Lower bounds of Lipschitz constants on foliations

Guangxiang Su

Received: 3 April 2018 / Accepted: 20 October 2018 / Published online: 15 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this paper we consider Llarull’s theorem in the foliation case and get a lower bound of the Lipschitz constant of the map $M \to S^n$ in the foliation case under the spin condition.

1 Introduction

In [2], M. Gromov conjectured the following.

Conjecture 1.1 (Gromov) Let g be a Riemannian metric on S^n such that $g \geq g_0$ where g_0 is the standard metric of constant curvature. Then the scalar curvature k_g must become small somewhere, more precisely, $\inf k_g \leq c(n)k_{g_0}$, where $c(n) \leq 1$ is a constant that depends on the dimension n, with best constant when $c(n) = 1$.

A map $f : M \to N$ between Riemannian manifolds is said to be ε-contracting if $\|f_*v\| \leq \varepsilon\|v\|$ for tangent vectors v to M (cf. [4]).

The normalized scalar curvature of a manifold M of dimension n is defined as

$$\tilde{k} = \frac{k}{n(n-1)},$$

where k is the usual scalar curvature.

In [6], M. Llarull proved the following theorem which confirmed Gromov’s conjecture.

Theorem 1.2 ([6]) Let M be a compact Riemannian spin manifold of dimension n. Suppose there exists a 1-contracting map $f : (M, g) \to (S^n, g_0)$ of non-zero degree. Then either there exists $x \in M$ with $\tilde{k}_g(x) < 1$, or $M \equiv S^n$ and f is an isometry.

Recall that for a map $f : M \to S^n$ the Lipschitz constant (cf. [3,4]) is defined by

$$\text{Lip}(f) = \sup_{x_1 \neq x_2} \frac{\text{dist}_{S^n}(f(x_1), f(x_2))}{\text{dist}_M(x_1, x_2)}.$$ \hfill (1.1)

In [3, Sect. 3], Gromov pointed out that Theorem 1.2 is related to the problems of the Lipschitz constants of the maps $M \to S^n$.
Let F be an integrable subbundle of the tangent vector bundle TM of a closed smooth manifold M. Let g^F be a metric on F, and $k^F_g \in C^\infty(M)$ be the associated leafwise scalar curvature (cf. [8, (0.1)]). Let \tilde{k}^F_g be the normalized leafwise scalar curvature, i.e.

$$\tilde{k}^F_g = \frac{k^F_g}{rkF(rkF - 1)}.$$

In this paper, we prove the following theorem which partly generalizes Theorem 1.2 in the foliation case.

Theorem 1.3 Let M be a closed Riemannian manifold of dimension n and F be a foliation on M. Suppose TM or F is spin and there exists a smooth map $f : (M, g) \to (S^n, g_0)$ of non-zero degree such that for any $v \in F$, $\|f_*(v)\| \leq \|v\|$. Then there exists $x \in M$ with $\tilde{k}^F_g(x) \leq 1$.

From Theorem 1.3, one sees that the leafwise scalar curvature is also related to the lower bounds of the Lipschitz constants. If $\tilde{k}^F_g > 1$, then there exists $v \in F$, such that $\|f_*(v)\| > \|v\|$ on a small neighborhood. So from Theorem 1.3, one has the following theorem.

Theorem 1.4 Let M be a closed Riemannian manifold of dimension n and F be a foliation on M. Suppose TM or F is spin and $\tilde{k}^F_g > 1$, then for smooth maps $f : (M, g) \to (S^n, g_0)$ of non-zero degree, we have $\text{Lip}(f) > 1$.

Our proof of Theorem 1.3 combines the methods in [6,8] and [9]. It is based on deforming (twisted) sub-Dirac operators on the Connes fibration. It will be carried out in Sect. 2.

2 Proof of theorem 1.3

In this section, we give a proof of the main theorem. We give the details for the case TM is spin, F is spin is similar.

If there does not exist any point such that $\tilde{k}^F_g \leq 1$, then there exists $\delta > 0$ such that $\tilde{k}^F_g(x) - 1 \geq \delta$, for any $x \in M$.

