Review article

Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection

Anchalee Prasansuklab, Atsadang Theerasri, Panthakarn Rangsinth, Chanin Sillapachaiyaporn, Siriporn Chuchawankul, Tewin Tencomnao

Article info

Article history:
Received 7 August 2020
Received in revised form
24 December 2020
Accepted 25 December 2020
Available online 29 December 2020

Keywords:
SARS-CoV-2
2019-nCoV
Anti-viral
Therapeutic strategies
Natural compound
Herbal medicine
Plant
Mushroom

Abstract

Background and aim: The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable sources for the discovery of new antiviral drugs against SARS-CoV-2. This present review aims to comprehensively summarize the up-to-date scientific literatures on biological activities of plant- and mushroom-derived compounds relevant to mechanistic targets involved in SARS-CoV-2 infection and inflammatory-associated pathogenesis, including viral entry, replication and release, and the renin-angiotensin-aldosterone system (RAAS).

Experimental procedure: Data were retrieved from a literature search available on PubMed, Scopus and Google Scholar databases and collected until the end of May 2020. The findings from in vitro cell and non-cell based studies were considered, while the results of in silico studies were excluded.

Results and conclusion: Based on the previous findings in SARS-CoV studies, except in silico molecular docking analysis, herein, we provide a total of 150 natural compounds as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than the existing therapeutic agents. Several natural compounds have showed their promising actions on multiple therapeutic targets, which should be further explored. Among them, quercetin, one of the most abundant of plant flavonoids, is proposed as a lead candidate with its ability on the virus side to inhibit SARS-CoV spike protein-angiotensin-converting enzyme 2 (ACE2) interaction, viral protease and helicase activities, as well as on the host cell side to inhibit ACE activity and increase intracellular zinc level.

© 2021 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

On 31 December 2019, several cases of pneumonia were reported in Wuhan, the epicenter of the outbreak in Hubei province of China. The novel coronavirus was identified as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which causes Coronavirus Disease 2019 (COVID-19) pandemic. From the time of emergence until present, COVID-19 has spread worldwide in which a total of over 71 million confirmed cases with over 1.6 million death tolls has been reported by the World Health Organization (WHO). The COVID-19 positive cases continue rising and is widely distributed throughout the world with the prevalence ranging from highest in America, followed by Europe and South-East Asia, and lowest in Western Pacific region. Asymptomatic patients and patients with mild symptoms can be recovered under home care and isolation while patients with severe complications including acute respiratory distress syndrome (ARDS) require intensive care unit (ICU) which involves oxygen therapy. Currently, there is scant evidence from clinical trials for WHO to approve any standard drugs or vaccines as several trials have failed due to efficacy and safety concerns. Natural compounds from plant and fungi sources have been recognized in their antiviral properties with numerous mechanisms to prevent infection and strengthen host immunity. Herein, we reviewed potential antiviral compounds with multiple targets of action relating to coronaviruses including inhibiting of viral entry, replication and release, and compounds targeting renin–angiotensin–aldosterone system (RAAS) which exhibit promising effects against the disease. We also proposed future perspectives in adopting natural compounds to combat against the COVID-19.

2. Promising therapeutic strategies for the treatment of COVID-19 infection

Presently, there is no clinically approved therapeutics for treating COVID-19, while the rapid human-to-human transmission of this viral infection has expanded worldwide. As the efficacy and safety of natural products on the treatment of a number of viruses including SARS-CoV and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), have been widely acknowledged for several years, the compounds derived from natural sources, e.g. plants and fungi, could have the potential to be a powerful anti-COVID-19 drug. In this review, we focused on four main categories of therapeutic strategies that aim to target the cellular machinery at each step of virus life cycle, starting from viral entry and replication to the release of viral progenies, as well as the RAAS which is a main target of the treatment of hypertension and has recently been proposed as another promising alternative in the treatment of COVID-19. The multiple potential therapeutic mechanisms, both specific and general, that could be capable of tackling COVID-19 infection are presented in Fig. 1.

The first therapeutic strategy targets on the mechanisms of virus entry in which the selective blockade of molecules that facilitates the internalization of virus into the host cells could be effective to prevent infection. Upon the binding of a virus surface spike (S) protein to a cellular receptor angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 generally enters into target host cells via two primary routes; viral membrane fusion and the more common endocytic uptake. The first entry mechanism is assisted by proteolytic activation of S protein by a host cell transmembrane protease serine 2 (TMPRSS2), which allows not only direct fusion of virus at the plasma membrane surface, but also release of viral genomic RNA into the cytoplasm. On the other hand, without the membrane bound protease TMPRSS2, the latter entry mechanism allows the whole viral particle to be uptake via receptor-mediated endocytosis, before subsequently uncoated following the S protein cleavage by cathepsin L within the endosome, to unveil its RNA genome into the cell.

The second and third therapeutic strategies focus on the inhibition of progeny virus production and release from infected cells. As far as the viral replication process is concerned, it begins with the translation of released genome of SARS-CoV-2, a single-stranded (positive-sense) RNA of approximately 30 kb in length, into two precursor polyproteins, pp1a and pp1ab. Both are further cleaved by virus-encoded proteases into several non-structural proteins (nsps) including two key replicative enzymes: the nsp12-RNA-dependent RNA polymerase (RdRp) and the nsp13-helicase, to form the replication-transcription complex (RTC) for synthesizing a full-length genomic RNA (replication) or a nested set of subgenomic mRNA (transcription). These mRNAs are translated into all relevant structural proteins, which together with the viral genome are subsequently assembled into new virions and finally released outside the cell through viroporin-mediated viral budding.

The last therapeutic strategy involves modulating the immune system with the RAAS which regulates blood pressure, fibrosis, and inflammation. In this system, angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II which is then converted to lung-protective angiotensin-(1–7) by ACE2. The angiotensin-(1–7) is further recognized by its receptor, the G-protein coupled receptor Mas, to reduce blood pressure, fibrosis, and inflammation. However, as SARS-CoV-2 enters the cells by binding to ACE2, the normal functions of ACE2 are then suppressed. Therefore, instead of converting to angiotensin-(1–7), the angiotensin II is largely bound to type 1 angiotensin II type 1 receptor (AT1R) which causes increased inflammation and other deleterious effects, particularly in the renal and cardiovascular systems.

3. Potential natural products as drug candidates against COVID-19

The data presented in this review were obtained from PubMed, Scopus and Google Scholar database up to May 2020. The terms of natural compound, natural product, plant and mushroom were individually searched along with the terms corresponding to each target molecule. Here, we summarize plant- and mushroom-derived compounds that have been reported of antiviral activity.

List of abbreviations
3CLpro 3-chymotrypsin-like main protease
ACE Angiotensin-converting enzyme
ARB Angiotensin-receptor blocker
ARDS Acute respiratory distress syndrome
AT1R Angiotensin II type 1 receptor
COVID-19 Coronavirus Disease 2019
MERS-CoV Middle East Respiratory Syndrome Coronavirus
Nsp Non-structural protein
PIpro Papain-like protease
RAAS Renin–angiotensin–aldosterone system
RdRp RNA-dependent RNA polymerase
RTC Replication-transcription complex
SARS-CoV Severe Acute Respiratory Syndrome Coronavirus
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus
TMPRSS2 Transmembrane protease serine 2
V-ATPase Vacuolar-type H+–ATPase
with known therapeutic mechanisms specifically against SARS-CoV-2 infection, performed by in vitro cell or non-cell based experiments but not in silico method, as potential candidates to be further researched. We also propose certain promising natural compounds targeting general mechanisms involved in coronavirus infection (see Fig. 1). Additionally, the reports on natural compounds against SARS-CoV with unidentified mechanism of action were included in this review.

3.1. Natural bioactive compounds targeting viral entry

3.1.1. The S protein-ACE2 interaction

The S protein plays a pivotal role in the entry of coronaviruses into host cells by recognizing and binding to the ACE2 via multivalent bonds. The attachment of S protein to ACE2 receptor leads to the fusion between the viral envelope and host cell membrane resulting in successful transfer of viral genome into infected cells. The S protein is composed of two functional subunits, S1 and S2. The S1 is responsible for binding to the host cell receptor through the receptor binding domain (RDB), while the S2 causes fusion of the viral and cellular membranes. Sequence alignment results showed that the homology of the S protein RBD sequence between the beta coronaviruses SARS-CoV and SARS-CoV-2 is 76%. A number of evidence revealed human ACE2 (hACE2) molecule as an entry receptor for both SARS-CoV and SARS-CoV-2 S proteins. Notably, S protein of SARS-CoV-2 was found to exhibit greater affinity to the ACE2 receptor than that of SARS-CoV. In addition, expression of ACE2 is ubiquitous with diverse functions, however its specific functions are demonstrated in several organs including lung, tongue, heart, kidney, gastrointestinal tract, pancreas and brain. Accordingly, multiple symptoms could be observed in COVID-19 patients. Several observations have been reported that the use of hydroxychloroquine, an ACE2 FDA-approved antagonist, was able to reduce mortality rate in hospitalized COVID-19 patients. Therefore, it is apparent that the S protein-hACE2 interaction complex is the most crucial target for searching appropriate inhibitors to inhibit entry of the virus in the host cell.

