Review Article

Panax ginseng: a candidate herbal medicine for autoimmune disease

Joon-Il Lee¹, Kyoung Sun Park², Ik-Hyun Cho¹,³,*

¹Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
²Department of Korean Medicine Obstetrics & Gynecology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
³Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea

1. Introduction

Panax ginseng Meyer (P. ginseng; Korean ginseng) is well known for its medicinal properties. It can alleviate pathological symptoms, promote health, and prevent potential diseases via its anti-inflammatory, antioxidant, homeostatic, and other positive effects on biological metabolism. Although many studies have determined effects of P. ginseng on various diseases, such as cardiovascular, neurological, and immunological diseases, little is known about the effect of P. ginseng on autoimmune diseases. Here, we review a few reports about effects of P. ginseng on autoimmune diseases (e.g., multiple sclerosis, Crohn’s disease, ulcerative colitis, atopic dermatitis, and rheumatoid arthritis) and suggest the possibility of P. ginseng as a candidate herbal medicine to prevent and treat autoimmune diseases as well as the need to study it.

© 2018 The Korean Society of Ginseng. Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. Effects of P. ginseng on immune cells

P. ginseng is a well-known immune modulator. It may maintain immune homeostasis and enhance resistance to illness or microbial attacks by modulating the immune system [6,13–15]. The immune system is composed of diverse types of cells (macrophages, dendritic cells, microglia, lymphocytes, natural killer cells, and so on) with their own specialized functions [16,17]. Extracts, fractions, and constituents of P. ginseng can differentially regulate each type of immune cells [13]. For instance, Korean Red Ginseng extract (KRG) can inhibit helper T cell 17 (Th17) differentiation and promote regulatory T (Treg) cell differentiation under Th17-polarizing condition [11]. Ginsenoside Rp3-fortified KRG can suppress helper T cell function of P. ginseng may be highly attractive in the prevention and eradication of autoimmune diseases. In this review, we will summarize the current knowledge on effects of P. ginseng and its components on autoimmune diseases and suggest significance to study P. ginseng in autoimmune diseases in the future. Here, we focus on multiple sclerosis (MS), Crohn’s disease (CD), ulcerative colitis (UC), atopic dermatitis, and rheumatoid arthritis (RA) among various autoimmune diseases (Tables 1–4).
cell 1 (Th1) differentiation and the expression of interferon gamma (IFN-γ) and T-bet in well-characterized T-cell in vitro differentiation systems [18]. Acidic polysaccharides derived from P. ginseng also exert anti-immunosenescent effect by suppressing thymic involution and modulating several types of immune cells (CD11c-positive B cells in the spleens and CD4⁺ and CD8⁺ T cells in the thymus) [12]. They also display anti-septicamic activity by stimulating macrophages for macrophage function [19]. Ginsenoside Rh2 can inhibit proliferation of MCF-7 breast cancer cells by regulating epigenetic methylation of the cell-mediated immune pathway [20]. Ginsenoside Rg3 can increase beta amyloid clearance by enhancing the phagocytic activity of microglia (uptake, internalization, and digestion), a specialized population of macrophages found in the central nervous system [21]. As shown previously, P. ginseng and its components can modulate the immune system intricately linked to a lot of diseases.

3. Autoimmune diseases

An autoimmune disease is a condition arising from an abnormal immune response to a normal body part [22,23]. The cause of autoimmune disease is generally unknown. Stress, genetic factors, and environmental factors are suggested as factors that can trigger an autoimmune disease. However, correlation between these suggested factors and an autoimmune disease is very complex [22,23]. There are at least 80 types of autoimmune diseases. Nearly any body part can be involved [22]. Each classified disease has its own specific symptoms such as fatigue, joint pain and swelling, skin problems, abdominal pain or digestive issues, recurring fever, and swollen glands [24–27]. These symptoms can lower patients’ quality of life. Unfortunately, incidence and prevalence of autoimmune diseases are gradually increasing in the world [28]. It has been reported that annual percent increases of rheumatic, endocrinological, gastrointestinal, and neurological autoimmune diseases are 7.1, 6.3, 6.2, and 3.7, respectively [28]. Additionally, while treatment such as nonsteroidal anti-inflammatory drugs, immunosuppressants, and intravenous immunoglobulin usually can improve symptoms, they typically cannot cure the disease. In addition, they have some side effects [29]. Therefore, developing appropriate cures for patients with autoimmune diseases are very important.

As shown previously, P. ginseng is a possible alternative medicine and an immune modulator with preventive and therapeutic effects on various diseases via immune regulation. Here, we discuss the current knowledge on effects of P. ginseng on MS, CD, UC, atopic dermatitis, and RA and suggest significance of research and development using P. ginseng for autoimmune diseases.

