Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

Guiovanny Suarez-Rivera; Nelson-David Muñoz-Ceballos; Henry-Mauricio Vásquez-Carvajal

Citación: G. Suarez-Rivera, N.-D. Muñoz-Ceballos, H.-M. Vásquez-Carvajal, “Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot,” Revista Facultad de Ingeniería, vol. 30 (55), e12022, 2021. https://doi.org/10.19053/01211129.v30.n55.2021.12022

Recibido: Noviembre 01, 2020; Aceptado: Febrero 12, 2021; Publicado: Febrero 13, 2021

Derechos de reproducción: Este es un artículo en acceso abierto distribuido bajo la licencia CC BY

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

Guiovanny Suarez-Rivera
Nelson-David Muñoz-Ceballos
Henry-Mauricio Vásquez-Carvajal

Abstract

Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero. The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to
determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.

Keywords: Lyapunov stability; Matlab; mobile robots; parametric model; simulation; telerobotics.

Desarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedas

Resumen

Los métodos clásicos de modelamiento y control aplicados a robots móviles de locomoción diferencial generan ecuaciones matemáticas que representan con aproximación la dinámica del sistema y funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo. Sin embargo, pueden presentar baja precisión cuando hay muchas variaciones de la dinámica en el tiempo o se presentan perturbaciones. Para solucionar este problema se empleó un método recursivo de mínimos cuadrados (RLS) que usa una estructura en tiempo discreto de primer orden del modelo autorregresivo con variable exógena (ARX). Se realiza el diseño y sintonización de controladores autoajustables adaptativos PID en margen de fase y en asignación de polos. El principal aporte de esta metodología es que permite la actualización permanente y en línea (on–line) del modelo del robot y de los parámetros de los controladores autoajustables adaptativos PID, además, se implementó una técnica de análisis de estabilidad de Lyapunov para el control de seguimiento de trayectorias y de caminos, esto hace que los errores generados en el posicionamiento y la orientación del robot al realizar una determinada tarea tiendan asintóticamente a cero. El desempeño de los controladores autoajustables adaptativos PID es medido a través de la implementación de los criterios de la integral del error, lo cuales permiten determinar el controlador de mejor rendimiento, siendo para este caso el del tipo autoajustable adaptivo PID en asignación de polos, permitiendo al robot móvil mayor precisión en el seguimiento de las trayectorias y caminos asignados, así
como un menor desgaste mecánico y energético, debidos a sus movimientos suaves y precisos.

Palabras clave: estabilidad de Lyapunov; Matlab; modelo paramétrico; robots móviles; simulación; telerobótica.

Desenvolvimento de um controle adaptativo para rastrear a trajetória de um robô móvel com rodas

Resumo

Os métodos clássicos de modelagem e controle aplicados a robôs móveis de locomoção diferencial geram equações matemáticas que aproximam a dinâmica do sistema e funcionam relativamente bem quando o sistema é linear em uma faixa específica de trabalho. Porém, podem apresentar baixa precisão quando há muitas variações da dinâmica ao longo do tempo ou quando ocorrem distúrbios. Para resolver este problema, foi utilizado um método recursivo de mínimos quadrados (RLS) que utiliza uma estrutura de tempo discreta de primeira ordem do modelo autorregressivo com variável exógena (ARX). O projeto e o ajuste dos controladores autoajustáveis adaptativos PID são realizados na margem de fase e na atribuição de pólos. A principal contribuição desta metodologia é que ela permite a atualização permanente e online do modelo do robô e dos parâmetros dos controladores PID adaptativos autoajustáveis, além disso, foi implementada uma técnica de análise de estabilidade de Lyapunov para controle de trajetória e rastreamento de caminho, o que torna os erros gerados no posicionamento e orientação do robô ao realizar determinada tarefa assintoticamente tendem a zero. O desempenho dos controladores autoajustáveis PID adaptativos é medido através da implementação do critério integral de erro, que permite determinar o controlador de melhor desempenho, sendo neste caso o tipo PID autoajustável adaptativo na atribuição de pólos, permitindo ao robô móvel, maior precisão no seguimento das trajetórias e caminhos atribuídos, bem como menor desgaste mecânico e energético, devido aos seus movimentos suaves e precisos.

