Avaliação de Perfis Lipídicos Infanto-Juvenis Solicitados nas Unidades Básicas de Saúde em Campinas/SP, Brasil: Um Estudo Laboratorial Transversal

Evaluation of Lipid Profiles of Children and Youth from Basic Health Units in Campinas, SP, Brazil: A Cross-Sectional Laboratory Study

Érica Ivana Lázaro Gomes, Vanessa Helena de Souza Zago, Eliana Cotta de Faria

Universidade Estadual de Campinas - Patologia Clínica, Campinas, SP – Brasil
Pontifícia Universidade Católica de Campinas (PUC - Campinas), Campinas, SP – Brasil

Resumo

Fundamento: Dentre as dislipidemias, a hipercolesterolemia é considerada o principal fator de risco para doenças cardiovasculares em adultos. Na infância e adolescência, a elevação de colesterol total (CT) e colesterol da lipoproteína de baixa densidade (LDL-C) associam-se positivamente a marcadores de aterosclerose, entretanto, a triagem sistemática para dislipidemias nestes grupos é um tema controverso.

Objetivos: Caracterizar as frequências, tipos e gravidade de dislipidemias em crianças e adolescentes atendidos nas Unidades Básicas de Saúde (UBS) mantidas pelo SUS em Campinas/SP.

Métodos: A partir do convênio com a Secretaria Municipal de Saúde de Campinas foram obtidos resultados consecutivos de perfis lipídicos séricos (n = 312.650) de indivíduos de ambos os sexos (n = 62.530), com idade entre 1 dia e 19 anos, entre 2008 e 2015. Grupos etários e dislipidemias foram classificados conforme recomendações da literatura. O nível de significância estatístico considerado significativo foi de p < 0,05.

Resultados: As frequências observadas de CT, triglicerídeos (TG), LDL-C e não HDL-C (NHDL-C) aumentados foram, respectivamente 33%, 40%, 29% e 13% e de redução do colesterol da lipoproteína de alta densidade (HDL-C) 39%, no total, sendo maiores no sexo feminino e nas regiões sudoeste e sul da cidade, mais vulneráveis do ponto de vista socioeconômico; já em infantes a de TG, e nos adolescentes a de HDL-C prevaleceram.

Conclusões: A alta frequência e a regionalização das dislipidemias em crianças e adolescentes apontam para a necessidade de ações específicas no manuseio e tratamento destas no âmbito do sistema público de saúde em Campinas. (Arq Bras Cardiol. 2020; 114(1):47-56)

Palavras-chave: Doenças Cardiovasculares; Dislipidemias; Hipercolesterolemia; Criança; Adulto Jovem; Sistema Único de Saúde; Adolescente; Testes Laboratoriais.
Introdução

As doenças cardiovasculares (DCV) representam uma das principais causas de morbimortalidade no Brasil e no mundo. Segundo a Organização Mundial de Saúde (OMS), em 2015 as DCV representaram 31% de óbitos no mundo.¹ No Brasil, 29% dos óbitos foram devido às DCV segundo a Sociedade Brasileira de Cardiologia.²

As dislipidemias têm um papel bem estabelecido no que se refere ao risco cardiovascular em adultos, assim como a hipertensão arterial, diabetes melito, história familiar precoce de doença arterial coronariana e tabagismo. Frequente-mente, estas situações clínicas estão associadas à comorbidades como sobrepeso, obesidade, hábitos alimentares inadequados e sedentarismo,³ com graves consequências sobre a saúde individual e pública.⁴

Crianças e adolescentes representam 34% da população brasileira, um contingente absoluto de 57,1 milhões de pessoas.⁵ Há evidências de que concentrações elevadas de colesterol total (CT) e colesterol da lipoproteína de baixa densidade (LDL-C) na infância e adolescência estejam associadas a desfechos ateroscleróticos em adultos jovens. Ainda neste contexto, Napoli et al.,⁶ evidenciaram estrias gordurosas no período de vida intrauterino, sendo mais pronunciadas em gestantes com hipercolesterolemia.

