Review

TOR-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists

MV Blagosklonny* ,1

This article is addressed to endocrinologists treating patients with diabetic complications as well as to basic scientists studying an elusive link between diseases and aging. It answers some challenging questions. What is the link between insulin resistance (IR), cellular aging and diseases? Why complications such as retinopathy may paradoxically precede the onset of type II diabetes. Why intensive insulin therapy may initially worsen retinopathy. How nutrient- and insulin-sensing mammalian target of rapamycin (mTOR) pathway can drive insulin resistance and diabetic complications. And how rapamycin, at rational doses and schedules, may prevent IR, retinopathy, nephropathy and beta-cell failure, without causing side effects.

Cell Death and Disease (2013) 4, e964; doi:10.1038/cddis.2013.506; published online 12 December 2013

Subject Category: Experimental Medicine

Facts

- Glucose, amino and fatty acids, insulin, insulin-like growth factor 1 (IGF-1), tumor necrosis factor (TNF) activate the mammalian target of rapamycin (mTOR) signaling pathway.
- Overactivation of the mTOR pathway causes insulin resistance.
- mTOR is involved in diabetic complications.
- mTOR is involved in aging and age-related diseases.
- Rapamycin extends life span in all species tested, including mice.

Open Questions

- What is the link between cellular and organismal aging?
- Will rapamycin (and other rapalogs) prevent diabetic complications in humans?
- How to combine rapamycin and insulin?
- Can intermittent schedules of rapamycin prevent type II diabetes, given that chronic overdosing of rapamycin can cause glucose intolerance?

There are two forms of diabetes. Type I diabetes (also known as insulin-dependent or juvenile diabetes) is caused by absolute insulin insufficiency due to autoimmune destruction of insulin-producing beta cells of the pancreas. Type II diabetes (insulin-independent or adult-onset diabetes) is initiated by insulin resistance (IR) in muscle, liver and adipose tissues. Initially, an increase in insulin secretion by pancreatic beta cells compensates for IR. If/when beta cells fail, then glucose levels increase. When either fasting glucose levels or oral glucose tolerance test reach 126 and 200 mg/l, respectively, then diabetes is diagnosed. Although glucose control with intensive insulin therapy decreases the incidence of complications, diabetes remains a major cause of new-onset blindness, end-stage renal disease and lower leg amputation.2

There are two puzzling observations. First, complications can precede the onset of type II diabetes. Second, intensive insulin therapy may initially worsen the progression of retinopathy in both types I and type II diabetes.

Puzzle One: Complications may Precede Type II Diabetes

In type II diabetes, the onset of chronic complications may occur at least 4–7 years before clinical diagnosis of diabetes, in other words, before hyperglycemia.3–5 The simplest explanation is that diabetes may be diagnosed too late. Yet, another possibility is that complications may precede type II diabetes, if both beta-cell failure and retinopathy are

1Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY, USA
*Corresponding author: MV Blagosklonny, Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, Elm and Carlton Streets, Buffalo, NY 14263, USA. Tel: +1 716 8458086; Fax: +1 716 8453944; E-mail: Mikhail.blagosklonny@roswellpark.org or blagosklonny@oncotarget.com

Keywords: rapamycin; rapalogs; aging; senescence; diseases

Abbreviations: HIF-1, hypoxia-inducible factor-1; IGF-1, insulin-like growth factor 1; IR, insulin resistance; mTOR, mammalian target of rapamycin; PKC, protein kinase C; S6K, S6 kinase; TNF, tumor necrosis factor; TOR, target of rapamycin; VEGF, vascular endothelial growth factor
independently caused by IR. Regardless of patient’s progression to diabetes, IR predicts retinopathy, neuropathy and nephropathy. Neuropathy is already present in 10–18% of patients at the time of diabetes diagnosis.6 The pre-diabetic state of IR is a risk factor for nephropathy7,8 and nephropathy9 and is associated with retinopathy.10 Approximately 8% of the pre-diabetic population has retinopathy.11 Furthermore, retinopathy predicts subsequent risk of diabetes.12 Patients with IR are at increased risk for death and morbidity due to myocardial infarction, stroke, and large-vessel occlusive disease due to atherosclerosis.13 The risk of macrovascular disease is increased before glucose levels reach the diagnostic threshold for ‘diabetes,’ and 25% of newly diagnosed diabetics already have overt cardiovascular disease.14

