Low Noise Amplifier Design and Performance Analysis of RF Front-End for Narrow Band Receivers

Amgothu Laxmi Divya¹, Mahesh Mudavath², Ch S Ranadheer³, Mohamed Afzal⁴ and R.Venkateswarlu⁵

¹M.Tech Scholar, Vaagdevi College of Engineering Warangal (Telangana), India, 506005
²³⁴⁵Assistant Professor (ECE), Vaagdevi College of Engineering Warangal (Telangana), India, 506005

Abstract: - This manuscript presents the low noise amplifier design and performance analysis of receiver RF front-end for narrowband wireless communications. The LNA is a central building block of the wireless receiver. A single-ended cascode CMOS LNA is purposeful for reconfigurable applications such as Wireless LAN. The scope of this manuscript is to design an LNA appropriate for wireless applications with improved performance metrics. The contributions of this paper are noise reduction and high gain using an inductive degeneration common source stage. The proposed LNA espouses the entire simulation results in the frequency band of 2.4 GHz. The excellent Noise Figure obtained as 0.95 dB; the preferable power gain (S21) is 17 dB, also the results of P-1dB of -17.3 dBm, IIP3 of -10.7 dBm at 2.44GHz, respectively. However, the perfect input and output matching network is achieved with proper reverse shielding and excellent stability.

Key words— CMOS, receiver RF front-end, LNA, narrow band, wireless LAN, common-source stage, inductive degeneration.

I. Introduction

In the simple front-end of radio-frequency (RF) receivers, the low-noise amplifier (LNA) is the critical discriminating component [1]. In radio communications systems, electronics equipment and medical instruments, LNAs are found. The primary function of LNA is to provide increased voltage gain, input output impedance matching with allowable noise figure and linearity of the receiver front-end. [2].

The wireless communication engineering is at this time experiencing remarkable expansion. Many exhaustive kinds of research on CMOS radiofrequency front-end circuits have been carried out in response to the requirements for a less expensive but high-performance device [3]. To design the circuit of RF front-end for high-speed wireless applications, different architectures of LNA have to be studied, keeping in view the following requirements [4]:

The LNA must be able to offer adequate amplification, but it should not be greater such that the next stages are saturated. It should introduce small amounts of external noise into the device. It should also be linear enough to conform to high-power interferences coming from the wireless interface. For communication systems, the LNA role is used to amplify poor signals received by an antenna. It is located far closer to the aerial, so that feed line losses are less critical [5].
II. Design consideration of LNA

A trade-off between design parameters is always available in analog circuits, such as conversion gain, noise, linearity, supply voltage, power consumption, etc. Degradation is observed in one parameter, while enhancement is bringing into being in another [9]. Therefore, we concentrate on the trade-off issues while retaining the optimum improvements in parameters by incorporating different technologies. The circuits proposed are designed for low noise, high linearity, increased conversion gain, low-power, depending on the context and application. Without fading specific parameters, including linearity and noise, increasing the changeable conversion gain enhances the multifunctionality of the device [10].

Any LNA circuit’s universal topology can consist of three stages shown in Fig. 1. These are an input side matching network, a central amplifier and a matching network at output [11]. This network will try to preserve resemblance in order to get better design results. The input reflection coefficient S_{11} and output reflection coefficient S_{22} are calculated by s-parameters [8].

![Fig. 1 The universal topology of LNA](image)

In this figure, the matching network of LNA are characterized by the means of lumped parameters (e.g., Z_{in}, Z_{out}, etc.) & s-parameters (e.g., S_{11}, S_{12}, S_{21}, and S_{22}) [6].

Using s-parameters, the reliability of the two-port network is examined. The Rollet factor $K_f > 1$ and alternate stability factor $B_{1f} < 1$ are necessary and adequate conditions for stability [7].

\[
K_f = \frac{(1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2)}{(2|S_{12}S_{21}|^2)}
\]

(1)

\[
|B_{1f}| = 1 + |S_{11}|^2 - |S_{22}|^2 - \Delta
\]

(2)

Where

\[
\Delta = (S_{11}S_{22} - S_{12}S_{21})
\]

If $K_f > 1$ & $B_{1f} < 1$, hence, it is unconditionally stable network.

