Computing coherence vectors and correlation matrices, with application to quantum discord quantification

Jonas Maziero1,2,*

1Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, 97105-900, Santa Maria, RS, Brazil
2Instituto de Física, Facultad de Ingeniería, Universidad de la República, J. Herrera y Reissig 565, 11300, Montevideo, Uruguay

ABSTRACT

Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demonstrate in this article, some algebraic manipulations before programming can reduce considerably their computational complexity. Besides, we provide Fortran code to generate generalized Gell Mann matrices and to compute the optimized and unoptimized versions of the associated Bloch’s vectors and correlation matrix, in the case of bipartite quantum systems. As a code test and application example, we consider the calculation of Hilbert-Schmidt quantum discords.

Keywords: quantum information, coherence vector, correlation matrix, Gell Mann matrices, quantum discord

I. INTRODUCTION

Correlation functions are fundamental objects for statistical analysis, and are thus ubiquitous in most kinds of scientific inquiries and their applications [1, 2]. In physics, correlation functions have an important role for research in areas such as quantum optics and open systems [3, 4], phase transitions and condensed matter physics [5, 6], and quantum field theory and nuclear and particle physics [7]. Another area in which correlation functions are omnipresent is quantum information science (QIS), an interdisciplinary field that extends the applicabilities of the classical theories of information, computation, and computational complexity [8–10].

Investigations about the quantum correlations in physical systems have been one of the main catalyzers for developments in QIS [11–15]. There are several guises of quantum correlations, and quantum discord stands among the most promising quantum resources for fueling the quantum advantage [16–26]. When computing or witnessing quantum discord, or other kinds of correlation or quantumness quantifiers, we are frequently faced with the need for calculating coherence vectors and correlation matrices [27–41]. And it is the main aim of this article to provide formulas for these functions that are amenable for more efficient numerical calculations when compared with the direct implementation of their definitions.

In order to define coherence vectors and correlation matrices, let us consider a composite bipartite system with Hilbert space $\mathcal{H}_{ab} = \mathcal{H}_a \otimes \mathcal{H}_b$. Hereafter the corresponding dimensions are denoted by $d_s = \dim \mathcal{H}_s$ for $s = ab, a, b$. In addition, let Γ^s_j, with

\[\text{Tr}(\Gamma^s_j) = 0 \quad \text{and} \quad \text{Tr}(\Gamma^s_j \Gamma^s_k) = 2\delta_{jk}, \]

be a basis for the special unitary group $SU(d_s)$. Any density operator describing the state of the system \mathcal{H}_{ab} can be written in the local basis $\Gamma^s_j \otimes \Gamma^s_k$ as follows:

\[\rho = \frac{1}{d_{ab}} \left(\mathbb{I}_a \otimes \mathbb{I}_b + \sum_{j=1}^{d_a^2} a_j \Gamma^a_j \otimes \mathbb{I}_b + \sum_{k=1}^{d_b^2} b_k \Gamma^b_k \right. \]

\[\left. + \sum_{j=1}^{d_a^2} \sum_{k=1}^{d_b^2} c_{j,k} \Gamma^a_j \otimes \Gamma^b_k \right), \]

(2)

where

\[j = 1, \ldots, d_a^2 - 1 \quad \text{and} \quad k = 1, \ldots, d_b^2 - 1, \]

(3)

and \mathbb{I}_s is the identity operator in \mathcal{H}_s. One can readily verify that the components of the coherence (or Bloch’s) vectors $a = (a_1, \ldots, a_{d_a^2-1})$ and $b = (b_1, \ldots, b_{d_b^2-1})$ and of the correlation matrix $C = (c_{j,k})$ are given by:

\[a_j = 2^{-1} d_s \text{Tr}(\Gamma^a_j \otimes \mathbb{I}_b \rho), \]

(4)

\[b_k = 2^{-1} d_s \text{Tr}(\mathbb{I}_a \otimes \Gamma^b_k \rho), \]

(5)

\[c_{j,k} = 2^{-2} d_{ab} \text{Tr}(\Gamma^a_j \otimes \Gamma^b_k \rho). \]

(6)

It is worthwhile mentioning that the mean value of any observable in \mathcal{H}_s, for $s = a, b, ab$, can be obtained using these quantities.

