Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes

Oscar Ka-Fai Ma, Koon Ho Chan

Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China

Author contributions: Ma OKF and Chan KH have been involved equally and have read and approved the final manuscript.

Supported by Matching Fund from Stanley Ho Alumni Challenge for Translational Research in Neuroinflammation, No. 20830036.

Conflict-of-interest statement: The author, Oscar Ka-Fai Ma, certify that they have no affiliations with or involvement in any organization or entity with any financial interest. Another author, Dr. Koon Ho Chan, has received research-funding support from Merck Pharmaceutical Ltd, Novartis Pharmaceutical Ltd, Bayer HealthCare Ltd, and has received honorarium for invited lectures from Biogen Idec and UCH Pharma Ltd.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Core tip: In this review, we summarized the mechanisms involved in regulatory T (T_{reg}) and B (B_{reg}) cell induction by mesenchymal stem cells (MSCs). In an inflammatory environment, MSCs secrete various anti-inflammatory cytokines, actively interact with immune cells and modulate them to acquire regulatory properties, thus, generate a tolerogenic environment. Particularly, by

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Abstract

Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (T_{reg}) and B (B_{reg}) cells. The induction of T_{reg} and B_{reg} cells is of particular interest since T_{reg} and B_{reg} cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of T_{reg} and B_{reg} cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce T_{reg} and B_{reg} cells to provoke immunosuppression.

Key words: Mesenchymal stem cells; Regulatory T cells; Regulatory B cells; Immunomodulation; Autoimmunity

Published online: September 26, 2016
inducing T_{reg} and B_{reg} cells, the immunomodulation of MSCs is amplified. Therefore, genetic engineered MSCs to enhance their ability to induce T_{reg} and B_{reg} cells may increase their therapeutic efficacy.

Ma OKF, Chan KH. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 2016; 8(9): 268-278 Available from: URL: http://www.wjgnet.com/1948-0210/full/v8/i9/268.htm DOI: http://dx.doi.org/10.4252/wjsc.v8.i9.268

INTRODUCTION

Mesenchymal stem cells (MSCs) are mesodermal progenitor cells that have a wide range of differentiation capacity. They can differentiate into adipocytes, osteocytes, chondrocytes, myocytes, fibroblasts and stromal cells. In addition, some research studies have shown that MSCs, under certain conditions, can trans-differentiate to cells from ectodermal and endodermal lineage. Among them, the ability of MSCs to develop into neurons is of particular interest. Considering that neural stem cells are limited in number and extremely difficult to be isolated while, comparatively, massive numbers of MSCs can be derived from numerous adult tissues, including, liver, kidney, adipose tissue, bone marrow, dental pulp, peripheral blood and umbilical cord blood. MSCs may serve as a reliable source of neural cells for potential cell replacement therapy or regenerative medicine.

Aside from its diverse differentiation capacity, their immunomodulatory properties also prompt researchers to study profoundly. MSCs are capable of regulating both innate and adaptive immunity. They secrete a large variety of soluble factors, including interleukin (IL)-6, IL-8, transforming growth factor-β1 (TGF-β1), indoleamine 2,3-dioxygenase (IDO), human leukocyte antigen-G (HLA-G) and prostaglandin E2 (PGE2). These factors allow MSCs to interact with components of the innate and adaptive immunity, subsequently modulate inflammation and immune tolerance. Monocytes, for instance, under the influence of MSCs-secreted IL-6, IDO and PGE2, tend to develop into anti-inflammatory M2 macrophages instead of proinflammatory M1 macrophages. In addition, recent reports showed that human gingiva derived MSCs have converted M1 macrophages to M2. Natural killer (NK) cells, on the other hands, express CD73 and acquires regulatory phenotype when exposed to MSCs. Similarly, regulatory dendritic cells (DC) induced by MSCs were capable of secreting IL-10, a powerful anti-inflammatory cytokine. Thus, MSCs are able to suppress innate immunity by skewing their differentiation into regulatory subtype (Figure 1).

MSCs can regulate adaptive immune system by suppressing the proliferation, differentiation and activation of T cell and B cell. A number of studies have demonstrated that MSCs can inhibit the proliferation of Th1 and Th17 cell, decrease the production of interferon (IFN)-γ, IL-2, IL-6 and IL-17, and downregulate the T cell activation markers, CD38 and HLA-DR. When MSCs were co-cultured with B cell and in the presence of different B cell trophic stimuli, B cell proliferation was inhibited and they were arrested in G₀/G₁ phase. Moreover, B cell differentiation was prohibited as indicated by limited production of IgG, IgM and IgA. In addition, the regulatory-skewing propensity of MSCs observed in innate immune system also applies to T and B lymphocyte. In fact, the ability of MSCs to expand regulatory T (T_{reg}) cells and regulatory B (B_{reg}) cells have been intensively studied. However, the mechanism of how T_{reg} and B_{reg} cells are induced by MSCs has not been fully understood. Some suggest regulatory lymphocytes induction by MSCs requires mediation of other immune cells, while others propose MSCs-released cytokines are sufficient to expand T_{reg} and B_{reg} cell populations, but more and more researchers have come to the consensus that MSCs can use multiple pathways to generate regulatory lymphocytes and which pathways are more favorable is determined by the microenvironment that MSCs encounter. Altogether, MSCs modulate immune cells to acquire regulatory phenotype, hence, alter the inflammatory milieu into a tolerogenic one (Figure 1).