4. Effects of P. ginseng on autoimmune diseases

4.1. Effects of P. ginseng on MS

MS is a representative autoimmune disease in the central nervous system characterized by immunophenomenology. It affects more than 2.5 million people globally. Myelin is attacked by host immune cells, resulting in loss of motor functions, mood disorders, cognitive disorders, and other neurological symptoms [30]. MS is classified into four types depending on the course of the disease: relapsing-remitting MS (RRMS), primary progressive MS, secondary progressive MS, and progressive-relapsing MS [30]. RRMS is the general form of MS. It occurs predominantly in individuals aged 20 to 45 years and women [30,31]. Currently, drug cannot fully cure MS, although a few Food and Drug Administration-approved drugs (beta interferons, glatiramer acetate, fingolimod, and so on) can ameliorate symptoms of MS [30]. These drugs generally target inflammatory and immunological components (e.g., T-cell differentiation and migration) of MS [32]. Nevertheless, working mechanisms of these drugs are not clearly identified yet. Some of them also have side effects such as increasing risks for liver function abnormalities, leukopenia, thyroid disease, depression, and flu-like symptoms [30]. Therefore, efficient and safe drugs that can forestall the outbreak or delay the onset and progression of MS need to be developed.

P. ginseng and its compounds such as ginsenosides and polysaccharides have shown preventive and therapeutic effects on an experimental autoimmune encephalomyelitis (EAE) mouse model. For example, treatments with P. ginseng and its components such as ginsenoside Rb1, Rg1, and Rh2 prevented the EAE model [33,34]. In addition, P. ginseng and ginsenosides were shown to improve clinical scores, reduce inflammation in the spinal cord, and reduce the number of inflammatory cells in the spinal cord [35].

Table 2

Component	Experimental model	Results	References
Fermented P. ginseng powder	DSS-induced colitis	(1) ZO-1 loss; (1) proinflammatory response; (1) NF-κB signaling	[47]
	LPS-induced inflammation in RAW 264.7 cell	(1) TNF-α, IL-12p40 expression; (1) NF-κB translocation levels	[47]
	LPS-induced inflammation in peritoneal macrophages	(1) NF-κB translocation levels	[47]
	LPS-induced inflammation in RAW 264.7 cell	(1) NO level; (1) ROS level; (1) proinflammatory cytokine and enzyme; (1) NF-κB translocation levels	[48]
	TNF-α-induced inflammation in HT-29 cell	(1) IL-1β, IL-6, iNOS expression; (1) NF-κB translocation levels	[48]

DSS, dextran sodium sulfate; ZO-1, zonula occuludens-1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated b cells; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor alpha; IL-12p40, interleukin-12 subunit p40; IL-1β, interleukin-1β; IL-6, interleukin-6; IFN-γ, interferon-gamma; NO, nitric oxide; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase.
344

J Ginseng Res 2019;43:342–348

Table 3
Effects of Panax ginseng on atopic dermatitis (AD).

Component	Experimental model	Results	References
KRGE	TNCB-challenged NC/Nga mouse	(†) serum IgE level; (†) epidermal hyperplasia; (†) eosinophil, monocyte infiltration; (†) cytokine levels of TNF-a, IFN-γ; (†) MAPK & NF-κB expression	[51,52]
	Early AD model of TNCB-challenged NC/Nga mouse	(†) ear thickness; (†) transepidermal water loss; (†) serum IgE level; (†) lymphocyte infiltration; (†) TSLP, TNF-α expression	[53]
DNGF-challenged Balb/C mouse	(†) MAPK pathway & lIkaros translocation level		[54]
DNFB-challenged Balb/C mouse	(†) serum IgE level; (†) IL-6, IL-8, TARC, MDC level; (†) MAPK & NF-κB signaling		[55]
PMA-A23187-induced inflammation HMC-1 cell	(†) IL-1β, IL-6, IL-8, TARC, MDC level; (†) MAPK & NF-κB signaling		[55]
MCGF	DNFB-challenged NC/Nga mouse	(†) MAPK & NF-κB signaling	[56]
	TNF-a-IFN-γ-induced inflammation HaCat cell	(†) skin lesion; (†) serum IgE level; (†) pro-inflammatory cytokine level; (†) TARC level	[56]
	CFE	(†) TARC level	[58]
	DFE-induced AD in NC/Nga mouse	(†) MDC, pro-inflammatory cytokine & helper T cell-related cytokine level	[58]
Gintonin	DNFB-challenged NC/Nga mouse	(†) ear thickness reduction; (†) dermatis index; (†) IgE, histamine, IL-4, IFN-γ	[59]
	TNF-a-IFN-γ-induced inflammation HaCat cell	(†) MAPK & NF-κB signaling	[60]
	LPS-stimulated RAW 264.7 cell	(†) NO & ROS production; (†) pro-inflammatory cytokine & enzyme level	[60]

KRGE, Korean Red Ginseng; TNCB, trinitrochlorobenzene; IgE, immunoglobulin E; TNF-α, tumor necrosis factor alpha; IFN-γ, interferon-gamma; TSLP, thymic stromal lymphopoietin; DNBC, 1-chloro-2,4-dinitrobenzene; IL-4, interleukin-4; IL-10, interleukin-10; MAPK, mitogen-activated protein kinase; DNFb, 1-ß-fluoro-2,4-dinitrobenzene; IL-6, interleukin-6; IL-8, interleukin-8; TARC, thymus and activation-regulated chemokine; MDC, macrophage-derived chemokine; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL-1β, interleukin-1β; MIP-1α, macrophage inflammatory protein-1α; MIP-1β, macrophage inflammatory protein-1β; RANTES, regulated on activation normal T cell expressed and secreted; MCP-1, monocyte chemoattractant protein-1; MCGF, mountain-cultivated ginseng extract; CFE, CK-fortified extract; CK, compound K; DFE, Dermatophagoides farinae body extract; STAT1, signal transducer and activator of transcription 1; LPS, lipopolysaccharide; NO, nitric oxide; ROS, reactive oxygen species.

