HESSIAN OPERATORS ON CONSTRAINT MANIFOLDS

Petre Birtea and Dan Comănescu
Department of Mathematics, West University of Timișoara
Bd. V. Pârvan, No 4, 300223 Timișoara, România
birtea@math.uvt.ro, comanescu@math.uvt.ro

Abstract

On a constraint manifold we give an explicit formula for the Hessian matrix of a cost function that involves the Hessian matrix of a prolonged function and the Hessian matrices of the constraint functions. We give an explicit formula for the case of the orthogonal group $O(n)$ by using only Euclidean coordinates on \mathbb{R}^{n^2}. An optimization problem on $SO(3)$ is completely carried out. Its applications to nonlinear stability problems are also analyzed.

MSC: 53Bxx, 58A05, 58E50, 51F25, 34K20.

Keywords: Hessian operator, Riemannian manifolds, Optimization, Orthogonal group, Nonlinear stability.

1 Introduction

The nature of critical points of a smooth cost function $G_S : S \to \mathbb{R}$, where (S, τ) is a smooth Riemannian manifold, can be often determined by analyzing the Hessian matrix of the function G_S at the critical points. In order to compute the Riemannian Hessian one needs to have a good knowledge of the Riemannian geometry of the manifold S such as the affine connection associated with the metric and geodesic lines, see [1] and [12]. Usually, to carry out explicit computations one has to introduce local coordinate systems on the manifold. These elements are often difficult to construct and manipulate on specific examples. A large class of examples have been studied in [1], [10], [11] in connection with optimization algorithms.

A method to bypass the computational difficulties associated with a Riemannian manifold is to embed it in a larger space, usually an Euclidean space, and transfer the computations into this more simpler space.

In this paper we give a formula for the Hessian matrix of the function G_S that involves the Hessian matrix of an extended function G and the Hessian matrices of the constraint functions. More precisely, let $G_S : S \to \mathbb{R}$ be a smooth map defined on the manifold S. Suppose that S is a submanifold of a smooth manifold M that is also the preimage of a regular value for a smooth function $F := (F_1, \ldots, F_k) : M \to \mathbb{R}^k$, i.e. $S = F^{-1}(c)$, where c is a regular value of F. Let $G : M \to \mathbb{R}$ be a prolongation of the function G_S. In the case when (M, g) is a finite dimensional Riemannian manifold we can endow the submanifold S with a Riemannian metric τ_s, constructed in [4], that is conformal with the induced metric on S by the ambient metric g. The gradient of the restricted function G_S with respect to the Riemannian metric τ_s can be computed using the gradients with respect to the ambient Riemannian metric g of the prolongation function G and the constraint functions F_1, \ldots, F_k.

In order to compute the Hessian operator of the cost function G_S we need to take covariant derivatives of the gradient vector field $\text{grad}_{\tau_s} G_S$. The covariant derivative on the submanifold S is related to the covariant derivative of the ambient space in the following way: take the covariant derivative in the ambient space of a prolongation of the vector field $\text{grad}_{\tau_{ind}} G_S$ and project this vector field on the tangent space of the submanifold S. The new problem is to find a vector field defined on the ambient space that prolongs $\text{grad}_{\tau_{ind}} G_S$. The solution to this problem is given by the standard control vector field introduced in [4].
In Section 3 we apply the formula found in Section 2 to cost functions defined on the orthogonal group \(\mathbf{O}(n) \). In Section 4 we specialize the formula from the previous section to the 2-power cost function considered in [4].

In the last section we relate our main result to a stability problem for equilibrium points of a dynamical system. We give a new interpretation of the stability results using the augmented function technique introduced in [13], see also [3] and [21].

In paper [2] a formula for the Riemannian Hessian has been proved using the orthogonal projection and the Weingarten map for a general submanifold embedded in an Euclidean space. Another construction of a Hessian operator using orthogonal coordinates on the tangent planes of a submanifold embedded in an Euclidean space has been presented in [9].

2 Construction of the Hessian operator on constraint manifolds

As discussed in the Introduction, we work in the following setting. Let \(G_S : S \to \mathbb{R} \) be a smooth map defined on a manifold \(S \). Suppose that \(S \) is a submanifold of a smooth manifold \(M \) that is also the preimage of a regular value for a smooth function \(F := (F_1, \ldots, F_k) : M \to \mathbb{R}^k \), i.e. \(S = F^{-1}(c) \), where \(c \) is a regular value of \(F \). Let \(G : M \to \mathbb{R} \) be a prolongation of the function \(G_S \).

We recall the construction and the geometry of the standard control vector field introduced in [4]. The \(r \times s \) Gramian matrix generated by the smooth functions \(f_1, \ldots, f_r, g_1, \ldots, g_s : (M, g) \to \mathbb{R} \) is defined by the formula

\[
\Sigma^{(f_1, \ldots, f_r)}_{(g_1, \ldots, g_s)} = \begin{bmatrix}
< \text{grad } g_1, \text{grad } f_1 > & \ldots & < \text{grad } g_s, \text{grad } f_1 > \\
\ldots & \ldots & \ldots \\
< \text{grad } g_1, \text{grad } f_r > & \ldots & < \text{grad } g_s, \text{grad } f_r >
\end{bmatrix}.
\]

(2.1)

The **standard control vector field** has the formula

\[
v_0 = \sum_{i=1}^{k} (-1)^{i+k+1} \det \Sigma^{(F_1, \ldots, F_k)}_{(F_1, \ldots, F_{i-1}, F_i, F_{i+1}, \ldots, F_k, G)} \text{grad } F_i + \det \Sigma^{(F_1, \ldots, F_k)}_{(F_1, \ldots, F_{i-1}, G, F_{i+1}, \ldots, F_k)} \text{grad } G = \det \Sigma^{(F_1, \ldots, F_k)} \text{grad } G - \sum_{i=1}^{k} \det \Sigma^{(F_1, \ldots, F_k)}_{(F_1, \ldots, F_{i-1}, G, F_{i+1}, \ldots, F_k)} \text{grad } F_i,
\]

(2.2)

where \(\hat{\cdot} \) represents the missing term. The vector field \(v_0 \) is tangent to the submanifold \(S \) and consequently, the restriction defines a vector field on \(S \), i.e. \(v_0|_S \in \mathcal{X}(S) \). On the submanifold \(S \) we can define a Riemannian metric \(\tau_c \) such that

\[
v_0|_S = \text{grad}_{\tau_c} G_S.
\]

We make the notation \(\Sigma := \det \Sigma^{(F_1, \ldots, F_k)}_{(F_1, \ldots, F_k)} \). On the submanifold \(S \) the restricted function \(\Sigma|_S \) is everywhere different from zero as the submanifold \(S \) is the preimage of a regular value. Also, it has been proved in [4] that the relation between the Riemannian metric \(\tau_c \) defined on \(S \) and the induced Riemannian metric \(g_{ind}^S \) from the ambient space \((M, g) \) is given by

\[
\tau_c = \frac{1}{\Sigma|_S} g_{ind}^S.
\]

To determine the relation between the gradient of the function \(G_S \) with respect to the metric \(\tau_c \) and the gradient of the function \(G_S \) with respect to the induced metric \(g_{ind}^S \) we have the following computation:

\[
g_{ind}^S(\text{grad}_{g_{ind}^S} G_S, w) = dG_S(w) = \tau_c(\text{grad}_{\tau_c} G_S, w) = g_{ind}^S(\frac{1}{\Sigma|_S} \text{grad}_{\tau_c} G_S, w) = g_{ind}^S(\frac{1}{\Sigma|_S} \text{grad}_{\tau_c} G_S, w), \ \forall w \in \mathcal{X}(S).
\]
Consequently,

$$\text{grad}_{g^{\text{ind}}} G_S = \frac{1}{\sum_i \sigma_i} \text{v}_0 | S.$$

The above equality implies that a prolongation of the vector field $\text{grad}_{g^{\text{ind}}} G_S$ to the open subset $\Omega = \{ x \in M \mid \Sigma(x) \neq 0 \}$ of the ambient space M is given by the vector field

$$\frac{1}{\sum_i \sigma_i} \text{v}_0 = \text{grad} G - \sum_{i=1}^k \sigma_i \text{grad} F_i,
\quad \text{(2.3)}$$

where $\sigma_i : \Omega \to \mathbb{R}$ are defined by

$$\sigma_i(x) := \frac{\det \Sigma(F_1, \ldots, F_k)}{\Sigma(x)}.$$

If $x_0 \in S$ is a critical point of the function G_S, then the numbers $\sigma_i(x_0)$ are the Lagrange multipliers of the extended function G constraint to submanifold S. More precisely, a critical point x_0 of the constraint function $G_S = G_{|S}$ is an equilibrium point for the standard control vector field v_0 which implies the equality that gives the Lagrange multipliers

$$\text{grad} G(x_0) = \sum_{i=1}^k \sigma_i(x_0) \text{grad} F_i(x_0).$$

The above Lagrange multipliers are uniquely determined due to regular value condition which implies that $\text{grad} F_1(x_0), \ldots, \text{grad} F_k(x_0)$ are linearly independent vectors in $T_{x_0}M$.

