Ophthalmic manifestations in patients with inflammatory bowel disease: A review

Leandro Lopes Troncoso, Ana Luiza Biancardi, Haroldo Vieira de Moraes Jr, Cyrla Zaltman

ORCID Number: Leandro Lopes Troncoso (0000-0002-2269-095X); Ana Luiza Biancardi (0000-0002-0169-7001); Haroldo Vieira de Moraes Junior (0000-0003-2562-6942); Cyrla Zaltman (00000-0002-5236-6501).

Author contributions: Troncoso LL and Biancardi AL performed the literature review and wrote the paper; de Moraes Jr HV critically revised the article and provided photos; Zaltman C provided expertise and critical revision of the manuscript for important intellectual content; all authors approved the submitted version of the manuscript.

Conflict-of-interest statement: The authors report no conflict of interest regarding the publication of this paper.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Abstract

Clinical manifestations of inflammatory bowel disease (IBD) are not locally restricted to the gastrointestinal tract, and a significant portion of patients have involvement of other organs and systems. The visual system is one of the most frequently affected, mainly by inflammatory disorders such as episcleritis, uveitis and scleritis. A critical review of available literature concerning ocular involvement in IBD, as it appears in PubMed, was performed. Episcleritis, the most common ocular extraintestinal manifestation (EIM), seems to be more associated with IBD activity when compared with other ocular EIMs. In IBD patients, anterior uveitis has an insidious onset, it is longstanding and bilateral, and not related to the intestinal disease activity. Systemic steroids or immunosuppressants may be necessary in severe ocular inflammation cases, and control of the underlying bowel disease is important to prevent recurrence. Our review revealed that ocular involvement is more prevalent in Crohn’s disease than ulcerative colitis, in active IBD, mainly in the presence of other EIMs. The ophthalmic symptoms in IBD are mainly non-specific and their relevance may not be recognized by the clinician; most ophthalmic manifestations are treatable, and resolve without sequel upon prompt treatment. A collaborative clinical care team for management of IBD that includes ophthalmologists is central for improvement of quality care for these patients, and it is also cost-effective.

Key words: Inflammatory bowel disease; Crohn’s
disease; Ulcerative colitis; Ocular complications; Eye manifestations

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Among all inflammatory bowel disease (IBD) patients, ophthalmic inflammatory disorders occur in 0.3% to 13.0% of cases, 1.6%-5.4% among the ulcerative colitis and 3.5%-6.8% among the Crohn's disease patients. Since asymptomatic inflammation of ocular tissues may occur, a routine ophthalmic follow-up is recommended in all IBD patients, mainly before changes in IBD therapy because some drugs may cause ocular adverse effects. Patients with chronic or recurrent use of systemic corticosteroids should be warned of the risk of cataracts and glaucoma. Patient awareness of possible eye involvement is important in improving understanding of their disease and health outcomes, supporting early diagnosis, which will contribute to success of the treatment.

Troncoso LL, Biancardi AL, de Moraes Jr HV, Zaltman C. Ophthalmic manifestations in patients with inflammatory bowel disease: A review. World J Gastroenterol 2017; 23(32): 5836-5848. Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i32/5836.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i32.5836

INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic, immune-mediated inflammatory gastrointestinal disease of unknown etiology[1-4]. Ulcerative colitis (UC) and Crohn's disease (CD) are the main types of IBD, with different pathophysiology and clinical features but both characterized by episodes of recurrent acute attacks[1-4].

The incidence and prevalence of IBD are highly variable, depending on the population studied[8,10-12], with an estimated global prevalence of 146.9 cases/100000 people. IBD has shown progressive increases in newly industrialized countries in Asia, South America and the Middle East, and has evolved into a global disease with a rising prevalence on every continent[13]. The highest worldwide prevalence of IBD is found in Europe, with 322 and 505 cases per 100000 people for CD and UC, respectively[3,8].

IBD is a chronic disease and requires chronic treatment. In addition, the disease has a great impact on the patient's quality of life, commonly requiring a lifetime of care. Ocular complaints may occur as an extraintestinal manifestation (EIM) of the disease or may be drug-related. These disorders can be non-specific, with no clinical relevance to the patient and/or the physician, but the risk of complications is a reality. Thus, early detection and treatment are necessary to prevent poor outcomes, as discussed in this review.

EIMs

Considering the underlying disease, the prevalence of EIM is variable and ranges between 12% to 35% in UC and 25% to 70% in CD[2,14-16]. Indeed, 6%-40% of patients with IBD have one or more EIMs that can be more debilitating than the underlying IBD itself[17]. Although the EIMs have a multifactorial pathogenesis, it is not well understood[16]. It seems to be related to an immune response against toxins and antigens that reach the bloodstream from the gastrointestinal tract, leading to an antigen-antibody complex deposition in different extraintestinal tissues[2,18-21].

Other complex mechanisms are speculated in some cases. It has been suggested that a human epithelial colonic autoantigen that is also present in the skin, bile ducts, eyes and joints triggers an antibody-mediated immune response[5,22,23] and that this is related to intestinal and extraintestinal symptoms in UC patients, but not in CD[5]. A higher incidence of HLA-B27 and HLA-DRB1*0103 positivity was demonstrated in IBD patients, and an association with extensive disease and the development of EIMs, mainly ocular and articular, has been reported[9,22,24]. However, Lanna et al[25] analyzed 96 IBD patients and found no association between HLA positivity and ocular or joint manifestations, suggesting that this finding could be justified by the great genetic heterogeneity in different global populations.

The frequency of EIMs in each type of IBD patient is controversial. Most studies show a higher frequency of EIMs in CD patients[2,20,26-28], while some report similar frequencies in both diseases[30]. EIMs may occur before an IBD diagnosis and even before recurrent intestinal episodes[2,30]. The diagnosis of IBD in those under 40 years old and of female sex are considered risk factors for the development of EIMs[2,31].

