Lymph node Ratio is Superior to AJCC N Stage for Predicting Recurrence in Papillary Thyroid Carcinoma

Sandeep Kumar Parvathareddy1*, Abdul K. Siraj1*, Zeeshan Qadri1, Saeeda O. Ahmed1, Felisa DeVera1, Saif Al-Sobhi2, Fouad Al-Dayel3, and Khawla S. Al-Kuraya1,#

1 Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
2 Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
3 Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.

* S.K.P. and A.K.S. contributed equally to this work.

Running title: LNR predicts recurrence in PTC

Keywords: Papillary thyroid carcinoma; lymph node ratio; recurrence; lymph node stage; ATA risk category.

Word count: 2483

Correspondence to:

Khawla S. Al-Kuraya, MD, FCAP
Human Cancer Genomic Research, Research Center
King Faisal Specialist Hospital and Research Cancer
MBC#98-16, P.O. Box 3354
Riyadh 11211, Saudi Arabia
Tel; (966)-1-205-5167
Fax (966)-1-205-5170
Email: kkuraya@kfshrc.edu.sa
Abstract

Objective: Recently, lymph node ratio (LNR) has emerged as an alternative to American Joint Committee on Cancer (AJCC) N stage, with superior prognostic value. The utility of LNR in Middle Eastern Papillary thyroid carcinoma (PTC) remains unknown. Therefore, we retrospectively analyzed a large cohort of 1407 PTC patients for clinico-pathological associations of LNR.

Methods: Receiver operating characteristics (ROC) curve was used to determine the cut-off for LNR. We also performed multivariate logistic regression analysis to determine whether LNR or AJCC N stage was superior in predicting recurrence in PTC.

Results: Based on ROC curve analysis, a cut-off of 0.15 was chosen for LNR. High LNR was significantly associated with adverse clinico-pathological characteristics such as male sex, extrathyroidal extension, lymphovascular invasion, multifocality, bilateral tumors, T4 tumors, lateral lymph node (N1b) involvement, distant metastasis, advanced tumor stage, ATA high risk category and tumor recurrence. On multivariate analysis, we found that LNR was a better predictor of tumor recurrence than AJCC N stage (Odds ratio: 1.96 vs. 1.30; p value: 0.0184 vs. 0.3831). We also found that LNR combined with TNM stage and ATA risk category improved the prediction of recurrence-free survival, compared to TNM stage or ATA risk category alone.

Conclusions: The present study suggests LNR is an independent predictor of recurrence in Middle Eastern PTC. Integration of LNR with 8th edition AJCC TNM staging system and ATA risk stratification will improve the accuracy to predict recurrence in Middle Eastern PTC and help in tailoring treatment and surveillance strategies in these patients.
Introduction

Papillary thyroid carcinoma (PTC) is the commonest subtype of thyroid cancer, accounting for 80-90% of all thyroid cancers, and is generally associated with favorable outcome 1, 2. The incidence of PTC has increased significantly in recent years 3, 4. In Saudi Arabia, PTC is very common among females and ranks second, after breast cancer 5. Although PTC has favorable outcome, 3-10% of patients demonstrated recurrent disease within the first decade after treatment 6, 7. Accurate PTC staging is an important process to help clinicians pursue the best therapeutic options for their patients.

American Joint Committee on Cancer (AJCC) TNM staging system is the most commonly used staging system for thyroid cancer. AJCC nodal (N) stage in PTC is subdivided based on the anatomical location of lymph node (LN) metastasis, being classified as central LN (N1a) or lateral LN (N1b) metastasis 8. Although it has been reported that LN involvement can impact patient’s prognosis and increase the risk of recurrence as well as distant metastasis 9-14, the association of N stage with clinico-pathological markers and prognosis has not been fully explored in PTC from Middle Eastern ethnicity.

In addition, using N stage classification only might underestimate the significance and the extent of burden of the disease since it is based solely on anatomical location of LN metastasis. An additional emerging prognostic factor in PTC is the lymph node ratio (LNR) 15-18. The LNR, which is defined as the number of LNs showing metastatic
deposits divided by the number of LN resected, is suggested to be a superior prognostic variable, better reflecting tumor burden and recurrence prediction \(^{19-22}\).

Disease recurrence is the most relevant oncologic outcome in PTC since mortality rate from PTC is very low \(^{23, 24}\). To date, whether the LNR works better than the 8\(^{th}\) AJCC N staging in predicting recurrence in Middle Eastern PTC remains unknown. In this study, we retrospectively enrolled 1407 PTC patients with clinico-pathological and follow-up information and compared the effectiveness of AJCC 8\(^{th}\) edition N staging and LNR in predicting the recurrence of PTC patients from Middle Eastern ethnicity.
Materials and Methods

Patient selection

One thousand five-hundred and fifteen consecutive unselected PTC patients diagnosed between 1988 and 2018 at King Faisal Specialist Hospital and Research Centre (Riyadh, Saudi Arabia) were available to be included in the study. Patients in whom regional LN could not be evaluated (Nx) were excluded from the study (n = 108). A total of 1407 PTC cases were included for analysis. Cases were identified based on clinical history followed by fine needle aspiration cytology for confirmation. The Institutional Review Board, King Faisal Specialist Hospital and Research Centre, approved this study and the Research Advisory Council (RAC) provided waiver of consent under project RAC # 2211168 and RAC # 2110031.

