REVIEW

Topoisomerases and cancer chemotherapy: recent advances and unanswered questions [version 1; peer review: 3 approved]

Mary-Ann Bjornsti 1, Scott H. Kaufmann 2

1 Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
2 Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA

Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.

Keywords
DNA supercoiling, DNA-protein crosslink, DNA-activated protease, topoisomerase poison, chromatin organization
Introduction

The helical structure of duplex DNA provides a physical basis for the faithful duplication and deciphering of genetic information while also ensuring DNA strand integrity. The intertwining of the two complementary polynucleotide strands is stabilized by hydrogen bonding and stacking interactions between the hydrophobic bases. Yet these features also impose topological constraints during processes involving DNA\(^{1-9}\). For example, during DNA replication, each strand serves as a template for polymerization of a complementary strand. However, the progressive unwinding of antiparallel DNA strands may cause overwinding (positive supercoiling) ahead of the replication fork and intertwining of daughter DNA molecules (precatenanes) behind the fork. Similar topological considerations apply to transcription, which induces local unwinding (negative supercoiling) of the DNA helix behind the advancing RNA polymerase complex and positive supercoiling ahead of it.

The ability of cells to resolve local domains of DNA supercoiling and separate multiply intertwined DNA molecules is critical for gene expression, recombination, DNA replication, and chromosome segregation, yet it must be achieved while still maintaining chromosomal integrity. Solutions to these problems involve a family of enzymes called DNA topoisomerases, which catalyze changes in the linkage of DNA strands (or helices) by nicking one or both strands of the DNA duplex and, at the same time, becoming covalently linked to one end of the cleaved DNA through a phosphotyrosyl bond. After another DNA strand (or duplex) is passed through the protein-linked break(s) to produce a change in DNA topology, the original phosphodiester bond is religated to restore integrity of the DNA backbone.

As detailed in Table 1, topoisomerases perform critical functions in all kingdoms of life and can be divided into five subfamilies (type I A, IB, IC, IIA, and IIB) based on the number of DNA strands cleaved (one or two, for type I or II, respectively), the nature of the covalent phosphotyrosyl intermediate formed (5' or 3' linkage), and other aspects of enzyme structure and catalysis (see Figure 1). Nevertheless, these enzymes all share a common mechanism of transient breakage and rejoining of DNA strand(s).

Topoisomerase-linked DNA breaks (topoisomerase-cleavage complexes or TOPccs) are integral to topoisomerase-mediated changes in DNA topology but also pose potential threats to genome integrity. For example, trapping of a TOPcc in advance of the replication machinery or during chromosome segregation, where interwound (or catenated) DNA helices are unlinked by topoisomerases, can have dire effects on genome stability and cell viability. Indeed, topoisomerases are the cellular targets of a wide spectrum of antimicrobial and anti-cancer agents, which either act to stabilize TOPccs (termed poisons) or otherwise inhibit enzyme catalysis to induce DNA damage\(^{10-16}\). This difference between poisons and inhibitors is illustrated in Figure 2. In eukaryotes, topoisomerase poisons include camptothecins (topotecan and SN-38, the active metabolite of the drug irinotecan), which stabilize TOP1ccs, and doxorubicin or etoposide, which stabilize TOP2ccs. In addition to these drugs, DNA modifications themselves, such as lesions induced by oxidative damage or ribonucleotides mistakenly incorporated into DNA, may also stabilize TOPccs. Although topoisomerases provide critical solutions to the topological problems imposed by the helical structure of duplex DNA, the hallmark of these activities—the formation of a covalent enzyme–DNA intermediate—constitutes an inherent threat to genome integrity.

In this review, we focus on recent advances in our understanding of topoisomerase function in eukaryotic cells, the therapeutic targeting of topoisomerases in cancer, and the repair pathways that resolve the resulting drug-induced lesions. While highlighting these advances, we also identify unanswered questions that these new findings raise.

Roles of topoisomerases in nuclear organization and genomic stability

The distinct biological functions of individual topoisomerases and the physiological consequences of altering their activity have been extensively studied (for reviews, see \(^1-9\)). Nevertheless, the technical challenges of assessing local changes in DNA topology in live cells leave perplexing questions regarding topoisomerase function in maintaining chromosome architecture and genome stability. In this section, we summarize recent studies that highlight surprising aspects of eukaryal topoisomerase function.

Type IB topoisomerases: maintenance of nuclear and mitochondrial genome stability

In eukaryotes, nuclear TOP1 catalyzes the relaxation of local domains of positive and negative supercoils during DNA replication, recombination, transcription, and possibly chromosome condensation\(^{15,16}\). Stabilization of TOP1ccs by camptothecins during replication is an effective strategy for treating solid tumors and hematologic malignancies, as discussed below. During transcription, the phosphorylated C-terminal domain of the catalytic subunit of RNA polymerase II binds and activates TOP1, effectively tethering TOP1 to the transcriptional machinery\(^{11,12}\). TOP1 then relaxes positive supercoils, which are generated ahead of the transcription complex and could otherwise impede its progress, as well as negative supercoils behind the transcription complex.

In the absence of TOP1, local accumulation of negative supercoils facilitates the formation of R-loops, stable hybrid RNA–DNA duplexes of the nascent RNA transcripts and template strands. R-loops also allow the formation of secondary structures, such as G-quadruplexes and hairpins, in the single-stranded non-template strand. RNase H1 and H2 can degrade RNA in these RNA–DNA heteroduplexes. While genome-wide R-loop mapping indicates context-dependent gains and losses in R-loops when TOP1 is depleted\(^1\), it is the increased levels of R-loops and G-quadruplexes that are associated with dysregulation of transcription and replication as well as genome instability.
The misincorporation of ribonucleotides into DNA, at rates approaching 10^6 ribonucleotides per genome per replication cycle\(^{17}\), can also lead to replication stress, single- and double-strand breaks, and small deletions\(^{18-20}\). Ordinarily these ribonucleotides are removed by the concerted action of RNAse H2, DNA polymerase δ, FLAP endonuclease, and DNA ligase 1\(^{17}\). However, if ribonucleotides are not removed, TOP1 cleavage of the strand immediately 3' to the ribonucleotide results in the nucleophilic attack of the 2'OH of the ribonucleotide on the TOP1cc to generate a 2',3' cyclic phosphate at the 3' DNA end and release of TOP1. A second, upstream TOP1 cleavage event can then liberate a short oligo with the modified

Table 1. DNA topoisomerases.

Subfamily\(^a\)	Mechanism	Activity\(^a\)	Representative enzymes	Structure	Organism	
Type IA (5')	Enzyme-bridged single DNA strand passage	Relaxation of (−) DNA	Bacterial DNA topoisomerase I	Monomer	*Escherichia coli*	
		Decatenation\(^{14}\)	Bacterial DNA topoisomerase III	Monomer	*E. coli*	
		Introduce (+)	Archaeal reverse gyrase	Monomer	*Archaeoglobulus fulgidus*	
		Decatenation, resolve recombination intermediates with helicase\(^3\)	Eukaryal DNA topoisomerase III	Monomer	*Saccharomyces cerevisiae*	
			Eukaryal DNA topoisomerase III\(\alpha\)	Monomer	*H. sapiens*	
			Regulates transcription	Eukaryal DNA topoisomerase III\(\beta\)	Monomer	*H. sapiens*
Type IB (3')	Enzyme-linked DNA strand rotation	Relaxation of (+) and (−) DNA	Poxvirus DNA topoisomerase I	Monomer	*Vaccinia virus*	
			Trypanosome DNA topoisomerase I	Heterodimer	*Leishmania donovani*	
			Eukaryal DNA topoisomerase I	Monomer	*H. sapiens*	
			Mitochondrial DNA topoisomerase I	Monomer	*H. sapiens*	
Type IC (3')	Enzyme-linked DNA strand rotation	Relaxation of (+) and (−) DNA	Archaeal DNA topoisomerase V	Monomer	*Methanopyrus kandleri*	
Type IIA (5')	Enzyme-bridged duplex DNA passage	Introduction of (−) into DNA	Bacterial DNA gyrase	A_2B_2 heterotetramer	*E. coli*	
		Relaxation of (+), decatenation	Bacterial DNA topoisomerase IV	C_2D_2 heterotetramer	*E. coli*	
		Relaxation of (+) and (−) DNA/decatenation	Eukaryal DNA topoisomerase II	Homodimer	*S. cerevisiae*	
			Eukaryal DNA topoisomerase III\(\alpha\)	Homodimer	*H. sapiens*	
			Eukaryal DNA topoisomerase III\(\beta\)	Homodimer	*H. sapiens*	
Type IIB (5')	Enzyme-bridged duplex DNA passage	Relaxation of (+) and (−)	Archaeal DNA topoisomerase VI	A_2B_2 heterotetramer	*Sulfolobus shibatae*	
		DNA/decatenation	Plant DNA topoisomerase VI	A_2B_2 heterotetramer	*Arabidopsis thaliana*	
		Weak relaxation/ decatenation	Bacterial DNA topoisomerase VIII\(^{16}\)	Homodimer	*Ammonifex degensii*	

\(^a\)Type I and II enzymes transiently cleave one or two strands of duplex DNA, respectively. As a consequence, type I enzymes catalyze changes in linking number (Lk) in steps of one, while type II enzymes alter Lk in steps of two. Type IA and all type II enzymes form topoisomerase cleavage complexes involving phosphotyrosyl linkages with a 5' DNA end, while type IB and IC enzymes form 3' phosphotyrosine bonds.

