Exocometary gas in the HD 181327 debris ring

S. Marino1,2,3*, L. Matrà1, C. Stark4, M. C. Wyatt1, S. Casassus2,3, G. Kennedy1, D. Rodriguez2,5, B. Zuckerman6, S. Perez2,3, W. R. F. Dent7, M. Kuchner8, A. M. Hughes9, G. Schneider10, A. Steele11, A. Roberge8, J. Donaldson11 and E. Nesvold12.

1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
2Departamento de Astronomía, Universidad de Chile, Casilla 36-D Santiago, Chile
3Millennium Nucleus “Protoplanetary Disks”, Chile
4Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA
5Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034, USA
6Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562, USA
7Joint ALMA Observatory, Alonso de Cárdenas 3107, 763-0355 Vitacura, Santiago, Chile
8Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
9Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA
10Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ, 85721, USA
11Department of Astronomy, University of Maryland, College Park, USA
12Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA

Accepted XXX. Received YYY; in original form ZZZ.

\textbf{ABSTRACT}

An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with ALMA observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 AU and a radial width of 23.2 ± 1.0 AU. At this frequency the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low level continuum emission beyond the main ring out to ~ 200 AU. We model the CO emission in the non-LTE regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2×10^{-6} M_\oplus and 2.9×10^{-6} M_\oplus, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, i.e. released from icy planetesimals in the ring. We derive a CO cometary composition that is consistent with Solar system comets. Due to the low gas densities it is unlikely that the gas is shaping the dust distribution.

\textbf{Keywords:} Debris disc – planetary systems – circumstellar matter – stars: individual: HD 181327

\section{Introduction}

Recent surveys have shown that at least $\sim 20\%$ of nearby solar-type stars host Kuiper belt analogue debris discs (Eiroa et al. 2013). From multiwavelength observations we know that they are composed of dust grains in a wide size distribution ranging from μm- to mm-sized grains and collisional models require the presence of km-sized planetesimals. These large bodies are a byproduct of planet formation and continually replenish the dust population as the result of a collisional cascade (see Wyatt 2008). The orbits of these planetesimals can be drastically perturbed by the presence of planets, and hence the disc density distribution can reveal a hidden planetary system (e.g. Wyatt et al. 1999; Kuchner & Holman 2003). Thus, the study of debris discs is an alternative method to characterize planetary systems and the outcome of planet formation. High resolution images of debris discs have shown ring-like structures (e.g. HR 4796A, Perrin et al. 2015), warps (e.g. β Pic, Heap et al. 2000), gaps or double ring structures (e.g. HD 107146, Ricci et al. 2015) and eccentric rings (e.g. Fomalhaut, Kalas et al. 2008), suggesting the dynamical presence of planets shaping the debris spatial distribution.

* E-mail: s.marino@ast.cam.ac.uk

© 2015 The Authors
Figure 1. ALMA dust continuum maps at 220 GHz (Band 6). a) panel: MEM non-parametric model (regularized with the maximum entropy method). b) panel: restored image adding residuals and convolving with a synthetic beam corresponding to Briggs weighting (0″.47 × 0″.36). c) panel: restored image adding residuals and convolving with a synthetic beam corresponding to natural weighting (0″.69 × 0″.58). The respective beams are represented by white ellipses.

The x- and y-axes indicate the offset from the stellar position in R.A. and decl. in arcsec, i.e. north is up and east is left. The stellar position is marked with a white star.

Optical observations of discs can give insights about the distribution of μm-sized dust grains at the bottom of the collisional cascade, where stellar radiation and stellar winds become significant for the dust dynamics (Thébault & Wu 2008). On the other hand, dust thermal emission at millimetre wavelengths is dominated by big grains (∼0.1-10 mm) for which radiation forces are negligible (β ≡ F_{rad}/F_{g} << 1.0), tracing the location of the parent bodies. Therefore, millimetre observations are fundamental to study the distribution of the more massive planetesimals at the top of the collisional cascade.

Moreover, in some of these systems significant amounts of gas has been detected, especially in young debris discs that recently left the protoplanetary disc phase. This gas can potentially impact the dust dynamics and density distribution, producing structures that are usually attributed to perturbing planets (Lyra & Kuchner 2013). The origin of this gas is still under debate; however, recent ALMA observations have allowed dynamical studies and thus a more detailed picture. This has favoured a secondary origin scenario in the case of β Pictoris (Dent et al. 2014) and 49 Ceti (Zuckerman et al. 1995; Zuckerman & Song 2012) from destructive collisions of icy-bodies. In other systems the gas seems to be primordial (e.g. HD 21997, Kóspláé et al. 2013). However, until now gas had only been detected in seven debris discs, all of them around A stars. (see Table 5 in Moór et al. 2015, for a complete list of debris discs with gas detections).

In this work we study the debris disc around the F5/6 main sequence star HD 181327 (Nordström et al. 2004; Torres et al. 2006), member of the 23 ± 3 Myr old β Pic moving group (Mamajek & Bell 2014) and located at a distance of 51.8 ± 1.7 pc (van Leeuwen 2007). The star has an IR excess with a fractional luminosity of L_{IR}/L_⋆ ∼ 0.2% (Lebreton et al. 2012) that comes from dust thermal emission that has been marginally resolved at different wavelengths: at 18.3 μm by Chen et al. (2008) and at 70 μm, 100 μm and 3.2 mm by Lebreton et al. (2012). HST scattered light observations resolved a debris ring of μm-sized grains with a peak at ∼ 90 AU and 36 AU wide (Schneider et al. 2006; Stark et al. 2014). The latter study identified a possible radial dust size segregation due to radiation pressure, based on variations of the scattering phase function with radius. Moreover, they found asymmetries that could be interpreted as an increase in the optical depth in the west side of the ring, potentially due to either a recent catastrophic disruption or warping of the disk by the ISM.

