Inappropriate medications and physical function: a systematic review

Elizabeth Manias, Md Zunayed Kabir and Andrea B. Maier

Abstract
Background and aims: Inappropriate medication prescription is highly prevalent in older adults and is associated with adverse health outcomes. The aim of this study was to examine the associations between potentially inappropriate medications (PIMS) and potential prescribing omissions with physical function in older adults situated in diverse environments.

Methods: A systematic search was completed using the following databases: MEDLINE, CINAHL, PsycINFO, EMBASE and COCHRANE. Results were extracted from the included studies.

Results: In total, 55 studies reported on 2,767,594 participants with a mean age of 77.1 years (63.5% women). Study designs comprised 26 retrospective cohort studies, 21 prospective cohort studies and 8 cross-sectional studies. Inappropriate medications in community and hospital settings were significantly associated with higher risk of falls (21 out of 30 studies), higher risk of fractures (7 out of 9 studies), impaired activities of daily living (ADL; 8 out of 10 studies) and impaired instrumental ADL (IADL) score (4 out of 6 studies). Five out of seven studies also showed that PIMs were associated with poorer physical performance comprising the Timed Up and Go test, walking speed, grip strength, time to functional recovery, functional independence and scale of functioning. Many medication classes were implicated as PIMs in falls, fractures and impairment in physical performance including antipsychotic, sedative, anti-anxiety, anticholinergic, antidiabetic, opioid and antihypertensive medications. For patients not receiving musculoskeletal medications, such as calcium, vitamin D and bisphosphonates, older adults were found to be at risk of a hospital admission for a fall or fracture.

Conclusion: Inappropriate medication prescriptions are associated with impaired physical function across longitudinal and cross-sectional studies in older adults situated in diverse settings. It is important to support older people to reduce their use of inappropriate medications and prevent prescribing omissions.

Plain language summary

Inappropriate medications and physical function

Background and aims: The use of inappropriate medications is very common in older adults and is associated with harmful health problems. The aim was to examine associations between potentially inappropriate medications and potential prescribing omissions with physical function in older adults situated in diverse environments. Methods: Library databases were examined for possible studies to include and a systematic search was completed. Relevant information was obtained from the included studies. Results: In total, 55 studies reported on 2,767,594 participants who were an average age of 77.1 years and about 6 out of 10 were women. A variety of different study designs were used. Inappropriate medication prescriptions in community and hospital settings were significantly associated with higher risk of falls (21 out of 30 studies), higher risk of fractures (7 out of 9 studies), impaired activities of daily living (ADL; 8 out of 10 studies) and impaired instrumental ADL (IADL) score (4 out of 6 studies). Five out of seven studies also showed that PIMs were associated with poorer physical performance comprising the Timed Up and Go test, walking speed, grip strength, time to functional recovery, functional independence and scale of functioning. Many medication classes were implicated as PIMs in falls, fractures and impairment in physical performance including antipsychotic, sedative, anti-anxiety, anticholinergic, antidiabetic, opioid and antihypertensive medications. For patients not receiving musculoskeletal medications, such as calcium, vitamin D and bisphosphonates, older adults were found to be at risk of a hospital admission for a fall or fracture.
problems with activities of daily living (ADL), such as eating, bathing, dressing, grooming, walking and toileting (8 out of 10 studies) and problems with instrumental ADL such as managing medications, house cleaning and shopping (4 out of 6 studies). Five out of seven studies also showed that inappropriate medications were associated with poorer physical performance involving the Timed Up and Go test, walking speed, grip strength, time to functional recovery, functional independence and scale of functioning. Many types of medication classes were shown to be associated with a risk of falls, fractures and problems with physical performance. Omitted medications were also associated with falls and fractures. Conclusion: Inappropriate medication prescriptions are associated with problems relating to physical function. It is important to support older people to reduce their use of inappropriate medications and prevent prescribing omissions.

Keywords: activities of daily living, aged, functional independence, independent living, medication therapy management, physical function

Received: 20 December 2020; revised manuscript accepted: 17 June 2021.

Introduction
Prescription of a medication is defined as inappropriate if the potential harm from it outweighs the benefit. Inappropriate medications comprises two subtypes: potentially inappropriate medications (PIMs), which include the prescribing of medications with an increased risk of side effects or drug-interactions, or over-prescription of medications that lack a therapeutic benefit, and potential prescribing omissions (PPOs), which include the absence of medications being proven to be beneficial.\(^1\)

The prevalence of inappropriate medication prescriptions provided to community dwelling older adults is around 20% and between 36% and 51% in institutionalised older adults.\(^2\) The prevalence can be attributed to multi-morbidity, polypharmacy and age-related physiological changes that alter pharmacokinetics and increase sensitivity to pharmacodynamics.\(^3,4\) Inappropriate prescriptions are related to poor health outcomes, such as increased hospitalisations, emergency department visits, and increased risk of mortality.\(^5\) Physical function, which is defined as a person’s ability to carry out activities requiring mobility, physical performance, balance, muscle strength or endurance, is critical for maintaining independence.\(^6\) Inappropriate prescriptions have been shown to be associated with a significant decline in physical performance,\(^7\) ADL during hospitalisation,\(^8\) as well as falls and injuries in frail older adults.\(^9\) Previous reviews have examined associations between polypharmacy and physical function in older adults,\(^10\) and between inappropriate medication use and functional decline.\(^11\)

The aim of this systematic review is to examine the associations between inappropriate medication prescriptions and physical function in older adults situated in diverse environments.

Methods

Search strategy
The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement was used for reporting this review. The search strategy was completed with a senior university librarian and included terms relating to PIMs and physical function (Supplemental file S1). The search timeframe was from inception up to 3 April 2021. Articles were included by searching MEDLINE, CINAHL, PsycINFO EMBASE and COCHRANE (within MEDLINE).

Article titles and abstracts as well as full-texts of all included articles were independently screened by two reviewers (EM, MZK), and any discrepancies were resolved by a third reviewer (ABM). The study selection was undertaken on the Rayyan QCRI Platform.\(^12\)

Eligibility criteria
Articles that utilised a validated tool to assess medication appropriateness, along with reporting
physical function were included. Physical function was defined as falls, fractures, ADL, instrumental activities of daily living (IADL), physical performance balance, muscle strength and cardiovascular endurance. Articles focussing on a specific medication or a class of medication were included if a validated tool was used to assess its appropriateness of use. For this systematic review, older adults were situated in diverse settings, including hospitals, aged care facilities and the community. Conference abstracts, case reports with fewer than five cases, letters to the Editor, reviews and any non-English articles were excluded from the review.

Data extraction
The data extraction process for each study was conducted independently by two authors (EM, MZK) into a standardised electronic data extraction sheet. Any discrepancies were resolved by a third reviewer (ABM). The following information were extracted: first author/year, country, mean age, sex ratio, sample size, study setting, the PIMs and PPOs examined as predictors, the approach used to identify PIMs and PPOs and the method for measuring the outcome. Attempts were made to contact authors of studies if there appeared to be missing information.

Quality assessment
Two authors (EM, MZK) independently assessed the quality of included studies using a modified Newcastle–Ottawa Scale (Supplemental Files S2 and S3). Points were given to the eligible categories: (a) selection of the study population, (b) comparability and (c) description of the outcome.

Results
The article selection is outlined in Figure 1. A total of 14,303 studies were initially identified. After title and abstract screening, 193 full-text articles were retrieved and 55 studies met the inclusion criteria reporting on 2,767,594 participants (mean age 77.1 years, 63.5% were female). It was not possible to undertake a quantitative synthesis using meta-analysis due to the heterogeneity in physical function results that were obtained.