\(^{(-)}\) and (+) refer to negatively and positively supercoiled DNA, respectively.
In the topoisomerase I cleavage complex (TOP1cc) (top), the 3’ DNA end is covalently linked to the active site tyrosine (Y). Changes in the linkage of DNA strands occur through a mechanism of strand rotation, where the untethered 5’ DNA end of the cleaved strand swivels about the noncleaved DNA strand. TOP2 (middle) and TOP3 (bottom) both involve mechanisms of DNA strand transfer. In the case of TOP2cc, the G segment of duplex DNA is cleaved by the two active sites of the homodimer, following capture of the T segment by the closure of the N-terminal ATPase domains. The T segment DNA is then successively passed through the double-strand break in the G segment and out through the bottom dimer interface. For type IA enzymes, depicted for TOP3cc, a single strand of negatively supercoiled DNA is cleaved to form a 5’ phosphotyrosyl bond, while the 3’OH end is held by the enzyme. A conformational change in the protein then allows the intact complementary strand to be passed through the protein-linked break, followed by religation of the cleaved DNA.

A recent genome-wide CRISPR screen showed that interruption of genes encoding the three subunits of RNase H2 enhances human cell line sensitivity to the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib. Further studies attribute this olaparib hypersensitivity to increased ribonucleotide-dependent stabilization of TOP1ccs, which can serve as PARP substrates. These observations provide a compelling rationale for inhibiting PARP in order to trigger TOP1cc-initiated killing in cancers with deleted or mutated RNASEH2B.

In vertebrates, a second nuclear-encoded type IB topoisomerase (TOP1MT) selectively localizes to mitochondria and catalyzes the relaxation of circular mitochondrial DNA. Despite its similarity to nuclear TOP1, TOP1MT does not contribute to camptothecin-induced toxicity. Instead, TOP1MT physically associates with mitochondrial ribosome subunits to promote mitochondrial translation, which is critical for hepatocellular carcinoma cell growth. These findings suggest that inhibition of TOP1MT activity, rather than stabilization of TOP1MTccs, might be an effective strategy for targeting this enzyme to treat some cancers.

Evolving understanding of eukaryal topoisomerase IIIα and β (TOP3α and β)
Distinct from the swivelase activity ascribed to type IB enzymes, type IA topoisomerases exhibit a mechanism of enzyme-bridged strand passage (Figure 1). As with bacterial TOPA, eukaryotic TOP3α enzymes (including yeast TOP3) preferentially relax highly negatively supercoiled DNA and decatenate duplex DNA molecules tethered by single-stranded DNA interlinks or hemicatenanes. Differential splicing produces nuclear and mitochondrial isoforms of vertebrate TOP3α.

Figure 1. Topoisomerase mechanisms. In the topoisomerase I cleavage complex (TOP1cc) (top), the 3’ DNA end is covalently linked to the active site tyrosine (Y). Changes in the linkage of DNA strands occur through a mechanism of strand rotation, where the untethered 5’ DNA end of the cleaved strand swivels about the noncleaved DNA strand. TOP2 (middle) and TOP3 (bottom) both involve mechanisms of DNA strand transfer. In the case of TOP2cc, the G segment of duplex DNA is cleaved by the two active sites of the homodimer, following capture of the T segment by the closure of the N-terminal ATPase domains. The T segment DNA is then successively passed through the double-strand break in the G segment and out through the bottom dimer interface. For type IA enzymes, depicted for TOP3cc, a single strand of negatively supercoiled DNA is cleaved to form a 5’ phosphotyrosyl bond, while the 3’OH end is held by the enzyme. A conformational change in the protein then allows the intact complementary strand to be passed through the protein-linked break, followed by religation of the cleaved DNA.

Figure 2. Distinct actions of topoisomerase poisons and inhibitors. (A) As diagrammed for TOP1, a canonical inhibitor would prevent enzyme-mediated cleavage of a single strand of duplex DNA, while a poison (such as camptothecin) acts to stabilize the topoisomerase I cleavage complex (TOP1cc) reaction intermediate, thereby converting a normal enzyme into a source of DNA damage. The same principles apply to TOP2, although, in these instances, the dimeric enzymes produce two enzyme-linked DNA breaks staggered by 4 bp. (B) Based on these distinct modes of action, increased topoisomerase levels in an isogenic cell line would induce opposing effects on drug sensitivity: resistance to an inhibitor versus increased sensitivity to a poison. Shown in this diagram are the dose response curves for killing that result from an increase in topoisomerase levels relative to cells that yield the black curve.
Nuclear TOP3α forms a complex with the BLM helicase and RMI1 and RMI2 proteins to resolve double Holliday junctions during recombination. In contrast, mitochondrial TOP3α decatenates newly replicated mtDNA circles, which are linked by a hemicatenane formed at the origin of replication, to allow segregation of replicated mitochondrial genomes. Accordingly, TOP3α dysregulation results in human mitochondrial disease.

TOP3β, another type IA topoisomerase encoded by the TOP3B gene, binds mRNA and functions during neurodevelopment. Recent studies, made possible by the development of circular double-stranded and knotted single-stranded RNA substrates, suggest that TOP3β can catalyze RNA topoisomerization. In multicellular organisms, an association with Tudor domain-containing protein 3 (TDRD3) localizes TOP3β to transcriptionally active chromatin and polyribosomes. Although type IA enzymes with RNA topoisomerase activity have been detected in all domains of life, the biological significance of RNA topoisomerization requires further study.

Contribution of topoisomerase II to chromosome architecture and genomic stability

In eukaryotes, TOP2 is a homodimeric enzyme that relaxes positively or negatively supercoiled DNA and catenates or decatenaries duplex DNA via transient breakage of both DNA strands (Figure 1). Yeast encode a single TOP2, while human cells express TOP2α and TOP2β enzymes, encoded by the TOP2A and TOP2B genes, respectively. Although human TOP2 enzymes exhibit structural and mechanistic similarities, TOP2β decatenaries sister chromatids during chromosome segregation, whereas TOP2β has been implicated in transcription. Several recent studies further define distinct roles of these enzymes in chromosome dynamics.

TOP2β plays a surprising and important role in interphase chromatin organization. High-resolution whole-genome chromatin conformation capture (Hi-C), or *in situ* Hi-C with DNA–DNA proximity ligation, allows chromatin fragments in close proximity to be identified. These techniques have determined that chromosomes are organized into topologically associated domains (TADs) of ~200 kb to 1 Mb, typically bound by chromatin enriched in transcriptionally active genes. According to current models, DNA is actively extruded through one or paired cohesin rings to generate TADs until DNA bound by the CCCTC binding factor (CTCF) is encountered. Recent studies suggest that CTCF becomes associated with loop anchors to alleviate the positive supercoils induced by cohesin-derived DNA extrusion. The resulting TOP2β-induced breaks are transcription independent but correlate with cohesin. At a low frequency, unresolved TOP2βccs at these loop anchors can also lead to DNA breakage and translocations. Thus, TOP2β involvement in topological dynamics associated with chromosome organization contributes somewhat unexpectedly to chromosome breakage and rearrangements.

