Contribution of Auditory Working Memory to Speech Understanding in Mandarin-Speaking Cochlear Implant Users

Duoduo Tao1,2, Rui Deng1, Ye Jiang1, John J. Galvin II1,2, Qian-Jie Fu1,2, Bing Chen1*

1 Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China, 2 Division of Communication and Auditory Neuroscience, House Research Institute, Los Angeles, California, United States of America, 3 Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America

Abstract

Purpose: To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users.

Method: Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork.

Results: There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants.

Conclusions: Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

Citation: Tao D, Deng R, Jiang Y, Galvin JJ III, Fu Q-J, et al. (2014) Contribution of Auditory Working Memory to Speech Understanding in Mandarin-Speaking Cochlear Implant Users. PLoS ONE 9(6): e99096. doi:10.1371/journal.pone.0099096

Introduction

The cochlear implant (CI) has been very successful in restoring hearing and communication to many adult and pediatric patients with severe hearing loss. Despite this success, CI speech performance remains much poorer than that of normal hearing (NH) listeners, and there is much variability in CI outcomes [1–6]. Previous studies have used demographic information (e.g., age at implantation, duration of deafness, etc.), etiology of deafness, CI device type and speech processing strategy, educational and family background to explain the variability in CI outcomes, but with limited success [7,8]. Other factors may also contribute to the variability in CI outcomes, such as CI users' perceptual, cognitive and linguistic capabilities. Pisoni and colleagues [9–11] have investigated some of these “higher-level” measures to explain individual differences in information processing that may underlie speech performance and language development.

One such higher-level process is working memory, which can be defined as a temporary storage mechanism for awareness, sensory perception or information retrieved from long-term memory [12]. Short-term memory may be considered to be a subset of working memory. In speech, short-term working memory is used to encode, store, maintain, and retrieve phonological and lexical representations of words for both speech perception and produc-
Auditory Working Memory and Speech Perception

Materials and Methods

Ethics Statement

This study was approved by the Institutional Review Board protocol of Shanghai Eye Ear Nose and Throat Hospital, Fudan University, China. Written informed consent was obtained from each participant prior to enrollment in this study.

Participants

Thirty-two CI users (21 pre-lingually deafened and 11 post-lingually deafened) participated in the experiment and completed all tests. All CI subjects were unilaterally implanted. CI participants all used the same device (Nucleus-24; Cochlear Corp.) and speech-processing strategy (Advanced Combination Encoder, or ACE). CI participants’ mean age at testing was 13.0 years (SD = 4.0, range: 6.0–26.0), age at implantation was 7.7 years (SD = 5.2, range: 2.0–25.0) and mean experience with device was 5.2 years (SD = 2.3, range: 0.3–11.0). Detailed demographic information is listed in Table 1. A control group of 21 NH listeners also participated in the experiment and completed all tests. All NH participants passed hearing screening at 20 dB HL from 250 to 8000 Hz in both ears. NH participants’ mean age was 11.0 years (SD = 1.6, range: 8–14). Although the sample size was different between the two subject groups, a one-way Kruskal-Wallis analysis of variance (ANOVA) on ranked data showed no significant difference in age between groups (p = 0.161). Similarly a Fisher exact test showed no significant difference in the gender distribution between groups (p = 0.139).

