Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases

Dorothea M. Heuberger and Reto A. Schuepbach

Abstract

Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs.

PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors.

In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.

Introduction

The four mammalian members of the protease-activated receptor (PAR) family PAR1, PAR2, PAR3, and PAR4 are encoded by the genes F2R [1], F2RL1 [2], F2RL2 [3], and F2RL3 [4], respectively. Human PAR1 was discovered in 1991 as a key thrombin receptor on platelets [5, 6]. Although human and mouse PAR2 genes are homologous to PAR1 genes, PAR2 is not responsive to thrombin [2, 7, 8]. Unexpected responses of platelets to thrombin in PAR1 knockout mice lead to the discovery of the thrombin receptors PAR3 and PAR4 [4, 9, 10]. PAR regulation varies between species and tissues, with differing expression levels, protease cleaving activities, dimerization with other receptors, compartmentalization, trafficking, posttranslational modifications, and co-localization with co-receptors, as shown in Fig. 1.

Studies of PAR activation under physiological conditions are crucial for the understanding of the pathophysiological roles of PARs, such as those in inflammatory disorders.

Cleavage and activation of PARs and signal transduction

PARs are specifically cleaved and irreversibly activated by various endogenous proteases, and by exogenous proteases from bacteria, plants, fungi, and insects. Proteases, soluble or cell membrane associated (bound to co-receptors or specific membrane compartments), cleave specific N-terminal peptides of PARs, resulting in exposure of new N-terminal peptides that serve as tethered activation ligands, which bind a conserved region on extracellular loop 2 (ECL2) [5, 11]. This interaction initiates conformational changes and alters affinity for...
intracellular G proteins [12]. Various N-terminal cleavage sites have been described, and these have various active conformations with specific G protein preferences. Multiple cleavage site-specific cellular responses are generally referred to as biased signaling, and the ensuing models describe how distinct proteases with distinct cleavage sites induce protease-specific responses via the same PAR [13, 14].

In contrast with PAR-activating proteases, other proteases cleave PARs at cleavage sites that are not related to signaling. Under these conditions, shedding of the PAR1 terminus, which removes the thrombin activation site, was first recognized as a mechanism for rendering platelets insensitive to thrombin [15]. These truncated PARs can no longer be proteolytically activated, but remain activated by ligands from adjacent PARs [16]. Alternatively, truncated PARs bind soluble peptides with affinity for ECL2 by mimicking the tethered ligand. Both mechanisms result in receptor activation [17, 18]. Multiple ECL2-binding agonist peptides have been described and shown to induce signaling from truncated and uncleaved PARs (see agonist peptides in Tables 5, 6, 7).

PAR activation by proteolytical cleavage

PAR-cleaving proteases are a focus of many current studies. Whereas some PAR-cleaving proteases produce N-terminal components with regulatory roles, others render the receptors insensitive to further protease exposure as shown in Fig. 2 and summarized in Tables 1, 2, 3 and 4. Important proteases are discussed below.

Mammalian proteases

Serine proteases Thrombin, the key protease of coagulation, is generated by proteolytical cleavage of zymogen prothrombin. Although thrombin production predominantly occurs on platelets and subendothelial vascular walls, extravascular thrombin has been detected in synovial fluid [19] and around tumors [20]. Thrombin has long been known to activate platelets, and the discovery of PAR1 initiated research into the underlying molecular mechanisms. PAR1 contains a hirudin-like domain, which has a high affinity thrombin binding site and recruits thrombin via exosite I. This interaction enables thrombin to specifically and efficiently activate PAR1 [6]. Similarly, PAR3 contains a hirudin-like thrombin recruitment site, which results in cleavage [9, 21]. In other studies, mouse PAR3 maintained thrombin recruitment activity but lost its receptor function, as discussed above [22–24]. Thrombin also cleaves and activates PAR4, which, in contrast with PAR1, lacks a hirudin-like domain. Thus, higher concentrations of thrombin activate PAR4 and initiate intracellular signaling [10]. PAR2 is considered the only PAR that resists cleavage or

Fig. 1 Mechanisms of PAR activation. PAR activation is regulated by a direct proteolytical cleavage at the N-terminus, b homo- or heterodimerization with other PARs and transactivation through the cleaved tethered ligand, c compartmentalization on the cell surface, d degradation or recycling by endosomal trafficking, e posttranslational modifications such as glycosylation, phosphorylation, and ubiquitination, and f co-localization with other receptors and cofactors.
activation by thrombin [4, 25], although emerging evidence suggests that at very high concentrations (100–500 nM), thrombin may directly cleave and activate PAR2 [26, 27].

In contrast with thrombin, the anticoagulant protease activated protein C (aPC) binds to the co-receptor endothelial protein C receptor (EPCR) to promote the cleavage and activation of co-localized PAR1 [28, 29] and induce anti-apoptotic and protective effects on endothelial barrier permeability [29–33]. Compartmentalization of PAR1 and co-localization with EPCR in calveolae is crucial for efficient cleavage by aPC [13]. Moreover, aPC cleaves PAR3 in humans and mice [21, 34, 35] and acts as a PAR3 shedding protease that prevents thrombin-induced barrier disruption [21]. However, the dependency of aPC cleavage of PAR3 on EPCR remains controversial [21, 35]. Similar to aPC, coagulation factor Xa binds EPCR and mediates proteolytic activation of PAR1 and PAR3 [21, 28, 36–39]. In addition, EPCR-bound factor Xa reportedly cleaves PAR2 and initiates inflammatory signaling [40]. PAR2 was also shown to be activated by tissue factor (TF)-bound coagulation factor VIIa [40–42]. Yet recent studies suggest that the TF-VIIa complex does not directly activate PAR2, and rather activates matriptase, which cleaves and activates PAR2 [42–44]. Anti-inflammatory signaling was also previously related to PAR1 cleavage by EPCR-bound VIIa [45, 46]. Taken together, these studies indicate that TF-Xa–VIIa complexes activate PAR1 and PAR2 [47].

Trypsins are PAR-activating proteases with roles as major digestive enzymes in the duodenum [48]. Trypsin is also secreted by epithelial cells, nervous system cells [49], and tumor cells [50, 51]. Trypsins may also be involved in cell growth and coagulation, as suggested by secretion from human vascular endothelial cells [52]. Trypsin cleaves human PAR1 and PAR4 at putative protease cleavage sites, and thereby prevents thrombin signaling in endothelial cells and platelets [4, 53]. Trypsin is the major PAR2 cleaving protease that initiates inflammatory signaling [2, 7].

Fig. 2 Proteolytic PAR cleavage

- **a** N-terminal sequences of human PARs (PAR1–4) containing potential cleavage sites.
- **b** Proteolytic cleavage of PARs by soluble exogenous proteases exposes new N-terminal sequences that serve as tethered ligands for G protein dependent activation of receptors. Alternatively, proteolytic cleavage at other sites destroys the function of the receptor to prevent intracellular signal transduction.
Tryptase is the main protease of mast cells, and activates PAR2 by proteolytic cleavage to induce calcium signaling and proliferation [54–57]. The source tissue of tryptase reportedly plays an important role in the cleavage and induction of tryptase-activated PAR signaling, reflecting differences in posttranslational modifications, such as glycosylation and sialic acid modifications [54, 58]. Tryptase induces calcium signaling via PAR1 when PAR2 is co-expressed, but cannot activate human platelets, suggesting that tryptase does not directly cleave PAR1 [54–57]. Chymase is a mast cell serine protease that also cleaves PAR1 in human keratinocytes and fibroblasts, and thus prevents thrombin sensitivity [59]. Moreover, the epithelial serine protease matriptase cleaves and initiates inflammatory responses in human and mouse keratinocytes and in Xenopus oocytes overexpressing human PAR2 [44, 60–63].

PARs have been identified as substrates of kallikreins, which are serine proteases that have been related to various inflammatory and tumorigenic processes [64]. Kallikrein-4 increases intracellular calcium levels via PAR1 and PAR2, but activates PAR1 most efficiently [65]. Kallikrein-14 induces calcium signaling via PAR1, PAR2, and PAR4, but can also shed PAR1 to prevent signaling. Rat platelets are activated by kallikrein-14 via the proteolytic cleavage of PAR4, but are not activated by kallikrein-5 and kallikrein-6 [66]. Instead, neurotoxic effects of kallikrein-6 were inhibited by blocking PAR1 and PAR2, indicating a direct proteolytic role in PAR activation [67].

Neutrophils are mobilized to sites of inflammation and infection, where they modulate inflammatory signaling, in part by secreting PAR-cleaving proteases. The neutrophil serine protease cathepsin G prevents thrombin-induced effects by cleaving PAR1 into non-functional parts [68, 69]. In contrast, cathepsin G reportedly induced chemoattractant signaling via PAR1, further supporting the role

Table 1 PAR1 cleaving proteases

Protease	Major cleavage site	Additional cleavage sites
Thrombin	R41S42	
aPC	R40N40	R41S42
FVIIIa	unknown	
FXa	R11S42	
Trypsin	R15S42	
Chymase	unknown	
MMP-1	D38p40, L44L45, F87F88	N47R48, R70L71, K92Q93
MMP-2	L38D38	
MMP-3, 8, 9	R15S42	
MMP-12	unknown	
MMP-13	S43p43, L38T38	
Cathepsin G	R41S42, F56W56, V69R70	
Neutrophil elastase	A30T37, V72S73, A86p87	
Proteinase-3	A30T37, P49N49, V72S73, A86p87	
Plasmin	K32A33, R41S42, R70L71, K76S77, K82Q83	
Kallikrein-4, 5, 6	unknown	
Kallikrein-14	R40N40	
Granzyme A, B, K	unknown	
Calpain-1	K32A33, S76K77	
Non-mammalian proteases		
PA-B1	R41S42, R69N67	
Thrombocytin	R41S42, R69N67	
DerP1	unknown	
Gingipain R	R41S42	
SpeB	L44L45	
LepA	unknown	
S.pneumoniae proteases	unknown	
Thermolysin	F43L44, L44L45	
penC	R41S42	
of cathepsin G in PAR1 activation [70]. Another unexpected observation of cathepsin G was that cleavage sites differ between recombinant and native human PAR2 [26, 71, 72]. These discrepancies may reflect the influence of cell types and posttranslational modifications on PAR cleavage. Studies in mice and humans show that platelet activation by cathepsin G is dependent on PAR3 and PAR4 [71, 73, 74]. Cathepsin G also cleaves and activates PAR4 on endothelial cells [75]. The neutrophil proteases elastase and proteinase-3 cleave recombinant PAR1 and PAR2 at various sites [26, 72]. Recently, rat elastase was shown to cleave and activate PAR1, although sequences of rat and human PAR1 have low homology [76]. In contradiction with neutrophil proteases that prevent PAR signaling at sites of inflammation, monocytes secrete the protease cathepsin S, which initiates inflammatory

