Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae)

Appadurai Daniel Reegan*, Munusamy Rajiv Gandhi, Micheal Gabriel Paulraj, Savarimuthu Ignacimuthu

Division of Vector Control, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India.

Received: July 23, 2014
Revised: August 18, 2014
Accepted: August 25, 2014

KEYWORDS: bioassay, medicinal plant extracts, vector mosquitoes

Abstract

Objectives: To evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely Aegle marmelos (Linn.), Limonia acidissima (Linn.), Sphaeranthus indicus (Linn.), Sphaeranthus amaranthoides (burm.f), and Chromolaena odorata (Linn.) against Culex quinquefasciatus and Aedes aegypti mosquitoes. Three solvents, namely hexane, ethyl acetate, and methanol, were used for the preparation of extracts from each plant.

Methods: Four different concentrations—62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm—were prepared using acetone and tested for ovicidal and oviposition deterrent activities. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey’s test of comparison.

Results: Among the different extracts of the five plants screened, the hexane extract of L. acidissima recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. Similarly, the same hexane extract of L. acidissima showed 100% oviposition deterrent activity at all the tested concentrations against Cx. quinquefasciatus and Ae. aegypti adult females.

Conclusion: It is concluded that the hexane extract of L. acidissima could be used in an integrated mosquito management program.

1. Introduction

Mosquitoes are medically important insects and are considered major public health pests [1]. Mosquitoes transmit many dreadful diseases to humans and other vertebrates; therefore, they have been declared “Public Enemy Number One” [2]. Mosquitoes belonging to the genera Aedes and Culex are transmitting dengue, dengue
hemorrhagic fever, yellow fever, chikungunya, Japanese encephalitis, and filariasis [3,4]. Mosquito bites cause allergic responses including local skin reactions and systemic reactions such as angioedema and urticaria [5]. Tropical areas are more vulnerable to mosquito-borne diseases and the risk of contracting arthropod-borne illnesses is increased due to climate change and intensifying globalization [6].

It is imperative to control mosquitoes in order to prevent mosquito-borne diseases and improve public health. *Aedes aegypti* is the primary vector of dengue, dengue hemorrhagic fever, and chikungunya. Dengue fever is endemic in south-east Asia including India, Bangladesh, and Pakistan [7]. Dengue fever has become an important public health problem as the number of reported cases continues to increase, especially with more severe forms of the disease such as dengue hemorrhagic fever and dengue shock syndrome or with unusual symptoms such as central nervous system involvement [8,9]. *Culex quinquefasciatus* is an important vector of lymphatic filariasis in tropical and subtropical regions. It is a pantropical pest and urban vector of *Wuchereria bancrofti* [10] and is possibly the most abundant house mosquito in towns and cities of tropical countries. According to [11], about 90 million people worldwide are infected with *W. bancrofti*, and 10 times more people are at risk of being infected. In India alone, 25 million people harbor microfilaria (mf) and 19 million people suffer from filarial disease manifestations [12].

In recent years, mosquito control programs have suffered a setback because mosquitoes are developing resistance to synthetic chemical insecticides such as organochlorides, organophosphates and carbamates and insect growth regulators such as methoprene, pyriproxyfen, and diflubenzuron [13–16]. Moreover, many organophosphates and organochlorides adversely affect the environment and damage biological systems [17]. These side effects of synthetic chemicals prompted many researchers to find environment-friendly alternatives for mosquito management. Literature reveals sufficient amounts of work on the mosquito control potential of plant extracts and plant essential oils [18–25].

The present study was undertaken to evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely *Aegle marmelos* (Linn.), *Sphaeranthus indicus* (Linn.), *Sphaeranthus amaranthoides* (Burm.f), *Limonia acidissima* (Linn.), and *Chromolaena odorata* (Linn.) against *Ae. aegypti* and *Cx. quinquefasciatus* mosquitoes.

2. Materials and methods

2.1. Collection of plant material

The matured leaves of each plant were collected from Chennai, Tirunelveli and surrounding areas in Tamil Nadu, India and the plant species were authenticated by a Botanist at Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India. The voucher specimens (ERI-LA-MOS-210-214) of each plant species were deposited in the herbarium of the institute. The collected leaves were shade dried for 5 days and coarsely powdered using an electric blender.

