Peri-Decoration of a Tetraazaperylene with Urea Units: Chiral Octaazaperopyrenedioxides (OAPPDOs) and Their Optical and Chiroptical Properties

Tobias Wesp, Tim Bruckhoff, Hubert Wadepohl and Lutz H. Gade*

Abstract: Octaazaperopyrenedioxides (OAPPDOs) are a new class of fluorescent polycyclic aromatic hydrocarbons based on a tetraazaperylene core that is formally condensed with N-substituted urea units in the two opposite peri positions. Here, we report the synthesis of series of substituted OAPPDO derivatives with different N-substitution patterns (H, alkyl, benzyl) in the peri positions, including bay-chlorinated OAPPDOs. Starting from the latter, a series of bay-arylated OAPPDOs was synthesized by Suzuki cross coupling, which resulted in the formation of helically chiral OAPPDO derivatives. The electrochemical and photophysical properties were investigated by UV/Vis and fluorescence spectroscopy as well as cyclic voltammetry. The P and M enantiomers of a phenylated OAPPDO were separated by semipreparative HPLC and further analyzed by CD spectroscopy. The frontier orbital energies, the mechanism of the isomerization, the electronic excitation and the CD spectrum (TD-DFT) were computed and compared to the experimental data. The reversible 1e oxidation of the OAPPDOs generates the corresponding radical cations, one of which was characterized by EPR spectroscopy. The reversible oxidation process was also systematically investigated by spectro-electrochemistry.

Introduction

The perylene core is the central structural motif of a highly developed class of functional dyes and pigments. In particular, perylene tetracarboxydiimides (PDIs) have been extensively studied for more than a century.\[1–5\] The high impact of the PDIs as molecular organic materials is rooted in their excellent functional properties relevant to opto-electronic applications, the possibility to tune these properties on the molecular level as well as their thermal and photochemical stability.\[2–3,5–20\]

The electron-withdrawing dicarboximide substituents in the peri positions of the perylene core in PDIs renders these dyes electron acceptors which have made them attractive materials for application as organic n-channel semiconductors in OFETs.\[21–25\] Analogous behavior has been established for the closely related class of dyes in which the terminal peri dicarboximides have been replaced by the condensation of pyrimidine rings at opposite ends of the perylene core giving rise to tetraazaperopyrenes (TAPPs; Scheme 1, top).\[26–36\] The latter class of compounds may also be viewed as derived from the peropyrene reference system by fourfold [CH→N] replacement\[26–36\] rendering the polycyclic aromatics electron acceptors. This strategy of isosteric [CH→N] replacement has allowed the tuning of the molecular redox properties without

Scheme 1. Functional dyes based on a perylene core, PDIs and TAPPs (top) and a central tetraazaperylene unit, OAPPs and OAPPDOs (bottom). Bay functionalization leads to twisted chiral aromatic cores.
extensive modification of the peripheral substituents but rather within the poly(N-heterocyclic) aromatic core itself.\(^{[37–42]}\)

Recently, we have begun to extend the construction principle outlined above to dyes based on a tetraazaperylene core (Scheme 1, bottom), thus reducing the frontier orbital energies by [CH—N] replacement within the central aromatic polycycle.\(^{[43]}\) Further modification following the synthetic routes to the previously studied TAPPs gave access to the nitrogen rich, strongly electron-accepting octaazaperopyrenes (OAPPs) for which a first assessment of their properties has been reported.\(^{[43]}\)

Based on the tetraazaperylene core we have now added N-substituted urea units in the peri positions, thus generating a periphery which is complementary to the dicarboximido termini in the PDIs. Similar to the latter, the combination of NH- and carbonyl functions allows the formation of intermolecular hydrogen bonds which ultimately is expected to lead to stable, tightly packed materials.\(^{[39,44–47]}\) This new class of dyes may be viewed as formally derived from the recently reported octaaza-peropyrenes by oxidation of the two axial CH units and is therefore referred to as octaazaperopyrenedioxides (OAPPDO).\(^{[43]}\) Specifically, we report the synthesis of a bay-halogenated OAPPDO derivative which has offered the opportunity for further functionalization and, in particular, freezing in the twisted conformation of the polycyclic aromatic core. This has led to the isolation of helically chiral OAPPDO dyes.

Results and Discussion

Synthesis of octaazaperopyrenedioxides

The octachlorotetraazaperylene 1, previously employed in the synthesis of octaazaperopyrenes (OAPPs) is an excellent starting compound for the OAPPDO target compounds, given that different nucleophiles were found to attack exclusively at the peri position.\(^{[40]}\) Compound 2b was obtained in good yields by reaction of 1 with \(\text{para-methoxybenzylamine}\). In contrast to the perchlorinated perylene, compound 2b is highly soluble in common organic solvents. In the next step the amine 2b was reacted with triphosgene to give the OAPPDO derivative 3b (Scheme 2).

In all compounds the aromatic core is twisted as a result of the steric pressure of the chlorine substituents in the bay position. The resulting racemate of two enantiomers (\(P+M\)) could not be separated due to their thermal interconversion at subambient temperature.\(^{[49]}\) Finally, the N-substituent-free compound 4 was synthesized by acid-catalyzed deprotection of the benzyl group of 3b with trifluoroacetic acid and found to be poorly soluble in common organic solvents which complicated further functionalization in the bay position.

