Pollen morphology of the Central European broomrapes (Orobanchaceae: Orobanche, Phelipanche and Orobanchella) and its taxonomical implications

Renata Piwowarczyk · Jacek Madeja · Marcin Nobis

Abstract Pollen grains of 450 samples of 25 species of the genus Orobanche and Phelipanche occurring in Central Europe were investigated using light and scanning electron microscopy. Palynological data on 18 species are reported here for the first time. The usefulness of micromorphological studies on pollen of Orobanche and Phelipanche is demonstrated. Previous research showed the separation of Phelipanche from Orobanche, a finding which is also supported by pollen aperture type and exine ornamentation. The pollen of Phelipanche is tricolpate, while that of Orobanche is inaperturate. Our research showed that one of the species included so far within Orobanche, namely O. coerulescens, has tricolpate pollen with microreticulate sculpture. As a consequence of the finding of tricolpate pollen and intermediate macromorphological characteristics of this species between Orobanche and Phelipanche, it is proposed to transfer it to a new genus, Orobanchella, described in the paper. A comparison of the main characteristics distinguishing Orobanche, Phelipanche, Boulardia and Orobanchella is also presented and discussed.

Keywords Orobanche · Phelipanche · Orobanchella · Pollen · Morphology · Systematic significance · SEM

Introduction

The family Orobanchaceae contains 15 obligate parasitic genera with ca 250 species (Pusch and Günther 2009). The family has a worldwide distribution, but the main centres of distribution are the Mediterranean, western and central Asia, northern Africa and North America (Kreutz 1995). Orobanche s.l. is the largest genus and comprises more than 200 species, which lack chlorophyll and are holoparasites of the roots of other vascular plants (Uhlich et al. 1995; Pusch and Günther 2009). In Europe, these species usually grow in the warmest regions, with the highest species diversity in the Mediterranean countries. In central and northern parts of Europe the genus comprises about 30 species, which are mostly rare, endangered or declining (e.g. Zázvorka 1997, 2000; Pusch and Günther 2009; Halamski and Piwowarczyk 2008; Piwowarczyk and Przemyski 2009, 2010; Piwowarczyk et al. 2009, 2010, 2011; Piwowarczyk 2011, 2012a, b, c, d, e, f, g, h, 2013; Nobis et al. 2014).

The genus Orobanche has traditionally been divided into four sections: Trionychon, Orobanche, Gymnocaulis and Myzorrhiza (Beck von Mannagetta 1930). In the most recent taxonomic treatments, these sections have been recognised as separate genera: Aphyllon, Myzorrhiza, Phelipanche, Boulardia and Orobanche. However, the classification of Phelipanche (syn. O. sect. Trionychon) and Boulardia (syn. Orobanche latisquama) as separate genera is still being discussed (Holub 1977, 1990; Ter-yokhin et al. 1993; Schneeweiss 2001; Manen et al. 2004; Schneeweiss et al. 2004a, b; Weiss-Schneeweiss et al.)

R. Piwowarczyk (✉)
Department of Botany, Institute of Biology, Jan Kochanowski University, 15 Świętokrzyska St., 25-406 Kielce, Poland
e-mail: renka76@wp.pl; renata.piwowarczyk@ujk.edu.pl

J. Madeja
Department of Palaeobotany and Palaeoherbarium, Institute of Botany, Jagiellonian University, 46 Łubicz St., 31-512 Kraków, Poland
e-mail: jacek.madeja@uj.edu.pl

M. Nobis
Department of Plant Taxonomy, Phytogeography and Herbarium, Institute of Botany, Jagiellonian University, Kopernika 27 St., 31-501 Kraków, Poland
e-mail: m.nobis@uj.edu.pl
The flowers in *Orobanche* are always bisexual, with superior ovaries, more or less zygomorphic, with four didynamous stamens and two or three lobed stigma, characterised by cross-pollination or, rarely, by the absence of insects, i.e. self-pollination (Beck von Mannagetta 1930; Teryokhin 1997; Jones 1991). There are many adaptations of flowers for pollination: large or small flowers gathered in dense inflorescences; contrasting colouration and shine of the corolla and stigma; a wide range of often bright colours; the smell of the flowers, either pleasant (scent of cloves, e.g. *O. alba*, *O. caryophyllacea*, *O. crenata*, *O. gracilis*) or unpleasant (the smell of carrion, e.g. *O. foetida*, *O. rigens*, *O. rapum-genistae*, *O. variegata*) (the majority of species have a weak scent or none); the lower lip of the corolla serving as an alighting place for pollinators (two bright folds, coated with hairs); the production of nectar from coloured spots. Most species are pollinated by bumblebees and bees (Apidae), as well as, albeit less importantly, by species of the families Syrphidae, Vespidae, or Formicidae or carrion flies (Diptera) (Piwowarczyk, unpublished). Preliminary studies in relation to pollination and other shared interactions between parasitic plants and their hosts are presented by Ollerton et al. (2007).

Orobanchaceae is a eurypalynous family, with different types of pollen. Nevertheless, in many cases the biometric and morphological features of pollen grains possess a high diagnostic significance and are used in taxonomy. Pollen taxonomy can also explain the relationship and phylogenetic connections between particular genera of the family. Exine sculpture is one of the most important features and is a good tool in the recognition of genera or sections within a genus. Unfortunately, there are still not many papers dedicated to the pollen morphology of the family Orobanchaceae (e.g. Tiagi 1951; Rao 1963; Erdtman 1966; Polo 1987; Minkin and Eshbaugh 1989; Abu Sbaih et al. 1994; Teryokhin 1997; Shahi Shavvon and Saeidi Mehrvarz 2010; Zare and Dönmez 2013; Zare et al. 2013; Piwowarczyk et al. 2014) and further studies within the whole family are required.

