Phase separation in strongly correlated electron systems with spin-state transitions

To cite this article: A O Sboychakov et al 2010 J. Phys.: Conf. Ser. 200 012174

View the article online for updates and enhancements.

Related content
- Effect of electron–lattice interaction on the phase separation in strongly correlated electron systems with two types of charge carriers
 A O Sboychakov, A L Rakhmanov and K I Kugel

- Formation of magnetic polarons in lightly Ca doped LaCoO$_3$
 V Kataev, A Alfonsov, E Vavilova et al.

- Crystal structure, magnetic and electrical properties of the Nd$_{1-x}$BaxCoO$_3$ system
 A P Sazonov, I O Troyanchuk, V V Skolenko et al.

Recent citations
- Low temperature Raman study of PrCoO$_3$ thin films on LaAlO$_3$ (100) substrates grown by pulsed laser deposition
 R. Prakash et al
Phase separation in strongly correlated electron systems with spin-state transitions

A O Sboychakov1, K I Kugel1,3, A L Rakhmanov1,3 and D I Khomskii2,3

1 Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya Str. 13, Moscow, 125412 Russia
2 II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
3 Department of Physics, Loughborough University, Leicestershire, LE11 3TU, UK.
E-mail: sboycha@mail.ru

Abstract. In some transition metal compounds, in particular in those with Co3+ and Fe2+ having the \textit{d}6 configuration, these ions can exist in different spin states, with the possibility of spin-state transitions between them. We demonstrate on a simple model that in doped compounds of such type there typically occurs a phase separation with the formation of inhomogeneous states, one of which corresponds to an undoped material with the low-spin state of Co3+, and the other one with intermediate-spin state and delocalized \textit{e}_\textit{g} electrons. The generic phase diagram of such systems is constructed.

1. Introduction
Complex cobalt-based oxides with perovskite structure (cobaltites), such as La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3}, can undergo the transitions between different spin states of cobalt ions (spin-state transitions - SST), which can occur with the change of temperature, pressure, and doping \textit{x}. They are often accompanied by the metal-insulator transition. The Co3+ ion having six electrons at the 3\textit{d} shell can exist in three different spin states: low-spin (LS) state with \(S=0\) (\(t^6_{2g}e^0_{g}\)), intermediate-spin (IS) state \(S=1\) (\(t^5_{2g}e^1_{g}\)), and high-spin (HS) state \(S=2\), see e.g. Ref. [1]. Thus, cobaltites, in addition to quite common charge, orbital, and spin degrees of freedom with the possibility of respective orderings, have an “extra dimension”: the possibility of spin-state (or, in other words, multiplet) transitions. Correspondingly, if doping of materials like manganites can cause phase separation due to an interplay of the motion (kinetic energy) of doped holes with the underlying magnetic and orbital structure [2], in systems with SST one can expect similar phenomena due to an interplay with the spin state of the matrix.

Let \(\Delta\) be the energy difference between \(t_{2g}\) and \(e_g\) levels in Co3+ and Co4+ ions. Then, the energies of IS and HS states will differ from the energy of LS Co3+ by \(\Delta - J_H\) and \(2(\Delta - 2J_H)\), respectively, where \(J_H\) is the Hund’s rule coupling constant. The corresponding energies for Co4+ are \(\Delta - 2J_H\) and \(2(\Delta - 3J_H)\). For \(\Delta > 3J_H\) and \(\Delta < 2J_H\), the ground state of both Co3+ and Co4+ is LS and HS, respectively. At \(2J_H < \Delta < 3J_H\), we have LS Co3+ and HS Co4+. Thus, for isolated Co ions, the IS state is always unfavorable in energy.

The situation becomes more complicated if there exists a charge transfer between cobalt ions. First, note that the hopping integrals between the \(t_{2g}\) states in cobaltites are as a rule much

© 2010 IOP Publishing Ltd
smaller than for the e_g states. In the treatment below, we ignore the $t_{2g} - t_{2g}$ hopping and take into account only the hopping of e_g electrons. The inclusion of $t_{2g} - t_{2g}$ hoppings will not modify qualitative results, introducing only minor numerical changes. Second, the states with the number of electrons per ion larger than six are unfavorable due to the strong on-site Coulomb repulsion. Third, the transitions of electrons between the lattice sites corresponding to the changes of spin by more than one half are strongly suppressed since they involve the simultaneous change of a state for two or more electrons. As a result, in hole-doped cobaltites there remain only two most probable hopping processes: (i) the transitions of electrons between the IS Co$^{3+}$ and LS Co$^{4+}$ and (ii) transitions between the HS Co$^{3+}$ and IS Co$^{4+}$.

