Institution	City, Country
Bochum Ruhr-University	Bochum, Germany
Carnegie Mellon University	Pittsburgh, Pennsylvania
Central China Normal University	Wuhan, China
China Center of Advanced Science and Technology	Beijing, China
COMSATS University Islamaband	Lahore, Pakistan
Fudan University	Shanghai, China
G.I. Budker Institute of Nuclear Physics SB RAS (BINP)	Novosibirsk, Russia
GSI Helmholtzentrum for Heavy Ion Research	Darmstadt, Germany
Guangxi Normal University	Nanning, China
Hangzhou Normal University	Hangzhou, China
Helmholtz Institute Mainz	Mainz, Germany
Henan Normal University	Xinyang, China
Henan University of Science and Technology	Luoyang, China
Huangshan College	Huangshan, China
Hunan Normal University	Changsha, China
Hunan University	Changsha, China
Indian Institute of Technology Madras	Chennai, India
Indiana University	Bloomington, Indiana
INFN Laboratori Nazionali di Frascati	Frascati, Italy
INFN Sezione di Ferrara	Ferrara, Italy
Institute of Physics and Technology	Peace Ave., Mongolia
Johannes Gutenberg University of Mainz	Mainz, Germany
Joint Institute for Research	Dubna, Russia
Justus-Liebig-Universitaet Gießen	Gießen, Germany
KVI-CART, University of Groningen	Groningen, The Netherlands
Lanzhou University	Lanzhou, China
Liaoning University	Shenyang, China
Nanjing Normal University	Nanjing, China
Nanjing University	Nanjing, China
Nankai University	Tianjin, China
Peking University	Beijing, China
Shandong Normal University	Jinan, China
Shanghai Jiao Tong University	Shanghai, China
Shanxi University	Taiyuan, China
Sichuan University	Chengdu, China
Soochow University	Suzhou, China
Southeast University	Nanjing, China
State Key Laboratory of Particle Detection and Electronics	Beijing, China
Sun Yat-Sen University	Guangzhou, China
Tsinghua University	Beijing, China
University of Ankara	Ankara, Turkey
Istanbul Bilgi University	Istanbul, Turkey
Uludag University	Bursa, Turkey
University of Chinese Academy of Sciences	Beijing, China
University of Hawaii	Honolulu, Hawaii
University of Jinan	Jinan, China
University of Manchester	Manchester, United Kingdom
University of Minnesota	Minneapolis, Minnesota
University of Muenster	Muenster, Germany
University of Oxford	Oxford, UK
University of Science and Technology	Anshan, China
University of Science and Technology	Hefei, China
University of South China	Hengyang, China
University of the Punjab	Lahore, Pakistan
University of Turin	Turin, Italy
University of Uppsala	Uppsala, Sweden
Wuhan University	Wuhan, China
Xinyang Normal University	Xining, China
Zhejiang University	Zhengzhou, China
Zhengzhou University	Zhengzhou, China
I. INTRODUCTION

Electromagnetic form factors (FFs) are fundamental quantities that describe the internal structure of hadrons. The proton (spin 1/2) is characterized by the electric FF G_E and the magnetic FF G_M. They are experimentally accessible through the measurements of cross sections for elastic electron–proton scattering in the space-like region (momentum transfer squared $q^2 < 0$) and annihilation processes $e^+e^- \rightarrow p\bar{p}$ in the time-like region ($q^2 > 0$) [1,2]. At low momentum transfer, space-like FFs provide information on the distributions of the electric charges and magnetization within the proton. In the time-like region, electromagnetic FFs can be associated with the time evolution of these distributions [3]. The unpolarized cross section for elastic electron–proton scattering has been measured for decades with improved accuracy. However, the recent data on the elastic electron–proton scattering, based on the polarization transfer method [4,5], showed that the ratio $\mu_p G_E/G_M$ (where μ_p is the proton magnetic moment) decreases almost linearly with $Q^2 = -q^2$. This result is in disagreement with the previous measurements of unpolarized elastic ep scattering [6].

In the time-like region, the proton FFs have been measured with the annihilation channels $e^+e^- \rightarrow p\bar{p}$ using the energy scan technique [7,10], in which the center of mass (c.m.) energy (\sqrt{s}) of the collider is varied systematically, and at each c.m. energy point a measurement of the associated cross section is carried out. The radiative return channel $e^+e^- \rightarrow p\bar{p}g$, where g is a hard photon emitted by initial state radiation (ISR), allows for a complementary approach to the energy scan technique in proton FF measurements. It has been used by the BaBar collaboration to measure the time-like proton FF ratio and the effective FF $|G_{\text{eff}}(q^2)|$ (see Eq. (12)) in a continuous range of q^2 [20,21]. The BaBar data shows some oscillations in the measured $|G_{\text{eff}}(q^2)|$. The origin of these oscillations has recently been the subject of several theoretical studies [22,23], but has not yet been well understood. The precision of the proton FF measurements in the time-like region has been limited by the statistics collected at the $e^+e^-\rightarrow p\bar{p}$ annihilation experiments.

In this paper we study the ISR process $e^+e^- \rightarrow p\bar{p}g$ to measure the Born cross section of the process $e^+e^- \rightarrow p\bar{p}$ and to determine the proton FFs in the time-like region. We use data sets, corresponding to an integrated luminosity of 7.4 fb$^{-1}$, collected with the BESIII detector at the BEPCII collider at center of mass energies between 3.773 and 4.600 GeV. The Born cross section for the process $e^+e^- \rightarrow p\bar{p}$ is measured using the initial state radiation (ISR), allows for a hard photon emitted by initial state radiation (ISR), reaches its highest values at small angles relative to the direction of the electron (or positron) beam [23]. The measurement of the reaction $e^+e^- \rightarrow p\bar{p}g$ in this region benefits from the availability of a large number of signal events.

The cross section for the ISR process $e^+e^- \rightarrow p\bar{p}g$ represented by Fig. 1 can be written as [22]:

$$\frac{d\sigma_{e^+e^-\rightarrow p\bar{p}g}(q^2)}{dq^2} = \frac{1}{s} W(s,x)\sigma_{p\bar{p}}(q^2), \quad x = \frac{2E^*_g}{\sqrt{s}} = 1 - \frac{q^2}{s},$$

$$W(s,x) = \frac{\alpha}{\pi x} \left(\ln \frac{s}{m_e^2} - 1 \right) (2 - 2x + x^2),$$

(1)

where α is the electromagnetic coupling constant, E^*_g is the energy of the ISR photon in the e^+e^- c.m. system.
The momentum transfer q ($q^2 = M_{pp}^2$, M_{pp} is the $p\bar{p}$ invariant mass) is the momentum carried by the exchanged virtual photon. The function $W(s,x)$ \cite{22} is the probability for the emission of a hard ISR photon with energy fraction x, and m_e is the electron mass. In Eq. (1), integration over the proton momenta and the photon polar angle is performed. Equation (1) describes ISR processes at the lowest QED order. The Born cross section for the non radiative process $\sigma_{pp}(q^2)$ is given by:

$$
\sigma_{pp}(q^2) = \frac{2\pi\alpha^2\beta C}{3q^2\tau} (2\tau |G_M|^2 + |G_E|^2), \quad \tau = \frac{q^2}{4M_p^2},
$$

where M_p is the proton mass and C is the Coulomb correction factor \cite{27} which makes the cross section for the $p\bar{p}$ production non zero at threshold.

