Research Article

Shasha Li, Xi Liu, Jianjia Qin, Changqing Fang* and Nailiang Liu

Synthesize and characterization of conductive nano silver/graphene oxide composites

https://doi.org/10.1515/secm-2021-0048
received August 26, 2020; accepted August 17, 2021

Abstract: To meet the high-precision needs of conductive ink in the field of microelectronic circuit printing, nano silver-coated graphene oxide (GO) composites were prepared as the conductive functional unit of the composites. The results show that compatibility of the GO grafted with ethylene glycol diglycidyl ether is better in the organic matrix than in the inorganic solvents. The nano silver particles attached to the surface of the grafted GO are evenly distributed and uniform in size. Moreover, the conductivity of grafted GO coated with silver particle composites is effectively improved. The composite conductivity is higher than 10⁶ S/m, which is close to the electrical conductivity of silver.

Keywords: conductive composite ink, graphene oxide, surface grafting, nano silver

1 Introduction

As one of the key factors in printed electronics, conductive inks are increasingly used in the electronic field, such as printed circuit boards, full-motion membrane keyboards, membrane switches, flexible printed circuits, decorative art panels, electromagnetic shielding, fine printing, potentiometers, multilayer circuits, and wireless radio frequency identification systems [1,2]. With the application of nanotechnology, composite conductive ink filled with nano-sized metal particles differ from traditional conductive inks in characteristics [3]. In particular, composite conductive ink has the advantages of good conductivity, strong process operability, and low curing temperature, and these characteristics make the composite conductive ink suitable for electronics transport. Typically, the composite conductive ink is composed of an inorganic conductive functional unit and an organic material. However, due to the poor interface between the particles and polymer materials, ensuring that the metal nanoparticles do not agglomerate and remain high content in the ink is necessary. The conductivity mainly depends on characteristics of these nanoparticles dispersed in the matrix. When particles disperse well and connect each other to form a bridge or a net, electrons can easily transport [3–10]. Silver, which is not easily disturbed by the environment, is the most conductive one among all metals. Therefore, it is particularly favored for use in preparing conductive materials [11–17]. Traditional micron silver powder conductive ink cannot easily meet the requirements of low processing temperature and small feature size, which are proposed for the development of miniaturization and flexibility of electronic products. However, nano silver which meets the requirements of low heat treatment temperature and small size processing technology has become an inevitable trend to be the filler of conductive ink. At present, the high-precision demand of microelectronic circuit printing and the emergence of direct writing have promoted research and development of silver ink [18]. However, silver particle will sink easily and quickly because of its high density.

Graphene oxide (GO), which is oxidation of graphene, is an important derivative of graphene. Electronic and dielectric properties of GO are higher than electrochemically reduced graphene papers by 2 orders of magnitude due to a higher percentage of interlayer O–H bonds [19]. However, sandwich structures made of GO-CuNPs-GO show long-term stable conductivity and high-temperature stability because the limited GO interlayer distance can protect CuNPs from oxidation [20]. Furthermore, the synthesized

* Corresponding author: Changqing Fang, Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, People’s Republic of China, e-mail: fczx@163.com, tel: +86-29-82312038, fax: +86-29-83212512

Shasha Li, Xi Liu, Jianjia Qin: Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, People’s Republic of China

Nailiang Liu: School of Sciences, Xi’an University of Technology, Xi’an 710048, Shaanxi, People’s Republic of China

Open Access. © 2021 Shasha Li et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
GO exhibited high values of dielectric constant \( \varepsilon'(\omega) \) and low losses by fitting the theoretical approximations to the experimental results to show GO could be a good candidate for semiconductor compound [21]. The GO sheet contains many functional groups that provide a large number of active sites for modification. Thus, functional groups or segments can be introduced to provide good conditions for experimental research [22].

