Q Fever, Spotted Fever Group, and Typhus Group Rickettsioses Among Hospitalized Febrile Patients in Northern Tanzania

Malavika Prabhu,1 William L. Nicholson,2 Aubree J. Roche,2 Gilbert J. Kersh,2 Kelly A. Fitzpatrick,2 Lindsay D. Oliver,2 Robert F. Massung,2 Anne B. Morrissey,1 John A. Bartlett,1,3 Jecinta J. Onyango,4 Venance P. Maro,4,5 Grace D. Kinabo,4,5 Wilbrod Saganda,6 and John A. Crump1,2,3,4,5

1Department of Medicine, Division of Infectious Diseases and International Health, Duke University Medical Center, Duke University, Durham, North Carolina; 2Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; 3Duke Global Health Institute, Duke University, Durham, North Carolina; 4Kilimanjaro Christian Medical Centre, Moshi, Tanzania; 5Kilimanjaro Christian Medical College, Tumaini University, Moshi, Tanzania, and 6Mawenzi Regional Hospital, Moshi, Tanzania

Background. The importance of Q fever, spotted fever group rickettsiosis (SFGR), and typhus group rickettsiosis (TGR) as causes of febrile illness in sub-Saharan Africa is unknown; the putative role of Q fever as a human immunodeficiency virus (HIV) coinfection is unclear.

Methods. We identified febrile inpatients in Moshi, Tanzania, from September 2007 through August 2008 and collected acute- and convalescent-phase serum samples. A 4-fold increase in immunoglobulin (Ig) G immunofluorescence assay (IFA) titer to Coxiella burnetii phase II antigen defined acute Q fever. A 4-fold increase in IgG IFA titer to Rickettsia conorii or Rickettsia typhi antigen defined SFGR and TGR, respectively.

Results. Among 870 patients, 483 (55.5%) were tested for acute Q fever, and 450 (51.7%) were tested for acute SFGR and TGR. Results suggested acute Q fever in 24 (5.0%) patients and SFGR and TGR in 36 (8.0%) and 2 (0.5%) patients, respectively. Acute Q fever was associated with hepato- or splenomegaly (odds ratio [OR], 3.1; P = .028), anemia (OR, 3.0; P = .009), leukopenia (OR, 3.9; P = .013), jaundice (OR, 7.1; P = .007), and onset during the dry season (OR, 2.7; P = .021). HIV infection was not associated with acute Q fever (OR, 1.7; P = .231). Acute SFGR was associated with leukopenia (OR, 4.1; P = .003) and with evidence of other zoonoses (OR, 2.2; P = .045).

Conclusions. Despite being common causes of febrile illness in northern Tanzania, Q fever and SFGR are not diagnosed or managed with targeted antimicrobials. C. burnetii does not appear to be an HIV-associated co-infection.

Q fever, spotted fever group rickettsiosis (SFGR), and typhus group rickettsiosis (TGR) commonly present as nonspecific febrile illnesses that are difficult to diagnose clinically. Furthermore, laboratory capacity to diagnose these infections is often lacking in developing countries. Consequently, the importance of Q fever, SFGR, and TGR as causes of acute febrile illness in sub-Saharan Africa is poorly characterized.

Although studies identifying Q fever [1], SFGR [2], and TGR [3] as etiologies of fever are limited in sub-Saharan Africa, human seroprevalence studies confirm the presence of their causative organisms. The seroprevalence of antibodies to Coxiella burnetii, the cause of Q fever, ranges from 5% in urban Tanzania to 37% in Zimbabwe [4–6]. Furthermore, antibodies to C. burnetii have been documented in 7%–17% of agricultural animals in Tanzania [5, 7], consistent with their likely role as reservoirs for human infection via environmental contamination [8]. The seroprevalence of antibodies to SFGR ranges from 25% in urban Tanzania to >50% in Zimbabwe and Kenya [4, 9, 10]. Cattle and wild

Clinical Infectious Diseases 2011;53(4):e8–e15
© The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
1058-4838/2011/534-0019$14.00
DOI: 10.1093/cid/cir411
ungulates are the primary mammalian reservoirs of *Rickettsia africae*, the agent of African tick bite fever, and *Amblyomma* ticks, up to 75% of which are infected, serve as both reservoirs and vectors [11–14]. *Amblyomma variegatum*, an important vector in Tanzania, is particularly prevalent during rainy seasons and in rural areas because of its association with animals [11, 15, 16]. The seroprevalence of antibodies to *Rickettsia typhi*, the cause of murine typhus, has been reported to be low in many African studies, although seroprevalence was 28% in urban Tanzania [4, 9]. Rodents are reservoirs for *R. typhi*, and the rat flea, *Xenopsylla cheopis*, is the primary vector mediating human transmission [17].

To understand the role of Q fever and rickettsial diseases as causes of febrile illness in northern Tanzania, we investigated the prevalence, characteristics, and correlates among adult and pediatric febrile inpatients with Q fever, SFGR, and TGR.