Diferentemente da Atualização da Diretriz Brasileira de Dislipidemias (DBD), a triagem lipídica universal acima de dois anos quando comparada com a de crianças que apresentam fatores de risco,¹ foi recomendada, a partir de outros estudos, por Zachariah e Johnson¹⁰ por ter uma sensibilidade diagnóstica maior em 30 a 60%. No Brasil, existem poucos estudos populacionais envolvendo dislipidemias na infância e adolescência.¹⁰ Ademais, destaca-se o Estudo dos Riscos Cardiovasculares em Adolescentes-ERICA, de abordagem nacional, abrangendo uma população de 80.000 jovens entre 12 e 17 anos.⁸

Estudo prévio em nosso laboratório caracterizou dislipidemias graves em população infanto-juvenil em um segmento hospitalar público em Campinas.⁹ Entretanto, ainda existem lacunas no que diz respeito à sua caracterização em termos regionais. Assim, este estudo teve como objetivo caracterizar as frequências, tipos e gravidade de dislipidemias em crianças e adolescentes atendidos nas UBS em Campinas-SP.

Métodos

Este estudo tem caráter transversal e retrospectivo. Para sua execução, foram obtidos bancos de dados de resultados mensais de perfil lipídico, encaminhados periodicamente ao Laboratório de Lípidas da Faculdade de Ciências Médicas da UNICAMP por meio de convênio acadêmico com a Secretaria Municipal de Saúde de Campinas.

Entre os anos de 2008 e 2015 foram obtidos 312.650 resultados de exames laboratoriais séricos, de 62.530 indivíduos de ambos os sexos, com idades entre um dia e 19 anos, que compareceram às UBS da cidade de Campinas-SP para atendimento médico-ambulatorial. Estas UBS estão distribuídas em cinco regiões ou distritos de saúde da cidade.

Foram incluídos apenas os indivíduos que tiveram o perfil lipídico sérico determinado, e os seguintes parâmetros: CT, triglicérides (TG), LDL-C, colesterol da lipoproteína de alta densidade (HDL-C) e não HDL-C (NHDL-C). Estas análises foram realizadas por métodos enzimático-colorimétricos e/ou homogêneo direto para o LDL, seguindo as normas de controle de qualidade da Sociedade Brasileira de Patologia Clínica, incluindo a etapa da coleta de sangue nas UBS. O NHDL-C foi calculado.¹⁰ Durante o período do estudo foi utilizado um único analisador químico, o Modular® Analytics Evo (Roche Diagnostics, Burgess Hill, West Sussex, Reino Unido), e reagentes da Roche Diagnostics® (Mannheim, Alemanha).

As dislipidemias foram classificadas biologicamente de acordo com os valores de corte para a idade preconizados pela atual DBD¹ como: aumentos isolados de LDL-C, de TG, de NHDL ou reduções de HDL-C; as mistas, definidas como combinações lipídicas de LDL-C e TG aumentados e/ou LDL-C aumentado e HDL-C reduzido e/ou TG aumentados e HDL-C reduzido.

Para os infantes (crianças de um dia a 23 meses de idade), utilizamos os valores referenciais de Kwiterovich PO,¹¹ uma vez que para esse grupo etário não há recomendações descritas pelas DBD exceto para o TG que apresenta valores na DBD para o grupo de 0-9 anos. Para o NHDL-C em todos os grupos etários foram utilizados os valores desejáveis e não desejáveis (<123 e ≥144) de Kwiterovich PO, também pela ausência desta recomendação na DBD.

Para determinar os grupos de crianças (2-11 anos) e adolescentes (12 a 19 anos) foram utilizadas as definições do Estatuto Brasileiro da Criança e Adolescente (Lei nº 8.069/90 atualizada com a Lei nº 12.010 de 2009) com adaptação do limite superior para adolescentes em função da DBD, e as recomendações nesta descritas, entre dois e 19 anos.¹³ Os valores de corte (mg/dL) utilizados como desejáveis e não desejáveis seguiram como mostrado na Tabela 1.

Os perfis lipídicos também foram avaliados quanto as concentrações de LDL-C ≥ 190 mg/dL, sem hipertrigliceridemia concomitante, para caracterização laboratorial de possíveis casos de hipercolesterolemia familiar (HF).¹⁰

A cidade de Campinas está situada no interior de São Paulo e tem aproximadamente 1,1 milhões de habitantes¹² possuindo 63 UBS distribuídas em cinco distritos de saúde: Leste (L), Noroeste (NO), Norte (N), Sudoeste (SE) e Sul (S).¹³

Análise estatística

As variáveis, quer contínuas ou categóricas, foram analisadas por meio de testes descritivos e comparativos nos programas SPSS 24.0 (SPSS Inc., USA) e SAS 9.4 (Inc, Cary, NC, USA). Instituiu-se para as análises um único e primeiro resultado de perfil lipídico completo no período do estudo (2008-2015), pela razão de que alguns perfis lipídicos eram únicos e outros vários ao longo do estudo.

