Identification of Bulk coupling constant
in Higher Spin/ABJ correspondence

Masazumi Honda*

Harish-Chandra Research Institute,
Chhatnag Road, Jhusi, Allahabad 211019, India

June 2015

Abstract

We study the conjectured duality between the $\mathcal{N} = 6$ Vasiliev higher spin theory on AdS_4 and 3d $\mathcal{N} = 6$ superconformal Chern-Simons matter theory known as the ABJ theory. We discuss how the parameters in the ABJ theory should be related to the bulk coupling constant in the Vasiliev theory. For this purpose, we compute two-point function of stress tensor in the ABJ theory by using supersymmetry localization. Our result justifies the proposal by [arXiv:1504.00365] and determine the unknown coefficient in the previous work.

HRI/ST/1506

*masazumihonda@hri.res.in
1 Introduction

It has been expected that string theory at extremely high energy possesses huge symmetry generated by infinite massless higher spin fields \[1\]. While the Vasiliev theories \[2\] are known as consistent interacting theories of massless higher spin gauge fields, it is still unclear how the Vasiliev theories are related to tensionless limit of string theory. Nevertheless the Vasiliev theories have recently provided great interests in the context of AdS/CFT correspondence \[3\] as initiated in \[4\]. Interestingly, in such higher spin version of AdS/CFT correspondences, their dual CFT sides sometimes have clear origins from string theory \[1\]. It would give some new insights to a relation between the Vasiliev theory and string theory if we study this type of correspondence.

A good laboratory for this purpose is provided by the ABJ theory \[9,10\], which is 3d \(\mathcal{N} = 6\) superconformal Chern-Simons matter theory with the gauge group \(U(N)_k \times U(N+M)_{-k}\) and the Chern-Simons level \(k\). The ABJ theory is expected as the low-energy effective theory of \(N\) M2-branes probing \(\mathbb{C}^4/\mathbb{Z}_k\) and \(M\) fractional M2-branes sitting at the singularity. In usual story of the AdS/CFT, the ABJ theory is expected to be dual to M-theory on \(AdS_4 \times S^7/\mathbb{Z}_k\) with the 3-form \(C_3 \propto M/k\) and type IIA superstring on \(AdS_4 \times \mathbb{CP}^3\) with the NS-NS 2-form \(B_2 \propto M/k\). Here we consider apparently different type of the AdS/CFT correspondence. It was recently proposed that the ABJ theory is well described by Vasiliev theory on \(AdS_4\) in the limit \[11,12\]

\[
M \gg 1, \quad k \gg 1, \quad N = \text{fixed}, \quad t = \frac{M}{k} = \text{fixed}.
\] (1.1)

After a while, the authors in \[13\] have precisely tested this proposal for partition function on \(S^3\). On the boundary side, they have developed the systematic \(1/M\) expansion of the ABJ partition function using the previous results \[14,15,16\]. On the bulk side, they have computed the one-loop free energy of the Vasiliev theory by using the technique in \[17,18\]. For comparing the both results, they proposed that the bulk coupling constant \(G_{HS}\), namely the Newton constant in the Vasiliev theory, is related to the parameters in the ABJ theory by \[13\]

\[
G_{HS} = \frac{\gamma}{M} \frac{\pi t}{\sin(\pi t)},
\] (1.2)

with the unknown coefficient \(\gamma\).

In this paper we justify this identification \[12\] and determine the value of the unknown coefficient \(\gamma\). Namely, we discuss how the parameters in the ABJ theory should be related to the bulk coupling constant in the Vasiliev theory. This problem is essentially equivalent to find the parameter “\(\tilde{N}\)” in Maldacena-Zhiboedov \[19,20\], which is the natural expansion parameter in 3d theories with (slightly broken) higher spin symmetries. For this purpose, we compute two-point function of stress tensor in the ABJ theory by using supersymmetry.

1 See e.g. \[5,6,7,8\] in the context of higher spin \(AdS_3/CFT_2\) correspondence.

2 We are taking unit AdS radius.
localization [21]. Finally, we will show
\[G_{\text{HS}} = \frac{2t}{M \sin (\pi t)}, \quad \gamma = \frac{2}{\pi}, \] (1.3)
in the canonical normalizations on the both sides.

