ANDREEV REFLECTION
AND THE SEMICLASSICAL BOGOLIUBOV-DE GENNES HAMILTONIAN:
RESONANT STATES

A. BENSOUISSI 1,2, N. M’HADBI 2 & M. ROULEUX 1

1 Université du Sud Toulon-Var, and Centre de Physique Théorique
CPT, Case 907, 13288 Marseille Cedex 9, France
2 Université de Tunis El-Manar, Département de Mathématiques, 1091 Tunis, Tunisia

Abstract: We present a semi-classical analysis of the opening of superchannels in gated mesoscopic SNS junctions. For perfect junctions (i.e. hard-wall potential), this was considered by [ChLeBl] in the framework of scattering matrices. Here we allow for imperfections in the junction, so that the complex order parameter continues as a smooth function, which is a constant in the superconducting banks, and vanishes rapidly inside the lead. We obtain quantization rules for resonant Andreev states near energy E close to the Fermi level, including the determination of the resonance width.

0. Introduction.

Bogoliubov-de Gennes Hamiltonian is a 2×2 matrix $\mathcal{P}(x, \xi)$ defined for $(x, \xi) \in T^* \mathbb{R}$, which describes the dynamics of a pair of quasi-particles (hole/electron) in a 1-D metallic lead connecting 2 superconducting contacts. Diagonal terms are of the form $\pm (\xi^2 - \mu(x))$, where $\mu(x)$ stands for the chemical potential, while the off-diagonal interaction with the superconducting bulk is modeled through a complex potential, or superconducting gap, $\Delta_0 e^{i\phi/2}$ at the boundary ; due to the finite range of the junction, we may consider that the interaction continues to a smooth function $x \mapsto \Delta(x) e^{i\phi(x)/2}$ on a neighborhood of the lead (say, the interval $[-L, L]$). So we assume that $\Delta(x)$, we will call henceforth the “gap function”, is a smooth positive function, increasing on $x > 0$, with $\Delta(x) = 0$, $|x| \leq x_1 < L$ and $\Delta(x) = \Delta_0$, $|x| \geq x_2 > L$ (ignoring the fact that Δ shows typically isolated zeroes (vortices) in the superconducting bank). In the same way, we will assume that $\phi(x) = \text{sgn}(x) \phi$ takes only 2 values. The chemical potential $\mu(x)$ will be extended also to a smooth positive function on a neighborhood of $[-L, L]$, constant and Δ_0 for $|x| \geq x_2$. As is usual for a metal, we assume that μ and Δ are even in x, which provides this model with the CPT symmetry.

We introduce a “Planck constant” $h > 0$, which stands for the ratio of L to the characteristic de Broglie wave-length, and take usual h-Weyl quantization,

$$\mathcal{P}(x, hD_x) = \begin{pmatrix} (hD_x)^2 - \mu(x) & \Delta(x)e^{i\phi(x)/2} \\ \Delta(x)e^{-i\phi(x)/2} & -(hD_x)^2 + \mu(x) \end{pmatrix}$$

An electron e^- moving in the metallic lead with energy $0 < E \leq \Delta$ (measured with respect to Fermi level E_F) and kinetic energy $K_+(x) = \mu(x) + \sqrt{E^2 - \Delta(x)^2}$ is reflected back from the superconductor as a hole e^+, with kinetic energy $K_-(x) = \mu(x) - \sqrt{E^2 - \Delta(x)^2}$, injecting a Cooper pair into the bulk. When $\inf_{[-L, L]} \mu(x) \geq E$, and $\phi \neq 0$, this process yields so called phase-sensitive Andreev states, carrying supercurrents proportional to the ϕ-derivative of the eigen-energies $E_k(h) \text{ of } \mathcal{P}(x, hD_x)$. Since

1
\(\mathcal{P}(x, hD_x) \) is self-adjoint, there is of course also an electron moving to the left, and a hole moving to the right (in fact, \(\mathcal{P}(x, hD_x) \) is the Hamiltonian for 2 pairs of quasi-particles), for no net transfer of charge can occur through the lead in absence of thermalisation. So we stress that Bogoliubov-de Gennes Hamiltonian is only a simplified model for superconductivity, and that a more thorough treatment should also take into account the self-consistency relations coupling the quasi-particle with the gap function \(\Delta(x) \) and the phase \(\phi(x) \), that we treat here as “effective potentials” (see [KeSo]).

