[1,2-Bis(diphenylphosphanyl)ethane-κ2P,P]-chlorido(isonicotinamide-κN)palladium(II) nitrate acetonitrile monosolvate

Rafael A. Adrian, Bradley J. Lageman and Hadi D. Arman

Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio TX 78209, USA, and Department of Chemistry, The University of Texas at San Antonio, San Antonio TX 78249, USA. *Correspondence e-mail: adrian@uiwtx.edu

The Pd(II) central atom in the title complex, [PdCl(C26H24P2)(C6H6N2O)]NO3·CH3CN or [PdCl(dppe)(INAM)]NO3·CH3CN, where dppe is 1,2-bis(diphenylphosphanyl)ethane and INAM is isonicotinamide, exists in a slightly distorted square-planar environment defined by the two P atoms of the dppe ligand, a chloride ligand and the N atom of the isonicotinamide pyridyl ring. The crystal packing in the structure is held together by hydrogen bonds between the amide of the INAM ligand and the nitrate ions that complete the outer coordination sphere. A molecule of acetonitrile is also found in the asymmetric unit of the title complex.

Structure description

Palladium complexes containing 1,2-bis(diphenylphosphanyl)ethane as a ligand have received much attention over the last decade because of their application in catalysis (Naghipour et al., 2021; Thapa et al., 2019). Recently, some of the focus has shifted to exploring their cytotoxicity (Cullinane et al., 2018; Kuijpers & Blom, 2021) and biological activity (Al-Janabi et al., 2021). In our research group, we have been exploring the synthesis of palladium(II) and copper(II) complexes containing various ancillary ligands and isonicotinamide as active ligand; isonicotinamide has proven to be an effective antimitabolite due to its ability to enhance Sirt1 deacetylase activity, which reduces tumor growth (Li et al., 2009). With that in mind, herein, we report the synthesis and structure of the title palladium(II) dppe complex.

The asymmetric unit of the title compound, depicted in Fig. 1, consists of a Pd(II) ion in a distorted square-planar coordination environment defined by the two phosphorus atoms...
Synthesis and crystallization

To synthesize the title compound, [1,2-bis(diphenylphosphanyl)ethane]dichloridopalladium(II) (0.100 g, 0.174 mmol) was suspended in 40 ml of acetonitrile and stirred for 15 min. Solid AgNO₃ (0.030 g, 0.18 mmol) was added to the suspension and heated with stirring at 303 K for 2 h. After removing AgCl by filtration, using a 0.45 mm PTFE syringe filter, the resulting pale yellow solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Figure 1

The structures of the molecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

Figure 2

Perspective view of the packing structure of the title salt along the crystallographic a-axis; H atoms are omitted for clarity.

Figure 3

Capped sticks representation of the title compound showing the hydrogen-bond interactions (pink).
Acknowledgements
We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information
Funding for this research was provided by: The Welch Foundation (award No. BN0032).

References
Al-Janabi, A. S., Yousef, T. A., Al-Doori, M. E., Bedier, R. A. & Ahmed, B. M. (2021). J. Mol. Struct. 1246, 131035.
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.
Cullinane, C., Deacon, G. B., Drago, P. R., Erven, A. P., Junk, P. C., Luu, J., Meyer, G., Schmitz, S., Ott, I., Schur, J., Webster, L. K. & Klein, A. (2018). Dalton Trans. 47, 1918–1932.

Table 3
Experimental details.

Crystal data	[PdCl(C8H4P2)(C6H6N2O)]NO3\(-\)C3H8N
Chemical formula	[PdCl(C8H4P2)(C6H6N2O)]NO3\(-\)C3H8N
Mw	765.43
Crystal system, space group	Orthorhombic, P2\(_1\)2\(_1\)2\(_1\)
Temperature (K)	98
a, b, c (Å)	10.3343 (2), 14.8655 (4), 21.7942 (4)
V (Å\(^3\))	3348.12 (13)
Radiation type	Mo K
μ (mm\(^{-1}\))	0.77
Crystal size (mm)	0.30 × 0.10 × 0.03

Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)

T\(_{\text{min}}, T_{\text{max}}\) 0.909, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36768, 6511, 5056
R\(_{\text{int}}\) 0.054
(sin θ/λ)\(_{\text{max}}\) (Å\(^{-1}\)) 0.616

