Terahertz-driven linear electron acceleration

Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustdban Rav, Arya Fallahi, Gustavo Moriena, R.J. Dwayne Miller, Arya Fallahi, Gustavo Moriena, R.J. Dwayne Miller, Franz X. Kärtner

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m⁻¹ gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.
At radio-frequency (RF) frequencies where conventional sources (klystrons and so on) are efficient, surface electric field gradients in accelerating structures are limited by RF-induced plasma breakdown\(^1,2\). Empirically, the breakdown threshold has been found\(^3,4\) to scale as \(E_b \propto f^{1/2} \tau^{-1/4}\), where \(E_b\) is the surface electric field, \(f\) is the frequency of operation and \(\tau\) is the pulse length indicating that higher frequencies and shorter pulse durations are clearly beneficial. This empirical scaling is limited by the onset of field emission due to the electric field on material surfaces. For most commonly accelerating materials, this onset is in the 10s of GV m\(^{-1}\) range\(^5,6\). In addition, low frequencies (that is, GHz) inherently require long RF pulses because a single RF cycle is long (on the order of ns) and traditional sources work most efficiently when operating over a very narrow frequency spectrum (that is, long pulse length). Practically, this results in a significant amount of average power coupled into the structure if a high repetition rate is used.

If high accelerating gradients are desired, presently available ultrafast near infrared (NIR) terawatt and petawatt laser technology based on chirped pulse amplification allows for multi-GeV m\(^{-1}\) gradients\(^7–16\). However, due to the short wavelength, infrared optical pulses prove to be difficult to use for the direct acceleration of electrons with significant charge per bunch, which is an important parameter. For example, the coherent emission in a free electron laser (FEL) from an electron bunch scales with the square of the number of electrons in the bunch\(^1\). To prevent emittance growth and increased energy spread, the electron bunch needs to occupy a small fraction of the optical cycle. Even for a long-infrared wavelength of 10 \(\mu\)m, 1° of phase in the optical wavelength corresponds to only ~28 mm. Another practical concern would be the timing precision between the optical cycle and the arrival of the electron bunch. For example, 1° phase jitter, commonly required for operational accelerators, requires <100 as timing jitter between the optical pulse and the electron bunch, which is challenging to maintain over extended distances. Difficulties increase further when considering the available options for guiding the optical light to decrease the phase velocity to match the electron beam. A guided mode at a wavelength of 10 \(\mu\)m would require sub-micron precision for aligning the electron bunch and the optical waveguide.

Alternatively, laser plasma wakefield accelerators have demonstrated GeV m\(^{-1}\) accelerating gradients\(^7,9,17\) with 100 terawatt to petawatt (TW–PW) low repetition rate sources with percent-level energy spread and jitter for the electron bunch. The complexity of these plasma wakefield accelerators is significant because the acceleration mechanism relies on plasma bubbles, which are easily subject to instabilities. Also, power scaling of the required high-energy femtosecond pulse sources is challenging.

THz frequencies provide the best of both worlds\(^18–21\). On one hand, the wavelength is long enough that we can fabricate waveguides with conventional machining techniques, provide accurate timing and accommodate a significant amount of charge per bunch. At 0.3 THz, the wavelength is 1 mm and 1° of phase

Figure 1 | Terahertz-driven linear accelerator. (a) Schematic of the THz LINAC. Top right: a linearly polarized THz pulse is converted into a radially polarized pulse by a segmented waveplate before being focused into the THz waveguide. The THz pulse is reflected at the end of the waveguide to co-propagate with the electron bunch, which enters the waveguide through a pinhole (lower left). The electron bunch is accelerated by the longitudinal electric field of the co-propagating THz pulse. The electron bunch exits the THz waveguide and passes through a hole in the focusing mirror (right) for the THz pulse. (b) Photograph of the compact millimetre scale THz LINAC. (c) The time-domain waveform of the THz pulse determined with electro-optic sampling (see Methods: Electro-optic sampling). Insert: corresponding frequency-domain spectrum. (d) The time-domain waveform of the THz pulse at the exit of a THz waveguide 5 cm in length, including two tapers. (e) Normalized intensity of the focused THz beam.
precision corresponds to 10-fs timing jitter, which is readily achievable\(^2\). On the other hand, the frequency is high enough that the plasma breakdown threshold for surface electric fields increases into the multi-GV m\(^{-1}\) range\(^6\). In addition, using optical generation techniques, we can have very short THz pulses (\(\leq 100\) ps) generated by picosecond lasers readily available at high average power and under rapid development. These short pulses allow for a limited amount of pulsed heating and a limited amount of average power loading at high repetition rates (on the order of kHz and above). Both the increase in operational frequency and reduction in pulse length will play a role in increasing the breakdown limit.

