Estimation of total phenolic content and Studies on antioxidant activity of different extracts of *Cadaba farinose* Forsk by hydroxy radical and iron chelating techniques

Jambula Dinesh Babu¹, Venugopalan Santhosh Kumar*²

¹Research scholar, Department of Pharmacology, School of Pharmaceutical sciences, Vels Institute of Science, Technology and advanced studies. Pallavaram, Chennai-600117. Tamilnadu, India.

²Department of Pharmacology, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and advanced Studies, Pallavaram, Chennai-600117, Tamilnadu, India

Article History:

Received on: 25 Mar 2020
Revised on: 20 Apr 2020
Accepted on: 13 May 2020

Keywords:

Cadaba farinosa, hydroxy radicals, iron chelating, total phenolic content

ABSTRACT

Cadaba farinosa (family Capparidaceae) is generally known as “Indian cadaba” in the traditional ayurvedic system. The current study, aerial parts of different concentrates (Pet. ether, ethyl acetate and methanol) of *Cadaba farinose* was evaluated for its *in-vitro* antioxidant potential by hydroxy radical taking ascorbate as a standard. The iron-chelating activity is taking Ethylenediamine tetraacetate as standard and estimation of total phenol content as equivalent to mg/g of Gallic acid. The methanolic concentrates of *Cadaba farinose* & ascorbic acid exhibited antioxidant potential possessing IC₅₀ 205±0.2 g/ml & 65±0.5 g/ml (Hydroxy radical), methanolic concentrates of *Cadaba farinose* & Ethylenediamine tetraacetate exhibited antioxidant potential possessing IC₅₀ 240±0.3 g/ml & 70±0.4 g/ml (iron-chelating activity). The methanolic and EA concentrates of *Cadaba farinose* contain total phenolic content 9.86±0.62 and 3.98±0.54, respectively. The IC₅₀ value was originated that methanolic concentrates of *Cadaba farinose* more efficient in hydroxy radical, iron chelating activity compared EA & PE concentrates. The methanolic extract of *Cadaba farinose* having more free radical activity due to the presence of phenolic content as a bioactive compound. This result indicates that aerial parts of methanolic concentrate *Cadaba farinose* could serve as a natural antioxidant, which may be useful in preventing free radical-induced diseases.

INTRODUCTION

Free radicals induce lipid peroxidation and provoke damage in the cell membrane. Incorporation of antioxidants in fats & oils or foods can prevent the deterioration of lipids in foods. Some of these compounds which retard lipid peroxidation are synthetic antioxidants, whereas others occur as natural dietary constituents (Duh, 1999). The human body is in a constant battle to keep from free radicals. The first line of defence is the preventive antioxidants which quench the free radicals generated in the body. An early-stage Augmentation of antioxidant status should either prevent or greatly curtail tissue injury (Lobo et al., 2010). Both enzymatic and non-enzymatic reactions generate free radicals. The primary source of free radicals in enzymatic reactions includes those involved in phagocytosis, respiratory chain, in prostaglandin synthesis, and cytochrome p₄₅₀ system. Non-enzymatic reac-
tions of oxygen with organic compounds as well as those initiated by ionising radiations result in free radical production (Liu et al., 1999). Both enzymatic and non-enzymatic antioxidant mechanisms handle the elimination and neutralisation of ROS. Due to the adverse effects of synthetic antioxidants on human health, restrictions have been imposed on their usage (Bajpai et al., 2014). Natural antioxidants have significantly been intensified as synthetic antioxidants exert a carcinogenic effect.

Cadaba farinosa (family Capparidaceae) is generally known as “Indian cadaba” in the traditional ayurvedic system. Quercetin, isoorientin, hydroxybenzoic acid, syringic acid, vanillic acid and 2-hydroxy-4-methoxy benzoic acid were isolated from Cadaba farinosa (Khare, 2007). Cadaba farinosa was used for different diseases like anthelmintic, antisyphilitic, aperients, stimulant, antiscorbutic, antiphlogistic (Ambasta and Anonymous, 1986). Cadaba farinose was used in rheumatic pain (Ambasta and Anonymous, 1986). The flower buds are stimulant, antiscorbutic, purgative, antiphlogistic and anthelmintic, especially for round worm (Nadkarni, 1954). Cadaba farinose was used as hepatoprotective activity (Umesh et al., 2010). C. farinose was used for the treatment of wound healing (Habib et al., 2004) and anticancer (Graham et al., 2000).

