The exponential of the spin representation of the Lorentz algebra

jason hanson*

December 21, 2013

Abstract

As discussed in a previous article, any (real) Lorentz algebra element possess a unique orthogonal decomposition as a sum of two mutually annihilating decomposable Lorentz algebra elements. In this article, this concept is extended to the spin representation of the Lorentz algebra. As an application, a formula for the exponential of the spin representation is obtained, as well as a formula for the spin representation of a proper orthochronous Lorentz transformation.

1 Orthogonal decomposition

Let \(g \) be a Lorentz metric on \(\mathbb{R}^4 \). That is, \(g \) is a symmetric nondegenerate inner product with determinant \(-1\). For our purposes, we need not specify a signature for \(g \). The Lorentz group \(O(g) \) is the Lie group of linear transformations \(\Lambda \) on \(\mathbb{R}^4 \) such that \(\Lambda^T g \Lambda = g \), and the Lorentz algebra \(so(g) \) is the Lie algebra of transformations \(L \) for which \(L^T g + gL = 0 \).

1.1 Decomposition of bivectors

Elements of \(so(g) \) are called Lorentz bivectors. A special type of Lorentz bivector is the simple bivector, which takes the form \(u \wedge^g v \) for four-vectors \(u, v \) in \(\mathbb{R}^4 \), where

\[
(u \wedge^g v)(w) = g(v, w)u - g(u, w)v
\]

\(^*\text{jhanson@digipen.edu}\)
when applied to the four–vector \(w \). In index notation, \((u \wedge^g v)_\beta^\alpha = u^\alpha v_\beta - v^\alpha u_\beta\). Simple bivectors are also called decomposable bivectors, and are characterized by the condition \(\det(u \wedge^g v) = 0 \).

While not every Lorentz bivector \(L \) is simple, it is the sum of simple bivectors. In fact, it can be shown that any nonsimple Lorentz bivector \(L \) admits an orthogonal decomposition: \(L = L_+ + L_- \), with \(L_\pm \) simple and \(L_+ L_- = 0 = L_- L_+ \). This decomposition is unique. Indeed, the summands of the decomposition of \(L \) are given by

\[
L_\pm = \pm \frac{L^3 - \mu_\pm L}{\mu_+ - \mu_-},
\]

where \(\mu_\pm \) are the positive and negative roots of the equation \(x^2 + (\text{tr}_2 L)x + \det L = 0 \), or equivalently, the solutions of the simultaneous equations

\[
\mu_+ + \mu_- = -\text{tr}_2 L \quad \text{and} \quad \mu_+ \mu_- = \det L.
\]

Here \(\text{tr}_2 L \) is the second order trace of \(L \), which can be computed by the formula \(\text{tr}_2 L = -\frac{1}{2} \text{tr} L^2 \) (this identity holds for any traceless matrix). In particular, \(\text{tr}_2 L_\pm = -\mu_\pm \). See [3] for details.

1.2 Spin representation of the Lorentz algebra

Representations of \(so(g) \) may be constructed from representations of the Clifford algebra \(Cl(g) \) on \(\mathbb{R}^4 \). Recall that \(Cl(g) \) is the quotient of the tensor algebra \(T^*(\mathbb{R}^4) \) by the subalgebra generated by the relation \(uv + vu = 2g(u, v) \) for \(u, v \in \mathbb{R}^4 \). Let \(\rho \) be a Clifford algebra representation; i.e., a (possibly complex) vector space \(V \) and a linear map \(\rho : Cl(g) \to \text{Hom}(V, V) \) that respects Clifford multiplication: \(\rho(uv) = \rho(u)\rho(v) \). We obtain the spin representation \(\sigma : so(g) \to \text{Hom}(V, V) \) by setting

\[
\sigma(u \wedge^g v) \doteq \frac{1}{2} \rho(uv - vu)
\]

for simple Lorentz bivectors, and extending linearly to all of \(so(g) \). One shows that \(\sigma \) is a Lie algebra homomorphism: \(\sigma([L_1, L_2]) = \sigma(L_1)\sigma(L_2) - \sigma(L_2)\sigma(L_1) \) for all Lorentz bivectors \(L_1, L_2 \) (see [2], for example).