Clinico-pathological data

Baseline clinico-pathological data were collected from case records and have been summarized in Table 1. Based on the American Thyroid Association (ATA) guidelines, tall cell, hobnail, columnar cell, diffuse sclerosing and insular variants were classified as aggressive variants, whereas classical and follicular variants were classified as non-aggressive variants. Staging of PTC was performed using the eighth edition of AJCC staging system. Only structural recurrence (local, regional or distant) was considered for
analysis. Recurrence was defined as any newly detected tumor (local or distant) or metastatic regional lymph node (LN) based on ultrasound and/or imaging studies in patients who had been previously free of disease following initial treatment. Radioactive iodine (RAI) refractory disease and risk categories were defined based on 2015 ATA guidelines.

Lymph node ratio (LNR) cut-off

LNR was defined as the number of metastatic LNs divided by the number of LNs resected. To determine the cut-off value for LNR, we used the receiver operating characteristic (ROC) curve analysis. Using recurrence-free survival as the outcome, we calculated the area under curve (AUC), sensitivity, specificity and 95% confidence intervals. We found that LNR of 0.15 was related to tumor recurrence with AUC of 0.668, sensitivity of 69% and specificity of 59% (p < 0.001; Figure 1). Hence, a cut-off of 0.15 was chosen for analysis of clinico-pathological associations of LNR.

BRAF and TERT mutation analysis

BRAF and *TERT* mutation data was assessed in our laboratory by Sanger sequencing and has been published by us previously.

PD-L1 immunohistochemistry

PD-L1 immunohistochemical staining and analysis was performed by us previously in PTC. Briefly, tissue microarray slides were processed and stained manually. Primary
antibody against PD-L1 (E1L3N, 1:50 dilution, pH 9.0, Cell Signaling Technology, Danvers, MA) was used. A membranous and/or cytoplasmic staining was observed. Only the membrane staining was considered for scoring. PD-L1 was scored as described previously. Briefly, the proportion of positively stained cells was calculated as a percentage for each core and the scores were averaged across two tissue cores from the same tumor to yield a single percent staining score representing each cancer patient. For the purpose of statistical analysis, the scores were dichotomised. Cases showing expression level of \(\geq 5\% \) were classified as over-expression and those with less than 5\% as low expression.

Follow-up and Study endpoint

Patients were regularly followed by both physical examinations and imaging studies to identify tumor recurrence. The median follow-up was 9.2 years (range 1.0 – 30.1 years). Recurrence-free survival (RFS) was defined as the time (in months) from date of initial surgery to the occurrence of any tumor recurrence (local, regional or distant). In case of no recurrence, date of last follow-up was the study endpoint for RFS.

Statistical analysis

The associations between clinico-pathological variables was performed using contingency table analysis and Chi square tests. Cut-off for LNR was determined using the ROC curve. Logistic regression was used for multivariate analysis. Two-sided tests were used for statistical analyses with a limit of significance defined as p value < 0.05. All data analyses, except ROC curve analysis, were performed using the JMP14.0 (SAS...
Institute, Inc., Cary, NC) software package. ROC curve analysis was performed using MedCalc software, version 10.4.7.0 for Windows (MedCalc, Ostend, Belgium).

Results

Patient and tumor characteristics

Median age of the study cohort was 37.7 years (range = 6.0 – 88.0 years), with a male:female ratio of 1:3.2. Classical variant PTC was the predominant histologic subtype, accounting for 67.3% (948/1407) of all cases, followed by follicular variant (17.0%; 239/1407) and tall cell variant 9.0% (126/1407). Extrathyroidal extension was noted in 44.1% (621/1407) of cases and lymphovascular invasion in 21.2% (298/1407). 49.6% (698/1407) of PTCs were multifocal and 32.5% (457/1407) were bilateral. Tumor recurrence was noted in 19.5% (275/1407) of the entire cohort (Table 1). The median time to first recurrence from initial surgery in our cohort was 2.6 years (range 0.6 – 19.8 years). The median number of LNs removed was 15 with the following N stage distribution: N0 (47.0%; 661/1407), N1a (14.6%; 206/1407), and N1b (38.4%; 540/1407) (Table 1). BRAF mutation was noted in 55.6% (768/1381) PTCs and TERT mutation was seen in 13.9% (181/1305). Both BRAF and TERT mutation data were available for 1299 patients in our cohort. Co-existence of BRAF and TERT mutation was noted in 10.5% (136/1299) of cases.

Incidence and clinico-pathological associations of recurrence in PTC

Tumor recurrence was noted in 19.5% (275/1407) of PTCs during follow-up. Recurrence was significantly associated with adverse clinico-pathological parameters,
such as age ≥ 55 years (p < 0.0001), male sex (p < 0.0001), extrathyroidal extension (p < 0.0001), bilateral tumors (p < 0.0001), T4 tumors (p < 0.0001), LN metastasis (p < 0.0001), distant metastasis (p < 0.0001), advanced tumor stage (p < 0.0001), RAI refractory disease (p < 0.0001) and ATA high risk category (p < 0.0001). On further division of N1 tumors into N1a and N1b, we found that 31.1% (168/540) of N1b tumors developed recurrence, compared to 17.0% (35/206) of N1a tumors. The difference in recurrence rate between N1a and N1b tumors was statistically significant (p = 0.0001) (Table 2).

Clinico-pathological associations of LNR in PTC

Using a cut-off of 0.15, 44.8% (631/1407) of tumors had high LNR. Tumors exhibiting a high LNR were significantly associated with male sex (p = 0.0019), extrathyroidal extension (p < 0.0001), lymphovascular invasion (p = 0.0034), multifocality (p < 0.0001), bilateral tumors (p < 0.0001), T4 tumors (p < 0.0001), N1b (p < 0.0001), distant metastasis (p = 0.0006), advanced tumor stage (p = 0.0246), RAI refractory disease (p < 0.0001) and ATA high risk category (p < 0.0001). We also found a significant association with tumor recurrence (p < 0.0001). Interestingly, high LNR was associated with *BRAF* mutation (p < 0.0001) and PD-L1 expression (p = 0.0031) (Table 3).

