Polyparasitism by monogenea in wild *Hemichromis elongatus* (Guichenot, 1861) (Pisces: Cichlidae): A study model encouraging the prevention of heavy parasitic infections in fish farms

Bilong Bilong Charles Félix, Mbondo Jonathan Armel, Bassock Bayiha Etienne Didier and Banahan Dieu Ne Dort

DOI: https://doi.org/10.22271/fish.2022.v10.i4a.2705

Abstract

The present paper aims to study the occurrence of monogenean species infecting the gills of wild *Hemichromis elongatus* (Pisces). Fish specimens were caught with nets, fixed in 10% formalin and then dissected. Monogenean specimens found were removed under a stereomicroscope with a needle, and then mounted between slide and cover slip in a drop of hematoxylin-eosin. Among the five parasite species found, only *O. voltaenisis* and *C. euzeti* were found infesting their host alone. There were significant differences between mono-parasitism and poly-parasitism both in parasite load and infection rate, which were higher in simultaneous infestations. These monogenean ectoparasites best exploit their common host when they co-occur. This phenomenon observed in natural conditions is a threat in fish farming where high host densities favor parasite transmission. We therefore recommend quarantining native fish specimens captured in the wild, periodic pond sanitization and deworming.

Keywords: Co-occurrence, gill parasites, fish, river mefou, Cameroon

1. Introduction

Interspecific interactions are generally considered one of the important factors contributing to community structure of parasites [1]. It is worth noting that host-parasite interactions generally involve communities of parasites [2, 3]. However, in a given system and due to the aggregated nature of parasites, not all combinations of potential infecting species are encountered in each host individual [1]. According to Vaumourin *et al.* [4], coinfections may result when hosts are independently infected by different parasite taxa at the same time or during a sequential infection as well as when interactions among parasitic species facilitate co-occurrence. This implies that some parasite species which settle first can modulate the host immunity and promote its secondary colonization by other parasitic species [5, 2]. In other words, interactions may be synergistic (the presence of one parasite may facilitate subsequent infection by other parasites) or antagonistic: the presence of one parasite may inhibit subsequent infection by other parasites [4]. In this context, Petney *et al.* [6] then Wood *et al.* [7] argued that interactions rather than associations among parasites play a major role in structuring parasite populations (both within and among hosts). It is known that adult stages of monogenean parasites are more dangerous to fish health depending on factors such as modes of attachment, size and weight of host [8]. These ectohelminths are responsible for localized hyperplasia, disturbance of osmoregulation and mortality of the host [9, 10]. They can also result in secondary infections in the host from viruses, bacteria and fungi [11, 12]. Indeed, the parasitic diseases of fish reduce the amount of food available to people around the globe [13] and affect the marketability of commercially produced fish, thus raising many public health concerns [14]. Thus, the investigation of these interactions can contribute to fight against heavy losses in fish farming caused by parasites. The aim of this work was to study the occurrence of monogenean species parasitizing the gills of wild *Hemichromis elongatus* (Guichenot, 1861) from the Mefou River in Cameroon and to exploit the results acquired in the domestication any fish species. It was recently shown that at least in our area, this species was mistaken for *H. fasciatus* Peters, 1857
2. Materials and Methods

The present study was conducted in the upstream course (11°27′N; 3°40′E), the middle course (3°51′N; 11°29′E) and downstream course (11°32′N; 3°38′E) of the Mefou River. Fish were sampled from December 2017 to September 2019 by nets. After capture, they were immediately introduced in a jar containing 10% formalin then transferred to the laboratory for subsequent procedures. Monogeneans were dislodged from the gill filaments using a needle and were mounted between slide and cover slip in a drop of hematoxylin eosin [16]. The species were identified under a Leica DM2500 microscope by the morphological characteristics of the sclerotized parts of the haptor and the copulatory organs according to Paperna [17, 18] and Dossou and Birgi [19]; they were then counted. In this work, the terms prevalence (Pr), intensity (I), mean intensity (MI) and abundance are defined according to [20], while infrapopulation, infracommunity, xenoco mmunity are defined according to Combes [21]. The mean intensity (even the intensity) is categorized in our environment as follows: very low (MI ≤ 10), low (10 < MI ≤ 50), average (50 < MI ≤ 100) and high (MI > 100) after Bilong Bilong and Njiné [22]. Mean values are expressed as follows: ± SE. The Chi-square (χ^2) was used to perform pairwise comparisons. Sperman’s rank correlation coefficient (r_s) was calculated to seek the existence of any meaningful association between mean intensity and species richness (sr). All the analyses were performed using STATISTICA 6.0 software and Quantitative Parasitology 3.0. P-values less than 5% were considered significant.

