A BOUND ON THE EXPECTED NUMBER OF RANDOM ELEMENTS TO GENERATE A FINITE GROUP ALL OF WHOSE SYLOW SUBGROUPS ARE d-GENERATED.

ANDREA LUCCHINI

Abstract. Assume that all the Sylow subgroups of a finite group G can be generated by d elements. Then the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found, is at most $d + \eta$ with $\eta \sim 2.875065$.

1. INTRODUCTION

In 1989, R. Guralnick [5] and the author [11] independently proved that if all the Sylow subgroups of a finite group G can be generated by d elements, then the group G itself can be generated by $d + 1$ elements. The aim of this paper is to obtain a probabilistic version of this result.

Let G be a nontrivial finite group and let $x = (x_n)_{n \in \mathbb{N}}$ be a sequence of independent, uniformly distributed G-valued random variables. We may define a random variable τ_G by $\tau_G = \min\{n \geq 1 \mid \langle x_1, \ldots, x_n \rangle = G\}$. We denote by $e(G)$ the expectation $E(\tau_G)$ of this random variable. In other word $e(G)$ is the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. Some estimations of the value $e(G)$ have been obtained in [12]. The main result of this paper is:

Theorem 1. Let G be a finite group. If all the Sylow subgroups of G can be generated by d elements, then

$$e(G) \leq d + \eta$$

with

$$\eta = \frac{5}{2} + \sum_{p \geq 3} \frac{1}{(p-1)^2} < 3.$$

From an accurate estimation of $\sum_p (p-1)^{-2}$ given in [11], it follows $\eta \sim 2.875065$...

This result is near to be best possible. For any prime p, let $A_{p,d}$ be the elementary abelian p-group of rank d and for any positive integer n consider $A_{n,d} = \prod_{p \leq n} A_{p,d}$.

C. Pomerance [13] proved that $\lim_{n \to \infty} e(A_{n,d}) = d + \sigma$, where $\sigma \sim 2.11846...$ (the exact value of σ can be explicitly described in terms of the Riemann zeta–function).

If G is a p-subgroup of Sym(n), then G can be generated by $\lfloor n/p \rfloor$ elements (see [8]), so Theorem 2 has the following consequence:

1991 Mathematics Subject Classification. 20P05.

Key words and phrases. groups generation; waiting time; Sylow subgroups; permutations groups.

Partially supported by Università di Padova (Progetto di Ricerca di Ateneo: “Invariable generation of groups”).
Corollary 2. If G is a permutation group of degree n, then $e(G) \leq \lfloor n/2 \rfloor + \eta$.

A profinite group G, being a compact topological group, can be seen as a probability space. If we denote with μ the normalized Haar measure on G, so that $\mu(G) = 1$, the probability that k random elements generate (topologically) G is defined as

$$P_G(k) = \mu(\{(x_1, \ldots, x_k) \in G^k | \langle x_1, \ldots, x_k \rangle = G\}),$$

where μ denotes also the product measure on G^k. The definition of $e(G)$ can be extended to finitely generated profinite groups. In particular $e(G) = \sup_{N \in \mathcal{N}} e(G/N)$, being \mathcal{N} the set of the open normal subgroups of G (see for example [12, Section 6]), hence Theorem 2 remains true for profinite groups: if all the Sylow subgroups of a profinite group G are (topologically) d-generated, then G is (topologically) $(d+1)$-generated and $e(G) \leq d + \eta$. A profinite group G is said to be positively finitely generated, PFG for short, if $P_G(k)$ is positive for some natural number k, and the least such natural number is denoted by $d_P(G)$. Not all finitely generated profinite groups are PFG (for example if \hat{F}_d is the free profinite group of rank $d \geq 2$ then $P_{\hat{F}_d}(t) = 0$ for every $t \geq 2$, see [7]): if G is not PFG we set $d_P(G) = \infty$. It can be easily seen that $e(G) = \sum_{n \geq 0} 1 - P_G(n)$ (see [21, Section 2]). Since $P_G(n) = 0$ whenever $n \leq d_P(G)$, we immediately deduce that $e(G) > d_P(G)$. In particular, if all the Sylow subgroups of G are d-generated, then $d_P(G) < e(G) < d + 3$, and therefore we obtain the following result:

Theorem 3. If all the Sylow subgroups of a profinite group G are (topologically) d-generated, then $d_P(G) \leq d + 2$.

