COMBINED DIAGNOSTIC APPROACH OF HSG AND DIAGNOSTIC HYSTEROLAPAROSCOPY IN EVALUATION OF FEMALE INFERTILITY.

Sujata Singh, Lucy Das, Swarnima Das and Pravat Chandra Das.
Department Of Obstetrics & Gynaecology, S.C.B. Medical College & Hospital, Cuttack, Odisha, India.

Abstract

Background: Since the history of mankind, human infertility has been a source of personal misery and social stigma. The aim of the present study is to assess the combined diagnostic approach of HSG and DHL in the evaluation of female infertility both primary and secondary and to identify the incidence of the various pathological conditions in the female reproductive tract leading to infertility and to study the advantages of diagnostic hysterolaparoscopy over hysterosalpingography.

Method: The present study is a prospective observational study, conducted in the department O & G, SCBMCCH, Cuttack. One hundred infertile patients were included in this study. All patients underwent both HSG and DHL. The standard protocols for HSG and DHL were followed. All reports on the 100 selected patients were reviewed.

Result: In our study, 68% patients are in primary infertility and 32% in secondary infertility. Maximum number of patients with primary infertility were in the age group of 26-30 years i.e. 50% and 56.3% in secondary infertility.

Tubal pathologies were the commonest of all followed by filling defects like myoma, polyps, synechiae and uterine anomalies in both HSG and DHL in both the primary and secondary infertility groups. Surgical interventions were done in 84% of primary infertility cases and in 97% of secondary infertility cases. The therapeutic measures were taken like polypectomy, myomectomy, septum resection during hysteroscopy. Most commonly done procedure in this study was adhesiolysis in 22–24% of cases followed by cannulation in 15-22% cases.

Conclusion: Our study found that Hysterosalpingography is simple, inexpensive, safe and rapid diagnostic modality for tubal patency then laparoscopy. Laparoscopy is considered the Gold Standard for diagnosing tubal and peritoneal disease. HSG and Laparoscopy are not alternative, but complimentary to each other but hysterolaparoscopy is more informative and operative intervention can be done in the same sitting.
Introduction:-
Infertility affects about 10-15% of reproductive age couples. Reproductive endocrinologist, consider a couple to be infertile if:
1. The couple has not conceived after 12 months of contraceptive free intercourse if the female is under the age of 34 years. 12 months is the lower reference limit.
2. The couple has not conceived after 6 months contraceptive free intercourse if the female is over the age of 34 years.

A clinical definition of infertility by the WHO and ICMART is “a disease of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse.” Infertility can further be broken down into primary and secondary infertility. Primary infertility refers to the inability to give birth either because of not being able to become pregnant, or carry a child to live birth, which may include miscarriage or a stillborn child. Secondary infertility refers to the inability to conceive or give birth when there was a previous pregnancy or live birth. Incidence of female infertility is 45.67%, male infertility is 54.33% and may be both can get involved in some of cases, range varies from region to region.
The major causes of infertility include:
1. Male factors (20-30 %)
2. Female factors (40-55 %)
3. Both male and female factors (10-40 %)
4. Unexplained infertility (10-20 %)

The important causes of female infertility are:
1. Tubal factors (20-40 %)
2. Ovulatory dysfunction (20-40 %)
3. Miscellaneous causes (10-15 %)

Tubal factors account for (20-40 %) of infertility. The mechanism responsible for tubal factor infertility involves anatomic abnormalities that prevent the union of sperm and ovum. Proximal tubal obstructions prevents sperm from reaching the distal fallopian tube where fertilization normally occurs. Distal tubal obstructions prevent ovum capture from the adjacent ovary whereas the proximal tubal obstruction is an all or none phenomenon. The most common initial diagnostic tests for the evaluation of an infertile couple are the mid-luteal phase progesterone assay; a test for tubal patency, such as hysterosalpingography (HSG) for females and semen analysis for males. Laparoscopy is reserved for further diagnosis or may be used in combination with endoscopic surgery (Crosignani and Rubin 2000).

Visualizing the uterine cavity and identifying the possible pathology has made hysteroscopy an equally important tool in infertility evaluation. Combining hysteroscopy with laparoscopy has become a standard tool of evaluation though the absolute role of hysteroscopy in unexplained infertility is yet to be elucidated.

Aim
The aim of the present study is to assess the combined diagnostic approach of hysterosalpingography (HSG) and diagnostic hysterolaparoscopy (DHL) in the evaluation of female infertility both primary and secondary and to identify the incidence of the various pathological conditions in the female reproductive tract leading to infertility and to study the advantages of diagnostic hysterolaparoscopy over hysterosalpingography.