CI participants were tested while wearing their clinically assigned speech processors and settings; once set, they were asked to not change these settings during the course of testing. As shown in Table 1, 11 CI subjects wore hearing aids (HAs) during their everyday listening experience. During testing, the HA was removed, and these subjects were tested using the CI only. The contralateral acoustic hearing ear was not plugged during testing.
Participant	Age (yrs)	Sex	Age at Implantation (yrs)	CI experience (yrs)	Pre/Post-lingually deafened	Hearing Aid Experience (yrs)	Duration of Deafness (yrs)
S1	15	F	4	11	Pre	0	15
S2	10	M	2	8	Pre	0	9
S3	6	F	2	4	Pre	0	5
S4	19	M	12	7	Pre	4	18
S5	11	M	3	8	Pre	0	10
S6	11	F	6	5	Pre	0	10
S7	8	F	4	4	Pre	0	7
S8	13	M	9	4	Pre	9	12
S9	9	F	4	5	Pre	2	9
S10	9	M	4	5	Pre	0	7
S11	7	F	5	2	Pre	3	6
S12	13	M	2	11	Pre	0	12
S13	9	M	4	5	Pre	0	6
S14	11	F	2	9	Pre	0	10
S15	13	M	2	11	Pre	0	12
S16	16	M	12	4	Pre	0	16
S17	11	M	2	9	Pre	0	10
S18	10	M	2	8	Pre	0	10
S19	10	M	4	6	Pre	0	9
S20	8	M	3	5	Pre	0	7
S21	8	F	3	5	Pre	2	7
S22	12	M	7	5	Post	1	8
S23	18	F	17	1	Post	7	2
S24	13	M	10	3	Post	0	4
S25	16	M	11	5	Post	8	13
S26	23	M	22	1	Post	21	21
S27	23	F	23	0.3	Post	11	11
S28	26	M	25	1	Post	0	24
S29	9	F	7	2	Post	0	4
S30	11	F	7	4	Post	0	8
S31	23	F	20	3	Post	8	17
S32	14	M	8	6	Post	0	9

Note: Yrs = years; F = female; M = male; CI = cochlear implant.
Test methods and materials

Assessment measures included a broad range of auditory and memory tasks. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in noise, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported data were also collected regarding participants' performance in schoolwork. All testing was performed in a sound treated listening booth; participants were seated 1 m away from a single loudspeaker. All stimuli were presented at 65 dBA.

Auditory digit span. Forward and backward auditory digit span recall was measured using an adaptive (1-up/1-down) procedure. Stimuli included digits zero through nine produced by a single male talker. During testing, digits were randomly selected and presented in sequence in an auditory-only context (no visual cues). Participants responded by clicking on the response boxes (labeled “0” through “9”) shown on a computer screen that in order of the sequence that they heard. The initial sequence contained three digits. Depending on the correctness of response, the number of digits presented was either increased or decreased (the sequence was adjusted by two digits for the first two reversals and by one digit size for the subsequent reversals). Each test run contained 25 trials. The digit span score represented the mean number of digits that could be correctly recalled averaged across all but the first two reversals. For the forward digit span test, participants were asked to recall the sequence of digits in the order presented. For the backward digit span test, participants were asked to recall the sequence of digits in reverse order from the original presentation.

Sentence recognition. Recognition of words in sentences in quiet and in noise was assessed using the Mandarin Speech Perception (MSP) materials, which consists of 10 lists of 10 sentences each, produced by a single female talker [32]. Each sentence contains seven monosyllabic words, resulting in a total of 70 monosyllabic words for each list. For testing in noise, steady noise was spectrally shaped to match the average spectrum across all sentences produced by the female talker. The signal-to-noise ratio (SNR) was fixed at +5 dB. During testing a sentence list was randomly selected, and a sentence from that list was randomly selected and presented to the participant, who repeated the sentence as accurately as possible. Subjects were instructed that each sentence contained seven words, and to guess at words they did not understand. If the participant gave no response or only a partial response, the tester repeated the sentence and tried to elicit a more complete repetition of all seven words in the sentence. Performance was scored in terms of the percentage of words in sentences correctly identified; two lists were tested for each participant, and scores were averaged across the two runs.

Articulation rate. Articulation rate was estimated from participant responses recorded during the assessment of word-in-sentence recognition in quiet. For each participant, the mean duration of the repetition of all seven syllables was used to calculate the articulation rate, similar to [10]. Participants were instructed that each sentence would contain seven syllables, and to guess at the syllables if they were unsure. Articulation rate measures were obtained for all sentence repetitions, whether or not they were repeated correctly.

Disyllable recognition. Mandarin disyllables, like spondees in English, consist of two stressed syllables, each of which contains a lexical tone. Disyllables are most widely used in daily life by Chinese Mandarin-speaking people. Disyllable recognition was assessed using the Mandarin Disyllable Recognition Test (DRT), which consists of 10 lists of 35 disyllables each [33]. The disyllabic test lists were phonemically balanced in three dimensions: vowels, consonants and Chinese tones. During testing, a test list was randomly selected and stimuli were randomly selected from within the list (without replacement) and presented to the participant, who repeated the disyllable as accurately as possible. The tester calculated the percentage of syllables correctly identified in disyllabic words. All syllables in the DRT were scored, resulting in a total of 70 monosyllabic words for each list. No trial-by-trial feedback was provided during the test. Two of the 10 lists were randomly selected and used to test each participant.