This paper is organized as follows. In sec. 2, we explain how to compute the stress tensor two-point function by using the localization. In sec. 3, we compute the two-point function in the higher spin limit and derive our main result (1.3). Section 4 is devoted to conclusion and discussions.

2 Two point function of stress tensor from localization

In this section, we discuss how one can compute the stress tensor two-point function in the ABJ theory by using the localization. In 3d CFT, two point function of canonically normalized stress tensor in flat space at separate points takes the form [22]
\[\langle T_{\mu\nu}(x)T_{\rho\sigma}(0) \rangle = \frac{c_T}{64} (P_{\mu\rho}P_{\nu\sigma} + P_{\nu\rho}P_{\mu\sigma} - P_{\mu\nu}P_{\rho\sigma}) \frac{1}{16\pi^2 x^2}, \] (2.1)
where \(P_{\mu\nu} = \delta_{\mu\nu}\partial^2 - \partial_\mu \partial_\nu \). We normalize \(c_T \) such that one free real scalar and Majorana fermion contribute to \(c_T \) by \(c_T = 1 \). Here we would like to compute \(c_T \) of the ABJ theory in the higher spin limit (1.1). This limit is equivalent to treat one of the ’t Hooft couplings as the small parameter but to keep the other ’t Hooft coupling finite. Hence it is nice if we can compute \(c_T \) by using some non-perturbative methods.

Fortunately there are two ways to compute \(c_T \) by using the SUSY localization [21]. One way is to get \(c_T \) from partition function of the ABJ theory on squashed sphere [24, 25]. This method has been applied to various examples in [27]. The other way is to compute two-point function of flavor symmetry current by the localization [28] and then find \(c_T \) from its coefficient. Here we take the latter approach.

In 3d \(\mathcal{N} = 2 \) language, the ABJ theory consists of vector multiplet, two bi-fundamental chiral multiplets \((A_1, A_2)\) and two anti-bi-fundamental chiral multiplets \((B_1, B_2)\) with the superpotential [9, 10]
\[W \sim \epsilon^{\alpha\beta} \epsilon^{\gamma\delta} \text{Tr}[A_\alpha B_\gamma A_\beta B_\delta], \] (2.2)
where \(\alpha, \beta, \gamma, \delta = 1, 2 \). Let us consider a particular \(U(1)_f \) flavor symmetry summarized in table 1. Then, the two-point function of the flavor symmetry current \(j_\mu \) is fixed by the 3d conformal symmetry as [4]:
\[\langle j_\mu(x)j_\nu^\nu(0) \rangle = \frac{T_f}{16\pi^2} (\delta^{\mu\nu}\partial^2 - \partial_\mu \partial_\nu) \frac{1}{x^2}. \] (2.3)
Table 1: Charge assignments of $U(1)_f$ flavor symmetry.

	A_1	A_2	B_1	B_2
$U(1)_f$	+1	-1	+1	-1

up to the unknown coefficient τ_f. The coefficient τ_f is proportional to c_T and its proportional coefficient for the ABJ theory has been fixed as \[29\]

$$c_T = 4\tau_f. \quad (2.4)$$

We can compute τ_f by using the localization in the following way. First we introduce supersymmetric flavor mass m of the $U(1)_f$ symmetry by weakly gauging this symmetry and turning on its fixed Coulomb branch.\[3\] If we denote the partition function of the mass-deformed ABJ theory on S^3 by $Z(m)$, then the partition function $Z(m)$ generates τ_f by the relation\[28\]

$$\tau_f = -8 \text{Re} \left. \frac{1}{Z(0)} \frac{\partial^2 Z(m)}{\partial m^2} \right|_{m=0}. \quad (2.5)$$

