Affine Connection Induced from The Horizontal lift $^H\nabla$ on a Cross-section

Melek ARAS*

February 6, 2014

Abstract

The main purpose of present paper is to study the affine connection induced from the horizontal lift ∇ on the cross-section $\beta_\vartheta (M_n)$ determined by a vector field ϑ in M_n with respect to the adapted frame of $\beta_\vartheta (M_n)$.

Keywords: Horizontal lift, Affine connection, Cross-section, Lie derivative.

2010 AMS Classification:53C05, 53B05, 53C07

1. Introduction

Let M_n be an n-dimensional differentiable manifold of class C^∞ an $T_p (M_n)$ the tangent space at a point P of M_n, that is, the set of all tangent vectors of M_n at P. Then the set

$$T (M_n) = \bigcup_{P \in M_n} T_P (M_n),$$

is by definition, tangent bundle over the manifold M_n [1].

Let M_n be a Riemannian manifold with metric g whose components in a coordinate neighborhood U are g_{ij}, and denote by Γ^k_{ij} the Christoffel symbols formed with g_{ij}. If U being a neighborhood of M_n, then the horizontal lift Hg of g has components

$$^Hg = \begin{pmatrix} \Gamma^m_i g_{mj} + \Gamma^m_j g_{im} & g_{ij} \\ g_{ij} & 0 \end{pmatrix}$$

with respect to the induced coordinates (x^h, y^h) in $\pi^{-1} (U) \subset T (M_n)$, where $\Gamma^m_i = y^l \Gamma^m_{lj}$, Γ^m_i being the components of the affine connection in M_n.

Now we shall define the horizontal lift ∇ of the affine connection ∇ in M_n to $T (M_n)$ by the conditions

*Department of mathematics, Faculty of Art and Sciences, Giresun University, 28049 Giresun, Turkey, E-mail: melekaras25@hotmail.com; melek.aras@giresun.edu.tr
\[\nabla_{VX} VY = 0, \quad \nabla_{VX} H Y = 0 \]
\[\nabla_{UX} VY = U (\nabla_X Y), \quad \nabla_{UX} H Y = U (\nabla_X Y), \quad (1) \]

for \(X, Y \in \mathfrak{g}_1(M) \). From (1), the horizontal lift of \(\nabla \) has components \(\Gamma_{JI}^K \) such that

\[
\begin{align*}
\Gamma_{ji}^k &= \Gamma_{ji}^k, & \Gamma_{ji}^k &= \Gamma_{ji}^k = \Gamma_{ji}^k = 0, \\
\Gamma_{ji}^k &= y^s \partial_s \Gamma_{ji}^k - y^s R_{sjit}, & \Gamma_{ji}^k &= \Gamma_{ji}^k = \Gamma_{ji}^k = \Gamma_{ji}^k = 0, & (2)
\end{align*}
\]

with respect to the induced coordinates in \(T(M) \), where \(\Gamma_{ji}^k \) are the components of \(\nabla \) in \(M \) [6].

Let a vector-field in a manifold \(M \), then the vector field defines a cross-section in the tangent bundle \(T(M) \). Tensor fields and connections on a cross-section in the tangent bundle was studied by Houh and Ishihara [1], Tani [3], Yano [4]. Affine connections induced from \(\nabla \) on the cross-section \(\beta_\vartheta(M) \) was studied by Yano and Ishihara [6].

We suppose that there is given a vector field \(\vartheta \) in an \(n \)-dimensional manifold \(M \). Then the correspondence \(p \rightarrow \vartheta_p, \vartheta_p \) being the value of \(\vartheta \) at \(p \in M \), determines a mapping \(\beta_\vartheta : M \rightarrow T(M) \) and the \(n \)-dimensional submanifold \(\beta_\vartheta(M) \) of \(T(M) \) is called the cross-section determined by \(\vartheta \). If the vector field \(\vartheta \) has local components \(\vartheta^k(x) \) in \(M \). Then the cross-section \(\beta_\vartheta(M) \) is locally expressed by

\[
\begin{align*}
x^h &= x^h, & y^h &= \vartheta^h(x) \quad (3)
\end{align*}
\]

with respect to the induced coordinates \((x^A) = (x^h, y^h) \) in \(T(M) \). Differentiating (3), we see that \(n \) tangent vectors \(B_{(j)} \) to \(\beta_\vartheta(M) \) have components

\[
B^A_j = \frac{\partial x^A}{\partial x^j}
\]

i.e.,

\[
B_{(j)} : (B^A_j) = \left(\begin{array}{c} \delta^h_j \\ \partial_j \vartheta^h \end{array} \right) \quad (4)
\]

with respect to the induced coordinates \(T(M) \).