Among EIMs, musculoskeletal conditions are most common, followed by mucocutaneous and ophthalmic diseases[15,32]. However, nearly any organ, including those of dermatologic, hepatopancreatobiliary, renal, pulmonary and endocrinological systems, can be involved, leading to a significant challenge to physicians who manage IBD patients[2,15,19]. Most IBD patients with EIMs have active colonic inflammation; although, they can occur prior to, or after, the onset of colonic symptoms[20,26,33-35]. Early recognition of EIMs is important as they may characterize subclinical inflammation in IBD patients, with a possible increased risk of morbidity and mortality[10,35,36].

The aim of this review was to evaluate the current literature about ocular EIMs, emphasizing inflammatory alterations that need prompt recognition to avoid irreversible visual impairment. Reference lists from the articles selected by electronic searching were manually reviewed to identify further relevant studies. Articles in each of these multiple searches were
reviewed, and those meeting the inclusion criteria, that is, publications providing data on the incidence, prevalence, clinical features and management of ophthalmologic manifestations in IBD, were recorded.

OCULAR INVOLVEMENT

The ocular system can be affected by several immune systemic diseases, including IBD, Crohn's disease, and ulcerative colitis. The ocular involvement in IBD was first reported in 1925 by Zippi et al., who described a patient with inflammatory bowel disease who developed ocular inflammation. Since then, numerous studies have been performed to evaluate the prevalence, clinical features, and management of ophthalmologic manifestations in IBD. The prevalence of ophthalmic inflammatory disorders is variable, according to the population studied, ranging from 0.3% to 13.0% among all IBD patients. Although these findings can indicate disease activity, the association with the gastrointestinal tract-affected area is not well established. It has been demonstrated that there is a greater tendency of ocular inflammation in CD patients, mainly with colitis or ileocolitis, and UC patients with pancolitis. Zippi et al. corroborated the literature data in their retrospective study in Italian IBD patients, demonstrating a significant association between ocular EIM and CD.

The prevalence of ophthalmic inflammatory disorders is variable, according to the population studied, ranging from 0.3% to 13.0% among all IBD patients. Although these findings can indicate disease activity, the association with the gastrointestinal tract-affected area is not well established. It has been demonstrated that there is a greater tendency of ocular inflammation in CD patients, mainly with colitis or ileocolitis, and UC patients with pancolitis. Zippi et al. corroborated the literature data in their retrospective study in Italian IBD patients, demonstrating a significant association between ocular EIM and CD.

Considering the risk factors for developing ocular manifestations in IBD, an association has been reported between female sex, Hindu religion, severe gastrointestinal disease and steroid usage, but did not mention specific associations with ocular EIMs. The frequency of ocular EIM reported was similar to that among American and European populations. Manser et al. detected uveitis in 15.7% of patients with extraintestinal complications and 12.3% of all UC patients evaluated. They suggested that the introduction of early mesalazine therapy, up to 2 mo after UC diagnosis, could be a protective factor against the development of EIMs.

Cloché et al. evaluated 74 of 305 IBD patients with ophthalmologic symptoms. Only one patient presented with scleritis and they concluded that ocular symptoms were neither specific nor associated with ocular inflammation. A limitation of the study was that only symptomatic patients underwent examinations. No subclinical occurrence was investigated; thus, it is not possible to determine the actual occurrence of ophthalmic manifestations in the total sample. Even evaluating only symptomatic patients, a frequency of ocular manifestation of 1.4% was found, lower than that found in the literature. A possible explanation is based on the large number of patients receiving biological agents, about 50%, which may have treated the IBD and prevented ocular inflammation.

