Bivariate Extension of the r-Dowling Polynomials and the Generalized Spivey’s Formula

Mahid M. Mangontarum
Department of Mathematics
Mindanao State University-Main Campus
Marawi City 9700
Philippines
mmangontarum@yahoo.com
mangontarum.mahid@msumain.edu.ph

Abstract

In this paper, we extend the r-Dowling polynomials to their bivariate forms. Several properties that generalize those of the bivariate Bell and r-Bell polynomials are established. Finally, we obtain two forms of generalized Spivey’s formula.

1 Introduction

The Bell numbers B_n are defined by the sum

$$B_n = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\},$$

(1)

where $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$ denote the Stirling numbers of the second kind, and are known to satisfy the recurrence relation given by

$$B_{n+1} = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) B_k.$$

(2)

The numbers $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$ count the number of ways to partition a set X of n elements into k non-empty subsets. With this, it is obvious that B_n count the total number of partitions of the set X. Using the same combinatorial interpretation, Spivey [22] obtained a generalized recurrence for B_n which unifies (1) and (2), viz.

$$B_{\ell+n} = \sum_{k=0}^{\ell} \sum_{i=0}^{n} k^{n-i} \left(\begin{array}{c} n \\ i \end{array} \right) \left\{ \begin{array}{c} \ell \\ k \end{array} \right\} B_i.$$

(3)

The Bell polynomials, denoted by $B_n(x)$, are defined by

$$B_n(x) = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} x^k.$$

(4)
Gould and Quaintance [11] established the polynomial version of (3) as follows

\[B_{\ell+n}(x) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} k^{n-i} \binom{n}{i} \binom{\ell}{k} B_i(x)x^i \]

(5)

by means of generating functions. The same identity was also obtained by Belbachir and Mihoubi [3, Theorem 1] using a method that involve decomposition of the \(B_n(x) \) into a certain polynomial basis and by Boyadzhiev [5, Proposition 3.2] using the Mellin derivatives.

Recently, Zheng and Li [23] defined the bivariate Bell polynomials by

\[B_n(x, y) = \sum_{k=0}^{n} \binom{n}{k} (x)_k y^k, \]

(6)

where \((x)_k = x(x-1) \cdots (x-k+1) \), \((x)_0 = 1 \), with the following exponential generating function [23, Theorem 1]:

\[\sum_{n=0}^{\infty} B_n(x, y) \frac{t^n}{n!} = \left[1 + y(e^t - 1) \right]^x. \]

(7)

With this notion, they were able to obtain the bivariate extension of Spivey’s formula [23, Theorem 2] given by

\[B_{\ell+n}(x, y) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} k^{n-i} \binom{n}{i} \binom{\ell}{k} B_i(x-k, y)(x)_k y^k. \]

(8)

Equation (5) can be recovered from this formula by replacing \(y \) with \(y/x \) and taking the limit as \(x \to \infty \). The \(r \)-Stirling numbers of the second kind, denoted by \(\{n\}_k \), are defined by Broder [6] as the number of partitions of the \(n \)-element set \(X \) into \(k \) non empty disjoint subsets such that the elements 1, 2, \ldots, \(r \) are in distinct subsets. These numbers are known to satisfy the horizontal generating function [6, Theorem 22]

\[(t + r)^n = \sum_{k=0}^{n} \binom{n + r}{k + r} \binom{\ell}{k} (t)_k \]

(9)

and the exponential generating function [6, Theorem 16]

\[\sum_{n=0}^{\infty} \binom{n + r}{k + r} \frac{t^n}{n!} = \frac{1}{k!} e^{rt}(e^t - 1)^k. \]

(10)

By defining the bivariate \(r \)-Bell polynomials by

\[B_{n,r}(x, y) = \sum_{k=0}^{n} \binom{n + r}{k + r} (x)_k y^k, \]

(11)
Zheng and Li [23] were also able to obtain the following generalizations of (8):

\[
B_{\ell+n,r}(x, y) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} k^{n-i} \binom{n}{i} \left\{ \frac{\ell + r}{k + r} \right\} B_{i,r}(x - k, y)(x)k^i y^k
\]

