Weight-Loss Outcomes from a Pilot Study of African Dance in Older African Americans

Chelsea M. Stillman1*, Patrick T. Donahue2*, Mihloti F. Williams2, Mariah Callas2, Charles Lwanga2, Chrisala Brown2, Mariegold E. Wollam2, M. Kathy Jedrziewski3, Chaeryon Kang4, and Kirk I. Erickson2

Objective: Obesity is a risk factor for both cognitive and physical impairment in late adulthood. Though the rates of obesity are high in many groups, older African Americans are disproportionately affected. A randomized pilot intervention of African Dance was conducted with 28 African American older adults with obesity (mean age = 68.4 ± 5.1 years; mean BMI = 33.4 ± 6.2). The goal of the study was to evaluate the physiological outcomes of a culturally sensitive exercise intervention and specifically changes in weight.

Methods: Participants were randomly assigned to an African Dance (experimental) or Culture Education (control) group. They attended their assigned class for 1 hour per session, 3 days per week, for 6 months.

Results: There was a significant group × time interaction on weight (P = 0.005) such that the African Dance group lost weight (mean = 4.0 ± 6.0 lb) while the Culture Education group gained weight (mean = 2.6 ± 3.9 lb).

Conclusions: These results suggest that a culturally sensitive form of physical activity, African Dance, may be effective for promoting weight loss in a population at increased risk for obesity and cognitive decline.

Introduction

Obesity has been linked to a host of negative conditions, including diabetes, heart disease, and dementia (1). Unfortunately, obesity is a growing problem in the United States and in many countries around the world. The rate of obesity among older adults between the ages of 65 and 75 is the fastest growing in the country (2). Nearly 50% of African American older adults, especially older African American females, qualify as having obesity (2). Specifically, 48.5% of African Americans over the age of 60 have obesity compared with 34.0% of white adults, 42.9% of Hispanics, and 8.9% of Asians of a similar age (2). Therefore, older African Americans are at especially high risk for obesity. The higher risk for obesity in African American communities is likely related to several factors, including inequities in income and access to stable and affordable housing, quality education, healthy foods, or safe places to be physically active (2).

Fortunately, there has been increasing evidence supporting the effectiveness of physical activity (PA) for weight management. However, African Americans report lower levels of PA compared with other racial and ethnic groups as well as higher rates of sedentary behavior (3). This difference in activity levels has also been measured objectively; accelerometry, for example, has shown that both African American men and women engage in less PA and greater amounts of sedentary behavior than their white counterparts (4). As with obesity trends, there are likely many environmental variables contributing to these PA behavioral trends, including differences in community walkability and access to health education and resources. Regardless of the root cause for these statistics, the comparatively low-PA and high-sedentary lifestyles of African Americans compared with white individuals put this group at an increased risk for obesity and a host of other conditions, including diabetes, hypertension, heart disease, and dementia (5,6).

Given these statistics and health patterns, there is a clear need to find effective ways to get older adults (not just African Americans) to engage in more PA. Dance is a common and enjoyable form of PA well-suited for older adults and has been shown to be effective at increasing PA levels and improving physical fitness (7-10). In addition, prior studies have identified that African American participation in research is far more likely if the activity is exciting, culturally relevant, spiritual, and conducted in a social format (11). Our choice to conduct an African Dance intervention in a group format at accessible centers around the African American community in Pittsburgh, Pennsylvania, met all of these criteria in order to maximize engagement. Here, our primary purpose was to examine how the intervention affected physiological variables, particularly weight status.

Disclosure: The authors declared no conflict of interest.

Received: 26 June 2018; Accepted: 12 September 2018; Published online 25 October 2018. doi:10.1002/oby.22331
Methods