Table 4
Effects of Panax ginseng on rheumatoid arthritis.

Component	Experimental model	Results	References
KRGE	collagen-induced arthritis	(†) clinical arthritis score; (†) joint inflammation; (†) STAT3 phosphorylation; (†) Th17 cell number; (†) RANKL-induced osteoastrogenesis	[65]
	RGSF-A	(†) proinflammatory cytokine production; (†) serum antibody production; (†) leukocyte activation; (†) immune cell infiltration; (†) clinical severity; (†) IL-10 production	[66]
	Rg3-, Rk1-, and Rg5-rich saponin extract	(†) progression and severity of arthritis; (†) MMP-3, nitrotyrosine, SOD expression; (†) proinflammatory cytokine production; (†) spleen cell proliferation; (†) oxidative tissue damage	[67]
	CK	(†) clinical score and behavioral symptoms; (†) spleen and joint inflammation; (†) regulatory T-cell rate; (†) T-cell proliferation	[68]
	Rg1	(†) clinical score; (†) inflammation; (†) collagen deposition; (†) proinflammatory cytokine levels	[70]

KRGE, Korean Red Ginseng extract; STAT3, signal transducer and activator of transcription 3; Th17, helper T cell 17; RANKL, receptor activator of nuclear factor kappa-B ligand; RGSF-A, red ginseng saponin fraction A; IL-10, interleukin-10; MMP-3, matrix metalloproteinase 3; SOD, superoxide dismutase; CK, compound K; RA-FLS, rheumatoid arthritis fibroblast-like synoviocyte; MMP, matrix metalloproteinase; MAPK, mitogen-activated protein kinase; PPAR-γ, peroxisome proliferator–activated receptor gamma.
permeability of the BBB, in agreement with downregulation of the IFN-γ level, upregulation of the IL-4 level, and promotion of Th2 shift in splenocytes and cerebral cortex [35]. Interestingly, Rg1 increased the levels of the neural growth factor and brain-derived neurotropic factor in both cerebral cortex and lumbar spinal cord of EAE mice, indicating that Rg1 promoted the release of the nervous system growth factor for repair and restoration from pathological loss [35]. Intrathecal pretreatment of rats with ginsenoside Rg1 and Rb1 also mitigated behavioral impairment in the MOG-induced chronic EAE mouse model [33]. These reports demonstrate the potency of ginsenosides Rg1, Rg3, and Rb1 in inhibiting the clinical course of EAE. These findings also suggest that ginsenosides could be promising agents for mitigating neuroimmune dysfunction diseases such as MS.

It has been reported that a purified acidic polysaccharide isolated from P. ginseng can downregulate Th1 cytokines and splenic proinflammatory cytokines in an MOG peptide (MOG35–55)-induced chronic EAE mouse model [36]. Its effect was dependent on the mitigation of neurological symptoms. In contrast, this acidic polysaccharide upregulated Treg cells [36]. Acidic polysaccharides can also lower the levels of immune cell infiltration in the spinal cord, splenic proinflammatory cytokines, spinal demyelination, and neurological scores in a proteolipid protein peptide–induced RMS EAE mouse model, similar to their effects in an MOG-induced chronic EAE mouse model [37].

Treatment of MS patients with P. ginseng for 3 months can reduce their fatigue (86%; 52 of 60 patients), one of the common complaints of patients with MS [24]. It also significantly improved their quality of life [24]. However, in a single-center, randomized, double-blind, placebo-controlled, crossover pilot study of 56 patients with MS, American ginseng did not significantly improve fatigue (assessed by the Fatigue Severity Scale) in the MS group compared with placebo, although it had no serious adverse effects [38]. Again, clinical study of ginseng is very limited. Therefore, clinical studies using ginseng and its components should be continued. KRGE might be useful as a new therapeutic for autoimmune disorders such as MS.

Taken together, KRGE and its components have beneficial effects on the development and progression of EAE. Clinical studies applying ginseng to MS have shown promising results, supporting the need for further investigation using ginseng in patients with MS. Therapeutic effects are expected which can be exciting for patients with MS in the future.