There is another advantage of using MSCs for cellular therapy. MSCs have low immunogenicity, implying that MSCs can be used for allogeneic transplantation. This property is particularly helpful to the patient whose MSCs are compromised. Thereby, MSCs possess valuable therapeutic potential to treat immune-mediated disorders.

Although MSCs have demonstrated as a promising immunoregulator for clinical use, the immunomodulatory and low-immunogenicity properties of MSCs are not constitutive. The function of MSCs is based on the signals from the vicinity. MSCs, in the absence of tumor necrosis factor (TNF)-α and IFN-γ may adopt pro-inflammatory phenotype, which activate T cells to response. On the contrary, when MSCs are exposed to high level of TNF-α and IFN-γ they will behave as an anti-inflammatory regulator by producing TGF-β1, IDO, and PGE2. Likewise, depending on the level of IL-6, MSCs can convert monocyte into M1 or M2 macrophages. Thus, before any clinical application, the plasticity of MSCs should be carefully considered. In this review, we summarized current understandings on how MSCs interact with regulatory lymphocytes, T_{reg} and B_{reg} cells particularly, to attenuate autoimmunity, and how this knowledge can contribute to therapeutic development.

T_{reg} LYMPHOCYTE

The notion of “suppressive” T cells has long been proposed in 1970s. Due to technical limitation, their identities and phenotypic characteristics cannot be described until 1995, Sakaguchi et al. isolated a unique CD4⁺ CD25⁺ T cells that can suppress immune responses and maintain immunologic self-tolerance. Later, this subpopulation...
of T cells was named as T\textsubscript{reg} cells. For those T\textsubscript{reg} cells that undergo maturation in thymus, are referred to as thymus-derived T\textsubscript{reg} (T\textsubscript{reg}o) cells. Three days post-maturation, T\textsubscript{reg}o cells will relocate from thymus to periphery[32]. Surprisingly, T\textsubscript{reg}o cells only comprise 5%-10% of peripheral T cells, but they are the critical regulator of autoimmunity. This is evidenced in mice lacking peripheral T\textsubscript{reg}o cells. They were lethal due to various autoimmunity enhancements[26,30].

Apart from T\textsubscript{reg}o cells, T\textsubscript{reg}o cells can also be generated in periphery[31,32]. Periphery-derived T\textsubscript{reg}o (pT\textsubscript{reg}o) cells are converted from naive T cells (CD4\(^+\)CD25 Foxp3\(^-\)CD45RB\(^hi\)) upon activation of naive T cells and in the presence of particular cytokines, two main types of T\textsubscript{reg}o cells can be differentiated in the periphery and \textit{in vitro}, namely, T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells. Th3 cell and Tr1 cell differentiation are promoted by TGF-\(\beta\) and IL-10, respectively[29,35]. Both Th3 and Tr1 cells are suppressive to effector and memory T cells, and they are able to secrete cytokine for self-activation. However, one distinct phenotypical difference is Th3 cells are Foxp3\(^+\) whereas Tr1 cells are Foxp3\(^-\).

Forkhead box P3 (Foxp3) is a transcription factor that constitutively express in T\textsubscript{reg}o cells and some types of pT\textsubscript{reg}o cells. It has been recognized as the master regulator of T\textsubscript{reg}o cells. Scurfy, a Foxp3 gene mutated mouse, is lethal by one month after birth, displays hyperactivation of CD4\(^+\) T cells and overproduction of proinflammatory cytokines[36]. In human, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is X-linked recessive disorder caused by mutation in Foxp3 gene[37]. T\textsubscript{reg}o cells from the patients with IPEX are either dysfunction or completely vanished. As a result, IPEX patients are afflicted with various autoimmune diseases, allergy and/or inflammatory bowel disease[38]. The provoked inflammation on IPEX patients indicates the failure of immune tolerance. Foxp3 promotes its regulatory effect by enhancing the expression of IL-2 receptor (CD25), cytotoxic T cell-associated antigen-4 (CTLA-4), and glucocorticoid-induced TNF receptor family-related protein (GITR), meanwhile suppressing the production IL-2, IL-4 and IFN-\(\gamma\). T\textsubscript{reg}o cells monitor the inflammatory status by the exogenous level of IL-2. Binding of IL-2 to CD25 would enhance the expression of T\textsubscript{reg}o-cell associated genes and regulate the inflammation by suppressing effector T cell proliferation or by altering the function of antigen presenting cells[40]. Retroviral transfer of Foxp3 to naive T cells (CD4\(^+\)CD25 Foxp3\(^-\)) can upregulate the expression of some T\textsubscript{reg}o cell-associated genes, including CD25, CTLA-4, GITR and CD103, and the Foxp3-transduced T cells were shown to be suppressive[41]. Altogether, Foxp3 is critical to the function and the development of T\textsubscript{reg}o cells and to a greater extent, the maintenance of immune homeostasis[42,43].

T\textsubscript{reg}o LYMPHOCTYE INDUCTION BY MSCs

MSCs are able to induce Foxp3\(^+\) T\textsubscript{reg}o cell population \textit{in vitro} and \textit{in vivo}. So far, several mechanisms have been proposed, including: (1) secretion of soluble mediators; (2) cell-cell interaction; and (3) modulation of antigen...