In the case where \(\Delta(x) \) is a “hard-wall” potential, this was studied in [ChLeBl], [CaMo] in the framework of scattering matrices. In [BeIfaRo], we derived semi-classical quantization rules for Andreev states near energy \(E \), from a microlocal study of the Hamiltonian in the “inner region” \(\Delta(x) \leq E \) alone. For simplicity, we assumed that \(\Delta(x) \) varies linearly near \(E \), namely if \(x_0 \in]x_1, x_2[\) is such that \(\Delta(x_0) = E \), then \(\mu(x) = \mu = \text{Const.} \) and \(\Delta(x) = E + \alpha(x - x_0) \) near \(x_0 \).

Here we want to take also into account the “outer region” \(\Delta(x) \geq E \) (i.e. \(|x| \geq x_0 \)) of the junction, entering the superconducting bulk. As a matter of fact, the microlocal solutions, purely oscillating in \(\Delta(x) \leq E \), acquire a complex phase in \(\Delta(x) \geq E \), which is of course related to phase-space tunneling. We make the assumption that the junction is extended, in such a way that the quasi-particle turns into a resonant state before creating a new Cooper pair, its dynamics still being governed by Bogoliubov-de Gennes Hamiltonian. So we assume that \(\mu(x) \) and \(\Delta(x) \) are defined on the entire real line, taking constant values for \(|x| \geq x_2 > L \), so that (0.1) can be defined as a self-adjoint operator on \(L^2(\mathbb{R}) \otimes \mathbb{C}^2 \). We will translate the usual theory of analytic dilations [ReSi] in the context of CPT symmetry, and find semi-classical resonances near a “scattering” Andreev level, i.e. complex correction to the real eigen-energies \(E_k(h) \) of \(\mathcal{P}(x, hD_x) \).

1) The real part of the resonances.

The bicharacteristic set in \(\{ \xi > 0 \} \) at energy \(E \), of the form \(\det \mathcal{P}(x, \xi) - E = 0, \) or \(\xi^2 = K(x) \), consists of : (1) two real curves \(\rho^\pm \) over \([-x_0, x_0] \), joining smoothly to a close curve at the “branching points” \(a' = (-x_0, \xi_0) \) and \(a = (x_0, \xi_0) \) (so to make \(\rho_+ \cup \rho_- \) diffeomorphic to \(S^1 \)) ; (2) complex branches \(\rho^\pm \) over \(]-\infty, -x_0[\), and \(\rho^\pm \) over \(]x_0, +\infty[\) respectively. They all have a vertical tangent at \(a, a' \). We complete this picture by reflection on the \(x \) axis, denoting the corresponding branching points by \(b', b \).

a) Microlocal solutions supported on \(\rho^\pm \)

First we recall from [3] the construction of distributions microlocalized on the Lagrangians \(\rho^\pm \), and verifying the PT symmetries of the problem. We denote the parity operator by \(\gamma : u(x) \rightarrow u(-x) \), and the time reversal operator by \(\mathcal{T} : u(x) \rightarrow \overline{u(x)} \).

Definition 1.1: We call “admissible \(C^2 \)-valued Lagrangian distribution” an oscillatory integral

\[
I(S, \varphi)(x, h) = (2\pi h)^{-d/2} \int_{\mathbb{R}^d} e^{i \varphi(x, \Theta; h)/h} S(x, \Theta; h) d\Theta
\]

with the following properties : (1) \(\varphi(x, \Theta, h) \) denotes a non degenerate phase-function, and

\[
S(x, \Theta; h) = S_0(x, \Theta; h) + hS_1(x, \Theta; h) + \cdots
\]
a C^2-valued amplitude (i.e. a classical symbol in h), $S_0 = (e^{i\phi/2}X)$ possibly depending on h (with the property that $\phi(x) = \text{sgn}(x)\phi$); (2) The symbols $X = X(x, \Theta, h)Y = Y(x, \Theta, h)$ have their principal part $(X'_{0}) = \lambda(x, \Theta; h)(X'_{0})$, $\lambda \in \mathbb{C}$, proportional to a real vector (X'_{0}), depending also on $(x, \Theta; h)$.

