\Sigma_{v_{\text{max}}}$ is remarkably constant for a large range of V_{max} from the scales of dwarf to spiral/elliptical galaxies, namely, $\Sigma_{v_{\text{max}}}$ is confined within $10^7 \, M_\odot$–$10^9 \, M_\odot$ pc$^{-2}$ over $10 \lesssim V_{\text{max}} \lesssim 400$ km s$^{-1}$. This implies that $\Sigma_{v_{\text{max}}}$ is a common surface density scale for the description of a dark halo structure.

For our current evolution model of dSphs, we confine ourselves to dwarf satellites in the Milky Way and Andromeda galaxies and adopt the fiducial value of $\Sigma_{v_{\text{max}}}$ for this sample of dSphs. Figure 1 shows $\log \Sigma_{v_{\text{max}}}$ versus V_{max} for these dSphs taken from the HC15a paper. It is found that $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$ (or log $\Sigma_{v_{\text{max}}} = 1.3$) describes the common surface-density scale in these dSphs quite well. In what follows, we use this value of $\Sigma_{v_{\text{max}}}$ as a fiducial common surface-density scale to describe the evolution of dark halos in dwarf satellites, and we further consider neighboring values of $\Sigma_{v_{\text{max}}} = 10 \, M_\odot$ pc$^{-2}$ (or log $\Sigma_{v_{\text{max}}} = 1.0$) and $40 \, M_\odot$ pc$^{-2}$ (or log $\Sigma_{v_{\text{max}}} = 1.6$) to investigate the dependence of the following results on the variation of $\Sigma_{v_{\text{max}}}$.

2.2. Evolution of the NFW Dark Halos

To obtain the evolution of dark halos under the constraint that $\Sigma_{v_{\text{max}}} = 20 \, M_\odot$ pc$^{-2}$, we here assume that the halo density profile follows the NFW profile with a central density ρ_s and a scale length r_s,

$$\rho(r) = \rho_s (r/r_s)(1 + r/r_s)^{-2}.$$

(3)

For this density profile, V_{max} is attained at $r_{\text{max}} = 2.16 r_s$, and $\Sigma_{v_{\text{max}}}$ is then exactly proportional to $\rho_s r_s$. This NFW profile is parameterized by a concentration parameter $c = r_{\text{vir}}/r_s$, where r_{vir} is the virial radius defined such that the mean density inside r_{vir} equals 200 times the critical density of the universe. We use the calibration of the halo virial mass, M_{vir}, and redshift dependence of the median halo concentration, $c(M_{\text{vir}}, z)$, derived by Prada et al. (2012) for halos in the Bolshoi and
Properties of the dark halos with mass M_{200} having the common surface-density scale of $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$ (solid line), compared with the case for the common mass scale of $M_{300} = 1.4 \times 10^7 \, M_\odot$ (dashed line). The dot-dashed and dotted lines show, respectively, the cases of $\Sigma_{\text{max}} = 40 \, M_\odot$ pc$^{-2}$ and $10 \, M_\odot$ pc$^{-2}$. Top panel: redshift z_{TT} vs. M_{200}. Middle panel: maximum circular velocity V_{max} vs. M_{200}. Bottom panel: baryon fraction in units of the universal baryon fraction $f_b (\Omega_b/\Omega_m)^{-1}$ vs. M_{200}.

2.3. Basic Properties of Dark Halos with the Common Surface-density Scale

To understand the constancy of Σ_{max} at redshift $z = 0$ and that of M_{300} as well, we need to consider the termination of mass growth in these dark halos associated with satellite galaxies, when they are accreted into a host halo, i.e., the halo of the Milky Way or Andromeda, due to tidal force. Following the model of Milosavljević & Bromm (2014), we assume that the halos have a tidally truncated maximum mass, M_{200}, when they are accreted into a host halo at redshift z_{TT}. Then, we obtain a family of a dark halo with $M_{\text{200}}(z_{\text{TT}})$ so as to satisfy the common surface-density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$.

The top panel in Figure 3 shows $1 + z_{\text{TT}}$ versus M_{200} under this common surface-density scale (solid line) in comparison with the observed constancy of $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$ (horizontal black line). This property of a halo is also seen when we adopt an inner mass of a dark halo instead of an inner surface density as a common scale; Figure 2(b) shows an inner mass, M_{300}, enclosed within $r = 300$ pc (Strigari et al. 2008) as a function of V_{max}. As already demonstrated in Macciò et al. (2009) (see also Kravtsov 2010), M_{300} also shows a weak dependence on V_{max} of a halo for the same reason given for Σ_{max}. In this panel, the horizontal black line corresponds to $M_{300} = 1.4 \times 10^7 \, M_\odot$, which is a likely common value when we adopt the results of Jeans analysis only for bright, classical dwarfs under the assumption of spherical symmetry (Strigari et al. 2008); including ultrafaint dSphs (UFDs) suggests a somewhat smaller common scale of $M_{300} \simeq 10^7 \, M_\odot$, but UFDs generally show a large deviation from spherical symmetry, and thus the latter value needs to be taken with caution.

