THEORETICAL ASSESSMENT OF THE DISPARITY IN THE ELECTROSTATIC FORCES BETWEEN TWO POINT CHARGES AND TWO CONDUCTIVE SPHERES OF EQUAL RADII

Kiril Kolikov
Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria

Abstract

The Coulomb’s formula for the force F_C of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force F_C from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity.

In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between F_C and F derived in a preceding work of ours, are employed to generalize the Coulomb’s interactions.

At relatively short distances between the spheres, the Coulomb force F_C, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres.

In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.

Key words: Coulomb’s law, conductive sphere, force of electrostatic interaction between two spheres.

1. Introduction

The formula for the magnitude of Coulomb force $F_C = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^2}$ of electrostatic interaction in vacuum between two point charges Q_1 and Q_2 at a distance R from each other are well known [1], [2]. In reality, interactions take place not between point charges, but between charged bodies of certain geometric form, size and physical structure. It was Maxwell who discovered that electrostatic force between two spheres differed from the electrostatic force between point charges of the same magnitude located at the centres of the spheres [3, Chapter 1]. In his opinion it resulted from the redistribution of charges, due to the mutual electrostatic influence of the spheres. In this way the problem of assessing the deviation of F_C from the actual values of the force F of electrostatic interaction arises, especially at relatively short distances.

Using the capacitance coefficients, Lekner [4], [5], [6] investigate the case of spheres at close-approach and derive expression for the force between two spheres. At that, using
formula (3.4) from [5], he derives the leading term of the force F. If $r_1 = r_2 = r$ and $Q_1 \neq Q_2$ this term is

$$F_L = \frac{1}{4\pi\varepsilon_0} \frac{(Q_1 - Q_2)^2}{2r(R - 2r)} \left[\ln \left(\frac{4r}{R - 2r} \right) + 2\gamma \right].$$

Here $\gamma = 0.577...$ is Euler-Mascheroni’s constant. Those expressions generalize the force formula for obtained by Kelvin [7].

Khair [8] derive analytical expressions for the electrostatic forces on two almost touching nonspherical conductors held at unequal voltages or carrying dissimilar charges in an insulating medium. Each of those conductors is a body of revolution whose surface is defined by the equation $r^n + z^n = a^n$, where r and z are radial and axial cylindrical co-ordinates, respectively, and a and n are parameters that control the particle width and shape.

In the particular case of spheres with $r_1 = r_2 = r$ and $Q_1 \neq Q_2$ for the leading term of the force F he derives formula (17) from [8]

$$F_k = \frac{(Q_1 - Q_2)^2}{16\varepsilon_0\pi r^2} \left(\frac{2r}{R - 2r} \right) \left[\ln \left(\frac{2r}{R - 2r} \right) \right]^{-2}.$$

Khair notes that his formula is not as accurate as Lekner’s.

From formulas (1) and (2) follows that in a close enough distance between the surfaces of the spheres, force F is always a force of attraction.

Using the method of image charges in [9], we were the first to express by infinite sums the exact analytical formula for the force F of electrostatic interaction between two conductive spheres of arbitrary charges Q_1, Q_2 and radii r_1, r_2 (as well as the energy W and the potential V at a given point of the field induced by them). From this general formula for $r_1 = r_2 = 0$, follows the Coulomb’s interaction!

In this paper the problem of determining the divergence in the magnitude of the Coulomb force F_C from the actual values F of electric interaction between two charged conductive spheres of arbitrary charges Q_1, Q_2 and equal non-zero radii ($r_1 = r_2 = r$) is being solved. It is assumed that the force F_C is generated by Q_1 and Q_2 located in the center of the sphere.

With non-zero charges Q_1 and Q_2 of the spheres in [9], [10] we have shown already that $F = F_C L$, where L is dimensionless coefficient. In [11] we have mathematically analyzed the convergence of the coefficient of deviation L.

Here using the formula for L from [9], [10] the possible values of the deviations of F_C from F are investigated by means of graphical analysis for different non-zero charges Q_1 and Q_2 as a function of the ratio of the distance R between the spheres to the sum $2r$ of their radii.
The conclusion of formulas (1) and (2) is refined, as with given like charges \(Q_1 \neq Q_2 \), the accurate values of \(R/2r \) in which \(F \) becomes force of attraction are found.

