Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants

Lisvaneth Medina1, Christian Castillo1, Ana Liempi1, Jesús Guerrero-Muñoz1, Maura Rojas-Pirela2, Juan Diego Maya3, Humberto Prieto4 and Ulrike Kemmerling1*

1 Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile, 2 Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, 3 Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile, 4 Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile

Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.

Keywords: Trypanosoma cruzi, Toxoplasma gondii, human placental explants, miRNA profile, host gene expression
INTRODUCTION

More than one billion people worldwide are burdened by parasitic diseases (1). Of these, Chagas disease (American trypanosomiasis) and toxoplasmosis are caused by Trypanosoma cruzi (T. cruzi) and Toxoplasma gondii (T. gondii), respectively (2–4). Chagas disease is a devastating but neglected health problem in Latin America. Due to the extensive global migration of asymptomatic individuals, this infection has become an emerging disease in non-endemic countries. Congenital transmission is partially responsible for the progressive globalization of Chagas disease (5, 6). T. gondii is one of the most successful parasites on earth and is estimated to infect over one billion people worldwide (7). Importantly, both parasites can be congenitally transmitted and cause perinatal morbidity and mortality (2–4) but present different transmission rates. T. cruzi has a low transmission rate (1–12%) (6, 8) while T. gondii has a high transmission rate (22–72%) (3). Moreover, both parasites elicit a different local placental immune response that might be related to infection susceptibility (9, 10). Thus, T. cruzi and T. gondii infection is related to the expression and activation of different Toll-like receptors, which in turn mediate the secretion of different cytokines and chemokines in defense against both parasites in the placenta (9, 11).

However, the probability of congenital transmission depends on a variety of complex interactions between the pathogen and the host (4, 12). In particular, parasite factors, placental factors, and maternal and developing fetal immune systems determine infection occurrence (4, 13). In this context, both parasites display sophisticated strategies to avoid host defenses and virulence factors that increase the chance of establishing infection and long-term persistence. One of these strategies is the ability to modulate host cell gene expression (14–16) through small non-coding RNAs such as microRNAs (miRNAs) that repress mRNAs in a sequence-specific manner by either an mRNA degradation process or through mRNA translation inhibition (17–19). MiRNAs play a key role in fine tuning gene expression in multiple physiological and pathological conditions including T. cruzi (20) or T. gondii (21) infection. Interestingly, the largest miRNA cluster in humans is encoded in chromosome 19 (C19MC; 19q13.41) and is almost exclusively expressed in the placenta (22). Both C19MC-derived and non-C19MC-derived miRNAs have been associated with placental development pathologies such as pre-eclampsia and infection (23, 24). However, there is no report in the literature regarding altered miRNA expression in placental tissue in response to either parasite.

Here, we infected human placental explants (HPE) ex vivo by 2 h of incubation with either T. cruzi or T. gondii, then analyzed both miRNA expression profiles by miRNA sequencing and quantitative PCR of selected miRNAs. In addition, we used sequence-based miRNA target prediction and performed pathway functional enrichment and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs (DEM).

MATERIALS AND METHODS

Parasite Culture and Harvesting
For T. cruzi, Y strain (T. cruzi II) trypomastigotes were obtained from previously infected Vero cells (ATCC® CCL-81) grown in RPMI medium supplemented with 5% fetal bovine serum and 1% antibiotics (penicillin-streptomycin) at 37°C in a humid atmosphere with 5% CO2. Parasites invaded the cells and replicated intracellularly as amastigotes. After 48–72 h, amastigotes transformed back to trypomastigotes and lysed the host cells. The infective trypomastigotes were separated from cellular debris by low speed centrifugation (500 × g) for 10 min. Parasites were isolated from the supernatant by centrifugation at 3500 × g during 15 min, suspended in RPMI media (without fetal bovine serum, 1% (penicillin-streptomycin) (RPMI 1640®, Biological Industries Ltd.), and quantified in a Neubauer chamber (9).

For T. gondii, semi-confluent HFF cells were infected with RH tachyzoites at a multiplicity of infection of 3 to 5 parasites per cell. After 40 h, the infected cells were washed, then monolayers were scraped from the flasks and passed through 20-, 23-, and 25-gauge needles. Tachyzoites were purified from host cell debris with a 3.0 µm Isopore filter (Merck Millipore®) (25).

The laboratory has been certificated as a Biosafety level 2 laboratory by the Biosafety Committee (“Unidad de Prevención de Riesgo”) of the “Facultad de Medicina, Universidad de Chile” (approval # 0403/2019).

HPE Infection
Human term placentas were obtained from 3 women with uncomplicated pregnancies with vaginal or caesarean delivery. Informed consent for experimental use of the placenta was given by each patient as stipulated by the Code of Ethics of the “Servicio de Salud Metropolitana Norte” (approval number 0010/2019). Exclusion criteria consisted of the following: major fetal abnormalities, placental tumor, intrauterine infection, obstetric pathology, positive serology for Chagas disease, and any other maternal disease. Donor patients were negative for anti-T. gondii IgG/IgM antibodies. The organs were collected in cold, sterile, saline-buffered solution (PBS) and processed no more than 30 min after delivery. The dissected explants (approximately 50 mg of tissue) were washed with sterile PBS to remove the blood and co-cultivated with T. cruzi trypomastigotes or T. gondii tachyzoites (105 parasites/ml) in serum free RPMI media. After 2 h of co-cultivation, explants were collected in RNAlater™ solution (ThermoFisher Scientific®), then stored at 4°C for 24 h and at -80°C for posterior RNA isolation (9). Three independent experiments were carried out in triplicates; HPEs from each placenta were infected with either T. cruzi or T. gondii parasites. The parasite load in the HPEs was confirmed by real-time PCR as described previously by us (9, 10, 26).