Combing both panels in Figure 2, it follows that the common surface density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$, covers quite a large range of V_{max} at different redshifts, whereas $M_{300} = 1.4 \times 10^7 \, M_\odot$ is applicable only for $V_{\text{max}} \lesssim 40$ km s$^{-1}$. This suggests that the use of Σ_{max} may be more general in comparison with M_{300} as a common scale for the evolution of a dark halo.

MultiDark simulations, as adopted in Milosavljević & Bromm (2014).

Figure 2(a) shows Σ_{max} versus V_{max} at $z = 0$ for this NFW dark halo model. As is clear from this figure, a mean surface density inside r_{max} shows only a weak dependence on the current maximum circular velocity or total mass of a dark halo. This reflects that such inner regions of all the halos having different total masses formed basically from very early mergers of small and dense halos, and these high-density regions have been rather undisturbed by later accretion of halos. Nonetheless, the mean surface density of halos is not exactly constant for different mass but varies, depending on redshifts, in comparison with the observed constancy of $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$ (horizontal black line).

This property of a halo is also seen when we adopt an inner mass of a dark halo instead of an inner surface density as a common scale; Figure 2(b) shows an inner mass, M_{300}, enclosed within $r = 300$ pc (Strigari et al. 2008) as a function of V_{max}. As already demonstrated in Macciò et al. (2009) (see also Kravtsov 2010), M_{300} also shows a weak dependence on V_{max} of a halo for the same reason given for Σ_{max}. In this panel, the horizontal black line corresponds to $M_{300} = 1.4 \times 10^7 \, M_\odot$, which is a likely common value when we adopt the results of Jeans analysis only for bright, classical dwarfs under the assumption of spherical symmetry (Strigari et al. 2008); including ultrafaint dSphs (UFDs) suggests a somewhat smaller common scale of $M_{300} \simeq 10^7 \, M_\odot$, but UFDs generally show a large deviation from spherical symmetry, and thus the latter value needs to be taken with caution.

Combing both panels in Figure 2, it follows that the common surface density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$, covers quite a large range of V_{max} at different redshifts, whereas $M_{300} = 1.4 \times 10^7 \, M_\odot$ is applicable only for $V_{\text{max}} \lesssim 40$ km s$^{-1}$. This suggests that the use of Σ_{max} may be more general in comparison with M_{300} as a common scale for the evolution of a dark halo.

2.3. Basic Properties of Dark Halos with the Common Surface-density Scale

To understand the constancy of Σ_{max} at redshift $z = 0$ and that of M_{300} as well, we need to consider the termination of mass growth in these dark halos associated with satellite galaxies, when they are accreted into a host halo, i.e., the halo of the Milky Way or Andromeda, due to tidal force. Following the model of Milosavljević & Bromm (2014), we assume that the halos have a tidally truncated maximum mass, M_{200}, when they are accreted into a host halo at redshift z_{TT}. Then, we obtain a family of a dark halo with $M_{\text{200}}(z_{\text{TT}})$ so as to satisfy the common surface-density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$.

The top panel in Figure 3 shows $1 + z_{\text{TT}}$ versus M_{200} under this common surface-density scale (solid line) in comparison with the observed constancy of $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$ (horizontal black line). This property of a halo is also seen when we adopt an inner mass of a dark halo instead of an inner surface density as a common scale; Figure 2(b) shows an inner mass, M_{300}, enclosed within $r = 300$ pc (Strigari et al. 2008) as a function of V_{max}. As already demonstrated in Macciò et al. (2009) (see also Kravtsov 2010), M_{300} also shows a weak dependence on V_{max} of a halo for the same reason given for Σ_{max}. In this panel, the horizontal black line corresponds to $M_{300} = 1.4 \times 10^7 \, M_\odot$, which is a likely common value when we adopt the results of Jeans analysis only for bright, classical dwarfs under the assumption of spherical symmetry (Strigari et al. 2008); including ultrafaint dSphs (UFDs) suggests a somewhat smaller common scale of $M_{300} \simeq 10^7 \, M_\odot$, but UFDs generally show a large deviation from spherical symmetry, and thus the latter value needs to be taken with caution.

Combing both panels in Figure 2, it follows that the common surface density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$, covers quite a large range of V_{max} at different redshifts, whereas $M_{300} = 1.4 \times 10^7 \, M_\odot$ is applicable only for $V_{\text{max}} \lesssim 40$ km s$^{-1}$. This suggests that the use of Σ_{max} may be more general in comparison with M_{300} as a common scale for the evolution of a dark halo.