Characteristics of included studies
The characteristics of included studies are summarised in Table 1. A total of 37 studies used various versions of the Beers criteria,13–48 19 studies used the Screening Tool of Older Person’s prescriptions (STOOP) criteria,21,23,25,34,36,37,43,48–59 9 studies used the Screening to Alert to Right Treatment (START) criteria,6,47–50,52,55,56,59 2 studies used the Meds 75+ Database,60,61 2 studies used the European Union (EU)(7)-PIM list,28,62 4 studies used the Drug Burden Index,24,43,63,64 and 1 study used the Norwegian General Practice (NORGEP) criteria list to identify inappropriate medications.8 In three studies, the Anticholinergic Cognitive Burden scale was used,24,34,65 while in one study, the Quantitative Drug Index was used.66 In some studies, more than one tool was used8,15,17,21–25,28,34,36,37,43,47–50,52,55,56,59 Table 2 shows the associations between inappropriate medication prescriptions and physical function. Table 3 provides an illustrative summary of the associations between inappropriate medication prescriptions and physical function.

Associations of PIMs and PPOs with falls and fractures
A total of 30 studies examined the association between inappropriate medications and falls (Table 2)13–32,49–53,55–57,62,63; 18 studies used the Beers criteria, 5 used the STOPP/START criteria, 5 used the STOPP, 2 used the EU (7)-PIM list, 2 used the Drug Burden Index, 1 used the PRISCUS list, and 1 used the Anticholinergic Drug Burden. Out of 30 studies, 21 showed a significant positive association between PIMs and risk of falls.14–18,22–24,26,28–32,49,51,53,56,57,62 One study showed a positive predictive value of 25% for the proportion of patients with PPO-related admissions for a fall with a fracture.56 Benzodiazepine, opiate and sedative use were common PIMs associated with falls.14,23,31,51,52

Nine studies examined inappropriate medication use and its association with fractures.27,29,31–33,56,57,60,61 Seven out of nine studies showed a significantly higher number of fractures when exposed to PIMs.29,32,33,56,57,60,61 In the one study that examined the effect of PPOs on fractures, multivariate logistic regression analysis showed PPO-related admission was associated with increased odds of osteoporotic fracture [odds ratio (OR)=5.0, 95% confidence interval (CI) 2.2–11.4, p<0.001].56 Antidiabetic, psychotropic, opioid and antihypertensive use impacted on older people’s associated risk of experiencing fractures.32,61
Therapeutic Advances in Drug Safety 12

Figure 1. PRISMA flow diagram.
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis.

Associations of PIMs and PPOs with ADL and IADL

A total of 10 studies examined associations between inappropriate medication use and ADLs, while 6 studies examined associations between inappropriate medication use and IADL (Table 2). Of the 10 studies focusing on ADLs, 8 showed that inappropriate medication use was associated with ADL impairment, while 4 studies involving IADLs showed that inappropriate medication use was associated with IADL impairment. In the one study involving anticholinergic burden and ADLs, patients who were prescribed any anticholinergic medication had a mean Bartel Index of 83.5 (95% CI 81.9–85.0), while those who were not prescribed any anticholinergic medication had a mean Bartel Index of 86.3 (95% CI 84.4–88.1, p = 0.03). In the study by Tosato et al., there were variations in results depending on the type of tool used for inappropriate medication use. They showed PIM use defined with the STOPP criteria was significantly associated with ADL impairment, while PIM use defined with the Beer’s criteria showed no significant association with ADL impairment.

Associations of PIMs and PPOs with physical performance

Seven studies involved examination of associations between inappropriate medication use and physical performance (Table 2). Aside from two studies, the included studies showed significant associations between PIM use and physical performance. In the study by Kersten et al., PIM use had no significant association with the Timed Up and Go test. In the
Table 1. Characteristics of included studies (N=55).

Author	Country	Study design	Setting	Age, years	Sample size, N	Female, %
				cut-off		
				mean (SD)		
Longitudinal studies						
Ackroyd-Stolarz et al.	Canada	RCS	Tertiary care hospital	≥65	8976	NG
Agashivala and Wu	US	RCS	Nursing home	≥65	11,940	74.7
Beer et al.	Australia	RCS	Community dwelling	65–83	4260	0
Berdot et al.	France	PCS	Community dwelling	≥65	6343	59.0
Borenstein et al.	USA	PCS	Medical and surgical units	≥65	214	57.9
Cardwell et al.	New Zealand, UK	PCS	Community dwelling	80	671	59.9
Chan et al.	US	PCS	Geriatric psychiatry unit	NG	118	78.0
Chin et al.	US	PCS	Emergency department	≥65	898	63.0
Chun et al.	US	RCS	Assisted living facilities	≥65	95	68.4
De Vincentis et al.	Italy	PCS	Medical units	≥65	2631	51.4
Delgado et al.	UK	RCS	Community dwelling linked to hospitals	≥65	11,175	64.8
					with dementia + 43,463 controls	
Early et al.	US	PCS	Community dwelling	65–99	1,678,037	63.4 case group
Fernández et al.	Columbia	PCS	Community dwelling	≥65	273	48.0
Fick et al.	US	RCS	Community dwelling	≥65	960	41.1
Fick et al.	US	RCS	Community dwelling	≥65	17,971	71.0 PIM exposed group
Frankenthal et al.	Israel	PCS	Chronic care geriatric facility	≥65	542	62.5
García-Gollarte et al.	Spain	PCS	Nursing home	≥65	716	73.0
Gosch et al.	Austria	PCS	Geriatric evaluation and management unit	≥65	457	82.5
Hamilton et al.	US	PCS	Medical and surgical units	≥65	600	59.8
Hill-Taylor et al.	Canada	RCS	Community and hospital	66	1327	83.1
Hyttinen et al.	Finland	RCS	Community dwelling	≥65	47,850	63.8

(Continued)
Author	Country	Study design	Setting	Age, years Cut-off	Sample size, N	Female, %
Hyttinen et al.	Finland	RCS	Community dwelling	⩾65	20,666	62.3
Iaboni et al.	US	PCS	Various hospitals	60	477	68.7 PIM exposed group
				78.4 (9.1) Non PIM exposed group		82.0 Non PIM exposed group
Ie et al.	US	RCS	Community dwelling	⩾65	343	89.4
Kersten et al.	Norway	RCS	Emergency department	75	232	59.1
Kose et al.	Japan	RCS	Rehabilitation ward	⩾65	272	62.5
Kose et al.	Japan	RCS	Rehabilitation ward	⩾65	569	64.4
Koyama et al.	US	PCS	Community dwelling	>75	1429	100
Lu et al.	Taiwan	RCS	Community and hospitals	⩾65	59,042	48.8
Manias et al.	Australia	RCS	Geriatric subacute wards	⩾65	249	61.4
McMahon et al.	Ireland	RCS	Emergency department	>70	1016	69.7
Moriarty et al.	Ireland	PCS	Community dwelling	⩾65	1753	54.4
Nagai et al.	Japan	RCS	Surgical units	⩾65	253	86.6 PIM exposed group
				72.8 (7.7) non PIM exposed group		85.3 non PIM exposed group
Nagai et al.	Japan	RCS	Rehabilitation units	⩾65	170	66.5
Naples et al.	US	PCS	Community dwelling	⩾65	2402	51.3
Narayan and Nishtala	New Zealand	RCS	Community and hospitals	⩾65	537,387	54.9
Ota et al.	US	RCS	Ambulatory setting	⩾65	2704	66.5
Pasina et al.	Italy	PCS	Internal medicine and geriatric wards	⩾65	1380	48.8
Renom-Guiteras et al.	England, Estonia, Finland, France, Germany, The Netherlands, Spain, Sweden	PCS	Long-term care or at risk of long-term care	⩾65	2004	67.5

