QUANTIZATION OF THE MODULAR FUNCTOR AND EQUIVARIANT
ELLiptIC COHOMology

NITU KITCHLOO

Abstract. Given a simple, simply connected compact Lie group G, let M be a G-space. We study the quantization of the category of parametrized positive energy representations of the loop group of G at a given level. This procedure is described in terms of dominant K-theory [Ki] of the loop group evaluated on the phase space of basic classical gauge fields about a circle, for families of two dimensional conformal field theories parametrized over M. More concretely, we construct a holomorphic sheaf over a universal elliptic curve with values in dominant K-theory of the loop space LM, and show that each stalk of this sheaf is a cohomological functor of M. We also interpret this theory as a model of equivariant elliptic cohomology of M as constructed by Grojnowski [G].

Contents

1. Introduction: 1
2. Background on Dominant K-theory and the space \mathcal{A}: 3
3. The equivariant sheaf $^kK_{T\ltimes LG}$ over $\mathfrak{h} \times \Sigma \mathbb{C}$, and locality: 6
4. The sheaf $^kG^*(M)$ over the universal elliptic curve, and Theta functions: 9
5. Level k representations of $T \ltimes \tilde{L}T$ and $^kG(G/T)$: 11
6. Modularity of $^kG(M)$: 14
References 17

1. Introduction:

Given a string manifold M, Witten has used heuristic arguments to show that the genus one partition function of a certain 2-dimensional sigma model (with background M) can be seen as the value of a genus evaluated on M. In particular, this “Witten genus of M” takes values in modular forms (see [S3] for an overview). This led to a flurry of activity aimed at constructing the underlying “Elliptic cohomology theory” with coefficients being modular forms, and which is a receptacle for the Witten genus. Subsequent work by M. Hopkins and his collaborators resulted in the construction of the theory “TMF” (Topological Modular Forms). This theory has been shown to admit all the homotopical properties one would expect of an “Elliptic Cohomology theory” (indeed, it is a universal elliptic cohomology theory in a suitable sense). However, a geometric description of TMF that allows one to draw a connection to physics remains elusive.
Given a two dimensional conformal field theory, one expects the genus one partition function to be the character of a representation of an underlying “Chiral Algebra” (or Vertex Algebra). The category of representations of the chiral algebra is typically the linear category that one assigns to a circle in the process of constructing the underlying “Modular Functor” [S]. If the field theory in question is reasonably nice (i.e. rational), then this category of representations is semi-simple. This suggests, in particular, that the K-theory of this category is essentially the same as topological complex K-theory (possibly twisted by an anomaly).

In this document, we would like to offer the suggestion that the K-theory of the space of classical fields in codimension one (or fields that satisfy equations of motion in a neighborhood of a codimension one manifold), for a parametrized family of conformal field theories, is an important object to study. This “quantization of the modular functor” should be interpreted as an approximation of elliptic cohomology of the parameter space. More on this philosophy can be found at [NC]. Let us justify this idea with some examples.

Taking the above argument as motivation, J. Morava and the author considered two dimensional field theories parametrized over a manifold M. The basic fields in dimension one are parametrized over the space LM of smooth maps from a circle to M. The space LM comes with a manifest action of the rotation group \mathbb{T}. In [KM] we considered the completion of the \mathbb{T}-equivariant K-theory of M at the rotation character q: $K_\mathbb{T}(LM)((q))$. One may interpret this completion as localizing around infinitesimal loops (or the low-energy limit). A simple argument was used in [KM] to show that this is a cohomology theory in M (i.e. satisfies the Mayer-Vietoris axioms on M) and can be interpreted as an approximation to elliptic cohomology of M at the “Tate locus”. In particular, $K_\mathbb{T}(LM)((q))$ was shown to be a receptacle for the Witten genus.

Equivariantly, the situation is much more interesting and gives further support to the idea of relating the K-theory of the chiral algebra to the topological K-theory of the space of fields on a circle. Consider gauged two dimensional field theories with gauge group being a simple and simply connected Lie group G. The space of fields over a circle for such theories supports an action of the loop group LG. In addition, the basic gauge fields in such theories is the LG-space A of principal connections on the trivial G-bundle over a circle. Since the quantum state-space of a two dimensional field theories have a positive (or negative) energy spectrum, one expects the equivariant K-theory $K_{LG}(A)$ to be related to the Grothendieck group of positive energy (or negative energy) representations of LG. Freed-Hopkins-Teleman have shown [FHT] that once we incorcorporate a twisting on $K_{LG}(A)$ induced by the level (i.e. the central character of the universal central extension \tilde{LG} of LG), this K-theory becomes canonically isomorphic to Grothendieck group of positive energy representations of LG!

Now consider the LG-equivariant K-theory of the “phase space” given by basic classical fields about a circle for gauged two dimensional conformal field theories parametrized over a G-space M. Since this space consists of fields that satisfy the equations of motion in a neighborhood of the circle, we may identify it with $LM \times A_C$, where A_C denotes the complexification of the stack $A/\langle \mathbb{T} \times \tilde{LG} \rangle$. We interpret this complexification as a replacement for the tangent bundle (or the space of classical solutions to any second order equations of motion on the space of connections). Extrapolating from the case of the trivial group G considered in [KM], we can only expect to get a cohomology theory in M once we suitably
complete with respect to the character \(q \) that represents energy. To do this, one must first construct a \(T \times \tilde{LG} \)-equivariant version of K-theory for any positive integral level. This is precisely what has been constructed by the author in [Ki], and goes by the name of Dominant K-theory.

The main purpose of this document is to construct, for any positive level \(k \), a global version of dominant K-theory: \(\mathcal{K}_{T \times \tilde{LG}}(LM) \). In other words, we describe \(\mathcal{K}_{T \times \tilde{LG}}(LM) \) as an equivariant holomorphic sheaf over the stack \(\{(i\mathbb{R}^+ \times A)/T \times \tilde{LG}\}_{C} \) built out of dominant K-groups of the space \(LM \) (see theorem 3.5 and remark 3). Here \(i\mathbb{R}^+ \) denotes the positive energy axis. If \(M \) is a finite \(G \)-space, we show that the stalks of this sheaf are cohomological functors of \(M \). By taking \(M \) to be a point and evaluating invariant global sections of the above sheaf, we identify the coefficients of this theory with Weyl invariant theta functions, or equivalently, with level \(k \) positive energy representations of the loop group \(T \times \tilde{LG} \) (see corollary 4.6 and remark 4). Similarly, on taking \(M \) to be the full flag variety \(G/T \) (see theorem 5.3). In general, for \(G \)-spaces \(M \) that satisfy some well-known conditions, the space of invariant sections of these sheaves is a representation of the modular group \(SL_2(\mathbb{Z}) \) (see theorem 6.7).

By taking invariants with respect to certain gauge subgroups, \(\mathcal{K}_{T \times \tilde{LG}}(LM) \) descends to a sheaf \(\mathcal{G}(M) \) on a universal elliptic curve (see section 4). It is important to point out that a version of \(G \)-equivariant elliptic cohomology has been constructed by Grojnowski [G], and subsequently explored in more detail by Ando and others (see [AB]). This construction identifies equivariant elliptic cohomology as a twisted sheaf of algebras over the universal elliptic curve. We expect \(\mathcal{G}(M) \) to be closely related to Grojnowski’s equivariant elliptic cohomology (see remark 5). \(^1\)

The author wishes to thank the American Institute of Math., and all the participants of the AIM (SQUARE) workshop in mathematical physics (in particular M. Ando, H. Sati and J. Morava) for inspiring the ideas that led to this paper.

One word about our conventions: Throughout this article, we deal with several actions (both left and right) as well as extensions of groups. In order to avoid confusion, we will use the notation \(g \ast x \) to mean that a group element \(g \) acts on an element \(x \). The notation \(gh \) is reserved for a product of two group elements \(g \) and \(h \) inside a larger group.

2. BACKGROUND ON DOMINANT K-THEORY AND THE SPACE \(\mathcal{A} \):

Let \(G \) be a simple and simply-connected compact Lie group of rank \(n \). Let \(LG \) denote the loop group of \(G \). The group \(LG \) supports a universal central extension [PS] which will henceforth be denoted by \(\tilde{LG} \). The action of the rotation group \(T \) on \(LG \) lifts to an action on \(\tilde{LG} \), so that one may define the extended loop group: \(T \times \tilde{LG} \).

Given a representation of \(T \times \tilde{LG} \) in a separable Hilbert space \(\mathcal{H} \), we say it has level \(k \), if the central circle \(S^1 \) acts by the character \(e^{ik\theta} \). It is well known that for positive \(k \), the category of representations of level \(k \) is semi simple, with finitely many irreducible objects.