2.3. Basic Properties of Dark Halos with the Common Surface-density Scale

To understand the constancy of Σ_{max} at redshift $z = 0$ and that of M_{300} as well, we need to consider the termination of mass growth in these dark halos associated with satellite galaxies, when they are accreted into a host halo, i.e., the halo of the Milky Way or Andromeda, due to tidal force. Following the model of Milosavljević & Bromm (2014), we assume that the halos have a tidally truncated maximum mass, M_{200}, when they are accreted into a host halo at redshift z_{TT}. Then, we obtain a family of a dark halo with $M_{\text{200}}(z_{\text{TT}})$ so as to satisfy the common surface-density scale, $\Sigma_{\text{max}} = 20 \, M_\odot$ pc$^{-2}$.

The top panel in Figure 3 shows $1 + z_{\text{TT}}$ versus M_{200} under this common surface-density scale (solid line) in comparison
with the common M_{300} scale (dashed line). We also plot the cases of $\Sigma_{\text{max}} = 40 M_\odot \text{pc}^{-2}$ (dot-dashed line) and $10 M_\odot \text{pc}^{-2}$ (dotted line) for comparison. For the common surface-density scale of $\Sigma_{\text{max}} = 20 M_\odot \text{pc}^{-2}$, we obtain solutions with non-negative tidal truncation redshifts for the mass range of $M_{\text{TT}} < 2 \times 10^{10} M_\odot$, which is an order of magnitude wider than the case of the common M_{300} scale ($M_{\text{TT}} < 1.2 \times 10^{9} M_\odot$). This result reflects the property shown in Figure 2 that $\Sigma_{\text{max}} = 20 M_\odot \text{pc}^{-2}$ covers a larger range of V_{max} than $M_{300} = 1.4 \times 10^{7} M_\odot$. While the increase of M_{TT} with decreasing z_{TT} is gradual at $z_{\text{TT}} \lesssim 2$ on both scales, the slope is steeper at higher z_{TT}, where the case of the common Σ_{max} scale provides a more rapid increase of M_{TT} with decreasing z_{TT} than the common M_{300} scale. These properties of dark halo evolution are also seen in Figure 2, where $z = \text{const.}$ lines are less dense at $z > 2$, especially for the evolution of Σ_{max} at smaller V_{max}. This suggests that there is a systematic difference in the mass growth of a dark halo at high redshifts between the cases of the common Σ_{V} and M_{300} scales. We note that adopting a different value of $\Sigma_{\text{max}} = 10$ or $40 M_\odot \text{pc}^{-2}$ leads to a change of the upper limit for M_{TT} by an order of magnitude, but the general dependence of $1 + z_{\text{TT}}$ on M_{TT} remains basically the same.

The middle panel in Figure 3 shows V_{max} for these common scales. As already mentioned in Figure 2, a dark halo with $\Sigma_{\text{V}} = 20 M_\odot \text{pc}^{-2}$ covers the large mass range of $10^8 M_\odot - 10^{11} M_\odot$, so that the associated range for V_{max} is $5 \text{km s}^{-1} \lesssim V_{\text{max}} \lesssim 90 \text{km s}^{-1}$, namely, including both the low- and high-mass galaxies. This is in contrast to the common M_{300} scale, where the applicable range of V_{max} is limited. This limitation for the range of V_{max} is also seen when we adopt $\Sigma_{\text{V}} = 10 M_\odot \text{pc}^{-2}$, only $V_{\text{max}} \lesssim 32 \text{ km s}^{-1}$ is allowed, which can also be deduced from Figure 2(a).

3. EVOLUTION OF THE BARYONIC COMPONENT

3.1. Baryonic Content

Formation of dSphs is intimately affected by the cosmic reionization, whereby gas inflow into dark matter subhalos associated with dSphs is inhibited and/or gas is flowing out of a gravitational potential due to photoionization. To what extent baryons are actually retained in each of the subhalos is thus dependent on the evolution of photoionized gas in the presence of the ionizing background radiation, given the redshift evolution of dark halo density profiles on the scale of dSphs. This baryonic content is quantified by the baryon fraction f_b in each mass of dark halos in units of universal baryonic fraction Ω_b/Ω_m, where Ω_b and Ω_m denote cosmic densities of baryon and matter normalized by a critical density of the universe, respectively.