Figure 1 Immunosuppression by mesenchymal stem cells. MSCs suppress innate and adaptive immune responses by enhancing regulatory immune cells with tolerogenic properties. MSCs suppress macrophages by favoring monocyte polarization to anti-inflammatory M2 macrophages, increasing the production of IL-10, and decreasing the production TNF-\(\alpha\) and IL-12. MSCs can also regulate DCs by downregulating the expression of MHC, CD40, CD80, CD83 and CD86, thus, diminishing their antigen presenting ability, while upregulating the expression of IL-10. MSCs can reduce the NK cell cytotoxicity and decrease their production of TNF-\(\alpha\) and IFN-\(\gamma\). T\textsubscript{reg}o and B\textsubscript{reg} cells can be induced by MSCs, further increase the production of anti-inflammatory cytokines (IL-10 and TGF-\(\beta\)). However, the mechanisms of how B\textsubscript{reg} cells are induced by MSCs are still not clear. MSCs: Mesenchymal stem cells; TNF: Tumor necrosis factor; IL: Interleukin; NK: Natural killer; DCs: Dendritic cells; IFN-\(\gamma\): Interferon-\(\gamma\); T\textsubscript{reg}o: Regulatory T; B\textsubscript{reg}: Regulatory B; TGF: Transforming growth factor; PGE2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase.
Generally, TGFβ to be concentration mentioned earlier, TGFβ response, it can also induce development of Treg cells from only acts as a suppressor of innate and adaptive immune differentiation further confirms its essential role in promoting Treg cell reduced mRNA and protein level of Foxp3 and CD25, Th17 differentiation expression of IL-23R is enhanced and results in RORγt the conversion to Foxp3 and phagocytic effect of macrophages antigen presentation of DCs, the cytotoxicity of NK cells, the activation of B cells, the maturation and importance of TGFβ to multiple organs failure and death, suggesting theⅡ

Secretion of soluble mediators TGF-β1: MSCs can secrete TGF-β1 to promote Treg cell differentiation, especially when MSCs are placed in an inflammatory environment[21]. TGF-β1 is a potent immuno-suppressor secreted by every leukocyte lineages, including macrophages, DCs, NK cells, T cells and B cells. Both TGF-β1 knockout mice and T-cell specific TGF-β receptor II knockout mice develop severe autoimmunity, leading to multiple organs failure and death, suggesting the importance of TGF-β1 in regulating peripheral tolerance[44,45]. Generally, TGF-β1 can suppress the proliferation of T cells, the activation of B cells, the maturation and antigen presentation of DCs, the cytotoxicity of NK cells, and phagocytic effect of macrophages[46]. Moreover, as mentioned earlier, TGF-β1 is able to convert naive T cells to Foxp3+ Th3 cells, although such conversion seems to be concentration-dependent. High concentrations of TGF-β1 suppresses the expression of IL-23R and shifts the conversion to Foxp3+ Th3 cells, whereas at lower concentrations and in the presence of IL-6 and IL-21, the expression of IL-23R is enhanced and results RORγt+ Th17 differentiation[47]. In addition, neutralizing TGF-β1 reduced mRNA and protein level of Foxp3 and CD25, further confirms its essential role in promoting Treg cell differentiation[48]. In conclusion, MSCs-secreted TGF-β1 not only acts as a suppressor of innate and adaptive immune response, it can also induce development of Treg cells from naive T cells, which further enhance the regulatory effects.

PGE2: MSCs can also secrete PGE2 to induce Treg cells. PGE2 plays a major role in suppressing chronic inflammation. PGE2 can reduce IFN-γ production of NK cells, limit the phagocytic ability of macrophages and interfere early activation of B cells[49-52]. Although PEG2 can suppress early development of DCs, it is surprising that PGE2 also stabilize matured DCs and enhance its antigen presenting capacity[53-55]. Moreover, despite PEG2 is able to shift the differentiation of naive T cells from Th1 to Th2 cells, PEG2 also promote proinflammatory Th17 cell development by elevating IL-23 production[56]. Thereby, PEG2 is not exclusively anti-inflammatory. It also possesses the ability to provoke inflammation. Nevertheless, like TGF-β1, PEG2 can induce Foxp3+ Treg cell differentiation and it is one of many soluble mediators that produce by MSCs. Diminishing PGE2 signaling when co-culture CD4+ T cells with MSCs by antagonist indomethacin fail to upregulate Foxp3 and CD25 expression. In fact, when inhibiting both TGF-β1 and PGE2 signaling, the expression of Foxp3 and CD25 further decreased[58]. Furthermore, after transferring adipose tissue-derived MSCs in asthmatic mice, the number of infiltrated inflammatory cells was significantly reduced and no obvious goblet cell hyperplasia was found in the lung. Meanwhile, the number of Treg cells was elevated. When TGF-β1 neutralizing antibodies or indomethacin was added to MSCs-treated asthmatic mice, the anti-

![Figure 2 Mesenchymal stem cells-mediated regulatory T cell induction.](image-url)
These results further confirmed cell necessity of TGFβ-induced, even in the presence of PGE2 and TGFβ. MSCs are also shown to be involved in MSCs and CD11a/CD18 and facilitate Th17 to adopt regulatory the interaction between T cells and endothelial cells, worth to note that MSCs can inhibit the expression of adhesion molecules, ICAM-1 and VCAM-1, which secrete high level of IL-10 and TGF-β to modulate the inflammatory microenvironment. Interestingly, although MSCs express neither IL-10 nor its receptor, MSCs are able to induce NK cells, DCs, macrophages, T cells and B cells to produce IL-10. As discussed above, IL-10 is able to induce naïve T cell to Foxp3+ Tr1 cell, which secretes high level of IL-10 and TGF-β to modulate the inflammatory microenvironment. In addition, IL-10 is a powerful anti-inflammatory cytokine that suppresses antigen-specific immune responses, reduces pathological immune response and promotes allograft tolerance.

