Review Article

Urinary schistosomiasis in Ebonyi State, Nigeria from 2006 to 2017

Ogochukwu C. Chiamah1, Patience O. Ubachukwu2, Chioma O. Anorue1 & Sowechi Ebi1

1Department of Biology/Microbiology/Biotechnology, Faculty of Science, Federal University Ndufu-Alike Ikwo, Ebonyi State; 2Department of Zoology and Environmental Biology, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, Nigeria

ABSTRACT

Urinary schistosomiasis, caused by Schistosoma haematobium is very common in Nigeria, with Ebonyi State implicated to have the highest prevalence in the southeastern part of the country. The aim of this review was to estimate the status of urinary schistosomiasis in the State with regards to the elimination goals of World Health Organization (WHO). A comprehensive search of published articles on urinary schistosomiasis in Ebonyi State, Nigeria from 2006 to 2017 was conducted using Google Scholar, PubMed and African Journals Online (AJOL) databases. Out of 26 retrieved articles, 15 met the inclusion criteria. The MetaXL software was used to compute the pooled prevalence of urinary schistosomiasis using the random effect model and results are presented as forest plot. Based on meta-analysis output, the pooled prevalence of urinary schistosomiasis was 26.02% [95% Confidence Interval (CI) = 17.91–35.04%]. The pooled prevalence was higher before 2014, the year when treatment with praziquantel (PZQ) was started. Of the senatorial zones, Ebonyi North had the highest pooled prevalence of 34.57% (95% CI = 10.50–61.32%). In addition, the prevalence of the disease was higher when all the age groups were sampled (31.33%; 95% CI = 12.75–51.98%) than when only schoolchildren were used as sampling population (25.23%; 95% CI = 15.66–35.93%). The pooled prevalence revealed that despite the mass drug distribution (MDA) of PZQ in the State, there is continued transmission of urinary schistosomiasis. Hence, if the WHO elimination goal of the disease has to be met, focused control and elimination programmes along with intense complementary public-health interventions are necessary.

Key words Control; Ebonyi state; Nigeria; prevalence; Schistosoma haematobium; urinary schistosomiasis

INTRODUCTION

Schistosomiasis is a neglected tropical disease (NTD) and the most important water-borne disease1. It ranks second only to malaria as the most common parasitic disease. It is the most deadly NTD, infecting an estimated 140 million people each year, with over 90% of cases occurring in sub-Saharan Africa2. The disease primarily affects the rural poor and some disadvantaged urban populations3. Three main species of schistosomes infect human beings, Schistosoma haematobium, S. mansoni, and S. japonicum4. Schistosoma haematobium occurs in Africa and the Middle-East, whereas S. mansoni is present in the Americas and Africa. Schistosoma japonicum is localized to Asia, primarily the Philippines and China. Three more locally distributed species also cause human disease: S. mekongi, in the Mekong River basin, and S. guineensis and S. intercalatum in west and central Africa, respectively. Each species has a specific range of suitable snail hosts; hence their distribution is defined by the habitat range of their host snails. Schistosoma mansoni and S. haematobium need certain species of aquatic freshwater Biomphalaria and Bulinus snails, respectively. Schistosoma japonicum uses amphibious fresh water Oncomelania spp snails as its intermediate host4–5.

Nigeria has the greatest number of schistosomiasis cases worldwide6; and in the southeastern part of the country where urinary schistosomiasis is prevalent; Ebonyi State is reported to have the highest prevalence7. Urinary schistosomiasis is characterized by haematuria, dysuria, bladder wall pathology, hydronephrosis (swelling of a kidney due to a build-up of urine), and it can also lead to squamous cell carcinoma. In adults, the infection can cause genital ulcers and other lesions resulting in poor reproductive health, with sexual dysfunction and infertility8. These pathological alterations caused by S. haematobium occur mostly in school-age children, adolescent and young adults7.

As a result of this, the World Health Assembly (WHA) between 2001 and 2006 endorsed preventive chemotherapy by distributing Praziquantel (PZQ) tablets to primary target groups, like school-age children7. Adults in areas
of moderate and high prevalence, and those at risk due to their occupation were also included as target groups. The aim was to control the disease morbidity by 2010. However, in Nigeria, a country estimated to account for 24.5% of the global population requiring preventive chemotherapy,9 the range of PZQ distribution coverage was only 4%.

