Supplementary Online Content

Mills CW, Johnson G, Huang TTK, Balk D, Wyka K. Use of small area estimates to describe county level geographic variation in prevalence of extreme obesity among US adults. *JAMA Netw Open*. 2020;3(5):e204289. doi:10.1001/jamanetworkopen.2020.4289

eMethods 1. Description of Geographic Aggregation
eMethods 2. Description of the Multilevel Regression Model
eMethods 3. Description of Poststratification
eFigure 1. Flowchart Describing the Process of Linking Data From Multilevel Regression and Poststratification
eMethods 4. Description of the Global and Local Moran’s *I* Indicators
eFigure 2. Sensitivity Analysis Comparing Results From Local Moran’s *I* Using Queen, Rook, and *k*-Nearest Neighbor Weights
table. Weighted Prevalence of Extreme and Moderate Obesity by Individual-Level Model Covariates Used for Estimating Predicted Risk, United States, BRFSS 2012
eFigure 3. Box-Plot Distribution of County-Level Prevalence of Extreme Obesity by State
eFigure 4. Box-Plot Distribution of County-Level Prevalence of Moderate Obesity by State

This supplementary material has been provided by the authors to give readers additional information about their work.
eMethods 1. Description of Geographic Aggregation

Aggregation was conducted using the Geographic Aggregation Tool (GAT) R version 1.33. A BRFSS dataset with complete cases to be used in the model was created; respondents missing BMI, age, race/ethnicity, or county indicator were removed. Variable summaries by county (FIPS5) were run for total observations and ultimately saved as a shapefile, which was imported into the data aggregation tool. Several levels of aggregation were explored using the tool: total count = 5, 10, 25; allowing and restricting counties to merge across states. A determination was made by visual inspection of the new geographies to combine areas only when needed to ensure representation for each area. Because a small area estimation approach was used after this step to create prevalence estimates, it was not necessary to obtain geographical regions with enough observations to produce stable estimates. The final aggregation setting used required each area contained 5 observations. The determination to restrict counties from merging across states was made both because of the conceptualization of counties nested within states in the multilevel models and to facilitate the internal validation technique that compared state-level estimates.

In 2012, there were 3,109 counties within the 48 states in the contiguous United States and Washington, D.C. After county aggregation using the Geographical Aggregation Tool, there were 2,215 county or county-like areas. Of the 430 aggregations, 57.4% included only two counties and 90% of aggregations contained four or fewer counties.

Reference
Talbot TO, LaSelva GD. Geographic Aggregation Tool. Albany, NY: New York State Health Department; 2015. https://www.albany.edu/faculty/ttalbot/GAT/GAT_vR13_guide.pdf.
eMethods 2. Description of the Multilevel Regression Model

Final adjusted models were specified as follows:

\[P(y_{ijk} = 1) = \logit^{-1}(\beta_{000} + b_{1jk}\text{age}_{ijk} + b_{2jk}\text{sex}_{ijk} + b_{3jk}\text{race}_{ijk} + b_{01k}\text{edu}_{jk} + b_{00k}^* + b_{0j}^*) \]

Allowing \(i \) to refer to the individual, \(j \) to the county, and \(k \) to the state, the probability of extreme obesity is modeled by the inverse logit of intercept \(\beta_{000} \), with \(b_{1jk} \) representing the regression coefficient for individual age group, \(b_{2jk} \) representing the coefficient for individual sex, \(b_{3jk} \) representing the coefficient for individual race/ethnicity, and \(b_{01k} \) representing the regression coefficient for the county education quartile. The adjustment to the error term due to state as a random effect (state-dependent deviation) is referred to by \(b_{00k}^* \) and the adjustment due to county as a random effect by (county-dependent deviation) \(b_{0j}^* \). A similar model was constructed modeling the probability of moderate obesity.
eMethods 3. Description of Poststratification

This can be depicted as:

\[P_{\text{mm}}^c \times \text{Pop}_{\text{mm}}^b \]

where \(c \) indicates county and \(P^c \) is the predicted probability of extreme obesity for an individual in age \(l \), sex \(m \), race/ethnicity category \(n \) in county \(c \) and state \(s \). \(\text{Pop}_{\text{mm}}^b \) represents each county’s subgroup’s respective population count.

After weighting the predicted value by the actual frequency of each sex-age-race/ethnicity cell within each county for each of the aforementioned cells, all cells within a county were summed to produce the county-level prevalence estimates.

\[
P^c = \frac{\sum_l \sum_m \sum_n (P_{\text{mm}}^c \times \text{Pop}_{\text{mm}}^b)}{\sum_l \sum_m \sum_n \text{Pop}_{\text{mm}}^b}
\]

\[
= \frac{\sum_l \sum_m \sum_n (P_{\text{mm}}^c \times \text{Pop}_{\text{mm}}^b)}{\text{Pop}^c}
\]

References

Zhang X, Holt JB, Lu H, et al. Multilevel Regression and Poststratification for Small-Area Estimation of Population Health Outcomes: A Case Study of Chronic Obstructive Pulmonary Disease Prevalence Using the Behavioral Risk Factor Surveillance System. *Am J Epidemiol*. 2014;179(8):1025-1033. doi:10.1093/aje/kwu018

Pacheco J. Using National Surveys to Measure Dynamic U.S. State Public Opinion: A Guideline for Scholars and an Application. *State Politics & Policy Quarterly*. 2011;11(4):415–439.
Figure 1. Flowchart Describing the Process of Linking Data from Multilevel Regression and Poststratification