The lability of the para-methoxybenzyl-N substituents under the reaction conditions for further bay functionalization led us to repeat the reaction sequence starting from 1 by the reaction with hexylamine to give compound 2a, which was subsequently converted with triphosgene to the corresponding OAPPDO 3a.\(^{[40]}\) For this highly soluble compound 3a, it was

Scheme 2. a) Synthetic route to the parent compound OAPPDO 4 as well as b) the cross coupled derivatives 6 and the dehalogenated, planarized compound 5.
possible to substitute the bay position by palladium-catalyzed Suzuki coupling. To this end, aryl fluoroborates were used as transmetalation reagents in the presence of potassium carbonate and a catalytic amount of Pd(PPh$_3$)$_4$ (Scheme 2) yielding the coupled derivatives 6a–e.$^{[51–53]}$ On the other hand, the bay-unsubstituted compound OAPPDO 5 was synthesized by palladium-catalyzed dehalogenation, which resulted in planarization of the aromatic core.$^{[54]}$ For the latter transformation, sodium borohydride was found to be suitable as a reducing reagent with Pd(dppf)Cl$_2$ as precatalyst.

The crude mass spectra of compound 6a indicated the formation of a Suzuki coupled derivative with subsequent intramolecular C–H activation as by-products.$^{[55]}$ The reaction parameters were therefore modified to specifically target an azadibenzo(coronene starting from 3a (Scheme 3). Instead of a significant excess of the borane reagent, as used in the synthesis of 6a–e only two equivalents were used. From this reaction the partially condensed and partially dehalogenated compound 8a was isolated in low yield. To avoid the protodehalogenation, that prevented a second C–H activation and ring closure, Stille conditions were applied, thus circumventing the use of a protic solvent. However, whereas protodehalogenation was successfully avoided, only one C–H activation step occurred to give the asymmetric compound 7a (Scheme 3). To which degree this approach may be modified to obtain the targeted coronene derivative therefore remains to be established in future work.

Crystal structures of the OAPPDO derivatives 6a–d

Single crystals of the bay-arylated OAPPDOs 6a–d were grown by slow evaporation of a concentrated n-hexane/CH$_2$Cl$_2$ solution (Figure 1), to establish the details of the molecular structures as well as their packing in the solid state. The racemic mixtures of the chiral OAPPDOs 6a–d were used for the crystallization in all cases.

All molecular structures were found to be characterized by a strong distortion of the azaperylene core, with the relevant torsion angle Φ being between 26.8° (6d) and 30.9° (6c; Table 1). The twist results from the steric pressure of the two aryl groups on each side, but happens to be slightly smaller than for the corresponding bay-chlorinated tetraazaperylene 1.

![Figure 1. Solid-state structures of bay-arylated OAPPDOs a) 6a, b) 6b, c) 6c, and d) 6d. The molecular structure is displayed on the left; the twist of the azaperylene core is shown on the right (the hexyl groups are omitted for clarity).](image-url)
(36.1°) or previously synthesized bay-chlorinated TAPP (29.4-
32.4 Å) or OAPP (33.7°) derivatives. This can be explained by
an attractive interaction of the aryl units for which a distance
between the centroids of the aryl rings of 3.5–3.6 Å was found,
suggesting weak π–π interactions between the aryl substituents
despite the fact that these are not arranged parallel to each
other. Furthermore, the aryl substituents are tilted from the
naphthyridine planes by the dihedral angle δ of 35–43° (Table 1)
which largely suppresses conjugation of the aryl
groups with the central tetraazaperylene core.

In contrast to the structurally similar bay-chlorinated TAPP
derivatives, the C–C bond length between the two naphthy-
idine units in 6a–d was found to be elongated (1.42 Å for the
TAPP vs. 1.47 Å for the OAPPDOs). This untypically long C–C
bond indicates only a partial delocalization of the π-system
over the complete azaperylene core. Despite the twist of the
azaperylene core, the individual naphthyridine units do not
show additional strain and the other aromatic C–C bonds
possess typical bond lengths. The distortion and rotation angles
of the (Φ and δ) structures are summarized in Table 1.

The solid-state packing patterns of the OAPPDOs 6a–d and
the corresponding inter-layer distances are displayed in Fig-
ure 2. For all derivatives, no π–π stacking of the azaperylene
core was observed due to the steric hindrance of the protruding
aryl units. This is in contrast to previously described TAPP
derivatives. In general, the steric hindrance of the hexyl and
aryl groups leads to large interlayer distances between 8–10 Å.

Compound 6a exhibits a brick layer stacking (inter-layer
distance of 4.2 Å) of the azaperylene units. Notably, the packing
motif varies for the different para-substituted derivatives in
spite of their similar molecular structures. For 6b the layers
(8.2 Å) are parallel-displaced and within a layer the OAPPDOs of
neighboring molecules are alternately shifted with respect to
each other. In contrast to 6a,b, two of the hexyl groups of 6c
are orientated perpendicularly to the azaperylene core. Con-
sequently, the OAPPDOs of neighboring layers are arranged
back to back and shifted in parallel displacement. For 6d, the
OAPPDO units within a layer are arranged parallel and in
contrast to the other derivatives, they are not orientated in a
zigzag pattern. The adjacent layer is shifted parallel with the
OAPPDO core being rotated but localized off-center relative to
the neighboring layers (Figure 2d).