Foram realizados testes para verificação da normalidade da distribuição dos dados (Kolmogorov-Smirnov). Em seguida, os grupos foram comparados pelos testes de Mann-Whitney e Kruskal-Wallis com pós-teste Bonferroni, sendo os dados apresentados como mediana e intervalos interquartis para as variáveis contínuas e teste Qui-Quadrado (X²) com o pós-teste para comparações múltiplas em tabelas de contingência baseadas em permutações para as categóricas. Foram considerados significativos valores de p < 0,05.
Tabela 1 – Valores de referência para lipídios e lipoproteínas em crianças e adolescentes

Variáveis Lipídicas	Valores (mg/dL)			
	Desejáveis	Não desejáveis (1 dia a 23 meses)	Não desejáveis (2 a 19 anos)	
CT	< 170	≥ 200	≥ 170	
LDL-C	< 110	≥ 130	≥ 110	
NHDL-C	< 123	≥ 144*	-	
TG	0-8 anos	< 75	≥ 100	≥ 75**
	10-19 anos	< 90	≥ 130	≥ 90
HDL-C	> 45	< 35	≤ 45	

Valores de referência para 1d a 23 meses: **TG ≥ 75 conforme atual DBD; *NHDL-C ≥ 144 1d a 19a. CT: colesterol total; LDL-C: colesterol da lipoproteína de baixa densidade; TG: triglicérides; HDL-C: colesterol da Lipoproteína de alta densidade; NHDL-C: não HDL-C.

Resultados

A Figura 1 mostra a distribuição dos cinco distritos de Saúde de Campinas com os respectivos números observados para resultados de exames realizados, de indivíduos avaliados e suas frequências percentuais: Leste: 41.075 e 8.215 (13%); Noroeste: 61.900 e 12.380 (20%); Norte: 52.975 e 10.595 (17%); Sudoeste: 79.305 e 15.861 (25%); e Sul: 77.395 e 15.479 (25%). A metade dos exames foi originária das regiões sudeste e sul.

Na Tabela 2 está apresentada a caracterização demográfica dos indivíduos incluindo a origem dos atendimentos clínico-laboratoriais.

Os resultados das análises descritivas e comparativas estão mostrados nas Tabelas 3 e 4.

Evidencia-se na Tabela 3 que entre os grupos etários, para os infantes o CT, TG, LDL-C, NHDL-C foram mais altos entre os grupos. O TG foi semelhante em crianças e adolescentes e o HDL-C apresentou mediana maior nas crianças em relação aos mesmos. Em relação ao sexo, o grupo feminino apresentou valores mais altos.

Quando comparados por grupo de idade, os resultados também mostraram diferenças significativas para os parâmetros avaliados em ambos os sexos.

Na tabela 4, evidencia-se que na região leste houve resultados mais altos para CT em comparação às outras regiões. Para as concentrações de LDL-C na região leste os resultados foram maiores do que a noroeste, sudeste e sul; os valores de NHDL-C também foram mais altos nesta região em relação a sul e menores na noroeste em relação às demás. Em relação ao sexo, o grupo feminino apresentou valores mais altos.

As frequências de dislipidemias, total e suas razões por sexo são evidenciadas na Tabela 5.

As dislipidemias mais frequentes foram aumentos isolados de TG, NHDL-C aumentados e de dislipidemias isoladas bem como a maior prevalência da combinação de LDL-C e TG aumentados.

Quanto às crianças, observaram-se maiores níveis de CT e LDL-C, e da combinação de TG aumentado e HDL-C reduzido; também houve maior frequência de no mínimo um tipo de dislipidemia mista. Já os adolescentes apresentaram maior número de resultados de HDL-C reduzido.

A Figura 3 apresenta as frequências de dislipidemias por regiões de Campinas.

As dislipidemias foram mais frequentes na região sudeste de Campinas com relação às demás.