The aim of the study was to present (1) the macro- and micromorphological variability of pollen in the Central European *Orobanche* and *Phelipanche* taxa; (2) the taxonomic implications of pollen morphology in the examined taxa.

Materials and methods

Plant material

This study is based on plant material deposited mainly in the KTC herbarium. In total, 25 taxa of three genera, *Orobanche*, *Phelipanche* and *Orobanchella*, were analysed. A list of voucher specimens used in the study is given in Table 1. Each sample corresponds to a single plant, but pollen grains originating from different flowers have not been distinguished.

Light microscopy observations

The pollen grains were prepared with the standard method, Erdtmann’s acetolysis (Erdtman 1969; Faegri and Iversen 1989). Following acetolysis, the pollen grains were mounted in glycerine jelly and prepared for LM observation. Some characteristics, such as polar and equatorial axis and exine thickness, were examined by LM (Axio Imager 2, Zeiss) for 30 pollen grains under 1,000× magnifications with the help of the AxioVision computer program (version 4.8.1.0, Carl Zeiss Imaging Solutions). Measurements were taken under the light microscope only in accordance with changes in pollen shape and dimensions occurring during its preparation for SEM.

Scanning electron microscopy (SEM) observation

Using SEM observation, we analysed 450 samples of 25 taxa. For SEM observation, samples were coated with gold using a JFC-1100E Ion Sputter manufactured by JEOL. Micromorphological structures of pollen grains were observed and photographs taken by means of Hitachi S-4700 and Philips XL 20 scanning electron microscopes at various magnifications. The terminology was adopted from Punt et al. (2007) and Hesse et al. (2009).

Morphometric analysis

The statistical analyses are based on 1,170 fully-developed pollen grains from 25 taxa. Characteristics were measured in 30 grains of each specimen studied (Table 1). Finally, a
Pollen morphology of the Central European broomrapes

Table 1 Taxa used in this study and voucher information

Number	Taxon used in this study	Locality	Voucher	Host
1	O. alba subsp. alba	Poland	14 Aug 2009, R. Piwowarczyk (KTC)	Thymus pulegioides
2a	O. alba subsp. major	Poland	27 Jul 2006, R. Piwowarczyk (KTC)	Salvia verticillata
2b	O. alba subsp. major	Poland	15 Jul 2006, R. Piwowarczyk (KTC)	Salvia verticillata
3	O. alsatica	Poland	8 Jun 2007, R. Piwowarczyk (KTC)	Peucedanum cervaria
4	O. bartlingii	Poland	4 Jun 2009, R. Piwowarczyk (KTC)	Libanotis pyrenaica
5a	O. caryophyllacea	Poland	8 Jun 2007, R. Piwowarczyk (KTC)	Galium mollugo
5b	O. caryophyllacea	Poland	6 Jun 2007, R. Piwowarczyk (KTC)	Galium odoratum
5c	O. caryophyllacea	Poland	23 Jul 2009, R. Piwowarczyk (KTC)	Galium mollugo
6	O. crenata	Spain	2 May 2012, R. Piwowarczyk (KTC)	Vicia sp.
7a	O. elatior	Poland	7 Jul 2010, R. Piwowarczyk (KTC)	Centaurea scabiosa
7b	O. elatior	Poland	8 Jun 2008, R. Piwowarczyk (KTC)	Centaurea scabiosa
8a	O. flava	Poland	22 Jun 2009, R. Piwowarczyk (KTC)	Petasites kablikianus
8b	O. flava	Slovakia	7 Aug 2011, R. Piwowarczyk (KTC)	Petasites kablikianus
9	O. gracilis	Austria	14 Jun 2012, R. Piwowarczyk (KTC)	Anthyllis vulneraria
10	O. hederae	Spain	28 Apr 2009, R. Piwowarczyk (KTC)	Heder a helix
11a	O. kochii	Poland	13 Jun 2010, R. Piwowarczyk (KTC)	Centaurea scabiosa
11b	O. kochii	Poland	6 Jun 2008, R. Piwowarczyk (KTC)	Centaurea scabiosa
12	O. lucorum	Poland	10 Jul 2009, R. Piwowarczyk (KTC)	Berberis vulgaris
13a	O. lutea	Poland	16 Jun 2006, R. Piwowarczyk (KTC)	Medicago falcata
13b	O. lutea	Poland	6 Jun 2007, R. Piwowarczyk (KTC)	Medicago sativa
13c	O. lutea	Poland	2 Jun 2007, R. Piwowarczyk (KTC)	Medicago falcata
14	O. mayeri	Poland	30 Jun 2009, R. Piwowarczyk (KTC)	Laserpitium lattifolium
15	O. minor	Poland	19 Jun 2009, R. Piwowarczyk (KTC)	Trifolium repens
16a	O. pallidiflora	Poland	14 Aug 2009, R. Piwowarczyk (KTC)	Carduus personata
16b	O. pallidiflora	Poland	24 Jun 2009, R. Piwowarczyk (KTC)	Cirsium oleraceum
16c	O. pallidiflora	Poland	5 Jul 2010, R. Piwowarczyk (KTC)	Cirsium arvense
16d	O. pallidiflora	Poland	29 Jun 2009, R. Piwowarczyk (KTC)	Cirsium arvense
17a	O. picridis	Poland	25 Jun 2007, R. Piwowarczyk (KTC)	Picris hieracioides
17b	O. picridis	Poland	9 Jun 2007, R. Piwowarczyk (KTC)	Picris hieracioides
18	O. reticulata	Slovakia	5 Aug 2011, R. Piwowarczyk (KTC)	Carduus glaucus
19	O. teucrii	Austria	14 Jun 2012, R. Piwowarczyk (KTC)	Teucrium montanum

