“Does Air Pollution Play a Role in Infertility?: a Systematic Review” (2017), by Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud and Roger Léandri [1]

By: Bains, Ajeet Keywords: Fertility [2] Pollutants [3]

In 2017, Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri published "Does Air Pollution Play a Role in Infertility?: a Systematic Review," hereafter "Does Air Pollution Play a Role," in the journal Environmental Health. The authors completed a systematic literature review to investigate the effects of air pollutants on fertility in exposed populations. Since air quality has an impact on overall health as well as on reproductive function, the authors sought to increase the awareness of the importance of environmental protection issues among the general public and the authorities. The article "Does Air Pollution Play a Role" provided the foundation for further research on how air pollution can contribute to low reproductive capacity in areas with high exposure.

Air pollution has a serious toxicological impact on human health and the environment. Pollution can come from small units such as cigarettes to large volumes of emission such as from the motor engines of automobiles or industrial activities. Air pollution causes adverse health outcomes such as respiratory infections, inflammation, and cardiovascular dysfunction. It can also harm or disrupt a variety of bodily functions which are connected to reproductive ability. For example, air pollutants can act as endocrine disruptors, meaning they interfere with hormones [4] that are crucial to reproductive function. Throughout "Does Air Pollution Play a Role," the authors use the terms "fertility" and "infertility" [5] to refer to the ability or inability to produce offspring.

At the time of publication, Carré, Gatimel, Moureau, Parinaud, and Léandri were all doctors in reproductive medicine at the Centre Hospitalier Universitaire de Toulouse, or Toulouse University Hospital, in Toulouse, France. All but Carré were also associated with a research group on human fertility at Paul Sabatier University, also located in Toulouse. They wrote the article to investigate the impact of air pollution on reproductive function. The authors note that there are many studies documenting the effect of pollutants on the human body in ways that could affect procreation [6], but at the time of publication, the actual effect on fertility was not well known.

The authors conducted a systematic review of the research involving exposure to environmental air pollutants and its effect on fertility. The authors selected relevant studies from January 2000 to February 2016 and used them to compile data involving air quality and infertility [5]. Carré and colleagues grouped the data according to the type of pollutants, such as automobile exhaust pollutants, sulfur oxide, or nitrogen oxide, to draw specific conclusions about their impact on fertility and the molecular pathways involved.

The article consists of four sections. In the first section, Introduction, the authors reference other articles which demonstrate the negative effects of air pollutants on different aspects of the human body, including those relevant to reproduction. In the second section, Methods, they discuss how they found articles and chose which to include or exclude in their study. The third section, Results, consists of many smaller sections, discussing the effects of air pollutants on spontaneous and in vitro fertilization [7], male gametes in humans [9] and animals, female gametes in humans [9] and animals, and the mechanisms of how air pollutants can affect reproduction. Spontaneous fertility refers to conception [10] which happens without external aid, whereas IVF is a method in which medical practitioners combine an egg [11] and sperm [12] outside the body, and then implant the fertilized egg [13] in someone's uterus [14]. Gametes are eggs or sperm [12], which combine to form a zygote [15] that can develop into a fetus [16]. In the fourth section, Conclusion, the authors state that the effect of air pollutants on reproduction is well-established but scientists and physicians still do not completely understand what causes it.

In the first section, Introduction, Carré and colleagues establish that air pollutants have repeatedly been shown to have a negative impact on human health. They list specific pollutants and discuss the health problems, such as cardiovascular disease and respiratory diseases like asthma, those pollutants can cause. They also discuss the mechanisms that may connect the pollutants to the observed health problems, such as oxidative stress, an imbalance of oxygen-containing molecules in the body. Oxidative stress can alter DNA, the material that makes up genes [17]. DNA modification can affect the whole body, and particularly affect procreation [6] by disrupting the production of hormones [4] or degrading the DNA in gametes, which can prevent successful fertilization [8].

In the next section, Methods, the authors describe the criteria they used to find studies to include in their review. They state that they completed their analysis in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses, or
In 2017, Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri published “Does Air Pollution Play a Role in Reproductive Health and Fertility?” in *Respirology*. This article has been cited over 160 times, primarily in other studies on the impact of pollutants on different aspects of reproduction.