Data sources: 2012 BRFSS, 2012 ACS 5-year roll-up (county-level covariates); and 2010 US Census

© 2020 Mills CW et al. *JAMA Network Open.*
eMethods 4. Description of the Global and Local Moran’s I Indicators

The Moran’s I is defined as:

\[
I = \frac{n}{S_0} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_i z_j / \sum_{i=1}^{n} z_i^2
\]

for observations at \(i = 1, ..., n \) counties, \(z_i \) and \(z_j \) represents the deviations from the country-wide mean, \((x_i - \bar{x})\) and \((x_j - \bar{x})\) respectively, and \(w_{ij}\) is the weight assigned to all \(j \) counties, relative to their spatial adjacency to county \(i \), as detailed in eFigure2. \(S_0 \) represents the aggregate of all spatial weights and is given by:

\[
S_0 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}
\]

Using notation similar to the global Moran’s I, the local indicators can be depicted as follows:

\[
I_i = z_i \sum_j w_{ij} z_j
\]

Such that \(I_i \) refers to the local Moran’s coefficient at county \(i \) and deviations from the regional mean are summed over \(j \) neighboring values. We determined significance for counties within geographical clusters based on how far the local Moran’s Index deviates from the Monte Carlo simulated distribution under the null hypothesis of complete spatial randomness – that is, significantly higher or lower prevalence of extreme obesity than would be expected, using a threshold of p<0.05.

Reference

Anselin L. Local indicators of spatial association—LISA. *Geographical analysis*. 1995;27(2):93-115.
eFigure 2. Sensitivity Analysis Comparing Results from Local Moran’s I Using Queen, Rook, and k-Nearest Neighbor Weights

A weights matrix defines the spatial relationships such that closer areas receive a greater weight in calculations than those that are further away. In the queen matrix, all areas contiguous to the observed location are incorporated into the weighting scheme (as in a queen’s movement in chess). In a rook matrix, regions are spatial neighbors if they share a side but not if they meet at only one vertex. For a k-nearest neighbors’ matrix, centroid distances between polygons are calculated to determine the closest k neighbors for incorporation into the weighting scheme. A first-order queen contiguity weights matrix was chosen, though a sensitivity analysis was run utilizing both a rook and k-nearest neighbors (k=4) matrix.

Extreme obesity

Weight	Moran’s I	z-value	p value
Queen contiguity, order of contiguity=1	0.352	28.230	0.001
Rook contiguity, order of contiguity=1	0.356	27.900	0.001
k-Nearest Neighbors, number of neighbors=4	0.3518	24.560	0.001
(con’t) Moderate obesity

Weight: Queen contiguity, order of contiguity=1
Moran’s I: 0.376, z-value: 29.504, p value: 0.001

Weight: Rook contiguity, order of contiguity=1
Moran’s I: 0.381, z-value: 30.328, p value: 0.001

Weight: k-Nearest Neighbors, number of neighbors=4
Moran’s I: 0.394, z-value: 25.915, p value: 0.001
eTable. Weighted Prevalence of Extreme and Moderate Obesity by Individual-Level Model Covariates Used for Estimating Predicted Risk, United States, BRFSS 2012*

Variable	Extreme obesity		Moderate obesity	
	Prevalence (%)	95% CI	Prevalence (%)	95% CI
Overall	4.0	3.9 - 4.1	23.7	23.4 - 23.9
Sex				
Male	3.2	3.0 - 3.3	24.8	24.5 - 25.2
Female	4.9	4.7 - 5.0	22.5	22.1 - 22.8
Age group, years				
18-24	2.2	1.9 - 2.5	12.8	12.1 - 13.6
25-29	3.6	3.1 - 4.1	20.1	19.1 - 21.1
30-34	4.7	4.2 - 5.2	22.7	21.8 - 23.6
35-39	5.4	4.8 - 5.9	25.8	24.8 - 26.9
40-44	5.2	4.7 - 5.6	26.2	25.3 - 27.2
45-49	4.7	4.3 - 5.1	27.3	26.4 - 28.3
50-54	4.7	4.3 - 5.1	28.0	27.1 - 28.8
55-59	4.9	4.5 - 5.3	28.3	27.5 - 29.2
60-64	5.2	4.8 - 5.6	28.2	27.3 - 29.0
65-69	3.8	3.5 - 4.2	28.0	27.2 - 28.9
70-74	3.0	2.6 - 3.4	26.0	25.1 - 26.9
75-79	1.9	1.5 - 2.4	22.1	21.2 - 23.1
80 and older	0.7	0.6 - 0.9	15.3	14.3 - 16.2
Race/ethnicity				
White	3.6	3.5 - 3.8	22.8	22.6 - 23.1
Black	7.6	7.0 - 8.1	30.2	29.2 - 31.1
Hispanic	3.9	3.5 - 4.3	26.4	25.4 - 27.4
Asian	0.7	0.3 - 1.0	9.1	7.8 - 10.4
Hawaii Native/Pacific Islander	3.5	1.5 - 5.4	22.4	17.4 - 27.4
American Indian/Alaska Native	5.2	4.2 - 6.3	28.5	26.3 - 30.8
Other race	2.6	1.8 - 3.4	21.6	18.9 - 24.3
Multiracial	4.1	3.3 - 4.8	25.6	23.5 - 27.7

*Includes data from all 50 states and Washington, D.C.
eFigure 3. Box-Plot Distribution of County-Level Prevalence of Extreme Obesity by State
eFigure 4. Box-Plot Distribution of County-Level Prevalence of Moderate Obesity by State