In 2012 and 2013, the WHA endorsed yet another resolution with the vision of, a world free of schistosomiasis. Some goals of the resolution were control of morbidity by 2020; and elimination of schistosomiasis as a public health problem by 2025. The WHA aimed to achieve these goals by 100% geographic coverage and 75% national coverage of PZQ distribution in endemic countries. In order to achieve this, challenges such as rate of implementation in endemic countries and the availability/access to PZQ, which is donated in very low quantity, have to be surmounted. Report of the ENVISION project funded by the US Agency for International Development (USAID) in Nigeria showed that inaccessibility of PZQ tablets due to delay in donations led to the low distribution coverage in some states in the country, including the Ebonyi State. Therefore, this study aimed to estimate the current prevalence of urinary schistosomiasis in Ebonyi State as the WHA target year is nearing up.

Literature search strategy

A systematic literature search of articles on the prevalence of urinary schistosomiasis in Ebonyi State, Nigeria published between 2006 and 2017 was conducted using Google scholar, PubMed and African Journal Online (AJOL) databases. The search started in July 2016 and was completed in August 2017. The combinations of key words used for the search were ‘prevalence’, ‘urinary schistosomiasis or Schistosoma haematobium infection’, ‘Ebonyi State’ and ‘Nigeria’.

Studies were screened and selected (as per the PRISMA guidelines) if those were published between 2006 and 2017 and included details of the study area in Ebonyi State, study population and prevalence of the infection as determined by microscopy. The studies showed that there are three senatorial zones in Ebonyi State: Ebonyi North comprising Abakaliki, Ebonyi, Ishielu, Ohaukwu and Izzi Local Government Areas (LGAs); Ebonyi Central: Ikwo, Ezza North and Ezza South LGAs; and Ebonyi South: Afikpo North, Afikpo South, Ivo, Ohaozara and Onicha LGAs.

Data extraction and statistical analysis

Articles were screened for duplicates and relevance. From the relevant studies; author, year of publication, study area/senatorial zone, study population and reported prevalence were extracted and subjected to meta-analysis using MetaXL software. Heterogeneity across studies was evaluated using Crohmnate Q test and F statistics. The random effect model was used to estimate the pooled prevalence at 95% CIs. To deal with the problems of confidence limits and erratic variance when population is small or big, a double arc sine transformation was used. Publication bias was measured using Doi plot and Luis Furuya-Kanamori asymmetry index (LFK index).

Characteristics of included studies

The literature search retrieved 26 published articles. After screening, 15 studies were found eligible and included in the final analysis as per the PRISMA guidelines (Fig. 1). The study characteristics are summarized in Table 1.

Prevalence of urinary schistosomiasis in Ebonyi State

The overall prevalence of urinary schistosomiasis from the studies selected ranged from 5 to 79%, with a pooled prevalence of 26.02% (95% CI = 17.91–35.04%) (Fig. 2). High heterogeneity was observed across studies (Crohmnate’s Q, p = 0; I² = 99.07%; 95% CI = 98.89–99.23%) and as such subgroup analysis was performed (Table 2). In the subgroup analysis, for the year of publication, pooled prevalence was highest in 2008 (61.51%; 95% CI = 20.33–97.27%) and least in 2012 (14.86%; 95% CI = 4.59–27.65%). Further subgroup analysis of the State senatorial zones revealed that Ebonyi North had a pooled prevalence of 34.57% (95% CI = 10.50–61.32%). This was followed by Ebonyi Central (33.81%; 95% CI= 21.99–46.46%) and Ebonyi South (12.45%; 95% CI= 6.39–19.99%). Prevalence of urinary schistosomiasis was higher for studies with all the age groups (31.33%; 95% CI = 12.75–51.98%) compared to when only school-
age children were sampled (25.23%; 95% CI = 15.66–35.93%).

Publication bias

The Doi plot demonstrated clear symmetry, indicating that most publications will report the State as a moderate-risk State for urinary schistosomiasis. The LFK index of 0.95 concurred with the Doi plot interpretation of symmetry (Fig. 3).

