Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Optimistic bias, risky behavior, and social norms among Indian college students during COVID-19

Shanu Shukla*, Sushanta Kumar Mishra, Himanshu Rai

Indian Institute of Management Indore, Rau-Pithampur Road, Indore 453556, Madhya Pradesh, India

ARTICLE INFO
Keywords: COVID-19 Optimistic bias Risky behavior Social norms

ABSTRACT
Using survey data of college students in India, we investigate whether COVID-19 optimistic bias among individuals increases risky behavior. We also explore whether participants' optimistic bias differs depending on their degree of closeness with others. We found that the presence of friends instead of neighbors/strangers make participants with high COVID-19 optimistic bias inclined to take more risks. Besides, it has been found that preventive behavioral norms followed by peers minimize risky behavior among participants with high optimistic bias. Our findings offer important implications for policymakers to minimize the transmission of the disease among college students.

1. Introduction

The Coronavirus Disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO, 2020), affecting a large number of people worldwide. Without any effective vaccine for the virus, governments endeavor to control the outbreak by announcing lockdowns and banning social gatherings. The governments advise people to stay at home, practice physical distancing, avoid crowded places, maintain personal hygiene, and follow cleanliness practices such as using hand sanitizers, washing hands repeatedly, and wearing masks (Ministry of Health and Family Welfare, Government of India, n.d.). However, while some people carefully cling to the restrictions, others disregard or defer the government advisories and keep practicing the activities that increase the risk of COVID-19 for themselves and others. These observations indicate that the risk perception of COVID-19 varies among individuals, society, and culture. In fact, risk perception has strong implications for the pandemic spread since it can influence an individual's practice of the recommended behaviors.

Several components of health psychology related to health-promoting behavior such as an individual's evaluation of risk vulnerability, risk severity, treatability of a malady, and the viability of preventive actions are identified with risk perception (Sheeran et al., 2014). Judgments of such factors can be influenced by "optimistic bias" or "unrealistic optimism" which is the perception that one's own risk is lower than the risk of comparable others (Weinstein, 1980). Researchers (Iwarg et al., 2019; Masiero et al., 2018) found that unrealistic optimism about one's health or immune system increases individuals' tendency to perceive the risk as lower than others. This perception leads to risky health behaviors.

This article explores the following research questions (RQs) among college-going students.

RQ1: Does COVID-19 optimistic bias display propensity for COVID-19 risky behavior?
RQ2: Does a high optimistic bias individual's propensity for risky behavior differ from a close group to a distant group?
RQ3: Do social norms ameliorate the impact of optimistic bias on risky behavior?

To our knowledge, such a study aiming to identify how optimistic bias among college students influences the likelihood of COVID-19-related risky behavior is not reported anywhere else. In a developing country like India, where COVID-19 is at large, understanding the response of young college-going students to this situation will be a crucial tool for taking preventive measures.

2. COVID-19 risky behavior and optimistic bias

COVID-19 is spreading alarmingly because people fail to follow preventive measures. Non-compliance of COVID-19-related precautionary behavior falls under risky behavior which is socially unacceptable volitional conduct (Turner et al., 2004), prompting direct/circuitous undesired outcomes. The immediate consequences can be contracting the virus, being a carrier, and affecting other individuals.
According to the Health belief model, perceived threat decides if individuals follow preventive behavior (Janz & Becker, 1984). Individuals appear to be mindful of the overall danger of specific practices. However, things generally change when this information is applied to their conduct. For example, numerous smokers acknowledge that smoking leads to diseases (e.g., lung cancer), but do not trust themselves to be in danger (Dillard et al., 2006). It suggests that individuals indulge in risky behavior when they have a false impression of less/no perceived self-risk. They have inaccurate cost and benefit information that exaggerates the advantages of risky behavior. Hence people display COVID-19 optimistic bias if they feel less vulnerable than others.