2.1 The dimension of M is even

Over (S^{2n}, g_0), we have the spinor bundle (cf. [5])

$$E_0 = P_{Spin_{2n}}(S^{2n}) \times \lambda \ Cl_{2n},$$

with the induced metric and connection from (S^{2n}, g_0). Fix $x \in S^{2n}$ and choose local pointwise orthonormal tangent vector fields around $x, \{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{2n}\}$ such that $(\nabla \varepsilon_k)_x = 0$. Let ω_0

$$\omega_0 = i^n \varepsilon_1 \cdot \varepsilon_2 \cdots \varepsilon_{2n}.$$

Then ω_0 gives the splitting

$$E_0 = E_0^+ \oplus E_0^-,$$

into the $+1$ and -1 eigenspaces of ω_0.

Fix $p \in M$, such that $f(p)$ is a regular value. Then as in [6], we can choose the frames near p and $f(p)$ as follows. Let $\{f_1, \ldots, f_{2n}\}$ be a g-orthonormal tangent frame near $p \in M$
such that \((\nabla f_k)_{\rho} = 0\) for each \(k\) and \(\{f_1, \ldots, f_{rkF}\}\) be a basis of \(F\). Let \(\{e_1, \ldots, e_{2n}\}\) be a \(g_0\)-orthonormal tangent frame near \(f(p) \in S^{2n}\) such that \((\nabla e_k)_{(p)} = 0\) for each \(k\). Moreover, the bases \(\{f_1, \ldots, f_{2n}\}\) and \(\{e_1, \ldots, e_{2n}\}\) can be chosen so that \(e_j = \lambda_j f_* f_j\), \(1 \leq j \leq rkF\) for appropriate \(\{\lambda_j\}_{j=1}^{rkF}\).

Following [1, Sect. 5] (cf. [8, Sect. 2.1]), let \(\pi : M \rightarrow M\) be the Connes fibration over \(M\) such that for any \(x \in M\), \(M_x = \pi^{-1}(x)\) is the space of Euclidean metrics on the linear space \(T_x M / F_x\). Let \(T^V M\) denote the vertical tangent bundle of the fibration \(\pi : M \rightarrow M\). Then it carries a natural metric \(g(T^V M)\).

By using the Bott connection on \(TM / F\), which is leafwise flat, one lifts \(F\) to an integrable subbundle \(\mathcal{F}\) of \(TM\). Then \(g^F\) lifts to a Euclidean metric \(g^F = \pi^* g^F\) on \(\mathcal{F}\).

Let \(\mathcal{F}^\perp_1 \subset TM\) be a subbundle, which is transversal to \(\mathcal{F} \oplus T^V M\), such that we have a splitting \(TM = (\mathcal{F} \oplus T^V M) \oplus \mathcal{F}^\perp_1\). Then \(\mathcal{F}^\perp_1\) can be identified with \(TM/(\mathcal{F} \oplus T^V M)\) and carries a canonically induced metric \(g^{\mathcal{F}^\perp_1}\). We denote \(\mathcal{F}^\perp_2 = T^V M\).

Set \(E = f^* E_0\). Let \(E = \pi^* E\) be the lift of \(E\) which carries the lifted Hermitian metric \(g^E = \pi^* g^E\) and the lifted Hermitian connection \(\nabla^E = \pi^* \nabla^E\). Let \(R^E = (\nabla^E)^2\) be the curvature of \(\nabla^E\).

For any \(\beta, \varepsilon > 0\), following [8, (2.15)], let \(g^{T^V M}_{\beta, \varepsilon}\) be the metric on \(TM\) defined by the orthogonal splitting,

\[
TM = \mathcal{F} \oplus \mathcal{F}^\perp_1 \oplus \mathcal{F}^\perp_2, \quad g^{T^V M}_{\beta, \varepsilon} = \beta^2 g^\mathcal{F} \oplus \frac{g^{\mathcal{F}^\perp_1}}{\varepsilon^2} \oplus g^{\mathcal{F}^\perp_2}.
\]

Now we replace the sub-Dirac operator constructed in [8, (2.16)] by the obvious twisted (by \(E\)) analogue ([9, (1.3)])

\[
D^E_{\mathcal{F} \oplus \mathcal{F}^\perp_1, \beta, \varepsilon} : \Gamma \left(S_{\beta, \varepsilon} \left(\mathcal{F} \oplus \mathcal{F}^\perp_1 \right) \otimes \Lambda^* \left(\mathcal{F}^\perp_2 \right) \otimes E \right) \rightarrow \Gamma \left(S_{\beta, \varepsilon} \left(\mathcal{F} \oplus \mathcal{F}^\perp_1 \right) \otimes \Lambda^* \left(\mathcal{F}^\perp_2 \right) \otimes E \right).
\]

(2.3)

Take a metric on \(TM / F\). This is equivalent to taking an embedded section \(s : M \hookrightarrow M\) of the Connes fibration \(\pi : M \rightarrow M\). Then we have a canonical inclusion \(s(M) \subset M\).