\(^1\)Lurie also has an algebraic interpretation of this sheaf (see sections 3 and 5 in [L]).
In addition, one may prescribe an orientation on the circle \mathbb{T} so that any irreducible representation of level $k > 0$, has finitely many negative Fourier modes (i.e negative powers of the character q). Such representations are called positive energy representations.

As explained in [Ki], we fix a level $k > 0$ and consider a level k representation of $\mathbb{T} \times \tilde{L}G$ in a separable Hilbert space \mathcal{H}_k with the property that any level k irreducible representation occurs infinitely often in \mathcal{H}_k. Let \mathcal{F}_k denote the space of Fredholm operators on \mathcal{H}_k. One may choose a topology on \mathcal{F}_k so that its underlying homotopy type is $\mathbb{Z} \times \text{BU}$ and admits a continuous action of $\mathbb{T} \times \tilde{L}G$. In [Ki] we constructed a two periodic cohomology theory, called Dominant K-theory on the category of proper $(\mathbb{T} \times \tilde{L}G)$-CW complexes:

$$k K^0_{T \times \tilde{L}G}(X) := \pi_0 \text{Map}^{T \times \tilde{L}G}(X, \mathcal{F}_k), \quad k K^{-1}_{T \times \tilde{L}G}(X) := \pi_1 \text{Map}^{T \times \tilde{L}G}(X, \mathcal{F}_k).$$

Definition 2.1. Having defined Dominant K-theory, let us set some notation. Given a closed subgroup $H \subset \mathbb{T} \times \tilde{L}G$, let \tilde{H} be the induced central extension. Given a proper H-space Y, consider the space: $O := (\mathbb{T} \times \tilde{L}G)_+ \land_{\tilde{H}} Y$. We define:

$$k K^*_H(Y) := k K^*_\mathbb{T} \times \tilde{L}G(O) = \pi_* \text{Map}^{T \times \tilde{L}G}((\mathbb{T} \times \tilde{L}G)_+ \land_{\tilde{H}} Y, \mathcal{F}_k) = \pi_* \text{Map}^{\tilde{H}}(Y, \mathcal{F}_k).$$

We now describe the structure of the space $\mathbb{T} \times \tilde{L}G$-space A of principal connections on the trivial G-bundle over the circle. Indeed, this space is homeomorphic to a proper, finite $\mathbb{T} \times \tilde{L}G$-complex. In addition, it is the universal space for proper actions, in that any other proper $\mathbb{T} \times \tilde{L}G$-space maps to it along an equivariant map that is unique up to an equivariant homotopy.

Fix a maximal torus T of G, and let α_i, $1 \leq i \leq n$ be a set of simple roots. We let α_0 denote the highest root. Each root α_i, $0 \leq i \leq n$ determines a compact subgroup G_i of G. More explicitly, G_i is the semi simple factor in the centralizer of the codimension one subtorus given by the kernel of α_i. Each G_i may be canonically identified with $SU(2)$ via an injective map $\varphi_i : SU(2) \to G$. We use these groups G_i to define corresponding compact subgroups \tilde{G}_i of LG as follows:

$$G_i = \{ z \mapsto \varphi_i \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{if} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2) \quad i > 0, \}$$

$$G_0 = \{ z \mapsto \varphi_0 \begin{pmatrix} a & b \cr cz & d \end{pmatrix} \quad \text{if} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2).\}$$

Note that each G_i is a compact subgroup of LG isomorphic to $SU(2)$. Moreover, G_i belongs to the subgroup G of constant loops if $i \geq 1$. The rotation group \mathbb{T} preserves each G_i, acting trivially on G_i for $i \geq 1$, and nontrivially on G_0.

Definition 2.2. For any proper subset $I \subset \{0, 1, \ldots, n\}$, define the group G_I denote the group generated by G_i, $i \in I$, and let the parabolic subgroup $H_I \subset LG$ be the group generated by T and G_I. For the empty set, we define H_I to be T. Similarly, we define $\tilde{H}_I \subset LG$ to be the induced central extension of H_I.

2Note that the center acts trivially on these spaces.
Remark 1. Henceforth, we only consider proper subsets $I \subset \{0,1,\ldots,n\}$. The groups \tilde{H}_I are compact Lie groups that are preserved under the action of the rotation group T, with T acting nontrivially on \tilde{H}_I if and only if $0 \in I$. In particular, $T \times H_I \subset T \times \tilde{L}G$ is a well defined compact Lie subgroup. In addition, all representations of $T \times H_I$ of level k appear in \mathcal{H}_k for $k > 0$. It follows therefore that $k\mathbf{K}_{T \times H_I}(X)$ is a module over standard equivariant K-theory: $K_{T \times H_I}(X)$ for any $T \times \tilde{H}_I$-space X.

The following theorem was proven in [KM]:

Theorem 2.3. The space \mathcal{A} of principal G connections on the trivial bundle $G \times S^1$ is $T \times \tilde{L}G$-equivariantly homeomorphic to the “Topological Tits building” [Ki] given by the homotopy colimit of homogeneous spaces over all proper subsets $I \subset \{0,1,\ldots,n\}$:

$$\hocolim_{I \subset \{0,1,\ldots,n\}}(T \times LG)/(T \times H_I) = \hocolim_{I \subset \{0,1,\ldots,n\}}(T \times \tilde{LG})/(T \times \tilde{H}_I).$$

Furthermore, the space \mathcal{A} is the universal space for proper actions of $T \times \tilde{L}G$.

Consider the inclusion of the maximal torus $T := T \times T \times S^1 \subset T \times \tilde{L}G$. Let $N(T)$ be the normalizer of the maximal torus. Recall that $N(T)$ is an extension of a discrete group $\tilde{W}(G)$ by the torus T:

$$1 \to T \to N(T) \to \tilde{W}(G) \to 1.$$

The group $\tilde{W}(G)$ is the Weyl group of $T \times LG$ known as the Affine Weyl group. It is equivalent to $\pi_1(T) \ltimes W(G)$, where $W(G)$ is the Weyl group of G.

The fixed subspace of \mathcal{A} under T is given by the universal space for proper $N(T)$-actions:

$$\Sigma = \mathcal{A}^T = \hocolim_{I \subset \{0,1,\ldots,n\}} N(T)/N_I(T) = \hocolim_{I \subset \{0,1,\ldots,n\}} \tilde{W}(G)/W_I,$$

where $N_I(T)$ is the normalizer of T in \tilde{H}_I, and W_I is the corresponding Weyl group. The space Σ is in fact the space of principal connections on the trivial principal T-bundle over a circle. In particular, it is homeomorphic to the Lie algebra \mathcal{T} of T.

Remark 2. Consider the subspace $\Delta \subset \Sigma$:

$$\Delta := \hocolim_{I \subset \{0,1,\ldots,n\}} (T/T) \subset \hocolim_{I \subset \{0,1,\ldots,n\}} N(T)/N_I(T).$$

Δ is the fundamental domain of the action of $\tilde{W}(G)$ on Σ, (or that of $T \times \tilde{L}G$ on \mathcal{A}). It is homeomorphic to a simplex with faces indexed by proper subsets of $\{0,1,\ldots,n\}$. Under the identification of Σ with \mathcal{T}, the subspace of \mathcal{T} corresponding to Δ is called the Affine Alcove and is defined as:

$$\Delta = \{ h \in \mathcal{T} \mid \alpha_i(h) \geq 0, \quad \alpha_0(h) \leq 1, \quad 1 \leq i \leq n \}.$$

Δ may also be seen as an affine subspace of the Lie algebra of $T \times LG$ induced by the inclusion $T \subset LG$. In this identification, the groups $T \times H_I$ are exactly the stabilizers (under the adjoint action of $T \times LG$) of the walls Δ_I in Δ corresponding to the subset I. Using the homotopy decomposition of \mathcal{A}, one obtains an equivariant affine inclusion of \mathcal{A} into the Lie algebra of $T \times LG$. We may extend this inclusion to an equivariant inclusion of $i\mathbb{R}_+ \times \mathcal{A}$, where $i\mathbb{R}$ denotes the Lie algebra of the rotation circle T.

3. The equivariant sheaf $^kK_{T \times LG}$ over $\mathfrak{h} \times \Sigma_C$, and locality:

In this section, we will construct a holomorphic sheaf built from dominant K-groups over the complexification $\mathfrak{h} \times \Sigma_C$ (to be defined below) of the space $i\mathbb{R}_+ \times \Sigma$. We construct this sheaf in two steps: first we construct a local coefficient system kK_T on $\mathfrak{h} \times \Sigma_C$, and next we extend kK_T to a module $^kK^*_T$ over the sheaf of holomorphic functions on $\mathfrak{h} \times \Sigma_C$.

