A Spectrum of Causative Organisms of Healthcare-associated Infections in a Tertiary Care Hospital of West Bengal: An Observational Study

Sinjan Ghosh¹, Mainak Mukhopadhyay², Anjum Namhata³, Nandini Chatterjee⁴

ABSTRACT

Background: Nosocomial infections are the foremost reasons for morbidity and mortality among hospitalized patients. Rampant use of antibiotics in infections has led to the emergence of multiresistant bacteria worldwide. Periodical review of sensitivity profiles is of utmost importance for optimal patient benefit.

Aims and objectives: To explore the spectrum of organisms responsible for intensive care unit (ICU) and inpatient hospital-acquired sepsis and evaluate the pattern of antibiotic sensitivity of the organisms.

Materials and methods: Samples were collected from all consecutive patients getting fever and satisfying the criteria for a nosocomial infection indoor as well as ICU, irrespective of etiology. They included sputum, blood, urine, and wound swabs. All samples were sent for a routine examination as well as culture and sensitivity test. Descriptive statistical methods were used with the help of SPSS version 21.

Results: The most frequent organisms for nosocomial infections in the ICU were Enterobacteriaceae (45%), Acinetobacter (13.7%), and Staphylococcus aureus (12.3%). In the general wards, the most common isolates were Enterobacteriaceae (59.9%), S. aureus (14.5%), Enterococcus (9.8%), and Pseudomonas (9.3%). There was a high percentage of extended-spectrum beta-lactamase among the Enterobacteriaceae, methicillin-resistant S. aureus, and borderline oxacillin-resistant S. aureus among S. aureus and metallo-β-lactamase among the Acinetobacter and Pseudomonas. These indicate resistance to most beta-lactams, cephalosporins, and at times to carbapenems. There was also coreistance to fluoroquinolones and aminoglycosides.

Conclusion: An antibiotic policy should be improvised for each healthcare facility on the basis of that point of time.

Keywords: Infection, Multiresistant, Nosocomial, Sensitivity,

Original Article 2020;7(1):2–7.

INTRODUCTION

Antibiotics are essential components of modern therapeutic practices. But inappropriate and indiscriminate usage of antibiotics can result in resistance of organisms. Healthcare-associated infections (HAIs) lead to poor outcomes in hospitalized patients.¹ Thus, it is mandatory to abide by certain norms while prescribing antibiotics to minimize nosocomial infections which are defined as those that occur within 48 hours of admission or 3 days after discharge from a healthcare facility and it was absent during admission.² Empirical antibiotic therapy if not matched with suitable sensitivity profiles definitely leads to polyresistance in severe sepsis.³ So, it is essential for the institutions to have in-house up-to-date data to evaluate the likely causatives. This will assist in choosing empirical drugs from sensitivity patterns.

Studies concerning culture and sensitivity profiles of body fluids have been performed over the decades. There have been changes in the sensitivity profiles over time and more so due to the indiscriminate as well as illogical use of antibiotics. We endeavored to study the current trend of causative organisms and their antibiotic sensitivity and to compare it with the previous work done in this field. This study was done for 6 months to identify the pattern of organisms isolated from the intensive care unit (ICU) and inpatients of wards.

AIMS AND OBJECTIVES

- Primary objective is to explore the spectrum of organisms responsible for inpatient nosocomial sepsis.
- Secondary objective is to evaluate the pattern of antibiotic sensitivity in the organisms.

MATERIALS AND METHODS

This is an observational study carried out in the ICU and the general wards of our hospital for a period of 6 months. Nonpurposive convenient sampling method was used to select patients. All patients with undiagnosed fever that developed 48 hours after admission to the hospital were included in the study fulfilling the criteria for a nosocomial infection. Immunocompromised and neutropenic patients and patients on steroids or immunosuppressive drugs

¹Department of Neurology, NRS Medical College, Kolkata, West Bengal, India
²Department of Cardiology, Midnapur Medical College Hospital, Midnapur, West Bengal, India
³Department of Microbiology, NRS Medical College, Kolkata, West Bengal, India
⁴Department of Medicine, IPGMER and SSKM Hospital, Kolkata, West Bengal, India

Corresponding Author: Anjum Namhata, Department of Microbiology, NRS Medical College, Kolkata, West Bengal, India, Phone: +91 8902221317, e-mail: rivuc23092006@gmail.com

How to cite this article: Ghosh S, Mukhopadhyay M, Namhata A, et al. A Spectrum of Causative Organisms of Healthcare-associated Infections in a Tertiary Care Hospital of West Bengal: An Observational Study. Bengal Physician Journal 2020;7(1):2–7.

