An Activated GOPS-poly-L-Lysine-Coated Glass Surface for the Immobilization of 60mer Oligonucleotides

By Q. Wu, W. Ma*, R. Shi, B. Zhang, X. Mao, and W. Zheng

To explore a method for enhancing the immobilization and hybridization efficiency of oligonucleotides on DNA microarrays, conventional protocols of poly-L-lysine coating were modified by means of surface chemistry, namely, the slides were prepared by the covalently coupling of poly-L-lysine to a glycidoxy-modified glass surface. The modified slides were then used to print microarrays for the detection of the SARS coronavirus by means of 60mer oligonucleotide probes. The characteristics of the modified slides concerning immobilization efficiency, hybridization dynamics, and probe stripping cycles were determined. The improved surface exhibited high immobilization efficiency, a good quality uniformity, and satisfactory hybridization dynamics. The spotting concentration of 10 μmol/L can meet the requirements of detection; the spots were approximately 170 nm in diameter; the mean fluorescence intensity of the SARS spots were between 3.2×10^4 and 5.0×10^4 after hybridization. Furthermore, the microarrays prepared by this method demonstrated more resistance to consecutive probe stripping cycles. The activated GOPS-PLL slide could undergo hybridization stripping cycles for at least three cycles, and the highest loss in fluorescence intensity was found to be only 11.9 % after the third hybridization. The modified slides using the above-mentioned method were superior to those slides treated with conventional approaches, which theoretically agrees with the fact that modification by surface chemistry attaches the DNA covalently firmly to the slides. This protocol may have great promise in the future for application in large-scale manufacture.

1 Introduction

In recent years, oligonucleotide microarrays were favored by many researchers for their lower cost and higher specificity over DNA or cDNA microarrays. Oligonucleotide microarrays have been applied to genetic mutational scanning and polymorphism analysis [1–3], screening of disease and selecting antisense reagents [4], and monitoring of gene expression [5,6]. In oligonucleotide microarray fabrication, the first problem that has to be faced and needs to be resolved is to immobilize or directly synthesize oligonucleotides on solid supports. Methods for immobilizing oligonucleotides mainly include physical adsorption and covalent linkage. Oligonucleotides that were bound to the surface by the former method were unstable and liable to be removed from the surface. Hence, according to Taylor et al. [7] the oligonucleotide immobilization by physical adsorption is gradually being substituted by methods that promote covalent linkage.

With the development of the DNA microarray technology, many reports on the modification of glass surfaces and the immobilization of oligonucleotides onto solid supports by covalent linkage have appeared [8–12]. In this paper, the process of slide surface chemistry based on conventional protocols for poly-L-lysine coating was improved [6,13] in order to immobilize 60mer oligonucleotides by deposition technology. The oligonucleotides were covalently attached to the activated surface. Some assays, such as the immobilization efficiency and hybridization experiments were designed and carried out to compare the quality of the modified slides with conventional slides. At the same time, the modified slides were used in the preparation of microarrays to detect the SARS coronavirus.

2 Materials and Methods

2.1 Materials

The main chemicals and solvents were purchased from Sigma-Aldrich (USA). Glass microscope slides (25 × 75 × 1 mm) were purchased from Darko (USA). Cy3-Amidite was obtained from Amersham Pharmacia (UK), whereas 60mer oligonucleotides and Cy3 labeled oligos were synthesized in our laboratory using an ABI 3900 DNA synthesizer (USA).

2.2 Preparation of the PLL (poly-Lysine) Surface

Poly-L-Lysine (PLL) coated glass slides were prepared according to the protocol of Brown’s Lab of Stanford University [14].

2.3 Preparation of the Activated GOPS-PLL Surface

The glass slides were washed in 1 M NaOH, 1 M HCl, ddH₂O and methanol in turn. The cleaned slides were put into a freshly prepared solution of 1.5 % GOPS (3-glycidoxypropyltrimethoxysilane) and 95 % ethanol for 50 min,
then dipped in 95% ethanol for 1 min to remove the exces-
sive silane and dried at 80°C in a vacuum oven. The GOPS-
modified slides were covalently coupled with PLL according
to the protocol [14]. The GOPS-PLL-coated slides were
placed at room temperature for 2 hours into an activation
solution which included 0.2% 1,4-phenylenedioisothiocya-
nate (PDITC), 10% pyridine and 89.8% N,N-dimethylform-
amide, rinsed with methanol and acetone twice, respectively,
dried at 45°C, and finally stored in a dark closed box under
dry conditions.