Helianthus

20a	P. arenaria	Poland	11 Jun 2010, R. Piwowarczyk (KTC)	Artemisia campestris
20b	P. arenaria	Poland	25 Jun 2007, R. Piwowarczyk (KTC)	Artemisia campestris
21	P. bohemica	Poland	11 Jun 2010, R. Piwowarczyk (KTC)	Artemisia campestris
22	P. caesia	Ukraine	16 Jun 2011, R. Piwowarczyk (KTC)	Artemisia austriaca
23	P. parpurea	Poland	18 Jun 2009, R. Piwowarczyk (KTC)	Achillea millefolium s.l.
24	P. ramosa	Poland	7 Sep 2008, R. Piwowarczyk (KTC)	Nicotiana tabacum

Orobanchella

| 25a | O. coerulescens | Poland | 19 Jun 2010, R. Piwowarczyk (KTC) | Artemisia campestris |
| 25b | O. coerulescens | Poland | 25 Jun 2007, R. Piwowarczyk (KTC) | Artemisia campestris |

Total of the seven most informative quantitative and qualitative morphological characteristics was chosen for the analyses: width of exine (mean μm); polar axis (mean μm); equatorial diameter (mean μm); polar/equatorial ratio; number of furrows on grain; sculpture of pollen grains (1—granules look like a ball of wool, 2—granules consisted of a few smaller round elements knitted together into a smooth surface, 3—microreticulate); arrangement of granules on the pollen surface: 1—no areas without granules are present, 2—areas without granules are present,
3—no granules are present (different type of pollen sculpture). The characteristics used are listed in Table 2. The mean value of the characteristics measured or scored from all samples of the taxon was analysed using cluster analysis to illustrate the general relationships and similarities between them. The analysis was performed in order to obtain results providing a general overview and to determine whether different morphological groups exist and are separated into distinct clusters. Similarity between samples was calculated on the basis of Gower’s general similarity coefficient. The dendrogram was prepared using the UPGMA method. Subsequently, principal coordinate analysis (PCoA) was performed on the basis of all quantitative and qualitative features. The goal of PCoA was the positioning of objects (individuals) in a space of reduced dimensionality while preserving their distance relationships. Data analyses were performed using MVSP 3.1 (Kovach 1999).

Results

LM and SEM study

Both LM and SEM observations enabled the team to distinguish, among Orobanche and Phelipanche pollen, two main groups with distinctly different features regarding pollen shape and exine micromorphology. Group 1 contains pollen grains in monads, suboblate (P. arenaria), oblate spheroidal (P. purpurea, P. bohemica, P. ramosa and Orobanche coerulescens) (according to P/E

| Table 2 Characters used in cluster analysis (comp. “Materials and methods”) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Species | Character | Polar axis (mean μm) | Equatorial diameter (mean μm) | Width of exine (mean μm) | Polar/equatorial ratio | Furrows number on grain | Sculpture of pollen grains | Arrangement of granules |
| Orobanchella coerulescens | | 20.4 | 21.9 | 1.4 | 0.934 | 3 | 3 | 3 |
| Phelipanche arenaria | | 22.1 | 24.5 | 1.4 | 0.903 | 3 | 3 | 3 |
| P. bohemica | | 22.9 | 24.2 | 1.7 | 0.944 | 3 | 3 | 3 |
| P. caesia | | 25.0 | 23.8 | 1.3 | 1.053 | 3 | 3 | 3 |
| P. purpurea | | 21.6 | 22.1 | 1.5 | 0.977 | 3 | 3 | 3 |
| P. ramosa | | 19.3 | 21.3 | 1.4 | 0.905 | 3 | 3 | 3 |
| Orobanche alba subsp. alba | | 22.6 | 19.8 | 0.9 | 1.142 | 0 | 1 | 2 |
| O. alba subsp. major | | 22.5 | 18.9 | 0.9 | 1.191 | 0 | 1 | 2 |
| O. alsatica | | 27.5 | 22.6 | 0.9 | 1.219 | 0 | 2 | 2 |
| O. hartlingii | | 26.3 | 22.4 | 0.8 | 1.174 | 0 | 2 | 2 |
| O. caryophyllacea | | 25.0 | 21.7 | 1.1 | 1.152 | 0 | 2 | 2 |
| O. crenata | | 20.2 | 18.2 | 0.9 | 1.110 | 0 | 2 | 2 |
| O. elatior | | 26.2 | 22.9 | 1.1 | 1.144 | 0 | 2 | 2 |
| O. flava | | 27.5 | 23.7 | 1.1 | 1.163 | 0 | 2 | 1 |
| O. gracilis | | 23.6 | 20.3 | 0.9 | 1.165 | 0 | 2 | 2 |
| O. hederae | | 24.8 | 21.3 | 1.1 | 1.162 | 0 | 1 | 2 |
| O. kochii | | 25.1 | 22.2 | 1.1 | 1.130 | 0 | 2 | 2 |
| O. lucorum | | 27.4 | 23.7 | 1.0 | 1.157 | 0 | 2 | 1 |
| O. lutea | | 23.8 | 20.8 | 0.8 | 1.144 | 0 | 2 | 2 |
| O. nuyeri | | 28.8 | 24.2 | 1.0 | 1.189 | 0 | 2 | 2 |
| O. minor | | 23.3 | 19.6 | 0.8 | 1.188 | 0 | 2 | 1 |
| O. pallidiflora | | 23.9 | 20.8 | 0.8 | 1.151 | 0 | 2 | 2 |
| O. picridis | | 23.9 | 20.0 | 0.9 | 1.195 | 0 | 2 | 2 |
| O. reticulata | | 27.0 | 23.2 | 0.9 | 1.165 | 0 | 2 | 2 |
| O. teucrii | | 26.3 | 22.6 | 0.8 | 1.162 | 0 | 2 | 2 |
ratio) and prolate spheroidal (P. caesia), and tricolpate (but some single grains with 2 or 4 colpi) forms. Some differences in colpi shape and distribution are visible (colpi were sometimes fused, wide at the equator and narrow near the poles) but these features appear in all members of group 1 (Tables 2, 3; Figs. 3, 5).

