An Original Geometric Programming Problem Algorithm to Solve Two Coefficients Sensitivity Analysis

1Abbas Y. Al-Bayati and 2Huda E. Khalid
1Department of Computer Sciences and Mathematics, Mosul University, Mosul, Iraq
2Department of Computer Engineering, Technical College of Mosul, Mosul, Iraq

Abstract: Problem statement: It has been noticed by Dinkel and Kochenberger that they developed sensitivity procedure for Posynomial Geometric Programming Problems based on making a small changes in one coefficient. Approach: This study presented an original algorithm for finding the ranging analysis while studying the effect of perturbations in the original coefficients without resolving the problem, this proposed procedure had been trapped on two coefficients simultaneously. We also had developed one of the incremental strategies to make suitable comparisons. Results: Comparison results had been done between the gained result from the sensitivity analysis approach and the incremental analysis approach. Conclusion: In the standard Geometric Programming Problem, we obtained an original algorithm, for the first time, by changing two coefficients simultaneously in the objective function.

Key words: Geometric programming, sensitivity analysis, ranging analysis, incremental analysis

INTRODUCTION

This study deals with the sensitivity analysis in the case of less than type inequalities. Techniques designed to study the effects of small changes in the input variables on the optimal solution of an optimization problems, with out having to solve the entire problem again and again, are known in the literature as sensitivity analysis techniques1. Dinkel and Kochenberger studying the effect of changing coefficients separately on the optimal solution2,4.

MATERIALS AND METHODS

The mathematical formulation of the sensitivity analysis for posynomials (polynomials with positive coefficients) are discussed in the research of Dinkel et al.3 as follow:

Theorem 1: Suppose that the primal geometric program has d>0 and rank (a_i) = m If the solution to the dual geometric program has δ^*>0 and if the Jacobian matrix J(δ) with components is:

\[J_δ(δ) = \sum_{q=1}^{n} \frac{b(q)b(q)}{δ_q} - \sum_{i=1}^{p} \frac{λ(i)λ(i)}{λ(i)} \]

 nonsingular at δ^*, then the functions which give the optimized parameters δ^* and v(δ^*) in terms of the variable coefficient vector c are differentiable on an open neighborhood of c. These differentials are:

\[\frac{dv}{v} = \sum_{i=1}^{n} \frac{δ_i}{c_i} \frac{dc_i}{c_i} \] (2)

\[dδ_i = \sum_{j=1}^{d} \left(b_j(δ) \sum_{k=1}^{n} b_k(δ) \frac{dc_k}{c_k} \right) \] (3)

where, J_m^*(δ^*) represents the components of the inverse of J(δ) and:

\[dλ_k = \sum_{r=1}^{p} dδ_r \] (4)

The major restriction of this result, from an applications point of view, is that are no inactive primal constraints at the optimal solution (δ_i^* > 0 for all i). Thus assuming the problem has been reformulated, if necessary, to meet this restriction.

For differential changes dc_i that maintain the positivity conditions on all dual variables, the new dual solution is estimated as:

\[δ_i^* = δ_i^* + dδ_i, i = 1,...,n \] (5)

\[v^* = v^* + \sum_{i=1}^{n} \frac{δ_i^*}{c_i} \frac{dc_i}{c_i} \] (6)
where, $d\delta_i$ is given by (3). Once the dual solution is known the estimate of the new primal solution is computed as:

$$c_1 x_1^0 x_2^0 \ldots x_m^0 = \begin{cases} \delta_i^0 v(\delta^0) & i \in [0] \\ \delta_i^0 / \lambda_i(\delta^0) & i \in [k] \end{cases}$$

(7)

and

$$(\log x_i^0) = [(a_i)^T (a_i)]^{-1} (a_i)^T (K_i)$$

(8)

Where:

$$k_i = \begin{cases} \log \delta_i^0 + \log v(\delta^0) - \log(c_i + dc_i) & i = 1, \ldots, n_0 \\ \log \delta_i^0 - \log \lambda_i^0 - \log(c_i + dc_i) & i = n_0 + 1, \ldots, n \end{cases}$$

(9)

and n_0 is the number of terms in the primal objective function.

If the sub-matrix $b_i(j) = 1, \ldots, n_0$, $j = 1, \ldots, d$, has rank d then $J(\delta^0)$ is nonsingular for each $\delta > 0$.

