WOLCOTTIA (=ISOHYDNOCERA) AEGRA (COLEOPTERA: CLERIDAE): ASSOCIATION WITH GRASSES (POACEAE), NATIVE SPARTINA SPP. AND THE INTRODUCED ERAGROSTIS CURVULA, AND RESEMBLANCE TO CO-OCCURRING PSEUDOMYRMECINE ANTS

A. G. WHEELER, JR. AND IAN C. STOCKS

Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634-0315

Wolcottia aegra (Newman) a narrow, elongate, brown clerid beetle about 4.3 mm long (Fig. 1) was described in the genus Hydnocera and later placed in Isohydnocera (Chapin 1917; Kolibácˇ 1998). Kolibácˇ (1998) synonymized Isohydnocera with Wolcottia, but Opitz (2002) did not follow that synonymy. We follow Kolibácˇ (1998) in recognizing Wolcottia (=Isohydnocera).

Known only from the southeastern United States, Florida, Georgia (Peck & Thomas 1998), Mississippi (Lago et al. 2002), North Carolina (Davis & Gray 1966), and South Carolina (Kirk 1969, 1970), W. aegra generally is not well represented in collections, and its habitat and plant associations are little known. In Florida, Shelford (1963) collected it in Dec in semidry prairies of tall sawgrass (Cladium mariscus ssp. jamaicense (Crantz) Kükenth.; Cyperaceae) marsh near Miami, and Cuda et al. (2007) rarely encountered it during a survey of insects associated with the adventive torpedo grass (Panicum repens L.) near Lake Okeechobee. In Mississippi, an adult was swept from a saltgrass (Distichlis) meadow and another from Schrankia (Fabaceae; probably an incidental occurrence) on Point Clear Island (Lago et al. 2002). The beetle was found in North Carolina from May to Oct on Spartina patens (Ait.) Muhl. in salt marshes in Carteret County (Davis & Gray 1966). In South Carolina, Kirk (1970) swept W. aegra from “salt marsh grass” on Hunting Island, and 5 adults were collected at the Belle Baruch Marine Field Laboratory of the Hobcaw Barony, east of Georgetown, from late Apr to early May 2004, and another adult was taken at the same locality in mid-Sep 2007 (S. M. Paiero, Dept. Environmental Biology, University of Guelph, personal communication).

Here, we report adults from 2 native grasses, sand cordgrass (Spartina bakeri Merr.) and saltmeadow cordgrass (S. patens), and an introduced African species, weeping lovegrass (Eragrostis curvula (Schrad.) Nees), and note the beetle’s resemblance to syntopic pseudomyrmecine ants. From 2002 to 2009, an ax handle was used to beat the crowns of the 3 bunchgrass species into a shallow, short-handled net. Voucher specimens of the beetle are deposited in the Clemson University Arthropod Collection (CUAC) and National Museum of Natural History, Smithsonian Institution, Washington, DC; ants are deposited in the CUAC.

We collected adults of W. aegra in Florida, Georgia, and South Carolina from grasses at 14 sites (28 collections) during Jan, Feb, Mar, Apr, Jun, Aug, Oct, and Dec (Table 1). Of the 182 adults we collected, 7 were on S. patens and 71 were beaten from crowns of the more architecturally complex S. bakeri, which grows in dense clumps. The remaining 104 adults of W. aegra were collected in Florida from weeping lovegrass (E. curvula), an African bunchgrass used in the Southeast mainly for erosion control and slope stabilization. Wolcottia aegra can be included among the little-known or seldom-collected native insects that have become associated with weeping lovegrass (Wheeler 1999, 2003; Wilson & Wheeler 2005). We did not observe adults during the sampling of other coastal Spartinas, smooth cordgrass (S. alterniflora Loisel.), and big cordgrass (S. cynosuroides (L.) Roth).

At one site, a highway embankment northwest of Loughman in Lake County, Florida, E. curvula and S. bakeri co-occurred. During about 20 min of sampling in mid-Mar 2007, split about evenly between the 2 grass species, 22 adults of the clerid were taken on E. curvula and 1 on S. bakeri.

