1. Introduction

A Rota—Baxter algebra is a linear space A over a field k equipped with bilinear product $(a, b) \mapsto ab$, $a, b \in A$, and with a linear map $R : A \to A$ such that

$$R(a)R(b) = R(R(a)b + R(aR(b)) + \lambda R(ab),$$

where λ is a constant from k. A linear operator R satisfying (1) is called a Rota—Baxter operator of weight λ.

This notion initially appeared in analysis [1], and then in combinatorics [12] and quantum field theory [4]. We refer the reader to the book [9] and references therein for more details. There is a number of studies on associative and commutative Rota—Baxter algebras. Let us mention those that are close to the topic of this paper.

A linear basis of the free associative Rota—Baxter algebra was found in [6], where it was also shown that the universal enveloping Rota—Baxter algebra of a free dendriform (or tridendriform, for nonzero weight) algebra is free. A simpler proof of the same fact follows from [7]. Another method for finding this basis was applied in [2], in a more modern form this approach was exposed in [8].

The class of Rota—Baxter Lie algebras is of special interest since it is closely related with pre-Lie (left/right-symmetric) algebras. Namely, if L is a Lie algebra with a product $[,]$ equipped with a Rota—Baxter operator R then the same space L with new operation $ab = [R(a), b]$, $a, b \in L$, is a pre-Lie algebra.

Moreover, there is a natural relation between Rota—Baxter operators and solutions of the classical Yang—Baxter equation (CYBE) [13]. Namely, if L is a Lie algebra equipped with an symmetric invariant bilinear form $\langle \cdot, \cdot \rangle$ (not necessarily non-degenerate) then there is a natural map $L \to L^*$, $a \mapsto \langle a, \cdot \rangle$, and thus we have a map $\Phi : L \otimes L \to \text{End}(L)$. If $X \in L \otimes L$ is a skew-symmetric solution of CYBE

$$[X^{12}, X^{13}] + [X^{12}, X^{23}] + [X^{13}, X^{23}] = 0,$$

then $R = \Phi(X)$ is a Rota—Baxter operator on L.

This paper is devoted to combinatorial structure of Lie algebras with a Rota—Baxter operator. The main problem we solve is an analogue of the PBW Theorem for universal enveloping Rota—Baxter Lie algebra $U_{RB}(L)$ of an arbitrary Lie algebra L. We prove that $U_{RB}(L)$ carries natural filtration such that the corresponding associated graded algebra $\text{gr} U_{RB}(L)$ is isomorphic (as a Lie algebra) to the universal enveloping one in the class RALie of Lie algebras with linear operator R.

Supported by Russian Science Foundation (project 14-21-00065).
satisfying the identity $[R(x), R(y)] = 0$. We also note that the same statement is true in the varieties As and Com of associative and commutative algebras.

The main tool of the proof is a version of the Composition-Diamond Lemma (CD-Lemma) for Lie algebras with an additional operator. A more general approach to this Lemma (for Lie algebras with an arbitrary set of additional operators) was developed in [11]. In the proof of CD-Lemma we use terminology of [8] and some combinatorial results of [14]. For more detailed exposition of the latter results, see [3].

2. Algebras with additional operator

Suppose Var is a variety of linear algebras. Denote by RVar the variety of Var-algebras equipped with an additional linear operator R. Denote the natural forgetful functor from RVar to Var by Θ_R, and let U_R stands for its left adjoint functor from Var to RVar.

Obviously, for the free Var-algebra $\text{Var}(V)$ generated by a linear space V the universal RVar-envelope $U_R(\text{Var}(V))$ is isomorphic to the free RVar-algebra $R\text{Var}(V)$.

Let us state the explicit construction of $U_R(A)$. Given $A \in \text{Var}$, denote by \bar{A} the copy of the linear space A. Let $\rho: A \to \bar{A}$ stands for the isomorphism $a \to \bar{a}$.

Construct a series of algebras $\{A_n\}_{n \geq 0}$ by the following rule:

$$A_0 = A,$$

$$A_1 = A \ast \text{Var}(\bar{A}),$$

$$\cdots$$

$$A_n = A \ast \text{Var}(\bar{A}_{n-1}),$$

$$\cdots$$

where $\ast = \ast_{\text{Var}}$ denotes the free product in the variety Var.

As above, let \bar{A}_n denotes a copy of the space A_n; denote the linear isomorphism $a \to \bar{a}$, $a \in A_n$, by ρ_n.

Construct a series of Var-homomorphisms $\tau_n: A_n \to A_{n+1}$, $n \geq 0$, as follows. Set τ_0 be the canonical embedding of A into the free product A_1 and proceed by induction:

$$\begin{array}{ccc}
A_{n-1} & \xrightarrow{\tau_{n-1}} & A_n \\
\downarrow & & \downarrow \\
\bar{A}_{n-1} & \xrightarrow{\bar{\tau}_{n-1}} & \bar{A}_n \\
\downarrow \subseteq & & \downarrow \subseteq \\
\text{Var}(\bar{A}_{n-1}) & \xrightarrow{\tau_0} & \text{Var}(\bar{A}_n) \\
\downarrow \subseteq & & \downarrow \subseteq \\
A \ast \text{Var}(\bar{A}_{n-1}) & \xrightarrow{\tau_n} & A \ast \text{Var}(\bar{A}_n),
\end{array}$$

where $\bar{\tau}_{n-1} = \rho_{n-1}^{-1} \circ \tau_{n-1} \circ \rho_n$ is a linear homomorphism, τ_0 is the induced Var-homomorphism of free algebras, and τ_n is a Var-homomorphism that comes from the definition of free product.

Lemma 1. All homomorphisms τ_n are injective.
Proof. Assume \(\tau_{n-1} \) is injective. Consider

\[
\begin{array}{cccc}
\bar{A}_{n-1} & \xrightarrow{\bar{\tau}_{n-1}} & A_n & \xrightarrow{\varphi} & \bar{A}_{n-1} \\
\subseteq & & \subseteq & & \subseteq \\
\text{Var}(\bar{A}_{n-1}) & \longrightarrow & \text{Var}(A_n) & \longrightarrow & \text{Var}(\bar{A}_{n-1})
\end{array}
\]

where \(\varphi \) is a projection of the linear space \(A_n \) onto \(\bar{A}_{n-1} \): \(\varphi \bar{\tau}_{n-1} = id_{\bar{A}_{n-1}} \) (every such linear map extends to a homomorphism of free algebras). Then the universal property of free product (uniqueness) implies the existence of

\[
A_n = A * \text{Var}(\bar{A}_{n-1}) \xrightarrow{\tau_n} A * \text{Var}(A_n) \xrightarrow{\psi} A * \text{Var}(\bar{A}_{n-1}) = A_n,
\]

where \(\psi \tau_n = id_{A_n} \), so \(\tau_n \) is also injective. \(\square \)

Lemma 2. For every RVar-algebra \(B \) and for every homomorphism of Var-algebras \(\psi : A \to B \) there exists unique family \(\{ \psi_n \}_{n \geq 0} \) of Var-homomorphisms \(\psi_n : A_n \to B \) such that

\[
\rho_n \circ \psi_{n+1} = \psi_n \circ R
\]

and

\[
\psi_0 = \psi, \quad \psi_n = \tau_n \circ \psi_{n+1}.
\]

Proof. Let us show existence and uniqueness by induction. Given \(\psi_n : A_n \to B \), construct

\[
\begin{array}{cccc}
A_n & \xrightarrow{\rho_n} & \bar{A}_n & \xrightarrow{\subseteq} & \text{Var}(\bar{A}_n) & \xrightarrow{\subseteq} & A_{n+1} = A * \text{Var}(\bar{A}_n) \\
\psi_n & & \bar{\psi}_n & & \psi_n^0 & & \psi_n^1
\end{array}
\]

Here the rightmost vertical arrow is the canonical embedding of \(A \) into the free product which coincides with \(\tau_0 \circ \cdots \circ \tau_n \). \(\bar{\psi}_n = \rho_n^{-1} \circ \psi_n \circ R \) is a linear map, \(\psi_n^0 \) is a homomorphism of Var-algebras induced by \(\bar{\psi}_n \). The right-hand square in the diagram above induces Var-homomorphism \(\psi_{n+1} : A * A_n^0 \to B \).