Source of support: Nil

Conflict of interest: None
were excluded. After taking informed consent, detailed history and clinical examination were recorded in a prevalidated proforma.

Antimicrobial sensitivity tests were performed on bacteria considered significant. The antibiotics included in our study were Co-amoxiclav, ampicillin, trimethoprim/sulfamethoxazole (cotrimoxazole), norfloxacin, ciprofloxacin, levofloxacin, ofloxacin, nitrofurantoin, gentamicin, amikacin, doxycycline, cefuroxime, ceftazidime, cefotaxime, netilmicin, polymyxin B, Colistin, piperacillin/tazobactam, cefoperazone/sulbactam, meropenem, imipenem, vancomycin, tigecycline, and teicoplanin.

Results

The study was conducted for 6 months in the general wards as well as ICU of a tertiary care hospital. The total number of samples collected was 1,046, of which 255 were from ICU. Seventy-three were positive isolates in the ICU (Table 1). Of 73 isolates, respiratory tract infection accounted for 33, urinary tract infection (UTI) 10, wound sepsis 7, bacteremia/septicemia 11, and intravenous (IV) catheter sepsis in 2 patients. Ten samples (15.4%) were due to probable colonization.

Table 1: Antibiotic sensitivity patterns of common isolates from inpatients location: intensive care units

Antibiotics	Enterobacteriaceae	Pseudomonas	Acinetobacter	Staphylococci	Enterococci
Amoxicillin	00		11	60	
Cefotaxime	24		20	20	
Ceftazidime	24		20	20	
Cefepime	24		20	20	
Ceftriaxarin	24		20	20	
Nalidixic acid	24		20	20	
Ciprofloxacin	24		20	20	
Ofloxacin	24		20	20	
Levofloxacin	24		20	20	
Moxifloxacin	24		20	20	
Cotrimoxazole	24		20	20	
Chloramphenicol	24		20	20	
Tetracycline	24		20	20	
Tigecycline	24		20	20	
Polymyxin B	24		20	20	
Colistin	24		20	20	

Total no. of samples: 1464; no. of inpatient samples: 1046; no. of ICU samples: 255; total no. of ICU isolates: 73; polymicrobial growth: 8 samples (12.3%); NA, antibiotic disks not available
The most common organisms isolated were Enterobacteriaceae (34 isolates, i.e., 45%). Of which 15 (44%) were extended-spectrum beta-lactamase (ESBL) producers; 11 (32%) probable coproducers of ESBLs and AmpC beta-lactamasmes. All isolates were sensitive to imipenem and meropenem.

Among the Acinetobacter sp., the next most common organism (10 isolates, i.e., 13.7%), 4 (40%) were carbapenem resistant and 3 (75%) of those were metallo-β-lactamase (MBL) producers. Polymyxins, cefoperazone/sulbactam and tigecycline covered 100% of the isolates.

Other organisms isolated were:

- **Staphylococci**: 9 isolates (12.3%), of which 3 were (33%) methicillin-resistant *S. aureus* (MRSA), 1 (11%) borderline oxacillin-resistant *S. aureus* (BORA), 4 methicillin-sensitive *S. aureus* (MSSA), 1 methicillin-resistant coagulase-negative *S. aureus* (MR-CNSA).
- **Pseudomonas**: 9 isolates (12.3%), of which 2 (22%) were carbapenem-resistant MBL producers. All *Pseudomonas aeruginosa* isolates were sensitive to polymyxins.
- **Enterococci**: 5 isolates (6.8%); all *Enterococcus faecalis*: all were sensitive to vancomycin, linezolid, imipenem, and piperacillin/tazobactam (Fig. 1).
- **Fungi**: 6 isolates (8.2%); all *Candida* sp.: 4 (67%) *albicans*; 2 (33%) non-*albicans* spp.

