Deep Learning for Single Image Super-Resolution: A Brief Review

Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, Qingmin Liao

Abstract—Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline framework and representative studies are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.

Index Terms—Single image super-resolution, deep learning, neural networks, objective function

I. INTRODUCTION

Deep learning (DL) [1] is a branch of machine learning algorithms and aims at learning the hierarchical representation of data. Deep learning has shown prominent superiority over other machine learning algorithms in many artificial intelligence domains, such as computer vision [2], speech recognition [3] and nature language processing [4]. Generally speaking, DL is endowed with the strong capacity of handling substantial unstructured data owing to two main contributors: the development of efficient computing hardware and the advancement of sophisticated algorithms.

Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, because a specific low-resolution (LR) input can correspond to a crop of possible high-resolution (HR) images, and the HR space (in most instances it refers to the nature image space) that we intend to map the LR input to is usually intractable [5]. Previous methods for SISR mainly have two drawbacks: one is the unclear definition of the mapping that we aim to develop between the LR space and the HR space, and the other is the inefficiency of establishing a complex high-dimensional mapping given massive raw data. Benefiting from the strong capacity of extracting effective high-level abstractions which bridge the LR space and HR space, recent DL-based SISR methods have achieved significant improvements, both quantitatively and qualitatively.

In this survey, we attempt to give an overall review of recent DL-based SISR algorithms. Our main focus is on two areas: efficient neural network architectures designed for SISR and effective optimization objectives for DL-based SISR learning. The reason for this taxonomy is that when we apply DL algorithms to tackle a specified task, it is best for us to consider both the universal DL strategies and the specific domain knowledge. From the perspective of DL, although many other techniques such as data preprocessing [6] and model training techniques are also quite important [7], [8], the combination of DL and domain knowledge in SISR is usually the key of success and is often reflected in the innovations of neural network architectures and optimization objectives for SISR. In each of these two focused areas, we firstly introduce a benchmark, and then discuss several representative researches about their original contributions and experimental results, as well as our comments and views.

The rest of the paper is arranged as follows. In Section II we present relevant background concepts of SISR and DL. In Section III we survey the literature on exploring efficient neural network architectures for various SISR tasks. In Section IV we survey the researches on proposing effective objective functions for different purposes. In Section V we summarize some trends and challenges for DL-based SISR. We conclude this survey in Section VI.

II. BACKGROUND

A. Single Image Super-Resolution

Super-resolution (SR) [9] refers to the task of restoring high-resolution images from one or more low-resolution observations of the same scene. According to the number of input LR images, the SR can be classified into single image super-resolution (SISR) and multi-image super-resolution (MISR). Compared with MISR, SISR is much more popular because of its high efficiency. Since an HR image with high perceptual quality has more valuable details, it is widely useful in many areas, such as medical imaging, satellite imaging and security
imaging. In the typical SISR framework, as depicted in Fig. 1, the LR image $y$ is modeled as follows:

$$y = (x \otimes k)\downarrow_s + n,$$

where $x \otimes k$ is the convolution between the blurry kernel $k$ and the unknown HR image $x$, $\downarrow_s$ is the downsampling operator with scale factor $s$, and $n$ is the independent noise term. Solving (1) is an extremely ill-posed problem because one LR input may correspond to many possible HR solutions. Up to now, mainstream algorithms of SISR are mostly divided into three categories: interpolation-based methods, reconstruction-based methods, and learning-based methods.

Interpolation-based SISR methods, such as bicubic interpolation [10] and Lanczos resampling [11], are very fast and simple but suffer from the shortage of accuracy. Reconstruction-based SR methods [12], [13], [14], [15] often adopt sophisticated prior knowledge to restrict the possible solution space with an advantage of generating flexible and sharp details. However, the performance of many reconstruction-based methods degrades rapidly when the scale factor increases, and these methods are usually time-consuming.

Learning-based SISR methods, also known as example-based methods, are brought into focus because of their fast computation and outstanding performance. These methods usually utilize machine learning algorithms to analyze statistical relationships between the LR and its corresponding HR counterpart from substantial training examples. Markov Random Field (MRF) [16] was firstly adopted by Freeman et al. to exploit the abundant real-world images to synthesize visually pleasing image textures. Neighbor embedding methods [17] proposed by Chang et al. took advantage of similar local geometry between LR and HR to restore HR image patches. Inspired by the sparse signal recovery theory [18], researchers applied sparse coding methods [19], [20], [21], [22], [23], [24] to SISR problems. Lately, random forest [23] was also used to achieve improvement in the reconstruction performance. Meanwhile, many researches combined the merits of reconstruction-based methods with the learning-based ones to further reduce artifacts brought by external training examples [26], [27], [28], [29]. Very recently, DL-based SISR algorithms have demonstrated great superiority to reconstruction-based and other learning-based methods.

B. Deep Learning

Deep learning is a branch of machine learning algorithms based on directly learning diverse representations of data [30].

Opposed to traditional task-specific learning algorithms, which select useful handcraft features with expert knowledge of the domain, deep learning algorithms aim to automatically learn informative hierarchical representations and then leverage them to achieve the final purpose, where the whole learning process can be seen as an entirety [31].

Because of the great approximating capacity and hierarchical property of artificial neural network (ANN), most modern deep learning models are based on ANN [32]. Early ANN could be traced back to perceptron algorithms in 1960s [33]. Then in 1980s, multilayer perceptron could be trained with the backpropagation algorithm [34], and convolutional neural network (CNN) [35] and recurrent neural network (RNN) [36], two representative derivatives of traditional ANN, were introduced to the computer vision and speech recognition fields, respectively. Despite noticeable progress that ANN had made in that period, there were still many deficiencies handicapping ANN from going further [37], [38]. The rebirth of modern ANN was marked by pretraining the deep neural network (DNN) with restricted Boltzmann machine (RBM) proposed by Hinton in 2006 [39]. After that, benefiting from the booming of computing power and the development of advanced algorithms, models based on DNN have achieved remarkable performance in various supervised tasks [40], [41], [2]. Meanwhile, DNN-based unsupervised algorithms such as deep Boltzmann machine (DBM) [42], variational autoencoder (VAE) [43], [44] and generative adversarial nets (GAN) [45] have attracted much attention owing to their potential to handling tough unlabeled data. Readers can refer to [46] for extensive analysis of DL.

III. Deep Architectures for SISR

In this section, we mainly discuss the efficient architectures proposed for SISR in recent years. Firstly, we set the network architecture of super-resolution CNN (SRCNN) [47], [48] as the benchmark. When we discuss each related architecture in detail, we focus on their universal parts that can be applicable to other tasks and their specific parts that take the property of SISR into consideration. When it comes to the comparison among different models, for the sake of fairness, we will illustrate the importance of the training dataset and try to compare models with the same training dataset.

A. Benchmark of Deep Architecture for SISR

We select the SRCNN architecture as the benchmark in this section. The overall architecture of SRCNN is shown in Fig. 2. As many traditional methods, SRCNN only takes the luminance components for training for simplicity. SRCNN is a three-layer CNN, where its filter size of each layer, following the manner mentioned in Section B, is $64 \times 1 \times 9 \times 9$, $32 \times 64 \times 5 \times 5$ and $1 \times 32 \times 5 \times 5$, respectively. The functions of these three nonlinear transformations are patch extraction, nonlinear mapping and reconstruction. The loss function for optimizing SRCNN is the mean square error (MSE), which will be discussed in next section.