Formation of Oligo Arrays on Two Kinds of Surfaces

The probes were printed onto an activated GOPS-PLL
surface and PLL surface, respectively, by a Cartesian Pixsys
5500 robot (Cartesians, USA). The microarrays were re-hy-
derated above the 3x SSC solution and placed into a beaker
at 100°C to snap dry, then UV cross-linked at 90 mJ/cm² for
30 s using a Bio-Rad UV cross-linker (Bio-Rad, USA). The
two printed kinds of slides were stored in the dark at room
temperature until used for hybridization.

Detection of Immobilizing Efficiencies

A 26mer oligonucleotide probe FA1 fluorescently labeled
with 3’Cy3 (see Tab. 1) of different concentrations (1 µmol/
L–80 µmol/L) was printed onto the two kinds of slides. After
3 hours of printing, the slides were scanned with the Packard
ScanArray Lite Scanner (GSI Lumonics, USA). The slides
were then rinsed using the washing solution (2.5 mmol
Na₂HPO₄; 0.1% SDS) and ddH₂O twice, respectively, and
scanned again.

Hybridization of the Oligo Microarray

The microarrays printed with different concentrations of
the FA2 probe were hybridized with FA3 target (see Tab. 1),
and scanned under the conditions of 90% laser power and
70% PMT.

Stripping Procedure

After the hybridization with the fluorescently labeled FA3
target, the slides were immersed in boiled stripping buffer
(2.5 mmol Na₂HPO₄, 0.1% SDS) for 15 min, then rinsed in
ddH₂O and dried. This procedure was repeated until the
FA3 target was completely removed before the next hybrid-
ization reaction.

Preparation of an Oligo Microarray of the SARS Coronavirus

The method for the preparation of 60mer SARS-CoV oli-
go microarrays was the same as that for the hybridization of
the oligo microarray above. There were 12 SARS-CoV oli-
gonucleotides, 2 positive control probes, 2 negative control
probes and blank controls (The oligonucleotide sequences

Table 1. Sequences of the oligonucleotides.

Oligo name	Length bp	Sequence from 5’ to 3’
FA1	26	TTTTTTTGTTTGCTGTTGGAFC-Cy3
FA2	60	TTTTTTGACCCACACGACCGCCACACACACGACGCCAAGATCCACACCCAGCCAAAC
FA3	18	CY3-GTGGGCTGTTGGAATC
SARS01	60	TCGTGAGCTCAATGAGGTTGGTCAGCTCAGTCCTATGCGACAAACATTTTCTGTGGCCAGA
SARS02	60	TGGTGGTACCTGTGCTTGTCATTTTCCTGCACGCCAAGATCGCGATGTAGTCGGCTT
SARS03	60	ACTTCAGCTTTTACAGTGTGTGCAGACGCTGTTCAGCTACAGTTATATTGTGAGTC
SARS04	60	CCAGCTTCCAGAGGCTAATGCTTCATGCTACATTTCCTCCAGACATTAGGAAGTAGTGGCC
SARS05	60	ATTAAGTGATGAAAGTTGCTGCTTGTGTTTCGCTATTTTCCTGCACGCCAAGATCGCGATGTAGTCG
SARS06	60	GTGAGCTTCCAGACGAGACTGTCATATTGCTATGTTGAGGTTGGTCCATCATACAGTTTCTCA
SARS07	60	TGTGCTGAGTACCTTTAAATGTGTTTGCTCGAGAAATTCGTGATACAGTCGTTCTCCATTCGCG
SARS08	60	GTTTCATACAGTAGTACAACTAGTGTCGGCAAGTAGTATTAAGTGAGATGTCAGTGTCAGTGGC
SARS09	60	TTTACGCTCCGCGAAGAAAGCTTCTCAGTTGCTGCTGAGGTTGCTGTTTTAGTAGTGGAG
SARS10	60	GTTGGTATTTCTGAGGATAGCCACTGACGGTGTTAAAGACTATGCTGTTTGATACAGTGCTT
SARS11	60	TACGCGAGGCTGGTAAGAATGTGTCGTGCTACAGATGTTGACGCTGAGCGGTCG
SARS12	60	TGCTCCAGTGCCTGCTGCCATTGGAATGTCGACAAGCAGGATGAGTTGCAAGGCTAG
Neg1	60	GTAACGTTTAAGAAGACTACCATGCGACATGCCCTAAGAACAGGTACATAGAGTAGGTACA
Neg2	60	GTATTTAATTGTCATGCTACATACACAGTGGTGTAAGCAGGCTACAGGCTAG

Eng. Life Sci. 2005, 5, No. 5 http://www.els-journal.de © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
are listed in Tab. 1). The method for the preparation of oligonucleotides used was according to Wu et al. [15] and these oligonucleotides were printed onto a 12 × 12 microarray, each probe with 6 spots. The SARS samples were throat swabs and gargling fluids of SARS patients from 302 hospitals in Beijing. The samples labeled by means of the RD-PCR method were applied to the microarray hybridization [16].