Group 2 contains pollen grains in monads, prolate spheroidal (O. kochii and O. crenata) to subprolate (other) and inaperturate forms, or with irregular colpi. The basic exine ornamentation type is granulate. Visible differences in the size of granules and their distribution are present between some species. Three types of granule surface were distinguished: (1) granules with almost smooth surfaces (O. caryophyllacea, O. flava, O. elatior, O. lucorum); (2) granules consisting of a few smaller round elements knitted together (O. caryophyllacea, O. picridis, O. minor, O. alba subsp. major, O. kochii, O. lutea, O. reticulata, O. teucrii, O. gracilis, O. crenata); and (3) granules consisting of elongated elements visible on granule surfaces (like balls of wool) (O. alba subsp. alba, O. hederae, O. kochii, O. flav) (Tables 2, 4; Figs. 1, 2, 4, 5).

According to differences in the size and distribution of granules, two main patterns of pollen surface ornamentation can be found: 1—granules distributed over the whole pollen grain, but small areas without granules are present; the granules are of different sizes but always smaller than 1 \(\mu m \); most granules are joined to others, but isolated granules are also present; 2—the surfaces are similar to those described above, but there are no areas without granules (Figs. 1, 2).

Statistical analysis

Cluster analysis (UPGMA) performed on the complete set of data (Table 2) resulted in the delimitation of two main subclusters. The first comprises a group of taxa with distinctly tricolpate pollen grains with reticulate surfaces, whereas the second comprises uncolpate grains with granulate surfaces (Figs. 3, 4, 5, 6). A similar pattern of results is shown by the ordination diagrams from the principal coordinate analysis (PCoA, not shown), also based on the complete quantitative and qualitative set of data. The first subcluster in UPGMA effectively separates the species P. ramosa, P. bohemica, P. arenaria, P. purpurea, P. caesia and Orobanche coerulescens from all the rest of the specimens belonging to Orobanche placed in the second cluster. In the Phelipanche subcluster, all taxa are very similar in general habit, with tricolpate pollen grains. In cluster analysis, P. caesia differs slightly from the other members, with a higher polar/equatorial ratio and a thinner exine. However, pollen characteristics in this group of species are characterised by generally higher variance (Fig. 7). Although all the species located in the

Table 3: Characters of tricolpate Phelipanche-like type pollen morphology

Taxon	Number of colpi	Polar axis (\(\mu m \))	Equatorial diameter (\(\mu m \))	P/E ratio	Exine (mean, \(\mu m \))	Exine shape	Exine ornamentation	P/E mean	P/E ± SD	Min	Max	Mean	SD
Phelipanche arenaria	20a	19.85 22.24	21.46 25.11	1.37	20.46 27.46	Oblate spheroidal	Microreticulate	1.66	0.89	3	2	1.32	0.24
Phelipanche arenaria	20b	18.84 25.61	21.53 25.73	1.42	19.91 25.16	Suboblate	Microreticulate	1.92	0.84	3	2	1.40	0.24
Phelipanche caesia	21	20.82 28.94	22.89 27.46	1.56	21.46 25.16	Oblate spheroidal	Microreticulate	2.07	1.27	3	2	1.67	0.24
Phelipanche purpurea	22	21.01 28.89	25.01 26.24	1.34	22.00 27.75	Prolate spheroidal	Microreticulate	1.05	0.89	3	2	1.28	0.24
Phelipanche ramosa	23	19.35 24.49	21.60 25.77	1.21	20.31 23.15	Oblate spheroidal	Microreticulate	1.03	0.89	3	2	1.46	0.24
Orobanche coerulescens	24	17.10 22.68	19.29 25.12	1.44	19.22 23.87	Oblate spheroidal	Microreticulate	1.33	0.89	3	2	1.38	0.24
Orobanche coerulescens	25a	17.57 22.95	21.00 26.52	1.43	20.51 23.50	Oblate spheroidal	Microreticulate	1.49	0.90	3	2	1.52	0.24
Orobanche coerulescens	25b	14.49 24.82	20.22 26.25	1.23	17.66 24.52	Oblate spheroidal	Microreticulate	1.73	0.91	3	2	1.38	0.24