Puzzle Two: Intensified Insulin Treatment and Retinopathy

In some cases, intensified insulin treatment, while controlling glucose, paradoxically worsened diabetic retinopathy, neuropathy and nephropathy.6,15–21 As we will discuss later, insulin therapy may accelerate complications because insulin and insulin-like growth factor 1 (IGF-1) activate mammalian target of rapamycin (mTOR).

The mTOR Pathway

Target of rapamycin (TOR), which in mammals is known as mTOR, is a cytoplasmic kinase that regulates cell growth and metabolism in response to mitogens (such as IGF-I and vascular endothelial growth factor (VEGF)), nutrients (amino acids, glucose and fatty acids), hormones including insulin and cytokines.22–25 The nutrient-sensing mTOR pathway is essential for development and growth of the young organism. But later in life, when growth has been completed, mTOR drives cellular and organismal aging.26,27 In particular, mTOR converts cellular quiescence into senescence.28–37 Senescent cells are hyperfunctional, hypersecretory, pro-inflammatory and signal resistant (e.g., insulin resistant).38–43 Slowly, but inevitably, these cellular hyperfunctions lead to age-related diseases.44–47 Not surprisingly, mTOR is involved in age-related diseases.48–54 Rapamycin slows down aging, prevents age-related diseases and extends maximal lifespan in mice.55–70

It is important to emphasize that both glucose and insulin activate mTOR (Figure 1). Thus, high glucose levels activate mTOR. By normalizing glucose levels, insulin therapy may deactivate mTOR. On the other hand, insulin itself activates the mTOR pathway. Furthermore, hyperinsulinemia itself may cause IR.71

Hyperactivation of mTOR and IR

Overactivated mTOR causes IR,72–78 mTOR activates S6 kinase (S6K), which in turn causes phosphorylation and degradation of insulin receptor substrate 1/2. This impairs insulin signaling (Figure 1). Also, mTOR causes IR by affecting growth factor receptor-bound protein 10.79,80 Thus, hyperactivation of mTOR causes IR, by at least two mechanisms.

For example, in fat-fed rodents, the mTOR pathway is activated, leading to impaired insulin signaling and IR.74,81 Increased insulin levels (hyperinsulinemia) itself causes IR, preventable by rapamycin.71 In humans, infusion of amino acids activates mTOR/S6K1, which causes a feedback IR in skeletal muscle.75,76 Oral rapamycin blunted mTOR activation, preventing nutrient-induced IR in humans.82 Also, tumor necrosis factor (TNF) and pro-inflammatory cytokines impair insulin signaling by activating mTOR.83 Noteworthy, aging is associated with pro-inflammation.84,85 Although nutrients activate mTOR, dietary (calorie) restriction de-activates mTOR. This may explain why low calorie diet reduces IR.86 In some conditions, physical activity inhibits mTOR/S6K1 signaling in rat skeletal muscle, restoring insulin sensitivity.87 Thus, activation of mTOR in liver, muscle or adipose tissues is manifested as IR. How is hyperactivation of mTOR manifested in the retina?