3. Results

From the gills of the 73 H. elongatus hosts a total of 3318 monogenean specimens were collected among which five species were identified namely Cichlidogyrus euzeti Dossou & Birgi, 1984; C. falcifer Dossou & Birgi, 1982; C. longicirrus Paperna, 1965; Onchobdella aframae Paperna, 1968 & O. voltaensis Paperna, 1968. All autopsied fish harbored at least one monogenean species i.e. the overall infection rate was 100%. The overall gill monogeneans load varied from 1 to 249, the average values being low (45.45 ± 6.21 monogeneans per host individual). The five parasitic taxa aggregated in the host sample since always R > 1 and the prevalence of each of them was higher than 50 %, with that of O. voltaensis being the highest (Pr = 90.4 % ± 0.03) (see Table 1).

Moreover, during the study period, the MI appeared very low for C. longicirrus (MI = 3.8 ± 0.6) and low for the other species (10 < MI ≤ 50) (table 1).

A total of 17 different parasitic associations were recorded (table 2). The subsequent analysis mainly focused on associations with a prevalence or infection rate ≥ 5 %. The infrapopulations concerned were made up of: only O. voltaensis (A); only C. euzeti (B); while infracommunities comprised O. voltaensis and C. longicirrus (D); O. voltaensis and C. euzeti (E); O. voltaensis, C. longicirrus C. euzeti and C. falcifer (N); C. euzeti, O. aframae, C. falcifer and O. voltaensis (P); C. euzeti, C. falcifer, O. aframae, C. longicirrus and O. voltaensis (Q).

Among the five ecto-helminthic taxa, three namely, C. falcifer, C. longicirrus and O. aframae were never found parasitizing alone a H. elongatus host. In monogenean associations retained, in cases of polyparasitism, infection rate increased with the species richness (SR) (see Table 2).

Among the 73 fish examined, only 15 (20.7 %) were infested by a single monogenean species: 10 (13.7 %) by O. voltaensis and 5 (6.84 %) by C. euzeti. In these instances of mono-parasitism, O. voltaensis was more often hosted than C. euzeti although no significant difference was found between their prevalence ($\chi^2 = 0.51; P = 0.17$) and intensities ($K = 0.07; P = 0.78$). Polyparasitism was noticed in 58 fish (79.45 %). Therefore, there were differences associated with the infection rate of 79.45 %. The Kruskal-Wallis test (K) allowed the comparison of several (>2) means while Mann-Whitney test (U) was used for pairwise comparisons. Sperman’s rank correlation coefficient (r_s) was calculated to seek the existence of any meaningful association between mean intensity and species richness (sr). All the analyses were performed using STATISTICA 6.0 software and Quantitative Parasitology 3.0. P-values less than 5% were considered significant.

Table 1: Distribution of Monogenean gill parasites of H. elongatus

Parasite species	N	n_i	NP	Pr	MI	S^2	R=S^2/MI
C. euzeti	46	697	634±0.05	15.5±3.9	701.5	45.2	
C. falcifer	45	686	61.6±0.05	14.9±1.8	163.4	10.9	
C. longicirrus	46	171	63±0.05	3.8±0.6	16.9	4.4	
O. aframae	40	304	54.7±0.05	7.6±1.3	74.3	9.7	
O. voltaensis	66	1460	90.4±0.03	22.12±2.9	564.9	25.5	

* N = Number of hosts examined; n_i = number of infected hosts; NP = number of parasite individuals collected from all host specimens studied; Pr = prevalence; MI = Mean Intensity; s^2 = variance.

Table 2: The different parasite associations found and their frequencies.

Parasite in free Population	C. euzeti	C. falcifer	C. longicirrus	O. aframae	O. voltaensis	Infection rate (%)	Mean global parasitic load	SR
A*	X	X	X	X	X	13.7	2.1 ± 0.62	1
B*	X		X	X	X	6.84	1.6 ± 0.24	1
C		X	X	X	X	1.36	3 ± 0	2
D*	X	X	X	X	X	1.36	6.5 ± 1.84	2
E*	X	X	X	X	X	5.47	8.25 ± 3.9	2
F		X	X	X	X	1.36	2 ± 0	2
G		X	X	X	X	13.6	8 ± 0	2
H		X	X	X	X	13.6	19 ± 0	3
I	X	X	X	X	X	1.36	22 ± 0	3
J	X	X	X	X	X	1.36	7 ± 0	3
K	X	X	X	X	X	4.10	25 ± 16.52	3
L		X	X	X	X	1.36	8 ± 0	3
A general trend was observed in this phenomenon, especially for *O. voltaeans* (\(t_\text{c} = 0.86, P = 0.024\)); in the other words the mean intensity increased significantly in the different parasite associations in which a monogenean occurred, especially for *O. voltaeans* (\(K = 25.4, P = 0.0001\)). *C. euzeti* (\(K = 19.15, P = 0.0002\)) and *C. falcifer* (\(K = 7.93, P = 0.01\)) (table 3).