Since the mass-deformed ABJ theory still has at least $\mathcal{N} = 2$ SUSY, we can compute $Z(m)$ by the localization\[33, 34, 35\]:

$$Z(m) = \frac{1}{N_1!N_2!} \int \frac{d^{N_1}\mu}{(2\pi)^{N_1}} \frac{d^{N_2}\nu}{(2\pi)^{N_2}} e^{\frac{i}{4\pi} \sum_{j=1}^{N_1} \mu_j^2 - \frac{i}{4\pi} \sum_{a=1}^{N_2} \nu_a^2} \prod_{1 \leq i \neq j \leq N_1} 2 \sinh \frac{\mu_i - \mu_j}{2} \prod_{1 \leq a \neq b \leq N_2} 2 \sinh \frac{\nu_a - \nu_b}{2} \prod_{j=1}^{N_1} \prod_{a=1}^{N_2} \cosh \frac{\nu_a - \nu_b - m}{2} \cdot \cosh \frac{\mu_j - \nu_a + m}{2}, \quad (2.6)$$

where $N_1 = N$ and $N_2 = N + M$. In this way, we can compute c_T by using the localization. In next section we compute $Z(m)$ and find c_T in the higher spin limit.

3 Derivation

We would like to consider the higher spin limit

$$M \gg 1, \; k \gg 1, \; N = \text{fixed}, \; t = \frac{M}{k} = \text{fixed}. \quad (3.1)$$

However, instead we first consider the slightly different limit:

$$N_2 \gg 1, k \gg 1, \; \lambda_1 = \frac{N_1}{k} = \frac{tN}{M} \ll 1, \; \lambda_2 = \frac{N_2}{k} = \left(1 + \frac{N}{M}\right) t = \text{fixed}, \quad (3.1)$$

5 τ_f is the same as τ_{22} in the notation of \[29\].
6 This corresponds to just fix the adjoint scalar in the $U(1)_f$ vector multiplet to the constant.
7 We have rescaled the mass as $m \rightarrow m/(2\pi)$.
8 This matrix model was analyzed in \[30, 31, 32\] in different contexts for $N_1 = N_2$ (ABJM case).
which corresponds to the $1/N_2$ expansion. Then we will perform $1/M$ expansion of the result in the limit $\lim_{N_2 \to 0}$ and extract the higher spin limit. For this purpose, it is convenient to rewrite the mass-deformed partition function as

$$Z(m) = \frac{1}{N_1!} \int \frac{d^{N_1} \mu}{(2\pi)^{N_1}} e^{\frac{i\pi}{N_1} \sum_{j=1}^{N_1} \mu_j^2} \prod_{i \neq j} (\mu_i - \mu_j) \langle e^{V(\mu, \nu)} \rangle_{N_2},$$ \hspace{1cm} (3.2)

where

$$V(\mu, \nu) = \sum_{i \neq j} \log \frac{2\sinh \frac{\mu_i - \mu_j}{2}}{\mu_i - \mu_j} - \sum_{j,a} \left[\log \left(2 \cosh \frac{\mu_j - \nu_a + m}{2} \right) + \log \left(2 \cosh \frac{\mu_j - \nu_a - m}{2} \right) \right].$$ \hspace{1cm} (3.3)

The symbol $\langle O \rangle_{N_2}$ denotes the unnormalized VEV over the $U(N_2)$ part:

$$\langle O \rangle_{N_2} = \frac{1}{N_2!} \int \frac{d^{N_2} \nu}{(2\pi)^{N_2}} e^{\frac{-i\pi}{N_2} \sum_a \nu_a^2} \prod_{a \neq b} \left[2 \sinh \frac{\nu_a - \nu_b}{2} \right], \quad \text{with} \quad g_s = -\frac{2\pi i}{k},$$ \hspace{1cm} (3.4)

which is the same as the VEV in the $U(N_2)_{-k}$ CS matrix model on S^3 (without level shift). When the first 't Hooft coupling λ_1 is small, the integral over μ is dominated by $\mu \approx 0$ and we can approximate $V(\mu, \nu)$ by small μ expansion as usual:

$$V(\mu, \nu) = -N_1 \sum_a \left[\log \left(2 \cosh \frac{\nu_a + m}{2} \right) + \log \left(2 \cosh \frac{\nu_a - m}{2} \right) \right]$$

$$+ \sum_j \mu_j \sum_a \tanh \frac{\nu_a + m}{2} + \sum_j \mu_j \sum_a \tanh \frac{\nu_a - m}{2} + O(\mu^2)$$

$$= -N_1 \sum_a \left[\log (1 + e^{\nu_a + m}) + \log (1 + e^{\nu_a - m}) - \nu_a \right]$$

$$+ \sum_j \mu_j \sum_a \tanh \frac{\nu_a + m}{2} + \sum_j \mu_j \sum_a \tanh \frac{\nu_a - m}{2} + O(\mu^2).$$ \hspace{1cm} (3.5)