mTOR and Retinopathy

Excessive growth of small blood vessels (angiogenesis or neovascularization) contributes to retinopathy (Figure 2). VEGF stimulates angiogenesis and causes blood–retinal barrier breakdown.88,89 Synthesis of VEGF is stimulated via the insulin/mTOR pathway90,91 in retinal pigment epithelial cells.92–95 Insulin and IGF-1 are involved in angiogenesis and diabetic retinopathy.96,97,98 This explains observations that intensified insulin treatment may worsen diabetic retinopathy.6,15,17–19,88,97,98 Rapamycin blocks insulin-induced hypoxia-inducible factor-1 (HIF-1) and senescence of retinal cells95,99 and inhibits retinal and choroidal neovascularization in mice.100
Rapamycin prevents retinopathy in aging-accelerated rats.101,102 Noteworthy, rapamycin prevented retinopathy without decreasing VEGF levels.103 Subconjunctival rapamycin was studied for the treatment of diabetic macular edema.103

mTOR and Nephropathy

Rapamycin decreases renal hypertrophy in diabetic mice and slows progression of diabetic kidney disease in rats.104–106 Rapamycin treatment prevented diabetic kidney disease even without change in blood glucose levels.106

Beta-Cell Hyperfunction and Failure

Glucose, amino acids and fatty acids activate mTOR, thus causing expansion and hypertrophy of beta cells as well as increasing insulin secretion. Initially, this hyperfunction of beta cells compensates for IR, preventing hyperglycemia. However, it is hyperfunction that eventually causes beta-cell failure (diabetes). Beta-cell failure depends on genetic predisposition.107–113

In mice with hyperactive mTOR, islet mass is initially increased because of hypertrophy of the beta cells. These mice also exhibit high insulin and low glucose at young ages. After 40 weeks of age, however, the mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due to a decrease in the number of beta cells. Hyperactive mTOR regulates pancreatic beta-cell mass in a biphasic manner.114 Rapamycin prevents hyper-insulinemia in mice on high-fat diet.115,116

How does hyperactivated mTOR cause beta-cell failure? Initially, mTOR stimulates beta-cell functions causing hyperfunction. Then, chronic hyperstimulation of mTOR renders beta cells resistant to IGF-1 and insulin, fostering cell death.107,112,117–124 In theory, a short-term treatment with rapamycin may re-sensitize cells to insulin and pro-survival signals.125,126

Potential Applications of Rapamycin

Prevention of negative effects of insulin therapy. By activating mTOR, insulin treatment can cause its negative effects. First, mTOR induces HIF, mitogens and cytokines, contributing to pro-inflammation and neo-angiogenesis (Figure 3a). Second, hyperactivation of mTOR causes feedback IR (Figure 3a). These negative effects are downstream from mTOR (Figure 3). In contrast, therapeutic effects (glucose utilization) of insulin are mostly upstream of mTOR (Figure 3). Therefore, pre-treatment with rapamycin will block negative effects of insulin, while preserving its positive effect on glucose metabolism (Figure 3b).

Restoration of insulin sensitivity in hyperglycemia. Glucose activates mTOR, which by feedback loop can cause IR. In fact, very high levels of glucose cause IR and decrease glucose uptake.127–129 To overcome resistance, high doses of insulin may be needed, that is potentially harmful because of glucose fluctuations. In theory, pre-treatment with rapamycin would reduce IR in such patients. If so, then instead of high doses of insulin, rapamycin plus regular or low doses of insulin could be effective.

Prevention of beta-cell failure. Beta cells hyperfunction may eventually lead to beta-cell failure.107,114,117,118,122–125 As we discussed previously125,126 and here, mTOR renders beta cells unresponsive to pro-survival factors. In theory, intermittent or short-term treatment with rapamycin may decrease hyperfunction of beta cells and restore their responsiveness to pro-survival factors like IGF-I. In transplant organ recipients, rapamycin is used at high doses and daily for many years (long-term treatment). In contrast, to prevent beta-cell failure due to IR, it might be feasible to use rapamycin as a pulse (intermittent) treatment and at low doses.125,126 Such therapy might actually preserve and improve beta-cell functions. During rapamycin treatment, beta cells would ‘rest’ from hyperstimulation. Following rapamycin withdrawal, beta cells would re-acquire the capacity to adapt.