The paper is organized as follows. The BESIII detector, the data and the Monte Carlo (MC) samples used in this analysis are described in Sec. III. The procedure to identify the signal and to estimate the number of remaining background events is explained in Secs. III and IV. In Sec. V we present the results on the measurements of the Born cross section for the $e^+e^-\rightarrow p\bar{p}$ channel and the proton effective FF. The measured values of the proton FF ratio and the branching fractions for the J/ψ, $\psi(3686)$ to $p\bar{p}$ decays are reported in Sec. VII and in Sec. VIII, respectively. The conclusion section contains a summary and an outlook.

II. THE BESIII DETECTOR AND EVENT SAMPLES

BESIII is a double ring e^+e^- collider running at c.m. energies between 2.0 and 4.6 GeV. It has a peak luminosity of 1.0×10^{33} cm$^{-2}$s$^{-1}$ at $\sqrt{s} = 3773$ MeV. The BESIII detector is a general purpose spectrometer with an effective geometrical acceptance of 93% of 4π. It consists of a small cell, helium-based (60% He, 40% C$_3$H$_8$) main drift chamber (MDC), a time-of-flight (TOF) system, a CsI(Tl) electromagnetic calorimeter (EMC) and a muon system (MUC). The MDC provides momentum measurement of charged particles with a resolution of 0.5% at 1 GeV/c in a 1 Tesla magnetic field. The energy loss measured by the MDC has a resolution better than 6%. The TOF is based on 5-cm-thick plastic scintillators with a time resolution of 80 ps in the barrel and 110 ps in the end caps. The EMC is used to measure the energies of photons and electrons. The EMC provides an energy resolution (for 1 GeV photons) of 2.5% in the barrel region and 5.0% in the end caps. The MUC system consists of resistive plate chambers. It is used to identify muons and provides a spatial resolution better than 2 cm.

The data samples used in this analysis were collected at 7 c.m. energy points between 3.773 and 4.600 GeV. Table I summarizes the integrated luminosity collected at each c.m. energy point \cite{28,29}. MC samples for signal and background channels are simulated using a GEANT4-based \cite{30} simulation software package BESIII BOOST (BESIII Object Oriented Simulation Tool) \cite{31}. The MC samples are produced with large amounts of generated events to determine the signal efficiencies and to estimate the potential background contamination. The signal process $e^+e^-\rightarrow p\bar{p}\gamma$ is generated with the PHOKHARA event generator \cite{32}, which takes into account next-to-leading order radiative corrections. The critical background channels $e^+e^-\rightarrow p\bar{p}a^0(\gamma)$ and the two-photon process $e^+e^-\rightarrow e^+e^-f^+f^-$, where f can be leptons, or quarks which hadronize using JETSET \cite{33} are simulated using the generator software package CONEX \cite{34} and the event generator BESTWOGAM \cite{35}, respectively. The ISR background processes $e^+e^-\rightarrow \mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$ and $K^+K^-\gamma$ are simulated with the PHOKHARA event generator \cite{32} up to the next-to-leading order of radiative corrections. The inclusive hadronic channels $e^+e^-\rightarrow q\bar{q}$ ($q = u, d, s$) are studied with the KKMC event generator \cite{37,38}. The $e^+e^-\rightarrow e^+e^-\gamma$ channel is simulated with the BABAYAGA event generator \cite{39}. The ISR processes $e^+e^-\rightarrow \gamma J/\psi$, $\gamma\psi(3686)$, $\gamma\psi(3773)$ and $\gamma\psi(4040)$ are generated with BESEVTGEN \cite{32} using the VECTORSIR model \cite{26,40}.

III. EVENT SELECTION

Charged tracks of polar angles $|\cos \theta| < 0.93$ are identified by the MDC. The distance between the interaction

![FIG. 1. A Feynman diagram for the ISR process $e^+e^-\rightarrow p\bar{p}\gamma$. The ISR photon can be emitted from the electron or the positron.](image-url)
point (IP) and the point of closest approach for each charged track is required to be within 1 cm in the plane perpendicular to the beam direction and within ±10 cm along the beam direction. The energy loss in the MDC and the flight time measured by the TOF system are used to calculate the particle identification (PID) probabilities for the electron, muon, pion, kaon and proton hypotheses. The particle type of highest PID probability is assigned to the charged track. The ratio of the shower energy deposited in the EMC \(E_{\text{EMC}} \) to the reconstructed momentum \(p_{\text{rec}} \) of the positively charged track associated with the shower is required to be less than 0.5. The events with only two charged tracks, identified as proton and antiproton, are selected.

In this analysis, the ISR photon is not detected. The final event selection is based mainly on two variables, the missing momentum \(\vec{p}_{\text{miss}} \) and the missing mass squared \(M_{\text{miss}}^2 \), recoiling against the \(pp\bar{p} \) system. The missing momentum is defined as:

\[
\vec{p}_{\text{miss}} = \vec{k}_1 + \vec{k}_2 - \vec{p}_1 - \vec{p}_2, \tag{3}
\]

where \(\vec{k}_1 \) (\(\vec{k}_2 \)) and \(\vec{p}_1 \) (\(\vec{p}_2 \)) are the momentum vectors in the laboratory frame of the initial state electron (positron) and final state antiproton (proton), respectively. The angular distribution of the missing momentum is used to suppress the hadronic background, in particular the process \(e^+e^- \rightarrow pp\pi^0 \). Figure 2 shows the distribution of the polar angle \(\theta_{\text{miss}} \) of the missing momentum in the laboratory frame for the MC signal and \(e^+e^- \rightarrow pp\pi^0 \) background events. \(\theta_{\text{miss}} \) is required to be in the region:

\[
\theta_{\text{miss}} < 0.125 \text{ or } \theta_{\text{miss}} > (\pi - 0.125) \text{ rad}. \tag{4}
\]

