Complete Genome Sequence of a Hepatitis E Virus Genotype 1e Strain from an Outbreak in Nigeria, 2017

Olusola Anuoluwapo Akanbi,a,b Dominik Harms,a Bo Wang,a Oluyinka Oladele Opaleye,a,b Olufsayo Adesina,a Folakemi Abiodun Osundare,a,b Abiodun Ogguniyi,c Dhamari Naidoo,d Isabelle Devaux,e Alemu Wondimagegnehu,e Clement Peter,a Okudo Ifeanyi,a Opeayo Ogundiran,a Uzoma Ugochukwu,a Nwando Mba,c Sunday A. Omilabu,f Chikwe Ihekweazu,a,c C.-Thomas Bock,g

Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
Nigeria Centre for Disease Control, Jabi, Abuja, Nigeria
Infectious Hazard Management Department, World Health Organization, Geneva, Switzerland
World Health Organization Nigeria, Abuja, Nigeria
Department of Medical Microbiology and Parasitology, College of Medicine of the University of Lagos, Lagos, Nigeria
Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany

ABSTRACT
Hepatitis E virus genotype 1 (HEV-1) is associated with large epidemics. Notably, HEV subtype 1e (HEV-1e) has caused HEV outbreaks in sub-Saharan Africa. We report here the second full-length genome sequence of an HEV-1e strain (NG/17-0503) from a recent outbreak in Nigeria in 2017. It shares 94.2% identity with an HEV-1e strain from Chad.

Hepatitis E virus (HEV) is the most common causative agent of acute viral hepatitis. Eight HEV genotypes (HEV-1 to HEV-8) have been described, of which five are well recognized as human pathogens (1). HEV-1 and HEV-2 are waterborne, transmitted through fecal-oral routes, and are responsible for large HEV outbreaks in resource-limited countries. HEV-3 and HEV-4 are linked to zoonotic transmission and cause sporadic infections in industrialized countries. It has been reported that HEV subtype 1e (HEV-1e) was responsible for a large outbreak in sub-Saharan Africa (Chad). The T3 strain (GenBank accession no. AY204877) was obtained from an infected person from France during an outbreak in Chad in 1983 and represents the only complete genome sequence of HEV-1e available (2). We report the second full-length genome sequence of an HEV-1e strain (NG/17-0503) from a recent outbreak in Nigeria in 2017. The virus was isolated from a 35-year-old resident of the Mobbar local government area of Borno State, Nigeria. The patient’s serum tested positive for HEV antibodies using Wantai HEV IgM rapid test and Wantai HEV IgM enzyme-linked immunosorbent assay (ELISA; Sanbio, The Netherlands).

Viral RNA was extracted from serum using the QIAamp viral RNA minikit with the QIAcube BioRobot workstation (Qiagen, Hilden, Germany), followed by cDNA synthesis using SuperScript first-strand synthesis (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. Real-time reverse transcription-PCR (RT-PCR) targeting the HEV open reading frames (ORF) 2 and 3 showed viremic HEV infection, with a viral load of $2.22 \times 10^{7} \text{IU/ml}$. Sequence analysis of partial ORF1 (307 bp) and ORF2 (401 bp) implemented using the BLASTn search engine (https://blast.ncbi.nlm.nih.gov) indicated that NG/17-0503 had highest nucleotide identity with the T3 strain. Real-time RT-PCR and consensus nested RT-PCR were conducted as previously described (3). The complete viral genome was amplified in fragments using the Kapa HiFi HotStart ReadyMix PCR kit (Roche, Mannheim, Germany) with HEV-1 universal and NG/17-0503 genome-specific primers (Table 1). The 5’ and 3’ ends were amplified using 5’ and 3’ rapid
amplification of cDNA ends (Roche). All HEV amplicons were sequenced using Sanger sequencing with a BigDye Terminator 3.1 kit (Thermo Fisher, USA) in sense and antisense directions. The whole-genome sequence was assembled and analyzed using Geneious software 10.0.5 (Biomatters Ltd., Auckland, New Zealand) (4). Phylogenetic analyses were performed with the MEGA 7.0.26 software (5).

The complete genome of NG/17-0503 is 7,284 nucleotides in length, excluding the poly(A) tail, with a G+C content of 57.6%. The genome contains three ORFs (ORF1, 1,693 amino acids; ORF2, 660 amino acids; ORF3, 123 amino acids) encoding the HEV viral proteins. NG/17-0503 shared the highest identity of 94.2% with the T3 strain from Chad, followed by 88.7% with an HEV-1d Moroccan strain (GenBank accession no. MH918640). Sequences were aligned using the MAFFT algorithm (6). Phylogenetically, NG/17-0503 and T3 formed a separate subcluster within HEV-1 (Fig. 1).

