Effect of the event strength of the coronavirus disease (COVID-19) on potential online organic agricultural product consumption and rural health tourism opportunities

Jie Yin¹,² | Youcheng Chen² | Yingchao Ji¹

¹College of Tourism, Huaqiao University, Quanzhou, China
²Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China

Correspondence
Youcheng Chen, Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China.
Email: uceng@fafu.edu.cn

Funding information
Youth Project of the National Social Science Foundation of China, Grant/Award Number: 20CGL022

1 | INTRODUCTION

A novel coronavirus disease (COVID-19) was first reported in November 2019 (Chan et al., 2020). Due to person-to-person transmission (Rothan & Byrareddy, 2020), the disease rapidly spread throughout the world and has become a pandemic (Shi et al., 2020; WHO, 2020). Due to the highly contagious nature of COVID-19, enterprises temporarily shut down and employees responded to the government’s initiative by staying at home, which had a serious impact on agriculture in the countryside. The world has been put ‘on hold’ by the outbreak (Ahmed & Memish, 2020). Because of its impact on global health and the economy (Arshad Ali et al., 2020), the issues related to COVID-19 have attracted worldwide attention.

At present, studies on COVID-19 are mainly from the medical field and have focused on its pathological origins (Benvenuto et al., 2020; Zhou et al., 2020), genetic traits (Lu et al., 2020; Wu et al., 2020), evolutionary laws (Paraskevis et al., 2020), pathogenesis (Rothan & Byrareddy, 2020; Tian et al., 2020), spreading and diffusion (Chen et al., 2020; Riou & Althaus, 2020; Zhao et al., 2020), and control advice (Shao & Shan, 2020). However, as the outbreak continues to be severe, more studies have focused on its impact on global health (Arshad Ali et al., 2020), psychology (Brooks et al., 2020; Cao et al., 2020), food security (Cappelli & Cini, 2020), education (Chick et al., 2020), global supply chains (Ivanov, 2020), and trade and the economy (Lai et al., 2020; Lee et al., 2020). Additionally, many studies have focused on predicting the pandemic’s potential impact, such as estimations of the severity of its impact (Verity et al., 2020) and forecasting its spread (Fanelli & Piazza, 2020). However, few studies have explored the impact of COVID-19 on agriculture and rural villages.

Due to the person-to-person transmission of COVID-19, many villages in China have closed and have blocked their entry roads to prevent its spread. This has had a negative impact on villages and agriculture by stagnating the delivery of agricultural products for sale and rural tourism. Therefore, identifying potential opportunities as a result of this crisis is an important way for rural industries to respond to this dilemma. As the COVID-19 outbreak has raised consumer concerns about health, this study attempts to reveal COVID-19’s effect on online organic agricultural product consumption and rural health tourism from the consumer’s perspective.

Organic agricultural products are foods grown and produced by farmers that use renewable resources and conserve soil and water (Skrodzka, 2017) without the use of irradiation, industrial solvents, or chemical additives (Aydogdu & Kaya, 2020), and are healthier than products produced with the excessive use of chemicals (Stojanović et al., 2018). In recent years, the market for organic agricultural products has expanded and is gradually being pursued by consumers (Alecu et al., 2015; Kaya & Eren, 2016). Ranjbarshamsi et al. (2016) argue that health awareness positively affects organic agricultural product consumption and rural health tourism opportunities.
product consumption. Many studies have proved that health is the main motive for the consumption of organic agricultural products (Gaetano et al., 2002; Squires et al., 2001; Stojanović et al., 2018). As such, this study assesses whether the consumption of organic agricultural products can be stimulated under the condition that the COVID-19 pandemic affects health. Moreover, due to the person-to-person transmission of COVID-19, this study attempts to reveal the effect of COVID-19 on online organic agricultural product consumption.

Health tourism includes forms of tourism that are primarily focused on physical health but also improve mental and spiritual well-being and increase the capacity of individuals to satisfy their own needs and function better in their environment and society (Salehi-Esfahani et al., 2021). Health tourism has attracted the attention of academia and industry due to its benefits in physical and psychological health (Dryglas & Salamaga, 2018; Ridderstaat et al., 2019). For instance, Dryglas and Salamaga (2018) observed that the most holistic, alternative, and ‘New Age’ health tourism destinations are located in rural areas. As a result of the impact of COVID-19, people are staying at home and have few recreational activities, which influences their mental health. Thus, after considering the benefits of health tourism, this study assesses whether the outbreak of COVID-19 will affect the willingness of rural health tourism intention.

Based on the above, this study attempts to reveal the COVID-19 outbreak’s potential positive impact and opportunities on agriculture using two approaches. The first explores the impact of the event strength of COVID-19 on online organic agricultural product purchase intention and rural health tourism intention. It identifies the structural relationship between event strength and consumption intention through the effect of the risk perception of the contact consumption of agricultural products and health consciousness. The second approach assesses whether there are essential variables that effectively moderate the effect of COVID-19 on consumption intention. In this study, we propose that risk information disclosure is a possible moderating variable, and investigate whether it would moderate the effect of COVID-19 on online organic agricultural product purchase intention and rural health tourism intention.

We argue that this study contributes to the literature as follows. First, we attempt to identify the potential opportunities for and positive impact on agriculture as a result of the COVID-19 to find ways for agriculture to respond to this dilemma. To the best of our knowledge, this study is the first attempt to identify agriculture’s potential opportunities by exploring the impact of COVID-19’s event strength on the consumption intention of organic agricultural products and rural health tourism. Therefore, this study could be used as a valuable reference in the further investigation of potential opportunities for other industries. Moreover, we reveal that risk information disclosure plays a moderating role between the risk perception of the contact consumption of agricultural products and online organic agricultural product purchase intention, health consciousness, and rural health tourism. Specifically, if the degree of risk information disclosure is high, the positive effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention will be intensified. However, too much risk information disclosure will decrease the positive effect of health consciousness on rural health tourism intention. We argue that the agricultural industry could use our findings as a management reference to seize potential development opportunities.