RNA Extraction
Total RNA was extracted from HPE by mechanical disruption in 1.3 ml of RNA-solv® reagent (Omega Bio-tek) and isolated using...
an E.Z.N.A® total RNA kit I (Omega Bio-tek) according to manufacturer instructions. RNA was stored at -80°C until analysis. The concentration and quality of RNA was determined with a Qubit® RNA HS Assay kit and an IQ Assay kit (Invitrogen), respectively. Only RNA samples with an IQ ≥8 were further analyzed for quality with an Agilent 2100 Bioanalyzer System (Agilent Technologies, USA) using an RNA Nano 6000 Assay Kit. RNA samples with RNA integrity numbers >5.0 were used for miRNA profiling analysis (9).

Library Construction and Sequencing
Small RNA-Seq libraries were constructed with an Illumina TruSeq Small RNA library preparation kit according to manufacturer protocols. To assess the quality of the libraries, a DNA High Sensitivity Chip was used in an Agilent 2100 Bioanalyzer (Agilent Technologies, USA). The libraries were sequenced on an Illumina NextSeq 500 platform. For each condition, three independent biological replicates were sequenced and paired-end reads were generated.

Data Analysis
Raw read quality was evaluated using the FastQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw reads were aligned with Trim Galore Cutadapt software (27) and low-quality reads were removed (phred value < 30) in order to obtain clean reads. Clean reads with a length range of 18-35 nucleotides were chosen to perform all subsequent analyses. The software STAR (28) was used to align all reads to the reference human genome sequence (Hg38). The read counts per coding sequence were determined using HTSeq-count (29). To evaluate replicates, we used Principal Component Analysis, Pearson correlation and standardized median correlation analyses and box plots. The program EdgeR was used for differential expression analysis (30). Differentially expressed genes were defined as genes with p-value <0.05. Target gene prediction performed by using miRDB, psRNA target, and TargetScan softwares.

Enrichment Analyses
miRNA set enrichment analysis was performed using the TAM 2.0 tool (http://www.lirmmed.com/tam2/). KEGG pathways and functional annotation of the predicted target genes (https://www.genome.jp/kegg/kegg2.html) were also analyzed to determine the biological processes, molecular functions, cellular components, and associations with disease.

RT-qPCR
RNA enriched in small RNAs was extracted from HPEs (approximately 50 mg of tissue) by mechanical disruption in 1 ml RNAzol® RT (Sigma-Aldrich) according to manufacturer instructions and stored at -80°C until analysis. The concentration of the isolated miRNAs was determined using a Qubit® Quant-it™ microRNA Assay Kit (Molecular Probes). cDNA of mature miRNAs was synthesized with a MystiCq™ microRNA cDNA Synthesis Mix Kit (Sigma-Aldrich Merck) per manufacturer guidelines. The 25 µl RT-qPCR reaction contained 12.5 µl 2× MystiCq microRNA SYBR Green qPCR Ready Mix, 0.5 µl of 10 µM MystiCq Universal PCR Primer, 0.5 µl of 10 µM of each specific MystiCq microRNA qPCR Assay Primer (Supplementary Table 1), 10.5 µl nuclease-free water, and 1 µl cDNA. All RT-qPCR reactions were performed in triplicates. RT-qPCR was performed under the following cycling conditions: initial denaturation at 95°C for 2 min, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. Gene expressions were calculated using the 2^(-ΔΔCT) relative expression method and normalized to snRNA U6 (RNU6-1) expression data (31).

RESULTS

T. cruzi and T. gondii Change the miRNA Expression Profile in HPE
The effects of *T. cruzi* and *T. gondii* on placental tissue were assayed in HPE after a 2 h challenge with 10⁵ parasites/ml. Total miRNA extracted from infected and non-infected control HPE was analyzed by miRNA Seq. Key characteristics of the obtained sequencing data are summarized in Table 1. A total of 680 and 686 DEMs were identified in *T. cruzi* and *T. gondii* infected HPE, respectively. Only 14 DEMs with a minimum 1.5-fold change in expression and a 95% probability of being differentially expressed (p ≤ 0.05) were identified in *T. cruzi* challenged samples (Figure 1A). In *T. gondii* challenged samples, the number of DEMs increased to 42 (Figure 1B). Comparison of *T. cruzi* infected HPE with non-infected control samples showed that five

TABLE 1 | Statistics of the small RNA sequences obtained in this study.

	M reads (millions)	M Aligned (millions)	% aligned	Mature microRNA reads	# Mature MicroRNAs	# Mature MicroRNA (single aligned)
S1 Control	12.96	11.68	90.12	3489287	922	732
S2 Control	15.17	13.87	91.43	4855003	908	760
S3 Control	15.58	13.16	84.50	3030989	843	714
S4 T. cruzi	14.35	12.60	87.77	3000672	907	712
S5 T. cruzi	14.76	12.94	87.69	3910944	907	737
S6 T. cruzi	16.13	13.15	81.55	3571933	914	720
S7 T. gondii	13.57	11.82	87.07	3106030	916	737
S8 T. gondii	14.40	12.79	88.77	4747358	962	757
S9 T. gondii	13.51	12.16	89.99	4148647	931	763

M reads, total of sequences in analysis after raw data processing (millions); M aligned, total of mapped sequences to the human genome (millions); % aligned, total of mapped sequences to the human genome (percentage); Mature microRNA reads, mapped reads counted as mature miRNAs; # Mature microRNAs, number of mature miRNAs; # Mature MicroRNA (single aligned), number of mature miRNAs associated to unique miRNA precursors in the reference.
miRNAs were downregulated and nine were upregulated. In T. gondii infected tissues, 13 miRNAs were downregulated and 29 were upregulated. The Venn diagram in Figure 1C shows the miRNAs that were differentially expressed in the presence of both parasites compared to non-infected control samples and in HPE infected with either parasite. The complete list of DEMs in response to ex vivo T. cruzi and T. gondii infection is shown in Table 2.