In salt marshes, Davis (1978) considered W. aegra not abundant on, but “fairly characteristic” of, S. patens, a grass on which we found relatively few adults. One could infer from the scattered literature on this clerid that it is restricted to coastal marshes. We did find adults on S. patens in brackish flats and salt marshes and on S. bak-
State	County	Locality	Date	No. of adults	Plant species
Florida	Duval	E of Eastport	27-IV-2008	5	*Spartina bakeri*
Florida	Hamilton	NW of Jennings	20-III-2007	1	*Spartina bakeri*
Florida	Hamilton	NW of Jennings	25-IV-2008	9	*Spartina bakeri*
Florida	Highlands	NW of Avon Park	23-III-2007	5	*Spartina bakeri*
Florida	Highlands	NW of Avon Park	14-XII-2007	1	*Spartina bakeri*
Florida	Highlands	NW of Avon Park	12-III-2008	15	*Spartina bakeri*
Florida	Highlands	NW of Avon Park	4-I-2009	3	*Spartina bakeri*
Florida	Highlands	NW of Avon Park	28-II-2009	5	*Spartina bakeri*
Florida	Lake	NW of Loughman	24-II-2002	3	*Eragrostis curvula*
Florida	Lake	NW of Loughman	21-III-2002	6	*Eragrostis curvula*
Florida	Lake	NW of Loughman	10-VIII-2002	1	*Eragrostis curvula*
Florida	Lake	NW of Loughman	22-III-2007	5	*Eragrostis curvula*
Florida	Lake	NW of Loughman	11, 12-III-2008	23	*Eragrostis curvula*
Florida	Lake	NW of Loughman	28-20.821'N 81°40.217'W	12	*Eragrostis curvula*
Florida	Lake	NW of Loughman	28-20.821'N 81°40.217'W	15	*Eragrostis curvula*
Florida	Lake	S of Clermont	11-III-2008	17	*Eragrostis curvula*

1Asterisks indicate landscape or ornamental plantings.
eri in brackish and freshwater marshes along the coast. In Florida, however, we also found W. aegra in native populations and landscape plantings of S. bakeri in the Lake Wales Ridge in the center of the peninsula, as well as inland plantings of weeping lovegrass.

We did not find clerid larvae on any of the 3 grass species. Trophic habits of other hydnocerine clerids are little known, but W. aegra has been assumed to be predacious (Davis & Gray 1966). Larvae of 2 other species of Wolcottia (=Isohydnocera) prey on endophages such as gall-inducing and stem-boring insects (Sabrosky 1934; Clausen 1940; Knell 1951). Potential prey of W. aegra on S. bakeri are stem borers known from other spartinas (Stiling & Strong 1984; White et al. 2005), including languriid beetles (Ward et al. 2007). We observed adults of Languria mozardi Latreille in several stands of weeping lovegrass inhabited by W. aegra.

Numerous species of Cleridae mimic aculeate Hymenoptera such as ants. Most hydnocerine

TABLE 1. (CONTINUED) WOLCOTTIA AEGRA IN FLORIDA, GEORGIA, AND SOUTH CAROLINA, 2002-2009.

State	County	Locality	Date	No. of adults	Plant species
Florida	Lake	S of Clermont	22-III-2007	13	*Eragrostis curvula
Florida	Lake	S of Clermont	3-I-2009	1	*Eragrostis curvula
Florida	Lake	S of Clermont	28-II-2009	8	*Eragrostis curvula
Florida	Nassau	NW of Yulee	27-IV-2008	2	*Spartina bakeri
Florida	Polk	NW of Loughman	2-VI-2002	1	*Eragrostis curvula
Georgia	Glynn	WSW of Brunswick	27-IV-2008	3	Spartina bakeri
Georgia	McIntosh	N of South Newport	27-IV-2008	6	Spartina bakeri
South Carolina	Charleston	NW of Edisto Island	19-IV-2008	3	Spartina patens
South Carolina	Colleton	N of Bennettts Pt.	19-IV-2008	5	Spartina bakeri
South Carolina	Colleton	N of Bennettts Pt.	19-IV-2008	1	Spartina bakeri
South Carolina	Colleton	Bear Island WMA	19-IV-2008	12	Spartina bakeri
South Carolina	Colleton	Bear Island WMA	4-X-2008	1	Spartina patens

*Asterisks indicate landscape or ornamental plantings.
clerids are generalized ant mimics, including species currently placed in Wolcottia (Mawdsley 1994).

