Collapse of the critical state in superconducting niobium

Ruslan Prozorov,1,2,4 Daniel V. Shantsev,2,3 and Roman G. Mints4

1Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011
2Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway
3A. F. Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St. Petersburg 194021, Russia
4School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

(Dated: 10 July 2006; Revised 20 September 2006)

Giant abrupt changes in the magnetic distribution in niobium foils were studied by using magnetooptical visualization, thermal and magnetic measurements. Uniform flux jumps and sometimes almost total catastrophic collapse of the critical state are reported. Results are discussed in terms of thermomagnetic instability mechanism with different development scenarios.

Large jumps in magnetization, temperature, ultrasonic attenuation and resistivity have been observed in many superconducting materials since early 60s. Although no definitive mechanism has been identified, it is believed that such changes are caused by sudden redistribution of Abrikosov vortices triggered and supported by thermomagnetic instabilities. Direct observations of flux jumps using miniature Hall probes have confirmed precipitous propagation of flux into the specimen. Although some evidence of large-scale jumps exists, direct observations of avalanche-like behavior in films have mostly found dendritic and branched finger-like patterns (on a macroscopic scale of the whole sample) or small jumps (few tens of micrometers) forming feather-shaped flux fronts.

Dendritic avalanches are expected for thin films with high critical current density. The problem is that dendritic avalanches are too small to result in the observed jumps of magnetization. If a variation of magnetization during a flux jump, then the dendritic avalanches contribute . However, the observed changes are often much larger. They must be associated with more dramatic catastrophic changes of the critical state when a nonuniform (Bean’s) distribution of vortices suddenly collapses. In this paper we present direct observations of the catastrophic collapse of the critical state in niobium foils and provide evidence for thermomagnetic origin of this effect.

Pure Nb (99.99%) strips of various thickness (5, 10 and 25 m) were obtained from Goodfellow. Sample widths varied from 0.7 to 4 mm and the lengths varied from 2 to 10 mm. Magnetization loops, , were measured in a Quantum Design MPMS. Resistivity, specific heat and transport critical current were measured in a Quantum Design PPMS. We also measured sample temperature variation in quasi-adiabatic conditions and found temperature jumps associated with the flux jumps.

Figure shows in a 25 m thick Nb foil at different temperatures, (a) 1.8 K, (b) 3 K and (c) 4 K. At the lowest temperature, Fig. (a), jumps in are observed both upon penetration after cooling in zero-field (ZFC) and upon flux exit. At higher temperatures, jumps were only observed upon reduction of the magnetic field, (b), and no jumps were observed above 4 K, (c). In Fig. (b) and (c) curves are shown after the external field was reduced from 5 kOe to zero and an attempt was made to observe jumps upon increasing the magnetic field of the same orientation. Unlike the case of the opposite field, no jumps in were observed. These results hint at thermomagnetic instability mechanism. The comparison of flux jumping instability scenarios in thin films and bulk samples a large Nb single crystal (5 mm diameter, 1 mm thickness) was measured at several temperatures. Figure (d) shows at T = 1.8 K for both ascending and descending branches. For other temperatures only descending branches are plotted. Giant magnetization jumps were observed upon decrease of the magnetic field at temperature.

FIG. 1: (color online) Magnetization loops measured in 25 m Nb foil at different temperatures. (a) 1.8 K, (b) 3 K, (c) 4 K and, for comparison, several M(H) curves measured from 4 kOe to 4 kOe in large Nb single crystal. For (b) and (c) curves start from remanent magnetization, see text for details.
FIG. 2: (color online) Penetration of magnetic field in 10 \(\mu \)m thick Nb strip after zero-field cooling. (a) 160 Oe (b) 415 Oe and (c) 480 Oe. Penetration in (b) and (c) was avalanche-like at fields indicated. (Real-time video online \[25\]).

atures up to 5.5 K. Evidently, variation of magnetization at a jump is much larger in a thick sample.

Visualization of the magnetic induction, \(B(r) \), on the sample surface was performed in a flow-type \(^4\)He cryostat with the sample in vacuum attached to a copper heat exchanger (i.e., cooling conditions are different from measurements in QD MPMS, Fig\[1\]). Bismuth-doped iron-garnet heterostructure film with in-plane magnetization was used as a magneto-optical indicator \[23, 24\]. In all images, intensity is proportional to the magnitude of \(B \) \((r)\). Moreover, due to the dispersion of the Faraday rotation for different wavelengths, up and down directions of the magnetic induction can be distinguished. In our case, green corresponds to flux out of page and yellow corresponds to the opposite orientation (antiflux). This information is useful for flux-antiflux annihilation experiments described below.

