Design, Synthesis and Antibacterial Activities of Triazole-pyrimidine Derivatives as SecA Inhibitors

FANTE BAMBA (✉ fante_bamba1@yahoo.fr)  
Université Felix Houphouët-Boigny  https://orcid.org/0000-0001-5552-6892

Tchambaga Camara  
Université Felix Houphouët-Boigny

Coulibali Sioménan  
Université Felix Houphouët-Boigny

Sagne Jacques Akpa  
Université Félix Houphouët-Boigny: Université Felix Houphouët-Boigny

Adjou Ané  
Université Felix Houphouët-Boigny

Research Article

Keywords: SecA inhibitor, small molecule, antimicrobial, target, drug-resistant

DOI: https://doi.org/10.21203/rs.3.rs-476874/v1

License: ☺️ ☀️ This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

SecA, a key component of bacterial Sec-dependent secretion pathway, is an attractive target for exploring novel antimicrobials. Along this line, we reported optimization of a hit bistriazole (SCA 21) which has been previously identified as a SecA inhibitor. Herein we describe the synthesis of some novel triazole-pyrimidine derivative by structural modification of SCA 21. Some of them have been evaluated for their antimicrobial activity against against Escherichia coli NR698 (a leaky mutant), Staphylococcus aureus and Bacillus anthracis Sterne.

Introduction

Bacterial pathogens' infectious diseases have become a serious clinical issue in recent years because of the emergence and spread of drug resistance.\(^1\) Thus, the development of novel antibacterial agents, especially those with a new drug target and/or with the capability to overcome drug resistance is an urgent need.\(^2\) In bacterial cells, more than 30% of proteins become functional after being transported outside the cytoplasm. Trans-membrane movement of most of these proteins is via the Sec pathway (i.e. secretion pathway). SecA constitute a key enzyme of the bacterial protein secretion (Sec) pathways. SecA ATPase, one of the essential components of the Sec machinery provides a major pathway to aid translocation of cytosol proteins across or into the cytoplasmic membrane.\(^3–9\) SecA is considered as an attractive target by researchers in order to find novel antibacterial drugs because it is a conserved and essential protein in all bacteria and absent in humans.\(^10, 11\) Several studies carried out have shown that inhibition of SecA can lead to bacteriostatic and bactericidal effects.\(^12\) From this perspective, we are interested working in targeting SecA, which is a critical protein secretion machinery essential for bacterial survival.\(^2, 11, 13\) Currently, small organic molecules described in the literature as SecA inhibitors mainly include Rose Bengal,\(^14\) bisthiouracil,\(^15\) bistriazole\(^16\) and their derivatives,\(^17\) thiazolo[4,5-d]pyrimidine derivatives\(^18\) and others.\(^19–22\) In order to find new SecA inhibitors, it is worthwhile to explore the chemistry space of known inhibitor to increase structural diversity.

Compounds containing triazole or pyrimidine own a wide range of biological activities including antibacterial,\(^23, 24\) antifungal,\(^25, 26\) anti-tubercular,\(^27\) and antiviral,\(^28, 29\) among others.\(^30, 31\) Due to their excellent biological activities, herein we reported the design, synthesis and antibacterial activities of some compounds containing both triazole and pyrimidine motifs (Schemes 1 and 2), modified from compound 1 (SCA 21) in Fig. 1.

The results and implications in guiding future work in this area are described below.

Results And Discussion

Chemistry
The compound in Figure 1 has been identified as SecA inhibitor for further optimization in earlier work [32].

To enhance the potency, we began to simplify the structure by dissecting the lead compound in half and removing part A. Then by changing the methyl to an alkylamine which have been biotinylated, we hypothesize that these compounds, due to the presence of several nitrogen atoms, would have the ability to form more hydrogen bonding interactions with the target protein SecA, and would be beneficial in enhancing antibacterial activity. Also, by changing the methyl to an azidopentyl, we think that could improve the potency because sodium azide is a well-known SecA inhibitor [33]. The general strategy of analogue design is shown in Figure 2.