| Table 1. Structural parameters of solid-state structures of 6a–d. |
|----------------------------------|----------------------------------|----------------------------------|
| Space group | Torsion angle Φ, ° | Torsion angle δ, ° | Torsion angle Φ, ° | Torsion angle δ, ° |
| 6a | P1̄ | 26.8(7) | 28.6(1) | 37.0(4) | 43.4(8) |
| 6b | P21/c | 27.9(2) | 28.7(2) | 39.1(2) | 43.1(2) |
| 6c | I2/a | 30.9(2) | 30.9(2) | 35.4(2) | 41.7(2) |
| 6d | P1̄ | 27.4(4) | 28.8(4) | 42.0(4) | 43.7(3) |

[a] Torsion angles Φ were measured between the tetraazaphenalenylone
units of one molecule. [b] Torsion angles δ were measured between a
tetraazaphenalenylone and the corresponding aryl subunit.

Figure 2. Molecular packing of a) 6a, b) 6b, c) 6c, and d) 6d.
Conformation analysis

The steric repulsion of the aryl substituents in the bay position leads to the twist of the perylene core and consequently, to the formation of helically chiral structures.\[49,53, 57–58,59\] There are thus two atropisomers (P and M) of compounds 6a–e. Due to this helical chirality, the proton signals of the bay aryl units in the 1H NMR spectra are not equivalent and appear separated at low temperature (Figure 3, -30°C). At temperatures below -30°C, the exchange of the ortho protons was frozen due to the decelerated rotation of the aryl unit, resulting in two different signals for the ortho protons (7.43 and 6.90 ppm). Upon heating to 20°C, the ortho proton resonances coalesced, while the meta protons exhibit sharp signals. The latter can be explained by their larger distance from the chiral core, thus reducing the effect of the resulting diastereotopicity. The coalescence temperature is at 293 K corresponding to a rotational barrier ΔG^\ddagger of 56.7 kJ mol$^{-1}$ (13.5 kcal), which is in accordance with previous observations made for similar PDI derivatives.\[53\] Further heating resulted in the formation of a sharp doublet for the ortho protons which corresponds to the expected dynamic high temperature limit.

The helical isomerism of the structures 3a, 4, 5 and 6a–e was also studied by DFT calculations employing B3LYP-GD3(BJ)/Def2-SVP\[60–66\] or B3LYP-GD3(BJ)/Def2-TZVP\[60–66\] (for details see the Supporting Information). Figure 4 displays an example of the isomerization mechanism for compound 4. All compounds isomerize according to an identical and symmetric pathway. Starting from one of the atropisomers (M or P), the bay substituents first pass on one side (TS1), leading to an achiral intermediate (inter). For a potential concerted exchange of the bay substituents, which would correspond to an inversion with only one transition state, no reaction trajectory was found in the model studies. This is in line with previous findings for the inversion mechanism of bay-chlorinated perylenes.\[34\] Starting from the intermediate structure, the other stereoisomer is obtained via a mirrored transition state with the same energy barrier.

Due to the high number of degrees of freedom and many energetically close conformations, the hexyl substituents were replaced by methyl groups in the DFT models. It was assumed that for the bay-arylated OAPPDOs, the influence of the hexyl chain on the energy level of the transition states should be higher than for the nonarylated. To estimate the influence of the hexyl groups, seven distinguishable conformers with linear hexyl chains were considered for the ground state structures of 6a, representing ground state energies differing by up to 2.2 kcal mol$^{-1}$ (B3LYP-GD3(BJ)/Def2-TZVP). Comparison of the transition states of the methyl- and hexyl-substituted structures revealed energy differences of up to 2.9 kcal mol$^{-1}$ (B3LYP-GD3(BJ)/Def2-TZVP).

To reduce the computational cost, the mechanisms of all derivatives were computed using the basis set Def2-SVP. Here, energy barriers are obtained that deviate by <0.8 kcal mol$^{-1}$ from those calculated with Def2-TZVP. The low transition barrier for the bay-chlorinated compound 3a ($\Delta G^\ddagger = 19.8$ kcal mol$^{-1}$) is in accordance with the experimental finding of the inversion at room temperature. In contrast, the calculated energy barriers of the compounds with the bulky bay aryl substituents range from 26.2 to 28.7 kcal mol$^{-1}$. The calculated energy barrier for compound 6d is slightly larger than the experimentally energy barrier of 25.9 kcal mol$^{-1}$ determined by variable temperature circular dichroism (see the Supporting Information).

For a frozen twist in the tetrazaperylene core, the energy barrier of rotation of the para-trifluoromethylphenyl was computed to be 15.7 kcal mol$^{-1}$ at the B3LYP-GD3(BJ)/Def2-SVP level of theory, which is 2.2 kcal mol$^{-1}$ higher than the experimentally determined barrier.

UV/Vis absorption and emission spectra

The different OAPPDOs are dyes with absorption bands in the visible spectral region which exhibit molar absorption coefficients between 14000 and 32000 M$^{-1}$cm$^{-1}$ in CH$_2$Cl$_2$. The bay-
chlorinated OAPPDO 3a possesses a broad absorption band with a maximum of 494 nm (Figure 5a) and a vibrational progression towards shorter wavelengths. Both compounds are highly fluorescent with the emission band being Stokes shifted by 900 cm⁻¹ (Figure 5a).

