Skin Cancer Prevention and Screening: Summary of the American College of Preventive Medicine’s Practice Policy Statements

Linda Hill, MD, MPH
Rebecca L. Ferrini, MD, MPH

Background

As part of an overall evaluation of preventive measures, the American College of Preventive Medicine assessed the efficacy of skin cancer prevention and screening strategies. Their findings were published in American Journal of Preventive Medicine in 1998.1,2 The practice policy statements generated by the College are intended to provide guidelines for physicians and public health practitioners in optimizing preventive health strategies for individuals and populations.

In policy statement development, the published medical literature is searched comprehensively. The authors critically review the available literature with an attempt to evaluate the quality of the research. When available, prospective, randomized clinical trials with a study population that can be generalized and a large sample size are given the most weight. Evaluation criteria are similar to those used by the US Preventive Services Task Force, which also issues recommendations.3

The author’s analysis is reviewed by experts in the field and by the Board of the American College of Preventive Medicine. The College’s impartial, evidence-based reviews attempt to balance benefits—to both individuals and populations—with risks of interventions to assist clinicians and others in making the best possible decisions about preventive measures and screening tests. In the area of skin cancer, the prevention strategies analyzed included sun protection and sunscreen use; screening recommendations focused on total cutaneous examination. The findings are summarized in this article.

Prevalence and Risk Factors

Nonmelanoma skin cancer is the most common cancer in men and women in the United States. In 1996, the American Cancer Society estimated that 800,000 new cases of basal and squamous cell carcinoma (nonmelanoma skin cancer [NMSC]) would be diagnosed and 2,100 deaths would occur as a result of this disease.4 Although less prevalent, malignant melanoma is a more common cause of cancer death, with an estimated 41,600 new cases in 1998 and 7,300 deaths.5 With a prevalence of 80 per 100,000 and a lifetime risk of 1 in 90, malignant melanoma is the eighth most common cancer in the United States.
United States, and its incidence has doubled in the last decade.5,6 Mortality is reduced when lesions are found early and promptly removed. Risk factors for NMSC include fair skin, sun exposure, male gender, and advancing age. Risk factors for malignant melanoma are less well defined but include fair skin, family history, NMSC, multiple pigmented nevi (as few as 20 nevi increase the risk), and severe childhood sunburn.7

Sun exposure causes skin cancer through the effects of ultraviolet (UV) radiation, which penetrates into the dermis and damages DNA. UVB causes redness of the skin, some DNA damage, and aging; UVA, however, penetrates deeper and causes more DNA damage than does UVB.8 Approximately 1,000 times more UVA reaches the earth’s surface. Sunscreen classifications are based on an index of protection against skin erythema called “sun protection factor” (SPF), which quantifies protection against UVB.9 UVA radiation has not been quantified.

Exposure to solar radiation is increasing worldwide because the protective ozone layer is thinning. Most exposure to sun occurs in childhood, and children receive three times the annual sun exposure of adults. Data suggest that NMSCs are associated with cumulative sun exposure, whereas malignant melanoma is associated with short, intense episodes, especially those involving skin burns.10-12 Individuals with fair skin are at higher risk of adverse effects from UV radiation.

Preventive Measures

Preventive measures to reduce skin cancers include sun avoidance, especially between 10 AM and 3 PM; physical barriers such as hats and clothing; and use of sunscreens. Nonspecific clothes, such as hats and summer wear, offer an SPF of 2 to 6.5, although “sun-protective” clothing offers an SPF of up to 30.13-15 Sun avoidance and use of protective clothing have been shown to reduce the incidence of both NMSC and malignant melanoma in many human and animal studies, although some studies have not shown a beneficial effect.8,16-18

Sunscreen effectiveness has been more difficult to ascertain for many reasons. High-risk individuals are more likely to use sunscreen, studies generally have focused on older preparations, and sunscreen use may be associated with greater sun exposure.11 Studies suggest that sunscreens may be problematic because they may offer a false sense of security and increase time spent in the sun.

