Low dimensional cohomology of Hom-Lie algebras and q-deformed $W(2, 2)$ algebra

Lamei Yuan†, Hong You‡†
†Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China
‡Department of Mathematics, Suzhou University, Suzhou 200092, China
E-mail: lmyuan@mail.ustc.edu.cn, youhong@suda.edu.cn

Abstract. This paper aims to study the low dimensional cohomology of Hom-Lie algebras and q-deformed $W(2, 2)$ algebra. We show that the q-deformed $W(2, 2)$ algebra is a Hom-Lie algebra. Also, we establish a one-to-one correspondence between the equivalence classes of one dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed $W(2, 2)$ algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras. As application we compute all α^k-derivations and in particular the first cohomology group of the q-deformed $W(2, 2)$ algebra.

Key words: Hom-Lie algebras, q-deformed $W(2, 2)$ algebra, derivation, second cohomology group, first cohomology group.

Mathematics Subject Classification (2000): 17A30, 17A60, 17B68, 17B70.

1. Introduction

The notion of Hom-Lie algebras was initially introduced in [3] motivated by examples of deformed Lie algebras coming from twisted discretizations of vector fields. In this paper we will follow the slightly more general definition of Hom-Lie algebras given by Makhlouf and Silvestrov in [6]. Precisely, a Hom-Lie algebra is a triple $(\mathcal{L}, [\cdot, \cdot], \alpha)$ consisting of a vector space \mathcal{L}, a bilinear map $[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ and a linear map $\alpha : \mathcal{L} \to \mathcal{L}$ such that
\[
[x, y] = -[y, x], \quad \text{(skew-symmetry)}
\]
\[
\circ_{x,y,z} [[x, y], \alpha(z)] = 0, \quad \text{(Hom-Jacobi identity)}
\]
for all $x, y, z \in \mathcal{L}$, and where the symbol $\circ_{x,y,z}$ denotes summation over the cyclic permutation on x, y, z. One sees that the classical Lie algebras recover from Hom-Lie algebras if the twisting map α is the identity map. The Hom-Lie algebras were discussed intensively in [7, 8, 9, 10] while the graded cases were considered in [11, 5, 11]. But the cohomology with values in graded Hom-modules is not very clear. Therefore, one of the aims of the present

1Corresponding author: lmyuan@mail.ustc.edu.cn
paper is to fill this gap.

The $W(2, 2)$ Lie algebra was introduced in [13] for the study of classification of vertex operator algebras generated by vectors of weight 2. It is an extension of the Virasoro algebra. In the following we denote by \mathcal{W} the centerless $W(2, 2)$ Lie algebra, which is an infinite dimensional Lie algebra generated by L_n and $M_n \ (n \in \mathbb{Z})$ satisfying the following Lie brackets

$$[L_m, L_n] = (n - m)L_{m+n}, \ [L_m, M_n] = (n - m)M_{m+n}, \ [M_m, M_n] = 0, \ \text{for} \ m, n \in \mathbb{Z}.$$

In [12] we presented a realization of the centerless $W(2, 2)$ Lie algebra \mathcal{W} by using bosonic and fermionic oscillators. The bosonic oscillator a and its hermitian conjugate a^+ obey the commutation relations:

$$[a, a^+] = aa^+ - a^+a = 1, \ [1, a^+] = [1, a] = 0. \quad (1.1)$$

It follows by induction on n that

$$[a, (a^+)^n] = n(a^+)^{n-1}, \ \text{for all} \ \ n \in \mathbb{Z}.$$

The fermionic oscillators b and b^+ satisfy the anticommutators

$$\{b, b^+\} = bb^+ + b^+b = 1, \quad b^2 = (b^+)^2 = 0. \quad (1.2)$$

Moreover, we set $[a, b] = [a, b^+] = [a^+, b] = [a^+, b^+] = 0$.

Lemma 1.1 ([12]) With notations above. The generators of the form

$$L_n \equiv (a^+)^{n+1}a, \quad M_n \equiv (a^+)^{n+1}b^+a, \ \text{for all} \ n \in \mathbb{Z}, \quad (1.3)$$

realize the centerless $W(2, 2)$ Lie algebra \mathcal{W} under the commutator

$$[A, B] = AB - BA, \ \text{for all} \ A, B \in \mathcal{W}.$$

Now fix a nonzero $q \in \mathbb{C}$ such that q is not a root of unity. We introduce the following notation

$$[A, B]_{(\alpha, \beta)} = \alpha AB - \beta BA,$$

and the q-number

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}.$$
It is clear to see that \([-n]_q = -[n]_q\). Furthermore, one can deduce that \(q^n[m]_q - q^m[n]_q = [m - n]_q,\ q^{-n}[m]_q + q^m[n]_q = [m + n]_q\).\hspace{1cm} (1.4)\]