This paper proceeds as follows. Section 2 surveys the relevant literature and proposes the research hypotheses. The data and methodologies employed in this study are presented in Section 3. Section 4 presents the empirical results and hypotheses tests. Section 5 presents the concluding remarks.

2 | LITERATURE REVIEW AND HYPOTHESES.

2.1 | Event system theory and event strength

Event system theory emphasizes the essential attributes of events and includes how event strength (an event’s novelty, disruption, and criticality), event space (where an event originates and how its effects are spread throughout an organization), and event time (when an event occurs, how long an event remains impactful, and the evolution of event strength) have a dynamic impact on organizations and individuals (Morgeson et al., 2015). Event system theory focuses on the effects of events on objects, which means that events influence objects through their interaction with the external environment, and the degree of influence depends on event strength (Zhao & Ren, 2018). Event strength’s novelty reflects the degree to which an event is different from current and past events and thus represents a new or unexpected phenomenon (Morgeson, 2005). Disruption concerns the degree to which the event changes organizations and individuals (Morgeson & DeRue, 2006). Criticality reflects the degree to which an event is important or is a priority for organizations and individuals (Morgeson & DeRue, 2006; Morgeson et al., 2015).

Event system theory and event strength have been widely employed in individual-level and organization-level research. For example, Morgeson (2005) and Morgeson and DeRue (2006) employed event analysis to investigate leadership. Zellmer-Bruhn (2003) explored the impact of emergencies on team knowledge absorption. Bacharach and Bamberger (2007) investigated the impact of emotion on firefighters involved in the 9/11 terrorist attacks. Koopmann et al. (2016) discuss the influence of events at work on employees’ happiness. In sum, events have a serious impact on an individual’s mood and behavior. Thus, this study employs event system theory to investigate the impact of COVID-19 on consumer behavior intention in agriculture.

COVID-19 is a novel coronavirus that differentiates itself from other viruses such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). From the disruptive perspective, COVID-19 has temporarily changed the world, with people staying at home, enterprises shutting down, economies stagnating, cross-border exchanges stopping, country roads being blocked, and villages closing, and the world has been put ‘on hold’ (Ahmed & Memish, 2020). Concerning the criticality, the COVID-19 pandemic
has spread around the world. Dealing with the impact of COVID-19 has become the primary concern for organizations and individuals, and its prevention and defeat has become important throughout the world. Therefore, this study employs the event strength of COVID-19 as the primary variable to measure its impact on consumer behavior intention in agriculture.

2.2 | Stimulus-organism-response model

This study’s conceptual model is based on the stimulus-organism-response (SOR) model proposed by Mehrabian and Russell (1974). The SOR model is widely employed in tourism and agriculture (Jani & Han, 2014; Kim et al., 2018; Lee & Yun, 2015; Rajaguru, 2013; Rodríguez-Torrico et al., 2019; Su & Swanson, 2017) to explain that an environmental stimulus (S) elicits a conscious and emotional reaction from a consumer (O), and this emotional reaction triggers the corresponding behavioral response (R) (Björk et al., 2010; Kani et al., 2017; Manthiou et al., 2016).

Differentiating itself from previous studies, this study focuses on the relationships between the event strength of COVID-19 and the risk perception of the contact consumption of agricultural products, health consciousness, online organic agricultural product purchase intention, and rural health tourism intention. We argue that the stimulus (i.e., the event strength of COVID-19: the stimulus factor) refers to the environment (Manthiou et al., 2016), and the influence on the organisms (i.e., risk perception of contact consumption of agricultural products and health consciousness: the organism factors) has a direct impact on consumer behavior in agriculture (i.e., online organic agricultural product purchase intention and rural health tourism intention). The COVID-19 pandemic has become a common global risk. Moreover, when evaluating the environment, the event strength of COVID-19, as described by its novelty, disruption, and criticality, could be regarded as a comprehensive description of COVID-19 as an environmental stimulus. Thus, we treat the event strength of COVID-19 as the stimulus factor in this study.

Organism here refers to a consumer’s inner state, both cognitively and emotionally (Manthiou et al., 2016). As such, this study treats two variables as the organism factors: the risk perception of the contact consumption of agricultural products, and health consciousness. Due to the person-to-person transmission of COVID-19, avoiding physical contact (Betsch, 2020) and keeping social distance (Haleem et al., 2020) are effective preventive measures. Therefore, when consumers purchase agricultural products, they may feel at risk. In essence, perceived risk is a kind of consciousness of an organism's environment. Moreover, health consciousness is a kind of consciousness of an organism. Under the impact of COVID-19, consumers' risk perception of the purchasing agricultural products and health consciousness may change. Therefore, this study utilizes these two variables as the organism factors.

Concerning the response factors, in previous studies, purchase intention (Rodríguez-Torrico et al., 2019; Wu et al., 2013), behavioral intention (Flavián et al., 2019), and revisit intention (Jani & Han, 2014) have been employed. In this study, online organic agricultural product purchase intention and rural health tourism intention are attributed as the response factors. As a result of introducing these factors (i.e., the stimulus factor, organism factor, and response factor) and explaining why these factors are used herein, we present our conceptual framework (Figure 1) to explain how we connect these factors alongside several hypotheses below.

COVID-19 has seriously impacted global production by avoiding physical contact. Due to person-to-person transmission, consumers may perceive risks when they purchase agricultural products. Bacharach and Bamberger (2007) revealed that the 9/11 terrorist attacks generated negative emotions for firefighters; similarly, when employees experience more negative work events, they experience negative moods (Koopmann et al., 2016). Negative events generate negative emotions and consciousness, and the high infectivity rate of COVID-19 and its global outbreak has aroused concern in all human beings. This has reinforced people’s focus on health. Besides, according to the SOR model, an environmental stimulus (S) elicits an emotional and conscious reaction from an organism (O). Therefore,
the stimulus factor (the event strength of COVID-19) may change the consciousness of an organism (the risk perception of the purchase agricultural products and health consciousness). Hence, we propose the following hypotheses:

H1. COVID-19 event strength positively affects consumers' risk perception of the purchasing of agricultural products.

H2. COVID-19 event strength positively affects consumers' health consciousness.

