The role of endotoxin, TNF-α, and IL-6 in inducing the state of growth hormone insensitivity

Ping Wang, Ning Li, Jie-Shou Li, Wei-Qin Li

AIM: Critical illnesses such as sepsis, trauma, and burns cause a growth hormone insensitivity, which leads to an increased negative nitrogen balance. Endotoxin is generously released into blood under these conditions and stimulates the production of proinflammatory cytokines such as TNF-α, IL-6, and IL-1, which may play a very important role in inducing the growth hormone insensitivity. The objective of this current study was to investigate the role of endotoxin, TNF-α and IL-6 in inducing the growth hormone insensitivity at the receptor and post-receptor levels.

METHODS: Spague-Dawley rats were injected with endotoxin, TNF-α, and IL-6, respectively and part of rats injected with endotoxin was treated with exogenous somatotropin simultaneously. All rats were killed at different time points. The expression of IGF-I, GHR, SOCS-3 and β-actin mRNA in the liver was detected by RT-PCR and the GH levels were measured by radioimmunoassay, the levels of TNF-α and IL-6 were detected by ELISA.

RESULTS: There was no significant difference in serum GH levels between experimental group and control rats after endotoxin injection, however, liver IGF-I mRNA expression had been obviously down-regulated in endotoxemic rats. Liver GHR mRNA expression also had a predominant down-regulation after endotoxin injection. The lowest regulation of liver IGF-I mRNA expression occurred at 12h after LPS injection, being decreased by 53% compared with control rats. For GHR mRNA expression, the lowest expression occurred at 8h and had a 81% decrease. Although SOCS-3 mRNA was weakly expressed in control rats, it was strongly up-regulated after LPS injection and had a 7.84 times increase compared with control rats. Exogenous GH could enhance IGF-I mRNA expression in control rats, but it did fail to prevent the decline in IGF-I mRNA expression in endotoxemic rats. Endotoxin stimulated the production of TNF-α and IL-6, and the elevated IL-6 levels was shown a positive correlation with increased SOCS-3 mRNA expression. The liver GHR mRNA expression was obviously down-regulated after TNF-α iv injection and had a 40% decrease at 8h, but the liver SOCS-3 mRNA expression was the 4.94 times up-regulation occurred at 40min after IL-6 injection.

CONCLUSION: The growth hormone insensitivity could be induced by LPS injection, which was associated with downregulated GHR mRNA expression at receptor level and with up-regulated SOCS-3 mRNA expression at post-receptor level. The in vivo biological activities of LPS were mediated by TNF-α and IL-6 indirectly, and TNF-α and IL-6 may exert their effects on the receptor and post-receptor levels respectively.

INTRODUCTION

Infection especially severe intra-abdominal infection is characterized by catabolic status associated with severe protein loss and negative nitrogen balance. Meanwhile, the levels of many important hormones such as glucocorticoid, insulin and growth hormone (GH) do not decline, but their biological activities have reduced obviously. Critical illnesses such as sepsis, trauma and burns can usually cause a elevated level of growth hormone at early stage, however the insulin-like growth factor I (IGF-I), which is a growth hormone-dependent growth factor that inhibits protein breakdown, has been showing decreased predominantly, this phenomenon indicating a status of growth hormone insensitivity. In this condition, the administration of high doses of recombinant human growth hormone could not improve negative nitrogen balance, in contrary, it may lead to other metabolic disorders and result in increased morbidity and mortality. Endotoxin is generously released into blood under the infected condition and stimulates the production of proinflammatory cytokines such as TNF-α, IL-6, and IL-1, which play very important roles in inducing the GH insensitivity. The GH insensitivity can occur at receptor and post-receptor levels, the receptor level associates with decreased GHR mRNA expression, the post-receptor level associates with up-regulated SOCS-3 mRNA expression at post-receptor level. The in vivo biological activities of LPS were mediated by TNF-α and IL-6 indirectly, and TNF-α and IL-6 may exert their effects on the receptor and post-receptor levels respectively.