Table 2 PAR2 cleaving proteases

Protease	Major cleavage site	Additional cleavage sites
Mammalian proteases		
Thrombin	R¹⁶S³⁷	
aPC	unknown	
FXa	R¹⁶c³⁷	
Trypsin	R¹⁶c³⁷	K³⁴G³⁵, K⁴¹G⁵², K⁷²L⁷³
Tryptase	R¹⁶c³⁷	
Chymase	G³⁵R³⁶	L³⁸0³⁹, mouse
Matriptase	R¹⁶c³⁷	
Cathepsin G	F⁵⁵S⁶⁶	F⁵⁸S⁶⁰, F⁶⁴S⁶⁵
Cathepsin S	G⁴⁰K⁴¹	E¹⁶p⁵⁷, mouse
Neutrophil elastase	A⁶⁶S⁶⁷, S⁶⁹V⁶⁸	V⁴²D⁴³, V⁴⁸T⁴⁹, V⁵⁴Y⁵⁵, V⁵⁸T⁵⁹, T⁷⁴F⁷⁵, Y⁷⁶F⁷⁷
Proteinase-3	D⁶²E⁶³	V⁶⁰F⁶¹, V⁶⁵E⁶⁶, T⁷²L⁷³, T⁷⁴F⁷⁵, T⁷⁵V⁷⁶, V⁷⁶F⁷⁷
Plasmin	R¹⁶c³⁷	K³⁴G³⁵
Testisin	unknown	
Kallikrein-4,	unknown	
Kallikrein-5,-6,-14	R¹⁶c³⁷	
Calpain-2	unknown	
Non-mammalian proteases		
Der-P1,-P2,-P3,-P9	unknown	
Cockroach E1-E3	R¹⁶c³⁷	
Gingipain R	unknown	
LepA	unknown	
EPa	S³⁷L³⁸	S³⁸L³⁹, rat
S.pneumoniae proteases	unknown	
Thermolysin	unknown	
Serralysin	unknown	
P.acnes proteases	unknown	
aPA	unknown	
Bromelain	unknown	
Ficin	unknown	
Papain	unknown	
penC	R¹⁶c³⁷	

Table 3 PAR3 cleaving proteases

Protease	Major cleavage site	Additional cleavage sites
Mammalian proteases		
Thrombin	K¹⁸T³⁹	
aPC	R⁴¹G⁴²	
FXa	R⁴¹G⁴²	
Trypsin	unknown	

Heuberger and Schuepbach Thrombosis Journal (2019) 17:4 Page 5 of 24
signaling by cleaving PAR2 [72, 77, 78]. Low concentrations of the fibrinolytic protease plasmin prevent platelet activation by cleaving PAR1, whereas high concentrations of plasmin lead to the cleavage and activation of PAR1 [79]. Plasmin also cleaves PAR2 and prevents subsequent activation by trypsin [26, 80].

The serine proteases granzyme A and granzyme B induce intracellular signaling pathways that lead to neuronal death via PAR1 [81, 82]. Recently, granzyme K was also shown to activate PAR2 and prevents subsequent activation by trypsin [26, 80].

Cysteine proteases Calpain-1 is a calcium-dependent cysteine protease that has been associated with inflammatory disorders, and initiates calcium signaling pathways by activating PAR1 [26]. At very high concentrations, calpain-2 was also shown to cleave PAR2, and the authors suggested that this cleavage event inactivated PAR2 [26]. Recently, calpain-1 was shown to be induced by thrombin-activated PAR1, and subsequently regulated the internalization of PAR1 [85].

Metalloproteases Matrix metalloproteases (MMPs) are known to be involved in various inflammatory- and cancer-related conditions. MMP-1 cleaves human PAR1 and initiates platelet activation [86–89]. MMP-1 also regulates cancer cell activities depending on PAR1 availability [90]. Similarly, MMP-2 cleaves human PAR1 and enhances platelet activation [91], and MMP-3, MMP-8, and MMP-9 were shown to induce platelet activation via PAR1 [92]. Whether these three MMPs cleave PAR2 is not clear, although PAR2 activation by trypsin induced secretion of MMP-9 in human airways, suggesting that MMP-9 is a PAR2-activating protease [93]. In mice, PAR1 expression was regulated by MMP-12, and activated PAR1 increased MMP-12 secretion [94, 95]. A similar feedback loop involving MMP-12 and PAR2 has been reported in mice [96]. Moreover, MMP-13 was shown to activate PAR1 and induce intracellular signaling [87], and thrombin-induced activation of PAR1 and PAR3 was associated with increased levels of MMP-13 in human chondrocytes [24].

In addition to coagulation and inflammation, PAR activation may play roles in human germ cells, where the serine protease testisin activates PAR2 and induces calcium signaling and ERK1/2 activation. This interaction may play roles in the regulation of ovarian and testicular cancer, as suggested previously [97, 98].

Non-mammalian proteases Exogenous proteases from various species that modulate PAR activation are discussed in the following section and are summarized in Fig. 3.

Bacterial proteases Endogenous mammalian proteases are not the only regulators of PAR activation. Indeed, both pathogenic and commensal bacteria secret various proteases that cleave PARs and act as inflammatory modulators [99]. In this section, we describe bacterial proteases that either activate PARs, and thus allow bacteria to penetrate host barriers, or inactivate PARs to prevent inflammatory signaling by the host. The human pathogen Pseudomonas aeruginosa secretes two PAR-cleaving proteases with contrasting effects. The exoprotease LepA cleaves and activates PAR1, PAR2, and PAR4, and subsequently induces nuclear factor kappa B (NFκB) promoter activity [100], whereas

Table 4 PAR4 cleaving proteases

Protease	Major cleavage site	Additional cleavage sites
Thrombin	R47G48	
Trypsin	R47G48	
Cathepsin G	R47G48	
Kallikrein-14	unknown	
Non-mammalian proteases		
PA-BJ	R47G48	
Thrombocytin	R47G48	
Der-P3	unknown	
Gingipain R	R47G48	
LepA	unknown	
S.pneumoniae proteases	unknown	
Bromelain	unknown	
Ficin	unknown	
Papain	unknown	

Heuberger and Schuepbach Thrombosis Journal (2019) 17:4
cleavage by elastase EPa inactivates PAR2 to prevent inflammation in lungs [101].

The streptococcal pyrogenic exotoxin B (SpeB) of Group A Streptococcus also inactivates PAR1 by cleaving it, and thereby renders human platelets unresponsive to thrombin [102]. In mice, proteases of Streptococcus pneumoniae cleaved PAR2 and facilitated the spread of the pathogen from the airways into the blood stream [103]. PAR1 has also been associated with S. pneumoniae-mediated sepsis in mice, although direct cleavage of PAR1 was not shown [104, 105]. Pulmonary inflammation from S. pneumoniae infections is reduced in PAR4 knockout mice [106], further supporting this causal link.

Inflammation-associated periodontal diseases are predominantly induced by the Porphyromonas gingivalis cysteine protease gingipain R, which activates PAR2 [107, 108]. Subsequently, gingipain R activates PAR1 and PAR4, and thereby, human platelets [109–111]. This mechanism may also explain associations between periodontitis and cardiovascular events [112].

In addition, supernatants from Propionibacterium acnes cultures initiated inflammatory signaling in human keratinocytes via PAR2 [92]. The virulence of P. acnes was also reduced in PAR2 knockout mice [113], further suggesting that PAR2 is involved in bacterial infections.

Serralysin is a matrix metalloprotease expressed by Serratia marcescens, and induced inflammation in human airway cells via PAR2 in vitro [114].

Finally, Bacillus thermoproteolyticus rokko secretes the metalloprotease thermolysin, which cleaves and inactivates PAR1 to prevent thrombin-induced signaling in rat astrocytes [115, 116]. The in vitro effects of PAR2-cleavage by thermolysin, however, vary between cell lines [116].

Amoeba proteases In acanthamoebic keratitis, PAR2 triggers inflammation following secretion of the plasminogen activator (aPA) by Acanthamoeba strains, leading to induction of IL-8 in human corneal epithelial cells [117].

Reptile proteases Following snakebites, coagulation disorders in humans and mice occur due to the presence of venom proteases. In Proatheris superciliaris bites, venom proteases activate platelets by activating PAR1 and PAR4 [118]. Bothrops atrox and B. jararaca are snake species of the family viperidae. These snakes secrete the serine proteases PA-BJ and thrombocytin, which activate human platelets via PAR1 and PAR4 [119].

Insect proteases Several cysteine and serine proteases from insects induce inflammation-associated diseases...
such as asthma. For example, dust mite allergens contain
the serine proteases DerP2, DerP3, and DerP9 [120] and
the cysteine protease DerP1. DerP1 induces
PAR2-dependent signaling, whereas thrombin-induced
PAR1-signaling is prevented by these proteases in hu-
man epithelial cells [121]. DerP3 was also recently
shown to activate PAR4, and this process was associated
with allergies to dust mites [122].

Similar to proteases from house dust mites, three
serine proteases (E1–E3) from cockroach extracts acti-
vate PAR2 and induce inflammatory signaling in mice
and humans [123–125].

Fungal proteases Pen C is a serine protease from Peni-
cillium citrinum that induces IL-8 in human airway cells
by activating PAR1 and PAR2 [126]. Proteases from As-
pergillus fumigatus have also been shown to prevent
PAR2-dependent inflammation [127]. Moreover, serine
proteases from Alternaria alternate induced calcium sig-
naling in human bronchial cells and induced inflamma-
tion in mice by secreting IL-33 following PAR2
activation [128–130].