Thus, to facilitate the kinetic energy gain due to the electron transfer, one should create a ground state with intermediate spins. Such a situation can arise if in the ground state for isolated ions we have either LS Co$^{4+}$ or HS Co$^{3+}$. The former, more realistic case corresponds to $\Delta > 3J_H$ when some of LS Co$^{3+}$ can be promoted to the IS state. In the latter case corresponding to $\Delta < 2J_H$, Co$^{4+}$ would be HS, and some Co$^{3+}$ ions can be transformed to the IS state. In the intermediate situation, $2J_H < \Delta < 3J_H$, the electron transfer can occur if we promote both ions, Co$^{3+}$ and Co$^{4+}$, to some excited states, which seems to be less probable. Below we restrict our treatment to the first, the most realistic case. The other possibility can be treated in a similar fashion [3].

2. The model Hamiltonian

We study the systems with spin-state transitions in the framework of a simple model similar to that used in the case of doped manganites, where the competition between the localized and band states can lead to the nanoscale electronic phase separation [4]. Here we restrict ourselves to the consideration of zero temperature. We assume also a ferromagnetic alignment of all spins of cobalt ions at $T = 0$. In the case of cobaltites, the role of the localized level is played by the ground state of Co ions, LS Co$^{3+}$ and the delocalized (band) charge carriers are electrons promoted to the e_g levels.

When $\Delta > 3J_H$, we can assume that only LS Co$^{3+}$, IS Co$^{3+}$, and LS Co$^{4+}$ ions exist in the system. Treating LS Co$^{3+}$ state as a vacuum state, we introduce creation operators (spinless fermions) for an electron at the e_g level and a hole at the t_{2g} level at site \mathbf{n}, $a^\dagger_\mathbf{n}$ and $c^\dagger_\mathbf{n}$ respectively, according to the following rules

$$0 = |\text{Co}^{3+}_{LS}\rangle (E^{\text{vac}} = E_0), \ a^\dagger_\mathbf{n}|0\rangle = |\text{Co}^{2+}\rangle (E^{(2+)} = U'), \ c^\dagger_\mathbf{n}|0\rangle = |\text{Co}^{4+}_{LS}\rangle (E^{(h)} = E_1), \ (1)$$

where we introduce the reference energies, E_0 and E_1, for LS states of Co$^{3+}$ and Co$^{4+}$ ions, respectively, and the on-site Coulomb repulsion energy U' of two e_g electrons. In terms of these operators, the IS state of Co$^{3+}$ ions can be constructed as

$$|\text{Co}^{3+}_{IS}\rangle = c^\dagger_\mathbf{n}a^\dagger_\mathbf{n}|0\rangle \ (E^{(3+)}_{IS} = E_0 + \Delta - J_H = E_2). \ (2)$$

Using these operators, we can write the following single-site Hamiltonian

$$H_\mathbf{n} = [E_0 + (E_1 - E_0)(n^e_\mathbf{n} - n^h_\mathbf{n})] + (\Delta - J_H)n^e_\mathbf{n} + Un^e_\mathbf{n}(1 - n^h_\mathbf{n}), \ (3)$$

where $U = U' + E_1 - \Delta + J_H$ and $n^e_\mathbf{n} = a^\dagger_\mathbf{n}a_\mathbf{n}$ and $n^h_\mathbf{n} = c^\dagger_\mathbf{n}c_\mathbf{n}$ are the operators describing the numbers of electrons at in e_g levels and holes at t_{2g} levels, respectively. Taking the sum over all lattice sites and introducing the intersite hopping term, we get

$$H = \sum_\mathbf{n} [E_0 + (E_1 - E_0 - \mu)(n^e_\mathbf{n} - n^h_\mathbf{n})] + \Delta_1 \sum_\mathbf{n} n^e_\mathbf{n} + U \sum_\mathbf{n} n^e_\mathbf{n}(1 - n^h_\mathbf{n}) - t \sum_{\langle \mathbf{nm} \rangle} (a^\dagger_\mathbf{n}a_\mathbf{n} + h.c.), \ (4)$$

where $\Delta_1 = \Delta - J_H$ and μ is the chemical potential. The mean values n^e and n^h obey the equality $n^e - n^h = x$, where x is the doping level.
3. Homogeneous states

Hamiltonian (4) is quite similar to that of the Falicov-Kimball model [5]. Here we have, in fact, an interplay between the electron localization in the LS state and the itinerancy in the IS state. This kind of interplay was analyzed in detail both analytically [4] and numerically [6], and a tendency for a nanoscale phase separation was demonstrated. We analyze Hamiltonian (4) using the Hubbard I decoupling [7] in the equation of motion for the one-electron Green function $G^e(n, n_0; t - t_0) = -i(T_{un}(t) a^\dagger_{un}(t_0))$ for the e_g electrons. In the frequency-momentum representation, we get

$$G^e(k, \omega) = -\frac{\omega + \mu - \Delta_1 - Un^h}{(\omega + \mu - \Delta_1 - E_1(k))(\omega + \mu - \Delta_1 - E_2(k))},$$

where $E_{1,2}(k) = \{U + \epsilon(k) \pm [(U - \epsilon(k))^2 + 4U\epsilon(k)(1 - n^h)]^{1/2}\}/2$ are energy spectra for two Hubbard subbands and $\epsilon(k)$ is the energy spectrum at $U = 0$. We choose $\epsilon(k)$ in the simplest tight-binding form, ignoring orbital degeneracy and the specific features of the hopping integrals of e_g electrons, $[\epsilon(k) = -2t(cos k_x + cos k_y + cos k_z)$ for the simple cubic lattice]. The mean values n^e and $n^h = x + n^e$ are found then by solving the equation

