Targeted surveillance reveals native and invasive mosquito species infected with Usutu virus
Jeremy V. Camp1*, Jolanta Kolodziejek1 and Norbert Nowotny1,2

Abstract
Background: The emergence of Usutu virus (USUV) in Europe was first reported in Austria, 2001, and the virus has since spread to many European countries. Initial outbreaks are marked by a mass die-off of European blackbirds (Turdus merula) and other bird species. During outbreaks, the virus has been detected in pools of Culex pipiens mosquitoes, and these mosquitoes are probably the most important enzootic vectors. Beginning in 2017, a second wave of blackbird deaths associated with USUV was observed in eastern Austria; the affected areas expanded to the Austrian federal states of Styria in the south and to Upper Austria in the west in 2018. We sampled the potential vector population at selected sites of bird deaths in 2018 in order to identify infected mosquitoes.

Results: We detected USUV RNA in 16 out of 19 pools of Cx. pipiens/Cx. torrentium mosquitoes at sites of USUV-linked blackbird mortality in Linz and Graz, Austria. A disseminated virus infection was detected in individuals from selected pools, suggesting that Cx. pipiens form pipiens was the principal vector. In addition to a high rate of infected Cx. pipiens collected from Graz, a disseminated virus infection was detected in a pool of Aedes japonicus japonicus.

Conclusions: We show herein that naturally-infected mosquitoes at foci of USUV activity are primarily Cx. pipiens form pipiens. In addition, we report the first natural infection of Ae. japonicus japonicus with USUV, suggesting that it may be involved in the epizootic transmission of USUV in Europe. Ae. j. japonicus is an invasive mosquito whose range is expanding in Europe.

Keywords: Aedes japonicus japonicus, Culex pipiens, Invasive mosquito, Vector competence, Flavivirus

Background
Usutu virus (USUV) is a flavivirus (Flaviviridae) in the Japanese encephalitis virus serogroup originating from Africa [1]. In 2001, USUV was first identified in Austria, associated with a large die-off of Eurasian (or common) blackbirds (Turdus merula Linnaeus, 1758) [2], although the initial emergence in Europe may have been earlier [3]. Following the initial introduction, the virus spread to many European countries and is typically associated with the death of certain species of native birds, mainly blackbirds [4–7]. An observed reduction of bird deaths over time may be attributed to herd immunity [8]. Despite this, there exists evidence of continued low-level virus activity in the years following the initial outbreaks in the form of bird seroconversion and the detection of viral nucleic acid in pools of mosquitoes [9, 10]. In 2016, USUV was reported from live and dead birds in Austria, Belgium, Germany, Hungary, France, Germany and the Netherlands [11, 12], as well as from human blood donors in Germany in 2017 [13] and in Austria from 2016–2018 [14, 15]. Therefore, USUV has established transmission in Europe.

The identification of USUV nucleic acid in field-captured mosquito pools suggests that Culex pipiens Linnaeus, 1758 is the principal vector in Europe [16]. In regions where West Nile virus (WNV, Flaviviridae) is endemic, USUV and WNV have been observed to co-circulate in an avian-mosquito transmission cycle [10, 16, 17]. Experimental vector competence studies have demonstrated that European Cx. pipiens form pipiens populations are
competing populations of USUV [18, 19]. However, it is unconfirmed if natural populations of Cx. pipiens are infected with USUV as only pooled adult females were tested in mosquito surveillance efforts and their infection status could not be determined [10, 16, 17].

Beginning in 2016, the presence of viral RNA in blood from human donors and in tissue samples from dead birds signaled increased transmission of USUV in Austria [12, 14]. In 2018, bird deaths in Austria increased over the prior year, and multiple USUV-infected blackbirds were confirmed from several sites including Linz, Upper Austria and Graz, Styria. Furthermore, obligatory seasonal blood donation screening in eastern Austria revealed 18 USUV infections among donors in 2018 [15], which is the highest number of human infections reported since the emergence of USUV in Austria in 2001 [2]. Recently, we reported the analysis of integrated human-vector-host surveillance for arboviruses in Austria [20]. Using this model, we performed targeted entomological investigations at sites where cases of blackbird deaths were confirmed to be linked to USUV infection. The goal was to determine the infection status of mosquitoes at sites of virus activity.

