Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta-analysis

Muhammad Khan1,2, Zhihong Zhao3, Sumbal Arooj1,4 and Guixiang Liao1*

Abstract

Background: Radiotherapy is the mainstay of brain metastasis (BM) management. Radiation necrosis (RN) is a serious complication of radiotherapy. Bevacizumab (BV), an anti-vascular endothelial growth factor monoclonal antibody, has been increasingly used for RN treatment. We systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab for treatment of RN in BM patients.

Materials and methods: PubMed, Medline, EMBASE, and Cochrane library were searched with various search keywords such as "bevacizumab" OR "anti-VEGF monoclonal antibody" AND "radiation necrosis" OR "radiation-induced brain necrosis" OR "RN" OR "RBN" AND "Brain metastases" OR "BM" until 1st Aug 2020. Studies reporting the efficacy and safety of BV treatment for BM patients with RN were retrieved. Study selection and data extraction were carried out by independent investigators. Open Meta Analyst software was used as a random effects model for meta-analysis to obtain mean reduction rates.

Results: Two prospective, seven retrospective, and three case report studies involving 89 patients with RN treated with BV were included in this systematic review and meta-analysis. In total, 83 (93%) patients had a recorded radiographic response to BV therapy, and six (6.7%) had experienced progressive disease. Seven studies (n = 73) reported mean volume reductions on gadolinium-enhanced T1 (mean: 47.03%, +/- 24.4) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI images (mean: 61.9%, +/- 23.3). Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32 – 58.85) for T1 reduction rate and 62.017 (95% CI: 52.235 – 71.799) for T2W imaging studies. Eighty-five patients presented with neurological symptoms. After BV treatment, nine (10%) had stable symptoms, 39 (48%) had improved, and 34 (40%) patients had complete resolution of their symptoms. Individual patient data was available for 54 patients. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment. Side effects were mild.

(Continued on next page)
Brain metastasis (BM) is the most common adult intracranial disease, and it is diagnosed in approximately 20 to 30% of cancer patients [1–3]. The most common primary tumor metastasizing to the brain is lung cancer (up to 50%), followed by breast cancer (up to 25%), melanoma (up to 20%), and to a lesser extent, renal cell carcinoma, colorectal cancer, and others [1–4]. Nonetheless, the incidence and frequency of BM is growing as newer systemic and immunotherapeutic agents are entering the treatment paradigm of these primary cancers [5–9]. Patients are living longer and are more prone to experience BM in their lifetime.

Depending on various prognostic factors, management of BM may involve surgical resection and/or radiation therapy in the form of stereotactic radiosurgery (SRS), whole brain radiotherapy, or a combination of these primary cancers [5–9]. Patients are living longer and are more prone to experience BM in their lifetime.

Bevacizumab, an anti-VEGF monoclonal antibody, has been evaluated for RN treatment [28–30]. Its use in RN stems from the fact that RN tissues have elevated levels of VEGF [34, 35]. Radiotherapy induces vasogenic edema and ischemia, resulting in hypoxia that leads to the induction of hypoxia-inducible factor-1α (HIF1α) [34–38]. HIF1α upregulates VEGF through astrocytes and endothelial cells [36, 38]. White matter around necrotic areas has been identified as the main VEGF up-regulating site [36]. Immunohistochemistry (IHC) of RN surgical samples has confirmed increased levels of VEGF in reactive astrocytes surrounding the core of necrotic tissue [37]. VEGF is an important regulator of angiogenesis, leading to increased vascular permeability, damage to the blood-brain barrier (BBB), and ensuing brain edema [39]. Bevacizumab reduces vascular permeability and alleviates blood-brain barrier damage and brain edema through its binding to VEGF [28, 35, 39].

Several studies have reported the efficacy of BV in the treatment of RN diagnosed in primary brain tumor, metastatic, and patients with nasopharyngeal carcinoma (NPC) [31–33, 40–58]. Two randomized controlled trials have shown its efficacy over placebo or corticosteroid-receiving patients, without any increase in toxicity in primary brain tumors and NPC patients [31, 32]. Recently, a prospective phase II clinical trial has revealed efficacy of BV in patients with metastatic brain disease who have RN [33]. However, the majority of studies had included patients without differentiating for their intracranial disease type [50–54]. Here, we conducted a systematic review to gather evidence of the clinical efficacy of BV for patients with metastatic brain disease who have RN.
Methods & materials
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were rigorously followed [59].

