Accounting for regional transmission variability and the impact of malaria control interventions in Ghana: A population level mathematical modelling approach.

CURRENT STATUS: UNDER REVIEW

Timothy Awine
University of Cape Town, Cape Town
awinetimothy@gmail.com
ORCiD: https://orcid.org/0000-0002-7340-6111

Sheetal P Silal
University of Cape Town Department of Statistical Sciences

10.21203/rs.2.22332/v2

SUBJECT AREAS
Infectious Diseases

KEYWORDS
model, malaria, interventions, long lasting insecticide bednets, indoor residual spraying
Abstract
Background Assessing the effectiveness of malaria control measures in Ghana will require taking transmission dynamics of the disease into account given the influence of climate variability in the region of interest. The impact of preventative interventions on malaria incidence and the prospects of meeting program timelines in Ghana were investigated using mathematical models based on regionally diverse climatic zones.

Methods An ordinary non-linear differential equation models with their associated rate parameters were developed incorporating the transitions between various disease compartments for three ecological zones in Ghana. Models were fitted using data from the District Health Information Management System in Ghana from 2008 to 2017 and historical intervention coverage levels. To calibrate the models, Approximate Bayesian Computational sampling approach with a distance based rejection criteria was adopted. A leave-one-out approach was used to validate model parameters and the most sensitive evaluated using a multivariate regression sensitivity analysis. The impact of insecticide treated bed nets and their usage and indoor residual spraying as well as their protective efficacy on the incidence of malaria were simulated at various levels of coverage and protective effectiveness in each ecological zone to investigate the prospects of achieving goals of the malaria control strategy for 2014-2020.

Results Increasing the coverage levels of both long lasting insecticide treated bed nets and indoor residual spraying activities without a corresponding increase in their recommended usage does not impact highly on averting predicted incidence of malaria. Improving upon the protective efficacy of long lasting insecticide treated bed nets through proper usage could lead to substantial reductions in the predicted incidence of malaria. Similar results were obtained with indoor residual spraying across all zones.

Conclusions Projected goals set in the national strategic plan for malaria control 2014-2020 as well as WHO targets for malaria pre-elimination by 2030 are only likely to be achieved if a substantial improvement in treated bed net usage is achieved coupled with targeted deployment of indoor residual spraying with high community acceptability and efficacy. Key words: model, malaria,
interventions, long lasting insecticide bednets, indoor residual spraying

Introduction

With the adoption of the 2016-2030 milestones to focus the agenda towards malaria control and elimination, many countries including Ghana, currently classified as a country in the control phase, are making great efforts towards the achievement of these goals [1,2]. To this end, the National Malaria Control Program (NMCP) is guided by a national malaria strategic plan to reduce the burden of malaria by 75% across Ghana by 2020 partly by scaling up the distribution of Insecticide Treated bednets (ITNs)/Long lasting insecticide treated bednets (LLINs), targeted Indoor Residual Spraying (IRS) and improving monitoring activities [3,4].

In recent years, NMCP with support from partners such as the United States Agency for International Development (USAID), President’s Malaria Initiative (PMI) and The Global Fund to Fight AIDS, Tuberculosis and Malaria have achieved relative reductions in malaria-related mortalities but progress towards substantial reductions in morbidity still remains a challenge [5]. These achievements follow the deployment of new intervention strategies following the adoption of new national policies on the use of Artemisinin-based combination therapy (ACTs) as first line therapies for uncomplicated malaria between 2002 to 2004, scale up and distribution of ITNs in 2002 and thereafter, Intermittent Preventive Treatment of malaria in pregnancy (IPTp) using Sulfadoxine-Pyrimethamine (SP) between 2003-2004 and Indoor Residual Spraying (IRS) on a small scale in 2005 [5,6].

Although these interventions are in place, evaluating their effectiveness using mechanistic models based on locally available data still remains largely unexplored [6]. Despite the contributions of earlier mathematical models, developed describing the transmission dynamics of malaria in the country, some gaps such as finding a rational basis for deploying these interventions and evaluating them in different ecological zones of Ghana still persist [7].
The dynamics of malaria morbidity generally follow patterns of ecological factors such as rainfall and temperature [8]. There is evidence supporting this spatial heterogeneity in the ecology of Ghana and therefore the burden of malaria. For this reason, the spatial scale should not be ignored in any malaria investigations of national scale. Due to this diversity, the country was partitioned into zones along three main ecological regions of Ghana, namely the Guinea savannah, Transitional forest and Coastal savannah, as described elsewhere [8].

Examples abound of uses of compartmental models for investigation of diseases with the aim to understanding underlying principles or processes governing dynamics of diseases [9]. Since their introduction into public health by Bernoulli in 1766, several models focused on malaria have been developed through the span of time, building on those formulated by Ross and varying in complexity and diversity specifically to elucidate further understanding into the mechanism of malaria transmission in humans [10]. Currently mathematical models are also being used among others, to support the formulation of policies aimed at controlling diseases, including monitoring and evaluation of disease incidence [11].

The model developed in this study is based on the basic Susceptible Infected Recovered Susceptible (SIRS) model [12,13] which has been modified to include additional compartments and attributes of the transmission settings in Ghana such as superinfection. The model structure includes a human population model coupled with a vector model with climatic elements adapted from Agusto F.B. et al [14].

The objective of this paper is to develop a mathematical model to project the impact of various intervention scenarios of malaria intervention control measures in Ghana, simulated at a sub-population level that represents three main ecological zones [7]. The impact of various levels of usage and protective effectiveness as well as coverage of LLINs and IRS are also investigated and prospects of achieving relevant locally and internationally set goals of malaria control and elimination in Ghana
are considered.

Finally, a summary of the findings will be communicated to the Ghanaian NMCP through a policy brief.

Methods

Ordinary differential equations were used to develop compartmental models for malaria transmission dynamics in the three ecological zones of Ghana. The model diagram for both human and vector populations is as illustrated in Fig 1. Further details and description of the models are presented in S1 Text, the online supplementary files.

Model structure

Fig 1: Malaria transmission model showing various compartments of both human and vector populations.

Human population: S represent the susceptible human compartment (where different probabilities have been applied respectively to recruited naïve or non-immuned children under 6 years of age, adults and pregnant women into the latent stage L before the onset of gametocytes. Ic, Ia, Is and Ism compartments represents symptomatic infection (clinical infection), asymptomatic infection, severe infection and sub-microscopic infection respectively. Pregnant women attend antenatal clinic (ANC) without an infection, IANCN or progress from L3 into IANCP once infected. Tr1, Tr2 and Tr3 represent the treatment sought for confirmed uncomplicated malaria (Ic), severe malaria (Is) and routine monthly SP prophylaxis for pregnant women at ANC. Trf1, Trf2 and Trf3 represent respective treatment failure due to adherence and possible drug resistance for the three latter treatment options. Vector population: Lv represents larva population and Sm susceptible mosquitoes. Exposed mosquitoes are captured in Em compartment. Whereas infectious mosquitoes are in the Im compartment.

The model diagram shown in Fig 1 above depicts a vector coupled malaria transmission model that includes compartments for various stages of malaria and subsections of the Ghanaian population. The subsections of the population captured are adults, children under 6 years and pregnant women even though they are not age structured models.

The grey compartments represent the populations, which are susceptible, yellow those with latent infection, brown those with a blood stage infection and green members of the population with symptomatic infection that undergo treatment. Compartments for treatment failure are indicated in red colour. The red and blue arrows present the forces of infection from infectious mosquitoes to humans and infectious humans to mosquitoes respectively.

Stages of development of the malaria parasite and the mosquito are captured by four compartments representing the young and adult mosquitoes that can be classified as being susceptible, infected and infectious, once ingested parasite(s) complete the full cycle of development.
Transmission is governed by the forces of infection (λ_{mh} and λ_{hm}) from mosquitoes to humans and human to mosquitoes respectively. The forces of infection in turn are driven primarily by the dynamics of Biting Rate (BR) per person per month (b/p/m) in the various zones [15,16]. The model also accounts for the possibility of being infected more than once (super infection).

Force of infection
Transmission of malaria parasites between humans and mosquitoes is through the draw of a blood meal from humans by infectious mosquitoes. The likelihood of humans being infected upon a successful bite of a mosquito will to some extent depend on the level of susceptibility of getting infected. On the other hand a non-infected mosquito drawing a blood meal from an infected human also has a probability of ingesting gametocytes which later develop into sporozoites.

