Forbidden subgraphs for constant domination number

Michitaka Furuya

Kitasato University, Japan

received 2018-3-13, revised 2018-5-5, accepted 2018-5-15.

In this paper, we characterize the sets \mathcal{H} of connected graphs such that there exists a constant $c = c(\mathcal{H})$ satisfying $\gamma(G) \leq c$ for every connected \mathcal{H}-free graph G, where $\gamma(G)$ is the domination number of G.

Keywords: Domination number, Forbidden induced subgraph, Ramsey number

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For a vertex $x \in V(G)$, let $N_G(x)$ and $N_G[x]$ denote the open neighborhood and the closed neighborhood, respectively; thus $N_G(x) = \{ y \in V(G) : xy \in E(G) \}$ and $N_G[x] = N_G(x) \cup \{ x \}$. For a set $X \subseteq V(G)$, let $N_G[X] = \bigcup_{x \in X} N_G(x)$. For a vertex $x \in V(G)$ and a non-negative integer i, let $N_G^i(x) = \{ y \in V(G) : \text{the distance between } x \text{ and } y \text{ in } G \text{ is } i \}$. Note that $N_G^0(x) = \{ x \}$ and $N_G^1(x) = N_G(x)$. Let K_n and P_n denote the complete graph and the path of order n, respectively. For terms and symbols not defined in this paper, we refer the reader to [3].

Let G be a graph. For two sets $X, Y \subseteq V(G)$, we say that X dominates Y if $Y \subseteq N_G[X]$. A subset of $V(G)$ which dominates $V(G)$ is called a dominating set of G. The minimum cardinality of a dominating set of G, denoted by $\gamma(G)$, is called the domination number of G. Since the determining problem of the value $\gamma(G)$ is NP-complete (see [7]), many researchers have tried to find good bounds for the domination number (see [9]). One of the most famous results is due to Ore [11] who proved that every connected graph G of order at least two satisfies $\gamma(G) \leq |V(G)|/2$. Here one problem naturally arises: What additional conditions allow better upper bounds on the domination number? In this paper, we focus on forbidden induced subgraph conditions.

For a graph G and a set \mathcal{H} of connected graphs, G is said to be \mathcal{H}-free if G contains no graph in \mathcal{H} as an induced subgraph. In this context, members of \mathcal{H} are called forbidden subgraphs. If G is $\{H\}$-free, then G is simply said to be H-free. For two sets \mathcal{H}_1 and \mathcal{H}_2 of connected graphs, we write $\mathcal{H}_1 \leq \mathcal{H}_2$ if for every $H_2 \in \mathcal{H}_2$, there exists $H_1 \in \mathcal{H}_1$ such that H_1 is an induced subgraph of H_2. The relation

*This work was supported by JSPS KAKENHI Grant number 26800086 and 18K13449.
“≤” between two sets of forbidden subgraphs was introduced in [6]. Note that if \(\mathcal{H}_1 \leq \mathcal{H}_2 \), then every \(\mathcal{H}_1 \)-free graph is also \(\mathcal{H}_2 \)-free.

Let \(K_{1,3} \) and \(K_{3} \) denote the two unique graphs having degree sequence \((3, 1, 1, 1) \) and \((3, 3, 1, 1, 1) \), respectively. Cockayne, Ko and Shepherd [1] (see also Theorem 2.9 in [9]) proved that every connected \(\{ K_{1,3}, K_{3} \} \)-free graph \(G \) satisfies \(\gamma(G) \leq \lceil |V(G)|/3 \rceil \). Indeed, Duffus, Gould and Jacobson [5] proved that every connected \(\{ K_{1,3}, K_{3} \} \)-free graph has a Hamiltonian path. Since \(\gamma(P_n) = \lceil n/3 \rceil \) for every integer \(n \), the above inequality is a consequence of this result. Furthermore, forbidden induced subgraph conditions for domination-like invariants were widely studied (see, for example, [2, 4, 8, 10]).

In this paper, we will characterize the sets \(\mathcal{H} \) of connected graphs satisfying the condition that

(A1) there exists a constant \(c = c(\mathcal{H}) \) such that \(\gamma(G) \leq c \) for every connected \(\mathcal{H} \)-free graph \(G \).

Let \(n \geq 1 \) be an integer. Let \(K_{n}^* \) denote the graph with \(V(K_{n}^*) = \{ x_i : 1 \leq i \leq n \} \cup \{ y_i : 1 \leq i \leq n \} \) and \(E(K_{n}^*) = \{ x_ix_j : 1 \leq i < j \leq n \} \cup \{ x_iy_i : 1 \leq i \leq n \} \), and let \(S_{n}^* \) denote the graph with \(V(S_{n}^*) = \{ x \} \cup \{ y_i : 1 \leq i \leq n \} \cup \{ z_i : 1 \leq i \leq n \} \) and \(E(S_{n}^*) = \{ xy_i : 1 \leq i \leq n \} \cup \{ y_iz_i : 1 \leq i \leq n \} \) (see Figure 1). Our main result is the following.