Mandarin lexical tone recognition. Lexical tone recognition was measured for four tonal patterns: Tone 1 (flat fundamental frequency, or F0), Tone 2 (rising F0), Tone 3 (falling-rising F0), and Tone 4 (falling F0). Stimuli were taken from the Standard Chinese Database [34]. Sixteen Mandarin Chinese words (/ba/ /ba/ /bi/ /bu/ in Pinyin) were produced by two male and two female talkers, resulting in a total of 64 tokens. In each trial, a tone was randomly selected from the stimulus set and presented to the listener. Participants responded by clicking on one of four choices shown on a computer screen, labeled as “Tone 1”, “Tone 2”, “Tone 3”, and “Tone 4”. The mean percent correct was calculated across two runs for each participant. No training or trial-by-trial feedback was provided.

Self-reported school rank. Participants (or their parents) were asked to rate their performance in schoolwork. A five-point visual analog scale was used to obtain ratings, with 1 = 0–20% rank in class, 2 = 21–40% rank in class, 3 = 41–60% rank in class, 4 = 61–80% rank in class, and 5 = 81–100% rank in class.

Results

Figure 1 shows individual CI performance for forward (black bars) and backward digit span (red bars). Inter-subject variability was quite large, with performance ranging from 1.8 to 11 for forward digit span and from 2.1 to 9.7 for backward digit span.

Figure 2 shows the distribution of scores for forward digit span (left panels) and backward digit span (right panels) for CI (top panels) and NH participants (bottom panels). The mean CI score was 4.72 (SE = 0.33) for backward digit span and 6.10 (SE = 0.35) for forward digit span. The distribution of forward digit span scores was not significantly different from the normal distribution (p = 0.382). However, the distribution of backward digit span scores was significantly different from normal (p = 0.019). The mean NH score was 5.96 (SE = 0.30) for backward digit span and 7.39 (SE = 0.21) for forward digit span. The distribution of span scores was not significantly different from the normal distribution for both forward (p = 0.495) and backward digit span (p = 0.236). A split-plot repeated measures analysis of variance (RM ANOVA) with digit span (forward or backward) as the within-subject factor and group (CI or NH) as the between-subject factor was performed on the CI and NH digit span data. Results showed that forward digit span scores were significantly better than backward digit span scores [F(1,51) = 72.81, p < 0.001] and that NH performance was significantly better than CI performance [F(1,51) = 8.14, p = 0.006]; there were no significant interactions [F(1,51) = 0.027, p = 0.871].

Figure 3 shows speech performance for CI (left panel) and NH participants (right panel). The mean CI percent correct was 77.43 (SE = 4.11) for sentence recognition in quiet, 49.68 (SE = 3.58) for sentence recognition in noise, 82.94 (SE = 3.43) for disyllable recognition, and 80.96 (SE = 2.94) for lexical tone recognition. The mean NH percent correct was 100 (SE = 0.00) for sentence recognition in quiet, 99.83 (SE = 0.10) for sentence recognition in...
noise, 99.7 (SE = 0.12) for disyllable recognition, and 88.39 (SE = 3.60) for lexical tone recognition.

As shown in Table 1, 11 of the 32 CI subjects used a contralateral HA for everyday listening. The HA was removed during testing, but unfortunately the HA ear was not plugged; also no audiometric data was available for the acoustic hearing ear. A two-way ANOVA was performed on all the CI data, with everyday hearing status (CI-only or CI+HA) and speech test (sentence recognition in quiet, sentence recognition in noise, disyllable recognition, lexical tone recognition, forward digit span, backward digit span and articulation rate) as factors. Results showed a significant effect of test [F(6,210) = 179.188, p < 0.001] but not for everyday hearing status [F(1,210) = 1.237, p = 0.267]; there were no significant interactions [F(6,210) = 1.407, p = 0.213]; Thus, while acoustic hearing without the HA may have been available to these subjects, there was no significant difference in performance between subjects who use only a CI in everyday listening and those who used a CI + HA.