Several natural compounds have been demonstrated their activity to inhibit SARS-CoV entry to the host cell as shown in Table 1. According to the literature, an anthraquinone compound, emodin, showed the potency to inhibit viral infection by blocking the binding of SARS-CoV S protein to ACE2 in a dose-dependent manner. The plant sources which are likely to contain emodin as their active constituent were also found effective in blocking SARS-CoV S protein and ACE2 interaction, with showing IC50 values for aqueous extracts from the root of Rheum palmatum, the root and stem of Polygonum multiflorum, ranged from 1 to 10 µg/ml.

Another previous study using the high-throughput screening technique revealed more promising natural antiviral compounds consisted in the extracts from Chinese herbs. Those small herbal molecules could strongly bind to the SARS-CoV S2 protein and...
Table 1
List of bioactive compounds from natural sources as potential anti-COVID-19 drug candidates and their mechanisms of action.

Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
Emodin	Anthraquinone	Rheum palmatum	IC₅₀ = 200 µM	Cell-free assay (Competitive biotinylated ELISA)	29
Luteolin	Flavonoid	Rhodiola kirilowii	IC₅₀ = 4.5 µM	Cell-based assay (IFA)	30
Quercetin	Flavonoid	Allium cepa	IC₅₀ = 83.4 µM	Cell-free and cell-based assay (FAC/MS and Luciferase assay)	30
Tetra-O-galloyl-β-d-glucose (TGG)	Tannin	Galla chinensis	IC₅₀ = 10.6 µM	Cell-free and cell-based assay (FAC/MS and Luciferase assay)	30
Inhibiting the SARS-CoV S protein-ACE2 interaction					
1-cinnamoyl-3,11-dihydroxy melicarpin	Terpenoid	Melia azedarach	increased endolysosomal pH (EC of 7.5 µM)	Cell-based assay (AO staining)	38
25-O-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylpropyloside (ADEX)	Terpenoid	Cimicifugae rhi zona	inhibited degradation activity by decreasing cathepsin expression, but not endolysosomal acidity (EC of 24 µM)	Cell-based assay (AO staining, DQ-BSA staining and WB)	39
Alantolactone	Sesquiterpene lactone	Inula helenium	neutralized endo-lysosomal pH and reducing the expression and activity of cathepsins (EC of 10 µM)	Cell-based assay (LysoTracker Red and AO staining, WB and Cathepsin activity assay)	76
Cleistanthin A	Lignan glycoside	Cleistanthus collini	elevated the activity of V-type ATPase and elevated endolysosomal pH (EC of 0.1 µM)	Cell-based assay (AO staining, WB and Cathepsin activity assay)	77,78
Cleistanthoside A tetraacetate	Lignan glycoside	Phyllanthus ussulifolius	neutralized endo-lysosomal acidity and decreased the activity of V-type ATPase (EC of 50 nM)	Cell-based assay (LysoTracker Red staining and V-type ATPase activity assay)	78
Dauricine	Alkaloid	Rhizoma Menispermi	elevated endo-lysosomal pH, decreased the levels of active cathepsins and inhibited the activity of V-type ATPase (EC of 10 µM)	Cell-based assay (LysoSensor Yellow/Blue staining, WB and V-type ATPase activity assay)	42
Daurisoline	Alkaloid	Rhizoma Menispermi	elevated endo-lysosomal pH, decreased the levels of active cathepsins and inhibited the activity of V-type ATPase (EC of 10 µM)	Cell-based assay (LysoSensor Yellow/Blue staining, WB and V-type ATPase activity assay)	42
Diphyllin	Lignan lactone	Cleistanthus collini	inhibited the activity of V-type ATPase (EC of 0.3 µM)	Cell-based assay (AO staining, V-type ATPase activity assay)	79
Ginsenoside Ro	Triterpenoid saponin	Punax ginseng	raised endolysosomal pH and downregulating the expression and activity of cathepsins (EC of 50 µM)	Cell-based assay (AO staining, WB and Cathepsin activity assay)	80
Icariside II	Flavonoid	Epimedium koreanum Nakai	decreased endolysosomal acidity (EC of 25 µM)	Cell-based assay (AO staining)	81
Leelamine	Terpene	Pinus sylvestris	decreased endolysosomal acidity and inhibited cellular endocytosis (EC of 3 µM)	Cell-based assay (LysoTracker Red staining and Internalization of fluorescent transferrin-A488)	40
Matrine	Alkaloid	Sophora flavescens Ait	inhibited endolysosomal acidification and reduced the expression and activity of cathepsins (EC of 2 nM)	Cell-based assay (LysoSensor Yellow/Blue, WB and Cathepsin activity assay)	43
Myrtrenal	Terpene	Elettaria cardamomum	inhibited the activity of V-type ATPase and reduced endolysosomal acidification (EC of 100 µM)	Cell-based assay (AO staining and V-type ATPase activity assay)	41
Oblongofolin C	Benzophenone	Garcinia yunnanensis Hu	inhibited endolysosomal acidification and downregulated the expression and activity of cathepsins (EC of 15 µM)	Cell-based assay (AO staining, WB and Cathepsin activity assay)	82
Pulsatilla saponin D	Triterpenoid saponin	Pulsatilla chinensis	elevated endolysosomal pH and downregulated the expression and activity of cathepsins (EC of 1.25 µM)	Cell-based assay (LysoSensor Yellow/Blue staining)	83
Tetrandrine	Alkaloid	Stephanida tetrandra S. Moore	elevated endolysosomal pH in a concentration-dependent manner (EC of 1–10 µM)	Cell-based assay (LysoSensor Yellow/Blue staining)	44
Inhibiting the SARS-CoV 3CL⁺⁺ activity					
3’-(3-Methylbut-2-enyl)-7,4,7-trihydroxyflavane	Flavonoid	Brassonienta papyrera	IC₅₀ = 30.2 µM	Cell-free assay (FRET)	84
4-Hydroxyderricin	Chalcone	Angelica keiskei	IC₅₀ = 81.4 µM, IC₅₀ = 50.8 µM	Cell-free assay (FRET)	35
Betulinic acid	Terpene	Brennia fraticose	IC₅₀ = 10 µM	Cell-free assay (FRET)	49,50
Broussochalcone A	Chalcone	Brassonienta papyrera	IC₅₀ = 88.1 µM	Cell-free assay (FRET)	84
Broussochalcone B	Chalcone	Brassonienta papyrera	IC₅₀ = 57.8 µM	Cell-free assay (FRET)	84
Broussoflavan A	Flavonoid	Brassonienta papyrera	IC₅₀ = 92.4 µM	Cell-free assay (FRET)	84
Dihydrotanshinone I	Tanshinson	Salvia militorrhiza	IC₅₀ = 14.4 µM	Cell-free assay (FRET)	51
Hesperetin	Flavonoid	Isatis indigotica	IC₅₀ = 60 µM	Cell-free assay (ELISA)	42

