New host record of microhabitat preferences of the Banggai cardinalfish (*Pterapogon kauderni*) in the introduced habitat in Luwuk waters, Sulawesi

U Y Arbi* and A Faricha

Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih 1, Ancol Timur, North Jakarta 14430, Indonesia

*E-mail: uyanua@gmail.com

Abstract. Banggai cardinalfish *Pterapogon kauderni* is an endemic apogonid fish from Banggai Islands, Central Sulawesi, which is discovered in strong association with black sea urchin (*Diadema* spp.). These fish also protected themselves from predators associated with sea anemones, hard coral branching, mushroom coral, soft coral, seagrass, and mangrove roots. The Banggai cardinalfish juveniles generally prefer to associate with sea anemones or mushroom corals as microhabitats. However, they are looking for similar microhabitats if they cannot find sea anemones or mushroom coral *Heliofungia actiniformis*. Microhabitat observation of Banggai cardinalfish was carried out in Luwuk waters, Banggai Regency. The result showed a new host record for juvenile phases of Banggai cardinalfish associated with upside-down jellyfish *Cassiopea andromeda* as a microhabitat. Further study is needed to represent areas and seasons to get more evidence between the Banggai cardinalfish and jellyfish association concepts.

Keywords: Banggai cardinalfish, endemic, microhabitat selection, symbiosis

1. Introduction

The Banggai cardinalfish *Pterapogon kauderni* is a paternal mouthbrooder with tiny clutch size and no juvenile pelagic larval phase [1-3]. *Pterapogon kauderni* has limited distribution in less than 10,000 km² and has been found naturally only in the Banggai Archipelago off the east coast of Sulawesi, Indonesia because a pelagic larval phase is the main dispersal method in most reef fish [4-6]. Population in small portions inhabit Luwuk Harbor in Central Sulawesi, which enclosure separated from the Banggai Islands group by the Peleng Strait [3, 6, 7]. Some introduce populations were established along the trade routes, such as Lembeh Strait – North Sulawesi [6, 8-10], Tumbak – North Sulawesi [6, 11, 12], Palu – Central Sulawesi [13-15], Luwuk – Central Sulawesi [3, 13], Kendari – South East Sulawesi [16-18], Bali [6, 19, 20, 21], Ambon – Molluca [22, 23], and Ternate – North Molluca [24].

The Banggai cardinalfish lives in shallow waters in a varied habitat, including coral reefs, seagrass beds. However, they are less frequently in open habitats such as low branching coral coverage and rubble [16, 25] and are commonly found in calm and protection bays [5, 11]. *Pterapogon kauderni* is a site-attached species that stays associated with various benthic living substrates. The Banggai cardinalfish lives in groups mainly hovering within and above groups of long-spined sea urchins (*Diadema setosum*) [1, 3, 26-28]. They are also closely associated with other sea urchins (*Diadema setosum* and *Tripneustes gratilla*) [25, 29], sea anemones (*Actinodendron* spp., *Entacmaea quadricolor*, *Heteractis crispa*, *Macroductyla doreensis*, *Stichodactyla haddoni*) [2, 3, 5, 25, 27, 28], soft corals (*Nepthia* spp.) [3, 5, 25, 27], branching stone corals (*Acropora* spp., *Anacropora* spp., *Porites* spp., *Goniopora* spp., etc.) [2,
3, 5, 25, 30], mushroom stone coral, *Heliofungia actiniformis* [27], hydrozoans (*Millepora* spp.) [25, 27], sponges [27], and mangrove roots (*Rhizophora* spp.) [5, 11, 25]. Microhabitat is important as a refuge from predation, wherein anemones to be particularly important microhabitats for newly released and juveniles of Banggai cardinalfish. Almost all predators of juveniles, including adult and sub-adult of *Pterapogon kauderni*, seem to avoid the tentacles among which juveniles often hide and are also protected by anemone resident clownfish when present [16].