In conclusion, the mechanisms underlying MSCs-mediated Treg cell development are complicated, which involve synthesis and secretion of multiple mediators, direct interaction with target cells and modulation of certain antigen-presenting cells. Apparently, there is no single pathway that governs the whole induction process, indicating that MSCs possess certain degree of plasticity. Regardless of how Treg cells are enhanced by MSCs, MSCs-activated Treg cells play a significant role on immunoregulation and affect a wide spectrum of immune responses. Certainly, Treg cells can massively amplify the immunomodulatory effect of MSCs. However, the mechanism in regard to Treg cell induction is far from elaborate and additional researches are required.

Breg LYMPHOCYTE

In recent decade, Breg cells were being intensively investigated due to its immunosuppressive effect on excessive inflammation. Like Treg cells, Breg cells can produce anti-inflammatory cytokines, like TGF-β and IL-10. Among these, IL-10 is strongly associated with Breg cells since depleting IL-10-producing B cells result in chronic inflammation, outgrowth of proinflammatory T cell after autoimmune induction. Unlike Treg cells, there is no “master regulator” being identified in Breg cells, which complicated the process of Breg cell classification. So far, there are several B cell subsets have been identified as Breg cells in mice. They are CD5-CD1d+ B (B10) cells and Tim1+ B cells. In human, there is CD19+CD24hiCD38hiCD16+ B cells and CD19+CD24hiCD27+ B cells. Breg cells control inflammation by suppressing IL-12 secretion from DCs, thus inhibiting Th1 and Th17 differentiation.
the secretion of TGF-β, Breg cells can induce CD4+ T cell apoptosis and anergy in CD8+ cytotoxic T cells[82,83]. Recent studies indicated that Breg cells play a role in Treg cell development and function. As Breg cells are one of the major sources of IL-10, which drive Tr1 differentiation, it is not surprising that Breg cells can expand Treg cell population during inflammation. Additionally, when B cell specific IL-10 defective mice (DBA/1IL-10 KO/hi mice) were induced with arthritis, the percentage of Tr1 was significantly decreased, indicating effects of IL-10-induced Breg cells on Treg cell formation[79]. Besides TGF-β and IL-10, recent studies reported that IL-35 is another pleiotropic cytokine that regulate overwhelming inflammation and autoimmunity[84,85]. Antigen-driven proliferation assay revealed that IL-35 was able to suppress CD4+ T cell proliferation[86]. Treatment with IL-35 ameliorated disease severity and reduced Th1 and Th17 cells in mice with experimental autoimmune uveoretinitis (EAU)[87]. More importantly, IL-35 can increase Treg and Breg cell populations. Similar to IL-10, IL-35-induced Treg (Tr35) cells are Foxp3+. However, adoptive transfer of iTreg cells to various autoimmune disease animal models has sufficiently alleviated their clinical severity, and the effect was comparable to Treg cells-treated mice[35]. On the other hand, when recombinant IL-35 was injected into the EAU mice, the frequency of B220+ IL-10+Breg cells, IL-35+ Breg Cells and B10 cells were upregulated in the spleen and draining lymph nodes[88]. Collectively, Breg cells exhibit anti-inflammatory and immunoregulatory effects, at least in part, by secreting multiple anti-inflammatory cytokines (TGF-β, IL-10 and IL-35), promoting differentiation of other regulatory cells, and inhibiting the proliferation and function of effector T cells.

Breg LYMPHOCYTE INDUCTION BY MSCs

Although MSCs do not constitutively express IL-10, and currently there is no evidence to indicate that MSCs produce IL-35, several studies have reported that MSCs induce IL-10-Breg cell differentiation in mouse model[87,89]. Our group studied the effects of human bone marrow-derived MSCs in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, and observed attenuation of clinical severity and neuroinflammation; and excitingly, these were associated with expansion of CD11b+ CD5+ Breg cells after MSCs administration[87]. Subsequently, another study demonstrated intravenous infusion of adipose tissue-derived MSCs to Roquinhi/san mice, an animal model of systemic lupus erythematosus (SLE), lead to increased numbers of B10, B10pro and naïve Treg cells[89]. Moreover, the MSCs-mediated Breg cell induction is not restricted to murine models. Administering MSCs into refractory chronic graft vs host disease (cGvHD) patients have improved patients’ overall clinical conditions. Consistent with murine models, MSCs increased the frequency and the function of CD5+ IL-10+Breg cells by enhancing their proliferation and survival[88]. Momentarily, we are still not clear about the mechanism regarding to MSCs-mediated Breg cell induction. It is worthwhile to ask whether the induction is IL-35 or IL-10-dependent since MSCs can induce IL-10 production by Treg cells, DCs, and M2 macrophages, implying the possibility of creating a positive feedback loop for Breg cell generation. Further understanding the mechanisms of how MSCs induce Treg and Breg cells can definitely contribute to the therapeutic development of MSCs and further improve their potential therapeutic efficacy.