2.1. Optimistic bias

Optimistic bias (Weinstein, 1980) is the perception that one’s own risk is lower than that of comparable others, leading to the experience of more positive outcomes than similar others. Weinstein (1980) reported that college students tend to exhibit ‘unrealistic optimism’ regarding perceptions of risk, i.e., their own chances of facing health and safety concerns are seen as less likely than those of their peers. It was observed that high optimistic bias people indulge in risky behavior. For example, utilizing a national sample, Dillard et al. (2006) found that optimistically biased smokers were less inclined to quit smoking. Moreover, optimistic bias may persist with time. Cho et al. (2013) observed that participants maintained a nearly similar level of high optimistic bias (relative to their peers) towards H1N1 flu across time frames in a two-wave time panel study, suggesting that optimistic bias is largely stable and enduring.

Scholars posit that people display a lower perceived risk for COVID-19 infection than an average person of the same age and sex (Dunning et al., 2020; Kuper-Smith et al., 2020; Park et al., 2020). Furthermore, in a three-wave, time-lagged study, Dolinski et al. (2020) found that optimistic bias was persistent among college students in all the three-time waves.

There are several cognitive and motivational reasons driving people towards optimistic bias. Egocentrism is one of them (Chambers & Windschitl, 2004). Egocentric individuals believe that they can easily reduce social contacts more in comparison with others. Second, the conviction of controllability of events strengthens optimistic bias (Dolinski et al., 2020; Kuper-Smith et al., 2020). Third, heuristic thinking influences perceived risk, and hence, optimistic bias (Katapodi et al., 2005). Dunning et al. (2020) found that participants claiming low risk of contracting COVID-19 attribute age as a contributor besides their overall fitness behavior.

The activation of optimistic bias hinders the adoption of preventive practices and influences COVID-19 related risk perception, fortifying maladaptive ways of life. Individuals experiencing low COVID-19 susceptibility may not perform preventive activities (wearing a mask, washing hands) and may be progressively disposed to settle to unfortunate choices (attending crowded places). Thus, COVID-19 optimistic bias may be one factor that predisposes individuals to COVID-19 risky behavior.

Hypothesis 1. The higher the COVID-19 optimistic bias among individuals the higher their tendency towards COVID-19 risky behavior.

2.2. COVID-19 optimistic bias, risky behavior, and psychological distance

COVID-19 is contagious, and hence, individuals are advised to follow precautionary norms while meeting others. In a realistic scenario, do optimistic bias and correspondingly risky behavior vary if the risk target is a friend, a neighbor, or an unknown stranger?

Kappes et al. (2018) suggested that optimistic bias is not limited only to oneself but is extended even to those about whom one is very concerned, such as friends. The authors identify this behavior as ‘vicarious optimism’. In the study by Betts et al. (2019), participants displayed optimistic bias implying that they feel it is less likely for them to experience cyberbullying than others. This optimism was also seen to be extended to socially close ones but not for strangers. While judging socially close ones, the authors reasoned that, individuals rely on similar self-protection mechanisms while judging their own risk.

Sjåstad et al. (2020) found that participants anticipated bright and safe future (from a well-being perspective) for themselves and their close friends. However, no such self-serving optimism was observed when the psychological distance increases. This may be due to individuals’ willingness to cooperate with the in-group and compete with the out-group. Based on the above arguments, we suggest that optimistic bias judgment related to COVID-19 will be rated similar to self, more for close contacts than for distant contacts.

Hypothesis 2. COVID-19 optimistic bias and correspondingly COVID-19 risky behavior are higher for close contacts than for distant contacts.

Studies suggested that optimistic bias is highly resilient and is not easily swayed by adverse events (Shepperd et al., 2003). It is because individuals continuously take part in comparative risk judgments independent of accessible information or evidence. Researchers (Harris et al., 2006; Kim & Niederdeppe, 2013) found that providing information about others’ characteristics and activities diminishes optimistic bias for adverse occasions but does not dispense with it completely. Subsequently, our essential point is to recognize how we can forestall peoples’ COVID-19 risky behavior.