For any \(p \in \mathcal{M} \setminus \{M\}\), we connect \(p\) and \(s(\pi(p))\) in \(s(M)\) by the unique geodesic in \(\mathcal{M}_{\pi(p)}\). Let \(\sigma(p) \in \mathcal{F}^\perp_2 |_p\) denote the unit vector tangent to this geodesic. Let \(\rho(p) = d\mathcal{M}_{\pi(p)}(p, s(\pi(p)))\) denote the length of this geodesic.

Let \(f : [0, 1] \rightarrow [0, 1]\) be a smooth function such that \(f(t) = 0\) for \(0 \leq t \leq \frac{1}{4}\), while \(f(t) = 1\) for \(\frac{1}{2} \leq t \leq 1\). Let \(h : [0, 1] \rightarrow [0, 1]\) be a smooth function such that \(h(t) = 1\) for \(0 \leq t \leq \frac{3}{4}\), while \(h(t) = 0\) for \(\frac{7}{8} \leq t \leq 1\).

For any \(R > 0\), denote

\[
\mathcal{M}_R = \{ p \in \mathcal{M} : \rho(p) \leq R \}. \tag{2.4}
\]

Then \(\mathcal{M}_R\) is a smooth manifold with boundary.

On the other hand, the following formula holds on \(\mathcal{M}_R\) (cf. [8, (2.28)], [9, (1.4)])

\[
\left(D^E_{\mathcal{F} \oplus \mathcal{F}^\perp_1, \beta, \varepsilon} \right)^2 = -\Delta^E_{\beta, \varepsilon} + \frac{k^E}{4\beta^2} + \frac{1 + \frac{\varepsilon^2}{\beta^2}}{2\beta^2} \sum_{i, j = 1}^{rkF} c_{\beta, \varepsilon}(\beta f_i) c_{\beta, \varepsilon}(\beta^{-1} f_j) R^E(f_i, f_j) + O_R \left(\frac{1 + \frac{\varepsilon^2}{\beta^2}}{\beta^2} \right), \tag{2.5}
\]

where \(-\Delta^E_{\beta, \varepsilon} \geq 0\) is the corresponding Bochner Laplacian, \(k^E = \pi^* k^E\) and \(f_1, \ldots, f_{rkF}\) is an orthonormal basis of \((\mathcal{F}, g^\mathcal{F})\).
Since [6, Lemma 4.3] and [6, Lemma 4.5] hold for fixed \((i, j)\), proceeding as the computations in [6, Lemmas 4.3, 4.5], for any \(\phi \in \Gamma(S_{\beta, \varepsilon}(F \oplus F_1^+) \otimes \Lambda^* (F_2^+) \otimes \mathcal{E})\) supported in \(\mathcal{M}_R\), one has

\[
\left\langle \frac{1}{2\beta^2} \sum_{i,j=1}^{\text{rk} F} R^\mathcal{E} (f_i, f_j) c_{\beta, \varepsilon} (\beta^{-1} f_i) c_{\beta, \varepsilon} (\beta^{-1} f_j) \phi, \phi \right\rangle \geq -\frac{1}{4\beta^2} \text{rk} F (\text{rk} F - 1) \| \phi \|^2.
\] (2.6)

Then by (2.5) and (2.6), for any \(\phi \in \Gamma(S_{\beta, \varepsilon}(F \oplus F_1^+) \otimes \Lambda^* (F_2^+) \otimes \mathcal{E})\) supported in \(\mathcal{M}_R\), one gets

\[
\left\langle \left(D^\mathcal{E}_{F \oplus F_1^+, \beta, \varepsilon} \right)^2 \phi, \phi \right\rangle \geq -\frac{1}{4\beta^2} \text{rk} F (\text{rk} F - 1) \left(\tilde{k}_g^\mathcal{E} - 1 \right) \| \phi \|^2 + O_R \left(\frac{1}{\beta} + \varepsilon^2 \frac{1}{\beta^2} \right) \| \phi \|^2.
\] (2.7)

From (2.7), proceeding as the proof of [8, Lemma 2.4], one can get the following analogue inequality of [8, (2.22)].

