Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the North East India cohort of the A1chieve study

Debmalya Sanyal, Debasis Basu¹, Mihir Saikia²
KPC Medical College and Hospital, ¹Apollo Gleneagles, Sugar and Heart Clinic, Kolkata, West Bengal, ²Dr. Lal Path Lab, Chandmari, Guwahati, Assam, India

ABSTRACT

Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from North East, India. Results: A total of 730 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 518), insulin detemir (n = 88), insulin aspart (n = 74), basal insulin plus insulin aspart (n = 19) and other insulin combinations (n = 30). At baseline glycaemic control was poor for both insulin naïve (mean HbA₁c: 9.5%) and insulin users (mean HbA₁c: 9.2%) groups. After 24 weeks of treatment, both groups showed improvement in HbA₁c (insulin naïve: −1.6%, insulin users: −1.5%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

Key words: A1chieve study, insulin analogues, North East India, type 2 diabetes mellitus

INTRODUCTION

62.4 million Indians were reported to have type 2 diabetes mellitus (T2DM) putting India on the forefront of diabetic epidemic across globe.[1,2] Fear of hypoglycaemia and gain in body weight are barriers for initiation of insulin therapy.[3] Modern insulin analogues are a convenient new approach or tool to glycaemic control, associated with low number of hypoglycaemia and favourable weight change.[4] A1chieve, a multinational, 24-week, non-interventional study, assessed the safety and effectiveness of insulin analogues in people with T2DM (n = 66,726) in routine clinical care.[5] This short communication presents the results for patients enrolled from North East, India.
insulin plus insulin aspart ($n = 19$) and other insulin combinations ($n = 30$).

After 24 weeks of treatment, overall hypoglycaemic events reduced from 0.9 events/patient-year to 0.5 events/patient-year and from 20.5 events/patient-year to 0.7 events/patient-year in insulin users. The hypoglycaemia incidence in insulin naïve group at 24 weeks was lower than that observed in insulin users at baseline. SADRs including major hypoglycaemic events did not occur in any of the study patients. Blood pressure decreased and overall lipid profile improved in the total cohort, but the findings were limited by number of observations. Quality of life improved at the end of the study [Table 2 and 3].

All parameters of glycaemic control improved from baseline to study end in those who started on or were

Table 1: Overall demographic data

Parameters	Insulin naïve	Insulin users	All
Number of participants	505	225	730
Male N (%)	304 (60.2%)	162 (72.0%)	466 (63.8)
Female N (%)	201 (39.8%)	63 (28.0%)	264 (36.2)
Age (years)	52.4	56.6	53.7
Weight (kg)	63.0	64.1	63.3
BMI (kg/m²)	23.7	23.4	23.6
Duration of DM (years)	6.0	10.0	7.3
No therapy	44		
>2 OGLD	12	9	21
HbA₁c, %	9.5	9.2	9.4
FPG (mmol/L)	11.8	10.5	11.4
PPG (mmol/L)	16.5	14.9	15.6
Macrovascular complications N (%)	36 (7.1)	51 (22.7)	87 (11.9)
Microvascular complications N (%)	257 (50.9)	174 (77.3)	431 (59.0)
Pre-study therapy, N (%)			
Insulin users	225 (30.82)		
OGLD only	461 (63.15)		
No therapy	44 (6.03)		
Baseline therapy, N (%)			
Insulin detemir±OGLD	88 (12.05)		
Insulin aspart±OGLD	74 (10.14)		
Basal+insulin aspart±OGLD	19 (2.60)		
Biphasic insulin aspart±OGLD	518 (70.96)		
Others	30 (4.11)		
Missing	1 (0.14)		

BMi: Body mass index, OGLD: Oral glucose-lowering drug, HbA₁c: Glycated hemoglobin A₁c, FPG: Fasting plasma glucose, PPG: Postprandial plasma glucose, DM: Diabetes mellitus