Results

In total, 380 mosquitoes were collected from the two sites (Table 1). In Linz, 37 Cx. pipiens/Cx. torrentium Martini, 1925 were captured, 18 of which were gravid, and seven Aedes japonicus japonicus (Theobald, 1901) were collected (Table 1). In Graz, two nights of trapping resulted in 315 Cx. pipiens/Cx. torrentium (8 from the light trap, 2 of which were gravid, and all except for 32 of the remaining specimens collected in the gravid trap were gravid), 17 Ae. j. japonicus (10 from the light trap, and 2 of 7 from the gravid trap were gravid), three Aedes vexans (Meigen, 1830) captured in the light trap, and one An. maculipennis (Meigen, 1818) captured in the light trap (Table 1). Mosquitoes were pooled by site and species, and then tested for the presence of viral nucleic acids.

Two of the three pools containing seven and 15 Cx. pipiens/Cx. torrentium mosquitoes, respectively, from Linz were positive for USUV nucleic acid (Table 1). Further testing of the individuals’ legs and wings revealed that the pool consisted of 2 Cx. torrentium and 5 Cx. pipiens form pipiens; USUV nucleic acid was found in the legs and wings of a single Cx. pipiens form pipiens individual (Table 2). Similarly, pooled bodies and pooled legs and wings from the 7 Ae. j. japonicus specimens captured in Linz were negative for flavivirus nucleic acid (Table 1).

From Graz, 14 of the 16 pools of Cx. pipiens/Cx. torrentium were positive for USUV nucleic acid (Table 1), all of which contained gravid individuals except for two pools consisting of 25 and 7 non-gravid individuals, respectively. The legs and wings from mosquitoes comprising two USUV-positive pools of 15 gravid Cx. pipiens/Cx. torrentium each were then tested individually. The pools consisted entirely of Cx. pipiens form pipiens, and USUV was detected in the legs and wings of two of the 30 Cx. pipiens form pipiens, indicating a disseminated infection (Table 2). In addition, USUV nucleic acid was detected in a pool of six Ae. j. japonicus; the legs and wings were tested separately and were positive for USUV nucleic acid, suggesting that the infection was disseminated.

Partial sequences within the NS5 gene of six USUV positive mosquito pools were determined, including 2 Cx. pipiens/Cx. torrentium pools from Linz (accession nos. MK121948 and MK121949), 3 Cx. pipiens/Cx. torrentium pools from Graz (accession nos. MK121944, MK121946 and MK121947) and 1 Ae. j. japonicus pool from Graz (accession no. MK121945). The sequences were 99.5–100.0% identical to each other and to the USUV sequences obtained from the birds found dead in the corresponding sites, all belonging to USUV cluster “Europe 2”. The sequence identities to the previous Austrian strains were between 99.2–100.0%. All mosquito pooled tests negative for WNV.

Table 1 Adult female mosquitoes collected from sites of Usutu virus-positive Eurasian blackbird deaths in Austria, 2018. Mosquitoes were collected overnight (Linz, one trap-night; Graz, two trap-nights) with a CDC miniature light trap baited with CO2 (LT) or a gravid trap containing hay infusion (GT).

Location	Species	Total	LT (gravid*)	GT (gravid*)	USUV+ /pools tested
Linz	Aedes j. japonicus	7	5 (0)	2 (0)	0/1
	Culex pipiens/Cx. torrentium	37	7 (3)	30 (15)	2/3b
Graz	Ae. j. japonicus	17	10 (0)	7 (2)	1/3c
	Aedes vexans	3	3 (0)	0 (0)	0/1
	Anopheles maculipennis	1	1 (0)	0 (0)	0/1
	Cx. pipiens/Cx. torrentium	315	8 (2)	307 (275)	14/16d
Total		380	34 (5)	346 (292)	17/25

*aThe number of gravid individuals from each trap is listed in parentheses following the total number

*bUsutu virus nucleic acid was detected in two pools of Cx. pipiens/Cx. torrentium with 7 and 15 individuals, respectively

*cUsutu virus nucleic acid was detected in one pool of six Ae. j. japonicus which was determined to be a disseminated infection