A natural choice for the representation \(\rho \) would be gamma matrices; i.e., \(\rho(u) \doteq u^\alpha \gamma_\alpha \). However, a representation may be constructed directly from the Clifford algebra itself: view \(V = Cl(g) \) as a sixteen–dimensional real vector
space, and take ρ to be the identity. Unlike the gamma matrix representation, this is not an irreducible Clifford algebra representation. In the following, we will not have the need to make a specific choice for ρ, and we simply refer to σ as “the” spin representation of $so(g)$. We remark that all formulas, with the exception of those that appear in section 1.4, are actually valid for summands of the spin representation. In particular, they are valid for half-spin representations.

They key property of the spin representation σ that we will make use of is the following, which makes apparent the usefulness of decomposing a bivector into a sum of simple bivectors. Here we write $I = \rho(1)$.

Theorem 1. Suppose $L = u \wedge^g v$ is a simple Lorentz bivector. Then $\text{tr}_2 L = g(u, u)g(v, v) - g(u, v)^2$ and $\sigma(L)^2 = -\frac{1}{4}(\text{tr}_2 L)I$.

Proof. From equation (1), one computes that $\text{tr}_2 L = \frac{1}{16} \rho(1)$. Now compute using equation (4) and the Clifford algebra relation:

$$
\sigma(u \wedge^g v)^2 = \frac{1}{16} \rho(uvv - uv^2u - vu^2v + vuvu)
$$

$$
= \frac{1}{16} \rho(u[-uv + 2g(v, u)]v - g(v, v)g(u, u)
$$

$$
- g(u, u)g(v, v) + v[-vu + 2g(u, v)]u)
$$

$$
= \frac{1}{16} \rho(2g(u, v)(uv + vu) - 4g(u, u)g(v, v))
$$

which implies the stated expression for $\sigma(L)^2$. \hfill \Box

1.3 Decomposition of a spin representation

If L is a Lorentz bivector, then L^3 is as well. So we may apply the spin representation directly to each summand in equation (2) to obtain $\sigma(L_{\pm})$ in terms of $\sigma(L)$ and $\sigma(L^3)$. However, we would like an expression that involves only powers of $\sigma(L)$.

Theorem 2. If $L = L_+ + L_-$ is the orthogonal decomposition of a nonsimple Lorentz bivector, then

$$
\sigma(L_{\pm}) = \frac{\pm 2}{\mu_{\pm} - \mu_-} \left\{ \frac{1}{4}(\mu_{\mp} + 3\mu_{\pm})\sigma(L) - \sigma(L)^3 \right\}
$$

with μ_{\pm} as in equation (3).
Proof. Since \((*)\) \(\sigma(L) = \sigma(L_+) + \sigma(L_-)\), we have that \(\sigma(L)^3 = \sigma(L_+)^3 + 3\sigma(L_+)^2\sigma(L_-) + 3\sigma(L_+)\sigma(L_-) + \sigma(L_-)^3\). Using theorem 1 to reduce powers, we may rewrite this as \((**)\) \(\sigma(L)^3 = \frac{1}{4}(\mu_+ + 3\mu_-)\sigma(L_+) + \frac{1}{2}(\mu_- + 3\mu_+)\sigma(L_-)\). The determinant of the linear system \((*)\) and \((**)\) is \(\frac{1}{2}(\mu_+ - \mu_-)\), which is nonzero if \(L\) is nonsimple, and the system may be solved to yield the stated expressions for \(\sigma(L_\pm)\). \(\square\)

The summands of the orthogonal decomposition of a nonsimple Lorentz bivector are mutually annihilating. Although their images under the spin representation do not share this property, they do commute.

Theorem 3. If \(L = L_+ + L_-\) is the orthogonal decomposition of the nonsimple Lorentz bivector \(L\), then \(\sigma(L_+)\sigma(L_-) = \sigma(L_-)\sigma(L_+) = \frac{1}{8}(\text{tr}_2 L)I + \frac{1}{2}\sigma(L)^2\).

Proof. As \(L_+, L_-\) trivially commute, \([\sigma(L_+), \sigma(L_-)] = \sigma([L_+, L_-]) = 0\). By theorem 1 and equation (3), we then have \(\sigma(L)^2 = \sigma(L_+)^2 + 2\sigma(L_+)\sigma(L_-) + \sigma(L_-)^2 = 2\sigma(L_+)\sigma(L_-) - \frac{1}{4}(\text{tr}_2 L)I\). \(\square\)

1.4 A computational digression

To use the formula in theorem 2, we need to know the values of \(\mu_\pm\), which are obtained from the invariants \(\text{tr}_2 L\) and \(\det L\) of \(L\). However, we would like to deduce these values in the event we only have knowledge of \(\sigma(L)\).

