Implications of improved representations of plant respiration in a changing climate

Chris Huntingford1, Owen K. Atkin2,3, Alberto Martinez-de la Torre1, Lina M. Mercado1,4, Mary A. Heskel5, Anna B. Harper6, Keith J. Bloomfield2, Odhran S. O’Sullivan2, Peter B. Reich7,8, Kirk R. Wythers7, Ethan E. Butler7, Ming Chen7, Kevin L. Griffin9, Patrick Meir2,10, Mark G. Tjoelker8, Matthew H. Turnbull11, Stephen Sitch4, Andy Wiltshire12 & Yadvinder Malhi13

Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (Rd) and temperature dependencies. This allows characterisation of baseline Rd, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates Rd to whole-plant respiration Rp, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline Rd increases Rp and especially in the tropics. Compared to new baseline, revised instantaneous response decreases Rp for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new Rd estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how Rd aggregates to whole-plant respiration. Our analysis suggests Rp could be around 30% higher than existing estimates.

1Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK. 2Division of Plant Sciences, Research School of Biology, The Australian National University, Building 134 Canberra, ACT 2601, Australia. 3ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134 Canberra, ACT 2601, Australia. 4College of Life and Environmental Sciences, Amory Building, University of Exeter, Rennes Drive Exeter, EX4 4RJ, UK. 5The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street Woods Hole, MA 02543, USA. 6College of Engineering, Mathematics and Physical Sciences, Laver Building, University of Exeter, North Park Road Exeter, EX4 4QF, UK. 7Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North St Paul, MN 55108, USA. 8Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia. 9Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-8000, USA. 10School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK. 11Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. 12Met Office, FitzRoy Road Exeter, Devon EX1 3PB, UK. 13School of Geography and the Environment, Oxford University Centre for the Environment, University of Oxford, South Parks Road Oxford, OX1 3QY, UK. Correspondence and requests for materials should be addressed to C.H. (email: chg@ceh.ac.uk)
ossil fuel burning is increasing atmospheric carbon dioxide (CO₂) concentrations, which both model- and data-based evidence indicates is warming the planet. Approximately 25% of CO₂ emissions have been assimilated into terrestrial ecosystems, and whether this continues affects future temperatures. To enable planning for climate change requires robust descriptions of atmospheric CO₂ capture by photosynthesis (gross primary productivity; GPP) and release by plant (and soil) respiration. The first climate-carbon cycle projection by a global climate model (GCM), HadCM3, identified upper canopy leaf-level dark respiration, \(R_d \) (\(\mu \text{mol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1} \)), as a quantity central to predictions of whole-plant respiration. \(R_d \) is parameterised at reference leaf-level temperature 25°C as \(R_{d,25} \) (\(\mu \text{mol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1} \)). In the HadCM3 simulation\(^1\), \(R_{d,25} \) is assumed to be a proportion of maximum carboxylation rate of Rubisco at 25°C (\(V_{\text{max},25} \) (\(\mu \text{mol} \text{CO}_2 \text{mg}^{-1} \text{plant}^{-1} \text{s}^{-1} \))), itself dependent on mass-based leaf nitrogen concentration, \(n_l \) (\(\text{kg} \text{N (kg C)}^{-1} \)). At different leaf-level temperatures, \(R_d \) follows a \(Q_{10} = 2.0 \) response, thus doubling over 10°C intervals, although in newer simulations \(R_d \) is suppressed at very high (and low) temperatures2 (Methods), and \(R_d \) via mean air temperature of preceding 10 days16. The latter study16 uses data on \(R_d \) from juveniles of 19 plant species grown under hydroponic and controlled environment conditions7; GlobResp, however, is a dataset roughly 50 times larger and based on mature plants in the field across global climate gradients. Retaining that respiration acclimates to mean air temperature of the preceding 10 days (\(T_G \) (°C)), GlobResp implies the most robust procedure to account for thermal acclimation is a linear, \(T_G \)-dependent perturbation of \(R_{d,25} \) (through parameter \(r_2 \)), decreasing by 0.0402 \(\mu \text{mol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1} \text{°C}^{-1} \) as \(T_G \) increases. As timescales down to just 10 days influence \(R_{d,25} \), then by some definitions this acclimation includes, implicitly, longer-term evolutionary adaptation effects. The combination of \(R_{d,25} = \left[r_0 + r_1 n_l - r_2 T_G \right] x e^{\left[(b(T_l-25)) + c(T_l-25) \right]} \) (1)

\[R_d = \left[r_0 + r_1 n_l - r_2 T_G \right] x e^{\left[(b(T_l-25)) + c(T_l-25) \right]} \]