Let us consider the stack $(i\mathbb{R}_+ \times A)//(T \times \tilde{L}G)$. The coarse moduli space (or orbit space) of this stack is the space $i\mathbb{R}_+ \times \Delta$ described above in remark 2. Let $\pi : i\mathbb{R}_+ \times A \to i\mathbb{R}_+ \times \Delta$ denote the projection map. Given a $T \times LG$-space Y, one obtains a coefficient system $^kB_T(Y)$ over $i\mathbb{R}_+ \times \Delta$ given by sheafifying the pre-sheaf:

$$U \mapsto kK^*_{T \times LG}(\pi^{-1}(U) \times Y).$$

Let $(\tau, x) \in i\mathbb{R}_+ \times \Delta$ be a point, with x being in the interior of the wall $\Delta_I \subset \Delta$, recall that the stabilizer of (τ, x) under the action of $T \times \tilde{L}G$ is the group $T \times \tilde{H}_I$. It follows form the definitions that the stalk at (τ, x) is the K-theory group: $^kK^*_{T \times \tilde{H}_I}(X)$. Since we are working in characteristic zero, this stalk is canonically isomorphic to the Weyl invariants: $kK_T(Y)^{W_I}$. It follows from this description that the above coefficient system is the $\tilde{W}(G)$-invariants of the push-forward along $i\mathbb{R}_+ \times \Sigma \to i\mathbb{R}_+ \times \Delta$ of the $\tilde{W}(G)$-equivariant constant coefficient system over $i\mathbb{R}_+ \times \Sigma$ with constant value $kK_T(X)$ at each point. We call this constant coefficient system $^kK^*_T(Y)$ over $i\mathbb{R}_+ \times \Sigma$. In the sequel, we shall find it more convenient to work with $^kK^*_T(Y)$ instead of $^kB^*_T(Y)$.

It is straightforward to extend $^kK^*_T(Y)$ to a coefficient system over the complexification of $i\mathbb{R}_+ \times \Sigma$. Let us identify the complexification of the positive energy axis Σ with constant value Σ_C. Hence we may define Σ_C to be $T \otimes \mathbb{C}$.\footnote{We should think of Σ_C as the tangent bundle of Σ. See remark 3.}

The space $\mathfrak{h} \times \Sigma_C$ supports a free affine action of a group $N = (\pi_1(T) \oplus \pi_1(T)) \times W(G)$, with the action of $W(G)$ acting diagonally on both lattices. In particular, we have a canonical map $N \to \tilde{W}(G)$, given by:

$$(\beta_1 \oplus \beta_2) w \mapsto \beta_1 w, \quad \text{where} \quad \beta_i \in \pi_1(T), \quad \text{and} \quad w \in W(G).$$

The action of N on $\mathfrak{h} \times \Sigma_C$ is defined as:

$$((\beta_1 \oplus \beta_2) w) \ast (\tau, h) = (\tau, w(h) + \tau \beta_1 + \beta_2).$$

Given any $T \times LG$-space Y, consider the infinite loop space: $\text{Map}^T\{Y, F_k\}$, endowed with an action of N that factors through the manifest action of $\tilde{W}(G)$. We therefore obtain an N-equivariant parametrized spectrum given by the projection onto the first factor:

$$(\mathfrak{h} \times \Sigma_C) \times \text{Map}^T\{Y, F_k\} \to \mathfrak{h} \times \Sigma_C.$$
Remark 3. The “correct” definition of the complexification of the stack $(i\mathbb{R}_+ \times \mathcal{A})/(\mathbb{T} \times \tilde{\text{LG}})$ is dictated by the framework of field theory: it is the “phase space” or the stack of classical gauge fields in the neighborhood of a circle (or solutions to the equations of motion along germs of cylinders). Given second-order equations of motion, classical gauge fields are uniquely determined by the Cauchy data, or points in the tangent bundle of \mathcal{A}. Consider (ders). Given second-order equations of motion, classical gauge fields are uniquely determined by the Cauchy data, or points in the tangent bundle of \mathcal{A} which we denote by $T(\mathcal{A})$. The gauge symmetries \mathbb{G} of these classical solutions is given by extending the Gauge group $\mathbb{T} \times \tilde{\text{LG}}$ along the germ of the cylinder. It is a straightforward exercise to check that:

\[\mathbb{G} := (\mathbb{T} \times \tilde{\text{LG}}) \times \text{Lie}(\mathbb{T} \times \tilde{\text{LG}}), \]

with the action on the space $(i\mathbb{R}_+ \times T(\mathcal{A}))$ described as follows:

Let us first use remark 2 to identify \mathcal{A} with the Lie algebra of LG. Now, given an element $(ix, \alpha, \beta) \in i\mathbb{R}_+ \times T(\mathcal{A})^4 = i\mathbb{R}_+ \times \mathbb{A} \times \mathbb{A}$, and elements $\varphi \in \mathbb{T} \times \tilde{\text{LG}}$, $\psi \in \text{Lie}(\mathbb{T} \times \tilde{\text{LG}})$, the action of \mathbb{G} on the space $(i\mathbb{R}_+ \times T(\mathcal{A})))$ can be computed to be:

\[\varphi^*(ix, \alpha, \beta) = (ix, \text{Ad}_{\varphi^{-1}}(\alpha) + x\varphi^{-1}d\varphi, \text{Ad}_{\varphi^{-1}}(\beta)), \quad \psi^*(ix, \alpha, \beta) = (ix, \alpha, xd\psi - [\psi, \alpha] + \beta). \]

One can show using these formulas that $(i\mathbb{R}_+ \times \Sigma_{\mathbb{C}})$ can be identified with the fixed points of $(i\mathbb{R}_+ \times T(\mathcal{A}))$ under the action of the maximal torus $\mathbb{T} \subset \mathbb{T} \times \tilde{\text{LG}} \subset \mathbb{G}$. This identification induces an equivalence of the coarse moduli space \mathcal{M} of the stack $(i\mathbb{R}_+ \times T(\mathcal{A}))//\mathbb{G}$ with that of $(i\mathbb{R}_+ \times \Sigma_{\mathbb{C}})\backslash \tilde{\text{W}}(\mathbb{G})$. Now given a point $y \in \mathcal{M}$, let A_y and B_y denote the (conjugacy classes) of automorphism groups of any object over y in the stack $(i\mathbb{R}_+ \times T(\mathcal{A}))//\mathbb{G}$ and $(i\mathbb{R}_+ \times \Sigma_{\mathbb{C}})\backslash \tilde{\text{W}}(\mathbb{G})$ respectively. The above observations imply that the group B_y is the Weyl group of the maximal compact factor in the group A_y. It is not hard to extend the above structure from $i\mathbb{R}_+$ to the whole upper half plane \mathbb{H}. As before, the coefficient system on \mathcal{M} constructed using the dominant K-theory for the stack $(\mathbb{H} \times T(\mathcal{A}))//\mathbb{G}$, agrees with the $\tilde{\text{W}}(\mathbb{G})$-invariants of the push-forward of the sheaf $^k\mathcal{K}_T$ over $(\mathbb{H} \times \Sigma_{\mathbb{C}})\backslash \tilde{\text{W}}(\mathbb{G})$. This justifies our choice of using the sheaf $^k\mathcal{K}_T$ over $(\mathbb{H} \times \Sigma_{\mathbb{C}})\backslash \tilde{\text{W}}(\mathbb{G})$.

The final step is to “quantize” or extend $^k\mathcal{K}^*_{\tilde{T} \times \tilde{\text{LG}}}(\mathcal{Y})$ to a sheaf of modules $^k\mathcal{K}^*_{\tilde{T} \times \tilde{\text{LG}}}(\mathcal{Y})$ over the sheaf of holomorphic functions on $\mathbb{H} \times \Sigma_{\mathbb{C}}$, which we denote by $\mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})$. We do this by representing the phase space as projective operators on \mathcal{H}_k:

Definition 3.1. Let $\mathbb{T}_\mathbb{C} \times \mathbb{T}_\mathbb{C}$ denote the complexification of the torus $\mathbb{T} \times \mathbb{T}$. Consider the holomorphic exponential map:

\[\chi : \mathbb{H} \times \Sigma_{\mathbb{C}} \longrightarrow \mathbb{T}_\mathbb{C} \times \mathbb{T}_\mathbb{C}, \quad \chi(\tau, h) = (e^{2\pi i\tau}, \exp(2\pi i\tau)). \]

The map χ can be made \mathcal{N}-equivariant, with the action of \mathcal{N} on $\mathbb{T}_\mathbb{C} \times \mathbb{T}_\mathbb{C}$ factoring through the affine action of $\tilde{\text{W}}(\mathbb{G})$. Then the characters induce an injective ring map (also denoted χ):

\[\chi : \text{Rep}(\mathbb{T}_\mathbb{C} \times \mathbb{T}_\mathbb{C}) \longrightarrow \mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}}). \]

The above definition allows us to define a sheaf of $\mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})$-modules:

Definition 3.2. Define the \mathcal{N}-equivariant sheaf $^k\mathcal{K}^*_{\tilde{T} \times \tilde{\text{LG}}}(\mathcal{Y})$ over $\mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})$ on the level of stalks:

\[^k\mathcal{K}^*_{\tilde{T} \times \tilde{\text{LG}}}(\mathcal{Y})(\tau, h) = ^k\mathcal{K}^*_T(\mathcal{Y})(\tau, h) \otimes \chi \mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})(\tau, h), \]

where we define the completed tensor product as:

\[^k\mathcal{K}^*_T(\mathcal{Y})(\tau, h) \otimes \chi \mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})(\tau, h) = \lim_{\to} \left\{ ^k\mathcal{K}^*_T(\mathcal{Y}_\alpha)(\tau, h) \otimes \chi \mathcal{O}(\mathbb{H} \times \Sigma_{\mathbb{C}})(\tau, h) \right\}, \]

the inverse limit being taken over all finite \mathbb{T}-equivariant sub-skeleta \mathcal{Y}_α of \mathcal{Y}.

