Land use change trend of paddy field and its influence on food security in Gerbangkertosusila Region

F Firmansyah1,2, C Susetyo1,2, N A Pratomoatmojo1,2, U F Kurniawati1,2 and M Yusuf1,2

1 Urban and Regional Planning Department
2 Institut Teknologi Sepuluh Nopember

Email: fendy.firmansyah@urplan.its.ac.id, ff.fendy.firmansyah@gmail.com

Abstract. Economic growth encourages development growth in the Gerbangkertosusila (or can be shortened as GKS) region, which is a challenge for the agricultural sector. The phenomenon of changing the function of paddy fields to developed land because of the high demand for land can threaten the food security of a region. This research will model the trend of land use change and its impact on food security in GKS region in the next 20 years using cellular automata methods and quantitative statistics. Data collection was carried out by literature studies, field observations and interviews through questionnaires to relevant stakeholders. The results of the spatial modeling analysis of the paddy field conversion trend show that there are three regions that have the highest conversion rate of paddy fields in the GKS region, namely Sidoarjo, Gresik and Surabaya City. After further analysis related to food demand projections and rice production projections is carried out, Surabaya and Sidoarjo Regency is currently experiencing a food deficit which could last even in the years ahead. Having this result, the role of several other regencies such as Lamongan and Mojokerto Regency is needed in maintaining food security in the GKS region.

Keywords. paddy field, land use change, food security

1. Introduction
The Surabaya Metropolitan Area or better known as Gerbangkertasusila (GKS) Region is a large-scale urban area located in Jawa Timur Province. The Region consists Surabaya City, Mojokerto City, Bangkalan Regency, Sidoarjo Regency, Gresik Regency, Lamongan Regency, and Mojokerto Regency. GKS region is the center of the Jawa Timur Province economy with the main driving force in the industrial and service trade sectors [1]. Based on data from a World Bank study (2012), it is stated that the economic contribution of the GKS region is the second highest in Indonesia after the Jakarta Metropolitan Area (Jabodetabek). In addition, the GKS region is an area that contributes nearly 50% of the economy in Jawa Timur Province [2].

The vital role of the GKS region naturally encourages development growth, both physically and non-physically. Physically, the expansion of industrial and trade areas is evident in most of the GKS areas, as well as the development of residential areas because of the increasing population in the GKS region and the availability of job opportunities that are concentrated in the GKS region. The population growth in the GKS region from 2010 to 2019 have increased by almost 1 million people [3].

Economic growth that drives development growth in the GKS region is a challenge for the
agricultural sector. The development of industry, trade and settlements often outweighs the interests of the agricultural sector, which are considered to have less impact on the regional economy. As a result, conversion of agricultural land has become a real phenomenon recently, especially in areas with fast economic growth such as the GKS region.

In Surabaya, agricultural land has decreased in the period of 2012-2016 by 300 Ha, meaning that every year the rate of shrinkage of agricultural land is 75 Ha [4]. The reduction of agricultural land also occurs in Sidoarjo Regency amidst the increasing need for food in this regency, where the current demand for rice in Sidoarjo Regency is almost 300 thousand tons / year, while the existing rice production is only 239 thousand tons and this continues to decline due to the shrinking area of agricultural land [5]. Agricultural productivity is significantly influenced by the extent of farming land area [6].

Conversion of land functions is one phenomenon that cannot be avoided amid the dynamics of urban growth. However, land use change becomes a big problem when it results in environmental damage that touches human survival, especially food supply [7]. A study states that food security is influenced by agricultural land ownership [8]. In this perspective, agricultural land is seen as a critical factor determining food sustainability [9] One type of agricultural land that is most prone to conversion is paddy field [10]. This occurs due to the low incentives or income received by farmers for managing paddy fields compared to their use for other sector activities [11]. Thus, if the conversion of agricultural land is not controlled, it can threaten the capacity to supply food, even in the long term it can result social disasters.

