Comparison of the accuracy of Hybrid Capture II and polymerase chain reaction in detecting clinically important cervical dysplasia: a systematic review and meta-analysis

Hung N. Luu¹, Kristina R. Dahlstrom², Patricia Dolan Mullen³, Helena M. VonVille⁴ & Michael E. Scheurer¹,⁵

¹Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
²Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center-Houston, Houston, Texas
³Division of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas Health Science Center-Houston, Houston, Texas
⁴Library Director, School of Public Health, University of Texas Health Science Center-Houston, Houston, Texas
⁵Department of Pediatrics, Baylor College of Medicine, Houston, Texas

Keywords
Human papillomavirus, hybrid capture II, meta-analysis, polymerase chain reaction, test accuracy

Correspondence
Michael E. Scheurer, Dan L. Duncan Cancer Center & Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, One Baylor Plaza, MS-BCM305, Houston, TX 77030. Tel: 713-798-7480; Fax: 713-798-8711; E-mail: scheurer@bcm.edu

Funding Information
This study was supported by the UT Health Innovation for Cancer Prevention Research Postdoctoral Fellowship, Cancer Prevention and Research Institute of Texas, grant RP101503 Roberta Ness, M.D., M.D., MPH, principal investigator to H. N. Luu and the Cancer Prevention Fellowship, National Institutes of Health grant R25T CA64652, (Shine Chang, Ph.D., principal investigator) to K. R. Dahlstrom.

Received: 4 February 2013; Revised: 20 March 2013; Accepted: 20 March 2013

Cancer Medicine 2013; 2(3): 367–390
doi: 10.1002/cam4.83

Abstract
The effectiveness of screening programs for cervical cancer has benefited from the inclusion of Human papillomavirus (HPV) DNA assays; which assay to choose, however, is not clear based on previous reviews. Our review addressed test accuracy of Hybrid Capture II (HCII) and polymerase chain reaction (PCR) assays based on studies with stronger designs and with more clinically relevant outcomes. We searched OvidMedline, PubMed, and the Cochrane Library for English language studies comparing both tests, published 1985–2012, with cervical dysplasia defined by the Bethesda classification. Meta-analysis provided pooled sensitivity, specificity, and 95% confidence intervals (CIs); meta-regression identified sources of heterogeneity. From 29 reports, we found that the pooled sensitivity and specificity to detect high-grade squamous intraepithelial lesion (HSIL) was higher for HCII than PCR (0.89 [CI: 0.89–0.90] and 0.85 [CI: 0.84–0.86] vs. 0.73 [CI: 0.73–0.74] and 0.62 [CI: 0.62–0.64]). Both assays had higher accuracy to detect cervical dysplasia in Europe than in Asia-Pacific or North America (diagnostic odd ratio – dOR = 4.08 [CI: 1.39–11.91] and 4.56 [CI: 1.86–11.17] for HCII vs. 2.66 [CI: 1.16–6.53] and 3.78 [CI: 1.50–9.51] for PCR) and accuracy to detect HSIL than atypical squamous cells of undetermined significance (ASCUS)/ low-grade squamous intraepithelial lesion (LSIL) (HCII-dOR = 9.04 [CI: 4.12–19.86] and PCR-dOR = 5.60 [CI: 2.87–10.94]). For HCII, using histology as a gold standard results in higher accuracy than using cytology (dOR = 2.87 [CI: 1.31–6.29]). Based on higher test accuracy, our results support the use of HCII in cervical cancer screening programs. The role of HPV type distribution should be explored to determine the worldwide comparability of HPV test accuracy.

Introduction
Cervical cancer is a significant cause of morbidity and mortality among women worldwide [1]. Human papillomavirus (HPV) infection is one of the most common sexually transmitted diseases in the world, and infection with high-risk oncogenic types of HPV has been recognized as a necessary cause of cervical cancer and its precursor lesion, cervical intraepithelial neoplasia (CIN) [2, 3]. Fortunately, preventing cervical cancer is possible due to its distinct premalignant stage, and as the introduction of population-based screening programs, cervical cancer
incidence and mortality have greatly decreased in developed countries [4–6]. Screening has largely relied on cytology-based tests; however, given their subjective nature as well as low sensitivity and specificity, adding HPV DNA testing to screening programs to improve their efficacy has been proposed [7–9]. Furthermore, the positive predictive value (PPV) of current screening tests is projected to decrease in populations vaccinated against HPV, but this drop in test performance could be mitigated by adding HPV DNA testing to the screening paradigm [10]. There are several ways in which HPV DNA testing might be implemented. First, the HPV DNA assay may be used, either in combination with cytology or alone, as the primary screening method. Studies have shown that HPV testing has a higher sensitivity than cytology, indicating that a longer interval between screenings is possible when including HPV DNA testing in a screening program [11–14]. Second, HPV DNA detection may be used to triage women with cytological abnormalities to determine whether referral for colposcopy is warranted [15, 16]. Lastly, HPV DNA testing may be used as a follow-up to detect residual disease or predict recurrence among women who have been treated for high-grade CIN [17].

The two most common methods used for HPV DNA detection are the Hybrid Capture II (HCII, Qiagen Gaithersburg, Inc., MD) and polymerase chain reaction (PCR) assays. The HCII assay is commercially available and approved for clinical use, and several types of PCR assays have been primarily used in the research setting [18]. Furthermore, both assays have shown high sensitivity to detect high-risk HPV infections but only moderate specificity [18]. Meijer et al. [19] have recommended that any HPV DNA test should have an optimal balance between clinical sensitivity and specificity. Stoler et al. [20] proposed a minimum sensitivity of 92% and a specificity of 85% for any new HPV DNA test. The selection of a screening test is important to detect clinically relevant cases of HPV infection while avoiding the unnecessary cost, stress, and compromise of the cervix to patients associated with overtreating mild cytological abnormalities. Therefore, the goal of this meta-analysis was to compare the clinical performance of HCII and PCR assays in both the screening and diagnostic settings.

Methods

Search strategy

Between June 2011 and June 2012, an experienced librarian (H. M. V.) and two investigators (H. N. L. and K. R. D.) conducted a systematic search to identify published studies from 1985 to June 2012. Three main biomedical databases (OvidMedline, PubMed, and Cochrane Library) were searched using the following search terms: ([PCR] OR [HCII] OR [Molecular diagnostic techniques]) AND ([Infections] OR [Papillomavirus infections] OR [Uterine cervical neoplasm] OR [cancer cervix] OR [cervical cancer or cervical neoplasm] OR [HPV or papilloma] OR [HSIL] OR [LSIL] OR [[high grade] OR [low grade]] OR [CIN]).

Study screening and selection

Inclusion criteria for the meta-analysis were English language reports of studies comparing the sensitivity and specificity of PCR (i.e., MY/PGMY 09/11 or GP5+/6+ or Amplicor) and HCII using either cytologic or histologic results as the gold standard for testing comparison (i.e., Bethesda classification system) in either a screening or follow-up/diagnostic setting. The three specific PCR tests mentioned above were chosen because they are currently the most-used tests. All citations were independently reviewed by two investigators (H. N. L. and K. R. D.). When necessary, authors of a selected article [21] were contacted to obtain further information. Normally, a standard threshold of 1 relative light unit (RLU) or 1 pg/mL of HCII was used to detect the positive presence of HPV DNA. However, to maximize power in our study, we did not restrict by this cutoff.

Data abstraction and coding

All eligible studies were abstracted independently by two reviewers (H. N. L. and K. R. D.) using a coding system based on the Standards for Reporting Diagnostic Accuracy (STARD) and MOOSE for meta-analysis of observational studies in epidemiology [22, 23]. Any discrepancies were resolved by discussion and consensus between the two investigators. Variables used to present our analysis were grouped into two components, as follows.

Characteristics of study participants

Year study conducted, study location, study settings/population/inclusion–exclusion criteria, sample size, study design (i.e., cross-sectional, case–control, cohort, randomized controlled trial), age (i.e., mean, median, range), and race/ethnicity.

Testing methods

Gold standard tests (cytology or histology); sample preparation (cervical collection procedures, including collection devices, and DNA preparation for HPV testing methods); types of testing methods (PCR and HCII); test results (HPV prevalence, sensitivity, specificity, [PPV], negative
predictive value [NPV], agreement and level of reproducibility [kappa -κ], and their respective 95% confidence interval, CI); and blinding and/or quality control methods.

Clinical outcomes

Three clinical outcomes were examined, atypical squamous cells of undetermined significance (ASCUS), low-grade squamous intraepithelial lesion (LSIL), which includes HPV infection or mild dysplasia (CIN1), and high-grade squamous intraepithelial lesion (HSIL), which includes moderate (CIN2) and severe dysplasia (CIN3) [24]. Because there were only 10 studies on ASCUS, we merged ASCUS and LSIL to improve the power of analysis.

