Rigorous Limits on the Interaction Strength in Quantum Field Theory

Francesco Caraccioloa,c and Slava Rychkovb,c

a SISSA, Trieste, Italy
b Laboratoire de Physique Théorique, Ecole Normale Superieure, and Faculté de physique, Université Paris VI, France
c Scuola Normale Superiore and INFN, Sezione di Pisa, Italy

Abstract

We derive model-independent, universal upper bounds on the Operator Product Expansion (OPE) coefficients in unitary 4-dimensional Conformal Field Theories. The method uses the conformal block decomposition and the crossing symmetry constraint of the 4-point function. In particular, the OPE coefficient of three identical dimension d scalar primaries is found to be bounded by $\simeq 10(d - 1)$ for $1 < d < 1.7$. This puts strong limits on unparticle self-interaction cross sections at the LHC.

December 2009
In this paper we will answer, in a particular well-defined context, the question: *Is there an upper bound to the interaction strength in relativistic Quantum Field Theory (rQFT)?*

Intuitive reasons suggest that such a bound exists. Take QCD as a representative real-world example. At energies E above the scale $\Lambda_{\text{QCD}} \sim 1$ GeV, this is a perturbative theory of interacting quarks and gluons, and the interaction strength is measured by the dimensionless running coupling $g_s(E)$. The coupling starts small at very high energies $E \gg \Lambda_{\text{QCD}}$ and grows at low energies, formally becoming infinite at $E \sim \Lambda_{\text{QCD}}$. However, perturbative expansion breaks down before this happens. L-loop diagrams are suppressed by factors $\sim (g_s^2/16\pi^2)^L$. As soon as $g_s \sim 4\pi$, all loop orders contribute equally. Thus in perturbation theory it is impossible to get couplings stronger than about 4π.

To recall what happens beyond perturbation theory, let us look at the same theory at energies below Λ_{QCD}. In this regime the appropriate degrees of freedom are hadrons, and their interactions can be described by an effective lagrangian. For instance, pion-pion scattering at low energies is described by the chiral lagrangian

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \text{Tr} |\partial_{\mu} U|^2 + \ldots, \quad U = \exp(i 2\pi^a T^a/f_{\pi}),$$

where $f_{\pi} \approx 93$ MeV is the pion decay constant, T^a are the $SU(2)$ generators and \ldots stand for the chiral symmetry breaking terms. The dimensionless quartic pion coupling can be defined from the $2 \rightarrow 2$ scattering amplitude; it grows with energy as $\lambda \sim (E/f_{\pi})^2$. If the chiral lagrangian is valid up to energies $\sim \Lambda_{\text{QCD}}$ and is stable under radiative corrections, we should have $\lambda(\Lambda_{\text{QCD}})/16\pi^2 \lesssim 1$, or $\Lambda_{\text{QCD}} \lesssim 4\pi f_{\pi}$. Experimentally this bound is satisfied and, moreover, near-saturated. This observation forms the basis of the Naive Dimensional Analysis [1] method of estimating couplings in strongly coupled theories.

While the above arguments are appealing, at present it is unknown if they can be turned into a theorem, or even how to formulate such a general theorem. In order to make progress, in what follows we will assume that we have a Conformal Field Theory (CFT), i.e. an rQFT invariant under the action of the conformal group [2].

CFTs form an important subclass of rQFTs. Presumably, any unitary, scale invariant rQFT is conformally invariant. This is proved in $D = 2$ spacetime dimensions under very mild technical assumptions [3], and no counterexamples are known in $D \geq 3$. Since scale invariance is ubiquitous (think of any RG-flow fixed point), this would make conformal invariance equally ubiquitous. Unitarity is however crucial here: without unitarity simple physical counterexamples
exist, e.g. theory of elasticity [6]. We are interested in applications to particle physics, thus we will assume unitarity, and will work in $D = 4$.

There are many known or conjectured classes of four-dimensional CFTs. For example, $\mathcal{N} = 1$ supersymmetric QCD with N_c colors and N_f flavors flow to a CFT in the infrared as long as $3/2 < N_f/N_c < 3$ [7]. Large N_c analysis [8] and lattice simulations [9] suggest that a similar ‘conformal window’ exists also without supersymmetry. Another famous example is the $\mathcal{N} = 4$ super Yang-Mills (SYM), which is conformal for any coupling and any N_c. At large ’t Hooft coupling and large N_c it can be described via the AdS/CFT correspondence. Many deformations preserving conformal symmetry are known on both field theory and gravity sides of the correspondence [11]. Our discussion will be general and will in principle apply to all the above examples.

