Notes on Artin–Tate motives

by

Jörg Wildeshaus *

LAGA
UMR 7539
Institut Galilée
Université Paris 13
Avenue Jean-Baptiste Clément
F-93430 Villetaneuse
France
wildesh@math.univ-paris13.fr

January 14, 2010

Abstract

In this paper, we study the main structural properties of the triangulated category of Artin–Tate motives over a perfect base field k. We first analyze its weight structure, building on the main results of [Bo]. We then study its t-structure, when k is algebraic over \mathbb{Q}, generalizing the main result of [L1]. We finally exhibit the interaction of the weight and the t-structure. When k is a number field, this will give a useful criterion identifying the weight structure via realizations.

Keywords: Artin–Tate motives, Dirichlet–Tate motives, weight structures, t-structures, realizations.

Math. Subj. Class. (2000) numbers: 14F42 (14C35, 14D10, 19E15, 19F27).

*Partially supported by the Agence Nationale de la Recherche, project no. ANR-07-BLAN-0142 “Méthodes à la Voevodsky, motifs mixtes et Géométrie d’Arakelov”.
0 Introduction

The aim of this article is to exhibit the basic structural properties of the triangulated category of Artin–Tate motives over a fixed perfect base field k. The definition of this category will be recalled, and a number of generalizations will be defined in Section 1. Roughly speaking, the properties we shall be interested in, then fall into two classes.

First (Section 2), we apply the main results of [Bo] to Artin–Tate motives. More precisely, we show (Theorem 2.5) that the weight structure of [loc. cit.], defined on the category of geometrical motives [V1], induces a weight structure on the triangulated category of Artin–Tate motives. We also give a very explicit description of the heart of the latter, showing in particular that it is Abelian semi-simple.

Second (Section 3), we generalize the main result from [L1] from Tate motives to Artin–Tate motives, when the base field is algebraic over \mathbb{Q}. More precisely, we show (Theorem 3.1) that under this hypothesis, there is a non-degenerate t-structure on the triangulated category of Artin–Tate motives. The strategy of proof is identical to the one used by Levine. Using the main result of [W2], we show (Corollary 3.4) that this triangulated category is canonically equivalent to the bounded derived category of its heart (formed with respect to the t-structure), i.e., of the Abelian category of mixed Artin–Tate motives.

Our main interest lies then in the simultaneous application of both points of view: that of weight structures and that of t-structures. Still assuming that k is algebraic over \mathbb{Q}, we give a characterization (Theorem 3.9) of the weight structure on the triangulated category of Artin–Tate motives in terms of the t-structure. Specializing further to the case of number fields, we get a powerful criterion (Theorem 3.11), allowing to identify the weight structure via the Hodge theoretic or ℓ-adic realization.
We should warn the reader that all our constructions are a priori with \(\mathbb{Q} \)-coefficients. This seems to be necessary for at least two reasons. First, the triangulated category of Artin motives is not known to admit a t-structure; by contrast, such a structure becomes obvious after tensoring with \(\mathbb{Q} \) (see Section II). This t-structure is at the very basis of our construction. Second, as pointed out in [L1], the existence of the t-structure on the triangulated category of Tate motives necessitates (and is in fact equivalent to) the validity of the Beilinson–Soule vanishing conjecture; but this vanishing is only known (for algebraic base fields) after tensoring with \(\mathbb{Q} \).

Part of this work was done while I was enjoying a modulation de service pour les porteurs de projets de recherche, granted by the Université Paris 13. I wish to thank P. Jørgensen, B. Kahn and M. Levine for useful comments.

Notation and conventions: Throughout the article, \(k \) denotes a fixed perfect base field. The notation of this paper follows that of [V1]. We refer to [loc. cit.] for the definition of the triangulated categories \(DM_{gm}^eff(k) \) and \(DM_{gm}(k) \) of (effective) geometrical motives over \(k \). Let \(F \) be a commutative \(\mathbb{Q} \)-algebra. The notation \(DM_{gm}^eff(k)_F \) and \(DM_{gm}(k)_F \) stands for the \(F \)-linear analogues of these triangulated categories defined in [An] Sect. 16.2.4 and Sect. 17.1.3. Similarly, let us denote by \(CHM_{gm}^eff(k) \) and \(CHM(k) \) the categories opposite to the categories of (effective) Chow motives, and by \(CHM_{gm}^eff(k)_F \) and \(CHM(k)_F \) the pseudo-Abelian completion of the category \(CHM_{gm}^eff(k) \otimes \mathbb{Z} F \) and \(CHM(k) \otimes \mathbb{Z} F \), respectively. Using [V2, Cor. 2] ([V1, Cor. 4.2.6] if \(k \) admits resolution of singularities), we canonically identify \(CHM_{gm}^eff(k)_F \) and \(CHM(k)_F \) with a full additive sub-category of \(DM_{gm}^eff(k)_F \) and \(DM_{gm}(k)_F \), respectively.

1 **Definition and first properties**

Fix a commutative \(\mathbb{Q} \)-algebra \(F \), which we suppose to be semi-simple and Noetherian, in other words, a finite direct product of fields of characteristic zero. In this section, we recall the definition of the \(F \)-linear triangulated category of Artin–Tate motives (Definition [13]), and define a number of variants, indexed by certain sub-categories of the category of discrete representations of the absolute Galois group of our perfect base field \(k \) (Definition [15]). We then start the analysis of this category, following the part of [L1] valid without additional assumptions on \(k \).

For any integer \(m \), there is defined a Tate object \(\mathbb{Z}(m) \) in \(DM_{gm}(k) \), which belongs to \(DM_{gm}^eff(k) \) if \(m \geq 0 \) [VI, p. 192]. We shall use the same notation when we consider \(\mathbb{Z}(m) \) as an object of \(DM_{gm}(k)_F \).
Definition 1.1 (cmp. [L1 Def. 3.1]). Define the triangulated category of Tate motives over k as the strict full triangulated sub-category $DMT(k)_F$ of $DM_{gm}(k)_F$ generated by the $\mathbb{Z}(m)$, for $m \in \mathbb{Z}$.

Recall that by definition, a strict sub-category is closed under isomorphisms in the ambient category. It is easy to see that $DMT(k)_F$ is tensor triangulated.

Definition 1.2. Define the triangulated category of Artin motives over k as the pseudo-Abelian completion of the strict full triangulated sub-category $DMA(k)_F$ of $DM_{eff}(k)_F$ generated by the motives $M_{gm}(X)$ of smooth zero-dimensional schemes X over k.

This category is again tensor triangulated.

Definition 1.3. Define the triangulated category of Artin–Tate motives over k as the strict full tensor triangulated sub-category $DMAT(k)_F$ of $DM_{gm}(k)_F$ generated by $DMA(k)_F$ and $DMT(k)_F$.

The following observation [V1, Remark 2 on p. 217] is vital.

Proposition 1.4. The triangulated category $DMA(k)_F$ of Artin motives is canonically equivalent to $D^b(\text{MA}(k)_F)$, the bounded derived category of the Abelian category $\text{MA}(k)_F$ of discrete representations of the absolute Galois group of k in finitely generated F-modules.

More precisely, if X is smooth and zero-dimensional over k, and \overline{k} a fixed algebraic closure of k, then the absolute Galois group of k, when identified with the group of automorphisms of \overline{k} over k, acts canonically on the set of \overline{k}-valued points of X. The object of $\text{MA}(k)_F$ corresponding to $M(X)$ under the equivalence of Proposition 1.4 is nothing but the formal F-linear envelope of this set, with the induced action of the Galois group. Note that the category $\text{MA}(k)_F$ is semi-simple.

Corollary 1.5. There is a canonical non-degenerate t-structure on the category $DMA(k)_F$. Its heart is equivalent to $\text{MA}(k)_F$.

By contrast [V1, Remark 1 on p. 217], it is not clear how to construct a non-degenerate t-structure on the triangulated category $DMA(k)$ of zero motives (whose F-linearization equals $DMA(k)_F$).

For the rest of this section, let us identify the triangulated categories $DMA(k)_F$ and $D^b(\text{MA}(k)_F)$ via the equivalence of Proposition 1.4. Let us also fix a strict full Abelian semi-simple F-linear tensor sub-category \mathcal{A} of $\text{MA}(k)_F$, containing the category triv of objects of $\text{MA}(k)_F$ on which the Galois group acts trivially.

