Corticosteroids inhibit *Mycobacterium tuberculosis*-induced necrotic host cell death by abrogating mitochondrial membrane permeability transition

Jessica Gräb1,2, Isabelle Suárez1,3, Edeltraud van Gumpel1,2, Sandra Winter1,2, Fynn Schreiber1,2, Anna Esser1,2, Christoph Hölscber3,4, Melanie Fritsch2,5,6, Marc Herb5,6, Michael Schramm5,6, Laurens Wachsmuth7, Christian Pallasch1,5, Manolis Pasparakis2,5,7, Hamid Kashkar2,5,6 & Jan Rybniker1,2,3

Corticosteroids are host-directed drugs with proven beneficial effect on survival of tuberculosis (TB) patients, but their precise mechanisms of action in this disease remain largely unknown. Here we show that corticosteroids such as dexamethasone inhibit necrotic cell death of cells infected with *Mycobacterium tuberculosis* (*Mtbc*) by facilitating mitogen-activated protein kinase phosphatase 1 (MKP-1)-dependent dephosphorylation of p38 MAPK. Characterization of infected mixed lineage kinase domain-like (MLKL) and tumor necrosis factor receptor 1 (TNFR1) knockout cells show that the underlying mechanism is independent from TNFα-signaling and necroptosis. Our results link corticosteroid function and p38 MAPK inhibition to abrogation of necrotic cell death mediated by mitochondrial membrane permeability transition, and open new avenues for research on novel host-directed therapies (HDT).
Results

Corticosteroids potently inhibit **Mtbb-induced cell death. Co-incubation and infection of phagocytes with **Mtbb** inevitably leads to host cell death which is primarily mediated by the mycobacterial ESX-1 type VII secretion system, an essential virulence factor. Massively attenuated mycobacteria such as the Bacille Calmette-Guérin vaccine strain fail to kill host cells which makes **Mtbb**-induced cell death or cell survival an attractive readout for host-directed drug screens. When testing pharmacologically active and approved drugs in a high-throughput chemical genetic screen selecting for compounds that abrogate **Mtbb**-dependent cell death, we detected a series of corticosteroids as potent hit compounds that protected **Mtbb**-infected MRC-5 human lung fibroblasts as efficiently as known anti-mycobacterial drugs (Fig. 1a; Supplementary Fig. 1; Supplementary Table 1). The corticosteroid dexamethasone was highly cytoprotective even at low nanomolar concentrations (IC_{50}: 15 nM) (Fig. 1b). Cell death was also abrogated in **Mtbb**-infected J774 mouse macrophages (Mφ) (Fig. 1c, d) and in human Mφ isolated from healthy donors and treatment naïve TB patients (Fig. 1c, e, f). Since corticosteroids are extensively used as adjunctive therapy in TB affecting the central nervous system we also tested for survival of pre-treated and infected microglial cells. Chemical treatment with dexamethasone led to strong survival of BV-2 microglial cells comparable to other infected phagocytes (Fig. 1c, g).

Dexamethasone abrogates p38 MAPK phosphorylation. The corticosteroid-inducible protein mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1; DUSP1) has emerged as a key regulator of host cell death or cell survival an attractive readout for host-directed drug screens. When testing pharmacologically active and approved drugs in a high-throughput chemical genetic screen selecting for compounds that abrogate **Mtbb**-dependent cell death, we detected a series of corticosteroids as potent hit compounds that protected **Mtbb**-infected MRC-5 human lung fibroblasts as efficiently as known anti-mycobacterial drugs (Fig. 1a; Supplementary Fig. 1; Supplementary Table 1). The corticosteroid dexamethasone was highly cytoprotective even at low nanomolar concentrations (IC_{50}: 15 nM) (Fig. 1b). Cell death was also abrogated in **Mtbb**-infected J774 mouse macrophages (Mφ) (Fig. 1c, d) and in human Mφ isolated from healthy donors and treatment naïve TB patients (Fig. 1c, e, f). Since corticosteroids are extensively used as adjunctive therapy in TB affecting the central nervous system we also tested for survival of pre-treated and infected microglial cells. Chemical treatment with dexamethasone led to strong survival of BV-2 microglial cells comparable to other infected phagocytes (Fig. 1c, g).

Dexamethasone abrogates p38 MAPK phosphorylation. The corticosteroid-inducible protein mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1; DUSP1) has emerged as a key molecule responsible for steroid-dependent effects on eukaryotic cells. We speculated that inhibition of MKP-1 negatively affects the cytoprotective effects that were observed in dexamethasone-treated cells. Co-treatment of **Mtbb**-infected human lung fibroblasts with dexamethasone and the specific MKP-1 inhibitor (E/Z)-BCI fully abrogated the dexamethasone protective effect (Fig. 2a). The substance alone showed no growth inhibitory effect on host cells (Fig. 2a). Similar observations were made when cells were co-treated with dexamethasone and the glucocorticoid receptor (GR) inhibitor Ru-486 or by single-agent treatment with the selective non-steroidal GR agonist Bfasou9 indicating that dexamethasone protects the cells via GR activation and MKP-1 upregulation (Fig. 2a, b; Supplementary Fig. 2). Strong MKP-1 upregulation of dexamethasone-treated **Mtbb**-infected cells was confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (Fig. 2c). MKP-1 specifically inactivates p38 MAPK, c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (ERK)24. We tested for phosphorylation of these kinases upon infection with **Mtbb** and found p38 MAPK phosphorylation in both cell types (Fig. 2d–f; Supplementary Fig. 3). JNK or ERK phosphorylation was not observed at 5 and 24 h post infection (Supplementary Fig. 4a and b).

