Hepatocyte Growth Factor/c-Met Signaling Is Required for β-Cell Regeneration.

Juan Carlos Alvarez-Perez1*, Sara Ernst2*, Cem Demirci3,#, Gabriella P. Casinelli2, Jose Manuel D. Mellado-Gil2,^, Francisco Rausell-Palamos1, Rupangi C. Vasavada1 and Adolfo Garcia-Ocaña1.

From the 1Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place - Box 1152, New York, NY 10029; 2Department of Medicine, Division of Endocrinology and Metabolism, and 3Department of Pediatrics, University of Pittsburgh, 200 Lothrop St. BST-E1140, Pittsburgh, PA 15261

Address correspondence to: Adolfo Garcia-Ocaña PhD, 1Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place - Box 1152, New York, NY 10029, Tel (212) 241-9793; Fax (212) 241-4218; E-mail: adolfo.g.ocana@mssm.edu

* Both authors contributed equally to this study
Current address: Pediatric Endocrinology, Connecticut Children’s Medical Center, Hartford, Connecticut.
^ Current address: Centro Andaluz de Biología Molecular y Medicina Regenerativa, CABIMER, Parque Científico y Tecnológico Cartuja 41092, Sevilla, Spain.

Keywords: HGF, c-Met, pancreatic β-cell, proliferation, partial pancreatectomy, regeneration

Abstract: 200 words
Main Text: 2197 words
25 references
Number of Figures: 4
Supplemental Figures: 1
Figure Legends: 766 words
ABSTRACT

Hepatocyte growth factor (HGF) is a mitogen required for β-cell replication during pregnancy. To determine whether HGF/c-Met signaling is required for β-cell regeneration we characterized mice with pancreatic deletion of the HGF receptor, c-Met, (PancMet KO mice) in two models of reduced β-cell mass and regeneration: multiple low-dose streptozotocin (MLDS) and partial pancreatectomy (Ppx). We also analyzed whether HGF administration could accelerate β-cell regeneration in wild-type (WT) mice after Ppx. Mouse islets obtained seven days (7d) post-Ppx displayed significantly increased c-Met, suggesting a potential role for HGF/c-Met in β-cell proliferation in situations of reduced β-cell mass. Indeed, adult PancMet KO mice displayed markedly reduced β-cell replication compared with WT mice 7d post-Ppx. Similarly, β-cell proliferation was decreased in PancMet KO mice in the MLDS mouse model. The decrease in β-cell proliferation post-Ppx correlated with a striking decrease in D-cyclin levels. Importantly, PancMet KO mice showed significantly diminished β-cell mass, decreased glucose tolerance and impaired insulin secretion compared with WT mice 28-days post-Ppx. Conversely, HGF administration in WT-Ppx mice further accelerated β-cell regeneration. These results indicate that HGF/c-Met signaling is critical for β-cell proliferation in situations of diminished β-cell mass and suggest that activation of this pathway can enhance β-cell regeneration.
INTRODUCTION

Deficiency of functional β-cells ultimately leads to the development of diabetes. A potential future therapeutic approach to treat diabetes is to induce β-cell regeneration but this requires deciphering the molecular mechanisms that control β-cell growth. In adult mice, β-cell replication is one of the main mechanisms to form new β-cells (1), but in basal conditions their proliferative capacity is very limited and further decreases with age (2). Several conditions, however, are known to stimulate β-cell replication including pregnancy, obesity, partial pancreatectomy (Ppx) or growth factor overexpression (3). Among these growth factors, we have shown that hepatocyte growth factor (HGF) overexpression increases β-cell replication, mass and function in transgenic mice (4,5). Importantly, HGF regulates regeneration of multiple organs after injury (6-8). However, whether HGF plays a role in β-cell regeneration is unknown.

