Optimizing bi-objective, multi-echelon supply chain model using particle swarm intelligence algorithm

V.R. Sathish Kumar¹, S. P. Anbuudayasankar and K. Rameshkumar
Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, India

E-mail: vr_sathishkumar@cb.amrita.edu

Abstract. In the current globalized scenario, business organizations are more dependent on cost effective supply chain to enhance profitability and better handle competition. Demand uncertainty is an important factor in success or failure of a supply chain. An efficient supply chain limits the stock held at all echelons to the extent of avoiding a stock-out situation. In this paper, a three echelon supply chain model consisting of supplier, manufacturing plant and market is developed and the same is optimized using particle swarm intelligence algorithm.

1. Introduction
Current technology has turned the world into a global village. Business organizations (BO) world over are striving to improve their market share, increase revenue and profit with the core objective of customer satisfaction drifted to customer delight. Most BO concentrate on product / services warranting their core competency, and outsource other products to similar such BOs, which ensures high quality at low cost and more importantly the scope to improve continuously in both function of product or component and processes in making the product or component. BO world over are thus opting to rely more on its supply chain (SC) for their daily production, which has evolved due to advances in communication and transportation technologies[1][4][5].

SC strategy is vital for success of any business organization; it ought to be viewed as a living entity. Clearly defined SC objective(s) should drive the SC strategy, which in turn should drive the tactics of SC; ensuring all departments of a business organization to align their individual goals to that of the organizations. Total operation cost (TOC) and time are most often used performance metrics in evaluating a supply chain model (SCM). TOC is the aggregation of cost of material, components, labour, machine time both utilized and idle, inventory carrying cost, lost sales, transportation cost, and the like. Cost reduction in any constituent of the TOC, and a continuous improvement initiative would reduce further due to this. Apart from cost minimization, an efficient SC enjoys low inventory level maintained across all its echelons. Such low inventory levels reduce costs by surfacing any problems at early stages and improve in understanding and better serving the dynamically changing needs and demands of customer. Members of the SC ought to be more responsible and reliable in satisfying the needs and demands of members in downstream echelon, warranting a well-established and robust information sharing system both intra and inter echelon. Just-in-time

¹ To whom any correspondence should be addressed.
production system adopted by many companies is a noteworthy example for existence of reliable SC which helped reduce the inventory carrying cost (IC) [2][3][8][13]. Industry continuously strives to determine the right resource usage for optimized cost computation. Researchers employ different evolutionary algorithms that mimic natural processes to optimize resources. Particle swarm intelligence optimization (PSO) is an evolutionary algorithm developed by Eberhart and Kennedy (1995) that mimics the behaviour of swarm of birds or school of fish. Kadadevaramath et al. (2012) developed a three echelon SCM and used PSO to optimize the resource usage [6]. PSO is very robust in exploring and exploiting the search space of multi echelon SC problems that usually have many decision variables and are multi-objective in nature[7][9]. PSO relies both on its own cognitive behaviour and shared social behaviour of swarm or school to initially locate local optima and gradually move towards global optimal[10][11][12].

2. Problem definition and formulation of multi-objective mathematical model

2.1 Model description
A three echelon supply chain model is developed with five suppliers in the third echelon, three manufacturing plant in the second echelon and four market area in the first echelon as shown the fig. 1.

![Figure 1. Three echelon Supply Chain Model](image)

Three components are supplied by five suppliers to three plants, which manufacture the finished product that is sold in the four market area. Total operating cost (TOC) is the key metric in evaluating the performance of the supply chain. TOC is the aggregation of total manufacturing cost (TMC), inventory cost (IC) and transportation cost (TC). TMC is the cost incurred by both the supplier and manufacturing plant in manufacturing the finished product. IC is the inventory carrying cost of excess components or finished products remaining at the end of a particular time period at manufacturing plant and market area. TC includes the cost of transporting components from supplier to manufacturing plant and the finished product from plant to market area.

2.2 Model Assumption
- Supplier facility operating at full capacity
- All finished product is sent to market at the end of each time period
End product is made of three components.

Fixed costs of all the vendor facilities are constant and same; it is not included in cost calculation.

No backorder is allowed.

Quantity of goods is always expressed as integer.

Demand at market varies randomly.

Excess inventory at the end of each time period in all the three echelons are considered for inventory carrying cost computation.

2.3 Objective

To determine the optimum TOC by converging the deviational variables of the ratios TC/TOC and IC/TOC to respective predetermined targets, using PSO.