METHODS

Participants and Setting

Febrile patients admitted to Kilimanjaro Christian Medical Centre (KCMC) or Mawenzi Regional Hospital (MRH) in Moshi, Tanzania, from 17 September 2007 through 25 August 2008 were eligible for enrollment. Complete study methods have been described elsewhere [18, 19]. MRH is a 300-bed government hospital serving the Kilimanjaro Region; KCMC is a 458-bed government referral hospital serving several regions of northern Tanzania.

For pediatric patients 2 months to 13 years of age, inclusion criteria were a history of fever within the previous 48 hours or a measured axillary or rectal temperature $\geq 37.5^\circ C$ or $\geq 38^\circ C$, respectively, at admission to the hospital. For adolescent and adult (≥ 13 years of age) patients, the inclusion criterion was an oral temperature $\geq 38^\circ C$ at admission to the hospital. Among those who consented for enrollment, a trained clinical officer collected standardized demographic data, clinical history, physical examination findings, and provisional diagnosis data within 24 hours of hospital admission. Chest radiography was performed. Prior to the initiation of antimicrobial treatment, blood specimens were collected for a complete blood count, culture, serologic investigation, and examination for parasites. Results were returned to clinicians as available, and patient management was performed according to the local standard of care. Information regarding treatment was captured upon discharge from the hospital or death; discharged patients were scheduled for a follow-up visit 4–6 weeks after hospital admission for collection of convalescent-phase serum samples.

Laboratory Methods

Serum samples collected for Q fever, SFGR, and TGR testing were sent to the Rickettsial Zoonoses Branch of the US Centers for Disease Control and Prevention (CDC). For Q fever, convalescent-phase serum samples were screened using *C. burnetii* immunoglobulin (Ig) G enzyme-linked immunosorbent assay (ELISA) against Phase II antigen (Inverness Medical Innovations). For samples that were either positive or equivocal by ELISA, paired serum samples were tested by indirect immunofluorescence antibody (IFA) IgG assay to *C. burnetii* (Nine Mile strain) Phase I and Phase II antigens. A fourfold or greater increase in IFA reciprocal titer to Phase II antigen defined acute Q fever; titer ≥ 1000 to Phase I antigen or ≥ 64 to Phase II antigen on either sample defined Q fever exposure among those serum samples not meeting the case definition for acute Q fever.

Serum samples were tested for SFGR and TGR by IgG IFA to *R. conorii* (Moroccan strain) and to *R. typhi* (Wilmington strain), respectively. Among paired serum samples, a fourfold or greater increase in IFA titer to *R. conorii* and *R. typhi* defined acute SFGR and TGR, respectively; among single serum samples and paired serum samples not meeting the case definitions for acute SFGR or TGR, titer to *R. conorii* or *R. typhi* ≥ 64 defined SFGR or TGR exposure, respectively. Laboratory methods for other examinations have been previously described [18–22].

Statistical Analysis

Data were entered using Cardiff Teleform 9.0 (Cardiff) and analyzed using Stata software, version 11 (StataCorp). Participants’ village of residence was classified as urban or rural based on 2002 national census data [23]. We classified the study period into wet and dry intervals using rainfall data from the Kilimanjaro Region (personal communication, H. Pierre Noel, TPC) to explore seasonal effects. We used locally validated [24] and established [25] reference ranges for adult (≥ 18 years) and pediatric (<18 years) hematologic data, respectively. For continuous data, we used Mann-Whitney U tests; for categorical data, we used Pearson’s χ^2 tests or 2-sided Fisher’s exact tests and Cochran-Mantel-Haenszel tests. We performed logistic regression analysis to identify predictors of acute Q fever, including any variable significant to the $P < .10$ level in univariate analysis. Because the prevalence of simultaneous infections was statistically significantly higher among those with SFGR, compared with those without SFGR, we tested for differences in demographic characteristics between these 2 groups.

Research Ethics

This study was approved by the KCMC Research Ethics Committee, the Tanzania National Institutes for Medical Research, and Institutional Review Boards at Duke University Medical Center and the CDC. Informed consent was provided by all patients; a parent or legal guardian provided consent for patients <18 years of age.

RESULTS

In this study, 403 adults and adolescents and 467 infants and children were enrolled. Participants’ characteristics have been
described elsewhere [18, 19]. Serum samples were tested for Q fever, SFGR, and TGR among participants with samples available. There were no differences in demographic characteristics between the overall cohort and the subgroup who were tested for the infections.

Acute Q Fever

Among enrollees, serum samples were tested for acute Q fever among 215 (53.2%) adult and adolescent patients and 268 (57.4%) pediatric patients. Twenty-four (5.0%) patients had results suggestive of acute Q fever, including 17 (7.9%) adults and adolescents and 7 (2.6%) infants and children (Table 1).

The median (range) age for patients with acute Q fever was 25.5 (0.7–72.7) years, compared with 7.3 (0.2–84.6) years for those without acute Q fever (P = .009). Patients ≥18 years of age were more likely to have acute Q fever than were their younger counterparts (odds ratio [OR], 3.0; P = .009). Patients ≥18 years of age with acute Q fever were more likely to live in urban areas than were those <18 years of age (OR, 3.9; P = .031). Table 2 compares demographic and clinical characteristics of patients with and without acute Q fever. When characteristics were examined by multivariable analysis, leukopenia (adjusted OR, 4.2; P = .025) was associated with acute Q fever.

