Microproteinuria for detecting calcineurin inhibitor-related nephrotoxicity after liver transplantation

Jing Li, Bin Liu, Lu-Nan Yan, Lan-Lan Wang, Wan Y Lau, Bo Li, Wen-Tao Wang, Ming-Qing Xu, Jia-Yin Yang, Fu-Gui Li

AIM: To investigate whether microproteinuria could be used as an early and sensitive indicator to detect calcineurin inhibitor (CNI)-related nephrotoxicity after liver transplantation.

METHODS: All liver transplant recipients with normal serum creatinine (SCr) and detectable microproteinuria at baseline were included in this study. The renal function was monitored by the blood clearance of 99mTc-diethylenetriaminepentaacetic acid every 6 mo. Microproteinuria, SCr and blood urea nitrogen (BUN) were measured at entry and at subsequent follow-up visits. The patients were divided into different groups according to the mean values of glomerular filtration rate (GFR) at the follow-up time points: Group 1, GFR decreased from baseline by 0%-10%; Group 2, GFR decreased from baseline by 11%-20%; Group 3, GFR decreased from baseline by 21%-40%; Group 4, GFR decreased from baseline by > 40% and/or SCr was increasing.

RESULTS: A total of 143 patients were enrolled into this study (23 females and 120 males). The mean follow-up was 32 mo (range 16-36 mo). Downward trends in renal function over time were observed in the study groups. SCr and BUN increased significantly only in Group 4 patients \((P < 0.001) \). \(\beta_2 \)-microglobulin \((\beta_2m) \) and \(\alpha_1 \)-microglobulin \((\alpha_1m) \) significantly increased with the subtle change of renal function in recipients who were exposed to CNI-based immunosuppression regimens. The reductions in GFR were closely correlated with elevated \(\alpha_1m \) \((r^2 = -0.728, P < 0.001) \) and \(\beta_2m \) \((r^2 = -0.787, P < 0.001) \).

CONCLUSION: \(\beta_2m \) and \(\alpha_1m \) could be useful as early and sensitive indicators of CNI-induced nephrotoxicity.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Microproteinuria; Liver transplantation; Calcineurin inhibitors; Nephrotoxicity

INTRODUCTION

Calcineurin inhibitors (CNIs) have improved survival significantly after liver transplantation, but nephrotoxicity is an adverse effects common to both cyclosporine and tacrolimus\(^1\). Deterioration of renal function with CNI therapy has been widely reported in liver transplant...
The aim of this prospective study was to find out whether microproteinuria could be used as an early and sensitive indicator to monitor CNI-related nephrotoxicity in liver transplant recipients. It was approved by the Ethics Committee at the West China Hospital, Sichuan University.

MATERIALS AND METHODS

From April 2005 to December 2008, 423 adult patients underwent liver transplantation in our hospital. CNI-based immunosuppression regimens comprising a CNI (cyclosporine A or tacrolimus) + azathioprine + prednisone were delivered to recipients after transplantation. All patients who received a CNI-based regimen for immunosuppression after liver transplantation were potential candidates for this study. Recipients receiving CNI therapy without interruption after liver transplantation, with normal SCr at baseline and detectable microproteinuria in fresh urine were all included in this study. If death occurred within 3 mo posttransplantation or renal dysfunction was caused by non-CNI drugs (such as antibiotics or antivirals), or by other means during follow-up period, the recipients were excluded from the study.

Follow-up protocols were performed once every month for the first 6 mo after liver transplantation, once every 2 mo during months 7-12, and once every 6 mo after 1 year. At each time point, the patient contributed a urine sample which was correlated with the measurements from blood samples. Midstream fresh urine samples were collected and not centrifuged. Measurements of microproteinuria including α1-microglobulin (α1m), β2-microglobulin (β2m), immunoglobulin, microalbumin and transferrin were performed immediately with a Dade Behring array nephelometry system (Dade Behring Inc, USA). SCr (picric acid method) was measured by a Modula clinical chemistry analyzer (Roche Diagnostics, Roche, Switzerland). GFR was measured every 6 mo by the Gates method (PHILIPS Helix SPX-6D SPECT, Holland) which analyzed the blood clearance of 99mTc-diethylenetriaminepentaacetic acid (DTPA) (5 mCi, from the China Institute of Atomic Energy, radiochemical purity 95%). As consent for a renal biopsy was difficult to obtain, this was performed only when clinically indicated, especially in patients with increasing SCr (an indication of progressive deterioration in renal function).