The development of food security is the mandate of Law No.7 of 1996 where the government guarantees the fulfillment of food for every household, both in quantity and quality, safe, equitable and affordable. However, government policies in the agricultural sector have not yet been fully implemented due to a lack of coordination between the Central and Local Governments, as well as a lack of commitment by the Regional Government in protecting agricultural land, especially land for sustainable food agriculture. In addition, it is felt that the existing policies have not touched the realm of farmer welfare. Therefore, the efforts to achieve food security are hampered by the problem of conversion of productive agricultural land, especially paddy fields [7][12].

Based on this phenomenon, it is interesting to study the trend of land conversion and its impact on food security in the GKS region. So far, research on food security has been studied through economic and social aspects. Spatial studies are rarely carried out, especially in relation to predicting land use change. Therefore, this research will examine spatially the trend of the change in function of paddy fields for the next few years, and how the effect of the conversion of paddy fields on food security through a projection model of rice production in the GKS region.

2. Methods
The method for assessing the trend of the conversion of paddy fields in the GKS area was carried out by means of literature studies, data collection, and analysis. Literature study is used to determine research variables according to the theory and concept of conversion of paddy fields and food security. The data collection method was carried out in two ways, namely primary surveys, and secondary surveys. Primary data collection in this study was obtained through direct field observations, structured interviews, and ground checks for the updating and field validation processes. Meanwhile, a secondary survey was carried out to obtain existing land cover map data from SPOT imagery in 2019, forest area map, 2018 rice fields map, irrigation map, 2018 per capita consumption data, infrastructure map, and 2015-2019 population data.

This research consists of four stages of a structured analysis, first overlay analysis of 2018 paddy field map and 2020 land cover map to obtain the characteristics of the paddy field function conversion pattern. Second, AHP (Analytical Hierarchy Process) analysis with the help of Expert Choice software (to identify the driving factors for conversion of paddy filed land use). Third, spatial modeling of paddy field conversion trends using the cellular automata method with the help of LanduseSim software [13][14], and finally to analyze the effect of the conversion trend of paddy fields on food security by
comparing the need for food with rice production per year in the GKS region.

3. Results

3.1. Land Use Change of Paddy Field Analysis in the GKS Region

The pattern of paddy field conversion in the GKS region is based on the results of the overlay of the paddy field map in 2018 and the land cover map in 2020 by means of ArcGIS software. Existing land cover in the GKS area is dominated by paddy fields and settlements. The paddy fields area reaches 246,085.075 Ha, or around 38.2%, while the settlements area reaches 123,476.993 Ha or 19.15% of the total area of the GKS region. Meanwhile, the area of paddy fields according to the Decree of the Minister of ATR/BPN-RI No.399/Kep-23.3/X/2018 is 250,102.135 Ha which are widely spread in Lamongan and Gresik Regencies. After overlaying, the results of the land use change pattern area can be explained in the table below.

Table 1. Paddy Field Land Use Conversion Distribution in GKS Region

Regency/City	Extent (Ha)	Total Conversion														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Bangkalan	105.5	0	14.9	22.7	0.38	0	3.45	1.53	0	0	0	0.66	0	0	149.36	
Gresik	126.0	59.0	0	1.21	0.51	0	0.44	0.04	0.32	0	0.74	0	0	0	188.45	
Lamongan	22.24	29.3	13.6	1697	24.1	0.65	0.28	81.8	20.8	3.64	0.51	0.00	0	0	1894.3	
Mojokerto	96.16	3.57	18.9	50.3	22.0	0.04	4.80	0.22	0.01	0.96	2.25	0	0	0.02	0	199.38
Sidoarjo	164.7	100.	0	0	0.18	0	0	0.11	0.06	0.00	0.00	0	0	0	0	265.44
Mojokerto City	7.33	0	0	0	0.45	0	0	0.01	0.0	0.17	0.18	0	0	0	0	8.17
Surabaya City	116.0	138.	8	90.	0	0	0	0	0	0	0	0	0	0.59	0	255.58
Total	638.1	331.	47.5	1771	47.7	0.70	9.01	83.7	21.2	4.79	3.70	0.00	0.67	0.02	0.59	2960.7

