Nigerian Medicinal Plants for the Management of Liver Diseases: A Review

Anthony Chibuzor Nnamudi¹*, Vincent Onyekachukwu Onyeche², Osamudiamen Ebohon³ and Ijeoma Nina Eke-Ogaranya¹

¹Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
²National Institute for Freshwater Fisheries Research, New-Bussa, Niger State, Nigeria.
³Department of Biochemistry, Faculty of Natural and Applied Sciences, Michael and Cecilia Ibru University, Agbara-Otor, Delta State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author ACN designed the study. All authors wrote the first draft of the manuscript. Authors ACN and VOO proofread the final work. Authors OE and INEO analyzed the search results. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2020/v31i1230302

Editor(s):
(1) Dr. Daniela Rigano, University of Naples Federico II, Italy.
(2) Marcello Iriti, University of Milan, Italy.

Reviewer(s):
(1) P. Vinoth Kumar, J. J. College of Arts and Science, India.
(2) Kamurthy Hemalatha, Malla Reddy College of Pharmacy, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/58966

ABSTRACT

The liver, despite its crucial role in metabolism is prone to several metabolic injuries and insults manifesting as liver damage. Thus, liver diseases arise from multiple aetiologies. In Nigeria, chronic liver diseases are rampant and constitute a significant cause of morbidity. Globally, medicinal plants play crucial roles in healthcare. Several Nigerian medicinal plants are used in the management of various liver disorders. This review focuses on medicinal plants that are used in the management of liver diseases in Nigeria. The search for novel active principles from plants must be sustained due to increasing prevalence of various liver ailments, challenges associated with liver transplantation and poor healthcare funding. The identification, isolation and characterization of active compounds from Nigerian medicinal plants could lead to the potential development of affordable and effective drugs for the management of liver diseases.

*Corresponding author: E-mail: anthonymnamudi@gmail.com, annamudi@pums.edu.ng;
1. INTRODUCTION

The liver is a vital organ that plays major roles in diverse metabolic pathways, detoxification process, breakdown of red blood cells and in the synthesis of proteins and hormones [1]. Despite its diverse metabolic functions, the liver (like the average Nigerian worker) is prone to suffer a lot of injuries (from infections) and metabolic insults (from toxic xenobiotics). These injuries and insults manifest as liver damage. Liver disease and hepatic failure have been studied by several authors [2,3,4].

Some of the risk factors that may increase the likelihood of hepatic diseases include heavy alcohol consumption, obesity, family history, exposure to toxins and chemicals [5,6,7]. Correspondingly, liver disease arise from multiple aetiologies such as viral, metabolic disorder (autoimmune deficiency) and hereditary factors as seen in cases of hepatitis B virus, hemochromatosis and type 2 diabetes respectively [8,9,10]. Generally, liver infections are classified into acute and chronic infections. The acute infections include hepatitis, hepatitis, liver cirrhosis, liver injury, acute hepatitis and chronic active hepatitis B. The chronic infections include primary sclerosis cholangitis (PSC), primary biliary cirrhosis (PBC), alcoholic fibrosis and alcoholic hepatitis [9,10]. A liver damage progresses to liver failure and possibly death if not properly treated and managed [11].

The long and uninterrupted history of herbal therapy usage in the developing countries of the world [12] is amply justified by the fact that nature provides the greatest source of remedy for many health challenges that affect man [13]. The World Health Organization (WHO) estimates that 80% of the world’s population rely on herbal medicine for their health needs with an even higher rate of dependence amongst rural dwellers in African countries [14,15]. It has been suggested that phytotherapy is cheaper, more efficient and better than modern medicine [16]. In the face of a lack of prioritization of healthcare and poor healthcare systems, medicinal plants have continued to play significant roles in the healthcare systems of most of the world’s population.

Nigerian local pharmacopoeia has an abundance of indigenous plants. While some of these plants serve food or medicinal purposes, there is a general assumption that phytochemicals, vitamins and minerals present in these plants are responsible for their medicinal potentials [16]. These active constituents occur in varying amounts in the different parts of the plant and among different species [15]. There is reported use of Nigerian medicinal plants in herbal preparations for the prevention and management of various liver disorders [16]. Moreover, the use of several traditional plant-based therapies among certain ethnic groups and indigenous people in the management of diseases including liver disease has been amply reported worldwide [17,18,19,20,21].

A complete reversal of cirrhosis can be achieved via liver transplantation but the supply of liver allografts is far lesser than the number of potential recipients [22]. The increasing risk factors for non-alcoholic fatty liver disease and hepatocellular carcinoma (probably due to approximately 2 billion obese or overweight adults and over 400 million adults having diabetes), a high prevalence of viral hepatitis, increasing cases of drug-induced acute hepatitis and an inability to meet global liver transplantation needs clearly depict a global public health dilemma [23]. In Nigeria, the challenge of liver disease management is further compounded by costly and commonly unavailable antiviral therapy as well as the dearth of endoscopic services which pose a challenge to the treatment of end-stage liver disease [24]. This, in addition to poor healthcare funding suggests that the search for novel active principles from locally available plants that could be hepatoprotective and ameliorative against liver damage must be sustained.

Therefore, it is within the purview of this study to carry out a review of Nigerian medicinal plants that are used ethnomedicinally as well as those that have been scientifically validated for the management of liver diseases.

2. THE BURDEN OF LIVER DISEASES

Liver disease may remain asymptomatic, thus posing significant challenges in gathering accurate population-wide data on its incidence and prevalence [25]. Chronic liver disease is very
rampant in Nigeria and it is an important cause of morbidity. In addition to hepatitis B virus (HBV) infection which is the most common cause of chronic liver disease, a high prevalence of hepatitis C virus (HCV) usually occurring with HIV infection as well as alcohol consumption and smoking has been recognized as significant causes of chronic liver disease. Liver cirrhosis and primary liver cancer are suggested to be the most prevalent forms of chronic liver disease [24,25,26]. Thus, there is a high global prevalence of liver cirrhosis, hepatitis B and hepatitis C infections [24,27,10]. Hepatocellular carcinoma is the fourth most common form of cancer in Africa and accounts for 5% of all cancers in the world. It has a high mortality rate with the number of new cases rising to 841,080 in 2018 [28]. Hepatic encephalopathy, a major neuropsychiatric complication of liver disease with a high mortality rate is linked to factors such as previous blood transfusions, hepatitis B and C infections and severe liver dysfunction [29].

The recurring and significant involvement of hepatitis B virus infection is not surprising as it is an aetiological factor for hepatocellular carcinoma, hepatitis and liver cirrhosis. A high prevalence of hepatitis B surface antigen (HBsAg), a specific marker of hepatitis B virus infection has been previously reported amongst Nigerian patients [30]. Consequently, a HBV infection prevalence rate of 12% has been reported in Nigeria [31]. Additionally, a recent Nigerian study has reported a 21% prevalence rate of liver fibrosis among HIV-patients with factors such as increasing age, elevated liver function parameters, tumor necrosis factor-alpha (TNF-α) and lower CD4 counts identified as predictors [32].

Globally, approximately two million deaths result from liver disease on an annual basis with mortality resulting mainly from complications of cirrhosis, viral hepatitis and hepatocellular carcinoma. Cirrhosis and liver cancer combine to account for 3.5% of all deaths worldwide. Also, over 75 million adults are at risk of alcohol-related liver disease [23].

Non-alcoholic fatty liver disease (NAFLD) is perhaps the most common chronic liver disease, affecting nearly a quarter of the world’s population and a major reason for liver transplants, especially in Western populations [33,34]. The burden of the disease which is compounded by the growing wave of obesity and type 2 diabetes mellitus is linked to increased liver-related morbidity and mortality as well as extra-hepatic conditions like cardiovascular disease, colorectal cancers, chronic kidney disease and type 2 diabetes mellitus [33]. Sadly, there is paucity of data on the burden and scope of non-alcoholic fatty liver disease (NAFLD) in Africa [35]. This data unavailability is deceitful and should not be misconstrued to mean that NAFLD is not a major health challenge as it rather represents a failure to clearly highlight the grave danger that the disease portends.

3. THE QUEST FOR HERBAL REMEDY

Herbal medicines have remained popular for historical and cultural reasons, in addition to their cheaper costs. Globally, there has been a steady increase in the use of herbal medicines and the search for new phytochemicals that could be developed as potentially useful drugs [36]. The search for new phytochemicals with hepatoprotective activities has led to a renewed interest in indigenous medicine worldwide. This is also partly due to the realization that orthodox medicine is not widespread [37].