Still, no literature is available on the antioxidant activity of aerial parts Cadaba farinosa. Thus, the present study to assess antioxidant activities of aerial parts Cadaba farinosa by invitro techniques like Hydroxyl radical assay, Iron chelating activity and determination of total phenolic compound.

Methodology

Gathering& Identification of Plant

The aerial parts Cadaba farinose (family Capparidaceae) were gathered from Senkottai, Tirunelveli District of Tamilnadu, India. Plant identification was made from Botanical investigation of India, Palayamkottai. The Cadaba farinose were desiccated under shadowy, segregate, crushed through a grinder. (Alagumanivasagam.G et al., 2012).

Preparation of Concentrates

The pulverised materials were packed in a muslin cloth and extracted with pet.ether, ethyl acetate and methanol as solvents respectively according to the increasing order of polarity (selvin and Muthu, 2010) through hot constant percolation method in Soxhlet equipment (Borse et al., 2012) for twenty-four hours. The concentrates were concentrated through the rotational evaporator and subjected to solidify drying in a lyophiliser till dry powder was acquired (SatheeshKumar et al., 2010).

Assessment of Antioxidant potential through invitro methods:

The variety of concentrates of Cadaba farinose were used for assessment of antioxidant activity by (Kunchandy and Rao, 1990) method was adopted for Hydroxyl radical assay, (Benzie and Strain, 1996) method was utilised to determine the Iron chelating activity and determination of total phenolic compound were estimated by the methods of (Malik and Singh, 1980).

RESULTS AND DISCUSSION

Hydroxyl radical scavenging activity

Hydroxyl radical is the most ROS and causes severe injury to the adjacent biomolecule. Hydroxyl radical scavenging activity was estimated by generating the hydroxyl radicals using ascorbic acid–iron EDTA. The hydroxyl radicals were produced by the oxidation reaction with the DMSO to give in HCHO, which provides a suitable method to identify hydroxyl radicals by treatment with Nash reagent (Pavithra and Vadivukkarasi, 2015). Hydroxyl radical activity was expressed in terms of % inhibition of generated free radicals respectively for various concentrations. Hydroxyl radical potential of PE extract of Cadaba farinosa appears in Table 1. The more Hydroxyl radical potential of PE extract and standard at 800 µg/ml was recorded at 47.25% and 84.37%. IC50 of PE extract and standard was marked as 910µg/ml and 65µg/ml correspondingly.

Hydroxyl radical potential of EA extract of Cadaba farinose appeared in Table 2. The more Hydroxyl radical scavenging potential of EA extract and standard 800 µg/ml was recorded 55.45% and 84.37% correspondingly. EA extract and Quercetin IC50 was recorded as 458µg/ml and 65µg/ml correspondingly.

Hydroxyl radical scavenging potential of methanolic extract of Cadaba farinosa appeared in Table 3. Hydroxyl radical scavenging potential was more in methanolic extract and quercetin (standard) at 800µg/ml was recorded 68.84% and 84.37%. Methanolic extract and standard IC50 was recorded as 205µg/ml and 65µg/ml correspondingly.

IC50 values and Hydroxyl radical potential revealed that methanol extract of Cadaba farinosa is a better activity in scavenging superoxide radical when compared EA and PE extracts. The methanolic extract of Cadaba farinosa exhibited higher ability in scavenging Hydroxyl radical when compared to the standard quercetin.

Iron chelating potential
Table 1: Activity of PE extract of Cadaba farinosa on Hydroxyl radical method

S.no	Extract (µg/ml)	% inhibition (±SEM)*	Ascorbate
	PE extract		
1	100	24.28±0.012	57.34±0.024
2	200	30.18±0.020	63.12±0.028
3	400	41.29±0.032	71.40±0.033
4	800	47.25±0.024	84.37±0.018
	IC50 = 910 µg/ml		IC50 = 65 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation

Table 2: Activity of EA extract of Cadaba farinosa on Hydroxyl radical method

S.no	Extract (µg/ml)	% of inhibition (±SEM)*	Ascorbate
	(EA extract)		
1	100	30.28±0.024	57.34±0.024
2	200	37.48±0.016	63.12±0.028
3	400	48.08±0.028	71.40±0.033
4	800	55.45±0.034	84.37±0.018
	IC50 = 458 µg/ml		IC50 = 65 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation

Table 3: Activity of Methanolic extract Cadaba farinosa on Hydroxyl radical method

S.no	Extract (µg/ml)	% inhibition (±SEM)*	Ascorbate
	Methanolic extract		
1	100	35.12±0.012	57.34±0.024
2	200	50.10±0.042	63.12±0.028
3	400	59.18±0.038	71.40±0.033
4	800	68.84±0.024	84.37±0.018
	IC50 = 205 µg/ml		IC50 = 65 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation

