ABSTRACT

Background and Objectives: *Pseudomonas aeruginosa* is an opportunistic pathogen resistant to various antibiotics. The aim of the present study was to study resistant patterns in clinical isolates of *P. aeruginosa*, classify them into pandrug resistance (PDR), extensive drug resistance (XDR) and multidrug resistance (MDR) groups, and identify extended-spectrum β-lactamase (ESBL)-positive isolates using the phenotypic and genotypic methods.

Methods: This cross-sectional study was conducted on 161 *P. aeruginosa* isolates collected from the city of Isfahan, Iran. Antibiotic susceptibility tests were performed using 11 antimicrobial agents. ESBL-positive strains were identified using the phenotypic and genotypic methods.

Results: The highest level of antibiotic resistance was observed against ceftazidime (77.64%). None of the isolates was resistant to polymyxin B. In the phenotypic method, 64 isolates (39.75%) were found as ESLB-positive, whereas 132 isolates (81.98%) were ESBL-positive in the genotypic method. The number of ESBL-positive isolates in the genotypic method was significantly higher than in the phenotypic method. The frequency of XDR and MDR isolates was 50.93% and 27.32%, respectively. None of the isolates was PDR. The frequency of the *blaTEM* gene was significantly higher than other genes (P<0.0001).

Conclusion: It was revealed that the genotypic method was much more accurate in identifying ESBL-positive strains than the phenotypic method. Therefore, use of the molecular method may increase the chance of successful treatment with antibiotics of the β-lactam family.

Keywords: Drug Resistance, β-lactamases, *Pseudomonas aeruginosa*.
INTRODUCTION

Pseudomonas aeruginosa is an obligate aerobic, gram-negative and non-spore forming bacillus, which is part of the normal flora of skin and intestines in humans. The bacterium is also found in water and soil. This opportunistic bacterium is one of the most important causes of hospital-acquired infections that can lead to bacteremia, meningitis, urinary tract infection, pulmonary infections, etc., especially in immunocompromised individuals (1, 2). Researchers have found that mortality rates of burn wound infections caused by this bacterium are 40-50% (3). *P. aeruginosa* is also the fourth most frequently isolated pathogen from surgical-site infections (4). Emergence of antibiotic resistance among pathogenic bacteria, especially in health centers and hospitals, has become a major health concern (2). Clinical findings indicate that infections caused by resistant pathogens increase mortality rates and treatment costs (5). It has been found that infections caused by antibiotic-resistant bacteria also increase hospitalization duration by 6.4 to 12.7 days (6). According to the Centers for Disease Control and Prevention (CDC), pattern of resistance of bacteria to multiple antimicrobial agents can be classified into pandrug resistant (PDR), extensive drug resistant (XDR) and multidrug resistant (MDR). Strains resistant to at least one agent from three or more groups of antibiotics were defined as MDR. Those resistant to at least one agent in all but two or fewer antibiotic groups were defined as XDR. Finally, strains resistant to all agents from all antibiotic groups were defined as PDR (7).

One of the important reasons of resistance of *P. aeruginosa* to a wide spectrum of antibiotics is the ability to encode β-lactamase, an enzyme able to destroy the β-lactam ring in the chemical structure of β-lactam antibiotics. Chromosome- and plasmid-borne extended-spectrum β-lactamases (ESBLs) are able to destroy the β-lactam ring in a broad spectrum of β-lactam drugs (4, 8-11). ESBL is produced by various genes including *bla* _{ESBL}, *bla* _{VERB}, *bla* _{PER}, *bla* _{OXA}, *bla* _{CTX} and *bla* _{SHV} and *bla* _{GES} genes (12). The possibility of horizontal gene transfer via conjugation, transformation or transduction may increase spread of genes responsible for ESBL production in the bacterial community (12). The purpose of this study was to evaluate resistance patterns of *P. aeruginosa* isolates collected from various hospitals, classify the isolates into the PDR, XDR and MDR groups, and identify ESBL-positive isolates using the phenotypic and genotypic methods.

