Dragon-kings death in nonlinear wave interactions

Moises S. Santos¹, José D. Szezech Jr¹,², Antonio M. Batista¹,², Kelly C. Iarosz³, Iberê L. Caldas³, Ricardo L. Viana⁴

¹Graduate in Science Program - Physics, State University of Ponta Grossa, 84030-900, Ponta Grossa, PR, Brazil.
²Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900, Ponta Grossa, PR, Brazil.
³Institute of Physics, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
⁴Department of Physics, Federal University of Paraná, 80060-000, Curitiba, PR, Brazil.
Corresponding author: moises.wz@gmail.com

Abstract
Extreme events are characterised by low probabilities and high impact on the systems. As a consequence, it is possible to find many studies about the predictability and suppression of extreme events. In this work, we show the existence of dragon-kings extreme events in nonlinear three-wave interactions. Dragon-king extreme events, identified by phase transitions, tipping points and catastrophes, affects fluctuating systems. We show that these events can be avoided by adding a perturbing small amplitude wave to the system.

1 Introduction

Extreme events are by definition scarce and they can have a relevant impact on the systems. These events have been observed in weather [1], optics [2], and plasma physics [3]. In optical rogue waves, extreme events emerge from a turbulent state [4]. Riccardo et al. [5] reported that extreme event is compatible with general halo current trends in magnetically confined plasma physics in the tokamak Joint European Torus (JET).

Extreme events have been estimated through the extrapolation of power law frequency-size distributions [6]. Many extreme events, known as dragon-kings, do not belong to a power law distribution [7]. The dragon-kings were reported by Johansen and Sornette [8] in the distribution of financial draw-downs. Sornette and Ouillon [9] discussed the mechanisms, statistical tests,
and empirical evidences of dragon-kings. Dragon-king extreme events was found in neuronal networks by Mishra et al. [10]. They presented evidence of these events in coupled bursting neurons.

Recently, many articles about the suppression of extreme events have been published. Direct corrective reset to the system was used as a suppression method [11]. Cavalcante et al. [12] studied coupled chaotic oscillators and showed that extreme events can be suppressed by means of tiny perturbations. Small perturbations were used to reduce the appearance of extreme events in damped one-dimensional nonlinear Schrödinger equation [13]. Krüger et al. [14] demonstrated that the existence of extreme events can be controlled by means of the properties of the phase space in Hamiltonian systems.

We analyse a nonlinear three-wave interactions model. The nonlinear three-wave interaction is the lowest order effect in systems described by waves superposition [15]. It plays an important role in nonlinear optics, plasma physics and hydrodynamics [16]. Chian and Abalde [17] developed a nonlinear theory of three-wave interactions of Langmuir waves with whistler waves in the solar wind. Batista et al. [18] considered three-wave interaction to investigate drift-wave turbulence in tokamak edge plasma. In our simulations, we identify Lorentzian pulses. These pulses have been observed in magnetised plasmas and interactions of drift-Alfvén waves [19]. They can appear in flow trajectories due to topological alterations and in chaotic orbits [20, 21].

We calculate the frequency-size distributions of the wave amplitude in the three-wave interactions model. Depending on the parameter, the distribution follows a power law except for large sizes. This behaviour indicates the existence of dragon-kings extreme events. Aiming to suppress the dragon-kings, we propose a fourth wave as a control method. Batista et al. [22] used a fourth resonant wave of small amplitude to control chaotic behaviour of three interacting modes. Coexistence of attractors was observed in a dissipative nonlinear parametric four-wave interactions [23]. In this work, we show that a fourth wave is able to kill the dragon-kings in nonlinear three-wave interactions.