Statistical analysis

In this meta-analysis, a study unit was defined as a study having complete information to compare the testing accuracy between PCR and HCII. Depending on the specific PCR test, setting, gold standard, age group, or sample collection method, one article could contribute more than one study unit. For example, an article by Riethmuller et al. [25] compared PCR MY09/11 with HCII in two clinical outcomes (i.e., LSIL and HSIL) and thus generated two study units. Likewise, an article by Stevens et al. [26] contributed eight study units for our analysis because the original analysis included both cytology and histology as gold standards with two clinical outcomes (i.e., LSIL and HSIL) and thereby generated two types of PCR (PGMY 09/11 and Amplicor).

Complete information from each study was extracted to construct two-by-two tables, which included true-positive, false-positive, true-negative, and false-negative values. The sensitivity was calculated as (true positive)/(true positive + false negative) and specificity was calculated as (true negative)/(true negative + false positive). Forest plots were generated to present, by type of clinical outcome, individual and pooled sensitivity and specificity of each test and to show heterogeneity across studies [27, 28]. Additionally, heterogeneity across studies was examined using Cochran’s Q-test and the chi-square test [27, 29]. To examine the threshold effect or the difference derived from the use of different cutoffs or thresholds, we computed the Spearman correlation coefficient. This coefficient can be defined as the result of the logit of sensitivity divided by the logit of (1-specificity) [30].

Stratified meta-analysis and meta-regression were used to examine the influence of study characteristics and the magnitude of interstudy heterogeneity on sensitivity and specificity for both PCR and HCII. Stratified meta-analyses were performed for the two clinical outcomes (ASCUS/LSIL and HSIL) by setting (screening vs. follow-up/diagnostic) and by PCR testing technique (i.e., MY/PGMY 09/11, GP5+/6+, and Amplicor). Age is an important variable, particularly age cutoff of 30 years old; however, in our analysis, only two articles reported age using this cutoff (Luu, H. N., K. Adler-Storthz, L. M. Dillon, M. Follen, and M. E. Scheurer, submitted) [31]. We, therefore, decided not to include this variable in the analysis because of low power and inability to generate pooled sensitivity and/or specificity or perform meta-regression [30]. For meta-regression, a generalized linear model was fitted to the data and weighted by the inverse of the variance using Moses and Littenberg methods [32]. Additionally, a random effects model was used to pool variation between studies [33] in the current meta-regression model. For both PCR and HCII, four variables (setting, gold standard, type of lesion, and study location) were included in the meta-regression models. For PCR, an additional variable, type of PCR (i.e., MY/PGMY 09/11, GP5+/6+, Amplicor), was added to the meta-regression model. Diagnostic odds ratios (dOR) and their respective 95% CIs were calculated to determine diagnostic test performance as well as the influence of covariates on test accuracy. The dOR is a measure of the effectiveness of a diagnostic test. It is defined as the ratio of the odds of the test being positive if the subject has a disease relative to the odds of the test being positive if the subject does not have the disease. The dOR was calculated as (sensitivity odds/odds of [1-specificity]) [34]. MetaDiSc [30], a comprehensive software program to evaluate diagnostic and screening tests through meta-analysis, was used to perform the statistical analysis for this study. All statistical tests were two sided and were considered significant at the level of P < 0.05.

Results

Search results

We identified 481 citations from search databases, of which 259 citations were duplicates (Fig. 1). By examining reference lists of those studies, we found an additional 48 citations. We then excluded 175 citations by applying the inclusion criteria to the titles and abstracts and retrieved 95 full-text articles for further review. The review process yielded 28 articles that met all inclusion criteria [14, 21, 25, 26, 31, 35–57]. In addition, we added one manuscript from our own group (Luu et al., submitted), which is currently under review (Fig. 1).

Characteristics of included articles

A total of 22,417 women were described, with four articles [38, 41, 48, 54] contributing fewer than 100 participants and 10 articles [14, 21, 25, 26, 31, 37, 39, 42, 52]...
(Luu et al., submitted), more than 500 participants. The article by Schiffman et al. [42] had the largest sample size, with more than 3400 participants. Over half of the articles (k = 16) [14, 21, 25, 31, 35, 36, 39, 43, 45–51, 54] reported results from Europe, with the remainder from Asia-Pacific (k = 5) [26, 44, 52, 56, 57], North America (k = 6) (Luu et al., submitted) [37, 38, 42, 53, 55], and South America (k = 2) [40, 41]. Just under half (k = 14) [25, 38–41, 44–46, 49–53, 57] reported studies were conducted in screening settings; 10 were in a follow-up/diagnostic setting [21, 26, 31, 35, 42, 47, 48, 54–56] and the remainder (k = 5) [Luu et al., submitted] [14, 36, 37, 43] were in both screening and follow-up/diagnostic settings. Most (k = 23) used a cross-sectional study design [21, 25, 26, 31, 35, 36, 38–41, 44–54, 56, 57]; four, a cohort study design (Luu et al., submitted) [14, 37, 43] and two, a randomized controlled trial design [42, 55]. The age range was 15 to 81 years. Half (k = 15) [25, 35–40, 43, 44, 46–48, 51, 54, 55] used cytology as the gold standard, 12 (Luu et al., submitted) [14, 21, 31, 42, 45, 49, 50, 52, 53, 56, 57] used histology as the gold standard, and two [26, 41] used both.

The 29 included articles contained 82 PCR study units and 79 HCII study units (Table 1). The uneven number of study units between PCR and HCII resulted from two articles [26, 31] that contained studies comparing more than one type of PCR with HCII.