Phosphorylation of p38 MAPK initiates cell death. Having identified p38 MAPK as a putative target of corticosteroids, we tested a series of p38 MAPK inhibitors and examined the survival of **Mtbb**-infected cells. The data obtained showed that pamapimod, BMS-582949 and SB203580 did not interfere with **Mtbb**-induced cell death at 10 μM (Supplementary Fig. 5a). In contrast, the highly potent and selective p38 MAPK inhibitor doramapimod was as protective as dexamethasone in several infected cell types including human Mφ isolated from healthy donors and treatment naïve TB patients (Fig. 2g, h; Supplementary Fig. 5b–e). To better
understand these conflicting results we quantified p38 MAPK phosphorylation in BMS-582949 and doramapimod-treated MRC-5 lung fibroblasts after infection with *Mtb*. Interestingly, only doramapimod was capable of suppressing p38 MAPK phosphorylation in a sustainable manner whereas BMS-582949 failed to inhibit phosphorylation at 24 and 48 h post infection (Fig. 2i). This indicates that *Mtb* infection represents a potent inflammatory stimulus that can overcome chemical p38 MAPK inhibition in some of these substances. The underlying molecular mechanism however remains elusive.

To definitely clarify the role of p38 MAPK in *Mtb*-induced cell death, the expression of p38 MAPK was down regulated (p38KD)
Fig. 1 Corticosteroids abrogate cytotoxicity in Mycobacterium tuberculosis (Mtbc)-infected cells. a Protective effect of dexamethasone and other corticosteroids (10 µM) in Mtbc-infected MRC-5 lung fibroblasts (multiplicity of infection (MOI) 10). Host cell viability was quantified using PrestoBlue. Data derived from high-throughput screen with measurements of duplicate assay plates. b Dose-response curve of dexamethasone in Mtbc-infected MRC-5 lung fibroblasts analyzed using the fibroblast survival assay (FSA). c Representative fluorescent microscopy images of Mtbc-infected primary human macrophages (Mφ, MOI 1), J774.2 Mφ (MOI 5), and BV-2 microglia (MOI 5) treated with dexamethasone (5 µM), rifampicin (5 µM), or DMSO (0.05%). Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; scale bar: 100 µm). Images are representative of two to three individual experiments with multiple replicates. d–g Dexamethasone (5 µM)-treated J774.2 mouse Mφ (d), primary human Mφ from healthy donors (e) and TB patients (f), and BV-2 mouse microglia (g) were infected with the wild-type Mtbc strain Erdman at varying MOI and surviving cells were stained with DAPI to determine the number of living cells 48 h post infection. Data from one experiment with duplicates are shown in b; data were pooled from two (d, f, g) or three (e) independent experiments with multiple replicates. Results are expressed as the mean ± SEM. Statistical analysis were performed by unpaired t-test (**p ≤ 0.01; ***p ≤ 0.001)

in J774 Mφ using selective siRNAs (Supplementary Fig. 6). Down-regulation of p38 expression significantly increased the survival of infected J774 Mφ, clearly indicating that p38 MAPK is involved in Mtbc-induced cell death (Fig. 2)).

Apoptosis is not the main mechanism for p38 MAPK mediated cell death. To better understand the events following p38 MAPK phosphorylation as a consequence of Mtbc infection, we carefully dissected several cell death pathways. MAP-kinases have been frequently associated with apoptotic processes such as the activation of pro-apoptotic Bcl-2 family proteins leading to caspase activation7. We first determined activation of executioner caspases in our infection models using immunoblots targeting cleaved caspase 3. Mtbc infection led to some proteolytic activation of caspase 3 in J774 Mφ which was partially inhibited by dexamethasone and doramapimod (Fig. 3a). In a more sensitive luminescence-based caspase activity assay for both caspase 3 and caspase 7, a stronger activation signal was detected upon infection of human lung fibroblasts (Fig. 3b). p38 MAPK inhibition via dexamethasone or doramapimod led to a slight decrease in luminescent signal (Fig. 3b). We then treated cells with the pan-caspase inhibitor Z-VAD-FMK (N-benzylxoycarbonyl-valyl-ala- nyl-aspartyl-fluoromethylketone). This substance led to full inhibition of caspase 3- and caspase 7 activation in infected cells (Fig. 3b). Assuming that p38 MAPK signaling leads to apoptosis execution via caspase 3/7, Z-VAD-FMK should be as cytoprotective as dexamethasone or doramapimod. However, caspase inhibition by Z-VAD-FMK failed to protect human lung fibroblasts and human primary Mφ from Mtbc-induced cell death (Fig. 3c, d) excluding apoptosis as a responsible killing mechanism upon Mtbc infection and indicating that caspase 3 activation is an incidental event of cell stress.

p38 MAPK inhibition blocks secretion of necrosis markers. There is growing evidence that necrotic cell death plays a key role in pathogen-driven inflammation, cell to cell spread, and dissemination to new hosts23. We found large amounts of lactate dehydrogenase (LDH), a necrosis indicator, in the supernatant of Mtbc-infected lung fibroblasts as well as in human Mφ isolated from healthy donors and treatment-naive TB patient (Fig. 4a, b). In addition, the necrosis marker high-mobility group protein B1 (HMG1) was released from Mtbc-infected fibroblasts (Fig. 4c). LDH and HMG1 release was blocked in dexamethasone- or doramapimod-treated cells (lung fibroblasts, Mφ isolated from TB patients) (Fig. 4a–c). Collectively, these data link p38 MAPK activity to necrosis rather than apoptosis.