The formulation of SRCNN is relatively simple, which can be seen as an ordinary CNN approximating the complex
mapping between the LR and HR spaces in an end-to-end manner. SRCNN is reported to demonstrate great superiority over traditional methods at that time, we argue that it is owing to the CNN’s strong capability to learn effective representations from big data in an end-to-end manners.

Despite the success of SRCNN, the following problems have inspired more effective architectures:

1) The input of SRCNN is the bicubic LR, an approximation of HR. However, these interpolated inputs have three drawbacks: (a) detail-smoothing effects brought by these inputs may lead to further wrong estimation of image structure; (b) taking interpolated versions as input is very time-consuming; (c) when downsampling kernel is unknown, one specific interpolated input as raw estimation is not reasonable. Therefore, the first question is emerging: can we design CNN architectures directly taking LR as input to tackle these problems? 

2) The SRCNN is just three-layer; can more complex (with different depth, width and topology) CNN architectures achieve better results? If yes, then how can we design such more complex models?

3) The prior terms in the loss function which reflect properties of HR images are trivial; can we integrate any property of the SISR process into the design of CNN frame or other parts in the algorithms for SISR? If yes, then can these deep architectures with SISR properties be more effective in handling some difficult SISR problems, such as the big scale factor SISR and the unknown downsampling SISR?

Based on some solutions to these three questions, recent researches on deep architectures for SISR will be discussed in sections III-B1, III-B2 and III-B3 respectively.

B. State-of-the-Art Deep SISR Networks

1) Learning Effective Upsampling with CNN: One solution to the first question is to design a module in the CNN architecture which adaptively increases the resolution. Convolution with pooling and stride convolution are the common downsampling operators in the basic CNN architecture. Naturally people can implement upsampling operation which is known as deconvolution [50] or transposed convolution [51]. Given

Generally speaking, the first problem can be grouped into the third problem below. Because the solutions to this problem are the basic of many other models, it is necessary to introduce this problem separately in the first place.
VDSR is a 20-layer VGG-net [62]. The VGG architecture sets first very deep model used in SISR. As shown in Fig.5(a), networks despite many training difficulties. VDSR [61] is the

3) Also inspired by the fact that the SISR processes with different scale factors have strong relationship in [72] is employed. 3) Also inspired by the fact that the SISR

Besides the novel architecture, VDSR has made two more contributions. The first one is that a single model is used for multiple scales since the SISR processes with different scale factors have strong relationship with each other. This fact is the basic of many traditional SISR methods. Like SRCNN, VDSR takes the bicubic of LR as input. During training, VDSR put the bicubes of LR of different scale factors together for training. For larger scale factors \((3 \times 3, 4)\), the mapping for a smaller scale factor \((\times 2)\) may be also informative. The second contribution is the residual learning. Unlike the direct mapping from the bicubic version to HR, VDSR uses deep CNN to learn the mapping from the bicubic to the residual between the bicubic and HR. They argued that residual learning can improve performance and accelerate convergence.

The convolution kernels in the nonlinear mapping part of VDSR are very similar, in order to reduce parameters, Kim et al. further proposed DRCN [63], which utilizes the same convolution kernel in the nonlinear mapping part for 16 times, as shown in Fig.5(b). To overcome the difficulties of training deep recursive CNN, a multi-supervised strategy is applied and the final result can be regarded as the fusion of 16 intermediate results. The coefficients for fusion are a list of trainable positive scalars whose summation is 1. As they showed, DRCN and VDSR have the quite similar performance.

Here we believe it is necessary to emphasize the importance of the multi-supervised training in DRCN. This strategy not only creates short paths through which the gradients can flow more smoothly during back-propagation, but also guides all the intermediate representation to reconstruct raw HR outputs. Finally fusing all these raw HR outputs produces a wonderful result. However, as for fusion, this strategy has two flaws: 1) once the weight scalars are determined in the training process, it will not change with different inputs; 2) using single scalars to weight HR outputs does not take pixel-wise differences into consideration, that is to say, it would be better to weight different parts distinguishingly in an adaptive way.

A plain architecture like VGG-net is hard to go deeper. Various deep models based on skip-connection can be extremely deep and have achieved the state-of-the-art performance in many tasks. Among them, ResNet [64], [65] proposed by He et al. is the most representative one. Readers can refer to [66], [67] for further discussions on why ResNet works well. In [68], the authors proposed SRResNet made up of 16 residual units (a residual unit consists of two nonlinear convolutions with residual learning). In each unit, batch normalization (BN) [69] is used for stabilizing the training process. The overall architecture of SRResNet is shown in Fig.5(c). Based on the original residual unit in [65], Tai et al. proposed DRRN [70], in which basic residual units are rearranged in a recursive topology to form a recursive block, as shown in Fig.5(d). Then for the sake of parameter reduction, each block shares the same parameters and is reused recursively, like the single recursive convolution kernel in DRCN.

EDSR [71] proposed by Lee et al. has achieved the state-of-the-art performance up to now. EDSR mainly has made three improvements on the overall frame: 1) Compared with the residual unit used in previous work, EDSR removes the usage of BN, as shown in Fig.5(e). The original ResNet with BN was designed for classification, where inner representations are highly abstract and these representations can be insensitive to the shift brought by BN. As for image-to-image tasks like SISR, since the input and output are strongly related, if the convergence of the network is of no problem, then such shift may harm the final performance. 2) Except for regular depth increasing, EDSR also increases the number of output features of each layer on a large scale. To release the difficulties of training such wide ResNet, the residual scaling trick proposed in [72] is employed. 3) Also inspired by the fact that the SISR processes with different scale factors have strong relationship with each other, when training the models for \(\times 3\) and \(\times 4\) scales, the authors of [71] initialized the parameters with the pre-trained \(\times 2\) network. This pre-training strategy accelerates the training and improves the final performance.

The effectiveness of the pre-training strategy in EDSR implies that models for different scales may share many intermediate representations. To explore this idea further, like
building a multi-scale architecture as VDSR does on the condition of bicubic input, the authors of EDSR proposed MDSR to achieve the multi-scale architecture, as shown in Fig.5. In MDSR, the convolution kernels for nonlinear mapping are shared across different scales, only the front convolution kernels for extracting features and the final sub-pixel upsampling convolution are different. At each update during training MDSR, minibatches for \( \times 2 \), \( \times 3 \) and \( \times 4 \) are randomly chosen and only the corresponding parts of MDSR are updated.

Besides ResNet, DenseNet [73] is another effective architecture based on skip connections. In DenseNet, each layer is connected with all the preceding representations, and the bottleneck layers are used in units and blocks to reduce the parameter number. In [74], the authors pointed out that ResNet enables feature re-usage while DenseNet enables new features exploration. Based on the basic DenseNet, SR-DenseNet [75], as shown in Fig.5(f), further concatenates all the features from different blocks before the deconvolution layer, which is shown to be effective on improving performance. MemNet [76] proposed by Tai et al. uses residual unit recursively to replace the normal convolution in the block of the basic DenseNet and add dense connections among different blocks, as shown in Fig.5(h). They explained that the local connections in the same block resemble the short-term memory and the connections with previous blocks resemble the long-term memory [77]. Recently, RDN [78] proposed by Zhang et al. uses the similar structure. In an RDN block, basic convolution units are densely connected like DenseNet, and at the end of an RDN block, a bottleneck layer is used following with the residual learning across the whole block. Before entering the reconstruction part, features from all previous blocks are fused by dense connection and residual learning.