Ethnomedicine is a global practice that is recognized and encouraged by the World Health Organization (WHO) in the management of various diseases, including liver disorders [38]. The medicinal plants that are peculiar to ethnic groups are referred to as ethnomedicinal plants [39]. The study of ethnomedicinal plants has been recognized as the most viable method of identifying new medicinal plants or subsequent evaluation of those previously reported for bioactive constituents and this has led to the development of new drugs [40]. There is growing interest in ethnomedicinal plants because bioactive components could be extracted and prepared from either the leaves, seeds, fruits, stems, roots or the entire plant [41,42]. The herbal preparations may vary in taste (bitter, sour or sweet), their mode of administration varies (oral application, cold bathing, inhalation, and steam covering) and the dosage of administration varies from daily dosage, twice or thrice daily while others may be freely administered [43].
Medicinal plant	Family	Local name(s)	Common name(s)	Part(s) used	Zone(s) found	Source	Method of preparation	References
Acacia nilotica	Fabaceae	Bagaruwa (H), Baani (Y)	Black piquant	Bark, seed	North, West	Wild	Decoction	[51]
Acanthospernum	Asteraceae	Yawo (H)	Bristle star bur	Entire plant	North	Wild	Decoction	[52]
hispidum								
Acanthus	Acanthaceae	Ahon ekun (Y)	Bear's breeches	Entire plant	East, South,	Cultivated		
montanus					West			
Adansonia	Malvaceae	Kuka (H), Ose (Y)	African baobab	Leaf, bark	North, West	Wild	Decoction	[54]
digitata								
Aframomum	Zingeberaceae	Atare (Y)	Alligator pepper	Fruit	West	Wild	Decoction	[55]
melegueta								
Allium cepa	Liliaceae	Alubosa onisu (Y)	Onion	Bulb	North, West	Cultivated, wild	Decoction, Decoction	[56]
Allium sativum	Amaryllidaceae	Tafarnuwa (H), Ayu (Y)	Garlic	Rhizome	North	Cultivated,	Decoction, Decoction	[57]
Aloe barbadensis	Asphodelaceae	Eti erin (Y)	Aloe vera	Root	North, East,			
					North, South,			
					West			
Amaranthus	Amaranthaceae	Alayyahu (H)	Spiny pigweed	Entire plant	North	Wild	Decoction	[59]
spinosus								
Annona	Annonaceae	Gwandar daji (H)	African custard	Leaf, seed	North	Cultivated, wild	Decoction	[60]
senegalensis								
Anthocleista	Combretaceae	Marke (H), Kojoli (F), Atara (I), Ayin (Y)	African birch	Bark, leaf	North	Wild	Decoction	[61]
djalononensis								
Artemisia annua	Gentianaceae	Kandare (H)	Bark, leaf	North	Wild	Decoction, Decoction	[62]	
Azadirachta	Asteaceae	Tazargade (H)	Sweet annie	Leaf	North East,	Cultivated, wild	Decoction	[63]
indica	Meliaceae	Bedi (H), Dongoyaro (Y)	Neem tree	Leaf	East, South,			[64]
Balanites	Zygophyllaceae	Aduwa (H), Enyi-ndi-	Desert date	Bark	East, South,	Wild	Decoction	[65, 57]
aegyptiaca		mmu (I), Tanni (F)			West			
Bauhinia	Fabaceae	Kalgo (H)	Mountain ebony	North	Wild	Decoction, Decoction	[66]	
reticulate								
Bauhinia	Fabaceae	Tsattsagi (H)	Silver butterfly	Bark, leaf	North	Wild	Decoction	[57]
rufescens								
Bidens pilosa	Asteraceae	Abere ooko, Omo langanran, Agomonyan,	Black-jack	Leaf	West	Cultivated, wild	Decoction	[43,54]

Table 1. Ethnomedicinal plants used in the management of liver diseases in Nigeria
Medicinal plant	Family	Local name(s)	Common name(s)	Part(s) used	Zone(s) found	Source	Method of preparation	References
Bosnia salicifolia	Capparidaceae	Ewe abere (Y)	Zure (H), Hano (H)	Leaf, Leaf	North, North	Wild	Powder	[66]
Boswellia dalzielii	Connaraceae						Decoction	
Byrsocarpus coccineus	Connaraceae		Tsamiyar kasa (H), Amuje wewe (Y)	Entire plant	East, North, West	Wild	Decoction	[68,62]
Calotropis procer	Apocynaceae	Tumfafiya (H), Bomubomu (Y)	Sodom apple	Leaf	North, West	Wild	Decoction	[51]
Carica papaya	Caricaceae	Ibepe (Y), Poopo (I), Gwanda (H)	Pawpaw	Leaf	East, North, West	Wild	Decoction	[69]
Cassia arereh	Fabaceae		Malga (H)	Fishbone cassa	North, West	Wild	Decoction	[57]
Cassia mimosoides	Fabaceae		Bagaruwar kasa (H)	Entire plant	North	Wild	Decoction	[60,57]
Cassia nigricans	Fabaceae		Gewaya tsamiya (H)	Leaf	North	Wild	Maceration	[57]
Celosia trigyna	Amaranthaceae	Sepososun, Ajefowo, Ajemawofo (Y) Edafo (B)	Wool flower	Leaf, stem	West	Wild	Decoction	[70,54]
Chasmanthera dependens	Menispermaceae		Chasmanthera	Leaf, root, bark	West		Decoction	[71]
Citrus aurentifolia	Rutaceae	Lemun tsami (H), Lannea acida (I), Osan wewe (Y)	Lime	Leaf	East, North, South, West	Cultivated	Decoction	[72]
Cochlospermum tinctorium	Bixaceae	Belge/Kukur/ Rawaya (H), Yarudi (F), Ungududu (H)	Rhizome	North	Wild	Powder	[73,74]	
Crataeva adansonii	Capparidaceae		Three-leaved Caper	North	Wild	Decoction	[57]	
Crotalaria spp.	Leguminosae	Bi-rana (H), Korup (Y), Akedimwo (I), Biriji-bei (F)	Entire plant	East, North, South, West	Wild	Decoction	[75]	
Curcuma longa	Zingiberaceae	Ata-ile pupa (Y)	Tumeric	Entire plant	East, North, South, West	Wild	Decoction	[76]
Dichrostachys cinerea	Fabaceae	Dundu (H), Ami-ogwu (I)	Kalahari	Leaf	East, North	Wild	Powder	[77]
Euphorbia chlorantha	Annonaceae	Awopa (Y), Dokita igbo (I)	African yellow wood	Bark	East, South, West	Wild	Decoction	[78]
Medicinal plant	Family	Local name(s)	Common name(s)	Part(s) used	Zone(s) found	Source	Method of preparation	References
-----------------	--------	---------------	----------------	--------------	--------------	--------	-----------------------	------------
Eucalyptus camaldulensis	Myrtaceae	Turare (H)	River red gum	Leaf	North	Wild	Decoction	[79]
Euphorbia balsamifera	Euphorbiaceae	Aliyara (H)	Balsam spurge	Leaf, stem	North	Wild	Decoction	[59]
Euphorbia convolvuloides	Euphorbiaceae	Nonon kuriya (H)	Asthma herb	Whole plant	North	Wild	Decoction	[80]
Euphorbia hirta	Euphorbiaceae	Emile (Y)	Asthma herb	Whole plant	West	Wild	Decoction	[81]
Evolvulus alsinoides	Convolvulaceae	Kafi malam (H)	Dwarf morning glory	Entire plant	North	Wild	Decoction	[82]
Ficus congestis	Moraceae	Baure (H)	Fig	Bark	North	Wild	Decoction	[62]
Ficus platyphylla	Moraceae	Gamji (H)	Guttapercha tree	Bark, leaf	North	Wild	Powder	[62]
Ficus polita	Moraceae	Durumi (H)	Heart-leaved fig	Bark, leaf	North	Wild	Powder	[62]
Ficus thonningii	Moraceae	Cediya (H)	Strangler fig	Leaf	North	Wild	Decoction	[62]
Garcinia kola	Moraceae	Orogbo (Y)	Bitter kola	Fruit, bark	East, North, South, West	Wild, cultivated	Consumption of seed	[83]
Gongronema latifolium	Asclepiadaceae	Madunmaro (Y), Utazi (I)	Amarant globe	Root	North	Wild	Decoction	[84]
Hibiscus sabdariffa	Malvaceae	Soborodo (H)	Roselle	Flower, leaf	North	Wild	Decoction	[66]
Indigofera astragalina	Fabaceae	Kaikai koma (H)	Silky indigo	Entire plant	North	Wild	Decoction	[85]
Jatropha curcas	Euphorbiaceae	Cin da zugu (H), Lapalapa (Y)	Barbados nut	Leaf	North, South, West	Cultivated, Wild	Decoction	[51]
Khaya senegalensis	Meliaceae	Madaci (H), Oganwo (Y)	African mahogany	Bark	North, South, West	Wild	Decoction	[72]
Kohautia grandiflora	Rubiaceae	Romin samari (H)	Oldenlandia	Leaf	South, West, East, North	Wild	Decoction	[86]
Lannea acida	Anacardiaceae	Faru (H)	Grape	Bark	South, West, East, North	Wild	Decoction	[51]
Leptadenia hastata	Asclepiadaceae	Yadiya (H)	Entire plant	North	Wild	Decoction	[87]	
Mangifera indica	Anacardiaceae	Mangwaro (H), Mangoro (Y)	Mango	Leaf, bark	North, West	Cultivated, Wild	Decoction	[88]
Mitragyna inermis	Rubiaceae	Giyayya (H)	False abura	Bark	North	Wild	Decoction	[89]
Medicinal plant	Family	Local name(s)	Common name(s)	Part(s) used	Zone(s) found	Source	Method of preparation	References
-----------------	-------------	---	--------------------------	--------------	---------------	------------------	------------------------	------------
Momordica	Cucurbitaceae	Garahun (H)	Balsam apple	Bark	North	Wild	Decoction	[90]
balsamina		Daddagu (H), Ejinrin (Y), Alaban adene (I),	Bitter melon	Leaf	East, North,	Wild	Decoction	[90]
Momordica		Dagdaye (K)			South, West			
charantia		Gbogbonise/Ewe ile (Y), Zogalla (H), Okochi egbu	Drumstick Tree	Bark, leaf,	East, North,	Cultivated,	Decoction	[91]
		(I)		root, stem	South, West	wild		
Moringa	Moringaceae	Gbogbonise/Ewe ile (Y), Zogalla (H), Okochi egbu	Drumstick Tree	Bark, leaf,	East, North,	Cultivated,	Decoction	[91]
oleifera		(I)		root, stem	South, West	wild		
Ocimum	Lamiaceae	Doddoya (H)	Sweet basil	Entire plant	North	Wild	Decoction	[92]
basilicum								
Olax	Olacaceae	Ukpakon (B), Ifon/Mitin (Y)	Root, leaf, stem, bark,	Root, leaf,	East, North,	Wild	Decoction	[93]
subscorpioidea			twig	leaf, root,	South, West			
Parkia	Fabaceae	Dorowa, Dawadawa (H), Ogiri (I), Iru, Igba (Y)	African locust bean	Bark	North, West	Wild	Decoction	[51]
biglobosa		Tubanin dawaki (H)	Horse flower	Entire plant				
Peristrophe	Acanthaceae	Oyomokeisoamankedem (Ef), Iyin olobe (Y), Ebebenn	Sleeping plant	Entire plant	East, North,	Wild	Decoction	[94]
bicalyculata		(B)			South, West			
Phyllanthus	Euphorbiaceae	Oyomokeisoamankedem (Ef), Iyin olobe (Y), Ebebenn	Sleeping plant	Entire plant	East, North,	Wild	Decoction	[95,96]
amarus		(B)			South, West			
Pleurotus	Pleurotaceae	Osun (Y), Ero (I), Naman kaza (H)	Mushroom	Root, leaf	North, South,	Wild	Decoction	[70]
tuberregium		Kirya (H)			West			
Prospis	Fabaceae	Gwaba (H)	African mesquite	Bark	North, South,	Wild	Decoction	[97]
africana		Asofeyeje (Y)			West			
Psidium	Myrtaceae	Guava	Leaf	Root, bark,	North, South,	Wild	Decoction	[98]
guajava		Asofeyeje (Y)		leaf, sap	East, South,			
Rauwolfia	Anacardiaceae	Danya (H)	Marula	Bark	North	Wild	Maceration	[100]
vomitoria								
Sclerocarya	Fabaceae	Tafasa (H)	Sickle pod	Leaf, root	North	Wild	Powder	[101]
birrea		Tafasar masar (H)	Coffee senna	Entire plant	North		Decoction	[102]
Senna	Fabaceae	Gaugai (H)	Purple witchweed	Entire plant	East, North,	Wild	Decoction	[103]
obtusifolia					South, West			
occidentalis								
Striga	Scrophulariaceae	Tafasa (H)	Purple witchweed	Entire plant	East, North,	Wild	Decoction	[103]
hermonthica					South, West			
Talinum	Talinaceae	Gbure (Y), Ebe-dondon	Water Leaf	Whole plant	East, South,	Cultivated,	Decoction	[104]
						wild		
Medicinal plant	Family	Local name(s)	Common name(s)	Part(s) used	Zone(s) found	Source	Method of preparation	References
------------------------	--------------	---------------------	----------------	--------------	---------------	-------------	-----------------------	------------
fruticosum	Fabaceae	(Es)	Tamarindus	Bark, leaf	West	wild	Decoction	[51]
Tamarindus indica	Marantaceae	Ewe-eran/Adundunmitan (Y)	Miracle fruit	Leaf, seed	East, West, South, West	Cultivated, Wild	Decoction	[54]
Thaumatococcus danielli	Asteraceae	Onugbu (I), Shuwaka (H), Ewuro (Y)	Bitter leaf	Leaf	East, South, West	Wild	Powder	[69]
Vernonia amygdalina	Sapotaceae	Kadanya (H)	Shea butter tree	Bark	North	Wild	Powder	[64]
Vitellaria paradoxa	Olacaceae	Tsada (H)	Tallow wood	Bark	North	Wild	Powder	[60]
Ximenia americana	Aizoaceae	Gadon maciji (H)	Entire plant	North	Wild	Decoction	Decoction	[57]
Thunbergia penduliflora	Zingiberaceae	Citta (H), Ataile (Y)	Ginger	Rhizome	North, West	Cultivated	Decoction	[105]
Ziziphus mauritiana	Rhamnaceae	Magarya (H)	Indian jujube	Leaf	North	Wild	Powder	[106]