The comparison of the alkylated (3a), benzylic (3b), and N-protonated OAPPDO (4; see the Supporting Information) indicates that the absorption maxima are nearly independent of the "urea" nitrogen substituents. Compared to 3a the dehalogenation of the bay position and the resulting planarization (5) leads to a small blue shift of 7 nm of the absorption and 24 nm of the corresponding emission maxima. Although there is only a small difference in the absorption and emission spectra of compound 3 and 5, the fluorescence quantum yield is decreased by 40% for the latter.

The arylation of the bay position leads to an additional intense, broadened band at 425 nm in the absorption spectra (Figure 6a). These absorption maxima are almost identical for all phenyl substituted derivatives 6a–d, whereas the thiophene substitution in derivative 6e induces a red shift of 25 nm in the absorption spectrum and even a larger red shift in the emission spectrum (50 nm). All arylated OAPPDOs 6a–e exhibit large Stokes shifts of more than 2700 cm⁻¹ for the emission bands which can be explained by the strong twist of the molecule and the resulting additional internal degrees of freedom.

The semiplanarization of the perylene core leads to a blue shift of the absorption maximum of 36 nm in 7 and 38 nm in 8 in comparison to the parent compound 3a. Compared to compound 7, the additional phenyl unit in 8 shifted the emission maximum to significantly higher wavelengths (see Table 2 the Supporting Information).

The experimental UV/Vis spectra depicted in Figure 5a and 6a were modeled by TD-DFT (B3LYP-GD3(BJ)/Def2-TZVPP) to investigate the character of the electronic excitations in more detail (Figures 5b, c and 6b). According to the TD-DFT calculations, the absorption maximum of lowest energy corresponds to the first singlet transition (S₀ → S₁) for all compounds. The energetically significant higher excitations (S₀ → S₂ (and S₀ → S₃, only for 3a and 5)) are weakly or non-dipole allowed, while the next higher, dipole allowed singlet excitations correspond either to the absorption bands at λₘₐₓ in 6a–e (Figure 6b) or those at 375–380 nm in 3a or 5 (Figure 5b, c).
The additional spectral features can be explained by dynamic effects such as vibronic coupling (Herzberg–Teller effect), as it is known for other polycyclic hydrocarbons such as pyrene. For the qualitative insight, the vibronic coupling was computed between the ground state (S_0) and the excited states S_1 up to S_3 (for 3 a or 5) or S_0 (for 6 d) using the vertical gradient model as implemented in the ORCA_ESD (excited state dynamics) module as implemented in the ORCA_ESD (excited state dynamics) module in ORCA 5.2.0). As expected, both enantiomers displayed a mirror image of the experimental spectrum. Rotatory strength (R_vel) was reported for the first eight singlet excitations.

Table 2. Photophysical properties of 3–8 in CH$_2$Cl$_2$ at room temperature.

Compound	λ_{max} [nm]	ϕ_{em} (%)	$\sigma^\text{M} (\text{cm}^2 \text{mol}^{-1} \text{cm}^{-1})$
3 a	494 (4.51)	517 (67 %)	505
3 b	495 (4.38)	518 (77 %)	507
4	489 (4.29)	512 (60 %)	501
5	487 (4.40)	493 (30 %)	490
6 a	424 (4.17)	614 (34 %)	580
6 b	425 (4.33)	617 (37 %)	583
6 c	425 (4.25)	624 (33 %)	588
6 d	433 (4.32)	622 (33 %)	588
7	449 (4.14)	671 (5 %)	630
8	456 (4.45)	534 (28 %)	489

[a] Spectra were recorded in CH$_2$Cl$_2$ (c = 10$^{-4}$ M). [b] Fluorescence quantum yields were measured with an Ulbricht sphere (extinction $E < 0.1$).

Figure 7. Experimental circular dichroism (CD; c = 3.3 × 10$^{-4}$ M) spectrum and TD-DFT-predicted spectrum (comp., B3LYP-GD3(BJ)/Def2-TZVPP/ CPCM$_{\text{hexane}}$) of 6 d in n-hexane. The maximum at 326 nm of the computed spectrum was normalized to the corresponding maximum of the experimental spectrum. Rotatory strength (R_vel) was reported for the first eight singlet excitations.

Chiropotical properties

The tetraphenylated OAPPDOs exist as their P and M atropisomers with an axial chirality. Both enantiomers are configurationally stable at room temperature which can be explained by the steric demand of the aryl groups. Consequently, enantiomers were expected to be separable using enantiomeric separation techniques. As an example, compound 6 d was separated by semi preparative HPLC using a column packed with amylose tris(α-methylbenzylcarbamate) coated on silica gel (AS–H). The circular dichroism spectra for both enantiomers are displayed in Figure 7. As expected the enantiomers displayed a mirror image relation with an intense band at 310 nm and a broad band between 450 and 600 nm. Based on the structural and electronic similarity to the PDIs, the band between 450 and 600 nm can be assigned to the S_0–S_1 transition with significant charge transfer between the core and aryl fragments. The fourth band is almost exclusively related to the S$_0$–S$_2$ transition with significant charge transfer from the aryl substituents into the peropyrene core. However, the excitation energies of the S$_0$–S$_1$ and S$_0$–S$_2$ transitions seem to be underestimated on the chosen level of theory and thus S$_1$ might contribute to the second band.