The paper is organised as follows: In Section 2, we describe the nonlinear three-wave interactions model. Section 3 shows the dragon-kings extreme events and presents our method to suppress these events. In the last Section, we draw our conclusions.
2 Nonlinear tree-wave interactions model

The nonlinear three-wave interactions are described by three first-order differential equations \[24, 25, 26\]. We include a fourth wave interacting with the first and second waves \[23\]. The equations of the four-wave interactions are given by

\[
\begin{align*}
\dot{A}_1 &= \nu_1 A_1 + A_2 A_3 - r A_2^* A_4, \\
\dot{A}_2 &= \nu_2 A_2 - A_1 A_3^* - r A_1^* A_4, \\
\dot{A}_3 &= \nu_3 A_3 - A_1 A_2^* + i \delta_3 A_3, \\
\dot{A}_4 &= \nu_4 A_4 - i \delta_4 A_4 + r A_1 A_2,
\end{align*}
\]

where \(A_i \) is the wave amplitude \((i = 1, 2, 3, 4)\), \(A_i^* \) denotes the conjugate complex, \(\nu_1 \) is the energy injection coefficient, \(\nu_i \) \((i = 2, 3, 4)\) is the dissipation parameter, and \(\delta_3, \delta_4 \) are a small mismatch. We consider \(\nu_1 = 1, \nu_2 = \nu_3 = \nu, \delta_4 = 0, \nu_4 = -0.83 \), transient time equal to \(10^4 \), and random initial condition in the interval \([0, 1]\) for \(A_i \) and \(A_i^* \). The \(r \) parameter controls the intensity of the fourth wave, at the limit when \(r = 0 \), the four-wave interaction model becomes the three-wave interaction model.

\[\text{Figure 1: Temporal evolution of (a) } |A_1| \text{ and (b) } |A_2| \text{ for } \delta_3 = 2.2, \nu = -14.5, \text{ and } r = 0.\]

The temporal evolution of waves \(|A_1| \) and \(|A_2| \) for the three-wave model is exhibited in Fig. 1(a) and Fig. 1(b), respectively. The time evolution of wave \(|A_3| \) is similar to \(|A_2| \), so it was not shown in Fig. 1. We consider \(\delta_3 = 2.2, \nu = -14.5, \text{ and } r = 0 \). As a result, the system exhibits chaotic behaviour, namely the dynamical system is sensitive to initial conditions. The chaotic
The attractor has a large number of periodic orbits identified by varying the parameter \(\delta_3 \). Figure 2(b) shows a period-4 stable periodic orbit for \(\delta_3 = 1.1 \) and \(\nu = -14.5 \).

Figure 2: (a) Chaotic attractor for \(\delta_3 = 2.2 \) and \(\nu = -14.5 \). (b) Period-4 stable orbits for \(\delta_3 = 1.1 \) and \(\nu = -14.5 \) (periodic evolution). We consider a transient equal to \(10^4 \) and \(r = 0 \).

The short time interval of the temporal evolution (pulse) of \(A_2 \) (Fig. 1(b)) can be fitted by a Lorentzian function, as shown in Fig. 3(a) (red line) for the same values of Fig. 1. Lorentzian pulses have been associated with chaotic behaviour \([20, 21]\). In fact, the chaotic behaviour for these parameters is
seen in Fig. 3(b) where is plotted the bifurcation diagram for the maximum value of $|A_2|$ as a function of δ_3. The system displays period-doubling, chaotic behaviour, and periodic windows.

Figure 4: Probability density function (PDF) for $r = 0$, (a) $\delta_3 = 2.2$ and $\nu = -14.5$, and (b) $\delta_3 = 2$ and $\nu = -15$.

3 Dragon-kings death

Dragon-kings are extreme events that belong to a special class of events. The extreme events are characterised by power law statistics. However, the dragon-kings are beyond the power laws. They exhibit humps in the tail of the distributions for the extended size of events [7].

We calculate the probability density function (PDF) of the temporal evolution of $|A_2|$. Figure 4 shows the appearance of dragon-kings in the three-wave interactions model. In Figs. 4(a) and 4(b), we consider $\delta_3 = 2.2$ and $\nu = -14.5$, and $\delta_3 = 2$ and $\nu = -15$, respectively. The dragon-kings are represented by a lump in the PDF tail. The events with amplitude above 10 are outliers and generate the dragon-kings.

