Heterogeneity of gut microbial responses in healthy household dogs transitioning from an extruded to a mildly cooked diet

Jirayu Tanprasertsuk¹, Justin Shmalberg¹,², Heather Maughan¹,³, Devon E. Tate¹, LeeAnn M. Perry¹, Aashish R. Jha¹,⁴ and Ryan W. Honaker¹

¹ NomNomNow, Inc., Nashville, Tennessee, United States of America
² Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
³ Ronin Institute, Montclair, New Jersey, United States of America
⁴ Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

ABSTRACT

Background: The gut microbiota (GM) is associated with canine health and can be impacted by diet. Dog owners in the U.S. have increasingly shown an interest in feeding their dogs a mildly cooked (MC) diet. However, its impact on canine GM and health remains largely unknown.

Methods: Healthy household dogs were tracked upon switching from various brands of extruded to MC diets for four weeks. A health assessment was completed and stool samples were collected by each owner before (day 0) and after the diet transition (day 28). Shotgun metagenomic sequencing was performed at both time points to characterize the GM.

Results: Dogs completed the study by either completing the health assessments (n = 31) or providing stool samples at both time points (n = 28). All owners reported either better or no change in overall health at the end of the study (61% and 39%, respectively), and none reported worse overall health. Defecation frequency was also reported to be lower (58%) or about the same (35%). Principal coordinate (PCo) analysis showed a significant shift (p = 0.004) in the β-diversity of the GM upon diet transition (34.2% and 10.3% explained by the first two axes). The abundances of 70 species increased after the diet change (adjusted p < 0.05), 67% and 24% of which belonged to the Lactobacillales and the Enterobacterales orders respectively. The abundances of 28 species decreased (adjusted p < 0.05), 46%, 18%, and 11% of which belonged to the Clostridiales, Bacillales, and Bacteroidales orders, respectively. Lower Lactobacillales and Enterobacterales, and higher Bacteroidales at baseline were associated with a greater shift along the PCo1 axis. Protein content of the baseline diet was correlated with the shift along the PCo1 axis (ρ = 0.67, p = 0.006).

Conclusion: Owners reported either improvement or no change in health in dogs transitioning from extruded kibble to MC diets for 4 weeks, but this report of health perception requires further exploration in a controlled trial. Diet change also led to a significant shift in the GM profile of healthy dogs. The magnitude of shift was associated with baseline GM and dietary protein, and warrants further examination of individualized responses and personalized nutrition in companion dogs.
These results also support future investigation of the impact of a MC diet on health maintenance given its increasing popularity.

Subjects Bioinformatics, Microbiology, Molecular Biology, Veterinary Medicine, Nutrition
Keywords Canine microbiome, Canine nutrition, Diet processing, Dog kibble, Fresh food, Pet food

INTRODUCTION

For several millennia humans and dogs coevolved, sharing food and shelter (Axelsson et al., 2013). However, extruded dry food, commonly known as kibble, remains the most common form of feeding pet dogs in the United States. Extrusion cooking refers to a process where a mixture of ingredients is steam conditioned, compressed, and forced through the die of an extruder (Tran, Hendriks & Van der Poel, 2008). Mildly cooked (MC) diets, composed of ingredients that are cooked without extrusion, have been gaining in popularity in recent years among dog owners in the U.S. (PRWeb, 2015; Algya et al., 2018). Commercial MC canine diets are increasingly available, and must conform with the American Association Feed Control Officials (AAFCO) nutrient profiles or have been tested in feeding trials for the labeled life stages when complete and balanced. The nutritional profile of a MC diet may or may not differ significantly from dried and extruded pet food. Compared to dried and extruded food, MC diets have higher moisture content, higher digestibility of fats and protein, and dogs fed a MC diet for 28 days had lower levels of triglycerides (Algya et al., 2018; Oba et al., 2020; Do et al., 2021). Additionally, positive health perception was reported by dog owners after feeding their dogs a veterinarian-formulated MC diet (Johnson et al., 2016). However, the nutritional contents of MC diets and their effect on overall canine health remain understudied compared to other types of commercial dog foods.

Dietary changes are generally accompanied by alterations of the gut microbiota (GM) (Wernimont et al., 2020), which can have profound impact on canine health and disease (Redfern, Suchodolski & Jergens, 2017; Pilla & Suchodolski, 2019). Many studies have shown microbiome compositional changes upon switching to raw food diets, which are often higher in protein and fat and lower in carbohydrates (including fiber) than kibble diets (reviewed in (Wernimont et al., 2020)). These studies have shown that raw food diets lead to increased levels of certain Fusobacteria and Proteobacteria (Sandri et al., 2017; Algya et al., 2018; Schmidt et al., 2018). Similarly, MC diets have been associated with higher levels of certain Bacteroidetes, Fusobacteria and Proteobacteria, and lower levels of certain Actinobacteria and Firmicutes as compared to an extruded kibble diet (Algya et al., 2018; Do et al., 2021). However, these studies were conducted in only a small group of dogs under a laboratory setting. Thus, the extent that a MC diet influences the gut microbiomes of real world pet dogs with heterogeneous characteristics such as age, breeds, living conditions, and body size remains unexplored.

An investigation of the effect of dietary transition to a MC diet on GM and owner-reported subjective health metrics in healthy dogs was carried out to improve understanding of the effects of this increasingly popular diet type. Dogs switched from an
extruded kibble to a MC diet for four weeks were assessed for changes relative to baseline in: (1) the gut microbiome by profiling the taxonomic and functional compositions of feces; and (2) perceived health outcomes using an owner-reported survey. Due to the variety of differences between diets, we hypothesized we would observe a shift in the diversity and abundance of GM upon diet change. Enrolled dogs were healthy at recruitment, however we aimed to determine if any additional positive impacts were reported by owners, including outcomes likely to change based on the literature for similar diets (e.g. fecal output).

MATERIALS AND METHODS
Dog owners gave electronic informed consent to the use of their dog’s non-identifying data for scientific study prior to study enrollment. All dog owners willingly underwent diet transition regardless of study participation. As previously explained (Tanprasertsuk et al., 2021), since fecal samples were collected non-invasively by the dog owners, no institutional animal ethical review was required.

Animals and study design
A total of 4,978 dog owners were contacted via email to gauge interest in study participation (Fig. 1). All owners were incoming customers of NomNomNow, Inc. (a direct-to-consumer pet food and health company in Nashville, TN, USA), who intended to switch their dog’s diet to a MC diet regardless of study participation. A total of 850 dogs of various breeds were screened using an online questionnaire; 54 dogs met the inclusion criteria described below and were enrolled in the study.

Dogs were eligible to participate in the study if they met the following owner-assessed criteria at enrollment: aged 1–14 years, body condition score (BCS) of 4–6 on the 9-point
scale (Laflamme, 1997), currently feeding two meals per day exclusively of an extruded kibble diet with treats comprising ≤10% of overall caloric intake, absent of gastrointestinal (GI) issues (including chronic diarrhea/vomiting or diarrhea/vomiting within the previous 30 days), absent of any infections or major chronic diseases (pancreatitis, diabetes, kidney disease or failure, liver disease, heart disease, cancer, severe GI issues when young (<6 months old), and not pregnant or lactating). Only one dog per household was permitted to enroll. Dogs were not eligible to participate if they had consumed any prebiotics, probiotics, cultured foods, or antibiotics within the last three months, had a significant change in their diet within the last month, or had surgery within the previous three months. The criteria were similar to those previously described (Tanprasertsuk et al., 2021).

Participants were asked to provide the brand and formula of the baseline extruded kibble diet, and guaranteed analysis of nutrients was assembled when possible. Online health assessments were administered and stool samples were collected by owners one day before the diet transition (day 0) and again four weeks after the diet transition (day 28). On day 1, dogs began the transition from their previous extruded diet to a MC diet. An email reminder was sent out to all dog owners weekly to ensure adherence to the study diet and maintenance of baseline habits (supplements, medication, and exercise), as well as provide owners with the opportunity to report any observed adverse effects.

Dietary interventions

Dog owners chose one to four commercially-available Nom Nom recipes as their study MC diet (Beef, Chicken, Pork, Turkey). Mildly cooking includes cooking techniques designed to reach internal temperatures for reduction of pathogens but without canning or extrusion, and the term is used to describe similar diets in a previous study (Algya et al., 2018). However, unlike the MC diet in the referenced paper, the protein sources were not ground and emulsified, but mixed into a homogenous blend with vitamin and mineral supplements. After cooking, the diets were then refrigerated or frozen and thawed prior to feeding. Dietary information for participants who completed the study is summarized in Fig. S1. The ingredients and guaranteed nutrient analysis of each recipe are available in Table 1. All recipes were formulated to meet AAFCO standards for all life stages. All dog owners were instructed to feed two MC meals daily from day 1 to the completion of the study on day 28. The meal portion for each dog was calculated using a proprietary custom-portioning algorithm which takes owner-reported ideal body weight and physical activity level into account. The amount of food not consumed was also reported at the end of the study to account for dietary adherence.

Health assessment

An online health assessment was completed by each owner prior to diet transition (day 0). The assessment was composed of five broadly targeted questionnaires containing questions about signalment, overall wellness, diet and lifestyle, medical history, oral health, and behavior, and was previously used in a research study (Jha et al., 2020). Questions included single-choice checkbox, multiple-choice radio-button, dropdown, and fill-in-the-
blank questions. A second set of online assessment questions was administered to assess change in health outcomes from baseline as perceived by the owner on day 28. The questions are written verbatim in Table S1. A visual stool chart was used to assess the fecal quality (Lewis & Heaton, 1997), and a previously validated 9-point system was used to assess the BCS (Laflamme, 1997).

Stool sample collection and DNA extraction

Stool samples from each dog were collected by owners with Nom Nom Plus Microbiome Testing Kits (NomNomNow, Inc., Nashville, TN, USA) at baseline (day 0) and four weeks after the diet transition (day 28). The kits were previously used in research studies (Jha et al., 2020; Tanprasertsuk et al., 2021). All stool samples were processed and sequenced in a single batch at Diversigen, Inc. (New Brighton, MN, USA). DNA extraction and library construction protocols were performed as previously described (Johnson et al., 2019; Tanprasertsuk et al., 2021), with the exception that DNA was extracted using the Zymogen Quick-DNA Fecal/Soil Microbe 96 Mag Bead kit (Zymo Research, Irvine, CA, USA) using Powerbead Pro (Qiagen, Redwood City, CA, USA) plates with 0.5 and 0.1 mm ceramic beads. Extraction controls included a no template control (water) and a characterized homogenized stool. All samples were quantified with Quant-iT Picogreen dsDNA Assay (Invitrogen, Carlsbad, CA, USA). Subsequently, DNA amplification and

Table 1 Guaranteed analysis and ingredients of each mildly cooked recipe.

Recipe	Guaranteed analysis	Ingredients
Beef	Calories, kcal/kg FW	Ground beef, russet potatoes, eggs, carrots, peas, dicalcium phosphate, calcium carbonate, salt, fish oil, sunflower oil, vinegar, citric acid (preservative), taurine, choline bitartrate, zinc gluconate, ferrous sulfate, vitamin E supplement, copper gluconate, manganese gluconate, thiamine mononitrate (vitamin B1), selenium yeast, riboflavin (vitamin B2), vitamin B12 supplement, cholecalciferol (source of vitamin D3), potassium iodide
Chicken	Calories, kcal/kg FW	Diced chicken, sweet potatoes, yellow squash, spinach, sunflower oil, canola oil, dicalcium phosphate, calcium carbonate, fish oil, vinegar, citric acid, taurine, choline bitartrate, zinc gluconate, ferrous sulfate, vitamin E supplement, copper gluconate, manganese gluconate, thiamine mononitrate (vitamin B1), selenium yeast, riboflavin (vitamin B2), vitamin B12 supplement, cholecalciferol (source of vitamin D3), potassium iodide
Pork	Calories, kcal/kg FW	Ground pork, russet potatoes, green beans, yellow squash, kale, brown mushrooms, dicalcium phosphate, salt, fish oil, vinegar, citric acid, taurine, choline bitartrate, zinc gluconate, ferrous sulfate, vitamin E supplement, copper gluconate, manganese gluconate, thiamine mononitrate (vitamin B1), selenium yeast, riboflavin (vitamin B2), vitamin B12 supplement, cholecalciferol (source of vitamin D3), potassium iodide
Turkey	Calories, kcal/kg FW	Ground turkey, brown rice, eggs, carrots, spinach, dicalcium phosphate, calcium carbonate, salt, fish oil, vinegar, citric acid, taurine, choline bitartrate, zinc gluconate, ferrous sulfate, vitamin E supplement, copper gluconate, manganese gluconate, thiamine mononitrate (vitamin B1), selenium yeast, riboflavin (vitamin B2), vitamin B12 supplement, cholecalciferol (source of vitamin D3), potassium iodide

Note:
FW: fresh weight, AF: as fed.
library construction were performed with the Nextera XT DNA Library Preparation Kit (Illumina Inc, Foster City, CA, USA).

GM shotgun metagenomic sequencing and annotation

Whole genome shotgun sequence reads used for this study are available on the NCBI Short Read Archive associated with the NCBI BioProject PRJNA714112. Shotgun metagenomic sequencing was performed at Diversigen, Inc. (New Brighton, MN, USA) using their Boostershot shallow metagenomic sequencing service (2 million reads/sample), as previously described (Johnson et al., 2019). For quality control, single-end shotgun reads were trimmed and processed using Shi7 (Al-Ghalith et al., 2018). The sequences were then aligned to the NCBI RefSeq representative prokaryotic genome collection at 97% identity using BURST with default settings (Al-Ghalith & Knights, 2017). A filtering step was performed to remove taxa present in <5% of the samples and those belonging to unknown phyla. The resulting taxonomy table was also aggregated at higher taxonomy levels (for example, species, genus, family). After filtering, a total of 959 taxa were used for the analysis (Fig. S2). The average sequencing depth was 2,481,073 ± 909,748, and the depth per sample ranged from 476,329 to 4,819,202 reads. It has been shown that this particular method of low-depth metagenomic sequencing can reach species-level taxonomic assignment and allows for the assessment of functional profiles (Hillmann et al., 2018).

Functional annotation

Sequenced reads were matched directly using alignment at 97% identity to the Kyoto Encyclopedia of Genes and Genomes Orthology groups (KEGG KOs) derived from the NCBI RefSeq representative prokaryotic genome collection. A filtering step was performed to remove KO terms present in <5% of the samples and those whose absolute count was ≤1. After 401 KO terms were removed, 4,216 terms were used in subsequent analyses.

Statistical analysis

Continuous variables are expressed as mean ± SD, unless specified as mean ± SEM. GM relative abundances are expressed as median (IQR). Categorical variables are presented as count (%). All analyses were performed using R Studio version 1.2.5033. Statistical significance level was set at \(\alpha = 0.05 \).

Analysis of health outcomes

Wilcoxon signed rank test (continuous variables) and a Fisher’s exact test (categorical variables) were performed to compare the observed values with the expected values under the null hypothesis (equal ratios of subjects in each category for categorical variables, and change equal to zero for continuous variables). Following the Fisher exact test, the Benjamini Hochberg method was performed to control the false discovery rate (FDR) due to multiple comparisons among categories of responses.
Analysis of GM diversity, abundance, function

Similar to the approach previously described (Jha et al., 2020), species richness and Shannon’s diversity indices were computed by rarefying the samples to various depths starting from 10,000–470,000 sequences per sample by increasing the sequencing depth by 10,000 reads. One hundred iterations were performed at each depth and mean values were used as the estimate of these measures in each sample. Wilcoxon signed rank test was used to compare changes of alpha diversity metrics (evenness, diversity indices) from baseline to week 4.

The non-rarefied count data were log-transformed and principal coordinate analysis (PCoA) was performed using Bray–Curtis dissimilarity calculated with the vegan package at the species level (Oksanen et al., 2014; Tanprasertsuk et al., 2021). Using the vegan package, permutational multivariate analysis of variance (PERMANOVA) was performed using Bray–Curtis dissimilarity with 10,000 randomizations by including timepoints to assess the differences in community composition (Oksanen et al., 2014). Partitioning around the medoids (PAM) Clustering was also performed to investigate the dissimilarity of bacterial profiles in samples collected at two different time points using the cluster package (Maechler et al., 2015). Fisher’s exact test was performed to investigate the association between cluster membership and timepoint. Kruskal–Wallis test with Dunn’s post hoc test, Wilcoxon signed rank test, and McNemar’s Chi-squared test were performed to compare various measures among different groups as specified throughout the manuscript.