Lemma 2.1 There exist \(C_0, R_0 > 0\), such that for any (fixed) \(R \geq R_0\), when \(\beta, \varepsilon > 0\) (which may depend on \(R\)) are small enough, for any \(\phi \in \Gamma(S_{\beta, \varepsilon}(F \oplus F_1^+) \otimes \Lambda^* (F_2^+) \otimes \mathcal{E})\) supported in \(\mathcal{M}_R\), one has

\[
\left\| \left(D^\mathcal{E}_{F \oplus F_1^+, \beta, \varepsilon} + \frac{1}{\beta} \tilde{c} (\sigma) \right) \phi \right\| \geq \frac{C_0 \sqrt{\delta}}{\beta} \| \phi \|.
\] (2.8)

Next we recall the construction of the operator \(P^\mathcal{E}_{R, \beta, \varepsilon}\) from [8].

Let \(\partial \mathcal{M}_R\) bound another oriented manifold \(\mathcal{N}_R\) so that \(\bar{\mathcal{N}}_R = \mathcal{M}_R \cup \mathcal{N}_R\) is a closed manifold. Let \(H\) be a Hermitian vector bundle over \(\mathcal{M}_R\) such that \((S_{\beta, \varepsilon}(F \oplus F_1^+) \otimes \Lambda^* (F_2^+) \otimes \mathcal{E})_+ \oplus H\) is a trivial vector bundle near \(\partial \mathcal{M}_R\), under the identification \(\tilde{c}(\sigma) + \text{Id}_H\).

By obviously extending the above trivial vector bundles to \(\mathcal{N}_R\), we get a \(\mathbb{Z}_2\)-graded Hermitian vector bundle \(\xi = \xi_+ \oplus \xi_-\) over \(\bar{\mathcal{N}}_R\) and an odd self-adjoint endomorphism \(V = v + v^* \in \Gamma(\text{End}(\xi))\) (with \(v : \Gamma(\xi_+) \to \Gamma(\xi_-), v^*\) being the adjoint of \(v\)) such that

\[
\xi_\pm = (S_{\beta, \varepsilon}(F \oplus F_1^+) \otimes \Lambda^* (F_2^+) \otimes \mathcal{E})_\pm \oplus H
\] (2.9)

over \(\mathcal{M}_R\), \(V\) is invertible on \(\mathcal{N}_R\) and

\[
V = \frac{1}{\beta} \tilde{c}(\sigma) + \text{Id}_H
\] (2.10)
on \(\mathcal{M}_R\), which is invertible on \(\mathcal{M}_R \setminus \mathcal{M}_R^C\).

Recall that \(h(\tilde{c})\) vanishes near \(\partial \mathcal{M}_R\). We extend it to a function on \(\bar{\mathcal{N}}_R\) which equals to zero on \(\mathcal{N}_R\), and we denote the resulting function on \(\bar{\mathcal{N}}_R\) by \(\tilde{h}_R\). Let \(\pi_{\bar{\mathcal{N}}_R} : \bar{\mathcal{N}}_R \to \bar{\mathcal{N}}_R\) be the projection of the tangent bundle of \(\bar{\mathcal{N}}_R\). Let \(\gamma_{\bar{\mathcal{N}}_R} \in \text{Hom}(\pi_{\bar{\mathcal{N}}_R}^*, \xi_+, \pi_{\bar{\mathcal{N}}_R}^*, \xi_-)\) be the symbol defined by

\[
\gamma_{\bar{\mathcal{N}}_R}(p, w) = \pi_{\bar{\mathcal{N}}_R}^* \left(\sqrt{-1} \bar{h}_R^2 c_{\beta, \varepsilon}(w) + v(p) \right) \text{ for } p \in \bar{\mathcal{N}}_R, \ w \in T_p \bar{\mathcal{N}}_R.
\] (2.10)

By (2.10) and (2.11), \(\gamma_{\bar{\mathcal{N}}_R}\) is singular only if \(w = 0\) and \(p \in \mathcal{M}_R\). Thus \(\gamma_{\bar{\mathcal{N}}_R}\) is an elliptic symbol.
On the other hand, it is clear that \(\tilde{h}_R D_{\mathcal{F}_p+\mathcal{F}_1^-}^e \tilde{h}_R \) is well defined on \(\tilde{N}_R \) if we define it to equal to zero on \(\tilde{N}_R \setminus \mathcal{M}_R \).