Participants
A total of 123 participants were screened by phone by study staff at two urban sites (located at the University of Pittsburgh in Pittsburgh and the University of Pennsylvania in Philadelphia). The majority of participants were recruited via flyers placed at community centers and churches. Participants were told they were being recruited to study the effects of different group activities on quality of life and cognition in older African Americans. In order to be eligible for the intervention, participants were required to (1) self-identify as African American, (2) be between the ages of 60 and 80, (3) be physically capable of PA and be independently ambulatory without assistive walking devices, (4) score at least a 21 on the Telephone Interview for Cognitive Status to rule out dementia, (5) verify that they reside locally and are available to make the sessions during the entire length of the intervention (6 months), and (6) indicate a willingness to be randomly assigned to either the Dance or Culture Education group. Two cohorts of participants were randomized at the Pittsburgh site (28 total, 15 Dance, 2 male). Two additional cohorts were randomized at the Philadelphia site (26 total, 13 Dance, 8 male). Participants completed two testing sessions at each time point (baseline and 6-month follow-up). The first was a cognitive testing session in which participants completed cognitive tasks and questionnaires. The second was a fitness session in which participants completed a submaximal graded exercise test on a treadmill. The exercise test was conducted using a modified Balke protocol at a brisk walking pace self-selected by the participant. Treadmill grade increased by 1% every minute, while speed remained constant. The test was terminated when one of the following criteria was met: (1) participant achieved 85% of their age-predicted maximal heart rate (APMHR; 220 minus age formula), (2) participants prescribed beta-blockers reported a Rating of Perceived Exertion of 15 (Borg 6-20 scale), (3) participant requested to stop, or (4) there were safety concerns. In order to be deemed eligible for the study, participants must have met criteria 1 or 2. Those who were unable to complete the submaximal exercise test were ineligible for the study in order to minimize safety risks associated with the intervention.

Primary outcomes of the pilot trial included cognition, mood, quality of life, and fitness. The Pittsburgh site also added a secondary outcome of weight and BMI given the prevalence of obesity in older African Americans. These additional physiological measures were collected during the fitness testing session, which took place separately from the cognitive testing session at both time points. However, because weight/BMI status was not a primary outcome of the parent pilot trial, the Philadelphia site did not measure height and weight objectively using a stadiometer and calibrated scale. We therefore focus on the objective weight, from the Pittsburgh site, in the present analyses.

After completion of the baseline sessions, participants were randomly assigned to either the African Dance (experimental) or Culture Education (control) group. All classes took place at a local community center located proximally to several predominately African American neighborhoods in Pittsburgh. As with the baseline sessions, the specifics of the Dance and Education intervention groups have been described previously (12). Informed consent was obtained for all participants prior to any testing, in accordance with the Declaration of Helsinki. All procedures were reviewed and approved by the University of Pittsburgh Institutional Review Board.

African Dance intervention
African Dance refers to a loose constellation of dance practices derived from Africa. African Dance differs from almost all other forms of dance in one primary way. Whereas in the majority of dancing around the world the body is treated as a single “block,” in African Dance, the body has multiple, semi-independent centers. In African Dance, the torso, shoulders, pelvis, and legs are relatively independent—each region of the body follows a different rhythm and gestural pattern. Because of African Dance’s “polycentricity,” total-body articulation is heightened and therefore requires significant movement, coordination, and endurance. Therefore, African Dance is engaging while also being a moderately intense form of PA (13).

For the Rhythm, Experience and Africana Culture (REACT!) trial, we drew on music and dance styles from Guinea and Uganda (e.g., Djole, Amaggunju). Both styles are relatively rigorous because they involve high- and midrange jumps, coupled with complex choreography that engages the entire body. REACT! dance instructors modified some of the moves of the traditional dance motifs in order to better suit older adults. However, this did not compromise the vigor and intensity of the dances.

The African Dance group was conducted in a group format and adhered to basic principles and guidelines for exercise programming (14). This included adequate warm-up and cooldown, progressive and gradual increments in duration, and instruction regarding avoidance of PA-related injury. Classes were taught by trained African Dance instructors, and research coordinators were also present for all sessions to monitor heart rate, exertion, and safety. The African Dance group received moderate-intensity dance instruction for 1 hour per day (including warm-up and cooldown), 3 days per week, for 24 weeks. Throughout the class, study dance staff played live music on African drums (called djembe). Specific tempi were selected to guide intensity. For example, during warm-ups, moderato (a moderate tempo of about 108-112 beats per minute [bpm]) was employed. For the majority of the session, three versions of tempi were employed (andante [a walking-pace tempo of 78-107 bpm], moderato, and allegro [a fast tempo of 120-150 bpm]). Moderate intensity was defined as 60% to 75% of APMHR, and each participant was encouraged by study staff to either increase or decrease intensity to remain within his or her specific range. In addition, the tempi of the music were modified based on the average class heart rate in order to keep participants within the target range. In order to monitor heart rate, participants were fitted with a Polar H7 Bluetooth heart rate sensor to be worn on their chest throughout the duration of each class. Continuous heart rate readings of all participants were displayed in real time via the Polar Team application (version 1.0) on an Apple iPad Air (model A1474; iOS 9) allowing staff to monitor adherence and safety. Attendance was taken at each class.