In what follows we show how the Hessian operator associated to the cost function $G_S : S \to \mathbb{R}$, where S is endowed with the induced metric g^{ind}, is related with the Hessian operator of the extended function G and the Hessian operators of the functions F_i that describe the constraint submanifold S. By definition, see [1], the Hessian operator $\mathcal{H}(G_S)(x) : T_xS \to T_xS$ is defined by the equality

$$\mathcal{H}(G_S)(x) \cdot \eta_x = \nabla^S \eta_x \text{grad}_{g^{\text{ind}}} G_S,$$

where ∇^S is the covariant derivative on the Riemannian manifold (S, g^{ind}) and $\eta_x \in T_xS$. The relation between the covariant derivative ∇^S and the covariant derivative ∇ associated with the ambient Riemannian manifold (M, g) is given by

$$\nabla^S \xi = \mathbf{P}_{T_xS} \nabla \tilde{\eta}_x \xi,$$

where $\mathbf{P}_{T_xS} : T_xM \to T_xS$ is the orthogonal projection onto T_xS with respect to the scalar product on the tangent space T_xM induced by the ambient metric g, $\xi \in \mathcal{X}(M)$ is a prolongation on the ambient space of the vector field $\xi^S \in \mathcal{X}(S)$, and $\tilde{\eta}_x \in T_xM$ is the vector $\eta_x \in T_xS$ regarded as a vector in the ambient tangent space T_xM.

For $x \in S$, using the prolongation given by (2.3) for the vector field $\text{grad}_{g^{\text{ind}}} G_S$ we obtain:

$$\mathcal{H}(G_S)(x) \cdot \eta_x = \mathbf{P}_{T_xS} \nabla \tilde{\eta}_x \frac{1}{\sum \sigma_i} \text{v}_0 = \mathbf{P}_{T_xS} \nabla \tilde{\eta}_x \left(\text{grad} G - \sum_{i=1}^k \sigma_i \text{grad} F_i \right)$$

$$= \mathbf{P}_{T_xS} \nabla \tilde{\eta}_x \text{grad} G - \sum_{i=1}^k d\sigma_i(\tilde{\eta}_x) \mathbf{P}_{T_xS} \text{grad} F_i(x) - \sum_{i=1}^k \sigma_i(x) \mathbf{P}_{T_xS} \nabla \tilde{\eta}_x \text{grad} F_i$$

$$= \mathbf{P}_{T_xS} \mathcal{H}^G(x) \cdot \eta_x - \sum_{i=1}^k \sigma_i(x) \mathbf{P}_{T_xS} \mathcal{H}^F_i(x) \cdot \eta_x = \mathbf{P}_{T_xS} \left(\mathcal{H}^G(x) - \sum_{i=1}^k \sigma_i(x) \mathcal{H}^F_i(x) \right) \cdot \eta_x.$$
Consequently, the bilinear form associated to the Hessian operator \(\mathcal{H}^{G_S} \) is given by

\[
\mathcal{H}^{G_S}(\eta_x, \xi_x) = \langle \mathcal{H}^{G_S}(x) \cdot \eta_x, \xi_x \rangle_{g(x)} = \langle P_{T_xS} \mathcal{H}^G(x) \cdot \hat{\eta}_x, \hat{\xi}_x \rangle_g - \sum_{i=1}^{k} \sigma_i(x) \langle P_{T_xS} \mathcal{H}^{F_i}(x) \cdot \hat{\eta}_x, \hat{\xi}_x \rangle_g.
\]

The above considerations lead us to the main result of the paper.

Theorem 2.1. For any \(x \in S \), the symmetric covariant tensor associated with the Hessian operator of the cost function \(G_S \) has the following formula:

\[
[\mathcal{H}^{G_S}(x)] = [\mathcal{H}^G(x)]|_{T_xS \times T_xS} - \sum_{i=1}^{k} \sigma_i(x) [\mathcal{H}^{F_i}(x)]|_{T_xS \times T_xS}.
\]

(2.5)

The above formula is valid for all points \(x \in S \), not just for critical points of the cost function \(G_S \). Choosing a base for the tangent space \(T_xS \subset T_xM \), \(\{\tilde{e}_a \in T_xM\}_{a=1}^{\dim S} \), the components of the Hessian matrix \([\mathcal{H}^{G_S}(x)] \) are given by the following relation between the components of the Hessian matrix of the prolonged function \(G \) and the components of the Hessian matrices of the functions \(F_i \) that describe the submanifold \(S \):

\[
[\mathcal{H}^{G_S}(x)]_{ab} = \langle \mathcal{H}^G(x) \cdot \tilde{e}_a, \tilde{e}_b \rangle_g - \sum_{i=1}^{k} \sigma_i(x) \langle \mathcal{H}^{F_i}(x) \cdot \tilde{e}_a, \tilde{e}_b \rangle_g.
\]

(2.6)

Note that the base for the tangent space \(T_xS \) is computed in the local coordinates of the ambient manifold \(M \) and does not imply the knowledge of a local coordinate system on the submanifold \(S \). We recall that for a \(C^2 \)-function \(G : (M, g) \rightarrow \mathbb{R} \), in a local coordinate system on the ambient manifold \(M \) we have the formula

\[
\mathcal{H}^G_{uv}(x) = \frac{\partial^2 G}{\partial x^u \partial x^v}(x) - \Gamma^w_{uv}(x) \frac{\partial G}{\partial x^w}(x), \quad u, v, w = 1, \dim M,
\]

where \(\Gamma^w_{uv} \) are the Christoffel's symbols associated to the metric \(g \).

3 Hessian operator for cost functions on \(O(n) \)

We give an explicit formula for the Hessian operator associated to a \(C^2 \) cost function \(G_{O(n)} : O(n) \rightarrow \mathbb{R} \). The orthogonal group is defined by:

\[O(n) = \{ X \in M_{n \times n}(\mathbb{R}) | XX^T = I_n = X^T X \} \]

A general element of \(O(n) \) is represented by an orthonormal frame \(\{x_i = (x_{i1}, ..., x_{in})\}_{i=\overline{1,n}} \) in \(\mathbb{R}^n \), namely,

\[
X = \begin{bmatrix}
x_1 \\
... \\
x_n
\end{bmatrix} = \begin{bmatrix}
x_{11} & ... & x_{1n} \\
... & ... & ... \\
x_{n1} & ... & x_{nn}
\end{bmatrix}.
\]

We identify an orthogonal matrix with a vector in \(\mathbb{R}^{n^2} \) using the linear map \(J : M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}^{n^2} \),

\[
X \xrightarrow{J} \tilde{x} = (x_1, ..., x_n).
\]

(3.1)
Regarded as a subset of \mathbb{R}^{n^2}, the orthogonal group $\mathbf{O}(n)$ can be seen as the preimage $\mathcal{O}(n) \subset \mathbb{R}^{n^2}$ of the regular value $(\frac{1}{2}, \ldots, \frac{1}{2}, 0, \ldots, 0) \in \mathbb{R}^n \times \mathbb{R}^{(n-1)n}$ for the constraint functions:

\[
F_s(\tilde{x}) = \frac{1}{2}|x_s|^2, \quad s \in \{1, \ldots, n\},
\]

\[
F_{pq}(\tilde{x}) = <x_p, x_q>, \quad 1 \leq p < q \leq n,
\]

where $< \cdot, \cdot >$ is the Euclidean product in \mathbb{R}^n. Using the above identification we obtain the cost function $G_{\mathcal{O}(n)} := G_{\mathbf{O}(n)} \circ \mathcal{O}(n) \to \mathbb{R}$.

Starting with the canonical base e_1, \ldots, e_n in \mathbb{R}^n, we obtain the canonical base $\{\tilde{e}_{ij}\}_{i,j=1}^{n}$ in \mathbb{R}^{n^2} by the identification,$
\]

where e_j is on the i-th slot.