Functional Annotation and KEGG Pathway Enrichment Analysis of miRNA Target Genes

To better understand the roles of the miRNAs identified in HPE in response to ex vivo infection with both parasites, the target genes of the miRNAs were identified using miRDB, psRNA target, and TargetScan. GO and KEGG enrichment analyses used to identify the biological functions of the DEMs (p < 0.05) during ex vivo T. cruzi and T. gondii infection revealed 679 best scored target genes of the 14 miRNAs from T. cruzi vs. control, 1970 best scored target genes of the 42 miRNAs from T. gondii vs. control, and 2011 best scored target genes of the 42 miRNAs from T. cruzi vs. T. gondii. The target genes of the DEMs are shown in Supplementary Table 2. Among the significantly enriched GO terms in T. cruzi vs. control samples, DEMs were significantly enriched in regulation of NFκB pathways, chondrocyte development, cell death including apoptosis, peritoneal cavity homeostasis, angiogenesis, cell cycle, megakaryocyte differentiation, Toll-like receptor signaling pathway, and immune response including innate immunity (Figure 2A). Among the significantly enriched GO terms in T. gondii vs. control samples, DEMs were significantly enriched in cell proliferation, cell migration, osteoblast differentiation, oxidative stress, lipid metabolism, regulation of stem cells including embryonic stem cells, hepatotoxicity, DNA damage response, regulation of NFκB pathways, smooth muscle

FIGURE 1 | Expression profiling of mature miRNAs in human placental explants (HPEs) following T. cruzi or T. gondii infection. (A) Heat-map of differentially expressed microRNAs (DEMs) in control vs. T. cruzi infected HPE and (B) control vs. T. gondii infected HPE. The filtered miRNA data were subjected to unsupervised hierarchical clustering analysis. The metric was set as the Euclidean distance. Control: C1, C2, C3; T. cruzi: Tc1, Tc2, Tc3; T. gondii: Tx1, Tx2, Tx3. (C) Venn diagram showing the number of commonly expressed and specifically expressed miRNAs between the infected HPE groups. Significant miRNAs for HPE with T. cruzi infection vs. those with T. gondi infection are shown in the yellow circle. The blue circle represents the miRNAs that discriminate between the control (uninfected HPE) and T. cruzi infected HPE, while the green circle represents the miRNAs that distinguish the control (uninfected HPE) and T. gondi infected HPE.
proliferation, T-helper 17 cell differentiation, T-cell activation, and response to estrogen (Figure 2B).

In addition, we performed GO and KEGG analyses to identify different pathologies in which the T. cruzi- and T. gondii-induced DEMs were related. In T. cruzi vs. control samples, significantly enriched DEMs were related to metabolic syndrome, IgA-nephropathy, acute childhood lymphoblastic leukemia, atherosclerosis, oral lichen planus, human papilloma virus

miRNAs	Fold Change	p-value	p-adjustment	Expression
Control vs T. cruzi				
hsa-miR-490-5p	1.47644601	0.01199305	1	Up-regulated
hsa-miR-497-5p	-0.95822045	0.02138052	1	Down-regulated
hsa-miR-146a-5p	0.9111643	0.024398238	1	Up-regulated
hsa-miR-121-35	2.78626832	0.02512553	1	Up-regulated
hsa-miR-210-5p	1.17471038	0.03867826	1	Up-regulated
hsa-miR-146b-5p	0.70985057	0.041583753	1	Up-regulated
hsa-miR-877-5p	-0.71572824	0.049301458	1	Down-regulated
hsa-miR-1271-5p	-1.48497011	0.04953349	1	Down-regulated
T. cruzi (*treatment exclusive)				
hsa-miR-636	0.003652701	1	Up-regulated	
hsa-miR-4449	0.005197851	1	Up-regulated	
hsa-miR-449a		1	Up-regulated	
hsa-miR-2115-3p	0.013101594	1	Up-regulated	
hsa-miR-561-3p	0.023010635	1	Up-regulated	
hsa-miR-4446-3p	0.041796581	1	Up-regulated	

Control vs T. gondii				
hsa-miR-121-36	1.79576197	0.120736654	Up-regulated	
hsa-miR-635-5p	1.58817451	0.22772906	Up-regulated	
hsa-miR-10b-5p	-1.51399053	0.22772906	Down-regulated	
hsa-miR-1271-5p	-2.41462909	0.26785922	Down-regulated	
hsa-miR-409-5p	-2.51930487	0.26785922	Down-regulated	
hsa-miR-27a-3p	-0.97356696	0.26785922	Down-regulated	
hsa-miR-29a-3p	-0.92877383	0.33760387	Down-regulated	
hsa-miR-214-3p	0.9842214	0.37267866	Up-regulated	
hsa-miR-379-5p	1.46176098	0.45365887	Up-regulated	
hsa-miR-3120-5p	1.05068543	0.45365887	Up-regulated	
hsa-miR-375-5p	-1.06317073	0.503835925	Down-regulated	
hsa-miR-542-3p	1.64664629	0.760274481	Up-regulated	
hsa-miR-195-5p	1.20637898	0.760274481	Up-regulated	
hsa-miR-3130-5p	-2.64656568	0.760274481	Up-regulated	
hsa-miR-519-3p	-0.91903812	0.760274481	Up-regulated	
hsa-miR-490-5p	1.42743639	0.760274481	Up-regulated	
hsa-miR-450b-5p	1.11411811	0.760274481	Up-regulated	
hsa-miR-374a-5p	0.87077312	0.760274481	Up-regulated	
hsa-miR-143-3p	0.79415077	0.760274481	Up-regulated	
hsa-miR-213-5p	0.78717052	0.760274481	Up-regulated	
hsa-miR-675-5p	1.15460490	0.760274481	Up-regulated	
hsa-miR-146a-5p	1.68593669	0.760274481	Up-regulated	
hsa-miR-148-5p	1.20637898	0.760274481	Up-regulated	
hsa-miR-498-3p	1.02426719	0.760274481	Up-regulated	
hsa-miR-96-5p	-2.45982296	0.77095716	Down-regulated	
hsa-miR-509-3p	0.86545472	0.77095716	Up-regulated	
hsa-miR-190b-5p	2.26556495	0.77095716	Up-regulated	
hsa-miR-371b-5p	-0.92433309	0.48753399	Down-regulated	
hsa-miR-520-5p	-0.85461887	0.48753399	Down-regulated	
hsa-miR-371a-5p	0.78093674	0.49909863	Down-regulated	
hsa-miR-412-5p	0.86506966	0.50140202	Down-regulated	
hsa-miR-324-5p	1.10101079	0.67085732	Up-regulated	
hsa-miR-410-3p	0.63473585	0.77095716	Up-regulated	
hsa-miR-139-5p	0.66901369	0.77095716	Up-regulated	
T. gondii (*treatment exclusive)				
hsa-miR-548	0.01756271	0.760274481	Up-regulated	
hsa-miR-449a	0.02617767	0.760274481	Up-regulated	
hsa-miR-6125	0.03454366	0.760274481	Up-regulated	
hsa-miR-4638-3p	0.03454366	0.760274481	Up-regulated	
hsa-miR-6860	0.03454366	0.760274481	Up-regulated	
hsa-miR-4660	0.03454366	0.760274481	Up-regulated	
hsa-miR-2115-5p	0.04354449	0.760274481	Up-regulated	