Differential abundances of bacterial taxa between timepoints were assessed at each taxonomic level using a negative binomial generalized linear model (GLM), using the differential expression analysis for sequence count data version 2 package (DESeq2) (Love, Huber & Anders, 2014; Jha et al., 2020). Taxa with absolute log2(fold change (FC)) > 2 and FDR-adjusted p-values < 0.05 were considered significant.

To investigate the dissimilarity of bacterial profiles among subjects at baseline, we utilized the same statistical methods described above (PCoA using Bray–Curtis dissimilarity, PAM Clustering, negative binomial GLM with DESeq2). Additionally, random forest classifiers were constructed using repeated k-fold cross-validation and random search implemented in the R-package caret (Khun, 2014). As previously described (Jha et al., 2020), the data were randomly divided into training and validation sets containing 70% and 30% of the samples, respectively, and bacterial species were used as the predictors. The models were trained by optimizing the tuning parameters using 10-fold cross-validation repeated three times, and accuracy was used to select the optimal model. The performance of the classifiers was assessed by generating area under the receiver operating characteristic curves using the R-package ROCR (Sing et al., 2005).

Similarly, the non-rarefied count data of KO terms were log-transformed and PCoA was performed using the Bray–Curtis dissimilarity as described above. A negative binomial GLM using the DESeq2 was performed to identify differentially abundant KO terms between the two time points. The identified KO terms were used for KEGG pathway mapping against the PATHWAY database (Kanehisa & Sato, 2020).
Correlation analysis

Correlation analysis was performed to investigate the relationship between: (1) the PCo1 score and the abundance of Enterobacterales and Lactobacillales at baseline; and (2) the PCo1 score and the macronutrient composition in the baseline extruded diet. Spearman’s correlation coefficients are reported.

RESULTS

Cohort description

Of 54 dogs initially enrolled, 13 did not complete the study due to the following reasons: vomiting (n = 1), diarrhea (n = 1), loss to follow-up (n = 3), and owners’ personal reasons not related to dog health (n = 8) (Fig. 1). No major adverse effect was reported. Eight cases (14.8%) of diarrhea and nine cases (16.7%) of vomiting were reported in those who enrolled, regardless of study completion. The rates of diarrhea and vomiting were 1 case per 27 dog-weeks and 1 case per 24 dog-weeks, respectively.

The remaining 41 participants completed the study by either filling out the online health assessment, collecting a stool sample, or both. Among those who completed the study, three dogs missed >6 meals of the study diet and five dogs changed their medication habit. These included four cases of antibiotic use (two cases of urinary tract infection, one case of diarrhea, one case of common cold) and one case of Prednisone use (to treat a physical injury not related to the study). After the exclusion of these eight dogs, data for 33 dogs were available for subsequent analyses (n = 5 only completed the online health assessment, n = 2 only provided fecal samples, n = 26 provided both). In other words, of the 33 dogs that completed the study, we included 31 dogs for health data analysis and 28 for the microbiome data analysis.

Subject characteristics

Characteristics of the 31 dogs with health assessment data and the 28 dogs with fecal samples are described in Table 2. The wide distribution of body weights reflects the diversity of breeds. Age, sex, weight, and breed information for each individual dog is available in Table S2. The baseline extruded kibble diets were diverse in terms of ingredients and nutrient profiles (data not shown). Reported fecal consistency scores were on average between 3 (sausage-shaped with cracks on surface) and 4 (sausage-shaped or snake like, smooth and soft).

Health outcomes

Dog owners’ perceptions of changes in health outcomes 28 days after the diet transition are listed in Table 3. Of 31 dog owners, 19 (61%) reported better overall health, 15 (48%) reported higher physical activity, 15 (48%) reported improved coat condition, and 19 (61%) reported higher appetite. Post-hoc pairwise comparisons showed the proportion of owners that reported no change in these outcomes was not significantly different from those that reported an improvement. None of the dog owners reported worsened overall health, coat condition, or lower physical activity level after transitioning from extruded kibble to MC diet. Furthermore, 18 (58%) reported lower defecation frequency. Fecal score
Feature	Health assessment data (n = 31)	Fecal samples (n = 28)
Age, in years	4.8 ± 3.6	5.2 ± 3.7
Male	16 (52%)	14 (50%)
Spayed or neutered	24 (83%)	24 (86%)
Body weight, in kg	10.2 ± 8.4	10.7 ± 8.7
Ideal body weight, in kg	10.0 ± 8.2	10.5 ± 8.5
Body condition score		
4–5	20 (77%)	20 (74%)
6	6 (23%)	7 (26%)
Physical activity level		
Very active	2 (7%)	2 (7%)
Active	8 (30%)	8 (30%)
Average active	8 (30%)	6 (22%)
Somewhat active	8 (30%)	10 (37%)
Not active	1 (4%)	1 (4%)
Overall health		
Excellent	17 (63%)	17 (63%)
Good	9 (33%)	8 (30%)
Fair	1 (4%)	2 (7%)
Poor	0 (0%)	0 (0%)
Bad	0 (0%)	0 (0%)
Food motivation		
Very motivated	12 (44%)	11 (41%)
Somewhat motivated	11 (41%)	12 (44%)
Average motivated	1 (4%)	1 (4%)
Mildly motivated	1 (4%)	1 (4%)
Not at all motivated	2 (7%)	2 (7%)
Fecal consistency score	3.1 ± 1.3	3.0 ± 1.2
Defecation frequency		
≥ 3 times/day	7 (26%)	8 (30%)
2 times/day	18 (67%)	17 (63%)
1 time/day	2 (7%)	2 (7%)
Flatulence frequency		
Multiple times per day	1 (4%)	1 (4%)
Daily	5 (19%)	5 (19%)
Once in a while	11 (41%)	11 (41%)
Never	10 (37%)	10 (37%)

Notes:
1 Spayed/neutered, body condition, physical activity level, overall health, food motivation, fecal score, defecation frequency, and flatulence frequency data were not available in all dogs. Spayed/neutered was not available in 2 dogs in the first column. Body condition score and fecal consistency score were not available in 4 dogs in the first column and 1 dog in the second column.
Data are expressed as mean ± SD or n (%).
showed a small decrease from 3.0 ± 1.3 to 2.5 ± 0.9 after diet transition but it was not statistically significant (p = 0.091). Body weight on average was maintained throughout the study period.

Gut microbiome

Diversity

To investigate the effect of diet transition on GM α-diversity, we calculated two standard α-diversity measures, species richness and Shannon’s diversity index. A rarefaction curve generated for sequencing depth 10,000–470,000 reads demonstrated sufficient

Outcome	n (%) or mean ± SD	P-value
Overall health		<0.001
Better	19 (61%)	
About the same	12 (39%)	
Worse	0 (0%)	
Physical activity		0.001
More active	15 (48%)	
About the same	16 (52%)	
Less active	0 (0%)	
Fecal consistency score		
Post-intervention	2.5 ± 0.9	
Change from baseline	−0.6 ± 1.6	0.091
Defecation frequency		0.020
Higher	2 (6%)	
No effect	11 (35%)	
Lower	18 (58%)	
Flatulence frequency		0.016
Higher	2 (6%)	
No effect	19 (61%)	
Lower	10 (32%)	
Coat condition		0.001
Better	15 (48%)	
No effect	16 (52%)	
Worse	0 (0%)	
Appetite		0.005
Increased	19 (61%)	
No effect	11 (35%)	
Decreased	1 (3%)	
Body weight change, in %	0.8 ± 9.0	0.536

Notes:
1 Fisher exact test (categorical variables) and Wilcoxon signed-rank test (continuous variables) were performed to compare the observed data with the expected data under the null hypothesis (equal ratios of subjects in each category for categorical variables and change equal to zero for continuous variables). Those that do not share superscripts (a and b) are significantly different in pairwise comparisons with false discovery rate (FDR) adjustment.
2 Data not available for 4 subjects.
sequencing depth to assess the alpha diversity (Figs. S3A and S3B). Using sequencing depth at 470,000 reads, these α-diversity measures were not significantly different between baseline and four weeks after diet change (p > 0.05, Wilcoxon signed rank test).

PCoA was performed to investigate changes in β-diversity. The first two axes (PCo1 and PCo2), which respectively explained 34.2% and 10.3% of species abundance variance (56 samples from 28 dogs). PERMANOVA using Bray–Curtis distance shows significant spatial separation between baseline (red) and week 4 (blue) (p = 0.004). A significant shift along the PCo1 axis from baseline (red) to week 4 (blue) is observed (p = 1.72E–04, Wilcoxon signed rank test). (B) A significant shift along the PCo1 axis from baseline (red) to week 4 (blue) is observed (p = 1.72E–04, Wilcoxon signed rank test). (C) Varying degrees of shift along the PCo1 axis are observable from baseline to week 4. Subjects were divided into tertiles based on the degree of PCo1 changes between baseline and week 4, with subjects in the first tertile labeled high-responders (HR, maximal PCo1 score increase, red, n = 9), those in the second tertile mid-responders (MR, blue, n = 9), and those in the third tertile low-responders (LR, PCo1 score decrease or minimal PCo1 score increase, gray, n = 10).

Figure 2 Species level principal coordinate analysis (PCoA). (A) PCo1 (Axis 1) and PCo2 (Axis 2) respectively explain 34.2% and 10.3% of species abundance variance (56 samples from 28 dogs). PERMANOVA using Bray–Curtis distance shows significant spatial separation between baseline (red) and week 4 (blue) (p = 0.004). (B) A significant shift along the PCo1 axis from baseline (red) to week 4 (blue) is observed (p = 1.72E–04, Wilcoxon signed rank test). (C) Varying degrees of shift along the PCo1 axis are observable from baseline to week 4. Subjects were divided into tertiles based on the degree of PCo1 changes between baseline and week 4, with subjects in the first tertile labeled high-responders (HR, maximal PCo1 score increase, red, n = 9), those in the second tertile mid-responders (MR, blue, n = 9), and those in the third tertile low-responders (LR, PCo1 score decrease or minimal PCo1 score increase, gray, n = 10).
result further confirms a significant shift in GM composition occurred due to dietary shift from extruded kibble to MC in these participants, although the presence of 13 baseline samples in C2 also indicates heterogeneous responses to diet change.

Relative abundances

Four phyla, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes, dominated the GM (Fig. 3, 28 subjects are displayed in three separate rows based on the magnitude of MB response as explained in section Identification of high-, mid- and low-responders). No significant changes in relative abundances were observed between the timepoints at phylum or class levels after diet change (adjusted \(p > 0.05 \), negative binomial GLM with DESeq2). The relative abundance of the order Micrococcales significantly increased after the diet change (Table S3). At the family level, the relative abundances of four families significantly increased at week 4 (Leuconostocaceae, Hafniaceae, Lactobacillaceae, and Morganellaceae), while four families significantly decreased after 4 weeks of diet change (Prevotellaceae, Sutterellaceae, Atopobiaceae, and Microbacteriaceae).

The effect of diet change was more pronounced at the genus and species levels. Relative abundances of 16 genera increased and 12 genera decreased significantly after the diet change (Table S3). Of the genera that increased, nine (56%) belong to the Enterobacterales order (Hafnia, Raoultella, Morganella, Proteus, Edwardsiella, Erwinia, Lelliottia, Yersinia, Leclercia), and seven (44%) belong to the Lactobacillales order (Leuconostoc, Tetragnococcus, Lactobacillus, Weissella, Carnobacterium, Pediococcus, Lactococcus). Half of the 12 decreasing genera were in the Bacillales order (Rummeliibacillus, Brevibacillus, Aneurinibacillus, Thermobacillus, Lysinbacillus, Bacillus). The relative abundances of 70 bacterial species significantly increased after the diet change (Fig. 4, Table 4). Among these species, 47 (67%) belong to the Lactobacillales order (also known as lactic acid bacteria or LAB), and 17 (24%) belong to the Enterobacterales order. Meanwhile, the relative abundances of 28 species significantly decreased, 13 (46%) of which belong to the Clostridiales order, 5 (18%) of which belong to the Bacillales order, and 3 (11%) of which belong to the Bacteroidales order.

Gut microbiome functionality

A total of 4,617 KO terms from all samples were identified, and after filtering 4,216 remained for subsequent analyses. PCoA was performed to investigate changes between time points. Fig. 5A shows the first two principal coordinate axes (which respectively explain 67.1% and 11.3% of the variation) and the eigenvalues for the first 25 axes are shown in Fig. S6. Spatial separation between the two timepoints along the first two PCoA axes was demonstrated \((p = 0.007 \), PERMANOVA using the Bray–Curtis dissimilarity matrices). A significant shift in the PCo1 score after 4 weeks of diet change was observed \((p = 0.013 \), Wilcoxon signed rank test, Fig. 5B). As listed in Table 5, a significant increase in the abundances of 14 KO terms was observed using a negative binomial GLM, while the abundances of 11 KO terms significantly decreased. Pathway mapping demonstrated differential abundances of pathways including the biosynthesis of secondary metabolites (ko01110: K02203, K13548, K16011), amino sugar and nucleotide sugar
Figure 3 Relative abundances at phylum level at baseline and week 4. The phyla Firmicutes (baseline: 59.18 (36.39–77.09)%, week 4: 49.59 (31.00–77.05)%), Proteobacteria (baseline: 2.12 (0.06–46.75)%), week 4: 33.67 (11.35–61.92)%), Actinobacteria (baseline: 12.59 (0.34–19.35)%, week 4: 1.67 (0.05–9.23)%, and
metabolism (ko00520: K13019, K16011, K17716), O-antigen nucleotide sugar biosynthesis (ko00541: K13019, K16011, K17716), and microbial metabolism in diverse environments (ko01120: K00385, K02203, K16165).

Differential gut microbiome responses to diet transition

Identification of high-, mid- and low-responders

While a significant shift in PCo1 score (0.16 ± 0.20) was observed across all subjects over the four week period, there were interindividual differences in the magnitude of the shift along PCo1 (Fig. 2C). Given this wide range of responses, subjects were further divided into tertiles based on the magnitude of PCo1 score change to examine the differential response. Those with the highest magnitude of positive change were termed high-responders (HR, n = 9), those in the second tertile mid-responders (MR, n = 9), and those in the third tertile low-responders (LR, n = 10). PCo1 score was significantly different among HR, MR, and LR at baseline ($p = 0.017$, Kruskal–Wallis test), but not at week 4 ($p = 0.082$, Kruskal–Wallis test). PCo1 score at baseline in HR was significantly lower than that of MR (FDR-adjusted $p = 0.035$, Dunn’s post hoc test) and LR (FDR-adjusted $p = 0.025$, Dunn’s post hoc test).
Table 4 Species with differential abundances between baseline and week 4 (n = 28, log2 fold change| ≥ 2 and FDR-adjusted p < 0.05).