The missing mass squared is defined by:

\[
M_{\text{miss}}^2 = (K_1 + K_2 - P_1 - P_2)^2, \tag{5}
\]

where \(K_1 \) (\(K_2 \)) and \(P_1 \) (\(P_2 \)) are the four-momenta of the initial state electron (positron) and final state antiproton (proton), respectively. Figure 3 shows the distributions of \(M_{\text{miss}}^2 \) for the simulated signal and background events at \(\sqrt{s} = 4.226 \) GeV. The events are required to have a \(M_{\text{miss}}^2 \) in the interval:

\[
-0.1 < M_{\text{miss}}^2 < 0.2 \text{ GeV}^2/c^4, \tag{6}
\]

for the data samples collected at \(\sqrt{s} > 4 \) GeV, and

\[
-0.02 < M_{\text{miss}}^2 < 0.10 \text{ GeV}^2/c^4, \tag{7}
\]

for the data sample collected at \(\sqrt{s} = 3.773 \) GeV. This condition mainly suppresses the background from \(e^+e^- \rightarrow e^+e^-\gamma, \mu^+\mu^-\gamma, pp\pi^0(\gamma), K\bar{K}\gamma \) and \(\pi^+\pi^-\gamma \) channels. At \(\sqrt{s} = 3.773 \) GeV, a narrower window of the \(M_{\text{miss}}^2 \) interval is needed to reject the remaining background from the resonance \((J/\psi, \psi(3686)) \) decays into the \(pp\gamma \) final state.

The polar angles of the proton and the antiproton in the \(pp \) (c.m.) system are required to be within \(|\cos \theta_{p,\bar{p}}^{\text{pp}}| < 0.75 \). Due to the conditions applied on the distributions of \(\theta_{\text{miss}} \) and \(M_{\text{miss}}^2 \) (Eqs. 4, 6 and 7), the efficiency of the signal in the region \(|\cos \theta_{p,\bar{p}}^{\text{pp}}| > 0.75 \) is very small. The condition \(|\cos \theta_{p,\bar{p}}^{\text{pp}}| < 0.75 \) is used to suppress the remaining background from the process \(e^+e^- \rightarrow e^+e^-\gamma \).

The distribution of \(M_{\text{pp}} \) for the selected data candidates is shown in Fig. 4. The total number of events, from the data samples collected at the 7 c.m. energies, is around 9100. Selected events from \(J/\psi \rightarrow pp \) and \(\psi(3686) \rightarrow pp \) decays are clearly seen at \(M_{\text{pp}} \sim 3.1 \) and 3.7 GeV/c^2, respectively.

IV. BACKGROUND ESTIMATION AND SUBTRACTION

The background events in the MC samples of \(e^+e^- \rightarrow e^+e^-\gamma, \mu^+\mu^-\gamma, \pi^+\pi^-\gamma \) and \(K\bar{K}\gamma \) are suppressed by the selection criteria described in Sec. III. The amount of generated events in each MC sample exceeds the number of expected events for these background channels according to their cross sections and luminosities, and they can consequently be safely neglected. The ISR channels \(e^+e^- \rightarrow \gamma R \) \((R \rightarrow pp\gamma), R = J/\psi, \psi(3686), \psi(3773), \psi(4040)\) are suppressed to below 0.5% of the total selected events and they can also be neglected. In the following the numbers of background events from \(e^+e^- \rightarrow \gamma R \) \((R \rightarrow pp\gamma), R = J/\psi, \psi(3686), e^+e^- \rightarrow pp\pi^0 \) and the two-photon channel are estimated and subtracted from the selected data events.

![FIG. 2. The distributions of \(\theta_{\text{miss}} \) for the simulated signal events \(e^+e^- \rightarrow pp\gamma \) (black solid) and \(e^+e^- \rightarrow pp\pi^0 \) (red dashed), at \(\sqrt{s} = 4.226 \) GeV. These distributions are normalized to the numbers of the expected events in the data sample according to their cross sections and luminosity.](image-url)
background channels). The fit parameters are the number of resonance events, the number of non-resonance events, the constant of the linear/exponential function, the mean and the sigma of the Gaussian function. The numbers of resonance and non-resonance events are calculated for each data sample separately. The numbers of events for the $J/\psi \to p\bar{p}$ and $\psi(3686) \to p\bar{p}$ decays are listed in Table II.

Table II. The numbers of events for $J/\psi \to p\bar{p}$ and $\psi(3686) \to p\bar{p}$ decays for the different data samples collected at the 7 c.m. energies. The analysis described in this paper requires the emission of a hard ISR photon in the signal channel and is therefore not suitable to measure the number of events for the $\psi(3686) \to p\bar{p}$ decay at $\sqrt{s} = 3.773$ GeV.

\sqrt{s} [GeV]	$N_{J/\psi \to p\bar{p}}$	$N_{\psi(3686) \to p\bar{p}}$
3.773	2046 ± 46	43.9 ± 7.3
4.008	266 ± 17	64.1 ± 9.4
4.226	391 ± 20	32.0 ± 7.3
4.258	340 ± 19	24.7 ± 5.2
4.358	179 ± 14	43.8 ± 6.6
4.416	317 ± 18	13.0 ± 3.3
4.600	140 ± 12	

B. Background from $e^+e^- \to p\bar{p}\pi^0(\gamma)$

The process $e^+e^- \to p\bar{p}\pi^0(\gamma)$ is a critical background to the signal process since it contains the same detected charged particles, proton and antiproton, as the signal.
represents the signal (sideband) region.

Of the process generated based on the measured angular distributions between signal and background events. The MC samples area in Fig. and missing momentum, for data events and simulated signal of resonance events and non-resonance events are determined. The dashed green curve represents the linear fit function and the solid blue curve represents the sum of the Gaussian (for resonance events) and the linear (for signal (Fig. 1) and background events) functions.

To estimate the background from the process , we use the difference of the distributions between signal and background events. The MC samples generated based on the measured angular distributions of the process and simulated signal and are used. Figure shows the distributions of the polar angle of the missing momentum, for data events and simulated signal and background events. The red (blue) area in Fig. represents the signal (sideband) region. The number of data events in the sideband region and the number of background events in the signal region are the results of the fits. At each c.m. energy, the numbers of resonance events and non-resonance events are determined. The dashed green curve represents the exponential fit function and the solid blue curve represents the sum of the Gaussian (for resonance events) and the exponential (for signal (Fig. 1) and background events) functions.

(N_{bkg}) are related by:

\[N_{bkg} = \frac{N_2 - \beta_{sig} N_1}{\beta_{bkg} - \beta_{sig}}, \]

where \(N_1 \) is the number of data events in the signal region, \(N_1 \) and \(N_2 \) are determined from data after applying the event selection conditions except the \(\theta_{miss} \) requirement. \(\beta_{sig} \) and \(\beta_{bkg} \) are the \(N_2/N_1 \) ratios from the MC signal and background events, respectively. ISR effects \((e^+ e^- \rightarrow p\bar{p}\pi^0\gamma) \) are simulated with the generator software package CONEXC and they are used to correct \(\beta_{bkg} \).