Wang P, Li N, Li JS, Li WQ. The role of endotoxin, TNF-α, and IL-6 in inducing the state of growth hormone insensitivity. World J Gastroenterol 2002;8(3):531-536

MATERIALS AND METHODS

Animals

All experimental procedures were carried out in compliance with the appropriate institutional and national ethical guidelines for work with laboratory animals. 156 adolescent male Spague-Dawley rats (240-260g) were obtained from animal center of Jinling Hospital (Nanjing, China). They were given free access to food and water for three days before experiments.

Endotoxin and cytokines preparation

Escherichia coli lipopolysaccharide (LPS; serotype O111:B4 phenol extract), obtained from Sigma Chemical (St. Louis, MO), was resuspended in sterile endotoxin-free saline to obtain 4mg/ml

www.wjgnet.com
solutions. The recombinant rat TNF-α and IL-6 provided by Pepro Tech EC Ltd (London, England), were resuspended in sterile endotoxin-free saline to obtain 100000U/ml solutions. Human growth hormone, kindly provided by Serono, was resuspended in sterile endotoxin-free saline to obtain a 1mg/ml solution.

Experimental protocols
Male Spague-Dawley rats (provided by Animal Center of Jingling Hospital), weighing 250±10g, were given free access to food and water for three days before experiments. Rats were anesthetized with ether and received LPS, GH, TNF-α, IL-6, and saline injection, LPS, TNF-α, and IL-6 were administered through superficial dorsal veins of penis and GH was injected subcutaneously. All rats were killed at different time points; blood of rats with LPS injected was collected and centrifuged at 500g for 10min at 4°C to collect serum. Livers were removed, flash-frozen in liquid nitrogen, and stored at -80°C until homogenate preparation and RNA extraction.

Effect of endotoxin on liver expression of IGF-I, GHR, and SOCS-3 mRNA
After the 3-day adaptation period, 42 rats were randomly divided into laboratory group (n=36) and control group (n=6), LPS (7.5mg.kg⁻¹ iv) was administered to the laboratory group, every six rats were killed at 1h, 2h, 4h, 8h, 12h, and 24h after injection. The control rats were given intravenous saline. Effects of TNF-α and IL-6 on liver expression of GHR and SOCS-3 mRNA
After the 3-day adaptation period, 102 rats were randomly divided into laboratory group (n=96) and control group (n=6). Rat recombinant TNF-α and IL-6 (10000U/kg.wt) were injected through the same pathway and every six rats were killed after 20min, 40min, 1h, 2h, 4h, 8h, 12h and 24h. The control rats were given intravenous saline.

Analysis of mRNA by RT-PCR
Fresh-frozen liver samples were homogenized and total RNA was performed using TRIZOL Reagent (Biobasic Inc, Scarborough, Ontario, Canada). With Access RT-PCR system kit (Promega Corporation, Madison, WI), the cDNA synthesis and amplification was done in one tube following the manufacturer’s instructions. In brief, 1µg RNA, 1µM primers for SOCS-3, GHR, IGF-I and β-actin were added to each reaction mixture respectively, which included 0.2mM dNTP, 1mM MgSO₄, AMV reverse transcriptase 5U, Tfl DNA polymerase 5U, and AMV/Tfl 5×buffer 10µL. The reaction final volume was 50µL and was covered with 30µL mineral oil. RT-PCR reaction was run in the following procedures: (1)Reverse transcription: 48°C for 45min, 1 cycle. (2)AMV RT inactivation and RNA/cDNA/primers denaturation: 94°C for 2min, 1 cycle. (3) Second strand cDNA synthesis and PCR amplification: denaturation 94°C for 30s, annealing 60°C for 1min, extension 68°C for 2min, 28 cycles for SOCS-3 and 21 cycles for GHR and IGF-I, β-actin as intra-control to be amplified along with SOCS-3, GHR and IGF-I. (4) Final extension: 68°C for 7min, 1 cycle. 5µL each RT-PCR reaction was electrophoresed in a 1.7% Metaphor agarose (FMC Bioproducts, Rockland, ME) gel and stained with ethidium bromide. Products of RT-PCR reactions were photographed and analyzed by densitometry.

