Study	Reference	Pollutant Streams Measured	Sampling Location	Data Sampling Method
Atmoisome: A Comprehensive Approach to Understanding the Personal Atmospheric Exposome	AMS - Current Study [42]	PM$_{10}$, PM$_{2.5}$, CO, CO$_2$, NO$_2$, NOx, O$_3$, LPG, NG, eCO$_2$, H$_2$, NH$_3$, H$_2$S, CH$_4$, alcohol, formaldehyde, aromatic compounds, ambient parameters	4 different domestic locations in 2 different countries were sampled	Cluster sampling
Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants	[43]	VOCs, PM$_{10}$, PM$_{2.5}$, ambient temperature parameters, virus, bacteria, fungi	Two French hospitals were sampled in seven healthcare departments in different seasons	Cluster sampling
Volatile Organic Compounds (VOCs) in Conventional and High-Performance School Buildings in the U.S.	Characterization of Indoor Air Quality on a College Campus: A Pilot Study [44]	Various types of VOCs	144 classrooms in 37 conventional and high-performance elementary schools were sampled	Stratified sampling
Personal Exposure to Mixtures of Volatile Organic Compounds: Modeling and Further Analysis of the RIOPA Data	Indoor Air Quality in Green-renovated vs. Non-Green Low- Income Homes of Children Living in a Temperate Region of US (Ohio) [45]	Various types of VOCs	Three building types were sampled for a year	Convenience sampling
Indoor Air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Indoor Air Quality from the 2017 Gulf Cooperation Council summit [46]	PM$_{2.5}$, black carbon, sulfur, VOCs, formaldehyde	300 households in 3 cities in the US were sampled	Convenience sampling
Non-ventilated rooms, commute cars, airplanes, kitchens, closed areas with cleaning services	Household materials, kitchen activities, crowds [47]	PM$_{2.5}$, PM$_{10}$, VOCs, CO, CO$_2$, SO$_2$, NO$_2$, heavy metals	Childrens’ sleeping rooms in 800 apartments in a low-income multi-family housing complex were sampled	Convenience sampling
Low-cost sensors connected via microcontroller, processed in cloud	Detection Techniques [48]	Electrochemically active analyzer, automated thermal desorber, gas chromatography, mass spectrometer	Gas Chromatography, Mass Spectrometry and passive samplers	Web of Science, PubMed, Google search, WHO database were used to conduct the meta-analysis
Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Data Sampling Location [49]	GK2.05 (KTL) aluminum cyclones, SKC button samplers and sampling pumps, TSI Q-trak, passive badges	HOB0 logger, PTFE, membrane filters, PFC(polyfluoro carbon) technique for airflow rate	Data Sampling Method [50]
Non-ventilated rooms, commute cars, airplanes, kitchens, closed areas with cleaning services	Pollutant Streams Measured [51]	Products, health care activities, and building activities used indoors in hospitals	Classrooms in recently renovated conventional and high-performance elementary schools	Indoor air quality and exposure assessment of the gulf cooperation council countries: A critical review
Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Sampling Location [52]	LEED certified, retrofitted, and conventional building types on a college campus	Vehicles, building materials, cleaning products, adhesives, repellents, chlorination	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review
Detection Techniques [53]	Indoor Air Quality from the 2017 Gulf Cooperation Council summit [54]	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Green (protected with sealants) and non-green homes in low-income housing complexes	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review
Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Data Sampling Method [55]	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Household materials, kitchen activities, crowds	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review
Indoor Air Quality from the 2017 Gulf Cooperation Council summit [56]	Indoor Air Quality from the 2017 Gulf Cooperation Council summit [57]	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review	Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review
Data Sampling Duration

Continuous year-long data collection in US and India; ongoing collection in US
1 summer and 1 winter campaign, twice over 4 consecutive days
22 weeks of data collection efforts
6 sampling campaigns, each 48 hours, across 3 seasons
Sampled 2 times, 3 months apart
Measured over a five-day period, recording every five minutes
Data gathered from multiple papers

Statistical Analysis

Numerical and Time Series analysis & scatter plot and histogram analysis
Non-parametric tests with Bonferroni correction
One-way ANOVA and Kruskal Wallis (K-W) tests
Geometric means, standard deviation, log transformation, Fisher’s Least Significant Difference
Extreme value distributions and mixture models
Linear mixed-effects models
Correlation analysis

Public Health Implication

Provides access to individual air quality data to analyze personal, geographical and demographical patterns
Air filtration in hospitals keeps them less polluted than regular indoor spaces
Additional research is needed to link EQ and energy to health and performance in “green” buildings
Classrooms had more PM$_{2.5}$ than common areas, and green buildings had more pollution than conventional buildings
Exposure to VOCs is a large contributor to health issues across the body and diseases
It is important to further evaluate new, green and eco-friendly housing
Applying highly efficient particulate air filters is an urgent solution to reduce the emission of indoor PMs

Table 1. Summary of recent AQI studies as compared to the study presented in this work