The number of background events \(N_{p\bar{p}\pi^0(\gamma)} \) is deter-
mined for each data sample separately. This background source constitutes 2.3% of the selected data events.

C. Background from two-photon channel

The number of background events from the two-photon channel $N_{2\gamma}$ is estimated using the same method described in Sec. IV B. Figure 8 shows the two-dimensional distributions of M^2_{miss} versus $M_{p\bar{p}}$ for the MC signal and two-photon events, and for the data events at $\sqrt{s} = 4.226$ GeV. The region of large M^2_{miss} values ($|p_{miss}| < 0.2$ GeV/c at $\sqrt{s} > 3.773$ GeV and $|p_{miss}| < 0.25$ GeV/c at $\sqrt{s} > 4$ GeV) is chosen as the sideband region. The black lines in Fig. 8 show the borders of the signal region at $\sqrt{s} = 4.226$ GeV. The total number of background events from the two-photon channel constitutes 1.0% of the total selected data events. The remaining background events are in the $M_{p\bar{p}}$ region below 3.0 GeV/c2.

The sum of the background events over the 7 c.m. energy points for the $e^+e^- \rightarrow p\bar{p}n\bar{n}(\gamma)$ and two-photon channels in each $M_{p\bar{p}}$ interval is given in Table III.

V. SIGNAL EFFICIENCY

The collected events at the 6 c.m. energies for $\sqrt{s} > 4$ GeV are analyzed in $M_{p\bar{p}}$ intervals between 2.0 and 3.8 GeV/c2. In the low $M_{p\bar{p}}$ region ($M_{p\bar{p}} < 2$ GeV/c2), the proton and antiproton are produced in a narrow cone around the vector opposite to the direction of the ISR photon. The signal events at low $M_{p\bar{p}}$ region are suppressed due to the limited acceptance of the BESIII tracking system. The events collected at $\sqrt{s} = 3.773$ GeV are analyzed in a smaller $M_{p\bar{p}}$ range between 2.0 and 2.9 GeV/c2. Above 2.9 GeV/c2 (3.8 GeV/c2), the number of signal events from $\sqrt{s} = 3.773$ GeV ($\sqrt{s} > 4$ GeV) is small and it is comparable to the number of remaining background events. The integrated signal efficiency at $\sqrt{s} = 3.773$ GeV is equal to 17.8%. It decreases to 12.6% at the highest c.m. energy ($\sqrt{s} = 4.600$ GeV). The signal efficiency is determined in each $M_{p\bar{p}}$ interval using the MC events of the process $e^+e^- \rightarrow p\bar{p}\gamma$ generated up to the next-to-leading order radiative corrections. The parametrizations for G_E and G_M from Ref. [32] are used to calculate the efficiency of the signal. The $M_{p\bar{p}}$ dependence of the signal efficiency is shown in Fig. III for $\sqrt{s} = 3.773, 4.226$, and 4.600 GeV.

VI. CROSS SECTION FOR THE $e^+e^- \rightarrow p\bar{p}$ CHANNEL AND THE PROTON EFFECTIVE FF

The Born cross section for the process $e^+e^- \rightarrow p\bar{p}$ is calculated in each $M_{p\bar{p}}$ interval i and for each data sample j ($j = 1, 2, ..., 7$) as follows:

$$\sigma_{ij} = \frac{N_{ij}}{\epsilon_{ij}(1 + \delta_{ij})L_{ij}},$$

where N_{ij} is the number of selected $e^+e^- \rightarrow p\bar{p}\gamma$ events after background subtraction, ϵ_{ij} is the detection efficiency, $(1 + \delta_{ij})$ is the radiative correction factor and L_{ij} is the ISR differential luminosity. The index j runs over the 7 c.m. energies.

The detection efficiency ϵ_{ij} is determined in each $M_{p\bar{p}}$ interval using the MC events of the process $e^+e^- \rightarrow p\bar{p}\gamma$ generated up to the next-to-leading order radiative corrections. The radiative correction factor $(1 + \delta_{ij})$ describes the distortion of the $e^+e^- \rightarrow p\bar{p}\gamma$ cross section due to contribution of higher order diagrams. It is calculated using the generated MC events of the signal and takes into account vacuum polarization and photon emissions from the initial and final states. The differential
The distributions of M_{miss}^2 versus $p\bar{p}$, after applying the event selection conditions (except the condition on M_{miss}^2) for the simulated signal events (a), two-photon events (b), and data events (c) at $\sqrt{s} = 4.226$ GeV. The black solid lines represent the borders of the signal region. The red filled squares describe the selected events of the sideband region ($|p_{\text{miss}}| < 0.25$ GeV/c).

\begin{align}
\sigma_{p\bar{p}}(M_{p\bar{p}}) &= \sigma_i = \Sigma_j (w_{ij}\sigma_{ij}),
\Delta \sigma_i &= \sqrt{\frac{1}{\Sigma_j W_{ij}}},
\end{align}

where $\Delta \sigma_i$ and $\Delta \sigma_{ij}$ are the statistical errors of σ_i and σ_{ij}, respectively. The indices j and l run over the 7 c.m. energies.

The obtained values of the Born cross section for the process $e^+e^- \rightarrow p\bar{p}\gamma$ are listed in Table IV. The quoted uncertainties are statistical and systematic. The systematic uncertainties of the measured cross section include uncertainties from tracking, PID, $E_{\text{EMC}}/p_{\text{rec}}$ requirement, background estimation, M_{miss}^2 and θ_{miss} requirements, and luminosity determination. The contributions of the uncertainties from the tracking of the two charged particles (2.0%), PID (2.0%) and $E_{\text{EMC}}/p_{\text{rec}}$ requirement (1.0%) are uniform over the considered $M_{p\bar{p}}$ range [17]. To determine the uncertainty from the background estimation of the $e^+e^- \rightarrow p\bar{p}g^0$ and two-photon channels, we calculate the number of selected events (before efficiency correction) with and without background subtraction. The difference between the two cases (1.0-7.3% for the $e^+e^- \rightarrow p\bar{p}g^0$ channel and less than 5.4% for the two-photon channel) is taken as systematic uncertainty from the background estimation. We associate 0.5% systematic uncertainty to the possible background contribution from $e^+e^- \rightarrow \gamma R$ ($R \rightarrow p\bar{p}\gamma$), $R = J/\psi, \psi(3686)$. To study the systematic uncertainties from the θ_{miss} and M_{miss}^2 requirements, the Born cross section for the process $e^+e^- \rightarrow p\bar{p}$ is recalculated using reduced selection windows of about 20% compared to the original values. The uncertainties from the θ_{miss}, (M_{miss}^2) requirements are found to be less than 6% (5%).