*dUsutu virus nucleic acid was detected in 14 of 16 pools of Cx. pipiens/Cx. torrentium each containing between 7 and 25 individuals
In vector surveys, USUV is most frequently detected in pools of *Cx. pipiens/Cx. torrentium* [16]. However, in Italy for example, USUV nucleic acid was also identified in pools of the invasive mosquito, *Aedes albopictus* (Skuse, 1894), at relatively high frequency [21]. Other species of mosquitoes have been occasionally identified to be USUV-positive at a much lower frequency: *Anopheles maculipennis* (s.l.), *Caliseta annulata* (Schrank, 1776), *Ochlerotatus caspius* (Pallas, 1771) and *Ochlerotatus detritus* (Haliday, 1833) in Italy, and *Culex perexiguus* (Theobald, 1903) in Spain [16]. However, it is unknown whether these species are competent vectors. The ability to identify naturally infected vectors represents a challenge to the study of the enzootic transmission cycles of arboviruses. Additionally, female *Cx. pipiens* cannot be separated from *Cx. torrentium* by morphology, and therefore the detection of arboviral nucleic acid in mixed pools of *Cx. pipiens/Cx. torrentium* is ambiguous.

To address these challenges, we used bird deaths to identify foci of USUV transmission during the most recent outbreak in Austria. We used gravid traps to increase the likelihood that we would sample infected mosquitoes, i.e. those that have already fed upon viremic hosts. We tested for disseminated infection in selected individual mosquitoes by analysing legs and wings separately. This also allowed us to determine the species of mosquitoes that were infected with the virus, particularly to distinguish *Culex* spp. using molecular tests. We found disseminated infections in *Cx. pipiens form pipiens*, which others have determined is a competent vector species of USUV [18, 19], and thus this is most likely the principal vector involved in USUV transmission. Neither of the *Cx. torrentium* (n = 2) individuals were positive for USUV, although the number tested was much lower than the number of individual *Cx. pipiens form pipiens* tested (n = 35). The lower relative abundance of *Cx. torrentium* at the sites of virus activity here (Table 1) may suggest that they are not as important as *Cx. pipiens form pipiens* in enzootic transmission and maintenance of the virus.

Table 2 Molecular identification of *Culex* species with disseminated Usutu virus infection at foci of transmission in Austria, 2018

Species	Linz	Graz
Cx. pipiens form pipiens	3/35	1/5
Cx. torrentium	0/2	0/2

Notes: The legs and wings from mosquitoes taken from Usutu virus-positive pools (USUV+) from each trap site (Linz: 1 pool with 7 mosquitoes; Graz: 2 pools with 15 mosquitoes each) were analysed individually to determine species and to detect if the infection was disseminated. The values are the number of individuals of a given species with a disseminated USUV infection / total individuals tested by trap site.

Discussion

In vector surveys, USUV is most frequently detected in pools of *Cx. pipiens/Cx. torrentium* [16]. However, in Italy, USUV nucleic acid was also identified in pools of the invasive mosquito, *Aedes albopictus* (Skuse, 1894), at relatively high frequency [21]. Other species of mosquitoes have been occasionally identified to be USUV-positive at a much lower frequency: *Anopheles maculipennis* (s.l.), *Caliseta annulata* (Schrank, 1776), *Ochlerotatus caspius* (Pallas, 1771) and *Ochlerotatus detritus* (Haliday, 1833) in Italy, and *Culex perexiguus* (Theobald, 1903) in Spain [16]. However, it is unknown whether these species are competent vectors. The ability to identify naturally infected vectors represents a challenge to the study of the enzootic transmission cycles of arboviruses. Additionally, female *Cx. pipiens* cannot be separated from *Cx. torrentium* by morphology, and therefore the detection of arboviral nucleic acid in mixed pools of *Cx. pipiens/Cx. torrentium* is ambiguous.

To address these challenges, we used bird deaths to identify foci of USUV transmission during the most recent outbreak in Austria. We used gravid traps to increase the likelihood that we would sample infected mosquitoes, i.e. those that have already fed upon viremic hosts. We tested for disseminated infection in selected individual mosquitoes by analysing legs and wings separately. This also allowed us to determine the species of mosquitoes that were infected with the virus, particularly to distinguish *Culex* spp. using molecular tests. We found disseminated infections in *Cx. pipiens form pipiens*, which others have determined is a competent vector species of USUV [18, 19], and thus this is most likely the principal vector involved in USUV transmission. Neither of the *Cx. torrentium* (n = 2) individuals were positive for USUV, although the number tested was much lower than the number of individual *Cx. pipiens form pipiens* tested (n = 35). The lower relative abundance of *Cx. torrentium* at the sites of virus activity here (Table 1) may suggest that they are not as important as *Cx. pipiens form pipiens* in enzootic transmission and maintenance of the virus.