4.2. Effects of P. ginseng on CD and UC

CD and UC are autoimmune diseases associated with the gastrointestinal tract. They are the two major types of inflammatory bowel disease (IBD) [27,39]. CD affects any part of the gastrointestinal tract, ranging from the mouth to the anus, whereas UC primarily affects the colon and the rectum [39]. Although mucosal immune response in CD differs from that in UC, both diseases share several common anatomopathological and clinical features such as abdominal pain, vomiting, diarrhea, rectal bleeding, severe internal cramps/muscle spasms in the region of the pelvis, weight loss, and anemia [40,41]. Thus, both CD and UC can seriously limit the quality of life. Additionally, at the turn of the 21st century, they have become global diseases, showing accelerating incidence in newly industrialized countries whose societies have become more Westernized [42]. CD and UC are complex diseases arising from a combination of hereditary factors, genetic factors, and/or environmental factors (diet, microbiota, breach of intestinal barrier, geography, cigarette smoking, sanitation and hygiene, and so on) that can cause autoimmune responses and inflammation in the intestine [43]. A dysregulated mucosal immune response is the central driver of CD and UC which is characterized by an altered innate immune system along with activated effector T cells, increased presence of B cells, increased antibody production, and increased production of proinflammatory mediators [44]. Although CD and UC are not medically curable, they can be treated by surgery (proctocolectomy for UC), medical therapies [mesalazine and immunosuppressant such as prednisone, tumor necrosis factor (TNF) inhibitors, azathioprine, methotrexate, or 6-mercaptopurine], nutritional and dietetic therapies, microbiome, and alternative medicine [45,46].

In a dextran sodium sulfate–induced colitis model, fermented wild ginseng (FWG) can alleviate the severity of colitis and the infiltration of macrophages in colonic tissue. FWG can also inhibit the expression of proinflammatory cytokines (TNF-α, IL-12 subunit p40, IL-1β, IL-6, and IFN-γ) in lipopolysaccharide-induced RAW 264.7 macrophage cell line and peritoneal macrophages. The mechanism underlying favorable effects of FWG involves the attenuation of NF-κB signaling pathway [47]. Interestingly, beneficial activities of FWG are associated with the presence of FWG metabolites such as compound K (CK), 2-((S)-protopanaxatriol), Rh1, F1, and 20(S)-protopanaxadiol that are not present in wild ginseng. Based on the high-performance liquid chromatography results, fermentation of wild ginseng can increase its metabolites described previously, resulting in enhanced beneficial effects [47]. Ginsenoside Rf can decrease the production of inflammatory mediators [IL-1, IL-6, TNF-α, NO, and reactive oxygen species] that are highly activated in IBD and TNF-α–stimulated intestinal epithelial cells (HT-29) and mouse macrophage cells (RAW264.7). In addition, Rf can suppress TNF-α/lipopolysaccharide-induced NF-κB transcriptional activity [48]. These results suggest that ginseng metabolites such as Rf have potent intestinal anti-inflammatory effects. Thus, they might have potential to treat CD and UC.

Unfortunately, there are no reliable reports showing how P. ginseng affects patients with CD and UC, although one study has reported that some patients with IBD are taking P. ginseng as a complementary medicine because standard therapy has side effects and low effectiveness for them [49]. In this regard, further research should be performed to investigate how P. ginseng affects clinical symptoms of CD and UC. Similar to this, in vivo and in vitro data are also needed to suggest the possibility of using P. ginseng and its components as therapeutics for CD and UC.

4.3. Effects of P. ginseng on atopic dermatitis

Atopic dermatitis (AD) is an autoimmune skin disease accompanied by inflammatory responses. The representative symptom of AD is itchiness which can lead to scratching or rubbing the itchy site. This behavior can worsen skin inflammation [26]. Despite the increased numbers of patients with AD, the pathogenesis of AD is still not clearly understood yet. Patients with AD show increased skin levels of Th17–associated cytokines (e.g. IL-17A, IL-6, IL-23) and Th2 cytokines such as IL-4 and IL-13 [50]. In AD, IL-4 is related to Th2 differentiation, IgE production, and eosinophil recruitment. Elevated levels of IL-4 can increase the risk of AD development. Several mouse models have been used to demonstrate the relationship between AD and IL-4 [50]. In addition to IL-4, several other cytokines such as IL-13, IL-5, and epithelial cell–derived cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin are also related to AD.