The Born cross sections σ_{ij} are combined using the error weighted combination method [43]:

\begin{align}
L_{ij} &= \int W(s_j, x_{ij}) \epsilon_j dx_{ij}, \quad x_{ij} = 1 - \frac{q_{ij}^2}{s_j}, \\
\end{align}

where $W(s_j, x_{ij})$ (Eq. (11)) is a function of the c.m. energy squared s_j ($j = 1, 2, ..., 7$) and the energy fraction x_{ij}. ϵ_j is the integrated luminosity collected at the c.m. energy \sqrt{s} (Table I). The integral in Eq. (11) is performed over the width of the selected $M_{p\bar{p}}$ interval. The MC events of the signal process are used to determine the $p\bar{p}$ mass resolution in each $M_{p\bar{p}}$ interval. The width of the chosen $M_{p\bar{p}}$ interval exceeds the mass resolution for all the $p\bar{p}$ masses.

The Born cross sections σ_{ij} are combined using the error weighted combination method [43].
TABLE III. The differential luminosity (L_i), the numbers of background events (N_{bkgd}) from $e^+e^\to p\bar{p}\pi^0$ and two-photon channel, and the numbers of selected events after background subtraction (N_{data}) at each $M_{p\bar{p}}$ interval, from the combined data collected at the 7 c.m. energies. The numbers of events in the $M_{p\bar{p}}$ intervals [3.0 - 3.2 GeV/c^2 and 3.6 - 3.8 GeV/c^2 are determined from the fits described in Sec. [IV] and do not include the background events from the $J/\psi\to p\bar{p}$ and $\psi(3686)\to p\bar{p}$ decays. The uncertainties are statistical.

$M_{p\bar{p}}$ [GeV/c^2]	L_i [pb$^{-1}$]	$N_{bkgd}(o_c)$	N_{cys}	N_{data}
2.000 - 2.025	2.39	5.0 ± 1.7	0.92 ± 0.80	218 ± 15
2.025 - 2.050	2.59	4.2 ± 1.7	0.77 ± 0.45	343 ± 19
2.050 - 2.075	2.65	7.2 ± 2.0	2.18 ± 0.87	380 ± 20
2.075 - 2.100	2.72	4.6 ± 1.6	1.52 ± 0.77	467 ± 22
2.100 - 2.125	2.79	4.6 ± 1.5	2.6 ± 1.1	456 ± 22
2.125 - 2.150	2.86	5.2 ± 1.5	0.83 ± 0.57	491 ± 22
2.150 - 2.175	2.93	7.8 ± 2.0	3.1 ± 1.2	455 ± 22
2.175 - 2.200	3.00	6.0 ± 1.6	6.1 ± 2.1	409 ± 21
2.200 - 2.225	3.08	8.9 ± 2.0	4.4 ± 1.4	338 ± 19
2.225 - 2.250	3.16	5.6 ± 1.6	4.1 ± 1.6	300 ± 18
2.250 - 2.275	3.24	4.9 ± 1.9	2.2 ± 1.9	227 ± 15
2.275 - 2.300	3.32	7.5 ± 2.3	3.4 ± 1.3	199 ± 15
2.300 - 2.350	6.91	9.0 ± 2.0	3.8 ± 1.4	303 ± 18
2.350 - 2.400	7.28	16.7 ± 3.5	4.1 ± 1.8	279 ± 18
2.400 - 2.450	7.69	6.1 ± 1.4	3.8 ± 1.5	322 ± 18
2.450 - 2.500	8.13	5.5 ± 1.3	4.8 ± 2.1	281 ± 17
2.500 - 2.550	8.60	5.4 ± 1.1	6.6 ± 2.2	204 ± 15
2.550 - 2.600	9.12	2.6 ± 0.70	5.7 ± 2.1	193 ± 14
2.600 - 2.650	9.68	5.6 ± 1.5	3.3 ± 1.6	146 ± 13
2.650 - 2.700	10.30	3.7 ± 1.0	2.3 ± 1.3	123 ± 11
2.700 - 2.750	10.97	4.5 ± 1.4	1.4 ± 1.1	121 ± 11
2.750 - 2.800	11.72	6.0 ± 1.6	0.00 ± 0.10	115 ± 11
2.800 - 2.850	12.54	4.5 ± 1.3	0.46 ± 0.64	98 ± 10
2.850 - 2.900	13.46	6.0 ± 1.8	1.3 ± 1.2	100 ± 11
2.900 - 2.950	6.44	2.03 ± 0.43	2.2 ± 1.5	36.8 ± 6.6
2.950 - 3.000	6.84	1.05 ± 0.38	0 ± 0	40.0 ± 6.4
3.000 - 3.200	32.23	3.54 ± 0.61	0 ± 0	145 ± 15
3.200 - 3.400	42.94	4.10 ± 0.63	0 ± 0	66.9 ± 8.4
3.400 - 3.600	60.36	2.51 ± 0.45	0 ± 0	52.5 ± 7.4
3.600 - 3.800	87.18	3.24 ± 0.47	0 ± 0	41 ± 12

The obtained values of $|G_{eff}|$ are reported in Table IV for each $M_{p\bar{p}}$ interval. The results on the Born cross section and the proton effective FF are shown in Fig. 11 and Fig. 12 respectively. The results are consistent with previous experiments. In particular, we reproduce the structures seen in the measurements of the proton effective FF by the BaBar collaboration [20, 21]. Refs. [44, 45, 46] provide several parametrizations of the time-like proton FFs. For example, the blue dashed curve in Fig. 12 represents the Quantum Chromodynamics (QCD) inspired parameterization of $|G_{eff}|$ from Refs. [24, 16]:

$$|G_{eff}| = \frac{A_{QCD}}{q^4 \log^2(q^2 / \Lambda_{QCD}^2) + \pi^2}$$

where the parameters $A_{QCD} = 72$ (GeV/c)4 and $\Lambda_{QCD} = 0.52$ (GeV/c) are obtained from a fit to the previous experimental data [17]. The data on the time-like effective FF are best reproduced by the function proposed in Ref. [13]:

$$|G_{eff}| = \frac{A}{(1 + q^2 / m_0^2)(1 - q^2 / g_0^2)^{2/3}}, \quad q_0^2 = 0.71 \text{ (GeV/c)}^2,$$

where $A = 7.7$ and $m_0^2 = 14.8$ (GeV/c)2 are the fit parameters obtained previously in Ref. [17]. It is illustrated in Fig. 12 by the solid black curve.

