Aspartate chemosensory receptor signalling in *Campylobacter jejuni*

Victoria Korolik
Institute for Glycomics; Griffith University; Gold Coast Campus; QLD Australia

The human bacterial pathogen *Campylobacter jejuni* is able to respond to environmental stimuli utilising chemotactic motility. The bacteria senses external molecules via transmembrane sensory proteins called Transducer Like Proteins, TLps. The specificity of the Tlp1 chemoreceptor (Cj1506c) of *C. jejuni* as the aspartate receptor, CcaA, and its role in chemotaxis signalling pathway were characterized by genetic and biochemical approaches including small molecule arrays, Saturation Transfer Difference NMR spectroscopy and mutational analysis. Yeast two-hybrid and three-hybrid analysis of protein-protein interactions showed that CcaA chemotactic signal was preferentially passed through CheV, rather than the CheW homologue of the chemotaxis signalling pathway allowing a new model for the *C. jejuni* chemotactic signalling pathway to be postulated.

Campylobacter jejuni is the most common causative agent of human bacterial gastroenteritis worldwide as well as an important part of normal flora in warm blooded animals and particularly birds. Campylobacter infections in humans are mostly zoonotic in nature and the pathogenicity of this organism is postulated to stem from virulence factors such as chemotaxis, iron acquisition, adherence and surface glycans. Similar to other motile pathogenic bacteria, chemotaxis in *C. jejuni* had been implicated to play an important role in infection and disease. Previous whole cell studies demonstrated that *C. jejuni* has the ability to sense its external environment through chemical gradients and have identified a number of chemoattractants and chemorepellents, including amino acids such as L-serine, L-aspartate, L-cysteine and L-glutamate. The chemotaxis signal transduction pathway is exemplified by the *E. coli* paradigm. Periplasmic sensory receptors recognize a chemical ligand and initiate a molecular signal transduction cascade that causes a change in the direction of flagellum rotation and hence the movement of the bacterium towards or away from stimulus. Although chemotaxis pathways of prokaryotes are known to be variable, the fundamental components are conserved and comprise of: a sensory receptor—Histidine Kinase (HK CheA)—a scaffold protein (CheW/CheV)—a Response Regulator (RR CheY). The response regulator ultimately acts on the flagellar motor to switch rotation either clockwise or counter-clockwise.

While the key factors of the chemotaxis signalling pathway can be found in *C. jejuni*, including a CheA histidine kinase, a CheW scaffold protein and a CheY response regulator, deviations from the *E. coli* paradigm exist. Che A protein in *C. jejuni* has an additional domain similar to the RR CheY and the gene encoding the CheB homologue is unique as it lacks a RR domain usually present in similar proteins of other bacteria. *C. jejuni* also encodes a CheV protein which is homologous to CheV which was originally identified in *Bacillus subtilis*. Che V consists of an N-terminal CheW-like domain fused to a C-terminal response regulator domain.

The chemotactic signal transduction in *C. jejuni* is considered to be initiated by ten putative chemoreceptors and two aerotaxis receptors. The chemoreceptors are grouped into three classes of methyl-accepting chemotactic proteins,
designated as transducer-like proteins (Tlp) in C. jejuni. The group A Tlp receptors include Tlp1, 2, 3, 4, 7 and 10 and are proposed to sense ligands external to the cell. The predicted structures of group A Tlps appear to display classical MCP organization, similar to that of E. coli MCPs, with a periplasmic sensory domain, which is highly variable between different receptors, two transmembrane domains and the C-terminal cytoplasmic signalling domain. The analysis of the published genome sequences of multiple C. jejuni strains demonstrated some diversity in the Group A chemosensory receptor gene content and therefore in how the campylobacters monitor their external environment. Tlp1 was the only receptor universally represented in all sequenced strains with high (98–100%) sequence identity at both the DNA and the amino acid levels. Tlp1 was consequently of primary interest for further analysis.

The expression of the cloned periplasmic sensory domain of the Tlp1 (Tlp1per) allowed analysis of the ligand binding specificity of this chemoreceptor through the use of the amino acid and small molecule arrays. A protein-ligand interaction between Tlp1per and L-aspartate, but no other amino acid, was thus identified and was further confirmed by STD NMR spectroscopy.