Table 3 Characters of tricolpate Phelipanche-like type pollen morphology

- **Number of colpi**: The number of colpi present on the pollen grains.
- **Polar axis**: The length of the polar axis of the pollen grains.
- **Equatorial diameter**: The length of the equatorial diameter of the pollen grains.
- **P/E ratio**: The polar/equatorial ratio of the pollen grains.
- **Exine (mean, \(\mu m \))**: The mean thickness of the exine.
- **Exine shape**: The shape of the exine.
- **Exine ornamentation**: The type of exine ornamentation.
| Taxon | Number | Polar axis (µm) | Equatorial diameter (µm) | P/E ratio | Exine (mean, µm) | Pollen shape (acc. to Erdtman 1966) | Exine sculpture | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Min | Max | Mean | ±SD | Min | Max | Mean | ±SD | | | |
| *Orobanche alba* subsp. alba | 1 | 17.44| 26.77| 22.62 | 2.20 | 15.88| 22.21| 19.80 | 1.75 | 0.86 | Subprolate | Granulate |
| *Orobanche alba* subsp. major | 2a | 18.72| 29.79| 23.10 | 2.86 | 16.24| 23.86| 19.11 | 1.92 | 0.89 | Subprolate | Granulate |
| *Orobanche alba* subsp. major | 2b | 17.94| 25.52| 21.84 | 1.77 | 14.11| 21.33| 18.63 | 1.92 | 0.84 | Subprolate | Granulate |
| *Orobanche alsatica* | 3 | 21.25| 33.45| 27.50 | 3.12 | 15.46| 29.08| 22.57 | 2.86 | 1.23 | Subprolate | Granulate |
| *Orobanche bartlingii* | 4 | 21.32| 30.84| 26.33 | 2.51 | 16.72| 28.30| 22.43 | 2.71 | 1.18 | Subprolate | Granulate |
| *Orobanche caryophyllacea* | 5a | 21.20| 28.06| 24.52 | 1.44 | 18.36| 23.65| 21.29 | 1.30 | 1.15 | Subprolate | Granulate |
| *Orobanche caryophyllacea* | 5b | 19.68| 30.21| 25.44 | 2.55 | 17.24| 27.79| 22.10 | 2.65 | 1.16 | Subprolate | Granulate |
| *Orobanche caryophyllacea* | 5c | 19.83| 28.00| 23.17 | 1.99 | 15.22| 24.67| 19.50 | 2.03 | 1.19 | Subprolate | Granulate |
| *Orobanche crenata* | 6 | 16.37| 23.28| 20.19 | 1.94 | 13.79| 20.99| 18.18 | 1.93 | 1.11 | Prolate spheroidal| Granulate |
| *Orobanche elatior* | 7a | 21.52| 30.83| 25.91 | 2.44 | 17.71| 27.52| 22.67 | 2.48 | 1.15 | Subprolate | Granulate |
| *Orobanche elatior* | 7b | 20.30| 34.47| 26.44 | 3.75 | 17.52| 32.19| 23.07 | 3.78 | 1.15 | Subprolate | Granulate |
| *Orobanche flava* | 8a | 18.90| 30.42| 24.88 | 2.59 | 15.78| 25.06| 21.40 | 2.33 | 1.17 | Subprolate | Granulate |
| *Orobanche flava* | 8b | 24.09| 35.11| 30.11 | 2.88 | 22.17| 31.97| 26.01 | 2.74 | 1.16 | Subprolate | Granulate |
| *Orobanche gracilis* | 9 | 17.38| 27.39| 23.19 | 2.14 | 13.82| 24.16| 20.25 | 2.09 | 1.17 | Subprolate | Granulate |
| *Orobanche hederae* | 10 | 21.59| 30.67| 24.77 | 2.40 | 17.21| 25.30| 21.31 | 2.02 | 1.17 | Subprolate | Granulate |
| *Orobanche kochii* | 11a | 19.91| 27.50| 23.84 | 1.95 | 17.31| 24.83| 21.21 | 2.04 | 1.14 | Subprolate | Granulate |
| *Orobanche kochii* | 11b | 22.17| 32.22| 26.26 | 2.81 | 18.56| 29.72| 23.15 | 2.46 | 1.14 | Subprolate | Granulate |
| *Orobanche lucorum* | 12 | 21.11| 35.52| 27.39 | 3.32 | 19.00| 29.95| 23.67 | 3.16 | 1.16 | Subprolate | Granulate |
| *Orobanche lutea* | 13a | 18.36| 26.78| 22.26 | 2.36 | 15.54| 22.33| 19.31 | 1.71 | 1.15 | Subprolate | Granulate |
| *Orobanche lutea* | 13b | 20.71| 29.98| 25.43 | 2.25 | 15.67| 25.70| 22.48 | 2.29 | 1.15 | Subprolate | Granulate |
| *Orobanche lutea* | 13c | 22.19| 39.21| 29.16 | 3.39 | 16.97| 31.17| 24.86 | 3.12 | 1.18 | Subprolate | Granulate |
| *Orobanche mayeri* | 14 | 25.05| 34.69| 28.77 | 2.66 | 19.55| 29.50| 24.19 | 2.46 | 1.19 | Subprolate | Granulate |
| *Orobanche minor* | 15 | 18.08| 27.80| 23.28 | 1.93 | 15.60| 24.30| 19.59 | 2.37 | 1.20 | Subprolate | Granulate |
| *Orobanche pallidiflora* | 16a | 18.75| 27.16| 22.23 | 2.15 | 16.37| 23.90| 19.43 | 2.03 | 1.15 | Subprolate | Granulate |
| *Orobanche pallidiflora* | 16b | 19.95| 30.96| 26.11 | 2.50 | 17.61| 27.19| 23.08 | 2.14 | 1.14 | Subprolate | Granulate |
| *Orobanche pallidiflora* | 16c | 19.52| 31.36| 24.08 | 2.39 | 16.85| 25.60| 21.07 | 2.15 | 1.16 | Subprolate | Granulate |
| *Orobanche pallidiflora* | 16d | 18.03| 28.42| 23.02 | 3.10 | 14.71| 24.19| 19.55 | 2.49 | 1.18 | Subprolate | Granulate |
| *Orobanche picridis* | 17a | 18.59| 33.38| 22.80 | 3.06 | 15.12| 23.49| 19.50 | 2.27 | 1.17 | Subprolate | Granulate |
Orobanche subclade are very similar according to the general habit of pollen grains, two smaller subgroups of taxa can be distinguished. They differ mainly in the size of grains and width of exines (cf Fig. 8). In the first group, which comprises *Orobanche alba* s. lato, *O. crenata*, *O. gracilis*, *O. hederae*, *O. lutea*, *O. minor*, *O. pallidiflora* and *O. picridis*, the mean polar axis of the pollen grains is <23.9, the equatorial mean is <20.8 and the exine is generally narrower (0.8–0.9 μm). In all the remaining taxa from the subclade, the mean polar axis of pollen grains varies from 23.3 to 28.8, the equatorial mean is 21.3–24.2 and the exine width is (0.8–) 0.9–1.1 μm (Table 2; Fig. 8).