The two functions (Eqs. (13) and (14)) reproduce the behavior of the effective FF over the long q^2 range. However, the measurements indicate some oscillating structures and therefore a more complex behavior than the smooth decrease predicted by QCD as a function of q^2. These oscillations are clearly seen when the data are plotted as a function of the 3-momentum p of the relative motion of the final proton and antiproton [22]. Figure 13 shows the values of the proton effective FF as a function of p after subtraction of the smooth function described by Eq. (13). The black solid curve in Fig. 13a describes the periodic oscillations and has the form [22]:

$$F_p = A_{osc} \exp(-B_{osc}p) \cos(C_{osc}p + D_{osc}),$$

where $A_{osc} = 0.05$, $B_{osc} = 0.7$ (GeV/c)$^{-1}$, $C_{osc} = 5.5$ (GeV/c)$^{-1}$ and $D_{osc} = 0.0$ are obtained previously from a fit to the BaBar data [17]. The origin of these oscillating structures can be attributed to an interference effect involving rescattering processes in the final state [23] or to independent resonant structures, as in Ref. [22]. The structure seen around $M_{p\bar{p}} = 2.15$ GeV/c^2 (Fig. 13b) can be for example attributed to the $\rho(2150)$ resonance [45]. Other possible interpretations of these structures are not excluded here.
TABLE IV. The Born cross section of the process $e^+e^- \rightarrow p\bar{p}$ and the effective FF measured in each $M_{p\bar{p}}$ interval. The first and second uncertainties are statistical and systematic, respectively.

| $M_{p\bar{p}}$ [GeV/c^2] | $\sigma_{p\bar{p}}$ [pb] | $|G_{\text{eff}}|$ |
|---------------------------|-------------------------|----------------|
| 2.000 - 2.025 | 797 ± 56 ± 75 | 0.263 ± 0.099 ± 0.012 |
| 2.025 - 2.050 | 833 ± 46 ± 69 | 0.264 ± 0.007 ± 0.011 |
| 2.050 - 2.075 | 723 ± 38 ± 56 | 0.242 ± 0.006 ± 0.009 |
| 2.075 - 2.100 | 749 ± 35 ± 46 | 0.243 ± 0.006 ± 0.007 |
| 2.100 - 2.125 | 654 ± 31 ± 47 | 0.226 ± 0.005 ± 0.008 |
| 2.125 - 2.150 | 637 ± 29 ± 40 | 0.221 ± 0.005 ± 0.007 |
| 2.150 - 2.175 | 557 ± 27 ± 39 | 0.206 ± 0.005 ± 0.007 |
| 2.175 - 2.200 | 467 ± 24 ± 31 | 0.189 ± 0.005 ± 0.006 |
| 2.200 - 2.225 | 371 ± 21 ± 27 | 0.168 ± 0.005 ± 0.006 |
| 2.225 - 2.250 | 310 ± 19 ± 22 | 0.154 ± 0.005 ± 0.005 |
| 2.250 - 2.275 | 225 ± 16 ± 16 | 0.131 ± 0.005 ± 0.005 |
| 2.275 - 2.300 | 192 ± 14 ± 14 | 0.121 ± 0.005 ± 0.005 |
| 2.300 - 2.350 | 136.1 ± 8.1 ± 7.9 | 0.103 ± 0.003 ± 0.003 |
| 2.350 - 2.400 | 116.3 ± 7.5 ± 9.5 | 0.096 ± 0.003 ± 0.004 |
| 2.400 - 2.450 | 126.1 ± 7.2 ± 6.3 | 0.101 ± 0.003 ± 0.003 |
| 2.450 - 2.500 | 100.1 ± 6.2 ± 6.7 | 0.091 ± 0.003 ± 0.003 |
| 2.500 - 2.550 | 67.4 ± 5.0 ± 4.7 | 0.075 ± 0.003 ± 0.003 |
| 2.550 - 2.600 | 61.1 ± 4.6 ± 3.7 | 0.072 ± 0.003 ± 0.002 |
| 2.600 - 2.650 | 41.0 ± 3.7 ± 2.9 | 0.060 ± 0.003 ± 0.002 |
| 2.650 - 2.700 | 33.6 ± 3.2 ± 2.3 | 0.055 ± 0.003 ± 0.002 |
| 2.700 - 2.750 | 30.7 ± 3.0 ± 3.0 | 0.053 ± 0.003 ± 0.003 |
| 2.750 - 2.800 | 26.8 ± 2.7 ± 2.4 | 0.051 ± 0.003 ± 0.002 |
| 2.800 - 2.850 | 21.6 ± 2.3 ± 2.3 | 0.046 ± 0.002 ± 0.002 |
| 2.850 - 2.900 | 20.4 ± 2.2 ± 1.8 | 0.045 ± 0.002 ± 0.002 |
| 2.900 - 2.950 | 10.2 ± 2.2 ± 1.6 | 0.033 ± 0.004 ± 0.002 |
| 2.950 - 3.000 | 14.1 ± 2.4 ± 1.1 | 0.039 ± 0.003 ± 0.002 |
| 3.000 - 3.200 | 11.1 ± 1.2 ± 1.2 | 0.036 ± 0.002 ± 0.002 |
| 3.200 - 3.400 | 3.59 ± 0.48 ± 0.44 | 0.021 ± 0.001 ± 0.001 |
| 3.400 - 3.600 | 2.18 ± 0.31 ± 0.24 | 0.018 ± 0.001 ± 0.001 |
| 3.600 - 3.800 | 0.64 ± 0.25 ± 0.08 | 0.010 ± 0.002 ± 0.001 |

VII. PROTON FF RATIO

The proton FF ratio R is determined by fitting the distribution of the helicity angle θ_p for the selected data events. θ_p is the angle between the proton momentum in the $p\bar{p}$ rest frame, and the momentum of the $p\bar{p}$ system in the e^+e^- c.m. system. The distribution of θ_p is given by [19]:

$$
\frac{dN}{d\cos \theta_p} = A(H_M(\cos \theta_p, M_{p\bar{p}}) + R^2 H_E(\cos \theta_p, M_{p\bar{p}})),
$$

(16)

where A is an overall normalization parameter. The functions $H_M(\cos \theta_p, M_{p\bar{p}})$ and $H_E(\cos \theta_p, M_{p\bar{p}})$ describe the magnetic and the electric contributions to the angular distribution θ_p, respectively. They are obtained from MC simulations in form of histograms. The process $e^+e^- \rightarrow p\bar{p}\gamma$ is generated (up to the next to leading order radiative corrections) with $G_E = 0$ to determine H_M, and with $G_M = 0$ to determine H_E.

The angular distributions of the selected events are studied in three $M_{p\bar{p}}$ intervals between 2.0 and 3.0 GeV/c^2. The background events are subtracted from the selected data events in each $\cos \theta_p$ interval. After background subtraction, the data events are corrected by the efficiency of the signal. The signal efficiency is determined from the MC simulations of the signal by di-
and other experiments is shown in Fig. 13, as a function of the relative momentum \(P(a) \) and \(M_{pp} \) (b). The data are from the present analysis and from BaBar experiment [20, 21] measured in the \(M_{pp} \) intervals below 3 GeV/\(c^2 \). The black curve shows the parametrisation from Ref. [17] based on Eq. (15).