Phylum	Class	Order	Family	Genus	Species	Relative abundance (%)	Week 4 vs Baseline		
						Baseline	**Week 4**	**Log 2 FC mean ± SE**	**Adjusted p-value**
						Median (IQR)			
Increased at week 4 (70 species)									
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	algidus	0.00E+00 (0.00E+00 to 1.64E-04)	3.54E-03 (1.48E-04 to 1.50E-01)	12.53 ± 1.11	1.12E-26
						5.10E-05 (0.00E+00 to 2.71E-04)	8.20E-03 (3.38E-04 to 1.43E+00)	11.90 ± 1.17	9.78E-22
						2.62E-04 (0.00E+00 to 3.44E-04)	3.06E-03 (5.95E-05 to 7.40E-02)	11.61 ± 1.16	3.24E-21
						0.00E+00 (0.00E+00 to 5.26E-05)	1.12E-04 (0.00E+00 to 4.20E-03)	9.56 ± 1.34	1.85E-10
Proteobacteria	**Gammaproteobacteria**	**Enterobacteriales**	**Morganellaceae**	**Proteus**	no data	0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 1.06E-05)	9.50 ± 2.25	5.37E-04
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	carnosum	0.00E+00 (0.00E+00 to 1.80E-05)	3.22E-05 (0.00E+00 to 2.10E-02)	8.46 ± 1.43	2.85E-07
						0.00E+00 (0.00E+00 to 2.06E-04)	8.89E-04 (5.95E-05 to 1.83E-02)	7.46 ± 1.21	5.66E-08
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	curatus	0.00E+00 (0.00E+00 to 5.66E-05)	7.21E-05 (0.00E+00 to 1.79E-03)	7.32 ± 1.29	8.23E-07
						0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 1.18E-03)	7.24 ± 1.43	1.76E-05
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	no data	0.00E+00 (0.00E+00 to 1.11E-04)	1.52E-03 (0.00E+00 to 3.58E-02)	7.19 ± 1.23	3.52E-07
						0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 2.26E-03)	7.12 ± 1.60	2.28E-04
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	kimchii	0.00E+00 (0.00E+00 to 9.13E-05)	1.94E-04 (0.00E+00 to 6.55E-03)	6.94 ± 1.46	6.48E-05
						0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 7.94E-04)	6.94 ± 1.17	2.64E-07
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	pseudomesenteroides	2.35E-05 (0.00E+00 to 2.98E-04)	7.62E-04 (2.16E-04 to 2.33E-02)	6.68 ± 0.97	1.04E-09
						0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 7.02E-04)	6.67 ± 1.50	2.38E-04
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	fallax	0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 8.40E-05)	6.56 ± 1.74	2.81E-03
						0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 7.28E-05)	6.30 ± 1.77	5.03E-03
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	saniviri	4.21E-05 (0.00E+00 to 2.57E-04)	1.37E-04 (0.00E+00 to 1.90E-03)	6.23 ± 1.12	1.48E-06

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance (%)	Week 4 vs Baseline
						Median (IQR)	Log 2 FC mean ± SE
						Week 4	Adjusted P value
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	paralimentarius	0.00E+00 (0.00E+00 to	6.22 ± 1.91
						6.38E−05)	1.28E−02
Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	no data	0.00E+00 (0.00E+00 to	6.22 ± 1.42
						0.00E+00)	2.90E−04
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	hellenica	0.00E+00 (0.00E+00 to	6.22 ± 1.29
						6.30E−05)	6.48E−05
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	cibaria	0.00E+00 (0.00E+00 to	6.22 ± 1.18
						6.30E−05)	1.61E−05
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	coryniformis	0.00E+00 (0.00E+00 to	5.91 ± 1.46
						0.00E+00)	9.81E−04
Proteobacteria	Gammaproteobacteria	Enterobacterales	Morganelaceae	Morganella	morganii	0.00E+00 (0.00E+00 to	5.81 ± 1.37
						0.00E+00)	4.88E−04
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	capillatus	0.00E+00 (0.00E+00 to	5.81 ± 1.95
						6.65E−05)	2.80E−02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Kosakonia	sp S29	0.00E+00 (0.00E+00 to	5.76 ± 1.14
						0.00E+00)	1.76E−05
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	mesenteroides	8.43E−05 (0.00E+00 to	5.64 ± 1.07
						2.37E−04)	5.87E−06
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	brevis	2.63E−05 (0.00E+00 to	5.55 ± 0.97
						1.26E−04)	7.77E−07
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	pentosus	0.00E+00 (0.00E+00 to	5.43 ± 1.31
						0.00E+00)	7.19E−04
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	jogaeteotgali	0.00E+00 (0.00E+00 to	5.33 ± 1.43
						0.00E+00)	3.02E−03
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Pediococcus	inopinatius	0.00E+00 (0.00E+00 to	5.08 ± 1.71
						1.12E−04)	2.85E−02
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	confusa	0.00E+00 (0.00E+00 to	4.92 ± 1.13
						1.12E−04)	3.39E−04
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	oligofermentans	0.00E+00 (0.00E+00 to	4.89 ± 1.50
						0.00E+00)	1.25E−02
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	no data	0.00E+00 (0.00E+00 to	4.86 ± 1.50
						1.11E−04)	1.56E−04
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	no data	1.61E−03 (4.32E−04 to	4.85 ± 0.72
						4.28E−03)	1.94E−09
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	paraplantarum	0.00E+00 (0.00E+00 to	4.80 ± 1.36
						0.00E+00)	5.63E−03
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	paramesenteroides	0.00E+00 (0.00E+00 to	4.70 ± 1.22
						5.53E−05)	2.08E−03

Tanprasertsuk et al. (2021), PeerJ, DOI 10.7717/peerj.11648
Phylum	Class	Order	Family	Genus	Species	Relative abundance (%) Median (IQR)	Week 4 vs Baseline		
						Baseline	Week 4	Log 2 FC mean ± SE	Adjusted P–value¹
Actinobacteria	Actinobacteria	Bifidobacteria	Bifidobacteriaceae	Bifidobacterium	animalis	0.00E+00 (0.00E+00 to 1.59E−04)	4.67 ± 1.68	4.39E−02	
Firmicutes	Bacilli	Lactobacillales	Streptococcae	Streptococcus	hyovaginalis	0.00E+00 (0.00E+00 to 1.18E−04)	4.57 ± 1.31	6.47E−03	
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Weissella	koreensis	0.00E+00 (0.00E+00 to 4.02E−04)	4.55 ± 1.59	3.43E−02	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaeae	Hafnia	alvei	0.00E+00 (0.00E+00 to 2.41E−03)	4.52 ± 1.42	1.58E−02	
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	lactis	0.00E+00 (0.00E+00 to 8.90E−04)	4.49 ± 1.26	5.03E−03	
Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Leuconostoc	garlic	0.00E+00 (0.00E+00 to 1.36E−03)	4.45 ± 1.33	9.80E−03	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Morganellaceae	Proteus sp	HMSC10D02	0.00E+00 (0.00E+00 to 1.45E−04)	4.32 ± 1.10	1.65E−03	
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	parafarraginis	0.00E+00 (0.00E+00 to 8.13E−05)	4.23 ± 1.40	2.59E−02	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Raoulcella	ornithinolytica	1.59E−05 (0.00E+00 to 1.33E−04)	4.22 ± 0.94	2.04E−04	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella	sp HMSC25G12	0.00E+00 (0.00E+00 to 1.63E−04)	4.16 ± 1.38	2.59E−02	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaceae	Edwardsiella	tarda	0.00E+00 (0.00E+00 to 6.58E−04)	4.13 ± 1.30	7.62E−03	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Cronobacter	dublinensis	0.00E+00 (0.00E+00 to 2.66E−04)	4.07 ± 1.13	4.65E−03	
Firmicutes	Bacilli	Lactobacillales	Enterococcae	Enterococcus	sp kppr-6	0.00E+00 (0.00E+00 to 8.30E−05)	3.91 ± 1.16	9.79E−03	
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	kefranofaciens	8.02E−05 (0.00E+00 to 1.52E−03)	3.89 ± 1.37	3.57E−02	
Firmicutes	Bacilli	Lactobacillales	Carnobacteriaceae	Carnobacterium	maltaromaticum	0.00E+00 (0.00E+00 to 1.46E−04)	3.89 ± 0.92	5.42E−04	
Firmicutes	Bacilli	Lactobacillales	Carnobacteriaceae	Carnobacterium	divergens	0.00E+00 (0.00E+00 to 1.46E−04)	3.88 ± 1.04	2.99E−03	
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella	cf. planticola B43	0.00E+00 (0.00E+00 to 4.17E−05)	3.66 ± 1.01	4.25E−03	
Firmicutes	Clostridia	Clostridales	Clostridaceae	Clostridium sp	CL-2	6.8E−05 (0.00E+00 to 6.24E−04)	3.62 ± 0.90	1.08E−03	
Firmicutes	Bacilli	Lactobacillales	Streptococcae	Lactococcus	piscium	1.70E−04 (2.10E−05 to 3.43E−03)	3.32 ± 0.73	1.43E−04	

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance (%) Median (IQR)	Week 4 vs Baseline				
Proteobacteria	Gammaproteobacteria	Entrobacterales	Entrobacteriaceae	Raoulletella	planticola	0.00E+00 (0.00E+00 to 7.77E−05)	6.66E−05 to 5.63E−04	3.20 ± 1.48E−02			
								1.00			
						3.16 ± 1.31E−07		1.31E−02			
						3.15 ± 1.39E−02		1.13			
						3.14 ± 1.25E−02		1.25E−02			
Bacteroidetes	Bacteroidia	Bacteroidales	Tannerellaceae	Parabacteroides	mendae	1.54E−04 (1.50E−03 to 1.05E−03)	2.75E−05 to 1.07E−03	3.12 ± 2.64E−02			
								1.04			
						2.99 ± 5.03E−03		5.03E−03			
						2.93 ± 2.45E−02		2.45E−02			
Proteobacteria	Gammaproteobacteria	Entrobacterales	Entrobacteriaceae	Klebsiella	no data	1.44E−03 (9.01E−03 to 9.01E−03)	7.64E−03 to 2.58E−02	2.92 ± 1.43E−02			
								0.91			
						2.79 ± 3.39E−02		3.39E−02			
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactococcus	lactis	3.81E−03 (9.03E−04 to 2.35E−02)	7.09E−03 to 3.68E−02	2.99 ± 5.03E−03			
								0.84			
						2.93 ± 2.45E−02		2.45E−02			
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp HMSCO67C01	1.45E−04 (1.67E−03 to 1.77E−02)	5.43E−04 (9.33E−05 to 1.49E−03)	2.92 ± 1.43E−02			
								0.97			
						2.79 ± 3.39E−02		3.39E−02			
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Pediococcus	acidilactici	2.62E−05 (1.36E−04 to 4.94E−04)	5.89E−05 (9.62E−04 to 2.58E−02)	2.92 ± 1.43E−02			
								0.91			
						2.79 ± 3.39E−02		3.39E−02			
Firmicutes	Clostridia	Clostridiales	Peptostreptococcaceae	Terrisporobacter	glycolicus	9.90E−05 (1.49E−03 to 3.80E−03)	2.07E−04 (3.80E−03 to 3.80E−03)	2.77 ± 3.47E−02			
								0.97			
						2.77 ± 3.47E−02		3.47E−02			
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	parabuchneri	8.76E−05 (5.62E−04 to 1.35E−03)	6.09E−05 (2.69E−04 to 2.71E−04)	2.36 ± 4.99E−02			
								0.87			
						2.36 ± 4.99E−02		4.99E−02			
Firmicutes	Bacilli	Lactobacillales	Lachnospiraceae	Tzyzerella	nexilis	3.93E−02 (1.98E−02 to 5.81E−02)	2.04E−02 (4.61E−03 to 6.78E−02)	2.21 ± 4.25E−03			
								0.61			
						2.10 ± 4.86E−02		4.86E−02			
Decreased at week 4 (28 species)											
Firmicutes	Bacilli	Bacillales	Planococcaceae	Rummeliibacillus	stabekiasi	0.00E+00 (0.00E+00 to 8.97E−05)	0.00E+00 (0.00E+00 to 8.97E−05)	10.85 ± 1.76E−05			
								2.15			
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	ginsenghumi	0.00E+00 (0.00E+00 to 1.49E−04)	0.00E+00 (0.00E+00 to 1.49E−04)	6.63 ± 4.55E−05			
								1.37			
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Brevibacillus	borstelensis	0.00E+00 (9.69E−05 to 9.69E−05)	0.00E+00 (9.69E−05 to 9.69E−05)	6.24 ± 9.81E−04			
								1.54			
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Aneurinibacillus	no data	0.00E+00 (1.84E−04 to 1.84E−04)	0.00E+00 (1.84E−04 to 1.84E−04)	−5.04 ± 5.03E−03			
								1.42			
Phylum	Class	Order	Family	Genus	Species	Relative abundance (%)					
--------------	-------------	------------------	--------------------	-----------	------------------------------	------------------------					
						Baseline	Week 4	Log 2 FC mean ± SE	Adjusted P – value		
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	caninestini	4.60E–05 (0.00E+00 to	1.06E–04 (0.00E+00 to	0.98 ± 0.12	1.41E–03	1.27	
						3.30E–03)	4.47E–04)				
						2.01E–04 (2.70E–05 to	1.40E–03 (0.00E+00 to	0.48 ± 0.08	5.07E–04	1.06	
						3.52E–03)	8.16E–03)				
						5.71E–05 (0.00E+00 to	2.94E–05 (0.00E+00 to	0.41 ± 0.07	3.44E–02	1.54	
						1.20E–01)	3.01E–04)				
Bacteroides	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	copri	0.00E+00 (0.00E+00 to	0.00E+00 (0.00E+00 to	0.98 ± 0.12	2.90E–02	1.35	
						6.00E–04)	0.00E+00)				
						0.00E+00 (0.00E+00 to	0.00E+00)	0.98 ± 0.12	4.63E–02	1.42	
Bacteroides	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	stercorea	0.00E+00 (0.00E+00 to	0.00E+00)	0.98 ± 0.12	4.02E–08	0.62	
						2.28E–04)	0.00E+00)				
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	Blautia	wexlerae	4.99E–02 (1.54E–02 to	2.52E–02 (5.28E–03 to	0.98 ± 0.12	1.15E–04	0.81	
						1.35E–01)	3.90E–02)				
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	Blautia	sp Marseille-P2398	1.90E–03 (7.51E–04 to	6.13E–04 (0.00E+00 to	0.98 ± 0.12	3.55E–06	0.62	
						4.41E–03)	1.33E–03)				
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	Blautia	no data	2.12E–01 (9.30E–02 to	6.61E–02 (8.53E–03 to	0.98 ± 0.12	5.03E–03	0.88	
						3.45E–01)	2.10E–01)				
Bacteroides	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	thetaotaomicron	1.96E–04 (3.66E–05 to	0.00E+00 (0.00E+00 to	0.98 ± 0.12	2.90E–02	1.01	
						9.82E–04)	1.73E–04)				
Firmicutes	Clostridia	Clostridales	Clostridales	Clostridium	baratii	1.05E–04 (0.00E+00 to	3.42E–05 (0.00E+00 to	0.98 ± 0.12	2.28E–02	0.97	
						5.42E–04)	4.11E–04)				
Bacteroides	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	coprophilus	3.78E–04 (4.00E–05 to	2.93E–05 (0.00E+00 to	0.98 ± 0.12	3.15E–02	1.00	
						2.33E–03)	1.87E–04)				
Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	longum	1.30E–04 (0.00E+00 to	7.44E–05 (0.00E+00 to	0.98 ± 0.12	2.80E–02	0.98	
						1.04E–03)	5.36E–04)				
Firmicutes	Clostridia	Clostridales	Peptonstreptococaceae	Peptonstreptococcus	russellii	1.60E–04 (0.00E+00 to	0.00E+00 (0.00E+00 to	0.98 ± 0.12	4.10E–03	0.79	
						5.47E–04)	4.79E–05)				
Firmicutes	Erysipelotrichia	Erysipelotrichiales	Erysipelotrichia	Traorella	massiliensis	8.53E–05 (0.00E+00 to	5.39E–05 (0.00E+00 to	0.98 ± 0.12	2.28E–02	0.94	
						2.42E–04)	1.39E–04)				
Firmicutes	Clostridia	Clostridales	Clostridales	Clostridium	sp L2-50	4.28E–05 (0.00E+00 to	0.00E+00 (0.00E+00 to	0.98 ± 0.12	2.88E–05	0.98	
						4.24E–04)	0.00E+00)				
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	Blautia	obeum	2.29E–02 (9.54E–03 to	7.10E–03 (1.23E–03 to	0.98 ± 0.12	4.88E–05	0.79	
						5.48E–02)	2.10E–02)				
Firmicutes	Clostridia	Clostridales	Ruminoococaceae	no data	no data	1.04E–03 (1.82E–04 to	1.81E–04 (0.00E+00 to	0.98 ± 0.12	5.07E–04	0.59	
						4.44E–03)	7.61E–04)				
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	Roseburia	hominis	2.63E–04 (2.39E–05 to	9.05E–05 (0.00E+00 to	0.98 ± 0.12	3.60E–03	0.74	
						1.91E–03)	3.07E–04)				
Firmicutes	Erysipelotrichia	Erysipelotrichiales	Erysipelotrichia	Faecalitalea	sp Marseille-P3755	1.04E–04 (0.00E+00 to	0.00E+00 (0.00E+00 to	0.98 ± 0.12	3.20E–02	0.91	