By introducing another type dimensionless coefficient \(L(0) \) the deviation of \(F_c = 0 \) from \(F \) is studied also in the case when one of the charges is zero. It is proven in this case that with distance increase between spheres \(F \) rapidly decrease virtually to zero values, i.e. it operates at comparatively short distances.

2. Relation between the Coulomb’s force and the electrostatic force between two conductive spheres of equal radii

Let \(S_1 \) and \(S_2 \) are two non-intersecting conductive spheres of equal non-zero radii \(r_1 = r_2 = r \) and arbitrary charges \(Q_1 \) and \(Q_2 \).

If \(R \) is the distance between centers \(O_1 \) and \(O_2 \) of the spheres \(S_1 \) and \(S_2 \) in inertial frame of reference \(J \), then in \([9]\) we put \(\delta = \frac{r}{R} \) and denote:

\[
C_j = \left(\frac{1 + \sqrt{1 - (2\delta)^2}}{2} \right)^{j+1} - \left(\frac{1 - \sqrt{1 - (2\delta)^2}}{2} \right)^{j+1}, \quad j = 0, 1, 2, \ldots
\]

Also:

\[
X = \sum_{m=0}^{\infty} \frac{\delta^{2m}}{C_{2m}}, \quad Y = \sum_{m=0}^{\infty} \frac{\delta^{2m-1}}{C_{2m-1}}.
\]

If the charges of spheres \(S_1 \) and \(S_2 \) are respectively \(Q_1 \neq 0 \) and \(Q_2 \), we can introduce a coefficient \(k = \frac{Q_2}{Q_1} \), representing the ratio of the charges.

2.1. Let \(Q_1 \neq 0 \) and \(Q_2 \neq 0 \), e.g. \(k \neq 0 \).

Then from \([9]\) we find that the image charges are situated at distances \(d'_j \) and \(d''_j \) relative to the centers of spheres \(S_1 \) and \(S_2 \), where \(d'_j = d''_j = d_j = \delta^2 R \frac{C_{j-1}}{C_j}, \quad j = 0, 1, 2, \ldots \)

We put:

\[
L'_0 = \frac{1 + X + kY}{(1 + X)^2 - Y^2}, \quad L''_0 = \frac{1 + X + k^{-1}Y}{(1 + X)^2 - Y^2}
\]

and for \(m = 1, 2, 3, \ldots \)

\[
L'_{2m-1} = -\frac{\delta^{2m-1}}{C_{2m-1}} k L''_0, \quad L'_{2m} = \frac{\delta^{2m}}{C_{2m}} L'_0, \quad L''_{2m-1} = -\frac{\delta^{2m-1}}{C_{2m-1}} k^{-1} L'_0, \quad L''_{2m} = \frac{\delta^{2m}}{C_{2m}} L''_0.
\]

Let \(\delta_j = \frac{d'_j}{R} = \delta^2 \frac{C_{j-1}}{C_j}, \quad j = 0, 1, 2, \ldots \) Then from \([9], \[10]\) we obtain that force \(F \) of electrostatic interaction between two spheres is represented in the form

\[
F = F_c L(k).
\]
Here \(F_C \) is determined for point charges \(Q_1 \) and \(Q_2 \) located respectively in the centers \(O_1 \) and \(O_2 \) of the spheres, and

\[
L(k) = \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \frac{L'_j L''_l}{\left(1-\delta'_j - \delta''_l\right)^2} \quad (k \neq 0)
\]

is dimensionless coefficient of proportionality between \(F \) and \(F_C \).

The coefficients of deviation \(L(k) \) is expressed by two parameters: the ratio of the charges \(k = \frac{Q_2}{Q_1} \neq 0 \), and the ratio \(\delta = \frac{r}{R} \) of the spheres radii to the distance \(R \) between their centers.