Method:-
The present study is a prospective observational study, conducted in the department of Obstetrics and Gynecology, S.C.B. Medical College and Hospital, Cuttack during the period of September 2015 to January 2017. One hundred infertile patients were included in this study. All the hundred patients underwent both HSG (Hysterosalpingography) and DHL (Diagnostic hysterolaparoscopy). The standard protocols for HSG and DHL were followed. All reports on the 100 selected patients were reviewed. In all cases in which pathology was described in the report, the images were re-evaluated. The size and morphology of the uterine cavity were assessed. This included searching for uterine filling defects, contour abnormalities of the cavity as well as abnormal positioning. The images were reviewed to determine if the fallopian tubes were existent and patent. Tubal pathologies were categorized by occlusion, tubal irregularity (post infectious) and peritubal adhesions (e.g., PID). The degree and distribution of contrast spillage were recorded. Abnormalities of the uterine cavity were categorized into Müllerian duct anomalies (e.g., uterus bicornis) and filling defects (myoma, scars/adhesions).
Inclusion criteria:
1. General physical examination and systemic examination was done to all patients and a complete history of couple was taken.
2. All our 100 cases of infertility undergoing both HSG and DHL.

Exclusion criteria:
1. Any contraindications to Hysterosalpingography procedure like:-
2. Acute lower genital infection.
3. Genital Koch’s.
4. Abnormal uterine bleeding.
5. Suspended pregnancy.
6. Any contraindications to Diagnostic Laparoscopy procedure like Severe Cardiopulmonary Disease, Generalized Peritonitis, Intestinal Obstruction, Anti Coagulation Therapy etc.

Consent
Informed written consent was taken from all the patients participating in the study.

Statistical analysis:
The data collected was entered in Microsoft excel 2007 and analyzed by using SPSS version 20. All the data was expressed in percentage and Pearson’s chi square test was used to calculate the difference between percentages. P value less than 0.05 was considered statistically significant. Sensitivity, specificity, positive predictive value and negative predictive value was calculated for filling defects, uterine anomaly observed in HSG and DHL.

Results:-
Table 1: Prevalence of primary and secondary infertility cases (n=100)

Type	no of cases	Percentage
Primary infertility	68	68%
Secondary infertility	32	32%

Our study evaluated a total of 100 patients. Among them primary infertility comprises of 68 (68%) cases and secondary infertility comprises of 32 (32%) cases.

Table 2: Age wise distribution of primary and secondary infertility cases

Age group	Total	Primary infertility	Secondary infertility	p value
20-25	24(24%)	21(30.9%)	3(9.4%)	
26-30	52(52%)	34(50%)	18(56.3%)	
31-35	17(17%)	9(1.2%)	8(25%)	
36-40	7(7%)	4(5.9%)	3(9.4%)	
total	100	68	32	

Maximum number of patients with primary infertility were in the age group of 26-30 years i.e. 50% followed by those belonging to age group of 20-25 years i.e. 30.9%. In secondary infertility maximum number of patients were in the same age group as that of primary infertility i.e. 26-30 years i.e. 56.3% followed by those belonging to 31-35 years i.e. 25%. Mean age on infertility was 28.7 years. By using Pearson’s Chi square test, it is found that age in determining infertility is statistically not significant (p value>0.05).

Table 3: Mean age duration and married life of primary and secondary infertility patients

Duration(years)	Total	Primary infertility	Secondary infertility	p value
1-3yrs	22(22%)	16(23.5%)	6(18.8%)	
4-6yrs	52(52%)	36(52.6%)	16(50%)	
7-9yrs	18(18%)	10(14.7%)	8(25%)	
10-12yrs	6(6%)	4(5.9%)	2(6.3%)	
>12yrs	2(2%)	2(2.9%)	0	
Maximum number of cases of primary infertility and secondary infertility reported after a period of 4 – 6yrs of infertility i.e. 52% and 52.6% respectively, followed by the period of 1-3yrs in primary and 7-9yrs in secondary infertility cases. No case of secondary infertility was reported after 12yrs of infertility in this study. Duration of infertility is also not statistically significant (p value>0.05).

Table 4: Tubal status on HSG and DHL.