Here we report the experimental demonstration of electron acceleration using the axial component of an optically generated 10 \(\mu\)J THz pulse centred at 0.45 THz (see Methods: THz pulse generation) in a waveguide. The THz pulse accelerates electrons in a circular waveguide consisting of a dielectric capillary with a metal outer boundary. The dielectric slows the group and phase velocity of the THz wave allowing it to accelerate low-energy electrons. We observe a maximum energy gain of 7 keV in 3 mm. Future, THz accelerators designed for relativistic electron beams and using more intense THz sources will be able to reach GeV m\(^{-1}\) accelerating gradients.

Results

Operation of the THz LINAC. A schematic view of the THz accelerator is shown in Fig. 1a with a photograph of the THz LINAC in Fig. 1b. Using 60-keV electrons, from a d.c. electron gun, an energy gain of 7 keV is observed in a 3-mm interaction length. The single-cycle THz pulse, see Fig. 1c–e, is produced via optical rectification of a 1.2 mJ, 1.03 \(\mu\)m laser pulse with a 1 kHz repetition rate (see Methods: Pump source). The THz pulse, whose polarization is converted from linear to radial by a segmented waveplate (see Methods: Radially polarized THz beam), is coupled into a waveguide with 10 MV m\(^{-1}\) peak on-axis electric field (see Methods: Structure testing). A 25-fC input electron bunch is produced with a 60-keV d.c. photoemitting cathode excited by a 350-fs ultraviolet pulse (see Methods: Ultraviolet photoemitter). The accelerating gradient in the THz structures demonstrated in this work can be as high as GeV m\(^{-1}\) with a single-cycle THz pulse of 10 mJ (see Methods: THz LINAC), which can be readily produced by a 250-mJ infrared pulse when using optimized THz generation\(^2\). Laser systems producing such and even higher energy picosecond pulses with up to kHz repetition rates are on the horizon\(^24\–26\).

In this experiment, the THz waveguide supports a travelling TM\(_{01}\) mode that is phase matched to the velocity of the electron bunch produced by the d.c. photoinjector. It is the axial component of the TM\(_{01}\) mode that accelerates the electrons as they co-propagate down the waveguide. A travelling-wave mode is advantageous when considering the available single-cycle THz pulse because it does not require resonant excitation of the structure. A dielectric-loaded circular waveguide was selected due to the ease of fabrication in the THz band\(^27\). The inner diameter

![Figure 2 | Demonstration of terahertz acceleration.](image)
of the copper waveguide is 940 μm with a dielectric wall thickness of 270 μm. This results in a vacuum space with a radius of 200 μm. The significant thickness of the dielectric is due to the low energy of the electrons entering the structure, and will decrease significantly at higher energy. One critical aspect for THz electron acceleration is proper interaction between the electron beam and the THz pulse. Coupling the radially polarized THz pulse into the single-mode dielectric waveguide was achieved with a centrally loaded dielectric horn. The design was optimized to maximize coupling with minimal fabrication complexity. Finite element electromagnetic simulations with HFSS indicate excellent coupling of the THz pulse over a ~200 GHz bandwidth (see Methods: Structure testing), which is compatible with the bandwidth of the radially polarized mode converter. The accelerating waveguide is 10 mm in length, including a single tapered horn for coupling the THz into the waveguide. Alignment between the THz waveguide and the d.c. gun is provided by a pin-hole aperture in a metal plate with a diameter of 100 μm that abuts the waveguide. The THz pulse is coupled into the waveguide downstream of the accelerator and it propagates along the full length of the waveguide before being reflected by the pin-hole aperture, which acts as a short at THz frequencies. After being reflected the THz pulse co-propagates with the electron bunch. The low initial energy of the electrons results in the rapid onset of a phase-velocity mismatch between the electron bunch and the THz pulse once the electrons have been accelerated by the THz pulse and this limits the interaction length to 3 mm (see Methods: THz LINAC).