Table 1. (continued)

Table 1. (continued)

Author	Country	Study design	Setting	Age, years	Sample size, N	Female, %		
Schiek et al.	Germany	PCS	Military hospital	≥65	Median 79 [IQR 69–86]	174	54	
Sengul Aycicek et al.	Turkey	PCS	Tertiary care hospital	≥65	72 [65–86]	101	55.4	
Shibasaki et al.	Japan	RCS	Neurology and Rehabilitation Hospital	≥65	82.9 [6.6]	217	80.6	
Stockl et al.	US	RCS	Community and hospitals	≥65	75.2 [6.4]	27,084	69.0 PIM exposed group	
Tosato et al.	Italy	PCS	Internal medicine and geriatric wards	≥65	80.2 [7.0]	871	53.2	
Umit et al.	Turkey	RCS	Tertiary hospital	≥65	69.5 [65–86]	80	57.5	
Walker et al.	US	RCS	Trauma centre	≥65	78.5 [range 65–104]	2181	52.0	
Weeks et al.	Spain	RCS	Nursing home	70–99	86.7 [6.5]	Antipsychotic exposed group	1653	76.8

Cross-sectional studies

Author	Country	Study design	Setting	Age, years	Sample size, N	Female, %	
Anson et al.	US	CSS	Community dwelling	>65	79 [range 66–92]	57	72
Bonfiglio et al.	Italy	CSS	Outpatient department	>64	78.3 [5.8]	160	54.4
Cameron et al.	Canada	CSS	Long term care facility	>65	Median 85.0 [IQR 77–90]	395	68.1
Carter et al.	US	CSS	Emergency department	≥65	75.2 [6.4]	259,775	69.0 PIM exposed group
Dalleur et al.	Belgium	CSS	Teaching hospital	75	Median 84.0 [IQR 81–88]	302	62.6
Gnjidic et al.	Australia	CSS	Community dwelling	70	76.9 [5.5]	1705	0
Hasan et al.	Malaysia	CSS	Tertiary care hospital	60	70.0 [6.77]	344	44.9
Mohamed et al.	US	CSS	Cancer center	≥65	76.9 [5.4]	439	45

Study by Anson et al. involved a secondary analysis of patient results at baseline of an RCT. CSS, cross-sectional study; IQR, interquartile range; NG, not given; PCS, prospective cohort study; PIM, potentially inappropriate medications; RCS, retrospective cohort study; SD, standard deviation; UK, United Kingdom; US, United States.

study by Naples et al., while variable results were found in terms of effects of inappropriate medication use on physical performance, the investigators showed that any drug–drug or drug–disease interaction was significantly associated with a meaningful decline in gait speed of ≥0.1 m/s, for slow versus fast walkers based on a median split at 1.15 m/s (OR 1.27, 95% CI 1.02–1.57, p < 0.05).

Associations of PIMs and PPOs with functional independence scores

Of the 10 studies involved in the examination of inappropriate medication use and measures of functional independence, 9 demonstrated that inappropriate medication use was significantly associated with increased impediment with functional independence. PIM use was associated significantly with a decrease in the...
Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Falls							
Ackroyd-Stolarz et al.	Beers	Benzodiazepine	Fall	Unadjusted	Prevalence	4.5% (PIM use) 3.8% (no PIM use)	0.30
						2.6% (PIM use) 1.8% (no PIM use)	0.08
Agashivala and Wu	Beers	PIPM	Falls in past 30 days	Unadjusted	OR	1.349 (1.333–1.366)	<0.01
						0.83 (0.702–0.980)	0.028
						0.624 (0.517–0.754)	<0.01
Beer et al.	Beers	PIM use	Falls history	Unadjusted	OR	1.66 (1.42–1.94)	<0.001
	McLeod						
						1.24 (1.06–1.45)	0.008
						1.63 (1.29–2.04)	<0.001
Beer et al.	Beers	PIM use	Potential under utilisation	Unadjusted	OR	1.23 (1.04–1.45)	0.018
	McLeod						
						1.10 (0.93–1.31)	0.278
						1.17 (0.91–1.49)	0.227
Berdot et al.	Beers	PIM occasional user	Falls	Unadjusted	OR	1.48 (1.26–1.74)	<0.001
Borenstein et al.	McLeod Beers	PIM	Falls	Unadjusted	OR	2.93 (1.17–7.34)	<0.05
						3.05 (1.19–7.83)	<0.05
Cameron et al.	Beers	PIM	Falls	Adjusted – any PIM	Beta	0.34 (0.037–0.65)	0.028
				Adjusted – benzodiazepine	Beta	NG – reduced falls	0.009

(Continued)
Table 2. (continued)

Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value	
Cardwell et al.63	Drug burden index	PIM	Falls	Adjusted	Relative risk	Maori:		
						12 months: 1.49 (0.76–2.92)	0.25	
						24 months: 1.32 (0.68–2.57)	0.41	
						36 months: 1.08 (0.53–2.19)	0.83	
Carter et al.19	Beers	PIM	Fall related ED visit	Not adjusted	Observed counts	3442 falls comprising 47.8% of ED visits. 735 (11.7%) of ED visits had at least 1 PIM		
Chun et al.20	Beers	PIM	Falls	NG	Nagelkerke R2	0.017	0.079	
Early et al.21	Beers, STOPP	Fall-risk drugs, PIM	Falls	Adjusted	OR	Single PIM: 1.021 (0.998–1.044)	>0.05	
						Two classes of PIM: 1.128 (1.102–1.154)	<0.05	
						Five or more classes of PIM: 1.579 (1.540–1.619)	<0.05	
Fernández et al.22	Beers	PIM	Recurring falls	Adjusted	OR	2.43 (1.08–5.84)	0.028	
Frankenthal et al.29	STOPP/START	PIM and PPO	Average number of falls	NG	Difference	−0.5 (−0.9245 to −0.0755)	0.006	
						Physical component score NG	Difference 1.1 (−0.59 to 2.80)	0.07
Table 2. (continued)

Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
García-Gollarte et al.	STOPP/START	PIM and PPO	Falls	NG	Mean Difference	−0.08	0.251
Hamilton et al.	STOPP Beers	PIM	Benzodiazepines users (STOPP) + Falls	Proportion (%)	100	91.7	
			Opiate users (STOPP) + Falls		100		
			Opiate users (Beers) + Falls		0		
			Sedative-Hypnotics users (STOPP) + Falls		0		
			Sedative-Hypnotics users (Beers) + Falls		0		
			Neuroleptics-users (STOPP) + Fall		100		
			Neuroleptics-users (Beers) + Falls		20		
Hill-Taylor et al.	STOPP	Benzo (STOPP and zopicone)	Proportion of fallers taking these PIMs	Proportion	21.60%		
Ie et al.	Fall risk-increasing drugs	PIM	Fall-months	Adjusted	Rate ratio	≥2: 1.67 [1.04–2.68]	<0.05
	Beers	PIM			≥1: 1.15 [0.72–1.84]	>0.05	
	Anticholinergic Cognitive Burden	PIM			>0.655 score: 1.24 [0.80–1.92]	>0.05	
	Drug Burden Index	PIM			≥0.15 score: 1.51 [0.88–2.58]	>0.05	
Manias et al.	STOPP/START	PIM	Falls	Adjusted	Exp(β) incident count	1.071 [0.883–1.299]	0.484
McMahon et al.	STOPP	PIM	% prescribing in fallers [pre-fall]	NG	Prevalence	42.2%	0.70
	Beers	PIM	% prescribing in fallers [pre-fall]	Prevalence	44.0%	0.10	

