New Structure and Spin State of Iron-Rich (Mg,Fe)SiO$_3$ Post-Pervoskite

T. Yamanaka1, W. L. Mao2, H-K Mao1, R.J. Hemley1 and G. Shen3

1Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW Washington DC
2Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305
3HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439

E-mail t.yamanaka@kce.biglobe.ne.jp

Abstract There was a discrepancy between the seismic tomography and the elastic property of MgSiO$_3$ perovskite at near the D” zone and core boundary. Since a discovery of post-perovskite (ppv) of MgSiO$_3$, many investigations have made to explain the presence of low seismic velocity of the lower mantle and D” zone. However, precise experimental structure analysis of ppv-(Mg$_{1-x}$Fe$_x$)SiO$_3$ has never been reported because of the experimental difficulty. Fe and Mg cation distribution and ordering in ppv-(Mg,Fe)SiO$_3$ in consideration of spins states are significant subject in lower mantle electronic and magnetic states. The present experiment aims X-ray emission study and structure analysis by Rietveld profile fitting of ppv-(Mg$_{1-x}$Fe$_x$)SiO$_3$ by the precise powder diffraction measurement. Monte Carlo calculation proposed the reliable structures of iron-rich phase of ppv-(Mg,Fe)SiO$_3$: Pmmn, Pmma, Cm2m and Cmcm proposed by . The best-fit structure model with the highest reliability in the Rietveld fitting of ppv-(Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ is the structure of space group Pmma, in which Fe and Mg occupy two different sites of M1 and M2: the site occupancies are (Fe$_{0.25}$Mg$_{0.75}$) in the larger M1 site and (Fe$_{0.55}$, Mg$_{0.45}$) in the smaller M2 site. The two-site model is consistence with the previous results of X-ray emission and X-ray Mössbauer experiments.

Introduction

Before a discovery of the CaInO$_3$ of Cmcm structure as post-perovskite (ppv) of MgSiO$_3$ in 2004, there was a discrepancy between the seismic tomography and the elastic property of MgSiO$_3$ perovskite at near the D” zone. The ppv was proposed by simulation of the powder diffraction pattern1 and the first-principle calculation2,3, numerous high-pressure experiments of MgSiO$_3$ ppv have been undertaken to explain the anomalous seismic phenomena observed in D” zone.4,10

The near core-mantle boundary (CMB) with ultra low seismic velocities was explained by silicate ppv containing up to 40 mol% FeSiO$_3$ (En60), which has a low shear wave velocities and high Poisson’s ratio5. In situ synchrotron X-ray diffraction measurements11 at high-pressure and -temperature in a laser-heated diamond anvil cell (DAC) from 1640 to 4380 K at 119–171 GPa show a precise post-perovskite phase transition boundary and the depths of paired seismic discontinuities at CMB pressure. Recently a new anomaly of the seismic velocity of the Earth’s D” layer is found in the local areas by seismic tomography. The seismic velocity vs depth is schematically drawn in Fig.1.

Rietveld structure analyses of ppv of several ppv compounds with space group Cmcm have been reported and their equation states were also reported based on the CaInO$_3$ structure model.12,13 Many higher-pressure phases of perovskite compounds, ppv-ABO$_3$ have been reported by X-ray powder diffraction studies,14,17 neutron diffraction study18 and first principles calculation based on density functional theory.19,20 The low shear wave velocities using
iron-rich post-perovskites (Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ (En60) were investigated to disclose the seismic velocity at boundary layer between crystalline silicate lower mantle and liquid iron outer core.21 Thermoelastic properties of ppv-(Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ up to 135 GPa and 2,700 K were reported.22

Structure refinements of ppv-(Mg$_{1-x}$Fe$_x$)SiO$_3$ solid solutions have never been carried out because of experimental difficulties. Fe and Mg cation distribution and ordering in the ppv-(Mg$_{1-x}$Fe$_x$)SiO$_3$ structure are a significant factor in lower-mantle equilibria and the equation of state. Several papers proposed different type of ppv structures from CaInO$_3$ structure. Rietveld refinement of ppv-NaMgF$_3$ structure was a better fit to Ccm2$_1$, which is a non-isomorphic subgroup of Cmcm of the structure of CaIrO$_3$. However, the model cannot produce the two-site model for eight-fold cation sites. In comparison with the structural features, ppv-MgSiO$_3$ is more similar to ppv-MgGeO$_3$ and ppv-NaMgF$_3$ than ppv-CaIrO$_3$. Further aluminous magnesium metasilicate ppv is inconsistent with the CaIrO$_3$ structure from X-ray diffraction data and Raman spectra studies.23 Finite temperature, minor element chemistry, kinetics of phase transformation and actual stress regime are plausible reasons for the observed differences from the previously reported ppv phases. Previous X-ray Mössbauer spectroscopic study of ppv-(Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ showed two doublets of ferrous cations.24 The study proves the two-site model of ferrous ions in the ppv structure is different from CaIrO$_3$ structure which has a one-site model.

