Fundamental Investigations on Additive Manufacturing Method by Selective Solidification Using Electrical Discharge

Katsushi FURUTANI, Hiroki YAMAGISHI and Takahiro TSUCHIYA

Abstract

We propose an additive manufacturing (AM) method using electrical discharge with twin electrodes. Today, inexpensive three-dimensional (3D) modeling machines for fused deposition modeling (FDM) with resin fibers are used in various fields. On the other hand, laser sources and electron beam guns as heat sources for the powder bed fusion (PBF) method with metal powder are generally expensive. This impedes the wide use of modeling machines. In the proposed AM method, part of the powder layer is selectively solidified by electrical discharge from the twin electrodes through the surface of a metal powder layer. It is expected that the use of a discharge circuit as an inexpensive heat source will reduce the total machine cost and the overall machine size. A three-dimensional shape with overhangs was successfully fabricated by laminating thin layers.

Key words: additive manufacturing, powder bed fusion, discharge, twin electrodes, iron powder, overhang

1. 緒論

付加製造技術(Additive Manufacturing: AM)を利用した3次元造形装置が一般的になるにつれて、さまざまな分野で応用され、試作品だけでなく、最終製品の少量生産にも用いられるようになっている。適用可能な材料は、樹脂や金属のほかにセラミックスなど様々な材料にも広がっている。さらに、生体組織の試作やマイクロロボットの製作、センサおよびアクチュエータの直接製作や、医療、デザイン、教育分野のような機械製造以外の分野でも応用が広がっている。

安価に入手できる積層造形装置では、ABSやPLAなどの樹脂を溶融しながら積層する溶融物堆積法(Fused Deposition Modeling: FDM)が用いられることが一般的であるが、光積層造形法も低価格化が進んでいる。金属粉末をレーザや電子ビームを用いて溶融、焼結させて直接積層造形する粉末床溶融結合法(Powder Bed Fusion: PBF)や粉末を堆積させたい場所に噴射しながらレーザを照射し溶融、焼結させる指向性エネルギー堆積法(Directed Energy Deposition: DED)は、製品のプロトタイプを製作するだけでなく、工具を作ることにも役立つ。一方で、これらの方法により金属部品を製作する市販の装置では、熱源であるレーザまたは電子ビーム源が高価であるため装置の低価格化が困難であるという問題も残っている。

アーク放電は比較的簡便な装置でコストに実現できる熱源の一つである。放電を利用したAM法では、タングステンカーバイドまたはチタンカーバイド粉末を圧縮成形した工具電極材料を消耗させたり、加工液に分散させてチタン粉末を液中放電により堆積する方法が提案されている。これら
の方法は基材表面と内部を結ぶ経路に電流を流すので、堆積が進み厚さが変化すると電流経路の特性が変化し、結果として加工特性が変化する。たとえば、圧粉体電極の主成分にタングステンカーバイドを用いた場合の堆積厚さは1mm程度が限界であり、任意の3次元形状を創成するには至っていない。加工作用いずに大気中で放電し、消耗した電極材料を工作物側に堆積させる方法も提案されている10)。しかしこれらの方法ではサポート材を用いないため、オーバーハング形状の形成が困難であると考えられる。また、消耗させた電極材料を工作物に堆積させる場合には、消耗した材料が加工液中や雰囲気中に分散するため、電極の消耗量に比べて堆積量が非常に少なく効率が悪い。

金属細線を材料として用いる方法では、アーク放電を利用した肉盛溶接11)や、インクジェットプリンタのインクの代わりに金属細線を放電で溶融させて微小液滴として吹き付ける溶射の一種12)として厚く堆積することができる。金属粉末を利用する方法では、直径20～30μmのはんだボールを電極にとりといった電極に吸着させ、電極とボール間で放電を起こすことで試料面上に付着させる方法も提案されている13)。これらの方法はいずれもサポート材を用いることができないので、一方から熱を与える場合でも任意の中空形状やオーバーハング形状を形成することは困難であると推測される。

本論文では、近接させた電極対と金属粉末層間で発生する放電により粉末を固化させることで3次元形状を創成する積層造形法を提案することを目的とする。2章では本論文で提案する放電を利用した積層造形法の基本原理を述べる。3章ではコンデンサ放電回路を用いた基礎実験装置について述べ、4章ではその装置を用いて基本原理を確認するために基本的な形状を製作した結果について述べる。

2. 放電を利用した金属粉末を用いた積層造形法

提案する積層造形法のための装置構成をFig.1に示す。装置は造形するための粉末層、その中で全体を上下させることができるプラットフォーム、粉末を固化させるための放電ユニット、これを形状のデータにしたがって移動させるXYZ送り機構、粉末を薄い層にして粉末層とするためのへらやローラなどが構成される。狭い間隔を持たせた電極対と金属粉末層間で発生する放電により粉末を固化させることで3次元形状を創成する。放電はレーザーや電子ビームに比べて低コストで実現できる熱源であるため、装置全体のコストを低減できる。