A split-plot RM ANOVA with speech test (sentence recognition in quiet, sentence recognition in noise, disyllable recognition, and lexical tone recognition) as the within-subject factor and group (CI or NH) as the between-subject factor was performed on the CI and NH data. Results showed that significant effects for speech test [F(1,153) = 19.03, p < 0.001] and subject group [F(1,51) = 1502.66, p < 0.001]; there was a significant interactions [F(3,153) = 30.35, p < 0.001]. Because there was a significant interaction, within-subject effects were tested independently for each group. For CI participants, a one-way RM ANOVA on ranked data showed a significant effect of speech test (Chi-square = 45.56 with 3 degrees of freedom, p < 0.001). Tukey pair-wise comparisons showed that performance for sentence recognition in quiet, disyllable recognition, and lexical tone recognition were all significantly better than for sentence recognition in noise (p < 0.05). For NH participants, a one-way RM ANOVA on ranked data showed a significant effect of speech test (Chi-square = 49.40 with 3 degrees of freedom, p < 0.001). Tukey pair-wise comparisons showed that performance for sentence recognition in quiet, sentence recognition in noise, and disyllable recognition were all significantly better than for lexical tone recognition (p < 0.05). One-way ANOVAs on ranked data showed that NH performance was significant better than CI performance for all speech tests (p < 0.05 in all cases).

Table 2 shows simple bivariate correlations between demographic factors and speech measures. Age at testing, duration of deafness, and age at implantation were significantly correlated with sentence recognition in quiet and in noise, as well as with disyllable recognition. Duration of deafness was also significantly correlated with tone recognition. None of the demographic factors were significantly correlated with self-reported school rank.

Figure 4 shows forward (black circles) and backward (red circles) digit span as a function of articulation rate for CI (left panel) and NH participants (right panel). The mean CI articulation rate was 2526.1 ms (SE = 186.7), and the mean NH rate was 1951.2 ms (SE = 91.6). Because of the large variability in articulation rate values, especially for CI participants, articulation rate values were transformed to z-scores; the z-scores were used for subsequent analyses. Correlation analyses showed that CI participants’
forward digit span was significantly correlated with articulation rate ($r = -0.578, p = 0.001$); the correlation between backward digit span and articulation rate failed to achieve significance ($r = -0.348, p = 0.051$). For NH participants, correlation analyses showed that articulation rate z-scores were significantly correlated with both forward ($r = -0.800, p < 0.001$) and backward digit span ($r = -0.602, p = 0.004$).

To better understand the relationship between working memory and speech performance, it is important to control for demographic variables likely to contribute to speech performance. As shown in Table 2, age at testing, duration of deafness, and age at
implantation were significantly correlated with most speech measures. Because these demographic factors may be interrelated, a factor analysis was performed to reduce the demographic data. Factor extraction was performed using principal components analysis (PCA) for the following demographic factors: age at testing, age at implantation, duration of deafness, CI experience, and pre- or post-lingually deafened. Table 3 shows the correlations among five demographic variables. Figure 5 shows the factor loadings relating each demographic variable to each factor plotted in varimax rotated space. Because there were two components (factors), two PCA factor scores were used in the later correlation analyses between working memory and speech tests. Given a threshold of 0.7 for factor loadings, the data in Figure 5 suggest that CI experience, age at implantation, and pre- or post-lingual deafness were strongly represented by Component 1, and that age at testing and duration of deafness were strongly represented by Component 2.

Table 4 shows simple bivariate correlations and partial correlations between speech measures and working memory performance. The effects of demographic factors were partialled out using the PCA data in the partial correlations. For the simple bivariate correlation analyses, forward digit span and articulation rate were significantly correlated with sentence recognition in quiet, disyllable recognition, and tone recognition; backward digit span was correlated only with disyllable recognition. For the partial correlation analyses, most of the significant bivariate correlations persisted when statistically controlling for demographic variables, except that articulation rate was no longer significantly correlated with sentence recognition in noise. Interestingly, after controlling for demographic variables, partial correlations

Table 2. Bivariate correlation between demographic variables and speech performance scores.