Table 3: Mean intensity of the five monogenean species in the different associations

Parasite species	Parasite association	Statistics							
	A	B	D	E	N	P	Q		
O. voltaeans	2.1±0.6	/	4.75±1.3	7.25±3.9	10.2±3.2	28.7±3.5	38.7±5.3	K=25.4	P= 0.0001
C. longicirrus	/	/	1.75±0.7	/	3.6±1.1	/	4.2±0.6	K=5.8	P=0.12
C. euzeti	/	1.6±0.2	/	14±2.1	8±2.1	22±6.5	28.7±3.5	K=19.15	P=0.0002
C. falcifer	/	/	/	/	5±2.6	13±3.7	20.5±2.5	K=7.93	P=0.01
O. aframae	/	/	/	/	/	11±2.6	7.8±1.9	U=49.5	P=0.06

Species richness 1 1 2 2 2 4 4 5

A= only *O. voltaeans* present; *B*= only *C. euzeti* present; *D*= presence of *O. voltaeans* and *C. longicirrus*; *E*= presence of *O. voltaeans* and *C. euzeti*; *N*= presence of *O. voltaeans*, *C. longicirrus*, *C. euzeti* and *C. falcifer*; *P*= presence of *C. euzeti*, *O. aframae*, *C. falcifer* and *O. voltaeans*; *Q*= presence of *C. euzeti*, *C. falcifer*, *O. aframae*, *C. longicirrus* and *O. voltaeans*; *Sr*= species richness; *Infection rate ≥ 5%.

4. Discussion

Ecological studies on the monogenean gill parasites of *H. elongatus* from Cameroon have been conducted by Bilong Bilong and Euzet [16] and Bilong Bilong and Njine [22]. These authors stated that *H. elongatus* from Cameroon hosted seven gill monogenean species, but two of them namely *Onchobodella bopeleti* Bilong Bilong & Euzet, 1995 and *Cichlidogyrus dageti* Dossou & Birgi, 1984 were not found in the current study. According to Bilong Bilong and Euzet [16], the absence of *C. dageti* in the Ozum Lake of Yaoundé, though found uncommonly in some watercourses around it occurred (\(P = 0.0001\)). We consider that positive interactions between fish ectoparasites in the same host individual are very frequent. In the current study, *O. voltaeans* and *C. euzeti* occurred in the majority of infracommunities found. Although the immunological effects of monogenesans on their hosts remain to be explored, Cloutman et al. [20] also argue that the presence of one parasitic species may be advantageous for another, thus allowing the establishment of polyparasitism. Thus the weakening of the host's immune response by the first parasitic species to settle in would favor the host colonization by other species which settle secondarily [5, 11]. In a literature review, Holmes [25] also reports other interference mechanisms which operate internispically such as modification of the (host) environment in ways that interfere with other parasites. In the natural environment, it was found that some taxa (*C. longicirrus*, *C. falcifer* and *O. aframae*) infest their common host only in presence of other parasitic species. At the level of our analysis, it is suggested that the latter argument by Holmes [25] could more likely explain the presence of *C. falcifer*, *C. longicirrus* and *O. aframae* only in infracommunities. In fact, anchors of these three species are relatively smaller than those of *O. voltaeans* and *C. euzeti* see [18, 19]. The two latter species could first plough the gill epithelium to make easy infestation by the other species. Relying on this idea, *O. voltaeans* was revealed as the main
ectohelminthic monogenean species of *H. elongatus* in the Mefou watercourse. All the monogenean ectoparasites of *H. elongatus* best exploit this fish when they co-occur in the same host individual. This idea is supported by the fact that, the mean intensity and prevalence increased (due to parasite multiplication) with the species richness. In this context, Madhi and Belghyti [23] argued that the preference of parasites to attach themselves to already parasitized fish increases the parasitic load of affected hosts, and promotes aggregation of different parasite populations (i.e infrapopulation) within these hosts. This finding was very obvious in our complex host / parasites system. Consequently, under culture conditions where the density of fish is always high, infestation by several species could increase the pathogenic effects of the parasites and cause heavy losses through morbidity and / or mortality of the fish [57]. With reference to Vaumourin et al. [4], two sets of ecological factors may promote multiparasitism:

1. Those that influence host exposure, namely the spatial distribution of hosts [28].
2. Those that are intrinsic to host and influence their susceptibility namely host life-history traits [29, 30].