Several studies have investigated the preventive and therapeutic role of P. ginseng in both in vivo/vitro models of AD. It has been reported that oral administration of KRGE to trinitrochlorobenzene–challenged NC/Nga mice can attenuate levels of skin condition, serum IgE, epidermal hyperplasia, eosinophil/monocyte infiltration in lesion, and expression of TNF-α and IFN-γ in lesion [51,52]. In the
same model, another group has validated the effect of KRGE on early AD. Oral administration of KRGE reduced the ear thickness and decreased the levels of transepidermal water loss, serum IgE, and lymphocyte infiltration in the ear skin [53]. KRGE also suppressed thymic stromal lymphopoietin and TNF-α expression based on immunohistochemical analysis [53]. Interestingly, direct application of KRGE to skin lesions of 1-chloro-2,4-dinitrobenzene–induced AD mouse improved skin condition and reduced scratching behavior and serum IgE levels associated with reduction in mRNA expression of IL-4 and IL-10 and the lower level of MAPK signaling and Ikaros translocation [54]. In 1-fluoro-2,4-dinitrobenzene–challenged Balb/C mice model, KRGE decreased the levels of serum IgE, IL-6, IL-8, thymus and activation-regulated chemokine (TARC), and macrophage-derived chemokine [55]. In the human keratinocyte cell line HaCaT and human mast cell line HMC-1, KRGE also decreased expression levels of cytokines examined previously. KRGE also suppressed the expression of macrophage inflammatory protein-1x and macrophage inflammatory protein-1β, regulated on activation normal T cell expressed and secreted, monocyte chemooattractant protein-1, and IL-8 in HMC-1 cells [55]. Additionally, KRGE lowered NF-kB and MAPK signaling in both in vivo and in vitro experiments described previously [54,55]. In 1-chloro-2,4-dinitrobenzene–challenged NC/Nga mice, it has been reported both oral- and cultivated ginsenosides extract can alleviate the development of AD-like skin symptoms by regulating Th1 and Th2 responses/balances in skin lesions and TARC expression by suppressing TNF-α/IFN-γ–induced NF-kB activation in human keratinocytes (HaCaT cells) [56].

Modification of P. ginseng may alter its compounds, resulting in better therapeutic effects for various disorders. 20-O-β-D-glucopyranosyl-20(S)-pro-topanaxadiol, also known as CK, is derived from ginsenosides Rb1, Rb2, and Rc [57]. CK–fortified extract has been used to treat AD–induced mouse models [58]. In Dermatophagoides farinae body extract–induced AD-like symptoms in NC/Nga mice, oral administration of CK can attenuate the dermatitis score, ear thickness, scratching time, and severity of skin lesions. CK treatment also reduced the levels of macrophage-derived chemokines in serum, infiltration of eosinophils and mast cells in skin, and production of proinflammatory/T cell–related cytokines in spleenocytes [58]. Gintonin, a recently discovered fraction of P. ginseng, mainly consists of lysophosphatidic acids and P. ginseng proteins such as GLP151 and GMP [10]. In 1-fluoro-2,4-dinitrobenzene–challenged NC/Nga mice, oral administration of gintonin can reduce ear thickness, lower dermatitis index, and decrease serum levels of IgE, histamine, IL-4, and IFN-γ, in paralleled to decreased levels of epidermal/dermal thickness and inflammatory/mast cell infiltration with involvement of autotaxin regulation [59].

Rg5:Rk1, a mixture of protopanaxadiol-type ginsenoside, can reduce NO and reactive oxygen species production in lipopolysaccharide-stimulated RAW 264.7 cells [60]. It can also decrease mRNA expression levels of proinflammatory cytokines and expression levels of TARC and macrophage–derived chemokine in TNF-α/IFN-γ–incubated human keratinocytes (HaCaT) and RAW 264.7 cells by suppressing NF-kB/p38 MAPK/signal transducer and activator of transcription 1 signaling [60]. Although clinical studies of P. ginseng on AD are very limited, one study has reported that daily intake of KRGE by patients with AD can ameliorate symptoms of AD associated with reduction of transepidermal water loss and improvement of skin hydration [61].

These findings and reports have demonstrated that P. ginseng, CK, gintonin, and ginsenosides have therapeutic effects on patients with AD and in vivo/vitro models. Because both oral application and dermal application of P. ginseng are available and the effects of P. ginseng on treating AD are promising, P. ginseng might be useful as an alternative medicine for AD. Further studies are needed to assess its outcome indicators.

4.4. Effects of P. ginseng on RA

RA is a long-term autoimmune disease primarily affecting joints [25]. It typically results in warm, swollen, and painful joints [25]. Although the pathogenesis of RA remains unclear, it is believed to involve a combination of a genetic factor and environmental factors [25]. Harmful environmental factors such as smoking can induce mutations in genes to form neoantigens. Additionally, matrix protein citrullination can occur owing to these neoantigens, resulting in the production of dominated peptide [25]. The underlying mechanism involves the body’s immune system (e.g., lymphocyte activation) attacking joints which results in inflammatory response and thickening of the joint capsule, cartilage, and the underlying bone [25]. RA has been treated using several approved drugs, such as infliximab, tocilizumab, abatacept, and rapamycin. However, these drugs can only ameliorate RA symptoms without successfully curing RA [62]. In addition, they might have adverse effects such as nausea, rash, and respiratory tract disorder [63,64].