Column 1	HSG	DHL		
	no of cases	%	no of cases	%
BP	37	(37%)	64	(64%)
BTB	29	(29%)	14	(14%)
RB	16	(16%)	15	(15%)
LB	18	(18%)	7	(7%)

As evident from the above table, diagnostic hysterolaparoscopy is more efficiently diagnosing bilateral patency (64%) of the tubes as compared to hysterosalpingography (37%). Bilateral tubal block is seen in 29% cases of HSG and 14% cases of DHL.

Table 5: HSG Findings

Findings	Primary infertility	Secondary infertility	Total(n=100)
Tubal pathology	41 (70%)	22 (66.6%)	63 (70%)
Filling defect	9 (15.5%)	7 (21.21%)	16 (17.5%)
Endometriosis	0	0	0
Adnexal adhesion	2 (3.5%)	0	2 (2%)
Ovarian pathology	0	0	0
Uterine anomalies	6 (11%)	412.12%()	10 (11%)
Total	58	33	91

Out of all the factors in HSG, tubal pathology 41 cases (60%) in primary infertility and 22 cases (68%) in secondary infertility accounts for the highest followed by filling defects (17.5%) and uterine anomalies (11%). HSG could not detect endometriosis and ovarian pathology.

Table 6: Laparoscopic Findings

Findings	Primary infertility	Secondary infertility
Myoma	2 (3%)	2 (8%)
Endometriosis	9 (13%)	3 (13%)
Adnexal adhesion	4 (6%)	5 (21%)
Tubal pathology	24 (38%)	12 (50%)
Ovarian pathology	17 (25%)	2 (8%)
Uterine anomaly	3 (4%)	0
PID	10 (15%)	0
Total	69	24

The most common laparoscopic pathology was tubal pathology same as that of HSG i.e. 38% in primary infertility cases and as high as 50% in secondary infertility cases followed by ovarian pathology in primary and adnexal adhesions in secondary infertility cases. Other attributing pathologies were endometriosis (26%), uterine anomalies (4%) and PID (15%).

Table 7: Hysteroscopy findings

Findings	Primary infertility	Secondary infertility
Myoma	3 (14%)	0
Polyps	4 (19%)	1 (7%)
The most common hysteroscopic pathology was uterine anomalies (52%) like septate, subseptate, bicornuate, unicorneate in primary infertility cases and uterine synechiae (66%) in secondary infertility cases secondary infertility. Other attributing pathologies in hysteroscopy were Submucousmyoma (14%), endometrial polyp (26%).

Associated pathology	HSG	DHL
Tubal pathology	63(69%)	37(31%)
Filling defect	16(18%)	21(18%)
Endometriosis	0	12(10%)
Adnexal adhesion	2(2%)	15(12%)
Ovarian pathology	0	20(17%)
Uterine anomaly	10(11%)	15(12%)
total	91	120

Tubal pathologies were the commonest of all followed by filling defects like myoma, polyps, synechiae and uterine anomalies in both HSG and DHL and in both the primary and secondary infertility groups. Adnexal adhesions (12%) were easily diagnosed by DHL. DHL can more specifically diagnose endometriosis (10%) and ovarian pathologies (17%) which could not be diagnosed by HSG.

Intervention	Primary infertility	Secondary infertility
Adhesiolysis	15(22%)	16(24%)
TCRM	3(4%)	0
TCRS	6(9%)	3(9%)
LOD	8(12%)	1(3%)
Salpingectomy	4(6%)	1(3%)
Cystectomy	5(7%)	2(6%)
Cannulation	10(15%)	7(22%)
Polypectomy	4(6%)	1(3%)
Cervical dilatation	2(3%)	0
Total	57(84%)	31(97%)

Surgical interventions were done in 84% of primary infertility cases i.e. in 57 patients and in 97% of secondary infertility cases i.e. in 31 patients. During the procedures necessary therapeutic measures were taken like polypectomy, myomecctomy, septum resection during hysteroscopy. During laparoscopy adhesiolysis, ovarian drilling, ovarian cystectomy, tubal cannulation and myomecctomy was done as per the pathology detected. Most commonly done procedure in this study was adhesiolysis in 22 – 24% of cases followed by cannulation in 15-22% cases.

Discussion:

In table-1 [Prevalence of primary and secondary infertility cases (n=100)], 68% patients were suffering from primary infertility and 32% patients were suffering from secondary infertility.

