D iastolic dysfunction (DD) of the left ventricle is often found during comprehensive echocardiography, including tissue Doppler imaging, regardless of the presence or absence of heart failure (HF). The prevalence of DD increases with aging and is associated with coronary artery disease (CAD), hypertension, diabetes mellitus and left ventricular (LV) systolic dysfunction. The DD grade can be used for risk assessment in patients with heart disease. An advanced grade of DD (i.e., moderate (pseudonormal filling) or severe (restrictive filling)) is known to be associated with increased risk of death not only in patients with impaired systolic function but also in patients with normal systolic function.

Several recent studies have demonstrated that the DD grade temporally changes in patients with preserved LV ejection fraction (LVEF). It has been shown that DD grade worsened in approximately one-fifth of a study population during the follow-up period and that worsening of diastolic function (DF) was associated with the development of HF and increased risk of death (Table). Furthermore, Cavalcante et al recently demonstrated that temporal changes in DF can predict clinical outcomes independently of LVEF recovery in patients with acute onset of left ventricular systolic dysfunction.

Table. Comparison of Reports Regarding the Association Between Changes in DF and Cardiac Events

Study	n	Age (years)	Study population	Mean EF	Mean interval from 1st to 2nd test	Worsened DF	Unchanged DF	Improved DF	Mean follow-up period from 2nd test	Results
Achong et al (2009)	184	62	Preserved EF (≥45%)	NA	3.6 years	27%	52%	21%	4.8 years	Patients with improved DF have favorable outcomes
Kane et al (2011)	1,402	61	Population-based cohort	64%	4.0 years	23%	68%	9%	6.3 years	Persistent or progression of DD associated with development of heart failure
Aljaroudi et al (2012)	1,065	68	Preserved EF (≥55%)	59%	1.1 years	16%	73%	11%	1.6 years	Worsening of DF independently associated with increased risk of death
Cavalcante et al (2016)	147	46	Acute NICM with reduced EF (≤40%)	23%	6 months	14%	28%	58%	1.8 years	Patients with improved DF have favorable outcomes
Kim et al (2019)	1,235	64	CAD patients undergoing PCI	60%	7 months	18%	50%	32%	44 months	Worsening of DF independently associated with increased risk of MACE

CAD, coronary artery disease; DD, diastolic dysfunction; DF, diastolic function; EF, ejection fraction; MACE, major adverse cardiac event; NA, not available; NICM, nonischemic cardiomyopathy; PCI, percutaneous coronary intervention.

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Department of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan

Mailing address: Satoshi Yuda, MD, PhD, Department of Cardiology, Teine Keijinkai Hospital, 1-12 Maeda, Teine-ku, Sapporo 006-8555, Japan. E-mail: yuda410902@gmail.com

ISSN-1346-9843 All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
non-ischemic cardiomyopathy (mean LVEF 23%) (Table). Collectively, these findings indicate that temporal changes in DF are also an important predictor of cardiac events in patients with heart disease, regardless of the presence or absence of systolic LV dysfunction. However, it has not been determined whether temporal changes in DF are associated with clinical outcomes in patients who have undergone percutaneous coronary intervention (PCI).

In this issue of the Journal, Kim et al13 report the prognostic importance of temporal changes in DF in patients undergoing PCI. They showed that DF worsened in 219 (17.8%) patients at the time of follow-up echocardiography, which was comparable with the results of other recent studies (Table). They also show the clinical characteristics of the patients with worsened DF. Patients with worsened DF had a higher SYNTAX score, larger number of treated coronary artery lesions, and higher frequencies of hypertension, chronic kidney disease, and multivessel disease than did patients with improved DF. Kim et al demonstrate that worsening of DF is independently associated with an increased risk of major adverse cardiac events (i.e., cardiac death, myocardial infarction, and repeat revascularization) in patients undergoing PCI. Furthermore, they confirmed that the close relationship between aggravation of DF after PCI and long-term adverse outcomes was consistent among various conditions in their subgroup analysis.