Theorem 1.1 Let \(\mathcal{H} \) be a set of connected graphs. Then \(\mathcal{H} \) satisfies (A1) if and only if \(\mathcal{H} \leq \{ K_{k}^*, S_{\ell}^*, P_m \} \) for some positive integers \(k, \ell \) and \(m \).

We conclude this section by considering the case where a set \(\mathcal{H} \) can contain disconnected graphs. Then the following proposition holds.

Proposition 1.2 Let \(\mathcal{H} \) be a set of graphs. Then \(\mathcal{H} \) satisfies (A1) if and only if \(\mathcal{H} \leq \{ K_{k} \} \) for some positive integer \(k \).

Proof: Suppose that \(\mathcal{H} \) satisfies (A1). Then there exists a constant \(c = c(\mathcal{H}) \) such that \(\gamma(G) \leq c \) for every connected \(\mathcal{H} \)-free graph \(G \). Since \(\gamma(K_{c+1}) = c + 1 \), \(K_{c+1} \) is not \(\mathcal{H} \)-free, and so \(\mathcal{H} \leq \{ K_{c+1} \} \).

On the other hand, if \(\mathcal{H} \leq \{ K_{k} \} \), then every \(\mathcal{H} \)-free graph \(G \) satisfies \(\gamma(G) \leq k - 1 \) because every maximal independent set of \(G \) is a dominating set. \(\square \)
2 Proof of Theorem 1.1

For positive integers s and t, let $R(s, t)$ denote the Ramsey number with respect to s and t. For positive integers k, ℓ and i, we recursively define $g_{k, \ell}(i)$ as follows:

\[
\begin{align*}
g_{k, \ell}(1) &= 1 \\
g_{k, \ell}(i) &= R(k, (\ell - 1)g_{k, \ell}(i - 1) + 1) - 1 \quad (i \geq 2).
\end{align*}
\]

Lemma 2.1 Let k, ℓ and i be positive integers. Let G be a $\{K^*_k, S^*_\ell\}$-free graph, and let a be a vertex of G. Then for an independent set $X \subseteq N^*_G(a)$, there exists $U \subseteq N_{G}^{i-1}(a)$ with $|U| \leq g_{k, \ell}(i)$ that dominates X.

Proof: We proceed by induction on i. If $i = 1$, then $U = \{a\}$ is a desired subset of $N_{G}^{i-1}(a) = \{a\}$. Thus we may assume that $i \geq 2$. Note that $N_{G}^{i-1}(a)$ dominates X. Let U be a minimal subset of $N_{G}^{i-1}(a)$ that dominates X. It suffices to show that $|U| \leq R(k, (\ell - 1)g_{k, \ell}(i - 1) + 1) - 1 = g_{k, \ell}(i)$.

By way of contradiction, suppose that $|U| \geq R(k, (\ell - 1)g_{k, \ell}(i - 1) + 1)$. For each $u \in U$, since $U - \{u\}$ does not dominate X by the minimality of U, there exists a vertex $x_u \in X$ such that $N_G(x_u) \cap U = \{u\}$. Recall that X is an independent set. If there exists a clique $U_1 \subseteq U$ with $|U_1| = k$, then the subgraph of G induced by $U_1 \cup \{x_u : u \in U_1\}$ is isomorphic to K^*_k, which contradicts the K^*_k-freeness of G. Since $|U| \geq R(k, (\ell - 1)g_{k, \ell}(i - 1) + 1)$, this implies that there exists an independent set $U_2 \subseteq U$ with $|U_2| = (\ell - 1)g_{k, \ell}(i - 1) + 1$. By the induction hypothesis, there exists $U' \subseteq N_{G}^{i-2}(a)$ with $|U'| = g_{k, \ell}(i - 1)$ that dominates U_2. By the pigeon-hole principle, there exists a vertex $u' \in U'$ such that $|N_G(u') \cap U_2| \geq \ell$. Let $U_2 \subseteq N_G(u') \cap U_2$ be a set with $|U_2| = \ell$. Then the subgraph of G induced by $\{u'\} \cup U_2 \cup \{x_u : u \in U_2\}$ is isomorphic to S^*_ℓ, which is a contradiction. \hfill \Box

For positive integers k, ℓ and i with $i \geq 2$, let $f_{k, \ell}(i) = R(k, \ell)g_{k, \ell}(i)$.

Lemma 2.2 Let k, ℓ and i be positive integers with $i \geq 2$. Let G be a $\{K^*_k, S^*_\ell\}$-free graph, and let a be a vertex of G. Then there exists $U \subseteq V(G)$ with $|U| \leq f_{k, \ell}(i)$ that dominates $N^*_G(a)$.