Redox properties

The redox properties of the OAPPDOs were investigated by cyclic voltammetry in CH$_2$Cl$_2$ using tetrabutylammonium hexafluorophosphate as an electrolyte and a scanning calomel electrode (SCE) as a reference electrode. The key data are summarized in Table 3 and referenced on Fc/Fc$^+$. In contrast to the TAPPs and the structurally related OAPPs, which are strong electron acceptors, the parent compound 3 a revealed two separate one electron oxidation steps in the cyclic voltammogram but no reduction waves at negative potential (Figure 8; left). Both oxidation steps (0.65 and 0.84 V) are reversible. The oxidation steps can be assigned to the formation of the radical cation and dication which results from the oxidation of the aromatic core. The oxidation of the OAPPDOs is favored compared to the TAPPs and compound 1 because punaise de l'argent.
the central (tetraaza)perylene core represents a formally reduced form. Additionally, the amimation of the peri position has introduced substituents exerting a +M effect. The bay-chlorinated OAPPDO 3 was found to exhibit the highest oxidation potential because of the negative inductive effect of the chlorine substituents, whereas its dehalogenation to oxidation potential because of the negative inductive effect of the chlorine substituents, whereas its dehalogenation to oxidized species.

 Arylating the bay position shifted both oxidation waves to even lower potentials. The two oxidation steps of the arylated bay-substituted compound 3a were observed at 0.12–0.20 V and 0.34–0.44 V, respectively (Figure 8, right). In contrast to the electron-donating substituents of 3a–c only one irreversible oxidation wave was observed for para-CF\textsubscript{3}-substituted compound 6d (see the Supporting Information). In contrast to the phenylated derivatives, two quasi-reversible reduction waves ($E_{\text{red}}^1 = -1.52$ V, $E_{\text{red}}^2 = -1.81$ V) were additionally observed for the thiophene coupled compound 6e. Based on a well established method in the literature, the energy of the HOMO was estimated from the measured potential of the first oxidation step (E_{OX1}) referenced to Fc/Fc+.[12,81] This revealed that the HOMO energies of the bay-arylated OAPPDOs (6a–e) were shifted to higher energies compared to the parent compound 3a.

A radical cation OAPPDO+ was generated in solution with complete conversion of the neutral precursor through the reaction of OAPPDO 3a with one equivalent of AgSbF\textsubscript{6} and was characterized by EPR spectroscopy (Figure 9). While hyperfine coupling to 14N was not detected, the observed g value of 2.003 is consistent with the value of typical organic radicals.[82]

The oxidation of compound 3a to the corresponding radical cation was further investigated using UV/Vis spectro-electrochemistry. The sequential changes of the UV/Vis spectra during the oxidation to the radical cation are displayed in Figure 10. The spectra revealed an isosbestic point at 518 nm. The resulting radical cation upon complete oxidation was observed as a blue species with two intense absorption bands at 591 and 643 nm. The process was found to be fully reversible, and upon inversion of the voltage, reduction to the neutral species was found to take place.

Table 3. Electrochemical properties of 3a and 6a–e.

Compound	E_{OX1} (DFT)[a]	E_{OX1} (TD-DFT)[b]	E_{OX1} (CV)[c]	E_{OX2} (TD-DFT)[d]	E_{OX2} (CV)[e]	E_{HOMO} (UV/Vis)[f]
3a	2.73	-5.64	-2.60	2.67	0.654	0.838
5	2.39	-5.32	-2.28	2.75	0.391	0.628
6a	2.59	-5.13	-2.44	2.25	0.197	0.435
6b	2.52	-5.05	-2.37	2.24	0.155	0.390
6c	2.45	-4.96	-2.30	2.20	0.113	0.336
6d	2.90	-5.38	-2.73	2.23	-0.15	-0.39
6e	2.77	-5.07	-2.59	2.02	0.191	0.393

[a] Electron affinities were calculated using the \textit{ASCF}/DFT approach[83] as $E_{\text{EA}} = E_{\text{neut}} - E_{\text{red}}$ employing B3LYP-GD3(BJ)/Def2-TZVP/CPCM\textsubscript{0}

Figure 8. Left: Cyclic voltammograms of 3a, 5, 6a, 6e measured in CH\textsubscript{2}Cl\textsubscript{2}, supp. Electrolyte: Bu\textsubscript{4}NPF\textsubscript{6}, reference SCE, sweep rate 50 mV s-1. Right: Comparison of the oxidation potential depending on the para substituent of the aryl unit of 6a–e.
In this study, we have expanded the chemistry of tetraazaperylene. With the OAPPDOs, formally derived by addition of two urea units in the opposite peri positions, we have established a new, highly fluorescent class of functional dyes. Even though the core has beenaza-substituted four times, the electron-donating peri substituents favor oxidation of the aromatic core. This results in a change of redox properties compared to PDIs, substitution of the imide nitrogen atom hardly affects the optical and electrochemical properties and can instead be used to introduce donating peri substituents favor oxidation of the aromatic core.

Conclusion

Future investigations of this new class of dyes will particularly focus on their properties as emitters, both in solution and in the solid state.