Prevention of diabetic complications and cancer. As we already discussed, rapamycin prevents retinopathy, neuropathy and atherosclerosis.100,101,104–106,130–132 Metabolic syndrome and aging stroma increase cancer risk (see Blagosklonny133,134 and Mercier et al.135). Noteworthy, rapamycin decreases production of lactic acid by human cells136 and thus potentially can found application in the treatment of lactate acidosis. Albeit at lesser degree than
rapamycin, metformin also inhibits mTOR, aging and cancer. Rapamycin analogs are used as anticancer drugs in part because the mTOR pathway is almost obligatory activated in cancer cells.

Short-Term (Acute) Rapamycin may Reverse IR
Calorie restriction, metformin and thiazolidinediones reverse IR in part by activating AMPK and by inhibiting the mTOR pathway. Furthermore, prolonged treatment with rapamycin can lead to beneficial metabolic switch. However, in some animal models, chronic treatment with rapamycin can cause a peculiar type of IR at least, which resembles so called 'starvation diabetes'.

Starvation Pseudo-Diabetes or Benevolent Glucose Intolerance
As we discussed, overactivation of mTOR causes IR. Yet, prolonged and profound inhibition of mTOR can cause IR, especially in certain strains of mice. This condition resembles 'starvation diabetes', a reversible condition. First during starvation, low insulin and IR decrease the use of glucose by the muscle, fat and the liver, thus sparing glucose for the brain. (The brain crucially depends on glucose and ketones). As peripheral tissues do not use glucose, starvation is manifested by glucose intolerance. For example, if the starved subject ingests glucose, glucose may appear in the urine. Second, lipolysis is increased, providing fatty acids for ketogenesis. Third, owing to hepatic IR, the liver produces glucose and ketones to feed the brain. Therefore, starvation superficially resembles diabetes. However, this is not a true diabetes but rather benevolent glucose intolerance or benevolent pseudo-diabetes. In fact, starvation, fasting and calorie restriction do not cause 'diabetes complications' such as neuropathy or retinopathy or atherosclerosis. In contrast, calorie restriction prevents diabetes and diabetic complications and extends life span.

By the definition of nutrient-sensing pathways, the nutrient- and insulin-sensing mTOR pathway is deactivated during fasting. Deactivation of mTOR increases longevity and health span. Rapamycin, which is a starvation-mimetic, causes lipolysis and some other starvation-like alterations.

If chronic high-dose rapamycin treatment is associated with diabetes-like conditions, this must be benevolent pseudo-diabetes. In contrast to type II diabetes, benevolent IR due to mTOR deactivation extends life- and health span.

mTOR-Centric Model
As suggested, 'having a single mechanism to explain the link between obesity, IR and type II diabetes would be ideal'. Numerous factors (glucose, insulin, amino acids, fatty acids, TNF and inflammatory cytokines), protein kinase C (PKC) activates the nutrient-sensing mTOR pathway. In contrast, adiponectin deactivates mTOR. Logically, overactivation of the nutrient-sensing pathway is a unifying factor in metabolic disorders.

It was noticed that complications of type II diabetes and type II diabetes itself arise together, consistent with the hypothesis that they share a common antecedent. Furthermore, retinopathy and nephropathy may present in the absence of either overt clinical diabetes or IR. According to the mTOR-centric model, retinopathy and nephropathy as well as IR and beta-cell failure are complications of mTOR hyperactivation (Figure 4). In addition, IR causes a compensatory increase in insulin secretion that in turn may activate mTOR in the retina. Hyperglycemia and hyperinsulinemia further activate mTOR. Similarly, hyperglycemia may activate mTOR and cause metabolic syndrome and IR in type I diabetes. In type II diabetes, both IR and early complications may be manifestations of mTOR hyperactivation. Hyperactivated mTOR in fat/liver and in the retina may cause IR and retinopathy, respectively.