Lemma 1. For any four-vectors \(a, b, u, v\)

\[
\text{tr}_\rho(abuv) = \text{tr}I \{g(a, b)g(u, v) - g(a, u)g(b, v) + g(a, v)g(b, u)\}. \square
\]

This generalizes the well-known identity for gamma matrices, so we need not repeat the computation here. We do note however, that \(\text{tr}I = \text{tr}_\rho(1)\) is the dimension of the representation: \(\text{tr}I = 16\) for the Clifford algebra \(\mathcal{C}l(g)\) itself, and \(\text{tr}I = 4\) for the gamma matrix representation.

Lemma 2. If \(L = L_+ + L_-\) is the orthogonal decomposition of a Lorentz bivector with \(L_+ = a \wedge^g b\) and \(L_- = u \wedge^g v\), then

\[
g(a, v)g(b, u) - g(a, u)g(b, v) = 0.
\]

Proof. From equation (1), one computes \((a \wedge^g b)(u \wedge^g v) = g(b, u)av^T g - g(b, v)au^T g - g(a, u)bv^T g + g(a, v)bu^T g\). Taking the trace of both sides, we get \(\text{tr}\{(a \wedge^g b)(u \wedge^g v)\} = 2g(b, u)g(v, a) - 2g(a, u)g(v, b)\), which is necessarily zero, since \((a \wedge^g b)(u \wedge^g v) = L_+ L_- = 0\). \(\square\)
Theorem 4. If \(L = L_+ + L_- \) is the orthogonal decomposition of a Lorentz bivector, then \(\text{tr}\{\sigma(L_+)\sigma(L_-)\} = 0 \).

Proof. Write \(L_+ = a \wedge^g b \) and \(L_- = u \wedge v. \) Then \(\sigma(L_+)\sigma(L_-) = \frac{1}{16}\rho(ab - ba)\rho(uv - vu) = \frac{1}{16}(\rho(abuv) - \rho(abvu) - \rho(bauv) + \rho(bavu)). \) Take the trace and apply the previous two lemmas. \(\square \)

Theorem 5. For any Lorentz bivector \(L, \text{tr}_2L = -4\text{tr}\sigma(L)^2/\text{tr}I \) and \(\det L = 4\text{tr}\sigma(L)^4/\text{tr}I - 4\text{tr}_2\sigma(L)^2/\text{tr}^2I. \)

Proof. For the first formula, take the trace of the formula in theorem 3. For the second, use the orthogonal decomposition \(L = L_+ + L_- \) and theorem 4 to compute \(\sigma(L)^4 = \{\sigma(L_+) + \sigma(L_-)\}^4 = \frac{1}{16}\mu^2 I - \mu_+ \sigma(L_+)\sigma(L_-) + \frac{3}{8}\mu_+ \mu_- I - \mu_- \sigma(L_+)\sigma(L_-) + \frac{1}{16}\mu^2 I. \) Taking traces, we get \(\text{tr}\sigma(L)^4 = \frac{1}{16}(\text{tr}I)(\mu^2_+ + 6\mu_+ \mu_- + \mu_-^2) = \frac{1}{16}(\text{tr}I)((\mu_+ + \mu_-)^2 + 4\mu_+ \mu_-) = \frac{1}{16}(\text{tr}I)(\text{tr}_2^2L + 4\det L), \) courtesy of equation 3. Solving for \(\det L \) and using the first formula yields the desired expression. \(\square \)

2 Exponential of the spin representation

By general principles, the exponential operation \(\exp(L) = \sum_{n \geq 0} L^n/n! \) is a map \(\exp : so(g) \to O(g), \) whose image is the connected component \(SO^+(g) \) of \(O(g) \) containing the identity transformation; i.e., the set of all proper orthochronous Lorentz transformations. A closed formula for \(\exp(L) \) was obtained in [1]. Here we give a closed expression for \(\exp(\sigma(L)) \) for both simple and nonsimple Lorentz bivectors.

