The aim of this note is to prove

Theorem 1. Let G/K be an irreducible symmetric space of compact type with K connected and G acting effectively on G/K, and let ρ be a real exact G-invariant $(1,1)$-form on the complexification G^C/K^C_1. Then there exists a G-invariant Kähler metric on G^C/K^C whose Ricci form is ρ.

Remarks:
1. The assumptions on G and K are fulfilled for simply connected symmetric spaces. In general, these assumptions guarantee that G is connected ([6], Thm. V.4.1), that G/K is globally symmetric ([6], Ex. VII.10), and that $K = \text{Ad}_G(K)$ (as $\text{Ad}_G(K) = K/K \cap Z(G)$).
2. The Kähler form obtained in Theorem 1 is exact.

The above result has been proved in [9] for symmetric spaces of rank 1 and in [2] for compact groups, i.e. for the case when $G = K \times K$ and K acts diagonally. For hermitian symmetric spaces and $\rho = 0$, Theorem 1 has also been known [4].

The proof given here is quite different from that given for group manifolds in [2]. We show that the complex Monge-Ampère equation on G^C/K^C reduces, for G-invariant functions, to a real Monge-Ampè re equation on the dual symmetric space G^*/K. We also show that the Monge-Ampère operator on non-compact symmetric spaces has a radial part, i.e. it is equal, for K-invariant functions, to another Monge-Ampère operator on the maximal abelian subspace of G^*/K. These facts, together with the theorem on K-invariant real Monge-Ampère equations proved in [3], yield Theorem 1.

1. **RIEMANNIAN SYMMETRIC SPACES OF NON-COMPACT TYPE**

Here we recall some facts about the geometry of Riemannian symmetric spaces. The standard reference for this section is [6].

Let G/K be a symmetric space of compact type with G acting effectively and K connected, and let G^*/K be its dual\(^2\). If \mathfrak{g}, \mathfrak{g}^* and \mathfrak{k} denote the Lie algebras of G, G^* and K, then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, $\mathfrak{g}^* = \mathfrak{k} \oplus i\mathfrak{p}$, where $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{p}$. The restriction of the Killing form to $i\mathfrak{p}$ is positive definite and induces the Riemannian metric of G^*/K. Moreover, the Riemannian exponential mapping provides a diffeomorphism between \mathfrak{p} and G^*/K. This can be viewed as the map:
\[
p \mapsto e^{i\rho} K, \tag{1.1}\]

\(^1\)The complexification of a compact connected Lie group G is the connected group G^C whose Lie algebra is the complexification of the Lie algebra of G and which satisfies $\pi_1(G^C) = \pi_1(G)$.

\(^2\)Since K is connected and $K = \text{Ad}_G(K)$ (Remark 1), there exists a G^* such that (G^*, K) is a symmetric pair corresponding to $(\mathfrak{g}^*, \mathfrak{k})$.

where \(p \in \mathfrak{p} \) and \(e \) is the group-theoretic exponential map for \(G^* \). Thus we have two \(K \)-invariant Riemannian metrics on \(\mathfrak{p} \simeq \mathbb{R}^n \): the Euclidean one given by the Killing form, and the negatively curved one given by the diffeomorphism (1.1).

Let \(\mathfrak{a} \) be a maximal abelian subspace of \(\mathfrak{p} \) and \(l \) its centraliser in \(\mathfrak{k} \). Let \(\Sigma \) the set of restricted roots and \(\Sigma^+ \) the set of restricted positive roots. For each \(\alpha \in \Sigma \), let \(\mathfrak{p}_\alpha \) (resp. \(\mathfrak{e}_\alpha \)) denote the subspace of \(\mathfrak{p} \) (resp. of \(\mathfrak{k} \)) where each \((\text{ad } H)^2\), \(H \in \mathfrak{a} \), acts with eigenvalue \(\alpha(H)^2 \). We have the direct decompositions

\[
\mathfrak{p} = \mathfrak{a} + \sum_{\alpha \in \Sigma^+} \mathfrak{p}_\alpha, \quad \mathfrak{k} = l + \sum_{\alpha \in \Sigma^+} \mathfrak{e}_\alpha. \tag{1.2}
\]

Let \(\mathfrak{a}^+ \) be an open Weyl chamber and let \(\mathfrak{p}' \) be the union of \(K \)-orbits of points in \(\mathfrak{a}^+ \). Any \(K \) orbit in \(\mathfrak{p}' \) is isomorphic to \(K/L \) where the Lie algebra of \(L \) is \(l \). Moreover, we have the diffeomorphism:

\[
\mathfrak{a}^+ \times K/L \to \mathfrak{p}', \quad (h, k) \mapsto \text{Ad}(k)h. \tag{1.3}
\]