3) Combining Properties of SISR Process with the Design of CNN Frame: In this sub-section, we discuss some deep frames whose architectures or procedures are inspired by some representative methods for SISR. Compared with the above mentioned NN-oriented methods, these methods can be better interpreted, and sometimes more sophisticated in handling some challenging cases for SISR.

Combining sparse coding with deep NN: The sparse prior in nature images and the relationships between the HR and LR spaces rooted from this prior were widely used for its great performance and theoretical support. SCN [79] proposed by Wang et al. uses the learned iterative shrinkage and thresholding algorithm (LISTA) [80], an algorithm on producing approximate estimation of sparse coding based on NN, to solve the time-consuming inference in traditional sparse coding SISR. They further introduced a cascaded version (CSCN) [81] which employs multiple SCNs. Previous works such as SRCNN tried to explain general CNN architectures with the sparse coding theory, which from today’s view may be a bit unconvincing. SCN combines these two important concepts innovatively and gains both quantitative and qualitative improvements.

Learning to ensemble by NN: Different models specialize in different image patterns of SISR. From the perspective of ensemble learning, a better result can be acquired by adaptively fusing various models with different purposes at the pixel level. Motivated by this idea, MSCN proposed by Liu et al. [82] develops an extra module in the form of CNN, taking the LR as input and outputting several tensors with the same shape as the HR. These tensors can be viewed as adaptive element-wise weights for each raw HR output. By selecting NN as the raw SR inference modules, the raw estimating parts and the fusing part can be optimized jointly. However, in MSCN, the summation of coefficients at each pixel is not 1, which may be a little incongruous.

Deep architectures with progressive methodology: Increasing SISR performance progressively has been extensively studied before, and many recent DL-based ones also exploit it from various perspectives. Here we mainly discuss three novel works within this scope: DEGREE [83] combining the progressive property of ResNet with traditional sub-band reconstruction, LapSRN [84] generating SR of different scales progressively, and PixelISR [85] leveraging conditional autoregressive models to generate SR pixel by pixel.

Compared with other deep architectures, ResNet is intriguing for its progressive properties. Taking SRResNet for example, one can observe that directly sending the representations produced by intermediate residual blocks to the final reconstruction part will also yield a quite good raw HR estimator. The deeper these representations are, the better the results can be obtained. A similar phenomenon of ResNet applied in recognition is reported in [66]. DEGREE proposed by Yang et al. combines this progressive property of ResNet with the sub-band reconstruction of traditional SR methods [86]. The residues learned in each residual block can be used to reconstruct high-frequency details, resembling the signals from certain high-frequency band. To simulate sub-band reconstruction, a recursive residual block is used. Compared with the traditional supervised sub-band recovery methods which need to obtain sub-band ground truth by diverse filters, this simulation with recursive ResNet avoids explicitly estimating intermediate sub-band components benefiting from the end-to-end representation learning.

As mentioned above, models for small scale factors can be used for a raw estimator of big scale SISR. In the SISR community, SISR under big scale factors (e.g. \( \times 8 \)) has been a challenging problem for a long time. In such situations, plausible priors are imposed to restrict the solution space. One simple way to tackle this is to gradually increase resolution by adding extra supervision on the auxiliary SISR process of small scale. Based on this heuristic prior, LapSRN proposed by Lai et al. uses the Laplacian pyramid structure to reconstruct HR outputs. LapSRN has two branches: the feature extraction branch and the image reconstruction branch, as shown in Fig.6. At each scale, the image reconstruction branch estimates a raw HR output of the present stage, and the feature extraction branch outputs a residue between the raw estimator and the corresponding ground truth as well as extracts useful representations for next stage.

When faced with big scale factors with severe loss of necessary details, some researchers suggest that synthesizing rational details can have better results. In this situation, deep generative models to be mentioned in next sections could be
good choices. Compared with the traditional independent point estimation of the lost information, conditional autoregressive generative models using conditional maximum likelihood estimation in directional graphical models gradually generate high resolution images based on the previous generated pixels. PixelRNN [87] and PixelCNN [88] are recent representative autoregressive generative models. The current pixel in PixelRNN and PixelCNN is explicitly dependent on the left and top pixels which have been already generated. To implement such operations, novel network architectures are elaborated. PixelSR proposed by Dahl et al. first applies conditional PixelCNN to SISR. The overall architecture is shown in Fig.7. The conditioning CNN taking LR as input, which provides LR-conditional information to the whole model, and the PixelCNN part is the auto-regressive inference part. The current pixel is determined by these two parts together using the current softmax probability:

$$P(y_i|x, y_{<i}) = \text{softmax}(A_i(x) + B_i(y_{<i})), \quad (2)$$

where $x$ is the LR input, $y_i$ is the current HR pixel to be generated and $y_{<i}$ are the generated pixels, $A_i(\cdot)$ denotes the conditioning network predicting a vector of logit values corresponding to the possible values, and $B_i(\cdot)$ denotes the prior network predicting a vector of logit value of the $i$th output pixel. Pixels with the highest probability are taken as the final output pixel. Similarly, the whole network is optimized by minimizing cross-entropy loss (maximizing the corresponding log-likelihood) between the model’s prediction and the discrete ground-truth labels $y_i^* \in \{1, 2, \cdots, 256\}$ as
For example, the DEGREE [83] takes the edge map of LR as another input. Recent researches tend to directly use more complex information of LR, two examples of which are: SFT-GAN [91] with extra semantic information of LR for better perceptual quality, and SRMD [92] incorporating degradation into input for multiple degradations.

[93] reported that using semantic prior helps improve performance of many SISR algorithms. Leveraging powerful deep architectures recently designed for segmentation, Wang et al. [91] used semantic segmentation maps of interpreted LR as extra input and deliberated the Spatial Feature Transformation (SFT) layer to handle them. With this extra information from high-level tasks, the proposed work is more skilled in generating textual details.

To take degradations of different LRs into account, SRMD firstly applied a parametric zero-mean anisotropic Gaussian kernel to stand for blur kernel and the additive white Gaussian noise with hyper-parameter $\rho^2$ to represent noise. Then a simple regression is used to get its covariance matrix. These sufficient statistics are dimensionally stretched to concatenate with LR in the channel dimension, and with such input a deep model is trained. Notably, when SRMD is tested with real images, the needed parameters on the degradation level is obtained by grid search.

**Reconstruction-based frameworks based on priors offered by deep NN:** Sophisticated priors are of key points for efficient reconstruction-based SISR algorithms to handle different cases flexibly. Recent works showed that deep NN can provide well-performing priors mainly from two perspectives: deep example-based NN can act as a powerful pre-processing for reconstruction within plug-and-play approach, and direct reconstructing output leveraging intriguing but still unclear priors of deep architectures themselves.