$x \in \mathbb{R}_+$ can be used to parametrize the radius of the circle.
The above sheaf satisfies a fixed point theorem:

Theorem 3.3. Given a point \((\tau, h) \in \mathfrak{h} \times \Sigma_C\). Define elements \(h_2, h_1 \in \Sigma\) to be the unique elements so that \(h = -\tau h_1 + h_2\). Let \(\mathbb{R}(h)\) denote the sub torus of \(T \times T\) given by the closure of the one-parameter subgroup \((e^{2\pi ix}, \exp(-2\pi i x h_1))\), with \(x \in \mathbb{R}\). Also define \(\mathbb{Z}(h)\) to be the closed subgroup of \(T\) generated by the element \(\exp(2\pi i h_2)\). Then the inclusion of the fixed points \(Z(\tau, h) := Y^{\mathbb{R}(h)} \cap \tilde{Y}(\tau, h) \subseteq Y\) induces an isomorphism:

\[k\mathcal{K}^{\ast}_{\mathbb{T} \times \tilde{L}G}(Y)_{(\tau, h)} \rightarrow kK_T(Z(\tau, h)) \otimes \chi \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)}. \]

Proof. Working by induction on the \(T \times T\)-cells of \(Y\), or by invoking the localization theorem in [S2], one can show that given a subgroup \(S \subseteq T \times T\), the the restriction to the fixed points: \(Y^S \subseteq Y\) induces an isomorphism in equivariant K-theory once we invert the multiplicative set \(\text{Rep}(S)\), generated characters of \(\text{Rep}(T \times T)\) of the form \(e^\alpha - 1\) for weights \(\alpha\) of \(T \times T\) that restrict nontrivially to \(S\). We say that the localization of equivariant K-theory: \(K_{T \times T}(Y)[\text{Rep}(S)]^{-1}\) is localized on the fixed subspace \(Y^S\).

Now, a character \(e^\alpha - 1\) is invertible in \(\mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)}\) if and only if we have:

\[\alpha(\tau, h) \notin \mathbb{Z}, \quad \text{or equivalently:} \quad \alpha(1, -h_1) \neq 0, \quad \text{or} \quad \alpha(0, h_2) \notin \mathbb{Z}. \]

The first condition implies that \(e^\alpha - 1\) is nontrivial when restricted to \(\mathbb{R}(h)\) and the second condition implies that \(e^\alpha - 1\) is nontrivial when restricted to \(\mathbb{Z}(h)\). The result follows. \(\square\)

Of particular interest to us is the space \(Y = LM\), where \(M\) is a given \(G\)-space. In this case, the space \(Z(\tau, h)\) in the previous theorem has an appealing interpretation. We leave it to the reader to show:

Corollary 3.4. \(LM^{\mathbb{R}(h)}\) can be identified with the space of periodic loops of the form:

\[LM^{\mathbb{R}(h)} = \{ \gamma \mid \gamma(e^{2\pi ix}) = \exp(2\pi i x h_1) m, \ m \in M \}. \]

In particular, \(LM^{\mathbb{R}(h)}\) is abstractly homeomorphic to \(M^{\exp(2\pi i h_1)}\). Similarly, we have the identification: \(LM^{\mathbb{Z}(h_2)} = L(M^{\exp(2\pi i h_2)})\). Consequently, we have an equality of \(T \times T\)-spaces:

\[LM^{\mathbb{R}(h)} \cap LM^{\mathbb{Z}(h_2)} = \{ \gamma \in LM \mid \gamma(e^{2\pi ix}) = \exp(2\pi i x h_1) m, \ m \in M^{\{\exp(2\pi i h_1), \exp(2\pi i h_2)\}} \}. \]

Note that this space is abstractly homeomorphic to the finite \(T \times T\)-space: \(M^{\{\exp(2\pi i h_1), \exp(2\pi i h_2)\}}\).

This observation, along with the above theorem leads us to:

Theorem 3.5. Given a finite \(G\)-space \(M\), the sheaf \(k\mathcal{K}^{\ast}_{\mathbb{T} \times \tilde{L}G}(LM)\) is a \(\mathcal{N}\)-equivariant sheaf of \(\mathcal{O}(\mathfrak{h} \times \Sigma_C)\)-modules. Furthermore, it is a cohomological functor in \(M\). In particular, one obtains the Mayer-Vietoris sequence in \(M\) for each stalk of \(k\mathcal{K}^{\ast}_{\mathbb{T} \times \tilde{L}G}(LM)\).

Proof. To show that each stalk is a cohomological functor in \(M\), one simply observes that the finiteness of \(LM^{\mathbb{R}(h)}\) allows us to replace the completed tensor product (in the statement of theorem 3.3) with the standard tensor product. Now the inclusion of algebraic maps to holomorphic germs: \(\text{Rep}(T \times T) \rightarrow \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)}\) can be shown to be a flat map. Hence, each stalk is a flat extension of a cohomological functor of \(M\), and is therefore itself a cohomological functor. \(\square\)
4. The sheaf $^kG^*(M)$ over the universal elliptic curve, and Theta functions:

We begin this section with some important definitions:

Definition 4.1. Define the $W(G)$-equivariant universal elliptic curve over \mathfrak{h} as the quotient under the action of $(\pi_1(T) \oplus \pi_1(T)) \subset \mathcal{N}$:

$$\mathcal{E}_T := (\mathfrak{h} \times \Sigma_C)/(\pi_1(T) \oplus \pi_1(T)).$$

The holomorphic structure sheaf $\mathcal{O}(\mathcal{E}_T)$ is defined as: $\{\zeta, \mathcal{O}(\mathfrak{h} \times \Sigma_C)\}^{(\pi_1(T) \oplus \pi_1(T))}$, where ζ denotes the projection map from $\mathfrak{h} \times \Sigma_C$ to \mathcal{E}_T. Similarly, we define the sheaf $^kG^*(M)$ of $\mathcal{O}(\mathcal{E}_T)$-modules to be:

$$^kG^*(M) := \{\zeta, ^kK^*_{T \times \mathcal{L}G}(LM)\}^{(\pi_1(T) \oplus \pi_1(T))}.$$ Note that the above sheaves are $W(G)$-equivariant.

We may also define untwisted \mathcal{N}-equivariant sheaves of algebras: $K^*_{T \times \mathcal{L}G}(LM)$, as well as an untwisted $W(G)$-equivariant sheaf: $G^*(M)$:

Definition 4.2. Let $K^*_{T \times \mathcal{L}G}(LM)$ be the \mathcal{N}-equivariant sheaf of algebras obtained by extending the constant sheaf with values in (usual) $T \times T$-equivariant K-theory of LM, over $\mathcal{O}(\mathfrak{h} \times \Sigma_C)$. Similarly, let $G^*(M)$ denote the $W(G)$-equivariant sheaf of algebras over the sheaf $\mathcal{O}(\mathcal{E}_T)$ given by $\{\zeta, K^*_{T \times \mathcal{L}G}(LM)\}^{(\pi_1(T) \oplus \pi_1(T))}$. Notice in particular that the sheaves $^kK^*_{T \times \mathcal{L}G}(LM)$ and $^kG^*(M)$ are modules over $K^*_{T \times \mathcal{L}G}(LM)$ and $G^*(M)$ respectively.

It is well known [K1] that the action of $\beta \in \pi_1(T) \subset \hat{W}(G)$ on the characters q, e^α, u under the decomposition $T_C = T_C \times T_C \times \mathbb{C}^*$ is given by the formula:

$$\beta u = u e^{\beta^* q} q^{1/2(\beta, \beta)}, \quad \beta e^\alpha = e^\alpha q^{\alpha(\beta)}, \quad \beta q = q. $$

where β^* is the weight dual to β and $(\ , \)$ denotes a canonical positive-definite quadratic form on $\pi_1(T)$ [K1].