Why \(\psi_n = \psi_{n+1} \tau_n \)? For \(n = 0 \), it follows from the definition of \(\psi_1 \). Assume \(n > 0 \) and \(\psi_{n-1} = \psi_n \tau_{n-1} \). Then for all \(y \in \bar{A}_{n-1} \)

\[
\bar{x}_{n-1}(y) = \rho_n \tau_{n-1} \rho_n^{-1}(y)
\]

Since \(\bar{\psi}_n \rho_n(z) = R\psi_n(z) \) for all \(z \in A_n \), we have

\[
\bar{\psi}_n \bar{x}_{n-1}(y) = \psi_n \rho_n \tau_{n-1} \rho_n^{-1}(y) = R\psi_n \tau_{n-1} \rho_n^{-1}(y) = R\psi_{n-1} \rho_n^{-1}(y) = \bar{\psi}_{n-1}(y).
\]

Therefore, the induced Var-homomorphisms are related in the same way:

\[
\psi_{n-1}^0 = \psi_n^0 \tau_{n-1}^0.
\]

Now, for all \(x \in \text{Var}(\bar{A}_{n-1}) \subseteq A_n \) we have

\[
\tau_n(x) = \tau_{n-1}^0(x).
\]

Hence,

\[
\psi_{n+1} \tau_n(x) = \psi_n \tau_{n-1}^0(x) = \psi_{n-1}^0(x) = \psi_n(x)
\]

by definition of \(\psi_{n+1} \). Since \(\psi_n \) is uniquely determined by its action on \(\bar{A}_{n-1} \) (uniqueness property of the universal map on free product), we have the required equality \(\psi_{n+1} \tau_n = \psi_n \) on the entire \(A_n \). \(\square \)
The chain

$$A \xrightarrow{\tau_0} A_1 \xrightarrow{\tau_1} A_2 \xrightarrow{} \ldots \xrightarrow{} A_n \xrightarrow{\tau_n} A_{n+1} \xrightarrow{} \ldots$$
naturally defines direct system of Var-algebras. Let

$$A_\infty = \lim_{\to} A_n,$$

$$\rho : A_\infty \to A_\infty, \quad \rho = \lim_{\to} \rho_n.$$

Theorem 1. The Var-algebra A_∞ with linear map ρ is isomorphic to the universal RVar enveloping $U_R(A)$.

Proof. The universal property of (A_∞, ρ) follows from Lemma 2. \hfill \square

Let us consider the particular case $\text{Var} = \text{Lie}$. Recall that if Y is a well-ordered set of generators then the linear basis of $\text{Lie}(Y)$ may be constructed in the following way [4]. A word $u \in Y^*$ is called an (associative) Lyndon—Shirshov word (LS-word) if either $u \in Y$ or for every presentation $u = vw$, $v, w \in Y^*$, we have $u > vw$ lexicographically. Denote the set of all such words by $\text{LS}(Y)$. For every $u \in \text{LS}(Y)$ there exists standard bracketing $[u]$ such that $[u] = ([v][w])$, where w is the longest proper LS-suffix of u (then v is also an LS-word, $[v]$ and $[w]$ are standard bracketings on these shorter words). The set $\{[u] : u \in \text{LS}(Y)\}$ is a linear basis of $\text{Lie}(Y)$.

It is not hard to construct the linear basis of free RLie-algebra $\text{RLie}(X)$ for a given well-ordered set X of generators. Let $\text{RLS}_0(X) = \{[u] : u \in \text{LS}(X)\}$ be the basis of $\text{Lie}(X)$ equipped with leg-lex ordering:

$$[u] < [v] \iff u <_{\text{deglex}} v$$

Assume the set $\text{RLS}_n(X)$ is already constructed and equipped with a well order.

Consider the alphabet $U_n = X \cup \{R([u]) : [u] \in \text{RLS}_n(X)\}$ with the following order: $x < R([u])$ for all $x \in X$, $[u] \in \text{RLS}_n(X)$; $R([u]) < R([v]) \iff [u] < [v]$, $[u], [v] \in \text{RLS}_n(X)$. Then

$$\text{RLS}_{n+1}(X) := \{[w] : w \in \text{LS}(U_n)\}$$
equipped with deglex order.

Obviously, $\text{RLS}_n(X) \subset \text{RLS}_{n+1}(X)$ for all $n \geq 0$.

Corollary 1. The set

$$\text{RLS}(X) = \bigcup_{n \geq 0} \text{RLS}_n(X)$$
is a linear basis of $\text{RLie}(X)$.

Proof. Let $L = \text{Lie}(X)$, $U_R(L) \simeq \text{RLie}(X) \xrightarrow{\theta} L_\infty$. Consider the images of RLS-words as elements of $\text{RLie}(X)$ under the isomorphism θ induced by $x \mapsto x$, $x \in X$. By definition, $\theta(\text{RLS}_0(X))$ is the basis of $L_0 = L$. Assume $\theta(\text{RLS}_k(X))$ is a basis of L_k for all $k \leq n$, and the embedding $\text{RLS}_{k-1}(X) \subset \text{RLS}_k(X)$ is compatible with $\tau_{k-1} : L_{k-1} \to L_k$, $k = 1, \ldots, n$. Then $\theta(\tau(R(\text{RLS}_n(X)))) = \rho_n(\theta(\text{RLS}_n(X)))$ is the set of free generators for $\text{Lie}(L_n)$. Moreover, θ is compatible with τ_{n+1}.

Recall that a linear basis of a free product of two free Lie algebras is the free Lie algebra generated by disjoint union of the generating sets. In our case, one of these sets is X, other is $\theta(R(\text{RLS}_n(X)))$. Therefore, $\theta(\text{RLS}_{n+1}(X))$ is the linear basis of L_{n+1}. \hfill \square
In particular, $\text{RLie}(X)$ as a Lie algebra is isomorphic to $\text{Lie}(U)$, where $U = \bigcup_{n \geq 0} U_n$. Therefore, $\text{RLie}(X)$ has a natural ascending filtration

$$\text{RLie}^{(n)}(X) = \{ f \in \text{RLie}(X) \mid \deg f \leq n \},$$

where $\deg f$ is the degree of $f \in \text{Lie}(U)$ relative to the alphabet U.

Note that U may not be a well-ordered set, e.g., $xy > R(xy) > R^2(xy) > \ldots$ for $x > y$. However, for every $n \geq 0$ the subset U_n is obviously well-ordered.

