EVALUATION OF CANE SUGAR PRODUCTION USING MULTIVARIATE STATISTICAL METHODS

Bruno José Chiaramonte de Castro
Universidade Federal de São Carlos
https://orcid.org/0000-0003-0606-3224

Andre Bernardo
Universidade Federal de São Carlos
https://orcid.org/0000-0002-9345-3361

DOI: https://doi.org/10.18540/jcecvl5iss3pp0228-0237

Palavras-chave: Sugar industry, Process monitoring, Sugar quality, Multivariate statistics

Resumo

In sugarcane industries, process monitoring has the main purpose of maximizing sugar and ethanol production, meeting the quality parameters demanded by customers. The aim of this work was to identify industrial process variables that presented the greatest impacts on the quantity and quality of the produced sugar, by applying principal component analysis (PCA) and partial least squares regression (PLS) to the process data of a sugar and ethanol industry. The PCA correlation matrix highlighted the correlation between the presence of alcoholic flocs in sugar and the concentrations of starch and dextran in it. Both PCA and PLS showed that the color of the sugar was highly correlated to its moisture content. The first three principal components accounted for 40.92% of the total data variability.

Downloads

Referências

CHEN, J. C. P.; CHOU, C. C. Cane sugar handbook: A manual for cane sugar manufacturers and their chemists. 12th ed., New York: John Wiley & Sons, 1993.
CHEN, R.; KANG, S.; HAO, X.; LI, F.; DU, T.; QIU, R.; CHEN. J. Variations in tomato yield and quality in relation to soil properties and evapotranspiration under greenhouse condition. Sci. Hortic, v. 197, n. 3, p. 318–328, 2015.
FERNANDES, A. C. Cálculos na agroindústria da cana-de-açúcar. 3rd ed., Piracicaba: STAB, 2011.
GE, Z.; SONG, Z.; GAO, F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res, v. 52, n. 10, p. 3543–3562, 2013.
ICUMSA. ICUMSA Methods Book (2015). England: ICUMSA, 2015.
JIANG, Q.; YAN, X.; ZHAO, W. Fault detection and diagnosis in chemical processes using sensitive principal component analysis. Ind. Eng. Chem. Res, v. 52, n. 4, p. 1635–1644, 2013.
JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 6th ed., Upper Saddle River: Pearson Prentice Hall, 2007.
KANO, M.; NAKAGAWA, Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Comput. Chem. Eng, v. 32, n. 1–2, p. 12–24, 2008.
KU, W.; STORER, R. H.; GEORGAKIS, C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst, v. 30, n. 1, p. 179–196, 1995.
LEMOUS, L. R.; NOGUEIRA, A.; WOSIACKI, G.; LACERDA, L. G.; DEMIATE, I. M. The influence of different amounts of dextran and starch in crystallized sugar in the formation of floc in acidic carbonated solutions and alcoholic solutions. Sugar Tech, v. 15, n. 1, p. 65–70, 2013.
LOPES, C. H.; BORGES, M. T. M. R. Manual de análise de açúcar: açúcar VHP, VVHP, demerara, cristal, refinado e açúcar líquido. Araras: Sucral, 2004.
MERHEB, G. A. Influência da contaminação combinada de dextrana e amido na cristalização do açúcar. 2014. 300 p. Tese (Doutorado em Engenharia Química) - Universidade Federal de São Carlos, São Carlos, SP, 2014.
MERHEB, G. A.; OLIVEIRA, N. de; GIULIETTI, M.; BERNARDO, A. Combined effect of starch and dextran in sucrose crystallization. Sugar Ind, v. 141, p. 697–704, 2016.
MULLIN, J. W. Crystallization. 4th ed., Woburn: Butterworth Heinemann, 2001.
OLIVEIRA, D. T.; ESQUIAVETO, M. M. M.; SILVA JÚNIOR, J. F. Impacto dos itens da especificação do açúcar na indústria alimentícia. Ciênc. Tecnol. Aliment, v. 27, p. 99–102, 2007.
OLIVEIRA, A. S.; RINALDI, D. A.; TAMANINI, C.; VOLL, C. E.; HAUITY, M. C. O. Fatores que interferem na produção de dextrana por microrganismos contaminantes da cana-de-açúcar. Semin., Ciênc. Exatas Tecnol., v. 23, n. 1, p. 99–104, 2002.
QIN, S. J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control, v. 36, n. 2, p. 220–234, 2012.
RAMBURAN, S.; ZHOU, M.; LABUSCHAGNE, M. Interpretation of genotype×environment interactions of sugarcane: Identifying significant environmental factors. Field Crops Res, v. 124, n. 3, p. 392–399, 2011.

RODUSHKIN, I.; BAXTER, D. C.; ENGSTRÖM, E.; HOOGWERFF, J.; HORN, P.; PAPESCH, W.; WATLING, J.; LATKOCZY, C.; VAN DER PEIL, G.; BERENDS-MONTERO, S.; EHLERINGER, J.; ZDANOWICZ, V. Elemental and isotopic characterization of cane and beet sugars. J. Food Compos. Anal, v. 24, n. 3, p. 543–558, 2012.