Table 2: Overall safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia (insulin naïve), events/patient-year				
All	505	0.9	0.5	−0.4
Nocturnal		0.3	0.2	−0.1
Major		0.0	0.0	0.0
Hypoglycaemia (insulin users), events/patient-year				
All	225	20.5	0.7	−19.8
Nocturnal		6.8	0.3	−6.5
Major		0.9	0.0	−0.9
Body weight, kg				
Insulin naïve	308	62.0	62.1	0.1
Insulin users	138	64.7	65.0	0.3
Lipids and BP (insulin naïve)				
LDL-C, mean (mmol/L), (N, % <2.5 mmol/L)	203	2.4 (106, 52.2)	2.3 (49, 77.8)	−0.1
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)	201	1.2 (163, 81.1)	1.2 (60, 95.2)	0.0
TG, mean (mmol/L), (N, % <2.3 mmol/L)	204	1.8 (153, 75.0)	1.5 (55, 91.7)	−0.3
SBP, mean (mmHg), (N, % <130 mmHg)	378	133.8 (106, 28.0)	125.6 (128, 68.8)	−8.2
Lipids and BP (insulin users)				
LDL-C, mean (mmol/L), (N, % <2.5 mmol/L)	103	2.5 (53, 51.5)	2.3 (26, 78.8)	−0.2
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)	105	1.1 (89, 84.8)	1.2 (31, 91.2)	0.1
TG, mean (mmol/L), (N, % <2.3 mmol/L)	105	1.9 (82, 78.1)	1.6 (29, 90.6)	−0.3
SBP, mean (mmHg), (N, % <130 mmHg)	186	130.5 (67, 36.0)	124.8 (64, 63.4)	−5.7
Quality of life, VAS scale (0-100)	9	57.6	67.6	10.0
Insulin naïve	9	57.1	67.2	10.1

BP: Blood pressure, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, TG: Triglycerides, SBP: Systolic blood pressure, VAS: Visual analogue scale
switched to biphasic insulin aspart for both insulin naïve and insulin user groups [Table 7].

Basal + insulin aspart ± OGLD

Of the total cohort, 19 patients on started on basal + insulin aspart ± OGLD, of which 5 (26.3%) were insulin naïve and 14 (73.7%) were insulin users. After 24 weeks of treatment, hypoglycaemic events reduced from 17.6 events/patient-year to 0.0 events/patient-year in insulin user group, whereas hypoglycaemia remained nil in insulin naïve group similar to that of baseline. Body weight increased in insulin naïve group whereas it decreased in insulin users. Quality of life improved after 24 weeks of treatment [Table 8 and 9].

Mean HbA1c and FPG values improved from baseline to study end in those who started on or were switched to basal + insulin aspart ± OGLDs for insulin naïve group whereas all aspects of glycaemic control improved in the insulin user group [Table 10].

Insulin detemir ± OGLD

Of the total cohort, 88 patients started on insulin detemir ± OGLD, of which 83 (94.3%) were insulin naïve and 05 (5.7%) were insulin users. After 24 weeks of starting or switching to insulin detemir, hypoglycaemic events reduced from 0.3 events/patient-year to 0.0 events/patient-year in

Table 3: Insulin dose

Insulin dose, U/day	Insulin naïve N	Baseline N	Week 24 N
Pre-study 0	504	20.2	349
Baseline 225	29.6	148	

Table 4: Overall efficacy data

Parameter	N Baseline	Week 24	Change from baseline
HbA1c, mean (%)	9.5	7.9	-1.5
FPG, mean (mmol/L)	11.8	5.9	-5.9
PPPG, mean (mmol/L)	16.5	8.6	-7.9

Table 5: Biphasic insulin aspart±oral glucose-lowering drug efficacy data

Parameter	N Baseline	Week 24	Change from baseline
HbA1c, mean (%)	9.6	7.9	-1.7
FPG, mean (mmol/L)	12.2	5.9	-6.3
PPPG, mean (mmol/L)	17.3	8.6	-8.7

HbA1c: Glycated haemoglobin A1c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose

Table 6: Insulin dose

Insulin dose, U/day	Pre-study N	Baseline N	Week 24 N
Insulin naïve 0	365	20.3	275
Insulin users 153	153	28.1	117

Table 7: Biphasic insulin aspart±oral glucose-lowering drug efficacy data

Parameter	N Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year	0.0	0.0	0.0
Insulin naïve 14	17.6	0.0	-17.6
Insulin users 2	68.0	69.5	1.5

Body weight, kg

Parameter	N Baseline	Week 24	Change from baseline
Insulin naïve 5	75.9	75.5	-0.4
Insulin users 6	56.5	69.2	12.7

Quality of life, VAS scale (0-100)

Parameter	N Baseline	Week 24	Change from baseline
Insulin naïve 2	57.0	67.5	10.5
Insulin users 6	56.5	69.2	12.7

HbA1c: Glycated haemoglobin A1c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose

Table 8: Basal+insulin aspart±oral glucose-lowering drug safety data

Parameter	N Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year	0.0	0.0	0.0
Insulin naïve 14	17.6	0.0	-17.6
Insulin users 2	68.0	69.5	1.5

Body weight, kg

Parameter	N Baseline	Week 24	Change from baseline
Insulin naïve 5	75.9	75.5	-0.4
Insulin users 6	56.5	69.2	12.7

Quality of life, VAS scale (0-100)

Parameter	N Baseline	Week 24	Change from baseline
Insulin naïve 2	57.0	67.5	10.5
Insulin users 6	56.5	69.2	12.7

VAS: Visual analogue scale

Table 9: Insulin dose

Insulin dose, U/day	Pre-study N	Baseline N	Week 24 N
Insulin naïve 0	5	40.8	2
Insulin users 14	14	47.7	6

HbA1c: Glycated haemoglobin A1c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose
insulin naïve group and from 26.0 events/patient-year to 0.0 events/patient-year in insulin users. Quality of life improved after 24 weeks of treatment [Table 11 and 12].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to insulin detemir ± OGLDs for both insulin-naïve and insulin user groups [Table 13].

Insulin aspart ± OGLD

Of the total cohort, 74 patients started on insulin aspart ± OGLD was 74, of which 41 (55.4%) were insulin naïve and 33 (44.6%) were insulin users. After 24 weeks of treatment, hypoglycaemic events reduced from 24.0 to 0.0 in insulin users group whereas hypoglycaemia increased from 0.6 events/patient-year to 1.5 events/patient-year in insulin naïve group. Quality of life improved after 24 weeks [Table 14 and 15].

Table 10: Basal+insulin aspart±oral glucose-lowering drug efficacy data

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control				
(insulin naïve)				
HbA1c, mean (%)	2	11.2	8.7	−2.5
FPG, mean (mmol/L)	2	12.2	5.8	−6.4
Glycaemic control				
(insulin users)				
HbA1c, mean (%)	6	9.8	8.6	−1.2
FPG, mean (mmol/L)	6	12.3	5.5	−6.8
PPPG, mean (mmol/L)	1	16.2	7.2	−9.0

HbA1c: Glycated haemoglobin A1c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose

Table 11: Insulin detemir±oral glucose-lowering drug safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year				
Insulin naïve	83	0.3	0.0	−0.3
Insulin users	5	26.0	0.0	−26.0
Body weight, kg				
Insulin naïve	29	66.3	64.8	−1.5
Insulin users	1	82.5	83.5	1.0
Quality of life, VAS scale (0-100)				
Insulin naïve	40	57.7	67.6	9.9
Insulin users	1	55.0	66.0	11.0

VAS: Visual analogue scale

Table 12: Insulin dose

Insulin dose, U/day	N Pre-study	N Baseline	N Week 24			
Insulin naïve	0	83	43	14.3		
Insulin users	5	17.2	5	15.2	1	20.0
mean HbA1c and FPG values improved in the insulin user population [Table 16].

CONCLUSION

Our study reports improved glycaemic control following 24 weeks of treatment with any of the insulin analogues (Biphasic insulin aspart; basal + insulin aspart; insulin detemir; insulin aspart) with or without OGLD. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Quality of life improved in biphasic insulin aspart, insulin detemir and insulin aspart groups. Overall, an increase in body weight was noted for both insulin naïve and users group. Though the findings are limited by number of patients, still the trend indicates that insulin analogues can be considered effective and possess a safe profile for treating type 2 diabetes in North East India.

REFERENCES

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53.
2. Shetty P. Public health: India’s diabetes time bomb. Nature 2012;485:S14-6.
3. Korytkowski M. When oral agents fail: Practical barriers to starting insulin. Int J Obes Relat Metab Disord 2002;26 Suppl 3:S18-24.
4. Hirsch IB. Insulin analogues. N Engl J Med 2005;352:174-83.
5. Shah SN, Litwak L, Haddad J, Chakkarwar PN, Hajjaji I. The A1chieve study: A 60 000-person, global, prospective, observational study of basal, meal-time, and biphasic insulin analogs in daily clinical practice. Diabetes Res Clin Pract 2010;88 Suppl 1:S11-6.

Cite this article as: Sanyal D, Basu D, Saikia M. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the North East India cohort of the A1chieve study. Indian J Endocr Metab 2013;17:S506-10.

Source of Support: Nil, Conflict of Interest: None declared.