A six-year hospital-based surveillance study on burden of esophageal candidiasis in Gangtok, Sikkim

Shrijana Gurung1*, Tara Devi Sharma1, Suresh Madan Rasaily2, Raju Singh1, Peralam Yegneswaran Prakash1

1Department of Microbiology, Sir Thutob Namgyal Memorial Hospital, Gangtok, Sikkim, India
2Department of Gastroenterology, Sir Thutob Namgyal Memorial Hospital, Gangtok, Sikkim, India
3Health & Family Welfare Department, Community Health Centre, Rhenock Hospital, East Sikkim, India
4Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

ABSTRACT

Background and Objectives: Esophageal candidiasis once thought to be restricted amongst immunocompromised patients is being increasingly reported among non-immunocompromised individuals. It is debilitating and if not treated well may cause chronic long-lasting infections. The objective of this study was to identify the various species of Candida causing esophageal candidiasis and analyse their antifungal susceptibility pattern.

Materials and Methods: This was an observational, prospective study. Total of 108 patients who attended the Gastroenterology Department of Sir Thutob Namgyal Memorial Hospital, Govt of Sikkim, Gangtok, India between July 2012 – May 2018 were included in the study. They had complaints of upper gastrointestinal disturbances and chronic dyspeptic symptoms that required an endoscopy. Esophageal biopsy and brushings were taken and were transported to Microbiology Department. They were subjected to microscopic observation, fungal culture on Sabouraud's dextrose agar. Preliminary species identification was done by chlamydospore formation and growth characteristics on CHROMagar Candida. Species confirmation and antifungal susceptibility testing was done on VITEK 2 system at Microbiology Department, Kasturba Medical College and Hospital, MAHE, Manipal, Karnataka, India.

Results: A total of 108 patients were screened among which 73 samples were positive for Candida species and species identification and antifungal susceptibility was performed. Forty five isolates were found to be C. albicans, 8 were C. glabrata, 4 were C. tropicalis, 3 were C. lusitaniae 2 were C. krusei, 2 were C. lipolyticaand 1 was C. parapsilosis. Eight isolates could not be identified and were recorded as Candida spp. C. albicans isolates were predominantly sensitive strain with susceptibility of 95% for both amphotericin B and fluconazole and 100% for caspofungin. C. glabrata showed high resistance to fluconazole with one isolate showing intermediate resistance to caspofungin.

Conclusion: Upper gastrointestinal symptoms even in non-immunocompromised patients need to be screened by endoscopy to rule out esophageal candidiasis. With the emergence of drug resistant non albicans Candida species diagnostic testing laboratories should include Candida species identification and antifungal susceptibility testing facility to provide effective patient care.

Keywords: Candida; Candidiasis; Esophagitis; Antifungal; Endoscopy; Amphotericin B; Fluconazole; Caspofungin

*Corresponding author: Shrijana Gurung, MD, Department of Microbiology, Sir Thutob Namgyal Memorial Hospital, Gangtok, Sikkim, India. Tel: +91-7908674432 Fax: +913592297042 Email: doctorsiru@gmail.com

Copyright © 2022 The Authors. Published by Tehran University of Medical Sciences.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International license.

https://creativecommons.org/licenses/by-nc/4.0/. Noncommercial uses of the work are permitted, provided the original work is properly cited.

598
INTRODUCTION

The spectrum of Candidiasis encompasses wide range of infections ranging from mucocutaneous (oral, esophageal and vulvovaginal) to systemic involvement in the host (1). Incidence of esophageal candidiasis (EC) in general population is between 0.32% to 5.2% (2) and it is one of the most common opportunistic infections in immunocompromised patients (1) seen in 9.8% of human immunodeficiency virus (HIV) infected patients (3). They are increasingly being diagnosed in non-immunocompromised individuals as seen in 0.32% in Korea (4), 1.6% in Japan (3) and 3.6% in Tanzania (5). In India, it has been reported in 44.2%-61% (6, 7) of HIV infected patients. Diabetes mellitus, use of antibiotics, proton pump inhibitors, steroids, smokers and alcohol consumption are risk factors that predispose to oesophageal candidiasis (3, 4, 8).