Theorem 6. If \(L \) is a simple Lorentz bivector, then \(\exp(\sigma(L)) = \tilde{c} + \tilde{s}\sigma(L), \) where

\[
\begin{align*}
\text{if } \text{tr}_2L > 0, \quad & \tilde{c} \doteq \cos \frac{1}{2} \sqrt{\text{tr}_2L} \quad \text{and} \quad \tilde{s} \doteq \frac{2}{\sqrt{\text{tr}_2L}} \sin \frac{1}{2} \sqrt{\text{tr}_2L} \\
\text{if } \text{tr}_2L < 0, \quad & \tilde{c} \doteq \cosh \frac{1}{2} \sqrt{-\text{tr}_2L} \quad \text{and} \quad \tilde{s} \doteq \frac{2}{\sqrt{-\text{tr}_2L}} \sinh \frac{1}{2} \sqrt{-\text{tr}_2L} \\
\text{and if } \text{tr}_2L = 0, \quad & \tilde{c} = 1 = \tilde{s}.
\end{align*}
\]

Proof. In the case \(\text{tr}_2L > 0, \) theorem 4 implies \(\sigma(L)^{2p} = (-\theta^2)^p = (-1)^p\theta^{2p}, \) where \(\theta = \frac{1}{2}\sqrt{\text{tr}_2L}. \) Consequently, we may write \(\sigma(L)^{2p+1} = \sigma(L)^{2p}\sigma(L) = (-1)^p\theta^{2p+1}\sigma(L)/\theta. \) Thus the series \(\sum_{n \geq 0} \sigma(L)^n/n! = \sum_{p \geq 0} \sigma(L)^{2p}/(2p)! + \)
\[\sum_{p \geq 0} \sigma(L)^{2p+1}/(2p + 1)! \text{ is summed using the usual Taylor series expansion for sine and cosine. The case when } \text{tr}_2 L < 0 \text{ is similar, and the case } \text{tr}_2 L = 0 \text{ is trivial.} \]

Recall that \(\exp(A + B) = \exp(A) \exp(B) \) whenever the matrices \(A, B \) commute. Thus, \(\exp(\sigma(L)) = \exp(\sigma(L_+)) \exp(\sigma(L_-)) \). Theorems 3 and 6 then lead to the following.

Theorem 7. Suppose \(L = L_+ + L_- \) is the orthogonal decomposition of a nonsimple Lorentz bivector. Define \(\theta_\pm \equiv \frac{1}{2} \sqrt{\pm \text{tr}_2 L_\pm}, \ c_\pm \equiv \cosh \theta_\pm, \ c_\pm \equiv \cos \theta_\pm, \ s_\pm \equiv \sinh \theta_\pm/\theta_\pm, \) and \(\bar{s}_\pm \equiv \sin \theta_\pm/\theta_\pm \). Then

\[
\exp(\sigma(L)) = \bar{c}_+ \bar{c}_- + \bar{s}_+ \bar{s}_- \sigma(L_+) + \bar{c}_+ \bar{s}_- \sigma(L_-) + \bar{s}_+ \bar{s}_- \sigma(L_+) \sigma(L_-)
\]

We derive an alternative formula for \(\exp(\sigma(L)) \) as a polynomial in \(\sigma(L) \).

Theorem 8. If \(L \) is a nonsimple Lorentz bivector, then

\[
\exp(\sigma(L)) = \alpha_0 + \alpha_1 \sigma(L) + \alpha_2 \sigma(L)^2 + \alpha_3 \sigma(L)^3
\]

\[
\begin{align*}
\alpha_0 & \equiv \bar{c}_+ \bar{c}_- - \frac{1}{8}(\mu_+ + \mu_-) \bar{s}_+ \bar{s}_- \\
\alpha_1 & \equiv \frac{1}{4} N \{ (\mu_- + 3 \mu_+) \bar{s}_+ \bar{c}_- - (\mu_+ + 3 \mu_-) \bar{c}_+ \bar{s}_- \} \\
\alpha_2 & \equiv \frac{1}{2} \bar{s}_+ \bar{s}_- \\
\alpha_3 & \equiv N (\bar{c}_+ \bar{s}_- - \bar{s}_+ \bar{c}_-)
\end{align*}
\]

with \(\mu_\pm \) as in equation (3), \(\bar{c}_\pm, \bar{s}_\pm \) as in theorem 7, and \(N \equiv 2/(\mu_+ - \mu_-). \)

3 Spin representation of a Lorentz transformation

The spin representation \(\sigma : \mathfrak{so}(g) \rightarrow \text{Hom}(V, V) \) on the Lie algebra level induces a projective representation \(\Sigma : \text{SO}^+(g) \rightarrow \text{SL}(V)/\pm \) on the Lie group level ([1]). We would like to deduce an explicit formula for \(\Sigma \).

