ABSTRACT

Background: Malignant afferent loop syndrome occurs after biliary reconstruction and is difficult to treat because of the complicated anatomical changes. The aim of this study was to investigate the safety and efficacy of percutaneous metallic stent placement for malignant afferent loop syndrome via the blind end of the jejunal limb after biliary reconstruction.

Methods: Percutaneous metallic stent placement via the jejunal limb was performed in five male patients (median age, 68 years; range, 51–88 years) with malignant afferent loop syndrome following pancreatoduodenectomy or bile duct resection with reconstruction at our institute from June 2009 to April 2019. Reconstruction was performed using a modified Child’s method or the Roux-en-Y method, and blind end of the jejunal limb was surgically fixed to the abdominal wall. Percutaneous drainage of the afferent loop was performed via the blind end of the jejunal limb. Subsequently, percutaneous metallic stent placement was performed via the same route. Technical success, clinical success, and complications were retrospectively evaluated.

Results: Percutaneous metallic stent placement via the blind end of the jejunal limb was successfully achieved in all six procedures. Additional metallic stent placement was performed due to tumor ingrowth in a patient. Drainage catheters were removed from three patients, clamped in one, and could not be removed in one. Clinical success was achieved in four patients (80%) without major complications.

Conclusion: Percutaneous metallic stent placement for malignant afferent loop syndrome via the blind end of the jejunal limb after biliary reconstruction could be a safe and effective procedure.
In this study, the safety and efficacy of percutaneous metallic stent placement for malignant afferent loop syndrome via the BEJL after biliary reconstruction were investigated.

Methods

This retrospective study was approved by the institutional review board of our institution (approval no. 2020-1-199). The medical records of the patients included were thoroughly reviewed.

Patients

Percutaneous drainage via the BEJL was performed in 11 patients with afferent loop syndrome following PD or bile duct resection with reconstruction at our institute from June 2009 to April 2019. During PD and bile duct resection, reconstruction was performed using a modified Child’s method or the Roux-en-Y method, and the BEJL was surgically fixed to the abdominal wall. Percutaneous metallic stent placement via BEJL was attempted in five patients with malignant afferent loop syndrome caused by tumor recurrence (Fig. 1). The obstruction sites were classified according to the afferent loop location (Fig. 2). The patient characteristics are summarized in Table 1. Two patients with hepaticojejunostomy-site obstruction (Patients 1 and 3) underwent PTBD in addition to percutaneous drainage via BEJL because access to intrahepatic biliary duct via BEJL was technically difficult. A patient with proximal-site obstruction (Patient 4) previously underwent endoscopic metallic stent placement for distal-site obstruction. However, further endoscopy-based approaches to manage proximal-site obstruction were impossible. All patients had elevated body temperatures (> 38°C) and complained of abdominal pain. Cholangitis defined as the elevation of hepatobiliary enzyme and serum C-reactive protein level was observed with exception of one patient with the proximal-site obstruction (Patient 4). Another patient with distal-site obstruction developed massive ascites (Patient 2). The first two patients (Patients 1 and 2) were included in a previous publication.

The interval between surgery and percutaneous drainage via BEJL and between percutaneous drainage via BEJL and metallic stent placement ranged from 323 to 641 days (median, 449 days) and 5 to 17 days (median, 8 days), respectively.

Procedures

After obtaining informed consent for the procedure, all percutaneous procedures were performed under local anesthesia and conscious sedation using pentazocine and hydroxyzine. For percutaneous drainage, BEJL was punctured using an 18-gauge needle under ultrasound (US) guidance, and a drainage catheter was inserted under fluoroscopic guidance (Fig. 3A–3C), as previously described. Metallic stent placement was attempted via BEJL to achieve drainage catheter removal. The metallic stent type (Zilver Stent: COOK, Limerick, Ireland; Niti-S Duodenal and Biliary Stent: Tae-Woong Medical, Gimpo, Korea; EGIS Biliary stent: S&G Biotech, Yongin, Korea) was determined based on the obstruction site. When the metallic stent was placed across the hepaticojejunostomy, a bare biliary or duodenal stent was used. With the patient in the supine position, a 0.035-inch hydrophilic guide-wire (Radiofocus M; Terumo, Tokyo, Japan) was inserted via BEJL and passed through the obstructed portion with a 6.5-F seeking catheter (Hanako Medical, Saitama, Japan) under fluoroscopic guidance. A guide-wire was exchanged with a super-stiff guide-wire (Amplatz Extra-stiff Wire, COOK Medical, Bloomington, IN, USA), and a metallic stent delivery system was passed through the obstructed portion. After deploying the metallic stent, the safety drainage catheter was placed. Basically, the balloon dilation was not performed. Contrast study via the drainage catheter was performed within one week after the procedure. After confirmation the stent patency, the drainage catheter was clamped. If no relapse of clinical symptoms was observed, the drainage catheter was removed.
Assessment