In addition, we report the first natural infection of *Ae. j. japonicus* with USUV. In Austria, *Ae. j. japonicus* was first noted in southern Styria in 2011 near the Slovenian border and has also been reported from multiple countries in central Europe, including Switzerland and Italy [22–25]. It appears that multiple introductions into Europe have occurred [26] and the population in central Europe is aggressively expanding in range and local abundance [27]. It is a highly invasive mosquito and may displace endemic species where it is introduced [28]. Experimental studies have shown that *Ae. j. japonicus* is a competent vector of both WNV-lineage 1 in the USA [29, 30] and WNV-lineage 2 in Europe [31, 32], as well as chikungunya virus and dengue virus [33]. To our knowledge, the vector competence of *Ae. j. japonicus* for USUV has not yet been established.

Despite its wide distribution and high vector competence for many arboviruses, there is only a single report of a field population of *Ae. j. japonicus* being positive for WNV, identified in the USA during the initial outbreak of WNV [34]. *Ae. j. japonicus* has a strong preference for mammalian hosts [35–37], taking blood from many mammal species including humans [38]. Although avian blood meals have not been identified from field specimens, laboratory colonies take blood when offered captive birds [39]. Therefore it is unlikely that *Ae. j. japonicus* will be an important vector of enzootic transmission of USUV; however, this invasive species may be a bridge vector of USUV and/or WNV.

Conclusions

Targeted entomological surveillance at foci of USUV-associated bird deaths supports the hypothesis that *Cx. pipiens form pipiens* is the major vector of USUV in Austria. The surveillance also identified that *Ae. j. japonicus*, an invasive species, was naturally infected with USUV.

Methods

Through coordinated surveillance efforts, bird deaths in 2018 were investigated at the University of Veterinary Medicine Vienna [40]. Sites with four or more dead blackbirds testing positive for USUV were selected for targeted entomological surveillance. This included a site in Linz (Upper Austria; 48°17.001’N, 14°16.663’E; 1 trap-night) and a site in Graz (Styria; 47°04.995’N, 15°27.865’E; 2 trap-nights). Traps were set between one and three weeks following confirmed USUV-linked bird deaths. To sample the general mosquito population a CDC standard miniature light trap (“light trap”) baited with 1 kg of dry ice was used. In order to target the recently-infected mosquito population, an updraft gravid trap using a 10-day-old hay infusion as an oviposition attractant was used (both traps from J.W. Hock Co.,
Gainesville, FL, USA). Gravid traps baited with grass infu-
sion are known to be effective sampling methods for
both Cx. *pippisi* and Ae. *japonicus* [41]. Traps were
set 1 h before sunset and collected 1 h after sunrise.

Trap contents were cooled for 2 min at -20 °C, and
mosquitoes were sorted to species on dry ice using mor-
phological identification keys [42, 43]. Mosquitoes were
pooled by species, site, Sella stage, and trap-night. Spec-
ies identifications were confirmed by molecular barcod-
ing: a 684 bp portion of the mitochondrial cytochrome c
oxidase 1 (*cox1*) gene was amplified by PCR (GoTaq® G2
PCR master mix, Promega, Mannheim, Germany) using
VF1d and VR1d primers [44], sequenced by the Sanger
method and compared to available sequences in Gen-
Bank. The legs and wings were removed from some
specimens, stored haphazardly, and stored separately
to test for a disseminated viral infection. Selected indi-
vidual specimens identified as Cx. *pippisi*/Cx. *torren-
tium* were identified to species based on ampiclon
length polymorphism of the *Ace2* gene using primers ACEpip,
ACETorr and B1246s according to a published protocol
[45]. To differentiate biotypes of Cx. *pippisi*, a 650 bp
portion of the *cox1* gene was amplified by PCR (primers
COIF and COIR) and then digested with HaeIII restric-
tion enzyme (New England Biolabs, Frankfurt, Germany)
according to a published protocol, which reveals a re-
striction site present in Cx. *pippisi* form *pippisi* but not
in form *molestus* [46].