Since the integrand is symmetric under $\mu \to -\mu$ and $\nu \to -\nu$, we find

$$Z(m) = \frac{1}{N_1!} \int \frac{d^{N_1} \mu}{(2\pi)^{N_1}} e^{\frac{i\pi}{N_1} \sum_{j=1}^{N_1} \mu_j^2} \prod_{i \neq j} (\mu_i - \mu_j)$$

$$\times \left\langle \exp \left[-N_1 \sum_a \log(1 + e^{\nu_a + m})(1 + e^{\nu_a - m}) \right] + O(\mu^2) \right\rangle_{N_2}. \hspace{1cm} (3.6)$$

This can be computed by using the technique in [36] used for conifold expansion of the ABJ(M) theory. Let us introduce the quantity

$$g(Y) = -g_s \left\langle \sum_a \log (1 - Y e^{\nu_a}) \right\rangle_{N_2, \text{planar}}, \hspace{1cm} (3.7)$$
where \(\langle \cdots \rangle_{N_2, \text{planar}} \) denotes the VEV in the planar limit for the \(U(N_2) \) gauge group. Then, in the higher spin limit (1.1), we find
\[
\langle e^{V(\mu, \nu)} \rangle_{N_2} \simeq \exp \left[N_1 \left(g(\mu^m) + g(-\mu^m) \right) \right].
\] (3.8)

Fortunately the quantity \(g(Y) \) has been computed in [36] for arbitrary \(Y \) as
\[
g(Y) = \frac{\pi^2}{6} - \frac{1}{2} \left(\log h(Y)^2 + \log h(Y) \left(\log (1 - e^{-t_2}h(Y)) - \log (1 - h(Y)) \right) \right)
- \text{Li}_2(h(Y)) + \text{Li}_2(e^{-t_2}h(Y)) - \text{Li}_2(e^{-t^2}),
\] (3.9)
where
\[
t^2 = -\frac{2\pi i N_2}{k}, \quad h(Y) = \frac{1}{2} \left[1 + Y + \sqrt{1 + Y^2 - 4e^{t_2}Y} \right].
\] (3.10)

Thanks to this result, one can show
\[
\frac{\partial^2}{\partial m^2} \langle e^{V(\mu, \nu)} \rangle_{N_2} \bigg|_{m=0} \simeq -\frac{N_1}{g_s} (1 - e^{-t_2}) e^{\frac{2N_1}{g_s} g(-1)} = -\frac{NM}{\pi t} e^{\frac{\pi i t}{2}} \sin \frac{\pi t}{2} e^{\frac{2N_1}{g_s} g(-1)} + O(1).
\] (3.11)

Noting that \(Z(0) \) in the limit (3.1) is given by
\[
Z(0) \simeq \frac{1}{N_1!} \int \frac{d^{N_1} \mu}{(2\pi)^{N_1}} e^{\frac{2N_1}{g_s} g(-1)} e^{\frac{i k}{4} \sum_{\mu=1}^{N_1} \mu^2} \prod_{i \neq j} (\mu_i - \mu_j),
\] (3.12)
we finally obtain
\[
c_T = -32 \text{Re} \left(-\frac{NM}{\pi t} e^{\frac{\pi i t}{2}} \sin \frac{\pi t}{2} \right) = \frac{16NM \sin \pi t}{\pi t}.
\] (3.13)

As a simple consistency check, let us consider the \(t \to 0 \) limit. Then, since the ABJ theory has \(8N(N+M) \) real scalars and \(8N(N+M) \) Majorana fermions, \(c_T \) should be \(16N(N+M) = 16NM + O(1) \). Our result is actually consistent with this result. As a conclusion, if we take the canonical normalization\(^9\) for spin-2 fields (see e.g. [37]) and note that the stress tensor corresponds to \(U(N) \) singlet [12] on the gravity side, then the bulk coupling constant \(G_{\text{HS}} \) should be given by
\[
G_{\text{HS}} = \frac{32N}{\pi c_T} = \frac{2t}{M \sin (\pi t)},
\] (3.14)

This determines the unknown coefficient \(\gamma \) in (1.2) of the previous study [13] as \(\gamma = 2/\pi \).