with values\(^9\) of \(b = 0.1012 \text{°C}^{-1} \) and \(c = -0.0005 \text{°C}^{-2} \). We now implement this description of \(R_d \) in the JULES large-scale land model14. Linear mixed-effects models for the GlobResp dataset show for four PFTs presently in the JULES model, particular parameters (Table 2) capture much species variation across diverse sites. PFT-dependent \(n_l \) are from the TRY database18. Our overall finding is that assimilating the comprehensive GlobResp dataset with the JULES terrestrial ecosystem model yields plant respiration rates that are considerably larger than current estimates. The relative importance of contributions (Methods) to revised \(R_{d,25} \) values are broad changes to overall baseline having most influence (via parameters \(r_0, r_1 \) and \(r_2 \) considered together), followed by the specific acclimation dependency and then the relationship with leaf nitrogen.

Results

Numerical simulations. Figure 1 presents implications of new \(R_d \) components of Eq. (1). Figure 1a shows for broadleaf trees significant increases across all temperatures in respiration compared

Table 1 Standard JULES parameters used and implications for \(R_{d,25} \) calculation

Variable	Name in JULES model, or derived quantity, (and units)	Broadleaf tree	Needleleaf tree	Shrubs	C₃ grass	C₄ grass
\(n_l \)	NL0 (kg N \text{kg C})\(^{-1} \)	0.0369	0.0235	0.0349	0.0480	0.0238
\(n_l \)	NEFFC3 or NEFFC4 (mol CO₂ m\(^{-2} \text{ s}^{-1} \text{kg C} \text{kg N})\(^{-1} \)	0.0008	0.0008	0.0008	0.0008	0.0004
\(V_{\text{max},25} \)	From parameters above (\(\mu \text{mol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1} \))	36.8	26.4	48.0	58.4	24.0
\(f_d \)	FDC3 or FDC4 (Dimensionless)	0.015	0.015	0.015	0.015	0.025
\(R_{d,25} \) From Eqs above (\(\mu \text{mol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1} \)), but before division by the constraints in denominator	0.4428	0.282	0.4188	0.576	0.238	
Final \(R_{d,25} \) With suppressing constraints from denominator calculated at \(T_l = 25.0 \)	0.4157	0.2647	0.3932	0.5407	0.2234	

The standard parameters (Methods) used in the JULES model to calculate \(R_{d,25} \) and for each plant functional type (PFT). However, the \(n_l \) values use the 50-percentile numbers of the TRY database.
to standard JULES, when using the new $R_{d,c25}$ values ($T_{c} = 25^\circ C$) and either $Q_{10} = 2$ or the $b,c T_1$ response. Figure 1b shows the four PFT responses to T_1, with revised $R_{d,c25}$ values, T_{c2} again $25^\circ C$, and b,c formulation. Figure 1c illustrates strong R_d differences of Eq. (1) between acclimation temperatures $T_{c2} = 15, 25$ and $35^\circ C$ (for broadleaf trees). In Fig. 1d, the orange curve is the same R_d--T_1 response ($T_{c2} = 25^\circ C$) as in Fig. 1c. However, the red curve sets acclimation temperature equal to instantaneous temperature i.e. $T_{c2} = T_1$. This sensitivity test recognises that although acclimation growth temperature, T_{c2}, is determined over longer 10 day periods, higher T_{c2} values will be geographically where T_1 is higher and vice versa. This dampens R_d variation in T_1. Curve dashed for extremely rare temperatures $T_1 > 35^\circ C$.

JULES scales R_d to canopy-level respiration, $R_{d,c}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$). It can calculate CO$_2$ exchange at each canopy level19, including dependence on vertical decline of leaf nitrogen19 and differentiation of direct and diffuse radiation20. However, data are unavailable for how well Eq. (1) performs at lower canopy levels, even if nitrogen concentration and temperatures are known. Given this, we use a simple big-leaf exponential decline in leaf respiration throughout the canopy, decay co-efficient $k = 0.5$ and dependent on leaf area index (LAI). Implicit is that canopy nitrogen and light levels decay identically, $R_{d,c}$ linearly increasing (via co-efficient r_d) from n_{0} and s values across the TRY database for the PFTs. The last row shows values of $R_{d,c}$ calculated using Eq. (1) assuming $T_1 = T_{c2} = 25^\circ C$. The Gt zdjęcia database contains global patterns in upper canopy leaf-level respiration, R_d of BTs, NTs, Ss and C$_3$ grasses. Comparable data for C$_4$ grasses remains lacking (n/a), and hence standard JULES values for R_d are used. Uncertainty bounds are ± one standard error.