Plant proteases Bromelain is a mixture of cysteine pro-
teases that is extracted from pineapple which is used as a
PAR-independent anti-inflammatory agent [131]. Bro-
melain cleaves PAR2 and thereby prevents the associated
inflammatory signaling [132]. In another study, however,
bromelain, ficin, and papain activated PAR2 and PAR4
by proteolytic cleavage, leading to increased intracellular
calcium levels [133]. Thus, further studies are required
to further clarify the modes of action of pineapple
proteases.

Cleavage-independent PAR activation by agonist peptides
Independent of proteolytic cleavage, PARs can be acti-
vated by synthetic soluble ligands corresponding with
cleaved N-terminal sequences, or can be transactivated by
cleavage-generated N-terminal regions of homo-
or heterodimer partners.

Synthetic peptides that mimic the first six amino acids
of tethered N-terminal ligands can act as agonist pep-
tides that activate PARs in the absence of cleavage
events [11, 18, 134]. Specific activation of PARs by a sol-
uble agonist peptide was first shown for human PAR1
with the peptide SPLLRN [6, 18]. However, this peptide
also activated PAR2 [135–137] and therefore various
peptides were tested for specific PAR1 activation. Yet,
PAR1 was the most specifically and efficiently activated
by TFLLRN [138]. In addition to thrombin agonist pep-
tides, other PAR1 agonist peptides have been identified.
In particular, the peptide NPNDKYPFP reproduced the
effects of aPC [28], and PRSFLRNN corresponds with
the N-terminal peptide generated by MMP-1 [86].

SLIGKV corresponds with the trypsin cleaved
N-terminal region of human PAR2. However, the corre-
sponding rat N-terminus SLIGRL is a more specific and
efficient PAR2 agonist in rodents and humans [136,
139], and only the synthetic peptide LIGRLO achieved
this effect more efficiently than SLIGRL in humans
[140]. The roles of ECL-2 in specific PAR activation have
been shown using labeled PAR2 agonist peptides [141,
142]. Because the thrombin generated PAR3 peptide
does not activate the G protein autonomously, no such
agonist peptides have been identified to date [9, 143].
GYPGKF corresponds with the thrombin-cleaved human
PAR4 and has weak activity as an agonist [144]. But re-
placement of the first amino acid glycine (G) with alan-
ine (A) induced PAR4 by 10-fold. This peptide may be
suitable as a platelet activator in humans and mice [145].

Several models of PAR–PAR interactions have been
proposed and extensively studied based on PAR transac-
tivation by agonist peptides [146]. When PAR1 is
blocked on endothelial cells, however, thrombin, and not
the PAR1-specific agonist peptide TFLLRN, induces sig-
naling, reportedly by facilitating the heterodimerization
of PAR1 and PAR2 [147]. Thrombin activation of the
PAR1–PAR2 heterodimer leads to constitutive internal-
ization and activation of β-arrestin by the PAR1 C-tail
[146]. Accordingly, the required co-localization of PAR1
and PAR2 was shown in a human overexpression sys-
tem, in mice studies of sepsis, and in PAR1–PAR2-dri-
ven cancer growth in a xenograft mouse model [148,
149]. In other studies, stable heterodimerization of hu-
man PAR1 and PAR4 was shown in platelet cells, and
thrombin accelerated platelet activation under these
conditions [150, 151]. Similar studies of mouse platelets
showed efficient activation of platelets by thrombin in
the presence of PAR3–PAR4 heterodimers [143]. Consis-
tent with the thrombin-cleaved PAR3 peptide, which is
not self-activating, PAR3 signaling was observed in
the presence of PAR1 or PAR2 [22, 23, 34, 152]. Yet, het-
erodimerization influenced signal transduction and PAR
membrane delivery due to enhanced glycosylation [153].

In addition to activation by heterodimerization, PARs
interact with other receptors, such as ion channels, other
G protein-coupled receptors (GPCRs), receptor tyrosine
kinases (RTKs), receptor serine/threonine kinases
(RSTKs), NOD-like receptors, and TLRs [154]. In par-
cular, PAR2 initiated inflammatory signaling pathways,
resulting in pain due to transactivation of the ion chan-
nels TRPV1 and TRPV4 in humans and mice [155–159].
Similar inflammatory effects follow transactivation of the
RTKs EGFR and VEGFR by PAR2 and PAR4 [160–163].
Bacterial interactions with PARs suggest important roles
of PARs in infectious disease. In agreement, TLRs
recognize bacteria-derived molecules and contribute to
innate immunity [164, 165]. Moreover, direct
interactions of PAR2 with TLR3 and TLR4 were necessary for inflammatory responses to LPS in human cell lines and knockout mice and rats [166–171].

PAR signaling

Activation pathways

PARs belong to a large family of GPCRs and induce multiple signaling pathways after coupling with heterodimeric G proteins. Activation of the Gα-subunit due to the exchange of a guanine from GDP to GTP results in dissociation of the Gβγ-dimer and activation of downstream pathways [172, 173].

Following proteolytic cleavage or induction of agonist peptides, the engaged signaling pathways vary between tissues, cell lines, and the availability of co-receptors for transactivation. Depending on the ligand, specific α-subunits are activated, and these regulate subsequent cellular functions as summarized in Fig. 4. For example, thrombin-stimulated PAR1 activates the small GTPase protein RhoA via ERK1/2 kinases, but not via Rac1, whereas aPC-stimulated PAR1 induces Rac1 via Akt kinase, but not via RhoA [13, 174–176]. Moreover, in accordance with PAR1 cleavage sites, aPC prevents thrombin-induced RhoA signaling [16]. However, in contrast with thrombin-induced RhoA activation on platelets and endothelial cells, PAR1-agonist peptides and thrombin activated the inhibitory G protein G1, which leads to the inhibition of adenylyl cyclase in human fibroblasts [177, 178]. Other studies indicate that PAR2 activation is less tissue specific than PAR1 activation, and trypsin and VIIa cleaved PAR2 and activated Gaq and Go, resulting in calcium influx, MAPK activation, and inflammatory signaling [8, 179].

Signaling by tethered ligands can differ from that generated by corresponding soluble agonist peptides. For example, thrombin-cleaved PAR1 activated Ga12/13 and Gaq and induced Rho and Ca2+ signaling, whereas the PAR1-agonist peptide activated only Ga12/13 and downstream RhoA-dependent pathways that affected endothelial barrier permeability [180]. Similar observations of human platelets suggested that platelet activation followed coupling of thrombin-activated PAR1 with multiple heterotrimeric G protein subtypes, including Ga12/13 and Gaq [181–183]. Moreover, trypsin and the PAR2-agonist peptide induced ERK1/2 signaling and inflammation by activating PAR2 [29, 180, 184–186]. β-arrestins also play major roles in PAR-induced signaling independently of G protein activation. For instance, aPC-activated PAR1 induces cytoprotective effects by recruiting β-arrestin in endothelial cells. Thus, aPC cleavage fails to protect β-arrestin deficient cells from the effects of thrombin [187, 188]. In addition, multiple studies show that activated PAR2 co-localizes with β-arrestin-1 and arrestin-2 and induces ERK1/2 signaling [77, 189–191].

Desensitization and termination

PAR activation is regulated by internalization and proteolytic desensitization, which limits the duration of signaling. For instance, PAR1 is constitutively internalized and recycled or agonist-induced internalized and degraded as described in [192, 193] and shown in the scheme of Fig. 5. As discussed above, some PAR-cleaving proteases abolish receptor responses by removing (shedding) or destroying the tethered ligands. For example, PAR1 is inactivated following cleavage by cathepsin G, and thrombin activation is hence prevented, allowing the formation of clotting under inflammatory conditions. Depending upon proteolytic cleavage, PAR1 rapidly internalizes or accumulates on the cell surface [194, 195]. Activated PAR1 is internalized via clathrin- and dynamin-dependent mechanisms, and is sorted from early endosomes to lysosomes for degradation [196–199].
Although the mechanisms that terminate PAR1 signaling are not clearly understood, this process is known to involve phosphorylation, ubiquitination, and recruitment of β-arrestin [200–204]. In contrast with PAR1, activated PAR2 is not constitutively internalized [205]. Thus, to prevent persistent signaling upon activation, PAR2 is phosphorylated and ubiquitinated and then binds β-arrestin before being internalized and degraded [206–208]. Under these conditions, the activated and internalized PAR2 is not recycled and instead induces β-arrestin-dependent endosomal ERK1/2 signaling in the cytoplasm [189, 191, 209]. Thus, large cytoplasmic stores of newly generated PAR2 are required for rapid externalization and activation on cell membranes [210]. Although less is known about how PAR4 signaling is terminated, recent observations suggest that PAR4 internalization is independent of β-arrestin and slowly occurs via clathrin- and dynamin-dependent pathways [211]. In agreement, human platelets internalized PAR4 much slower than PAR1, and exhibited prolonged PAR4 signaling activity [212]. Moreover, growing evidence indicates that PAR–PAR heterodimerization is important for internalization, and that the underlying mechanisms include PAR2-dependent glycosylation of PAR4, thus affecting membrane transport [153]. Upon internalization, endosomal PAR4 dimerizes with the purinergic receptor P2Y12 and induces Akt signaling by recruiting β-arrestin within endosomes [213].

Depending on stimuli, PAR expression patterns are regulated by complex combinations of cell surface presentation, endocytosis, vesicle born or recycled (i.e., re-exocytosed) receptors, and trafficking modes that are linked to posttranslational modifications of PAR.

Role of PARs in inflammation

With the current increases in the prevalence of inflammatory diseases, published in in vitro and in vivo studies of the roles of PARs in inflammation have become more numerous. These are reviewed below.