(continued on next page)
Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
Hirsuteneone	Diarylheptanoid	*Alnus japonica*	IC₅₀ = 8.3 μM	Cell-based assay (Luciferase reporter assay)	85
Isobavachalcone	Chalcone	*Angelica keiskei*	IC₅₀ = 36.2 μM	Cell-free assay (FRET)	85
			IC₅₀ = 39.4 μM	Cell-free assay (FRET)	35
			IC₅₀ = 11.9 μM	Cell-based assay (Luciferase reporter assay)	
Isoliquiritigenin	Chalcone	*Glycyrrhiza glabra* *a*	IC₅₀ = 61.9 μM	Cell-free assay (FRET)	84, 86
Kazinol A	Flavonoid	*Broussonetia papyrifera*	IC₅₀ = 84.8 μM	Cell-free assay (FRET)	84
Kazinol F	Biphenyl propanoids	*Broussonetia papyrifera*	IC₅₀ = 43.3 μM	Cell-free assay (FRET)	84
Kazinol J	Biphenyl propanoids	*Broussonetia papyrifera*	IC₅₀ = 64.2 μM	Cell-free assay (FRET)	84
Methyl tanshinonate	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 21.1 μM	Cell-free assay (FRET)	51
Quercetin	Flavonoid	*Allium cepa*	IC₅₀ = 52.7 μM	Cell-free assay (FRET)	64, 87, 88
Quercetin-3-b-galactoside	Flavonoid	*Machilus zhaoensis* *a*	IC₅₀ = 42.8 μM	Cell-free assay (FRET)	87, 88
Rosmariquinone	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 21.1 μM	Cell-free assay (FRET)	51
Savinin	Lignoid	*Chamomyparis obtuse var. formosana*	IC₅₀ = 25 μM	Cell-free assay (FRET)	49
Tanshinone I	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 38.7 μM	Cell-free assay (FRET)	51
Tanshinone IIA	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 89.1 μM	Cell-free assay (FRET)	51
Tanshinone III	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 24.8 μM	Cell-free assay (FRET)	51
Xanthoangelol	Chalcone	*Angelica keiskei*	IC₅₀ = 38.4 μM	Cell-free assay (FRET)	35
			IC₅₀ = 5.8 μM	Cell-based assay (Luciferase reporter assay)	
Xanthoangelol B	Chalcone	*Angelica keiskei*	IC₅₀ = 22.2 μM	Cell-free assay (FRET)	35
			IC₅₀ = 8.6 μM	Cell-based assay (Luciferase reporter assay)	
Xanthoangelol D	Chalcone	*Angelica keiskei*	IC₅₀ = 26.6 μM	Cell-free assay (FRET)	35
			IC₅₀ = 9.3 μM	Cell-based assay (Luciferase reporter assay)	
Xanthoangelol E	Chalcone	*Angelica keiskei*	IC₅₀ = 11.4 μM	Cell-free assay (FRET)	35
			IC₅₀ = 7.1 μM	Cell-based assay (Luciferase reporter assay)	
Xanthoangelol F	Chalcone	*Angelica keiskei*	IC₅₀ = 34.1 μM	Cell-free assay (FRET)	35
			IC₅₀ = 32.6 μM	Cell-based assay (Luciferase reporter assay)	
Xanthokeistal A	Chalcone	*Angelica keiskei*	IC₅₀ = 44.1 μM	Cell-free assay (FRET)	35
			IC₅₀ = 9.8 μM	Cell-based assay (Luciferase reporter assay)	

Inhibiting the SARS-CoV PL₃₀ activity

3'-O-Methylidyplacol	Flavonoid	*Paulownia tomentosa*	IC₅₀ = 9.5 μM	Cell-free assay (Fluorescence-based deubiquitination)	89
3'-O-Methyldiplacone	Flavonoid	*Paulownia tomentosa*	IC₅₀ = 13.2 μM	Cell-free assay (Fluorescence-based deubiquitination)	89
4'-O-Methylbavachalcone	Chalcone	*Psaurea corylifolia*	IC₅₀ = 10.1 μM	Cell-free assay (Fluorescence-based deubiquitination)	90
4'-O-Methyldiplacol	Flavonoid	*Paulownia tomentosa*	IC₅₀ = 9.2 μM	Cell-free assay (Fluorescence-based deubiquitination)	89
6-Geranyl-4',5,7-trihydroxy-3',5'-dimethoxyflavonone	Flavonoid	*Paulownia tomentosa*	IC₅₀ = 13.9 μM	Cell-free assay (Fluorescence-based deubiquitination)	89
Broussonchalcone A	Chalcone	*Broussonetia papyrifera*	IC₅₀ = 9.2 μM	Cell-free assay (Fluorescence-based deubiquitination)	84
Broussonchalcone B	Chalcone	*Broussonetia papyrifera*	IC₅₀ = 11.6 μM	Cell-free assay (Fluorescence-based deubiquitination)	84
Cryptotanshinone	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 0.8 μM	Cell-free assay (Fluorescence-based deubiquitination)	51
Curcumin	Polyphenol	*Curcuma longa*	IC₅₀ = 5.7 μM	Cell-free assay (Fluorescence-based deubiquitination)	85, 87, 88
Dihydrorasthinone I	Tanshinone	*Salvia miltiorrhiza*	IC₅₀ = 4.9 μM	Cell-free assay (Fluorescence-based deubiquitination)	89
Diplacone	Flavonoid	*Paulownia tomentosa*	IC₅₀ = 10.4 μM	Cell-free assay (Fluorescence-based deubiquitination)	85
Hirsutanonol	Diarylheptanoid	*Alnus japonica*	IC₅₀ = 7.8 μM	Cell-free assay (Fluorescence-based deubiquitination)	85
Table 1 (continued)

Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
Hirsutenone	Diarylheptanoid	*Alnus japonica*	IC_{50} = 4.1 µM	Cell-free assay (Fluorescence-based deubiquitination)	85
Isobavachalcone	Chalcone	*Psoralea corylifoia*	IC_{50} = 7.3 µM	Cell-free assay (Fluorescence-based deubiquitination)	90
Isoliquiritigenin	Chalcone	*Glycyrrhiza glabra*	IC_{50} = 13.0 µM	Cell-free assay (Fluorescence-based deubiquitination)	35
Kaempferol	Flavonoid	*Zingiber officinale*	IC_{50} = 16.3 µM	Cell-free assay (Fluorescence-based deubiquitination)	84,92
Kazinol J	Biphenyl propanoids	*Broussonetia papyrifera*	IC_{50} = 15.2 µM	Cell-free assay (Fluorescence-based deubiquitination)	84
Methyl tanshinonate	Tanshinone	*Salvia miltiorrhiza*	IC_{50} = 9.2 µM	Cell-free assay (Fluorescence-based deubiquitination)	51
Mimulone	Flavonoid	*Paulownia tomentosa*	IC_{50} = 14.4 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Neobavaisoflavone	Flavonoid	*Psoralea corylifoia*	IC_{50} = 18.3 µM	Cell-free assay (Fluorescence-based deubiquitination)	90
Papyriflavanol A	Flavonoid	*Broussonetia papyrifera*	IC_{50} = 3.7 µM	Cell-free assay (Fluorescence-based deubiquitination)	84
Psoraladin	Flavonoid	*Psoralea corylifoia*	IC_{50} = 4.2 µM	Cell-free assay (Fluorescence-based deubiquitination)	90
Quercetin	Flavonoid	*Allium cepa*	IC_{50} = 8.6 µM	Cell-free assay (Fluorescence-based deubiquitination)	84,87
Rubranol	Diarylheptanoid	*Alnus japonica*	IC_{50} = 12.3 µM	Cell-free assay (Fluorescence-based deubiquitination)	85
Rubransoxide A	Diarylheptanoid	*Alnus japonica*	IC_{50} = 9.1 µM	Cell-free assay (Fluorescence-based deubiquitination)	85
Rubransoxide B	Diarylheptanoid	*Alnus japonica*	IC_{50} = 8.0 µM	Cell-free assay (Fluorescence-based deubiquitination)	85
Tanshinone I	Tanshinone	*Salvia miltiorrhiza*	IC_{50} = 8.8 µM	Cell-free assay (Fluorescence-based deubiquitination)	51
Tanshinone II A	Tanshinone	*Salvia miltiorrhiza*	IC_{50} = 1.6 µM	Cell-free assay (Fluorescence-based deubiquitination)	51
Tanshinone II B	Tanshinone	*Salvia miltiorrhiza*	IC_{50} = 10.7 µM	Cell-free assay (Fluorescence-based deubiquitination)	51
Terrestramine	Cinnamic amide	*Tribulus terrestris*	IC_{50} = 15.8 µM	Cell-free assay (Fluorescence-based deubiquitination)	93
Tomentin A	Flavonoid	*Paulownia tomentosa*	IC_{50} = 6.2 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Tomentin B	Flavonoid	*Paulownia tomentosa*	IC_{50} = 6.1 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Tomentin C	Flavonoid	*Paulownia tomentosa*	IC_{50} = 11.6 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Tomentin D	Flavonoid	*Paulownia tomentosa*	IC_{50} = 12.5 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Tomentin E	Flavonoid	*Paulownia tomentosa*	IC_{50} = 5.0 µM	Cell-free assay (Fluorescence-based deubiquitination)	89
Xanthoangelol	Chalcone	*Angelica keiskei*	IC_{50} = 11.7 µM	Cell-free assay (Fluorescence-based deubiquitination)	35
Xanthoangelol B	Chalcone	*Angelica keiskei*	IC_{50} = 11.7 µM	Cell-free assay (Fluorescence-based deubiquitination)	35
Xanthoangelol D	Chalcone	*Angelica keiskei*	IC_{50} = 19.3 µM	Cell-free assay (Fluorescence-based deubiquitination)	35
Xanthoangelol E	Chalcone	*Angelica keiskei*	IC_{50} = 1.2 µM	Cell-free assay (Fluorescence-based deubiquitination)	35
Xanthoangelol F	Chalcone	*Angelica keiskei*	IC_{50} = 5.6 µM	Cell-free assay (Fluorescence-based deubiquitination)	35