Definition 1.6. Define DAT as the strict full tensor triangulated sub-category of $DMAT(k)_F$ generated by \mathcal{A}, and by $DMT(k)_F$.
Examples 1.7. (a) When A equals $MA(k)_F$, then $DAT = DMT(k)_F$.
(b) When A equals $triv$, then $DAT = DMT(k)_F$.

Let us agree to set $\mathbb{Z}(n/2) := 0$ for odd integers n. For any object M of DAT and any integer n, let us write $M(n/2)$ for the tensor product of M and $\mathbb{Z}(n/2)$.

Following [L1], let us first define $DAT_{[a,b]}$ as the full triangulated sub-category of DAT generated by the objects $N(m)$, for $N \in A$ and $a \leq -2m \leq b$, for integers $a \leq b$ (we allow $a = -\infty$ and $b = \infty$). We denote $DAT_{[a]}$ by DAT_a.

Proposition 1.8. The category DAT_a is zero for $a \in \mathbb{Z}$ odd. For $a \in \mathbb{Z}$ even, the exact functor

$$DAT_a \rightarrow DMA(k)_F, \ M \mapsto M(a/2)$$

induces an equivalence between DAT_a and the bounded derived category of A (which is equal to the \mathbb{Z}-graded category $Gr_\mathbb{Z}A = \bigoplus_{m \in \mathbb{Z}} A$ over A).

Proof. By construction, the functor is exact, and identifies DAT_a with the full triangulated sub-category of $DMA(k)_F$ of objects, whose co-homology lies in A. Recall that we identified the categories $DMA(k)_F$ and $D^b(MA(k)_F)$. It remains to see that the obvious exact functor

$$D^b(A) \rightarrow D^b(MA(k)_F)$$

is fully faithful. But this an immediate consequence of the fact that the Abelian categories A and $MA(k)_F$ are semi-simple. \textbf{q.e.d.}

In particular, there is a canonical t-structure $(DAT^{\leq 0}_a, DAT^{> 0}_a)$ on DAT_a: the category $DAT^{\leq 0}_a$ is the full sub-category of DAT_a generated by objects $N(-a/2)[r]$, for $N \in A$ and $r \geq 0$, and $DAT^{> 0}_a$ is the full sub-category generated by objects $N(-a/2)[r]$, for $N \in A$ and $r \leq 0$. If a is even, then the category A is equivalent to the heart AT_a of this canonical t-structure via the functor $N \mapsto N(-a/2)$.

Second, we construct auxiliary t-structures.

Proposition 1.9 (cmp. [L1] Lemma 1.2). Let $a \leq n \leq b$. Then the pair $(DAT_{[a,n]}, DAT_{[n+1,b]})$ defines a t-structure on $DAT_{[a,b]}$.

Proof. Imitate the proof of [L1] Lemma 1.2. The decisive ingredient is the following generalization of the vanishing from [L1] Def. 1.1 i):

$$Hom_{DAT}(N_1(m_1)[r], N_2(m_2)[s]) = 0, \forall m_1 > m_2, \ N_1, N_2 \in A, \ r, s \in \mathbb{Z}.$$

It holds because $Hom_{DAT} = Hom_{D_{M_{gm}}(k)_F}$, and $Hom_{D_{M_{gm}}(_)_F}$ satisfies descent for finite extensions L/k of the base field. Choosing an extension L
splitting both N_1 and N_2 therefore allows to deduce the desired vanishing from that of

$$\text{Hom}_{DM_{gm}(L)_{\mathbb{Q}}}(\mathbb{Z}(m_1)[r], \mathbb{Z}(m_2)[s]).$$

q.e.d.

Remark 1.10. (a) The above proof uses the relation of K-theory of L tensored with \mathbb{Q}, with $\text{Hom}_{DM_{gm}(L)_{\mathbb{Q}}}$. This relation is established by work of Bloch [Bl1, Bl2] (see [L2, Section II.3.6.6]), and will be used again in the proofs of Theorem 3.1 and Variant 3.3.

(b) Levine pointed out that the t-structures from Proposition 1.9, for varying n, can be used to show that the category DAT is pseudo-Abelian. We shall give an alternative proof of this result in Section 2, using Bondarko’s theory of weight structures (Corollary 2.6).

Note that since $DAT_{[a,n]}$ and $DAT_{[n+1,b]}$ are themselves triangulated, the t-structure from Proposition 1.9 is necessarily degenerate. As in [L1, Sect. 1], denote the truncation functors by

$$W_{\leq n} : DAT_{[a,b]} \longrightarrow DAT_{[a,n]}$$

and

$$W_{\geq n+1} : DAT_{[a,b]} \longrightarrow DAT_{[n+1,b]},$$

and note that for fixed n, they are compatible with change of a or b. Write gr_n for the composition of $W_{\leq n}$ and $W_{\geq n}$ (in either sense). The target of this functor is the category DAT_n. We are now ready to set up the data necessary for the t-structure we shall actually be interested in.

Definition 1.11 (cmp. [L1, Def. 1.4]). Fix $a \leq b$ (we allow $a = -\infty$ and $b = \infty$).

(a) Define $DAT_{\leq 0}^{\leq a,b}$ as the full sub-category of $DAT_{[a,b]}$ of objects M such that $\text{gr}_n M \in DAT_{\leq 0}^{\leq a,b}$ for all integers n such that $a \leq n \leq b$.

(b) Define $DAT_{\geq 0}^{\geq a,b}$ as the full sub-category of $DAT_{[a,b]}$ of objects M such that $\text{gr}_n M \in DAT_{\geq 0}^{\geq a,b}$ for all integers n such that $a \leq n \leq b$.

As we shall see (Theorem 3.1, Variant 3.3), the pair $(DAT_{\leq 0}^{\leq a,b}, DAT_{\geq 0}^{\geq a,b})$ defines a t-structure on $DAT_{[a,b]}$, provided that the base field k is algebraic over \mathbb{Q}. In particular, we then get a canonical t-structure on DAT. The vital point will be the validity of the Beilinson–Soulé vanishing conjecture for all finite field extensions of k.
2 The motivic weight structure

The purpose of this section is to first review Bondarko’s definition of weight structures on triangulated categories, and his result on the existence of such a weight structure on the categories $DM_{gm}(k)$ and $DM_{gm}(k)_{F}$ [Bo]. We shall then show (Theorem 2.5 (a)) that the latter induces a weight structure on any of the triangulated categories constructed in Section 1. We shall also get a very explicit description of the heart of this weight structure (Theorem 2.5 (b), (c)).

Definition 2.1 (cmp. [Bo, Def. 1.1.1]). Let \mathcal{C} be a triangulated category. A weight structure on \mathcal{C} is a pair $w = (\mathcal{C}_{w\leq 0}, \mathcal{C}_{w\geq 0})$ of full sub-categories of \mathcal{C}, such that, putting

\[\mathcal{C}_{w\leq n} := \mathcal{C}_{w\leq 0}[n] \quad , \quad \mathcal{C}_{w\geq n} := \mathcal{C}_{w\geq 0}[n] \quad \forall \, n \in \mathbb{Z} , \]

the following conditions are satisfied.

(1) The categories $\mathcal{C}_{w\leq 0}$ and $\mathcal{C}_{w\geq 0}$ are Karoubi-closed (i.e., closed under retracts formed in \mathcal{C}).

(2) (Semi-invariance with respect to shifts.) We have the inclusions

\[\mathcal{C}_{w\leq 0} \subset \mathcal{C}_{w\leq 1} \quad , \quad \mathcal{C}_{w\geq 0} \supset \mathcal{C}_{w\geq 1} \]

of full sub-categories of \mathcal{C}.

(3) (Orthogonality.) For any pair of objects $M \in \mathcal{C}_{w\leq 0}$ and $N \in \mathcal{C}_{w\geq 1}$, we have

\[\text{Hom}_\mathcal{C}(M, N) = 0 . \]

(4) (Weight filtration.) For any object $M \in \mathcal{C}$, there exists an exact triangle

\[A \rightarrow M \rightarrow B \rightarrow A[1] \]

in \mathcal{C}, such that $A \in \mathcal{C}_{w\leq 0}$ and $B \in \mathcal{C}_{w\geq 1}$.