LNR is a better predictor of tumor recurrence than AJCC N stage

Since high LNR was associated with tumor recurrence, we sought to determine whether it could be used an independent predictor of recurrence. Using multivariate logistic regression analysis, we found high LNR to be an independent predictor of recurrence.
LNR combined with TNM stage and ATA risk category as a predictor of recurrence-free survival

We next sought to analyze whether LNR combined with TNM stage and ATA risk category could better predict RFS, compared to either of them alone. On multivariate Cox proportional hazards model, we found that compared to TNM stage alone, the hazard ratios of corresponding stage combined with LNR was higher (Table 5). Similarly, the hazard ratios of ATA risk category combined with LNR was higher, compared to the corresponding ATA risk category alone (Table 6). This suggests that combining LNR with TNM stage or ATA risk category was a better predictor of RFS compared to either of them alone.
Discussion

Cancer recurrence remains a major challenge for PTC patients. It is clinically important to identify markers that can accurately predict recurrence. Predicting tumor recurrence is needed to tailor the initial treatment and follow-up intensity. In this study, we first determined the tumor recurrence rate to be 19.5% (275/1407) in Middle Eastern PTC. This recurrence rate is relatively high\(^2\) and highlights the urgent need to establish an accurate model to predict recurrence in PTC patients from Middle Eastern ethnicity. Interestingly, our cohort also presented with more aggressive disease, as evidenced by a high rate of aggressive variants (15.7%), multifocality (49.6%), extrathyroidal extension (44.1%) and a lower age at presentation (median, 38 years). This probably reflects the inherent aggressive nature of PTC in this ethnicity, as evidenced by other studies from this region, which also found a relatively high rate of aggressive variants\(^3\), multifocality\(^4\),\(^5\), extrathyroidal extension\(^2\),\(^3\) and a low median age at diagnosis\(^6\).\(^7\). However, it could also be partially attributed to the fact that ours is the foremost tertiary care center in the region and most advanced diseases are referred to our hospital from all over Saudi Arabia.

Tumor recurrence was significantly associated with advanced T stage (\(p < 0.0001\)). Surprisingly 17.6% (99/564) of pT1 tumors exhibited tumor recurrence, which is relatively higher in comparing to other studies where recurrence rate in T1 is rare\(^8\).
Comparing within AJCC N stage subgroups, tumor recurrence was found to be significantly more common in patients with N1b stage (31.1%, 168/540) as against patients with N1a (17.0%, 35/206) and N0 (10.9%, 72/661), as expected. Although the 8th edition of AJCC TNM staging is commonly used to predict patient’s outcome, it has some limitations. Patients with PTC and LN metastasis are staged according to the presence or absence of LN metastasis in anatomic compartments. The extent of the disease is not considered in this staging system. There is growing evidence showing the value of considering the extent of LN metastasis in PTC prognosis. The American Thyroid Association (ATA) risk stratification system now considers the size and number of LN metastasis as an important factor in risk stratification.

Recently, more tailored risk stratification using LNR was proposed as a more reliable prognosticator of recurrence in PTC. Recent investigations of LNR in PTC have suggested that it has prognostic significance in both the central as well as lateral LN metastasis and maybe superior to conventional AJCC staging. Others have suggested integration of LNR to the current staging system to improve prediction of recurrence in patients with PTC. For Middle Eastern PTC, the use of LNR as a predictive tool for recurrence has not previously been analyzed. In this study, using a cut off of 0.15 for LNR, we were able to identify a subset of Middle Eastern PTC patients at high risk of tumor recurrence and that LNR was positively associated with adverse clinico-pathological characteristics, such as male gender, multifocality, larger tumor size, extrathyroidal extension, bilateral tumors and RAI-refractiveness. We also noted a positive correlation between LNR and BRAF mutations as well as PD-L1 protein.
overexpression, which we previously have shown to have negative impact on Middle Eastern PTC26, 47.

Interestingly, LNR of more than 0.15 was a strong independent predictor of tumor recurrence (Odds ratio = 1.96; 95\% confidence interval = 1.12 – 3.43; \(p = 0.0184\)). Patients with LNR more than 0.15 exhibited a 2-fold higher risk of recurrence, while patient with N1 (using AJCC N staging) showed a 1.3-fold high risk of recurrence, suggesting that LNR was a better predictor of recurrence than the AJCC N stage. The fact that higher LNR increased the HR of the same stage tumor especially for TNM stage I (Table 5), is strong indication of LNR predictive power of recurrence even in early stage. Also patients with high risk ATA with LNR \(\geq 0.15\) had a much higher HR compared to high risk ATA category alone (6.08 vs. 4.67; Table 6), further strengthens the importance of LNR as a predictor of recurrence. This is clinically very important since it indicates that LNR is the most suitable and valuable predictor for recurrence in PTC patients of Middle Eastern ethnicity and suggests that adding LNR to 8th AJCC TNM staging and ATA risk stratification system should be considered by clinicians to increase the accuracy of predicting PTC recurrence in this population.

Our study included a large sample size from Middle Eastern population allowing for adequate multivariable adjustment for patient and treatment characteristics. Also, this study is from a single institute, which helped in providing accurate and homogenous information such as gene mutations, type of therapy and length of follow-up. Despite the strength of this study, it is limited by its retrospective nature which could cause selection bias. Also this study was conducted on PTC from a specific ethnicity and therefore
further larger multicenter studies from other ethnicities are encouraged to make
generalizable conclusions.