Experimental Section

General Information: All chemicals and solvents were purchased from commercial suppliers and used without further purification. Solvents were dried according to standard procedures. Deuterated solvents were bought from Euriso Top or Sigma–Aldrich and used as received. The 1H, 13C and 19F spectra were recorded with Bruker AVANCE 400 and 600II spectrometers and are referenced to the residual signal of the used deuterated solvents (1H: CDCl3: 7.26 ppm, CD3Cl2: 5.32 ppm, [D6]THF: 1.72/3.58 ppm, [D6]DMSO:2.50 ppm) and 13C: CDCl3: 77.16 ppm, CH2Cl2: 53.84 ppm, [D6]THF: 67.21/25.31 ppm, [D6]DMSO: 39.52 ppm). Chemical shifts are given in ppm and coupling constants in Hz. The following abbreviations were used to describe the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet. The mass spectra were recorded by the department of the organic Chemistry of the University of Heidelberg under the direction of Dr. J. Gross. ESI spectra were measured on a JEOL JMS 700 spectrometer, ESI spectra on a Bruker ApexQe hybrid 9.4 T FT-ICR (also for MALDI spectra) or a Finngan LCQ spectrometer. The absorption spectra were recorded on a Cary 5000 UV/Vis spectrometer and were baseline and solvent corrected. The CD spectra were recorded on a Jasco J-1500 CD spectrometer and the Fluorescence spectra were recorded on a Varian Cary Eclipse Fluorescence spectrophotometer. The Fluorescence Yields (Φ) were conducted on a JASCO spectrophotometer PP-8500 equipped with an ILF-835 100 mm integrating sphere. Cyclic voltammetry spectra were measured on a EG&G Princeton Applied Research potentiostat model 263 A using a three-electrode single-component cell under inert atmosphere. A platinum disk was used as working electrode, platinum wire as a counter electrode and a saturated calomel electrode as a reference electrode. As internal reference, ferrocene was used in all cases. Measurements were carried out in a 0.1 M tetrabutylammonium hexafluorophosphate solution in anhydrous THF under exclusion of oxygen. X-ray analyses were performed by Prof. Dr. H. Wadepohl in the X-ray laboratory of the Department of Inorganic Chemistry at the University of Heidelberg with an Agilent Supernova E diffractometer. The obtained structures were solved and refined by Prof. Dr. H. Wadepohl. Unless otherwise stated, all preparative work was performed in an inert gas atmosphere in standard Schlenk glassware, which was flame-dried.

General Procedure 1: Octachloroterazaperylene 1 (1.00 equiv.) was dissolved in 1,2-dichloroethane, the corresponding amine (20 equiv.) was added and the reaction mixture was stirred for 3 h at 100 °C. The solution was allowed to cool to RT, and the solvent was removed under reduced pressure. The residue was washed with water, methanol and n-pentane to isolate the corresponding tetraaminoperylene 2.

General Procedure 2: Tetraaminoperylene 2 was dissolved in CH2Cl2 and subsequently triethylamine (4.00 equiv.) and triphosgene...
(1.25 equiv.) were added at −5 °C. The solution was stirred for 1 h at −5 °C and afterwards quenched with NaOH$_{aq}$. The reaction mixture was reacted with CH$_3$Cl$_2$ (20:1), the product was isolated as a yellow solid (3.10 g, 7.06 mmol, 52%). 1H NMR (600.13 MHz, CDCl$_3$, 295 K): δ = 4.31 (m, 4H), 4.22 (m, 4H), 1.76 (m, 8H), 1.31–1.43 (m, 24H), 0.89 ppm (t, 3J$_{HH}$ = 7.94 Hz, 12H). 13C NMR (150.90 MHz, CDCl$_3$, 295 K): δ = 150.2, 148.1, 147.7, 146.4, 112.4, 100.6, 31.4, 27.1, 26.5, 22.6, 14.11 ppm. HRMS (EI): calcd. for C$_3$H$_8$Cl$_3$NO$_5$: 840.2962 [M$^+$]; found: 840.2951.

Compound (3b): According to GP compound 2b (1.50 g, 16.0 mmol, 1.00 equiv.) was dissolved in 100 mL CH$_2$Cl$_2$ and cooled down to −5 °C. Triethyl amine (894 μL, 6.42 mmol, 4.00 equiv.) and triphosgene (595 mg, 2.01 mmol, 1.25 equiv.) were added and the reaction mixture was stirred for 1 h at −5 °C. The reaction mixture was quenched with 100 mL NaOH and extracted with CH$_3$Cl$_2$ (3 × 100 mL). The solvent was removed under reduced pressure and the crude product was purified using flash column chromatography (SiO$_2$, PE/EE 10:1). The product was isolated as a yellow solid (3.16 g, 1.38 mmol, 86%). 1H NMR (600.13 MHz, CDCl$_3$, 295 K): δ = 7.60 (d, 2J$_{HH}$ = 8.69 Hz, 8H), 6.84 (d, 2J$_{HH}$ = 8.72 Hz, 8H), 5.38 (sext, 2J$_{HH}$ = 13.94, 98 Hz), 3.76 ppm (s, 12H). 13C NMR (150.90 MHz, CDCl$_3$, 295 K): δ = 159.4, 150.5, 147.8, 147.5, 146.4, 131.2, 128.1, 114.0, 112.6, 100.6, 55.3, 45.4 ppm. HRMS (EI): calcd. for C$_{37}$H$_{28}$Cl$_{23}$NO$_5$: 984.1506 [M$^+$]; found: 984.1504.