Inhibiting the SARS-CoV helicase activity

Myricetin	Flavonoid	*Camellia sinensis*	Inhibited ATPase activity of SARS-CoV helicase with IC_{50} of 2.71 µM	Cell-free assay (Colorimetry-based ATP hydrolysis assay)	94
Quercetin	Flavonoid	*Allium cepa*	Inhibited duplex DNA-unwinding activity of SARS-CoV NTPase/helicase with IC_{50} of 8.1 µM	Cell-free assay (FRET-based dsDNA unwinding assay)	95
Scutellarein	Flavonoid	*Scutellaria baicalensis*	Inhibited ATPase activity of SARS-CoV helicase with IC_{50} of 0.86 µM	Cell-free assay (Colorimetry-based ATP hydrolysis assay)	94

Increasing intracellular Zn^{2+}

Caffeic acid	Phenolic acid	*Ocimum basilicum*	Increased intracellular Zn^{2+} level (3-fold increase at EC of 50 µM)	Cell-free assay (using liposome model)	60
Catechin	Flavonoid	*Camellia sinensis*	Increased intracellular Zn^{2+} level (2-fold increase at EC of 50 µM)	Cell-free assay (using liposome model)	60
Catechol	Phenol	*Allium cepa*	Increased intracellular Zn^{2+} level (2-fold increase at EC of 50 µM)	Cell-free assay (using liposome model)	60
Epigallocatechin-3-gallate	Flavonoid	*Camellia sinensis*	Increased intracellular Zn^{2+} level (36-fold increase at EC of 50 µM)	Cell-free assay (using liposome model)	60

(continued on next page)
Table 1 (continued)

Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
Gallic acid	Phenolic acid	Syzygium aromaticum	increased the uptake of Zn$^{2+}$ in both cell (4-fold increase at EC of 100 μM) and liposome model (16-fold increase at EC of 10 μM)	Cell-based assay (Fluorescent Zn$^{2+}$ indicator) and cell-free assay (using liposome model)	62
Genistein	Flavonoid	Glycine max	increased intracellular Zn$^{2+}$ level (8-fold increase at EC of 50 μM)	Cell-free assay (using liposome model)	60
Luteolin	Flavonoid	Rhodiola kirilowii	increased intracellular Zn$^{2+}$ level (12-fold increase at EC of 50 μM)	Cell-free assay (using liposome model)	60
Pyrithione	Organic sulfur compound	Allium stipitatum	increased intracellular Zn$^{2+}$ level (3-fold increase at EC of 10 μM)	Cell-based assay (Radioactive Zn$^{2+}$ uptake)	66
Quercetin	Flavonoid	Allium cepa	increased intracellular Zn$^{2+}$ level (18-fold increase at EC of 50 μM)	Cell-free assay (using liposome model)	60
Resveratrol	Polyphenol	Vitis vinifera	increased the uptake of Zn$^{2+}$ in both cell (2-fold increase at EC of 100 μM) and liposome model (8-fold increase at EC of 10 μM)	Cell-based assay (Fluorescent Zn$^{2+}$ indicator) and cell-free assay (using liposome model)	62
Rutin	Flavonoid	Morus alba	increased intracellular Zn$^{2+}$ level (7.5-fold increase at EC of 10 μM)	Cell-free assay (using liposome model)	61
Tannic acid	Phenolic acid	Camellia sinensis	increased intracellular Zn$^{2+}$ level (12-fold increase at EC of 50 μM)	Cell-free assay (using liposome model)	60
Taxifolin	Flavonoid	Silybum marianum	increased intracellular Zn$^{2+}$ level (4-fold increase at EC of 50 μM)	Cell-free assay (using liposome model)	60
β-thujaplicin (Hinokitiol)	Terpene	Chamaecyparis thujaplicin	inhibited the ion channel activity of SARS-CoV-3a protein with IC$_{50}$ of 20 μM	Cell-based assay (Voltage-clamp method in Xenopus oocyte model)	65
Azefin	Flavonoid	Houttuynia cordata	3α protein (17% inhibition at EC of 10 μM)	Cell-based assay (Voltage-clamp method in Xenopus oocyte model)	65,67
Emodin	Anthraquinone	Rheum tanguticum	3α protein with IC$_{50}$ of 20 μM	Cell-based assay (Voltage-clamp method in Xenopus oocyte model)	65
Juglanine	Flavonoid	Polygonum aviculare	3α protein with IC$_{50}$ of 2.3 μM	Cell-based assay (Voltage-clamp method in Xenopus oocyte model)	65
Kaempferol	Flavonoid	Zingiber officinale	increased intracellular Zn$^{2+}$ level (4-fold increase at EC of 50 μM)	Cell-based assay (using liposome model)	60
Kaempferol-3-O-α-rambonopyranosyl (1→2)-β-glucopyranoside	Flavonoid	Cistus ternatea	increased intracellular Zn$^{2+}$ level (3-fold increase at EC of 125 μM)	Cell-based assay (Radioactive Zn$^{2+}$ uptake)	66
Tiliroside	Flavonoid	Althaea officinalis	inhibited the ion channel activity of SARS-CoV-3α protein (52% inhibition at EC of 20 μM)	Cell-based assay (Voltage-clamp method in Xenopus oocyte model)	65,66
Inhibiting the ACE activity	25-O-methylsalol F	Alisma orientale	Reduced ACE and AT1R protein expression (~30% and ~10% inhibition at EC of 10 μM)	Cell-based assay (WB analysis)	98
3,5-dihydroxy-4- methoxybenzoic acid	Phenolic acid	Tamarix hohenackeri	46.2% inhibition at EC of 20 mg/mL	Cell-free assay (HHL degradation assay)	99
4’-hydroxy Pd-C-III	Coumarin	Angelica decursiva	IC$_{50}$ = 9.4 μM	Cell-free assay (FAPGG degradation assay)	100
4’-methoxy Pd-C→I	Coumarin	Angelica decursiva	IC$_{50}$ = 16 μM	Cell-free assay (FAPGG degradation assay)	100
Ampleopis C	Stilbenoid	Vitis thunbergii var. Taiwanian	IC$_{50}$ = 18.2 μM	Cell-free assay (FAPGG degradation assay)	101
Apigenin	Flavonoid	Adinandra nitida	30.3% inhibition at EC of 500 μg/mL	Cell-free assay (HHL degradation assay)	102
Asparagine	Organic sulfur compound	Asparagus officinalis	IC$_{50}$ = 113 μM	Cell-free assay (3HB-GGG hydrolysis assay)	103
Caffeic acid	Phenolic acid	Echinacea purpurea	IC$_{50}$ = 0.1 μM	Cell-free assay (HHL degradation assay)	71
Camellianin A	Flavonoid	Adinandra nitida	30.2% inhibition at EC of 500 μg/ml.	Cell-free assay (HHL degradation assay)	102
Camellianin B	Flavonoid	Adinandra nitida	40.7% inhibition at EC of 500 μg/ml.	Cell-free assay (HHL degradation assay)	104
Carinoside	Flavonoid	Desmodium strychnifolium	IC$_{50}$ = 316 μM	Cell-free assay (HHL degradation assay)	104
Catechin	Flavonoid	Malus domestica	IC$_{50}$ = 109 μM	Cell-free assay (HHL degradation assay)	105
Chlorogenic acid	Phenolic acid	Echinacea purpurea	IC$_{50}$ = 0.1 μM	Cell-free assay (HHL degradation assay)	71
Chrysine	Flavonoid	Malus domestica	IC$_{50}$ = 146 μM	Cell-free assay (HHL degradation assay)	105
Chrysosanol	Flavonoid	Tamarix hohenackeri	57.6% inhibition at EC of 20 mg/mL	Cell-free assay (HHL degradation assay)	99
Coretincone	Phenolic glycoside	Coreopsis tinctoria	IC$_{50}$ = 228 μM	Cell-free assay (HHL degradation assay)	106
Curcumin	Polyphenol	Curcuma longa	76.9% inhibition at EC of 10 μM	Cell-free assay (HHL degradation assay)	107
Cyandin-3-O-glucoside	Flavonoid	Malus domestica	IC$_{50}$ = 174 μM	Cell-free assay (HHL degradation assay)	105
Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
-----------------------------	----------------------	-----------------------	-----------------------------	--	-----------
Cyanidin-3-O-galactoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 206 μM	Cell-free assay (HHL degradation assay)	105
Cyanidin-3-O-rhamnoloside	Flavonoid glycoside	Malus domestica	IC₅₀ = 114 μM	Cell-free assay (HHL degradation assay)	105
Cyanidin-3-O-sambubioside	Flavonoid glycoside	Hibiscus sabdariffa	IC₅₀ = 117.7 μM	Cell-free assay (FAPGG degradation assay)	108
Cyanidin-3-O-β-glucoside	Flavonoid glycoside	Rosa damascena	IC₅₀ = 138.8 μM	Cell-free assay (HHL degradation assay)	109
Decursidin	Coumarin	Angelica decursiva	IC₅₀ = 20 μM	Cell-free assay (FAPGG degradation assay)	100
(+)-trans-Decursidinol	Coumarin	Angelica decursiva	IC₅₀ = 4.7 μM	Cell-free assay (FAPGG degradation assay)	100
Decursinol	Coumarin	Angelica decursiva	IC₅₀ = 18.3 μM	Cell-free assay (FAPGG degradation assay)	100
Delphinidin-3-O-sambubioside	Flavonoid glycoside	Hibiscus sabdariffa	IC₅₀ = 141.6 μM	Cell-free assay (FAPGG degradation assay)	108
Epicatechin	Flavonoid	Malus domestica	IC₅₀ = 73 μM	Cell-free assay (HHL degradation assay)	105
Gallic acid	Phenolic acid	Tamarix hohenackeri	43.1% inhibition at EC of 20 mg/mL	Cell-free assay (HHL degradation assay)	99
Gluco-aurantioobtusin	Anthraquinone glycoside	Cassia tora	IC₅₀ = 30.2 μM	Cell-free assay (FAPGG degradation assay)	110
(+)-Hopeaphenol	Stilbenoid	Ampelopsis brevipedunculata var. hanceri	IC₅₀ = 1.6 μM	Cell-free assay (HHL degradation assay)	72
Isoferulic acid	Phenolic acid	Tamarix hohenackeri	30.6% inhibition at EC of 20 mg/mL	Cell-free assay (HHL degradation assay)	99
Isoqueretin	Flavonoid	Troparolum majus	Reduced plasmatic ACE activity in SHR rats (43% inhibition at EC of 10 mg/kg)	Cell-free assay (HHL degradation assay)	111
Isorutarine	Coumarin	Angelica decursiva	IC₅₀ = 68.4 μM	Cell-free assay (FAPGG degradation assay)	100
Junipediol A-8-O-β-d-glucoside	Phenylpropa-	Apium graveolens	IC₅₀ = 210 μM	Cell-free assay (HHL degradation assay)	112
(5)-Malic acid 1’-O-β-	Organic acid glycoside	Luctus sativa	IC₅₀ = 27.8 μM	Cell-free assay (HHL degradation assay)	115
Mangiferin	Xanthone glycoside	Swertia chirayta	31.5% inhibition at EC of 500 μM	Cell-free assay (HHL degradation assay)	114
Miquelianin	Flavonoid glycoside	Cuphea glutinosa	32.1% inhibition at EC of 100 ng/mL	Cell-free assay (FAPGG degradation assay)	115
N³,N³,N⁸-tris (dihydrocaffeoyl) spermidine	Polyamine	Solarum quitensis	IC₅₀ = 9.6 ppm	Cell-free assay (3HB-GGG hydrolysis assay)	116
Methyl gallate	Phenolic acid	Tamarix hohenackeri	35.7% inhibition at EC of 20 mg/mL	Cell-free assay (HHL degradation assay)	99
Naringenin	Flavonoid	Malus domestica	IC₅₀ = 78 μM	Cell-free assay (HHL degradation assay)	105
Onopordia	Polyphenol	Onopordum acanthium L.	IC₅₀ = 300 μM	Cell-free assay (HHL degradation assay)	117,118
Orotic acid	Organic acid	Daucus carota	40.3% inhibition at EC of 5 μg/mL	Cell-free assay (HHL degradation assay)	119
Pd—C—I	Coumarin	Angelica decursiva	IC₅₀ = 6.8 μM	Cell-free assay (FAPGG degradation assay)	100
Pd-C-II	Coumarin	Angelica decursiva	IC₅₀ = 12.4 μM	Cell-free assay (FAPGG degradation assay)	100
Pd-C-III	Coumarin	Angelica decursiva	IC₅₀ = 15.3 μM	Cell-free assay (FAPGG degradation assay)	100
Quercetin	Flavonoid	Malus domestica	IC₅₀ = 151 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-galactoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 180 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-glucoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 71 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-glucuronic acid	Flavonoid conjugate	Malus domestica	IC₅₀ = 27 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-rhamnoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 100 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-rutinoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 90 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-3-O-sulfate	Flavonoid conjugate	Malus domestica	IC₅₀ = 131 μM	Cell-free assay (HHL degradation assay)	105
Quercetin-4’-O-glucoside	Flavonoid glycoside	Malus domestica	IC₅₀ = 211 μM	Cell-free assay (HHL degradation assay)	105
Schaftoside	Flavonoid glycoside	Desmodium styracifolium	IC₅₀ = 58.4 μM	Cell-free assay (HHL degradation assay)	104