Then the generators \(L_n\) and \(M_n\) \((n \in \mathbb{Z})\) satisfy the following \(q\)-brackets:

\[
\begin{align*}
[L_n, L_m](q^{n-m}, q^{m-n}) &= [m - n]_q L_{m+n}, \\
[L_n, M_m](q^{n-m}, q^{m-n}) &= [m - n]_q M_{m+n}, \\
[M_n, M_m](q^{n-m}, q^{m-n}) &= 0,
\end{align*}
\]

for all \(m, n \in \mathbb{Z}\). We call this algebra the \(q\)-deformed \(W(2, 2)\) algebra, which is the second object considered in this paper. In the following we will denote \(q\)-deformed \(W(2, 2)\) algebra by \(\mathcal{W}_q\) and simply write the \(q\)-bracket as \([\cdot, \cdot]_q\). In [12] we determined quantum groups and one dimensional central extensions of \(\mathcal{W}_q\). In this paper, we will study its low dimensional cohomology theory. That is the second aim of this paper.

Throughout this paper, \(\mathbb{C}\) denotes the field of complex numbers and \(\mathbb{Z}\) denotes the set of all integers. All vector spaces and algebras are assumed to be over \(\mathbb{C}\).

2. Second cohomology group

In this section, we first recall some basic definitions and in particular central extension of Hom-Lie algebras. Then we establish a one-to-one correspondence between the equivalence classes of one dimensional central extensions of a Hom-Lie algebra and its second cohomology group with coefficients in \(\mathbb{C}\). As application we determine the second cohomology group of the \(q\)-deformed \(W(2, 2)\) algebra which is considered as a Hom-Lie algebra.

In the sequel we will often simply write a Hom-Lie algebra \((\mathcal{L}, [\cdot, \cdot], \alpha)\) as \((\mathcal{L}, \alpha)\). A Hom-Lie algebra \((\mathcal{L}, \alpha)\) is said to be \(multiplicative\) if the twisting map \(\alpha\) is an endomorphism. Let \(G\) be an abelian group. A Hom-Lie algebra \((\mathcal{L}, \alpha)\) is said to be \(G\)-\(graded\), if its underlying vector space is \(G\)-graded (i.e., \(\mathcal{L} = \oplus_{g \in G} \mathcal{L}_g\)) satisfying \([\mathcal{L}_g, \mathcal{L}_h] \subseteq \mathcal{L}_{g+h}\), and if \(\alpha\) is an even map, i.e., \(\alpha(\mathcal{L}_g) \subseteq \mathcal{L}_g\), for all \(g, h \in G\).

The theory of central extensions of Hom-Lie algebras was studied in [3, 4]. An \(extension\) of a Hom-Lie algebra \((\mathcal{L}, \zeta)\) by an abelian Hom-Lie algebra \((\mathfrak{a}, \zeta_a)\) is a commutative diagram with exact rows

\[
\begin{array}{cccc}
0 & \rightarrow & \mathfrak{a} & \xrightarrow{i} & \hat{\mathcal{L}} & \xrightarrow{\text{pr}} & \mathcal{L} & \rightarrow & 0 \\
& & \downarrow{\zeta_a} & & \downarrow{\zeta} & & \downarrow{\zeta} & & \\
0 & \rightarrow & \mathfrak{a} & \xrightarrow{i} & \hat{\mathcal{L}} & \xrightarrow{\text{pr}} & \mathcal{L} & \rightarrow & 0
\end{array}
\]
where \((\hat{L}, \hat{\zeta})\) is a Hom-Lie algebra. The extension is central if
\[
\iota(a) \subseteq Z(\hat{L}) = \{x \in \hat{L} \mid [x, \hat{L}] = 0\}.
\]

In the following we focus on the central extension of \((L, \alpha)\) by a one-dimensional center \(C\), where \(c = \iota(1)\). Note that the center \(C\) can be considered as the one-dimensional trivial Hom-Lie algebra with the identity map.

Definition 2.1 Let \((L, \alpha)\) be a Hom-Lie algebra. A bilinear map \(\psi : L \times L \rightarrow C\) is called a 2-cocycle on \(L\) if the following conditions are satisfied
\[
\begin{align*}
\psi(x, y) &= -\psi(y, x), \\
\psi(\alpha(x), [y, z]) + \psi(\alpha(y), [z, x]) + \psi(\alpha(z), [x, y]) &= 0,
\end{align*}
\]
for all \(x, y, z \in L\).

