A new 2-D multi-stable chaotic attractor and its MultiSim electronic circuit design

Sundarapandian Vaidyanathan¹, Aceng Sambas², Mohamad Afendee Mohamed³, Mustafa Mamat³, W. S. Mada Sanjaya⁴, Sudarno⁵
¹Research and Development Centre, Vel Tech University, Chennai, Tamil Nadu, India
²Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia
³Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, KualaTerengganu, Malaysia
⁴Department of Physics, UIN Sunan Gunung Djati Bandung, Indonesia
⁵Faculty of Engineering, Universitas Muhammadiyah Ponorogo, Indonesia

ABSTRACT

A new multi-stable system with a double-scroll chaotic attractor is developed in this paper. Signal plots are simulated using MATLAB and multi-stability is established by showing two different coexisting double-scroll chaotic attractors for different states and same set of parameters. Using integral sliding control, synchronized chaotic attractors are achieved between drive-response chaotic attractors. A MultiSim circuit is designed for the new chaotic attractor, which is useful for practical engineering realizations.

Keywords:
Chaos
Chaotic system
Electronic circuit
Integral sliding control

This is an open access article under the CC BY-SA license.

Corresponding Author:
Mohamad Afendee Mohamed
Faculty of Informatics and Computing
Universiti Sultan Zainal Abidin
KualaTerengganu, Malaysia
Email: mafendee@unisza.edu.my

1. INTRODUCTION

Chaotic dynamical models with double-scroll attractors have been analyzed in the science literature [1], [2]. These attractors resemble like butterfly wings due to their double-scroll shape. Especially, the dynamical plants exhibiting multi-stability and cohapening chaotic attractors have been studied [3], [4]. Engineering fields have many utilizations of chaotic attractors [2]. Some common utilizations are enlisted such as oscillations [5], [6], vibrations [7], neuron models [8], [9], control and memristor models [10]-[12], mechanical attractors [13], [14].

In the control literature, there are many control techniques available for the control and synchronization of chaotic systems [2]. Bahoo and Poria [13] used active control method for food chain model. Mustafa et al. [14] used chaos-enhanced cuckoo search for economic dispatch with valve point effects. Vaidyanathan and Rasappan [15] used active control for the hybrid synchronization of hyperchaotic Qi and Lü systems. Vaidyanathan [16] used active control for stabilizing the state trajectories of a new hyperchaotic system with three quadratic nonlinearities. Medhaffar et al. [17] investigated the stabilization of unstable periodic orbits of continuous time chaotic systems using adaptive fuzzy controllers. Boubellouta and
Boulkroune [18] investigated the problem of chaos synchronization based on fractional-order intelligent sliding-mode control approach for a class of fractional-order chaotic optical systems with unknown dynamics and disturbances. Vaidyanathan [19] studied the global chaos synchronization of Tokamak chaotic systems with symmetric and magnetically confined plasma. Khan and Kumar [20] studied the T–S fuzzy observed based design and synchronization of chaotic and hyper-chaotic dynamical systems.

The novelty of this work is the modelling a new double-scroll chaotic attractor with interesting dynamic properties. The signal plots, dynamical properties and multi-stability with co-happening chaotic attractors are reported for the new chaotic attractor. For practical realizations, an electronic circuit is immensely useful after the modelling of a new chaotic attractor [21–26]. A MultiSim electronic circuit model of the new chaotic attractor is carried out and a good match between the MultiSim circuit outputs and the MATLAB signal plots has been found.

2. A NEW DOUBLE-SCROLL MULTI-STABLE CHAOTIC ATTRACTOR

We first give the dynamics of a new system described as follows:

\[
\begin{align*}
\dot{p}_1 &= \alpha (p_2 - p_1) + p_2 p_3, \\
\dot{p}_2 &= \beta p_2 - p_3, \\
\dot{p}_3 &= p_1 p_2 - \gamma p_1 + \delta |p_2|.
\end{align*}
\]

We note that \(\Lambda = (\alpha, \beta, \gamma, \delta)\) is the parameter and \(P = (p_1, p_2, p_3)\) is the phase vector. Using Wolf’s approach [27], we will show that the model (1) will exhibit a chaotic attractor for \(\Lambda = (\alpha, \beta, \gamma, \delta) = (40, 26, 5, 0.2)\).

