Structural evolution and synthesis mechanism of ytterbium disilicate powders prepared by cocurrent chemical coprecipitation method

Nannan Wu
Central South University

Yalei Wang (✉ yaleipm@csu.edu.cn)
Central South University

Rutie Liu
Central South University

Huaifei Liu
Central South University of Forestry and Technology

Xiang Xiong
Central South University

Research Article

Keywords: Yb2Si2O7 powders, Structural evolution, Synthesis mechanism, Cocurrent chemical coprecipitation

Posted Date: October 5th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-929960/v1

License: ⓒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Ytterbium disilicate powders were synthesized by cocurrent chemical coprecipitation method. The influence of Si/Yb molar ratio and calcination temperature on compositions and structures of Yb$_2$Si$_2$O$_7$ products were investigated. The formation mechanism and thermal behavior of precursor as well as the phase evolution of Yb$_2$Si$_2$O$_7$ were also discussed in depth. Results show that pure β-Yb$_2$Si$_2$O$_7$ powders with nanoscale size can be obtained from the precursor with Si/Yb molar ratio of 1.1 after being calcinated at temperatures above 1200 °C. The Yb$_2$Si$_2$O$_7$ precursor is an amorphous polymer cross-linked with [-Si-O-Yb]- chain segments which are formed though Yb atoms embedding in the [-Si-O-Si]-network. After a continuous dihydroxylation and structural ordering, the amorphous precursor transformed to α-Yb$_2$Si$_2$O$_7$ crystals by atomic rearrangement. Elevated calcination temperature can induce to the coordination structures and environment evolutions of structural units and then converted to stable (Si$_2$O$_7$) groups and (YbO$_6$) polyhedrons, which results in the formation of β-Yb$_2$Si$_2$O$_7$.

1. Introduction

SiC ceramic matrix composites (CMCs) have been regarded as new generation hot section materials applied in gas turbine engines due to their excellent high-temperature capability, which can provide critical support for leading the revolutionize development of advanced vehicle technologies. However, SiC CMCs exhibit lower durability in high-velocity combustion resulting from the rapid surface recession in oxidizing and water vapor environment [1, 2]. As a result, environmental barrier coatings (EBCs) emerged as the times require for protecting SiC CMCs substrate materials against corrosive media [3–7].

With the development of EBCs system and corresponding iteration of advanced materials, rare earth silicates have been focused on the new generation EBCs materials due to their excellent environment resistance [4, 7–11]. Among them, ytterbium disilicate (Yb$_2$Si$_2$O$_7$) and ytterbium monosilicate (Yb$_2$SiO$_5$) are demonstrated as promising candidate materials for EBCs based on their superior high-temperature phase stability, excellent chemical and mechanical compatibility with SiC, lower oxygen permeability and so on [9, 12–16]. Especially, the Yb$_2$Si$_2$O$_7$ has a much closer coefficient of thermal expansion (CTE, 3.7–4.5×10$^{-6}$ °C$^{-1}$) than that of Yb$_2$SiO$_5$ (6.5–7×10$^{-6}$ °C$^{-1}$) to SiC-CMCs substrate (ca. 4.5–5.5×10$^{-6}$ °C$^{-1}$) [17], which is benefit to improve the bond strength between EBCs and substrate, as well as retard the thermal stress in EBC coating during thermal cycling. In addition, Yb$_2$Si$_2$O$_7$ has better thermochemically compatible with thermally grown SiO$_2$ than that of Yb$_2$SiO$_5$, which is highly competitive in ensuring system stability of EBC coating. Furthermore, the Yb$_2$Si$_2$O$_7$ materials also exhibit excellent corrosion resistance of water vapor and CaO-MgO-Al$_2$O$_3$-SiO$_2$ (CMAS). B.T. Richards et al. [18] prepared a bi-layer Yb$_2$SiO$_7$/Si EBC coating on SiC substrates through an optimal design of CTE matching, which exhibited excellent steam-cycling durability at 1316 °C in a flowing 90%H$_2$O/10%O$_2$ environment. Zhong et al. [19] developed a tri-layer Yb$_2$SiO$_5$/Yb$_2$Si$_2$O$_7$/Si EBC coating on SiC CMCs by atmospheric plasma spray technique. After 40–50 thermal cycles between room temperature and 1350 °C, the Yb$_2$Si$_2$O$_7$ layer still
maintained better structural integrity resulting from their outstanding thermal shock resistance. Zhao et al. [20] investigated the CMAS resistance of Yb$_2$Si$_2$O$_7$ and Yb$_2$SiO$_5$ coatings. Results indicated that the Yb$_2$Si$_2$O$_7$ coating shows better CMAS corrosion resistance than that of Yb$_2$SiO$_5$ coating at 1300 °C, which is attributed to the reductive diffusion transport capacity of molten salt compositions. Stolzeburg et al. [21] studied the interaction of Yb$_2$Si$_2$O$_7$ and Yb$_2$SiO$_5$ materials with CMAS engine deposits at 1300 °C. After 96 hours exposure, no discernable reaction can be observed between Yb$_2$Si$_2$O$_7$ and CMAS, thus the Yb$_2$Si$_2$O$_7$ material displayed superior chemical stability in CMAS corrosion environment. Comprehensive analysis shows that Yb$_2$Si$_2$O$_7$ materials exhibit great potential applying in EBCs system.

Up to date, EBCs system are generally built by thermal spraying technical, which are strongly dependent on the processing of coating and the quality of raw materials. For rare earth silicates, the chemical compositions and crystal structures have a significantly influence on their mechanical and corrosion resistance [17, 22–25]. Rare earth silicates powders are mainly synthesized by solid-state reaction [19, 26–30], hydrothermal syntheses [31], sol-gel [32–36] and chemical coprecipitation methods [37]. For solid-state reaction method, rare earth silicates powders were synthesized through direct reaction between rare earth oxide and silicon oxide at relatively higher calcination temperature, however, the obtained powders usually have micron-scale and exhibit agglomeration to some extent. In addition, impurity phases will mingle in the final powder products resulting from inadequate reaction and insufficient mixing of raw materials, which leads to uniform composition of the rare earth silicates materials. Hydrothermal synthesis method was also conducted to synthesize rare earth silicates in current research. However, higher specific surface area of the ultrafine powders (20–30 nm) brings great difficulties to the preparation of coating. Besides inherent impurities are difficult to eliminate through the optimization of synthesis process, which limits its further development. Comparatively, sol-gel and chemical coprecipitation methods are effective approaches to prepared moderate particle size, uniform composition and high purity rare earth silicates by controlling the stoichiometric molar ratio of starting materials. Up to date, the relative synthesis mechanism of rare earth silicates by sol-gel method have not been clarified yet. In our previous studies, a novel cocurrent chemical coprecipitation method have been developed to synthesize Yb$_2$SiO$_5$ [38] and dysprosia-stabilized zirconia (DySZ) powders [39], which has advantages of low cost, composition controllable, easy access to high purity and homogeneous powder materials.

