AUTOIMMUNE MICE MAKE ANTI-Fcγ RECEP TOR ANTIBODIES

BY PETER BOROS,* JIANMIN CHEN,* CONSTANTIN BONA,† AND JAY C. UNKELESS*

From the Departments of *Biochemistry and †Microbiology, Mount Sinai School of Medicine, New York, New York 10029

Hallmarks of autoimmune diseases such as SLE are hypergammaglobulinemia, the production of autoantibodies, and elevated levels of circulating immune complexes. Several mouse strains are used as models of SLE (see reference 1 for review), including NZB, NZB/NZW F1, MRL/lpr, and BXSB. In human and murine SLE, there is frequently a pronounced inhibition of macrophage binding and phagocytosis of IgG-sensitized erythrocytes and immune complexes (2-4). One possible reason for this inhibition is the downmodulation of the macrophage FcγR after binding of immune complexes. An alternate explanation for the inhibition of FcγR function might be the binding of anti-FcγR autoantibody to the macrophage FcγR.

In this study, we have used a recombinant truncated FcγR (tFcγR)† to screen murine sera and mAbs for naturally occurring anti-FcγR antibody. The tFcγR is derived from murine FcγRIIβ, and consists of the two external Ig-like domains of muFcγRIIβ, but lacks the transmembrane and cytoplasmic domains of the receptor (5). We report here the presence and characterization of anti-FcγR antibodies in sera of some mice genetically prone to autoimmune diseases and anti-FcγR hybridomas derived from NZB and motheaten (me°) mice.

Materials and Methods

mAbs and Sera. The mAbs that we screened for anti-FcγR activity were derived from fusions with spleen cells from old NZB mice or young NZB mice after stimulation with LPS (6). Other hybridomas screened were from unstimulated viable me° mice (7). The IgM mAbs were all purified by affinity chromatography on an anti-κ IgG-Sepharose column and were eluted from the column with 0.1 M glycine HCl, pH 2.3. Samples of sera from NZB, NZB/NZW F1, MRL/lpr, and BXSB mice were kindly given to us by Dr. Argyris Theofilopoulos (Scripps Clinic, La Jolla, CA). Sera from me°, tightskin mouse (TSK), C57Bl6/Jα/α, and C3H/HeJ were obtained from animals purchased from The Jackson Laboratory (Bar Harbor, ME). Anti-DNP hybridomas DHK109.3 (IgG1) and DHK10.12 (IgG2b) were a gift from Dr. Milton Schlessinger (Washington University Medical School, St. Louis, MO); anti-DNP hybridomas U7.6 (IgG1) and U7-27 (IgG2a) were a gift from Dr. Zelig Eschar (Weizmann Institute, Rehovot, Israel).

This work was supported by National Institutes of Health grants AI-14322 (J. C. Unkeless) and AI-24671 (C. Bona and J. C. Unkeless).

Address correspondence to Jay C. Unkeless, Department of Biochemistry, Box 1020, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029.

† Abbreviations used in this paper: AchR, acetyl choline receptor; IgG, IgG-sensitized erythrocytes; me°, motheaten; tFcγR, truncated FcγR; TSK, tightskin mouse.

J. Exp. Med. © The Rockefeller University Press · 0022-1007/90/05/1381/15 $2.00 1581
Volume 171 May 1990 1581-1595
tFcyR. tFcyR was purified by affinity chromatography on an IgG-Sepharose column from conditioned medium of the D1959 CHO cell line as previously described (5). The purified protein in PBS was denatured, for some experiments, by reduction with 10 mM dithiothreitol at 56°C followed by alkylation with 25 mM iodoacetamide. The alkylated receptor was then dialyzed against PBS.

ELISA. Anti-FcγR Ig was assayed by ELISA. Flat-bottomed microtiter plates (Immulon-2; Dynatech Laboratories Inc., Alexandria, VA) were coated overnight with either native or denatured FcγR (2.5 μg/ml in 0.1 M NaCO₃ buffer, pH 9.5) and then blocked with 1.0% NP-40 in PBS. FcγR-coated plates were then incubated with serum samples diluted in 1% NP-40/PBS. Anti-FcγR antibodies were detected by sequential addition of biotinylated goat F(ab')₂ anti-mouse IgM or biotinylated goat anti-mouse IgG (0.5 μg/ml) (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) and streptavidin-horseradish peroxidase (0.5 μg/ml) (Kirkegaard & Perry Laboratories, Inc.), and developed as described previously (5). The rat mAb 2.4G2 was detected using a horseradish peroxidase goat anti-rat IgG reagent (Kirkegaard & Perry Laboratories, Inc.). For competition assays, protocols were similar except that the mAbs were incubated (1 h, room temperature) with serial dilutions of either native tFcyR or mAb 2.4G2 before they were adsorbed onto the tFcyR-coated plates. All experiments were done in triplicate and the variation between the triplicates was <10%.