The obtained values of \(R \) are listed in Table V. The total uncertainty is dominated by the statistical uncertainties. The main contributions to the systematic uncertainty in the \(R \) measurements come from the fit range, background estimation, and from the \(M_{miss} \) and \(\theta_{miss} \) requirements. A comparison of \(R \) measured in this work and other experiments is shown in Fig. 15.

VIII. BRANCHING FRACTIONS OF \(J/\psi, \psi(3686) \rightarrow p\bar{p} \)

The measured numbers of resonance decays \(N_R \) (\(R = |G_E|/|G_M| \)) in each \(M_{pp} \) interval between 2.0 and 3.0 GeV/\(c^2 \). The quoted uncertainties are the sums of the statistical and systematic uncertainties in quadrature. The statistical uncertainties are dominant.

\(M_{pp} \) [GeV/\(c^2 \)]	Fitting range \((\cos \theta_p) \)	\(R \)
2.0 - 2.3	[-0.6,0.6]	1.24±0.29
2.3 - 2.6	[-0.8,0.8]	0.98±0.24
2.6 - 3.0	[-0.8,0.8]	1.18±0.40

The measured \(\Gamma_{R \rightarrow e^+e^-} \times B(\mathcal{R} \rightarrow p\bar{p}) \) depends on the relative normalization between \(H_E \) and \(H_M \).

FIG. 13. The proton effective FF values, after subtraction of the smooth function described by Eq. (14), as a function the relative momentum \(P(a) \) and \(M_{pp} \) (b). The data collected at the c.m. energies are combined after efficiency correction. The proton FF ratio is determined by fitting the \(\cos \theta_p \) distributions (Fig. 14) using Eq. (16) and taking into account the relative normalization between \(H_E \) and \(H_M \).

The obtained values of \(R \) are listed in Table V. The total uncertainty is dominated by the statistical uncertainties. The main contributions to the systematic uncertainty in the \(R \) measurements come from the fit range, background estimation, and from the \(M_{miss} \) and \(\theta_{miss} \) requirements. A comparison of \(R \) measured in this work and other experiments is shown in Fig. 15.

TABLE V. The measured \(R \) (\(R = |G_E|/|G_M| \)) in each \(M_{pp} \) interval between 2.0 and 3.0 GeV/\(c^2 \). The quoted uncertainties are the sums of the statistical and systematic uncertainties in quadrature. The statistical uncertainties are dominant.

\begin{align}
\Gamma_{R \rightarrow e^+e^-} \times B(\mathcal{R} \rightarrow p\bar{p}) &= \frac{sM_R}{12\pi^2} \epsilon_R(1 + \delta_R)W(s,x_R)\mathcal{L}.
\end{align}

where \(M_R \) is the mass of the resonance, \(W(s,x) \) is the ISR function (Eq. (11)), and \(\Gamma_{R \rightarrow e^+e^-} \) is the electronic width of \(\mathcal{R} \). The radiative correction factor \((1 + \delta_R) \) is determined using the MC events of the signal process \(e^+e^- \rightarrow p\bar{p}\gamma \). The integral logarithms \(\mathcal{L} \) are collected at the c.m. energy \(\sqrt{s} \) (Table I). For the electronic widths of \(J/\psi \) and \(\psi(3686) \), the nominal values from Ref. [48] are used. MC samples for \(J/\psi \rightarrow p\bar{p} \) and \(\psi(3686) \rightarrow p\bar{p} \) are generated at the different c.m. energies between 3.773 and 4.6 GeV to determine the detection efficiency \(\epsilon_R \). The MC events are produced with proton angular distributions described by the function \(1 + C \cos^2 \theta \) with \(C = 0.595 \pm 0.012 \pm 0.015 \) for \(J/\psi \) and \(C = 1.03 \pm 0.06 \pm 0.03 \) for \(\psi(3686) \) [52]. The branching fractions of \(J/\psi \rightarrow p\bar{p} \) and \(\psi(3686) \rightarrow p\bar{p} \) are calculated for each data sample individually. The systematic uncertainties of the measured branching fractions include uncertainties from tracking (2.0%), PID (2.0%), \(E_{EMC}/P_{rec} \) requirement (1.0%), \(M_{miss}^2 \) and \(\theta_{miss} \) requirements, luminosity determination (0.8%), and radiator function \(W(s,x) \) (0.5%). The uncertainties from the \(\theta_{miss} \) (\(M_{miss}^2 \)) requirements are found to be 1.3% (1.6%) for \(\psi(3686) \) and negligible for \(J/\psi \). The model error in the detection efficiency due to the uncertainty of the \(C \) value is negligible. The difference between the fit output using a linear and an exponential fit function for the non-peaking events is added to the systematic uncertainties (1.8% for \(\psi(3686) \) and negligible for \(J/\psi \)). The obtained average value of \(B(J/\psi \rightarrow p\bar{p}) \) is \((2.08 \pm 0.04 \pm 0.07) \times 10^{-3} \), where the quoted uncertainties are statistical and systematic, respectively, is in good agreement with the world average value of \((2.12 \pm 0.03) \times 10^{-3} \) [48]. For \(B(\psi(3686) \rightarrow p\bar{p}) \), the obtained average value \((3.01 \pm 0.23 \pm 0.12) \times 10^{-4} \) is consistent with the world average value of \((2.88 \pm 0.09) \times 10^{-4} \) [48] and with the latest measurement of BESIII \(B(\psi(3686) \rightarrow p\bar{p}) = (3.05 \pm 0.02 \pm 0.12) \times 10^{-4} \) [53] based on \(1.07 \times 10^8 \) \(\psi(3686) \) events [54].
FIG. 14. The distributions of $\cos \theta_p$ for different $M_{p\bar{p}}$ intervals: (a) [2.0 - 2.3] GeV/c^2, (b) [2.3 - 2.6] GeV/c^2 and (c) [2.6 - 3.0] GeV/c^2. The red open points with error bars represent the selected data events after background subtraction. The black points are the data events for the signal channel corrected by the efficiency of the signal. The blue histograms are the results of the fits.

FIG. 15. The values of the proton FF ratio R measured in this analysis and in previous experiments: BaBar [20, 21], PS170 (LEAR) [11], BESIII [17], CMD-3 [19] and from Ref. [50]. The previous BESIII results (black crosses) were obtained using the energy scan technique where the precision on q^2 is given by the precise determination of \sqrt{s}.