Proof: Let X be a maximal independent subset of $N^*_G(a)$. By Lemma 2.1, there exists $U \subseteq N_{G}^{i-1}(a)$ with $|U| \leq g_{k, \ell}(i)$ that dominates X. By the maximality of X, X dominates $N_{G}^{i-1}(a)$, and so X dominates $N_{G}^{i-1}(a) - N_{G}[U]$. Let X_0 be a minimal subset of X that dominates $N_{G}^{i-1}(a) - N_{G}[U]$.

Claim 2.1 We have $|X_0| \leq (R(k, \ell) - 1)g_{k, \ell}(i)$.

Proof: Suppose that $|X_0| \geq (R(k, \ell) - 1)g_{k, \ell}(i) + 1$. Since U dominates X_0 and $|U| \leq g_{k, \ell}(i)$, there exists a vertex $u' \in U$ such that $|N_G(u') \cap X_0| \geq R(k, \ell)$. For each $x \in X_0$, since $X_0 - \{x\}$ does not dominate $N_{G}^{i-1}(a) - N_{G}[U]$ by the minimality of X_0, there exists a vertex $y_x \in N_{G}^{i-1}(a) - N_{G}[U]$ such that $N_G(y_x) \cap X_0 = \{x\}$. Set $Y = \{y_x : x \in N_G(u') \cap X_0\}$, and for each $y \in Y$, write $N_G(y) \cap X_0 = \{x_y\}$. Note that $y_x : y \in Y \subseteq N_G(u') \cap X_0$ and $y_{x_y} = y$ for each $y \in Y$. Since $|Y| = |N_G(u') \cap X_0| \geq R(k, \ell)$, there exists a clique $Y_1 \subseteq Y$ with $|Y_1| = k$ or an independent set $Y_2 \subseteq Y$ with $|Y_2| = \ell$. Recall that $Y \subseteq N_{G}(a) - N_{G}[U]$, and so $N_{G}(u') \cap Y = \emptyset$, and so $N_{G}(u') \cap Y = \emptyset$. If there exists a clique $Y_1 \subseteq Y$ with $|Y_1| = k$, then the subgraph of G induced by $Y_1 \cup \{y_y : y \in Y_1\}$ is isomorphic to K^*_k; if there exists
an independent set $Y_2 \subseteq Y$ with $|Y_2| = \ell$, then the subgraph of G induced by $\{u\} \cup \{x_y : y \in Y_2\} \cup Y_2$ is isomorphic to S_ℓ^c. In either case, we obtain a contradiction.

Recall that X_0 dominates $N^c_G(a) - N_G[U]$. Hence $U \cup X_0$ dominates $N^c_G(a)$. Furthermore, by the definition of U and Claim 2.1,

$$|U \cup X_0| = |U| + |X_0| \leq g_{k,\ell}(i) + (R(k, \ell) - 1)g_{k,\ell}(i) = f_{k,\ell}(i).$$

Thus $\hat{U} = U \cup X_0$ is a desired set.

\textbf{Proof of Theorem 1.1}: We first prove the “only if” part. Let \mathcal{H} be a set of connected graphs satisfying (A1). Then there exists a constant $c = c(\mathcal{H})$ such that $\gamma(G) \leq c$ for every connected \mathcal{H}-free graph G. Since we can easily verify that $\gamma(K^*_c+1) = \gamma(S^*_c+1) = \gamma(P^*_m) = c+1$, none of K^*_c+1, S^*_c+1 and P^*_m is \mathcal{H}-free. This implies that $\mathcal{H} \subseteq \{K^*_c+1, S^*_c+1, P^*_m\}$, as desired.

Next we prove the “if” part. Let \mathcal{H} be a set of connected graphs such that $\mathcal{H} \subseteq \{K^*_k, S^*_\ell, P^*_m\}$ for some positive integers k, ℓ and m. Choose k, ℓ and m so that $k + \ell + m$ is as small as possible. Then k, ℓ and m are uniquely determined. In particular, the value $1 + \sum_{2 \leq i \leq m-2} f_{k,\ell}(i)$ only depends on \mathcal{H}. Furthermore, every \mathcal{H}-free graph is also $\{K^*_k, S^*_\ell, P^*_m\}$-free. Thus it suffices to show that every connected $\{K^*_k, S^*_\ell, P^*_m\}$-free graph G satisfies $\gamma(G) \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,\ell}(i)$. Let $a \in V(G)$. Since G is P^*_m-free, $N_G^0(a) = \emptyset$ for all $i \geq m - 1$. Since G is connected, this implies that $V(G) = \bigcup_{0 \leq i \leq m-2} N_G^1(a)$. Since G is $\{K^*_k, S^*_\ell\}$-free, it follows from Lemma 2.2 that for each i with $2 \leq i \leq m - 2$, there exists a set $\hat{U}_i \subseteq V(G)$ with $|\hat{U}_i| \leq f_{k,\ell}(i)$ that dominates $N_G^1(a)$. Since $\{a\}$ dominates $N_G^0(a) \cup N_G^1(a)$, $\{a\} \cup (\bigcup_{2 \leq i \leq m-2} \hat{U}_i)$ is a dominating set of G, and so

$$\gamma(G) \leq |\{a\}| + \sum_{2 \leq i \leq m-2} |\hat{U}_i| \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,\ell}(i),$$

as desired.