Table 2 Parameter values used in Equation 1

Regression coefficient (and units)	Broadleaf trees (BT)	Needleleaf trees (NT)	Shrubs (S)	C$_3$ grasses	C$_4$ grasses
n_0 (μmol CO$_2$ m$^{-2}$ s$^{-1}$)	1.7560 ± 0.2180	1.4995 ± 0.1793	2.0749 ± 0.0774	2.1956 ± 0.1408	n/a
r_1 (μmol CO$_2$ m$^{-2}$ s$^{-1}$ (gN (m$^{-2}$ leaf$^{-1}$))^(-1))	0.2061 ± 0.0023	0.2061 ± 0.0023	0.2061 ± 0.0023	0.2061 ± 0.0023	n/a
r_2 (μmol CO$_2$ m$^{-2}$ s$^{-1}$ (°C$^{-1}$))	0.0402 ± 0.0096	0.0402 ± 0.0096	0.0402 ± 0.0096	0.0402 ± 0.0096	n/a
n_{0} (kg N (kg C$^{-1}$))	0.0369	0.0235	0.0349	0.0480	0.0238
s_i (kg C (m$^{-2}$ leaf$^{-1}$))	0.0506	0.112	0.0512	0.0248	0.0656
n_a (gN (m$^{-2}$ leaf$^{-1}$)) from $n_{0} \times s_i \times 10^{2}$	1.867	2.632	1.787	1.190	n/a
$R_{d,c25}$ with $T_{c2} = 25^\circ C$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$)	1.136	1.073	1.438	1.436	n/a

Parameters r_1, n_0, and r_2, which define $R_{d,c25}$ and for each plant functional type (PFT). Intermediate rows provide values for calculation of n_a. Values of nitrogen content prescribed to Joint UK Land Environment Simulator (JULES) (n_0) and specific leaf density (s_i), used to calculate nitrogen content in area-based units, as $n_{0} \times s_i$ are the 50-percentiles across the TRY database for the PFTs. The last row shows values of $R_{d,c}$ calculated using Eq. (1) assuming $T_1 = T_{c2} = 25^\circ C$. The Gt zdjęcia database contains global patterns in upper canopy leaf-level respiration, R_d of BTs, NTs, Ss and C$_3$ grasses. Comparable data for C$_4$ grasses remains lacking (n/a), and hence standard JULES values for R_d are used. Uncertainty bounds are ± one standard error.

The third is called New$_{R_{d,c25},b,c}$ — this is new baseline and instantaneous response i.e. new $R_{d,c25}$ values and T_1 response with b,c formulation, but still $T_{c2} = 25^\circ C$. The fourth is called New$_{R_{d,c25},b,c,acclim}$ — this is all factors including acclimation, i.e., new $R_{d,c25}$ values, b,c formulation and acclimation via variation in T_{c2}. The fourth simulations are therefore for the full Eq. (1)5,6. Figure 2a--c shows how each of these new components of our respiration function uniquely influences whole-plant respiration globally for pre-industrial climate forcings. Figure 2a shows annual gridbox mean R_p (weighting PFTs by fractional cover) for New$_{R_{d,c25}}$ minus Standard simulations. This shows that altered baseline through the new $R_{d,c25}$ (and removed suppression) causes large R_p increases, including at mid-Northern latitudes and especially for the tropics. Figure 2b shows New$_{R_{d,c25},b,c}$ minus New$_{R_{d,c25}}$, illustrating the implications of the new instantaneous temperature description. The b,c formulation suppresses respiration in mid-latitudes but enhances for the tropics, although changes are smaller than Fig. 2a. Figure 2c presents New$_{R_{d,c25},b,c,acclim}$ minus New$_{R_{d,c25},b,c}$, showing acclimation introduction generally increases predicted pre-industrial R_p, except in the tropics where acclimation to higher temperatures lowers respiration.

To estimate anthropogenically-induced climate change, changes in near-surface meteorological conditions use the Integrated Model Of Global Effects of climatic anomalies (IMOGEN) pattern-scaling system22,23 (Methods) responding to altered atmospheric greenhouse gas (GHG) concentrations. Patterns are calibrated against 34 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5)24, with identical method to that originally undertaken for the HadCM3 GCM22. We use known historical, then future GHG concentrations of the RCP8.5 business-as-usual representative concentration pathway25. Figure 2d shows, for the most complete updated model, New$_{R_{d,c25},b,c,acclim}$, that historical climate change increases R_p in most locations and especially tropics, despite acclimation dampening stimulatory warming effects. Figure 2e presents calculations between years 2015 and 2050, showing R_d with similar changes to recent past in Fig. 2d. Figure 2f presents year 2015 absolute R_p values for New$_{R_{d,c25},b,c,acclim}$ case.