In these models, a 50% chance of transmitting the malaria parasite between humans and mosquitoes following a successful bite of an infected mosquito on humans or an uninfected mosquito on humans in any of the infected stages was considered [12].

The forces of infections are defined as:
[Please see the supplementary files section to view the equations.]

where Equation (1) represents the force of infection from humans to mosquitoes likewise with Equation (2) for the force of infection from mosquitoes to humans. The contact rate is represented by the Biting Rate (BR). The BR data were obtained from field studies from each of the zones through human landing catches (HLC). They are defined as the average number of bites received by a human in the population per month (b/p/m) as shown on Fig 2 respectively [15,16].

Fig 2: Monthly biting rates (b/p/m) [Grey Bars] and rainfall (mm) [Blue Lines] in the Guinea savannah, Transitional forest and Coastal savannah respectively.

The probability that, following a bite, sporozoites or gametocytes from infected humans may be transmitted or transferred to mosquitoes of from infected mosquitoes to humans respectively is represented by prob_inf.

The fraction of the population of infected humans carrying sporozoites, with a 50% probability of infecting a mosquito upon a draw of a blood meal, we considered to be contained in the
compartments as in Equation (1) and similarly the fraction of the mosquito population considered to be carrying gametocytes that could potentially be passed on to the blood stream of a human victim is also represented by \([12] \).

Levels of coverage, usage and effectiveness of ITNs and IRS are denoted by \(itnc(t) = (1 - itncov \times itnusage \times itneff) \) and \(irsc(t) = (1 - irscov \times irseff) \) respectively, where \(itncov \) and \(irscov \) and \(itneff \) and \(irseff \) represent coverage levels and effectiveness for both ITNs and IRS respectively with time and \(itnusage \) is level of ITN/LLIN usage.

Immunity and Superinfection
The stable nature of transmission and the variation in seasonality across all three zones requires incorporating superinfection, acquired immunity, treatment failure and seasonality into the model structure so as to account for the natural history of malaria as much possible that allows for the description of the transmission dynamics of malaria across Ghana.

The models do not incorporate levels of immunity following length of exposure based on age (two broad age classification for children under 5 and adults), aspects of the model structure account for this concept even though not fully. Thus the transitions accounting for some level of immunity in the model are:

- Children born naïve or young children with little exposure to malaria infection born into the \(Sn \) compartment or
- born with a congenital infection of malaria into the \(Ia \) compartment
- Adults in the population with several years of exposure recruited into the \(Snn \) compartment
- Progressing from \(Ism \) to \(Ic \)
- Progressing from \(Ic \) to \(Ia \)
- Progressing from \(Ia \) to \(Ism \)
- Recovering naturally without treatment from \(Ism \) to \(Snn \) \([17]\); a state of susceptibility where one is more likely to have an asymptomatic episode of malaria.

Reinfection or superinfection was allowed in the models given the high transmission settings of all zones across Ghana. A factor that is dependent on the inverse of the sum of the rate of force of infection from mosquito to human and duration of infection i.e \((1/ +1/)^{-1} \) was incorporated. This factor affects the populations in the infected compartments \(Ia \), and \(Ism \). A proportion of the infected and superinfected therefore make the following transitions:
progressing from asymptomatic stage (i\textsubscript{a}) to symptomatic (i\textsubscript{c})
progressing from sub-microscopic (i\textsubscript{sm}) to symptomatic (i\textsubscript{c})

Vector dynamics
From Fig 1, the vector compartments \textbf{Lv}, \textbf{Sm}, \textbf{Em} and \textbf{Im} respectively represent young mosquitoes (larva, pupa), susceptible, exposed and infectious mosquitoes. The susceptible mosquitoes are populated through maturing larva and pupa compartment, \textbf{Lv}. The egg deposition rate and maturing rate θ are all dependent on the carrying capacity (K_v) of the environment to support breeding which in turn depends on rainfall (R_f) and environmental temperature (Temp) \cite{8}. Details of the governing equations of the Vector model can be found in the S1 text file.

Data
The data consist of uncomplicated and severe reported malaria cases and reported cases of malaria in pregnancy from 2008 to 2017 \cite{8}. The parameters used, were sourced from literature or from the data fitting process to account for zonal transmission diversity. This was done to capture the different dynamics of morbidity of malaria and to allow for a better evaluation of the effectiveness of the various interventions in these zones.

While these parameters are captured on the table of parameters as shown on Table 1, reported biting rates of humans by mosquitoes used for the data fitting are shown in Fig 2. In the results section, the reported uncomplicated malaria data used are depicted on Fig 4 as observed data plotted in dotted black lines.

Table 1 Parameter values

Parameter Name	Parameter value by Zone	Guinea Savannah	Transitional Forest
pc1		0.90	0.90
pc2		0.14	0.19
ps		0.130	0.065
pt1		0.87	0.88
--------	--------	--------	
Ppc	0.81	0.70	
Ppa	0.250	0.075	
X	0.01	0.01	
m1	0.57	0.10	
m2	0.77	0.22	
Pst	0.80	0.71	
prob		0.50	
Pn	0.125	0.125	
Pm	0.874375	0.87425	
pt2	0.99	0.99	
ah1	0.385	0.385	
ah2	0.092	0.082	
Px		0.025	
rs1	0.04	0.04	
rs2	0.01	0.01	
rs3	0.0962	0.0962	
ac1	0.134	0.126	
ac2	0.097	0.097	
pt3		0.367	
ah3		0.633	
Nn	5.1×10^6	17.1×10^6	
Ln	25/1000	30.6/1000	
Kv	7.8×10^5	4.2×10^7	
--------	--------	----------	
LLIN		0.398	
IRS		0.285	
Ss		365.25/5	
Q		365.25/194	
gamma		365.25/21	
t1		365.25/3	
rho1		365.25/3	
rho2		365.25/6	
V		52/5.5	
Nr		365.25/130	
AC		365.25/30	
Hlsp		365.25/8	
RDTMicSens		0.49	

IRR –Incidence rate ratio
OR-Odds ratio

Data fitting
Zonal specific monthly confirmed reported uncomplicated malaria cases, severe malaria cases and malaria among pregnant women were used for data fitting after the models attained steady state. Data captured from 2008 to 2017 on the DHIMS were used. The observed rising trend of cases of malaria for this period seem to suggest an increasing trend in the incidence of malaria in Ghana. However as pointed out elsewhere, this seeming increasing trajectory is largely due to reporting, increasing diagnostic testing (Fig 3) and perhaps improvement in health seeking behaviour [8].

Fig 3: Probability of testing all suspected malaria cases by zone (source: NMCP).
The models were individually implemented from 1988 to 1997, first to attain a steady state then reported levels of historical interventions, such as LLINs, IRS coverages, across all zones from 1998 to 2017 obtained from national surveys (such as Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS)) and annual reports of the NMCP were incorporated. Historical SMC intervention coverage levels from 2015 were incorporated in the data fitting stages of the models for the Guinea savannah zone (S1 Figs 2). These SMC coverage levels were obtained from reports of the NMCP among others [46–49]. The data fitting phase was also adjusted for reporting probabilities of the health facilities capturing all confirmed cases of malaria onto the DHIMS platform and the probability of seeking treatment as well as the probability receiving a diagnostic at the health facility were all taken into account in the fitting process. The sources of these parameters are referenced in the table of parameters, Table 1.

In all, 120 data points were used for data fitting and the 10 estimated parameters are indicated on the table of parameters, Table 1. The incidence of confirmed malaria reported in 2017 was considered as baseline for future predictions. All the parameters from 2017 were then held constant from 2017 to 2030, which is the prediction period for scenario testing.

Data management was undertaken in Stata version 13.1 (StataCorp LP., College Station, Texas, USA). All analyses and computation were performed using R version 3.3.2 Copyright (C) 2018 [50].

Model calibration
The dimensionality of the monthly aggregated counts of confirmed multiple categories of malaria cases from each ecological zone made direct parameter estimation through the computation of the likelihood intractable or difficult if possible. The Approximate Bayesian Computation (ABC) approach was therefore deployed for model calibration.