IX. SUMMARY

Based on data samples corresponding to an integrated luminosity of 7.4 fb$^{-1}$ collected with the BESIII detector at c.m. energies between 3.773 and 4.600 GeV, the proton FFs have been measured using the ISR technique. In this work, the $e^+e^-\rightarrow p\bar{p}\gamma$ events in which the ISR photons cannot be detected have been analyzed. The Born cross section of the $e^+e^-\rightarrow p\bar{p}$ channel and the proton effective FF have been measured in 30 $M_{p\bar{p}}$ intervals between 2.0 and 3.8 GeV/c^2. The results are consistent with previous measurements and provide better precision in different $M_{p\bar{p}}$ intervals. The total relative uncertainty of the Born cross section is between 8% and 41%. We have confirmed the structures seen in the measurements of the proton effective FF by the BaBar collaboration [20, 21]. The proton angular distributions have been also analyzed to determine the proton FF ratio in 3 $M_{p\bar{p}}$ intervals between 2.0 and 3.0 GeV/c^2. The uncertainty on the measured proton FF ratio is dominated by the statistical uncertainty due to limited range of the proton angular distribution. The possibility to access the low $M_{p\bar{p}}$ region below 2 GeV/c^2 with ISR technique and undetected photon will be investigated in the future using the data samples collected at c.m. energies below 3.773 GeV. In addition, the branching fractions of the J/ψ, $\psi(3686)$ to $p\bar{p}$ decays are also measured. The results are in good agreements with the world average values. The proton angular distributions have been also analyzed to determine the proton FF ratio in 3 $M_{p\bar{p}}$ intervals between 2.0 and 3.0 GeV/c^2. The uncertainty on the measured proton FF ratio is dominated by the statistical uncertainty due to limited range of the proton angular distribution. The possibility to access the low $M_{p\bar{p}}$ region below 2 GeV/c^2 with ISR technique and undetected photon will be investigated in the future using the data samples collected at c.m. energies below 3.773 GeV. In addition, the branching fractions of the J/ψ, $\psi(3686)$ to $p\bar{p}$ decays are also measured. The results are in good agreements with the world average values. BESIII is an excellent laboratory for the measurement of baryon time-like FFs. Both ISR and scan methods can be performed, and the kinematical threshold for different baryon pair production is covered by the energy range of BEPCII. In 2015, BESIII performed high luminosity scan in 22 energy points between 2.0 and 3.08 GeV. Based on these data samples, more measurements of the nucleon electromagnetic FFs will be available in this kinematical region.

ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11335008, 11425524, 11625523, 11635010, 11735014; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1532257, U1532258, U1732263; CAS Key Re-
of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund: The Swedish Research Council; The Knut and Alice Wallenberg Foundation; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt.

[1] A. Denig and G. Salmè, Prog. Part. Nucl. Phys. 68, 113 (2013).
[2] S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson, Phys. Rept. 550-551, 1 (2015).
[3] E. A. Kuraev, E. Tomasi-Gustafsson, and A. Dbyeysi, Phys. Lett. B 712, 240 (2012).
[4] A. I. Akhiezer and M. Rakalo, Sov. Phys. Dokl. 13, 572 (1968).
[5] A. I. Akhiezer and M. Rakalo, Sov. J. Part. Nucl. 4, 277 (1974).
[6] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007).
[7] M. Castellano, G. Giugno, J. Humphrey, E. S. Palmieri, G. Troise, U. Troya, and S. Vitale, Nuovo Cimento A 14, 1 (1973).
[8] M. Andreotti et al., Phys. Lett. B 559, 20 (2003).
[9] M. Ambrogiani et al. (E835 Collaboration), Nucl. Phys. D 60, 032002 (1999).
[10] A. Antonelli et al., Nucl. Phys. B 517, 3 (1998).
[11] G. Bardin et al., Nucl. Phys. B 411, 3 (1994).
[12] T. A. Armstrong et al. (ET60 Collaboration), Phys. Rev. Lett. 70, 1212 (1993).
[13] B. Delcourt et al., Phys. Lett. B 86, 395 (1979).
[14] D. Bisello et al., Nucl. Phys. B 224, 379 (1983).
[15] D. Bisello et al. (DM2 Collaboration), Z. Phys. C 48, 23 (1990).
[16] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 630, 14 (2005).
[17] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 91, 112004 (2015).
[18] T. K. Pedlar et al. (CLEO Collaboration), Phys. Rev. Lett. 95, 261803 (2005).
[19] R. R. Akhmetshin et al. (CMD-3 Collaboration), Phys. Lett. B 759, 634 (2016).
[20] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 88, 032011 (2013).
[21] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 87, 092005 (2013).
[22] I. T. Lorentz, H.-W. Hammer, and U.-G. Meissner, Phys. Rev. D 92, 034018 (2015).
[23] A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. C 93, 035201 (2016).
[24] M. Ablikim et al. (BESII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
[25] V. P. Druzhinin, S. I. Eidelman, S. I. Serednyakov, and E. P. Solodov, Rev. Mod. Phys. 83, 1545 (2011).
[26] G. Bonneau and F. Martin, Nucl. Phys. B 27, 381 (1971).
[27] C. Tzara, Nucl. Phys. B 18, 246 (1970).

[28] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 753, 629 (2016).
[29] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 39, 093001 (2015).
[30] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 1308, 250 (2003).
[31] Z. Y. Deng et al. (HEP & NP 30), 371 (2006).
[32] H. Czyz, J. H. Kuehn, and S. Tracz, Phys. Rev. D 90, 114021 (2014).
[33] T. Sjostrand, arXiv:hep-ph/9508391.
[34] R. G. Ping et al., Chin. Phys. C 38, 083001 (2014).
[35] R. G. Ping, Chin. Phys. C 32, 599 (2008).
[36] H. Czyz, M. Gunia, and J. H. Kuehn, JHEP 1308, 110 (2013).
[37] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001).
[38] S. Jadach, B. F. L. Ward, and Z. Was, Comput. Phys. Commun. 130, 260 (2000).
[39] G. Balossini, C. M. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Nucl. Phys. B 758, 227 (2006).
[40] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[41] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 90, 032007 (2014).
[42] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 771, 45 (2017).
[43] M. Schnellinger, Physica Scripta 51, 676 (1995).
[44] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).
[45] E. Tomasi-Gustafsson and M. P. Rakalo, Phys. Lett. B 504, 291 (2001).
[46] D. V. Shirkov and I. L. Sokolov, Phys. Rev. Lett. 79, 1200 (1997).
[47] A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. Lett. 114, 232001 (2015).
[48] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
[49] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 73, 012005 (2006).
[50] R. Baldini et al., Eur. Phys. J. C 46, 421 (2006).
[51] M. Benayoun, S. I. Eidelman, V. N. Ivanchenko, and Z. K. Silagadze, Mod. Phys. Lett. A 14, 2605 (1999).
[52] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 86, 032014 (2012).
[53] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 98, 032006 (2018).
[54] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37, 063001 (2013).