Compounds synthesis began by reacting commercially available benzoyl chloride with hydrazine carbothioamide, followed by self-condensation of 2 in the presence of 5% sodium hydroxide under reflux conditions to afford 3 [34] (Scheme 1). Compounds 7 and 15 were prepared by following published procedures in Scheme 2 [35] and Scheme 4 [36]. Compounds 8, 9, 17 and 18 were synthesized by reaction of intermediate 7 and 15 with 2,4,6-trichloro pyrimidine at room temperature under weakly basic conditions [37]. Compounds 10 and 19 were obtained by reaction of 3 with respectively 8 and 17 in the presence of potassium carbonate in acetonitrile. Then compounds 10 were deprotonated in trifluoroacetic acid at room temperature to give compounds 11 [38]. The reaction of 11 with 12 gave compounds 13a, b via a nucleophilic attack by unprotonated amine on the ester group, followed by an amide bond formation and release of N-hydroxysuccinimide (Scheme 3) [39]. SCA 107 was synthesized and tested in our earlier work [32].

**Biological evaluation**

The newly synthesized compounds 11a (SCA 257), 11b (SCA 255), 13b (SCA 256) and 19 (SCA 259) were first screened for their *in vitro* antibacterial activity using a truncated version of *E. coli* SecA, EcSecAN68, at 25 μM and at 50 μM. There were three compounds (SCA255, SCA256 and SCA259) that showed greater than 50% inhibition at 50 μM, but only one compound (SCA259) showed more than 50% inhibition at 25 Mm, as shown in Figure 2. SCA 259 showed more potent inhibition against EcSecAN68 than SCA107, which was one of the best triazole-primidine inhibitors from our previous study with IC₅₀ at 30 μM against EcSecAN68 [32]. SCA 259 was then evaluated further at various concentrations to allow the determination of IC₅₀ value at 5.9 μM. Thus, SCA 259 was more potent than the lead compound SCA21 with IC₅₀ at 18 μM against EcSecAN68 [32]. These results suggested that the azide pentyl group is beneficial for potent inhibitory activity. The biotinylated compound SCA 256 was more active than compound SCA 255 with the amine group.

Compounds SCA 257 and SCA 259 were also evaluated for their antimicrobial activities against *B. anthracis Sterne*, *S. aureus* 6538 and *E. coli* NR698. The results are shown in Table 1. It showed that SCA 259 has potent inhibitory activity against the three tested bacterial strains, higher than that of the lead
compound SCA 21\textsuperscript{[32]}. Compound SCA 259 showed MIC at 3.1 μM against \textit{B. anthracis Sterne}, at 1.6 μM against \textit{S. aureus} 6538 and at 12.5 μM against \textit{E. coli} NR698, which are comparable to some of our best compounds in this class.

Table 1

| MIC (μM) | Strains          |
|---------|------------------|
|         | SCA257 | SCA259 | SCA21\textsuperscript{[32]} |
| \textit{B. anthracis Sterne} | 100     | 3.1    | 6.25          |
| \textit{S. aureus} 6538     | 50      | 1.6    | 12.5          |
| \textit{E. coli} NR698     | >100    | 12.5   | 25            |

Overall, the results indicate very useful information for researchers interested in designing small molecules SecA inhibitors for improved potency.

**Conclusion**

Some novel triazole-pyrimidine derivatives were designed, synthesized and evaluated as SecA inhibitors. Compound SCA 259 with azide pentyl group was the most potent analogue developed from this study. This compound expressed better inhibitory activity against SecA ATPase than that of the known inhibitor SCA 21.

**Experimental**

All chemical reagents and solvents used were of reagent grade or purified using standard methods. TLC analyses were conducted on silica gel plates (Sorbent Silica G UV254). Column chromatography was carried out on flash silica gel (Sorbent 230–400 mesh). NMR spectra were recorded at $^1$H (400 MHz) and $^{13}$C (100 MHz) on a Bruker instrument. Coupling constants ($J$) and chemical shifts ($\delta$) are given in hertz and ppm respectively, using TMS ($^1$H NMR) and solvents ($^{13}$C NMR) as internal standards.