Over the decades, the species distribution spectra for Candida species causing human infections have changed. Candida albicans, previously the dominating pathogen, accounts for only half the isolates (9). Non-albicans Candida species have emerged as a formidable pathogen, many of which are highly resistant to the currently available antifungals (10). More often therapeutic failure is encountered in the treatment of non-albicans Candida.

Unlike the various classes of antibiotics available for bacterial infections there is paucity of antifungals available for use, namely azoles, echinocandins and polyenes. High rates of fluconazole resistance in non-albicans Candida and an increase in acquired resistance to caspofungin is a matter of concern and poses a threat to human health (10).

The present hospital-based study was carried out to estimate the burden of EC and to study their antifungal susceptibility along with associated risk factors in Sikkim provinces.

MATERIALS AND METHODS

The study was executed at Department of Microbiology and Gastroenterology, Sir Thutob Namgyal Memorial Hospital, Gangtok and Department of Microbiology, Kasturba Medical College (KMC), Manipal. It was a prospective, cross-sectional, observational study. A prior clearance from the Institutional Ethics Committee was obtained.

Inclusion criteria. One hundred and eight patients attending Gastroenterology Department of Sir Thutob Namgyal Memorial Hospital, Gangtok between July 2012 – May 2018 with complaints of upper gastrointestinal disturbance – epigastric / retrosternal pain and with chronic dyspeptic symptoms requiring an endoscopy were included in the study. All patients were screened for HBsAg, HCV and HIV.

Upper Gastrointestinal (GI) endoscopy was performed using flexible endoscope (Olympus Eliza Exera 190). Curdy white to yellowish precipitates resistant to water syringing/washing were removed and biopsy sample / brushings were taken.

Preliminary testing. Biopsy samples were sent to the microbiology laboratory in sterile universal containers with normal saline. Esophageal brushings were directly inoculated on Sabourauds Dextrose Agar (HiMedia Labs Pvt. Ltd.) with gentamicin (0.5 mg in 100 ml) in duplicate and onto clean glass slides for bright field microscopy observation. They were transported to Microbiology Lab where preliminary Gram staining was done and yeast like growth was further tested for Germ tube and chlamydiospor formation. The presumptive identification of isolated organism by conventional methods were noted, and the isolates were stored at -20°C.

Screening on chromogenic media. All Candida isolates were transported to Department of Microbiology, Kasturba Medical College, Manipal, Karnataka where screening by growth on CHROMagar Candida for typical colony characteristics and were identified depending on their color and pattern of growth by following manufacturers instruction (Fig. 1).

Automated identification and antifungal susceptibility testing. The isolates were then tested on automated Vitek 2 system (bioMérieux, France). Vitek 2 system uses advanced calorimetric method to identify routine clinical isolates of Candida. Advanced expert system software provides accurate fingerprint recognition of antifungal resistance which analyses MIC patterns. Isolates were then tested against the following antifungals - amphotericin B (AMB), fluconazole (FLC), caspofungin (CAS), flucytosine (5FC), micafungin (MFG), voriconazole (VRC) and itraconazole (ITC).

Statistical analysis. Descriptive analysis, Chi
square test and fisher’s exact test were used for analysing the data for risk factors. A p value < 0.05 was considered to be significant. Descriptive analysis was done using Microsoft excel 2010 and inferential analysis was done using SPSS version 2019.

RESULTS

Patient demographics. A total of 3,329 Upper GI endoscopy was performed between 2012 and 2018 among which, 108 patients with endoscopic findings of EC (Fig. 2) were screened for HIV, HBsAg and HCV and only one patient was found to be positive for hepatitis B while the rest were negative for both HIV, hep B and hep C.