The previous result is best possible. For a given $d \in \mathbb{N}$, let $A_{p,d}$ be an elementary abelian p-group of rank d, $A_d = \prod_{p \neq 2} A_{p,d}$ and consider the semidirect product $G_d = A_d \rtimes B$, where $B = \langle b \rangle$ is cyclic of order 2 and $a^b = a^{-1}$ for every $a \in A_d$. Clearly all the Sylow subgroups of G are d-generated. We claim that $d_P(G) = d+2$. It follows from the main theorem in [4] that for every $k \in \mathbb{N}$, we have

$$P_{G_d}(k) = \left(1 - \frac{1}{2^k}\right) \prod_{p \neq 2} \left(1 - \frac{p}{p^k}\right) \cdot \cdots \cdot \left(1 - \frac{p^d}{p^k}\right).$$

In particular $P_{G_d}(d+1) = 0$ since the series

$$\sum_{p \neq 2} \left(\frac{p}{p^{d+1}} + \cdots + \frac{p^d}{p^{d+1}}\right) = \sum_{p \neq 2} \frac{p^{d+1}-1}{(p-1)p^{d+1}}$$

is divergent. But then $d_P(G) > d + 1$, hence, by Theorem 3 we conclude $d_P(G) = d + 2$.

2. **Proof of the main result**

Let G be a finite group and use the following notations:

- For a given prime p, $d_p(G)$ is the smallest cardinality of a generating set of a Sylow p-subgroup of G.
- For a given prime p and a positive integer t, $\alpha_{p,t}(G)$ is the number of complemented factors of order p^t in a chief series of G.
- For a given prime p, $\alpha_p(G) = \sum_t \alpha_{p,t}(G)$ is the number of complemented factors of p-power order in a chief series of G.
- $\beta(G)$ is the number of nonabelian factors in a chief series of G.

Lemma 4. For every finite group G, we have:

(1) $\alpha_p(G) \leq d_p(G)$.
(2) $\alpha_2(G) + \beta(G) \leq d_2(G)$.
(3) If $\beta(G) \neq 0$, then $\beta(G) \leq d_2(G) - 1$.

Proof. We prove the three statements by induction on the order of G.

(1) If N is not complemented in G or N is not a p-group, then, by induction,

$$\alpha_p(G) = \alpha_p(G/N) \leq d_p(G/N) = d_p(G).$$

Otherwise $G = N \rtimes H$ for a suitable $H \leq G$ and $\alpha_p(G) = \alpha_p(G/N) + 1 = \alpha_p(H) + 1 \leq d_p(H) + 1 \leq d_p(G)$.

(2) If N is abelian, we argue as in (1). Assume that N is nonabelian and let P be a Sylow 2-subgroup of G. By Tate’s Theorem [3, p. 431], $P\cap N \not\leq \text{Frat} P$, and consequently $\beta(G) = \beta(G/N) + 1 \leq d_2(G/N) + 1 \leq d_2(G)$.

(3) Suppose $\beta(G) \neq 0$. As above we may assume that N is nonabelian and this implies $d_2(G/N) + 1 \leq d_2(G)$. If $\beta(G/N) \neq 0$, then we easily conclude by induction. If $\beta(G/N) = 0$ then $\beta(G) = 1$ while $d_2(G) \geq 2$, since a Sylow 2-subgroup of a finite nonabelian simple group, and consequently of N, is never cyclic.

Notice that $\tau_G > n$ if and only if $\{x_1, \ldots, x_n\} \neq G$, so we have $P(\tau_G > n) = 1 - P_G(n)$, denoting by $P_G(n)$ the probability that n randomly chosen elements of G generate G. Clearly we have:

$$e(G) = \sum_{n \geq 1} nP(\tau_G = n) = \sum_{n \geq 1} \left(\sum_{m \geq n} P(\tau_G = m) \right)$$

$$= \sum_{n \geq 1} P(\tau_G \geq n) = \sum_{n \geq 0} P(\tau_G > n) = \sum_{n \geq 0} (1 - P_G(n)).$$