By direct computations, we have the following formulas for the gradients of the constraint functions:

\[
\text{grad } F_s(\tilde{x}) = \sum_{i=1}^n x_i \tilde{e}_{si},
\]

\[
\text{grad } F_{pq}(\tilde{x}) = \sum_{i=1}^n (x_{qi} \tilde{e}_{pi} + x_{pi} \tilde{e}_{qi}).
\]

The $n^2 \times n^2$ Hessian matrices of the constraint functions are given by:

\[
[H^F_s(\tilde{x})] = \sum_{j=1}^n \tilde{e}_{sj} \otimes \tilde{e}_{sj},
\]

\[
[H^F_{pq}(\tilde{x})] = \sum_{j=1}^n (\tilde{e}_{pj} \otimes \tilde{e}_{qj} + \tilde{e}_{qj} \otimes \tilde{e}_{pj}).
\]

For a C^2 prolongation $G : \mathbb{R}^{n^2} \to \mathbb{R}$ of the cost function $G_{\mathcal{O}(n)}$ we have the formula for the Hessian matrix

\[
[H^G(\tilde{x})] = \sum_{a,b,c,d=1}^n \frac{\partial^2 G}{\partial x_{ab} \partial x_{cd}} \tilde{e}_{ab} \otimes \tilde{e}_{cd}.
\]

Identifying a rotation $X \in \mathbf{O}(n)$ with the corresponding point $\tilde{x} \in \mathcal{O}(n)$ and substituting in the formulas (6.1) (see Annexe), we have the following formula for the restricted Hessian matrix:

\[
[H^{G_{\mathcal{O}(n)}}(\tilde{x})] = \left[H^{G_{\mathbf{O}(n)}}(\tilde{x})\right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)} - \sum_{s=1}^n \frac{\partial G}{\partial x_s}(\tilde{x}), \quad x_s > \frac{\partial G}{\partial x_s}(\tilde{x}), \quad x_s > \frac{\partial G}{\partial x_q}(\tilde{x}), \quad x_p < \frac{\partial G}{\partial x_q}(\tilde{x}) \right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)}
\]

\[
- \frac{1}{2} \sum_{1 \leq p < q \leq n} \left(<\frac{\partial G}{\partial x_p}(\tilde{x}), x_q > + <\frac{\partial G}{\partial x_q}(\tilde{x}), x_p > \right) \frac{\partial G}{\partial x_{pq}}(\tilde{x}) \right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)},
\]

where we denote by $\frac{\partial G}{\partial x_j}(\tilde{x}) := \sum_{i=1}^n \frac{\partial G}{\partial x_{ij}}(\tilde{x})e_j$, which is a vector in \mathbb{R}^n.

Equivalently,

\[
[H^{G_{\mathcal{O}(n)}}(\tilde{x})] = \left[H^{G_{\mathbf{O}(n)}}(\tilde{x})\right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)} - \sum_{i,j,s=1}^n x_{si} \frac{\partial G}{\partial x_{sj}}(\tilde{x}) \tilde{e}_{sj} \otimes \tilde{e}_{sj} \right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)}
\]

\[
- \frac{1}{2} \sum_{1 \leq p < q \leq n} \left(x_{qi} \frac{\partial G}{\partial x_{pi}}(\tilde{x}) + x_{pi} \frac{\partial G}{\partial x_{qi}}(\tilde{x}) \right) \tilde{e}_{pj} \otimes \tilde{e}_{pj} \right]_{|T_{\tilde{x}} \mathcal{O}(n) \times T_{\tilde{x}} \mathcal{O}(n)},
\]
To write the above formula in a more explicit form we need to choose a base for the tangent space

\[T_X \mathbb{O}(n) = \{ X \Omega \mid \Omega = -\Omega^T \} \]

It is equivalent to choose a base for \(n \times n \) skew-symmetric matrices. We consider the following base:

\[\Omega_{\alpha\beta} = (-1)^{\alpha+\beta}(e_\alpha \otimes e_\beta - e_\beta \otimes e_\alpha), \quad 1 \leq \alpha < \beta \leq n. \]
(3.5)

Consequently, a base for the tangent space \(T_X \mathbb{O}(n) \) is given by (see Annexe (6.2)):

\[X\Omega_{\alpha\beta} = (-1)^{\alpha+\beta}\sum_{i=1}^{n}(x_{i\alpha}e_i \otimes e_\beta - x_{i\beta}e_i \otimes e_\alpha), \quad 1 \leq \alpha < \beta \leq n. \]

As \(\mathcal{J} \) is a linear map its differential \(d_X \mathcal{J} \) equals \(\mathcal{J} \), we obtain the following base for \(T_\mathcal{J} \mathbb{O}(n) \):

\[\tilde{\omega}_{\alpha\beta}(x) = (-1)^{\alpha+\beta}\sum_{i=1}^{n}(x_{i\alpha}\tilde{e}_i \otimes \tilde{e}_\beta - x_{i\beta}\tilde{e}_i \otimes \tilde{e}_\alpha), \quad 1 \leq \alpha < \beta \leq n. \]

In the base for \(T_\mathcal{J} \mathbb{O}(n) \) chosen as above we have the following formula of the element \((\gamma\tau)(\alpha\beta), 1 \leq \gamma < \tau \leq n \) and \(1 \leq \alpha < \beta \leq n \), of the Hessian matrix for the cost function \(G_\Sigma \):

\[
\begin{align*}
\left[H^{G_\Omega(n)}(x) \right] \sum_{(\gamma\tau)(\alpha\beta)} & = \epsilon \sum_{a,b,c=1}^{n} \left(x_{a\gamma}x_{c\alpha} \frac{\partial^2 G}{\partial x_{a\tau}x_{c\beta}} - x_{a\gamma}x_{c\beta} \frac{\partial^2 G}{\partial x_{a\tau}x_{c\alpha}} - x_{a\tau}x_{c\alpha} \frac{\partial^2 G}{\partial x_{a\gamma}x_{c\beta}} + x_{a\tau}x_{c\beta} \frac{\partial^2 G}{\partial x_{a\gamma}x_{c\alpha}} \right) \\
&- \epsilon \sum_{i,s=1}^{n} x_{i\sigma} (x_{s\gamma}x_{\beta\delta} - x_{s\gamma}x_{\alpha\delta} - x_{s\alpha}x_{\gamma\beta} + x_{s\alpha}x_{\gamma\delta}) \frac{\partial G}{\partial x_{i\sigma}} \\
&- \frac{\epsilon}{2} \sum_{1 \leq p < q \leq n} \sum_{i=1}^{n} (x_{p\gamma} \frac{\partial G}{\partial x_{q\alpha}}(x) + x_{p\alpha} \frac{\partial G}{\partial x_{q\gamma}}(x))(x_{q\gamma}x_{p\beta} - x_{q\beta}x_{p\gamma}) \\
&- x_{p\gamma}x_{q\alpha} \delta_{\alpha\beta} + x_{p\alpha}x_{q\gamma} \delta_{\alpha\beta} + x_{q\gamma}x_{p\beta} \delta_{\alpha\beta} - x_{q\beta}x_{p\gamma} \delta_{\alpha\beta} \\
&= (1)^{\alpha+\beta+\gamma+\tau},
\end{align*}
\]

where \(\epsilon = (1)^{\alpha+\beta+\gamma+\tau} \).