For an RLS-word $[u]$, denote by $\deg_R(u)$ (R-degree) the total number of operators R appearing in u. For $f \in \text{RLie}(X)$, set $\deg_R(f)$ to be the maximal R-degree among all its monomials. Note that for every $n \geq 0$ there exists N such that $\{ [u] \in \text{RLS}(X) \mid \deg_R(u) \leq n \} \subseteq \text{LS}(U_N)$.

Remark 1. Denote by RAVar the subvariety of RVar defined by identity $R(x)R(y) = 0$ (image of R is abelian). The following construction is completely similar to the one stated above.

For $A \in \text{Var}$, let $A_0 = A$ and $A_{n+1} = A \ast A_n^0$, $n \geq 0$, where A_n^0 stands for the same space as A_n considered as an algebra with trivial operations. Then the universal enveloping RAVar-algebra $\text{UR}_{RA}(A)$ is isomorphic to $\text{lim} A_n$.

Corollary 2. The free RALie-algebra $\text{RALie}(X)$ is isomorphic as a Lie algebra to the partially commutative Lie algebra $\text{Lie}(U \mid uv = 0, \ u, v \in U \setminus X)$.

Let us denote by $\text{RLS}_n(X)$ the set of all $[w] \in \text{RLS}_n(X)$ such that w do not contain subwords of the form $R([u])R([v])$, $u, v \in \text{RLS}_{n-1}(X)$, $[u] > [v]$. It is easy to see [15] that $\text{RLS}_n(X)$ is the linear basis of the Lie algebra L_n constructed from $L_0 = \text{Lie}(X)$ as above. Therefore,

$$\text{RLS}(X) = \bigcup_{n \geq 0} \text{RLS}_n(X)$$

is the linear basis of $\text{UR}_{RA}(\text{Lie}(X)) \simeq \text{RALie}(X)$.

3. **CD-lemma for RLie algebras**

Let us call elements of $\text{RLie}(X)$ by RLie-polynomials, and let $\bar{f} \in \text{RLie}(X)$ stand for the leading word (principle monomial) of an RLie-polynomial f.

Let us recall an important statement which plays an important role in the combinatorial theory of Lie algebras.

Lemma 3 (Shirshov bracketing, [14] Lemma 4). Let U be an ordered set, and $w, u \in \text{LS}(U)$. Suppose u is a subword of w, i.e., $w = aub$, where a and b are some words in U (either of them may be empty). Denote by $w_{u\leftarrow a} = a \ast b$, a word in the alphabet $U \cup \{ * \}$ obtained from w by replacing this occurrence of u by a new symbol \ast. Then there exists unique bracketing on $w_{u\leftarrow a}$, denoted by $\{ w_{u\leftarrow a} \}$, such that

$$\{ a[u]b \} = [w] + \sum_i \alpha_i[w_i], \quad \alpha_i \in k, \ w_i \in \text{LS}(U), \ [w_i] < [w].$$

Uniqueness of the Shirshov bracketing implies the following property: let $w, u, z \in \text{LS}(U)$, u is a subword of z, and z is a subword of w. Consider the words $w_{z\leftarrow u} = a \ast b$, $w_{u\leftarrow z}$, and $z_{u\leftarrow z}$ with the corresponding Shirshov bracketings $\{ \ldots \}$. Then

$$\{ a[z_{u\leftarrow z}]b \} = \{ w_{u\leftarrow z} \}.$$
Suppose S is a set of monic RLiE polynomials. Construct \hat{S} as follows. For every $f \in S$, $\bar{f} = [u]$, consider the associative word $u \in \text{LS}(U)$ and consider all $[w] \in \text{RLS}(X)$ such that the corresponding $w \in \text{LS}(U)$ contain u as a subword: $w = aub$. Let $\{w_{\bar{u} \rightarrow \bar{f}}\} = \{a*b\}$ be the Shirshov bracketing. Denote by \hat{S}_0 the collection of all RLiE polynomials $\{w_{\bar{u} \rightarrow \bar{f}}\} = \{afb\}$ corresponding to all possible occurrences of u, $[u] = \bar{f}$, $f \in S$, in all RLS-words $[w]$. Then $\overline{w_{\bar{u} \rightarrow \bar{f}}} = [w]$ and $w_{\bar{u} \rightarrow \bar{f}}$ belongs to the ideal of the Lie algebra $\text{Lie}(U)$ generated by S. All these polynomials are monic, and $S \subset \hat{S}_0$.

Proceed by induction: given $\hat{S}_n = \Sigma$, define $\hat{S}_{n+1} = \Sigma \cup \overline{R(\Sigma)}_0 \supset \hat{S}_n$, and

$$\hat{S} = \bigcup_{n \geq 0} \hat{S}_n$$

Lemma 4. An RLiE polynomial f belongs to the ideal $I_R(S)$ generated by S in RLiE(X) if and only if $f = \sum \alpha_i h_i$, $h_i \in \hat{S}$, $\alpha_i \in k$.

Proof. The ideal $I_R(S)$ in RLiE(X) is the minimal R-invariant ideal in the Lie algebra $\text{Lie}(U)$ which contains S. By the construction, $I_R(S) \subseteq \hat{S}$.

Conversely, it follows from [13] Lemma 3 that an ideal $I(\Sigma)$ generated by a set Σ in Lie(U) coincides with the linear span of Σ_0. Hence, the linear span of \hat{S} is an ideal in Lie(U). Obviously, this ideal is R-invariant, so $I_R(S) \subseteq k\hat{S}$.

Recall that a rewriting system is an oriented graph $G = (V, E)$ which has no infinite oriented paths. A vertex $v \in V$ is called terminal if there are no edges of the form $v \rightarrow w$ in E.

Define an oriented graph $G_R(X, S)$ on the set of vertices RLiE(X) based on a set of monic RLiE-polynomials S, assuming that two RLiE-polynomials f and g are connected by an edge $f \rightarrow g$ if and only if $f = f_0 + \alpha[u] + f_1$ (all monomials of f_0 are larger than $[u]$ and $[u] > \bar{f}_1$, $\alpha \in k$, $\alpha \neq 0$) such that $[u] = \bar{h}$ for some $h \in \hat{S}$, and $g = f - \alpha h$. Every edge obviously corresponds to unique $h \in \hat{S}$, and therefore has a well-defined level which is the minimal n such that $h \in \hat{S}_n$.

From now on, assume the following additional condition on S: $\deg_R \bar{s} \geq \deg_R s$ for every $s \in S$, i.e., the number of operators R in the leading word \bar{s} is greater or equal to R-degrees of all other monomials in s. Obviously, the same relation holds for $h \in \hat{S}$. In this case, $G_R(X, S)$ is a rewriting system since for every vertex $f \in \text{RLiE}(X)$ its cone (set of all vertices g such that there exists an oriented path $f \rightarrow \cdots \rightarrow g$) belongs to $k\text{RLS}(X)$ for some n, and U_n^* is well ordered. Terminal vertices of this rewriting system are also called S-reduced RLiE polynomials.

Let us denote by $f \sim_d g$ the fact that $f, g \in \text{RLiE}(X)$ are connected by a non-oriented path of length $d \geq 1$. Notation $f \sim g$ means that there exists $d \geq 1$ such that $f \sim_d g$.

The following two lemmas are almost obvious but we still state their proofs for readers’ convenience.