Observation of acceleration. The electron beam energy is determined via energy-dependent magnetic steering with a dipole located after the accelerator. Figure 2a,b shows images of the electron beam produced by the micro-channel plate detector. The measured energy spectrum from the electron bunch with and without THz is shown in Fig. 2c,d for an initial mean energy of 59 keV. The curves are compared with PARMELA particle-in-cell (PIC) simulation results used to model the d.c. gun and the THz LINAC. The full width of the electron bunch length after the pinhole is 200 μm, which is long with respect to the wavelength of the THz pulse in the waveguide, $\lambda_{\text{THz}} = 315 \mu$m. The length of the electron bunch in combination with the phase-velocity mismatch between the electron bunch and the THz pulse results in the observation of both acceleration and deceleration of particles. With the available THz pulse energy, a peak energy gain of 7 keV was observed by optimizing the electron beam voltage and timing of the THz pulse. The modelled curve in Fig. 2d concurred with experiments for an on-axis electric field of 8.5 MV m$^{-1}$. Using this estimated field strength, at the exit of the LINAC, the modelled transverse and longitudinal emittance are 240 and 370 nm rad, respectively. An increase in emittance from a transverse emittance of 25 nm rad and a longitudinal emittance of 5.5 nm rad after a pinhole located at the waveguide entrance is due to the long electron bunch length compared with the THz wavelength and can be easily remedied with a shorter ultraviolet pulse length.

Optimization of electron beam interaction with THz pulse. The energy gain achieved during the interaction of the electron bunch with the THz pulse is dependent on the initial energy of the electrons, because the set-up is operated in the non-relativistic limit where the velocity of the electrons varies rarely. If the initial energy is decreased, the particle velocity decreases and the phase-velocity mismatch with the THz pulse increases reducing the interaction length and the acceleration of the particle. In Fig. 3a, the achieved mean output energy of the electron bunch is shown versus the initial energy. Higher initial energy was experimentally found to be favourable for higher energy gain. This observation is in agreement with a single-particle model for a peak on-axis electric field of 8.5 MV m$^{-1}$ and an effective accelerating gradient of 2.5 MeV m$^{-1}$ (see Methods: THz LINAC). In Fig. 3b, the mean energy of accelerated electrons is shown as a function of the THz pulse delay for 55-keV initial energy. The large temporal range of observed acceleration results from waveguide dispersion, which broadens the single-cycle pulse temporally as it propagates. Accelerated electrons are observed over the full range of the phase-matched THz pulse due to the long length of the electron bunch as it enters the THz waveguide. Modelling indicates that at the entrance of the THz waveguide for this initial energy, the electron bunch full width is 1.5 ps in length, which is already a significant fraction of the THz cycle (2.2 ps).

In conclusion, optically generated THz pulses were used to accelerate electrons in a simple and practical THz accelerator. An energy gain of 7 keV was achieved over a 1-mm interaction length with good modelled emittance. Performance of these structures improves with an increase in electron energy and gradient making them attractive for compact accelerator applications. With upgrades to pump laser energy and technological improvements to THz sources, laboratory demonstration of GeV m$^{-1}$ gradients in THz LINACs is realistic. Multi-GeV m$^{-1}$ gradients and >10 MeV energy gain are achievable in dielectric-loaded circular waveguides with 10-mJ THz pulses and the injection of electrons at relativistic energies (see Methods: THz LINAC).
The available THz pulse energy scales with infrared pump energy, with recently reported results of mJ THz pulse energies and ~3% infrared-to-THz conversion efficiencies. Multiple stages of THz acceleration can be used to achieve higher energy gain with additional infrared pump lasers for subsequent stages. Timing jitter will improve on the jitter of conventional accelerators since the accelerating field and photoemitting pulse are produced by the same drive laser. Therefore, one expects the resulting electron bunch to have tighter synchronization than possible in today’s RF-based accelerators, where the photoemitting laser pulse is synchronized to the RF drive by standard RF techniques (that is, phase locked loops operating at GHz speeds). This proof-of-principle THz linear accelerator demonstrates the potential for an all-optical acceleration scheme that can be readily integrated into small-scale laboratories providing users with electron beams that will enable new experiments in ultrafast electron diffraction and X-ray production.