Now we have the following theorem:

Theorem 2.2 Let \((L, \alpha)\) be a Hom-Lie algebra and \(\psi : L \times L \rightarrow C\) be a bilinear map. Define on the vector space \(\hat{L} = L \oplus C\) the following bracket and linear map by
\[
\begin{align*}
[x + c, y + b]_{\hat{L}} &= [x, y]_L + \psi(x, y), \\
\hat{\alpha}(x + c) &= \alpha(x) + c,
\end{align*}
\]
for all \(x, y \in L\) and \(c, b \in C\). Then \((\hat{L}, [\cdot, \cdot]_{\hat{L}}, \hat{\alpha})\) is a Hom-Lie algebra one dimensional central extension of \((L, \alpha)\) if and only if \(\psi\) is a 2-cocycle on \((L, \alpha)\). If, in addition, \((L, \alpha)\) is multiplicative and \(\psi\) satisfies \(\psi(\alpha(x), \alpha(y)) = \psi(x, y)\), for all \(x, y \in L\), then the Hom-Lie algebra \((\hat{L}, \hat{\alpha})\) is also multiplicative.

Proof. Since \([\cdot, \cdot]_L\) is skew-symmetric, the new bracket \([\cdot, \cdot]_{\hat{L}}\) is skew-symmetric if and only if the map \(\psi\) is skew-symmetric. For any \(x, y, z \in L\) and \(a, b, c \in C\), we have
\[
[\hat{\alpha}(x + a), [y + b, z + c]_{\hat{L}}]_{\hat{L}} = [\alpha(x) + a, [y, z]_L + \psi(y, z)]_{\hat{L}} = [\alpha(x), [y, z]_L + \psi(\alpha(x), [y, z]_L)].
\]
Consequently,
\[
[\hat{\alpha}(x + a), [y + b, z + c]_{\hat{L}}]_{\hat{L}} + [\hat{\alpha}(y + b), [z + c, x + a]_{\hat{L}}]_{\hat{L}} + [\hat{\alpha}(z + c), [x + a, y + b]_{\hat{L}}]_{\hat{L}} = 0
\]
if and only if

\[\psi(\alpha(x), [y, z]_\mathcal{L}) + \psi(\alpha(y), [z, x]_\mathcal{L}) + \psi(\alpha(z), [x, y]_\mathcal{L}) = 0, \]

which proves \((\hat{\mathcal{L}}, [\cdot, \cdot]_\mathcal{L}, \hat{\alpha})\) is a Hom-Lie algebra if and only if \(\psi\) is a 2-cocycle on \((\mathcal{L}, \alpha)\).

If \((\mathcal{L}, \alpha)\) is multiplicative, then we have

\[\hat{\alpha}([x + a, y + b]_\mathcal{L}) = \hat{\alpha}([x, y]_\mathcal{L} + \psi(x, y)) \]

\[= \alpha([x, y]_\mathcal{L}) + \psi(x, y) \]

\[= [\alpha(x), \alpha(y)]_\mathcal{L} + \psi(x, y). \]

On the other hand, we have

\[[\hat{\alpha}(x + a), \hat{\alpha}(y + b)]_\mathcal{L} = [\alpha(x) + a, \alpha(y) + b]_\mathcal{L} \]

\[= [\alpha(x), \alpha(y)]_\mathcal{L} + \psi(\alpha(x), \alpha(y)). \]

According to the hypothesis that \(\psi(\alpha(x), \alpha(y)) = \psi(x, y)\) for all \(x, y \in \mathcal{L}\), we have

\[\hat{\alpha}([x + a, y + b]_\mathcal{L}) = [\hat{\alpha}(x + a), \hat{\alpha}(y + b)]_\mathcal{L}, \text{ for all } x, y \in \mathcal{L}, a, b \in \mathbb{C}, \]

which shows that \((\hat{\mathcal{L}}, \hat{\alpha})\) is multiplicative.

Finally, we define \(\text{pr}\) and \(\iota\) as the natural projection and inclusion respectively by

\[\text{pr} : \hat{\mathcal{L}} \rightarrow \mathcal{L}, \quad \text{pr}(x + a) = x; \]

\[\iota : \mathbb{C} \rightarrow \hat{\mathcal{L}}, \quad \iota(a) = 0 + a. \]

Then it is easy to show that \((\hat{\mathcal{L}}, \hat{\alpha})\) is a one-dimensional central extension of \((\mathcal{L}, \alpha)\). \(\square\)

Denote by \(Z^2(\mathcal{L}, \mathbb{C})\) the vector space of all 2-cocycles on a Hom-Lie algebra \((\mathcal{L}, \alpha)\). For any linear map \(f : \mathcal{L} \rightarrow \mathbb{C}\), we can define a 2-cocycle \(\psi_f\) by

\[\psi_f(x, y) = f([x, y]), \text{ for all } x, y \in \mathcal{L}. \quad \text{(2.5)} \]

Such a 2-cocycle is called a 2-coboundary or a trivial 2-cocycle on \(\mathcal{L}\). Let \(B^2(\mathcal{L}, \mathbb{C})\) denote the vector space of all 2-coboundaries on \(\mathcal{L}\). The quotient space

\[H^2(\mathcal{L}, \mathbb{C}) = Z^2(\mathcal{L}, \mathbb{C})/B^2(\mathcal{L}, \mathbb{C}) \]

is called the second cohomology group of \(\mathcal{L}\) with trivial coefficients \(\mathbb{C}\). A 2-cocycle \(\psi\) is said to be equivalent to another 2-cocycle \(\phi\) if \(\psi - \phi\) is trivial. For a 2-cocycle \(\psi\), let \([\psi]\) be the equivalent class of \(\psi\). Then we have the following corollary:
Corollary 2.3 For any Hom-Lie algebra \((L, \alpha)\), there exists a one-to-one correspondence between the equivalence classes of one dimensional central extensions of \((L, \alpha)\) and its second cohomology group \(H^2(L, \mathbb{C})\).