Mosquito pools or mosquito parts were homogenised in
buffer on a bead mill (TissueLyser, Qiagen, Hilden,
Germany), and nucleic acid was extracted from the cleared
homogenate using a commercial kit (QIAamp viral RNA
kit, Qiagen). Virus nucleic acid was amplified using real-
time RT-PCR with a published ‘universal’ flavivirus pri-
er set (PF1S and PF2Rbis) and SYBR green [47](L u n a ®,
New England Biolabs). Two virus-specific primer-probe sets
were used to identify USUV or WNV nucleic acid [3, 48].
USUV-positive samples were further tested with conven-
tional RT-PCR [4]. Amplicons were sequenced by Sanger se-
quencing (Microsynth Austria GmbH, Vienna, Austria),
identified by nBlast search (https://blast.ncbi.nlm.nih.gov/
Blast.cgi), and aligned with published USUV sequences from
Austria (GenBank accession nos. MF063042, MF991886
and AY453411) in MEGA v.6 to determine sequence
similarity.

Abbreviations
USUV: Usutu virus; WNV: West Nile virus

Acknowledgements
The authors thank the “Kleine Wildtiere in großer Not” association for their
assistance in locating trap sites.

Funding
Hochschuljubiläumsstiftung H-282474/2017 was awarded to JVC.

References
1. Nikolay B, Diallo M, Boye CS, Sall AA. Usutu virus in Africa. Vector-Borne
Zoonotic Dis. 2011;11:1417–23.
2. Weissenböck H, Kolodziejek J, Url A, Lussy H, Rebek-Bauder B, Nowotny N.
Emergence of Usutu virus, an African mosquito-borne flavivirus of the
Japanese encephalitis virus group, central Europe. Emerg Infect Dis. 2002;8:
652–6.
3. Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N. Usutu virus, Italy,
1996. Emerg Infect Dis. 2013;19:727–4.
4. Bakonyi T, Erdélyi K, Rossi G, Mani P, Nowotny N. Usutu virus, Italy, 1996.
Emerg Infect Dis. 2013;19:727–4.
5. Hubálek Z, Rudolf I, Url A, Lussy H, Rebel-Bauder B, Nowotny N. Usutu
virus in Hungary. J Clin Microbiol. 2007;45:3870–40.
6. Becker N, Jost H, Ziegler U, Eiden M, Hörper D, Emmerich P, et al. Epizootic
emergence of Usutu virus in wild and captive birds in Germany. PLoS One.
2012;7:e32604.
7. Steinmetz HW, Bakonyi T, Weissenböck H, Hatt J-M, Eulenberger U, Robert
N, et al. Emergence and establishment of Usutu virus infection in wild and
captive avian species in and around Zurich, Switzerland - genomic and
pathologic comparison to other central European outbreaks. Vet Microbiol.
2011;148:207–12.
8. Meister T, Lussy H, Bakonyi T, Sikutová S, Rudolf I, Vogl W, et al. Serological
evidence of continuing high Usutu virus (Flaviviridae) activity and
establishment of herd immunity in wild birds in Austria. Vet Microbiol.
2008;127:237–48.
9. Weissenböck H, Kolodziejek J, Fragner K, Kuhn R, Pfeffer M, Nowotny N.
Usutu virus activity in Austria, 2001–2002. Microbes Infect. 2003;5:1132–6.
10. Savini G, Monaco F, Terregino C, Di Gennaro A, Bano L, Pinoni C, et al.
Usutu virus in Italy: an emergence or a silent infection? Vet Microbiol.
2003;91:269–74.
11. Cadar D, Lühken R, van der Jeudg H, Garigliany M, Ziegler U, Keller M, et al.
Widespread activity of multiple lineages of Usutu virus, western Europe,
2016. Euro Surveill. 2017;22:30452.
12. Bakonyi T, Erdélyi K, Brunthaler R, Dán Á, Weissenböck H, Nowotny N. Usutu
virus, Austria and Hungary, 2010-2016. Emerg Microbes Infect. 2017;6:e85.
30. Sardelis MR, Turell MJ. Invasion biology of West Nile virus (WNV) reveals acute Usutu virus (USUV) infection, Germany, September 2016. Euro Surveill. 2017;22:30501.

28. Kaufman MG, Fonseca DM. S. American Journal of Tropical Medicine and Hygiene, 2013;89:1–16. Intrications of the vector competence of USUV for fish DNA barcoding. Mol Ecol Notes. 2007;7:544–55.

