Evaluation of the effectiveness of an investment project for the processing of whey

O A Anichkina, A A Terekhova, A A Avtsinova, E E Akulina and E V Dotsenko
K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: anichkina@ya.ru

Abstract. The role of investments in maintaining, functioning and dynamic development of the country's economy is enormous and significant. In modern market conditions of competition, the enterprise needs to constantly develop and improve. Consequently, there is a need for investment. Investments allow enterprises to get the opportunity to expand and modernize production, improve the quality of products, expand product markets, thereby increasing competitiveness. In market conditions, investment projects are necessary for everyone: consumers - investors, creditors and the entrepreneur himself, who must carefully analyze the goals set and check their feasibility. Investment decisions are leading factors in the development and increase in the market value of an organization. The article presents the calculation of the attractiveness of an investment project for the processing of whey with the subsequent use of processed products in the production of yogurt. In the course of the study, the following was established, the internal rate of return is 7.31% and shows that at such a rate of profitability, the discounted self-sufficiency of the project is achieved. Based on the calculation, the internal rate of return shows that it is advisable to attract bank loans for financing if the percentage of bank loans is not higher than 7.32%, which will make the project deliberately unprofitable.

1. Introduction
The development of the agro-industrial complex is one of the priority goals of the industry [1-6]. Milk whey is half of the milk; 50% of dry matter is transferred into it, incl. 20% protein, 95% lactose, 80% minerals and 10% milk fat. It has a high nutritional and biological value. According to theoretical calculations, this is more than 20 thousand tons of milk fat, 225 thousand tons of lactose, 30 thousand tons of protein and 35 thousand tons of minerals. World demand for milk whey will increase with an average annual growth rate of 3.1% and by the end of 2020 will amount to more than 3500 thousand tons [7,8].

In the period 2015-2018, the volume of milk whey production in Russia increased by an average of 6.9% per year. Whey powder production grew even faster - by 11.5% per year. At the end of 9 months of 2019, the Central Federal District became the leader in the production of milk whey with a share of 24.9%, which is 137 thousand tons. In Russia, the domestic production of whey powder does not fully cover the need for it due to the underdeveloped level of processing of whey, so part of the demand is replenished by imports. The share of imports in the total consumption of whey powder in 2017 amounted to 42%, or 93.3 thousand tons. Together with the increase in domestic production, imports of products in the period 2015–2018, decreased by 31.3%, or 42.6 thousand tons. According to the results of 10
months of 2019, the share of imports in the total consumption of whey powder was 22.9%, or 31.4 thousand tons [9,10].

The environmental aspect should not be disregarded: 1 ton of whey discharged into the sewer pollutes water bodies in the same way as 100 m3 of household wastewater. Meanwhile, in Russia only 20% of milk whey is used. The rest is drained, and the plums cause great harm to the environment.

The main markets for dry whey consumption in the world are food (48%) and feed for agricultural animals (52%), for demineralized whey - baby food (75%) [2]. Of great importance is the development of food products using whey in the formulation [11-20].

Compared to the global consumption trend and the possibility of producing additional highly purified whey products, Russia is very far from the world leaders and needs to be improved and introduced new production technologies in order to increase the degree and depth of whey processing into the final product.

Compared to the global consumption trend and the possibility of producing additional highly purified whey products, Russia is very far from the world leaders and needs to be improved and introduced new production technologies in order to increase the degree and depth of whey processing into the final product.

2. Materials and methods
For the production of yoghurts with whey protein concentrates, it is necessary to introduce a technological line for processing milk whey and a line for the production of yoghurts with increased biological value using whey protein concentrates.

Below are the basic calculations and methods used to calculate the economic project for the implementation of this line in the existing production.

The following standards for financial and economic calculations are defined as the main characteristics:

- Project investments - 11 690 579 rubles
- discount rate - 14%
- income tax - 20%
- payroll - 30.2%

The project investment is 11,690,579 rubles. The sources of financing are the organization's own funds.

The calculation of the break-even point (formulas and graph) is presented in table 1.