Similar studies have been done by various authors previously and got similar results as mentioned below.
In this study, in table- 7 (Hysteroscopy findings) shows uterine anomaly i.e. septate uterus was the commonest hysteroscopic abnormality found in 11 cases i.e. 52% followed by bicornuate, unicornuate, subseptate and one case
of arcuate uterus amongst primary infertility patients while synechiae was the commonest in secondary infertility patients in 10 cases i.e.66% cases. Other hysteroscopic findings were polyps (3%) and myoma (5%) of total 100 cases. Other than septate uterus, the major hysteroscopic abnormalities in our study were myomas and polyps similar to another study.22 The evidence to suggest that uterine myomas decrease fertility is inferential and relatively weak; the bulk of it is derived from studies that had compared the prevalence of myomas in fertile and infertile women or the reproductive performance of women with otherwise unexplained infertility before and after myomectomy.23,24

On comparing on the basis of table-8 (Pathology findings) pathologies on DHL and HSG, tubal pathology was the commonest finding in both the HSG (69%) and DHL (31%) followed by filling defect in both HSG (18%) and DHL (18%). Other pathologies detected by DHL were adnexal adhesions (12%), uterine anomalies (12%), ovarian pathology (17%) and endometriosis (10%). While in HSG other findings were uterine anomalies (11%) and adnexal adhesions (2%). HSG was not able to diagnose ovarian pathology or endometriosis. The diagnostic laparoscopy is the gold standard in diagnosing tubal pathology and other intra-abdominal causes of infertility.12, 25, 26

In my study, the table-9 () shows laparoscopic intervention was done in 60 cases (60%) and hysteroscopic interventions done in 17 cases (17%). Adhesiolysis in primary infertility (22%) and secondary infertility (24%) was the commonest laparoscopic intervention done followed by followed by cannulation. Others were laparoscopic ovarian drilling, cystectomy and salpingectomy. In hysteroscopy, commonest intervention done was transcervical resection of septum which was 9% in both primary and secondary infertility followed by transcervical resection of myoma and polypectomy.26,27,28

Conclusion:-
When comparing HSG and laparoscopy, we should keep in mind that both procedures provide more information than the condition of the Fallopian tubes alone. Whereas HSG provides information on the status of the intrauterine cavity, laparoscopy allows inspection of the intra-abdominal cavity, for instance to see if endometriosis is present. The latter has become especially important, since it was recently shown that laparoscopic treatment of endometriosis improves fertility prospects by 13%. HSG demonstrated reduced positive predictive value especially for bilateral proximal tubal occlusion. Moreover, HSG has a limited value for accurately identifying tubal patency. Therefore, laparoscopy is necessary to rule out the existence of peritubal adhesions and mild and moderate endometriosis as causes of infertility in patients with abnormal HSG findings. Thus, in the final decision on the clinical value of HSG and laparoscopy, one should consider issues other than solely tubal pathology.

Diagnostic Hystero-laparoscopy is most effective and safe method of evaluation of female infertility, mainly in detecting endometriosis, intraperitoneal adhesions and uterine malformation. These are all correctable abnormalities that can be missed by routine pelvic examination and usual imaging procedures. It is a very useful method that diagnose and treat multiple abnormalities in tubal, ovarian, peritoneal and uterus in the same setting, especially in couples with normal hormonal profile and male factor. Thus, when done by experienced hands and with proper selection of patients, hysterolaparoscopy can be considered as a definitive investigative daycare procedure for evaluation of female infertility and can be done directly without prior hysterosalpingography thus avoiding the risk of radiation, infection and extra investigation. Therefore, we believe that laparoscopy should be performed in cases of abnormal hysterosalpingograms and even in cases of normal hysterosalpingograms in the context of unexplained infertility. At last, I want to conclude that HSG and DHL are complimentary to each other in the diagnosis of female infertility.