Palavras-chave: Estabilidad de Lyapunov; Matlab; modelo paramétrico; robôs móveis; simulação; telerobótica.
I. INTRODUCCIÓN
Generalmente los estudios sobre control de seguimiento de trayectorias de robots móviles parten de los modelos matemáticos clásicos descritos en la literatura, los cuales representan de manera muy simplificada la cinemática del robot, tales como [1, 2]. En algunos casos, se incluyen ecuaciones matemáticas que representan aproximadamente la dinámica del sistema [3]. Estas ecuaciones funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo, según lo planteado por Alves [4], el modelo matemático de los motores del sistema de tracción sólo es obtenido a partir de leyes físicas, por lo cual el modelo puede presentar baja precisión cuando hay muchas variaciones de la dinámica del sistema en el tiempo, incertidumbre o se presentan perturbaciones.
Trabajos relacionados han buscado solucionar este problema de diferentes formas, algunos autores se enfocan en analizar el impacto de las incertidumbres paramétricas de un modelo cinemático sobre la estimación de la velocidad y la pose del robot, lo cual brinda información importante para el diseño de los controladores [5]. Abdelwahab [6] presenta un sistema de control basado en reglas heurísticas con lógica difusa, que ha demostrado ser útil para abordar la incertidumbre y la imprecisión para lograr un seguimiento de trayectoria robusto y suave. Así mismo Ortigoza [7] propone como estrategia desarrollar modelos y controladores para cada subsistema que componen el robot, incluyendo la etapa de potencia. Dobribarsci [8] plantea la identificación de los motores hasta el diseño de controladores lineales y no lineales. En estos y otros artículos es común que los modelos obtenidos no contemplan actualizaciones en el tiempo.
El objetivo de la investigación es presentar una metodología para la identificación, modelamiento y control óptimo de un robot móvil en tareas de seguimiento de trayectorias [9], para lo cual se realiza identificación en línea, es decir, el modelo se está actualizado en tiempo real, constituyéndose en un aporte significativo a que el modelo y los controladores del robot sean más precisos. Se emplea un modelo paramétrico en tiempo discreto, dentro de los cuales se destaca, el modelo autorregresivo con variable exógena ARX [10, 11].
Este artículo se estructura así: En la sección 2 se describe brevemente el hardware, software y metodología utilizada para la identificación, modelado matemático y control, en la sección 3 se presentan los resultados y análisis, en la sección 4 se presentan las conclusiones.

II. MATERIALES Y MÉTODOS
En esta sección se describen los materiales hardware y software utilizado, y posteriormente la metodología para identificación, modelamiento y control del robot para misiones de seguimiento de trayectoria.

A. Robot móvil
Con el Kit educacional Lego Mindstorms EV3 [12], se construye un robot móvil de locomoción diferencial, como el que se muestra en la Figura 1.

B. Software
En el desarrollo del proyecto se utilizó el siguiente software:
1. Sistema Operativo Microsoft Windows 10 Professional.
2. Mathworks Matlab R2015a
3. Simulink Support Packaged para hardware Lego EV3.

Fig. 1. Componentes del robot Lego EV3 utilizado.
C. Identificación, modelamiento y control

1) Cinemática directa del robot móvil. Para obtener los datos del comportamiento cinemático del robot diferencial, se asume que el robot se desplaza en una superficie plana sin rozamiento, que se mueve únicamente por el movimiento rotacional de las ruedas, que es considerado como un mecanismo sólido, rígido y sin partes flexibles, pero que se deben tener en cuenta las restricciones holonómicas del sistema [13-14], es decir, no puede trasladarse a los lados, como se muestra en la Figura 2.

![Fig. 2. Restricciones holonómicas del robot diferencial.](image)

Las medidas de interés en el proceso de modelado son: la distancia entre las ruedas, denominada L y el radio de estas, denominado R, como se denota en la Figura 3.

![Fig. 3. Variables físicas del robot diferencial.](image)
Para poder lograr un movimiento preciso, se deben tener control sobre las velocidades de la rueda derecha e izquierda, VR y VL, las cuales afectan a los estados del sistema X, Y, θ. Las velocidades lineal y angular del robot, se define en las Ecuaciones (1) y (2), a partir de ellas, las Ecuaciones (3), (4) y (5) definen la cinemática del movimiento del robot en cada eje.

\[
\begin{align*}
V &= R \frac{V_r + V_l}{2} \\
W &= R \frac{V_r - V_l}{L} \\
\dot{X} &= V \cdot \cos \theta \\
\dot{Y} &= V \cdot \sin \theta \\
\dot{\theta} &= W
\end{align*}
\]

\[w_r = \frac{\dot{x}}{R} \cdot \cos \theta + \frac{\dot{y}}{R} \cdot \sin \theta + \frac{L}{2R} \cdot \dot{\theta}
\]

\[w_l = \frac{\dot{x}}{R} \cdot \cos \theta + \frac{\dot{y}}{R} \cdot \sin \theta - \frac{L}{2R} \cdot \dot{\theta}
\]

Siendo V la velocidad lineal, θ el ángulo de orientación, \(\dot{\theta}\) y W la velocidad angular.