*Treatment Exclusive: refers to miRNAs sequenced only in the T. cruzi or T. gondii infected condition (treatment), they are not expressed in control explants.

TABLE 2 | The top differentially expressed miRNAs (P < 0.05) in HPE challenged with 10⁶ T. cruzi trypomastigotes or T. gondii tachyzoites during 2 h.
infection, psoriasis, neuropsychiatric disorders, heart diseases, pancreatic carcinoma, Löfgren’s syndrome, *Mycobacterium tuberculosis* infection, male infertility, and gastric carcinoma (Figure 3A). In *T. gondii* vs. control samples, the significantly enriched DEMs were related to ankylosing spondylitis, type 2 diabetes mellitus, hypertrophic cardiomyopathy, congenital heart disease, fetal alcohol syndrome, pulmonary hypertension, ulcerative colitis, cystic fibrosis, vascular diseases, human cytomegalovirus infection, muscular dystrophy, liver diseases, coxsackievirus infection, and diabetic retinopathy (Figure 3B).

Specific GO and KEGG enrichment analyses focused on the functions of DEMs in response to both parasites that were related to parasitic diseases and/or placenta pathology. These DEMs are listed in Table 3. In this context, we found that the significantly enriched DEMs were related to the regulation of apoptosis, wound healing, cardiomyocyte apoptosis, heart development, skeletal muscle cell differentiation, Toll-like receptor signaling pathway, innate immunity, epithelial to mesenchymal transition, chromatin remodeling, and nephrotoxicity (Figure 4). Moreover, we analyzed the significantly enriched DEMs related
miRNAs	Control vs T. cruzi	p-value	Expression p-value	Control vs T. gondii	p-value
hsa-miR-3074	Up-regulated	0.282778175	Down-regulated	0.906716427	
hsa-miR-518e-5p	Down-regulated	0.736402582	Up-regulated	0.65921033	
hsa-miR-127-3p	Down-regulated	0.45473692	Up-regulated	0.899001399	
hsa-miR-512-3p	Up-regulated	0.893005693	Down-regulated	0.554885541	
hsa-miR-156a-5p	Down-regulated	0.573579895	Down-regulated	0.875664943	
hsa-miR-376a-3p	Up-regulated	0.26294956	Up-regulated	0.890873441	
hsa-miR-523-5p	Down-regulated	0.736493282	Up-regulated	0.65921033	
hsa-miR-517-5p	Down-regulated	0.356215385	Down-regulated	0.131367096	
hsa-miR-516a-5p	Down-regulated	0.454473692	Up-regulated	0.899001399	
hsa-miR-512-3p	Up-regulated	0.893095693	Up-regulated	0.554885541	
hsa-miR-517-5p	Down-regulated	0.356215385	Down-regulated	0.131367096	
hsa-miR-520c-5p	Down-regulated	0.878596629	Up-regulated	0.65279763	
hsa-miR-526a-3p	Up-regulated	0.262008953	Down-regulated	0.786198155	
hsa-miR-519a-3p	Down-regulated	0.356215385	Down-regulated	0.131367096	
hsa-miR-520c-5p	Down-regulated	0.878596629	Up-regulated	0.65279763	
hsa-miR-526a-3p	Up-regulated	0.262008953	Down-regulated	0.786198155	

(Continued)
to transcription activation and found that the following transcription factors or its activators were modulated by them: MYOG, calcineurin, AP-1, TNFSF12, NFκB1, myogenin, MYOD, MYF5, MRF4, and TP53 (Figure 5).

