Some Classical Inequalities and their Applications

Mualla Birgül Hubana, Mehmet Gürdalb, Havva Tilkib

aIsparta University of Applied Sciences, Isparta, Turkey
bSuleyman Demirel University, Department of Mathematics, 32260, Isparta, Turkey

Abstract. In this paper, we define analogies of classical Hölder-McCarthy and Young type inequalities in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space \(\mathcal{H} = \mathcal{H}(\Omega) \). These inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also define quasi-paranormal and absolute-\(k \)-quasi paranormal operators and study their properties by using the Berezin symbols.

1. Introduction

Let \(\mathcal{H} = \mathcal{H}(\Omega) \) be a Hilbert space of complex-valued functions on some set \(\Omega \) such that \(f \to f(\lambda) \) is a continuous functional (evaluation functional) for any \(\lambda \) in \(\Omega \). Then, according to the Riesz’s representation theorem there exists uniquely \(k_\lambda \in \mathcal{H} \) such that

\[
 f(\lambda) = \langle f, k_\lambda \rangle
\]

for all \(f \in \mathcal{H} \). The function \(k_\lambda(z), \lambda \in \Omega, \) is called the reproducing kernel of the space \(\mathcal{H} \), and \(\tilde{k}_\lambda := \frac{k_\lambda}{\|k_\lambda\|} \) is called the normalized reproducing kernel in \(\mathcal{H} \) (see [2]). The space \(\mathcal{H} \) with the reproducing kernels \(k_\lambda, \lambda \in \Omega \), is called the reproducing kernel Hilbert space (RKHS). For a bounded linear operator \(A \) (i.e., for \(A \in \mathcal{B}(\mathcal{H}) \), the Banach algebra of all bounded linear operators on \(\mathcal{H} \)) its Berezin symbol \(\tilde{A} \) is defined by (Berezin [6, 7])

\[
 \tilde{A}(\lambda) := \langle A\tilde{k}_\lambda, \tilde{k}_\lambda \rangle, \ \lambda \in \Omega.
\]

The Berezin number \(\text{ber}(A) \) of operator \(A \) is the following number:

\[
 \text{ber}(A) := \sup_{\lambda \in \Omega} |\tilde{A}(\lambda)|.
\]
Since $|\hat{A}(\lambda)| \leq \|A\|$ (by the Cauchy-Schwarz inequality) for all $\lambda \in \Omega$, the Berezin number is a finite number and $\text{ber}(A) \leq \|A\|$. Recall that

$$W(A) := \{\langle Ax, x \rangle : x \in \mathcal{H} \text{ and } \|x\| = 1\}$$

is the numerical range of operator A and

$$w(A) := \sup \{\|Ax\| : x \in \mathcal{H} \text{ and } \|x\| = 1\} = \sup \{\mu : \mu \in W(A)\}$$

is the numerical radius of A (for more information, see [1, 20–22]). It is well known that

$$\text{Ber}(A) \subset W(A) \text{ and } \text{ber}(A) \leq w(A)$$

for any $A \in \mathcal{B}(\mathcal{H})$. More information about $\text{ber}(A)$ and relations between $\text{ber}(A)$, $w(A)$ and $\|A\|$ can be found in Karaev [16, 18], and also in [3–5, 9–15, 17, 19, 23–25].

In this section, by using the Hölder-McCarthy inequality, we prove some new inequalities for the Berezin number of operators acting on the RKHS $\mathcal{H} = \mathcal{H}(\Omega)$. Some other related questions also will be studied. In general, the present paper is motivated by the paper of Garayev [16], where the McCarthy, Hölder-McCarthy and Kantorovich operator inequalities were extensively used to get some new inequalities for the Berezin number of operators and their powers. Recall that for any positive operator A (i.e., $\langle Ax, x \rangle \geq 0$ for any $x \in \mathcal{H}$, shortly $A \geq 0$), there exists a unique positive operator R such that $R^2 = A$ (denoted by $R = A^{1/2}$).

An operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into $T = U P$, where U is a partial isometry and $P = [T] := (T^* T)^{1/2} \text{ (moduli of operator } T) \text{ with } \ker(T) = \ker(P)$ and the last condition uniquely determines U and P of the polar decomposition $T = U P$ (see Furuta [8]). In general, we will refer to the book of Furuta [8] for main definitions and notations.