Lemma 5. Let V be a subspace of $\text{RLiE}(X)$, and let $G(V)$ stand for the subgraph of $G_R(X, S)$ with vertices V. Then for every $f, g, h \in V$

$$f \sim g \text{ in } G(V) \iff f + h \sim g + h \text{ in } G(V).$$

Proof. It is enough to show (\Rightarrow). Suppose $f \sim_d g$ and proceed by induction in d.

In fact, we only need $d = 1$ since the induction step is obvious. Assume $f \rightarrow g$,
$f = f_0 + \alpha[u] + f_1$, $[u] = \hat{s}$, $s \in \hat{S}$, $g = f - \alpha s$ as in the definition of $\mathcal{G}_R(X, S)$. In particular, $s \in V$ Apply the same principle to write down decompositions of $h = h_0 + \beta[u] + h_1$ (for some $\beta \in \mathbb{k}$) and $g = f - \alpha s = g_0 + g_1$. Then $f + h = f_0 + h_0 + (\alpha + \beta)[u] + f_1 + h_1$, $g + h = g_0 + h_0 + \beta[u] + h_1 + g_1$. If $\alpha + \beta \neq 0$ and $\beta = 0$ then $f + h \to g + h$. If $\alpha + \beta \neq 0$ and $\beta \neq 0$ then $f + h \to f + h - (\alpha + \beta)s = g + h - \beta s \leftarrow g + h$.

so $f + h \leadsto g + h$. Finally, if $\alpha + \beta = 0$ then $f + h = f_0 + h_0 + f_1 + h_1 = g + \alpha s + h = g + h - \beta s \leftarrow g + h$.

\[\blacksquare\]

Lemma 6. In the notations of Lemma 5, the following statement holds: for every $f, g \in V$

$$f - g = \sum \alpha_i s_i, \quad \alpha_i \in \mathbb{k}, \ s_i \in \hat{S} \cap V,$$

if and only if $f \sim g$ in $\mathcal{G}(V)$.

Proof. (\Rightarrow) It follows from the definition of edges in $\mathcal{G}_R(X, S)$.

(\Leftarrow) Assume $f - g = \alpha_1 s_1 + \cdots + \alpha_n s_n, \ s_i \in \hat{S} \cap V$. If $n = 1$ then we simply have $f - g \to 0$, so $f \sim g$ by Lemma 5. If $n > 1$ then $f - (g + \alpha_1 s_1) \sim 0$ by induction, so $f - g \sim \alpha_1 s_1 \to 0$ by Lemma 5.

By Lemma 4, the ideal $I_R(S)$ coincides with the linear span of \hat{S}. Therefore, connected components (in the non-oriented sense) of $\mathcal{G}_R(X, S)$ are exactly the elements of the quotient algebra $\text{RLie}(X)/I_R(S)$.

We will mainly use the following subspaces of $\text{RLie}(X)$:

$$V_n = \mathbb{k}\{[u] \in \text{RLS}(X) \mid \deg u \leq n\}, \quad n \geq 0,$$

$$V^{[w]} = \mathbb{k}\{[u] \in \text{RLS}(X) \mid [u] \leq [w]\}, \quad [w] \in \text{RLS}(X),$$

$$V^{[w]}_n = V_n \cap V^{[w]}.$$

Note that

$$V_n = \bigcup_{[w] \in \text{RLS}(X) \cap V_n} V^{[w]}_n,$$

and $\text{RLS}(X) \cap V_n$ is a well-ordered subset of $\text{RLS}(X)$.

Recall that a rewriting system is called **confluent** if for every vertex v there exists unique terminal vertex t such that v is connected with t by an oriented path (i.e., $v \to \cdots \to t$, or $v \sim t$). In particular, every non-oriented connected component of a confluent rewriting system contains unique terminal vertex.

Therefore, if the rewriting system $\mathcal{G}_R(X, S)$ is confluent then there exists unique normal form of an element of $\text{RLie}(X)/I_R(S)$ which may be found by straight-forward walk on the graph. The following statement is a well-known criterion of confluence.

Theorem 2 (Diamond Lemma, [17]). A rewriting system $\mathcal{G} = (V, E)$ is confluent if and only if for every $v \in V$ and for every two edges $v \to w_1$, $v \to w_2$ there exists a vertex $u \in V$ such that $w_1 \sim u$ and $w_2 \sim u$.

$$\blacksquare$$

It is easy to see that rewriting system $\mathcal{G}_R(X, S)$ is confluent if and only if so is each subsystem $\mathcal{G}(V_n), \ n \geq 0$. The latter is confluent if and only if so is $\mathcal{G}(V^{[w]}_n), \ [w] \in \text{RLS}(X) \cap V_n$.

ROTA—BAXTER LIE ALGEBRAS 7
Proposition 1. Let $S \subset \text{RLie}(X)$ be a set of monic RLie-polynomials, $n \geq 0$. Suppose the rewriting system $G(V_u) \subset G_R(X, S)$ has the following property: for every RLS-word $[w] \in V_n$ and for every pair of edges $[w] \rightarrow g_1, [w] \rightarrow g_2$ in $G(V_n)$ we have

$$g_1 - g_2 = \sum_i \alpha_i h_i, \quad h_i \in \hat{S} \cap V_n, \quad \bar{h}_i < [w].$$

(3) Then the system $G(V_n)$ is confluent.

Proof. Let us check the Diamond Condition from Theorem 2 for rewriting system $G_n^{[v]} = G(V_n^{[v]}) \subset G_R(X, S)$, $[v] \in \text{RLS}(X) \cap V_n$.

Proceed by induction on $[v]$. Assume the rewriting system $G_n^{[u]}$ is confluent for all $[u] \in V_n$, $[u] < [v]$, and consider an ambiguity in the graph $G_n^{[v]}$, i.e., a pair of edges $f \to g_1, f \to g_2$. Here $g_1 = f - \alpha h_1, g_2 = f - \beta h_2$, $h_i \in \hat{S} \cap V_n^{[v]}$. There are three possible cases:

Case 1: $h_1 \neq h_2$.

Then f may be written in the form with ordered monomials $f = f_0 + \alpha[u_1] + f_1 + \beta[u_2] + f_2$, $[u] = \bar{h}_i$. Suppose $[u_1] - h_1 = \gamma [u_2] h + h$, where h does not contain monomial $[u_2]$, $\gamma \in \mathfrak{k}$. It is now easy to see that if $\gamma \alpha + \beta \neq 0$ then there exists an ambiguity $g_1 \to g', g' \to g$ in $G_n^{[v]}$, where $g = f_0 + f_1 + f_2 + \alpha h + (\beta - \gamma) [u_2] - h_2$. If $\gamma \alpha + \beta = 0$ then there exist edges $g_1 \to g, g_2 \to g'$ for the same g'. Therefore, in this case the Diamond Condition holds.

Case 2: $h_1 = h_2 < f$.

Then $f = f_0 + \alpha[u_1] + f_1$, $[u] = \bar{h}_i < \bar{f} \leq [v]$. Hence, there is an ambiguity $f' \to g'_1, f' \to g'_2$ in $G_n^{[v]}$, where $f' = \alpha[u_1] + f_1, g_i = f_0 + g_i$. By the inductive assumption, there exist two paths in $G_n^{[v]}$: $g'_i \to \cdots \to g'$, $i = 1, 2$. Therefore, $g_i \to \cdots \to f_0 + g'$ in $G_n^{[v]}$ since all monomials in f_0 are greater than $[u]$.

Case 3: $h_1 = h_2 = f$.