Compound 4: Compound 3b (75.0 mg, 76.0 μmol, 1.00 equiv.) was dissolved in 5 mL TFA and was stirred for 16 h at 80 °C. The solvent was removed under reduced pressure and the residue was suspended in 10 mL water. The reaction mixture was neutralized with K$_2$CO$_3$ and the resulting precipitate was filtered. The solid was washed with water (1×10 mL), methanol (3×10 mL), acetone (3×10 mL), toluene (3×10 mL) and n-pentane (3×10 mL) to obtain the product as a yellow orange solid (28.0 mg, 55.3 μmol, 73%). 1H NMR (600.13 MHz, CD$_2$Cl$_2$, 295 K): δ = 7.04–7.13 ppm. HRMS (MALDI$^{+}$): calcd. for C$_{37}$H$_{28}$Cl$_{23}$NO$_5$: 929.1319 [M$^+$]; found: 929.1314.

Compound 5: Compound 3a (100 mg, 119 μmol, 1.00 equiv.) was dissolved in 15 mL THF and Pd(dpdpf)Cl$_2$ (26.0 mg, 35.7 μmol, 30 mol%), TMEDA (250 μL, 1.66 mmol, 14.0 equiv.) and sodium borohydride (62.9 mg, 1.66 mmol, 14.0 equiv.) were added. The reaction mixture was stirred for 2 h at 65 °C, poured onto 50 mL water and extracted with CH$_3$Cl$_2$ (3×100 mL). The solvent was removed and the crude product was purified using flash column chromatography (SiO$_2$, PE/EE 5:1). The product was isolated as a yellow solid (26.0 mg, 36.9 μmol, 31%). 1H NMR (600.13 MHz, CD$_2$Cl$_2$, 295 K): δ = 8.47 (s, 4H), 4.17 (t, 2J$_{HH}$ = 7.03 Hz, 8H), 1.70 (quint, 2J$_{HH}$ = 6.35 Hz, 8H), 1.40 (m, 8H), 1.35–1.30 (m, 16H), 0.88 ppm (t, 2J$_{HH}$ = 6.55 Hz, 12H). 13C NMR (150.90 MHz, CD$_2$Cl$_2$, 295 K): δ = 150.5, 149.2, 139.4, 137.1, 115.7, 104.0, 42.5, 31.6, 27.2, 26.7, 22.7, 14.1 ppm. HRMS (EI$^+$): calcd. for C$_{37}$H$_{28}$Cl$_{23}$NO$_5$: 874.4521 [M$^+$]; found: 874.4519.
1.51–1.40 (m, 24H), 0.98 ppm (t, JH-H = 6.88 Hz, 12H).13C NMR (150.93 MHz, CDCl3, 295.96): δ = 154.9, 151.2, 147.9, 145.4, 141.1, 128.4, 128.0, 114.4, 103.1, 51.7, 27.4, 26.7, 22.7, 14.0 ppm. HRMS (EI): calcd for C19H19NO2: 1088.5773 [M+H]+; found: 1088.5762.

Compound 6b: According to GP3 compound 3a (150 mg, 178 µmol, 1.00 equiv.), potassium 4-methylphenyltrifluoroborate (120 mg, 652 µmol, 4.00 equiv.) and Pd(PPh3)4 (53.8 mg, 48.6 µmol, 15 mol%) were dissolved in a mixture of 17.5 mL toluene, 8 mL water and 3 mL ethanol and stirred for 3 d at 80 °C. The reaction mixture was allowed to cool down to RT, quenched with 20 mL water and extracted with CH2Cl2 (3 x 100 mL). The solvent was removed under reduced pressure and the residue was purified using flash chromatography (SiO2, PE/EE 30:1). The product was isolated as a red solid (83.0 mg, 80.3 µmol, 45%).1H NMR (600.13 MHz, CDCl3, 295 K): δ = 7.19 (d, JH-H = 4.40 Hz, 8H), 6.74 (t, JH-H = 4.34 Hz, 8H), 4.33 (m, 4H), 4.25 (m, 4H), 1.79 (quint, JH-H = 7.33 Hz, 8H), 1.45–1.41 (m, 8H), 1.37–1.30 (m, 16H), 0.88 ppm (t, JH-H = 7.11 Hz, 12H).13C NMR (150.90 MHz, CDCl3, 295 K): δ = 151.0, 147.7, 147.3, 146.1, 145.0, 128.5, 127.4, 126.2, 113.1 100.8, 42.6, 31.7, 27.6, 22.7, 14.1 ppm. HRMS (MALDI-): calcd for C26H21NO5F: 320.3298 [M+H]+; found: 320.3286.