In conclusion, the present study suggests LNR is an independent predictor of
recurrence in Middle Eastern PTC. Integration of LNR with 8th edition AJCC TNM
staging system and ATA risk stratification will improve the accuracy to predict
recurrence in Middle Eastern PTC and help in tailoring treatment and surveillance
strategies in these patients.

Declaration of interest: There is no conflict of interest that could be perceived as
prejudicing the impartiality of the research reported.

Funding: This research did not receive any specific grant from any funding agency in
the public, commercial or not-for-profit sector.

Author contribution statement

Study concept and design: K.S.A., S.K.P., A.K.S.

Executed the study: S.K.P., A.K.S., Z.Q., S.O.A., F.D., S.A., F.A.D.

Statistical analysis: Z.Q.

Drafting the article: K.S.A., A.K.S., S.K.P.

Critical revision of the article for important intellectual content, writing of the article, and
approval of the final version: K.S.A., S.K.P., A.K.S., Z.Q., S.O.A., F.D., S.A., F.A.D.

Acknowledgements
The authors would like to thank Padmanaban Annaiyappanaidu and Nabil Siraj for their technical assistance.

References

1. Siegel RL, Miller KD, Fuchs HE & Jemal A. Cancer Statistics, 2021. CA: a cancer journal for clinicians 2021 71 7-33.

2. Shi X, Liu R, Basolo F, Giannini R, Shen X, Teng D, Guan H, Shan Z, Teng W & Musholt TJ. Differential clinico-pathological risk and prognosis of major papillary thyroid cancer variants. The Journal of Clinical Endocrinology 2016 101 264-274.

3. Pereira M, Williams VL, Hallanger Johnson J & Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid 2020 30 1132-1140.

4. Kitahara CM & Sosa JA. The changing incidence of thyroid cancer. Nature Reviews Endocrinology 2016 12 646-653.

5. Alrawaji, Alshahrani, Alzahrani, Alomran, Almadouj, Alshehri, Alzahrani, Bazarbashi, Alhashmi, Almutlaq & Sharaheli. Cancer Incidence Report Saudi Arabia 2015. In Saudi Cancer Registry. Ed SH Council. Riyadh, 2018.

6. Park S, Kim WG, Song E, Oh H-S, Kim M, Kwon H, Jeon MJ, Kim TY, Shong YK & Kim WB. Dynamic risk stratification for predicting recurrence in patients with differentiated thyroid cancer treated without radioactive iodine remnant ablation therapy. Thyroid 2017 27 524-530.

7. Leboulleux S, Rubino C, Baudin E, Caillou B, Hartl DM, Bidart J-M, Travagli J-P & Schlumberger M. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. The Journal of Clinical Endocrinology & Metabolism 2005 90 5723-5729.

8. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR & Winchester DP. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a cancer journal for clinicians 2017 67 93-99.

9. Adam MA, Pura J, Goiffredo P, Dinan MA, Reed SD, Scheri RP, Hyslop T, Roman SA & Sosa JA. Presence and number of lymph node metastases are associated with compromised survival for patients younger than age 45 years with papillary thyroid cancer. Journal of Clinical Oncology 2015 33 2370-2375.

10. Nixon IJ, Wang LY, Palmer FL, Tuttle RM, Shaha AR, Shah JP, Patel SG & Ganly I. The impact of nodal status on outcome in older patients with papillary thyroid cancer. Surgery 2014 156 137-146.

11. Rubinstein JC, Dinauer C, Herrick-Reynolds K, Morotti R, Callender GG & Christison-Lagay ER. Lymph node ratio predicts recurrence in pediatric papillary thyroid cancer. Journal of pediatric surgery 2019 54 129-132.

12. Chen L, Zhu Y, Zheng K, Zhang H, Guo H, Zhang L, Wu K, Kong L, Ruan W & Hu J. The presence of cancerous nodules in lymph nodes is a novel indicator of distant metastasis and poor survival in...
patients with papillary thyroid carcinoma. *Journal of cancer research and clinical oncology* 2017 **143** 1035-1042.

13. Zaydfudim V, Feurer ID, Griffin MR & Phay JE. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. *Surgery* 2008 **144** 1070-1078.

14. Sung T-Y, Yoon JH, Song DE, Lee Y-m, Kim T-Y, Chung K-W, Kim WB, Shong YK & Hong SJ. Prognostic value of the number of retrieved lymph nodes in pathological Nx or N0 classical papillary thyroid carcinoma. *World journal of surgery* 2016 **40** 2043-2050.

15. Vas Nunes JH, Clark JR, Gao K, Chua E, Campbell P, Niles N, Gargya A & Elliott MS. Prognostic implications of lymph node yield and lymph node ratio in papillary thyroid carcinoma. *Thyroid* 2013 **23** 811-816.

16. Schneider DF, Chen H & Sippel RS. Impact of lymph node ratio on survival in papillary thyroid cancer. *Annals of surgical oncology* 2013 **20** 1906-1911.

17. Lindfors H, Lundgren CI, Zedenius J, Juhlinc CC & Shabo I. The clinical significance of lymph node ratio and Ki-67 expression in papillary thyroid cancer. *World journal of surgery* 2021 1-10.

18. Lee J, Lee SG, Kim K, Yim SH, Ryu H, Lee CR, Kang SW, Jeong JJ, Nam K-H & Chung WY. Clinical Value of Lymph Node Ratio Integration with the 8th Edition of the UICC TNM Classification and 2015 ATA Risk Stratification Systems for Recurrence Prediction in Papillary Thyroid Cancer. *Scientific Reports* 2019 **9** 1-7.