Serum levels of GH, TNF-α and IL-6
Blood was obtained from the inferior vena cava at the time of sacrifice. Serum growth hormone levels was measured by radioimmunoassay according to manufacturer’s instructions (Northern Isotope Co, Beijing, China). Serum samples were analyzed for TNF-α and IL-6 content by enzyme-linked immunosorbent assay according to manufacturer’s instructions (BioSource International, Camarillo, CA).

Statistics analysis
All data are expressed as means ± SEM. Correlation between data was analyzed with linear regression. Comparisons between two groups were performed using an unpaired Student’s t test. Differences were considered statistically significant when P<0.05.

RESULTS

Levels of serum growth hormone after endotoxin injection
The levels of serum growth hormone at each time points after LPS injection had no significant difference compared with control rats, it maintained a relatively stable status (Table 1).

| Table 1 Serum GH levels in LPS injected rats at different time points and control rats |
|---|---|
| Time | GH levels(ng/ml) |
| Control | 2.19±0.48 |
| 1h | 6 | 1.85±0.37* |
| 2h | 6 | 1.95±0.45* |
| 4h | 6 | 1.76±0.27* |
| 8h | 6 | 1.79±0.27* |
| 12h | 6 | 1.77±0.20* |
| 24h | 6 | 1.79±0.55* |

Statistically no difference compared with control rats.

Liver IGF-I mRNA expression
Liver IGF-I mRNA expression had already declined by 25% vs. control rats at 8 hours. On the time of 12 hours, we observed the lowest level of expression, which was a 53% decrease compared with control rats. It did not recover to the normal level and had a 15% reduction at 24 hours (Figure 1A, 1B). Although exogenous GH administration in control rats significantly enhanced the liver IGF-I mRNA expression, it did fail to prevent its decline in endotoxemic rats (Figure 1C).
Liver GHR mRNA expression
Liver GHR mRNA expression had already down-regulated by 45% at 2 hours after LPS injection, the lowest regulation occurred at 8 hours, which was a 89% decrease compared with control rats. After 24 hours, it did not recover to the normal level and had a 44% decrease (Figure 2A, 2B), the exogenous GH administration had no effect on the liver GHR mRNA expression in control and endotoxemic rats (Figure 2C).

Liver SOCS-3 mRNA expression
The liver SOCS-3 mRNA was weakly expressed in control rats, however, it was strongly up-regulated by 7.84 times vs. control rats at 1 hour after LPS injection. This level was maintained at 2 hours and it still had a 1.8 times increase at 24 hours (Figure 3A, 3B). the exogenous GH infusion had no effect on the liver SOCS-3 mRNA expression in control and endotoxemic rats (Figure 3C).

Levels of serum TNF-α and IL-6 after LPS injection and the correlation between liver SOCS-3 mRNA expression and IL-6 concentration
The TNF-α level was increased rapidly after LPS injection, but it decreased obviously from the second hour and returned to the normal level at 4h. The IL-6 level was also elevated rapidly after LPS injection; it got to the highest level at 2h and then decreased gradually (Table 2). Linear regression analysis was shown a positive correlation of IL-6 with liver SOCS-3 mRNA expression (r=0.935, P<0.01).

Table 2 Serum TNF-α and IL-6 levels in LPS injected rats at different time points and control rats

	TNF-α levels (pg/ml)	IL-6 levels (pg/ml)
Control	<20	<8
1h	1438.74±323.07	1332.67±120.95
2h	75.81±11.50	1678.03±126.57
4h	75.81±11.50	1678.03±126.57
8h	<20	142.59±48.07
12h	<20	48.75±10.57
24h	<20	46.82±11.64
Figure 3 (A, B) Liver SOCS-3 mRNA expression response to endotoxin injection at different time points. (C) Liver SOCS-3 mRNA expression after endotoxin injection along with or without GH injection. \(^{a}P > 0.05\) compared with NS+NS group, \(^{c}P < 0.01\) vs NS+NS group, \(^{d}P > 0.05\) compared with LPS+NS(7.5) group. NS as saline injection.