THERAPEUTIC POTENTIAL OF GENETIC ENGINEERED MSCs

MSCs contain multiple properties that are suitable for therapeutic use. Wide-spectrum of differentiation capacity made it a perfect candidate for regenerative medicine. MSCs have been used to generate cartilage, bone, liver, intervertebral disc, and cardiac tissue[90]. Recent reports have suggested using MSCs for neural cell replacement. However, rather than direct neural differentiation, MSCs tend to recruit neural progenitor cells (NPCs) to the injury sites and support NPCs proliferation and differentiation[91]. Immunomodulatory properties of MSCs are potentially useful for the treatment of autoimmune diseases and GvHD. Transplanted MSCs suppressed the proliferation and activation of T cells and NK cells in type 1 diabetes animal model. Also, the level of IFN-γ and TNF-α were reduced. When MSCs were co-transplanted with pancreatic islets, MSCs protected grafted islets from immunorejection and secreted various trophic factors to promote graft vascular network[92,93]. Another intriguing advantage of using MSCs to treat immune diseases is that, unlike traditional immunotherapy in which a certain modulator act on a particular pathway, MSCs elicit their suppression on multiple immune cell types via various mechanisms. Although the immunosuppressive effects of MSCs appear very promising, further investigations are required to elucidate the underlying mechanisms, so as to prevent complications and maximize the therapeutic efficacy.

One current issue on immunotherapy is that a particular modulator or antibody may be seemingly effective, however, the therapeutic efficacy is limited since such modulator may also compromise certain cells or mediators beneficial to the disease recovery. Rituximab, for example, is a CD20 neutralizing antibody and it is believed to be an effective treatment for B and T-cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus[94-96]. Rituximab-induced B-cell depletion depends on the expression of CD20 on the cell surface, but the expression of CD20 gradually disappeared upon plasma cell differentiation[97,98]. Moreover, Breg cells were also depleted, thus, exacerbates the disease symptoms[73]. In EAE, B10 cells play an important regulatory role during the initiation phase whereas they are less involved at the late phase of the disease[99,100]. Therefore, depleting B cells by rituximab at the early phase have a potential risk of worsening the...
clinical conditions. As a consequence, it is necessary to develop an alternative strategy.

The immunosuppressive properties of MSCs on different murine autoimmune disease animal models support its potential clinical application. However, the immunomodulatory secretome of MSCs vary and greatly rely on the host inflammatory environment. To minimize this uncertainty, a novel therapeutic strategy, in which MSCs are genetically engineered with defined immunoregulatory cytokines, has been developed. Transplantation of IL-10-engineered adipose-derived MSCs attenuated EAE by reducing the number of immune cell infiltration to the CNS, decreasing the secretion level of IL-17A, TNF-α and IL-2, and inhibiting antigen-presenting function of DC. Since the immunosuppressive effect of MSCs is enhanced if they are placed proximal to the inflammatory area, Liao et al engineered MSCs with CNS homing ligand genes, P-selectin glycoprotein (PSGL-1) and Sialyl-Lewis (SLex), along with IL-10 to EAE model. Consequently, EAE was attenuated, CNS homing ability was enhanced and their therapeutic efficacy was increased. Genetic engineering of MSCs has been well studied in regenerative medicine. Different combination of treatments is documented and aims to redirect the MSCs differentiation propensity. Comparatively, genetic modification of MSCs for the treatment of autoimmune diseases is currently under development. Considering that the effect of MSCs may vary between patients with different severity of neuroinflammation, information on the clinical condition and pathology of the individual patient will probably help to predict treatment efficacy. Moreover, questions like in what phase of a particular disease introducing MSCs can improve the clinical outcome, or to what extent MSCs can elicit their suppressive effect and meanwhile, does not compromise the immunity in response to pathogens or infectious agents, are worthwhile to explore in order to safely use in human patients.

SAFETY AND CONCERNS OF MSCS AS CELLULAR THERAPIES IN PATIENTS

To date, there are nearly 500 ongoing MSC-based clinical trials. They aim to investigate the effectiveness of MSCs on treating different diseases, including GvHD, diabetes, cardiovascular diseases, hematological diseases and neurological diseases. Although most of these clinical trials reported the patients were well tolerated to the MSC infusion and administration, there are some safety concerns requiring caution. During in vitro expansion, MSCs can give rise to replicative senescence, which may affect the viability of surrounding healthy cells and therefore, reduce the clinical efficacy. Moreover, although MSCs have low immunogenicity due to the reduced expression of co-stimulatory receptors and major histocompatibility complex (MHC) class II antigens, in vitro stimulation of pro-inflammatory cytokines on MSCs can upregulate MHC class I and MHC class II expression, compromising the hypo-immunogenicity property of MSCs.

CONCLUSION

The immunomodulatory properties of MSCs have been massively studied due to its intriguing suppressive effects on various immunological diseases. Broad-range of immune cells can be regulated by MSCs through a series of soluble mediators stimulation, chemokine attraction, and cell-to-cell interaction. MSCs-induced T_{reg} and B_{reg} cells enhance the immunosuppressive capacity and generate a tolerogenic microenvironment against overwhelmed inflammation. This hypothesis supports the observation that infused MSCs can only survive in the recipient for a short period of time, however, the regulatory effects of MSCs are long lasting, suggesting MSCs may act as an activator or a switcher that initiate certain cells, possibly T_{reg} and B_{reg} cells, to react to the inflammation and at the same time, alter the microenvironment for those cells to sustain their immunosuppressive effects. Although MSCs appear very promising as treatment in experimental models of autoimmune diseases, there are still many challenges need to overcome before MSCs can be widely use in clinical medicine.