19. Roberts TJ, Colevas AD, Hara W, Holsinger FC, Oakley-Girvan I & Divi V. Number of positive nodes is superior to the lymph node ratio and American Joint Committee on Cancer N staging for the prognosis of surgically treated head and neck squamous cell carcinomas. *Cancer* 2016 **122** 1388-1397.

20. Lee Y, Sung T, Kim W, Chung K, Yoon J & Hong S. Risk factors for recurrence in patients with papillary thyroid carcinoma undergoing modified radical neck dissection. *British Journal of Surgery* 2016 **103** 1020-1025.

21. Lee SJ, Ho J, Choi JB, Kim TH, Kim MJ, Ban EJ, Lee CR, Kang S-W, Jeong JJ & Nam K-H. Optimal cut-off values of lymph node ratio predicting recurrence in papillary thyroid cancer. *Medicine* 2016 **95**.

22. Amit M, Tam S, Boonsripitayanon M, Cabanillas ME, Busaidy NL, Grubbs EG, Lai SY, Gross ND, Sturgis EM & Zaferoe ME. Association of lymph node density with survival of patients with papillary thyroid cancer. *JAMA Otolaryngology–Head & Neck Surgery* 2018 **144** 108-114.

23. Grogan RH, Kaplan SP, Cao H, Weiss RE, DeGroot LJ, Simon CA, Embia OM, Angelos P, Kaplan EL & Schechter RB. A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. *Surgery* 2013 **154** 1436-1447.

24. Lim H, Devesa SS, Sosa JA, Check D & Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. *Jama* 2017 **317** 1338-1348.

25. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM & Schlumberger M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. *Thyroid* 2016 **26** 1-133.

26. Siraj AK, Parvathareddy SK, Pratheeshkumar P, Divya SP, Al-Sobhi SS, Al-Dayer F & Al-Kuraya KS. PD-L1 is an Independent Prognostic Marker in Middle Eastern PTC and Its Expression Is Upregulated by BRAFV600E Mutation. *Cancers* 2021 **13** 555.

27. Bu R, Siraj AK, Divya SP, Kong Y, Parvathareddy SK, Al-Rasheed M, Al-Obaisi KA, Victoria IG, Al-Sobhi SS & Al-Dawish M. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle Eastern papillary thyroid cancer. *International journal of cancer* 2018 **142** 2028-2039.
28. Mesnage S, Auguste A, Genestie C, Dunant A, Pain E, Drusch F, Gouy S, Morice P, Bentivegna E & Lhomme C. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). *Annals of oncology* 2017 **28** 651-657.

29. Nam SH, Bae MR, Roh J-L, Gong G, Cho K-J, Choi S-H, Nam SY & Kim SY. A comparison of the 7th and 8th editions of the AJCC staging system in terms of predicting recurrence and survival in patients with papillary thyroid carcinoma. *Oral oncology* 2018 **87** 158-164.

30. Ryu YJ, Cho JS, Park MH & Yoon JH. Identifying risk factors of recurrence for clinically node negative papillary thyroid carcinoma with pathologic N1a. *BMC surgery* 2019 **19** 1-9.

31. Enumah S, Fingeret A, Parangi S, Dias-Santagata D, Sadow PM & Lubitz CC. BRAF V600E mutation is associated with an increased risk of papillary thyroid cancer recurrence. *World journal of surgery* 2020 **44** 2685-2691.

32. Alzahrani AS, Alomar H & Alzahrani N. Thyroid cancer in Saudi Arabia: a histopathological and outcome study. *International journal of endocrinology* 2017.

33. Alhozali A, Al-Ghamdi A & Alahmadi J. Pattern of Thyroid Cancer at King Abdulaziz University Hospital, Jeddah: A 10-Year Retrospective Study. *Open Journal of Endocrine and Metabolic Diseases* 2016 **6** 121-125.

34. Geron Y, Benbassat C, Shteinshneider M, Or K, Markus E, Hirsch D, Levy S, Ziv-Baran T & Muallem-Kalmovich L. Multifocality is not an independent prognostic factor in papillary thyroid cancer: a propensity score–matching analysis. *Thyroid* 2019 **29** 513-522.

35. Hirshoren N, Kaganov K, Weinberger JM, Glaser B, Uziely B, Mizrahi I, Eliashar R & Mazeh H. Thyroidectomy practice after implementation of the 2015 American thyroid association guidelines on surgical options for patients with well-differentiated thyroid carcinoma. *JAMA Otolaryngology–Head & Neck Surgery* 2018 **144** 427-432.

36. Al-Qahtani KH, Tunio MA, Al Asiri M, Bayoumi Y, Balbaid A, Aljohani NJ & Fatani H. Comparative clinicopathological and outcome analysis of differentiated thyroid cancer in Saudi patients aged below 60 years and above 60 years. *Clinical interventions in aging* 2016 **11** 1169.

37. Al-Zaher N, Al-Salam S & El Teraifi H. Thyroid carcinoma in the United Arab Emirates: perspectives and experience of a tertiary care hospital. *Hematology/oncology and stem cell therapy* 2008 **1** 14-21.

38. Keinan-Boker L & Silverman BG. Trends of thyroid cancer in Israel: 1980–2012. *Rambam Maimonides medical journal* 2016 **7**.

39. Chereau N, Trésallet C, Noullet S, Godiris-Petit G, Tissier F, Leenhardt L & Menegaux F. Does the T1 subdivision correlate with the risk of recurrence of papillary thyroid cancer? *Langenbeck's archives of surgery* 2016 **401** 223-230.