	SIQ	SIN	Disyllable	Tone	School rank
Age test	−0.56**	−0.63**	−0.65**	−0.39	−0.23
CI exp	0.31	0.41	0.44	0.19	0.10
Dur deaf	−0.55**	−0.51*	−0.57**	−0.47*	−0.40
Pre/post	−0.12	−0.26	−0.23	0.01	0.16
Age implant	−0.56**	−0.66**	−0.69**	−0.38	−0.22

*p ≤ 0.01.

**p ≤ 0.001.

doi:10.1371/journal.pone.0099096.t002

Figure 3. Boxplots of speech performance. The left panel shows CI data and the right panel shows NH data. Within each box, the horizontal line shows the mean, the error bars show the 10th and 90th percentiles, and the filled circles show outliers.

doi:10.1371/journal.pone.0099096.g003
showed that backward digit span was significantly correlated with sentence recognition in quiet (the simple bivariate correlation was not significant). For the simple bivariate correlations, forward digit span, backward digit span, and articulation rate were significantly correlated with self-reported school rank. After partialling out demographic variables, only forward and backward digit span remained significantly correlated with school rank.

Forward digit span was significantly correlated with backward digit span for both CI (r = 0.796; p < 0.001) and NH participants (r = 0.647; p = 0.002). Table 5 shows correlations between working memory and speech performance while partialling out demographic factors using PCA data (as in Table 4) and partialling out either working memory capacity (forward and backward digit span) or efficiency (articulation rate). Because forward and backward digit span were significantly correlated, PCA data from factor analysis was used to reduce the working memory capacity data. When working memory capacity was partialled out, working memory efficiency was significantly correlated only with sentence recognition in quiet (r = −0.69; p < 0.001). When working memory efficiency was partialled out, working memory capacity was significantly correlated only with disyllable recognition in quiet (r = 0.48; p = 0.006); working memory capacity was also significantly correlated with school rank (r = 0.61; p < 0.001).

Discussion

Speech performance was significantly poorer for CI users than for NH listeners, for all speech measures. Mean CI subjects’ Mandarin tone recognition, disyllable recognition and sentence recognition in quiet were all fairly good, better than 80% correct. However, sentence recognition in quiet was the most variable, with scores ranging from 12.9% to 100% correct. CI performance was poorest for sentence recognition in noise. Consistent with previous studies [9,10,22,35], forward and backward digit span scores were significantly poorer for CI than for NH participants, although there was some overlap in the distributions of digit span scores. Articulation rate was also significantly longer for CI than for NH participants. Taken together, these measures of auditory working memory suggest that CI users may experience poorer and less efficient auditory information processing than NH listeners [23]. These findings support our hypothesis that Mandarin-speaking CI participants may exhibit deficits in phonological information-processing capacity and efficiency compared with NH participants that would be reflected in the present digit span and articulation rate tasks.

CI users’ sentence recognition in noise was not significantly correlated with working memory measures (see Table 4).

Table 3. Correlation coefficients matrix from Principle Component Analysis (PCA).

	Age implant	Dur deaf	CI exp	Pre/Post
Age test	0.91	0.75	−0.33	0.59
Age implant	0.56	−0.69	0.71	
Dur deaf	0.03	0.11		
CI exp			−0.59	

Age test = age at testing; Age implant = age at implantation; Dur deaf = duration of deafness, CI exp = amount of experience with cochlear implant; Pre/Post = pre- or post-lingually deafened.

doi:10.1371/journal.pone.0099096.t003
NH subjects scored
NH listeners listening to acoustic CI simulations. With 8 channels, or noise was nearly perfect, while mean performance with lexical
range of SNRs could have been tested. (SRT) - i.e., 50% correct words in sentences. Alternatively, a wider
an adaptive procedure to measure the speech reception threshold
was tested at 0,
studies. In Friesen et al. [36] study, sentence recognition in noise
masking was present. The
recall and articulation rate were measured in quiet, where no such
variables. The lack of correlation between sentence recognition in
sentence recognition in quiet after controlling for demographic
perception scores. The correlation analyses shown in Table 4 showed significant
between working memory and speech performance scores.