2.4 Mathematical model formulation

A multi-objective of a three echelon SCM is presented by incorporating the goals and respective deviational variables:

- \(L_{c,s} \) Capacity of supplier 's' for component 'c'
- \(CS_{c,s} \) Cost of making component 'c' by supplier 's'
- \(STC_{c,s,p} \) Unit transportation cost of component 'c' from supplier 's' to plant 'p'
- \(U_p \) Capacity of plant 'p'
- \(MC_p \) Unit manufacturing cost at plant 'p'
- \(IC_{c,p} \) Inventory carrying cost of component 'c' at plant 'p' (per unit)
- \(IC_{f,p} \) Inventory carrying cost of finished product at plant 'p' (per unit)
- \(PTC_{p,m} \) Transportation cost from plant 'p' to market 'm'
- \(B_{c,s,p} \) Boolean variable for transporting component 'c' by supplier 's' to plant 'p'
- \(B_{p,m} \) Boolean variable for transporting finished product from plant 'p' to market area
- \(D_m \) Demand in market 'm'
- \(SP_m \) Selling price at market 'm'
- \(X_{c,s,p} \) Quantity of component 'c' supplied by supplier 's' to plant 'p'
- \(Y_{p,m} \) Quantity of finished product supplied from plant 'p' to market 'm'
- \(TR_{TMC} \) Target ratio TMC
- \(TR_{IC} \) Target ratio of IC
- \(TR_{TC} \) Target ratio of TC
- \(\theta^*_i, \theta^*_j \) Deviational variables of the ratio TC/TOC
- \(\theta^*_i, \theta^*_j \) Deviational variables TOC
\[
TMC = \sum_{c} \sum_{s} \sum_{p} (X_{c,s,p} \cdot CS_{c,s}) + \sum_{p} \sum_{m} (Y_{p,m} \cdot MC_{p}) \tag{1}
\]

\[
IC = \sum_{c} \sum_{p} (IC_{c,p} \left(\frac{X_{c,s,p}}{n} - Y_{p,m} \right) + \sum_{p} (IC_{p,m} \cdot (Y_{p,m} - D_{m}) \tag{2}
\]

\[
TC = \sum_{c} \sum_{s} \sum_{p} (X_{c,s,p} \cdot STC_{c,s,p} \cdot B_{c,s,p}) + \sum_{p} \sum_{m} (Y_{p,m} \cdot PTC_{p,m} \cdot B_{p,m}) \tag{3}
\]

\[
TOC = TC + TMC + IC \tag{4}
\]

\[
\sum_{m} Y_{p,m} \leq U_{p} \quad \forall \ p \tag{5}
\]

\[
\sum_{p} X_{c,s,p} \leq L_{c,s} \quad \forall \ c, s \tag{6}
\]

\[
\sum_{s} X_{c,s,p} - \sum_{m} Y_{p,m} \geq 0 \quad \forall \ c, p \tag{7}
\]

\[
\frac{IC}{TOC} + \theta_i^- - \theta_i^+ \leq TR_{IC} \tag{8}
\]

\[
\frac{TC}{TOC} + \theta_j^- - \theta_j^+ \leq TR_{TC} \tag{9}
\]

\[
\text{Minimize } Z_1 = \theta_i^+ + \theta_j^- \tag{10}
\]

Equations (1) to (4) depict the computation of TMC, IC, TC and TOC. System constraint equations (5) and (6) ensure that plant and supplier operate within their respective rated capacities. Equation (7) is an inventory balancing constraint in the plants. Goal constraints (8) and (9) strive to optimize the individual cost ratios and hold the deviations in the respective deviational variables. Objective function depicted in equation (10) converges the deviational variables of the ratios TC/TOC and IC/TOC to the predetermined values.

3 Optimization of multi-objective three stage multi-echelon supply chain architecture using PSO algorithms

3.1 Introduction to PSO Algorithm

Velocity of a particle’s dimension is computed in an iteration using equations – to –

\[
v_{n+1} = \omega v_n + C_1 [r_1 (P_{best} - X_n)] + C_2 [r_2 (G_{best} - X_n)] \tag{11}
\]

\[
\omega = \text{Rand}(0, 1) \tag{12}
\]
\[X_{n+1} = X_n + v_{n+1} \] \hspace{1cm} (13)

First part of the equation (13) is the inertia of the dimension of a particle, second part is cognitive part that influences its own best positions in previous iterations, and the last is the social influence of best position held by a member of the swarm.

3.2 Particle representation in PSO

Decision variable \(X_{c,r,p} \) refers to the quantity of component 'c' supplied by supplier 's' to plant 'p' and \(Y_{p,m} \) refers to the quantity of finished product supplied from plant 'p' to market 'm' [6]. Fig. 2 depicts the representation of one particle consisting of 57 dimensions and the swarm size is twenty particles.