In an important prospective study, Felekis et al. performed complete eye examinations in 60 IBD patients, finding a high frequency of 43% of ocular EIMs. However, in some cases these findings could
Ref.	Country	Study design	Ocular exam sample	Ocular manifestation frequency	Comment
Karmiris et al. (2016)	Greece	Prospective cohort	1860 (1001 CD; 859 UC)	55 (3%) (45 CD; 10 UC): 31 Anterior uveitis (25 CD; 6 UC); 16 Episcleritis (16 CD); 7 Posterior uveitis (3 DC; 4 UC); 1 Central serous retinopathy (CD)	Ocular EIMs represented the third most frequent group of EIM in the study. All patients with episcleritis suffered from CD. There were patients with anterior and posterior uveitis.
Manser et al. (2016)	Switzerland	140 UC patients with EIM or complications	140 UC patients with EIM or complications	22 (15.7%) Uveitis	Investigated prevalence of uveitis in patients with UC.
Bandyopadhyay et al. (2015)	India	Prospective cohort	120 (62 CD; 38 UC)	16 (15%) (8 CD; 8 UC): 7 Uveitis (7 CD); 9 Episcleritis (1 CD; 9 UC)	Authors describe two cases of scleritis (2 CD) and one of endophthalmitis (2 CD) that were not accounted as ocular manifestations. Authors consider a selection bias, as most participants had severe intestinal disease.
Isene et al. (2015)	Europe (Norway, Denmark, Netherlands, Spain, Italy, Greece, and Israel)	Prospective cohort	1145 (364 CD; 781 UC)	12 (1.0%) (8 CD; 4 UC): 7 Uveitis (7 CD); 5 Episcleritis (5 CD; 5 UC)	Authors concluded that familial IBD does not predict increased risk of immune-mediated EIM, as smoking does not seem to influence the risk.
Zippi et al. (2014)	Italy	Retrospective	811 (216 CD; 595 UC)	26 Uveitis (3.2%) (16 CD; 10 UC)	It is not informed if other ocular manifestations have been investigated in addition to uveitis.
Cloché et al. (2013)	France	74 IBD (no underlying disease specification)	74 IBD (no underlying disease specification)	1 (1.4%): Scleritis	A large number of patients were receiving biological agents, approximately 50%, that may treat IBD and prevent ocular inflammation. Authors do not define the underlying IBD of the scleritis patient.
Vavricka et al. (2011)	Switzerland	Prospective Cohort	950 (580 CD; 370 UC)	50 (5.3%) (36 CD; 14 UC): 50 Uveitis	Only uveitis was considered ocular EIM, and it was associated to active CD, but no relation was found to UC activity.
Cury et al. (2010)	Brazil	88 (48 CD; 40 UC)	88 (48 CD; 40 UC)	7 (6.25%) (no underlying disease specification): 1 Conjunctivitis; 3 Blepharitis; 1 Episcleritis; 2 Uveitis; 2 Cataracts	The study used a control group of 24. Considered also unspecific ocular abnormalities, as cataract and blepharitis.
Felekis et al. (2009)	Greece	Prospective cohort	60 (23 CD; 37 UC)	26 (45%) (12 CD; 14 UC): 13 Dry eye; 8 Glucocorticoid-induced cataract; 3 Iridocyclitis; 3 Retinal pigment epithelium disturbances; 2 Episcleritis; 2 Serous retinal detachment; 1 Conjunctivitis; 1 Choroiditis; 1 Vasculitis; 1 Optic neuritis	The study used a control group of 27. Authors conclude that ocular manifestations occur in UC patients as frequently as in CD patients; however, the results of the statistical analysis are not mentioned for any of the study variables.
Lanna et al. (2008)	Brazil	96 (59 CD; 37 UC)	96 (59 CD; 37 UC)	6 (6.2%) (4 CD; 2 UC; 4 Uveitis (2 bilateral; 2 CD; 2 UC); 1 Scleritis (CD); 1 Episcleritis (CD)	It was not possible to analyze the association between the HLA-B27 and ocular abnormalities because only 3 of the 6 patients had been tested for HLA-B27, all of them were negative for this antigen.
Yilmaz et al. (2007)	Turkey	Prospective cohort	116 (20 CD; 96 UC)	28 (24.13%) (12 CD; 22 UC): 10 Conjunctivitis; 8 Blepharitis; 6 Uveitis; 6 Cataracts; 4 Episcleritis	Study considered unspecific ocular abnormalities, as cataract and blepharitis, which are very frequent in the general population.
have been coincidental and not related to IBD, such as dry eye and blepharitis. According to the methodology, individuals with ocular symptoms were excluded from the control group, and half of the sample of IBD patients was selected during hospitalization (severe disease activity), suggesting selection bias. Even so, the article presents some ocular findings that are infrequent in the literature, because the subjects underwent complementary fundus examinations with fluorescein angiography, increasing the importance of the study.

Lanna et al.\(^{(25)}\) performed eye examinations in 96 of 130 IBD patients. Six patients (four with CD, two with UC) presented ocular manifestations. Uveitis was diagnosed in four patients, anterior nodular scleritis in a woman with CD, and episcleritis in a man with CD with recurrent peripheral arthritis and psoriasis. One of the two men with anterior uveitis also had ankylosing spondylitis.

Yilmaz et al.\(^{(25)}\) and Cury et al.\(^{(60)}\) considered all ocular findings as EIMs, including conjunctivitis, blepharitis, and cataracts. Some entities have a high prevalence in the general population, regardless of the presence of intestinal disease, what can be considered a confounding factor in the analysis. It is difficult to establish any relationship between these occurrences and IBD because they may be related to other factors, such as age and other underlying factors.

Cury et al.\(^{(60)}\) described a correlation between dry eye and the use of 5-aminosalicylates in IBD patients. Apparently, dry eye disease may be associated with IBD and also may be related to its treatment. Blepharitis was less common in IBD patients than controls (3% vs 33%)\(^{(60)}\), suggesting a protective action of the drug used in IBD treatment.

Episcleritis

Episcleritis is a benign inflammation of the episclera, the thin blood-rich layer of tissue that covers the sclera. It is the most common ocular manifestation and causes moderate discomfort, acute redness in one or both eyes\(^{(34)}\), and diffuse or localized episcleral edema, particularly occurring the episcleral vessels\(^{(66)}\). Its classification as nodular or diffuse does not affect the prognosis\(^{(62-64)}\).

Episcleritis seems to be more associated with IBD activity when compared with other ocular EIMs. It appears during flares of IBD, and its resolution occurs with effective treatment of the intestinal disease\(^{(20,32,41,46,54)}\). It is usually recurrent and can spread to the sclera, causing scleritis\(^{(40,43)}\). To an untrained observer and without a slit lamp examination, it is not easy to distinguish the two entities\(^{(65)}\). Differentiation from conjunctivitis, which is a frequent condition in the general population and may occur coincidently in patients with IBD, may also be difficult\(^{(43,66,67)}\).

The differential diagnosis between episcleritis, uveitis, and scleritis is based on the absence of moderate-to-severe eye pain, photophobia, blurring, and low vision in the former\(^{(38)}\). Episcleral injection blanches with topical application of phenylephrine and softens with palpation\(^{(66)}\). As a benign condition, specific treatment is not always necessary; however, cool compresses, lubricant eye drops, topical non-steroidal anti-inflammatory drugs, and topical corticosteroids are occasionally required\(^{(20,33,34,54,66)}\). Figure 1 illustrates diffuse episcleritis.