According to event system theory, an event has an impact on an individual's behavior. Meanwhile, the SOR model reveals that an environmental stimulus can result in a behavioral response. After the outbreak of COVID-19, many people chose to stay at home, which promotes online consumption. Therefore, we can infer that under the impact of COVID-19, people may generate online consumption intentions. Besides, people may want to participate in tourism activities after they have remained at home for a long time. Based on the above, we propose the following hypotheses:

H3. COVID-19 event strength has a positive effect on online organic agricultural production purchase intention.

H4. COVID-19 event strength has a positive effect on health tourism intention.

The COVID-19 pandemic has made people focus on health, which increases their focus on consumer health goods such as organic agricultural products. Previous studies have proved that health awareness is a major motivation in the consumption of organic products (Aydogdu & Kaya, 2020; Ranjbarshamsi et al., 2016; Squires et al., 2001; Stojanović et al., 2018). Therefore, we can infer that if consumers feel at risk when purchasing agricultural products, they may choose online organic agricultural product consumption for health reasons. Additionally, Xu et al. (2020) examine the positive effect of health consciousness on purchase intention and found that the more health-conscious a person is, the more likely they are to purchase organic products. Therefore, we propose the following hypotheses:

H5. Risk perception of the purchasing agricultural products positively affects online organic agricultural product purchase intention.

H6. Health consciousness positively affects online organic agricultural product purchase intention.

Health tourism is a rising global phenomenon that has attracted much academic interest (de la Hoz-Correa et al., 2018). For instance, Aydin and Karamehmet (2017) revealed that the growth of health care tourism is driven by various factors, and tourism demand has a positive effect on health tourism (Aydin & Karamehmet, 2017; Ridderstaat et al., 2019). Therefore, under the impact of COVID-19, the more health-conscious people are, the more likely they are to take a health trip. Further, Drygas and Salamaga (2018) observed that most health tourism destinations are located in rural areas. As such, we propose the following hypothesis:

H7. Health consciousness positively affects rural health tourism intention.

2.3 Mediating role of the risk perception of purchasing agricultural products and health consciousness

The sequence of the SOR model indicates that the emotional and conscious reaction of an organism might act as a mediating role. In this study, the event strength of COVID-19 was considered as the environmental stimulus (S), the risk perception of the contact consumption of agricultural products and health consciousness both represented the conscious reflection of an organism (O), and online organic agricultural product purchase intention and rural health tourism intention were treated as the behavioral response of an organism. As a result, we argue that the risk perception of the contact consumption of agricultural products and health consciousness may both play mediating roles in the event strength of COVID-19 and online organic agricultural product purchase intention. Moreover, health consciousness may play a mediating role between the event strength of COVID-19 and rural health tourism intention, as health consciousness has played a mediating role in a previous study (Espinosa & Kadic-Maglajlic, 2018). Therefore, we propose the following hypotheses:

H8. The risk perception of contact consumption of agricultural products would mediate the relationship between COVID-19 event strength and online organic agricultural product purchase intention.

H9. Health consciousness would mediate the relationship between COVID-19 event strength and online organic agricultural product purchase intention.

H10. Health consciousness would mediate the relationship between the event strength of COVID-19 and rural health tourism intention.

2.4 Moderating role of risk information disclosure

Due to the high infectivity rates of COVID-19, risk information disclosure is of great significance for the pandemic’s prevention and control. Risk information disclosure can provide information for
behavior decisions (Razek, 2014) that are used to judge behavior intention (Ball, 2018). In short, risk information disclosure may affect behavioral intention. The risk perception of purchasing agricultural products and health consciousness may result in online organic agricultural product purchase intention. However, when consumers receive too much risk information disclosure about COVID-19, will the effect of the risk perception on the purchase of agricultural products and health consciousness be strengthened? Moreover, will the effect of health consciousness on rural health tourism intention be affected? As a result, we propose the following hypotheses, since we document that risk information disclosure might act as a moderator:

H11. Risk information disclosure moderates the relationship between the risk perception of the contact consumption of agricultural products and online organic agricultural product purchase intention.

H12. Risk information disclosure moderates the relationship between health consciousness and online organic agricultural product purchase intention.

H13. Risk information disclosure moderates the relationship between health consciousness and rural tourism intention.

According to the hypotheses proposed herein, we present the conceptual research model in Figure 1.

3 | DATA AND METHODOLOGY.

3.1 | Measurement items

In order to investigate the hypotheses proposed (Table 1) in this paper, the scale used for measuring different kinds of items was derived from validated and reliable multi-item scales adopted by previous studies. For example, event strength was measured using 11 items including novelty (4 items), disruption (3 items), and criticality (4 items) proposed by Morgeson et al. (2015). Risk perception on the contact consumption of agricultural products was measured by referring to previous research questionnaires (Kozak et al., 2007; Sönmez & Graefe, 1998; Williams & Balme, 2004). Online organic agricultural production purchase intention was measured using seven items from the questionnaire proposed by Maloney et al. (2014). Rural health tourism intention was measured using seven items from previous studies (Pratt & Sparks, 2014; Um & Yoon, 2020). All of the above mentioned items were measured using a five-point Likert-type scale from strongly agree to strongly disagree.