3 Results

The oligonucleotide immobilization efficiency was evaluated on two platforms (PLL surface and activated GOPS-PLL surface) by spotting the FA1 oligonucleotide at six different concentrations (ranging from 1 to 80 μmol/L) to yield a 12 × 8 microarray. The result is shown in Fig. 1. The fluorescence intensity on the activated GOPS-PLL surface was higher than that of the PLL surface at each of the spotting concentrations. It was found that the optimum probe concentration would be 10 μmol/L, but not 20 μmol/L because the spotting concentration of 10 μmol/L was enough to satisfy the requirements of detection. Fig. 2 depicts the relationship between probe concentration and signal intensity following hybridization.

Oligo microarrays printed on an activated GOPS-PLL slide could undergo hybridization stripping cycles for at least three cycles. Images of hybridization are presented in Fig. 3 (A, B, C, D). Comparing with the first hybridization, the highest loss in fluorescence intensity on activated GOPS-PLL slides with different concentrations was only 11.9 %, while the loss on the PLL slides was obvious, which could be as high as 58.3 %.

The hybridization results of SARS clinical samples with our improved microarray are shown in Fig. 4. Several SARS

Figure 1. Oligonucleotide immobilization efficiency with different probe concentrations. The immobilization efficiency [%] is the ratio of the fluorescence intensity after washing and before washing.

Figure 2. Hybridization with different probe concentrations. Slides printed with different concentration of FA2 probe (60mer TTTTTGTACCCGAC- CAGCCAAAGATCCACCCAGGCAACGATCCACCCAGGCAACG) were hybridized with FA3 target (18mer CY3-GTGTGGTGGTGGTGG-ACT).

Figure 3. Three cycles of hybridization after stripping. A: GOPS-PLL slide, first hybridization; B: GOPS-PLL slide, third hybridization; C: PLL slide, first hybridization; D: PLL slide, third hybridization. Conditions: The slides were immersed in boiled stripping buffer (2.5 mM Na2HPO4 × 0.1 % SDS) for 15 min after each hybridization.
probe sites clearly demonstrated positive signals, whereas no signal was shown in the negative and blank control probe sites. The microarray was analyzed with QuantArray 2.0 software, and the following data were obtained. The spots are approximately 170 μm in diameter, and the mean fluorescence intensity of the SARS spots are between 3.2 × 10^4 and 5.0 × 10^4. The background fluorescence intensities were found to be only between 100 and 300. In comparison with the PLL surface microarray, our improved microarray had better sensitivity and homogeneity.

4 Discussion

In the development of the microarray technology, DNA or oligonucleotide probes were required to bond to the slide surface faster, more stable and more precise. Many researchers have introduced the chemical reactions on several supports and the linkage between DNA (or oligonucleotide) and the modified surface. The poly-L-lysine coated glass slide, prepared by protocols of Patrick Brown’s Lab, was widely applied in cDNA microarray. The main mechanism of binding DNA onto the surface is physical adsorption. A specific binding probably results from an electrostatic interaction of the phosphate backbone of DNA and the positively charged amino surface. Moreover, DNA (usually PCR amplified material) was immobilized by ultraviolet (UV)-irradiation to form covalent bonds between the thymidine residues in DNA and the positively charged amine groups on the poly-L-lysine slides. A low oligonucleotide binding efficiency and a detection of non-uniform sensibility spots were observed [17].

In this paper, similar results were obtained as illustrated in Fig. 1. Moreover, poly-L-lysine is such an innocuous chemical of rich amine groups that it is a good reagent for glass surfaces modified with amine groups. Our approach attempted to improve the method and a scheme is presented in Fig. 5. Firstly, the slides were silanized with GOPS after cleaning, and then the silane slides were coated with poly-L-lysine polymers, which made it possible for the poly-L-lysine to be covalently bound to the GOPS-modified glass, and subsequently the surface was activated by the homo-bi-functional cross-linker PDITC. Finally, the oligonucleotides were covalently immobilized to the modified surface.

![Image](Eng.Life.Sci.2005, 5, No. 5 http://www.els-journal.de © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 469)
designed. A GOPS-PLL surface is a compact polymer layer in materials, which enhances not only the immobilization efficiency but also the stability. Therefore, in experiments of hybridization and the detection of the SARS coronavirus, the spots were more homogenic and sensitive. These results are shown in Fig. 2 and Fig. 4.