It has been established that waters especially in the middle and downstream of the Mefou River are very poor in quality [31]. This water status may influence negatively the host’s susceptibility. *Hemichromis elongatus* which is widely distributed in Africa [32, 33], is very aggressive and territorial [34], pair-bonding [32]; parents guard the nest and larvae [35]. From our results, we suggest that the above behavioral characteristics may increase the exposure of this host species to parasites and may facilitate co-infections. It is also known that stressed or malnourished hosts are more likely to become infected [36]. This situation is more likely to occur in fish ponds where high host densities favor parasite transmission [37]. However, the threshold of the parasite load which could be harmful to the hosts in our environment remains to be determined.

5. Conclusion

In the Mefou River, *H. elongatus* hosted five monogenean gill parasite species during the study period, mostly in simultaneous infestations. Some species, never observed in monoparasitism would need the presence of other parasites to sinest the hosts. Polyparasitism in this natural environment was more frequent; this favored the increase not only of infracomunity loads but first of specific mean intensities and prevalences. This phenomenon is an alert to fish farmers about the threats hanging over their productions, and we recommend quarantining native large fish specimens captured in the wild and used as sires in ponds, periodic pond sanitation, and possibly host deworming.

6. Funding information

The study was funded by the special research allowances from the Ministry of higher education and internal allowances from University of Yaoundé I.

7. Conflict of interest

The authors declare no conflicts of interest.

8. Acknowledgements

Thanks to Dr. Clarisse Nju for technical assistance.