Accuracy of the tests

In detecting ASCUS/LSIL, PCR was more sensitive (Fig. 2A and B) but less specific than HCII (Fig. 3A and B) (pooled sensitivity: 0.70 [95% CI: 0.68–0.71], pooled specificity: 0.45 [95% CI: 0.44–0.46] for PCR and pooled sensitivity: 0.56 [95% CI: 0.55–0.58], pooled specificity: 0.63 [95% CI: 0.62–0.64] for HCII. PCR GP5+/6+, how-
1st author, date, Design	Year study conducted Location	Study setting	Inclusion-exclusion criteria	Gold standard test Sample preparation	HPV test HPV prevalence	PCR HOII # Study units and reasons					
Riethmüller (1999) X-sectional	Aug 1997–May 1998 Besancon & Belfort, France	Screening (n = 596)	Inclusion-exclusion criteria: not mentioned Age (mean ± SD) 36.2 ± 0.6 Colposcopic group: 35.1 ± 0.8	Cytology Sample preparation: • Cervical cells: HPV testing specimens-Digene cervical brush and Digene STM • DNA extraction: phenol-chloroform method Blinded/Quality control: Yes	PCR MY09/11 versus HCII HPV prevalence	2 2 Clinical outcomes: LSIL versus HSIL					
Bergeron. (2000) X-sectional	Mar 1996–Aug 1998 France	Diagnostic (n = 378)	Inclusion-Exclusion criteria: not mentioned Age Mean ± SD: 35 ± 10	Cytology Sample preparation: • Cervical cells: ○ Cytologic specimens: wooden spatulas (ectocervices) and cytobrushes (endocervices) ○ HPV testing specimens: cone brush and placed in Eagles’ medium (for PCR) or in STM (for HCII) • DNA extraction: low stringency Southern blot hybridization Blinded/Quality Control: Yes	PCR MY09/11 versus HCII HPV prevalence	1 1 Clinical outcomes: ASCUS, LSIL, HSIL					
Venturoli (2002) X-sectional	Year Started: not mentioned Bologna, Italy	Screening & Diagnostic (n = 317) InclusionCriteria + Referred for HPV testing + Tested during a cytological and virological follow-up after conization or hysterectomy for a previous CIN or cervical CA Age (Mean–Median): 38.9–38;	Cytology Sample preparation: • Cervical cells: ○ PCR testing specimens: Dacron-tipped swab and suspended in PBS ○ HCII: Cybrbrush using STM • DNA extraction: Dot-blot hybridization Blinded/Quality Control: Yes	PCR MY09/11 versus HCII HPV Prevalence: Not mentioned	3 3 Clinical outcomes: ASCUS, LSIL, HSIL						
Yarkin. (2002) X-sectional	Feb 1998-Feb 1999 New York, U.S.A.	Screening (n = 94)	Inclusion-Exclusion criteria: not mentioned Age Range: 15–51	Cytology Sample preparation: • Cervical cells: ○ Cytologic specimens exfoliated cervical cells: Ayre spatula and cytobrush ○ HPV testing specimens: 10 mL sterile saline cervicovaginal lavage. • DNA extraction: Phenol-chloroform method Blinded/Quality Control: Yes	PCR MY09/11 versus HCII HPV Prevalence	3 3 Settings: screening, Follow-up (0–1 year), follow-up (0–3 year)					
1st author, date, Design	Year study conducted	Location	Study setting	Inclusion–exclusion criteria	Gold standard test	Sample preparation	Blinded/Quality control	HPV test	HPV prevalence	# Study units and reasons	
------------------------	---------------------	----------	---------------	-----------------------------	-------------------	--------------------	------------------------	----------	----------------	-------------------------	
Castle. (2003) Cohort	Apr 1999-Nov 1990	Portland, Oregon, U.S.A.	Screening & Diagnostic (n = 1247) Inclusion Criteria: + Women residing in Portland during those time; + Age ≥ 16	Cytology Sample preparation: ● Cervical cells: Cytologic specimens - PreservCyt solution ● DNA extraction: dot-blot hybridization Blinded/Quality Control: not mentioned	PCR MY09/11 versus HCII	HPV Prevalence	HCII (HR HPV): 88.6%	3	3	Clinical outcomes: ASCUS, LSIL, HSIL	
Kulmala (2004) X-sectional	1998 Moscow, Novgorod (Russia), Minsk (Belarus), and Riga (Latvia)	Screening (n = 1511) Inclusion Criteria: + Women participated in cervical cancer screening + Women attended gynecology outpatient clinics with different indications + Women examined at STD clinics Age (Mean ± SD): 32.9 ± 11.0	Cytology Sample preparation: ● Cervical cells: HPV testing - sampling kit for HCII assay ● DNA extraction: High-salt method Blinded/Quality Control: Yes	PCR GP05/06+ versus HCII HPV Prevalence (High-risk HPV)	PCR: 36.6%; HCII: 33.7%	1	1				
Nonogaki (2004) X-sectional	2002-2004	São Paulo, Brazil	Screening (n = 261) Inclusion Criteria: Women who had no history of HPV infection or any other cervical pathology Age (Mean ± SD): 36.99 ± 9.88	Cytology Sample preparation: ● Cervical cells ○ Cytologic specimens: Scored cervical brush ○ HPV testing specimens: DNA Citoligh System ● DNA extraction: GFX Genomic Blood DNA Purification Kit (Amersham Pharmacia Biotech Inc., Piscataway, NJ, U.S.A.); eluted to Tris-HCl (100 μL) & EDTA (500 mmol/L) Blinded/Quality Control: Yes	PCR PGMY09/11 versus HCII HPV Prevalence	PCR: 51.92%; HCII: 49.42%	3	3	Clinical outcomes: ASCUS, LSIL, HSIL		
1st author, date, Design	Year study conducted	Location	Study setting	Inclusion–exclusion criteria	Gold standard test	Sample preparation	HPV test	HPV prevalence	# Study units and reasons	Study outcomes	
-------------------------	----------------------	----------	---------------	-------------------------------	---------------------	-------------------	----------	---------------	---------------------------	----------------	
Nonogaki (2005) X-sectional	2002-2004	São Paulo, Brazil	Screening (n = 45)	Inclusion Criteria: No history of HPV infection or any other cervical pathology	Cytology/Histology	Sample preparation: Cervical cells: ○ Cytologic specimens: Scored cervical brush ○ HPV testing specimens: DNA Citoligh System DNA extraction: phenol-chloroform method Blinded/Quality Control: Yes	PCR GP5+/6+ versus HCII	HPV Prevalence	PCR: 20.0%; HCII: 28.9%	5 5	Clinical outcomes: ASCUS, LSIL, HSIL Gold standard: Cytology versus Histology
Schiffman (2005) Randomized trial	November 1996-December 1998 Pittsburgh, Oklahoma, Seattle, U.S.A.		Diagnostic (n = 5060); 3488- ASCUS & 1572- LSILs	Inclusion Criteria: + Had a cytologic diagnosis of ASCUS or LSIL within 6 months of enrollment; + ≥18 years of age; + No prior hysterectomy; + No known history of ablative or excisional therapy to the cervix; + Not pregnant, and + Able to provide informed consent and likely to participate for the full duration of the trial Age (Mean – Median) ASCUS: 28.8–26 LSIL: 24.8–23	Histology	Sample preparation: Cervical cells: ○ Cytologic specimens: Papette broom and PreservCyt ○ HPV testing specimens: Dacron swab with Digene STM DNA extraction: phenol-chloroform method Blinded/Quality Control: Yes	PCR PGMY09/11 versus HCII	HPV Prevalence	PCR: 58.2% (any type); 53.2% (multiple types) HC II: 50.6% (ASCUS); 79.9% (LSIL)	5 5	Settings: Screening, 6, 12, 18, 24 month follow-up
Söderlund-Strand (2005) Cohort	Year started: not mentioned, Västmanland county, Sweden		Screening & Diagnostic (n = 171)	Inclusion Criteria: Attended population-based cervical cancer screening, referred because of atypical smears. Age: not mentioned	Cytology	Sample preparation: Cervical cells: ○ Cytologic specimens: Cytobrush ○ HPV testing specimens: Cytobrush and Digene kit with STM DNA extraction: Freeze–thaw method, using Tris-HCl (10 mmol/L, pH 7.4) for resuspension Blinded/Quality Control: not mentioned	PCR GP5+/6+ versus HCII	HPV Prevalence	Not mentioned	4 4	Clinical outcomes: LSIL, HSIL Settings: Screening versus follow-up
1st author, date, Design	Year study conducted	Location	Study setting	Inclusion–exclusion criteria	Gold standard test	HPV test	HPV prevalence	PCR	HClI	# Study units and reasons	
--------------------------	---------------------	----------	---------------	-----------------------------	------------------	--------	----------------	------	-----	--------------------------	
Huang (2006), X-sectional	January 2001–September 2004	Taiwan	Screening (n = 354)	Women attended Department of Gynecology & Obstetrics, Changung Memorial Hospital. Age: not mentioned	Cytology Sample preparation	PCR GP5+/6+ versus HClI	2	2	Clinical outcomes: LSIL, HSIL		
Carozzi (2007) X-sectional	Year started: not mentioned	Florence, Italy	Screening (n = 936)	Women aged 25–64 Age Range: 25–64	Histology Sample preparation	PCR Amplicor (Roche) versus HClI	1	1			
Fontaine (2007) X-sectional	January 2002–December 2004	Charleroi, Belgium	Screening (n = 162)	Women attended Department of Gynecology, CHU de Charleroi (Charleroi, Belgium). Age (Mean ± SD): 37.3 ± 10.8	Cytology Sample preparation	PCR PGMY09/11 versus HClI	3	3	Clinical outcomes: ASCUS, LSIL, HSIL		

Cytology Sample preparation
- Cervical cells: HPV testing specimens: Digene kit with PreservCyt medium
- DNA extraction: Manufacturer’s instructions for Roche Amplicor test.

Blinded/Quality Control: not mentioned

Histology Sample preparation
- Cervical cells: HPV testing specimens – Digene kit with PreservCyt medium
- DNA extraction: Manufacturer’s instructions for Roche Amplicor test.