Without loss of generality, assume $\bar{f} = [v]$. Then $g_i = \alpha([v] - h_i) + f_1$ and the difference $g_1 - g_2 = \alpha(h_2 - h_1)$ coincides (up to scalar) with one that appears in the pair of edges $[v] \to [v] - h_i$, $i = 1, 2$. Therefore, the condition of the statement implies g_1 and g_2 are connected by a non-oriented path in $G_n^{[u]}(X, S)$ for some $[u] < [v]$. The last rewriting system is assumed to be confluent by induction, so there exist oriented paths $g_1 \to \cdots \to g, g_2 \to \cdots \to g$ in $G_n^{[u]}(X, S)$, and the Diamond Condition holds for $G_n^{[v]}$.

Recall the Shirshov’s definition of a composition [16] in the free Lie algebra Lie(U).

Let $f, g \in \text{Lie}(U)$ be monic Lie-polynomials, $\bar{f} = [u], \bar{g} = [v]$. We say that f and g form a composition relative to a word w if $u = u_1 u_2, v = v_1 v_2, w' = v_1$ ($u_i, v_i \in U^*$). Here $w = u_1 u_2 v_2 = u_1 v_1 v_2$ is a LS-word, and there are two Shirshov brackets:

$$\{w_{u-e-v} \} = \{ * v_2 \} 1, \quad \{ w_{v-e-v} \} = \{ v_1 * \} 2.$$

The Lie polynomial

$$(f, g)_w = \{ f v_2 \} 1 - \{ u_1 g \} 2$$

is called a composition of f and g relative to w. It is important that

$$(f, g)_w < [w].$$

(4)
It follows from the definition that if \(f, g \in S \) then
\[
[w] \rightarrow g_1 = [w] - \{fv_2\}_1
\]
is an edge in \(G_R(X,S) \), and so is
\[
[w] \rightarrow g_2 = [w] - \{u_1g\}_2.
\]
Therefore, \(g_1 - g_2 = (f,g)_w \).

Suppose \(S \) is a set of monic RLie polynomials such that the rewriting system \(G_R(X,S) \) is reduced, i.e., it has the following property: for every vertex \(s \in S \) there is only one edge \(s \rightarrow 0 \) in \(G_R(X,S) \). We will say \(S \) is reduced if so is \(G_R(X,S) \).

Proposition 2. Let \(S \) be a reduced set of monic RLie-polynomials in RLie\((X)\). Suppose that all compositions of type \((s_1,s_2)_w\), \(s_1, s_2 \in S, [w] \in V_n \cap RLS(X) \), have the following presentation:
\[
(s_1,s_2)_w = \sum_i \alpha_i h_i, \quad h_i \in \hat{S} \cap V_n, \quad \bar{h}_i < [w].
\]
Then the rewriting system \(G(V_n) \subset G_R(X,S) \) is confluent.

Proof. Check the conditions of Proposition [1] for a word \([w] \in RLS(X) \cap V_n\). Assume there is a pair of edges in \(G(V_n) \): \([w] \rightarrow g_1, [w] \rightarrow g_2\).

There are several possible cases.

1) Both edges are of level 0. (This case is actually covered by the classical Composition-Diamond Lemma [10], but we prefer to consider it in our terminology to make the exposition complete.) Then
\[
g_1 = [w] - h_1, \quad g_2 = [w] - h_2,
\]
\(h_i \in \{s_i\}_0 \cap V_n, s_i \in S \). Let \(u = \bar{s}_1 \) and \(v = \bar{s}_2 \).

Recall the following

Lemma 7. Suppose \(u, v, w \in LS(U), w = auvbc, \) where \(a, b, \) and \(c \) are some words in \(U \) (either of them may be empty). Then there exists a bracketing \(\{a*b*c\} \) such that \(\{a[u]vbc\} = [w] + \sum \alpha_i [u_i], [u_i] < [w] \).

This statement also implicitly appears in [10].

1.1) Let the corresponding occurrences of subwords \(u \) and \(v \) in \(w \) do not intersect. Then \(w = auvbc, h_1 = \{as_1bvc\}_1, h_2 = \{aubs_2c\}_2, \) where \(\{\ldots\}_1 \) and \(\{\ldots\}_2 \) are the Shirshov bracketings on \(w_{u+} \) and \(w_{v+} \), respectively. Therefore,
\[
g_1 - g_2 = \{aubs_2c\}_2 - \{as_1bvc\}_1
= \{aubs_2c\}_2 - \{a[u]bs_2c\}_12 + \{as_1b[v]c\}_12 - \{as_1bvc\}_12
+ \{a[u]bs_2c\}_12 - \{as_1bs_2c\}_12 + \{as_1bs_2c\}_12 - \{as_1b[v]c\}_12
= (\{aubs_2c\}_2 - \{a[u]bs_2c\}_12) + (\{as_1b[v]c\}_12 - \{as_1bvc\}_12)
+ \{a[u] - s_1)bs_2c\}_12 + \{as_1b(s_2 - [v])c\}_12.
\]
where \(\{a*b*c\}_12 \) is the bracketing from Lemma 7. In the last expression, all summands belong to linear span of \(h_i \in \hat{S} \cap V_n \) with \(\bar{h}_i < [w] \), so \(g_1 - g_2 \) has the required presentation.

1.2) Let the corresponding occurrences of \(u \) and \(v \) in \(w \) intersect: \(u = u_1u_2, v = v_1v_2, u_2 = v_1 \). Then \(z = uv_2 = u_1v \) is a LS-word, \(w = azb = auv_2b, h_1 = \{as_1v_2b\}_1, h_2 = \{au_1s_2b\}_2, \) where \(\{a*v_2b\}_1 \) and \(\{au_1*b\} \) are the
Shirshov bracketings on \(w_{u \rightarrow x}\) and \(w_{v \rightarrow x}\), respectively. Consider also the Shirshov bracketings \(\{a \ast b\}_0\) on \(w_{z \rightarrow x}\) and \(\{*v_2\}_{01}\), \(\{u_1 \ast v_2\}_{02}\) on \(z_{u \rightarrow x}\) and \(z_{v \rightarrow x}\), respectively. Then

\[
g_1 - g_2 = \{au_1s_2b\}_2 - \{as_1v_2b\}_1
= \{a\{u_1s_2\}_{02}b\}_0 - \{a\{s_1v_2\}_{01}b\}_0
= -\{afb\}_0,
\]

where \(f = (s_1, s_2)_z\). Since \(f = \sum_i \alpha_i h_i, \tilde{h}_i < [z], h_i \in \hat{S} \cap V_n\), RLie polynomial \(g_1 - g_2\) may be presented as (3).

2) The edge \([w] \rightarrow g_1\) is of positive level \(d\), \([w] \rightarrow g_2\) is of level 0. In this case,

\[
w = a_1 \ldots a_m, \quad a_i \in U,
\]

\(a_k = R([v])\) for some \(k\), where \([v] = \tilde{h}, h \in \{s_1\}_{d-1}\), \(s_1 \in S\). Therefore, \(h_1 = [a_1 \ldots a_{k-1} R(h) a_{k+1} \ldots a_m]\). As above,

\[
w = aub, \quad [u] = \tilde{s}_2,
\]

and \(h_2 = \{as_2b\}\). Since \(S\) is reduced, the occurrence of letter \(a_k = R([v]) \in U\) considered above may appear in either of the subwords \(a\) or \(b\). Suppose \(a = ca_kc'\) (the second case in analogous). Then

\[
w = cR([v])c'ub, \quad c, c', b \in U^* \cup \{\epsilon\},
\]

Therefore,

\[
g_1 - g_2 = \{cR([v])c's_2b\} - \{cR(h)c'ub\}
= \{cR([v])c's_2b\} - \{cR(h)c's_2b\} + \{cR(h)c'ub\},
\]

and the same reasonings as in Case 1.1 show the required relation (3) holds.