The break-even point in monetary terms (T_{be}) is calculated using the formula:

$$T_{be} = B \times E_{fix} \div (B - E_{var})$$ (1)

where: E_{fix} – fixed costs; E_{var} – variable costs.

Substituting numerical values into formula (8), we get:

The break-even point in natural terms (T_{nt}) is calculated by the formula:

$$T_{nt} = E_{fix} \div (P - E_{avc})$$ (2)

where: E_{fix} – fixed costs; P – price for one; E_{avc} – average variable costs.

Let us determine the profitability of sales (P_s) by net profit from the ratio between net profit and sales proceeds, i.e.:

$$P_s = (N_p/B) \times 100$$ (3)

where: N_p – net profit; B – revenue.

Let's calculate the economic efficiency (EE) of the company for the 1st year using the formula:

$$EE = \left(N_p \div E \right) \times 100\%$$ (4)
where: \(N_p \) – net profit; \(E \) – expenses.

The return on investment index (PI) shows the ratio of return on capital to the volume of investments in the project. PI is the relative profitability of future activities, as well as the discounted value of all financial receipts per unit of investment. If we take into account the indicator I, which is equal to the investment in the project, then the investment profitability index is calculated by the formula:

\[
PI = \frac{NPV}{I}
\]

where: NPV – net present value; I – investment in the project.

3. Results and discussions
At the initial stage, an estimate was drawn up for the purchase and installation of equipment, the data are presented in table 1.

Table 1. Calculating the need for equipment.

Equipment	Units	Cost, rub.	Delivery and launch costs, rub.
1. Tank for collecting and storing whey; Vertical milk tank TMB-5000	1	918 000	275 400
2. Centrifugal pumps; ONTs 1.5/20K	10	334 380	100 314
3. Separator; A1-OCM-10	2	980 000	294 000
4. Plate heat exchanger; ETNA-270	1	293 920	88 176
5. Steam injector; Valstem ADCA SI 140	2	73 500	22 050
6. UV installation; A1-OUS	1	125 000	37 500
7. Vacuum evaporation plant; A2 - OBB-2	1	3 000 000	900 000
8. Spray dryer; TsTR-500	1	250 000	75 000
9. Packaging machine DVDD-NOTIS-20-A	1	159 000	47700
Total	20	6 133 800	1 840 140

Total total cost will leave 7,973,940 rubles.

The purchase of equipment is carried out at the expense of the owner's own funds.

Depreciation is calculated on a linear basis, taking into account the equipment service life of 5 years (table 2).

Table 2. Calculation of depreciation of the technological line.

Name	Equipment cost, rub.	Amount of depreciation per month, rubles	Amount of annual depreciation deductions, rubles
1. Whey collection and storage tank	918 000	15 300	183 600
2. Centrifugal pumps	334 380	5 573	66 876
3. Separator	980 000	16 333	196 000
4. Plate heat exchanger	293 920	4 899	58 784
5. Steam injector	73 500	1 225	14 700
6. UV installation	125 000	2 083	25 000
7. Vacuum evaporation plant	3 000 000	50 000	600 000
8. Spray dryer	250 000	4 167	50 000
9. Packaging machine	159 000	2 650	31 800
Total	6 133 800	102 230	1 226 760

Based on the formulation of yoghurt based on whey, based on the need for raw materials for the production of 100 gr. product, the calculation of costs for the production of yogurt (table 3).
Table 3. Calculation of costs for the production of yoghurt (raw materials).

Demand for 1 ton of product, kg	Price, rub/kg	Cost, rub.	
Milk 3.2% fat	2000	20	40 000
Leaven	50	20	1 000
Whey protein	10	-	-
Modified corn starch, kg	15	100	1 500
Total	x	x	42 500

With the planned production of 1.9 tons of yogurt per day, the cost of raw materials will amount to 80,750 rubles per day.

The maximum production capacity of the technological line for the production of yoghurt with whey protein concentrates with a standard working time of 365 working days is 1.9 tons of yoghurt per day, the maximum number of produced cups of 200 ml of yoghurt will be 9,500 pieces per day and 288,958 pieces per month. Hence, the proposed technological line is capable of producing 57.8 tons of finished products per month. Hence, the monthly cost of raw materials will amount to 2,456,146 rubles.