2.2. Preparation of solvent extracts

Crude extracts were prepared from the powdered leaves of each plant by a sequential extraction method using hexane, ethyl acetate, and methanol solvents (Fisher Scientific and Himedia, Chennai, India). Leaf powder (1 kg) of each plant was soaked in 3 L of hexane for 48 hours with intermittent shaking. The extract was filtered through Whatman No. 1 filter paper, concentrated in a rotary evaporator (Medica instruments Mgf.Co. Sl.No:EV11.JF.012), and finally dried in vacuum. The residue was soaked in other solvents consecutively and extracted. All the crude extracts were stored at 4°C in air-tight glass vials in the dark until used.

2.3. Test mosquitoes

The mosquito life stages used in this study were obtained from the Entomology Research Institute, and they were free of exposure to pathogens, insecticides, or repellents. The rearing conditions were: 28 ± 1°C; 70–75% relative humidity (RH); and 11 ± 0.5-hour photoperiod [26].

2.4. Ovicidal assay

Ovicidal activity was studied following the method of Elango et al [27]. Twenty five freshly laid eggs of *Ae. aegypti* and *Cx. quinquefasciatus* were separately exposed to four different concentrations, namely 62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm, prepared using acetone. Each concentration was replicated five times. Control (acetone in water) was maintained separately and egg mortality was observed under the microscope. Azadirachtin (10 ppm) and temephos (10 ppm) were used as positive controls for comparison with five replications each. The percent ovicidal activity was assessed at 120 hours post-treatment using the following formula:

\[
\text{Percent ovicidal activity} = \frac{\text{Number of unhatched eggs}}{\text{Total number of eggs introduced}} \times 100
\]

2.5. Oviposition deterrent assay

The oviposition deterrent activity was assessed using earlier reported methods [27,28] with slight modifications. Ten blood-fed females of *Ae. aegypti* and *Cx. quinquefasciatus* (10 days old, 2 days after blood feeding) were transferred to separate cages (45 cm × 45 cm × 45 cm) made of mosquito net with a
muslin socket on the front side for access. In each cage, four plastic bowls holding 200 mL of tap water were placed in opposite corners of each cage; one bowl was treated with the test material (extract), two bowls were used for positive control (temephos and azadirachtin), and the other one served as control. The concentrations used were 62.5 ppm, 125 ppm, 250 ppm, and 500 ppm. Each concentration was replicated five times. Sucrose solution (10%) was provided to the adult as feed throughout the study period. Experiments were carried out at room temperature (28 ± 1°C; RH: 70–75%) for a period of 72 hours. After 72 hours, the number of eggs laid in each bowl was counted and recorded. The percent effective repellency (ER) for each concentration was calculated using the following formula:

\[
\text{Effective repellency (ER)}(\%) = \frac{\text{NC} - \text{NT}}{\text{NC}} \times 100(\%)
\]

where NC is the number of eggs in the control, and NT is the number of eggs in the treatment.

2.6. Statistical analysis

The mean values and standard deviations were calculated from replication data. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey’s test of multiple comparisons using SPSS software (version 11.5; SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Ovicidal activity results

Among the different extracts of the five plants screened, the hexane extract of *L. acidissima* recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively (Tables 1 and 2). The hexane extract of *A. marmelos* recorded moderate ovicidal activity of 53.6% and 48.8% at 500 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively (Tables 1 and 2). The ethyl acetate extract of *C. odorata* recorded 42.4% and 13.6% at 500 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively. The other two plant extracts showed much less ovicidal activity. The positive control temephos recorded ovicidal activity of 95.2% and 92.8% at 10 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively. Temephos recorded 46.4% and 44% at 10 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively (Tables 1 and 2). Overall, the ovicidal activity was higher against *Cx. quinquefasciatus* eggs than *Ae. aegypti* eggs.

3.2. Oviposition deterrent activity results

Among the five plant extracts screened, the hexane extract of *L. acidissima* showed 100% oviposition...
At 500 ppm concentration, the hexane extract of *A. marmelos* and *Cx. quinquefasciatus* deterrent activity at all the tested concentrations against *Cx. quinquefasciatus* and *Ae. aegypti*, respectively (Tables 3 and 4). The ethyl acetate extract of *S. amaranthoides* recorded 22.31% and 20.48% oviposition deterrent activity at 500 ppm concentration against *Cx. quinquefasciatus* and *Ae. aegypti*, respectively. The extracts of *S. indicus* and *C. odorata*

Table 2. Percent ovicidal activity of crude extracts against *Aedes aegypti* eggs.