2.2. Let \(Q_1 = Q \neq 0 \) and \(Q_2 = 0 \), e.g. \(k = 0 \).

Then deviation coefficients of \(F_C = 0 \) from \(F \) do not exist. In this case in [9] we have shown that, relative to spheres’ centers \(S_1 \) and \(S_2 \), the image charges are situated at distances \(d'_j \) and \(d''_j \), where:

\[
d'_0 = d''_0 = 0, \quad d''_{2m} = \delta^2 R \frac{C_{2m-1}}{C_{2m}}, \quad d''_{2m-1} = \delta^2 R \frac{C_{2m-2}}{C_{2m-1}}, \quad d''_{2m-1} = d''_{2m} = 0,
\]

and

\[
ed'_j = \frac{d'_j}{R} \neq \delta''_j = \frac{d''_j}{R}, \quad j = 1, 2, 3, ...
\]

Furthermore:

\[
L'_0 = \frac{1}{1+X}, \quad L''_0 = \frac{Y}{1+X}, \quad L'_{2m} = \frac{\delta^{2m}}{C_{2m}} L'_0, \quad L''_{2m-1} = -\frac{\delta^{2m-1}}{C_{2m-1}} L'_0, \quad L''_{2m-1} = L''_{2m} = 0.
\]

From these equations, in accord with formulas (7), (9) and (10) from [9], we can derive for the force \(F \):

\[
F = F'_C L(0),
\]

where

\[
F'_C = \frac{Q^2}{4\pi\varepsilon_0 R^2},
\]

and

\[
L(0) = \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \frac{L'_j L''_l}{\left(1-\delta'_j - \delta''_l\right)^2}
\]

is dimensionless coefficient.

The supplementary coefficient \(L(0) \) is only expressed through one parameter: the ratio \(\delta = \frac{r}{R} \) and define deviation of \(F'_C \) from \(F \). Hence, \(L(0) \) can be used for juxtaposing \(F_C \) and \(F \), taking into account the deviation of \(F'_C \) from \(F_C = 0 \).

Let note that with point charges \(r_1 = r_2 = 0 \) i.e. \(\delta'_1 = \delta'_2 = 0 \). It is only in this case, when from formulas (4), (5), (8) and formulas (10) and (13), it follows that \(L(k) = \frac{1}{k} \) \(k \neq 0 \) and \(L(0) = 0 \) \(k = 0 \). Then, according to the formulas (7) and (11) \(F = F'_C \).
Therefore, equations (7) and (11) appear to be generalizations of Coulomb forces!

3. Deviation of the Coulomb’s force from the force of interaction between two spheres with equal radii.

We will determine the deviation of the Coulomb’s force \(F_C \) and the electrostatic force \(F \) between two conducting spheres \(S_1 \) and \(S_2 \) with equal radii \(r_1 = r_2 = r \), charged with charges \(Q_1 \) and \(Q_2 \). To this end we will discuss the possible values, which it takes, according to the formulas (8) and (13), the respective deviation coefficient \(L(k) \) with different values of the real numbers \(k = Q_2/Q_1 \) (\(Q_1 \neq 0 \)).

We will study the non-dimensional coefficient \(L(k) \) depending on the ration of the distance \(R \) between the centers of the spheres \(S_1 \) and \(S_2 \) and the sum \(2r \) of their radii, i.e. depending on \((2\delta)^{-1} \). (By \(2\delta \), \(C_j \) is calculated from formula (3), and hence \(L(k) \) from formulas (8) and (13)). It is known, that for nonintersecting spheres \(R > 2r \), i.e. the distance between the surfaces of the spheres \(R - 2r > 0 \).

Since the spheres’ radii are equal, it is sufficient to discuss \(L(k) \) only with \(-1 \leq k \leq 1\), i.e. when \(|Q_1| \geq |Q_2|\).

We will discuss the two main cases of charged spheres - with unlike and like charges. According to formulas (8) and (13) on Fig. 1, we present the areas for\(L(k) \) with \(-1 \leq k < 0\) and \(0 \leq k \leq 1\), depending on \(R/2r \).

Fig. 1. Areas for \(L(k) \), defined by \(R/2r \), with \(-1 \leq k < 0\) and \(0 \leq k \leq 1\).

It could be seen that \(L(k) > 1 \) for each \(-1 \leq k < 0\) (in the fourth quadrant) and \(L(k) < 1 \) for each \(0 \leq k \leq 1\) (in the first quadrant). From here and from the formulas (7) and (11), it follows that \(F_C \neq F \) for arbitrary values of \(k = Q_2/Q_1 \) and \(R/2r \).