La Ecuación (8) denota la cinemática del movimiento del vehículo. Con el modelo cinemático directo del robot se desarrolla el sistema de control para el seguimiento de la trayectoria.

\[
\begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
\frac{\cos \theta}{2} & \frac{\cos \theta}{2} & 0 \\
\frac{\sin \theta}{2} & \frac{\sin \theta}{2} & 0 \\
\frac{R}{L} & -\frac{R}{L} & 0
\end{bmatrix}
\begin{bmatrix}
w_r \\
w_l
\end{bmatrix}
\]

(8)

2) **Cinemática inversa del robot móvil**. Para controlar el desplazamiento del robot, se alteran las velocidades angulares de las ruedas del robot, las cuales se determinan partiendo de las velocidades lineal y angular deseadas, lo que se representa con la Ecuación (9).

\[
\begin{bmatrix}
w_r \\
w_l
\end{bmatrix} =
\begin{bmatrix}
\frac{\cos \theta}{R} & \sin \theta & L \\
\frac{\cos \theta}{R} & -\sin \theta & -L
\end{bmatrix}
\begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{\theta}
\end{bmatrix}
\]

(9)

3) **Identificación, modelado y control de motores**. Para el modelado de los motores, se emplea un método de identificación en línea, con un algoritmo recursivo por mínimos cuadrados RLS (Recursive Least Square) y modelos paramétricos autorregresivos con variable exógena ARX de primer orden. Para cada motor se implementa un controlador adaptivo autoajustable PID en asignación de polos. El algoritmo RLS constantemente actualiza el modelo ARX de los motores y los
parámetros de los controladores adaptivos, lo cual permite una respuesta más precisa del sistema. Las funciones de transferencia de los controladores de los motores se muestran en las Ecuaciones (10) y (11) y en la Figura 4 esta su implementación en Simulink.

\[G_c A(z) = \frac{-1.6006z^2 + 2.8942z - 0.8990}{z^2 - 1} \]
\[G_c D(z) = \frac{-1.2805z^2 + 2.3154z - 0.7192}{z^2 - 1} \]

Fig. 4. Controlador adaptivo autoajustable PID en asignación de polos.

Fig. 5. Cinemática del robot entre cada punto.

En esta representación, el vector de error de posición está dado por la ecuación (12).

\[e = R_{[x,y,\theta]}^T \]
Este error corresponde al sistema de referencia del robot \(\{X_R, Y_R, \theta\}\), siendo \(Y_G, X_G\), las coordenadas del objetivo. Si \(\alpha \in I\), donde:

\[
I = \left(\begin{array}{c}
-\frac{\pi}{2} \\
\frac{\pi}{2}
\end{array} \right)
\]

Aplicando la transformación a coordenadas polares considerando como su origen el punto objetivo, se obtiene:

\[
p = \sqrt{\Delta x^2 + \Delta y^2}
\]

\[
\alpha = -\theta + \arctan2(\frac{\Delta y}{\Delta x})
\]

\[
\beta = -\theta - \alpha
\]

Donde \(p\) es la distancia entre el robot móvil y el objetivo, \(\alpha\) es el ángulo necesario para orientar al robot hacia el punto objetivo. Finalmente \(\beta\) es el ángulo de orientación del robot respecto al sistema de coordenadas del punto objetivo.

La tarea del diseño del controlador es encontrar una matriz de control, la cual está dada por la Ecuación (17), en la Ecuación (18) se expresa la acción de control.

\[
K = \begin{bmatrix}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23}
\end{bmatrix}
\]

\[
\begin{bmatrix}
V \\
W
\end{bmatrix} = K \ast \underbrace{e}_{R_{[x,y,\theta]}}
\]

4) **Control de seguimiento de trayectorias.** Para el seguimiento de trayectorias se propone un algoritmo de control de Lyapunov, en base a los modelos de la cinemática del robot, para generar las consignas de la velocidad y el ángulo de orientación, con lo cual se pretende que el robot móvil siga los puntos coordenados \(x\) y \(y\) de la trayectoria de referencia descrita previamente en Matlab y transmitida vía wifi desde la computadora. La Figura 5 muestra los parámetros cinemáticos que se deben considerar entre cada punto de la trayectoria del robot. Las Ecuaciones (19) y (20), representan los modelos autorregresivos con variable exógena para cada motor.

\[
G_p, A(z) = \frac{1.252}{z - 0.128}
\]

\[
G_p, D(z) = \frac{1.226}{z - 0.156}
\]

En la Figura 6 se muestra la implementación en Simulink de las Ecuaciones 14, 15, 16, y del generador de trayectorias en el bloque de MATLAB function.
Fig. 6. Generator of trajectories with parameters ρ and β.