**General procedure for the synthesis of 8a, b**

To a solution of 7 (1.04 mmol) in acetonitrile (5 mL) was added $\text{K}_2\text{CO}_3$ (434 mg, 3.14 mmol) and 2,4,6-trichloropyrimidine (230 mg, 1.25 mmol) and the mixture was stirred at room temperature. Upon completion, the resulting mixture was diluted with ethyl acetate and then washed with water and brine. The organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/AcOEt) of the residue gave 8.
tert-butyl (2-((4,6-dichloropyrimidin-2-yl)thio)ethyl)carbamate 8a (287 mg, 85%)

\[ ^1\text{H} \text{NMR (400 MHz, DMSO-}d_6 \text{)} \delta 7.81 (s, 1H), 7.09 (s, 1H), 3.24 (d, \text{J} = 2.6 \text{ Hz, 4H}), 1.36 (s, 9H); ^{13}\text{C NMR (DMSO-}d_6 \text{)}: \delta 173.1, 164.0, 155.9, 118.2, 79.5, 40.1, 32.2, 28.4. \]

tert-butyl (5-((4,6-dichloropyrimidin-2-yl)thio)pentyl)carbamate 8b (331 mg, 87%).

\[ ^1\text{H} \text{NMR (400 MHz, CDCl}_3-\text{d)} \delta 7.10 (s, 1H), 4.52 (s, 1H), 3.19 (t, \text{J} = 7.3 \text{ Hz, 2H}), 3.16 - 3.05 (m, 2H), 1.73 (q, \text{J} = 7.3 \text{ Hz, 2H}), 1.51 (d, \text{J} = 52.9 \text{ Hz, 14H}); ^{13}\text{C NMR (CDCl}_3-\text{d)}: \delta 173.1, 164.0, 155.9, 118.2, 79.5, 40.3, 36.7, 29.9, 29.2, 28.4, 25.6. \]

**General procedure for the synthesis of 10a, b**

To a solution of 3 (98 mg, 0.31 mmol) in acetonitrile (5 mL) was added K$_2$CO$_3$ (86.5 mg, 0.62 mmol) and compound 8 (0.20 mmol) at room temperature. The mixture was stirred at same temperature for 8 h. The resulting mixture was diluted with ethyl acetate and then washed with water and brine. The organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/AcOEt) of the residue gave 10.

tert-butyl (2-((4-(((5-(3,5-bis(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)-6-chloropyrimidin-2-yl)thio)ethyl)carbamate 10a (100 mg, 83%).

\[ ^1\text{H} \text{NMR (400 MHz, CDCl}_3-\text{d)} \delta 8.59 (s, 2H), 7.92 (s, 1H), 7.23 (s, 1H), 4.96 (s, 1H), 3.47 (t, \text{J} = 6.4 \text{ Hz, 2H}), 3.35 (t, \text{J} = 6.5 \text{ Hz, 2H}), 1.45 (s, 9H); ^{13}\text{C NMR (CDCl}_3-\text{d)}: \delta 170.9, 170.1, 159.5, 159.4, 155.8, 148.5, 132.2, 132.2, 131.9, 131.6, 126.0, 124.6, 122.4, 121.91, 113.2, 79.0, 38.6, 28.5, 26.4. \]

tert-butyl (5-((4-(((5-(3,5-bis(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)-6-chloropyrimidin-2-yl)thio)pentyl)carbamate 10b (103 mg, 80%).

\[ ^1\text{H} \text{NMR (400 MHz, CDCl}_3-\text{d)} \delta 8.64 (s, 2H), 7.96 (s, 1H), 7.07 (s, 1H), 4.66 (s, 1H), 3.15 (m, 4H), 1.75 (m, 2H), 1.57 (m, 4H), 1.47 (s, 9H); ^{13}\text{C NMR (CDCl}_3-\text{d)}: \delta 173.6, 172.9, 160.2, 159.6, 155.8, 149.9, 135.0, 132.2, 131.9, 126.7, 125.9, 123.2, 122.6, 113.6, 77.4, 39.7, 30.1, 28.9, 28.5, 27.5, 26.1. \]
General procedure for the synthesis of 11a, b

10 (0.13 mmol) and trifluoroacetic acid trifluoroacetic acid (2.64 mg, 0.26 mmol) was stirred at room temperature until no further gas was released. Diethyl ether (5 ml) was added into the clear solution and stirred. After the solid came out, the mixture was suction filtered. The solid was washed by diethyl ether and dried in a vacuum. The solid was dissolved in water and 10% NaOH was added drop by drop into the solution to get white crystals in an ice bath. After suction filtration, the crystals were washed with water and dried in a vacuum to obtain 11.

2-((4-((5-(3,5-bis(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)-6-chloropyrimidin-2-yl)thio)ethanamine 11a (50 mg, 0.1 mmol).