In this paper, the active groups on the surface of GO are grafted with small organic molecule ethylene glycol diglycidyl ether (EGDE) having epoxide group to improve the compatibility of GO in the organic matrix. Then nano silver particles were coated on the grafted GO to get rid of aggregation in organic matrix. Thus, the grafted GO enhances the dispersibility of the metal particles to perform the conductive functional unit of the composite conductive ink. On the other hand, silver particles will perform the conductive functional unit of the composite. GO enhances the dispersibility of the metal particles to enhance the compatibility of GO in the organic matrix. Then nano silver particles connect each other, there will be a possible way for electrons to transport.

### 2 Experimental details

#### 2.1 Materials and instrumentations

Natural flake graphite (NG) was supplied by Kuntai Graphite Co., Ltd. (China). And, the diameter of NG is around 1 mm. EGDE was supplied by Aladdin Industrial Corporation, Shanghai, China. All other reagents, such as 98% \( \text{H}_2\text{SO}_4 \), KMnO\(_4\), \( \text{H}_2\text{O}_2 \), lactic acid, \( \text{AgNO}_3 \), \( \text{NH}_3\cdot\text{H}_2\text{O} \), and glucose, were of analytical grade.

Fourier transform infrared (FTIR) spectroscopy was performed on an IR Prestige-21/FTIR-8400S FTIR spectrometer to characterize the EGDE before and after ring opening to certify the elimination of epoxide group. GO surface contact angle detection was tested by drop shape analyzer (DSA100, KRUSS) to verify its compatibility changes with inorganic solvents. X-ray diffraction detection of GO, EGDE-grafted GO, and silver particles-coated GO was performed using an XRD-6000 instrument (SHIMADZU, Japan) to verify its structural changes. GO and the modified GO were morphologically characterized through transmission electron microscopy (TEM) (JEM-3010). TEM samples were dispersed in an ethanol solution and spooned out with a copper net for observation. Conductivity of GO was tested by RTS-8 four-probe which contains four thin collinearly placed tungsten wires probes which are made to contact the sample under test.

#### 2.2 Composite fabrication

GO was prepared according to the improved Hummer’s method [23,24]. First, 35 mL of \( \text{H}_2\text{SO}_4 \) was added to 1.5 g of NG in a 150 mL of three-necked round-bottomed flask and the mixture was stirred for 30 min at room temperature. 3 g of KMnO\(_4\) was added slowly to the mixture, then the mixture was stirred for 2 h in an ice bath and then heated to 35°C under vigorous stirring for 30 min. After that, 150 mL of deionized water was gradually added to the reaction solution which had a temperature of 98°C under vigorous stirring for 15 min. Finally, 10 mL of \( \text{H}_2\text{O}_2 \) was added to the solution, which was stirred for 10 min. The reaction solution was centrifuged and then washed repeatedly with distilled water until the solution was almost neutral. The products were then immersed in 70% aqueous alcohol solution and treated in an ultrasonic bath for 2 to 3 days. After oxidation, epoxy, hydroxyl, and carboxyl were introduced on the surface of GO for further surface modification.

Lactic acid (2 mol) and EGDE (1 mol) were used for opening the epoxide group at 110°C under nitrogen protection for 8 h. The ring-opened EGDE was grafted with active groups on the GO surface at 80°C to achieve GO surface modification as shown in Figure 1. Silver mirror reaction, the aldehyde groups in glucose (9 g) reduced the silver ions in the silver ammonia solution which was made of \( \text{AgNO}_3 \) (4 g) and \( \text{NH}_3\cdot\text{H}_2\text{O} \) (5 mL), made the nano silver particles coat the modified GO surface to enhance the dispersion of the metal particles in the matrix.