Blinded/Quality Control: not mentioned

HPV test
- PCR GP5+/6+ versus HClI
- HPV Prevalence HClI: 33.9%; PCR GP5+/GP6+: 38.7%
- PCR Amplicor (Roche) versus HClI
- HPV Prevalence HClI: 45.6%
| 1st author, date, Design | Year study conducted | Location | Study setting | Inclusion-exclusion criteria | Gold standard test | HPV test | HPV prevalence | # Study units and reasons | PCR | HCII | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Halfon (2007) X-sectional | 2000 | 5 centers (Marseille, Aix les Bains, Lyon, Le Havre, and Meylan), France | Diagnostic (n = 271) Inclusion Criteria Patients with ASCUS Age: not mentioned | Cytology Sample preparation ● Cervical cells: ○ Cytologic specimens: ThinPrep using PreservCyt LBC medium. ○ HPV testing specimens: ThinPrep using PreservCyt LBC medium. ● DNA extraction: AmpliLute liquid medium extraction kit was used. Blinded/Quality Control: not mentioned | PCR Amplicor (Roche) versus HCII HPV Prevalence PCR (Amplicor-Roche): 58% HC II: 59% | 22 HR and intermediate risk HPV types | 2 2 |
| Stenvall (2007) X-sectional | September 2004-May 2005 Åst and Svartbäcken, Uppsala, Sweden | Diagnostic (n = 42) Inclusion Criteria Previous abnormal cytology Age (Mean): 35.8 | Cytology Sample preparation ● Cervical cells: ○ Cytologic specimens: Self-sampling device and cytobrush. ○ HPV testing specimens: Digene test kit. ● DNA extraction: Specimens were dissolved in 150 μL of digestion buffer containing Tris (50 mmol/L), EDTA (1 mmol/L), & Tween-20. Distilled water & Proteinase K were added. Blinded/Quality Control: not mentioned | PCR GP5+6+ versus HCII HPV Prevalence PCR: 40% HCII: 37% | 22 Clinical outcomes: ASCUS, HSIL | 2 2 |
| Stevens (2007) X-sectional | May 2001-June 2005 Melbourne, Australia | Diagnostic (n = 1679) Inclusion Criteria + Anormal Pap smears or postcoital bleeding; + Abnormal-looking cervix; + Ongoing review of previous abnormality Age (Mean ± SD): 29.8 ± 7.9 | Cytology and Histology Sample preparation ● Cervical cells: ○ Cytologic specimens: Cervex brush and rinsed into ThinPrep vials containing PreservCyt fixative solution. ● DNA extraction: Automated MagNA PureL/C (MP) isolation and purification system (Roche Molecular System) with modified protocol. Blinded/Quality Control: not mentioned | PCR Amplicor (Roche) versus HCII HPV Prevalence Amplicor (Roche): 73.3% HC II: 64% | 84 PCR: Clinical outcomes: LSIL, HSIL | 8 4 PCR: Clinical outcomes: LSIL, HSIL Gold standard: Cytology, histology HCII: Only available for Cytology (HSIL) and Histology (LSIL) |
| First author, date, Design | Year study conducted | Location | Study setting | Inclusion-exclusion criteria | Gold standard test | Sample preparation | HPV test | HPV prevalence | # Study units and reasons |
|---------------------------|----------------------|----------|---------------|----------------------------|-------------------|-------------------|---------|---------------|-------------------------|
| Cuzick (2008) Cohort | April 1994-September 1997 | U.K. | Screening (n = 2981) | Inclusion Criteria - Regular screening recruited through general practitioners; Age: ≥ 35 | Histology Sample preparation - Cervical cells: ○ Cytologic specimens: Aylesbury brush. ○ HPV testing specimens: Digene with PBS (for PCR) and STM (for HCII). • DNA extraction: not mentioned | Blinded/Quality Control: Yes | PCR MY09/11 versus HCII (using cutoff 1 pg/mL, 2 pg/mL, 4 pg/mL) | HPV Prevalence Not mentioned | 2 | 6 | Settings: Screening versus Diagnostic | HCII: standard cutoff 1 pg/mL, 2 pg/mL, 4 pg/mL |
| De Francesco (2008) | May 2005-May 2006 | Spedali Civili, Italy | Screening (n = 213) | Inclusion criteria: • Not currently pregnant; ≥ 2 months postpartum; • Intact uterus and no current referral for hysterectomy; • Never been treated for squamous intraepithelial lesions; • No history of chronic diseases (e.g., renal failure, diabetes, cancer or gastrointestinal malabsorption); Age (Median): 35.6 | Histology Sampling preparation - Cervical cells: ○ Cytologic specimens: Cytobrush. ○ HPV testing specimens: Digene kit using STM. • DNA extraction: not mentioned | Blinded/Quality Control: Yes | PCR Amplicor (Roche) versus HCII | HPV Prevalence | Overall: PCR (Amplicor): 75.2%; HCII: 73.3% | ASCUS: PCR (Amplicor): 67.2% HC II: 64% LSIL: PCR (Amplicor): 74.1% HC II: 69.8% | 2 | 2 | Clinical outcomes: LSIL versus HSIL |
| Study setting | Gold standard test | Sample preparation | Blinded/Quality control | HPV test | HPV prevalence | # Study units and reasons |
|---------------|-------------------|-------------------|------------------------|----------|----------------|--------------------------|
| Screening (n = 324) | PCR PGMY09/11 & PCR GP5+6+ versus HCII | DNA extraction: phenol-chloroform method. | PCR GP5+6+; 62.6% | PCR PGMY09/11: 72.1% | 2 | 2 types of PCR: PGMY09/11 & GP5+6+ |
| Inclusion criteria | | | | | | |
| Danish study | Histology | Sample preparation | | | | |
| + Normal cytology at baseline; ≥1 smear during the follow-up period | ● Cervical cells: | ○ Cytologic specimens: Cotton-tipped swab. | | | | |
| Exclusion criteria: | ○ HPV testing specimens: Digene kit using STM. | | | | | |
| + Participated through telephone interview; + inadequate or missing baseline smear; + Abnormal smear at baseline; + Being followed for an abnormal Pap smear diagnosed within 1 year before baseline | ● DNA extraction: phenol-chloroform method. | | | | | |
| + Did not contribute a cervical sample at baseline | Blinded/Quality Control: not mentioned | | | | | |
| German study | Age: | **Danish study** (Median): HPV (−): 45.2; HPV (+): 44.4 | | | | |
| Screening (n = 471) | Cytology | Sample preparation | | | | |
| Induction Criteria | ● Cervical cells: | Samples were collected using PreservCyt solution. | | | | |
| Women attending routine cytological screening program. | ● DNA extraction: Following manufacturer’s instructions from Roche AmpliCor HPV test DNA extraction. | | | | | |
| Age (Median): 34 | Blinded/Quality Control: Yes | | | | | |

Table 1. Continued.
1st author, date, Design	Year study conducted	Location	Study setting	Gold standard test	Sample preparation	HPV test	HPV prevalence	# Study units and reasons	# Study units and reasons			
Szarewski (2008) X-sectional	August 2005-January 2007	London, U.K.	Diagnostic (n = 953)	Inclusion Criteria	Sample preparation	PCR MY09/11 & PCR	HPV Prevalence	2	1			
			+ ≥1 abnormal cervical smear;	• Cervical cells: Cervex broom and placed in	• DNA extraction: not mentioned	Amplicor (Roche) versus	Not mentioned	2 types of PCR: MY09/11 & Amplicor				
			+ Not pregnant	PreservCyt transport medium.	Blinded/Quality Control: Yes	HCOII	HPV Prevalence					
			+ Not been treated previously for CIN, nor had hysterectomy.									
			Age (Median): 29.9									
			Histology									
			Sample preparation									
			Cervical cells:									
			○ Cytologic specimens: Self-sampling device and cytochuck.									
			+ Patient self-collected: Brush									
			+ Physician collected: Ayre spatula and brush									
			○ HPV testing specimens: Digest test kit with STM.									
			DNA extraction: Specimens were dissolved in 150 μL of digestion buffer containing Tris (20 mmol/L), EDTA (1 mmol/L), Tween-20 10% (100 μL), & Proteinase K 20 mg/ml, (200 μL at 65°C for 1 heat inactivation at 95°C for 10 min). DNA was precipitated with ethanol & ammonium acetate at −20°C overnight.									
			Blinded/Quality Control: not mentioned									
Bhatla (2009) X-sectional	January 2003-June 2006	New Delhi, India	Screening (n = 512)	Inclusion Criteria	**Histology**	PCR PGMY09/11 versus HCII	HPV Prevalence	4	4			
			+ Women complaints of vaginal discharge or irregular bleeding;		**Sample preparation**	Clinical outcomes: LSIL versus HSL	18.75% any HPV; 14.3% HR-HPV	Sample collection types:				
			+ Women with unhealthy cervix on exam.		**Cervical cells:**	Physician collected versus Patient self-collected						
			Age (Median): 36		○ Cervical cells:							
1st author, date, Design	Year study conducted	Location	Study setting	Inclusion–exclusion criteria	Gold standard test	HPV test	HPV prevalence	PCR	HCII	# Study units and reasons		
--------------------------	----------------------	----------	---------------	-----------------------------	-------------------	----------	----------------	------	----------	--------------------------		
Feng (2009)	December 2000–June 2005	Washington, U.S.A.	Screening (n = 267)	Inclusion Criteria:	Histology	Sample preparation	HPV Prevalence	Clinical outcomes: LSL versus HSI	2 2			
Cohort Study 1	(Study 1)		Study 1: Female University of Washington undergraduates	Age 18–22; + Never had vaginal intercourse or had first intercourse with 1 male partner within the previous 3 months; + Had a cervix; + Not pregnant; + In good health; + Be able to provide written consent	PCR PGMY09/11 versus HC II	Not mentioned						
X-sectional Study 2	December 1997–October 2000 (Study 2)		Study 2:	Age 18–50; + No history of hysterectomy; + No history of chronic immune suppression; + No history of treatment for cervical neoplasia; + Agreed to provide written consent								
	Washington, U.S.A.		Age (Mean ± SD) 21.9 ± 1.7 (Study 1); 24.1 ± 5.9 (Study 2)		Histology	Sample preparation	HPV Prevalence	Clinical outcomes: LSL versus HSI	1 1			
Weynand (2009)	Year started: not mentioned	Belgium	Diagnostic n = 47	Inclusion Criteria: Women underwent conization	PCR GP5/GP6± versus HC II	74.9% (any HR HPV type)						
X-sectional			Age (Mean): 40									
Cuzick (2010)	August 2005–January 2007	London, U.K.	Diagnostic (n = 858)	Inclusion Criteria: + ≥ 1 abnormal cervical smear; + Not pregnant	Cytology	Sample preparation	HPV Prevalence	Clinical outcomes: ASCUS, LSL, HSI	6 6			
X-sectional	(Study 1)		+ Not been treated previously for CIN, nor had hysterectomy	Age: not mentioned			Not mentioned					
1st author, date, design	Year study conducted	Location	Study setting	Inclusion-exclusion criteria	Gold standard test	Sample preparation	HPV test	HPV prevalence	PCR	HCl	# Study units and reasons	
--------------------------	----------------------	----------	--------------	-------------------------------	-------------------	-------------------	---------	----------------	-----	-----	------------------------	
Castle (2011) Randomized control trial	1997–2001	Multisite, U.S.A.	Diagnostic (n = 473)	Inclusion Criteria	Cytology Sample preparation	● Cervical cells: ○ Cytologic specimens: PresevCyt. ○ HPV testing specimens: Digene test kit with STM. ● DNA extraction: BD Viper XTR ferric oxide (FOX) particle DNA binding and magnetic extraction. Blinded/Quality Control: Yes	PCR GMY09/11 versus HCII	HPV Prevalence	PCR: 50.4%	1	1	
Lin (2011) X-sectional	August 1999–March 2004	Multicenter, Taiwan	Diagnostic (n = 220)	Inclusion Criteria	Histology Sample preparation	● Cervical cells: ○ Cytologic specimens: Cervical scrape, Accelon Combi broom. ○ HPV testing specimens: Scrapes with STM. ● DNA extraction: Reverse line blot extraction. Blinded/Quality Control: Yes	PCR GMY09/11 versus HCII	HPV Prevalence	Not mentioned	2	2	Clinical outcomes: LSIL versus HSIL
Wong (2011) X-sectional	Baseline: March 1, 1998–February 28, 2000	Hong Kong, China	Screening (n = 82)	Inclusion Criteria	Histology Sample preparation	● Cervical cells: ○ Cytologic specimens: Papette broom, then rinsed into ThinPrep. ○ HPV testing specimens: Abbott mSample Preparation kit (for Real Time PCR) and Digene kit using STM (for HCII). ● DNA extraction: Abbott mSample Preparation SystemDNAx, where sample is lysed with chaotropic reagents and DNA is captured with magnetic microparticle technology. Blinded/Quality Control: not mentioned	PCR GP5+/GP6+ versus HCII	HPV Prevalence	PCR GP5+/6+: 53.2%; HC II: 49.6%;	1	1	
Comparison between HCII and PCR in Detecting Cervical Dysplasia