We collected adults of W. aegra with the similarly colored pseudomyrmecine ants Pseudomyrmex pallidus (F. Smith) and P. seminole Ward (Fig. 1) on E. curvula and S. bakersi. After the presence of pseudomyrmecines began to be recorded in field notes (21 Mar 2007), 16 of 23 collections of the clerid also included one or both species of Pseudomyrmex. The clerid's resemblance to pseudomyrmecines was enhanced by an erratic antlike movement. Clerid males were about the same size as worker ants, whereas the larger females were about the same size as dealated queens. We found P. pallidus in Florida and South Carolina and P. seminole in Florida, Georgia, and South Carolina. Pseudomyrmex pallidus nests preferentially in stems of tall grasses (Van Pelt 1958), including salt marsh grasses (Carter 1962). Sympatric assemblages characterize the P. pallidus group. Pseudomyrmex seminole co-occurs with P. pallidus and might be a facultative social parasite of that species; it nests in dead stems of grasses, such as Andropogon spp. (Ward 1985).

Although the adult of W. aegra exhibits an ant-like habitus, use of the more neutral term myrmecomorphy might be preferable to ant mimicry in the absence of data demonstrating that a resemblance to ants enhances survivorship of the clerid. Experimental studies documenting ant mimicry by W. aegra, and examining the possibility that adults are chemically protected, are needed. Studies on bionomics of the clerid also are needed, especially information on larval feeding habits. Also desirable would be to determine whether ant densities on native Spartina species differ from those on the adventive weeping lovegrass and whether stems of these grasses differ in their suitability as nesting sites for pseudomyrmecines.

We thank Steven M. Paiero (Dept. of Environmental Biology, University of Guelph, Guelph, Ontario) for allowing us to refer to his collections of the clerid in South Carolina, and David R. Smith (Systematic Entomology Lab., USDA, ARS, Washington, DC) for identifying ants.

SUMMARY

Wolcottia (=Isohydnocera) aegra, an antlike or myrmecomorphic clerid beetle typically not well represented in collections, was associated with grasses at 14 sites (28 collections) in Florida, Georgia, and South Carolina. Adults (n = 182) were beaten from crowns of bunchgrasses; the introduced South African weeping lovegrass, Erargotis curvula (n = 104), along highways; sand cordgrass, Spartina bakeri (n = 71), in coastal brackish and freshwater marshes and inland swales, as well as in landscape plantings; and saltmeadow cordgrass, S. patens (n = 7), in brackish flats and salt marshes. The ants Pseudomyrmex pallidus and P. seminole (Formicidae: Pseudomyrmecinae) co-occurred with the clerid.

REFERENCES CITED

CARTER, W. G. 1962. Ant distribution in North Carolina. J. Elisa Mitchell Sci. Soc. 78: 150-204.

CHAPIN, E. A. 1917. Studies in the Hydrocerini (Col.). The hydroceroid genera. Bull. Brooklyn Entomol. Soc. 12: 83-85.

CLAUSEN, C. F. 1940. Entomophagous Insects. McGraw-Hill Book Co., New York.

CUDA, J. P., DUNFORD, J. C., AND LEAVENGOOD JR., J. M. 2007. Invertebrate fauna associated with torpedograss, Panicum repens (Cyperales: Poaceae), in Lake Okeechobee, Florida, and prospects for biological control. Florida Entomol. 90: 238-248.

DAVIS, L. V. 1978. Class Insecta, pp. 186-220 In R. G. Zingmark [ed.], An Annotated Checklist of the Biota of the Coastal Zone of South Carolina. University of South Carolina Press, Columbia.

DAVIS, L. V., AND GRAY, I. E. 1966. Zonal and seasonal distribution of insects in North Carolina salt marshes. Ecol. Monogr. 36: 275-295.