KRGE can ameliorate the clinical arthritis score and joint inflammation by histological analysis in a collagen-induced arthritis (CIA) mouse model [65]. The underlying mechanism was associated with reduction of the phosphorylation rate of signal transducer and activator of transcription 3, the number of Th17 cells, and receptor activator of nuclear factor kappa-B ligand. The effect of KRGE was similar to that of human peripheral blood mononuclear cells. Saponin fraction fortified in ginsenoside Rb1, Rc, and Rb2 can decrease the production of proinflammatory cytokine and serum antibody in circulation, reduce leukocyte activation, and increase the serum IL-10 level in the CIA mouse model [66]. Similar to this report, another study has shown that saponin including ginsenosides Rg3, Rk1, and Rg5 can protect against oxidative tissue damage, contribute to the recovery of superoxide dismutase, and inhibit matrix metalloproteinase-3 expression in the CIA mouse model [67]. Effect of P. ginseng on RA has been verified using CK, a ginsenoside metabolite [68]. CK reduced the clinical score and behavioral symptoms in adjuvant arthritis–induced mouse associated with decrease of inflammation scores in spleen and joints and T-cell proliferation in in vivo and in vitro studies but an increase of Treg cells [68]. In another in vitro study, CK has also suppressed matrix metalloproteinase secretion, osteoclastogenesis, and MAPK signaling [69]. Ginsenosides Rc or Rg1 can alleviate clinical scores, inflammatory response, and collagen deposition or increase peroxisome proliferator–activated receptor gamma protein expression in CIA mouse models [70,71]. Taken together, these results demonstrate that P. ginseng extracts, fraction, and ginsenosides all have favorable effects on RA in both in vivo and in vitro studies, suggesting that P. ginseng might have preventive and therapeutic effects on RA.

To the best of our knowledge, investigating the effect of P. ginseng on patients with RA has not been performed yet, although one study has shown that KRGE can inhibit the differentiation of Th17 cells and increase Treg cell population [70]. Further investigation is needed to examine the effect of P. ginseng on patients with RA through in vivo and in vitro studies.

5. Conclusions

P. ginseng and its components might provide powerful intervention for immunological and inflammatory diseases [15,72]. However, the role of P. ginseng in autoimmune diseases has been insufficiently investigated. Recently, the continuous increase in the number of patients suffering from autoimmune diseases worldwide has prompted vigorous efforts to develop an appropriate cure for such diseases [73]. However, not much research has been performed on how the immune system is regulated by P. ginseng. There
can be some doubts about using *P. ginseng* as a cure for treating autoimmune diseases because *P. ginseng* can boost the immune system and exacerbate such autoimmune diseases at the same time. However, there are reports showing that *P. ginseng* can regulate the immune system in a balanced manner. It has been reported that the ginsenoside Rb1 fraction can balance Th1 and Th2 cell differentiation [74]. Another report has shown that ginsenoside Rd and Re can improve both Th1- and Th2-related cytokine release, suggesting that *P. ginseng* can regulate the immune system in proinflammation- and anti-inflammation—balanced manner [13]. Taken together, these reports suggest that *P. ginseng* might be able to regulate the immune system in a well-balanced way. This supports the idea that *P. ginseng* can become an autoimmune disease—curing medicine. In this regard, future investigations are needed to investigate how *P. ginseng* can regulate both proinflammation and anti-inflammation in autoimmune diseases. Limited preclinical and clinical data for the role of *P. ginseng* in autoimmune diseases suggest that *P. ginseng* should be studied as a possible ‘panacea’ for autoimmune diseases.

Conflicts of interest

The authors have declared no conflict of interest.

Acknowledgments

This research was supported by Basic Science Research Program and Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2A2A05069493).