*B = Bini, Ef = Efik, Es = Esan, F = Fulani, H = Hausa, I = Igbo, K = Kanuri, Y = Yoruba

Table 2. Scientifically validated Nigerian medicinal plants for the management of liver diseases

Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
Acalypha racemosa	Euphorbiaceae	Leaf	Water	Oral	60	CCl₄	Decreased serum total protein, AST and ALT activities. Decreased hepatic MDA and serum conjugated and total bilirubin	[107]
Acalypha wilkesiana	Euphorbiaceae	Leaf	Water	Oral	100/200/300 CCl₄		Decreased total bilirubin concentration, ALT, AST and ALP activities. As dose increased, histopathology revealed normal cells.	[108]
Aframomum melegueta	Zingiberaceae	Seed	Water	Oral	100/200	Ethanol	Increased hepatic GSH level and SOD activity. Decreased hepatic MDA level and serum ALT activity.	[109]
The histology revealed that the extracts were able to reduce ethanol induced changes in the hepatocytes. Decreased ALT, AST, ALP 4-nitroanisole demethylase, glutathione-S-transferase activities and Cyt b5 levels. Reduced total protein, albumin and globulin.

Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
Alchornea laxiflora	Euphorbiaceae	Root	95% n-Hexane	Oral	0.1/0.5/1/10/50/100	NaASO₂	The histology revealed that the extracts were able to reduce ethanol induced changes in the hepatocytes. Decreased ALT, AST, ALP 4-nitroanisole demethylase, glutathione-S-transferase activities and Cyt b5 levels. Reduced total protein, albumin and globulin.	[110]
Allium cepa	Liliaceae	Bulb	80% methanol	Oral	200/300/450	APAP	Decreased ALT, AST, ALP, LDH and total bilirubin Decreased serum and hepatic MDA levels. Decreased serum ALT and AST activities. Increased hepatic GSH, GPx, CAT and SOD activities.	[56]
Alstonia boonei	Apocynaceae	Stem bark	Ethanol	Oral	200/400	DDVP	Decreased serum and hepatic MDA levels. Decreased serum ALT and AST activities. Increased hepatic GSH, GPx, CAT and SOD activities.	[111]
Anacardium occidentale	Anacardiaceae	Leaf	70% methanol	Oral	500/1000	CCl₄	Decreased AST, ALT and ALP activities. Preserved histoarchitecture of the liver. Decreased bilirubin, MDA level, ALT, ALP and AST activities. Increased GSH, total protein and albumin levels.	[112]
Andrographis paniculata	Acanthaceae	Leaf	Water	Oral	100/200/300	CCl₄	Decreased AST, ALT and ALP activities. Preserved histoarchitecture of the liver. Decreased bilirubin, MDA level, ALT, ALP and AST activities. Increased GSH, total protein and albumin levels.	[113]
Anogeissus leiocarpus	Combretaceae	Bark	Methanol	Intraperitoneal	2.5	CCl₄	Decreased ALT and AST activities Decreased ALT, AST and ALP activities. Decreased ALT and AST activities. Decreased ALT and AST activities.	[61]
Balanites aegyptiaca	Zygophyllaceae	Stem bark	Water	Oral	100	APAP	Decreased ALT and AST activities Decreased ALT, AST and ALP activities. Decreased ALT and AST activities. Decreased ALT and AST activities.	[114]
Cajanus cajan	Fabaceae	Leaf	80% ethanol	Oral	200/400/800	NDEA	Decreased ALT and AST activities.	[115]
Carica papaya	Caricaceae	Leaf and unripe fruit	Aqueous	Oral	100/300	CCl₄ and APAP	Decreased bilirubin level, AST and ALP activities. Reversed histological	[116]
Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
------------------------	----------	--------------	------------------------	-------------------------	-------------------------	----------	--	------------
Cassia italica	Fabaceae	Leaf	Water/ 70% ethanol	Oral	200/200	CCl₄	Decreased serum total bilirubin, ALT, AST, ALP, GGT and CAT activities. Decreased serum lipid peroxidation.	[117]
Cassia singueana	Fabaceae	Root	Methanol	Oral	2.5/5	CCl₄	Decreased serum ALT, AST, total bilirubin and direct bilirubin. Increased hepatic CAT, SOD and reduced MDA levels.	[118]
Chrysophyllum albidum	Sapotaceae	Leaf	95% ethanol	Oral	500/1000/1500	CCl₄	Decreased ALT, AST and ALP activities. Increased total protein and albumin.	[119]
Cnidoscolus aconitifolius	Euphorbiaceae	Leaf	Methanol	Oral	100/200	Ethanol	Decreased ALP, GGT, ALT and AST activities. Increased SOD and CAT activities.	[120]
Corchorus olitorius	Tiliaceae	Leaf	80% ethanol	Oral	500/750/1000	CCl₄	Decreased albumin level, ALT, AST and ALP activities. Increased total protein and bilirubin levels.	[121]
Curcuma longa	Zingiberaceae	Rhizome	Ethanol	Oral	250/500	TAA	Induced apoptosis and inhibited hepatocytes proliferation.	[122]
Garcinia kola	Guttiferae	Seed	Absolute methanol	Oral	100	AZA	Increased hepatic GSH and CAT activity. Decreased hepatic MDA, AST and ALT activities and prevented changes in the cytoarchitecture of liver cells.	[123]
Gymnema	Apocynaceae	Leaf	60%	Oral	200/400	APAP	Decreased AST, ALT and	[124]
Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
------------------------	-------------------------	--------------	----------	-------------------------	-------------------------	----------	--	------------
sylvestre			methanol				ALP activities. Fractions from the extract also showed same activity. Histology showed well defined nuclei of hepatocytes. Decreased ALT, AST and ALP activities. Increased total protein and albumin levels. Reduced histopathological changes in the hepatocytes.	[125]
Harungana madagascariensis	Hypericaceae	Root	Water	Oral	100/200/500	APAP	Decreased ALT, AST and ALP activities. Increased total protein and albumin levels. Reduced histopathological changes in the hepatocytes.	[125]
Hibiscus sabdariffa	Malvaceae	Flower	Methanol	Oral	50/100	CCl4	Decreased serum LDH, ALT, AST and ALP activities. Increased hepatic GSH level, SOD and CAT activities. Decreased MDA levels.	[126]
Jatropha tanjorensis	Euphorbiaceae	Leaf	Methanol	Oral	100/200/400	CCl4	Decreased serum albumin, ALP, AST and ALT activities.	[127]
Justicia carnea	Acanthaceae	Leaf	Methanol	Oral	200/500/1000	CCl4	Decreased serum AST, ALT and ALP activities. Increased total protein and albumin concentrations. Reduced hepatic dysfunction induced by CCl4. Decreased ALT, AST and ALP activities.	[128] [114]
Khaya senegalensis	Meliaceae	Stem bark	Water	Oral	100	APAP	Decreased ALT, AST and ALP activities.	[114]
Leptadenia hastate	Asclepiadaceae	Leaf	Methanol	Oral	250/500	Ethanol	Decreased ALT, AST, ALP activities and reduced bilirubin concentration. Decreased serum ALT and ALP activities.	[129]
Lophira lanceolata	Ochnaceae	Leaf	70% methanol	Oral	100/200/400	CCl4	Decreased serum ALT and ALP activities.	[130]
Mangifera	Anacardiaceae	Stem	Water	Oral	200	APAP	Decreased ALT, AST, ALP activities.	[131]
Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
------------------	--------------	--------------	--------------	-------------------------	-------------------------	----------	--	------------
indica		bark	ethanol				activities. Increased total protein and albumin concentrations. Increased hepatic GSH activity and reduced MDA level. Increased hepatic GSH, CAT, GPx and SOD activities. Decreased nitric oxide and lipid peroxidation. Decreased AST, ALT and ALP activities. Histoarchitecture showed the preservation of liver parenchyma against CCl₄-induced liver damage.	[132]