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance (%) Median (IQR)	Week 4 vs Baseline	Log 2 FC mean ± SE	Adjusted P-value1
						Baseline	Week 4		
Firmicutes	Clostridia	Clostridales	Lachnospiraceae	no data	bacterium 28-4	5.43E−05 (2.65E−05 to 1.67E−04)	0.00E+00 (0.00E+00 to 4.85E−05)	−2.42 ± 0.73	1.07E−02
Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	no data	4.89E−04 (1.37E−04 to 1.13E−03)	5.78E−05 (0.00E+00 to 2.96E−04)	−2.40 ± 0.73	1.25E−02
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Faecalitana	contorta	7.58E−04 (7.63E−05 to 1.82E−03)	9.69E−05 (0.00E+00 to 4.14E−04)	−2.24 ± 0.77	3.18E−02
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	no data	Bacterium 14 56FAA	2.36E−02 (8.91E−03 to 7.52E−02)	7.29E−03 (1.38E−03 to 1.72E−02)	−2.17 ± 0.67	1.32E−02
Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Faecalibacterium	prausnitzii	9.43E−03 (3.19E−03 to 2.18E−02)	1.48E−03 (1.30E−04 to 8.07E−03)	−2.07 ± 0.59	6.19E−03

Notes:

1. P-values were adjusted with false discovery rate for multiple comparisons

FC, fold change; SE, standard error.
To better understand the observed differences in the GM composition among the differential response groups (HR, MR, and LR), the abundances at the species level of the 28 samples collected at baseline were further analyzed. PCoA was performed and the first two axes (PCo1 and PCo2) explained 37.4% and 10.0% of the variation. Spatial separation among HR, MR, and LR along the first two PCo axes was demonstrated \((p = 0.022, \text{ PERMANOVA Bray–Curtis dissimilarity matrices})\) (Fig. S7). PAM Clustering analysis revealed two clusters. GM clusters using Bray–Curtis dissimilarity matrices and a MDS ordination assigned 8 HR, 2 MR and 2 LR samples to one cluster (C1), while 94% of samples assigned to the other cluster (C2) contained samples from MR or LR \((p = 0.004, \text{ Fisher's exact test})\). In other words, a significantly higher proportion of HR samples were assigned to C1 and a significantly higher proportion of MR and LR samples were assigned to C2. We also ran a random forest classification model on the samples collected at
baseline (70% of the samples used as a training data set and 30% used as a validation data set), which was able to differentiate between the two classes (HR vs. MR/LR) with 78% accuracy. Classification error for HR and MR/LR were 33% and 17% respectively; AUC = 0.94. These results collectively demonstrate that the magnitude of GM response to diet change along the PCo1 axis was dependent on the initial gut microbiota.

Gut microbiome relative abundance at baseline in high- and low-responders

The relative abundances at the phylum level are displayed for HR, MR, and LR (Fig. 3). Comparisons of species abundances demonstrate a distinctive pattern between HR and LR at baseline (Table 6, Fig. 6A). Species belonging to the order Bacteroidales were
Bacterial species with differential abundances (fold change \(\geq 2 \) and FDR-adjusted \(p < 0.05 \)) between high-responders (HR, \(n = 10 \)) at baseline.

Table 6

Phylum	Order	Family	Class	Genus	Species	Relative abundance, in %	Log 2 adjusted \(P \) value	Fold change	FC mean ± SE	Baseline HR vs LR
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	sp 5.347FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Bacteroidetes	Bacteroidia	Bacteroidales	Clostridiales	Ruminiclostridium	sp 5.1 133FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Bacteroidetes	Bacteroidia	Bacteroidales	Clostridiales	Clostridium	sp 9 4.242FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Brevibacillus	p 4.347FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Brevibacillus	p 9 4.242FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Actinobacteria	Actinobacteria	Actinomycetales	Actinoceae	Cellulomonas	p 5 3.47FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06
Actinobacteria	Actinobacteria	Actinomycetales	Micrococcales	Micrococcus	p 5 3.47FAA	3.88E−04 (5.24E−05)	0.00E+00 (0.00E+00)	7.10 ± 1.84E−06	6.31E−06	6.31E−06

(Continued)
Table 6 (continued)

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Median (IQR)	Baseline HR vs LR	Log 2 FC mean ± SE	Adjusted P-value	
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Mediterranea	massiliensis	6.29E–04 (5.04E–04 to 1.95E–03)	0.00E+00 (0.00E+00 to 3.52E–05)	4.98 ± 1.50	9.23E–03	1.50	2.66E–02
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Brevibacillus	borstelens	1.11E–04 (0.00E+00 to 4.04E–03)	0.00E+00 (0.00E+00 to 7.20E–05)	4.96 ± 1.74	2.66E–02	1.74	2.47E–02
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	ginsenghumi	1.11E–04 (0.00E+00 to 4.84E–03)	0.00E+00 (0.00E+00 to 7.47E–05)	4.84 ± 1.67	2.47E–02	1.67	2.47E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	stercorea	8.42E–04 (9.12E–05 to 6.78E–03)	0.00E+00 (0.00E+00 to 3.52E–05)	4.78 ± 1.52	1.42E–02	1.52	3.58E–02
Firmicutes	Negativicutes	Selenomonadales	Selenomonadaceae	Megamonas	rupellensis	1.22E–01 (7.40E–03 to 1.67E–01)	2.47E–04 (0.00E+00 to 1.11E–03)	4.61 ± 1.72	3.58E–02	1.72	3.98E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Tannerellaceae	Tannerella	sp 6 1 58FAA CT1	9.12E–05 (0.00E+00 to 5.49E–04)	0.00E+00 (0.00E+00 to 0.00E+00)	4.58 ± 1.75	3.98E–02	1.75	2.41E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Paraprevotella	clara	1.66E–04 (4.21E–05 to 7.94E–04)	0.00E+00 (0.00E+00 to 0.00E+00)	4.57 ± 1.45	1.42E–02	1.45	1.74E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	sp Marseille-P3166	1.47E–03 (3.03E–04 to 3.30E–03)	0.00E+00 (0.00E+00 to 2.45E–05)	4.42 ± 1.45	1.74E–02	1.45	2.41E–04
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Blautia	wexlerae	1.05E–01 (2.46E–02 to 3.83E+00)	1.98E–02 (1.25E–02 to 3.64E–02)	4.35 ± 0.96	1.87E–02	0.96	2.41E–04
Bacteroidetes	Bacteroidia	Bacteroidales	Odoribacteraceae	Odoribacter	laneus	8.07E–04 (0.00E+00 to 2.87E–03)	1.40E–05 (0.00E+00 to 4.98E–05)	4.31 ± 1.43	1.87E–02	1.43	3.52E–02
Proteobacteria	Betaproteobacteria	Burkholderiella	Sutterellaceae	Sutterella	no data	1.14E–03 (0.00E+00 to 1.26E–03)	4.21E–05 (9.86E–06 to 1.87E–04)	4.27 ± 1.57	3.52E–02	1.57	3.58E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	multisaccharivorax	1.26E–04 (0.00E+00 to 2.91E–04)	0.00E+00 (0.00E+00 to 0.00E+00)	4.18 ± 1.56	3.58E–02	1.56	3.58E–02
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	minor	1.27E–02 (1.85E–03 to 3.57E–02)	5.68E–04 (7.98E–05 to 1.16E–03)	3.94 ± 1.27	1.52E–02	1.27	4.79E–02
Firmicutes	Erysipelotrichia	Erysipelotrichiae	Erysipelotrichiae	Solobacterium	moorei	2.33E–03 (5.01E–04 to 1.45E–02)	0.00E+00 (0.00E+00 to 5.80E–05)	3.85 ± 1.51	4.79E–02	1.27	3.29E–03
Firmicutes	Clostridia	Clostridiales	Clostridiales	Clostridium	sp AT4	8.65E–02 (6.45E–03 to 1.48E–01)	4.29E–03 (1.64E–03 to 8.18E–03)	3.78 ± 1.51	3.29E–03	1.02	3.58E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	coprocola	2.32E–02 (7.57E–03 to 1.06E–01)	5.86E–04 (1.76E–04 to 2.05E–03)	3.64 ± 1.36	3.58E–02	1.36	9.84E–04
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Blautia	no data	6.00E–01 (1.76E–01 to 8.44E+00)	1.27E–01 (4.23E–02 to 2.47E–01)	3.63 ± 0.88	9.84E–04	0.88	7.18E–03
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Blautia	obum	5.40E–02 (5.96E–02 to 5.45E–01)	1.08E–02 (3.61E–03 to 2.34E–02)	3.30 ± 0.97	7.18E–03	0.97	3.41E–02
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	mediterraneensis	1.14E–03 (3.03E–04 to 2.57E–03)	5.38E–05 (9.01E–06 to 1.01E–04)	2.96 ± 1.08	3.41E–02	1.08	2.41E–02
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Adjusted n	FC \pm value	Log 2 FC P	SE \pm value	
------------	---------------------	----------------------------	----------------------	------------------	--------------------	---------------------------	--------------	---------------	--------------	----------------	
Firmicutes	Clostridia	Lachnospiraceae	Clostridiacia	Bacteroidetes	barnesiae	7.33E+03 (8.07E+00 - 2.23E+04)	4.25E+04 (5.25E+00 - 1.02E+05)	2.78 ± 1.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Clostridia	Bacteroidiaceae	Bacteroidales	Bacteroides	barnesiae	9.29E+03 (1.63E+00 - 3.08E+04)	5.01E+04 (2.15E+00 - 8.87E+03)	2.53 ± 1.35	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	braakii	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	portucalensis	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	cloacae complex sp	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	Enterococcus	camerati	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	Enterococcus	dispor	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	Enterococcus	hirae	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	Enterococcus	halakos	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	Enterococcus	sp FDNAA16S	0.00E+00 (0.00E+00 - 9.29E+00)	9.29E+00 (0.00E+00 - 9.29E+00)	0.00 ± 0.00	-0.86 ± 1.81	0.57 ± 0.57	1.38E+00 ± 1.67E+00

Table 6 (continued)

Reference: Tanprasertsuk et al. (2021), *PeerJ*, DOI 10.7717/peerj.11648
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Baseline HR vs LR								
						Median (IQR)									
						HR (n = 9)									
						LR (n = 10)									
						Log 2 FC mean ± SE	Adjusted P-value								
Firmicutes	Bacilli	Bacillales	Planococcaceae	Rummeliibacillus	stabekisii	0.00E+00 (0.00E+00	-8.73 ± 2.93								
						to 5.24E-05)	2.00E-02								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter	asburiae	0.00E+00 (0.00E+00	-8.61 ± 2.13								
						to 4.31E-04)	1.40E-03								
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	sp 4E1 DIV0656		0.00E+00 (0.00E+00	-8.48 ± 2.54								
						to 1.80E-05)	8.51E-03								
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	sakei	0.00E+00 (0.00E+00	-8.45 ± 2.03								
						to 9.38E-05)	9.81E-04								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter cloakae complex	Hoffmann cluster III	0.00E+00 (0.00E+00	-8.30 ± 1.93								
						to 1.15E-04)	6.02E-04								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Cronobacter sakazakii		0.00E+00 (0.00E+00	-8.03 ± 2.17								
						to 1.01E-03)	3.34E-03								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter sp ODB01		0.00E+00 (0.00E+00	-7.91 ± 5.56E-03								
						to 0.00E+00)									
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp HMSC058D07	0.00E+00 (0.00E+00	-7.82 ± 2.97								
						to 6.00E-05)	3.96E-02								
Firmicutes	Bacilli	Lactobacillales	Staphylococcaceae	Staphylococcus	epidermidis	0.00E+00 (0.00E+00	-7.76 ± 2.18								
						to 4.53E-04)	4.39E-03								
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus faecalis		0.00E+00 (0.00E+00	-7.57 ± 2.67E-03								
						to 7.52E-03)	5.20E-03								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Klebsiella	quasipneumoniae	0.00E+00 (0.00E+00	-7.43 ± 3.12E-03								
						to 1.05E-04)									
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter sp KTE151		0.00E+00 (0.00E+00	-7.27 ± 3.58E-02								
						to 0.00E+00)									
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter freundii complex s CFNIH2		0.00E+00 (0.00E+00	-7.25 ± 2.32E-02								
						to 3.29E-04)									
Firmicutes	Clostridia	Clostridiales	Clostridiales	Clostridium		0.00E+00 (0.00E+00	-7.16 ± 2.25								
						to 2.67E-05)	1.32E-02								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter sp S-77		0.00E+00 (0.00E+00	-7.14 ± 2.67								
						to 0.00E+00)	3.58E-02								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Erwiniaeae	Pantoea sesami		0.00E+00 (0.00E+00	-7.05 ± 2.64								
						to 8.43E-05)	3.58E-02								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Franconibacter helveticus		0.00E+00 (0.00E+00	-6.90 ± 1.99								
						to 2.50E-04)	5.78E-03								
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter freundii complex sp CFNIH3		0.00E+00 (0.00E+00	-6.88 ± 4.73E-03								
						to 2.99E-04)									
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Log-2 Adjusted FC	p-value	FC	SE	Baseline HR vs LR	HR (n = 9)	HR (n = 10)	p-value	HC
-------------------	------------------------	------------------------------	-----------------------------	------------------	--------------------------	---------------------------	-------------------------	----------	----	----	------------------	------------	------------	----------	-----
Proteobacteria	**Gammaproteobacteria**	**Enterobacteria**	**Enterobacteriaceae**	**Citrobacter**	werkmanii	5.3E-05 (0.00E+00-0.00E+00)	-6.70 ± 3.4E-03	1.82			1.00E+00	1.00E+00	1.00E+00	1.00E+00	
Proteobacteria	**Gammaproteobacteria**	**Enterobacteria**	**Enterobacteriaceae**	**Escherichia**	no data	1.65 ± 0.0E+00	2.71 ± 1.8E-02	0.36			3.58E+00	3.58E+00	3.58E+00	3.58E+00	
Proteobacteria	**Gammaproteobacteria**	**Enterobacteria**	**Enterobacteriaceae**	**Shigella**	no data	3.58E+00 (0.00E+00-0.00E+00)	2.71 ± 1.8E-02	0.36			3.58E+00	3.58E+00	3.58E+00	3.58E+00	
Firmicutes	**Bacilli**	**Lactobacillales**	**Lactobacillaceae**	**Butyribacterium**	spKTE159	8.92E+00 (5.93E+00-0.00E+00)	2.71 ± 1.8E-02	0.36			3.58E+00	3.58E+00	3.58E+00	3.58E+00	