Theorem 2: Suppose the primal GPP has $d > 0$ and let $b(j), j = 1, \ldots, m$ are linearly independent. If the sub-matrix with components $b_i(j), i = 1, \ldots, n_0$ and $j = 1, \ldots, d$ has rank d then $J(\delta^0)$, given by (1), is nonsingular for each $\delta > 0$.

Since we are interested in other than differential changes we will interpret $\frac{dv}{v}$ and $\frac{dc_i}{c_i}$ as rates of change$^{[3]}$. That is:

$$\frac{dv}{v} = \frac{v' - v^0}{v^0}$$

(10)

$$\frac{dc_i}{c_i} = \frac{c'_i - c_i}{c_i}$$

(11)

where, v' and c_i denote the new values of the objective function and coefficients respectively.

An original GPP algorithm: Before we make some observations of the new original procedure, let us consider the outlines of this algorithm:

Step 1: Put $\delta_i + d\delta_i = 0$ as an equations of the two variables Δ_1 and Δ_2 where $i = 1, 2, \ldots, n$ is the number of dual variables.

Step 2: Calculate the cofactors of Δ_1 and Δ_2 in those equations obtained in the step 1, we note that the sign of Δ_1 is the opposite to the sign of Δ_2 for each $i = 1, 2, \ldots, n$.

Step 3: Categorized those equations in two groups:

- The first group is containing the +ive cofactors of Δ_1 and the –ive cofactors of Δ_2
- The second group is containing the –ive cofactors of Δ_1 and the +ive cofactors of Δ_2

Step 4: From the first group, calculate the lower bound of Δ_1 and the upper bound of Δ_2, while the upper bound of Δ_1 and lower bound of Δ_2 will be calculated from the 2nd group.

Step 5: Since our searching is concerned about the range of any two coefficients in the objective function by changing them simultaneously so any small change in the lower bound of Δ_1 will effect on the upper bound of Δ_2 similarly, upper bound of Δ_1 and lower bound of Δ_2 will be effected, this connection gives us an ability to construct the cross-shape in Fig. 1.

Step 6: Find the intersection points of $\delta_i + d\delta_i = 0$ with Δ_1 and Δ_2 axis.

Step 7: Determine the pieces of the those lines between the intersection points and study all points at that pieces to find the most important answer on the following most important question:

At which point on the pieces of the 1st and 2nd groups will we find $\max \Delta_1$ with $\min \Delta_2$ simultaneously?

Step 8: After finding those points, apply the following rule:

- The upper bound on Δ_1 is then the minimum of $\Delta_1 > 0$ for those i when (14)<0 for which (13) is
satisfied. If $\Delta_1<0$ evaluating (13) for those I for which (14)>0 then the lower bound on Δ_1 being the maximum such $\Delta_1^{[1]}$, by regarding the observations (a), (b) and (c) in Note 2

Step 9: End.

Some theoretical observations:

Note 1:

• If we attempt to change the upper bounds of Δ_1 and Δ_2 simultaneously or the lower bounds Δ_1 and Δ_2 this will shift the cross-shape right or left respectively. The important thing now, because we have consider the change in two coefficients, this yields two dimensional space for which Δ_1 is the horizontal axis and Δ_2 is the vertical axis .The equations $\delta_i + d\delta_i = 0$ are straight lines in Δ_1 and Δ_2 plane

Note 2:

(a) We suggest that the lower bound on Δ_1 don’t exceed the negative value of c_1 to maintain the posynomial nature. Also for Δ_2
(b) We make the same steps on the bounds of Δ_2 with replacing (A) by (B)
(c) At changing in c_1 and c_2 simultaneously we must note that this changing is with respect (the cases if $\Delta_1>0 \rightarrow \Delta_2>0$ and $\Delta_1<0 \rightarrow \Delta_2<0$ are out of our ranges since it is contradict the conditions in the problems)

Note 3:

• The above algorithm is originally designed by us with a numerical evidence we put those results in Table 1-4 which are verified by using our programs writing in Matlab

If we try to change three coefficients simultaneously, this required to study three dimensional space and this is not the domain of our research in this research but it is a good field to study in future