TNFa and necroptosis are dispensable for corticosteroid function. The prototype of regulated necrotic cell death is TNFa-dependent necroptosis involving a microfilament like complex orchestrated by phosphorylated receptor-interacting protein kinase 1 (RIPK1), RIPK3, and MLKL23. However, there are conflicting data regarding the role of this cell death mechanism in the pathogenesis of Mtbc10,15,24,25. Since corticosteroids have been shown to interfere with TNFa signaling, we investigated whether specific inhibition of the TNF receptor (TNFR), TNFa itself, or RIPK1 impacts on susceptibility of cells upon Mtbc infection. Interestingly, chemical TNFa inhibition using thalidomide, etanercept, or adalimumab as well as RIPK1 inhibition with necrostatins (Nec-1 and Nec-5) failed to protect Mtbc-infected host cells (Fig. 4d; Supplementary Fig. 7). Infected bone-marrow-derived monocytes (BMDM) from Mlk1+/− mice26 were as equally susceptible to Mtbc-dependent cell death as wild-type cells (Fig. 4e). Similar results were obtained in BMDM derived from Ntnf1−/− mice27 (Fig. 4f). Of note, chemical inhibition of p38 MAPK retained its cytoprotective activity in these knockout cells (Supplementary Fig. 8). These findings separate corticosteroid and p38 MAPK function from TNFa and necroptosis. Recent data indicate that certain triggers of necroptosis require caspase inhibition for execution of programmed cell death28–30. A pro-necrotic milieu can be generated by chemical caspase inhibition, which renders cells susceptible to necrostatin-1 blockade resulting in cell survival. To rule out that this effect occurs in Mtbc-infected cells, we treated human lung fibroblasts with both Z-VAD-FMK and necrostatin-1. This dual treatment had no cytoprotective effect despite caspase activation after Mtbc infection (Figs. 4g and 3a, b).

Host cell protection involves mitochondrial membrane permeability transition. Having established that necroptosis is an unlikely mechanism of p38 MAPK-driven cell death, we investigated alternative causes of regulated necrosis. In-depth evaluation of data derived from our high-throughput chemical genetic screen selecting for compounds that abrogate Mtbc-dependent cell death identified Cyclosporin A (CsA) as a highly cytoprotective hit compound (Supplementary Table 1). CsA inhibits opening of the mPTP by interacting with the mPTP-regulating protein cyclophilin D (CypD)23. CsA, but not FK506, a calcineurin inhibitor with no activity on CypD, was as protective as dexamethasone or doramapimod in our host cell survival assays indicating that mitochondrial membrane permeability transition (MPT) is required for Mtbc-induced cell death (Fig. 5a). Prolonged mPTP opening results in loss of mitochondrial membrane potential (ΔΨm), mitochondrial rupture, and necrotic cell death31. This effect was visualized using tetramethylrhodamine ethyl ester (TMRM) staining which detects ΔΨm changes. The cell permeable TMRM dye accumulated in healthy, non-infected Mφ but not in infected Mφ giving further proof that Mtbc kills host cells by mPTP opening which results in disruption of the mitochondrial membrane potential (Fig. 5b). Having identified CypD and the mPTP as a potential target of p38 MAPK-dependent host cell death, we speculated that chemical p38 MAPK inhibition might reduce mitochondrial CypD in infected cells.
Fig. 2 The protective effect of dexamethasone is mediated by MKP-1 and p38 MAPK inhibition. a Inhibition of MKP-1 by (E/Z)-Bcl hydrochloride or inhibition of the glucocorticoid receptor (GR) by Ru-486 in Mtb-infected MRC-5 lung fibroblasts (MOI 10) abrogates the protective effect of dexamethasone (5µM) on host cell survival. Viable fibroblasts were quantified 72 h post infection using PrestoBlue. b Protective effect of the GR agonist B653048 (10µM) in Mtb-infected human Mφ (MOI 1). Cells were stained with DAPI and the number of living cells was determined 48 h post infection. c Dexamethasone (5µM) treatment increases MKP-1 expression in infected MRC-5 lung fibroblasts 5 h after infection. Relative expression of MKP-1 was measured by quantitative real-time PCR (qRT-PCR). d-f Mtb induces p38 MAPK activation in J774.2 Mφ (d, e) and MRC-5 lung fibroblasts (f). Whole-cell lysates were obtained from infected cells treated with or without dexamethasone (5µM) and equal amounts of protein were subjected to western blot analysis to determine the levels of phosphorylated and total p38 MAPK. β-Actin was used as a loading control. Images are representative of two to three individual experiments. g, h Cytoprotective effect of the p38 MAPK inhibitor doramapimod (10µM) in Mtb-infected human Mφ from healthy donors (g) and TB patients (h). Cells were stained with DAPI and the number of living cells was determined 48 h post infection. i Doramapimod (10µM) inhibits Mtb-induced p38 MAPK phosphorylation. Quantification of phosphorylated p38 MAPK in MRC-5 lung fibroblasts infected with Mtb and treated with the p38 MAPK inhibitors BMS-582949 (10µM) or doramapimod by western blot. j Knock-down of p38 MAPK in Mtb-infected J774A.1 Mφ reduced mycobacterial cytotoxicity. Infected cells (MOI 3 and 5) were stained with DAPI and the number of surviving cells was determined after 48 h of infection. Data from one experiment with multiple replicates (a, b) or data pooled from four individual experiments (c) are shown; data from two individual experiments are shown in e and h. Data from three independent experiments (g, j) with multiple replicates are shown as mean ± SEM. Analysis was done using unpaired t-test (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).