*Description: 1 = Settlements 6 = Plantation 11 = Seasonal Dry Land Farming 2 = Industry 7 = Mixed Plantation 12 = Other Non-Cultivated Vegetation 3 = Protected Forest 8 = Water Body 13 = Mangrove 4 = Production Forest 9 = Open Land 14 = Mining 5 = Field 10 = Scrub 15 = Toll Road

From the table, it can be explained that there are 2 types of land use change patterns in the GKS region. First, the conversion of paddy fields to built-up land, namely settlements and industry. The land use change of rice fields to settlements occurred in Gresik Regency with 126.07 hectares, Sidoarjo Regency with 164.72 hectares, and Surabaya City with 116.08 hectares. Meanwhile, the conversion of paddy fields to industry occurred in Surabaya City with 138.9 hectares and Gresik Regency at 59.09 hectares. Second, the conversion of paddy fields to non-constructed land, namely paddy fields that are in Production Forest Areas and Protected Forest Areas (paddy field in forest areas). This type of conversion occurs a lot in Lamongan Regency of 1697.09 Ha and Mojokerto Regency of 50.37 Ha.

3.2 Identification of Factors Driving Paddy Fields Land Use Change

The driving factors for the conversion of paddy fields in the study area were carried out by using AHP analysis techniques on 6 variables from the literature study as input analysis, namely road networks, transportation facilities, development of settlements, industrial development, irrigation networks, and water sources [15][16]. From the results of the AHP analysis, the factors that influence the conversion of paddy fields in GKS region are as follows.
Table 2. Weight of Factors Driving Paddy Field Land Use Change

Factors Driving Paddy Field Land Use Change	Weight
Road Network	0.328
Transportation Facilities	0.063
Settlement Development	0.474
Industrial development	0.050
Irrigation Network	0.027
Water Supply / Source	0.058

From the table above, it can be explained that the development factor of residential areas is the most dominant factor in encouraging the conversion of paddy fields in the study area, with an influence weight of 0.474, followed by the road network factor which has an influence weight of 0.328. The overall inconsistency value in the AHP is 0.07. This means that it is still within the inconsistency threshold, which cannot be more than 0.1. The results of this analysis will later be used as a reference in further analysis, namely modeling the trend of conversion of paddy fields in the research area.

3.3 Paddy Field Land Use Change Trend Modelling in GKS Region

The trend of conversion of paddy fields in the GKS area was obtained by the Cellular Automata method using LanduseSim software. Modeling only includes built-in land use classes (residential and industrial) that can be seen in real development and based on previous analysis of land change patterns, thus ignoring non-built land use classes. The land use conversion modeling process is based on a trend-oriented approach based on land change patterns in the GKS area. The land change pattern will be used as the basis for compiling the rules for modeling land use change. This is done by identifying land classes. The model will determine which land classes that are converted, and which are not converted due to the development of other land classes. Furthermore, the annual average growth for growing land class can also calculated. The driving factors for land use change in the land use conversion model are used to prepare a suitability map for each land class that is predicted to develop. The followings are land development prediction maps in the GKS area.
Figure 1. Spatial Modelling of Land Use Development Prediction in GKS Region

Based on the results of the spatial modeling of land development that has been carried out, the prediction of land development in the GKS region for the next 20 years can be seen. This development shows the conversion of land use areas from non-built to built in line with the development of residential and industrial land in all districts / cities in the GKS region as described in the following table.

Table 3. Prediction of Paddy Fileds Change Driven by Settelements and Industries in GKS Region

Regency/City	Paddy Field Extent (Pixel)	Harvest Extent (Pixel)								
	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040
Bangkalan	37387	37298	37245	37170	37084	44699,03	44634,58	44586,47	44503,44	44416,62
Gresik	45485	45281	45082	44861	44638	81687,59	81444,60	81014,35	80650,97	80281,46
Lamongan	108071	108015	107952	107888	107834	183374,38	183308,43	183232,28	183165,86	183109,22
Mojokerto	38622	38467	38312	38151	37989	67094,52	66865,47	66632,57	66407,90	66168,51
Sidoarjo	23770	23373	22988	22612	22254	42365,89	41751,01	41124,16	40519,70	39913,91
Mojokerto City	470	462	456	453	448	770,97	758,07	750,80	745,79	740,25
Surabaya City	2023	1872	1702	1496	1219	3537,45	3327,80	3060,75	2717,11	2219,93
Total	255828	254768	253737	252631	251466	423529,84	421989,96	420401,37	418708,77	416849,90