The $D = 4$ conformal group is finite dimensional; it is obtained from the Poincaré group by adding the generators of dilatation D and of special conformal transformations K_μ. The local quantum fields $O(x)$ are eigenstates of D, $[D, O(0)] = i\Delta O(0)$, where the eigenvalue Δ is called the scaling dimension. The K_μ acts as a lowering operator for the scaling dimension, and the corresponding ‘lowest-weight states’, fields satisfying $[K_\mu, O(0)] = 0$, play a special role. They are called primaries. All other fields can be obtained from primaries by taking derivatives and are called descendants.

Conformal symmetry constraints the 2- and 3-point functions of primary fields to have particularly simple form. For scalar primaries, we have:

$$\langle O_i(x_1)O_j(x_2) \rangle = \delta_{ij}(x_{12}^2)^{-\Delta},$$

$$\langle O_i(x_1)O_j(x_2)O_k(x_3) \rangle = c_{ijk}(x_{12}^2)^{\rho_{ijk}}(x_{13}^2)^{\rho_{ijk}}(x_{23}^2)^{\rho_{ijk}},$$

$$x_{ij}^2 \equiv (x_i - x_j)^2, \quad \rho_{ijk} \equiv (\Delta_i - \Delta_j - \Delta_k)/2.$$

Eq. (1) says that a diagonal basis can be chosen in the space of primary fields, and sets the normalization. Eq. (2) then defines coefficients c_{ijk}. These same coefficients appear in the Operator Product Expansion (OPE)

$$O_i(x)O_j(0) \sim (x^2)^{-(\Delta_i + \Delta_j)/2} \left\{ 1 + c_{ijk}(x^2)^{\Delta_k/2}O_k(0) + \ldots \right\},$$

where \ldots stands for the contributions of higher spin primaries and of descendants.

In CFT, any n-point function can be, in principle, reduced to a sum of products of 2-point functions by repeated application of the OPE, with coefficients given by products of c_{ijk}’s and of their higher spin generalizations. In this sense, c_{ijk}’s play in CFT a role similar to that of
the (renormalized) coupling constants in perturbation theory, measuring interaction strength. We thus have the following CFT version of our initial question: *Is there an upper bound to the OPE coefficients, valid in an arbitrary unitary CFT in $D = 4$?* We will now proceed to show that such a universal bound indeed exists.

Let us pick a hermitean scalar primary ϕ of scaling dimension d and consider its OPE with itself:

$$\phi(x)\phi(0) \sim (x^2)^{-d}\left\{1 + \sum_{l=0,2,4,\ldots} \sum_{\Delta \geq \Delta_{\min}(l)} c_{\Delta,l}(x^2)^{(\Delta-l)/2} x^{\mu_1} \cdots x^{\mu_l} O_{\mu_1,\ldots,\mu_l}(0) + \ldots \right\}. \quad (3)$$

This time we show explicitly contributions of both scalars ($l = 0$) and of higher spin primaries O_{μ_1,\ldots,μ_l} which are symmetric traceless tensors. Spin l has to be even by the Bose symmetry. Lower bounds on the dimension Δ of a spin l primary:

$$\Delta_{\min}(l = 0) = 1, \quad \Delta_{\min}(l \geq 1) = l + 2,$$

(*unitarity bounds*) are known to follow from unitarity [12]. Only special fields may saturate these bounds: a free scalar ($l = 0$), conserved currents ($l = 1$), and the stress tensor ($l = 2$). Higher l conserved currents, present in free theories, also saturate the bounds.

An interesting object to study is the 4-point function of ϕ, constrained by conformal symmetry to have the form

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle = \frac{g(u,v)}{x_{12}^2 x_{34}^2}, \quad (4)$$

where $u = x_{12}^2 x_{34}^2 / (x_{13}^2 x_{24}^2)$, $v = x_{14}^2 x_{23}^2 / (x_{13}^2 x_{24}^2)$ are the conformal cross-ratios. The same 4-point function can be reduced to a sum of 2-point functions by applying the OPE in the 12 and 34 channels. Cross terms of different primary families drop out of this representation because of Eq. (1) and its higher spin analogue. Terms involving the same primary and its descendants can be resummed in closed form. As a result, we get the *conformal block decomposition*