Taking into account the energy consumption of 65,244 kWh per month at an average cost of 2.66 rubles/kWh, The cost of electricity will amount to 173,549 rubles. per month.

Yogurt packaging - plastic (polystyrene) cups with closed plastic lids with a capacity of 200 g, the average cost is 5.00 rubles. per piece, at maximum load, the cost of a container is 1 444 790 rubles per month.

Transport and procurement costs associated with the sale of finished products are estimated at 3.5% of the amount of material costs.

This project involves the introduction of a technological line for the production of yoghurt with whey protein concentrates at an operating enterprise.

The project provides for the filling of staff units:

- Shift foreman - 1 person;
- Apparatchik - 1 person;
- Packing operator - 1 person;
- Laboratory assistant - 1 person;
- Technologist - 1 person;
- Mechanic - 1 person.

The staff works 2 through 2 (2 work, 2 at home), 2 teams each. The enterprise works every day - 365 days (seven days a week).

Table 4 shows the calculation of the payroll for the project staff, taking into account insurance premiums.

Table 4. Calculation of the wage fund.

Name of employee categories	Number of people	Salary of one employee, rub.	Salary amount, rub.	Accruals to funds (30.2%), rubles	Total, rub.	Total for a year, rubles
1. Shift foreman	2	30 000	60 000	18 120	78 120	93 7440
2. Apparatchik	2	25 000	50 000	15 100	65 100	78 1200
3. Packing operator	2	26 000	52 000	15 704	67 704	81 2448
4. Laboratory assistant	2	24 000	48 000	14 496	62 496	74 9952
5. Technologist	2	30 000	60 000	18 120	78 120	93 7440
6. Mechanic	2	27 000	54 000	16 308	70 308	84 3696
Total	x	x	32 4000	97 848	421 848	506 2176
The total monthly payroll is 421,848 rubles, the annual payroll is 5,062,176 rubles. For the next 2 years of the project’s implementation, an employee’s salary increase is not planned.

Based on the assessment of the costs associated with the production and sale of products, taking into account the maximum volumes of production and sales, the total cost of production was calculated (table 5).

Table 5. Calculation of the total cost of yoghurt (monthly costs at maximum load).

Costs (for 288,958 glasses of 200 ml yoghurt)	Amount, rub.
Raw materials	2,456,146
Power supply	173,549
Container and packing material	1,444,790
Salary with deductions	421,848
Depreciation of fixed assets	102,230
Fare	85,965
Total	4,684,528

As can be seen from the calculations presented in table 5, with the maximum equipment load, 288,958 glasses of yogurt (200 ml) will be produced, the total monthly cost for the month is 4,684,528 rubles, with the maximum equipment load.

The calculation of the cost of 1 glass of yogurt (calculation) is presented in table 6.

Table 6. Calculation of the cost of 1 cup of yogurt (calculation).

Product type	Yogurt (200 ml)
Production volume, pcs.	288,958
Raw material consumption, rub.	8.5
General production costs, rub.	10.91
Production cost of 1 piece, rub.	19.41
General operating expenses, rub.	5.3
Full cost price, rub.	24.71
Extra charge, rub.	5.29
Price, rub.	30

In competition policy, the method of price competition was used. The average price for yoghurts is 20 - 36 rubles and continues to increase. Consequently, the price of yogurt will be higher than the minimum and will be 30 rubles.

Taking into account the fact that in the first year of operation of equipment for the production of yoghurts with whey protein concentrates, production will reach a production capacity of 80%, in the second year - up to 95%, it is planned to reach 100% production capacity within 3 years of production.

Taking into account the production capacity, the process of establishing the production process, market conditions and seasonality of sales, a production program for the production and sale of yoghurt for the first year of production has been developed.

The calculation of proceeds from the sale of yoghurt (200 ml) for 3 years is presented in table 7.