Fig. 7. Simulation of the Lyapunov controller for trajectory tracking.

Para el modelado y simulación del control de seguimiento de puntos de trayectoria del robot móvil, se implementó en Simulink, las Ecuaciones (19) y (20) para el control de las velocidades lineal y angular del robot móvil. En la Figura 7 se tiene el resultado de la validación y simulación del seguimiento de trayectoria por Lyapunov.

\[
V = K_1 \cos(\alpha) \rho \quad (21)
\]

\[
W = K_2 \alpha + K_1 \cos(\alpha) \sin(\alpha) (\alpha + q_2 \beta) / \alpha \quad (22)
\]

con \(K_1 > 0 \) y \(K_2 > 0 \).

En la Figura 8 se muestra la cinemática directa e inversa del robot móvil diferencial.
III. RESULTADOS Y ANÁLISIS

En la Figura 9, se tienen los resultados de seguimiento de trayectorias del robot real, en donde se puede apreciar cierto margen de error al inicio de la realización de la trayectoria por parte del robot móvil, esto debido a los valores presentes en la matriz K, Ecuación (17). Para la trayectoria circular, donde el robot inicia desde la posición (0,0), con orientación de 0 grados, se aprecia que el robot requiere de mayor tiempo para alcanzar la trayectoria deseada, a diferencia de lo que sucede para la trayectoria en línea recta, lo cual influye en el gasto computacional por parte del sistema de procesamiento y consumo de energía por el sistema de tracción. En la Tabla 1, se muestra los criterios de integral del error [15], utilizados para la selección del controlador adaptivo autoajustable PID. Se observa que el controlador que tiene los mejores resultados es el adaptivo autoajustable en asignación de polos.

Motor	Criterio	Controlador Autoajustable en Margen de Fase	Controlador Autoajustable en Asignación de Polos
A	IAE	29.57	1.829
	ICE	736.3	17.31
	IAET	15.64	0.077
D	IAE	29.65	1.798
	ICE	736.8	17.16
	IAET	15.73	0.104
IV. CONCLUSIONES

La metodología de identificación, modelado y control que se presenta en este artículo permite la permanente actualización en línea del modelo de los motores del sistema de locomoción, así como de los parámetros de los controladores diseñados para el seguimiento de trayectorias del robot móvil diferencial, lo cual es una ventaja ya que se logra una respuesta del sistema más precisa, en comparación con técnicas tradicionales de identificación, modelado y control que poseen un rango limitado de operación.

El método de identificación en línea implementada permite conocer en cualquier instante de tiempo el modelo matemático de los motores, aspecto que no es posible en aquellas técnicas donde sólo se obtiene el modelo a partir de leyes físicas.

La actualización en línea de los parámetros de los controladores de seguimiento de trayectorias permite mayor precisión y suavidad en los movimientos del robot móvil, en comparación a los resultados obtenidos con los controladores clásicos PID evaluados. La ejecución de trayectorias suaves está asociada con menor esfuerzo de control y menor consumo energético [16].

La implementación de controladores a partir del análisis de estabilidad por Lyapunov, facilita que el sistema funcione de forma óptima ante cambios inesperados o

Fig. 9. Seguimiento trayectoria circular y recta robot real.
perturbaciones, en consecuencia, el robot puede presentar una mejor relación costo beneficio en el consumo de energía, suavidad de la trayectoria, precisión de movimientos, etc.

La metodología propuesta proporciona una estrategia para resolver misiones de control de seguimiento de trayectorias y caminos. Se realizaron simulaciones y experimentación en entornos reales con el fin de verificar su robustez y eficiencia. Además, llevar los modelos matemáticos a sistemas de primer orden favorece el bajo costo computacional de la solución planteada.

CONTRIBUCIÓN DE AUTORÍA

Guiovanny Suarez-Rivera: Conceptualización, Investigación, Metodología, Redacción-Borrador Original.

Nelson-David Muñoz-Ceballos: Metodología, Redacción-Revisión y edición.

Henry-Mauricio Vásquez-Carvajal: Metodología, Redacción-Revisión y edición.