Refinement
R[F\(^2\) > 2σ(F\(^2\))], wR(F\(^2\)), S 0.027, 0.045, 0.97
No. of reflections 6511
No. of parameters 416
H-atom treatment H-atom parameters constrained
Absolute structure Flack x determined using 1879 quotients [(I\(^+\)–I\(^–\))/[(I\(^+\)+I\(^–\)] (Parsons et al., 2013)

Absolute structure parameter −0.028 (12)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), olex2.solve (Bourhis et al., 2015), SHELXL2014/7 (Sheldrick, 2015), and OLEX2 (Dolomanov et al., 2009).

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Thapa, K., Paul, P. & Bhattacharya, S. (2019). Inorg. Chim. Acta, 486, 232–239.
Uehara, K., Oishi, T., Hirose, T. & Mizuno, N. (2013). Inorg. Chem. 52, 11200–11209.

Naghipour, A., Sayadi, M., Sedghi, A., Sabounchei, S. J., Babaei, H. & Notash, B. (2021). Inorg. Chem. Front. 8, 3815–3829.

Computer programs: CrysAlis PRO (Rigaku OD, 2019), olex2.solve (Bourhis et al., 2015), SHELXL2014/7 (Sheldrick, 2015), and OLEX2 (Dolomanov et al., 2009).

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Thapa, K., Paul, P. & Bhattacharya, S. (2019). Inorg. Chim. Acta, 486, 232–239.
Uehara, K., Oishi, T., Hirose, T. & Mizuno, N. (2013). Inorg. Chem. 52, 11200–11209.
full crystallographic data

IUCrData (2021). *IUCrData* (2021). 6, *211171* [https://doi.org/10.1107/S2414314621011718]

[1,2-Bis(diphenylphosphanyl)ethane-κ²P,P]chlorido(isonicotinamide-κN)palladium(II) nitrate acetonitrile monosolvate

Rafael A. Adrian, Bradley J. Lagemann and Hadi D. Arman

[1,2-Bis(diphenylphosphanyl)ethane-κ²P,P]chlorido(isonicotinamide-κN)palladium(II) nitrate acetonitrile monosolvate

Crystal data

$[\text{PdCl(C}_{26}\text{H}_{24}\text{P}_{2})(\text{C}_{6}\text{H}_{6}\text{N}_{2}\text{O})\text{NO}_{3} \cdot \text{C}_{2}\text{H}_{3}\text{N}]$

$D_{i} = 1.518$ Mg m$^{-3}$

Orthorhombic, $P2_12_12_1$

$M_r = 765.43$

$a = 10.3343$ (2) Å

$b = 14.8655$ (4) Å

$c = 21.7942$ (4) Å

$V = 3348.12$ (13) Å3

$Z = 4$

$F(000) = 1560$

Data collection

XtaLAB AFC12 (RCD3): Kappa single diffractometer

Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source

Mirror monochromator

ω scans

Absorption correction: multi-scan

(CrysAlisPro; Rigaku OD, 2019)

$T_{\text{min}} = 0.909$, $T_{\text{max}} = 1.000$

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.027$

$wR(F^2) = 0.045$

$S = 0.97$

6511 reflections

416 parameters

0 restraints

Primary atom site location: iterative

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.015P)^2 + 0.050P]$

where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.001$

$\Delta\rho_{\text{max}} = 0.60$ e Å$^{-3}$

$\Delta\rho_{\text{min}} = -0.53$ e Å$^{-3}$

Absolute structure: Flack x determined using 1879 quotients $[(I^+)-(I^-)]/[\langle I^+\rangle+\langle I^-\rangle]$ (Parsons et al., 2013)

Absolute structure parameter: -0.028 (12)