Acute Q fever was not clinically diagnosed in any patient; the most common diagnoses among individuals with subsequently identified cases of acute Q fever were malaria in 8 (33.3%) and pneumonia in 5 (20.8%). Eighteen (75.0%) patients with acute Q fever received antimicrobial agents, predominantly β-lactams, and 3 (16.7%) received an antimicrobial agent (chloramphenicol) active against *C. burnetii*.

Seven (41.2%) adults and adolescents and 1 (14.3%) child with acute Q fever also had human immunodeficiency virus (HIV) infection. HIV seropositivity was not more prevalent in patients with acute Q fever, compared with patients without acute Q fever (P = .231). The prevalence of simultaneous infections with other organisms among patients with acute Q fever did not differ from that among those without serologic evidence of acute Q fever (Table 2).

Q Fever Exposure

Thirteen (2.8%) patients had results suggestive of Q fever exposure; 8 (4.0%) of 200 adult and adolescent patients tested and 5 (1.9%) of 264 pediatric patients tested (Table 1). The median (range) age of patients exposed to Q fever was 23.4 (0.3–48.6) years. Nine (69.2%) patients were female, and 4 (33.3%), all of whom were adults, were seropositive for HIV.

Acute Spotted Fever Group Rickettsiosis

Among enrollees, serum samples from 207 (51.4%) adult and adolescent patients and 243 (52.0%) pediatric patients were tested for acute SFGR. Thirty-six (8.0%) patients had results suggestive of acute SFGR, including 18 (8.7%) adults and adolescents and 18 (7.4%) infants and children (Table 1).

The median (range) age of patients with acute SFGR was 14.6 (0.5–76.7) years, compared with 8.4 (0.2–84.6) years for those without acute SFGR (P = .466). Table 3 compares demographic and clinical characteristics of patients with and without acute SFGR.

Acute SFGR was not clinically diagnosed in any patient; the most common diagnoses among subsequently identified cases of acute SFGR were pneumonia in 14 (38.9%) and malaria in 12 (36.6%). Among patients with acute SFGR, 24 patients (66.7%) received antimicrobial agents, predominantly β-lactams and gentamicin, 5 (20.8%) of whom received an antimicrobial agent (chloramphenicol) that was active against SFGR.

Three (16.7%) adults and 2 (11.1%) children with acute SFGR also had HIV infection. HIV seropositivity was not more prevalent among patients with acute SFGR than it was among patients without acute SFGR. Among those with information available, no HIV-seropositive patient receiving trimethoprim-sulfamethoxazole prophylaxis had acute SFGR.

Ten (27.8%) patients with acute SFGR had evidence of simultaneous infection with 1 other organism, and 1 (2.8%) patient had evidence of infection with 2 other organisms (*Leptospira* and *Salmonella* Typhi) (Table 3). Compared with those patients without acute SFGR, those with acute SFGR were more likely to have serologic evidence of another bacterial zoonosis, defined as leptospirosis, acute Q fever, brucellosis, or acute TGR. The median (range) age among patients with acute SFGR and evidence of simultaneous infection was 39.6 (3.8–70.7) years, compared with 2.5 (0.5–76.7) years for patients with acute SFGR alone (P = .001). There were no differences in sex, rural residence, exposure during the rainy season, or educational attainment between those with and those without evidence of simultaneous infection.

Table 1. Prevalence of Q Fever, Spotted Fever Group Rickettsiosis (SFGR), and Typhus Group Rickettsiosis (TGR) Among Febrile Inpatients, Northern Tanzania, 2007–2008

Variable	Adult and adolescent patients n/N (%)	Pediatric patients n/N (%)
Acute Q fever	17/215 (7.9)*	7/268 (2.6)
Q fever exposure	8/200 (4.0)	5/264 (1.9)
Acute SFGR	18/207 (8.7)	18/243 (7.4)
SFGR exposure	99/377 (26.3)	94/415 (22.7)
Acute TGR	2/207 (1.0)	0/243 (0.0)
TGR exposure	9/395 (2.3)	14/433 (3.2)

NOTE. Denominators represent total no. of patients with serologic test results for each infection or exposure.