Let \(A : L^2(\xi) \to L^2(\xi) \) be a second order positive elliptic differential operator on \(\tilde{N}_R \) preserving the \(\mathbb{Z}_2 \)-grading of \(\xi = \xi_+ \oplus \xi_- \), such that its symbol equals to \(|\eta|^2 \) at \(\eta \in T \tilde{N}_R \).

Let \(P_{\tilde{N}_R}^e : L^2(\xi) \to L^2(\xi) \) be the zeroth order pseudodifferential operator on \(\tilde{N}_R \) defined by

\[
P_{\tilde{N}_R}^e = A^{-\frac{1}{4}} \tilde{h}_R D_{\mathcal{F}_p+\mathcal{F}_1^-}^e \tilde{h}_R A^{-\frac{1}{4}} + \frac{V}{\beta}. \tag{2.12}
\]

Let \(P_{\tilde{N}_R}^e : L^2(\xi+) \to L^2(\xi+) \) be the obvious restriction. Moreover, the analogue of [8, (2.34)] now takes the form

\[
\text{ind} \left(P_{\tilde{N}_R}^e, (\xi) \right) = (\tilde{A}(TM) \text{ch}(E), [M]). \tag{2.13}
\]

For any \(0 \leq t \leq 1 \), set

\[
P_{\tilde{N}_R}^e(t) = A^{-\frac{1}{4}} \tilde{h}_R D_{\mathcal{F}_p+\mathcal{F}_1^-}^e \tilde{h}_R A^{-\frac{1}{4}} + \frac{tv}{\beta} + A^{-\frac{1}{4}}(1-t)vA^{-\frac{1}{4}}. \tag{2.14}
\]

Then \(P_{\tilde{N}_R}^e(t) \) is a smooth family of zeroth order pseudodifferential operators such that the corresponding symbol \(\gamma(P_{\tilde{N}_R}^e(t)) \) is elliptic for \(0 < t \leq 1 \). Thus \(P_{\tilde{N}_R}^e(t) \) is a continuous family of Fredholm operators for \(0 < t \leq 1 \) with \(P_{\tilde{N}_R}^e(1) = P_{\tilde{N}_R}^e \).

By Lemma 2.1 and [8, Lemma 2.4(ii)], proceeding as the proof of [8, Proposition 2.5], one has the following proposition.

Proposition 2.2 There exist \(R, \beta, \varepsilon > 0 \) such that the following identity holds:

\[
\dim \left(\ker \left(P_{\tilde{N}_R}^e, (0) \right) \right) = \dim \left(\ker \left(P_{\tilde{N}_R}^e, (0)^* \right) \right) = 0. \tag{2.15}
\]

By (2.13), Proposition 2.2 and [8, Theorem 0.1], one has

\[
0 = \left(\tilde{A}(TM) \text{ch}(E^+), [M] \right) = \text{rk}(E_0^+, \tilde{A}(M)) + \left(\tilde{A}(TM) f^* \left(\text{ch}(E_0^+) - \text{rk}(E_0^+) \right), [M] \right) = \text{deg}(f) \left[\text{ch}(E_0^+), S^{2n} \right],
\]

which contradicts with \(\text{deg}(f) \left[\text{ch}(E_0^+), S^{2n} \right] \neq 0 \).

2.2 The dimension of \(M \) is odd

Let \(M \) be a compact spin manifold of dimension \(2n-1 \), with Riemannian metric \(g \). Let \(S^{2n-1}_r \) be \((2n-1) \)-sphere of radius \(r \) with the standard metric \(g_0 \). Let \(F \) be a foliation on \(M \).

Let \(f : M \to S^{2n-1} \) be a map of non-zero degree and \(f_*|_{F} \) is 1-contracting.