Nonmelanoma skin cancers are the most common cancers in men and women in the United States.

Most sunscreens offer greater protection from UVB than from UVA radiation, reducing the risk of sunburn but not that of dangerous UVA exposure. Some ingredients commonly found in sunscreens may be carcinogenic.19,20

Animal studies have been unable to show that sunscreen protects against malignant melanoma, and case-control and clinical trials have shown no reduction or an increase in malignant melanoma incidence with broad-spectrum sunscreen use.21-25 Only one randomized double-blind placebo-controlled trial of broad-spectrum sunscreen showed a benefit in decreasing the incidence of skin cancers, and that was a reduction of actinic keratosis.26,27

Screening Techniques

Skin cancer screening includes a total
cutaneous examination and a 2- to 3-minute visual inspection of the entire integument. In theory, early detection of skin cancers, especially malignant melanoma, would significantly improve mortality because early detection is associated with a high 5-year survival rate.

The sensitivity and specificity of a physician-conducted total cutaneous examination approach 93.3% and 97.8%, respectively. Screening can be conducted in a physician’s office as part of a regular visit or take place during mass community screening. The prevalence of pathologic lesions found on mass screening was estimated in one study to be 21%. No randomized controlled trials have evaluated the effectiveness of total cutaneous examination in reducing mortality from malignant melanoma; most studies have reported only the number of malignancies discovered in mass screening campaigns.

Evidence is insufficient to support the use of sunscreens, especially when sunscreen use would lead to increased sun exposure.

Recommendations

Avoidance of UV radiation is beneficial in reducing the incidence of skin cancer. Avoidance measures include limiting time spent outdoors between 10 AM and 3 PM and wearing protective clothing. However, evidence is insufficient to support the use of sunscreens, especially when sunscreen use would lead to increased sun exposure. If sun exposure cannot be limited because of occupational, cultural, or other factors, a sunscreen that is either opaque or that blocks UVA and UVB should be used.

The College does not believe that the evidence supports physician counseling for every patient. For children and teenagers, however, in whom avoidance of sunburn is crucial, and for high-risk patients, the College recommends discussion of sun avoidance and sun protection measures.

High-risk individuals should be screened periodically either individually or through mass screening. Risk factors include family history, fair skin, multiple nevi, and a history of other skin cancers. Mass screening for low-risk individuals cannot be recommended until further studies have been conducted. Physicians conducting total cutaneous examinations should receive adequate training to ensure high-quality examinations, with high sensitivity and specificity.

Considerations for the Future

Further research, especially prospective studies, is needed to define the role of screening variable risk populations to define better optimal periodicity for screening. The College believes that more research is needed on the effects of modern sunscreen formulations in preventing malignant melanomas. Lastly, the College supports research on effective community education campaigns and physician counseling strategies to educate the public about UV radiation.

References

1. Ferrini RL, Perlman M, Hill L: American College of Preventive Medicine policy statement: Screening for skin cancer. Am J Prev Med 1998;14:80-82.

2. Ferrini RL, Perlman M, Hill L: American College of Preventive Medicine policy statement: Skin protection from ultraviolet light exposure. Am J Prev
3. US Preventive Services Task Force: Guide to Clinical Preventive Services, ed 2. Baltimore, Williams & Wilkins, 1996.

4. Parker SL, Tong T, Bolden S, et al: Cancer statistics, 1996. CA Cancer J Clin 1996;46:5-27.

5. Landis SH, Murray T, Bolden S, et al: Cancer statistics, 1998. CA Cancer J Clin 1998;48:6-29.

6. Rigel DS, Kopf AW, Friedman RJ: The rate of malignant melanoma in the United States: Are we making an impact? J Am Acad Dermatol 1987;17:1080-1083.

7. Feldman AR, Kessler L, Myers MH, et al: The prevalence of cancer: Estimates based on the Connecticut Tumor Registry. N Engl J Med 1986;315:1394-1397.