$\theta = 2.6$–28.4°

$\mu = 0.77$ mm$^{-1}$

$T = 98$ K

Plank, clear colourless

$0.3 \times 0.1 \times 0.03$ mm

$\theta_{\text{max}} = 26.0^\circ$, $\theta_{\text{min}} = 2.3^\circ$

$h = -12$–12

$k = -17$–18

$l = -21$–26

$R_{\text{int}} = 0.054$

$\Delta\rho_{\text{max}} = 0.60$ e Å$^{-3}$

$\Delta\rho_{\text{min}} = -0.53$ e Å$^{-3}$
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso*/Ueq		
Pd1	0.67734 (2)	0.50517 (2)	0.74927 (2)	0.01367 (7)		
Cl1	0.68284 (10)	0.35931 (7)	0.79151 (5)	0.0218 (3)		
P1	0.64267 (10)	0.56282 (8)	0.84262 (5)	0.0151 (3)		
O1	0.9177 (2)	0.2660 (2)	0.49657 (13)	0.0188 (8)		
N1	0.7138 (3)	0.4446 (2)	0.66393 (15)	0.0130 (8)		
C1	0.6432 (4)	0.6856 (3)	0.83773 (18)	0.0174 (10)		
H1A	0.5924	0.7112	0.8720	0.021*		
H1B	0.7331	0.7082	0.8410	0.021*		
P2	0.64956 (9)	0.64655 (8)	0.71380 (5)	0.0143 (3)		
O2	0.8163 (3)	0.0909 (2)	0.40345 (13)	0.0285 (7)		
N2	0.7101 (3)	0.2228 (2)	0.48694 (15)	0.0197 (9)		
H2C	0.7284	0.1859	0.4566	0.024*		
H2D	0.6298	0.2279	0.5000	0.024*		
C2	0.5844 (4)	0.7147 (3)	0.77645 (18)	0.0168 (10)		
H2A	0.6042	0.7790	0.7690	0.020*		
H2B	0.4892	0.7079	0.7780	0.020*		
O3	0.6447 (2)	0.1373 (2)	0.35577 (13)	0.0347 (9)		
N3	0.7550 (3)	0.1013 (3)	0.35401 (17)	0.0213 (9)		
C3	0.4854 (3)	0.5284 (3)	0.87202 (18)	0.0172 (11)		
O4	0.8039 (3)	0.07869 (19)	0.30404 (13)	0.0251 (7)		
N4	0.9979 (4)	0.5452 (3)	0.7596 (2)	0.0487 (12)		
C4	0.4001 (3)	0.4843 (3)	0.83214 (19)	0.0230 (11)		
H4	0.4232	0.4750	0.7904	0.028*		
C5	0.2814 (4)	0.4542 (3)	0.8540 (2)	0.0298 (13)		
H5	0.2219	0.4262	0.8268	0.036*		
C6	0.2499 (4)	0.4647 (3)	0.9147 (2)	0.0352 (14)		
H6	0.1705	0.4412	0.9296	0.042*		
C7	0.3327 (4)	0.5092 (3)	0.95467 (19)	0.0346 (12)		
H7	0.3090	0.5180	0.9964	0.042*		
C8	0.4517 (4)	0.5410 (3)	0.9326 (2)	0.0266 (12)		
H8	0.5093	0.5714	0.9595	0.032*		
C9	0.7583 (4)	0.5316 (3)	0.90152 (18)	0.0171 (11)		
C10	0.7398 (4)	0.4525 (3)	0.93414 (19)	0.0250 (12)		
H10	0.6675	0.4153	0.9252	0.030*		
C11	0.8265 (4)	0.4273 (3)	0.97990 (18)	0.0276 (11)		
H11	0.8116	0.3741	1.0030	0.033*		
C12	0.9337 (4)	0.4795 (3)	0.9917 (2)	0.0285 (12)		
H12	0.9934	0.4621	1.0226	0.034*		
C13	0.9544 (4)	0.5575 (3)	0.9584 (2)	0.0278 (12)		
Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
------	-----	-----	-----	-----	-----	-----
Pd1	0.01207 (12)	0.01632 (15)	0.01261 (12)	0.00130 (15)	0.00071 (16)	−0.000188 (19)
Cl1	0.0249 (5)	0.0193 (6)	0.0211 (6)	0.00024 (5)	0.0007 (5)	−0.00003 (5)
P1	0.0129 (6)	0.0181 (7)	0.0142 (6)	−0.0010 (5)	0.0009 (5)	−0.0010 (5)
O1	0.0074 (15)	0.028 (2)	0.0212 (17)	0.0013 (13)	0.0016 (12)	−0.00099 (15)

Atomic displacement parameters (Å²)