From \(L(k) > 1 \) follows that for unlike charges \(F < F_C < 0 \), and then \(|F_C| < |F| \). Therefore,
for unlike charges the force of attraction between the spheres is greater than the Coulomb force.

We discuss the case \(L(k) < 1 \) in more detail, i.e. regarding spheres charged with different like charges.

According to formula (8), we present on Fig. 2 the areas of \(L(k) \) for \(0 < k < 1 \), defined by \(R/2r \).

![Fig. 2. Areas of \(L(k) \) for \(0 < k < 1 \), defined by \(R/2r \).](image)

Fig. 2 shows that with different like charges \(Q_1 \) and \(Q_2 \), the coefficient \(L(k) \) and hence the force \(F \) change their sign, i.e. \(F \geq 0 \) or \(F < 0 \). By increasing the ratio \(Q_2/Q_1 < 1 \), the values of \(R/2r > 1 \) with which \(L(k) < 0 \) (and hence \(F < 0 \)) decrease. Therefore, for small enough distances \(R - 2r > 0 \) between the surfaces of the spheres \(F < 0 \), while \(F_c > 0 \) for each \(k > 0 \).

For example, \(F < 0 \) with: \(k < 0.59 \) and \(R/2r < 1.01 \); \(k < 0.804 \) and \(R/2r < 1.001 \), \(k < 0.9169 \) and \(R/2r < 1.0001 \), \(k < 0.96741 \) and \(R/2r < 1.00001 \), etc.

This agrees with formula (3.4) from [5], that upon contact of the spheres the force \(F < 0 \). We specify this result as with formula (8) we can find the exact values of \(R/2r \) at which for given positive \(k = Q_2/Q_1 \), \(F \) becomes force of attraction. (Of course, at very close distances between the spheres practically there will be a spark, and there will be no attraction).

We will discuss the cases \(k = 0, \pm 1 \) of the represented areas of \(L(k) \).

Along with \(k = 0, \pm 1 \), the graphics of the coefficients \(L(k) \) with \(k = \pm 1/4, \pm 1/16 \), depending on \(R/2r \), are shown for comparison on Fig. 3.
It is visible that the values of $L(-1)$ and $L(1)$ are the smallest respectively for $k < 0$ and $k > 0$, and $L(-1) > L(1)$ for each $R/2r$. Therefore $|F(-1)| > F(1)$ while for the Coulomb force $|F_C(-1)| = F_C(1)$ is valid.

Since it is calculated that $L(1) \in (0.6; 1)$ and the deviation of F_C from F is the smallest of all values of k, then only with $Q_1 = Q_2$ it could be assumed with certain accuracy that $F_C = F$ for each $R/2r$.

When $k = 0$, i.e. $Q_2 = 0$ it is visible that $L(0) < 0$ with each value of $R/2r$. Hence $F(0) < 0$ while $F_C = 0$ and then $F_C < |F(0)|$. Thus, $F(0)$ is a short-acting force and it is growing very fast when $R/2r \to 1$.

Moreover, the graphs on Fig. 3 show that at close distances, as a result from the values of $L(k)$, F_C significantly deviates from F, as the deviation is bigger for unlike charges.

It is important for the practice to determine when, with a given accuracy, it could be assumed that $F_C = F$. Therefore, based on formula (8), we will determine the values of $k \neq 0$, depending on $R/2r$ which, with the accuracy to the second decimal place, the coefficient $L(k) = 1$.

Fig. 3 Graphics of the coefficients $L(k)$, with different $k = Q_2/Q_1$, depending on $R/2r$.

Fig. 4. Graphics of the relation $k = Q_2/Q_1$ depending on $R/2r$, at $L(k) = 1$.