Morinda lucida	Rubiaceae	Leaf	Propanol/water	Oral	240/240	APAP		
Musa paradisiaca	Musaceae	Fruit pulp	Methanol	Oral	500/1000/1500	CCl₄	Decreased AST, ALT and ALP activities. Extracts minimized congestion, mononuclear infiltration and cytoplasmic vacuolation of the hepatocytes induced by paracetamol.	[133]
Ocimum gratissimum	Lammmiaceae	Leaf	n-Hexane/ethylacetate/ethanol/water	Oral	400	APAP	Decreased bilirubin concentration, AST, ALT and ALP activities. Extracts minimized congestion, mononuclear infiltration and cytoplasmic vacuolation of the hepatocytes induced by paracetamol.	[134]
Picralima nitida (Stapf) T. Durand & H. Durand	Apocynaceae	Dried seed	Methanol	Oral	10/100/1000	CCl₄	Histology revealed decreased fat degeneration of liver cells. Increased hepatic GSH level and no significant changes in bilirubin, AST, ALT, ALP total protein, catalase in test groups when compared to CCl₄ toxicant group.	[135]
Prosopis africana	Fabaceae	Stem bark	Water	Oral	100	APAP	Decreased ALT, AST and ALP activities.	[114]
Sarcocephalu	Rubiaceae	Root bark	Water	Oral	100/200/300	CCl₄	Decreased serum AST, ALT	[136]
Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
-----------------------------	------------	-----------------------	---------------------------	-------------------------	-------------------------	----------	---	------------
Sida latifolia (Smith) Bruce	Malvaceae	Leaf	n-Hexane/ethylacetate	Oral	150/300	TAA	Decreased ALT and ALP activities and total bilirubin, conjugated bilirubin levels.	[137]
Sida acuta	Malvaceae	Leaf	n-Hexane/ethylacetate	Oral	150/300	TAA	Decreased ALT and ALP activities. Increased AST activity and albumin level.	[137]
Solanum melongena	Solanaceae	Fruit	Methanol	Oral	500/1500	CCl₄	Decreased ALT, AST, ALP activities. Increased SOD, CAT activities and reduced lipid peroxidation.	[138]
Sphenostylis stenocarpa	Fabaceae	Seed	Methanol	Oral	400/800	CCl₄	No significant change in ALT, AST and ALP activities of rats treated with extract relative to the CCl₄ induced toxicity group. Increased GSH concentration, CAT and SOD activities.	[139]
Spondias mombin L.	Anacardiaceae	Leaf and bark	50% methanol	Oral	500/1000	CCl₄	Decreased ALT, AST, ALP, conjugated bilirubin and total bilirubin levels. Increased hepatic GSH, CAT, SOD activities and reduced MDA levels.	[140]
Swietenia mahogany	Malvaceae	Leaf	Aqueous	Oral	250/500	Ethanol	Decreased bilirubin level, ALT and AST activities. Significant improvement on the histological changes in the extract treated animals.	[141]
Talfairia occidentialis	Cucurbitaceae	Leaf	Ethanol	Oral	500	APAP	Decreased AST, ALP activities and prevented histological alteration in the liver.	[142]
Tapinanthus bangwensis	Loranthaceae	Leaf	80% Methanol (ethylacetate and butanol fraction)	Oral	400	CCl₄	Decreased bilirubin level, AST and ALT activities. Increased total protein and albumin levels. Decreased	[143]
Plants	Family	Part(s) used	Solvents	Route of administration	Dose of extract (mg/kg)	Toxicant	Pharmacological activity	References
------------------------	--------------------	--------------	----------	-------------------------	-------------------------	----------	---	------------
Telfairia occidentalis	Cucurbitaceae	Leaf	Water	Oral	200/400	CdCl₂	Increased SOD, CAT and GST activities. Reduced MDA and GSH levels. Decreased ALT and AST activities.	[144]
Tetracarpidium conophorum	Euphorbiaceae	Nut oil	n-Hexane	Oral	5/10 (mL/kg)	DiNa	Decreased ALT, ALP, AST and total bilirubin. Histology revealed that the oil prevented diclofenac sodium induced hepatic injury.	[145]
Uvaria afzelii	Annonaceae	Root	Methanol	Oral	125/250/500	CCl₄	Decreased bilirubin level, ALT, ALP, AST activities. Increased albumin and total protein levels.	[146]
Vernonia amygdalina	Asteraceae	Leaf	Methanol	Oral	200/400	APAP	Reduced hepatic lipid peroxidation. Maintained antioxidant enzymes within normal levels. Increased levels of reduced glutathione.	[147]
Vitellaria paradoxa	Sapotaceae	Stem bark	Water	Oral	100	APAP	Decreased ALT, AST and ALP activities. Decreased ALT, AST, ALP, liver weight, direct and total bilirubin. Increased total protein. Histology revealed that the extract protected the liver against CCl₄ induced damage.	[114] [148]
Zea mays	Poaceae	Husk	50% ethanol	Oral	187/347/748	CCl₄		

References

[144] [145] [146] [147] [114] [148]

Notes:

- APAP = Acetaminophen
- AZA = Azathioprine
- CCl₄ = Carbon tetrachloride
- CdCl₂ = Cadmium chloride
- DDVP = 2,2-dichlorovinyl dimethyl phosphate or Dichlorvos
- DiNa = Diclofenac sodium
- NaASO₂ = Sodium arsenate
- NDEA = N-Nitrosodiethylamine
- TAA = Thioacetamide
- ALT = Alanine transaminase
- ALP = Alkaline phosphatase
- AST = Aspartate transaminase
- CAT = Catalase
- GGT = γ-Glutamyl transferase
- GPx = Glutathione peroxidase
- GSH = Reduced glutathione
- GST = Glutathione S-transferase
- LDH = Lactate dehydrogenase
- MDA = Malondialdehyde
- SOD = Superoxide dismutase
The bioactive constituents such as alkaloids, curcuminooids, cyanogenic glycosides, flavonoids, fufuryl compounds, terpenoids, polyphenolics, lignans, coumarins, proteins and other groups of substances present in ethnomedicinal plants are responsible for the potency and efficacy of these plant remedies [44]. The pharmacodynamic and pharmacokinetic study of phytochemicals present in ethnomedicinal plants [45,46] revealed that these phytochemicals are active against the formation of viral DNA or RNA, enhances DNA repair and stimulates immune function. In particular, isoquinoline alkaloids demonstrate effective antiviral activity against HBV [46]. Most studies suggest that some of these plants may exert their antifibrotic properties by interfering with leukotriene formation in Kupffer cells [47] and may thereby inhibit hepatic stellate cell (HSC) activation, which is a crucial event in fibrogenesis [48]. Medicinal plants used against viral infections such as hepatitis B virus infection may possibly act through interference with polymerase activity, mRNA transcription and replication [49,50].

4. METHOD OF DATA SEARCH

A keyword search was done in May-June 2020 using the following words: Nigerian, medicinal plants, ethnomedicinal plants, liver diseases, management of liver diseases, hepatoprotective, liver function, antioxidants, natural products, carbon tetrachloride, acetaminophen, ethanol and paracetamol. The search was done using the following scientific databases: Scopus (http://www.scopus.com), Science Direct (http://www.sciencedirect.com), PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Google Scholar (https://scholar.google.com), Wiley (http://www.onlinelibrary.wiley.com) and Science Domain (http://www.sciencedomain.org). The results of the search were sorted and considered on the basis of contextual relevance to the study. All authors debated in order to resolve differences in opinion wherever they existed and only the search results that were of critical relevance to the study were eventually selected.