ACKNOWLEDGMENTS

The authors would like to thank Dr. R C L Ng for help in editing the manuscript and Ms Joanne Hui for secretarial assistance.

REFERENCES

1. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013; 4: 201 [PMID: 24027567 DOI: 10.3389/fimmu.2013.00201]
2. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engrave and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282-1286 [PMID: 11062543 DOI: 10.1038/18139]
3. Woodbury D, Schwartz EJ, Prockop DJ, Black JB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364-370 [PMID: 10931522 DOI: 10.1002/1097-4547(2000/08)15;1-4]
4. de Witte SF, Francuessa M, Baan CC, Hoogduijn MJ. Toward Development of iMesenchymal Stem Cells for Immunomodulatory Therapy. Front Immunol 2015; 6: 648 [PMID: 26779185 DOI: 10.3389/fimmu.2015.00648]
5. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 2010; 28: 1856-1868 [PMID: 20734355 DOI: 10.1002/stem.503]
6. Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 2014; 46: e70 [PMID: 24406319 DOI: 10.1038/emm.2013.135]
7. Nemeth K, Leelahavanichkul A, Yuan PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezei E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15: 42-49 [PMID: 19098906 DOI: 10.1038/nm.1905]
cells and the innate immune system.

Chatterjee D, Tufa DM, Baehre H, Hass R, Schmidt RE, Jacobs R. Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 2014; 123: 594-595 [PMID: 24052278 DOI: 10.1182/blood-2013-09-528827]

El Omar R, Xiong Y, Dostert G, Lewis H, Gentils M, Menu P, Stoltz JF, Velot E, Decot V. Immunomodulation of endothelial differentiated mesenchymal stem cells: impact on T and NK cells. Immunol Cell Biol 2016; 94: 342-356 [PMID: 26510892 DOI: 10.1016/j.icb.2015.9.94]

Zhao ZG, Xu W, Sun L, You Y, Li F, Li QB, Zou P. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest 2012; 41: 183-198 [PMID: 21936678 DOI: 10.3109/08830294.2012.670771]

Aggarwal S, Pitterger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-1822 [PMID: 15494428 DOI: 10.1182/blood-2004-04-1559]

Zhang Y, Cai W, Huang Q, Gu Y, Shi Y, Huang J, Zhao F, Liu Q, Wei X, Jin M, Wu C, Xie Q, Zhang Y, Wan B, Zhang Y. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology 2014; 59: 671-682 [PMID: 23929707 DOI: 10.1002/hep.26670]

Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol 2013; 173: 28-37 [PMID: 23607419 DOI: 10.1111/cei.12080]

Carrió F, Nova E, Lu P, Apablasa F, Figueroa F. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett 2011; 135: 10-16 [PMID: 20888363 DOI: 10.1016/j.imlet.2010.09.006]

Luz-Crawford P, Korte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noël J, Jorgensen C, Figueroa F, Djuad F, Carrió F. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 2013; 4: 65 [PMID: 23734780 DOI: 10.1186/scrt66]

Yang H, Sun J, Li Y, Duan WM, Bi J, Qu T. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4+CD25(high)CD122(dim)+ regulatory T cell production and modulating cytokine secretion. Cell Immunol 2016; 302: 26-31 [PMID: 26774852 DOI: 10.1016/j.cellimm.2016.01.002]

Alikarami F, Yari F, Amirzadheh N, Nikougoftar M, Jalili MA. The Immunomodulatory Activity of Amniotic Membrane Mesenchymal Stem Cells on T Lymphocytes. Avicenna J Med Biotechnol 2015; 7: 90-96 [PMID: 26306147]

Cucicione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti G, van der Vliet HJ. Immunomodulatory activity of amniotic membrane mesenchymal stem cells on T lymphocytes. Cell Immunol 2016; 263: 26-31 [PMID: 26774852 DOI: 10.1016/j.cellimm.2016.01.002]

Moura JF, Velo É, Decot V. Immunomodulation of endothelial differentiated mesenchymal stem cells: impact on T and NK cells. Immunol Cell Biol 2016; 94: 342-356 [PMID: 26510892 DOI: 10.1016/j.icb.2015.9.94]

Zhao ZG, Xu W, Sun L, You Y, Li F, Li QB, Zou P. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest 2012; 41: 183-198 [PMID: 21936678 DOI: 10.3109/08830294.2012.670771]

Aggarwal S, Pitterger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-1822 [PMID: 15494428 DOI: 10.1182/blood-2004-04-1559]

Zhang Y, Cai W, Huang Q, Gu Y, Shi Y, Huang J, Zhao F, Liu Q, Wei X, Jin M, Wu C, Xie Q, Zhang Y, Wan B, Zhang Y. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology 2014; 59: 671-682 [PMID: 23929707 DOI: 10.1002/hep.26670]

Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol 2013; 173: 28-37 [PMID: 23607419 DOI: 10.1111/cei.12080]

Carrió F, Nova E, Lu P, Apablasa F, Figueroa F. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett 2011; 135: 10-16 [PMID: 20888363 DOI: 10.1016/j.imlet.2010.09.006]

Luz-Crawford P, Korte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noël J, Jorgensen C, Figueroa F, Djuad F, Carrió F. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 2013; 4: 65 [PMID: 23734780 DOI: 10.1186/scrt66]