Among the 73 patients with laboratory confirmed EC, 44 were male and 29 were females. The mean age was 50.59 ± 18.61 years with the maximum number of patients (23.2%) in the 51-60 years age group. Cases were observed in all three ethnic community – Nepali (72.6%), Bhutia (17.8%) and Lepcha (9.58%)- of Sikkim with higher incidence among the Nepali community. EC patients came from all the four districts of the state- North (8.21%), South (21.9%), East (56.16%) and West District (13.69%) with maximum number from East district (Fig. 3).

Clinical features and risk factors. The most common presenting symptom was epigastric pain (53.42%). Classical presentation of dysphagia was seen in (12.32%) patients, along with vomiting (12.32%) (Table. 1). Among the risk factors assessed, alcohol consumption was seen in (49.31%), smoking (28.76%), chewing of pan/gutka in (35.61%), history of cancer in the family (2.73%) and treatment with steroids in (1.36%).

Screening and culture. All samples were processed by Grams Stain, 10% KOH microscopy, culture on SDA and chlamydsopore formation on Cornmeal agar. Candida was demonstrated microscopically on Grams Stain and KOH in all 108 patients. 73 samples were positive in culture but only 71 samples could be sent for further confirmation as two isolates could not be revived after being stored at -20 for 2 to 3 months in SDA before they were shipped to partner institute for further confirmation.

Automated identification. Seventy one samples were sent to Department of Microbiology, Kasturba Medical College and Hospital, Manipal, Karnataka for species identification on CHROMagar Candida, VITEK 2 and antifungal susceptibility to be performed by VITEK 2. Among the 71 isolates, eight were not read correctly by Vitek 2. As molecular testing was not included in the study protocol the unknown isolates were not tested further by other methods for species identification. Out of the 63 isolates identified by VITEK 2, 53 were found to be C. albicans, 8 were C. glabrata (currently Nakaseomycy glabrata), 4 were C. tropicalis, 3 were C. lusitaniae (currently Clavispora lusitaniae), 2 were C. krusei (currently Pichia kudriavzevii), and 1 was C. parapsilosis (Fig. 4).
Antifungal susceptibility. Antifungal susceptibility results are shown in Table 2. *C. albicans* isolates were predominantly sensitive strain with susceptibility of 95% for both amphotericin B and fluconazole and 100% for caspofungin. *C. glabrata* showed high resistance to fluconazole with one isolate showing intermediate resistance to caspofungin. Multi Drug Resistant (MDR) strains of *C. krusei*, *C. lusitaniae* were encountered. *C. tropicalis* and *C. parapsilosis* were sensitive strains against fluconazole, voriconazole, itraconazole and caspofungin.

Association between alcohol consumption and smoking with development of esophageal candidiasis was not significant P-value 0.397 and 0.276 respectively.

DISCUSSION

Isolation of *Candida* species from an individual’s sample does not always signify an underlying fungal infection (11). The oral basal myobiome of healthy individuals comprises predominantly of *Candida* species (12). The immune system along with interaction with bacterial microbiome and the intact epithelial lining limits *Candida* from infecting the host (13). Colonisation followed by invasion leads to EC often due to decreased host immunity (14).

EC among patients with HIV has declined from 51.8% to 16.7% (15). EC has been increasingly reported in non-HIV patients (3, 15) with rise in EC prevalence from 0.6% to 2.5% between 2003-2014 (3). Prevalence of EC among non immunocompromised patients in our study was 2.19% (73/3, 329) which is higher than in other studies done in Pakistan 0.34% (16), Korea 0.32% (4), Japan 1.5% (3) but lower than Tanzania 3.6% (5). The efficacy of the Highly Active Anti Retroviral Therapy (HAART) (17) introduced in Sikkim under the National AIDS Control Organization which prevents development of immunodeficiency and opportunistic infections (18) may be the reason for absence of HIV infected patients with EC in our study.

Pathogenicity in healthy individuals has not been well elucidated apart from its association with risk
Table 1. Associated symptoms, risk factors and demographic profile of patients.