Hypothesis	Expected effect
H1: COVID-19 event strength positively affects consumers’ risk perception of the purchasing of agricultural products	Positive effect (+)
H2: COVID-19 event strength positively affects consumers’ health consciousness	Positive effect (+)
H3: COVID-19 event strength has a positive effect on online organic agricultural product purchase intention	Positive effect (+)
H4: COVID-19 event strength has a positive effect on health tourism intention	Positive effect (+)
H5: Risk perception of the purchasing agricultural products positively affects online organic agricultural product purchase intention	Positive effect (+)
H6: Health consciousness positively affects online organic agricultural product purchase intention	Positive effect (+)
H7: Health consciousness positively affects rural health tourism intention	Positive effect (+)
H8: The risk perception of contact consumption of agricultural products would mediate the relationship between COVID-19 event strength and online organic agricultural product purchase intention	Mediating effect
H9: Health consciousness would mediate the relationship between COVID-19 event strength and online organic agricultural product purchase intention.	Mediating effect
H10: Health consciousness would mediate the relationship between the event strength of COVID-19 and rural health tourism intention	Mediating effect
H11: Risk information disclosure moderates the relationship between the risk perception of the contact consumption of agricultural products and online organic agricultural product purchase intention	Moderating effect
H12: Risk information disclosure moderates the relationship between health consciousness and online organic agricultural product purchase intention	Moderating effect
H13: Risk information disclosure moderates the relationship between health consciousness and rural tourism intention	Moderating effect

3.2 | Data collection and sample

On the one hand, it was difficult to conduct a field survey due to the impacts of COVID-19. However, online survey became a feasible and popular method to collect data (Li et al., 2020; Yun et al., 2020) during COVID-19 epidemic. On the other hand, the research object of this study was residents, and samples are large geographically dispersed. Online survey provides quite easy access to large geographically dispersed populations, which is the limitation of field survey (Braun et al., 2020). In order to expand the sample size and provide a random chance for the members of the population, this study employed an
online questionnaire, which was uploaded to the popular Chinese survey website Wenjuanxing (https://www.wjx.cn/) with 103 million users, which is similar to SurveyMonkey and is one of the largest and most professional survey platforms in China (Wang et al., 2018; Wu et al., 2018; Zhang et al., 2019). In addition, this paper only uploaded the questionnaire without adding any restrictions on sample characteristics. In other words, any user interested in the uploaded questionnaire may fill out the questionnaire. Meanwhile, this study used the promotion function of the Wenjuanxing platform to forward the questionnaire’s link to social media platforms (such as WeChat, QQ, and Facebook) to obtain more research data. Before filling in the questionnaire, the respondents will read a description of the questionnaire, they need to choose whether they want to accept the survey or not. When the respondents click ‘yes’ to accept the survey, the questionnaire is officially started.

The questionnaire was set from March 1 to March 31, and 356 samples were obtained. In this study, 306 valid samples were obtained by eliminating identical, regular samples that had a questionnaire completion time of less than 100 seconds (which was too short). The demographic characteristics of the respondents are shown in Table 2. The collected data was analyzed using Mplus 8.0 and Process 3.4.

4 | EMPIRICAL RESULTS AND ANALYZES.

4.1 | Measurement model validation.

By employing Mplus 8.0, we executed exploratory factor analysis to eliminate items with a factor load of less than 0.5. Then, items C1 (criticality of the event strength of COVID-19), HC6 (health consciousness), RID1 and RID6 (risk information disclosure), RC5 and RC6 (risk perception of the contact consumption of agricultural products), P6 and P17 (online organic agricultural product purchase intention), and HT5 and HT6 (rural health tourism intention) were eliminated. Afterward, we validated the measurements via confirmatory factor analysis (CFA) and found that the model fit indices met the acceptable criterion (Baumgartner & Homburg, 1996; Hu & Bentler, 1999): $\chi^2 = 901.466$ (df = 532, $\chi^2/df = 1.69$, $p < 0.001$); RMSEA = 0.048 < 0.08; SRMR = 0.052 < 0.08; CFI = 0.930 > 0.9; and TLI = 0.921 > 0.9.

In addition, we examined the convergent validity of the measurement model. There are two criteria for checking convergent validity: (1) The standardized factor loading of each item for the corresponding construct should be higher than 0.5, and (2) each construct’s average variance extracted (AVE) value should be higher than the cutoff value of 0.5 (Fornell & Larcker, 1981). The standardized factor loading of each item and the AVE values are shown in Tables 3 and 4.

When measuring the AVE values and composite reliability (CR), Table 4 shows that the AVE values of all dimensions are higher than 0.5 and the CR values of the latent constructs are higher than 0.7 (Nunnally, 1994). In addition, the AVE value is higher than the squared correlations between variables, indicating that the discriminative validity between variables is accepted. Accordingly, our sample has good construction validity and consistency.

4.2 | Structure model testing

We employed the variance inflation factor (VIF) suggested by Wheeler (2007) to examine the multicollinearity problem. The values of VIF of all variables are lower than 2 (Table 6) with indicating the multicollinearity problem in this study is not significant. Then we adopted a structure model to verify the hypotheses’ relationships between latent variables. The fitting indexes of the structural model were acceptable (i.e., $\chi^2 = [901.466$, df = 532, $\chi^2/df = 1.69$, $p < 0.001$]; RMSEA = 0.048 < 0.08; SRMR = 0.052 < 0.08; CFI = 0.930 > 0.9; and TLI = 0.921 > 0.9). We then used Process 3.4 to empirically examine the relationships between these variables. According to the conceptual framework shown in Figure 1, Table 5 shows that H1 and H2 are supported as it was revealed that the event strength of COVID-19 has a positive effect on risk the perception of the contact consumption of agricultural products ($\beta = 0.2379$, $p < 0.001$) and health consciousness ($\beta = 0.1997$, $p < 0.001$). The risk perception of the contact consumption of agricultural products