HGF binds with high affinity to, and induces the dimerization of its tyrosine kinase receptor, c-Met (8). Both HGF and c-Met are expressed in the endocrine and non-endocrine pancreas but conditional ablation of c-Met in adult mouse pancreas does not alter β-cell growth and function under basal conditions (9). However, we have recently shown that pancreatic c-Met deficiency accelerates the onset of diabetes in a mouse model of multiple-low dose streptozotocin administration (MLDS) (9). Moreover, HGF is also required for maternal β-cell proliferation during pregnancy (10). Taken together, these studies indicate that HGF/c-Met signaling is required for β-cell adaptation to inflammatory and metabolic situations. They also suggest that HGF/c-Met signaling might participate in the regenerative response of β-cells following β-cell ablation. To address this issue, we analyzed β-cell regeneration in PancMet KO mice under situations of Ppx and MLDS treatment. Here we report that c-Met is critically important for complete β-cell regeneration and that HGF administration into normal mice further accelerates β-cell regeneration post-Ppx. These observations underscore a therapeutic opportunity for the HGF/c-Met signaling pathway in diabetes.
RESEARCH DESIGN AND METHODS

Generation of conditional KO mice with pancreas deletion of c-Met. PancMet KO mice were generated as described (9). Male mice (8-10 week-old) were used in these studies. All studies were performed with the approval of, and in accordance with, guidelines established by the Icahn School of Medicine at Mount Sinai and the University of Pittsburgh Institutional Animal Care and Use Committees.

MLDS-induced diabetes and Ppx mouse models. In the MLDS model, mice were injected intraperitoneally (ip) with streptozotocin (40 mg/kg) for five consecutive days (9). For the Ppx model, the splenic portion of the pancreas was surgically removed (~50-60% pancreatectomy) (11-13). Sham (SH) operation was performed by opening the abdomen while leaving the pancreas intact.

HGF administration. Human recombinant HGF (Fitzgerald Industries International, Acton, MA) was administered in conjunction with dextran sulfate (DS), since DS enhances the effect and stability of HGF (14). DS (200 µg/mouse) was dissolved in saline and mixed with HGF (20 µg/mouse) and the mixture injected ip daily after Ppx. Control SH or Ppx mice were injected with an identical volume of saline.

Glucose homeostasis. Blood was analyzed for glucose by a portable glucometer and plasma insulin by radioimmunoassay (Millipore, Bedford, MA) (4).

Immunohistochemistry. β-cell mass and islet number were measured in four insulin-stained pancreas sections per mouse using ImageJ (NIH, Bethesda, MD) (9,10). 5-bromo-2’-deoxyuridine (BrdU) incorporation in β-cells was measured in pancreatic sections from mice injected ip with BrdU (Amersham, Piscataway, NJ), sacrificed 6h later, and stained for insulin and BrdU (10). Sections were also stained for Ki67, phospho-histone-H3 (pHH3) and insulin (15). At least 2000 β-cells/pancreas were counted.
Islet isolation and mRNA expression analysis. Mouse islets were isolated following collagenase P injection through the pancreatic duct (4). Analysis of c-Met and HGF mRNA expression in isolated islets was performed by real time PCR using specific primers and conditions previously described (9,10).

Glucose-stimulated insulin secretion (GSIS). Insulin release from 10-15 islets isolated from Ppx mice at 25 days post-surgery was measured after incubation with 2.8 or 22.2mM glucose for 30min (12). Insulin secretion is expressed as percentage of total islet insulin content.

Western blot analysis. Mouse islet extracts were analyzed by western blotting with antibodies against c-Met and cyclin-dependent kinase-4 (cdk-4) (Santa Cruz Biotechnology, Santa Cruz, CA), tubulin and HGF (Calbiochem, La Jolla, CA) and cyclin-D1, and -D2 (Thermo Fisher Scientific, Fremont, CA). After several washes, blots were incubated with peroxidase-conjugated secondary antibodies followed by chemiluminescence detection (9,10).

Statistical Analysis. The data are presented as means±SE. Statistical analysis was performed using unpaired two-tailed Student’s t test. p<0.05 was considered statistically significant.