In conclusion, the conventional method of poly-L-lysine coating onto a microscope glass surface was modified to achieve a coherent immobilization of unmodified oligonucleotide on the glass surface. The oligonucleotides were linked stable, and the sensitivity of detection was improved. Satisfactory results were obtained in the experiments. A spotting concentration of 10 μmol/L was able to satisfy the requirements of detection. The spots were approximately 170 nm in diameter, and the mean fluorescence intensity of the SARS spots were in a range of 3.2×10^4 to 5.0×10^4 after hybridization, whereas the fluorescence intensities of the background were only between 100 and 300. Furthermore, the microarrays prepared by means of this method were more resistant to consecutive probe stripping cycles. The activated GOPS-PLL slide could undergo at least three hybridization stripping cycles, and the highest loss of fluorescence intensity amounted to only 11.9 % after the third hybridization. At the same time, the GOPS-PLL coating method is not complicated and not expensive when applied for large-scale manufacture. Further efforts will be taken so that such oligonucleotide microarray platform can be used in cDNA microarrays as well.

Acknowledgements

The authors are grateful to Shiqing Zhang and Huiyong Zhang for their skillful technical support. This work was funded by National Nature Science Foundation of China (NSFC) Grant 39880032.

Received: December 7, 2004 [ELS 97]
Received in revised form: September 10, 2005
Accepted: September 16, 2005

References

[1] J. G. Hacia, F.S. Collins. Mutational analysis using oligonucleotide microarrays, J. Med. Genet. 1999, 36, 730–736.
[2] J.G. Hacia, B. Sun, N. Hunt, K. Edgemon, D. Mosbrook, C. Robbins et al., Strategies for mutational analysis of the large multieoxon AT1 gene using high-density oligonucleotide arrays, Genome Res. 1998, 8, 1245–1258.
[3] J.G. Hacia, Resequequencing and mutational analysis using oligonucleotide microarrays, Nat. Genet. 1999, 21, 42–47.
[4] M. Mihm, E.M. Southern, Selecting effective antisense reagents on combinatorial oligonucleotide arrays, Nat. Biotechnol. 1997, 15, 537–541.
[5] H.-L. Kim, Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34+ cells, Exp. Mol. Med. 2003, 35, 460–466.
[6] S. Li, D.T. Ross, M.E. Kadin, P.O. Brown, M.A. Wasik, Comparative genome-scale analysis of gene expression profiles in T cell lymphoma cells during malignant progression using a complementary DNA microarray, Am. J. Pathol. 2001, 158, 1231–1237.
[7] S. Taylor, S. Smith, B. Windle, A. Giuseppi-Elie, Impact of surface chemistry and blocking strategies in DNA microarrays, Nucleic Acids Res. 2003, 31 (16), e87.
[8] T. Strother, R.J. Hamers, L.M. Smith, Covalent attachment of oligodeoxynynucleotides to amine-modified Si (001) surfaces, Nucleic Acids Res. 2000, 28 (18), 3535–3541.
[9] N. Zammitteo, L. Jeanmart, S. Hamels, S. Courtous, P. Loutte, L. Hevesi et al., Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays, Anal. Biochem. 2000, 280, 145–150.
[10] M. Halliwell, A. E.G. Cass, A factorial analysis of signalization conditions for the immobilization of oligonucleotide on glass surfaces, Anal. Chem. 2001, 73, 2476–2483.
[11] U. Maskos, E.M. Southern, Oligonucleotide hybridizations on glass supports: a novel link for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ, Nucleic Acids Res. 1992, 20, 1676–1684.
[12] M.A. Podymogin, E.A. Lakhtanov, M.W. Reed, Attachment of benzaldehyde-modified oligodeoxynucleotide probes to semicarbazide-coated glass, Nucleic Acids Res. 2001, 29, 5090–5098.
[13] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 1995, 270, 467–470.
[14] http://cmgm.stanford.edu/pbrown/protocols1_slides.html
[15] Q.H. Wu, W.L. Ma, R. Shi, Q.Y. Guo, B. Zhang, Y.B. Song et al., Preparation of SARS 60mer oligonucleotide probes for microarray printing, Guang Dong Medical J. 2003, 24, Suppl (1).
[16] R. Shi, W.L. Ma, Q.H. Wu, B. Zhang, Y.B. Song, Q.Y. Guo et al., Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection, Chinese Sci. Bull. 2003, 48, 1165–1169.
[17] P.L. Dolan, Y. Wu, L.K. Ista, R.L. Metzberg, R.A. Nelson, G.P. Lopez, Robust and efficient synthetic method for forming DNA microarrays, Nucleic Acids Res. 2001, 29 (27), 107.