(Continued)
Table 2. (continued)

Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Nagai et al.53	STOPP-J	PIM	Subsequent falls in patients with distal radius fractures	Adjusted	OR	1.713 (1.246–2.357)	<0.001
Narayan and Nishtala16	Beers	PIM	Fall-related hospitalisation	Adjusted	IRR	1.45 (1.37–1.52)	<0.05
Ota et al.27	Beers	PIM	Fall, or fracture or injury	Adjusted	OR	0.77 (0.51–1.13)	>0.05
Renom-Guiteras et al.62	EU(7) - PIM List	PIM	Falls	Adjusted	OR	1.54 (1.04–2.30)	<0.05
Schiek et al.28	PRISCUS	PIM	FRIARs (fall-risk-increasing adverse reactions)	Unadjusted	OR	1.966 (1.164–3.320)	<0.05
EU(7)-PIM	PIM					1.668 (0.900–3.091)	>0.05
Beers	PIM					1.345 (1.065–1.698)	<0.05
Stockl et al.29	Beers	PIM	Fall or Fracture	Adjusted	HR	1.22 (1.10–1.35)	<0.001
Walker et al.30	Beers	PIM	Risk of falling	Adjusted	OR	1.14 (1.00–1.29)	0.0492
Weeks et al.35	STOPP/START	PIM and PPO	Fall and physical restraints	NG	NG	No difference between exposure and controls	>0.05
Falls and Fractures							
Dalleur et al.34	STOPP/START	PIM	Fall	Adjusted	OR	5.2 [2.2–12.3]	<0.001
	PPO		Osteoporotic fractures	Adjusted	OR	5.0 [2.2–11.4]	<0.001
	PIM		PIM related fall admission in patients with fall-risk-PIM	NG	PPV	0.68	
	PPO		PPO related fall admission in patients with fall-risk-PPO			0.25	
Delgado et al.37	STOPP	PIM	Fall	Adjusted	HR	1.37 [1.15–1.63]	<0.01
	PIM		Fracture	Adjusted	HR	0.92 [0.70–1.19]	0.51
Fick et al.31	Beers	PIM	Fall	Adjusted	OR	4.00 [1.76–9.76]	<0.0001
Fick et al.32	Beers	PIM	Fracture	Adjusted	OR	1.14 [0.50–2.65]	0.72
	PIM		Fall	Adjusted	OR	4.05 [1.89–8.69]	<0.01

(Continued)
Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value	
Beers, PIM	Hip fracture	Unadjusted	Adjusted OR 3.10 (1.71–5.62)	<0.01				
Beers, PIM	Femur fracture	Adjusted	OR 6.80 (1.95–23.67)	<0.01				
Hyttinen et al,60	Meds75+ Database	PIM	Hip fracture rates	Unadjusted but time-varying model	HR 1.15 (0.94–1.40)	>0.05		
Hyttinen et al,61	Meds75+ Database	PIM	Fracture related hospitalisations (1 month after exposure)	Adjusted	HR 1.61 (1.11–2.33)	0.013		
Lu et al,33	Beers, PIM	Fracture related hospitalisations (3 months after exposure)	Adjusted	HR 1.50 (1.22–1.84)	<0.01			
Lu et al,33	Beers, PIM	Fracture related hospitalisations (6 months after exposure)	Adjusted	HR 1.38 (1.21–1.57)	<0.01			
Bonfiglio et al,58	STOPP-J	PIM	Bartel Index	Not adjusted	Independent t-test	With PIM: mean = 97.8 (SD = 5.5)	0.541	
De Vincentis et al,34	Beers	PIM	Barthel Index at 3-month follow up	Adjusted	HR	–2 (–7.03 to 3.31)	0.454	
De Vincentis et al,34	STOPP	PIM	Barthel Index at 3-month follow up	Adjusted	HR	–1 (–6.59 to 4.92)	0.734	
Anticholinergic Cognitive Burden	PIM	Barthel Index at 3-month follow up	Adjusted	HR	–7.55 (–12.37 to –2.47)	0.004		

(Continued)
Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value	
Gosch et al.	STOPP/START	PIM and PPO	ADLs	NG	NG	Low Functional Status	<0.001	
Manias et al.	STOPP/START	PIM	Independence in personal activities of daily living	Adjusted	OR	1.07 (0.95–1.19)	0.261	
			Independence in domestic ADL	Adjusted	OR	1.17 (1.01–1.34)	0.036	
			Independence in community ADL	Adjusted	OR	1.25 (1.06–1.48)	0.010	
Mohamed et al.	Beers	PIM	Katz ADLs	Adjusted	OR	1.42 (0.87–2.32)	>0.05	
Moriarty et al.	STOPP	PIM	ADL	Adjusted	OR	>=2 PIM 1.22	0.439	
						[0.74–2.01]		
	Beers	PIM				>=2 PIM 2.11	0.001	
						(1.36–3.28)		
	ACOVE PIMs	PIM				>=2 PIM 1.10	0.792	
						[0.54–2.24]		
	START	PPO				>=2 PPO 1.98	0.008	
						[1.20–3.26]		
	ACOVE PPOs	PPO				>=2 PPO 1.82	0.009	
						[1.16–2.86]		
Nagai et al.	STOPP-J	PIM	Bartel Index gain	Adjusted	Beta	-0.313 (−13.188 to −4.430)	<0.001	
Pasina et al.	Anticholinergic	With anticholinergic medications	Barthel Index ADL	Adjusted	ANOVA	83.5 (81.9–85.0)	0.03	
	Cognitive Burden					86.3 (84.4–88.1)		
Renom-Guiteras et al.	EU(7) - PIM List	PIM	Katz-index of 0–2 versus 6	Adjusted	OR	2.93 (1.85–4.65)	<0.001	
						Katz-index of 3–5 versus 6	0.006	
Tosato et al.	STOPP	Beers	STOPP (PIM versus no PIM)	Decline in physical ADL	Adjusted	OR	2.00 (1.10–3.64)	<0.05
			Beers (PIM versus no PIM)	Decline in physical ADL	Adjusted	OR	1.57 (0.85–2.89)	>0.05
			STOPP (>=2 PIMs)	Decline in physical ADL	Adjusted	OR	3.50 (1.77–6.91)	<0.05
			Beers (>=2 PIMs)	Decline in physical ADL	Adjusted	OR	1.90 (0.95–3.81)	>0.05