4 Characterization of the critical points for 2-power cost functions defined on \(\mathbb{O}(3) \)

We will exemplify the formulas discovered in the previous section for the case of 2-power cost functions on \(\mathbb{O}(3) \). The orthogonal group \(\mathbb{O}(3) \) is given by:

\[\mathbb{O}(3) = \{ X \in M_{3 \times 3}(\mathbb{R}) \mid XX^T = I_3 = X^T X \}. \]

A general element of \(\mathbb{O}(3) \) is represented by an orthonormal frame \(\{ x_i = (x_{i1}, x_{i2}, x_{i3}) \}_{i=1}^{M} \) in \(\mathbb{R}^3 \). We identify an orthogonal matrix with a vector in \(\mathbb{R}^9 \) using the linear map \(\mathcal{J} : M_{3 \times 3}(\mathbb{R}) \to \mathbb{R}^9 \),

\[X \xrightarrow{\mathcal{J}} \tilde{x} = (x_1, x_2, x_3). \]

(4.1)

Regarded as a subset of \(\mathbb{R}^9 \), the orthogonal group \(\mathbb{O}(3) \) can be seen as the preimage \(\mathbb{O}(3) \subset \mathbb{R}^9 \) of the regular value \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0) \in \mathbb{R}^3 \times \mathbb{R}^3 \) of the constraint functions:

\[F_1(\tilde{x}) = \frac{1}{2}||x_1||^2, \quad F_2(\tilde{x}) = \frac{1}{2}||x_2||^2, \quad F_3(\tilde{x}) = \frac{1}{2}||x_3||^2, \]

\[F_{12}(\tilde{x}) =< x_1, x_2 >, \quad F_{13}(\tilde{x}) =< x_1, x_3 >, \quad F_{23}(\tilde{x}) =< x_2, x_3 >, \]

\[F_{123}(\tilde{x}) =< x_1, x_2, x_3 >, \]
where $<\cdot, \cdot>$ is the Euclidean product in \mathbb{R}^3. The gradients of the constraint functions are given by:

$$
\text{grad} \; F_1(\tilde{x}) = (x_1, 0, 0), \quad \text{grad} \; F_2(\tilde{x}) = (0, x_2, 0), \quad \text{grad} \; F_3(\tilde{x}) = (0, 0, x_3),
$$

$$
\text{grad} \; F_{12}(\tilde{x}) = (x_2, x_1, 0), \quad \text{grad} \; F_{13}(\tilde{x}) = (x_3, 0, x_1), \quad \text{grad} \; F_{23}(\tilde{x}) = (0, x_3, x_2).
$$

The Hessian matrices of the constraint functions are given by:

$$
[H^{F_1}(\tilde{x})] = \begin{bmatrix}
I_3 & 0_3 & 0_3 \\
0_3 & I_3 & 0_3 \\
0_3 & 0_3 & I_3
\end{bmatrix},
[H^{F_2}(\tilde{x})] = \begin{bmatrix}
0_3 & 0_3 & 0_3 \\
0_3 & I_3 & 0_3 \\
0_3 & 0_3 & I_3
\end{bmatrix},
[H^{F_3}(\tilde{x})] = \begin{bmatrix}
0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & I_3
\end{bmatrix},
$$

$$
[H^{F_{12}}(\tilde{x})] = \begin{bmatrix}
0_3 & 0_3 & 0_3 \\
I_3 & 0_3 & 0_3 \\
I_3 & 0_3 & 0_3
\end{bmatrix},
[H^{F_{13}}(\tilde{x})] = \begin{bmatrix}
0_3 & 0_3 & 0_3 \\
0_3 & I_3 & 0_3 \\
I_4 & I_3 & 0_3
\end{bmatrix},
[H^{F_{23}}(\tilde{x})] = \begin{bmatrix}
0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & I_3 \\
0_3 & I_3 & 0_3
\end{bmatrix}.
$$

Considering a cost function $G_{O(3)} : O(3) \to \mathbb{R}$, we identify it with $G_{O(3)} := G_{O(3)} \circ J : O(3) \to \mathbb{R}$ and construct a prolongation function $G : \mathbb{R}^9 \to \mathbb{R}$. Formula (3.4) becomes:

$$
[H^{G_{O(3)}}(\tilde{x})] = [H^{G}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} - \sum_{s=1}^{3} \left(\frac{\partial G}{\partial x_s}(\tilde{x}), x_s > 0 \right) [H^{F_s}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} - \frac{1}{2} \sum_{1 \leq p < q \leq 3} \left(\frac{\partial G}{\partial x_p}(\tilde{x}), x_q > 0 \right) [H^{F_{pq}}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)}. \quad (4.2)
$$

We choose the base for $T_{\tilde{x}}O(3)$ as in the previous section:

$$
\tilde{\omega}_{12}(\tilde{x}) = (x_{12}, -x_{11}, 0, x_{22}, -x_{21}, 0, x_{32}, -x_{31}, 0),
$$

$$
\tilde{\omega}_{13}(\tilde{x}) = (-x_{13}, 0, x_{11}, -x_{23}, 0, x_{21}, -x_{33}, 0, x_{31}),
$$

$$
\tilde{\omega}_{23}(\tilde{x}) = (0, x_{13}, -x_{12}, 0, x_{23}, -x_{22}, 0, x_{33}, -x_{32}).
$$

The restricted Hessian matrices for the constraint functions are the following:

$$
[H^{F_1}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
1 - x_{13}^2 & -x_{12} x_{13} & -x_{11} x_{13} \\
-x_{12} x_{13} & 1 - x_{12}^2 & -x_{11} x_{12} \\
-x_{11} x_{13} & -x_{11} x_{12} & 1 - x_{11}^2
\end{bmatrix},
$$

$$
[H^{F_2}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
1 - x_{23}^2 & -x_{22} x_{23} & -x_{21} x_{23} \\
-x_{22} x_{23} & 1 - x_{22}^2 & -x_{21} x_{22} \\
-x_{21} x_{23} & -x_{21} x_{22} & 1 - x_{21}^2
\end{bmatrix},
$$

$$
[H^{F_3}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
1 - x_{33}^2 & -x_{32} x_{33} & -x_{31} x_{33} \\
-x_{32} x_{33} & 1 - x_{32}^2 & -x_{31} x_{32} \\
-x_{31} x_{33} & -x_{31} x_{32} & 1 - x_{31}^2
\end{bmatrix},
$$

$$
[H^{F_{12}}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
-2 x_{23} x_{13} & -x_{23} x_{12} - x_{13} x_{22} & -x_{23} x_{11} - x_{13} x_{21} \\
-x_{23} x_{12} - x_{13} x_{22} & -2 x_{22} x_{12} & -x_{22} x_{11} - x_{12} x_{21} \\
-x_{23} x_{11} - x_{13} x_{21} & -x_{22} x_{11} - x_{12} x_{21} & -2 x_{11} x_{21}
\end{bmatrix},
$$

$$
[H^{F_{13}}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
-2 x_{33} x_{13} & -x_{33} x_{12} - x_{13} x_{32} & -x_{33} x_{11} - x_{13} x_{31} \\
-x_{33} x_{12} - x_{13} x_{32} & -2 x_{32} x_{12} & -x_{32} x_{11} - x_{12} x_{31} \\
-x_{33} x_{11} - x_{13} x_{31} & -x_{32} x_{11} - x_{12} x_{31} & -2 x_{31} x_{11}
\end{bmatrix},
$$

$$
[H^{F_{23}}(\tilde{x})]|_{T_{\tilde{x}}O(3) \times T_{\tilde{x}}O(3)} = \begin{bmatrix}
-2 x_{33} x_{23} & -x_{33} x_{22} - x_{23} x_{32} & -x_{33} x_{21} - x_{23} x_{31} \\
-x_{33} x_{22} - x_{23} x_{32} & -2 x_{32} x_{22} & -x_{32} x_{21} - x_{22} x_{31} \\
-x_{33} x_{21} - x_{23} x_{31} & -x_{32} x_{21} - x_{22} x_{31} & -2 x_{31} x_{21}
\end{bmatrix}.
$$

\(^1\text{In the formulas for the restricted Hessian matrices of the constraint functions we have used the fact that } \tilde{x} \in O(3).\)
We will characterize the critical points of the following 2-power cost function,

\[G_{O(3)}(X) = \frac{1}{2} \sum_{i=1}^{k} ||X - R_i||_F^2, \]

where \(R_1, \ldots, R_k \) are sample rotations and \(|| \cdot ||_F \) is the Frobenius norm. The critical points of the above cost function have been computed using The Embedding Algorithm in [5]. Using the identification map \(J \) we obtain the cost function,

\[G_{O(3)}(\tilde{x}) = \frac{1}{2} \sum_{i=1}^{k} ||\tilde{x} - \tilde{r}_i||^2, \]

where \(|| \cdot || \) is the Euclidean norm on \(\mathbb{R}^9 \). For the obvious prolongation \(G : \mathbb{R}^9 \rightarrow \mathbb{R} \) of \(G_{O(3)} \) we have,

\[\nabla G(\tilde{x}) = k(\tilde{x} - \tilde{r}), \]
\[[\nabla^2 G(\tilde{x})]_{|T_{X}O(3) \times T_{X}O(3)} = \begin{bmatrix} 2k & 0 & 0 \\ 0 & 2k & 0 \\ 0 & 0 & 2k \end{bmatrix}, \]

where \(\tilde{r} = \frac{1}{k} \sum_{i=1}^{k} \tilde{r}_i \). Applying formula (3.4) for the case \(n = 3 \), we obtain the components of the Hessian matrix of the cost function \(G_{O(3)} \):