40. Wang LY, Nixon IJ, Palmer FL, Thomas D, Tuttle RM, Shaha AR, Patel SG, Shah JP & Ganly I. Comparable outcomes for patients with pT1a and pT1b differentiated thyroid cancer: Is there a need for change in the AJCC classification system? *Surgery* 2014 **156** 1484-1490.

41. Ito Y, Masuoka H, Fukushima M, Inoue H, Kihara M, Tomoda C, Higashiyama T, Takamura Y, Kobayashi K & Miya A. Excellent prognosis of patients with solitary T1N0M0 papillary thyroid carcinoma who underwent thyroidectomy and elective lymph node dissection without radioiodine therapy. *World journal of surgery* 2010 **34** 1285-1290.

42. Jeon MJ, Kim WG, Choi YM, Kwon H, Song DE, Lee Y-M, Sung T-Y, Yoon JH, Hong SJ & Baek JH. Recent changes in the clinical outcome of papillary thyroid carcinoma with cervical lymph node metastasis. *The Journal of Clinical Endocrinology & Metabolism* 2015 **100** 3470-3477.

43. Jeon MJ, Yoon JH, Han JM, Yim JH, Hong SJ, Song DE, Ryu J-S, Kim TY, Shong YK & Kim WB. The prognostic value of the metastatic lymph node ratio and maximal metastatic tumor size in
pathological N1a papillary thyroid carcinoma. *European journal of endocrinology* 2013 **168** 219-225.

44. Pyo J-S, Sohn JH & Chang K. Prognostic role of metastatic lymph node ratio in papillary thyroid carcinoma. *Journal of pathology and translational medicine* 2018 **52** 331.

45. Mansour J, Sagiv D, Alon E & Talmi Y. Prognostic value of lymph node ratio in metastatic papillary thyroid carcinoma. *The Journal of Laryngology & Otology* 2018 **132** 8-13.

46. Kim HI, Kim K, Park SY, Choe J-H, Kim J-H, Kim JS, Oh YL, Hahn SY, Shin JH & Ahn HS. Refining the eighth edition AJCC TNM classification and prognostic groups for papillary thyroid cancer with lateral nodal metastasis. *Oral oncology* 2018 **78** 80-86.

47. Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T & Al-Fehaily M. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. *The Journal of Clinical Endocrinology & Metabolism* 2008 **93** 611-618.
Figure legend

Figure 1: Receiver operating characteristic (ROC) curve for lymph node ratio (LNR). Tumors with LNR of 0.15 predicted PTC recurrence with a sensitivity of 69%, specificity of 59%, and area under cover (AUC) of 0.668 (p < 0.001).
Table 1. Patient characteristics of the study cohort

Characteristic	Overall cohort (n = 1407)	
Age at diagnosis (years)		
Median (range)	37.7 (6.0 – 88.0)	
< 55	1160 (82.4)	
≥ 55	247 (17.6)	
Gender		
Male	333 (23.7)	
Female	1074 (76.3)	
Histologic subtype		
Classical variant	948 (67.3)	
Follicular variant	239 (17.0)	
Tall cell variant	126 (9.0)	
Other variants	94 (6.7)	
Extrathyroidal extension		
Present	621 (44.1)	
Absent	786 (55.9)	
Lymphovascular invasion		
Present	298 (21.2)	
Absent	1109 (78.8)	
Tumor focality		
Unifocal	709 (50.4)	
Multifocal	698 (49.6)	
Tumor laterality		
Unilaterial	950 (67.5)	
Bilateral	457 (32.5)	
Surgical margin		
Positive	387 (27.5)	
Negative	1020 (72.5)	
pT		
T1	564 (40.2)	
T2	452 (32.2)	
T3	271 (19.3)	
T4	117 (8.3)	
Regional LN metastasis		
N0	661 (47.0)	
N1a	206 (14.6)	
N1b	540 (38.4)	
pM		
M0	1332 (94.7)	
M1	75 (5.3)	
TNM Stage		
I	1176 (83.7)	
II	156 (11.1)	
III	22 (1.6)	
IV	51 (3.6)	
BRAF mutation		
Present	768 (54.6)	
Absent	613 (44.6)	
Unknown	26 (1.8)	
TERT mutation		
Present	181 (12.9)	
	Number	Percentage
--------------------------------	--------	------------
Absent	1124	79.9
Unknown	102	7.2
PD-L1 IHC		
Positive	435	32.7
Negative	896	67.3
Initial surgery		
Lobectomy	220	15.6
Total thyroidectomy alone	374	26.5
Total thyroidectomy with central neck dissection	813	57.9
RAI given		
Yes	1185	84.2
No	222	15.8
RAI Refractory		
Yes	244	20.6
No	941	79.4
Recurrence		
Yes	275	19.5
No	1132	80.5
ATA risk category		
Low	231	16.4
Intermediate	460	32.7
High	716	50.9
Table 2. Clinico-pathological associations of recurrence in papillary thyroid carcinoma