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Pd1	0.01207 (12)	0.01632 (15)	0.01261 (12)	0.00130 (15)	0.00071 (16)	−0.000188 (19)
Cl1	0.0249 (5)	0.0193 (6)	0.0211 (6)	0.00024 (5)	0.0007 (5)	−0.00003 (5)
P1	0.0129 (6)	0.0181 (7)	0.0142 (6)	−0.0010 (5)	0.0009 (5)	−0.0010 (5)
O1	0.0074 (15)	0.028 (2)	0.0212 (17)	0.0013 (13)	0.0016 (12)	−0.00099 (15)

Atomic displacement parameters (Å²)

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Pd1	0.01207 (12)	0.01632 (15)	0.01261 (12)	0.00130 (15)	0.00071 (16)	−0.000188 (19)
Cl1	0.0249 (5)	0.0193 (6)	0.0211 (6)	0.00024 (5)	0.0007 (5)	−0.00003 (5)
P1	0.0129 (6)	0.0181 (7)	0.0142 (6)	−0.0010 (5)	0.0009 (5)	−0.0010 (5)
O1	0.0074 (15)	0.028 (2)	0.0212 (17)	0.0013 (13)	0.0016 (12)	−0.00099 (15)
Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)
Pd1—Cl1	2.3564 (11)	
Pd1—P1	2.2366 (11)	
Pd1—N1	2.100 (3)	

\[\text{data reports}\]