*P < .05.
Table 2. Presenting Features of Febrile Inpatients With and Without Acute Q Fever (n = 483), Northern Tanzania, 2007–2008

Variable	Acute Q fever (n = 24)	Negative for acute Q fever (n = 459)	OR (95% CI); P
Demographic characteristics			
Age, median (range) years	25.0 (17.7–72.7)	7.3 (0.2–84.6)	P = .009
Female sex	16/24 (66.7)	214/452 (47.4)	2.2 (.92–5.3); P = .067
Urban	13/20 (65.0)	213/405 (52.6)	1.7 (.65–4.3); P = .278
Greater than primary educationa	2/17 (11.8)	57/197 (28.9)	0.33 (.07–1.5); P = .129
Onset after dry seasonb	16/24 (66.7)	203/459 (44.2)	2.7 (1.1–6.3); P = .021
Signs and symptoms			
Days ill prior to presentation, median (IQR) days	7.0 (3.5–17.5)	4.0 (3.0–10.0)	P = .087
Inpatient length of stay, median (IQR) days	4.5 (3.5–10.5)	7.0 (4.0–9.0)	P = .475
Temperature, median (IQR) °C	38.7 (38.2–39.1)	38.4 (38.0–39.1)	P = .125
Systemic			
Headachea	14/17 (82.4)	144/197 (73.1)	1.7 (.47–6.2); P = .406
Chronic fever	6/24 (25.0)	87/453 (19.2)	1.4 (.54–3.6); P = .486
Rigorsa	10/17 (58.8)	143/196 (73.0)	0.53 (.19–1.5); P = .215
Lymphadenopathy	3/23 (13.0)	38/452 (8.4)	1.6 (.46–5.8); P = .440
Respiratory			
Cough	18/24 (75.0)	300/457 (65.7)	1.6 (.60–4.0); P = .346
Chronic cougha	6/17 (35.3)	30/196 (15.3)	3.0 (1.0–8.9); P = .035
Crepitations/crackles	14/23 (60.9)	195/451 (43.2)	2.0 (.86–4.8); P = .097
Breathing difficulties	10/24 (41.7)	156/459 (34.0)	1.4 (.60–3.2); P = .441
Gastrointestinal			
Jaundice	2/23 (8.7)	6/454 (1.3)	7.1 (1.3–37.9); P = .007
Abdominal tendernessa	4/17 (23.5)	22/196 (11.2)	2.4 (.72–8.2); P = .138
Vomiting	8/24 (33.3)	134/457 (29.3)	1.2 (.50–2.9); P = .675
Diarrhea	4/24 (16.7)	43/459 (20.5)	0.78 (.26–2.3); P = .651
Hepato- or splenomegaly	5/23 (21.7)	38/457 (8.3)	3.1 (1.1–8.8); P = .028
Laboratory findings			
Anemia	14/23 (69.0)	154/450 (34.2)	3.0 (1.3–7.1); P = .009
Leukopenia	4/23 (17.4)	23/450 (5.1)	3.9 (1.2–12.5); P = .013
Thrombocytopenia	1/23 (4.4)	78/450 (17.3)	0.22 (.03–1.6); P = .104
HIV seropositive	8/23 (34.8)	108/464 (23.3)	1.7 (1.0–4.1); P = .231
Evidence of other infection			
Bacterial zoonosesd	5/24a (20.8)	75/459 (16.3)	1.3 (.49–3.7); P = .564
Malaria	0/23 (0.0)	20/455 (4.4)	NA
Bloodstream infections	2/24 (8.3)	45/459 (9.8)	0.84 (.19–3.7); P = .813
Other infectionsf	1/24 (4.2)	6/459 (1.3)	3.3 (1.38–28.6); P = .254
Chest radiograph findings			
Infiltratesa	9/15 (60.0)	33/140 (23.6)	4.9 (1.6–15.2); P = .003

NOTE. Data are proportion (%) of patients, unless otherwise indicated. CI, confidence interval; HIV, human immunodeficiency virus; IQR, interquartile range; OR, odds ratio; NA, not applicable.

a Data available for adult and adolescent patients only.
b Dry season defined as September–October 2007, February 2008, and June–August 2008.
c Reference ranges [24, 25] were as follows: Patients <1 year of age: (1) hemoglobin level, 8.1–13.2 g/dL; (2) leukocyte count, 5.0–17.3 × 10⁹ cell/L; (3) lymphocyte count, 3.3–11.8 × 10⁹ cell/L; and (4) platelet count, 25–708 × 10⁹ cell/L. Patients 1–5 years of age: (1) hemoglobin level, 8.1–13.9 g/dL; (2) leukocyte count, 3.7–13.2 × 10⁹ cell/L; (3) lymphocyte count, 2.0–8.4 × 10⁹ cell/L; and (4) platelet count, 79–650 × 10⁹ cell/L. Patients 6–12 years of age: (1) hemoglobin level, 10.3–14.7 g/dL; (2) leukocyte count, 3.7–9.1 × 10⁹ cell/L; (3) lymphocyte count, 1.6–4.7 × 10⁹ cell/L; and (4) platelet count, 94–530 × 10⁹ cell/L. Patients 13–17 years of age: (1) hemoglobin level, 10.0–14.9 g/dL for females, 10.8–17.0 g/dL for males; (2) leukocyte count, 3.2–10.3 × 10⁹ cell/L; (3) lymphocyte count, 1.4–4.2 × 10⁹ cell/L; and (4) platelet count, 107–482 × 10⁹ cell/L for females, 119–458 × 10⁹ cell/L for males. Patients ≥18 years of age: (1) hemoglobin level, 11.1–15.7 g/dL for females, 13.7–17.7 g/dL for males; (2) leukocyte count, 3.0–7.9 × 10⁹ cell/L; (3) lymphocyte count, 1.1–3.0 × 10⁹ cell/L; and (4) platelet count, 150–395 × 10⁹ cell/L.
d Includes spotted fever group rickettsiosis (SFGFR), typhus group rickettsiosis, leptospirosis, and brucellosis.
e Serologic evidence for SFGFR (4), brucellosis (1), and leptospirosis (1).
f Blood culture positive for nontuberculous mycobacteria (1) and Salmonella Typhi (1).g
h Blood culture positive for Salmonella Typhi (1), Streptococcus pneumoniae (6), Escherichia coli (6), Mycobacterium tuberculosis (4), and other (14).