	Total No.	Recurrence present No.	Recurrence absent No.	p value	
		%	%		
Total	1407	275 (19.5%)	1132 (80.5%)		
Age at surgery (years)					
< 55	1160	188 (68.4%)	972 (85.9%)	< 0.0001	
≥ 55	247	87 (31.6%)	160 (14.1%)		
Gender					
Male	333	93 (28.3%)	240 (14.1%)	< 0.0001	
Female	1074	182 (16.9%)	892 (83.1%)		
Histologic subtype					
Classical variant	948	206 (74.9%)	742 (65.6%)	0.0026	
Follicular variant	239	28 (11.9%)	211 (88.1%)		
Tall cell variant	126	26 (20.6%)	100 (79.4%)	18.6	
Other variants	94	15 (16.1%)	79 (83.9%)	7.0	
Extrathyroidal extension					
Present	621	185 (67.3%)	436 (32.7%)	< 0.0001	
Absent	786	90 (11.6%)	696 (88.4%)		
Lymphovascular invasion					
Present	298	57 (19.5%)	241 (80.5%)	0.8374	
Absent	1109	218 (19.7%)	891 (80.3%)		
Tumor focality					
Unifocal	698	125 (18.1%)	573 (81.9%)	0.1242	
Multifocal	709	150 (21.0%)	559 (79.0%)		
Tumor laterality					
Unilateral	950	154 (16.4%)	796 (83.6%)	< 0.0001	
Bilateral	457	121 (26.5%)	336 (73.5%)		
pT					
T1	564	99 (17.5%)	465 (82.5%)	< 0.0001	
T2	452	63 (14.0%)	389 (86.0%)		
T3	271	59 (21.8%)	212 (78.2%)	18.8	
T4	117	53 (45.3%)	64 (54.7%)	5.7	
pN					
N0	661	72 (10.9%)	589 (90.1%)	< 0.0001	
N1a	206	35 (16.9%)	171 (83.1%)		
N1b	540	168 (31.1%)	372 (68.9%)		
LN ratio					
≥ 0.15	631	184 (29.1%)	447 (70.9%)	< 0.0001	
< 0.15	776	91 (11.8%)	685 (88.2%)		
pM					
M0	1332	225 (16.9%)	1107 (83.1%)	< 0.0001	
M1	75	50 (66.7%)	25 (33.3%)	2.2	
TNM Stage					
I	1176	174 (14.9%)	1001 (85.1%)	< 0.0001	
II	156	66 (42.1%)	90 (57.9%)	8.0	
III	22	6 (27.3%)	16 (72.7%)	1.4	
IV	51	28 (54.9%)	23 (45.1%)	2.0	
BRAF mutation					
Present	768	160 (20.9%)	608 (80.1%)	0.1323	
Absent	613	108 (17.5%)	505 (82.5%)		
TERT mutation					
	Present	Absent	PD-L1 IHC	RAI Refractory	ATA risk category
--------------------------	---------	--------	-----------	----------------	-------------------
	181	1124	435	896	231
Present	13.9	86.1	32.7	67.3	16.4
Absent	85	175	111	152	12
PD-L1 IHC	96	949	324	744	47
Positive	32.7	67.3	42.2	57.8	4.4
Negative	85	175	111	152	12
PD-L1 IHC	96	949	324	744	47
RAI Refractory	32.7	67.3	42.2	57.8	4.4
Yes	244	20.6	155	109	219
No	941	79.4	89	413	19.3
ATA risk category	32.7	67.3	42.2	57.8	4.4
Low	244	20.6	155	109	219
Intermediate	460	32.7	47	17.1	413
High	716	50.9	216	78.5	500
ATA risk category	32.7	67.3	42.2	57.8	4.4
Table 3. Clinico-pathological associations of lymph node ratio (LNR) in papillary thyroid carcinoma

	Total	LNR ≥ 0.15	LNR < 0.15	p value			
	No.	%	No.	%			
Total	1407	631	776	55.2			
Age at surgery (years)							
< 55	1160	82.4	527	83.5	0.3391		
≥ 55	247	17.6	104	16.5	143	18.4	
Gender							
Male	333	23.7	174	27.6	159	20.5	0.0019
Female	1074	76.3	457	72.4	617	79.5	
Histologic subtype							
Classical variant	948	67.3	483	76.6	465	59.9	< 0.0001
Follicular variant	239	17.0	48	7.6	191	24.6	
Tall cell variant	126	9.0	60	9.5	66	8.5	
Other variants	94	6.7	40	6.3	54	7.0	
Extrathyroidal extension							
Present	621	44.1	379	60.1	242	31.2	< 0.0001
Absent	786	55.9	252	39.9	534	68.8	
Lymphovascular invasion							
Present	298	21.2	156	24.7	142	18.3	0.0034
Absent	1109	78.8	475	75.3	634	81.7	
Tumor focality							
Unifocal	698	49.6	272	43.1	426	54.9	< 0.0001
Multifocal	709	50.4	359	56.9	350	45.1	
Tumor laterality							
Unilateral	950	67.5	370	58.6	580	74.7	< 0.0001
Bilateral	457	32.5	261	41.4	196	25.3	
pT							
T1	564	40.2	219	34.8	345	44.6	< 0.0001
T2	452	32.2	209	33.2	243	31.4	
T3	271	19.3	131	20.8	140	18.1	
T4	117	8.3	71	11.3	46	5.9	
pN							
N0	661	47.0	0	0.0	661	85.2	< 0.0001
N1a	206	14.6	174	27.6	32	4.1	
N1b	540	38.4	457	72.4	83	10.7	
pM							
M0	1332	94.7	583	92.4	749	96.5	0.0006
M1	75	5.3	48	7.6	27	3.5	
TNM Stage							
I	1176	83.7	506	80.4	670	86.3	0.0246
II	156	11.1	86	13.7	70	9.0	
III	22	1.6	12	1.9	10	1.3	
IV	51	3.6	25	4.0	26	3.4	
BRAF mutation							
Present	768	55.6	388	62.7	380	49.9	< 0.0001
Absent	613	44.4	231	37.3	382	50.1	
TERT mutation							
Present	181	13.9	92	15.7	89	12.4	0.0934
Absent	1124	86.1	496	84.3	628	87.6	
PD-L1 IHC							
Positive	435	32.7	222	36.9	213	29.2	0.0031
------------------	-----	-----	-----	-----	-----	-----	
	896	67.3	380	63.1	516	70.8	
RAI Refractory							
Yes	244	20.6	155	27.2	89	14.5	
No	941	79.4	414	72.8	527	85.5	
Recurrence							
Yes	275	19.6	184	29.2	91	11.7	
No	1132	80.4	447	70.8	685	88.3	
ATA risk category							
Low	231	16.4	1	0.2	230	29.6	
Intermediate	460	32.7	226	35.8	234	30.2	
High	716	50.9	404	64.0	312	40.2	
Table 4. Multivariate logistic regression analysis for predictors of recurrence in papillary thyroid cancer