With regard to the four-wave model, the fourth-wave interacts with the first and second waves. Lopes and Chian [26] used a small sinusoidal wave to control chaos in the nonlinear three-wave coupling. They demonstrated that a desired periodic orbit can be obtained applying a fourth wave with small amplitude. Aiming to suppress the dragon-kings, we apply a fourth wave ($|A_4|$) during a time interval $\Delta t = 0.4$ and $r = 0.5$ when $d|A_1|/dt > 0$,
as shown in Fig. 5(a). Figure 5(b) exhibits the temporal evolution of $|A_4|$. The energy of the first wave is decreased due to the application of the fourth wave (Fig. 5(c)). In Fig. 5(c), we see the behaviour of $|A_1|$ for $\delta_3 = 2.2$ and $\nu = -14.5$ when $r = 0$ (red line) and $r = 0.5$ (black line).

Figure 6(a) displays the PDF for $r = 0$ (red line), $r = 0.5$ (black line), and $\Delta t = 0.4$. In our simulations, the fourth wave is able to produce a small alteration in the PDF. The PDF maintains the same slope, but the hump in the tail disappears, namely dragon-kings death. In Fig. 6(b), we see Lorentzian pulses not only in the nonlinear three-wave interactions (blue line), but also in the wave interactions (green line) where the dragon-kings are suppressed. Then, a fourth-wave kills the dragon-kings and does not destroy the Lorentzian pulses.

4 Conclusions

In conclusion, we study extreme events in a nonlinear three-wave interactions model. This model exhibits periodic and chaotic behaviour. In the chaotic region, we find Lorentzian pulses. The Lorentzian pulses appear in many
physical systems and have been used to characterise chaotic dynamics. Extreme events are usually rare and the event size distributions follow a power law. Depending on the system parameters, our simulations show a power law dependence in the wave amplitude distribution, except for larger values of the amplitude. The distribution tail has humps, that is an evidence of dragon-kings extreme events. We consider an external perturbation in the three-wave interactions by means of a fourth wave. Desired periodic orbits can be achieved applying a wave with small amplitude. In this work, we show that a fourth wave applied during a short time can kill dragon-kings. Therefore, the fourth-wave can prevent catastrophic dragon-kings events in the three-wave interactions. We believe that in other systems there is a night king, i.e. an external perturbation, that is able to kill only the dragon-kings.

Acknowledgment

This work was made possible by support from the following Brazilian government agencies: Fundação Araucária, CNPq, CAPES, and FAPESP (2011/19296-1, 2015/50122-0, and 2015/07311-7).

References

[1] P. Sura, A general perspective of extreme events in weather and climate, Atmospheric Res. 101 (2011) 1-10.
[2] M.G. Clerc, G. González-Cortés, and M. Wilson, Extreme events induced by spatiotemporal chaos in experimental optical patterns, Opt. Lett. 41 (2016) 2711-2714.

[3] A. Sicard-Piet, D. Boscher, R.B. Horne, N.P. Meredith, and V. Maget, Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis, Ann. Geophys. 32 (2014) 1059-1071.

[4] N. Akhmediev, B. Kibler, F. Baronio, M. Belić, W.-P. Zhong, Y. Zhang, W. Chang, J.M. Soto-Crespo, P. Vouzas, P. Grelu, C. Lecaplain, K. Hammami, S. Rica, A. Picozzi, M. Tlidi, K. Panajotov, A. Mussot, A. Bendahmane, P. Szriftgiser, G. Genty, J. Dudley, A. Kudlinski, A. Demircan, U. Morgner, S. Amiraranashvili, C. Bree, G. Steimneyer, C. Masoller, N.G.R. Broderick, A. F.J. Runge, M. Erkintalo, S. Residori, U. Bortolozzo, F.T. Arecchi, S. Wabnitz, C.G. Tiofack, S. Coulibaly, M. Taki, Roadmap on optical rogue waves and extreme events, J. Opt. 18 (2016) 063001-37.