Table 1: The effect of the sensitivity analysis in 9 problems

	(A)	(B)
1	0.012624766	-0.012624766
2	-0.012624766	0.012624766
3	0.052363195	-0.052363195
4	-0.052363195	0.052363195
5	0.039272396	-0.039272396
6	-0.052363195	0.052363195
7	-0.002029759	0.002029759
8	-0.018698897	0.018698897
9	-0.005918973	0.005918973

Table 2: Maximum and minimum changes in 9 problems

	Δ_1	Δ_2
1	-83.892382270	3329233.990000
2	11.911373650	-472697.864300
3	-15.462960660	613641.083500
4	7.751342565	-307608.766300
5	-15.462960660	613641.087500
6	7.635325135	-303004.663300
7	21.496974180	-853094.403500
8	21.496974180	-853098.403500
9	1.056374340	-4192.177244

Table 3: Allowable ranges in the sensitivity analysis for changing in c_1 and c_2 simultaneously

c_1 = 0.419	c_2 = 0.419	c_1 = 0	c_2 = 3.47537434	c_1 = 3.419	c_2 = 3.419	c_1 = 0.581	c_2 = 4.419	
Dual variable	c_1 = 1195997	c_1 = 91997	c_1 = 12227282.17	c_1 = 91804.822	c_1 = 99997	c_1 = 1245997	c_1 = 99997	
δ_1	0.720567740	0.86575708	0.714266600	0.88173357	0.88141408	0.88036199	0.7087731	0.88676459
δ_2	0.27943226	0.13424920	0.28573390	0.11826643	0.11858952	0.11963801	0.2912269	0.11323540
δ_3	0.02613503	0.62833053	1.005022700	0.69459555	0.69327041	0.68890667	-0.02278494	0.71546250
δ_4	0.978887740	0.3769224	1.005022700	0.31042722	0.31175236	0.31611609	1.02780772	0.28956027
δ_5	0.019601270	0.47124789	0.999999930	0.52094666	0.51995281	0.51668000	-0.01708871	0.53659868
δ_6	0.973864970	0.37166947	0.062025560	0.30540445	0.30672959	0.31109333	1.02278494	0.28453749
δ_7	0.001210490	0.03766942	0.062025560	0.03510077	0.03515214	0.03532129	0.06290879	0.03429189
δ_8	0.562067060	0.34702305	0.571399860	0.323359810	0.32383303	0.32539131	0.57953638	0.31590822
δ_9	0.077886920	0.09981671	0.080841130	[Not allowable]	0.00247612	0.00296938	0.08341667	-0.00003239

Not allowable since $\delta_1 = 0$
Not allowable
Not allowable

for $\delta_1 = \delta_2 = 0$
RESULTS

Example 1: Consider the following GPP with degree of difficulty two:

\[
\text{min } g_c(x) = 2.419x_1x_2x_3 + 95997x_1^{-1.8}x_4^{1.4}
\]

Subject to:

\[
\begin{align*}
28867x_1^{0.875}x_2^{0.75}x_3^{0.75} & \leq 1 \\
25819x_1^{0.52}x_2^{0.3}x_3^{0.3} & \leq 1 \\
0.03866x_1 + 0.03866x_2 & \leq 1 \\
0.0081666x_1^{-1} + x_2 x_4 & \leq 1 \\
0.083x_2^{-1} & \leq 1, x_i > 0 \quad i=1,2,3,4,5,6
\end{align*}
\]

Here the degree of difficulty is \(d = 9 - 6 - 1 = 2\).

The dual objective function is:

\[
z(\delta) = \delta_1 \log \frac{c_1}{\delta_2} + \delta_2 \log \frac{c_2}{\delta_2} + \delta_3 \log c_3 + \delta_4 \log c_4
\]

\[
+ \delta_5 \log \frac{c_5}{\delta_6} + \delta_6 \log \frac{c_6}{\delta_6} + \delta_7 \log \frac{c_7}{\delta_7} + \delta_8 \log c_8
\]

\[
+ \delta_9 \log \frac{c_9}{\delta_9} + \delta_9 \log c_9
\]

First this system can be solved by:

"NLPsolve" Maple function gives following results:

Table 4: Allowable ranges in the sensitivity analysis and increment analysis for changing in \(c_1\) and \(c_2\) simultaneously