Methods

THz pulse generation. The THz pulse that is used in the accelerating structure is generated with optical rectification of 700 fs, 1.03 μm pulses in cryogenically cooled stoichiometric lithium niobate (LN) doped with 1% MgO. LN was chosen because it exhibits multiple advantages with low THz absorption, large bandgap, a high damage threshold and a high effective nonlinear coefficient, that is, large d_{eff}. For a high efficiency of conversion in LN, a tilted-pulse-front pumping scheme is required. The THz pulse is centred at 0.45 THz with a broad spectrum ranging from 0.2 to 0.8 THz. A THz pulse energy of 10 μJ is produced from 1.2 mL of NIR, which is slightly lower than the peak conversion efficiency of THz generation due to a larger spot size in the LN (decreased fluence) for improved transport of the
Figure 6 | Electromagnetic field distribution. The field distribution in the THz waveguide for (a) the non-relativistic design described in Fig. 4 with \(r_v = 200 \, \mu \text{m} \) and \(d = 270 \, \mu \text{m} \), (b) the relativistic design in Fig. 5f for operation at 0.45 THz with \(r_v = 105 \, \mu \text{m} \) and \(d = 90 \, \mu \text{m} \) and (c) the relativistic design in Fig. 5f for operation at 1 THz with \(r_v = 105 \, \mu \text{m} \) and \(d = 30 \, \mu \text{m} \).

Figure 7 | Coupling and dispersion of THz pulses in waveguides. (a) HFSS28 simulation of the coupling of the free-space radially polarized mode into the TM\(_{01}\) mode through a dielectric-loaded taper. (b) The time-domain waveform of the THz pulse determined with electro-optic sampling before being coupled into the THz waveguide. (c) The measured versus the modelled time-domain waveform of the THz pulse at the exit of a 5-cm (including tapers) dielectric-loaded THz waveguide.

THz beam. The THz beam has excellent Gaussian mode content, which allows for low-loss coupling. The THz beam was characterized spatially by a pyroelectric THz beam. The THz beam has excellent Gaussian mode content, which allows for low-loss coupling. The THz beam was characterized spatially by a pyroelectric detector array (Spiricon Pyrocam IV, Ophir Photonics).

Pump source. The pump source for THz generation is a Yb:KYW chirped pulse regenerative amplifier (RGA) producing 1.5-nJ pulses with 1 kHz repetition rate at a centre wavelength of 1.030 nm and bandwidth of 2.1 nm. The dielectric grating compressor following the RGA compresses the pulses to a near-transform-limited 700-fs pulse duration (full width at half maximum). The seed for the RGA was a mode-locked Yb-doped fibre oscillator emitting 70 fs, 0.2 nJ pulses at 80 MHz (ref. 34) amplified to 1.6 nJ by a Yb-doped fibre amplifier. After losses through the 10-mm-long type I LBO crystal for infrared to green and in a 0.5-mm-long type-I BBO crystal for the green to ultraviolet, respectively. A BG-39 band-pass filter was used to remove the fundamental NIR component after the first stage. The ultrafast pulses have a duration of \(\approx 350 \, \text{fs} \) and are focused onto the photocathode with a beam waist of \(\approx 200 \, \mu \text{m} \). Since both the THz and ultraviolet pulses are coupled into the THz waveguide. \(\frac{c}{\sqrt{\varepsilon}} \) was increased as the particles are accelerated increasing the electron velocity, however, the mismatch with the phase velocity results in an interaction length of \(\approx 8 \, \text{mm} \). The Thz LINAC. The THz pulse accelerates electrons in a circular waveguide consisting of a quartz capillary inserted into a hollow copper cylinder, see Fig. 1a. The inner diameter of the copper waveguide is 940 \(\mu \text{m} \) with a dielectric wall thickness of \(d = 270 \, \mu \text{m} \). This results in a vacuum space with a radius of \(r_v = 200 \, \mu \text{m} \). The dielectric constant of the quartz capillary is nominally \(\varepsilon = 4.41 \). The operational mode of the LINAC is a travelling TM\(_{01}\) mode, see Fig. 4a. The dispersion relation for the operating mode is shown in Fig. 4b. At the centre frequency of the THz pulse (450 GHz), the group velocity is \(v_g \approx 0.46 \) and the phase velocity is \(v_p \approx 0.505 \).

Due to the operational frequency’s proximity to the cutoff of the waveguide, the accelerating mode is highly dispersive with the phase and group velocity shown in Fig. 4c as a function of frequency. The waveguide dimensions of the LINAC were chosen to optimize for this experimental set-up with a low initial electron energy of 60 keV, the THz pulse energy available and the transverse dimension of the accelerating structure. A segmented \(\frac{1}{2} \) waveplate with eight segments of \(\approx 8 \, \text{mm} \)-thick quartz designed for operation at 0.45 THz was used.