In the Phelipanche group, a thinner exine has been noted in *P. caesia*, but at the same time, it has the highest value for equatorial and polar axis. The largest pollen grains in the Orobanche group were noted e.g. in *O. elatior*, *O. flava* or *O. lucorum*, the smallest in e.g. *O. crenata* and *O. picridis*. The thickest exines were recorded in *O. caryophyllacea*, *O. elatior* and *O. flava*, and the thinnest in *O. lutea* and *O. bartlingii* (Tables 2, 3, 4).

Table 4 continued

Taxon	Number	Polar axis (μm)	Equatorial diameter (μm)	P/E ratio	Exine (mean, μm)	Pollen shape (acc. to Erdtman 1966)	Exine sculpture
Orobanche picridis	17b	18.92 33.61 25.01 3.49	13.34 25.45 20.52 2.70	1.23 0.88	Subprolate	Granulate	
Orobanche reticulata	18	19.56 31.04 27.00 2.63	19.35 27.83 23.17 1.84	1.19 0.85	Subprolate	Granulate	
Orobanche teucrii	19	22.67 31.29 26.31 1.86	16.09 25.75 22.63 2.12	1.17 0.83	Subprolate	Granulate	

Fig. 1 Micromorphology of granules in selected species of *Orobanche*: a *Orobanche hederae* (granules like balls of wool), b *O. reticulata* (granules consisted of a few smaller round elements knitted together), c *O. flava* (granules glabrous or almost so)

Fig. 2 Arrangement of granules on the pollen surface: a areas without granules not present (*Orobanche flava*), b bald areas without granules present (*O. reticulata*)
Discussion

Analysis of the pollen grains of Central European representatives of *Orobanche* s.l. showed that they are characterised by high variability, both inter- and intra-specific, as well as in relation to oligo- and polyphagous species parasitic on various hosts. In addition, some taxa may produce heteromorphic pollen grains (Zare et al. 2013), but this issue requires further study. Surely pollen characteristics, i.e. the number of apertures and the ornamentation of exines, cannot be overlooked, because they bear valuable information to help analyse evolutionary relationships and classifications within the Orobanchaceae family. The characteristics of pollen are important criteria for distinguishing genera or sections, but are less important in distinguishing species. However, it is worth mentioning the subtle yet noticeable differences in the size and sculpture of pollen of species treated in different taxonomic units, i.e. species of the problematic complex *O. alsatica* s.l., namely *O. alsatica*, *O. bartlingii* and *O. mayeri*, all three of which
are parasites of Apiaceae (Piwowarczyk 2011, 2012c; Piwowarczyk et al. 2014). In another example, *O. pallidiflora*, the species is treated differently in various studies: as a separate taxon, or in the rank of subspecies or variety within *Orobanche reticulata* (Beck von Mannagetta 1890, 1930; Zázvorka 2000; Pusch and Günther 2009). *O. reticulata* and *O. pallidiflora* differ in morphology, habitat and altitudinal ranges as well as host preferences (e.g. Kreutz 1995; Piwowarczyk et al. 2010). Our study showed that *O. pallidiflora* has thinner exines and smaller equatorial and polar axes than *O. reticulata*, along with differences in sculpture. *Orobanche bohemica* as a separate species was first described by Čelakovský (1879). It has been assigned to different taxonomic ranks, e.g., that of a variety, by Beck von Mannagetta (1930) and Hayek (1914); as a subspecies of *Phelipanche purpurea*, by e.g. Zázvorka (2000) and Carlón et al. (2008); or as a separate species, by Holub and Zázvorka (1999), Pusch (2006), Pusch and Günther (2009), and

Fig. 4 Pollen grains and its micromorphology in: *Orobanche caryophyllacea* (1), *O. alba* subsp. *alba* (2), *O. lutea* (3), *O. flava* (4); **a** general habit of pollen grain (magnification ×3,000), **b, c** microstructure of pollen grain (magnification ×10,000 and ×30,000)
Palynological analysis also revealed auxiliary micromorphological differences: *P. bohemica* has a thicker exine and larger equatorial and polar axes than *P. purpurea*, along with differences in sculpture. A Central European species, parasitic mainly on *Centaurea*, considered until recently as *O. elatior* s.l. and now recognised as two distinct species, *O. elatior* and *O. kochii* (Závorka 2010), also demonstrates subtle differences in the size and level of sculpture of pollen grains (Tables 2, 3, 4).