In magneto-optical experiments, sudden collapses of magnetization were observed only below \(T' \approx 4.5 \) K for all samples. Figure 2 shows penetration of the flux into a 10 \(\mu \)m Nb strip at increasing magnetic fields, (a) 160 Oe (b) 415 Oe and (c) 480 Oe. The large-scale abrupt jumps in Fig. 2 (b) and (c) occurred right before fields at which images were acquired (about 405 Oe and 470 Oe, respectively). In our case of 30 Hz data acquisition rate, the jumps seem instantaneous. Real-time dynamics can be viewed online \[25\].

The largest and most dramatic features occur upon decrease of a magnetic field when self-field antiflux induced at the edges due to large demagnetization factor starts entering the sample. The antiflux annihilates with the trapped flux providing additional mechanism to trigger thermal instability. An avalanche in progress is difficult to stop, because the whole sample is in the critical state and an increase of temperature leads to reduction of the local critical current density resulting in further flux redistribution. This results in large uniform avalanches when the whole critical state literally collapses. In Fig. 3 two such collapses are shown, - panels (b) (jumped after (a)), and (d) (jumped after (c)). Some intensity banding in Fig. 3 reflects the structure of the trapped flux in this sample.

FIG. 3: Catastrophic collapse of the critical state upon entry of negative self-field at \(T = 3.9 \) K. (a) 250 Oe (b) 200 Oe (c) 100 Oe (d) 50 Oe. (Real-time video online \[25\]).

FIG. 4: (color online) Profiles of the magnetic flux before and after collapse of the critical state upon entry of the negative flux generated by self-field. The profiles were measured along dashed lines in Fig\[3\] (c) and (d).
Flux profiles corresponding to the collapse of the critical state are shown in Fig. 4. The profiles were measured along the dashed lines shown in Fig. 5(c) and (d). Clearly, at some magnetic field, the slightest variation results in a change of the entire distribution of vortices. The observed giant jumps may span more than half the width of the sample, which, to the best of our knowledge, has never been observed before. Moreover, the collapse washes away both the interior critical state as well as any newly penetrated antiflux at the edges. When the magnetic field of the opposite polarity is applied, antiflux annihilates with the trapped flux similar to the self-field antiflux discussed above. This results in large uniform avalanches as shown in Fig. 5. In general, the largest avalanches and sometimes total collapse of the critical state occurs at small fields upon entry of an antiflux. We think that this is because critical current density is largest and most strongly field-dependent at low fields.

Although thermal instability seems to be the most natural scenario, direct evidence for thermal effects is scarce. Temperature jumps were detected in Nb-Zr alloys [4], MgB$_2$ films coated with gold showed suppression of the dendritic avalanches [27]. We report direct measurements of the temperature variation associated with flux jumps in Nb foils. In this experiment, the sample was suspended by four wires on a thin sapphire stage normally used for specific heat measurements in a Quantum Design PPMS. The arrangement allows for direct reading of the sample thermometer in almost adiabatic conditions.

Figure 6 shows field sweeps (all taken from 3 kOe to 7 kOe). Temperature jumps were detected at the same range of temperatures and fields as magnetization measured in the same sample. To emphasize the variation, it was multiplied by a factor of 20. Indeed, local temperature, T_a, within the "volume" of the avalanche, $V_a = 5 \times 10^4$ mm3, reaches very large values of order of T_c [10]. Then the average temperature measured by the calorimeter is given by $T = T_c V_a = V_c$, where total volume of the sample, $V_c = 5 \times 10^2$ mm3. This gives $T' \approx 0.01 T_c$ K, in agreement with the direct measurements, Fig. 6.

In general, there are two channels to dissipate the energy of the critical state – dynamic and adiabatic [1, 2, 7]. The dynamical channel corresponds to the energy removal to a coolant and it is characterized by the dimensionless parameter $\frac{1}{\Delta_T} = \frac{\gamma_{\Delta T}}{T_c}$, where $\gamma_{\Delta T}$ is the critical current, $h = 5$ W/cm2.K is the heat transfer coefficient, $\Delta T = 0.5$ cm is the normal state resistivity, d - thickness and T_0 - temperature of the coolant. The adiabatic channel corresponds to the energy absorption by the material itself which is accompanied by an increase of the sample temperature.

The threshold parameter for thin samples is given as $\frac{1}{\Delta_T} = \frac{\gamma_{\Delta T}}{T_c} \approx 4cw \varepsilon = c^3 C_p (T_c) \frac{(T_c - T_0)}{T_c}$, where w is the sample halfwidth. Using the results of direct measurements on our foils, $\frac{1}{\Delta_T} = 15 \frac{(T_c - T_0)}{T_c} \frac{(T_c - T_0)}{T_c} 10^5 \frac{A}{cm^2}$ and $C_p (T) = 0.25 (T-T_c) ^3 J/mol K$, we obtain $\gamma_{\Delta T} \approx 8$ and $\Delta T = 0.1 \%$.