Figure 4 Liver GHR (A) and SOCS-3 (B) mRNA expression response to TNF-\(\alpha\) and IL-6 iv injection at different time points.

Effects of TNF-\(\alpha\) and IL-6 on liver expression of GHR and SOCS-3 mRNA

The liver GHR mRNA expression after TNF-\(\alpha\) injection had already down-regulated at 4 hours and it reached the lowest level at 8 hours, which was a 40% decrease compared with control rats. At 24 hours, a 27% reduction still existed. The IL-6 injection had no effect on the liver GHR mRNA expression at different time points (Figure 4A). The liver SOCS-3 mRNA had weak expressions at all time points after TNF-\(\alpha\) injection, no difference could be found compared with control rats. The IL-6 injection was able to up-regulate rapidly the liver SOCS-3 mRNA expression, the latter showing a 2.73 times increase at 20 minutes and the highest level occurred at 40 minutes with a 4.94 times increase compared with control rats (Figure 4B).

DISCUSSION

In this report, using an experimental method of E. coli endotoxin infusion in laboratory rats, we have found endotoxin-induced growth hormone insensitivity. At 12 hours after LPS injection, there was no difference in serous growth hormone concentration between the experimental and control rats, however, the liver IGF-I mRNA expression had already declined obviously. In control rats, the liver IGF-I mRNA expression was up-regulated by 25% after exogenous GH administration, but in endotoxemic rats, GH did fail to prevent the decline in liver IGF-I mRNA expression. Several groups have observed that decreased IGF-I may result from a state of GH insensitivity. Ross et al.[8] reported low circulating IGF-I levels in critically ill patients despite elevated GH secretion. More recently, the study[19] showed that after a single injection of LPS in rats, plasma IGF-I level remained low despite the fact that GH level had returned to normal value. In agreement with these authors, our study support the possibility that the GH insensitivity maybe one of the important factors for the reduced liver IGF-I mRNA expression after LPS injection.

Growth hormone insensitivity can occur at receptor and post receptor levels, on the receptor level GH insensitivity is associated with the reduced GHR numbers on target cell surface[19,20]. Because of the shorter half-life of liver GHR (30-40min)[23] and the decreased liver GHR mRNA expression by endotoxin, these led to the reduced GH synthesis. Our results shown that liver GHR mRNA expression was obviously down-regulated after LPS injection, manifested that LPS had effect on the receptor level GH insensitivity indeed.

The factor of post-receptor level GH insensitivity has caused more and more attention recently, and it is associated with a novel family of suppressor of cytokine signalling (SOCS) which includes eight members (SOCS-1 to SOCS-7 and CIS) that act in a classical negative feedback loop to regulate cytokine signal transduction[24-29]. SOCS-3 is a strong inhibitor on growth hormone intracellular signal transduction[30-32].

Once growth hormone binds to its receptor, the intracellular signal transduction is activated through JAK-STAT pathway[33, 34]. The first activated tyrosine kinase is JAK2, which promotes the tyrosyl phosphorylation of both JAK2 itself and signal transducer and activator of transcription 5b (STAT 5b). Phosphorylated STAT 5b causes its dimerization and then the dimerized STAT 5b translocates into the nucleus, where it binds with high affinity to the promoters of various target genes and then activates the gene transcription such as IGF-I. SOCS-3 can block the GH intracellular JAK/STAT-dependent signaling pathway at different levels[35-44], including Competitively inhibits the phosphorylation of STAT 5b. Binds to GHR and leads to the degraion of GHR-JAK2 compound directly or indirectly through Elongin B and Elongin C, in the end the JAK2 kinase loses its activity. Through binding to GHR, SOCS-3 can inhibit the JAK2 kinase activity directly. Our experiment observed that after LPS injection, liver SOCS-3 mRNA expression was rapidly up-regulated with a 7.84 times increase at 1 hour compared with the weak expression in control rats, this...
indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.