Common symptoms	Number
Epigastric pain	39
Dysphagia	09
Vomitting	09
Jaundice	14
Cirrhosis of Liver (ALD)	11
Breathlessness	03
Loss of Appetite	08
Malena	03
AGE	08
Bacillary Dysentery	01
Diarrhea	01
Anemia	02
Ascitis	02
Hematemia	05
COPD	01
Fever	05
Anxiety Disorder	01
Risk Factors	
Alcohol Consumption	36
Smoker	21
Chews pan/Gutka	26
Diabetes Mellitus	
Liver Cirrhosis	11
Cancer	02
Treatment with steroids	01
Gender	
Male	44
Female	29
Ethnic Community	
Nepali	53
Bhutia	13
Lepcha	13
Occupation	
Agriculturist	20
Service (Govt/Pvt)	19
Skilled worker	07
Business	08
Housewife	24
Student	04
Age group	
11-20	03
21-30	08
31-40	14
41-50	11
51-60	17
61-70	07
71-80	08
81-90	05

ALD- Alcoholic Liver Disease. AGE- Acute Gastroenteritis. COPD- Chronic Obstructive Pulmonary Disease.

Fig. 4. Total Candida isolates. The numbers over the graph depict numbers isolated.

factors that may make an individual more prone to EC (2.5, 16). Although non immunocompromised, most of the patients with EC were associated with various risk factors like alcohol consumption (49.31%), smoking (28.76%) and chewing tobacco in the form of Pan and Gutka (35.61%) but there was no correlation of alcohol consumption or smoking with EC in our study. Conflicting literature reviews are available for alcohol consumption as a risk factor. Choi et al. has shown a significant correlation with p<0.001 (4), similar findings were seen in Tanzania with an OR of 17.1, 95% CI for alcohol use and OR of 8.3, 95% CI for smoking (5). In another study by Alsomelli et al. smoking was more often seen in EC while alcohol consumption was found to be protective (14). In Contrary, Takahashi et al. found no correlation between alcohol consumption and EC while smoking had marginal association (3). Alcohol and smoking both weaken the local immunity of the esophageal epithelium and facilitate colonization of esophagus by pathogens from the oral cavity with invasion and proliferation by Candida albicans (2, 16).

The most common age group was 51-60 years (23.28%) with the mean age of 50.59 ± 18.61. Similar findings have been reported by previous investigators where the mean age was 53.1 ± 14.1 years (2), 60.3 ± 15.0 (3), 52.9 ± 14.6 (16) and the median age worldwide being 55.5 (15). Increasing age has been recognised as a risk factor for EC in non-HIV-infected patients as this age group has an impaired immunity due to defects in the hematopoietic bone marrow and in peripheral lymphocyte migration, maturation, and function (8). Another reason may be due to the reduction in cellular immunity of the epithelial layer in patients with increased age thus leading to colonization by Candida (2, 3).

C. albicans was the most frequently isolated organism from patients with EC as was observed by
Table 2. Antifungal susceptibility test results

SPECIES	AMPHOTERICIN B	FLUCONAZOLE	VORICONAZOLE	ITRACONAZOLE	CASPOFUNGIN	FLUCYTOSINE	MICAFUNGIN
C. albicans	(n=46)	(n=46)	(n=46)	(n=11)	(n=4)	(n=34)	(n=24)
	S I R	S I R	S I R	S I R	S I R	S I R	S I R
Sensitivity (%)	95.6 2.1 2.1	95 - 4.3	100 -	100 -	100 -	94 (2.9)	100 -
C. glabrata	(n=7)	(n=8)	(n=7)	(n=8)	(n=1)	(n=1)	
	S R	S I R	S I R	S I R	S I R	S I R	S I R
Sensitivity (%)	100 -	14 - 85	100 -	100 -	87 12.5	100 -	100 -
C. lusitaniae	(n=3)	(n=1)	(n=3)	Not tested	(n=1)	(n=3)	(n=1)
	S I R	S I R	S I R	S I R	S I R	S I R	S I R
C. tropicalis	(n=3)	(n=3)	(n=3)	(n=2)	(n=3)	Not tested	(n=1)
	S I R	S I R	S I R	S I R	S I R	S I R	S I R
Sensitivity (%)	66 33.3 -	100 -	100 -	100 -	100 -	100 -	100 -
C. krusei	(n=2)	(n=2)	(n=2)	Not tested	(n=2)	(n=2)	
	S I R	S I R	S I R	S I R	S I R	S I R	S I R
Sensitivity (%)	100 -	- -	100 -	- -	50 50	- -	100 -
C. parapsilosis	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	Not tested	
	S I R	S I R	S I R	S I R	S I R	S I R	S I R
Sensitivity (%)	100 -	- -	100 -	100 -	100 -	- -	- -