From the graphics of Fig. 4, it follows that at $R/2r > 4.65$, i.e. for relatively big values of R compared to $2r$, with accuracy to the second decimal place $L(k) = 1$, i.e. $F_C = F$. And at $R/2r \leq 4.65$, $F_C \neq F$ with accuracy to the second decimal place. We can see also that when $k < 0$ and $k > 0$ the two graphics are almost symmetric. For example, when $k = \pm 1/2$ and $R/2r \approx 5$ the coefficient $L(k) = 1$, i.e. $F_C = F$, with accuracy to the second decimal place. Moreover, it is apparent that with increase in modulus of the relation $k \in [-1,1]$ between the charges, there is a decrease of the values of R in relation to $2r$ in the interval $(4.65; +\infty)$, at which $F_C \approx F$. Therefore with $k \to 0$ the deviation of F_C from F is the biggest, as follows from Fig. 3.

Of course, if the accuracy of the study is increased, then $L(k) = 1$ in much bigger values of $R/2r$. But we can always determine it for two spheres, with given equal radii r and charges Q_1 and Q_2, at what distances R compared to $2r$ the electrostatic force F can be assumed to be equal to the Coulomb’s force F_C, caused by these charges in the centers of the spheres.

4. Conclusions and Example

Let S_1 and S_2 be two conducting spheres with equal radii $r_1 = r_2 = r \neq 0$ and arbitrary charges Q_1 and Q_2. Then we can assume, that $k = Q_2/Q_1 \in [-1,1]$ and according to Fig. 1-4, are valid the following important conclusions regarding the deviation of the Coulomb’s force F_C from the real force F, when the distance between S_1 and S_2 is changing.

Conclusions regarding the deviation of F_C from F:

(i) When the values of Q_1 and Q_2 are arbitrary, $F_C \neq F$ holds, as for $R/2r \to 1$ the
deviation of F_C from F grows rapidly.

(ii) With $Q_1 \neq 0$ and $Q_2 \neq 0$:

- For like charges $Q_1 \neq Q_2$, i.e. for $F_C > 0$, the force F changes its sign as with $R/2r \to 1$ the force $F < 0$ and $F_C < |F|$ and for relatively bigger values of $R/2r$ the force $F \geq 0$ and $F_C > F$.
- For unlike charges Q_1 and Q_2, i.e. for $F_C < 0$, the force $F < 0$ and $0 < |F_C| < |F|$. In this case the absolute value of the deviation is bigger than the one for like charges.
- For $Q_1 \to \pm Q_2$, decrease the values of $R/2r$, at which $F_C \approx F$, as for $Q_1 = Q_2$ the force $F > 0$ and the deviation of F_C from F is the smallest.

(iii) With $Q_1 \neq 0$ and $Q_2 = 0$, i.e. for $F_C = 0$, the force $F < 0$ is short-acting, and then $|F_C| < |F|$.

In the next example we graphically compare the values of F_C with the values of F, F_L, and F_K, respectively of formulas (7), (1) and (2), with various non-zero like charges.

Example 1. Graphics of the forces F_C, F, F_L, and F_K for $r_1 = r_2 = 2 \times 10^{-2}$ m and $Q_1 = 16 \times 10^{-9}$ C, $Q_2 = 4 \times 10^{-9}$ C, for $R \in (4,5) \times 10^{-2}$ m.

![Fig. 5 Graphics of F_C, F, F_L, and F_K, depending on $R/2r$, for spheres with radii $r_1 = r_2 = 2 \times 10^{-2}$ m and charges $Q_1 = 16 \times 10^{-9}$ C, $Q_2 = 4 \times 10^{-9}$ C, for $R \in (4,5) \times 10^{-2}$ m.](image_url)

We can see, that F_C substantially deviates from the values of F, F_L, and F_K. For relatively close distance $R = 4.05 \times 10^{-2}$ m between the centers of the spheres, i.e. for $R/2r = 1.0125$, we have $F/F_C = -3.62$, $F_L/F_C = -4.74$ and $F_K/F_C = -9.61$.

The deviation between the spheres is smallest when using our exact analytical formula (7) for F. The differences between the obtained values are due to the inaccuracy of the used
methods for \(F_L \) and \(F_K \). But when the distances are close enough, the values of \(F \) from formula (7) and \(F_L \) from the derived for that purpose formula (1) match.