\(^9\) More precisely we suppose to take the normalization such that if we knew quadratic “actions” for the spin-2 field fluctuations in the dual Vasiliev theory, then the spin-2 field “actions” are the same as the one for the canonically normalized Einstein gravity in \(AdS_4 \) with identifying \(G_{\text{HS}} \) with the 4d Newton constant.
Conclusion and discussions

We have focused on the conjectured duality between the $\mathcal{N} = 6$ Vasiliev higher spin theory on AdS_4 and the ABJ theory \cite{11,12}. We have discussed how the parameters in the ABJ theory should be related to the bulk coupling constant G_{HS} in the Vasiliev theory. To achieve this, we have computed the two-point function of the stress tensor in the ABJ theory by using the supersymmetry localization. As a result, we have justified the identification (1.2) proposed in \cite{13} and determined the value of the unknown coefficient γ as (1.3). Our result on c_T is similar to the previous results \cite{38,39} on non-supersymmetric $U(M)_k$ Chern-Simons theory with fundamental matters:

$$c_{T,\text{fund}} = \frac{2M \sin (\pi t)}{\pi t},$$

(4.1)

where $t = M/k_{\text{eff}}$ with the effective CS level k_{eff}. It would be interesting to understand why the factor $\sin (\pi t)/(\pi t)$ so universally appears.

Besides the higher spin limit, it is also illuminating to study c_T in the context of the usual AdS/CFT correspondence between the ABJ(M) theory and M-theory or type IIA superstring. It is known that the partition function of the mass-deformed ABJM theory on S^3 is described by an ideal Fermi gas \cite{32,40}. Probably we can show that the ABJ case ($M \neq 0$) also has an ideal Fermi gas picture by using the technique in \cite{15}. Then we should be able to study non-perturbative corrections \cite{41,42} in M-theory to the stress tensor two-point function as in the partition function \cite{43,44,45,46,47,48} and supersymmetric Wilson loops \cite{48,49}. We expect that this approach can also precisely test the conjecture $c_T \geq 16$ for 3d $\mathcal{N} = 8$ SCFT’s from conformal bootstrap \cite{29}.

We close by a comment to contact term in the flavor current two-point function discussed in \cite{28,50}:

$$\langle j^u_a(x) j^v_b (0) \rangle = \frac{\tau_f}{16\pi^2} (\delta^{uv} \partial^2 - \partial^u \partial^v) \frac{1}{x^2} + \frac{i \kappa_f}{2\pi} \epsilon^{\mu\nu\rho} \partial_\rho \delta^{(3)}(x).$$

(4.2)

We can compute the coefficient κ_f by \cite{28,50}

$$\kappa_f = 2\pi \text{Im} \frac{1}{Z(0)} \frac{\partial^2 Z(m)}{\partial m^2} \bigg|_{m=0}.$$

(4.3)

Looking at (3.11), we immediately find κ_f in the higher spin limit as

$$\kappa_f = -\frac{2M}{t} \sin^2 \frac{\pi t}{2}.$$

(4.4)

It is attractive if we find physical interpretations of this formula from the gravity side.

Acknowledgment

This work is motivated by our previous collaboration \cite{13} with Shinji Hirano, Kazumi Okuyama and Masaki Shigemori. We would like to thank Rajesh Gopakumar, Shinji Hirano, Kazumi Okuyama and Yuki Yokokura for useful discussions. We are grateful to ICTS for warm hospitality, where a part of this work was done.
References

[1] D. J. Gross, *High-Energy Symmetries of String Theory*, Phys.Rev.Lett. 60 (1988) 1229.

[2] M. Vasiliev, *Nonlinear equations for symmetric massless higher spin fields in (A)dS(d)*, Phys.Lett. B567 (2003) 139–151, [hep-th/0304049].