5. NIGERIAN ETHNOMEDICINAL PLANTS USED FOR MANAGING LIVER DISEASES

There is need to fill the knowledge gap on the use of local herbal therapy in the management of liver diseases across Nigeria since most of the previous ethnomedical reviews were limited in scope to specific regions of the country. There appears to be a preponderance of oral administration for most herbal remedies. It is noteworthy that all the ethnomedicinal plants reported in this study are orally administered. Several ethnomedicinal plants used across Nigeria for the management of liver diseases are presented in Table 1.

6. SCIENTIFIC VALIDATION OF PLANTS WITH POTENTIALS FOR LIVER DISEASE MANAGEMENT

Several plants such as Curcuma longa (turmeric) and Garcinia kola (bitter kola) are employed by several Nigerian tribes in the management of liver diseases. The major active metabolite of turmeric is tetrahydrocurcumin (THC) which has been shown to prevent erythromycin estolate induced liver disease [88]. The seed extract of bitter kola has been shown to demonstrate a protective effect against carbon tetrachloride induced liver injury [97]. At the molecular level, various plant extracts act through different mechanisms of action against the different liver infections. Antioxidation has been recognized as one of such common mechanisms [59].

The information obtained from the sourced research articles in this review include; scientific names (genus and species name), family name, part of the plant used, the solvent used for extraction, route of administration, dosage of extracts used in the study, toxicant used, pharmacological activity on hepatocytes. Following the search, the entire findings are summarized in Table 2.

7. CONCLUSION

This study has attempted to review the various Nigerian medicinal plants that are used ethnomedically as well as those that have been scientifically validated for the management of liver diseases. The identification, isolation and characterization of active compounds from these Nigerian medicinal plants could lead to the potential development of affordable and effective drugs for the management of liver diseases. Thus, the identification of these medicinal plants which hold the possibility of serving as potential drugs for the management of various liver disorders that are becoming increasingly prevalent holds enormous potentials for the health sector. It is hoped that this review will be useful to the growing Nigerian population in stemming the tide of liver diseases.
CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

While we acknowledge all the authors whose works we have consulted in preparing this review, we concede that the seminal works of some authors might have been omitted. This unintentional omission is highly regretted.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Glauert HP. Role of NF-κB in hepatocarcinogenesis and its potential inhibition by dietary antioxidants. Curr Cancer Drug Targets. 2012;12(9):1160-72.
2. Otegbayo JA, Akere A, Ola SO, Soyemi OM, Akande KO. Autoimmune liver disease in a Nigerian woman. Afr Health Sci. 2010;10(2):208-10.
3. Jiang Z, Wang S, Jin J, Ying S, Chen Z, Zhu D, et al. The clinical significance of serum chitinase 3-like 1 in hepatitis B-related chronic liver diseases. J Clin Lab Anal. 2020;23200. DOI: 10.1002/jcla.23200.
4. Yang X, Chen X, Xia C, Li S, Zhu, L, Xu C. Comparative analysis of the expression profiles of genes related to the Gadd45alpha signaling pathway in four kinds of liver diseases. Histol Histopathol. 2020;18218. DOI: 10.14670/HH-18-218.
5. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol. 2011;9(6):524-30. DOI: 10.1016/j.cgh.2011.03.020.
6. Shi SH, Feng XN, Lai MC, Kong HS, Zheng SS. Biliary diseases as main causes of pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Liver Int. 2017;37(5):727-34.
7. Zhao RH, Ma K, Hu J, Chen CX, Qi JY. Current epidemiological status of causes of disease among patients with liver disease hospitalized in Department of Infectious Diseases in a large general hospital within the past 20 years. Zhonghua Gan Zang Bing Za Zhi. 2018;26(2):136-41. DOI: 10.3760/cma.j.issn.10073418.2018.02.012.
8. Kogiso T. Clinical importance of non-alcoholic fatty liver diseases. Topics: IV. relation of NAFLD with lifestyle-related disease including obesity, dyslipidemia and hypertension. Nihon Naika Gakkai Zasshi. 2016;105(1):31-7. DOI: 10.2169/naika.105.31.
9. Lammert F. Genetics in Common Liver Diseases: From Pathophysiology to Precise Treatment. Dig Dis. 2016;34(4):391-5. DOI: 10.1159/000444554.
10. Koyama N, Hata J, Sato T, Tomiyama Y, Hino K. Assessment of hepatic fibrosis with superb microvascular imaging in hepatitis C virus-associated chronic liver diseases. Hepatol Res. 2017;47(6):593-7. DOI: 10.1111/hepr.12776.
11. Kudo M. Chronic Liver Diseases and Liver Cancer: State-of-the Art Progress in 2016. Dig Dis. 2016;34(6):617-9. DOI: 10.1159/000448821.
12. Anowi FC, Onyekaba TU, Eze CC, Ike C, Ezenachi VC. Preliminary Phytochemical investigations and evaluation of Antimicrobial activity of n-hexane extract of the leaves of Synclisia scabrida family menispermaceae. Res J Pharmaceutical Sci. 2013;2(3):1-5.
13. Landazuri P, Chamorro NL, Cortes BR. Medicinal Plants Used in the Management of Hypertension. J Anal Pharm Res. 2017;5(2):1-3.
14. World Health Organization (WHO). Legal Status of Traditional Medicine and Complementary/Alternative medicine: A worldwide review. WHO Publishing; 2001.
15. Borokini TI, Omolayo FO. Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J Med Plants Res. 2012;6(7):1106-18.
16. Okwu DE. Nigerian Medicinal Plants I. Med Aromat Plant Sci Biotechnol. 2007;1(1):90-6.
17. Haidara M, Bourdy G, De Tommasi N, Braca A, Traore K, Giani S, et al. Medicinal Plants Used in Mali for the Treatment of
27. Nnamudi et al.; EJMP, 31(12): 29-51, 2020; Article no.EJMP.58966
Malaria and Liver Diseases. Nat. Prod. Commun. 2016;11(3):339-52.
18. Asadi-Samani M, Moradi MT, Mahmoodnia L, Alaei S, Asadi-Samani F, Luther T. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J Nephropathol. 2017;6(3):118-25. DOI: 10.15171/jnp.2017.20.
19. Maleki T, Akhani H. Ethnobotanical and ethnomedical studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. J Ethnopharmacol. 2018;217:163-77.
20. Gras A, Serralsolles G, Valles J, Garnatje T. Traditional knowledge in semi-rural close to industrial areas: ethnobotanical studies in western Girones (Catalonia, Iberian Peninsula). J Ethnobiol Ethnomed. 2019;15(1):19. DOI: 10.1186/s13002-019-0295-2.
21. Wada AS, Jatua AI, Bala AA, Haruna A, Isa AM, Safiyya AS. et al. Use of traditional medicines among pharmacists in Nigeria. Complement Ther Clin Prac. 2019;35:53-6. DOI: 10.1016/j.ctcp.2019.01.014.
22. Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: A systematic review and meta-analysis. Liver Int. 2015;35(9):2072-8. DOI: 10.1111/liv.12798.
23. Asrani SK, Devarthavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151-71. Available:https://doi.org/10.1016/j.jhep.2018.09.014.
24. Ladep NG, Taylor-Robinson SD. Management of liver disease in Nigeria. Clin Med. 2007;7(5):439-41. DOI: 10.7861/cclinmedicine.7-5-439.
25. Nwokediuko SC, Osuala PC, Uduma UV, Alaneme AK, Onwuka CC, Mesigo C. Pattern of liver disease admissions in a Nigerian tertiary hospital. Niger J Clin Pract. 2013;16(3):339-42. DOI: 10.4103/1119-3077.113458.
26. Kooffreh-Adah M, Okpara H, Oku A, Okonkwo U, Ihekwaba A. Risk factors of chronic liver disease amongst patients receiving care in a Gastroenterology practice in Calabar. IOSR J Dental Med Sci. 2015;14(12):6-13.
27. Ihoh GU, Ikwudinma AO. Sero-epidemiology of hepatitis B surface antigenaemia among adult Nigerians with clinical features of liver diseases attending a primary-care clinic in a resource-constrained setting of Eastern Nigeria. N Am J Med Sci. 2013;5(4):293-300. DOI: 10.4103/1947-2714.110441.
28. Okeke E, Dawwar PM, Roberts L, Sartorius K, Spearman W, Malu A, et al. Epidemiology of liver cancer in Africa: Current and Future Trends. Semin Liver Dis. 2020;40(2):111-23. DOI: 10.1055/s-0039-3399566.
29. Onyekwere CA, Ogbera AO, Hameed L. Chronic liver disease and hepatic encephalopathy: Clinical profile and outcomes. Niger J Clin Pract. 2011;14(2):181-5. DOI: 10.4103/1119-3077.84011.
30. Baba MM, Ajayi BB, Ekam IA. Prevalence of hepatitis B surface antigen among patients suspected of liver diseases in a Nigerian hospital. Niger Postgrad Med J. 2000;7(3):91-5.
31. Kana MA, Omole NV, Nmadu AG, Joshua IA, Muhammad-Idris ZK. Hepatitis B and C: an assessment of risk exposure and prevalence among preclinical medical students in Northwestern Nigeria. Niger J Med. 2020;29(1):62-8.
32. Iruolagbe J, Ohanador R, Amene-Imananagha B, Abubakar A, Jessica O, Obianememie AW. Prevalence of liver-fibrosis using FIB-4 in HIV-patients on Antiretroviral Therapy in Nigeria and CD4 and TNF as Predictors. Asian J Res Med Pharm Sci. 2019;6(4):1-9. Available:https://doi.org/10.9734/ajrjmps/2019/v6i430105.
33. Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, Morbidity and Mortality of Nonalcoholic Fatty Liver Disease. Metab Clin Exp. 2020. Available:https://doi.org/10.1016/j.metabol.2020.154170.
34. Muthiah MD, Sanyal AJ. Burden of Disease due to Nonalcoholic Fatty Liver Disease. Gastroenterol Clin N Am. 2020; 49(1):1-23. Available:https://doi.org/10.1016/j.gct.2019.09.007.
35. Paruk I, Pirie F, Motala A. Non-alcoholic fatty liver disease in Africa: A hidden danger. Glob Health Epidemiol Genom. 2019;4:3. DOI: 10.1017/gheg.2019.2.
36. Willcox ML. A clinical trial of ‘AM’, a Ugandan herbal remedy for malaria. J Public Health. 1999;21(3):318-24.
37. Willcox ML, Bodeker G. Traditional herbal medicines for malaria. BMJ. 2004;329:1156.
 DOI: 10.1136/bmj.329.7475.1156.