Bayesian philosophy allows for the estimation of the posterior distribution of parameters to be computed using a stochastic sampling of the prior parameter distribution. This process allowed the calibration parameters to be carried out whiles avoiding the estimation of the likelihood function [51,52]. ABC was implemented using a rejection criterion based on the Euclidean distance (Equation (6) of S1 text) between summary statistics of predictions arising out of sampled parameter sets and summary statistics of observed monthly reported malaria cases from health facilities in all 216 districts in Ghana from 2008-2017 [53,54]. Out 15000 iterations, 10-20% of the sample were retained for parameter validation.
Parameter validation

A cross validation of the accuracy of parameters was undertaken using the R package \texttt{cv4abc}. The sample parameters that were retained with respect a distance criteria between a summary statistic of the observed data and the simulated data were used. A leave-one-out cross validation used implemented and the prediction error for each parameter and their sensitivity or robustness to various tolerance levels were calculated [55]. All simulations were performed on high performance computing facilities provided for by the ICTS High Performance Computing team (http://hpc.uct.ac.za) of the University of Cape Town.

Sensitivity analyses

A multivariate regression based sensitivity analyses of model parameters for each zone were performed. These investigations were carried using the sample data obtained from the ABC analysis. The most sensitive parameters for each model were then obtained from an ordered set of standardised coefficients of parameters in the multivariate regression. S1 text Tables 5, 6, and 7 show the most sensitive parameters by transmission zone.

Interventions tested

In this study, the interventions investigated include, impact of elevated coverage and usage levels as well as protective effectiveness (PE) of Insecticide Treated bed Nets (ITNs) or Long Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying (IRS). Various hypothetical scenarios were investigated with the aim to observing which ones resulted in the achievement of the targets set the national malaria control strategic policy goals by set deadlines. The scenarios presented here include:

1. Implementation of only LLIN to achieve a universal coverage within three years at 70% and 90% at baseline usage (56%, 45% and 35% for Guinea savannah, Transitional forest and Coastal savannah respectively) and IRS coverages at baseline.

2. Implementation of only LLIN to achieve a universal coverage within three years at 70% and 90% with usage at 60% and IRS coverages at baseline across all zones

3. Implementing only IRS for a period of five years to achieve IRS coverage of 90% and PE of 30% and 60%, LLIN coverage and usage at baseline levels (66% and 56% in the
Guinea savannah, 51% and 45% in the Transitional forest and 50% and 35% in the Coastal savannah respectively)

4. LLIN and IRS coverage at 80% and 80% versus 80% and 90% respectively maintaining LLIN usage at 60% and IRS PE baseline (30% in the Guinea savannah, 30% in the Transitional forest and 30% in the Coastal savannah respectively)

Other interventions tested but not presented here include the impact of Seasonal Malaria Chemotherapy (SMC) among children under 6 years in the Guinea savannah zone and Mass Screen and Treat (MSAT) in the Transitional forest and Coastal savannah zones.

Investigations carried out in this study were largely guided by the goals and objectives of the national malaria control strategic policy of 2014-2020. The findings have neither been approved nor were the recommendations arrived at made in consultation with the NMCP in Ghana [4].

Results
As shown in Figs 4 panels a, b, and c, the parameters were calibrated with data from 2008 to 2017 and predictions made from 2018 to 2030, S1 Figs 4, 5 and 6. These figures depict the baseline scenarios for all zones.

Fig 4 panel a shows seasonal patterns of uncomplicated malaria incidence in the Guinea savannah follows the seasonal rainfall patterns which is generally of a single peak. Whereas similar patterns are observed in the Transitional forest and Coastal savannah, these are double peaked of uncomplicated malaria incidence. As depicted in Fig 4 panel b and Fig 4 panel c below, there is however a relatively less prominent second season in the Coastal savannah compared to that of the Transitional forest zone.

The most populous of the zones is the Transitional forest with a population of 17.1 million, followed by the Coastal savannah 8.1 million while the Guinea savannah accounts for 5.1 million people (using 2017 zonal estimated population from DHIMS2).

Fig 4: Model run time is 1988 to 2030. Steady state period spans from 1988 to 1997, 1998 to 2017 previous interventions implemented and reporting rates on DHIMS introduced. Data fitting and calibration from 2008 to 2017 for the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.
Biting intensity seems to be higher in the Guinea savannah compared to the other zones. As captured in Fig 2 panel a, biting rates in the Guinea savannah could be as high as 170 (b/p/m) compared to those of the Transitional forest 12 (b/p/m) and 10 (b/p/m) in the Coastal savannah during the peak transmission seasons respectively. Fig 2 suggests that, even though biting (as well as transmission) seems to occur all year around, in all zones, they peak following rising rainfall.

Estimated burden of all clinical cases of malaria (uncomplicated and severe malaria) in the baseline year of 2018 in the Guinea savannah was 219 (95% p.Cl [153,315])/1000 population and 261 (95% p.Cl [220,312])/1000 population, 139 (95% p.Cl [117,154])/1000 population for the Transitional forest and Coastal savannah zones respectively. However, reported cases of uncomplicated malaria in 2018 at the health facilities were estimated to be 173 (95% p.Cl [121,250])/1000, 199 (95% p.Cl [168,238])/1000 and 104 (95% p.Cl [88,115])/1000 population in the Guinea savannah, Transitional forest and Coastal savannah respectively.

Results of scaled up interventions implemented for 3 years to achieve universal coverage levels with respect to LLINs and 5 years to achieve targeted coverage levels of IRS in the various zones were simulated from 2018 to 2030 under various intervention scenarios as presented in the following sections below.

Impact of LLIN interventions

LLIN coverage of 70% and 90% at baseline usage (56%, 45% and 35% for Guinea savannah, Transitional forest and Coastal savannah respectively)

The impact of increased universal coverage levels of ITNs/LLINs were tested with selected scenarios for the various zones. Results obtained from the models after simulation shows that, achieving elevated levels of LLIN coverage of 70.0% and 90.0% respectively, given usage at baseline, level of protective efficacy of LLINs at 40.0% and IRS at 30.0% [34], while keeping the coverage levels of IRS at baseline at 2018, leads to a 2.5% and 8.9% reduction in uncomplicated cases in the Guinea savannah, 8.2% and 17.3% in the Transitional forest and 9.9% and 19.8% in the Coastal savannah respectively, S2 Fig 1.

For predictions of all reported clinical incidence of malaria (uncomplicated and severe), the corresponding reductions in the incidence rates were 169 (p.Cl [117, 245])/1000 and 160 (p.Cl [108,
245)/1000 population in the Guinea savannah in 2020 and 168 (p.CI [116, 245])/1000 and 155 (p.CI [100, 230])/1000 population by 2030, Table 2.

In the Transitional forest, the respective incidence rates were 189 (95% p.CI [157,226])/1000 and 179 (95% p.CI [148,226])/1000 population in 2020 and 177 (95% p.CI [139,215])/1000 and 159 (95% p.CI [109,190])/1000 population by 2030, Table 2.

Incidence rates of 97 (95% p.CI [79,110])/1000 and 92 (95% p.CI [74,110])/1000 population for reported cases of all malaria were respectively observed in 2020 whiles 87 (95% p.CI [63,104])/1000 and 73 (95% p.CI [47, 94])/1000 population were predicted by 2030 in the Coastal savannah, Table 2.

Table 2: Predictions of reported clinical malaria (uncomplicated and severe cases) incidence rate per 1000 population with 95% pseudo-confidence intervals (95% p.CI) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS protective efficacy (PE) (%) at 2020 and by 2030 in the Guinea savannah zone.
Table

Zone	Intervention	Coverage (%)	Usage (%)	PE (%)	Incidence rate/1000 population (95% p.CI) by year
Guinea savannah	LLINs	70	56	40	30
		60	40	30	169 (117, 245)
		80	40	30	160 (108, 245)
		90	56	40	30
			60	40	166 (114, 242)
			80	40	150 (97, 223)
			90	56	160 (108, 245)
			60	40	156 (104, 230)
			80	40	136 (84, 206)
Transition forest	LLINs	70	45	40	30
		60	40	30	189 (157, 226)
		80	40	30	171 (139, 206)
		90	45	40	179 (148, 226)
			60	40	158 (126, 191)
			80	40	130 (100, 160)
Coastal savannah	LLINs	70	35	40	30
		60	40	30	97 (79, 110)
		80	40	30	77 (60, 91)
		90	35	40	92 (74, 110)
			60	40	69 (53, 83)
			80	40	53 (39, 67)

95% p.CI = 2.5% and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria

LLIN coverage of 70% and 90% and usage at 60% across zones

When coverage levels were maintained at 70.0% and 90.0%, in all the zones, reductions in predicted uncomplicated cases by 4.2% and 11.3%, respectively in the Guinea savannah, 20.0% and 32.8% in the Transitional forest and 36.9% and 51.3%, in the Coastal savannah were observed with an increased level of usage of LLINs to 60.0% while PE of LLINs and IRS remain at baseline levels, S2 Fig 1 and Fig 5.

