Blow-up Set and Upper Rate Estimate for A Semilinear Heat Equation

Maan A Rasheed¹ and Luma J Barghooth²

¹,² Department of Mathematics, College of Basic Education, Mustansiriyah University, Baghdad-Iraq

Email: maan.rasheed.edbs@uomustansiriyah.edu.iq

Abstract. This paper is concerned with the blow-up properties for a semilinear heat equation with homogeneous Dirichlet boundary conditions, defined on a ball in \mathbb{R}^n. We show that the blow-up in this problem can occur in finite time at only a single point. Moreover, the upper blow-up rate estimate for this problem is derived.

Keywords: Blow-up solution; Blow-up set; Blow-up rate estimate; Semilinear Heat equation; Pointwise estimate; Dirichlet boundary Conditions.

1. Introduction

We consider the Initial-Boundary problem which takes the following form:

$$\begin{cases}
 u_t = \Delta u + \lambda u^p e^u , & (x,t) \in B_R \times (0,T), \\
 u(x,t) = 0 , & (x,t) \in \partial B_R \times (0,T), \\
 u(x,0) = u_0(x) , & x \in B_R
\end{cases}$$

where $p \geq 1; \quad q, \lambda > 0, \quad B_R$ is a ball in \mathbb{R}^n and $u_0 \in C^2(\mathbb{R}^n)$, nonzero, nonnegative, radially non increasing function, $u_0(x) = 0, \forall x \in \partial B_R$.

The blow-up phenomena in the semilinear heat equation: $u_t = \Delta u + f(u)$, defined on bounded domain has been studied by many authors, see for instance [1-4].

In general, for time-dependent equations, blow-up means some solutions cannot be continued globally in time. In other words, they become unbounded in a finite time, see [2].

i.e. there exists $T > 0$, such that:

$$||u(x,t)||_{\infty} \xrightarrow{t \to T^-} \infty,$$

where $||u(x,t)||_{\infty} = \sup_{x \in \Omega} |u(x,t)|$

In [3], Kaplain showed that, the blow-up occurs, if the function f is convex and satisfies the condition:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
\[
\int_{u}^{\infty} \frac{d}{f(u)} < \infty, \quad u \geq 1 \tag{2}
\]

Later, in [4], Friedman and McLeod studied the homogenous Dirichlet problem of semilinear heat equations defined on a ball, namely:

\[
\begin{aligned}
 u_t &= \Delta u + f(u), & (x, t) &\in B_R \times (0, T), \\
 u(x, t) &= 0, & (x, t) &\in \partial B_R \times (0, T), \\
 u(x, 0) &= u_0(x), & x &\in B_R
\end{aligned}
\tag{3}
\]

where \(f \) is a power function or exponential function.

They showed that: for large initial function satisfies the assumptions of (1), blow-up occurs in finite time, and it can only occur at a single point, which is \(x = 0 \), i.e. there exists \(T > 0 \), such that:

\[
u(0, t) \to \infty, \quad a \quad t \to T^-.
\]

For the special case, where \(f(u) = u^p \), \(p > 1 \), it has been shown that:

for a fixed \(t \) and for any \(\alpha \geq \frac{2}{p-1} \), the upper pointwise estimate takes the following form:

\[
 u(x, t) \leq \frac{e}{|x|^\alpha}, \quad x \in B_R/(0), \quad t \in (0, T)
\]

Moreover, in [4], it has been shown that the upper blow-up rate estimate is as follows:

\[
u(0, t) \leq \frac{e}{(T-t)^\beta}, \quad t \in (0, T), \quad \beta = \frac{1}{p-1}, \quad \zeta > 0
\]

For the case, \(f(u) = e^u \), it has been shown that the upper pointwise estimate is as follows:

\[
 u(x, t) \leq \log \zeta + \frac{2}{\alpha} t \left(\frac{1}{|x|} \right), \tag{4}
\]

for \(\zeta > 0, \quad \alpha \in (0, 1) \).