Our study of pollen morphology showed various characteristics of *Orobanche coerulescens*. *O. coerulescens* has a Eurasian distribution. It occurs in the Far East, Japan, China, the Caucasus, Latvia, Ukraine and Romania. Very rare in Central Europe, it is known from Slovakia, the Czech Republic, Austria, Germany and Poland. As a typical steppe plant, it has relict features of post-glacial *Artemisia* steppes in the western part of its range. The species is recognised as extinct in the majority of its localities at the western limit of its distribution and its populations are very scarce in Central Europe. It is mainly parasitic on *Artemisia campestris* (Závorka 2000; Pusch and Günther 2009; Piwowarczyk 2012d). Traditionally, the species was included in the section *Orobanche*, grex *Coerulescentes* Beck (Beck von Mannagetta 1890), or, according to the new classification, in the section *Inflatae* (Beck) Tzvel., subsection *Coerulescentes* (Beck) Teryokhin (Teryokhin et al. 1993). This subsection contains about 10 species, poorly known and often lacking a very clear taxonomic position, of mainly steppe parasites involving the genus *Artemisia*. They are mostly endemic, occurring mainly in eastern Asia and Russia (Teryokhin et al. 1993; Piwowarczyk 2012d). We have shown that the pattern of pollen grains of *O. coerulescens* clearly belongs to a *Phelipanche* tricolpate type of pollen with microreticulate
sculpture (Figs. 3, 5). Previously, microreticulate sculpture of the exine was known only in Cistanche and Phelipanche (Zare et al. 2013). At the same time this contradicts the classification of the pollen of O. coerulescens by Zare et al. (2013) into the inaperturate type. Macromorphological characteristics indicate its intermediate position between Orobanche and Phelipanche. O. coerulescens is quite easy to distinguish from related species because of its characteristic thick stem, especially near the inflorescence, and numerous tiny, geniculately bent, pale blue flowers. The entire plant, the stem in particular, is very hairy and, when dry, looks as if covered with mould (Piwowarczyk and Przemyski 2009). Features that place it within Orobanche...
are: absence of bracteoles, calyx divided into 2 lateral segments, style persist, lateral opening, number of chromosomes \(n = 19 \); however, it is close to *Phelipanche* by virtue of such features as: blue or violet flowers, white stigma and anthers, and the presence of tricolpate pollen with microreticulate sculpture (Table 5). In the work of Manen et al. (2004), Schneeweiss et al. (2004b), and Weiss-Schneeweiss et al. (2006), it is shown for the first time to be a member of the Eurasian lineage *O. coerulescens*. Phylogenetic relationships also show a degree of separation of *O. coerulescens* from the rest of the species of the section *Orobanche* and place it in an intermediate position between *Orobanche*, *Boulardia* and *Phelipanche* (Schneeweiss et al. 2004a; Piednoël et al. 2012).

Summarising the above, we proposed to transferred *Orobanche coerulescens* to a new genus *Orobanchella*. A comparison of the main characters distinguishing *Orobanche*, *Phelipanche*, *Boulardia* and *Orobanchella* is presented in Table 5.

New genus and combination

Orobanchella R. Piwowarczyk, M. Nobis & J. Madeja **gen. nov.**

Type: *Orobanchella coerulescens* (Stephan in Willdenow) R. Piwowarczyk, M. Nobis & J. Madeja

Orobanchella coerulescens (Stephan in Willdenow) R. Piwowarczyk, M. Nobis & J. Madeja **comb. nov.**

Reference Table 5 A comparison of the main characters distinguishing *Orobanche*, *Phelipanche*, *Boulardia* and *Orobanchella*

Character	*Orobanche*	*Phelipanche*	*Boulardia*	*Orobanchella*
Bracteoles	Absent	2 bracteoles under or attached the calyx	Absent	Absent
Stem	Simple	Branched or simple	Simple	Simple
Calyx	Divided into 2 lateral segments	Cylindrical or campanulate with 4–5 teeth	Divided into 2 lateral segments	Divided into 2 lateral segments
Fruit	Style persists, lateral opening	Style falls off, top opening	Style persists, lateral opening	Style persists, lateral opening
Colour of flowers	Yellow, red, brown	Usually blue, violet	Violet, purple, rarely white–pink, yellow	Light-blue, blue–violet
Colour of stigma and anthers	Yellow, orange, purple, brown	Usually white, rare yellow–white	Usually white, rare yellow–white	Usually white, rare yellow–white
Type of pollen	Inaperturate	Tricolpate	Inaperturate	Tricolpate
Aperture	Granulate	Microreticulate	Granulate	Microreticulate
Sculpture of the exine	Wall with fibrillar ornamentation	Wall with fibrillar ornamentation	Periclinal wall granulate rugged or smooth, very rare weakly pitted	
Type of seeds	Outer tangential wall pitted or rarely smooth	Wall with fibrillar ornamentation	Wall with fibrillar ornamentation	Periclinal wall granulate rugged or smooth, very rare weakly pitted
Chromosomes	\(n = 19 \)	\(n = 12 \)	\(n = 38 \)	\(n = 19 \)

Basionym: *Orobanche coerulescens* Stephan in Willdenow, Sp. Pl. 3(1): 349, 1800.

Type: “Habitat in Siberia versus Mare Caspium”. Willdenow, 1800 (p. 349). According to Novopokrovskij and Tzvelev, 1958 (p. 72), described from area in vicinity of lake Inder “iz raiona Inderskogo ozera” (W Kazakhstan) (type in LE).