Binding Assays. Binding of mAbs to cells was determined by FACS analysis. J774 cells (a macrophage-like cell line) were incubated in suspension (0.5-1.0 x 10⁶ in 100 μl) with mAbs directly conjugated to FITC, sera, or affinity-purified Ig diluted in PBS containing 1% BSA (1 h, 4°C), and washed with PBS-1% BSA. For experiments with mouse sera or affinity-purified mouse Ig, bound Ig was visualized after incubation (1 h, 4°C) with either biotinylated goat F(ab')₂ anti-mouse IgM or biotinylated goat anti-mouse IgG followed by streptavidin-FITC (Kirkegaard and Perry Laboratories, Inc.) used at manufacturer's recommended dilution. After fixation in 1% neutral buffered formalin, the cells were analyzed by flow cytometry on a Epics cytofluorograph (Coulter Electronics Inc., Hialeah, FL) with three decades of amplification. Mean fluorescence peak channels were converted to relative fluorescence to compare the samples.

Affinity Chromatography. A tFcyR affinity column was made by coupling 4 mg of tFcyR to 1 ml of Reactigel-HW65 (Pierce Chemical Co., Rockford, IL) according to manufacturer's instructions. The efficiency of coupling was >90%. Serum (0.6 ml) was passed over a 3 x 100-mm column, which was then washed with 0.1 M NaPO₄, pH 7.4. Bound Ig was eluted with 0.1 M glycine HCl, pH 2.3, neutralized with .1 vol of 1 M Tris HCl, pH 8.3, and the amount of IgM and IgG was analyzed by ELISA with IgM and IgG standards.

Inhibition of Binding Immune Complexes by Anti-FcγR mAbs and Mouse Sera. 10 mg BSA in 1 ml of PBS was incubated with 1 mg trinitrobenzene sulfonic acid to introduce the TNP moiety. To remove the uncoupled hapten, the mixture was passed over a small Sephadex G25 column. The molar ratio of BSA/TNP was 1:20 (8). Anti-DNP antibody U7.6 (IgGl) was conjugated with FITC, and an optimum ratio of FITC-U7.6/DNP₂₀-BSA for binding of immune complexes to J774 cells was determined by FACS. In experiments here, we used a 4:1 ratio of FITC-U7.6/DNP₂₀-BSA. Inhibition of the binding of FITC-immune complexes to J774 cells by anti-FcγR antibodies and sera from different mouse strains was examined by FACS. J774 cells were preincubated (1 h, room temperature) with dilutions of test sera or mAbs, washed, and incubated with the FITC-immune complexes (1 h, 4°C).

Results

Detection of Anti-FcγR Antibodies in Mouse Serum. To detect the presence of anti-FcγR antibodies in sera, we developed an ELISA using microtiter plates coated with a recombinant truncated murine FcγRIIβ secreted by CHO cells (5). The protein consists solely of the two Ig-like extracellular domains. Since the native tFcyR binds IgG, tFcyR used to coat the ELISA plates was reduced and alkylated, a procedure that destroys the epitope recognized by mAb 2.4G2 and also ablates the binding of immune complexes.
We found that several strains of mice, most notably NZB, NZB/NZW F1, me, and TSK, have readily detectable anti-FcγRIgM in their serum (Fig. 1). The titer of anti-FcγRI antibody for TSK, NZB/NZW F1, and, to a lesser degree, MRL/lpr mice, increased with the age of the mice. Although in this set of sera the titers of anti-FcγRIgM in 3-mo-old vs. 8-mo-old NZB mice were not significantly different (Fig. 1), a second set of sera from NZB mice showed a clear correlation between anti-FcγRIgM titer and age (Fig. 2). Surprisingly, the older BXSB males, which develop a severe form of SLE, did not have a significant level of anti-FcγRIgM.

Titration of two serum samples from autoimmune mice and a normal C58/J serum for anti-FcγRIgM on tFcγR-coated and control microtiter plates is shown in Fig. 3. The C58/J serum gives no signal either on tFcγR or control wells at any dilution. Although the autoimmune sera show a slightly higher background than the C58/J serum, there is a >10-fold difference between the tFcγR-coated and the control wells. We chose as controls C58/J mice since old animals produce small amounts of anti-
DNA antibodies but do not develop a lupus-like disease. The IgM levels of the autoimmune mice are at most threefold higher than levels of normal mice (1). Therefore, results in Fig. 3 could not be due to elevated levels of IgM in sera of autoimmune mice compared with normal controls. To exclude the possibility that the binding of immune complexes in the serum of mice with autoimmune disease might explain these results, we centrifuged normal and autoimmune sera in an airfuge (Beckman Instruments) for 20 min at 100,000 g. The resultant decrease of 30–50% in the titer of anti-FcγR IgM is probably due to sedimentation of IgM in the short path length of the airfuge rotor (data not shown).

Mice that make IgM anti-FcγR antibody also make IgG anti-FcγR antibody, a fact that indicates that the response is not limited to IgM. There is a positive correlation between titers of IgM anti-FcγR antibody and IgG anti-FcγR antibody in individual sera (Fig. 4). Internal IgM and IgG controls confirm the IgG and IgM specificity of the reagents used in these assays.