The present experiment aims the Rietveld profile fitting of iron-rich magnesium metasilicate ppv-(Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ by the precise powder diffraction measurement at 137 GPa with laser heating at about 2000 K. Above 136 GPa of the transition pressure “D” zone, spin state of ferrous ion has been clarified by the X-ray emission experiment.

Powder diffraction experiment and structure analysis

The sample of ppv-Mg$_{0.6}$Fe$_{0.4}$SiO$_3$ (En60) has been prepared on the beamline from the starting material of pyroxene phase. The fine powder sample and platinum internal pressure marker were loaded into a rhenium gasket which was preindented to 40 µm. The sample was compressed to 130 GPa and then heated to 2000 K on the beamline by the double-sided Nd:YLF laser-heating system using the beveled diamond-anvils of 90 µm culets and 450 µm outer diameter. Temperature was determined by spectral radiometry based on the Planck radiation function. Pressure was determined using the Pt equation of state.

Powder diffraction experiments were executed at the Advanced Photon Source (APS) at Geo Soil Enviro CARS (GSECARS) 13-ID-D, and at the High Pressure Collaborative Access Team (HPCAT) 16-ID-B. These beam lines are described.25 Powder diffraction pattern were collected by imaging plate at HPCAT, and by CCD at GSECARS. The diffraction patterns were processed and digitized with FIT2D program.26

After conversion from pyroxene to ppv phase, we collected twenty patterns at different locations of sample over the entire laser-heated area at several different omega angles in order to avoid the non-uniformity in diffraction patterns due to the preferred orientation and grain growth by laser heating in the gasket. A monochromatic X-ray beam with λ = 0.3344 Å were used for incident beam. The beam was focused down to 5 x 7 µm through DAC and
impinged on the sample. The final pattern represents the sum of all spectra from different areas. The standard deviation in integrated intensity was less than 3%.

We tried to determine the most reliable structure of post-perovskite polymorph of (Mg,Fe)SiO$_3$ from the possible structure models, which were provided by the Monte Carlo calculation. The calculation was executed using the diffraction intensities and reflection indices obtained by the indexing process. Rietveld profile fittings for the four possible structure models of $Pmnm$, $Pmna$, $Cn2m$ and $Cmcm$ have been undertaken for least-squares refinement. Initial atomic positional parameters in the refinement are applied from the Monte Carlo calculation.

Rietveld profile fitting was conducted by program RIETAN-2000. The variable parameters in the profile fitting are background, scale factor, pseudo-Voigt profile function including FWHM and asymmetry parameters, besides the structure parameters, lattice constants, atomic positional coordinates, site-occupancy parameter and temperature factors. First the background intensity distribution was adjusted for the refinement. Lattice constants and atomic positional coordinates were set to the variable parameters and subsequently profile parameter and site-occupancy parameters were varied in the refinement procedure. Finally full matrix least-squares refinement was conducted.

X-ray emission spectroscopy experiment.

X-ray emission spectra (XES) measurement has confirmed the high-low spin transition under the condition of the “D” zone. The synthesized sample was compressed to 124 GPa and heated to 1800 K at BL16-ID-B of HPCAT, APS. The incident X-ray beam was focused using a pair Kirkpatrick-Baez mirrors. A spherically bent Si (333) crystal was used for the energy analyzer, which sits along with the detector on a high resolution (0.5 eV). The Fe-Kβ emission spectrum is collected through the gasket. Changing the analyzer angle θ and simultaneously detector angle 2θ of Rowland-circle spectrometer scans energy. In order to reduce absorption by air, helium gas was filled in the X-ray path. The detailed specification was reported in our previous papers.

Result

The Monte Carlo calculation yields four reasonable structure models with different cation distributions by four space groups of MSiO$_3$: $Pmnm$ ($Pmnm$) for (M1,M2)[Si]O$_3$, $Pmna$ ($Pmcm$) for (M1, M2)[Si1, Si2]O$_3$, $Cn2m$ for (M1,M2)[Si]O$_3$ and $Cmcm$ for (M1)[Si]O$_3$. The space group $Cmc2_1$ proposed for ppv-NaMgF$_3$ is not the candidate for the two-site model. First three models belong to the non-isomorphic subgroups of $Cmcm$.