\[\text{IUCrData (2021). 6, x211171}\]
Bond	Distance (Å)	Bond	Distance (Å)		
Pd1—P2	2.2577 (12)	C13—H13	0.9500		
P1—C1	1.828 (4)	C13—C14	1.385 (6)		
P1—C3	1.821 (4)	C14—H14	0.9500		
P1—C9	1.814 (4)	C15—C16	1.392 (6)		
O1—C32	1.233 (4)	C15—C20	1.391 (5)		
N1—C27	1.352 (5)	C16—H16	0.9500		
N1—C31	1.343 (5)	C16—C17	1.394 (5)		
C1—H1A	0.9900	C17—H17	0.9500		
C1—H1B	0.9900	C17—C18	1.379 (6)		
C1—C2	1.530 (5)	C18—H18	0.9500		
P2—C2	1.829 (4)	C18—C19	1.391 (6)		
P2—C15	1.823 (4)	C19—H19	0.9500		
P2—C21	1.820 (4)	C19—C20	1.402 (5)		
O2—N3	1.259 (4)	C20—H20	0.9500		
N2—H2C	0.8800	C21—C22	1.390 (6)		
N2—H2D	0.8800	C21—C26	1.401 (5)		
N2—C32	1.333 (5)	C22—H22	0.9500		
C2—H2A	0.9900	C22—C23	1.394 (6)		
C2—H2B	0.9900	C23—H23	0.9500		
O3—N3	1.260 (4)	C23—C24	1.396 (6)		
N3—O4	1.247 (4)	C24—H24	0.9500		
C3—C4	1.401 (5)	C24—C25	1.376 (6)		
C3—C8	1.378 (5)	C25—H25	0.9500		
N4—C33	1.140 (6)	C25—C26	1.383 (5)		
C4—H4	0.9500	C26—H26	0.9500		
C4—C5	1.390 (5)	C27—H27	0.9500		
C5—H5	0.9500	C27—C28	1.373 (5)		
C5—C6	1.371 (6)	C28—H28	0.9500		
C6—H6	0.9500	C28—C29	1.379 (5)		
C6—C7	1.388 (6)	C29—C30	1.395 (5)		
C7—H7	0.9500	C29—C32	1.505 (5)		
C7—C8	1.403 (6)	C30—H30	0.9500		
C8—H8	0.9500	C30—C31	1.376 (5)		
C9—C10	1.387 (6)	C31—H31	0.9500		
C9—C14	1.393 (5)	C33—C34	1.463 (7)		
C10—H10	0.9500	C34—H34A	0.9800		
C10—C11	1.391 (6)	C34—H34B	0.9800		
C11—H11	0.9500	C34—H34C	0.9800		
P1—Pd1—C11	90.06 (4)	C13—C12—H12	120.1		
P1—Pd1—P2	86.24 (4)	C12—C13—H13	119.8		
N1—Pd1—C11	86.98 (9)	C12—C13—C14	120.4 (4)		
N1—Pd1—P1	176.86 (9)	C14—C13—H13	119.8		
N1—Pd1—P2	96.81 (9)	C9—C14—H14	120.0		
P2—Pd1—C11	173.44 (4)	C13—C14—C9	120.1 (4)		
C1—P1—Pd1	109.20 (13)	C13—C14—H14	120.0		
C3—P1—Pd1	110.82 (14)	C16—C15—P2	121.9 (3)		
C3—P1—C1	107.71 (18)	C20—C15—P2	117.1 (3)		
Bond	Value	Bond	Value	Bond	Value
------------------	---------	------------------	---------	------------------	---------
C9—P1—Pd1	116.11	C20—C15—C16	121.0	C15—C16—H16	120.6
C9—P1—C1	107.14	C15—C16—C17	118.8	C15—C16—H16	120.6
C9—P1—C3	105.48	C16—C17—H17	119.6	C15—C16—H17	120.6
C27—N1—Pd1	120.0	C17—C16—H16	120.6	C17—C17—H17	119.6
C31—N1—Pd1	120.1	C18—C17—C16	120.8	C17—C17—H17	119.6
C31—N1—C27	118.3	C18—C17—H18	119.9	C17—C17—H18	119.9
P1—C1—H1A	109.8	C18—C17—H18	119.9	C17—C18—C19	120.2
P1—C1—H1B	109.8	C18—C19—H19	120.1	C18—C19—C20	119.7
H1A—C1—H1B	108.2	C18—C19—H19	120.1	C18—C19—C20	119.7
C2—C1—P1	109.4	C19—C18—H18	119.9	C19—C18—H19	120.1
C2—C1—H1A	109.8	C19—C18—H19	120.1	C19—C18—H19	120.1
C2—C1—H1B	109.8	C19—C18—H19	120.1	C19—C18—H19	120.1
C2—P2—Pd1	107.89	C20—C19—H20	120.3	C20—C19—H20	120.3
C15—P2—Pd1	112.25	C21—C20—C19	119.3	C21—C20—C19	119.3
C15—P2—C2	109.45	C21—C20—C19	119.3	C21—C20—C19	119.3
C21—P2—Pd1	117.25	C21—C20—C19	119.3	C21—C20—C19	119.3
C21—P2—C2	104.05	C21—C20—C19	119.3	C21—C20—C19	119.3
H2C—N2—H2D	120.0	C21—C20—C19	119.3	C21—C20—C19	119.3
C2—C1—H2A	109.6	C21—C20—C19	119.3	C21—C20—C19	119.3
C1—C2—P2	110.4	C21—C20—C19	119.3	C21—C20—C19	119.3
C1—C2—H2A	109.6	C21—C20—C19	119.3	C21—C20—C19	119.3
C1—C2—H2B	109.6	C21—C20—C19	119.3	C21—C20—C19	119.3
P2—C2—H2A	109.6	C21—C20—C19	119.3	C21—C20—C19	119.3
C2—C2—H2B	109.6	C21—C20—C19	119.3	C21—C20—C19	119.3
H2A—C2—H2B	108.1	C21—C20—C19	119.3	C21—C20—C19	119.3
O2—N3—O3	118.8	C25—C24—H24	119.8	C25—C24—H24	119.8
O4—N3—O2	120.7	C24—C25—H25	119.7	C24—C25—H25	119.7
O4—N3—O3	120.5	C24—C25—H25	119.7	C24—C25—H25	119.7
C4—C3—P1	118.4	C26—C25—H25	119.7	C26—C25—H25	119.7
C8—C3—P1	121.6	C26—C25—H25	119.7	C26—C25—H25	119.7
C8—C3—C4	119.9	C26—C25—H25	119.7	C26—C25—H25	119.7
C3—C4—H4	120.2	C25—C24—H24	119.8	C25—C24—H24	119.8
C5—C4—C3	119.5	N1—C27—H27	119.3	N1—C27—H27	119.3
C5—C4—H4	120.2	N1—C27—C28	121.5	N1—C27—C28	121.5
C4—C5—H5	119.9	C28—C27—H27	119.3	C28—C27—H27	119.3
C6—C5—C4	120.3	C27—C28—H28	119.8	C27—C28—H28	119.8
C6—C5—H5	119.9	C27—C28—H28	119.8	C27—C28—H28	119.8
C5—C6—H6	119.6	C29—C28—H28	119.8	C29—C28—H28	119.8
C6—C7—C8	119.1	C29—C30—C32	123.9	C29—C30—C32	123.9
C8—C7—H7	120.5	C30—C29—C32	123.9	C30—C29—C32	123.9
C3—C8—C7	120.3	C31—C30—C32	118.7	C31—C30—C32	118.7
C3—C8—H8	119.9	C31—C30—C32	118.7	C31—C30—C32	118.7
C7—C8—H8	119.9	N1—C31—H31	118.5	N1—C31—H31	118.5
Bond	Bond Angle (deg)	Bond Angle (deg)			
----------------------	------------------	------------------			
C10—C9—P1	119.3 (3)	C30—C31—H31	118.5		
C10—C9—C14	119.1 (4)	O1—C32—N2	122.4 (3)		
C14—C9—P1	121.5 (3)	O1—C32—C29	119.9 (4)		
C9—C10—H10	119.8	N2—C32—C29	117.6 (3)		
C9—C10—C11	120.5 (4)	N4—C33—C34	178.7 (6)		
C11—C10—H10	119.8	C33—C34—H34A	109.5		
C10—C11—H11	120.0	C33—C34—H34B	109.5		
C12—C11—C10	120.0 (4)	C33—C34—H34C	109.5		
C12—C11—H11	120.0	H34A—C34—H34B	109.5		
C11—C12—H12	120.1	H34A—C34—H34C	109.5		
C11—C12—C13	119.9 (4)	H34B—C34—H34C	109.5		