RESULTS

c-Met expression increases in mouse islets after Ppx. Analysis of c-Met expression in mouse islets obtained 7d after Ppx indicate that both c-Met mRNA (Fig. 1A) and protein (Fig. 1B) are increased in this model of β-cell regeneration. On the other hand, HGF mRNA and protein expression remained unchanged in these islets (Fig. 1). Collectively, these data and previous data in the MLDS model (9) suggest that reduction of β-cell mass is associated with an increase in c-Met expression in the remnant islets.
β-cell proliferation does not increase in PancMet KO mice following both Ppx and MLDS treatment. Since islet c-Met is up-regulated after Ppx and MLDS treatments (Fig. 1) (9), and HGF increases β-cell proliferation (4), we sought to address the importance of c-Met in β-cell replication in these two mouse models of decreased β-cell mass. Pancreatic mass removed after Ppx was not different in both types of mice (Suppl. Fig. 1A). Body weight was not significantly different among these mice post-surgery (Suppl. Fig. 1B). As expected, β-cell mass was significantly diminished 7d post-Ppx compared with SH-operated mice, but it was not significantly different between WT and PancMet KO mice in either surgical group (Suppl. Fig. 1C). In contrast, as shown in the representative images (Fig. 2A-D) and the corresponding quantitation (Fig. 2E-G), the number of proliferating β-cells (Ki67-, pHH3- and Brdu-positive) was markedly and significantly decreased in PancMet KO mice compared with WT littermates 7d post-Ppx. No evident alterations in vimentin staining were observed in pancreatic sections of WT and PancMet KO mice post-Ppx (not shown), suggesting that changes in epithelial-to-mesenchymal-transition might not be involved in the proliferative changes observed in PancMet KO mice after Ppx.

The number of BrdU-positive β-cells was also significantly decreased in PancMet KO mice 20d post-MLDS treatment (Fig. 2H-J). These results indicate that intact HGF/c-Met signaling is required for β-cell proliferation in situations of diminished β-cell mass accompanied by islet inflammation and diabetes (MLDS model) (9) or without islet inflammation and normal glucose homeostasis (Ppx model) (Suppl. Fig. 1D-E).

Ppx-induced up-regulation of D-Cyclins is diminished in PancMet KO mouse islets. D-cyclins are up-regulated in rodent islets when maximal proliferation occurs following Ppx (11,16). To determine whether the decrease in β-cell proliferation in PancMet KO mice after Ppx was associated with changes in G1/S transition activators, we analyzed D-cyclins and cdk-4 levels in PancMet KO and WT mouse islets 7d post-Ppx. PancMet KO islets post-Ppx
displayed a remarkable and significant decrease in cyclins D1 and D2 with no alteration in cdk-4 (Fig. 2K-N), suggesting an association between lower D-cyclins and diminished β-cell replication in PancMet KO mice post-Ppx.

PancMet KO mice have incomplete β-cell mass regeneration and diminished glucose tolerance. We assessed the impact of HGF/c-Met signaling on β-cell regeneration in PancMet KO and WT mice at 28d following Ppx. β-cell mass was increased in WT mice post-Ppx reaching similar levels to SH-operated mice (Fig. 3A). Importantly, β-cell mass in PancMet KO mice was significantly decreased post-Ppx compared with WT mice and SH-operated mice (Fig. 3A), indicating incomplete β-cell regeneration. Islet number was not different between PancMet KO and WT littermates at 28d post-Ppx (not shown), suggesting that the early decrease in β-cell proliferation was potentially responsible for the incomplete β-cell regeneration in c-Met-deficient mice. Furthermore, PancMet KO mice displayed decreased glucose tolerance at 25d post-Ppx suggesting that the incomplete β-cell mass and perhaps defective insulin secretion might have an impact on glucose homeostasis in c-Met deficient mice (Fig. 3B-C). Indeed, GSIS is decreased in isolated islets from PancMet KO mice 25d post-Ppx compared with WT mice (Fig. 3D). Taken together, these results indicate that HGF/c-Met signaling is required for full β-cell mass recovery, and normal GSIS and glucose homeostasis in a model of surgically-reduced β-cell mass.