In https://github.com/jonasmaziero/LibForQ.git, we provide Fortran code to compute the coherence vectors, correlation matrices, and quantum discord quantifiers we deal with here. Besides these functions, there are other tools therein that may be of interest to the reader. The instructions on how to use the software are provided in the readme file. Related to the content of this section, the subroutine `bloch_vector_gellmann_unopt(d_s, \rho_s, s)` returns the coherence vectors a or b and the subroutine `corrmat_gellmann_unopt(d_s, d_b, \rho, C)` computes the correlation matrix C. Now, let us notice

*Electronic address: jonas.maziero@ufsm.br
that if calculated directly from the equations above, for $d_a, d_b \gg 1$, the computational complexity (CC) to obtain the coherence vectors a and b or the correlation matrix C is:

$$CC(a) = CC(b) = CC(C) \approx \mathcal{O}(d_a^4 d_b^4).$$

The remainder of this article is structured as follows. In Sec. II, we obtain formulas for a, b, and C that are amenable for more efficient numerical computations. In Sec. III we test these formulas by applying them in the calculation of Hilbert-Schmidt quantum discord. In Sec. IV we make some final remarks about the usefulness and possible applications of the results reported here.

II. COMPUTING COHERENCE VECTORS AND CORRELATION MATRICES

The partial trace function [42] can be used in order to obtain the reduced states $\rho_a = \text{Tr}_b(\rho)$ and $\rho_b = \text{Tr}_a(\rho)$ and to write the components of the Bloch vectors in the form:

$$a_j = 2^{-d_a} \text{Tr}(\Gamma_j^a \rho_a),$$

$$b_k = 2^{-d_b} \text{Tr}(\Gamma_k^b \rho_b).$$

Thus, when computing the coherence vectors of the parties a and b, we shall have to solve a similar problem; so let’s consider it separately. That is to say, we shall regard a generic density operator written as

$$\rho_s = \frac{1}{d_s} \left(\mathbb{1} + \sum_{j=1}^{d_s-1} s_j \Gamma_j^s \right),$$

where $s_j = 2^{-d_s} \text{Tr}(\rho_s \Gamma_j^s)$.

Now, and for the remainder of this article, we assume that the matrix elements of regarded density operator ρ in the standard computational basis are given. We want to compute the Bloch’s vector [43]: $s = \{s_1, \ldots, s_{d^2-1}\}$. For the sake of doing that, a particular basis Γ_j^s must be chosen. Here we pick the generalized Gell Mann matrices, which are presented below in three groups [44]:

$$\Gamma_j^{s(1)} = \sqrt{\frac{2}{j(j+1)}} \sum_{k=1}^{j+1} (-j)^{d_s} j^{d_s+1} |k\rangle \langle k|,$$

for $j = 1, \ldots, d_s - 1$,

$$\Gamma_j^{s(2)} = |k\rangle \langle l| + |l\rangle \langle k|,$$

for $1 \leq k < l \leq d_s$, (12)

$$\Gamma_j^{s(3)} = -i(|k\rangle \langle l| - |l\rangle \langle k|),$$

for $1 \leq k < l \leq d_s$,

which are named the diagonal, symmetric, and antisymmetric group, respectively. The last two groups possess $d_s(d_s - 1)/2$ generators each. Any one of these matrices can be obtained by calling the subroutine gellmann(d_s, g, k, l, $\Gamma_j^{(g)}$). For the first group, $g = 1$, we make $j = k$ and, in this case, one can set l to any integer.

It is straightforward seeing that, for the generators above, the corresponding components of the Bloch’s vector can expressed directly in terms of the matrix elements of the density operator ρ_s as follows:

$$s_j^{(1)} = \frac{d_s}{\sqrt{2j(j+1)}} \sum_{k=1}^{j+1} (-j)^{d_s} j^{d_s+1} \langle k| \rho_s |k\rangle,$$

for $j = 1, \ldots, d_s - 1$,

$$s_j^{(2)} = d_s \text{Re}(|l\rangle \langle k|),$$

for $1 \leq k < l \leq d_s$,

$$s_j^{(2)} = d_s \text{Im}(|l\rangle \langle k|),$$

for $1 \leq k < l \leq d_s$.

These expressions were implemented in the Fortran subroutine bloch_vector_gellmann(d_s, ρ_s, s). With this subroutine, and the partial trace function [42], we can compute the coherence vectors a and b.

We observe that after these simple algebraic manipulations the computational complexity of the Bloch’s vector turns out to be basically the CC for the partial trace function. Hence, from Ref. [42] we have that for $d_a, d_b \gg 1$,

$$CC(a) \approx \mathcal{O}(d_a^4 d_b^4) \text{ and } CC(b) \approx \mathcal{O}(d_a^4 d_b^4).$$

One detail we should keep in mind, when making use of the codes linked to this article, is the convention we adopt for the indexes of the components of s. For the first group of generators, $\Gamma_j^{s(1)}$, naturally, $j = 1, \ldots, d_s - 1$.