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Median (IQR)	Baseline HR vs LR	
						HR (n = 9)		Log 2 FC mean ± SE	Adjusted P value
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	equinus	4.55E–04 (1.94E–04 to 1.50E–03)	1.76E–03 (1.06E–04 to 8.90E–01)	–5.94 ± 1.93	1.61E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	raffinosus	0.00E+00 (0.00E+00 to 0.00E+00)	8.85E–05 (0.00E+00 to 6.18E–04)	–5.90 ± 2.19	3.58E–02
Proteobacteria	Gammaproteobacteria	Enterobacteriaceae	Escherichia	sp KTE52		0.00E+00 (0.00E+00 to 0.00E+00)	2.20E–03 (1.54E–04 to 1.79E–02)	–5.90 ± 1.97	1.94E–02
Actinobacteria	Actinobacteria	Propionibacteriales	Propionibacteriaceae	Propionibacterium	freudenreichii	1.11E–04 (0.00E+00 to 2.02E–04)	6.80E–05 (1.05E–05 to 2.17E–01)	–5.89 ± 1.84	1.29E–02
	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	sp VT-16-81	0.00E+00 (0.00E+00 to 0.00E+00)	3.73E–05 (0.00E+00 to 1.08E–04)	–5.87 ± 2.04	2.54E–02
Proteobacteria	Gammaproteobacteria	Enterobacteriaceae	Enterobacteriaceae	Shigella boydii		0.00E+00 (0.00E+00 to 0.00E+00)	8.74E–02 (7.11E–03 to 2.18E–01)	–5.87 ± 2.04	3.58E–02
Firmicutes	Bacilli	Lactobacillales	Carnobacteriaceae	Carnobacterium	gallinarum	0.00E+00 (0.00E+00 to 0.00E+00)	3.77E–05 (0.00E+00 to 7.99E–04)	–5.85 ± 2.17	3.58E–02
	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	lutetiosis	8.42E–05 (0.00E+00 to 4.62E–03)	1.49E–04 (6.23E–05 to 3.44E+00)	–5.85 ± 2.30	4.89E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp HMS34G12	0.00E+00 (0.00E+00 to 0.00E+00)	7.47E–05 (0.00E+00 to 2.38E–04)	–5.83 ± 2.08	2.88E–02
	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	no data	3.68E–02 (8.00E–03 to 5.84E–01)	1.91E–01 (1.39E–02 to 2.36E–01)	–5.81 ± 1.55	3.12E–03
Fusobacteria	Fusobacteria	Fusobacteriales	Leptotrichiaceae	Streptobacillus	moniliformis	0.00E+00 (0.00E+00 to 0.00E+00)	3.73E–03 (6.84E–04 to 1.09E–02)	–5.78 ± 1.92	1.91E–02
Proteobacteria	Gammaproteobacteria	Enterobacteriaceae	Enterobacteriaceae	Escherichia sp 1143		0.00E+00 (0.00E+00 to 0.00E+00)	8.41E–03 (8.32E–04 to 9.78E–03)	–5.68 ± 1.83	1.52E–02
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	infantarius	8.55E–04 (1.39E–03 to 6.33E–04)	6.33E–04 (1.34E–04 to 8.77E–01)	–5.65 ± 2.00	2.75E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	canis	0.00E+00 (0.00E+00 to 0.00E+00)	3.32E–04 (9.01E–06 to 1.50E–03)	–5.59 ± 2.16	4.44E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp HMS3035C10	0.00E+00 (0.00E+00 to 9.12E–05)	5.28E–04 (4.21E–05 to 9.66E–04)	–5.59 ± 2.17	1.42E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	villorum	0.00E+00 (0.00E+00 to 8.42E–05)	2.35E–05 (0.00E+00 to 1.47E–04)	–5.56 ± 2.06	3.58E–02
	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp 255 ESPC	0.00E+00 (0.00E+00 to 0.00E+00)	1.52E–04 (9.01E–06 to 4.48E–03)	–5.54 ± 2.47	2.76E–02
Proteobacteria	Gammaproteobacteria	Enterobacteriaceae	Enterobacteriaceae	Lelliottia ammigena		0.00E+00 (0.00E+00 to 0.00E+00)	9.27E–05 (1.89E–05 to 3.69E–04)	–5.53 ± 1.92	1.84E–02
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	anginosus	0.00E+00 (0.00E+00 to 8.42E–05)	7.61E–04 (1.17E–05 to 3.15E–03)	–5.46 ± 1.77	1.58E–02
Table 6 (continued)

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Baseline HR vs LR
						Median (IQR)	HR (n = 9)
							LR (n = 10)
						Log 2 FC mean ± SE	
						Adjusted P value	

Proteobacteria Gammaproteobacteria Enterobacteriales Erwiniaceae Erwinia gerundensis 0.00E+00 (0.00E+00 to 0.00E+00) 9.82E-05 (0.00E+00 to 1.26E-04) 0.45 ± 1.82 1.92E-02
Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae no data 0.00E+00 (0.00E+00 to 0.00E+00) 3.09E-03 (3.87E-04 to 1.20E-02) 0.59 ± 2.00 3.58E-02
Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus sp HMSCO72F02 0.00E+00 (0.00E+00 to 0.00E+00) 5.25E-04 (8.41E-05 to 6.68E-03) 0.45 ± 1.82 1.42E-02
Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae no data bacterium ENNIH1 0.00E+00 (0.00E+00 to 0.00E+00) 5.49E-05 (0.00E+00 to 1.26E-04) 0.59 ± 2.00 2.60E-02
Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus gallinarum 0.00E+00 (0.00E+00 to 0.00E+00) 1.89E-05 (0.00E+00 to 1.18E-04) 0.45 ± 1.82 1.85 2.03

... (Continued)
Table 6 (continued)

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Baseline HR vs LR
						HR (n = 9)	
Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	breve	3.05E−03 (1.65E−03 to 3.41E−03)	
						1.63E−03 (6.32E−04 to 4.35E−03)	−3.79 ± 0.99
Firmicutes	Bacilli	no data	no data	no data	no data	8.66E−04 (1.34E−04 to 4.72E−03)	
						4.48E−03 (1.65E−03 to 3.28E−02)	−3.73 ± 1.28
						8.33E−03 (1.24E−03 to 6.32E−02)	−2.78 ± 0.99
						7.68E−04 (2.69E−03 to 2.41E−02)	−2.19 ± 0.71
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	no data	bacterium 3146FAA	1.14E−02 (2.69E−03 to 2.41E−02)	
						1.05E−02 (1.24E−03 to 6.32E−02)	−2.78 ± 0.99
	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	parasanguinis	7.76E−04 (6.72E−04 to 1.21E−03)	
						8.33E−04 (3.19E−04 to 1.59E−03)	−2.19 ± 0.71

Notes:
- *P* values were adjusted with false discovery rate for multiple comparisons.
- FC, fold change; SE, standard error.
observed to have higher, and never lower, abundances in HR as compared to LR (Fig. S8A). On the contrary, species belonging to the Enterobacterales or the Lactobacillales order were observed to have lower, and never higher, abundances in HR as compared to LR, with a single exception of *Streptococcus minor* (Lactobacillales order).
Bacteroidales and Clostridiales dominated the gut of high-responders
Among 40 bacterial species whose abundance were higher in HR, 20 (50%) belonged to the Bacteroidales order (Table 6, Fig. S8A). They included 9 Bacteroides species and 7 Prevotella species. Seven species (18%) of the Clostridiales order and 5 Megamonas species (13%) were also observed to dominate the gut of the HR at baseline.

Enterobacterales and Lactobacillales dominated the gut of low-responders
On the other hand, 97 species had lower abundances in the guts of HR as compared to LR dogs (Table 6, Fig. S8A). Forty seven of these species (48%) were in the Enterobacterales order. Species in the Lactobacillales order were also underrepresented in the guts of HR and accounted for 35% of the 97 species. It is worth noting that the abundances of many Enterobacterales and Lactobacillales species increased as a result of diet change when all subjects were included in the analysis (Table 4).

Given the enrichment of Enterobacterales and Lactobacillales in LR as compared to HR, correlative analysis was performed in all dogs. The read counts and the relative abundances of total Enterobacterales were negatively correlated with the magnitude of PCo1 change (read count: Spearman’s ρ = −0.74, p = 6.66E−06, relative abundance: Spearman’s ρ = −0.69, p = 6.77E−05). Significant correlation was not observed with total Lactobacillales.

Changes in the gut microbiome abundance from baseline to week 4 in high- and low-responders
Not only was the GM of HR and LR different at baseline, HR and LR also responded differently to the diet transition (Table S4, Figs. 7A and 7B).

Enterobacterales and Lactobacillales increased predominantly in high-responders
Over the 4 week period in HR the abundances of 97 species of Enterobacterales increased and none decreased (Table S4 and Fig. 7A). Whereas in LR no increase in abundance of any Enterobacterales species was observed, but rather seven Enterobacterales species were reduced (Fig. 7B). Similarly, the abundances of 77 species in the Lactobacillales order significantly increased and none decreased at week 4 in HR, whereas only five species of Lactobacillales increased and one decreased in LR.

Clostridiales and Bacteroidales had distinctive responses in high- vs. low-responders
A distinctive pattern of change in the Clostridiales and Bacteroidales orders was also noted between HR and LR. In HR, the abundances of 17 species of Clostridiales were reduced whereas there were increased abundances of five species (three of which were members of the genus Clostridium) (Table S4 and Fig. 7A). In LR the abundances of only three species of Clostridiales increased and one species decreased (Fig. 7B). Additionally, the abundance of any Bacteroidales did not significantly change in LR, while seven species of Bacteroidales (six of which were in the genus Prevotella) were reduced in HR.
Gut microbiome relative abundance at week 4 in high- and low-responders

Consistent with a distinctive GM profile at baseline and differential changes between HR and LR, the microbial profiles of HR and LR at week 4 also differed (Table 7, Fig. 6B). A summary of overall GM profile and changes in the abundance of Bacteroidales, Clostridiales, Lactobacillales, and Proteobacteria is also provided in Table 8.
Table 7 Bacterial species with differential abundances (|fold change| ≥ 2 and p < 0.05) between high-responders (HR, n = 9) and low-responders (LR, n = 10) at week 4.

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Week 4 HR vs LR					
						HR (n = 9)	LR (n = 10)	Log 2 FC mean ± SE	Adjusted P-value^3			
Higher in HR (68 species)												
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaceae	Hafnia	alvei	1.88E-03 (1.47E-03 to 1.06E-00)	4.81E-05 (0.00E+00 to 6.65E-05)	10.37 ± 1.56E-04	2.02			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaceae	Hafnia	no data	3.57E-04 (1.66E-04 to 1.54E-01)	0.00E+00 (0.00E+00 to 3.58E-05)	10.30 ± 7.33E-04	2.26			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Morganellaceae	Morganella	sp HMSC11D09	0.00E+00 (0.00E+00 to 4.86E-03)	0.00E+00 (0.00E+00 to 0.00E+00)	9.07 ± 2.50	8.16E-03			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaceae	Hafnia	sp HMSC23F03	3.96E-03 (2.77E-05 to 2.24E-02)	0.00E+00 (0.00E+00 to 1.06E-04)	7.84 ± 2.12	7.29E-03			
Firmicutes	Bacilli	Bacillales	Listeriaceae	Listeria	monocytogenes	3.24E-05 (0.00E+00 to 2.65E-04)	0.00E+00 (0.00E+00 to 5.61E-05)	7.67 ± 2.27	1.43E-02			
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Solobacterium	moorei	0.00E+00 (0.00E+00 to 1.95E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	7.64 ± 2.77	4.71E-02			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Enterobacter	sp MGH 7	0.00E+00 (0.00E+00 to 5.95E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	7.46 ± 2.68	4.51E-02			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella	sp AA405	0.00E+00 (0.00E+00 to 1.33E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	7.36 ± 2.59	4.18E-02			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Cronobacter	dublinensis	1.94E-04 (1.47E-04 to 9.28E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	7.28 ± 1.56	5.73E-04			
Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	sp Ep R1	0.00E+00 (0.00E+00 to 6.63E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	7.22 ± 2.61	4.71E-02			
Firmicutes	Bacilli	Bacillales	Paenbacillaceae	Paenbacillus	sp VT-16-81	1.19E-04 (0.00E+00 to 3.01E-03)	0.00E+00 (0.00E+00 to 4.34E-05)	7.11 ± 1.97	8.34E-03			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Hafniaceae	Edwardsiella	hoshinae	2.08E-05 (0.00E+00 to 5.27E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	6.91 ± 2.13	2.12E-02			
Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	sp CL-2	3.97E-04 (5.54E-05 to 1.66E-03)	0.00E+00 (0.00E+00 to 0.00E+00)	6.70 ± 1.56	1.70E-03			
Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	tertium	6.77E-05 (0.00E+00 to 7.83E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	6.65 ± 2.01	1.83E-02			
Firmicutes	Bacilli	Lactobacillales	Enterococccaeae	Enterococcus	sp HMSC072H05	2.65E-04 (0.00E+00 to 7.83E-04)	0.00E+00 (0.00E+00 to 0.00E+00)	6.59 ± 1.84	9.15E-03			
Firmicutes	Clostridia	Clostridiales	Ruminococccaeae	Ruminiclostridium	josui	0.00E+00 (0.00E+00 to 1.81E-03)	0.00E+00 (0.00E+00 to 0.00E+00)	6.37 ± 2.37	4.97E-02			
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella	no data	1.06E-02 (7.68E-03 to 1.80E-01)	1.36E-03 (3.94E-04 to 6.31E-03)	6.14 ± 1.39	1.08E-03			
Firmicutes	Bacilli	Lactobacillales	Camobacteriaeae	Camobacterium	malataromaticum	1.08E-03 (2.66E-05 to 3.65E-03)	1.31E-04 (5.01E-05 to 4.23E-04)	6.06 ± 1.54	4.9E-03			
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	L.R. (n = 9)	Log 2 F C	Adjusted P-value	SE	mean ± 95% CI	
--------------	----------------------------	------------------------------	-----------------------------------	----------------------------	------------------------------	----------------------------	--------------------------	-----------	-----------	-------------------	----	----------------
Firmicutes	Bacilli	Lactobacillales	Enterococccae	Enterococcus	avium	9.77E-04	to 2.88E-02	2.00	0.00E+00	0.00E+00	2.00	3.24E-02
			Entrobacterales	Enterobacteriaceae	K. KTEI	2.58E-03	to 0.01E+00	1.59	0.00E+00	0.00E+00	1.59	4.09E-03
			Escherichia	Enterobacteriaceae	anatis	6.28E-03	to 0.00E+00	1.56	0.00E+00	0.00E+00	1.56	6.66E-03
			Pasteurella	Enterobacteriaceae	minor	6.28E-03	to 0.00E+00	1.56	0.00E+00	0.00E+00	1.56	6.66E-03
			Erysipelotrichiales	Erysipelotrichaceae	Coprobacillus sp 3.48E-03	5.57E-03	to 3.54E-03	1.60	1.00E-03	1.00E-03	1.60	3.98E-03
			Clostridia	Clostridiales	Clostridium	3.36E-02	to 2.66E-02	1.63	2.66E-02	2.66E-02	1.63	5.35E-02
Proteobacteria	Gammaproteobacteria	Erysipelotrichiales	Erysipelotrichaceae	Erysipelotrichus	cloacae	2.56E-03	to 1.05E-03	1.63	2.66E-02	2.66E-02	1.63	5.35E-02

Table 7 (continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Week 4 HR vs LR	
						HR (n = 9)	L (n = 10)	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	no data	no data	3.08E−01 (1.35E−02 to 2.33E+00)	1.07E−01 (1.37E−02 to 1.31E−01)	4.73 ± 1.28
						4.76E−03 (1.07E−04 to 1.30E−02)	1.28	
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Raoultella	ornithinolytica	1.86E−04 (3.45E−05 to 3.96E−03)	2.38E+00 (1.16E−04 to 1.36E−02)	1.67
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	no data	9.48E−03 (8.22E−03 to 7.28E−02)	1.61E−03 (2.52E−04 to 8.19E−03)	1.67
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia	sp KTE172	1.67E−02 (9.42E−03 to 1.64E−01)	4.98E−03 (8.28E−04 to 1.45E−02)	1.41
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia	sp 1 1 43	1.57E−02 (5.90E−03 to 2.83E−02)	1.07E−03 (3.16E−04 to 5.30E−03)	1.29
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Turicibacter	no data	1.03E−03 (3.09E−04 to 2.31E−03)	2.11E−04 (0.00E+00 to 1.64E−03)	1.54
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Shigella	no data	9.74E−01 (2.15E−01 to 1.97E+00)	4.37E−02 (1.42E−02 to 1.51E−01)	1.15
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Klebsiella	pneumoniae	2.68E−03 (9.12E−04 to 1.63E−02)	5.40E−04 (8.12E−05 to 1.14E−03)	1.36
Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	indicus	1.14E−03 (1.33E−04 to 1.81E−03)	0.00E+00 (0.00E+00 to 1.26E−04)	1.97 ± 1.48
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia	sp KTE96	1.83E−03 (4.83E−04 to 3.30E−03)	9.68E−05 (0.00E+00 to 7.69E−04)	1.48
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	freundii complex	2.13E−04 (1.66E−04 to 7.21E−04)	4.00E−05 (0.00E+00 to 9.02E−05)	1.45
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter	cloaceae	1.49E−03 (3.42E−04 to 1.95E−03)	1.08E−04 (0.00E+00 to 3.00E−04)	1.23
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Shigella	flexneri	3.42E−01 (2.39E−01 to 7.99E−01)	4.10E−02 (7.24E−03 to 1.49E−01)	1.14
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Siccibacter	turicensis	1.96E−04 (1.33E−04 to 2.08E−04)	4.84E−05 (0.00E+00 to 1.21E−04)	1.12
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	no data	bacterium strain	3.05E−03 (9.31E−04 to 8.49E−03)	7.14E−04 (1.58E−04 to 1.31E−03)	1.20
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Citrobacter	freundii	5.34E−03 (9.58E−04 to 2.11E−02)	6.44E−04 (2.16E−04 to 1.19E−03)	1.42
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Coprobacillus	sp 8 2 54BFAA	5.63E−03 (5.86E−04 to 2.25E−02)	2.28E−03 (2.22E−04 to 5.50E−03)	1.15
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Yokenella	regensburgei	5.32E−04 (3.33E−04 to 9.28E−04)	9.74E−05 (4.14E−05 to 2.38E−04)	1.16
Proteobacteria	Gammaproteobacteria	no data	no data	no data	no data	2.66E−02 (6.47E−03 to 1.03E−01)	2.62E−03 (7.30E−04 to 9.95E−03)	1.29