HGF administration further enhances β-cell proliferation after Ppx. HGF increases β-cell proliferation in adult transgenic mice in basal conditions (4). Since islet c-Met is upregulated post-Ppx, we examined whether HGF administration could further enhance β-cell regeneration after Ppx. Daily HGF administration increased β-cell proliferation compared with saline-treated controls 7d post-Ppx (Fig. 4A-F), suggesting that HGF could further accelerate β-cell regeneration. Indeed, HGF increased β-cell mass in Ppx mice at 7d (p=0.06) and 12d (p<0.05) compared with saline-treated Ppx mice (Fig. 4G-H). This highlights the therapeutic potential of HGF for increasing β-cell regeneration in diabetes.
DISCUSSION

The current study provides the first direct evidence that endogenous pancreatic HGF/c-Met signaling is required for β-cell regeneration in situations of diminished β-cell mass. On one hand, c-Met absence in the mouse pancreas diminishes β-cell replication leading to incomplete β-cell mass expansion after Ppx and MLDS treatment (9). On the other hand, HGF administration further enhances mouse β-cell regeneration after Ppx. Therefore, activation of HGF/c-Met signaling is needed for full β-cell regeneration and truly highlights this pathway as a potential therapeutic target for β-cell regeneration in diabetes.

The role of growth factors in the adaptive β-cell proliferative response in situations of diminished β-cell mass has been understudied. Multiple growth factors have been shown to increase β-cell proliferation in vivo in basal conditions; however, only GLP-1 has been shown to be required for β-cell regeneration after Ppx (12). GLP-1 receptor −/− mice displayed markedly diminished β-cell mass five weeks post-Ppx. Importantly, as in the GLP-1 studies, mice with pancreatic c-Met deletion, displayed decreased β-cell proliferation and incomplete β-cell mass recovery after Ppx. This would suggest that at least in mice, both GLP-1 and HGF are required for complete β-cell regeneration following Ppx. It is important to note that both HGF and GLP-1 activate protein kinase Cyζ and this activation is required for increasing proliferation in rodent β-cells (17,18). It is important to note that c-Met deletion in islets also led to decreased GSIS and glucose intolerance 25d post-Ppx, aspects not present in PancMet KO mice in basal conditions (9). Similarly, pregnant PancMet KO mice display incomplete maternal β-cell expansion and defective GSIS (10). Taken together, these observations suggest that c-Met deficiency in pancreas is associated not only with incomplete β-cell expansion in physiological and pathological models but also with defective insulin secretion.
Interestingly, c-Met-null islets did not display the upregulation of cyclin-D1 and -D2 observed in WT mouse islets after Ppx. D-cyclins are essential for postnatal β-cell growth and their overexpression leads to increased β-cell proliferation (19,20). Therefore, it is likely that the diminished levels of islet D-cyclins in PancMet KO mice might compromise the accelerated cell cycle progression and regeneration following Ppx.

It has been suggested that β-cell regeneration, in the face of immune destruction, occurs in patients with recent-onset type 1 diabetes (T1D) (21,22). To further assess the regenerative role of HGF/c-Met signaling, we analyzed β-cell replication in PancMet KO mice in a surrogate model of islet inflammation with features of T1D, the MLDS model (9). In this model, the enhanced β-cell proliferation observed in WT mice was impaired in c-Met-null islets further confirming that HGF/c-Met signaling is essential for β-cell regeneration, even in a setting with cytotoxic- and immune-mediated reduction of β-cells. Taken together, these and previous studies indicate that although endogenous HGF/c-Met signaling is dispensable for normal adult β-cell growth in basal conditions, it is required for β-cell proliferation in situations of diminished β-cell mass such as Ppx and MLDS administration (current studies) and increased metabolic demand such as pregnancy and obesity/insulin resistance (10,23). This highlights HGF as a key growth factor for β-cell proliferation and expansion in pathophysiologic situations.