In this work, for the purpose of highlighting the effects of adopting different evolutionary histories of dark halos on the estimate of f_b, we follow the prescription for formulating it by Milosavljević & Bromm (2014), using the critical halo mass, M_{crit}, for retaining half of the universal baryon mass, defined as $f_b(M_{\text{crit}}, z) = \Omega_b/2 \Omega_m$. We adopt $M_{\text{crit}}(z)$ as given in Milosavljević & Bromm (2014) and follow the dependence of f_b on the halo mass M_{halo} given in Gnedin (2000),

$$f_b(M_{\text{halo}}, z) = \frac{\Omega_b}{\Omega_m} \left(1 + (2^{1/3} - 1) \left[\frac{M_{\text{halo}}}{M_{\text{crit}}(z)}\right]^{-\alpha}\right)^{-3/\alpha},$$

where α is a shape parameter, for which we adopt $\alpha = 1$ (Gnedin 2012; Sobacchi & Mesinger 2013) (see also Okamoto et al. 2008). For the $z = 0$ value of $M_{\text{crit}}(z)$, we adopt $M_{\text{crit}}(0) = 7 \times 10^9 M_\odot$ (Okamoto et al. 2008) as in Milosavljević & Bromm (2014).

The bottom panel in Figure 3 shows the baryon fraction in units of Ω_b/Ω_m at the epoch of the tidal truncation of mass assembly. It is found that for the low mass range of dark halos formed at high z_{TT}, their virial temperatures are too low to retain baryonic gas, i.e., $f_b = 0$, on such low-mass scales. At lower redshifts of $z_{\text{TT}} \lesssim 10$, f_b is increasing with M_{TT} and tending to the universal baryon fraction at the high-mass end. On the contrary, for the case of the common M_{300} scale, since dark halos are already massive enough at high z_{TT} to retain baryons and their masses grow only gradually with decreasing z_{TT} as shown in the top panel of Figure 3, the dependence of f_b on M_{TT} is somewhat weaker than the case of the common Σ_{max} scale. This difference in the dependence of the baryon fraction on M_{TT} between these common scales results in the different implications for star formation activity in dwarf satellites as explained below.

3.2. Comparison with Observed Dwarf Satellites

The estimated value of the baryon content f_b at the epoch of the tidal truncation of mass assembly is likely the maximum amount of available gas to form stars in each of the dwarf satellites. Then, during the resultant course of orbital motions within a gravitational potential of a host halo, gas in each satellite may be lost in the form of outflow driven by supernova feedback or eventually completely removed by ram pressure stripping, at which point star formation is finally quenched.

We estimate how much gas has actually been converted into stars in each of the dwarf satellites using the observationally determined stellar mass and then derive how much gas has been eventually lost from each system. We define

$$F = \frac{M_{\text{stellar}}}{M_{\text{baryon}}},$$

where M_{stellar} denotes the total mass of stars observed at the current epoch and M_{baryon} is the available gas mass (estimated from f_b at the epoch of the tidal truncation of mass assembly) in each of the satellite galaxies. F is thus a measure of star formation efficiency, where $F = 1$ indicates that all the gas has been converted into stars and $F < 1$ implies the loss of gas from the system by external effects such as ram pressure and/or tidal stripping processes or internal effects such as heating of gas from supernova feedback. Thus, $1 - F$ tells us the total amount of gas lost from the system, thereby providing important information for understanding star formation and chemical evolution histories in dwarf galaxies.

Figure 4 shows M_{stellar} versus V_{max} for dSphs in the Milky Way and Andromeda galaxies. The mass of stars in each dSph is based on the estimate of the mass-to-luminosity ratios in the V-band magnitude, M_{stellar}/L_V, by Woo et al. (2008), where the values of L_V for these sample galaxies are taken from the data assembled and listed in Kirby et al. (2014). Their mean metallicities are shown in terms of the size of each mark, for which the data are taken from Kirby et al. (2013). Solid lines show our semi-analytical model for constant F sequences, in the fiducial case of $\Sigma_{\text{max}} = 20 M_\odot \text{pc}^{-2}$. It follows from the figure...
that the current sample of dwarf satellites is divided into roughly two different families of $F > 0.1$ at $V_{\text{max}} \lesssim 22 \text{ km s}^{-1}$ (And V, Leo II, And VII, Leo I, and And I) and $F < 0.1$ at $V_{\text{max}} \gtrsim 22 \text{ km s}^{-1}$ (Sextans, And III, Carina, Sculptor, Draco, And II, and Fornax). The former, low-mass dSphs, are characterized by $z_{\text{f}} \gtrsim 6$, at which stars formed efficiently before the effect of the reionization became significant, whereas star formation efficiency in the latter, more massive dSphs may be reduced because of the presence of the ionizing background by the time they are accreted into a host halo. It is also suggested that except for And VII, all the dSphs imply $F < 0.3$, and thus more than 70% of gas is lost from the system. This is indeed supported by recent chemical evolution models (e.g., Homma et al. 2015) to understand the observed metal-poor distributions of stars in dSphs.