Q Fever and SFGR in Northern Tanzania • CID 2011;53 (15 August) • e11
Table 3. Presenting Features of Febrile Inpatients With and Without Spotted Fever Group Rickettsiosis (SFGR) (n = 450), Northern Tanzania, 2007–2008

Variable	Acute SFGR (n = 36)	Negative for acute SFGR (n = 414)	OR (95% CI); P
Demographic characteristics			
Age, median (range) years	14.6 (0.5–76.7)	8.4 (0.2–84.6)	P = .466
Female sex	17/36 (47.2%)	202/414 (48.8%)	0.94 (0.47–1.9); P = .857
Urban	13/32 (40.6%)	195/362 (53.9%)	0.59 (0.28–1.2); P = .151
Greater than primary educationa	3/15 (16.7%)	52/188 (27.7%)	0.52 (0.14–1.9); P = .315
Probable exposure during rainy seasonb	12/36 (33.3%)	132/414 (31.9%)	1.1 (0.52–2.2); P = .858
Signs and symptoms			
Days ill prior to presentation, median (IQR) days	5.5 (3.0–7.5)	4.0 (3.0–10.0)	P = .609
Inpatient length of stay, median (IQR) days	5.0 (3.0–8.0)	7.0 (4.0–10.0)	P = .104
Temperature, median (IQR) °C	38.4 (38.0–39.2)	38.5 (38.0–39.1)	P = .910
Systemic			
Headachea	12/18 (66.7%)	141/188 (75.0%)	0.67 (0.24–1.9); P = .441
Chronic fever	9/36 (25.0%)	74/408 (18.1%)	1.5 (0.68–3.3); P = .312
Rigorsa	12/18 (66.7%)	111/161 (70.8%)	0.76 (0.27–2.2); P = .610
Lymphadenopathy	2/36 (5.6%)	37/407 (9.1%)	0.59 (0.14–2.6); P = .474
Respiratory			
Cough	22/36 (61.1%)	270/412 (65.5%)	0.83 (0.41–1.7); P = .594
Chronic cougha	3/18 (16.7%)	30/187 (16.0%)	1.05 (0.28–3.9); P = .945
Crepitations/crackles	19/34 (55.9%)	172/407 (42.3%)	1.7 (0.85–3.5); P = .124
Breathing difficulties	10/36 (27.8%)	142/414 (34.3%)	0.74 (0.35–1.6); P = .428
Gastrointestinal			
Jaundice	0/36 (0.0%)	8/408 (2.0%)	NA
Abdominal tendernessa	1/17 (5.9%)	25/188 (13.3%)	0.41 (0.05–3.2); P = .380
Vomiting	12/36 (33.3%)	119/412 (28.9%)	1.2 (0.60–2.5); P = .574
Diarrhea	8/36 (22.2%)	82/414 (19.8%)	1.2 (0.51–2.6); P = .729
Hepato- or splenomegaly	3/36 (8.3%)	36/411 (8.8%)	0.95 (0.28–3.2); P = .981
Laboratory findings			
Anemia	13/36 (36.1%)	146/406 (36.0%)	1.0 (0.49–2.0); P = .986
Leukopenia	6/36 (16.7%)	19/406 (4.7%)	4.1 (1.5–11.1); P = .003
Lymphopenia	11/36 (30.6%)	124/403 (30.8%)	0.99 (0.47–2.1); P = .979
Thrombocytopenia	8/36 (22.2%)	67/406 (16.5%)	1.4 (0.63–3.3); P = .381
HIV seropositive	5/31 (13.9%)	99/409 (24.2%)	0.51 (0.19–1.4); P = .161
Evidence of other infection			
Bacterial zoonosesd	10/36 (27.8%)	62/414 (15.0%)	2.2 (1.0–4.8); P = .045
Malaria	0/36 (0.0%)	19/410 (4.6%)	NA
Bloodstream infections	1/36 (2.8%)	45/414 (10.9%)	0.23 (0.03–1.8); P = .125
Other infectionsb	1/36 (2.8%)	5/414 (1.2%)	2.3 (0.26–20.6); P = .431

Note. Data are proportion (%) of patients, unless otherwise indicated. CI, confidence interval; HIV, human immunodeficiency virus; IQR, interquartile range; OR, odds ratio; NA, not applicable.