We continue with the second group of generators, $\Gamma_j^{s(2)} = \Gamma_j^{s(2)}$, by setting $j(k,l) = (1,2) = d_s - 1 + 1 = d_s$, $j(k,l) = (1,3) = d_s + 1, \ldots$, $j(k,l) = (1,d_s) = 2(d_s - 1)$, $j(k,l) = (2,3) = 2(d_s - 1) + 1, \ldots$. The same convention is used for the third group of generators, $\Gamma_j^{s(3)} = \Gamma_j^{s(3)}$, but here we begin with $j(k,l) = (1,2) = d_s - 1 + 2 - 1 = d_s - 1 + 1 = d_s + 1 - d_s - 1$.

Next we address the computation of the correlation matrix $C = (C_{j,k})$, which is a $(d_a^2 - 1)x(d_b^2 - 1)$ matrix that we write in the form:

$$C = \begin{bmatrix} C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,1} & C_{3,2} & C_{3,3} \end{bmatrix},$$

with the sub-matrices given as shown below. For convenience, we define the auxiliary variables:

$$\iota := \sqrt{\frac{2}{j(j+1)}}, \kappa := \sqrt{\frac{2}{k(k+1)}}, \text{ and } \varsigma := \frac{d_a d_b}{4}.$$

The matrix elements of $C_{1,1}$, whose dimension is $(d_a - 1)x(d_b - 1)$, correspond to the diagonal generators.
for a and diagonal generators for b:

$$c_{j,k}^{(1,1)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho))$$

$$= \zeta \kappa \text{Tr}(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} |m\rangle \langle m|) \otimes \left(\sum_{p=1}^{k+1} (−k)^{δ p,k+1} |p\rangle \langle p|) \right) \rho$$

$$= \zeta \kappa \sum_{m=1}^{j+1} \sum_{p=1}^{k+1} (−j)^{δ m,j+1} (−k)^{δ p,k+1} \text{Tr}(|m\rangle \langle m| ⊗ |p\rangle \langle p|) \rho$$

$$= \zeta \kappa \sum_{m=1}^{j+1} \sum_{p=1}^{k+1} (−j)^{δ m,j+1} (−k)^{δ p,k+1} \text{Tr}(|mp\rangle \langle mp|) \rho) .$$

The matrix elements of $C^{(1,2)}$, whose dimension is $(d_a - 1)x2^2 - 1$ $d_b(d_b - 2)$, correspond to the diagonal generators for a and symmetric generators for b:

$$c_{j,k}^{(1,2)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho))$$

$$= \zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} |m\rangle \langle m| \otimes (|p\rangle \langle q| + |q\rangle \langle p|) \right) \rho$$

$$= \zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} (|mp\rangle \langle mp| + \text{Tr}(mp\rangle \langle mp|) \right) \rho$$

$$= \zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} (|mp\rangle \langle mp| + \text{Tr}(mp\rangle \langle mp|) \right) \rho$$

$$= 2\zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} \text{Tr}(mp\rangle \langle mp|) \right) \rho .$$

The matrix elements of $C^{(1,3)}$, whose dimension is $(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the diagonal generators for a and antisymmetric generators for b:

$$c_{j,k}^{(1,3)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho))$$

$$= -i\zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} |m\rangle \langle m| \otimes (|p\rangle \langle q| − |q\rangle \langle p|) \right) \rho$$

$$= -i\zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} (|mp\rangle \langle mp| − \text{Tr}(mp\rangle \langle mp|) \right) \rho$$

$$= -i\zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} (|mp\rangle \langle mp| − \text{Tr}(mp\rangle \langle mp|) \right) \rho$$

$$= 2\zeta \text{Tr} \left(\sum_{m=1}^{j+1} (−j)^{δ m,j+1} \text{Im}(mp\rangle \langle mp|) \right) \rho .$$

The matrix elements of $C^{(2,1)}$, whose dimension is $2^{-1}d_a(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the symmetric generators for a and diagonal generators for b:

$$c_{j,k}^{(2,1)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho))$$

$$= \zeta \text{Tr} \left((|m\rangle \langle n| + |n\rangle \langle m|) \otimes \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} |p\rangle \langle p| \right) \rho$$

$$= \zeta \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} (\text{Tr}(|mp\rangle \langle mp|) + \text{Tr}(|mp\rangle \langle mp|)) \rho$$

$$= \zeta \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} (2\text{Re}(mp\rangle \langle mp|) .$$