For And VII, we obtain $F = 1.45$ with $M_{\text{baryon}} = 1.02 \times 10^7 M_\odot$ at $z_{\text{f}} = 7.06$ and $M_{\text{star}} = 1.48 \times 10^7 M_\odot$, suggesting quite an efficient conversion of gas into stars, although $M_{\text{star}} > M_{\text{baryon}}$ at the redshift of the tidal truncation needs explanation. This is consistent with the Hubble Space Telescope results by Weisz et al. (2014) that more than 90% of the stars in And VII formed within the first 1 Gyr. Regarding $F > 1$ in this galaxy, it is interesting to note that the distance from the Andromeda center to this satellite is largest (218 kpc) among the current sample of the Andromeda satellites, whereby this galaxy may be allowed to obtain the further gas infall after the epoch of z_{f} and form extra stars before the ram pressure stripping removes gas completely.

Figure 5 shows the effects of adopting neighboring values of (a) $\Sigma_{\text{max}} = 10 M_\odot \text{ pc}^{-2}$ and (b) $40 M_\odot \text{ pc}^{-2}$. It follows that the general properties of constant F lines relative to observed dSphs remain basically the same as the fiducial case of $\Sigma_{\text{max}} = 20 M_\odot \text{ pc}^{-2}$, namely, the dSphs can be divided into those with high or low F, depending on the value of V_{max}. In addition, compared with the fiducial case of $\Sigma_{\text{max}} = 20 M_\odot \text{ pc}^{-2}$, adopting a smaller (larger) Σ_{max} results in a smaller (larger) F, thereby implying that dSphs having higher surface densities at a given V_{max} are expected to show higher star formation efficiency and thus may cause some dispersion in the distribution of F.

We note that in the Milosavljević & Bromm (2014) paper adopting $M_{\text{300}} = \text{const}.$, halos with high baryon fraction are thought to form stars in isolated/nuclear clusters, whereas halos with low baryon fraction imply low star formation efficiency, and hence galaxies are expected to stay dark. Thus, the adoption of a different common scale leads to a different interpretation for star formation activity in dSphs.

4. DISCUSSION

4.1. Comparison with the High-resolution Numerical Simulation

Our model of dwarf galaxies in the common surface-density scale combined with gas physics in the ionizing background suggests that there are broadly two families of satellite galaxies, those experiencing efficient star formation with $F > 0.1$ at early epochs and those with inefficient star formation with $F < 0.1$ due to the effects of the ionizing background at lower redshifts. These different types of satellite galaxies may be divided at V_{max} of about 22 km s^{-1}. However, the number of sample dSphs in the Milky Way and Andromeda galaxies for the current analysis is limited only to 11 at the moment, so it is still unclear whether this suggested property is indeed the case.

To remedy this situation, we investigate the results of the recent high-resolution numerical simulation for galaxy formation in the fully cosmological context, where the reionization of the universe is taken into account. For this purpose, we adopt the Illustris simulation (Nelson et al. 2015). We derive F...
defined in Equation (5) associated with each dark matter subhalo at \(z = 0 \) given in the Illustris data, where \(M_{\text{baryon}} \) is estimated by multiplying the mass of each subhalo by the universal baryon fraction of \(\Omega_\text{b}/\Omega_m \). Note that in this procedure of deriving \(M_{\text{baryon}} \) from the simulation results, a finite fraction of subhalos may have continued their growth up to \(z = 0 \), in contrast to our semianalytical model assuming the tidal truncation at \(z_{\text{TT}} \). This suggests that we may overestimate \(M_{\text{baryon}} \) and thus underestimate \(F \) from the simulation results to some extent, compared with those in our semianalytical model.

Figure 6 shows the \(M_{\text{star}} \) versus \(V_{\text{max}} \) for the simulated subhalos, which are divided into four different ranges in \(F \). Solid lines correspond to our semianalytical models for \(F \), and observed data are shown with red circles. Although there is some discrepancy between our model and numerical simulation results at \(V_{\text{max}} < 20 \text{ km s}^{-1} \), which may be partially due to insufficient resolution in numerical simulations on such small scales or other effects such as later gas infall into subhalo after the tidal truncation by their host halo, it is quite impressive that a very good agreement is achieved at \(V_{\text{max}} > 25 \text{ km s}^{-1} \), including the slope of a constant \(F \) line in the diagram, although we never make any fine-tuning in our model.