2. Hölder-McCarthy Type Inequalities and Berezin number

In this section, by using the Hölder-McCarthy inequality, we prove some inequalities for the Berezin number of some operators on the RKHS \mathcal{H}.

Theorem 2.1. Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator. Then:

1) $\text{ber}(A^\mu) \geq \text{ber}(A)^\mu$ for any $\mu > 1$.
2) $\text{ber}(A^\mu) \leq \text{ber}(A)^\mu$ for any $\mu \in [0, 1]$.
3) If A is invertible, then $\text{ber}(A^\mu) \geq \text{ber}(A)^\mu$ for any $\mu < 0$.

Proof. First we prove 2). Indeed, assume that 2) holds for some $\alpha, \beta \in [0, 1]$. Then we only have to prove 2) holds for $\frac{\alpha + \beta}{2} \in [0, 1]$ by continuity of an operator. In fact, we have for any $\lambda \in \Omega$ that

$$\left(\left|A^{\alpha + \beta} k_1, k_3\right|^2\right)^{\frac{1}{2}} = \left|\langle A^\alpha k_1, A^\beta k_3 \rangle\right|^2 \text{ (by Cauchy-Schwarz inequality)}$$

$$\leq \langle A^\alpha k_1, k_3 \rangle \langle A^\beta k_3, k_3 \rangle \text{ (by assumption)}$$

$$\leq \langle k_1, k_3 \rangle^{\alpha + \beta},$$

so that $A^{\alpha + \beta} (\lambda) \leq A(\lambda)^{\alpha + \beta}$ holds for $\frac{\alpha + \beta}{2} \in [0, 1]$. This implies the desired inequality $\text{ber}(A^\mu) \leq \text{ber}(A)^\mu$ for any $\mu \in [0, 1]$.

1) Let $\mu > 1$. Then $\frac{1}{\mu} \in [0,1]$. For any $\lambda \in \Omega$

$$\langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle = \langle A^{\frac{1}{\mu}} \hat{A}k_\lambda, \hat{k}_\lambda \rangle$$

$$\leq \langle A^{\frac{1}{\mu}} \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{\frac{1}{\mu}} \text{ by 2),}$$

hence $\langle A^\mu \hat{A}k_\lambda, \hat{k}_\lambda \rangle \geq \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle^\mu$ for any $\mu > 1$, which shows that $\text{Ber}(A^\mu) \geq \text{Ber}(A)^\mu$ for any $\mu > 1$, as desired.

3) Since A is invertible, we have the following for any $\lambda \in \Omega$

$$1 = \| \hat{k}_\lambda \|^4 = \left\| \langle A^{\frac{1}{\mu}} \hat{A}k_\lambda, A^{-\frac{1}{\mu}} \hat{k}_\lambda \rangle \right\|^2$$

$$\leq \| A^{\frac{1}{\mu}} \hat{A}k_\lambda \|^2 \| A^{-\frac{1}{\mu}} \hat{k}_\lambda \|$$

$$= \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle \langle A^{-\frac{1}{\mu}} \hat{k}_\lambda, \hat{k}_\lambda \rangle$$

$$= \tilde{A}(\lambda) A^{-1}(\lambda),$$

and hence

$$1 \leq \tilde{A}(\lambda) A^{-1}(\lambda) \text{ for any } \lambda \in \Omega,$$ \hspace{1cm} (1)

which gives us

$$\text{Ber}(A) \text{Ber}(A^{-1}) \geq 1,$$

or equivalently

$$\text{Ber}(A^{-1}) \geq \text{Ber}(A)^{-1}.$$

Case: $\mu \in (-\infty,-1)$. Then we have the following for any $\lambda \in \Omega$

$$\langle A^\mu \hat{A}k_\lambda, \hat{k}_\lambda \rangle \geq \langle A^{-\frac{1}{\mu}} \hat{A}k_\lambda, \hat{k}_\lambda \rangle^\mu \text{ by 1) since } |\mu| > 1$$

$$\geq \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{-|\mu|} \text{ by (1)}$$

$$= \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{|\mu|}$$

which implies that $\text{Ber}(A^\mu) \geq \text{Ber}(A)^{\mu}$, as desired.