According to the ionic and synthesis temperature [22, 23, 40–44], rare earth disilicates (RE$_2$Si$_2$O$_7$) have seven different crystal types, which were denoted by capital letters A, B, C, D, E, F, and G in the original work of Felsche et al. [22, 23, 42]. However, only three crystal types of Yb$_2$Si$_2$O$_7$ can be identified by X-ray diffraction, α-Yb$_2$Si$_2$O$_7$ has triclinic structure with space groups P-1 or P1, meanwhile β-Yb$_2$Si$_2$O$_7$ and γ-Yb$_2$Si$_2$O$_7$ present monoclinic structure with space groups C2/m, and P2$_1$/c, respectively. In addition, β-Yb$_2$Si$_2$O$_7$ have been confirmed to be only stable phase in high temperature, which are endow with high expectations to satisfy the application requirements of EBC coating in extremely deteriorated environment of gas turbine engines.
In our present work, Yb$_2$Si$_2$O$_7$ powders were synthesized via a cocurrent chemical coprecipitation method for the first time. The influence of Si/Yb molar ratio in starting materials and calcination temperature on phase composition and crystal structure of Yb$_2$Si$_2$O$_7$ were investigated. The structural evolution as well as synthesis mechanism of Yb$_2$Si$_2$O$_7$ were also delineated in detail.

2. Experiments

2.1. Raw materials

In current study, reagent-grade ytterbium oxide (Yb$_2$O$_3$, purity \geq 99.99 %), hydrochloric acid (HCl, \approx 36 wt. %), tetraethyl orthoselicate (TEOS, Si(OC$_2$H$_5$)$_4$, \approx 28 wt. % silicon oxide) and ammonia water (NH$_3$·H$_2$O, \approx 25 wt. % in water) were used as main raw materials. Ethanol (C$_2$H$_5$OH, \approx 96 wt. %, Analytical purity) and deionized water were used as auxiliary materials.

2.2. Synthesis of Yb$_2$Si$_2$O$_7$ powders

The Yb$_2$Si$_2$O$_7$ powders were synthesized by a cocurrent chemical coprecipitation method which has been developed in our previous work [38]. Different from traditional chemical coprecipitation method, the liquid reaction system of precursor formation can maintain a stable pH environment based on the well-designed reaction mother liquor and controllable current speed of precipitant, which can promote the precipitation product formed more evenly.

In the first instance, Yb$^{3+}$ containing solution was prepared through the chemical reaction of Yb$_2$O$_3$ powders with boiled hydrochloric acid solution. Meanwhile, TEOS hydrolysate was prepared by mixing TEOS, ethyl alcohol and deionized water with volume ratio of 1:4:2. Subsequently, the two solutions were mixed and stirred, forming a homogeneous metal-ion solution. In addition, the precipitant was prepared by diluting the ammonia with isovolumetric deionized water. After that, the metal-ion solution and precipitant were respectively injected into a stirred ammonia solution which has a pH value of 9–10. The pH value of the reaction environment was controlled by adjusting the injection rate of precipitant. After the injection, the obtained precipitation solution was stirred for 30 min and then aged for 24 h. Then, the remaining Cl$^-$ and NH$_4^+$ were removed sequentially with deionized water and ethanol to prepare a wet Yb$_2$Si$_2$O$_7$ precursor. Finally, the precursor powders was obtained after drying at 110 °C for 12 h, and then calcined for 10 h in ambient atmosphere with a temperature range of 400–1400 °C. Based on the phase diagram of the Yb$_2$O$_3$-SiO$_2$ system [12, 42], the Yb$_2$Si$_2$O$_7$ precursors were synthesized with different Si/Yb molar ratios (9:10, 10:10 and 11:10), which are noted as Y$_1$, Y$_2$ and Y$_3$ respectively. The associated Yb$_2$Si$_2$O$_7$ materials calcined at various temperatures are labeled in form of Y$_{n-c}$, in which n = 1, 2 or 3, c is the calcination temperature.

2.3. Characterization
The crystallographic phases of the calcined powders were identified by an X-ray diffractometer (XRD, D8 advanced, Bruker AXS, Germany, Cu Kα radiation, λ = 0.15406 nm) in a range of 2θ = 5°-85°. Thermal behavior of the precursor was analyzed by a thermal analyzer (STA 449C, Netzsch, Germany). Thermogravimetric (TG) and differential scanning calorimetry (DSC) curves were obtained through heating the precursor in air with 10°C/min from room temperature to 1200°C. The morphology and crystal structure of the as-prepared Yb$_2$Si$_2$O$_7$ powders were analyzed by transmission electron microscopy (TEM, Tecnai G2 F20, FEI CO., USA). The phase composition and structural evolution from precursor to final product were studied by Fourier transform infrared spectroscopy (FTIR, Thermo Scientific Nicolet iS50, USA) with wave number in range of 400-4000 cm$^{-1}$.

3. Results And Discussion

3.1 Phase composition of the synthesized products

Yb$_2$Si$_2$O$_7$ precursors with different Si/Yb molar ratios were calcined at a temperature range from 900 °C to 1400 °C, the corresponding XRD patterns are shown in Fig. 1. It can be seen that no crystallization peak can be detected in the XRD patterns of obtained products calcined at 900 °C, indicating that the calcined products still maintain amorphous state. After calcination at 1000 °C, obvious crystallization behavior can be observed from the XRD patterns. However, the calcined products exhibit different phase compositions with each other. With the Si/Yb molar ratio of precursors less than or equal to the standard stoichiometry of Yb$_2$Si$_2$O$_7$, the calcined products (Y$_{1-1000}$ and Y$_{2-1000}$) are composed of unsteady X1-Yb$_2$Si$_2$O$_5$ (JCPDS Card No.52-1187) and α-Yb$_2$Si$_2$O$_7$ (JCPDS Card No.301439). Meanwhile, α-Yb$_2$Si$_2$O$_7$ and β-Yb$_2$Si$_2$O$_7$ (JCPDS Card No. 25-1345) coexist in the calcined product (Y$_{3-1000}$) which was transformed from the precursor with Si/Yb molar ratio higher than the standard stoichiometry of Yb$_2$Si$_2$O$_7$. Correlation analysis confirmed that the synthesis temperatures of X1-Yb$_2$Si$_2$O$_5$, α-Yb$_2$Si$_2$O$_7$ and β-Yb$_2$Si$_2$O$_7$ are between 900 °C and 1000 °C. In addition, low-temperature phase X1-Yb$_2$Si$_2$O$_5$ has been identified with synthesis temperature lower than 950 °C in our previous research [38]. With the calcination temperature elevated to 1100 °C, significant compositional change of the Y$_{1-1100}$ and Y$_{2-1100}$ can be observed in the XRD patterns. It can be seen from Fig. 1a that, the Y$_{1-1100}$ is composed of X2-Yb$_2$Si$_5$O$_5$ (JCPDS Card No.40-0386), β-Yb$_2$Si$_2$O$_7$ and trace of X1-Yb$_2$Si$_2$O$_5$, and the characteristic diffraction peaks of α-Yb$_2$Si$_2$O$_7$ disappeared. In addition, only X2-Yb$_2$Si$_5$O$_5$ and β-Yb$_2$Si$_2$O$_7$ can be identified in Y$_{2-1100}$ (Fig. 1b). Compared with that calcined at 1000 °C, X2-Yb$_2$Si$_5$O$_5$ and β-Yb$_2$Si$_2$O$_7$ were formed in the Y$_{1-1100}$ and Y$_{2-1100}$. Differently, the Y$_{3-1100}$ has the same phase compositions as Y$_{3-1000}$, in which the peak intensity of β-Yb$_2$Si$_2$O$_7$ increased significantly, as shown in Fig. 1c. Therefore, it can be inferred that the phase transformations from X1-Yb$_2$Si$_2$O$_5$ to X2-Yb$_2$Si$_5$O$_5$ and from α-Yb$_2$Si$_2$O$_7$ to β-Yb$_2$Si$_2$O$_7$ occurred during the calcination process within 1000 °C-1100 °C. As the calcination temperature comes to 1200 °C, the X1-Yb$_2$Si$_2$O$_5$ and α-Yb$_2$Si$_2$O$_7$ transformed into X2-Yb$_2$Si$_5$O$_5$ and β-Yb$_2$Si$_2$O$_7$ completely in the Y$_{1-1200}$ and Y$_{3-1200}$, respectively. Further raising the calcination temperatures to 1300 °C and 1400 °C, the calcined products exhibit the constant phase composition as that after calcined at 1200 °C, exhibiting
excellent phase stability. Somewhat differently, the calcined products \(Y_1 \sim 1200/1300/1400 \) and \(Y_2 \sim 1200/1300/1400 \) are composed of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) and \(\text{X2-Yb}_2\text{SiO}_5 \), while the calcined products \(Y_3 \sim 1200/1300/1400 \) consist of pure \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) phase. There is no doubt that complex structural and phase evolutions occurred in \(\text{Yb}_2\text{Si}_2\text{O}_7 \) products between 900 ~ 1200 °C in our present work. The calcination temperature plays a major role in determining the phase composition and structure of \(\text{Yb}_2\text{Si}_2\text{O}_7 \) products, and thermally stable components can be obtained in \(\text{Yb}_2\text{Si}_2\text{O}_7 \) powders with the calcination temperature above 1200 °C.