Ultraviolet photoemitter. About 2% of the available 1,030 nm NIR pump energy was used to generate the ultraviolet photoemitter pulses by fourth harmonic generation from 1.03 \(\mu \text{m} \) based on two-stage second harmonic generation in a 10-mm-long type I LBO crystal for infrared to ultraviolet, respectively. A BG-39 band-pass filter was used to remove the fundamental NIR component after the first stage. The ultraviolet pulses have a duration of \(\approx 350 \, \text{fs} \) and are focused onto the photocathode with a beam waist of \(\approx 200 \, \mu \text{m} \). Since both the THz and ultraviolet pulses are produced from the same sub-picosecond NIR laser, the timing jitter between them is negligible.

Electro-optic sampling. Electro-optic sampling was used to determine the temporal and spectral properties of the THz pulse and dispersion induced from the quasi-optical elements in the THz beamline. Optical synchronization between the THz pulse and the mode-locked Yb-doped fibre seed oscillator (80 MHz, 70 fs, 1.030 nm) was ensured as explained in the Pump source section of Methods. Birefringence was induced in a 200- \(\mu \text{m} \) thick, 110-cut ZnTe crystal. A quarter-wave plate followed by a polarizer converts the field-induced birefringence to an intensity modulation, and the intensity modulation is measured using a balanced detector with a delay scan.

Radially polarized THz beam. The THz pulse generated by optical rectification is linearly polarized, which is not compatible with the TM\(_{01}\) mode used in the accelerating structure. A segmented half waveplate was used to convert the linearly polarized light to radially polarized light35. Each segment of the waveplate imparts the appropriate rotation to the polarization to transition from a linear to a radially polarized beam, which couples well in the far field to the TM\(_{01}\) mode of the accelerating structure. A segmented \(\frac{1}{2} \) waveplate with eight segments of \(\approx 8 \, \text{mm} \)-thick quartz designed for operation at 0.45 THz was used.
is improved. Figure 6 compares the field distribution for the non-relativistic waveguide design (Fig. 4), which was investigated experimentally and the relativistic designs highlighted in Fig. 5f. Note the decrease in waveguide radius, the decrease in dielectric wall thickness and the increased relative amplitude of the longitudinal electric field in the accelerating region of the waveguide (r < 100 μm) for the two relativistic (θ_0=0) designs, which all contribute to improve the efficiency of the accelerator. The transverse fields in all cases are localized to the regions without the presence of the electron bunch alleviating concerns with the potential for ponderomotive effects. The use of multi-mJ THz pulses will increase the peak electric fields in these waveguides well above a GV/m^{-1}; however, the long wavelength and short propagation distance prevent the onset of nonlinearities such as self phase modulation. Further details and numerical studies for relativistic THz LINACs using dielectric-loaded waveguides and few-cycle THz pulses were previously reported in ref. 30.

Structure testing. A THz waveguide structure consisting of two tapers separated by a uniform waveguide section was built to test and optimize waveguide design by performing transmitted energy and polarization measurements. Measurements were performed with a Gentec-EO Pyroelectric Joulemeter Probe that is capable of by a uniform waveguide section was built to test and optimize waveguide design by non-linearities such as self phase modulation. Further details and numerical studies for relativistic THz LINACs using dielectric-loaded waveguides and few-cycle THz pulses were previously reported in ref. 30.

Structure testing. A THz waveguide structure consisting of two tapers separated by a uniform waveguide section was built to test and optimize waveguide design by performing transmitted energy and polarization measurements. Measurements were performed with a Gentec-EO Pyroelectric Joulemeter Probe that is capable of by a uniform waveguide section was built to test and optimize waveguide design by non-linearities such as self phase modulation. Further details and numerical studies for relativistic THz LINACs using dielectric-loaded waveguides and few-cycle THz pulses were previously reported in ref. 30.

Structure testing. A THz waveguide structure consisting of two tapers separated by a uniform waveguide section was built to test and optimize waveguide design by performing transmitted energy and polarization measurements. Measurements were performed with a Gentec-EO Pyroelectric Joulemeter Probe that is capable of by a uniform waveguide section was built to test and optimize waveguide design by non-linearities such as self phase modulation. Further details and numerical studies for relativistic THz LINACs using dielectric-loaded waveguides and few-cycle THz pulses were previously reported in ref. 30.