MATERIAL AND METHODS

In this cross-sectional study, 161 *P. aeruginosa* isolates referred to laboratory for identification of the bacterial species, were collected from different treatment centers in Isfahan from May 2017 to September 2017. Susceptibility of the isolates to different antimicrobial agents including tobramycin (10 μg), amikacin (30 μg), ciprofloxacin (5 μg), levofloxacin (5 μg), ceftazidime (30 μg), cefepime (30 μg), piperacillin (100 μg), imipenem (10 μg), meropenem (10 μg), azteronam (30 μg) and polymyxin B (10 μg) were assessed by the Kirby-Bauer method.

Data were analyzed according to the Clinical and Laboratory Standards Institute guidelines (CLSI, 2017) (13) and *P. aeruginosa* (ATCC 27853) was used as the control. The combined disk method was used to identify ESBL-producing bacteria. Briefly, suspensions of ceftazidime-resistant *P. aeruginosa* equaling 0.5 McFarland turbidity standard were cultured on Mueller-Hinton agar (CONDA, Spain). Then, ceftazidime and ceftazidime-clavulanic acid disks were placed 25 mm apart on the culture medium using sterilized forceps. If the inhibition zone diameter around the ceftazidime-clavulanic acid disks was ≥5 mm than that around the ceftazidime disk, the isolate was considered as ESBL-producing (14). After evaluating the antibiotic resistance patterns, the isolates were classified as PDR, XDR and MDR according to the standards introduced by the CDC (7). For this purpose, whole genomic DNA extraction was performed using a commercial DNA extraction kit (SinaClon, Iran) according to the manufacturer’s protocol. Specific primers for the *bla* _{SHV}, *bla* _{TEM}, *bla* _{CTX}, *bla* _{OXA}, *bla* _{PER}, *bla* _{VERB} and *bla* _{GES} genes were used for molecular detection of ESBL-producing bacteria using polymerase chain reaction (PCR) (Table 1). DNA amplification was conducted in a 25 μl reaction mixture containing 1 μl of template DNA, 0.5 μl of each primer (10 pmol), 2.5 μl of 10X buffer, 1 μl of MgCl₂ (50 Mm), 0.5 μl of dNTPs (10 mM) and 1.5 units of Taq DNA polymerase (CinnaGen, Iran) (10). PCR products (5 μl)
were subjected to electrophoresis in 1% agarose gel (SinaClon, Iran). Presence and size of amplicons were analyzed by a Gel documentation system (Bio-Rad, USA). Data were analyzed with GraphPad (GraphPad Software Inc., USA) using the Fisher’s exact test. P-values less than 0.05 were considered statistically significant.

RESULTS

General characteristics and sources of the 161 P. aeruginosa isolates are presented in table 2. As shown in table 3, the highest level of resistance was recorded against ceftazidime (77.64%). In addition, none of the isolates was resistant to polymyxin B. In the phenotypic method, 64 isolates (39.75%) were identified as ESBL-positive, whereas 132 isolates (81.98%) had at least one of the resistant genes in the genotypic method. Moreover, 29 isolates (18.01%) did not contain any of the resistance genes. The resistance genes were not detected in eight isolates (12.5%) found as ESBL-positive in the phenotypic method. The number of ESBL-positive isolates identified in the genotypic method was significantly greater than that of the phenotypic method. The frequency of the blaTEM, blaSHV, blaCTX-M and blaOXA was 60.86%, 29.81%, 24.22% and 14.28%, respectively. BlaPER, blaVEB, and blaGES were not detected in any of the isolates. The frequency of the blaTEM gene was significantly higher than the other genes (P<0.0001) (Table 4).

Table 1 - Sequences of the specific primers and size of amplicons

Primer	Sequence (5’ to 3’)	Amplicon Size (bp)	Reference
blaTEM	ATGAGTATTCAACATTTCCG	867 (25)	
	CTGACATGTCCTGTTTCA		
blaSHV	GATGAACTGTTTCCCCGATG	214 (26)	
	CGCTGTTATGCCTAGT		
blaCTX-M	TTTGCCGATGTCGATACCAT	590 (27)	
	GAATCTGTTGTTGCCATCA		
blaOXA	GGCAGTTTGAGATGAAAC	438 (28)	
	CATCAAGTTTCAACCCACCG		
blaPER	ATGAAATGTCAATTTAAAAA	925 (29)	
	GTTCGTTTGGTGCCGACAA		
blaVEB	CGGACTTCCATTCTCGATGC	642 (30)	
	GGCACCTGCAACAAAAATACCG		
blaGES	ATGGCGTTATTACCCGAC	844 (28)	
	CTATTGTTCGTCGCAAGG		