This study clearly demonstrated that changes in DF independently predict long-term outcomes after PCI. The results suggest that monitoring of DD before and after revascularization is important for predicting cardiac events. It might be interesting to conduct a future study to determine whether there is also a close relationship between temporal changes in DF and clinical outcomes in patients who have undergone surgical interventions such as coronary artery bypass grafting and transcatheter aortic valve replacement. However, several unresolved points remain. First, the mechanisms responsible for the association between changes in DF and adverse outcomes are still unknown. As stated by Kim et al., several factors, including residual ischemia, procedural complications (e.g., distal embolization and no-reflow during PCI) and poor control status of risk factors for CAD might explain this association. Further study is needed to clarify the unresolved mechanisms. Second, the interval from preprocedural echocardiography to follow-up echocardiography was not uniform. However, the authors showed that the association between changes in DF and clinical outcomes was more potent in patients with a relatively short interval until follow-up echocardiography (i.e., within 7 months), as shown in their Supplementary Table 5. The optimal interval until follow-up echocardiography should be clarified in order to determine the need for more intensive management in the early phase of post-revascularization. Third, only selected patients undergoing PCI who underwent serial echocardiography at both baseline and follow-up were enrolled in the study, as shown in Figure 1. There might be selection bias that may have influenced the results of this study.

In conclusion, regardless of LV systolic function and other clinical factors, DF change has prognostic value in patients who have undergone PCI. Assessment of not only systolic function but also DF in CAD patients before and after revascularization should be considered in order to better predict long-term clinical outcomes. We hope that a multicenter study will be performed in the future to validate the results of this study.

Disclosure

None.

References

1. Smiseth OA. Evaluation of left ventricular diastolic function: State of the art after 35 years with Doppler assessment. J Echocardiogr 2018; 16: 55–64.
2. Gassch WH, Zile MR. Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 2004; 55: 373–394.
3. Owen TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis 2005; 47: 320–332.
4. Abbayaratna WP, Marwick TH, Smith WT, Becker NG. Characteristics of left ventricular diastolic dysfunction in the community: An echocardiographic survey. Heart 2006; 92: 1259–1264.
5. Halley CM, Houghtaling PL, Khalil MK, Thomas JD, Jaber WA. Mortality rate in patients with diastolic dysfunction and normal systolic function. Arch Intern Med 2011; 171: 1082–1087.
6. Kusunose K, Okushi Y, Yamada H, Nishio S, Torii Y, Hirata Y, et al. Prognostic value of frailty and diastolic dysfunction in elderly patients. Circ J 2018; 82: 2103–2110.
7. Machino-Ohtsuka T, Seo Y, Ishizu T, Hamada-Harimura Y, Yamamoto M, Sato K, et al. Clinical utility of the 2016 ASE/EACVI recommendations for the evaluation of left ventricular diastolic dysfunction in the stratification of post-discharge prognosis in patients with acute heart failure. Eur Heart J Cardiovasc Imaging, doi:10.1093/ehjci/jez082.
8. Shah AM, Shin SH, Takeuchi M, Skali H, Desai AS, Kober L, et al. Left ventricular systolic and diastolic dysfunction, and modelling, and clinical outcomes among patients with diabetes following myocardial infarction and the influence of direct renin inhibition with aliskiren. Eur J Heart Fail 2012; 14: 185–192.
9. Achen N, Wahi S, Marwick TH. Evolution and outcome of diastolic dysfunction. Heart 2009; 95: 813–818.
10. Kane GC, Karoll BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, et al. Impact of left ventricular diastolic dysfunction and risk of heart failure. JAMA 2011; 306: 856–863.
11. Aljaroudi W, Alraies MC, Halley C, Rodriguez L, Grimm RA, Thomas JD, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 2012; 125: 782–789.
12. Cavalcante JL, Marek J, Sheppard R, Starling RC, Mather PJ, Thomas JD, et al. Diastolic dysfunction improvement is associated with favourable outcomes in patients with acute non-ischaemic cardiomyopathy. Insights from the multicentre IMAC-2 trial. Eur Heart J Cardiovasc Imaging 2016; 17: 1027–1035.
13. Kim EK, Hahn JY, Park TK, Lee JM, Song YB, Chang SA, et al. Prognostic implications of diastolic dysfunction change in patients with coronary artery disease undergoing percutaneous coronary intervention. Circ J 2019; 83: 1891–1900.
14. Metkus TS, Suarez-Pierre A, Crawford TC, Lawton JS, Goeddel L, Dodd-o J, et al. Diastolic dysfunction is common and predicts outcome after cardiac surgery. J Cardiothorac Surg 2018; 13: 67.
15. Sato K, Harb S, Kumar A, Kapadia SR, Mick S, Krishnaswamy A, et al. Impact of left ventricular diastolic dysfunction and survival in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. PLoS One 2018; 13: e0196031.

Circulation Journal Vol.83, September 2019