The authors state that several air pollutants have demonstrated harmful effects on sperm quality. Carré and colleagues describe studies on which rodents were exposed to exhaust from motor vehicles and showed a decrease in daily production of motile sperm cells and an increase in abnormally shaped sperm cells. Less motile or abnormally shaped sperm are less likely to fertilize an egg. Rodents also had more DNA breakage when exposed to ambient air pollution. Human men showed similar results, as in a study which compared parameters among men who had high chance of exposure to vehicle exhaust from their workplace to unexposed men working in an office in the same company. The men exposed to exhaust had decreased sperm count and sperm mobility, and increased abnormal sperm shape. Regarding female gametes, the authors described the results of two studies on mice and three on human women. Both studies on mice indicated decreased numbers of follicles following exposure to automobile pollution. Follicles contain immature eggs, or oocytes, and are associated with reproductive capacity, or how many eggs remain in someone’s body. The authors then reference studies that have observed the length of menstrual cycles in Chinese women who worked in petrochemical industries and experienced exposure to organic solvents. Those studies indicated an increase in menstrual cycle abnormalities, such as very long or very short menstrual cycles, following long-term exposure to common industrial solvents, which are liquids common in industrial settings. A third study on female police officers in Rome showed no difference in menstrual cycles due to increased exposure to traffic pollution, but that levels of estradiol, a hormone involved in the menstrual cycle, was lower during certain phases, and could impact fertility.

The authors conclude the results section by discussing evidence for four possible mechanisms for the action of air pollutants on fertility: hormonal changes due to endocrine disruptor action, oxidative stress, cell DNA alteration, and epigenetic modifications. Endocrine disruptors are chemicals which disrupt endocrine function, meaning they interfere with hormones. Estrogen is important to fertility, and disruptions in the production or action of those hormones can disrupt the production of gametes and the regulation of the reproductive system. Oxidative stress refers to an imbalance of oxygen-containing molecules in the body and can impair the production and function of gametes. Cell DNA alteration and epigenetic modifications both refer to changes in an organism’s DNA, which can interrupt or change gene expression, causing problems in different parts of the reproductive system. In the final section, Conclusion, the authors summarize their results, and state that although it is well established that pollutants can affect fertility, the mechanisms are still poorly understood.

The physiological mechanisms that hinder fertility are not well understood, and Carré and colleagues’ article provided a systematic review of the available research on the effect of different pollutants on fertility outcomes. As of August 2021, the article has been cited over 160 times, primarily in other studies on the impact of pollutants on different aspects of reproduction and reproductive health.

Sources

1. Carré, Julie, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri. “Does Air Pollution Play a Role in Infertility?: A Systematic Review.” *Environmental Health: A Global Access Science Source* 16 (2017): 1–16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534122/ (Accessed October 28, 2020).

2. Sierra-Vargas, Martha Patricia, and Luis M Teran. “Air Pollution: Impact and Prevention.” *Respirology* 17 (2012): 1031–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532603/ (Accessed October 28, 2020).

In 2017, Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri published “Does Air Pollution Play a
Role in Infertility?: a Systematic Review," hereafter “Does Air Pollution Play a Role,” in the journal Environmental Health. The authors completed a systematic literature review to investigate the effects of air pollutants on fertility in exposed populations. Since air quality has an impact on overall health as well as on reproductive function, the authors sought to increase the awareness of the importance of environmental protection issues among the general public and the authorities. The article “Does Air Pollution Play a Role” provided the foundation for further research on how air pollution can contribute to low reproductive capacity in areas with high exposure.

Subject
Fertility, Human [25] Reproduction [26] Fertilization (Biology) [27] Fertilization in vitro [28] Pollutants--Toxicology [29] In Vitro Techniques [30] Solvents [31] Hormones [32] Infertility [33]

Topic
Publications [34] Reproduction [35]

Publisher
Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.

Rights
Copyright Arizona Board of Regents Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/

Format
Articles [36]

Last Modified
Tuesday, August 3, 2021 - 05:48

DC Date Accessioned
Tuesday, August 3, 2021 - 05:40

DC Date Available
Tuesday, August 3, 2021 - 05:40

DC Date Created
2021-08-02

Contact Us
© 2021 Arizona Board of Regents

Source URL: https://embryo.asu.edu/pages/does-air-pollution-play-role-infertility-systematic-review-2017-julie-carre-nicolas-gatimel

Links
[1] https://embryo.asu.edu/pages/does-air-pollution-play-role-infertility-systematic-review-2017-julie-carre-nicolas-gatimel
[2] https://embryo.asu.edu/keywords/fertility
[3] https://embryo.asu.edu/keywords/pollutants
[4] https://embryo.asu.edu/search?text=hormones
[5] https://embryo.asu.edu/search?text=in%20fertility
[6] https://embryo.asu.edu/search?text=procreation
[7] https://embryo.asu.edu/search?text=in%20vitro
[8] https://embryo.asu.edu/search?text=fertilization
[9] https://embryo.asu.edu/search?text=humans
[10] https://embryo.asu.edu/search?text=conception
[11] https://embryo.asu.edu/search?text=egg
[12] https://embryo.asu.edu/search?text=sperm
[13] https://embryo.asu.edu/search?text=fertilized%20egg
[14] https://embryo.asu.edu/search?text=uterus
[15] https://embryo.asu.edu/search?text=zygote
[16] https://embryo.asu.edu/search?text=fetus