33. Schaffner F, Vazeille M, Kaufmann C, Failloux A-B, Mathis A. Vector competence of Aedes japonicus japonicus for West Nile virus in the eastern United States. Vector Borne Zoonotic Dis. 2004;4:71–82.

35. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, et al. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis. 2004;4:71–82.

36. Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M. Host-feeding patterns of potential mosquito vectors in Connecticut, U.S.A: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Phoropodis, and Uranotaenia. J Med Entomol. 2008;45:143–51.

37. Goodman H, Egizi A, Fonseca DM, Leishnham PT, LaDeau SL. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors. 2018;11:218.

38. Molaei G, Farajollahi A, Scott JJ, Gaugler R, Andreadis TG. Human bloodfeeding by the recently introduced mosquito, Aedes japonicus japonicus, and public health implications. J Am Mosq Control Assoc. 2009;25:210–4.

39. Miyagi I. Feeding habits of some Japanese mosquitoes on coldblooded animals in laboratory. Trop Med. 1972;14:203–17.

40. Chvala S, Bakonyi T, Bukovciky C, Weister T, Brugger K, Rubel F, et al. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003–2005. Vet Microbiol. 2007;122:237–45.

41. Andreadis TG, Anderson JF, Munstermann LE, Wolfe RJ, Florin DA. Discovery, distribution, and abundance of the newly introduced mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, U.S.A. J Med Entomol. 2001;38:74–9.

42. Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes and Their Control. Berlin, Heidelberg: Springer; 2010.

43. Tanaka K, Matsuoka K, Saugstad ES. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogawa Islands) and Korea (Diptera: Culicidae), Contrib Am Entomol Inst. 1979/16:1–987.

44. Ivanova NV, Zemlak TS, Hamner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 2007;7:544–8.

45. Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg. 2004;70:339–45.

46. Shakeевич EV. PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. tormentans of the Pipiens Complex. Eur Mosq Bull. 2007;23:25–30.

47. Moreau G, Tennmann S, Gonzalez JP, Charrel RJ, Gard G, de Lamballerie X. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 2007;7:467–77.

48. Kolodziejek J, Marinov M, Kiss BJ, Alexe V, Nowotny N. Raising awareness for diagnostic challenges. Euro Surveill. 2017;22:1700644.

49. Seidel B, Duh D, Nowotny N, Allerberger F. First record of the American bush mosquito, Aedes japonicus japonicus, in southern Austria. Parasit Vectors. 2011;4:284.

50. Seidel B, Nowotny N, Bakonyi T, Allerberger F, Schaffner F. Spread of Aedes japonicus japonicus (Theobald, 1901) in Austria, 2011–2015, and the first records of the subspecies for Hungary, 2012, and the principalities of Liechtenstein, 2015. Parasit Vectors. 2016;9:356.

51. Seidel B, Duh D, Nowotny N, Allerberger F. First record of the mosquitoes Aedes (Ochlerotatus) japonicus japonicus (Theobald, 1901) in Austria and Slovenia 2011 and for Aedes (Stegomyia) obovatus (Skuse, 1885) in Austria. Entomol Zeitschr. 2012;122:223–6.

52. Ziehrle DE, Ilbáez-Justicia A, Kalan K, Merialdi E, Kampen H, Werner D. Recently discovered Aedes japonicus japonicus (Diptera: Culicidae) populations in The Netherlands and northern Germany resulted from a new introduction event and from a split from an existing population. Parasit Vectors. 2015;8:40.

53. Ziehlke DE, Waltbro D, Kampen H. Newly discovered population of Aedes japonicus japonicus (Diptera: Culicidae) in Upper Bavaria, Germany, and Salzburg, Austria, is closely related to the Austrian/Slovenian bush mosquito population. Parasit Vectors. 2016;9:163.

54. Kaufman MG, Fonseca DM. Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu Rev Entomol. 2014;59:31–60.

55. Colley DJ, Jones JW. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol. 2001;38:130–4.

56. Sardelis MR, Turell MJ. Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc. 2001;17:137–41.

57. Turell MJ, O’Guan ML, DoHm DI, Jones JW. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol. 2001;38:130–4.

58. Centers for Disease Control and Prevention (CDC). Update: West Nile virus activity - eastern United States, 2000. Morb Mortal Wkly Rep. 2000;49:1044–7.