$$g(u,v) = 1 + \sum p_{\Delta,l} g_{\Delta,l}(u,v), \quad p_{\Delta,l} \equiv c_{\Delta,l}^2, \quad (5)$$

where [13]

$$g_{\Delta,l}(u,v) = \frac{(-)^l}{2^l} \frac{z \bar{z}}{z - \bar{z}} \left[k_{\Delta+l}(z) k_{\Delta-l+2}(\bar{z}) - (z \leftrightarrow \bar{z}) \right],$$

$$k_{\beta}(x) \equiv x^{\beta/2} \text{F}_{1}\left(\beta/2, \beta/2, \beta; x \right),$$

$$u = z \bar{z}, \quad v = (1 - z)(1 - \bar{z}).$$
This decomposition is expected to converge at least in the circle $|z| < 1,|\bar{z}| < 1$, which corresponds to being able to fit a sphere centered at x_1 which separates x_2 from x_3 and x_4 [14].

The 4-point function (4) must be crossing-symmetric under the $x_1 \leftrightarrow x_2$ and $x_1 \leftrightarrow x_3$ exchanges. The first crossing is manifest since only even spins contribute to the OPE. The second one gives a nontrivial constraint

$$v^d g(u,v) = u^d g(v,u).$$

(6)

Decomposition (5) must be consistent with this constraint. Separating the contribution of the unit operator, we obtain the sum rule

$$1 = \sum p_{\Delta,l} F_{d,\Delta,l}(u,v),$$

(7)

$$F_{d,\Delta,l}(u,v) \equiv \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}.$$

(8)

As we will now show, this equation can be used to get an upper bound on $c_{\Delta,l}$.

Crucially, coefficients $c_{\Delta,l}$ are real, and thus $p_{\Delta,l} \geq 0$. This can be related to the absence of parity violation in the conformal 3-point function of two scalars and a symmetric tensor [15]. Eq. (7) then allows a geometric interpretation: when $p_{\Delta,l} \geq 0$ are allowed to vary, the RHS fills a convex cone C_d in the vector space V whose elements are two-variable functions. We say that this cone is generated by functions $F_{d,\Delta,l}(u,v), l = 0, 2, 4, \ldots, \Delta \geq \Delta_{\text{min}}(l)$. Eq. (7) expresses the fact that the function $f(u,v) \equiv 1$ belongs to this cone.

Let us now pick a particular field $O_{\Delta,\bar{\Delta}}$ and rewrite (7) as

$$1 - p_{\Delta,\bar{\Delta}} F_{d,\Delta,\bar{\Delta}}(u,v) = \sum p_{\Delta,\bar{\Delta}} F_{d,\Delta,\bar{\Delta}}(u,v).$$

(9)

As $p_{\Delta,\bar{\Delta}}$ is increased, the vector corresponding to $1 - p_{\Delta,\bar{\Delta}} F_{d,\Delta,\bar{\Delta}}(u,v)$ moves in the vector space. Suppose that for all $p_{\Delta,\bar{\Delta}}$ above some critical value p_{cr} this vector stays out of the cone C_d. Then p_{cr} provides a bound on the squared OPE coefficient $|c_{\Delta,\bar{\Delta}}|^2$. This bound will depend on $d, \Delta, \bar{\Delta}$, but will be valid in any unitary CFT.

To find p_{cr}, we employ the method of linear functionals developed in [15],[16]. Recall that a linear functional is a linear map Λ from V to real numbers:

$$\Lambda : V \to \mathbb{R}, \quad \Lambda[\alpha_i F_i] = \alpha_i \Lambda[F_i].$$

(10)

Suppose that we found a functional which is positive on all functions generating the cone C_d:

$$\Lambda[F_{d,\Delta,l}] \geq 0.$$

(11)
We will normalize this functional by the condition
\[\Lambda[1] = 1. \] (12)
Since for such \(\Lambda \) Eq. (7) implies \(\Lambda[1 - p_{\Delta, l} F_{d, \Delta, l}] \geq 0 \), we would get an upper bound:
\[p_{\Delta, l} \leq p_{cr}(\Lambda) \equiv 1/\Lambda[F_{d, \Delta, l}]. \] (13)
To make this bound as strong as possible, we will impose, in addition to (11), (12), an extremality condition
\[\Lambda[F_{d, \Delta, l}] \rightarrow \max. \] (14)