n - number of isolates tested, S- Sensitive, I- Intermediate, R-Resistant.

Maninder et al. 70.49% (7) and Klieman et al. 96.2% (8). Our findings were also similar where 61.64% of the isolates were C. albicans. EC requires colonization and invasion by Candida and as C. albicans is the most common yeast colonizing the oral cavity and the gastrointestinal tract of humans (13).

Species of Candida causing infections has changed over the last decade with a shift towards Non-albicans Candida- C. glabrata, C. tropicalis, C. krusei and C. parapsilosis (9, 19, 20). Pahwa et al. have observed in a tertiary care hospital in central India a predominance of non-albicans Candida- 57.8% over C. albicans (21). C. glabrata is a common pathogenic candida infecting human (9) and has a prevalence of 1.6% to 3.8% (8) in esophageal samples. In our study we isolated 10.95% of C. glabrata. C. tropicalis was the most common non-albicans Candida isolated in studies conducted in other Indian states (20, 21) but we encountered only 5.47% of C. tropicalis. Geographical difference between the places where the studies were conducted – tropical climate vs temperate Himalayan region may be responsible for this difference. Similar perspective was discussed where global trends in the distribution of Candida species were reviewed (1, 22).

Widespread use of antifungal agents has shown an increase in drug resistant strains of Candida species which were once susceptible to all agents (10).
Susceptibility profile to different antifungal agents varies according to the Candida species (23). We encountered 4.3% of C. albicans resistant to fluconazole (FLC), 2.1% to amphotericin B (AMB) and 2.9% to flucytosine (FSC). No cross resistance was seen for other azole groups nor the echinocandins. This is in concordance with the global resistance rates of C. albicans (0-7.8%) for FLC, and Indian study of 4.65% (7) and 5.9% (22) which is considerably less when compared to resistance rates for C. glabrata and C. tropicalis, 0- 76% and 0- 66.6% respectively (10). In the United States C. albicans has FLC resistance of 0.5-2% and C. glabrata has high rates at 11-13% (10).

FLC resistance demonstrated by the non-albicans Candida in our study was 64.2% which is relatively high when compared to other Indian study 22.2% (7), 9.5% (20). 85% of the non-albicans Candida resistant to FLC were C. glabrata strains. FLC is a fungistatic agent and acquired resistance develops easily in its presence (23). Increased FLC resistance has been reported in C. tropicalis, one of the most commonly isolated non-albicans Candida (22, 23). It is interesting to note that the C. tropicalis isolated in this study were sensitiveto all the antifungals tested, except for one strain which showed intermediate resistance to AMB.

This investigation suggests EC is present in Sikkim although the prevalence is low when compared to other infectious disease. The possibilities of EC in patients should be considered even in the absence of predisposing factors such as HIV infection or an immune compromised condition.