Inclusion criteria

Patients & study types
Studies reporting the efficacy of bevacizumab for radiation necrosis occurring in patients with brain metastases after undergoing radiotherapy for intracranial disease.

Types of interventions

Bevacizumab

Outcomes of interest

Outcomes of prime interest were: radiographic response; edematous volume reductions on magnetic resonance imaging (MRI); and clinical improvement such as improvement/resolution of neurological symptoms and signs, increase in Karnofsky Performance Status (KPS) score, and decrease in dosage or discontinuation of dexamethasone. The secondary outcomes of interest were recurrence and safety outcomes, including adverse events.

Search strategy

Databases
PubMed, Medline, EMBASE, and the Cochrane library were searched until 1st Aug 2020. Various search terms such as “bevacizumab” OR “Anti-VEGF monoclonal antibody” AND “Radiation necrosis” OR “Radiation induced brain necrosis” OR “RN” OR “RBN” AND “Brain metastases” OR “BM” etc., were employed. Language was restricted to English. Furthermore, references of the retrieved studies were also inspected for more relevant literature.

Study selection

Relevant studies obtained from databases were imported into Endnote X9.3 software for organization and screening. Duplicates were removed and titles and abstracts were thoroughly screened. Studies were selected according to the aforementioned inclusion criteria. In situations of discrepancies, other authors were consulted.

Data extraction

“The Cochrane Collaboration Data Collection form-RCTs and non-RCTs” was modified according to our requirements and used for recording data. The extracted data included general characteristics/attributes of the studies and participants and the main outcomes of interest. The characteristics of the studies recorded were the first author, publication year, period of recruitment, research design, institute of research, number of participants, and follow-up time. The recorded attributes of participants included age, sex, presenting symptoms, KPS, dexamethasone use, and adverse events.

Furthermore, outcomes of interest, including radiographic response, RN volume reduction on MRI images, clinical improvement, and safety. Scrutiny and examination of eligible studies was accomplished with full text reading by two independent reviewers (M.K. and Z.Z).

Assessment of risk for bias

Quality assessment was carried out using the Reporting Checklist for Authors developed by The Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group [60].

Statistical analysis

Descriptive statistics, including frequency, percentage, mean, median, range, and standard deviation, were calculated with Microsoft Excel for Mac 2019 v16.43. Mean reduction rates were directly extracted from the studies or indirectly via Engauge Digitizer. The weighted mean and standard deviation was estimated according to the methods described in the Cochrane Handbook for Systematic Reviews of Interventions version 6.0 [61, 62]. Pooled estimates (weighted mean and confidence interval) was obtained with Open Meta Analyst software, which uses the R package “metafor” for meta-analysis [63–65]. The pooled mean was estimated using a continuous random effects model with the DerSimonian-Laird method [66]. Heterogeneity was assessed using the I^2 test. I^2 values of 25, 50, and >50% were considered as low, moderate, and high heterogeneity [67]. $P < 0.05$ was considered statistically significant.

Results

Overall, two prospective studies, seven retrospective studies, and three case reports involving 89 patients with RN treated with BV were obtained following the research strategy and study selection process [33, 48–58]. The PRISMA flow diagram for the same is illustrated in Fig. 1. Among them, 39 patients were male and 50 were female (Table 1). Lung (54, 61%) and breast (12, 14%) cancers constituted the main primary pathology for BM. All patients had developed RN after receiving radiation therapy to the brain [33, 48–58]. Stereotactic radiotherapy (SRT) (37, 33%), which is SRS delivered in fractions, was the main component of treatment delivered after BM development, followed by single-dose SRS (26, 23%) and whole-brain radiotherapy (WBRT) (22, 19%). SRS was also the main radiation strategy given as radiation boost after conventional radiotherapy (24, 21%) [33, 48–58]. The time duration from radiotherapy induction to RN development was reported in most studies as the
time from RT to RN diagnosis and, in a few studies, as RT to BV induction (Table 1). The mean time from RT to RN diagnosis ranged between 6.5 and 19 months, and for RT to BV induction was between 4.6 and 11 months [33, 48–58]. All the studies had used various combinations of diagnostic procedures to determine the RN diagnosis, including MRI, magnetic resonance spectroscopy (MRS), methionine positron emission topography (MET-PET scans), and biopsy/pathology [33, 48–58]. Differentiation between disease progression and RN diagnosis was based on the imaging guidelines reported in previous studies [68–74]. The imaging characteristics are outlined in Table 2. Most common dose of BV used were 5–10 mg/kg [49–54, 57]. Other doses applied ranged from as low as 1 mg/kg to as high as 15 mg/kg [33, 48–58]. The timing of BV induction ranged from every 2 weeks to every 6 weeks [33, 48–58]. The mean number of treatment cycles completed by patients ranged from two to six cycles. Follow up time also varied from 3.3 to 22.7 months. The details are illustrated in Table 1.