Banggai cardinalfish will choose other biotas similar to anemone as their microhabitat if sea anemones are not present. For example, mushroom coral *Heliofungia* spp., soft coral, or another biota with many tentacles, such as jellyfish *Cassiopea andromeda*, which physically resemble anemones. *Cassiopea andromeda* (Forsskål, 1775), or Upside-down jellyfish, belongs to the family Cassiopeidae. These usually live in intertidal sand or mudflats, shallow lagoons, or around mangroves and are commonly mistaken for sea anemones. The distribution is widely around the world, especially in the Indo-Pacific [31], but the population in Eastern Mediterranean waters is recorded to increase [32-38], and also in the Caribbean Sea and the southern tip of Florida [39].

Numerous Upside-down jellyfish were found as a host for juveniles of Banggai cardinalfish during exploratory dives at the Luwuk harbor, Banggai District, Central Sulawesi. This phenomenon offered the opportunity to investigate the possibility of jellyfish as a new host preference for Banggai cardinalfish.

2. Materials and Methods

This study was carried out between April to May 2019 around Luwuk waters, Banggai District, Central Sulawesi. Our work focused on introducing Banggai cardinalfish at five locations (Figure 1), which were reported as introducing areas by trading impact, restocking, and another purpose.

![Figure 1](image_url)

Figure 1. Map of the survey location is the location of Banggai cardinalfish introduction in Luwuk waters, Sulawesi.

The modified belt transect method was used to observe the density of the Banggai cardinalfish. A total of 20 m long within 5 m on either side of transect along the coastlines, and six times were conducted at each sampling site (Figure 2). The density was carried out based on the number of individual and microhabitat preferences of each size category using the Underwater Visual Survey (UVS) method along the transect [40]. The size categories were estimated based on standard length (SL) in 3 classes, such
the larvae (less than 1.8 cm), juveniles (1.8 – 3.5 cm), and adults (more than 3.5 cm). To avoid bias records, observers should swim at a constant speed and not count the same fish twice [41]. The density was calculated using the formula:

\[d = \frac{c}{A} \]

Where:
- \(d \) = Density (ind/m\(^2\))
- \(c \) = Number of individuals
- \(A \) = Extent of observation area (m\(^2\))

Figure 2. The modified belt transect method was used to observe the density of the Banggai cardinalfish.

Quantitative analysis using the Chi-square test (\(\chi^2 \)) determines trends in habitat selection and Neu’s Index analysis (Preference Index) to determine the habitat preferences based on differences in fish density in each habitat. Friedman Test was used to test three or more paired populations. A group of subjects was subjected to three or more different treatments. In this study, the comparison of the density of three stages of fish development at each station was analyzed using Friedman Test by SPSS 25 software with a 95% confidence level (\(p = 0.05 \)). Neu Index was used to determine the habitat preference index by animals and to find out the most preferred habitat for these animals that carried out with the following equation:

\[w = \frac{ui}{pi}, \text{and} \quad b = \frac{wi}{\sum wi} \]

Where:
- \(wi \) = Selection / Preference Index of each station
- \(pi \) = Proportion of coverage area (m\(^2\))
- \(ui \) = Proportion of the number of individuals (individu)
- \(b \) = Standardized index

The order of the level of preference or preferential habitat is based on the value of the variable \(b \) (standardized index), where the standardized index provides comparisons between studies because the number is always one. The largest \(b \) value indicates the primary habitat preference, the second-largest \(b \) value indicates the second habitat preference, and so on.
We observed the upside-down jellyfish whether the presence or absence of Banggai cardinalfish in each jellyfish was found. The number of individuals and the size of the Banggai cardinalfish was calculated on each jellyfish. Furthermore, the behavior and position of the Banggai cardinalfish against their host jellyfish were also recorded.

3. Results and Discussion
Banggai cardinalfish was found in a small population in several locations in Luwuk waters, especially around the Luwuk Harbor. The harbor has around 1.2 km length, 0.5 widths, and 150 m open to the ocean through a passage exposed to high levels of pollution, including regular fuel spills, freshwater, and sewage discharges [42]. The nearest introduction area of Banggai cardinalfish is in Patikaman (southcentral Paleng), about 120 km, which is separated by Paleng Strait with a strong current and 920 m depth [5]. Furthermore, the Banggai cardinalfish populations in Luwuk are also suggested as an introduced population [7, 43].