Dual variable	Sensitivity analysis	Increment analysis
\(\delta_1\)	0.57324699633083	0.38599011429509
\(\delta_2\)	0.8689197867858	0.8689197867858
\(\delta_3\)	0.8689197867858	0.8689197867858
\(\delta_4\)	0.2897143767349	0.2897143767349
\(\delta_5\)	0.59195174061681	0.59195174061681
\(\delta_6\)	0.48497242931080	0.48497242931080
\(\delta_7\)	0.57096903656653	0.57096903656653
\(\delta_8\)	0.36942007548640	0.36942007548640

\[\text{NLPsolve} \left(\frac{2.419}{1-\delta_1} \log \left(\frac{95997}{\delta_2}\right)\right)\]

\[> \frac{\delta_1 \log (288670)}{\text{In(10)}} + \frac{(1-\delta_1) \log (25819)}{\text{In(10)}}\]

\[> + \frac{\delta_2 \log (0.03866(\delta_5 + \delta_6)}{\text{In(10)}} + \frac{\log (0.03866(\delta_5 + \delta_6)}{\text{In(10)}}\]

\[> + \frac{\delta_3 \log (0.0081666(\delta_7 + \delta_8)}{\text{In(10)}} + \frac{\log (0.0081666(\delta_7 + \delta_8)}{\text{In(10)}}\]

\[> -1.0788339499, (2.8 \delta_2 + 0.675 \delta_7) = 0.8 \delta_2 + 0.75 \delta_3 + \delta_4 + \delta_5 = 1 - 4.8 \delta_5 = -0.8 \delta_5 + \delta_8 = -0.8 - 0.75 \delta_5 + \delta_9 = 0.5 \delta_3 + \delta_9 = 1\]

\[\text{assume nonnegative, max imize}\]

\[5.26927101414275526\]

\[\delta_1 = 0.332342173499054206\]

\[\delta_5 = 0.502081435651985375\]

\[\delta_6 = 0.330558085797352685\]

\[\delta_7 = 0.360758067560167442\]

\[\delta_9 = 0.124330967111861854\]

\[\delta_3 = 0.6694419142026204\]

\[\delta_6 = 0.005169616981081523466\]

\[\text{Am. J. Engg. & Applied Sci., 2 (2): 481-487, 2009} \]
Suppose \(c_1 \) change to \(c_1 + \Delta_1 \) and \(c_2 \) change \(c_2 + \Delta_2 \) and consider \(0 = \delta^* \), \(0 = \delta_i = \delta_1 + d\delta_i \) for:

\[
\delta_i = b_1 (1) \frac{\Delta_1}{c_i} + b_1 (2) \frac{\Delta_2}{c_2} + b_2 (1) \frac{\Delta_1}{c_i} + b_2 (2) \frac{\Delta_2}{c_2}
\]

(12)

We have:

\[
0 = \delta_i = \left[b_1 (1) \left(b_1 (1) J_{11}^{ji} + b_1 (2) J_{12}^{ji} \right) + b_1 (2) \left(b_1 (2) J_{21}^{ji} + b_2 (2) J_{22}^{ji} \right) \right] \frac{\Delta_1}{c_i}
\]

(13)

Let:

\[
A = b_1 (1) \left(b_1 (1) J_{11}^{ji} + b_1 (2) J_{12}^{ji} \right) + b_1 (2)
\]

(14)

\[
B = b_1 (1) \left(b_1 (2) J_{21}^{ji} + b_2 (2) J_{22}^{ji} \right) + b_1 (2)
\]

(15)

Evaluating (A) and (B) for \(i = 1, 2, \ldots, 9 \) we will get Table 1.

Substitute these values in (13) and solve the following nine optimization problems:

Problem 1 (for \(i = 1 \)):

\[
\begin{align*}
\text{max} & \Delta_1 \text{which is the min} \Delta_2 \\
\text{s.t.} & 0.005219002067 \Delta_1 - 0.0000001315120889 \Delta_2 + 0.8756690329 = 0 \\
\text{with} & \Delta_1 < 0; \Delta_2 < 0
\end{align*}
\]

Problem 2 (for \(i = 2 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.005219002067 \Delta_1 + 0.0000001315120889 \Delta_2 + 0.1243309671 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]