Mosquito species	Plant Treatment	Concentration (ppm)
Aedes aegypti		
Aegle marmelos	Hexane	6.4 ± 1.78^ab
	Ethyl acetate	1.6 ± 2.19^cd
	Methanol	4 ± 2.82^bc
Limonia acidissima	Hexane	8 ± 2.82^a
	Ethyl acetate	2.4 ± 2.19^cd
	Methanol	0 ± 1.78^e
Sphaeranthus indicus	Hexane	0 ± 1.6 ± 2.19^d,e
	Ethyl acetate	0 ± 1.78^e
	Methanol	0 ± 1.6 ± 2.19^d,e
Sphaeranthus amaranthoides	Hexane	0 ± 1.6 ± 2.19^d,e
	Ethyl acetate	0 ± 1.6 ± 2.19^d,e
	Methanol	0 ± 1.6 ± 2.19^d,e
Chromolaena odorata	Ethyl acetate	1.6 ± 3.57^cd
	Methanol	0 ± 1.6 ± 3.57^cd
	Control	0 ± 1.6 ± 3.57^cd
Azadirachtin (10 ppm)	Ethyl acetate	92.8 ± 3.34
	Temephos (10 ppm)	44 ± 2.82

Data are mean ± standard deviation (SD) of five replicates. Means are separated by Tukey’s test of multiple comparisons, one-way analysis of variance (ANOVA). ppm = parts per million. Results with same letters in the column are not significantly different.

Table 3. Percent oviposition deterrent activity of crude extracts against *Cx. quinquefasciatus* adult females.

Mosquito species	Plant Treatment	Concentration (ppm)
Cx. quinquefasciatus	Hexane	23.09 ± 2.22^b
	Ethyl acetate	8.73 ± 2.15^e
	Methanol	100^a
Limonia acidissima	Hexane	2.81 ± 1.79^d
	Ethyl acetate	5.11 ± 2.74^f
	Methanol	0 ± 1.78^e
Sphaeranthus indicus	Hexane	2.06 ± 1.21^de
	Ethyl acetate	0.32 ± 0.29^de
	Methanol	0 ± 1.6 ± 2.19^d,e
Sphaeranthus amaranthoides	Hexane	2.48 ± 2.01^de
	Ethyl acetate	0 ± 1.6 ± 2.19^d,e
	Methanol	0 ± 1.6 ± 2.19^d,e
Chromolaena odorata	Ethyl acetate	8.62 ± 1.09
	Temephos (10 ppm)	10.27 ± 1.75

Data are mean ± standard deviation (SD). Means are separated by Tukey’s test of multiple comparisons, one-way analysis of variance (ANOVA). ppm = parts per million. Results with same letters in the column are not significantly different.
showed the least oviposition deterrent activity at all the tested concentrations against two mosquito species (Tables 3 and 4).

4. Discussion

Over the past 5 decades, synthetic pesticides have been indiscriminately used against vector mosquitoes. As a result, side effects such as environmental pollution and toxic hazards to humans and other nontarget organisms were created. These side effects of synthetic chemicals created awareness of the need for ecofriendly and target-specific pesticides for mosquito control [29,30]. It is clearly proven that plant extracts and plant compounds are ecofriendly, target-specific, less expensive, and highly efficacious pesticides for the control of vector mosquitoes [31,32].

In the present study, the hexane extract of *L. acidissima* recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of *Cx. quinquefasciatus* and *Ae. aegypti*, respectively. Previously, some investigators studied the ovicidal activity of plant extracts against mosquito eggs. Elango et al [27] reported that *Cocculus hirsutus* methanol extract caused 86% and 100% ovicidal activity at 500 ppm and 1000 ppm, respectively against *An. subpictus*. In another study, 100% ovicidal activity was recorded by a methanol extract of *Andrographis paniculata* at 150 ppm concentration in *An. stephensi* eggs [33].