Of course, all these functions may depend on additional parameters. One of the main problem consists in finding microlocal solutions near the branching points a, a'. Due to PT symmetry, it suffices to focus on $a = (x_0, \zeta_0)$. In h-Fourier representation, the Hamiltonian takes the form

$$\mathcal{P}^\alpha(-hD_\xi, \xi) = \begin{pmatrix} \xi^2 - \mu & e^{i\phi/2}(E - \alpha hD_\xi - \alpha x_0) \\ e^{i\phi/2}(E - \alpha hD_\xi - \alpha x_0) & -\xi^2 + \mu \end{pmatrix}$$

where $\mu = \xi_0^2$ is a constant, equal to the value of the chemical potential at x_0. Consider the equation $(\mathcal{P}^\alpha(-hD_\xi, \xi) - E)\tilde{U} = 0$, where $\tilde{U} = \begin{pmatrix} \tilde{\varphi}_1 \\ \tilde{\varphi}_2 \end{pmatrix}$. Clearly, the system decouples, and to account for time-reversal symmetry, it is convenient to introduce the scaling parameter $\beta = \sqrt{\alpha/(2\xi_0)^{3/2}}$, together with the changes of variables $\xi = \xi_0(\pm 2\beta\xi' + 1)$. The functions $\tilde{u}_{\pm, \beta}(\xi') = (\xi^2 - \mu - E)^{-1/2}e^{-i(E - \alpha x_0)\xi/\alpha h}\tilde{\varphi}_2$ satisfy a second order ODE of the form

$$(\tilde{P}_{\pm, \beta}(-hD_{\xi'}, \xi', h) - \frac{E_1^2}{\beta^2})\tilde{u}_{\pm, \beta}(\xi') = 0$$

with $E_1 = (2\xi_0)^{-2}E$, and

$$\tilde{P}_{\pm, \beta}(-hD_{\xi'}, \xi', h) = (hD_{\xi'})^2 + (\xi' + \beta\xi)^2$$

$$+ h^2(2\xi_0)^{-2}\beta^2(2\beta^2\xi'^2 \pm 2\beta\xi' + \frac{3}{4} + E_1)(\beta^2\xi'^2 + \beta\xi' - E_1)^{-2}$$

Operators \tilde{P}_{β} and $\tilde{P}_{-\beta}$ are unitarily equivalent, and so have the same spectrum. Up to the $O(h^2)$ term, $\tilde{P}_{\pm, \beta}(-hD_{\xi'}, \xi', h)$ have the structure of an “anharmonic oscillator”, with “potential wells” at $\xi' = 0, \pm 1/\beta$ separated by a “barrier” at $\xi' = \mp 1/(2\beta)$. It is also well known [HeSj] that, viewed as a h-PDO of order 0, microlocally defined near $(x', \xi') = 0$, $\tilde{P} = \tilde{P}_{\pm, \beta}$ can be taken to the normal form of a harmonic oscillator, away from the “barrier”. More precisely, there exists a real-valued analytic symbol $F(t, h) = F_{\pm, \beta}(t, h) \sim \sum_{j=0}^{\infty} F_j(t)h^j$, defined for $t \in \text{neigh}(0)$, $F_0(0) = 0$, $F_0'(0) = \frac{1}{2}$, $F_1(t) = \text{Const}$., and (formally) unitary FIO’s $A = A_{\pm, \beta}$ whose canonical transformations κ_A defined in a neighborhood of $(0,0)$, are close to identity and map this point onto itself, such that

$$A^* F(\tilde{P}, h)A = P_0 = \frac{1}{2}((hD_\eta)^2 + \eta^2 - h)$$

Define the large parameter ν by $F(e^{\nu h_{\xi, \alpha}}, h) = \nu h$. So $\tilde{u} = \tilde{u}_{\pm}$ solves (1.2) microlocally near $(0,0)$ iff $\nu = \nu^* \tilde{u}$ solves Weber equation $(P_0 - h \nu)\nu = 0$ microlocally near $(0,0)$, when $h \nu \sim \frac{E^2}{h_{\xi, \alpha}}$ is small enough. The well known parabolic cylinder functions D_{ν} and $D_{-\nu-1}$, provide with a basis of solutions of $\frac{1}{2}((hD_\eta)^2 + \eta^2 - h)\nu = \nu \nu$. We shall use $D_{-\nu-1}$, and write

$$v = \nu^* \tilde{u}_{\pm, \beta} = \sum_{\varepsilon = \pm 1} \alpha^{(-\nu-1)^2} D_{-\nu-1}(i\varepsilon(h/2)^{-1/2}\eta)$$

$\alpha_{\varepsilon, \pm, \beta} = \begin{pmatrix} a \pm \beta \nu \\ a \pm \beta \nu \end{pmatrix}$
for complex constants \(\alpha^{(-\nu-1)}_{\varepsilon,\pm\beta} \).

These microlocal solutions can be expressed in the spatial representation by taking inverse \(\hbar \)-Fourier transformation; expanding integrals of the type (1.4) by stationary phase, both pieces of bicharacteristics \(\rho_{\pm} \) contribute to \(U_{\varepsilon,\pm\beta} \) near \(a \). Microlocal solutions near \(a' \) are deduced by PT symmetry.