Scleritis

Scleritis is an inflammation of the sclera, the opaque and protective outer layer of the eye, that causes...
ocular pain, which radiates to the face and scalp. Characteristically, it worsens at night, and is associated with ocular hyperemia and visual loss. It can present with a deep scleral injection that does not blanch with phenylephrine. Scleritis and intermediate or posterior uveitis are much rarer than episcleritis and anterior uveitis in IBD, occurring in less than 1% of cases, but should be evaluated with caution because, if left untreated, it may progress to permanent visual loss. Scleritis classification is important because it is related to severity and prognosis. Watson and Hayreh classified scleritis as anterior (diffuse, nodular, or necrotizing, with or without inflammation) and posterior. Involvement of the anterior part of the sclera is more common and posterior scleritis is not associated with ocular hyperemia. A modified classification of scleritis was proposed by Watson et al. in accordance with location (anterior or posterior), and clinical presentation (diffuse, nodular, or necrotizing). The necrotizing anterior scleritis was classified according to its etiology, as vaso-occlusive, granulomatous, surgically induced, and scleromalacia perforans. Figure 3 illustrates the different types of scleritis.

Systemic treatment is necessary in all cases, usually with oral non-steroidal anti-inflammatory drugs but they should be used with great caution in active IBD. Systemic steroids or immunosuppressants may be necessary in severe cases, and control of the underlying bowel disease is important to prevent recurrence. To avoid side effects of long-standing corticosteroids use, immunosuppressive therapy is required, which will be discussed regarding uveitis treatment.

Uveitis
Uveitis is the third leading cause of irreversible blindness in developed countries. It is defined as inflammation of the uveal tract, the middle layer of the eye, which includes the iris, ciliary body, and choroid. It is classified according to the primary site of inflammation as anterior, intermediate, posterior, or panuveitis. Uveitis is characterized by vascular dilation, leading to conjunctival injection, aqueous flare related to increased vascular permeability, and aqueous and vitreous inflammatory cells. Uveitis can be idiopathic, drug-related, or systemic disease-related; in approximately 50% of cases, an underlying disease can be identified. Anterior uveitis is the most common pattern, related to seronegative spondyloarthropathies. In CD patients, anterior uveitis has an insidious onset, it is longstanding and bilateral, and not related to the intestinal disease activity. In contrast, Vavricka et al., after prospectively evaluating a large sample of IBD patients, demonstrated an association between uveitis and CD activity, but not with UC. A clinical overlap of anterior uveitis, dermatologic manifestations (erythema nodosum), and musculoskeletal symptoms (arthritis and sacroilitis) in CD was reported. It was proposed that a common antigen (an isoform of tropomyosin) in the non-pigmented ciliary epithelium of the eye, the keratinoocytes, chondrocytes and the gut triggered an autoimmune reaction. Thus, in IBD patients with eye complaints and others EIMs, the presence of uveitis

Table 2 Uveitis classification

SUN classification	Primary site of inflammation	Manifestation
Anterior uveitis	Anterior chamber	Iritis, iridocyclitis, anterior cyclitis
Intermediate uveitis	Vitreous	Pars planitis, posterior cyclitis, hyalitis
Posterior uveitis	Retina or choroid	Focal, multifocal or diffuse choroiditis, chorioretinitis, retinochoroiditis, retinitis, neuroretinitis
Panuveitis	Anterior chamber, vitreous, and retina or choroid	

Adapted from Standardization of Uveitis Nomenclature Working Group. SUN: Standardization of Uveitis Nomenclature Working Group.
must be considered34,68. Because uveitis has a variable chronicity and severity, it may be complicated, according to its primary site of inflammation, by cataracts, glaucoma, band keratopathy, hyphema, vitreous hemorrhage, cystoid macular edema, retinal detachment, retinal ischemia, optic atrophy, chronic eye pain and blindness69.

Treatment

Prompt treatment can avoid complications and visual impairment38,40,76. Treatment of anterior uveitis is based on topical steroids, to reduce inflammation, and topical cycloplegics, to prevent ciliary body and pupillary spasms related to ocular pain. Also, cycloplegics prevent posterior synechiae because they dilate the pupil and stabilize the blood-aqueous barrier, avoiding protein leakage (flare)33,34,68. According to the gravity of uveitis, periocular corticosteroid injections or systemic corticosteroids may also be necessary37,53. Uveitis with a chronic course requires immunosuppressive therapy to spare the prolonged use of corticosteroids and their side effects38,53. However, the choice of immunosuppressive therapy requires a multidisciplinary decision, especially if there

Figure 2 Classification of scleritis64.

Figure 3 Clinical presentation of scleritis. A: Anterior diffuse scleritis (personal archive); B: Anterior nodular scleritis (personal archive). The differential diagnosis is based on the presence of a sclera nodule (arrow); C: Anterior necrotizing scleritis, showing the avascular area of necrosis (arrow) (personal archive); D: Anterior necrotizing surgically-induced scleritis, induced by scleral biopsy (courtesy of Prof. Andre Curi).
is another associated EIM26. Cyclosporine, a T-cell inhibitor24,32,41, thiopurines (antimetabolites)33,41,66,78, methotrexate33,41,79, sulfasalazine (5-ASA derivate)68,80, and biological anti-tumor necrosis factor (TNF) agents (mainly infliximab and adalimumab)33,81 are effective in treating both the IBD and the inflammatory IBD-related ocular impairment6,34,44,53,82-85. Although vedolizumab and certolizumab pegol have been introduced more recently in the therapy of CD8,82,83, their efficacy in ocular inflammation is unknown. Despite the fact that the anti-metabolite mycophenolate can be used to treat uveitis6,78,86,87, it is not indicated as an IBD treatment81.

Patient awareness of EIMs is important in improving patient understanding of their disease and health outcomes88. It also increases the likelihood of early diagnosis, contributing to success of the applied treatment.

Other ophthalmic manifestations
Other ophthalmic manifestations have been described in relation to IBD. Table 3 presents observational case reports, interventional case reports, and case series describing other ocular disorders in IBD patients. Some of these manifestations can be debilitating if not recognized and treated at an early stage.