Indeed, Figure 7 shows the comparison between \(F \) obtained from the Illustris simulation and that from our semianalytical model. This figure clearly demonstrates that there is a very reasonable agreement between these values of \(F \), although \(F \) from the simulation results appears slightly smaller than that in the semianalytical model due to the reason mentioned above. This may support our hypothesis that there are roughly two different families of dwarf galaxies in terms of star formation efficiency, which is probably controlled by external and/or internal feedback effects, including the ionizing background radiation and/or supernova explosions.

With this \(F \) value, it is also possible to estimate the integrated amount of mass loss from dwarf satellites in terms of \(1 - F \), which may ultimately affect their chemical evolution histories. To infer this property in the Illustris simulation data, we plot, in Figure 8, \(1 - F \) versus the mass-weighted average metallicity of the star particles \(M_{Z,\text{star}}/M_{\text{tot,star}} \) in each subhalo, for different ranges of \(V_{\text{max}} \). In this plot, to avoid the effect of the mass–metallicity degeneracy in the result, we adopt only the subhalos having \(M_{\text{tot,star}} = (1.00 \pm 0.05) \times 10^7 M_\odot \). Although there are large dispersions in the plot, it follows that a subhalo with larger \(1 - F \) tends to have a more metal-poor stellar system. The solid line corresponds to a fiducial chemical evolution model including a gaseous outflow, where the outflow rate is assumed to be proportional to the SFR and we adopt the resultant effective yield as 0.7. The inset shows the plots in the range of \(0.9 < 1 - F < 1.0 \) for clarity.

![Figure 6.](image)

![Figure 7.](image)

![Figure 8.](image)
loss of gas in such subhalos, e.g., by means of the metal-enhanced supernova wind (Mac Low & Ferrara 1999; Martin et al. 2002; Kirby et al. 2011a, 2011b; McQuinn et al. 2015). Alternatively, this may just be an artifact of rather low numerical resolution of Illustris at $V_{\text{max}} < 25 \text{ km s}^{-1}$, where, as shown in Figure 6, our semianalytical model for a constant F differs from F deduced from Illustris: the latter predicts a systematically smaller F than our model and thus lower star formation efficiency, so that a stellar system is made more metal-poor than the case for larger V_{max}. Further investigation for this issue is needed, based on much higher resolution numerical simulations.

4.2. Star Formation History

Dark halos in dwarf satellite galaxies continue to grow via mass accretion from outside until they enter a host halo at z_{TT}, after which the resultant tidal stripping inhibits a further mass growth. The ram pressure stripping may also be at work to prevent further gas infall and thus star formation. Thus, we expect that the main star formation activity in each of the dwarf galaxies occurs prior to z_{TT}, where the continuous growth of dark halos accompanies gas inflow simultaneously, from which new stars are formed.

Following this conjecture, we calculate the inflow rate of gas from outside, based on the associated mass growth in a dark halo component. For this purpose, we adopt the growth history of a dark halo, $d \ln M_{\text{halo}}/dz$, given in Equation (7) of Milošavliević & Bromm (2014):

$$
\frac{d \ln M_{\text{halo}}}{dz} = -0.62 \left(\frac{1 + 1.11z}{1 + z} \right)
\times \left[\frac{d \sigma^2/d \ln M(M_{\text{halo}})}{\left[d \sigma^2/d \ln M(10^{12} M_\odot) \right]} \right]^{-1/2},
$$

where $\sigma(M)$ denotes the rms fluctuation of the density field linearly extrapolated to $z = 0$. This equation corresponds to the growth rate of the mean most massive progenitor for halos, which now belong to the common surface-density scale family in this work. We assume that the inflow rate of gas is simply given as the baryon fraction times the growth rate of a dark halo, i.e., being proportional to dM_{halo}/dt.

In this work, we choose Fornax and Leo II as two representative cases, where the epochs of tidal truncation under a constraint of the common surface-density scale of $20 M_\odot \text{ pc}^{-2}$ are given as $z_{\text{TT}} = 3.75$ and 7.57, respectively, i.e., subsequent and prior to the completion of the cosmic reionization. For these dSphs, the values of F indicating star formation efficiency are estimated as 0.065 (Fornax) and 0.212 (Leo II), thereby suggesting that the former dSph, with z_{TT} being lower than the redshift for the completion of the cosmic reionization, is subject to the suppression of star formation caused by the ionizing background radiation.