The actual GFR is considered to be the best overall index of renal function in health and disease[11]. Therefore, we chose the actual GFR as the criteria for renal function in this study. The patients were divided into 4 groups according to the mean values of GFR at every 6-mo follow-up: Group 1, GFR declined from baseline by 0%-10%; Group 2, GFR declined from baseline by 11%-20%; Group 3, GFR declined from baseline by 21%-40%; Group 4, GFR declined from baseline by > 40% and/or SCr was increasing.

The normal concentrations of individual proteins present in the urine are illustrated by maximum values[12,13], and are significantly different between different laboratories[12,14]. The normal reference values of microproteinuria provided by Dade Behring, Inc. are: microalbumin < 30 mg/L, α1m < 12.0 mg/L, β2m < 0.20 mg/L, immunoglobulin < 9.6 mg/L, and transferrin < 1.9 mg/L. According to the values determined in 500 Chinese healthy individuals in our laboratory, the normal values used in this study for microalbumin were < 19 mg/L, α1m < 12.5 mg/L, β2m < 0.22 mg/L, immunoglobulin < 20.0 mg/L, and transferrin < 2.2 mg/L.

Statistical analysis was performed by SPSS 13.0 (SPSS Inc., Chicago, IL). Differences in microproteinuria, serum creatinine and BUN were tested with the one way ANOVA test for multiple comparisons. Data were expressed as mean ± SD, or median (range). The Kruskal-Wallis rank sum test (individual comparisons were done by the Wilcoxon rank sum test) and correlation analyses were used in this study. A P-value less than 0.05 indicated statistical significance.

RESULTS

A total of 143 liver transplant patients were recruited into this study. Of these, 16 withdrew during the follow-up period. The reasons for withdrawal were infection in 3 patients, acute rejection in 2, use of non-CNI drugs in 4, uncontrolled hypertension in 3, abnormal liver function in 2, and 2 patients died. There were 23 females and 120 male, aged 21-68 years. The grafts and recipients were blood group identical in 127 cases and compatible in 16 cases. The mean follow-up was 32 mo (range 16-56 mo).

The primary disease of the 143 recipients included diffuse ischemic intrahepatic biliary stenosis in 8, Caroli disease in 7, Budd-Chiari syndrome with liver cirrhosis in 4, liver cirrhosis after hepatitis B in 56, postoperative liver failure after right lobe hepatectomy caused by hepatic trauma in 4, Wilson disease in 11, α1-antitrypsin deficiency in 2, echinococcus disease of the liver in
Table 1 Demographic data of patients at the point of entry into this study (mean ± SD)

Variable	Group 1 (n = 123)	Group 2 (n = 35)	Group 3 (n = 6)	Group 4 (n = 0)
Age (yr), median(range)	48.6 (28-66)	49.2 (33-67)	48.5 (21-68)	0
Body mass index (BMI, kg/m²)	22.0 ± 2.8	20.5 ± 2.4	21.8 ± 2.9	0
Pre-transplant MELD score	17.8 ± 7.6	16.2 ± 8.4	15.7 ± 9.7	0
BUN (mmol/L)	5.6 ± 2.3	6.0 ± 2.5	5.9 ± 2.8	0
SCr (μmol/L)	54.7 ± 15.8	60.5 ± 20.1	68.7 ± 17.4	0
GFR (mL/min per 1.73 m²)	105.4 ± 20.5	99.6 ± 15.2	103.3 ± 23.1	0
Dosage (mg/kg per day)	4.0 ± 1.1	4.6 ± 1.5	5.1 ± 1.2	0
Tacrolimus	0.055 ± 0.03	0.061 ± 0.07	0.057 ± 0.05	0
Trough levels (ng/mL)	212.4 ± 45.8	243.7 ± 56.2	251.3 ± 61.6	0
Cyclosporine A	6.3 ± 0.6	6.7 ± 0.7	7.5 ± 0.9	0
Duration of previous treatment (mo)	5.8 ± 3.4	6.7 ± 4.6	6.9 ± 3.9	0
Cyclosporine A	5.3 ± 2.8	6.2 ± 3.5	6.7 ± 2.5	0
Tacrolimus	7.5 ± 2.2	8.8 ± 2.6	8.2 ± 3.1	0
Time post-transplant	0.02 ± 0.01	0.03 ± 0.1	0.05 ± 0.3	0
Microproteinuria (mg/L)	14.2 ± 10.6	18.5 ± 17.3	24.8 ± 20.1	0
Microalbumin	28.6 ± 19.3	37.7 ± 28.1	40.1 ± 30.5	0
Immunoglobulin	27.4 ± 8.3	25.1 ± 11.4	29.3 ± 15.6	0
Transferrin	2.8 ± 0.7	2.4 ± 1.6	3.1 ± 1.4	0

