Multipactor discharge in superconducting accelerating CH cavities*

M Gusarova1,2, D Kiselev1, M Miski-Oglu3, T Kuerzeder3, F Dziuba3

1MEPhI National Research Nuclear University, Moscow, Russia
2Joint Institute for Nuclear Research, Dubna, Russia
3HIM Helmholtz Institute Mainz, Germany

* Work supported by FAIR-Russia Research Center (FRRC)

E-mail: magusarova@mephi.ru

Abstract. The results of numerical simulations of multipacting discharge in a superconducting accelerating Crossbar H-type (CH) cavity are presented in this paper. The localization of multipactor trajectories in the 15-gap 217 MHz superconducting (sc) CH cavity at various levels of accelerating voltage is considered.

1. Introduction

The goal of the ongoing UNILAC (UNIversal Linear ACcelerator) upgrade program at GSI is to provide high intensity heavy ion and proton beams [1-5] for the Facility of Antiproton and Ion Research at Darmstadt (FAIR) [6]. Due to the low duty factor requirements for FAIR injector operation, a use of the UNILAC for super heavy element (SHE) research at GSI will be strongly limited. A dedicated standalone superconducting (sc) continuous wave (cw) linac HELIAC (HElmholtz LInear ACceleartor) is assumed to meet the demands of the experimental program [7].

The first RF test of a sc CH cavity was performed at Goethe University Frankfurt in a vertical cryostat [8]. After final assembly of the helium vessel and further High Pressure Rinsing (HPR) the RF test in a horizontal cryostat [9] at GSI was carried out. Subsequently, in summer 2017 the cavity was successfully commissioned with beam [10] at GSI. During RF tests, the cavity was operated as a generator driven resonator directed by an RF control system. Figure 1 shows the 3D model of the superconducting (sc) 15-gap CH cavity for the (cw) linac HELIAC.

All multipacting barriers up to 4 MV/m could be permanently surmounted [8, 9], but during testing at low field levels stable and inevitable levels of a multipactor discharge were detected. This paper investigates the location and possible expansion of the multipactor discharge at different field values.

2. Wide range voltage scan

For the investigation of multipacting discharge effects the MultP-M code [11], developed at MEPhI, has been used. The electromagnetic field is exported from the CST studio [12]. The calculations have been carried out for a wide range of RF-voltage and RF-phase.
The voltage amplitudes U_N are normalized to the unit voltage value of $U = \int E_z dz = 2.8$ MV, integrated at 1 J stored energy inside the cavity, i.e. $U_N = 1$ corresponds to $U = 2.8$ MV.

In order to identify the most dangerous multipacting levels, the simulations were performed with different steps of U_N; over a wide U_N range from 0 to 5 with the rough step width of 0.2 (RF phase step is 6°), in the range $U_N = 0 – 1$ with steps of 0.04 (RF phase step is 36°) and for $U_N = 0 – 0.01$ with steps of 0.0004 (RF phase step is 6°). The calculations take the RF-phase, at which an electron hit the surface, into account. Figure 2(a) shows the number of surviving electrons versus the RF voltage. Here the electrons from all initial RF phases (but the same voltage level) are summed up. The calculation time was limited to 10 RF periods.

![Figure 1. 3D model of the sc 217 MHz CH cavity](image)

![Figure 2.](image)

(a) Number of surviving electrons versus voltage level after 10 RF periods; (b) diagram RF phase / UN for UN = 0 – 5 with a step width of 0.2; (c) diagram RF phase / UN for UN = 0 – 1 with a step width of 0.04.
Figure 2(b) shows the diagram RF phase / U_N. For each pair of RF phase and U_N, the code tracks the trajectories of 100 electrons randomly distributed over the structure. Cavity length is 0.8m. Each square in Figure 2(b) and Figure 2(c) corresponds to the voltage level and RF phase electron collision at which multipactor trajectories are detected. As soon as an electron with an energy for which Secondary Emission Yield SEY>1 (used SEY for baked 300° Nb [13], SEY>1 when the electron has an energy between 50 and 1500 eV) hits the wall for the first time, the counter function starts an account of trajectories. A secondary electron is generated and traced until either 10 RF periods are reached, or the number of hits with the surface reach a limit of impacts ($n=5$). For the calculation it is assumed, that the initial energy of the secondary electrons is zero and the direction of the emission is normal to the surface. The red colour denotes the regions with the largest number of surviving electrons, and the blue colour the less populated region. The graphs in Figure 2 illustrate the existence of trajectories persisting more than 10 RF periods.