To estimate the star formation histories in these dSphs, we adopt the Hubble Space Telescope results by Weisz et al. (2014) for the Milky Way dSphs, based on the distribution of resolved member stars in the color–magnitude diagram. Since Weisz et al. (2014) showed the cumulative SFR in their paper, we evaluate the SFR at each epoch by differentiating the cumulative SFR. Upper panels in Figure 9 show the (normalized) SFR at each epoch for Fornax (upper left) and Leo II (upper right). Lower panels in this figure show our model for the (normalized) infall rate of gas based on the dark matter growth in the common surface-density scale, for Fornax (lower left) and Leo II (lower right). In these lower panels, the inflow rate of gas is maximum at redshift z_{TT}, i.e., at the epoch of tidal truncation when a subhalo enters into a host halo at the corresponding epoch. Figure 9 suggests that the observed peak of the SFR in Fornax and Leo II is indeed in good agreement with the epoch when the peak of the gas infall rate is achieved. This implies that star formation activity in these dwarf satellites may be controlled by the mass growth in a dark halo component under a constraint of the common surface-density scale of $\Sigma_{V_{\text{max}}} \sim 20 M_\odot \text{ pc}^{-2}$, yielding z_{TT}, i.e., the peak epoch of the gas infall rate, and this epoch is to be compared with the completion epoch of the cosmic reionization to infer the effect on star formation efficiency. Further tests for the current semianalytical model are needed, in which much tighter limits on star formation histories of these galaxies, e.g., based on measurements of detailed abundance patterns of member stars, may enable us to deduce any differences in star formation efficiency between the two families of dSphs.

5. CONCLUSIONS

We have investigated the mass growth of dark halos in dwarf galaxy satellites in Local Group galaxies, under the recently proposed property by HC15a that the mean surface density of a dark halo inside a radius at maximum circular velocity is universal over a large range of luminosities and masses of galaxies. Given that a surface density $\Sigma_{V_{\text{max}}} \sim 20 M_\odot \text{ pc}^{-2}$ well explains dwarf satellite galaxies in the Milky Way and Andromeda galaxies, we calculate the evolution of dark halos and associated evolutionary histories of the baryonic component in dwarf satellites. Our main results are summarized as follows.

1. Dark halos in the common surface-density scale show the rapid mass growth at high redshifts, while they evolve only slowly at lower redshifts of $z_{\text{TT}} < 2$. It is found that these dark halos cover a large range of V_{max}, including the scales of UFDs with V_{max} as small as 10 km s^{-1}, as well as those of bright galaxies with V_{max} as large as a few hundred kilometers per second. This is in contrast to dark halos in the common mass scale of $M_{200} \sim 1.4 \times 10^7 M_\odot \text{ pc}^{-2}$, which covers only a limited range of V_{max}. Thus, the mean surface density $\Sigma_{V_{\text{max}}}$ provides a more general description for the evolution of dark halos.

2. The calculation of the baryon fraction retained in these dark halos in the presence of the ionizing background radiation reveals that low-mass satellites with V_{max} below $\sim 22 \text{ km s}^{-1}$ are characterized by high star formation efficiency of $F > 0.1$, whereas more massive satellites with V_{max} being larger than $\sim 22 \text{ km s}^{-1}$ show low star formation efficiency of $F < 0.1$. This is understood on the basis of the mass growth of dark halos and its termination at z_{TT} in the following manner. Low-V_{max} halos grow fast at high redshifts and are less affected by the ionizing radiation, whereby star formation efficiency is high. On the contrary, high-V_{max} halos grow slowly at lower redshifts, so that star formation is suppressed by the ionizing background. It is also suggested from these
models that more than 70% of baryons (i.e., $1 - F > 0.7$) have been lost from each dwarf satellite, in good agreement with suggestions from chemical evolution models to explain low metallicities of stars in the observed dSphs.

3. We have found that the values of F in subhalos calculated from the Illustris simulation are in agreement with those derived from our semianalytical models, implying that our models may describe the realistic evolutionary histories of dark halos and baryonic matter, although further studies based on much higher resolution numerical simulations are needed to assess the detailed properties of star formation activities in satellites, especially at low V_{max}.

4. The infall rate of gas inferred from the growth rate of dark halos in the common surface-density scale shows a peak at the epoch of tidal truncation, and this peak epoch is reasonably in agreement with the epoch at which the SFR derived for the Milky Way satellites (Fornax and Leo II) is maximum. This also implies that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellite galaxies.

We are grateful to the referee for invaluable comments on the manuscript. We also thank Kohei Hayashi for useful discussion, which actually promotes the current work, and Evan Kirby for his constructive comments on an early draft of this paper, which helped us improve the manuscript. This work is supported in part by JSPS Grant-in-Aid for Scientific Research (B) (No. 25287062) “Probing the Origin of Primordial Minihalos via Gravitational Lensing Phenomena” and MEXT Grant-in-Aid for Scientific Research on Innovative Areas “Cosmic Acceleration” (No. 15H05889).