Ocular complications
Ocular impairment may be related to IBD, drug therapy or to other factors, such as age, genetics and other concomitant diseases34,38. Cataracts and open-angle glaucoma are complications of long-standing ocular inflammation or the prolonged use of corticosteroids34,37,41,43. Some ocular manifestations have been related to drugs used in the treatment of IBD, such as corneal immune infiltrates121 and diffuse retinopathy122 related to adalimumab, anterior optic neuropathy123 and retinal vein thrombosis124,125 developing after infliximab, and cyclosporine, used in CD, causing rare optic neuropathy30. Levels of methotrexate in tears approximate serum levels after short-term use, which may lead to irritation of the conjunctiva, cornea, and eyelids67.

Uveitis has been associated with the use of biological anti-TNF drugs. It has been described in association with etanercept, infliximab, adalimumab, and rifabutin72,73. Inflammation declines with drug withdrawal, which is recommended, and the use of topical corticosteroids may be necessary to complete the remission of the inflammatory condition38,72. Furthermore, neurological side effects from drug therapy can cause visual impairment without directly affecting the eyes126.

Katsanos et al48 performed a review of orbital and optic nerve involvement in IBD. It was found that optic nerve impairment can occur as a result of damage of the optic nerve tissue per se, as a result of inflammation and/or ischemia, due to intracranial hypertension, and secondary to anti-TNF agents. In some cases, it was difficult to determine the exact cause of ocular involvement in IBD.

After bowel resection in the IBD context, short bowel and malabsorption syndromes can lead to vitamin A deficiency, which may result in night blindness (nyctalopia) and keratoconjunctivitis sicca127,128. Vomiting and unilateral painful red eye lead to a suspicion of acute angle closure glaucoma129, a threatening ophthalmological urgency that has not been described in IBD but which may confound the clinician.

Finally, an association between the use of latanoprost eye drops for glaucoma treatment and IBD relapse has been reported129. It was concluded that the systemic absorption of the prostaglandin analog could have caused an increase in intestinal inflammation in IBD patients.

CONCLUSION
Physicians must remember that ocular involvement is more prevalent in CD and in active IBD, primarily in the presence of others EIMs. The ophthalmic symptoms in IBD are mainly non-specific and their relevance may not be recognized by the clinician. Moreover,
asymptomatic inflammation of ocular tissues may occur, so a routine ophthalmic follow-up is recommended in all IBD patients (with or without ocular symptoms), mainly before changes in IBD therapy, because some drugs may cause ocular adverse effects. It is important to remember that most ophthalmic manifestations are treatable without sequel if recognized promptly.

Ophthalmologists must consider that ophthalmic manifestations of IBD may precede the systemic disease, and systematic anamnesis must be done in chronic uveitis of unknown etiology. Patients with chronic or recurrent use of systemic corticosteroids should be warned of the risk of cataracts and glaucoma. A collaborative clinical care team for management of IBD that includes ophthalmologists is central for improvement of the quality care for these patients, and is also cost-effective.

REFERENCES

1 Ye Y, Pang Z, Chen W, Ju S, Zhou C. The epidemiology and risk factors of inflammatory bowel disease. Int J Clin Exp Med 2015; 8: 22529-22542 [PMID: 26885239 DOI: 10.1016/S0140-6736(12)60150-0]

2 Lekatos L, Pandur T, David G, Balogh Z, Kuronya P, Tollas A, Lakatos PL. Association of extraintestinal manifestations of inflammatory bowel disease in a province of western Hungary with disease phenotype: results of a 25-year follow-up study. World J Gastroenterol 2003; 9: 2300-2307 [PMID: 14562397 DOI: 10.3784/wjg.v9.i10.2300]

3 Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet 2017; 389: 1756-1770 [PMID: 27091467 DOI: 10.1016/S0140-6736(16)32126-2]

4 Silva FA, Rodrigues BL, Ayrizono ML, Leal RF. The Immunological Basis of Inflammatory Bowel Disease. Gastroenterol Res Pract 2016; 2016: 2997247 [PMID: 28070181 DOI: 10.1155/2016/2997247]

5 de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016; 13: 13-27 [PMID: 26627550 DOI: 10.1038/nragastro.2015.186]

6 Yamamoto-Furusho JK, Bosques-Padilla F, de-Paula J, Gaihano MT, Ibañez P, Juliao F, Kotze PG, Rocha JL, Steinwarz F, Veitia G, Zaltman C. Diagnosis and treatment of inflammatory bowel disease: First Latin American Consensus of the Pan American Crohn’s and Colitis Organisation. Rev Gastroenterol Mex 2017; 82: 46-84 [PMID: 27979414 DOI: 10.1016/j.rgmx.2016.07.003]

7 Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol 2017; 241: 146-158 [PMID: 27785786 DOI: 10.1002/path.4817]

8 Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017; 389: 1741-1755 [PMID: 27914655 DOI: 10.1016/S0140-6736(16)31711-1]

9 Ordás I, Eckmann L, Talaminí M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet 2012; 380: 1606-1619 [PMID: 22914296 DOI: 10.1016/S0140-6736(12)60150-0]

10 Malik TA. Inflammatory Bowel Disease: Historical Perspective, Epidemiology, and Risk Factors. Surg Clin North Am 2015; 95: 1105-1122, v [PMID: 26596917 DOI: 10.1016/j.suc.2015.07.006]