In the following, we consider the \(q\)-deformed \(W(2, 2)\) algebra \(W_q\). Note that \(W_q\) is not a Lie algebra, because the classical Jacobi identity does not hold (but the antisymmetry is true). By straightforward calculations, we have

\[(q^l + q^{-l})\left(\left[L_m, L_n \right]_{q^{m-n}, q^{n-m}}, L_l \right)_{(q^{m+n-l}, q^{l-m-n})} + \text{cyclic permutations} = 0,\]
\[(q^l + q^{-l})\left(\left[L_m, L_n \right]_{q^{m-n}, q^{n-m}}, M_l \right)_{(q^{m+n-l}, q^{l-m-n})} + \text{cyclic permutations} = 0.\]
(2.6)

(2.7)

Define on \(W_q\) a linear map \(\alpha\) by

\[\alpha(L_n) = (q^n + q^{-n})L_n, \quad \alpha(M_n) = (q^n + q^{-n})M_n.\]

Then, using the \(q\)-deformed Jacobi identities (2.6) and (2.7), we obtain the following result.

Theorem 2.4 The triple \((W_q, [\cdot, \cdot]_q, \alpha)\) forms a Hom-Lie algebra.

In [12] we provided a computation of one-dimensional central extensions of \(W_q\). Hence, according to Corollary 2.3, we can determine the second cohomology group of the \(q\)-deformed \(W(2, 2)\) algebra \(W_q\) as follows:

Proposition 2.5 \(H^2(W_q, \mathbb{C}) = \mathbb{C}\beta \oplus \mathbb{C}\gamma\), where

\[\beta(L_m, L_n) = \delta_{m,-n} \frac{[m-1]_q [m]_q [m+1]_q}{[2]_q [3]_q \langle m \rangle_q}, \quad \beta(L_m, M_n) = \beta(M_m, L_n) = 0,\]

\[\gamma(L_m, M_n) = \delta_{m,-n} \frac{[m-1]_q [m]_q [m+1]_q}{[2]_q [3]_q \langle m \rangle_q}, \quad \gamma(L_m, L_n) = \gamma(M_m, M_n) = 0,\]

and where \(\langle m \rangle_q = q^m + q^{-m}\), for all \(m, n \in \mathbb{Z}\).

3. Derivations of Hom-Lie algebras and \(q\)-deformed \(W(2, 2)\) Lie algebra

This section is devoted to discuss derivations of graded Hom-Lie algebras. We extend to Hom-Lie algebras some concepts and results of derivations of finitely generated Lie algebras with values in graded modules studied in [2]. As application we compute all \(\alpha^k\)-derivations and particularly the first cohomology group of the \(q\)-deformed \(W(2, 2)\) algebra.
Definition 3.1 Let \mathcal{L}, α be a Hom-Lie algebra. A representation of \mathcal{L} is a triple (V, ρ, β), where V is a \mathbb{C}-vector space, $\beta \in \text{End}(V)$ and $\rho : \mathcal{L} \rightarrow \text{End}(V)$ is a \mathbb{C}-linear map satisfying
\[
\rho([x, y]) \circ \beta = \rho(\alpha(x)) \circ \rho(y) - \rho(\alpha(y)) \circ \rho(x),
\]
for all $x, y \in \mathcal{L}$. V is also called a Hom-\mathcal{L}-module, denoted by (V, β) for convenience.

One recovers the definition of a representation in the case of Lie algebras by setting $\alpha = \text{id}_\mathcal{L}$ and $\beta = \text{id}_V$. For any $x \in \mathcal{L}$, define $\text{ad} : \mathcal{L} \rightarrow \text{End}(\mathcal{L})$ by $\text{ad}_x(y) = [x, y]$ for all $y \in \mathcal{L}$. Then $(\mathcal{L}, \text{ad}, \alpha)$ is a representation of \mathcal{L}, which is called the adjoint representation of \mathcal{L}.

Definition 3.2 Let (V, β_V) and (W, β_W) be two Hom-\mathcal{L}-modules. A linear map $f : V \rightarrow W$ is called a morphism of Hom-\mathcal{L}-modules if it satisfies
\[
f \circ \beta_V = \beta_W \circ f,
f(x \cdot v) = x \cdot f(v),
\]
for all $x \in \mathcal{L}$, $v \in V$.