We define a Lorentz transformation \(\Lambda \in \text{SO}^+(g) \) to be simple if it is the image of a simple Lorentz bivector under the exponential map. A criterion for simplicity is that \(\text{tr}_2 \Lambda = 2(\text{tr}\Lambda - 1) \). Here, the second order trace may be computed from the general formula \(\text{tr}_2 \Lambda = \frac{1}{2}(\text{tr}\Lambda^2 - 2\text{tr}\Lambda + 3) \). Moreover, it should be noted that for any proper orthochronous Lorentz transformation (simple or not), \(\text{tr}\Lambda \geq 0 \). See [3] for more details.
We will need the following fact for computing the logarithm of a simple Lorentz transformation, as given in [3]. The special case when \(\text{tr}\Lambda = 0 \) will be handled later.

Proposition 1. If \(\Lambda \in SO^+(g) \) is a simple Lorentz transformation with \(\text{tr}\Lambda > 0 \), then \(\Lambda = \exp(L) \) and \(\text{tr}_2L = -\mu \), where \(L = \frac{1}{2}k(\Lambda - \Lambda^{-1}) \) and

1. if \(0 < \text{tr}\Lambda < 4 \), then \(k = \frac{\sqrt{-\mu}}{\sin \sqrt{-\mu}} \) and \(\sqrt{-\mu} = \cos^{-1}(\frac{1}{2}\sqrt{-\mu} - 1) \),
2. if \(\text{tr}\Lambda > 4 \), then \(k = \frac{\sqrt{\mu}}{\sinh \sqrt{\mu}} \) and \(\sqrt{\mu} = \cosh^{-1}(\frac{1}{2}\sqrt{\mu} - 1) \),
3. if \(\text{tr}\Lambda = 4 \), then \(k = 0 \) and \(\mu = 0 \).

Theorem 9. Suppose \(\Lambda \in SO^+(g) \) is simple. If \(\text{tr}\Lambda > 0 \), then up to an overall sign,

\[
\Sigma(\Lambda) = \frac{1}{2\sqrt{\text{tr}\Lambda}} \left\{ \text{tr}\Lambda + 2\sigma(\Lambda - \Lambda^{-1}) \right\}.
\]

Proof. Let \(L \) be a simple Lorentz bivector such that \(\Lambda = \exp(L) \). By the general properties of the exponential map on a Lie algebra, \(\Sigma(\Lambda) = \exp(\sigma(L)) \). Writing \(L = \frac{1}{2}k(\Lambda - \Lambda^{-1}) \) as in proposition 1, we have \(\exp(\sigma(L)) = \bar{c} + \frac{1}{2}k\bar{s}\sigma(\Lambda - \Lambda^{-1}) \), according to theorem 6. The values of \(\bar{c}, \bar{s} \) depend on the value of \(\text{tr}_2L \). We consider the case \(\text{tr}_2L > 0 \), so that \(\mu < 0 \) in the notation of proposition 1 which occurs when \(0 < \text{tr}\Lambda < 4 \). The other two cases are similar. In this case, we have \(\cos \sqrt{-\mu} = \frac{1}{2}\sqrt{\text{tr}\Lambda} - 1 \). Now, \(\bar{c} = \cos \frac{1}{2}\sqrt{\text{tr}_2L} = \cos \frac{1}{2}\sqrt{-\mu} \).

Similarly,

\[
\frac{1}{2}k\bar{s} = \frac{1}{2} \frac{\sqrt{-\mu}}{\sin \sqrt{-\mu}} \frac{2}{\sqrt{-\mu}} \sin \frac{1}{2}\sqrt{-\mu} = \frac{\sin \frac{1}{2}\sqrt{-\mu}}{\sin \sqrt{-\mu}} = \frac{1}{2\cos \frac{1}{2}\sqrt{-\mu}}
\]

On the other hand, we have \(\cos^2 \frac{1}{2}\sqrt{-\mu} = \frac{1}{2}(1 - \cos \sqrt{-\mu}) = \frac{1}{4}\text{tr}\Lambda \), so that \(\cos \frac{1}{2}\sqrt{-\mu} = \pm \frac{1}{2}\sqrt{\text{tr}\Lambda} \). Although the choice of \(L \) determines the sign here, the choice of \(L \) such that \(\exp(L) = \Lambda \) is not unique. Indeed, if we take \(L' = \alpha L \), with \(\alpha \) chosen such that \(\sqrt{\text{tr}_2L'} = \sqrt{\text{tr}_2L} + 2\pi \), then \(\exp(L') = \Lambda \). However, \(\frac{1}{2}\sqrt{-\mu'} = \frac{1}{2}\sqrt{-\mu} + \pi \), so that \(\exp(\sigma(L')) = -\exp(\sigma(L)) \).