The matrix elements of $C^{(2,2)}$, whose dimension is $2^{-1}d_a(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the symmetric generators for a and symmetric generators for b:

$$c_{j,k}^{(2,2)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho))$$

$$= \zeta \text{Tr} \left((|m\rangle \langle n| + |n\rangle \langle m|) \otimes (|p\rangle \langle q| + |q\rangle \langle p|) \right) \rho$$

$$= \zeta \text{Tr} \left((|mp\rangle \langle mp| + |mp\rangle \langle mp|) \right) \rho$$

$$= \zeta \text{Tr} \left((|mp\rangle \langle mp| + |mp\rangle \langle mp|) \right) \rho$$

$$= 2\zeta \text{Tr} \left(|mp\rangle \langle mp| \right) \rho .$$

The matrix elements of $C^{(2,3)}$, whose dimension is $2^{-1}d_a(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the symmetric generators for a and antisymmetric generators for b:

$$c_{j,k}^{(2,3)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho))$$

$$= \zeta \text{Tr} \left((|m\rangle \langle n| + |n\rangle \langle m|) \otimes (−i) (|p\rangle \langle q| − |q\rangle \langle p|) \right) \rho$$

$$= −i\zeta \text{Tr} \left((|mp\rangle \langle mp| − |mp\rangle \langle mp|) \right) \rho$$

$$= −i\zeta \text{Tr} \left((|mp\rangle \langle mp| − |mp\rangle \langle mp|) \right) \rho$$

$$= 2\zeta \text{Im}(mp\rangle \langle mp| .$$

The matrix elements of $C^{(3,1)}$, whose dimension is $2^{-1}d_a(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the antisymmetric generators for a and diagonal generators for b:

$$c_{j,k}^{(3,1)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{k}^b(\rho))$$

$$= \zeta \text{Tr} \left(−i(|m\rangle \langle n| − |n\rangle \langle m|) \otimes \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} |p\rangle \langle p| \right) \rho$$

$$= −i\zeta \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} (|np\rangle \langle np| − |np\rangle \langle np|) \rho$$

$$= −i\zeta \kappa \sum_{p=1}^{k+1} (−k)^{δ p,k+1} |np\rangle \langle np| − |np\rangle \langle np|) \rho$$

$$= 2\zeta \text{Im}(np\rangle \langle np| .$$

The matrix elements of $C^{(3,2)}$, whose dimension is $2^{-1}d_a(d_a - 1)x2^2 - 1$ $d_b(d_b - 1)$, correspond to the antisymmetric generators for a and symmetric generators for b:

$$c_{j,k}^{(3,2)} = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho)) = \zeta \text{Tr}(\Gamma_{j}^a \otimes \Gamma_{(p,q)}^b(\rho))$$

$$= \zeta \text{Tr} \left(−i(|m\rangle \langle n| − |n\rangle \langle m|) \otimes (|p\rangle \langle q| + |q\rangle \langle p|) \right) \rho$$

$$= −i\zeta \text{Tr} \left((|np\rangle \langle np| − |np\rangle \langle np|) \right) \rho$$

$$= −i\zeta \text{Tr} \left((|np\rangle \langle np| − |np\rangle \langle np|) \right) \rho$$

$$= 2\zeta \text{Im}(np\rangle \langle np| + \text{Im}(np\rangle \langle np| .$$

(27)
The matrix elements of $C^{(3,3)}$, whose dimension is $2^{-1}d_d(d_d-1)x2^{-1}d_b(d_b-1)$, correspond to antisymmetric generators for a and antisymmetric generators for b:

\[
C^{(3,3)}_{j,k} = \varsigma \text{Tr}(\Gamma_{(m,n)}^{a(3)} \otimes \Gamma_{(p,q)}^{b(3)} \rho) = \varsigma \text{Tr}(\Gamma_{(m,n)}^{a(3)} \otimes \Gamma_{(p,q)}^{b(3)} \rho)
\]

\[
= \varsigma \text{Tr}(-(i\langle|m\rangle\langle n| - |n\rangle\langle m|) \otimes (i\langle|p\rangle\langle q| - |q\rangle\langle p|) \rho
\]

\[
= -\varsigma(\langle mq|\rho|mp \rangle + \langle mp|\rho|mq \rangle - \langle np|\rho|mq \rangle - \langle mq|\rho|np \rangle)
\]

\[
= 2\varsigma(\text{Re}(\langle np|\rho mq \rangle) - \text{Re}(\langle mq|\rho mp \rangle))
\]

(28)

We remark that when implementing these expressions numerically, for the sake of mapping the local to the global computational basis, we utilize, e.g.,

\[
|np \rangle \equiv |(n-1)d_b + p \rangle.
\]

(29)

The subroutine corrmat_gellmann(d_d, d_b, ρ, C) returns the correlation matrix $C = (c_{j,k})$, as written in Eq. (18), associated with the bipartite density operator ρ and computed using the Gell Mann basis, as described in this section. The convention for the indexes of the matrix elements $c_{j,k}$ is defined in the same way as for the coherence vectors. The computational complexity for C, computed via the optimized expressions obtained in this section, is, for $d_d, d_b \gg 1$,

\[
CC(C) \approx O(d_d^2 d_b^2).
\]

(30)

By generating some random density matrices [45], we checked that the expressions and the corresponding code for the unoptimized and optimized versions of a, b, and C agree. Additional tests shall be presented in the next section, where we calculate some quantum discord quantifiers.