38. World Health Organization (WHO). Traditional medicine strategy (2002-2005). World Health Organization, Geneva; 2002.

39. Omara T, Kiprof AK, Ramkat RC, Cherutui J, Kagoya S, Nyangena DM, et al. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. Evid Based Complementary Altern Med. 2020;3529081. DOI: 10.1155/2020/3529081.

40. Ogol C, Ogola P, Odede W, Khayota B. Indigenous knowledge of medicinal and utilitarian plants of Mfangano Island, Lake Victoria, Kenya. East Afr J Sci. 2002;4:11-28.

41. Anosike CA, Ogodo NE, Ezugwu AL, Uroko RI, Ani CC, Abonyi O. DPPH (1,1-Diphenyl-2-Picrylhydrazyl) Radical Scavenging Activity of Some Ethnomedicinal Plants in Nigeria. Am-Eur J Toxicol Sci. 2015;7(2):104-9. DOI: 10.5829/idosi.aejts.2015.7.2.9319.

42. Gill LS. Ethnomedical uses of plants in Nigeria. Benin: University of Benin press; 1992:276.

43. Kadirri M, Ojewumi AW, Bada IO. Ethnotherapeutic evaluation and anti-nutrient content of common plants used for management of kidney and liver disorders in Odeda Communities, Ogun State, Nigeria. J Drug Del Therap. 2015;5(3):24-32.

44. Paniagua-Zambrana NY, Bussmann RW, Hart RE, Moya-Huancal AL, Ortiz-Soria G, Ortiz-Vaca M, et al. Who should conduct ethnobotanical studies? Effects of different interviewers in the case of the Chacobo Ethnobotany project, Beni, Bolivia. J Ethnobiol Ethnomed. 2018;14(1):9. DOI: 10.1186/s13002-018-0210-2.

45. Khafagi IK, Dewedar A. The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. J Ethnopharmacol. 2000;71:365-76.

46. Siddiqi MH, Alamri SA, Al-Whaibi MH, Hussain Z, Ali HM, El-Zaidey ME. A mini-review of anti-hepatitis B virus activity of medicinal plants. Biotechnol Biotechnol Equip. 2017;31(1):9-15. DOI: 10.1080/13102818.2016.1240593.

47. Chang CW, Lin MT, Lee SS, Liu KC, Hsu FL, Lin JY. Differential inhibition of reverse transcriptase and cellular DNA polymerase-alpha activities by lignans isolated from Chinese herbs, Phyllanthus myrtilloides Moon, and tannins from Lonicera japonica Thumb and Castanopsis hystrix. Antiviral Res. 1995;27:367-74.

48. Fuchs EC, Wehenmeyer R, Weiner OH. Effects of silibinin and of a synthetic analogue on isolated rat hepatic stellate cells and myofibroblasts. Arzneimittelforschung. 1997;12:1383-7.

49. Ott M, Thyagarajan SP, Gupta S. Phyllanthus amarus suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. Eur J Clin Invest. 1997;27:908-15.

50. Liu J, Lin H, McIntosh H. Genus Phyllanthus for chronic hepatitis B virus infection: a systematic review. J Viral Hepat. 2001;8:358-66.

51. Lawal IO, Uzokwe NE, Igboanugo ABI, Adio AF, Awosan EA, Nwogwugwu J, et al. Ethno medicinal information on collation and identification of some medicinal plants in Research Institutes of South-West Nigeria. Afr J Pharm Pharmacol. 2010;4(1):1-7.

52. Agunu A, Yusuf S, Andrew GO, Zezi AU, Abdurahman EM. Evaluation of five medicinal plants used in diarrhea treatment in Nigeria. J Ethnopharmacol. 2005;101(1-3):27-30.

53. Okoli CO, Akah PA, Onuoha NJ, Okoye TC, Nwoye AC, Nworu CS. Acanthus montanus: An experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complement Altern M. 2008;8(1):27.

54. Kayode J, Ayeni MJ, Akinbinu ED, Ogunrotimi GD. The discernment of Ekiti ethnic tribe of South Western Nigeria on wild edible vegetables. Budapest International Research in Exact Sciences 2020;2(2):125-35.

55. Nwozo SO, Yakubu OF, Oyinloye BE. Protective effect of aqueous extracts of Aframomum melegueta on γ-radiation-induced liver damage in male Wistar rats. Mil Med Sci Lett. 2013;82(3):126-32.

56. Ozugwu JC, Eyo JE. Hepatoprotective effects of Allium cepa (onion) extracts against paracetamol-induced liver damage in rats. Afr J Biotechnol. 2014;13(26):2679-88.
57. Kankara SS, Isaah AB, Bello A, Ahmed A, Lawal U. Medicinal plants used for the management of hepatic ailments in Katsina State, Nigeria. J Med Plants Res. 2018;12(24):375-86. DOI: 10.5897/JMPR2018.6637.

58. Afolayan FI, Sulaiman KA, Okunade WT. Ethnobotanical survey of plants used in cancer therapy in Iwo and Ibadan, South-Western of Nigeria. J Pharm Pharmacogn Res. 2020;8(5):346-67.

59. El-Ghani MMA. Traditional medicinal plants of Nigeria: an overview. Agr Biol J N Am. 2016;7:220-47.

60. Sani H, Aliyu BS. A Survey of Major Ethnomedicinal Plants of Kano North, Nigeria, their Knowledge and Uses by Traditional Healers. BAJOPAS. 2011;4(2):28-34.

61. Atawodi SE, Adekunle OO, Bala I. Antioxidant, organ protective and ameliorative properties of methanol extract of Anogeissus leiocarpus stem bark against carbon tetrachloride induced liver injury. Int J Pharm Sci Res. 2011;6(6):1443-8.

62. Ariwaodo JO, Chukwuma EC, Adeniji KA. Some medicinal plant species of asamagbe stream bank vegetation, forestry research institute of Nigeria, Ibadan. Ethnobot Res App. 2012;10:541-9.

63. Iroanya OO, Okpuzor JE, Akindele S, Adebosin O. Evaluation of the hepatoprotective and antioxidant activities of an indigenous Triherbal formulation from South Eastern Nigeria using Wistar Albino Rats. Planta Med. 2011;77(12):8.

64. Abubakar MS, Musa AM, Ahmed A, Hussaini IM. The perception and practice of traditional medicine in the treatment of cancers and inflammmations by the Hausa and Fulani tribes of Northern Nigeria. J Ethnopharmacol. 2007;111:625-9.

65. Ugwah OM, Ugwah-Oguejiofor CJ, Etuk EU, Bello SO, Aliero AA. Evaluation of acute and chronic toxicities of aqueous stem bark extract of Balanites aegyptiaca L. delile. Afr J Pharm Res Dev. 2016;8(2):93-9.

66. Adewusi EA, Afolayan AJ. A review of natural products with hepatoprotective activity. J Med Plants Res. 2010;4(13):1318-34.

67. Onwuliri FC, Mawak JD, Wonang DL, Onwuliri EA. Phytochemical, toxicological and histopathological studies of some medicinal plants in Nigeria. International Journal of Natural and Applied Sciences. 2006;2(3):225-9.

68. Akindele AJ, Ezenwanebe KO, Anunobi CC, Adayemi OO. Hepatoprotective and In vivo antioxidant effects of Byrsocarpus coccineus Schum. and Thonn. (Connaraceae). J Ethnopharmacol. 2010;129(1):46-52.

69. Awoyemi OK, Ewa EE, Abdulkarim IA, Aduloju AR. Ethnobotanical assessment of herbal plants in south-western Nigeria. Acad Res Int. 2012;2(3):50-7.

70. Idu M, Osenwegie OO. Some medicinal flora of Okomu forest reserve in Southern Nigeria. Res J Med Plant. 2007;1:29-31.

71. Quadri AL, Yakubu MT. Fertility enhancing activity and toxicity profile of aqueous extract of Chasmanthera dependens roots in male rats. Andrologia. 2017;49(10):12775.

72. Ugbogu AO, Ariwaodo JO, Adeniji KA. An ethnomedicinal study of flora diversity in Osun Sacred Grove, Osun State, Nigeria. Int J Agr Rural Dev. 2010;1(4):186-96.

73. Togola A, Diallo D, Dembele S, Barsett H, Paulsen BS. Ethnopharmacological survey of different uses of seven medicinal plants from Mali, (West Africa) in the regions Diola, Kolokani and Siby. J Ethnopharmacol. 2005;9(1):1-7.

74. Etuk EU, Agae BM, Ladan MJ, Garba I. The modulatory effect of Cochlospermum tinctorium a rich aqueous root extract on liver damage induced by carbon tetrachloride in rats. Afr J Pharm Pharmacol. 2009;3(4):151-7.