We present the first ALMA observations to study the dust continuum at 220 GHz and the CO gas distribution, constrain the location of planetesimals, look for asymmetries that could give hints on the origin of the asymmetric features observed by the HST, and study the origin of the CO gas. In Sec. 2 we present the observations and imaging of the dust continuum and CO line emission. In Sec. 3 we compare the observations with an axisymmetric disc model for the dust continuum and CO (2-1), using a Markov chain Monte Carlo (MCMC) method coupled with radiative transfer simulations to sample the parameter space and estimate the debris spatial distribution, CO gas mass and the disc orientation in the sky. In Sec. 4 we discuss the implications of the dust continuum and CO observations, we compare them with the previous HST observations, we derive a cometary composition based on the CO observations, and we discuss scale height constrains from ALMA observations of debris discs. Finally in Sec. 5 we summarise the main results and conclusions.

2 ALMA OBSERVATIONS AND IMAGING

HD 181327 was observed by ALMA in band 6 on 10 March 2014 as part of the cycle 1 project 2012.1.00437.S. The total number of antennas was 26 with minimum and maximum projected baselines of 12 and 365 m, respectively. The total time on source excluding overheads was 34 min. Three months later, on the 4 and 12 June, three new observation runs using the same band were carried out corresponding to the cycle 2 project 2013.1.00523.S. The total num-
number of antennas was 39 with a minimum and maximum projected baselines of 15 and 650 m, respectively. The total time on source excluding overheads was 129 min.

On the first run J1924-2914 was used as bandpass calibrator, while Titan and J1819-6365 were used as primary flux and phase calibrators, respectively. In the second project, J2056-4714 and J2056-472 were used as bandpass calibrators, with the latter used as primary flux calibrator too. We used J2009-4849 as phase calibrator. Calibrations were applied using the pipeline provided by ALMA.

On both projects, the ALMA correlator provided 4 spectral windows (spws), 3 exclusively dedicated to study the dust continuum with 128 channels and a total bandwidth of 2 GHz centered at: 212.9, 214.9 and 228.1 GHz in the first project, and 214.6, 216.6 and 232.5 GHz in the second. The fourth spw was configured with a higher spectral resolution of 244 KHz and total bandwidth of 937.5 MHz (3840 channels), centered at 230.5 GHz to target the \(^{12}\)CO (2-1) transition at 230.538 GHz in both projects. We combine the two datasets from both projects to achieve the most complete \(u - v\) coverage and the highest signal-to-noise ratio (S/N) on the reconstructed continuum image and CO line emission.

2.1 Dust continuum

The image synthesis of the dust continuum was carried out using a non-parametric least-squared modeling technique that incorporates a regularization term called “entropy” from a family of Maximum Entropy Methods (MEMs). Examples of usage of MEM for image synthesis in Astronomy can be found in Pantin & Stark 1996; Casassus et al. 2006; Levanda & Leshem 2010; Casassus et al. 2013; Warmuth & Mann 2013; Coughlan & Gabuzda 2013; Marino et al. 2015. These deconvolved images “superresolve” the interferometric data, as the entropy prior allows an extrapolation of spatial frequencies beyond those sampled by the interferometer. We call the whole algorithm \textit{vmem} and the resulting images as “MEM models”. The deconvolved image can then be “restored” by convolving with a \textit{Clean beam} corresponding to a \textit{natural} or \textit{Briggs} weighting and adding the dirty map of the residuals. The restored maps are comparable to standard \textit{Clean} images. While the resolution or point-spread-function on the deconvolved image can vary at different locations, the resolution on the restored images is well characterised by a synthetic beam of \(0.47 \times 0.47\) and \(0.69 \times 0.58\), corresponding to Briggs and natural weighting respectively.

In Figure 1 we present the results of the image synthesis on the continuum emission: (a) MEM model, (b) restored image with Briggs weighting (Briggs map hereafter) and (c) restored image with natural weights (natural map hereafter). To smooth the artefacts due to thermal noise on the visibilities and characterize the noise level in the image space, we perform a Monte Carlo simulation bootstrap-straping the measured visibilities, i.e. adding a random Gaussian noise according to the observed dispersion on each base-line and strapping the measured visibilities, i.e. adding a random Gaussian noise. A brief discussion about the origin of this emission and the dirty map of the residuals is presented in Sec. 4.3.

The disc emission appears consistent with an axisymmetric ring and most of the observed intensity variations along the ring in the panels of Figure 1 and the small offset from the star can be explained by the PA of the beam, the noise level and the ALMA astrometric error (See Sec. 4.1). In Sec. 3.1 we compare with an axisymmetric model.

In Figure 2 we present intensity profiles of the maps presented in Figure 1a and 1b, along the ring’s major and minor axis, together with the deprojected mean intensity at all azimuths extracted from Figure 1c. In the top and middle panels the MEM model profile is represented by a red line, while the Briggs map profile is represented in blue with blue shaded areas equivalent to 1 \(\sigma\) and 2 \(\sigma\) of the Briggs profile. A more accurate estimation is presented in Sec. 3.1. The bottom panel shows that the disc emission extends out to ~4” (200 AU) in either a second ring or a halo component. The grey area in the bottom panel represents the 99.7% confidence region equivalent to 3 \(\sigma\) = 0.015\(\sqrt{N_{\text{beams}}}\) mJy beam\(^{-1}\) (the factor 1/\(\sqrt{N_{\text{beams}}}\) is due to the mean at all azimuth and the number of independent points). In Figure 1c this emission is also just visible as a broad ring around 4”. To test the significance of this detection and whether this could be a product of our image synthesis method, we produce \textit{Clean} images obtaining roughly the same results. Moreover, the second component is recovered in the dirty map of the residuals when a best-fit ring model is subtracted to the data (see Sec. 3 for a description of the ring model). A brief discussion about the origin of this emission and the dirty map of the residuals is presented in Sec. 4.