TABLE 1 Primers used for NG/17-0503 complete genome sequencing

Primer^a	Sequence^b (5' to 3')	Location^b
HEV-289_f	CTTGGGCCCTGAGTGTGCTA	4443–4462
HEV-290_f	CCCTATCCAGCGGTATACAT	222–243
HEV-291_r	ACCGACATGAACTCTGTATCTG	1089–1068
HEV-292_r	CATGAGACGGTCCCAGTATGG	999–978
HEV-293_f	CTTGGTGCGGGGTTTATGAA	5091–5110
HEV-294_r	GGACTGTCGATCTACGCGCAG	6595–6576
HEV-295_f	ACGAAGGGGTCCGATTTGAC	1532–1551
HEV-296_r	AATGGCTGGGTCTGGTTCCG	3210–3191
HEV-297_r	GACTCTAGCAGACATGTGGG	3087–3068
HEV-298_f	GATCCCGAGGCTTAGCCTGGGA	3198–3219
HEV-299_r	TAGCACACTCAAGGCCCAAG	4462–4443
HEV-300_r	TGTGTCGCAAAGGACATCCCCCA	4351–4332
HEV-302_f	TGGCCACCTGAGAACATGATCC	1396–1417
HEV-303_r	GGATAGAAGAGCTCAGTCCCCCGG	2771–2750
HEV-304_r	GCCGCAAAGCGGAGGAGGAGCGG	2729–2708
HEV-311_f	GTGCTATTATGGGGAGGTGGGCC	4457–4478
HEV-312_r	AGCCTACTGAGAATCTACCCCTT	4694–4673
HEV-321_r	ACAGACCTAAACAAGGGCCAGG	5983–5962
HEV-322_f	ATCGTGGTGTTGGCTATGCTAT	5745–5766
HEV-323_r	CCGTGATAACTACACGGGATTCC	6470–6448
HEV-324_f	CATATCCGGGTTCTAATGTGGTAC	1575–1597
HEV-325_r	GCATCAACCTTCCGGACCAAGT	2156–2137
HEV-326_f	GCATGTCGAGGTTGGGAGTGGGG	2082–2099

^aForward primer designations end with _f; reverse primer designations end with _r.

^bNumbering is according the HEV prototype strain Burma (GenBank accession no. M73218).
In conclusion, we identified and characterized the full-length genome of an HEV-1e strain circulating during an outbreak in Nigeria in 2017. Sequence and phylogenetic analyses showed that NG/17-0503 is the second full-length HEV-1e genome available to date. Since the Chad HEV-1e strain from 1983 was from a neighboring country of Nigeria, the detection of NG/17-0503 is strongly suggestive of local transmission of this endemic virus over decades.

Data availability. The complete genome sequence of NG/17-0503 has been deposited in the GenBank database under the accession no. MH918640.

ACKNOWLEDGMENTS

We are grateful for the excellent technical assistance of Marcel Schulze and Steffen Zander (RKI).

This research was supported by the Global Outbreak Alert and Response Network (GOARN) Program of the World Health Organization (WHO). O.A.A. is funded by the German Academic Exchange Service (DAAD), Bonn, Germany. D.H. is funded by the Claussen-Simon-Stiftung (Claussen-Simon Foundation) “Dissertation Plus” program, Germany. B.W. is funded by the China Scholarship Council (CSC), Beijing, China. F.A.O. and O.A. are funded by a subproject of the Global Health Protection Program supported by the Federal Ministry of Health on the basis of a decision by the German Bundestag, the Partnership in Postgraduate Education (PPE), Robert Koch Institute, Berlin, Germany.

The funders, CSC, DAAD, Claussen-Simon Foundation, and PPE, had no role in the study design, data collection and interpretation, or the decision to submit the work for publication. The content is the responsibility of the authors and does not represent the views of the funders.

REFERENCES

1. Nan Y, Wu C, Zhao Q, Zhou EM. 2017. Zoonotic hepatitis E virus: an ignored risk for public health. Front Microbiol 8:2396. https://doi.org/10.3389/fmicb.2017.02396.

2. van Cuyck H, Juge F, Roques P. 2003. Phylogenetic analysis of the first complete hepatitis E virus (HEV) genome from Africa. FEMS Immunol Med Microbiol 39:133–139. https://doi.org/10.1016/S0928-8244(03)00241-4.

3. Wang B, Harms D, Papp CP, Niendorf S, Jacobsen S, Lutgehetmann M, Pischke S, Wedermeyer H, Hofmann J, Bock CT. 2018. Comprehensive molecular approach for characterization of hepatitis E virus genotype 3 variants. J Clin Microbiol 56:e01686-17. https://doi.org/10.1128/JCM.01686-17.

4. Wang B, Harms D, Hofmann J, Ciardo D, Kneubuhl A, Bock CT. 2017. Identification of a novel hepatitis E virus genotype 3 strain isolated from a chronic hepatitis E virus infection in a kidney transplant recipient in Switzerland. Genome Announc 5:e00345-17. https://doi.org/10.1128/genomeA.00345-17.

5. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054.

6. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30. https://doi.org/10.1093/nar/gkf436.