The structure model of space group $Pmna$ shows the highest reliability parameters in the least-squares fitting in the Rietveld refinement. For comparison, both results based on $Pmna$ and $Cmcm$ are presented in Table 1. Rietveld refinement based on the CaInO$_3$ structure ($Cmcm$) model did not provide the best fit to the powder diffraction intensity of ppv-(Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ (ppv-En60).

Note that $Pmna$ is same symmetry as $Pmcm$. The difference between $Pmna$ and $Cmcm$ is only their lattice types. Both reliability factors, RI (intensity fitting) and RF (structure factor fitting), of the former model are better than those of the latter. The result of Rietveld refinement of both $Pmna$ and $Cmcm$ are presented in Fig. 2, which indicates the $Pmna$ model gives much better fit to the observed intensity distribution than the $Cmcm$ model. The converged lattice constants are $a=6.1252(7)$ Å, $b=2.4648(3)$ Å, $c=8.1529(10)$ Å. The lattice constants are naturally same as those taken from the $Cmcm$ model. There are two different sites M1 (2e) and M2 (2f) in the $Pmna$ model and both have the site symmetry $mm2$. On the other hand Fe and Mg cations are randomly distributed in only one site M (4c) in $Cmcm$ with the site symmetry $m2m$. These cations are partly ordered in two sites, M1 and M2 in
Pnma model, the former site occupancy is \((\text{Mg}_{0.75} \text{Fe}_{0.25})\) and the latter \((\text{Mg}_{0.45} \text{Fe}_{0.55})\) by the site occupancy refinement. About 70% of Fe atoms occupies at the M2 site. The overall temperature parameters are also converged to the reasonable values for all atoms. Si atoms locate the two sites, \((2a)\) and \((2d)\) with the site symmetry of \(\overline{2}m\).

Table 1 positional parameters

Space group	\(Pnma\) (SG=51)	Z=4
atom	Wyc x y z	B
M1	\(2e\) 0.25 0.0 0.255(4)	2.3(0.7)
M2	\(2f\) 0.25 0.5 0.751(8)	3.6(0.1)
Si1	\(2a\) 0.0 0.0 0.0	2.8(0.8)
Si2	\(2d\) 0.0 0.5 0.5	1.0(0.7)
O1	\(2e\) 0.25 0.0 0.920(8)	1.6(0.8)
O2	\(2f\) 0.25 0.5 0.435(7)	2.6(0.9)
O3	\(4i\) 0.441(4) 0.0 0.639(4)	0.5(0.9)
O4	\(4i\) 0.437(8) 0.5 0.119(4)	1.8(1.3)

RI = 6.90 RF = 6.28 Rwp = 0.25 Rp = 0.16 s = 0.6183

M1 (Fe\(_{0.25}\)Mg\(_{0.75}\))
\(a=6.125(7)\) \(b=2.4648(3)\) \(c=8.1529(10)\) \(\text{Vol}=123.09(3)\)

M2 (Fe\(_{0.55}\)Mg\(_{0.45}\))
\(a=2.4647(3)\) \(b=8.15345(11)\) \(c=6.1257(8)\) \(\text{Vol}=123.10(2)\)

The bond distances were calculated in the both models of \(Pnma\) and \(Cmcm\). M1 and M2 cations are eight-fold coordinated and form the almost anti-dipyramid, as shown in **Fig. 3**. Si atom has a six-fold coordination. Oxygen atoms at the O1 and O2 sites have a four-fold coordination. On the other hand oxygen at the O3 and O4 sites five-fold. The average bond-distance of M1 is larger than that of M2 in the former model. The ionic radius of \(\text{VIII} \text{Fe}^{2+}\) (0.92 Å) is larger than \(\text{VIII} \text{Mg}^{2+}\) (0.89 Å) at ambient conditions with reference to the empirical ionic radii.\(^{31}\) In general, the average values are consistent with the cation radii. However, the large M1 site of ppv-En60 is more occupied by the smaller Mg\(^{2+}\) and the seemingly larger Fe\(^{2+}\) occupies the small M2 site. This is because Fe\(^{2+}\) in the M2 site is the low-spin state, which reduces the ion radius to 0.74 Å. Consequently Fe\(^{2+}\) becomes smaller than Mg\(^{2+}\). These two sites are distributed alternatively and keep a zigzag mode in the direction of \(a\) axis, as seen in **Fig. 3**.