(12)

and

\[
B_{\ell+n,r}(x, y) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (k + r)^{n-i} \binom{n}{i} \left\{ \frac{\ell + r}{k + r} \right\} B_{i}(x - k, y)(x)k^i y^k.
\]

(13)

Replacing \(y \) with \(1/x \) and taking the limit as \(x \to \infty \) in these formulas give [23, Corollaries 9 and 10]

\[
B_{\ell+n,r} = \sum_{k=0}^{\ell} \sum_{i=0}^{n} k^{n-i} \binom{n}{i} \left\{ \frac{\ell + r}{k + r} \right\} B_{i,r}
\]

(14)

and

\[
B_{\ell+n,r} = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (k + r)^{n-i} \binom{n}{i} \left\{ \frac{\ell + r}{k + r} \right\} B_{i}.
\]

(15)

Equation (15) is a generalization of (3) proved by Mező [20, Theorem 2] using the combinatorial interpretation of \(\binom{n}{k} \) for the \(r \)-Bell numbers [19, Equation 2]

\[
B_{n,r} = \sum_{k=0}^{n} \binom{n + r}{k + r}.
\]

(16)

Notice that we used the notation \(\frac{\ell + r}{k + r} \) in the above equations instead of just \(\frac{\ell}{k} \) for consistency. On the other hand, equation (14) and its polynomial version (12) appear in the paper of Mangontarum and Dibagulun [15, Corollary 3] as particular case of the formula [15, Theorem 2]

\[
D_{m,r}(\ell + n; x) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (mk)^{n-i} W_{m,r}(n, k) \binom{n}{i} D_{m,r}(i; x)x^k,
\]

(17)

where \(D_{m,r}(\ell + n; x) \) denote the \(r \)-Dowling polynomials [7] defined by

\[
D_{m,r}(n; x) = \sum_{k=0}^{n} W_{m,r}(n, k)x^k
\]

(18)

and \(W_{m,r}(n, k) \) denote the \(r \)-Whitney numbers of the second kind [18]. Equation (17) was proved using the classical operators \(X \) and \(D \) satisfying the commutation relation

\[
[D, x] := DX - XD = 1.
\]

Inspecting equations (14) and (15), we see that generalizing Spivey’s formula yields two forms. In the first form, as seen in the right-hand side of (14), the \(r \)-Bell numbers \(B_{\ell+n,r} \) are expressed recursively in terms of the \(r \)-Bell numbers \(B_{i,r} \). In the second form, as seen in (15), the right-hand side involves the usual Bell numbers \(B_{i} \) instead of \(B_{i,r} \). We also notice the presence of \((k + r)^{n-i} \) instead of \(k^{n-i} \).

In this paper, we will extend the \(r \)-Dowling polynomials to the bivariate case and investigate generalizations of Spivey’s formula that are analogous to the two forms mentioned above.
2 Bivariate r-Dowling polynomials

The r-Whitney numbers of the second kind are defined as coefficients in the expansion of the horizontal generating function \[(mt + r)^n = \sum_{k=0}^{n} m^k W_{m,r}(n, k)(t)_k \tag{19} \]
and have the exponential generating function
\[
\sum_{n=k}^{\infty} W_{m,r}(n, k) \frac{t^n}{n!} = \frac{e^{rt} - 1}{m} \left(\frac{e^{mt} - 1}{m} \right)^k \tag{20}
\]
and the explicit formula
\[
W_{m,r}(n, k) = \frac{1}{m^k k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} (mj + r)^n. \tag{21}
\]

Apparently, other mathematicians worked on numbers which are equivalent to $W_{m,r}(n, k)$. More precisely, the (r, β)-Stirling numbers \[\langle n \rangle_{k, r, \beta} \] defined by \[
t^n = \sum_{k=0}^{n} \binom{\frac{t-r}{\beta}}{k} \beta^k k! \langle n \rangle_{k, r, \beta}, \]
the Ruciński-Voigt numbers \[S^n_k(a) \] defined by \[
t^n = \sum_{k=0}^{n} S^n_k(a) P^a_k(x), \]
where $a = (a, a + r, a + 2r, a + 3r, \ldots)$ and $P^a_k(x) = \prod_{i=0}^{k-1} (t - a + ir)$, and the noncentral Whitney numbers of the second kind \[\widetilde{W}^n_m(a, k) \] defined by \[
\langle \frac{n}{k} \rangle_{r, \beta} = W_{r, x}(n, k), S^n_k(a) = W_{r, a}(n, k), \widetilde{W}^n_m(a, k) = W_{m, a}(n, k). \]