(continued on next page)
Table 1 (continued)

Compound	Class	Source	Biological action/Efficacy	Experiment	Reference
Tannic acid	Phenolic acid	Camellia sinensis	IC50 = 230 µM	Cell-free assay (HHL degradation assay)	126
Taxifolin	Flavonoid	Coreopsis tinctoria	IC50 = 145.7 µM	Cell-free assay (HHL degradation assay)	106
Vicenin 1	Flavonoid	Desmodium styracifolium	IC50 = 8.25 µM	Cell-free assay (HHL degradation assay)	104
Vicenin 2	Flavonoid	Desmodium styracifolium	IC50 = 43.8 µM	Cell-free assay (HHL degradation assay)	104
Vicenin 3	Flavonoid	Desmodium styracifolium	IC50 = 46.9 µM	Cell-free assay (HHL degradation assay)	104
(+)-α-Viniferin	Flavonoid	Vitis thunbergii var. taiwanian	IC50 = 35.5 µM	Cell-free assay (FAPGG degradation assay)	101
(+)-Vitisin A	Flavonoid	Vitis thunbergii var. taiwanian	IC50 = 3.3 µM	Cell-free assay (FAPGG degradation assay)	101
		Ampelopsis brevipedunculata var. hancei	IC50 = 1.5 µM	Cell-free assay (HHL degradation assay)	72

3HB-GGG = 3-hydroxybutyryl-Gly-Gly-Gly; AAS = Acidine orange; ATP = Adenosine triphosphate; DQ-BSA = Dye quenched-bovine serum albumin; EC = The effective test concentration; ELISA = Enzyme Linked Immunosorbent Assay; FAC/MS = Frontal affinity chromatography-Mass spectrometry; FAPGG = furylacryloyl-phenylalanyl-glycyl-glycine; FRET = Fluorescence resonance energy transfer; HHL = hippuryl-L-histidyl-L-leucine; IC50 = The half maximal inhibitory concentration; IFA = Immunofluorescence assay; SHR = spontaneously hypertensive rat; WB = Western Blot.