1 pixel = 100x100 = 1 hectare

From the table above, it can be explained that in general the decrease in the area of paddy fields due to the development of paddy fields and industry in GKS an average of 218.1 hectares per year, where the largest average conversion of paddy fields occurs in Sidoarjo Regency which is predicted to lose 75 of paddy fields 8 hectares per year. Large amounts of conversion also occur in Gresik Regency, with an average conversion rate of paddy fields predicted to reach 42.35 hectares per year. Furthermore, the city of Surabaya is predicted to experience a loss of rice fields of 40.2 hectares per year due to the development of residential and industrial land.
In more detail, Sidoarjo Regency turns out to have a land conversion growth rate that has decreased from year to year with the largest conversion predicted to occur in the period 2020-2025 and 2025-2030. Meanwhile, Gresik Regency is predicted to have a paddy field conversion rate that tends to increase from year to year with the largest conversion occurring in the period 2035-2040. The rate of conversion of paddy fields in the area around Surabaya City, especially Sidoarjo and Gresik Regencies, will be another interesting study if it is discussed more deeply.

From these results, it is very rational if we look at the possibilities that will happen to paddy fields in the GKS region. The high rate of paddy fields conversion in Sidoarjo and Gresik Regencies due to the development of built-in land is the impact of Surabaya City development. The development is currently heading to the periphery of Surabaya City which administratively borders Sidoarjo and Gresik Regencies [17]. The massive growth rate of Surabaya City which is supported by the lack of non-developed land in the area, as well as the high land value encourages urban expansion towards the suburbs, namely Sidoarjo and Gresik Regencies [18]. The predicted rice field area for the next 20 years is multiplied by the productivity (harvest intensity of one rice field in 1 year) to calculate the extent of harvested area in the GKS region.

3.4 The Influence of Paddy Field Land Use Change to Food Security in GKS Region
To know how paddy field land use change related to food security, the food demand is compared to rice production per year in GKS region.

3.4.1 Population Projection

To calculate the need for food in the GKS area, a population projection is required. The calculation of population projections in the study area uses three approaches, namely the Linear Method, Multiple Interest, and Linear Regression. Of the three approaches, the linear regression method was chosen because it has the lowest deviation. The results of population projections can be seen in the following table.

Regency/City	Population Prediction (Person)				
	2020	2025	2030	2035	2040
Bangkalan	994056.9587	1032838.661	1071620.364	1110402.066	1149183.769
Gresik	1315538.552	1366862.397	1418186.241	1469510.086	1520833.93
Lamongan	1217130.673	1264615.275	1312099.878	1359584.48	1407069.083
Mojokerto	1125734.881	1169653.808	1213572.735	1257491.663	1301410.59
Sidoarjo	2235570.555	2322788.124	2410005.694	2497223.264	2584440.834
Mojokerto City	1303311.8217	1354165.5302	1405012.388	145585.9473	150670.6559
Surabaya City	2942595.859	3057397.004	3172198.149	3286999.294	3401800.439
Total	9960959.3	10349571.8	10738184.3	11126796.8	11515409.3

From the table, it can be explained that all regencies/cities in the GKS will experience population growth until 2040 with an average population growth of 20% per year. The largest population prediction is in Surabaya City, followed by Sidoarjo Regency. The growth is inseparable from the influence of the Surabaya City development which tends towards Sidoarjo Regency. Meanwhile, the lowest population in the GKS region is in Mojokerto City, which is associated with a narrow administrative area, so the population density figure remains high. The results of this analysis will become a reference for calculating the amount of food needed.