コンデンサ放電回路を用いた場合の粉末層を含む回路構成をFig.2に示す。放電ユニットでは、2本の電極を狭い間隔で配置し、放電回路を接続する。これらの電極から金属粉末を介して放電させる、粉末が電極で飛散するのを防ぐために、粉末はプラットフォームを介して接地した。粉末とプラットフォームの間に抵抗を挿入しているのは、片方向の電極だけで放電してその電流がグランドに流れない
ようにするためである。これにより、放電により粉末層中を流れる電流密度が表面近くで高くなるので、その影響を受ける部分が表面に限定され、層全体の厚さに無関係に放電点近傍の表面近くの粉末だけが固化される。そのため、加工特性は製作する製品の形状に依存しない。また、固化されない部分の粉末は、固化された部分と同程度の密度を持つためサポート材とすることが、その上に固化された層を形成することが可能。3次元形状を形成した後は固化していない粉末を容易に除去することができる。そのために、オーバーハング形状も形成できる。加工液は用いずに大気中で放電させるため、装置が簡便になる。

電極対を用いた放電加工が提案されているが、加工液中もしくは大気中で放電を2か所で同時に発生させることにより放電1回あたりの加工量を増加させることを目的としていた1415。提案する方法では電流の経路を粉末層表面近くに限定するために電極対を用いている点が異なる。

金属粉末を用いた積層造形法で形状精度を向上させるために、切削加工と複合加工が行われている。提案する方法では、電気的加工条件を切り替えて中放電加工16により同一加工機上で不要部分を除去することができるので、オフライン計測と併用すれば、高精度化が期待できる。

電極対を用いた放電加工が提案されているが、加工液中もしくは大気中で放電を2か所で同時に発生させることにより放電1回あたりの加工量を増加させることを目的としていた1415。提案する方法では電流の経路を粉末層表面近くに限定するために電極対を用いている点が異なる。

金属粉末を用いた積層造形法で形状精度を向上させるために、切削加工と複合加工が行われている。提案する方法では、電気的加工条件を切り替えて中放電加工16により同一加工機上で不要部分を除去することができるので、オフライン計測と併用すれば、高精度化が期待できる。

Table 1 Additive manufacturing conditions

|                         |                  |
|-------------------------|------------------|
| Applied voltage         | ±150 V           |
| Capacitance             | 0.5 μF           |
| Charging resistors      | 100 kΩ×2         |
| Grounding resistor      | 9.1 MΩ           |
| Powder                  | Mixture of 75-μm electrolytic iron powder and 200-μm reduced iron powder with ratio of 1:1 |
| Twin electrodes         | Copper, diameter of 0.5 mm, space of 0.8 mm |
| Feeding pitch           | 0.5 mm in x, y-directions |

積層手順をFig.3に示す。提案する方法はPBFであり、以下の(1)から(7)の手順を繰り返すことで層が形成される。

(1) 初期状態では、パウダーベッドが一部上部と同じ高さになっている。
(2) ベッドを粉末層の一層分だけ下げる。
(3) 粉末を一定の厚さで薄く敷き詰める。
(4) 電極をXY方向に走査するとともに、極間状態をフィードバックして電極と粉末層間の距離をZ轴方向で制御する。
(5) 粉末を一定の厚さで薄く敷き詰める。
(2) これが allerdings 2019年Vol.53, No.134 (2019)
(5) 最上層まで固化が終了する。
(6) ベッドを最初の高さまで上げる。
(7) 最後に固化していない粉末を除去すると、所望の三次元形状が得られる。

3. 実験装置および条件

実験装置は、電極対およびそれをXYZ方向に駆動する3軸直動送り機構と、粉末層をZ方向に駆動する1軸送り機構から構成される。極間距離は3軸送り機構のZ軸で調整した。各軸はステッピングモータで駆動され、それぞれの送りステップは、3軸送り機構が4μm、1軸機構が1μmである。全体寸法は600mm×460mm×580mmである。粉末層を敷くプラットフォーム部の全体寸法は60mm×74mm×82mm、上下動する部分は20mm×20mmである。プラットフォームのストロークは5mmである。材料にはA2017を用いた。

実験条件をTable 1に示す。放電回路はFig.2に示したコンデンサ回路を用いた。コンデンサは0.5μF、2本の充電抵抗はそれぞれ100kΩ、接地用の抵抗は9.1MΩとした。正負の印加電圧は等しくした。静電容量および電流値を実験的に決定した。