Figure 3 presents model output for single illustrative locations and in year 2015. For our four simulations, presented are respiration components (R_b, $R_{d,c}$, and R_p), plus GPP and NPP. We chose seven sites across South America, a temperate grassland (London) and boreal region shrubs (Siberia). We select multiple South America sites (Methods), as these are some of the few where measurements are available of all respiration components. In general, new $R_{d,c25}$ values, whether also with or without adjustment by the b,c formulation and acclimation, give marked increases in predicted respiration. Transition to whole canopy
while measurement uncertainty is from the literature describing each site. For South American sites, and with our choice of big-leaf approximation, our changes reproduce whole-canopy respiration $R_{\text{d,c}}$ better (i.e., model and data uncertainty bounds overlap, and better than the default Standard JULES configuration), and in some instances also R_p. More specifically, we define the JULES model as having improved performance when the Standard simulation estimate of R_p lies outside the data-based bounds on whole-plant respiration, but simulations New$_{R_{d,25},b,c}$ then fall within those bounds. This happens for the sites at Manaus, Tambopata, Iquitos (dataset a), and Guayaros (dataset a). However, when subtracting R_p from GPP estimates, NPP values are generally too small. We note that observations of nitrogen at different canopy positions from tropical tree species suggest an effective decay coefficient k with value nearer to 0.2 than 0.526. Using this to scale, and with Eqn (1) still used for upper canopy levels, gives exceptionally large R_p values and unsustainable negative NPP.

Figure 4 shows global time-evolving changes, since pre-industrial times, in total whole-plant respiration, ΔR_p (GtC yr$^{-1}$) and for our four RCP8.5 scenario simulations. Annotated are pre-industrial and 2015 absolute R_p estimates. Replacement of standard JULES with GlobResp-based $R_{d,25}$ values (still $Q_{10} = 2$, although with no high or low temperature suppression) approximately doubles both pre-industrial respiration estimates (as marked) and the projected changes in ΔR_p under climate change. Replacing Q_{10} with b,c formulation 6 causes slight global changes. Thermal acclimation increases R_p slightly for pre-industrial but decreases evolving ΔR_p, i.e., comparing simulations New$_{R_{d,25},b,c,acclim}$ and New$_{R_{d,25},b,c}$. The stimulatory effect of acclimation arises from the higher predicted rates in globally widespread biomes where $T < 25$ °C, but then dampens responses of such sites to future warming. Our new global R_p values (80.4 GtC yr$^{-1}$ in 2015 for New$_{R_{d,25},b,c,acclim}$ simulations) are higher than other estimates for contemporary periods. One27 global GPP estimate is 119.6 GtC yr$^{-1}$, and balancing soil plus plant respirations will be similar magnitude i.e. together they are also of order 120 GtC yr$^{-1}$. With soil respiration equivalent in size to R_p, this suggests plant respiration of order 60 GtC yr$^{-1}$. Our analysis implies global R_p values could be ~30% higher than that value. However, this estimate is not just a consequence of the entrainment of GlobResp data in to the JULES model, but also the scalings within it and as illustrated at selected geographical points in Fig. 3.

The GlobResp database 3 is sufficiently comprehensive as to be globally representative for our simulations. Our analysis has implications for other land ecosystem modelling groups. From a survey of ten leading land surface models, six of these simulate leaf respiration with a dependency on nitrogen content (models listed in Methods). In addition as is common to most land surface carbon cycle models (e.g., also for the Lund Potsdam Jena LPJ model (Table 1 of ref. 28)), the JULES system calculates maintenance respiration for other components of roots and stems that are based on their carbon and estimated nitrogen content. This approach follows pioneering research 25 which moved respiration representation on from simply a fraction of GPP, as had been assumed beforehand. We expect the impact of changing the temperature function itself to at least be common among the current generation of models. However this does open research questions as to how Eq. (1) might change at lower positions in canopies, and whether root, stem and growth respiration models require refinement. This is especially because our GlobResp-based changes propagate directly through modelled canopies by JULES (Eqs. 42–25 in ref. 4). Hence higher upper-canopy R_d values then generate larger rates of whole-plant respiration, R_p, than other estimates.