(Continued)
Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Bonfiglio et al., 58	STOPP-J	PIM	IADL	Not adjusted	Independent t-test	With PIM: mean = 0.8 (SD = 0.1)	0.203
Cardwell et al., 63	Drug burden index	PIM	Functional status, change in Nottingham Extended ADL	Adjusted	Difference in mean score	Māori: 12 months: 0.49 (0.82–1.11)	0.77
Koyama et al., 38	Beers	PIM	IADL impairments	Adjusted	OR	1.36 (1.05–1.75)	<0.05
Mohamed et al., 35	Beers	PIM	IADL impairment	Adjusted	OR	1.72 (1.09–2.73)	<0.05
Anson et al., 66	Quantitative drug index	Falls-risk medications	Berg Balance Scale	Adjusted	Multiple regression	Standardised beta: −0.26	0.02
			TUG Test	Adjusted	Multiple regression	Standardised beta: 0.007	
			TUG Test with cognitive dual task	Adjusted	Multiple regression	Standardised beta: 0.27	
			Activities-specific Balance Confidence	Adjusted	Multiple regression	Standardised beta: −0.032	
Gosch et al., 59	STOPP/START	PIM and PPO	TUG Test	Adjusted	NG	Low mobility patients have more STOPP items	0.036
				Unadjusted	NG	Low mobility patients have more STOPP items	0.006

(Continued)
Table 2. (continued)

Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Gnjidic et al.	Drug burden index	Anticholinergic and sedative medications	Chair Stand Test (CST)	NG	Difference in time	CST: 0.58 (−0.11 to 1.27)	>0.05
			6 m Walking Speed (6WS)	Difference in speed	6WS: −0.03 (−0.05 to 0.00)	<0.05	
			20 cm NWS	Difference in speed	NWS: −0.03 (−0.05 to −0.01)	<0.05	
			Grip Strength (GS)	Difference in kg (GS)	GS: −1.09 (−1.90 to −0.28)	<0.01	
			Balance	Difference in performance score (Balance)	Balance: −0.11 (−0.18 to −0.03)	<0.01	
Kersten et al.	NORGEP Beers	PIM	TUG Test	Adjusted	ANOVA F	0.20	0.80
			HGS (Left Hand)	ANOVA F	2.20	0.10	
Naples et al.	Beers	PIM	GSD	Unadjusted	OR	1.06 (0.92–1.24)	>0.05
			GSD	Adjusted (with time- varying age)	OR	1.08 (0.93–1.26)	>0.05
			GSD	Adjusted (without time- varying age)	OR	1.06 (0.90–1.24)	>0.05
			GSD (slow walkers)	Unadjusted	OR	1.28 (1.03–1.58)	<0.05
			GSD (slow walkers)	Adjusted (with time- varying age)	OR	1.27 (1.02–1.57)	<0.05
			GSD (slow walkers)	Adjusted (without time- varying age)	OR	1.23 (0.97–1.55)	>0.05
			GSD (fast walkers)	Unadjusted	OR	1.15 (0.92–1.44)	>0.05
			GSD (fast walkers)	Adjusted (with time- varying age)	OR	1.13 (0.90–1.42)	>0.05
			GSD (fast walkers)	Adjusted (without time- varying age)	OR	1.03 (0.81–1.31)	>0.05
Sengul Aycicek et al.	Beers	PIM	BPBS – balance	Adjusted	OR	11.05 (2.39–51.10)	0.002

(Continued)
Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Bonfiglio et al.	STOPP-J	PIM	Quality of Life VAS	Adjusted	OR	0.973 (0.939–1.008)	0.131
Chan et al.	Beers	PIM	Fried Criteria for Frailty	Adjusted	OR	1.171 (0.676–2.028)	0.573
Chin et al.	Beers	PIM	SOF Score	NG			
						Correlation between change in # of PIMs and change in SOF score from admission to discharge	
						$r = -0.44$	<0.001
Hasan et al.	Beers	PIM	Groningen Frailty Indicator	NG	Spearman’s correlation r	0.025 (outpatient) 0.745 (outpatient)	
STOPP	Potential inappropriate prescribing						
						0.097 (inpatient) 0.206 (inpatient)	
Drug burden index	Sedatives and anticholinergics						
						−0.065 (inpatient) 0.399 (inpatient)	
	Beers	PIM	Older People’s Quality of Life	NG	Spearman’s correlation r	−0.157 (outpatient) 0.040 (outpatient)	
STOPP	Potential inappropriate prescribing						
						−0.085 (inpatient) 0.267 (inpatient)	
						0.022 (inpatient) 0.774 (inpatient)	

(Continued)
Table 2. (continued)

Author	Criteria used	Type of medications	Outcome measured	Adjustments	Statistical unit	Result (95% CI)	p value
Iaboni et al.	Beers	PIM	Time to full functional recovery following hip fracture	Adjusted	HR	0.69 (0.52–0.92)	0.012
Kose et al.	Beers	PIM	FIM	Adjusted	FIM gain	−1.393 × change in number of PIM + 5.7	<0.0001
Kose et al.	Beers	PIM	FIM–motor	Adjusted	Linear regression, changes in number of PIMs	Beta = −0.988 (−1.919 to −0.056)	0.0377
Mohamed et al.	Beers	PIM	OARS PH survey	Adjusted	OR	1.97 (1.15–3.37)	<0.05
Shibasaki et al.	Beers	PIM	FIM gain: FIM at discharge	Adjusted	Standardised β	0.084	0.260
Umit et al.	START/STOPP	Prolonged use of benzodiazepines	ECOG Performance status (men)	NG	OR	2.46 (1.91–3.27)	0.007

ACOVE, assessing care of vulnerable elders indicators; ADL, activities of daily living; BPBS, Biosway Portable Balance System; ECOG, Eastern Cooperative Oncology Group; FIM, functional independence measure; GSD, gait speed decline; HGS, hand grip strength; HR, hazard ratio; IADL, instrumental activities of daily living; IRR, incidence rate ratio; NG, not given; NORGEP, Norwegian General Practice; NWS, narrow walking speed; OARS PH, Older Americans Resources and Services Physical Health; OR, odds ratio; PIM, potentially inappropriate medications; PIPM, potential inappropriate psychoactive medications; PPO, potential prescribing omissions; PPV, positive predictive value; SOF, scale of functioning; START, screening tool to alert to right treatment; STOPP, screening tool of older people’s prescriptions; TUG, timed up and go test.

Table 3. Effect of inappropriate medication prescriptions on physical function.

Type of physical function	Outcome
Falls	21a 9b 0c
Fractures	7a 2b 0c
Activities of daily living	8a 2b 0c
Instrumental activities of daily living	4a 2b 0c
Physical performance	5a 2b 0c
Functional independence score	9a 1b

4Significantly associated with impediment of physical function.
5No significant association with physical function.
6Significantly associated with improvement of physical function.

Health-Related Quality-of-Life Score.42 In one study, a lowering in the number of PIMs was associated with a significant increase in the Functional Independence Measure.45 In one study, PIM use was associated with a longer time to full functional recovery in older patients who had surgery for a hip fracture, especially those patients who were using two or more PIMs at 2–14 days after surgical hip fracture repair.44

Quality of included studies
Table 4 shows the results of the modified Newcastle-Ottawa Scale (Supplemental Files S2 and S3), which assesses the quality of included studies. The median total NOS score was 6.0 (IQR 5–7).
Table 4. Quality of included studies (N=55).