Let G be an abelian group, $(\mathcal{L} = \bigoplus_{g \in G} \mathcal{L}_g, [\cdot, \cdot], \alpha)$ be a G-graded Hom-Lie algebra. An Hom-\mathcal{L}-module V is said to be G-graded if $V = \bigoplus_{g \in G} V_g$ and $\mathcal{L}_g V_h \subseteq V_{g+h}$ for all $g, h \in G$. For any nonnegative integer k, denote by α^k the k-times composition of α, i.e.,
\[
\alpha^k = \alpha \circ \alpha \circ \cdots \circ \alpha.
\]
In particular, $\alpha^0 = \text{id}$ and $\alpha^1 = \alpha$. Then we can define α^k-derivations of \mathcal{L} with values in its Hom-\mathcal{L}-modules.

Definition 3.3 A linear map $D : \mathcal{L} \rightarrow V$ is called an α^k-derivation if it satisfies
\[
D \circ \alpha = \alpha \circ D,
D[x, y] = \alpha^k(x) \cdot D(y) - \alpha^k(y) \cdot D(x),
\]
for all $x, y \in \mathcal{L}$.

We recover the definition of a derivation by setting $k = 0$ in the definition above. Hence, an α^0-derivation is often simply called a derivation in the present paper. We say that an α^k-derivation D has degree g (denoted by $\text{deg}(D) = g$) if $D \neq 0$ and $D(\mathcal{L}_h) \subseteq V_{g+h}$ for any $h \in G$. Let D be an α^k-derivation. If there exists $v \in V$ such that $D(x) = \alpha^k(x) \cdot v$ for all $x \in \mathcal{L}$, then D is called an inner α^k-derivation. Denote by $\text{Der}_{\alpha^k}(\mathcal{L}, V)$ and $\text{Inn}_{\alpha^k}(\mathcal{L}, V)$ the
space of α^k-derivations and the space of inner α^k-derivations, respectively. In particular, let $\text{Der}(\mathcal{L}, V)$ and $\text{Inn}(\mathcal{L}, V)$ denote the space of derivations and the space of inner derivations, respectively, and write $\text{Der}(\mathcal{L}, V)_g := \{ D \in \text{Der}(\mathcal{L}, V) \mid \deg(D) = g \} \cup \{0\}$. The first cohomology group of \mathcal{L} with coefficients in V is defined by

$$H^1(\mathcal{L}, V) := \frac{\text{Der}(\mathcal{L}, V)}{\text{Inn}(\mathcal{L}, V)}. \quad (3.2)$$

Remark 3.4 The set $\text{Der}_{\alpha^k}(\mathcal{L}, V)$ (resp. $\text{Inn}_{\alpha^k}(\mathcal{L}, V)$) is not close under map composition or commutator bracket. But the space of all such α^k-derivations $\oplus_{k \geq 0} \text{Der}_{\alpha^k}(\mathcal{L}, V)$ (resp. $\oplus_{k \geq 0} \text{Inn}_{\alpha^k}(\mathcal{L}, V)$) form an Lie algebra via commutator bracket.

Now let \mathcal{L} be a G-graded Hom-Lie algebra which is finitely generated. In the following we present two results, which can be seen as Hom versions of those obtained in [2].

Proposition 3.5 Let V be a G-graded Hom-\mathcal{L}-module. For every $D \in \text{Der}(\mathcal{L}, V)$, we have

$$D = \sum_{g \in G} D_g, \quad (3.3)$$

where $D_g \in \text{Der}(\mathcal{L}, V)_g$ and where there are only finitely many $D_g(u) \neq 0$ in the equation $D(u) = \sum_{g \in G} D_g(u)$, for any $u \in \mathcal{L}$.

Proof. For any $g \in G$, define a homogeneous linear map $D_g : \mathcal{L} \to V$ as follows: for any $u \in L_h$ with $h \in G$, write $D(u) = \sum_{p \in G} u_p$ with $u_p \in V$, then set $D_g(u) = u_{g+h}$. Clearly, D_g is well defined and $D_g \in \text{Der}(\mathcal{L}, V)_g$. Also, (3.3) is true. \square

Proposition 3.6 Let V be a G-graded Hom-\mathcal{L}-module such that

(a) $H^1(\mathcal{L}_0, V_g) = 0$, for $g \in G \setminus \{0\}$.

(b) $\text{Hom}_{\mathcal{L}_0}(\mathcal{L}_g, V_h) = 0$, for $g \neq h$.