Fig. 1 Upper canopy leaf-level dark respiration. a Standard Joint UK Land Environmental Simulator (JULES) model (with TRY-based η_l and $n_{b,c}$ values and Q_{10} response moderated at high and low temperatures (Methods)). Also revised $R_{d,25}$ ($T_0=25$ °C) with both $Q_{10}=2.0$ and b,c responses to T_1. b New $R_{d,25}$ and b,c response to T_1 for other PFTs. c New $R_{d,25}$ and b,c formulation for broadleaf trees, but alternative acclimation temperatures. d New $R_{d,25}$ and T_1 as b,c again broadleaf trees, for both $T_0=25$ °C and $T_0=T_1$. Orange curve common all panels. Light inhibition not included in responses ($R_{d,c}$) and whole plant (R_p) respiration illustrates how our leaf level changes propagate to these aggregated fluxes. Uncertainty bounds on r_0, r_1, and r_2 are propagated through the JULES model (Methods) to give uncertainty on $R_{d,c}$ and R_p as shown in Fig. 3,
Benchmarking tests of modelled respiration fluxes will be important. For instance, the International LAnd Model Benchmarking project (ILAMB)30 is a comprehensive system collating datasets relevant to land surface functioning and of importance to land surface respiration is the Global Bio-Atmosphere Flux (GBAF)31 dataset based on extrapolation of eddy-covariance FLUXNET sites. Also available are estimates of global soil respiration32, which in conjunction with GBAF measurements can return total plant respiration, at least for comparison at night-time periods. Presently, however, without comprehensive measurements of other canopy components, it is difficult to attribute any discrepancies to GlobResp versus lower-canopy, stem, root or growth contributions. Should higher R_p values imply especially low values of NPP, then GPP parameterisation may need reassessment; other analyses suggest current estimates of GPP may be too low33.

Despite this, in Fig. 5 we perform large-scale comparisons against two Earth Observation-based datasets. These are estimates of NPP from the MODerate-resolution Imaging Spectroradiometer (MODIS) satellite, using the MOD17 algorithm34, 35, and of GPP from the Model Tree Ensemble (MTE) method27. For both datasets, we evaluate mean NPP and GPP values depending on location, and mapping these on to local dominant biomes based on the World Wildlife Fund (WWF) ecoregion classifications36 (Methods). These data-based estimates locally represent mean NPP and GPP, and so for parity we compare against modelled gridbox mean JULES calculations of the equivalent quantities. That is, we use areal weighting of the five PFT types in JULES for each position. To keep similarities with the WWF categories, we plot in Fig. 5 total annual NPP and GPP for both data and JULES, integrated over areas for the named biomes as marked.

Fig. 2 Gridbox-mean maps of total plant respiration for new processes and imposed climate change. Changes to R_p: a introduction of new $R_{d,25}$ values: New$_{R_{d,25}}$ minus Standard; b effect of new instantaneous T_l response: New$_{R_{d,25},b,c}$ minus New$_{R_{d,25}}$; c effect of acclimation: New$_{R_{d,25},b,c,acclim}$ minus New$_{R_{d,25},b,c}$; d effect of climate change to present, as year 2015 minus year 1860 and new processes New$_{R_{d,25},b,c,acclim}$; e similar to d, but year 2050 minus year 2015. Panel f actual 2015 values of New$_{R_{d,25},b,c,acclim}$. Scales different between panels to highlight effects. Units are SI. Panels d–f are means across the 34 GCMs emulated.
are Standard and New\(_{R_{d,25}}\) model format are very similar to New\(_{R_{d,25},b,c}\) and so not shown. As expected, in all cases, introduction of GlobResp-based respiration estimates results in much lower modelled NPP values. Furthermore for New\(_{R_{d,25},b,c}\) simulations and all eight biomes, these are significantly less than MODIS-based measurements. The two sets of simulations have similar GPP estimates, illustrating weak indirect couplings in the JULES model between respiration changes and influence (e.g., via hydrological cycle) on gross primary productivity. It is noted in Fig. 5b that JULES model estimates of GPP are similar to the MTE-based data for tropical forests and tropical savannahs. Uncertainty bounds on data adopt the global literature values of ±15% for NPP\(^{37}\) and ±7% for GPP\(^{38}\). These are the small horizontal black bars, shown only on New\(_{R_{d,25},b,c}\) red points.

In Fig. 6, we add geographical information to our global data estimates of NPP and GPP, and for corresponding JULES simulations with all effects, i.e., New\(_{R_{d,25},b,c}_acclim\) (expanding on the red symbols of Fig. 5). Figure 6a is JULES NPP estimates divided by MOD17-based NPP estimates (and multiplied by 100 to give percentage). In general modelled NPP with new plant respiration description, is smaller than MOD17 NPP across the geographical points. For some points it can give unsustainable negative modelled NPP values. For GPP, the situation is slightly less clear. Figure 6b is JULES GPP estimates divided by MTE-based GPP values, again as percentage. For many points, the JULES model is also underestimating GPP, and this includes much of the Amazon region. However, for the tropics, a few modelled GPP values are actually higher than data. This offers an explanation as to why GPP appears underestimated in some tropical points of Fig. 3, yet for the average across Tropical Forest (TF), JULES performs well (Fig. 5b). Figure 6b also shows that modelled GPP is usually too low outside of the tropics. This is why, when combined with the enhanced respiration of New\(_{R_{d,25},b,c}_acclim\) formulation, this can lead to very low or