Validation of miRNA Expression by RT-qPCR

Validation of miRNAs associated with parasite infection or pregnancy related pathologies was performed by selecting six miRNAs [miR-3074 (26), miR-127-3p (27, 28), miR-30e-3p (29), miR-512-3p (30), miR-515-5p (31), and miR-190b (32)] for confirmation by real time PCR to verify the DEM expression levels. Expression of miR-3074, miR-127-3p, and miR-30e-3p (Figures 6A–C) was analyzed in HPE in response to both parasites. miR-512-3p and miR-515-5p (Figures 6D–E) expression was determined in response to *T. cruzi* infection and miR-190b expression in response to *T. gondii* infection (Figure 6F). All selected miRNAs except for miR-30e-3p (Figure 6C) were differentially expressed. Thus, miR-3074 expression (Figure 6A) was significantly decreased (*T. cruzi*: 57.03 ± 19.99%, *p* ≤ 0.01; *T. gondii*: 69.84 ± 24.67%, *p* ≤ 0.01) with respect to the control but not in the infected samples. Decreased miR-3074 expression was expected in the *T. gondii* infected samples but not in the *T. cruzi* infected samples. According to the miRNA Seq data, miR-3074 was upregulated in *T. cruzi* challenged samples. Similar results were observed for miR-127-3p (Figure 6B). Expression of miR-127-3p was significantly decreased in HPE infected with either parasite (*T. cruzi*: 68.218 ± 16.41%, *p* ≤ 0.01; *T. gondii*: 73.13 ± 22.45%, *p* ≤ 0.01) compared to the control but not to infected samples; we expected an increase in miR-127-3p expression in the presence of *T. gondii* since in the miRNA Seq data this particular miRNA was increased (Table 3). RT-qPCR validation results for miR-512-3p, miR-515-5p, and miR-190b confirmed the miRNA Seq data. Thus, miR-512-3p expression increased (40.83 ± 22.53%, *p* ≤ 0.01) (Figure 6D) and miR-515-5p expression decreased (21.44 ± 8.60%, *p* ≤ 0.01) (Figure 6E) significantly in *T. cruzi* infected samples. In *T. gondii* infected HPE, miR-190b expression was significantly increased (59.02 ± 37.73%, *p* ≤ 0.01) (Figure 6F).

DISCUSSION

Pathogens have evolved strategies to exploit resources from their hosts to maximize their own survival, replication, and dissemination. Thus, different kinds of pathogens (including...
parasites) have developed sophisticated mechanisms that include hijacking host cellular machinery to modulate host gene expression to inhibit defense responses (16, 32, 33). Both of the parasites studied here are able to manipulate host gene expression. For instance, during *T. cruzi* cell and tissue invasion, cell reprogramming affects cellular stress responses, host metabolism, and a significant number of transcription factors (16, 34). *T. gondii* also reprograms host cells, primarily targeting cell-specific transcription factors that regulate host defenses (i.e., NF-kB, interferon regulatory factor, and JAK/STAT) by regulating their intrinsic activities and expression levels (35). In addition, certain parasites including *T. cruzi* and *T. gondii* can alter host miRNA expression to favor both parasite clearance and infection (18, 19). Moreover, different strains of *T. gondii* can induce specific miRNAs in mice that have been proposed as biomarkers for early infection (19, 36).

Mature miRNAs regulate the expression of over 30% of fundamental genes; these are involved in key biological
processes including development, cellular proliferation and differentiation, apoptosis, metabolism, and immune response (18, 19, 37); all of these determine infection success or failure. Moreover, epigenetic and genetic defects in miRNAs and their processing machinery are a common hallmark of infection and diseases that include pregnancy-specific pathologies such as preeclampsia (17, 38).

Most of the transcriptomic studies as well as those analyzing miRNA profiles have focused on a single type of cell response (34) or on tissues or organs in animal models (39, 40); no studies have focused on human tissues. The present study is the first report on the miRNA profile of the human placenta in response to T. cruzi or T. gondii infection. We identified 680 and 686 DEMs, respectively, in T. cruzi and T. gondii infected samples. T. cruzi modulated only 14 DEMs with a minimum of a 1.5-fold change in expression and a 95% probability of being differentially expressed (Figure 1A). In contrast, the number of DEMs increased to 42 in T. gondii challenged HPE (Figure 2B). Our results showed that the DEMs identified here are related to the regulation of different fundamental cellular processes (Figure 2) as well as different pathologies (Figure 3). Moreover, fundamental cellular processes related to placenta pathologies and embryonic development are affected by the presence of both parasites (Figures 4–5). It is important to point out, that tissue response to infection is relevant during disease progression. The presence of the parasites leads to tissue damage as well as immune and regulatory/repair responses, which can lead to fibrosis and tissue dysfunction as observed in chagasic cardiomyopathy (41) or Toxoplasma induced encephalitis in immune-compromised individuals (42).

Three miRNAs, miR-21, miR-146a/b, and miR-210, were overrepresented in most of the ontology terms (Table 2, Supplementary Tables 3–4). Previous studies have implicated these miRNAs in immune and inflammatory response regulation via macrophage polarization controlled through transcription factor regulation in response to signals from the microenvironment (43, 44). Concordantly, in T. cruzi-infected mice, increased miR-21 expression in the heart has been correlated with a parasitemia peak at 30 days post-infection (39). In placenta, miR-21 has been associated with trophoblast differentiation and invasion and miR-21 dysregulation leads to placental pathology (45). MiR-146a is a negative feedback regulator in TLR-4 signaling that acts by repressing TRAF6 to inhibit NFKB transcription factor activation (46, 47). In macrophages, TRAF6 mediates the induction of the pro-inflammatory cytokine IL-12, which is essential to control T. gondii infection (48). TRAF6 activation is also required for vacuole-lyssosome fusion, a fundamental step during T. gondii infection (49). Our results showed that in HPEs, T. gondii and T. cruzi infection increased miR-146a expression. Our previous studies showed that both parasites modulate placental immune response differentially through TLRs and NFKB pathways in HPEs (9, 10). Interestingly, the inhibition of these pathways increased the DNA loads of both parasites in HPEs (10). Increased T. gondii infection in placental tissue is also induced by TLR-4 inhibition (9). In addition, increased levels of miR-146a have been reported in the brains of mice infected with T. gondii, moreover, miR-146a ablation affects early parasite burden and improves survival (50). It was previously reported that miR-210 is induced by damage associated molecular patterns (51). In preeclamptic placentas, miR-210 is increased (52); in the present study, miR-210 was increased in HPE infected with T. cruzi but not with T. gondii. Expression of miR-210 can be directly regulated by the specific binding of NFKB p50 to its putative promoter (53). In this context, it is important to mention that T. cruzi, but not T. gondii, infection of HPE activates both NFKB signaling pathways (10). Therefore, the increased level of miR-210 might be a placental response to signal transduction pathway activation.