For MATLAB simulations, the initial phase vector is chosen as \(P(0) = (0.1, 0.3, 0.2)\). Then the Lyapunov indices of (1) are estimated using Wolf’s approach [27] as follows:

\[
LE_1 = 3.9125, \quad LE_2 = 0, \quad LE_3 = -22.9125
\]

Using (3), it is concluded that the model (1) has chaoticity and dissipativity. The double-scroll attractor of the model (1) is simulated in various planes in Figure 1.

The balance points of the new double-scroll attractor (1) for \((\alpha, \beta, \gamma, \delta) = (40, 26, 5, 0.2)\) are calculated as below:

\[
P_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad P_1 = \begin{bmatrix} 11.3022 \\ 7.8017 \\ 17.9473 \end{bmatrix}, \quad P_2 = \begin{bmatrix} -11.3022 \\ -7.8017 \\ 17.9473 \end{bmatrix}
\]

By finding spectral values of the linearization matrices of the double-scroll system (1), it can be ascertained that the balance point \(P_0\) is a saddle point, and \(P_1, P_2\) are saddle-foci.

We next demonstrate that the new double-scroll system (1) has co-happening chaotic attractors.

When selecting \((\alpha, \beta, \gamma, \delta) = (40, 26, 5, 0.2)\), and the initial phase vectors \(P_0 = (0.1, 0.3, 0.2)\) (blue) and \(Q_0 = (-0.5, -0.3, -0.5)\) (red), the new double-scroll chaotic attractor (1) depicts co-happening chaotic attractor (blue) and chaotic attractor (red) as plotted in Figure 2.
A new 2-D multi-stable chaotic attractor and its MultiSim electronic... (Sundarapandian Vaidyanathan)

Figure 1. MATLAB phase plots showing double-scroll chaotic attractor of the model (1)

Figure 2. Multi-stability of the new double-scroll attractor (1): Cohappening chaotic attractors

3. INTEGRAL SLIDING CONTROL DESIGN FOR THE PHASE SYNCHRONIZATION OF DOUBLE-SCROLL CHAOTIC ATTRACTORS

For the phase synchronization of double-scroll chaotic attractor, we consider a pair of drive-response chaotic attractors listed as follows.

\[
\begin{align*}
\dot{p}_1 &= \alpha (p_2 - p_1) + p_2 p_3 \\
\dot{p}_2 &= \beta p_2 - p_1 p_3 \\
\dot{p}_3 &= p_1 p_2 - \gamma p_3 + \delta |p_2|
\end{align*}
\]

\[(5)\]
\begin{align*}
\dot{q}_1 &= \alpha(q_2 - q_1) + q_2q_3 + v_i \\
\dot{q}_2 &= \beta q_2 - q_3q_2 + v_2 \\
\dot{q}_3 &= q_2q_3 - \gamma q_3 + \delta \big| q_2 \big| + v_3 \\
\end{align*}
\tag{6}

The phase synchronization error between (5) and (6) can be defined as below:

\begin{align*}
\varepsilon_1 &= q_1 - p_1 \\
\varepsilon_2 &= q_2 - p_2 \\
\varepsilon_3 &= q_3 - p_3 \\
\end{align*}
\tag{7}

A simple calculation pinpoints the dynamics of the phase synchronization error as below:

\begin{align*}
\dot{\varepsilon}_1 &= \alpha(\varepsilon_2 - \varepsilon_1) + q_2q_3 - p_2p_3 + v_1 \\
\dot{\varepsilon}_2 &= \beta \varepsilon_2 - q_3q_2 + p_1p_3 + v_2 \\
\dot{\varepsilon}_3 &= -\gamma \varepsilon_3 + q_2q_3 - p_1p_2 + \delta \big(\big| q_2 \big| - \big| p_2 \big| \big) + v_3 \\
\end{align*}
\tag{8}

We define the integral sliding surface associated with each error variable as below:

\begin{align*}
\dot{z}_1 &= \left[\frac{d}{dt} + \psi_1 \right] \int_0^t \dot{\varepsilon}_1(r) \, dr = \varepsilon_1 + \psi_1 \int_0^t \dot{z}_1(r) \, dr \\
\dot{z}_2 &= \left[\frac{d}{dt} + \psi_2 \right] \int_0^t \dot{\varepsilon}_2(r) \, dr = \varepsilon_2 + \psi_2 \int_0^t \dot{z}_2(r) \, dr \\
\dot{z}_3 &= \left[\frac{d}{dt} + \psi_3 \right] \int_0^t \dot{\varepsilon}_3(r) \, dr = \varepsilon_3 + \psi_3 \int_0^t \dot{z}_3(r) \, dr \\
\end{align*}
\tag{9}

Taking time-derivative of all the of (9), we obtain as below:

\begin{align*}
\dot{\dot{z}}_1 &= \dot{\varepsilon}_1 + \psi_1 \dot{\varepsilon}_1 \\
\dot{\dot{z}}_2 &= \dot{\varepsilon}_2 + \psi_2 \dot{\varepsilon}_2 \\
\dot{\dot{z}}_3 &= \dot{\varepsilon}_3 + \psi_3 \dot{\varepsilon}_3 \\
\end{align*}
\tag{10}

We take \(\psi_1, \psi_2, \psi_3 \) as positive constants.