Systemic inflammation and inflammatory cells in the cardiovascular system

PARs are critical for the interplay between clotting proteases of platelets, endothelial cells, and vascular smooth muscle cells that regulate hemostasis, vascular barrier function, vascular tone, vascular homeostasis, cell adhesion, and inflammatory responses [150]. The roles of PARs in these processes vary significantly between species. Specifically, whereas functional PAR1 and PAR4 are expressed in human platelets [214], PAR1, PAR3, and PAR4 have been found in guinea pig platelets [215]. Whereas mouse and rat platelets lack PAR1, they are activated at low concentrations of thrombin, which is recruited by PAR3 onto the surface of platelets and then efficiently activates PAR4 [4]. Due to interspecies differences in PAR expression, mouse and rat studies of PARs are difficult to translate to humans. PARs in endothelial cells contribute positive regulatory signals for endothelial adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin [216, 217], all of which promote vascular barrier function. As a counterpart of intravascular cells, PAR4 induces leukocyte migration [75], and PAR2 expressed on macrophages promotes inflammatory modulators such as interleukin-8 (IL-8) [218]. These modes of signaling all contribute to a complex PAR-mediated interplay of endothelial cells that is orchestrated by intravascular cells and cytokine secretion. In addition, PARs,
particularly PAR1, regulate vascular barrier function, and hence, extravasation of macromolecules such as complement proteins and antibodies. In addition, thrombin-mediated activation of PAR1 increases endothelial barrier permeability by activating mitogen-activated protein kinases (MAPKs) [219]. Although this effect is reversed by activated protein C (aPC)-mediated activation of PAR1 [28, 174, 175, 220]. Thrombin further promotes prostaglandin 2 (PG2) secretion, and consequent endothelial barrier permeability [221]. Similarly, PAR1 activation increased vascular leakage in a murine model [222].

Inflammatory mediators, such as tumor necrosis factor alpha (TNFα), were shown to regulate the expression of endothelial PAR2, and the authors suggested that these data were indicative of barrier protective effects of PAR2 [223]. Several other studies show that PAR2 activation induces endothelium-dependent relaxation in blood vessels of mice and in arteries of rats [224–228]. In contrast, dual activities of PAR2 on blood vessels were reported in a study of rats [229]. In this line, thrombin-activated PAR1 induced the expression of vascular endothelial growth factor in smooth muscle cells [230], thus revealing the relationship between coagulation and vascular growth. Although the roles of PARs in the development of arteriosclerosis are yet to be elucidated, PAR2 and PAR4 were induced in human arteries under inflammatory conditions [223], suggesting important roles of PARs in vascular inflammation.

Chronic inflammation of the gastrointestinal tract

In the gut lumen, human and bacterial proteases are both present at high concentrations. Similar to endothelial barriers, proteases regulate intestinal barrier permeability via PARs, all four of which are expressed by cells of the gastrointestinal tract [9, 224, 231, 232]. Trypsins and tryptases are prominent intestinal proteases, suggesting likely involvement of PAR2 as a major receptor of intestinal inflammation. In accordance, intestinal tight junctions are disrupted by PAR2-activating proteases, leading to inflammatory signaling in humans and rats [139, 206, 233, 234]. Although the roles of PARs in irritable bowel syndrome (IBS) and inflammatory bowel diseases remain unclear, roles of PARs in intestinal barrier function have been described. Specifically, PAR1 and PAR2 regulated permeability and chloride secretion, which are involved in diarrhea and constipation in IBS patients [234–236]. In addition, activated endosomal PAR2 caused persistent pain in a mouse model of IBS [209].

Inflammatory diseases of the respiratory system

It has long been suggested that PARs are involved in the pathophysiology of respiratory disorders, reflecting observations of elevated levels of PAR-activating proteases, such as thrombin and tryptase, in bronchoalveolar lavage fluid from patients with pulmonary inflammation [237, 238]. In a sheep asthma model and in asthmatic patients, tryptase inhibitors reduced inflammation [239, 240], further indicating important roles of PAR2 in respiratory disease. These roles of PARs are also suggested by the prominence of a variety of non-mammalian PAR-activating proteases, such as those of house dust mites and cockroaches [120, 123, 124]. Expression of PAR1, PAR2, and PAR4 on bronchial epithelial and smooth muscle cells induced inflammatory signaling in multiple studies [55, 121, 241–245]. PAR2 is also up-regulated in epithelial cells of patients with asthma and chronic obstructive pulmonary syndrome (COPD) [246, 247]. Whether PAR2 activation results in bronchoconstriction or dilatation remains controversial, in part owing to interspecies differences and tissue dependencies [242, 248, 249]. In humans, however, PAR2-agonist peptides with thrombin, and a PAR2-agonist peptide with trypsin and tryptase, induced bronchoconstriction by inducing Ca2+ signaling in airway smooth muscle cells [241, 244]. Moreover, the long-term activation of PAR1 and PAR2 led to pulmonary fibrosis in mice models [250].

Inflammatory skin diseases

High concentrations of exogenous proteases are present on the skin of various species, and these may activate PARs to regulate epidermal permeability and barrier function [251]. Indeed, epidermal inflammation has been linked to PAR1 and PAR2 activation in keratinocytes, which comprise the epidermal barrier with sub-epidermal skin fibroblasts [179, 252, 253]. Subsequent release of IL-8, IL-6, and granulocyte macrophage colony-stimulating factor (GM-CSF) was also observed previously [254], potentially involving NFκB activation [255]. In addition, the inflammatory roles of PAR2 have been demonstrated in mice models of atopic dermatitis due to elevated tryptase and PAR2 expression levels [256, 257]. Similar to studies in mouse models, PAR2 was up-regulated in patients with atopic dermatitis, and PAR2 agonists increased itch, causing irresponsiveness of sensory nerves to therapy with antihistamines [258].

Rheumatic disease

“Rheumatic disease” is a common term for autoimmune diseases that affect joints, bones, and muscles. Although rheumatic disorders are numerous, some of the common underlying symptoms include chronic joint inflammation, stiffness, and pain [259]. Currently, PAR2 is the only PAR that has been associated with the development of rheumatic diseases [260]. Direct roles of PAR2 in rheumatic diseases were first indicated in 2003 in a mouse study by Ferrell et al. [261]. In their study, a PAR2-agonist peptide induced strong inflammatory...
effects in wt mice, causing joint swelling and synovial hyperemia, whereas joint swelling was absent in PAR2 deficient mice [261]. Similarly, in patients with rheumatoid arthritis, PAR2 is upregulated in inflamed tissues [262]. Further increases in PAR2 expression were noted in monocytes, and the PAR2-agonist peptide upregulated IL-6. In contrast, PAR2 expression was decreased after treatments with antirheumatic drugs [263], further supporting the role of PAR2 in rheumatic disease.

PAR modulators as targets for therapy

The complexity of PAR regulation is indicated by the culmination of specific proteolytic cleavage modes (inactivating or activating), protease inhibitors, and cofactors, and with the effects of PAR glycosylation and dimerization (Fig. 1). In this section we discuss classes of agonists and antagonists that have been tested as PAR modulators for use as therapeutic agents as summarized in Fig. 6 and Tables 5, 6 and 7.

Peptide agonists and antagonists are short synthetic peptides that mimic the PAR-tethered ligand that is liberated by proteolytic cleavage, as described above. These peptides either induce signal transduction or prevent cleavage-dependent signaling following PAR rapid internalization, and some C- or N-terminal modifications of soluble ligand sequences have resulted in increased activation efficiency [18]. Peptidomimetic antagonists are small protein-like chains that mimic the tethered ligands of PARs, and were recently used as PAR modulators for the first time [264]. Soon after PARs were discovered, PAR1 blocking antibodies were reported [265], and these blocked protease binding and or the cleavage site of the receptor. Non-peptide small molecules, such as the PAR1 antagonists vorapaxar [266] and atopaxar [267], also interact with PARs, mainly via ECL2. Only two classes of intracellular PAR antagonists have been developed to date. Pepducins are cell penetrating palmitoylated peptides that were derived from the intracellular loop of PAR, and these interfere with G protein binding [268]. Parmodulins, in contrast, are small molecules that bind PARs at the G protein binding pocket of the C-tail to compete with \(G_\alpha \) subunits, but not with other \(G_\alpha \) subunits [269].

Examination of agonists and antagonists in vitro and in preclinical studies (Tables 5, 6 and 7)

Clinical studies

Despite the importance of PARs in various pathophysiological conditions, few PAR modulating tools have been tested in clinical studies, and even fewer have been established for treatment. Since the identification of PAR1 as a platelet thrombin receptor, an abundance of research has been conducted to identify PAR1 antagonists that can block platelet activation and prevent thrombotic cardiovascular events. The first clinically approved PAR1 antagonist was the small-molecule antagonist vorapaxar [266]. Phase II clinical trials of this agent showed reduced risks for myocardial infarction in patients treated with vorapaxar in combination with standard antiplatelet therapy. Moreover, the risks of bleeding complications were not significantly increased [270]. Subsequently, two large-scale phase III multicenter, randomized, double-blind, placebo-controlled studies of vorapaxar (ZONTIVITY, SCH530348) were performed. In the Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events–Thrombolysis in Myocardial Infarction 50 (TRA 2P-TIMI 50; details at www.ClinicalTrials.gov; NCT00526474) study, the rate of cardiovascular events at the second efficacy endpoint were significantly reduced by vorapaxar in combination with standard antiplatelet therapy [271]. Furthermore, in the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER; details at www.ClinicalTrials.gov; NCT00527943) study, vorapaxar reduced the hazard of first myocardial infarction of any type in patients who were treated within 24 h of having symptoms of a cardiovascular event. However, in the TRACER study, vorapaxar failed to prevent secondary ischemic events [272]. Because vorapaxar increased bleeding complications in the clinical setting, the alternative PAR1 antagonist atopaxar (E5555) [267] was tested in a phase II clinical trial called (Lessons From Antagonizing the Cellular Effects of Thrombin-Acute