Case: $\mu \in [-1,0)$. For every $\lambda \in \Omega$ we have

$$\tilde{A}(\lambda) = \langle A^\mu \hat{A}k_\lambda, \hat{k}_\lambda \rangle = \langle A^{-\frac{1}{\mu}} \hat{A}k_\lambda, \hat{k}_\lambda \rangle$$

$$\geq \langle A^{-\frac{1}{\mu}} \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{-1} \text{ by (1)}$$

$$\geq \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{-1|\mu|} = \langle \hat{A}k_\lambda, \hat{k}_\lambda \rangle^{|\mu|} = \langle \tilde{A}(\lambda) \rangle^{|\mu|},$$

and the last inequality follows by 2) since $|\mu| \in [0,1]$ and taking inverses of both sides. The theorem is proved. \hspace{1cm} \Box

Next result proves the equivalence of Hölder-McCarthy type inequality and Young type inequality.
Theorem 2.2. For a positive operator $A \in \mathcal{B}(H)$ and $\mu \in [0, 1]$ the following inequalities are equivalent:

1. Hölder-McCarthy type inequality:
 \[
 \widetilde{A}(\lambda)^\mu \geq \widetilde{A}^\mu(\lambda) \quad \text{for all } \lambda \in \Omega.
 \]
 (2)

2. Young type inequality:
 \[
 [\mu A + I - \mu^{-1}]^{-1} \geq \widetilde{A}^\mu.
 \]
 (3)

Proof. Let us define a scalar function
\[
f(t) := \mu t + 1 - \mu - t^\mu
\]
for positive numbers t and $\mu \in [0, 1]$. Then it is easy to see that $f(t)$ is a nonnegative convex function with the minimum value $f(1) = 0$, so we have
\[
\mu a + 1 - \mu \geq a^\mu
\]
for positive a and $\mu \in [0, 1]$.

(2) \Rightarrow (3). Replacing a by $\widetilde{A}(\lambda) \geq 0$ and $\mu \in [0, 1]$ in (4), we obtain
\[
\mu \widetilde{A}(\lambda) + 1 - \mu \geq A(\lambda)^\mu \geq \widetilde{A}^\mu(\lambda) \quad \text{by (2)},
\]
so we have (3).

(3) \Rightarrow (2). We may assume $\mu \in (0, 1]$. In (3), replace A by $k^{\frac{1}{\mu}}A$ for a positive number k, then
\[
\mu k^{\frac{1}{\mu}} \widetilde{A}(\lambda) + 1 - \mu \geq k\widetilde{A}^\mu(\lambda)
\]
(5)
for $\lambda \in \Omega$ by (3). We put $k = \widetilde{A}(\lambda)^{-\mu}$ in (5) if $\widetilde{A}(\lambda) \neq 0$, then we have
\[
\mu \widetilde{A}(\lambda)^{-1} \widetilde{A}(\lambda) + 1 - \mu \geq \widetilde{A}(\lambda)^{-\mu} \widetilde{A}^\mu(\lambda),
\]
that is $A(\lambda)^\mu \geq \widetilde{A}^\mu(\lambda)$ for all $\lambda \in \Omega$ and we get (2). If $\widetilde{A}(\lambda) = 0$, then it means that $A^{\frac{1}{\mu}}k^{\frac{1}{\mu}} = 0$, so $A^k k^{\frac{1}{\mu}} = 0$ for $\mu \in (0, 1]$ by the induction and continuity of A, and thus we have (2). The theorem is proved.