Given the degraded version $y$, the reconstruction-based algorithms aim to get the desired result $\hat{x}$ by solving

$$\hat{x} = \arg \min_x ||Hx - y||_2^2 + R(x),$$

where $H$ is the degradation matrix and $R(x)$ is regularization, also called prior from the Bayesian view. [94] split (4) into a data part and a prior part with variable splitting techniques, then replaced prior part with efficient denoising algorithms, acting as a pre-processing step before reconstruction. When comes to different degradation cases, one only needs to change denoising algorithms for the prior part, behaving in so-called plug-and-play manners. Recent works [95], [96], [97] use deep discriminatively trained NN under different noise levels as denoisers in various inverse problems, and IRCNN [96] is the first one among them to handle SISR. In IRCNN, they firstly trained a series of CNN-based denoisers with different noise levels, and took back-projection as the reconstruction part. The LR are firstly proceeded by several back-projection iterations and then denoised by CNN denoisers with decreasing noise level along with back-projection. The iteration number is empirically set to 30. In IRCNN, they use deep networks to learn a set of image priors and then plug the priors into the reconstruction framework, and the experimental results in these cases are clearly better than the contemporary methods.
only with example-based training.

Recently, Ulyanov et al. showed in [98] that the structure of deep neural networks can capture a great deal of low-level image statistical prior. They reported that when neural networks are used to fit images of different statistical properties, the convergence speed for different kinds of images can be also different. As shown in Fig.9 naturally-looking images, whose different parts are highly relevant, will converge much faster. On the contrary, images such as noises and shuffled images, which have little inner relationship, tend to converge more slowly. As many inverse problems such as denoising and super-resolution are modeled as the pixel-wise summation of the original image and the independent additive noises. Based on the observed prior, when used to fit these degraded images, the neural networks tend to fit the naturally-looking images first, which can be used to retain the naturally-looking parts as well as filter the noisy ones. To illustrate the effectiveness of the proposed prior for SISR, only given the LR \( x_0 \), they took a fixed random vector \( z \) as input to fit the HR \( x \) with a randomly-initialized DNN \( f_\theta \) by optimizing

\[
\min_\theta ||d(f_\theta(z)) - x_0||_2^2, \tag{5}
\]

where \( d(\cdot) \) is common differentiable downsampling operator. The optimization is terminated in advance for only filtering noisy parts. Although this novel totally unsupervised methods are outperformed by other supervised learning methods, it does considerably better than some other naive methods.

Deep architectures with internal-examples: Internal-example SISR algorithms are based on the recurrence of small pieces of information across different scales of a single image, which are shown to be better at dealing with specific details rarely existing in other external images [99]. ZSSR [100] proposed by Shocher et al. is the first literature combining deep architectures with the internal-example learning. In ZSSR, besides the image for testing, no extra images are needed and all the patches for training are taken from different degraded pairs of the test image. As demonstrated in [101], the visual entropy inside a single image is much smaller than the vast training dataset collected from wide ranges, so unlike external-example SISR algorithms, a very small CNN is sufficient. As we mentioned before in VDSR, the training data for a small-scale model can also be useful for training big-scale models. Also based on this trick, ZSSR can be more robust by collecting more internal training pairs with small scale factors for training big-scale models. However, it will increase runtime immensely. Notably, when combined with the kernel estimation algorithms mentioned in [102], ZSSR performs quite well with the unknown degradation kernels.

Recently, Tirer et al. argued that degradation in LR decreases the performance of internal-example algorithms [103]. Therefore, they proposed to use reconstruction-based deep frame IDBP [97] to get a primary SR result, and then conduct internal-example based network training like ZSSR. This method was believed to combine two successful techniques on handling the mismatch between training and test, and has achieved robust performance in these cases.

C. Comparisons among Different Models and Discussion

In this section, we will summarize recent progress in deep architectures for SISR from two perspectives: quantitative comparisons for those trained for specific blurry, and comparisons on those models for handling non-specific blurry.

For the first part, quantitative criteria mainly include:

1) PSNR/SSIM [104] for measuring reconstruction quality: Given two images \( I \) and \( \hat{I} \) both with \( N \) pixels, MSE and peak signal-to-noise ratio (PSNR) are defined as

\[
MSE = \frac{1}{N} ||I - \hat{I}||_2^2, \tag{6}
\]

\[
PNSR = 10 \log_{10} \left( \frac{\mu_i}{\sigma_i^2} \right), \tag{7}
\]

where \( || \cdot ||_2^2 \) is the Frobenius norm and \( L \) is usually 255. Structural similarity index (SSIM) is defined as

\[
SSIM(I, \hat{I}) = \frac{2\mu_I \mu_{\hat{I}} + k_1}{\mu_I^2 + \mu_{\hat{I}}^2 + k_1} \cdot \frac{2\sigma_I \sigma_{\hat{I}} + k_2}{\sigma_I^2 + \sigma_{\hat{I}}^2 + k_2}, \tag{8}
\]

where \( \mu_I \) and \( \sigma_I^2 \) is the mean and variance of \( I \), \( \sigma_{\hat{I}}^2 \) is the covariance between \( I \) and \( \hat{I} \), and \( k_1 \) and \( k_2 \) are constant relaxation terms.

2) Amount of parameters of NN for measuring storage efficiency (Params).

3) Amount of composite multiply-accumulate operations for measuring computational efficiency (Mult&Adds): Since operations in NNs for SISR are mainly multiplications with additions, here we use Mult&Adds in CARN [105] to measure computation, assuming that the wanted SR is 720p.

Notably, It has been shown in [48] and [49] that the training datasets have great influences on the final performance, and usually more abundant training data will lead to better results. Generally, these models are trained via three main datasets: 1) 91 images from [19] and 200 images from [106], called the 291 dataset (some models only use 91 images); 2) images derived from ImageNet [107] randomly; and 3) the newly published DIV2K dataset [108]. Beside the different number of patches for training, no extra images are needed and all the patches for testing are taken from different degraded pairs of the test image. As demonstrated in [101], the visual entropy inside a single image is much smaller than the vast training dataset collected from wide ranges, so unlike external-example SISR algorithms, a very small CNN is sufficient. As we mentioned before in VDSR, the training data for a small-scale model can also be useful for training big-scale models. Also based on this trick, ZSSR can be more robust by collecting more internal training pairs with small scale factors for training big-scale models. However, it will increase runtime immensely. Notably, when combined with the kernel estimation algorithms mentioned in [102], ZSSR performs quite well with the unknown degradation kernels.

Recently, Tirer et al. argued that degradation in LR decreases the performance of internal-example algorithms [103]. Therefore, they proposed to use reconstruction-based deep frame IDBP [97] to get a primary SR result, and then conduct internal-example based network training like ZSSR. This method was believed to combine two successful techniques on handling the mismatch between training and test, and has achieved robust performance in these cases.
of images each dataset contains, the quality of images in each dataset is also different. Images in the 291 dataset are usually small (on average $150 \times 150$), images in ImageNet are much bigger, while images in DIV2K are of very high quality. Because of the restricted resolution of the images in the 291 dataset, models on this set have difficulties in getting big patches with big receptive fields. Therefore, models based on the 291 datasets usually take the bicubic of LR as input, which is quite time-consuming. Table I compares different models on the mentioned criterions.

From Table I we can see that generally as the depth and the number of parameters grow, the performance improves. However, the growth rate of performance levels off. Recently some works on designing light models [109], [105], [110] and learning sparse structural NN [111] were proposed to achieve relatively good performance with less storage and computation, which are very meaningful in practice.