![Fig. 6 PAR modulators. Pharmacological substances, such as 1) peptides and peptidomimetics, 2) blocking antibodies, 3) small molecules, 4) pepducins, and 5) parmodulins are used as therapeutic agents that affect PAR activities](image)
Class	Agonist/Antagonist	Name	Receptor/Cell/Tissue type	Cellular response
Peptide	Agonist	SFLLRN/−NH2	Human	Induces platelet activation [6, 138, 265, 278, 279]
		TFLLRN/−NH2	Human	Induces platelet activation, enhances endothelial barrier permeability [137, 138, 265]
		NPDYKYPF/−NH2	Human	Induces cytoprotective signaling [28, 187]
		PRSFLLRN/−NH2	Human	Induces platelet activation [86]
	Antagonist	YFLLRN	Human	Competes with thrombin and PAR1-AP and prevents platelet activation [278, 279]
Peptidomimetic	Antagonist	RWJ-S6110	Human	Blunts thrombin and PAR1-AP effects on platelets and vascular endothelial cells [264, 281, 282]
		RWJ-S8259	Guinea pig	Blocks MMP-1 activity in SMCs [87]
		ER129614–06	Human	Blocks thrombin and PAR1-AP platelet activation [285, 286]
		ER129614–06	Guinea pig	Blocks thrombin and PAR1-AP induced ERK1/2 activation [287]
		F16357, F16618	Human	Blocks PAR1-AP induced platelet activation [290]
		SCH79797	Human	Blocks thrombin and PAR1-AP induced calcium release and platelet activation [292]
		SCH203009	Human, Mouse	Induces NETs formation and increases bacterial killing capacity [293]
		SCH30348 (vorapaxar)	Human, Monkey	Blocks thrombin and PAR1-AP induced platelet activation [292]
		E5555 (atopaxar)	Human	Blocks thrombin and PAR1-AP induced platelet activation and inhibits thrombus formation [267]
		Q94	Guinea pig	Bleeding time not affected [267, 294]
	Antagonist	P1-pal-12	Human	Blocks thrombin induced platelet activation [268]
		P1-pal7 (PZ-128)	Human	Blocks platelet activation [86]
			Human	Blocks MMP-1 induced endothelial damage [297]
			Mouse	Reduces lung vascular damage and sepsis lethality [297, 298]
		SCH161 (Parmodulin-2)	Human	Blocks thrombin and PAR1-AP induced platelet activation [299]
		ML161 (Parmodulin-2)	Human	Blocks thrombin induced inflammatory signaling on endothelial cells [269]
			Mouse	Blocks thrombus formation [300]
	Antibiotic	Doxycycline	Human	Inhibits thrombin induced cancer cell migration [301, 302]
			Human	Blocks MMP-1 cleavage [303]
Table 5 PAR1 signaling modulators (Continued)

Class	Agonist/Antagonist	Name	Receptor/Cell/Tissue type	Cellular response
Antibody	Antagonist	ATAP-2	Human	Blocks thrombin cleavage of PAR1 and thrombin induced calcium release [147]

Table 6 PAR2 signaling modulators

Class	Agonist/Antagonist	Name	Receptor/Cell/Tissue type	Cellular response
Peptide	Agonist	SLIGRL−NH2	Human, Rat	Induces calcium release [2, 8, 136, 139]
		SLIGKV−NH2	Human	Induces calcium release [136]
		2f-LIGRLO−NH2	Human, Rat	Induces calcium release [140]
	Antagonist	FSLRRY-NH2	Human	Blocks trypsin, not SLIGRL activation, reduces proinflammatory IL-8 and TNFα [82]
		LSLGR-NH2	Human	Blocks trypsin, not SLIGRL induced calcium release [305]
Peptidomimetic	Antagonist	K14585, K12940	Human	Reduces SLIGKV induced calcium release [306]
		C391a	Human, Mouse	Blocks calcium release and MAPK activation [308]
Non-peptide small molecule	Agonist	GB110	Human	Induces calcium release [309]
		AC-5541, AC-264613	Human	Induces calcium release [310]
		Rat	Induces edema and hyperalgesia [310]	
	Antagonist	ENMD-1068	Human	Blocks p. acnes induced calcium release and induction of IL-1α, IL-8 and TNFα [92]
		Human	Inhibited FVIIIa induced cancer cell migration [311]	
		Mouse	Reduces joint inflammation [260]	
		Mouse	Blocks calcium release and reduces liver fibrosis [312]	
		GB83	Human	Inhibits trypsin and PAR2-AP calcium release [313]
		GB88	Human	Blocks PAR2 induced calcium release [309]
		Rat	Reduces acute paw edema, inhibits PAR2-AP induced inflammation [309, 314]	
		AZ8383, AZ3451	Human	Blocks PAR2-AP induced calcium release and β-arrestin recruitment [315]
	P2pal-18S	Human	Blocks PAR2 induced calcium release [316]	
	Mouse	Decreases risk for developing severe biliary pancreatitis [317]		
	P2pal-14GQ	Human	Blocks PAR2 induced calcium release [316]	
Antibiotic	Antagonist	Tetracyclines (Tetracycline, Doxycycline, Minocycline)	Human	Inhibits SLIGRL induced IL-8 release [318]
		Mouse	Topical application of tetracycline decreases PAR2 induced skin inflammation [319]	
		Rat	Subantimicrobial doses of doxycycline inhibit PAR2 induced inflammation [320]	
Antibody		SAM-11	Mouse	Reduces joint inflammation [260]
		BS	Mouse	Prevents allergic inflammation [124]
		MAB3949	Human	Blocks trypsin induced PAR2 activation [315]
Coronary Syndromes (LANCELOT-ACS; details at www.ClinicalTrials.gov; NCT00548587) study [273]. Atopaxar inhibited platelet aggregation in ACS patients in a dose-dependent manner, and caused no side effects of abnormal platelet activation, such as bleeding [274, 275]. Yet, patients receiving atopaxar had dose-dependent increases in liver abnormalities [273].

To prevent the bleeding problems that arise from treatments with PAR1 antagonists, a new class of PAR1 antagonist was designed, and the member pepducin PZ-128 (P1-pal7) was tested in a phase I trial [276]. This study showed no reduction in platelet aggregation, but the platelet blocking effect of PZ-128 was reversible ex vivo in the presence of saturating concentrations of the PAR1 agonist SFLLRN. Based on these promising findings, the new PAR1 blocking agent PZ-128 was considered in the coronary artery disease study Thrombin Receptor Inhibitory Pepducin-Percutaneous Coronary Intervention (TRIP-PCI). Data from this phase II trial are not yet available (details at www.ClinicalTrials.gov; NCT02561000).

As an alternative to PAR1 targeted antithrombotic drugs, the PAR4 small-peptide antagonist BMS-986120 reduced reversible thrombus formation ex vivo in a phase I trial [277]. Consequently, this promising anticoagulant PAR4 antagonist is currently being compared with a standard anticoagulant drug in a phase II study of stroke recurrence (details at www.ClinicalTrials.gov; NCT02671461).

Conclusion

Since the identification of PARs in the 1990s, studies of the complex mechanisms of PAR activation have been abundant, and these have clarified the roles of PARs in inflammatory disease. Various mammalian and non-mammalian proteases have also been recognized as PAR-mediated regulators of physiological and pathophysiological processes. Despite the development of various PAR modulators, few have been approved for therapeutic use. Obstacles to this therapeutic strategy include species differences in PAR expression and limited bioavailability of modulators in vivo and in clinical studies. Further research is needed to identify specific and efficient anti-inflammatory PAR modulators.

Abbreviations

AC: Adenylyl Cyclase; AKT: Protein kinase B; aPC: Activated Protein C; COPD: Chronic Obstructive Pulmonary Syndrome; COX: Cyclooxygenase; ECL: Extracellular Loop; EGF: Epidermal Growth Factor Receptor; EPCR: Endothelial Protein C Receptor; ERK: Extracellular Signal-regulated Kinase; F2R: Coagulation Factor 2 Receptor; F2RL1: Coagulation Factor 2 Receptor-Like 1; F2RL2: Coagulation Factor 2 Receptor-Like 2; F2RL3: Coagulation Factor 2 Receptor-Like 3; FVIIa: Activated Coagulation Factor VII; FXa: Activated Coagulation Factor X; GM-CSF: Granulocyte Macrophage Colony-stimulating Factor; GPCR: G Protein-Coupled Receptor; IBD: Inflammatory Bowel Disease; IBs: Irritable Bowel Syndrome; ICM: Intercellular Adhesion Molecule; IL: Interleukin; LepA: Pseudomonas aeruginosa-Derived Large Extracellular Protease; LPS: Lipopolysaccharides; MAPK: Mitogen-Activated Protein Kinase; MMP: Matrix Metalloprotease; NFκB: Nuclear Factor kappa B; PAR: Protease-Activated Receptor; penC: Penicillium citrinum-Derived Alkaline Serine Protease; PGE2: Prostaglandin E2; PI3K: Phosphoinositide-3-Kinase; PI(3)K: Phosphatidylinositol-3-kinase; PLCβ: Phospholipase C beta; Rac1: Ras-Related C3 Botulinum Toxin Substrate 1; RhoA: Ras homolog gene family, member A; RSK: Receptor Serine/Threonine Kinase; RTK: Receptor Tyrosine Kinase; SpeB: Streptococcal Pyrogenic Exotoxin B; TF: Tissue Factor; TLR: Toll-Like Receptor; TM: Thrombomodulin; TRPV: Transient Receptor Potential Channels Vanilloid Subtype; VCA: Vascular Cell Adhesion Molecule; VEGF: Vascular Endothelial Growth Factor; VEGFR: Vascular Endothelial Growth Factor Receptor

Table 7 PAR4 signaling modulators

Class	Agonist/ Antagonist	Name	Receptor/Cell/Tissue type	Cellular response
Peptide	Agonist	GYPGQV−NH2 Human, Rat	Induces platelet activation [144]	
		GYPGF−NH2 Human, Rat	Induces platelet activation [144]	
		AYPGKF−NH2 Human, Mouse	Induces platelet activation [145]	
Peptidomimetic	Antagonist	tc-YGPKF Rat	Blocks thrombin and PAR4-AP induced platelets aggregation [321]	
Non-peptide small molecule	Antagonist	YD-3 Human	Blocks thrombin induced platelet activation [282, 322–325]	
		Mouse, Rat, Rabbit	Blocks thrombin and PAR4-AP induced platelets activation [323–325]	
		ML-354 Human	Blocks PAR4-AP induced platelet activation [326–328]	
		BMS-986120 Human	Blocks PAR4-AP induced calcium release and platelet activation [329]	
		Human	Blocks thrombus formation at high shear stress [277]	
		Monkey	Blocks platelet activation [329]	
Pepducin	Antagonist	P4pal-10 Human, Mouse	Blocks thrombin and PAR4-AP induced platelet activation [268]	
		Rat	Blocks thrombin and PAR4-AP induced platelets activation [330]	
		P4pal-i1 Human	Blocks PAR4 induced platelets activation [150]	

Heuberger and Schuepbach Thrombosis Journal (2019) 17:4 Page 15 of 24
Acknowledgements
We would like to thank Hermenegild K. Heuberger for the drawing of the figures.
We thank Enago (http://www.enago.com) for the english language review.