Measurement of MRI changes and calculation of reduction rate

Slight variations were noticed in methods for assessing the volume calculation and reduction rate on MRI images among the studies. Two studies estimated the area of lesion at the level of maximum bi-dimensional measurement according to McDonald’s criteria, and the difference was expressed as percent change from the baseline MRI profiles [50, 54, 75]. In some studies, the hyperintense area was manually outlined, measured, and summed across slices and was multiplied by the layer thickness to calculate the total lesion area, but the reduction rate was estimated differently [33, 51–53, 55]. Volume reduction was obtained by subtracting of post-treatment from pre-treatment volume, dividing post-treatment by pre-treatment volume, and the following formula: volume before BV - volume after BV / volume before BV [33, 51–53, 55]. Zhuang et al. calculated the edema index as: EI = volume of (edema + necrosis)/volume of necrosis [33, 55]. For T1 MRI, changes in the signals were measured in three different areas in the

Fig. 1 PRISMA flow diagram of research strategy and study selection.
Table 1 General characteristics of the included studies

Study	Study design & period	Location	No.	Age	M	F	Primary pathology	Radiation	RN Diagnosis	RT to RN Diagnosis	RT to BV Tx	BV dosage	No. of cycles	Follow Up	
Wang, et al. (2012)	Retrospective Mar 2010 - Jan 2012	Huashan Hospital, Fudan University, Shanghai, China	5	65	4	1	Colon 3, Lung 2	EBRT/SRS/FSRT	MRI, MRS, PET	4.6	7.5 mg/kg q2 week	2–6	6		
Boothe, et al. (2013)	Retrospective 3-year	Memorial Sloan-Kettering Cancer Center, New York, USA	11	58	4	7	Breast 5, NSCLC 6	WBRT/SRS	MRI, biopsy, PET	124	59.6 days	7.5 mg/kg q3w (1)	10 mg/kg q2w (9)	3.3	6
Furuse, et al. (2013)	Retrospective Jan 2009 - Oct 2010	Osaka Medical College, Takatsuki, Osaka, Japan	3	62	1	2	Unknown	SRS	MRI, MET-PET	11 (median)	5 mg/kg q2w	3	14.4		
Yonezawa, et al. (2014)	Prospective Nonrandomized Jun 2010 - Sep 2011	Kizawa Memorial Hospital, Minokamo, Japan	2	52.5	1	1	Lung	WBRT/SRS/SRT	MRI, MET-PET	19	5 mg/kg q2w	6			
Sadaei, et al. (2015)	Retrospective Jul 2007 - Jun 2012	Cleveland Clinic, Cleveland, Ohio, USA	17	55.7	5	12	Lung (9), breast (4), rectal (1), melanoma (1), NSTC (1), FT (1),	WBRT/SRS	MRI, PET, biopsy	169	10.1	5/7.5/10/15 mg/kg q2/3w	6	8	
Zhuang, et al. (2015)	Retrospective Jun 2011 - Dec 2014	Tianjin Cancer Hospital, Tianjin, China	14	56	6	8	Lung 11, Breast 1, Lymphoma 1, Gastric cancer 1	RT	MRI, PET, pathology	12	7.5 mg/kg q3w	2			
Xiang-Pan, L., et al. (2015)	Retrospective	Wuhan, China	1	60	1	1	Lung	WBRT/SRS	MRI	12	7.5 mg/kg q3w	2			
Alessandretti, et al. (2013)	Retrospective	Hospital São José, São Paulo, Brazil	2	49.5	2	2	Melanoma	WBRT/SRS	MRI	1.15	5.75 mg/kg q6/4w	6			
Zhuang, et al. (2019)	Prospective II CT Dec 2016 - Feb 2019	Tianjin Cancer Hospital, Tianjin, China	21	55 (median, range 43–70)	11	10	Lung 17, Breast 2, Kidney cancer 2	SRT	MRI	1.76	1 mg/kg q3w	3	22.7		
Tanigawa, et al. (2019)	Retrospective	Kagoshima University, Kagoshima, Japan	4	61.25	2	2	Lung	SI (stereotactic irradiation)	MRI	7.75	15 mg/kg q3–4w	2			
Ma, et al. (2017)	Retrospective	Zhejiang University, Hangzhou, China	2	62	2	2	NSCLC	SRS	MRI	6.5	5 mg/kg q2w/7.5 mg/kg q2w	2.5	9		
Glitza, I. et al. (2017)	Retrospective	The University of Texas MD Anderson Cancer and Baylor College of Medicine, Houston, Texas, USA	7	57	5	2	Melanoma	SRS/NBRT	Surgery, MRI, pathology	8.14	5, 7.5, 10 mg/kg	3.7			
This study	Systematic review		89	39	50					1-15 mg/kg q2-6w	4.6	2–6			