Fig. 3 Respiration and primary productivities (gross as GPP and net as NPP) at selected locations during modelled year 2015. Seven locations (details in Methods) a are South American b–h, along with i for gridbox containing London, UK, and j is in Siberia, Russia (Lat 70 N, Lon 82.5 E). Shown for dominant plant functional type (PFT) at each site, left to right, for each histogram cluster: upper canopy leaf-level respiration (with light inhibition) \(R_d\), whole canopy-level respiration \(R_{lc}\), total plant respiration \(R_p\), GPP and NPP. Each histogram cluster are four estimates: Standard, New\(_{R_{d,25}}\), New\(_{R_{d,25},b,c}\)_acclim. South America sites, 5th (or 6th) column are measurements. Dominant PFTs: b–h BTs, i grasses, j shrubs. Uncertainty bounds of ± one s.d. are presented which for model estimates are from data-based upper canopy leaf-level uncertainty estimates, subsequently propagated through the model. For measurements, these bounds are taken from the literature.
Pre-I) and year 2015 model mean absolute estimates of two s.d. which broadly covers inter-GCM spread. Pre-industrial (marked RCP8.5 scenario. The continuous lines are the mean, and the spread as Global Circulation Models (GCMs) emulated in the Integrated Model Of correspond to the different projections of climate drivers, based on the 34 Where yellow and blue projections overlap, the colour is brown. The spread annotations

Discussion

Inversion studies suggest roughly 25% of CO₂ emissions are presently assimilated by the land surface39. Hence net ecosystem productivity (NEP) is ~ 2.5 GtC yr⁻¹, implying a small difference between GPP and total ecosystem respiration (whole-plant plus soil) fluxes. Here we have entrained the GlobResp dataset3 of upper-canopy respiration with a well-established land surface model JULES which aggregates Rₜ through to whole-plant respiration. This implies higher whole-plant respiration, and therefore may need to be balanced by either higher GPP values33 or the multiplicative dependence of other components on Rₜ is too large. As global land-atmosphere CO₂ fluxes are a small difference between large fluxes, future terrestrial ecosystem respiration responses to warming can therefore influence the natural ability to offset CO₂ emissions. This is particularly important as land warmings are projected to be higher than global mean rise40. The recent pause in growth rate of atmospheric carbon dioxide has been linked to the warming hiatus suppressing respiration whilst CO₂ fertilisation continues41. If future increases in respiration overtake any thermal or CO₂-ecosystem fertilisation, lower NPP values in the most extreme instances could force biome changes1; this will require operation of the interactive vegetation component of land surface models to assess (Methods). Equivalent global respiration measurement campaigns to GlobResp, but for other canopy components, will aid our understanding of the likelihood of respiration-induced biome changes. Such additional data will enable more rigorous benchmarking of different terrestrial model configurations of within-canopy respiration fluxes. Full mechanistic models, which can still be tested against GlobResp data, ultimately may allow further advances on empirical-based descriptions of respiration. However, availability of these remains a long way from routine usage, yet alone in large-scale climate models. This is an issue recently discussed in depth for the b,c instantaneous temperature response formulation42, 43, and where that exchange in the literature has relevance to more general respiration modelling.

Methods

Datasets. Two recently reported global datasets underpin Eq. (1). GlobResp describes patterns of temperature-normalised leaf respiration and associated leaf

Fig. 4 Time series of change in areally-averaged global respiration. Presented are time-evolving model estimates of change in total whole-plant respiration, ΔRₑ. The colours of turquoise, blue, yellow and magenta are Standard, New_Rₑ,25, New_Rₑ,25,b,c and New_Rₑ,25,b,c_acclim respectively. Where yellow and blue projections overlap, the colour is brown. The spread corresponds to the different projections of climate drivers, based on the 34 Global Circulation Models (GCMs) emulated in the Integrated Model Of Global Effects of climatic anomalies (IMOGEN) modelling system and for RCP8.5 scenario. The continuous lines are the mean, and the spread as ± two s.d. which broadly covers inter-GCM spread. Pre-industrial (marked Pre-I) and year 2015 model mean absolute estimates of Rₑ are as annotations