Next, we set the dynamics of the sliding variables as follows:

\begin{align*}
\dot{z}_1 &= -\theta_1 \text{sgn}(z_1) - \mu_1 z_1 \\
\dot{z}_2 &= -\theta_2 \text{sgn}(z_2) - \mu_2 z_2 \\
\dot{z}_3 &= -\theta_3 \text{sgn}(z_3) - \mu_3 z_3 \\
\end{align*}
\tag{11}

From (10) and (11), we deduce the following:

\begin{align*}
\dot{\varepsilon}_1 + \lambda_1 \varepsilon_1 &= -\phi_1 \text{sgn}(s_1) - k_1 s_1 \\
\dot{\varepsilon}_2 + \lambda_2 \varepsilon_2 &= -\phi_2 \text{sgn}(s_2) - k_2 s_2 \\
\dot{\varepsilon}_3 + \lambda_3 \varepsilon_3 &= -\phi_3 \text{sgn}(s_3) - k_3 s_3 \\
\end{align*}
\tag{12}

Combining (8) and (12), we obtain the following:

\begin{align*}
\alpha(\varepsilon_2 - \varepsilon_1) + q_2q_3 - p_2p_3 + v_1 + \psi_1 \varepsilon_1 &= -\theta_1 \text{sgn}(z_1) - \mu_1 z_1 \\
\beta \varepsilon_2 - q_3q_2 + p_1p_3 + v_2 + \psi_2 \varepsilon_2 &= -\theta_2 \text{sgn}(z_2) - \mu_2 z_2 \\
-\gamma \varepsilon_3 + q_2q_3 - p_1p_2 + \delta \big(\big| q_2 \big| - \big| p_2 \big| \big) + v_3 + \psi_3 \varepsilon_3 &= -\theta_3 \text{sgn}(z_3) - \mu_3 z_3 \\
\end{align*}
\tag{13}
The integral sliding controls are deduced from (13) as below:
\[
\begin{align*}
 v_1 &= -\alpha(e_1 - e_1) - q_2 q_3 + p_1 p_3 - \psi_1 e_1 - \theta_1 \text{sgn}(z_1) - \mu_1 z_1 \\
 v_2 &= -\beta e_2 + q_1 q_3 - p_1 p_3 - \psi_2 e_2 - \theta_2 \text{sgn}(z_2) - \mu_2 z_2 \\
 v_3 &= \gamma e_3 - q_1 q_2 + p_1 p_2 - \delta(\|q_2\| + |p_2|) - \psi_3 e_3 - \theta_3 \text{sgn}(z_3) - \mu_3 z_3
\end{align*}
\] (14)

Theorem 1. The integral sliding control law defined by (14) achieves the global phase chaos synchronization between the new double-scroll attractors (5) and (6), where the constants \(\psi_i, \theta_i, \mu_i\) \((i = 1, 2, 3)\) are all positive.

Proof. First, as a positive definite Liapunov function candidate, we choose the function
\[
W(z_1, z_2, z_3) = 0.5\left(z_1^2 + z_2^2 + z_3^2\right)
\] (15)

We calculate the time-derivative of \(W\) as below:
\[
\dot{W} = z_1 \dot{z}_1 + z_2 \dot{z}_2 + z_3 \dot{z}_3
\] (16)

Combining (11) and (16), we get
\[
\dot{W} = z_1[-\theta_1 \text{sgn}(z_1) - \mu_1 z_1] + z_2[-\theta_2 \text{sgn}(z_2) - \mu_2 z_2] + z_3[-\theta_3 \text{sgn}(z_3) - \mu_3 z_3]
\] (17)

Simplifying (17), we obtain
\[
\dot{W} = -\theta_1 z_1^2 - \mu_1 z_1^2 - \theta_2 z_2^2 - \mu_2 z_2^2 - \theta_3 z_3^2 - \mu_3 z_3^2
\] (18)

Since \(\theta_1, \theta_2, \theta_3 > 0\) and \(\mu_1, \mu_2, \mu_3 > 0\), we see that \(\dot{W}\) is a negative definite function.