Affinity Purification of anti-FcγR Antibody. To determine with more precision the levels of anti-FcγR Ig and to confirm the ELISA data indicating that there is little anti-FcγR Ig in normal mouse serum, we subjected serum pooled from 8-mo-old NZB female and 12-mo-old C58/J female mice to affinity chromatography on a tFcγR Reactigel-HW65 column. After elution with 0.1 M glycine HCl, pH 2.3, the eluate was analyzed for IgM and IgG by ELISA with appropriate standards. We found 16 μg/ml of anti-FcγR IgM in pooled serum from aged NZB female mice, but no IgM was eluted after affinity chromatography pool of serum from C58/J female mice. The eluted material from the tFcγR column was also assayed for IgG. Eluates from both the C58/J and the NZB serum samples contained 90 μg of IgG/ml of serum. However, since the tFcγR coupled to the column was not denatured, we interpret this as reflecting primarily binding of IgG to the tFcγR, and not antigenic specificity of the IgG.

To examine the specificity of the IgG eluted from the tFcγR column, we assayed fractions on microtiter plates coated with reduced and alkylated tFcγR. IgG affinity purified from the NZB serum bound to the denatured tFcγR, and showed a decrease in OD 495 nm with increasing dilution. In contrast, the IgG eluted from the C58/J serum barely exceeded the background of the IgG2a myeloma control, and the OD

![Figure 3](image-url)
FIGURE 4. Correlation of anti-FcγR IgM and IgG. Individual sera (diluted 1:100 in NP-40/PBS) from BXSB (O), NZB (O), or NZB/NZW F₁ (Δ) mice were assayed on plates coated with reduced and alkylated tFcγR and developed with specific IgG or IgM reagents as described.

495 nm did not vary with dilution (Fig. 5). Since the same amount of IgG was isolated from the C58/J serum as from the NZB serum, we assume most of the IgG is nonspecific. Therefore, the binding we detect in this experiment reflects high affinity anti-FcγR IgG present at concentrations <2.5 μg/ml.

In addition to binding to tFcγR-coated plates, the affinity-purified Ig from the NZB serum bound to J774 macrophages to a much greater extent than either affinity-purified Ig from C58/J serum or isotype controls (Table I, Fig. 6). We also examined the staining of macrophages by serum from C58/J, NZB and me¹ mice. The autoimmune sera, but not the C58/J serum, contained IgM that bound to J774 cells. Surprisingly, we did not find any staining of J774 cells by NZB or me¹ sera when the cells were stained with an anti-IgG reagent.

Anti-FcγR mAbs. Since the sera of NZB mice had a high titer of anti-FcγR antibody, we decided to screen by ELISA a panel of mAbs from autoimmune mice (6). Out of 20 IgM mAbs from fusions with LPS-stimulated spleen cells from 3-mo-old NZB mice, one anti-FcγR IgM, ZK2H5-3, was found; out of 20 mAbs isolated from fusions with spleen cells from unstimulated 16-mo-old NZB mice, two more IgM mAbs, ZL37-9 and ZL173-7, were identified (Fig. 7). We found, in addition, an anti-FcγR IgG mAb, UN40-6, from a fusion with me¹ mouse spleen cells (7). Fig. 7 shows the binding of these mAbs to native and reduced and alkylated tFcγR, as well as the binding of monomeric IgG1 and mAb 2.4G2 under the same conditions. Because IgM does not bind to FcγR, we could use native FcγR to coat ELISA plates without fear of artifactual binding of IgM. We found that ZL37-9 and ZL173-7 bound
better to native tFcyR than to reduced and alkylated tFcyR, whereas ZK2H5-3 bound equally to both forms. The 2.4G2 epitope is completely inactivated by reduction and alkylation, and the binding of IgG1 is also strongly inhibited.

We examined the avidity of binding of the IgM anti-FcγR mAbs to native tFcyR-coated microtiter plates (Fig. 8). In several experiments the maximal binding of mAb ZK2H5-3 was less than ZL37-9 and ZL173-7. ZL37-14 is an IgM mAb control. ZL37-9 had the poorest avidity, \(\sim 10^8 \text{ M}^{-1} \), while the other two have an apparent \(K_a \) of 10^9.

Table I

Binding of Affinity-purified IgG and Sera to J774 Cells

Sample	Percent positive cells	
	Anti-IgG	Anti-IgM
IgG1 (DHK109.3)	2.6	
IgG2a (U7-27)	2.9	
IgG2b (DHK10.12)	2.5	
C58/J Ig (affinity purified)	8.4	
NZB Ig (affinity purified)	32.2	
C58/J serum (12 mo)	2.6	1.8
NZB serum (3 mo)	1.4	10.8
NZB serum (8 mo)	3.3	16.6
mAb serum (2 mo)	1.3	19.4

Cells were incubated with isotype controls (5 µg/ml), with affinity-purified IgG (2.5 µg/ml of IgG/ml), or with serum (1:100 dilution) diluted in PBS containing 1% BSA. The cells were stained with biotinylated reagents as described in Materials and Methods. The percentage of cells that were positive was estimated by setting the cursor so that \(~1\%\) of the control without mAb were positive.
M⁻¹. This high avidity probably reflects the dense coating of the ELISA plates with FcγRII, which results in multivalent cooperative binding of IgM.