We now wish to write the two \(K \)-invariant metrics on \(\mathfrak{p} \) in coordinates given by this diffeomorphism. Let \(\sum dr_i^2 \) be the Killing metric on \(\mathfrak{a}^+ \) (the \(r_i \) can be viewed as \(K \)-invariant functions on \(\mathfrak{p}' \)). For each \(\mathfrak{e}_\alpha \), choose a basis \(X_{\alpha,m} \) (\(m \) runs from 1 to twice the multiplicity of \(\alpha \)) of vectors orthonormal for the Killing form and denote by \(\theta_{\alpha,m} \) the corresponding basis of invariant 1-forms on \(K/L \). We have

Proposition 1.1. Let \(g_0 \) be the Euclidean metric on \(\mathfrak{p} \), given by the restriction of the Killing form, and let \(g \) be the negatively curved symmetric metric on \(\mathfrak{p} \) given by the diffeomorphism (1.1). Then, under the diffeomorphism (1.3) the metrics \(g_0 \) and \(g \) can be written in the form

\[
\sum_i dr_i^2 + \sum_{(\alpha,m)} F(\alpha(r))\theta_{\alpha,(m)}^2, \tag{1.4}
\]

where \(F(z) = z^2 \) for \(g_0 \), and \(F(z) = \sinh^2(z) \) for \(g \).

Proof. Since all these metrics are \(K \)-invariant, it is enough to compute them at points of \(\mathfrak{a}^+ \). Let \(H \) be such a point and let \((h, \rho), h \in \mathfrak{a}, \rho \in \mathfrak{t}, K/L \) at \((H, [1])\). The vector \(\rho \) can be identified with an element of \(\sum \mathfrak{e}_\alpha \subset \mathfrak{t} \). The corresponding (under (1.3)) tangent vector at \(H \in \mathfrak{p}' \) is \(h + [\rho, H] \). Computing the Killing form of this vector yields the formula (1.4) with \(F(z) = z^2 \) for \(g_0 \). The formula for \(g \) follows from a similar computation, using the expression for the differential of the map (1.1) given in [6], Theorem IV.4.1. \(\square \)

2. **Monge-Ampère equation on symmetric spaces**

Let \((M, g)\) be a Riemannian manifold and \(u : M \to \mathbb{R} \) a smooth function. Then the Hessian of \(u \) is the symmetric \((0,2)\)-tensor \(D^2u \) where \(D \) is the Levi-Civita connection of \(g \). In local coordinates \(x_i \), \(D^2u \) is represented by the matrix

\[
H_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j} - \sum_k \Gamma^k_{ij} \frac{\partial u}{\partial x_k}. \tag{2.1}
\]

We say that the function \(u \) is \(g \)-convex (resp. strictly \(g \)-convex), if \(D^2u \) is non-negative (resp. positive) definite. The Monge-Ampère equation on the manifold \((M, g)\) is then

\[
\mathcal{M}_g(u) := (\det g)^{-1} \det D^2u = f \tag{2.2}
\]
where \(f \) is a given function.

Let \((G^*/K, g)\) be a symmetric space of non-compact type given by a Cartan decomposition \(g^* = \mathfrak{k} + \mathfrak{i} \mathfrak{p} \). As in the previous section, we identify \(M = G^*/K \) with \(\mathfrak{p} \) and denote by \(g_0 \) the (flat) metric given by restricting the Killing form to \(\mathfrak{p} \). We have:

Theorem 2.1. Let \(M \simeq \mathfrak{p} \) be a symmetric space of noncompact type and let \(u \) be a \(K \)-invariant (smooth) function on \(M \). Then

1. \(u \) is \(g \)-convex if and only if \(u \) is \(g_0 \)-convex (i.e. convex in the usual sense on \(\mathfrak{p} \)).
2. The following equality of Monge-Ampère operators holds:

\[
M_g(u) = F \cdot M_{g_0}(u),
\]

where \(F : M \to \mathbb{R} \) is a positive \(K \)-invariant smooth function depending only on \(M \).