Respondents’ characteristics	N	%	Respondents’ characteristics	N	%
Gender					
Male	131	42.8	Monthly income		
Female	175	57.2	Less than ¥ 3000	166	54.2
Age			¥ 3001–5000	53	17.3
Under 18	51	16.7	¥ 5001–8000	52	17.0
18–45	249	81.4	More than ¥ 8000	114	11.4
46–60	6	2.0	Job		
Over 60	0	0	Students	172	56.2
Education			Teachers	22	7.2
Junior high school and below	79	25.8	Employees in a firm	43	14.1
Senior high school	46	15	Civil servants	26	8.5
College or university graduate	141	46.1	Freelancers	19	6.2
Post-graduate	40	13.1	Other	22	7.2
Dimension	Items	Standardized loading			
---	--	----------------------			
Event strength of COVID-19 (ES)	N1 The approach to dealing with COVID-19 are clear	0.788			
	N2 There are understandable procedures for dealing with COVID-19	0.740			
	N3 We can rely on mature procedures and measures to deal with COVID-19	0.715			
	N4 There are guidelines to follow in the COVID-19 pandemic	0.758			
	D1 COVID-19 is important for the long-term success of an organization	0.640			
	D2 COVID-19 is an organization's first event	0.767			
	D3 COVID-19 is an important event for an organization	0.833			
	C2 COVID-19 causes the individual to stop and think about how to deal with it	0.695			
	C3 COVID-19 changes the way that an individual routinely responds to emergencies	0.769			
	C4 COVID-19 requires an individual to change their previous work	0.724			
Health consciousness (HC)	HC1 I think about my health a lot	0.606			
	HC2 I am very self-conscious about my health	0.740			
	HC3 I am alert to changes in my health	0.832			
	HC4 I am usually aware of my health	0.874			
	HC5 I take responsibility for the state of my health	0.727			
Risk perception on contact consumption of agricultural products (RC)	RC1 When I go to the farmers' market/supermarket, contact with the merchants may threaten my health	0.805			
	RC2 When I go to the farmers' market/supermarket, there may be a traffic hazard	0.653			
	RC3 When I go to a farmer's market/supermarket, it is easy to get infected	0.731			
	RC4 I am always scared when I go to the farmer's market/supermarket	0.708			
Risk information disclosure (RID)	RID2 News about the risk of the COVID-19 outbreak is often reported in the media	0.525			
	RID3 The community (WeChat group) frequently publishes COVID-19 pandemic risk information	0.822			
	RID4 Many people in the community (WeChat group) discuss the risk information of COVID-19	0.782			
	RID5 The community (WeChat group) considers risk issues when talking about COVID-19	0.757			
Online organic agricultural product purchase intention (PI)	PI1 I would like to buy fresh produce online	0.789			
	PI2 I am interested in buying organic produce online	0.875			
TABLE 3 (Continued)

Dimension	Items	Standardized loading
PI3 I would like to try buying organic		0.890
produce online		
PI4 I would consider buying organic		0.851
produce online		
PI5 I plan to purchase organic produce online		0.773
Rural health tourism intention (HT)	HT1 I am curious about rural health tourism products	0.781
	HT2 I am interested in the lifestyle of rural health tourism	0.813
	HT3 I have learned about rural health tourism	0.628
	HT4 I like the atmosphere of rural health tourism	0.744
	HT6 I would like to experience the services of rural health tourism	0.713

TABLE 4 Descriptive statistics and associated measures

Dimension	M	SD	CR	AVE	ES	HC	RC	RID	PI	HT
ES	2.687	0.424	0.925	0.554	0.744					
HC	3.917	0.775	0.872	0.580	0.200**	0.762				
RC	3.298	0.836	0.816	0.528	0.238**	0.248**	0.727			
RID	3.899	0.795	0.817	0.534	0.154**	0.301**	0.336**	0.731		
PI	3.821	0.844	0.921	0.700	0.157**	0.403**	0.237**	0.242**	0.837	
HT	3.567	0.792	0.856	0.545	0.111	0.415**	0.204**	0.204**	0.494**	0.738

Note: Correlations are shown below the diagonal line. The diagonal line represents the discriminant validity.
Abbreviations: AVE, average variance extracted; CR, composite reliability; ES, event strength of COVID-19; HC, health consciousness; HT, rural health tourism intention; M, mean; PI, online organic agricultural product purchase intention; RC, risk perception of the contact consumption of agricultural products; RI, risk information disclosure; SD, standard deviation.
**p < 0.01.

TABLE 5 Standardized parameter estimates I and hypotheses testing

Path	Direct effect	Indirect effect	Total effect	Hypotheses
ES → RC	0.2379***			H1 supported
RC → PI	0.2494***			H5 supported
ES → PI	0.0973			H3 not supported
ES → RC → PI	0.0593***	0.1567***		H8 supported
ES → HC	0.1997***			H2 supported
HC → PI	0.3877***			H6 supported
ES → PI	0.0792			H3 not supported
ES → HC → PI	0.0774***	0.1567***		H9 supported
ES → HC	0.1997***			H2 supported
HC → HT	0.4086***			H7 supported
ES → HT	0.0294			H4 not supported
ES → HC → HT	0.0816***	0.1111*		H10 supported

Abbreviations: ES, event strength of COVID-19; HC, health consciousness; HT, rural health tourism intention; PI, online organic agricultural product purchase intention; RC, risk perception of contact consumption of agricultural products.
***p < 0.001, **p < 0.01, *p < 0.05.
Model	Model 1 (RC)	Model 2 (PI)	Model 3 (HC)	Model 4 (PI)	Model 5 (HT)											
	β	S.E.	p													
Constant	−0.3369	0.3257	0.3018	−0.9186	0.3116	0.0035	−0.2937	0.3241	0.3655	−0.8094	0.2982	0.0070	−0.1680	0.2971	0.5723	
ES	0.2507	0.0581	0.0000	0.1127	0.0572	0.0497	0.1831	0.0578	0.0017	0.1195	0.0547	0.0299	0.0498	0.0545	0.3620	
RC				0.1872	0.0581	0.0014										
HC								0.3353	0.0558	0.0000	0.3232	0.0556	0.0000			
DRI	0.1637	0.0578	0.0050							0.1284	0.0549	0.0201				
RC*DRI	0.0949	0.0481	0.0496													
HC*DRI				−0.0963	0.0531	0.0705	−0.1882	0.0529	0.0004							
Gender	0.0214	0.1172	0.8554	0.1284	0.1119	0.2521	−0.0226	0.1167	0.8467	0.1262	0.1073	0.2404	0.0489	0.1069	0.6479	
Age	0.1267	0.1660	0.4428	0.2974	0.1590	0.0623	0.1366	0.1652	0.4087	0.2556	0.1516	0.0929	0.0008	0.1511	0.9957	
Job	0.0036	0.0310	0.9076	−0.0366	0.0295	0.2158	0.0396	0.0308	0.2003	−0.0518	0.0284	0.0689	0.0176	0.0283	0.5347	
Education	0.0274	0.0664	0.6795	−0.0064	0.0637	0.9202	−0.0795	0.0660	0.2294	0.0339	0.0609	0.5777	−0.0035	0.0606	0.9543	
Income	−0.0052	0.0647	0.9360	0.1294	0.0619	0.0375	0.0937	0.0644	0.1468	0.1137	0.0595	0.0571	0.0599	0.0593	0.3135	
R	0.2480	0.3956		0.2661			0.4785			0.4844						
R²	0.0615	0.1565		0.0708			0.2289			0.2346						
F (P)	3.2651**	6.1023***		3.7973**			9.7649***			10.0826***						
VIF	1.00 ≤ VIF ≤ 1.176															
positively affects online organic agricultural product purchase intention ($\beta = 0.2494, p < 0.001$), thus supporting H5. However, the event strength of COVID-19 does not directly affect online organic agricultural product purchase intention ($p > 0.05$) and rural health tourism intention ($p > 0.05$), thus H3 and H4 are not supported. Additionally, health consciousness has a positive effect on online organic agricultural product purchase intention ($\beta = 0.3877, p < 0.001$) and rural health tourism intention ($\beta = 0.4086, p < 0.001$), thus supporting H6 and H7.