Culture Education intervention
The Culture Education control group was also conducted in a group format. Participants received materials focused on precolonial, colonial, and postcolonial Africana history and culture, spirituality, ethnicnicity, language, social organization, rites of passage, and political
structure. Participants were also instructed about healthy lifestyles, behaviors, and risks for disease. Topics varied from session to session to maintain engagement and to align with group interest. As with the African Dance group, the Culture Education group met 1 hour per day, 3 days per week, for 24 weeks, with attendance taken at each session. Culture Education classes were led by instructors with expertise in each particular topic area.

Analyses approach
First, a series of independent-samples t tests was conducted to assess whether the groups differed in any demographic or fitness variables at baseline. Next, in order to compare the effectiveness of the African Dance intervention for weight to that of the Culture Education control for weight, an analysis of variance (ANOVA) F test using mixed models with normally distributed random effects for participants was conducted in which time (baseline, follow-up) was the repeated-measures factor and group (Dance, Culture Education) was the between-subjects factor. Changes in fitness over the intervention were also examined between the groups via an ANOVA F test (again, using mixed models with normally distributed random effects), with peak volume of oxygen consumption (VO2) from a submaximal treadmill test as the dependent variable. All hypothesis tests were conducted at the significance level of 0.05.

Results
A total of 28 participants were randomized at the Pittsburgh site (13 Culture Education, 15 Dance). Of these, 4 participants failed to return for follow-up testing. Thus, these analyses are based on a final sample of 24 participants (11 Culture Education, 13 Dance). Average attendance to the classes was 54% but varied substantially across participants (SD = 32%). Twelve of the thirteen (92.3%) Dance participants who returned for follow-up maintained a heart rate that was within the moderate-intensity range (60%-75% of APMHR), on average, during dance to the classes was 54% but varied substantially across participants.

Demographic information for each group, including age, baseline fitness levels, and BMI, is presented in Table 1. Independent-samples t tests revealed no differences in any of these variables across the intervention and control groups at baseline (all t < 1.7; all P > 0.10). Notably, as shown in Table 1, the average BMI of both groups was within the obesity range (full-sample average BMI = 33.37 ± 6.43).

There was a significant group × time interaction effect on weight (F[1,22] = 9.69; P = 0.005). This was a small- to moderate-sized effect (partial eta squared = 0.31). Pairwise t tests revealed that this interaction was driven by a significant decrease in weight for the Dance group (t[12] = 2.38; P = 0.03) and a marginal increase in weight for the Culture Education group (t[10] = −2.22; P = 0.05). The mean weight for each group at each time point is shown in Table 2. This same pattern of results was also observed for BMI (i.e., because participants’ height remained stable across the longitudinal assessments).

There was not a significant group × time interaction effect on fitness (F[1,22] < 0.001; P = 0.988). On average, both groups’ peak VO2 increased, although neither of these improvements was statistically significant (all t < 0.66; all P > 0.52). Mean changes in fitness by group can also be found in Table 2.

Given the significant change in weight in the Dance group, Pearson correlations were conducted to determine whether weight change (pre- to postintervention weight) was correlated with intervention attendance, adherence (i.e., average heart rate during attended sessions), or changes in fitness within the Dance group. None of these factors was significantly correlated with weight change (all r < 0.26; all P > 0.35).

Discussion
After a 6-month African Dance intervention for older African American adults with obesity, weight loss was observed. This is in contrast with the Culture Education control group, which showed a marginal increase in weight during this time. These results are important as they suggest that African Dance at a moderate intensity level can also be found in Table 2.

TABLE 1 Baseline demographic characteristics of study participants who returned for follow-up testing
Dance (n = 13)
Age (y)
Education (y)
MMSE score
Distance to site (miles)
Peak VO2 (mL/kg/min)
Weight (lb)
BMI (kg/m²)
Class attendance (%)

Data presented as mean (SD); range. MMSE, Mini Mental State Examination.