It is easy to see that for any integer n and any object $M \in \mathcal{C}$, there is an exact triangle

\[A \rightarrow M \rightarrow B \rightarrow A[1] \]

in \mathcal{C}, such that $A \in \mathcal{C}_{w\leq n}$ and $B \in \mathcal{C}_{w\geq n+1}$. By a slight generalization of the terminology introduced in condition 2.1 (4), we shall refer to any such exact triangle as a weight filtration of M.

Remark 2.2. Our convention concerning the sign of the weight is opposite to the one from [Bo, Def. 1.1.1], i.e., we exchanged the roles of $\mathcal{C}_{w\leq 0}$ and $\mathcal{C}_{w\geq 0}$.
Definition 2.3 ([Bo, Def. 1.2.1]). Let \(w = (C_{w \leq 0}, C_{w \geq 0}) \) be a weight structure on \(C \). The heart of \(w \) is the full additive sub-category \(C_{w = 0} \) of \(C \) whose objects lie both in \(C_{w \leq 0} \) and in \(C_{w \geq 0} \).

One of the main results of [Bo] is the following.

Theorem 2.4 ([Bo, Sect. 6]).

(a) If \(k \) is of characteristic zero, then there is a canonical weight structure on the category \(DM^{eff}_{gm}(k) \). It is uniquely characterized by the requirement that its heart equal \(CHM^{eff}(k) \).

(b) If \(k \) is of characteristic zero, then there is a canonical weight structure on the category \(DM_{gm}(k) \), extending the weight structure from (a). It is uniquely characterized by the requirement that its heart equal \(CHM(k) \).

(c) Let \(F \) be a commutative \(\mathbb{Q} \)-algebra. Analogues of statements (a) and (b) hold for the \(F \)-linearized categories \(DM^{eff}_{gm}(k)_F \), \(CHM^{eff}(k)_F \), \(DM_{gm}(k)_F \), and \(CHM(k)_F \), and for a perfect base field \(k \) of arbitrary characteristic.

Let us refer to any of these weight structures as motivic. For a concise review of the main ingredients of Bondarko’s proof, see [W1, Sect. 1].

Now fix a finite direct product \(F \) of fields of characteristic zero, and a full Abelian \(F \)-linear tensor sub-category \(A \) of \(MA(k)_F \), containing the category \(\text{triv} \). Recall (Definition 1.6) that \(DA \subset DM\text{AT}(k)_F \subset DM_{gm}(k)_F \) denotes the strict full tensor triangulated sub-category generated by \(A \), and by the triangulated category \(DMT(k)_F \) of Tate motives. Intersecting with \(DA \), the motivic weight structure \((DM_{gm}(k)_{F,w \leq 0}, DM_{gm}(k)_{F,w \geq 0}) \) from Theorem 2.4 (c) yields a pair

\[w := w_A := (DAT_{w \leq 0}, DAT_{w \geq 0}) \]

of full sub-categories of \(DAT \).

Theorem 2.5.

(a) The pair \(w \) is a weight structure on \(DAT \).

(b) The heart \(DAT_{w = 0} \) equals the intersection of \(DAT \) and \(CHM(k)_F \). It generates the triangulated category \(DAT \). It is Abelian semi-simple. Its objects are finite direct sums of objects of the form \(N(m)[2m] \), for \(N \in A \) and \(m \in \mathbb{Z} \).

(c) The functor from the \(\mathbb{Z} \)-graded category \(Gr_{\mathbb{Z}} A \) over \(A \) to \(DAT_{w = 0} \)

\[Gr_{\mathbb{Z}} A = \bigoplus_{m \in \mathbb{Z}} A \to DAT_{w = 0} , (N_m)_{m \in \mathbb{Z}} \mapsto \bigoplus_{m \in \mathbb{Z}} N_m(m)[2m] \]

is an equivalence of categories.

Proof. Define \(K \) as the full additive sub-category of \(DAT \) of objects, which are finite direct sums of objects of the form \(N(m)[2m] \), for \(N \in A \) and \(m \in \mathbb{Z} \). Note that \(K \) generates the triangulated category \(DAT \). All
objects of \mathcal{K} are Chow motives. In particular, by orthogonality \[\text{(3)}\] of the motivic weight structure (see \cite{VI} Cor. 4.2.6), \mathcal{K} is negative, i.e.,

$$\text{Hom}_{D\mathcal{A}T}(M_1, M_2[i]) = \text{Hom}_{DM_{gm}(k)_F}(M_1, M_2[i]) = 0$$

for any two objects M_1, M_2 of \mathcal{K}, and any integer $i > 0$. Therefore, \cite[Thm. 4.3.2 II 1]{Bo} can be applied to ensure the existence of a weight structure v on $D\mathcal{A}T$, uniquely characterized by the property of containing \mathcal{K} in its heart. Furthermore \cite[Thm. 4.3.2 II 2]{Bo}, the heart $D\mathcal{A}T_v = 0$ of v is equal to the category \mathcal{K}' of retracts of \mathcal{K} in $D\mathcal{A}T$. In particular, it is contained in the heart $CHM(k)_F$ of the motivic weight structure. The existence of weight filtrations \[\text{(4)}\] for the weight structure v then formally implies that

$$D\mathcal{A}T_{v \leq 0} \subset DM_{gm}(k)_{F,w \leq 0},$$

and that

$$D\mathcal{A}T_{v \geq 0} \subset DM_{gm}(k)_{F,w \geq 0}.$$

Now let $M_1 \in D\mathcal{A}T_{w \leq 0} = D\mathcal{A}T \cap DM_{gm}(k)_{F,w \leq 0}$. Then for any $M_2 \in D\mathcal{A}T_{v \geq 1}$, we have

$$\text{Hom}_{D\mathcal{A}T}(M_1, M_2) = 0,$$

thanks to orthogonality \[\text{(3)}\] for the motivic weight structure, and to the fact that $D\mathcal{A}T_{v \geq 1}$ is contained in $DM_{gm}(k)_{F,w \geq 1}$. Axioms \[\text{(4)}\] easily imply (see also \cite[Prop. 1.3.3 2]{Bo}) that $M_1 \in D\mathcal{A}T_{v \leq 0}$. Therefore,

$$D\mathcal{A}T_{w \leq 0} = D\mathcal{A}T_{v \leq 0}.$$

In the same way, one proves that

$$D\mathcal{A}T_{w \geq 0} = D\mathcal{A}T_{v \geq 0}.$$

Altogether, the weight structure v coincides with the data $w = w_A$. This proves part (a) of our claim. We also see that part (b) is formally implied by the following claim. (b') The category \mathcal{K} is Abelian semi-simple. (Since then \mathcal{K} will necessarily be pseudo-Abelian, hence $D\mathcal{A}T_{w=0} = \mathcal{K}'$ coincides with \mathcal{K}.)

Now consider two objects N_1, N_2 of \mathcal{A}, two integers m_1, m_2, and the group of morphisms

$$\text{Hom}(N_1(m_1)[2m_1], N_2(m_2)[2m_2]) = \text{Hom}(N_1, N_2(m_2 - m_1)[2(m_2 - m_1)])$$

in $D\mathcal{A}T$. Two essentially different cases occur: if $m_1 \neq m_2$, then the group of morphisms is zero. Indeed, using descent for finite extensions of k as in the proof of Proposition \[\text{[1.9]}\] we reduce ourselves to the case $N_1 = N_2 = \mathbb{Z}$, where the desired vanishing follows from \cite[Prop. 4.2.9]{VI}.

If $m_1 = m_2$, then

$$\text{Hom}(N_1(m_1)[2m_1], N_2(m_2)[2m_2]) = \text{Hom}(N_1, N_2)$$

can be calculated in the Abelian category \mathcal{A}.

9
Thus in any of the two cases, the group $\text{Hom}(N_1(m_1)[2m_1], N_2(m_2)[2m_2])$ coincides with $\text{Hom}_{\text{Gr}_A}((N_1)_{m=m_1}, (N_2)_{m=m_2})$.

Therefore, the functor defined in part (c) of the claim is fully faithful. Furthermore, it induces an equivalence of categories between Gr_A and \mathcal{K}. The latter is therefore Abelian semi-simple. This shows (b’), hence part (b) of our claim. It also shows part (c). \hfill \text{q.e.d.}

Statement (b) of Theorem 2.5 should be considered as remarkable in that it happens rarely that the heart of a given weight structure is Abelian. We refer to \cite[Thm. 3.2]{P}, where this question is studied abstractly.