Fig 5: Impact of attaining various levels of LLINs coverage within a 3 year implementation programme
at a usage level of 60% while maintaining IRS coverage and PE at prevailing baseline levels in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.

The corresponding incidence rates with an increased LLIN usage to 60% in the Guinea savannah were 166 (95% p.Cl [114,242])/1000 and 156 (95% p.Cl [104,230])/1000 in 2020 and 165 (95% p.Cl [112,241])/1000 and 151 (95% p.Cl [94,225])/1000 population by 2030 respectively for LLIN coverage levels of 70% and 90%, Table 1 and Fig 5.

Rates predicted in the Transitional forest for elevated use of LLIN to 60% respectively for LLIN coverage levels of 70% and 90% were 171 (95% p.Cl [139,206])/1000 and 158 (95% p.Cl [126,191])/1000 at 2020 and 148 (95% p.Cl [103,186])/1000 and 113 (95% p.Cl [64,151])/1000 population by 2030, Table 1 and Fig 5.

With respect to an increased level of LLIN usage and coverage levels of 70% and 90% respectively in the Coastal savannah, the predicted rates were 77 (95% p.Cl [60, 91])/1000 and 69 (95% p.Cl [53,83])/1000 by 2020 and 51 (95% p.Cl [26,78])/1000 and 31 (95% p.Cl [12,58])/1000 by 2030 respectively, Table 1 and Fig 5.

LLIN coverage of 70% and 90% and usage of 80% across all zones

A further proportion of predicted cases of reported uncomplicated malaria are averted when the LLINs usage is increased to 80%. The proportion of predicted cases averted in the Guinea savannah, Transitional forest and Coastal savannah are 13.5%, 36.6% and 56.7% for a 70% LLIN coverage and 24.4%, 53.2%, and and 69.0%, for LLIN coverage of 90% respectively across all the zones S2 Fig 1.

At an 80% usage of LLINs, the rates for the various zones are shown on Table 1. They show a considerable reductions in the incidence of malaria in the various zones.

Impact of IRS interventions

IRS coverage of 90% and PE of 30% and 60%, LLIN coverage and usage at baseline levels (66% and 56% in the Guinea savannah, 51% and 45% in the Transitional forest and 50% and 35% in the Coastal
savannah respectively.

Relatively higher cases of uncomplicated could be potentially averted with a 90% IRS coverage level with PE levels of 30% and 60% across all the zones, Figs 6, S2 Figs 2.

Fig 6: Impact of attaining various levels of IRS coverage within a 5 year implementation programme at various Protective Efficacy (PE) while maintaining IRS coverage at 90% and PE, coverage levels and usage of LLINs at prevailing baseline levels in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.

In the Guinea savannah, a possibly 72.0% and 79.0% of uncomplicated cases averted could be attained by 2030 for IRS PE at 30% and 60% levels respectively, S2 Fig 2 and Fig 6.

The impact of these declines in the Guinea savannah on the incidence of all malaria cases could was observed to be 146 (95% p.Cl[95, 218])/1000 and 105 (95% p.Cl[59, 164])/1000 population by 2020 and 102 (95% p.Cl[36, 169])/1000 and 6 (95% p.Cl[1, 15])/1000 population by 2030 for a 30% and 60% PE and coverage of 90% IRS, Table 2.

Likewise, in the Transitional forest, potentially 75.7%, of uncomplicated malaria cases could be averted with an IRS coverage of 90% and PE of 30% and 78.5% for IRS PE of 60%, respectively by 2030, S2 Figs 2 and Fig 6.

Correspondingly, the rates of incidence of all cases of malaria was 159 (95% p.Cl[128,192]) and 121 (95% p.Cl[94,149]) for an IRS PE of 30% and 60% by 2020 and 35 (95% p.Cl[12,59]) and 1 (95% p.Cl[1,1]) for an IRS PE of 30% and 60% by 2030, Table 3 and Fig 6.

Table 3: Predictions of reported clinical malaria (uncomplicated and severe cases) incidence rate per 1000 population with 95% pseudo-confidence intervals (95% p.Cl) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS protective efficacy (PE) (%) at 2020 and by 2030 in the Guinea savannah zone.
Zone	Intervention	Coverage (%)	Usage (%)	PE (%)	Incidence rate/1000 population (95% p.CI) by year					
		LLIN	IRS	LLIN	IRS	2020				
Guinea savannah	IRS	66	90	56	40	30	146 (95, 218)			
							56	40	60	105 (59, 164)
							56	40	80	78 (39, 125)
Transitional forest	IRS	51	90	45	40	30	159 (128, 192)			
							45	40	60	121 (94, 149)
							45	40	80	99 (75, 122)
Coastal savannah	IRS	50	90	35	40	30	75 (59, 89)			
							35	40	60	53 (40, 65)
							35	40	80	40 (30, 51)

95% p.CI = 2.5% and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria

For IRS only, uncomplicated cases averted, as shown in Fig 6 and S2 Figs 2, was 78.5% versus 80.9% for a 90% IRS coverage with a 30% and 60% levels of PE respectively for by 2030.

The incidence rates for all cases of malaria following the attainment of these intervention targets was observed to potentially be 75 (95% p.CI[59,89])/1000 and 53 (95% p.CI[40,65])/1000 population for 30% and 60% IRS PE by 2020 and 8 (95% p.CI[3,20])/1000 and 0 (95% p.CI[0,0])/1000 population by 2030, Table 3 and Fig 6.

Impact of deploying LLINs and IRS

LLIN coverage at 80% and IRS coverage at 80% with LLIN usage and IRS PE at baseline settings (56% and 30% in the Guinea savannah, 45% and 30% in the Transitional forest and 35% and 30% in the Coastal savannah respectively)

Achieving 80% LLIN and IRS coverage while maintaining the LLIN usage and IRS PE at baseline respectively potentially results in a 30.8%, 58.0% and 64.7% of reported uncomplicated malaria cases averted in the Guinea savannah, Transitional forest and Coastal savannah respectively, S2 Figs 3.
The proportions of malaria cases averted for implementing an 80% LLIN and IRS coverage at baseline LLIN usage and IRS PE was likely to give rise to incidence rates of 144 (95% p.Cl[93,214])/1000 and 103 (95% p.Cl[37,170])/1000 population for all cases of malaria in the Guinea savannah by 2020 and 2030 respectively, Table 4. In the transitional forest the rates of malaria incidence observed were 150 (95% p.Cl[120,183])/1000 and 29 (95% p.Cl[9,51])/1000 respectively by 2020 and 2030. Similarly the observed rates in the Coastal savannah were 72 (95% p.Cl[56,85])/1000 and 7 (95% p.Cl[3,18])/1000 by 2020 and 2030 respectively, Table 4.

Fig 7: Impact of attaining a combination of various levels of LLINs and IRS coverage within 3 and 5 year implementation programme respectively at baseline Protective Efficacy (PE) of IRS (30%) and elevated level of LLINs (60%) usage in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah

When the coverages of LLIN and IRS are both increased to 90% but all other scenarios remain as in the previous scenario, cases averted were observed to be 39.1%, 64.1% and 69.0% in the Guinea savannah, Transitional forest and Coastal savannah zones respectively as shown in S2 Fig 3. The corresponding rates for the various zones are on Table 4.

LLIN coverage at 80% and IRS coverage at 80% with LLIN usage at 60% and IRS PE at baseline settings (30% in the Guinea savannah, Transitional forest and Coastal savannah respectively)

Given coverage levels of LLIN and IRS were 80% but LLIN usage increased to 60% in all zones, 33.0%, 65.8% and 74.6% of uncomplicated cases of malaria could be averted in the Guinea savannah, Transitional forest and Coastal savannah respectively, S2 Fig 3. These reductions as shown on Table 4, were associated with a 140 (95% p.Cl[89,210])/1000 population and 98 (95% p.Cl[33,165])/1000 population respectively by 2020 and 2030 in the Guinea savannah, 133 (95% p.Cl[103,163])/1000 population and 16 (95% p.Cl[5,30])/1000 population in the Transitional forest while for the Coastal savannah, the rates were 55 (95% p.Cl[41,68])/1000 population and 2 (95% p.Cl[1,6])/1000 population by 2020 and 2030 respectively, Table 4 and Fig 7.