* The study used commercial products. Here provides a natural source of compound as an example.

inhibited the pseudovirus entry, possibly by interfering with the function of the S protein.30

3.1.2. The plasma membrane protease TMPRSS2

Recognized as a host trypsin-like serine protease, TMPRSS2 highly expressed in alveolar cells has been demonstrated to facilitate viral entry by priming of viral S protein. Inhibition of TMPRSS2 activity could prevent infection of coronaviruses including MERS-CoV, SARS-CoV and SARS-CoV-2.31 Now, several synthetic drugs like camostat mesylate, nafamostat mesylate and bromhexine which are serine protease inhibitors showed potential to inhibit SARS-CoV-2 infection.32 TMPRSS2 is recognized as a host trypsin-like serine protease, TMPRSS2 activity may also inhibit SARS-CoV-2 infection of SARS-CoV using cell-based assays.46 Zhuang et al. also demonstrated that butanol crude fraction from C. cortex was able to inhibit the clathrin-dependent endocytosis pathway as well as the infection of SARS-CoV using cell-based assays.46

3.2. Natural bioactive compounds targeting viral replication

3.2.1. The 3-chymotrypsin-like main protease (3CLpro)

The 3CLpro is an enzyme that plays important role in replication of coronaviruses. It is responsible for the cleavage of polyproteins to functional proteins. Base on the protein structures, 3CLpro of SARS-CoV and SARS-CoV-2 show similarity of amino acid sequence at 96%, and both enzymes exhibit high conservation of active residues.47 Therefore, small molecules with SARS-CoV 3CLpro inhibitory activity may also inhibit 3CLpro of SARS-CoV-2. Numerous studies have revealed for plant and mushroom derived natural compounds that could suppress SARS-CoV replication by blocking 3CLpro activity with IC50 range from 8.3 to 92.4 µM in either cell-free or cell-based assays. Among them, hesperetin, a phenolic compound isolated from *Isatis indigotica* root exhibited the greatest inhibitory impact. In addition, the inference dose of 3CLpro activity ranged from 8.3 to 40 µM.48 Other phytochemicals that have shown promise in the inhibition of 3CLpro are lignoid, terpenoid, tanshinone and chalcone with IC50 less than 25 µM.49–52 Interestingly, the lignoid savinin was able to reduce both viral replication (Selective index > 667) and cytopathic effect on SARS-CoV-infected Vero E6 cells.45 The summary of bioactive compounds against SARS-CoV 3CLpro inhibitory activity is tabulated in Table 1. Regarding to the similarity between 3CLpro of SARS-CoV and SARS-CoV-2, these natural compounds are interesting substances to screen as inhibitors of SARS-CoV-2 3CLpro activity.

3.2.2. The papain-like protease (PLpro)

Similar to 3CLpro, the function of PLpro is essential for coronavirus replication by generating RTC through proteolytic processing of viral polyprotein. Hence, PLpro could be served as another attractive target of drug discovery for treatment of coronavirus infection, especially SARS-CoV-2. At present, there is no FDA
approved PLPRO inhibitor available, therefore identification of bioactive compounds from medicinal plants that specifically inhibit PLPRO has been focused to develop a new class of anti-coronavirus drug. According to high similarity of protein sequences and active residues between SARS-CoV and SARS-CoV-2 PLPRO (83%),47 the compounds that have been reported as inhibitors of SARS-CoV PLPRO may also be effective against SARS-CoV-2. Table 1 lists many interesting compounds from natural sources that exhibited SARS-CoV PLPRO inhibitory activity. The IC\textsubscript{50} values of the compounds ranged from 0.8 to 19.3 µM, demonstrating their strong inhibitory potential. Among them, the cryptotanshinone and tanshinone IIA were regarded as two most excellent inhibitors.54

3.2.3. The replication/transcription complex (RTC)

The replication of full-length genomic RNA and the discontinuous transcription of subgenomic RNA transcripts are crucial for the production of new coronavirus particles inside the host cell. Both processes are mediated by the coronavirus RTC composed of multiple viral nsps including two key replicative enzymes like the RdRp (nsp12) and helicase (nsp13),52 which are now considered as potential targets for COVID-19 therapy. Considering a strikingly high homology of nucleotide sequence, amino acid sequence and protein structure between SARS-CoV and SARS-CoV-2 RdRps,53 the natural compounds with previous reports of inhibitory activities towards RdRp of SARS-CoV could also have the potential to suppress the activities of those enzymes of the SARS-CoV-2. It was shown that the water extract from Houttuynia cordata exhibited a dose-dependent inhibition on SARS-CoV RdRp activity with the highest decrease by 74% in the treatment of 800 µg/mL.54 That activity of H. cordata was confirmed in another study by Fung et al.,55 along with Sinomenium acutum, Coriolus versicolor and Ganoderma lucidum, a traditional Chinese herbal formula Kwan Du Bu Fei Dang. Their IC\textsubscript{50} values were 251.1, 198.6, 108.4, 41.9 and 471.3 µg/mL, respectively.55

The inhibitors of SARS-CoV helicase also serve as a potential drug candidate since this enzyme has a highly conserved sequence among coronaviruses and shares the similar structure to that of SARS-CoV-2.56 Herein, three plant-derived bioactive compounds that could be natural inhibitors of SARS-CoV-2 helicase are listed in Table 1.

3.2.4. The zinc ion

Zinc is an essential micronutrient that is required for various cellular metabolic processes, not only in human immunity but also in the replication of many viruses.56-58 Although Zinc ion (Zn2+) acts as a cofactor for several important viral enzymes such as RdRp, 3CLPRO and PLPRO, it is interesting that its high intracellular concentration was found to inhibit those enzyme activities of a variety of RNA viruses including SARS-CoV56-58 thus leading to subsequent decrease in the production of new virions. Therefore, Zn2+ possesses antiviral properties through generating host immune responses and inhibiting viral replication. As of now, several researchers have suggested the use of Zn2+ ionophore, a compound that stimulates cellular import of Zn2+ (e.g., chloroquine and its derivatives), as a possible option for the treatment of COVID-19.59

3.3. Natural bioactive compounds targeting viral release

3.3.1. The viroporin 3a

Viroporins are small, pore-forming, viral-encoded accessory proteins with ion channel activity that have been known to play an essential role in mediating several processes in the life cycle of many viruses, including coronaviruses.52 Viroporin 3a functions are strongly involved in the regulation of viral budding and release from infected cells.60 Interestingly, this protein was found unique to SARS-CoV and SARS-CoV-2 and not present in other known coronaviruses,64 thus the viroporin 3a protein can be an important potential therapeutic target for COVID-19. Summary of natural compounds with inhibitory effect on viroporin 3a activity is presented in Table 1. Schwarz et al. revealed that flavonoid compounds like kaempferol and its derivatives were capable of blocking the ion channel activity of SARS-CoV viroporin 3a protein. Among them, the most potent one is the glycoside juglanine, kaempferol 3-O-arabinopyranoside, exhibiting IC\textsubscript{50} of 2.3 µM.64 Another kaempferol glycoside tiliroside and the anthraquinone emodin also showed good inhibitory activity with and IC\textsubscript{50} of 20 µM.62

3.4. Natural bioactive compounds targeting inflammation-related pathogenesis

Upon binding to SARS-CoV-2 S protein, the ACE2 function is downregulated which leads to increased angiotensin II level and overactivation of the AT1R signaling, causing the deleterious effects associated with excessive inflammation on several tissues.65 Therefore, suppressing angiotensin II production by ACE inhibitors and blocking of AT1R by angiotensin-receptor blockers (ARBs) may be of benefit to ameliorate Ang II/AT1R-mediated inflammation in COVID-19 patients. Moreover, it was shown that an ARB could not only reduce AT1R activation, but also activate the AT2R, thus resulting in a production of vasodilation benefit.68

Currently, ACE inhibitors and ARBs are commonly prescribed in COVID-19 patients with severe symptoms. Even though risks of the use of hypertensive drugs were concerned, accumulating evidence has not suggested the association between the drugs and worse clinical outcomes.66,67 Interestingly, a great number of natural compounds have been identified as potent ACE inhibitors and ARBs. Given that there are minimal side effects of using drugs from natural sources, those compounds with potential activity should be considered and investigated. Bioactive compounds derived from...
natural sources which possess ACE inhibitory activity are summarized in Table 1. Among them, the excellent inhibitory properties against ACE were exerted by the phenolic caffeic acid and chlorogenic acid, and the stilbene hopeaphenol and vitisin A, with IC50 less than 2 \(\mu \text{M} \). These two stilbenoids were also found to be resveratrol tetramers exhibiting multifaceted properties including anti-inflammation and antiviral infection as a potent inhibitor of hepatitis C virus helicase. However, only few compounds have shown the ability to block AT1R which one of them is \([6]\)-gingerol, the major bioactive compounds present in \textit{Zingiber officinale}. According to the report by Liu and colleagues, it could inhibit AT1R activity with IC50 of 8.2 \(\mu \text{M} \) as detected by cell-based calcium mobilization assay.