Fig. 3 Mtb-induced cell death is independent of caspase activation. a Western blot analysis of proteolytic cleavage of caspase 3 in Mtb-infected J774.2 Mφ (MOI 5). Equal amounts of protein from infected J774.2 Mφ treated with or without dexamethasone (5µM) were subjected to immunoblot analysis for cleaved caspase 3 following 24 and 30 h of infection. β-Actin was used as a loading control. Images are representative of two individual experiments. b MRC-5 lung fibroblasts were infected with Mtb (MOI 10) and treated with dexamethasone (5µM), doramapimod (10µM), or Z-VAD-FMK (10µM) after 48 h caspase 3 and caspase 7 activity was assessed using a luminescent probe. Uninfected and staurosporine (1µM)-treated cells were used as controls. c, d Effect of caspase 3 and caspase 7 inhibition using the pan-caspase inhibitor Z-VAD-FMK (10µM) on survival of infected MRC-5 lung fibroblasts (c) and human Mφ from healthy donors (d). Viable fibroblasts were detected using PrestoBlue and Mφ were quantified by DAPI staining. Representative data from two experiments with multiple replicates are shown in b-d. Results are expressed as mean ± SEM. Analysis was done using unpaired t-test (ns not significant; **p ≤ 0.01; ***p ≤ 0.001).

cells. However, using CsA as a control, we did not observe decreased CypD levels in doramapimod or dexamethasone treated and Mtb-infected cells (Fig. 5c; Supplementary Fig. 9). Another important regulator of mPTP opening is the glycolytic enzyme hexokinase II (HKII). While not directly involved in pore formation, translocation and increased binding of HKII to mitochondria protects cells from stress induced by mPTP opening. Relative gene expression analysis showed that HKII is significantly up-regulated 5 h after Mtb infection (Fig. 5d). At this early time-point of infection, mitochondrial HKII levels were higher in infected versus non-infected J774 Mφ (Fig. 5e; Supplementary Fig. 10). However, at 24 h post infection HKII levels...
declined indicating that infected cells are not capable of maintaining protective HKII levels on the mitochondrial membrane (Fig. 5e). Intriguingly, dexamethasone and doramapimod treatment led to sustainably increased levels of mitochondrial HKII in infected cells (Fig. 5e). In human lung fibroblasts we observed a strong increase of cytosolic HKII 48 h after infection indicating significant HKII dissociation from the mitochondrion (Fig. 5f; Supplementary Fig. 11). This effect was fully abrogated in doramapimod-treated cells but not in cells treated with BMS-582949, the substance that fails to dephosphorylate p38 MAPK.
after Mtb infection (Fig. 5f). Mitochondrial HKII ensures tight coupling of glucose phosphorylation and ATP generation32. Parallel to mitochondrial dissociation of HKII, we observed a drastic decline of intracellular ATP levels after Mtb infection of different host cell types (Fig. 6a, b). This effect was reversed in dexamethasone and doramapimod treated cells (Fig. 6a, b). Co-treatment of Mtb-infected J774 Mφ with 3-bromopyruvate (3BP), an HKII inhibitor, abrogated the ATP-sparing effect of
Doramapimod treatment of mice is cytoprotective for infected Mφ. To determine whether in vivo chemical p38 MAPK inhibition has the potential to reduce necrotic cell death in mouse Mφ, we performed an experiment in which we treated C57BL/6 mice with doramapimod (100 mg/kg q.d.; i.p.) for 3 days. The following day, CD11b+ peritoneal Mφ were isolated using labeled magnetic microbeads and infected with Mtb at two different MOI. Twenty-four hours after infection, cell death was quantified by fluorescent staining. Mφ isolated from doramapimod-treated mice were strongly protected from Mtb-induced cell death in contrast to cells from mice receiving the vehicle only (Fig. 8). This finding highlights the potential of chemical p38 MAPK inhibition as a therapeutic option to abrogate necrotic cell death caused by Mtb infection. In addition, the experiment rules out a direct inhibitory effect of doramapimod on Mtb since Mφ infection was performed after in vivo treatment and extensive washing of CD11b+ selected monocytes.

Discussion

Here, by exploiting a high-throughput chemical genetics approach, we show that corticosteroids possess a so far undescribed TNFα-independent inhibitory effect on necrotic cell death. Our detailed analysis revealed a highly druggable process involving the GR, MKP-1, and p38 MAPK, which ultimately impacts on Mtb-induced necrosis by provoking mitochondrial MPT and loss of mitochondrial integrity (Fig. 9). Opening of the mPTP is an emerging mechanism of regulated necrosis which becomes increasingly associated with pathogenesis of several diseases. However, the exact molecular composition of the channel forming the mPTP is a matter of debate. Candidate molecules include the adenine nucleotide translocase, the voltage-dependent anion channel (VDAC), and components of the ATP synthase. A confirmed regulatory component of the pore complex is CypD. Accordingly, chemical CypD inhibition using CsA is a well-known mechanism to inhibit mPTP opening and has been previously shown to block Mtb-induced cell death. However, CsA is a non-selective cyclophylin inhibitor leading to immunosuppression by blocking calcineurin activity in T cells. Exploiting chemical mPTP inhibition as HDT requires either selective CypD inhibitors or substances that target alternative components of the complex. Here we showed that chemical activation of the GR or p38 MAPK inhibition does not impact on mitochondrial CypD but interferes with mitochondrial HKII function. HKII is primarily associated with the mitochondrial membrane where it binds VDAC and CypD. The interaction of HKII with mitochondria represents an intrinsic molecular mechanism to protect cells against stress cues ultimately leading to necrotic death. Mitochondrial HKII has the ability to inhibit reactive oxygen species generation at mitochondria which prevents opening of the mPTP. Subsequently, a decrease in HKII levels sensitizes cells to necrotic stimuli. However, little is known on regulatory aspects of HKII transcription, post-translational modification, and mitochondrial translocation. Here we provide indirect evidence that the activation of p38 MAPK by intracellular Mtb initiates mitochondrial dissociation of HKII, which, in turn, promotes cell death via mitochondrial permeability transition and ATP depletion. Interestingly, it was...
recently shown that pathogen-driven HKII dissociation represents an important means of immune sensing in other Gram-positive bacteria. Thus, HKII seems to be a common bacterial target in host–pathogen interactions of Gram-positive organisms, although the underlying molecular mechanisms still need to be determined. Our data showing that in Mtb-infected cells, HKII dissociation can be abrogated by MKP-1 activation (dexamethasone, BI653048) and p38 MAPK inhibition represent a possible molecular link to further elucidate the regulatory mechanisms of HKII.