Discussão

O desenvolvimento da placa aterosclerótica está diretamente associado com o aumento de lipoproteínas NHDL-C e evidências sugerem que os fatores de risco cardiovascular encontrados na infância, como as dislipidemias, podem contribuir para a doença aterosclerótica ainda na infância e adolescência, assim como na vida adulta.14

Neste sentido, o consórcio em andamento The International Childhood Cardiovascular Cohort (i3C) Consortium15 tem como objetivo comum avaliar a associação da presença de fatores de risco na infância com os desfechos de morbidade e mortalidade por DCV no adulto. Resultados preliminares mostraram que a dislipidemia pediátrica prediz a dislipidemia16 e também a maior espessura íntimo-medial de carótidas17 em adultos. Além disso, a presença de fatores de risco desenvolvidos a partir dos nove anos de idade foi preditiva de aterosclerose subclínica em adultos.18

No presente estudo, 67% dos resultados dos perfis lipídicos indicaram a presença de pelo menos um único tipo de dislipidemia bioquimicamente classificada. Este resultado é maior do que o observado em outros trabalhos nacionais: um deles, por exemplo, realizado na região nordeste do Brasil entre 2011 e 2012, envolvendo crianças e adolescentes (6-18 anos) e no qual se observou a frequência de 62% de dislipidemias à custa de aumentos de CT e/ou TG e/ou de LDL-C e/ou reduções de HDL-C.19 Outro estudo, realizado na cidade de Londrina/PR com adolescentes (11-16 anos), demonstrou que 61% dos indivíduos apresentaram
dislipidemias (CT e/ou TG e/ou LDL-C elevados e/ou HDL-C reduzidos).20 Ainda, em 2007 um estudo em escolares (10-14 anos) de Recife/PE descreveu pelo menos um tipo de dislipidemia em 63,8% dos avaliados.21

Outros trabalhos realizados em países norte e sul americanos mostraram frequências menores. Nos Estados Unidos22 entre 2011 e 2014, em indivíduos de idades entre seis e 19 anos relatou 21% de dislipidemias (aumentos de CT e/ou NHDLC elevados e/ou HDL-C reduzidos).23

Já um estudo em Santiago/Chile23 (2009-2011) em 2.900 indivíduos de 10 a 14 anos, 32% de dislipidemias (CT e/ou TG e/ou LDL-C elevados e/ou HDL-C reduzidos) foram observadas. A prevalência maior no presente estudo pode ter sido causada em parte por menores valores de corte utilizados pela diretriz nacional10 em relação às internacionais.19,20

As comparações por faixas etárias revelaram que os infantes apresentaram maiores níveis de TG, NHDLC-C e combinação de LDL-C e TG assim como uma alta frequência de dislipidemias individuais; poucos trabalhos reportam estes dados até os dois anos de idade pela própria dificuldade da coleta de sangue e instabilidade metabólica nesta fase de crescimento rápido antes dos 24 meses de vida.30 Além disso, a alta frequência de hipertrofia ocorre por causa de um efeito benéfico no perfil de lipoproteínas.28

Nas análises realizadas para se avaliar o efeito do sexo, as dislipidemias foram mais frequentes para todos os parâmetros lipídicos no sexo feminino e esses resultados condizem com estudos nacionais24 e internacionais.25 De fato, as variações nas concentrações séricas de lipoproteínas são inerentes a estes indivíduos frente aos estágios de desenvolvimento e, consequentemente, às variações dos hormônios sexuais.26

Alguns estudos indicam que os estrógenos aumentam o HDL-C devido à sua ação na redução da atividade da lipase hepática (LH) e aumento de receptores \textit{ATP-binding cassette transporter A1} (ABCA1).27 Além disso, diminuem as concentrações de LDL-C27 por regularem positivamente os receptores de LDL exercendo um efeito benéfico no perfil de lipoproteínas.28

Já os andrógenos aumentam a atividade da LH, levando a um efeito inverso:27 o HDL-C apresenta-se reduzido, enquanto o LDL-C aumenta. Em contraposição, Zhang et al.,29 indicaram que a testosterona pode estar associada a alterações no receptor SR-B1 e na atividade da LH, facilitando a captação seletiva de HDL e exercendo um papel anti-aterogênico.29

A atual DBD define o valor de corte de TG sem jejum para a faixa de 0 a 9 anos (≥ 85 mg/dL). Avaliando esta interferência, aplicamos este valor de corte, e os resultados mostram uma frequência menor, 56% ao invés de 67% (≥ 75 mg/dL, com jejum).