Table 7. Calculation of proceeds from the sale of yoghurt (200 ml).

Index	2021	2022	2023
Production volume in kind, tons	554,9	659	694
Sales volume in kind, pcs.	2,774,500	3,295,000	3,468,000
Selling price per unit of production, rub.	30	31	32
Proceeds from product sales, rubles	83,235,000	102,145,000	110,976,000

It can be seen from table 7, when reaching the maximum production capacity, the volume of production and sales of yoghurt increases.
The calculation of net profit for the first year of production operation is presented in table 8.

Index	2021	2022	2023
Income	83,235,000	102,145,000	110,976,000
Costs:			
Raw materials	23,582,400	27,999,000	29,478,000
Power supply	2,082,588	2,082,588	2,082,588
Container and packing material	13,872,500	16,475,000	17,340,000
Fare	825,384	979,965	1,031,730
Salary with deductions	5,062,176	5,062,176	5,062,176
Sinking fund	1,226,760	1,226,760	1,226,760
Total expenses	46,651,808	53,825,489	56,221,254
Taxable income	36,583,192	48,319,511	54,754,746
Income tax (20%)	7,136,638	9,663,902	10,950,949
Net profit	29,266,554	38,655,609	43,803,797

Receipt of proceeds for the first year of activity in the amount of 83,235,000 rubles, will allow you to cover current costs without receiving a loss. Taking into account operating costs and taxes paid, yoghurt production brings a stable income, while there is a positive trend in the growth of net profit.

The calculation of investment costs is presented in table 9.

№	Cost item	Amount, rub.
1	Equipment	6,133,800
2	Raw materials	1,965,200
3	Container and packing material	1,156,042
4	Fare	1,840,140
5	Depreciation deductions	
6	Electricity	173,549
7	Salary with deductions	421,848
	Total	11,690,579

Taking into account the sale of 2,774,500 pcs. glasses of yoghurt fixed costs will be 1,226,760.00 rubles, variable costs - 45,425,048.00 rubles, the average price per unit of goods - 30 rubles, average variable costs - 16.37 rubles per unit. Hence, in order to carry out a break-even activity, it is necessary to produce 90,020 glasses of yoghurt per year and ensure revenue of 2,700,595.03 rubles, which is 3.24% of the planned revenue (table 10).

№	Initial data	Calculated values	
Revenue (RUB)	832,350,000,00	30,00	
Implementation (batch)	2,774,500,00	Average variable costs (RUB)	16,37
Fixed costs (RUB)	1,226,760,00	Break-even point (RUB)	2,700,595,03
Variable costs (RUB)	454,250,048,00	Break-even point (pcs.)	90,020

Substituting the numerical values of the indicators into the formula (10), we get:

\[P_s = (29,266,554/83,235,000)*100\% = 35,16\% \]

The level of profitability of sales for the 1st year according to table 28 will be 35.16%.

Substituting numerical values into formula (11), we get:
EE = (29 266 554/46 651 808)*100% = 62.73%
Payback period of the project: 11 690 579/29 266 554 = 0.4 years or 5 months.
Table 11 presents an assessment of the economic efficiency of the project.

Indicator	Year 0	1	2	3
Revenue, rub.	83 235 000	102 145 000	110 976 000	110 976 000
Full cost price, rub.	46 651 808	53 825 489	56 221 254	56 221 254
Gross profit, RUB	36 583 192	48 319 511	54 754 746	54 754 746
Net profit, RUB	29 266 554	38 655 609	43 803 797	43 803 797
Payback period, months	5	35.16	37.84	39.47
Return on sales, %		62.73	71.81	77.91
Economic efficiency, %		62.73	71.81	77.91
Project investments, rub.	-11 690 579	214 832 541	214 832 541	
Net present value (NPV), rub.		214 832 541	214 832 541	
Internal rate of return (IRR), %		7.31		
Investment return index (IPI), %		18.37		

4. Conclusion

Based on the calculations presented in table 28, it can be seen that net present value (NPV), which is equal to the difference between the amount of cash receipts (investments) available at a given time and the amount of required cash payments to repay loan obligations, investments or to finance the current needs of the project, the difference is calculated based on a fixed discount rate. The weighted average interest rate of Sberbank on credit and deposit operations in rubles as of 01.01.2020 is chosen as the risk-free interest rate - 14.0% per annum. The net present value of the project is greater than 0, which indicates that the project will bring profit to investors.