We examined the binding of the mAbs to J774 cells. To eliminate uncertainties inherent in the use of second antibody reagents, we derivatized the mAbs directly with FITC. The mAbs ZL37-9 and ZL173-7 stain murine macrophage cell lines poorly. This probably reflects a low intrinsic affinity of the antibodies. ZK2H5-3 and UN40-6 stain J774 cells intensely, but since these mAbs have so many specificities, we cannot unequivocally state that the mAbs are binding to the FcγRII. The positively stained population examined by fluorescence microscopy showed a surface membrane fluorescence pattern typical of membrane antigens.

The specificity of three anti-FcγRII mAbs was examined further by competition assays with both tFcγRII (Fig. 9 A) and mAb 2.4G2 (Fig. 9 B) (9), which is directed against muFcγRII. All mAbs were inhibited by tFcγRII. The inhibition by mAb 2.4G2 varies for the different mAbs. ZK2H5-3 is inhibited by 50-100-fold less 2.4G2 IgG than are ZL37-9 and ZL173-7. However, from these results, one cannot conclude that the antibodies ZL37-9 and ZL173-7 recognize similar epitopes since steric hindrance could account for the results. The data, however, confirm the anti-FcγRII specificity of the IgM anti-FcγRII mAbs.
The 40 mAbs that we screened had been examined previously for reactivity with a variety of autoantigens, including DNA, histones, type I-IV collagens, an IgG2a myeloma protein, myelin basic protein, intrinsic factor, thyroglobulin, thyroid-stimulating hormone receptor, acetyl choline receptor (AchR), transferrin, murine bromelain-treated RBC membranes, and topoisomerase I (6, 7). ZL173-7, in addition to binding FcγR, also binds to procaryotic and eukaryotic dsDNA. ZL37-9 binds to dsDNA and to fish AchR. ZK2H5-3 is a multispecific antibody, binding to histones 1, 2a, 2b, and 4, AchR, and thyroglobulin. We found that the binding of the DNA-specific mAbs ZL173-7 and ZL37-9 to DNA-coated plates is inhibited by tFcγR and, reciprocally, the binding to tFcγR-coated plates is inhibited by preincubation with DNA (data not shown). These observations imply that complexes of IgM mAbs ZL173-7 and ZL37-9 with DNA could also bind to FcγR molecules on the plasma membranes of phagocytes, mesangial cells, and FcγR-bearing lymphocytes. Such multivalent complexes might have a higher avidity for FcγRs on the cells than the IgM alone. Similarly, if mAb ZK2H5-3 formed an immune complex with nucleoprotein (since it binds to histones), the immune complex could also bind to FcγR molecules present on cells.

Inhibition of Immune Complex Binding to J774 Cells. We have shown that antibodies in sera from autoimmune mice and some mAbs bind to tFcγR and also to macrophages. To demonstrate that the anti-FcγR antibodies could alter function, we next looked for inhibition of immune complex binding to J774 cells (Table II, Fig. 10). ZL37-9 and ZL173-7, both of which bind to dsDNA, significantly inhibited immune complex binding to macrophages. ZL37-9 inhibits immune complex binding better than does ZL173-7, although the former binds with lower avidity to tFcγR-coated microtiter wells. ZK2H5-3 and UN40-6, although they bind far better to macrophages (Table III), are poorer inhibitors than either of the two anti-FcγR mAbs with DNA specificity.

Sera from old female NZB mice inhibit binding of immune complexes. The inhibition is apparent even at a dilution of 1:400 (Fig. 10, B, C, and D). The mε sera inhibited even more strongly than the NZB serum (Fig. 10, F, G, and H). In contrast, a 1:100 dilution of C58/J serum had no effect on the binding of immune complexes to macrophages (Fig. 10 E).
Discussion

Mice that are used as models for SLE make autoantibodies against many different antigens (see reference 1 for review). Autoantibodies directed against specific proteins have been identified as pathologic agents in several diseases, including cyclic amegakaryocytic thrombocytopenia (blockade of granulocyte/macrophage-CSF action) (10), vasculitis (antibody to vascular endothelial antigens) (11), autoimmune hemolytic anemia in NZB mice (12), acquired angioedema (anti-C1 esterase inhibitor) (13), myasthenia gravis (14), and Graves' disease (15). This report identifies the presence, in the sera of several inbred strains prone to autoimmune diseases, of both IgG and IgM antibody directed against the external Ig-like domains of FcγRII. These antibodies were identified by an ELISA in which the plates were coated with either a recombinant tFcγRII, consisting of the external Ig-like domains, or reduced and alkylated tFcγRII. We believe that the recombinant tFcγR is a useful probe to screen for anti-FcγR autoantibody since the recombinant protein is glycosylated, binds IgG, and bears epitopes recognized by a variety of monoclonal murine anti-FcγR reagents (5, and unpublished results). Rabbit antisera elicited by the tFcγR immunoblot and immunoprecipitate murine FcγR and will stain murine FcγR-bearing cells brightly (data not shown).