It is a typical presumption that many individual ways of life start through socialization (agents are family, friends, and society) (Grusec & Hastings, 2007). Individuals learn social behaviors by imitating and observing others in their surroundings (Bandura, 1986). This behavior gets strengthened/inhibited due to other people’s reinforcement/punishments.

Differential association and reinforcement, imitation/modeling, common forms of social influence are processes through which individuals acquire social norms from society (Hoorn et al., 2018). These norms guide, affirm, and acknowledge behaviors, informing an individual of what they should do in a specific context (Brechwald & Prinstein, 2011).

The present study deals with the COVID-19 risky behavior of young adults in their early years of college and is considered vulnerable. They venture out from the home to start living alone and eventually become responsible for their basic health behaviors that mainly were under parental control earlier (e.g., food, sleep-times, cleaning). In a longitudinal study, Lau et al. (1990) found that peers had a more significant direct impact than parents on participants’ health beliefs during their sophomore year of college. It was demonstrated that peer networks provide contacts with others who can help with issues, improve one’s self-efficacy by recommending compelling methodologies, and reinforce confidence by upholding progressively positive self-evaluative guidelines (Friedlander et al., 2007). These relationships give social models whose behavior encourages or hinders action patterns. Gardner and Steinberg (2005) suggested that a peer group’s presence makes adolescents and youth more prone to take risks and more likely to indulge in risky decisions. These findings imply that peer groups’ norms are rather maintained in subsequent individual decision-making.

COVID-19-related social norms consider people following preventive measures (wearing a mask, maintaining physical distance) socially acceptable. If a peer group follows precautionary social norms, a high optimistic individual may not indulge in COVID-19 risky behavior to acquire the positive image of a COVID-19 risk avoider. The intensity of social norms in behavioral change does not come uniquely from the regular tendency to emulate others, or from the need to comprehend what is suitable to do in a given circumstance. However, it is additionally established that humans want to have a place with one’s locale and increase their self-esteem and commitment to the group.

Hypothesis 3. High optimistic bias individuals indulge in less COVID-
19 risky behavior if primed with the social norms that encourage risk avoidance practices.

The proposed theoretical model is provided in Fig. 1.

3. Methodology

3.1. Participants

The present study was conducted through an online platform, and the survey link was sent to college students (age range 18–23 years) via Email, Facebook, and WhatsApp. A total of 597 students clicked on the survey link. Out of this, 101 students did not complete the survey, and 23 students failed the attention check. Thus, the final sample size was 473 (79.22%), (Mage = 20 years, SD = 1.47, Male = 353 (74.6%)). For demographic details, see Table 1.

3.2. Material

Demographics: Participants reported their gender (male, female, or others), current educational level (undergraduate, postgraduate, doctorate, others), and occupation (student, student + part-time job, full-time employed). Age was recorded in an open answer format (in years), doctorate, others), and occupation (student, student + part-time job, full-time employed). Age was recorded in an open answer format (in years). How will you receive it?

COVID-19 Optimistic Bias: A standard comparative methodology (Weinstein, 1980) was used to measure COVID-19 optimism where participants were asked to rate for a single item—“How likely do you think you can be infected with COVID-19 in comparison with the average person of your age and gender?” The seven-point rating scale ranges from −3 (far less likely than an average person) to +3 (far more likely than an average person) with 0 signifying the same probability as that of an average person. The in-between numbers are −2 (less likely), −1 (slightly less likely), +1 (slightly more likely), and +2 (more likely). A negative response for this item indicates COVID-19 optimistic bias.