Table 2 - General characteristics of the 161 P. aeruginosa isolates used in the study

Sex	Female	Male	Urine	Wound/Abscess	Respiratory	Dialysis-related fluids	Acetic fluid	Blood	Cerebrospinal fluid	Plural fluid
	90	71	31	8	85	4	3	22	5	3

Table 3- Antibiotic resistance pattern of P. aeruginosa isolates based on the phenotypic method

Antibiotic	Sensitive	Intermediate	Resistant	
	Number (%)	Number (%)	Number (%)	
Aminoglycosides				
Tobramycin	53 (32.91)	17 (10.56)	91 (56.52)	
Amikacin	119 (73.91)	0 (0.0)	42 (26.09)	
Quinolone and Fluoroquinolones				
Ciprofloxacin	77 (47.83)	32 (19.88)	52 (32.30)	
Levofloxacin	83 (51.55)	0 (0.0)	78 (48.45)	
B-Lactams				
Ceftazidime	36 (22.36)	0 (0.0)	125 (77.64)	
Cefepime	74 (45.96)	0 (0.0)	87 (54.04)	
Piperacillin	42 (26.09)	4 (2.48)	115 (71.43)	
Carbapenems				
Imipenem	37 (22.98)	0 (0.0)	124 (77.02)	
Meropenem	73 (45.34)	3 (1.90)	85 (52.80)	
Monobactams				
Azteronam	103 (63.97)	0 (0.0)	58 (36.03)	
Polymyxin B	161 (100.0)	0 (0.0)	0 (0.0)	
Table 4: Resistance phenotypes and presence of resistance genes in ESBL-positive *P. aeruginosa*

Isolate	Resistance phenotypes a	Resistance genes	Sex b	Source c
Pae-1	TOB, PIP, CAZ, IMP	*bla*_{TEM}, *bla*_{SHV}	M	U
Pae-2	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}, *bla*_{CTX}, *bla*_{OXA}	M	PF
Pae-3	AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}	M	BL
Pae-5	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}	M	R
Pae-8	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX}, *bla*_{OXA}	F	CSF
Pae-9	AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}	M	U
Pae-15	TOB, AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}	M	R
Pae-16	PIP, LOM, CAZ, IMP	*bla*_{TEM}	M	R
Pae-19	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX}, *bla*_{OXA}	F	W/A
Pae-20	TOB, AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}	F	R
Pae-21	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}	F	R
Pae-25	CP, CAZ, FEP, MEN	*bla*_{TEM}, *bla*_{SHV}	F	U
Pae-28	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{TEM}	F	R
Pae-30	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	---	M	BL
Pae-31	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX}	F	BL
Pae-32	TOB, AN, PIP, CAZ, FEP, IMP, AZT	*bla*_{TEM}	F	R
Pae-33	TOB, AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}	F	R
Pae-36	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}, *bla*_{SHV}, *bla*_{OXA}	M	R
Pae-40	TOB, AN, PIP, CAZ, FEP, IMP	*bla*_{SHV}	M	R
Pae-45	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}	F	U
Pae-47	TOB, PIP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{TEM}, *bla*_{SHV}, *bla*_{OXA}	M	R
Pae-48	TOB, AN, PIP, CAZ, IMP	---	F	R
Pae-53	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{SHV}	M	WA
Pae-54	TOB, AN, PIP, CAZ, FEP, IMP	*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX}	M	D/F
Pae-57	PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{TEM}	F	CSF
Pae-58	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}	M	BL
Pae-62	TOB, AN, PIP, CAZ, IMP	---	F	U
Pae-63	TOB, PIP, CAZ, IMP	*bla*_{TEM}	F	R
Pae-64	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}, *bla*_{SHV}	M	R
Pae-70	TOB, PIP, LOM, CAZ, FEP, IMP	*bla*_{CTX}	F	R
Pae-72	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	---	F	R
Pae-74	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	*bla*_{OXA}	F	U
Pae-76	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX}, *bla*_{OXA}	M	BL
Pae-81	AN, PIP, CAZ, FEP, IMP, AZT	*bla*_{OXA}	M	U
Pae-82	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	---	F	BL