Technical success, clinical success, and complications were retrospectively evaluated. Technical success was defined as the successful placement of the metallic stent at the obstructed portion via BEJL. Clinical success was defined as a resolution of the clinical symptoms of afferent loop syndrome without external drainage. Procedure-related complications were evaluated according to the Society of Interventional Radiology clinical practice guidelines.11

Results

The clinical results are summarized in Table 2. Percutaneous metallic stent placement via BEJL was successfully achieved in all six procedures in the five patients (100%). In three patients (Patients 1, 4, and 5), two metallic stents were placed in tandem using the stent-in-stent method for long-segment lesions (Fig. 3D–3F). In another patient (Patient 5), a contrast study via the safety drainage catheter showed distal-site metallic stent obstruction caused by tumor ingrowth, and an additional BEJL-mediated metallic stent placement was performed 28 days after initial metallic stent placement. In two patients with hepaticojejunostomy-site obstruction (Patients 1 and 3), another metallic stent was placed in parallel via the PTBD route at the same time as the procedure performed via BEJL.

The median follow-up period from the metallic stent placement was 67 days (range, 11–114 days). Drainage catheters were
removed from three patients and clamped in one. However, the drainage catheter could not be removed in a patient (Patient 1) due to tumor ingrowth, and the patient’s poor general condition precluded further metallic stent placement. Clinical success was achieved in four patients (80%), and none of them developed any major complication. Two patients died due to disease progression, and three were transferred to another hospital.

Discussion

Percutaneous metallic stent placement for malignant afferent loop syndrome via BEJL could be performed without any major complication in all patients despite the complicated anatomical changes present after surgical reconstruction. Most patients experienced resolution of clinical symptoms with no need for external drainage during the follow-up period.

Technically, percutaneous metallic stent placement via BEJL was not very difficult because of easy access to the afferent loop. There was little risk of intraperitoneal leakage caused by dissociation of the adhesion between BEJL and the abdominal wall because BEJL was surgically fixed to the abdominal wall. The procedure could be adapted to patients with massive ascites (as Patient 2), for whom PTBD is not indicated. Also, PTBD was technically difficult in one patient with the proximal-site obstruction (Patient 4) because the intrahepatic bile duct was not dilated. However, in patients with hepaticojejunostomy-site obstruction (Patients 1 and 3), access routes via both BEJL and PTBD were needed because access to intrahepatic biliary duct via BEJL was technically difficult. Although subsequent afferent loop drainage was possible via PTBD tract, that procedure may introduce a risk of retrograde biliary infection. Therefore, drainage via both BEJL and PTBD was adequate. This procedure is impractical for patients subject to other surgical reconstruction methods, which do not introduce adhesions between BEJL and the abdominal wall. Under such conditions, the percutaneous jejunojunostomy may be an alternative access route. However, this approach introduces the risk of intraperitoneal digestive juice leakage from the afferent loop.

A lumen-apposing metal stent (LAMS) is used instead of plastic stents for walled-off pancreatic necrosis, and a few reports on endoscopic gastrojenojunostomy with LAMS for afferent loop syndrome have been published. However, bleeding after LAMS placement due to friction ulceration has been reported as a procedure-related complication.

This study has some limitations. First, the data were retrospectively analyzed, and the number of patients included in the study was very small. Second, the types of metallic stents used varied.

In conclusion, percutaneous metallic stent placement for malignant afferent loop syndrome via BEJL after biliary reconstruction could be a safe and effective procedure.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

We thank all the investigators of this study (Hidekazu Yamaura, MD, Mina Kato, MD, Nozomi Okuno, MD, and Susumu Hijioka, MD).