The effect of Si/Yb molar ratio on phase composition of as-synthesized \(\text{Yb}_2\text{Si}_2\text{O}_7 \) powders were summarized and illustrated in Fig. 2a. It can be seen that both phase composition and crystal structure of the calcined products were strongly affected by the molar ratio of Si/Yb. With the molar ratio of 0.9 and 1.0, \(\text{Yb}_2\text{SiO}_5 \) impurities always exist in the final products, which cannot be eliminated by the elevated calcination temperature. In addition, the ending temperature for stable component are 1200 °C and 1100 °C, respectively, indicating that the increased molar ratio of Si/Yb promoted the transformation from X1 to X2-\(\text{Yb}_2\text{SiO}_5 \), which has been confirmed in our previous work [38]. As the Si/Yb molar ratio increased to be 1.1, \(\text{Yb}_2\text{Si}_2\text{O}_7 \) powders were synthesized without impurities in the temperature range of 1000 °C ~ 1400 °C. It is worth noticed that the ending temperature for obtaining thermally stable \(\text{Yb}_2\text{Si}_2\text{O}_7 \) powders is 1200 °C, which is higher than that prepared with Si/Yb molar ratio of 1.0. The phase transformation from \(\alpha \) to \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) might be inhibited by the increased Si/Yb molar ratio. In a word, the final calcination temperature as well as the Si/Yb molar ratio of starting materials have significantly influence on the components and crystal structures of \(\text{Yb}_2\text{Si}_2\text{O}_7 \) powders. In our present work, desired \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders were successfully synthesized through the optimization of calcination temperature and Si/Yb molar ratio. Figure 2b shows the XRD pattern of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders prepared at 1200 °C. It can be seen that the as-prepared \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders exhibit favorable crystallinity and are free of impurities.

3.2 Microstructure of the \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) Powders

The morphology and structural characteristics of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders were analyzed by TEM. Figure 3 shows the morphology and microstructure of the \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders after calcination at 1200 °C. It can be seen that the \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders exhibit irregular shape and have a particle size of about 70 ~ 100 nm (Fig. 3a). In addition, there is obvious agglomeration between \(\text{Yb}_2\text{Si}_2\text{O}_7 \) particles probably attributing to its high activity, which is different from that of \(\text{Yb}_2\text{SiO}_5 \) powders [31, 35, 38]. Figure 3b illustrates the high-resolution image and corresponding electron diffraction pattern of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders. A set of arranged lattice fringes are discriminated clearly in the HRTEM image, demonstrating that the \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) powders were synthesized with high crystallinity. In addition, the measured interplanar spacing in Fig. 3b is 3.195 Å, which corresponds to the (021) crystal plane of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \). The SAED (selected area electron diffraction) pattern of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) is present in top right corner of Fig. 3b, which can be indexed as [01-2] zone axis of \(\beta\text{-Yb}_2\text{Si}_2\text{O}_7 \) with monoclinic symmetry and \(C2/m \) space group [42].
3.3 Formation mechanism of Yb$_2$Si$_2$O$_7$ precursor

In this study, Yb$_2$Si$_2$O$_7$ powders were synthesized by cocurrent chemical coprecipitation method whose mechanism is quite different from that of traditional ones. Therefore, fundamental studies on the structural characteristics and formation mechanism of the Yb$_2$Si$_2$O$_7$ precursors were conducted to understand the synthesis process as well as to realize the controllable preparation of Yb$_2$Si$_2$O$_7$ powders.

For the purpose of comparison, the precursors of ytterbium oxide (Yb$_2$O$_3$) and silicon oxide (SiO$_2$) were synthesized through the precipitation reaction of YbCl$_3$, ethyl orthosilicate with ammonia, respectively, via the same cocurrent coprecipitation method. Figure 4 shows the FTIR spectra of Yb$_2$O$_3$, SiO$_2$ and Yb$_2$Si$_2$O$_7$ precursors. It can be seen that the characteristic absorption peaks of the Yb$_2$Si$_2$O$_7$ precursor are significantly different from the other two precursors, resulting from its special chain segment structure. In the FTIR spectra of the Yb$_2$O$_3$, SiO$_2$ and Yb$_2$Si$_2$O$_7$ precursors, the strong and broad absorption peak located at around 3380 cm$^{-1}$ can be assigned to the O-H stretching modes of hydroxyl originated from residual water, ethanol molecules as well as intrinsic hydroxyl groups in precursors [45, 46]. The deformation vibration of H$_2$O is also observed at 1622 cm$^{-1}$ and 1634 cm$^{-1}$, which can be attributed to the structural and residual water. In addition, the peaks at 1515 cm$^{-1}$ and 1394 cm$^{-1}$ for Yb$_2$O$_3$ precursor as well as 1538 cm$^{-1}$ and 1404 cm$^{-1}$ for Yb$_2$Si$_2$O$_7$ precursor were identified to the bending vibration of -CH$_3$-CH$_2$ and stretching vibration of C-O in alkoxy groups of ethanol molecules [47], which has been confirmed in the synthesis process of ytterbium silicate powders [38]. The absence of relevant characteristic peaks in SiO$_2$ precursor can be benefited to the trace of ethanol residue, which is also certificated by the weaker integral strength of peak at 3382 cm$^{-1}$. Moreover, the insufficient dealkylation reaction of TEOS in hydrolysis process can also result in the existence of alkyl groups.