3.5. Anti-SARS-CoV natural compounds with unidentified mechanism of action

Some natural occurring compounds have been reported their beneficial effect to inhibit SARS-CoV, even though their mechanisms of action have not yet been identified (Table 2). Accordingly, the compounds from those previous studies might also have a potency to inhibit COVID-19 infection. Using HIV/SARS-CoV S pseudovirus and wild-type SARS-CoV, three anthocyanins derived from \textit{Cinnamomum cortex}, cinnamtannin B1, procyanidin A2 and procyanidin B1, were reported their inhibitory activities against the infection of both viruses, but at least not through the inhibition of clathrin-mediated endocytosis. This study also investigated the effects of some crude plant extracts and found that aqueous extract of \textit{Caryophyllus Flos} exhibited moderate inhibition to pseudovirus (IC50 = 58.8 \(\mu \text{M} \)) and wild-type virus (IC50 = 50.1 \(\mu \text{M} \)). In addition, the natural alkaloid lycorine, isolated from \textit{Lycoris radiate}, has been suggested as an anti-SARS-CoV compound with an IC50 value of 15.7 nM.
4. Conclusion and further prospects

Emerged as the most devastating viral infection in this era for the human race, the COVID-19 pandemic has introduced “new normal” for changing life as we recognize it. As numbers of new COVID-19 infected cases are rising globally, disruption of the transmission chain to minimize this spread is seriously unavoidable. This rise in COVID-19 infection is hardly disrupted unless its infective mechanisms including entry, replication and release, and modification of RAAs can be properly eliminated by humans. Certainly, we are waiting for effective strategies including drugs and vaccines to fight against COVID-19. Due to the unavailability of drugs to treat this infection, natural compounds are a main area of anti-COVID-19 research discovery. Our review suggests that 24 natural compounds have shown their potential actions on multiple therapeutic targets, which should be further explored for anti-COVID-19 plant/mushroom-based medicines (Fig. 2). The classes of these phytochemical compounds include chalcones (n = 7), flavonoids (n = 5), tanshinones (n = 5), phenolic acids (n = 3), polyphenol (n = 1), anthraquinone (n = 1), diarylheptanoid (n = 1) and bipherpylenpropanoid (n = 1). Among them, a natural flavonoid quercetin is found as a lead candidate with its ability on the virus.

Together with proper proactive investments, it is our great hope that qualified natural compound-based medicines from promising leads described here will be developed as anti-COVID-19 soon to benefit the human race in this “new normal” era.

Taxonomy (classification by EVISE)

Emerging Infectious Disease, Viral Infection of Respiratory System, Severe Acute Respiratory Syndrome Coronavirus, Cell culture, Molecular Biology, Traditional herbal medicine, Natural Product Analysis.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was partially supported by Grant for Research, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University, Thailand.

References
1. Who. Novel Coronavirus — China; 2020. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/, Accessed December 15, 2020.
2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020;382(8):727–733.
3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
4. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, China. J Am Med Assoc. 2020.
5. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). MJ Med Res. 2020;7(1):4.
6. Singh AK, Singh A, Singh R, Misra A. Hydroxylchloroquine in patients with COVID-19: a systematic review and meta-analysis. Diabetes Metabol Syndr. 2020;14(4):589–596.
7. Tacccone FS, Gorham J, Vincent JL. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med. 2020.
8. Fuzimoto AD, Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - additional weapons in the fight against the COVID-19 pandemic? Journal of traditional and complementary medicine. 2020;10(4):405–415.
9. Panyod S, Ho CT, Sheen LY. Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. Journal of traditional and complementary medicine. 2020;10(4):420–427.
10. Lin LT, Hsu WC, Lin JC. Antiviral natural products and herbal medicines. Journal of traditional and complementary medicine. 2014;4(1):24–35.
11. Wang H, Yang P, Liu K, et al. SARS coronavirus entry into host cells through a novel clathrin– caveolea-independent endocytic pathway. Cell Res. 2008;18(2):290–301.
12. Song Z, Xu Y, Bao L, et al. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci USA. 2006;103(33):12540–12545.
13. South AM, Brady TM, Flynn JT. ACE2 (Angiotensin-Converting enzyme 2), COVID-19, and ACE inhibitor and Ang II (angiotensin II) receptor blocker use during the pandemic: the pediatric perspective. Hypertension (Dallas, Tex.: 1979). 2020;76(1):16–22.
14. Shete A. Urgent need for evaluating agonists of angiotensin-(1-7) Mas receptor axis for treating patients with COVID-19. Int J Infect Dis : IJD : official publication of the International Society for Infectious Diseases. 2020;06:348–351.
15. Yang J, Pettitjean SJL, Koehler M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020;11(1):4541.
16. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220.
17. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93–116.
18. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor domain complexed with receptor. Science (New York, N.Y.). 2005;309(5742):1864–1866.
19. Lu L, Liu G, Zhu Y, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 2014;5:3067.
20. Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmacol Sin. 2020.
21. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
22. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7).
23. Wang Y, Shang J, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7).
24. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.). 2020;367(6483):1260–1263.
25. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding domain of SARS-CoV-2 spike protein receptor. Biochem Biophys Res Commun. 2020;529(1):135–140.
26. Hamann I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637.
27. Ashraf UM, Abookor AA, Edwards JM, et al. SARS-Cov-2, ACE2 expression, and systemic organ invasion. Physiol Genom. 2020.
28. The COVID-19 RISK and Treatments (CORIST) Collaboration. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: findings from the observational multicentre Italian CORIST study. Eur J Intern Med. 2020;82:38–47.
29. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotension-converting enzyme 2 interaction. Antivir Res. 2007;74(2):92–101.
30. Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334–11339.
31. McKee DL, Sternberg A, Stange U, Lafer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;104859.
32. Hoffmann M, Kleine-Wedepohl K, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020.
33. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.
34. Maggio R, Gu Corsini. Repurposing the mucoclytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol Res. 2020.
35. Park Y-J, Ko J-A, Kim DW, et al. Chalcones isolated from Angelica keiskei
inhibit cysteine proteases of SARS-CoV. J Enzym Inhib Med Chem. 2016;31(1):23–30.

36. Inoue Y, Tanaka N, Tanaka Y, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplastic tail deleted. J Virol. 2007;81(6):8722–8729.

37. Yang N, Shen HM. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Mol Sci. 2020;16(10): 1724–1731.

38. Barquero AA, Alché LE, Cote CE. Block of vesicular stomatitis virus endocytic and exocytic pathways by 1,3-cinnamol-3,3-di-hydroxybenzaldehyde, a tetra- nortriterpene of natural origin. J Virol. 2004;88(2):483–493.

39. Sun H, Huang M, Yao N, et al. The cycloartane triterpenoid ADGM impairs autophagic degradation through Akt overactivation and promotes apoptotic cell death in multidrug-resistant HepG2/ADM cells. Biochem Pharmacol. 2011;82(2):170–177.

40. Kuzu OF, Gowda R, Sharma A, Robertson GP. Leucomin alleviates cancer cell death through inhibition of intracellular cholesterol mobil. Curr Therapeut. 2014;17(7):1690–1703.

41. Martins BX, Arruda RF, Costa GA, et al. Myrtalennedated V-ATPase inhibition - a toxicity mechanism behind tumor cell death and suppressed migration and invasion in melanoma. Biochim Biophys Acta Gen Subj. 2019;1863(1): 1–12.

42. Wu MY, Wang SF, Cai CZ, et al. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget. 2017;8(44):77673–77684.

43. Wang Z, Zhang J, Wang Y, et al. Matrine, a novel autophagy inhibitor, blocks trafficking and promotes the antiviral of lysosomes of cytomegalovirus. Pirocrigen. 2013;34(1):128–138.

44. Qiu W, Su M, Xie F, et al. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells. Cell Death Dis. 2014;5(3):e1123.

45. Masui S, Nabeisha S, Ajsaka K, et al. Maoto, a traditional Japanese herbal medicine, inhibits uncoupling of influenza virus. Evid Base Compl Altern Med. eCAM. 2017;2016:202093.

46. Zhaing M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cin- namom Cortex inhibit SARS-CoV infection. Antivir Res. 2009;82(1):73–81.

47. Liu W, Morse JS, Lalonde T, Xu S. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem : a European journal of chemical biology. 2020;21(5):730–735.

48. Inoue Y, Tanaka N, Tanaka Y, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087–4095.

49. Liu Y-P, Cai X-H, Feng T, Li Y, Li X-N, Luo X-D. Tetrandrine and sterol derivatives from the roots of Brevnia fruticosa. J Nat Prod. 2011;74(5):1161–1168.

50. Park J-Y, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV-2 RNA replication. Bioorg Med Chem. 2020;29(12):120991.

51. Rahman MT, Idid SZ. Can Zn Be a critical element in COVID-19 treatment? Bioclim Trace Elem Res. 2020;1–9.

52. Clergeaud G, Dabbagh-Bazarbachi H, Clergeaud B, et al. Inhibition of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and toxicity. Oncotarget. 2016;7(38):62217–62223.