Since HGF/c-Met signaling is required for β-cell proliferation after Ppx; islet c-Met is increased following Ppx; and, HGF is a mitogen for rodent β-cells (4), we wondered whether HGF administration in vivo could lead to further enhanced β-cell regeneration. Daily HGF administration further accelerated the already high levels of β-cell proliferation found in mice following Ppx. Importantly, this increase in β-cell proliferation in HGF-treated Ppx mice led to a further increase in β-cell mass compared with saline-treated mice. This indicates that HGF could be used as a regenerative factor for the treatment of diabetes. Nevertheless, it is clear that unwanted proliferation of non-β-cells might be a concern when administration of growth
factors/hormones is suggested as a potential therapy for regenerative purposes. It is important to note that circulating HGF levels are not only increased in situations related to uncontrolled cell replication but also in situations such as pregnancy (10,24) and obesity (25). In addition, future approaches targeting specifically the β-cell could further facilitate the use of activators of the HGF/c-Met signaling pathway without potential worrisome uncontrolled proliferation of non-β cells.

In summary, these studies clearly indicate that HGF is required for β-cell regeneration in situations of diminished β-cell mass. Importantly, HGF administration can further increase β-cell regeneration in mice with diminished β-cell mass, highlighting HGF/c-met signaling as a potential therapeutic target for enhancing β-cell regeneration in diabetes.

ACKNOWLEDGEMENTS

AG-O is the guarantor of this work and, as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All the authors disclose no conflict of interests. This work was supported in part by grants from the National Institutes of Health (DK067351; DK077096) and the Juvenile Diabetes Research Foundation (1-2007-3) to A.G-O. S.E was the recipient of a postdoctoral fellowship from the National Institutes of Health T32 Research Training Grant (T32DK07052-32). Cem Demirci was the recipient of a research fellowship from the Lawson Wilkins Pediatric Endocrine Society. We thank Drs. Andrew F. Stewart (Icahn School of Medicine at Mount Sinai) and Laura C. Alonso (University of Pittsburgh) for their helpful comments during the development of these studies and Ms. Shelley Valle and Ms. Taylor Rosa (University of Pittsburgh) for technical help.
AUTHOR CONTRIBUTIONS

J.C.A.-P. researched data; contributed to discussion; reviewed/edited manuscript. S.E. researched data; contributed to discussion; reviewed/edited manuscript. C.D. researched data; contributed to discussion; reviewed/edited manuscript. G.P.C. researched data. J.M.D.M-G. researched data; F.R.-P. researched data; R.C.V. contributed to discussion, reviewed/edited manuscript. A.G.-O. researched data; contributed to discussion, wrote manuscript.

REFERENCES

1. Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta cells are formed by self-reduplication rather than stem-cell differentiation. Nature 429:41-46, 2004.
2. Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58:1365-1372, 2009.
3. Ackerman AM, Gannon M: Molecular regulation of pancreatic beta cell mass development, maintenance and expansion. J Mol Endocrinol 38:193-206, 2007.
4. Garcia-Ocana A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 275:1226-1232, 2000.
5. Garcia-Ocana A, Vasavada RC, Cebrian A, Reddy V, Takane KK, Lopez-Talavera JC, and Stewart AF. Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes 50:2752-2762, 2001.
6. Huh CG, Factor VM, Sanchez A et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. PNAS USA 101:4477-4482, 2004.
7. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regeneration. Am J Physiol. 270:L1031-1039, 1996.
8. Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J Gastroenterol Hepatol. 26 (Suppl 1):188-202, 2011.
9. Mellado-Gil J, Rosa TC, Demirci C, Gonzalez-Pertusa JA, Velazquez-Garcia S, Ernst S, Valle S, Vasavada RC, Stewart AF, Alonso LC, Garcia-Ocaña A. Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes. 60:525-536, 2011.
10. Demirci C, Ernst S, Alvarez-Perez JC, Rosa T, Valle S, Shridhar V, Casinelli GP, Alonso LC, Vasavada RC, García-Ocana A. Loss of HGF/c-Met signaling in pancreatic β-cells leads to incomplete maternal β-cell adaptation and gestational diabetes mellitus. Diabetes 61:1143-52, 2012.