Fig. 5 Data- and model-based global estimates of net primary productivity and gross primary productivity for different biomes. a Global measurements of total annual mean net primary productivity (NPP), average for years 2000–2011, and using Earth-observed MODerate-resolution Imaging Spectroradiometer (MODIS) measurements. Values are spatially aggregated for different World Wildlife Fund (WWF) biome classifications. The dominant biome type at each location is linked to NPP with the MOD17 algorithm applied to MODIS values (horizontal axis). Similarly gridbox-mean JULES estimates of NPP are multiplied by gridbox area, and combined for each WWF biome (vertical axis). This is dependent upon which WWF biome is dominant for the grid location. Note logarithmic axes. JULES NPP estimates are slightly negative for Mediterranean grasslands and so off axes. b Similar calculation for gross primary productivity (GPP), with measurements from the Model Tree Ensemble (MTE) algorithm. Both panels, model values presented in blue for standard JULES version (i.e., Standard simulation), and in red for new Rₑ,25 values with b,c temperature response and acclimation (i.e., New_Rₑ,25,b,c_acclim simulation). For GPP, differences are small between two model forms, with red symbols overlapping blue symbols. Uncertainty bounds on NPP and GPP data are the small black horizontal bars (± one s.d.), shown for red symbols only. All calculations include only land points with less than 50% agriculture

Discussion

Inversion studies suggest roughly 25% of CO₂ emissions are presently assimilated by the land surface39. Hence net ecosystem productivity (NEP) is ~ 2.5 GtC yr⁻¹, implying a small difference between GPP and total ecosystem respiration (whole-plant plus soil) fluxes. Here we have entrained the GlobResp dataset3 of upper-canopy respiration with a well-established land surface model JULES which aggregates Rₜ through to whole-plant respiration. This implies higher whole-plant respiration, and therefore may need to be balanced by either higher GPP values33 or the multiplicative dependence of other components on Rₜ is too large. As global land-atmosphere CO₂ fluxes are a small difference between large fluxes, future terrestrial ecosystem respiration responses to warming can therefore influence the natural ability to offset CO₂ emissions. This is particularly important as land warmings are projected to be higher than global mean rise40. The recent pause in growth rate of atmospheric carbon dioxide has been linked to the warming hiatus suppressing respiration whilst CO₂ fertilisation continues41. If future increases in respiration overtake any thermal or CO₂-ecosystem fertilisation, lower NPP values in the most extreme instances could force biome changes1; this will require operation of the interactive vegetation component of land surface models to assess (Methods). Equivalent global respiration measurement campaigns to GlobResp, but for other canopy components, will aid our understanding of the likelihood of respiration-induced biome changes. Such additional data will enable more rigorous benchmarking of different terrestrial model configurations of within-canopy respiration fluxes. Full mechanistic models, which can still be tested against GlobResp data, ultimately may allow further advances on empirical-based descriptions of respiration. However, availability of these remains a long way from routine usage, yet alone in large-scale climate models. This is an issue recently discussed in depth for the b,c instantaneous temperature response formulation42, 43, and where that exchange in the literature has relevance to more general respiration modelling.

Methods

Datasets. Two recently reported global datasets underpin Eq. (1). GlobResp describes patterns of temperature-normalised leaf respiration and associated leaf
Fig. 6 Data- and model-based maps of comparison of net primary productivity and gross primary productivity for different biomes.

(a) Map of JULES estimates of annual NPP, average for year 2000–2011 divided by MODIS NPP algorithm (MOD17) estimates for the same period. Values multiplied by one hundred to express as percentage. Land points excluded are those with >50% agriculture, and also where values are very small (if absolute value of JULES or MODIS NPP is less than 1 gC m$^{-2}$ yr$^{-1}$).

(b) Similar to (a) but for GPP, and data based on upscaled FLUXNET GPP from the MTE algorithm. Again, land points excluded are those with >50% agriculture, and those with small values (if value of JULES or MTE-based GPP is less than 1 gC m$^{-2}$ yr$^{-1}$). Panel (c) is map of dominant biome, and labels identical to Fig. 5.
traits. Respiration rates of sun-exposed leaves were measured for ~900 species, from 100 globally distributed sites covering from Arctic to the tropics. For each species, leaf respiration in darkness was measured during the day in situ on attached branches, or using detached branches that had their stems re-cut under water to maintain water flow to leaves. Leaves were dark-adapted for 30 min before each measurement, with respiratory CO₂ release being measured using infra-red gas analyzers. Leaves were sampled, dried and analysed for total leaf nitrogen. The database includes PFTs used by the JULES model capture much species variation across diverse sites. Respiration acclimates to prevailing ambient growth temperature, and responses confirm (for identical temperatures) that cold-grown plants exhibit higher respiration rates than their warm-grown counterparts.