We have proved in [3] a theorem on the existence and regularity of \(K \)-invariant solutions to Monge-Ampère equations on \(\mathbb{R}^n \). From this we immediately obtain

Corollary 2.2. Let \((G^*/K, g)\) be an irreducible symmetric space of noncompact type and let \(f \) be a positive smooth \(K \)-invariant function on \(G^*/K \). Then the Monge-Ampère equation (2.2) has a global smooth \(K \)-invariant strictly \(g \)-convex solution. \(\square\)

We shall now prove Theorem 2.1. In fact we shall prove it in the following, more general situation. Suppose that we are given a \(K \)-invariant metric on \(\mathfrak{p} \) whose pullback under (1.3) can be written as (cf. (1.4)):

\[
\sum_i dr_i^2 + \sum_{(\alpha, m)} F_{(\alpha, m)}(\alpha(r)) \theta^2_{(\alpha, m)},
\]

where \(F_{(\alpha, m)} : \mathbb{R} \to \mathbb{R} \) are smooth functions vanishing at the origin such that \(z^{-1} \frac{dF_{(\alpha, m)}}{dz} \) is smooth and positive everywhere. Proposition 1.1 implies that the symmetric metric on \(G^*/K \) is of this form. We claim that Theorem 2.1 holds for any metric \(g \) of the form (2.3).

In order to simplify the notation, let us write \(j \) for the index \((\alpha, m) \) and \(\alpha_j \) for \(\alpha \) if \(j = (\alpha, m) \). The metric \(g \) can be now written as

\[
\sum_i dr_i^2 + \sum_j F_j(\alpha_j(r)) \theta^2_j.
\]

We recall the following formula:

\[
2Ddu = L_{\nabla u} g,
\]

where \(L \) is the Lie derivative and \(\nabla u \) is the gradient of \(u \) with respect to the metric \(g \). On the other hand, for any \((0, 2)\)-tensor \(g \) and vector fields \(X, Y, Z \), we have:

\[
(L_X g)(Y, Z) = X.g(Y, Z) - g([X, Y], Z) - g(Y, [X, Z]).
\]

We now compute \(L_{\nabla u} g \) on \(\mathfrak{p}' \) with respect to the basis vector fields \(\partial / \partial r_i \), \(X_j \), where \(X_j \) are dual to \(\theta_j \). Here \(u \) is a \(K \)-invariant function. The gradient of \(u \) is just \(\sum \frac{\partial u}{\partial r_i} \frac{\partial}{\partial r_i} \), in particular it is independent of the functions \(F_j \). It follows
immediately that \((L \nabla ug)(\partial/\partial r_i, X_j) = 0\) and that the matrix \((L \nabla ug)(X_j, X_k)\) is equal to \(\nabla u.g(X_j, X_k)\) and hence it is diagonal with the \((jj)-\text{entry equal to}\)
\[
\nabla u (F_j(\alpha_j(r))) = \frac{dF_j}{dz}
\]

\(\mid z=\alpha_j(r)\).

Here \(\nabla u = \sum \frac{\partial u}{\partial r_i} \frac{\partial}{\partial r_i}\) is the gradient of \(u\) restricted to the Euclidean space \(a = \mathbb{R}^n\) in coordinates \(r_i\), and viewed as a map from \(\mathbb{R}^n\) to itself.

Theorem 2.1 with the more general metric (2.3) follows easily with the function \(F\) given explicitly by
\[
F = \prod \frac{\alpha_j(r)}{F_j(\alpha_j(r))} \left(\prod \left(\frac{1}{2} \frac{dF_j}{dz} \right)_\mid z=\alpha_j(r) \right).
\]

Observe that the assumptions on the \(F_j\) guarantee that \(F\) extends to a smooth positive function on \(p\).

3. Proof of the Main Theorem

Let \(G/K\) be a locally symmetric space of compact type with \(K\) connected. There is a canonical isomorphism between \(G^C/K^C\) and \(G \times_K p\) (i.e. the tangent bundle of \(G/K\)) given by the map:
\[
G \times p \rightarrow G^C \rightarrow G^C/K^C, \quad (g, p) \mapsto ge^{ip}.
\]

This isomorphism can be viewed in many ways: as an example of Mostow fibration [8], as given via Kähler reduction of \(G^C \simeq G \times g\) by the group \(K\) [5], or as given by the adapted complex structure construction [7] which provides a canonical diffeomorphism between the tangent bundle of \(G/K\) and a complexification of \(G/K\). In any case it provides a fibration
\[
\pi : G^C/K^C \rightarrow G/K.
\]

The fibers of this projection can be identified with \(p\) via the map (3.1). In particular, the fiber over [1] is given by the \(K^C\)-orbits of elements \(e^{ip}, p \in p\). We shall relate \(G\)-invariant plurisubharmonic functions on \(G^C/K^C\) to convex functions on this fiber (see [1] for a different approach to this).