Table 7 (continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Week 4 HR vs LR		
						HR (n = 9)	LR (n = 10)	Log 2 FC mean ± SE	Adjusted P –value
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Citrobacter	werkmanii	3.72E–04 (5.32E–05 to 2.93E–03)	5.87E–05 (3.61E–05 to 2.19E–04)	3.63 ± 1.20	3.19E–02
						2.11E–01 (1.90E–01 to 4.21E–01)	2.15E–02 (5.35E–03 to 1.19E–01)	3.58 ± 1.15	2.66E–02
Actinobacteria	Actinobacteria	Corynebacterales	Corynebacteriaceae	Corynebacterium	striatum	5.53E–04 (4.42E–04 to 6.65E–04)	1.20E–04 (1.73E–05 to 2.52E–04)	3.46 ± 1.02	1.40E–02
						2.40E+01 (1.57E+01 to 3.93E+01)	3.26E+00 (3.15E–01 to 1.05E+01)	3.34 ± 1.17	4.11E–02
Actinobacteria	Actinobacteria	Corynebacterales	Nocardiaceae	Rhodococcus	opacus	6.19E–04 (4.44E–04 to 7.18E–04)	7.17E–05 (0.00E+00 to 3.01E–04)	3.32 ± 1.13	3.53E–02
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Coprobacillus	sp D7	3.57E–03 (4.86E–04 to 1.51E–02)	2.00E–03 (4.98E–04 to 5.34E–03)	3.29 ± 1.15	4.11E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Escherichia	albertii	3.53E–01 (1.71E–01 to 5.09E–01)	6.62E–02 (1.44E–02 to 1.43E–01)	3.29 ± 1.15	4.16E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Citrobacter	sp MGH110	1.66E–04 (1.45E–04 to 6.09E–04)	6.33E–05 (0.00E+00 to 1.34E–04)	3.26 ± 1.15	4.28E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Kluyvera	cryocrescens	1.04E–03 (7.06E–04 to 1.46E–03)	1.46E–04 (8.05E–06 to 5.91E–04)	3.25 ± 1.09	3.39E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	no data		5.65E–03 (4.07E–03 to 8.89E–03)	7.39E–04 (1.65E–04 to 2.59E–03)	3.09 ± 1.13	4.81E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Kosakonia	cowanii	4.42E–04 (3.17E–04 to 4.79E–04)	5.90E–05 (0.00E+00 to 3.21E–04)	2.99 ± 1.10	4.90E–02
Proteobacteria	Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Shigella	boydii	2.11E–01 (7.81E–02 to 3.71E–01)	2.20E–02 (6.29E–03 to 7.84E–02)	2.90 ± 1.07	4.90E–02

Lower in HR (12 species)

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Week 4 HR vs LR		
						HR (n = 9)	LR (n = 10)	Log 2 FC mean ± SE	Adjusted P –value
Actinobacteria	Coriobacteria	Eggerthellales	Eggerthellaceae	Eggerthella	no data	0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 9.63E–05)	−8.77 ± 2.94	3.39E–02
Actinobacteria	Actinobacteria	Bifidobacterales	Bifidobacteriaceae	Bifidobacterium	gallinarum	0.00E+00 (0.00E+00 to 1.47E–04)	0.00E+00 (0.00E+00 to 1.97E–02)	−7.36 ± 2.70	4.81E–02
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	caceae	0.00E+00 (0.00E+00 to 0.00E+00)	2.42E–05 (0.00E+00 to 4.28E–03)	−6.45 ± 2.38	4.90E–02
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	no data	2.08E–05 (0.00E+00 to 1.33E–04)	1.23E–04 (8.06E–06 to 4.72E–02)	−6.20 ± 2.01	2.76E–02
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	canintestini	7.98E–05 (0.00E+00 to 2.92E–04)	3.40E–04 (3.54E–05 to 1.04E–02)	−5.57 ± 1.62	1.27E–02
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Catenibacterium	mitsuokai	8.32E–05 (0.00E+00 to 7.59E–04)	2.97E–02 (1.35E–03 to 5.00E–01)	−5.29 ± 1.71	2.66E–02

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Week 4 HR vs LR
						HR (n = 9)	LR (n = 10)
						Log 2 FC mean ± SE	Adjusted P value
Actinobacteria Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	no data	0.00E+00 (0.00E+00 to 2.22E−04)	3.54E−04 (3.63E−05 to 1.07E−02)	−4.80 ± 4.76E−02
Firmicutes Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	pasteurianus	4.89E−04 (1.38E−04 to 3.65E−03)	6.72E−03 (1.91E−03 to 2.25E−01)	−4.26 ± 4.76E−02
Firmicutes Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	sp 3 2 56FAA	1.55E−03 (2.92E−04 to 1.01E−02)	2.29E−02 (5.94E−03 to 4.40E−02)	−3.96 ± 7.29E−03
Firmicutes Clostridia	Clostridiales	Eubacteriaceae	no data	bacterium CHKCl001	0.00E+00 (0.00E+00 to 3.97E−05)	1.54E−04 (5.61E−05 to 5.19E−04)	−3.63 ± 3.48E−02
Firmicutes Clostridia	Clostridiales	Lachnospiraceae	no data	bacterium 3 1 46FAA	5.06E−04 (1.35E−04 to 3.67E−03)	5.23E−03 (2.61E−03 to 3.45E−02)	−2.85 ± 4.71E−02
Firmicutes Clostridia	Clostridiales	Clostridiales	Clostridium	sp SS2/1	2.93E−04 (6.49E−05 to 6.85E−04)	1.51E−03 (7.01E−04 to 4.71E−03)	−2.47 ± 3.59E−02

Notes:

1. *P* values were adjusted with false discovery rate for multiple comparisons.
2. FC, fold change; SE, standard error.

Tanprasertsuk et al. (2021), PeerJ, DOI 10.7717/peerj.11648
Enterobacterales and Lactobacillales dominated the gut of high-responders

Among 68 bacterial species whose abundances were higher in HR, 38 (56%) were Enterobacterales (Table 7, Fig. S8B). No Enterobacterales species was observed to be higher in LR at week 4. This was the opposite of baseline GM where 47 species of Enterobacterales were higher in LR (Table 6). For Lactobacillales, five species were enriched in the gut of HR while two species were enriched in the gut of LR at week 4.

Clostridiales in the gut of high- and low-responders

Nine (13%) out of 68 species with higher abundances among HR were in the Clostridiales order, while six (50%) out of 12 species with higher abundances among LR were in the Clostridiales order (Table 7, Fig. S8B).

Bacteroidales was no longer different in high- vs low-responders

The 20 species in the Bacteroidales order observed to have higher abundances in HR at baseline were no longer different between HR and LR at week 4 (Table 7, Fig. S8B).

Protein content of the baseline diet associated with the magnitude of PCo1 change

In addition to baseline GM, the magnitude of PCo1 change was also associated with baseline diet composition. Data on the baseline extruded kibble diets were assembled; however, guaranteed nutrient analysis could only be determined for 15 dogs whose specific formula was provided (Table S5). Protein content of the baseline diet statistically differed...
among HR, MR, and LR, when expressed as either % dry matter ($p = 0.040$) or gram per 1,000 kcal diet ($p = 0.027$, Kruskal–Wallis test). In addition, % protein dry matter was also negatively correlated with PCo1 score at baseline (Spearman’s $\rho = -0.54$, $p = 0.039$) (Fig. S9A), and positively correlated with PCo1 score change over the 4 week (Spearman’s $\rho = 0.67$, $p = 0.006$) (Fig. S9B). A similar finding was seen when protein content was expressed as g/1000 kcal (Spearman’s $\rho = -0.59$, $p = 0.024$ for correlation with PCo1 score at baseline; Spearman’s $\rho = 0.78$, $p = 9.9E-04$ for correlation with PCo1 score change) (Figs. S9C, S9D). No association with PCo1 score was observed for fat, fiber, or calorie density. Changes in PCo1 score were also not associated with any of the four different recipes of the intervention diet.

Subject characteristics and α-diversity in high-, mid- and low-responders

Other subject characteristics among the HR, MR, and LR are summarized in Table S6A. Age, sex, body weight, BCS and other subject characteristics at baseline were not significantly different among the groups. Likewise, health outcomes reported at week 4 were also not associated with the magnitude of PCo1 score change (Table S6B). Additionally, no measure of α-diversity was different among HR, MR, and LR at baseline or at week 4 at a sequencing coverage of 470,000 reads (Table S7).

Gut microbiome and change in overall health

To investigate the association between changes in the microbial profile and overall health, the GM of dogs with reported “better” ($n = 19$) and “no change” ($n = 12$) in overall health were compared at the species level at week 4 (Tables 3, 9, Fig. 8). Dogs whose owners reported improved health had higher abundances of 35 species, 24 (69%) of which are in the Lactobacillales order and two of which are in the Enterobacterales order. Five (14%) species of the Erysipelotrichaceae family were also higher in dogs reported as having better overall health. Two species, both *Bacteroides*, were lower in those reported as having better overall health.

Since the overall health status at baseline was comparable between these two groups of dogs, as a control the same analysis was performed on the sample collected at baseline. Only 8 species were identified to be differentially present between the two groups (Table S8). None of the identified species were a Lactobacillales, an Enterobacterales, or an Erysipelotrichaceae.

The magnitude of change in PCo1 score was not significantly different between dogs reported as having improved versus no change in overall health. Species evenness, richness, and Shannon’s diversity index were not different between these two groups at baseline at the sequencing coverage of 470,000 reads. At week 4, however, the species evenness in those reporting improved overall health was significantly higher than those reporting no change in overall health (0.59 ± 0.10 vs 0.52 ± 0.11, $p = 0.023$, Kruskal–Wallis test). Likewise, Shannon’s diversity index at week 4 was higher in those reported to have improved overall health (2.39 ± 0.39 vs 2.10 ± 0.44, $p = 0.023$, Kruskal–Wallis test).
Table 9 Bacterial species whose abundance at week 4 was significantly different (|fold change| ≥ 2 and FDR-adjusted p < 0.05) between those reporting “better” (n = 16) and “about the same” overall health (n = 10) after diet change.

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Better vs About the same health	Log 2 FC mean ± SE	Adjusted P-value
Phylum	**Class**	**Order**	**Family**	**Genus**	**Species**	**Better overall health (n = 16)**	**About the same overall health**		
Actinobacteria	Actinobacteria	**Bifidobacteria**	**Bifidobacteriaceae**	**Bifidobacterium**	**animalis**	0.00E+00 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 0.00E+00)	10.52 ± 3.04	1.54E−02
Firmicutes	Bacilli	**Bacillales**	**Bacillaceae**	**Lysinibacillus**	**sphaericus**	25.39 ± 3.04 3.41E−14			
Firmicutes	Bacilli	**Bacillales**	**Bacillaceae**	**Bifidobacterium**	**animalis**	8.40 ± 2.03 3.09E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**avium**	7.89 ± 1.84 2.71E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp 3C7 DIV0644**	7.30 ± 1.95 6.49E−03			
Firmicutes	Bacilli	**Bacillales**	**Bacillaceae**	**Bifidobacterium**	**animalis**	6.66 ± 1.64 3.09E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp 3G6 DIV0642**	6.39 ± 1.85 1.54E−02			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp kppr-6**	6.17 ± 1.63 6.25E−03			
Actinobacteria	Actinobacteria	**Micrococcales**	**Micrococcaceae**	**Arthrobacter**	**no data**	8.09 ± 1.83 5.77E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp 5B3 DIV0040**	7.05 ± 1.83 5.68E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp CR-Ec1**	6.66 ± 1.64 3.09E−03			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp 3G6 DIV0642**	6.39 ± 1.85 1.54E−02			
Firmicutes	Bacilli	**Bacillales**	**Enterococcaceae**	**Enterococcus**	**sp FDAARGOS 163**	5.33 ± 1.63 6.25E−03			

(Continued)
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in %	Better vs About the same health Week 4			
						Median (IQR)	Log 2 FC mean ± SE	Adjusted P-value^1		
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp	FDAARGOS 375	9.02E−05 (2.08E−05 to 1.91E−02)	4.83E−05 (0.00E+00 to 2.76E−04)	6.12 ± 1.50	3.09E−03
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	orisratti	1.02E−04 (0.00E+00 to 0.00E+00)	0.00E+00 (0.00E+00 to 7.83E−04)	5.94 ± 1.88	3.03E−02	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	casseliflavus	4.22E−03 (0.00E+00 to 6.27E−04)	5.53E−05 (0.00E+00 to 4.45E−04)	5.68 ± 1.49	5.79E−03	
Firmicutes	Bacilli	Lactobacillales	Lactobacillales	lactobacillus	brevis	2.64E−04 (0.00E+00 to 3.45E−05)	5.09E−05 (0.00E+00 to 5.27E−04)	5.61 ± 1.49	6.49E−03	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	pseudoavium	7.17E−05 (0.00E+00 to 3.45E−05)	0.00E+00 (0.00E+00 to 0.00E+00)	5.49 ± 1.57	1.51E−02	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Catenibacterium	mitsuokai	4.69E−03 (0.00E+00 to 1.71E−04)	7.95E−04 (0.00E+00 to 0.00E+00)	5.48 ± 1.60	1.60E−02	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp 6D12 DIV0197	2.71E−04 (0.00E+00 to 1.16E−01)	9.56E−05 (0.00E+00 to 4.21E−04)	5.48 ± 1.57	1.60E−02	
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	canis	1.46E−04 (0.00E+00 to 9.29E−03)	5.90E−05 (0.00E+00 to 1.66E−03)	5.34 ± 1.34	3.73E−02	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	sp HMSC05C03	1.11E−04 (0.00E+00 to 8.99E−04)	0.00E+00 (0.00E+00 to 0.00E+00)	5.28 ± 1.58	1.87E−02	
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	canis	1.46E−04 (0.00E+00 to 1.36E−03)	3.45E−05 (0.00E+00 to 1.93E−04)	5.11 ± 1.67	3.78E−02	
Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	no data	1.82E−04 (0.00E+00 to 2.27E−04)	5.90E−05 (0.00E+00 to 1.22E−03)	5.34 ± 1.34	3.73E−03	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	gallinarum	1.84E−03 (2.06E−04 to 8.66E−03)	8.58E−05 (0.00E+00 to 1.66E−03)	4.82 ± 1.34	1.09E−02	
Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Better vs About the same health Week 4			
------------	-----------	-----------------	-------------------	------------------	---------------	---------------------------------------	--			
						Better overall health \(n = 16\)	About the same overall health \(n = 10\)	Log 2 FC mean ± SE	Adjusted \(P\)-value1	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	dispar	7.80E−05 (0.00E+00 to 1.00E−03)	0.00E+00 (0.00E+00 to 6.09E−05)	4.75 ± 1.45	2.23E−02	
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	malodoratus	1.66E−04 (3.32E−05 to 5.32E−04)	0.00E+00 (0.00E+00 to 3.67E−05)	4.72 ± 1.38	1.64E−02	
Firmicutes	Bacilli	Lactobacillales	Carnobacteriaceae	Carnobacterium	maltaromaticum	2.01E−04 (9.79E−05 to 3.96E−03)	2.93E−05 (0.00E+00 to 9.28E−04)	4.30 ± 1.36	3.03E−02	
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	fermentum	3.96E−04 (0.00E+00 to 1.01E−03)	6.09E−05 (0.00E+00 to 2.59E−04)	4.29 ± 1.37	3.14E−02	
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	garvieae	4.12E−04 (1.69E−04 to 1.80E−03)	1.88E−04 (0.00E+00 to 4.24E−04)	4.09 ± 1.21	1.74E−02	
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	lactis	2.18E−02 (2.76E−03 to 1.32E−01)	6.68E−03 (3.89E−03 to 2.35E−02)	3.88 ± 1.12	1.54E−02	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelatoctostridium	innocuum	6.12E−04 (2.26E−04 to 3.63E−03)	1.46E−04 (3.54E−05 to 2.50E−04)	3.83 ± 0.94	3.09E−03	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Coprobacillus	sp 3 3 56FAA	4.90E−03 (8.45E−04 to 1.62E−02)	8.80E−04 (1.98E−05 to 3.02E−03)	3.54 ± 1.13	3.14E−02	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	no data	no data	2.01E−01 (1.77E−02 to 1.16E+00)	2.66E−02 (4.94E−03 to 2.53E−01)	3.35 ± 1.09	3.63E−02	
Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Coprobacillus	sp 8 2 54BFAA	6.89E−03 (2.25E−03 to 1.77E−02)	5.31E−04 (5.01E−05 to 4.51E−03)	3.15 ± 1.06	4.60E−02	

