COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC: https://www.cdc.gov/coronavirus
Get the latest research from NIH: https://www.nih.gov/

The new PubMed site will become the default in mid-May.

Click here to try it now!
Frequently asked questions

Format: Abstract

Skelet Muscle. 2020 Apr 22;10(1):10. doi: 10.1186/s13395-020-00228-3.

Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I.

Azzag K1, Ortiz-Cordero C1,2, Oliveira NA1, Magli A1,3, Selvaraj S1, Tun tug S1, Upchurch W4, Iaizzo PA4, Lu QL5, Perlingeiro RCR6,7,8.

Author information

1 Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
2 Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
3 Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
4 Visible Heart Laboratories, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
5 McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, NC, USA.
6 Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA. perl032@umn.edu.
7 Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. perl032@umn.edu.
8 Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA. perl032@umn.edu.

Abstract

BACKGROUND: Defects in α-dystroglycan (DG) glycosylation characterize a group of muscular dystrophies known as dystroglycanopathies. One of the key effectors in the α-DG glycosylation pathway is the glycosyltransferase fukutin-related protein (FKRP). Mutations in FKRP lead to a large spectrum of muscular dystrophies, including limb girdle muscular dystrophy 2I (LGMD2I). It remains unknown whether stem cell transplantation can promote muscle regeneration and ameliorate the muscle wasting phenotype associated with FKRP mutations.

RESULTS:
Here we transplanted murine and human pluripotent stem cell-derived myogenic progenitors into a novel immunodeficient FKR-P-mutant mouse model by intra-muscular injection. Upon both mouse and human cell transplantation, we observe the presence of donor-derived myofibers even in absence of pre-injury, and the rescue of α-DG functional glycosylation, as shown by IIF6 immunoreactivity. The presence of donor-derived cells expressing Pax7 under the basal lamina is indicative of satellite cell engraftment, and therefore, long-term repopulation potential. Functional assays performed in the mouse-to-mouse cohort revealed enhanced specific force in transplanted muscles compared to PBS-injected controls.

CONCLUSIONS: Altogether, our data demonstrate for the first time the suitability of a cell-based therapeutic approach to improve the muscle phenotype of dystrophic FKR-mutant mice.

KEYWORDS: FKR; LGD21; Muscle regeneration; Muscular dystrophy; Pluripotent stem cells; Transplantation

PMID: 32321586 PMCID: PMC7175515 DOI: 10.1186/s13395-020-00228-3

Free full text

Images from this publication. See all images (5) Free text

Grant support

LinkOut - more resources