![Particle representation of a three echelon SCM in PSO algorithm](image)

Figure 2. Particle representation of a three echelon SCM in PSO algorithm

3.3 Velocity calculation and new position updating in PSO

Inertia weight for velocity computation of a dimension of a particle in the swarm helps convergence towards solution. In the initial iterations, cognitive part and the social part would not have explored the search space, hence weightage to these would be maintained at lower levels and inertia weight is assigned higher weight so as help explore the solution space. But at higher iterations, inertia weight ought to be controlled, so that the algorithm converges towards solution, whereas cognitive part and social part are assigned higher weightage.

3.3.1 Basic particle swarm optimization algorithm equations (B – PSO)

\[v_{n+1} = v_n + C_1 [r_1 (P_{best} - X_n)] + C_2 [r_2 (G_{best} - X_n)] \] \hspace{1cm} (14)

\[X_{n+1} = X_n + v_{n+1} \] \hspace{1cm} (15)

3.3.2 Linearly decreasing inertia weight particle swarm optimization algorithm equations (LDIW-PSO)

\[v_{n+1} = \omega v_n + C_1 [r_1 (P_{best} - X_n)] + C_2 [r_2 (G_{best} - X_n)] \] \hspace{1cm} (16)

\[\omega = \omega_{max} - \frac{\omega_{max} - \omega_{min}}{iter_{max}} \cdot iter \] \hspace{1cm} (17)

\[X_{n+1} = X_n + v_{n+1} \] \hspace{1cm} (18)

3.3.3 Global – local best inertia weight particle swarm optimization algorithm equations (GLBIW-PSO)

\[v_{n+1} = \omega v_n + C_1 [r_1 (P_{best} - X_n)] + C_2 [r_2 (G_{best} - X_n)] \] \hspace{1cm} (19)
\[\omega = (1.1 - \frac{G_{best}}{P_{best}}) \]
\[X_{n+1} = X_n + v_{n+1} \]

4 Results and discussions

The SCM developed is optimized using PSO algorithm with inertia weight computed by B-PSO, LDIW and GLBIW. Twenty demand scenarios were developed using uniform distribution with a maximum demand of 100 units and a minimum of 50 units and the same is used for all three methods computing the inertia weight. Performance of the PSO algorithms are analysed based on the quality of the solution and the computational effort. Each demand scenarios was replicated ten times for each method of the inertia weight computation and the best TOC, worst TOC, mean of the ten replicated TOC and its standard deviation is tabulated in the table 1. It is observed that for all the demand scenarios best TOC and mean of TOC computed using GLBIW-PSO is lower than computed using B-PSO and LDIW-PSO.

![Figure 3. Average computational effort to computing TOC using PSO](image)

![Figure 4. Average computational time to computing TOC using PSO](image)
D.S	TOC based on B – PSO equations	TOC based on LDIW – PSO equations	TOC based on GLBIW – PSO equations									
	Best	Worst	Mean	Std. Dev.	Best	Worst	Mean	Std. Dev.	Best	Worst	Mean	Std. Dev.
1	1240429	1334287	1286577	30892	1182463	1279413	1232213	30239	1172061	1203340	1190910	10733
2	1269462	1350846	1313752	25869	1222504	1342004	1281721	32659	1209890	1234036	1222689	7474
3	1238299	1312278	1273760	24173	1168645	1278265	1226178	38013	1162189	1197808	1175957	12288
4	1193743	1282279	1234066	34324	1182231	1244898	1218590	25054	1125460	1195321	1163860	20062
5	1196645	1272618	1241508	22362	1105636	1234726	1177238	42982	1102820	1132682	1120551	9953
6	1209190	1322878	1262080	40247	1141503	1249743	1192646	31716	1127288	1152134	1142896	6568
7	1241759	1300558	1275295	17694	1204205	1277535	1242780	26597	1173345	1206333	1190916	10894
8	1124444	1266702	1193029	34761	1080101	1173226	1111834	30016	1069674	1096267	1082828	9606
9	1172374	1217478	1226884	31288	1121737	1295820	1207927	53198	1091983	1132400	1114593	12403
10	1119556	1190388	1157877	22444	1063668	1196127	1141185	44267	1044506	1076925	1060282	11167
11	1139321	1238320	1178445	26170	1092472	1195146	1146958	37451	1056810	1084939	1071380	8104
12	1171557	1236193	1206302	20860	1110591	1196874	1150670	30853	1093475	1109406	1102521	5830
13	1231343	1356967	1289079	35791	1199696	1330639	1273846	45630	1175640	1189033	1182827	4605
14	1177902	1253093	1226586	23086	1062401	1183279	1140907	44267	1072400	1129531	1101624	21146
15	1232478	1304515	1268107	24071	1174907	1280336	1237714	33757	1162629	1185994	1174031	7684
16	1066813	1188655	1122548	41845	1000760	1129027	1062771	43310	998505	1033318	1013546	11852
17	1103923	1179008	1140408	24518	1042108	1175237	1100826	49821	1017244	1033638	1025381	5795
18	1055007	1191381	1130840	42573	1014553	1139280	1078537	45173	996124	1022321	1008041	9290
19	1070786	1155096	1109526	23205	989025	1161841	1057411	58418	977691	1018080	996111	13271
20	1192632	1288115	1236017	26484	1150048	1250886	1203847	30340	1133873	1161331	1145607	8116
Table 2. Performance evaluative of three echelon SCN yielded by three variants of PSO