Now recall that χ of 3.1 represented an \mathcal{N}-equivariant map from $\mathfrak{h} \times \Sigma_C$ to $T_C \times T_C$. The above formulas show that χ extends to an \mathcal{N}-equivariant map (also denoted χ):

$$\chi : \mathfrak{h} \times \Sigma_C \times \mathbb{C} \longrightarrow T_C \times T_C \times \mathbb{C}, \quad \chi(\tau, h, z) = (e^{2\pi i \tau}, \exp(2\pi i h), z),$$

where the action of \mathcal{N} on $\mathfrak{h} \times \Sigma_C$ extends to an action on $\mathfrak{h} \times \Sigma_C \times \mathbb{C}$ given by:

$$((\beta_1 + \beta_2) w) * (\tau, h, z) = (\tau, w(h) + \tau \beta_1 + \beta_2, \ z \exp(2\pi i \langle \beta_1, w(h) \rangle + \pi i \tau \langle \beta_1, \beta_1 \rangle)).$$

Definition 4.3. Define the central line bundle \mathcal{L}5 to be the \mathcal{N}-equivariant bundle:

$$\mathcal{L} := \mathfrak{h} \times \Sigma_C \times \mathbb{C} \longrightarrow \mathfrak{h} \times \Sigma_C.$$

We will use the same notation to denote the $W(G)$-equivariant line bundle over $\mathcal{O}(\mathcal{E}_T)$ given by taking orbits under the $(\pi_1(T) \oplus \pi_1(T))$-action defined above:

$$\mathcal{L} := (\mathfrak{h} \times \Sigma_C) \times (\pi_1(T) \oplus \pi_1(T)) \mathbb{C} \longrightarrow \mathcal{E}_T.$$

Let us also set the notation \mathcal{L}^{-k} to denote the k-fold tensor product of the dual line bundle.

5the dual of \mathcal{L} is also known as the Looijenga line bundle.
Theorem 4.4. The $W(G)$-equivariant sheaf $kG^*(M)$ over $O(\mathcal{E}_\mathbb{T})$ is naturally isomorphic to a rank one locally free $G^*(M)$-module generated by the line bundle L^{-k}. The corresponding result is also true for the sheaf $kK_{\mathbb{T} \times LG}^*(LM)$.

Proof. Since u is the central character, it is easy to see that in cohomological degree zero, $kG^*(\ast)$ is canonically isomorphic to L^{-k}. In particular, we have a canonical inclusion: $L^{-k} \hookrightarrow kG^*(M)$ for any M induced by the projection map $M \rightarrow pt$. Extending with the module structure over $G^*(M)$ gives us the isomorphism we seek. Details are straightforward and are left to the reader. \qed

It is of obvious interest to explore the structure of the space of invariant sections of $kG^*(M)$. For the case $M = pt$, the previous theorem identifies this space of sections with the space of $W(G)$-invariant sections of L^{-k}. To related these sections to familiar objects, we need:

Claim 4.5. The space of sections of L^{-k} can be identified with holomorphic functions on the space φ on $\mathfrak{h} \times \Sigma_C \times \mathbb{C}$ with the following transformation property for all $\beta \in \pi_1(\mathbb{T})$:

$$\varphi(\tau, h + \beta, z) = \varphi(\tau, h, z), \quad \varphi(\tau, h, z) = \exp(2\pi i k\langle \beta, h \rangle + \pi i k \tau \langle \beta, \beta \rangle) \varphi(\tau, h + \tau \beta, z).$$

In addition, the function is homogeneous of degree k in the variable z:

$$\varphi(\tau, h, uz) = u^k \varphi(\tau, h, z).$$

Proof. These equalities correspond to the standard identification of sections of lines bundles that are obtained via an associated bundle construction (as in the case of L^{-k}), with functions on the total space of the dual bundle. \qed

Holomorphic functions that satisfy the conditions above are called theta functions of degree k. The following corollary is essentially the content of [K1](Chap. 13):

Corollary 4.6. In cohomological degree zero, the space of $W(G)$-invariant global sections of $kG^*(pt)$ is isomorphic to the vector space generated by the $W(G)$-invariant theta functions of degree k (with respect to the positive definite quadratic form $\langle \cdot, \cdot \rangle$ on $\pi_1(\mathbb{T})$). In particular, this space is finite dimensional and has a basis given by the characters of the irreducible level k representations of $\mathbb{T} \rtimes LG$.

Remark 4. The geometric interpretation of the above corollary is straightforward: Given a level k positive energy irreducible representation V of $\mathbb{T} \rtimes LG$, it is well known that the action of the Lie algebra of $\mathbb{T} \rtimes LG$ on V can be complexified. Now recall form remark 2 that $i\mathbb{R}_+ \times \Sigma \times \mathbb{R}$ is a subspace of the Lie algebra of $\mathbb{T} \rtimes LG$. Hence, for each point $(\tau, h, z) \in \mathfrak{h} \times \Sigma_C \times \mathbb{C}$, one has an operator $\psi(\tau, h, z)$ on V, which are homogeneous of degree k in the variable z and factor through the complexified torus $\mathbb{T}_C \times \mathbb{T}_C \times \mathbb{C} \times \mathbb{C}$. The operators $\psi(\tau, h, z)$ preserve each (finite dimensional) \mathbb{T}-eigenspaces of V. It follows that $\psi(\tau, h, z)$ gives rise to a nested family of operators, whose trace converges to the germ of a holomorphic function on $\mathfrak{h} \times \Sigma_C \times \mathbb{C}$, at the point (τ, h, z). This is precisely an element of the stalk of the sheaf $kK_{\mathbb{T} \times LG}(pt)_{(\tau, h)}$. In this manner each irreducible positive energy level k representation V gives rise to a section of $kK_{\mathbb{T} \times LG}(pt)$. This construction also allows one to identify the image of $kK_{\mathbb{T} \times LG}(pt)$ inside $kK_{\mathbb{T} \times LG}(LM)$ for any G-space M.

10
Remark 5. In [G], Grojnowski constructs a sheaf which is now known as Grojnowski’s equivariant elliptic cohomology. What is incredible to the author is that this sheaf is constructed in an a-priori fashion starting with the stalks that are prescribed to be as our corollary 3.4 suggests. Grojnowski’s construction uses equivariant singular cohomology instead of K-theory, but he points out that the stalks are to be seen under the lens of the chern character. There have been several later versions of Grojnowski’s construction by other authors (see [AB]). It appears very likely that our sheaf $kG^*(M)$ is closely related to Grojnowski’s construction, though we have not explored the details. Indeed, remarks in [G] suggest that he had something like our framework in mind when constructing his equivariant elliptic cohomology. As the previous remark suggests, the merit of using a geometric description as we have done, is that it allows one to motivate and directly construct elements in equivariant elliptic cohomology.

5. LEVEL k REPRESENTATIONS OF $\mathbb{T} \times \tilde{LT}$ AND $kG(G/T)$:

In his section we explore the structure of the sheaf $kG(G/T)$.

Let $K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))$ denote the sheaf over $\mathcal{O}(\mathfrak{h} \times \Sigma_C)$ representing the equivariant K-theory: $K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))$. Notice that the space $(\mathbb{T} \times LT)/(\mathbb{T} \times T)$ supports an $\mathbb{T} \times LG$-equivariant right action of $\tilde{W}(G)$ given by:

$$w \ast (g \mathbb{T} \times T) = gw\mathbb{T} \times T.$$

In particular, the $\mathcal{O}(\mathfrak{h} \times \Sigma_C)$-module $K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))$ admits another action of the affine Weyl group: $\tilde{W}(G)$ which preserves each stalk and commutes with the action of the group N. So as to not confuse this action with the action induced via N, we shall refer to this action as the right action: $\tilde{W}(G)_r$. Let $K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))^{\pi_1(T)_r}$ denote the N-equivariant sheaf of invariants under the subgroup $\pi_1(T) \subseteq \tilde{W}(G)_r$. Notice that $K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))^{\pi_1(T)_r}$ admits a residual action of $W(G)_r$ that commutes with all the present structure. With this observation in place, we have:

Theorem 5.1. The $N \times W(G)_r$-equivariant sheaf $kK^*_{T\times LG}(L(G/T))$ may be described as:

$$kK^*_{T\times LG}(L(G/T)) = K^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))^{\pi_1(T)_r} \otimes \mathcal{L}^{-k} = kK^*_{T\times T}((\mathbb{T} \times LG)/(\mathbb{T} \times T))^{\pi_1(T)_r}.$$

Furthermore, the $W(G)_r$-invariant sub-sheaf of $kK^*_{T\times LG}(L(G/T))$ can be identified with the image of $kK^*_{T\times LG}(pt)$ induced by the projection map from G/T to a point.