Furthermore, aside from the classical Stirling numbers of the second kind which are given by $W_{1,0}(n, k) = \{n\}_k$, the numbers considered by previous authors in \[[6, 13, 12, 14, 17] \] can also be obtained from $W_{m,r}(n, k)$ by assigning suitable values to the parameters m and r.

Now, looking at the defining relations in equations \[[6] \text{ and } [11] \], it is natural to define the bivariate r-Dowling polynomials by \[
D_{m,r}(n; x, y) = \sum_{k=0}^{n} W_{m,r}(n, k)(x)_k y^k. \tag{22}
\]

In the following theorems, we will present some combinatorial properties of $D_{m,r}(n; x, y)$:
Theorem 1. The bivariate r-Dowling polynomials satisfy the following exponential generating function:
\[
\sum_{n=0}^{\infty} D_{m,r}(n; x, y) \frac{t^n}{n!} = e^{rt} \left[1 + \frac{y(e^{mt} - 1)}{m} \right]^x .
\] (23)

Proof. Making use of the exponential generating function in (20) and the binomial theorem, we get
\[
\sum_{n=0}^{\infty} D_{m,r}(n; x, y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} W_{m,r}(n, k) x^k y^k \right] \frac{t^n}{n!}
= \sum_{k=0}^{\infty} (x)_{k} y^k \frac{e^{rt} (e^{mt} - 1)}{k!}
= e^{rt} \sum_{k=0}^{x} \left(\begin{array}{c} x \\ k \end{array} \right) \left[\frac{y(e^{mt} - 1)}{m} \right]^k
= e^{rt} \left[1 + \frac{y(e^{mt} - 1)}{m} \right]^x
\]

as desired. \qed

The results in (7) and in [23, Theorem 3] are special cases of this theorem, i.e. when $m = 1$ and $r = 1$, and $m = 1$, respectively.

Theorem 2. The bivariate r-Dowling polynomials satisfy the following explicit formula:
\[
D_{m,r}(n; x, y) = \sum_{i=0}^{x} \binom{x}{i} (mi + r)^n \left(\frac{y}{m} \right)^i \left(1 - \frac{y}{m} \right)^{x-i} .
\] (24)

Proof. By applying the explicit formula in (21),
\[
D_{m,r}(n; x, y) = \sum_{k=0}^{n} \left[\frac{1}{m^k k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} (m(k-j) + r)^n \right] x^k y^k
= \sum_{j=0}^{\infty} \sum_{k=j}^{\infty} \frac{(-1)^j (m(k-j) + r)^n (x)_{k} y^k}{m^k j! (k-j)!}
\]
Letting $i = k - j$ and since $(x)_{i+j} = (x)_i (x-i)_j$,
\[
D_{m,r}(n; x, y) = \sum_{i=0}^{\infty} \frac{(mi + r)^n (x)_i}{i!} \left(\frac{y}{m} \right)^i \sum_{j=0}^{\infty} \frac{(-y)^j (x-i)_j}{m^j j!}
= \sum_{i=0}^{\infty} \binom{x}{i} \left(\frac{y}{m} \right)^i (mi + r)^n \sum_{j=0}^{\infty} \binom{x-i}{j} \left(-\frac{y}{m} \right)^j
\]
which simplifies into (24). \qed
Similar formulas for the bivariate Bell and \(r \)-Bell polynomials can be obtained directly from this theorem.

Corollary 3. The bivariate Bell and \(r \)-Bell polynomials satisfy the following explicit formulas:

\[
D_{1,r}(n; x, y) := B_{n,r}(x, y) = \sum_{i=0}^{x} \binom{x}{i} (i + r)^n y^i (1 - y)^{x-i} \tag{25}
\]

\[
D_{1,0}(n; x, y) := B_n(x, y) = \sum_{i=0}^{x} \binom{x}{i} i^n y^i (1 - y)^{x-i}. \tag{26}
\]

Before proceeding, we first cite the binomial inversion formula given by

\[
f_n = \sum_{j=0}^{n} \binom{n}{j} g_j \iff g_n = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_j.
\]

This identity will be used in the proof of the next theorem.