Bond distances indicate the smaller M2 site is more distorted than the M1 site. The inter planer distance in the direction of the \(z\) axis between two oxygen layers of the M2 molecule is about 10% shorter than that of M1 by the compression under megabar. The M2 site is more distorted than the M1 site and the large distortion of the M2 site is consistent with the quadruple splitting found the Mössbauer spectroscopic study.\(^{24}\)
Discussion

Numerous experiments and calculations have discussed electron spin transitions and magnetic spin transitions of the interiors of low mantle and D" zone.24, 32-35 The present structure refinement of \(\text{ppv-(Mg}_{0.6}\text{Fe}_{0.4})\text{SiO}_3 \) is in accordance with the Mössbauer experiment and X-ray emission study. The emission spectroscopy under high pressure can detect the spin transition. The local environment of the \(\text{Fe}^{2+} \) site of the M1 and M2 sites is in the eight-fold anti-pyramid symmetry in the \(\text{ppv} \) structure. The electronic spin have the energy levels of electronic state, \(d_{x^2-y^2} > d_{z^2} > d_{xy} > d_{yz} \approx d_{xz} \). Six \(d \)-electrons of \(\text{Fe}^{2+} \) follow the Hunt rule in the HS state at low pressure. At the extremely high-pressure condition, the atomic configurations by the compression in the direction of \(z \) of the molecular axis (parallel to the \(z \) axis in \(\text{Pmma} \) setting) makes the LS state: anti-parallel spin pairs by the Pauli principle in \(d_{xy}, d_{yz} \) and \(d_{xz} \) spin state in the eight-fold coordination sites, as shown in Fig. 4.

We investigated two models in both HS and LS states. One model is composed of perfectly ordered cation distribution, Mg at the M1 site and Fe at the M2 site, with the anti-ferromagnetic arrangement along the longest diagonal of the unit cell. This characterize two unequivalent sites with a larger fraction of iron at M2 than at M1 giving a space group of \(\text{Pmma} \). Another model is a disordered distribution of Fe and Mg at the M1 and M2 site with the anti-ferromagnetic symmetry along the \(y \)-axis. This model has the same amount of Fe in the M1 and M2 sites, which produces the structure of \(\text{Cmcm} \).

Additionally we have found that the \(\text{Pmma} \) structures undergo a high to low spin transition as the pressure is increased. This suggests that the HS state is stabilized by keeping the Fe atoms as far apart from each other as possible, allowing both for an increased relaxation of the surrounding structure and minimizing the spin-spin interaction between the iron sites. This results in the much higher transition pressure of the \(\text{Pmma} \) phase. This is consistent with the diffraction experimental finding of the \(\text{Pmma} \) phase, which has an increased average distance between the Fe atoms compared to the disordered \(\text{Cmcm} \) structure. Theoretical studies should focus on the discrepancy of the spin transition pressures between our calculation of the \(\text{Pmma} \) phase which finds that a HP state persists until about 410 GPa and the experimental finding that the iron rich site is in a LS state at the experimental pressure of 137 GPa.

The present investigations cannot convince that the two-site model is only for iron-rich magnesium metasilicates. MgSiO\(_3\) may have the two site structure of \(\text{Pmma} \) instead of \(\text{Cmcm} \) structure. If it is not the case, the \(\text{Pmma} \) structure is the new structure and the phase boundary in the solid solution \(\text{Mg}_{1-x}\text{Fe}_x\text{SiO}_3 \) has to be determined. More data analyses based on the precise powder diffraction measurements under extreme high-pressure and high-temperature conditions have to be performed to solve these problems.

Conclusion

Search the possible candidates of ppv structure with the symmetries in the maximal non-isomorphic subgroups of \(\text{Cmcm} \). Monte Carlo calculation was carried out using the diffraction intensities to find possible structure models.
Four reasonable space group symmetries of ppv structure with different cation distributions are found:

\[Pmmn \quad (M_1, M_2)[Si]O_3, \quad Pmma \quad (M_1, M_2)[Si_1, Si_2]O_3, \quad Cm2m, \quad (M_1, M_2)[Si]O_3, \quad Cmcm \quad (M)[Si]O_3. \]

Rietveld profile fitting experiments for these four candidates were carried out including variable site occupancy of Fe and Mg in M1 and M2 sites. The most reasonable structure is determined to be \(Pmma \) by reasonable bond distances, angles and temperature factors. Iron-rich post-perovskite has a new post perovskite structure of \(Pmma \) different from \(Cmcm \) (CaIrO3) structure.