We will use linear functionals given by a finite linear combination of derivatives evaluated at a given point. More precisely, we will use functionals of the form:
\[\Lambda[F] \equiv \sum_{n, m \geq 0, n + m \leq N} \lambda_{n, m} F^{(2n, 2m)}, \quad N = 3, \] (15)
\[F^{(2n, 2m)} \equiv \partial_a^{2n} \partial_b^{2m} F|_{a=b=0}, \] (16)
\[z = 1/2 + a + b, \quad \bar{z} = 1/2 + a - b. \] (17)
Here \(\lambda_{n, m} \) are fixed real numbers defining the functional. The symmetric point \(a = b = 0 \) is chosen as in [15], [16] since the sum rule is expected to converge fastest here, and because the functions \(F_{d, \Delta, l} \) are even in both variables with respect to this point. This is why only even-order derivatives are included in (15).

Eqs. (11), (12), (14) define an optimization problem for the coefficients \(\lambda_{n, m} \). The constraints are given by linear equations and inequalities, and the cost function is also linear, which makes it a linear programming problem. Although the number of constraints in (11) is formally infinite, they can be reduced to a finite number by discretizing \(\Delta \) and truncating at large \(\Delta \) and \(l \), where the constraints approach a calculable asymptotic form. The reduced problem can be efficiently solved by well-known numerical methods, such as the simplex method. A found solution can be then checked to see if it also solves the full problem. This procedure was developed and successfully used in a different context in [15], [16].

In this work, we used this procedure to compute bounds on the OPE coefficients \(c_{\phi \phi O} \) when \(O \) is a scalar field (\(\bar{l} = 0 \)). We will now present our numerical results. Fig. 1 concerns the case when the dimension of \(\phi \) is close to that of a free field, \(1 < d \leq 1.1 \). Notice the bell-shaped form of the
Figure 1: Theoretical upper bound for the OPE coefficient $c_{\phi\phi O}$ as a function of the dimension $\bar{\Delta}$ of the scalar field O. The curves correspond to the ϕ's dimension fixed at $d = 1.005, 1.02, 1.05, 1.1$ (from below up). The bound was computed for each of the shown points, and the curves in between were obtained by interpolation.

The bound, peaked at $\bar{\Delta} \simeq 2.1$, for $d \rightarrow 1$ the bound evidently tends to zero everywhere except near $\bar{\Delta} = 2$. This means that the free field theory limit is approached continuously: for $d = 1$ the only scalar operator in the $\phi \times \phi$ OPE is the $:\phi^2: $ of dimension 2. In Fig. 2 we present a similar plot for $1.2 \leq d \leq 1.7$. Notice that the bounds in Figs. 1, 2 go to zero as $\bar{\Delta} \rightarrow 1$. This is expected in view of the general theorem that a dimension 1 scalar must be free, hence decoupled from everything else in the CFT.

A text file with the coefficients of the linear functionals used to obtained the bounds plotted in Figs. 1, 2 is included in the source file of this arXiv submission. The reader may check that they indeed satisfy the constraints (11).

We have only explored the range $d \leq 1.7$ for the following reason: starting from $d \simeq 1.75$, we found that there is no functional of the form (15) satisfying the constraints (11), (12). We expect that a bound exists also for larger d, but to find it one needs to use more general functionals, e.g. involving more derivatives (i.e. with higher N). This will also give improved bounds in the

\footnote{This shape makes it tempting to draw an analogy with the Breit-Wigner formula, especially since the dilatation operator D plays the role of energy in radial quantization.}
Figure 2: Same as Fig. 1 for the ϕ’s dimension fixed at $d = 1.2, 1.3, 1.4, 1.5, 1.6, 1.7$ (from below up).

Figure 3: Theoretical upper bound for the OPE coefficient $c_{\phi\phi\phi}$ as a function of ϕ’s dimension d.
range of d that we considered. This is left for future work.

On the other hand, the restriction to $1 \leq \bar{\Delta} \leq 3$ in Figs. 1,2 is not essential: our method would also give bounds beyond this range. In fact, any of the functionals derived for $1 \leq \bar{\Delta} \leq 3$ could be used to compute a sub-optimal but valid bound for larger $\bar{\Delta}$ (as well as for $\bar{I} > 0$) via Eq. (13).