\[
\begin{align*}
h_{11}(\tilde{x}) &= k(x_{11}r_{11} + x_{21}r_{21} + x_{31}r_{31} + x_{12}r_{12} + x_{22}r_{22} + x_{32}r_{32}), \\
h_{12}(\tilde{x}) &= -\frac{k}{2}(x_{12}r_{13} + x_{22}r_{23} + x_{32}r_{33} + x_{13}r_{12} + x_{23}r_{22} + x_{33}r_{32}), \\
h_{13}(\tilde{x}) &= -\frac{k}{2}(x_{11}r_{13} + x_{21}r_{23} + x_{31}r_{33} + x_{12}r_{11} + x_{23}r_{21} + x_{33}r_{31}), \\
h_{22}(\tilde{x}) &= k(x_{11}r_{11} + x_{21}r_{21} + x_{31}r_{31} + x_{13}r_{13} + x_{23}r_{23} + x_{33}r_{33}), \\
h_{23}(\tilde{x}) &= -\frac{k}{2}(x_{12}r_{11} + x_{22}r_{21} + x_{32}r_{31} + x_{11}r_{12} + x_{21}r_{22} + x_{31}r_{32}), \\
h_{33}(\tilde{x}) &= k(x_{12}r_{12} + x_{22}r_{22} + x_{32}r_{32} + x_{13}r_{13} + x_{23}r_{23} + x_{33}r_{33}).
\end{align*}
\]

For the columns of the matrices \(X \), respectively \(R = \frac{1}{k} \sum_{i=1}^{k} R_i \), we make the notations \(y_i = (x_{1i}, x_{2i}, x_{3i}) \), and respectively \(s_i = (r_{1i}, r_{2i}, r_{3i}) \). The components of the of the Hessian matrix of the cost function \(G_{O(3)} \) can be written in the equivalent form:

\[
\begin{align*}
h_{11}(\tilde{x}) &= k(<y_1, s_1> + <y_2, s_2>), \\
h_{12}(\tilde{x}) &= -\frac{k}{2}(<y_2, s_3> + <y_3, s_2>), \\
h_{13}(\tilde{x}) &= -\frac{k}{2}(<y_1, s_3> + <y_3, s_1>), \\
h_{22}(\tilde{x}) &= k(<y_1, s_1> + <y_3, s_3>), \\
h_{23}(\tilde{x}) &= -\frac{k}{2}(<y_2, s_1> + <y_1, s_2>), \\
h_{33}(\tilde{x}) &= k(<y_2, s_2> + <y_3, s_3>).
\end{align*}
\]

Remark 4.1. The above expressions for the Hessian matrix depend on the chosen base for the tangent space \(T_{X}O(3) \). If we rename the base chosen above as follows:

\[
\nu_1(\tilde{x}) = \tilde{\omega}_{23}(\tilde{x}), \quad \nu_2(\tilde{x}) = \tilde{\omega}_{13}(\tilde{x}), \quad \nu_3(\tilde{x}) = \tilde{\omega}_{12}(\tilde{x}),
\]

the formulas for the components of the Hessian matrix of the cost function \(G_{O(3)} \) have more natural
expressions with respect to the symmetry of $O(3)$:

\[
\begin{align*}
\tilde{h}_{11}(\tilde{x}) &= k(\langle y_2, s_2 \rangle + \langle y_3, s_3 \rangle), \\
\tilde{h}_{12}(\tilde{x}) &= -\frac{k}{2}(\langle y_1, s_2 \rangle + \langle y_2, s_1 \rangle), \\
\tilde{h}_{13}(\tilde{x}) &= -\frac{k}{2}(\langle y_1, s_3 \rangle + \langle y_3, s_1 \rangle), \\
\tilde{h}_{22}(\tilde{x}) &= k(\langle y_1, s_1 \rangle + \langle y_3, s_3 \rangle), \\
\tilde{h}_{23}(\tilde{x}) &= -\frac{k}{2}(\langle y_2, s_3 \rangle + \langle y_3, s_2 \rangle), \\
\tilde{h}_{33}(\tilde{x}) &= k(\langle y_1, s_1 \rangle + \langle y_2, s_2 \rangle). \quad \square
\end{align*}
\]

Using the intrinsic Riemannian geometry of the Lie group $SO(3)$, another formula for the Hessian matrix of the 2-power cost function has been given in [14].

Now we apply the above formulas to determine the nature of the critical points of the following example of 2-power cost function defined on the connected component of the identity matrix of the orthogonal group $O(3)$ which is $SO(3)$:

\[
G_{SO(3)}^\alpha(X) = \frac{1}{2} (||X - R_1||_F^2 + ||X - R_2||_F^2 + ||X - R_3||_F^2),
\]

where

\[
R_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right), \quad R_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right), \quad R_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{array} \right), \quad \alpha \in [-\pi, \pi],
\]

are rotations along the x-axis. Using the identification map 3, we obtain the cost function defined on the connected component $SO(3)$ of the point $(1, 0, 0, 1, 0, 0, 0, 1) \in O(3)$:

\[
G_{SO(3)}^\alpha(\tilde{x}) = \frac{1}{2} (||\tilde{x} - \tilde{r}_1||^2 + ||\tilde{x} - \tilde{r}_2||^2 + ||\tilde{x} - \tilde{r}_3||^2),
\]

where $|| \cdot ||$ is the Euclidean norm on \mathbb{R}^9. For the obvious prolongation $G^\alpha : \mathbb{R}^9 \to \mathbb{R}$ of $G_{SO(3)}^\alpha$ we have:

\[
\nabla G^\alpha(\tilde{x}) = 3(\tilde{x} - \tilde{r}), \quad \left[\mathcal{H} G^\alpha(\tilde{x}) \right]_{T_{\tilde{x}}SO(3) \times T_{\tilde{x}}SO(3)} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix},
\]

where $\tilde{r} = \frac{1}{3} (\tilde{r}_1 + \tilde{r}_2 + \tilde{r}_3) = (1, 0, 0, 0, \frac{1 + \cos \alpha}{3}, \frac{-1 + \sin \alpha}{3}, \frac{1 + \sin \alpha}{3}, \frac{-1 + \cos \alpha}{3})$.

By using the base $\{\nu_1(\tilde{x}), \nu_2(\tilde{x}), \nu_3(\tilde{x})\}$ for the tangent space $T_{\tilde{x}}SO(3)$, we obtain the coefficients of the Hessian matrix of the cost function $G_{SO(3)}^\alpha$:

\[
\begin{align*}
\tilde{h}_{11}(\tilde{x}) &= (-1 + \cos \alpha)(x_{22} + x_{33}) + (1 + \sin \alpha)(x_{32} - x_{23}), \\
\tilde{h}_{12}(\tilde{x}) &= -\frac{1}{2} [(1 + \sin \alpha)x_{31} + (-1 + \cos \alpha)x_{21} + 3x_{12}], \\
\tilde{h}_{13}(\tilde{x}) &= -\frac{1}{2} [(-1 + \cos \alpha)x_{31} - (1 + \sin \alpha)x_{21} + 3x_{13}], \\
\tilde{h}_{22}(\tilde{x}) &= (-1 + \cos \alpha)x_{33} - (1 + \sin \alpha)x_{23} + 3x_{11}, \\
\tilde{h}_{23}(\tilde{x}) &= -\frac{1}{2} [(-1 + \cos \alpha)(x_{32} + x_{23}) + (1 + \sin \alpha)(x_{33} - x_{22})], \\
\tilde{h}_{33}(\tilde{x}) &= (1 + \sin \alpha)x_{32} + (-1 + \cos \alpha)x_{22} + 3x_{11}.
\end{align*}
\]
The critical points of the 2-power cost function $G_{SO(3)}^2$ have been computed in [5] using the Embedding Algorithm. We find five sets of critical points as follows:

Set $\text{Rot}_{\text{black}} = \{ R^q | q = (0,0,\pm \sqrt{1-t^2},t), t \in [-1,1] \}$,

Set $\text{Rot}_{\text{green}} = \{ R^q | q = (\sqrt{1-x_2^{\min}(\alpha)},x_2^{\min}(\alpha),0,0), \alpha \in [-\pi,\pi] \}$,

Set $\text{Rot}_{\text{pink}} = \{ R^q | q = (-\sqrt{1-x_2^{\min}(\alpha)},x_2^{\min}(\alpha),0,0), \alpha \in [-\pi,\pi] \}$,