In addition, several identified pathways, important, e.g. for chondrocyte development, megakaryocyte smooth and muscle cell differentiation, hepatotoxicity, and DNA damage response, are neither related to infection or with placental tissues (Figure 3). This can be explained be the fact, that miRNAs target multiple genes, while individual genes are targeted by multiple miRNAs. Moreover, the same miRNA regulates different genes in different tissues and organs (54, 55). Here, we chose to validate six miRNAs that were associated specifically with parasite infection and/or pregnancy related pathologies (Figure 6). Deregulation of miR-30e-3p has been reported in mice that were experimentally infected with T. gondii (40). This miRNA is also related to Chagas cardiomyopathy (39) and is upregulated in placentas with intrauterine growth restriction (56). Nonetheless, miR-30e-3p expression was unaffected by T. cruzi or T. gondii infection in HPE (Figure 6C). Increased miR-3074-5p expression has been described in placentas from recurrent miscarriages (57) and in livers from T. gondii-infected cats (42). However, miR-3074-5p expression was diminished in HPE infected either with T. cruzi or T. gondii (Figure 6A). The differences between our results and the reported data might be explained by differences in the studied organs (heart and liver versus placenta) and the complexity of the above mentioned placental pathologies. MiR-127 is a placenta-specific miRNA codified in the C14MC cluster (58) and its levels are decreased in placenta-related pathologies such as recurrent miscarriage and small-for-gestational age (59, 60); the downregulation of MiR-127 was also detected in babies infected congenitally with either parasite (3, 4). Concordantly, our results showed that HPE infection with either T. cruzi or T. gondii led to the decrease of this miRNA (Figure 6B). Moreover, a decreased expression of miR-127-3p in non-placental tissues has been reported during T. gondii infection in mice and cats (40, 42, 61), but there is no report regarding miR-127-3p expression in response to T. cruzi infection. Both miR-515-5p and miR-512-3p are placenta-specific miRNAs that are codified in the C19MC cluster (62). Decreased miR-515-5p expression is related to fetal growth restriction (63) and preeclampsia (64). Importantly, this miRNA inhibits human trophoblast differentiation by directly repressing the aromatase P450 (CYP19A1), frizzled 5 (FZD5), and glial cells missing 1 transcription factor (GCM1) genes (65). Trophoblast differentiation is part of the trophoblast epithelial turnover.
FIGURE 7 | Schematic summary of the comparative analysis of RNA sequencing-based miRNA profiles in HPEs in response to ex vivo T. cruzi and T. gondii infection. Fourteen, and 42 DEMs were identified in T. cruzi and T. gondii infected samples. In T. cruzi infected HPEs, 5 miRNAs were downregulated and 9 were upregulated. In T. gondii infected HPEs, 13 miRNAs were downregulated and 29 were upregulated. In addition, five miRNAs that are associated specifically with parasite infection and/or pregnancy-related pathologies were validated. GO analysis revealed that the predicted targets of the DEMs were different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the DEMs identified herein modulate crucial host cellular targets potentially determining the success of infection, these miRNAs might explain the differences in the congenital transmission rates of the two parasites. This figure was created using BioRender.com.
and it has been proposed that this mechanism is part of an antiparasitic placental response against \textit{T. cruzi} infection (11, 13, 66, 67). Therefore, our reported decrease of miR-515-5p expression during \textit{ex vivo} \textit{T. cruzi} infection of HPE (Figure 6D) might be at least partially responsible for the parasite-induced trophoblast differentiation. In contrast, miR-512-3p was upregulated in HPE in response to \textit{T. cruzi} infection (Figure 6E). Interestingly, miR-512-3p confers resistance to vesicular stomatitis virus in non-placental recipient cells (68) and represses the caspase 8 inhibitor c-FLIP (cellular FLICE-like inhibitory protein); it consequently increases caspase 8 activity (69). Caspase 8 regulates trophoblast differentiation and apoptotic cell death and is activated by \textit{T. cruzi} (66). Therefore, miR-512-3p upregulation might also be a protective placental response to \textit{T. cruzi} infection, as it is to viral infection. The upregulation of miR-190b in HPE during \textit{T. gondii} infection was observed in the RNAseq analysis (Figure 1B, Table 3), then validated by qPCR (Figure 6F). Upregulation of miR-190b promotes cell proliferation and migration and reduces cell apoptosis in different types of cancer (70, 71). Parasites modulate apoptotic responses in infected cells to avoid rapid clearance; \textit{T. gondii} is particularly capable of blocking apoptosis by different mechanisms (33). In neurons, increased miR-190b expression also increases cell viability, suppresses autophagy, and significantly decreases the levels of pro-inflammatory TNF-\(\alpha\), IL-6, and IL-1\(\beta\) cytokines (72). In this context, we have shown that \textit{T. gondii}, in contrast to \textit{T. cruzi}, does not induce pro-inflammatory cytokines in HPE (9). Therefore, it is postulated that the lack of pro-inflammatory cytokine secretion in response to \textit{T. gondii} in HPE might be related to an increase in miR-190b expression and that, together with the modulation of the apoptotic pathway, it could allow parasite persistence and infection in the placenta.

In conclusion, the present study provides a comparative analysis of RNA sequencing-based miRNA profiles in HPE in response to \textit{ex vivo} \textit{T. cruzi} and \textit{T. gondii} infection (Figure 7). Our findings provide new insight into the capacity of both parasites to modulate host gene expression. GO analysis revealed that the predicted targets of the DEMs were different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the DEMs identified herein modulate crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differences in congenital transmission rates. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.