Proposition 2.3. Let $A \in \mathcal{B}(H)$ be a positive invertible operator and $B \in \mathcal{B}(H)$ be an invertible operator. Then for any real number μ, we have
\[
\text{ber}((BAB^*)^\mu) = \text{ber}\left(BA^{\frac{1}{\mu}} \left(A^{\frac{1}{\mu}} B^* A^{\frac{1}{\mu}}\right)^{\mu-1} A^{\frac{1}{\mu}} B^*\right).
\]
 (6)

Proof. Let $BA^{\frac{1}{\mu}} = UP$ be the polar decomposition of $BA^{\frac{1}{\mu}}$, where U is unitary and $P = \|BA^{\frac{1}{\mu}}\|$. Then it is easy to see that:
\[
(BAB^*)^\mu = (UP^2U^*)^\mu = BA^{\frac{1}{\mu}} P^{-1} P^2 P^{-1} A^{\frac{1}{\mu}} B^* = BA^{\frac{1}{\mu}} \left(A^{\frac{1}{\mu}} B^* A^{\frac{1}{\mu}}\right)^{\mu-1} A^{\frac{1}{\mu}} B^*.
\]
Now (6) is immediate from this equality.
3. Paranormal operators and related problems

Recall that an operator A on a Hilbert space H is called paranormal if $\|Ax\|^2 \geq \|Ax\|^2$ for every unit vector $x \in H$.

Definition 3.1. We will say that A is a quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$, if $\|A^2_k\lambda\|^2 \geq \|A_{\lambda}k\|^2$ for any $\lambda \in \Omega$.

Definition 3.2. An operator T belongs to class \tilde{A} if $\left\|\tilde{A}^2\right\|^2 \geq \|A\|^2$.

Definition 3.3. For each $k > 0$, an operator T is absolute-k-quasi-paranormal if

$$\left\|\left|T\right|^k \tilde{T}_{k\lambda}\right\|^2 \geq \left\|\tilde{T}_{k\lambda}\right\|^{k+1}$$

for every $\lambda \in \Omega$.

It follows from these definitions that:

(a) If A is quasi-paranormal, then

$$\text{ber}\left(\left\|A^2\right\|^2\right) \geq \text{ber}\left(\|A\|^2\right)^2$$

(b) If A belongs to class \tilde{A}, then

$$\text{ber}\left(\left\|A^2\right\|^2\right) \geq \text{ber}\left(\|A\|^2\right)$$

(c) If A is absolute-k-quasi-paranormal, then

$$\text{ber}\left(\left\|A^k A\right|^2\right) \geq \text{ber}\left(\|A\|^{k+1}\right)$$

In this section, to prove some inequalities for the Berezin number of such operators, we need to other properties of these operators.

Proposition 3.4. Every operator in \tilde{A} is a quasi-paranormal operator on a RKHS.

Proof. Suppose $A \in \tilde{A}$, i.e.,

$$\left\|A^2\right\| \geq \|A\|^2.$$ \hspace{1cm} (8)

Then for every $\lambda \in \Omega$, we have $\left\|A^2\right\|^2(\lambda) \geq \|A\|^2(\lambda)$, and therefore it follows from the proof of Theorem 2.1 that

$$\left\|A^2_{k\lambda}\right\|^2 = \left\langle A^2_{k\lambda}, A^2_{k\lambda} \right\rangle = \left\langle \left(\left\|A^2\right\|^2\right) A^2_{k\lambda}, A^2_{k\lambda} \right\rangle$$

$$\geq \left\langle \left\|A^2_{k\lambda}, A^2_{k\lambda} \right\rangle \right\rangle \geq \left\langle \left\|A^2_{k\lambda}, A^2_{k\lambda} \right\rangle \right\rangle \geq \left\langle \left\|A^2_{k\lambda}, A^2_{k\lambda} \right\rangle \right\rangle \geq \left\langle \left\|A^2_{k\lambda}, A^2_{k\lambda} \right\rangle \right\rangle = \left\|A^2_{k\lambda}\right\|^2$$

Hence

$$\left\|A^2_{k\lambda}\right\|^2 \geq \left\|A^2_{k\lambda}\right\|^2$$

for every $\lambda \in \Omega$, so that A is quasi-paranormal, which proves the proposition. \hfill \blacksquare
Definition 3.5. For each $k > 0$, we say that an operator A belongs to class $\widetilde{\mathcal{A}}(k)$ if

$$
\left((A^* |A|^{2k} A)^{\frac{1}{2k}} \right)^{\frac{k}{k+1}} \geq |A|^2.
$$

The proof of Theorem 2.1 allows us also prove the following.