Theorem 4. The bivariate \(r \)-Dowling polynomials satisfy the following recurrence relations:

\[
D_{m,r+1}(n; x, y) = \sum_{j=0}^{n} \binom{n}{j} D_{m,r}(j; x, y) \tag{27}
\]

\[
D_{m,r}(n; x, y) = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} D_{m,r+1}(j; x, y). \tag{28}
\]

Proof. From [7, Corollary 3.5], the \(r \)-Whitney numbers of the second kind satisfy the vertical recurrence relation

\[
W_{m,r+1}(n, k) = \sum_{j=k}^{n} \binom{n}{j} W_{m,r}(j, k).
\]

Multiplying both sides by \((x)_k y^k\) and summing over \(k\) yields

\[
\sum_{k=0}^{n} W_{m,r+1}(n, k)(x)_k y^k = \sum_{j=0}^{n} \binom{n}{j} \sum_{k=0}^{j} W_{m,r}(j, k)(x)_k y^k.
\]

Thus, by (22), we get (27). Moreover, with \(f_n = D_{m,r+1}(n; x, y)\) and \(g_j = D_{m,r}(j; x, y)\), (28) is obtained by using the binomial inversion formula. This completes the proof. \(\square\)

The next corollary is obvious.

Corollary 5. The bivariate \(r \)-Bell polynomials satisfy the following recurrence relations:

\[
B_{n,r+1}(x, y) = \sum_{j=0}^{n} \binom{n}{j} B_{j,r}(x, y) \tag{29}
\]

\[
B_{n,r}(x, y) = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} B_{j,r+1}(x, y). \tag{30}
\]
Mezó [19, Theorem 3.2] established the ordinary generating function of the r-Bell polynomials as

$$
\sum_{n=0}^{\infty} B_{n,r}(x)t^n = \frac{-1}{rt-1} \cdot \frac{1}{e^x} \cdot {}_1F_1 \left(\frac{rt-1}{rt+t-1} \middle| x \right),
$$

(31)

where

$$
_pF_q \left(\begin{array}{c} a_1, a_2, \ldots, a_p \\ b_1, b_2, \ldots, b_q \end{array} \middle| t \right) = \sum_{k=0}^{\infty} \frac{(a_1)_k(a_2)_k\cdots(a_p)_k}{(b_1)_k(b_2)_k\cdots(b_q)_k} \frac{t^k}{k!},
$$

(32)

is the hypergeometric function. This formula was then generalized in the papers of Corcino and Corcino [10, Theorem 4.1] and Mangontarum et al. [16, Theorem 39]. Since the generating function in [7, pp. 2339] can be written as

$$
\sum_{n=0}^{\infty} W_{m,r}(n,k)t^n = \frac{1}{m^k(1-rt)} \cdot \frac{(-1)^k}{\langle (m+r)t-1 \rangle_k},
$$

then

$$
\sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} W_{m,r}(n,k)t^n \right) (x)ky^k = \frac{1}{1-rt} \sum_{k=0}^{\infty} \frac{(-x)_k\langle 1 \rangle_k}{\langle (m+r)t-1 \rangle_k} \frac{y^k}{k!}.
$$

By (32),

$$
\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} W_{m,r}(n,k)(x)ky^k \right) t^n = \frac{1}{1-rt} \cdot {}_2F_1 \left(\begin{array}{c} -x, 1 \\ \frac{y}{m} \end{array} \middle| \frac{y}{m} \right)
$$

and the next theorem follows by applying the formula [11, pp. 559]

$$
(1-t)^{-b} {}_2F_1 \left(\begin{array}{c} b, c-a \\ \frac{t}{t-1} \end{array} \middle| \frac{t}{t-1} \right) = {}_2F_1 \left(\begin{array}{c} a, b \\ c \end{array} \middle| t \right)
$$

with $c = \frac{(m+r)t-1}{mt}$, $a = \frac{rt-1}{mt}$ and $b = -x$.