3) Both edges \([w] \rightarrow g_1\), \([w] \rightarrow g_2\) have positive level. In this case, \(w = a_1 \ldots a_k \ldots a_l \ldots a_m, a_i \in U\), where \(a_k = R([u]), a_l = R([v]), [u] \rightarrow g'_1\)

\[h_1 = [a_1 \ldots R(g'_1) \ldots a_l \ldots a_m], \quad h_2 = [a_1 \ldots a_k \ldots R([v]) \ldots a_m].\]

3.1) If \(k \neq l\) then one may proceed as in Case 2.

3.2) If \(k = l\), proceed by induction on the level of edges. Consider \(a_k = a_l = R([u])\) with edges \([u] \rightarrow g'_1, [u] \rightarrow g'_2\) in \(\mathcal{G}(V_{n-1}) \subset \mathcal{G}(V_n)\). Inductive assumption claims \(g'_1 - g'_2 = \sum \alpha_i h_i'\), \(h_i' < [u]\). Therefore,

\[
g_1 - g_2 = [a_1 \ldots R(g'_1 - g'_2) \ldots a_m]
\]

also has a required presentation (3).

The entire system \(S\) is closed with respect to composition if for every \(s_1, s_2 \in S\) every their composition \((s_1, s_2)_w\) may be presented as

\[
(s_1, s_2)_w = \sum \alpha_i h_i, \quad h_i \in \hat{S}, \quad \tilde{h}_i < [w], \quad \deg_R h_i \leq \deg_R w.
\]

A reduced set of monic RLie polynomials in RLie\((X)\) which is closed with respect to composition is called a Gröbner—Shirshov basis (GSB) in RLie\((X)\).

Theorem 3. If \(S\) is a GSB in RLie\((X)\). Then the rewriting system \(\mathcal{G}_R(X, S)\) is confluent.
Proof. The statement follows from Propositions1 and2. □

Corollary 3. If S is a GSB in $\text{RLie}(X)$ then the set of S-reduced words forms a linear basis of the algebra $\text{RLie}(X \mid S) = \text{RLie}(X)/I_R(S)$.

Proof. Terminal vertices of $\mathcal{G}(X, S)$ are exactly linear combinations of S-reduced words. □

Example 1. Let S consists of all $R([u])R([v])$, $[u], [v] \in \text{RLie}(X)$, $[u] > [v]$. Then S is a reduced system closed with respect to compositions, and the set of S-reduced words coincides with $\text{RLie}(X)$.

Obviously, $\text{RLie}(X \mid S) \simeq \text{RALie}(X)$, so $\text{RLie}(X)$ is indeed the linear basis of $\text{RLie}(X)$.

More general, let L be a Lie algebra, and let X be a linear basis of L which is linearly ordered in some way.

Example 2. The set W of all words $[w] \in \text{RLie}(X)$ such that w do not contain subwords of type xy, $x, y \in X$, $x > y$, form a linear basis of $U_{RA}(L)$.

It is easy to see that $S = \{R([u])R([w]) \mid [u], [w] \in W, u > w\} \cup \{xy - [x, y] \mid x, y \in X, x > y\}$ is a GSB, and $\text{RLie}(X \mid S) \simeq U_{RA}(L)$.

4. Rota—Baxter Lie algebras

Let RBLie denotes the variety of Lie algebras equipped with a Rota—Baxter operator R of weight $\lambda \in \mathbb{A}$, i.e., a linear map satisfying the following identity:

$$[R(x), R(y)] = R([R(x), y]) + R([x, R(y)]) + \lambda R([x, y]).$$

Consider the forgetful functor $\text{RBLie} \to \text{Lie}$. For every $L \in \text{Lie}$ there exists universal enveloping $U_{RB}(L) \in \text{RBLie}$: $L \subset U_{RB}(L)$ is a Lie subalgebra, and for every $B \in \text{RBLie}$ and homomorphism $\varphi : L \to B$ of Lie algebras there exists unique homomorphism of RBLie algebras $\tilde{\varphi} : U_{RB}(L) \to B$ such that $\tilde{\varphi}|_L = \varphi$. In this Section, we clarify the structure of $U_{RB}(L)$ and prove an analogue of the Poincaré—Birkhoff—Witt Theorem.

Suppose L is a Lie algebra with a linear basis X. Assume X to be well ordered in some way. Consider

$$S^{(0)} = \{xy - [x, y] \mid x, y \in X, x > y\} \subset \text{Lie}(X) \subset \text{RLie}(X).$$

Here $[x, y]$ is a linear form in X equal to the product of x and y in L. Then $S^{(0)}$ is a GSB in $\text{Lie}(X)$ and, therefore, in $\text{RLie}(X)$. Moreover, $L \simeq \text{Lie}(X \mid S^{(0)})$.

Now, consider

$$\rho(x, y) = R(x)R(y) - R(R(x)y) + R(R(y)x) - \lambda R([x, y]), \quad x, y \in X, x > y,$$

and set $S^{(2)} \subset \text{RLie}(X)$ to be the union of $S^{(0)}$ set of all $\rho(x, y)$. Denote by $\mathcal{G}^{(2)}$ the subgraph $\mathcal{G}(V_2)$ of $\mathcal{G}_R(X, S^{(2)})$. Obviously, $S^{(2)}$ is a GSB: it is reduced, and the graph $\mathcal{G}_R(X, S^{(2)})$ has no ambiguities.

Proceed by induction on R-degree. Assume a reduced system $S^{(n)}$, $n \geq 2$, is already constructed in such a way that the subgraph $\mathcal{G}^{(n)} = \mathcal{G}(V_n) \subset \mathcal{G}_R(X, S^{(n)})$ is a confluent rewriting system. Denote by T_n the set of terminal vertices of $\mathcal{G}^{(n)}$, and let $t_n : V_n \to T_n$ be the linear map that turns an RLie polynomial f, $\deg_R f \leq n$, into the terminal vertex $t_n(f)$ connected with f.

For every two terminal words \(a, b \in T_n \cap \text{RLS}(X)\), \(\deg_R a + \deg_R b = n - 1\), \(a > b\), consider
\[
\rho(a, b) = R(a)R(b) - R(t_n([R(a), b])) + R(t_n([R(b), a])) - \lambda R(t_n([a, b]))\]
where \([, , \cdot]\) stands for the product in \(\text{RLie}(X)\). Construct
\[
S^{(n+1)} = S^{(n)} \cup \{\rho(a, b) \mid a, b \in T_n \cap \text{RLS}(X), \ \deg_R a + \deg_R b = n - 1, \ a > b\}.
\]
It is easy to see from the construction that the subgraph \(G(V_n) \subset G_R(X, S^{(n+1)})\) coincides with \(G^{(n)}\).