Proof. Using the results and notation of corollary 3.4, we recall that for a point (τ, h), the stalk $kK^*_{T\times LG}(L(G/T))_{(\tau, h)}$ is localized on a subspace of $(G/T)^{exp(2\pi i h)}$. Now, using the action of N (which preserves the isomorphism type of the stalks), we may assume that $-h_1$ belongs to the affine alcove Δ. Assume that $-h_1$ belongs to the interior of a wall Δ_I. It follows that $(G/T)^{exp(2\pi i h_1)} = H_I \times N_I W$, where we use \tilde{W}, W and W_I to denote $\tilde{W}(G)$, $W(G)$ and $W_I(G)$ resp., and N_I denotes the normalizer of the maximal torus of H_I. In particular, we have:

$$kK^*_{T\times LG}(L(G/T))_{(\tau, h)} = K^*_{T\times T}((\mathbb{T} \times H_I) \times N_I W) \otimes \mathcal{L}^{-k}_{(\tau, h)},$$

where the action of \mathbb{T} on H_I is via the map $t \mapsto exp(2\pi ith_1)$. However, it is easy to see that one may choose the standard action of \mathbb{T} on H_I without changing the equivariant
K-theory (since any two actions differ by a map from \mathbb{T} to the center of H_I). Now we have the equality:

$$K^*_{\mathbb{T} \times T}((\mathbb{T} \times H_I) \times_{N_I} W) = K^*_{\mathbb{T} \times T}((\mathbb{T} \times H_I) \times_{N_I} \tilde{W})^{\pi_1(T)^r}.$$

In addition, the space $(\mathbb{T} \times H_I) \times_{N_I} \tilde{W}$ is easily seen to be identical to the fixed point space: $(\mathbb{T} \times LG / (\mathbb{T} \times T))^{\exp(2\pi i h_I)}$. Unraveling these sequence of equalities gives rise to a natural isomorphism:

$$k^*K^*_{\mathbb{T} \times T}(L(G/T))_{(\tau,h)} = K^*_{\mathbb{T} \times T}((\mathbb{T} \times LG / (\mathbb{T} \times T))^{\pi_1(T)^r} \otimes \mathcal{L}^{-k}.$$

It remains to explore the W_r-invariant sub-sheaf. For this, consider an arbitrary proper subset $I \subset \{0, 1, \ldots, n\}$, and let i_I denote the inclusion of fixed points:

$$i_I : \tilde{W} \subseteq (\mathbb{T} \times H_I) \times_{N_I} \tilde{W}.$$

The maps i_I are compatible in I and hence by [HHH] [KK], give rise to an injection of $\mathcal{N} \times W_r$-equivariant sheaves:

$$i^*: K^*_T \rightarrow \{ \prod_{w \in W} \mathcal{L}^{-k} \}^{\pi_1(T)^r} = \prod_{w \in W} \mathcal{L}^{-k},$$

where the co-domain is endowed with the action of W_r induced by right permutations of the indexing set for the product. Taking invariants with respect to W_r, leads easily to the proof of the statement we required.

Next we consider \mathcal{N}-invariant global sections of the sheaf $k^*K^*_T((\mathbb{T} \times LG / (\mathbb{T} \times T))^{\pi_1(T)^r}$. This space will be expresed in terms of certain classes that can formally be expressed in terms of euler classes of certain equivariant line bundles on $(\mathbb{T} \times LG / (\mathbb{T} \times T))$. In addition, they are expressible in terms of theta functions. For this reason, we call these classes Euler-Theta classes. For the sake of brevity, we will stick with the notation W and \tilde{W} for $W(G)$ and $W(G)$ resp. We recall our convention to use the notation $(w * e^\lambda)$ to denote the action of $w \in \tilde{W}$ on the character e^λ of $\mathbb{T} \times \mathbb{T} \times S^1$ via the action of \mathcal{N} (which, we recall, acts on characters along its projection onto \mathbb{W}).

Now given a character e^λ of $\mathbb{T} \times \mathbb{T} \times S^1$ of level k, consider the formal theta character:

$$\theta_\lambda = \sum_{\beta \in \pi_1(T)} e^{\beta * \lambda}.$$

By [K1] (Ch. 12), θ_λ can be seen to be a holomorphic section of the line bundle \mathcal{L}^{-k}. By construction, θ_λ is invariant under the action of $(\pi_1(T) \oplus \pi_1(T)) \subset \mathcal{N}$. This leads us to:

Definition 5.2. Given a level k character λ of $\mathbb{T} \times \mathbb{T} \times S^1$, we define the Euler-Theta class $e(\lambda)$:

$$e(\lambda) \in \{ \prod_{w \in W} \mathcal{O}(\mathcal{L}^{-k}) \nu_w \}^{\pi_1(T)^r}, \quad e(\lambda) = \prod_{w \in W} (w * \theta_\lambda) \nu_w,$$

where ν_w is a place holder for the factor corresponding to the element $w \in \tilde{W}$.

Consider the injection of \mathcal{N}-invariant global sections induced by the inclusion of $\mathbb{T} \times \mathbb{T}$-fixed points:

$$\Gamma_{\mathcal{N}}i^*: \Gamma_{\mathcal{N}}k^*K^*_T((\mathbb{T} \times LG / (\mathbb{T} \times T))^{\pi_1(T)^r} \rightarrow \{ \prod_{w \in W} \mathcal{O}(\mathcal{L}^{-k}) \nu_w \}^{\pi_1(T)^r} = \prod_{w \in W} \mathcal{O}(\mathcal{L}^{-k}).$$
Theorem 5.3. The image of $\Gamma_N^*\nu^*$ is a finite dimensional vector space spanned by $e(\lambda)$, where λ ranges over the equivalence class of characters of level k induced via N. In particular, by [K1], the space of N-invariant global sections of $kK^*_T((\mathbb{T} \ltimes LG)/(\mathbb{T} \ltimes T))$ is isomorphic to the vector space spanned by all level k representations of $\mathbb{T} \ltimes \hat{LT}$ under the induced central extension $\mathbb{T} \ltimes \hat{LT} \subset \mathbb{T} \ltimes LG$.

Proof. Given any level k character e^λ, consider the expression of the form $\prod_{w \in \hat{W}} (w \ast e^\lambda) \nu_w$. It is easy to see that this is the image (under ν^*) of the $\mathbb{T} \ltimes \hat{LG}$-equivariant line bundle over $(\mathbb{T} \ltimes LG)/(\mathbb{T} \ltimes T)$, induced by the weight λ. In particular, this element represents an N-invariant global section of the bundle $kK^0_{\mathbb{T} \ltimes LG}(((\mathbb{T} \ltimes LG)/(\mathbb{T} \ltimes T)))$. Taking the orbit of this element under the action of $\pi_1(T)$, results in an $N \times \pi_1(T)$-invariant element whose factors are expressible as theta functions and therefore $e(\lambda)$ is a well defined N-invariant element in the co-domain of the map $\Gamma_N^*\nu^*$.

For this we invoke results of [HHH] that identify the image of $\Gamma_N^*\nu^*$ as follows. Given a positive real root α of $T \ltimes LG$, let $r_\alpha \in \hat{W}$ denote the reflection corresponding to α. Let v, w be elements of \hat{W} with the property that $w = r_\alpha v$ is a reduced expression. Then by [HHH], one needs to verify that $(w \ast \theta_\lambda) - (v \ast \theta_\lambda)$ is divisible by $e^{\alpha} - 1$ in $\mathcal{O}(L^{-k})$. To establish this fact, notice that for any $\beta \in \pi_1(T)$, we have:

$$w \ast (\beta \ast e^\lambda) - v \ast (\beta \ast e^\lambda) = e^{v \ast (\lambda + k\beta^*)} q^{-\langle \beta, \beta \rangle} \{ e^{-v \ast (\lambda + k\beta^*)(h_\alpha) \alpha} - 1 \}.$$

For fixed w, v, λ, α, the above expression may be factored in $\mathcal{O}(L^{-k})$:

$$w \ast (\beta \ast e^\lambda) - v \ast (\beta \ast e^\lambda) = (e^\alpha - 1) \varphi(\beta).$$

Notice that the elements $\varphi(\beta)$ are characters dominated by $q^{\frac{1}{2} \langle \beta, \beta \rangle}$ and therefore the sum over all β converges to give us a well defined factorization in $\mathcal{O}(L^{-k})$:

$$(w \ast \theta_\lambda) - (v \ast \theta_\lambda) = (e^\alpha - 1) \sum_{\beta \in \pi_1(T)} \varphi(\beta).$$

This proves that the elements $e(\lambda)$ are in the image of $\Gamma_N^*\nu^*$. Now let $n \in N$ be an arbitrary element. The action of this element on a section ψ of the form $\prod_{w \in \hat{W}} \psi_w \nu_w$ is given by:

$$n \ast (\prod_{w \in \hat{W}} \psi_w \nu_w) = \prod_{w \in \hat{W}} (n \ast \psi_w) \nu_{n \ast w}.$$

Hence a N-invariant global section ψ is determined by its factor ψ_e corresponding to the unit $e \in \hat{W}$. If in addition, ψ is $\pi_1(T)_r$-invariant, we deduce that ψ_e must be fixed by the action of the lattice $(\pi_1(T) \oplus \pi_1(T)) \subset N$. Hence, ψ_e is an arbitrary holomorphic section of the line bundle L^{-k} over \mathcal{E}_T. These theta functions are known to be a vector space on a basis given by elements θ_λ with λ ranging on the quotient space mentioned above. In addition, these theta functions index level k representations of $\mathbb{T} \ltimes \hat{LT}$ [K1] [PS]. □

Remark 6. We may construct elements in $kK^0_{\mathbb{T} \ltimes LG}(pt)$ along the lines described in remark 4. These may be induced up to elements in $kK^0_{\mathbb{T} \ltimes LG}(L(G/T))$ using the fact that $L(G/T) = (\hat{LG})/(\hat{LT})$. The above theorem implies that this procedure of induction exhausts all elements of the space of global sections of $kK^*_T \ltimes LG(L(G/T))$.