Proposition 3.6. (a) Every quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$ is an absolute-k-quasi-paranormal operator for $k \geq 1$.

(b) For each $k > 0$, every class $\widetilde{\mathcal{A}}(k)$ operator is an absolute-k-quasi-paranormal operator.

Proof. (a) Suppose that A is a quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$. Then, for any $\lambda \in \Omega$ and $k \geq 1$, we have

$$
\left\| |A|^k \hat{A}_k \right\| = \left\langle |A|^{2k} \hat{A}_k, \hat{A}_k \right\rangle
\geq \left(|A|^2 \hat{A}_k, \hat{A}_k \right)^k \left\| \hat{A}_k \right\|^{2(1-k)} \quad \text{(see the proof of Theorem 2.1, 1)}
= \left\| A^* \hat{A}_k \right\|^2 \left\| \hat{A}_k \right\|^{2(1-k)}
\geq \left\| \hat{A}_k \right\|^k \left\| \hat{A}_k \right\|^{2(1-k)} \quad \text{(by quasi-paranalormality of A)}
\geq \left\| \hat{A}_k \right\|^{2(k+1)},
$$

and hence

$$
\left\| |A|^k \hat{A}_k \right\| \geq \left\| \hat{A}_k \right\|^{k+1}
$$

for all $\lambda \in \Omega$ and $k \geq 1$, so that A is absolute-k-quasi-paranormal operator for $k \geq 1$.

(b) Let $A \in \widetilde{\mathcal{A}}(k)$ for $k > 0$, that is

$$
\left((A^* |A|^{2k} A)^{\frac{1}{2k}} \right)^{\frac{k}{k+1}} \geq |A|^2 \quad \text{for } k > 0.
$$

Then for any $\lambda \in \Omega$,

$$
\left\| |A|^k \hat{A}_k \right\| = \left\langle A^* |A|^{2k} \hat{A}_k, \hat{A}_k \right\rangle
\geq \left\langle \left(A^* |A|^{2k} A \right)^{\frac{1}{2k}} \hat{A}_k, \hat{A}_k \right\|^{k+1}
\geq \left\langle |A|^2 \hat{A}_k, \hat{A}_k \right\|^{k+1} \quad \text{(by (9))}
\geq \left\| \hat{A}_k \right\|^{2(k+1)},
$$

from which

$$
\left\| |A|^k \hat{A}_k \right\| \geq \left\| \hat{A}_k \right\|^{k+1}
$$

for all $\lambda \in \Omega$,

so that A is absolute-k-quasi-paranormal operator for $k > 0$. This completes the proof. □

As further extension of previous results, we prove the following result.
Theorem 3.7. Let $A \in B(H(\Omega))$ be an absolute-k-quasi-paranormal operator for $k > 0$. Then for every $\lambda \in \Omega$,

$$F(\ell) = \left\| A^{\ell} \widehat{A} \right\|^{\frac{1}{\ell}}$$

is increasing for $\ell > k > 0$, and the following inequality holds:

$$F(\ell) \geq \left\| A \widehat{A} \right\|,$$

i.e., A is absolute-ℓ-quasi-paranormal operator for $\ell \geq k > 0$.

Proof. Assume that A is an absolute-k-quasi-paranormal operator on $H = H(\Omega)$ for $k > 0$, i.e.,

$$\left\| A^{\ell} \widehat{A} \right\| \geq \left\| A \widehat{A} \right\|^{k+1}$$

for every $\lambda \in \Omega$. Clearly, (10) holds if and only if

$$F(k) = \left\| A^{k} \widehat{A} \right\|^{\frac{1}{k}} \geq \left\| A \widehat{A} \right\|$$

for any $\lambda \in \Omega$. Then for every $\lambda \in \Omega$ and any ℓ such that $\ell \geq k > 0$, we have

$$F(\ell) = \left\| A^{\ell} \widehat{A} \right\|^{\frac{1}{\ell}} = \left\| A^{2k} \widehat{A} \right\|^{\frac{1}{2k}} \left\| A^{k} \widehat{A} \right\|^{\frac{1}{k}} \geq \left\| A \widehat{A} \right\|^{1+1}$$

and hence

$$F(\ell) = \left\| A^{\ell} \widehat{A} \right\|^{\frac{1}{\ell}} \geq \left\| A \widehat{A} \right\|$$

for every $\lambda \in \Omega$ and $\ell \geq k$, so that A is absolute-ℓ-quasi-paranormal for $\ell \geq k > 0$.