To obtain an analogous formula for a nonsimple Lorentz transformation, we will make use of the fact that such a transformation is a product of
commuting simple transformations. Indeed, since $SO^+(g)$ is exponential, we may write $\Lambda = \exp(L)$ for some Lorentz bivector L. Using the orthogonal decomposition $L = L_+ + L_-$, we have $\exp(L) = \exp(L_+) \exp(L_-)$. Taking $\Lambda_\pm = \exp(L_\pm)$, we may write $\Lambda = \Lambda_+ \Lambda_-$, with Λ_+ , Λ_- commuting simple Lorentz transformations. In [3], the following explicit formula is obtained.

Proposition 2. If $\Lambda \in SO^+(g)$ is nonsimple, then $\Lambda = \Lambda_+ \Lambda_-$, where Λ_\pm are the commuting simple Lorentz transformations

$$\Lambda_\pm = \pm \frac{1}{2(c_+ - c_-)} \left\{ (1 + 2c_\pm)I - \Lambda^{-1} - (1 + 2c_\mp)\Lambda + \Lambda^2 \right\}$$

with $c_\pm = \frac{1}{4}(\text{tr} \Lambda \pm \sqrt{\Delta})$ and $\Delta = \text{tr}^2 \Lambda - 4\text{tr}_2 \Lambda + 8$, $c_+ > 1$, and $1 \leq c_- < 1$.

Using this decomposition, we use the fact that Σ is a group homomorphism to write $\Sigma(\Lambda) = \Sigma(\Lambda_+) \Sigma(\Lambda_-)$, where each factor on the right hand side may be computed using theorem 9. Note that $\Sigma(\Lambda_\pm)$ necessarily commute.

Theorem 10. If Λ is a nonsimple proper orthochronous Lorentz transformation with $2 + 2\text{tr} \Lambda + \text{tr}^2 \Lambda \neq 0$, then up to sign

$$\Sigma(\Lambda) = \frac{1}{2\sqrt{2 + 2\text{tr} \Lambda + \text{tr}^2 \Lambda}} \left\{ (2 + \text{tr} \Lambda + \text{tr}^2 \Lambda - \frac{1}{4}\text{tr}^2 \Lambda) + (\text{tr} \Lambda + 2)\sigma(\Lambda - \Lambda^{-1}) - \sigma(\Lambda^2 - \Lambda^{-2}) + \sigma(\Lambda - \Lambda^{-1})^2 \right\}$$

Proof. For brevity, we set $\tau_k^\pm = \text{tr}_k \Lambda_\pm$. From theorem[9] we compute $\Sigma(\Lambda) = \Sigma(\Lambda_+) \Sigma(\Lambda_-)$ to be:

$$\Sigma(\Lambda) = \frac{1}{4\sqrt{\tau_1^+ \tau_1^-}} \left\{ \tau_1^+ \tau_1^- + 2\tau_1^+ \sigma(\Lambda_+ - \Lambda_-^1) + 2\tau_1^- \sigma(\Lambda_+ - \Lambda_+^1) + 4\sigma(\Lambda_+ - \Lambda_-^1)\sigma(\Lambda_- - \Lambda_-^1) \right\}$$

Now from proposition[2] one shows that (\ast) $\tau_1 \doteq \text{tr} \Lambda = 2(c_+ + c_-)$ and $\tau_2 \doteq \text{tr}_2 \Lambda = 4c_+ c_- + 2$, and that $(\ast\ast)$ $\tau_1^\pm = 2(1 + c_\pm)$. Moreover, since for any Lorentz transformation $\Lambda^{-1} = g^{-1} \Lambda^T g$, we find that

$$\Lambda_\pm - \Lambda_\pm^{-1} = \mp \frac{1}{2(c_+ - c_-)} \left\{ 2c_\mp (\Lambda - \Lambda^{-1}) - (\Lambda^2 - \Lambda^{-2}) \right\}$$