LLIN coverage at 80% and IRS coverage at 90% with LLIN usage 60% and IRS PE at baseline settings (30% in the Guinea savannah, Transitional forest and Coastal savannah respectively)
If as in the previous scenario, with an elevated LLIN coverage to 80% and usage to 60% but IRS coverage increased to 90%, the corresponding proportions of cases potentially averted, as shown on S2 Figs 3 could have been 37.7%, for reported uncomplicated in the Guinea savannah with accompanying incidence rates for all cases of malaria predicted in 2020 and 2030 of 137 (95% p.Cl[86,206])/1000 and 86 (95% p.Cl[23,151])/1000 population respectively, Table 4 and Fig 7.

Table 4: Predictions of reported clinical malaria (uncomplicated and severe cases) incidence rate per 1000 population with 95% pseudo-confidence intervals (95% p.Cl) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS protective efficacy (PE) (%) at 2020 and by 2030 in the Guinea savannah zone.

Zone	Intervention	Coverage (%)	Usage (%)	PE (%)	Incidence rate (95% p.Cl)		
		LLIN	IRS	LLIN	IRS	2020	
Guinea savannah	LLIN & IRS	80	80	56	40	30	144 (93, 214)
		90	90	56	40	30	136 (86, 204)
		80	80	60	40	30	140 (89, 210)
		80	90	60	40	30	137 (86, 206)
Transition forest	LLIN & IRS	80	80	45	40	30	150 (120, 183)
		90	90	45	40	30	142 (113, 173)
		80	80	60	40	30	133 (103, 163)
		80	90	60	40	30	129 (100, 159)
Coastal savannah	LLIN & IRS	80	80	35	40	30	72 (56, 85)
		90	90	35	40	30	67 (52, 80)
		80	80	60	40	30	55 (41, 68)
		80	90	60	40	30	53 (39, 66)

95% p.Cl = 2.5% and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria

In the Transitional forest zone, 68.3% of uncomplicated cases were predicted to be averted by 2030, S2 Fig 3. The associated incidence rates, as shown on Table 4 are 129 (95% p.Cl[100,159])/1000 and a 10 (95% p.Cl[4,20])/1000 population for the Transitional forest respectively by 2020 and 2030.

Similarly for the Coastal savannah, the potential proportions of uncomplicated malaria cases averted was 76.1%, S2 Figs 3. Corresponding incidence rates for all cases of malaria under this scenario were predicted to be 53 (95% p.Cl[39,66])/1000 and 2 (95% p.Cl[1,4])/1000 population respectively by
Discussion

The potential impact of malaria interventions were investigated by simulating various implementation scenarios while taking into account the diversity of morbidity in the three ecological zones across Ghana. These investigations which were conducted within the period 2018 to 2030 also assessed the prospects of achieving some goals of the National Malaria Strategic Plan, 2014 - 2020 as well as those of the WHO Global Technical Strategy milestones [1].

The models take into account, the population sizes of the different transmission settings. Differences in transmission potential for young children, adults and pregnant women were also considered. The gradual improvement in the data capture and reporting, through the DHIMS infrastructure, at the district level in government health facilities, faith based private facilities across the country were accounted for by allowing for various levels of reporting and system improvements from 2008 to 2018. Years of improvement in all suspected cases receiving a malaria diagnostic test was also incorporated (Fig 3) [56,57].

The roll out of LLINs on large scale basis in Ghana begun from 2003 [56]. This resulted in a substantial improvement in the proportion of households with at least one LLIN as well as at least one LLIN per every two members of a household (universal coverage) across the country [49]. For instance as at 2016, the proportion of households on average with at least one LLIN was 89.0%, 74.8%, and 70.0% compared to 59.0%, 42.5% and 37.6% in 2008 for the Guinea savannah, Transitional forest and Coastal savannah zones respectively [46,49]. On the other hand, on average, the universal coverage of LLINs in 2016 were 65.7%, 50.5% and 49.9% respectively for the Guinea savannah, Transitional forest and Coastal savannah zones [49]. These achievements have largely contributed to the gradual decline in the prevalence of malaria among children aged 6 – 59 months of age with the latest (2016) measurement being 21.0%, falling from 27.0% in 2014 [49].
Relatively, ITN/LLIN usage is low across the country. On average 56.0%, 45.0% and 35.2% of the population in the Guinea savannah, Transitional forest and Coastal savannah zones were reported to have slept in an ITN/LLIN in 2016, a marginal increase from 47.1%, 45.6% and 32.5% in 2008 for children under the age of five years respectively [46,49,58]. These observations follow the results of this study which suggests that, ITN or LLIN usage could be low given the current level of coverage and incidence of malaria across all the zones. The results from the models show that, with elevated levels of usage of LLINs, which improves protective effectiveness (PE), a significant number of predicted incidence cases could be averted.

For example, as described earlier, the predicted cases averted by increasing the coverage levels of LLINs to targeted levels of 70% and 90% during a three year implementation campaign leads to only a marginal improvement from the baseline scenario without a corresponding increase in the PE of the LLINs, S2 Fig 1. This observation may explain why the relatively high universal coverage levels of LLINs currently observed (at least 50% across zones as at 2016) may not be impacting very much in reducing the level of predicted cases as expected.

The promise to averting more predicted cases through LLINs may be achieved by stepping up the campaign to persuade the population to comply to proper LLIN usage while continuous efforts are made to sustain the already achieved coverage. Many factors have been reported for people not sleeping in ITN/LLIN including an inability to hang them, real or perceived health concerns, difficulty in breathing when sleeping under them and other factors [59–61].

This calls for further and continuous advocacy on the usage of ITNs/LLINs through any means including formal education channels or through community hang-up/social behaviour communication change campaigns on the proper and sustained usage of the LLINs while highlighting the potential biting patterns of mosquitoes to avert unnecessary out-door exposure [15,16].
Given the proven efficacy of LLINs, and the relatively high coverage levels currently prevailing in the various zones, correspondingly higher reductions in the burden of malaria could have been achieved if patronage to the usage of these LLINs were equally as high as demonstrated throughout the results of various intervention scenarios simulated in this study with increasing levels of usage, S2 Fig 1.

Following the WHO guidelines for vector control, Ghana may have attained a high enough LLINs coverage in selected areas, especially in the Guinea savannah zone where transmission is highly seasonal and coverage is relatively higher, to begin the roll out of IRS on a targeted large scale basis as a complimentary vector control measure [8,61].

However, relative to LLINs, the coverage of IRS is by far the lowest across the country. Although parts of the Guinea savannah and the Transitional forest zones have had some implementation of IRS on pilot bases, studies are yet to be sited of any such activities rolled out in the Coastal savannah [56,62,63].

It was shown in parts of the Guinea savannah that, districts where IRS were deployed compared to non-IRS districts resulted in a reduction of 39.0% on average in malaria incidence during six months after spraying. These gains were however reversed when the IRS activities were not sustained [63,64].

Results in this study also show that, a potential reduction from 48.9% to 90.4% of predicted cases of malaria could be attained with an increased deployment of IRS in the various zones for varying levels of PE of a spraying programme that will take up to five years to attain and maintain these coverage levels, S2 Fig 2. At these levels of decline, pre-elimination could be in sight as observed in the incidence rates of 1 (95% p.CI [1, 1])/1000 population or less for attaining a 90% coverage of IRS in five years and maintained up to 2030 across the country, Tables 3.
IRS might hold a greater promise of averting much more cases of malaria compared to LLINs given the relatively low level of dependence on human behaviour to usage. However, the feasibility of rolling out of IRS as an additional intervention to LLNs, even though will have additional benefit to averting more predicted cases, on a large or targeted basis may depend on the level of community acceptability and the considerable additional cost given the limited operational budget space.

As shown Fig 7 and Table 4, LLIN usage in the presence of targeted IRS deployment seems to aver a substantial number of incidence cases in all zones. This reinforces the importance of using the LLIN as recommended in order for the possible optimal benefit of malaria prevention to be realised. Therefore combining both LLINs and IRS will likely contribute very significantly to not only averting much more predicted cases across Ghana but probably drive the annual incidence of malaria presented at the health facilities down towards pre-elimination levels if IRS coverage were scaled up across all three zones.

All investigations in this study considered hypothetical scenarios of deploying both LLINs and IRS. More so IRS was considered as a supplementary intervention to LLIN. For practical and financial considerations, it may be infeasible to achieve universal coverage of both LLINs and IRS across the country. This makes efforts towards improving the effectiveness of LLIN, at the already high coverage levels an imperative otherwise it amounts to not achieving value for money for the investment over the years.