Table 4: Iron-binding potential of Cadaba farinosa PE extract

S.no	Extract (µg/ml)	% inhibition (±SEM)*	Ethylenediamine tetraacetate
	PE extract		
1	100	24.18±0.052	55.18±0.023
2	200	33.46±0.018	62.45±0.034
3	400	42.45±0.032	69.22±0.047
4	800	50.16±0.045	75.38±0.028
	IC50 = 810 µg/ml		IC50 = 70 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation
Table 5: Iron-binding potential of Cadaba farinosa of EA extract

S.no	Extract (µg/ml)	% inhibition (±SEM)*	Ethylenediamine tetraacetate
1	100	26.86±0.028	55.18±0.023
2	200	38.34±0.010	62.45±0.034
3	400	56.28±0.042	69.22±0.047
4	800	63.59±0.028	75.38±0.028

IC50 = 508 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation

Table 6: Iron-binding potential of Cadaba farinosa Methanolic extract

S.no	Extract (µg/ml)	% inhibition(±SEM)*	EthyleneDiamine tetra acetate
1	100	36.82±0.024	55.18±0.023
2	200	48.34±0.036	62.45±0.034
3	400	56.65±0.082	69.22±0.047
4	800	64.22±0.053	75.38±0.028

IC50 = 240 µg/ml

* Every value was articulated as mean ± SEM for 3 experimentation

Table 7: The total Phenolic content of various extracts of aerial parts of Cadaba farinosa

S.No	Extracts	Total phenol content (mg/g of Gallic acid) (±SEM)*
1	Petroleum ether extract of Cadaba farinosa	0.69 ± 0.24
2	Ethyl acetate extract of Cadaba farinosa	3.98 ± 0.54
3	Methanolic extract of Cadaba farinosa	9.86 ± 0.62

*All values are expressed as mean ± SEM for three determinations

The iron-chelating potential of all the extract was measured by Fe-ferrozine complex formation. Ferrozine-Fe complex is producing red coloured, which absorbs at 562nm (Yamaguchi et al., 2000). The iron complex potential of PE extract Cadaba farinosa and Ethylenediamine tetraacetate appears in Table 4. The iron-chelating potential was expressed in terms of % inhibition of generated free radicals, respectively concerning various concentrations. The more iron-binding potential of PE extract and Ethylenediamine tetraacetate 800 µg/ml were recorded, 50.16% and 75.38%. The IC50 of PE extract of Cadaba farinosa and Ethylenediamine tetraacetate were found as 810 µg/ml and 70 µg/ml correspondingly.

The iron complex potential of EA extract of Cadaba farinosa and Ethylenediamine tetraacetate was presented in Table 5. The more iron-binding capacity of EA extract and Ethylenediamine tetraacetate 800 µg/ml was recorded at 63.59% and 75.38%. The IC50 value of ethyl acetate extract of Cadaba farinosa and Ethylenediamine tetraacetate was found to be 508 µg/ml and 70 µg/ml correspondingly.

The iron complex potential of methanolic extract of Cadaba farinosa and Ethylenediamine tetraacetate is shown in Table 6. The more iron-binding potential of methanolic extract and Ethylenediamine tetraacetate 800 µg/ml were recorded, 64.22% and 75.38%. The IC50 value of methanol extract of Cadaba farinosa and Ethylenediamine tetraacetate was recorded as 240 µg/ml and 70 µg/ml correspondingly.

IC50 values and iron-binding potential revealed that methanol extract of Cadaba farinosa is a massive activity in iron-chelating potential when compared ethyl acetate and petroleum ether extract. But when compared to all the three extracts, the methanol extract of the Cadaba farinosa showed a better result.
Total phenol

Phenolic compounds are famous as powerful chain-breaking antioxidants. The phenolic compounds might contribute directly to antioxidative action. The total amount of phenolic content of various extract of an aerial plant of *Cadaba farinosa* was present in Table 7.

Based on the result, the methanolic extract of *Cadaba farinosa* was found higher content of phenolic components than that of petroleum ether and ethyl acetate extract of *Cadaba farinosa*. Phenols are essential to plant constituents because of their scavenging ability due to their hydroxyl groups (Hatano *et al.*, 1989).

CONCLUSIONS

Among the three various extracts, methanolic extract of *Cadaba farinosa* exhibited higher potency of antioxidant activity due to the presence of total phenolic compounds. Phenolic compounds are known to act as an antioxidant. These results indicate that aerial parts of methanolic extract *Cadaba farinosa* could serve as a natural antioxidant, which may be useful in preventing free radical-induced diseases.