Concerning the mediating effects, the risk perception of purchasing agricultural products is a mediator between the event strength of COVID-19 and online organic agricultural product purchase intention if the p value of testing the interaction—the event strength by the risk perception of the contact consumption of agricultural products—is less than 0.05. Referring to the measurement of the indirect effects (Hayes & Preacher, 2014; Montoya & Hayes, 2017), the event strength of COVID-19 has a significantly positive indirect effect on online organic agricultural product purchase intention via the risk perception of the contact consumption of agricultural products ($\beta = 0.0593, p < 0.001$) and health consciousness ($\beta = 0.0774, p < 0.001$), which indicates that both H8 and H9 are supported. Moreover, health consciousness acts as a mediator between the event strength of COVID-19 and rural health tourism intention with a significantly positive indirect effect ($\beta = 0.0816, p < 0.001$), thus supporting H10.

4.3 | Moderated mediation effect

To examine the moderated mediation, we used the PROCESS macro Model 14 (Hayes, 2013) with three steps (Table 6). Table 6 presents the moderating effect tests between the organism factors (the risk perception of the contact consumption of agricultural products and health consciousness) and response factors (online organic agricultural product purchase intention and rural health tourism intention). Model 1 reveals that the event strength of COVID-19 has a positive significant effect on the risk perception of the contact consumption of agricultural products ($\beta = 0.2507, p < 0.001$). Model 2 shows that the event strength of COVID-19 ($\beta = 0.1127, p < 0.05$) and the risk perception of the contact consumption of agricultural products ($\beta = 0.1872, p < 0.01$) both have positive effects on online organic agricultural product purchase intention. Additionally, under the impact of the risk information disclosure, the positive effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention is significantly increased ($\beta = 0.0949, p < 0.05$), which indicates that H11 is supported.

Concerning the effect of health consciousness between the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention, risk information disclosure acts as a negative moderator. However, the moderating effect of risk information disclosure is not significant ($\beta = -0.0963, p > 0.05$), thus H12 is not supported. Additionally, the interaction between health consciousness and risk information disclosure negatively affects rural health tourism intention ($\beta = -0.1882, p < 0.001$), which means that health consciousness negatively moderates the positive effect of health consciousness on rural health tourism intention and thus supports H13.

To illustrate the moderating effects, we also plotted the predicted online organic agricultural product purchase intention and rural health tourism intention against a higher or lower level of risk information disclosure (Figure 2 and 3) as a moderating variable; that is, 1 standard deviation (1 SD) below the mean is the lower level and 1 SD above the mean is the higher level. Figure 2 shows that a higher level of disclosure might result in higher online organic agricultural product purchase intention. Regarding the effect of risk information disclosure, we believe that the report and dissemination of risk information could enhance online organic agricultural product purchase intention to some extent.

In addition, Figure 3 indicates that a higher level of risk information disclosure might result in a decline in rural health tourism intention. This result shows that people will perceive too much risk if faced
with too much risk information, which will result in the decrease of rural health tourism intention. As a result of the negative effect of risk information disclosure, we suggest that risk information should be appropriately disclosed when discussing rural health tourism intention.

Additionally, this study examined the moderated mediation role of supervisor safety support (the effects are presented in Table 7). In the path ES \(\rightarrow\) HC \(\rightarrow\) PI, risk information disclosure plays a moderated mediation role since the confidence interval does not contain 0, indicating that the moderated mediation effect is significant. However, the moderated mediation role of supervisor safety support in paths ES \(\rightarrow\) RC \(\rightarrow\) PI and ES \(\rightarrow\) HC \(\rightarrow\) PI is not significant because the confidence intervals contain 0.

In sum, our overall results of whether our proposed hypotheses (see Figure 1) would be supported are presented in Figure 4.

5 | CONCLUSION AND DISCUSSION

The world has been seriously affected by the outbreak of COVID-19, and the focus on how to respond to its negative impacts has become a priority. This study attempted to explore the opportunities in agriculture under the impact of COVID-19 to cope with its negative effects. We focused on the consequences of the event strength of COVID-19 on online organic agricultural product purchase intention and rural health tourism intention. We also investigated the mediating effect of risk perception of the contact consumption of agricultural products and health consciousness, and the moderating effects of risk information disclosure, which have rarely been comprehensively addressed in the previous literature. We reveal several important conclusions, as follows.

First, the event strength of COVID-19 has a significantly positive impact on the risk perception of the contact consumption of agricultural products and health consciousness. Previous literature has found that positive events result in positive effects (Lu et al., 2019), while negative events bring negative impacts, and Lau et al. (2010) reveal that people felt anxiety and generated negative psychological responses under the impacts of the SARS and H1N1 pandemics. Similarly, we found that people perceive risk when they contact others to purchase agricultural products as a result of the event strength of COVID-19. Additionally, we reveal that people's health consciousness has increased due to the high infectivity rates of COVID-19.