Consider

\[
M \times S^1 \xrightarrow{f \times \frac{1}{r} \text{id}} S^{2n-1} \times S^1 \xrightarrow{h} S^{2n-1} \times S^1 \cong S^{2n}, \tag{2.17}
\]

where \(S^1_r \) is the one-dimensional sphere of radius \(r \), \(f \times \frac{1}{r} \text{id} \) is defined as \((f \times \frac{1}{r} \text{id})(p, t) = (f(p), \frac{1}{r} t) \), \((p, t) \in M \times S^1 \), and \(h \) is map of non-zero degree. \(h|_{F \times S^1} \) is 1-contracting.

Consider now the following metric. On \(M \times S^1 \), \(g + ds^2 \) where \(ds^2 \) is the standard metric on \(S^1 \), on \(S^{2n-1} \times S^1 \), \(g_0 + ds^2 \) where \(ds^2 \) is the standard metric on \(S^1 \), and on \(S^{2n} \), \(\tilde{g} \) is the standard metric on the unit sphere.

\(\tilde{g} \) Springer
The composed map \(\tilde{f} = h \circ (f \times \frac{1}{r} id) : M^{2n-1} \times S^1_r \to S^{2n} \) is of non-zero degree. \(\tilde{f}|_{F \times S^1} \) is also 1-contracting, for \(v \in F \),

\[
\| \tilde{f}_* (v, t) \| = \| h_* (f_* v, \frac{t}{r}) \| \leq \| f_* v \| + \| \frac{t}{r} \| \leq \| v \| + \frac{1}{r} \| t \| \leq \| v \| + \| t \|.
\] (2.18)

We assume \(r > 1 \).

We can now apply the same method used for the even-dimensional case. Construct complex spinor bundles \(S \) over \(M^{2n-1} \times S^1_r \) and \(E_0 \) over \(S^{2n} \), respectively; and consider the bundle \(S \otimes E \) over \(M^{2n-1} \times S^1_r \), where \(E = f_* E_0 \).

Fix \(x \in M^{2n-1} \times S^1_r \), such that \(\tilde{f}(x) \) is a regular value. As before, we can choose the frames near \(x \) and \(\tilde{f}(x) \) as follows. Let \(\{ f_1, \ldots, f_{2n-1}, f_{2n} \} \) be a \((g + ds^2)\)-orthonormal tangent frame near \(x \in M^{2n-1} \times S^1_r \) such that \((\nabla f_k)_x = 0\) for each \(k, f_1, \ldots, f_{2n-1} \) are tangent to \(M^{2n-1} \), \(f_{2n} \) is tangent to \(S^1_r \) and \(\{ f_1, \ldots, f_{rkF} \} \) is a basis of \(F \). Let \(\{ e_1, \ldots, e_{2n} \} \) be a \(g_0 + ds^2 \)-orthonormal tangent frame near \(\tilde{f}(x) \in S^{2n} \) such that \((\nabla e_k) \tilde{f}(x) = 0\) for each \(k \). Moreover, the bases \(\{ f_1, \ldots, f_{2n} \} \) and \(\{ e_1, \ldots, e_{2n} \} \) can be chosen so that \(e_j = \lambda_j f_* f_j \), \(1 \leq j \leq rkF \), \(j = 2n \) for appropriate \(\lambda_j \) and \(\lambda_{2n} \).

Therefore, we can find positive scalars \(\{ \lambda_i \}_{i=1}^{rkF} \) and \(\lambda_{2n} \) such that \(e_i = \lambda_i \tilde{f}_* f_i \). Then we have that

\[
1 = \tilde{g} (e_i, e_j) = \tilde{g} (\lambda_i \tilde{f}_* f_i, \lambda_j \tilde{f}_* f_j) = \lambda^2 \tilde{g} (f_* f_i, f_* f_j).
\]

Thus for \(1 \leq i \leq rkF \),

\[
1 = \lambda^2 \tilde{g} (f_* f_i, f_* f_j) \leq \lambda^2 g_0 (f_* f_i, f_* f_j) \leq \lambda^2 g (e_i, e_i) = \lambda^2
\] (2.19)

and \(1 \leq \lambda^2 \). For \(i = 2n \),

\[
1 = \lambda^2 \tilde{g} (f_* f_{2n}, f_* f_{2n}) \leq \lambda^2 g_0 (f_* f_{2n}, f_* f_{2n}) \leq \lambda^2 g (e_i, e_i) = \lambda^2
\]