Now we prove that, $F(\ell)$ is increasing for $\ell \geq k > 0$. Indeed, for any $\lambda \in \Omega$, m and ℓ such that $m \geq \ell \geq k > 0$, we have:

$$F(m) = \left\| A^{m} \widehat{A} \right\|^{\frac{1}{m}} = \left\| A^{2m} \widehat{A} \right\|^{\frac{1}{2m}} \left\| A^{m} \widehat{A} \right\|^{\frac{1}{m}} \geq \left\| A \widehat{A} \right\|^{1+1}$$

and hence $F(m) \geq F(\ell)$, that is $F(\ell)$ is increasing for $\ell \geq k > 0$. This proves the theorem. □
Corollary 3.8. \(F(\ell) \geq \sqrt{\det(\|A\|^2)} \) for \(\ell \geq k > 0 \).

The following corollary is well known (see, for instance, [8]).

Lemma 3.9. Let \(a \) and \(b \) be positive real numbers. Then,
\[
a^\alpha b^\beta \leq \lambda a + \mu b
\]
holds for \(\lambda > 0 \) and \(\mu > 0 \) such that \(\lambda + \mu = 1 \).

Our next result characterizes absolute-\(k \)-quasi-paranormal operators \(A \) on the RKHS \(\mathcal{H} = \mathcal{H}(\Omega) \).

Theorem 3.10. For each \(k > 0 \), an operator \(A \) on \(\mathcal{H} \) is absolute-\(k \)-quasi-paranormal if and only if
\[
\left(A^*|A|^2k - (k+1)a^\alpha|A|^2 + k\alpha^{k+1}\right) \geq 0
\]
holds for all \(\alpha > 0 \).

Proof. \(\Rightarrow \). Suppose that \(A \) is absolute-\(k \)-quasi-paranormal for \(k > 0 \), i.e.,
\[
\left\|A^kA_{k,\lambda}\right\| \geq \left\|A_{k,\lambda}\right\|^{k+1}
\]
(12)
for every \(\lambda \in \Omega \). Inequality (12) holds if and only if
\[
\left\|A^kA_{k,\lambda}\right\|^{\frac{k}{k+1}}\left\|\mathcal{K}_{\lambda}\right\|^{\frac{1}{k+1}} \geq \left\|A_{k,\lambda}\right\|
\]
for all \(\lambda \in \Omega \), or equivalently
\[
\left\langle A^*|A|^2k, k_{\lambda}\right\rangle^{\frac{1}{k+1}}\left\langle k_{\lambda}, k_{\lambda}\right\rangle^{\frac{k}{k+1}} \geq \left\langle |A|^2k, k_{\lambda}\right\rangle
\]
for all \(\lambda \in \Omega \). By Lemma 3.9, we have:
\[
\left\langle A^*|A|^2k, k_{\lambda}\right\rangle^{\frac{1}{k+1}}\left\langle k_{\lambda}, k_{\lambda}\right\rangle^{\frac{k}{k+1}} = \left\langle \left(\frac{1}{\alpha}\right)^k A^*|A|^2k, k_{\lambda}\right\rangle^{\frac{1}{k+1}}\left\langle k_{\lambda}, k_{\lambda}\right\rangle^{\frac{k}{k+1}} \leq \frac{1}{k+1} \left(\frac{1}{\alpha}\right)^{k+1} A^*|A|^2k, k_{\lambda} + \frac{k}{k+1} \alpha\left\langle k_{\lambda}, k_{\lambda}\right\rangle
\]
(13)
for all \(\lambda \in \Omega \) and \(\alpha > 0 \), so that (12) ensures the following inequality by (13):
\[
\frac{1}{k+1} \left(\frac{1}{\alpha}\right)^{k+1} A^*|A|^2k, k_{\lambda} + \frac{k}{k+1} \alpha\left\langle k_{\lambda}, k_{\lambda}\right\rangle \geq \left\langle |A|^2k, k_{\lambda}\right\rangle
\]
(14)
for all \(\lambda \in \Omega \) and \(\alpha > 0 \).