$$n^e = -i \int \frac{d^3kd\omega}{(2\pi)^4} G^e(k, \omega)e^{i\omega\eta},$$

where the Green function $G^e(k, \omega)$ implicitly depends on n^e and n^h. We solve this equation in the limit $U \to \infty$. In this case, the number of IS Co$^{3+}$ ions is $n_{IS,Co^{3+}} = \langle n^e_n n^h_n \rangle = n^e$, and the number of LS Co$^{3+}$ ions is $n_{LS,Co^{3+}} = 1 - x - n^e = 1 - n^h$ (here we use the equality $\langle n^e_n(1 - n^h_n) \rangle = 0$, when $U \to \infty$).

The typical dependence of $n_{LS,Co^{3+}}$ and $n_{IS,Co^{3+}}$ on x are shown in Fig. 1. In general case, there are two solutions to Eq. (6), corresponding to $n^h \neq 1$ and $n^h = 1$ ($n_{LS,Co^{3+}} = 0$), where all Co$^{3+}$ ions are promoted to IS state. When $x < x_2$ the solution with $n^h \neq 1$ corresponds to the minimum of the system energy. At $x > x_2$, the solution with $n^h = 1$ becomes favorable in energy (see the inset to Fig. 1), and the jump-like transition in the numbers n^e and n^h occurs. When $x > x_3(> x_2)$, both these solutions coincide. Note also, that Co$^{3+}$ ions in IS state appear in the system starting from some doping level $x_1(< x_2)$.

4. Inhomogeneous states and the phase diagram

In the previous section, we considered a possible homogeneous states of the system. Note, however, that in the wide doping range ($0 < x \lesssim x_3$ when $\Delta > 3J_H$), a homogeneous state turns out to be unstable toward a phase separation, as it can be seen in the inset to Fig. 1. Namely, it
is more favorable in energy, if the system forms inhomogeneous state with two phases: one phase with undoped LS Co$^{3+}$ ions (insulating regions), and the second metallic (and ferromagnetic due to double exchange) phase in which Co$^{3+}$ ions are promoted to the IS state. We take this fact into account in construction the phase diagram of the model in Δ/J_H–x plane by comparison of system energies in different states. The phase diagram of the system calculated at $t/J_H = 1$ is shown in Fig. 2. In this phase diagram, we also show corresponding results for the parameter range $\Delta < 3J$, which is obtained in a way similar to the case $\Delta > 3J_H$, considered in the previous section [3].

Note that the differences of the system energies in different states do not depend on the references energies E_0 and E_1. Thus, the structure of the phase diagram in Δ/J_H–x plane depends only on the value of the hopping integral. At rather small t ($t/J_H \leq 1$), we have an intermediate region in the phase diagram, where the charge carries are localized at any doping level with LS Co$^{3+}$ and HS Co$^{4+}$ ions (see Fig. 2). This intermediate region gradually disappears with the growth of t.

The presence of inhomogeneous states with different spin states of Co is indeed seen in many experiments for doped LaCoO$_3$, see e.g. [8, 9].

5. Conclusions
Based on a simplified model of a strongly correlated electron system with spin-state transitions, we demonstrated a tendency to the phase separation for doped perovskite cobaltites in a wide range of doping levels. The phase diagram including large regions of inhomogeneous states was constructed in the plane of parameters doping x versus $e_g - t_{2g}$ energy splitting Δ. The form of the phase diagram turns out to be strongly dependent on the value of the hopping integral t.

Acknowledgments
The work was supported by RFBR (grants 08-02-00812 and 07-02-91567), and by the Deutsche Forschungsgemeinschaft via SFB 608 and the German-Russian project 436 RUS 113/942/0.

References
[1] Raccah P M and Goodenough G B 1967 Phys. Rev. 155 932
[2] Dagotto E 2003 Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer)
[3] Sboychakov A O, Kugel K I, Rakhanov A L and Khomskii D I 2009 arXiv:0904.4760
[4] Kugel K I, Rakhanov A L and Sboychakov A O 2005 Phys. Rev. Lett. 95 267210
[5] Falicov L M and Kimball J C 1969 Phys. Rev. Lett. 22 997
[6] Shenoy V B, Gupta T, Krishnamurthy H R and Ramakrishnan T V 2007 Phys. Rev. Lett. 98 097201
[7] Hubbard J 1963 Proc. Roy. Soc. (London) A276 238
[8] Phelan D, Yu J and Louca D 2008 Phys. Rev. B 78 094108
[9] Podlesnyak A, Russina M, Furrer A, Alfonsov A, Vavilova E, Kataev V, Büchner B, Strässle Th, Pomjakushina E, Conder K and Khomskii D 2008 Phys. Rev. Lett. 101 247603