Once microlocal solutions \(U_{\varepsilon,\beta}^{a,-\nu-1} \) have been obtained that way near the branching point \(a \), it is standard to extend them up to \(a' \) as WKB solutions \((U_{\varepsilon,\beta}^{a,-\nu-1})_{\text{ext}} \), taking advantage that \(\mathcal{P} \) has simple characteristics away from \(a, a' \). When \(\Delta(x) \equiv 0 \), i.e. for \(-x_1 \leq x \leq x_1 \), they are completely decoupled, which means that the solution is either a pure electronic state, i.e. colinear to the vector \((1) \) or pure hole state, i.e. colinear to \((0) \). Otherwise, they are a superposition of electronic/hole states. We summarize these constructions in the :

Proposition 1.2: For \(x < x_0 \) near \(x_0 \), there are 2 basis of oscillating microlocal solutions of \((\mathcal{P}^a - E)U = 0\) indexed by \(\varepsilon = \pm 1 \):

\[
\sum_{\rho = \pm 1} U_{\rho,\varepsilon,\pm\beta}^{a,\nu}(x,h'), \sum_{\rho = \pm 1} U_{\rho,\varepsilon,\pm\beta}^{a,-\nu-1}(x,h')
\]

Here the branch with \(\rho = \rho_{\pm} = \pm 1 \) is microlocalized on \(\rho_{\pm} \), i.e. the part on \(\rho_{+} \) (\(\xi > \xi_0 \) near \(a \)), belongs to the electron state, while the part \(\rho_{-} \) (\(\xi < \xi_0 \) near \(a \)) belongs to the hole state; they satisfy, for \(\rho = \pm \):

\[
U_{\rho,\varepsilon,\beta}^{a,-\nu-1} = U_{\rho,\varepsilon,\beta}^{a,-\nu-1} + O(h)
\]

and

\[
U_{\rho,\varepsilon,\beta}^{a,\nu-1} = U_{\rho,\varepsilon,\beta}^{a,\nu-1}
\]

Each of these solutions is an admissible \(\mathcal{C}^2 \)-valued lagrangian distribution in the sense of Definition 1.1. Divide all microlocal solutions by the trivial factor \(e^{ix/4}e^{iE_0\xi_0/h'} \), \(E_0 = E - \alpha x_0 \). Then with the notations of (1.4) the general solution of \((\mathcal{P}^a - E)U = 0\) is of the form

\[
U = \sum_{\rho,\varepsilon} \mathcal{O}^{(-\nu-1)}_{\varepsilon,\pm\beta} U_{\rho,\varepsilon,\pm\beta}^{a,-\nu-1}
\]

The solutions near \(a' \) are given by symmetry, e.g. \(U_{\rho,\varepsilon,\beta}^{a',\varepsilon,\beta} = \mathcal{J}U_{\rho,\varepsilon,\beta}^{a,-\nu-1} \). Moreover both microlocal families can be extended as WKB solutions (satisfying Definition 1.1) along the bicharacteristics.

Note also that in this region where \(\mu(x) \) is a constant, \(U_{\rho,\varepsilon,\pm\beta} = e^{ix\xi_0/h}U_{\rho,\varepsilon,\pm\beta\varepsilon h'} \) with \(U_{\rho,\varepsilon,\pm\beta\varepsilon h'} \) oscillating on a frequency scale \(1/h' = 1/(\alpha h) \), so if we think of the slope \(\alpha \) to be large, \(U_{\rho,\varepsilon,\pm\beta} \) behaves as a plane wave \(e^{ix\xi_0/h} \), modulated by a slowly varying function.

b) Real holonomy and approximate Bohr-Sommerfeld quantization condition.

The microlocal kernel \(K_{\hbar}(E) \) of \(\mathcal{P} - E \) on \(] - x_0, x_0 [\times \mathbb{R}_+ \) can be viewed as a 4-D fibre vector bundle \(\mathcal{F}_{\hbar}(E) \) of admissible Lagrangian distributions over \(\mathbb{S}^1 \). We characterize the real part of the
For each microlocal solution K_a orthonormal basis of the contributions of The Lagrangian distributions $V(1.7)$ such that (U, V) for W right, and due to symmetry, the independent, modulo error terms O_M tension of the normalized microlocal solutions ρ given by action integrals along χ introduced in [HeSj], [Ro]. Namely, let $\chi = \chi^a$ be a smooth cut-off supported on a sufficiently small neighborhood of a, equal to 1 near a, $\omega_{\pm} = \omega_{\pm}^a$ a small neighborhood of $\rho_{\pm} \cap \text{supp}[P, \chi^a]$, and $\chi_{\omega_{\pm}} = \chi_{\omega_{\pm}}^a$ a cut-off equal to 1 near ω_{\pm}. We take Weyl h-quantization of these symbols, and for $U, V \in K_h(E)$, we call