Funding
We would like to express our sincere gratitude for the support given to RAS by the Swiss National Science Foundation grant #P200P3_136639 for the salary of DMH.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Authors’ contributions
Manuscript preparation by DMH and RAS. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland. 2Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

Received: 20 November 2018 Accepted: 8 March 2019
Published online: 29 March 2019

References
1. Bahou WF, Nierman WC, Durkin AS, Potter CL, Demetrick DJ. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood. 1993;82:1532–7.
2. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential protease-activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.
3. Schmidt VA, Nierman WC, Maglott DR, Coughlin SR. Identification within a par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem. 1998;273:15061–8.
4. Kahn ML, Zheng YW, Huang W, Bigomia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–4.
5. Vu TK, Nierman WC, Durkin AS, Potter CL, Demetrick DJ. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood. 1993;82:1532–7.
6. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential protease-activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.
7. Schmidt VA, Nierman WC, Maglott DR, Coughlin SR. Identification within a par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem. 1998;273:15061–8.
8. Kahn ML, Zheng YW, Huang W, Bigomia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–4.
9. Vu TK, Nierman WC, Durkin AS, Potter CL, Demetrick DJ. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood. 1993;82:1532–7.
10. Vu TK, Nierman WC, Durkin AS, Potter CL, Demetrick DJ. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood. 1993;82:1532–7.
11. Gersten R, Chen J, Ishii M, Ishii K, Wang L, Nanzevic T, Turck CW, Vu TK, Coughlin SR. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature. 1994;368:648–51.
12. Macfarlane SR, Seatter MJ, Kanke T, Hunter GA, Plein R. Protease-activated receptors. Pharmacol Rev. 2001;53:245–82.
13. Russo A, Soh JU, Paling MM, Arosa P, Trejo J. Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci U S A. 2009;106:6639–73.
14. Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne). 2014;5:67.
15. Renesto P, Si-Tahar M, Moniati M, Balloy V, Van Dorselaer A, Pidard D, Chignard M. Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood. 1997;89:1944–53.
16. Ludeman MJ, Kataoka H, Srivasvan Y, Esmon NL, Esmon CT, Coughlin SR. PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem. 2005;280:13122–8.
17. Chen J, Ishii M, Wang L, Ishii K, Coughlin SR. Thrombin receptor activation. Confirmation of the intramolecular tethered ligand hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem. 1994;269:16041–5.
18. Scarbrough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1993;267:13146–9.
19. Chang MC, Lin WH, Chang CY, Lin CP, Hsieh CC, Jeng JH. Serine protease activity is essential for thrombin-induced protein synthesis in cultured human dental pulp cells: modulation roles of prostaglandin E2. J Oral Pathol Med. 1998;27:23–9.
20. Kohl M, Williams K, Yao JL, Dennis RA, Huang J, Reeder J, Ricke WA. Thrombin expression in prostate: a novel finding. Cancer Investig. 2011;29:62–7.
21. Burnier L, Mosnier LO. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3. Blood. 2013;122:807–16.
22. Kauffmann R, Schulze B, Krause G, Mayr LM, Settmacher U, Henklen P. Platelet-activated receptors (PARs)–the PAR3 neo-N-terminal peptide TFRGAP interacts with PAR1. Regul Pept. 2005;125:1–6.
23. McLaughlin JN, Patterson MM, Mallk AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A. 2007;104:5662–7.
24. Huang CY, Lin HJ, Chen HS, Cheng SY, Hsu HC, Tang CH. Thrombin promotes matrix metalloproteinase-13 expression through the PKDelta c-Src/EGFR/Pi3K/Akt/PI3K/Akt/PI3K/Akt/mTOR signaling pathway in human chondrocytes. Mediat Inflamm. 2013;2013:326041.
25. Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A. 1999;96:11023–7.
26. Loew D, Perrault C, Morales M, Moog S, Ravanat C, Schuler S, Arcone R, Pietropaolo C, Cazenave JP, Van Dorselaer A, Lanza F. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry. 2000;39:10812–22.
27. Mihara K, Ramachandran R, Safieddine M, Hansen KK, Renaux B, Bolley D, Gibson S, Van der Voven B, Coughlin SR. Thrombin-mediated direct activation of proteinase-activated receptor-2 (PAR2): another target for thrombin signalling. Mol Pharmacol. 2016;89(5):606–12.
28. Schuepbach RA, Madon J, Ender M, Galli P, Riewald M. Protease activated receptor-1 cleaved at R46 mediates cytoprotective effects. J Thromb Haemost. 2012;10:1685–74.
29. Riewald M, Petrovaj RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. J Thromb Haemost. 2009;7:2168–74.
30. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV. Specificity of the human protease-activated receptor-1 (PAR1) for protease-activated receptors. Protein C pathway. J Thromb Haemost. 2009;7:2168–74.
31. Domotor E, Benzakour O, Griffin JH, Yule D, Fukudome K, Zlokovic BV. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease-activated receptor-1. Blood. 2003;101:4797–801.
32. Mosnier LO, Griffin JH. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C protects proteinase-activated receptor-I and endothelial cell protein C receptor. Biochem J. 2003;373:653–70.
33. Ruf W, Riewald M. Tissue factor-dependent coagulation protease signaling in acute lung injury. Crit Care Med. 2003;31:1231–7.
34. Ranjan S, Gohil A, Kohli S, Gadi I, Piersu M, Shahzad K, Gupta D, Bock F, Wang HJ, Shalik H, et al. Activated protein C protects from Cd44 via PAR2/PAR3 signaling in regulatory T-cells. Nat Commun. 2017;8(3):1.
35. Madhusudhan T, Wang H, Straub BK, Gorne E, Zhou Q, Shahzad K, Muller-Krebs S, Schwenger V, Gelfitz B, Grinnell BW, et al. Cytoprotective signaling by activated protein C requires proteinase-activated receptor-3 in podocytes. Blood. 2012;119:878–83.
36. Riewald M, Kravchenko W, Petrovan RJ, O'Brien PJ, Brass LF, Ulevitch RJ, Ruf W. Gene induction by coagulation factor Xa is mediated by activation of proteinase-activated receptor 1. Blood. 2001;97:3109–16.
37. Guo H, Liu D, Gelbard H, Cheng T, Insalaco R, Fernandez JA, Griffin JH, Zlokovic BV. Activated protein C prevents neuronal apoptosis via proteinase activated receptors 1 and 3. Neuron. 2004;41:563–72.
38. Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptors located in a single cellular environment. J Biol Chem. 2010;275:6580–85.
39. Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J. Proteinase-activated receptor-2 is essential for factor Vlla and Xa-induced signalling, migration, and invasion of breast cancer cells. Cancer Res. 2006;66:3077–14.
40. Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem. 2000;275:6580–85.
41. Kondreddy V, Wang J, Keshava S, Esmon CT, Rao LV. Factor VIIa bound to endothelial cell protein C receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res. 2006;66:3077–14.
42. Rothmeier AS, Liu E, Chakraborty S, Disse J, Mueller BM, Ostergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor Vlla required for proangiogenic PAR2 signaling. Blood. 2018;131:674–85.
43. Rothmeier AS, Disse J, Mueller BM, Liu E, Ostergaard H, Ruf W. Proangiogenic TF-FvIIIa-PAR2 signaling requires Matriptase-independent integrin interaction. Blood. 2016;128:27356.
44. Le Gall SM, Szabo R, Lee M, Kirchhofer D, Craik CS, Bugge TH, Camerer E. Matriptase activation connects tissue factor-dependent coagulation initiation to endothelial protein C receptor. J Thromb Haemost. 2010;8:379–88.
45. Stavenefter F, Mosnier LO. Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood. 2014;124:4980–9.
46. Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem. 2000;275:6580–85.
47. Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J. Proteinase-activated receptor-2 is essential for factor Vlla and Xa-induced signalling, migration, and invasion of breast cancer cells. Cancer Res. 2006;66:3077–14.
48. Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schomig A, Ott I. Membrane-type serine proteinase-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of proteinase-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:769–75.
49. Bocheva G, Rattenhoff A, Kemptes C, Goege T, Lin CY, D'Andrea MR, Stander S, Steinhoff M. Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol. 2009;129:1816–23.
50. Camerer E, Barker A, Duong DN, Garces R, Kataoka H, Cornelissen I, Darragh MR, Hussain A, Zheng YW, Spinavas Y, et al. Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell. 2010;18:25–38.
51. Sales KU, Friis S, Korkei JE, Godsken S, Hatakeyama M, Hansen KK, Rogatto SR, Szabo B, Vogel LK, Chen W, et al. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene. 2015;34:346–56.
52. Caliendo G, Santagada V, Perissuti S, Severino B, Fiorino F, Frecnetse F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem. 2012;55:6669–86.
53. Ramnay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA, Hooper JD. Kallikrein-related peptidase 4 (KLK4) stimulates tumor cell invasion by activating profibrotic signaling in human skin fibroblasts. J Invest Dermatol. 2008;28:1299–304.
54. Okonnomopoulou K, Hansen KK, Saedfined M, Vergnoble N, Tea I, Blaber M, Blaber S, Scarisbrick I, Diamandis EP, Holmberg MD. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem. 2006;387:817–24.
55. Yoon H, Radulovic M, Wu J, Blaber S, Mihalski MG, Scarisbrick IA. Kallikrein regulates proteinase-activated receptor 1 and PAR2 and protects dermal cells from UV-induced photocarcinogenesis. Exp Dermatol. 2015;24:28–35.
56. Molino M, Blanchard N, Belmonte E, Darer AP, Abrams C, Hoyle JA, Cerletti C, Brass LF. Proteolysis of the human platelet and endothelial-cell thrombin receptor by neutrophil-derived Cathepsin-G. J Biol Chem. 1995;270:11168–75.
57. Molino M, Blanchard N, Belmonte E, Darer AP, Abrams C, Hoyle JA, Cerletti C, Brass LF. Cathepsin-G degrades the human thrombin receptor. Thromb Haemost. 1995;73:923.
58. Wilson TJ, Nannuru KH, Singh RK. Cathepsin G recruits osteoclast precursors via proteolytic activation of proteinase-activated Receptor-1. Cancer Res. 2009;69:3188–95.
59. Ramachandran R, Sadoffsky LR, Xiao YP, Botham A, Cowen M, Morrice AH, Compton SJ. Inflammatory mediators modulate thrombin and cathepsin-G signaling in human bronchial fibroblasts by inducing expression of proteinase-activated receptor-4. Am J Phys Lung Cell Mol Phys. 2007;292:1–8.
60. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Holmberg MD. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem. 2011;286:24638–48.
61. Cumashi A, Ansuini H, Celli N, De Blasi A, O'Brien PJ, Brass LF, Molino M. Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets. Thromb Haemost. 2001;85:533–8.
62. Sambrano GR, Huang W, Faruqi T, Mahnus S, Craik C, Coughlin SR. Cathepsin G activates proteinase-activated receptor-4 in human platelets. J Biol Chem. 2000;275:6819–23.
75. Raza SL, Nehring LC, Shapiro SD, Cornelius LA. Proteinase-activated receptor-1.

76. Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace J. Protease-activated receptor-2 on endothelial cells promotes microvascular diabetes complications. J Am Soc Nephrol. 2016;27:1635–49.

77. Elmiah SR, Reddy VB, Lerner EA, Catephus S. Signals via PAR2 and generates a novel tethered ligand receptor agonist. PLoS One. 2014;9(6):e99702.

78. Kulisic O, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry. 1999;38:8452–85.

79. Domotor E, Bartha K, Machovick R, Ivanyi V, Covic L, Kuliopulos A. PAR1 is a novel receptor for plasmin and elastase. J Neurochem. 2002;80:746–54.

80. Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA. Protease-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J Biol Chem. 2000;275:41243–50.

81. Zang N, Zhuang JG, Deng Y, Yang ZM, Ye ZX, Xie XH, Ren L, Fu Z, Luo ZX, Xu FD, Liu EM. Pulmonary C fibers modulate MMP-12 production via PAR2 and are involved in the long-term airway inflammation and airway Hyperresponsiveness induced by respiratory syncytial virus infection. J Virol. 2016;90:2536–43.

82. Kida Y, Hinoguchi K, Shimizu T, Kawanou K. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol. 2008;10:1491–504.

83. Dulon S, Leduc D, Cottrell GS, D’Alayer J, Hansen KK, Bannett NW, Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M. Protease-activated receptor-2 facilitates bacterial dissemination in pneumococcal pneumonia. J Infect Dis. 2018;217:1462–71.

84. Schouten M, Van’t Veer C, Leij J, van der Poll T. Protease-activated receptor-1 impedes host defense in murine pneumococcal pneumonia: a controlled laboratory study. Curr. Dir. 2016;2:123.

85. Lourbakos A, Spolidorio LC, Ellin RP, Jobin MC, Covic L, Andrade-Gordon P, Vlieghe N. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am J Pathol. 2006;168:1189–99.

86. Francis N, Ayodele BA, O’Brien-Simpson NM, Birchmeier W, Pikin RN, Pagen CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor-2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol. 2018;20:11612891.

87. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ, Pikin RN. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett. 1998;435:56.

88. Boire A, Covic L, Agarwal A, Jacques S, Gueule M, Kulisic O, Covic L. A novel receptor for plasmin and elastase. J Neurochem. 2002;80:746–54.

89. Kida Y, Hinoguchi K, Shimizu T, Kawanou K. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol. 2008;10:1491–504.

90. Cooper DM, Pechkovsky DV, Hacket TL, Knight DA, Granville DJ. Extracellular granzyme K mediates endothelial activation by granzyme B that is augmented by interleukin-1beta. J Neuroinflamm. 2017;14:131.

91. Cooper DM, Pechkovsky DV, Hacket TL, Knight DA, Granville DJ. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FASEB J. 2016;30:23117–26.

92. Dulon S, Leduc D, Cottrell GS, D’Alayer J, Hansen KK, Bannett NW, Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M. Protease-activated receptor-2 facilitates bacterial dissemination in pneumococcal pneumonia. J Infect Dis. 2018;217:1462–71.

93. Schouten M, Van’t Veer C, Leij J, van der Poll T. Protease-activated receptor-1 impedes host defense in murine pneumococcal pneumonia: a controlled laboratory study. Curr. Dir. 2016;2:123.

94. Asea-Hou S, Mona P. Protease-activated receptor-1: key player in the sepsis coagulation-inflammation crosstalk. Curr. Dir. 2013;3:117.

95. van der Stoppelaar SF, Van’t Veer C, van den Boogaard FR, Boer MH, Rooslof J, Hulstijn LM, van der Poll T. Protease activated receptor 2 facilitates bacterial dissemination in pneumococcal pneumonia. Innate Immun. 2009;11:532–42.

96. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ, Pikin RN. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FASEB J. 1998;435:48.

97. Lourbakos A, Potempa J, Travis J, D’Andrea MR, Andrade-Gordon P, Santilli R, Mackie EJ, Pikin RN. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun. 2003;71:121–30.

98. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santilli R, Potempa J, Pikin RN. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood. 2001;97:3790–7.

99. Papapanagiotou D, Nicu EA, Bizzarro S, Gerdes VE, Mejers JC, Nieuwland R, van der Velden U, Losq BG. Periodontitis is associated with platelet activation. Atherosclerosis. 2009;202:605–11.

100. Ikawa K, Nishioka T, Yu Z, Sugawara Y, Kawagoe J, Takizawa T, Primo V, Nikolic B, Kurashiki T, Sasano T, et al. Involvement of neutrophil recruitment and protease-activated receptor-2 activation in the induction of IL-18 in mice. J Leukoc Biol. 2005;78:118–26.

101. Hooper Y, Nicou H, Shimizu T, Kuwano K. Serratia marcescens seralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun. 2007;75:164–74.

102. Chen X, Earley K, Luo W, Lin SH, Schilling WP. Functional expression of a human thrombin receptor in Sf9 insect cells: evidence for an active tethered ligand. Biochem J. 1996;314(Pt 2):603–11.
116. Ubl J, Sergeeva M, Reiser G. Desensitisation of protease-activated receptor-1 (PAR-1) in rat astrocytes: evidence for a novel mechanism for terminating Ca2+ signalling evoked by the tethered ligand. J Physiol. 2000;525 Pt 2:319–30.

117. Tripathi T, Abdul M, Alzadeh H. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (apa) and induces proinflammatory cytokine in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2014;55:3912–21.

118. Laing GD, Compton SJ, Ramachandran R, Vliagoftis H, Renaux B, Saifeddine M, Hollenberg MD, Yang SG, Laniyonu AA, Moore GJ, Saifeddine M. Action of the proteinase-activated receptor-2 (PAR2)-derived peptide ligands. J Biol Chem. 1992;267:5081–5.

119. al-Ani B, Saifeddine M, Hollenberg MD. Detection of functional receptors for the protease-activated receptor-2 activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can J Physiol Pharmacol. 1995;73:1203–7.

120. McGuire JJ, Saifeddine M, Triggel CR, Sun K, Hollenberg MD. 2-furyl-LIGRLO-amider: a potent and selective protease-activated receptor-2 agonist. J Pharmacol Exp Ther. 2004;309:1124–31.

121. al-Ani B, Saifeddine M, Kawabata A, Hollenberg MD. Protease activated receptor 2: role of extracellular loop 2 for ligand-mediated activation. Br J Pharmacol. 1999;128:1105–13.

122. O'Brien PJ, Prevost N, Molino M, Hollinger MK, Woolakis MJ, Woulfe DS, Bras LF. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem. 2002;277:13502–9.

123. Shi X, Gangadharon B, Brass LF, Rut W, Mueller BM. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer. 2004;2:395–402.

124. Hamer M, Macz K, Kanchara A, Agranovich D, Peretz T, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Protease-activated receptor-2 affects protease-activated receptor-1-driven breast cancer. Cell Mol Life Sci. 2014;71:2517–33.

125. Langer AJ, Jacques SL, Badar K, Kaeser NC, Darden CK, Andrade-Gordon P, Covic L, Kilpasi A. Blocking the protease-activated receptor-1/4 heterodimer in platelet-mediated thrombosis. Circulation. 2006;113:1244–54.

126. Sveshnikova AN, Balatsky AV, Demianova AS, Shepelevik TO, Shakhidzhanov SS, Balatskaya MN, Pichugin AV, Ataullakhov FI, Panteleev MA. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost. 2016;14:2045–57.

127. Hansen KK, Saifeddine M, Hollenberg MD. Tethered ligand-derived peptides of protease-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology. 2004;112:183–90.

128. Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson L, Gould GW, Mundell S, Milligan G, Plevin R. Novel role for proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. J Pharmacol Exp Ther. 2002;301:1362–9.

129. Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal. 2013;11:86.
177. Chung DT, Wong YH, Vu TK, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenyl cyclase. J Biol Chem. 1992; 267:20831–4.

178. Chung DT, Vu TK, Wheaton VI, Ishii K, Coughlin SR. Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J Clin Invest. 1992;90:1350–3.

179. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, Scarborough RM, Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A. 1995;92:9151–5.

180. McLaughlin JN, Shen L, Hollinest M, Brooks JD, Dibenenedetto E, Hrann HE. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem. 2005;280: 25048–59.

181. Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxone A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A. 1994;91:504–8.

182. Slages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/ G13 results in shape change and rho/rho-kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol. 1999;144:745–54.

183. Moers A, Nieswandt B, Massberg S, Wetteschurek N, Gruener S, Konrad I, Schulte V, Atkas B, Gracapac MP, Simon MI, et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med. 2003;9:1418–22.

184. Klenenbach SW, Chiupki A, Nelson RC, Hollenberg MD, Murray AG. Differential signaling by PAR2 and PAR1 in stimulating human endothelial cell excocytosis and permeability: the role of Rho GTPases. Circ Res. 2003;92:272–8.

185. Fortunato TM, Vara DS, Wheeler-Jones CP, Pula G. Expression of protease- activated receptor 1 and 2 and anti-tubulogenic activity of protease- activated receptor 1 in human endothelial colony-forming cells. PLoS One. 2014;9:e109375.

186. Kim YV, Di Cello F, Hillaire CS, Kim KS. Differential Ca2+ signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells. Am J Physiol Cell Physiol. 2004;286: C31–42.

187. Sittich S, Jung MS, Seiler JK, Marjan S, Berlin CA. Endothelial barrier protection by activated protein C coupled receptors. Nat Rev Mol Cell Biol. 2011;12:141–5.