For a function \(w\) on a complex manifold one defines its Levy form \(Lw\) to be the Hermitian \((0, 2)\) tensor given in local coordinates as
\[
\frac{\partial^2 w}{\partial z_k \partial \bar{z}_l} dz_k \otimes d\bar{z}_l.
\]

This form does not depend on the choice of local coordinates. We shall compute this form for a \(G\)-invariant function \(w\) on \(G^C/K^C\). It is enough to compute it at points \(e^{ip}, p \in p\). First of all, we choose local holomorphic coordinates at such a point:

Lemma 3.1. In a neighbourhood of a point \(e^{ip}, p \in p\), complex coordinates are provided by the map \(p^C \rightarrow G^C \rightarrow G^C/K^C, \quad (a + ib) \mapsto e^{a+ib}e^{ip}\).

Proof. We have to show that \(e^{a+ib}\) does not belong to the isotropy group \(e^{ip}K^Ce^{-ip}\) or, equivalently, that for \(u \in p^C\), \((\text{ad} e^{-ip}) u \notin p^C\). We have
\[
(\text{ad} e^{-ip}) u = e^{\text{ad}(-ip)} u = \cosh(\text{ad}(-ip)) u + \sinh(\text{ad}(-ip)) u,
\]
where the first term of the sum lies in \(p^C\) and the second one in \(t^C\). To show that the first term does not vanish recall that \((\text{ad}(-ip))^2\) has all eigenvalues nonnegative. □
We now have:

Lemma 3.2. In the complex coordinates \(z = a + ib \) given by the previous lemma, the Levy form (3.3) of a \(G \)-invariant function \(w \) satisfies the equation:

\[
\left(\frac{\partial^2 w}{\partial z_k \partial \bar{z}_l} \right)_{a=0 \atop b=0} = \frac{1}{4} \frac{\partial^2}{\partial b_k \partial b_l} w(e^{ib} e^{ip})_{b=0}, \tag{3.5}
\]

Proof. The polar decomposition of \(G^C \) implies that \(e^{a+ib} \) can be uniquely written as \(g e^{iy} \), where \(g \in G \) and \(y \in \mathfrak{g} \). Any \(G \)-invariant function on \(G^C/K^C \) in a neighbourhood of \(e^{ip} \) is a function of \(y \) only. On the other hand, as \(e^{2iy} = (e^x e^{iy})^* (e^x e^{iy}) = e^{-a+ib} e^{a+ib} \), it follows from the Campbell-Hausdorff formula that \(y = b + [b, a]/2 + \text{higher order terms} \). Hence the matrix of second derivatives in (3.3) at \(e^{ip} \) (i.e. at \(a = 0, b = 0 \)) is the same as the matrix of second derivatives of

\[
(a, b) \mapsto e^{i(b+i[b, a])} e^{ip} \tag{3.6}
\]

at \(a = 0, b = 0 \). We shall now show that for a \(G \)-invariant function \(w \) on \(G^C/K^C \), this matrix of second derivatives is equal to the right-hand side of (3.5).

The Campbell-Hausdorff formula implies that up to order 2 in \(a, b \), we have \(e^{i(b+i[b, a])} = e^{ib} e^{i[b, a]} \). Set \(c = [b, a]/2 \), which is a point in \(\mathfrak{k} \). We are going to show that modulo terms of order 2 in \(c \) (hence of order 4 in \(a, b \)), \(e^{ic} e^{ip} \) is equal to \(e^{p} e^{ib} e^{iq} \), where \(p \in \mathfrak{g} \) and \(q \in \mathfrak{k} \) are both linearly dependent on \(c \). We note that this proves the lemma, as

\[
e^{ib} e^{p} e^{ib} e^{iq} = e^{p} e^{ib+O(3)} e^{ip} e^{iq} = e^{p} e^{ib+O(3)} e^{ip}
\]

in \(G^C/K^C \), where \(O(3) \) denotes terms of order 3 and higher in \(a, b \).