Abbreviations: CT Clinical trial, No No of patients, M Male, F Female, WBRT Whole brain radiotherapy, SRS Stereotactic radiosurgery, SRT Stereotactic radiotherapy, EBRT External beam radiotherapy, RT Radiotherapy, FSRT Fractionated stereotactic radiotherapy, RN Radiation necrosis, BV Bevacizumab, Tx Treatment, NSCLC Non-small cell lung cancer, FT Fallopian tube, NSTC Non-seminomatous testicular cancer, MRI Magnetic resonance imaging, PET Positron, emission topography, q2w Every 2 weeks
Table 2 Imaging characteristics for diagnosis of radiation necrosis

Imaging Technique	Characteristics
MRI	-Contrast enhancement pattern (soap bubble or Swiss cheese pattern, etc.), -Location of enhancement (periventricular, corpus callosum, midline crossing, subependymal spread), -Multiplicity (single/multiple), -Distance from primary tumor site (ipsilateral/contralateral)
MRS	-Decreased peaks in Cho, NAA and Cr, -Low Cho/Cr values, -Elevated Lip-Lac/Cho
PET	-No uptake of radionuclides

Abbreviations: MRI Magnetic resonance imaging, MRS Magnetic resonance spectroscopy, PET Positron emission topography

strengthening region of necrosis and compared to the white matter signal value of the same MRI to obtain a ratio that was used to express the reduction rate as the difference between pre- and post-treatment [33, 55]. We calculated the difference from the graphs available in their studies.

Patients characteristics
Ten studies reported individual patient characteristics and treatment-related data for 54 patients with RN [48–54, 56–58]. The details are outlined in Table 3. These patients consisted of 22 male and 32 female patients, and their average age was 58 years. The mean time from RT to RN diagnosis was 11.7 months and from RT to induction of BV treatment was 15.5 months [48–50, 52–54, 56–58]. BV dosage ranged from 5 mg/kg to as high as 15 mg/kg, every 2 weeks to every 6 weeks for an average of 5.7 treatments [48–50, 52–54, 56–58]. Three studies also provided treatment durations for each patient [48, 51, 57]. The mean BV treatment duration averaged at 3.29 months [48, 51, 57]. Neurological symptoms, such as headache, visual disturbances, seizures, limb weakness, etc., have been reported in nine studies [33, 48–57]. Five studies reported adverse events after BV for individual patients [33, 54–56, 58]. Detailed information is provided in Table 3.