9. References

1. Poulin R. Interactions between species and the structure of helminth communities. Parasitology. 2001;122(1):S3-S11. doi: 10.1017/S0031182000016991.
2. Lello J, Boag B, Fenton A, Stevenson IR, Hudson PJ. Competition and mutualism among the gut helminths of a mammalian host. Nature. 2004;428:840-844. doi: 10.1038/nature02490.
3. Graham AL. Ecological rules governing helminth-microparasite coinfection. Proceedings of the National Academy of Sciences. 2008;105:566-570. doi: 10.1073/pnas.0707221105.
4. Vaumourin E, Vourc’h G, Gasqui P, Vayssier-Taussat, M. The importance of multiparasitism: examining the consequences of coinfections for human and animal health. Parasites & Vectors. 2015;8:545. DOI 10.1186/s13071-015-1167-9.
5. Koskivaara M, Valtonen, T. Paradiplozoon homoino (monogenea) and some others gill parasites on Roach Rutilus rutulus in Finland. Aqua Fennica. 1991;21(2):137-146.
6. Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. International Journal of Parasitology. 1998;28(3):377-93. http://dx.doi.org/10.1016/S0020-7519(97)00189-6.
7. Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AM. Parasites alter community structure. Proceeding of the National Academy of Sciences of United States of America. 2007;104(22):9335-9. doi:10.1073/pnas.0700062104.
8. Tasawar Z, Naz F, Lashari MH, Hayat CS, Benish Ali SH, Naem M, et al. Incidence of lenaeid parasite in Catla catla on a fish farm. Sarhad Journal Agriculture. 2009;25(2):285-289.
9. Piasecki W, Goodwin AE, Eiras JC, Nowak BF. Importance of copepoda in freshwater aquaculture. Zoology Studies. 2004;43(2):193-205.
10. Bednarska M, Bednarski M, Soltysiak Z, Polechonski R. Invasion of Lernaea cypri nacea in rainbow trout (Oncorhynhus mykiss). ACTA Scientiarum Polonorum Medicina Veterinaria. 2009;8(4):2732.
11. Tumbol RA, Powell MD, Nowak BF. Ionic effect of infection of Ichthyophthirius multifilis in goldfish. Journal of Aquatic Animal Health. 2001;13(1):20-6.
12. Xu DH, Shoemaker CA, Kiesius PH. Evaluation of the link between gyrodactylosis and streptococcosis of Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases. 2007;30:233-238. https://doi.org/10.1111/j.1365-2761.2007.00806.x.
13. Bichi AH, Ibrahim AA. A survey of ecto and intestinal parasites of Tilapia zillii (Gervais) in Tiga Lake, Kano, Northern Nigeria. Bajopas. 2009;2(1):79-82.
14. Barson M. The occurrence of Contracaecum sp. larvae (Nematoda: Anisakidae) in the catfish Clarias gariepinus (Burchell) from Lake Chivero, Zimbabwe. Understeexpo Journal of Veterinary Research. 2004;71:35-39.
15. Bitja Nyom AR, Agnèse J-F, Pariseille A, Bilong Bilong CF, Jos Snoeks AG. A systematic revision of the five-spotted *Hemichromis* complex (Cichli formes: Cichlidae) from West Africa and Lower Guinea, with the description of a new species from Cameroon. Hydrobiologia, 2012. DOI: https://doi.org/10.1007/s10750-020-04506-5.
16. Bilong Bilong CF, Euzet L. Oncobobella bopeleti n.sp. (Monogenea. Ancyrocephalid ae) parasite branchial de *Hemichromis fasciatus* (Peters, 1857) (Cichlidae). Journal of African Zoology. 1995;109(3):253-258.
17. Paperna I. Monogenic Trematodes collected from fresh water fish in southern Ghana. Bamidgeh, Bulletin of Fish Culture in Israel. 1965;17:107-115.
18. Paperna I. Monogenic Trematodes collected from fresh water fish in Ghana. Second report. Bamidgeh, Bulletin of Fish Culture in Israel. 1968;20:80-100.
19. Dossou C, Birgi E. Monogènes parasites d’Hemichromis fasciatus Peters, 1857 (Teleostei, Cichlidæ). Annales des Sciences Naturelles, Zoologie. 1984;6:101-109.
20. Bush AO, Lattery KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis. revisited. The Journal of Parasitology. 1997;83:575-583.
21. Combes C. Parasites against competing species. In. Parasitism. The ecology and evolution of intimate interaction. Translate by I. de Buron and VA Connors. The University of Chicago press, Chicago and London, 2001, 402-438.
22. Bilong Bilong CF, Njiné T. Dynamique de populations de trois Monogènes parasites d’Hemichromis fasciatus (Peters) dans le lac Municipal de Yaoundé et intérêt possible en pisciculture intensive. Sciences Naturelles et Vie. 1998;34(2):295-303.
23. Madhi Belghyti. Repartition branchiale des monogenes Gotocotyla acanthurae et Pyragraphorus hollisae parente du pompano, Trachinotus ovatus (pisces ; carangidae) de la côte de Mehdia (Maroc). Agronomie Africaine. 2006;18(2):117-124
24. Šimková A, Verneau O, Gelnar M, Morand S. Specificity and specialization of congeneric Monogenans parasiting Cyprinid. Evolution. 2006;60:1023-1037.
25. Holmes JC. The structure of helminth communities. International Journal for Parasitology. 1987;17:203-208.
26. Cloutman DG, Becker DA. Limnological, ichthyological and parasitological investigations on Arkansas reservoirs in relation to water quality. Projet N. A-013-Akr, Agreement N° 14-00013804. Arkansas Water Resources Research Center, 1974, 272.
27. Muget L. Growing Better Cities: Urban Agriculture for Sustainable Development. CRDI, Ottawa, 2006, 118.
28. Feg C. Concomitant infections, parasites and immune responses. Parasitology. 2001;122(S1):S23-38. doi:10.1017/s003118200001698x.
29. Roff DA. Evolution of life histories: theory and analysis, Springer Science & Business Media. New York, USA, 1992, 535pp.
30. Thomas F, Guégan JF, Renaud F. Ecologie et Evolution des systèmes parasites. de boeck Bruxelles, Belgium, 2012, 427pp.
31. Nyamso Tchatcho NL, Foto Menbohan S, Zébâzé Togouet SH, Onana FM, Adedjadan J., Tchakonté S, et al. Indice multimétrique des macroinvertébrés benthiques yaoundéens (INNY) pour l’élaboration biologique de la qualité des eaux de cours d’eau de la région du Centre sud forestier du Cameroun. European Journal of Scientific Research. 2014;123(4):412-430.
32. Stiassny MLJ, Lamboj AD, De Weirdt D, Teugels GG. Cichildæ. P. 269-403. In Stiassny MLJ, Teugels GG & Hopkins CD (eds). The fresh water and brackish water fishes of Lower Guinea, West-Central Africa volume 2. Coll. faune et flore tropicales 42. Institut de Recherche et de Développement, Paris, France, Muséum National d’Histoire Naturelle, Paris, France and Musée royal d’Afrique Central, Tervuren, Belgium, 2008, 603pp.
33. Skelton PH. Chapter 11. The freshwater fishes of Angola.