Lower in “better overall health” (2 species)

Phylum	Class	Order	Family	Genus	Species	Relative abundance, in % Median (IQR)	Better vs About the same health Week 4		
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	stercoris	7.21E−05 (0.00E+00 to 1.05E−03)	1.43E−03 (0.00E+00 to 1.59E−01)	−6.79 ± 1.71	3.73E−03
Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	coprocola	1.50E−05 (0.00E+00 to 5.17E−04)	2.17E−04 (2.38E−05 to 5.16E−02)	−6.58 ± 1.60	3.09E−03

Notes:

1 \(P\) values were adjusted with false discovery rate for multiple comparisons.
FC, fold change; SE, standard error; NS, not significant.
DISCUSSION

We describe GM composition and owner-reported health perception of dogs switching from various brands of kibble to commercial MC diets. To our knowledge, this is the first MC diet study performed in household dogs, including male and female dogs of various breeds across a broad age range. As a result of this diverse and free-living study population these findings may be more generalizable to the dog population than other studies that focus on a single breed or a single diet. Two previously published studies using a similar diet comparison were conducted, however they consisted of eight and 12 Beagles in a laboratory setting (Algya et al., 2018; Do et al., 2021). Dogs in the present study maintained their body weight throughout the study period, therefore changes in health and GM were independent of weight change. Finally, the characterization of gut bacteria in this study was performed with metagenomic sequencing, a powerful technique enabling enhanced taxonomic resolution and accuracy, as well as increased detection of diversity and functional genes, a technique that has not yet been widely used in canine research (Ranjan et al., 2016; Salas-Mani et al., 2018; Xu et al., 2019; Alessandri et al., 2019; Connelly et al., 2019; Do et al., 2021).

All dogs were perceived by their owners as having either better or no change in overall health after diet transition. It is possible that this observation could be subject to bias and may not directly correlate to more objective health outcomes, but as argued by Yeates & Main (2009), owner-reported health assessment is a separate and independent outcome that is especially important in this type of research study. A chance of bias may also derive from the willingness of participants to report the health impact associated with the diet.
transition, and the observation that a significant portion of participants (24%) did not complete the study. However the association between a MC diet and positive health perception has been previously reported using a survey administered to a group of dog owners after a veterinarian formulated MC diets for the dogs (Johnson et al., 2016). Dogs accepted MC diets well and remained healthy in two additional feeding trials (Algya et al., 2018; Do et al., 2021).

Incidents of vomiting and diarrhea were recorded over the four weeks after diet transition. Currently there is not much data on the prevalence and frequency of these symptoms in household dogs, regardless of diet transition. A 2005 survey collecting responses from 772 dog owners in England found that the rate of spontaneous vomiting and diarrhea was one case per 10.6 dog-weeks and one case per 13.4 dog-weeks, respectively (Hubbard et al., 2007). A diet change was suggested to be a cause of diarrhea in some dogs. These are slightly higher than the rates in this present study. Likewise, 27% of dogs experienced diarrhea within seven weeks after boiled minced beef replaced 75% of the calories in an extruded diet (one case per 25.6 dog-weeks) (Herstad et al., 2017, 2018). Other diet transition studies using a raw or MC diet did not report cases of diarrhea or vomiting (Sandri et al., 2017; Algya et al., 2018; Do et al., 2021). Therefore, the rates of vomiting and diarrhea appear to be consistent with data available from other household dog populations.

Fifty eight percent of owners reported lower defecation frequency upon diet transition in this study, although this proportion was not significantly different from those reporting no change. Fecal output has been reported to be significantly lower in dogs fed MC diets compared to extruded diets, despite dogs maintaining the same body weight on different diets (Oba et al., 2020; Do et al., 2021). The extremely high nutrient and energy digestibility of MC diets is suggested to be the main driver of the reduction in fecal output (Do et al., 2021). There was also a non-significant trend towards firmer stool when dogs switched to the test diets in our study. In studies using veterinarian-assessed data or an objective analysis of fecal moisture, fecal consistency was reported to be firmer (Sandri et al., 2017; Bermingham et al., 2017) or comparable (Algya et al., 2018; Schmidt et al., 2018; Do et al., 2021) among healthy dogs fed MC or raw diets compared to those fed a traditional extruded diet.

The intervention diet in this study consisted of many nutrients and dietary components that may have an influence on both health and GM composition, including water (Cameron et al., 2011; Deng et al., 2014; Alexander, Colyer & Morris, 2014), prebiotic fibers (Middelbos et al., 2010; Panasevich et al., 2015; Alexander et al., 2018; Eisenhauer et al., 2019), omega-3 fatty acids (Bauer, 2011), carotenoids, and polyphenols (Kolchin et al., 1991; Kim et al., 2000; Chew et al., 2000; Massimino et al., 2003; Hall et al., 2006; Carrera-Quintanar et al., 2018; Lyu et al., 2018), although high-quality extruded diets may include these nutrients and compounds as well. Nutrient and energy digestibility has also been observed to be different between extruded kibble and MC diets (Algya et al., 2018), and it may facilitate differential impacts on health and GM. Due to the study design, it is impossible to pinpoint which component(s) of the MC diets contributed to the change in
Changes in α-diversity in response to dietary interventions have varied between studies, likely because they are dependent on the diets being compared. Similar to Do et al. (2021), we did not observe any change in the GM α-diversity between kibble and MC diets. A cross-sectional study performed in household dogs also reported no differences in α-diversity between those fed raw and extruded diets (Schmidt et al., 2018). However these findings contrast with previous reports that demonstrate reduced α-diversity upon transitioning to a MC diet in 8 or 11 dogs (Herstad et al., 2017; Algya et al., 2018), or increased α-diversity upon transitioning to a raw food diet in eight dogs (Sandri et al., 2017). α-Diversity was also higher in six household dogs fed raw diets as compared to five household dogs fed commercial extruded diets (Kim et al., 2017). Herstad et al. argued that decreased α-diversity with a cooked beef diet may be due to higher fat content inducing bile production (Herstad et al., 2017), which has been shown to be antimicrobial (Yokota et al., 2012; Herstad et al., 2017). As the fat and protein content in the baseline extruded diets were not statistically different from the intervention diet in this present study, it is possible that the lack of macronutrient composition difference is responsible for the lack of a change in α-diversity. The variety of baseline diets and the utilization of four different MC recipes may also mask the effect of diet transition on α-diversity. Often, the α-diversity is observed to be lower in diseased populations (Wernimont et al., 2020). In this study the Shannon’s diversity index in a subgroup of dogs whose overall health reported to be improved at week four was significantly higher than those that remained unchanged. However, the use of α-diversity and its clinical importance have been recently challenged (Moya & Ferrer, 2016).

Consistent with previous shotgun metagenomic sequencing studies in household dogs (Alessandri et al., 2019; Jha et al., 2020), four phyla, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes, dominated the GM. A variety of taxonomic differences in the microbiome were observed after dietary transition, including increased abundances of many LAB. The abundances of the Lactobacillaceae and Leuconostocaceae families and the Lactobacillus genus were similarly reported to be higher in dogs fed a raw diet compared to a kibble diet (Bermingham et al., 2017; Schmidt et al., 2018). On the contrary, Do et al. (2021) reported lower levels of Lactobacillus in dogs fed MC diets compared to an extruded kibble, but the kibble contained an L. acidophilus fermentation product and high chicory content which were postulated to contribute to the growth of LAB. In many mammals LAB have been suggested to be allochthonous, meaning they are ingested through their natural occurrence on food rather than being true habitants of the distal part of the host GI tract (Walter, 2008). Owing to their demonstrated ability to improve GI health (Grześkowiak et al., 2015; Jensen & Bjørnvad, 2019), selective LAB are often included in probiotic food or supplements. We also observed a significant association between increased abundances of Lactobacillales and dogs reported as having better health after four weeks of the intervention diet.

An increase of Enterobacteriales was also observed with diet transition. Similar increases were previously observed in healthy dogs fed either a MC or a raw diet (Sandri et al., 2017;
While there are pathogens within this order, many species of Enterobacterales, such as *Salmonella* and *E. coli*, are also members of the healthy human and canine GM, and only opportunistically cause disease in humans, for instance, when an immune system is compromised (Moon et al., 2018). Frequently, only specific strains are pathogenic. It is unknown whether some species of Enterobacterales are also associated with increased disease risk in dogs, particularly since some known human pathogens (e.g. *Escherichia/Shigella* spp. (Sandri et al., 2017), β-lactamase producing *E. coli* (Baede et al., 2015), *Salmonella* (Reimschuessel et al., 2017), and *Campylobacter* spp. (Bojanić et al., 2017)) are present in the GI tract of healthy dogs. Additionally, Enterobacteriaes are diverse and have a considerably wide range of abundances in the present study. A wide range of Proteobacteria, whose members predominantly include Enterobacterales, have been previously reported in other cohorts of healthy dogs using metagenomic sequencing (IQR: 3–52% in (Jha et al., 2020)) or 16S rRNA sequencing (range: 0–22% in (Hand et al., 2013), range: 0–17% in (Garcia-Mazcorro et al., 2012)). Therefore the impact of an increased abundance of Enterobacterales on canine health remains to be determined.

Switching to the MC diet also resulted in reduced abundances of some taxa, including species in the order Clostridiales and certain genera, including *Blautia*, *Prevotella*, *Peptostreptococcus*, and *Faecalibacterium*. This result shares some similarities with previous reports with a transition from an extruded kibble to a raw diet (Sandri et al., 2017; Bermingham et al., 2017; Algya et al., 2018; Schmidt et al., 2018). A MC diet also decreased *Prevotella* in dogs switching from an extruded kibble diet (Do et al., 2021), but not *Clostridium*, *Blautia*, or *Faecalibacterium*. Many of these bacteria are present in a healthy human GI tract, but their relevance is unknown in dogs. *F. prausnitzii*, which was lower after the intervention diet, was also shown to be lower in dogs fed minced beef than those fed an extruded diet (Herstad et al., 2017). This bacterium is thought to be beneficial because of its ability to produce butyrate, a short-chain fatty acid that serves as an energy source for colonocytes (Louis & Flint, 2009; Donohoe et al., 2011). However, its reduced abundance in MC diets may be due to other butyrate-producing bacteria becoming more abundant (e.g. Firmicutes (Macfarlane & Macfarlane, 2003)), as it has been shown with increased levels of *Roseburia* and butyrate in dogs fed minced beef (Herstad et al., 2017), but not in the previous trial (Do et al., 2021), or in the present study. This is further supported by the observation that the KO terms related to short-chain fatty acid metabolism remained unchanged upon diet transition in this study.

Our results indicate a differential microbiomic response to dietary transition based on the magnitude of change in β-diversity (i.e. HR, MR and LR). While similar analytical approaches have been adopted in human research (Salonen et al., 2014; Mills et al., 2019), to our knowledge this is the first study to report distinct varied microbial responses in dogs in response to diet change. Using assorted multivariate analyses, the GM at baseline was demonstrated to be different among HR, MR and LR. Specifically, HRs had lower abundances of Lactobacillales and Enterobacterales, and higher abundances of Bacteroidales than the LRs, and they responded to the MC diet differently and more
robustly. We hypothesize that the niche occupied by Bacteroidales at baseline becomes more favorable for Enterobacterales and LAB growth upon diet transition. This may explain why the lower abundance of Enterobacterales at baseline was associated with greater PCo1 score change. Moreover, the protein content of the baseline diet was positively correlated with the magnitude of PCo1 change, although we acknowledge the small sample size ($n = 15$) as well as a previous analysis of 750 commercial dry pet foods demonstrating 1.6% difference between the guaranteed and actual analysis of crude protein (Hill et al., 2009). Given that the protein content of the baseline and the intervention diets were statistically comparable, and that Enterobacterales are able to thrive on proteins, carbohydrates, or lipids (Moon et al., 2018), the observed correlation may be explained by the change in the ingredients despite an unmodified macronutrient profile. For example, replacing chicken with whole cricket meal led to a small change in the GM profile in dogs (Jarett et al., 2019), and replacing cellulose and brewer’s rice with potato fiber up to 6% also led to an increase of Faecalibacterium (Panasevich et al., 2015). Such associative findings between baseline characteristics and magnitude of responses to the intervention can serve as a basis for future studies that aim to construct predictive models, and ultimately, dietary plans tailored to each individual based on existing microbiome composition and function for optimized health outcomes (Zmora et al., 2018).

Changes in GM function characterized by KEGG were detected with a multivariate analysis (PCoA), but remained less defined with univariate analysis (negative binomial GLM with DESeq2) in this study. The univariate method is inferior in terms of its ability to capture small changes cumulatively. GM functional redundancy under different dietary environments has been demonstrated (Moya & Ferrer, 2016), and changes in GM profile in healthy dogs may not reflect a drastic change in the functionality as compared to those with improved or worsened health status after an intervention (Guard et al., 2015). Thus the lack of any drastic change in functionality is likely at least partially reflective of dogs being healthy at both baseline and week 4. Availability of data from other platforms such as transcriptional profiling or targeted metabolomics may complement metagenomic sequencing in capturing finer changes in GM functionality.

In conclusion, we have demonstrated significant changes in the GM profile of healthy dogs transitioning from a variety of kibble diets to MC diets. The magnitude of shift is associated with baseline GM profile and protein content of the baseline diet. The test diets were well accepted throughout the study, and the majority of dog owners report an improvement or no change in specific health outcomes. Despite its novelty, there are some limitations to the study. A control group where dogs remained on the baseline diet for four weeks was not included, thus any direct causal relationship cannot be established between diet transition and outcomes. However, observed changes in the GM were likely to be caused by diet change as minimal changes were expected if baseline diets were maintained for four weeks. While the four different MC diet recipes may have dampened the signal, most dogs were on a mixed-recipe diet and a wide variety of baseline diets may have provided an opportunity to investigate the wide range of diets and
responses among subjects. Finally, while no clinical measures were available, the health data do reflect the owner's perceptions of health.

ACKNOWLEDGEMENTS
The authors are grateful for support from Jessica Siasoco with participant recruitment. We are also grateful to our participants who helped make this study possible. We would like to thank Jan Suchodoski, PhD and Kelly Swanson, PhD for their thoughtful consideration and helpful discussion regarding data analysis and interpretation.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
NomNomNow, Inc. provided monetary support for this research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NomNomNow, Inc.

Competing Interests
Jirayu Tanprasertsuk, Justin Shmalberg, LeeAnn M. Perry, Ryan W. Honaker are employees of and/or hold stocks or stock options in NomNomNow, Inc. Aashish R. Jha, Heather Maughan, Devon E. Tate consult for NomNomNow, Inc.