Two groups of trajectories could be recognized in Fig 2b: region I and II. The visual inspection of the corresponding electron trajectories, calculated at different voltage levels, shows at low voltage levels a concentration of the trajectories in the area of tuning elements and cross bars (region I Figure 2b and Figure 2c). Figure 3 illustrates some examples of trajectories at $U_N=0.042$ and $U_N=0.208$. Red color indicates the trajectory of the primary electron, the blue of the first knocked out, the subsequent green.

![Figure 3. Example of multipactor trajectories at a low-level voltage: (a) $U_N=0.042$; (b) $U_N=0.208$.](image)

As shown in detailed study of the electron trajectories, in the range of U_N from 0.04 to 0.22, trajectories are damped; corresponding to two-point multipacting trajectories. Resonance conditions are absent.

At higher voltage levels (region II of Figure 2b and Figure 2c, $U_N>0.7$), the trajectories are mainly concentrated on the cylindrical part of accelerating structure. An example of a trajectory at $U_N=0.875$, 1.173 and 1.25 is shown in Figure 4.

Two types of trajectories were identified: fast damped one-point multipactor trajectories (see Figure 4a and Figure 4c) and slowly damped two-point multipactor trajectories (see Figure 4b). Along the trajectory an electron gains energy within the first RF periods (up to 200 -1200eV). The electrons on fast damped one-point multipactor trajectories within 3-10 RF periods lose their initial energy which drops to less than 20 eV. For slowly damped two-point multipactor trajectories the electron's energy drops down within 30-40 RF periods.

Figure 5 shows the number of secondary electrons as function of U_N for 50 and 100 RF periods. One can recognize, that slowly damped trajectories are mainly concentrated at low voltages ($U_N<0.5$).
Figure 4. Example of multipactor trajectories at a different level voltage: (a) UN= 0.875; (b) UN= 1.173; (c) UN=1.25.

Figure 5. Number of surviving electrons versus the voltage level after 50 (a) and 100 (b) RF periods.

3. Low voltage range
The low voltage range was considered separately. The calculations have been performed for \(U_N \) in a range from 0 to 0.01 with steps of 0.0004. Figure 6 shows the RF phase / \(U_N \) diagram, were no trajectory below \(U_N < 0.003 \) is found. Visual inspections of trajectories show, that they are localized between drift tubes. Figure 7 shows exemplary trajectories at different low voltage levels. The
trajectories are damped and correspond to two point multipacting trajectories. The trajectories are damped about from 10 to 40 RF periods but the electron can gain energy up to 250 – 450 eV close to the maximum of the SEY emission for Nb [13] which can be the cause of the difficult suppression of the multipactor at these levels.

Figure 6. Diagram RF phase / \(U_N \) for \(U_N = 0 – 0.01 \) with step 0.0004.

Figure 7. Example of the multipactor trajectories at a different initial level voltage: (a) \(U_N = 0.004 \); (b) \(U_N = 0.007 \); (c) \(U_N = 0.01 \).
4. Conclusion and outlook
Critical regions of multipactor avalanches at different levels of the accelerating voltage are identified. It is shown, that the trajectories in the entire range of accelerating voltages decay, but the decay rate is different. A detailed comparison with experimental results is planned for the future. Data on the location of multipactor trajectories in SC CH structures at different voltage levels will be taken into account for the development of short spoke structures for the HELIAC [14, 15]. This re-buncher cavity has a narrow and long gap and can be used for other projects applying SC cavities [16-22].