$$W_{\omega_{\pm}}(U, V) = (\chi_{\omega_{\pm}} \frac{i}{h}[P, \chi]|U|V) = (\chi_{\omega_{\pm}} \frac{i}{h}[P, \chi]|\hat{U}|\hat{V})$$

the microlocal Wronskian of (U, V) in ω_{\pm}. This is a sesquilinear form on $K_h(E)$, and $W_{\omega_{\pm}}(U, U)$ is independent, modulo error terms $O(h^\infty)$, of the choices of χ^a and $\chi_{\omega_{\pm}}^a$ as above. Taking into account both contributions of ρ_{\pm} we define also

$$W(U, V) = W_{\omega_{+}}(U, V) + W_{\omega_{-}}(U, V)$$

For each microlocal solution $\hat{U} = \hat{U}_{\epsilon, \pm, \beta}^{a, -\nu - 1}$, it turns out that $W(U, V)$ have asymptotic expansions in h', of the form $w_0(E, \beta) + h'w_1(E, \beta) + \cdots$, with $w_0(E, \beta) > 0$.

Given $\chi = \chi^a$, let now $\bar{\chi} = \bar{\chi}^a$ be a new cut-off equal to 1 on the support of χ^a, and to 0 outside a slightly larger set. For $U, V \in K_h(E)$ we set $(U|V)_{\bar{\chi}} = (\bar{\chi}U|V)$. Then it is easy to see that there is an orthonormal basis of $K_h(E)$ for the “scalar product” $(U|V)_{\bar{\chi}}$, which is at the same time orthogonal for $W(U, V)$ (everything being defined modulo $O(h^\infty)$.) This allows to find $V_{\epsilon} = V_{\epsilon, \beta}^{a, -\nu - 1}$ of the form (1.7) such that $(V_{\epsilon}|V_{\epsilon'})_{\bar{\chi}} = \delta_{\epsilon, \epsilon'}$, $(\epsilon, \epsilon' = \pm 1)$, $W(V_{\pm}, V_{\pm}) > 0$, and $W(V_{\pm}, V_{\mp}) = 0$. Of course, by the symmetry $\nabla TP(x, hD_x) = P(x, hD_x)\nabla'$, such normalized microlocal solutions exist as well near a'. The Lagrangian distributions

$$F_{\epsilon, \beta}^{a, -\nu - 1} = \chi_{\omega_{\pm}} \frac{i}{h}[P, \chi^a]|U_{\epsilon, \beta}^{a, -\nu - 1}$$

and similarly $F_{\epsilon, \beta}^{a, -\nu - 1}$ span the microlocal co-kernel $K_h^*(E)$ of $P - E$ in $]-x_0, x_0[\times \mathbb{R}_+$, as $\epsilon = \pm 1$.

The same holds for or $G_{\epsilon, \beta}^{a, -\nu - 1}$ obtained by replacing $U_{\epsilon, \beta}^{a, -\nu - 1}$ by the “orthonormal basis” $V_{\epsilon, \beta}^{a, -\nu - 1}$ as above.

Because of Proposition 1.2, the normalized microlocal solutions $V_{\epsilon, \beta}^{a, -\nu - 1}$ are related to the extension of the normalized microlocal solutions $V_{\epsilon, \beta}^{a, -\nu - 1}$ along the bicharacteristics by a monodromy matrix $M^{a, a'} = \left(\begin{array}{cc}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right) \in U(2)$. Similarly, we obtain $M^{a', a}$ by extending from the left to the right, and due to symmetry, $M^{a', a} = (M^{a, a'})^{-1} = (M^{a, a'})^*$. Diagonal entries of these matrices are given by action integrals along ρ_{\pm} (see e.g. [Ro]). Off-diagonal terms are $O(h')$ and can be computed with the help of the Wronskian (in the ordinary sense) associated with the system $(P - E)U = 0$ (see e.g. [Ba]).