3.1. Density
Banggai cardinalfish in Luwuk waters was found at five locations with several phases, e.g., recruits (<25 mmTL), juveniles (25-60 mmTL), and adults (> 60 mmTL). The phase compositions in each location have a different encounter pattern. Phase recruit and juvenile in Station I were not found and a juvenile in Station IV. However, the Banggai cardinalfish phase composition in each location also has different densities (Figure 3). According to [43], these results are consistent, wherein most Banggai cardinalfish population found in several phases composition in a location while the juvenile is a generally dominated. The population formed by an adult is rarely found and usually consists of several phases. The recruit phases are often found in a habitat that their parents inhabit [45].

![Figure 3](image-url)

Figure 3. The density of Banggai cardinalfish based on each phase at each station in Luwuk waters.

Banggai cardinalfish in Luwuk waters had a different average density on all phases in each station, which was statistically significant based on the nonparametric Friedman test with a value of 0.019 (Asymp value Sig <0.05). The lowest density of recruit phases was reported in Station I (not found), while juvenile phases were not recorded in Station I and IV, and the adult phases also showed less density in Station I (1 ind./100m²). However, Station II was reported to have a higher density for recruit, juvenile, and adult phases with a number of average 3 ind./100m², 6 ind./100m², and 11 ind./100m², respectively.

Station I’s low density is related to the coral reef ecosystem, a suitable zone for fish spawning. Population structure and size distribution in Banggai cardinalfish are influenced by predation after initial settlement [4]. Although mating partners and incubating males can be found in all habitats inhabited by fish, this suggests that fish reproduction and recruitment can occur in all zones occupied by species.
However, the number of newly released recruits can be higher in seagrass beds than on coral reefs. Where in this zone, most of the male parents who are incubating eggs are found. During the first two to three weeks after birth, recruits experience high predation rates (including cannibalism of adults of the same breed). After being released by the male, recruits will seek protection on a substrate that is isolated and separated from the parent's microhabitat.

3.2. Host Preferences

Similar to other locations, Banggai cardinalfish in Luwuk is associated with microhabitats such as black sea urchin (*Diadema setosum* and *Diadema savignyi*), sea anemones, various hard corals, mushroom corals *Heliofungia actiniformis*, and soft corals. The life cycle of Banggai cardinalfish in each phase has different habitat requirements even in the same waters, causing their habitat preference to change [45]. The preference index for each developmental phase of Banggai cardinalfish is presented in Tables 1 to 3, which show different habitat tendencies.

Table 1. Preference Index for recruits of Banggai cardinalfish in Luwuk waters.

Station	a	P	n	u	E	w	b	l
I	6.04	0.08	0	0	23	0	0	5
II	36.17	0.45	278	0.917	136	2.04	0.388	2
III	1.92	0.02	23	0.076	7	3.19	0.606	1
IV	23.78	0.3	1	0.003	90	0.01	0.002	4
V	12.59	0.16	1	0.003	47	0.02	0.004	3
Amount	80.49	1	303	1	303	5.26	1	

Table 2. Preference Index for juveniles of Banggai cardinalfish in Luwuk waters.

Station	a	P	n	u	E	w	b	l
I	6.04	0.08	0	0	45	0	0	4
II	36.17	0.45	593	0.98	272	2.18	0.82	1
III	1.92	0.02	6	0.01	14	0.42	0.16	2
IV	23.78	0.3	0	0	179	0	0	4
V	12.59	0.16	7	0.01	95	0.07	0.03	3
Amount	80.49	1	606	1	606	2.67	1	

Table 3. Preference Index for adults of Banggai cardinalfish in Luwuk waters.