a Data available for adult and adolescent patients only.
b Rainy season defined as November–December 2007 and March–April 2008.
c Reference ranges [24, 25] were as follows: Patients <1 year of age: (1) hemoglobin level, 8.1–13.2 g/dL; (2) leukocyte count, 5.0–17.3 × 10⁹ cell/L; (3) lymphocyte count, 3.3–11.8 × 10⁹ cell/L; and (4) platelet count, 25–708 × 10⁹ cell/L. Patients 1–5 years of age: (1) hemoglobin level, 8.1–13.9 g/dL; (2) leukocyte count, 3.7–13.2 × 10⁹ cell/L; (3) lymphocyte count, 2.0–8.4 × 10⁹ cell/L; and (4) platelet count, 79–650 × 10⁹ cell/L. Patients 6–12 years of age: (1) hemoglobin level, 10.3–14.7 g/dL; (2) leukocyte count, 3.7–9.1 × 10⁹ cell/L; (3) lymphocyte count, 1.6–4.7 × 10⁹ cell/L; and (4) platelet count, 94–530 × 10⁹ cell/L. Patients 13–17 years of age: (1) hemoglobin level, 10.0–14.9 g/dL for females, 10.8–17.0 g/dL for males; (2) leukocyte count, 3.2–10.3 × 10⁹ cell/L; (3) lymphocyte count, 1.4–4.2 × 10⁹ cell/L; and (4) platelet count, 107–482 × 10⁹ cell/L for females, 119–458 × 10⁹ cell/L for males. Patients ≥18 years of age: (1) hemoglobin level, 11.1–15.7 g/dL for females, 13.7–17.7 g/dL for males; (2) leukocyte count, 3.0–7.9 × 10⁹ cell/L; (3) lymphocyte count, 1.1–3.0 × 10⁹ cell/L; and (4) platelet count, 150–395 × 10⁹ cell/L.
d Includes acute Q fever, chronic Q fever, leptospirosis, brucellosis, and typhus group rickettsiosis (TGR).
* Serologic evidence for leptospirosis (5), acute Q fever (4), brucellosis (3), and TGR (1).
$ Blood cultures positive for Salmonella Typhi (1).
$ Blood cultures positive for Salmonella Typhi (18), Streptococcus pneumoniae (6), Escherichia coli (6), Mycobacterium tuberculosis (4), and other (13).
$ Cryptococcal antigen positive.
Typhus Group Rickettsiosis

Serum samples from 207 (51.4%) adult and adolescent patients and 243 (52.0%) pediatric patients were tested for acute TGR. Two (0.5%) adult patients had results suggestive of acute TGR (Table 1). Both patients had serologic evidence of simultaneous infections with HIV and brucellosis in one case and acute SFGR and leptospirosis in the other.

Spotted Fever Group and Typhus Group Rickettsiosis Exposure

Among those patients tested for SFGR and TGR exposure, 193 (24.4%) had results suggestive of SFGR exposure, including 99 (26.3%) of 377 adult and adolescent patients tested and 94 (22.7%) of 415 pediatric patients tested (Table 1). Reciprocal titers were 64 (frequency, 93; 48.2%), 128 (frequency, 52; 26.9%), 256 (frequency, 30; 15.5%), 512 (frequency, 11; 5.7%), 1024 (frequency, 4; 2.1%), 2048 (frequency, 2; 1.0%), and 4096 (frequency, 1; 0.5%).

Twenty-six (13.7%) patients with SFGR exposure had HIV infection, compared with 171 (29.0%) patients without evidence of SFGR exposure (P < .001). HIV-infected patients were less likely to have evidence of SFGR exposure (OR, 0.39; P < .001) than were those without HIV infection. Among HIV-infected adults and adolescents, the odds of SFGR exposure were 0.50 (P = .201) for patients receiving trimethoprim-sulfamethoxazole prophylaxis.

Twenty-three (2.8%) patients had results suggestive of TGR exposure, including 9 (2.3%) of 395 adult and adolescent patients tested and 14 (3.2%) of 433 pediatric patients tested (Table 1). Reciprocal titers were 64 (frequency, 10; 43.5%), 128 (frequency, 7; 30.4%), 256 (frequency, 3; 13.0%), 1024 (frequency, 1; 4.3%), 4096 (frequency, 1; 4.3%), and 16,384 (frequency, 1; 4.3%).

DISCUSSION

We present results from a prospective investigation of Q fever and rickettsial diseases as causes of acute febrile illness among hospitalized adult and pediatric patients in sub-Saharan Africa. We demonstrate that Q fever and SFGR, but not TGR, are common causes of febrile illness among inpatients in northern Tanzania and are likely to be endemic infections in this area. Despite their importance, these infections were difficult to recognize, and no patient was treated specifically for Q fever or SFGR. Our results suggest that greater awareness of and availability of diagnostic tests for Q fever and SFGR may improve patient outcomes in sub-Saharan Africa.