References

1. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
2. Ishikawa, T. et al. A compact X-ray free-electron laser emitter in the sub-ångstrom region. Nat. Photon. 6, 540–544 (2012).
3. Kilpatrick, W. Criterion for vacuum sparking designed to include both rf and cold field electron emission. Phys. Rev. Spec. TOP. Accl. Beams 11, 30704 (2008).
4. Thompson, M. et al. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft X-ray laser. Opt. Lett. 37, 3624–3626 (2012).
5. Zappa, L. et al. Cryogenic yb: Yag composite-thin-disk for high energy and average power amplifiers. Opt. Lett. 40, 2610–2613 (2015).
6. Mitrofanov, O., James, R., Fernández, F. A., Mavrogordatos, T. K. & Harrington, J. A. Reducing transmission losses in hollow thz waveguides. IEEE Trans. THz Sci. Technol. 1, 124–132 (2011).
7. ANSYS HFSS. Academic Research, Release v15.0 (Ansys Inc., 2013).
8. Young, L. & Billen, J. In Proceedings of the 2003 IEEE Particle Accelerator Conference (PAC 03) (The particle tracking code parmeda) (Portland, Oregon, 2003).
9. Wong, L. J., Fallahi, A. & Kärtner, F. X. Compact electron acceleration and bunched compression in THz waveguides. Opt. Express 21, 9792–9806 (2013).
10. Chen, Z., Zhou, X., Werley, C. A. & Nelson, K. A. Generation of high power tunable multicycle terahertz pulses. Appl. Phys. Lett. 99, 071102 (2012).
11. Vicario, C. et al. Generation of 0.9-mJ thz pulses in doms pumped by a Cr:GSGG laser. Opt. Lett. 39, 6632–6635 (2014).
12. Fülöp, J. A. et al. In CLEO: Science and Innovations, SW1-F-5 (Optical Society of America, 2014).
13. Hong, K.-H. et al. Generation of 287W, 5.5ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Opt. Lett. 33, 2473–2475 (2008).
14. Groosjean, T. et al. Linear to radial polarization conversion in the thz domain using a passive system. Opt. Express 16, 18895–18909 (2008).
15. Miyagi, M. & Kawakami, S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2, 116–126 (1984).
16. Zrazhevskiy, M. et al. Terahertz-induced kerr effect in amorphous chalcogenide glasses. Appl. Phys. Lett. 103, 221102 (2013).
17. Harbold, J. et al. Highly nonlinear as-s-se glasses for all-optical switching. Opt. Lett. 27, 119–121 (2002).

Acknowledgements

We acknowledge W.S. Graves for many discussions and help with Parmela simulations; L.J. Wong for discussions on THz waveguides used for acceleration; S.-W. Huang for his assistance with THz generation; L. Hua for his assistance with the operation of the laser system. This work was supported by DARPA under contract N66001-11-1-4192, by AFOSR under grant AFOSR—AF550-12-1-0499, DOE DE-FG02-10ER46745, DOE DE-FC02-08ER41532, ERC Synergy Grant 609920 and NSF DMR-1042342, the Center for Free-Electron Laser Science at DESY and the excellence cluster The Hamburg Centre for Ultrafast Imaging-Structure, Dynamics and Control of Matter at the Atomic Scale of the Deutsche Forschungsgemeinschaft.

Author contributions

E.A.N., A.F. and F.X.K. conceived and designed the experiment. E.A.N. built and performed the experiment with the help from W.R.H. and K.-H.H., A.F. and E.A.N. provided the design for the dielectric-loaded metal waveguide. W.R.H. and K.-H.H. provided the laser system. This work was supported by DARPA under contract N66001-11-1-4192, by AFOSR under grant AFOSR—AF550-12-1-0499, DOE DE-FG02-10ER46745, DOE DE-FC02-08ER41532, ERC Synergy Grant 609920 and NSF DMR-1042342, the Center for Free-Electron Laser Science at DESY and the excellence cluster The Hamburg Centre for Ultrafast Imaging-Structure, Dynamics and Control of Matter at the Atomic Scale of the Deutsche Forschungsgemeinschaft.

Additional information

Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Nanni, E. A. et al. Terahertz-driven linear electron acceleration. *Nat. Commun.* 6:8486 doi: 10.1038/ncomms9486 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/