Conclusion for Endocrinologists
Rapamycin and other rapalogs (everolimus, temserolimus) are widely used in the clinic for almost two decades. Their clinical applications range from transplantation to cancer treatment. Rapamycin and other rapalogs have been used in children and pregnant women. They improve immune response in old animals. Rapamycin was used to treat insulinoma, polycystic kidney disease, systemic sclerosis and prevention of atherosclerotic in-stent restenosis. Now is the turn of diabetic complications. As I discussed here, rapalogs can be considered for prevention of side effects of intensive insulin therapy, for reduction of doses of insulin, for prevention of diabetic complications and atherosclerosis, for prevention of beta-cell
failure and for the treatment of lactate acidosis. For these applications, rapamycin may be used at low doses and short-term or intermittent schedules. In theory, treatment of type II diabetes with insulin, if needed, may especially benefit from a combination with short-term or low-dose rapamycin.

Conclusion for Gerontologists

It is commonly assumed that aging and diseases of aging are distinct processes and that aging merely renders organism vulnerable to diseases rather than causing them. Thus, aging is believed to be driven by accumulation of molecular damage. Age-related conditions and diseases, such as IR and PKC in hepatocytes, adipocytes, retinal and beta cells stimulate cellular functions and also cause feedback insulin/signal resistance. These hyperfunctions eventually may culminate in beta-cell failure (diabetes) and nephropathy as well as accelerate atherosclerosis. In turn these diseases may result in organ failure (renal and heart failure, for instance), leading to accelerated atherosclerosis. In turn these diseases may result

Conflict of Interest

The author is a consultant of Tartis-Aging Inc. (USA).

1. Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006; 116: 1756–1760.
2. Girach A, Vignati L. Diabetic microvascular complications—can the presence of one predict the development of another. J Diabetes Complications 2006; 20: 228–237.
3. Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4–7yr before clinical diagnosis. Diabetes Care 1992; 15: 815–819.
4. Colagru SI, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K. Glucose thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care 2011; 34: 145–150.
5. Ellis JD, Zvandasara T, Leese G, McAlpine R, Macewen CJ, Baines PS et al. Clues to duration of undiagnosed disease from retinopathy and maculopathy in type 2 diabetes: a cross-sectional study. Br J Ophthalmol 2011; 95: 1223–1233.
6. Cohen JA, Jeffers BW, Faild D, Marcoux M, Schier RW. Risks for sensorimotor peripheral neuropathy and autonomic neuropathy in non-insulin-dependent diabetes mellitus (NIDDM). Muscle Nerve 1998; 21: 72–80.
7. Singleton JR, Smith AG. Therapy insight: neurological complications of prediabetes. Nat Clin Pract Neurol 2006; 2: 276–282.
8. Singleton JR, Smith AG. Neuropathy associated with prediabetes: what is new in 2007? Curr Diab Rep 2007; 7: 420–424.
9. Meigs JB, D’Agostino RBS, Nathan DM, Rifai N, Wilson PW. Longitudinal association of glycemia and microalbuminuria: the Framingham Offspring Study. Diabetes Care 2002; 25: 977–983.
10. Groop PH, Forsham C, Thomas MC. Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 2005; 1: 100–110.
11. Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet Med 2007; 24: 137–144.
12. Wong TY, Mohamed Q, Klein R, Couper DJ. Do retinopathy signs in non-diabetic individuals predict the subsequent risk of diabetes? Br J Ophthalmol 2006; 90: 301–303.
13. Singleton JR, Smith AG, Russell JW, Feldman EL. Microvascular complications of impaired glucose tolerance. Diabetes 2003; 52: 2867–2873.
14. Wilson PW, Kannell WB. Obesity, diabetes, and risk of cardiovascular disease in the elderly. Am J Epidemiol 2002; 11: 119–123.
15. Moskalets A, Gaistyan G, Starostina E, Antserfov M, Chaitelau E. Association of blindness to intensified of glycinemic control in insulin-dependent diabetes mellitus. J Diabetes Complications 1994; 8: 45–50.
16. Chaitelau E, Meyer-Schweickerath R, Klabe K. Downregulation of serum IGF-1 for treatment of early worsening of diabetic retinopathy: a long-term follow-up of two cases. Ophthalmologica 2010; 224: 243–246.
17. Agard CD, Eckert B, Agerud E. Irreversible progression of severe retinopathy in young type I insulin-dependent diabetes mellitus patients after improved metabolic control. Diabetes Complications 1992; 6: 96–100.
18. Henriksson M, Berntorp K, Berntorp E, Fernlund P, Sundkvist G. Progression of retinopathy after improved metabolic control in type 2 diabetic patients. Relation to IGF-I and hemostatic variables. Diabetes Care 1999; 22: 1944–1949.
19. Blagosklonny MV, Janzow L. Progression of diabetic retinopathy: a new change of treatment from oral antihyperglycemic agents to insulin in patients with NIDDM. Diabetes Care 1995; 18: 1571–1576.
20. Funatsu H, Yamashita H, Ohashi Y, Ishigaki T. Effect of rapid glycemic control on progression of diabetic retinopathy. Jpn J Ophthalmol 1992; 36: 356–367.
21. Dryfoos JT, Freeman ME. Identification of insulin-reduced diabetes: a reversible painful autonomic neuropathy. Ann Neurol 2010; 67: 534–541.
22. Tremblay F, Mareete A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 2001; 276: 38692–38698.
23. Hands SL, Proud CD, Wager MW. mTOR’s role in aging: protein synthesis or autophagy? Aging (Albany NY) 2009; 1: 586–597.
24. Corlu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23: 53–62.
25. Zou C, Eleyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and aging. Nat Rev Mol Cell Biol 2011; 12: 21–33.
26. Blagosklonny MV. Aging, mTOR and diabetes. J Diabetes Complications 2010; 24: 137–144.
27. Leontieva OV, Lenzo F, Demidenko ZN, Blagosklonny MV. Mechanistic or paradoxical suppression of cellular senescence by mTOR. Proc Natl Acad Sci USA 2010; 107: 9660–9664.
28. Leontieva OV, Natajaran V, Demidenko ZN, Burdelya LG, Gudkov AV, Blagosklonny MV. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci USA 2012; 109: 13314–13318.
29. Dulec V. Be quiet and you’ll keep young: does mTOR underlie p53 action in protecting against senescence by favoring quiescence? Aging (Albany NY) 2011; 3: 3–4.
30. Galluzzi L, Kepp O, Kroemer G. TP53 and mTOR crosstalk to regulate cellular senescence. Aging (Albany NY) 2010; 2: 535–537.
31. Leontieva OV, Lentz F, Demidenko ZN, Blagosklonny MV. Hyper-mitogenic drive coexists with mitotic incompetence in senescent cells. Cell Cycle 2012; 11: 4642–4649.
32. Leontieva OV, Demidrik W, Blagosklonny MV. MK2 drives cyclin D1 hyperserelation during pgerconversion. Cell Death Differ 2013; 20: 1241–1249.
33. Hinojosa CA, Mgbemena V, Van Roekel S, Aadst MD, Miller RA, Bose S et al. Enten-derivacyfoparnaym enhances resistance of aged mice to pneumococcal pneumonia through reduced cellular senescence. Exp Gerontol 2012; 47: 958–965.
34. Haliska HD, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM et al. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging (Albany NY) 2012; 4: 952–965.
35. Iglehs-Bartlomie R, Gutkind SJ. Exploiting the mTOR paradox for disease prevention. Oncotarget 2012; 3: 1061–1063.
36. Lopez-Cis A, Blasco MA, Parmide L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153: 1194–1217.
37. Tchkonia T, Zhu Y, van Deursen J, Campiau J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 896–972.
38. Coppöz JP, Patil CK, Rodier F, Sun Y, Mu-zu DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.
39. Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY) 2012; 4: 865–878.
40. Caiu J, Bastiani S, Soila B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis 2012; 3: e446.
41. Tominaga-Yamanaka K, Abdelmohsen K, Martinez J, Yang X, Taub DB, Gorospe M. NfIIFo coordinately represses the senescence-associated secretory phenotype. Aging (Albany NY) 2012; 4: 695–708.
42. Blagosklonny MV. Answering the ultimate question ‘what is the proximal cause of aging’?. Aging (Albany NY) 2012; 4: 861–877.
43. Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY) 2010; 2: 265–273.
46. Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging. Am J Pathol 2012; 181: 1142–1146.