Radiographic response
Radiographic response was defined as any reduction observed in the RN or edema volume on MRI images (Gd-enhanced T1 and T2-FLAIR) [33, 48–58]. Radiographic response was 93% (n = 83) after BV therapy induction. Six (6.7%) patients experienced progression of RN or failed to respond to bevacizumab [33, 48–58]. Seven studies involving 75 patients with RN reported a mean volume reduction on T1-enhanced and T2-FLAIR MRI images (Table 4) [33, 50–55]. The weighted mean reduction in volume on T1 Gd-enhanced MRI was 47.03% (+/- 24.4), and on FLAIR imaging was 61.9% (+/- 23.3). The average decrease in volume reduction for each study is given in Table 4. The mean volume reduction for studies ranged between 35 and 63.5% on enhanced MRI and 49 and 75.1% on FLAIR MRI images [33, 50–55]. Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32–58.85) for the T1 reduction rate and 62.017 (95% CI: 52.235–71.799) for T2W imaging studies (Fig. 2). Significant heterogeneity was revealed for both comparisons ($I^2 = 80\%, p < 0.001; I^2 = 66.9\%, p = 0.01$, respectively). We undertook sensitivity analysis by excluding the studies reported by Zhuang et al. as the method for data calculation differed from other studies [33, 55]. Heterogeneity was lost upon excluding the studies suggesting that the difference in calculation method may have been the contributing factor (Fig. 3). Analysis of individual patient data revealed a 57.4% mean volume reduction on T1 enhanced and 56.2% on flair imaging, for 41 patients (Table 3) [48–54, 56–58]. The extent of volume reduction on MRI images has not been reported in some studies [48, 49, 56–58].

Clinical improvement
Clinical improvement was measured in terms of improvement reported in neurological symptoms, KPS, and/or weaning of dexamethasone dosage [33, 48–58]. Overall, 85 patients presented with neurological symptoms because of RN, such as headaches, limb weaknesses, cognitive functions, and gait problems (Table 3) [33, 48–58]. After BV treatment, nine (10%) patients had stable symptoms, 39 (46%) patients had improved, and 34 (40%) patients had complete resolution of their symptoms [33, 48–56]. The symptoms worsened in three patients [50, 58]. Individual patient data was available for 54 patients [48–54, 56]. The KPS score was reported in 10 patients from three studies [50, 52, 53]. Improvement in KPS was observed in eight (80%) patients [50, 52, 53]. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment [48, 50, 51, 54, 56]. The mean dose reduction for these patients was 9.08 mg (Table 3).