As comparações por faixas etárias revelaram que os infantes apresentaram maiores níveis de TG, NHDLC-C e combinação de LDL-C e TG assim como uma alta frequência de dislipidemias individuais; poucos trabalhos reportam estes dados até os dois anos de idade pela própria dificuldade da coleta de sangue e instabilidade metabólica nesta fase de crescimento rápido antes dos 24 meses de vida.30 Além disso, a alta frequência de hipertrofia ocorre por causa de um efeito benéfico no perfil de lipoproteínas.28

As comparações por faixas etárias revelaram que os infantes apresentaram maiores níveis de TG, NHDLC-C e combinação de LDL-C e TG assim como uma alta frequência de dislipidemias individuais; poucos trabalhos reportam estes dados até os dois anos de idade pela própria dificuldade da coleta de sangue e instabilidade metabólica nesta fase de crescimento rápido antes dos 24 meses de vida.30 Além disso, a alta frequência de hipertrofia ocorre por causa de um efeito benéfico no perfil de lipoproteínas.28

As comparações por faixas etárias revelaram que os infantes apresentaram maiores níveis de TG, NHDLC-C e combinação de LDL-C e TG assim como uma alta frequência de dislipidemias individuais; poucos trabalhos reportam estes dados até os dois anos de idade pela própria dificuldade da coleta de sangue e instabilidade metabólica nesta fase de crescimento rápido antes dos 24 meses de vida.30 Além disso, a alta frequência de hipertrofia ocorre por causa de um efeito benéfico no perfil de lipoproteínas.28
de primeiro grau apresentam dislipidemia, principalmente grave ou com manifestação de aterosclerose prematura; ii) na presença de sinais clínicos de dislipidemias; na presença de outros fatores de risco cardiovascular; iii) com acometimento por outras patologias e iv) na utilização de contraceptivos, imunossupressores e outras drogas que possam levar a dislipidemias. Sendo assim, espera-se que outros fatores, aqui não coletados, que potencialmente justificariam estas variações.

Quanto às crianças, o CT e LDL-C elevados foram de 40 e 35%, respectivamente. Este aumento de CT é semelhante ao de um estudo de 2009 com 217 indivíduos (84 obesos), na faixa etária de 2-9 anos de Campina Grande/PB, que variou de 37 a 46%. Ainda, este resultado de CT em crianças condiz com dados do estudo National Health and Nutrition Examination Survey (NHANES) onde foi observada em indivíduos de 4-19 anos elevação das concentrações de CT na faixa etária de 9-11 anos, diminuindo posteriormente durante o desenvolvimento puberal. Ramos et al., reportaram que o aumento de LDL-C variou de 14 a 14,8% em crianças (não obesas e obesas), achado menor do que o de nosso estudo (35%). Porém, o valor de corte utilizado em nosso estudo é menor do que da referida população. Adicionalmente, resultados semelhantes foram observados em um estudo realizado no México com crianças.
Tabela 5 – Frequências de dislipidemias isoladas e mistas: todos e por sexos

Dislipidemias	N	Todos (%)	N	F (%)	M (%)	Razões de frequências (%) (F/M)	p	
Dislipidemias isoladas	41.689	67	23.572	38*	18.117	29	1,3	0,000
CT↑	20.759	33	12.213	19*	8.546	14	1,4	0,000
TG↑	24.703	40	14.527	23*	10.176	16	1,4	0,000
LDL-C↑	18.299	29	10.594	17*	7.705	12	1,4	0,000
HDL-C↓	24.210	39	13.120	21*	11.090	18	1,2	0,000
Não HDL-C↑	7.847	13	4.665	8*	3.182	5	1,5	0,000
Dislipidemias Mistas	20.205	32	11.682	19*	8.523	14	1,4	0,000
LDL-C↑ e TG↑	10.903	17	6.485	10*	4.418	7	1,5	0,000
HDL-C↓ e TG↑	12.978	21	7.270	12	5.708	9	1,3	0,692
HDL-C↓ e LDL-C↑	6.960	11	3.901	6	3.059	5	1,3	0,742

F: sexo feminino; M: sexo masculino; CT: colesterol total; LDL-C: colesterol da lipoproteína de baixa densidade; TG: triglicérides; HDL-C: colesterol da Lipoproteína de alta densidade; NHDL-C: não HDL-C. T este de Qui-Quadrado (X²); F vs M; p < 0,05.