The quantization condition is satisfied, precisely when the rank of that system drops of one unit (actually, because of degeneracy, of 2 units), i.e. when dim $K_h(E) = \text{dim } K_h^*(E) = 2$. This amounts to set to zero the determinant of some Gram matrix $\text{Gram}(E, h)$ expressed in the basis
(V_{a,-\nu}^{\nu} \cdot V_{a',-\beta}^{\nu'}, \cdot \cdot \cdot \cdot \cdot (G_{e,\beta}^{\nu}, \cdot \cdot \cdot \cdot \cdot G_{e',-\beta}^{\nu'}). So E = E_k(h) is an eigenvalue, modulo $O(h^\infty)$, of $P(x, hD_x)$, corresponding to an Andreev state, iff det Gram(E, h) = 0.

Here we note the sensitivity of the energy levels $E_k(h)$ with respect to ϕ. In the “hard-wall” limit $\alpha \to \infty$, we recover the quasi-particle spectrum, of the form $\cos \phi = \cos\left(\frac{g(E_k(h))}{h} - 2 \arccos\left(\frac{E_k(h)}{\Delta_0}\right)\right)$ for some smooth function g (see [CayMon], [ChLesBl]).

2) The imaginary part of the resonances.

The considerations above are not sufficient to account for exponentially small corrections to $E_k(h)$. Further information will be extracted from a Grusin problem.

a) Microlocal solutions with complex phase.

Microlocal solutions, computed in the real phase space, are purely oscillating in the metallic lead $[-x_0, x_0]$. To get information in the “superconducting part of the junction”, we need use “infinitesimal” invariance by time reversal and conjugation of charge. The substitutions $\xi' \mapsto \pm i\xi'$, or equivalently, $\beta \mapsto \pm i\beta$, leave invariant equation (1.1), with a new operator $\tilde{P}_{\pm i\beta}$ in Fourier-Laplace representation. Microlocal solutions of $(\tilde{P}_{\pm i\beta} - E)\tilde{u} = 0$ are constructed similarly and, on the real domain, independently of those of $(\tilde{P}_{\mp i\beta} - E)\tilde{u} = 0$.

Thus the fibre bundle of microlocal solutions on $R \times R_+$ (i.e. microlocal kernel of $P - E$) splits as $F^<_h(E) \oplus F_h(E) \oplus F^>_h(E)$, where we recall $F_h(E)$ from Sect.1, and $F^<_h(E)$ are 2-D (trivial) fibre bundles over R.

Nevertheless, taking advantage that the coefficients are analytic near a, a', there is a way to couple $F^<_h(E)$ with $F_h(E)$ in the complex domain. This, together with the assignment that the global section be “outgoing” at infinity, accounts for complex holonomy.

First we investigate complex holonomy near a, and consider the family of operators, obtained by extending $\tilde{P}_{\pm \beta}$ along a path $\{e^{i\gamma}\beta, 0 \leq \gamma \leq 2\pi\}$ in the complex plane; similarly, we consider the family of Lagrangian distributions obtained by extending $\tilde{u}_\beta(\xi')$ along that path. They will solve (1.1) iff $\gamma = 0, \pm \pi/2, \pi$.

These are related through their Lagrangian manifolds as follows : consider (for simplicity) the principal part of $\tilde{P}_{\pm \beta}$ and $\tilde{P}_{\pm i\beta}$, namely $\tilde{Q}_\beta(-hD_{\xi'}, \xi') = (hD_{\xi'})^2 + (\xi' + \beta \xi'^2)^2$ and $\tilde{Q}_{i\beta}(-hD_{\xi'}, \xi') = (hD_{\xi'})^2 + (\xi' + i\beta \xi'^2)^2$. The potentials being equal for $\xi' = 0$ and $\xi' = -2/(1 + i)\beta$, the real Lagrangian manifold ρ_+ near a extends analytically along the loop $\{e^{i\gamma}\beta : \gamma \in [0, 2\pi]\}$ in the complex domain, so that it intersects ρ_+^2 at $-2/(1 + i)\beta$ for $\gamma = \pi/2$. We can argue similarly for the other branches. Actually, both ρ_\pm and ρ_+^2 are branches of a single 2-sheeted Riemann surface, with complex “turning points”.