11 Malekzadeh MM, Vahedi H, Gohari K, Mehdipour P, Sepanlou SG, Ebrahimi Daryani N, Zali MR, Mansour-Ghanaei F, Safaripour A, Aghazadeh R, Vossoughinia H, Fakheri H, Somi MH, Maleki I, Hoseini V, Ghadir MR, Daghaghizadeh H, Adibi P, Tavakoli H, Taghavi A, Zahedi MJ, Amiriani T, Tabib M, Alipour Z, Nobakht H, Yazhandob A, Sadreddini M, Bakhshipour A, Khorasavi A, Khorasvi P, Nasser-Moghadam S, Merat S, Sotoudehmehran R, Barazande F, Arab P, Baniasadi N, Pournaghi SJ, Parsaeian M, Farzadfar F, Malekzadeh R. Emerging Epidemic of Inflammatory Bowel Disease in a Middle Income Country: A Nation-wide Study from Iran. Arch Iran Med 2016; 19: 2-15 [PMID: 26702742]

12 Prideaux L, Kamn MA, De Cruz PP, Chan FK, Ng SC. Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol
Hepatol 2012; 27: 1266-1280 [PMID: 22497584 DOI: 10.10011/j.1440-1746.2012.07150.x]

13 Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015; 12: 720-727 [PMID: 26323879 DOI: 10.1038/nrgastro.2015.150]

14 Peyrin-Biroulet L, Van Assche G, Gómez-Ulloa D, García-Álvarez L, Lara N, Black CM, Kachroo S. Systematic Review of Tumor Necrosis Factor Antagonists in Extraintestinal Manifestations in Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2017; 15: 25-36.e27 [PMID: 27392760 DOI: 10.1016/j.cgh.2016.06.025]

15 Ruiz Serrano J, Marin Garcia D, Guerrero Leon MA, Vallejo Herrera MJ, Villar Jimenez J, Cárdenas Lafuente F, Garcia Ordóñez MA. [Palpebral ptosis, a rare ocular manifestation of Crohn's disease]. Arch Soc Esp Oftalmol 2013; 88: 323-336 [PMID: 23886366 DOI: 10.1590/S0041-001X2011.09.024]

16 Goulet P, Dozois RR, Kelly KA, Istrup DM, Phillips SF. Characteristics and evolution of extraintestinal associations with ulcerative colitis after proctocolectomy. Dig Surg 2001; 18: 51-55 [PMID: 11244260 DOI: 10.1111/1527-0241.2001.03756.x]

17 Bernstein CN, Blanchard JR, Raswhorpe P, Yu N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol 2001; 96: 1116-1122 [PMID: 11316157 DOI: 10.1111/j.1572-0241.2001.03756.x]

18 Karlinger K, Györke T, Makó E, Mester A, Tarján Z. The epidemiology and the pathogenesis of inflammatory bowel disease. Eur J Radiol 2000; 35: 154-167 [PMID: 11000558 DOI: 10.1016/S0720-048X(00)00238-2]

19 Das KM. Relationship of extraintestinal involvements in inflammatory bowel disease: new insights into autoimmune pathogenesis. Dig Dis Sci 1999; 44: 1-13 [PMID: 9952216 DOI: 10.1023/A:1020629258223]

20 Evans PE, Pardi DS. Extraintestinal manifestations of inflammatory bowel disease: focus on the musculoskeletal, dermatologic, and ocular manifestations. MedGenMed 2007; 9: 55 [PMID: 17456565]

21 Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417-429 [PMID: 12167685 DOI: 10.1056/NEJMra200831]

22 Vavricka SR, Brun L, Ballabeni P, Pittet V, Prinz Vavricka BM, Zimpfer M, Juillerat P, Karlsen TH, Koutroubakis I, Lakatos PL, Orchard T, Papay P, Raine T, Reinschlag M, Thaci D, Tilg H, Carbonell F, European Colón’s and Collits Organisation. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10: 239-254 [PMID: 26614685 DOI: 10.1016/j.cccj.2013.11.039]

23 Brazilian Study Group of Inflammatory Bowel Diseases. Consensus guidelines for the management of inflammatory bowel disease. Arq Gastroenterol 2010; 47: 313-325 [PMID: 21440096 DOI: 10.1590/S0041-00042010000300019]

24 Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM, Burisch J, De Vos M, De Vries AM, Dick AD, Juillerat P, Karhsen TH, Koutroubakis I, Lakatos PL, Orchard T, Papay P, Raine T, Reinschlag M, Thaci D, Tilg H, Carbonell F, European Colón’s and Collits Organisation. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10: 239-254 [PMID: 26614685 DOI: 10.1016/j.cccj.2013.11.039]

25 Levine JS, Burakoff R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol (NY) 2011; 7: 235-241 [PMID: 21857821]

26 Yilmaz S, Aydemir E, Maden A, Unsal B. The prevalence of ocular involvement in patients with inflammatory bowel disease. Int J Color Dis 2007; 22: 1027-1030 [PMID: 17262200 DOI: 10.1016/j.annalsofclinbio.2006.07.005]

27 Verbraak FD, Schreinemachers MC, Tiller A, van Deventer SJ, de Smet MD. Prevalence of subclinical anterior uveitis in adult patients with inflammatory bowel disease. Br J Ophthalmol 2001; 85: 219-221 [PMID: 11159490 DOI: 10.1136/bjo.85.2.219]

28 You C, Sahawneh HF, Ma L, Kubaishi B, Schmidt A, Foster CS. A review and update on orphan drugs for the treatment of noninfectious uveitis. Clin Ophthalmol 2017; 11: 257-265 [PMID: 28203051 DOI: 10.2147/OPHTHL.S121734]

29 Schwartzman S. Advancements in the management of uveitis. Best Pract Res Clin Rheumatol 2016; 30: 304-315 [PMID: 27886802 DOI: 10.1016/j.berh.2016.07.005]

30 Thomas AS, Lin P. Ocular manifestations of inflammatory bowel disease. Curr Opin Ophthalmol 2016; 27: 552-560 [PMID: 27585211 DOI: 10.1097/ICO.0000000000000310]