Figura 2 – Frequências de dislipidemias isoladas e mistas por idade. CT: colesterol total; LDL-C: colesterol da lipoproteína de baixa densidade; TG: triglicérides; HDL-C: colesterol da Lipoproteína de alta densidade; NHDL-C: não HDL-C. Teste de Qui-Quadrado (X²); F vs C vs A; p < 0,05; Pós-teste para comparações múltiplas em tabelas de contingência baseado em permutações: CT↑, LDL-C↑ e TG↑ - C>A = I; TG↑, NHDL-C↑ - A>C>I; LDL-C↑ e LDL-C↑ - A>C; DI, LDL-C↑ e TG↑, DM - A>C = I, p < 0,05.
de 2 a 10 anos de idade: 30% dos indivíduos apresentaram LDL-C ≥ 110 mg/dL.\(^{14}\)

Quanto aos adolescentes houve alta frequência de HDL-C baixo (41%), valor próximo ao estudo ERICA, cujo valor foi de 47% entre 38.069 escolares,\(^{8}\) resultados alinhados aos deste trabalho, inclusive frente a diferente abordagem metodológica de ambos.

Outros estudos nacionais mostraram dados importantes. Um estudo realizado no Nordeste, com indivíduos de 6 a 18 anos, revelou frequência de HDL-C baixo de 41%\(^{19}\) e um estudo realizado em Natal/RN com escolares entre 10 e 19 anos mostrou que 50% da amostra apresentava esta dislipidemia.\(^{35}\) Outro estudo realizado na região metropolitana de Guadalajara/México com 132 indivíduos de 5 a 15 anos
mostrou prevalência menor (38,7%), mas não muito diferente dos nossos achados. A alta frequência de HDL-C reduzida em adolescentes pode estar associada ao estilo de vida dos jovens e que envolve hábitos alimentares inadequados, sobrepeso e inatividade física.

Vale destacar que, neste estudo, 349 indivíduos apresentaram fenótipo sérico com LDL-C ≥ 190 mg/dL, ou seja, 0,56% (1:200) dos resultados sugestivos para HF. Em relação às regiões de Campinas, a sul e sudoeste apresentaram frequências de dislipidemias mais altas em relação às demais. Segundo relatórios não publicados da Prefeitura Municipal de Campinas, estas são as regiões que possuem maior número de registros (25,7 e 27,6%, respectivamente) no Cadastro Único, plataforma do Governo Federal que caracteriza as famílias de baixa renda. De fato, segundo Johannsen et al., elas compõem a chamada “cordilheira da pobreza”, onde existe uma homogeneidade socioeconômica não observada nas demais regiões. Adicionalmente, são as que apresentam um maior número de usuários do SUS, correspondendo a 50% dos resultados de exames neste estudo.

A assimetria socioeconômica pode comprometer o estilo de vida das populações com repercussões diretas sobre indicadores de morbidade e mortalidade. Segundo a OMS, atualmente três quartos das mortes por DCV estão ocorrendo em regiões de renda média e baixa. O estudo ERICA apontou aumentos significativos em relação às dislipidemias nas regiões norte e nordeste do país (regiões descritas com os maiores índices de pobreza no Brasil); ainda, o ERICA sugere que as diferenças regionais de dislipidemias ocorram pelo processo de transição epidemiológica, ou seja, as regiões podem estar em fases distintas. Este estudo avaliou a segunda mais populosa cidade do estado de São Paulo localizada na região sudeste do Brasil, onde a expansão urbana ocorreu sem planejamento adequado, culminando na ampliação das áreas de ocupação e como consequência para a população, a falta de acesso apropriado aos serviços urbanos.

Conclusão

Este estudo mostra a alta frequência de dislipidemias aterogênicas em jovens crianças e infantes atendidos em Campinas, com distribuição maior nas regiões socioeconômicas desfavorecidas indicando a necessidade de um foco regionalizado durante a elaboração de programas de saúde pública de prevenção de DCV precoce e na vida adulta, incluindo o manuseio e tratamento adequados de dislipidemias.

Agradecimentos

À Secretaria de Saúde de Campinas pela disponibilização do banco de dados para o estudo, ao apoio financeiro Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); protocolo 481863/2011-7 e a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); protocolo 2006/05855-9. Ao Espaço da Escrita - Pró-Reitoria de Pesquisa - UNICAMP - pela tradução do manuscrito para o inglês. Este estudo fez parte do mestrado da Érica I. L. Gomes.

Contribuição dos autores

Concepcão e desenho da pesquisa, Obtenção de dados e Obtenção de financiamento: Faria EC; Análise e interpretação dos dados: Gomes EIL, Faria EC; Análise estatística: Gomes EIL; Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Gomes EIL, Zago VHS, Faria EC.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi parcialmente financiado pela FAPESP processo nº 2006/05855-9.