76% ¹H NMR (MeOD-d₄): δ 8.64 (s, 2H), 8.07 (s, 1H), 7.08 (s, 1H), 3.45 (t, J = 6.4 Hz, 2H), 3.29 (t, J = 6.8 Hz, 2H); ¹³C NMR (MeOD-d₄): δ 170.96, 170.10, 159.51, 159.39, 148.47, 132.25, 132.17, 131.92, 131.58, 126.00, 124.62, 122.43, 121.91, 113.19, 38.63, 26.40. HRMS (ESI): Calc. for C₁₆H₁₀ClF₆N₆S₂ [M-H⁺]: 499.0001; found: 499.0010.

5-((4-((5-(3,5-bis(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)-6-chloropyrimidin-2-yl)thio)pentan-1-amine 11b (64 mg, 0.12 mmol), 74%.

¹H NMR (MeOD-d₄): δ 8.64 (s, 2H), 8.02 (s, 1H), 6.84 (s, 1H), 3.36 (s, 1H), 3.10 (t, J = 7.6 Hz, 2H), 2.92 (t, J = 7.6 Hz, 2H), 1.69 (m, 4H), 1.47 (m, 2H); ¹³C NMR (MeOD-d₄): δ 173.62, 172.93, 160.24, 159.62, 149.97, 135.04, 132.25, 131.92, 126.74, 125.89, 123.18, 122.59, 113.59, 39.66, 30.14, 28.91, 27.49, 26.10. HRMS (ESI): Calc. for C₁₉H₁₆ClF₆N₆S₂ [M-H⁺]: 541.0471; found: 541.0486.

General procedure for the synthesis of 13a, b

To a solution of 11 (0.09 mmol) in anhydrous DMF (3 mL) and triethylamine (34 μl, 0.24 mmol) was added compound 12 (28 mg, 0.08 mmol). After stirring for 10 h, the reaction solution was concentrated in vacuo at 49 °C. The resulting residue was dissolved in 10 mL of ethyl acetate and washed with 5 mL of a saturated sodium bicarbonate solution. The organic layer was separated and dried over sodium sulfate and concentrated. The crude product was purified by column chromatography (MeOH : DCM, 3:7) to afford compound 13.
N-(2-((4-((5-(3,5-bis(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)-6-chloropyrimidin-2-yl)thio)ethyl)-5-((3aR,4R,6aS)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl) pentanamide 13a (96 mg, 73%).

$^1$H NMR (DMSO-$_d$$_6$): δ 8.61 (s, 2H), 8.31 (s, 1H), 8.03 (t, $J$ = 5.2 Hz, 1H), 7.39 (s, 1H), 6.40 (s, 1H), 6.35 (s, 1H), 4.30 (m, 1H), 4.12 (m 1H), 3.18 (m, 2H), 3.07 (m, 2H), 2.85 (dd, $J$ = 5.2 Hz, 1H), 2.60 (d, $J$ = 12.4 Hz, 1H), 2.00 (m, 2H), 1.59 (m, 1H), 1.43 (m, 3H), 1.25 (m, 3H); $^{13}$C NMR (DMSO-$_d$$_6$): δ 173.47, 172.79, 169.03, 163.19, 158.96, 131.83, 131.50, 126.92, 124.86, 124.10, 122.15, 113.63, 61.48, 59.67, 55.84, 40.29, 37.77, 35.51, 29.57, 28.58, 28.44, 25.59. HRMS (ESI): Calc. for C$_{26}$H$_{25}$ClF$_6$N$_8$O$_2$S$_3$ [M$^+$]: 727.0934; found: 727.0930.

N-(5-((4-((5-(3,5-Bis(trifluoromethyl) phenyl)-4H-1,2,4-triazol-3-yl) thio)-6- chloropyrimidin-2-yl) thio) pentyl)-5-((3aR,4R,6aS)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl) pentanamide 13b (51 mg, 71%).