Then

$$\text{Der}(\mathcal{L}, V) = \text{Der}(\mathcal{L}, V)_0 + \text{Inn}(\mathcal{L}, V).$$

Proof. Let D be a derivation from \mathcal{L} into its Hom-\mathcal{L}-module V. According to (3.3) we can decompose D into its homogeneous components $D = \sum_{g \in G} D_g$ with $D_g \in \text{Der}(\mathcal{L}, V)_g$. Suppose that $g \neq 0$. Then $D_g|_{\mathcal{L}_0}$ is a derivation from \mathcal{L}_0 into the Hom-\mathcal{L}_0-module V_g. By virtue of (a), $D_g|_{\mathcal{L}_0}$ is inner, i.e., there exists $v_g \in V_g$ such that $D_g(u) = u \cdot v_g$ for all $u \in \mathcal{L}_0$. Consider $\psi_g : \mathcal{L} \to V$ defined by $\psi_g(x) := D_g(x) - x \cdot v_g$ for all $x \in \mathcal{L}$. Then ψ_g is a derivation.
of degree g which vanishes on L_0. Hence ψ_q is a morphism of Hom-L_0-modules and condition (b) entails the vanishing of ψ_q on L_h for every $h \in G$. Consequently, $D_q \in \text{Inn}(L, V)$, which completes the proof.

In the following we focus on the q-deformed $W(2,2)$ algebra W_q as a Hom-Lie algebra $(W_q, [,], \alpha)$ defined in Theorem 2.4. Obviously, W_q is \mathbb{Z}-graded by

$$W_q = \bigoplus_{n \in \mathbb{Z}} W_q^n,$$

where $W_q^n = \text{span}_\mathbb{C}\{L_n, M_n\}$.

Note that $\mathcal{M} := \text{span}_\mathbb{C}\{M_n\}$ is an ideal of (W_q, α), or in other words, \mathcal{M} is an adjoint Hom-W_q-module. In addition, W_q is finitely generated by $\{L_1, L_{-1}, M_1\}$. Let D be an α^k-derivation of W_q. For all $m, n \in \mathbb{Z}$, we have

$$(q^m + q^{-m})^k[D(L_n), L_m] + (q^n + q^{-n})^k[L_n, D(L_m)]_q = [m - n]D(L_{m+n}), \quad (3.4)$$

$$(q^m + q^{-m})^k[D(L_n), M_m] + (q^n + q^{-n})^k[L_n, D(M_m)]_q = [m - n]D(M_{m+n}). \quad (3.5)$$

Now we aim to determine all α^k-derivation of W_q. First, we compute the (α^0)-derivations of W_q. Denote by $\text{Der}(W_q)$ and $\text{Inn}(W_q)$ the set of all derivations and the set of all inner derivations, respectively. Let $\text{Der}(W_q)_m$ be the set of derivations of degree m.

Lemma 3.7 $H^1(W_q^0, W_q^m) = 0$ for any nonzero integer n.

Proof. Note that $[L_0, X_0]_q = 0$, for any $X_0 \in W_q^0 = \text{span}\{L_0, M_0\}$. Let D be any element in $\text{Der}(W_q^0, W_q^m)$. Then it follows $D(L_0) \in W_q^m$. Applying D to $[L_0, X_0]_q = 0$, we have $[n]D(X_0) = [L_0, D(X_0)] = [X_0, D(L_0)]$. Consequently, $D(X_0) = [X_0, v]$ with $v = \frac{1}{m}D(L_0)$ in W_q^n. In other words, D is an inner derivation from W_q^0 into its adjoint module W_q^n. \hfill \square

Lemma 3.8 $\text{Hom}_{W_q^0}(W_q^m, W_q^n) = 0$ for $m \neq n$.

Proof. Let $f \in \text{Hom}_{W_q^0}(W_q^m, W_q^n)$ with $m \neq n$. For any $X_m \in W_q^m$, we have

$$(q^n + q^{-n})(f(X_m)) = \alpha(f(X_m)) = f(\alpha(X_m)) = (q^m + q^{-m})f(X_m),$$

leading to $f(X_m) = 0$, since $m \neq n$. Hence, $f = 0$. \hfill \square

Now according to Proposition 3.6, we have the following result:

Proposition 3.9 $\text{Der}(W_q) = \text{Der}(W_q)_0 + \text{Inn}(W_q)$.

9
Thanks to Proposition 3.9, the study of $\text{Der}(\mathcal{W}_q)$ reduces to that of its constituent of degree zero. Let D be an element of $\text{Der}(\mathcal{W}_q)_0$. For any integer n, assume that

$$D(L_n) = a_n L_n + b_n M_n, \quad D(M_n) = c_n L_n + d_n M_n, \quad (3.6)$$

where the coefficients are complex numbers. Applying D to $[L_0, L_n]_q = [n]_q L_n$, one can obtain $D(L_0) = 0$, i.e., $a_0 = b_0 = 0$. Using (3.4), we have