ORCID

Yozo Sato, https://orcid.org/0000-0001-7605-8434
Shohei Chatani, https://orcid.org/0000-0001-5080-2333
Takaki Hasegawa, https://orcid.org/0000-0001-6701-8816
Shinichi Murata, https://orcid.org/0000-0002-6163-5451
Takamichi Kuwahara, https://orcid.org/0000-0001-8348-8926
Kazuho Hara, https://orcid.org/0000-0002-2744-7182
Yasuhiro Shimizu, https://orcid.org/0000-0002-2003-6110
Yoshitaka Inaba, https://orcid.org/0000-0002-0850-6327

References

1. Pannala R, Brandabur JJ, Gan SI, Gluck M, Irani S, Patterson DJ, et al. Afferent limb syndrome and delayed GI problems after pancreaticoduodenectomy for pancreatic cancer: single-center, 14-year experience. Gastrointest Endosc. 2011;74:295-302.
2. Kozarek RA. Endoscopic approaches to afferent and Roux-en-Y limb obstruction. Gastrointest Interv. 2016;5:124-8.
3. Yao NS, Wu CW, Tiu CM, Liu JM, Whang-Peng J, Chen LT. Percutaneous transhepatic dual stenting for the relief of afferent loop syndrome: treatment by means of the placement of dual stents. AJR Am J Roentgenol. 1998;22:350-3.
4. Han K, Song HY, Kim JH, Park JH, Nam DH, Ryu MH, et al. Afferent loop syndrome: treatment by means of the placement of dual stents. AJR Am J Roentgenol. 2012;199:W761-6.
5. Morita S, Takemura T, Matsumoto S, Odani R. Septic shock after percutaneous transhepatic drainage of obstructed afferent loop: case report. Cardiovasc Intervent Radiol. 1989;12:66-8.
6. Gwon DI. Percutaneous transhepatic placement of covered, self-expandable nitinol stent for the relief of afferent loop syndrome: report of two cases. J Vasc Interv Radiol. 2007;18(1 Pt 1):157-61.
7. Burdick JS, Garza AA, Magee DJ, Dykes C, Jeyarajah R. Endoscopic management of afferent loop syndrome of malignant etiology. Gastrointest Endosc. 2002;55:295-302.
8. Kwong WT, Fehmi SM, Lowy AM, Savides TJ. Enteral stenting for gastric outlet obstruction and afferent limb syndrome following pancreaticoduodenectomy. Ann Gastroenterol. 2014;27:413-7.

9. Sato Y, Inaba Y, Murata S, Yamaura H, Kato M, Kawada H, et al. Percutaneous drainage for afferent limb syndrome and pancreatic fistula via the blind end of the jejunal limb after pancreatoduodenectomy or bile duct resection. J Vasc Interv Radiol. 2015;26:566-72.

10. Igami T, Kamita J, Yokoyama Y, Nishio H, Ebata T, Sagawara G, et al. Treatment of pancreatic fistula after pancreatoduodenectomy using a hand-made T-tube. J Hepatobiliary Pancreat Surg. 2009;16:661-7.

11. Khalilzadeh O, Baerlocher MO, Shyn PB, Connolly BL, Devane AM, Morris CS, et al. Proposal of a new adverse event classification by the Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol. 2017;28:1432-7.

e3.

12. Moriura S, Takayama Y, Nagata J, Akutagawa A, Hitano A, Ishiguro S, et al. Percutaneous bowel drainage for jaundice due to afferent loop obstruction following pancreatoduodenectomy: report of a case. Surg Today. 1999;29:1098-101.

13. Kim YH, Han JK, Lee KH, Kim TK, Kim KW, Choi BI. Palliative percutaneous tube enterostomy in afferent-loop syndrome presenting as jaundice: clinical effectiveness. J Vasc Interv Radiol. 2002;13:845-9.

14. Teoh AYB, Dhir V, Jin ZD, Koda M, Seo DW, Ho KY. Development of the Asian EUS Group consensus in pancreatic pseudocyst drainage. Gastrointest Interv. 2016;5:199-202.

15. Brimmall B, Han S, Tatman PD, Clark TJ, Wani S, Brauer B, et al. Increased incidence of pseudoaneurysm bleeding with lumen-apposing metal stents compared to double-pigtail plastic stents in patients with peripancreatic fluid collections. Clin Gastroenterol Hepatol. 2018;16:1521-8.

16. Shah A, Khamma L, Sethi A. Treatment of afferent limb syndrome: novel approach with endoscopic ultrasound-guided creation of a gastrojejunostomy fistula and placement of lumen-apposing stent. Endoscopy. 2015;47(Suppl 1):E309-10.

17. Rodrigues-Pinto E, Grimm IS, Baron TH. Efficacy of endoscopically created bypass anastomosis in treatment of afferent limb syndrome: a single-center study. Clin Gastroenterol Hepatol. 2016;14:633-7.

18. Toliopoulos P, Manière T, Désilets E. Treatment of neoplastic afferent limb syndrome by endoscopic gastrojejunostomy with a lumen-apposing metal stent. VideoGIE. 2018;3:61-2.