III. COMPUTING HILBERT-SCHMIDT QUANTUM DISCORDS

The calculation of quantum discord functions (QD) usually involves hard optimization problems [46, 47]. In the last few years, a large amount of effort has been dedicated towards computing QD analytically, with success being obtained mostly for low dimensional quantum systems [48–65]. Although not meeting all the required properties for a bona fide QD quantifier [66], the Hilbert-Schmidt discord (HSD) [67],

\[
D_{\text{hs}}^a(\rho) = \min_{\rho_{eq}} \|\rho - \rho_{eq}\|_2^2
\]

(31)

is drawing much attention due to its amenability for analytical computations, when compared with most other QD measures. In the last equation, the minimization is performed over the classical-quantum states

\[
\rho_{eq} = \sum_j p_j |a_j\rangle\langle a_j| \otimes \rho^b_j,
\]

(32)

with p_j being a probability distribution, $|a_j\rangle$ an orthonormal basis for H_a, ρ^b_j generic density operators defined in H_b, and $\|O\|_2 := \sqrt{\text{Tr}(O^\dagger O)}$ is the Hilbert-Schmidt norm of the linear operator O, with O^\dagger being the transpose conjugate of O.

In this article, as a basic test for the Fortran code provided to obtain coherence vectors and correlation matrices, we shall compute the following lower bound for the HSD [68]:

\[
D_{\text{hs}}^a(\rho) = \sum_{j=d_a}^{d^2-1} \lambda^a_j,
\]

(33)

where λ^a_j are the eigenvalues, sorted in non-increasing order, of the $(d^2_a - 1)x(d^2_a - 1)$ matrix:

\[
\Xi_a = \frac{2}{d^2_a d_b}(aa^t + \frac{2}{d_b}CC^t).
\]

(34)

In the equation above t stands for the transpose of a vector or matrix. We observe that the other version of the HSD, D_{hs}^b, can be obtained from the equations above simply by exchanging a and b and using C^tC instead of CC^t.

It is interesting regarding that, as was proved in Ref. [69], a bipartite state ρ, with polarization vectors a and b and correlation matrix C, is classical-quantum if and only if there exists a $(d_d - 1)$-dimensional projector Π_a in the space $\mathbb{R}^{d_d - 1}$ such that:

\[
\Pi_a a = a \quad \text{and} \quad \Pi_a C = C.
\]

(35)

Based on this fact, an ameliorated version for the Hilbert-Schmidt quantum discord (AHSD) was proposed [69]:

\[
D_{\text{hsa}}^a(\rho) := \min_{\Pi_a} \|\Upsilon_a - \Pi_a\Xi_a\|_2^2,
\]

(36)

with the matrix Υ_a defined as

\[
\Upsilon_a := \sqrt{\frac{2}{d^2_a d_b}}\left(f(b)a + g(b)\sqrt{\frac{2}{d_b}C}\right),
\]

(37)

where f and g are arbitrary functions of $b := ||b||_2$. Then, by setting $f(b) = g(b) = P(\rho_b)$ and using the purity,

\[
P(\rho_b) := \text{Tr}(\rho_b^2) = \sum_{j,k} |\rho^b_{j,k}|^2,
\]

(38)

to address the problem of non-contractivity of the Hilbert-Schmidt distance, the following analytical formula was presented [69]:

\[
D_{\text{hsa}}^a(\rho) = \frac{1}{P(\rho_b)} \sum_{j=d_a}^{d^2-1} \lambda^a_j = \frac{D_{\text{hs}}^a(\rho)}{P(\rho_b)}.
\]

(39)