a: TOB: tobramycin, AN: amikacin, CP: ciprofloxacin, LOM: levofloxacin, CAZ: ceftazidime, FEP: cefepime, IMP: imipenem, MEN: meropenem, AZT: azteronam
b: F: Female, M: Male
c: U: urine, W/A: wound/abscess, R: respiratory, D/F: dialysis-related fluids, AF: ascitic fluid, BL: blood, PF: plural fluid
Continue of table 4- Resistance phenotypes and presence of resistance genes in ESBL-positive *P. aeruginosa*

Isolate	Resistance phenotypes	Resistance genes	Sex	Source
Pae-84	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	---	M	U
Pae-86	LOM, CAZ, FEP, IMP, MEN	**blaTEM**	M	R
Pae-87	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	**blaTEM**	F	R
Pae-90	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	---	F	BL
Pae-92	TOB, PIP, CP, LOM, CAZ, FEP, IMP, MEN, AZT	**blaTEM**, **blaCTX**	M	R
Pae-94	TOB, PIP, LOM, CAZ, FEP, IMP, MEN	**blaSHV**	F	U
Pae-95	PIP, LOM, CAZ, IMP, MEN	---	M	U
Pae-96	TOB, AN, PIP, sCAZ, FEP, IMP, MEN, AZT	**blaTEM**	M	BL
Pae-97	TOB, PIP, CAZ,IMP, MEN, AZT	**blaTEM**, **blaSHV**, **blaOXA**	F	PF
Pae-98	PIP, CP, LOM, CAZ, IMP, MEN	**blaTEM**, **blaCTX**, **blaOXA**	M	R
Pae-108	CP, LOM,CAZ, IMP, MEN	**blaTEM**	M	BL
Pae-110	TOB, PIP, CP, LOM, CAZ, IMP, MEN, AZT	**blaSHV**	M	U
Pae-115	TOB, PIP, CP, LOM, CAZ, IMP, MEN, AZT	**blaTEM**, **blaSHV**, **blaCTX**, **blaOXA**	M	U
Pae-118	TOB, AN, PIP, CAZ, IMP, AZT	**blaTEM**, **blaCTX**	M	W/A
Pae-121	CP, LOM, CAZ, MEN	**blaTEM**, **blaSHV**	F	R
Pae-123	TOB, AN, PIP, CAZ, IMP, MEN, AZT	**blaTEM**	F	R
Pae-125	FEP, MEN	**blaTEM**, **blaCTX**	M	R
Pae-127	TOB, PIP, CP, LOM, CAZ, IMP, MEN	**blaTEM**, **blaSHV**, **blaCTX**	F	U
Pae-130	TOB, AN, PIP, CAZ, IMP, AZT	**blaSHV**, **blaOXA**	F	U
Pae-133	TOB, AN, PIP, CAZ, IMP, AZT	**blaTEM**, **blaCTX**, **blaOXA**	F	A/F
Pae-137	TOB, PIP, CP, LOM, CAZ, IMP, MEN, AZT	---	M	R
Pae-138	TOB, AN, PIP, CAZ, IMP, AZT	**blaOXA**	F	U
Pae-140	CAZ,FEp, MEN	**blaSHV**	M	BL
Pae-143	PIP, CP, LOM, CAZ, IMP, MEN	**blaTEM**, **blaSHV**	M	R
Pae-150	CAZ,FEp	**blaTEM**, **blaSHV**, **blaCTX**	F	BL
Pae-155	CAZ,FEp	**blaTEM**, **blaSHV**	F	R
Pae-156	CP, LOM,CAZ, IMP, MEN	**blaTEM**	M	U
Pae-160	TOB, PIP, CP, LOM, CAZ, IMP, MEN, AZT	**blaTEM**, **blaSHV**	F	R
Pae-161	CAZ,FEp, MEN	**blaTEM**, **blaCTX**, **blaOXA**	F	CSF