TABLE II

Inhibition of Immune Complex Binding to J774 Cells

Completing mAbs	Concentration µg/ml	Mean fluorescence peak channel	Inhibition %
Control J774 cells with complexes		158	-
ZK2H6-2 5	155	6.1	
	106	4.4	
	160	-6.8	
ZL37-9 5	156	75.3	
	116	67.5	
	133	48.2	
ZL173-7 5	109	73.2	
	135	55.7	
	160	-6.7	
ZK2H5-3 5	99	79.5	
	151	18.4	
	163	-15.4	
UN40-6* 5	110	54.8	
	133	15.8	
	130	22.5	

J774 cells were preincubated for 1 h at room temperature with mAbs diluted in PBS-1% BSA, washed, and incubated with FITC-U7.6/DNP20/H/BSA complexes (20 µg/ml U7.6, 5 µg/ml DNP20/H/BSA) at 4°C for 1 h, washed, and fixed.

* UN40-6 data comes from a different experiment in which the mean fluorescence peak channel for J774 cells incubated with immune complexes was 140.
To eliminate possible artifacts due to binding of IgG or immune complexes in the ELISA of murine sera, we coated the microtiter plates with tFcyR that had been inactivated by reduction and alkylation. The presence of anti-FcyRIgM and IgG in sera from autoimmune mice was readily detectable at dilutions from 1:100 to 1:300 in the ELISA. There was a positive correlation between the levels of anti-FcyR IgM and IgG found in the sera. However, the titer of anti-FcyR antibodies varied considerably among the different autoimmune strains. NZB, NZB/NZW F1, TSK, and me' mice had high titers of anti-FcyR IgM that increased with age for the first three strains of mice. Young MRL/lpr had no anti-FcyR activity, but old MRL/lpr mice showed a lower titer of anti-FcyR IgM.

TABLE III

Binding of IgM mAbs to J774 Cells

mAb	Specificity	Mean fluorescence peak channel
Control unstained cells		106
ZL37-9	FcγR, DNA, AchR	108
ZL173-7	FcγR, DNA	108
ZK2H5-3	FcγR, histones, AchR, thyroglobulin	141
UN40-6	FcγR, thyroglobulin, Sm, transferrin, myelin basic protein, IgG, RBC, thymocytes	199

Cell were stained with mAbs (5 µg/ml) (6, 7) as described and analyzed by FACS.
exhibited modest levels of anti-FcγR antibodies. BXSB mice, including old males that have severe SLE, do not make anti-FcγR Ig.

To quantify the amount of anti-FcγR in autoimmune mice and to confirm its absence in sera of normal mice, we performed affinity chromatography of serum from both groups on a column coupled with tFcγR. The amount of anti-FcγR IgM in pooled sera from old NZB female mice was 16 μg/ml serum, ~2% of the total IgM. There was no IgM recovered after affinity chromatography of serum from old C58/J mice. The purified NZB anti-FcγR IgM was of low avidity. We could not detect binding to tFcγR-coated plates or to J774 cells at 0.2 μg/ml IgM (data not shown). However, the IgG fraction of the purified material bound well to FcγR on macrophages and bound to tFcγR-coated plates. Since we purified the Ig on a native tFcγR column, we do not know the absolute amount of high affinity anti-FcγR IgG.

We also examined the binding of IgM and IgG in autoimmune and control sera to J774 cells. IgM, but not IgG, from serum of autoimmune mice with high titers of anti-FcγR Ig bound to mouse macrophages. This paradoxical result may be due to occupation of the binding site of high affinity anti-FcγR IgG with soluble FcγR, which is present in sera of mice and elevated in mice infected with schistosomes (16, 17). Results of Pure et al. (16) suggest that a major source of serum FcγR may be released from activated B cells, and autoimmune mice might thus be expected to have high serum FcγR levels. The soluble FcγR level in normal mouse serum is ~6 x 10^{-8} M (15), which would be sufficient to neutralize ~1 μg/ml of high avidity anti-FcγR IgG in serum.

Russell and Steinberg (3) have examined the binding and phagocytosis of IgG-sensitized erythrocytes (EIgG) by resident peritoneal macrophages isolated from SLE-prone mice. NZB, NZB/NZW F1, and MRL/lpr mice all had profound defects in both binding and phagocytosis of EIgG relative to control inbred mice. The FcγR-defect was not reversible by culture in vitro nor by stripping with pronase (18). However, there is no intrinsic defect in the macrophages, since macrophages derived from bone marrow of autoimmune animals, or peritoneal macrophages elicited by inflammatory agents such as thioglycollate or Corynebacterium parvum, showed normal binding and phagocytosis of EIgG (18). There is clear evidence that in vitro culture of macrophages on immune complex-coated surfaces results in downmodulation of FcγR function (19). Thus, the thesis that the FcγR defect in autoimmune mice is due to immune complexes downmodulating the FcγR is reasonable.