Denote by $m_n(G)$ the number of index n maximal subgroups of G. We have (see [10, 11.6]):

$$1 - P_G(k) \leq \sum_{n \geq 2} \frac{m_n(G)}{n^k}.$$

(2.2)

Using the notations introduced in [9, Section 2], we say that a maximal subgroup M of G is of type A if $\text{soc}(G/\text{Core}_G(M))$ is abelian, of type B otherwise, and we denote by $m_n^A(G)$ (respectively $m_n^B(G)$) the number of maximal subgroups of G of type A (respectively B) of index n. Given an irreducible G-group V, let $\delta_V(G)$ be the number of complemented factors G-isomorphic to V in a chief series of G and $q_V(G) = |\text{End}_G(V)|$. Moreover, for $n \in \mathbb{N}$, let \mathcal{A}_n be the set of the irreducible G-modules V with $\delta_V(G) \neq 0$ and $|V| = n$.

Lemma 5. Let $n = p^i$ for some prime p. If $m_n^A(G) \neq 0$, then $\alpha_{p,t}(G) \neq 0$ and

$$m_n^A(G) \leq \frac{n^{\alpha_{p,t}(G)+1}}{p-1}.$$
Proof. For a given \(V \in A_n \), let \(m_V(G) \) be the number of maximal subgroups \(M \) of \(G \) with \(\text{soc}(G/\text{Core}_G(M)) \cong_G V \). From [9 Section 2] and [2 Section 4] it follows that

\[
m_V(G) \leq \frac{q_V(G)^{\delta_V(G)} - 1}{q_V(G) - 1} |\text{Der}(G/C_G(V), V)|.
\]

By [6 Theorem 1], we have \(|\text{Der}(G/C_G(V), V)| \leq |V|^{3/2} \). Moreover (see for example [14 Lemma 1]) \(|\text{Der}(G/C_G(V), V)| \leq |V| \) if \(G/C_G(V) \) is soluble, which happens in particular when \(q_V(G) = n \) (indeed in this case \(G/C_G(V) \) is isomorphic to a subgroup of the multiplicative group of the field of order \(q_V(G) \)). If \(q_V(G) \neq n \), then \(\dim_{\text{End}_G(V)} V \geq 2 \), hence \(n = |V| \geq q_G(V)^2 \) and consequently

\[
m_V(G) \leq \frac{q_V(G)^{\delta_V(G)} n^{3/2}}{q_V(G) - 1} \leq \frac{n^{\delta_V(G)/2} n^{3/2}}{p - 1} \leq \frac{n^{\delta_V(G) + 1}}{p - 1}.
\]

On the other hand, if \(q_V(G) = n \), then

\[
m_V(G) \leq \frac{q_V(G)^{\delta_V(G)} n}{q_V(G) - 1} \leq \frac{n^{\delta_V(G) + 1}}{p - 1}.
\]

We conclude

\[
m_n^A(G) = \sum_{V \in A_n} m_V(G) \leq \frac{n}{p - 1} \sum_{V \in A_n} n^{\delta_V(G)} \leq \frac{n}{p - 1} \prod_{V \in A_n} n^{\delta_V(G)} = \frac{n^{1 + \sum_{V \in A_n} \delta_V(G)}}{p - 1} = \frac{n^{\alpha_p(G) + 1}}{p - 1}. \quad \square
\]

Lemma 6. If \(m_n^B(G) \neq 0 \), then \(n \geq 5 \), \(\beta(G) \neq 0 \) and \(m_n^B(G) \leq \frac{\beta(G)(\beta(G) + 1)n^2}{2} \).

Proof. The condition \(n \geq 5 \) follows from the fact there is no unsoluble primitive permutation group of degree \(n < 5 \). The remaining part of the statement follows from [6 Claim 2.4]. \(\square \)

Lemma 7. Let \(d = \max_p d_p(G) \) and let

\[
\mu_p(G) = \sum_{k \geq d+2} \left(\sum_{l \geq 1} \frac{m_p^A(G)}{p^k} \right).
\]