Corollary 2.6. The category D_{AT} is pseudo-Abelian.

Proof. By Theorem 2.5 (b), the heart $D_{AT}^w=0$ is pseudo-Abelian and generates the triangulated category D_{AT}. Our claim thus follows from \cite[Lemma 5.2.1]{Bo}. \hfill \text{q.e.d.}

Here is another formal consequence of Theorem 2.5 (b).

Corollary 2.7. (a) The inclusion of the heart $\iota_- : D_{AT}^w=0 \hookrightarrow D_{AT}^w\leq 0$ admits a left adjoint $\text{Gr}_0 : D_{AT}^w\leq 0 \longrightarrow D_{AT}^w_{w=0}$.

For any $M \in D_{AT}^w\leq 0$, the adjunction morphism $M \rightarrow \text{Gr}_0 M$ gives rise to a weight filtration

$$M_{\leq -1} \longrightarrow M \longrightarrow \text{Gr}_0 M \longrightarrow M_{\leq -1}[1]$$

of M. The composition $\text{Gr}_0 \circ \iota_-$ equals the identity on $D_{AT}^w=0$.

(b) The inclusion of the heart $\iota_+ : D_{AT}^w=0 \hookrightarrow D_{AT}^w\geq 0$ admits a right adjoint $\text{Gr}_0 : D_{AT}^w\geq 0 \longrightarrow D_{AT}^w_{w=0}$.

For any $M \in D_{AT}^w\geq 0$, the adjunction morphism $\text{Gr}_0 M \rightarrow M$ gives rise to a weight filtration

$$\text{Gr}_0 M \longrightarrow M \longrightarrow M_{\geq 1} \longrightarrow \text{Gr}_0 M[1]$$

of M. The composition $\text{Gr}_0 \circ \iota_+$ equals the identity on $D_{AT}^w=0$.

Proof. Let $M \in D_{AT}^w\leq 0$. First choose an exact triangle

$$M_{\leq -2} \longrightarrow M \longrightarrow M_{-1,0} \longrightarrow M_{\leq -2}[1],$$

with $M_{\leq -2} \in D_{AT}^w\leq -2$ and $M_{-1,0} \in D_{AT}^w\geq -1 \cap D_{AT}^w\leq 0$. Orthogonality \cite[3]{2.1}, together with the fact that $M_{\leq -2}[1] \in D_{AT}^w_{w\leq -1}$ shows that the morphism $M \rightarrow M_{-1,0}$ induces an isomorphism

$$\text{Hom}_{D_{AT}}(M_{-1,0}, N) \sim \text{Hom}_{D_{AT}}(M, N)$$
for any object N of the heart $DAT_{w=0}$. Now choose an exact triangle

$$M'_{-1} \longrightarrow M_{-1,0} \longrightarrow M'_0 \xrightarrow{\alpha} M'_{-1}[1],$$

with $M'_{-1} \in DAT_{w=-1}$ (hence $M'_{-1}[1] \in DAT_{w=0}$) and $M'_0 \in DAT_{w=0}$. Recall that according to Theorem 2.3 (b), $DAT_{w=0}$ is Abelian semi-simple. Therefore, the morphism α has a kernel and an image, both of which admit direct complements in M'_0 and in $M'_{-1}[1]$, respectively. Choose a direct complement M'_0 of $\ker \alpha$ in M'_0, and a direct complement $M'_{-1}[1]$ of $\im \alpha$ in $M'_{-1}[1]$ (for some $M_{-1} \in DAT_{w=-1}$). Via the restriction of α, the object M'_0 is isomorphic to the image. We thus get a commutative diagram

$$
\begin{array}{ccc}
M'_0 & \xrightarrow{\alpha} & M'_{-1}[1] \\
\downarrow & & \downarrow \\
\ker \alpha =: \text{Gr}_0 M & \longrightarrow & M_{-1}[1]
\end{array}
$$

in $DAT_{w=0}$ and in fact, a morphism of exact triangles

$$
\begin{array}{ccc}
M'_{-1} & \longrightarrow & M_{-1,0} \longrightarrow M'_0 \xrightarrow{\alpha} M'_{-1}[1] \\
\downarrow & & \downarrow \\
M_{-1} & \longrightarrow & M_{-1,0} \longrightarrow \text{Gr}_0 M \longrightarrow M_{-1}[1]
\end{array}
$$

in DAT. By construction, and by orthogonality 2.1 (3), the morphism $M_{-1,0} \to \text{Gr}_0 M$ induces an isomorphism

$$\text{Hom}_{DAT}(\text{Gr}_0 M, N) \sim \text{Hom}_{DAT}(M_{-1,0}, N)$$

for any object N of the heart $DAT_{w=0}$. Choosing a cone of the composition $M \to M_{-1,0} \to \text{Gr}_0 M$, we get exact triangles

$$M_{\leq-1} \longrightarrow M \longrightarrow \text{Gr}_0 M \longrightarrow M_{\leq-1}[1]$$

and

$$M_{\leq-2} \longrightarrow M_{\leq-1} \longrightarrow M_{-1} \longrightarrow M_{\leq-2}[1].$$

The second of the two exact triangles, together with stability of $DAT_{w\leq-1}$ under extensions (cmp. [Bo, Prop. 1.3.3 3]) shows that $M_{\leq-1}$ belongs to $DAT_{w\leq-1}$. Therefore, the first is a weight filtration of M. By construction, the morphism $M \to \text{Gr}_0 M$ induces an isomorphism

$$\text{Hom}_{DAT}(\text{Gr}_0 M, N) \sim \text{Hom}_{DAT}(M, N)$$

for any object N of the heart $DAT_{w=0}$. From this property, it is easy to deduce the functorial behaviour of $\text{Gr}_0 M$.

This proves part (a) of the claim; the proof of part (b) is dual. \textbf{q.e.d.}

\textbf{Remark 2.8.} (a) As the proof shows, Corollary 2.7 remains true in the general context of weight structures on triangulated categories, whose heart is Abelian semi-simple.

(b) This more general version of Corollary 2.7 should be compared to [W1].
The conclusions on the existence of the adjoints Gr_0 are the same. On the one hand, Corollary 2.7 works without the additional assumption from [loc. cit.] on the absence of the adjacent weights -1 and 1. On the other hand, the fact that the heart is Abelian semi-simple, as we have just seen, is a vital ingredient of the proof. There is another subtle difference between the two situations: In the setting of [W1, Prop. 2.2 (a)], the term $M_{\leq -2}$ also behaves functorially in M. This should not be expected to hold for the term $M_{\leq -1}$ from Corollary 2.7 (a).

Corollary 2.9. Let $M \in \text{DAT}_{w \geq -1} \cap \text{DAT}_{w \leq 0}$. Then the adjunction morphism $M \to \text{Gr}_0 M$ admits a right inverse and a kernel (in the category DAT). The latter is pure of weight -1. Any choice of right inverse induces an isomorphism

$$M_{-1} \oplus \text{Gr}_0 M \cong M$$

between M and the direct sum of $M_{-1} \in \text{DAT}_{w = -1}$ and of $\text{Gr}_0 M$.

Proof. Either look at the proof of Corollary 2.7 (a). Or use its statement: indeed, the adjunction morphism can be extended to a weight filtration

$$M_{-1} \to M \to \text{Gr}_0 M \to M_{-1}[1]$$

of M, with some $M_{-1} \in \text{DAT}_{w = -1}$. Since Gr_0 is left adjoint to ι_-, and $M_{-1}[1] \in \text{DAT}_{w = 0}$, the morphism α is necessarily zero. Therefore, the weight filtration splits.

Of course, the object M_{-1} occurring in Corollary 2.9 is just the shift by -1 of Gr_0 applied to $M[1] \in \text{DAT}_{w \geq 0}$.

Definition 2.10 ([W1, Def. 1.10]). Let $r \leq s$ be two integers, and D one of the categories DAT or $\text{DM}_{gm}(k)_F$. An object M of D is said to be without weights r, \ldots, s if there is an exact triangle

$$M_{\leq r-1} \to M \to M_{\geq s+1} \to M_{\leq r-1}[1]$$

in D, with $M_{\leq r-1} \in D_{w \leq r-1}$ and $M_{\geq s+1} \in D_{w \geq s+1}$.