TABLE 2 Change in weight and fitness by group assignment over 6-month intervention as assessed via mixed-effect ANOVAs
Dance (n = 13)
Weight (lb)
Follow-up
Change
P value
Peak VO2 (mL/kg/min)
Follow-up
Change
P value

Data presented as mean (SD). Group × time interaction for weight was significant (P = 0.005 from ANOVA F test). P values from pairwise t tests.

*Denotes significant effect.

**Denotes marginal effect.
is an engaging activity that may be an effective approach for promoting weight loss in older African Americans, even without concurrent changes in fitness.

African American older adults are at increased risk for obesity and associated health issues compared with other racial and ethnic groups. Yet African Americans are more likely than their white counterparts to become increasingly sedentary as they age (4,15). Despite variability in attendance in our intervention, compliance with a moderate-intensity heart rate level during the session was high, suggesting that dance intensity may be the critical factor related to weight loss over a 6-month period. Only one participant in the Dance group failed to maintain an average heart rate in the target range; however, it is important to note that this participant was prescribed a beta-adrenergic antagonist. These medications are known to reduce heart rate both at rest and during exercise, thus limiting the ability to reach the target heart rate zone (16).

Supporting the importance of the intensity of PA, the relationship between weight change and average dance class heart rate was stronger in our sample than that between weight change and dance class attendance, although neither correlation was statistically significant. In fact, the precise dose of PA necessary to maximize health benefits is still widely debated and likely depends on the health outcome in question. PA is considered to be more effective for weight maintenance, rather than weight loss, but many PA interventions have been able to demonstrate modest weight loss in sedentary individuals (17). Although there has been evidence of weight loss following interventions that increase PA behaviors, there are many other factors outside of the PA intervention that affect weight (such as dietary behaviors). More research is needed to better establish the nature of the relationships between frequency, intensity, and dosage of PA in diverse populations. It is possible, for example, that physical activities, such as dance, are more effective at promoting weight loss in populations at particularly high risk for obesity.

Another interesting aspect of these results is that weight loss was observed even despite the fact that no dietary advice or oversight was provided. Diet is considered to be the primary factor affecting weight loss (18,19), while PA may be more beneficial for weight maintenance. Yet in this sample with obesity, increasing PA alone significantly affected weight. Of course, given that we provided no dietary monitoring, it is impossible to determine whether the participants either implicitly or explicitly changed their eating habits outside of the intervention. Nonetheless, these results are promising in that they suggest that even incremental changes in lifestyle behaviors, such as PA, may be effective for promoting weight loss. Future work should more closely monitor behaviors external to the intervention, such as diet and PA levels, to examine whether changes in energy intake or energy expenditure could potentially explain changes in body weight.

Finally, weight loss in the Dance group was observed, even in the absence of a significant increase in fitness in the Dance group. One possible explanation for this, although purely speculative based on this pilot study, is that exercise may have effects on satiety hormone signaling involved in hunger and feeding behaviors, perhaps suppressing appetite. It has been demonstrated, for example, that acute bouts of exercise can result in increased levels of certain gastrointestinal peptides, such as ghrelin, polypeptide, glucagon-like peptide 1, and pancreatic polypeptide—all of which are known to regulate appetite (20). Thus, while the intervention may not have been of the intensity necessary for changing fitness, it might nonetheless have had effects on weight via satiety signaling-related mechanisms. Future work will include assessment of circulating metabolites (i.e., from blood draws) in order to test this hypothesis.

There are several limitations to our initial study on this pertinent public health topic of health disparities in PA and obesity risk. First, our sample size was quite small, and it was made even smaller because several subjects did not return for follow-up testing. Another limitation is that we did not collect comprehensive physiological measurements on the participants such as body fat and muscle mass. Therefore, it is difficult to determine whether the decreases in weight we observed in the Dance group are clinically significant. Finally, we did not measure or assess PA levels of participants outside of the intervention, and so it is unclear whether the changes in fitness observed in the Culture Education group were the result of unanticipated changes in PA behavior outside of the study. It is also unclear whether the Dance group increased PA levels outside of the intervention, which may explain why weight loss was observed despite attendance being lower than many traditional PA interventions (e.g., those involving aerobic walking). Future studies will need to assess whether weight changes following a PA intervention are correlated with any physiological or neurocognitive changes, and better track PA outside of the intervention, in order to better interpret these results.