Station	a	P	n	u	E	w	b	L
I	6.04	0.08	33	0.02	132	0.25	0.04	5
II	36.17	0.45	1103	0.63	793	1.39	0.22	2
III	1.92	0.02	147	0.08	42	3.5	0.55	1
IV	23.78	0.3	312	0.18	521	0.6	0.09	4
V	12.59	0.16	169	0.1	276	0.61	0.1	3
Amount	80.49	1	1764	1	1764	635	1	

Where:

- **a** = coverage of microhabitat inhabited by Banggai cardinalfish (m²)
- **P** = coverage proportion of microhabitat inhabited by Banggai cardinalfish
- **w** = Preference Index / Selection Index
- **n** = number of fishes were counted (individual)
- **u** = proportion of number of fishes were counted
- **e** = expected value of number of fishes were counted (individual)
According to the value of preference index, it showed that the recruits phase prefers in Station II and III ($w\geq1$), with the highest preference index (3.19). The recruits phase was also founded in Station V and IV. However, it has tended not to be their habitat preference ($w\leq1$), while no recruit phases inhabiting Station I ($w=0$). Five stations show that Station III is a preferred habitat for recruit phases which is habitat use by fish is greater than the habitat available. Station III is located in the transitional ecosystem between seagrass and coral reef, with sand as substrate dominated and microhabitat presented by sea urchins. Moreover, the recruit phases basically can be found in all adult phase microhabitats, e.g., sea urchins. In conditions presenting more microhabitat types, the recruit phases will prefer to inhabit anemones and mushroom coral *Heliofungia actiniformis* [5]. The number of sea urchin colonies changes will affect individuals of recruit phases [5]. If recruits remain associated with sea urchins for a long time, fish will passively migrate along with sea urchins to find more suitable microhabitats and switch to different types of microhabitats. For example, if a colony of sea urchins passes through anemones, recruits will move from sea urchin colonies to anemones [46].

Juvenile phases of Banggai cardinalfish in Luwuk waters prefer to inhabit Station II ($w=2.18$). Although found in Station III and V, the juvenile tends to be disliked inhabit ($w\leq1$) and not prefer to inhabit in Station I and IV ($w=0$), for the adult phase was reported present in all stations. However, the highest preference index is at Station III ($w=3.5$) means that Station III is a preferred habitat for Banggai cardinalfish. At the same time, other stations seem to tend not to be the preferred habitat ($w\leq1$). Station II is similar to Station III, which reports as the preferred habitat for recruit phases. Dominated microhabitat by sea urchin at Station II and III as an associate throughout sheltering among the sea urchin spines which have a color similar with the black pattern of Banggai cardinalfish [5], and also sea urchin spines have a stinging cell that protects from predators when Banggai cardinalfish threatened [47].

The previous study has reported microhabitat ontogenetic shifting in Luwuk waters. It is supported by the hypothesis ontogenetic, which tends to shift between microhabitat or host-symbiont and age change [5]. After settlement, Banggai cardinalfish exhibits high site fidelity [4] despite an ontogenetic shift in microhabitat within a given site [42]. Habitat with a relatively high population of black sea urchin, Banggai cardinalfish in various sizes is observed. Conversely, the Banggai cardinalfish will choose another microhabitat if their habitat has a low sea urchin population. Relation between microhabitat types and size composition of Banggai cardinalfish is visually prominent, which is more than 5% and considered significant. The study of Banggai cardinalfish in the Banggai Islands shows the microhabitat preferences among the size-types of Banggai cardinalfish in a habitat with a high sea urchin population. At the same time, the juvenile prefers sea anemone as their microhabitat (80%) and adult at hard coral (60%) [5]. Microhabitat shifts tend to occur slowly from sea anemones to hard corals. The difference in the percentage of juveniles that choose sea anemones is higher than in another microhabitat. However, hard coral is only chosen by adults [27].