SARANTÖPOULOS, C. I. G. L.; OLIVEIRA, L. M.; CANAVESI, É. Requisitos de conservação de alimentos em embalagens flexíveis. 2nd ed., Campinas: CETEA/ITAL, 2002.

SCHLUMBACH, K.; PAUTOV, A.; FLÖTER, E. Crystallization and analysis of beet and cane sugar blends. J. Food Eng, v. 196, p. 159–169, 2017.

SUN, X.; CHEN, T.; MARQUEZ, H. J. Detecting leaks and sensor biases by recursive identification with forgetting factors. In: CONFERENCE ON DECISION AND CONTROL, 2001, Edmonton. Anais... Edmonton: IEEE, 2001. p. 3716-3721.

UDOP. Determinação das impurezas minerais em carregamentos de cana-de-açúcar pelo método da incineração em forno mufla. UDOP, 2014a. Available at: <http://www.udop.com.br/download/legislacao/bioenergia/institucional_site_juridico/impurezas_minerais_cana_objetivo_equipamentos_procedimentos.pdf>. Accessed on September 19, 2017.

UDOP. Determinação das impurezas vegetais e totais em carregamentos de cana-de-açúcar pelo método de limpeza manual e a seco. UDOP, 2014b. Available at: <http://www.udop.com.br/download/legislacao/bioenergia/institucional_site_juridico/impurezas_vegetais_totais_objetivo_equipamentos_procedimentos.pdf>. Accessed on September 19, 2017.

YIN, S.; DING, S. X.; XIE, X.; Luo, H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron, v. 61, n. 11, p. 6418–6428, 2014.

YIN, S.; Li, X.; GAO, H.; KAYNAK, O. Data-based techniques focused on modern industry: an overview. IEEE Trans. Ind. Electron, v. 62, n. 1, p. 657–667, 2015.
the consent of all authors. By submitting a manuscript, the authors agree that their paper’s copyright is transferred to JCEC if and when the manuscript is accepted for publication. Accepted manuscripts and illustrations become the property of the JCEC.

[PT] Autores que publicam nesta revista concordam com os seguintes termos:

1. Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a [Licença Creative Commons Attribution](https://creativecommons.org/licenses/by/) que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.

2. Autores têm autorização para assinar contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.

3. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).

4. Ao submeter um manuscrito à JCEC, assume-se que ele não foi publicado previamente, que não está sob processo de avaliação por outra entidade e que não será publicado simultaneamente em outro veículo de divulgação, no mesmo formato, sem a permissão por escrito dos Editores. Além disso, subentende-se que o autor responsável pela submissão tem o consentimento de todos os outros autores. Os autores também concordam que os direitos autorais do manuscrito serão transferidos para a JCEC, caso o manuscrito seja aceito para publicação. Manuscritos aceitos e ilustrações se tornarão propriedades da JCEC.

Artigos mais lidos pelo mesmo(s) autor(es)

- Guilherme Henrique Alves Pinto, Andre Bernardo, [PROTOCOLO DE AVALIAÇÃO DO EMPREGO DE MEMBRANAS EM PROCESSOS DE SEPARAÇÃO](https://journals.jcre.org/index.php/jce/article/view/39), *The Journal of Engineering and Exact Sciences: v. 2 n. 3 (2016)*
This work aimed to evaluate some statistical methods that were used for estimating the relative contribution of sugar yield factors in sugarcane. Moreover, some agronomic treatments were used which aimed to measure the relationship among sugar yield factors under different degrees of variation. Multivariate analysis has been extensively used to discover the relationship between various yield components (Lee and Kaltsikes 1973; Sabouri et al., 2008; Salehi et al., 2008; Mostafavi et al., 2011; Al-Sayed et al., 2012). For decades, mendelian genetic-based method in combination with the multivariate methods have been applied to improve varieties with high yield under optimal and sub-optimal conditions.

In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS (a fresh weight measure of sucrose content in the cane) accumulated over a 12 year period. Such an arrangement of data can be expressed as a three-way array where a farm×attribute×year matrix can be evaluated and interactions considered. A multivariate technique, the three-way mixture method of clustering, was employed to identify meaningful relationships between farms that performed similarly. This statistical multivariate analysis was used to observe similarities between fermentable sugars during the dough fermentation and its behaviour, reducing the dimension to two PCs, while keeping most of the original information found in the data. Only PCs with eigenvalues larger than one were retained for further analyses. Cane sugar production is an important industrial process. One of the most important steps in cane sugar production is the clarification process, which provides high-quality, concentrated sugar syrup crystal for further processing. There have been efforts to improve
the clarification of the mixed juice by using neural network-based prediction schemes [1, 2]. Such approaches amount to treating the clarification process as a black or gray box and thus do not yield any understanding of the basic physics and chemistry involved in clarification.