188. Zhou B, Zhou H, Ling S, Guo D, Yan Y, Zhou F, Wu Y. Activation of PAR2 or TLR4 promotes resolution of acute inflammation in mouse. Biol Reprod. 2015;93(1):20.

189. Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, Sabri A, Guo J, Elouardighi H, Darrow AL, Andrade-Gordon P, Steinberg SF. Tsubota M, Ozaki T, Hayashi Y, Okawa Y, Fujimura A, Sekiguchi F, Nishikawa K. Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem. 2015;290: 4247–58.

190. Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. Constitutive protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci U S A. 2011;108:E1372–8.

191. Sinko PJ, Liu F, Neff MV, Stenberg ML, Holungen M, Christensson B, Hafstrom K, Ijland M, Engvall E, Jorgensen JO, et al. Neutrophil elastase activates proteinase-activated receptor-2 (PAR2) and toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2)) is coupled to a noncanonical pathway. Cytokine. 2015;76:424–30.

192. Groth JF, Jungmann M, Nygren L, Engstrom P, Jannink M, Al-Khalil M, Keating J, Logan J, Olsson T, Olsson K, et al. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem. 2007;282: 25048–59.
204. Wolfe BL, Marchese A, Trejo J. Ubiquitination differentially regulates clathrin-

203. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV. Impaired platelet

202. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J. Beta-Arrestins

201. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, Coughlin SR.

200. Trejo J, Coughlin SR. The cytoplasmic tails of protease-activated receptor-1

199. Grimsey NJ, Coronel LJ, Cordova IC, Trejo J. Recycling and endosomal

198. Dores MR, Chen B, Lin H, Soh UJ, Paing MM, Montagne WA, Meerloo T,

205. Soh UJ, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated

209. Jimenez-Vargas NN, Pattison LA, Zhao P, Hay N, Byroza TV. Impaired platelet

208. Ricks TK, Trejo J. Phosphorylation of protease-activated receptor-2

197. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, Coughlin SR.

196. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-

195. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, Coughlin SR.

194. Grimes NJ, Coronel LJ, Cordova IC, Trejo J. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

193. Grimes NJ, Coronel LJ, Cordova IC, Trejo J. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

192. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. HGF attenuates

191. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. HGF attenuates

190. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. HGF attenuates

189. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. HGF attenuates

188. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

187. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

186. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

185. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

184. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

183. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

182. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

181. Borbey T, Birukova A, Liu F, Nurmulkambetova S, Gerthoffer WT, Garcia JG, Verin AD, p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.
and cooperation between ERK1/2 and rho kinase signaling pathways. Mol Biol Cell. 2008;19:2520–33.

293. Tressel SL, Kaniezer NC, Kasuda S, Foley C, Koukos G, Austin K, Agarwal A, Covic L, Opal SM, Kulopulos A. A matrix metalloproteinase-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med. 2011;3:370–84.

294. Lin C, Dutman J, Daalhausen J, Ten Brink M, von der Thun J, van der Poll T, Borensztajn J, Spek CA. Targeting protease-activated receptor-1 with Par1-pal1 limits bleomycin-induced pulmonary fibrosis. Thorax. 2014;69:512–60.

295. Dockendorff C, Anisiu O, Verplank L, Dilkis JR, Smith DA, Gunnink SF, Dowal L, Negri J, Palmer M, Macpherson L, et al. Discovery of 1,3-diarylbenzenes as selective inhibitors of platelet activation at the PAR1 receptor. ACS Med Chem Lett. 2012;3:232–7.

296. De Ceunynck K, Peters CG, Jain A, Higgins SJ, Anisiu O, Fitz-Teivik JL, Chaudhry SA, Dockendorff C, Parikh SM, Ingerle DE, Flahaut F, PAR inhibitor stimulates APC-like endothelial cytoprotection and confer resistance to thrombin-mediated inflammatory injury. Proc Natl Acad Sci U S A. 2018;115:9521–8.

297. Zhong W, Chen S, Zhang Q, Xiao T, Qin Y, Gu J, Sun B, Liu Y, Jing X, Hu X, et al. Doxycycline directly targets PAR1 to suppress tumor progression. Oncotarget. 2017;8:16829–42.

298. Zhong W, Chen S, Qin Y, Zhang H, Wang H, Meng J, Hui L, Zhang Q, Yin T, Lei Y, et al. Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-kappaB/miR-17-5p/cadherin pathway. Oncotarget. 2017;8:104855–66.

299. Bendele MP, Conte M, Zhang H, Nili N, Strauss BH, Fanwell SM. Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol. 2002;160:1089–95.

300. Wei H, Wei Y, Tian F, Niu T, Yi Y, G. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury. Physiol Res. 2016;65:145–53.

301. Al-Ai B, Saifeddine M, Wijesuriya SJ, Hollenberg MD. Modified protease-activated receptor-1 and -2 derived peptides inhibit proteinase-activated receptor-2 activation by trypsin. J Pharmacol Exp Ther. 2002;300:702–8.

302. Kanke T, Kabeya M, Kubo S, Kondo S, Yasuoka K, Tagashira J, Ihishita H, Saki M, Furuyama T, Nishiyama T, et al. Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol. 2009;156:361–71.

303. Goh FG, Ng PY, Nilsson M, Kanke T, Kanke I. dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol. 2009;158:1695–704.

304. Boitano S, Hoffman J, Flynn AN, Asiedu MN, Tillu DV, Zhang Z, Sherwood CL, Rivas CM, DeFea KA, Vagner J, Price T. J. The novel PAR2 ligand C391 blocks multiple PAR2 signalling pathways in vitro and in vivo. Br J Pharmacol. 2015;172:6355–64.

305. Suen JY, Barry GD, Lohman RJ, Fairlie DP, Cotterell AJ, Le GT, Fairlie DP. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol. 2012;165:1413–23.

306. Gardell LR, Ma JN, Seitzberg JK, Knapp AE, Schiffer HH, Tabatabaei A, Davis CN, Ovems M, Clemons B, Wong KK, et al. Identification and characterization of novel small-molecule protease-activated receptor 2 antagonists. J Pharmacol Exp Ther. 2008;327:799–808.

307. Chanakira A, Westmark PR, Ong IM, Sheehan JP. Tissue factor-factor-Va complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol Oncol. 2017;154:167–75.

308. Sun Q, Wang Y, Zhang J, Lu J. ENMD-1068 inhibits liver fibrosis through attenuation of TGF-beta1/Smad2/3 signalling in mice. Sci Rep. 2017;7:5498.

309. Barry GD, Suen JY, Le GT, Cotterell AJ, Reid RC, Fairlie DP. Novel agonists and antagonists for human proteinase activated receptor 2. J Med Chem. 2010;53:7428–40.

310. Lieu T, Savage E, Zhao P, Edgington-Mitchell L, Barrow N, Bron R, Poole DE, McLean P, Lohman RJ, Fairlie DP, Bunnell NW. Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2. Br J Pharmacol. 2016;173:2752–65.

311. Cheng RKY, Fees-Vandall C, Schlenker O, Edman K, Aggeler B, Brown DG, Cooke RM, Dunnein CE, Dore AS, et al. Structural Insight into allosteric modulation of protease-activated receptor 2. Nature. 2017;545:112–5.

312. Sevigny LM, Austm KM, Zhang P, Kasuda S, Koukos G, Shariff S, Covic L, Kulopulos A. Protease-activated receptor-2 modulates protease-activated receptor-1-driven nociceptor hyperplasia. Arterioscler Thromb Vasc Biol. 2011;31:e106–6.
317. Michael ES, Kuliopulos A, Covic L, Steer ML, Perides G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G516–26.

318. Ishikawa C, Tsuda T, Konishi H, Nakagawa N, Yamanishi K. Tetracyclines modulate protease-activated receptor 2-mediated proinflammatory reactions in epidermal keratinocytes. Antimicrob Agents Chemother. 2009;53:1760–5.

319. Liu XJ, Mu ZL, Zhao Y, Zhang JZ. Topical tetracycline improves MC903-induced atopic dermatitis in mice through inhibition of inflammatory cytokines and Thymic stromal Lymphopoietin expression. Chin Med J. 2016;129:1483–90.

320. Castro ML, Franco GC, Branco-de-Almeida LS, Anbinder AL, Cogo-Müller K, Cortelli SC, Duarte S, Saxena D, Rosalen PL. Downregulation of protease-activated Receptor-2, Interleukin-17, and other Proinflammatory genes by subantimicrobial doxycycline dose in a rat periodontitis model. J Periodontol. 2016;87:203–10.

321. Hollenberg MD, Saieddine M. Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can J Physiol Pharmacol. 2001;79:439–42.

322. Kim HY, Goo JH, Joo YA, Lee HY, Lee SM, Oh CT, Ahn SM, Kim NH, Hwang JS. Impact on inflammation and recovery of skin barrier by nordihydroguaiaretic acid as a protease-activated receptor 2 antagonist. Biomol Ther (Seoul). 2012;20:463–9.

323. Yang J, Wu J, Kowalitska MA, Dalvi A, Prevost N, O’Brien PJ, Manning D, Poncz M, Lucki I, Blenley JA, Brass LF. Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci U S A. 2000;97:9984–9.

324. Wu CC, Huang SW, Hwang TL, Kuo SC, Lee FY, Teng CM. YD-3, a novel inhibitor of protease-induced platelet activation. Br J Pharmacol. 2000;130:1289–96.

325. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Lee CY, Teng CM. Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb Haemost. 2002;87:1026–33.

326. Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Wood MR, Hamm HE, Lindsley CW. A novel and selective PAR4 antagonist: ML354. In: Probe reports from the NIH molecular libraries program. Bethesda: National Center for Biotechnology Information, 2015.

327. Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Locucion CW 2nd, Wood MR, Daniels JS, et al. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: discovery and SAR of ML354. Bioorg Med Chem Lett. 2014;24:4708–13.

328. Peek GJ, Elbourne D, Mugford M, Tiruvoipati R, Wilson A, Allen E, Clemens F, Firmin R, Hardy P, Hibbert C, et al. Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR), Health Technol Assess. 2010;14:1–46.

329. Wong PC, Seifert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Horden D, Guay J, et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aaf5294.

330. Hollenberg MD, Saieddine M, Sandhu S, Houle S, Vergnolle N. Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol. 2004;143:443–54.