2.2 \(^{12}\)CO (2-1)

To study the \(^{12}\)CO (2-1) transition line at 230.538 GHz (rest frequency), we first subtract the continuum emission from the visibilities fitting a polynomial of the first order at the frequencies where no line emission is expected. The dirty map of the continuum subtracted data does not show any significant emission above 3\(\sigma\) which...
could be attributed to CO. With natural weights we obtain a noise level of 1.0 mJy beam$^{-1}$ per channel. To search for any low CO level emission we compute the total flux inside an elliptic mask and between a frequency or velocity range that we vary, both spatially and in frequency, to maximise the S/N of the integrated flux. The S/N is maximised inside an elliptic mask of minimum and maximum semi-major axes of 1$''$4 and 2$''$1 (assuming the same orientation and aspect ratio as the main ring) and a velocity range of -2.8 to 2.0 km s$^{-1}$ (Barycentric reference frame). These parameters match the location of the main ring and the expected Doppler shift due to Keplerian rotation, i.e. $v_0 = 0.1 \pm 0.4$ km s$^{-1}$ (Gontcharov 2006) and $v_{\text{max}} = 1.9$ km s$^{-1}$ for $M_*=1.36$ M$_\odot$ (Lebreton et al. 2012).

The spectrum extracted from the data cube inside the elliptic mask and smoothed with a Gaussian kernel is presented in Figure 3. The horizontal lines represent ± 1, 3, 4 and 5σ levels. The grey region represents velocities between -2.8 km s$^{-1}$ and 2.0 km s$^{-1}$ where the S/N is maximised. The velocities represent the Doppler shift with respect to 230.538 GHz in the Barycentric reference frame.

In Figure 4 we present the integrated intensity over the velocity range specified above and averaging at all azimuths. The grey area represents the 99.7% confidence region. The CO line peaks at 90\pm4 AU (error=0.5 beam semi-major axis x distance / (S/N)), close to the ring radius in the continuum, suggesting that gas and dust are co-located. This favours a secondary origin scenario, where the CO is being released in destructive collisions of icy bodies. We study the azimuthal profile of the emission along the ring and we find no evidence for non-axisymmetry, similar to the dust continuum. In Sec. 3.2 we study the CO gas distribution by modeling the CO emission in the non-LTE regime, with different excitation temperatures and electron densities which act as the main collisional partner. Using an MCMC technique we find constraints on the distribution of CO gas in the disc to quantify its similarity to the dust distribution.
Table 1. Best fit values. Median ± uncertainty based on the 16th and 84th percentile of the marginalised distributions.

r_0 [AU]	Δr^2 [AU]	H/r^3	PA [°]	i [°]
86.0 ± 0.4	23.2 ± 1.0	0.07 ± 0.03	98.8 ± 1.4	30.0 ± 0.7

3 DISC MODELLING

3.1 Dust continuum

To constrain the location of the millimetre-sized dust population, we compare the observations with an axisymmetric debris disc model in the Visibility space. The dust density distribution is parametrised as a ring of radius r_0, with a Gaussian radial profile of width Δr (FWHM) and a Gaussian vertical profile with a scale height H (vertical standard deviation) or aspect ratio $h = H/r$.

$$\rho(r, z) = \rho_0 \exp \left(-\frac{(r - r_0)^2}{2\sigma_r^2} - \frac{z^2}{2H^2}\right), \quad \sigma_r = \frac{\Delta r}{2\sqrt{2\log 2}}. \quad (1)$$

For the dust optical properties we use a mass-weighted mean opacity of astrosilicate grains with an internal density of 4.0 g cm$^{-3}$. We assume a Dohnanyi-like size distribution with a power law index of -3.5, and minimum and maximum grain size $a_{\text{min}} = 1.3 \mu$m and $a_{\text{max}} = 1.0$ cm. These values were roughly estimated comparing the model and observed SED in an iterative procedure. The mass-weighted absorption opacity $\kappa_{\text{abs}} = 1.0$ cm2 g$^{-1}$ at 1.3 mm, computed using the “Mie Theory” code written by Bohren & Huffman (1983). While κ_{abs} and the derived total dust mass are highly dependent on our choice on the grain composition and size distribution, these assumptions have very little effect on the derived disc structure. A detailed study on the grain properties of this disc can be found in Lebreton et al. (2012). Synthetic images are computed using RADMC-3D1 (Dullemond et al. 2015), while the corresponding visibilities were derived using our tool uvsim (Dullemond 2015; Shannon et al. 2014). In agreement with the ring is marginally resolved in the radial direction with an expectation value $\langle \Delta r \rangle = 23.2 \pm 1.0$ AU, where the uncertainty represents the standard deviation derived from the marginalised posterior distribution. The width of the ring can be well constrained with the assumption of a gaussian radial profile, but as it is of the order of the beam size a detailed analysis of the radial structure of the main ring is impossible with the current angular resolution. The width of the ring is significantly larger than in the Fomalhaut ring (Boley et al. 2012). This could be related to the age of the systems as well as any possible planet- or star-disc interactions in the case of Fomalhaut (Faramaz 2015; Shannon et al. 2014). In agreement with the ring radius derived in Sec. 2, we find $(r_0) = 86.0 \pm 0.4$ AU.