p38 MAPK is a validated target in autoimmune and inflammatory diseases and several small-molecule inhibitors have been tested in clinical trials mainly against rheumatoid arthritis, psoriasis, and Crohn’s disease. Histopathological investigation of human biopsies revealed p38 MAPK phosphorylation in Mφ surrounding TB-granulomas, indicating that this kinase is engaged and may be a potential target for HDT in TB. We were surprised to identify differing activity of several commercially available and clinically tested p38 MAPK inhibitors. All tested substances are highly specific for p38 MAPK and display an IC_{50} in the nanomolar range. However, among the tested substances there are differences with regard to inhibition of the p38 MAPK isotypes α, β, γ, and δ. Doramapimod is a broad spectrum inhibitor potentially targeting all four isotypes whereas pamapimod is much more selective for the α and β isotypes. In addition, the reason for doramapimod being the sole inhibitor that maintained low phosphorylation levels of p38 MAPK at later time points of infection may also be found in its unique binding mechanism on the target kinase. Our data showing protection of Mφ after p38 MAPK gene knock down confirm dephosphorylation and activity data obtained using doramapimod and verify the key role of this kinase in Mtb-induced cell death.

It is unlikely that p38 MAPK directly interacts with mitochondrial bound HKII and identification of the linking molecule requires further research. A starting point could be p53, a regulatory protein which shuttles between different cell compartments and physically interacts with the mitochondrial membrane. We have generated preliminary data indicating that

Fig. 7 p38 MAPK inhibition fails to protect host cells infected with other bacteria. **a** Effect of dexamethasone (5μM) and doramapimod (10μM) on *Pseudomonas aeruginosa* (strain PAO1F)-infected (MOI 0.5) A549 human lung epithelial carcinoma cells. Viability of A549 cells was quantified 24 h post infection using resazurin. A ΔpscC mutant deficient in secretion of T3SS effector proteins was used as a control. **b** Dexamethasone (5μM) and doramapimod (10μM) have no cytoprotective effect in BMDM infected with *Listeria monocytogenes* (MOI 2). Host cell viability was quantified 20 h post infection by measuring LDH in the culture medium of the infected cells. A L. monocytogenes mutant strain (Listdhly) lacking the hly gene, which encodes the virulence factor listeriolysin O, was used as a control. **c** *Salmonella typhimurium*-infected J774.2 Mφ (MOI 3) were treated with dexamethasone (5μM) and doramapimod (10μM). Host cell viability was quantified 48 h post infection using resazurin. Data from one of two experiments are shown in **a** and **c**; data from two experiments with multiple replicates are shown in **b**. Results are expressed as mean ± SEM and experiments were analyzed using unpaired t-test (ns not significant; ***p ≤ 0.001).

Fig. 8 Doramapimod treatment of mice is protective for peritoneal macrophages. Treatment of C57BL/6 mice with doramapimod is protective for Mtb-infected peritoneal Mφ (PM). Mice received doramapimod (100 mg/kg q.d.; i.p.) for 3 days. PM were isolated by CD11b+ selection and infected with Mtb (MOI 2 or MOI 3). Cell survival was assessed 24 h after infection by DAPI staining, using uninfected PM as a control. Control mice received the vehicle PEG 400. Results are expressed as mean ± SEM and experiments were analyzed using unpaired t-test (***p ≤ 0.001).
chemical p53 inhibition in Mtb-infected cells has similar effects as p38 MAPK inhibition with regard to cytotoxicity and ATP depletion (Supplementary Fig. 13). In the past decade, numerous reports have highlighted the crucial role of p53 in host-pathogen interactions, and p38 is known to influence mPTP either by its own mitochondrial translocation or by indirect modulation of mPTP components including HKII. In addition, p38 MAPK-mediated p53 phosphorylation constitutes a critical step in pathogen-driven cell death and chemotherapeutic killing of cancer cells. This possible link in Mtb pathogenesis requires a more detailed examination in the future.

By using genetic and chemical targeting, we provide clear evidence that TNFα and RIPK1/MLKL-driven necroptosis is not involved in corticosteroid- and p38 MAPK-dependent mitochondrial depolarization in Mtb-infected cells. Two studies linked RIP-kinase signaling to mitochondrial membrane depolarization and cell death in TB and trafficking of HKII either via its own HKII-independent host-cell death and chemotherapeutic killing of cancer cells. This possible link in Mtb pathogenesis requires a more detailed examination in the future.

In summary, our report indicates that Mtb infection leads to phosphorylation of p38 MAPK and mitochondrial HKII dissociation, which mediates cell death via mitochondrial permeability transition and ATP depletion. A mechanism which can be disrupted by MKP-1 activation (dexamethasone, BI653048) and p38 MAPK inhibition (Fig. 9). These findings may have the potential to extend the portfolio of host-directed anti-TB therapies. Finally, we provide proof of concept for readout switching from bacterial growth inhibition to host cell survival, which can identify inhibitors of Mtb-induced necrotic host cell death in future high-throughput drug screens.

Methods

Ethics statement. All animal experiments were performed in accordance with institutional, state, and federal guidelines (approved by the Landesamt fuer Natur, Umwelt und Verbraucherschutz (LANUV) North Rhine-Westphalia, Germany).

Blood samples were obtained from patients with active TB before therapy was initiated and from healthy volunteers. The study was approved by the University of Cologne Ethics Committee (18-079). Patients as well as healthy volunteers participated after giving written informed consent.