75. Yaradua SS, Shah M. Ethnobotanical studies of the genus Crotalaria L. (Crotalariaceae, Fabaceae) in Katsina State, Nigeria. Pure Appl. Biol. 2018;7(2):882-9.

76. Abubakar K, Mailafia MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EA, et al. Ameliorative effect of curcumin on lead-induced hematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol. 2020;22483.

77. Okhale SE, Oginjia EO, Kunle OF. Preliminary phytochemical and pharmacognostical investigation of pediatrics antimarial Lagera pterodonta (DC) Sch. Bip.: Asteraceae of Nigerian Origin. Ethnobotanical Leaflets. 2010;4:9.

78. Adebiyi OE, Abatan MO. Protective effects of Enantia chlorantha stem bark extracts
on acetaminophen induced liver damage in rats. Jordan J Biol Sci. 2013;147(916):1-7.
79. Anigboro AA, Awioroko OJ, Cholu CO. Phytochemical constituents, Antimarial Efficacy, and protective effect of *Eucalyptus camaldulensis* aqueous leaf extract in Plasmodium berghei-infected Mice. Prev Nutr Food Sci. 2020;25(1):58.
80. Aiyeloa AA, Bello OA. Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu state. Educ Res Rev. 2006;1(1):16-22.
81. Hassan S. Positive aspects of weeds as herbal remedies and medicinal plants. J Res Weed Sci. 2020;3:57-70.
82. Soladoye MO, Oyesiku OO. Taxonomy of Nigerian medicinal plants. In: Odugbemi T, editor. A textbook of medicinal plants from Nigeria. University of Lagos Press, Akoka; 2008:93-149.
83. Ogu EO, Agu RC. A comparison of some chemical properties of *Garcinia kola* and hops for assessment of Garcinia Brewing Value. Bioreasour. Technol. 1995;54:1-4.
84. Ugochukwu NH, Babady NE. Antioxidant effects of *Gongronema latifolium* in hepatocytes of rats on non-insulin dependent diabetes mellitus. Fitoterapia. 2002;73(7-8):612-8.
85. Gerometta E, Grondin I, Smadja J, Frederich M, Gauvin-Bialecki A. A review of traditional uses, phytochemistry and pharmacology of the genus indigofera. J Ethnopharmacol. 2020;253:112608.
86. Garba SH, Sambo N, Bala U. The effect of the aqueous extract of *Kohautia grandiflora* on paracetamol induced liver damage in Albino Rats. Niger J Physiol Sci. 2009;24(1):17-23.
87. Bello A, Alero AA, Saidu Y, Muhammad S. Hypoglycaemic and hypolidaemic effects of *Leptadenia hastata* (Pers.) Decne in alloxan induced diabetic rats. Nig J Basic Appl Sci. 2011;19(2):187-92.
88. Peterson MS, Ajibade AJ, Olaitan PB. Some effects of simultaneous administration of crude aqueous extracts of *Mangifera indica* leaves and tetracycline on the liver of adult wistar rats. Anat J Afr. 2017;6(2):934-42.
89. Kareem GK, Obgunuagfor HA, Okpuzor J. Hepatic and hematologic effects of fractions of globimetula braunii in normal albino rats. EXCLI J. 2009;8:182-9.
90. Offor U, Naidu EC, Ogedengbe OO, Aniekan PI, Azu OO. *Momordica charantia* mitigates hepatic injury following adjuvant treatment with antiretroviral drugs in diabetic animal models. Toxicol. Res. 2020;36(1):37-44.
91. Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of *Moringa oleifera* Lam. (Moringaceae) in Nigeria. J Ethnopharmacol. 2013;150:682-91.
92. Uraku AJ, Okaka ANC, Ibiai UA, Agbafor KN, Obasi NA, Okoye CJ, et al. Use of Nigerian medicinal plants protected liver from injury in plasmodium berghei infected mice. Br J Med Med Res. 2015;6(9):926-934.
93. Okoli RI, Aigbe O, Ohaju-Obodo JO, Mensah JK. Medicinal Herbs Used for Managing Some Common Ailments among Esan People of Edo State, Nigeria. Pak J Nutr. 2007;6(5):490-6.
94. Wapa KL, Nazifi AB, Malami S. Effect of *Peristrophe bicalyculata* leaf extract on oxidative stress enzymes and haematological indices of Pentylenetetrazole-induced kindled rats. Niger J Pharm Appl Sci Res. 2011;7(2):39-45.
95. Lui R-LH, Huang YL. Genus Phyllanthus for chronic hepatitis B virus infection: A systemic review. Viral Hepatitis 2003;8:358-66.
96. Eweka A, Enogieru A. Effects of oral administration of *Phyllanthus amarus* leaf extract on the kidneys of adult wistar rats: a histological study. Afr J Tradit Complement Altern Med. 2011;8(3):307-11. DOI: 10.4314/ajtcam.v8i3.65294.
97. Ozougwu JC. Herbal options for management of drug induced liver damage: A review. Pharmacology Online. 2011;3:1481-90.
98. Palombo EA. Traditional Plants and herbal remedies used in the treatment of diarrhoeal disease; mode of action, quality, efficacy, and safety considerations. Phytother Res. 2006;20:17-24.
99. Fapojuwomi OA, Asinwa OI. Assessment of medicinal values of *Rauvolfia vomitoria* (Afzel) in Ibadan Municipality. Greener J Med Sci. 2013;3(2):37-41.
100. Chikezie PC, Ojiako OA, Nwufo KC. Overview of anti-diabetic medicinal plants: The Nigerian research experience. J Diabetes Metab. 2015;6:546. DOI: 10.4172/2155-6156.1000546.
101. Ajayi CO, Elujobea AA, Bejide RA, Akinloye JA, Omonisi AE. Toxicity and pharmacognostic standards for laxative properties of Nigerian Cassia sieberiana and Senna obtusifolia roots. European J Med Plants. 2015;6(2):110-23.

102. Ibrahim MA, Aliyu AB, Sallau AB, Bashir M, Yunusa I, Umar TS. Senna occidentalis leaf extract possesses antityrpanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacogn Res. 2010;2(3):175.

103. Ibrahim HA, Imam IA, Bello AM, Umar U, Muhammad S, Abdullahi SA. The potential of Nigerian medicinal plants as antimalarial agent: A review. Int J Sci Technol. 2012;2(8):600-5.

104. Ommakinde AJ, Oguntimehin I, Ommakinde EA, Olaniro O. Comparison of the proximate and some selected phytochemicals composition of fluted Pumpkin (Telfairia occidentalis) Leaves and Pods. Int Biol Biomed J. 2018;4(4):206-12.

105. Borokini TI, Ighere DA, Clement M, Ajiboye T, Alowonle A. Ethnobotanical survey of traditional medicine practices in Oyo State. J Med Plants. 2013;1(5):1-16.

106. Sadiq Y, Alexander AB, Abdulkarim A. Effect of Ziziphus mauritiana (L.) seed extracts on spatial recognition memory of rats as measured by the Y-maze test. J Nat Prod. 2009;2(1):31-9.

107. Iniaghe OM, Malomo SO, Adebayo JO. Hepatoprotective effect of the aqueous extract of leaves of acalypha racemosa in carbon tetrachloride treated rats. J Med Plants Res. 2008;2(10):301-5.

108. Ikewuchi JC, Uwakwe AA, Onyeike EN, Ikewuchi CC, Harcourt P. Hepatoprotective effect of an aqueous extract of the leaves of Acalypha wilkesiana `Godseffiana' Muell Arg (Euphorbiaceae) against carbon tetrachloride induced liver injury in rats. Excl J. 2011;280-9.

109. Nwozo SO, Oyinloye BE. Hepatoprotective effect of aqueous extract of Aframomum melegueta on ethanol-induced toxicity in rats. Acta Biochim Pol. 2011;58(3):355-8.

110. Ohunmwangho ES, Rasag NO, Osikoya IO. Hepatoprotective effects of hexane root extract of Alchornea laxiflora in sodium arsenate toxicity in wistar albino rats. CHRISMED J Health Res. 2018;5:38-42. Available:https://doi.org/10.4103/cjhr.cjhr.

111. Ojo OA, Ajiboye B, Oyinloye BE, Akintayo CO. Prophylactic effects of ethanolic extract of Alstonia boonei stem bark against DDVP-induced toxicity in albino rats. J Pharm Biomed. 2014;4(7):650-7.

112. Ikyembe D, Pwavodi C, Agbon AN. Hepatoprotective effect of methanolic leaf extract of Anacardium occidentale (Cashew) on carbon-tetrachloride-induced liver toxicity in wistar rats. Sub Sah Afr J Med. 2014;1(3):124-31. Available:https://doi.org/10.4103/2384-5147.138938.

113. Nasir A, Abubakar MG, Shehu RA, Aliyu U, Toge BK. Hepatoprotective effect of the aqueous leaf extract of Andrographis paniculata Nees against carbon tetrachloride-induced hepatotoxicity in rats. Nig J Agric Appl Sci. 2013;21(1):45-54.

114. Ojo OO, Nadro MS, Tella IO. Protection of rats by extracts of some common Nigerian trees against acetaminophen-induced hepatotoxicity. Afr J Biotechnol. 2006;5(9):755-60.

115. Evbakhavbokun WO, Iweala EJE. Protective effect of Cajanus cajan in hepatotoxic rats. IOP Conf Ser: Earth Environ Sci. 2019;331:012023 1-7. Available:https://doi.org/10.1088/1755-1315/331/1/012023.

116. Awodele O, Yemitan O, Ike PU, Ikumawoyi VO. Modulatory potentials of aqueous leaf and unripe fruit extracts of Carica papaya Linn. (Caricaceae) against carbon tetrachloride and acetaminophen-induced hepatotoxicity in rats. J Intercult Ethnopharmacol. 2016;5(1):27-35. Available:https://doi.org/10.5455/jice.2016124113528.