On the other hand the scale height is not fully constrained. In principle, it should be possible to derive h from the ratio of the ring’s width or surface brightness along the major and minor axis of the projected ring, causing h and Δr to be correlated. In addition to this, in our case the estimation of h is limited as our observations only marginally resolve the ring’s width. However, we can put a 99.7% confidence upper limit of 0.14 AU. Both upper limit and best fit value (see Table 1) are consistent with the upper limit of 0.11 AU from Stark et al. (2014) and 0.09 AU from Schneider et al. (2006). The same figure shows that h and Δr are anticorrelated (see Sec. 4.9). The derived total dust mass in the main ring is 0.482 ± 0.006 M_\oplus. This value is highly dependent on our choice of dust internal density (4.0 g cm$^{-3}$) and for our assumed dust size distribution scales as $a_{\text{max}}/1 \text{cm}^{0.5}$, noting that a_{max} is unconstrained. In Sec. 4.9 we discuss about determining h in future observations and in other discs.

Our best axisymmetric model has $\chi^2_{\text{red}} \equiv \chi^2/(N - v - 1) = 1.54$, where N and v are the number of independent measurements (visibilities) and free parameters and equal to 74888 and 8, respec-

1 http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
tively. When we compare the χ^2 of our best axisymmetric model with the MEM model we find a difference of 0.2%. Hence, we conclude the continuum emission is consistent with an axisymmetric ring.

3.2 12CO (2-1)

To derive the CO gas distribution we follow a procedure similar to the dust continuum modeling in the previous Section. We fit the data with an axisymmetric disc of gas with a density distribution parameterized similar to the dust density distribution, but with a fixed vertical aspect ratio h of 0.07 and fixed disc orientation, that corresponds to the best fit of the dust continuum (see Table 1). The gas is in Keplerian circular orbits with a fixed systemic radial velocity of 0.1 km s$^{-1}$ in the Barycentric frame. Instead of simulating visibilities as in the dust continuum analysis, we fit the data with our gas models in the image space. The model images produced with RADMC-3D at different frequencies (tracing different radial velocities) are convolved with the dirty beam and then compared directly with the dirty map of the CO data, both corresponding to natural weights. This method is analogous to comparing model visibilities with gridded visibility data. The likelihood function is defined proportional to $\exp(-\chi^2/2)$, where χ^2 is the sum over the image and frequency space of the squared difference between the model and observed dirty map, divided by the variance, and taking into account the number of independent beams in the image and the correlation between adjacent channels in ALMA data. The free parameters in the MCMC are the CO gas mass (M_{CO}), ring radius (r_0) and FWHM of the ring (Δr).

However, the CO emission is not only constrained by the density distribution. Matrà et al. (2015) showed that local thermodynamic equilibrium (LTE) does not necessarily apply in the low gas density environments of debris discs. Depending on the gas kinetic temperature and collisional partner densities, the derived gas mass can vary by orders of magnitude. Thus, to model the 12CO (2-1) emission it is necessary to include non-LTE effects, i.e., to solve the populations of the different electronic, vibrational and rotational levels including (de-)excitations through radiative processes, where the CMB photons and dust thermal emission dominate the radiation field at 230 GHz, as well as through collisions. The similarity between the dust and gas distribution showed in Sec. 2.2 suggests that the CO is of secondary origin, i.e., produced by collisions between icy planetesimals that release volatile species such as CO or H$_2$O. This implies that the main collisional partner of CO molecules are electrons produced by carbon ionization. However, we stress that the derived CO gas distribution and total mass are independent of this choice. In Sec. 4.6 we discuss about the origin of the CO gas. We also use as input our best fit model of the dust continuum to compute the dust contribution to the radiation field at 230 GHz.

We consider different kinetic temperatures ranging from half to twice the dust temperature derived in the previous section (50 K at the ring radius). The electron density is defined as $n_{e}\sim (n_{e}^0/(r/86\, \text{AU}))^{-1.1}$, where the power law index was assumed equal to the one derived for 2Pic (Matrà et al. prep.). We vary n_{e}^0 between 10^{2}-10^{7} cm$^{-3}$ to cover from the radiation-dominated regime to LTE. Scattered light images suggest that the north east side of the disc is the closest as it is brighter in scattered light because of forwards scattering; thus, if the CO is in Keplerian rotation we should be able to determine the direction at which the CO moves in the sky. Hence, we consider models of the disc rotating clockwise as well as anticlockwise. We find a best fit with the gas rotating clockwise on the sky. The best model is five times more likely than the best anticlockwise model and 300 times more likely than no CO emission. In Sec. 4.1 we discuss about the implications to the observed asymmetries in scattered light. Below, we concentrate only on the clockwise case.

In Figure 6 we present the CO gas masses derived with our MCMC-modeling technique for different kinetic temperatures and electron densities. We find that our best fit value of M_{CO} can vary due to the uncertainty in the excitation temperature between 1.2 ± 0.4 × 10$^{-6}$ - 2.9 ± 0.9 × 10$^{-6}$ M$_{\odot}$ in the worst case (LTE), while it is very well constrained around 1.8 ± 0.6 × 10$^{-6}$ M$_{\odot}$ in the radiation dominated regime (low n_{e}). In the 2Pic disc recent ALMA observations suggest $n_{e}^0\sim 10^2$ cm$^{-3}$ (Matrà et al. prep).