In the next example about \(Q_1 = Q_2 = Q \) it is not possible to compare the values of \(F/F_C \), \(F_L/F_C \) and \(F_K/F_C \), since the formulas (1) for \(F_L \) and (2) for \(F_K \) are valid only when \(Q_1 \neq Q_2 \). Moreover, \(F_C = F'_C = \frac{Q^2}{4\pi\varepsilon_0 R^2} \) from the formula (12).

Example 2. The graphics of the forces \(F_C \) and \(F \) with \(r_1 = r_2 = 2\times10^{-2} \text{ m} \) and \(Q_1 = Q_2 = 16\times10^{-9} \text{ C} \) for \(R \in (4,5]\times10^{-2} \text{ m} \).

![Fig. 6. Graphics of \(F_C \) and \(F \) with \(r_1 = r_2 = 2\times10^{-2} \text{ m} \) and \(Q_1 = Q_2 = 16\times10^{-9} \text{ C} \) for \(R \in (4,5]\times10^{-2} \text{ m} \)](image)

We can see, that with \(k = 1 \) is fulfilled \(F_C > F > 0 \) but the values of \(F_C \) and \(F \) do not differ significantly, like we mentioned in the third subcase of (ii). Therefore, with certain accuracy with \(Q_1 = Q_2 \) we can assume that \(F_C \approx F \).

5. Discussion

The Coulomb interactions are fundamental in physics. Thus, it is especially important to evaluate the deviation of these idealized interactions from the real electrostatic interactions between conducting bodies. Moreover, this deviation, as determined for spheres in this article,
is significant at small distances between such bodies.

Here, we offer an exact method for determination of the deviation of the Coulomb’s force F_c from the force of interaction F between two conducting spheres with different radii and arbitrary charges Q_1 and Q_2. For the purpose of finding F_c we assume, that Q_1 and Q_2 are located in the centers of the spheres.

With zero $Q_1 \neq Q_2$ precise the statement of Lekner [5], that at very close distances between the surfaces of the spheres, the force F of interaction between the spheres, is always force of attraction. We find the ratio between the radii and the distance between the centers of the two spheres, charged with like charges, at which the force $F < 0$ (when the charges are unlike, always $F < 0$).

We prove in theory, and specify the experimental results for the interaction of the spheres at relatively close and far distances.

In [12] and [13] numerically are studied the electrostatic interactions, respectively between ellipsoids and tori. The results obtained here could also be used, with approximation, for conducting bodies different than spheres, having center of symmetry, as these bodies are approximated to spheres with equivalent surface areas of the discussed bodies.

Particularly interesting are the cases, when $Q_1 \neq 0$, $Q_2 = 0$ and $Q_1 = Q_2 \neq 0$. In the first case we have established that the force F of interaction between the spheres is short-acting, and $|F|$ is significantly larger than the Coulomb’s force $F_c = 0$. In the second case, it turns out that F is not significantly different than F_c and in some studies it could be assumed that $F_c \approx F$. Similar conclusions could be obtained also for the bond energy W between spheres, in relation to the bond energy W_c between point charges.

We use these conclusions in [14], [15], [16], [17], as we find the electrostatic interactions between proton–neutron and proton-proton, modeling them as spheres and tori. Using the established experimental data for nucleons, we obtain that the electrostatic forces between proton – neutron are short-acting, and the bond energy is commensurable to the nuclear, while the forces between proton-proton are long-acting and proportionate to the Coulomb’s forces.

The results obtained in this article can be used also in intermolecular and other electrostatic interactions.

6. Conclusion

The results in this work offer a theoretical evaluation of the deviation of the Coulomb interaction F_c from the real interaction F between two conducting spheres with equal radii $r_1 = r_2 = r$, charged with arbitrary charges Q_1 and Q_2. Moreover, we calculate F_c assuming that Q_1 and Q_2 are located in the centers of the spheres.

When $Q_1 \neq 0$ and $Q_2 \neq 0$, we use the deduced by us exact expression of F through F_c, which is a generalization of the interaction between point charges, i.e. $r_1 = r_2 = 0$. It is established, that if R is the distance between the centers of the spheres with radii $r \neq 0$, then with $R/2r \to 1$ the deviation of F_c from F increases, and at relatively small distances between the surfaces of the spheres it is significant. In this case the Coulomb interactions
cannot be used.