Drugs used in this study. Rifampicin was purchased from PBI Chem. Bromopyruvic acid, dexamethasone, gentamicin, staurosporine, and thalidomide were purchased from Sigma-Aldrich. Cyclosporin A, doramapimod, moxifloxacin, necrostatin-1, necrostatin-5, and tacrolimus (FK506) were obtained from Cayman Chemicals. BMS-582949, pemamipimod, and Z-YAD-FMK were purchased from Selkechem. Puromycin dihydrochloride was from Carl Roth (Germany). GR agonist BI653048 was provided by the opnMe platform (Boehringer Ingelheim). The Prestwick chemical library was used for high-throughput screening.

Mice. Six- to eight-week-old female C57BL/6J mice were bred in-house and used at an age of 8–12 weeks. Animals were housed under specific pathogen-free conditions in the Laboratory Animal Facility of the University Hospital Cologne.

Isolation of human macrophages. Human mononuclear leukocytes were isolated from the blood of healthy donors or TB patients and monocytes were obtained by magnetic-activated cell sorting (MACS) of CD14+ cells using CD14 MicroBeads (Miltenyi Biotec). Monocytes were differentiated into Mφ for 4 days in Roswell Park Memorial Institute 1640 (RPMI) medium supplemented with 1% fetal bovine serum (FBS) and 50 μg/ml human macrophage colony-stimulating factor (M Rafith Genetec). Before infecting primary Mφ with varying MOI (1 or 2) of Mtb, the growth media was changed to RPMI supplemented with 10% FBS. Mφ were grown at 37°C with 5% CO2.

Isolation of mouse macrophages. Bone-marrow-derived Mφ (BMDM) were isolated as previously described. Briefly, mice were sacrificed by cervical dislocation, the legs were removed, and dissected from adherent tissue. Femurs and
of 8 × 10^4 cells per well in a 96-well plate and differentiated into macrophages for further processing software.

was detected using a Tecan Safire 2.0 reagent to the samples at a ratio of 1:1 and incubating the plate for 10 min at room temperature. Lysed cells were used as a maximum LDH activity control and untreated cells were used as spontaneous LDH release control. For primary human Mφ, 1 × 10^5 cells per well were infected with an MOI of 1 or 2 with Mtb and the supernatant was collected 24 and 48 h post infection to measure the release of LDH.

ATP assay. The CellTiter-Glo® 2.0 Assay (Promega) was conducted according to the manufacturer’s recommendations. Harvested MRC-5 lung fibroblasts and J774.2 Mφ were seeded in a 96-well plate (2 × 10^5 cells per well) and infected with Mtb Erdman at an MOI of 10 and 5, respectively. Twenty-four, 48 and 72 h post infection the amount of ATP was quantified by adding the CellTiter-Glo® 2.0 reagent to the samples and incubating the plate for 10 min at 37 °C. Afterwards luminescence was measured in a BioTek Cytation 3 Cell Imaging Multi-Mode Reader.

Isolation of mitochondria. For the isolation of mitochondria from infected MRC-5 lung fibroblasts (MOI 10) and J774.2 Mφ (MOI 5) the Mitochondria Isolation Kit for Cultured Cells (Thermo Fisher Scientific) was used according to the manufacturer’s recommendations. Briefly, 5 and 24 h post infection 1 × 10^5 cells were washed several times with PBS and detached from the culture dish using a cell scraper. Mitochondria were obtained using the reagent-based method. For separation of the mitochondrial and the cytosolic fraction, the sample was centrifuged at 12,000 × g for 15 min at 4 °C. The mitochondrial lysate was kept at 4 °C and the cytosolic fraction was stored at −80 °C. The purity of the mitochondrial fraction was analyzed by western blotting.

TMRR staining. J774.2 Mφ were seeded in a 96-well plate (5 × 10^5 per well) and infected with Mtb Erdman at an MOI of 5 for varying times (24 and 48 h). For staining with TMRR, cells were washed several times with PBS before adding a final concentration of 100 nM of TMRR (Sigma-Aldrich). Cells were incubated at 37 °C in 5% CO₂ for 30 min and washed with PBS. Images were acquired on an IX81 inverted microscope (Olympus) using cellSens standard software (Olympus) as well as Fiji processing software.

Immunoblot analysis. 1 × 10^6 MRC-5 lung fibroblasts or J774.2 Mφ were infected in 10 cm culture dishes and allowed to adhere for at least 24 h before infection. Whole-cell lysates were obtained 5, 24, 30, and 48 h post infection using radioimmunoprecipitation assay (RIPA) buffer. The protein concentration was measured using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to a PVDF membrane followed by the Trans-Blot Turbo™ Transfer System (Bio-Rad). The membrane was blocked for 1 h with either 5% dried milk for total proteins or 5% bovine serum albumin for phosphorylated proteins in Tris-HCl buffer (10 mM, pH 7.2). The membranes were separated and incubated with antibodies for different time periods before washing several times with Tris buffered saline (TBS; 25 mM Tris, 125 mM NaCl, pH 7.2) containing 0.1% Tween 20 and 0.1% BSA. The bands were visualized using the ECL Western Blotting System (Pierce).

CFU determination. J774.2 Mφ were seeded one day prior to the infection in 96-well plates at a density of 5 × 10^5 cells well. Cells were pre-treated with different drugs for 2 h and infected with Mtb Erdman at an MOI of 2. The following day, cells were washed several times with PBS to remove unphagocytosed bacteria and fresh medium containing compounds or DMSO was added. Plates were sealed and incubated at 37 °C in 5% CO₂. Five days post infection cells were lysed with 0.1% sodium dodecyl sulfate (SDS). Viable bacteria were grown in serial dilutions on 7H10 agar plates. Colonies were counted after 10–14 days of incubation at 37 °C.