[3] J. M. Maldacena, *The Large N limit of superconformal field theories and supergravity*, Int.J.Theor.Phys. 38 (1999) 1113–1133, [hep-th/9711200].

[4] I. Klebanov and A. Polyakov, *AdS dual of the critical O(N) vector model*, Phys.Lett. B550 (2002) 213–219, [hep-th/0210114].

[5] M. R. Gaberdiel and R. Gopakumar, *Large N=4 Holography*, JHEP 1309 (2013) 036, [arXiv:1305.4181].

[6] T. Creutzig, Y. Hikida, and P. B. Ronne, *Higher spin AdS3 holography with extended supersymmetry*, JHEP 1410 (2014) 163, [arXiv:1406.1521].

[7] M. R. Gaberdiel and R. Gopakumar, *Higher Spins & Strings*, JHEP 1411 (2014) 044, [arXiv:1406.6103].

[8] M. R. Gaberdiel and R. Gopakumar, *Stringy Symmetries and the Higher Spin Square*, J.Phys. A48 (2015), no. 18 185402, [arXiv:1501.07236].

[9] O. Aharony, O. Bergman, and D. L. Jafferis, *Fractional M2-branes*, JHEP 0811 (2008) 043, [arXiv:0807.4924].

[10] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, *N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*, JHEP 0810 (2008) 091, [arXiv:0806.1218].

[11] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, et al., *Chern-Simons Theory with Vector Fermion Matter*, Eur.Phys.J. C72 (2012) 2112, [arXiv:1110.4386].

[12] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, *ABJ Triality: from Higher Spin Fields to Strings*, J.Phys. A46 (2013) 214009, [arXiv:1207.4485].

[13] S. Hirano, M. Honda, K. Okuyama, and M. Shigemori, *ABJ Theory in the Higher Spin Limit*, [arXiv:1504.00365].

[14] H. Awata, S. Hirano, and M. Shigemori, *The Partition Function of ABJ Theory*, Prog. Theor. Exp. Phys. (2013) 053B04, [arXiv:1212.2966].

[15] M. Honda, *Direct derivation of ”mirror” ABJ partition function*, JHEP 1312 (2013) 046, [arXiv:1310.3126].
[16] M. Honda and K. Okuyama, *Exact results on ABJ theory and the refined topological string*, *JHEP* **1408** (2014) 148, [arXiv:1405.3653].

[17] S. Giombi and I. R. Klebanov, *One Loop Tests of Higher Spin AdS/CFT*, *JHEP* **1312** (2013) 068, [arXiv:1308.2337].

[18] S. Giombi, I. R. Klebanov, and B. R. Safdi, *Higher Spin AdS_d+1/CFT_d at One Loop*, *Phys.Rev.* **D89** (2014), no. 8 084004, [arXiv:1401.0825].

[19] J. Maldacena and A. Zhiboedov, *Constraining Conformal Field Theories with A Higher Spin Symmetry*, *J.Phys.* **A46** (2013) 214011, [arXiv:1112.1016].

[20] J. Maldacena and A. Zhiboedov, *Constraining conformal field theories with a slightly broken higher spin symmetry*, *Class.Quant.Grav.* **30** (2013) 104003, [arXiv:1204.3882].

[21] V. Pestun, *Localization of gauge theory on a four-sphere and supersymmetric Wilson loops*, *Commun.Math.Phys.* **313** (2012) 71–129, [arXiv:0712.2824].

[22] H. Osborn and A. Petkou, *Implications of conformal invariance in field theories for general dimensions*, *Annals Phys.* **231** (1994) 311–362, [hep-th/9307010].

[23] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, *Supersymmetric Field Theories on Three-Manifolds*, *JHEP* **1305** (2013) 017, [arXiv:1212.3388].

[24] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, *The Geometry of Supersymmetric Partition Functions*, *JHEP* **1401** (2014) 124, [arXiv:1309.5876].

[25] N. Hama, K. Hosomichi, and S. Lee, *SUSY Gauge Theories on Squashed Three-Spheres*, *JHEP* **1105** (2011) 014, [arXiv:1102.4716].

[26] Y. Imamura and D. Yokoyama, *N=2 supersymmetric theories on squashed three-sphere*, *Phys.Rev.* **D85** (2012) 025015, [arXiv:1109.4734].