It would be interesting to study the asymptotic behavior of the bound at large $\bar{\Delta}$. A conservative upper estimate can be obtained from the known asymptotics of $F_{d,\bar{\Delta},\bar{I}}$ and its derivatives [15], if we assume that the functional Λ in (13) is $\bar{\Delta}$-independent. This way one concludes that the bound cannot grow faster than exponentially: $|c_{\phi\phi\phi}| = \mathcal{O}(q^{\bar{\Delta}})$, $q = (\sqrt{2} + 1)/2$. However, this is likely an overestimate, since the optimal functional Λ, as determined by Eq. (14), will likely depend on Λ.

It would be also interesting to derive analogous bounds in two spacetime dimensions, where explicit expressions for conformal blocks are also known [13].

As a phenomenological application of our results, consider the unparticle physics scenario [17]. Unparticle self-interactions were considered in [18] (see also [19]) a prominent feature of such scenarios, giving rise to processes like $gg \rightarrow \phi \rightarrow \phi\phi \rightarrow 4\gamma$. The cross section for this process is proportional to the square of the self-coupling OPE coefficient $c_{\phi\phi\phi}$, where ϕ is a scalar operator from a hidden-sector CFT (unparticle) with non-renormalizable couplings to gluons and photons. In [18], the values of these coefficients were kept as arbitrary parameters, unconstrained by prime principles, and only experimental constraints from the Tevatron were imposed, which led to a possibility of spectacularly large cross sections at the LHC. In Fig. 3 we plot our theoretical upper bound on $c_{\phi\phi\phi}$ (extracted from Figs. 1,2 by setting $\bar{\Delta} = d$). The values of $c_{\phi\phi\phi}$ used in [18] exceed our bound by $2 \div 4$ orders of magnitude\footnote{For proper comparison note that the normalization of the unparticle OPE coefficients C_d used in [18] is related to our normalization via $C_d = g_d^3/(|B_d|/g_d)^{3/2}c_{\phi\phi\phi}$ where B_d is given in [18] and $g_d = 4^{2-d}\pi^2\Gamma(2-d)/\Gamma(d)$.} We conclude that a revision of the studies in [18],[20], taking into account our bounds, is necessary.

As a purely field-theoretical application, consider the $\mathcal{N} = 4$ SYM theory already mentioned above, which is conformal for any value of the ’t Hooft coupling $\lambda = gYM^2 N_c$. The region of small λ is accessible via perturbation theory, while large λ (and large N_c) are accessible via the AdS/CFT correspondence. Moreover, the large N_c theory is integrable, which allows to interpolate between the two regimes and perform various nontrivial checks [21]. As λ is increased from 0 to ∞, the spectrum of the theory changes, and anomalous dimensions of some local fields are certain to become large. For example, at large N_c the fields which do not map onto supergravity modes
on $AdS_5 \times S^5$ have anomalous dimensions growing for large λ as $\lambda^{1/4}$ [22]. Now one could ask what happens to the OPE coefficients, whether they can have similar growth. From our results, assuming that they can be extended to $d > 1.7$ as discussed above, it follows that no matter how large λ is, the OPE coefficients of fields with low dimensions will stay bounded. It should be noted that this conclusion is nontrivial only for small N_c, since at large N_c the OPE $O_1 \times O_2$ is known to factorize, with the composite “multi-trace” fields $:O_1 O_2 :$ appearing with the coefficient $1 + \mathcal{O}(1/N_c^2)$ while all other fields $1/N_c$ suppressed [23].

In summary, we have presented theoretical upper bounds on the OPE coefficients of two identical scalars and a third scalar, valid in an arbitrary unitary CFT. Our results are based on imposing crossing symmetry on the conformal block decomposition of a scalar 4-point function. They imply that, in a certain sense, interaction strength remains limited even in theories like $\mathcal{N} = 4$ SYM (or its many known conformal deformations) where a coupling λ can be taken to infinity. They also lead to strong bounds on the cross sections of unparticle self-interaction-type processes at future colliders.

Acknowledgements

We are grateful to R. Rattazzi, A. Vichi and K. Zarembo for useful discussions and comments on the draft, and to R. Rattazzi for suggesting the Breit-Wigner analogy. This research was supported in part by the European Programme "Unification in the LHC Era", contract PITN-GA-2009-237920 (UNILHC).

References

[1] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984); H. Georgi and L. Randall, Nucl. Phys. B 276, 241 (1986).

[2] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” New York, USA: Springer (1997) 890 p

[3] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory,” JETP Lett. 43, (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43, (1986) 565].
[4] J. Polchinski, “Scale And Conformal Invariance In Quantum Field Theory,” Nucl. Phys. B 303 (1988) 226.