We would like to suggest, however, that anti-FcγR autoantibodies rather than immune complexes, per se, are responsible for inhibition of FcγR function in vivo. We find high levels of anti-FcγR Ig in NZB, NZB/NZW F1, TSK, and me+ mice, and somewhat elevated levels of anti-FcγR in old MRL/lpr mice, all of which have impaired FcγR function. Male BXSB mice, which have a severe form of SLE, show normal macrophage binding and phagocytosis of EIgG (3), and we find that these mice have no anti-FcγR Ig. The compromised FcγR function seen in other autoimmune strains may be related to the presence of anti-FcγR antibody, or immune complexes containing anti-FcγR IgM or IgG. In agreement with this thesis, we found that serum from old NZB and me+ mice dramatically inhibited binding of soluble immune complexes, whereas the C58/J serum had no effect. We show that IgM from NZB and me+ mice binds to J774 cells, but did not find binding of IgG from the same sera to the cells. We therefore believe that the inhibition of FcγR function we
observed with these sera is not due to IgG immune complex binding but to the binding of IgM antibody with anti-FcγR specificity.

The anti-FcγR IgM mAbs that we identified by screening IgM NZB hybridomas (6, 7) were multispecific. Out of a total of 40 hybridomas, we found three anti-FcγR IgM mAbs. Two of these, ZL-37 and ZL-173, also had anti-DNA specificity, and a third, 2K2H5, was directed against a variety of antigens, including histones, acetylcholine receptor, and thyroglobulin. A fourth anti-FcγR IgM, UN40-6, from a hybridoma panel made from me°, was directed against a variety of antigens, including thyroglobulin, Sm antigen, transferrin, myelin basic protein, and IgG2a (7).

The isolation of IgM antibody with diverse specificities has been reported previously (see reference 20 for review), and is related either to similar conformation of the disparate antigens or to multiple binding sites of low affinity within the IgM molecule. Polyspecificity has also been reported in some IgG mAbs. An IgG anti-DNA mAb has been shown to bind to vimentin (21) and another IgG2b anti-DNA mAb was found to bind to renal mesangium and vascular endothelium (22), which resulted in an increase in albumin permeability in perfused rat kidneys.

In spite of an avidity for binding of the anti-FcγR mAbs to tFcγ-coated microtiter plates of 10^8 to 10^9 M$^{-1}$, we believe that the intrinsic affinity of the mAb binding site for FcγR of ZL37-9 and ZL173-7 is low because these mAbs do not stain FcγR-bearing cells. Because the FcγR density on the cells is low compared with the tFcγR-coated ELISA plates, the mAbs do not bind with sufficient avidity to give good staining after washing. ZK25-3 and UN40-6 stain macrophages very well, but since these antibodies have so many specificities, we cannot be sure that the primary antigen recognized on the macrophage is FcγRII. However, the apparent avidity of anti FcγR antibody could be greatly enhanced in vivo if the anti-FcγR IgM were to form a complex with other antigens, such as nucleoprotein coated with histones or DNA, both of which offer multiple epitopes to form large complexes. The high avidity anti-FcγR IgG we have isolated by affinity chromatography might by itself bind to and trigger FcγR-bearing cells.

Although ZL37-9 and ZL173-7 do not stain cells effectively, either using directly fluoresceinated antibody (Table II) or anti-IgM reagents (data not shown), they do inhibit immune complex binding to J774 macrophages. ZL37-9 and ZL173-7 may selectively (since IgM is pentamer) bind to a small proportion of cell surface FcγRs that are aggregated or patched, and to which immune complexes preferentially bind. Alternatively, since the J774 cells were preincubated for 1 h at room temperature with the anti-FcγR mAbs, the anti-FcγR IgM might trigger the internalization of the FcγR.

The binding of immune complexes to FcγR on macrophages, neutrophils, and NK cells results in the activation of phagocytic mechanisms, elaboration of toxic metabolites of oxygen, release of prostaglandins and leukotrienes, and the synthesis of cytokines such as TNF, IFN-γ, and IL-2 by NK cells (23). The mesangial cell, which expresses FcγR (24, 25), might also be activated by immune complexes or anti-FcγR antibody. Stimulation of these receptors leads to release of platelet-activating factor, prostaglandin A2, H$_2$O$_2$, and enhanced secretion of IL-1 (26), all of which could contribute to kidney pathology seen in SLE. The anti-FcγR antibodies we describe here may play a role in triggering these responses. Other preliminary experiments show that 2K2H5 and UN40-6, when adsorbed to plastic, trigger
an oxidative burst from murine peritoneal macrophages elicited with thioglycollate medium (data not shown).