KIRK, V. M. 1969. A List of Beetles of South Carolina. Part 1-Northern Coastal Plain. South Carolina Agric. Exp. Stn. Tech. Bull. 1033: 1-124.

KIRK, V. M. 1970. A List of Beetles of South Carolina. Part 2-Mountain, Piedmont, and southern Coastal Plain. South Carolina Agric. Exp. Stn. Tech. Bull. 1038: 1-117.

KNULL, J. N. 1951. The checkered beetles of Ohio (Coleoptera: Cleridae). Ohio Biol. Surv. Bull. 43 (Vol. 8, No. 2): 268-350.

KOLIBÁČ, J. 1998. Classification of the subfamily Hydrocerinae Spinola, 1844 (Coleoptera, Cleridae). Acta Mus. Moraviae Sci. Biol. 83: 127-210.

LAGO, P. K., ZUCCARO JR., A. E., AND TESTA III, S. 2002. The terrestrial Coleoptera of Point Clear Island and surrounding marshlands, Hancock County, Mississippi. J. Mississippi Acad. Sci. 47: 197-209.

MAWDSELY, J. R. 1994. Mimicry in Cleridae (Coleoptera). Coleopt. Bull. 48: 115-125.

MAWDSELY, J. R. 2002. Comparative ecology of the genus Lecontiella Wolcott and Chapin (Coleoptera: Cleridae: Tillinae), with notes on chemically defended species of the beetle family Cleridae. Proc. Entomol. Soc. Washington 104: 164-167.

OPITZ, W. 2002. Cleridae Latreille 1820, pp. 1-117 In R. H. Arnett, M. C. Thomas, P. E. Skelley, and J. H. Frank [eds.], American Beetles. Vol. 2. Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, Boca Raton, FL.

PECK, S. B., AND THOMAS, M. C. 1998. A distributional checklist of the beetles (Coleoptera) of Florida. Arthropods of Florida and Neighboring Land Areas 16: 1-180.

SABROWSKY, C. W. 1934. Notes on the larvae and larval habit of Isohydnocera curtipennis (Newm.) (Coleoptera: Cleridae). J. Kansas Entomol. Soc. 7: 65-68.

SHELFORD, V. E. 1963. The Ecology of North America. University of Illinois Press, Urbana.
STILING, P. D., AND STRONG, D. R. 1984. Experimental density manipulation of stem-boring insects: some evidence for interspecific competition. Ecology 65: 1683-1685.

VAN PELT, JR., A. F. 1958. The ecology of the ants of the Welaka Reserve, Florida (Hymenoptera: Formicidae). Part II. American Midl. Nat. 59: 1-57.

WARD, P. S. 1985. The Nearctic species of the genus Pseudomyrmex (Hymenoptera: Formicidae). Quaest. Entomol. 21: 209-246.

WARD, R. N., CEBERT, E., AND WARD, K. E. 2007. Occurrence of clover stem borer, Languria mozardi (Coleoptera: Languridae), on canola: a new host record. Florida Entomol. 90: 732-737.

WHEELER, JR., A. G. 1999. Oncozygia clavicornis Stål and Allopodops mississipiensis Harris and Johnston: association of rarely collected Nearctic turtle bugs (Heteroptera: Pentatomidae: Podopinae) with an introduced African grass. Proc. Entomol. Soc. Washington 101: 714-721.

WHEELER, JR., A. G. 2003. Rediscovery of Ligyrocoris slossoni (Hemiptera: Lygaeoidae: Rhypharochromidae), a rarely collected seed bug considered precintive in Florida. Florida Entomol. 86: 219-221.

WHITE, W. H., ADAMSKI, D, FINE, G., AND RICHARD, JR., E. P. 2005. Stemborers associated with smooth cordgrass, Spartina alterniflora (Poaceae), in a nursery habitat. Florida Entomol. 88: 390-394.

WILSON, S. W., AND WHEELER, JR., A. G. 2005. An African grass, Eragrostis curvula (Poaceae), planted in the southern United States recruits rarely collected native planthoppers (Hemiptera: Fulgoroidea: Dictyopharidae, Fulgoridae). J. New York Entomol. Soc. 113: 174-204.