During chromosome segregation, intertwined DNA duplexes (catenanes) are resolved or decatenaries by TOP2 in yeast and TOP2α in human cells. TOP2 enzymes can also readily catenate DNA duplexes in close proximity. Yet increased positive supercoiling drives decatenaries, based in part on an intrinsic enzyme bias towards decatenaries. A persistent question, then, has been the source of this positive supercoiling to drive decatenaries. In yeast, condensin-mediated positive DNA supercoiling increases as cells enter mitosis. In human cells, we now know that this positive supercoiling reflects the action of TOP3α, which (as part of the TRR complex with RMI1 and RMI2) associates with the Pkl1-interacting checkpoint helicase (PICH) to produce extremely high-density positive supercoils. Subsequent relaxation of negative supercoils by TOP3α results in the accumulation of positive supercoils, which drives decatenaries by TOP2β. These studies provide the first evidence for topoisomerase-induced stable domains of positive supercoils in eukaryotic cells and illustrate how DNA extrusion can be locally harnessed to drive chromosome disjunction.

Recognition and resolution of TOPccs

During their catalytic cycles, all topoisomerases transiently form covalent linkages between active site tyrosines and DNA. While the vast majority of these TOPccs are normally resolved by completion of the catalytic cycle, there is increasing interest in the question of what happens when the TOP1 or TOP2 catalytic cycle is slowed or impaired. These issues are particularly critical in the context of anticancer drugs (Table 2) and endogenous DNA lesions (abasic sites, oxidized nucleotides, and alkylated bases), which stabilize or trap TOPccs. Thus, the way in which cells deal with TOPccs has biological and pharmacological implications.

TOP1cc removal: multiple pathways and unanswered questions

DNA–protein crosslinks (DPCs) include not only TOP1ccs, but also crosslinks induced by aldehyde products of demethylation reactions, cisplatin, UV light or ionizing radiation, and trapping of DNA methyltransferases covalently bound to 5-aza-cytosine (reviewed in 51–53). Distinct repair pathways have evolved to resolve these DPCs; however, TOPccs present unique challenges because they also involve protein-linked DNA breaks. Recent studies have provided new insight into the action of tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2, respectively) and DNA-dependent proteases such as SPARTAN (also known as SPRTN) that recognize and reverse persistent TOP1ccs.

Several lines of evidence implicate TDP1 in TOP1cc removal. TDP1 can de-esterify peptidic tyrosine-phosphoesters, and TDP1 knockdown results in increased foci containing the TOP1 active site peptide covalently bound to DNA. Earlier studies suggested that TDP1 efficiently removes short TOP1 peptides from DNA but is less efficient at removing longer peptides or full-length TOP1. However, recent studies of TDP1 mutants suggest that full-length TOP1 can, in fact, be released from chromatin-bound TOP1ccs in yeast and human cells.

The observation that TDP1 knockdown or knockout has little impact on yeast or mammalian cell sensitivity to camptothecin suggested early on that there must be...
redundant or overlapping repair pathways. In the absence of TDP1, the 5′-tyrosyl phosphodiesterase TDP2\(^\text{74,75}\) and a pathway involving the repair proteins XPF and ERCC1\(^\text{75}\) participate in TOP1cc removal. An additional pathway involves cleavage of the adducted DNA by the nuclease MUS81 followed by polymerization and ligation across the resulting gap\(^\text{76}\).

Conditions that promote the use of one pathway over another are still being elucidated. Poly(ADP-ribosyl)ation of TDP1 appears to influence this choice\(^\text{77}\). In addition, the deubiquitylase UCHL3 was recently shown to regulate TDP1 proteostasis\(^\text{78}\), implicating ubiquitin-dependent regulation of TDP1 in the repair of camptothecin-induced TOP1ccs.

Emerging results also suggest a role for proteases in the removal of TOP1ccs. Although early studies implicated the proteasome in this process\(^\text{39-41}\), the observation that proteasome-mediated TOP1 degradation occurs only at micromolar camptothecin concentrations and not at more clinically relevant low nanomolar concentrations\(^\text{45}\) calls this model into question. Instead, the nuclear metalloproteinase SPARTAN, which contains a ubiquitin-binding domain and a single-stranded DNA-binding motif\(^\text{82}\), has recently been shown to reverse TOP1ccs trapped by normal DNA metabolism or nanomolar camptothecin concentrations\(^\text{56,82-84}\). In Saccharomyces cerevisiae, the SPARTAN homolog Wss1 is critical for survival after camptothecin treatment, and the recombinant protease is able to cleave TOP1ccs\(^\text{85}\).

Likewise, Sprtn downregulation increases TOP1ccs in murine fibroblasts\(^\text{86}\) and enhances camptothecin sensitivity in vitro\(^\text{56,82,83}\). Mice bearing a hypomorphic Sprtn allele contain increased hepatectopy TOP1ccs and develop hepatic neoplasms\(^\text{86}\), which recapitulates Ruisi-Aalfs syndrome, a disorder characterized by germline SprtN mutations, genomic instability, and early onset hepatocellular carcinoma\(^\text{86-88}\). This hepatocyte-specific pathology is, at present, poorly understood. Higher TOP1 protein levels\(^\text{56}\) might contribute to preferential trapping of TOP1ccs in Spartan-deficient hepatocytes, but the possibility that alternative proteases facilitate the removal of TOP1ccs in other tissues also merits investigation. Additional unresolved issues include i) the coupling between proteases and phosphodiesterases or nucleases and ii) the relative contributions of protease-dependent versus protease-independent pathways in TOP1cc removal.

Recognition of trapped TOP1ccs: a plethora of modifications

A particularly perplexing question is how do trapped TOP1ccs come to be marked for repair or proteolytic degradation? Post-translational modifications of TOP1 and TOP1ccs by ubiquitin\(^\text{86-88}\), ubiquitin-like modifiers\(^\text{89,90,91}\), and phosphorylation\(^\text{91-93}\) have been reported, but the physiological relevance of these modifications to TOP1cc resolution is complicated by the use of high camptothecin concentrations.

In this context, studies implicating the small ubiquitin-like modifier (SUMO) in TOP1 action might be pertinent. TOP1 is modified by SUMOylation in CPT-treated yeast and mammalian cells\(^\text{93-95}\). In addition, downregulation or mutation of the sole SUMO E2 ligase Ubc9 is associated with TOP1cc stabilization and enhanced camptothecin toxicity\(^\text{93-95,96}\). However, recent studies ascribe these effects to a change in Ubc9 substrate specificity\(^\text{97}\), consistent with more global changes in SUMOylation of other proteins involved in the DNA damage response and not a direct effect on TOP1.

It is also worth noting that TOP1cc degradation by Wss1 (yeast SPARTAN) occurs in a SUMO-dependent fashion\(^\text{98}\), while SPARTAN preferentially binds ubiquitin through a UBJZ domain, and its activity is regulated by deubiquitinylation\(^\text{82,99}\). These differences in the SUMO- versus ubiquitin-mediated regulation of Wss1 and SPARTAN, and the inability of SPARTAN to complement wss1A yeast cells, led Mairland and colleagues to examine SUMO-dependent responses to various DPCs\(^\text{100}\). Their studies implicate SprT metalloproteases of the ACRC/GCNA-1 family in SUMO-dependent resolution of DPCs. While it remains to be determined if GCNA-1 family proteases

Table 2. FDA-approved anticancer drugs that increase TOP1- or TOP2-containing DPCs.

Drug	Target	Clinical status	Clinical uses	Refs
Irinotecan	TOP1	FDA approved	Colorectal, pancreatic, and lung cancers	61
Topotecan	TOP1	FDA approved	Ovarian, cervical, and small cell lung cancer	62,63
MM398	TOP1	FDA approved	Pancreatic cancer with 5FU and leucovorin	64,65
Etoposide	TOP2	FDA approved	Acute leukemia, lymphoma, testicular cancer, and lung cancers	66–69
Doxorubicin	TOP2	FDA approved	Breast and bladder cancers, leukemias, lymphomas, and neuroblastoma	66,69,70
Daunorubicin, idarubicin	TOP2	FDA approved	Acute leukemia	66,69,70
Mitoxantrone	TOP2	FDA approved	Acute leukemia	66,69,71,72

5FU, 5-fluorouracil; DPC, DNA–protein crosslinks; FDA, US Food and Drug Administration; TOP1, topoisomerase I; TOP2, topoisomerase II.
impact sensitivity to drug-stabilized TOP1ccs, these observations support the notion that other, as-yet-uncharacterized metalloproteases may regulate cellular responses to topoiso-

mense-mediated DNA damage via distinct ubiquitin-like protein modifications. The potential therapeutic implications of these recently recognized repair pathways remain to be more fully investigated.