### 3 Results and discussion

#### 3.1 Ring opening result of epoxide group of EGDE

First, the epoxide group in EGDE was confirmed by FTIR spectroscopy. Figure 2 shows an infrared spectrum of the epoxide group in EGDE. Before treatment, the characteristic peaks of ether bond appeared at 1,141/cm and the epoxide group appeared at 855 and 910/cm [25], and 1,254/cm [26]. After the ring opening reaction with lactic acid [27], the characteristic peaks of these three epoxide groups disappear, proving that the epoxide groups of EGDE successfully opened. Also, a peak of intramolecular association of hydroxyl groups was observed around 3,543/cm, which is the in-chain hydroxyl group proving...
that lactic acid could open the epoxide group to generate a hydroxyl group easily [24]. Furthermore, the stretching peak of hydroxyl groups appeared at 3,290/cm and the peak of ether group at 1,141/cm became weaker at the same time.

3.2 GO surface contact angle detection

EGDE with hydroxyl group was connected with GO by condensation. Figure 3 demonstrates the surface contact angle of GO and grafted GO which was measured by the water drop measurement method. Figure 3a shows that the contact angle between GO and water is 57.5°. Figure 3b shows the contact angle between GO grafted with EGDE and water is 85°. The results showed that compatibility of grafted GO and inorganic solvents becomes poor. However, the compatibility of grafted GO with organic solvents and organic substances has been improved according to the principle of similar miscibility. The results also indicated that the EGDE after treatment has been successfully grafted to the active group on the GO surface.

3.3 X-ray diffraction detection of GO

After improving the compatibility of GO, silver particles were evenly coated on the GO surface. Figure 4 indicates the XRD patterns of GO, EGDE-grafted GO, and silver particles-coated GO. As shown in the figure, the XRD curve of GO has a significant diffraction characteristic peak of (001) at 2θ = 10.9° [28]. The characteristic peak of GO around 11° significantly disappeared after being grafted with small organic molecules. With the condensation reaction between the organic molecules and the active groups on the GO surface, a large amount of –OH and –COOH has disappeared. At the same time, the interlayer distance of GO has changed, which leads to the diffraction characteristic peak moving to left. The characteristic peak of graphite near 26° is strengthened, indicating that the active groups on GO have basically reacted. After silver ammonia reaction, there were not only the (002) peak of graphite, but the 38.1°, 44.3°, 64.4°, and 77.3° which stand for (111), (200), (220), and (311) of silver, respectively. That is to say, silver particle has coated on the GO surface.

3.4 GO morphology

Figure 5 illustrates the micromorphology of GO, EGDE-grafted GO, and silver-coated EGDE-grafted GO. The image proves that GO has been successfully prepared using the improved hummers method, as shown in Figure 5a. The GO is composed of 5–16 layers, as shown in HRTEM (High Resolution Transmission Electron Microscope) image (Figure 5b).
When the hydroxyl group in EGDE and the active groups –OH and –COOH on the surface of GO undergo a condensation reaction, the surface modification of GO by small organic molecules is achieved. As shown in Figure 5c, EGDE is scattered on the GO surface. The places where EGDE is present are wrinkled due to the formation of chemical bonds with GO. Moreover, the distribution of active groups on the surface of GO is highly random. The uncertainty of the reaction site leads to the irregular distribution of EGDE.

In Figure 5c and d, the shapes of EGDE particles are round and ellipse, which is because the –OH groups of EGDE are at both ends of the segment after the epoxide group opening. The –OH on the EGDE may react with –OH group at the edge or on the surface of GO, as shown in Figure 1. Round particles are formed by the reaction between the –OH at both ends of the EGDE segment and the active groups on the GO surface that are closely adjacent to one another. When the –OH at both ends or one end of the segment reacts with the faraway active group, it easily forms an ellipse. After considering the adhering silver particles to the modified GO surface, it can be found that black silver particles and small gray organic molecules can be distinguished along with the silver particles attached to the modified oxide surface, as shown in Figure 5c. With increasing concentration of silver particles, the silver particles on the surface of GO can easily be distinguished from the gray organic molecules, as shown in Figure 5d. During the silver mirror reaction, the reduced silver particles tend to result in a rough surface. So, the silver particles can more easily attach to the surface of the grafted GO. Overall, the silver particles on the GO surface are evenly distributed and are uniform in size.