Yang H, Sun J, Li Y, Duan WM, Bi J, Qu T. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4+CD25(high)CD122(dim)+ regulatory T cell production and modulating cytokine secretion. Cell Immunol 2016; 302: 26-31 [PMID: 26774852 DOI: 10.1016/j.cellimm.2016.01.002]

Alikarami F, Yari F, Amirzadheh N, Nikougoftar M, Jalili MA. The Immunomodulatory Activity of Amniotic Membrane Mesenchymal Stem Cells on T Lymphocytes. Avicenna J Med Biotechnol 2015; 7: 90-96 [PMID: 26306147]

Cucicione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti G, van der Vliet HJ. Immunomodulatory activity of amniotic membrane mesenchymal stem cells on T lymphocytes. Cell Immunol 2016; 263: 26-31 [PMID: 26774852 DOI: 10.1016/j.cellimm.2016.01.002]

Moura JF, Velo É, Decot V. Immunomodulation of endothelial differentiated mesenchymal stem cells: impact on T and NK cells. Immunol Cell Biol 2016; 94: 342-356 [PMID: 26510892 DOI: 10.1016/j.icb.2015.9.94]

Zhao ZG, Xu W, Sun L, You Y, Li F, Li QB, Zou P. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest 2012; 41: 183-198 [PMID: 21936678 DOI: 10.3109/08830294.2012.670771]
CB, Chatila TA. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 2007; 8: 359-368 [PMID: 1723711 DOI: 10.1038/nri1445]

Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133: 775-787 [PMID: 18510923 DOI: 10.1016/j.cell.2008.05.009]

Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693-699 [PMID: 14360033 DOI: 10.1038/359693a0]

Mat J, Liggett D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmune in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006; 25: 441-454 [PMID: 16973387 DOI: 10.1016/j.immuni.2006.07.012]

Rubtsov VP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007; 7: 443-453 [PMID: 17525753 DOI: 10.1038/nri2095]

Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov VP, Rudensky AY, Ziegler SF, Littman DR. TGFB-beta-induced Foxp3 inhibits T(H)1 cell differentiation by antagonizing RORgamma function. Nature 2008; 453: 236-240 [PMID: 18368049 DOI: 10.1038/nature06878]

English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostanoid E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forhead box p3+ regulatory T cells. Clin Exp Immunol 2009; 156:149-160 [PMID: 19210524 DOI: 10.1111/j.1365-2249.2009.03874.x]

Joshi PC, Zhou X, Cucuens M, Jones Q. Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common gamma-chain. J Immunol 2001; 166: 885-891 [PMID: 11145664 DOI: 10.4049/jimmunol.166.2.885]

Walker W, Rotondo D. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell function and induces interleukin-10, and membrane-bound transforming growth factor-1. J Immunol 2000; 165: 2249-2255 [PMID: 11011132 DOI: 10.4049/jimmunol.164.7.3596]

Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P. The combined effects of prostaglandin starvation and prostaglandin catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176: 6752-6761 [PMID: 16709834 DOI: 10.4049/jimmunol.176.11.6752]

Cho KS, Park MK, Kang SA, Park HY, Hong SL, Park HK, Yu HS, Roh HJ. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm 2014; 2014: 436476 [PMID: 25246732 DOI: 10.1155/2014/436476]

Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carozza ED, Deschases F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25(high)Foxp3+ regulatory T cells. Stem Cells 2008; 26: 212-222 [PMID: 17932417 DOI: 10.1634/stemcells.2007-0554]

Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, Li YZ, Yu SC, Zhang ZL. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of Foxp3 T regulatory cells, interleukin-10, and membrane-bound transforming growth factor-1. Am J Pathol 2007; 171: 1904-1914 [PMID: 17991714 DOI: 10.2353/ajpath.2007.070096]

Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AL, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141-150 [PMID: 18371435 DOI: 10.1016/j.stem.2007.11.014]

Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillier A, Zhang J, Lu Y, Roberts AJ, Ji W, Zhang H, Rabson AB, Shi Y. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27: 1954-1962 [PMID: 19544427 DOI: 10.1002/stem.1118]

Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AL, Le AD, Shi S, Shao C, Shi Y. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 2010; 184: 2321-2328 [PMID: 20130212 DOI: 10.4049/jimmunol.0902023]

Ren G, Roberts AL, Shi Y. Adhesion molecules: key players in Mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr 2011; 5: 20-22 [PMID: 20935592 DOI: 10.4161/cam.5.1.13491]

Benvenuto F, Voci A, Carminati E, Gualandi F, Mancardi G, Uccelli A, Vergani L. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res Ther 2015; 6: 245 [PMID: 26651832 DOI: 10.1186/s13287-015-0222-y]

Ghannam S, Pène J, Moquet-Torczy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th1 cell differentiation and function in vivo. Immunology 2010; 185: 302-312 [PMID: 20511548 DOI: 10.4049/jimmunol.0902007]

Huter EN, Pankosy GA, Glass DD, Cheng Li, Ward JM, Shevach EM. TGF-beta-induced Foxp3+ regulatory T cells rescue scurfy mice. Eur J Immunol 2008; 38: 1814-1821 [PMID: 18546144 DOI: 10.1002/eji.200838346]

Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490-500 [PMID: 20559327 DOI: 10.1038/nri2785]
Fatlaire S, Sweenie CH, McGahey MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3: 944-950 [PMID: 12244307 DOI: 10.1038/nii833]