3.4.2 Food Needs Projection

Food needs analysis is used to determine the estimated food needs of the population in the GKS region. This calculation is based on the total population multiplied by per capita consumption (kg) obtained...
from the results of the 2018 national socio-economic survey (SUSENAS). From these data, it can be seen that the per capita consumption of East Java residents for rice commodities is 91.30 kg per year. The results of the prediction of food demand in the GKS region can be seen in the following table.

Table 5. Prediction of Food Needs (Rice) in GKS Region in 2020 – 2040

Regency/City	Rice Consumption Per Capita (Kg)	Prediction of Food Needs (Rice) (Kg)	2020	2025	2030	2035	2040
Bangkalan	91.3	90,757,400.33	94,298,169.77	97,838,939.20	101,379,708.64	104,920,478.08	
Gresik	91.3	120,108,669.82	124,794,536.82	129,480,403.82	134,166,270.82	138,852,137.81	
Lamongan	91.3	111,124,030.41	115,459,374.63	119,794,718.84	124,130,063.06	128,465,407.27	
Mojokerto	91.3	102,779,594.64	106,789,392.69	110,799,190.74	114,808,988.80	118,818,786.85	
Sidoarjo	91.3	204,107,591.64	212,070,555.76	220,033,519.87	227,996,483.99	235,959,448.10	
Mojokerto City	91.3	11,899,295.32	12,363,529.21	12,827,763.10	13,291,996.99	13,756,230.88	
Surabaya City	91.3	268,659,001.92	279,140,346.46	289,621,691.01	300,103,035.55	310,584,380.09	
Total			909,435,584.09	944,915,905.34	980,396,226.59	1,015,876,547.84	1,051,356,869.09

Based on the results of the analysis, it can be seen that the need for food (rice) in the GKS region until 2040 reaches 1051356.87 tons. In line with the distribution and population, it can also be seen that the Surabaya City is an area that has the highest amount of food needs up to 310584.38 tons, followed by Sidoarjo Regency which has a total food requirement of 235959,448 tons.

3.4.3 Rice Production Projection in GKS Region

This analysis aims to determine the amount of rice production in the GKS Area from the available land for the next 20 years. The calculation of rice production is based on the harvested area, productivity, and yield coefficient. Other technical factors such as the use of seeds, fertilizers and other technologies in agricultural activities are not considered. The following is the projection of rice production in the GKS region from 2020 to 2040.

Table 6. Projection of Rice Production in GKS Region from 2020 to 2040

Regency/City	Paddy Production (Ton)	Yield Coefficient (%)	Rice Production (Ton)								
	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040	
Bangkalan	26582	26544	26515	26466	26414	64,10	17039	17014	16996	16964	16931
Gresik	48988	48782	48584	48366	48144	64,10	31401	31269	31142	31002	30860
Lamongan	11158	11154	11149	11145	11142	64,10	71524	71499	71469	71442	71421
Mojokerto	39867	39731	39593	39459	39317	64,10	25555	25467	25379	25293	25202
Sidoarjo	28588	28173	27750	27342	26933	64,10	18325	18059	17788	17526	17264
Mojokerto City	4890,	4808,	4762,	4730,	4695,	64,10	3134,	3082,	3052,	3032,	3009,
Surabaya City	18596	17494	16090	14283	11670	64,10	11920	11213	10313	9155,	7480,
Total	25604	25511	25415	25313	25200	64,10	16412	16353	16291	16225	16153

7
From the calculation table, it can be explained that rice production in all districts / cities in the GKS Region is predicted to experience a decrease in the amount of production. This is in line with the decline in land area in the area as a result of the development of developed land (residential and industrial) over the next 20 years. The calculation results show that the largest rice production is in Lamongan Regency, followed by Gresik Regency and Mojokerto Regency. If we look in more detail, it can be explained that the largest decline in rice production was in Sidoarjo and Gresik Regencies. Sidoarjo Regency is projected to experience a decrease in rice production by an average of 530.3 tons per year, and Gresik Regency is projected to experience a decrease in rice production per year by an average of 270.26 tons. Meanwhile, Surabaya City and Mojokerto Regency are projected to experience a decrease in rice production by 221.99 tons and 176.35 tons per year, respectively. This phenomenon shows the magnitude of the influence of paddy field conversion on rice production in the GKS region.