Therefore, as continuous efforts are being made by the NMCP and other stakeholders to scale up various vector control measures across the country, an even stronger advocacy needs to be made for education of the population through various channels such radio, television messages and programmes and community durbars on the uptake of the various malaria interventions especially LLINs [65,66].
Given the possible high levels of LLIN non-use in Ghana, 58.0% (2016), which is relatively higher compared to her neighbours, Benin 28.9% (2017), Burkina Faso 33.0% (2014) and Cote d’Ivoire, 49.6% (2016), the community health officers stationed in the various CHPS compounds may be of great resource to undertaking these additional tasks of educating and mounting hang up campaigns and other means of communication for the uptake of the usage of LLINs [58,67–69].

From the results thus far, it’s unlikely that with the current rate of decline being observed Ghana will achieve the principal target of reducing the burden of malaria by 75% (which translates to 47 cases per 1000 population per year using cases reported in 2012 as baseline) by close of 2020 as projected in the National Malaria Strategic plan of 2014-2020, even though large declines have been achieved with malaria attributable deaths [4]. Meeting the goals of the strategic plan by 2030 may require a full scale deployment of IRS in targeted districts and communities complementary to LLINs in all the zones to at least 80% coverage using insecticides with high level of protective efficacy, Table 4.

The relatively high treatment seeking (72.0%) and diagnosis (90.0%), respectively for the Guinea savannah, Transitional forest and Coastal savannah were taken into account while testing the impact of the various interventions. Attaining improved coverage levels of vector control interventions across the country may require an unprecedented level of investment and a multi-prong action to roll out interventions such as LLINs and IRS (in targeted districts) to prevent cases and to treat cases concurrently while rallying all the citizenry to improve usage of LLINs and seek treatment promptly and also investing in personal protection.

A summary of recommendations of this study will be made to the Ghanaian NMCP through a policy brief. This may support the decision making processing of any future policy formulation for malaria control in the country.

Limitations
The models developed separately for each zone across the country do not account for interaction of population across zones. This implies that, the force of infection in each zone is dependent on only infectious humans specific to their respective zones ignoring the possible contributions of migrants from other zones to the local infectious human reservoir. In a population of low transmission a meta-population modelling approach would have been used to couple all three models. However, given the high level of malaria incidence across all zones and all year round, a stand-alone zonal model structure may still be considered valid and not affected significantly by the lack of spatial interaction which allows for movement of various classes of the population of each zone to another.

Even though reported universal coverage of LLINs were used from the various surveys over the years, knowing the detailed number of LLINs distributed by zones would have been more preferable. However, the estimates for both LLIN and IRS historical coverages used were obtained from results of robust national surveys which are considered credible. Additionally, a current country measured levels of protective effectiveness of the LLINs and IRS are also not available and therefore this study relied on published data from studies of meta-analyses which included sub-Saharan African countries which may be reflective of the levels of protectiveness of LLINs in Ghana as well [34].

Regardless of the demonstrated benefit of IPTi among infants in Ghana [70] and elsewhere, not including the impact of IPTi in this study does not diminish the importance of the findings given the relatively low population size of eligible infants for IPTi.

Population growth in Ghana was estimated to be 2.5% from 2000 to 2010 but this was not factored into the models [71]. These could be applied to estimates obtained and therefore does not impact negatively on the value of the findings.

Future work
The findings in this study have shown that, improvement in the usage and not only coverage levels of
LLINs as well as the deployment of IRS have the potential to avert substantial malaria incidence cases. Future studies will seek to investigate the impact of increasing the probability of all malaria suspected out-patients receiving a diagnostic test which is one of the goals of the national malaria control strategic plan for 2014-2020.

Another objective of the strategic plan to be considered for future study will be to investigate the benefits of a population level treatment on the incidence of malaria. This will include investigating the impact of Seasonal Malaria Chemotherapy (SMC) among children 3-59 months and 3-120 months. A Mass Screen and Treat (MSAT) at the population level will also be considered.

Conclusions
This study has shown that, it’s possible to achieve targets set out by the NMCP and those of the Global strategy for malaria using current interventions if compliance to their recommended application are improved. Therefore, any programmes and strategies that would further increase the patronage, proper and continuous usage of ITN/LLIN should be encouraged and supported. As shown in the results, improvement in the coverage of LLIN only without a corresponding improvement on usage does not reduce the incidence of malaria in the population.

With respect to IRS, districts with incidence rates of malaria above zonal averages could be targeted for IRS to complement LLINs as recommended by WHO since the LLIN coverage is relatively high. If desired levels of malaria related morbidity will be attained, as projected by the National strategic policy of 2014-2020 [4], then a rapid and momentous effort needs to be made to improve upon the uptake and sustained usage of the LLINs while consideration is given to targeted IRS especially in high risk districts in the Transitional forest and Coastal savannah zones.

List Of Abbreviations
Abbreviation	Definition
NMCP | National Malaria Control Program
ITN | Insecticide Treated bednets
LLIN | Long lasting insecticide treated bednets
IRS | Indoor Residual Spraying
USAID | United States Agency for International Development
PMI | President’s Malaria Initiative
AIDS | Acquired Immune Deficiency Syndrome
ACTs | Artemisinin-based combination therapy
IPTp | Intermittent Preventive Treatment of malaria in pregnancy
SP | Sulfadoxine-Pyrimethamine
SIRS | Susceptible Infected Recovered Susceptible
BR | Biting Rate
HLC | Human Landing Catches
RF | Rainfall
Kv | Environmental Carrying Capacity
DHIMS | District Health Information Management System
DHS | Demographic and Health Survey
MICS | Multiple Indicator Cluster Survey
SMC | Seasonal Malaria Chemotherapy
ABC | Approximate Bayesian Computation
PE | Protective Efficacy
MSAT | Mass Screen and Treat
WHO | World Health Organisation
IPTi | Intermittent Preventive Treatment of malaria in infants
SACEMA | South African Centre for Epidemiological Modelling and Analysis
DST-NRF | Department of Science and Technology - National Research Foundation
ICTS | Information and Communication Technology Services
GetFUND | Ghana Education Trust Fund

Declarations

Ethical considerations

Ethics approval was obtained from the Institutional Review Board of the Navrongo Health Research Centre, Ghana as well as the University Of Cape Town Faculty Of Science Research Ethics Committee.

Permit to use health facility data (DHIMS data) was granted by the National Malaria Control Program, Ghana.

Availability of the data and materials

The authors do not have the rights to share the meteorological data which can obtained from client@meteo.gov.gh. The health facility based malaria data could be requested for at nmcp@ghsmail.org.

Authors contributions

TA and SS conceptualised and developed the research questions and TA developed the models and wrote the manuscript. TA and SS made comments and suggestions for revision and both authors read and approved the final manuscript.
Acknowledgement

Funding for this research was received from the South African Centre for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa towards TA’s PhD studies. The support of the Department of Science and Technology - National Research Foundation (DST-NRF) Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) towards this research is hereby acknowledged. The opinions expressed and conclusions arrived at, are those of the author and are not necessarily attributable to SACEMA.

I acknowledge the support of Dr Victor Asoala, and Dr Alberta Amu Quartey for making available Entomological data for the various zones and the permit to use the data received as well. Christelle Gogue, Malaria Control and Elimination Program, PATH, for willingly providing historical IRS campaign data for part of this work. I also acknowledge Dr Keziah Malm, Dr Nana Yaw Peprah and Mr. Abraham Nartey, of the NMCP for their support with data requests for this study. Computations were performed using facilities provided for by the University of Cape Town’s ICTS High Performance Computing team: hpc.uct.ac.za. They are hereby acknowledged for their support.

Consent for Publication

Not Applicable

Competing interests

Neither the sponsors of my PhD studies nor the authors have any competing interests.

Funding

This manuscript is part of the corresponding author’s (TA) PhD studies which was sponsored by SACEMA and the Ghana Education Trust Fund (GetFund).

References

[1] Ghana Statistical Service. Ghana living standards survey round 6. 2017.
[2] Global technical strategy for malaria 2016-2030. :35.

[3] Ghana Health Service. Ghana malaria programme review final report [Internet]. Ghana Health Service; 2013 [cited 2016 Feb 16]. Available from: http://www.ghanahealthservice.org/downloads/.