Furthermore, the same hexane extract of *L. acidissima* showed 100% oviposition deterrent activity at all the tested concentrations (62.5–500 ppm) against *Cx. quinquefasciatus* and *Ae. aegypti* adult females. Previously, some investigators reported the oviposition deterrent effect of plant extracts against vector mosquitoes. Coria et al [34] reported 100% oviposition deterrent effect obtained with *Melia azedarach* L. leaf extract at 1 g/L concentration against *Ae. aegypti*. Autran et al [35] recorded the oviposition deterrent effect of essential oil obtained from leaves, inflorescence, and stem of *Piper marginatum* Jacq. Their results showed that essential oil of leaves and stems of *P. marginatum* exhibited oviposition deterrent effect on *Ae. aegypti* females at 50 ppm and 100 ppm concentration and that the number of eggs laid was significantly lower (<50%) compared to control. Similarly, Prajapati et al [36] reported that the bark oil of *Cinnamomum zeylanicum* reduced the oviposition of *Ae. aegypti* to 50% at 33.5 ppm concentration.

In conclusion, the hexane extract of *L. acidissima* was the most potent treatment against the two tested mosquito vectors. Based on these results, the hexane extract of *L. acidissima* could be used in vector mosquito control and may be further probed to isolate the active constituent responsible for the bioactivities.

Conflicts of interest

The authors do not have any conflicts of interest.

Acknowledgments

The authors are thankful to the Entomology Research Institute for financial assistance. The authors would like to thank Mr. S. Mutheeswaran, Entomology Research Institute for financial assistance.

Table 4. Percent oviposition deterrent activity of crude extracts against *Aedes aegypti* adult females.

Mosquito species	Plant Treatment	Concentration (ppm)
Aedes aegypti	*Aegle marmelos*	Hexane
		62.5
	Ethyl acetate	21.02 ± 2.11b
	Methanol	0e
Limonia acidissima	Hexane	100a
	Ethyl acetate	1.20 ± 0.47de
Sphaeranthus indicus	Hexane	0e
	Ethyl acetate	0e
Sphaeranthus amaranthaeides	Hexane	2.27 ± 1.59de
Chromolaena odorata	Hexane	0e
	Ethyl acetate	2.07 ± 1.69de
Temephos (10 ppm)	Methanol	0e
	Ethyl acetate	0e
Azadirachtin (10 ppm)	Methanol	9.93 ± 2.15c

Data are the mean ± standard deviation (SD). Means are separated by Tukey’s test of multiple comparisons, one-way analysis of variance (ANOVA).

\(p \leq 0.5 \), level of significance. ppm = parts per million. Results with same letters in the column are not significantly different.
Institute, Loyola College, Chennai, India for his help in identifying plant materials.