Acknowledgments Research financed by the (Polish) Ministry of Science and Higher Education, grants no. NN303357733 (2007–2009) and NN303551939 (2010–2013) to R. Piwowarczyk.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Abu Sbaih HA, Jury SL (1994) Seed micromorphology and taxonomy in *Orobanche* (Orobanchaceae). Fl Medit 4:41–48

Abu Sbaih HA, Keith-Lucas DM, Jury SL., Tubaileh AS (1994) Pollen morphology of genus *Orobanche* L. (Orobanchaceae). Bot J Linn Soc 116:305–313

Beck von Mannagetta G (1890) Monographie der Gattung *Orobanche*. Bibl Bot 19. Theodor Fischer, Cassel

Beck von Mannagetta G (1930) Orobanchaceae. In: Engler A (ed) Das Pflanzenreich. Regni Vegetabilis Conspectus. Wilhelm Engelmann, Leipzig, pp 1–348

Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Amer J Bot 93(7):1039–1051
Piwowarczyk R, Halamski AT, Durska E (2014) Seed and pollen morphology in the *Orobanche alsatica* complex (Orobanchaceae) and its taxonomic significance. Austral Syst Bot (in press)

Plaza L, Fernández I, Juan R, Pastor J, Pujadas A (2004) Micromorphological studies on seeds of *Orobanche* species from the Iberian Peninsula and the Balearic Islands, and their systematic significance. Ann Bot (Oxford) 94:167–178

Polo JM (1987) Orobancheaceae. In: Valdes B, Dicz MJ, Fernandez I (eds) Atlas Polinico de Andalucia Occidental. Inst. De Desarrollo Regional, #43, de la Universidad de Sevilla, Sevilla

Pujadas Salva AJ (2007) Novedades taxonómicas y nomenclaturales en el género *Orobanche* L. (Orobanchaceae). Acta Bot Malacitana 32:1–3

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palyn 143:1–81

Pusch J (2006) *Die Böhmische Sommerwurz* (*Orobanche bohemica* Cˇelak.)—Ein Beitrag zur Abgrenzung. Verbreitung und Gefährdung dieses zentraleuropäischen Endemiten Veröffentlichungen Naturkundemuseum Erfurt 25:127–148

Pusch J, Günther KF (2009) Orobancheaceae (Sommerwurzgewächse). In: Hegi G (ed) Illustrierte Flora von Mitteleuropa Bd. 6/1A, Lieferung 1. Weissdorn, Jena, pp 1–99

Rao TS (1963) Pollen morphology of two species of Orobanchaceae. Curr Sci 32:557–558

Schneeweiss GM (2001) Relationships within *Orobanche* sect. *Trionychon*: insights from its sequences markers. In: Fer A, Thalouarn P, Joel DM, Musselman LJ, Parker C, Verkleij JAC (eds) Proceeding of the 7th International Parasitic Weed Symposium, Nantes, France, pp 49–52

Schneeweiss GM (2007) Correlated evolution of life history and host range in the nonphotosynthetic parasitic flowering plants *Orobanche* and *Phelipanche* (Orobanchaceae). J Evol Biol 20(2):471–478

Schneeweiss GM, Colwell T, Colwell A, Weiss-Schneeweiss H (2004b) Chromosome numbers and karyotype evolution of holoparasitic *Orobanche* (Orobanchaceae) and related genera. Amer J Bot 91(13):439–448

Shahi Shavvon R, Saeidi Mehrvarz S (2010) Pollen and seed morphology of the genus *Cistanche* (Orobanchaceae) in Iran. Biologia (Bratislava) 65(4):615–620

Teryokhin ES (1997) Weed Broomrapes—systematics, ontogenesis, biology, evolution. Aufstieg, Germany

Teryokhin ES, Shibakina GV, Serafimovich NB, Kravtsova T (1993) Determinator of broomrapes of the USSR flora. Nauka, Leningrad

Tiagi B (1951) Studies in the family Orobanchaceae. III. A contribution to the embryology of *Orobanche cernua* Loeffl. and *O. aegyptiaca* Pers. Phytomorph 1:158–169

Uhlich H, Pusch J, Barthel KJ (1995) Die Sommerwurzarten Europa: Gattung *Orobanche*. Westarp-Wiss, Magdeburg

Velasco L, Goffman FG, Pujadas A (2000) Fatty acids and tocochromanols in seeds of *Orobanche*. Phytochemistry 54:295–300

Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic *Orobanche* (Orobanchaceae) and related genera. Amer J Bot 93(1):148–156

Willdenow CL (1800) Caroli a Linne ´ Species Plantarum. Tomus 3. Berolini

Zare G, Dönmez AA (2013) Two new records of the genus *Orobanche* (Orobanchaceae) from Turkey. Turk J Bot 37:1–7

Zare G, Dönmez AA, Dönmez EO (2013) Pollen morphology and evolution in the genus *Orobanche* L. s.l. and its allied genera (Orobanchaceae/Orobanchaceae) in Turkey. Pl Syst Evol. doi:10.1007/s00606-013-0919-2

Zázvorka J (1997) Orobanchaceae Vent. Zárazovité. In: Golia´sˇova´ K (ed) Flo´ra Slovenska, vol 5(2). VEDA, Bratislava, pp 460–529

Zázvorka J (2000) Orobanchaceae—zarazovité. In: Slavik B (ed) Kvetena Cˇeske Republiky 6, Academia Praha

Zázvorka J (2010) *Orobanche kochii* and *O. elatior* (Orobanchaceae) in central Europe. Acta Mus Morav Sci Biol (Brno) 95(2):77–119