Recurrence
Only one study (n = 14) reported a recurrence rate [55]. The recurrence rate was very high: 10 of the 13 responding patients had RN recurrence. Sadraei et al. also
Study	Age	Sex	Primary histology	Radiation	Dose	RN site	Last RT to RN diagnosis	RT to BV Tx	BV dosage (mg/kg)	No of treatments	Treatment Duration (months)
Wang, et al. (2012)	70	M	colon	SRS	17 Gy	L temporal		6			
	71	M	colon	EBRT	36 Gy	L frontal		4			
	71	M	Lung	FSRT	31.5 Gy/3f	L occipital		7			
	67	F	colon	EBRT	39 Gy/10 f 16 Gy	R frontal		1			
	46	M	Lung	EBRT	30 Gy/13 f 16 Gy	L occipital		5			
Boothe, et al. (2013)	58	M	NSCLC	WBRT	37.5 Gy 25/25	R frontal/L temporal	10q2w	2.3			
	50	F	Breast	SRS	30	R occipital	10q2w	2.3			
	27	F	Breast	WBRT	37.5 Gy 18/21/21	L frontal/L temporal/R parietal	10q2w	1.4			
	79	F	NSCLC	SRS	18	R parietal	10q2w	0.5			
	67	F	Breast	WBRT	30	Cerebellum	10q2w	14.3			
	54	F	Breast	WBRT	37.5 Gy 15	R frontal	10q2w	3.9			
	67	M	NSCLC	SRS	30	R frontal	15q6w	2.8			
	50	F	Breast	WBRT	35	R frontal	7q3w	1.4			
	67	F	NSCLC	SRS	21	L occipital	102w 4w				
	73	M	NSCLC	SRS	21	L parietal	102w				
	63	M	NSCLC	SRS	21	L occipital	15q4w	1.8			
Furuse, et al. (2013)	57	F	unknown	SRS		fronttal		5			
	74	F	unknown	SRS		fronttal	47				
	55	M	unknown	SRS		fronttal	49				
Yonezawa, et al. (2014)	54	M	Lung	WBRT	30	fronttal	15				
	51	F	Lung	SRT	30/5 f		23				
Sadraei, et al. (2015)	61	M	NSCLC	SRS	18 Gy	R posterofrontal cingulate	8	5q2w	8		
	46	F	NSCLC	RT	36.5 Gy	R cerebellar	17	5q2w	9		
Study	Age	Sex	Primary histology	Radiation	Dose	RN site	Last RT to RN diagnosis	RT to BV Tx	BV dosage (mg/kg)	No of treatments	Treatment Duration (months)
-------	-----	-----	-------------------	-----------	------	---------	-------------------------	-------------	------------------	-----------------	---------------------------
62 M	24	M	NSCLC	SRS	24	Frontal, L temporal	11				
59 F	44	F	NSCLC	WBRT SRS	18,	L parietal, R temporal	16	7.5q3w	3		
46 F	37.5	F	NSCLC	WBRT SRS	24	R cerebellar	6	10q2w	9		
58 M	37.5	M	NSCLC	WBRT SRS	24	L occipital	5	15q3w	4		
63 F	18	F	NSCLC	SRS	18	Bithalamic L midbrain	11	7.5q3w	4		
55 F	37.5	F	Breast	WBRT SRS	24	R posterofrontal	4	7.5q3w	3		
58 F	37.5	F	Breast	WBRT SRS	24	L parietal	14	10q2w	5		
52 F	37.5	F	Breast	WBRT SRS	18	R frontal	18	10q2w	5		
58 F	37.5	F	Melanoma	WBRT SRS	24	L cerebellar	7	10q2w	5		
39 F	37.5	F	Breast	WBRT SRS	24	L parietal	11	15q3w	2		
57 F	20	F	Fallopian tube	SRS	18	R frontal	14	10q2w	5		
63 M	37.5	M	Rectal	WBRT SRS	24	L parietal	5	7.5q3w	4		
51 F	18	F	melanoma	WBRT SRS	16	L parietal	2	15q3w	4		
45 M	18	M	NSTC	SRS	24	R parietal	11	15q3w	4		
60 F	18	F	lung	WBRT SRS	18	L temporal	12	7.5q3w	3		
51 F	18	F	melanoma	WBRT SRS	16	L parietal	12	15q3w	2		
48 F	18	F	melanoma	WBRT SRS	16	R parietal	9.2	15q3w	4		
74 M	18	M	Lung (adenocarcinoma)	STI (stereotactic irradiation)	12.2	STI (stereotactic)	9.2	15q3w	4		

Xiang-Pan, L., et al. (2015) [49]
Alessandretti, et al. (2013) [48]
Tanigawa, et al. (2019) [56]
Table 3 Individual characteristics and treatment outcomes for RN patients (Continued)

Study	Age	Sex	Primary histology	Radiation	Dose	RN site	Last RT to RN diagnosis	RT to BV Tx	BV dosage (mg/kg)	No of treatments	Treatment Duration (months)
Ma, Y., et al. (2017) [57]	58 F	NSCLC	SRS	11	5 mg/kg q2w	4 weeks					
Glitza, I. et al. (2017) [58]	56 M	Melanoma	WB, SRS	30	L frontal	4	75	4			
71 F	Melanoma	SRS	20	R frontal	13	75	3				
64 F	Melanoma	WB	30	R parietal	4	75	5				
52 M	Melanoma	SRS, WB	20/12/18/30	R frontal	13	5	2				
65 M	Melanoma	SRS	20/16	L temporal	8	75	2				
37 M	Melanoma	WB	30	Bifrontal	8	10	6				
55 M	Melanoma	SRS	24/21/10.6/32	R occipital/R frontal	7	75	4				

Abbreviations: CT Clinical trial, No No of patients, M Male, F Female, WBRT Whole brain radiotherapy, SRS Stereotactic radiosurgery, SRT Stereotactic radiotherapy, EBRT External beam radiotherapy, RT Radiotherapy, FSRT Fractionated stereotactic radiotherapy, RN Radiation necrosis, BV Bevacizumab, Tx Treatment, NSCLC Non-small cell lung cancer, FT Fallopian tube, NSTC Non-seminomatous testicular cancers, MRI Magnetic resonance imaging, PET Positron emission tomography, q2w Every 2 weeks, Y Yes, R Right, L Left
Table 3: Individual characteristics and treatment outcomes for RN patients (Continued)