HMGB1 ELISA. The release of HMGB1 from cells was detected by using a HMGB1 ELISA kit (IBL International). Briefly, 1 × 10^6 MRC-5 lung fibroblasts were seeded in a six-well plate and the following day cells were infected with Mtb Erdman at an MOI of 10. Infected cells were incubated for 48 h at 37 °C in 5% CO₂ and the supernatant was collected. The samples were transferred into a 96-well plate pre-coated with polyclonal anti-HMGB1 and incubated for 24 h at 37 °C. Afterwards, HMGB1 conjugated to peroxidase was added to the plate and the plate was incubated for another 2 h at 25 °C. For detection, TMB substrate solution was used. The absorbance was measured and analyzed using a Multiskan™ FC Microplate Photometer with internal software (Thermo Fisher Scientific).

Caspase assay. Caspase activity was measured with the Caspase-Glo® 3/7 Assay according to the manufacturer’s instructions (Promega). Cells were harvested and seeded at a density of 2 × 10^6 cells per well in a 96-well plate. Following adherence of the cells, PM were infected with Mtb (MOI 2 or 3) for 24 h and analyzed by fluororescence microscopy.

Culture conditions of bacteria. The mycobacterial strain Erdman (provided by S.T. Cole) was grown in Middlebrook 7H9 broth, supplemented with 10% albumin dextrose catalase (ADC), 0.05% Tween-80 and 0.2% glycerol, or 7H10 agar plates, supplemented with 10% ADC and 0.5% glycerol. All *P. aeruginosa* strains (PA01F WT and PA01F ΔpscD) were routinely grown in 2xYT medium and all *S. typhimurium* strains as well as *L. monocytogenes* strains were grown in brain heart infusion medium.

Survival assays. For the survival assays, compounds were preplated into 96-well plates at different concentrations. MRC-5, J774.2 Mφ, or A549 cells were harvested and seeded at a density of 2 × 10^4 cells per well and were allowed to adhere for 3 h.

Cell culture. MRC-5 human lung fibroblasts were provided by the Correll Institute for Medical Research and cultured in minimum essential medium (MEM) supplemented with 10% heat-inactivated FBS(PAN-Biotec), 1% non-essential amino acids, and 1% sodium pyruvate. J774A.1 Mφ and J774.2 Mφ (ATCC) were grown in DMEM supplemented with 10% FBS. BV-2 microglia were grown in DMEM supplemented with 10% FBS and 1% sodium pyruvate. A549 human lung epithelial carcinoma cells (ATCC) were grown in RPMI medium supplemented with 10% FBS.

Fluorescence microscopy. For fluorescence microscopy j774 Mφ and BV-2 microglia were seeded at a density of 2 × 10^4 cells per well in a 96-well plate. Following adherence, cells were infected with Mtb Erdman with varying MOI.

Cytoskeleton staining. J774.2 Mφ were infected at an MOI of 10. Infected cells were incubated for 48 h at 37 °C in 5% CO₂ and the supernatant was collected. The samples were transferred into a 96-well plate pre-coated with polyclonal anti-HMGB1 and incubated for 24 h at 37 °C. Afterwards, HMGB1 conjugated to peroxidase was added to the plate and the plate was incubated for another 2 h at 25 °C. For detection, TMB substrate solution was used. The absorbance was measured and analyzed using a Multiskan™ FC Microplate Photometer with internal software (Thermo Fisher Scientific).

LDH release assay. The Pierce™ LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific) was conducted according to the manufacturer’s recommendations. Harvested MRC-5 lung fibroblasts and J774.2 Mφ were seeded in a 96-well plate (5 × 10^3 per well) and infected with Mtb Erdman at an MOI of 10 and 5, respectively. Twenty-four, 48 and 72 h post infection the release of LDH in the supernatant of cells was analyzed by measuring the reduction of tetrazolium salt to a red formazan product in a BioTek Cytation 3 Cell Imaging Multi-Mode Reader (Biotek). The reaction mixture was added to the samples at a ratio of 1:1 and the plates were incubated for 30 min at room temperature. Lysed cells were used as maximum LDH activity control and untreated cells were used as spontaneous LDH release control. For primary human Mφ, 1 × 10^5 cells per well were infected with an MOI of 1 or 2 with Mtb and the supernatant was collected 24 and 48 h post infection to measure the release of LDH.

ATP assay. The CellTiter-Glo® 2.0 Assay (Promega) was conducted according to the manufacturer’s recommendations. Harvested MRC-5 lung fibroblasts and J774.2 Mφ were seeded in a 96-well plate (2 × 10^5 cells per well) and infected with Mtb Erdman at an MOI of 10 and 5, respectively. Twenty-four and 48 h post infection the amount of ATP was quantified by adding the CellTiter-Glo® 2.0 reagent to the samples at a ratio of 1:1 and incubating the plate for 10 min at room temperature. Afterwards luminescence was measured in a BioTek Cytation 3 Cell Imaging Multi-Mode Reader.