Large values of $\gamma_{\Delta T}$ indicate that both channels can take away only insignificant fraction of the Joule heat, which makes flux jumps inevitable, in full agreement with our experiments.

A flux jump in a thin sample develops into either dendritic or uniform pattern depending on the ratio of thermal and magnetic diffusivities, $\epsilon = \frac{\frac{1}{\alpha_T}}{\Delta_T}$, where α_T is the thermal conductivity [12]. Qualitatively, if ϵ is very small, the lateral heat diffusion is slow and flux propa-
and large uniform avalanches were observed in this case.

Both, feather-shaped protrusions and large uniform avalanches were observed in this case. Moreover, uniform jumps appeared even in ZFC samples where they were absent before. These experiments demonstrate that reducing the heat link to the thermal bath makes the avalanches more likely to happen.

In conclusion, we observed large scale giant uniform vortex avalanches and even collapse of the critical state in niobium foils. Direct measurements of temperature variation as well as analysis of the magnetic and thermal energy balance support thermomagnetic instability scenario. Comparable values of the magnetic and thermal diffusivities (1) result in spatially uniform giant flux jumps.

We thank Alex Gurevich, Igor Aranson and Yuri Galperin for useful discussions and Thomas A. Girard for providing the samples and for discussions. Ames Laboratory is operated for US DOE by the Iowa State University under Contract No. W-7405-Eng-82. R. P. acknowledges support from NSF Grant DMR-05-53285 and from the Alfred P. Sloan Research Foundation.

FIG. 7: (color online) Profiles of magnetic induction in 2.88 mm wide and 10 nm thick strip upon flux penetration after ZFC. Two inner profiles correspond to large uniform jumps shown in Fig. 2.

Electronic address: prozorov@ameslab.gov

[1] R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981).
[2] A. V. Gurevich, R. G. Mints and A. I. Rahmanov, ”The Physics of Composite Superconductors”, (Begell House Inc., New York, 1997).
[3] E. Altschuler and T. H. Johansen, Rev. Mod. Phys. 76, 471 (2004).
[4] L. T. Claiborne and N. G. Einspruch, J. App. Phys. 37, 925 (1966).
[5] B. B. Goodman and M. Wertheimer, Phys. Lett. 18, 236 (1965).
[6] M. Levy et al., Phys. Rev. B 2, 2804 (1970).
[7] I. S. Aranson et al., Phys. Rev. Lett. 94, 037002 (2005).
[8] B. Biehler et al., Phys. Rev. B 72, 024532 (2005).
[9] A. L. Rakhmanov et al., Phys. Rev. B 70, 224502 (2004).
[10] D. V. Shantsev et al., Phys. Rev. B 72, 024541 (2005).
[11] Y. E. Kuzovlev, cond-mat/0607143 (2006).
[12] D. V. Denisov et al., Phys. Rev. B 73, 014512 (2006).
[13] S. S. James et al., Physica C 332, 445 (2000).
[14] E. Altschuler et al., Phys. Rev. B 70, 140505 (2004).
[15] P. Esquinazi et al., Phys. Rev. B 60, 12454 (1999).
[16] V. V. Chabanenko et al., Physica C 369, 82 (2002).
[17] P. Leiderer et al., Phys. Rev. Lett. 71, 2646 (1993).
[18] C. A. Durán et al., Phys. Rev. B 52, 75 (1995).
[19] T. H. Johansen et al., Europhys. Lett. 59, 599 (2002).
[20] M. S. Wellinger et al., Physica C 411, 11 (2004).
[21] R. J. Wijngaarden et al., Europ. Phys. J. B 50, 117 (2006).
[22] D. P. Young et al., Supercond. Sci. Technol. 18, 776 (2005).
[23] A. A. Polyanskii, D. M. Feldmann and D. C. Larbalestier, in “The Handbook on Superconducting Materials”, D. Cardwell and D. Ginley, editors, UK, pp. 1551 (2003).
[24] C. Jooss et al., Rep.Prog. Phys. 65, 651-788 (2002).
[25] http://cmp.ameslab.gov/supermaglab/video/Nb.html
[26] E. H. Brandt and M. Indenbom, Phys. Rev. B 48, 12893 (1993).
[27] Eun-Mi Choi et al., Appl. Phys. Lett. 87, 152501 (2005).