Author	Selection	Comparability	Outcome	Total
	S1 S2 S3 S4	C1 01 02 03		
Longitudinal studies				
Ackroyd-Stolarz et al. \(^{13}\)	1 1 1 0	0 1 0 0	4	
Agashivala and Wu \(^{14}\)	1 1 1 1	1 1 0 0	6	
Beer \(^{15}\) et al.	1 1 1 0	1 1 1 1	7	
Berdot \(^{16}\) et al.	1 1 1 0	1 0 1 1	6	
Borenstein \(^{17}\) et al.	1 1 1 0	0 1 1 1	6	
Cardwell \(^{13}\) et al.	1 1 1 0	2 1 1 8		
Chan \(^{41}\) et al.	1 1 1 1	0 1 1 0	6	
Chin \(^{42}\) et al.	1 1 1 0	0 1 1 1	6	
Chun \(^{20}\) et al.	1 1 1 0	0 1 1 1	6	
De Vincentis \(^{34}\) et al.	1 1 1 0	1 1 1 7		
Delgado \(^{37}\) et al.	1 1 1 0	1 1 1 7		
Early \(^{21}\) et al.	1 1 1 1	1 1 1 8		
Fernández \(^{22}\) et al.	1 1 1 1	0 1 1 1	7	
Fick \(^{31}\) et al.	1 1 1 0	0 1 0 4		
Fick \(^{32}\) et al.	1 1 1 0	1 1 0 5		
Frankenthal \(^{49}\) et al.	1 1 1 0	0 1 1 6		
García-Gollarte \(^{50}\) et al.	1 1 1 0	0 1 1 6		
Gosch \(^{59}\) et al.	1 1 1 0	1 1 1 0	6	
Hamilton \(^{23}\) et al.	1 1 1 0	0 1 1 0	5	
Hill-Taylor \(^{51}\) et al.	1 1 1 0	0 1 1 0	5	
Hyttinen \(^{40}\) et al.	1 1 1 0	1 1 0 5		
Hyttinen \(^{41}\) et al.	1 1 1 1	1 1 1 8		
Iaboni \(^{44}\) et al.	1 1 1 0	1 0 1 0	5	
Ie \(^{24}\) et al.	1 1 1 0	1 1 1 1	7	
Kersten \(^{8}\) et al.	1 1 1 0	1 1 1 7		
Kose \(^{45}\) et al.	1 1 1 0	0 1 1 0	5	
Kose \(^{46}\) et al.	1 1 1 1	1 1 1 0	7	
Koyama \(^{38}\) et al.	1 1 1 0	1 1 1 0	6	
Lu \(^{23}\) et al.	1 1 1 0	1 1 0 5		

(Continued)
Author	Selection	Comparability	Outcome	Total					
	S1	S2	S3	S4	C1	01	02	03	
Manias et al.	1	1	1	0	0	1	0	0	4
McMahon et al.	1	1	1	1	1	1	0	0	6
Moriarty et al.	1	1	1	0	1	1	1	1	7
Nagai et al.	1	0	1	0	1	1	1	1	6
Nagai et al.	1	1	1	1	1	1	1	1	8
Naples et al.	1	1	1	1	1	1	1	1	8
Narayan and Narayan	1	1	1	0	1	1	1	0	6
Ota et al.	1	1	1	1	1	1	1	1	8
Pasina et al.	1	1	1	1	0	1	1	1	6
Renom-Guiteras et al.	1	1	1	0	1	0	1	1	6
Schiek et al.	1	1	1	1	0	1	1	1	7
Sengul Aycicek et al.	1	1	1	1	1	1	1	0	7
Shibasaki et al.	1	1	1	1	1	1	1	0	7
Stockl et al.	1	1	1	1	1	1	0	0	6
Tosato et al.	1	1	1	0	2	1	1	0	7
Umit et al.	1	1	1	0	0	1	1	0	5
Walker et al.	1	1	1	1	1	1	1	1	8
Weeks et al.	1	1	1	0	1	1	1	0	6
Cross-sectional studies									
Anson et al.	1	1	1	0	0	1	NA	NA	4
Bonfiglio et al.	1	1	1	0	1	1	NA	NA	5
Cameron et al.	1	1	1	0	1	1	NA	NA	5
Carter et al.	1	1	0	0	0	0	NA	NA	2
Dalleur et al.	1	1	1	0	1	1	NA	NA	5
Gnjidic et al.	1	1	1	0	1	1	NA	NA	5
Hasan et al.	0	1	1	0	1	1	NA	NA	4
Mohamed et al.	1	1	1	1	1	1	NA	NA	6

Discussion

The systematic review showed that PIMs were associated with a higher rate of falls and fractures. There was one study examining the association of PPOs on falls and fractures. PIMs and PPOs were also associated with impairment in ADLs and...
IADL impairment. PIMs and PPOs were also associated with poor physical performance comprising the Timed Up and Go test, walking speed, grip strength, time to functional recovery, functional independence and scale of functioning. In contrast to extensive work conducted with PIMs, there was a small amount of research related to associations of PPOs and physical function.

A number of medication classes were implicated as PIMs in falls, fractures and impairment in physical performance including antipsychotic, sedative, anti-anxiety, anticholinergic, antidiabetic, opioid and antihypertensive medications. Aside from the use of PIMs, the combination of different medications can lead to drug interactions that could have exacerbated the adverse effects experienced by older adults, thereby leading to higher propensity for impaired physical function. Furthermore, adverse drug reactions can occur independently of PIMs, which can contribute to accentuating the impact on physical function. Anticholinergic cognitive burden is also associated with increased susceptibility of delirium, longer hospital stays and increased prescription of more medications. This combination of events may also further impede physical performance experienced by older patients.

There has been limited research examining the association of PPOs on physical function. Of studies examining PPOs, their impact has been considered as a large group entity rather than determining which PPO criteria or medication groups may be associated with physical function. Conversely, a study by Dalleur et al. study provided valuable insight into the association of prescribing omissions with physical function. In that study, prescribing omissions were associated with a significant number of hospital admissions in relation to osteoporotic fractures and fall admissions in patients with fall-risk PPOs. For their study, a pharmacist and a geriatrician independently used the STOPP and START criteria to detect PIMs and PPOs and their association with outcomes, which could contribute to reporting bias. Furthermore, for patients not receiving musculoskeletal medications, such as calcium, vitamin D and bisphosphonates, patients were found to be at risk of a hospital admission for a fall with a fracture. Further work is needed on other PPOs, and their associations with physical function. Examples include the lack of use of angiotensin converting enzyme inhibitors for cardiac failure, or the lack of use of regular inhaled beta-2 agonist or anticholinergic medication for chronic obstructive pulmonary disease, or the lack of use of platelet aggregation inhibitors, statins or antithrombotic agents for ischaemic heart disease. Omissions of these medications may lead to symptoms affecting patients’ physical function and mobility.

Methodological limitations of past studies related to their focus on PIMs rather than PPOs. Most studies focussed on older people living in the community and hospitals. The results may therefore not be extended to different clinical situations. There has been an increased focus in recent years on comparing results between screening tools for inappropriate medication prescribing. Further work is needed to determine the sensitivity in the use of various tools in terms of the associations between inappropriate prescribing and physical function. While many studies comprised large sizes, some studies had small samples, which could have impacted results related to physical function. In most studies, the dose effect of how the number of inappropriate medications was associated with physical function related adverse outcomes was not examined. Fewer than half of the studies involved a prospective cohort design. Further research is also needed on how changes in inappropriate prescribing across transitions of care are associated with physical function.

Strengths and limitations

A strength of the systematic review is that studies were included only if they used a validated tool to assess the appropriateness of medications. This approach was undertaken to eliminate sources of bias that could arise from a geriatrician or a pharmacist labelling a medication as inappropriate. All settings were included in the systematic review, which facilitated a comprehensive examination of the topic. A limitation of the systematic review was that only studies published in English were included. Conference papers were excluded from the systematic review because of the limited information contained in these sources. It is possible that additional insights may have been obtained from such sources.
Conclusion
Inappropriate medication prescribing is associated with poor physical function. Health professionals should focus on supporting older people to reduce the use of PIMs and PPOs. More research is required to investigate the associations of PPOs and physical function.