Compound 7: Compound 3a (150 mg, 178 µmol, 1.00 equiv.), tributylinphenylstannane (128 µL, 392 µmol, 2.20 equiv.) and Pd(PPh3)4 (41.1 mg, 35.6 µmol, 20 mol%) were dissolved in 5 mL toluene and stirred for 2 d at 110 °C. The reaction mixture was allowed to cool down to RT, poured onto 100 mL water and extracted with CH2Cl2 (3 x 100 mL). The solvent was removed under reduced pressure and the crude product was purified using flash chromatography (SiO2, PE/EE 3:1). The product was isolated as a yellow solid (28.0 mg, 33.0 µmol, 19%).1H NMR (600.13 MHz, CDCl3, 295 K): δ = 8.33 (br s, 2H), 7.28 (br s, 2H), 4.17 (br s, 8H), 1.85 (br s, 4H), 1.74 (quint, JH-H = 6.91 Hz, 4H), 1.53–1.35 (m, 24H), 0.98 (t, JH-H = 7.06 Hz, 6H), 0.94 ppm (t, JH-H = 7.02 Hz, 6H).13C NMR (150.90 MHz, CDCl3, 295 K): δ = 150.4, 147.7, 147.6, 146.9, 139.6, 138.3, 130.2, 127.5, 124.0, 112.9, 109.6, 99.8, 42.8, 42.5, 31.6, 31.5, 27.2, 26.9, 26.6, 22.7, 22.7, 13.9 ppm. HRMS (MALDI-): calcd for C26H20ClF3N2: 486.3898 [M+H]+; found: 486.3902.

Compound 6c: Compound 3a (262 mg, 311 µmol, 1.00 equiv.), potassium phenyltrifluoroborate (120 mg, 652 µmol, 2.10 equiv.), K2CO3 (856 mg, 6.21 mmol, 20.0 equiv.) and Pd(PPh3)4 (53.8 mg, 48.6 µmol, 15 mol%) were dissolved in a mixture of 17.5 mL toluene, 8 mL water and 3.5 mL ethanol and stirred for 3 d at 80 °C. The reaction mixture was allowed to cool down to RT, quenched with 20 mL water and extracted with CH2Cl2 (3 x 100 mL). The solvent was removed under reduced pressure and the residue was purified using flash column chromatography (SiO2, PE/EE 25:1). The product was isolated as a yellow solid (23.0 mg, 26.9 µmol, 9%).1H NMR (600.13 MHz, CDCl3, 295 K): δ = 8.85 (d, JH-H = 7.48 Hz, 1H), 8.76 (d, JH-H = 7.58 Hz, 1H), 7.95 (s, 1H), 7.68–7.64 (m, 2H), 7.63 (br s, 5H), 4.35 (JH-H = 7.91 Hz, 2H), 4.14–4.17 (m, 4H), 1.85 (quint, JH-H = 7.43 Hz, 2H), 1.82–1.75 (m, 4H), 1.68 (quint, JH-H = 7.07 Hz, 2H), 1.51–1.28 (m, 24H), 0.96–0.86 ppm (m, 12H).13C NMR (150.90 MHz, CDCl3, 295 K): δ = 155.1, 151.0, 150.8, 148.4, 148.2, 147.6, 147.4, 146.9, 146.1, 146.2, 139.8, 139.3, 136.6, 135.5, 130.1, 130.4, 129.8, 129.2, 128.7, 127.7, 126.4, 124.3, 121.4, 116.2, 113.5, 111.2, 110.8, 101.2, 42.5, 42.2, 31.8, 31.8, 31.8, 31.6, 27.4, 27.3, 27.0, 27.0, 26.9, 26.7, 26.7, 22.9, 22.8, 22.7, 14.1, 14.1, 14.0, 14.0 ppm. HRMS (MALDI-): calcd for C26H20ClF3N2: 485.4999 [M+H]+; found: 485.4988.

Deposition Numbers 2154824 (for 6a), 2154824 (for 6b), 2154825 (for 6c) and 2154826 (for 6d) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Acknowledgements

The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through no. INST40/467-1FUGG (Justus
Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: azaperylenes - density functional calculations - fluorescence - N-heterocycles - organic dyes
[69] H. J. Kupka, Transitions in Molecular Systems, Wiley-VCH, Weinheim, 2011.
[70] G. H. Atkinson, C. S. Parmenter, J. Mol. Spectrosc. 1978, 73, 52–95.
[71] K. Gustav, M. Storch, Monatsh. Chem. 1992, 123, 59–62.
[72] F. J. Avila Fiefer, V. Barone, C. Cappelli, F. Santoro, J. Chem. Theory Comput. 2013, 9, 3597–3611.
[73] I. Benkyi, E. Tapavicza, H. Flieg, D. Sundholm, Phys. Chem. Chem. Phys. 2019, 21, 21094–21103.
[74] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
[75] P. Badoz, Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry: Including Applications from Inorganic Chemistry and Biochemistry; Proceedings of NATO Summer School Held at Bonn, 24 September-1 October, 1965, Heyden, 1967.
[76] N. Berova, P. L. Polavarapu, K. Nakanishi, R. W. Woody, Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules, Vol. 2, Wiley, 2012.
[77] N. Berova, P. L. Polavarapu, K. Nakanishi, R. W. Woody, Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations, Vol. 1, Wiley, 2011.
[78] M. M. Safont-Sempere, P. Osswald, K. Radacki, F. Würthner, Chem. Eur. J. 2010, 16, 7380–7384.
[79] V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.
[80] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669–681.
[81] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367–2371.
[82] S. Stoll, Electron Paramagnetic Resonance: Vol. 22, The Royal Society of Chemistry, 2011, pp. 107–154.
[83] A. Dittmer, R. Izsák, F. Neese, D. Maganas, Inorg. Chem. 2019, 58, 9303–9315.
[84] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.

Manuscript received: June 2, 2022
Accepted manuscript online: June 27, 2022
Version of record online: July 29, 2022