Table 2 Mean values of every follow-up time point in the study groups (mean ± SD)

Variable	Group 1 (n = 73)	Group 2 (n = 40)	Group 3 (n = 30)	Group 4 (n = 5)
GFR (mL/min per 1.73 m²)	97.4 ± 12.7	85.6 ± 17.9	62.3 ± 20.5	49.6 ± 20.2
The declining percentage of GFR from baseline (%)	7.3 ± 2.6	16.7 ± 20.1	32.5 ± 12.9	52.4 ± 20.8
SCr (μmol/L)	76.3 ± 16.2	83.7 ± 15.4	90.3 ± 19.8	173.7 ± 28.5
BUN (mmol/L)	5.8 ± 1.7	6.3 ± 1.2	6.9 ± 1.5	11.2 ± 2.6
Dosage (mg/kg per day)	2.5 ± 0.8	3.0 ± 1.0	3.3 ± 0.9	3.8 ± 1.1
Cyclosporine A	0.049 ± 0.03	0.052 ± 0.07	0.054 ± 0.05	0.058 ± 0.03
Tacrolimus	145.2 ± 30.5	154.8 ± 25.6	165.3 ± 39.4	183.2 ± 31.2
Trough levels (ng/mL)	5.1 ± 0.8	5.5 ± 1.2	6.2 ± 1.0	6.8 ± 1.3
Diabetes (%)	9.2	10.5	9.3	11.1
Hypertension (%)	38.5	34.2	37.2	33.3
Follow-up time, mean (range, mo)	35.6 (23-36)	33.7 (24-36)	30.4 (19-36)	27.8 (16-36)
Microproteinuria (mg/L)	0.2 ± 0.1	0.4 ± 0.2	1.0 ± 1.3	4.2 ± 2.5
Microalbumin (mg/L)	22.6 ± 21.1	38.9 ± 25.4	42.3 ± 35.9	65.1 ± 30.4
Immunoglobulin (mg/L)	46.9 ± 26.2	83.6 ± 35.5	70.9 ± 33.8	45.4 ± 32.9
Transferrin (mg/L)	23.9 ± 14.6	21.5 ± 29.1	37.3 ± 26.4	33.5 ± 29.1

4, hepatolithiasis in 3, hepatocellular carcinoma in 38, and cholangiocarcinoma in 6. All hepatocellular cancer patients met the UCSF criteria (a single tumor ≤ 6.5 cm in diameter, or 2 or 3 tumors, none exceeding 4.5 cm in diameter and whose sum of tumor diameters did not exceed 8 cm). The demographic data of these patients are shown in Table 1. There were 102 (71.3%) recipients in Group 1, 35 (24.5%) in Group 2, 6 (4.2%) in Group 3, and none in Group 4 at baseline. At entry into this study, all recipients had normal levels of BUN, SCr, and GFR with detectable microproteinuria in fresh urine. There were no significant differences in body mass index, or pre-transplant MELD score.