As for the second part, we mainly show that the performance of the models for some specific degradation dropped drastically when the true degradation mismatches the one assumed for training. For example, when we use an $7 \times 7$ Gaussian kernel with width 1.6 and direct downsampler with scale 2 to get an LR, and use the EDSR trained with bicubic degradation, IRCNN, SRMD and ZSSR to generate SR output. As shown in Fig 10, the performance of EDSR dropped drastically with obvious blurry, while other models for non-specific degradation performs quite well. Therefore, to tackle some longstanding problems in SISR such as unknown degradation, the direct usage of general deep learning techniques may be not enough. More effective solutions can be achieved by combining the power of DL and the specific properties of SISR scene.

IV. Optimization Objectives for DL-based SISR

A. Benchmark of Optimization Objectives for DL-based SISR

We select the MSE loss used in SRCNN as the benchmark. It is known that using MSE favors a high PSNR, and PSNR is a widely-used metric for quantitatively evaluating image restoration quality. Optimizing MSE can be viewed as a regression problem, leading to a point estimation of $\theta$ as

$$\min_{\theta} \sum_{i} ||F(x_i; \theta) - y_i||^2,$$  \hspace{1cm} (9)

where $(x_i, y_i)$ are the $i$th training examples and $F(x; \theta)$ is a CNN parameterized by $\theta$. Here $\theta$ can be interpreted in a probabilistic way by assuming Gaussian white noise ($N(0; \sigma^2 I)$) independent of image in the regression model, and then the conditional probability of $y$ given $x$ becomes a Gaussian distribution with mean $F(x; \theta)$ and diagonal covariance matrix $\sigma^2 I$, where $I$ is the identity matrix.

$$p(y|x) = N(y; F(x; \theta), \sigma^2 I).$$  \hspace{1cm} (10)

Then using maximum likelihood estimation (MLE) on the training examples with (10) will lead to (9).

The Kullback-Leibler divergence (KLD) between the conditional empirical distribution $P_{data}$ and the conditional model distribution $P_{model}$ is defined as

$$D_{KL}(P_{data}||P_{model}) = E_{z \sim P_{data}}[\log \frac{P_{data}(z)}{P_{model}(z)}].$$  \hspace{1cm} (11)

We call (11) the forward KLD, where $z = y|x$ denotes the HR (SR) conditioned on its LR counterpart, $P_{data}$ and $P_{model}$ is the conditional distribution of HR|LR and SR|LR respectively, where $E_{z \sim P_{data}}[\log P_{data}(z)]$ is an intrinsic term determined by the training data regardless of the parameter $\theta$ of the model (or say the model distribution $P_{model}(x; \theta)$). Hence when we use the training samples to estimate parameter $\theta$, minimizing this KLD is equivalent to MLE.

Here we have demonstrated that MSE is a special case of MLE, and furthermore MLE is a special case of KLD. However, we may wonder what if the assumptions underlying these specialization are violated. This has led to some emerging objective functions from four perspectives:

1) Translating MLE into MSE can be achieved by assuming Gaussian white noise. Despite the Gaussian model is the most widely-used model for its simplicity and theoretical support, what if this independent Gaussian noise assumption is violated in a complicated scene like SISR?

2) To use MLE, we need to assume the parametric form the data distribution. What if the parametric form is mis-specified?

3) Apart from KLD in (11), are there any other distances between probability measures which we can use as the optimization objectives for SISR?

4) Under specific circumstances, how can we choose the suitable objective functions according to their properties?

Based on some solutions to these four questions, recent work on optimization objectives for DL-based SISR will be discussed in sections IV-B, IV-C, IV-D and IV-E respectively.

B. Objective Functions Based on non-Gaussian Additive Noises

The poor perceptual quality of the SISR images obtained by optimizing MSE directly demonstrates a fact: using Gaussian additive noise in the HR space is not good enough. To tackle this problem, solutions are proposed from two aspects: use other distributions for this additive noise, or transfer the HR space to some space where the Gaussian noise is reasonable.

1) Denote Additive Noise with Other Probability Distribution: In [112], Zhao et al. investigated the difference between mean absolute error (MAE) and MSE used to optimize NN in image processing. Like [1], MAE can be written as

$$\min_{\theta} \sum_{i} ||F(x_i; \theta) - y_i||_1.$$  \hspace{1cm} (12)

From the perspective of probability, (12) can be interpreted as introducing Laplacian white noise, and like (10), the conditional probability becomes

$$p(y|x) = \text{Laplace}(y; F(x; \theta), bI).$$  \hspace{1cm} (13)

Compared with MSE in regression, MAE is believed to be more robust against outliers. As reported in [112], when MAE is used to optimize an NN, the NN tends to converge faster and produce better results. They argued that this might be because...
Table I: Comparisons among some representative deep models.

| Models     | PSNR/SSIM (×4) | Train data          | Parameters | Mult&Adds |
|------------|----------------|---------------------|------------|-----------|
| SRCNN_EX   | 30.49/0.8628   | ImageNet subset     | 57K        | 52.5G     |
| ESPCN      | 30.90/-        | ImageNet subset     | 20K        | 1.43G     |
| VDSR       | 31.35/0.8838   | G200+Yang91         | 665K       | 612.6G    |
| DRCN       | 31.53/0.8838   | Yang91              | 1.77M (recursive) | 17974.3G |
| DRRN       | 31.68/0.8888   | G200+Yang91         | 297K (recursive) | 6796.9G  |
| LapSRN     | 31.54/0.8855   | G200+Yang91         | 812K       | 29.9G     |
| SRResNet   | 32.05/0.9019   | ImageNet subset     | 1.5M       | 127.8G    |
| MemNet     | 31.74/0.8893   | G200+Yang91         | 677K (recursive) | 2265.0G |
| RDN        | 32.61/0.9003   | DIV2K               | 22.6M      | 1300.7G   |
| EDSR       | 32.62/0.8984   | DIV2K               | 43M        | 2890.0G   |
| MDSR       | 32.60/0.8982   | DIV2K               | 8M         | 407.5G    |
| DBPN       | 32.47/0.898    | DIV2K+Flickr+ImageNet subset | 10M    | 5715.4G   |

Figure 10: Comparisons of 'monarch' in Set14 for scale 2 with Gaussian kernel degradation. We can see that, faced with degradation mismatching the one for training, the performance of EDSR drops drastically.

MAE could guide NN to reach a better local minimum. Other similar loss functions in robust statistics can be viewed as modeling additive noises with other probability distributions.

Although these specific distributions often cannot represent unknown additive noise very precisely, their corresponding robust statistical loss functions are used in many DL-based SISR work for their conciseness and advantages over MSE.

