Comment on “Structure effects in the 15N(n,γ)16N radiative capture reaction from the Coulomb dissociation of 16N”

Peter Mohr1,2,*

1 Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany
2 Institute for Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary

(Dated: June 10, 2016)

In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that “it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture cross section for the reaction” 15N(n,γ)16N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in 16N which do not contribute in a Coulomb dissociation experiment. An estimate of the total 15N(n,γ)16N cross section from Coulomb dissociation of 16N requires a precise knowledge of the γ-ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground state branching of the order of 0.05 % to 0.6 % at energies between 100 and 500 keV which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, Shubhchintak, and Chatterjee deviates significantly from the expected energy dependence for p-wave capture.

PACS numbers: 24.10.-i,24.50.+g,25.60.Tv

Neelam, Shubhchintak, and Chatterjee (hereafter: NSC) [1] study the Coulomb dissociation (CD) cross section of 16N and apply detailed balance to derive the inverse 15N(n,γ)16N radiative capture cross section. In detail, NSC calculate the CD for the four low-lying states in 16N with $J^z = 2^-, 0^-, 3^-$, and 1^+ which are located below excitation energies of $E^* \approx 400$ keV. NSC use spectroscopic factors from the shell model taken from [2] which are close to unity for the states under consideration. This is confirmed experimentally by transfer data in [3] and by the analysis of neutron scattering lengths [4] but also lower values have been derived from transfer [5]. Spectroscopic amplitudes close to unity have also been calculated recently in [6].

Indeed, such a study can be made in theory; however, under normal experimental conditions 16N is in its 2^- ground state, and thus a CD experiment is only able to constrain the 15N(n,γ)16N$_{g.s.}$ cross section but not the partial capture cross sections to the low-lying excited states. Consequently, the conclusion of NSC “to find the low energy capture cross section” from CD is misleading. Additionally, it will be difficult to obtain a sufficient energy resolution in the CD experiment to derive the low-energy capture cross section using Eq. (3) of NSC [1].

It is stated by NSC that CD theory has been used successfully to determine the 8Li(n,γ)9Li [8] and 14C(n,γ)15C [9] cross sections from CD of 9Li and 15C. Indeed, for these capture reactions the ground state contributions are dominating, and thus experimental CD data can be used to determine the total capture cross section. However, later NSC claim that “the Coulomb dissociation method has been used to find the neutron capture cross section to different states of 8Li [10] and also to find the contributions of the projectile excited states in the charged particle capture reactions 9Li [11] 12Li”. Ref. [10] explicitly states that the experimental CD data for 8Li have to be corrected for excited state contributions in the 7Li(n,γ)8Li reaction, and this correction of about 10%–20% is estimated from experimental branching ratios in the 7Li(n,γ)8Li capture reaction, see Eq. (6) in [10]. Ref. [11] studies the 12C(α,γ)16O reaction where the ground state contribution is dominating. Ref. [12] analyzes the 30S(p,γ)31Cl reaction with its tiny Q-value of about ± 280 keV where the ground state of 31Cl is the only bound state. Thus, none of Refs. [10] [12] matches the statement of NSC.

Experimental 16N CD data can indeed be used to determine the 15N(n,γ)$(^{16}$N$_{g.s.}$) cross section. The determination of the total 15N(n,γ)16N capture cross section is practically not constrained by the small ground state contribution which is experimentally accessible by CD. According to calculations (details see below), the contribution of each low-lying excited state exceeds the ground state contribution. Thus, the determination of the total capture cross section from CD data requires additional information on the γ-ray branching ratios in the 15N(n,γ)16N capture reaction.

Surprisingly, in the calculations of NSC this branching shows a significant energy dependence (see Fig. 2 of [1]): note that the energies of the experimental data points in the upper part differ from the lower part which is probably the consequence of a missing conversion to the center-of-mass system. This energy-dependent branching is a very unexpected result because the energy dependence of the capture cross section at low energies is typically governed by the angular momentum l of the incoming neutron, leading to an approximate $\sigma(n,\gamma) \sim E_l^{-1/2}$ proportionality. For the transitions under consideration from incoming p-waves to bound s- and d-states a simi-