31 Generali C, Cantarini L, Selm C. Ocular Involvement in Systemic Autoimmune Diseases. Clin Rev Allergy Immunol 2015; 49: 263-270 [PMID: 26494481 DOI: 10.1007/s12118-015-8518-3]

32 Patil SA, Cross RK. Update in the management of extraintestinal manifestations of inflammatory bowel disease. Curr Gastroenterol Rep 2013; 15: 314 [PMID: 23371321 DOI: 10.1007/s11894-013-0314-8]

33 Crohn BB. Ocular lesions complicating ulcerative colitis. Am J Med Sci 1925; 169: 260-267

34 Danese S, Semeraro S, Papa A, Roberto I, Scaldaferri F, Fedeli G, Gasbarrini G, Gasbarrini A. Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol 2005; 11: 7227-7236 [PMID: 16437620 DOI: 10.3748/wjg.v11.i46.7227]

35 Ghanchi FD, Rembacken BJ. Inflammatory bowel disease and the eye. Surv Ophthalmol 2003; 48: 663-676 [PMID: 14609712 DOI: 10.1016/S0039-6257(03)12000-3]

36 Nivelos F, Cardoso A, Moro F. Immune-related manifestations of inflammatory bowel disease. A prospective study of 792 patients. J Clin Gastroenterol 1996; 23: 29-34 [PMID: 8835896 DOI: 10.1097/00004836-199607000-00009]

37 Salmon JF, Wright JP, Murray AD. Ocular involvement in Crohn’s disease. Ophthalmology 1991; 98: 480-484 [PMID: 2052301 DOI: 10.1016/S0161-6420(91)32265-1]

38 Ricart E, Panacccione R, Tofus EV Jr, Tremaine WJ, Harmse WS, Zinsmeister AR, Sandborn WJ. Autoimmune disorders and
extraintestinal manifestations in first-degree familial and sporadic inflammatory bowel disease: a case-control study. Inflamm Bowel Dis 2009; 15: 29-34 [PMID: 18626979 DOI: 10.1002/ibd.20584]

62 Christodoulou DK, Katsanos KH, Kitsanou M, Stergiopoulos C, Hatzis J, Tsiaras EV. Frequency of extraintestinal manifestations in patients with inflammatory bowel disease in Northwestern Greece and review of the literature. Dig Liver Dis 2002; 34: 781-786 [PMID: 12546513 DOI: 10.1016/S1590-8658(02)00071-8]

63 Watson PG, Hayreh SS. Scleritis and episcleritis. Br J Ophthalmol 1976; 60: 163-191 [PMID: 1268179 DOI: 10.1136/bjo.60.3.163.163]

64 Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res 2004; 78: 609-623 [PMID: 15106941 DOI: 10.1016/S0014-4835(03)00212-4]

65 Luftas EV Jr. Management of extraintestinal manifestations and other complications of inflammatory bowel disease. Curr Gastroenterol Rep 2004; 6: 506-513 [PMID: 15527681 DOI: 10.1007/s11894-004-0073-7]

66 Mady R, Grover W, Butrus S. Ocular complications of inflammatory bowel disease. ScientificWorldJournal 2015; 2015: 438402 [PMID: 25879056 DOI: 10.1155/2015/438402]

67 Mintz R, Feller ER, Bahr RL, Shah SA. Ocular manifestations of inflammatory bowel disease. Inflamm Bowel Dis 2004; 10: 135-139 [PMID: 15168814 DOI: 10.1007/0054725200403000-00012]

68 Williams H, Walker D, Orchard TR. Extraintestinal manifestations of inflammatory bowel disease. Curr Gastroenterol Rep 2008; 10: 597-605 [PMID: 19066617 DOI: 10.1007/s10384-008-0108-6]

69 Pasadhika S, Rosenbaum JT. Update on the use of systemic biologic agents in the treatment of noninfectious uveitis. Biologics 2014; 8: 87-91 [PMID: 24600203]

70 Jabs DA, Nussenblatt RB, Rosenbaum JT; Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 2005; 140: 509-516 [PMID: 16196117 DOI: 10.1016/j.ajo.2005.03.057]

71 Mochizuki M, Sugita S, Kamei K, Takase H. A new era of uveitis: impact of polymerase chain reaction in intraocular inflammatory diseases. Jpn J Ophthalmol 2017; 61: 1-20 [PMID: 27787641 DOI: 10.1007/s10384-016-0474-9]

72 Haider D, Dabhavhi-Scala FE, Strouthidis NG, Davies N. Acute panuveitis with hypopyon in Crohn’s disease secondary to medical therapy: a case report. J Med Case Rep 2007; 1: 42 [PMID: 17610725 DOI: 10.1186/1752-7431-1-42]

73 Awotesu O, Missotten T, Pitcher MC, Lynn WA, Lightman S. Uveitis in a patient receiving rifabutin for Crohn’s disease. J R Soc Med 2004; 97: 440-441 [PMID: 15340029 DOI: 10.1258/jrsm.97.9.440]

74 Birbaum AD, Little DM, Tessler HH, Goldstein DA. Etiologies of chronic anterior uveitis at a tertiary referral center over 35 years. Ocul Immunol Inflamm 2011; 19: 29-25 [PMID: 21054197 DOI: 10.1080/09279398.2010.519852]

75 Colia R, Corrado A, Cantatore FP. Rheumatologic and extra-intestinal manifestations of inflammatory bowel disease. Ann Med 2016; 48: 577-585 [PMID: 27351006 DOI: 10.1080/07853890.2016.1195011]

76 Paroli MP, Spinuichi G, Bruscolini A, La Cava M, Abicca I. Uveitis preceding Crohn’s disease by 8 years. Int Ophthalmol 2011; 31: 413-415 [PMID: 22002419 DOI: 10.1007/s10792-011-9470-4]