11. He LM, Sartori DJ, Teta M, Opare-Addo LM, Rankin MM, Long SY, Diehl JA, Kushner JA. Cyclin D2 protein stability is regulated in pancreatic beta-cells. Mol Endocrinol 23:1865-1875, 2009.

12. De Leon D, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 52:365-371, 2003.

13. Peshavaria M, Larmie BL, Lausier J, Satish B, Habibovic A, Roskens V, Larock K, Everill B, Leahy JL, Jetton TL. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes. 55:3289-3298, 2006.

14. Nakano M, Yasunami Y, Maki T, Kodama S, Ikehara Y, Nakamura T, Tanaka M, Ikeda S. Hepatocyte growth factor is essential for amelioration of hyperglycemia in streptozotocin-induced diabetic mice receiving a marginal mass of intrahepatic islet grafts. Transplantation. 69:214-221, 2000.

15. Harb G, Vasavada RC, Cobrinik D, Stewart AF. The retinoblastoma protein and its homolog p130 regulate the G1/S transition in pancreatic beta-cells. Diabetes. 58:1852-1862, 2009.

16. Morriset J, Aliaga JC, Calvo EL, Bourassa J, Rivard N: Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration. Am. J. Physiol. 277:G953-959, 1999.

17. Vasavada RC, Wang L, Fujinaka Y, Takane KK, Rosa TC, Mellado-Gil JM, Friedman PA, García-Ocana A. Protein kinase C-zeta activation markedly enhances beta-cell proliferation: an essential role in growth factor mediated beta-cell mitogenesis. Diabetes 56:2732-2743, 2007.

18. Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes. 50:2237-2243, 2001.

19. Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 25:3752-3762, 2005.

20. Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC. Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes 54:712-719, 2005.

21. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia. 53:2020-2028, 2010.

22. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia. 48:2221-2228, 2005.

23. Araújo TG, Oliveira AG, Carvalho BM, Guadagnini D, Protzek AO, Carvalheira JB, Boschero AC, Saad MJ. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology. 153:5760-5769, 2012.

24. Horibe N, Okamoto T, Itakura A, Nakanishi T, Suzuki T, Kazeto S, Tomoda Y. Levels of hepatocyte growth factor in maternal serum and amniotic fluid. Am J Obstet Gynecol. 173:937-942, 1995.

25. Rehman J, Considine RV, Bovenkerk JE, Li J, Slavens CA, Jones RM, March KL. Obesity is associated with increased levels of circulating hepatocyte growth factor. J Am Coll Cardiol. 41:1408-1413, 2003.
FIGURE LEGENDS

Figure 1. Analysis of HGF and c-Met expression in islets from sham-operated or Ppx WT mice at 7d post-surgery. (A) Real-time PCR analysis of HGF and c-Met mRNA expression in total RNA extracted from islets obtained from WT mice 7d after surgery. Results are means ± SEM of sham-operated (n = 4) and Ppx (n = 3) mice. p<0.05 vs. sham-operated mouse islets. Actin was used as a housekeeping gene. (B) Western blot analysis of c-Met and HGF expression in protein extracts of islets isolated from WT mice 7d after surgery. Results are means ± SEM of sham-operated (n = 4) and Ppx (n = 4) mice. p<0.05 vs. sham-operated mouse islets. Inset: Representative western blot. Tubulin was used as housekeeping protein.