[5] V. Riccardo, T.C. Hender, P.J. Lomas, B. Alper, T. Bolzonella, P. de Vries, G.P. Maddison, JET EFDA Contributors, Analysis of JET halo currents, Plasma Phys. Control. Fusion 46 (2004) 925-934.

[6] M.K. Sachs, M.R. Yoder, D.L. Turcotte, J.B. Rundle, and B.D. Malamud, Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models, Eur. Phys. J. Spec. Top. 205 (2012) 167-182.

[7] D. Sornette, Dragon-Kings, Black Swans and the Prediction of Crises, Intl. J. Terraspace Sci. Eng. 2 (2009) 1-18.

[8] A. Johansen, D. Sornette, Stock market crashes are outliers, Eur. Phys. J. B 1 (1998) 141-143.

[9] D. Sornette, G. Ouillon, Dragon-kings: mechanisms, statistical methods and empirical evidence, Eur. Phys. J. Spec. Top. 205 (2012) 1-26.

[10] A. Mishra, S. Saha, M. Vigneshwaran, P. Pal, T. Kapitaniak, S.K. Dana, Dragon-king-like extreme events in coupled bursting neurons, Phys. Rev. E 97 (2018) 062311-7.
[11] J. Zamora-Munt, C.R. Mirasso, R. Tarol, Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization, Phys. Rev. E 89 (2014) 012921-7.

[12] H.L.D. de S. Cavalcante, M. Oriá, D. Sornette, E. Ott, D.J. Gauthier, Predictability and suppression of extreme events in a chaotic system, Phys. Rev. Lett. 111 (2013) 198701-5.

[13] P.P. Galuzio, R.L. Viana, S.R. Lopes, Control of extreme events in the bubbling onset of wave turbulence, Phys. Rev. E 89 (2014) 040901(R)-5.

[14] T.S. Krüger, P.P. Galuzio, T.L. Prado, R.L. Viana, J.D. Szezech Jr., S.R. Lopes, Mechanism for stickiness suppression during extreme events in Hamiltonian systems, Phys. Rev. E 91 (2015) 062903-6.

[15] O. Yaakobi, L. Friedland, Multidimensional, autoresonant three-wave interactions, Phys. Plasmas 15 (2008) 102104-9.

[16] D.J. Kaup, A. Reiman, A. Bers, Space-time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium, Rev. Mod. Phys. 51 (1979) 275-309.

[17] A.C.-L. Chian, J.R. Abalde, Nonlinear coupling of Langmuir waves with whistler waves in the solar wind, Sol. Phys. 184 (1999) 403-419.

[18] A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, W. Horton, P.J. Morrison, Nonlinear three-mode interaction and drift-wave turbulence in a tokamak edge plasma, Phys. Plasmas 13 (2006) 042510-10.

[19] D.C. Pace, M. Shi, J.E. Maggs, G.J. Morales, T.A. Carter, Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas, Phys. Plasmas 15 (2008) 122304-13.

[20] J.E. Maggs, G.J. Morales, Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics, Plasma Phys. Control. Fusion 54 (2012) 124041(R)-7.

[21] J.E. Maggs, G.J. Morales, Origin of Lorentzian pulses in deterministic chaos, Phys. Rev. E 86 (2012) 015401-5.
[22] A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, Low-dimensional chaos and wave turbulence in plasmas, Phil. Trans. R. Soc. A 366 (2008) 609-620.

[23] J.C. Coninck, S.R. Lopes, R.L. Viana, Multistability and phase-space structure of dissipative nonlinear parametric four-wave interactions, Phys. Rev. E 70 (2004) 056403-9.

[24] J.M. Wersinger, J.M. Finn, E. Ott, Bifurcations and strange behavior in instability saturation by nonlinear mode coupling, Phys. Rev. Lett. 44 (1980) 453-456.

[25] C. Meunier, M.N. Bussac, G. Laval, Intermittency at the onset of stochasticity in nonlinear resonant coupling processes, Physica D 4 (1982) 236-243.

[26] S.R. Lopes, A.C.-L. Chian, Controlling chaos in nonlinear three-wave coupling, Phys. Rev. E 54 (1996) 170-174.