References
[1] Barth W et al. 2015 U28+-intensity record applying a H2-gas stripper cell Phys. Rev. ST Accel. Beams 18 040101 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.040101
[2] Barth W et al 2007 Upgrade program of the high current heavy ion UNILAC as injector for FAIR Nucl. Instrum. Methods Phys. Res. A 577 211 URL https://doi.org/10.1016/j.nima.2007.02.054
[3] Groening L et al 2008 Benchmarking of measurement and simulation of transverse rms-emittance growth Phys. Rev. ST Accel. Beams 11 094201 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.11.094201
[4] Barth W et al. 2015 Heavy ion linac as a high current proton beam injector Phys. Rev. ST Accel. Beams 18 050102 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.050102
[5] Adonin A and Hollinger R 2014 Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility Rev. Sci. Instrum. 85 02A727 URL https://doi.org/10.1063/1.4833931
[6] Barth W et al 2017 High brilliance uranium beams for the GSI FAIR Phys. Rev. ST Accel. Beams 20 050101 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.050101
[7] Barth W et al 2017 A superconducting CW-LINAC for heavy ion acceleration at GSI EPJ Web Conf. 138 01026 URL https://doi.org/10.1051/epjconf/201713801026
[8] Dziuba F et al 2016 First performance test on the superconducting 217 MHz CH cavity at 4.2 K Proc. LINAC’16 East Lansing USA 953–955
[9] Dziuba F et al 2016 First cold tests of the superconducting cw demonstrator at GSI Proc. RuPAC’16 St. Petersburg Russia 84–86
[10] Barth W et al 2018 First heavy ion beam tests with a superconducting multigap CH cavity Phys. Rev. Accel. Beams 21 020102 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.020102
[11] Gusarova M A et al 2014 New possibilities of MultiP-M code Proc. IPAC’14 433-435
[12] https://www.cst.com/.
[13] Calder R et al 1986 Nuclear Instrumentation Methods Physics Res. B Beam Interaction Matter. At. 13:63 1
[14] Gusarova M et al 2018 Design of the two-gap superconducting re-buncher Proc. IPAC’18 Vancouver Canada J. Phys.: Conf. Ser. (Preprint WEPML039)
[15] Taletskiy K et al Comparative study of low beta multi-gap superconducting bunchers Proc. IPAC’18 Vancouver Canada J. Phys.: Conf. Ser. (Preprint WEPML041)
[16] Laxdal R 2006 Recent progress in the superconducting RF Program at TRIUMF/ISAC Physica (Amsterdam) 441C 13 URL https://doi.org/10.1016/j.physc.2006.03.096
[17] Aksent’ev A E et al 2015 Conceptual Development of a 600–1000 MeV Proton Beam Accelerator-Driver with Average Beam Power >1 MW Atomic Energy 117 4 270–277 URL https://doi.org/10.1007/s10512-015-9921-9
[18] Aliev K A et al 2016 On application of superconducting resonators for reconstruction of proton injector for nuclotron complex Phys. Part. Nuclei Lett. 13 911-914 URL https://doi.org/10.1134/S1547477116070049
[19] Aliev K A et al Study of superconducting accelerating structures for megawatt proton driver linac Proc. RuPAC’14 Obninsk Russia 318-320
[20] Gusarova M A et al 2016 Research and design of a new RFQ injector for modernization of the LU-20 drift-tube linac Phys. Part. Nuclei Lett. 13 915-8 DOI: 10.1134/S1547477116070256

[21] Solyak N et al 2010 The concept design of the CW linac of the Project X Proc. IPAC’10 Kyoto Japan 654–656 ISBN: 978-929083352-9

[22] Butenko A V et al 2014 Development of NICA injection complex Proc. IPAC’14 Dresden Germany 2103–05 ISBN: 978-395450132-8