For the sequel, it will be important to know that the property of being without weights r, \ldots, s is stable under extensions. Recall that L is said to be an extension of M by K if there is an exact triangle

$$K \to L \to M \to K[1].$$

Proposition 2.11. Let

$$K \to L \to M \to K[1]$$

be an exact triangle in DAT or in $\text{DM}_{gm}(k)_F$. Assume that K and M are both without weights r, \ldots, s. Then L is without weights r, \ldots, s.

12
Proof. According to the context, write D for the category DAT resp. $DM_{gm}(k)_F$ we are working in. Let

$$K_{\leq r-1} \rightarrow K \rightarrow K_{\geq s+1} \rightarrow K_{\leq r-1}[1]$$

and

$$M_{\leq r-1} \rightarrow M \rightarrow M_{\geq s+1} \rightarrow M_{\leq r-1}[1]$$

be exact triangles in D, with

$$K_{\leq r-1}, M_{\leq r-1} \in D_{w_{\leq r-1}}$$

and

$$K_{\geq s+1}, M_{\geq s+1} \in D_{w_{\geq s+1}}.$$

By orthogonality [2.1] (3), there are no non-zero morphisms between $M_{\leq r-1}[-1]$ and $K_{\geq s+1}$. By [L1] Lemma 1.1 (with $f : Z_1 \rightarrow Z_2$ equal to the morphism $M[-1] \rightarrow K$), this implies the existence of exact triangles

$$M_{\leq r-1}[-1] \rightarrow K_{\leq r-1} \rightarrow L' \rightarrow M_{\leq r-1},$$

$$M_{\geq s+1}[-1] \rightarrow K_{\geq s+1} \rightarrow L'' \rightarrow M_{\geq s+1},$$

and

$$L' \rightarrow L \rightarrow L'' \rightarrow L'[1].$$

The first of these triangles shows that $L' \in D_{w_{\leq r-1}}$. The second shows that $L'' \in D_{w_{\geq s+1}}$. Therefore, the third shows that L is indeed without weights r, \ldots, s. q.e.d.

Remark 2.12. As the proof shows, Proposition 2.11 remains true in the general context of weight structures on triangulated categories.

3 The case of an algebraic base field: the t-structure

In this section, we assume k to be algebraic over the field \mathbb{Q} of rational numbers. We first show that the data from Definition 1.11 define a t-structure on the triangulated category DAT (Theorem 3.1), and more generally, on $DAT_{[a,b]}$ (Variant 3.3). This provides a generalization of the main result from [1] (which concerns the case of Tate motives). Our strategy of proof is identical to the one from [loc. cit.]. We then proceed (Theorem 3.9) to give a characterization of the weight structure on DAT in terms of this t-structure. Specializing further to the case of number fields, Theorem 3.9 implies a criterion allowing to identify the weight structure via the Hodge theoretic or ℓ-adic realization (Theorem 3.11).
Theorem 3.1. The pair \((\mathcal{D}A\mathcal{T}^{\leq 0}, \mathcal{D}A\mathcal{T}^{\geq 0})\) (Definition 1.11) is a \(t\)-structure on \(\mathcal{D}A\mathcal{T}\). It has the following properties.

(a) The \(t\)-structure is non-degenerate.

(b) Its heart \(\mathcal{A}T\) is generated (as a full Abelian sub-category of \(\mathcal{D}A\mathcal{T}\) stable under extensions) by the objects \(N(m)\), for \(N \in \mathcal{A}\) and \(m \in \mathbb{Z}\).

(c) Each object \(M\) of \(\mathcal{A}T\) has a canonical weight filtration by sub-objects

\[
0 \subset \ldots \subset W_{n-1}M \subset W_nM \subset \ldots \subset M.
\]

This filtration is functorial and exact in \(M\). It is uniquely characterized by the properties of being finite (i.e., \(W_nM = 0\) for \(n\) very small and \(W_nM = M\) for \(n\) very large), and of admitting sub-quotients

\[
\text{gr}_nM := W_nM/W_{n-1}M, \ n \in \mathbb{Z}
\]

of the form \(N_n(-n/2)\), for some \(N_n \in \mathcal{A}\).

(d) The functor

\[
\bigoplus_{m \in \mathbb{Z}} \text{gr}_{2m}(m) : \mathcal{A}T \longrightarrow \text{Gr}_\mathbb{Z}\mathcal{A}, \ M \mapsto \left(\text{gr}_{2m}(M)(m) \right)_m
\]

is a faithful exact tensor functor to the \(\mathbb{Z}\)-graded category over \(\mathcal{A}\). It thus identifies \(\mathcal{A}T\) with a tensor sub-category of \(\text{Gr}_\mathbb{Z}\mathcal{A}\).

(e) The natural maps

\[
\text{Ext}^p_{\mathcal{A}T}(M_1, M_2) \longrightarrow \text{Hom}_{\mathcal{D}A\mathcal{T}}(M_1, M_2[p])
\]

(\(\text{Ext}^p = \text{Yoneda Ext-group of } p\)-extensions) are isomorphisms, for all \(p\), and all \(M_1, M_2 \in \mathcal{A}T\). Both sides are zero for \(p \geq 2\). In particular, the Abelian category \(\mathcal{A}T\) is of cohomological dimension one.

We thus get in particular the existence of two generating Abelian sub-categories, namely \(\mathcal{A}T\) and \(\mathcal{D}A\mathcal{T}_{w=0}\), of the same triangulated category \(\mathcal{D}A\mathcal{T}\). The first of these is of cohomological dimension one, and the second is semi-simple. In addition (Theorems 3.1 (d) and 2.5 (c)), the first is abstractly tensor equivalent to a tensor sub-category of the second.

Remark 3.2. In [Bo, Def. 4.4.1], the notion of a \(t\)-structure adjacent to a given weight structure is defined. It may be important to note that the \(t\)-structure \((\mathcal{D}A\mathcal{T}^{\leq 0}, \mathcal{D}A\mathcal{T}^{\geq 0})\) from Theorem 3.1 is not adjacent to the motivic weight structure \((\mathcal{D}A\mathcal{T}_{w=0}, \mathcal{D}A\mathcal{T}_{w\geq 0})\) on \(\mathcal{D}A\mathcal{T}\) studied in the previous section. Else, by definition we would have

\[
\mathcal{D}A\mathcal{T}_{w\leq 0} = \mathcal{D}A\mathcal{T}^{\leq 0} \quad \text{or} \quad \mathcal{D}A\mathcal{T}_{w\geq 0} = \mathcal{D}A\mathcal{T}^{\geq 0}
\]

(according to whether we are in a situation of left or right adjointness). But according to Theorem 2.5 (b), any object of the form \(\mathbb{Z}(m)[2m]\), \(m \in \mathbb{Z}\), lies in the heart \(\mathcal{D}A\mathcal{T}_{w=0}\), while \(\mathbb{Z}(-1)[-2] \in \mathcal{D}A\mathcal{T}^{\geq 2}\) and \(\mathbb{Z}(1)[2] \in \mathcal{D}A\mathcal{T}^{\leq -2}\).
Theorem 3.1 is the special case \((a, b) = (-\infty, \infty)\) of the following.

\textbf{Variant 3.3} (cmp. [L1, Thm. 1.4, Cor. 4.3]). Fix \(a \leq b\). Then the pair \(\mathcal{D}_{\mathcal{A}T}^{\leq 0}, \mathcal{D}_{\mathcal{A}T}^{> 0}\) is a \(t\)-structure on \(\mathcal{D}_{\mathcal{A}T}[a,b]\). It has the following properties.

(a) The \(t\)-structure is non-degenerate.

(b) Its heart \(\mathcal{A}T_{[a,b]}\) is generated (as a full Abelian sub-category of \(\mathcal{D}_{\mathcal{A}T}[a,b]\) (or of \(DM_{gm}(k)_F\) stable under extensions) by the objects \(N(-n/2),\) for \(N \in \mathcal{A}\) and \(a \leq n \leq b\).