On the other hand, since a fibre is locally expressed by \(x^h = const., y^h = y^h \), \(y^h \) being considered as parameters.

\[
C_{(j)} : (C^A_j) = \left(\begin{array}{c} 0 \\ \delta^h_j \end{array} \right) \quad (5)
\]

are tangent to the fibre.

We now consider in \(\pi^{-1}(U) \), \(U \) being coordinate neighborhood of \(M \), \(2n \) local vector fields \(B_{(j)} \) and \(C_{(j)} \) along \(\beta_\vartheta(M) \), represented respectively by
\[B_{(j)} = B \frac{\partial}{\partial x^j}, \quad C_{(j)} = C \frac{\partial}{\partial x^j}. \]

They form a local family of frames \(\{ B_{(j)}, C_{(j)} \} \) along \(\beta_\vartheta(M_n) \), which is called the adapted frame of \(\beta_\vartheta(M_n) \) in \(\pi^{-1}(U) \) [6].

2. Affine Connection Induced from \(\nabla \) on a Cross-Section

We suppose that \(M_n \) is a manifold with affine connection \(\nabla \). Thus the tangent bundle \(T(M_n) \) of \(M_n \) is a manifold with affine connection \(\nabla \) which is the horizontal lift of \(\nabla \). We now study the affine connection induced from \(\nabla \) on the cross-section \(\beta_\vartheta(M_n) \) determined by a vector field \(\vartheta \) in \(M_n \) with respect to the adapted frame of \(\beta_\vartheta(M_n) \).

The linear connection \(\nabla \) on the cross-section \(\beta_\vartheta(M_n) \) induced from \(\nabla \) is defined by connection components \({'}^\Gamma_{ji} \) given by [6]

\[{'}^\Gamma_{ji} = \left(\partial_j B^A_i + {^\Gamma^A}_{MN} B^M_j B^N_i - {'}^\Gamma_{ji}^A h \right) B^h_A, \quad (6) \]

where \({^\Gamma^A}_{MN} \) are the connection components of \(\nabla \) with respect to the induced coordinates in \(T(M_n) \) and \(B^h_A \) are defined by

\[(B^h_A, C^h_A) = \left(B^A_j, C^A_j \right)^{-1} \]

and hence

\[(B^h_A) = \left(\delta^h_j, 0 \right), \quad (C^h_B) = \left(-\partial_j \vartheta^h, \delta^h_j \right). \quad (7) \]

Substituting (2) for \({^\Gamma^A}_{MN} \), (4), (5) and (7) in (6), we find

\[{'}^\Gamma_{ji} = \Gamma_{ji}, \quad (8) \]

where \(\Gamma_{ji} \) are components of \(\nabla \) in \(M_n \).

From (6) we see that

\[\partial_j B^A_i + {^\Gamma^A}_{MN} B^M_j B^N_i - {'}^\Gamma_{ji}^A h = H^k_{ji} C^A_k, \quad (9) \]

i.e., that the left hand side is a linear combinations of \(C^A_k \), where the coefficients \(H^k_{ji} \) will be found in the sequel. To find the coefficients \(H^k_{ji} \), we put \(A = h \) in (9) and hence obtain

\[H^k_{ji} = \partial_j \partial_h \vartheta^k + \vartheta^t \partial_t \Gamma_{ji}^h + \vartheta^t R^h_{tji} + \Gamma^h_{mi} \partial_j \vartheta^m + \Gamma^h_{jn} \partial_i \vartheta^n - \Gamma^h_{ji} \partial_h \vartheta^h \quad (10) \]

which are components \(L_0 \Gamma_{ji}^k \) of the Lie derivative of the affine connection \(\nabla \) with respect to \(\vartheta [5] \). Thus, representing the left-hand side of (9) by \(^\nabla_j B^A_i \), we have from (10)

\[^\nabla_j B^A_i = (L_0 \Gamma_{ji}^h + \vartheta^t R^h_{tji}) C^A_h. \quad (11) \]

Thus we have
Proposition 1 If $\vartheta^t R^h_{tji} = 0$, then $\nabla_j B^i = \left(L_\vartheta \Gamma^h_{ji} + \vartheta^t R^h_{tji} \right) C^A_h$ is the equation of Gauss for the cross-section $\beta_\vartheta(M_n)$ determined by a vector field ϑ in M_n to $T(M_n)$.