47. Blagosklonny MV. How to save Medicare: the anti-aging remedy. Aging (Albany NY) 2012; 4: 547–552.

48. Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacological inhibition. Cell Cycle 2006; 5: 2087–2102.

49. Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Disc Today 2007; 12: 218–224.

50. Tsang OK, Li H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Disc Today 2007; 12: 112–124.

51. Johnson SC, Rabbitsohn PV, Kaebelen M. mTOR is a key modulator of aging and age-related disease. Nature 2013; 493: 338–345.

52. Nair SN, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012; 11: 2092–2099.

53. Hrstka RF, melanizing a hyperactive mTOR initiates muscle growth during obesity. Aging (Albany NY) 2011; 3: 83–84.

54. Blagosklonny MV. Rapamycin extends life- and health span because it slows aging. Aging (Albany NY) 2013; 5: 592–598.

55. Hammon DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flukey K et al. Rapamycin fed post weaning extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392–396.

56. Major P. Potential of mTOR inhibitors for the treatment of subependymal giant cell astrocytomas in tuberous sclerosis complex. Aging (Albany NY) 2011; 3: 189–191.

57. Anisimov VN, Zabzhezinski MA, Piskunova TS, Zabezhinski MA, Popovich IG, Piskunova TS et al. Increased activation of the mammalian target of rapamycin nutrient sensing pathway in liver and skeletal muscle of obese rats: possible contribution of AMPK downregulation? J Cell Sci 2011; 124: 3477–3481.

58. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin (mTOR) for health and diseases. Drug Disc Today 2007; 12: 112–124.

59. Johnson SC, Rabbitsohn PV, Kaebelen M. mTOR is a key modulator of aging and age-related disease. Nature 2013; 493: 338–345.

60. Nair SN, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012; 11: 2092–2099.

61. Levine AJ, Harris CR, Puzio-Kuter AM. The interfaces between signal transduction and aging. Mol Cell 2004; 14: 851–862.

62. Donehower LA. Rapamycin as longevity enhancer and cancer preventative agent in the context of p53 deficiency. Aging (Albany NY) 2011; 3: 809–816.

63. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL et al. Chronic rapamycin treatment reverses age-related heart dysfunction. Curr Biol 2010; 20: 2092–2097.

64. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin nutrient sensing pathway in liver and skeletal muscle of obese rats: possible contribution of AMPK downregulation? J Cell Sci 2011; 124: 3477–3481.

65. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

66. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

67. Khanna A, Kapahi P. Rapamycin: killing two birds with one stone. Aging (Albany NY) 2011; 3: 197–206.

68. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

69. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

70. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

71. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

72. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

73. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

74. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

75. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

76. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

77. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ et al. Rapamycin extends maximal lifespan in cancer-prone mice. J Cell Sci 2012; 125: 2187–2194.

78. Barbour LA, McCurdy CE, Hernandez TL, Franko AW, Bennett J. Increased activation of the mammalian target of rapamycin nutrient sensing pathway in liver and skeletal muscle of obese rats: possible contribution of AMPK downregulation? J Cell Sci 2011; 124: 3477–3481.

79. Barbour LA, McCurdy CE, Hernandez TL, Franko AW, Bennett J. Increased activation of the mammalian target of rapamycin nutrient sensing pathway in liver and skeletal muscle of obese rats: possible contribution of AMPK downregulation? J Cell Sci 2011; 124: 3477–3481.

80. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J et al. The mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 2006; 49: 3049–3057.

81. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin nutrient sensing pathway in liver and skeletal muscle of obese rats: possible contribution of AMPK downregulation? J Cell Sci 2011; 124: 3477–3481.
103. Krishnadev N, Foroghiyan F, Cukras C, Wong W, Salgan L, Chew Y et al. Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1627–1633.