With few years to the WHA’s target of morbidity control and elimination of schistosomiasis as a public health problem, the pooled prevalence estimate of the infection still places the Ebonyi State as a moderate-risk State. According to the WHO, control of morbidity in moderate-risk areas demands preventive chemotherapy of school-age children and special risk groups9. Therefore, the retention of the State as a moderate-risk State at a time when there should have been substantial morbidity control is indicative of late implementation of mass PZQ distribution, and low drug coverage since distribution started. According to School and Health24, in the coun-

Table 1. Summary of studies on the prevalence of urinary schistosomiasis in Ebonyi State, Nigeria

Study reference	Study area (LGA)	Senatorial zone	Study population	Sample size	No. of cases
Anosike et al12	Ezza North	Ebonyi Central	All groups	2104	466
Uneke et al15	Ohaukwu	Ebonyi North	School children	376	180
Uneke et al13	Onicha	Ebonyi South	School children	500	55
Uneke and Egede14	Ezza North	Ebonyi Central	School children	403	320
Uwaezueko et al15	Ikwo	Ebonyi Central	School children	838	350
Oyibo et al11	Ikwo	Ebonyi Central	School children	576	169
Nworie et al16	Afikpo North	Ebonyi South	School children	500	49
Elom17	Ikwo	Ebonyi Central	School children	359	77
Ivoke et al18	Ohoazara	Ebonyi South	School children	894	137
Nwosu et al19	Afikpo North	Ebonyi South	School children	1010	50
Ozowara et al20	Ezza North	Ebonyi Central	School children	812	375
Nwosu et al21	Ezza North	Ebonyi Central	School children	325	57
Onwe et al22	Ebonyi	Ebonyi North	School children	525	119
Nworie23	Ezza North	Ebonyi Central	All groups	1800	342
Elom et al24	Onicha	Ebonyi South	School children	400	108

Table 2. Pooled prevalence of urinary schistosomiasis according to subgroups

Subgroups	No. of studies analyzed	Prevalence (%)	95% CI
Year of publication			
2006	3	25.37	9.56–43.54
2007	–	–	–
2008	2	61.51	20.33–97.27
2009	–	–	–
2010	–	–	–
2011	1	29.17	25.69–33.12
2012	2	14.86	4.59–27.65
2013	–	–	–
2014	1	15.02	13.03–17.76
2015	3	20.12	0–53.23
2016	1	22.45	19.18–26.35
2017	2	22.43	15.05–30.31
Senatorial zones			
Ebonyi North	2	34.57	10.50–61.32
Ebonyi Central	8	33.81	21.99–46.46
Ebonyi South	5	12.45	6.39–19.99
Study population			
All age groups	2	31.33	12.75–51.98
School children	13	25.23	15.66–35.93

Fig. 2: Forest plot of the pooled prevalence of urinary schistosomiasis in Ebonyi State, Nigeria.

Fig. 3: Doi plot generated using the prevalence of urinary schistosomiasis at different locations in Ebonyi state.
try’s master plan for NTDs, Ebonyi State was not listed among States that got donations of PZQ from 2009–2011. In Ebonyi State, distribution of PZQ started in 2014 after the schistosomiasis mapping (carried out in 2013); but the ENVISION project overview on NTDs revealed that some LGAs in Ebonyi State had zero percent coverage of PZQ distribution in 2015 due to delayed PZQ supply.

The subgroup analysis of the year of publication is necessary to analyze the progress made in the adoption of the resolutions of WHA. The prevalence of S. haematobium between 2006 and 2012 (as seen in the 95% CI) showed that there was no progress made in the control of the infection in the State during this period. Thereafter, in 2014 when distribution started the prevalence decreased and increased again in 2015 due to delayed PZQ supply as reported by USAID. However, in 2016 when mass drug distribution resumed, the prevalence dropped again and remained within the moderate-risk range in 2017.

Despite the ongoing PZQ MDA in the State, higher prevalence estimate of the infection in Ebonyi North and Ebonyi Central senatorial zones may imply that communities in these senatorial zones still depend on ponds, lakes, streams and rivers as water source, exposing them to the parasitic agent. Our finding showed that higher prevalence is recorded when the disease sampling involved all age groups. This implies that communities in the State are occupationally exposed to the infection because of the swampy nature of rice farms and dependence on ponds, lakes, streams and rivers as source of water.