We have to resolve the following questions:

- Prove that \(S^{(n+1)}\) is confluent (assuming so is \(S^{(n)}\));
- Show \(\text{RLie}(X | S) \simeq U_{RB}(L)\), where \(S\) is the union of all \(S^{(n)}\);
- Describe the set of \(S\)-reduced words in \(\text{RLS}(X)\).

Lemma 8. Let \(f, g \in \text{RLie}(X)\), \(\deg_R f + \deg_R g = n\). Then \(t_n([f, t_n(g)]) = t_n([f, g])\).

Proof. It follows from Lemma 8 that \([f, g]\) and \([f, t_n(g)]\) belong to the same connected component of \(G^{(n)}\). Since the latter is confluent, \(t_n([f, g]) = t_n([f, t_n(g)])\).

Lemma 9. The rewriting system \(G^{(n+1)} = G(V_n+1) \subset G_R(X, S^{(n+1)})\) is confluent.

Proof. Here we assume by induction that \(G^{(n)} = G(V_n) \subset G_R(X, S^{(n+1)})\) is confluent. It is enough to check the conditions of Proposition 3 for compositions \((s_1, s_2)_w, s_1, s_2 \in S^{(n+1)}, [w] \in \text{RLS}(X), \ \deg_R w = n + 1\).

Suppose \(s_1 = \rho(a, b), s_2 = \rho(b, c), w = R(a)R(b)R(c), a, b, c \in T_n \cap \text{RLS}(X), a > b > c\). Denote
\[
\rho(a, b) = R(a)R(b) - \sum_i \gamma_i R(c_i), \quad \rho(b, c) = R(b)R(c) - \sum_j \alpha_j R(a_j), \quad \rho(a, c) = R(a)R(c) - \sum_l \beta_l R(b_l),
\]
where \(\deg_R c_i, \ \deg_R a_j, \ \deg_R b_l < n - 1\). Then
\[
(s_1, s_2)_w = [\rho(a, b), R(c)] - [R(a), \rho(b, c)] = [R(a)R(b), R(c)] - [R(a), R(b)R(c)]
- \sum_i \gamma_i [R(c_i), R(c)] + \sum_j \alpha_j [R(a), R(a_j)]
= -[R(b), \rho(a, c)] - \sum_l \beta_l [R(b), R(b_l)]
- \sum_i \gamma_i [R(c_i), R(c)] + \sum_j \alpha_j [R(a), R(a_j)]
= -[R(b), \rho(a, c)] + K(a, b, c).
\]
Here \(h = [R(b), \rho(a, c)] \in \hat{S}^{(n)}, \ \hat{h} = [R(b)R(a)R(c)] < [w], \) and all monomials in
\[
K(a, b, c) = \sum_j \alpha_j [R(a), R(a_j)] - \sum_l \beta_l [R(b), R(b_l)] - \sum_i \gamma_i [R(c_i), R(c)]
\]
are smaller than \([w]\) since they are of degree two in \(U\). Straightforward computations show

\[K(a, b, c) = \sum_k \xi_k h_k + R(J(a, b, c)), \]

where

\[
J(a, b, c) = t_n([R(a), t_n([R(b), c] + [b, R(c)] + \lambda[b, c])] + \lambda[a, t_n([R(b), R(c)])]
+ \lambda[a, t_n([R(b), c] + [b, R(c)] + \lambda[b, c]])
- [R(b), t_n([R(a), c] + [a, R(c)] + \lambda[a, c])] - [b, t_n([R(a), R(c)])]
- [\lambda[b, t_n([R(a), c] + [a, R(c)] + \lambda[a, c])]
- [t_n([R(a), R(b)]), c] - [t_n([R(a), b] + [a, R(b)] + \lambda[a, b]), R(c)]
- \lambda[t_n([R(a), b] + [a, R(b)] + \lambda[a, b]), c]).
\]

Indeed, \([R(b), R(c)] \rightarrow R(t_n([R(b), c] + [b, R(c)] + \lambda[b, c)])\) is an edge in \(G^{(n)}\), so \(t_n([R(b), R(c)]) = \sum_j \alpha_j R(a_j)\). Moreover, \(t_n(R(x)) = R(t_n(x))\) for all \(x \in V_n - 1\).

It remains to apply Lemma 8 to conclude

\[
J(a, b, c) = t_n\left(\text{Jac}(R(a), R(b), c) + \text{Jac}(R(a), b, R(c)) + \text{Jac}(a, R(b), R(c)) + \lambda \text{Jac}(R(a), b, c) + \lambda \text{Jac}(a, R(b), c) + \lambda \text{Jac}(a, b, R(c)) \right.
+ \lambda^2 \text{Jac}(a, b, c) \bigg) = 0,
\]

where \(\text{Jac}(x, y, z) = [x, [y, z]] - [y, [x, z]] - [[x, y], z]\) is the Jacobian. Hence, \((s_1, s_2)_w\) has a required presentation \((5)\).

Denote \(S = \bigcup_{n \geq 1} S^{(n)}\). Obviously, \(S\) is a GSB. Denote by \(T\) the set of terminal vertices in \(G_R(X, S), T = \bigcup_{n \geq 1} T_n\).

Lemma 10. RLie\((X | S)\) is a Rota—Baxter Lie algebra.

Proof. We have to prove

\[(6) \quad [R(f), R(g)] - R([R(f), g]) - R([f, R(g)]) - \lambda R([f, g]) \in I_R(S)\]

for all \(f, g \in \text{RLie}(X)\). Since for every \(f \in \text{RLie}(X)\) there exists \(t \in T\) such that \(f - t \in I_R(S)\), it is enough to check \((6)\) for \(f = a, g = b\), where \(a, b \in T \cap \text{RLS}(X)\).

Assume \(a \in T_n, b \in T_m\). Then \([R(a), R(b)]\) and \(R([R(a), b] + [a, R(b)] + \lambda[a, b])\) have the same terminal form in \(G^{(n+m+2)}\), so they are connected by a non-oriented path in \(G_R(X, S)\). Hence, \((6)\) holds. \(\square\)

Corollary 4. RLie\((X | S) \simeq U_{RB}(L)\).

Proof. Let \(B \in \text{RBLie}\), and let \(\varphi : L \rightarrow B\) be a homomorphism of Lie algebras. Identify \(L\) with the Lie subalgebra in \(\text{RLie}(X)\) spanned by \(X\). Then there exists unique homomorphism of \(\text{RLie}\) algebras \(\psi : \text{RLie}(X) \rightarrow B\) such that \(\psi(x) = \varphi(x)\) for \(x \in X\). Denote by \(\tau\) the natural homomorphism \(\text{RLie}(X) \rightarrow \text{RLie}(X | S)\), \(\text{Ker} \tau = I_R(S)\). Since for every \(f \in V_n\) we have \(f - t_n(f) \in \text{Ker} \tau\), Lemma 10 implies \(S^{(n)} \subset \text{Ker} \tau\). Therefore, there exists a homomorphism of \(\text{RLie}\) algebras \(\tilde{\varphi} : \text{RLie}(X | S) \rightarrow B, \tilde{\varphi}(x) = \psi(x) = \varphi(x)\) for \(x \in X\). \(\square\)
Remark 2. For associative algebras the statement of Theorem 4 is easy to show by means of Gröbner—Shirshov bases technique for associative Rota—Baxter algebras is ideologically similar to the classical Poincaré—Birkhoff—Witt Theorem.

Theorem 4. \(\text{gr } U_{RB}(L) \simeq U_{RA}(L) \) as Lie algebras.