Simple Bivariate Correlations	Partial Correlations					
	FDS	BDS	AR	FDS	BDS	AR
SIQ	0.70**	0.43	-0.79**	0.70**	0.54*	-0.77**
SIN	0.43	0.18	-0.50*	0.42	0.28	-0.41
Disyllable	0.71**	0.49*	-0.62**	0.80**	0.72**	-0.58**
Tone	0.65**	0.41	-0.54*	0.60**	0.43	-0.46*
SR	0.69**	0.63**	-0.46*	0.64**	0.64**	-0.40

*p < 0.01.
** p < 0.001.
doi:10.1371/journal.pone.0099096.t004

	FDS	BDS	AR
SIQ	0.70**	0.54*	-0.77**
SIN	0.42	0.28	-0.41
Disyllable	0.80**	0.72**	-0.58**
Tone	0.60**	0.43	-0.46*
SR	0.64**	0.64**	-0.40

*p < 0.01.
** p < 0.001.
doi:10.1371/journal.pone.0099096.t004
The subsequent analyses in Table 5 showed the relationship between working memory capacity, working memory efficiency, and speech performance. After controlling for demographic factors and partialling out working memory capacity (forward and backward digit span), working memory efficiency (articulation rate) was significantly correlated only with sentence recognition in quiet (Table 5). Working memory efficiency explained 48% of the variance in sentence recognition in quiet. Similarly, after partialling out working memory efficiency, working memory capacity was significantly correlated with disyllable recognition, also measured in quiet (Table 5). However, working memory capacity only explained 23% of the variance in disyllable recognition. Thus, the contribution of working memory capacity or efficiency seems to depend on the speech measure. For sentence recognition in quiet, the present findings are largely in agreement with Pisoni and colleagues [10], who argued that working memory capacity and efficiency may depend on the speech measure. After controlling for demographic factors and partialling out working memory measures was partialled out, WM = working memory; SIQ = sentence recognition in quiet; SIN = sentence recognition in noise; SR = self-reported school rank.

	WM efficiency (partial out WM capacity)	WM capacity (partial out WM efficiency)
SIQ	−0.69**	0.40
SIN	−0.30	0.10
Disyllable	−0.37	0.48*
Tone	−0.28	0.40
SR	−0.13	0.61**

Working memory efficiency was represented by articulation rate data. Working memory capacity was represented by combined forward and digit span data, using PCA data from factor analysis. The reduced data from the PCA were used to statistically control for demographic variables. Each column shows r values when one of the working memory measures was partialled out. WM = working memory; SIQ = sentence recognition in quiet; SIN = sentence recognition in noise; SR = self-reported school rank.

**p ≤ 0.01.
*p ≤ 0.001.

We compared auditory working memory measures with speech performance and in 32 Mandarin-speaking CI users and 21 NH participants. Major findings include:

1. Working memory performance was significantly poorer for CI than for NH participants, suggesting that Mandarin-speaking CI users experience limited working memory capacity (as measured with forward and backward digit span) and efficiency (as measured with articulation rate).

2. After controlling for demographic factors, CI users’ forward digit span was significantly correlated with sentence recognition in quiet, disyllable recognition, tone recognition and school rank. Backward digit span was significantly correlated with sentence recognition in quiet, disyllable recognition, and school rank. Articulation rate was significantly correlated with sentence recognition in quiet, disyllable recognition, and tone recognition. Sentence recognition in noise was not significantly correlated with any working memory measure, possibly due the relatively low SNR used for testing.

3. After controlling for demographic factors and partialling out working memory capacity, working memory efficiency was significantly correlated only with sentence recognition in quiet. After partialling out working memory efficiency, working memory capacity was significantly correlated with disyllable recognition and school rank. This suggests that the contribution of working memory capacity and efficiency may depend on the speech measure.

4. The importance of F0 cues for tonal languages such as Mandarin Chinese did not appear to influence the relationship between working memory and speech understanding observed in previous studies with English-speaking listeners.
Acknowledgments

We are grateful to the subjects who participated in this research. Address for correspondence: Bing Chen, Department of Otolaryngology, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China. E-mail: entdtao@gmail.com.