2) Using MSE in a Transformed Space: Alternatively, we can search for a mapping \( \Psi \) to transform the HR space to a certain space where Gaussian white noise can be used reasonably. From this perspective, Bruna et al. \[113\] proposed so-called perceptual loss to leverage deep architectures. In \[113\], the conditional probability of the residual \( r \) between HR and LR given the LR \( x \) is stimulated by the Gibbs energy model:

\[
p(r|x) = \exp(-||\Phi(x) - \Psi(r)||^2 - \log Z),
\]

where \( \Phi \) and \( \Psi \) are two mappings between the original spaces and the transformed ones, and \( Z \) is the partition function. The features produced by sophisticated supervised deep architectures have been shown to be perceptually stable and discriminative, denoted by \( \Psi(r) \). Then \( \Psi \) is the corresponding deep architectures. In contrast, \( \Phi \) is the mapping between the LR space and the manifold represented by \( \Psi(r) \), trained by minimizing the Euclidean distance as

\[
\min_{\Phi} ||\Phi(x) - \Psi(r)||^2.
\]

After \( \Phi \) is obtained, the final result \( r \) can be inferred with SGD by solving

\[
\min_{r} ||\Phi(x) - \Psi(r)||^2.
\]

For further improvement, \[113\] also proposed a fine-tuning algorithm in which \( \Phi \) and \( \Psi \) can be fine-tuned to the data. Like the alternating updating in GAN, \( \Phi \) and \( \Psi \) are fine-tuned with SGD based on current \( r \). However, this fine-tuning will involve calculating gradient of partition function \( Z \), which is a well-known difficult decomposition into the positive phase and the negative phase of learning. Hence to avoid sampling within inner loops, a biased estimator of this gradient is chosen for simplicity.

\( \Psi \) Either scattering network or VGG can be denoted by \( \Psi \). When \( \Psi \) is VGG, there is no residual learning and fine-tuning.
The inference algorithm in [113] is extremely time-consuming. To improve efficiency, Johnson et al. utilized this perceptual loss in an end-to-end training manner [114]. In [114], the SISR network is directly optimized with SGD by minimizing the MSE in the feature manifold produced by VGG-16 as follows:

\[
\min_{\theta} \| \psi(F(x; \theta)) - \psi(y) \|^2,
\]

where \( \psi \) is the mapping represented by VGG-16, \( F(x; \theta) \) denotes the SISR network, and \( y \) is the ground truth. Compared with [113], [114] replaces the nonlinear mapping \( \Phi \) and the expensive inference with an end-to-end trained CNN, and their results show that this change does not affect the restoration quality, but does accelerate the whole process.

Perceptual loss mitigates blurry and leads to more visually-pleasing results, compared with directly optimizing MSE in the HR space. However, there remains no theoretical analysis why it works. In [113], the author generally concluded that successful supervised networks used for high-level tasks can produce very compact and stable features. In these feature spaces, small pixel-level variation and many other trivial information can be omitted, making these feature maps mainly focusing on human-interested pixels. At the same time, with the deep architectures, the most specific and discriminative information of input are shown to be retained in feature spaces because of the great performance of the models applied in various high-level tasks. From this perspective, using MSE in these feature spaces will focus more on the parts which information of input are shown to be retained in feature spaces, so perceptually pleasing results can be obtained.

### C. Optimizing Forward KLD with Non-parametric Estimation

Parametric estimation methods such as MLE need to specify in advance the parametric form of the distribution of data, which suffer from model misspecification. Different from parametric estimation, non-parametric estimation methods such as kernel distribution estimation (KDE) fit the data without distributional assumptions, which are robust when the real distributional form is unknown. Based on non-parametric estimation, non-parametric estimation methods such as kernel density estimation (KDE) fit the data without distributional assumptions, which are robust when the real distributional form is unknown. Based on non-parametric estimation, non-parametric estimation methods such as kernel density estimation (KDE) fit the data without distributional assumptions, which are robust when the real distributional form is unknown.

Recently, implicit likelihood estimation (IMLE) [117] was proposed and its conditional version is applied to SISR [118]. Here we will briefly show that minimizing IMLE equals to minimizing an upper bound of the forward KLD with KDE. Let us use a Gaussian kernel as

\[
K(x, y) = \exp(-\text{dist}(x, y)/h - \log Z),
\]

where \( \text{dist}(x, y) \) can be any symmetric distance between \( x \) and \( y \), \( h \) is the bandwidth, and the partition function \( Z = \int \exp(-\text{dist}(x, y)/h)dy \). Then \( P_{\text{data}} \) and \( P_{\text{model}} \) are

\[
P_{\text{data}}(z) = \sum_{z_i \sim P_{\text{data}}} K(z, z_i),
\]

\[
P_{\text{model}}(z) = \sum_{w_j \sim P_{\text{model}}} K(z, w_j),
\]

and (11) can be rewritten as

\[
D_{\text{KL}}(P_{\text{data}} || P_{\text{model}}) = \frac{1}{N} \sum_k \left[ \log \sum_{z_i \sim P_{\text{data}}} K(z_k, z_i) - \log \sum_{w_j \sim P_{\text{model}}} K(z_k, w_j) \right].
\]

The first log term in (20) is a constant with respect to the model parameters. Let us denote the kernel \( K(z_k, w_j) \) in the second log term by \( A_{kj} \). Then the optimization objective in (20) can be rewritten as

\[
- \frac{1}{N} \sum_k \log \sum_j A_{kj}.
\]

With the Jensen inequality, we can get a lower bound of (21):

\[
- \frac{1}{N} \sum_k \log \sum_j A_{kj} \geq - \log \frac{1}{N} \sum_k \sum_j A_{kj} \geq 0.
\]

The first equality holds if and only if \( \forall k, k', \sum_j A_{kj} = \sum_j A_{kj'} \). Both equalities hold if and only if \( \forall k, \sum_j A_{kj} = 0 \). When (21) reaches 0, the given lower bound also reaches 0. Therefore, we can take this lower bound as optimization objective alternatively.

We can further simplify the lower bound in (22). The lower bound can be rewritten as

\[
- \log \frac{1}{N} \sum_j \| A_j \|_1,
\]

where \( A_j = (A_{1j}, \cdots, A_{kj})^T \), and \( \| \cdot \|_1 \) is the \( \ell_1 \) norm. When the bandwidth \( h \rightarrow 0 \), the affinity \( A_{kj} \) will degrade into indicator function, which means when \( x_k = y_j, A_{kj} \approx 1 \), else \( A_{kj} \approx 0 \). In this case, \( \ell_1 \) norm can be approximated well by \( \ell_infty \) norm, which returns the maximum element of the vector. Thus (23) can degenerate into the contextual loss in [115], [116]:

\[
- \log \frac{1}{N} \sum_k \max_j A_{kj}.
\]

Recently, implicit likelihood estimation (IMLE) [117] was proposed and its conditional version is applied to SISR [118]. Here we will briefly show that minimizing IMLE equals to minimizing an upper bound of the forward KLD with KDE. Let us use a Gaussian kernel as

\[
K(x, y) = \frac{1}{\sqrt{2\pi}h} \exp\left(-\frac{\|x - y\|^2_2}{2h^2}\right).
\]

As with (21), the optimization objective can be rewritten as

\[
- \frac{1}{N} \sum_k \log \sum_j e^{-\frac{\|x_k - w_j\|^2_2}{2h^2}}.
\]

With \( \{w_j\}_{j=1}^m \) and \( \{z_k\}_{k=1}^N \), we can get a simple upper bound of (26) as

\[
- \frac{1}{N} \sum_k \log \left( m \min_j e^{-\frac{\|x_k - w_j\|^2_2}{2h^2}} \right)
\]

\[
= \frac{1}{N} \sum_k \left( \min_j \|z_k - w_j\|^2_2 - \log m \right).
\]
Minimizing (27) equals to minimizing
\[
\sum_k \min_j \|z_k - w_j\|_2^2,
\]
which is the core of the optimization objective of IMLE.

As above, the recently proposed contextual loss and IMLE are illustrated via non-parametric estimation and KLD. Visually pleasing results were reported from using the contextual loss and IMLE. However, as KDE is generally very time-consuming, several reasonable approximations along with acceleration algorithms were applied.