DS	Performance evaluation based on mean of TOC	Performance evaluation based on best of TOC										
	B-PSO	LDIW	GLBIW									
	relative percentage increase											
1	1240429	1182463	1172061	5.83	0.89	0	1286577	1232213	1190910	8.03	3.47	0
2	1269462	1222504	1209890	4.92	1.04	0	1313752	1281721	1222689	7.45	4.83	0
3	1238239	1168645	1162189	6.54	0.56	0	1273760	1226178	1175957	8.32	4.27	0
4	1193743	1182231	1125460	6.07	5.04	0	1234066	1218590	1163860	6.03	4.70	0
5	1196645	1105636	1102820	8.51	0.26	0	1241508	1177238	1120551	10.79	5.06	0
6	1209190	1141503	1127288	7.27	1.26	0	1262080	1192646	1142896	10.43	4.35	0
7	1241759	1204205	1173345	5.83	2.63	0	1275295	12242780	1190916	7.09	4.35	0
8	1124444	1080101	1069674	5.12	0.97	0	1193029	1111834	1082828	10.18	2.68	0
9	1195238	1121737	1091983	7.36	2.72	0	1226884	1207927	114593	10.07	8.37	0
10	1119556	1063668	1044506	7.19	1.83	0	1157877	1114185	1060282	9.20	5.08	0
11	1139321	1092472	1056810	7.81	3.37	0	1178445	1146958	1071380	9.99	7.05	0
12	1171575	1110591	1093475	7.14	1.57	0	1206302	1150670	1102521	9.41	4.37	0
13	1231343	1196969	1175640	4.74	2.05	0	1289079	1273846	1182827	8.98	7.70	0
14	1177902	1062401	1072400	10.87	0.93	0	1226586	1140907	1101624	11.34	3.57	0
15	1232478	1174907	1162629	6.01	1.06	0	1268107	1237714	1174031	8.01	5.42	0
16	1068813	1000760	998505	6.84	0.23	0	1125248	1062771	1013546	10.75	4.86	0
17	1103923	1042108	1017244	8.52	2.44	0	1140408	1100826	1025381	11.22	7.36	0
18	1055007	1014553	996124	5.91	1.85	0	1130840	1078537	1000840	12.18	6.99	0
19	1070786	989025	977691	9.52	1.16	0	1109526	1057411	996111	11.39	6.15	0
20	1192632	1150048	1133837	5.19	1.43	0	1236017	1203847	1145607	7.89	5.08	0

Table 3. Matrix of performing variant of PSO based on best TOC

B-PSO	LDIW	GLBIW
20	19	20
19	20	19

Table 4. Matrix of performing variant of PSO based on mean TOC

B-PSO	LDIW	GLBIW
20	19	20
19	20	19

Table 5. Ratios of IC/TOC and TC/TOC for best case scenario using GLBIW - PSO

Demand Scenarios	Demand in market area	IC	IC as % of TOC	TMC	TMC as % of TOC	TC	TC as % of TOC
C1	90	88	95	77	171121	14.6	639008
C2	92	73	70	97	183661	15.18	622246
C3	72	59	82	82	184091	15.84	613055
C4	90	79	87	98	164205	14.59	594693
C5	68	99	67	54	173915	15.77	569827
C6	69	55	66	73	161991	14.37	617979
C7	80	94	62	87	171778	14.64	633841
C8	75	58	98	81	169329	15.83	559974
C9	61	84	84	91	173516	15.89	568268
C10	59	65	83	60	159809	15.3	535414
C11	96	82	60	75	153554	14.53	551866
C12	89	72	67	69	159866	14.62	597584
C13	86	71	63	93	178345	15.17	642840
C14	98	87	95	65	151852	14.16	559257
C15	87	67	64	98	180091	15.49	605265
C16	63	56	95	70	142287	14.25	545184
C17	53	89	55	99	160318	15.76	537410
C18	61	80	75	77	156690	15.73	510215
C19	91	70	72	59	153106	15.66	520034
C20	74	69	68	95	165313	14.58	593450