We may describe the both transistor DC gains individually (respectively in common source and common gate configurations) as.

\[
A_o = -\frac{g_{meq}}{g_{oeq}} = -\frac{g_{m1}(g_{m2} + g_{o2})}{g_{o1} + g_{m2} + g_{o2}} \times \frac{g_{o1} + g_{m2} + g_{o2}}{g_{o1}g_{o2}}
\]

\[
A_o = -\frac{g_{m1}(g_{m2} + g_{o2})}{g_{o1}g_{o2}}
\]

\[
A_o = -\frac{g_{m1}}{g_{o1}} \quad \text{and} \quad A_o^2 = 1 + \frac{g_{m2}}{g_{o2}}
\]

\[
A_o = A_{o1} \times A_{o2}
\]

(3)
III. Design of Proposed LNA

The schematic of Inductor degenerate common source LNA topology and its test bench circuits are shown in Figure 2. Here, gate and source inductors are used to match the impedance at the desired frequency. First of all, the requirements for input matching are met by assigning an inductor L_g at the gate of the MOS-FET transistor, which makes resonance at the center frequency [12]. An inductor L_s is located at the source terminal to understand low NF in a given structure; it acts as source inductive degeneration. The components L_g, C_{gd}, and L_s thereby afford the appropriate input network matching for narrow-band. The component L_d, and C_d are required to resonating with a particular frequency at the output-side. The aspect ratio of MOSFET M_1 and M_2 decides the gain of the design. The value of drain inductor with a load capacitor is to set such that to resonance at desired frequency will improve gain and output matching. Here C_{block} and C_L are DC coupling capacitors at input and output, respectively [13].

The signal runs through the gate of the both M_1 transistor and M_2 transistor. Here, we set to V_{ref} for biasing of M_2 transistor, so both transistors are operating in saturation mode. Hence, The M_1 transistor works as a common-source, while the M_2 transistor operates in the common-gate for isolating the output from input nodes [8].

![Fig. 2(a) proposed single-ended LNA design](image_url)
IV. Results and Discussions

The LNA circuit’s design parameters are evaluated with respect to the 2.44GHz operating frequency. Figure 3 to Figure 7 displays a plot of the s-parameters and necessary constraints. The S$_{21}$ plot is significant, as it gives the amplifier's gain. As shown in Figure 3, a gain of 17dB is achieved at 2.44GHz which falls true within our preferred range.

![Graph showing voltage gain versus frequency](image)

Fig. 3 The plot of voltage gain versus frequency is measured as 17dB at 2.44GHz.

Noise Figure is a measure of how much an amplifier degrades the signal-noise-ratio (SNR). The value of the noise figure is 0.95dB @ 2.44GHz which is a very good number shown in Figure 4.
Fig. 4 The plot of noise figure versus frequency is measured as 0.95dB at 2.44GHz.

Figure 5 shows a plot of the input output reflection coefficients S_{11} and S_{22}. The values are -42.3 dB and –42.3dB respectively for the input and output sides.

Fig. 5: Simulated input return loss $S_{11} = -8.4\text{dB} @ 2.44\text{GHz}$ centre frequency

1-dB compression point is the input signal level that drives the small-signal gain to drop by 1dB. It is obtained as -17.3dBm at a 2.44GHz frequency as shown in Figure 6.

Fig. 6 The plot of 1-dB compression point measured as -17.3dBm

The corruption of signals relating to the intermodulation of two nearby interferers in the third order is so prevalent and so important that a performance metric was defined to characterise their behaviour called the 3rd order input intercept point (IIP3) which is shown in Fig. 7. It is obtained as -10.7dBm at a frequency of 2.44GHz.
A report on comparative studies taken in regards to directions for proposed work could tabulate in Table 1.