The impaired FcγR function in the autoimmune mice has also been seen in patients with SLE, as well as other autoimmune diseases such as rheumatoid arthritis and Sjögren's syndrome (4, 27). It is possible that one component in the slow clearance of immune complexes seen in lupus patients and patients with other autoimmune diseases is the presence of anti-FcγR antibody. The receptor that plays a predominant role in clearance of large immune complexes is FcγRIII or CD16. Blockade of FcγRIII in chimpanzees with the anti-FcγRIII mAb 3G8 or its Fab fragment resulted in a 20-fold increase in clearance time for IgG-sensitized chimpanzee erythrocytes (28). Antibody against FcγRIII allotypes NA1 and NA2 has been associated with juvenile neutropenia (29, 30), and anti-FcγRIII antibody has also been identified in sera of patients with SLE (31). The role that the anti-FcγR Ig we have detected in the autoimmune mice and that is present in sera of patients with SLE (31) plays in the pathology of the diseases remains to be established.

Summary

We demonstrate, using a recombinant truncated FcγRII molecule as a probe, the presence of anti-FcγR antibodies in several strains of autoimmune mice. Affinity chromatography on a truncated FcγR column of pooled sera from aged NZB females resulted in isolation of 16 μg of IgM per ml of serum, ~2% of the total IgM; no anti-FcγR IgM was found in sera from C58/J mice. Mice with high titers of anti-FcγR IgM also had anti-FcγR IgG. Affinity-purified anti-FcγR IgG bound to FcγR-bearing cells. A good correlation was found between the presence of anti-FcγR Ig and impaired phagocytosis of immune complexes in autoimmune strains such as NZB or NZB/NZW F1. Sera with high titers of anti-FcγR IgM from NZB and motheaten mice inhibited the binding of soluble immune complexes. Furthermore, BXSB, a lupus-prone mouse strain that does not produce anti-FcγR Ig, shows normal macrophage binding and phagocytosis of immune complexes. A set of four IgM mAbs that bind to FcγR was identified. These antibodies were polyspecific; some were directed against DNA, and others recognized a wide variety of antigens including histones, thyroglobulin, and transferrin, but all anti-FcγR IgM antibodies effectively inhibited the binding of IgG1 anti-DNP/DNP20BSA complexes to J774 macrophages. The role of anti-FcγR Ig in autoimmunity remains to be established. It may act to crosslink and activate FcγRs on neutrophils, macrophages, NK, and mesangial cells, or it may desensitize FcγR function of FcγR-bearing cells.

We thank Zhengxing Qu for his assistance and generous help in making tFcγR, and Andy Pizzimenti for assistance with flow cytometry. We are indebted to Dr. Argyris Theofilopoulos for the generous gift of serum samples from autoimmune mice. We thank our colleagues Victoria Freedman, Eileen Scigliano, and Joseph Odin for critical review of the manuscript.

Received for publication 19 September 1989 and in revised form 28 December 1989.

References

1. Theofilopoulos, A. N., and F. J. Dixon. 1985. Murine models of systemic lupus erythematosus. *Adv. Immunol.* 37:269.
1594 ANTI-Fc RECEPTOR ANTIBODIES IN SERA OF AUTOIMMUNE MICE

2. Magilavy, D. B., T. R. Hundley, A. D. Steinberg, and D. S. Finbloom. 1983. Abnormal binding of soluble IgG immune complexes to hepatic nonparenchymal cells of autoimmune mice. J. Immunol. 131:2784.

3. Russell, P. J., and A. D. Steinberg. 1983. Studies of peritoneal macrophage function in mice with systemic lupus erythematosus: depressed phagocytosis of opsonized sheep erythrocytes in vitro. Clin. Immunol. Immunopathol. 27:387.

4. Hamburger, M. I., T. J. Lawley, R. P. Kimberly, P. H. Plotz, and M. M. Frank. 1982. A serial study of splenic reticuloendothelial system Fc receptor functional activity in systemic lupus erythematosus. Arthritis Rheum. 25:48.

5. Qu, Z., J. Odin, J. D. Glass, and J. C. Unkeless. 1988. Expression and characterization of a truncated murine Fcγ receptor. J. Exp. Med. 167:1195.

6. Fidanza, V., R. Mayer, M. A. DiLiberti, and C. Bona. 1990. Self-reactivity of antibodies and the expression of Ly1 and V genes in hybridomas obtained from young and old NZB mice. Arthritis Rheum. In press.

7. Painter, C. J., M. Monestier, A. Chew, A. Bona-Dimitriu, K. Kasturi, C. Bailey, V. E. Scott, C. L. Sidman, and C. A. Bona. 1988. Specificities and V genes encoding monoclonal autoantibodies from viable motheaten mice. J. Exp. Med. 167:1137.

8. Unkeless, J. C. 1977. The presence of two Fc receptors on mouse macrophages: evidence from a variant cell line and differential trypsin sensitivity. J. Exp. Med. 145:931.

9. Unkeless, J. C. 1979. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150:580.

10. Hoffman, R., R. A. Briddell, K. Van Besien, E. F. Srour, T. Guscar, N. W. Hudson, and A. Ganser. 1989. Acquired cyclic amegakaryocytic thrombocytopenia associated with an immunoglobulin blocking the action of granulocyte-macrophage colony-stimulating factor. N. Engl. J. Med. 321:97.