This completes the proof of Theorem 1.1. \hfill \Box

3 Concluding remark

In this paper, we characterized the sets \mathcal{H} of connected graphs satisfying (A1). For similar problems concerning many domination-like invariants, we can use the sets appearing in Theorem 1.1.

Let μ be an invariant of graphs, and assume that

\begin{itemize}
 \item[(D1)] there exist two constants $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 \gamma(G) \leq \mu(G) \leq c_2 \gamma(G)$ for all connected graphs G.
\end{itemize}

Note that many important domination-like invariants (for example, total domination number γ_t, paired domination number γ_{pr}, Roman domination number γ_R, rainbow domination number γ_{rk}, etc.) satisfy (D1). Furthermore, we focus on the condition that

\begin{itemize}
 \item[(A'1)] there exists a constant $c' = c'(\mu, \mathcal{H})$ such that $\mu(G) \leq c$ for every connected \mathcal{H}-free graph G.
\end{itemize}

We first suppose that a set \mathcal{H} of connected graphs satisfies (A'1). Note that
For $\mu(K^*_1) \geq c_1 \gamma(K^*_1) = c_1 \cdot \lceil (\ell + 1)/c_1 \rceil \geq \ell + 1,$

\begin{itemize}
 \item $\mu(S^*_1) \geq c_1 \gamma(S^*_1) = c_1 \cdot \lceil (\ell + 1)/c_1 \rceil \geq \ell + 1,$ and
 \item $\mu(P^*_1) \geq c_1 \gamma(P^*_1) = c_1 \cdot \lceil (\ell + 1)/c_1 \rceil \geq \ell + 1.$
\end{itemize}

Thus, by similar argument to the proof of “only if” part of Theorem 1.1, we have $\mathcal{H} \leq \{K^*_k, S^*_\ell, P_m\}$ for some positive integers k, ℓ and m.

On the contrary, suppose that a set \mathcal{H} of connected graphs satisfies $\mathcal{H} \leq \{K^*_k, S^*_\ell, P_m\}$ for some positive integers k, ℓ and m. Then by Theorem 1.1, (A1) holds, and hence for a connected \mathcal{H}-free graph G, we have

$$\mu(G) \leq c_2 \gamma(G) \leq c_2 \cdot c(\mathcal{H}).$$

Consequently (A1') holds (for $\ell = c_2 \cdot c(\mathcal{H})$). Therefore, we obtain the following theorem.

Theorem 3.1 Let μ be an invariant for graphs satisfying (D1), and let \mathcal{H} be a set of connected graphs. Then \mathcal{H} satisfies (A1') if and only if $\mathcal{H} \leq \{K^*_k, S^*_\ell, P_m\}$ for positive integers k, ℓ and m.

Acknowledgements

I would like to thank anonymous referees for careful reading and helpful comments.

References

[1] E.J. Cockayne, C.W. Ko and F.B. Shepherd, Inequalities concerning dominating sets in graphs, Technical Report DM-370-IR, Dept. Math., Univ. Victoria (1985).

[2] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted domination in triangle-free graphs, Discrete Math. 250 (2002) 233–239.

[3] R. Diestel, *Graph Theory* (5th edition), Graduate Texts in Mathematics 173, Springer (2017).

[4] P. Dorbec, S. Gravier and M.A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007) 1–7.

[5] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, *The theory and applications of graphs*, pp.297–316, Wiley (1981).

[6] S. Fujita, K. Kawarabayashi, C. L. Lucchesi, K. Ota, M. Plummer and A. Saito, A pair of forbidden subgraphs and perfect matchings, J. Combin. Theory Ser. B 96 (2006) 315–324.

[7] M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness”, Freeman, New York (1979).

[8] J. Haviland, Independent domination in triangle-free graphs, Discrete Math. 308 (2008) 3545–3550.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York (1998).
[10] H. Jiang and L. Kang, Total restrained domination in claw-free graphs, J. Comb. Optim. 19 (2010) 60–68.

[11] O. Ore, Theory of graphs, American Mathematical Society Colloquium Publications Vol.38 American Mathematics Society, Providence, RI (1962).