Moreover, there exist \(\zeta > 0 \), such that the upper blow-up rate estimate is as follows:

\[
u(x, t) \leq \log \zeta - \log(T-t), \quad x \in B_R, \quad t \in (0, T).
\tag{5}
\]

In this paper, we aim to extend some of the above blow-up results to problem (1), showing that: the solutions of this problem may blow up in finite time at only a single point and the pointwise estimate of this problem takes the form as in (4). Moreover, we show that the upper rate estimate is independent on \(p \) and takes the following form:

\[
u(0, t) \leq \frac{1}{q} (\log \zeta - \log[q \lambda(T-t)]), \quad \zeta > 0.
\]
2. Preliminaries

Since \(f(u) = \lambda u^p e^q \in \mathcal{L}^1(\Omega) \), the local existence of unique classical solution to problem (1) is guaranteed for some \(T > 0 \), see [5]. On the other hand, the following theorem shows that: for large initial functions the solutions of problem (1), blow up in finite time, which means \(T < \infty \).

Theorem 1: Starting with large initial function, the classical solution of problem (1), blows up in a finite time, and blow-up set contains \(\chi = 0 \).

Proof: Set \(f(u) = \lambda u^p e^q \), it is easy to show that \(f''(u) \) is positive function in \((0, \infty) \), so that \(f \) is convex function in \((0, \infty) \). Moreover, it is clear that \(f \) satisfies condition (2), thus, according to Kaplan, [3], for a large size initial function, the solution of problem (1) blows up in a finite time. Since \(f(u) \geq \epsilon^q \), where \(u \) is large enough, by using the comparison principle [6], the solution of problem (1) can be considered as a super solution to the following problem:

\[
\begin{align*}
&u_t = \Delta u + \epsilon^q, \quad (x, t) \in B_R \times (0, T), \\
&u(x, t) = 0, \quad (x, t) \in \partial B_R \times (0, T), \\
&u(0, 0) = u_0(x), \quad x \in B_R
\end{align*}
\]

But, it is well known that, the solution of problem (6), can blow up in a finite time at only a single point, see [4,7]. Therefore, \(\chi = 0 \) belongs to blow-up set of problem (1).

The next lemma, proved in [6], presents some properties of the solutions of problem (1).

Lemma 1: Let \(u \) be a classical solution of problem (1). We can show that

i- \(u \) is positive and radial in \(B_R \times (0, T) \).

\[i.e. \quad u > 0, \quad u(x, t) = u(r, t), \quad r = |x| = x_1^2 + x_2^2 + \cdots x_n^2 \]

ii- \(u(r, t) \) is decreasing in \((0, R] \times (0, T) \)

\[i.e. \quad u_r < 0 \quad \text{in} \quad (0, R] \times (0, T) \]

iii- \(u \) is increasing in time.

\[i.e. \quad u_t > 0, \quad \text{in} \quad B_R \times (0, T) \]

3. Blow-up Set

This section considers the pointwise estimate of problem (1), showing that the blow-up can only occur at \(\chi = 0 \).

To prove these results, we recall the following lemma, proved in [4,8].

Lemma 2: Let \(u \) be a blow-up solution of problem (3), where \(f \in \mathcal{L}^2(\Omega) \), increasing positive function in \((0, \infty) \), also suppose that

\[u_{ur}(r) \leq -\alpha, \quad \text{for} \quad 0 < r \leq R, \quad \text{where} \quad \alpha > 0 \quad (7) \]

Consider \(F \in \mathcal{L}^2(0, \infty) \) \(\cap \mathcal{L}[0, \infty) \), such that:

\[F > 0, \quad F', F'' \geq 0, \quad \text{in} \quad (0, \infty) \quad (8) \]
If the following condition is satisfied
\[f^I F - f F^I \geq 2\varepsilon F F^I \quad \text{in} \quad (0, \infty) \] (9)

Then the function \(J = \gamma^{r-1} u_r + \varepsilon \gamma^{p-1} F(u) \) is nonpositive in \((0, R) \times (0, T)\) for some \(\gamma > 0 \).