Heterogeneity and meta-regression

The Spearman correlation coefficients of HCII and PCR were 0.005 \((P = 0.96)\) and 0.234 \((P = 0.03)\), respectively. Further analysis showed that besides a threshold effect for PCR, both HCII and PCR had heterogeneity due to various factors (HCII: \(I^2 = 5184.26, I^2 = 98.5\%\) and PCR: \(I^2 = 2540.74, I^2 = 96.8\%\)). Setting was not a source of heterogeneity for either PCR or HCII accuracy (Table 3). PCR has higher accuracy in detecting HSIL than to detect ASCUS/LSIL \((dOR = 5.60 [95\% CI: 2.87–10.94], P < 0.0001)\), PCR MY/PGMY 09/11 and Amplicor showed 2.75 \((95\% CI: 1.16–6.53, P = 0.02)\) and 3.01 \((95\% CI: 1.05–8.63, P = 0.04)\) times higher accuracy in detecting dysplasia lesions than PCR GP5+/6+ (Table 3). Also, PCR has higher accuracy in detecting dysplasia lesions in Europe than in Asia-Pacific Region or North America \((dOR = 2.66 [95\% CI: 1.16–6.53], P = 0.03\) and dOR: 3.78 \([95\% CI: 1.50–9.51], P = 0.005\) [data not shown], respectively).

For HCII accuracy, we did find that the use of gold standard methods was contributed to heterogeneity \((dOR = 2.87 [95\% CI: 1.31–6.29], P = 0.009\), comparison between histology and cytology, cytology = reference group). The HCII is 9.04 times \((95\% CI: 4.12–19.86)\) more accurate to detect HSIL than ASCUS/LSIL. Similarly, HCII had higher accuracy in detecting lesions in Europe than in Asia-Pacific Region or North America \((dOR = 4.08 [95\% CI: 1.39–11.91], P = 0.01\) and dOR: 4.56 \([95\% CI: 1.86–11.17], P = 0.001\) [data not shown in Table 3], respectively).

Discussion

In the current meta-analysis, we examined the pooled sensitivity and specificity of HCII and PCR in the screening
Figure 2. Forest plots of PCR performance in identifying clinical lesions.
Comparison between HCII and PCR in Detecting Cervical Dysplasia

Figure 3. Forest plots of HCII performance in identifying clinical lesions.
Comparison between HCII and PCR in Detecting Cervical Dysplasia

H. N. Luu et al.

Table 2. Pooled sensitivity and specificity of PCR and HCII by lesion types (Bethesda classification).

Lesion types	# Study units	Pooled sensitivity (95% CI)	Pooled specificity (95% CI)
PCR			
ASCUS/LSIL	35	0.70 (0.68–0.71)	0.45 (0.44–0.46)
MY/PGMY 09/11	17	0.69 (0.67–0.72)	0.48 (0.47–0.50)
Screening	14	0.64 (0.61–0.67)	0.56 (0.55–0.58)
Diagnostic/Follow-up	5	0.75 (0.72–0.79)	0.33 (0.31–0.35)
MPSv6+	11	0.51 (0.45–0.58)	0.56 (0.53–0.60)
Screening	5	0.47 (0.40–0.54)	0.62 (0.57–0.66)
Diagnostic/Follow-up	6	0.77 (0.60–0.90)	0.48 (0.42–0.54)
Amplicor	7	0.73 (0.70–0.75)	0.36 (0.34–0.38)
Screening	3	0.55 (0.51–0.60)	0.44 (0.40–0.48)
Diagnostic/Follow-up	4	0.81 (0.79–0.83)	0.33 (0.31–0.36)
HSIL	43	0.85 (0.84–0.86)	0.62 (0.62–0.63)
MY/PGMY 09/11	25	0.84 (0.83–0.85)	0.66 (0.65–0.66)
Screening	13	0.87 (0.86–0.88)	0.67 (0.66–0.68)
Diagnostic/Follow-up	12	0.82 (0.81–0.83)	0.65 (0.64–0.66)
MPSv6+	12	0.75 (0.72–0.79)	0.54 (0.52–0.55)
Screening	7	0.55 (0.50–0.60)	0.58 (0.56–0.60)
Diagnostic/Follow-up	5	0.97 (0.95–0.99)	0.43 (0.39–0.46)
Amplicor	6	0.94 (0.93–0.95)	0.38 (0.36–0.40)
Screening	3	0.93 (0.88–0.96)	0.50 (0.46–0.53)
Diagnostic/Follow-up	3	0.94 (0.93–0.96)	0.34 (0.32–0.36)
HCII			
ASCUS/LSIL	34	0.56 (0.55–0.58)	0.62 (0.62–0.64)
Screening	22	0.46 (0.43–0.48)	0.71 (0.70–0.72)
Diagnostic/Follow-up	13	0.67 (0.65–0.70)	0.51 (0.49–0.52)
HSIL	43	0.89 (0.89–0.90)	0.73 (0.73–0.74)
Screening	23	0.90 (0.88–0.91)	0.77 (0.77–0.78)
Diagnostic/Follow-up	21	0.89 (0.88–0.90)	0.70 (0.70–0.71)

ASCUS, atypical squamous cell of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion.

¹The Venturoli et al. study [36] contributes 2 study units in the screening group and 2 study units in the diagnostic group.

and follow-up/diagnostic settings, following the 2001 Bethesda Classification (i.e., ASCUS, LSIL, and HSIL). We identified 28 published articles and our own manuscript that compared HCII and PCR in the same report. We found that in detecting ASCUS/LSIL, HCII was less sensitive but more specific than PCR. We also found that HCII was both more sensitive and more specific in detecting HSIL than was PCR (both in screening and diagnostic settings). Clinical outcome and study location were sources of heterogeneity for the accuracy of both PCR and HCII. Additionally, PCR types and gold standard were sources of interstudy variability of the accuracy of PCR and HCII, respectively.

To our knowledge, this is the first meta-analysis that directly compares the accuracy of HCII and PCR in screening and diagnostic settings and across two clinical outcomes. In 2004, Arbyn and associates [9] conducted a meta-analysis and reported that for ASCUS detection, HCII alone was less sensitive but more specific (pooled sensitivity: 0.95 [95% CI: 0.93–0.97] and pooled specific-

ity: 0.67 [95% CI: 0.58–0.76]) than HPV DNA testing ([all] pooled sensitivity: 0.84 [95% CI: 0.78–0.91] and pooled specificity: 0.73 [95% CI: 0.63–0.83]) by PCR. The major difference between our study and Arbyn’s [9] is that they reported the test accuracy of HCII and a combination of HPV DNA tests (i.e., HCII, HCI, and PCR). Therefore, HCII and PCR were not compared directly. The other difference between our studies is that they [9] included test results from studies of a single test, whereas our review was restricted to studies that compared HCII and PCR. Because findings of the test accuracy come from the same population, we sought to minimize the source of interstudy heterogeneity. Furthermore, Arbyn et al. [9] included 17 articles from 1992 to 2002, whereas we identified 29 articles from 1999 to 2011. During the 1999–2011 period, HCII has been used more than it was during the period covered by Arbyn, and our meta-analysis included only one article [35] that was also in Arbyn’s meta-analysis [9]. Additionally, the meta-analysis by Arbyn et al. [9] was restricted to cross-sectional studies while
ours expanded to other study designs (i.e., cohort and randomized controlled trial). As Sherman et al. [58] recommended, a longitudinal study design helps to detect missed lesions by repeated cytology before invasive cancer occurs. The article by Schiffman et al. [42] (the ASCUS-LSIL Triage Study—ALTS), included in our meta-analysis, reported that during 2 years of follow-up during which study participants were asked to visit at 6-month intervals, HCII showed higher sensitivity than and comparable specificity with PCR. Finally, while Arbyn et al. [9] restricted their analysis to ASCUS, we expanded ours to more important clinical outcomes (i.e., LSIL and HSIL). With the availability of the test accuracy for these two clinical outcomes, misdiagnosis or overtreatment due to screening test results can be avoided.