[5] for a recent discussion, see D. Dorigoni and S. Rychkov, “Scale Invariance + Unitarity \implies Conformal Invariance?,” arXiv:0910.1087 [hep-th].

[6] V. Riva and J. L. Cardy, “Scale and conformal invariance in field theory: A physical counterexample,” Phys. Lett. B 622, (2005) 339, arXiv:hep-th/0504197.

[7] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl. Phys. B 435, 129 (1995) arXiv:hep-th/9411149.

[8] A. A. Belavin and A. A. Migdal, “Calculation of anomalous dimensions in non-abelian gauge field theories,” Pisma Zh. Eksp. Teor. Fiz. 19, 317 (1974); JETP Letters 19, 181 (1974).

T. Banks and A. Zaks, “On The Phase Structure Of Vector-Like Gauge Theories With Massless Fermions,” Nucl. Phys. B 196, 189 (1982).

[9] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, “Phase structure of lattice QCD for general number of flavors,” Phys. Rev. D 69, 014507 (2004) arXiv:hep-lat/0309159.

T. Appelquist, G. T. Fleming and E. T. Neil, “Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories,” arXiv:0901.3766.

A. Deuzeman, M. P. Lombardo and E. Pallante, “Evidence for a conformal phase in SU(N) gauge theories,” arXiv:0904.4662.

[10] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] arXiv:hep-th/9711200.

[11] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

[12] S. Ferrara, R. Gatto and A. F. Grillo, “Positivity Restrictions On Anomalous Dimensions,” Phys. Rev. D 9, 3564 (1974); G. Mack, “All Unitary Ray Representations Of The Conformal Group SU(2,2) With Positive Energy,” Commun. Math. Phys. 55, 1 (1977).

[13] F. A. Dolan and H. Osborn, “Conformal four point functions and the operator product expansion,” Nucl. Phys. B 599, 459 (2001) arXiv:hep-th/0011040 “Conformal partial waves and the operator product expansion,” Nucl. Phys. B 678, 491 (2004) arXiv:hep-th/0309180.
[14] See Sections 2.8,2.9 of J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string,” *Cambridge, UK: Univ. Pr. (1998) 402 p*

[15] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, “Bounding scalar operator dimensions in 4D CFT,” JHEP **0812**, 031 (2008) [arXiv:0807.0004](https://arxiv.org/abs/0807.0004).

[16] V. S. Rychkov and A. Vichi, “Universal Constraints on Conformal Operator Dimensions,” Phys. Rev. D **80**, 045006 (2009) [arXiv:0905.2211](https://arxiv.org/abs/0905.2211).

[17] H. Georgi, “Unparticle Physics,” Phys. Rev. Lett. **98**, 221601 (2007) [arXiv:hep-ph/0703260](https://arxiv.org/abs/hep-ph/0703260).

[18] J. L. Feng, A. Rajaraman and H. Tu, “Unparticle Self-Interactions and Their Collider Implications,” Phys. Rev. D **77**, 075007 (2008) [arXiv:0801.1534](https://arxiv.org/abs/0801.1534).

[19] M. J. Strassler, “Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys,” [arXiv:0801.0629](https://arxiv.org/abs/0801.0629); H. Georgi and Y. Kats, “Unparticle self-interactions,” [arXiv:0904.1962](https://arxiv.org/abs/0904.1962).

[20] J. Bergstrom and T. Ohlsson, “Unparticle Self-Interactions at the Large Hadron Collider,” [arXiv:0909.2213](https://arxiv.org/abs/0909.2213); T. M. Aliev, M. Frank and I. Turan, “Collider Effects of Unparticle Interactions in Multiphoton Signals,” [arXiv:0910.5514](https://arxiv.org/abs/0910.5514).

[21] For a recent development see e.g. N. Gromov, V. Kazakov and P. Vieira, “Exact AdS/CFT spectrum: Konishi dimension at any coupling,” [arXiv:0906.4240](https://arxiv.org/abs/0906.4240).

[22] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B **428**, 105 (1998) [arXiv:hep-th/9802109](https://arxiv.org/abs/hep-th/9802109).

[23] see e.g. G. Arutyunov, S. Frolov and A. C. Petkou, “Operator product expansion of the lowest weight CPOs in N = 4 SYM(4) at strong coupling,” Nucl. Phys. B **586**, 547 (2000) [Erratum-ibid. B **609**, 539 (2001)](https://arxiv.org/abs/hep-th/0005182).