Figure 2. β-cell proliferation in Ppx and MLDS-treated PancMet KO mice. (A-D) Representative photomicrographs of sham-operated (A and B) and Ppx (C and D) wild-type (WT) (A and C) and PancMet KO (B and D) mouse pancreatic sections obtained at 7d post-surgery and stained for insulin (green) and Ki67 (red). Arrows indicate Ki67-positive β-cell nuclei. Magnification of the images is 630X. (E-G) Quantification of the percentage of Ki67-(E), BrdU-(F) and phospho-histone H3 (pHH3)–(G) positive β-cells in sham-operated (n = 3) and Ppx (n = 7) WT and PancMet KO (n = 3 and n = 9, respectively) mice 7d after surgery. Results are means ± SEM. *p<0.05 vs. their corresponding sham-operated mice; #p<0.05 vs. Ppx-WT mice. Values are not significantly different except where indicated. (H-I) Representative photomicrographs of MLDS-treated WT (H) and PancMet KO (I) mouse pancreatic sections obtained at 20d post-MLDS treatment and stained for insulin (green) and BrdU (red). Arrows indicate BrdU-positive β-cell nuclei. Magnification of the images is 630X. (J) Quantification of the percentage of BrdU-positive β-cells in untreated (n = 5) and MLDS-treated WT (n = 10) and PancMet KO (n = 5 and n = 5, respectively) mice 20d after treatment. Results are means ± SEM. *p<0.05 vs. their corresponding untreated mice; #p<0.05 vs. MLDS-WT mice. Values are not significantly different except where indicated.
Representative Western blot displaying cyclin D1, D2, cdk-4 and tubulin expression in protein extracts from sham-operated or Ppx PancMet KO and WT islets obtained at 7d postsurgery. (L-N). Densitometric quantitation of cyclin D1 (L), cyclin D2 (M) and cdk-4 (N) in five Western blots performed with five different protein extracts per condition. Results are means ± SEM. *p<0.05 vs. sham-operated WT or PancMet KO mice; #p<0.05 vs. Ppx WT mice. Values are not significantly different except where indicated.

Figure 3. Incomplete β-cell mass regeneration in PancMet KO mice after Ppx. (A) Quantification of β-cell mass in sham-operated (n = 5) and Ppx (n = 7) WT and PancMet KO (n = 5 and n = 10, respectively) mice 28d after surgery. Results are means ± SEM. p<0.05 vs. sham-operated WT or PancMet KO mice and Ppx WT mice. (B) Intraperitoneal glucose tolerance test (3g glucose/kg body weight) in sham-operated (n = 5) and Ppx (n = 7) WT and PancMet KO (n = 5 and n = 10, respectively) mice 25d after surgery. Results are means ± SEM. (C) Area under the curve (AUC) calculated from the intraperitoneal glucose tolerance test experiments in which sham-operated and Ppx WT and PancMet KO mice 25d after surgery were examined. Results are means ± SEM. p<0.05 vs. sham-operated WT or PancMet KO mice and Ppx WT mice. (D) Quantitation of insulin secretion in islets isolated from WT (n=6) and PancMet KO (n=4) Ppx mice at 25d post-surgery and incubated with 2.8 and 22.2mM glucose for 30min. Results are means ± SEM. *p<0.05 vs. islets at 2.8mM and #p<0.05 vs. Ppx WT islets at the same glucose concentration.

Figure 4. β-cell proliferation in Ppx WT mice treated with saline or HGF. (A-C) Representative photomicrographs of sham-operated saline-treated (A), and Ppx saline-treated (B) or HGF-treated (C) WT mouse pancreatic sections obtained at 7d post-surgery and stained for insulin (green) and Ki67 (red). Arrows indicate Ki67-positive β-cell nuclei. Magnification of the images is 630X. Mice were treated daily with 20µg/mouse HGF and 200µg/mouse dextran sulfate in saline or an identical volume of saline for 7d. (D-G) Quantification of the percentage of Ki67- (D) BrdU-, (E) pHH3- (F) positive β-cells and β-cell
mass (G) in sham-operated saline-treated (n = 4) and Ppx saline-treated (n=7) or HGF-treated (n=4) WT mice 7d after surgery. (H) β-cell mass in mice treated with HGF (n=4) or saline (Sham, n=3; Ppx, n=3) for 12 days as indicated above. Results are means ± SEM. *p<0.05 vs. saline-injected sham-operated mice and; #p<0.05 vs. saline-injected Ppx-operated mice.
Fig. 2

A-D: Immunofluorescence images showing insulin-positive cells (green) and glucagon-positive cells (red) in WT and KO mice. The images are labeled with sham and Ppx conditions.