Table 3. Multivariable meta-regression of PCR and HCII performance.

Variable	Coeff.	Standard error	P-value	dOR (95% CI)
PCR				
Settings				
Screening	Ref.	Ref.	Ref.	Ref.
Diagnostic/Follow-up	0.62	0.35	0.08	1.87 (0.92–3.77)
Gold Standard				
Cytology	Ref.	Ref.	Ref.	Ref.
Histology	−0.03	0.35	0.93	0.97 (0.48–1.96)
Lesion (dOR)				
ASCUS/LSIL	Ref.	Ref.	Ref.	Ref.
HSIL	1.72	0.34	<0.0001	5.60 (2.87–10.94)
PCR types				
GP5+6+	Ref.	Ref.	Ref.	Ref.
MY/PGMY 09/11	1.01	0.43	0.02	2.75 (1.16–6.53)
Amplicor	1.10	0.53	0.04	3.01 (1.05–8.63)
Location				
Asia–Pacific	Ref.	Ref.	Ref.	Ref.
North America	−0.35	0.50	0.48	0.70 (0.26–1.89)
South America	0.42	0.72	0.56	1.53 (0.36–6.44)
Europe	0.98	0.45	0.03	2.66 (1.16–6.53)
HCII				
Settings				
Screening	Ref.	Ref.	Ref.	Ref.
Diagnostic/Follow-up	0.43	0.38	0.25	1.54 (0.73–3.25)
Gold Standard				
Cytology	Ref.	Ref.	Ref.	Ref.
Histology	1.05	0.39	0.009	2.87 (1.31–6.29)
Lesion (dOR)				
ASCUS/LSIL	Ref.	Ref.	Ref.	Ref.
HSIL	2.02	0.39	<0.0001	9.04 (4.12–19.86)
Location				
Asia–Pacific	Ref.	Ref.	Ref.	Ref.
North America	−0.11	0.55	0.84	0.89 (0.30–2.70)
South America	0.84	0.79	0.29	2.32 (0.48–11.22)
Europe	1.40	0.54	0.01	4.08 (1.39–11.91)

ASCUS, atypical squamous cell of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; dOR, diagnostic odds ratio.

Bold values are statistically significant.

Type of clinical outcome was a source of interstudy heterogeneity in our meta-analysis. Accordingly, both tests appeared to have higher accuracy to detect HSIL than to detect ASCUS/LSIL. This is expected because of the cytological and histological differences between these lesions, which are driven by HPV. The other source of heterogeneity within HCII studies was the choice of the gold standard (i.e., cytology vs. histology). For example, an article by Stevens et al. [26] reported that when cytology is used as the gold standard, the sensitivity and specificity of HCII was 0.87 (95% CI: 0.86–0.89) and 0.47 (95% CI: 0.44–0.49), respectively. On the other hand, test accuracy is different when histology was used as the gold standard (sensitivity: 0.79 [95% CI: 0.76–0.82] and specificity: 0.56 [95% CI: 0.53–0.59]). Our results showing a
higher HCII test accuracy if histology is used as the gold standard supports the findings of Sherman et al. [58] that a lead time bias occurs if repeat cytology is performed, particularly among women with ASCUS or LSIL. Consequently, one might only detect a smaller proportion of CIN3 lesions that do not have sufficient features associated with invasive cancer and miss a larger proportion of lesions usually associated with invasive cancer [58].

Study location is another important source of heterogeneity in our findings. We found higher accuracy of both PCR and HCII tests between European and Asia-Pacific Region studies and between European and North American studies. We thought this might be related to the HPV type distribution in the different study locations. This interpretation is supported by the meta-analysis by Smith and associates [59] showing that although 16 and 18 presence in all regions, there is difference in HPV specific types in different regions, from 16, 31, 33, and 18 in Europe; 16, 58, 18, and 51 in Asia-Pacific Region; 16, 18, 31, and 35 in North America.

Results from several large randomized controlled trials in Europe [60–62], North America [61, 63, 64], and Asia-Pacific [65] supported the use of HPV DNA testing over cytology for cervical cancer screening. For example, the 5-year Population-Based Screening Study Amsterdam [62], which included approximately 45,000 women aged 26–45, reported that HPV cotesting is more sensitive than cytology alone to detect baseline CIN2 and 3 and to detect cervical cancer at the end of the trial. Another randomized trial [65] of approximately 132,000 women, aged 30–59, conducted over 7 years in rural India also reported substantially higher sensitivity of HCII over cytology. Our analysis showed that while PCR was more sensitive but less specific than HCII in detecting ASCUS/LSIL, HCII was more sensitive and more specific than PCR in detecting HSIL. Our findings, therefore, support the use of HCII because of its clinical relevance. The 2006 Consensus Guidelines for the Management of Women with CIN or Adenocarcinoma in situ [66] recommended that patients with CIN1 preceded by ASCUS or LSIL be followed-up with either HPV DNA testing every 12 months or repeated cytology every 6–12 months. CIN1 is heterogeneous in that it may be ASCUS; however, it may also include LSIL, ASC-H, or even HSIL [67]. Both high-risk and low-risk HPV types may be present in CIN1 lesions [68, 69]. Additionally, several studies show that in the absence of treatment there is a high rate of spontaneous regression of low-grade cervical lesions [70–72] and that CIN1 unusually progresses to CIN2 or CIN3 [62, 73]. For example, a study by Moscicki et al. [71] reported that in more than 91% of adolescents and young women with LSIL, lesions cleared spontaneously within 36 months. These findings, together with ours support the use of HCII in a cervical screening program. This has clinical importance, as a recent report from the US Preventive Services Task Force (USPSTF) [74] concluded that there was insufficient evidence to recommend HPV testing for cervical cancer screening. We noticed that the estimated accuracy of HCII (HSIL: sensitivity = 0.82, specificity = 0.78; LSIL: sensitivity = 0.66, specificity = 0.91) from the USPSTF report came from the 1999 study by Cuzick et al. [75] of older women. As Castle [76] pointed out, the conclusion from the USPSTF was reached without the results of randomized, controlled trials in Europe and India [60–62, 65], and HPV testing in the US was not evaluated. As more evidence accumulates for HPV testing, the results of our meta-analysis could be used as an additional tool for public health professionals as they decide the best test for their specific cervical screening programs.

The major strengths of our meta-analysis are the use of both the STARD [22] and MOOSE [23] reporting guidelines for study selection, data analysis, and comparison of test accuracy, which led to the important condition that both tests must be present in the same article. This eligibility criterion enabled us to minimize a substantial source of interstudy heterogeneity. The other strength is that our search allowed us to capture articles and studies from 1999 to the present, which is the time that HCII has been most widely used. The other strength is our inclusion of other important clinical outcomes that allows more conservative application of colposcopy.

The main limitation in our meta-analysis is that we did not include the technique/device for sample preparation (i.e., collection of cervical cells and DNA extraction methods) and age of the study participants, which could be two potential sources of interstudy heterogeneity. The large variety of sample collection and preparation methods (Table 1) prevented us from establishing meaningful groups for a categorical analysis. We also could not include the age variable in our meta-analysis because only two studies [31] (Luu et al., submitted) provided the relevant information.

In summary, we found that while PCR is more sensitive but less specific than HCII in detecting ASCUS/LSIL, HCII has higher sensitivity and specificity than PCR in detecting HSIL, in both screening and diagnostic settings. Given the clinical relevance and importance of cervical cancer worldwide, our results support the use of HCII in cervical screening programs. Also the role of HPV type distribution should be explored to determine the worldwide comparability of HPV test accuracy. While cost of the test has a consideration for any screening program, it appears that the cost of both HCII and PCR has reduced overtime. Further studies on the cost-effectiveness of HCII over PCR in a cervical screening program are, therefore, warranted.
Acknowledgments

We would like to thank Javier Zamora for his critical advice on Meta-DiSc during statistical analysis process.

Conflict of Interest

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health (NIH) or the Cancer Prevention and Research Institute of Texas (CPRIT).