Table 7: Moderated mediation role of risk information disclosure

Path	DRI	Effect	S.E.	LLCI	ULCI
ES \(\rightarrow\) RC \(\rightarrow\) PI	M-1SD	0.0231	0.0242	-0.0220	0.0768
	M	0.0469	0.0205	0.0110	0.0911
	M + 1SD	0.0707	0.0281	0.0211	0.1296

Index of moderated Mediation

Path	DRI	Effect	S.E.	LLCI	ULCI
ES \(\rightarrow\) HC \(\rightarrow\) PI	M-1SD	0.0790	0.0286	0.0286	0.1420
	M	0.0614	0.0233	0.0221	0.1127
	M + 1SD	0.0438	0.0226	0.0090	0.0959

Index of moderated Mediation

Path	DRI	Effect	S.E.	LLCI	ULCI
ES \(\rightarrow\) HC \(\rightarrow\) HT	M-1SD	0.0937	0.0321	0.0337	0.1622
	M	0.0592	0.0217	0.0204	0.1044
	M + 1SD	0.0247	0.0203	-0.0096	0.0708

Index of moderated Mediation

![Figure 4](image-url)
Moreover, even though the outbreak has had many impacts on the world, health consciousness has increased, which may be seen as a potential positive effect of COVID-19 to some extent.

Second, under the impact of COVID-19, we found potential opportunities in agriculture by revealing positive effects of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention, health consciousness on online organic agricultural product purchase intention, and rural health tourism intention. Health awareness is a major motivation in the consumption of organic products (Aydogdu & Kaya, 2020; Ranjarbashamsi et al., 2016; Squires et al., 2001; Stojanović et al., 2018). Therefore, people will choose online organic agricultural products when they perceive risk, and will pay attention to their health when perceiving the positive effect of the risk on the contact consumption of agricultural products and health consciousness on online organic agricultural product purchase intention. Moreover, tourism demand has a positive effect on health tourism (Aydin & Karamehmet, 2017; Riddersaat et al., 2019). Under the impact of COVID-19, people’s health consciousness has increased, which promotes health tourism intention while presenting the positive effect of health consciousness on rural health tourism intention.

Third, the event strength of COVID-19 does not directly influence online organic agricultural product purchase intention and rural health tourism intention. Everyone has been affected and threatened by the global and highly contagious nature of COVID-19. Most people have adopted explicit behaviors such as staying at home and practicing social distancing, and online organic agricultural product purchase and rural health tourism could be potential consumption behaviors in the post-pandemic period. Thus, these potential consumption behaviors would form when the preconditions for the behaviors are triggered. Specifically, the event strength of COVID-19 has a positive effect on online organic agricultural product purchase intention and rural health tourism intention through the mediating role of the risk perception of the contact consumption of agricultural products and health consciousness.

Fourth, we confirm that risk information disclosure would moderate the effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention and health consciousness on rural health tourism intention, indicating that it plays a moderating role. Previous studies have proved that risk information disclosure can provide information for behavior decisions (Razek, 2014) and is used to judge behavior intentions (Ball, 2018). With the positive moderating effect of risk information disclosure, too much risk information about COVID-19 might increase the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention. However, risk information disclosure acts as a negative moderator between health consciousness and rural health tourism intention. Considering these negative moderating effects, too much risk information disclosure about COVID-19 would result in decreased positive effects of health consciousness on rural health tourism intention.

This study employed event system theory and the SOR model to reveal COVID-19’s impact on and potential opportunities for agriculture, specifically on online organic agricultural product purchase intention and rural health tourism intention. The moderating effect of risk information disclosure is confirmed between the risk perception of the contact consumption of agricultural products and online organic agricultural production purchase intention, health consciousness, and rural health tourism intention. Previous studies found that an event’s time and space impacts individuals or organizations (Lu et al., 2019; Morgeson et al., 2015). However, this study only considered the event strength as part of the event system theory. Thus, future research could focus on the influence of event time and space. In addition, due to the limitation of COVID-19, we conducted online surveys, which have some restrictions on samples. In the future study, we should conduct field surveys to explore other issues on COVID-19 to overcome the shortages of online survey. Moreover, future research could explore further development opportunities under the impact of COVID-19.

6 | Research Implications

This study might contribute to the response to COVID-19’s impact on agriculture by further investigating the effect of its event strength and the potential opportunities under these effects. We reveal that the event strength of COVID-19 has a positive effect on the risk perception of the contact consumption of agricultural products and health consciousness. Additionally, the event strength can indirectly affect online organic agricultural product purchase intention and rural health tourism intention via the risk perception of the contact consumption of agricultural products and health consciousness. Besides, we reveal that risk information disclosure can moderate the effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention and health consciousness on rural health tourism intention. These findings could enrich the existing literature in the following ways.

First, although several studies have investigated the negative impact of COVID-19 on global health (Arshad Ali et al., 2020), psychology (Brooks et al., 2020; Cao et al., 2020), food security (Cappelli & Cini, 2020), education (Chick et al., 2020), global supply chains (Ivanov, 2020), and trade and the economy (Lai et al., 2020; Lee et al., 2020), this study focuses on the potential opportunities that could result from the impact of COVID-19 and explores the effects of its event strength on online organic agricultural product purchase intention and rural health tourism intention. This study reveals that the event strength of COVID-19 produces an indirect positive effect on online organic agricultural product purchase intention and rural health tourism intention. This study might contribute to the response to COVID-19’s impact on agriculture by further investigating the effect of its event strength and the potential opportunities under these effects. We reveal that the event strength of COVID-19 has a positive effect on the risk perception of the contact consumption of agricultural products and health consciousness. Additionally, the event strength can indirectly affect online organic agricultural product purchase intention and rural health tourism intention via the risk perception of the contact consumption of agricultural products and health consciousness. Besides, we reveal that risk information disclosure can moderate the effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention and health consciousness on rural health tourism intention. These findings could enrich the existing literature in the following ways.