The second dataset describes variations in leaf respiration (in darkness) to instantaneous temperature changes based on 673 respiration-temperature curves from 231 species and 18 field sites. Leaves of detached branches of sun-exposed leaves were placed in a temperature-controlled cuvette and allowed to dark-adapt; leaf respiration was measured (using a Licor 6400 gas exchange system) as leaves were heated from 10 to 45°C at rate of 1°C min⁻¹. Convergence occurred in short-term temperature responses of Rₚ across biomes and PFTs; a model describing this Tₛ dependence is an exponential-of-quadratic.

JULES modelling framework

The original JULES Rₚ description, with Q₁₀ = 2.0, satisfies either Rₚ = Rₚ,m Q₁₀ⁿ⁻¹ₙ, or, with suppression at high and low temperatures, as (Eq. 18 of ref. 7) via additional denominator: Rₚ = Rₚ,m Q₁₀ⁿ⁻¹ₙ(1 + (1 + exp(0.33(1-0.33)))). Parameter fiₕ relates Rₚ,m to Rₚ,gd, which satisfies fiₕ = Rₚ,gd/Vₕₚ,q. Quantity Rₚ,m is the prescribed mass-based PFT leaf nitrogen concentration (kg N (kg⁻¹ C)) and nₑ is (mol CO₂ m⁻² s⁻¹ kg C (kg⁻¹ N)) links Vₕₚ,q to leaf nitrogen concentration. Table 1 shows how these equations and parameters give Standard JULES Rₚ values. The parameters of Eq. (1) are given in Table 2, along with implication of GlobResp-based values for Rₚ,gd, when incorporated in to the JULES model.

The relative importance of contributions to revised Rₚ,gd can be assessed from Tables 1 and 2. In general terms, and for broadleaf trees, the new representative Rₚ,gd values change from 0.4157 to 1.136 μmol CO₂ m⁻² s⁻¹. From the TRY database leaf respiration rates of closed canopy conifer, leaf nitrogen concentrations lie between 0.8 and 154% of their median value. This gives a range of 0.237 to 0.559 μmol CO₂ m⁻² s⁻¹. Growth temperature ranges of 5–25°C give 0.2 < Rₚ,gd < 1.0 μmol CO₂ m⁻² s⁻¹. This simple scale argument suggests a decreasing importance, both in terms of absolute and potential variability, of contributions to new Rₚ,gd as new baseline, followed by acclimation and then by leaf nitrogen dependence.

Scaling to full canopy, respiration is modelled as declining exponentially in LAI above each point, Lₚ = Rₛ exp(−kL) and k = 0.5. Hence all-canopy respiration Rₛ is Rₛ = Rₛ,m.exp(−kLₚ)/Lₚ. This has modulation of LAI on Rₛ,m and growth Rₛ,gd, as Rₛ,gd = Rₛ,gd,Lₚ (1−exp(−kLₚ))/Lₚ. This modulations of LAI on Rₛ,m and growth Rₛ,gd, is a major component of respiration across time and space.

Data availability

The GlobResp data is freely available from the TRY Plant Trait Database http://www.try-db.org/TRYWeb/Home.php. The JULES model is freely available at http://jules.jchmr.org/. The code changes to the JULES respiration subroutine used in this analysis are for historical, followed by atmospheric GHG concentrations of the RCP8.5 business-as-usual pathway (20).

References

1. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
2. Cox, P. M., Huntingford, C. & Harding, R. J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 213, 79–94 (1998).
3. Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geosci. 6, 268–273 (2013).
4. Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description - Part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).
5. Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist 206, 614–636 (2015).
6. Heskolla, M. A. et al. Convergence in the temperature response of leaf respiration across plant functional types. Proc. Natl Acad. Sci USA, 113, 3832–3837 (2016).
7. Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).
8. Vanderwel, M. C. et al. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist 207, 1026–1037 (2015).
9. Slot, M. & Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177, 885–900 (2015).
(NERC) South American Biomass Burning Analysis (SAMBBA) project grant code NE/J010057/1.

Author contributions
C.H. and O.K.A. conceived the project. C.H. designed the paper and research methodology. O.K.A., M.A.H., K.B., O.S.O., K.R.W., P.B.R., E.E.B., M.C., K.L.G., P. M., M.G.T. and M.H.T. interpreted the GlobResp data and its mapping on to the JULES model. A.M., L.M.M., A.R.H., S.S. and K.W. developed the JULES model. L.M.M., A.M. and Y.M. related JULES simulations to other measurements (Fig. 3). All authors contributed to the writing of the paper.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01774-z.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017