It is obviously that the structural differences among the Yb$_2$O$_3$, SiO$_2$ and Yb$_2$Si$_2$O$_7$ precursors were reflected in characteristic absorption peaks ranged from 400 to 1100 cm$^{-1}$. In the FTIR spectrum of Yb$_2$O$_3$ precursor, the absorption peaks located at 667 cm$^{-1}$ and 426 cm$^{-1}$ corresponded to bending vibration of Yb-OH bond and the stretching vibration of Yb-O bonds [46], respectively, none of other vibration mode can be detected. Comparatively, the SiO$_2$ precursor presents complex chain segment structure. Researches [45, 48–55] have shown that the cross-linked polymer with spatial-opened skeleton structure will be formed through the hydrolysis and polycondensation of TEOS, in which the -[Si-O-Si]- network was surrounded by coordinated hydroxyl. In our present work, the SiO$_2$ precursor was synthesized in a strong alkali environment. Accelerated polycondensation can promote the connection of colloidal particles, resulting in the formation of large-scaled network structure. In the FTIR spectrum of SiO$_2$ precursor, the 1085 cm$^{-1}$ peak have been proven to be associated with the transverse optical (TO) mode of Si-O-Si asymmetric bond stretching vibration [45, 49]. Meanwhile, the 799 cm$^{-1}$ and 464 cm$^{-1}$ peaks were assigned to symmetric stretching and bending vibration of network Si-O-Si bonds [49, 50, 56], respectively. Moreover, the stretching vibration mode of typical Si-OH bonds reflect in the corresponding
peak at 959 cm\(^{-1}\) [49]. During the synthetic process of Yb\(_2\)Si\(_2\)O\(_7\) precursor, Yb\(^{3+}\) and TEOS were coprecipitated in ammonia solution. It is worth noticed that the FTIR spectrum exhibits the same characteristics in spectral lines as that of SiO\(_2\) precursor, which indicates that approximated cross-linked polymer with spatial-opened skeleton structure may be formed in the Yb\(_2\)Si\(_2\)O\(_7\) precursor. In our previous work, Yb\(_2\)SiO\(_5\) precursor was synthesized with the same method. It is certain that the binding energies of both Si-OH and Yb-OH bonds were influenced with each other, which confirmed the structural difference in chain segments between Yb\(_2\)SiO\(_5\) and SiO\(_2\) precursor. Therefore, the obvious offset of characteristic absorption peaks in FTIR spectrum of Yb\(_2\)Si\(_2\)O\(_7\) precursor can also confirm the formation of -[Si-O-Yb]- network. Similar as the SiO\(_2\) precursor, the 989 cm\(^{-1}\) peak can be identified as TO mode of Si-O-Yb asymmetric bond stretching vibration, as well as the 920 cm\(^{-1}\) and 472 cm\(^{-1}\) peaks correspond to the stretching vibration of Si-OH bonds and bending vibrations of Si-O-Yb bonds, respectively. Moreover, the 688 cm\(^{-1}\) peak is assigned to bending vibrations of Yb-OH bond. In the FTIR spectrum of Yb\(_2\)Si\(_2\)O\(_7\) precursor, the Si-O-Si symmetric stretching disappeared significantly, which is also due to the formation of -[Si-O-Yb]- network.

Figure 5 is the schematic diagram showing the formation mechanism of the Yb\(_2\)Si\(_2\)O\(_7\) precursor. It is undoubtedly that the Yb\(_2\)Si\(_2\)O\(_7\) precursor gone through a series of complicated chemical reactions and structural evolution during the synthesis process. Firstly, the solution containing positive trivalent Yb ions was obtained through the reaction between Yb\(_2\)O\(_3\) and hot hydrochloric acid. The solution has strong acidity due to the slightly excessive acid. Meanwhile, the hydrolysis reaction of TEOS was activated by the nucleophilic attack of water molecules on the Si atom when blending with alcohol and water [57]. Subsequently, the hydrolysis process was accelerated by the strong acid environment resulting from the mingle with Yb\(^{3+}\) solution. As a result, a lot of monosilicic acids were produced in the cation solution, which is also attributed to the inhibition in polymerization by acidic environment. Therefore, coprecipitation of Yb\(^{3+}\) and monosilicic acids was realized by the continuous injection of cation solution into a large volume solution rich in ammonia. During the coprecipitation, the polymerization of monosilicic acids became the dominated process. Researches [51, 58, 59] have shown that silicon oxygen ions will be generated through the dehydrogenation of monosilicic acids, then a nucleophilic attack to Si-OH groups of surrounding monosilicic acids occurred, and finally -[Si-O-Si]- network formed inevitably resulting from oxygen dimerization reaction. However, the reaction system of Yb\(_2\)Si\(_2\)O\(_7\) precursor is totally different from that of SiO\(_2\) due to the existence of Yb\(^{3+}\), in which the nucleophilic reaction was inhibited. Instead, the electronegative silicon oxygen ions were absorbed by Yb\(^{3+}\) as ligands, which induced the formation of ion clusters with Yb\(^{3+}\) as core. In the subsequent polycondensation process, the Yb may be embedded as bridging atoms in the -[Si-O-Si]- network, which resulted in the formation of -[Si-O-Yb]- network. Different form the SiO\(_2\) precursor, both Si and Yb act as crosslinked atom in -[Si-O-Yb]- chain links. So, it can be concluded that the Yb\(_2\)Si\(_2\)O\(_7\) precursor were synthesized in the form of cross-linked polymers with bimetallic crosslinking points in -[Si-O-Yb]- chain segments.

3.4 Thermal behavior of the Yb\(_2\)Si\(_2\)O\(_7\) precursors
The TG-DSC analysis was applied to investigate the thermal behavior of the Yb$_2$Si$_2$O$_7$ precursor, and the corresponding curves are shown in Fig. 6. A continuous weight loss can be detected with the increased temperature, and the ceramic yield is about 83.6%. The weight loss can be attributed to the evaporation of adsorbed water and ethanol as well as the removal of bound water and constituent groups in Yb$_2$Si$_2$O$_7$ precursor. Based on the mass lost rate, the TG-DSC curves can be divided into four sections (Fig. 6). In section A, the precursor undergone a rapid weightlessness of 13.2% below 300 °C. Within this section, a broad endothermic peak can be observed in the DSC curve, which is attributed to the evaporation of adsorbed water, ethanol as well as to the removal of the bound water. With the temperature increasing from 300 to 500 °C (section B), the weight loss of precursor is about 2.7%. The appearance of exothermic peak can be corresponded to the decomposition of trace organic groups. In section C, the residual carbon was burn out in 500 ~ 800 °C with a minimal loss of weight (ca.1%). In section D, no obvious weight loss can be detected. However, a sharp exothermic peak at 1065°C was clearly observed in the DSC curve, which indicates the crystallization of Yb$_2$Si$_2$O$_7$.