(c) Each object \(M\) of \(\mathcal{A}T_{[a,b]}\) has a canonical weight filtration by sub-objects

\[0 = W_{a-1}M \subset W_aM \subset \ldots \subset W_{b-1}M \subset W_bM = M. \]

This filtration is functorial and exact in \(M\). It is uniquely characterized by the property of admitting sub-quotients

\[W_nM/W_{n-1}M, n \in \mathbb{Z} \]

of the form \(N_n(-n/2),\) for some \(N_n \in \mathcal{A}\). For all \(n \in \mathbb{Z},\) we have

\[W_nM/W_{n-1}M = \text{gr}_nM \]

as objects of the heart \(\mathcal{A}T_n\) of \(\mathcal{D}_{\mathcal{A}T_n}\).

(d) The functor

\[\bigoplus_{m \in \mathbb{Z}, a \leq 2m \leq b} \text{gr}_{2m}(m) : \mathcal{A}T_{[a,b]} \longrightarrow \bigoplus_{m \in \mathbb{Z}, a \leq 2m \leq b} \mathcal{A} \]

is a faithful exact tensor functor.

(e) The natural maps

\[\text{Ext}^p_{\mathcal{A}T_{[a,b]}}(M_1, M_2) \longrightarrow \text{Hom}(M_1, M_2[p]) \]

(Hom = morphisms in \(\mathcal{D}_{\mathcal{A}T_{[a,b]}}\) (or in \(DM_{gm}(k)_F\)) are isomorphisms, for all \(p\), and all \(M_1, M_2 \in \mathcal{A}T_{[a,b]}\). Both sides are zero for \(p \geq 2\). In particular, the Abelian category \(\mathcal{A}T_{[a,b]}\) is of cohomological dimension one.

(f) For \(a \leq a' \leq a \) and \(b \leq b' \leq b\), the inclusion of \(\mathcal{D}_{\mathcal{A}T_{[a,b]}}\) into \(\mathcal{D}_{\mathcal{A}T_{[a',b']}}\) as a full triangulated sub-category is compatible with the \(t\)-structures. That is, the \(t\)-structure on \(\mathcal{D}_{\mathcal{A}T_{[a',b']}}\) is induced by the \(t\)-structure on \(\mathcal{D}_{\mathcal{A}T_{[a,b]}}\).

\textbf{Proof.}\quad The decisive ingredient is the following generalization of the vanishing from [L1, Thm. 1.4]:

\[\text{Hom}_{\mathcal{D}_{\mathcal{A}T_{[a,b]}}}(N_1(m_1), N_2(m_2)[s]) = 0, \forall m_1 < m_2, N_1, N_2 \in \mathcal{A}, s \leq 0. \]

It holds because \(\text{Hom}_p_{\mathcal{A}T_{[a,b]}} = \text{Hom}_{DM_{gm}(k)_F}\), and \(\text{Hom}_{DM_{gm}(*)_F}\) satisfies descent for finite extensions \(L/k\) of the base field. Choosing an extension \(L\)
splitting both N_1 and N_2 therefore allows to deduce the desired vanishing from the Beilinson–Soulé vanishing conjecture

$$\text{Hom}_{DM_{gm}(L)}(\mathbb{Z}(m_1), \mathbb{Z}(m_2)[s]),$$

which by the work of Borel is known for all number fields, hence also for direct limits L of such.

We now faithfully imitate the proof of [L1] Thm. 1.4, to get assertions (a), (b), and (d). We also get the following: the filtration $W_n M$ induced by the grading $gr M$ is functorial. By construction, the sub-quotient $gr_n M$ lies in $\mathcal{A}T_n$. Its unicity follows from the fact that there are no non-zero morphisms from objects of $\mathcal{A}T$ of weights at most r to objects of weights at least $r + 1$. To prove this, use induction on the length of weight filtrations, and the vanishing

$$\text{Hom}_{\mathcal{A}T}(N_1(m_1)[r], N_2(m_2)[s]) = 0, \forall m_1 > m_2, N_1, N_2 \in \mathcal{A}, r, s \in \mathbb{Z}$$

(see the proof of Proposition [L2]). We thus get part (c) of our claim.

Part (f) follows from the definition of our t-structure, and from the compatibility of the functors gr_n under the inclusion of $\mathcal{DA}T_{[a,b]}$ into $\mathcal{DA}T_{[a',b']}$. As for claim (e), we faithfully imitate the proof of [L1] Cor. 4.3.

$q.e.d.$

Corollary 3.4. The identity on $\mathcal{A}T$ extends canonically to an equivalence of triangulated categories

$$D^b(\mathcal{A}T) \longrightarrow \mathcal{D}A\mathcal{T}$$

between the bounded derived category of $\mathcal{A}T$ and $\mathcal{D}A\mathcal{T}$. Its composition with the cohomology functor $\mathcal{D}A\mathcal{T} \rightarrow \mathcal{A}T$ associated to the t-structure of Theorem 3.1 equals the canonical cohomology functor on $D^b(\mathcal{A}T)$.

Proof. Recall the definition of the category $\text{Shv}_{Nis}(\text{SmCor}(k))$ of Nisnevich sheaves with transfers [VI Def. 3.1.1]. It is Abelian [VI Thm. 3.1.4], and there is a canonical full triangulated embedding

$$DM_{gm}^{eff}(k) \hookrightarrow D^-(\text{Shv}_{Nis}(\text{SmCor}(k)))$$

into the derived category of complexes of Nisnevich sheaves bounded from above [VI Thm. 3.2.6, p. 205]. Imitating the construction from [loc. cit.] using F instead of \mathbb{Z} as ring of coefficients, one shows that there is a canonical full triangulated embedding

$$DM_{gm}^{eff}(k)_F \hookrightarrow D^-(\text{Shv}_{Nis}(\text{SmCor}(k))_F),$$

where $\text{Shv}_{Nis}(\text{SmCor}(k))_F$ denotes the Abelian category of Nisnevich sheaves with transfers taking values in F-modules. We thus get a canonical embedding into $D(\text{Shv}_{Nis}(\text{SmCor}(k))_F)$ of any full triangulated category \mathcal{C} of $DM_{gm}^{eff}(k)_F$, and hence in particular for $\mathcal{C} = \mathcal{D}A\mathcal{T}$. Our claim thus follows from [W2] Thm. 1.1 (a), (d)]: indeed, $\text{Hom}_{\mathcal{D}A\mathcal{T}}(M_1, M_2[2]) = 0$ for any two objects M_1, M_2 in $\mathcal{A}T$ (Theorem 3.1 (e)), and $\mathcal{A}T$ generates $\mathcal{D}A\mathcal{T}$ (Theorem 3.1 (b)).

$q.e.d.$
We already mentioned the special cases $A = \text{triv}$ and $A = MA(k)_F$. A third case appears worthwhile mentioning.

Definition 3.5. (a) Define the category $MD(k)_F$ as the full Abelian F-linear sub-category of $MA(k)_F$ of objects on which the Galois group acts via a commutative (finite) quotient.

(b) Define the triangulated category of Dirichlet–Tate motives over k as the strict full tensor triangulated sub-category $DMDT(k)_F$ of $DM_{gm}(k)_F$ generated by $MD(k)_F$ and $DMT(k)_F$.

Similarly, for any algebraic extension K of k, we could define the triangulated category of Artin–Tate (resp. Dirichlet–Tate, resp...) motives over k trivializable over K by letting A equal the full Abelian F-linear sub-category $MA(K/k)_F$ (resp. $MD(K/k)_F$, resp...) of $MA(k)_F$ (resp. $MD(k)_F$, resp...) of objects on which the absolute Galois group of K, when identified with a subgroup of the Galois group of k, acts trivially.

Corollary 3.6. The conclusions of Theorem 3.1, Variant 3.3 and Corollary 3.4 hold in particular in any of the following three cases.

(1) $A = \text{triv}$. In particular, this gives back the main result of [L1]. The heart AT equals the Abelian category $MT(k)_F$ of mixed Tate motives.

(2) $A = MD(k)_F$. In this case, the category DAT equals the triangulated category $DMDT(k)_F$ of Dirichlet–Tate motives. Its heart AT equals the Abelian category $MDT(k)_F$ of mixed Dirichlet–Tate motives.

(3) $A = MA(k)_F$. In this case, the category DAT equals the triangulated category $DMAT(k)_F$ of Artin–Tate motives. Its heart AT equals the Abelian category $MAT(k)_F$ of mixed Artin–Tate motives.

Remark 3.7. (a) An equivalent construction of the category $MAT(k)_F$, for $F = \mathbb{Q}$, is given in [DG, Sect. 2.17].