Problem 3 (for \(i = 3 \)):

\[
\begin{align*}
\text{max} & \Delta_1 \text{which is the min} \Delta_2 \\
\text{s.t.} & 0.021646628 \Delta_1 - 0.000000545669938 \Delta_2 + 0.6694419142 = 0 \\
\text{with} & \Delta_1 < 0; \Delta_2 > 0
\end{align*}
\]

Problem 4 (for \(i = 4 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.021646628 \Delta_1 + 0.000000545669938 \Delta_2 + 0.3355808580 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]

Problem 5 (for \(i = 5 \)):

\[
\begin{align*}
\text{max} & \Delta_1 \text{which is the min} \Delta_2 \\
\text{s.t.} & 0.016234971 \Delta_1 - 0.0000004091002427 \Delta_2 + 0.502081435 = 0 \\
\text{with} & \Delta_1 < 0; \Delta_2 > 0
\end{align*}
\]

Problem 6 (for \(i = 6 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.021646628 \Delta_1 + 0.000000545669938 \Delta_2 + 0.3355808580 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]

Problem 7 (for \(i = 7 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.0083909034 \Delta_1 + 0.0000000211439892 \Delta_2 + 0.036075807 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]

Problem 8 (for \(i = 8 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.007730011162 \Delta_1 + 0.007730011162 \Delta_2 + 0.323421734 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]

Problem 9 (for \(i = 9 \)):

\[
\begin{align*}
\text{min} & \Delta_1 \text{which is the max} \Delta_2 \\
\text{s.t.} & -0.00244686793 \Delta_1 + 0.00000061657901 \Delta_2 + 0.00516961698 = 0 \\
\text{with} & \Delta_1 > 0; \Delta_2 < 0
\end{align*}
\]
The solutions of these problems can be tabulated as Table 2.

Depending on the step 8 of the original algorithm we conclude that:

- Lower bound of $\Delta_1 = \max \{ \Delta_{ii}, \ i = 1,3,5 \} = -15.46296066$
- Upper bound of $\Delta_1 = \min \{ \Delta_{ii}, \ i = 2,4,6,7,8,9 \} = 1.05637434$
- Lower bound of $\Delta_2 = \max \{ \Delta_{ii}, \ i = 2,4,6,7,8,9 \} = -4192.177244$
- Upper bound of $\Delta_2 = \min \{ \Delta_{ii}, \ i = 1,2,3,5 \} = -61361.0835$

This implies that:

$$-15.46296066 < \Delta_1 < 1.05637434$$
$$-4192.177244 < \Delta_2 < 613641.0835$$

To satisfy the Note 2 part (a) we must observe that this means that $\Delta_1 = c_i - c_i \rightarrow c_i = \Delta_i + c_i > 0$ and this occur at $\Delta > -2.419$; therefore we replace the lower bound of Δ_1 from -15.46296066 to -2.419, but we realize this value will effect on the upper bound of Δ_2. We evaluate Δ_2 at the constraints in the problems 1,3 and 5 mentioned above and we select the minimum value of Δ_2 (facing to $\Delta_1 = 2.419$) this implies that:

$$-2.419 < \Delta_1 < 1.05637434$$
$$-4192.177244 < \Delta_2 < 613641.0835$$

This will give the upper and lower bounds of the coefficient c_i.

Example 2: $\min g_o(x) = x_1 + x_2^{1.5}$

Subject to:

- $0.1(x_6^3 + x_7)x_1^{0.5} - x_1^{0.5}x_1^{-1} \leq 1$
- $(x_6 + x_7)x_1^{0.5} \leq 1(x_7 + x_8^{0.9})x_2^{2} \leq 1$
- $x_1^{2}x_8^{2} \leq 1$
- $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 > 0$

Here $d = 12 - 8 - 1 = 3$.
To find $b_m(0)$ set $\delta_1 = \delta_2 = \delta_3 = 0$ in the linear equations of the dual constraints, $b_m(1)$ can be obtained similarly by setting $\delta_1 = 1, \delta_2 = \delta_3 = 0$ $b_m(2)$ is the value obtained by substituting $\delta_1 = 0, \delta_2 = 1, \delta_3 = 0$. Finally $b_m(3)$ will be obtained by substituting $\delta_1 = 0, \delta_2 = 0, \delta_3 = 1$ where $m = 1,2,\ldots,12$. So we get:

$$
\begin{bmatrix}
0 \\
1 \\
-0.2386 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-0.9887 \\
0.9887 \\
1.5 \\
0 \\
-1.499 \\
-0.7499 \\
0
\end{bmatrix}
=
\begin{bmatrix}
0 \\
-1 \\
-0.31818 \\
0 \\
1 \\
1 \\
0 \\
-0.8181 \\
-1.3182 \\
-0.8181 \\
1.5 \\
0 \\
2 \\
1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
-0.3295 \\
0.2386 \\
0.31818 \\
0 \\
0 \\
2.9 \\
1
\end{bmatrix}
$$