Thus both discord quantifiers D_{hs}^a and D_{hsa}^a are, in the end of the day, obtained from the eigenvalues λ^a_j. And the computation of these eigenvalues requires the knowledge of the coherence vector a (or b) and of the correlation matrix C. These QD measures were implemented...
in the Fortran functions \texttt{discord.hs}(ssys, \, d_a, \, d_b, \, \rho) and \texttt{discord.hsa}(ssys, \, d_a, \, d_b, \, \rho), where \texttt{ssys} = 's', with \texttt{s} = a, b, specifies which version of the quantum discord is to be computed. As an example, let us use the formulas provided in this article and the associated code to compute the HSD and AHSD of Werner states in \(H_a \otimes H_b \) (with \(d_a = d_b \)):
\[
\rho^w = \frac{d_a - w}{d_a(d_a^2 - 1)} \mathbb{I}_a \otimes \mathbb{I}_b + \frac{d_a w - 1}{d_a(d_a^2 - 1)} F,
\]
where \(w \in [-1, 1] \) and \(F = \sum_{j,k=1}^{d_a} |j k\rangle \langle j k| \). The reduced states of \(\rho^w \) are \(\mathbb{I}_s/d_s \), whose purity is \(P(\rho_s) = 1/d_s \). The results for the HSD and AHSD of \(\rho^w \) are presented in Fig. 1.

![Graph](image)

Figure 1: The points are the values of the ameliorated Hilbert-Schmidt quantum discord of Werner states computed numerically using Eq. (30). The lines are the corresponding values of the AHSD plotted via the analytical formula: \(D^w_{hsa}(\rho^w) = d_a D^w_{hs}(\rho^w) = (d_a w - 1)^2 / ((d_a - 1)(d_a + 1)^2) \). Due to the symmetry of \(\rho^w \), here \(D^w_{hsa}(\rho^w) = D^w_{hsa}(\rho^w) \). In the inset is shown the difference between the times taken by the two methods to compute the AHSD for a fixed value of \(d_s \). We see clearly here that our optimized algorithm gives an exponential speedup against the brute force calculation of the Bloch’s vectors and correlation matrix.

IV. CONCLUDING REMARKS

In this article, we addressed the problem of computing coherence vectors and correlations matrices. We obtained formulas for these functions that make possible a considerably more efficient numerical implementation when compared with the direct use of their definitions. We provided Fortran code to calculate all the quantities regarded in this paper. As a test for our formulas and code, we computed Hilbert-Schmidt quantum discords of Werner states. It is important observing that, although our focus here was in quantum information science, the tools provided can find application in other areas, such as e.g. in the calculation of order parameters and correlations functions for the study of phase transitions in discrete quantum or classical systems.

Conflict of Interests

The author declares that the funding mentioned in the Acknowledgments section do not lead to any conflict of interest. Additionally, the author declares that there is no conflict of interest regarding the publication of this manuscript.

Acknowledgments

This work was supported by the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), processes 441875/2014-9 and 303496/2014-2, Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 2008/57856-6, and Coordenação de Desenvolvimento de Pessoal de Nível Superior (CAPES), process 6531/2014-08. I gratefully acknowledges the hospitality of the Physics Institute and Laser Spectroscopy Group at the Universidad de la República, Uruguay.

[1] E. T. Jaynes, *Probability Theory, The Logic of Science* (Cambridge University Press, New York, 2003).
[2] M. A. Carlton and J. L. Devore, *Probability with Applications in Engineering, Science, and Technology* (Springer, New York, 2014).
[3] C. Gerry and P. Knight, *Introductory Quantum Optics* (Cambridge University Press, New York, 2005).
[4] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, New York, 2002).
[5] S. Sachdev, *Quantum Phase Transitions* (Cambridge University Press, New York, 2011).
[6] J. Hutchinson, J. P. Keating, and F. Mezzadri, On relations between one-dimensional quantum and two-dimensional classical spin systems, *Adv. Math. Phys*. 2015, 652026 (2015).
[7] L. Alvarez-Gaumé and M. Á. Vázquez-Mozo, *An Invitation to Quantum Field Theory* (Springer, Berlin, 2012).
[8] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge University Press, Cambridge, 2000).
[9] J. Preskill, *Quantum Information and Computation*, http://theory.caltech.edu/people/preskill/ph229/.
[10] M. M. Wilde, *Quantum Information Theory* (Cambridge University Press, Cambridge, 2013).
[11] M. D. Reid, P. D. Drummond, W. P. Bowen, E. G.
Rev. Mod. Phys. 81, 1727 (2009).

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

M. Li, S.-M. Fei, and X. Li-Jost, Quantum entanglement: Separability, measure, fidelity of teleportation, and distillation, Adv. Math. Phys. 2010, 301072 (2010).

L. C. Céleri, J. Maziero, and R. M. Serra, Theoretical and experimental aspects of quantum discord and related measures, Int. J. Quantum Inf. 9, 1837 (2011).