REFERENCIAS

[1] G. Cook, F. Zhang, "Kinematic Models for Mobile Robots," in Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs, 2019, pp. 5-12. https://doi.org/10.1002/9781119534839.ch1

[2] M. Ben-Ari, F. Mondada, Elements of Robotics, Springer, Switzerland, 2018.

[3] R. Bibi, B. S. Chowdhry, R. A. Shah, "PSO based localization of multiple mobile robots employing LEGO EV3," in International Conference on Computing, Mathematics and Engineering Technologies, Sukkur, 2018, pp. 1-5. https://doi.org/10.1109/icomet.2018.8346452

[4] T. G. Alves, W. F. Lages, R. V. Henriques, "Parametric Identification and Controller Design for a Differential-Drive Mobile Robot," IFAC-PapersOnLine, vol. 51, no. 15, pp. 437-442, 2018. https://doi.org/10.1016/j.ifacol.2018.09.184

[5] J. G. N. D. Carvalho Filho, E. Á. N. Carvalho, L. Molina, E. O. Freire, "The Impact of Parametric Uncertainties on Mobile Robots Velocities and Pose Estimation," IEEE Access, vol. 7, pp. 69070-69086, 2019. https://doi.org/10.1109/access.2019.2919335

[6] M. Abdelwahab, V. Parque, A. M. R. Fath Elbab, A. A. Abouelsoud, S. Sugano, "Trajectory Tracking of Wheeled Mobile Robots Using Z-Number Based Fuzzy Logic," IEEE Access, vol. 8, pp. 18426-18441, 2020. https://doi.org/10.1109/ACCESS.2020.2968421

[7] L. Fan, Y. Zhang, S. Zhang, "Dynamic Trajectory Tracking Control of Mobile Robot," in 5th International Conference on Information Science and Control Engineering, Zhengzhou, 2018, pp. 728-732. https://doi.org/10.1109/ciscce.2018.00156
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

[8] D. Dobriborsci, A. Kapitonov, N. Nikolaev, "The basics of the identification, localization and navigation for mobile robots," in *International Conference on Information and Digital Technologies*, Zilina, 2017, pp. 100-105. https://doi.org/10.1109/dt.2017.8024279

[9] A. Kapitonov, E. Antonov, K. Artemov, D. Dobriborsci, E. Zamotaev, A. Karavaev, R. Al-Naim, O. Souzdalev, "Lego Mindstorms EV3 for teaching the basics of trajectory control problems," in *IEEE Frontiers in Education Conference*, United States, 2018, pp. 1-4. https://doi.org/10.1109/iefc.2018.8659322

[10] S. Mokhlis, S. Sadki, B. Bensassi, "System Identification of a DC Servo Motor Using ARX and ARMAX Models," in *International Conference on Systems of Collaboration Big Data, Internet of Things & Security*, Morocco, 2019, pp. 1-4. https://doi.org/10.1109/syscobiots48768.2019.9028015

[11] B. Raafiu, P. A. Darwito, "Identification of Four-Wheel Mobile Robot based on Parametric Modelling," in *International Seminar on Intelligent Technology and Its Applications*, Indonesia, 2018, pp. 397-401. https://doi.org/10.1109/isitia.2018.8710761

[12] M. A. Akmal, N. F. Jamin, N. M. A. Ghani, "Fuzzy logic controller for two wheeled EV3 LEGO robot," in *IEEE Conference on Systems, Process and Control*, Malacca, 2017, pp. 134-139. https://doi.org/10.1109/spc.2017.8313035

[13] A. Saradagi, V. Muralidharan, V. Krishnan, S. Menta, A. D. Mahindrakar, "Formation Control and Trajectory Tracking of Nonholonomic Mobile Robots," *IEEE Transactions on Control Systems Technology*, vol. 26, no. 6, pp. 2250-2258, Nov. 2018. https://doi.org/10.1109/tcst.2017.2749563

[14] A. Ashe, K. M. Krishna, "Dynamic Target Tracking & Collision Avoidance Behaviour of Person Following Robot Using Model Predictive Control," in *24th International Conference on System Theory, Control and Computing*, Romania, 2020, pp. 660-666. https://doi.org/10.1109/icstcc50638.2020.9259720

[15] R. C. Dorf, *Modern Control Systems*, 13th Edition, Prentice Hall. 2017.

[16] F. Correa, J. Gallardo, N. Muñoz, R. Perez, "Estudio comparativo basado en métricas para diferentes arquitecturas de navegación reactiva," *Ingeniare*, vol. 24, no. 1, pp. 46-54, Jan. 2016. https://doi.org/10.4067/s0718-33052016000100005