3.4.4 Comparison of Food Needs Projection and Rice Production
The results of the analysis of food needs and rice production are compared to measure food security in the study area with indicators of food surplus or deficit. The results of a comparative analysis of food needs and rice production can be seen in the figure below.
Based on the comparison, it can be explained that in general the GKS Region is in a rice surplus condition. This can be seen from the amount of excess rice stock in the GKS within the next 20 years to 2040 amounting to 575944.12 tons. However, this surplus condition is not the same in every Regency/City in GKS. From this analysis, it can be seen that Surabaya City, Mojokerto City, and Sidoarjo Regency are currently in a state of rice deficit.

Urban areas such as the Surabaya City and the Mojokerto City which tend not to be oriented towards the agricultural sector have made the role and function of the agricultural sector in these areas receiving low attention. On the other hand, the function of urban areas as centers of activity encourages the creation of a very high demand for food. The demand is particularly in line with the high population in the region. Sidoarjo Regency as an area that is directly affected by the expansion of the urban area of Surabaya has experienced the development of industrial and residential land which have an impact on the imbalance of food supply and demand in this region.

Areas with rice surpluses include Lamongan, Gresik, Mojokerto and Bangkalan Regencies. The low rate of conversion of paddy fields and population growth in Lamongan Regency has resulted in a very high rice surplus in this area, reaching 585749.36 hectares. In other words, the condition of food self-sufficiency (rice) in the GKS region is very dependent on Lamongan Regency.

Apart from Lamongan Regency, Gresik Regency is one of the areas that is currently predicted to experience a rice surplus for the next 20 years. However, considering the high rate of conversion of paddy fields and the high rate of population growth in this area, a massive effort to support and maintain the existence of Gresik Regency as surplus area in the GKS region is needed.

4. Conclusion
Paddy fields need to be understood as a land commodity that is inseparable from the land conversion phenomenon due to its passive characteristics and cannot develop naturally. Based on the phenomenon that occurs, where almost every district/city in the GKS region has experienced quite high conversion of paddy fields, it is important to understand the concept of urban rural linkage in a regional context, so that the role and function of each region in the GKS can be mapped clearly. Urban areas such as Surabaya City and Mojokerto City as regional activity centers are areas that are not oriented to the agricultural sector, but the need for food is the highest among other areas in the GKS, so the role of other areas around urban areas is very important in the process of meeting food needs in the region.

Sidoarjo Regency and Gresik Regency are areas that have the highest rate of conversion of paddy fields in the GKS region, this is a result of the massive development of the city of Surabaya which has experienced expansion in its surrounding areas. Meanwhile, the potential of these two regions in the agricultural sector and the demand of food in the GKS region is still quite high, so that proper planning...
is needed in dealing with these two phenomena. Lamongan Regency is the area that has the biggest contribution in meeting food needs in the GKS area, this can be seen from the large area of rice fields and the amount of rice production in this region. Thus, it needs efforts to support Lamongan Regency as a rice granary in the GKS region or even the national through appropriate policies in the agricultural sector.