Through measurements of GFR by the blood clearance of 99mTc-DTPA at entry into the study and at the follow-up visits, we found there was a downward trend in renal function over time, and the reductions in GFR were significantly different across all groups (Table 2). The value of GFR was 97.4 ± 12.7 mL/min per 1.73 m² in Group 1 (decreased 7.3% ± 2.6% from baseline), and 85.6 ± 17.9 mL/min per 1.73 m² in Group 2 (P < 0.001 vs Group 1) (decreased 16.7% ± 10.1% from baseline), and
The tremendous success of CNIs in reducing acute rejection episodes and early immunologic graft injury has not been accompanied by a benefit in long-term recipient survival[10,16]. CNI nephrotoxicity in liver transplantation is a significant concern and appears to be progressive over time when CNI exposure is maintained[17]. Microproteinuria has been used as an early marker of nephrotoxicity to detect small changes in the function of tubular epithelial cells in many pathological conditions[18]. The persistence of microproteinuria may result from drug toxicity or pretransplant renal diseases after liver transplantation. Therefore, recipients with normal serum creatinine at baseline and detectable microproteinuria were selected as subjects in this study.

Follow-up data of this study demonstrated that there was a downward trend in renal function over time, with the persistence of microproteinuria. The urinary concentration of β_2m and α_1m significantly increased with the subtle change in renal function in all study groups, but the levels of Scr and BUN significantly increased only when renal function was severely reduced by CNI nephrotoxicity (in Group 4, renal function declined $54\% \pm 20.8\%$ from baseline). A similar study also found microproteinuria occurred long before the elevation of Scr[19]. The subsequent reductions in GFR were closely correlated with elevated α_1m ($r = -0.728$, $P < 0.001$) and β_2m ($r = -0.787$, $P < 0.001$) in the study groups. The results of this study were similar to another report[19], indicating that tubular epithelial dysfunction defined by elevation of tubular injury biomarkers (β_2m or α_1m) was very common when CNI exposure was maintained. Additionally, as β_2m is unstable in fresh urine, fewer patients were found to have β_2m in the urine than α_1m in this study. This problem can partly be overcome by maintaining the urine pH value (by adding basic buffer to the urine) to prevent the degradation of β_2m. This study suggested that urinary β_2m and α_1m are sensitive urinary markers for detecting CNI-related nephrotoxicity in liver transplant recipients.

In conclusion, monitoring of patients with Scr requires a higher laboratory effort and the use of gender-specific cut-off values. Measurement of microproteinuria is easily available, non-expensive, and convenient in daily clinical practice. The urinary β_2m or α_1m can be used as an early, sensitive and simple diagnostic indicator for detecting CNI-related renal dysfunction. Furthermore, it should be used as the screening method after liver transplantation to prevent the progressive deterioration of subclinical renal dysfunction.

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Liver Transplantation Division for collection of the clinical materials, and to Mrs. Fang Liu, Mrs. Yang-Juan Bai and Mr. Jiang-Tao Tang for their skillful technical assistance. Special thanks to the staff of the Department of Clinical Laboratory for processing the urine samples and to staff of the Department of Nuclear Medicine for performing the GFR measurements.

COMMENTS

Background

Deterioration of renal function with calcineurin inhibitor (CNI) therapy has been widely reported in liver transplant recipients. Monitoring of renal function, however, is still dependent on somewhat old technologies: serum creatinine (SCr), blood urea nitrogen (BUN), total urine output. Whether microproteinuria could be used as an early and sensitive indicator to monitor CNI-related nephrotoxicity in liver transplant recipients has not been unequivocally addressed.
Research frontiers
Measurement of SCr, BUN, and total urine output are particularly problematic, as they do not have sufficient specificity, sensitivity, or accuracy to allow appropriate and timely prevention of the deterioration of renal function. In this field, the research goal is to identify more sensitive indicators in the early diagnosis of CNI-related nephrotoxicity in liver transplant recipients.

Innovations and breakthroughs
Recent reports have highlighted that nephrotoxicity of CNIs contributes to renal function deterioration in liver transplant recipients. This is the first study to investigate whether microproteinuria could be used as an early and sensitive indicator to monitor CNI-related nephrotoxicity in liver transplant recipients.

Applications
By using β2-microglobulin (β2m) and α1-microglobulin (α1m) as markers for early diagnosis of CNI-related nephrotoxicity, this study may present a future screening method for preventing the progression of CNI-related renal dysfunction in liver transplant recipients.

Terminology
Microproteinuria: it is a hallmark of the early changes in glomerular and proximal tubular function and includes α1m, β2m, immunoglobulin, microalbumin and transferrin.