From Liapunov stability theory \([28]\), we find \((z_1(t), z_2(t), z_3(t)) \to (0, 0, 0)\) as \(t \to \infty\).

Hence, we observe that \((e_1(t), e_2(t), e_3(t)) \to (0, 0, 0)\) as \(t \to \infty\).

For MATLAB simulations, we assume the parameter vector as in the chaotic case, viz. \((\alpha, \beta, \gamma, \delta) = (40, 26, 5, 0.2)\). We also assume the gains as \(\psi_i = 0.1, \theta_i = 0.1, \) and \(\mu_i = 20\) for \(i = 1, 2, 3\).

The initial state of the drive system (5) is picked as \((p_1(0), p_2(0), p_3(0)) = (3, -0.5, 2)\) and the initial state of the response system (6) is picked as \((q_1(0), q_2(0), q_3(0)) = (1.5, 0.9, 4.2)\).

Figure 3 shows the phase synchronization error between systems (5) and (6).

![Figure 3. The phase synchronization error between the systems (5) and (6)](image-url)
4. MULTISIM CIRCUIT DESIGN OF THE NEW DOUBLE-SCROLL ATTRACTOR

The MultiSim electronic circuit of the new double-scroll attractor (1) is realized by using off-the-shelf components such as resistors, capacitors, operational amplifiers and analog multipliers. The phases p_1, p_2, p_3 of the double-scroll attractor (1) are the voltages across the capacitors C_1, C_2 and C_3, respectively. The electronic circuit of the new double-scroll attractor is realized in MultiSim by 19 resistors, 8 operational amplifiers (TL082CD), 3 multipliers (AD633JN), 2 diodes (1N4148) and 3 capacitors. By the use of Kirchhoff’s circuit laws into the circuit in Figure 4, its circuital equations are obtained as (19):

$$
\begin{align*}
\dot{p}_1 &= \frac{1}{C_1 R_1} p_2 - \frac{1}{C_1 R_2} p_1 + \frac{1}{10 C_1 R_3} p_2 p_3 \\
\dot{p}_2 &= \frac{1}{C_2 R_4} p_2 - \frac{1}{10 C_2 R_5} p_1 p_3 \\
\dot{p}_3 &= \frac{1}{10 C_3 R_6} p_1 p_2 - \frac{1}{C_3 R_7} p_3 + \frac{1}{C_3 R_8} p_2
\end{align*}
$$

We selected $R_1 = R_2 = 10 \, k\Omega$, $R_3 = R_5 = 40 \, k\Omega$, $R_4 = 15.384 \, k\Omega$, $R_7 = 80 \, k\Omega$, $R_8 = 2 \, M\Omega$, $R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = R_{17} = R_{18} = R_{19} = 100 \, k\Omega$, $C_1 = C_2 = C_3 = 3.2 \, nF$.

Figures 5-7 with MultiSim outputs of the double-scroll chaotic attractor (19) exhibit a good match with the MATLAB outputs of the double-scroll chaotic attractor (1) shown in Figure 1.

![Figure 4. The circuit schematic of the double-scroll chaotic attractor (19) (Note: $p_1, p_2, p_3 = x_1, x_2, x_3$)](image_url)
A new 2-D multi-stable chaotic attractor and its MultiSim electronic... (Sundarapandian Vaidyanathan)
5. CONCLUSION
In this paper, a new multi-stable system with a double-scroll chaotic attractor is developed and detailed. Signal plots were simulated using MATLAB and multi-stability was established by showing two different coexisting double-scroll chaotic attractors for different states and same set of parameters. Using integral sliding control, synchronized chaotic attractors are achieved between drive-response chaotic attractors. A MultiSim electronic circuit was designed for the new double-scroll attractor, which is useful for practical engineering realizations.

ACKNOWLEDGEMENTS
This project is funded by the Center for Research Excellence, Incubation Management Center, Universiti Sultan Zainal Abidin.