Figure 7 shows the FTIR spectra of Yb$_2$Si$_2$O$_7$ precursors after calcination at 400 °C~ 900 °C. The Yb$_2$Si$_2$O$_7$ precursors present similar characteristic spectra before and after calcination, indicating a high similarity in structure and composition. After calcination at 400 ~ 900 °C, the precursors exist stably in the form of amorphous phase, which is consistent with the fact shown in Fig. 2. In the FTIR spectra, the characteristic absorption peaks located at about 3380 cm$^{-1}$ are mainly associated with the O-H stretching modes of hydroxyl groups in the calcined precursors. The adsorbed water and ethanol molecules as well as the bound water have been removed in calcination process. In addition, the integral strength of 3380 cm$^{-1}$ peaks [49] tends to weaken with the increased temperature, suggesting that the dihydroxylation is in continuous progress during the calcination process in the temperature range of 400 ~ 900 °C. Similarly, the intensities of the characteristic peaks shown in the blue dotted box display a downward tendency except for the peak at 1634 cm$^{-1}$. Due to the exposure to atmosphere, trace of water will be absorbed on the surface of tested powders with high specific surface area, which is responsible to the constant visible of the peaks at 1634 cm$^{-1}$ [45] and 3380 cm$^{-1}$. Meanwhile, the other peaks at 1538 cm$^{-1}$ and 1404 cm$^{-1}$ can be attributed to the gradual dealkylation [48]. Previous analysis has shown that the 989 cm$^{-1}$ and 472 cm$^{-1}$ peaks represent the stretching and bending vibrations of Si-O-Yb bonds [45], concurrently the 920 cm$^{-1}$ [48] and 688 cm$^{-1}$ [45] peaks can be assigned to the bending vibrations of Si-OH and Yb-OH bonds in Yb$_2$Si$_2$O$_7$ precursors. However, the related characteristic peaks exhibit a significant shift although the calcined precursors remain amorphous. It is visible that the peak position for stretching vibration of Si-O-Yb bonds has shifted from 989 cm$^{-1}$ to 973 cm$^{-1}$, and those for bending vibration of Si-O-Yb bonds have a deviation to about 500 cm$^{-1}$. Meanwhile, there are also slight shifts in peak positions for the bending vibrations of Si-OH and Yb-OH bonds. It is worth noting that the intensities of peaks around 970 cm$^{-1}$ and 500 cm$^{-1}$ become stronger with the increased temperature, while that of the peak at around 700 cm$^{-1}$ displayed a decreased trend, which indicated that the polarity of Si-O bond and the symmetry of Si-O-Yb bond are strengthened. Therefore, it can be inferred combing with the TG-DSC analysis that -Si-O-Yb- structure consisted of Yb, Si and O atoms only was formed by the removal of hydroxyl and continuous
ordering. The removal of hydroxyl and the continuous ordering and are the dominant factors in resulting to the change of peak position and peak intensity in FTIR spectra of the calcined precursors. For comparison, the FTIR spectra of Yb$_2$O$_3$ and SiO$_2$ are also provided in Fig. 7. It is obvious that no characteristic peaks of both Yb$_2$O$_3$ and SiO$_2$ can be observed in the FTIR spectra of the calcined precursors, which further confirmed that the structure form of [Si-O-Yb]- network was relatively stable below 900 °C.

3.5 Phase transformation and synthesis mechanism of Yb$_2$Si$_2$O$_7$ powders

The various phase compositions of Yb$_2$Si$_2$O$_7$ powders obtained at different calcination temperature confirmed that a phase transformation from α-Yb$_2$Si$_2$O$_7$ to β-Yb$_2$Si$_2$O$_7$ occurred with the elevated temperatures. Figure 8 displays the crystal structure diagrams of α-Yb$_2$Si$_2$O$_7$ and β-Yb$_2$Si$_2$O$_7$. As shown in Fig. 8a and 8c, the α-polymorph Yb$_2$Si$_2$O$_7$ includes 22 independent constituent atoms which build isolated (Si$_3$O$_{10}$) chain-like groups, (SiO$_4$) tetrahedra, (YbO$_6$) and (YbO$_8$) polyhedral structural units [22, 40, 42]. Among them, the (Si$_3$O$_{10}$) groups are constituted by three (SiO$_4$) tetrahedrons with two Si-O-Si bridges, and the adjacent bridges exhibit a significant difference in bond angles. In addition, isolated (SiO$_4$) tetrahedrons possess high distortion in length and angle of Si-O bonds compared with that of ideal tetrahedrons. In the (YbO$_6$) and (YbO$_8$) polyhedral structural units, the Yb atoms were coordinated separately by six and eight oxygens which belong to the (Si$_3$O$_{10}$) groups or (SiO$_4$) tetrahedrons. It is distinctly different that only (Si$_2$O$_7$) groups and (YbO$_6$) polyhedral structural units exist in the monoclinic β-Yb$_2$Si$_2$O$_7$ crystals [43, 44, 60], as shown in Fig. 8b and 8d. The (Si$_2$O$_7$) groups can be considered as a structure with two (SiO$_4$) tetrahedrons connected through a Si-O-Si bridge with 180° bond angle. In this group, the (SiO$_4$) tetrahedrons show low degree of distortion. Except for the bridging oxygen, the others can be coordinated with adjacent Yb to form (YbO$_6$) polyhedral structural units. In despite of the fact that the Yb$_2$Si$_2$O$_7$ can exist steadily as α-polymorph in room temperature, it is still a metastable phase in terms of thermal stability [44]. Enough heat input from nearby surroundings can induce the phase transformation towards β-Yb$_2$Si$_2$O$_7$, in which a twisted structure was transformed into an ideal stretched one due to the energy optimization.

Figure 9 shows the FTIR spectra of Yb$_2$Si$_2$O$_7$ precursors after calcination at 1000 °C ~ 1200 °C. It was clearly observed that the calcined products exhibit a completely different characteristic peak compared with that after calcination at 900 °C. As we known that the powder products both calcined at 1000 °C and 1100 °C are composed of α-Yb$_2$Si$_2$O$_7$ and β-Yb$_2$Si$_2$O$_7$, thus the characteristic absorption peaks of α and β-Yb$_2$Si$_2$O$_7$ are all present in the related FTIR spectra. Meanwhile, the typical FTIR spectrum of β-Yb$_2$Si$_2$O$_7$ was obtained from the pure-phase powder product after calcination at 1200 °C. Therefore, it can be concluded that the peaks located at 1096 cm$^{-1}$, 980 cm$^{-1}$, 908 cm$^{-1}$, 849 cm$^{-1}$, 565 cm$^{-1}$, 537 cm$^{-1}$, 499 cm$^{-1}$ and 472 cm$^{-1}$ are all belong to β-Yb$_2$Si$_2$O$_7$, which have also been confirmed in the related research works [32]. In the FTIR spectrum, the peaks at 1096 cm$^{-1}$ and 849 cm$^{-1}$ are ascribed to
the stretching vibration of silicon atoms against bridging and non-bridging oxygen atoms in (Si$_2$O$_7$) groups [45, 61], respectively. While the 980 cm$^{-1}$ and 908 m$^{-1}$ peaks [32, 62] correspond to the stretching modes of ytterbium atoms against oxygen atoms in Yb-O-Yb chains normal and subparallel to Si-O-Si chain, respectively. In addition, the 565 cm$^{-1}$ and 537 m$^{-1}$ peaks can be assigned to the stretching and bending vibrations of Yb-O bonds in (YbO$_6$), and the peaks at 499 cm$^{-1}$ and 472 cm$^{-1}$ [62, 63] are all associated with the bending vibration of various categories of Si-O bonds. Consequently, it is logical that these peaks located at 1129 cm$^{-1}$, 1042 cm$^{-1}$, 1000 cm$^{-1}$, 946 cm$^{-1}$, 881 cm$^{-1}$, 722 cm$^{-1}$, 693 cm$^{-1}$, 557 cm$^{-1}$, 514 cm$^{-1}$ and 429 cm$^{-1}$ could be identified to the characteristic absorption peaks of α-Yb$_2$Si$_2$O$_7$, the complexity of spectrum can be attributed to the diverse structural units as shown in Fig. 8c.