[4] National Malaria Control Programme. Strategic plan for malaria control in Ghana 2014-2020. [Internet]. 2014. Available from: http://www.ghanahealthservice.org/downloads/NMCP-Strategic-document.pdf.

[5] United States Agency for International Development. President’s Malaria Initiative,Ghana Operational Plan,FY2015 [Internet]. 2015 [cited 2016 Feb 15]. Available from: http://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-15/fy-2015-ghana-malaria-operational-plan.pdf?sfvrsn=3.

[6] National Malaria Control Program. An epidemiological profile of malaria and its control in Ghana. [Internet]. National Malaria Control Program; 2013 [cited 2016 Feb 15]. Available from: https://www.linkmalaria.org/sites/www.linkmalaria.org/files/content/country/profiles/Ghana-epi-report-2014.pdf.

[7] Awine T, Malm K, Bart-Plange C, et al. Towards malaria control and elimination in Ghana: challenges and decision making tools to guide planning. Glob. Health Action. 2017;10.

[8] Awine T, Malm K, Peprah NY, et al. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data. Munderloh UG, editor. PLOS ONE. 2018;13:e0191707.

[9] Schihl H. Models and history of modeling. Model. Lang. Math. Optim. Springer US; 2004. p. 25-36.

[10] Siettos CI, Lucia Russo. Mathematical modeling of infectious disease dynamics. Virulence. 2013;4.

[11] The malERA Consultative Group on Modeling. A research agenda for malaria eradication: Modeling. PLoS Med. 2011;8:e1000403.

[12] Mandal S, Sarkar RR, Sinha S. Mathematical models of malaria - a review. Malar. J. 2011;10:202.

[13] Kermack WO, McKenderick AG. A contribution to the mathematical theory of epidemics. Proc.
R. Soc. Lond. 1927;700–721.

[14] Agusto FB, Gumel AB, Parham PE. QUALITATIVE ASSESSMENT OF THE ROLE OF TEMPERATURE VARIATIONS ON MALARIA TRANSMISSION DYNAMICS. J. Biol. Syst. 2015;23:1550030.

[15] Quartey AA. Estimation of malaria transmission intensity in southern Ghana using rapid diagnostic test derived sero-prevalence rates. [Internet]. Kwame Nkrumah University of Science and Technology; 2016. Available from: http://ir.knust.edu.gh/xmlui/handle/123456789/7048/browse?value=Quartey%2C+Alberta+Amu&type=author.

[16] Asoala V. Malaria transmission dynamics and insecticide resistance of malaria vectors in the Kassena-Nankana districts of Ghana. Kwame Nkrumah University of Science and Technology; (Unpublished).

[17] White NJ. Malaria parasite clearance. Malar J. 2017;14.

[18] Oduro AR, Koram KA, Rogers W, et al. Severe falciparum malaria in young children of the Kassena-Nankana district of northern Ghana. Malar. J. 2007;6:96.

[19] Ghana Statistical Service. Ghana Malaria Indicator Survey 2016 [Internet]. Ghana Statistical Service; 2017 [cited 2017 Nov 4]. Available from: http://www.statsghan.gov.gh/docfiles/publications/Ghana%20MIS%202016%20KIR%20-%202006March2017.pdf.

[20] Nwaefuna EK, Afoakwah R, Orish VN, et al. Effectiveness of Intermittent Preventive Treatment in Pregnancy with Sulphadoxine-Pyrimethamine against Submicroscopic falciparum Malaria in Central Region, Ghana. J. Parasitol. Res. 2015;2015:1–6.

[21] Attakorah J. EVALUATION OF THE LEVEL OF ADHERENCE TO THE ANTIMALARIAL DRUG POLICY BY PRESCRIBERS IN THE TREATMENT OF MALARIA IN CHILD HEALTH DIRECTORATE AT KOMFO ANOKYE TEACHING HOSPITAL. [Internet]. Available from: http://ir.knust.edu.gh/xmlui/bitstream/handle/123456789/843/JOSEPH%20ATTAKORAH.pdf?sequence=1.

[22] Raifman JRG, Lanthorn HE, Rokicki S, et al. The Impact of Text Message Reminders on Adherence to Antimalarial Treatment in Northern Ghana: A Randomized Trial. Slutsker L, editor. PLoS
[23] Ampadu HH, Asante KP, Bosomprah S, et al. Prescribing patterns and compliance with World Health Organization recommendations for the management of severe malaria: a modified cohort event monitoring study in public health facilities in Ghana and Uganda. Malar. J. [Internet]. 2019 [cited 2019 Jul 2];18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368732/.

[24] Abuaku B, Duah-Quashie NO, Quaye L, et al. Therapeutic efficacy of artemunate-amodiaquine and artemether-lumefantrine combinations for uncomplicated malaria in 10 sentinel sites across Ghana: 2015–2017. Malar. J. 2019;18:206.

[25] Taylor TE, Taylor TE, Wills BA, et al. Intramuscular artemether vs intravenous quinine: an open, randomized trial in Malawian children with cerebral malaria. Trop. Med. Int. Health. 1998;3:3–8.

[26] Tagbor H, Bruce J, Ord R, et al. Comparison of the therapeutic efficacy of chloroquine and sulphadoxine-pyremethamine in children and pregnant women. Trop. Med. Int. Health. 2007;12:1288–1297.

[27] Anabire NG, Aryee PA, Abdul-Karim A, et al. Prevalence of malaria and hepatitis B among pregnant women in Northern Ghana: Comparing RDTs with PCR. PLoS ONE [Internet]. 2019 [cited 2019 Jul 24];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364880/.

[28] Tay SCK, Nani EA, Walana W. Parasitic infections and maternal anaemia among expectant mothers in the Dangme East District of Ghana. BMC Res. Notes [Internet]. 2017 [cited 2017 Jul 10];10. Available from: http://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-016-2327-5.

[29] Yeboah DF, Afoakwah R, Nwaefuna EK, et al. Quality of Sulfadoxine-Pyrimethamine Given as Antimalarial Prophylaxis in Pregnant Women in Selected Health Facilities in Central Region of Ghana. J. Parasitol. Res. 2016;2016:1–6.

[30] NMCP,Ghana. NMCP Annual Bulletin. 2016.

[31] Oduro AR, Wak G, Azongo D, et al. Profile of the Navrongo Health and Demographic Surveillance System. Int. J. Epidemiol. 2012;41:968–976.

[32] Owusu-Agyei S, Nettey OEA, Zandoh C, et al. Demographic patterns and trends in Central Ghana: baseline indicators from the Kintampo Health and Demographic Surveillance System. Glob.
Health Action. 2012;5:19033.

[33] Gyapong M, Sarpong D, Awini E, et al. Profile: The Dodowa HDSS. Int. J. Epidemiol. 2013;42:1686-1696.

[34] Kesteman T, Randrianarivelosia M, Rogier C. The protective effectiveness of control interventions for malaria prevention: a systematic review of the literature. F1000Research. 2017;6:1932.

[35] Mohapatra M. The Natural History of Complicated Falciparum Malaria — A Prospective Study. 2006;54:6.

[36] Appiah MK, Diji AK-A. Rural Folks’ Knowledge on and adherence towards Artemisinin-based combination Therapies. ijird. 2016;5.

[37] Amponsah AO, Vosper H, Marfo AFA. Patient Related Factors Affecting Adherence to Antimalarial Medication in an Urban Estate in Ghana. Malar. Res. Treat. 2015;2015:1-8.

[38] Bartoloni A, Zammarchi L. CLINICAL ASPECTS OF UNCOMPLICATED AND SEVERE MALARIA. Mediterr. J. Hematol. Infect. Dis. 2012;4:2012026.

[39] Makanga M, Krudsood S. The clinical efficacy of artemether/lumefantrine (Coartem). Malar. J. 2009;8 Suppl 1:S5.

[40] Pasvol G. The treatment of complicated and severe malaria. Br. Med. Bull. 2005;75–76:29–47.

[41] Silal SP, Little F, Barnes KI, et al. Predicting the impact of border control on malaria transmission: a simulated focal screen and treat campaign. Malar. J. 2015;14.

[42] Miller MJ. Observations on the natural history of malaria in the semi-resistant West African. Trans. R. Soc. Trop. Med. Hyg. 1958;52:152-168.

[43] Lawn JE, Blencowe H, Waiswa P, et al. Stillbirths: rates, risk factors, and acceleration towards 2030. The Lancet. 2016;387:587–603.