Author Contributions
- Jirayu Tanprasertsuk conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Justin Shmalberg conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Heather Maughan analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Devon E. Tate analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- LeeAnn M. Perry analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Aashish R. Jha analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Ryan W. Honaker conceived and designed the experiments, performed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The metagenomic sequences are available at NCBI: BioProject PRJNA714112.

The raw sequence data is also available at FigShare:
https://figshare.com/projects/Gut_microbiome_and_heterogeneity_of_responses_in_healthy_household_dogs_transitioning_from_an_extruded_to_a_mildly_cooked_diet/100469.

Data Availability
The following information was supplied regarding data availability:

The R codes, phylogenetic sequencing data (read counts), alpha-diversity, and health assessment data are available as Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.11648#supplemental-information.

REFERENCES
Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. 2018. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems 3(3):e00202-17 DOI 10.1128/mSystems.00202-17.

Al-Ghalith G, Knights D. 2017. BURST enables optimal exhaustive DNA alignment for big data. GitHub. Available at https://github.com/knights-lab/burst.

Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, Duranti S, Turrioni F, Ossiprandi MC, Van Sinderen D, Ventura M. 2019. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environmental Microbiology 21(4):1331–1343 DOI 10.1111/1462-2920.14540.

Alexander JE, Colyer A, Morris PJ. 2014. The effect of reducing dietary energy density via the addition of water to a dry diet, on body weight, energy intake and physical activity in adult neutered cats. Journal of nutritional science 3:e21 DOI 10.1017/jns.2014.22.

Alexander C, Cross T-WL, Devendran S, Neumer F, Theis S, Ridlon JM, Suchodolski JS, De Godoy MRC, Swanson KS. 2018. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. The British Journal of Nutrition 120(6):1–10 DOI 10.1017/S0007114518001952.

Algya KM, Cross T-WL, Leuck KN, Kastner ME, Baba T, Lye L, De Godoy MRC, Swanson KS. 2018. Apparent total-tract macronutrient digestibility, serum chemistry, urinalysis, and fecal characteristics, metabolites and microbiota of adult dogs fed extruded, mildly cooked, and raw diets. Journal of Animal Science 96(9):3670–3683 DOI 10.1093/jas/sky235.

Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K. 2013. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495(7441):360–364 DOI 10.1038/nature11837.

Baede VO, Wagenaar JA, Broens EM, Duim B, Dohmen W, Nijssse R, Timmerman AJ, Hordijk J. 2015. Longitudinal study of extended-spectrum-β-lactamase- and AmpC-producing Enterobacteriaceae in household dogs. Antimicrobial agents and chemotherapy 59(6):3117–3124 DOI 10.1128/AAC.04576-14.
Bauer JE. 2011. Therapeutic use of fish oils in companion animals. *Journal of the American Veterinary Medical Association* 239(11):1441–1451 DOI 10.2460/javma.239.11.1441.

Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. 2017. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. *PeerJ* 5:e3019 DOI 10.7717/peerj.3019.

Bojanić K, Midwinter AC, Marshall JC, Rogers LE, Biggs PJ, Acke E. 2017. Isolation of *Campylobacter* spp. from client-owned dogs and cats, and retail raw meat pet food in the Manawatu, New Zealand. *Zoonoses and Public Health* 64(6):438–449 DOI 10.1111/zph.12323.

Cameron KM, Morris PJ, Hackett RM, Speakman JR. 2011. The effects of increasing water content to reduce the energy density of the diet on body mass changes following caloric restriction in domestic cats. *Journal of Animal Physiology and Animal Nutrition* 95(3):399–408 DOI 10.1111/j.1439-0396.2010.01107.x.

Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, Sánchez-Sánchez MA, Vizmanos B, Ortuño-Sahagún D. 2018. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. *Mediators of Inflammation* 2018:9734845 DOI 10.1155/2018/9734845.

Chew BP, Park JS, Wong TS, Kim HW, Weng BB, Byrne KM, Hayek MG, Reinhart GA. 2000. Dietary β-carotene stimulates cell-mediated and humoral immune response in dogs. *The Journal of Nutrition* 130(8):1910–1913 DOI 10.1093/jn/130.8.1910.

Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. 2019. Low dose oral beta-lactamase protects the gut microbiome from oral beta-lactam-mediated damage in dogs. *AIMS Public Health* 6(4):477–487 DOI 10.3934/publichealth.2019.4.477.

Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. *Cell Metabolism* 13(5):517–526 DOI 10.1016/j.cmet.2011.02.018.

Eisenhauer L, Vahjen W, Dadi T, Kohn B, Zentek J. 2019. Effects of brewer’s spent grain and carrot pomace on digestibility, fecal microbiota, and fecal and urinary metabolites in dogs fed low or high protein diets. *Journal of Animal Science* 97(10):4124–4133 DOI 10.1093/jas/skz264.

Garcia-Mazcorro JF, Dowd SE, Poulsen J, Steiner JM, Suchodolski JS. 2012. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. *MicrobiologyOpen* 1(3):340–347 DOI 10.1002/mbo3.36.

Grzeskowiak Ł, Endo A, Beasley S, Salminen S. 2015. Microbiota and probiotics in canine and feline welfare. *Anaerobe* 34:14–23 DOI 10.1016/j.anaerobe.2015.04.002.

Guard BC, Barr JW, Reddivari L, Klemashevich C, Jayaraman A, Steiner JM, Vanamala J, Suchodolski JS. 2015. Characterization of microbial dysbiosis and metabolic changes in dogs with acute diarrhea. *PLOS ONE* 10(5):e0127259 DOI 10.1371/journal.pone.0127259.

Hall JA, Picton RA, Finneran PS, Bird KE, Skinner MM, Jewell DE, Zicker S. 2006. Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles. *Veterinary Immunology and Immunopathology* 113(1–2):224–233 DOI 10.1016/j.vetimm.2006.03.019.
Hand D, Wallis C, Colyer A, Penn CW. 2013. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity. *PLOS ONE* 8(1):e53115 DOI 10.1371/journal.pone.0053115.

Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, Rud I, Sekelja M, Skancke E. 2017. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. *BMC Veterinary Research* 13(1):147 DOI 10.1186/s12917-017-1073-9.

Herstad KMV, Ronning HT, Bakke AM, Moe L, Skancke E. 2018. Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study. *Acta Veterinaria Scandinavica* 60(1):29 DOI 10.1186/s13028-018-0383-7.

Hill RC, Choate CJ, Scott KC, Molenberghs G. 2009. Comparison of the guaranteed analysis with the measured nutrient composition of commercial pet foods. *Journal of the American Veterinary Medical Association* 234(3):347–351 DOI 10.2460/javma.234.3.347.

Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R, Knights D. 2018. Evaluating the information content of shallow shotgun metagenomics. *mSystems* 3(6):e00069-18 DOI 10.1128/mSystems.00069-18.

Hubbard K, Skelly BJ, McElvie J, Wood JLN. 2007. Risk of vomiting and diarrhoea in dogs. *The Veterinary Record* 161(22):755–757 DOI 10.1136/vr.161.22.755.

Jarett JK, Carlson A, Rossoni Serao M, Strickland J, Serumilli L, Ganz HH. 2019. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. *PeerJ* 7(10):e7661 DOI 10.7717/peerj.7661.

Jensen AP, Bjørnvad CR. 2019. Clinical effect of probiotics in prevention or treatment of gastrointestinal disease in dogs: a systematic review. *Journal of Veterinary Internal Medicine/ American College of Veterinary Internal Medicine* 33(5):1849–1864 DOI 10.1111/jvim.15554.

Jha AR, Shmalberg J, Tanprasertsuk J, Perry L, Massey D, Honaker RW. 2020. Characterization of gut microbiomes of household pets in the United States using a direct-to-consumer approach. *PLOS ONE* 15(2):e0227289 DOI 10.1371/journal.pone.0227289.

Johnson LN, Linder DE, Heinze CR, Kehs RL, Freeman LM. 2016. Evaluation of owner experiences and adherence to home-cooked diet recipes for dogs. *The Journal of Small Animal Practice* 57(1):23–27 DOI 10.1111/jsap.12412.

Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Walter J, Menon R, Koecher K, Knights D, Personalized Microbiome Class Students. 2019. Daily sampling reveals personalized diet-microbiome associations in humans. *Cell Host & Microbe* 25(6):789–802.e5 DOI 10.1016/j.chom.2019.05.005.

Kanehisa M, Sato Y. 2020. KEGG Mapper for inferring cellular functions from protein sequences. *Protein Science: A Publication of the Protein Society* 29(1):28–35 DOI 10.1002/pro.3711.

Khun M. 2014. Caret: classification and regression training. R package version 6.0-35. Available at https://cran.r-project.org/package=caret.

Kim J, An J-U, Kim W, Lee S, Cho S. 2017. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. *Gut Pathogens* 9(1):68 DOI 10.1186/s13099-017-0218-5.

Kim HW, Chew BP, Wong TS, Park JS, Weng BB, Byrne KM, Hayek MG, Reinhart GA. 2000. Dietary lutein stimulates immune response in the canine. *Veterinary immunology and immunopathology* 74(3–4):315–327 DOI 10.1016/S0165-2427(00)00180-X.

Kolchin IN, Maksiutina NP, Balanda PP, Luik AJ, Bulakh VN, Moibenko AA. 1991. The cardioprotective action of quercetin in experimental occlusion and reperfusion of the coronary artery in dogs. *Farmakologiya i Toksikologiya* 54:20–23.
Laflamme D. 1997. Development and validation of a body condition score system for dogs. *Canine Practice* 22:10–15.

Lewis SJ, Heaton KW. 1997. Stool form scale as a useful guide to intestinal transit time. *Scandinavian Journal of Gastroenterology* 32(9):920–924 DOI 10.3109/00365529709011203.

Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. *FEMS Microbiology Letters* 294(1):1–8 DOI 10.1111/j.1574-6968.2009.01514.x.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. *Genome Biology* 15(12):550 DOI 10.1186/s13059-014-0550-8.

Lyu Y, Wu L, Wang F, Shen X, Lin D. 2018. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. *Experimental Biology and Medicine* 243(7):613–620 DOI 10.1177/1535370218763760.

Macfarlane S, Macfarlane GT. 2003. Regulation of short-chain fatty acid production. *The Proceedings of the Nutrition Society* 62(1):67–72 DOI 10.1079/PNS2002207.

MacFarlane M, Rousseuwp M, Struyt A, Hubert M. 2015. *Cluster: cluster analysis basics and extensions*. R package version 2.0.1. Available at https://cran.r-project.org/package=cluster.

Massimino S, Kearns RJ, Loos KM, Burr J, Park JS, Chew B, Adams S, Hayek MG. 2003. Effects of age and dietary β-carotene on immunological variables in dogs. *Journal of Veterinary Internal Medicine/American College of Veterinary Internal Medicine* 17(6):835–842 DOI 10.1111/j.1939-1676.2003.tb02523.x.

Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. 2018. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. *MicrobiologyOpen* 7(5):e00677 DOI 10.1002/mbo3.677.

Moya A, Ferrer M. 2016. Functional redundancy-induced stability of gut microbiota subjected to disturbance. *Trends in Microbiology* 24(5):402–413 DOI 10.1016/j.tim.2016.02.002.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2014. *Vegan: community ecology package*. R package version 2.2-0. Available at https://cran.r-project.org/package=vegan.

Panasevich MR, Kerr KR, Dilger RN, Fahey GC Jr, Guérin-Deremaux I, Lynch GL, Wils D, Suchodolski JS, Steer JM, Dowd SE, Swanson KS. 2015. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. *The British Journal of Nutrition* 113(1):125–133 DOI 10.1017/S0007114514003274.

Pilla R, Suchodolski JS. 2019. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. *Frontiers in Veterinary Science* 6:498 DOI 10.3389/fvets.2019.00498.

PRWeb. 2015. Allprovide study shows thirty-three percent of U.S. pet owners are interested in the fresh, natural pet food diet. Available at https://www.prweb.com/releases/2015/06/prweb12787651.htm (accessed 16 September 2020).
Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. 2016. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. *Biochemical and Biophysical Research Communications* 469(4):967–977 DOI 10.1016/j.bbrc.2015.12.083.

Redfern A, Suchodolski J, Jergens A. 2017. Role of the gastrointestinal microbiota in small animal health and disease. *Veterinary Record* 181(14):370 DOI 10.1136/vr.103826.

Reimschuessel R, Grabenstein M, Guag J, Nemser SM, Song K, Qiu J, Clothier KA, Byrne BA, Marks SL, Cadmus K, Paboliona K, Sanchez S, Rajeev S, Ensley S, Frana TS, Jergens AE, Chappell KH, Thakur S, Byrum B, Cui J, Zhang Y, Erdman MM, Rankin SC, Daly R, Das S, Ruesch L, Lawhon SD, Zhang S, Baszler T, Diaz-Campos D, Hartmann F, Okwumabua O. 2017. Multilaboratory survey to evaluate Salmonella prevalence in diarrheic and nondiarrheic dogs and cats in the United States between 2012 and 2014. *Journal of Clinical Microbiology* 55(5):1350–1368 DOI 10.1128/JCM.02137-16.

Salas-Mani A, Jeusette I, Castillo I, Manuelian CL, Lionnet C, Iraclis N, Sanchez N, Fernández S, Vilaseca L, Torre C. 2018. Fecal microbiota composition changes after a BW loss diet in Beagle dogs. *Journal of Animal Science* 96(8):3102–3111 DOI 10.1093/jas/sky193.

Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, De Vos WM. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. *The ISME Journal* 8(11):2218–2230 DOI 10.1038/ismej.2014.63.

Sandri M, Dal Monego S, Conte G, Sgorlon S, Stefanon B. 2017. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. *BMC Veterinary Research* 13(1):65 DOI 10.1186/s12917-017-0981-z.

Schmidt M, Unterer S, Suchodolski JS, Guard BC, Lidbury JA, Steiner JM, Fritz J, Kölle P. 2018. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. *PLOS ONE* 13(8):e0201279 DOI 10.1371/journal.pone.0201279.

Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. *Bioinformatics* 21(20):3940–3941 DOI 10.1093/bioinformatics/bti623.

Tanprasertsuk J, Jha AR, Shmalberg J, Jones RB, Perry LM, Maughan H, Honaker RW. 2021. The microbiota of healthy dogs demonstrates individualized responses to synbiotic supplementation in a randomized controlled trial. *Animal Microbiome* 3(1):36 DOI 10.1186/s42523-021-00098-0.

Tran QD, Hendriks WH, Van der Poel AFB. 2008. Effects of extrusion processing on nutrients in dry pet food. *Journal of the Science of Food and Agriculture* 88(9):1487–1493 DOI 10.1002/jsfa.3247.

Walter J. 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. *Applied and Environmental Microbiology* 74(16):4985–4996 DOI 10.1128/AEM.00753-08.

Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. 2020. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: impact on health and disease. *Frontiers in Microbiology* 11:1266 DOI 10.3389/fmicb.2020.01266.

Xu H, Zhao F, Hou Q, Huang W, Liu Y, Zhang H, Sun Z. 2019. Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. *Food & Function* 10(5):2618–2629 DOI 10.1039/C9FO00087A.

Yeates J, Main D. 2009. Assessment of companion animal quality of life in veterinary practice and research. *The Journal of Small Animal Practice* 50(6):274–281 DOI 10.1111/j.1748-5827.2009.00755.x.
Yokota A, Fukiya S, Islam KBMS, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S. 2012. Is bile acid a determinant of the gut microbiota on a high-fat diet? *Gut Microbes* 3(5):455–459 DOI 10.4161/gmic.21216.

Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, Kotler E, Zur M, Regev-Lehavi D, Brik RB-Z, Federici S, Cohen Y, Linevsky R, Rothschild D, Moor AE, Ben-Moshe S, Harmelin A, Itzkovitz S, Maharshak N, Shibolet O, Shapiro H, Pevsner-Fischer M, Sharon I, Halpern Z, Segal E, Elinav E. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. *Cell* 174(6):1388–1405.e21 DOI 10.1016/j.cell.2018.08.041.