[27] T. Nishioka and K. Yonekura, *On RG Flow of τ_{RR} for Supersymmetric Field Theories in Three-Dimensions*, *JHEP* **1305** (2013) 165, [arXiv:1303.1522].

[28] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, *Contact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories*, *JHEP* **1210** (2012) 053, [arXiv:1205.4142].

[29] S. M. Chester, J. Lee, S. S. Pufu, and R. Yacoby, *The N = 8 superconformal bootstrap in three dimensions*, *JHEP* **1409** (2014) 143, [arXiv:1406.4814].

[30] L. Anderson and K. Zarembo, *Quantum Phase Transitions in Mass-Deformed ABJM Matrix Model*, *JHEP* **1409** (2014) 021, [arXiv:1406.3366].
[31] L. Anderson and J. G. Russo, *ABJM Theory with mass and FI deformations and Quantum Phase Transitions*, JHEP 1505 (2015) 064, [arXiv:1502.06828].

[32] N. Drukker and J. Felix, *3d mirror symmetry as a canonical transformation*, JHEP 1505 (2015) 004, [arXiv:1501.02268].

[33] A. Kapustin, B. Willett, and I. Yaakov, *Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter*, JHEP 1003 (2010) 089, [arXiv:0909.4559].

[34] D. L. Jafferis, *The Exact Superconformal R-Symmetry Extremizes Z*, JHEP 1205 (2012) 159, [arXiv:1012.3210].

[35] N. Hama, K. Hosomichi, and S. Lee, *Notes on SUSY Gauge Theories on Three-Sphere*, JHEP 1103 (2011) 127, [arXiv:1012.3512].

[36] N. Drukker, M. Marino, and P. Putrov, *From weak to strong coupling in ABJM theory*, Commun.Math.Phys. 306 (2011) 511–563, [arXiv:1007.3837].

[37] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha, et al., *Holographic GB gravity in arbitrary dimensions*, JHEP 1003 (2010) 111, [arXiv:0911.4257].

[38] O. Aharony, G. Gur-Ari, and R. Yacoby, *Correlators of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions*, JHEP 1212 (2012) 028, [arXiv:1207.4593].

[39] G. Gur-Ari and R. Yacoby, *Correlators of Large N Fermionic Chern-Simons Vector Models*, JHEP 1302 (2013) 150, [arXiv:1211.1866].

[40] M. Marino and P. Putrov, *ABJM theory as a Fermi gas*, J.Stat.Mech. 1203 (2012) P03001, [arXiv:1110.4066].

[41] A. Cagnazzo, D. Sorokin, and L. Wulff, *String instanton in AdS(4) x CP**3*, JHEP 1005 (2010) 009, [arXiv:0911.5228].

[42] N. Drukker, M. Marino, and P. Putrov, *Nonperturbative aspects of ABJM theory*, JHEP 1111 (2011) 141, [arXiv:1103.4844].

[43] Y. Hatsuda, S. Moriyama, and K. Okuyama, *Instanton Effects in ABJM Theory from Fermi Gas Approach*, JHEP 1301 (2013) 158, [arXiv:1211.1251].

[44] F. Calvo and M. Marino, *Membrane instantons from a semiclassical TBA*, JHEP 1305 (2013) 006, [arXiv:1212.5118].

[45] Y. Hatsuda, S. Moriyama, and K. Okuyama, *Instanton Bound States in ABJM Theory*, JHEP 1305 (2013) 054, [arXiv:1301.5184].
[46] Y. Hatsuda, M. Marino, S. Moriyama, and K. Okuyama, Non-perturbative effects and the refined topological string, [arXiv:1306.1734].

[47] S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 1403 (2014) 079, [arXiv:1310.8051].

[48] A. Grassi, J. Kallen, and M. Marino, The topological open string wavefunction, Commun.Math.Phys. 338 (2015), no. 2 533–561, [arXiv:1304.6097].

[49] Y. Hatsuda, M. Honda, S. Moriyama, and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 1310 (2013) 168, [arXiv:1306.4297].

[50] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 1209 (2012) 091, [arXiv:1206.5218].