77 Taleban S, Li D, Targan SR, Ippoliti A, Brant SR, Cho JH, Duer RH, Rious JD, Silverberg MS, Vasiliauskas EA, Rotter JI, Haritunians T, Shihi DQ, Dubinsky M, Melmed GY, McGovern DP. Ocular Manifestations in Inflammatory Bowel Disease Are Associated with Other Extra-intestinal Manifestations, Gender, and Genes Implicated in Other Immune-related Traits. J Crohns Colitis 2016; 10: 43-49 [PMID: 26449790 DOI: 10.1093/eco-jcc/jgy078]

78 Lau CH, Comer M, Lightman S. Long-term efficacy of mycophenolate mofetil in the control of severe intraocular inflammation. Clin Exp Ophthalmol 2003; 31: 487-491 [PMID: 14461155 DOI: 10.1111/j.1442-9071.2003.00704.x]

79 Kaplan-Messas A, Barkana Y, Avni I, Neumann R. Methotrexate as a first-line corticosteroid sparing therapy in a cohort of uveitis and scleritis. Ocul Immunol Inflamm 2003; 11: 131-139 [PMID: 12795683]
DD, Sarraf D, Fawzi AA. New associations of classic acute macular neuroretinopathy. Br J Ophthalmol 2016; 100: 389-394 [PMID: 26294104 DOI: 10.1136/bjophthalmol-2015-306845]

McClelland C, Zaveri M, Walsh R, Fleisher J, Galetta S. Optic perineuritis as the presenting feature of Crohn disease. J Neuroophthalmol 2012; 32: 345-347 [PMID: 22777510 DOI: 10.1097/WNO.0b013e31825e8e2e]

Felekis T, Katsanos KH, Zois CD, Varholomatatos G, Kolaitis N, Asproudis I, Tsianos EV. Anterior ischemic optic neuropathy in a patient with Crohn’s disease and aberrant MTHFR and GPIIIa gene variants. J Crohns Colitis 2010; 4: 471-474 [PMID: 21122545 DOI: 10.1016/j.crohns.2010.02.008]

Mason JO 3rd. Bilateral phakic cystoid macular edema associated with Crohn’s disease. South Med J 2002; 95: 1079-1080 [PMID: 12356117]

De Franceschi P, Costagliola C, Soreca E, Di Meco A, Giaconia A, Romano A. Pattern dystrophy of the retinal pigment epithelium in Crohn’s disease. A case report. Ophthalmologica 2000; 214: 441-446 [PMID: 11054008 DOI: 10.1159/000027541]

Villain MA, Pageaux GP, Veyrac M, Arnaud B, Harris A, Greenfield DS. Effect of acetazolamide on ocular hemodynamics in pseudotumor cerebri associated with inflammatory bowel disease. Am J Ophthalmol 2002; 134: 778-780 [PMID: 12429264 DOI: 10.1016/S0002-9394(02)01650-1]

Matet A, Daruich A, Beydoun T, Cosnes J, Bourges JL. Systemic adalimumab induces peripheral corneal infiltrates: a case report. BMC Ophthalmol 2015; 15: 57 [PMID: 26044064 DOI: 10.1186/s12886-015-0047-6]

Marticorena-Alvarez P, Chaparro M, Perez-Casas A, Muriel-Herrero A, Gisbert JP. Probable diffuse retinopathy caused by adalimumab in a patient with Crohn’s disease. J Crohns Colitis 2012; 6: 950-953 [PMID: 22537636 DOI: 10.1016/j.crohns.2012.03.015]

Chan JW, Castellanos A. Infliximab and anterior optic neuropathy: case report and review of the literature. Graefes Arch Clin Exp Ophthalmol 2010; 248: 283-287 [PMID: 19916016 DOI: 10.1007/s00417-009-1227-y]

Puli SR, Benage DD. Retinal vein thrombosis after infliximab (Remicade) treatment for Crohn’s disease. Am J Gastroenterol 2003; 98: 939-940 [PMID: 12738486 DOI: 10.1111/j.1572-0241.2003.07368.x]

Veerappan SG, Kennedy M, O’Morain CA, Ryan BM. Retinal vein thrombosis following infliximab treatment for severe left-sided ulcerative colitis. Eur J Gastroenterol Hepatol 2008; 20: 588-589 [PMID: 18467922 DOI: 10.1097/MEG.0b013e3282f76eac]

Cherian A, Soumya CV, Iype T, Mathew M, Sandeep P, Thadam JK, Chithra P. Posterior reversible encephalopathy syndrome with PLEDs­plus due to mesalamine. J Neurosci Rural Pract 2014; 5: 72-75 [PMID: 24741259 DOI: 10.4103/0976-3147.127882]

da Rocha Lima B, Pichi F, Lowder CY. Night blindness and Crohn’s disease. J Neuroophthalmol 2002; 134: 778-780 [PMID: 12429264 DOI: 10.1016/S0002-9394(02)01650-1]

Abegunde AT, Muhammad BH, Ali T. Preventive health measures in inflammatory bowel disease. World J Gastroenterol 2016; 22: 7625-7644 [PMID: 27678347 DOI: 10.3748/wjg.v22.i34.7625]

Paul S, Wand M, Emerick GT, Richter JM. The role of latanoprost in an inflammatory bowel disease flare. Gastroenterol Rep (Oxf) 2014; 2: 232-234 [PMID: 25064174 DOI: 10.1093/gastro/gou044]

P- Reviewer: Christodoulou DK, Pan WS, Sanjabi AD, Svivandzadeh GR
S- Editor: Ma YJ L- Editor: Filipodia E- Editor: Xu XR