REFERENCES

Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2012, MNRAS, 422, 1203
Burkert, A. 1995, ApJL, 447, L25
de Blok, W. J. G., McGaugh, S. S., Bosma, A., & Rubin, V. C. 2001, ApJL, 552, L23
Di Cintio, A., Brook, C. B., Macciò, A. V., et al. 2014, MNRAS, 437, 415
Donato, F., Gentile, G., Salucci, P., et al. 2009, MNRAS, 397, 1169
Gentile, G., Famaey, B., Zhao, H., & Salucci, P. 2009, Natur, 461, 627
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., et al. 2007, ApJ, 663, 948
Gnedin, N. Y. 2000, ApJ, 542, 535
Gnedin, N. Y. 2012, ApJ, 754, 113
Hayashi, K., & Chiba, M. 2012, ApJ, 755, 145
Hayashi, K., & Chiba, M. 2015a, ApJL, 803, L11
Hayashi, K., & Chiba, M. 2015b, ApJ, 810, 22
Homma, H., Murayama, T., Kobayashi, M. A. R., & Taniguchi, Y. 2015, ApJ, 799, 230
Ibata, R. A., Lewis, G. F., Conn, A. R., et al. 2013, Natur, 493, 62
Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M., & Cohen, J. G. 2014, MNRAS, 439, 1015
Kirby, E. N., Cohen, J. G., Guhathakurta, P., et al. 2013, ApJ, 779, 102
Kirby, E. N., Cohen, J. G., Smith, G. H., et al. 2011a, ApJ, 727, 79
Kirby, E. N., Martin, C. L., & Finlator, K. 2011b, ApJL, 742, L25
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82
Kormendy, J., & Freeman, K. C. 2004, in IAU Symp. 220, Dark Matter in Galaxies, ed. S. Ryder, D. Pisano, M. Walker, & K. Freeman (San Francisco, CA: ASP), 377
Kravtsov, A. 2010, AdAst, 2010, 8
Kroupa, P., Theis, C., & Boily, C. M. 2005, A&A, 431, 517
Lovell, M. R., Eke, V., Frenk, C. S., et al. 2012, MNRAS, 420, 2318
Macciò, A. V., & Fontanot, F. 2010, MNRAS, 404, L16
Macciò, A. V., Kang, X., & Moore, B. 2009, ApJ, 692, L109
Mac Low, M.-M., & Ferrara, A. 1999, ApJ, 513, 142
Madau, P., Shen, S., & Governato, F. 2014, ApJL, 789, L17
Mateo, M., Olszewski, E. W., Pryor, C., Welch, D. L., & Fischer, P. 1993, AJ, 105, 510
McConnachie, A. W., & Irwin, M. J. 2006, MNRAS, 365, 902

Figure 9. Upper panels: SFR at each epoch calculated from the observed cumulative SFR (Weisz et al. 2014) for Fornax (left) and Leo II (right). Lower panels: gaseous infall rate based on our dark halo model in the common surface-density scale for Fornax (left) and Leo II (right). In both upper and lower panels, the vertical axis is arbitrarily normalized.
McQuinn, K. B. W., et al. 2015, ApJL, 815, L17
Milosavljević, M., & Bromm, V. 2014, MNRAS, 440, 50
Moore, B. 1994, Natur, 370, 629
Moore, B., Ghigna, S., Governato, F., et al. 1999, ApJL, 524, L19
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Nelson, D., Pillepich, A., Genel, S., et al. 2015, A&C, 13, 12
Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F., & Kennicutt, R. C., Jr. 2011, AJ, 141, 193
Okamoto, T., Gao, L., & Theuns, T. 2008, MNRAS, 390, 920
Pawlowski, M. S., Famaey, B., Merritt, D., & Kroupa, P. 2015, ApJ, 815, 19
Pawlowski, M. S., Kroupa, P., & Jerjen, H. 2013, MNRAS, 435, 1928
Pawlowski, M. S., Pflamm-Altenburg, J., & Kroupa, P. 2012, MNRAS, 423, 1109
Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & Primack, J. 2012, MNRAS, 423, 3018
Salo, P., Wilkinson, M. I., Walker, M. G., et al. 2012, MNRAS, 420, 2034
Sawala, T., Frenk, C. S., Fattahi, A., et al. 2016, MNRAS, 457, 1931
Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
Sobacchi, E., & Mesinger, A. 2013, MNRAS, 432, L51
Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al. 2008, Natur, 454, 1096
Swaters, R. A., Madore, B. F., van den Bosch, F. C., & Balcacs, M. 2003, ApJ, 583, 732
Tegmark, A., et al. 2004, ApJ, 606, 702
Vogelsberger, M., Zavala, J., & Loeb, A. 2012, MNRAS, 423, 3740
Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014, ApJ, 789, 147
Woo, J., Courteau, S., & Dekel, A. 2008, MNRAS, 390, 1453
Zhu, Q., Marinacci, F., Maji, M., et al. 2016, MNRAS, 458, 1559