Clinico-pathological variables	Univariate	Multivariate				
	Odds ratio	95% Confidence interval	p-value	Odds ratio	95% Confidence interval	p-value
Age ≥ 55 years (vs. < 55 years)	2.81	2.07 – 3.81	< 0.0001	2.56	1.74 – 3.77	< 0.0001
Sex Male (vs. Female)	1.90	1.42 – 2.53	< 0.0001	1.52	1.11 – 2.09	0.0094
Histology Aggressive variants (vs. non-aggressive variants)	0.93	0.65 – 1.35	0.7114			
Tumor laterality Bilateral (vs. unilateral)	1.86	1.42 – 2.44	< 0.0001	1.29	0.95 – 1.74	0.1012
Tumor focality Multifocal (vs. Unifocal)	1.23	0.94 – 1.60	0.1248			
Extrathyroidal extension Present (vs. Absent)	3.28	2.48 – 4.34	< 0.0001	1.89	1.38 – 2.59	< 0.0001
Lymphovascular invasion Present (vs. Absent)	0.97	0.70 – 1.34	0.8378			
pT T3-4 (vs. T1-2)	2.14	1.62 – 2.82	< 0.0001	1.48	1.08 – 2.02	0.0154
Distant metastasis Present (vs. absent)	9.84	5.96 – 16.24	< 0.0001	7.49	4.02 – 13.94	< 0.0001
TNM stage III-IV (vs. I-II)	3.96	2.45 – 6.41	< 0.0001	0.41	0.20 – 0.85	0.0170
LN metastasis Present (vs. absent)	3.05	2.28 – 4.10	< 0.0001	1.30	0.72 – 2.35	0.3831
LN ratio ≥ 0.15 (vs. < 0.15)	3.09	2.35 – 4.09	< 0.0001	1.96	1.12 – 3.43	0.0184
Table 5. Univariate and multivariate analyses of baseline variables for recurrence-free survival with the TNM staging system.

	Univariate	Multivariate	
	HR (95% CI)	p value	
		HR (95% CI)	p value
8th TNM			
I	reference	reference	
II	3.985 (2.997 – 5.300)	< 0.0001	
		4.250 (2.613 – 6.912)	< 0.0001
III	3.030 (1.342 – 6.843)	0.0080	
		3.103 (1.180 – 8.165)	0.0220
IV	7.923 (5.286 – 11.873)	< 0.0001	
		7.320 (3.759 – 14.252)	< 0.0001
8h TNM with LNR			
I with low LNR	reference	reference	
II with low LNR	7.219 (4.499 – 11.581)	< 0.0001	
		7.630 (3.812 – 15.273)	< 0.0001
II with high LNR	9.423 (6.170 – 14.392)	< 0.0001	
		8.857 (4.941 – 15.877)	< 0.0001
III with low LNR	2.117 (0.292 – 15.344)	0.4580	
		2.220 (0.282 – 17.453)	0.4480
III with high LNR	10.646 (4.233 – 26.779)	< 0.0001	
		9.516 (3.202 – 28.281)	< 0.0001
IV with low LNR	18.018 (10.062 – 32.266)	< 0.0001	
		17.423 (7.681 – 39.522)	< 0.0001
IV with high LNR	15.309 (8.257 – 28.382)	< 0.0001	
		12.560 (5.337 – 29.556)	< 0.0001
Table 6. Univariate and multivariate analyses of baseline variables for recurrence-free survival with ATA risk stratification.

	Univariate		Multivariate	
	HR (95% CI)	p value	HR (95% CI)	p value
2015 ATA risk category				
Low	reference		reference	
Intermediate	2.172 (1.152 – 4.097)	0.0170	2.195 (1.159 – 4.157)	0.0160
High	6.610 (3.696 – 11.822)	< 0.0001	4.666 (2.502 – 8.704)	< 0.0001
2015 ATA risk category with LNR				
Low with low LNR	reference		reference	
Intermediate with low LNR	0.700 (0.286 – 1.714)	0.7000	0.750 (0.306 – 1.839)	0.5300
Intermediate with high LNR	3.807 (1.992 – 7.275)	< 0.0001	3.811 (1.981 – 7.330)	< 0.0001
High with low LNR	4.964 (2.692 – 9.154)	< 0.0001	3.793 (1.989 – 7.235)	< 0.0001
High with high LNR	7.892 (4.380 – 14.220)	< 0.0001	6.081 (3.230 – 11.447)	< 0.0001
Figure 1: Receiver operating characteristic (ROC) curve for lymph node ratio (LNR). Tumors with LNR of 0.15 predicted PTC recurrence with a sensitivity of 69%, specificity of 59%, and area under cover (AUC) of 0.668 ($p < 0.001$).