Extending the paradigm to TOP2cc

The machinery responsible for removing trapped TOP2ccs is even less clearly defined. Proteasomal degradation of TOP2 after teniposide treatment has been reported, contributing to a model in which collisions between advancing transcription complexes and TOP2ccs result in irreversibly trapped TOP2–

DNA complexes, which are marked by ubiquitylation and degraded by the proteasome.

More recent studies have identified several alternatives to this model. First, SPARTAN knockdown results in slightly increased levels of TOP2ccs and etoposide sensitivity, suggesting SPARTAN might degrade TOP2 before removal of the active site peptide from DNA. Contrary to this model, however, increased TOP2ccs were not observed in MEFs conditionally deleted for Spartan, and MEFs harboring a hypomorphic Spartan allele were not hypersensitive to etoposide. Thus, the role of SPARTAN and other nuclear metalloproteases in the removal of trapped TOP2cc requires further clarification.

Trapped TOP2ccs may also be removed without TOP2 proteoly-

sis. The MRE11 nuclease has been implicated in the removal of TOP2 from DPCs.

Moreover, TDP1, TDP2, and TDP23, 106 have both been reported to release the TOP2 active site peptide when it is linked to 5’OH of the DNA backbone. In particular, TDP2 can reverse covalent binding of TOP2α or TOP2β to a suicide DNA substrate, and this activity increases up to 1000-fold in the presence of the SUMO E3 ligase ZNF451 owing to increased binding of TDP2 to SUMOylated TOP2.

Two recent studies further suggest that coordination of SUMO- and Ub-dependent TOP2 modifications may be critical for genomic stability. In etoposide-treated fission yeast, the DNA translocase Rrp2 binds to SUMOylated TOP2ccs and prevents recruitment of the SUMO-dependent E3 ubiquitin ligase STUbL, thereby preventing STUbL-mediated TOP2 ubiquity-

nlation and degradation. Instead, Rrp2 facilitates the eviction of intact TOP2 from the DNA and concomitant DNA resealing, thereby increasing genomic stability and etoposide resistance. In other studies, the Smurf2 E3 ubiquitin ligase was shown to switch the pattern of TOP2α modification from K48 polyubiquitylation that promotes proteasomal degradation to monoubiquitylation, which leads to increased TOP2α protein levels, suppression of anaphase bridge formation, and etoposide resistance.

In summary, although multiple pathways have been implicated in the reversal of trapped TOP2ccs, other studies suggest that protecting TOP2ccs from proteolytic degradation is also critical for maintaining genome stability. Further studies are required to assess whether distinct pathways are called into play in response to different levels of DNA damage, as appears to be the case with TOP1, or whether current inconsistencies reflect differential expression of pathway components in different cell types.

Translating biological knowledge into improved therapy

The TOP1- and TOP2-targeted drugs in Table 2 all have activity in the clinical setting, albeit with narrow therapeutic windows. Accordingly, recent efforts to develop topoiso-

merase poisons into more effective antineoplastic agents have tried to address a series of issues.

Can the delivery and efficacy of topoiso-

merase poisons be improved?

Consistent with observations that TOP1 and TOP2 poisons are preferentially toxic during S phase, classic studies demonstrated that the administration of irinotecan on a five-times-daily schedule for 2 weeks is more active against human cancer xenografts than less-protracted schedules.

Etoposide administered every other day for three doses is likewise more effective against L1210 murine leukemia than a higher dose administered once. In the clinical setting, these observations have been translated into protracted schedules of both irinotecan and etoposide.

Because these prolonged schedules can be inconvenient and toxic, there has been an ongoing search for alternatives, including new topoiso-

merase poisons, drug formulations that extend the half-life of TOPccs, and strategies to increase tumor-selective drug delivery (Table 3).

Among the new classes of TOP1 or TOP2 poisons, TOP1-directed indenoisoquinolines are furthest along in development. These agents, which lack a lactone ring and, in contrast to camptothecin derivatives, do not exist in equilibrium between an active agent and inactive derivative, exhibit promising activity against canine lymphomas. Assessments of their activity in humans are awaited with interest.

An alternative approach involves new formulations that extend tumor exposure. MM398, a nanoliposomal irinotecan formulation, gained FDA approval in combination with 5-fluorouracil and leucovorin for gemcitabine-resistant pancreatic cancer.

In contrast, NKTR-102, a PEGylated irinotecan, exhibited disappointing activity in breast and ovarian cancer.

Whether the different outcomes for these two sustained-release irinotecan formulations reflect differences in pharmacokinetics, intratumoral accumulation, or simply choice of tumors studied is not clear.

Santi and coworkers developed an ultra-long-acting Prolynx PEG–SN-38 that accumulates in tumors and delivers active SN-38 rather than the prodrug irinotecan.

Liposomal topotecan formulations are also being developed. Whether the promising preclinical activity seen in experimental tumors, which is thought to reflect enhanced permeability and retention of nanoformulations, can be translated into increased clinical efficacy remains to be determined.
Antibody–drug conjugates (Table 3) also hold the promise of more selectively delivering TOP1 poisons to tumor cells. DS-8201, a conjugate of the TOP1 poison deruxtecan with the anti-HER2 antibody trastuzumab, is currently undergoing extensive preclinical and early clinical testing (www.ClinicalTrials.gov). Promising clinical activity has been observed in trastuzumab-resistant breast and gastric cancers. An immunono conjugate of SN-38 and antibody to human trophoblast cell

Table 3. Emerging inhibitors of mammalian TOP1 or TOP2.
New TOP1 inhibitors
Compound
STA-8666
Indenoisoquinolines
7-aza-indenoisoquinolines
Fluorindenoisoquinolines
Novel formulations of TOP1 inhibitors
Antibody–drug conjugates
DS-8201a
U3-1402
Sacituzumab Govitecan
Novel formulations
Di-SN38-phosphatidylcholine
Camptothecin or SN-38 in functionalized carbon nanotubes
Camptothecin in β-cyclodextrin nanosponges
New TOP2 inhibitors
Compound
F14512
Pixantrone
Vosaroxin
Novel formulations
Dimethyllepipodophyllotoxin coupled to specific nucleotide sequence

https://clinicaltrials.gov

TOP1, topoisomerase I; TOP2, topoisomerase II; TOP2cc, topoisomerase II cleavage complex
surface antigen 2 (TROP2), a glycoprotein found on several solid tumors. Likewise, it exhibits promising activity in breast and lung cancers (Table 3). Should topoisomerase poisons and DNA damage response modulators be combined? Because TOP1 and TOP2 poisons lead to DNA damage, there has been substantial interest over the past few years in combining these drugs with several different DNA damage response modulators.

PARP inhibitors. PARP inhibitors (PARPis), which inhibit PARP1 as well as other PARP family members, are FDA approved for high-grade serous ovarian cancer, germline BRCA1/2-mutated breast cancer, and BRCA1/2-mutated castration-resistant prostate cancer. Additional studies identified a role for PARPi in stabilizing replication forks, including forks stalled by TOP1ccs. Consistent with these studies, Curtin et al. demonstrated that PARPi increase killing by TOP1 but not TOP2 poisons. This TOP1 poison/PARPi synergy likely results from trapping of inhibited PARP at sites of TOP1ccs or TOP1cc-induced DNA damage, perhaps in concert with diminished recruitment of TDP1 to TOP1ccs.

Building on xenograft studies, several clinical trials have evaluated TOP1 poison/PARPi combinations (Table 4). Most started with myelosuppressive topotecan or irinotecan regimen. Because PARPis also suppress bone marrow function, it is not surprising that profound myelosuppression occurs with these combinations, limiting drug doses that can be safely administered together (Table 4). In contrast, by starting with a less myelosuppressive weekly topotecan regimen and only administering PARP for 72 hours around each topotecan dose to maximize the synergy, Wahner Hendrickson and coworkers were able to escalate topotecan and veliparib to three-quarters of the single-agent MTDs. Whether the approach of using a less myelosuppressive TOP1-directed regimen and/or giving intermittent PARPi timed to coincide with maximal TOP1cc stabilization will be an effective way forward with TOP1 poison/PARPi combinations remains to be further assessed.