Data Availability Statement: Data available on request. The rights and interests of any persons who participated in this study may pose privacy and legal concerns, all public data depositions of the data from participants in this study may pose privacy and legal concerns, all.

References

1. Niparko JK, Blankenhorn R (2003) Cochlear implants in young children. Ment Retard Dev Disabil Res Rev 9: 267–275.
2. Bodner D, Shipp DB, Ostroff JM, Ng AH, Stewart S, et al. (2007) A comparison of postcochlear implantation speech scores in an adult population. Laryngoscope 117: 1408–1411.
3. Soutar et al. (2008) Cochlear implantation outcome in prelingually deafened young adults. A speech perception study. Audiol Neurootol 13: 257–265.
4. Bruce IA, Broomfield SJ, Melling CC, Green KM, Ramden RT (2011) The outcome of cochlear implantation in adolescents. Cochlear Implants Int 12 Suppl 1: 883–893.
5. Lenarz M, Sonmez H, Joseph G, Buchner A, Lenarz T (2012) Cochlear implant performance in geriatric patients. Laryngoscope 122: 1361–1365.
6. Semenev YR, Martinez-Monedero R, Niparko JK (2012) Cochlear implants: clinical and societal outcomes. Otolaryngol Clin North Am 45: 959–901.
7. Benetti S, Baggiani A, Bruschi L, Cassandro E, Cuda D, et al. (2011) Systematic review of the literature on the clinical effectiveness of the cochlear implant procedure in adult patients. Acta Otorhinolaryngol Ital 31: 299–310.
8. Forfi F, Arslan E, Belelli S, Bondi S, Manetti P, et al. (2011) Systematic review of the literature on the clinical effectiveness of the cochlear implant procedure in pediatric patients. Acta Otorhinolaryngol Ital 31: 281–298.
9. Pisoni DB, Geers AE (2000) Working memory in deaf children with cochlear implants: correlations between digit span and measures of spoken language processing. Ann Otol Rhinol Laryngol Suppl 185: 92–93.
10. Pisoni DB, Cleavey M (2003) Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear Hear 24: 1068–1208.
11. Pisoni DB (2000) Cognitive factors and cochlear implants: some thoughts on perception, learning, and memory in speech perception. Ear Hear 21: 70–78.
12. Baddeley A (1992) Working memory. Science 255: 556–559.
13. Baddeley A (2003) Working memory and language: an overview. J Commun Disord 36: 189–208.
14. Smyth MM, Scholey KA (1996) The relationship between articulation time and memory performance in verbal and visuospatial tasks. Br J Psychol 87 (Pt 2): 179–191.
15. Burkholder R, Pisoni D (2004) Digit span recall error analysis in pediatric cochlear implant users. Int Congr Ser 1273: 312–315.
16. Kronenberger WG, Pisoni DB, Harris MS, Horn HM, Xu H, et al. (2012) Profiles of Verbal Working Memory Growth Predict Speech and Language Development in Children with Cochlear Implants. J Speech Lang Hear Res. 17. Kronenberger WG, Pisoni DB, Harris MS, Horn HM, Xu H, et al. (2013) Profiles of verbal working memory growth predict speech and language development in children with cochlear implants. J Speech Lang Hear Res 56: 805–825.
18. Oba SI, Galvin JJ 3rd, Fu QJ (2013) Minimal effects of visual memory training on auditory performance of adult cochlear implant users. J Rehabil Res Dev 50: 99–110.
19. Alloway TP, Gathercole SE, Pickering SJ (2006) Verbal and visuospatial short-term and working memory in children: are they separable? Child Dev 77: 1998–2006.
20. Pickering SJ (2001) The development of visuo-spatial working memory. Memory 9: 425–432. McGe R (1983) The intelligibility of deaf speech to experienced and inexperienced listeners. J Speech Hear Res 26: 451–458.

Author Contributions

Conceived and designed the experiments: QF BC DT. Performed the experiments: DT RD YJ. Analyzed the data: DT JG. Contributed reagents/materials/analysis tools: QF JG YJ. Wrote the paper: DT JG.