Carter NA, Vasconcellos R, Rosser EC, Tulone C, Marko-Suano A, Kammenta M, Ehrenstein MR, Flavell RA, Mauri C. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 than if a decrease in regulatory T cells. J Immunol 2011; 186: 5569-5579 [PMID: 21464089 DOI: 10.4049/jimmunol.1100284]

Carter NA, Rosser EC, Mauri C. Interleukin-10 produced by B cells is crucial for the suppression of Th1/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther 2012; 14: R32 [PMID: 22315945 DOI: 10.1186/ar3736]

Yanaka K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28: 639-650 [PMID: 18482568 DOI: 10.1016/j.immuni.2008.03.017]

Ding Y, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, Chalasani G, Sayegh MH, Najafian F, Rottstein DM. Regulatory B cells are identified by expression of Tim-1 and can be induced through Tim-1 ligation to promote tolerance in mice. J Clin Invest 2011; 121: 3645-3656 [PMID: 21821911 DOI: 10.1172/JCI46274]

Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci USA 2007; 104: 14080-14085 [PMID: 17715067 DOI: 10.1073/pnas.0700326104]

Blair PA, Norely LF, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C. CD19⁻CD24⁻CD38^{hi} B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010; 32: 129-140 [PMID: 20079667 DOI: 10.1016/j.immuni.2009.11.009]

Iwata Y, Matsushita T, Horikawa M, Dilillo DY, Yanaka K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. J Immunol 2001; 167: 1081-1109 [PMID: 11441199]

Parekh VV, Prasad DV, Jani BH, Jiang J, Banerjee PP, Joshi BN, Kumar A, Mishra GC. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8⁺ T cells: role of TGF-beta 1. J Immunol 2003; 170: 5897-5911 [PMID: 12749116]

Shen P, Roch T, Lampropoulou V, O’Connor RA, Stverbuou V, Hilgenberg E, Ries D, Sany GD, Jaimes Y, and the NA101 study group. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167: 1081-1098 [PMID: 11441199]

Parekh VV, Prasad DV, Jani BH, Jiang J, Banerjee PP, Joshi BN, Kumar A, Mishra GC. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8⁺ T cells: role of TGF-beta 1. J Immunol 2003; 170: 5897-5911 [PMID: 12749116]

Shen P, Roch T, Lampropoulou V, O’Connor RA, Stverbuou V, Hilgenberg E, Ries D, Sany GD, Jaimes Y, and the NA101 study group. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167: 1081-1098 [PMID: 11441199]

Parekh VV, Prasad DV, Jani BH, Jiang J, Banerjee PP, Joshi BN, Kumar A, Mishra GC. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8⁺ T cells: role of TGF-beta 1. J Immunol 2003; 170: 5897-5911 [PMID: 12749116]

Wang RX, Yu CR, Dambusa IM, Mahdi RM, Dolinska MB, Sergeev YY, Wingfield PT, Kim SH, Ewaguco CE. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 2014; 20: 633-641 [PMID: 24743305 DOI: 10.1038/nm.3554]

Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Hanssen L, Lu Y, Olcott A, Kaufman DL. B lymphocytes appear in pancreatic tissue culture and late-phase immunopathogenesis. Proc Natl Acad Sci USA 2001; 98: 167-172 [PMID: 11127519]

Uchida J, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells regulate autoimmunity by provision of IL-10. J Clin Invest 2004; 113: 3580-3590 [PMID: 15529346 DOI: 10.1016/j.jci.2003.12.1052]

Goldman FF, Engel P, CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994; 15: 450-454 [PMID: 7452285 DOI: 10.1016/0167-5699(94)90276-3]

Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steele DA, Haas KM, Poe JC, Tedder TF. Mouse CD20 expression and function. Immunol Today 2004; 16: 119-129 [PMID: 14688067]

Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 2010; 185: 2240-2252 [PMID: 20629400 DOI: 10.4049/jimmunol.1001307]

Payne NL, Sun G, McDonald C, Moussa L, Emerson-Webber A, Loisel-Meyer S, Medin JA, Sutikas C, Bernard CC. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain Behav Immun 2013; 30: 103-114 [PMID: 23369732 DOI: 10.1016/j.bbi.2013.01.079]

Liao W, Pham V, Liu L, Riazifar M, Pone EJ, Zhang SX, Ma F, Lu M, Walsh CM, Zhao W. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 2013; 28: 294-303 [PMID: 23899693 DOI: 10.1016/j.ubiinf.2013.05.1450]
Ma OKF et al. Immunomodulation by mesenchymal stem cells

2016; 77: 87-97 [PMID: 26584349 DOI: 10.1016/j.biomaterials.2015.11.005]

103 Squillaro T, Peluso G, Galderisi U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant 2016; 25: 829-848 [PMID: 26423725 DOI: 10.3727/096368915X689622]

104 Nowakowski A, Walczak P, Lukomska B, Janowski M. Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells Int 2016; 2016: 4956063 [PMID: 27242906 DOI: 10.1155/2016/4956063]

105 Hunsberger JG, Rao M, Kurtzberg J, Bulte JW, Atala A, LaFerla FM, Greely HT, Sawa A, Gandy S, Schneider LS, Doraiswamy PM. Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol 2015; 15: 219-230 [PMID: 26704439 DOI: 10.1016/S1474-4422(15)00332-4]

P- Reviewer: Jun Y, Liu L, Phinney DG, Yankee T, Zaminy A
S- Editor: Ji FF
L- Editor: A
E- Editor: Lu YJ