REFERENCES

1. Dotters-Katz S, Kuller J, Heine RP. Parasitic infections in pregnancy. \textit{Obstet Gynecol Surv} (2011) 66:515–25. doi: 10.1097/OGX.0b013e3182385fd
2. Błaszkowska J, Góralksa K. Parasites and fungi as a threat for prenatal and postnatal human development. \textit{Ann Parasitol} (2014) 60:225–34.

DATA AVAILABILITY STATEMENT

The RNA-seq data reported in the present study have been submitted to the NCBI SRA database (http://www.ncbi.nlm.nih.gov/bioproject/656620; accession number PRJNA656620). All other data supporting the findings can be found in the article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethical Committee of the “Servicio de Salud Metropolitano Norte” Santiago de Chile, Chile. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

LM and UK conceived of and planned experiments. LM, CC, MR-P, AL, and JG-M carried out experiments. JM and HP contributed to the interpretation of the results. UK and LM wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

UK received a grant from the Network of the European Union, Latin America and the Caribbean Countries on Joint Innovation and Research Activities (ERANet-LAC; grant number ERANet17/HLH-0142). UK, JM, and CC received grants from the National Fund for Scientific and Technological Development (FONDECYT; grant numbers 1190341, 1170126, and 3180452, respectively).

ACKNOWLEDGEMENTS

The authors thank Dr. Sergio Angel for providing the \textit{Toxoplasma gondii} parasites.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.595250/full#supplementary-material

3. Carlier Y, Truyens C, Deloron P, Peyron F. Congenital parasitic infections: a review. \textit{Acta Trop} (2012) 121:55–70. doi: 10.1016/j.actatropica.2011.10.018
4. Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of \textit{Trypanosoma cruzi}: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. \textit{Front Microbiol} (2019) 10:1854. doi: 10.3389/fmicb.2019.01854

The Electronic version of this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.595250/full#supplementary-material
25. Nardelli SC, Che F-Y, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, et al. The histone code of Toxoplasma gondii comprises conserved and unique post-translational modifications. MBio (2013) 4:e00922–13. doi: 10.1128/mBio.00922-12.

26. Liempi A, Castillo C, Medina L, Galanti N, Maya JD, Parragüez VH, et al. Comparative ex vivo infection with Trypanosoma cruzi and Toxoplasma gondii of human, canine and ovine placenta: Analysis of tissue damage and infection efficiency. Parasitology Int (2020) 76:102065. doi: 10.1016/j.parint.2020.102065.

27. Lindgreen S. AdapterRemoval: Easy cleaning of next-generation sequencing reads. BMC Res Notes (2012) 5:337. doi: 10.1186/1756-0500-5-337.

28. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29:19–21. doi: 10.1093/bioinformatics/bts35.

29. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics (2015) 31:166–9. doi: 10.1093/bioinformatics/btu638.

30. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (2009) 26:139–40. doi: 10.1093/bioinformatics/btp16.

31. Androvic P, Vlahirac L, Jilling E, Jörback M, Kubista M. Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res (2017) 45:e144. doi: 10.1093/nar/gkx58.

32. Villares M, Berthelet J, Weitzman JB. The clever strategies used by intracellular parasites to hijack host cell gene expression. Semin Immunopathol (2016) 42:215–26. doi: 10.1007/s00281-02-0077-9.

33. Mammini N, Halabi MA, Yacoub S, Chalha H, Dardé M-L, Courtioux B. Toxoplasma gondii modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BioMed Res Int (2019) 2019:6152489. doi: 10.1155/2019/6152489.

34. Chiribao ML, Libisch G, Parodi-Talice A, Robello C. Early Trypanosoma cruzi infection reprograms human epithelial cells. BioMed Res Int (2014) 2014:439501. doi: 10.1155/2014/439501.

35. Hakimi MA, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription. Clin Microbiol Rev (2017) 30:615–44. doi: 10.1128/CMR.00005-17.

36. Jia B, Chang Z, Wei X, Lu H, Yin J, Jiang N, et al. Plasma microRNAs are promising novel biomarkers for the early detection of Toxoplasma gondii infection. Parasit Vectors (2014) 7:433. doi: 10.1186/1756-3305-7-433.

37. Salehi M, Sharifi M. Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities. J Cell Physiol (2018) 233:6370–80. doi: 10.1002/jcp.2648.

38. Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol (2015) 213:S163–72. doi: 10.1016/j.ajog.2015.05.057.

39. Navarro IC, Ferreira FM, Nakaya HI, Baran MA, Vilari-Pereira G, Pereira IR, et al. MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: Parasitological and cardiological Outcomes. PLoS Negl Trop Dis (2015) 9:1–17. doi: 10.1371/journal.pntd.000382.

40. Hu RS, He JJ, Elsheikhia HM, Zhang FK, Zou Y, Zhao GH, et al. Differential brain microRNA expression profiles after acute and chronic infection of mice with toxoplasma gondii oocysts. Front Microbiol (2019) 2019:63318. doi: 10.3389/fmicb.2018.02316.

41. Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, Factor SM, et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol (2012) 34:733–70. doi: 10.1007/s00281-012-0351-7.

42. Cong W, Zhang XX, He JJ, Li FC, Elsheikhia HM, Zhu XQ. Global mRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection. Oncotarget (2017) 8:25999–611. doi: 10.18632/oncotarget.16108.

43. Cátanás CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in aging and breast cancer: Are they reliable players? Front Med (Lausanne) (2015) 2:85. doi: 10.3389/fmed.2015.00085.

44. Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional regulation of innate cytokine/chemokine profile by Trypanosoma cruzi in vivo infection of human placental explants with Trypanosoma cruzi and Toxoplasma gondii: Differential activation of NF kappa B signaling pathways. Parasite Immunol (2017) 39:1–10. doi: 10.1111/pim.12417.