Immunoblot analysis. 1 × 10^6 MRC-5 lung fibroblasts or J774.2 Mφ were seeded in 10 cm culture dishes and allowed to adhere for at least 24 h before infection. Whole-cell lysates were obtained 5, 24, 30, and 48 h post infection using radioimmunoprecipitation assay (RIPA) buffer. The protein concentration was measured using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to a PVDF membrane followed by the Trans-Blot Turbo™ Transfer System (Bio-Rad). The membrane was blocked for 1 h with either 5% dried milk for total proteins or 5% bovine serum albumin for phosphorylated proteins in Tris-HCl buffer (10 mM, pH 7.2). The bands were visualized using the ECL Western Blotting System (Pierce).
Quantitative real-time PCR. For the isolation of total RNA, the RNeasy Mini Kit (Qiagen) was used. Briefly, 1 x 10^6 MRC-5 lung fibroblasts and J774.2 Mφ were seeded in a six-well plate and infected with Mtb Erdman at an MOI of 10 and 5, respectively. Five and 24 h post infection, cells were washed several times with PBS, detached from the plate by using a cell scaper, and lysed with RLT buffer containing β-mercaptoethanol. Quantification of RNA was done using a NanoDrop spectrophotometer (Thermo Fisher Scientific). A_260/A_280 ratios of all samples remained within the range of 1.90–2.10. cDNA synthesis was performed with the SuperScript III First-Strand Synthesis SuperMix for qRT-PCR (Thermo Fisher Scientific) and real-time PCR was conducted using Light Cycler Fast Start DNA MasterPLUS SYBR Green Kit (Roche) and specific primers for hexokinase II (fw 5′-CTTAACGGGTGTCCGGA; rev 5′-AGAAGGGCTGATACCTCGG), MKP-1 (fw 5′-GGAATCTGGGTGCAGT; rev 5′-AGAAGGGCTGATACCTCGG), p38 MAPK (fw 5′-GCCCGAAGCAGTACAC; rev 5′-GGCTAAGAAGGTCTCGGACA), GAPDH (fw 5′-GGATATGGTGAAAAAGC; rev 5′-GGTTCTGCGTGTTGAG), and HMBS (fw 5′-TGCACGTACCCGAGG; rev 5′-GGTTGAGATGTTGACG). The analysis was done by comparative Ct method and Ct values were normalized against the house-keeping genes GAPDH and HMBS. To eliminate non-specific amplification, a melting curve analysis was performed.

Generation of a p38 knock-down macrophage cell line. Utilizing the retroviral MSCV-LTRmiR30-PIG (MLP) vector\(^*\) a p38-specific shRNA based on predictions from siRNA Scales\(^*\) and RNAI central (http://kataladin.cshl.edu) (Sequence: TGCCTGTTGACGAGGATGACCATCTGGTGCATATGATAATGGAACCCAGACGTATTCATCATCAAGATGAGTGAAGTCGTCACTCGCTACGCTCCGGA) was generated. J774A.1 cells were transduced with shP38-MLP and MLP control vector respectively by puromycin selection. Knock-down efficiency was determined by qRT-PCR as described above.

Statistical analysis and general methods. Data are expressed as mean ± SD or mean ± SEM. The data were analyzed with the Graphpad Prism version 7 software program. Differences were assessed using two-tailed Student t-tests and differences with p values of < 0.05 were considered to be statistically significant. Sample size for animal studies was chosen based on prior experience with similar models and published data showing similar experiments. No data were excluded from the analysis of experiments. Mice were commercially sourced and randomized into experimental groups upon arrival, and all animals within a single experiment were processed at the same time, there was no blinding performed. Data display similar experimental groups upon arrival, and all animals within a single experiment were processed at the same time, there was no blinding performed. Data display similar...
36. Arthur, J. S. & Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

37. Rand, L., Green, J. A., Saravia, L., Friedland, J. S. & Elkington, P. T. Matrix metalloproteinase-1 is regulated in tuberculosis by a p38 MAPK-dependent, p-aminosalicylic acid-sensitive signaling cascade. J. Immunol. 182, 5865–5872 (2009).

38. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

39. Marchenko, N. D. & Moll, U. M. Mitochondrial death functions of p53. Mol. Cell. Oncol. 1, e955995 (2014).

40. Siegl, C. & Rudel, T. Modulation of p53 during bacterial infections. Nat. Rev. Microbiol. 13, 741–748 (2015).

41. Mathupala, S. P., Heese, C. & Pedersen, P. L. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem. 272, 22776–22780 (1997).

42. Gu, Z. T. et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci. Rep. 5, 11497 (2015).

43. Zawacka-Pankau, J. et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J. Biol. Chem. 286, 41600–41615 (2011).

44. Perfettini, J. L. et al. Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J. Exp. Med. 201, 279–289 (2005).

45. Sanchez-Prieto, R., Rojas, J. M., Taya, Y. & Gutkind, J. S. A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res. 60, 2464–2472 (2000).

46. Wallis, R. S. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis. 41, 201–208 (2005).

47. Andree, M. et al. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. EMBO J. 33, 2171–2187 (2014).

48. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

49. Matveeva, O. et al. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35, e63 (2007).

Acknowledgements

We thank Prof. Thomas Langmann (Chair of Experimental Immunology of the Eye, University of Cologne) for providing BV-2 microglial cells. M. Chambon, D. Banfi, and N. Ballanfat (BSF, EPFL) were of great help during assay development and HTS. Prof. M. Fabri and Julia Steiger (Department for Dermatology, University Hospital of Cologne, Germany) assisted with human macrophage isolation. Pseudomonas strains and reagents were kindly provided by Prof. Arne Rietsch (Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA). This work was supported by the Thematic Translational Unit Tuberculosis (TTU TB, grant number TTU 02.806 and 02.905) of the German Center of Infection Research (DZIF). Financial support was received from the German Research Foundation (DFG RY 159) and the Center for Molecular Medicine Cologne (ZMMK–CAP8).

Author contributions

J.R. designed the study. J.G., E.vG., S.W., F.S., A.E., M.F., M.H., and M.S. performed biological experiments. I.S. provided patient samples. C.H., L.W., C.P., M.P., and H.K. generated knockout cell lines and mice. J.G. analyzed the data. J.G. and J.R. wrote the paper with input and approval from all authors.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-08405-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Randall J. Basaraba and the other anonymous reviewer for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019