$$a_{m+n} = a_m + a_n, \quad b_{m+n} = b_m + b_n, \quad \text{for } m \neq n.$$

Let $m = -n$. Then we have

$$a_{-m} = -a_m, \quad b_{-m} = -b_m, \quad \text{for } m \neq 0.$$

Furthermore, we have

$$a_m = ma_1, \quad b_m = mb_1, \quad \text{for all } m \in \mathbb{Z}.$$

Similarly, using (3.5) we have

$$c_{m+n} = c_n, \quad d_{m+n} = a_m + d_n, \quad \text{for } m \neq n,$$

from which it follows

$$c_m = c_0, \quad d_m = ma_1 + d_0, \quad \text{for all } m \in \mathbb{Z}.$$

Applying D to $[M_1, M_0] = 0$, we have $c_0 = 0$. It follows that $c_m = 0$ for all $m \in \mathbb{Z}$. Hence, there exist $a, b, d \in \mathbb{C}$ such that

$$D(L_n) = n(aL_n + bM_n), \quad D(M_n) = (na + d)M_n, \quad \text{for all } n \in \mathbb{Z}. \quad (3.7)$$

From the discussions above we obtain the following result:

Proposition 3.10 All the derivations of \mathcal{W}_q is

$$\text{Der}(\mathcal{W}_q) = \text{span}_\mathbb{C}\{D\} \oplus \text{Inn}(\mathcal{W}_q),$$

where D is defined by (3.7).

Corollary 3.11 The first cohomology group of \mathcal{W}_q with values in its adjoint module is one-dimensional.
Next we compute the α^1-derivations of \mathcal{W}_q. Let D be an α^1-derivation of degree s. Assume that
\[D(L_n) = a_{s,n}L_{n+s} + b_{s,n}M_{n+s}, \quad D(M_n) = c_{s,n}L_{n+s} + d_{s,n}M_{n+s}, \]
where the coefficients are complex numbers. Then from equation (3.4) we obtain
\[[m - n]_q a_{s,mn} = (q^m + q^{-m})[m - s - n]_q a_{s,n} + (q^n + q^{-n})[m + s - n]_q a_{s,m}, \tag{3.8} \]
\[[m - n]_q b_{s,mn} = (q^m + q^{-m})[m - s - n]_q b_{s,n} + (q^n + q^{-n})[m + s - n]_q b_{s,m}. \tag{3.9} \]
We first consider the case of $s \neq 0$. Taking $m = 0$ in (3.8), we have
\[(2[s + n]_q - [n]_q) a_{s,n} = (q^n + q^{-n})[s - n]_q a_{s,0}. \]
Furthermore,
\[a_{s,n} = \frac{(q^n + q^{-n})[s - n]_q}{(2[s + n]_q - [n]_q)} a_{s,0}. \tag{3.10} \]
Plugging (3.10) into (3.8), we have
\[\frac{(q^{m+n} + q^{-m-n})[m - n]_q [s - m - n]_q}{2[s + m + n]_q - [m + n]_q} a_{s,0} = \frac{(q^m + q^{-m})(q^n + q^{-n})[m - s - n]_q [s - n]_q a_{s,0}}{2[s + n]_q - [n]_q} + \frac{(q^m + q^{-m})(q^n + q^{-n})[m + s - n]_q [s - m]_q}{2[s + m]_q - [m]_q} a_{s,0}. \]
Let $m = s$ in the equation above, we have
\[\frac{(q^{s+n} + q^{-s-n})[s - n]_q [-n]_q}{2[2s + n]_q - [s + n]_q} a_{s,0} = \frac{(q^s + q^{-s})(q^n + q^{-n})[s - n]_q [-n]_q}{2[s + n]_q - [n]_q} a_{s,0}. \tag{3.11} \]
Then taking $n = -s$ in (3.11), we get
\[\frac{[2s]_q [s]_q}{[s]_q} a_{s,0} = \frac{(q^s + q^{-s})^2 [2s]_q [s]_q}{[s]_q} a_{s,0}. \]
It follows $a_{s,0} = 0$ since $s \neq 0$. Then we have $a_{s,n} = 0$ for $n \in \mathbb{Z}$ and $s \neq 0$ by (3.10).
Similarly, from (3.9) we can deduce that $b_{s,n} = 0$ for $s \neq 0$ and $n \in \mathbb{Z}$.

In the case of $s = 0$, we simply write $a_{0,n}$ as a_n. Then it can be deduced from (3.8) that
\[a_{m+n} = (q^m + q^{-m})a_n + (q^n + q^{-n})a_m, \text{ for } m \neq n. \tag{3.12} \]
Let $m = 0$ in (3.12), we have

$$a_n = -(q^n + q^{-n})a_0,$$ \hspace{1cm} (3.13)

which implies $a_n = a_{-n}$ for $n > 0$. Taking $m = -n$ in (3.12), we have

$$a_0 = (q^n + q^{-n})(a_n + a_{-n}).$$ \hspace{1cm} (3.14)

Substituting (3.13) into (3.14), we have $a_0 = 0$ and $a_n = 0$ for all $n \in \mathbb{Z}$. Similarly, we can deduce that $b_{0,m} = 0$ for all $m \in \mathbb{Z}$ by using (3.9) where $s = 0$. Hence, we have proved that

$$a_{s,m} = b_{s,m} = 0,$$ \hspace{1cm} for all $m, s \in \mathbb{Z},$

or, in other words, we get $D(L_m) = 0$ for $m \in \mathbb{Z}$.