References

1. Ferlay, J., H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127:2893–2917.
2. Walboomers, J. M., M. V. Jacobs, M. M. Manos, F. X. Bosch, J. A. Kummer, K. V. Shah, et al. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189:12–19.
3. Bosch, F. X., A. Lorincz, N. Muñoz, C. J. Meijer, and K. V. Shah. 2002. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55:244–265.
4. Sasieni, P., and J. Adams. 1999. Effect of screening on cervical cancer mortality in England and Wales: analysis of trends with an age period cohort model. BMJ 318:1244–1245.
5. Bulkmans, N. W., L. Rozendaal, F. J. Voorhorst, P. J. Snijders, and C. J. Meijer. 2005. Long-term protective effect of high-risk human papillomavirus testing in population-based cervical screening. Br. J. Cancer 92:1800–1802.
6. van der Aa, M. A., E. Pukkala, J. W. Coebergh, A. Anttila, and S. Siesling. 2008. Mass screening programmes and trends in cervical cancer in Finland and the Netherlands. Int. J. Cancer 122:1854–1858.
7. Arbyn, M., P. Sasieni, C. J., C. Clavel, G. Koliopoulos, and J. Dillner. 2006. Chapter 9: clinical applications of HPV testing: a summary of meta-analyses. Vaccine 24 (Suppl. 3):78–89.
8. Koliopoulos, G., M. Arbyn, P. Martin-Hirsch, M. Kyrgiou, W. Prendiville, and E. Paraskevaidis. 2007. Diagnostic accuracy of human papillomavirus testing in primary cervical screening: a systematic review and meta-analysis of non-randomized studies. Gynecol. Oncol. 104:232–246.
9. Arbyn, M., F. Buntinx, M. Van Ranst, E. Paraskevaidis, P. Martin-Hirsch, and J. Dillner. 2004. Virologic versus cytologic triage of women with equivocal pap smears: a meta-analysis of the accuracy to detect high-grade intraepithelial neoplasia. J. Natl. Cancer Inst. 96:280–293.
10. Schiffman, M. 2007. Integration of human papillomavirus vaccination, cytology, and human papillomavirus testing. Cancer 111:145–153.
11. Kitchener, H. C., C. Gilham, A. Sargent, A. Bailey, R. Albrow, C. Roberts, et al. 2011. A comparison of HPV DNA testing and liquid based cytology over three rounds of primary cervical screening: extended follow up in the ARTISTIC trial. Eur. J. Cancer 47:864–871.
12. Kjaer, S., E. Høgdall, K. Frederiksen, C. Munk, A. van den Brule, E. Svare, et al. 2006. The absolute risk of cervical abnormalities in high-risk human papillomavirus-positive, cytologically normal women over a 10-year period. Cancer Res. 66:10630–10636.
13. Sherman, M. E., A. T. Lorincz, D. R. Scott, S. Wacholder, P. E. Castle, A. G. Glass, et al. 2003. Baseline cytology, human papillomavirus testing, and risk for cervical neoplasia: a 10-year cohort analysis. J. Natl. Cancer Inst. 95:46–52.
14. Cuzick, J., A. Szarewski, D. Mesher, L. Cadman, J. Austin, K. Perryman, et al. 2008. Long-term follow-up of cervical abnormalities among women screened by HPV testing and cytology-results from the Hammersmith study. Int. J. Cancer 122:2294–2300.
15. Rijkaart, D. C., J. Berkhof, F. J. van Kemenade, V. M. Coupe, L. Rozendaal, D. A. Heideman, et al. 2012. HPV DNA testing in population-based cervical screening (VUSA-screen study): results and implications. Br. J. Cancer 106:975–981.
16. Rijkaart, D. C., J. Berkhof, F. J. van Kemenade, V. M. Coupe, A. T. Hesselink, L. Rozendaal, et al. 2012. Evaluation of 14 triage strategies for HPV DNA-positive women in population-based cervical screening. Int. J. Cancer 130:602–610.
17. Arbyn, M., E. Paraskevaidis, P. Martin-Hirsch, W. Prendiville, and J. Dillner. 2005. Clinical utility of HPV-DNA detection: triage of minor cervical lesions, follow-up of women treated for high-grade CIN: an update of pooled evidence. Gynecol. Oncol. 99:S7–S11.
18. Poljak, M., and B. J. Kocjan. 2010. Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert. Rev. Anti Infect. Ther. 8:1139–1162.
19. Meijer, C. J., J. Berkhof, P. E. Castle, A. T. Hesselink, E. L. Franco, G. Ronco, et al. 2009. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int. J. Cancer 124:516–520.
20. Stoler, M. H., P. E. Castle, D. Solomon, and M. Schiffman. 2007. American Society for Colposcopy and Cervical Pathology. The expanded use of HPV testing in gynecologic practice per ASCCP-guided management requires the use of well-validated assays. Am. J. Clin. Pathol. 127:335–337.
21. Cuzick, J., L. Ambroisine, L. Cadman, J. Austin, L. Ho, G. Terry, et al. 2010. Performance of the Abbott RealTime high-risk HPV test in women with abnormal cervical cytology smears. J. Med. Virol. 82:1186–1191.

22. Bossuyt, P. M., J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, and L. M. Irwig, et al. 2003. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Ann. Intern. Med. 138: 40–44.

23. Stroup, D. F., J. A. Berlin, S. C. Morton, I. Olkin, G. D. Williamson, D. Rennie, et al. 2000. Meta-analysis of observational studies in epidemiology: a proposal for reporting. meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012.

24. Solomon, D., D. Davey, R. Kurman, A. Moriarty, D. O’Connor, M. Prey, et al. 2002. The 2001 Bethesda system: terminology for reporting results of cervical cytology. JAMA 287:2114–2119.

25. Riethmuller, D., C. Gay, X. Bertrand, D. Bettinger, J. P. Schaal, J. P. Cardillet, et al. 1999. Genital human papillomavirus infection among women recruited for routine cervical cancer screening or for colposcopy determined by hybrid capture II and polymerase chain reaction. Diagn. Mol. Pathol. 8:157–164.

26. Stevens, M. P., S. M. Garland, E. Rudland, J. Tan, M. A. Quinn, and S. N. Tabrizi. 2007. Comparison of the Digene hybrid capture 2 assay and Roche AMPLICOR and LINEAR ARRAY human papillomavirus (HPV) tests in detecting high-risk HPV genotypes in specimens from women with previous abnormal pap smear results. J. Clin. Microbiol. 45:2130–2137.

27. Cochran, W. G. 1954. The combination of estimates from different experiments. Biometrics 10:129–9.

28. Deeks, J., J. Higgins, and D. Altman. 2008. Chapter 9: analysing data undertaking meta-analyses. Pp. 243–296 in J. G. S. Higgins, S. Green, eds. Cochrane handbook for systematic reviews of intervention. John Wiley & Son Ltd., West Sussex, U.K.

29. Higgins, J. P., S. G. Thompson, J. J. Deeks, and D. G. Altman. 2003. Measuring inconsistency in meta-analyses. BMJ 327:557–560.

30. Zamora, J., V. Abaira, A. Muriel, K. Khan, and A. Coomarasamy. 2006. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 6:31.

31. Szarewski, A., L. Ambroisine, L. Cadman, J. Austin, L. Ho, G. Terry, et al. 2008. Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiol. Biomarkers Prev. 17:3033–3042.

32. Lijmer, J. G., P. M. Bossuyt, and S. H. Heisterkamp. 2002. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat. Med. 21:1525–1537.

33. Thompson, S. G., and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat. Med. 18:2693–2708.

34. Glas, A. S., J. G. Lijmer, M. H. Prins, G. J. Bonsel, and P. M. M. Bossuyt. 2003. The diagnostic odds ratio: a single indicator of test performance. J. Clin. Epidemiol. 56: 1129–1135.

35. Bergeron, C., D. Jeannel, J. Poveda, P. Cassonnet, and G. Orth. 2000. Human papillomavirus testing in women with mild cytologic atypia. Obstet. Gynecol. 95:821–827.

36. Venturoli, S., M. Cricca, F. Bonvicini, F. Giosa, F. R. Pulvirenti, C. Galli, et al. 2002. Human papillomavirus DNA testing by PCR-ELISA and hybrid capture II from a single cytological specimen: concordance and correlation with cytological results. J. Clin. Virol. 25:177–185.

37. Castle, P. E., A. T. Lorincz, D. R. Scott, M. E. Sherman, A. G. Glass, B. B. Rush, et al. 2003. Comparison between prototype hybrid capture 3 and hybrid capture 2 human papillomavirus DNA assays for detection of high-grade cervical intraepithelial neoplasia and cancer. J. Clin. Microbiol. 41:4022–4030.

38. Yarkin, F., S. Chauvin, N. Konomi, W. Wang, R. Mo, G. Bauchman, et al. 2003. Detection of HPV DNA in cervical specimens collected in cytologic solution by ligation-dependent PCR. Acta Cytol. 47:450–456.

39. Kulmala, S. M., S. Syrjänen, I. Shabalova, N. Petrovichev, V. Kozachenko, J. Podistov, et al. 2004. Human papillomavirus testing with the hybrid capture 2 assay and PCR as screening tools. J. Clin. Microbiol. 42:2470–2475.

40. Nonogaki, S., A. Wakamatsu, A. Longato Filho, S. M. Pereira, M. L. Utagawa, V. A. Ferreira Alves, et al. 2004. Hybrid capture II and polymerase chain reaction for identifying HPV infections in samples collected in a new collection medium: a comparison. Acta Cytol. 8: 514–520.

41. Nonogaki, S., A. Wakamatsu, A. L. Filho, C. Roteli-Martins, C. di Loreto, M. Y. Maeda, et al. 2005. Molecular strategies for identifying human papillomavirus infection in routinely processed samples: focus on paraffin sections. J. Low. Genit. Tract Dis. 9:219–224.

42. Schiffman, M., C. M. Wheeler, A. Dasgupta, and D. Solomon, and P. E. Castle. 2005. ALTS Group. A comparison of a prototype PCR assay and hybrid capture 2 for detection of carcinogenic human papillomavirus DNA in women with equivocal or mildly abnormal Papanicolau smears. Am. J. Clin. Pathol. 124:520–526.