Combinations with ATR and CHK1 inhibitors. Stalled replication forks activate the replication checkpoint, a biochemical pathway involving the DNA damage-activated kinases ATR and CHK1 that inhibits new origin firing, stabilizes stalled forks, and increases DNA repair. Consistent with a role for this pathway in cellular recovery from TOP1cc-induced damage, inhibition of CHK1 or ATR sensitizes cancer cells to TOP1 poisons in vitro and in xenografts. Earlier development of a CHK1 inhibitor/TOP1 poison combination was abandoned because of off-target cardiac toxicities of the CHK1 inhibitor. More recent studies have examined ATR inhibitors (e.g. M6620 and AZD6738) with TOP1 poisons. Reportedly, an M6620/topotecan combination was well tolerated, except for myelosuppression, and induced partial responses in two out of 21 (9.5%) patients.

A phase II trial of this combination in small cell lung cancer (ClinicalTrials.gov identifier: NCT02487095) and a phase I trial of an irinotecan/M6620 combination (NCT02595931) are ongoing.

TOP1 poison/immune checkpoint inhibitor combinations. While immune checkpoint blockade is highly active in certain solid tumors, many common cancers respond poorly. However, recent studies suggest that DNA damage can stimulate immune responses through multiple mechanisms. First, release of DNA to the cytosol after DNA damage activates the stimulator of interferon genes (STING) pathway leading to the production of pro-inflammatory cytokines. Second, DNA damage-induced release of tumor cell microvesicles can increase immune activation. Third, DNA damage increases antigen presentation on tumor cell MHC class I molecules, leading to enhanced dendritic cell activation and T cell responses. Importantly, these changes have been observed after treatment with TOP1 poisons, potentially contributing to the synergy observed when irinotecan or DS-8201a is combined with anti-PD-1 mAb.

Predicting response to topoisomerase poisons. Given the toxicities of topoisomerase poisons, the ability to predict responses and avoid treatment of patients unlikely to benefit would represent a major advance. In isogenic yeast or mammalian cells, elevated TOP1 or TOP2 levels are associated with increased killing by topoisomerase poisons (Figure 2). Additional studies indicate that high TOP1 expression correlates with improved colorectal cancer response to irinotecan and TOP2 gene amplification is associated with improved breast cancer response to doxorubicin. However, expression and response are not so tightly correlated that outcomes of individual patients can be predicted from expression data alone.

The frequent occurrence of transport-mediated resistance raises the possibility that responses might be better predicted by assaying TOPccs after the first dose of therapy. While earlier techniques for measuring TOPccs were labor intensive and nonspecific, a recently described antibody to TOP1ccs opens the possibility of specific, quantitative assays to address the relationship between TOP1ccs and response to TOP1 poisons. Unfortunately, similar reagents to assess TOP2ccs are not currently available.

It is possible that factors other than TOPccs will need to be assessed to predict drug responses. Homologous recombination (HR) defects convey heightened sensitivity to TOP1 and TOP2 poisons in yeast and mammalian cells. Moreover, BRCA1- or BRCA2-mutant ovarian cancers have a higher response rate to liposomal doxorubicin. Likewise, breast cancers deficient in BRCA1 or HR activity respond better to anthracycline-based neoadjuvant therapy. In contrast, BRCA1/2 mutation status was not correlated with response to the TOP1 poison topotecan administered alone or in...
Table 4. Recently described combinations of TOP1 or TOP2 poisons with other agents.

Topoisomerase poison	Other agent(s)	Observations	Ref
Preclinical studies			
Topotecan	Veliparib	Synergy observed at concentrations far below those required to inhibit most PARP activity	167
Camptothecin	Niraparib	Transfection with catalytically dead PARP1 also sensitizes	
ATR inhibitor			
Topotecan	Berzosertib	Sensitization to TOP1 inhibitor in multiple ovarian cancer cell lines	182
Irinotecan	Berzosertib	Enhanced antitumor effects in colorectal xenografts	183
CHK1 inhibitors			
SN-38	MK-8776	Maximum sensitization when CHK1 inhibitor administered 24 hours after TOP1 poison *in vitro*	181
Irinotecan	AZD7762	Sensitization observed in triple-negative breast cancer xenografts	180
CDK inhibitors			
Irinotecan	Palbociclib	Sensitization of colon cancer cells *in vitro* regardless of presence of hypoxia	218
Immune checkpoint inhibitor			
DS-8201a	Anti-PD-L1	DS-8201a enhances dendritic cell function	133
Irinotecan	Anti-PD-L1	Irinotecan suppresses regulatory T cells and upregulates MHC class I	198
Clinical studies			
Topotecan five times daily	Veliparib	Dose-limiting hematological AEs; Five dose de-escalations to find tolerable dose	I 219
Topotecan three times daily	Olaparib	Dose-limiting hematological AEs	I 220
Topotecan weekly	Veliparib	Dose-limiting hematological AEs	I 173
Irinotecan, day 1 and day 8 every 21 days	Veliparib	Dose-limiting GI and hematological AEs	I 221
Irinotecan every 2 weeks	Olaparib	Dose-limiting GI and hematological AEs	I 222
CHK1 inhibitor			
Irinotecan	AZD7762	Dose-limiting cardiotoxicity	I 184
ATR inhibitor			
Topotecan	Berzosertib	Dose-limiting hematological AEs	I 188

AEs, adverse effects; GI, gastrointestinal; MHC, major histocompatibility complex; PARP, poly(ADP-ribose) polymerase; TOP1, topoisomerase I; TOP2, topoisomerase II

Combination with PARP.\(^{173}\) Thus, HR status might need to be considered in predictive algorithms, but the impact of HR status might also vary by drug class.

Challenges for the coming decade

As indicated above, recent advances bring into focus a number of topics for future investigation. First, the cellular functions of topoisomerases are incompletely understood, in part because DNA topology still cannot be visualized in intact cells. Second, based on provocative examples, cooperation between various topoisomerases and other enzymes requires further study. Third, when TOPccs are trapped, we still have only rudimentary understanding of the processes that reverse these DPCs and limited insight into the factors that dictate choice between overlapping repair pathways. Finally, even though topoisomerase-directed drugs exhibit anti-neoplastic properties, patients would benefit from more efficacious schedules, more selective delivery of active agents to tumor cells, and potentially bioassays that accurately predict responses to topoisomerase-directed therapy.
References

1. Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001; 70: 369–413. PubMed Abstract | Publisher Full Text

2. Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002; 3(6): 430–40. PubMed Abstract | Publisher Full Text

3. Soel Y, Neuman KC. The Dynamic Interplay Between DNA Topoisomerases and DNA Topology. Biophys Rev. 2016; 8(3): 221–231. PubMed Abstract | Publisher Full Text | Free Full Text

4. Pommier Y, Sun Y, Huang SN, et al. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol. 2016; 17(11): 703–721. PubMed Abstract | Publisher Full Text

5. Vos SM, Tretter EM, Schmidt BH, et al. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol. 2011; 12(12): 827–41. PubMed Abstract | Publisher Full Text | Free Full Text

6. Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013; 8(1): 82–95. PubMed Abstract | Publisher Full Text | Free Full Text

7. Cuya SM, Bjornsti MA, van Waardenburg RCAM. DNA topoisomerases: structure, function, and mechanism. Biophys Rev. 2016; 8(3): 221–231. PubMed Abstract | Publisher Full Text | Free Full Text

8. Kim N, Jinks-Robertson S. The Top1 paradox: Friend and foe of the eukaryotic genome. DNA Repair (Amst). 2017; 56: 33–41. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

9. Wu J, Phatnani HP, Hsieh TS, et al. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J. 2017; 36(3): 361–373. PubMed Abstract | Publisher Full Text | Free Full Text

10. Wang JC. The phosphoCTD-interacting domain of Topoisomerase I. J Biol Chem. 2010; 285(38): 30269–30278. PubMed Abstract | Publisher Full Text | Free Full Text

11. Manzo SG, Hartono SR, Sanz LA, et al. DNA topoisomerase I differentially modulates R-loops across the human genome. Genome Biol. 2018; 19(1): 120. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

12. Baranello L, Wojtowicz D, Cui K, et al. RNA Polymerase II regulates Topoisomerase I Activity to Favor Efficient Transcription. Cell. 2016; 165(2): 367–77. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Astell AR, Smith DJ, Sarazin NAB, et al. DNA Topoisomerase IIb Antibodies for the Treatment of Clear Cell Renal Cell Carcinoma. JAMA Oncol. 2016; 2(5): 654–61. PubMed Abstract | Publisher Full Text | Free Full Text