Conflict of interest statement
The authors declare that there is no conflict of interest.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Supplemental material
Supplemental material for this article is available online.

ORCID iD
Elizabeth Manias https://orcid.org/0000-0002-3747-0087

References
1. Primejdie DP, Bojita MT and Popa A. Potentially inappropriate medications in elderly ambulatory and institutionalized patients: an observational study. *BMC Pharmacol Toxicol* 2016; 17: 38.
2. Morin L, Fastbom J, Laroche ML, et al. Potentially inappropriate drug use in older people: a nationwide comparison of different explicit criteria for population-based estimates. *Br J Clin Pharmacol* 2015; 80: 315–324.
3. Junius-Walker U, Theile G and Hummers-Pradier E. Prevalence and predictors of polypharmacy among older primary care patients in Germany. *Fam Pract* 2007; 24: 14–19.
4. Mallet L, Spinewine A and Huang A. The challenge of managing drug interactions in elderly people. *Lancet* 2007; 370: 185–191.
5. Chen CC and Cheng SH. Potentially inappropriate medication and health care outcomes: an instrumental variable approach. *Health Serv Res* 2016; 51: 1670–1691.
6. Beswick AD, Rees K, Dieppe P, et al. Complex interventions to improve physical function and maintain independent living in elderly people: a systematic review and meta-analysis. *Lancet* 2008; 371: 725–735.
7. Landi F, Russo A, Liporoti R, et al. Impact of inappropriate drug use on physical performance among a frail elderly population living in the community. *Eur J Clin Pharmacol* 2007; 63: 791–799.
8. Kersten H, Hvidsten LT, Glaeser G, et al. Clinical impact of potentially inappropriate medications during hospitalization of acutely ill older patients with multimorbidity. *Scand J Prim Health Care* 2015; 33: 243–251.
9. Maerz AH, Walker BS, Collier BR, et al. The Beers criteria: not just for geriatrics anymore? Analysis of Beers criteria medications in nongeriatric trauma patients and their association with falls. *J Trauma Acute Care Surg* 2019; 87: 147–152.
10. Katsimpris A, Linseisen J, Meisinger C, et al. The association between polypharmacy and physical function in older adults: a systematic review. *J Gen Intern Med* 2019; 34: 1865–1873.
11. Peron EP, Gray SL and Hanlon JT. Medication use and functional status decline in older adults: a narrative review. *Am J Geriatr Pharmacother* 2011; 9: 378–391.
12. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan — a web and mobile app for systematic reviews. *Syst Rev* 2016; 5: 210.
13. Ackroyd-Stolarz S, Mackinnon NJ, Sketris I, et al. Potentially inappropriate prescribing of benzodiazepines for older adults and risk of falls during a hospital stay: a descriptive study. *Can J Hosp Pharm* 2009; 62: 276–283.
14. Agashivala N and Wu WK. Effects of potentially inappropriate psychoactive medications on falls in US nursing home residents: analysis of the 2004 National Nursing Home Survey database. *Drugs Aging* 2009; 26: 853–860.
15. Beer C, Hyde Z, Almeida OP, et al. Quality use of medicines and health outcomes among a cohort of community dwelling older men: an observational study. *Br J Clin Pharmacol* 2011; 71: 592–599.
16. Berdot S, Bertrand M, Dartigues JF, et al. Inappropriate medication use and risk of falls – a prospective study in a large community-dwelling elderly cohort. *BMC Geriatr* 2009; 9: 30.
17. Borenstein J, Aronow HU, Bolton LB, et al. Early recognition of risk factors for adverse outcomes during hospitalization among Medicare patients: a prospective cohort study. *BMC Geriatr* 2013; 13: 72.
18. Cameron EJ, Bowles SK, Marshall EG, et al. Falls and long-term care: a report from the care by design observational cohort study. *BMC Fam Pract* 2018; 19: 73.
19. Carter MW and Gupta S. Characteristics and outcomes of injury-related ED visits among older adults. Am J Emerg Med 2008; 26: 296–303.

20. Chun JC, Appel SJ and Simmons S. 2015 Beers criteria medication review in assisted living facilities. J Am Assoc Nurse Pract 2018; 30: 648–654.

21. Early NK, Fairman KA, Hagarty JM, et al. Joint effects of advancing age and number of potentially inappropriate medication classes on risk of falls in Medicare enrollees. BMC Geriatr 2019; 19: 194.

22. Fernández A, Gómez F, Curcio C-L, et al. Prevalence and impact of potentially inappropriate medication on community-dwelling older adults. Biomedica 2021; 41: 111–122.

23. Hamilton H, Gallagher P, Ryan C, et al. Potentially inappropriate medications defined by STOPP criteria and the risk of adverse drug events in older hospitalized patients. Arch Intern Med 2011; 171: 1013–1019.

24. Ie K, Chou E, Boyce RD, et al. Fall risk-increasing drugs, polypharmacy, and falls among low-income community-dwelling older adults. Innov Aging 2021; 5: 1–9.

25. McMahon CG, Cahir CA, Kenny RA, et al. Inappropriate prescribing in older fallers presenting to an Irish emergency department. Age Ageing 2014; 43: 44–50.

26. Narayan SW and Nishtala PS. Associations of potentially inappropriate medicine use with fall-related hospitalisations and primary care visits in older New Zealanders: a population-level study using the updated 2012 Beers criteria. Drugs Real World Outcomes 2015; 2: 137–141.

27. Ota T, Patel RJ and Delate T. Effectiveness of best practice alerts for potentially inappropriate medication orders in older adults in the ambulatory setting. Perm J. Epub ahead of print 22 November 2020. DOI: 10.7812/TPP/7819.7041.

28. Schiek S, Hildebrandt K, Zube O, et al. Fall-risk-increasing adverse reactions—is there value in easily accessible drug information? A case-control study. Eur J Clin Pharmacol 2019; 75: 849–857.

29. Stockl KM, Le L, Zhang S, et al. Clinical and economic outcomes associated with potentially inappropriate prescribing in the elderly. Am J Manag Care 2010; 16: e1–e10.

30. Walker BS, Collier BR, Bower KL, et al. The prevalence of Beers criteria medication use and associations with falls in geriatric patients at a level 1 trauma center. Am Surg 2019; 85: 877–882.

31. Fick D, Kolanowski A and Waller J. High prevalence of central nervous system medications in community-dwelling older adults with dementia over a three-year period. Aging Ment Health 2007; 11: 588–595.

32. Fick DM, Mion LC, Beers MH, et al. Health outcomes associated with potentially inappropriate medication use in older adults. Res Nurs Health 2008; 31: 42–51.

33. Lu WH, Wen YW, Chen LK, et al. Effect of polypharmacy, potentially inappropriate medications and anticholinergic burden on clinical outcomes: a retrospective cohort study. CMAJ 2015; 187: e130–e137.

34. De Vincentis A, Gallo P, Finamore P, et al. Potentially inappropriate medications, drug-drug interactions, and anticholinergic burden in elderly hospitalized patients: does an association exist with post-discharge health outcomes? Drugs Aging 2020; 37: 585–593.

35. Mohamed MR, Ramsdale E, Loh KP, et al. Association of polypharmacy and potentially inappropriate medications with physical functional impairments in older adults with cancer. J Natl Compr Canc Netw. Epub ahead of print 22 January 2021. DOI: 10.6004/jnccn.2020.7628.