Set $\text{Rot}_{\text{red}} = \{ R^q | q = (\sqrt{1-x_2^{\max}(\alpha)},x_2^{\max}(\alpha),0,0), \alpha \in [-\pi,\pi] \}$,

Set $\text{Rot}_{\text{blue}} = \{ R^q | q = (-\sqrt{1-x_2^{\max}(\alpha)},x_2^{\max}(\alpha),0,0), \alpha \in [-\pi,\pi] \}$,

where $x_2^{\min}(\alpha)$ and $x_2^{\max}(\alpha)$ are the smallest, respectively largest real positive solutions of the polynomial

\[
Q_{2,\alpha}(Z) = \left(128 \sin^4 \frac{\alpha}{2} - 32 \sin^2 \frac{\alpha}{2} + 4 \right) Z^4 - \left(128 \sin^4 \frac{\alpha}{2} - 32 \sin^2 \frac{\alpha}{2} + 4 \right) Z^2 \\
- 16 \sin^6 \frac{\alpha}{2} + 16 \sin^5 \frac{\alpha}{2} \cos \frac{\alpha}{2} + 28 \sin^4 \frac{\alpha}{2} - 8 \sin^2 \frac{\alpha}{2} + 1,
\]

and R^q is the rotation corresponding to the unit quaternion q, see formula (6.3) in Annexe.

We study the nature of the above critical points using the Hessian characterization.

Case black. The critical points corresponding to rotations from Set $\text{Rot}_{\text{black}}$ are absolute maximum for the cost function $G_{SO(3)}^2$ as have been pointed out in [5]. Applying formula (4.3) at critical points in $I(\text{Set}_{\text{black}})$ we obtain the eigenvalues $\lambda_1 = 0, \lambda_2 = -3 + \sqrt{3 + 2\sin \alpha - 2\cos \alpha}, \lambda_3 = -3 - \sqrt{3 + 2\sin \alpha - 2\cos \alpha}$. Consequently, a critical point of this set is a degenerate absolute maximum.

![Figure 1: Eigenvalues of the Hessian matrix of $G_{SO(3)}^2$ computed at critical points from Set $\text{Rot}_{\text{black}}$.](image)

Case green. Applying formula (4.3) at critical points in $I(\text{Set}_{\text{green}})$ we obtain for the Hessian matrix of the cost function $G_{SO(3)}^2$ two equal eigenvalues that are represented by the thick line in the Figure 2 and one simple eigenvalue.
We note that for $\alpha = -\frac{\pi}{4}$ and $\alpha = \frac{3\pi}{4}$ we obtain a bifurcation phenomena and the critical points in $\text{Set } \text{Rot}_{\text{green}}$ corresponding to this values of the parameter α have a degenerate Hessian matrix. For $\alpha \in [-\pi, -\frac{\pi}{4}) \cup (\frac{3\pi}{4}, \pi]$ the corresponding critical points in $\text{Set } \text{Rot}_{\text{green}}$ are saddle critical points for the cost function $G_{\text{SO}(3)}^a$. For $\alpha \in (-\frac{\pi}{4}, \frac{3\pi}{4})$ the corresponding critical points are local minima.

Case pink. For the critical points in the set $\text{Set } \text{Rot}_{\text{pink}}$ the Hessian matrix of the cost function $G_{\text{SO}(3)}^a$ has one negative eigenvalue and two equal positive eigenvalues. Consequently, this critical points are all saddle points.

Case red. The critical points in the set $\text{Set } \text{Rot}_{\text{red}}$ are all local minima as eigenvalues of the Hessian matrix of the cost function $G_{\text{SO}(3)}^a$ are all positive.
Case blue. Again a bifurcation phenomena appears for this case at the values $\alpha = -\frac{\pi}{4}$ and $\alpha = \frac{3\pi}{4}$.

For $\alpha \in [-\pi, -\frac{\pi}{4}) \cup (\frac{3\pi}{4}, \pi]$ the corresponding critical points in Set $^{\text{Rot}}_{\text{blue}}$ are local minima for the cost function $G^\alpha_{SO(3)}$. For $\alpha \in (-\frac{\pi}{4}, \frac{3\pi}{4})$ the corresponding critical points are saddle points.

5 Stability of equilibrium points using restricted Hessian

We apply the results of Section 2 to the stability problem of an equilibrium point for a dynamical system generated by a vector field X_S defined on a manifold S. Let $x_e \in S$ be an equilibrium point for the dynamics on the manifold S generated by the vector field X_S. Stability behavior of the equilibrium point x_e can be determined using the direct method of Lyapunov. This method requires the knowledge of a Lyapunov function $G_S : S \to \mathbb{R}$ which has the following properties:

(i) $\dot{G}_S := L_{X_S} G_S \leq 0$;

(ii) $G_S(x) > G_S(x_e)$, for all $x \neq x_e$ in a neighborhood of x_e.

In order to verify the above conditions one needs to construct a local system of coordinates on S around the equilibrium point x_e. If G_S is a C^2 differentiable function and x_e is a critical point for G_S then a sufficient condition for (ii) to hold is given by the positive definiteness of the Hessian matrix $\mathcal{H}^{G_S}(x_e)$. Usually is very difficult to construct local coordinates on the submanifold S and in these cases we will bypass this difficulty by embedding the problem in an ambient space M (usually an Euclidean space) and use formula (2.5) given in Theorem 2.1.

Suppose that the manifold S is a preimage of a regular value for a map $F = (F_1, \ldots, F_k) : M \to \mathbb{R}^k$, where (M, g) is an ambient Riemannian manifold. Let $X \in \mathfrak{X}(M)$ be a prolongation of the vector field X_S, i.e. $X|_S = X_S \in \mathfrak{X}(S)$ and $G : M \to \mathbb{R}$ be a C^2 prolongation of the function G_S. The equilibrium point x_e is also an equilibrium point for the dynamics on M generated by the vector field X. The conditions of the next result guaranties the applicability of the direct method of Lyapunov stated above.

Theorem 5.1. The following conditions:

(i) $\dot{G} := L_X G \leq 0$,

(ii) $\text{grad } G(x_e) = \sum_{i=1}^k \sigma_i(x_e) \text{grad } F_i(x_e)$,

(iii) $\left[\mathcal{H}^G(x_e)\right]|_{T_{x_e}S \times T_{x_e}S} - \sum_{i=1}^k \sigma_i(x_e) \left[\mathcal{H}^{F_i}(x_e)\right]|_{T_{x_e}S \times T_{x_e}S}$ is positive definite,

implies that the equilibrium point x_e is stable for the dynamics generated by the vector field X_S.

The condition $L_{X_S} G_S \leq 0$ is implied by the condition (i) in the above theorem. Condition (ii) is equivalent with x_e being a critical point of the function $G_S : S \to \mathbb{R}$, where $\sigma_i(x_e)$ are the Lagrange multipliers, and condition (iii) is equivalent with positive definiteness of the Hessian matrix $\mathcal{H}^{G_S}(x_e)$. The advantage of the above theorem is that all the necessary computations for verifying conditions (i), (ii) and (iii) are made using the coordinates of the ambient space M which usually is an Euclidean space. Note that the constraint functions F_1, \ldots, F_k do not need to be conserved quantities for the prolonged vector field X.

Usually the above theorem is applied backwards, where the vector field X_S is the restriction of a vector field $X \in \mathfrak{X}(M)$ to an invariant submanifold S under the dynamics generated by the vector field X. In the case when F_1, \ldots, F_k, G are conserved quantities for the vector field X and the conditions (ii) and (iii) of the above theorem are satisfied, then the equilibrium point x_e is also stable for the dynamics generated by the vector field X according to the algebraic method, see [6], [7], [8].

We will apply the above result to the following Hamilton-Poisson situation. Let $(M, \{\cdot,\cdot\})$ be a finite dimensional Poisson manifold and X_H a Hamilton-Poisson vector field. The paracompactness of the manifold M ensures the existence of a Riemannian metric. The conserved quantities are the Casimir functions $F_1 = C_1, \ldots, F_k = C_k$. A regular symplectic leaf S is an open dense set of the submanifold generated by a regular value of the Casimir functions (usually the two sets are equal). The restricted vector field $X_S = (X_H)|_S$ on the symplectic leaf is again a Hamiltonian vector field with respect to the symplectic form induced by the Poisson structure $\{\cdot,\cdot\}$ and the Hamiltonian function $G_S = H|_S$. If $x_e \in S$ is an equilibrium point for the restricted Hamiltonian vector field X_S, then it is also an equilibrium point for X_H and also it is a critical point of the restricted Hamiltonian function $G_S = H|_S$.