E: Bar graph showing the percentage of Ki67+/Ins+ cells for WT and KO mice under sham and Ppx conditions. The graph includeserror bars represent the standard error of the mean.

F: Bar graph showing the percentage of BrdU+/Ins+ cells for WT and KO mice under sham and Ppx conditions. The graph includes error bars representing the standard error of the mean.

G: Bar graph showing the percentage of phospho-histone H3+/Ins+ cells for WT and KO mice under sham and Ppx conditions. The graph includes error bars representing the standard error of the mean.

H-I: Immunofluorescence images of untreated and MLDS-treated WT and KO mice.

J: Bar graph showing the percentage of BrdU+/Ins+ cells for WT and KO mice under untreated and MLDS-treated conditions. The graph includes error bars representing the standard error of the mean.

K: Western blot analysis showing the expression levels of Cyclin D1, Cyclin D2, and cdk4 in WT and KO mice under sham and Ppx conditions.

L-M-N: Bar graphs showing the expression ratios of Cyclin D1:Tubulin, Cyclin D2:Tubulin, and cdk4:Tubulin for WT and KO mice under sham and Ppx conditions. The graphs include error bars representing the standard error of the mean.
Figure 3

A. Bar graph showing Beta Cell Mass (mg) for WT and KO mice at 28 days post Sham or Ppx treatment. The graph indicates a significant difference (p<0.05).

B. Line graph depicting Blood Glucose (mg/dl) over time (minutes) for WT Sham, KO Sham, WT Ppx, and KO Ppx groups. The graph shows a clear trend with time.

C. Bar graph illustrating AUC (min x mg/dl) for WT and KO mice at 28 days post Sham or Ppx treatment. The graph shows a significant difference (p<0.05).

D. Bar graph showing Insulin secretion (% of content) for WT and KO mice at 2.8mM and 22.2mM glucose conditions. The graph indicates a significant difference (*) at 2.8mM and a trend at 22.2mM (＃).
Fig. 4

A. Sham+Sal

B. Ppx+Sal

C. Ppx+HGF

D. Ki67+/Insulin+ Cells (%)

- **Sham**
- **Saline**
- **HGF**
- **Ppx**

E. BrdU+/Insulin+ Cells (%)

- **Saline Sham**
- **Saline Ppx**
- **HGF**

F. pHH3/Insulin+ Cells (%)

- **Saline Sham**
- **Saline Ppx**
- **HGF**

G. Beta Cell Mass (mg)

- **Saline Sham**
- **Saline Ppx**
- **HGF**
- **7 days**

H. Beta Cell Mass (mg)

- **Saline Sham**
- **Saline Ppx**
- **HGF**
- **12 days**

*p = 0.06

*p = 0.17
Supplemental Figure 1. (A) Weight of the pancreas portion (splenic) removed from WT or PancMet KO mice after Ppx. Similar amounts were removed in both types of mice in the 7 and 28 days post-Ppx groups. The number of mice quantified per group is described in Figs. 2 and 3. (B) Body weights of surgically operated mice 7 and 28 days after the operation. Body weights are similar among the different mouse groups. The number of mice quantified per group is described in Figs. 2 and 3. (C) Quantification of β-cell mass in sham-operated (n = 3) and Ppx (n = 7) WT and PancMet KO (n = 3 and n = 9, respectively) mice seven days after surgery. Results are means ± SEM. p<0.05 vs. sham-operated WT or PancMet KO mice. (D) Non-fasting blood glucose (E) and plasma insulin levels in sham-operated (n = 3) and Ppx (n = 7) WT and PancMet KO (n = 3 and n = 9, respectively) mice seven days after surgery. Results are means ± SEM.