To observe the microstructure of the Ag-GO, TEM image was taken and shown in Figure 5e. The silver nanocrystals were coated on the GO surface evenly. The single crystal, as well as grains with diameters of ∼10 nm, can be observed from the HRTEM of a silver nanoparticle in Figure 5f. Thus, silver particles can disperse evenly in organic matrix without precipitation and agglomeration.

### 3.5 Conductivity test

GO and modified GO were pressed, and the four-probe method was used to measure the square resistance of these samples. The resistivity ρ is calculated by formula (1), as follows:
\[ \rho = RS \times t, \]  
(1)

where \( \rho \) represents the resistivity, the unit of which is \( \Omega \). RS represents the measured sheet resistance value of the sample, the unit of which is \((\Omega/\text{sq})\). \( t \) is the thickness of the measured sample block, the unit of which is \( \text{m} \).

The conductivity \( \sigma \) is calculated by formula (2), as follows:

\[ \sigma = \frac{1}{\rho}, \]  
(2)

where \( \sigma \) is the conductivity, the unit of which is \( \text{S/m} \). The calculated results are shown in Table 1.

Although the surface of GO is modified with small organic molecules, the conductivity is reduced. However, after the silver particles have attached to the surface of GO, its conductivity is significantly improved.

## 4 Conclusion

Silver nanoparticles-coated GO which was grafted with EGDE was successfully synthesized. In this way, silver nanoparticles can evenly disperse in organic matrix without precipitation and agglomeration. At the same time, there will be a good interface between fillers and matrix because of the organic group. The composite conductivity is higher than \(10^8 \text{S/m} \), which meets the needs of conductive functional units as composite conductive ink.

**Funding information:** This work was supported by the National Natural Science Foundation of China (No. 51772243), Shaanxi Provincial Education Department Natural Science Project (No. 18JK0584), International Science and Technology Cooperation Project of Shaanxi Key R&D Program.
(No. 2018KW-054), and the Xi’an Science and Technology Project (No. 2020KJRC 0073).

Conflict of interest: Authors state no conflict of interest.

Reference

[1] Xu WH, Lu HL, Sheng MZ, Xian L. Conductive ink and applications in printing antenna of RFID tag. Adv Mat Res. 2011 Jul 4;287–290:577–81.

[2] Dang R, Song L, Dong W, Li C, Zhang X, Wang G, et al. Synthesis and self-assembly of large-area Cu nanospheres and their application as an aqueous conductive ink on flexible electronics. ACS Appl Mater Interfaces. 2014 Dec 6;6(1):622–9.

[3] Yang W, List-Kratochvil EIW, Wang C. Metal particle-free inks for printed flexible electronics. J Mater Chem C. 2019 Nov 14;7:5098–117.

[4] Islam R, Khair N, Ahmed DM, Shahariar S. Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Mater Today Commun. 2019 Dec 12;19:32–8.

[5] Maheshwari N, Abd-Elall M, Goldthorpe IA. Transfer printing of silver nanowire conductive ink for e-textile applications. Flex Print Electron. 2019 Jun 17;4:025005.

[6] Mou Y, Cheng H, Wang H, Sun Q, Liu J, Peng Y, et al. Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes. Appl Surf Sci. 2019 May 1;475:75–82.

[7] Murtaza M, Hussain N, Liu J, Wu H. Facile and high-yield replacement reaction-assisted synthesis of silver dendrites by jet for conductive ink. Langmuir. 2019 Aug 31;35(38):12400–6.

[8] Saidina DS, Eawwabothanakit N, Mariatti M, Fontana S, Herold C. Recent development of graphene-based ink and other conductive material-based inks for flexible electronics. J Electron Mater. 2019 Apr 8;48:3428–50.

[9] Tian B, Yao W, Zeng P, Xuan L, Wei W. All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J Mater Chem C. 2019 Dec 4;7:809–18.

[10] Yang W, Wang C, Arrighi V. One step preparation of copper-silver self-catalyzed hybrid conductive ink with reduced sintering temperature for flexible electronics. J Mater Sci-Mater El. 2019 Jun 30;30:11607–18.