REFERENCES
[1] S. Vaidyanathan and C. Volos, “Advances and Applications in Chaotic Systems”, Berlin, Germany, Springer, 2016, doi: 10.1007/978-3-319-30279-9.
[2] J. C. Sprott, “Elegant Chaos: Algebraically Simple Chaotic Flows”, Singapore, World Scientific, 2010, doi: 10.1142/7183.
[3] A. Sambas, et al., “A new double-wing chaotic system with coexisting attractors and line equilibrium: Bifurcation analysis and electronic circuit simulation,” IEEE Access, vol. 7, pp. 115454-115462, 2019, doi: 10.1109/ACCESS.2019.2933456.
[4] A. Sambas, et al., “A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption,” IEEE Access, vol. 8, pp. 137116-137132, 2020, doi: 10.1109/ACCESS.2020.3011724.
[5] L. Minati, et al., “A chaotic circuit based on a physical memristor,” Chaos, Solitons & Fractals, vol. 138, p. 109990, 2020, doi: 10.1016/j.chaos.2020.109990.
[6] X. Zhang, et al., “A memristive chaotic oscillator with controllable amplitude and frequency,” Chaos, Solitons & Fractals, vol. 139, p. 110000, 2020, doi: 10.1016/j.chaos.2020.110000.
[7] B. Shi and J. Yang, “Quantification of vibration force and power flow transmission between coupled nonlinear oscillators,” International Journal of Dynamics and Control, vol. 8, no. 2, pp. 418-435, 2020, doi: 10.1007/s40435-019-00560-7.
[8] S. S. Saljidi, et al., “A new adaptive synchronization and hyperchaos control of a biological snap oscillator,” Chaos, Solitons & Fractals, vol. 138, art. id. 109919, 2020, doi: 10.1016/j.chaos.2020.109919.
[9] S. Vaidyanathan, “Adaptive control of the FitzHugh-Nagumo chaotic neuron model,” International Journal of PharmTech Research, vol. 8, no. 6, pp. 117-127, 2015.
[10] V. T. Pham, et al., “A novel memristive neural network with hidden attractors and its circuitry implementation,” Science China Technological Sciences, vol. 59, no. 3, pp. 358-363, 2016, doi: 10.1007/s11431-015-5981-2.
[11] Z. S. Al-Talib and S. F. AL-Azzawi, “Projective synchronization for 4D hyperchaotic system based on adaptive nonlinear control strategy,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 2, pp. 715-722, 2020, doi: 10.11591/ijeecs.v19i2.pp715-722.
[12] Z. S. Al-Talib and S. F. AL-Azzawi, “Projective and hybrid projective synchronization of 4-D hyperchaotic system via nonlinear controller strategy,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 2, pp. 1012-1020, 2020, doi: 10.11591/ijeecs.v19i2.pp715-722.
[13] B. Sahoo and S. Poria, “The chaos and control of a food chain model supplying additional food to top-predator,” Chaos, Solitons & Fractals, vol. 58, pp. 52-64, 2014, doi: 10.1016/j.chaos.2013.11.008.
[14] M. W. Mustafa, et al., “Chaos-enhanced cuckoo search for economic dispatch with valve point effects,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 14, no. 4, pp. 1220-1227, 2016, doi: 10.12928/telkomnika.v14i4.3473.
[15] S. Vaidyanathan and S. Rasappan, “Hybrid synchronization of hyperchaotic Qi and Lü systems by nonlinear control,” Communications in Computer and Information Science, vol. 131, pp. 585-593, 2011, doi: 10.1007/978-3-642-17857-3_58.
[16] S. Vaidyanathan, “A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control,” International Journal of Control Theory and Applications, vol. 6, no. 2, pp. 97-109, 2013.
[17] H. Medhaffar, et al., “Adaptive fuzzy control for the stabilisation of chaotic systems,” International Journal of Automation and Control, vol. 14, no. 2, pp. 115-137, 2020, doi: 10.1504/IJAC.2020.105511.
[18] A. Bourelloua and A. Boukroune, “Intelligent fractional-order control-based projective synchronization for chaotic optical systems,” Soft Computing, vol. 23, no. 14, pp. 5367-5384, 2019, doi: 10.1007/s00500-018-3490-5.
[19] S. Vaidyanathan, “Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control,” International Journal of ChemTech Research, vol. 8, no. 6, pp. 818-827, 2015.
[20] A. Khan and S. Kumar, “T–S fuzzy observed based design and synchronization of chaotic and hyper-chaotic dynamical systems,” International Journal of Dynamics and Control, vol. 6, no. 3, pp. 1409-1419, 2018.
[21] N. M. Awal, et al., “The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators,” Chaos, vol. 29, no. 1, art. id. 013131, 2019, doi: 10.1063/1.5060959.

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 : 699 - 707
A new 2-D multi-stable chaotic attractor and its MultiSim electronic... (Sundarapandian Vaidyanathan)