The value of the objective function can be evaluated as follow:

$$(\cdot) z(\delta) = \delta_1 \log \frac{c_1}{\delta_1} + \delta_2 \log \frac{c_2}{\delta_2} + \delta_3 \log \frac{c_3\lambda_3}{\delta_3}$$
$$+ \delta_4 \log \frac{c_4\lambda_4}{\delta_4} + \delta_5 \log c_5 + \delta_6 \log \frac{c_6\lambda_6}{\delta_6}$$
$$+ \delta_7 \log \frac{c_7\lambda_7}{\delta_7} + \delta_8 \log \frac{c_8\lambda_8}{\delta_8} + \delta_9 \log \frac{c_9\lambda_9}{\delta_9}$$

The solutions of these problems can be tabulated as Table 2.
\[\delta_3 = 0.15639129886847561, \delta_{11} = 0.11529417638566357, \delta_6 = 0.086480172705934083, \delta_4 = 0.103790668807550533, \delta_6 = 0.09798366106092626, \delta_7 = 0.290488953113046455, \delta_8 = 0.2907433864.034649, \delta_9 = 0.125507818972236702 \]

But \(\delta_2 = 1 - \delta_1, \delta_3 = \delta_1 \) and \(\delta_{12} = \delta_4 \).

Again by applying the algorithm we will get:

\[-0.98907450335862 < \Delta_1 < 0.446504009 \]
\[0.0109259664174 < c_i < 1.4465 \]
\[-0.446504009 < c_2 < 0.98907450335862 \]
\[0.5549590635 < c_1 < 1.98907450335862 \]

We have developed the formula of the increment analysis for single coefficient \(^1\) to multiple coefficients as follow:

\[d \delta_i \Delta = \delta + \Delta - \sum_{j=1}^{d} b_i (j) \sum_{k=i}^{n} b_i (k) c_i k_i + \Delta_i (k_i - 1) \] \((16) \)

\[d = \text{The degree of difficulty} \]
\[n = \text{Number of coefficients that we will change} \]

Finally, we tested the efficiency of our formula by making Matlab program and fettered the results by Table 4.

DISCUSSION

In this study, we have proposed an original algorithm associated to the geometric programming problem (GPP) and signomial programming problem (SPP) by changing two coefficients in their objective function simultaneously to study the effect of ranging analysis of these algorithms without resolving the algorithms again. The original algorithm given in this study has been proved both theoretically and numerically by using high degree of difficulty test problems.

CONCLUSION

This study deals with geometric programming problem where exponent matrix \(a_{ij} \) is of full rank, the degree of difficulty is greater than zero and the constraints at the case of less than inequalities, but we made the changes in two coefficients of the objective function simultaneously. In the given examples we show in Table 3 and 4 containing numerical results to test the effectiveness of our original algorithm.

REFERENCES

1. Al-Bayati, A.Y. and C. Mohan, 1980. A numerical procedure for sensitivity analysis of generalized geometric programming problems. Eng. Optimiz., 5: 51-58. DOI: 10.1080/03052158008902433
2. Dinkel, J.J. and G.A. Kochenberger, 1977. On sensitivity analysis in geometric programming. Operat. Res., 25: 155-163. http://www.jstor.org/stable/169555
3. Dinkel, J.J., G.A. Kochenberger and S.N. Wong, 1978. Sensitivity analysis procedures for geometric programs: Computational aspects. ACM. Trans. Math. Software, 4: 1-14. http://portal.acm.org/citation.cfm?id=355770
4. Dinkel, J.J. and G.A. Kochenberger, 1974. A note on substitution effects in geometric programming. Manage. Sci., 20: 1141-1143. http://www.jstor.org/stable/2629745