Theorem 2: Let \(u \) be a blow-up solution of problem (1), also suppose that \(u_0 \) satisfies (7). Then blow-up can only occur at \(x = 0 \).

Proof: Set \(f(u) = \lambda u^\delta e^q \), and \(F(u) = u^\delta e^q \), \(\delta, \alpha \in (0, 1) \)

Clearly, \(F \) satisfies (8).

To prove this theorem, we only need to show that the inequality (9) holds with the above choice of \(F \).

We can calculate the left hand side of inequality (9) as follows:

\[
\begin{align*}
\frac{d}{dt}(u^\delta e^q) &= \lambda[(q - \alpha)u^{p+\delta} + (p - \delta)u^{(p+\delta-1)} e^{2q\alpha}] \\
& \geq 2\varepsilon[au^{2\delta} + \delta u^{(2\delta-1)}]e^{2q\alpha}
\end{align*}
\]

On the other hand, we have

\[
2\varepsilon (u)F^I(u) = 2\varepsilon(au^\delta e^q + \delta u^{(\delta-1)} e^{2q\alpha})(u^\delta e^q)
\]

Clearly,

\[
\lambda[(q - \alpha)u^{p+\delta} + (p - \delta)u^{(p+\delta-1)}]e^{(q+\alpha)u} \geq 2\varepsilon[au^{2\delta} + \delta u^{(2\delta-1)}]e^{2q\alpha}.
\]

provided \(\lambda \geq 2\varepsilon, q \geq 2\alpha \) and \(p \geq 2\delta \).

Thus, under the above assumptions, the condition (9) is satisfied

By Lemma 2, we get
\[
J = \gamma^{r-1} u_r + \varepsilon \gamma^{p-1} u^\delta e^q \leq 0, \quad \text{for} \quad (r, t) \in (0, R) \times (0, T)
\]

Thus \(\gamma^{r-1} u_r + \varepsilon \gamma^{p-1} u^\delta e^q \leq 0 \), for \((r, t) \in (0, R) \times (0, T)\) such that \(u^\delta \geq 1 \).

From above, it follows that:
\[
\frac{-d}{e^q} \geq \varepsilon
\]

By integrating both sides of last inequality, we get
\[
\frac{1}{\alpha} \geq \frac{1}{2} \varepsilon r^2 \quad \text{or} \quad e^q \leq \frac{1}{\alpha} \frac{1}{r^2}.
\]

Thus
\[
u \leq \frac{1}{\alpha} \log(\frac{1}{\alpha}) + \frac{1}{\alpha} \log(\frac{1}{r^2})
\]

So,
\[
u \leq \frac{1}{\alpha} \log(\frac{1}{\alpha}) + \frac{1}{\alpha} \log(1) - \frac{1}{\alpha} \log(r)
\]
From the last inequality, it follows that there exists a positive constant \(C \), such that the upper point wise estimate takes the following form:

\[
u(x, t) \leq \log C + \frac{2}{\alpha} \log \left(\frac{1}{|x|} \right), \quad x \in B_R, \quad t \in (0, T).
\]

Therefore, at any time, the solution is bounded, unless \(x = 0 \). Thus, the blow-up occurs only at a single point.

4. Blow-up Rate Estimate

In this section, we consider the upper bound of the blow-up rate for problem (1). In order to derive this estimate, we use the results of the following lemma, which can be proved, following the procedure used in [4,8].

Lemma 3: Let \(u \) be a blow-up solution of problem (3), where \(f \in \mathcal{C}^4(0, \infty) \cap \mathcal{C}[0, \infty) \), increasing function such that \(f, f', f'', f''' \) are positive functions in \((0, \infty)\), also suppose that \(\mathcal{U}_k \) satisfies the condition (7).