Proof. It is enough to compare Gröbner—Shirshov bases of \(U_{RA}(L) \) and \(U_{RB}(L) \). The principal parts of these relations coincide, they are of degree 2. For the latter algebra, the right-hand sides of relations are of degree 1.

Remark 2. For associative algebras the statement of Theorem 4 is easy to show by means of Gröbner—Shirshov bases technique for associative Rota—Baxter algebras: multiplication table of an associative algebra \(A \) is closed under all compositions in the free associative Rota—Baxter algebra.

Remark 3. For commutative algebras, an analogue of Theorem 4 also holds. Moreover, there is an explicit construction of the universal enveloping commutative Rota—Baxter algebra \(U_{RB}(A) \) for a given commutative algebra \(A \) (mixed shuffle algebra).

Let us briefly state the construction from [9] (in the case of zero weight) in more natural terms. Consider

\[
\text{III}(A) = A^\# \otimes B^\#, \quad B = \text{preCom}(A^\#)^{(+)} ,
\]

where \(\text{preCom}(A^\#) \) is the free pre-commutative (Zinbiel) algebra generated by the space \(A^\# \), \(B \) is the anti-commutator algebra of \(Z \) (it is an associative and commutative algebra), and \(A^\# = A \oplus k1_A \), \(B^\# = B \oplus k1_B \) are obtained by joining external units.

Define the linear operator on \(\text{III}(A) \):

\[
R(a \otimes 1_B) = 1_A \otimes a, \quad a \in A^\#, \\
R(a \otimes b) = 1_A \otimes ab, \quad a \in A^\#, \ b \in B.
\]

The Zinbiel identity \((xy)z = x(yz) + x(zy) \) on \(\text{preCom}(A^\#) \) implies \(R \) to be a Rota—Baxter operator on \(\text{III}(A) \). For example,

\[
R(a_1 \otimes 1_B)R(a_2 \otimes b) = (1_A \otimes a_1)(1_A \otimes a_2b) \\
= 1_A \otimes (a_1a_2b) + (a_2b)a_1 = 1_A \otimes a_1(a_2b) + 1_A \otimes a_2(ba_1) + 1_A \otimes a_2(ab_1).
\]

On the other hand,

\[
R((a_1 \otimes 1_B)R(a_2 \otimes b) + R(a_1 \otimes 1_B)(a_2 \otimes b)) = R((a_1 \otimes 1_B)(1_A \otimes a_2b) + (1_A \otimes a_1)(a_2 \otimes b)) \\
= R(a_1 \otimes a_2b + a_2 \otimes (a_1b + ba_1)) = 1_A \otimes a_1(a_2b) + 1_A \otimes a_2(a_1b) + 1_A \otimes a_2(ba_1).
\]

It is easy to check (see [9]) that the embedding

\[
A \to \text{III}(A), \quad a \mapsto a \otimes 1_B, \ a \in A,
\]

may be extended to a homomorphism of Rota—Baxter algebras \(U_{RB}(A) \to \text{III}(A) \). Suppose \(X \) is a linear basis of \(A \) and consider the following elements of \(U_{RB}(A) \):

\[
u = R^{s_1}((x_1R^{s_2}((x_2R^{s_3}(\ldots R^{s_{n-1}}(x_{n-1}R^{s_n}(x_n))\ldots))), \quad x_i \in X, \ s_1 \geq 0, \ s_2, \ldots s_n > 0, n \geq 1.
\]
Images of these elements $\mathcal{I}(A)$ are linearly independent since the linear base of $\text{preCom}(\langle A \rangle^\#)$ is given by $x_1(x_2(x_3(\ldots(x_{n-1}x_n)\ldots)))$, $x_1 \in X \cup \{1_A\}$. On the other hand, the set of (7) obviously span $\mathcal{U}_{RB}(A)$. Therefore, (7) is a linear basis of $\mathcal{U}_{RB}(A)$ as well as of $\mathcal{U}_{RA}(A)$ from Remark 1.

For nonzero weight, it is enough to replace $\text{preCom}(\langle A \rangle^\#)$ with $\text{postCom}(\langle A \rangle^\#)$ (commutative tridendriform algebra, or CTD-algebra), and set B to be the associated commutative algebra [15, p. 26].

Remark 4. The same statement holds for algebras with a Nijenhuis operator, i.e., a linear map N such that

$$[N(x), N(y)] = N([N(x), y]) + N([x, N(y)]) - N^2([x, y]).$$

The route of the proof is completely similar to stated above. The key computation of a composition is based on the following relation which is easy to check by straightforward computation:

$$\text{Jac}(N(a), N(b), N(c)) = N\left(\text{Jac}(a, N(b), N(c)) + \text{Jac}(N(a), b, N(c))\right)$$

$$+ \text{Jac}(N(a), N(b), c) - N^2\left(\text{Jac}(a, b, N(c)) + \text{Jac}(a, N(b), c)\right)$$

$$+ \text{Jac}(N(a), b, c) + N^3\left(\text{Jac}(a, b, c)\right).$$

References

[1] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731–742.

[2] L. A. Bokut, Y.-Q. Chen, J.-J. Qiu, Gröbner-Shirshov bases for associative algebras with multiple operators and free RotaBaxter algebras, J. Pure Appl. Algebra 214 (2010), 89–100.

[3] L. A. Bokut, Y. Chen, Gröbner-Shirshov bases and their calculation, arXiv:1303.5366v3 [math.RA].

[4] A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210 (2000), 249–273.

[5] E. S. Chibrikov, On free Lie conformal algebras, Vestnik Novosibirsk State University 4(1) (2004), 65–83.

[6] K. Ebrahimi-Fard, Li Guo, RotaBaxter algebras and dendriform algebras, J. Pure Appl. Algebra 212(2) (2008), 320–339.

[7] V. Yu. Gubarev, P. S. Kolesnikov, Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math. 11(2) (2013), 226–245.

[8] X. Gao, Li Guo, W. Y. Sit, S. Zheng, Rota-Baxter type operators, rewriting systems and Gröbner-Shirshov bases, arXiv:1412.8055 [math.RA].

[9] L. Guo, An Introduction to Rota-Baxter Algebra, International Press (US) and Higher Education Press (China), 2012.

[10] J.-L. Loday, Dialgebras, in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 7–66.

[11] J. Qiu, Y. Chen, Gröbner-Shirshov bases for Lie Ω-algebras and free Rota-Baxter Lie algebras, preprint.

[12] G.-C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (1969), 325–329; ibid. 75 (1969), 330–334.

[13] M. A. Semenov-Tian-Shansky, What is a classical r-matrix? Funct. Anal. Appl. 17(4) (1983), 259–272.

[14] A. I. Shirshov, On free Lie rings, Mat. Sb. 45 (1958), 113–122 (Russian).

[15] A. I. Shirshov, On a hypothesis of the theory of Lie algebras, Sibirsk. Mat. Z. 3(2) (1962), 297–301 (Russian).

[16] A. I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z. 3(2) (1962), 292–296 (Russian). English translation: SIGSAM Bull., 33(2) (1999), 3–6.
[17] M. H. A. Newman, On theories with a combinatorial definition of "equivalence", Ann. of Math. 43(2) (1942), 223–243.
[18] G.W. Zinbiel, Encyclopedia of types of algebras 2010. arXiv:1101.0267 [math.RA]

Sobolev Institute of Mathematics, Novosibirsk, Russia