In Figure 7 we present the posterior distributions, assuming $n_{e}^0=10^2$ cm$^{-3}$ and equal gas and dust temperatures. We find $M_{\text{CO}}=1.8 \pm 0.6 \times 10^{-6}$ M$_{\odot}$, $r_0=81^{+10}_{-9}$ AU and $\Delta r=4\times10^{17}$ AU. We also find that the derived values of r_0 and Δr are independent of n_{e}^0 and the gas kinetic temperature. The radius of the CO ring matches with the dust ring, confirming what we found averaging the data in Sec. 2.2, that gas and dust are co-located. Given the derived dust and CO densities it is unlikely that the CO is self shielded enough to avoid the photodissociation due to the ISM radiation field, which occurs in a timescale of ~120 yr (Visser et al. 2009) (see discussion in Sec. 4.6). This implies that the CO must be replenished and produced in the main ring; therefore, we conclude that the CO is of secondary origin and released in collisions between icy bodies. In Sec. 4.6 discuss about its origin. We also find that the CO ring could have a radial width similar to the dust distribution, although it is not very well constrained.

4 DISCUSSION

4.1 Axisymmetry

In Sec. 3 we analysed the observations assuming an axisymmetric disc, however Stark et al. (2014) found large scale asymmetries...
consistent with either a recent catastrophic disruption of a large body or disc warping due to interactions with the ISM. Figure 8 shows the best axisymmetric ring model image (a), the dirty map of the residuals when the best model is subtracted from the observed visibilities using natural weighting (b), and when the best double ring model is subtracted (c, see Section below). The map of residuals of a single ring is consistent with pure thermal noise without any peak intensity greater than 3σ along the main ring or where scattered light observations suggested an increase in the optical depth (black contours). The same image shows the two compact emission at ∼ 8″ N and 9″ SW from the star described in Sec. 2.1. We can put an upper limit on any fractional enhancement of emission in the millimetre of ∼ 10%, which is lower than the asymmetries derived in scattered light (10-42%). This can be translated to a mass upper limit of any dust density enhancement of 6 × 10^{-3} M_⊕ beam^{-1} (∼ 3 Pluto mass), assuming the dust composition and grain size distribution (a_{max} = 1.0 cm) described in Sec. 3. This mass upper limit scales roughly as (a_{max}/1 cm)^{1/2} with the Dohnanyi-like size distribution, as noted in Sec. 3.1.

In a giant collision scenario, the small dust produced from the collision would initially form a trailing outward-propagating spiral structure due to radiation pressure that would orbit the star (Kral et al. 2013). After one orbit the fragments would collide again in the “pinch point” and would continually produce new debris in this region where the density is higher. The small dust produced by collisions would form a leading outward-propagating spiral structure from the pinch point as it is affected by radiation pressure (Jackson et al. 2014), and we would expect the millimetre-sized dust distribution to be narrower at the collision point, increasing the surface brightness. In addition, such a collision would produce a CO excess that would extend from the collision point, along the ring in the direction of motion as far as it can spread in ∼ 120 yr at which point is photodissociated, as the disc is optically thin, similar to the case of β Pictoris (Dent et al. 2014; Jackson et al. 2014).

Such features are not present in the millimetre continuum, nor in the CO emission. In Sec. 2.2 and 3.2 we found that the CO and, thus, all the debris rotates clockwise in the sky. This has strong implications for the interpretation of the asymmetries in scattered light that extend outwards in an anticlockwise direction, forming a trailing spiral. The giant collision scenario could only explain the asymmetry if the collision has occurred in the last 4 × 10^3 yr or 5 orbits; thus, very unlikely. An alternative explanation of the asymmetry in scattered light could be that the disc is being warped by ISM interactions as suggested by Stark et al. (2014) or that the excess is being produced by a large body releasing small dust (e.g. Rappaport et al. 2014), in which case the asymmetric structure would form a trailing spiral of small grains that would orbit the star in clockwise direction.

4.2 Extended emission

Even though we model the disc as a single ring, we detect emission that extends at least to 4″′ (see Sec. 2.1). This emission is recovered both at the east and west side of the disc with no significant differences, and using our image synthesis method as well as using the Clean algorithm. Moreover, it appears in the residuals presented in Figure 8b. Assuming the same dust composition and grain size distribution as in the original ring, we model it with a second component in the dust density distribution. We find that this emission can be fitted by a power law surface density distribution, that starts in the main ring with a surface density 25 times lower and that decreases as r^{-1}. An alternative is to add a second ring, in which case we find that the observations are best fitted with a second ring of radius ∼ 185 AU, FWHM ∼ 76 AU and peak surface density 25 times lower than the maximum of the main ring. In both alternative models we obtain a total flux of 8.6 ± 0.4 mJy and a dust mass of ∼ 0.65 ± 0.04 M_⊕. Figure 8c shows the residuals when the double ring model is subtracted, obtaining a map with pure thermal noise. The origin of this emission could be dust in eccentric orbits produced in the main ring, or even primordial dust from the proplanetary disc phase as this is a young system (∼ 23 Myr). This extended component could be related with the change in slope of the derived surface density near 150 AU in scattered light (see figure 9 in Stark et al. 2014). Deeper ALMA observations with a more compact antenna configuration or even ACA observations coupled with a detailed modeling are necessary to conclude about its origin. If the dust surface density distribution has a local minimum between 2″ and 4″′, this could be evidence of a perturbing planet orbiting in the gap or on a highly eccentric orbit (Pearce & Wyatt 2015).