Reference:-
1. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506-12.
2. Padubidri VG, Daftary SN. Shaw’s Text Book of Gynecology, 14th edition, Reed Elsevier India Pvt- Ltd; 198.
3. Fritz MA, Speroff L. Clinical Gynecology Endocrinology and Infertility, 8th edition, chapter 27; 1137.
4. World Health Organization 2013. "Health Topics: Infertility". Available http://www.who.int/topics/infertility/en/. Retrieved November 5, 2013.
5. World Health Organization 2013."Sexual and reproductive health: Infertility definitions and terminology. Available http://www.who.int/reproductivehealth/topics/infertility/definitions/en/.Retrieved November 5, 2013.
6. Rutstein, Shea O., and Iqbal H. Shah. "Infecundity, Infertility, and Childlessness in Developing Countries." DHS Comparative Reports No. 9 (2004): 1-57
7. Shamila S, Sasikala SL. Primary Report on the Risk Factors Affecting Female Infertility in South Indian Districts of Tamil Nadu and Kerala. Indian J Community Med. 2011;36(1):59-61.
8. Berek JS, Rinehart RD, Hillard PA, Adashi EY. Novak’s Gynecology, 15th edition, Walters Kluwer India Pvt Ltd. chapter 32; 1139.
9. Dutta DC. Text Book of Gynecology, 6th edition. New Central Book Agency Pvt Ltd. Chapter 10: 136 – 7.
10. Crosignani PG, Rubin BL. The ESHRE Capri Workshop Group. 2000. Optimal use infertility diagnostic tests and treatments. Human Reprod. 2000; 15:723-32.
11. Lessey BA, Forstein DA, Miller PB, Egbuniwe MN, Dodds R. Laparoscopic surgery improves outcome and diagnostic accuracy in unexplained infertility. Fertil Steril. 2010;94:S38.
12. Nayak PK, Mahapatra PC, Mallick JJ, Swain S, Mitra S, Sahoo J. Role of diagnostic hystero-laparoscopy in the evaluation of infertility: A retrospective study of 300 patients. J Hum Reprod Sci. 2013;6:32-4.
13. Makled AK, Farghali MM, Shenouda DS. Role of hysteroscopy and endometrial biopsy in women with unexplained infertility. Arch Gynecol Obstet. 2014;289:187-92.
14. Jayakrishnan K, Koshy AK, Raju R. Role of laparohysteroscopy in women with normal pelvic imaging and failed ovulation stimulation with intrauterine insemination. J Hum Reprod Sci 2010; 3:20-4.
15. Goynumer G, Yetim G, Gokcen O et al. Hysterosalpingography, Laparoscopy or both in the Diagnosis of Tubal Disease in Infertility. World Journal of Laparoscopic Surgery, 2008 May-Aug; 1(2):23–6.
16. Foroonzanford F, Sadat Z. Diagnostic Value of Hysterosalpingography and Laparoscopy for tubal patency in infertile women. Nurs Midwifery Stud. 2013; 2(2):188–92.
17. Neerja JK et al. Comparative Status of Hysterosalpingography and laparoscopy in evaluation of Infertile Women. Journal of Advance Research in Biological Sciences. 2012; 4(10):41–3.
18. Heis M, Amarin Z et al. Uterine and Tubal anatomical abnormalities in infertile women: diagnosis with routine hysterosalpingography prior to selective laparoscopy. SA Journal of Radiology. 2011 Dec; 121–2.
19. Mol BWJ, Collins JA, Burrows EA, van der Veen F et al. Comparison of hysterosalpingography and laparoscopy in predicting fertility outcome. Human Reproduction. 1999; 14(5):1237–42.
20. Behuria S, Nayak R. Diagnostic and therapeutic hysterolaparoscopy in evaluation and treatment of female infertility in a tertiary hospital. Int J Reprod Contracept Obstet Gynecol. 2016;5:4189-92.
21. Dr. Samipa J. Shah, Dr. Akshay C. Shah et al. NHL Journal of Medical Sciences/July 2014/Vol 3/Issue 2.
22. Kamiński P, Wieczorek K, Marianowski L. Usefulness of hysteroscopy in diagnosing sterility Ginekol Pol.1992;63:634-7.
23. Donnez J, Jadoul P. What are the implications of myomas on fertility? A need for a debate? Hum Reprod.2002;17:1424-30.
24. Pritts EA. Fibroids and infertility: A systematic review of the evidence. Obstet Gynecol Surv. 2001;56:483-91.
25. Agrawal N, Fayyaz S. Evaluation of endoscopic procedures in terms of achieving pregnancy in female infertile patients: An experience at a single tertiary care center. J Gynecol Obstet Hum Reprod. 2018 Nov;47(9):
26. Vaid K, Mehra S, Verma M, Jain S, Sharma A, Bhaskaran S. Pan endoscopic approach "hysterolaparoscopy" as an initial procedure in selected infertilewomen. J Clin Diagn Res. 2014 Feb;8(2).
27. Kabadi YM, Harsha B. Hysterolaparoscopy in the Evaluation and Management of Female Infertility. J Obstet Gynaecol India. 2016 Oct;66(Suppl 1):478.
28. Chanu SM, Rudra Pal GS, Panda S, Santa Singh A S. Diagnostic hysterolaparoscopy for evaluation of infertility: Our experience in a tertiary Care Hospital. J Hum Reprod Sci [serial online] 2018 [cited 2019 Apr 1];11:19-23.