REFERENCES

1. Repentigny LD, Lewandowski D, Jolicoeur P. Immuno-pathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004; 17: 729-759.
2. Mohamed AA, Lu XL, Mounmin FA. Diagnosis and treatment of esophageal candidiasis: current updates. Curr J Gastroenterol Hepatol 2019; 2019: 3585136.
3. Takahashi Y, Nagata N, Shimoto T, Nishijima T, Watanabe K, Aoki T, et al. Long-Term trends in esophageal candidiasis prevalence and associated risk factors with or without HIV infection: lessons from an endoscopic study of 80,219 patients. PLoS One 2015; 10(7): e0133589.
4. Choi JH, Lee CG, Lim YJ, Kang HW, Lim CY, Choi JS. Prevalence and risk factors of esophageal candidiasis in healthy individuals: a single center experience in Korea. Yonsei Med J 2013; 54: 160-165.
5. Mushfi MF, Ngeta N, Mirambo MM, Mshana SE. Predictors of esophageal candidiasis among patients attending endoscopy unit in a tertiary hospital, Tanzania: a retrospective cross-sectional study. Afr Health Sci 2018; 18: 66-71.
6. Maurya V, Srivastava A, Mishra J, Gaidn R, Marak RSK, Tripathi AK, et al. Oropharyngeal candidiasis, and Candida colonization in HIV positive patients in northern India. J Infect Dev Ctries 2013; 7: 608-613.
7. Maninder J, Usha A. Isolation, characterization and antifungal susceptibility pattern of Candida species causing oropharyngeal candidiasis in HIV positive patients. J Commun Dis 2008; 40: 177-181.
8. Kliemann DA, Pasqualotto AC, Falavigna M, Giaretta T, Severo LC. Candida esphagitis: species distribution and risk factors for infection. Rev Inst Med Trop Sao Paulo 2008; 50: 261-263.
9. Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med 2015; 373: 1445-1456.
10. Arastehfar A, Gahaldon T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJ, et al. Drug-Resistant fungi: an emerging challenge threatening our limited antifungal armamentarium. Antibiotics (Basel) 2020; 9: 877.
11. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 2019; 25: 792-798.
12. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikarooodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 2010; 6(1): e1000713.
13. Naglik JR, Richardson JP, Moyes DL. Candida albicans pathogenicity and epithelial immunity. PLoS Pathog 2014; 10(8): e1004257.
14. Underwood JA, Williams JW, Keate RF. Clinical findings and risk factors for Candida esophagitis in outpatients. Dis Esophagus 2003; 16: 66-69.
15. Alsomali MI, Arnold MA, Frankel WL, Graham RP, Hart PA, Lam-Himlin DM, et al. Challenges to "classic" esophageal candidiasis: looks are usually deceiving. Am J Clin Pathol 2017; 147: 33-42.
16. Yakoob J, Jafri W, Abid S, Jafri N, Islam M, Hamid S, et al. Candida esophagitis: risk factors in non-HIV population in Pakistan. World J Gastroenterol 2003; 9: 2328-2331.
17. Ives NJ, Gazzard BG, Easterbrook PJ. The changing pattern of AIDS-defining illnesses with the introduction of highly active antiretroviral therapy (HAART) in a London clinic. J Infect 2001; 42: 134-139.
18. Detels R, Tarwater P, Phair JP, Margolick J, Riddler SA, Munoz A, et al. Effectiveness of potent antiretroviral therapies on the incidence of opportunistic infec-
tions before and after AIDS diagnosis. AIDS 2001; 15: 347-355.
19. Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 2018; 73 (Suppl-1): i4-i13.
20. Pahwa N, Kumar R, Nirkhiwale S, Bandi A. Species distribution and drug susceptibility of Candida in clinical isolates from a tertiary care centre at Indore. Indian J Med Microbiol 2014; 32: 44-48.
21. Chakrabarti A, Sood P, Rudramurthy SM, Chen S, Kaur H, Capoor M, et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med 2015; 41: 285-295.
22. Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 2014; 20 Suppl 6: 5-10.
23. Yang YL, Ho YA, Cheng HH, Ho M, Lo HJ. Susceptibilities of Candida species to amphotericin B and fluconazole: the emergence of fluconazole resistance in Candida tropicalis. Infect Control Hosp Epidemiol 2004; 25: 60-64.