We now rewrite the summands of equation (5) in terms of Λ and its first and second order traces. For the first summand, using $(\ast\ast)$ and (\ast) we obtain

$$\tau_1^+ \tau_1^- = 4(1 + c_+)(1 + c_-) = 2 + 2\tau_1 + \tau_2$$

8
For the second and third summands in (5), using (***) and (6) one computes
\[\tau_1^+ \sigma(\Lambda_+ - \Lambda_-^{-1}) + \tau_1^- \sigma(\Lambda_+ - \Lambda_-^{-1}) = 2(1 + c_+ + c_-)\sigma(\Lambda - \Lambda^{-1}) - \sigma(\Lambda^2 - \Lambda^{-2}). \]
Thus by (*),
\[\tau_1^+ \sigma(\Lambda_- - \Lambda_-^{-1}) + \tau_1^- \sigma(\Lambda_+ - \Lambda_-^{-1}) = (\tau_1 + 2)\sigma(\Lambda - \Lambda^{-1}) - \sigma(\Lambda^2 - \Lambda^{-2}) \quad (8) \]
For the fourth summand in (5), we similarly compute (although we also need to use the fact that \(\sigma(\Lambda - \Lambda^{-1}) \) and \(\sigma(\Lambda^2 - \Lambda^{-2}) \) commute, as \(\sigma \) is a Lie algebra homomorphism)
\[4\sigma(\Lambda_+ - \Lambda_-^{-1})\sigma(\Lambda_- - \Lambda_-^{-1}) = \frac{1}{(c_+ - c_-)^2} \{(2 - \tau_2)\sigma(\Lambda - \Lambda^{-1}) \]
\[+ \tau_1 \sigma(\Lambda - \Lambda^{-1})\sigma(\Lambda^2 - \Lambda^{-2}) - \sigma(\Lambda^2 - \Lambda^{-2})^2 \} \quad (9) \]
However, the terms in this expression are not algebraically independent. To find a relation, we make use of the fact that \(\Lambda_\pm \) are simple: from theorem \(\bullet \) \(\sigma(L_\pm)^2 = -\frac{1}{4}\text{tr}_2 L_\pm \), where \(L_\pm \) are such that \(\exp(L_\pm) = \Lambda_\pm \), and may be computed using proposition \(\bullet \). Indeed, \(L_+ = \frac{1}{2}k_\pm(\Lambda_+ - \Lambda_+^{-1}) \), with \(\text{tr}_2 L_+ = -\mu_+ \), \(c_+ = \cosh \sqrt{\mu_+} \), and \(k_+ = \sqrt{\mu_+}/\sinh \sqrt{\mu_+} \). The equation \(\sigma(L_+)^2 = -\frac{1}{4}\text{tr}_2 L_+ \) and (6) then lead to
\[4c_+^2\sigma(\Lambda - \Lambda^{-1})^2 - 4c_-\sigma(\Lambda - \Lambda^{-1})\sigma(\Lambda^2 - \Lambda^{-2}) + \sigma(\Lambda^2 - \Lambda^{-2})^2 \]
\[= 4(c_+ - c_-)^2(c_+^2 - 1) \]
(note that \(\sinh^2 \sqrt{\mu_+} = c_+^2 - 1 \)). Similarly, \(\sigma(L_-)^2 = -\frac{1}{4}\text{tr}_2 L_- \), proposition \(\bullet \) and (6) imply
\[4c_-^2\sigma(\Lambda - \Lambda^{-1})^2 - 4c_+\sigma(\Lambda - \Lambda^{-1})\sigma(\Lambda^2 - \Lambda^{-2}) + \sigma(\Lambda^2 - \Lambda^{-2})^2 \]
\[= 4(c_+ - c_-)^2(c_-^2 - 1) \]
Adding these two equations together and using (*) then yields the relation
\[(\tau_1^2 - 2\tau_2 + 4)\sigma(\Lambda - \Lambda^{-1})^2 - 2\tau_1 \sigma(\Lambda - \Lambda^{-1})\sigma(\Lambda^2 - \Lambda^{-2}) \]
\[+ 2\sigma(\Lambda^2 - \Lambda^{-2})^2 = (c_+ - c_-)^2(\tau_1^2 - 2\tau_2 - 4) \quad (10) \]
Combining (5) and (10) together, we see that we may write the fourth summand in (5) as
\[4\sigma(\Lambda_+ - \Lambda_-^{-1})\sigma(\Lambda_- - \Lambda_-^{-1}) = 2\sigma(\Lambda - \Lambda^{-1})^2 - \frac{1}{2}(\tau_1^2 - 2\tau_2 - 4) \quad (11) \]
Combining (5), (7), (8), and (11) give the desired formula for \(\Sigma(\Lambda) \). \(\square \)
3.1 Special case