13
We end this section with the example of a free G-space \(M \):

Theorem 5.4. Let \(M \) be a free finite dimensional G-space, and let \(K^*_\pi(M) = K^*(M/T)[q^\pm] \) denote the \(W(G) \)-module given by the topological K-theory of the homogeneous space \(M/T \) with a trivial action of \(T \). Let \(K^*_\pi(M/T) \) be the corresponding sheaf on \(\mathcal{T}_C \times \mathcal{T}_C \). Then as \(N \)-equivariant sheaves, we have an equivalence:

\[
{k}K^*_\pi(M/T) \cong K^*_\pi(M/T) \otimes_{\chi} L^{-k}.
\]

Furthermore, \({k}G^*(M) \) is supported along the zero section: \(h \rightarrow \mathcal{E}_T \).

Proof. Consider the stalk at a point \((\tau, h)\). Recall that we showed in corollary 3.4 that this stalk is localized on the space of \(M^{\exp(2\pi i h_1)} \cap M^{\exp(2\pi i h_2)} \). But since \(M \) is a free G-space, the only way one may get a non-trivial stalk is if \(h_1, h_2 \in \pi_1(T) \). By using the action of the lattice in \(N \), we may assume that \(h_1 = h_2 = 0 \). It follows that \({k}K^*_\pi(M/T) \) is supported on the \(N \)-orbit of \(h \), and that it is given by constants loops if \(h_1 = h_2 = 0 \):

\[
{k}K^*_\pi(M/T)_{(\tau, 0)} = K^*_\pi(M) \otimes_{\tau, 0} L^{-k} = K^*(M/T)[q^\pm] \otimes_{\tau, 0} L^{-k}.
\]

\[\square\]

6. **Modularity of \({k}G(M) \):**

Grojnowski has pointed out in [G] that his sheaf is modular, i.e. it is equivariant under an action of \(\text{SL}_2(\mathbb{Z}) \) that extends the action on \(\mathcal{E}_T \). This issue of modularity is somewhat subtle in our case. It will turn out that the untwisted sheaves \(G(M) \) admit an action of \(\text{SL}_2(\mathbb{Z}) \) compatible with the action of \(N \) whenever the G-space \(M \) has a certain property which we shall make precise in the next paragraph. However, an interesting double cover of the group generated by \(\text{SL}_2(\mathbb{Z}) \) and \(N \) will act on the line bundles \(L^{-k} \). By tensoring these actions together, we obtain an action of this double cover on the sheaf \({k}G(M) \).

Let us fix a category of G-spaces \(M \) that will be of interest to us. The property we will assume on our spaces \(M \) is familiar in the literature. It was first studied by Goresky, Kottwitz and MacPherson in [GKM] and later explored by several authors. The context relevant to us has been studied in [HHH] where the equivariant K-theory of \(M \) is described combinatorially. We shall call these spaces GKM-spaces:

Definition 6.1. [HHH] Given a G-space \(M \), consider \(M \) as a T-space by restriction. We call \(M \) a GKM-space if \(M \) admits a T-equivariant stratification: \(M = \bigsqcup_i U_i \), with a single T-fixed point in the stratum \(U_i \) denoted by \(F_i \). We make three assumptions on this stratification:

- We assume that the space obtained by collapsing the lower strata from the closure of a stratum: \(\overline{U}_i/ \bigsqcup_{j<i} U_j \) is the compactification of a T-representation \(V_i \) about the fixed point \(F_i \).
- We assume that \(V_i \) can be decomposed as: \(V_i = \bigoplus_{j<i} V_{i,j} \), where \(V_{i,j} \) is a sub representation such that its its unit sphere maps to the fixed point \(F_j \) under the attaching map to lower strata.
- Finally, we also assume that the T-equivariant K-theoretic euler classes of \(V_{i,j} \) are all mutually relatively prime.

\[\text{These sheaves appear to not necessarily be induced from } \mathcal{O}(\mathfrak{h})\text{-modules.}\]
Example 6.2. Given a parabolic subgroup $H_I \subseteq G$ for $I \subseteq \{1, \ldots, n\}$, the homogeneous space G / H_I is an example of a GKM space.

The main theorem in [HHH] states:

Theorem 6.3. [HHH] Given a GKM-space M, the restriction map to the fixed points:

$$K^*_T(M) \rightarrow \prod_I \text{Rep}(T),$$

is injective, with the image given by elements $\prod_I \alpha_I$ so that $\alpha_I - \alpha_J$ is divisible by the euler class of V_{IJ} for all $J \leq I$.

We will use the above theorem to show that the sheaf $K^*_{T \ltimes \tilde{LG}}(LM)$ is modular in a sense to be made precise below.

Definition 6.4. Consider the (right) action of $SL_2(\mathbb{Z})$ on $(\pi_1(T) \oplus \pi_1(T))$ commuting with $W(G)$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (\beta_1 + \beta_2) = (a\beta_1 + c\beta_2, b\beta_1 + d\beta_2).$$

We may therefore define an extension of N by $SL_2(\mathbb{Z})$ which we denote $N_2(\mathbb{Z})$:

$$N_2(\mathbb{Z}) = (\pi_1(T) \oplus \pi_1(T)) \rtimes (W(G) \times SL_2(\mathbb{Z})).$$

More precisely, the new relations in $N_2(\mathbb{Z})$ are of the form:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} (\beta_1 + \beta_2) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a\beta_1 + c\beta_2, b\beta_1 + d\beta_2).$$

We may extend the action of N on $h \times \Sigma_C$ to an action of $N_2(\mathbb{Z})$ by defining a left $SL_2(\mathbb{Z})$ action:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (\tau, h) = \left(\frac{a\tau + b}{ct + d}, \frac{h}{ct + d} \right).$$

Claim 6.5. Given a GKM-space M, the action of $N_2(\mathbb{Z})$ on $h \times \Sigma_C$ induces an action on the stalks of the sheaf $K^*_{T \ltimes \tilde{LG}}(LM)$. In particular, the stalks of the untwisted sheaf: $G(M)$ admit an action of the group $W(G) \times SL_2(\mathbb{Z})$.

Proof. Recall from 3.4 that the stalks $K^*_{T \ltimes \tilde{LG}}(LM)_{(\tau, h)}$ are localized on the $T \times T$-space:

$$Z(\tau, h) := \{ \gamma \in LM \mid \gamma(e^{2\pi ix}) = \exp(2\pi ixh_1)m, \quad m \in M^{(exp(2\pi i h_1), exp(2\pi ih_2))} \}.$$

The action of the group $T \times T$ on $Z(\tau, h)$ factors through the map:

$$\rho(\tau, h) : T \times T \rightarrow T, \quad (e^{2\pi ix}, s) \mapsto e^{2\pi i(xh_1 - h_2)}s.$$

where we recall from 3.3 that h_1, h_2 are defined uniquely by the equation: $h = -h_1\tau + h_2$. Now the stalks of $K^*_{T \ltimes \tilde{LG}}(LM)$ can be described as:

$$K^*_{T \ltimes \tilde{LG}}(LM)_{(\tau, h)} = K_T^*(Z(\tau, h)) \otimes_{\mathcal{O}(h \times \Sigma_C)(\tau, h)} \mathcal{O}.$$
The action of a matrix in \(A \in \text{SL}_2(\mathbb{Z}) \) on \(\mathfrak{h} \times \Sigma_C \) sends the pair \((h_1, h_2)\) to the pair \((\hat{h}_1, \hat{h}_2)\), where the pairs are related by:

\[
a \hat{h}_1 - c \hat{h}_2 = h_1, \quad d \hat{h}_2 - b \hat{h}_1 = h_2, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\]