(b) Note that by construction, an inclusion $A \subset B$ of strict full Abelian semi-simple F-linear tensor sub-categories of $MA(k)_F$ containing triv induces first a strict full tensor triangulated embedding $DAT \subset DBT$, and then a strict full exact tensor embedding $AT \subset BT$. An object of DBT belongs to DAT if and only if its cohomology objects (with respect to the t-structure from Theorem 3.1) lie in AT. The equivalences of Corollary 3.4 for A and B fit into a commutative diagram

$$
\begin{align*}
D^b(AT) & \cong DAT \\
& \Downarrow \\
D^b(BT) & \cong DBT
\end{align*}
$$

[W2 Thm. 1.1 (b)]. In particular, the bounded derived category $D^b(AT)$ is canonically identified with a full sub-category of the bounded derived category $D^b(BT)$.
Definition 3.8. Let M be a mixed Artin–Tate motive, with weight filtration

$$0 \subset \ldots \subset W_{r-1}M \subset W_rM \subset \ldots \subset M.$$

Let n be an integer.

(a) We say that M is of weights $\leq n$ if $W_nM = M$.
(b) We say that M is of weights $\geq n$ if $W_{n-1}M = 0$.
(c) We say that M is pure of weight n if it is both of weights $\leq n$ and of weights $\geq n$, i.e., if $W_{n-1}M = 0$ and $W_n = M$.
(d) We say that M is without weight n if $W_{n-1}M = W_nM$, i.e., if the subquotient $W_nM/W_{n-1}M$ is trivial.

Of course, any mixed Artin–Tate motive is without weight n, whenever n is odd. Denote by

$$\tau^{\leq n}, \tau^{\geq n} : \text{DAT} \to \text{DAT}$$

the truncation functors, and by

$$\mathcal{H}^n : \text{DAT} \to \text{AT}$$

the cohomology functors associated to the t-structure from Theorem 3.1.

Theorem 3.9. Let $K \in \text{DAT}$, and $r \leq s$.

(a) K lies in the heart $\text{DAT}_{w=0}$ of w if and only if the object \mathcal{H}^nK of AT is pure of weight n, for all $n \in \mathbb{Z}$.
(b) K lies in $\text{DAT}_{w\leq r}$ if and only if \mathcal{H}^nK is of weights $\leq n+r$, for all $n \in \mathbb{Z}$.
(c) K lies in $\text{DAT}_{w\geq s}$ if and only if \mathcal{H}^nK is of weights $\geq n+s$, for all $n \in \mathbb{Z}$.
(d) K is without weights r, \ldots, s if and only if \mathcal{H}^nK is without weights $n+r, \ldots, n+s$, for all $n \in \mathbb{Z}$.

Proof. Observe that the triangulated category DAT is generated by the heart $\text{DAT}_{w=0}$ of w (Theorem 2.5 (b)) as well as by the heart AT of t (Theorem 3.1 (b)). This will allow to simplify the proof.

The explicit description of objects K of $\text{DAT}_{w=0}$ from Theorem 2.5 (b) shows that the \mathcal{H}^nK are indeed pure of weight n, for all n (see Theorem 3.1 (c)). To show that any K whose cohomology objects \mathcal{H}^nK are pure of weight n, does belong to $\text{DAT}_{w=0}$, we may assume by the above that K is concentrated in one degree (with respect to the t-structure), say $K = M[d]$ for some $M \in \text{AT}$ and $d \in \mathbb{Z}$. By assumption, the mixed Artin-Tate motive M is pure of weight $-d$, and hence (Theorem 3.1 (c)) of the form $N(d/2)$, for some Artin motive N belonging to \mathcal{A}. The latter is clearly a Chow motive, and hence so is its tensor product with the Chow motive $\mathbb{Z}(d/2)[d]$. Therefore, K is a Chow motive belonging to DAT. By Theorem 2.5 (b), it is in the heart $\text{DAT}_{w=0}$. This shows part (a).

We leave it to the reader to deduce (b) and (c) from (a).
As for part (d), it is easy to see that the cohomology $H^n K$ of an object $K \in D_{\mathcal{AT}}$ without weights r, \ldots, s is without weights $n + r, \ldots, n + s$, for all n (use (b) resp. (c) for the constituents of a suitable weight filtration of K). To prove the inverse implication, we use induction on the number of integers n such that $H^n K \neq 0$. If this number equals one, then $K = M[d]$ for some $M \in \mathcal{AT}$ and $d \in \mathbb{Z}$. By assumption, the mixed Artin-Tate motive M is without weights $-d + r, \ldots, -d + s$. By Definition 3.8 (d), its weight filtration thus satisfies the relation

$$W_{-d+r-1}M = W_{-d+r}M = \ldots = W_{-d+s}M.$$

The sequence

$$0 \rightarrow W_{-d+r-1}M \rightarrow M \rightarrow M/W_{-d+s}M \rightarrow 0$$

is therefore exact in \mathcal{AT}. It gives rise to an exact triangle

$$(W_{-d+r-1}M)[d] \rightarrow K \rightarrow (M/W_{-d+s}M)[d] \rightarrow (W_{-d+r-1}M)[d+1]$$

in $D_{\mathcal{AT}}$. By parts (b) and (c),

$$(W_{-d+r-1}M)[d] \in D_{\mathcal{AT}_{w \leq r-1}},$$

and

$$(M/W_{-d+s}M)[d] \in D_{\mathcal{AT}_{w \geq s+1}}.$$

Therefore, the object K is indeed without weights r, \ldots, s.

By Proposition 2.11, the property of being without weights r, \ldots, s is stable under extensions in $D_{\mathcal{AT}}$. This allows to perform the induction step.

$q.e.d.$

To conclude, let us now consider realizations ([H Sect. 2.3 and Corrigendum]; see [DG, Sect. 1.5] for a simplification of this approach). We assume from now on that k is a number field, and concentrate on two realizations (the statement from Theorem 3.11 below then formally generalizes to any of the other realizations “with weights” considered in [H]):

(i) the Hodge theoretic realization

$$R_\sigma : DM_{gm}(k)_F \rightarrow D$$

associated to a fixed embedding σ of the number field k into the field \mathbb{C} of complex numbers. Here, D is the bounded derived category of mixed graded-polarizable \mathbb{Q}-Hodge structures [Be, Def. 3.9, Lemma 3.11], tensored with F,

(ii) the ℓ-adic realization

$$R_\ell : DM_{gm}(k)_F \rightarrow D$$

for a prime ℓ. Here, D is the bounded “derived category” of constructible \mathbb{Q}_ℓ-sheaves on $\text{Spec}(k)$ [E Sect. 6], tensored with F.

19
Choose and fix one of these two, denote it by R, recall that it is a contravariant tensor functor, and use the same letter for its restriction to the sub-category $\mathcal{D}AT$ of $DM_{gm}(k)_F$. The category $\mathcal{D}AT$ is equipped with a t-structure. The same is true for $\mathcal{D}A\mathcal{T}$; write H^n for the cohomology functors. It is easy to see that R is t-exact (since it maps $\mathcal{A}T$ to the heart of D). In particular, it induces an exact contravariant functor R_0 from the heart $\mathcal{A}T$ of $\mathcal{D}AT$ to the heart of D, which we shall denote by \mathcal{B}. As for the weight structure on $\mathcal{D}AT$, note that R_0 maps the pure Tate motive $\mathbb{Z}(m)$ to the pure Hodge structure $\mathbb{Q}(\tau - m)$ (when $R = R_\sigma$) and to the pure \mathbb{Q}_ℓ-sheaf $\mathbb{Q}_\ell(\tau - m)$ (when $R = R_\ell$), respectively [H, Thm. 2.3.3]. The following is a consequence of Theorem 3.1.

Corollary 3.10. Assume k to be a number field.

(a) The realization

$$R : \mathcal{D}AT \longrightarrow D$$

is conservative. In other words, an object K of $\mathcal{D}AT$ is zero if and only if its image $R(K)$ under R is.

(b) The induced functor

$$R_0 : \mathcal{A}T \longrightarrow \mathcal{B}$$

is conservative.

(c) The functor R_0 respects and detects weights up to inversion of the sign. More precisely, an object M of $\mathcal{A}T$ is pure of weight n if and only if $R_0(M)$ is pure of weight $-n$.

Note that there is a notion of purity and mixedness for objects of \mathcal{B}.

