Schindler, Joseph; Frangipane, Evan; Aguirre, Anthony
Unitarity and the information problem in an explicit model of black hole evaporation.
(English) Zbl 1481.83072
Classical Quantum Gravity 38, No. 7, Article ID 075025, 28 p. (2021).

MSC:
83C57 Black holes
83C30 Asymptotic procedures (radiation, news functions, \(H\)-spaces, etc.) in general relativity and gravitational theory
94A17 Measures of information, entropy

Keywords:
black hole evaporation; semiclassical gravity; information paradox

Full Text: DOI arXiv

References:
[1] Hawking S W 1976 Breakdown of predictability in gravitational collapse Phys. Rev. D 14 2460-73 · doi:10.1103/physrevd.14.2460
[2] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys.43 199-220 · Zbl 1378.83040 · doi:10.1007/bf02345020
[3] Hawking S W 1976 Commun. Math. Phys.46 206 (erratum) · doi:10.1007/bf01608497
[4] Page D N 1980 Is black-hole evaporation predictable? Phys. Rev. Lett.44 301 · doi:10.1103/physrevlett.44.301
[5] Hawking S W 1982 The unpredictability of quantum gravity Commun. Math. Phys.87 395-415 · Zbl 1378.83040 · doi:10.1007/bf01206031
[6] Zurek W H 1982 Entropy evaporated by a black hole Phys. Rev. Lett.49 1683-6 · Zbl 1378.83040 · doi:10.1103/physrevlett.49.1683
[7] Carlitz R D and Willey R S 1987 Lifetime of a black hole Phys. Rev. D 36 2336 · doi:10.1103/physrevd.36.2336
[8] Preskill J 1992 Do black holes destroy information? Int. Symp. on Black Holes, Membranes, Wormholes and Superstrings pp 22-39 arXiv:hep-th/9206058
[9] Susskind L, Thorlacius L and Uglum J 1993 The stretched horizon and black hole complementarity Phys. Rev. D 48 3743-61 · doi:10.1103/physrevd.48.3743
[10] Bekenstein J D 1993 How fast does information leak out from a black hole? Phys. Rev. Lett.70 3680-3 · Zbl 1051.83514 · doi:10.1103/physrevlett.70.3680
[11] Page D N 1993 Average entropy of a subsystem Phys. Rev. Lett.71 1291-4 · Zbl 1051.83514 · doi:10.1103/physrevlett.71.1291
[12] Page D N 1993 Information in black hole radiation Phys. Rev. Lett.71 3743-6 · Zbl 1051.83514 · doi:10.1103/physrevlett.71.3743
[13] Stephens C R, ’t Hooft G and Whiting B F 1994 Black hole evaporation without information loss Class. Quantum Grav.11 621-47 · doi:10.1088/0264-9381/11/3/014
[14] Strominger A 1994 Unitary rules for black hole evaporation 7th Marcel Grossmann Meeting on General Relativity (MG 7) pp 59-74
[15] Polchinski J 1996 String theory and black hole complementarity STRINGS 95; Future Perspectives in String Theory ((Singapore: World Scientific)) pp 417-26 arXiv:hep-th/9507094
[16] ’t Hooft G 1996 The scattering matrix approach for the quantum black hole: an overview Int. J. Mod. Phys. A 11 4623-88 · Zbl 1044.81683 · doi:10.1142/s0217751x96002145
[17] Horowitz G T and Marolf D 1997 Where is the information stored in black holes? Phys. Rev. D 55 3563-64 · doi:10.1103/physrevd.55.3564
[18] Hajicek P 2000 What simplified models say about unitarity and gravitational collapse Nucl. Phys. B Proc. Suppl.88 114-23 · Zbl 1273.83067 · doi:10.1016/s0920-5632(00)00759-3
[19] Giddings S B and Lippert M 2004 The information paradox and the locality bound Phys. Rev. D 69 124019-2 · doi:10.1103/physrevd.69.124019
[20] Horowitz G T and Maldacena J 2004 The black hole final state J. High Energy Phys. JHEP02(2004)008 · doi:10.1088/1126-6708/2004/02/008
[21] Hawking S W 2005 Information loss in black holes Phys. Rev. D 72 084013 · doi:10.1103/physrevd.72.084013
[22] Russo J G 2005 The Information problem in black hole evaporation: old and recent results 27th Spanish Relativity Meeting: Beyond General Relativity (ERE 2004) arXiv:hep-th/0501132
[23] Giddings S B 2006 Black hole information, unitarity, and nonlocality Phys. Rev. D 74 106005-6 · doi:10.1103/physrevd.74.106005
[24] Hayden P and Preskill J 2007 Black holes as mirrors: quantum information in random subsystems J. High Energy Phys.
[25] Mathur S D 2009 The Information paradox: a pedagogical introduction Class. Quantum Grav. 26 224001 · Zbl 1181.83129 · doi:10.1088/0264-9381/26/22/224001