[44] WHO Model Prescribing Information: Drugs Used in Parasitic Diseases - Second Edition: Protozoa: Malaria: Pyrimethamine/sulfadoxine [Internet]. [cited 2019 Apr 17]. Available from: http://apps.who.int/medicinedocs/en/d/Jh2922e/2.5.3.html#Jh2922e.2.5.3.

[45] Dinko B, Ayivor R, Abugri J, et al. Comparison of malaria diagnostic methods in four hospitals in
the Volta region of Ghana. 2016;7:7.

[46] Ghana Statistical Service and Ghana Health Service. Ghana Demographic and Health Survey 2008 [Internet]. 2009 [cited 2019 Feb 13]. Available from: https://www.dhsprogram.com/pubs/pdf/FR221/FR221[13Aug2012].pdf.

[47] Ghana Statistical Service. Ghana Demographic and Health Survey, 2014 [Internet]. Ghana Statistical Service; 2014 [cited 2015 Dec 23]. Available from: http://dhsprogram.com/what-we-do/survey/survey-display-437.cfm.

[48] Ghana Statistical Service. Ghana Multiple Indicator Cluster Survey with an Enhanced Malaria Module and Biomaker, 2011, Final report. [Internet]. Ghana Statistical Service; 2011 [cited 2015 Dec 23]. Available from: http://www.unicef.org/ghana/Ghana_MICS_Final.pdf.

[49] Ghana Statistical Service (GSS), Ghana Health Service (GHS). Ghana Malaria Indictor Survey, 2016 [Internet]. Accra, Ghana, and Rockville, Maryland, USA: GSS, GHS, and ICF; 2017. Available from: www.DHSprogram.com.

[50] R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. 2019. Available from: https://www.R-project.org/.

[51] Hartig F, Calabrese JM, Reineking B, et al. Statistical inference for stochastic simulation models - theory and application: Inference for stochastic simulation models. Ecol. Lett. 2011;14:816–827.

[52] Hermans B. Application of approximate Bayesian computation to estimate parameters in models of infectious disease spread on a network. :16.

[53] Marjoram P, Molitor J, Plagnol V, et al. Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 2003;100:15324–15328.

[54] Beaumont MA. Approximate Bayesian Computation in Evolution and Ecology. Annu. Rev. Ecol. Evol. Syst. 2010;41:379–406.

[55] Csillery K, Lemaire L, Francois O, et al. Approximate Bayesian Computation (ABC) in R: A Vignette. :24.

[56] Aregawi M, Malm KL, Wahjib M, et al. Effect of anti-malarial interventions on trends of malaria
cases, hospital admissions and deaths, 2005–2015, Ghana. Malar. J. [Internet]. 2017 [cited 2017 Jun 27];16. Available from: http://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1828-6.

[57] United States Agency for International Development. Ghana Malaria Operational Plan FY 2018. :95.

[58] Hannah Koenker, Emily Ricotta, Bolanle Olapeju, et al. Insecticide-Treated Nets (ITN) Access and Use Report. Baltimore, MD. PMI | VectorWorks Project, Johns Hopkins Center for Communication Programs. 2018.

[59] Kanmiki EW, Awoonor-Williams JK, Phillips JF, et al. Socio-economic and demographic disparities in ownership and use of insecticide-treated bed nets for preventing malaria among rural reproductive-aged women in northern Ghana. PLOS ONE. 2019;14:e0211365.

[60] Bradley J, Ogouyèmi-Hounto A, Cornélie S, et al. Insecticide-treated nets provide protection against malaria to children in an area of insecticide resistance in Southern Benin. Malar. J. [Internet]. 2017 [cited 2019 Mar 26];16. Available from: http://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1873-1.

[61] Binka FN, Adongo P. Acceptability and use of insecticide impregnated bednets in northern Ghana. Trop. Med. Int. Health. 1997;2:499-507.

[62] Abuaku B, Ahorlu C, Psychas P, et al. Impact of indoor residual spraying on malaria parasitaemia in the Bunkpurugu-Yunyoo District in northern Ghana. Parasit. Vectors [Internet]. 2018 [cited 2019 Mar 26];11. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-018-3130-z.

[63] Entomological Monitoring of the PMI IRS Program in Northern Ghana. :41.

[64] IVCC NGenIRS. NgenIRS Evidence FactSheet Ghana [Internet]. 2018. Available from: http://www.ivcc.com.ngenisrs/news-and-media/news/analysis-on-new-irs-product-sumishield%C2%AE-50wg-in-ghanah.

[65] Owusu Adjah ES, Panayiotou AG. Impact of malaria related messages on insecticide-treated net (ITN) use for malaria prevention in Ghana. Malar. J. 2014;13:123.

[66] Apo SB, Kwankye SO, Badasu DM. EXPOSURE TO MALARIA PREVENTION MESSAGES AND
INSECTICIDE TREATED BEDNET USAGE AMONG CHILDREN UNDER FIVE YEARS IN GHANA. Eur. Sci. J. ESJ [Internet]. 2015 [cited 2019 Apr 8];11. Available from: https://eujournal.org/index.php/esj/article/view/5840.

[67] Kanmiki EW, Awoonor-Williams JK, Phillips JF, et al. Socio-economic and demographic disparities in ownership and use of insecticide-treated bed nets for preventing malaria among rural reproductive-aged women in northern Ghana. :13.

[68] Oduro AR, Chatio S, Beeri P, et al. Adherence to Dihydroartemisinin-Piperaquine Treatment among Patients with Uncomplicated Malaria in Northern Ghana [Internet]. J. Trop. Med. 2019 [cited 2019 Apr 8]. Available from: https://www.hindawi.com/journals/jtm/2019/5198010/.

[69] Awoonor-Williams JK, Sory EK, Nyonator FK, et al. Lessons learned from scaling up a community-based health program in the Upper East Region of northern Ghana. Glob. Health Sci. Pract. 2013;1:117–133.

[70] Chandramohan D, Owusu-Agyei S, Carneiro I, et al. Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. BMJ. 2005;331:727–733.

[71] Ghana Statistical Service. 2010 Population and Housing Census National Analytical Report. [Internet]. 2013. Available from: http://www.statsghana.gov.gh/docfiles/2010phc/National_Analytical_Report.pdf.

Figures
Malaria transmission model showing various compartments of both human and vector populations. Human population: S represents the susceptible human compartment (where different probabilities have been applied respectively to recruited naïve or non-immunized children under 6 years of age, adults and pregnant women into the latent stage L before the onset of gametocytes. Ic, Ia, Is and Ism compartments represent symptomatic infection (clinical infection), asymptomatic infection, severe infection and sub-microscopic infection respectively. Pregnant women attend antenatal clinic (ANC) without an infection, IANCN or progress from L3 into IANCP once infected. Tr1, Tr2 and Tr3 represent the treatment sought for confirmed uncomplicated malaria (Ic), severe malaria (Is) and routine monthly SP prophylaxis for pregnant women at ANC. Trf1, Trf2 and Trf3 represent respective treatment failure due to adherence and possible drug resistance for the three latter treatment options.

Vector population: Lv represents larva population and Sm susceptible mosquitoes. Exposed
mosquitoes are captured in Em compartment. Whereas infectious mosquitoes are in the Im compartment.
Figure 2
Monthly biting rates (b/p/m) [Grey Bars] and rainfall (mm) [Blue Lines] in the Guinea savannah, Transitional forest and Coastal savannah respectively.
Figure 3

Probability of testing all suspected malaria cases by zone (source: NMCP).
Model run time is 1988 to 2030. Steady state period spans from 1988 to 1997, 1998 to 2017 previous interventions implemented and reporting rates on DHIMS introduced. Data fitting and calibration from 2008 to 2017 for the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.
Impact of attaining various levels of LLINs coverage within a 3 year implementation programme at a usage level of 60% while maintaining IRS coverage and PE at prevailing baseline levels in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.
Impact of attaining various levels of IRS coverage within a 5 year implementation programme at various Protective Efficacy (PE) while maintaining IRS coverage at 90% and PE, coverage levels and usage of LLINs at prevailing baseline levels in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah.
Impact of attaining a combination of various levels of LLINs and IRS coverage within 3 and 5 year implementation programme respectively at baseline Protective Efficacy (PE) of IRS (30%) and elevated level of LLINs (60%) usage in the (a) Guinea savannah, (b) Transitional forest and (c) Coastal savannah

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

S2barplots.docx
S1text.docx
S4Barplotsforpercentcasesaverted.docx
Equations.docx
S3Graphsformipcases.docx
S5Tablesofincidencerates.docx