DISCUSSION

Production of broad-spectrum β-lactamases is one of the ways through which *P. aeruginosa* becomes resistant to antibiotics of the β-lactam family. Since *P. aeruginosa* is an important cause of hospital-acquired infections, spread of ESBL-producing genes among *P. aeruginosa* strains can make treatment of infections more challenging (12). Therefore, periodic studies on the extent of resistance shown by this bacterium are of great importance. Based on the results, the highest rate of resistance was observed against ceftazidime, while none of the *P. aeruginosa* isolates was resistant to polymyxin B. Moreover, 39.75% of the isolates were ESBL-producing. A study by Ullah et al. showed that the lowest and highest level of antibiotic resistance was against meropenem (5.66%) and ampicillin (94.34%), respectively. Furthermore, 25.47% of the isolates were resistant to amikacin (15). Tavajjohi and Moniri reported that 9.2% of the *P. aeruginosa* isolates were ESBL-positive. Furthermore, more than 30% of the isolates were MDR, 13% of which were resistant to all studied antibiotics. The highest and lowest...
Employment of the phenotypic method could produce false negative results and disrupt the treatment process since antibiotics of the β-lactam family may be utilized to treat infections caused by ESBL-positive bacteria. Therefore, it is recommended to use the genotypic method for the detection of ESBL-positive isolates. In the present study, 12.5% of the ESBL-producing isolates had none of the studied resistance genes, probably because the enzyme was produced by genes (such as bla_{TEM}, bla_{SHV}, etc.) other than those investigated in the present study. Bacteriophages can be considered as alternatives to antibiotics considering the emergence and rising incidence of multi-drug resistance (21). The natural potential of virulent phages to infect and destroy specific bacterial host cell makes them safe antibacterial agents for treatment of various infections caused by <i>Shigella</i> spp. (21, 22), <i>Salmonella</i> spp. (23), <i>Proteus mirabilis</i> (24), <i>Klebsiella pneumoniae</i> (14), etc. Since most <i>P. aeruginosa</i> strains isolated in the present study were MDR, they can be utilized as host for phage isolation and phage cocktail preparation against <i>P. aeruginosa</i>.

CONCLUSION

The resistance patterns in bacteria should be periodically and systematically studied. Reporting the results of such studies to physicians could help specify resistance frequencies and bacterial susceptibility to various antibiotics, increasing the chance of successful treatment of infections. Furthermore, it is highly recommended to use the genotypic method along with the phenotypic method for the detection of ESBL-positive <i>P. aeruginosa</i> strains because of the better accuracy. This can greatly influence the effectiveness of the treatment process. Moreover, we suggest using the CDC protocol for identification of MDR, PDR and XDR isolates.

ACKNOWLEDGMENTS

This study was funded by the Research Council of the Arak University (Grant No: 96.5828). We would like to thank the university staff and those who participated in this study.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
REFERENCES

1. Porras-Gómez M, Vega-Baudrit J, Núez-Corrales S. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. Journal of Biomedical Materials and Nanobiotechnology. 2012; 3(04): 519-527. https://doi.org/10.4236/jbnb.2012.324053.

2. Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection, Epidemiology and Medicine. 2016; 2(1): 25-32. https://doi.org/10.18869/medores.iem.2.1.25.

3. Shakibaie MR, Shahcheragh F, Hashemi A, Adeli NS. Detection of TEM, SHV and PER Type Extended-Spectrum β-Lactamases among Clinical Strains of Pseudomonas aeruginosa Isolated from Burn Patients at Shafa-Hospital, Kerman, Iran. Iranian journal of basic medical sciences. 2008; 11(2): 104-111. DOI: 10.22038/ijbms.2008.5220.

4. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009; 22(4): 582-610. https://doi.org/10.1128/CMR.00040-09.

5. Lee GC, Reveles KR, Attridge RT, Lawson KA, Mansi IA, Lewis JS, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC medicine. 2014;12(1):96. https://doi.org/10.1186/1741-7015-12-96.

6. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. 2014;8(02):129-136. https://doi.org/10.3855/jidec.3573.

7. Magiorakos A, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 2012; 18(3): 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

8. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clinical microbiology and infection. 2007; 13(6): 560-578. https://doi.org/10.1111/j.1469-0691.2007.01681.x.

9. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antibiotic agents. Antimicrobial Agents Chemotherapy. 1999; 43(6):1379-1382.

10. Komijani M, Bouzari M, Rahimi F. Detection of TEM, SHV and CTX-M antibiotic resistance genes In Escherichia coli isolates from infected wounds. Medical Laboratory Journal. 2017; 11(2): 30-35.

11. Bush K. Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant Gram-negative infections. Critical Care. 2010;14(3): 224. https://doi.org/10.1186/cc8892.

12. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015; 22(1): 90-101. https://doi.org/10.1016/j.sjbs.2014.08.002.

13. Patel JB. Performance standards for extended-spectrum β-lactamase testing: Clinical and Laboratory Standards Institute. 2017.

14. Komijani M, Bouzari M, Rahimi F. Detection and Characterization of a Novel Lytic Bacteriophage (vB-KpnM-Isf48) Against Klebsiella pneumoniae Isolates from Infected Wounds Carrying Antibiotic-Resistance Genes (TEM, SHV, and CTX-M). Iranian Red Crescent Medical Journal. 2016;19(2): e34475. https://doi.org/10.5812/rcrnmj.34475.

15. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009; 35(7): 1020-1025. https://doi.org/10.1016/j.burns.2009.01.005.

16. Moniri R, Tavajohi Z. Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital. Archives of Clinical Infectious Diseases. 2011; 6(1): 18-23.

17. Alkhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur Journal of Microbiology. 2014; 7(1):e8888. doi: 10.5812/jjm.8888.

18. Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, Ashour MSE-D. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. BioMed research international. 2014; 2014: 8 https://doi.org/10.1155/2014/101635.

19. Tahwif AF, Shibli AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012;38(6):855-860. https://doi.org/10.1016/j.burns.2012.01.005.

20. Shahcheragh F, Nikbin V-S, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microbial Drug Resistance. 2009; 15(1): 37-39.https://doi.org/10.1089/mdr.2009.0880.

21. Shahin K, Bouzari M, Wang R. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SooS-ISF002 infecting Shigella sonnei and Shigella flexneri. Journal of medical microbiology. 2018; 67(3): 376-386. https://doi.org/10.1099/ijmm.0.006083.

22. Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. Journal of food science and technology. 2018;55(2):550-559. https://doi.org/10.1007/s13197-017-2964-2.

23. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses. 2015; 7(8): 4836-4853. https://doi.org/10.3390/v7082847.

24. Yazdi M, Bouzari M, Ghaemi EA. Isolation and Characterization of a Lytic Bacteriophage (vB_PmisTH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection. Journal of molecular microbiology and biotechnology. 2018; 28(1): 37-46. https://doi.org/10.1159/000487137.
25. Bhattacharjee A, Sen MR, Prakash P, Anupurba S. Role of β-lactamase inhibitors in enterobacterial isolates producing extended-spectrum β-lactamases. Journal of antimicrobial chemotherapy. 2008; 61(2): 309-314. https://doi.org/10.1093/jac/dkm494.

26. Kim J, Jeon S, Rhie H, Lee B, Park M, Lee H, et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infection and Chemotherapy. 2009; 41(3): 181-184. https://doi.org/10.3947/ic.2009.41.3.181.

27. Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, et al. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrobial agents and chemotherapy. 2009; 53(11): 4733-4739. https://doi.org/10.1128/AAC.00533-09

28. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014; 40(8): 1556-1561. https://doi.org/10.1016/j.burns.2014.02.010

29. Peerayeh SN, Mahabadi RP, Toukanlou SP, Siadat SD. Diversity of β-lactamases produced by imipenem resistant, Pseudomonas aeruginosa isolates from the bloodstream. Burns. 2014;40(7):1360-1364. https://doi.org/10.1016/j.burns.2014.01.009

30. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2006;50(9):2990-2995. https://doi.org/10.1128/AAC.01511-05