The prevalence of acute Q fever among adults and adolescents in our study was similar to that observed among febrile outpatients in Mali based on acute-phase serum samples alone [1]. The prevalence of acute SFGR was lower than that observed among febrile outpatients in Cameroon, although that study excluded patients with diagnoses of malaria or brucellosis [2].
Although some investigators have suggested that Q fever may be an HIV-associated coinfection [38, 39], our results do not support such a relationship. Because our study was prospective, identified cases of acute Q fever, and was conducted in an area of high HIV infection and Q fever prevalence, it represents a more robust investigation of a relationship between HIV infection and Q fever than is found in seroprevalence or retrospective studies [38, 39]. This, combined with other studies [4, 40–42] that have indicated no increased incidence or severity of Q fever with HIV seropositivity, suggests that a strong relationship between HIV infection and Q fever is unlikely. However, it remains possible that a weak relationship exists between HIV infection and Q fever that we lacked the statistical power to detect. Furthermore, it is possible that a relationship could be masked by trimethoprim-sulfamethoxazole prophylaxis in HIV-infected persons or if the serologic assays used to diagnose Q fever may be less reliable in HIV-infected persons. Of interest, we note a protective effect of HIV against SFGR exposure that did not appear to be mediated by trimethoprim-sulfamethoxazole prophylaxis. Although this finding is not consistent with a seroprevalence study of SFGR and HIV infection in Gabon, a protective effect has been incidentally reported with rickettsialpox in the United States and scrub typhus in Southeast Asia [43–45]. The possible protective effect of HIV infection against SFGR merits further investigation.

A substantial proportion of patients with serologic evidence of SFGR in this study also had evidence of another zoonosis. Given similar epidemiologic risk factors for several zoonoses [46], it is plausible that simultaneous infection may occur [47, 48]. Alternatively, it is possible that apparently concurrent infections actually represent false-positive results attributable to antibody cross-reactions, nonspecific antibody immunoreactivity, or the timing of sample collection in disease course. Because we did not undertake confirmatory testing, we could not resolve these instances of apparent coinfection.

Our study had a number of limitations. Not all enrolled patients had serum samples available for all testing because of limited volumes of blood collected and the need for convalescent-phase serum samples to confirm a diagnosis. A lack of data on the prevalence of Q fever, SFGR, and TGR in northern Tanzania meant that establishing serologic criteria for diagnosis was challenging. We selected rigorous criteria to minimize shortcomings of specificity, but this approach may have underestimated prevalence. Our diagnostic test for SFGR was based on *R. conorii*, despite the fact that *R. africae* is likely to be a more important pathogen in Tanzania. Although there is extensive cross-reaction between *R. conorii* and *R. africae*, SFGR diagnosis may have been improved with an *R. africae*-based assay.

In conclusion, we demonstrate that Q fever and SFGR, but not TGR, are common causes of febrile illness in northern Tanzania and are likely to be endemic. Greater awareness among clinicians and the availability of a reliable single-sample diagnostic test would improve patient management, would likely result in better patient outcomes, and would assist with estimating the disease burden for these infections. Additional research is needed to identify locally important risk factors to design prevention strategies.

Acknowledgments

We thank Ahaz T. Kulanga, for providing administrative support to this study; Pilli M. Chambo, Beata V. Kyara, Beatus A. Massawe, Anna D. Mtei, Godfrey S. Mushi, Lillian E. Ngowi, Flora M. Nkya, and Winfrida H. Shirima, for reviewing and enrolling study participants; Evaline M. Ndosi and Enock J. Kessy, for their assistance in data entry; the Hubert-Yeargan Center for Global Health at Duke University, for critical infrastructure support for the Kilimanjaro Christian Medical Centre-Duke University Collaboration; and the leadership, clinicians, and patients of KCMC and MRH, for their contributions to this research.

Financial support. International Studies on AIDS Associated Co-infections award, a United States National Institutes of Health (NIH) funded program (U01 AI062563); the NIH Fogarty International Center through the International Clinical Research Fellows Program at Vanderbilt University (R24 TW007988 to M. P.); AIDS International Training and Research Program (D43 PA-03-018 to J. A. B., J. J. O., V. P. M., and J. A. C.); the Duke Clinical Trials Unit and Clinical Research Sites (U01 AI069484 to J. A. B., J. J. O., V. P. M., and J. A. C.); and the Center for AIDS Research (2P30 AI064518 to J. A. B.).

Potential conflicts of interest. J. B. has received consulting fees from Fredrick O’Connor Consulting and payment from Harvard School of Public Health and Kendle International for participation in review activities for this article.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed in the Acknowledgments section.