References

[1] Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of *Panax ginseng* for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42(3):239–47.
[2] Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10(8):RA187–92.
[3] Song JH, Kim KJ, Choi SY, Koh EJ, Park JD, Lee BY. Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague-Dawley rat subjected to environmental stress. J Ginseng Res 2019;43:252–60.
[4] Saba E, Lee YY, Kim MK, Kim SH, Rhee MH. A comparative study on immune-stimulatory activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018 Oct;42(4):577–84.
[5] Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, Min W, Lee HJ, Rhee MH, Kwak YS, et al. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J Ethnopharmacol 2017;198:5–14.
[6] Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean *Panax ginseng* C.A. Meyer. Acta Pharmacol Sin 2008;29(9):1109–18.
[7] Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (*Panax ginseng* Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384–91.
[8] Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of Panax ginseng components of Korean *Panax ginseng* for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Neurobiol 2017;16(11):1255–71.
[9] Goldenberg MM. Multiple sclerosis review. P T 2012;37(3):436–46.
[10] Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pu R, Chen X. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57/Bl6 mice. J Neurosci Res 2014;92(9):1217–26.
[11] Hwang I, Ahn G, Park E, Ha D, Song JY. Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immuno Lett 2011;138(2):169–76.
[12] Bing SJ, Ha D, Hwang I, Park E, Ahn G, Song JY, Jee Y. Protective effects on central nervous system by acidic polysaccharide of *Panax ginseng* in Relapse-remitting experimental autoimmune encephalomyelitis-induced SJL(Jc) mice. Am J Chin Med 2016;44(6):1099–110.
[13] Kim E, Cameron M, Lovera J, Schaben L, Bourdette D, Whitham R. American ginseng does not improve fatigue in multiple sclerosis: a single center randomized double-blind placebo-controlled crossover pilot study. Mult Scler 2017;14(12):1419–26.
[14] Je YH, Camussi S, Baggiolini M. Immunomodulatory effects of Panax ginseng CA. Meyer in the mouse. Agents Actions 1984;15(3–4):386–91.
[15] Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY. Anti-septicaemic effect of polysaccharide from *Panax ginseng* by macrophage activation. J Infect Dis 2015;210(1):32–8.
[16] Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rg2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018 Oct;42(4):455–62.
[17] Joo SS, Lee D. Potential effects of microalgal microalgae induction by ginsenoside Rg3 in rat primary culture: enhancement of type I Macrophage Scavenger Receptor expression. Arch Pharm Res 2005;28(10):1164–9.
[18] Stojanovich L, Maraisvili D. Stress as a trigger of autoimmune disease. Autoimmun Rev 2008;7(3):209–13.
[19] Jorg S, Crotte MA, Eder M, Binsfeld M, Haghiakia A, Muller DN, Linker RA, Kleineveldt M. Environmental factors in autoimmune diseases and their role in multiple sclerose. Cell Mol Life Sci 2016;73(24):4611–22.
[20] Etemadifar M, Sayah FI, Alaihi SH, Shemshaki H, Doroudsi GA, Goodarzi M, Alkbari M, Fereidan-Esfahani M. Ginseng in the treatment of fatigue in multiple sclerosis: a randomized, placebo-controlled, double-blind pilot study. Int J Neurosci 2013;123(7):480–6.
[21] Boissier MC, Semerano L, Challal S, Sadenberg-Kermanach M, Falgarone G. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. J Autoimmun 2012;39(3):222–8.
[22] Cipriani F, Rizzi G, Leonis MC, Capra L, Baviera G, Longo G, Maitolo N, Galli E. Autoimmunity in atopic dermatitis: biomarker or simply phenomenon? J Dermatol 2014;41(7):569–76.
[23] McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009;15(1):100–13.
[24] Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis 2013(6):151–5.
[25] Cipriani F, Massimi M, Martina S, Flores-Chavez M, Kostov B, Perez-Alvarez R, Brito-Zeron P, Ramos-Casals M. Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGAS) Registry. Expert Opin Drug Saf 2019;17(11):1255–71.
[26] Goldenberg MM. Multiple sclerosis review. P T 2012;37(3):175–84.
[27] O’Gorman C, Lucas R, Taylor B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012;13(9):11718–52.
[28] Villalobos P, Moreno B. Neuroprotective therapies for multiple sclerosis. Eur Neurol 2012;73(3):189.
[29] Lee MJ, Jung M, Choi J, Chang BS, Kim DY, Kwak YS, Oh S, Lee HJ, Chang BJ, et al. Korean red ginseng and ginsenoside-Rh1/Rg1 alleviate cyclosporine-induced immunosuppression and pro-inflammatory responses. J Ginseng Res 2019 Oct;43:476–8.
[30] Goldenberg MM. Multiple sclerosis review. P T 2012;37(3):175–84.
[31] Lee MJ, Jung M, Choi J, Chang BS, Kim DY, Kwak YS, Oh S, Lee HJ, Chang BJ, et al. Korean red ginseng and ginsenoside-Rh1/Rg1 alleviate cyclosporine-induced immunosuppression and pro-inflammatory responses. J Ginseng Res 2019 Oct;43:476–8.
inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018;390(10114):2769–78.

Baungart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 2007;369(9573):1627–40.

Ahluwalia B, Moraes L, Magnusson MK, Ohman L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand J Gastroenterol 2018;53(4):379–89.

Mowat C, Cole A, Windsor A, Ahmad T, Arnott I, Driscoll R, Mitton S, Orchard T, Rutter M, Young L et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 2011;60(5):571–607.

D’Haens GR, Panaccione R, Higgins PD, Vermeire S, Gassull M, Chowers Y, Hanauer B, Herfath H, Hommes DW, Kamml M et al. The London position statement of the world congress of gastroenterology on biological therapy for IBD with the European Crohn’s and colitis organization: when to start, when to stop, which drug to choose, and how to predict response? Am J Gastroenterol 2011;106(2):199–212.

Seong MA, Woo JK, Kang JH, Jang YS, Choi S, Kang JH, Hurh BS, et al. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier. BMJ Rep 2015;48(7):419–25.

Ahn S, Siddiqi MH, Acetitno VC, Simu SY, Yang DC. Suppression of MAPKs/NF-kappaB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264.7 cells. Immune Invest 2016;45(5):439–49.

Hilsen RJ, Scott CM, Verhoef MJ. Complementary medicine use by patients with inflammatory bowel disease. Am J Gastroenterol 1998;93(5):697–701.

Brandt EB, Sivaprasad U. Thz cytokines and atopic dermatitis. J Clin Cell Immunol 2011;2(3).

Lee JH, Cho SH. Korean red ginseng extract ameliorates atopic dermatitis in NC/Nga mice: an atopic dermatitis model. J Ethnopharmacol 2011;133(2):810–7.

Lee HJ, Cho SH. Therapeutic effects of Korean red ginseng extract in a murine model of atopic dermatitis: anti-pruritic and anti-inflammatory mechanism. J Korean Med Sci 2017;32(4):679–87.

Cho E, Cho SH. Effects of Korean red ginseng extract on the prevention of atopic dermatitis and its mechanism on early lesions in a murine model. J Ethnopharmacol 2013;145(1):294–302.