COVID-19 Risky behavior: To measure the propensity towards COVID-19 risky behavior, we presented the participants with four scenarios that mimic situations of everyday life involving neighbors (scenario 1: “Your friendly and good neighbor who just lives next door has come to see you in the evening, how will you meet him/her?”), strangers (scenario 2: “A delivery man has come to deliver your food parcel just today in the morning you woke up with a sore throat and fever, how would you react?”) and friends (scenario 4: “Your closest friend has arranged his/her birthday party at home for all the friends who live nearby on coming Sunday. There may be some 10–12 friends. Will you attend the party?”). In those scenarios, the given behavioral response options concentrated on obeying/disobeying four key behaviors to fight COVID-19: maintaining social distance, practicing basic hygiene (like wearing the mask, washing hands), seeking doctors’ advice if suffering from cold/cough, and avoiding mass gathering. They were asked to choose their most likely behavioral response to those scenarios out of three given options (we mentioned to participants that there are no right or wrong answers). These response options correspond to low, moderate, and high-risk behavior and are scored as 1, 2, and 3, respectively. The higher the score, the higher is the propensity for COVID-19 risky behavior. The scores for each scenario were calculated separately.

Manipulations of COVID-19 social norms: Social norms were induced and manipulated in the study through photographs. We prepared two sets of photographs with four photos in each set. The consent to use the photographs was taken from the models. In one set of photographs, models maintained social distancing and wore a face mask. This set is labeled as a ‘precautionary norm’ /’COVID-19 risk-avoiding’ images (See Appendix A for an example). In the other set, models did not maintain social distancing and did not wear any face masks. This group is named ‘non-precautionary norm’/’COVID-19 risk-taking’ images (See Appendix A for an example). Both the sets had identical models (two females and two males) who were students in the age range of 20–30 years. Photographs used in the study were black and white and had a uniform dimension. For manipulations, three separate survey links were distributed among the participants. In one survey, photographs of ‘precautionary norms’ were included with risky behavior scenarios. In another survey, photographs of ‘non-precautionary norms’ were added with risky behavior scenarios. In the third survey, ‘no photographs’ were added with the risky behavior scenarios.

We asked the participants to choose ‘S’ and ‘M’ from a given list of 7 alphabets as an attention check.

3.3. Procedure

After taking the ethics approval from the Institute Review Board, three separate Qualtrics (survey software) links were distributed randomly among the participants in May and June 2020 (during a nationwide lockdown in India). In each survey-link participants were briefly informed about the nature of the study and age restriction (above

Table 1: Demographic characteristics of the sample.
Age (in years)
18
19
20
21
22
23
Total
Mean/SD

Gender	N	%
Males	353	74.6
Females	120	25.4
Total	473	

Educational level (currently pursuing):	N	%
Undergraduate degree	469	99.2
Postgraduate degree	1	0.2
Professional/vocational courses	3	0.6
Total	473	

Occupation	N	%
Student	458	96.8
Student + part time employee	15	3.2
Total	473	

Family affected with COVID-19	N	%
Yes	4	0.8
No	469	99.2
Total	473	
18 years). They were informed about the right to withdraw from the study at any point during the survey. We did not collect any personally identifying data (for example, name, phone number) to maintain anonymity. After getting participants’ written consent, the survey was initiated. The order of the questions was randomized. On average, the survey took 5–7 min to complete. The survey was conducted in English, and participation was voluntary in nature.

3.4. Data analysis

The Statistical Package for the Social Sciences (IBM SPSS Version 23) was used for all data analyses. For RQ1, we created two groups – Group 1 (High optimistic bias) and Group 2 (No optimistic bias) and compared their COVID-19 risky behavior responses with the t-test in all four scenarios. For RQ2, we specifically focused on the high optimistic bias group (Group 1) and compared their COVID-19 risky behavior in three scenarios (out of four) that dealt with strangers, neighbors, and friends using one-way repeated measure ANOVA. To understand the impact of social norms (precautionary vs. non-precautionary) on the high optimistic bias group (Group 1), an independent t-test was used (RQ3). Results are presented below.