Proof of Corollary 3.10. Let $K \in \mathcal{D}AT$. Given the t-exactness and contravariance of R, we have the formula

$$H^n R(K) = R_0(H^{-n}K)$$

for all n. By Theorem 3.1 (a), the t-structure on $\mathcal{D}AT$ is non-degenerate. Hence (b) implies (a).

Recall that by Theorem 3.1 (c), there is a unique finite weight filtration on any object of $\mathcal{A}T$. Also, the functor R_0 is exact. Hence (b) is implied by conservativity of the restriction of R_0 to the sub-category of objects of $\mathcal{A}T$, which are pure of some weight. But this property is clearly implied by (c) (since the zero object of \mathcal{B} is pure of any weight).

Let $M \in \mathcal{A}T$. As before, we may assume that M is pure of some weight, say n. Again by Theorem 3.1 (c), M is of the form $N(\tau - n/2)$, for some Artin-Tate motive N. Thus, $R_0(M) \cong R_0(N)(n/2)$ is pure of weight $-n$. It is zero if and only if $R_0(N)$ is, which is the case if and only if N is.

We finally get the characterization of the weight structure we aimed at.
Theorem 3.11. Assume k to be a number field. Then the realization R respects and detects the weight structure. More precisely, let $K \in D\Delta T$, and $r \leq s$.

(a) K lies in the heart $D\Delta T_{w=0}$ of w if and only if the n-th cohomology object $H^nR(K) \in B$ of $R(K)$ is pure of weight n, for all $n \in \mathbb{Z}$.

(b) K lies in $D\Delta T_{w\leq r}$ if and only if $H^nR(K)$ is of weights $\geq n - r$, for all $n \in \mathbb{Z}$.

(c) K lies in $D\Delta T_{w\geq s}$ if and only if $H^nR(K)$ is of weights $\leq n - s$, for all $n \in \mathbb{Z}$.

(d) K is without weights r, \ldots, s if and only if $H^nR(K)$ is without weights $n - s, \ldots, n - r$, for all $n \in \mathbb{Z}$.

Proof. Recall that $H^nR(K) = R_0(\mathcal{H}^{-n}K)$. The claim thus follows from Theorem 3.9 and Corollary 3.10. q.e.d.

Remark 3.12. As the proof shows, the analogues of parts (a) and (b) of Corollary 3.10 continue to hold for any of the realizations (including those “without weights”) considered in [H]. This is true in particular for

(iii) the Betti realization, i.e., the composition of the Hodge theoretic realization R_σ with the forgetful functor to the bounded derived category of F-modules of finite type,

(iv) the topological ℓ-adic realization, i.e., the composition of the ℓ-adic realization \tilde{R}_ℓ with the forgetful functor to the bounded derived category of $F \otimes \mathbb{Q}_\ell$-modules of finite type [E, Thm. 7.2 (i)].

Remark 3.13. (a) For the Hodge theoretic realization

$$R = R_\sigma : DM_{gm}(k)_F \rightarrow D$$

(D = the bounded derived category of mixed graded-polarizable \mathbb{Q}-Hodge structures, tensored with F), it is possible to give a more conceptual interpretation of respect of the weight structure. In fact, there is a canonical weight structure w_5 on D, characterized by the property of admitting as heart the full sub-category \mathcal{K} of classes of complexes K of Hodge structures, whose n-th cohomology object H^nK is pure of weight n, for all $n \in \mathbb{Z}$. In order to prove this claim, apply [Bo, Thm. 4.3.2 II 1 and 2], observing that

1. \mathcal{K} generates the triangulated category D,
2. \mathcal{K} is negative:

$$\text{Hom}_D(M_1, M_2[i]) = 0$$

for any two objects M_1, M_2 of \mathcal{K}, and any integer $i > 0$ (it is here that the polarizability assumption enters), and
3. any retract of an object of \mathcal{K} in D belongs already to \mathcal{K}.
To say that $R : DM_{gm}(k)_F \to D$ respects the weight structure means then that R respects the pairs of sub-categories $(DM_{gm}(k)_{F,w \leq 0}; DM_{gm}(k)_{F,w \geq 0})$ and $(D_{w \leq 0}, D_{w \geq 0})$:

$$R(DM_{gm}(k)_{F,w \leq 0}) \subset D_{w \geq 0}, \quad R(DM_{gm}(k)_{F,w \geq 0}) \subset D_{w \leq 0}$$

(recall that R is contravariant). Given that $DM_{gm}(k)_F$ is generated by its heart, this requirement is equivalent to saying that R respects the hearts, i.e., that it maps $CHM(k)_F$ to K — which is a true statement, since the Hodge structure on the n-th Betti cohomology of a proper smooth variety is indeed pure of weight n, for all $n \in \mathbb{Z}$. This observation implies immediately the “only if” part of the statements of Theorem 3.11.

(b) By contrast, for the ℓ-adic realization

$$R = R_\ell : DM_{gm}(k)_F \to D$$

(D = the bounded “derived category” of constructible \mathbb{Q}_ℓ-sheaves on $\text{Spec } k$, tensored with F), there is no such interpretation, since there is no reasonable weight structure on D. Indeed, according to [I, Rem. 6.8.4 i)], for any odd integer $m \in \mathbb{Z}$,

$$\text{Hom}_D(\mathbb{Q}_\ell(0), \mathbb{Q}_\ell(m)[1]) \neq 0.$$

This is true in particular when m is negative, i.e., $\mathbb{Q}_\ell(m)[1]$ is pure of strictly positive weight $-2m + 1$. Therefore, orthogonality 2.1 (3) is violated.

References

[An] Y. André, *Une introduction aux motifs*, Panoramas et Synthèses 17, Soc. Math. France (2004).

[Be] A.A. Beilinson, *Notes on absolute Hodge cohomology*, in S. Bloch, R. Keith Dennis, E.M. Friedlander, M.R. Stein (eds.), *Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, held at the University of Colorado, Boulder, Colorado, June 12–18, 1983*, Contemp. Math. 55 (1986), 35–68.

[B1] S. Bloch, *Algebraic cycles and algebraic K-theory*, Adv. in Math. 61 (1986), 267–304.

[B2] S. Bloch, *The moving lemma for higher Chow groups*, J. Alg. Geom. 3 (1994), 537–568.

[Bo] M.V. Bondarko, *Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)*, preprint, April 2007, version dated July 2, 2009, 121
[DG] P. Deligne, A.B. Goncharov, *Groupes fondamentaux motiviques de Tate mixte*, Ann. Scient. ENS 38 (2005), 1–56.

[E] T. Ekedahl, *On the adic formalism*, in P. Cartier et al. (eds.), *The Grothendieck Festschrift*, Volume II, Prog. in Math. 87, Birkhäuser-Verlag 1990, 197–218.

[H] A. Huber, *Realization of Voevodsky’s motives*, J. of Alg. Geom. 9 (2000), 755–799, Corrigendum, 13 (2004), 195–207.

[J] U. Jannsen, *Mixed Motives and Algebraic K-Theory*, Lect. Notes Math. 1400, Springer-Verlag (1990).

[L1] M. Levine, *Tate motives and the vanishing conjectures for algebraic K-theory*, in P.G. Goerss, J.F. Jardine (eds.), *Algebraic K-Theory and Algebraic Topology. Proceedings of the NATO Advanced Study Institute, held at Lake Louise, Alberta, December 12–16, 1991*, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer 1993, 167–188.

[L2] M. Levine, *Mixed Motives*, Math. Surveys and Monographs 57, AMS 1998.

[P] D. Pauksztello, *Compact corigid objects in triangulated categories and co-t-structures*, Cent. Eur. J. Math. 6 (2008), 25-42.

[V1] V. Voevodsky, *Triangulated categories of motives*, Chapter 5 of V. Voevodsky, A. Suslin, E.M. Friedlander, *Cycles, Transfers, and Motivic Homology Theories*, Ann. of Math. Studies 143, Princeton Univ. Press 2000.

[V2] V. Voevodsky, *Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic*, Int. Math. Res. Notices 2002 (2002), 351–355.

[W1] J. Wildeshaus, *Chow motives without projectivity*, Compositio Math. 145 (2009), 1196–1226.

[W2] J. Wildeshaus, *f-catégories, tours et motifs de Tate*, C. R. Acad. Sci. Paris 347 (2009), 1337–1342.