If \(\alpha_p(G) = 0 \), then \(\mu_p(G) = 0 \). Otherwise

\[
\mu_p(G) \leq \begin{cases} \frac{1}{p - \alpha_p(G)} \frac{1}{(p - 1)^2} & \text{if } p \text{ is odd,} \\ \frac{1}{2d = \omega_2(G)} \frac{1}{2} & \text{otherwise.} \end{cases}
\]
Proof. First notice that, by Lemma 4, we have \(\alpha_p(G) \leq d_p(G) \leq d \). Let \(\theta_{p,t} = 0 \) if \(\alpha_{p,t}(G) = 0 \), \(\theta_{p,t} = 1 \) otherwise. By Lemma 5 we have

\[
\sum_{k \geq d+2} \left(\sum_{t \geq 1} \frac{m^A_p(G)}{p^{tk}} \right) \leq \frac{p}{p-1} \sum_{k \geq d+2} \left(\sum_{t \geq 1} \frac{p^{\alpha_{p,t}(G)} \theta_{p,t}}{p^{tk}} \right) \\
\leq \frac{p}{p-1} \sum_{k \geq d+2} \left(\sum_{t \geq 1} \frac{p^{\alpha_{p,t}(G)}}{p^{tk}} \right) \leq \frac{p}{p-1} \sum_{k \geq d+2} \left(\frac{p^{\sum_{t \geq 1} \alpha_{p,t}(G)}}{p^k} \right) \\
\leq \frac{p}{p-1} \sum_{k \geq d+2} \frac{p^{d}}{p^{k}} \leq \frac{p}{p-1} \sum_{k \geq d+2} \frac{1}{p^{d-\alpha_p(G)}} \\
\leq \frac{p}{p-1} \left(\sum_{u \geq 2} \frac{1}{p^{d-\alpha_p(G)}} \right)^2.
\]

Notice that, for \(k > d \geq d_2(G) \geq \alpha_{2,t}(G) \), we have

\[
m^A_p(G) \leq 2^{\alpha_{2,t}(G)+1} \leq 2^{\alpha_{2,t}(G)} \text{ if } t > 1.
\]

On the other hand,

\[
m^A_p(G) = 2^{\alpha_{2,t}(G)} - 1 \leq 2^{\alpha_{2,t}(G)}.
\]

Hence

\[
\sum_{k \geq d+2} \left(\sum_{t \geq 1} \frac{m^A_p(G)}{2^{tk}} \right) \leq \sum_{k \geq d+2} \left(\sum_{t \geq 1} \frac{2^{\alpha_{2,t}(G)} \theta_{2,t}}{2^k} \right) \leq \sum_{k \geq d+2} \left(\frac{2^{\sum_{t \geq 1} \alpha_{2,t}(G)}}{2^k} \right) \\
\leq \sum_{k \geq d+2} \frac{2^{\alpha_2(G)}}{2^k} \leq \sum_{k \geq d+2} \frac{2^d}{2^k 2^{-d-\alpha_2(G)}} \leq \frac{1}{2^d-\alpha_2(G)} \sum_{u \geq 2} \frac{1}{2^u} \leq \frac{1}{2^d-\alpha_2(G)} \cdot \frac{1}{2}. \quad \square
\]

Lemma 8. Let \(d = \max_p d_p(G) \) and let

\[
\mu^*(G) = \sum_{k \geq d+2} \left(\sum_{n \geq 5} \frac{m^B_n(G)}{n^k} \right).
\]

If \(\beta(G) = 0 \), then \(\mu^*(G) = 0 \). Otherwise

\[
\mu^*(G) \leq \frac{1}{4 \cdot 5^d - (\beta(G)+1)} \leq \frac{1}{4}.
\]
Proof. Notice that, by Lemma 4, if \(\beta(G) \neq 0 \), then \(d \geq d_2(G) \geq \beta(G) + 1 \geq 2 \). We deduce from Lemma 6 that

\[
\sum_{k \geq d + 2} \left(\sum_{n \geq 5} \frac{m_n^B(G)}{n^k} \right) \leq \sum_{k \geq d + 2} \left(\sum_{n \geq 5} \frac{\beta(G)(\beta(G) + 1)n^2}{2n^k} \right)
\]

\[
\leq \frac{\beta(G)(\beta(G) + 1)}{2} \sum_{u \geq 2} \left(\sum_{n \geq 5} \frac{n^2}{u^{d+u}} \right) \leq \frac{\beta(G)(\beta(G) + 1)}{2 \cdot 5^{d-2}} \sum_{n \geq 2} \left(\sum_{n \geq 5} \frac{1}{n^u} \right)
\]