Bond	Bond Angle (deg)
C9—P1—C1—C2	34.8 (3)
Pd1—P1—C1—C2	−9.3 (4)
C9—P1—C3—C4	167.7 (3)
C9—P1—C9—C10	−86.2 (3)
C9—P1—C9—C14	91.1 (3)
Pd1—N1—C27—C28	167.1 (3)
Pd1—N1—C31—C30	−166.1 (3)
Pd1—P2—C2—C1	36.2 (3)
Pd1—P2—C2—C1	−109.9 (3)
Pd1—P2—C15—C16	68.4 (3)
Pd1—P2—C2—C1	−147.5 (3)
Pd1—P2—C2—C1	37.5 (4)
P1—C1—C2—P2	−45.1 (3)
P1—C3—C4—C5	177.5 (3)
P1—C3—C8—C7	−176.4 (3)
P1—C9—C10—C11	−179.5 (3)
P1—C9—C14—C13	180.0 (3)
N1—C27—C28—C29	−1.7 (6)
C1—P1—C3—C4	110.1 (3)
P1—C3—C4—C5	−72.9 (4)
C1—P1—C3—C8	151.5 (3)
C1—P1—C9—C10	−31.2 (4)
C1—P1—C9—C14	178.1 (3)
P2—C15—C16—C17	−178.7 (3)
P2—C21—C22—C23	−175.8 (3)
P2—C21—C26—C25	174.8 (3)
C2—P2—C15—C16	9.9 (4)
C2—P2—C15—C20	−171.8 (3)
C2—P2—C21—C22	93.5 (4)
C2—P2—C21—C26	−81.5 (3)
C3—P1—C1—C2	−85.6 (3)
C3—P1—C9—C10	145.8 (3)
C3—P1—C9—C14	−2.3 (7)
C3—C4—C5—C6	0.6 (7)
C4—C3—C8—C7	3.2 (7)

IUCrData (2021). 6, x211171
Bond	Angle (°)
C5—C6—C7—C8	-2.1 (7)
C6—C7—C8—C3	0.2 (7)
C8—C3—C4—C5	0.5 (6)
C31—N1—C27—C28	1.1 (6)
C32—C29—C30—C31	178.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2C···O2	0.88	2.04	2.891 (4)	163
N2—H2D···O1i	0.88	2.19	3.047 (4)	163
C28—H28···O3ii	0.95	2.39	3.082 (5)	129

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+1/2, -z+1.