Sohn EH, Jang SA, Lee CH, Jang KH, Kang SC, Park HJ, Pyo S. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res 2011;35(4):479–86.

Kee JY, Jeon YD, Kim DS, Han YH, Park J, Youn DH, Kim SJ, Ahn KS, Um JY, Hong SH. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro. J Ginseng Res 2017;41(2):134–43.

Choi JH, Jin SW, Park BH, Kim HG, Khanal T, Han Hj, Hwang YP, Choi JM, Chung YC, Hwang SK et al. Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-alpha/IFN-gamma-induced TARC activation in HaCaT cells. Food Chem Toxicol 2013;56:195–203.

Zeng X, Hu K, Chen L, Zhou I, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G et al. The effects of ginsenoside compound K against epilepsy by enhancing the γ-aminobutyric acid signaling pathway. Front Pharmacol 2018;9.

Kim JR, Choi J, Kim J, Kim H, Kang H, Kim EH, Chang JH, Kim YE, Choi YJ, Lee KW et al. 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice. J Ethnopharmacol 2014;151(1):365–71.

Lee BH, Kim HK, Jang M, Kim HJ, Choi SH, Hwang SH, Kim HC, Rhim H, Cho IH, Nah SY. Effects of gintonin-enriched fraction in an atopic dermatitis animal model: involvement of autotaxin regulation. Biol Pharm Bull 2017;40(7):1063–70.

Ahn S, Siddiqi MH, Acetitno VC, Simu SY, Zhang J, Perez PE, Kim YJ, Yang DC. Ginsenoside Rg5/Rk1 attenuates TNF-alpha/IFN-gamma-induced production of thymus- and activation-regulated chemokine (TARC/CLL17) and LPS-induced NO production via downregulation of NF-kappaB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. Vitro Cell Dev Biol Anim 2016;52(3):287–95.

Lee KG, Son SW. Efficacy of Korean red ginseng in the treatment of atopic dermatitis. J Ginseng Res 2011;35(2):149–54.

Esensten JT, Wofsy D, Bluestone JA. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 2009;5(10):560–5.

Campbell L, Chen C, Bhagat SS, Parker RA, Ostor AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 2011;50(3):552–62.

Lee HH, Song JH, Friedrich M, Gaulraud A, Detert J, Röwert J, Audring H, Kary S, Burneister GR, Sterry W et al. Cutaneous side-effects in patients with rheumatic diseases during application of tumour necrosis factor-alpha antagonists. Br J Dermatol 2007;156(3):486–91.

Hun J, Lee J, Byun JK, Kim FK, Woo JW, Lee JH, Kwok SK, Ju JH, Park KS, Kim HY et al. Red ginseng extract ameliorates autoimmune arthritis via regulation of STAT3 pathway, TH17/Treg balance, and osteoelasticogenesis in mice and human. Mediators Inflamm 2014;2014:351856.

Ende J, Im EJ, Lee JY, Kim SD, Yaeheh T, Song YB, Kwak YS, Kim C, Kim SH, Roh SS et al. Korean red ginseng saponin fraction rich in ginsenoside-Rb1, Rc and Rb2 attenuates the severity of mouse collagen-induced arthritis. Mediators Inflamm 2014;2014:748964.

Kim KR, Chung TY, Shin H, Son SH, Park KK, Choi JH, Chung WY. Red ginseng saponin extract ameliorates murine collagen-induced arthritis by reducing pro-inflammatory responses and matrix metalloproteinase-3 expression. Biol Pharm Bull 2010;33(4):504–10.

Chen J, Wu H, Wang Q, Yang C, Liu K, Song S, Yuan P, Fu J, Sun W, Huang Q et al. Ginsenoside metabolite compound k alleviates adjuvant-induced arthritis by suppressing T cell activation. Inflammation 2014;37(5):1608–15.

Choi YS, Kang EH, Lee EY, Cong HS, Kang HS, Shin K, Lee EB, Song YW, Lee JY. Joint-protective effects of compound K, a major ginsenoside metabolite, in rheumatoid arthritis: in vitro evidence. Rheumatol Int 2013;33(8):1981–90.

Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH et al. Ginsenoside Rc from Korean red ginseng (Panax ginseng CA. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am J Chin Med 2016;44(3):595–615.

Zhang L, Zhu M, Li M, Du Y, Duan H, Huang Y, Lu Y, Zhang J, Wang T, Fu F. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-gamma/NF-kappaB signal pathway. Oncotarget 2017;8(33):55384–93.

Yi HS. Ameliorative effects of ginseng and ginsenosides on rheumatic diseases. J Ginseng Res 2018.

Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Carubbi F, Cau I, Cervara R, Ceccia F et al. International consensus: what else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritis, systemic sclerosis, systemic lupus erythematosus, anti-phospholipid syndrome and Sjogren’s syndrome)? the unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev 2017;16(9):911–24.

Rivera E, Ekholm Pettersson F, Inglan M, Paulie S, Gronvik KO. The Rbl1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine 2005;23(46):4711–9.