[26] Hossenfelder S and Smolin L 2010 Conservative solutions to the black hole information problem Phys. Rev. D 81 064009 · doi:10.1103/physrevd.81.064009

[27] Mathur S D 2011 What the information paradox is not (arXiv:1108.0302 [hep-th])

[28] Almheiri A, Marolf D, Joseph P and James S 2013 Black holes: complementarity or firewalls? J. High Energy Phys. JHEP02(2012)062 · Zbl 1342.83121 · doi:10.1007/jhep02(2013)062

[29] Brustein R 2014 Origin of the blackhole information paradox Fortschr. Phys. 62 255-65 · Zbl 1338.83098 · doi:10.1002/prop.201300037

[30] Cai Q-y, Zhang B, Zhan M-s and You L 2012 Comment on ‘what the information loss is not’ (arXiv:1210.2048 [hep-th])

[31] Hossenfelder S 2012 Comment on the black hole firewall (arXiv:1210.5317 [gr-qc])

[32] Page D N 2013 Time dependence of Hawking radiation entropy J. Cosmol. Astropart. Phys. JCAP09(2013)028 · doi:10.1088/1475-7516/2013/09/028

[33] Good M R R, Andersen P R and Evans C R 2013 Time dependence of particle creation from accelerating mirrors Phys. Rev. D 88 024023 · doi:10.1103/physrevd.88.024023

[34] Bardeen J M 2014 Black hole evaporation without an event horizon (arXiv:1406.4098 [gr-qc])

[35] Haggard H M and Rovelli C 2015 Quantum-gravity effects outside the horizon spark black to white hole tunneling Phys. Rev. D 92 104020 · doi:10.1103/physrevd.92.104020

[36] Harlow D 2016 Jerusalem lectures on black holes and quantum information Rev. Mod. Phys. 88 015002 · doi:10.1103/revmodphys.88.015002

[37] Bianchi E and Smerlak M 2014 Entanglement entropy and negative energy in two dimensions Phys. Rev. D 90 041904 · doi:10.1103/physrevd.90.041904

[38] Hawking S W, Perry M J and Strominger A 2016 Soft hair on black holes Phys. Rev. Lett. 116 231301 · doi:10.1103/physrevlett.116.231301

[39] Good M R R, Anderson P R and Evans C R 2016 Mirror reflections of a black hole Phys. Rev. D 94 065010 · doi:10.1103/physrevd.94.065010

[40] Marolf D 2017 The black hole information problem: past, present, and future Rep. Prog. Phys. 80 092001 · doi:10.1088/1361-6633/aa77cc

[41] Polchinski J 2017 The black hole information problem Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (Singapore: World Scientific) pp 353-97 · Zbl 1358.83057 · doi:10.1142/9789813149441_006

[42] Urrut W G and Wald R M 2017 Information loss Rep. Prog. Phys. 80 092002 · doi:10.1088/1361-6633/aa778e

[43] Bardeen J M 2018 Interpreting the semi-classical stress-energy tensor in a Schwarzschild background, implications for the information paradox (arXiv:1808.08038 [gr-qc])

[44] Ovidiu Cristinel Stoica 2018 Revisiting the black hole entropy and the information paradox Adv. High Energy Phys. 2018 419047 · doi:10.1155/2018/419047

[45] Wallace D 2020 Why black hole information loss is paradoxical Beyond Spacetime: The Foundations of Quantum Gravity ed N Huggett, K Matsubara and C Wüthrich pp 209-36 · doi:10.1017/9781108655705.013

[46] Amadèi L, Liu H and Perez A 2019 Unitarity and information in quantum gravity: a simple example (arXiv:1912.09750 [gr-qc])

[47] Amadèi L and Perez A 2019 Hawking’s information puzzle: a solution realized in loop quantum cosmology (arXiv:1911.00306 [gr-qc])

[48] Rovelli C 2019 The subtle unphysical hypothesis of the firewall theorem Entropy 21 839 · doi:10.3390/entropy21040839

[49] Penington G 2020 Entanglement wedge reconstruction and the information paradox J. High Energy Phys. JHEP09(2020)002 · Zbl 1454.83044 · doi:10.1007/jhep09(2020)002

[50] Almheiri A, Mahajan R, Maldacena J and Zhao Y 2020 The Page curve of Hawking radiation from semiclassical geometry J. High Energy Phys. JHEP03(2020)149 · Zbl 1435.83110 · doi:10.1007/jhep03(2020)149

[51] Almheiri A, Hartman T, Maldacena J, Shaghoulian E and Tajdini A 2020 The entropy of Hawking radiation (arXiv:2006.06872 [hep-th]) · Zbl 1437.83084