The Coulomb interactions cannot be used also in the case of $Q_1 \neq 0$ and $Q_2 = 0$ we discuss here, in which we find that F is short-acting force.

The article also determines the couple of value $\left(\frac{R}{2r}, \frac{Q_2}{Q_1}\right)$, in which $F_C \approx F$.

If the radii of the spheres are different, then the deviation coefficients will depend on three, and not on two parameters. In this case two of them must be known, in order to analyze the deviation of the forces of interaction F_C from F, as well as the bond energies W_C from W, depending on the distance between their surfaces of the spheres. This analysis can be done using the general formulas for F and W, which we have obtained [9].

Acknowledgments

The author wishes to express his gratitude to the computer specialist Stefan Bozhkov who made the calculations for this paper with Wolfram Mathematica.

References

[1] D. Halliday, R. Resnick, J. Walker, Fundamentals of physics, Wiley, 2010.
[2] W. Rosser, Interpretation of classical electromagnetism, Kluwer Academic Publishers, 2010.
[3] J. Maxwell, A Treatise on electricity and magnetism, Vol. 1, Dover, 1954.
[4] J. Lekner, Capacitance coefficients of two spheres, J Electrostat 69 (2011) 11–14
[5] J. Lekner, Electrostatics of two charged conducting spheres, Proc. R. Soc. A (2012) 468, 2829–2848.
http://dx.doi.org/10.1098/rspa.2012.0133
[6] J. Lekner, Electrostatic force between two conducting spheres at constant potential difference, J. Appl. Phys. 111, 076102 (2012).
http://dx.doi.org/10.1063/1.3702438
[7] W. Thomson, On the mutual attraction or repulsion between two electrified spherical conductors, pp. 86–97. In Reprint of papers on electrostatics and magnetism. London, UK: Macmillan, 1884.
[8] A. Khair, Electrostatic forces on two almost touching nonspherical charged conductors, J. Appl. Phys. 114, 134906 (2013).
http://dx.doi.org/10.1063/1.4824540
[9] K. Kolikov, D. Ivanov, G. Krastev, Y. Epitropov, S. Bozhkov, Electrostatic interaction between two conductive spheres, J Electrostat, 70 (2012) 91-96.
http://dx.doi.org/10.1016/j.elstat.2011.10.008
[10] K. Kolikov, D. Ivanov, G. Krastev, Y. Epitropov, S. Bozhkov, Erratum to “Electrostatic interaction between two conducting spheres”, J Electrostat, 70 (2012) 91-96.
http://dx.doi.org/10.1016/j.elstat.2011.10.008
[11] S. Bozhkov, K. Kolikov, B. Zlatanov, Estimates of the correction coefficient in coulomb's law for electrostatic interaction between two charged conducting spheres, Bulletin of the Transilvania University of Brasov, 8(57), (2015) 1–14.
[12] T. Murovec and C. Brosseau, Electrostatics of two charged conducting ellipsoids,
[13] T. Murovec and C. Brosseau, Numerical simulation of the sign switching of the electrostatic force between charged conducting particles from repulsive to attractive, J. Appl. Phys. 116, 214902 (2014); http://dx.doi.org/10.1063/1.4903289

[14] Kolikov, K., D. Ivanov, and G. Krustev, (2012) Electromagnetic nature of the nuclear forces and a toroid model of nucleons in atomic nuclei. Natural Science, 4, 1, 47-56. http://dx.doi.org/10.4236/ns.2012.41008

[15] Kolikov, K., D. Ivanov, G. Krustev, (2012) Electromagnetic nature of the nuclear forces and toroid structure of the deuteron and triton, Natural Science, 4, 2, 123-130. http://dx.doi.org/10.4236/ns.2012.42018

[16] Kolikov, K., (2012) Electromagnetic nature of nuclear forces and the toroid structure of the helion and the alpha particle, Natural Science, 4, 7, 484-491. http://dx.doi.org/10.4236/ns.2012.47065

[17] Ivanov, D., K. Kolikov, (2013) Short-range action and long-range action of the electrostatic forces within atomic nuclei, Natural Science, 5, 4, 508-513. http://dx.doi.org/10.4236/ns.2013.54064