CONCLUSION

The prevalence estimates obtained in this study showed that there is no significant reduction in the prevalence of S. haematobium infection despite the acclaimed MDA of PZQ, indicating continued transmission of urinary schistosomiasis in the Ebonyi State. Hence, there is need to boost availability of PZQ and its distribution in the State. The distribution of this drug of choice should not be limited to school-age children, rather it should be readily accessible to all the age groups in different communities that make up the State. If the WHO elimination goal of the disease has to be met, the focused control and elimination programmes are very necessary in the state. Implementation of complementary public-health interventions such as health education for behavioural change, provision of safe water and sanitation, environmental management and snail control is also necessary.

Conflict of interest

The authors declare that there is no conflict of interest related to this study.

Ethical statement: Not applicable

REFERENCES

1. Utzinger J, Rasgo G, Brooker S, De Savigny D, Tanner MM, Ornbjer N, et al. Schistosomiasis and neglected tropical diseases: Towards integrated and sustainable control and a word of caution. Parasitol 2009; 136(13): 1859–74.
2. Gower CM, Vince L, Webster JP. Should we be treating animal schistosomiasis in Africa? The need for health economic evaluation of schistosomiasis control in people and their livestock. Trans R Soc Trop Med Hyg 2017; 111(6): 244–7.
3. Hotez PJ, Kamath A. Neglected tropical diseases in sub-Saharan Africa: Review of their prevalence, distribution and disease burden. PLoS Negl Trop Dis 2009; 3(8): e412.
4. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet 2014; 383(9936): 2253–64.
5. Gryseels B, Polman K, Clerinx J, Kenstens L. Human Schistosomiasis. Lancet 2006; 368(9541): 1106–18.
6. Hotez PJ, Asojo OA, Adesina AM. Nigeria: “Ground Zero” for the high prevalence neglected tropical diseases. PLoS Negl Trop Dis 2012; 6(7): e1600.
7. Oyibo PG, Uneke CJ, Oyibo IA. Epidemiological determinants of helminthic infections among primary school children in rural swamp rice cultivating communities in Ebonyi State, southeast Nigeria. Afr J Trop Med Biomed Res 2011; 1(2): 54–60.
8. Dawaki S, Al-Mekhlafi HM, Ithoi I, Ibrahim J, Abdul Salami AW, Ahmed A, et al. Prevalence and risk factors of schistosomiasis among Hausa communities in Kano State, Nigeria. Rev Inst Med Trop Sao Paulo 2016; 58(54): 2–9.
9. Schistosomiasis: Progress report 2001–2011 and strategic plan 2012–2020. Geneva: World Health Organization 2013. Available from: http://www.who.int/iris/handle/10665/78074 (Accessed on August 23, 2017).
10. ENVISION: Nigeria work plan; Project Year 6. USA: United States Agency for International Development 2010. Available from: https://www.ntdenvision.org/sites/default/files/docs/nigeria_fy17_py6_envision_wp_external_final_final_jan_11_2017.pdf (Accessed on September 19, 2017).
11. Barendregt JJ, Doi SA. MetaXL User Guide. Version 5.3. Queensland, Australia: EpiGear International Pvt Ltd. 2016. Available from: http://www.epigear.com/index_files/MetaXL%20User%20Guide.pdf (Accessed on September 19, 2017).
12. Anosike JC, Oguwuike UT, Nwoke BEB, Asor JE, Ikpeama CA, Nwosu DC, et al. Studies on vesical schistosomiasis among rural Ezza farmers in the southwestern border of Ebonyi State, Nigeria. Ann Agric Environ Med 2006; 13(1): 13–9.
13. Uneke CJ, Oyibo P, Ugwuoru C, Nwanokwai A, Iloegbunam R. Urinary schistosomiasis among school age children in Ebonyi State, Nigeria. Internet J Lab Med 2006; 2(1): 1–7.
14. Uneke CJ, Egede M. Impact of urinary schistosomiasis on nutritional status of school children in southeastern Nigeria. Internet J Health 2008; 9(1): 1–7.
15. Uwaezuoke JC, Anosike JC, Udøjih OS, Onyeka PIK. Epidemiological and bacteriological studies on vesical schistosomiasis
in Ikwo area, Ebonyi State, Nigeria. *J App Sci Environ Manage* 2008; 12(2): 75–80.