Sea anemones are a particularly important habitat for recruit and small juvenile phases of Banggai cardinalfish survive, whereas often to share a host with clownfish. The adult phase dominant inhabits hard coral as their microhabitat, though limited to coral life forms e.g., branching and foliose [27]. There is an interesting relationship between clownfish *Amphiprion* spp. and juvenile Banggai cardinalfish, symbiotic in sea anemones. Clownfish usually throw other fishes from approaching sea anemones they live in, including the adult of Banggai cardinalfish; however, they tolerate the presence of juvenile [13]. There is much evidence that microhabitats, sea urchin, sea anemone, and hard coral life forms are important to support the Banggai cardinalfish populations [40, 48, 49]. The main factor in decreasing the Banggai cardinalfish population is the abundance of microhabitat populations, especially sea urchin and sea anemone [50].
3.3. New Host Preference
As previously explained, the Banggai cardinalfish is a site-attached species that stays associated with various benthic living substrates (Figure 4), lives in groups mainly hovering within and above long-spined sea urchins, hard corals, soft corals, hydrozoans, sponges, sea anemones, seagrass and mangrove roots. The absence of sea anemones allows Banggai cardinalfish to look for a similar one with many tentacles as juveniles inhabit commonly, such as mushroom coral *Heliofungia actiniformis*. Observation in Luwuk Harbor shows a new fact that Banggai cardinalfish has an associate with upside-down jellyfish *Cassiopea andromeda* (Figure 4 photo number 13 to 15). This microhabitat associate has less information before. Little information about this association has been mentioned before, but a more in-depth study has not been carried out [48]. The association between a small number of individual Banggai cardinalfish and jellyfish was recorded in Tinakin Laut, one of the research sites in the Banggai Islands. However, the results of observations at Luwuk Harbor were discovered, and the data will be useful as input for further research to consider the existence of this jellyfish about the selection of microhabitat for Banggai cardinalfish.

Numerous upside-down jellyfish *Cassiopea andromeda* was found in Luwuk Harbor as a host for juvenile Banggai cardinalfish (Table 4). Nine jellyfish individuals encountered during the observation, as many as 99 individuals of Banggai cardinalfish from various phases of development were found. From nine jellyfish individuals were found, the Banggai cardinalfish do not inhabit only one individual. Data shows, the Banggai cardinalfish that is associated with jellyfish is dominated by recruit and juvenile. A total of 55.77% (58 individuals) of Banggai cardinalfish found were recruited, 40.38% (42 individuals) were juvenile, and only 3.85% (4 individuals) were adult. Four adults recorded were only found in two jellyfish individuals; one adult of fish was found in one jellyfish while three individuals were found in other jellyfish. Like anemones, the Banggai cardinalfish that chose this microhabitat were dominated by recruit and juvenile phases. The type of microhabitat with many tentacles is important as a refuge from predation, wherein anemones are particularly important microhabitats for newly released and juveniles of Banggai cardinalfish [3, 27]. Almost all predators of juveniles, including adult and sub-adult of *Pterapogon kauderni*, seem to avoid the tentacles among which juveniles often hide and are also protected by anemone resident clownfish when present [3, 5, 16, 27, 28]. Upside-down jellyfish *Cassiopea andromeda* has a morphology similar to anemones which have tentacles-like shaped organs. The absence of anemones at the observation site was replaced by the presence of these jellyfish, which are used by Banggai cardinalfish for shelter, especially for recruits and juveniles [3, 27, 28].

In general, these observations indicate that upside-down jellyfish *Cassiopea andromeda* is important symbionts for Banggai cardinalfish, especially in the recruit and juvenile phases. The absence of anemones, known to be the main choice for the recruit and juvenile phases of the Banggai cardinalfish, has been replaced by the jellyfish for protection (Figure 5). However, information on the relationship between Banggai cardinalfish and jellyfish as their hosts is still needed. Information on whether the season affects the presence of jellyfish, whether there is a difference between the rainy season and the dry season, and other information related to the jellyfish in a given location. Furthermore, it may be necessary to research on a laboratory scale to determine the microhabitat selection of Banggai cardinalfish if anemone and jellyfish are found in one location.
Figure 4. Microhabitat preferences of Banggai cardinalfish observed in Luwuk waters, namely long-spined sea urchin *Diadema* spp. (1-3), branching hard corals *Acropora* spp. (4-6), various sea anemones (7-9), mushroom coral *Heliofungia actiniformis* (10-12), and upside-down jellyfish *Cassiopea andromeda* as a new microhabitat preference (13-15).
Table 4. Banggai cardinalfish associated with jellyfish, indicating the presence of selection in each phase of development.

Cassiopea andromeda	Pterapogon kauderni			
Specimen No.	recruit	juvenile	adult	Total
1	6	5	3	14
2	8	7		15
3	9	6		15
4	5	5	1	11
5	13	7		20
6	10	11		21
7	3			3
8	4	1		5
9	0			0
Total of individual	58	42	4	104

Figure 5. A group of recruits and juveniles of Banggai cardinalfish swim between the jellyfish's tentacles for protection.