36. Moriarty F, Bennett K, Kenny RA, et al. Comparing potentially inappropriate prescribing tools and their association with patient outcomes. J Am Geriatr Soc 2020; 68: 526–534.

37. Tosato M, Landi F, Martone AM, et al. Potentially inappropriate drug use among hospitalised older adults: results from the CRIME study. Age Ageing 2014; 43: 767–773.

38. Koyama A, Steinman M, Ensrud K, et al. Long-term cognitive and functional effects of potentially inappropriate medications in older women. J Gerontol A Biol Sci Med Sci 2014; 69: 423–429.

39. Naples JG, Marcum ZA, Perera S, et al. Impact of drug-drug and drug-disease interactions on gait speed in community-dwelling older adults. Drugs Aging 2016; 33: 411–429.

40. Sengul Aycicek G, Arik G, Kizilarslanoglu MC, et al. Association of polypharmacy with postural instability and impaired balance in community-dwelling older adults in Turkey. Marmara Med J 2021; 34: 12–17.
41. Chan VT, Woo BKP, Sewell DD, et al. Reduction of suboptimal prescribing and clinical outcome for dementia patients in a senior behavioral health inpatient unit. Int Psychogeriatr 2009; 21: 195–199.

42. Chin MH, Wang LC, Jin L, et al. Appropriateness of medication selection for older persons in an urban academic emergency department. Acad Emerg Med 1999; 6: 1232–1242.

43. Hasan SS, Burud IAS, Kow CS, et al. Use of potentially inappropriate medications among older outpatients and inpatients in a tertiary care hospital in Malaysia. Int J Clin Pract 2021; 75: e13714.

44. Iaboni A, Rawson K, Burkett C, et al. Potentially inappropriate medications and the time to full functional recovery after hip fracture. Drugs Aging 2017; 34: 723–728.

45. Kose E, Hirai T, Seki T, et al. Role of potentially inappropriate medication use in rehabilitation outcomes for geriatric patients after strokes. Geriatr Gerontol Int 2018; 18: 321–328.

46. Kose E, Hirai T, Seki T, et al. The impact of decreasing potentially inappropriate medications on activities of daily living in a convalescent rehabilitation setting. Int J Clin Pharm. Epub ahead of print 2 November 2020. DOI: 10.1007/s11096-11020-01165-11093.

47. Shibasaki K, Asahi T, Kuribayashi M, et al. Potential prescribing omissions of anti-osteoporosis drugs is associated with rehabilitation outcomes after fragility fracture: retrospective cohort study. Geriatr Gerontol Int 2021; 21: 386–391.

48. Umitt EG, Baysal M, Bas V, et al. Polypharmacy and potentially inappropriate medication use in older patients with multiple myeloma, related to fall risk and autonomous neuropathy. J Oncol Pharm Pract 2020; 26: 43–50.

49. Frankenthal D, Lerman Y, Kalendaryev E, et al. Intervention with the screening tool of older persons potentially inappropriate prescriptions/screening tool to alert doctors to right treatment criteria in elderly residents of a chronic geriatric facility: a randomized clinical trial. J Am Geriatr Soc 2014; 62: 1658–1665.

50. Garcia-Gollarte F, Balериola-Júlvez J, Ferrero-López I, et al. An educational intervention on drug use in nursing homes improves health outcomes resource utilization and reduces inappropriate drug prescription. J Am Med Dir Assoc 2014; 15: 885–891.

51. Hill-Taylor B, Sketris IS, Gardner DM, et al. Concordance with a STOPOP (Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions) criterion in Nova Scotia, Canada: benzodiazepine and zopiclone prescription claims by older adults with fall-related hospitalizations. J Popul Ther Clin Pharmacol 2016; 23: e1–e12.

52. Manias E, Maier A and Krishnamurthy G. Inappropriate medication use in hospitalised oldest old patients across transitions of care. Aging Clin Exp Res 2019; 31: 1661–1673.

53. Nagai T, Nagaoka M, Tanimoto K, et al. Relationship between potentially inappropriate medications and functional prognosis in elderly patients with distal radius fracture: a retrospective cohort study. J Orthop Surg Res 2020; 15: 321.

54. Nagai T, Wakabayashi H, Maeda K, et al. Influence of potentially inappropriate medications on activities of daily living for patients with osteoporotic vertebral compression fractures: a retrospective cohort study. J Orthop Sci 2021; 26: 448–452.

55. Weeks WB, Mishra MK, Curto D, et al. Comparing three methods for reducing psychotropic use in older demented Spanish care home residents. J Am Geriatr Soc 2019; 67: 1444–1453.

56. Dalleur O, Spinewine A, Henrard S, et al. Inappropriate prescribing and related hospital admissions in frail older persons according to the STOPP and START criteria. Drugs Aging 2012; 29: 829–837.

57. Delgado J, Jones L, Bradley MC, et al. Potentially inappropriate prescribing in dementia, multimorbidity and incidence of adverse health outcomes. Age Ageing 2021; 50: 457–464.

58. Bonfiglio V, Umegaki H, Kuzuya M, et al. Potentially inappropriate medications and polypharmacy: a study of older people with mild cognitive impairment and mild dementia. J Alzheimers Dis 2019; 71: 889–897.

59. Gosch M, Wörtz M, Nicholas JA, et al. Inappropriate prescribing as a predictor for long-term mortality after hip fracture. Gerontol 2014; 60: 114–122.

60. Hyttinen V, Taipale H, Tolppanen AM, et al. Incident use of a potentially inappropriate medication and hip fracture in community-dwelling older persons with Alzheimer’s disease. Ann Pharmacother 2017; 51: 725–734.

61. Hyttinen V, Jyrkkä J, Saastamoinen LK, et al. The association of potentially inappropriate medication use on health outcomes and hospital
costs in community-dwelling older persons: a longitudinal 12-year study. Eur J Health Econ 2019; 20: 233–243.

62. Renom-Guiteras A, Thürmann PA, Miralles R, et al. Potentially inappropriate medication among people with dementia in eight European countries. Age Ageing 2018; 47: 68–74.

63. Cardwell K, Kerse N, Ryan C, et al. The association between Drug Burden Index (DBI) and health-related outcomes: a longitudinal study of the ‘oldest old’ (LiLACS NZ). Drugs Aging 2020; 37: 205–213.

64. Gnjidic D, Cumming RG, Le Couteur DG, et al. Drug burden index and physical function in older Australian men. Br J Clin Pharmacol 2009; 68: 97–105.

65. Pasina L, Djade CD, Lucca U, et al. Association of anticholinergic burden with cognitive and functional status in a cohort of hospitalized elderly: comparison of the anticholinergic cognitive burden scale and anticholinergic risk scale: results from the REPOSI study. Drugs Aging 2013; 30: 103–112.

66. Anson E, Thompson E, Odle BL, et al. Influences of age, obesity, and adverse drug effects on balance and mobility testing scores in ambulatory older adults. J Geriatr Phys Ther 2018; 41: 218–229.

67. Saka SA, Nlooto M and Oosthuizen F. American Geriatrics Society-Beers criteria and adverse drug reactions: a comparative cross-sectional study of Nigerian and South African older inpatients. Clin Interv Aging 2018; 13: 2375–2387.

68. Rigor J, Rueff Rato I, Ferreira PM, et al. Prehospital anticholinergic burden is associated with delirium but not with mortality in a population of acutely ill medical patients. J Am Med Dir Assoc 2020; 21: 481–485.