$^1$H NMR (DMSO-$_d$$_6$): δ 8.61 (s, 2H), 8.32 (s, 1H), 7.75 (t, $J$ = 5.2 Hz, 1H), 7.32 (s, 1H), 6.43 (s, 1H), 6.36 (s, 1H), 4.29 (m, 1H), 4.12 (m 1H), 3.10 (m, 3H), 2.97 (m, 2H), 2.80 (dd, $J$ = 5.2 Hz, 1H), 2.70 (d, $J$ = 12.4 Hz, 1H), 2.03 (t, $J$ = 7.2 Hz, 2H), 1.59 (m, 3H), 1.43 (m, 3H), 1.23 – 1.36 (m, 7H); $^{13}$C NMR (DMSO-$_d$$_6$): δ 173.7, 172.3, 168.7, 163.2, 159.0, 131.8, 131.5, 130.9, 126.8, 124.8, 124.0, 122.1, 113.5, 51.5, 59.6, 55.9, 40.2, 38.5, 35.6, 29.6, 28.9, 28.6, 28.4, 28.2, 25.9, 25.7. HRMS-ESI: Calc. for C$_{29}$H$_{32}$ClF$_6$N$_8$O$_2$S$_3$ [M$^+$]: 769.1403; found: 769.1390.

2-((5-Azidopentyl) thio)-4, 6-dichloropyrimididine 17

To a solution of 7 (152 mg, 1.04 mmol) in acetonitrile (5 mL) was added K$_2$CO$_3$ (434 mg, 3.14 mmol) and compound 10 (230 mg, 1.25 mmol) at room temperature. The mixture was stirred at same temperature for 8 h. The resulting mixture was diluted with ethyl acetate and then washed with water and brine. The organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/AcOEt = 9:1) of the residue gave 17 (310 mg, 84%). $^1$H NMR (CDCl$_3$- $d$): δ 7.18 (s, 1H), 3.23 (t, $J$ = 6.8 Hz, 2H), 3.23 (t, $J$ = 7.2 Hz, 2H), 1.76 (m, 2H), 1.66 (m, 2H), 1.55 (m, 2H); $^{13}$C NMR (CDCl$_3$-d): δ 174.8, 159.9, 159.8, 116.5, 51.1, 29.7, 28.2, 25.7.
2-((5-Azidopentyl) thio)-4-((5-(3, 5-bis(trifluoromethyl) phenyl)-4H-1, 2, 4-triazol-3-yl) thio)-6-chloro pyrimidine 19 (99 mg, 83%).

To a solution of 3 (98 mg, 0.31 mmol) in acetonitrile (5 mL) was added K$_2$CO$_3$ (86.5 mg, 0.62 mmol) and compound 17 (61 mg, 0.20 mmol) at room temperature. The mixture was stirred at same temperature for 8 h. The resulting mixture was diluted with ethyl acetate and then washed with water and brine. The organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/AcOEt = 7:3) of the residue gave 19

$^1$H-NMR (CDCl$_3$-d): $\delta$ 13.01 (s, 1H), 8.61 (s, 2H), 7.94 (s, 1H), 7.17 (s, 1H), 3.34 (t, $J = 6.4$ Hz, 2H), 3.25 (t, $J = 7.2$ Hz, 2H), 1.80 (m, 2H), 1.66 (m, 2H), 1.58 (m, 2H); $^{13}$C-NMR (CDCl$_3$-d) $\delta$ 173.7, 163.4, 159.6, 147.2, 132.3, 132.0, 126.4, 124.5, 123.1, 121.8, 118.8, 115.5, 113.9, 51.1, 29.7, 28.3, 25.7. HRMS-ESI: Calc. for C$_{19}$H$_{14}$ClF$_6$N$_8$S$_2$ [M-H$^-$]: 567.0376; found: 567.0371.

**ATPase assays:**

Inhibition on ATPase activity of EcSecAN68 was determined by malachite green colorimetric assay as previously described $^{[17]}$. IC$_{50}$ is defined as the concentration of the compound that inhibits 50% of ATPase activity.

**Bacteriostatic effect:**

Bacteriostatic effects were evaluated at 37°C in 96-well microtitier plates as previously described $^{[17]}$. Minimum inhibitory concentration (MIC) is the lowest concentration of compounds at which bacterial cells were not able to grow at tested condition.

**Declarations**

**Acknowledgments**

We acknowledge Binghe Wang and Phang-Cheng Tai respectively for the synthesis and the biological evaluation in their labs in Georgia State University. FB was a visiting scholar at GSU when conducting the lab research with the partial financial support from the Islamic Development Bank (IDB) under a merit scholarship programme. Part of the research was conducted with the partial financial support of the National Institute of Health awarded to PCT and BW (AI104168).