Wang W, et al. Growth hormone insensitivity in endotoxemia indicating that LPS induced the production of post-receptor GH hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792.
interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J Biol Chem 2000;275:3841-3847

Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 2001;108:467-475

Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, Hattori K, Hatakeyama S, Yada M, Morita S, Kitamura T, Kato H, Nakayama K, Yoshimura A. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 2001;276:12530-12538

Ram PA, Waxman DJ. Role of the cytokine-inducible SH2 protein CIS in desensitization of STAT5β signaling by continuous growth hormone. J Biol Chem 2000;275:39487-39496

Sasaki F, Yasukawa I, Shouda T, Kitamura T, Dikic I, Yoshimura A. The suppressor of cytokine signaling (SOCS)1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem 1998;273:35056-35062

Iwagaki A, Porro M, Pollack M. Influence of synthetic antiendotoxin peptides on lipopolysaccharide(LPS) recognition and LPS-induced proinflammatory cytokine responses by cell expressing membrane-bound CD14. Infect Immun 2000;68:1655-1663

Zhao B, Brauner A, Li YH, Normark S. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 2000;181:602-612

Bruggen TVD, Jenhuis SN, Raaij EV, Verhouf J, Asbeck BSV. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun 1999;67:3824-3829

Soltys J, Quinn MT. Modulation of endotxin- and enterotoxin-induced cytokine release by in vivo treatment with β-(1,6) brabched β-(1,3)-glucan. Infect Immun 1999;67:244-252

Thissen JP, Verniers J. Inhibition of interleukin-1β and tumor necrosis factor-β of the insulin-like growth factor I messenger ribonucleic acid response to growth hormone in rat hepatocyte. Endocrinology 1997;138:1078-1084

Denson LA, menon RK, Shaufi A, Bajwa HS, Williams CR, Karpen SJ. TNF-α downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding. J Clin Invest 2001;107:1451-1458

Wolf M, Bohm S, Brand M, Kreymann G. Proinflammatory cytokines interleukin-1β and tumor necrosis factor-α inhibit growth hormone stimulation of insulin-like growth factor I synthesis and growth hormone receptor mRNA levels in cultured rat liver cells. Eur J Endocrinol 1996;135:729-737

Heinrich PC, Behrmann I, Newen GM, Schaper F, Graeve L. Interleukin-6-type cytokines signaling through the gp130/Jak/STAT pathway. Biochem J 1998;334:297-314

Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995;86:1243-1254

Chen TS, wang LH, Farrar WL. Interleukin 1 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCap prostate cancer cells. Cancer Res 2000;60:2123-2135

Paul C, Seiliez I, Thissen JP, Cam AL. Regulation of expression of the rat SOCS-3 gene in hepatocytes by growth hormone, interleukin-6 and glucocorticoids. Eur J Biochem 2000;267:5849-5857

Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yashizaki K, Naka T, Kishimoto T. Three distinct domains of SS1-1/SOCS-1/JAB protein are required for itsuppression of interleukin-6 signaling. Pro Natl Acad Sci USA 1998;95:13130-13134

Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M, Alexander WS, Metcalf D, Hilton DJ, Nicola NA. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 1999;18:375-385

Terstegen L, Gatsios P, Bode JG, Schaper F, Heinrich PC, Graeve L. The inhibition of interleukin-6-dependent STAT activated protein kinases depends on tyrosine 795 in the cytoplasmic tail of glycoprotein-130. J Biol Chem 2000;275:14810-14817

Schmitz J, Weissbach M, Haan S, Heinrich PC, Schaper F. SOCS-3 exerts it inhibitory function on interleukin-6 signal transduction through the SH2P2 recruitment site of gp130. J Biol Chem 2000;275:12848-12856