117. Nadro MS, Onoagbe IO. Protective effects of aqueous and ethanolic extracts of the leaf of Cassia italica in CCl4-induced liver damage in rats. American J Res Comm. 2014;2(6):122-30.

118. Ottu OJ, Atawodi SE, Onyike E. Antioxidant, hepatoprotective and hypolipidemic effects of methanolic root extract of Cassia sanguinea in rats following acute and chronic carbon tetrachloride intoxication. Asian Pac J Trop Med. 2013;6(6):609-15. Available:https://doi.org/10.1016/S1995-7645(13)60105-4.

119. Adebayo AH, Abolaji AO, Kela R. Hepatoprotective activity of Chrysophyllum albium against carbon tetrachloride
induced hepatic damage in rats. Can J Pure Appl Sci. 2011;5(3):1597-602.
120. Adaramoye OA, Aluko A, Oyagbemi AA. *Cnidoscolus aconitifolius* leaf extract protects against hepatic damage induced by chronic ethanol administration in wistar rats. Alcohol Alcohol. 2011;46(4):451-8. Available:https://doi.org/10.1093/alcalc/agr060.

121. Ujah OF, Ijav SS, Ayaebene CS, Ujah IR. Phytochemistry and hepatoprotective effect of ethanolic leaf extract of *Corchorus olitorius* on carbon tetrachloride induced toxicity. European J Med Plants. 2014;4(8):882-92.

122. Salama SM, Abdulla MA, AlRashdi AS, Ismail S, Alkiyumi SS, Gbolabapour S. Hepatoprotective effect of ethanolic extract of *Curcuma longa* on thioacetamide induced liver cirrhosis in rats. BMC Complern Altern M. 2013;13:56. Available:https://doi.org/10.1186/1472-6882-13-56.

123. Ajayi AJ, Yama OE, Adebayo AO, Isah KP, Adefisan EI. The hepatoprotective properties of methanolic extract of *Garcinia kola* administration on azathioprine-induced liver toxicity of adult sprague-dawley rats. J Hum Genet Genomic Med. 2018;1:102.

124. Oshobu ML, Alhassan AJ, Mansura A, Ononamadu CJ, Ibrahim A. Hepatoprotective potential of methanolic extract of *Gymnema sylvestre* leaves on acetaminophen-induced liver damage in Wistar strain albino rats. Saudi J Biomed Res. 2018;3214:1-8. DOI: org/10.21276/sjbr.2018.3.1.1.

125. Adeneye A, Olagunju JA, Elias SO, Olatunbosun DO, Mustafa AO, Adeshile OI, et al. Protective activities of the aqueous root extract of *Harungana madagascariensis* in acute and repeated acetaminophen hepatotoxic rats. Int J Appl Res Nat Prod. 2008;1(3):29-42. Available:https://doi.org/10.1055/s-0028-1084157.

126. Owoade AO, Adetutu A. Antioxidant and hepatoprotective effect of *Hibiscus sabdariffa* methanolic extract (HME) against carbon tetrachloride (CCl4) induced damage in rats. Research. 2016;7(2):1-9.

127. Gideon MK, Omeh YN, Matthew IA. Hepatoprotective activity of methanolic extract of *Jatropha tanjorensis* in carbon tetrachloride-induced hepatotoxicity. Arch Appl Sci Res. 2015;7(5):45-8.

128. Ukpabi-Ugo JC, Ndukwu PAC, Iwuoha AG. Hepatoprotective effect of methanol extract of *Justicia carnea* leaves on carbon tetrachloride-intoxicated albino rats. Biochem Anal Biochem. 2019;8:381. Available:https://doi.org/10.35248/2161-1009.19.8.381.

129. Ojochegeb AB, Adejoh IP, Boniface MT, Duniya SV, Anna I. Activity of methanol extract of *Leptadenia hastata* leaves in alcohol-induced liver injury. Am J Biomed Sci. 2019;4(3):142–6. Available:https://doi.org/10.34297/AJBSR.2019.04.000785.

130. Onyeto CA, Ihim SA, Akah PA. Hepatoprotective effect of the methanol leaf extract of *Lophira lanceolata* (Ochnaceae): An experimental study. Met Res J Med Med Sci. 2019;7(3):100-9. DOI: 10.5281/zenodo.2604712.

131. Omotayo MA, Ogundare OC, Longe AO, Adenekan S. Hepatoprotective effect of *Magnifera indica* stem bark extracts on paracetamol-induced oxidative stress in albino rats. Eur Sci J. 2015;11(24):299-309.

132. Didunyemi MO, Adetuyi BO, Oyebanjo OO. *Morinda lucida* attenuates acetaminophen-induced oxidative damage and hepatotoxicity in rats. J Biomed Sci. 2019;8(2):5.

133. Issa MT, Agbon AN, Balogun SU, Mahdi O, Bobbo KA, Ayegbusi FO. Hepatoprotective effect of methanol fruit pulp extract of *Musa paradisiaca* on carbon tetrachloride induced liver toxicity in Wistar rats. J Exp Clin Anat. 2018;17:1-7. Available:https://doi.org/10.4103/jeca.jeca.

134. Ukpabi-Ugo JC, Monanu MO, Patrick-Iwuanyanwu KC, Egbachukwu SI. Potential hepatoprotective effect of different solvent fractions of *Ocimum gratissimum* (O.G) in a paracetamol-induced hepatotoxicity in Wistar albino rats. J Invest Biochem. 2016;5(1):10-16.

135. Macdonald I, Oghale O, Ikechi EG, Orji OA. Hepatoprotective potentials of *Picralima nitida* against in vivo carbon tetrachloride-mediated hepatotoxicity. J Phytopharmacol. 2016;5(1):6-9.

136. Yesufu HB, Bassi PU, Khan IZ, Abdurahaman FI, Mohammed GT. Phytochemical screening and hepatoprotective properties of the aqueous
root bark extract of *Sarcocephalus latifolius* (Smith) Bruce (African peach). Arch Clin Microbiol. 2010;1(2):1-5.

137. Mgbemena CO, Okwuosa CN, Mene AS, Nwofe JO, Akhaumere E. Hepatoprotective activity of n-hexane and ethyl acetate fractions of *Sida acuta* on thioacetamide induced liver injury in rats. Int J Herbs Pharmacol Res. 2015;4(4):65-74.

138. Hamzah RU, Agboola AR, Busari MB, Omogu EH, Umar MB. Evaluation of hepatoprotective effect of methanol extract of *Solanum melongena* on carbon tetrachloride induced hepatoxic rats. European J Med Plants. 2016;13(3):1-12. Available:https://doi.org/10.9734/EJMP/2016/23473.

139. Okonkwo CC, Njoku OU, Ikevude CT, Odo CE. Hepatoprotective effect of methanol seed extract of *Sphenostylis stenocarpa* (Hoschstex.A. Rich, Harms) against carbon tetrachloride induced liver toxicity in wistar rats. BioMedRx. 2013;1(3):293-8.

140. Nwidu LL, Elmorsy E, Yibala OI, Carter WG. Hepatoprotective and antioxidant effects of *Spondias mombin* leaf and stem extracts upon carbon tetrachloride-induced hepatotoxicity and oxidative stress. J Basic Clin Pharma. 2017;8:11-9.

141. Udobang JA, Okokon JE, Obot D, Agu EC. Hepatoprotective activity of husk extract of *Zea mays* against carbon tetrachloride-induced liver injury in rats. RJLBPCS. 2019;5(82):82-94. Available:https://doi.org/10.26479/2019.0505.08.

142. Danladi J, Abayomi KB, Dahiru AU. Comparative study of the hepatoprotective effect of ethanolic extract of *Telfairia occidentalis* (Ugu) leaves and silymarin on paracetamol induced liver damage in wistar rats. Int J Anim Vet Adv. 2012;4(4):235-9.

143. Patrick-Iwuanyanwu KC, Onyeike EN, Wegwu MO. Hepatoprotective effects of methanolic extract and fractions of African mistletoe *Tapinanthus bangwensis* (Engl. & K. Krause). EXCLI J. 2010;9:187-94.

144. Patrick-Iwuanyanwu KC, Onyeike EN, Wegwu MO. Hepatoprotective effects of methanolic extract and fractions of African mistletoe *Tapinanthus bangwensis* (Engl. & K. Krause). EXCLI J. 2010;9:187-94.

145. Maduabuchi EK, John MC. Hepatoprotective effect of *Tetracarpidium conophorum* oil in diclofenac sodium induced hepatotoxicity in rats. GSC Biol Pharm Sci. 2019;6(2):84-9.

146. Ofeimun JO, Eze GI, Okirika OM, Uanseoje SO. Evaluation of the hepatoprotective effect of the methanol extract of the root of *Uvaria afzelii* (Annonaceae). J App Pharm Sci. 2013;3(10):125-9. Available:https://doi.org/10.7324/JAPS.2013.31022.

147. Adegboye AA, Aduunmo GO, Bolaji M, Jimoh AA, Dan MI. Hepatoprotective effect of methanolic leaf extract of *Vernonia amygdalina* against Acetaminophen-Induced Hepatotoxicity in Wistar Albino Rats. Textila Int J Public Health. 2017;5(4):1-7.

148. Ofeimun JO, Eze GI, Okirika OM, Uanseoje SO. Evaluation of the hepatoprotective effect of the methanol extract of the root of *Uvaria afzelii* (Annonaceae). J App Pharm Sci. 2013;3(10):125-9. Available:https://doi.org/10.7324/JAPS.2013.31022.

© 2020 Nnamudi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/58966