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, The classical-quantum boundary for correlations: Discord and related measures, Rev. Mod. Phys. 84, 1655 (2012).

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Céleri, On the quantumness of correlations in nuclear magnetic resonance, Phil. Trans. R. Soc. A 370, 4821 (2012).

M. Ávila, G. H. Sun, and A. L. Salas-Brito, Scales of time where the quantum discord allows an efficient execution of the DQC1 algorithm, Adv. Math. Phys. 2014, 367905 (2014).

A. Streltsov, Quantum Correlations Beyond Entanglement, and Their Role in Quantum Information Theory (SpringerBriefs in Physics, 2015).

A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the power of one qubit, Phys. Rev. Lett. 100, 050502 (2008).

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, Operational interpretations of quantum discord, Phys. Rev. A 83, 032324 (2011).

S. Pirandola, Quantum discord as a resource for quantum cryptography, Sci. Rep. 4, 6956 (2014).

L. Roa, J. C. Retamal, and M. Alid-Vaccarezza, Dissocinace is required for assisted optimal state discrimination, Phys. Rev. Lett. 107, 080401 (2011).

M Piani, V Narasimhachar, and J Calsamiglia, Quantumness of correlations, quantumness of ensembles and quantun data hiding, New J. Phys. 16, 113001 (2014).

B. Dakic, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, C. Brukner, and P. Walther, Quantum discord as resource for remote state preparation, Nat. Phys. 8, 666 (2012).

D. Girolami, A. M. Souza, V. Giovannetti, T. Tufarelli, J. G. Filgueiras, R. S. Sarthour, D. O. Soares-Pinto, I. S. Oliveira, and G. Adesso, Quantum discord determines the interferometric power of quantum states, Phys. Rev. Lett. 112, 210401 (2014).

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, Quantum discord bounds the amount of distributed entanglement, Phys. Rev. Lett. 109, 070501 (2012).

J. Maziero and R. M. Serra, Classicality witness for two-qubit states, Int. J. Quantum Inf. 10, 1250028 (2012).

R. Auccaise, J. Maziero, L. C. Celeri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimentally witnessing the quantumness of correlations, Phys. Rev. Lett. 107, 070501 (2011).

F. M. Paula, I. A. Silva, J. D. Montealegre, A. M. Souza, E. R. deAzevedo, R. S. Sarthour, A. Saguia, I. S. Oliveira, D. O. Soares-Pinto, G. Adesso, and M. S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations, Phys. Rev. Lett. 111, 250401 (2013).

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. deAzevedo, D. O. Soares-Pinto, and G. Adesso, Measuring bipartite quantum correlations of an unknown state, Phys. Rev. Lett. 110, 140501 (2013).

G. H. Aguilar, O. Jiménez Farias, J. Maziero, R. M. Serra, P. H. Souto Ribeiro, and S. P. Walborn, Experimental estimate of a classicality witness via a single measurement, Phys. Rev. Lett. 108, 063601 (2012).

A. Bayat and S. Bose, Entanglement transfer through an antiferromagnetic spin chain, Adv. Math. Phys. 2010, 127182 (2010).

M. Cianciaruso, T. R. Bromley, W. Roga, R. Lo Franco, and G. Adesso, Universal freezing of quantum correlations within the geometric approach, Sci. Rep. 5, 10177 (2015).

T. R. Bromley, M. Cianciaruso, R. Lo Franco, and G. Adesso, Unifying approach to the quantification of bipartite correlations by Bures distance, J. Phys. A: Math. Theor. 47, 405002 (2014).

B. Aaronson, R. Lo Franco, G. Compagno, and G. Adesso, Hierarchy and dynamics of trace distance correlations, New J. Phys. 15, 093022 (2013).

B. Aaronson, R. Lo Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence, Phys. Rev. A 88, 012120 (2013).

B. Bellomo, G. L. Giorgi, F. Galve, R. Lo Franco, G. Compagno, and R. Zambrini, Unified view of correlations using the square norm distance, Phys. Rev. A 85, 032104 (2012).

B. Bellomo, R. Lo Franco, and G. Compagno, Dynamics of geometric and entropic quantifiers of correlations in open quantum systems, Phys. Rev. A 86, 012312 (2012).

R. Lo Franco, B. Bellomo, E. Andersson, and G. Compagno, Revival of quantum correlations without system-environment back-action, Phys. Rev. A 85, 032138 (2012).

J.-S. Xu, K. Sun, C.-F. Li, X.-Y. Xu, G.-C. Guo, E. Andersson, R. Lo Franco, and G. Compagno, Experimental recovery of quantum correlations in absence of system-environment back-action, Nat. Commun. 4, 2851 (2013).