**References**
1. Rice L. B., The clinical consequences of antimicrobial resistance. Curr Opin Microbiol. 2009, 12 (5), 476-81
2. Smets, D.; Loos, M. S.; Karamanou, S.; Economou, A., Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway. Protein J 2019, 38 (3), 262-273.
3. Kusters, I.; Driessen, A. J., SecA, a remarkable nanomachine. Cell Mol Life Sci 2011, 68, 2053-66
4. Hsieh, Y. H.; Zhang, H.; Lin, B. R.; Cui, N.; Na, B.; Yang, H.; Jiang, C.; Sui, S. F.; Tai, P. C., SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011, 286, 44702-9.
5. Banerjee, T.; Zheng, Z.; Abolafia, J.; Harper, S.; Oliver, D., The SecA protein deeply penetrates into the SecYEG channel during insertion, contacting most channel transmembrane helices and periplasmic regions. J Biol Chem 2017, 292, 19693-19707
6. Findik, B. T.; Smith, V. F.; Randall, L. L., Penetration into membrane of amino-terminal region of SecA when associated with SecYEG in active complexes. Protein Sci 2018, 27, 681-691.
7. Cranford-Smith, T.; Huber, D., The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2018, 365.
8. Ma, C.; Wu, X.; Sun, D.; Park, E.; Catipovic, M. A.; Rapoport, T. A.; Gao, N.; Li, L., Structure of the substrate-engaged SecA-SecY protein translocation machine. Nat Commun 2019, 10, 2872.
9. Gupta, R.; Toptygin, D.; Kaiser, C. M., The SecA motor generates mechanical force during protein translocation. Nat Commun 2020, 11, 3802.
10. Rao C V S, De Waelheyns E, Economou A, Anné J. Antibiotic targeting of the bacterial secretory pathway. Biochim Biophys Acta. 2014 Aug;1843(8):1762-83. doi: 10.1016/j.bbamcr.2014.02.004. Epub 2014 Feb 15. PMID: 24534745.
11. Chaudhary, A. S.; Chen, W.; Jin, J.; Tai, P. C.; Wang, B., SecA: a potential antimicrobial target. Future Med Chem 2015, 7 (8), 989-1007.
12. Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett. 2018 Aug 1;365(15)
13. Catipovic, M. A.; Bauer, B. W.; Loparo, J. J.; Rapoport, T. A., Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. Embo j 2019, 38 (9).
14. Cui, J.; Jin, J.; Hsieh, Y. H.; Yang, H.; Ke, B.; Damera, K.; Tai, P. C.; Wang, B., Design, synthesis and biological evaluation of rose bengal analogues as SecA inhibitors. ChemMedChem 2013, 8 (8), 1384-93.
15. Chen, W.; Huang, Y. J.; Gundala, S. R.; Yang, H.; Li, M.; Tai, P. C.; Wang, B., The first low microM SecA inhibitors. Bioorg Med Chem 2010, 18 (4), 1617-25.
16. Li, M.; Huang, Y. J.; Tai, P. C.; Wang, B., Discovery of the first SecA inhibitors using structure-based virtual screening. Biochem Biophys Res Commun 2008, 368 (4), 839-45.
17. Chaudhary, A. S.; Jin, J.; Chen, W.; Tai, P. C.; Wang, B., Design, syntheses and evaluation of 4-oxo-5-cyano thiouracils as SecA inhibitors. *Med. Chem.* 2015, 23, 105-17.

18. Jang, M. Y.; De Jonghe, S.; Segers, K.; Anné, J.; Herdewijn, P., Synthesis of novel 5-amino-thiazolo[4,5-d]pyrimidines as E. coli and S. aureus SecA inhibitors. *Bioorg Med Chem* 2011, 19 (1), 702-14.

19. Akula, N.; Trivedi, P.; Han, F. Q.; Wang, N., Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. *Eur J Med Chem* 2012, 54, 919-24.

20. Akula, N.; Zheng, H.; Han, F. Q.; Wang, N., Discovery of novel SecA inhibitors of Candidatus Liberibacter asiaticus by structure based design. *Bioorg Med Chem Lett* 2011, 21 (14), 4183-8.

21. Bamba, F.; Jin, J.; Chaudhary, A.S. Tai, PC, Wang B. Design, synthesis, and biological evaluation of pyrimidine analogs as SecA inhibitors. *Med Chem Res* (2021). https://doi.org/10.1007/s00044-021-02717-6

22. Bamba, F.; Jinn, J.; Tai, P. C.; Wang, B., Synthesis and biological evaluation of novel 4-oxo-5-cyano thiouracil derivatives as SecA inhibitors. *Cmmun.* 2020, 26, https://doi.org/10.1515/hc-2020-0100.