Conversely, (14) implies (12) by putting \(\alpha = \left(\frac{A^*|A|^2k, k_{\lambda}}{\left\langle k_{\lambda}, k_{\lambda}\right\rangle}\right)^{\frac{1}{k+1}} \); in case \(A^*|A|^2k, k_{\lambda} = 0 \), let \(\alpha \to 0 \). Hence (14) holds if and only if
\[
\left(A^*|A|^2k - (k+1)a^\alpha|A|^2 + k\alpha^{k+1}\right) \geq 0
\]
holds for all \(\alpha > 0 \), which completes the proof of the theorem. \(\square \)

Since absolute-1-quasi-paranormal is quasi-paranormal, the following is immediate from Theorem 3.10.
Corollary 3.11. An operator A is quasi-paranormal if and only if
\[
(A^2 A^* - 2a A^* A + a^2) \sim \geq 0
\]
holds for all $\alpha > 0$.

Acknowledgement

The authors would like to express their hearty thanks to the anonymous reviewer for his/her valuable comments.

References

[1] A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for products and commutators of operators, Houston J. Math., 41(4) (2015), 1163–1173.
[2] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337–404.
[3] M. Bakherad, Some Berezin Number Inequalities for Operator Matrices, Czech. Math. J., 68 (2018), 997–1009.
[4] M. Bakherad and M.T. Garayev, Berezin number inequalities for operators, Concr. Oper., 6 (2019), 33–43.
[5] H. Başaran, M. Gürdal and A.N. Gündan, Some operator inequalities associated with Kantorovich and Holder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523–532.
[6] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(1972), 1117–1151.
[7] F.A. Berezin, Quantization, Math. USSR-Izv., 8(1974), 1109–1163.
[8] T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, p.266, 2001.
[9] M. Gürdal, M. Garayev, S. Saltan and U. Yamanci, On some numerical characteristics of operators, Arab J. Math. Sci., 21(1) (2015), 118–126.
[10] M. Garayev, F. Bouzeffour, M. Gürdal and C.M. Yangöz, Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35(1) (2020), 1–20.
[11] M.T. Garayev, M. Gürdal and M.B. Huban, Reproducing kernels, English algebras and some applications, Studia Math., 232(2) (2016), 113–141.
[12] M.T. Garayev, M. Gürdal and A. Okudan, Hardy-Hilbert’s inequality and power inequalities for Berezin numbers of operators, Math. Inequal. Appl., 19(3) (2016), 883–891.
[13] M.T. Garayev, M. Gürdal and S. Saltan, Hardy type inequality for reproducing kernel Hilbert space operators and related problems, Positivity, 21(4) (2017), 1615–1623.
[14] M.T. Garayev, M. Gürdal and U. Yamanci and B. Halouani, Boundary behavior of Berezin symbols and related results, Filomat, 33(14) (2019), 4433–4439.
[15] M. Garayev, S. Saltan, F. Bouzeffour and B. Aktan, Some inequalities involving Berezin symbols of operator means and related questions, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 114(85) (2020), 1–17.
[16] M.T. Garayev, Berezin symbols, Holder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287–295.
[17] M. Hajmohamadi, R. Lashkaripour and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218–1229.
[18] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7(4) (2013), 983–1018.
[19] M.T. Karaev and S. Saltan, Some results on Berezin symbols, Complex Variables: Theory and Appl., 50 (2005), 185–193.
[20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73–80.
[21] F. Kittaneh, M.S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46–53.
[22] S. Sahoo, N. Das and D. Mishra, Numerical radius inequalities for operator matrices, Adv. Oper. Theory, 4 (2019), 197–214.
[23] U. Yamanci and M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23 (2017), 1531–1537.
[24] U. Yamanci, M. Gürdal and M.T. Garayev, Berezin Number Inequality for Convex Function in Reproducing Kernel Hilbert Space, Filomat, 31(18) (2017), 5711–5717.
[25] U. Yamanci, R. Tunç and M. Gürdal, Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43 (2020), 2287–2296.