Best performing algorithm is evaluated based on the best and mean relative percentage increase of TOC using the three inertia weight computation procedures and is tabulated in table 2. Outperformed matrix for best value of TOC is depicted in table 3 and that of mean value of TOC is in table 4. It could be observed that GLBIW – PSO algorithm provides high quality solutions when compared to B-PSO and LDIW-PSO and solutions. Besides high quality of solution, computational effort is an important factor in evaluating the performance of solution procedure. Computational effort involves selection of initial random feasible solutions which are iterated to converge to the global optima. Fig. 3 depicts the average number of iterations for the PSO algorithm to converge to solution using all three inertia weight computing procedures and corresponding time taken is depicted in Fig. 4.
Ratios of IC/TOC, TC/TOC and all other cost components of the best instance of GLBIW-PSO is depicted in table 5, it could be further observed that the ratios of IC/TOC and TC/TOC is well within the predetermined value and are consistent for all the demand scenarios.

5. Conclusions
A three-echelon SCM was developed with five suppliers supplying three components to three manufacturing plants to produce one finished product and sold in four market area. A multi-objective mathematical model was developed, which handles the deviational variables that hinders achieving predetermined target for IC/TOC and ratio of TC/TOC. The model was optimized using PSO algorithm; with the inertia weight computed using B-PSO, LDIW–PSO and GLBIW-PSO. B-PSO has no inertia weight in velocity computation. LDIW-PSO decreases the inertia weight in updating velocity of particles linearly with respect to the number of iterations, whereas GLBIW-PSO updates the velocity of particles based on the individual particles best position and global best position of all particles. Results indicate, GLBIW-PSO generates least TOC solutions to the problem considered with least computational effort.

References:

[1] Zhang, C. K. M. Lee, K. Wu, and K. L. Choy, (2016), “Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels,” Expert Syst. Appl., vol. 65.

[2] Agrawal N and S. a. Smith, (2013). Optimal inventory management for a retail chain with diverse store demands, Eur. J. Oper. Res., vol. 225, No. 3.

[3] Ouyang, C.-H. Ho, and C.-H. Su, (2009), An optimization approach for joint pricing and ordering problem in an integrated inventory system with order-size dependent trade credit, Comput. Ind. Eng., Vol. 57, No. 3.

[4] Bravo J and C. J. Vidal, (2013), Freight transportation function in supply chain optimization models: A critical review of recent trends, Expert Syst. Appl., Vol. 40, No. 17.

[5] Olivares E-Benitez, R. Z. Rios-Mercado, and J. L. González-Velarde, (2013), A metaheuristic algorithm to solve the selection of transportation channels in supply chain design, Int. J. Prod. Econ., Vol. 145, No. 1.

[6] Kadadevaramath, J. C. H. Chen, B. Latha Shankar, and K. Rameshkumar, (2012), Application of particle swarm intelligence algorithms in supply chain network architecture optimization, Expert Syst. Appl., Vol. 39, No. 11.

[7] Mori M, R. Kobayashi, M. Samejima, and N. Komoda, (2017), Risk-cost optimization for procurement planning in multi-tier supply chain by Pareto Local Search with relaxed acceptance criterion, Eur. J. Oper. Res., Vol. 261, No. 1.

[8] Sathish Kumar V. R., Anbuudayasankar S. P. and Thennarasu M., (2016) Design and development of simulation based model to rank flow strategies, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 9.

[9] Urade H.S and R. Patel, (2012), Dynamic Particle Swarm Optimization to Solve Multi-objective Optimization Problem, Procedia Technol., Vol. 6.
[10] Im J and J. Park, (2013), Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics,” *Chinese J. Aeronaut.*, Vol. 26, No. 1.

[11] Rokbani and A. M. Alimi, (2013), Inverse kinematics using particle swarm optimization, a statistical analysis, *Procedia Eng.*, Vol. 64.

[12] Iwan M, R. Akmeliawati, T. Faisal, and H. M. A. A. Al-Assadi, (2012), Performance comparison of differential evolution and particle swarm optimization in constrained optimization, *Procedia Eng.*, Vol. 41.

[13] Anbuudayasankar S.P., Ganesh K, Lenny Koh & Mohandas K (2010), Unified heuristics to solve routing problem of reverse logistics in sustainable supply chain, *International Journal of Systems Science*, Vol 41 Issue 3