Define the function

\[
F(x, t) = u_t - \alpha u, \quad x \in B_R, \quad t \in (0, T).
\]

Then there exists \(\varepsilon \in (0, R), \quad \tau \in (0, T), \quad \text{and} \quad \alpha > 0 \) such that

\[
F(x, t) \geq 0, \quad \text{for} \quad (x, t) \in \overline{B}_{\varepsilon} \times (\tau, T)
\]

Theorem 3: Let \(u \) be a blow-up solution of problem (1), with blow-up time \(T > 0 \). Then there is \(C > 0 \) such that:

\[
u(0, t) \leq \frac{1}{q} \left(\log - \log \left[q \left(T - t \right) \right] \right), \quad \text{for} \quad t \text{ close to} \quad T
\]

Proof: Set \(f(u) = \lambda u^p e^q \).

Clearly, \(f \) satisfies all the assumptions of Lemma 3, thus we get

\[
u_t \geq \alpha \lambda u^p e^q, \quad x \in \overline{B}_{\varepsilon}, \quad t \in (\tau, T)
\]

for some \(\varepsilon \in (0, R), \quad \tau \in (0, T), \quad \alpha \in (0,1) \)

By Theorem 2, \(u \) blows up in a finite time \(T \) at only \(x = 0 \), which lead to

\[
u(0, t) \geq 1, \quad \text{for} \quad t \text{ close to} \quad T.
\]

Thus, from (10), we get

\[
u_t(0, t) \geq \alpha \lambda (u(0, t))^{p}\theta \in (\mathcal{U}, \ell) \quad \leq \alpha \lambda e^{q \in (\mathcal{U}, \ell)}, \quad \text{for} \quad t \text{ close to} \quad T.
\]

It follows that:

\[
\frac{d}{\varepsilon q \in (\mathcal{U}, \ell)} \geq \alpha \lambda d
\]

By integrating the last inequality from \(t \) to \(T \), and since
we obtain \(\frac{1}{q} \frac{1}{(t_0 - t)} \geq \alpha (I - t) \),

Thus

\[
\epsilon \leq \frac{1}{q} \frac{1/\alpha}{(I-t)}
\]

Therefore, there is \(\epsilon > 0 \), such that

\[
u(0, t) \leq \frac{1}{q} (\log \epsilon - \log\left(q (I-t) \right)) \text{ for } t \text{ close to } T
\]

5. Conclusion

From this work, it is observed that the blow-up in problem (1) can only occur at a single point. Moreover, the upper blow-up rate estimate is independent on \(p \), which indicates that the power function has no effect on the blow-up profile of problem (1). However, it may have only effect on the blow-up time.

6. Acknowledgements

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

7. References

[1] F. B. Weissler, “Single point blow-up for a semilinear initial value problem”, J. Differ. Equ., vol. 55, no. 2, pp. 204-224, 1984.
[2] J. L. Vazquez, “The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation”, Rend. Mat. Acc. Lincei, vol. 9, no.15, pp. 281-300, 2004.
[3] S. Kaplan, “On the growth of solutions of quasilinear parabolic Equations”, Comm. Pure Appl. Math., vol. 16, no. 3, pp. 305-330, 1963.
[4] A. Friedman and B. McLeod, “Blow-up of positive solutions of semilinear heat equations”, Indiana Univ. Math. J., vol. 34, no. 2, 425-447, 1985.
[5] A. Friedman, Partial Differential Equations of Parabolic Type, Prentic-Hall, Englewood Cliffs, N.J., 1964.
[6] P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhuser Advanced Texts, Birkhuser, Basel, 2007.
[7] A. Friedman and Y. Giga, “A single point blow-up for solutions of semilinear parabolic systems”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 34, pp. 65-79, 1987.
[8] M. A. Rasheed, On blow-up solutions of parabolic problems, Ph.D. thesis, University of Sussex, UK, 2012.