We find \(q \) from the equation \(\cosh \text{ad}(ip)(q) = c \), which can be solved uniquely as \(\cosh \text{ad}(ip) \) is symmetric and positive-definite on \(\mathfrak{k} \subset \mathfrak{g} \). We then put \(p = -i \sinh \text{ad}(ip)(q) \). We observe that \(p \in \mathfrak{g} \) and \(e^{p} e^{ic} = e^{ip} e^{iq} e^{ip} \), thanks to (3.4). Moreover, modulo terms quadratic in \(c \), \(e^{p} e^{ip} \) and, consequently:

\[
e^{p} e^{ip} e^{iq} = e^{ic} e^{p} e^{ic} e^{ip} e^{iq} = e^{ic} (e^{ip} e^{iq} e^{ip}) e^{ip} e^{iq} = e^{ic} e^{ip},
\]

again modulo terms quadratic in \(c \). This finishes the proof of the lemma. \(\square \)

According to this lemma, we have to compute \(\frac{\partial^2}{\partial b_k \partial b_l} w(e^{ib} e^{ip})_{b=0} \). Now, since \(e^{ib} e^{ip} \in G^* \), \(e^{ib} e^{ip} = k e^{iz} \), where \(z = z(b) \in \mathfrak{p} \) and \(k \in K \). As \(w \) is \(G \)-invariant, \(w(e^{ib} e^{ip}) = w(e^{iz}) \) and therefore

\[
\frac{\partial^2}{\partial b_k \partial b_l} w(e^{ib} e^{ip})_{b=0} = \frac{\partial^2}{\partial b_k \partial b_l} w(e^{iz})_{b=0}.
\]

Thus we compute the matrix of second derivatives of a function defined on \(\exp(ip) \) in the coordinates given by \(b \mapsto e^{ib} e^{ip} \mapsto e^{iz} \). These, however, are the geodesic coordinates at the point \(e^{ip} \) in the symmetric space \(K \backslash G^* \) (being translations of geodesics at \([1] \)), and hence the matrix of second derivatives in these coordinates is equal to the Riemannian Hessian (2.1) for the symmetric metric on \(K \backslash G^* \).

We obtain

Theorem 3.3. Let \(w \) be a smooth \(G \)-invariant function on \(X = G^C/K^C \) and let \(\tilde{w} \) be its restriction to the fiber \(S = \exp(ip) \) of (3.2) over [1]. Let \(g \) denote the
symmetric metric on $S \simeq K / G^\ast$. Then w is (strictly) plurisubharmonic if and only if \bar{w} is (strictly) g-convex. Moreover, the following equality holds:
\[
\bar{\partial} \bar{\partial} \log \det Lw = \bar{\partial} \bar{\partial} \log M_g(\bar{w}),
\]
where $\tilde{u} : X \to \mathbb{R}$ is a G-invariant function such that \tilde{u} is a given K-invariant function u on S.

We are now ready to prove Theorem 1. Recall that $X = G^C / K^C$ is a Stein manifold and so if ρ is an exact $(1, 1)$ form on X, then $\rho = -i \partial \bar{\partial} h$ for some function h. If ρ is G-invariant, then we can assume that h is G-invariant. We can restrict h to the fiber S defined in the last theorem and thanks to Corollary 2.2 we can find a strictly g-convex K-invariant smooth solution \tilde{u} to the equation (2.2) with $f = e^h$, where the metric g is the symmetric metric on $S \simeq K / G^\ast$. We can extend this solution via G-action to a G-invariant function u on X. Theorem 3.3 implies now that u is strictly plurisubharmonic and that the Ricci form of the Kähler metric with potential u is ρ.

Acknowledgement. This work has been supported by an Advanced Research Fellowship from the Engineering and Physical Sciences Research Council of Great Britain.

References

[1] H. Azad and J.-J. Loeb ‘Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces’, Indag. Math. (N.S.) 3 (1992), 365–375.
[2] R. Bielawski ‘Kähler metrics on G^C / K^C’, J. Reine Angew. Math. 559 (2003), 123–136.
[3] R. Bielawski ‘Entire invariant solutions to Monge-Ampère equations’, math.AP/0212205, to appear in Proc. Amer. Math. Soc.
[4] O. Biquard and P. Gauduchon ‘Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés’, Sémin. Théor. Spectr. Géom. 16, Univ. Grenoble I, 127–173.
[5] P. Heinzner and A. Huckleberry ‘Analytic Hilbert quotients’, in: Several complex variables (Berkeley, CA, 1995–1996), 309–349, Math. Sci. Res. Inst. Publ., 37, Cambridge University Press, Cambridge, 1999.
[6] S. Helgason Differential geometry, Lie groups, and Symmetric spaces, Academic Press, New York, 1978.
[7] L. Lempert and R. Szöke ‘Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds’, Math. Ann. 290 (1991), 689–712.
[8] G.D. Mostow ‘On covariant fiberings of Klein spaces’ Amer. J. Math. 77 (1955), 247–278.
[9] M.B. Stenzel ‘Ricci-flat metrics on the complexification of a compact rank one symmetric space’, Manuscripta Math. 80 (1993), 151–163.

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK
E-mail address: R.Bielawski@maths.gla.ac.uk