14. Kim N, Huang SN, Williams JS, et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase III. Science. 2011; 332(6037): 1561–4. PubMed Abstract | Publisher Full Text | Free Full Text

15. Williams JS, Smith DJ, Zarava A, et al. DNA Topoisomerase I-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol Cell. 2013; 49(5): 1010–5. PubMed Abstract | Publisher Full Text | Free Full Text

16. Huang SN, Williams JS, Arana ME, et al. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J. 2017; 36(3): 361–373. PubMed Abstract | Publisher Full Text | Free Full Text

17. Cho JE, Jinks-Robertson S. Ribonucleotide and Transcription-Associated Mutagenesis in Yeast. J Mol Biol. 2017; 429(21): 3156–3167. PubMed Abstract | Publisher Full Text | Free Full Text

18. Zimmermann M, Munro O, Rejins MAM, et al. CRISP/R screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 2018; 559(7713): 285–289. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

19. Sobeck S, Boege F. DNA topoisomerases in mDNA maintenance and ageing. Exp Gerontol. 2014; 56: 135–41. PubMed Abstract | Publisher Full Text

20. Baechler SA, Factor VM, Dalla Rosa I, et al. The mitochondrial type IB topoisomerase drives mitochondrial translation and carcinogenesis. Nat Commun. 2019; 10(1): 83. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. Baker NM, Rajan R, Mondragón A. Structural studies of type I topoisomerases. Nucleic Acids Res. 2009; 37(3): 693–701. PubMed Abstract | Publisher Full Text | Free Full Text

22. Plank J, Chu SH, Pohhlaus JR, et al. Drosophila melanogaster topoisomerase IIalpha preferentially relaxes a positively or negatively supercoiled bubble substrate and is essential during development. J Biol Chem. 2005; 280(5): 3564–73. PubMed Abstract | Publisher Full Text | Free Full Text

23. Bocquet N, Bizard AH, Abdulkhaiman W, et al. Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIb and RMI1. Nat Struct Mol Biol. 2014; 21(3): 261–8. PubMed Abstract | Publisher Full Text | Free Full Text

24. Bocquet N, Bizard AH, Abdulkhaiman W, et al. Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIb and RMI1. Nat Struct Mol Biol. 2014; 21(3): 261–8. PubMed Abstract | Publisher Full Text | Free Full Text

25. Nichols T, Jiang J, Zeng C, et al. Topoisomerase III is required for Decatenation and Segregation of Human mtDNA. Mol Cell. 2018; 70(1): 9–23.e6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Ahmad M, Shen W, Li W, et al. Topoisomerase 3β is the major topoisomerase for mtRNAs and linked to neurodevelopmental and mental dysfunction. Nucleic Acids Res. 2017; 45(9): 2704–2713. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Wang H, Di Gate RJ, Seeman NC. An RNA topoisomerase. Proc Natl Acad Sci U S A. 1996; 93(18): 9477–82. PubMed Abstract | Publisher Full Text | Free Full Text

28. Xu D, Shen W, Guo R, et al. Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synaptic formation. Nat Neurosci. 2013; 16(9): 1238–47. PubMed Abstract | Publisher Full Text | Free Full Text

29. Liu D, Shao Y, Chen G, et al. Synthesizing topological structures containing RNA. Nat Commun. 2017; 8: 14936. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

30. Ahmad M, Xue Y, Lee SK, et al. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res. 2016; 44(13): 6335–49. PubMed Abstract | Publisher Full Text | Free Full Text

31. Szew GE, Liu IF, Lin PY, et al. DNA and RNA topoisomerase activities of Top3β are promoted by mediator protein Tudor-domain-containing protein 3. Proc Natl Acad Sci USA. 2016; 113(38): E5544–51. PubMed Abstract | Publisher Full Text | Free Full Text

32. Björkgrén C, Baranello L. DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture? Int J Mol Sci. 2018; 19(8): pii: E884. PubMed Abstract | Publisher Full Text | Free Full Text

33. Fawer F, Tyler JK. Anchoring Chromatin Loops to Cancer. Dev Cell. 2017; 42(3): 203–211. PubMed Abstract | Publisher Full Text | Free Full Text

34. Canela A, Maman Y, Jung S, et al. Genome Organization Drives Chromosome Fragility. Cell. 2017; 170(3): 507–521.e18. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

35. Vian L, Pekowska A, Rao SSP, et al. The Energetics and Physiological Impact of Cohesin Extrusion. Cell. 2018; 173(5): 1165–1178.e20. PubMed Abstract | Publisher Full Text | Free Full Text

36. Sen N, Leonard J, Torres R, et al. Physical Proximity of Sister Chromatids Promotes Top2β-Dependent Intertwining. Mol Cell. 2016; 64(1): 134–147. PubMed Abstract | Publisher Full Text | Free Full Text

37. Bizard AH, Alexander JF, Hassenkam T, et al. PICK and TOP3A cooperate to induce positive DNA supercoiling. Nat Struct Mol Biol. 2016; 23(4): 267–274. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Tse YC, Kirkegaard K, Wang JC. Covalent bonds between protein and DNA. Formation of phosphorylase linkage between certain DNA topoisomerases and DNA. J Biol Chem. 1980; 255(12): 5560–5. PubMed Abstract | Publisher Full Text | Free Full Text

39. Champoux JJ. DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. J Biol Chem. 1981; 256(10): 4805–9. PubMed Abstract | Publisher Full Text | Free Full Text

40. Sander M, Hsieh T. Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem. 1983; 258(13): 8421–8. PubMed Abstract | Publisher Full Text | Free Full Text

41. Liu LF, Rowe TC, Yang L, et al. Cleavage of DNA by mammalian DNA

F1000Research 2019, 8(F1000 Faculty Rev):1704 Last updated: 30 SEP 2019
topoisomerase II. J Biol Chem. 1983; 258(24): 15365–70.

Published Abstract

46. Pourquier P, Ueng LM, Kohlhagen G, et al.: Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerases. J Biol Chem. 1997; 272(12): 7792–6.

Published Abstract | Publisher Full Text

47. Pourquier P, Bjornst MA, Pommier Y: Induction of topoisomerase I cleavage complexes by the vinyl chloride adduct, 1,2-ethenodeoxane. J Biol Chem. 1988; 263(24): 27245–9.

Published Abstract | Publisher Full Text

48. Pourquier P, Ueng LM, Fentaiz J, et al.: Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing endonucleolytic base damages, 7, 8-dihydro-8-oxoquinine and 5-hydroxyoxycytosine. J Biol Chem. 1997; 274(13): 8516–23.

Published Abstract | Publisher Full Text

49. Kingma PS, Corbett AH, Burcham PC, et al.: Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J Biol Chem. 1995; 270(37): 21441–4.

Published Abstract | Publisher Full Text

50. Sabourin M, Osheroff N: Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Res. 2000; 28(9): 1947–64.

Published Abstract | Publisher Full Text | Free Full Text

51. Stengele J, Bellieri B, Bouton SJ: Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol. 2017; 18(9): 563–73.

Published Abstract | Publisher Full Text

52. Vaz B, Popovic M, Ramsay K: DNA-Protein Crosslink Proteolysis Repair. Trends Biochem Sci. 2017; 42(6): 483–495.

Published Abstract | Publisher Full Text

53. He H, Nakano T, Sahara N, et al.: DNA-protein cross-links: Formidable challenges to maintaining genome integrity. DNA Repair (Amst). 2018; 71: 190–197.

Published Abstract | Publisher Full Text

54. Yang SW, Burgin AB Jr, Huzenza BN, et al.: An eukaryotic enzyme that can disjoin dead-end complexed molecules against DNA and type I topoisomerases. Proc Natl Acad Sci U S A. 1996; 93(21): 11534–9.

Published Abstract | Publisher Full Text | Free Full Text

55. Poulot JJ, Yao KC, Robertson CA, et al.: Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science. 1999; 286(5439): 552–5.

Published Abstract | Publisher Full Text | Free Full Text

56. Maskey RS, Kim MS, Baker DJ, et al.: Metalloprotease SPRTN/DVC1 marks spindle破坏s as a common intracellular target. Cancer Res. 2016; 76(4): 295–9.

Published Abstract | Publisher Full Text | Free Full Text

57. Ross W, Rowe T, Glisson B, et al.: Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res. 1984; 44(12 Pt 1): 5857–60.