*Electronic address: Widmaier.Mohr@t-online.de
lar energy dependence ($\sim \sqrt{E}$) is expected, and the best
description of the energy dependence in direct capture
(DC) calculations below about 500 keV has been found
in the DC model lead to an almost energy-independent
branching ratio for the transitions from the incoming
p-wave to the four bound s- and d-states in 16N. The
ground state contribution amounts to about 10% in the
whole energy range up to 500 keV. Contrary to the DC
calculations of [2], the new results of NSC show a sig-
nificantly steeper energy dependence for the transitions
to the bound d-states (2^-, 3^-) with a ground state
branching of about 0.05% at 100 keV and about 0.6%
at 500 keV. This essential discrepancy of about 2 orders
of magnitude for the ground state branching ratio has to
be well understood before any conclusions on the total
15N(n,γ)16N capture cross section can be drawn from
experimental CD data of 16N and the model calculations
of NSC.

For completeness I point out that the expected weak
energy dependence of the branching ratios has also been
found in DC calculations for the corresponding transi-
tions from incoming p-waves to bound s- and d-states
in the neighboring 14C(n,γ)15C [13] and 16O(n,γ)17O
[13] reactions. As Fig. 1 in [15] shows, this weak en-
ergy dependence of the branching ratio is also confirmed
experimentally for the 16O(n,γ)17O reaction.

In conclusion, contrary to the suggestion of NSC, the
determination of the total 15N(n,γ)16N capture cross sec-
tion from a CD experiment on 16N is not possible because
the CD data are related only to the small ground state
branch in the capture reaction. The huge and surpris-
ing discrepancy between the energy dependence of the
branching ratios in the CD calculations by NSC and in
the DC calculations [2] (and similar results in [12, 13] for
the neighboring 14C and 16O nuclei) makes it impossi-
ble to correct experimental CD data of 16N for the de-
dermination of the total 15N(n,γ)16N cross section using
theoretical branching ratios.

This work was supported by OTKA (K101328 and
K108459).

The lower part of Fig. 1 shows that the calculations of

\[\sigma_{(n,\gamma)} = A E^{0.5} - B E^{1.2} \]

and the parameters A and B as given in Table III of

[2]. Note that $B < A$ which makes the second term in
Eq. (1) to a small correction to the dominating
energy dependence for $E < 1$ MeV. These results are shown
in Fig. 1 together with the experimental data of [2]. For
easy comparison the same scale as in Fig. 2 of NSC [1]
has been chosen for the presentation of the cross sections.

FIG. 1: (Color online) Partial cross sections of 15N(n,γ)16N
(upper part) and branching ratios $\sigma_{(n,\gamma)}/\sigma_{(n,\gamma)}$ (lower part).
The data are taken from [2]. Further discussion see text.

[1] Neelam, Shubhchintak, and R. Chatterjee, Phys. Rev. C 92, 044615 (2015).
[2] J. Meissner, H. Schatz, H. Herndl, M. Wiescher, H. Beer, and F. Käppeler, Phys. Rev. C 53, 977 (1996).
[3] D. W. Bardayan et al., Phys. Rev. C 78, 052801(R) (2008).
[4] P. Mohr, H. Herndl, and H. Oberhummer, Phys. Rev. C 55, 1501 (1997).
[5] W. Bohne, J. Bommer, H. Fuchs, K. Grabisch, H. Kluge, and G. Röschert, Nucl. Phys. A196, 41 (1972).
[6] B. Guo et al., Phys. Rev. C 80, 012801(R) (2014).
[7] M. R. Pahlavani and B. Firoozi, Europ. Phys. J. A 51, 149 (2015).
[8] P. Banerjee, R. Chatterjee, and R. Shyam, Phys. Rev. C 78, 035804 (2008).
[9] Shubhchintak, Neelam, and R. Chatterjee, Pramana - J. Phys. 83, 533 (2014).
[10] R. Izsák et al., Phys. Rev. C 88, 065808 (2013).
[11] F. Fleurot et al., Phys. Lett. B 615, 167 (2005).
[12] C. Langer et al., Phys. Rev. C 89, 035806 (2014).
[13] M. Wiescher, J. Görres, and F.-K. Thielemann, Astroph. J. 363, 340 (1990).
[14] M. Igashira, Y. Nagai, K. Masuda, and T. Ohsaki, Astroph. J. 441, L89 (1995).
[15] A. Mengoni and T. Otsuka, AIP Conf. Proc. 529, 119 (2000).