電極対の外観をFig.4に示す。フッ素樹脂チューブで絶縁した直径0.5mmの銅棒を中心間隔0.8㎜で固定した。

コントローラにはパーソナルコンピュータを用いた。

極間距離は減衰比1/100の変動プローブで測定し、放電電圧は電流センサにより測定し、12ビットAD変換器で読み込んだ。

Fig. 4 Twin electrodes (30 mm×55 mm)

Fig. 5 Flowchart of control program for one layer

Fig. 6 Electrode space and shift pitch
までは4μmずつ電極を下げ、検出されたら0.4mm電極を引き上げた。それに続いて1回放電することで電極を0.5mmずつXもしくは+Y方向へ送った。これを1点あたりの一連の動作として所望の長さにおいて30点ずつ繰り返した。逆向きに送ることも可能であるが、一部の実験を除き、Fig. 6に示した向きに送った。X方向は2本の電極が同じ経路を通るため、原理的にはX方向に送る場合の方が堆積物は細くなる。両方向ともに、10mmの形状を積層するための電極送りは、0.5mmピッチで20サイクルとした。粉末層の厚さを制御するためには、プラットホームを最下層のみ厚さ0.4mmとし、それ以外は0.2mmずつ下げた。そして、金属粉末をへらで押し付けて敷き詰め、均一な厚さにした。

4. 実験

提案した方法の実現可能性を確認するため、まず1層だけ形成する実験を行った。放電後の鉄粉層表面はFig. 8(a)に示す。同図の矢印で示した向きに電極を移動させて1層分の線状形状を2回製作した。放電が発生した鉄粉層表面の箇所は、していない箇所に比べて凹んでいた。固化していない鉄粉を除去すると、同図(b)に示すような長さ約10mmの線状形状が残った。大型の鉄粉粒径が200μmであるため鉄粉を除去する際に輸送装置に挟まれたため、線状形状が残った。製作した線状形状表面をSEMを用いて観察した結果を同図(c)に示す。表面はFig. 7に示した鉄粉の形状を残したまま固まっていったが、明らかに溶解は観察されなかった。また、粒径が大きいため多くの空隙が観察された。

印加電圧と電静容量から計算したコンデンサに蓄えられるエネルギーが0.023Jであり、パルス幅の測定値は6.2μsであったので、アーク電圧が一定で放電電流が半波の正弦波状であると仮定すると、ピーク電圧は11kV、ピーク電流は38Aとなる。液中放電加工では目的に寄与するエネルギーは半分程度であると言われており17、気中放電でも極間での損失があるため粉末が受けるエネルギーは放電回路から供給されるエネルギーより小さい。しかし、鉄粉の熱伝導率はパルク材料より高く、鋼粉を溶融、気化するには十分な値であると考えられる。これらのことから、Fig. 8(a)に示した鉄粉層表面の凹みは、放電の熱により鉄粉が気化して、そのときの圧力で放電した箇所の近くの鉄粉が飛ばされたことが一因で考えられる。

一方、電圧印加後放電するまでに正極側の鉄粉が飛散する現象も観察された。仕事関数は、プラットフォームの材料であるアルミニウムよりも堆積する材料である鉄の方が大きい18。腐食による表面を介して両者が接触した場合には、接触帯電により鉄が負に帯電する。これにより鉄粉が負に帯電して、静電力により正極側へ吸引されると考えられる。

これら2つの要因により、放電の前後で鉄粉層の表面
の一部が除去されて凹凸が生じたと考えられる。

次に，積層およびオーバーハング形状が製作可能なことを確認する実験を行った。10mmずつ走査しながら直線形状を4層積層した上に，直角方向に10mmずつ走査して直線形状を2層積層した。結果をFig. 9に示す。下の層は長さ11.4mm，幅2.5mm，オーバーハング形状で上は長さ11.2mm，幅1.8mmであった。全体の高さは約1.4mmであった。上の層を堆積する電極の走査は，Fig. 7の配置のまま，走査方向をX方向としたため幅が小さくなった。PBFで固化しない鉄粉をサポート材とすることが図示されており，外力を加えない限りは形状が崩れることはなかった。

堆積物の周囲には溶融したと考えられる微粉が飛び散り，その一部が電極に付着することもあった。放電した部分の鉄粉の温度は沸点以上に達していると考えられる。一方，固化した部分では溶融，再溶融等の変化が観察されなかった。したがって，固化されたのは放電した周囲の部分であり，強固に固化するためには，溶融した鉄粉が残留するようにピーク電力を抑える必要があると考えられる。

コンデンサ放電回路では，コンデンサへの充電時に鉄粉が帯電して飛散したり，放電エネルギーの調整が困難であることが明らかになった。そのため，今後はトランジスタ放電回路に変更することが望ましいと考えられる。