D. Other Distances between Probability Measures Used in SISR

As KLD is an asymmetric (pseudo) distance for measuring similarity between two distributions, in this subsection we begin with the inverse form of forward KLD, namely backward KLD. The backward KLD is defined as
\[
D_{KL}(P_{model}\|P_{data}) = E_{z \sim P_{model}}[\log \frac{P_{model}(z)}{P_{data}(z)}].
\]

When \(P_{model} = P_{data}\), both KLDs come to the minimum 0. However, when the solution is inadequate, these two KLDs will lead to quite different results. Here we use a toy example to illustrate a simple case of inadequate solutions, as shown in Fig.11. The unknown wanted distribution is a Gaussian mixture model (GMM) with two modes, denoted as \(\phi^*\) in Fig.11. The backward KLD will make the result close to the biggest mode. From Fig.11 we can see that, under inadequate solutions, optimizing the forward KLD results in a solution locating at the middle areas of two modes, while optimizing the backward KLD makes the result close to the biggest mode.

Different distances may lead to different results under inadequate solution. Reader can refer to [120] for further understanding. In most low-level computer vision tasks, \(P_{data}\) is an empirical distribution and \(P_{model}\) is an intractable distribution. For this reason, the backward KLD is unpractical for optimizing deep architectures. To relieve optimizing difficulties, we replace the asymmetric KLD with the symmetric Jensen-Shannon divergence (JSD) as follows:
\[
JS(P_{data}\|P_{model}) = \frac{1}{2} KL[P_{data}\|P_{data} + P_{model}] + \frac{1}{2} KL[P_{model}\|P_{data} + P_{model}].
\]

Optimizing (30) explicitly is also very difficult. Generative adversarial nets (GAN) proposed by Goodfellow et al. use the objective function below to implicitly handle this problem in a game theory scenario, successfully avoiding the troubling approximate inference and approximation of the partition function gradient:
\[
\min_G \max_D [E_{z \sim P_{data}} \log D(z) + E_{z \sim P_{model}} \log(1 - D(z))],
\]
where \(G\) is the main part called generator supervised by an auxiliary part \(D\) called discriminator. The two parts update alternatively and when the discriminator cannot give useful information to the generator anymore, in other words, the outputs of the generator totally confuse the discriminator, the optimization procedure is completed. For the detailed discussion on GAN, readers can refer to [45]. Recent works have shown that sophisticated architectures and suitable hyperparameters can help GAN perform excellently. The representative works on GAN-based SISR are [68] and [121]. In [68], the generator of GAN is the SRResNet mentioned before, and the discriminator refers to the design criterion of DCGAN [53]. In the context of GAN, a recent work [121] follows the similar path except with a different architecture. Very recently, by leveraging the extension of the basic GAN framework [122], [123] was proposed as an unsupervised SR algorithm. Fig.12 shows the results of GAN and MSE with the same architecture; despite the lower PSNR due to artifacts, the visual quality really improves by using GAN for SISR.

Generally speaking, GAN offers an implicit optimization strategy in an adversarial training way by using deep neural networks. Based on this, more rational but complicated measures such as Wasserstein distances [124], \(f\)-divergence [125] and maximum mean discrepancy (MMD) [126] are taken as alternatives to JSD for training GAN.

E. Characters of Different objective functions

Now we can see that those losses mentioned in section IV-B explicitly model the relation between LR and its HR counterpart. Here we go along the methodology of [127] and call the losses, that were based on measuring the dissimilarity between training pairs, distortion-aimed losses. When the training data are not enough, distortion losses usually ignore the particularity of data and appear ineffective to measure the similarity between the source and target distributions.

The losses mentioned in sections IV-C and IV-D are rooted from measuring similarity between distributions, which is thought to measure the perceptual quality. Here we call them

\[\text{Forward KLD, backward KLD and JSD can all be regarded as the special cases of } f\text{-divergence.} \]
Figure 12: Visual comparisons between the MSE, MSE + GAN and MAE + GAN + Contextual Loss (The authors of [68] and [116] released their results.) We can see that the perceptual loss leads to a lower PSNR/SSIM but a better visual quality.

Figure 13: (a) The perception-distortion space is divided by the perception-distortion curve, where an area cannot be attained. (b) Use the non-reference metric proposed by [95] and RMSE to perform quantitative comparisons from the perception and distortion views; the included methods are [47], [84], [71], [61], [68], [121], [116], [114].

perception-aimed losses. Recently, Blau et al. [127] discussed the inherent trade-off between the two kind losses. Their discussion can be simplified into an optimization problem:

$$P(D) = \min_{P_{\hat{Y}|X}} d(P_Y, P_{\hat{Y}}) \text{ s.t. } E[\Delta(Y, \hat{Y})] \leq D.$$  \hspace{1cm} (32)

$\Delta(\cdot, \cdot)$ is distortion-aimed loss, and $d(\cdot, \cdot)$ is the (pseudo) distance between distributions. Furthermore, the author also proved if $d(\cdot, \cdot)$ is convex in its second argument, the $P(D)$ is monotonically non-increasing and convex. From this property, we can draw the curve of $P(D)$ and easily see this trade-off as shown in Fig.13(a), improving one must be at the cost of the other. However, as shown in section [IV-B], using MSE in the VGG feature space achieves a better quality, and choosing suitable $\Delta$ and $d$ may ease this trade-off.

As for the perception-aimed losses mentioned in sections [IV-C] and [IV-D] up to now there is no rigorous analysis on their differences. Here we apply the non-reference quality assessment proposed by Ma et al. [95] with RMSE to conduct quantitative comparisons, and the representative qualitative comparisons are depicted in Fig.13(b). To summarize, we should be aware that there is no one-fits-all objective function and we should choose one suitable to the context of an application.

V. TRENDS AND CHALLENGES

Along with the promising performance the DL algorithms have achieved in SISR, there remains several important challenges as well as inherent trends as follows.

1) Lighter Deep Architectures for Efficient SISR: Although high accuracy of advanced deep models has been achieved for SISR, it is still difficult to deploy these model to real-world scenarios, mainly due to massive parameters and computation. To tackle this, we need to design light deep models or slim the existing deep models for SISR with less parameters and computation at the expense of little or no performance degradation. Hence in the future, researchers are expected to
focus more on reducing the size of NN for speeding up the SISR process.

2) More Effective DL Algorithms for Large-scale SISR and SISR with Unknown Corruption: Generally speaking, DL algorithms proposed in recent years have improved the performance of traditional SISR tasks by a large margin. However, the large scale SISR and the SISR with unknown corruption, the two big challenges in the SR community, are still lacking very effective remedies. DL algorithms are thought to be skilled at handling many inference or unsupervised problems, which is of key importance to tackle these two challenges. Therefore, leveraging great power of DL, more effective solutions to these two tough problems are expected.

3) Theoretical Understanding of Deep Models for SISR: The success of deep learning is said to be attributed to learning powerful representations. However, up to present, we still cannot understand these representations very well and the deep architectures are treated like a black box. As for DL-based SISR, the deep architectures are often viewed as a universal approximation, and the learned representations are often omitted for simplicity. This behavior is not beneficial for further exploration. Therefore, we should not only focus on whether a deep model works, but also concentrate on why it works and how it works. That is to say, more theoretical explorations are needed.