References

1. Steinmann P, Bonfoh B, Peter O, Schelling E, Traore M, Zinsstag J. Seroprevalence of Q-fever in febrile individuals in Mali. Trop Med Int Health 2005; 10:612–7.
2. Ndip LM, Bouyer DH, Travassos Da Rosa AP, Titanji VP, Tesh RB, Walker DH. Acute spotted fever rickettsiosis among febrile patients, Cameroon. Emerg Infect Dis 2004; 10:432–7.
3. Kaabia N, Rolain JM, Khalifa M, et al. Serologic study of rickettsioses among acute febrile patients in central Tunisia. Ann N Y Acad Sci 2006; 1078:176–9.
4. Anstey NM, Dupont HT, Hahn CG, et al. Seroepidemiology of *Rickettsia typhi*, spotted fever group Rickettsiae, and *Coxiella burnetii* infection in pregnant women from urban Tanzania. Am J Trop Med Hyg 1997; 57:187–9.
5. Hummel PH. Incidence in Tanzania of CF antibody to *Coxiella burnetii* in sera from man, cattle, sheep, goats and game. Vet Rec 1976; 98:501–5.
6. Kelly PJ, Matthewman LA, Mason PR, Raoult D. Q fever in Zimbabwe: a review of the disease and the results of a sera survey of humans, cattle, goats and dogs. S Afr Med J 1993; 83:21–5.
7. Kovácová E, Sídl W, Stünzner D, Urvölgyi J, Kazár J. Serological examination of human and animal sera from six countries of three continents for the presence of rickettsial antibodies. Eur J Epidemiol 1996; 12:85–9.
8. Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12:518–53.
9. Dupont HT, Brouqui P, Faugere B, Raoult D. Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsia typhi in seven African countries. Clin Infect Dis 1995; 21:1126–33.
10. Kelly PJ, Mason PR, Matthewman LA, Raoult D. Seroprevalence of spotted fever group rickettsial infections in humans in Zimbabwe. J Trop Med Hyg 1991; 94:304–9.
11. Jensenius M, Fournier PE, Kelly P, Myrvang B, Raoult D. African tick bite fever. Lancet Infect Dis 2003; 3:557–64.
12. Mayhood MK, Afwamba IA, Odhiambo CO, et al. Validation, per-
cision of immunofluorescence, Western blotting, and cross-
absorption assays for diagnosis of African tick bite fever. Clin Diag
Lab Immunol 2004; 11:786–8.
13. Nshimiyimana J, Mutandwa E. Seasonal dynamics and distribution of ticks in Rwanda: implications for tick control strategy in Rwanda. Int J Anim Vet Adv 2010; 2:21–3.
14. Parola P, Davoust B, Raoult D. Tick-and flea-borne rickettsial
emerging zoonoses. Vet Res 2005; 36:469–92.
15. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging
infectious diseases. Clin Microbiol Rev 1997; 10:694–719.
16. Crump JA, Ramadhan HO, Morrissey AB, et al. Invasive bacterial
and fungal infections among hospitalized HIV-infected and HIV-
uninfected children and infants in northern Tanzania. Trop Med Int
Health 2011; 16:830–7.
17. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging
infectious diseases. Clin Microbiol Rev 1997; 35:2175–27.
18. Fournier PE, Raoult D. Comparison of PCR and serology assays for
early diagnosis of acute Q fever. J Clin Microbiol 2003; 41:5094–9.
19. Turra M, Chang G, Whybrow D, Higgins G, Qiao M. Diagnosis of
acute Q fever by PCR on sera during a recent outbreak in rural south
Australia. Ann N Y Acad Sci 2006; 1078:566–9.
20. Raoult D, Levy PY, Dupont HT, et al. Q fever and HIV infection. AIDS
1993; 7:81–6.
21. Boschini A, Di Perri G, Legnani D, et al. Consecutive epidemics of Q
fever in a residential facility for drug abusers: impact on persons with
human immunodeficiency virus infection. Clin Infect Dis 1999;
28:866–72.
22. Montes M, Cilla G, Marimon JM, Diaz de Tuesta, JL DdT, Perez-
trailer E. Coxiella burnetii infection in subjects with HIV infection in
patients with Q fever. Scand J Infect Dis 1995; 27:344–6.
23. Belec L, Ekal MT, Gilquin J. Coxiella burnetii infection among HIV-1-
infected people living in Paris, France. AIDS 1993; 7:1136–7.
24. Belec L, Gresenguet G, Ekal MT, et al. Coxiella burnetii infection among subjects infected with HIV type 1 in the Central African Re-
public. Eur J Clin Microbiol Infect Dis 1993; 12:775–8.
25. Bertherat E, Nabias R, Georges AJ, Renaut A. Seroprevalence of Rickettsia akari infection among intravenous drug users in inner-city Baltimore, Maryland. Am J Trop Med Hyg 1999; 60:894–8.
26. Watt G, Kantipong P, de Souza M, et al. HIV-1 suppression during acute scrub-typus infection. Lancet 2000; 356:475–9.
27. Rolain JM, Gouriet F, Brouqui P, et al. Concomitant or consecutive
infection with Coxiella burnetii and tickborne diseases. Clin Infect Dis
2005; 40:82–8.
28. Parker TM, Murray CK, Richards AL, et al. Concurrent infections in
acute febrile illness patients in Egypt. Am J Trop Med Hyg 2007;
77:390–2.
29. Comer JA, Tzianabos T, Flynn C, Vlahov D, Childs JE. Serologic
evidence of rickettsialpox (Rickettsia akari) infection among intravenous drug users in inner-city Baltimore, Maryland. Am J Trop Med Hyg 1999; 60:894–8.