We are in the hypotheses of the Theorem 5.1 and the algebraic method for stability.

Theorem 5.2. A sufficient condition for stability of the equilibrium point x_e with respect to the dynamics X_H is given by the following condition:

$$\left(\mathcal{H}^{H}(x_e) - \sum_{i=1}^k \sigma_i(x_e) \mathcal{H}^{C_i}(x_e)\right)|_{T_{x_e}S \times T_{x_e}S}$$

is positive definite.
The matrix in the above theorem represents the Hessian matrix of the restricted function \(H_\beta : S \rightarrow \mathbb{R} \) as has been shown in Theorem [21]. It is also the Hessian matrix restricted to the tangent space \(T_\gamma S \) of the augmented function \(F : M \rightarrow \mathbb{R} \), \(F(x) = H(x) - \sum_{i=1}^{k} \sigma_i(x)C_i(x) \) used in [13], [3], and [21].

In the case of symmetries the augmented function method for stability of relative equilibria has been studied extensively in [18], [16], [17], [19], [20], [15]. The tangent space to the invariant submanifold \(S \) can be further decomposed taking into account the symmetry of the dynamical system under study.

6 Annexe

1. The Gramian associated to the constraint functions \([3.2]-[3.3]\) is \(\Sigma(\tilde{x}) := \det \Sigma(F_1,f_2,...,F_{n-1,n})(\tilde{x}) \). The matrix \(\Sigma(F_1,f_2,...,F_{n-1,n})(\tilde{x}) \) has the form

\[
\Sigma(F_1,f_2,...,F_{n-1,n})(\tilde{x}) = \begin{bmatrix} A & C^T \\ C & B \end{bmatrix},
\]

where

\[
A = \begin{bmatrix} <\text{grad} F_1, \text{grad} F_1> & \ldots & <\text{grad} F_n, \text{grad} F_1> \\ \vdots & \ddots & \vdots \\ <\text{grad} F_1, \text{grad} F_n> & \ldots & <\text{grad} F_n, \text{grad} F_n> \end{bmatrix},
\]

\[
B = \begin{bmatrix} <\text{grad} F_{12}, \text{grad} F_{12}> & \ldots & <\text{grad} F_{n-1,n}, \text{grad} F_{12}> \\ \vdots & \ddots & \vdots \\ <\text{grad} F_{12}, \text{grad} F_{n-1,n}> & \ldots & <\text{grad} F_{n-1,n}, \text{grad} F_{n-1,n}> \end{bmatrix},
\]

\[
C = \begin{bmatrix} <\text{grad} F_1, \text{grad} F_{n-1,n}> & \ldots & <\text{grad} F_n, \text{grad} F_{n-1,n}> \end{bmatrix},
\]

We have the following computations:

\[
<\text{grad} F_s(\tilde{x}), \text{grad} F_r(\tilde{x})> = \sum_{i=1}^{n} x_{si} \tilde{e}_{si}, \sum_{j=1}^{n} x_{rj} \tilde{e}_{rj} > = \sum_{i,j=1}^{n} x_{si} x_{rj} < \tilde{e}_{si}, \tilde{e}_{rj} > = \sum_{i,j=1}^{n} x_{si} x_{rj} \delta_{ij} = \sum_{i=1}^{n} x_{si} x_{rj} \delta_{sr} = <x_s, x_r> \delta_{sr},
\]

\[
<\text{grad} F_s(\tilde{x}), \text{grad} F_{\alpha\beta}(\tilde{x})> = \sum_{i=1}^{n} x_{si} \tilde{e}_{si}, \sum_{j=1}^{n} (\delta_{\alpha j} \tilde{e}_{\alpha j} + \delta_{\beta j} \tilde{e}_{\beta j}) > = \sum_{i=1}^{n} (x_{si} \delta_{\alpha j} + x_{si} \delta_{\beta j}) = <x_s, x_\beta> \delta_{\alpha j} + <x_s, x_\alpha> \delta_{\beta j},
\]

\[
<\text{grad} F_{\gamma\tau}(\tilde{x}), \text{grad} F_{\alpha\beta}(\tilde{x})> = \sum_{i=1}^{n} (x_{\gamma i} \tilde{e}_{\gamma i} + x_{\tau i} \tilde{e}_{\tau i}), \sum_{j=1}^{n} (\delta_{\gamma j} \tilde{e}_{\gamma j} + \delta_{\tau j} \tilde{e}_{\beta j}) > = \sum_{i=1}^{n} (x_{\gamma i} \delta_{\gamma j} + x_{\tau i} \delta_{\beta j} + x_{\gamma i} \delta_{\tau j} + x_{\tau i} \delta_{\gamma j}) = <x_{\gamma}, x_{\beta}> \delta_{\gamma j} + <x_{\gamma}, x_{\alpha}> \delta_{\beta j} + <x_{\tau}, x_{\alpha}> \delta_{\gamma j} + <x_{\tau}, x_{\beta}> \delta_{\gamma j}.
\]
Consequently, using the identification (4.1) for $\tilde{x} \in O(n) = J(O(n))$ we have,

$$\Sigma(\tilde{x}) = \det \left[\begin{array}{ccc} I_n & 0 & 0 \\ 0 & 2I_{n(n-1)}/n \\ \end{array} \right] = 2^{n(n-1)/2}.$$

For $\tilde{x} \in O(n)$ we have the following computations:

$$\Sigma_s(\tilde{x}) = \det \Sigma(F_1, \ldots, F_n, F_{n-1}, \ldots, F_1)(\tilde{x})$$

$$= \det \left[\begin{array}{cccc} 1 \cdots < \text{grad } G(\tilde{x}), \text{grad } F_1(\tilde{x}) > & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 \cdots < \text{grad } G(\tilde{x}), \text{grad } F_n(\tilde{x}) > & \cdots & 1 \\ \end{array} \right]$$

$$= < \text{grad } G(\tilde{x}), \text{grad } F_s(\tilde{x}) > = 2^{n(n-1)/2} < \text{grad } G(\tilde{x}), \text{grad } F_s(\tilde{x}) >,$$

$$\Sigma_{pq}(\tilde{x}) = \det \Sigma(F_1, \ldots, F_n, F_{n-1}, \ldots, F_1)(\tilde{x})$$

$$= < \text{grad } G(\tilde{x}), \text{grad } F_{pq}(\tilde{x}) > = 2^{n(n-1)/2 - 1} < \text{grad } G(\tilde{x}), \text{grad } F_{pq}(\tilde{x}) >.$$

Consequently,

$$\sigma_s(\tilde{x}) = < \text{grad } G(\tilde{x}), \text{grad } F_s(\tilde{x}) >, \quad \sigma_{pq}(\tilde{x}) = \frac{1}{2} < \text{grad } G(\tilde{x}), \text{grad } F_{pq}(\tilde{x}) >. \quad (6.1)$$

II. We have the following formula for the multiplication of the two $n \times n$ matrices $e_i \otimes e_j$ and $e_\alpha \otimes e_\beta$:

$$e_i \otimes e_j \cdot e_\alpha \otimes e_\beta = \delta_{ij\alpha} e_i \otimes e_\beta.$$

Using (3.5), a base for $T_{\tilde{x}}O(n)$ is given by the following matrices,

$$X\Omega_{\alpha\beta} = \left(\sum_{i,j=1}^n x_{ij} e_i \otimes e_j \right) (-1)^{\alpha+\beta} (e_\alpha \otimes e_\beta - e_\beta \otimes e_\alpha)$$

$$= (-1)^{\alpha+\beta} \sum_{i,j=1}^n x_{ij} (e_i \otimes e_j \cdot e_\alpha \otimes e_\beta - e_\alpha \otimes e_\beta \cdot e_i \otimes e_\beta)$$

$$= (-1)^{\alpha+\beta} \sum_{i,j=1}^n x_{ij} (\delta_{j\alpha} e_i \otimes e_\beta - \delta_{j\beta} e_i \otimes e_\alpha)$$

$$= (-1)^{\alpha+\beta} \sum_{i=1}^n (x_{i\alpha} e_i \otimes e_\beta - x_{i\beta} e_i \otimes e_\alpha). \quad (6.2)$$