ACKNOWLEDGEMENT

The authors are thankful to the School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai-600117, Tamilnadu, India, for providing infrastructure facilities for the present investigation. Journal of Agriculture Food Chemistry, 2000; 48: 180-185.

Funding Report

None

Conflict of interest statement

There are no conflicts of interest.

REFERENCES

Alagumanivasagam. G, Muthu.A, K., Manavalan.R 2012. In vivo antioxidant and lipid peroxidation effect of methanolic extract of whole plant of *Teramnus labialis* (Linn) in rat fed with high fat diet. *International Journal of PharmTech Research*, 4(3):1233–1237.

Ambasta, S. S., Anonymous 1986. *The useful plants of India, Council of Scientific and Industrial Research, Publications and information Directorate*. New Delhi.

Bajpai, V. K., Sharma, A., Kang, S. C., Baek, K. H., Antioxidant 2014. lipi peroxidation inhibition & free radical scavenging efficacy of a deterpenoid compound sugiol isolated from Metasequoia glyptostoboides. *Xan Pac. J. Trop. Med*, 7(1):9–15.

Benzie, I. F., Strain, J. J. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. *Analytical Biochemistry*, 239(1):70–76.

Borse, L. B., Muthu, A. K., Thangathripathi, A., Borse, S. L. 2012. Antimicrobial activity of heartwood of Tecom a stans. (L.) JUSS. EX KUNTH. *International Journal of Pharmacy and Pharmaceutical Sciences*, 4(3):384–386.

Duh, P.-D. 1999. Antioxidant activity of water extract of four Harng Jyur (*Chrysanthemum morifolium Ramat*) varieties in soybean oil emulsion. *Food Chemistry*, 66:471–476.

Graham, J. G., Quinn, M. L., Fabricant, D. S., Farnsworth, N. R. 2000. Plants used against cancer – an extension of the work of Jonathan Hartwell. *Journal of Ethnopharmacology*, 73(3):347–377.

Habib, A., Ghulam, R. B., Abdul, L. 2004. *Medicinal Flora of the Thar Desert: An overview of Problems and their Feasible Solutions. Zones Aridas*. Pakistan.

Hatano, T., Edamatsu, R., Mori, A. 1989. Effects of tannins and related polyphenols on superoxide anion radical and on DPPH radical. *Chemical and Pharmaceutical Bulletin*, 37(8):2016–2021.

Khare, C. P. 2007. *Indian Medicinal Plants: An Illustrate Dictionary*. Springer- Verlag, Berlin.

Kunchandy, E., Rao, M. N. A. 1990. Oxygen radical scavenging activity of curcumin. *International Journal of Pharmaceutics*, 58(3):237–240.

Liu, T., Stem, A., Roberts, L. J. 1999. The isoprostanes: Novel Prostaglandin-like products of the free radical catalyzed peroxidation of arachidonic acid. *J. Biomed Sci*, 6(4):226–235.

Lobo, V., Patil, A., Phatak, A., Chandra, N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacognosy Reviews*, 4(8):118–118.

Malik, C. P., Singh, M. B. 1980. Plant enzymology and Histo-enzymology. *Food and Agricultural Organization of the United Nations*, 286.

Nadkarni, A. K. 1954. Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic & Home remedies, appendices & indexes. *Popular Prakashan*, pages 225–251.

Pavithra, K., Vadivukkarasi, S. 2015. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. SatheeshKumar, D., Muthu, K. A., Manavalan, A. S. 2010. Hypolipidemic effect of various extracts of whole plant of Mucuna pruriens (Linn) in rat fed
with high fat diet. *European Journal of Biological sciences*, 2(2):32–38.

Selvin, C. D. S., Muthu, A. K. 2010. A. In-vitro evaluation of free radical scavenging potential of various extracts of whole plant of Borreria hispida (Linn). *Research Journal of Biological Pharmaceutical Chemical Sciences*, 1(2):14–20.

Umesh, B. T., Anuj, M., Vaibhav, U., Avinash, G., Hemalatha, Goswami, D. V. 2010. Hepatoprotective and Antioxidant activity of Root of Cadaba farinosa, Forsk against CCl4 induced hepatotoxicity in rats. *J of Pharm Res*, 3(6):1–5.

Yamaguchi, F., Ariga, T., Yoshimara, Y., Naxazawa, H. 2000. Antioxidant and anti-glycation of garcinol from Garcinia indica fruit rind. *Journal of Agriculture Food Chemistry*, 49:180–185.