In order to further analyse the role of Tlp1 in chemotactic signal transduction, an isogenic deletion mutant and complemented isogenic strains were constructed using the C. jejuni 11168-O reference strain. Chemotaxis assays (capillary and nutrient depleted) demonstrated that Tlp1 is indeed involved sensing aspartate, as the mutation in the Tlp1 sensory domain coding region resulted in a decreased chemotaxis response towards L-aspartate, while migration of the mutant bacteria towards other known chemorepellants was not affected. The complemented tlp1+/− mutant showed restoration of chemotaxis function towards L-aspartate, similar to that of the wild-type. This, in conjunction with the data from amino acid arrays and STD-NMR spectroscopy, conclusively demonstrated that L-aspartate was the only amino acid ligand for Tlp1per and that tlp1 encodes the aspartate receptor for C. jejuni, CcaA.

Bioinformatic analysis of the Tlp1 (CcaA) sequence revealed an absence of homology of C. jejuni Tlp1per to the previously characterized chemosensory proteins, including that of the aspartate receptor Tar of E. coli, one of the best characterized chemosensory receptors to date. There are marked differences between the Tlp1per of C. jejuni and the Tar receptor of E. coli which binds to aspartate and maltose. Maltose, however, exhibits neither chemorepellant nor chemorepellent properties in C. jejuni. Future resolution of the Tlp1 3D structure may shed the light on these anomalies.

Fluorescence microscopy and plate-based motility analysis of tlp1 isogenic mutants when compared to WT 11168-O and the tlp1+− complemented mutant, indicated a run-biased phenotype for the mutant, as opposed to normal “random walk” which is characterized by alternating tumbling and running of the WT phenotype. It was interesting to note that mutation in the tlp1 gene affected not only the way the bacteria moved, but also the rates of adherence and invasion in cell culture of CaCo-2 human intestinal cells which were significantly higher for the mutant than for the WT. In contrast the mutant was significantly less able to colonize or maintain colonization of chickens indicating a possible role for the CcaA in colonization and possibly pathogenicity of C. jejuni.

Aspartate binding to the periplasmic sensory domain of the Tar receptor in E. coli modulates the autophosphorylation of bound HK CheA through a MCP-CheA-CheW complex via changes in MCP cytoplasmic signalling domain. To investigate whether the CcaA aspartate receptor of C. jejuni plays the same role in the chemotaxis pathway, a region homologous to the MCP cytoplasmic signalling domain, identified within the ccaA was utilized to demonstrate involvement of CcaA in the receptor signalling complex. The carboxy-terminal residues 501–684 of the CcaA were predicted to contain the cytoplasmic signalling domain of the protein and include the conserved residues involved in the binding of CheW and CheA, based on homology with the E. coli Tsr receptor signalling domain. These residues were selected for protein-protein interaction analysis with CheW, CheA, CheY, CheV, CheB proteins and/or their individual domains in Yeast two-hybrid and three-hybrid systems.

The signalling domains of the E. coli MCPs interact with the coupling protein CheW to allow formation of MCP-CheW-CheA ternary signalling complexes. Interestingly, while a weak interaction between C. jejuni CcaA signalling domain and CheW was detected, a stronger interaction was identified between the CcaA signalling domain and the CheV protein, specifically with the CheW-like domain of CheV. In B. subtilis both CheW and CheV are essential for a complete chemotactic response. CheV could only partially compensate for the deletion of CheW suggesting that CheW and CheV function together to couple CheA to the MCPs in this species. In C. jejuni, however, this may not be the case as the three-hybrid analysis and immuno-precipitation assays demonstrated that CcaA has preference for binding CheV rather than CheW protein. When both the CheV and CheW proteins were present, CheV could out-compete CheW for binding to the CcaA1 signalling domain. This suggests that CheV and CheW may share an overlapping binding site on the receptor molecule in the signalling domain, to which CheV binds with greater affinity. It appears likely that in vivo, CheV may be predominantly bound to CcaA and therefore may be minimal, if any, binding of CheW. Differences in the affinity of the other C. jejuni Tlps for CheV and CheW were further highlighted in a recent study utilising the high-throughput yeast two-hybrid screens which showed protein-protein interactions between CheW and Tlp4. In addition, interactions were detected between CheV and the Tlps 4, 6 and 8. These findings suggest that the C. jejuni Tlps are likely to show variation in their binding capabilities for CheW and CheV and, as a consequence, may signal via alternative pathways controlled by either protein.