Unfortunately, there are few reports on the FTIR study of α-Yb$_2$Si$_2$O$_7$. Research showed that the FTIR characteristic peaks at 1000–1100 cm$^{-1}$ are mainly from the stretching vibrations of Si-O bonds in Si-O-Si chains for rare earth disilicates [61]. As for α-Yb$_2$Si$_2$O$_7$, (Si$_3$O$_7$) chain-like groups are the unique structural unit containing Si-O-Si chain. Thus, the 1042 cm$^{-1}$ and 1000 cm$^{-1}$ peaks should be associated with the stretching vibrations of Si atoms against O atoms in Si-O-Si chains, and the double-peak distribution may be attributed to the difference in bond length and bond angle of various types of Si-O-Si chains in (Si$_3$O$_{10}$) groups. In addition, it has been confirmed that the bending vibrations of bridging oxygen bond in Si-O-Si usually give expression to the peaks in the range of 600–800 cm$^{-1}$ [61, 62], which can provide a tenable inference that the 722 cm$^{-1}$ and 693 cm$^{-1}$ peaks can also trace to the (Si$_3$O$_{10}$) groups and correspond to Si-O-Si with difference bond angles. In particular, there is no relative characteristic peak can be detected in the FTIR spectrum of β-Yb$_2$Si$_2$O$_7$, which is resulted from the D$_{3d}$ symmetrical structure of (Si$_2$O$_7$) groups (180° bond angle in Si-O-Si) [61]. Wen et al. [35] investigated the FTIR spectrum of Yb$_2$SiO$_5$ and have affirmed the ascription of 930 cm$^{-1}$ and 870 cm$^{-1}$ to asymmetric and symmetric stretching vibrations of Si-O bonds for isolated (SiO$_4$) tetrahedrons. As the similar structural units in α-Yb$_2$Si$_2$O$_7$, the corresponding vibration modes of that should be identified to the peaks located at 946 cm$^{-1}$ and 881 cm$^{-1}$. In which, the 946 cm$^{-1}$ peak may be associated with the asymmetric stretching vibrations of Si-O bonds and the 881 cm$^{-1}$ peak should be assigned to the symmetric stretching vibrations of Si-O bonds in highly distorted (SiO$_4$) tetrahedrons. Moreover, correlativity researches [34, 44, 61, 62] have shown that the FTIR characteristic peaks located at 500–600 cm$^{-1}$ and 400–500 cm$^{-1}$ are usually originated from the stretching vibrations of Yb-O bonds and bending vibrations of Si-O bonds, respectively. So, it can be inferred that the 557 cm$^{-1}$ and 514 cm$^{-1}$ peaks should be assigned to the Yb-O stretching vibrations in (YbO$_6$) and (YbO$_8$) groups. Meanwhile, the 429 cm$^{-1}$ peak corresponds to the low-frequency bending vibrations of Si-O bonds from isolated (SiO$_4$) tetrahedrons or (Si$_3$O$_{10}$) groups. Echoed with that the 1129 cm$^{-1}$ peak can be assigned to the high-frequency bending vibrations of the Si-O bonds [34].

Based on the infrared spectrum shown in Fig. 9, it can be seen clearly that the characteristic peaks of α-Yb$_2$Si$_2$O$_7$ disappeared gradually with the elevated calcination temperature, a phase transformation from
α to β-Yb$_2$Si$_2$O$_7$ happened exactly during the calcination process above 1000 °C. As mentioned earlier, the structural units of β-Yb$_2$Si$_2$O$_7$ are composed of (Si$_2$O$_7$) groups and (YbO$_6$) polyhedrons which is completely different from that of α-Yb$_2$Si$_2$O$_7$. Therefore, it can be deduced that both of (SiO$_4$) tetrahedrons and (Si$_3$O$_{10}$) groups experienced structural changes to form (Si$_2$O$_7$) groups, as well as (YbO$_8$) to (YbO$_6$) polyhedrons. During the process of phase transformation, the external energy plays a role in inducing the breaking of Si-O bonds in (SiO$_4$) tetrahedrons and (Si$_3$O$_{10}$) groups and then promoted the formation of stable (Si$_2$O$_7$) groups, which is responsible to the disappearance of (SiO$_4$) tetrahedrons and (Si$_3$O$_{10}$) groups characteristic peaks for stretching vibrations in the FTIR spectrum of Yb$_2$Si$_2$O$_7$ calcined at 1200 °C. In addition, the characteristic peaks of bending vibration modes were also affected by the structural evolution of (Si$_x$O$_y$) groups, including the vanishing of 1129 cm$^{-1}$ and the shift of 429 cm$^{-1}$ peak. It is worth mentioning that the Si-O stretching vibration of Si-O-Si chains in (Si$_3$O$_{10}$) groups disappeared in the FTIR spectrum of Yb$_2$Si$_2$O$_7$ calcined at 1100 °C, while the bending vibration of the corresponding Si-O bond are greatly weakened. In addition, the peak of the symmetrical stretching vibration of the (SiO$_4$) tetrahedron exhibits a significant shape change. It illustrated that the polarity of bridging oxygen bond in Si-O-Si chains decreased and then the bridging oxygen bond broke as well as the peak shape change of the highly distorted (SiO$_4$) tetrahedron shows an improvement in the symmetry of the isolated (SiO4) tetrahedron. Therefore, it can be reasonably inferred that (Si$_3$O$_{10}$) groups were divided into (SiO$_4$) units through the fracture of Si-O-Si and then formed (Si$_2$O$_7$) groups of β-Yb$_2$Si$_2$O$_7$. As a kind of units owned by both α and β-Yb$_2$Si$_2$O$_7$, the characteristic peaks of (YbO$_6$) polyhedrons can be regarded as located at 565 cm$^{-1}$, 557 cm$^{-1}$ and 537 m$^{-1}$, thus the deviation of 565 cm$^{-1}$ and 557 cm$^{-1}$ peaks as well as the decrease in peak intensity of 537 cm$^{-1}$ peaks can be attributed to the changed structural parameters and coordination environments of (YbO$_6$) polyhedrons. Similarly, the 514 cm$^{-1}$ peak is regarded as the characteristic vibration modes of Yb-O bonds in (YbO$_8$) polyhedrons according to the obvious absence in β-Yb$_2$Si$_2$O$_7$ resulted from the structural transformation from (YbO$_8$) to (YbO$_6$) polyhedrons. Overall, the metastable α-Yb$_2$Si$_2$O$_7$ converted to a stable β-Yb$_2$Si$_2$O$_7$ through a reconstructive progress.

Figure 10 shows the synthesis mechanism diagram of Yb$_2$Si$_2$O$_7$ powders. There have two clear periods during the entire synthetic process of β-Yb$_2$Si$_2$O$_7$ powders. In the period of precursor synthesis, a cross-linked polymer with Yb and Si as crosslinking atoms in [-Si-O-Yb]- chain segment was obtained though the embedding of Yb atoms in [-Si-O-Si]- network during the polycondensation process of monosilicic acids, which give the credit to the coprecipitation of Yb ions and monosilicic acids. Subsequently, the amorphous precursor experienced a structural conversion towards to α-Yb$_2$Si$_2$O$_7$ through the removal of hydroxyl of [-Si-O-Yb]- network and the continuous ordering of -Si-O-Yb- structure in calcination process, in which the -Si-O-Yb- structure was broken and restructured gradually, and then resulted in the formation of (Si$_3$O$_{10}$) groups, (SiO$_4$) tetrahedra, (YbO$_6$) and (YbO$_8$) polyhedral structural units. According to the effects of calcination parameters on phase composition of Yb$_2$Si$_2$O$_7$ powders, as shown in Fig. 2a, it can be asserted that both increased temperature and extended time had a significant function in realizing the
phase transformation from α to β-Yb$_2$Si$_2$O$_7$. During the transformation process, β-Yb$_2$Si$_2$O$_7$ with near-standard polyhedral structure generated accompanied by the evolution of structure and coordination environment for the structural units of α-Yb$_2$Si$_2$O$_7$ to (Si$_2$O$_7$) groups and (YbO$_6$) polyhedrons.