4.3 Dust size segregation

From our MCMC analysis and the fit of an ellipse to the intensity maxima along the ring, we find that its radius is 86.0 ± 0.4, significantly smaller than at optical wavelengths (r_0 = 90.5 ± 1.1). On the other hand, the distribution of small and millimetre grains overlaps. The main ring of millimetre grains extends roughly from 63 to 110 AU, while the small dust is found roughly from 70 AU and beyond 200 AU. The difference in peak radius of 4.5 ± 1.2 AU reveals grain size segregation. Due to radiation pressure, small
s. marino et al.

4.4 Collisional timescales

Rough estimates of the time scale at which mass is being lost (\dot{M}) from planetesimals in the steady state collisional cascade can be made under the following assumptions: (1) the particles in the disc have small mean eccentricities and inclinations (e and I) equal to 0.05; (2) the relative velocities between particles is equal to $v_K (1.25 e^2 + f^2)^{1/2}$ (valid for Rayleigh distributions of e and I, Lissauer & Stewart 1993; Wetherill & Stewart 1993); (3) planetesimal strengths (Q_{\ast}^b) independent of size and equal to 230 J kg$^{-1}$ (appropriate for km-sized weak ice bodies, Benz & Asphaug 1999; Wyatt & Dent 2002). Constant Q_{\ast}^b leads to a universal particle size distribution with a power law index of -3.5, consistent with our assumptions in Sec. 3.1. Under these assumptions and using equations 15 and 16 from Wyatt (2008) we find $M \sim 3 M_\oplus$ Myr$^{-1}$. By equating the collisional lifetime of bodies of different size with the age of the system (23 Myr), we also infer a maximum planetesimal size in the collisional cascade (D_c) of at least 1.5 km. Larger planetesimals may be present, but they would not yet have collided, thus they do not contribute to the collisional cascade. The collisional lifetime scales with the size of the body, D_c, roughly as $(D_c/1.5 \text{ km})^{0.5}$. We can then extrapolate this to obtain a collisional lifetime of mm-sized grains of 25×10^3 yr (~ 40 orbits).

Note that this collision timescale is broadly consistent with equation 16 in Wyatt et al. (1999) given the different assumptions for these calculations. This emphasises that the collisional lifetime of the mm-sized grains is set by the cross-sectional area in small grains, which is relatively well constrained from the observations, and is not dependent on the details of the collisional lifetimes of the largest objects discussed above.

4.5 Eccentric ring?

In our analysis we also found that the ring center is offset by 96 ± 5 mas in RA and −42 ± 5 mas in decl with respect to the phase center, which was centered at the expected stellar position at epoch. However, the offset is within the astrometric rms of ALMA ($\sim 0''1$; private communication with ALMA helpdesk). Thus we cannot conclude on a true eccentricity of the ring or compare with the eccentricity measured by Stark et al. (2014).

4.6 CO origin

We found that the CO is co-located with the dust, with no evidence for non-axisymmetry and with a radial extension consistent with the width of the main ring, although not well constrained. Given the CO derived mass and limits, we can estimate a vertical and
The stopping time defined as $\tau_f = m v_{\text{rel}} / F_{\text{drag}}$ can be estimated considering the Epstein drag force that gas exerts on dust grains. We approximate the dust grain velocities with the same expression for the relative velocities presented in Sec. 4.4. The gas drag force depends on the gas density, gas kinetic temperature (T_g) and the grain size (a_d). The first can be derived assuming a gas density distribution proportional to the dust density distribution, while the second is assumed to be close to the mm-dust grain temperature in the ring (~ 50 K). Finally we obtain

$$\tau_{\text{fric}} \approx 3 \times 10^3 \left(\frac{M_{\text{gas}}}{0.04 \, M_{\oplus}} \right)^{-1} \left(\frac{a_d}{1 \, \mu m} \right)^{-1} \left(\frac{T_k}{50 \, K} \right)^{-1/2} \Omega_K^{-1}. \tag{3}$$

Thus, for mm-sized particles $\tau_{\text{fric}} \gtrsim 3 \times 10^3 \Omega^{-1}$, much longer than the necessary to trigger the instability. Moreover, the stopping time is even longer than the collisional lifetime calculated in Sec. 4.4 (\sim 40 orbits). Only for grains at the bottom of the collisional cascade, with sizes $\lesssim 10 \, \mu m$, the stopping time is in the range where the instability could be triggered. The dust-to-gas mass ratio of grains smaller than 10 μm is of the order of unity. However, given that this instability does not apply to the mm-sized grains, and the distribution of micron-sized grains is consistent with being derived from the mm-sized grains, with any differences in their distribution attributable to radiation pressure without the need for the photoelectric instability, we conclude that this instability does not necessarily play a significant role in this disk. Furthermore, the collisional lifetime of mm-sized grains can be obtained using the fractional luminosity of the disk Wyatt et al. (1999), which translates to ~ 5 orbits, while the timescale for the instability to occur is tens of orbital periods (Lyra & Kuchner 2015).

4.9 Scale height

We showed that ALMA observations can be useful to measure or constrain the vertical mass distribution in discs, even for non highly inclined discs. Moreover, the dust thermal emission is not dependent on the scattering phase function, which hinders scale height estimates from scattered light observations. In the case of HD 181327, we found an upper limit for $h = H / r$ consistent with previous observations. As h is directly related to the mean orbital inclination relative to the disk midplane, measurements of it at (sub)millimetre wavelengths can be a powerful tool for identifying perturbing massive bodies, e.g. planets on inclined orbits stirring the disc vertically.