Reference

1. Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y., 2004. Science 304, 855–858.
2. Tsuchiya, T., Tsuchiya, J., Umemoto, K., Wentzcovitch, R.M. 2004, Earth Planet. Sci. Lett. 224, 241–248.
3. Oganov A. R. and Ono, S., 2004, PNAS 102, 10828-10831.
4. Shim, S.-H., Duffy, T. S., Jeanloz, R., & Shen, G2004, Geophys. Res. Lett. 31, L1060 2004.
5. Mao, W.L., Shen, G, Prakapenka, V.B., Meng, Y., Campbell, A.J., Heinz, D.L., Shu, J. Hemley, R.J. and Mao, H.K. 2004, PNAS 101, 15867-15869.
6. Helmberger, D., Lay, T., Ni, S., & Gurnis, M. 2005, Proc. Nat. Acad. Sci. 102, 17257–17263.
7. Holzapfel, C., Rubie, D.C., Frost, D.J. and Langenhorst, F. 2005. Science 309, 1707-1710.
8. Hirose, H. and Lay, T. 2008, Elements 4, 183-189.
9. Tateno, S., Hirose, K., Sata, N. and Ohishi, Y. 2009, Earth and Planetary Science Letters 277, 130–136
10. Fiquet, G., Guyot, F. and Badro, J. 2008, Elements 4, 177-182.
11. Hutko, A.R., Lay, T., Revenaugh, J. and Garnero, E.J. 2008, Science 320, 1070-1074.
12. Shieh, S.R., Duffy, T.S., Kubo, A., Shen, G, Prakapenka,V.B., Sata, N., Hirose, K. and Ohishi, Y. 2006, PNAS 103, 3039-3043.
13. Ballaran,T.B., Tronnes, R.G and Frost, D.J. 2007, American Mineralogist 92, 1760-1763.
14. Hirose, K., Kawamura, K., Ohishi, Y., Tateno, S., Sata, N. 2005, Am. Mineral. 90, 262–265.
15. Martin, C.D. Crichton, W.A., Liu, H., Prakapenka, V., Chen, J. and J. Parise, B. 2006, American Mineralogist 91, 1703-1706.
16. Kojitani, H., Shirako, Y. and Akaog, M. 2007, Physics of the Earth and Planetary Interiors 165, 127–134.
17. Kubo, A., Kiefer, B., Shim, S.H., Shen, G, Prakapenka, V.B. and Duffy, T.S. 2008, American Mineralogist 93, 965-976.
18. Martin, C.D., Smith, R.I., Marshall, W.G. and Parise, B. 2007, American Mineralogist 92, 1912-1918.
19. Tsuchiya, T. and Tsuchiya, J., New high-pressure phase relations in CaSnO3. American Mineralogist, 91, 1879-1887 (2006).
20. Umemoto, K. and Wentzcovitch, R.M., Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. PNAS 105, 6526-6530 (2008)
21. Mao, W.L., Mao, H.K., Sturhahn, W., Zhao, J., Prakapenka, V.B., Meng,Y., Shu, J., Fei, Y. and Hemley, R.J. 2006, Science 312, 564-565.
22. Shim, S.H., K. Catalli, K., Hustoft, J., Kubo, A., V. Prakapenka, V.B., Caldwell, W.A. and M. Kunz, M. 2008, PNAS 105, 7382-7386.
23. Tsuchauer, O., Kiffer, B., Liu, H.Z., Sinogeikin, S., Somayazulu, M. and , Luo, S.N. 2008, American Mineralogist, 93, 533–539.
24 Lin, J.-F., Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK and Hemley RJ. 2005, Nature 436, 377-380.
25 Shen, G.Y., Prakapenka, V.B., Eng, P.J., Rivers, M.L. and Sutton, S.R. 2005, Journal of Synchrotron Radiation, 12, 642-649.
26 Hammersley, A.P., Svensson, S.O., Hanfl and, M., Fitch, A.N., and Hausermann, D. 1996, High Pressure Research, 14, 235-248.
27 Izumi, F. and Ikeda, T. 2000, Material. Science. Forum 321–324, 198–204.
28 Rueff, J.-P. et al. 1999, Phys. Rev. Lett. 82, 3284-3287.
29 Badro, J. et al., 2003, Science 300, 789-791.
30 Hahn, T. 1983, International Tables for Crystallography, A, SpaceGroup Symmetry.
31 Shannon, R.D. 1976, Acta Crystallographica A32, 751-767.
32 Crowhurst, J.C., Brown, J.M., Goncharov, A.F., & Jacobsen, S. D. 2008, Science 319, 451-453.
33 Goncharov, A.F., Struzhkin, V.V., & Jacobsen, S.D. 2006, Science 312, 1205-1208.
34 Ding, Y. et al., 2008. Phys. Rev. Lett. 100, 045508.
35 Tsuchiya, T., Wentzovitch, R.M., da Silva, C.R.S., and de Gironcoli, S. 2006 Phys. Rev. Lett. 96, 198501-198504 (2006).