Peer review
Microproteinuria was studied in these study groups at entry and at subsequent follow-up visits and was correlated with glomerular filtration rate. It revealed that microproteinuria could be used as an early and sensitive indicator to monitor CNI-related nephrotoxicity in liver transplant recipients. This manuscript is very interesting and may present a future screening method to prevent the progression of CNI-related subclinical renal dysfunction after liver transplantation.

REFERENCES
1 Orlando G, Baiocchi L, Cardillo A, Iaria G, De Luguiru Carino N, De Luca L, Ielpo B, Taricciotti L, Angelico M, Tisone G. Switch to 1.5 grams MMF monotherapy for CNI-related toxicity in liver transplantation is safe and improves renal function, dyslipidemia, and hypertension. Liver Transpl 2007; 13: 46-54
2 Cohen AJ, Stegall MD, Rosen CB, Wisener RH, Leung N, Kremers WK, Zein NN. Chronic renal dysfunction late after liver transplantation. Liver Transpl 2002; 8: 916-921
3 Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, Arndorfer J, Christensen L, Merion RM. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 2003; 349: 931-940
4 Tönshoff B, Höcker B. Treatment strategies in pediatric solid organ transplant recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 2006; 10: 721-729
5 Moreno Planas JM, Cuervas-Mons Martinez V, Rubio Gonzalez E, Gomez Cruz A, Lopez-Monclos J, Sánchez-Turrion V, Lucena Poza JL, Jimenez Garrido M, Millan I. Mycophenolate mofetil can be used as monotherapy late after liver transplantation. Am J Transplant 2004; 4: 1650-1655
6 Shenoy S, Hardinger KL, Crippin J, Desai N, Korenblat K, Lisker-Melman M, Lowell JA, Chapman W. Sirolimus conversion in liver transplant recipients with renal dysfunction: a prospective, randomized, single-center trial. Transplantation 2007; 83: 1389-1392
7 Nair S, Verma S, Thuluvath PJ. Pretransplant renal function predicts survival in patients undergoing orthotopic liver transplantation. Hepatology 2002; 35: 1179-1185
8 Herzog D, Martin S, Turpin S, Alvarez F. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation 2006; 81: 672-677
9 Franchini I, Alinovi R, Bergamaschi E, Mutti A. Contribution of studies on renal effects of heavy metals and selected organic compounds to our understanding of the progression of chronic nephropathies towards renal failure. Acta Biomed 2005; 76 Suppl 2: 58-67
10 Rademacher J, Mengel M, Ellis S, Stuht S, Hiss M, Schwarz A, Eisenberger U, Burg M, Luft FC, Gwinner W, Haller H. The renal arterial resistance index and renal allograft survival. N Engl J Med 2003; 349: 115-124
11 Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130: 461-470
12 Otu HH, Can H, Spentzos D, Nelson RG, Hanson RL, Looker HC, Knowler WC, Monroy M, Liberitta TM, Karumanchi SA, Thadhani R. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care 2007; 30: 638-643
13 Price CP, Newman DJ, Blrup-Jensen S, Guder WG, Grubb A, Itoh Y, Johnson M, Lammers M, Packer S, Seymour D. First International Reference Preparation for Individual Proteins in Urine. IFCC Working Group on Urine Proteins. International Federation of Clinical Chemistry. Clin Biochem 1998; 31: 467-474
14 Schultz CJ, Dalton RN, Turner C, Neil HA, Dunger DB. Freezing method affects the concentration and variability of urine proteins and the interpretation of data on microalbuminuria. The Oxford Regional Prospective Study Group. Diabet Med 2000; 17: 7-14
15 Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349: 2326-2333
16 Sandborn WJ, Hay JE, Porayko MK, Gores GJ, Steers JL, Krom RA, Wiesner RH. Cyclosporine withdrawal for nephrotoxicity in liver transplant recipients does not result in sustained improvement in kidney function and causes cellular and ductopenic rejection. Hepatology 1994; 19: 925-932
17 Flechner SM, Kobashigawa J, Klintmalm G. Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity. Clin Transplant 2008; 22: 1-15
18 D’Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens 2003; 12: 639-643
19 Schaub S, Mayr M, Höniger G, Bestland J, Steiger J, Regeniter A, Mihatsch MJ, Wilkins JA, Rush D, Nickerson P. Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation 2007; 84: 104-112

S- Editor Li LF L- Editor Cant MR E- Editor Lin YP