CcaA1 was also capable of dimerization, mediated through interactions in the predicted signalling domain, and is therefore likely to exist as a dimer in vivo. This is similar to the MCPs of...
E. coli, which exist as homodimers where the C-terminal cytoplasmic domain has been shown to dimerize to form a four-helical bundle structure.\(^{24}\) Moreover, this suggests that CcaA may assemble into higher-order oligomers, such as a trimer-of-dimers or rows-of-dimers, consistent with the *E. coli* paradigm.\(^{25-27}\) The presence of either the CheV or CheW proteins did not affect the interaction of the Tlp1 signaling domain with itself, suggesting that the region of the signaling domain responsible for dimerization is distinct from that involved in the binding of CheV or CheW.

The full function of CheV and CheW in the *C. jejuni* chemotaxis pathway is yet to be elucidated, but it is possible to propose a model for *C. jejuni* chemotaxis where signal transduction within the Group A Tlp receptor cluster can be facilitated through either CheV or CheW. In this model, each protein is bound to a specific receptor, such as CcaA but both being present within the heterogeneous cluster of multiple receptors, assuming that the *C. jejuni* receptors cluster in a similar manner to *E. coli* MCPs (Fig. 1). In *E. coli*, receptor methylation sites involved in adaptation are not evenly distributed among the receptors and not all are methylated during adaptation. In addition, not all receptors are present in equal numbers in the polar receptor clusters and yet the signal amplification and adaptation processes function equally well for every ligand these receptors recognize.\(^{25,28}\)

It is also tempting to speculate that the Group B and C Tlp proteins may also specifically bind to either CheV or CheW for signal transduction and that every receptor cluster is able to transduce any signal, although at lesser intensity, so long as either CheV or CheW are present in the receptor cluster. Further investigation of the ligand specificities for the remaining Tlps and their association with CheV and CheW proteins will allow future refining of the chemotaxis model for *C. jejuni*.

![Figure 1. Predicted chemotaxis signal transduction model for *C. jejuni*.](image_url)
17. Blair DF. How Bacteria Sense and Swim. Annu Rev Microbiol 1995; 49:489-520.
18. Chervitz SA, Falke JJ. Molecular mechanism of transmembrane signaling by the aspartate receptor: A model. Proc Natl Acad Sci USA 1996; 93:2545-50.
19. Levit MN, Liu Y, Stock JR. Stimulus response coupling in bacterial chemotaxis: Receptor dimers in signaling arrays. Molecular Microbiology 1998; 30:459-66.
20. Boukhvalova MS, Dahlquist F, Stewart RC. CheW Binding Interactions with CheA and Tar: Importance for Chemotaxis Signaling in Escherichia coli. J Biol Chem 2002; 277:22251-9.
21. Gegner J, Graham D, Roth A, Dahlquist F. Assembly of an MCP receptor, CheW and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 1992; 70:975-82.
22. Rosario MM, Fredrick KL, Ordal GW, Helmann JD. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J Bacteriol 1994; 176:2736-9.
23. Parish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, et al. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 2007; 8:130.
24. Kim KK, Yokota H, Kim S. Four-helical-bundle-structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 1999; 400:787-92.
25. Ames P, Studdert CA, Reiser RH, Parkinson JS. From the Cover: Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc Natl Acad Sci USA 2002; 99:7060-5.
26. Park S-Y, Bochar PF, Gonzalez-Bonet G, Bharinar J, Pollard AM, Freed JJ, et al. Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 2006; 13:400-7.
27. Studdert CA, Parkinson JS. Crosslinking snapshots of bacterial chemoreceptor squads. PNAS 2004; 101:2117-22.
28. Ames P, Parkinson JS. Conformational suppression of inter-receptor signaling defects. Proc Natl Acad Sci USA 2006; 103:9292-7.