[52] Almheiri A, Engelhardt N, Marolf D and Maxfield H 2019 The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole J. High Energy Phys. JHEP12(2019)063 · Zbl 1431.83123 · doi:10.1007/jhep12(2019)063

[53] Ashtekar A 2020 Black hole evaporation: a perspective from loop quantum gravity Universe 6 21 · doi:10.3390/universe6020021

[54] Bousoo R and Tomaszewicz M 2019 Unitarity from a smooth horizon? (arXiv:1911.06305 [hep-th])

[55] Schindler J C, Aguirre A and Wetterich C 2020 Understanding black hole evaporation using explicitly computed Penrose diagrams Phys. Rev. D 101 024010 · doi:10.1103/physrevd.101.024010

[56] Chen H Z, Fisher Z, Hernandez J, Myers R C and Ruan S-M 2020 Information flow in black hole evaporation J. High Energy Phys. JHEP03(2020)152 · Zbl 1435.83111 · doi:10.1007/jhep03(2020)152

[57] Akers C, Engelhardt N and Harlow D 2020 Simple holographic models of black hole evaporation J. High Energy Phys. JHEP08(2020)032 · Zbl 1435.83044 · doi:10.1007/jhep08(2020)032

[58] Good M R R, Lindor E V and Wilczek F 2020 Moving mirror model for quasithermal radiation fields Phys. Rev. D 101 025012 · doi:10.1103/physrevd.101.025012

[59] Chen P, Sasaki M and Yeom D-h 2020 A path- (integral) toward non-perturbative effects in Hawking radiation (arXiv:2005.07011 [gr-qc])
Barrabès C and Israel W 1991 Thin shells in general relativity and cosmology: the lightlike limit Phys. Rev. D 43 1129-42

Schindler J C and Aguirre A 2018 Algorithms for the explicit computation of Penrose diagrams Class. Quantum Grav. 35

Hayward S A 2006 Formation and evaporation of regular black holes Phys. Rev. Lett. 96 031103

Lochan K and Padmanabhan T 2016 Extracting information about the initial state from the black hole radiation Phys. rev. B 99 012103

DeWitt B S 1975 Quantum field theory in curved spacetime Phys. Rep. 19 295-357

Bousso R 1999 A covariant entropy conjecture J. High Energy Phys. JHEP07(1999)004

Bekenstein J D 1981 Universal upper bound on the entropy-to-energy ratio for bounded systems Phys. Rev. D 23 2827-30

Calabrese P and Cardy J L 2004 Entanglement entropy and quantum field theory J. Stat. Mech. P06002

Casini H 2008 Relative entropy and the Bekenstein bound Class. Quantum Grav. 25 205021

Srednicki M 1993 Entropy and area Phys. Rev. Lett. 71 666-9 - Zbl 0972.81047 - doi:10.1103/PhysRevLett.71.666

Holzhey C, Larsen F and Wilczek F 1994 Geometric and renormalized entropy in conformal field theory Nucl. Phys. B 424 443-67 - Zbl 0990.81564 - doi:10.1006/jpte.1994.1002

Calabrese P and Cardy J L 2004 Entanglement entropy and quantum field theory J. Stat. Mech. P06002 - Zbl 0982.82002 - doi:10.1088/1742-5468/2004/06/p06002

Casini H 2008 Relative entropy and the Bekenstein bound Class. Quantum Grav. 25 205021 - Zbl 0952.83061 - doi:10.1088/0264-9381/25/20/205021

Bousso R 1999 A covariant entropy conjecture J. High Energy Phys. JHEP07(1999)004 - Zbl 0951.83011 - doi:10.1088/1126-6708/1999/07/004

Bekenstein J D 1981 Universal upper bound on the entropy-to-energy ratio for bounded systems Phys. Rev. D 23 287-95 - doi:10.1103/PhysRevD.23.287

Maldacena J 1999 The large N limit of superconformal field theories and supergravity Int. J. Theor. Phys. 38 1113-33 - Zbl 0990/81564 - doi:10.1023/A:102665312961
[95] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602 · Zbl 1228.83110 · doi:10.1103/physrevlett.96.181602

[96] Hubeny V E, Rangamani M and Takayanagi T 2007 A covariant holographic entanglement entropy proposal J. High Energy Phys. JHEP 07(2007)062 · doi:10.1088/1126-6708/2007/07/062

[97] Engelhardt N and Wall A C 2015 Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime J. High Energy Phys. JHEP 01(2015)073 · doi:10.1007/jhep01(2015)073

[98] Dong X, Harlow D and Wall A C 2016 Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality Phys. Rev. Lett. 117 021601 · doi:10.1103/physrevlett.117.021601

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.