4. Results

4.1. COVID-19 optimistic bias and propensity for COVID-19 risky behavior

We divided the participants into two groups. Participants belonging to Group 1 (High COVID-19 optimistic bias) think that they are ‘far less likely to get infected with COVID-19 compared to an average person of the same age and sex.’ Participants in Group 2 (No COVID-19 optimistic bias) consider that they ‘have an equal probability of getting infected with COVID-19 compared to the average person of the same age and sex’. To control the effect of perceived COVID-19 severity, we only selected participants perceiving ‘extreme COVID-19 severity’. Also, we specifically considered ‘students’ pursuing ‘under graduation’. After applying these criteria, the sample size reduced to 267 (Mage = 20.41 years, SDage = 1.63; Males = 73.4%) (Refer Table 2). We conducted independent sample t-tests on both the groups subjected to four scenarios (Table 2). The t-tests suggest that Group 1 displays significantly high risky behavior relative to Group 2 in all four scenarios. Hence hypothesis 1 is supported.

Table 2

Scenarios	Groups	N	Mean	SD	t-score
Scenario 1 (neighbors)	Group 1	142	1.74	0.76	−6.73**
	Group 2	125	1.22	0.48	
	Total	267			
Scenario 2 (strangers)	Group 1	142	1.70	0.83	−7.81**
	Group 2	125	1.10	0.33	
	Total	267			
Scenario 3 (self)	Group 1	142	1.87	0.73	−4.26**
	Group 2	125	1.51	0.62	
	Total	267			
Scenario 4 (friends)	Group 1	142	1.86	0.88	−7.60**
	Group 2	125	1.22	0.44	
	Total	267			

Note: Group 1: High COVID-19 optimistic bias; Group 2: No COVID-19 optimistic bias; N: Number of respondents; SD: Standard deviation.

** p < 0.001 (2-tailed study).

4.2. Optimistic bias and propensity for risky behavior: close versus distant group

We measured COVID-19 risky behavior with three scenarios for three different groups (see Footnote 1). Scenarios 1, 2, and 3 involve a neighbor, a stranger, and a friend respectively. We conducted one-way repeated measure ANOVA on responses of high optimistic bias participants’ risky behavior towards three distant groups, viz. stranger, neighbor, and friend.

The results suggested that risky behavior was statistically significantly different for different groups, F (1,91, 269.39) = 8.00, p < 0.001, partial η2 = 0.054 with risky behavior.

Increasing from stranger (Mean (M) = 1.69) to neighbor (M = 1.73) and friends (M = 1.85). Post hoc analysis with a Bonferroni adjustment revealed that risky behavior was statistically significantly reduced from friends to neighbors (Mean-difference (MD) = 0.12, p < 0.05), and from friends to strangers (MD = 0.16, p < 0.05). However, there was no significant difference between risky behavior from strangers to neighbors (MD = 0.04, p = 0.87) (Refer Tables 3.1 & 3.2). Findings suggest that the propensity for risky behavior is higher for the close group than the distant group, supporting hypothesis 2.

4.3. Optimistic bias on risky behavior: role of social norms

An independent t-test was conducted between two groups of high COVID-19 optimistic bias individuals exposed to the images of ‘precautionary’ and ‘non-precautionary’ norms in all four scenarios (refer Table 4).

We found a statistically significant difference in risky behavior between the two groups such that risky behavior increases among those participants who were primed with ‘non-precautionary’ norms compared to ‘precautionary’ norms. Hence, hypothesis 3 is supported.

5. Discussion

Consistent with the previous studies, the present findings reveal optimistic bias related to COVID-19 among Indian college students. Our study finds that for a group of college students possessing similar perceived COVID-19 severity, educational level, and occupational background, optimistic bias results in risky behavior in all four scenarios. These scenarios mimic situations of everyday life involving neighbors, strangers, self, and friends. We observed that college students having a high optimistic bias towards COVID-19 are likely to ignore preventive practices in daily life. Their risk propensity towards COVID-19 is consistent across all four scenarios. This supports hypothesis 1: “The higher the optimistic bias among individuals towards COVID-19 is, the higher is the tendency towards COVID-19 risky behavior.” This may be understood from the observation that despite knowing the adverse effects of COVID-19, many people do not reportedly adhere to the safety norms. This behavior germinates when an individual thinks optimistically about one's ability to maintain hygiene and safety measures. Apart from the perceived controllability, some people believe that people from certain age groups (for example old age group) are more vulnerable to this disease than them. Consequently, they ignore other factors such as
their health, immunity, and the unpredictable effects of the virus and become more susceptible to the disease.