4. Conclusion
The absence of anemones, known as the main choice for the recruit and juvenile phases of the Banggai cardinalfish *Pterapogon kauderni*, has been replaced by the upside-down jellyfish *Cassiopea andromeda*. The upside-down jellyfish, which physically resemble anemones was important symbionts for Banggai cardinalfish for protection. From the results, further research is needed to determine the mechanism of selection of the upside-down jellyfish as Banggai cardinalfish microhabitats, both in nature and on a laboratory scale.
Acknowledgments
The author gratefully thanks the support of the Research Center for Oceanography (RCO-LIPI). The grant supported this work under COREMAP-CTI programs thru the Priority Research scheme (No. B-5006/IPK.2/KP.06/I/2019) and (No. B-407/III/HK.01/2/2021). We thank all colleagues and stakeholders who have contributed during the survey and collected the data, especially to Fish Quarantine and Inspection Agency (FQIA-MMAF).

References
[1] Allen G and Stene R C 1995 Notes on the ecology and behavior of the Indonesia cardinalfish (Apogonidae) Pterapogon kauderni Koumans Revue fr. Aquariol. 22(1-2) 7-9
[2] Vagelli A A 1999 The reproductive biology and early ontogeny of the mouthbrooding Banggai cardinalfish, Pterapogon kauderni (Perciformes, Apogonidae) Environ. Biol. Fishes 56 79-92
[3] Vagelli A and Erdmann M V 2002 First comprehensive ecological survey of the Banggai cardinalfish, Pterapogon kauderni Environ. Biol. Fishes 63 1-8
[4] Kolm N and Berglund A 2003 Wild populations of a reef fish suffer from the ‘nondestructive’ aquarium trade fishery Conserv. Biol. 17(3) 910-914
[5] Vagelli A 2004 Ontogenetic shift in habitat preference by Pterapogon kauderni, a shallow-water coral reef apogonid with direct development Copeia 2 364-369
[6] Vagelli A, Burford M and Bernardi G 2009 Fine-scale dispersal in Banggai cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase Mar. Genomics 1 129-134
[7] Bernardi G and Vagelli A 2004 Population structure in Banggai cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase Mar. Biol. 145 803-810
[8] Erdmann M V and Vagelli A A 2001 Banggai cardinalfish invade Lembeh Strait Coral Reefs 20 252-253
[9] Carlos N S T, Rondonuwu A B and Watung V N R 2014 Distribution and density of Pterapogon kauderni Koumans, 1933 (Apogonidae) in eastern Lembeh Strait, Bitung Platax 2(3) 121-126
[10] Lempoy R, Rondonuwu A B and Bataragoa N E 2020 Size and length-weight relationship and condition factor of Banggai cardinalfish Pterapogon kauderni Koumans, 1933 in Lembeh Strait North Sulawesi Platax 8(1) 31-36
[11] Ndobe S, Moore A and Supu A 2005 The Indonesian Ornamental Fish Trade: Case Studies and Options for Improving Livelihoods while Promoting Sustainability. Banggai Case Study Final Report to NACA (Palu: Yayasan Palu Hijau)
[12] Peristiwady T 2018 Biodiversity of Coastal Ecosystem of Southeast Minahasa Waters, North Sulawesi. (Bitung: Bitung Marine Research Station of Research Center for Oceanography LIPI) 127 p
[13] Moore A and Ndobe S 2007 Discovery of an introduced Banggai cardinalfish population in Palu Bay, Central Sulawesi, Indonesia Coral Reefs 26(3) 569
[14] Ndobe S, Moore A, Nasmia, Madinawati and Serdianti N 2013 The Banggai cardinalfish: an overview of local research (2007-2009) Galaxea, Journal of Coral Reefs Studies (Special Issues) 243-252
[15] Syahrul M, Renol, Salanggon A M, Wahyudi D, Akbar M, Adel Y A, Hermawan R, Aristawati AT and Finarti 2020 Monitoring on endemic Banggai cardinalfish (BCF) pasca tsunami in Palu Bay Monsu’ani Tano 3(2) 54-60
[16] Moore A, Ndobe S and Zamrud M 2011 Monitoring of the Banggai cardinalfish, an endangered restricted range endemic species JICOR 1(2) 99-113
[17] Kusumawardhani N R, Arbi U Y and Aunurohim 2019 Analysis of habitat preferences of introduced Banggai cardinalfish (Pterapogon kauderni) in Kendari waters, Southeast Sulawesi Proc. of National Marine Seminar XVI (Surabaya, 11 July 2019) (Surabaya: Hang Tuah University) pp 47-59
[18] Anshari L, Arbi U Y, Kusumawardhani N R, Vimono I B, Suratno and Rasyidin A 2019 Population of Banggai cardinalfish (Pterapogon kauderni) in the introduced habitat in Kendari waters, Sulawesi Proc. Seminar of Sustainable Fisheries and Marine III (Kendari) (Kendari: Halu Oleo University) pp 112-125