4. Conclusions

In this work, pure β-Yb$_2$Si$_2$O$_7$ powders with nanoscale size were successfully synthesized by cocurrent chemical coprecipitation method through optimizing the Si/Yb molar ratio and calcination temperature. With the Si/Yb molar ratio of precursor less than or equal to the standard stoichiometry of Yb$_2$Si$_2$O$_7$, Yb$_2$SiO$_5$ impurity forms in the powder products. In addition, elevated calcination temperature is beneficial to synthesis the desirable β-Yb$_2$Si$_2$O$_7$ powders. During the coprecipitation process, silicon oxygen ions can be absorbed around Yb$^{3+}$ and acted as ligands to form ion clusters with Yb$^{3+}$ core. Meanwhile, Yb is embedded in the -[Si-O-Si]- network in form of bridging atoms during the subsequent polycondensation process, leading to the formation of crosslinked polymer consisting of -[Si-O-Yb]- chain segments. The thermal behavior of the Yb$_2$Si$_2$O$_7$ precursor is a process of continuous hydroxyl removal and structural ordering of amorphous -[Si-O-Yb]- network. As a metastable phase, α-Yb$_2$Si$_2$O$_7$ will transformed to β-Yb$_2$Si$_2$O$_7$ with near-standard polyhedral structure resulting from the structural and coordination evolutions of constituent units under increased calcination temperature.

Declarations

Acknowledgement:

This work was supported by National Science and Technology Major Project [grant numbers 2017-VI-0020-0092]; the project supported by Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology [grant numbers KFBJM2019005], Central South University of Forestry and Technology; the project supported by Hunan Provincial Innovation Foundation for Postgraduate, and the project supported by the Fundamental Research Funds for the Central Universities of Central South University [grant numbers 2020zzts078].

References

1. Jacobson NS (1993) Corrosion of Silicon-Based Ceramics in Combustion Environments. J Am Ceram Soc 76:3–28
2. More KL, Tortorelli PF, Ferber MK, Walker LR, Keiser JR et al. Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments. The American Society of Mechanical Engineers 1999, 4
3. Lee KN. Key durability issues with mullitebased environment barrier coating for Si-based ceramics. The American Society of mechanical Engineers 1999
4. Lee KN, Fox DS, Bansal NP (2005) Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si$_3$N$_4$ ceramics. J Eur Ceram Soc 25:1705–1715
5. Lee KN. Protective coatings for gas turbines, *DOE-National Energy Technology Laboratory* 2005
6. Lee KN (2000) Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics. J Am Ceram Soc 122:632–636
7. Wang Y, Meng JS, Liu SY, Gong X, Jia J, Zhang ZG, Wang L (2018) Environmental Barrier Coatings—Challenges and Opportunities. Journal of Aerospace Science Technology 6:17–29
8. Rohbeck N, Morrell P, Xiao P (2019) Degradation of ytterbium disilicate environmental barrier coatings in high temperature steam atmosphere. J Eur Ceram Soc 39:3153–3163
9. Richards BT, Wadley HNG (2014) Plasma spray deposition of tri-layer environmental barrier coatings. J Eur Ceram Soc 34:3069–3083
10. Xu Y, Hu X, Xu F, Li K (2017) Rare earth silicate environmental barrier coatings: Present status and prospective. Ceram Int 43:5847–5855
11. Tejero-Martin D, Bennett C, Hussain T (2021) A review on environmental barrier coatings: History, current state of the art and future developments. J Eur Ceram Soc 41:1747–1768
12. Garcia E, Lee H, Sampath S (2019) Phase and microstructure evolution in plasma sprayed Yb$_2$Si$_2$O$_7$ coatings. J Eur Ceram Soc 39:1477–1486
13. Miyazaki T, Usami S, Inoue R et al (2019) Oxidation behavior of ytterbium silicide. Ceram Int 45:9560–9566
14. Ryu HL, Lee SM, Han YS et al (2019) Preparation of crystalline ytterbium disilicate environmental barrier coatings using suspension plasma spray. Ceram Int 45:5801–5807
15. Boakye EE, Mogilevsky P, Parthasarathy TA et al (2016) Processing and Testing of RE$_2$Si$_2$O$_7$ Fiber-Matrix Interphases for SiC-SiC Composites. J Am Ceram Soc 99:415–423
16. Ueno S, Ohji T, Lin HT (2008) Recession behavior of Yb$_2$Si$_2$O$_7$ phase under high speed steam jet at high temperatures. Corros Sci 50:178–182
17. Lu MH, Feng ZH, Zhou YC (2015) Recent Research Progress on Environmental Barrier Coatings for Non-oxide Ceramics. Journal of Ceramics 36:107–118
18. Richards BT, Young KA, de Francqueville F et al (2016) Response of ytterbium disilicate—silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater 106:1–14
19. Zhong X, Niu YR, Li H et al (2018) Thermal shock resistance of tri-layer Yb$_2$SiO$_5$/Yb$_2$Si$_2$O$_7$/Si coating for SiC and SiC-matrix composites. J Am Ceram Soc 101:4743–4752
20. Zhao H, Richards BT, Levi CG, Wadley HNG (2016) Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surface Coatings Technology 288:151–162
21. Stolzenburg F, Johnson MT, Lee KN et al (2015) The interaction of calcium-magnesium-alumino-silicate with ytterbium silicate environmental barrier materials. Surface Coatings Technology 284:44–50
22. Felsche J (1970) Polymorphism and crystal data of the rare-earth disilicates of type RE$_2$Si$_2$O$_7$. Journal of the Less Common Metals 21:1–14

23. Shepelev B. The Crystal Structures of the Rare Earth Pyrosilieates. Acta Cryst 1970, B: 484

24. Bocquillon G, Chateau C, Loriers C, Loriers J (1977) Polymorphism under Pressure of the Disilicates of the Heavier Lanthanoids Ln$_2$Si$_2$O$_7$ (Ln = Tm, Yb, Lu). J Solid State Chem 20:135–141

25. Fleet ME (2004) XL. A new rare earth disilicate (REE$_2$Si$_2$O$_7$; REE = Dy, Tm, Lu; type-L): Evidence for non-quenchable 10 GPa polymorph with silicon in fivefold trigonal bipyramidal coordination. Am Miner 89:396–404

26. Zhu T, Niu YR, Zhong X et al (2018) Influence of phase composition on microstructure and thermal properties of ytterbium silicate coatings deposited by atmospheric plasma spray. J Eur Ceram Soc 38:3974–3985

27. Zhu T, Niu Y, Zhong X et al (2018) Influence of phase composition on thermal aging behavior of plasma sprayed ytterbium silicate coatings. Ceram Int 44:17359–17368

28. Wang SB, Lu YR, Chen YX (2015) Synthesis of Single-Phase β-Yb$_2$Si$_2$O$_7$ and Properties of Its Sintered Bulk. Int J Appl Ceram Technol 12:1140–1147

29. Lu MH, Xiang HM, Feng ZH et al (2016) Mechanical and Thermal Properties of Yb$_2$SiO$_5$: A Promising Material for T/EBCs Applications. J Am Ceram Soc 99:1404–1411

30. Zhang Y, Zou B, Cai X et al (2020) Hot corrosion behavior of Yb$_2$Si$_2$O$_7$ ceramic under NaVO$_3$ salt attack. Ceram Int 46:2618–2623

31. Hongfei C. Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorganic Chemistry 2010, 4

32. Zhao C, Wang F, Sun Y, Zhou Y (2013) Synthesis and characterization of β-Yb$_2$Si$_2$O$_7$ powders. Ceram Int 39:5805–5811

33. Chang YH, Chou MH, Wang TJ (2018) Synthesis and photoluminescence properties of erbium oxide thin films prepared by sol-gel method. Ceram Int 44:1163–1167