5. References

[1] A. Sudarsono, “Analisis Potensi Ekonomi Sektoral dan Keterkaitan Ekonomi di Wilayah Gerbangkertosusila,” pp. 1–20.
[2] World Bank, “Diagnosa Pertumbuhan Ekonomi Jawa Timur,” 2011.
[3] Badan Pusat Statistik, “Jawa Timur Dalam Angka 2020,” 2020.
[4] Republika.co.id, “Lahan Pertanian di Surabaya Menyusut,” 2016.
[5] Badan Pusat Statistik Kabupaten Sidoarjo, “Luas Panen, Produktivitas dan Produksi Padi di Kabupaten Sidoarjo Tahun 2011 - 2018,” 2018. Accessed: Feb. 04, 2021. [Online]. Available: https://sidoarjokab.bps.go.id/.
[6] R. Harini, R. D. Ariani, S. Supriyati, M. C. Satiraqaba, B. Susilo, and S. R. Giyarsih, “The Effect of Land Conversion on Agricultural Production in North Kalimantan Province during 2012-2016 Period,” IOP Conf. Ser. Earth Environ. Sci., vol. 145, no. 1, 2018, doi: 10.1088/1755-1315/145/1/012093.
[7] I. Kaputra, “Alih Fungsi Lahan , Pembangunan Pertanian & Ketahanan Pangan , Iswan,” Strukturasi, vol. 1, no. 1, pp. 25–39, 2013.
[8] S. Goli, A. Rammohan, and S. P. Reddy, “The interaction of household agricultural landholding and Caste on food security in rural Uttar Pradesh, India,” Food Secur., vol. 13, no. 1, pp. 219–237, 2021, doi: 10.1007/s12571-020-01109-9.
[9] G. D. Santangelo, “The impact of FDI in land in agriculture in developing countries on host country food security,” J. World Bus., vol. 53, no. 1, pp. 75–84, 2018, doi: 10.1016/j.jwb.2017.07.006.
[10] I. M. Y. Prasada and T. A. Rosa, “Dampak Alih Fungsi Lahan Sawah Terhadap Ketahanan Pangan Di Daerah Istimewa Yogyakarta,” J. Sos. Ekon. Pertan., vol. 14, no. 3, p. 210, 2018, doi: 10.20956/jsep.v14i3.4805.
[11] A. R. Draulay, E. I. K. P, B. Barus, and P. N. Bambang, “The Acceptable Incentive Value To Succeed Paddy Land Protection Program in Regency of East Tanjung Jabung, Indonesia,” ARPN J. Agric. Biol. Sci., 2016.
[12] E. B. Demmallino, T. Ibrahim, and A. Karim, “Petani Di Tengah Tambang: Studi Fenomenologi Efek Implementasi Kebijakan Terhadap Kehidupan Petani di Morowali (Studi Kasus Pada Kawasan Lingkar Tambang , Kecamatan Bahodopi , Kabupaten Morowali , Provinsi Sulawesi Tengah),” J. Sos. Ekon. Pertan., vol. 14, no. 2, pp. 161–170, 2018.
[13] N. A. Pratomoatmojo, “LanduseSim sebagai aplikasi pemodelan dan simulasi spasial perubahan penggunaan lahan berbasis Sistem Informasi Geografis dalam konteks perencanaan wilayah dan kota,” Semin. Nas. Citites, 2014.
[14] J. Navaile, R. Krishnan, R. Prasada, and J. Saibaba, “Spatial and Dynamic Modelling Techniques for Land Use Change Dynamics Study,” 21st ISPRS Congr., pp. 37–44, 2008. [Online]. Available: http://www.isprs.org/proceedings/XXXVII/congress/2_pdf/1WG-II-1/07.pdf.
[15] I. Nahib, “PEMODELAN SPASIAL LAHAN SAWAH KABUPATEN TASIKMALAYA (Land Use Changes Analysis and Spatial Modelling on Paddy Field in Tasikmalaya Regency ,” vol. 1, pp. 243–253, 2011.
[16] D. Setiady, “Prediksi Perubahan Lahan Pertanian Sawah Sebagian Kabupaten Klaten dan Sekitarnya Menggunakan Cellular Automata dan Data Penginderaan Jauh,” 2014.
[17] B. U. Aulia, E. B. Santoso, A. D. Hapsari, and E. W. Safitri, “Determining the Spatial Connectivity of Surabaya’s Peri-urban Area towards Urban Rural Linkage Framework Based
on Population Movement Relation,” *IOP Conf. Ser. Earth Environ. Sci.*, vol. 313, no. 1, 2019, doi: 10.1088/1755-1315/313/1/012031.

[18] L. D. Rohmadiani and A. A. G. A. Ramayadnya, “Identifikasi Keterkaitan Hinterland dengan Pusat Kota,” *Temu Ilm. IPLBI*, pp. 73–80, 2016.

Acknowledgements

This research was supported by Institut Teknologi Sepuluh Nopember Funding 2020. We would like to say thanks to Board for Planning and Development of Jawa Timur Province and our colleagues for the support related with preparation and finishing this paper.