To illustrate why ALMA observations can constrain h in narrow discs, we study the brightness profile at a given radius of model disc observations with different h, Δr and i. For a given surface density profile, different h's result in different azimuthal intensity profiles due to changes of the optical depth in the line of sight. For a narrow ring, higher values of h make the disc brighter at the ansae compared to the regions close to the disc minor-axis. This is shown in Figure 9 where we plot intensity profiles, normalized at the disc ansa (PA=90°), versus position angle obtained from simulated ALMA cycle 3 observations. We used as input image our best-fit ring model and we vary h and Δr. The equivalent angular resolution of the simulated observations is $\sim 0.07''$. The upper panel corresponds to a disc inclination similar to HD 181327 (30°), while the lower panel to a general disc inclined by 70°. Based on the upper panel to a general disc inclined by 70°. Based on the curves of three reasonable values of h, we find that the S/N required to determine the scale height is extremely dependent on the disc inclination. For example, if we compare the profile of $h=0.08$ and 0.03, the largest difference in the normalized intensity profiles is...
~ 4% at PA=0° and ~ 10% when comparing h=0.08 and 0.15. This can give a rough estimate of the required S/N to recover the original h in a real observation, i.e. S/N ≥ 1/0.04 = 25 to distinguish cases with h between 0.03 and 0.08, and S/N ≥ 1/0.1 = 10 to exclude h of 0.15 or higher. On the other hand, if the disc is inclined by 70° the S/N required to distinguished between the three cases would be ≥ 1/0.2 = 5. Hence, high S/N ALMA observations are fundamental to constrain the scale height of low inclined debris rings, and thus, the level of stirring of the debris.

Interestingly, changing ∆r can produce a similar effect to the intensity profile. In the bottom panel, the dashed yellow line corresponding to h = 0.08 and ∆r = 10 AU has a similar profile compared with the case h = 0.15 and ∆r = 23 AU. However, ∆r can be directly estimated measuring the width of the ring along the major axis, breaking this degeneracy. The anticorrelation between h and ∆r mentioned in Sec. 3.1 that appears in Figure 5 can be qualitatively understood as both h or ∆r have an impact on the width of the ring projected in the sky.

Using the antenna configurations for cycle 3 provided in the CASA software, we simulate ALMA observations to estimate the necessary angular resolution to recover an aspect ratio H/\(r_0\) of 0.08 with an uncertainty less than 10% of our best-fit model for HD 181327, using our RADMC3D-MCMC approach. We find that provided with a maximum projected baseline of 1.3 km at 220 GHz, i.e. an angular resolution of ~ 0′′25, and a S/N of ~ 50 along the ring, it would be possible to constrain \(\langle H/r_0\rangle = 0.083 \pm 0.005\).

5 SUMMARY

We resolved the HD 181327 debris ring in dust continuum for the first time at millimetre-wavelengths with an angular resolution of 0′′47×0′′36 and we detected \(^{12}\)CO (2-1) emission for the first time in a debris disc around a solar-type star. Assuming an axisymmetric disc, we found that the dust continuum is best fitted with ring of radius 86 ± 0.4 AU and width 23.1 ± 1.0 AU. At this angular resolution, the vertical mass distribution is hard to constrain, but we were able to put an upper limit of 0.14 for the vertical aspect ratio H/r.

The ALMA observations are consistent with an axisymmetric ring and no significant residuals along the main ring remain after subtracting the best fit model to the continuum data. We also derived an upper limit for any dust overdensity along the primary ring. When we compared to previous HST observations at optical wavelengths we found that the derived orientations of the disc on the sky are consistent, but the ring radius derived from our data is significantly smaller. This result is consistent with grain size segregation due to radiation pressure.

Additionally, we detected low-level emission that extends beyond the primary ring, consistent with either an extended halo of dust or a secondary ring. This result is robust against different image synthesis methods and is also recovered in the residuals of our best-fit ring model. Deeper ALMA or ACA observations could help to study the origin of this emission.

We found that the CO is co-located with the dust, favouring a secondary origin scenario. Assuming an axisymmetric model we model the CO emission in the non-LTE regime with different kinetic gas temperatures and collisional partner densities. With gas kinetic temperatures of 50 K and electron densities similar to the ones found in β Pic, the emission is best fitted with a total CO gas mass of 6.4 ± 2.3 × 10^{-7} M_☉. In addition, we derived CO ice abundances in planetesimals and we found that they are consistent with the composition observed in Solar system comets. Furthermore, it is unlikely that the effect of hydrodynamics can affect the structure of the disc.

Finally, we showed that ALMA observations can be very useful to constrain the vertical distribution of discs. The S/N required is strongly dependent on the disc inclination in the sky, making it harder for discs close to a face on orientation as HD 181327.

ACKNOWLEDGEMENTS

We thank Pablo Roman for his help developing the tools uvmem and uvsim used in this work. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00437.S and ADS/JAO.ALMA#2013.1.00523.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work was supported by the European Union through ERC grant number 279973. SM, SC, SP acknowledge financial support from Millennium Nucleus RC130007 (Chilean Ministry of Economy), and additionally by FONDECYT grants 1130949 and

Figure 9. Intensity profiles along the ring projected ellipse on sky obtained from simulated Clean images without noise and using our best fit ring model. The values are normalised to the intensity at the ring semi-major axis (PA=90°). The upper panel corresponds to a disc inclined by 30°, while the lower to 70°. In red, blue and green lines we present three different profiles for disc aspect ratios of 0.03, 0.08 and 0.15 with ∆r fixed to 23 AU, while in dashed lines we present profiles varying h and ∆r.
REFERENCES