In order to compute the restricted Hessian to the tangent space $T_{\tilde{x}}O(n)$ we need the following
computation,
\[< \tilde{\omega}_{\gamma^T}(\tilde{x}), e_{ab} \otimes e_{cd} \cdot \tilde{\omega}_{\alpha \beta}(\tilde{x})>\]
\[= (-1)^{\gamma + \tau} \sum_{i=1}^{n} (x_{i\gamma} \tilde{e}_{j\gamma} - x_{j\gamma} \tilde{e}_{i\gamma}), e_{ab} \otimes e_{cd} \cdot \sum_{i=1}^{n} (-1)^{\alpha + \beta} (x_{i\alpha} \tilde{e}_{i\beta} - x_{i\beta} \tilde{e}_{i\alpha}) >\]
\[= (-1)^{\alpha + \beta + \gamma + \tau} \sum_{i,j=1}^{n} (x_{i\gamma} x_{i\alpha} \delta_{ij} \tilde{e}_{\beta} - x_{j\gamma} x_{i\beta} \delta_{ij} \tilde{e}_{\alpha}) - x_{i\gamma} x_{i\beta} \delta_{ij} \tilde{e}_{\alpha} - x_{i\alpha} x_{i\beta} \delta_{ij} \tilde{e}_{\gamma} + x_{i\gamma} x_{i\alpha} \delta_{ij} \tilde{e}_{\beta} - x_{i\beta} x_{i\alpha} \delta_{ij} \tilde{e}_{\gamma})\]
\[= (-1)^{\alpha + \beta + \gamma + \tau} (x_{i\gamma} x_{i\alpha} \delta_{ij} \tilde{e}_{\beta} - x_{i\beta} x_{i\alpha} \delta_{ij} \tilde{e}_{\gamma} + x_{i\gamma} x_{i\alpha} \delta_{ij} \tilde{e}_{\beta} - x_{i\beta} x_{i\alpha} \delta_{ij} \tilde{e}_{\gamma})\]
where \(\tilde{\omega}_{\alpha \beta}(\tilde{x}) = \mathcal{J}(X_{\alpha \beta}) = (-1)^{\alpha + \beta} \sum_{i=1}^{n} (x_{i\alpha} \tilde{e}_{i\beta} - x_{i\beta} \tilde{e}_{i\alpha}), \ 1 \leq \alpha < \beta \leq n.

Consequently,
\[< \tilde{\omega}_{\gamma^T}(\tilde{x}), e_{s\gamma} \otimes e_{s\alpha} \cdot \tilde{\omega}_{\alpha \beta}(\tilde{x})> = (-1)^{\alpha + \beta + \gamma + \tau} (x_{s\gamma} \delta_{s\alpha} - x_{s\alpha} \delta_{s\gamma}) (x_{s\gamma} \tilde{e}_{\beta} - x_{s\beta} \tilde{e}_{\gamma})\]
\[< \tilde{\omega}_{\gamma^T}(\tilde{x}), e_{p\gamma} \otimes e_{p\alpha} \cdot \tilde{\omega}_{\alpha \beta}(\tilde{x})> = (-1)^{\alpha + \beta + \gamma + \tau} (x_{p\gamma} \delta_{p\alpha} - x_{p\alpha} \delta_{p\gamma}) (x_{p\gamma} \tilde{e}_{\beta} - x_{p\beta} \tilde{e}_{\gamma})\]
\[< \tilde{\omega}_{\gamma^T}(\tilde{x}), e_{q\gamma} \otimes e_{q\alpha} \cdot \tilde{\omega}_{\alpha \beta}(\tilde{x})> = (-1)^{\alpha + \beta + \gamma + \tau} (x_{q\gamma} \delta_{q\alpha} - x_{q\alpha} \delta_{q\gamma}) (x_{q\gamma} \tilde{e}_{\beta} - x_{q\beta} \tilde{e}_{\gamma})\]

III. The unit quaternions \(q = (q_0, q_1, q_2, q_3) \in S^3 \subset \mathbb{R}^4\) and \(-q \in S^3 \subset \mathbb{R}^4\) correspond to the following rotation in \(SO(3)\):

\[
R^q = \begin{pmatrix}
(q_0^2 + q_1^2 - q_2^2 - q_3^2)^2 & 2(q_0 q_1 - q_0 q_3 + q_1^3) & 2(q_0 q_1 + q_0 q_3 - q_1^3) & 2(q_1 q_3 + q_0 q_2) \\
2(q_0 q_1 + q_1 q_3 - q_0 q_2) & (q_0^2 - (q_1^2 + q_2^2 - q_3^2)^2 & 2(q_1 q_3 - q_0 q_2) & 2(q_1 q_3 + q_0 q_2) \\
2(q_0 q_1 - q_0 q_3 - q_1^3) & 2(q_0 q_1 + q_0 q_3 + q_1^3) & (q_0^2 - (q_1^2 + q_2^2 + q_3^2)^2 & 2(q_1 q_3 - q_0 q_2) \\
\end{pmatrix}
\]

\[\text{(6.3)}\]

Acknowledgments. Petre Birtea and Dan Comănescu have been supported by the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-TE-2011-3-0006. We are also thankful to Ioan Casu for his help with Maple programming.

References

[1] P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008.

[2] P.A. Absil, R. Mahony, J. Trumpf, An Extrinsic Look at the Riemannian Hessian, Geometric Science of Information, Lecture Notes in Computer Science, Volume 8085, (2013), pp 361-368.

[3] J.A. Beck, C.D. Hall, Relative equilibria of a rigid satellite in a circular Keplerian orbit, J. Astronaut. Sci., Vol. 40, Issue 3 (1998), pp. 2152-247.

[4] P. Birtea, D. Comănescu, Geometric Dissipation for dynamical systems, Comm. Math. Phys., Vol. 316, Issue 2 (2012), pp. 375-394.

[5] P. Birtea, D. Comănescu, C.A. Popa, Averaging on Manifolds by Embedding Algorithm, J. Math. Imaging Vis., DOI 10.1007/s10851-013-0478-8.

[6] D. Comănescu, The stability problem for the torque-free gyrostat investigated by using algebraic methods, Applied Mathematics Letters, Volume 25, Issue 9 (2012), pp. 1185-1190.

[7] D. Comănescu, Stability of equilibrium states in the Zhukovski case of heavy gyrostat using algebraic methods, Mathematical Methods in the Applied Sciences, Volume 36, Issue 4 (2013), pp. 373-382.
[8] D. Comănescu, A note on stability of the vertical uniform rotations of the heavy top, ZAMM, Volume 93, Issue 9 (2013), pp. 697-699.

[9] D.L. Donoho, C. Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proceedings of the National Academy of Sciences, 100(10) (2003), pp. 5591-5596.

[10] A. Edelman, T.A. Arias, S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., Vol. 20, Issue 2 (1998), pp. 303-353.

[11] R. Ferreira, J. Xavier, J. P. Costeira, V. Barroso, Newton Algorithms for Riemannian Distance Related Problems on Connected Locally Symmetric Manifolds, IEEE Journal of Selected Topics in Signal Processing, Volume 7, Issue 4 (2013), pp. 634-645.

[12] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 3rd edition, 2004.

[13] J.H. Maddocks, Stability of relative equilibria, IMA J. Appl. Math., Vol. 46 (1991), pp. 71-99.

[14] M. Moakher, Means and averaging in the group of rotations, SIAM J. Matrix Anal. Appl., Vol. 24, Issue 1 (2002), pp. 1-16.

[15] J. A. Montaldi, M. Rodriguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy, Nonlinearity, Vol. 24, Issue 10 (2011), pp. 2777-2783.

[16] J.-P. Ortega, T. S. Ratiu, Stability of Hamiltonian relative equilibria, Nonlinearity, Volume 12, Issue 3 (1999), pp. 693-720.

[17] J.-P. Ortega, T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry, Journal of Geometry and Physics, Volume 32, Issue 2 (1999), pp. 160-188.

[18] G.W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space, Journal of Geometry and Physics, Volume 9 (1992), pp. 111-119.

[19] G.W. Patrick, M. Roberts, C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods, Archive for Rational Mechanics and Analysis, Volume 174, Issue 3 (2004), pp. 301-344.

[20] M. Rodriguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems, Nonlinearity, Volume 19, Issue 4 (2006).

[21] Y. Wang, S. Xu, Equilibrium attitude and nonlinear attitude stability of a spacecraft on a stationary orbit around an asteroid, J. Adv. Space Res., Vol. 52, Issue 8 (2013), pp. 1497-1510.