104. Loberas N, Cruzado JM, Franquera M, Herrero-Fresneda I, Tomás J, Alperovich G et al. Mammalian target of rapamycin pathway blockade induces hepatic hyperinsulinemia and obesity in female SHR mice. J Mol Med (Berl) 2012; 90(3): 320–342.

105. Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochim Biophys Acta 2005; 1736: 296–301.

106. Angling L, Quintin L, Shou Z, Zhao J, Wang H et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 2007; 27: 495–502.

107. Rhodes CJ. Type 2 diabetes—a matter of beta-cell life and death? Science 2005; 307: 380–384.

108. Mooijaart SP, van Heemst D, Noordam R, Rozing MP, Wijsman CA, de Craen AJ et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 2009; 17: 1395–1404.

109. Sakaguchi M, Isomu M, Ishikii K, Sugimoto T, Koya D, Kashwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochim Biophys Acta 2005; 1736: 296–301.

110. Leibowitz G, Bachar E, Shaked M, Sinai A, Ketzinel-Gilad M, Cerasi E et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

111. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

112. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

113. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

114. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

115. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

116. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

117. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

118. White MF. IRS proteins and the common path to diabetes. Diabetologia 2002; 45: 119–130.

119. Leontieva OV, Paszkiewicz G, Demidenko ZN, Blagosklonny MV. Resveratrol potentiates rapamycin to prevent hyperinsulinemia and obesity in male mice. Aging (Albany NY) 2011; 3: 1078–1091.

120. Krishnadev N, Forooghian F, Cukras C, Wong W, Salgan L, Chew Y et al. Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1627–1633.

121. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

122. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

123. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.

124. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Maida F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in lifespans and diseases in human. Sci Transl Med 2011; 3: 70ra13.
160. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saltoh M, Stevens DM et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335: 1638–1643.
161. Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell 2013; 12: 712–718.
162. Blagosklonny MV. Linking calorie restriction to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis 2010; 1: e12.
163. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840–846.
164. Mordier S, Lynedjian PB. Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem Biophys Res Commun 2007; 362: 206–211.
165. Chan JY, Cole E, Hanna AK. Diabetic nephropathy and proliferative retinopathy with normal glucose tolerance. Diabetes Care 1985; 8: 385–390.
166. Thom LM, Forsblom C, Fagerudd J, Thomas MC, Pettersson-Fernholm K, Saraheimo M et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiabe)Study). Diabetes Care 2005; 28: 2019–2024.
167. Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT et al. The use of sirolimus in ganciclovir-resistant cytomegalovirus infections in renal transplant recipients. Clin Transplant 2007; 21: 675–680.
168. Ozaki KS, Camara NO, Nogueira E, Pereira MG, Granato C, Melaragno C et al. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation 2006; 82: 1698–1702.
169. Araki K, Elebedy AH, Ahmed R. TOR in the immune system. Curr Opin Cell Biol 2011; 23: 707–715.
170. Kuke MH, Bergland KE, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med 2009; 360: 195–197.
171. Bourcier ME, Sherrod A, DiGuardo M, Vinik AI. Successful control of intractable hypoglycemia using rapamycin in an 88-year-old man with a pancreatic insulin-secreting islet cell tumor and metastases. J Clin Endocrinol Metab 2009; 94: 3157–3162.
172. Soliman AR, Ismail E, Latif A. Sirolimus therapy for patients with adult polycystic kidney disease: a pilot study. Transplant Proc 2009; 41: 3639–3641.
173. Su TI, Khanna D, Furst DE, Danovitch G, Burger C, Maranian P et al. Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, single-blind pilot study. Arthritis Rheum 2009; 60: 3821–3830.
174. GemsDH, de la Guardia Y. Alternative perspectives on aging in C. elegans: reactive oxygen species or hyperfunction? Antioxid Redox Signal 2013; 19: 321–329.
175. Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 2013; 75: 621–644.