11. Brasile, L., J. M. Kremer, J. L. Clarke, and J. Cerilli. 1989. Identification of an autoantibody to vascular endothelial cell-specific antigens in patients with systemic vasculitis. Am. J. Med. 87:74.

12. Caulfield, M. J., D. Stanko, and C. Calkins. 1989. Characterization of the spontaneous autoimmune (anti-erythrocyte) response in NZB mice using a pathogenic monoclonal autoantibody and its anti-idiotypic. Immunology. 66:233.

13. Malbran, A., C. H. Hammer, M. M. Frank, and L. F. Fries. 1988. Acquired angioedema: observations on the mechanism of action of autoantibodies directed against C1 esterase inhibitor. J. Allergy Clin. Immunol. 81:1199.

14. Almon, R. R., C. G. Andrew, and S. H. Appel. 1974. Serum globulin in myasthenia gravis: inhibition of alpha-bungarotoxin binding to acetylcholine receptors. Science (Wash. DC). 186:55.

15. Adams, D. D., T. H. Kennedy, and R. D. Stewart. 1974. Correlation between long-acting thyroid stimulator protector level and thyroid 131-I uptake in thyrotoxicosis. Br. Med. J. 2:199.

16. Pure, E., C. J. Durie, C. K. Summerill, and J. C. Unkeless. 1984. Identification of soluble Fc receptors in mouse serum and the conditioned medium of stimulated B cells. J. Exp. Med. 160:1836.

17. Khayat, D., D. Serban, Z. Dux, Y. Schlomo, and C. Jacquillat. 1986. Role of infection in the modulation of mouse circulating soluble cell-free Fc gamma 2b/gamma 1 receptor. Scand. J. Immunol. 24:83.

18. Russell, P. J., and F. H. Cameron. 1986. Studies of macrophage function in murine systemic lupus erythematosus. 4. Failure to reverse the defect in Fc-mediated phagocytosis and binding in vitro stimulants or prostaglandins. Pathology. 18:59.

19. Sung, S.-S. J., R. S. Nelson, and S. C. Silverstein. 1985. Phagocytosis by mouse peritoneal macrophages plated on monoclonal antibody-coated immune complex-substrates:
effects of complexes of different IgG subclasses on Fc receptor functions. J. Immunol. 134:3712.
20. Rubin, R., and A. Theofilopoulos. 1988. Monoclonal autoantibodies reacting with multiple structurally related and unrelated macromolecules. Int. Rev. Immunol. 3:71.
21. Andre-Schwartz, J., S. K. Datta, Y. Shoenfeld, D. A. Isenberg, B. D. Stollar, and R. S. Schwartz. 1984. Binding of cytoskeletal proteins by monoclonal anti-DNA lupus autoantibodies. Clin. Immunol. Immunopathol. 31:261.
22. Raz, E., M. Brezis, E. Rosenmann, and D. Eilat. 1989. Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J. Immunol. 142:3076.
23. Anegon, I., M. C. Cuturi, G. Trinchieri, and B. Perussia. 1988. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med. 167:452.
24. Neuwirth, R., P. Singhal, B. Diamond, R. M. Hayes, L. Lobbmeyer, K. Clay, and D. Schlondorff. 1988. Evidence for immunoglobulin Fc receptor-mediated prostaglandin 2 and platelet-activating factor formation by cultured rat mesangial cells. J. Clin. Invest. 82:936.
25. Santiago, A., J. Satriano, S. DeCandido, R. Schreiber, J. Unkeless, and D. Schlondorff. 1989. A specific Fc gamma receptor on cultured rat mesangial cells. J. Immunol. 143:2375.
26. Werber, H. I., S. N. Emancipator, M. L. Tykocinski, and J. R. Sedor. 1987. The interleukin 1 gene is expressed by rat glomerular mesangial cells and is augmented in immune complex glomerulonephritis. J. Immunol. 138:3207.
27. Frank, M. M., T. J. Lawley, M. I. Hamburger, and E. J. Brown. 1983. NIH Conference: immunoglobulin G Fc receptor-mediated clearance in autoimmune diseases. Ann. Intern. Med. 98:206.
28. Clarkson, S. B., R. P. Kimberly, J. E. Valinsky, M. D. Witmer, J. B. Bussel, R. L. Nachman, and J. C. Unkeless. 1986. Blockade of clearance of immune complexes by an anti-Fcγ receptor monoclonal antibody. J. Exp. Med. 164:474.
29. Madyastha, P. R., H. H. Fudenberg, A. B. Glassman, K. R. Madyastha, and C. L. Smith. 1982. Autoimmune neutropenia in early infancy: a review. Ann. Clin. Lab. Sci. 12:356.
30. Lalezari, P., M. Khorshidi, and M. Petrosova. 1986. Autoimmune neutropenia of infancy. J. Pediatr. 109:764.
31. Sipos, A., C. Csortos, S. Sipka, P. Gergely, I. Sonkoly, and G. Szegedi. 1988. The antigen-receptor specificity of antigranulocyte antibodies in patients with SLE. Immunol. Lett. 19:329.