The results from inpatients revealed the following (Table 2): there were 791 samples collected, of which 172 were positive. Of 172 isolates, respiratory tract infection accounted for 10, UTI 70, wound sepsis 60, bacteremia/septicemia 15, IV catheter infection in 3; 14 samples (9%) were due to probable colonization.

Here also the most frequent isolate was Enterobacteriaceae: 103 isolates (59.9%). Fifty-four (52%) ESBL producers; 11 (11%) probable coproducers of ESBLs and AmpC beta-lactamasmes. All were carbapenem sensitive. They were poorly responsive to cephalosporins and quinolones.

Next were *Staphylococci*: 25 isolates (14.5%): 10 (40%) MRSA, 2 (8%) BORA, 13 MSSA. Well responsive to vancomycin, clindamycin, and linezolid.

Enterococci: Of the 17 isolates (9.8%), all were sensitive to vancomycin, linezolid, and tigecycline.

Pseudomonas: 16 isolates (9.3%): all *P. aeruginosa*: 6 (38%) carbapenem resistant; all were MBL producers. All were polymyxin sensitive.

Acinetobacter sp.: 3 isolates (1.7%): 1 (33%) carbapenem resistant and MBL producer. All sensitive to polymyxins, cefoperazone/sulbactam, and piperacillin/tazobactam (Fig. 2).

Fungi: 8 isolates (4.6%), all *Candida* sp.: 4 (50%) *albicans*; 4 (50%) non-*albicans* spp.

To summarize, the pattern of infection reveals a spectrum of multiresistant bacteria both in ICU and general wards responsive to the highest grade of antibiotics. However, *Acinetobacter* was much more frequently found in ICU than wards, though Enterobacteriaceae and *S. aureus* were omnipresent.

Discussion

HAls comprise catheter-associated UTI, pneumonia including ventilator-associated pneumonia, bloodstream infection, gastroenteritis, and surgical site and wound sepsis. Nasocomial infections are most frequently bacterial. Some may be commensals of the patient taking the upper hand when immunity becomes weak. In the ICU, almost 70% of the organisms constitute *Staphylococci*, Enterobacteriaceae, *Pseudomonas*, and *Acinetobacter* species. Enterobacteriaceae include *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae*, and *Serratia marcescens*.

Our study revealed that growth of Enterobacteriaceae, *Acinetobacter*, *S. aureus*, and *Pseudomonas* were most isolated in the ICU. In the wards, Enterobacteriaceae, *S. aureus*, and *Pseudomonas* were most frequent. This spectrum is similar to the studies in the United Kingdom, Canada, Uganda, etc.
A Spectrum of Causative Organisms of Healthcare-associated Infections

Coresistance to quinolones and aminoglycosides was seen maybe due to plasmid transfer, which is of grave concern.

The fungal isolate in this study, i.e., Candida species is another fixture in all HAI spectrum of organisms. It is isolated mostly in patients with diabetes, renal failure, and cancer and in immunocompromised patients. It is said to be the sixth common cause of nosocomial infection worldwide. 14

World Health Organization documents around 15% of all hospitalized patients develop nosocomial infections. 15

Table 2: Antibiotic sensitivity patterns of common isolates from inpatients, location: general wards (non-ICU)