34. Díaz M, Pecharromán C, Monte FD et al (2005) Synthesis, Thermal Evolution, and Luminescence Properties of Yttrium Disilicate Host Matrix. Chem Mater 17:1774–1782

35. Wen H, Dong S, He P et al (2007) Sol-Gel Synthesis and Characterization of Ytterbium Silicate Powders. Journal of the American Ceramic Society 90:4043–4046

36. Haritha AH, Rao RR (2019) Sol-Gel synthesis and phase evolution studies of yttrium silicates. Ceram Int 45:24957–24964

37. Guo LN, Wang YH (2011) Upconversion luminescence properties of Y$_2$SiO$_5$: Er$^{3+}$, Tm$^{3+}$, Yb$^{3+}$ synthesized by co-precipitation method. Acta Physica Sinica 60:1–6

38. Wu NN, Wang YL, Liu RT et al (2020) Preparation and synthesis mechanism of ytterbium monosilicate nano-powders by a cocurrent coprecipitation method. Ceram Int 46:15003–15012

39. Li AX, Wang YL, Xiong X et al (2020) Microstructure and synthesis mechanism of dysprosia-stabilized zirconia nanocrystals via chemical coprecipitation. Ceram Int 46:13331–13341
40. Toropov NA, Bondar IA (1961) Silicates of the rare earth elements. Bulletin of the Academy of Sciences of the USSR. Division of chemical science 10:1278–1285

41. Toropov NA, Bondar IA (1960) Rare-earth silicates. Bulletin of the Academy of Sciences of the USSR. Division of chemical science 9:145–148

42. Felsche J (1973) The crystal chemistry of the rare-earth silicates. In: Rare Earths (Part of the Structure and Bonding book series, 13). Springer Berlin Heidelberg, Berlin. Heidelberg: pp 99–197

43. Tian Z, Zheng L, Li Z et al (2016) Exploration of the low thermal conductivities of γ-Y$_2$Si$_2$O$_7$, β-Y$_2$Si$_2$O$_7$, β-Yb$_2$Si$_2$O$_7$, and β-Lu$_2$Si$_2$O$_7$ as novel environmental barrier coating candidates. J Eur Ceram Soc 36:2813–2823

44. Ogawa T, Otani N, Yokoi T et al (2018) Density functional study of the phase stability and Raman spectra of Yb$_2$O$_3$, Yb$_2$SiO$_5$ and Yb$_2$Si$_2$O$_7$ under pressure. Physical chemistry chemical physics 20:16518–16527

45. Almeida RM (2016) Characterization of Sol-Gel Materials by Infrared Spectroscopy. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of Sol-Gel Science and Technology. Springer International Publishing, Cham, pp 1–31

46. Xuefeng W. Infrared spectra and density functional calculations for M(OH)$_{2,3}$ and HOMO molecules and M(OH)$_{2+}$ cations (M = Y, La). Journal of Physical Chemistry A 2006, 12

47. Liu Z, Toci G, Pirri A et al (2020) Fabrication, microstructures, and optical properties of Yb:Lu$_2$O$_3$ laser ceramics from co-precipitated nano-powders. Journal of Advance Ceramic 9:674–682

48. Rubio F, Rubio J, Oteo JL (1998) A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219

49. Bertoluzza A, Fagnano C, Morelli MA et al (1982) Raman and infrared spectra on silica gel evolving toward glass. J Non-Cryst Solids 48:117–128

50. Stolen R, Krause J, Kurkjian C. Raman scattering and far infra-red absorption in neutron compacted silica. Discussions of The Faraday Society 1970, 50

51. Huang W, Huang Y, Yu YZ (1999) Hydrolytic Condensation of Tetraethyl Orthosilicate. Silicone matrerial 3:10–12

52. Yu XB, Wu H (1996) Studies on the Hydrolysis and Polycondensation Process of TEOS. Journal Inorganic Materials 11:703–707

53. Harris MT, Brunson RR, Byers CH (1989) The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J Non-Cryst Solids 121:397–403

54. Wang XG, Zhao H, Wu HY (2001) Research Progress of Hydrolysis of Ethyl Silicate. Inner Mongolia Petrochemical Industry 27:17–19

55. Yu ZY, Huang HW (2009) Hydrolysis and polycondensation of ethyl orthosilicate and its application. Chemical Industry of Hangzhou 39:37–40

56. Téllez L, Rubio J, Rubio F et al (2004) FT-IR Study of the Hydrolysis and Polymerization of Tetraethyl Orthosilicate and Polydimethyl Siloxane in the Presence of Tetrabutyl Orthotitanate. Spectrosc Lett
37:11–31

57. Gu YH, Gu HC, Xu H, Han ZW (2003) Semi-empirical Studies on Hydrolysis Process of TEOS. Chinese Journal of Inorganic Chemistry 19:1301–1306

58. Sui XY, Liu SQ, Cheng X. Hydrolysis Condensation of TEOS and Preparation of Porous Silica Powder. China Powder Science and Technology 2006: 35–39

59. Chen TL, Chen Z. Influences of the Catalyzing Mode and the Ratio of Water on TEOS Sol-gel Processing. Journal of East China Shipbuilding Institute 2003: 62–65

60. Hester G, Nair HS, Reeder T et al (2019) Novel Strongly Spin-Orbit Coupled Quantum Dimer Magnet: Yb$_2$Si$_2$O$_7$. Phys Rev Lett 123:027201

61. Lazarev AN, Tenisheva TF (1961) The vibration spectra and structures of some rare earth element silicates. Bulletin of the Academy of Sciences of the USSR. Division of chemical science 10:894–901

62. Fernández-Carrión AJ, Alba MD, Escudero A, Becerro Al (2011) Solid solubility of Yb$_2$Si$_2$O$_7$ in β-, γ- and δ-Y$_2$Si$_2$O$_7$. J Solid State Chem 184:1882–1889

63. Sun Z, Zhu X, Li M et al (2009) Hydrolysis and Dispersion Properties of Aqueous Y$_2$Si$_2$O$_7$ Suspensions. J Am Ceram Soc 92:54–61

Figures
Figure 1

XRD patterns of the as-synthesized powders after calcination at various temperatures: (a) Y1-c; (b) Y2-c; (c) Y3-c
Figure 2

Phase compositions of the as-synthesized Yb2Si2O7 powders as a function of Si/Yb molar ratio at various calcination temperature and XRD pattern of β-Yb2Si2O7 powders (a) Phase composition; (b) XRD pattern

Figure 3

Morphology and high-resolution TEM images of the β-Yb2Si2O7 powders: (a) Morphology; (b) HRTEM image with SAED pattern
Figure 4

FTIR spectra of Yb2O3, SiO2 and Yb2Si2O7 precursors

Figure 5

Schematic diagram showing the formation mechanism of Yb2Si2O7 precursor synthesized by cocurrent chemical coprecipitation
Figure 6

TG-DSC curves of the Yb2Si2O7 precursor conducted in air atmosphere from room temperature to 1200 °C
Figure 7

FTIR spectra of Yb2Si2O7 precursors after calcination at 400 °C ~ 900 °C
Figure 8

Crystal structure diagrams of Yb$_2$Si$_2$O$_7$: (a) (c) α-Yb$_2$Si$_2$O$_7$; (b) (d) β-Yb$_2$Si$_2$O$_7$

Figure 9

FTIR spectra of Yb$_2$Si$_2$O$_7$ precursors after calcination at 1000 °C ~ 1200 °C
Figure 10

Schematic diagram of the synthesis mechanism for Yb2Si2O7