It remains to determine $D(M_n)$ for all $n \in \mathbb{Z}$. Using $D(L_n) = 0$, we can deduce from (3.5) that

$$[m - n]_q c_{s,m+n} = (q^n + q^{-n})[m + s - n]_q c_{s,m},$$ \hspace{1cm} (3.15)

$$[m - n]_q d_{s,m+n} = (q^n + q^{-n})[m + s - n]_q d_{s,m}.$$ \hspace{1cm} (3.16)

Let $m = 0$ in (3.15) and (3.16), respectively. We have

$$-[n]_q c_{s,n} = (q^n + q^{-n})[s - n]_q c_{s,0},$$ \hspace{1cm} (3.17)

$$-[n]_q d_{s,n} = (q^n + q^{-n})[s - n]_q d_{s,0}.$$ \hspace{1cm} (3.18)

Taking $n = 0$ in (3.15) and (3.16), respectively, one has

$$[m]_q c_{s,m} = 2[m + s]_q c_{s,m},$$ \hspace{1cm} (3.19)

$$[m]_q d_{s,m} = 2[m + s]_q d_{s,m}.$$ \hspace{1cm} (3.20)

Taking $m = 0$ in (3.19) and (3.20), respectively, we have $c_{s,0} = d_{s,0} = 0$ for $s \neq 0$. Then it follows from (3.17) (resp. (3.18)) that $c_{s,n} = 0$ (resp. $d_{s,n} = 0$) for $n \in \mathbb{Z}$ and $s \neq 0$.

If $s = 0$, then it follows from (3.15) that

$$[m - n]_q c_{0,m+n} = (q^n + q^{-n})[m - n]_q c_{0,m}.$$ \hspace{1cm} (3.21)

Let $n = 0$ in (3.21), we have $[m]_q c_{0,m} = 2[m]_q c_{0,m}$. It follows that $c_{0,m} = 0$ for $m \neq 0$. Taking $n = -m$ in (3.21), we have $[2m]_q c_{0,0} = (q^m + q^{-m})[2m]_q c_{0,m}$, leading us to $c_{0,0} = 0$. Similarly, we can deduce from (3.16) that $d_{0,m} = 0$ for all $m \in \mathbb{Z}$. Thereby, the following proposition is proved.
Proposition 3.12 If D is an α^1-derivation of W_q, then $D = 0$.

With the similar discussions as above, we can compute α^k-derivations of W_q for $k > 1$ and thus we have all the α^k-derivations of W_q for $k > 0$ determined.

Proposition 3.13 For $k > 0$, all the α^k-derivations of W_q are zero.

References

[1] F. Ammar, A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, *J. Algebra*, 324(7) (2010), 1513–1528.

[2] R. Farnsteiner, Derivations ans central extensions of finitely generated graded Lie algebras, *J. Algebra*, 118 (1988), 33–45.

[3] J.T. Hartwig, D. Larsson, S.D. Silvestrov, Deformations of Lie algebras using σ-derivation, *J. Algebra*, 295(2006), 314–361.

[4] D. Larsson, S.D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, *J. Algebra*, 288(2005), 321–344.

[5] D. Larsson, S.D. Silvestrov, Graded quasi-Lie agebras, *Czechoslovak J. Phys.*, 55 (2005), 1473–1478.

[6] A. Makhlouf, S.D. Silvestrov, Hom-algebra structures, *J. Gen. Lie Theory Appl.*, 2(2) (2008), 51–64.

[7] A. Makhlouf, S.D. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, *Forum Math.*, 22 (2010), 715–739.

[8] Y. Sheng, Representations of Hom-Lie algebras, *Algebras and Representation Theory*, (2010), 1–18.

[9] D. Yau, Enveloping algebras of Hom-Lie algebras, *J. Gen. Lie Theory Appl.*, 2 (2008), 95–108.

[10] D. Yau, Hom-algebras and homology, *J. Lie Theory*, 19 (2009), 409–421.

[11] Lamei Yuan, Hom-Lie color algebra structures, *Comm. Algebra*, 40(2)(2012), 575–592.

[12] Lamei Yuan, q-Deformation of $W(2,2)$ Lie algebra associated with quantum groups, *Acta Mathematica Sinica, English Series*, (2012), DOI: 10.1007/s10114-012-0544-y.

[13] W. Zhang, C. Dong, W-Algebra $W(2,2)$ and the Vertex Operator Algebra $L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)$, *Comm. Math. Phys.*, 285 (2009), 991–1004.