Additionally, we observe that the participants with high COVID-19 optimistic bias are more prone to taking risks when they are with friends, suggesting a high possibility of ignoring preventive measures when individuals are with their friends. This finding supports hypothesis 2: “COVID-19 optimistic bias and correspondingly risky behavior is higher for close contacts than for distant contact.” This may be because optimistic bias is not limited only to oneself but is extended even to those about whom one is very concerned, such as friends (Kappes et al., 2018). This finding indicates severe repercussions for the hostel-going students, for example. Many Indian academic institutes admit young students staying in institute hostel rooms possibly shared by close friends. Based on the finding, they may avoid preventive measures because of their optimistic bias even if a person is aware of its presence in one's personality and optimistic bias is highly resistant, and it is difficult to change the extent of bias even if a person is aware of its presence in one's personality and behavior. Since high optimistic bias is associated with risky behavior, policymakers need to find ways to reduce the outcome of this tendency. Hence, the effect of varied age groups in this context should be studied. Other personality components like psychological entitlement and narcissism linked with ignoring instructions should be included in future studies. Additionally, researchers may investigate how close friends (other than peers) following correct health guidelines influence a young adult’s COVID-19-related health choices.

Table 3.2
Descriptive statistics for COVID-19 risky behavior.

Scenario	Social norms	N	Mean	SD	t-value
Neighbors	Precautionary	56	1.25	0.44	-10.76**
	Non-precautionary	68	2.31	0.65	
Strangers	Precautionary	56	1.04	0.19	-14.74**
	Non-precautionary	68	2.35	0.71	
Friends	Precautionary	56	1.39	0.49	-8.37**
	Non-precautionary	68	2.26	0.64	

Note: M – Mean; SD: Standard deviation.

Table 4
Group statistics and independent sample t-test scores for high optimistic bias individuals in two different social norms.

Scenarios	Social norms	N	Mean	SD	t-value
Scenario 1 (neighbors)	Precautionary	56	1.18	0.39	-14.56**
	Non-precautionary	68	2.55	0.65	

Note: N: Number of respondents; SD: Standard deviation.

References
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, N.J: Prentice Hall.
Betts, L. R., Merwally, S. H., & Gardiner, S. E. (2019). We are safe but you are not: Exploring comparative optimism and cyber bullying. Journal of Technology in Behavioral Science, 4, 227–233. https://doi.org/10.1007/s41347-018-0070-6.
Brechwald, W. A., & Prinstein, M. J. (2011). Beyond Homophily: A decade of advances in understanding peer influence processes. Journal of Research on Adolescence, 21(1), 166–179. https://doi.org/10.1111/j.1532-7795.2010.00721.x.
Chambers, J. R., & Windschitz, P. D. (2004). Biases in social comparative judgments: The role of nonmotivated factors in above-average and comparative-optimism effects. Psychological Bulletin, 130(5), 813–838. https://doi.org/10.1037/0033-2909.130.5.813.
Cho, H., Lee, J.-S., & Lee, S. (2013). Optimistic bias about HIV/ Aids: Testing the links between risk communication, optimistic bias, and self-protection behavior. Health Communication, 28(2), 146–158. https://doi.org/10.1080/10410236.2012.664800.
Dillard, A. J., McCaul, K. D., & Klein, W. M. (2006). Unrealistic optimism in smokers: Implications for smoking myth endorsement and self-protective motivation. Journal of Health Communication, 11(S1), 93–102. https://doi.org/10.1080/1081073060073943.