53. Kaushik N, Subramani C, Anang S, et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 2020;94(1):4251–4263.

54. Lee S, Yoon KD, Lee M, et al. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol. 2015;173(19):211–221.

55. Liu Q, Liu J, Guo H, et al. [6]-gingerol: a novel AT₁ antagonist for the treatment of cardiovascular disease. Planta Med. 2013;79(5):322–326.

56. He R, Shi X, Zhou M, et al. Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TEBB. Toxicol Appl Pharmacol. 2018;356:159–171.

57. Pan S, Cai H, Gu L, Cao S. Cleithandian A inhibits the invasion and metastasis of human melanoma cells by inhibiting the expression of matrix metallopeptidase-2 and -9. Oncol Letters. 2017;14(5):6217–6223.

58. Zhang Z, Ma J, Zhu L, Zhao Y. Synthesis and identification of cysteine dihylin glycosides as vacular H+/-/ATPase inhibitors. Eur J Med Chem. 2012;47:466–471.

59. Chen H, Liu P, Zhang T, et al. Effects of diphyllyn as a novel V-ATPase inhibitor on TE-1 and ECA-109 cells. Oncol Rep. 2018;39(3):921–928.

60. Zheng K, Li Y, Wang S, et al. Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCRF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy. 2016;12(9):1593–1613.

61. Geng YD, Zhang C, Shi YM, et al. Icariside II-induced mitochondrion and lysosomal function and promoting p62-mediated ubiquitinated protein ag-gregation. J Enzym Inhib Med Chem. 2016;31(4):737–742.

62. Lai K, Lee S, Yoon KD, et al. Identi- fi cation of a novel protein 3a from severe acute respiratory syndrome coronavirus. J Med Chem. 2011;54(11):3057–3063.

63. Sze CW, Tan YJ. Viral membrane channels: role and function in the virus life cycle. Viruses. 2015;7(6):3261–3284.

64. Wu J, Chen YC, Hsiao Y, et al. Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett. 2004;565(1-3):111–116.

65. Schwarz S, Sauter D, Wang K, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014;80(2):17–22.

66. Schwarz S, Sauter D, Lu W, et al. Coronaviral Membrane Channel Targets for Chinese Herbal Medicine. vol. 2013;1:13–1, 1.

67. Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its down-regulation in SARS-CoV-1 leading to Autophagy Activation Syn- drome: therapeutic implications. Life Sci. 2020;256:117905.

68. Alexander J, Cracowski JL, Richard V, Bouhanick B. Renin-angiotensin-aldosterone system and COVID-19 infection. Ann Endocrinol. 2020;81(2-3):63–67.

69. Rahman MT, Idid SZ. Can Zn Be a critical element in COVID-19 treatment? N Engl J Med. 2020;382.

70. Moorhead NR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of covid-19. N Engl J Med. 2020;382.
93. Song YH, Kim DW, Curtis-Long MJ, et al. Papain-like protease (Plpro) inhibitory effects of cinamonic amides from Tribulus terrestris fruits. *Biol Pharm Bull.* 2014;37(6):1021–1028.

94. Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsp13. *Bioorg Med Chem Lett.* 2012;22(12):4049–4054.

95. Lee C, Lee JM, Lee NR, Kim DE, Jeong YJ, Chong Y. Investigation of the pharmacophore space of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. *Bioorg Med Chem Lett.* 2009;19(16):4538–4541.

96. Krenn BM, Gaudernack E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. *J Virol.* 2009;83(1):58–64.

97. Schwarz S, Wang K, Wu B, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. *Antiviral Res.* 2011;90(1):64–69.

98. Chen H, Yang T, Wang MC, Chen DQ, Yang Y, Zhao YY. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulointerstitial fibrosis by selectively inhibiting TGF-beta-mediated Smad3 phosphorylation. *Phytomedicine.* 2018;42:207–218.

99. Xing Y, Liao J, Tang Y, et al. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang. *Phyto Mag.* 2014;10(38):111–117.

100. Ali MY, Seong SH, Jung HA, Choi JS. Angiotensin-I-Converting enzyme inhibitory activity of coumarins from Angelica decursiva. *Molecules.* 2019;24(21).

101. Lin YS, Lu YL, Wang GJ, Chen LG, Wen CL, Hou WC. Ethanolic extracts and isolated compounds from small-leaf grape (Vitis thunbergii var. taiwanniana) with antihypertensive activities. *J Agric Food Chem.* 2012;60(30):7435–7441.

102. Liu B, Yang J, Ma Y, Yuan E, Chen C. Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of ethanolic extracts and pure flavonoids from Adinandra nitida leaves. *Pharm Biol.* 2010;48(12):1432–1438.

103. Nakabayashi R, Yang Z, Nishizawa T, Mori T, Saito K. Top-down targeted metabolomics reveals a sulfur-containing metabolite with inhibitory activity against angiotensin-converting enzyme in Asparagus officinalis. *J Nat Prod.* 2015;78(5):1179–1183.

104. Zhang YQ, Luo JG, Han C, Xu JF, Kong LY. Bioassay-guided preparative separation of angiotensin-converting enzyme inhibitory C-flavone glycosides from Desmodium strychnifolium by recycling complexation high-speed counter-current chromatography. *J Pharmaceut Biomed Anal.* 2015;102:276–281.

105. Balasuriya N, Rupasinghe HP. Antihypertensive properties of flavonoid-rich apple peel extract. *Food Chem.* 2012;135(4):2320–2325.

106. Wang W, Chen W, Yang Y, Liu T, Yang H, Xin Z. New phenolic compounds from Coreopsis tinctoria Nutt. and their antioxidant and angiotensin-I-converting enzyme inhibitory activities. *J Agric Food Chem.* 2015;63(1):200–207.

107. Bhullar KS, Jha A, Yousef D, Rupasinghe HP. Curcumin and its carbocyclic analogs: structure-activity in relation to antioxidant and selected biological properties. *Molecules.* 2013;18(5):3589–3540.

108. Ojeda D, Jimenez-Ferrer E, Zampia A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. *J Ethnopharmacol.* 2010;127(1):7–10.

109. Kwon EK, Lee DY, Lee H, et al. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. *J Agric Food Chem.* 2010;58(2):882–886.

110. Hyun SK, Lee H, Kang SS, Chung HY, Choi JS. Inhibitory activities of Cassia tora and its anthraquinone constituents on angiotensin-converting enzyme. *Phytother Res.* 2009;23(2):178–184.

111. Gasparotto Junior A, Prando TB, Leme Tdos S, et al. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isouqueretin. *J Ethnopharmacol.* 2012;141(1):501–508.

112. Simaratamamngkol A, Umehara K, Noguchi H, Panichayupakaranant P. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants. *Food Chem.* 2014;165:92–97.

113. Lagemann A, Dunkel A, Hofmann T. Activity-guided discovery of (5)-malic acid 1’-O-beta-gentiobioside as an angiotensin I-converting enzyme inhibitor in lettuce (Lactuca sativa). *J Agric Food Chem.* 2012;60(29):7211–7217.

114. Phobo S, Pinto MdA S, Barbosa AC, et al. Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Rosb. ex Flem.) Kark. *Phytother Res.* 2013;27(2):227–235.

115. Santos MC, Toson NSB, Pimentel MCB, Bordignon SAL, Mendez ASL, Henriques AT. Polyphenols composition from leaves of Cuphea spp. and in vitro, of angiotensin I-converting enzyme (ACE). *J Ethnopharmacol.* 2020;255:112781.

116. Forero DP, Masatani C, Fujimoto Y, Coy-Barrera E, Peterson DG, Osorio C. Spermidine derivatives in lulo (solanum quitoense lam.) fruit: sensory (taste) versus biofunctional (ACE-Inhibition) properties. *J Agric Food Chem.* 2016;64(26):5375–5381.

117. Salehahabi H, Khajeh K, Dabirmanesh B, Biglar M, Amanlou M. Evaluation of angiotensin converting enzyme inhibitors by SPS biosensor and theoretical studies. *Enzym Microb Technol.* 2019;120:117–123.

118. Sharifi N, Souri E, Ziai SA, Amin G, Amini M, Amanlou M. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: a novel angiotensin converting enzyme (ACE) inhibitor. *J Ethnopharmacol.* 2013;148(3):534–539.

119. Hassanl A, Hussain SA, Abdullah N, Kamarudin S, Rosli R. Antioxidant potential and angiotensin-converting enzyme (ACE) inhibitory activity of orotic acid-loaded gum Arabic nanoparticles. *AAPS PharmSciTech.* 2019;20(2):53.

120. Al Shukor N, Van Camp J, Gonzalez GB, et al. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. *J Agric Food Chem.* 2013;61(48):11832–11839.

121. Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. *Antivir Res.* 2005;67(1):18–23.