5. 結論

本論文では，近接させる電極対と粉末層間で発生する放電により粉末を固化させることで3次元形状を創成する積層造形法を提案した。結果をまとめると以下のようになる。

(1) コンデンサ放電回路を用いて積層造形し，オーバーハング形状を持つものも形成可能であることを示した。
(2) 提案した方法にコンデンサ放電回路を用いた場合，放電前には粉末の帯電により，放電後に鉄粉の飛散を防止するための飛散を抑制するの役割が必要になることを明らかにした。

今後は，放電回路をトランジスタ回路に変更し，放電エネルギーのピークを低下させるとともに，放電遅れ時間を短縮して帯電時の飛散を抑えることを試みる予定である。

謝辞

本研究の一部にはJSPS 科研費基盤研究(C) JJ15K05735を用いました。記して感謝いたします。

参考文献

1) M. K. Niaki, S. A. Torabi, F. Nonino: Why manufacturers adopt additive manufacturing technologies: The role of sustainability, J. Clean. Prod., Vol. 222 (2019) pp. 381-392.
2) Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He: 3D printing of ceramics: A review, J. Eur. Ceram. Soc., Vol. 39, No. 4 (2019) pp. 661-687.
3) N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shih, J. Blackbumb: Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol., Vol. 35, No. 2 (2019) pp. 242-269.
4) T. Haavi, N. Tvenge, K. Martinsen: CDIO design education collaboration using 3D-desktop printers, Procedia CIRP, Vol. 70 (2018) pp. 325-330.
5) Y. Li, B. S. Linke, H. Voet, B. Falk, R. Schmitt, M. Lam: Cost sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers, CIRP J. Manuf. Sci. Technol., Vol. 16 (2017) pp. 1-11.

6) C. Fredrikssoon: Sustainability of metal powder additive manufacturing, Procedia Manuf., Vol. 33 (2019) pp. 139-144.

7) T. Yamazaki: Development of A Hybrid Multi-tasking Machine Tool: Integration of Additive Manufacturing Technology with CNC Machining, Procedia CIRP, Vol. 42 (2016) pp. 81-86.

8) N. Mohri, N. Saito, Y. Tsunekawa: Metal surface modification by electrical discharge machining with composite electrode, CIRP Ann. Manuf. Technol., Vol. 42, No. 1 (1993) pp. 219-222.

9) K. Furutani, A. Saneto, H. Takezawa, N. Mohri, H. Miyake: Accretion of Titanium Carbide by Electrical Discharge Machining with Powder Suspended in Working Fluid, Precis. Eng., Vol. 25, No. 2 (2001) pp. 138-144.

10) S. Hayakawa, R. I. Ori, F. Itoigawa, T. Nakamura, T. Matsubara: Fabrication of Microstructure using EDM Deposition, Proc. 13th Int. Sympo. Electr. Mach., Bilbao, Spain (2001) pp. 783-793.

11) T. Abe, H. Sasahara: Residual Stress and Deformation After Finishing of a Shell Structure Fabricated by Direct Metal Lamination Using Arc Discharge, Int. J. Autom. Technol., Vol.6, No.5 (2012) pp.611-617.

12) 山口勝美, 中村弘史: プリンター用放電式金属噴射ノズルの開発, 日本機械学会論文集 C 編, Vol. 72, No. 720 (2006) pp. 2656-2661.

13) D. Nakabayashi, K. Sawai, K. Takahashi, S. Saito: Electrostatic deposition of a micro solder particle using a single probe by applying a single rectangular pulse, J. Micromech. Microeng. Vol. 22, No. 8 (2012) 085003.

14) 鈴木 清, 毛利尚武, 植松哲太郎, 中川威雄: ツイン電極法による放電ツルーアイング法の提案, 昭和 60 年度精密秋季予稿 (1985) pp. 575-578.

15) 小林俊樹, 国枝正典: マルチスパーク法と従来法とのハイブリッド型放電加工システムの開発, 電気加工学会誌, Vol. 37, No. 84 (2003) pp. 9-16.

16) M. Kunieda and M. Yoshida: Electrical Discharge Machining in Gas, CIRP Ann. Manuf. Technol., Vol.46, No.1 (1997) pp.143-146.

17) H. Xia, M. Kunieda, N. Nishiwaki: Simulation of Electrode Surface Temperature in Die-Sinking EDM Process, Int. J. Electr. Mach., No. 4 (1999) pp. 13-18.

18) W. M. Haynes, Ed.: CRC Handbook of Chemistry and Physics (95th Ed.), CRC Press, Boca Raton, FL, USA (2014) p. 12-124.

（2019年6月10日受付）