Proposition 2 In order that the cross-section in $T(M_n)$ determined by a vector field ϑ in M_n with affine connection ∇ be totally geodesic with respect to ∇ it is necessary and sufficient that respectively ϑ is an infinitesimal affine transformation in M_n, i.e., that $L_\vartheta \nabla = 0$ and $\vartheta^t R^h_{tji} = 0$, where R^h_{tji} is components of the curvature tensor R of ∇.

By means of (9), the equation (11) reduces to

$$\nabla B^i (j) = \Gamma^h_{ji} B^i (h) + H^h_{ji} C^i (h). \quad (12)$$

We now have

$$\overline{R} (B(k), B(j)) B(i) = \nabla B(k) \nabla B(j) B(i) - \nabla B(i), \quad (13)$$

\overline{R} being the curvature tensor of ∇ because $[B(j), B(i)] = 0$. Thus, denoting by $R^h_{kji}, B(h)$ the components of the curvature tensor R of ∇, we have from (13)

$$\overline{R} (B(k), B(j)) B(i) = R^h_{kji} B(h) + \left\{ \nabla_k \left(L_\vartheta \Gamma^h_{ji} \right) - \nabla_j \left(L_\vartheta \Gamma^h_{ki} \right) \right\} C^i (h)$$

$$\nabla_k \left(\vartheta^t R^h_{tji} \right) - \nabla_j \left(\vartheta^t R^h_{tki} \right) \quad (14)$$

which reduces to

$$\overline{R} (B(k), B(j)) B(i) = R^h_{kji} B(h) + \left\{ \nabla_k \left(L_\vartheta \Gamma^h_{ji} \right) - \nabla_j \left(\vartheta^t R^h_{tki} \right) \right\} C^i (h)$$

$$\nabla_k \left(\vartheta^t R^h_{tji} \right) - \nabla_j \left(\vartheta^t R^h_{tki} \right) \quad (15)$$

where the well know formula [5]

$$\nabla_k \left(L_\vartheta \Gamma^h_{ji} \right) - \nabla_j \left(L_\vartheta \Gamma^h_{ki} \right) = L_\vartheta R^h_{tji}$$

from (15), we have

Proposition 3 In order that $\overline{R} (X, Y) Z$ evaluated for vector fields X, Y and Z tangent to the cross-section determined by a vector field ϑ in M_n, R being curvature tensor of an affine connection ∇, be always tangent to the cross-section, it is necessary and sufficient that respectively the Lie derivative $L_\vartheta R$ of R with respect to ϑ in M_n vanishes, i.e., $L_\vartheta R = 0$ and $\nabla_k \left(\vartheta^t R^h_{tji} \right) - \nabla_j \left(\vartheta^t R^h_{tki} \right) = 0$.
References

[1] Houh, C.S., and Ishihara S. Tensor Fields and Connections on a Cross-Section in the Tangent Bundle of Order r, Kodai Math. Sem. Rep., 24(1972), 234-250.

[2] Steenrod, N. The topology of Fibre Bundles (Princeton Univ. Press, Princeton, NJ., 1951).

[3] Tani, M. Tensor Fields and Connections in Cross-sections in the Tangent Bundle of Order 2, Kodai Math. Sem. Rep., 21(1969), 310-325.

[4] Yano, K. Tensor Fields and Connections on Sections in the Tangent of a Differentiable Manifold, proc. Royal Soc. Edinburgh, sect. A LXVII (1967), 277-288.

[5] Yano, K. The Theory of Lie Derivatives and Its Applications, Amsterdam, 1957.

[6] Yano, K. and Ishihara, S. Tangent and Cotangent Bundles (Marcel Dekker Inc., New york, 1973).