We can assign to this analytic manifold microlocal solutions for $\tilde{P}_{e^{i\gamma}\beta}$ as in (1.2) with complex phase, which yields in turn solutions of $(P - E)U = 0$ for relevant values $0, \pm \frac{\pi}{2}, \pi$ of the parameter γ ; these solutions are very similar to the $U_{\varepsilon, \pm \beta}$’s given in Proposition 1.2. The monodromy operator, acting on microlocal solutions, is known as connection isomorphism, see [DeDiPh] and references therein, and also [Fe], or [Ro,Sect.4,g] in the case of a system. This connection isomorphism is given by a matrix $N^a \in U(2)$, whose entries are expressed in term of exponentials of action integrals computed along Stokes lines between the complex turning points.
Let us consider next the conditions at infinity: for $|x| > x_2$, P has constant coefficients, so we make an analytic dilation of the form $x \mapsto \exp[(\text{sgn} x)\vartheta] x$, $\vartheta > 0$. Plane waves with positive momentum have the phase $\exp[i x (\xi_1 + i \xi_2)/h]$ where $\xi_1 \pm i \xi_2 = (\mu_0 \pm i \sqrt{\Delta_0^2 - E^2})^{1/2}$, according to the choice of $\rho_{<,>}$. Analytic distortion is turned on for $|x|$ large enough, and ϑ in the complex upper-half plane. We denote by P_ϑ the distorted operator. So for all $\text{Im} \vartheta \geq 0$ small enough, we can make the “electronic state” (resp. “hole state”) exponentially decaying at $+\infty$ (resp. $-\infty$), which models the scattering process $e^+ \to e^−$, and similarly for the scattering process $e^− \to e^+$, thus preserving conservation of charge.

b) A Grusin problem and the width of resonances.

Following a classical procedure in Fredholm theory, we can translate the original eigenvalue problem for P into a finite dimensional problem via the Grusin operator [HeSj3, Sect 4]; this is essentially the isomorphism $(H^2(\mathbb{R}) \otimes C^2)/\tilde{K}_h(E) \to \text{Ran}(P - E) \subset L^2(\mathbb{R}) \otimes C^2$. Here $\tilde{K}_h(E)$ denotes the 6-D microlocal kernel of $P - E$ in $\mathbb{R} \times \mathbb{R}_+$, restricted to the set of outgoing functions defined above. For $P = P_\vartheta$, we consider $G(E) = G(\vartheta, E)$ of the form:

$$G(E) = \left(\begin{array}{cc} P - E & R_- \\ R_+ & 0 \end{array} \right) : (H^2(\mathbb{R}) \otimes C^2) \times C^6 \to (L^2(\mathbb{R}) \otimes C^2) \times C^6$$

(2.1)

$$R_-(x_1, \cdots, x_6) = \sum_{j=1}^6 x_j G_j, \quad R_+ U = ((U\vert G_j))_{1 \leq j \leq 6}$$

where the G_j’s range over the basis of co-kernel $\tilde{K}_h^*(E)$ consisting of $G_{a,\beta}^\alpha, G_{a, -\beta}^\alpha, G_{a, i\beta}^\alpha, G_{a, -i\beta}^\alpha$ (or their analytic continuation at the branching points).

At this point we make the following remark: Since our Grusin operator (2.1) involves only positive frequencies, it cannot be associated with the self-adjoint operator P_ϑ (for real ϑ). But resonances are due precisely to a breaking of time-reversal symmetry, and their imaginary part is computed by introducing a h-Pseudo-differential cutoff $\Phi(x, hD_x)$ supported in $\{\xi > 0\}$. Because negative frequencies will be eventually removed, we may best think of (2.1) as a short-hand notation for the “full” Grusin operator $G(E)$, that would take into account the negative frequencies as well.

For all $h > 0$ small enough, $G(E)$ is bijective, with bounded inverse

$$E(E) = \left(\begin{array}{cc} E_0(E) & E_+(E) \\ E_-(E) & E_-(E) \end{array} \right)$$

and has the property, that E is an eigenvalue of P iff $\det E_-(E) = 0$. The construction of $E(E)$ is carried as in [HeSj], [Ro], selecting solutions according to the prescriptions above. Matrix $E_-(E)$ decouples modulo $O(h^\infty)$, with a 4×4 block conjugated to Gram(E); the interaction with the “incoming hole” and “outgoing electron” occurs through the “turning points” in the complex domain, involving the connection isomorphisms N^α, N^α'.

For complex (ϑ, E), we note that $(P_\vartheta - E)^* = P_{\overline{\vartheta}} - \overline{E}$. Applying distortion to the Grusin operator as well, we get:

$$G(\vartheta, E) = \left(\begin{array}{cc} P_\vartheta - E & R_-(\vartheta, E) \\ R_+(\vartheta, E) & 0 \end{array} \right), \quad E(\vartheta, E) = \left(\begin{array}{cc} E_0(\vartheta, E) & E_+(\vartheta, E) \\ E_-(\vartheta, E) & E_-(\vartheta, E) \end{array} \right)$$
We can prove that $G(\vartheta, E)$ is well-posed for all $\vartheta \in \mathbb{C}$ small enough, with inverse $E(\vartheta, E)$. Recall from [Ro,Prop.7.1] the following identity:

Proposition 2.1: Let $\Phi \in C_0^\infty(\mathbb{R}^2; \mathbb{R})$. With the notations above

\[
\begin{align*}
[R_-(\vartheta, E)^*\Phi E_+(\vartheta, E)]^*E_-(\vartheta, E) - ([R_-(\vartheta, E)^*\Phi E_+(\vartheta, E)]^*E_-(\vartheta, E))^* \\
= E_+(\vartheta, E)^*[P_{\vartheta}, \Phi]E_+(\vartheta, E)
\end{align*}
\]

In the self-adjoint case, the corresponding statement would be \((R_+^{*} E_+) E_- \) is self-adjoint. The determination of the width of resonances then goes as in [Ro], though it is somewhat more complicated due to the structure of $E_-(\vartheta, E)$. Take $W(\vartheta, E) \in \text{Ker} E_- (\vartheta, E)$, and set $A(\vartheta, E) = [R_-(\vartheta, E)^*\Phi E_+(\vartheta, E)]^*$. From (2.2) and the identity

\[
(W(\vartheta, E)|A(\vartheta, E)E_-(\vartheta, E)W(\vartheta, E)) - (A(\vartheta, E)E_-(\vartheta, E)W(\vartheta, E)|W(\vartheta, E)) = 0
\]

we get

\[
(A(\vartheta, E)E_-(\vartheta, E)W(\vartheta, E)|W(\vartheta, E)) - (A(\vartheta, E)E_-(\vartheta, E)W(\vartheta, E)|W(\vartheta, E))
\]

Evaluating both members of this equality gives an implicit equation for the imaginary part of the resonance, showing that behaves like $\exp[-2\int_\tau \xi dx/h']$, where $\tau \subset \mathbb{C}$ is a path connecting the complex branching points in $\rho_- \cap \rho_+$.

References:

[An] A.Andreev. Zh. Eksp. Teor. Fiz., 46, p.1823 (1964) [Sov. Phys. JETP 19, p.1228 (1964)]
[Ba] H.Baklouti. Asymptotique des largeurs de r´esonances pour un mod`ele d’effet tunnel microlocal. Ann. Inst. H. Poincaré (Physique Théorique) 68(2), p.179-228 (1998)
[BeIfaRo] A.Bensouissi, A.Ifa, M.Rouleux. Andreev reflection and the semi-classical Bogoliubov-De Gennes Hamiltonian. Proceedings “Days of Diffraction 2009”, Saint-Petersburg. p.37-42. Submitted.
[CaMo] J.Cayssol, G.Montambaux. Exchange induced ordinary reflection in a single-channel SFS junction. Phys.Rev. B70, 224520 (2004).
[ChLeBl] N.Chtchelkatchev, G.Lesovik, G.Blatter. Phys.Rev.B, Vol.62, No.5, p.3559-3564 (2000)
[DePh] E.Delabaere, F.Pham. 1. Exact semiclassical expansions for 1-D quantum oscillators. J.Math. Phys. 38,(12), p.6128-6184 (1997) 2. Resurgence methods in semi-classical asymptotics. Ann. Inst. H.Poincaré 71(1), p.1-94, (1999).
[Fe] M.Fedoriouk. Méthodes Asymptotiques pour les Equations Différentielles Ordinaires. Editions MIR, Moscou (1987)
[HeSj] B.Helffer, J.Sjöstrand. 1. Analyse semi-classique pour l’équation de Harper. Mémoire (nouvelle série) No 3, Soc. Math. de France, 116 (4) (1986). 2. Analyse semi-classique pour l’équation de Harper II. Comportement semi-classique pres d’un rationnel. Mémoire (nouvelle série) No 40, Soc. Math. de France, 118 (1) (1989). 3. Semi-classical analysis for Harper’s equation III. Mémoire No 39, Soc. Math. de France, 117 (4) (1988)
[KeSo] J.B.Ketterson, S.N.Song. Superconductivity. Cambridge Univ. Press (1999)
[ReSi] M.Reed, B.Simon. Methods of Modern Math. Phys. Vol IV. Analysis of Operators. Academic Press (1975)
[Ro] M.Rouleux. Tunneling effects for h-Pseudodifferential Operators,... in: Evolution Equations, Feshbach Resonances, Singular Hodge Theory. Adv. Part. Diff. Eq. Wiley-VCH (1999)
[Sj] J.Sjöstrand. Singularités analytiques microlocales, Astérisque No.95 (1982).