Is there a Similarity between Fibonacci Sequence and Euler’s Number with Respect to Quantum Perspective Model?

By Tahir Ölmez
Selçuk University

Abstract- According to Quantum Perspective Model, this article studies whether there is a link between the Euler’s numbers and the Fibonacci series. When the digits of the Euler’s number after the comma are converted from decimal(10) number base system to binary(2) number base system, it corresponds to the number in the Fibonacci series. (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…) [7]. From this point of view, when the first hundred digits of the Euler’s numbers after the comma were calculated, the number “55” (ten times) in the Fibonacci series was found, in particular. Besides, the eleventh number in the Fibonacci series is also “55”. In other words, the approximate unchanged numbers of the golden ratio numbers after the comma can be reached for the first time after dividing them from “55” to “34” (1.618). In sum, Euler’s numbers are not only attributed to the Fibonacci series in mathematics, but also attributed to the golden ratio in nature.

Keywords: quantum perspective model, euler’s numbers, fibonacci series, binary number base system, the golden ratio and the pascal triangle.

GJSFR-F Classification: MSC 2010: 35Q31
Is there a Similarity between Fibonacci Sequence and Euler’s Number with Respect to Quantum Perspective Model?

Tahir Ölmez

Abstract: According to Quantum Perspective Model, this article studies whether there is a link between the Euler’s numbers and the Fibonacci series. When the digits of the Euler’s number after the comma are converted from decimal(10) number base system to binary(2) number base system, it corresponds to the number in the Fibonacci series. (0,1,2,3,5,8,13,21,34,55...) [7]. From this point of view, when the first hundred digits of the Euler’s numbers after the comma were calculated, the number “55” (ten times) in the Fibonacci series was found, in particular. Besides, the eleventh number in the Fibonacci series is also “55”. In other words, the approximate unchanged numbers of the golden ratio numbers after the comma can be reached for the first time after dividing them from “55” to “34” (1,618). In sum, Euler’s numbers are not only attributed to the Fibonacci series in mathematics, but also attributed to the golden ratio in nature.

Keywords: quantum perspective model, euler’s numbers, fibonacci series, binary number base system, the golden ratio and the pascal triangle.

I. Euler’s Numbers and Golden Ratio

Euler’s numbers are e: 2,718281828459045…[1]

The starting point of this study was found as follows. When the first fifteen digits of the number “e” after the comma are subtracted from a quadrillion, the first three digits of the numbers obtained at the result are ”618”. Also, the golden ratio numbers include “618”, too. (Remember, it is approximately 1,618) (For more information about “618” and biochemistry [6]) In fact, in the digits after ”618” in the result, Euler’s numbers are the same as the digits after the first three digits after the comma (281828459045).

Fibonacci series : 0,1,1,2,3,5,8,13,21,34,55… [7]

The golden ratio has the continued fractions (1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34…etc) are ratios of successive Fibonacci numbers. [7]

The starting point of the numbers in the Fibonacci series is the Pascal triangle, which is also formed by the exponents of the eleven “11” digit. Namely, From Fibonacci series, the number of ”55” is the eleventh(11) number. Another mysterious point is that if you calculate the diagonals of this triangle. the sum of the numbers in the diagonals will give you the Fibonacci sequence [1]. (1,1,2,3,5,8,13,21,34,55) [7]. Namely, the value of a row is a power of 11. [3]

Author: Selçuk University, Social Sciences Dept., Selcuklu/Konya. e-mails: bsonmez3@gmail.com, tolmez123@yahoo.com
II. Calculation of Euler’s Numbers from Decimal base System (10) to Binary base System (2) and Vice Versa

Table 1: The representation of decimal numbers in the binary base and vice versa

DECIMAL	BINARY
1	101
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	10000
15	10001
16	10010
17	10011
18	10100
19	10101
20	10110
21	10111
22	11000
23	11001
24	11010
25	11011
26	11100
27	11101
28	11110
29	11111
30	100000
31	100001
32	100010
33	100011
34	100100
35	100101
36	100110
37	100111
38	101000
39	101001
40	101010
41	101011
42	101100
43	101101
44	101110
45	101111
46	110000
47	110001
48	110010
49	110011
50	110100
51	110101
52	110110
53	110111
54	111000
55	111001
56	111010
57	111011
58	111100
59	111101
60	111110
61	1000000
62	1000001
63	1000010
64	1000011
65	1000100
66	1000101
67	1000110
68	1000111
69	1001000
70	1001001
71	1001010
72	1001011
73	1001100
74	1001101
75	1001110
76	1001111
77	1010000
78	1010001
79	1010010
80	1010011
81	1010100
82	1010101
83	1010110
84	1010111
85	1011000
86	1011001
87	1011010
88	1011011
89	1011100
90	1011101
91	1100000
92	1100001
93	1100010
94	1100011
95	1100100
96	1100101
97	1100110
98	1100111
99	1101000
100	1101001

III. Calculation of Euler’s Numbers from Decimal base System (10) to Binary base System (2) and Vice Versa

The first hundred of Euler’s numbers are here:

e:2,71828182845904523536028747135266249775724709369995957496696762772407663035
354759457138217852516642742746

At first, Euler’s numbers of both digits after the comma was taken each time. For example, 71,82,81,82,84...and so on. Then these numbers are found in the binary number system in Table-1. (For instance, “71”, 1000111 and so on). Secondly, convert these binary numbers to decimal number base (For instance, “71” 1000111; 1000=8 and
Finally, all decimal numbers are subjected to the addition process, respectively.

\[(8+7+2+4+2+17+2+4+2+5=55)\]

The result of the addition is "55".