Second, under the impact of COVID-19, this study explored and defined possible development directions of the agricultural field in the future; that is, via online sales of agricultural products and rural health...
tourism. The event strength of COVID-19 has increased people’s health consciousness, which is helpful for online sales of agricultural products and rural health tourism. Moreover, COVID-19 has made people perceive risk when being in contact with others when purchasing agricultural products, which has also increased the possibility of online agricultural product consumption. Therefore, perhaps online sales of agricultural products and rural health tourism are potential opportunities for agriculture to pursue in the post-pandemic period.

Third, since risk information disclosure can positively moderate the effect of the risk perception of the contact consumption of agricultural products on online organic agricultural product purchase intention, if more risk information is disclosed, online product purchase intention might increase. In terms of practice, we argue that explaining the risk of COVID-19 to consumers is an important and effective way to increase online organic agricultural product purchase intention. However, the disclosure of risk information can negatively moderate the effect of people’s health consciousness on rural health tourism intention, which indicates that providing consumers with too much risk information decreases rural health tourism intention. Thus, consumers should be provided with a safe atmosphere in which to conduct rural health tourism, rather than informing them of risk information about COVID-19.

ACKNOWLEDGEMENTS

This study is supported by Youth Project of the National Social Science Found of China 20CGL022.

We would like to thank Editage (www.editage.cn) for English language editing.

ETHICS STATEMENT

The academic Committee of the College of Tourism in Huaqiao University which is responsible for approving the ethics involved in studies approved this study.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jie Yin https://orcid.org/0000-0002-2266-8672

REFERENCES

Ahmed, Q. A., & Memish, Z. A. (2020). The cancellation of mass gatherings (MGs)? Decision making in the time of COVID-19. Travel Medicine and Infectious Disease, 101631.

Alecu, I.-N., Angelescu, A.-L., Marcuță, I., & Angelescu, C. (2015). Developments in the European market of organic agricultural products. In Agrarian economy and rural development—Realities and perspectives for Romania (6th Edition of the International Symposium ed.). Bucharest: The Research Institute for Agricultural Economy and Rural Development (ICEADR).

Arshad Ali, S., Baloch, M., Ahmed, N., Arshad Ali, A., & Iqbal, A. (2020). The outbreak of coronavirus disease 2019 (COVID-19)—An emerging global health threat. Journal of Infection and Public Health, 13, 644–646. https://doi.org/10.1016/j.jiph.2020.02.033

Aydogdu, M. H., & Kaya, F. (2020). Factors affecting consumers’ consumption of organic foods: A case study in GAP-Şanlıurfa in Turkey. Journal of Agricultural Science and Technology, 22(2), 347–359.

Bacharach, S. B., & Bamberger, P. A. (2007). 9/11 and New York City firefighters’ post hoc unit support and control climates: A context theory of the consequences of involvement in traumatic work-related events. Academy of Management Journal, 50(4), 849–868. https://doi.org/10.5465/amj.2007.26279180

Bali, J. G. (2018). Caring or compulsion? The effects of consumer attributions of risk information disclosure in direct-to-consumer prescription drug advertising. Journal of Consumer Affairs, 52(3), 623–654. https://doi.org/10.1111/joca.12178

Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161. https://doi.org/10.1016/0167-8116(95)00038-0

Bavenuto, D., Giovanetti, M., Ciccossi, A., Spoto, S., Angeletti, S., & Ciccozzi, M. (2020). The 2019-new coronavirus epidemic: Evidence for virus evolution. Journal of Medical Virology, 92(4), 455–459. https://doi.org/10.1002/jmv.25688

Betsch, C. (2020). How behavioural science data helps mitigate the COVID-19 crisis. Nature Human Behaviour, 4, 438. https://doi.org/10.1038/s41562-020-0866-1

Björk, P., Bosnjak, M., & Osti, L. (2010). Atmospherics on tour operators’ websites: Website features that stimulate emotional response. Journal of Vacation Marketing, 16(4), 283–296. https://doi.org/10.1177/135667671032243

Braun, V., Clarke, V., Boulton, E., Davey, L., & Meevay, C. (2020). The online survey as a qualitative research tool. International Journal of Social Research Methodology, 1, 1–14.

Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet, 395(10227), 912–920. https://doi.org/10.1016/S0140-6736(20)30460-8

Cao, W., Fang, Z., Hou, G., Han, M., Xu, X., Dong, J., & Zhang, J. (2020). The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research, 287, 112934. https://doi.org/10.1016/j.psychres.2020.112934

Cappelli, A., & Cini, E. (2020). Will the COVID-19 pandemic make us reconsider the relevance of short food supply chains and local productions? Trends in Food Science & Technology, 99, 566–567. https://doi.org/10.1016/j.tifs.2020.03.041

Chan, J. F.W., Yuan, S., Kok, K.-H., To, K. K.W., Chu, H., Yang, J., ... Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus in a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9

Chen, M. F. (2009). Attitude toward organic foods among Taiwanese consumers. Journal of Consumer Affairs, 33(1), 84–106. https://doi.org/10.1111/j.1354-8984.1999.tb01698.x

Chen, J. X., & Cui, J.-A., Alseidi, A. A., & Vreeland, T. J. (2020). Using technology to maintain the education of residents during the COVID-19 pandemic. Journal of Infection and Public Health, 13, 165–178. https://doi.org/10.1016/j.jiph.2020.02.033

Chick, R. C., Clifton, G. T., Peace, K. M., Propper, B. W., Hale, D. F., Alseid, A. A., & Vreeland, T. J. (2020). Using technology to maintain the education of residents during the COVID-19 pandemic. Journal of...
Zhao, S., Musa, S. S., Lin, Q., Ran, J., Yang, G., Wang, W., ... Wang, M. H. (2020). Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak. Journal of Clinical Medicine, 9(2). https://doi.org/10.3390/jcm9020388

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., ... Shi, Z.-L. (2020). Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), E6–E6. https://doi.org/10.1038/s41586-020-2951-z

How to cite this article: Yin J, Chen Y, Ji Y. Effect of the event strength of the coronavirus disease (COVID-19) on potential online organic agricultural product consumption and rural health tourism opportunities. Manage Decis Econ. 2021;42:1156–1171. https://doi.org/10.1002/mde.3298