ADDENDUM

Addendum: Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre

To cite this article: Elmo Tempel et al JCAP11(2012)A01

View the article online for updates and enhancements.

Related content

- Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre
 Elmo Tempel, Andi Hektor and Martti Raidal

- Addendum: UV-protected (natural) inflation: primordial fluctuations and non-gaussian features
 Cristiano Germani and Yuki Watanabe

- Gamma-ray boxes from axion-mediated dark matter
 Alejandro Ibarra, Hyun Min Lee, Sergio López Gehier et al.

Recent citations

- Gamma-ray line constraints on coy dark matter
 Andi Hektor et al

- Dark Matter Velocity Spectroscopy
 Eric G. Speckhard et al

- Vector Higgs-portal dark matter and Fermi-LAT gamma ray line
 Ki-Young Choi et al
Addendum: Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre

Elmo Tempel, Andi Hektor and Martti Raidal

NICPB, Ravala 10, Tallinn 10143, Estonia
Tartu Observatory, Observatooriumi 1, Tõravere 61602, Estonia
Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia
CERN, Theory Division, CH-1211 Geneva 23, Switzerland
Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki, Finland

E-mail: elmo@aae.ee, andi.hektor@cern.ch, martti.raidal@cern.ch

Received October 30, 2012
Accepted October 30, 2012
Published November 21, 2012

Addendum to: JCAP09(2012)032

ArXiv ePrint: 1205.1045

We have updated the fits to Fermi-LAT publicly available gamma-ray data from the Galactic centre presented in ref. [1] using 218 weeks data and new improved Fermi-LAT energy resolution [2]. The new result is presented in figure 1 that shows a fit to the gamma-ray flux as a function of energy together with 2σ error band. Compared to figures 3 and 4 of ref. [1], the most important new feature is the presence of a double peak in the 130 GeV excess. While the previous Fermi-LAT energy resolution did not allow us to see the fine structure of the excess, the improved one clearly indicates for a double peak structure, confirming similar claims made in ref. [3].

The double peak at the same energies, 110 GeV and 130 GeV, is also observed in the gamma-ray excess from nearby galaxy clusters [4], suggesting that the two signals originate from the same source. The presence of double peak is a generic prediction of Dark Matter...
annihilation pattern in gauge theories, corresponding to $\gamma \gamma$ and γZ final states. Thus the two seemingly unrelated gamma-ray spectra, from the Galactic centre and from the galaxy clusters, favour the particle physics origin of the excess over any astrophysics origin.

We finally note that the double peak is not present in the gamma-ray spectrum from Earth Limb \[5, 6\].

References

\[1\] E. Tempel, A. Hektor and M. Raidal, *Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre*, JCAP 09 (2012) 032 [arXiv:1205.1045] [inSPIRE].

\[2\] Fermi-LAT collaboration, M. Ackermann et al., *The Fermi Large Area Telescope On Orbit: Event Classification, Instrument Response Functions and Calibration*, Astrophys. J. Suppl. 203 (2012) 4 [arXiv:1206.1896] [inSPIRE].

\[3\] M. Su and D.P. Finkbeiner, *Strong Evidence for Gamma-ray Line Emission from the Inner Galaxy*, arXiv:1206.1616 [inSPIRE].

\[4\] A. Hektor, M. Raidal and E. Tempel, *An evidence for indirect detection of dark matter from galaxy clusters in Fermi-LAT data*, arXiv:1207.4466 [inSPIRE].

\[5\] A. Hektor, M. Raidal and E. Tempel, *Fermi-LAT gamma-ray signal from Earth Limb, systematic detector effects and their implications for the 130 GeV gamma-ray excess*, arXiv:1209.4548 [inSPIRE].

\[6\] D.P. Finkbeiner, M. Su and C. Weniger, *Is the 130 GeV Line Real? A Search for Systematics in the Fermi-LAT Data*, arXiv:1209.4562 [inSPIRE].