Theorem 6. The bivariate r-Dowling polynomials have the following ordinary generating function:

$$
\sum_{n=0}^{\infty} D_{m,r}(n;x,y)t^n = \frac{1}{1-rt} \left(\frac{m-y}{m} \right)^x {}_2F_1 \left(\begin{array}{c} \frac{rt-1}{mt}, -x \\ \frac{y}{y-m} \end{array} \middle| \frac{y}{y-m} \right).
$$

(33)

This yields similar generating functions for $B_n(x,y)$ and $B_{n,r}(x,y)$.

Corollary 7. The bivariate Bell and r-bell polynomials have the following ordinary generating functions:

$$
\sum_{n=0}^{\infty} B_{n,r}(x,y)t^n = \frac{(1-y)^x}{1-rt} {}_2F_1 \left(\begin{array}{c} \frac{rt-1}{1+r}, -x \\ \frac{y}{y-1} \end{array} \middle| \frac{y}{y-1} \right)
$$

(34)

$$
\sum_{n=0}^{\infty} B_n(x,y)t^n = (1-y)^x {}_2F_1 \left(\begin{array}{c} \frac{1}{t-1}, -x \\ \frac{y}{y-1} \end{array} \middle| \frac{y}{y-1} \right)
$$

(35)
Let \(v_k, k = 0, 1, 2, \ldots \), be a sequence of real numbers. \(v_k \) is convex \([8, pp. 268]\) on an interval \([a, b]\), where \([a, b]\) contains at least three consecutive integers, if

\[
v_k \leq \frac{1}{2} (v_{k-1} + v_{k+1}), \quad k \in [a + 1, b - 1].
\]

This is called convexity property. Corcino and Corcino \([10, Theorem 2.2]\) showed that Hsu and Shiue’s \([12]\) generalized exponential polynomials obey the convexity property. Special cases can also be seen in \([16, Theorem 42]\) and \([17, Theorem 9]\).

Theorem 8. The bivariate \(r \)-Dowling polynomials satisfy the convexity property.

Proof. Let \(m + r \geq 0 \) so that \((m + r)^2 \geq 0\) and

\[
0 \leq 1 - 2(m + r) + (m + r)^2.
\]

Rewrite this as

\[
m + r \leq \frac{1}{2} [1 + (m + r)^2]
\]

and multiply \((m + r)^n\) to both sides to get

\[
(m + r)^{n+1} \leq \frac{1}{2} [(m + r)^n + (m + r)^{n+2}].
\]

Multiplying both sides of this inequality by \(\binom{x}{i} \left(\frac{y}{m} \right)^i (1 - \frac{y}{m})^{x-i} \), summing over \(i \) and using \([24]\) gives

\[
D_{m,r}(n + 1; x, y) \leq \frac{1}{2} [D_{m,r}(n; x, y) + D_{m,r}(n + 2; x, y)]
\]

which is the desired result. \(\square \)

Remark 9. By assigning suitable values to \(m \) and \(r \), it can be shown that convexity property is preserved for the cases of both the bivariate Bell and \(r \)-Bell polynomials.

3 Generalized Spivey’s formula

Let \(f(x) \) be the exponential generating function of the sequence \(\{A_n\} \) given by

\[
\sum_{n=0}^{\infty} \frac{x^n}{n!} A_n = f(x).
\]

The exponential generating function of the sequence \(\{A_{i+j}\} \) is given by

\[
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{x^i y^j}{i! j!} A_{i+j} = f(x + y).
\]

Zheng and Li \([23, Equations 7 and 8]\) used this identity in the derivation of their main results. Adopting the same method they employed in their paper, we present the following theorems:
Theorem 10 (Generalized Spivey’s formula, first form). The following formulas hold:

\[D_{m,r}(\ell + n; x, y) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (mk)^{n-i} \binom{n}{i} W_{m,r}(\ell, k) D_{m,r}(i; x - k, y)(x) ky^k \] \hspace{1cm} (37)

\[D_{m,r}(\ell + n) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (mk)^{n-i} \binom{n}{i} W_{m,r}(\ell, k) D_{m,r}(i). \] \hspace{1cm} (38)