Published Abstract

58. Minocha A, Long BH: Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and VM26. Biochem Biophys Res Commun. 1984; 122(1): 165–70.

Published Abstract | Publisher Full Text | Free Full Text

59. Tewey KM, Rose TC, Yang L, et al.: Adriamycin-induced DNA damage mediated by mammalian topoisomerase II. Science. 1984; 226(4673): 466–8.

Published Abstract | Publisher Full Text | Free Full Text

60. Glisson B, Gupta R, Hodges P, et al.: Cross-resistance to intercalating agents in an epipodophyllotoxin-resistant Chinese hamster ovary cell line: evidence for a common intracellular target. Cancer Res. 1986; 46(4 Pt 2): 1939–42.

Published Abstract

61. Crespi MD, Ivaniere SE, Genovese J, et al.: Mitoxantrone affects topoisomerase activities in human breast cancer cells. Biochem Biophys Res Commun. 1986; 136(2): 521–8.

Published Abstract | Publisher Full Text

62. Cortes Ledeisfa M, El Khamisy SF, Zuma MC, et al.: A human S’-lysoryl DNA phosphodiesterase that mediates repair of topoisomerase-mediated DNA damage. Nature. 2009; 461(7264): 674–8.

Published Abstract | Publisher Full Text | Free Full Text

63. Pourquier P, Ueng LM, Kohlhagen G, et al.: Mechanisms of DNA-protein crosslink repair. Cell. 2001; 101(3): 327–38.

Published Abstract | Publisher Full Text | Free Full Text

64. Pourquier P, Ueng LM, Fentaiz J, et al.: Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing endonucleolytic base damages, 7, 8-dihydro-8-oxoquinine and 5-hydroxyoxycytosine. J Biol Chem. 1997; 274(13): 8516–23.

Published Abstract | Publisher Full Text

65. Wang-Gillam A, Li CP, Bodoky G, et al.: Nanoposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer: previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016; 387(10018): 545–55.

Published Abstract | Publisher Full Text

66. Liu LF. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989; 58: 351–75.

Published Abstract | Publisher Full Text | Free Full Text
98. Mao Y, Sun M, Desai SD, et al.: SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci U S A. 2000;97(8): 4046–51. PubMed Abstract | Publisher Full Text | Free Full Text

99. Horie K, Tomida A, Sugimoto Y, et al.: SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene. 2002;21(62): 7913–22. PubMed Abstract | Publisher Full Text

100. Cardellini E, Bramucci M, Gianfranceschi GL, et al.: Human topoisomerase I is phosphorylated in vitro on its amino terminal domain by protein kinase NII. Biol Chem Hoppe Seyler. 1994;375(4): 255–9. PubMed Abstract | Publisher Full Text

101. Hackbart JE, Galvão-Pereira M, Dai NT, et al.: Mitotic phosphorylation stimulates DNA relaxation activity of human topoisomerase I. J Biol Chem. 2008;283(4): 16711–22. PubMed Abstract | Publisher Full Text | Free Full Text

102. Bandypadhay K, Li P, Gjestet RA: CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS One. 2012;7(11): e004277. PubMed Abstract | Publisher Full Text | Free Full Text

103. Yang M, Huo CT, Ting CY, et al.: Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem. 2006;281(12): 8264–74. PubMed Abstract | Publisher Full Text

104. Jacquau HR, van Waardenburg RC, Reid RJ, et al.: Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem. 2005;280(25): 23566–75. PubMed Abstract | Publisher Full Text | Free Full Text

105. van Waardenburg RC, Duda DM, Lancaster CS, et al.: Distinct functional domains of UbC8 dictate cell survival and resistance to genotoxic stress. Mol Cell Biol. 2006;26(24): 9458–63. PubMed Abstract | Publisher Full Text | Free Full Text

106. Wright CM, Whittaker RH, Orui JE, et al.: UBC9 Mutant Reveals the Impact of Protein Dynamics on Substrate Selectivity and SUMO Chain Linkages. Biochemistry. 2019;58(6): 621–632. PubMed Abstract | Publisher Full Text | Free Full Text

107. Balakirev MV, Mullally JE, Favier A, et al.: Wss1 metalloprotease partners with Cdc48/Dox1 in processing genetic SUMO conjugates. eLife. 2015;4: e06763. PubMed Abstract | Publisher Full Text | Free Full Text

108. Lopez-Mosqueda J, Madd K, Prgomet S, et al.: SRT1M is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. eLife. 2016;5: e21491. PubMed Abstract | Publisher Full Text | Free Full Text

109. Borgemann N, Ackermann L, Schwerdtman P, et al.: SUMOylation promotes protective responses to DNA-protein crosslinks. EMBO J. 2019;38(8): 1031–1046. PubMed Abstract | Publisher Full Text | Free Full Text

110. Mao Y, Desai SD, Ting CY, et al.: 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem. 2001;276(44): 40652–6. PubMed Abstract | Publisher Full Text | Free Full Text

111. Hao NN, Shimizu T, Zhou ZW, et al.: Mre11 Is Essential for the Removal of SUMO-1 conjugation to intact DNA. Mol Cell. 2001;64(3): 580–592. PubMed Abstract | Publisher Full Text

112. Aparicio T, Baer R, Gottesman M, et al.: TOP3B: a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018;19(9): 37286–37288. PubMed Abstract | Publisher Full Text | Free Full Text

113. Burton JH, Mazzco C, Lesbiac A, et al.: NCI Comparative Oncology Program Testing of Non-Camptothecin Indenoisoquinoline Topoisomerase I Inhibitors in Naturally Occurring Canine Lymphoma. Clin Cancer Res. 2018;24(9): 5820–5840. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

114. Drummord DC, Noble CO, Guo Z, et al.: Development of a highly active nonamiplosomal irinotecan using a novel intraplastosomal stabilization strategy. Cancer Res. 2006;66(6): 3271–7. PubMed Abstract | Publisher Full Text | Free Full Text

115. Perez EA, Awada A, O'Shaughnessy J, et al.: Eribulin mesylate (KDR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(15): 1556–1568. PubMed Abstract | Publisher Full Text | Free Full Text

116. Santi DV, Schneider EL, Ashley GW: Macromolecular produg that provides the irinotecan (CPT-11) active-metabolite SN-38 with ultralong half-life, low C(max), and low glucuronide formation. J Med Chem. 2014;57(6): 2033–14. PubMed Abstract | Publisher Full Text

117. Chernov L, Deyev RJ, Anantha M, et al.: Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med. 2017;6(6): 1540–1545. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

118. Gaponova AV, Nikonova AS, Deneka A, et al.: A Novel HSP90 Inhibitor-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Adv Drug Deliv Rev. 2018;130: 17–38. PubMed Abstract | Publisher Full Text | Free Full Text

119. Ogilani Y, Aida T, Hagihara K, et al.: DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2018;24(22): 5097–5108. PubMed Abstract | Publisher Full Text | Free Full Text

120. Nakada T, Sugihara K, Jokic T, et al.: The Latest Research and Development into the Antibody-Drug Conjugate, [Fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem Pharm Bull (Tokyo). 2019;67(3): 173–185. PubMed Abstract | Publisher Full Text

121. Tamura K, Tsutsumi T, Takahashi S, et al.: Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6): 816–826. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

122. Shitara K, Iwata H, Takahashi S, et al.: STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget. 2016;7(40): 65540–65552. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

123. Hees KM, Mendoza A, Edessa LD, et al.: STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget. 2016;7(40): 65540–65552. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

124. Gaponova AV, Nikonova AS, Deneka A, et al.: A Novel HSP90 Inhibitor-Drug Conjugate to SN38 Is Highly Effective in Small Cell Lung Cancer. Clin Cancer Res. 2016;22(20): 5120–5129. PubMed Abstract | Publisher Full Text | Free Full Text

125. Goldkamn K: Strategies Targeting DNA Topoisomerase I in Cancer Chemotherapy: Camptothecins, Nanocarriers for Camptothecins, Organic Non-Camptothecin Compounds and Metal Complexes. Curr Drug Targets. 2016;17(16): 1928–1939. PubMed Abstract | Publisher Full Text

126. Elsayed MSA, Su Y, Wang P, et al.: Design and Synthesis of Chlorinated and...
Fluorinated 7-Azaindolequinolines as Potent Cytotoxic Anticancer Agents That Inhibit Topoisomerase I. J Med Chem. 2017; 60(13): 5364–5376. Published Abstract | Publisher Full Text