4) More Rational Assessment Criterion for SISR in Different Applications: In many applications, we need to design a desired objective function for a specific application. However, in most cases, we cannot give an explicit and precise definition to assess the requirement for the application, which leads to vagueness of the optimization objectives. Many works, although for different purposes, simply employ MSE as the assessment criterion, which has been shown as a poor criterion in many cases. In the future, we think it is of great necessity to make clear definitions for assessments in various applications. Based on these criterion, we can design better targeted optimization objectives and compare algorithms in the same context more rationally.

VI. CONCLUSION

This paper presents a brief review of recent deep learning algorithms on SISR. It divides the recent works into two categories: the deep architectures for simulating SISR process and the optimization objectives for optimizing the whole process. Despite the promising results reported so far, there are still many underlying problems. We summarize the main challenges into three aspects: the accelerating of deep models, the extensive comprehension of deep models and the criterion for designing and evaluating the objective functions. Along with these challenges, several directions may be further explored in the future.

ACKNOWLEDGMENT

We are grateful to the authors of [47], [84], [71], [61], [68], [121], [116], [114], [96], [92], [100] for kindly releasing their experimental results or codes, and to the three anonymous reviewers for their constructive criticism, which has significantly improved our manuscript.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.
[4] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep neural networks with multitask learning,” in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp. 160–167.
[5] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A benchmark,” in European Conference on Computer Vision. Springer, 2014, pp. 372–386.
[6] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve example-based single image super resolution,” in Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on. IEEE, 2016, pp. 1865–1873.
[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
[9] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE signal processing magazine, vol. 20, no. 3, pp. 21–36, 2003.
[10] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE transactions on acoustics, speech, and signal processing, vol. 29, no. 6, pp. 1153–1160, 1981.
[11] C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal of applied meteorology, vol. 18, no. 8, pp. 1016–1022, 1979.
[12] S. Dai, M. Han, W. Xu, Y. Wu, Y. Gong, and A. K. Katsaggelos, “Soft-cuts: a soft edge smoothness prior for color image super-resolution,” IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 969–981, 2009.
[13] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient profile prior,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.
[14] Q. Yan, Y. Xu, X. Yang, and T. Q. Nguyen, “Single image superresolution based on gradient profile sharpness,” IEEE Transactions on Image Processing, vol. 24, no. 10, pp. 3187–3202, 2015.
[15] A. Marquina and S. J. Osher, “Image super-resolution by TV regularization and Bregman iteration,” Journal of Scientific Computing, vol. 37, no. 3, pp. 367–382, 2008.
[16] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,” IEEE Computer graphics and Applications, vol. 22, no. 2, pp. 56–65, 2002.
[17] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1. IEEE, 2004, pp. I–I.
[18] M. Aharon, M. Elad, A. Bruckstein et al., “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Transactions on signal processing, vol. 54, no. 11, p. 4311, 2006.
[19] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873, 2010.
[20] R. Zeyde, M. Elad, and M.Protter, “On single image scale-up using sparse representation,” in International conference on curves and surfaces. Springer, 2010, pp. 711–730.
[21] R. Timofte, V. De, and L. Van Gool, “Anchored neighborhood regression for fast example-based super-resolution,” in Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013, pp. 1920–1927.
[22] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored neighborhood regression for fast super-resolution,” in Asian Conference on Computer Vision. Springer, 2014, pp. 111–126.
[23] F. Cao, M. Cui, Y. Tan, and J. Zhao, “Image super-resolution via adaptive \( L_p \) (0 < \( p < 1 \)) regularization and sparse representation,” IEEE transactions on neural networks and learning systems, vol. 27, no. 7, pp. 1550–1561, 2016.
S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in 2013 IEEE Global Conference on Signal and Information Processing. IEEE, 2013, pp. 945–948.

T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers, “Learning proximal operators: Using denoising networks for regularizing inverse imaging problems,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1781–1790.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior for image restoration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3929–3938.

T. Tirer and R. Giryes, “Image restoration by iterative denoising and backward projections,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1220–1234, 2019.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” arXiv preprint arXiv:1711.10925, 2017.

K. Zhang, X. Gao, D. Tao, and X. Li, “Single image super-resolution with multiscale similarity learning,” IEEE transactions on neural networks and learning systems, vol. 24, no. 10, pp. 1648–1659, 2013.

A. Shocher, N. Cohen, and M. Irani, “Zero-shot super-resolution using deep internal learning,” arXiv preprint arXiv:1712.06087, 2017.

M. Zontak and M. Irani, “Internal statistics of a single natural image,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 977–984.

T. Michaeli and M. Irani, “Nonparametric blind super-resolution,” in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 945–952.

T. Tirer and R. Giryes, “Super-resolution based on image-adapted CNN denoisers: Incorporating generalization of training data and internal learning in test time,” arXiv preprint arXiv:1811.12866, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and, lightweight super-resolution with cascading residual network,” arXiv preprint arXiv:1803.08664, 2018.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 2. IEEE, 2001, pp. 416–423.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image super-resolution: Dataset and study,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 3, 2017, p. 2.

Z. Yang, K. Zhang, Y. Liang, and J. Wang, “Single image super-resolution with a parameter economic residual-like convolutional neural network,” in International Conference on Multimedia Modeling. Springer, 2017, pp. 353–364.

Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-resolution via information distillation network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 723–731.

X. Fan, Y. Yang, C. Deng, J. Xu, and X. Gao, “Compressed multi-scale feature fusion network for single image super-resolution,” Signal Processing, vol. 146, pp. 50–60, 2018.

H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for neural networks for image processing,” Computer Science, 2015.

J. Bruna, P. Sprechmann, and Y. LeCun, “Super-resolution with deep convolutional sufficient statistics,” arXiv preprint arXiv:1511.05666, 2015.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision. Springer, 2016, pp. 694–711.

R. Mechrez, I. Talmi, F. Shama, and L. Zelnik-Manor, “Learning to maintain natural image statistics,” arXiv preprint arXiv:1803.04629, 2018.

R. Mechrez, I. Talmi, and L. Zelnik-Manor, “The contextual loss for image transformation with non-aligned data,” arXiv preprint arXiv:1803.02077, 2018.

K. Li and J. Malik, “Implicit maximum likelihood estimation,” arXiv preprint arXiv:1809.09055, 2018.

K. Li, S. Peng, and J. Malik, “Super-resolution via conditional implicit maximum likelihood estimation,” arXiv preprint arXiv:1810.01406, 2018.
[119] F. Huszár, “How (not) to train your generative model: Scheduled sampling, likelihood, adversary?” arXiv preprint arXiv:1511.05101, 2015.

[120] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative models,” arXiv preprint arXiv:1511.01844, 2015.

[121] M. S. Sajjadi, B. Schölkopf, and M. Hirsch, “EnhanceNet: Single image super-resolution through automated texture synthesis,” in Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017, pp. 4501–4510.

[122] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” arXiv preprint, 2017.

[123] Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin, “Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018, pp. 814–823.

[124] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint arXiv:1701.07875, 2017.

[125] S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: Training generative neural samplers using variational divergence minimization,” in Advances in Neural Information Processing Systems, 2016, pp. 271–279.

[126] D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton, “Generative models and model criticism via optimized maximum mean discrepancy,” arXiv preprint arXiv:1611.04488, 2016.

[127] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6228–6237.