Table 1: Comparative analysis of proposed LNA to reported LNAs

Parameters	This work	(2)	(4)	(5)
Center Frequency (GHz)	2.44GHz	2.4GHz	2GHz	2.4GHz
CMOS Technology (nm)	180nm	180nm	180nm	180nm
Voltage Gain (dB)	17dB	14.4dB	9.7dB	15.9dB
Noise Figure (dB)	0.95dB	2.95dB	3.4dB	1.8dB
S_{11} (dB)	-42.1	-16	-17	-14
S_{22} (dB)	-42.2	-19	-19	-12.8
IIP_3 (dBm)	-10.7dBm	4.46dBm	-20dBm	-30dBm
P_{1dB} (dBm)	-17.3dBm	--	-6.22dBm	-12dBm
Power supply	1.8V	1.8V	1.8V	1.8V

V. Conclusion

In the present scenario, the field of receiver for wireless communications has experienced tremendous progress, moving rapidly over a series of generations. The low-noise receiver architecture is a key design constraint. The architecture of the LNA for improved performance is of tremendous significance in this context. For this model, the inductive degeneration network has chosen a low NF of 0.95dB and a high power gain of 17dB and adequate linearity. This LNA designed can therefore be used at the center frequency of 2.44 GHz for wireless receiver applications such as wireless LAN.

References

1. Raghu S and Punithavathi Duraiswamy, “High Gain and Low Noise Figure Single-to-Differential CMOS LNA for Ka-Band Communication System”, in “2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)”, 2017, pp: 35-38.
2. Tayebe Mohammadi, Alireza Ghaneizadeh, and Yasser Mafinejad, “A Narrow-Band CMOS LNA for Wireless Communications”, 26th Iranian Conference on Electrical Engineering (ICEE2018), 2018, pp: 265-268.
3. Mahesh Mudavath, K. Hari Kishore, Azham Hussain and C.S. Boopathi “ Design and analysis of CMOS RF receiver front-end of LNA for wireless applications,” Microprocessors and Microsystems, volume 75 (2020), pages:1-11, article no. 102999, doi: https://doi.org/10.1016/j.micpro.2020.102999.
4. J.Manjula , P.Sai Krishna and D.Rubeena, “Design and Performance Analysis of Active Inductor Based Reconfigurable Regulated Cascade LNA for Tunable RF Front End”, International Conference on Communication and Signal Processing, April 6-8, 2017, India, pp:0222-0227.
5. Hossein Khosravi, Salman Zandian, and Abolfazl Bijari, “A Low Power, High Gain 2.4/5.2 GHz Concurrent Dual-Band Low Noise Amplifier”, IEEE, pp.0788-0792.

6. Muhammad Arsalan1 and Falin Wu1, * LNA Design for Future S Band Satellite Navigation and 4G LTE Applications”, CMES, vol.119, no.2, pp.249-261, 2019, Copyright © 2019 Tech Science Press.

7. Mahsa Keshavarz Hedayati, Abdolali Abdipour, Reza Sarraf Shirazi, and Robert Bogdan Staszewski, “A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS” Citation information: DOI 10.1109/TCSII.2018.2859187, IEEE Transactions on Circuits and Systems II: Express Briefs.

8. Mahesh Mudvath and K. Hari Kishore “A low NF, high gain of 2.4GHz differential LNA design for wireless applications,” International Journal of Scientific & Technology Research (IJSTR), Volume- 8, Issue-12, December-2019, pp: 109-116, ISSN: 2277-8616.

9. Neeraja A R, Siva S Yellampalli, “Design of Cascaded Narrow Band Low Noise Amplifier” 2017 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT).

10. Pournamy S, Navin Kumar, “Design of 60GHz Broadband LNA for 5G Cellular using 65nm CMOS Technology”, 2017 7th International Conference on Communication Systems and Network Technologies,2017, pp:320-324.

11. Mahesh Mudavath and K. Hari Kishore “Differential CMOS low noise amplifier design for wireless receivers,” International Journal of Recent Technology and Engineering (IJRTE), ISSN: 2277-3878, Volume-8, Issue-4, 2019, pp: 2467-2474.

12. A. Andrew Roobert1, D. Gracia Nirmala Rani2, M. Divya3, S. Rajaram4, Design of CMOS based LNA for 5G Wireless Applications ICCBN 2018, February 24–26, 2018, Singapore, Singapore © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-6360-0/18/02...$15.00 https://doi.org/10.1145/3193092.3193095.

13. Anith Selvakumar, Member, IEEE, Meysam Zargham, and Antonio Liscidini, Senior Member, IEEE” Sub-mW Current Re-Use Receiver Front-End for Wireless Sensor Network Applications, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 50, NO. 12, DECEMBER 2015, pp 2965-2974.