Despite these limitations, we can draw some broad conclusions from these data. Engaging in a 6-month PA program, specifically African Dance, may be a viable option to promote weight loss in older African American adults with obesity. Participating in an African Dance class may therefore be an alternate mode of PA for older adults with obesity when attempting to lose weight. It is important that future interventions include a larger sample, as well as more physiological and lifestyle measures, to explore in greater detail the efficacy of an African Dance PA program on physical, brain, and mental health of older adults.

Acknowledgments

The authors would like to thank the incredible participants for their commitment to and enthusiasm for this pilot trial.

© 2018 The Obesity Society

References

1. Shawler D, Arbuckle MR. Metabolism and memory: obesity, diabetes, and dementia. Biol Psychiatry 2017;82:e81-e83.
2. Carnethon MR, Pu J, Howard G, et al. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation 2017;136:e393-e423.
3. Whit-Glover MC, Keith NR, Ceaser TG, Virgil K, Ledford L, Hasson RE. A systematic review of physical activity interventions among African American adults: evidence from 2009 to 2013. Obes Rev 2014;15:125-145.
4. Hooker SP, Hutto B, Zhu W, et al. Accelerometer measured sedentary behavior and physical activity in white and black adults: the REGARDS study. J Sci Med Sport 2016;19:336-341.
5. MacKnight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia. Alzheimer’s disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement Geriatr Cogn Disord 2002;14:77-83.
6. Sofi F, Valsecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 2011;269:107-117.
7. Abreu M, Hartley G. The effects of Salsa dance on balance, gait, and fall risk in a sedentary patient with Alzheimer’s dementia, multiple comorbidities, and recurrent falls. J Geriatri Phys Ther 2013;36:100-108.
8. Harmer BJ, Orrell M. What is meaningful activity for people with dementia living in care homes? A comparison of the views of older people with dementia, staff and family carers. Aging Ment Health 2008;12:548-558.
9. Hokkanen L, Rantalä L, Remes AM, Härkönen B, Viramo P, Winblad I. Dance and movement therapeutic methods in management of dementia: a randomized, controlled study. *J Am Geriatr Soc* 2008;56:771-772.

10. Verghese J, Lipton RB, Katz MJ, et al. Leisure activities and the risk of dementia in the elderly. *N Engl J Med* 2003;348:2508-2516.

11. Nies MA, Troutman-Jordan M, Branche D, Moore-Harrison T, Hohensee C. Physical activity preferences for low-income sedentary urban African American older adults. *J Gerontol Nurs* 2013;39:20-29; quiz 30-1.

12. Lukach AJ, Jedrziewski MK, Grove GA, et al. Rhythm experience and Africana culture trial (REACT!): a culturally salient intervention to promote neurocognitive health, mood, and well-being in older African Americans. *Contemp Clin Trials* 2016;48:41-45.

13. Kubik G. *Theory of African Music*. Vol 1. Chicago, IL: University of Chicago Press; 1994.

14. Pescatello LS, Arena R, Riebe D, Thompson PD, eds. *ACSM’s Guidelines for Exercise Testing and Prescription*. 9th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

15. Diaz KM, Howard VJ, Hutto B, et al. Patterns of sedentary behavior in US middle-age and older adults: the REGARDS Study. *Med Sci Sports Exerc* 2016;48:430-438.

16. Kokkinos P, Chrysohoou C, Panagiotakos D, Narayan P, Greenberg M, Singh S. Beta-blockade mitigates exercise blood pressure in hypertensive male patients. *J Am Coll Cardiol* 2006;47:794-798.

17. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. *Prog Cardiovasc Dis* 2014;56:441-447.

18. Luke A, Cooper RS. Physical activity does not influence obesity risk: time to clarify the public health message. *Int J Epidemiol* 2013;42:1831-1836.

19. Malhotra A, Noakes T, Phinney S. It is time to bust the myth of physical inactivity and obesity: you cannot outrun a bad diet. *Br J Sports Med* 2015;49:967-968. doi:10.1136/bjsports-2015-094911

20. Martins C, Morgan LM, Bloom SR, Robertson MD. Effects of exercise on gut peptides, energy intake and appetite. *J Endocrinol* 2007;193:251-258.