[11] Ma Z, Jiang Y, Xiao H, Jiang B, Zhang H, Peng M, et al. Sol–gel preparation of Ag-silica nanocomposite with high electrical conductivity. Appl Surf Sci. 2018 Apr 1;436:732–8.

[12] Li Q, Li M, Jia B, Shangguan L, Ma L, Zhong Y, et al. Sintered Ag nanoparticle ink achieves 50% higher conductivity than bulk Ag in interconnections by doping with Ink. Appl Phys Express. 2019 Apr 5;12:055004.

[13] Xu S, Fu H, Wang Y, Xie J. Effect of Ag addition on the microstructure and mechanical properties of Cu–Cr alloy. Mater Sci Eng A. 2018 May 30;726:208–14.

[14] Hussain S, Wan P, Aslam N, Qiao G, Liu G, Wang M. Ag-doped NiO porous network structure on Ni foam as electrode for supercapacitors. J Mater Sci Mater Electron. 2018 Nov 3;29:1759–65.

[15] Yang X, Sun M, Bian Y, He X. A room-temperature high-conductivity metal printing paradigm with visible-light projection lithography. Adv Funct Mater. 2019 Jan 4;29:1807615.

[16] Patil DS, Konale M, Cozic S, Calvez L, Zima V, Wagner T, et al. Percolation behavior of Ag in Ge0.5Sb1.2Se1.2 glassy matrix and its impact on corresponding ionic conductivity. J Alloys Compd. 2019 Apr 25;782:375–83.

[17] Zhao H, Tian A, Li Z, Zhang Y, Zhu S, Zhang X, et al. Enhanced electrical conductivity of silver nanoparticles decorated fabrics with sandwich micro-structure coating layer based on "silver-colloid effect". Mater Lett. 2019 Apr 1;240:5–8.

[18] Dearden AL, Smith PJ, Shin DY, Reis N, Derby B, O’Brien P. A low curing temperature silver ink for use in Ink-Jet printing and subsequent production of conductive tracks. Macromol Rapid Commun. 2005 Feb 21;26:315–18.

[19] Dada OJ, Villaroman D. Superior electronic and dielectric properties of corrugated electrochemically reduced graphene over graphene oxide papers. J Electrochem Soc. 2019 Jan 17;166(2):D21–D36.

[20] Li X, Natsuki J, Natsuki T. “Sandwich” copper nanoparticle @ graphene oxide composites: high-temperature stability and long-term stable conductivity. Mater Charact. 2021 Feb;172:110887.

[21] Riahi KZ, Sdiri N, Ennigrou DJ, Horchani-Naifer K. Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthesized from modified Hummer’s method. J Mol Struct. 2020 Sept 15;128304.

[22] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature. 2007 Jul 26;448:457–60.

[23] Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev. 2012 Aug 14;112:6027–53.

[24] Li S, Liu X, Fang C, Liu N, Liu D. Surface modification and thermal performance of a graphene oxide/novolac epoxy composite. RSC Adv. 2018 Jun 5;8:20505–16.

[25] Huang D, Peng Z, Hu Z, Zhang S, He J, Cao L, et al. A new consolidation system for aged silk fabrics: effect of reactive epoxide-ethylene glycol diglycidyl ether. React Funct Polym. 2013 Jan;73(1):168–74.

[26] Yao H, Liu J, Wang C. Boronic acid-catalysed C–C selective ring opening of 3,4-epoxy alcohol s with thiophenols and thiols. Org Biomol Chem. 2019 Feb 13;17:1901–5.

[27] Yang W, Li B, Li M, Xu G. Synthesis and characterization of waterborne polyurethane modified with epoxy resin which was ring-opened by lactic acid. Paint Coat Ind. 2011 Apr;41:22–4.

[28] Michal S, Damian W, Aukas P, Justyna S. Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J Spectrosc. 2016 Aug 14;2016:1–6.