Vinculação acadêmica

Este artigo é parte de dissertação de Mestrado de Érica Ivana Lázaro Gomes pela Universidade Estadual de Campinas.

Aprovação ética e consentimento informado

Este estudo foi aprovado pelo Comitê de Ética da Unicamp sob o número de protocolo CAAE: 86627418.3.0000.5404 Nº do parecer: 2.662.289. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013.

Limitações do estudo

Uma das limitações refere-se ao fato do banco de dados avaliado ser de origem secundária, com possíveis incorreções na inserção dos dados demográficos pelos responsáveis ao longo de todos os processos. Temos ciência do uso continuado das normas de controle de qualidade da Sociedade Brasileira de Patologia Clínica pelo Laboratório Municipal de Campinas fornecedor dos dados laboratoriais.

Além disso, por ser um estudo transversal não foi possível avaliar a incidência de casos de dislipidemias.
Referências

1. World Health Organization (WHO). Cardiovascular diseases (CVDs). 2017; Available from: http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

2. Sociedade Brasileira de Cardiologia. Cardiômetro: Mortes por doenças cardiovasculares no Brasil. 2015; Available from: http://www.cardiometro.com.br/.

3. Faludi AA, Izar MC, Saraiva JF, Chacra AP, Bianco HT, Afiune Neto A, et al. Atualização da Diretriz Brasileira de Dislipemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol. 2017;109(2 Suppl 1):1-76.

4. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015; 132(17):1667-78.

5. Brasil. Leis, Decretos. Lei n. 8.069, de 13 de julho de 1990, e legislação correlata. Dispõe sobre o Estatuto da Criança e do Adolescente. DOU de 16/07/1990 – ECA; Brasília,2012.

6. Napoli C, D’Armiento FP, Mancini FP, Mancini FP, Postiglione A, Witztum JL, Palumbo, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997; 100(11):2680-90.

7. Zachariah JP, Johnson PK. Pediatric Lipid Management An Earlier Approach. Endocrinol Metabol Clin North Am. 2014;43(4):981-92.

8. Faria-Neto J, Bertolo V, Baena C, Olandoski M, Goncalves L, Abreu G, et al. ERICA: prevalence of dyslipidemia in Brazilian adolescents. Rev Saude Publica. 2016;50(Suppl 1):10s.

9. Faria EC, Dalpino FB, Takata R. Lipídeos e lipoproteínas séricos em crianças e adolescentes: um panorama. Rev Saude Publica. 2008;42(1):54-8.

10. Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC, et al. Brazilian Guidelines on Dyslipidemias and Prevention of Atherosclerosis. Arq Bras Cardiol. 2013;101(4 Suppl 1):1-20.

11. Kwiterovich PO. Recognition and management of dyslipidemia in children and adolescents: an update. Pediatrics. 2008;121(6):1209-9.

12. Johansen IC, Carmo RL, Alves LC. Desigualdade social intraurbana: implicações sobre a epidemiologia de envelhecimento em Campinas, SP, em 2014. Cad Metrop. 2016;18(36):421-40.

13. São Paulo. Secretaria de Saúde de Campinas. Estrutura - SUS Campinas. Campinas: Prefeitura Municipal de Campinas; 2017 [Citado 2017-Dec;(228):1-8.

14. Berenson GS, Srinivasan SR, Rao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650-6.

15. Hickman T, Briefel R, Carroll M, Ogden CL. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999-2012. JAMA Pediatr. 2015;169(3):272-9.

16. Magnussen CG, Vashishta S, Gahlot S, Goyal R. Effect of Menstrual Cycle Phases on Plasma Lipid and Lipoprotein Levels in Regularly Menstruating Women. J Clin Diagn Res. 2017;11(5):CC05-7

17. Zhang N, Zhang HQ, Zhang X, Zhang BC, Wang FR, Wang CG, et al. The Childhood Determinants of Adult Health Study. J Am Coll Cardiol. 2009;53(10):860-9.

18. Juonala M, Magnusson CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of Age on Associations Between Childhood Risk Factors and Carotid Intima-Media Thickness in Adulthood The Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122(24):2514-20.

19. Quadros TM, Gordia AP, Silva RC, Silva LR. Predictive capacity of anthropometric indicators for dyslipemia screening in children and adolescents. J Pediatr. 2015;91(5):455-63.