45. Chaiwangyen W, Ospina-Prieto S, Photini SM, Schleussner E, Markert UR, et al. Ex vivo infection of human placental chorionic villi explants with Trypanosoma cruzi and Toxoplasma gondii induces different Toll-like receptor expression and cytokine/chemokine profiles. Am J Reprod Immunol (2017) 78:1–3. doi: 10.1111/ajr.12660.
Targeting TRAF6, IRAK1, and IRAK2. *J Immunol* (2009) 183:2150–8. doi: 10.4049/jimmunol.0900707

47. Taganov KD, Boldin M, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. *Proc Natl Acad Sci U S A* (2006) 103:12481–6. doi: 10.1073/pnas.0605298103

48. Mason NJ, Fiore J, Kobayashi T, Masek KS, Choi Y, Hunter CA. TRAF6-dependent mitogen-activated protein kinase activation differentially regulates the production of interleukin-12 by macrophages in response to Toxoplasma gondii. *Infect Immun* (2004) 72:5662–7. doi: 10.1128/IAI.72.10.5662-5667.2004

49. Subauste CS, Andrade RM, Wessendarp M. CD40-TRAF6 and autophagy-associated molecular pattern molecule-induced micro-RNAs (DAMPmiRs) in association with toxoplasma persistence in the host brain. *Cell Rep* (2014) 6:928–37. doi: 10.1016/j.celrep.2014.02.002

50. Sunlu S, Tang S, Wang E, Martinez I, Tang D, Bianchi ME, et al. Damage associated molecular pattern molecule-induced microRNAs (DAMPmiRs) in human peripheral blood mononuclear cells. *PloS One* (2012) 7(6):e38899. doi: 10.1371/journal.pone.0038899

51. Zham Y, Xi M, Han T, Sargent IL, Yin G, Yao Yq. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. *Am J Obstet Gynecol* (2009) 7(6):e38899. doi: 10.1016/j.ajog.2008.12.045

52. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: New insights into molecular mechanisms for the disease. *J Cell Mol Med* (2012) 16:249–59. doi: 10.1111/j.1582-4934.2011.01291.x

53. Zhang Y, Zhang X, Yang Q, Wang J, He Y, Sun Z, et al. Aberrant Placental Villus Expression of miR-486-3p and miR-3074-5p in Recurrent Miscarriage Patients and Uterine Expression of These MicroRNAs during Early Pregnancy in Mice. *Gynecol Obstet Invest* (2016) 81:112–7. doi: 10.1159/000435879

54. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. *Proc Natl Acad Sci U S A* (2013) 110:4255–60. doi: 10.1073/pnas.1214061110

55. Yang Q, Wu WW, Gu Y, Yan NN, Mao YY, Zhen XH, et al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. *J Transl Med* (2018) 16(1):186. doi: 10.1186/s12967-018-1556-x

56. Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE, Svensson K, et al. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. *Epigenetics* (2017) 12:804–10. doi: 10.1080/15592294.2017.1358345

57. He JJ, Ma J, Wang JL, Xu MJ, Zhu XQ. Analysis of miRNA expression profiling in mouse spleen affected by acute Toxoplasma gondii infection. *Infect Genet Evol* (2016) 37:137–42. doi: 10.1016/j.meegid.2016.05.010

58. Donker RB, Mouillet JF, Chui T, Habel CA, Stolz DB, Morelli AE, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. *Mol Hum Reprod* (2012) 18:417–24. doi: 10.1093/molehr/gas013

59. Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. *Prenat Diag* (2013) 33:214–22. doi: 10.1002/pd.4045

60. Hromadníková I, Kotábová K, Ondráckova M, Pirkova P, Kestlerov A, Novotná V, et al. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. *DNA Cell Biol* (2015) 34:437–57. doi: 10.1089/dna.2014.2687

61. Zhang M, Muralimanoharan S, Wortmann AC, Mendelson CR. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. *Proc Natl Acad Sci* (2016) 113:E7069–76. doi: 10.1073/pnas.1607849113

62. Carrillo I, Droguett D, Castillo C, Liempi A, Muñoz L, Maya JD, et al. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection. *Exp Parasitol* (2016) 168:9–15. doi: 10.1016/j.exppara.2016.06.008

63. Liempi A, Castillo C, Duasso J, Droguett D, Sandoval A, Barahona K, et al. Trypanosoma cruzi induces trophoblast differentiation: A potential local antiparasitic mechanism of the human placenta? *Placenta* (2014) 35:1035–42. doi: 10.1016/j.placenta.2014.09.017

64. Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. *Proc Natl Acad Sci* (2013) 110:12048–53. doi: 10.1073/pnas.1304718110

65. Chen F, Zhu H-H, Zhou L-F, Wu S-S, Wang J, Chen Z. Inhibition of C-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells. *Onco Rep* (2010) 23:1457–62. doi: 10.3982/ or_0000784

66. Dai W, He J, Zheng L, Bi M, Hu F, Chen M, et al. miR-148b-3p, miR-190b, and miR-429 regulate cell progression and act as potential biomarkers for breast cancer. *J Breast Cancer* (2019) 22:219–36. doi: 10.4088/jbc.2019.22.e19

67. Zhao Q, Liu C, Cui Q, Luan X, Wang Q, Zhou C. miR-190b promotes colorectal cancer progression through targeting forkhead box protein P2. *Exp Ther Med* (2019) 19:79. doi: 10.3982/etm.2019.8175

68. Pei X, Li Y, Zhu L, Zhou Z. Aryctomyodes-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. *Cell Cycle* (2020) 19:906–17. doi: 10.1080/15384102.2020.1751649

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Medina, Castillo, Liempi, Guerrero-Mañoz, Rojas-Pirela, Maya, Prieto and Kemmerling. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.