23. Eswaran S.; Adhikari AV, Shetty NS, Synthesis and antimicrobial activities of quinolone derivatives carring 1,2,4-triazole moiety. European Journal of Medicinal Chemistry 2009, 44, 4637-4647.

24. Schneider, S. Hawser, and K. Islam, “Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria,” *Bioorganic and Medicinal Chemistry Letters*, vol. 13, no. 23, pp. 4217–4221, 2003.

25. Barot K. P.; Manna K. S.; Ghate M. D. Design, synthesis and antimicrobial activities of some novel 1,3,4-thiadiazole, 1,2,4-triazole-5-thione and 1,3-thiazolan-4-une derivatives of benzimidazole. Journal of Saudi Chemical Society, 2013

26. Smith and D. Andes, “Therapeutic drug monitoring of antifungals: pharmacokinetic and pharmacodynamic consider-ations,” *Therapeutic Drug Monitoring*, vol. 30, no. 2, pp. 167–172, 2008.

27. Afreen F.; Chakraborty R.; Thakur A. Synthesis of a triazole derivative and evaluation of their antituberculer activity. International Journal of Pharmaceutical Chemistry 2015, 5, 343-349.

28. Pandey V. K.; Tusi Z.; Tusi S.; Joshi M. Synthesis and biological evaluation of some novel 5-[(3-aralkylamido/imidoalkyl)phenyl]-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as antiviral agents. ISRN Organic Chemistry 2012, 1-7.

29. de Clercq, “Antiviral drugs in current clinical use,” *Journal of Clinical Virology*, vol. 30, no. 2, pp. 115–133, 2004.

30. Vinita Sharma, Nitin Chitranshi, Ajay Kumar Agarwal. Significance and Biological Importance of Pyrimidine in the Microbial World, 2014

31. Parminder K.; Anshui C. 1,2,4-triazole: a review of pharmacological activities. Int. Res. J. Pharm. 2017, 8

32. Cui, J. Jin, A. S. Chaudhary, Y.-h. Hsieh, H. Zhang, C. Dai, K. Damera, W. Chen, P. C. Tai, B. Wang, ChemMedChem 2016, 11, 43.
33. Nakane A.; Takamatsu H.; Oguro A.; Sadale Y.; Nakamura K.; Yamane K. Microbiology 1995, 141, 113-121.
34. Plech T.; Wujec M.; Siwek A.; Kosikowska U.; Malm A. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety J. Med. 2011, 46, 241
35. Adegboyega K. Oyelere, Po C. Chen, Xiaohua Huang, Ivan H. El-Sayed, and Mostafa A. El-Sayed. Peptide-Conjugated Gold Nanorods for Nuclear Targeting, Bioconjugate Chem. 2007, 18, 1490.
36. Leysen D.; Defert O.; Kaval N.; Blom P.; Boland S. Heterocyclic amides as rock inhibitors, 2011, WO2011107608A1
37. S. Patil, R. P. Jadhav, A. A. Patil, S. V. Patil, V. D. Bobade, J. Chem. Pharm. Res. 2010, 2, 38 – 51.
38. Zhao, Y., Wang, R. & Liu, M. The comparison of protecting methods to the amino group in 2-Aminomethylphenylacetic acid. Res Chem Intermed 40, 1637–1640 (2014). https://doi.org/10.1007/s11164-013-1069-4
39. Li K, Chen Y, Li S, Nguyen HG, Niu Z, You S, Mello CM, Lu X, Wang Q. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjugate Chem. 2010, 21(7),1369-77. doi: 10.1021/bc900405q. PMID: 20499838.

Figures

![Chemical structure of SCA 21](image_url)

**Figure 1**

Please see the Manuscript file for the complete figure caption
Figure 2

Please see the Manuscript file for the complete figure caption
Figure 3

Please see the Manuscript file for the complete figure caption.

Figure 4

Please see the Manuscript file for the complete figure caption.
Figure 5

Please see the Manuscript file for the complete figure caption
Figure 6

Please see the Manuscript file for the complete figure caption

Figure 7

Please see the Manuscript file for the complete figure caption