Internal rate of return (profitability) (IRR) is calculated depending on the value of NPV. IRR is the maximum possible investment value as well as the level of eligible project costs. So for this project, the internal rate of return is 7.31% and shows that at such a rate of profitability, the discounted self-sufficiency of the project is achieved. Based on the calculation, the internal rate of return shows that it is advisable to attract bank loans for financing if the percentage of bank loans is not higher than 7.32%, which will make the project deliberately unprofitable.

The investment return index for this project is more than one, therefore, this project is profitable, it should be accepted for implementation.

References
[1] Mikhaleva E 2019 Milk whey Development potential of the Russian market *Milk river* 4(72) 14-8
[2] Ivanova V, Poltarykhin A, Szromnik A and Anichkina O 2019 Economic policy for country's digitalization: A case study *Entrepreneurship and Sustainability Issues* 7(1) 649-61
[3] Anichkina O, Tatochenko A, Tatochenko I and Chernegov N 2019 Development strategy of agricultural enterprises in the production of high-tech products *IOP Conference Series Earth and Environmental Science* 403 012133
[4] Tekueva M, Burkov A, Nosov V, Novoselova S and Nayanov A 2016 Agriculture and Agribusiness: Clustering Issues *Research Journal of Pharmaceutical Biological and Chemical Sciences* 7(6) 1634-8
[5] Yalyalieva T, Nosov V, Volkova T, Tekueva M and Pavlenko I 2016 Issues Of Import Substitution In The Agro-Industrial *Sector Research Journal of Pharmaceutical, Biological and Chemical Sciences* 7(6) 1620-4
[6] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system *Economics of Agriculture of Russia* doi:10.32651/2070-0288-2018-9-15-
[7] Donskaya G A 2019 Milk and dairy products of the Russian Federation: domestic production, foreign trade, pricing environment Preliminary results of 2019 http://www.souzmoloko.ru/materiali/Predvaritelnye-itogi-2019.pdf (access date: 02/10/2020)

[8] Volumes of Russian production of milk whey in 2018 https://alto-group.ru/new/961-obem-rossiyskogo-proizvodstva-molchnoy-syvorotki-v-2017-godu-uvelichilis-na-7.html (date accessed: 10/10/2020)

[9] The dairy industry of Russia in 2019 in 10 graphs https://sdelanounas.ru/blogs/130097/

[10] Milk and dairy products of the Russian Federation: domestic production, foreign trade, pricing environment Preliminary results of 2019 www.souzmoloko.ru/materiali/Predvaritelnye-itogi-2019.pdf

[11] Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk Annual Research & Review in Biology 23(6) 1-7 DOI: 10.9734/arrb/2018/38800

[12] Temerbayeva M et al. 2018 Technology of Sour Milk Product For Elderly Nutrition Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(1) 291-5

[13] Serikova A, Smolnikova F, Rebezov M, Okuskanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(4) 495-500 WOS:000438848100062

[14] Smolnikova F, Rebezov M, Shaydullin R, Knysh I, Yudina O, Nikolaev a N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775

[15] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportmen Journal of Critical Reviews 7(4) 233-6 DOI: 10.31838/jcr.07.04.43

[16] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Dogareva N, Likhodeevskaya O, Knysh I and Sanova Z 2020 Specialized sports nutrition foods: review International Journal of Pharmaceutical Research 12(2) 998-1003

[17] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8(6) 642-8

[18] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products International Journal of Recent Technology and Engineering 8(2) 2718-22 DOI: 10.35940/ijrte.B3158.078219

[19] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitzeva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8(4) 40-5 DOI: 10.35940/ijrte.B3158.078219

[20] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11(1) 545-50 DOI: 10.35940/ijrte.B3158.078219