Antibiotics	Enterobacteriaceae	Pseudomonads	Acinetobacter	Staphylococci	Enterococci
	N = 103	N = 16	N = 3	N = 25	N = 17
Amoxicillin	06	–	–	16	65
Cloxacillin/oxacillin	–	–	–	52	–
Carbenicillin	–	13	–	–	–
Piperacillin	–	13	–	–	–
Ampicillin-sulbactam	–	–	67	–	–
Amoxicillin-clavulanate	17	–	00	24	65
Piperacillin-tazobactam	87	50	100	60	82
Ticarcillin-clavulanate	41	31	00	60	–
Cefoperazone-sulbactam	88	50	100	60	–
Cephalexin	–	–	–	60	–
Cefuroxime	20	–	–	60	–
Cefotaxime	32	–	00	–	–
Ceftazidime	32	19	00	–	–
Cefoperazone	–	19	–	–	–
Cepirome	–	–	–	–	–
Cefepime	32	25	00	–	–
Aztreonam	32	38	00	–	–
Imipenem	100	63	67	–	82
Meropenem	100	63	67	–	–
Azithromycin	–	–	–	56	47
Clindamycin	–	–	–	68	–
Vancomycin	–	–	–	100	100
Teicoplanin	–	–	–	100	100
Linezolid	–	–	–	100	100
Gentamicin	61	50	33	92	(High dose) 59
Tobramycin	59	50	33	–	–
Netilmicin	71	50	67	92	65
Amikacin	70	69	33	92	59
Ciprofl oxacin	41	50	33	68	35
Ofloxacin	47	50	33	76	47
Levofloxacin	69	50	67	88	59
Moxifloxacin	83	50	67	92	76
Cotrimoxazole	34	19	33	44	–
Chloramphenicol	68	–	–	88	53
Tetracycline	54	–	33	92	47
Tigecycline	95	–	67	100	100
Polymyxin B	–	100	100	–	–
Colistin	–	100	100	–	–

No. of inpatient samples: 1046; no. of non-ICU samples: 791; total no. of non-ICU isolates: 172; polymicrobial growth: 15 samples (9.6%); NA, antibiotic discs not available

for Pseudomonas 6 isolates (38%) carbapenem resistant; all were MBL producers. A study from Punjab revealed production of ESBL, AmpC beta-lactamase, and MBL by E. coli and K. pneumoniae.

Of all isolates, ESBL was detected in 35.16% and MBL producers in 10.98%. 13

Thus, they manifested multidrug resistance and propensity to respond only to higher antibiotics like carbapenems, polymyxin, Colistin, vancomycin, tigecycline, etc. The initial choice of drugs like cephalosporins and beta-lactams is useless in this setting.
to HAI increases due to unhygienic environment, improper waste disposal, and ignorance among healthcare personnel.\(^\text{16}\)

Patient factors include immunosuppression, increased duration of ICU admission, and continued antibiotic therapy. Improper techniques of use of invasive devices (cannula and catheters) and absence of control policies are all incriminated as predisposing factors.\(^\text{17}\)

In low-income countries, the above factors are linked to poor economic status, inadequate staff, and infrastructure.\(^\text{18}\)

It is important to devise ways of prevention of nosocomial infections by practicing well-monitored healthcare delivery, maintenance of hygiene, and specifically targeted antimicrobial prescription policy.

Proper waste disposal, cleanliness in the environment, proper food handling, and hand hygiene should be practiced. Foremost is also to take measures for the prevention of drug resistance to develop.\(^\text{19,20}\)

It is important that every hospital should have an infection control group who would devise an antibiotic policy for that particular healthcare facility. Our study is a typical microbiological surveillance report on the current pathogen spectrum and their sensitivity pattern.

An antibiotic policy provides guidelines for use in specific infections for that institution at a point in time. It is reviewed by a microbiologist and devised based on the latest surveillance data.\(^\text{21,22}\)

The following are the measures to be undertaken:

a. Training on antibiotic usage.

b. Monthly data surveillance and feedback to be reviewed periodically.

c. Hospital infection control group will formulate guidelines to ensure restricted antibiotic use.

Limitations of our study

Viral identification was not possible in our setup. The total number of samples was limited and stool samples were not done.

Conclusion

Superbugs are emerging day by day in healthcare setups where traditional antibiotics are becoming useless. The importance of periodical sampling and culture and sensitivity tests cannot be undermined as the bacterial spectrum and the sensitivity change over time. Moreover, it helps to lay down an antibiotic policy for a particular institution that goes a long way in the prevention of multidrug resistance in the future.

References

1. Khan HA, Baig FK, Mehboob R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed 2017;7(5):478–482. DOI: 10.1016/j.apjtb.2017.01.019.

2. Gupta A, Singh DK, Krutarth, B, et al. Prevalence of healthcare associated infections in a tertiary care hospital in Dakshina Kannada, Karnataka: a hospital based cross sectional study. Int J Med Res Health Sci 2015;4(2):317–321. DOI: 10.5958/2319-5886.2015.00059.4.