References

1. Aregawi M, Cibulskis R, Otten M, et al. World malaria report. Geneva: WHO; 2008. p. 190.
2. World Health Organization. Report of the WHO Informal Consultation on the “Evaluation and Testing of Insecticides.” Geneva: WHO; 1996. p. 69.
3. Rahuman AA, Bagavan A, Kamaraj C, et al. Efficacy of the larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 2009 Jun;104(6):1365–72.
4. Borah R, Kalita MC, Kar A, et al. Larvicidal efficacy of Toddalia asiatica (Linn.) Lam against two mosquito vector Aedes aegypti and Culex quinquefasciatus. Afr J Biotechnol 2010 Apr;9(16):2527–30.
5. Peng Z, Yang J, Wang H, et al. Production and characterization of traditionally used plant-based insect repellents against the malaria vector Anopheles arabiensis Patton. Parasitol Res 2010 Apr;106(5):1217–23.
6. Karunamoorthy K, Ilango K, Murugan K. Laboratory evaluation of traditionally used plant-based insect repellents against the malaria vector Anopheles arabiensis Patton. Parasitol Res 2010 Apr;106(5):1217–23.
7. Akram DS, Ahmed S. Dengue fever. Infect Dis J 2005;14:124–5.
8. Hendarto SK, Hadinegoro SR. Dengue encephalopathy. Acta Paediatr Jap 1992 Jun;34(3):350–7.
9. Pancharoen C, Kulwichit W, Tantawichien T, et al. Dengue haemorrhagic fever: a global concern. J Med Assoc Thai 2002 Jun;85(Suppl. 1):S25–33.
10. Holder P. The mosquitoes of New Zealand and their animal disease significance. Surveillance 1999;26(4):12–5.
11. World Health Organization. Lymphatic filariasis. WHO Technical Report Series. Geneva: WHO; 1992. p. 702.
12. National Institute of Communicable Diseases. Proceedings of the National Seminar on Operation Research on Vector Control in Filariasis. New Delhi: NICID; 1990.
13. World Health Organization. Lymphatic filariasis. The disease and its control. WHO Technical Report Series. Geneva: WHO; 1992. p. 821.
14. Wattanachai P, Tintanon B. Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. Commun Dis J 1999 Jun;25(2):188–91.
15. Liu H, Xu Q, Zhang L, et al. Chlorpyrifos resistance mosquito Culex quinquefasciatus. J Med Entomol 2005 Sep;42(3):815–20.
16. Amer A, Mehlihorn H. Larvicidal effects of various essential oils against Aedes aegypti and Culex larvae (Diptera, Culicidae). Parasitol Res 2006 Sep;99(4):460–72.
17. Amer A, Mehlihorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 2006 Sep;99(4):478–90.
18. Perrucci S, Cioni PL, Cascella A, et al. Therapeutic efficacy of linalool for the topical treatment of parasitic otitis caused by Psorotricum cuniculi in the rabbit and in the goat. Med Vet Entomol 1997 Jul;11(3):300–2.
19. Roth GN, Chandra A, Nair MG. Novel bioactivities of Curcuma longa constituents. J Nat Prod 1998 Apr;61(4):542–5.
20. Momina RA, Nair MG. Pest-managing efficacy of trans-asarone isolated from Daucus carota L. seeds. J Agric Food Chem 2002 Jul;50(16):4475–8.
21. Mohan L, Shrama P, Srivastava CN. Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 2005 Jun;26(Suppl. 2):399–401.
22. Souza TM, Farias DF, Soares BM, et al. Toxicity of Brazilian plant seed extracts to two strains of Aedes aegypti (Diptera: Culicidae) and non-target animals. J Med Entomol 2011 Jul;48(4):846–51.
23. Govindarajan M, Jehanesan A, Pushpanathan T. Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 2008 Jan;102(2):289–92.
24. Markouk M, Bekkouche K, Larhsini M, et al. Evaluation of some Moroccan medicinal plant extracts for larvicidal activity. J Ethnophar 2005 Nov;73(1-2):293–7.
25. David M, Anstjom Xia Z, Cody N, et al. Mosquitocidal properties of natural product compounds isolated from Chinese herbs and synthetic analogs of curcumin. J Med Entomol 2012 Mar;49(2):350–5.
26. Reegan AD, Kinsalin AV, Paulraj MG, et al. Larvicidal, ovicidal, and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). ISRN Enentomol; 2013 Oct;1:–8. Article ID 315389, http://dx.doi.org/10.1155/2013/315389.
27. Elango G, Bagavan A, Kamaraj C, et al. Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 2009 Nov;105(6):1567–76.
28. Rajkumar S, Jenanesan A. Oviposition attractiveness of Solanum aeriathum D. Don. leaf extract for Culex quinquefasciatus Say. J Exp Zoology India 2002;5:221–4.
29. Nivsarkar M, Cherian B, Padh H. Alpha-terthienyl. A plant derived new generation insecticide. Curr Sci 2001 Sep;81(6):667–72.
30. Mathu C, Reegan AD, Kingsley S, et al. Larvicidal activity of peptolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 2012 Sep;111(3):1059–65.
31. Jang YS, Kim MK, Ahn YJ, et al. Larvicidal activity of Brazilian plants against Aedes aegypti and Culex pipiens Pallens (Diptera: Culicidae). Agric Chem Biotechnol 2002 Jun;44:23–6.
32. Cavalcanti ES, de Morais SM, Ashley ALM, et al. Larvicidal activity of essential oils from brazilian plants against Aedes aegypti L. Memorias do Instituto Oswaldo Cruz 2004 Aug;99(5):541–4.
33. Panneerselvam C, Murugan K. Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 2013 Feb;112(2):679–92.
34. Coria C, Almiron W, Valladares G, et al. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresearch Technol 2008 May;99(8):3066–70.
35. Autran ES, Neves IA, da Silva CS, et al. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginedatum Jacq. (Piperaceae). Bioresearch Technol 2009 Apr;100(7):2284–8.
36. Prajapat V, Tripathi AK, Aggarwal KK, et al. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresearch Technol 2005 Nov;96(16):1749–57.