Theorem 1. If M is a non-orientable triangulable $(n-1)$-manifold (possibly with boundary), then \mathbb{R}^n does not contain uncountably many pairwise disjoint copies of M.

The case $n = 3$ is due to Frolkina [2]; her proof involves replacing the given copies of M by tame ones. She also proves that \mathbb{R}^n does not contain uncountably many pairwise disjoint tame copies of M. The proof of Theorem 1 is an exercise in elementary algebraic topology, which I found myself doing as I was asked to referee Frolkina’s paper.

Remark 2. It is well-known that if X is a compactum such that \mathbb{R}^n contains uncountably many pairwise disjoint copies of X, then $X \times \mathbb{N}^+$ embeds in \mathbb{R}^n, where \mathbb{N}^+ is the one-point compactification of the countable discrete space \mathbb{N}. Indeed, the space of maps $C^0(X, \mathbb{R}^n)$ is separable, so any its uncountable subset S contains a convergent sequence (f_i) whose limit f_∞ also belongs to S.

Lemma 3. If X is a compact polyhedron such that $X \times \mathbb{N}^+$ embeds in \mathbb{R}^n, then the deleted product $\widetilde{X} \times I$ admits a $\mathbb{Z}/2$-map to S^{n-1}.

Here $\mathbb{Z}/2$ acts on $\tilde{Y} := Y \times Y \setminus \Delta$ by exchanging the factors and on S^{n-1} by the antipodal involution $x \mapsto -x$.

Proof. Let $g = (g_1, g_2, \ldots, g_\infty): X \times \mathbb{N}^+ \hookrightarrow \mathbb{R}^n$ be an embedding. Let us endow X with the metric induced by g_∞. Let R be a $\mathbb{Z}/2$-invariant regular neighborhood of the diagonal in $X \times X$, so that $X \times X \setminus R$ is $\mathbb{Z}/2$-homeomorphic to \tilde{X}. Then there exists an $\varepsilon > 0$ such that R contains the 2ε-neighborhood of Δ in the l_∞ product metric on $X \times X$. Then there exists an $i \in \mathbb{N}$ such that $d(g_i, g_\infty) < \varepsilon$. Let $\tilde{Y} = X \times [0, 1]$ and let us define $g: \tilde{Y} \to \mathbb{R}^n$ by $g(x, t) = t g_i(x) + (1 - t) g_\infty(x)$. Let $\tilde{Y}_R = \{(x, s), (y, t)\} \in Y \times Y \setminus (x, y) \notin R$ or $(t, s) \in \{0, 1\}$}. Since $(x, y) \notin R$ implies $d(x, y) \geq 2\varepsilon$, we have $g(p) \neq g(q)$ for any $(p, q) \in \tilde{Y}_R$. Hence we may define an equivariant map $\tilde{g}: \tilde{Y}_R \to S^{n-1}$ by $\tilde{g}(p, q) = \frac{|g(q) - g(p)|}{|g(q) - g(p)|}$. Clearly, \tilde{Y}_R is a $\mathbb{Z}/2$-deformation retract of \tilde{Y}. Thus we obtain an equivariant map $\tilde{Y} \to S^{n-1}$. □

Proof of Theorem 1. Let us note that M is a pseudo-manifold (possibly with boundary). By considering a regular neighborhood in M of an embedded orientation-reversing loop in the dual 1-skeleton of M we may assume that M is homeomorphic to the total space of the nonorientable $(n-2)$-disc bundle over S^1. By Lemma 3 it suffices show that if N is a non-orientable smooth n-manifold (namely, $N = M \times I$), then \tilde{N} admits no equivariant map to S^{n-1}. By considering the interior of N we may assume that it has no
boundary. Let SN be the total space of the spherical tangent bundle of N and let t be the involution on SN that is antipodal on each fiber S^{n-1}. Let $c \in H^1(PN; \mathbb{Z}/2)$ be the fundamental class of t, i.e. the first Stiefel–Whitney class of the line bundle associated to the double covering $SN \to PN := SN/t$. Then according to one of the definitions of the Stiefel–Whitney classes $w_i = w_i(N)$ [1; (6.2)], $c^n = q^*(w_n) + q^*(w_{n-1})c + \cdots + q^*(w_1)c^{n-1}$, where $q: PN \to N$ is the projectivized tangent bundle of N. Since N is non-orientable, we have $w_1 \neq 0$. Then, since the w_i are uniquely determined by the previous formula (see [1] and note that the authors are implicitly using the Leray–Hirsch theorem), we must have $c^n \neq 0$. But if there exists an equivariant map $\varphi: SN \to S^{n-1}$, then $c = \varphi^*(d)$, where $d \in H^1(\mathbb{RP}^{n-1}; \mathbb{Z}/2)$ is the fundamental class of the antipodal involution on S^{n-1}, and hence $c^n = \varphi^*(d^n) = 0$.

In conclusion, let us note another application of Lemma 3 (which is used in [2]).

Lemma 4. [4] If X is a contractible compact polyhedron such that $X \times \mathbb{N}^+$ embeds in \mathbb{R}^n, then the suspension ΣX admits a $\mathbb{Z}/2$-map to S^{n-1}.

Proof. Since X is contractible, ΣX admits a $\mathbb{Z}/2$-map to the double mapping cylinder of the inclusions $X \supset X \subset X$. The latter $\mathbb{Z}/2$-embeds in $\tilde{X} \times I$. \hfill \Box

Theorem 5. [5] \mathbb{R}^n does not contain uncountably many pairwise disjoint copies of the $(n-1)$-dimensional umbrella U_{n-1}, that is, the cone over $S^{n-2} \sqcup pt$.

A different proof of Theorem 5, also based on Lemma 4, is given in [4].

Proof. Let us triangulate $U := U^{n-1}$ as the cone over $\partial \Delta^{n-1} \sqcup pt$. Then it is self-dual as a subcomplex of Δ^{n+1}, i.e. contains precisely one face out of each pair Δ^k, Δ^{n-k} of complementary faces of Δ^{n+1}. Consequently its simplicial deleted join $U \ast U$ is $\mathbb{Z}/2$-homeomorphic to S^n [3; Corollary 3.16]. Also there exists a $\mathbb{Z}/2$-map from $U \ast U$ to the suspension over the simplicial deleted product $U \otimes U$ (see [3; Lemma 3.25]). Since $U \otimes U \subset \tilde{U}$, by the Borsuk–Ulam theorem there exists no $\mathbb{Z}/2$-map $\Sigma \tilde{U} \to S^{n-1}$.

References

[1] P. E. Conner and E. E. Floyd, *Fixed point free involutions and equivariant maps*, Bull. Amer. Math. Soc. **66** (1960), 416–441.

[2] O. D. Frolkina, *Pairwise disjoint Moebius bands in space*, J. Knot Theory Ram. **27** (2018), no. 9, 1842005.

[3] S. Melikhov, *Combinatorics of embeddings*. arXiv:1103.5457v2.

[4] D. Repovš, A. B. Skopenkov, and E. V. Šćepin, *On embeddability of $X \times I$ into Euclidean space*, Houston J. Math. **21** (1995), 199–204.

[5] G. S. Young Jr., *A generalization of Moore’s theorem on simple triods*, Bull. Amer. Math. Soc. **50** (1944), 714.

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

E-mail address: melikhov@mi-ras.ru