Proof. According equations (36) and (23), we may write

\[\sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} D_{m,r}(\ell + n; x, y) \frac{y^\ell v^n}{\ell! n!} = e^{r(u+v)} \left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x \] \hspace{1cm} (39)

In the right-hand side,

\[\left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x = \left[1 + \frac{y(e^{mv} - 1)}{m} + ye^{mv}(e^{mu} - 1) \right]^x. \]

Hence, by the binomial theorem,

\[e^{r(u+v)} \left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x = e^{r(u+v)} \sum_{k=0}^{\infty} \binom{x}{k} \left[1 + \frac{y(e^{mv} - 1)}{m} \right]^{x-k} \left[ye^{mv}(e^{mu} - 1) \right]^k. \]

Again, we apply (23) to get

\[e^{r(u+v)} \left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x = \sum_{k=0}^{\infty} \binom{x}{k} y^k \frac{e^{mu}(e^{mu} - 1)^k}{k! m^k} \sum_{i=0}^{\infty} D_{m,r}(i; x - k, y) \frac{v^i}{i!} \sum_{j=0}^{\infty} (mv)^j \frac{1}{j!}. \]

From (20),

\[e^{r(u+v)} \left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x = \sum_{k=0}^{\infty} \sum_{\ell=k}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \binom{x}{k} y^k W_{m,r}(n, k) D_{m,r}(i; x - k, y) \frac{u^\ell v^{i+j}(mk)^j}{\ell! i! j!}. \]

Reindexing the sums with \(i + j = n \), and after a few simplifications

\[e^{r(u+v)} \left[1 + \frac{y(e^{m(u+v)} - 1)}{m} \right]^x = \sum_{\ell=0}^{\infty} \left\{ \sum_{n=0}^{\infty} \left\{ \sum_{k=0}^{\ell} \sum_{i=0}^{n} \binom{x}{k} y^k W_{m,r}(n, k) \right. \right. \left. \right. \times D_{m,r}(i; x - k, y)(mk)^{n-i} \binom{n}{i} \right\} \frac{v^n}{n!} u^\ell \frac{1}{\ell!}. \]

We arrive at the desired result in (37) by combining the last equation with (39) and comparing the coefficients of \(\frac{v^n}{n!} \cdot \frac{u^\ell}{\ell!} \). For (38), we simply replace \(y \) with \(1/x \) and then take the limit as \(x \to \infty \). \(\square \)
Now, if we make use of the exponential generating function of $B_n(x, y)$ in (7) instead on (23), then after applying (20), (39) becomes
\[
e^r(u+v) \left[1 + \frac{y(e^m(u+v) - 1)}{m} \right]^x = \sum_{k=0}^{\infty} \sum_{\ell=k}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (x)_{k} y^k W_{m,r}(n, k) \times B_i \left(x - k, \frac{y}{m} \right) \frac{u^\ell m^j v^i (mk + r)^j}{\ell! i! j!}.
\]
Therefore, we can directly deduce the following from the previous theorem:

Theorem 11 (Generalized Spivey’s formula, second form). The following formulas hold:

\[
D_{m,r}(\ell + n; x, y) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (mk + r)^{n-i} \binom{n}{i} W_{m,r}(\ell, k) B_i \left(x - k, \frac{y}{m} \right) (x)_{k} y^k \quad (40)
\]

\[
D_{m,r}(\ell + n) = \sum_{k=0}^{\ell} \sum_{i=0}^{n} (mk + r)^{n-i} \binom{n}{i} W_{m,r}(\ell, k) B_i \left(\frac{1}{m} \right). \quad (41)
\]

4 Conclusion

It is easy to see that when $m = 1$, we recover from equations (37) and (40) Zheng and Li’s [23] identities in (12) and (13), respectively. On the other hand, equations (38) and (41) are both generalizations of Spivey’s formula since the two equations reduce to (3) when $m = 1$ and $r = 0$. Finally, observe that when $n = 0$ in (38), we get

\[
D_{m,r}(\ell; x, y) = \sum_{k=0}^{\ell} W_{m,r}(n, k) (x)_{k} y^k,
\]

exactly the defining relation in (22); and when $\ell = 1$ in the same equation, we have the recurrence relation

\[
D_{m,r}(n + 1; x, y) = \sum_{i=0}^{n} m^{n-i} \binom{n}{i} D_{m,r}(i; x - 1, y) xy. \quad (42)
\]