\[
\leq \frac{\beta(G)(\beta(G) + 1)}{2 \cdot 5^{d-2}} \sum_{n \geq 4} \frac{1}{n(n+1)} = \frac{\beta(G)(\beta(G) + 1)}{2 \cdot 5^{\beta(G)-1} \cdot 5^{d-(\beta(G)+1)}} \cdot \frac{1}{4}
\]

\[
\leq \frac{1}{4 \cdot 5^{d-(\beta(G)+1)}}. \quad \Box
\]

Lemma 9. We have \(\mu_2(G) + \mu^*(G) \leq 1/2 \).

Proof. By Lemma 4, \(\alpha_2(G) + \beta(G) \leq d_2(G) \leq d \). If \(d = \alpha_2(G) \) then \(\beta(G) = 0 \), and consequently

\[
\mu_2(G) + \mu^*(G) = \mu_2(G) \leq \frac{1}{2}
\]

In the remain cases, we have

\[
\mu_2(G) + \mu^*(G) \leq \frac{1}{2 \cdot 2^{d-\alpha_2(G)}} + \frac{1}{4 \cdot 5^{d-(\beta(G)+1)}} \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}. \quad \Box
\]

Proof of Theorem 2. From (2.1), (2.2) and the last three lemmas, we deduce

\[
e(G) = \sum_{k \geq 0} \left(1 - P_G(k) \right) \leq d + 2 + \sum_{k \geq d + 2} (1 - P_G(k))
\]

\[
\leq d + 2 + \sum_p \left(\sum_{k \geq d + 2} \left(\sum_{n \geq 1} \frac{m_n^A(G)}{p^k} \right) \right) + \sum_{k \geq d + 2} \left(\sum_{n \geq 5} \frac{m_n^B(G)}{n^k} \right)
\]

\[
= d + 2 + \sum_p \mu_p(G) + \mu^*(G) \leq d + \frac{5}{2} + \sum_{p \geq 2} \frac{1}{(p-1)^2}. \quad \Box
\]

REFERENCES

1. H. Cohen, High precision computation of Hardy-Littlewood constants, preprint available on the author’s web page.
2. E. Detomi and A. Lucchini, Crowns in profinite groups and applications, Noncommutative algebra and geometry, 47-62, Lect. Notes Pure Appl. Math., 243, Chapman Hall/CRC, Boca Raton, FL, 2006.
3. B. Huppert, Endliche Gruppen, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967
4. W. Gaschütz, Die Eulersche Funktion endlicher auflösender Gruppen, Illinois J. Math. 3 (1959), 469–476.
5. R. Guralnick, On the number of generators of a finite group, Arch. Math. 53 (1989), no. 6, 521-523.
6. R. Guralnick and C. Hoffman, The first cohomology group and generation of simple groups, in: Proc. Conf. Groups and Geometries, Sienna, 1996, in: Trends Math., Birkhäuser, Basel, 1998, pp. 81-89.
7. W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Ded. 36, (1990) 67–87.
8. L. G. Kovács and C. E Praeger, Finite permutation groups with large abelian quotients, Pacific J. Math. 136 (1989), no. 2, 283-292.
9. A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra 257, (2002) 452-495.
10. A. Lubotzky and D. Segal, Subgroup growth, Progress in Mathematics, 212. Birkhäuser Verlag, Basel (2003)
11. A. Lucchini, A bound on the number of generators of a finite group, Arch. Math. 53 (1989), no. 4, 313-317.
12. A. Lucchini, The expected number of random elements to generate a finite group, Monatsh. Math. DOI 10.1007/s00605-015-0789-5
13. C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar. 43, 191-19 (2001)
14. U. Stammbach, Cohomological characterisations of finite solvable and nilpotent groups, J. Pure Appl. Algebra 11 (1977/78), no. 1–3, 293–301.

ANDREA LUCCHINI, UNIVERSITÀ DEGLI STUDI DI PADova, DIPARTIMENTO DI MATEMATICA, VIA TRIESTE 63, 35121 Padova, Italy, email: lucchini@math.unipd.it