Then

\[
r^2 \leq \lambda^2
\]

In this case, (2.7) is replaced by

\[
\left(D_{F \oplus F_1^+, \beta, \varepsilon}^\beta \phi, \phi \right)^2 (2.20)
\]

\[
\geq \frac{1}{4} \frac{rkF}{rkF - 1} \left(\tilde{k}_g^F \left(-1 - \frac{2}{(rkF - 1)r} \right) \right) \| \phi \|^2 + O_{r,e} \left(\frac{1}{\beta + \varepsilon^2} \right) \| \phi \|^2.
\]

If \(\tilde{k}_g^F > 1 \), since (2.20) is valid for all \(r > 1 \), one also gets \(\text{ind} \left(P_{R, \beta, \varepsilon, +}^{\varepsilon, +} \right) = 0 \). But the Atiyah–Singer index theorem gives (see (2.13), (2.16))

\[
\text{ind} \left(P_{R, \beta, \varepsilon, +}^{\varepsilon, +} \right) \neq 0.
\]

As in [8, Sect. 2.5], the same proof applies for the case where \(F \) is spin, with an obvious modification of the (twisted) sub-Dirac operators (cf. [8, (2.58)]), using [1, Theorem 0.2] in (2.16).
Remark 2.3 (cf. [4,6]) Recall that a map $f : M \to N$ between Riemannian manifold is (ε, Λ^k)-contracting if
\[
\| f^* \alpha \| \leq \varepsilon \| \alpha \|, \quad \alpha \in \Lambda^k(N).
\] (2.21)
Note that “1-contracting” means $(1, \Lambda^1)$-contracting.

We have the following immediate consequence.

Theorem 2.4 Let M be a closed Riemannian manifold of dimension n and F be a foliation on M. Suppose TM or F is spin and there exists a smooth map $f : (M, g) \to (S^n, g_0)$ of non-zero degree such that for any $v, w \in F$, $\| f_* v \wedge f_* w \| \leq \| v \wedge w \|$. Then there exits $x \in M$ with $k_F g_0(x) \leq 1$.

Proof It follows from the proof of Theorem 1.3. We only need to point out that \(\{ \lambda_i \}_{i=1}^{rkF} \) satisfy
\[
1 = \| e_i \wedge e_j \|_{g_0} = \| \lambda_i f_* f_i \wedge \lambda_j f_* f_j \|_{g_0} = \lambda_i \lambda_j \| f_* (f_i \wedge f_j) \|_{g_0} \leq \lambda_i \lambda_j \| f_i \wedge f_j \|_{g} = \lambda_i \lambda_j.
\] (2.22)
Thus $\lambda_i \lambda_j \geq 1$. Then proceeding as the proof of Theorem 1.3, we get Theorem 2.4. \(\square \)

Remark 2.5 In Theorem 1.2, Llarull also studied the case $k_g(x) \equiv 1$. In our foliation case, if $k_F^g(x) \equiv 1$, maybe it can be treated by combining the methods in [6] and [7]. We will study it in a future paper.

Acknowledgements The author would like to thank the referee for his careful reading of the manuscript of this paper. This work was supported by NSFC 11571183.

References
1. Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation. In: Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser. vol. 123, pp. 52–144. Longman Sci. Tech., Harlow (1986)
2. Gromov, M.: Large Riemannian manifolds. Lect. Notes Math. 1201, 108–121 (1985)
3. Gromov, M.: Metric inequalities with scalar curvature. Geom. Funct. Anal. 28, 645–726 (2018)
4. Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. I.H.E.S. 58, 295–408 (1983)
5. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)
6. Llarull, M.: Sharp estimates and the Dirac operator. Math. Ann. 310, 55–71 (1998)
7. Yu, J., Zhang, W.: Positive scalar curvature and the Euler class. J. Geom. Phys. 126, 193–203 (2018)
8. Zhang, W.: Positive scalar curvature on foliations. Ann. Math. 185, 1035–1068 (2017)
9. Zhang, W.: Positive scalar curvature on foliations: the enlargeability. Preprint. arXiv:1703.04313v1