16. Nworie O, Nya O, Anyim C, Okoli CS, Okonkwo EC. Prevalence of urinary schistosomiasis among primary school children in Afikpo north local government area of Ebonyi State. *Ann Bio Res* 2012; 3(8): 3894–7.

17. Elom UO. The prevalence of urinary schistosomiasis among school age children of Central School Okpala in Ikwo local government area of Ebonyi State. *B.Sc. Dissertation*. Ebonyi State University, Ebonyi State, Nigeria. Available from: http://ir.ebsu.edu.ng:8080/ispui/handle/123456789/951 (Accessed on September 20, 2017).

18. Ivoke N, Ivoke ON, Nwani CD, Ekeh FN, Asogwa CN, Atama CI, *et al.* Prevalence and transmission dynamics of *Schistosoma haematobium* infection in a rural community of southwestern Ebonyi State, Nigeria. *Trop Biomed* 2014; 31(1): 1–12.

19. Nwosu DC, Nwachukwu PC, Avoaja DA, Ajero CM, Nwanjo HU, Obegu EI, *et al.* Index of potential contamination for urinary schistosomiasis in Afikpo North L.G.A. Ebonyi State, Nigeria. *European J Biomed Pharm Sci* 2015a; 2(1): 439–50.

20. Ozowara NL, Njoku OO, Odikamnoro OO, Uhuo CA. *Schistosoma haematobium* infection in school children in rural communities of Ebonyi State, Nigeria. *J Pharm Biological Sci* 2015; 10(2): 66–9.

21. Nwosu DC, Obegu EI, Ozim SJ, Ezemla MC, Uduji HI. Prevalence of urinary schistosomiasis infection among primary school pupils in Ezza-North local government area of Ebonyi State. *Int J Curr Microbiol App Sci* 2015; 4(5): 1151–7.

22. Onwe SO, Ani OC, Uhuo CA, Onwe CS, Odikamnoro OO. Studies of urinary schistosomiasis amongst school children in Ebonyi North senatorial district of Ebonyi State, Nigeria. *Int J Trop Dis Health* 2016; 18(1): 1–7.

23. Nworie CJ. Epidemiology and transmission patterns of *Schistosoma haematobium* infections in Central Ebonyi State, Nigeria.Nsuka: Department of Zoology and Environmental Biology, Faculty of Biological Science, University of Nigeria 2017. Available from: http://dspace.unn.edu.ng/bitstream/handle/123456789/3651/Nworie%2C%20Chika%20John.pdf?sequence=1&isAllowed=y (Accessed on September 20, 2017).

24. Elom, IE, Odikamnuro OO, Nnachi AU, Ikeh I, Nkwuda JO. Variability of urine parameters in children infected with *Schistosoma haematobium* in Ukawu community, Onicha LGA Ebonyi State, Nigeria. *Afr J Infect Dis* 2017; 11(2): 10–6.

25. School and health: Nigeria master plan for neglected tropical diseases (NTDs) 2013–2017. Available from: https://www.schoolsandhealth.org/SharedDocument/Downloads/Nigeria Neglected Tropical Disease Control Master Plan 2013.pdf (Accessed on August 23, 2017).

26. *The 19th review of the River Blindness elimination program*, February 24–26, 2015. Atlanta: The Carter Center 2014. Available from: https://www.cartercenter.org/resources/pdfs/news/health_publications/river_blindness/RB-summary-2014.pdf. (Accessed on May 17, 2018).

27. Nwozaku IP. Assessment of millennium development goals in Ebonyi State: A study of some selected local government areas. *Doctoral dissertation*. Nigeria, Ebonyi State University, Ebonyi State. Available from: http://hdl.handle.net/123456789/694/html (Accessed on November 3, 2017).

Correspondence to: Dr Ogochukwu C. Chiamah, Department of Biology/Microbiology/Biotechnology, Faculty of Science, Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria. E-mail: okeke.ogochukwucarol@gmail.com

Received: 10 December 2018 *Accepted in revised form:* 1 March 2019