Observe that the group generated by \(\exp(2\pi i h_0) \) and \(\exp(2\pi i h_1) \) remains unchanged under the action of \(A \). Hence \(Z(A(\tau, h)) \) is canonically equivalent to \(Z(\tau, h) \) as a \(T \)-space. This defines the operator induced by the \(\text{SL}_2(\mathbb{Z}) \)-action on \(\mathfrak{h} \times \Sigma_C \):

\[
A^* : \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{A(\tau, h)} \longrightarrow K^*_T(Z(\tau, h)) \otimes A^* \chi_A(\tau, h) \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)}, \quad A^* \psi(z, s) = \psi(A(z, h)).
\]

Next, we show that the right hand side is canonically isomorphic to \(\mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)} \). For this we invoke theorem 6.3. Since \(M \) is a GKM space, it follows that \(Z(\tau, h) \) is also a GKM space with the same set of fixed points. Consider the injective restriction map:

\[
K^*_T(Z(A(\tau, h))) \otimes A^* \chi_A(\tau, h) \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)} \longrightarrow \prod_{\alpha} \text{Rep}(T) \otimes A^* \chi_A(\tau, h) \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)},
\]

where the ring \(\mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)} \) sends the point \((\tau, h)\) to the unit in \(T_C \). It follows from this that the virtual characters \(A^* \chi^*(\tau, h) e(V_{IJ}) \) and \(\chi^*(\tau, h) e(V_{IJ}) \) have a zero of the same order (given by the dimension of \(V_{IJ} \)) at the point \((\tau, h)\). Hence the ratio of \(A^* \chi^*(\tau, h) e(V_{IJ}) \) and \(\chi^*(\tau, h) e(V_{IJ}) \) is well-defined, and represents an invertible element in \(\mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)} \), which is what we wanted to show.

The above identification yields a canonical map:

\[
A^* : \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{A(\tau, h)} \longrightarrow K^*_T(Z(\tau, h)) \otimes \chi_{(\tau, h)} \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)} = \mathcal{O}(\mathfrak{h} \times \Sigma_C)_{(\tau, h)}.
\]

We leave it to the reader to check that this map of stalks extends to an action of \(N_2(\mathbb{Z}) \):

\[
K^*_{\text{LG}}(LM)_{A(\tau, h)} \longrightarrow K^*_{\text{LG}}(LM)_{(\tau, h)}.
\]

It remains to demonstrate modularity of \(kG(M) \). For this, we need to establish a modular action on the line bundles \(\mathcal{L}^{-k} \). As mentioned earlier, this is turns out to be a subtle matter. We begin by constructing a double cover of \(N_2(\mathbb{Z}) \) using a cocycle \(\eta \) defined below. Consider the \(\text{W}(G) \)-invariant quadratic form mod two:

\[
\mu : \pi_1(T) \otimes \pi_1(T) \longrightarrow \mathbb{Z}/2, \quad (\alpha, \beta) \mapsto \langle \alpha, \beta \rangle \mod 2.
\]

Given \(A \in \text{SL}_2(\mathbb{Z}) \), and \((\beta_1 \oplus \beta_2) \in \pi_1(T) \otimes \pi_1(T)\), we also define the \(\mathbb{Z}/2 \) valued function:

\[
\eta(\beta_1 \oplus \beta_2, A) := \mu(A \ast (\beta_1 \oplus \beta_2)) - \mu(\beta_1 \oplus \beta_2).
\]
Remark 7. One may check that \(\eta \) is trivial if \(\pi_1(T) \) is an even lattice i.e. \(\langle \beta, \beta \rangle \in 2\mathbb{Z} \) for all \(\beta \in \pi_1(T) \). This is the case if \(G \) is simply laced.

Definition 6.6. Define the double cover \(\mathcal{M}_2(\mathbb{Z}) \) of \(\mathcal{N}_2(\mathbb{Z}) \) by extending the action of \(\text{SL}_2(\mathbb{Z}) \) on the lattice \((\pi_1(T) \oplus \pi_1(T)) \) using \(\eta \) as a cocycle:

\[
\mathcal{M}_2(\mathbb{Z}) = (\mathbb{Z}/2 \oplus \pi_1(T) \oplus \pi_1(T)) \rtimes \text{SL}_2(\mathbb{Z}),
\]

with \(\mathbb{Z}/2 \) being central, and relations:

\[
A^{-1}(\beta_1 \oplus \beta_2) A = \eta(\beta_1 \oplus \beta_2, A) + A^*(\beta_1 \oplus \beta_2).
\]

Note that this central extension is canonically split over \(\mathcal{N} \) and \(\text{SL}_2(\mathbb{Z}) \).

We may now extend the action of \(\mathcal{N} \) on the line bundle \(\mathcal{L} \), to an action of \(\mathcal{M}_2(\mathbb{Z}) \) that lifts the action of \(\mathcal{N}_2(\mathbb{Z}) \) on \(h \times \Sigma_C \) as follows: Given \(A \in \text{SL}_2(\mathbb{Z}) \), we define a left action of \(A \) on the line bundle \(\mathcal{L} = h \times \Sigma_C \times \mathbb{C} \) by:

\[
\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \ast (\tau, h, z) = \left(\begin{array}{c} a\tau + b \\ c\tau + d \end{array} \right), \frac{h}{c\tau + d}, z \exp\left(-\frac{\pi ic}{c\tau + d}\langle h, h \rangle\right),
\]

where \(\langle h, h \rangle \) denotes the \(\mathbb{C} \)-linear extension of the quadratic form on \(\pi_1(T) \). The generator of the central \(\mathbb{Z}/2 \) is defined to act by multiplication with \(-1\) on the factor \(\mathbb{C} \). We leave it to the reader to check that this defines an action of \(\mathcal{M}_2(\mathbb{Z}) \) on \(\mathcal{L} \).

As an immediate consequence of these observations, we have:

Theorem 6.7. Given a GKM-space \(M \), the global sections of the sheaf \(kK^*_\text{ad}_{T \times \tilde{L}G}(LM) \) admit an action of the group \(\mathcal{M}_2(\mathbb{Z}) \). In the case of an even lattice \(\pi_1(T) \), or even level \(k \), global sections of \(kG(M) \) admit an action of the group \(\text{W}(G) \times \text{SL}_2(\mathbb{Z}) \).

References

AB. M. Ando, M. Basterra, *The Witten genus and equivariant elliptic cohomology*, Mathematische Zeitschrift, No. 240, (2002), 787–822.

FHT. D. Freed, M. Hopkins, C. Teleman, *Loop groups and twisted K-theory, III*, Ann. Math., 174, (2011), 947–1007.

G. I. Grojnowski, *Delocalised Equivariant Elliptic cohomology*, Elliptic Cohomology, London Math. Soc. Lecture Note Series (342), Cambridge Univ. Press, (2007), 114–121.

GKM. M. Goresky, R. Kottwitz, R. MacPherson, *Equivariant cohomology, Koszul duality, and the localization theorem*, Invent. Math. 131, (1998), 25–83.

HHH. M. Harada, A. Henriques, T. Holm, *Computation of generalized equivariant cohomologies of Kac-Moody flag varieties*, Advances in Math., 197, No. 1, (2005), 198–221.

K1. V. Kac, *Infinite dimensional Lie algebras*, Cambridge University Press, 1990.

Ki. N. Kitchloo, *Dominant K-theory and Integrable highest weight representation of Kac-Moody groups*, Advances in Math., 221, (2009), 1227-1246.

KK. B. Kostant, S. Kumar, *T-equivariant K-theory of generalized flag varieties*, J. Diff. Geom., 32, 1990, 549–603.

KM. N. Kitchloo, J. Morava, *Thom prospectra and Loop group representations*, Elliptic Cohomology, London Math. Soc. Lecture Note Series (342), Cambridge Univ. Press, (2007), 214-238.

L. J. Lurie, *A survey of Elliptic Cohomology*, available at: http://www.math.harvard.edu/~lurie/.

NC. *Interpretation of Quantum Field Theory/String theory*, available at: http://ncatlab.org/nlab/show/equivariant+elliptic+cohomology#InterpretationInQuantumFieldTheory.

PS. A. Presley, G. Segal, *Loop Groups*, Oxford University Press, 1986.
S. G. Segal, The definition of a conformal field theory, Topology, Geometry and Quantum Field theory, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, (2004), 421–577.

S2. G. Segal, Equivariant K-theory, Pub. Math. de. I.H.E.S., 34 (1968), 129–151.

S3. G. Segal, Elliptic cohomology, Sem. Bourbaki, 1987-88, No. 695, 187–201.

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, USA

E-mail address: nitu@math.jhu.edu