Benz W., Asphaug E., 1999, Icarus, 142, 5
Bohren C. F., Huffman D., 1983, Absorption and scattering of light by small particles. Wiley science paperback series, Wiley, http://books.google.cl/books?id=81BCZ8Bjg9C
Boley A. C., Payne M. J., Corder S., Dent W. R. F., Ford E. B., Shabram M., 2012, ApJ, 750, L21
Casassus S., Cabrera G. F., Förster F., Pearson T. J., Readhead A. C. S., Dickinson C., 2006, ApJ, 639, 951
Casassus S., et al., 2013, Nature, 493, 191
Chen C. H., Fitzgerald M. P., Smith P. S., 2008, ApJ, 689, 539
Coughlan C. P., Gabuzda D. C., 2013, in European Physical Journal Web of Conferences. p. 7009 (arXiv:1310.6187), doi:10.1051/epjconf/20136107009
Dent W. R. F., Greaves J. S., Coulson I. M., 2005, MNRAS, 359, 663
Dent W. R. F., et al., 2014, Science, 343, 1490
Dullemond C., Juhasz A., Poli A., Sereshti F., Shetty R., Peters T., Commercon B., Flock M., 2015, RADMC3D v0.39 http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
Eiroa C., et al., 2013, A&A, 555, A11
Faramaz V., 2015, preprint, (arXiv:1510.03832)
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
Foreman-Mackey D., Price-Whelan A., Ryan G., Emily Smith M., Barbary K., Hogg D. W., Brewer B. J., 2014, triangle.py v0.1.1, doi:10.5281/zenodo.11020, http://dx.doi.org/10.5281/zenodo.11020
Gontcharov G. A., 2006, Astronomy Letters, 32, 759
Heap S. R., Lindler D. J., Lanz T. M., Cornett R. H., Hubeny I., Maran S. P., Woodgate B., 2000, ApJ, 539, 435
Jackson A. P., Wyatt M. C., Bonnor A., Veras D., 2014, MNRAS, 440, 3757
Kalas P., et al., 2005, Science, 308, 1718
Kraus S. A., Nielsen E. L., Cushing M. C., Matthews K., 2011, ApJ, 731, 1
Kuchner M. J., Holman M. J., 2003, ApJ, 588, 1084
Lebreton J., et al., 2012, A&A, 539, A17
Levanda R., Leshem A., 2010, IEEE Signal Processing Magazine, 27, 14
Lissauer J. J., Stewart G. R., 1993, in Levy E. H., Lunine J. I., eds, Protostars and Planets III. pp 1061–1088
Lyra W., Kuchner M., 2013, Nature, 499, 184
MacGregor M. A., et al., 2013, ApJ, 762, L21
Mamajek E. E., Bell C. P. M., 2014, MNRAS, 445, 2169
Marino S., Casassus S., Perez S., Lyra W., Roman P. E., Avenhaus H., Wright C. M., Addison S. T., 2015, ApJ, 813, 76
Matrà L., Panić O., Wyatt M. C., Dent W. R. F., 2015, MNRAS, 447, 3936
Matrà L., et al., in prep.
Moór A., Ábrahám P., Derecas A., Kiss C., Kiss L. L., Apai D., Grady C., Henning T., 2006, ApJ, 644, 525
Moór A., et al., 2015, ApJ, 814, 42
Mumma M. J., Charalaye S. B., 2011, ARA&A, 49, 471
Nilsson R., Liseau R., Brandeker A., Olofsson G., Risacher C., Fridlund M., Pilbratt G., 2009, A&A, 508, 1057
Nordstrom B., et al., 2004, A&A, 418, 989
Pantin E., Stark J.-L., 1996, A&AS, 118, 575
Pearce T. D., Wyatt M. C., 2015, MNRAS, 453, 3329
Perrin M. D., et al., 2015, ApJ, 799, 182
Rappaport S., Barclay T., DeVore J., Rowe J., Sanchis-Ojeda R., Still M., 2014, ApJ, 784, 40
Ricci L., Carpenter J. M., Fu B., Hughes A. M., Corder S., Isella A., 2015, ApJ, 798, 124
Roberge A., Feldman P. D., Weinberger A. J., Deleuil M., Bouret J.-C., 2006, Nature, 441, 724
Schneider G., et al., 2006, ApJ, 650, 414

Shannon A., Clarke C., Wyatt M., 2014, MNRAS, 442, 142
Stark C. C., Schneider G., Weinberger A. J., Debes J. H., Grady C. A., Jang-Condell H., Kuchner M. J., 2014, ApJ, 789, 58
Strubbe L. E., Chiang E. I., 2006, ApJ, 648, 652
Thébault P., Wu Y., 2008, A&A, 481, 713
Torres C. A. O., Quast G. R., da Silva L., de La Reza R., Melo C. H. F., Sterzik M., 2006, A&A, 460, 695
Visser R., van Dishoeck E. F., Black J. H., 2009, A&A, 503, 323
Warmuth A., Mann G., 2013, A&A, 552, A86
Wetherill G. W., Stewart G. R., 1993, Icarus, 106, 190
Wyatt M. C., 2008, ARA&A, 46, 339
Wyatt M. C., Dent W. R. F., 2002, MNRAS, 334, 589
Wyatt M. C., Dermott S. F., Telesco C. M., Fisher R. S., Grogan K., Holmes E. K., Piña R. K., 1999, ApJ, 527, 918
Zuckerman B., Song I., 2012, ApJ, 758, 77
Zuckerman B., Forveille T., Kastner J. H., 1995, Nature, 373, 494
van Leeuwen F., 2007, A&A, 474, 653

This paper has been typeset from a TeX/\LaTeX file prepared by the author.