43. Söderlund-Strand, A., P. Rymark, P. Andersson, J. Dillner, and L. Dillner. 2005. Comparison between the hybrid capture II test and a PCR-based human papillomavirus detection method for diagnosis and posttreatment follow-up of cervical intraepithelial neoplasia. J. Clin. Microbiol. 43:3260–3266.
44. Huang, S. L., A. Chao, S. Hsueh, F. Y. Chao, C. C. Huang, J. E. Yang, et al. 2006. Comparison between the hybrid capture II test and an SPF1/GP6+ PCR-based assay for detection of human papillomavirus DNA in cervical swab samples. J. Clin. Microbiol. 44:1733–1739.

45. Carozzi, F., S. Bisanzi, C. Sani, M. Zappa, S. Cecchini, S. Ciatto, et al. 2007. Agreement between the AMPLICOR human papillomavirus test and the hybrid capture 2 assay in detection of high-risk human papillomavirus and diagnosis of biopsy-confirmed high-grade cervical disease. J. Clin. Microbiol. 45:364–369.

46. Fontaine, V., C. Mascaux, C. Weyn, A. Bernis, N. Celio, P. Lefèvre, et al. 2007. Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J. Clin. Microbiol. 45:928–934.

47. Fontaine, V., C. Mascaux, C. Weyn, A. Bernis, N. Celio, P. Lefèvre, et al. 2007. Prospective evaluation of the hybrid capture 2 and AMPLICOR human papillomavirus (HPV) tests for detection of 13 high-risk HPV genotypes in atypical squamous cells of uncertain significance. J. Clin. Microbiol. 45:313–316.

48. Stenvall, H., I. Wikström, I. Backlund, and E. Wilander. 2007. Accuracy of HPV testing of vaginal smear obtained with a novel self-sampling device. Acta Obstet. Gynecol. Scand. 86:16–21.

49. Stenvall, H., I. Wikström, I. Backlund, and E. Wilander. 2008. Comparison of the AMPLICOR human papillomavirus test and the hybrid capture 2 assay for detection of high-risk human papillomavirus in women with abnormal PAP smear. J. Virol. Methods 147:10–17.

50. Klug, S. J., A. Molijn, B. Schopp, B. Holz, A. Iftner, W. Quint, et al. 2008. Comparison of the performance of different HPV genotyping methods for detecting genital HPV types. J. Med. Virol. 80:1264–1274.

51. Mo, L. Z., S. Monnier-Benoit, B. Kantelip, A. Petitjean, D. Riethmüller, J. L. Prétet, et al. 2008. Comparison of AMPLICOR and hybrid capture II assays for high risk HPV detection in normal and abnormal liquid-based cytology: use of INNO-LiPA genotyping assay to screen the discordant results. J. Clin. Virol. 41:104–110.

52. Bhatla, N., L. Dar, A. R. Patro, P. Kumar, A. Kriplani, A. Gulati, et al. 2009. Can human papillomavirus DNA testing of self-collected vaginal samples compare with physician-collected cervical samples and cytology for cervical cancer screening in developing countries? Cancer Epidemiol. 33:446–450.

53. Feng, Q., S. Cherne, R. L. Winer, A. Balasubramanian, S. K. Lee, S. E. Hawes, et al. 2009. Development and evaluation of a liquid bead microarray assay for genotyping genital human papillomaviruses. J. Clin. Microbiol. 47:547–553.

54. Weynand, B., P. Delvenne, R. Polet, Y. Guiot, M. Arafa, J. Somja, et al. 2010. Validation of ThermoFisher’s papspin for human papillomavirus detection in cervicovaginal specimens using PCR with GP5+/GP6+ primers and the hybrid capture II assay. Clin. Microbiol. Infect. 16:671–675.

55. Castle, P. E., E. C. Gutierrez, S. V. Leitch, C. E. Maus, R. A. McMillian, W. A. Nussbaum, et al. 2011. Evaluation of a new DNA test for detection of carcinogenic human papillomavirus. J. Clin. Microbiol. 49:3029–3032.

56. Lin, C. J., H. C. Lai, K. H. Wang, C. A. Hsiung, H. W. Liu, D. C. Ding, et al. 2011. Testing for methylated PCDH10 or WT1 is superior to the HPV test in detecting severe neoplasms (CIN3 or greater) in the triage of ASC-US smear results. Am. J. Obstet. Gynecol. 204:21.e1–21.e7.

57. Wong, O. G., C. K. Lo, E. Szeto, and A. N. Cheung. 2011. Efficacy of Abbott RealTime high risk HPV test in evaluation of atypical squamous cells of undetermined significance from an Asian screening population. J. Clin. Virol. 51:136–138.

58. Sherman, M. E., S. S. Wang, R. Tarone, L. Rich, and M. Schiffman. 2003. Histopathologic extent of cervical intraepithelial neoplasia 3 lesions in the atypical squamous cells of undetermined significance low-grade squamous intraepithelial lesion triage study: implications for subject safety and lead-time bias. Cancer Epidemiol. Biomarkers Prev. 12:372–379.

59. Smith, J. S., L. Lindsay, B. Hoots, J. Keys, S. Franceschi, R. Winer, et al. 2007. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int. J. Cancer 121:621–632.

60. Ronco, G., P. Giorgi-Rossi, F. Carozzi, M. Confortini, P. Dalla Palma, A. Del Mistro, et al. 2010. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 11:249–257.

61. Naucler, G., P. Giorgi-Rossi, F. Carozzi, M. Confortini, P. Dalla Palma, A. Del Mastro, et al. 2010. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 11:249–257.

62. Rijkaart, D. C., J. Berkhof, L. Rozendaal, F. J. van Delft, et al. 2008. Comparison of the performance of different HPV genotyping methods for detecting genital HPV types. J. Med. Virol. 80:1264–1274.

63. Mayrand, M. H., E. Duarte-Franco, I. Rodrigues, S. D. Walter, J. Hanley, A. Ferenczy, et al. 2007. Canadian Cervical Cancer Screening Trial Study Group. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N. Engl. J. Med. 357:1579–1588.
64. Castle, P. E., M. H. Stoler, T. C. Jr Wright, A. Sharma, T. L. Wright, and C. M. Behrens. 2011. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: a subanalysis of the ATHENA study. Lancet Oncol. 12:880–890.

65. Sankaranarayanan, R., B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, et al. 2009. HPV screening for cervical cancer in rural India. N. Engl. J. Med. 360:1385–1394.

66. Wright, T. C. Jr, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, et al. 2006. consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ. Am. J. Obstet. Gynecol. 2007:340–345.

67. Wright, T. C. Jr, J. T. Cox, L. S. Massad, J. Carlson, L. B. Twiggs, E. J. Wilkinson, et al. 2001. consensus guidelines for the management of women with cervical intraepithelial neoplasia. Am. J. Obstet. Gynecol. 2003:295–304.

68. Clifford, G. M., R. K. Rana, S. Franceschi, J. S. Smith, G. Gough, and J. M. Pimenta. 2005. Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol. Biomarkers Prev. 14:1157–1164.

69. Correnti, M., F. Medina, M. E. Cavazza, A. Rennola, M. Avila, and A. Fernández. 2011. Human papillomavirus (HPV) type distribution in cervical carcinoma, low-grade, and high-grade squamous intraepithelial lesions in Venezuelan women. Gynecol. Oncol. 121:527–531.

70. Schlecht, N. F., R. W. Platt, E. Duarte-Franco, M. C. Costa, J. P. Sobrinho, J. C. Prado, et al. 2003. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 95:1336–1343.

71. Moscicki, A. B., S. Shiboski, N. K. Hills, K. J. Powell, N. Jay, E. N. Hanson, et al. 2004. Regression of low-grade squamous intra-epithelial lesions in young women. Lancet 364:1678–1683.

72. Nobbenhuis, M. A., T. J. Helmerhorst, A. J. van den Brule, L. Rozendaal, F. J. Voorhorst, P. D. Bezemer, et al. 2001. Cytological regression and clearance of high-risk human papillomavirus in women with an abnormal cervical smear. Lancet 358:1782–1783.

73. Cox, J. T., M. Schiffman, and D. Solomon. 2003. ASCUS-LSIL Triage Study (ALTS) Group. Prospective follow-up suggests similar risk of subsequent cervical intraepithelial neoplasia grade 2 or 3 among women with cervical intraepithelial neoplasia grade 1 or negative colposcopy and directed biopsy. Am. J. Obstet. Gynecol. 188:1406–1412.

74. US Preventive Services Task Force. 2012. Screening for cervical cancer. Available at http://www.uspreventiveservicestaskforce.org/3rduspstf/cervcan/ cervcanrr.pdf (accessed 10 October 2012).

75. Cuzick, J., E. Beverley, L. Ho, G. Terry, H. Sapper, I. Mielzynska, et al. 1999. HPV testing in primary screening of older women. Br. J. Cancer 81:554–558.

76. Castle, P. E. 2012. More evidence supporting human papillomavirus testing. Nat. Rev. Clin. Oncol. 9:131–132.