R. Lo Franco, B. Bellomo, S. Maniscalco, and G. Compagno, Dynamics of quantum correlations in two-qubit systems within non-Markovian environments, Int. J. Mod. Phys. B 27, 1340505 (2013).

J. Maziero, Computing partial traces and reduced density matrices, arXiv:1601.07458.

E. Brüning, H. Mäkelä, A. Messina, and F. Petruccione, Parametrizations of density matrices, J. Mod. Opt. 59, 1 (2012).

R. A. Bertlmann and P. Krammer, Bloch vectors for qubits, J. Phys. A: Math. Theor. 41, 253503 (2008).

J. Maziero, Fortran code for generating random probability vectors, unitaries, and quantum states, Front. ICT 3, 4 (2016).

Y. Huang, Computing quantum discord is NP-complete, New J. Phys. 16, 033027 (2014).

T. Chanda, T. Das, D. Sadhukhan, A. K. Pal, A. Sen
De, and U. Sen, Reducing computational complexity of quantum correlations, Phys. Rev. A 92, 062301 (2015).

[48] S. Luo, Quantum discord for two-qubit systems, Phys. Rev. A 77, 042303 (2008).

[49] S. Luo and Q. Zhang, Observable correlations in two-qubit states, J. Stat. Phys. 136, 165 (2009).

[50] M. Ali, A. R. P. Rau, and G. Alber, Quantum discord for two-qubit X states, Phys. Rev. A 81, 042105 (2010).

[51] J. Maziero, L. C. Celeri, and R. M. Serra, Symmetry aspects of quantum discord, arXiv:1004.2082.

[52] D. Girolami and G. Adesso, Quantum discord for general two-qubit states: Analytical progress, Phys. Rev. A 83, 062108 (2011).

[53] Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H. Oh, Quantum discord of two-qubit X states, Phys. Rev. A 84, 042313 (2011).

[54] A. S. M. Hassan, B. Lari, and P. S. Joag, Tight lower bound to the geometric measure of quantum discord, Phys. Rev. A 85, 024302 (2012).

[55] F. Ciccarello, T. Tufarelli, and V. Giovannetti, Toward computability of trace distance discord, New J. Phys. 16, 013038 (2014).

[56] D. Spehner and M. Orszag, Geometric quantum discord with Bures distance: the qubit case, J. Phys. A: Math. Theor. 47, 035302 (2014).

[57] M. A. Jafarizadeh, N. Karimi, and H. Zahir, Quantum discord for generalized Bloch sphere states, Eur. Phys. J. D 68, 136 (2014).

[58] M. Daoud, R. Ahl Laamara, and S. Seddik, Hilbert-Schmidt measure of pairwise quantum discord for three-qubit X states, Rep. Math. Phys. 76, 207 (2015).

[59] A. Beggi, F. Buscemi, and P. Bordone, Analytical expression of genuine tripartite quantum discord for symmetrical X-states, Quantum Inf. Process. 14, 573 (2015).

[60] Y.-K. Wang, N. Jing, S.-M. Fei, Z.-X. Wang, J.-P. Cao, and H. Fan, One-way deficit of two-qubit X states, Quantum Inf. Process. 14, 2487 (2015).

[61] Z. Ma, Z. Chen, F. F. Fanchini, and S.-M. Fei, Quantum discord for $d \otimes 2$ systems, Sci. Rep. 5, 10262 (2015).

[62] N. Jing, X. Zhang, and Y.-K. Wang, Comment on “One-way deficit of two qubit X states”, Quantum Inf. Process. 14, 4511 (2015).

[63] G. Li, Y. Liu, H. Tang, X. Yin, and Z. Zhang, Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations, Quantum Inf. Process. 14, 559 (2015).

[64] P. C. Obando, F. M. Paula, and M. S. Sarandy, Trace-distance correlations for X states and the emergence of the pointer basis in Markovian and non-Markovian regimes, Phys. Rev. A 92, 032307 (2015).

[65] Y. Huang, Quantum discord for two-qubit X states: Analytical formula with very small worst-case error, Phys. Rev. A 88, 014302 (2013).

[66] A. Brodutch and K. Modi, Criteria for measures of quantum correlations, Quantum Inf. Comp. 12, 0721 (2012).

[67] B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105, 190502 (2010).

[68] S. Luo and S. Fu, Geometric measure of quantum discord, Phys. Rev. A 82, 034302 (2010).

[69] S. J. Akhtashenas, H. Mohammadi, S. Karimi, and Z. Azmi, Computable measure of quantum correlation, Quantum Inf. Process. 14, 247 (2015).