Euler's numbers:	71	82	81	82	84
Euler's numbers:	100	111	10	100	10
Euler's numbers:	8+	7	+2+4+2	+2	+17
Euler's numbers:	+2+4+2	+5	$EMPTY=55$		

Euler's numbers:	84(more)	59	04	52	35	36	02	87
Euler's numbers:	100	111	01	11	100	1000	10	1 1000
Euler's numbers:	4+	3	+2+3+ + 9+	2+	4+	+8	+3+	+4+
Euler's numbers:	+2	+2+2	$EMPTY=55$					

Euler's numbers:	87(more)	47	13	52	66	24			
Euler's numbers:	11	101	11	11	10	100	1000	10	1 1000
Euler's numbers:	3+	11+	+3	+3+1+1+2+4	+16	+2+1+8 =55			

Euler's numbers:	97	75	72	47	09	36					
Euler's numbers:	11	00000	1	100	10	11					
Euler's numbers:	1+16+	1	+4	+2	+3	+4	+8	+2	+1+7	+2+1	+2+1
Euler's numbers:	$EMPTY=55$										

Euler's numbers:	99	95	95	74	96					
Euler's numbers:	11	1000	11	101	1111	1 01	1111	100	10	1
Euler's numbers:	1+	8+	+3+	+1+1+15	+1+1+15	+4	+2+2	+1+1+8 =55		

Euler's numbers:	96(more)	69	67		
Euler's numbers:	100000	100	00	101	10000
Euler's numbers:	32+	2	+$EMPTY$+5	+16 =55	

Euler's numbers:	67(more)	62	77	24	07	66				
Euler's numbers:	11	111	110	10	01	101	11000	1	11	10000
Euler's numbers:	3+	7+	+6+	+2+1	+7	+1+8	+1+3+16 =55			

Euler's numbers:	66(more)	30	35	35	47	59				
Euler's numbers:	10	111	1000	11	1000	11	0111	11	111	01
Euler's numbers:	2+	7+	+2	+8	+3	+8	+3	+11	+3+	+7+1 =55

Euler's numbers:	59(more)	45	71	38	21	78	52							
Euler's numbers:	1	101	101	1000	111	100	110	101	01	100	11	10	11	01
Euler's numbers:	1+	5+	+5	+8	+7	+4	+6	+5	+1	+4	+3	+2	+3	+1 =55

Notes
Euler’s numbers: 52(more) 51 66 42 74 27 46
Euler’s numbers : 00 1 100 11 10000 10 10 100 10 10 110 11 10 10 10 10 10 100 10 10 10 10 10 10 10
Euler’s numbers : EMPT Y +1+4+3 +16 +2 +2 +2 +2 +4 +2 +2 +6 +3 +1+3 +2=55

IV. Conclusion

The most widely used number digit system today is decimal. But in this work, Euler’s numbers have been converted from decimal base system to binary number base system. Interestingly, the first number of Euler’s numbers is “2”. Binary numbers have only two digits (0 or 1) too [5].

According to Quantum Perspective Model[4], after calculating the first hundred digits of Euler numbers after the comma, the number” 55 ” (ten times) was found, especially in the Fibonacci series (0,1,1,2,3,5,8,13,21,34,55…) [7]. The 11th digit in the Fibonacci series is also “55”. The numbers of the this series can be reached through The Pascal Triangle with the exponents of this number 11. As a result, after calculating the first hundred of Euler’s numbers after the comma, the number” 55 ” has been obtained (ten times). It is the sign of the relationship between Euler’s numbers and Fibonacci series. During the calculation, the “EMPT Y” numbers “00’” are disregarded. According to the number-based system, the number” 00 ’” has no value, neither in the decimal nor in the binary-based system. According to binary encoding base system, on the case of current not passing, this means 0 (zero). [8] That’s why, it can be the reason of disregardence of “EMPT Y” “00’” numbers.

As described in the reviews by Mäkelä, and Annila, the Fibonacci sequence is for other mathematical model functions which have useful results. (Mäkelä and Annila, 2010): If Fibonacci numbers are found in Nature, Why not include them in Euler’s numbers? Or is it the difference how it discovers parameters in science in terms of the quantum perspective model, especially when the relevant unit of analysis is invariant numbers?

REFERENCES Références Referencias

1. https://www.math.utah.edu/~pa/math/e.html December 08, 2020 Euler’s number to 10,000 digits
2. https://en.wikipedia.org/wiki/Golden_ratio 05 December 2020.
3. http://somerandomathblog.blogspot.com/2017/02/pascals-triangle.html PASCAL’S TRIANGLE PICTURE
4. Köklü K. A Quantum Perspective Model to Genetic Codes through Various Sciences. Neuroquantology April 2019a; Vol 17.No:3. DOI: 10.14704/nq.2019.17.3.1974
5. https://owlcation.com/stem/Binary-Numbers 04 December 2020.
6. Ölmez T.Is there an aesthetics in golden ratio as regards to the common cis-regulatory elements versus to atomic numbers of elements with respect to Quantum perspective model? Neurology and Neuroscience Reports 2020; Vol.3.DOI: 10.15761/NNR.1000119
7. http://www.math.brown.edu/tbanchof/ups/group5/ma8n_roots2.1.html04 December 2020.
8. https://study.com/academy/lesson/binary-language-of-computers-definition-lesson-quiz.html 05 December 2020.
9. Mäkelä T and Annila A. Natural Patterns of Energy Dispersal. Physics of Life Review 2010; 7: 477-498.