131. Beck DE, Lv W, Abdelmalak M, et al.: Synthesis and biological evaluation of new fluorinated and chlorinated indenoisoquinoline topoisomerase I poisons. Bioorg Med Chem. 2016; 24(7): 1469–79. Published Abstract | Publisher Full Text | Free Full Text

132. Maril L, Agama K, Murai, J, et al.: Novel Fluorinatedindenoisoquinoline Non- Camptothecin Topoisomerase I Inhibitors. Mol Cancer Ther. 2018; 17(8): 1694–1704. Published Abstract | Publisher Full Text | Free Full Text

133. Iwata TN, Ishii C, Ishida S, et al.: A HER2-Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a). Enhances Antitumor Immunity in a Mouse Model. Cancer Ther. 2018; 17(7): 1484–1503. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

134. Yonesaka K, Takegawa N, Watanabe S, et al.: I-6.5 syntheses of a new topoisomerase II inhibitor and evaluation of in vitro cytotoxicity. Bioorg Med Chem. 2018; 26(7): 1325–34. Published Abstract | Publisher Full Text | Free Full Text

137. Cardio TM, Govindan SV, Sharkey RM, et al.: Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res. 2011; 17(10): 3157–69. Published Abstract | Publisher Full Text

138. Sharkey RM, McBride WJ, Cardio TM, et al.: Enhanced Delivery of SN-38 to Human Tumor Xenografts with an Anti-Trop-2-SN-38 Antibody Conjugate (Sacituzumab Govitecan). Clin Cancer Res. 2015; 21(22): 5131–8. Published Abstract | Publisher Full Text

139. Goldenberg DM, Sharkey RM: Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. mAbs. 2019; 11(9): 987–905. Published Abstract | Publisher Full Text

140. Bardia A, Mayer IA, Diamond JR, et al.: Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients With Metastatic Triple-Negative Breast Cancer. J Clin Oncol. 2017; 35(19): 2155–65. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

141. Bardia A, Mayer IA, Vahdat LT, et al.: Sacituzumab Govitecan in Previously Treated Patients With Metastatic Castration-Resistant Castrate-Sensitive Prostate Cancer: A Phase 2, Randomized, Open-Label Study (TRIP-CaPS). J Clin Oncol. 2017; 35(19): 2141–2148. Published Abstract | Publisher Full Text | Free Full Text

142. Heist RS, Guarino MJ, Masters G, et al.: Phase I/II dose-escalation study of vintafolide in patients with treatment-refractory advanced solid tumor malignancies. Invest New Drugs. 2017; 35(7): 1853–1863. Published Abstract | Publisher Full Text | Free Full Text

143. Malanga M, Althaus FR, et al.: A complex suite of loci and elements in the human PARP1 promoter. Nucleic Acids Res. 2018; 46(15): 8163–8179. Published Abstract | Publisher Full Text | Free Full Text

144. Infante L, Ferrero S, Rasslol S, et al.: Coupling the force of the anticancer drug etoposide to an oligonucleotide inducible PARP recombinase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res. 2018; 46(5): 2158–2168. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

145. Wahlberg E, Karthib F, Kounouzovs E, et al.: Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol. 2012; 30(3): 283–8. Published Abstract | Publisher Full Text | Free Full Text

146. Scott GL, Swisher EM, Kaufmann SH: Poly(ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015; 33(12): 1397–406. Published Abstract | Publisher Full Text | Free Full Text

147. Konstantinopoulos PA, Oltrando R, Shapiro GI, et al.: Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015; 5(11): 1137–54. Published Abstract | Publisher Full Text | Free Full Text

148. Fong FY, de Bono JS, Rubin MA, et al.: Chromatin to Clinic: The Molecular Rationale for PARPi Inhibitor Function. Mol Cell. 2015; 58(6): 925–34. Published Abstract | Publisher Full Text | Free Full Text

149. del Rivero J, Kohn EC: PARP Inhibitors: The Cornerstone of DNA Repair-Targeted Therapies. Oncology (Williston Park). 2017; 31(4): 265–73. Published Abstract | Publisher Full Text | Free Full Text

150. Ray Chaudhuri A, Callen E, Ding X, et al.: Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016; 535(7612): 362–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

151. Berti M, Ray Chaudhuri A, Thangavel S, et al.: Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 2013; 20(3): 347–54. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

152. Berti M, Vindigni A: Replication stress: getting back on track. Nat Struct Mol Biol. 2016; 23(2): 103–9. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

153. Bryant HE, Petermann E, Schultz N, et al.: Acetyl-CoA:cholesterol acyltransferase (ACAT1) is required to maintain DNA topoisomerase I and Induces DNA strand break resealing. J Biol Chem. 2004; 279(7): 5244–4. Published Abstract | Publisher Full Text | Free Full Text

154. Malanga M, Althaus FR, et al.: PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009; 28(17): 2601–15. Published Abstract | Publisher Full Text | Free Full Text

155. Boxman KJ, White A, Golding BT, et al.: Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br J Cancer. 1998; 78(10): 1269–77. Published Abstract | Publisher Full Text | Free Full Text

156. Satch MS, Lindahl T: Role of poly(ADP-ribose) formation in DNA repair. Nature. 1992; 356(6367): 356–8. Published Abstract | Publisher Full Text | Free Full Text

157. Satch MS, Porter GG, Lindahl T: Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry. 1994; 33(23): 7099–106. Published Abstract | Publisher Full Text | Free Full Text

158. Patel AG, Flattan KS, Schneider PA, et al.: Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J Biol Chem. 2012; 287(4): 1198–2019. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

159. Calabrese CR, Almassy R, Barton S, et al.: Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Canc Inst. 2004; 96(1): 56–67. Published Abstract | Publisher Full Text | Free Full Text

160. Schlenmeyer WJ, Rowinsky EK, Donehower RC, et al.: The current status of camptothecin analogues as antitumor agents. J Natl Canc Inst. 1993; 85(4): 271–91. Published Abstract | Publisher Full Text | Free Full Text

161. Jonas TA, Ainsworth WB, Ellis PA, et al.: PARPi Trapping by PARP Inhibitors

Page 15 of 18
response to chemotherapy and outcome of recurrent ovarian cancer. Int J Gynecol Cancer. 2014; 24(3): 488–95. PubMed Abstract | Publisher Full Text

215. Tan DS, Kaye SB: Chemotherapy for Patients with BRCA1 and BRCA2-Mutated Ovarian Cancer: Same or Different? Am Soc Clin Oncol Educ Book. 2015; 114–21. PubMed Abstract | Publisher Full Text

216. Miyoshi Y, Kurosumi M, Kurebayashi J, et al.: Predictive factors for anthracycline-based chemotherapy for human breast cancer. Breast Cancer. 2010; 17(2): 103–9. PubMed Abstract | Publisher Full Text

217. Graeser M, McCarthy A, Lord CJ, et al.: A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2010; 16(24): 6159–68. PubMed Abstract | Publisher Full Text | Free Full Text

218. Zhang J, Zhou L, Zhao S, et al.: The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle. 2017; 16(12): 1193–1200. PubMed Abstract | Publisher Full Text | Free Full Text

219. Kummar S, Chen A, Ji J, et al.: Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 2011; 71(17): 5626–34. PubMed Abstract | Publisher Full Text | Free Full Text

220. Samol J, Ranson M, Scott E, et al.: Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs. 2012; 30(4): 1493–500. PubMed Abstract | Publisher Full Text

221. LoRusso PM, Li J, Burger A, et al.: Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of the Poly(ADP-ribose) Polymerase (PARP) Inhibitor Veliparib (ABT-888) in Combination with Irinotecan in Patients with Advanced Solid Tumors. Clin Cancer Res. 2016; 22(13): 3227–37. PubMed Abstract | Publisher Full Text | Free Full Text

222. Chen EX, Jonker DJ, Siu LL, et al.: A Phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest New Drugs. 2016; 34(4): 450–7. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Anthony Maxwell
 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
 Competing Interests: No competing interests were disclosed.

2. Yuk-Ching Tse-Dinh
 Department of Chemistry and Biochemistry and Biomolecular Sciences, Florida International University, Miami, Florida, USA
 Competing Interests: No competing interests were disclosed.

3. Joseph Deweese
 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Lipscomb University, Nashville, Tennessee, 37204-3951, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com