We consider the case when a Lorentz transformation $\Lambda \in SO^+(g)$ satisfies the identity

$$2 + 2\text{tr}\Lambda + \text{tr}\Lambda = 0 \quad (12)$$

In the case when Λ is simple, so that $\text{tr}\Lambda^2 = 2(\text{tr}\Lambda - 1)$, this condition reduces to $\text{tr}\Lambda = 0$. It should be noted that a simple Lorentz transformation is traceless only if $\Lambda = \exp(L)$ for some simple Lorentz bivector with $\text{tr}\Lambda^2 = \pi^2$. A nonsimple transformation satisfies (12) only if its decomposition in proposition 2, $\Lambda = \Lambda_+ \Lambda_-$, is such that the simple factor Λ_- is traceless.

We will not be able to obtain an explicit formula for the spin representation $\Sigma(\Lambda)$ of such a Lorentz transformation. However, we can give an algorithm. The key lies in the following two facts from [3].

Proposition 3. Let u, v be four–vectors, and set $\mathcal{L} = u \wedge g v$. The two–plane P spanned by u, v is nondegenerate (that is, g is nondegenerate when restricted to P) if and only if $\text{tr}\Lambda^2 \neq 0$, in which case $P_\mathcal{L} = -\Lambda^2/\text{tr}\Lambda^2$ is g–orthogonal projection onto \mathcal{P}. Conversely, if P is g–orthogonal projection onto a two–plane, then the two–plane is nondegenerate and $P = P_\mathcal{L}$, where $\mathcal{L} = u \wedge g v$ and u, v are any linearly independent four–vectors in the image of P.

Proposition 4. If Λ is a simple Lorentz transformation with $\text{tr}\Lambda = 0$, then $\Lambda^2 = I$, $P_\Lambda = \frac{1}{2}(I - \Lambda)$ is g–orthogonal projection onto a nondegenerate two–plane, and $-\pi^2 P_\Lambda$ is the square of a simple Lorentz bivector L_Λ with $\exp(L_\Lambda) = \Lambda$ and $\text{tr}\Lambda^2 = \pi^2$.

Theorem 11. Suppose $\Lambda \in SO^+(g)$ is simple with $\text{tr}\Lambda = 0$. Let u, v be any two linearly independent vectors in the image of $P_\Lambda = \frac{1}{2}(I - \Lambda)$. Then up to sign, $\Sigma(\Lambda) = (2/\sqrt{\text{tr}(u \wedge g v)})\sigma(u \wedge g v)$.

Proof. Set $\mathcal{L} = u \wedge g v$. Then $P_\mathcal{L}$ is g–orthogonal projection onto the (necessarily nondegenerate) two–plane \mathcal{P} spanned by u, v. By uniqueness of g–orthogonal projection, we must have $P_\mathcal{L} = P_\Lambda$. Now $L_\Lambda = u' \wedge g v'$, where u', v' lie in \mathcal{P}. Writing $u' = au + bv$ and $v' = cu + dv$, we compute that $u' \wedge g v' = (ad - bc)u \wedge g v$; i.e., $L_\Lambda = \alpha L$ for some scalar α. Taking 2–traces, we get $\pi^2 = \text{tr}_2 L_\Lambda = \alpha^2 \text{tr}_2 L$, so that $\alpha = \pm \pi/\sqrt{\text{tr}_2 L}$. Since $\exp(L_\Lambda) = \Lambda$, $\Sigma(\Lambda) = \exp\sigma(L_\Lambda)$. On the other hand, by theorem 6, $\exp\sigma(L_\Lambda) = (2/\pi)\sigma(L_\Lambda) = (2\alpha/\pi)\sigma(L)$. \square
References

[1] Bortolomé Coll and Fernando San José, On the exponential of the 2–forms in relativity, General Relativity and Gravitation, 22 (7), 811–826, 1990.

[2] William Fulton and Joe Harris, Representation Theory, Springer–Verlag, 1991.

[3] Jason Hanson, Orthogonal decomposition of Lorentz transformations, arXiv:1103.1072v1 [gr-qc].

[4] Eugene Wigner, Unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics, 40, 149–204, 1939.