This scenario is very similar to how Spivey’s formula generalizes both equations (1) and (2) as mentioned earlier in this paper. When $m = 1$ and $r = 0$, this results to

\[
B_{n+1}(x, y) = \sum_{i=0}^{n} \binom{n}{i} B_i(x - 1) xy, \quad (43)
\]
the bivariate extension of (2).
References

[1] M. Abramowitz and I. A. Stegun, eds., *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables* (9th printing), Dover, 1972.

[2] H. Belbachir and I. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, *J. Integer Seq.* **16** (2013). Article 13.8.6.

[3] H. Belbachir and M. Mihoubi, A generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould–Quaintance formulas, *European J. Combin.* **30** (2009), 1254–1256.

[4] M. Benoumhani, On Whitney numbers of Dowling lattices, *Discrete Math.* **159** (1996), 13–33.

[5] K. N. Boyadzhiev, Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, *Abstr. Appl. Anal.*, **2009**, Article ID 168672, 18 pages, (2009).

[6] A. Broder, The r-Stirling numbers, *Discrete Math.* **49** (1984), 241–259.

[7] G.-S. Cheon and J.-H. Jung, The r-Whitney numbers of Dowling lattices, *Discrete Math.*, **15** (2012), 2337–2348.

[8] L. Comtet, *Advanced Combinatorics*, D. Reidel Publishing Co., 1974.

[9] R. B. Corcino, The (r, β)-Stirling numbers, *The Mindanao Forum* **14** (1999), 91–99.

[10] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, *Discrete Dyn. in Nat. and Soc.*, **2011**, Article ID 623456, 21 pages, (2011).

[11] H. W. Gould and J. Quaintance, Implications of Spivey’s Bell number formula, *J. Integer Seq.* **11** (2008). Article 08.3.7.

[12] L. Hsu and P. J. Shiue, A unified approach to generalized Stirling numbers, *Advances Appl. Math.* **20** (1998), 366–384.

[13] M. Koutras, Non-central Stirling numbers and some applications, *Discrete Math.* **42** (1982), 73–89.

[14] M. M. Mangontarum and A. M. Dibagulun, On the translated Whitney numbers and their combinatorial properties, *British Journal of Applied Science and Technology* **11** (2015), 1–15.

[15] M. M. Mangontarum and A. M. Dibagulun, Some generalizations of Spivey’s Bell number formula, *Matimyás Matematika* **40** (2017), 1–12.

[16] M. M. Mangontarum, O. I. Cauntongan, and A. P. M.-Ringia, The noncentral version of the Whitney numbers: a comprehensive study, *Int. J. Math. Math. Sci.* **2016**, Article ID 6206207, 16 pages, (2016).

11
[17] M. M. Mangontarum, A. P.-M. Ringia, and N. S. Abdulcarim, The translated Dowling polynomials and numbers, *International Scholarly Research Notices* 2014, Article ID 678408, 8 pages, (2014).

[18] I. Mező, A new formula for the Bernoulli polynomials, *Results Math.*, 58 (2010), 329–335.

[19] I. Mező, The r-Bell numbers, *J. Integer Seq.*, 14 (2011). [Article 11.1.1]

[20] I. Mező, The dual of Spivey’s Bell number formula, *J. Integer Seq.* 15 (2012). [Article 12.2.4]

[21] A. Ruciński and B. Voigt, A local limit theorem for generalized Stirling numbers”, *Revue Roumaine de Mathématiques Pures et Appliquées* 35 (1990), 161–172.

[22] M. Z. Spivey, A generalized recurrence for Bell numbers, *J. Integer Seq.* 11 (2008). [Article 08.2.5]

[23] Y. Zheng and N. N. Li, Bivariate extension of Bell polynomials, *J. Integer Seq.* 22 (2019). [Article 19.8.8]