[19] Lilley R 2008 The Banggai cardinalfish: An overview of conservation challenges SPC Live Reef Fish Information Bulletin 18 3-12

[20] Putra I N G and Putra I D N N 2019 Recent invasion of the endemic Banggai cardinalfish, Pterapogon kauderni at the strait of Bali: Assessment of the habitat type and population structure Ilmu Kelaut: IJMS 24(1) 15-22

[21] Arbi U Y, Suharti S R, Huwae R, Rizqi M P and Suratno 2019 Population of endemic Banggai cardinalfish (Pterapogon kauderni) in the introduced habitat in Gilimanuk Bay, Bali. Proc. of Seminar Fisheries XVI (Yogyakarta, 2019) (Yogyakarta: Gadjah Mada University) pp 167-178

[22] Huwae R, Patty S I, Arbi U Y and Hehuwat J 2019 Preliminary study on population of Banggai cardinalfish (Pterapogon kauderni, Koumans 1933) in Inner Ambon Bay Jurnal Ilmu Kelautan Kepulauan 2(1) 22-31

[23] Wibowo K, Arbi U Y and Vimono I B 2019 The introduced Banggai cardinalfish (Pterapogon kauderni) population in Ambon Island, Indonesia IOP Conf. Series: Earth and Environmental Science 370 (2019) 012041

[24] Arbi U Y 2018 Reef Health Monitoring and Related Ecosystems of Terrane and Adjacent Waters (Jakarta: COREMAP-CTI Program, Research Center for Oceanography LIPI) 125 p

[25] Vagelli A and Volpe R A V 2004 Reproductive ecology of Pterapogon kauderni, an endemic apospondid from Indonesia with direct development Environ. Biol. Fishes 70 235-245

[26] Vagelli A 2002 Notes on biology, geographic distribution, and conservation status of the Banggai cardinalfish Pterapogon kauderni Koumans, 1933, with comments on captive breeding techniques TFH Magazine 51 84-88

[27] Ndobe S, Madinawati and Moore A 2008 Ontogenetic shift assessment in endemic fish Pterapogon kauderni Jurnal Mitra Bahari 3(1) 32-55 (in Bahasa Indonesia)

[28] Moore A, Ndobe S, Salanggon A, Ederyan and Rahman A 2012 Banggai cardinalfish ornamental fishery: the importance of microhabitat Proc. Int. Symp. on the 12th International Coral Reef Symposium (Cairns, 9-13 July 2012) 5 p

[29] Ndobe S, Moore A M and Jompa J 2017 Status of the threats to microhabitats of the endangered endemic cardinalfish Pterapogon kauderni Coas. Ocean J. 1(2) 73-82

[30] Allen G R 2000 Threatened fishes of the world: Pterapogon kauderni Koumans, 1933 (Apogonidae) Environ. Biol. Fishes 57(2) 142

[31] Holland B S, Dawson M N, Crow G L and Hofmann D K 2004 Global phylogeography of Cassiopea (Scyphozoa: Rhizostomea): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands Mar. Biol. 145 1119-1128