8. Koh HK, Klingler BE, Lew RA: Sunlight and cutaneous malignant melanoma: Evidence for and against causation. Photochem Photobiol 1990;51:765-769.

9. Patel NP, Highton A, Moy RL: Properties of topical sunscreen formulations: A review. J Dermatol Surg Oncol 1992;18:316-320.

10. Donawho C, Wolf P: Sunburn, sunscreen, and melanoma. Curr Opin Oncol 1996;8:159-166.

11. Graham S, Marshall J, Haughey B, et al: An inquiry into the epidemiology of melanoma. Am J Epidemiol 1985;122:606-619.

12. Garland CF, Garland FC, Gorham ED: Rising trends in melanoma: A hypothesis concerning sunscreen effectiveness. Ann Epidemiol 1993;3:103-110.

13. Sinclair SA, Diffey BL: Sun protection provided by ladies stockings. Br J Dermatol 1990;136:239-241.

14. Wong JC, Airey DK, Fleming RA: Annual reduction of solar UV exposure to the facial area of outdoor workers in Southeast Queensland by wearing a hat. Photodermatol Photoimmunol Photomed 1996;12:131-135.

15. Menzies JM, Hollins TD, Sayre RM, et al: Protection against UV photocarcinogenesis by fabric materials. J Am Acad Dermatol 1994;31:711-716.

16. Evans RD, Kopf AW, Lew RA, et al: Risk factors for the development of solar keratoses. J Am Acad Dermatol 1988;14:393-408.

17. Urbach F: Incidence of nonmelanoma skin cancer. Dermatol Clin 1991;9:751-755.

18. Glass AG, Hoover RN: The emerging epidemic of melanoma and squamous cell skin cancer. JAMA 1989;262:2097-2100.

19. Knowland J, McKenzie EA, McHugh PJ, et al: Sunlight-induced mutagenesis of a common sunscreen ingredient. FEBS Lett 1993;324:309-313.

20. Alberts DS, Goldman R, Xu MJ, et al: Disposition and metabolism of topically administered alpha-tocopherol acetate: A common ingredient of commercially available sunscreens and cosmetics. Nutr Cancer 1996;26:193-201.

21. Wolf P, Donawho CK, Kripke ML: Effect of sunscreens on UV radiation-induced enhancement of melanoma growth in mice. J Natl Cancer Inst 1994;86:99-105.

22. Beittner H, Norell SE, Ringborg U, et al: Malignant melanoma: Aetiological importance of individual pigmentation and sun exposure. Br J Dermatol 1990;122:43-51.

23. Holman CD, Armstrong BK, Heenan P: Relationship of cutaneous malignant melanoma to individual sunlight-exposure habits. J Natl Cancer Inst 1986;76:403-414.

24. Autier P, Dore JF, Schifflers E, et al: Melanoma and use of sunscreens: An EORTC case-control study in Germany, Belgium and France: The EORTC Melanoma Cooperative Group. Int J Cancer 1995;61:749-755.

25. Westerdahl J, Olsson H, Masback A, et al: Is the use of sunscreens a risk factor for malignant melanoma? Melanoma Res 1995;5:59-65.

26. Thompson SC, Jolley D, Marks R: Reduction of solar keratoses by regular sunscreen use. N Engl J Med 1993;329:1147-1151.

27. Naylor MF, Boyd A, Smith DW, et al: High sun protection factor sunscreens in the suppression of actinic neoplasms. Arch Dermatol 1995;131:170-175.

28. Bolognia JL, Berwick M, Fine JA: Complete follow-up and evaluation of a skin cancer screening in Connecticut. J Am Acad Dermatol 1990;23:1098-1106.

29. Marghoob AA, Slade J, Salopek TG, et al: Basal cell and squamous cell carcinomas are important risk factors for cutaneous malignant melanoma: Screening implications. Cancer 1995;75(Suppl 2):707-714.