3. Lee C-C, Lee C-H, Chuang M-C, et al. Impact of inappropriate empirical antibiotic therapy on outcome of bacteremic adults visiting the ED. Am J Emerg Med 2012;30(8):1447–1456. DOI: 10.1016/j.ajem.2011.11.010.

4. Emily RM, Sydnor TMP. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 2011;24(1):141–173. DOI: 10.1128/CMR.00027-10.

5. Raja Danasekaran GM, Annadurai K. Prevention of healthcare-associated infections: protecting patients, saving lives. Int J Commun Med Publ Health 2014;1(1):67–68. DOI: 10.5455/2394-6040.ijcmph20141114.

6. Khan H, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed 2015;5(7):509–514. DOI: 10.1016/j.apjtb.2017.01.019.

7. Brasme L, Nordmann P, Fidel F, et al. Incidence of class A extended-spectrum beta-lactamases in Champagne-Ardennes (France): a 1 year prospective study. J Antimicrob Chemother 2007;60(S):956–964. DOI: 10.1093/jac/dkm319.

8. Eggimann P, Pittet D. Infection control in the ICU. Chest 2001;120(6):2059–2093. DOI: 10.1378/chest.120.6.2059.

9. Weinstein RA. Nosocomial infection update. Emerg Infect Dis 1998;4(3):416–420. DOI: 10.3201/eid0403.980320.
10. Ojulong J, Mwambu TP, Joloba M, et al. Relative prevalence of methicillin resistant Staphylococcus aureus and its susceptibility pattern in Mulago Hospital, Kampala, Uganda. Tanzan J Health Res. 2009;11(3):149–153. DOI: 10.4314/thrb.v11i3.47703.

11. Chambers HF. Community-associated MRSA—resistance and virulence converge. N Engl J Med 2005;352(14):1485–1487. DOI: 10.1056/NEJMe058023.

12. Zhanel GG, DeCorby M, Laing N, et al. Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005–2006. Antimicrob Agents Chemother 2008;52(4):1430–1437. DOI: 10.1128/AAC.01538-07.

13. Oberoi L, Singh N, Sharma P, et al. ESBL, MBL and Ampc β lactamases producing superbugs - Havoc in the intensive care units of Punjab India. J Clin Diagnostic Res 2013;7(1):70–73. DOI: 10.7860/JCDR/2012/5016.

14. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, Enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002;136(11):834–844. DOI: 10.7326/0003-4819-136-11-200206040-00013.

15. Nejad SB, Syed SB, Ellis B, et al. Health-care-associated infection in Africa: a systematic review. Bull World Health Org. 2011;89:757–765. DOI: 10.2471/BLT.11.088179.

16. Inci A, Karabay A, Erus S, et al. Nosocomial infections and associated risk factors in geriatric patients in the intensive care unit. Eurasian J Emerg Med 2016;15:177–180. DOI: 10.5152/eajem.2016.35744.

17. Ozdemir K, Dizbay M, Dikmen A. Incidence and risk factors of nosocomial infections in elderly and adult patients in intensive care units. Turk J Geriatr 2013;16:155–160. DOI: 10.5799/ahinsj.02.2015.01.0174.

18. Bardossy AC, Zervos J, Zervos M. Preventing hospital-acquired infections in low-income and middle-income countries: impact, gaps, and opportunities. Infect Dis Clin North Am 2016;30(3):805–818. DOI: 10.1016/j.idc.2016.04.006.

19. Blot S. Limiting the attributable mortality of nosocomial infection and multidrug resistance in intensive care units. Clin Microbiol Infect 2008;14(1):5–13. DOI: 10.1111/j.1469-0691.2007.01835.x.

20. Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. J Hosp Infect 2009;73(4):305–315. DOI: 10.1016/j.jhin.2009.04.019.

21. Jarvis WR. Infection control and changing health-care delivery systems. Emerg Infect Dis 2001;7(2):170–173. DOI: 10.3201/eid0702.010202.

22. Haley RW, Culver DH, White JW, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121(2):182–205. DOI: 10.1093/oxfordjournals.aje.a113990.