[32] Çevik C, Erkol I L and Toklu B 2006 A new record of an alien jellyfish from the Levantine coast of Turkey-Cassiopea andromeda (Forsskål, 1755) (Cnidaria: Scyphozoa: Rhizostomea) Aquat. Invasions 1(3) 196-197

[33] Özgür E and Öztürk B 2008 A population of alien jellyfish Cassiopea andromeda (Forsskål, 1755) (Cnidaria: Scyphozoa: Rhizostomea) in the Ölüdeniz Lagoon, Turkey Aquat. Invasions 3(4) 423-428

[34] Schembrì P J, Deidun A and Vella P J 2010 First record of Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) from the central Mediterranean Sea Mar. Biodivers. Rec. 3 e6 1-2

[35] Brotz L and Pauly D 2012 Jellyfish population in the Mediterranean Sea Acta Adriat. 53(2) 213-230

[36] Boero F 2013 Review of jellyfish blooms in the Mediterranean and Black Sea General Fisheries Commission for the Mediterranean (GFCM): Studies and Reviews (Rome: FAO) 64 p
[37] Gülşahin N and Tarkan A N 2012 Occurrence of the alien jellyfish Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) in Hisarönü Bay, Muğla, Turkey Biharean Biol. 6(2) 132-133

[38] Deidun A, Gauci A, Sciberras A and Piraino S 2018 Back with a bang – an unexpected massive bloom of Cassiopea andromeda (Forsskål, 1755) in the Maltese Islands, nine years after its first appearance BioInvasions Rec. 7(4) 399-404

[39] Fitt W K and Costley K 1998 The role of temperature in the survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana J. Exp. Mar. Biol. Ecol. 222 79-91

[40] Kasim K, Hartati S T, Prihatiningsih and Thordarson G 2014 Impact of fishing and habitat degradation on the density of Banggai cardinalfish (Pterapogon kauderni, Kouman 1933) in Banggai Archipelago, Indonesia Indones. Fish. Res. J. 20(1) 29-36

[41] Hill J and Wilkinson C 2004 Methods for Ecological Monitoring of Coral Reefs (Townsville: Australian Institute of Marine Science)123 p

[42] Vagelli A A 2008 The unfortunate journey of Pterapogon kauderni: A remarkable apogonid endangered by the international ornamental fish trade, and its case in CITES SPC Live Reef Fish Information Bulletin 18 17-28

[43] Hoffman E A, Kolm N, Berglund A, Arguello R and Jones A G 2005 Genetic structure in the coral-reef-associated Banggai cardinalfish, Pterapogon kauderni Mol. Ecol. 14 1367-1375

[44] Ndobe S and Moore A 2008 Banggai cardinalfish: Towards a sustainable ornamental fishery Proc. Int. Symp. on the 11th International Coral Reef Symposium (Ft. Lauderdale Florida, 7-11 July 2008) Session Number 22 1026-1029

[45] Manangkalangi E, Rahardjo M F and Sjafiei D S 2009 Habitat of Arfak rainbowfish (Melanotaenia arfakensis) based on life stages in Nimbai and Aimasi River, Manokwari. Jurnal Natural 8(1) 4-11

[46] Vagelli A A 2011 The Banggai Cardinalfish: Natural History, Conservation, and Culture of Pterapogon kauderni (West Sussex: Willey-Blackwell) 203 p

[47] Rahman S A and Safir M 2018 Growth and survival performance of Banggai cardinalfish (Pterapogon kauderni) in different microhabitat Octopus 7(2) 1-6

[48] Ndobe S, Jompa J and Moore A 2018 A tale of two urchins – Implications for in-situ breeding of the endangered Banggai cardinalfish (Pterapogon kauderni) Aquacultura Indonesiana 19(2) 65-75

[49] Ndobe S, Handoko K, Wahyudi D, Yasir M, Irawati Y, Tanod W A and Moore A M 2020 Monitoring of the endemic ornamental fish Pterapogon kauderni in Bokan Kepulauan, Banggai marine protected area, Indonesia Depik 9(1) 18-31

[50] Ndobe S, Moore A M and Jompa J 2017 Status and threat of endemic Banggai cardinalfish (Pterapogon kauderni) microhabitats Coast. Ocean J. 1(2) 73-82