20. Tomeleri CM, Ronque ER, Silva DR, Cardoso Júnior CG, Fernandes RA, Teixeira DC, et al. Prevalence of dyslipidemia in adolescents: comparison between definitions. Rev Port Cardiol. 2015;34(2):103-9.

21. Pereira PB, Arruda IK, Cavalcanti AM, Diniz AA. Lipid profile of schoolchildren from Recife, PE. Arq Bras Cardiol. 2010;95(5):606-13.

22. Yuan G, Kit B, Carroll M. Abnormal Cholesterol Among Children and Adolescents in the United States, 2011-2014. NCHS Data Brief. 2015 Dec.;(228):1-8.

23. Barja Yáñez S, Arnaiz Gómez P, Villarroel P, Lomónaco L, Díaz AA, Lipid profile of schoolchildren from Recife, PE. Arq Bras Cardiol. 2015;95(5):2079-87.

24. Franca E, Alves JC. Dyslipidemia among adolescents and children from Pernambuco. Arq Bras Cardiol. 2006;87(6):722-7.

25. Kit BK, Kuklina E, Carroll MD, Ogden CL. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999-2012. JAMA Pediatr. 2015;169(3):272-9.

26. Sociedade Brasileira de Cardiologia. I Diretriz de Prevenção da Aterosclerose na Infância e na Adolescência. Arq Bras Cardiol. 2005;85(6):3-36.

27. Syne DM, Grumback MM. Physiology and disorders of puberty. Williams Textbook of Endocrinology. 13 th ed. Philadelphia, PA: Elsevier; 2016.

28. Vashishta S, Gahlot S, Goyal R. Effect of Menstrual Cycle Phases on Plasma Lipid and Lipoprotein Levels in Regularly Menstruating Women. J Clin Diagn Res. 2017;11(5):CC05-7

29. Zhang N, Zhang HQ, Zhang X, Zhang BC, Wang FR, Wang CG, et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur J Endocrinol. 2014;170(4):487-94.

30. Rabelo LM. Atherosclerotic risk factors in adolescence. J Pediatr. 2001;77(Suppl 2):S13-64.

31. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, Garcia FA, et al. Screening for Lipid Disorders in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA. 2016;316(6):625-33.

32. Ramos AT, Carvalho DF, Gonçaga NC, Noronha JA, Cardoso MA. Lipid profile in overweight children and adolescents. Journal of Human Growth and Development. 2011;21(3):780-8.

33. Hickman T, Briefel R, Carroll M, Rikfnd B, Cleeman J, Maurer K, et al. Distributions and trends of serum lipid levels among United States children and adolescents ages 4-19 years: Data from the third National Health and Nutrition Examination Survey. Prev Med. 1998;27(6):879-90.

34. Billoen M, Salas R, Novelo H, Villareal J, Sureda A, Tur. Serum Lipid Levels and Dyslipidemia Prevalence among 2-10 Year-Old Northern Mexican Children. Plos One. 2015;2015;10(3):e0119877.
35. Vieira Cunha Lima SC, Oliveira Lyra C, Galvão Bacurau Pinheiro L, Medeiros de Azevedo PR, Arrais RF, Campos Pedrosa LF. Association between dyslipidemia and anthropometric indicators in adolescents. Nutr Hosp. 2011;26(2):304-10.

36. Romero-Velarde E, Campollo-Rivas O, Celis de la Rosa A, Vásquez-Garibay EM, Castro-Hernández JF, Cruz-Osorio RM. Risk factors for dislipidemia in obese children and adolescents. Salud Publica Mex. 2007;49(2):103-8.

37. Martinez-Gomez D, Rey-Lopez J, Chillon P, Gomez-Martinez S, Vicente-Rodriguez C, Martin-Matillas M, et al. Excessive TV viewing and cardiovascular disease risk factors in adolescents. The AVENA cross-sectional study. BMC Public Health. 2010 May;10:274.

38. São Paulo. Estado. Prefeitura de Campinas. Perfil das pessoas e famílias no cadastro único em Campinas. In: Socioassistencial V, editor. Campinas; 2015.

39. Cunha JM, Jakob AA, Jiménez MA, Trad IL. Expansão metropolitana, mobilidade espacial e segregação nos anos 90: o caso da RM de Campinas. In: 11 Encontro nacional da associação nacional de pós graduação em planejamento urbano e regional. Salvador/BA. Anais; 2005. p. 1-21.

40. Instituto Brasileiro de Geografia e Estatística (IBGE). Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. Rio de Janeiro; 2017.