Study	Volume reduction on T1W-Gd-enhanced MRI	Volume reduction on T2W FLAIR MRI	Pre-Tx	Post-Tx	KPS increase	Pre-Tx Dex (mg)	Post-Tx Dex (mg)	Dex reduction (mg)	Presenting Symptoms	Improvement	Adverse events
Wang, et al. (2012) [50]	0	0	30	30	0	15	12.5	2.5	None	Improved	
	65	10	40	80	40	15	5	10	Improved		
	87	78	50	90	40	15	0	15	Worsened		
	52	78	50	90	40	15	0	15	Improved		
	50	30	60	80	20	125	5	7.5	Improved		
Boothe, et al. (2013) [51]	38/64	3/36	8	0	8	None	Improved	Stable			
	82	75	2	0	3	1.7	Visual field disturbance, headaches				
	38/64/91	70/67/63.5	4	0	4	Seizures	Improved				
	82	60	02	0	0.2	Lower left leg weakness, Headaches, lower leg weakness	Improved				
	73	72	4	0	4	Seizures	Improved	Stable			
	21	446	4	0	4	Left arm weakness	Improved				
	10	3	24	0	24	Seizures, left sided weakness	Improved				
	91	46	20	0	20	Fatigue, lethargy, facial asymmetry	Improved				
	89	845	6	0	6	Confusions, visual hallucinations	Stable				
	96	546	8	2	6	Seizure, right sided hemiparesis	Improved				
	100	77	8	0	8	Imbalance, right sided tinnitus	Resolved				
Furuse, et al. (2013) [52]											
	734	40	60	20		Improved	Resolved	Stable			
	744	60	60	0							
	77.5	80	90	10							
Yonezawa, et al. (2014) [53]	55.9	889	60	70	10	Seizure, motor weakness	Improved				
	43.2	65	90	100	10	Headache, numbness	Improved				
Sadraei, et al. (2015) [54]	35.2	92	24	05	23.5	Left sided weakness, gait problems	Improved				
	56.1	836	16	4	12	Y	Improved				
	+ 37.8	+ 74.1	Y			Y	Improved				
	308	589	Y			Proteinuria (bevacizumab held) grade 1	Resolved				
Study	Volume reduction on T1W-Gd-enhanced MRI	Volume reduction on T2W FLAIR MRI	Pre-Tx KPS	Post-Tx KPS	KPS increase	Pre-Tx Dex (mg)	Post-Tx Dex (mg)	Dex reduction (mg)	Presenting Symptoms	Improvement	Adverse events
-------	---------------------------------------	----------------------------------	-----------	------------	-------------	----------------	----------------	-----------------	-------------------	-------------	---------------
288	341					16	0	16	Y	Resolved	UTI (requiring holding of 1 treatment) grade 2
185	482		8	0	8	Y				Improved	
100	381		8	0	8	Y				Improved	
769	529		8	0	8	Y				No	
354	432		24	2	22	Y				Improved	
64.7	267		8	8	0	Y				Improved	
66.7	328		2	1	1	Y				Improved	
824	749		6	4	2	Y			Resolved	DVT and PE grade 3	
25	773		8	0	8	Y			Improved	fatigue grade 2	
74.5	849		8	0	8	Y			Resolved		
25.4	135		4	2	2	Y			Resolved		
22	53		4	0	4	Y			Resolved		
32.2	462		4	0	4	Y			Resolved	Hypertension grade 2	

Xiang-Pan, L., et al. (2015) [49]
Alessandretti, et al. (2013) [48]
Tanigawa, et al. (2019) [56]
Ma, Y., et al. (2017) [57]
Glitza, I. et al. (2017) [58]
Study	Volume reduction on T1W-Gd-enhanced MRI	Volume reduction on T2W FLAIR MRI	Pre-Tx KPS	Post-Tx KPS	KPS increase	Pre-Tx Dex (mg)	Post-Tx Dex (mg)	Dex reduction (mg)	Presenting Symptoms	Improvement	Adverse events
									disturbance, aphasia, memory loss		
									Weakness, gait disturbance, cognitive deficit	worsened	
									None		worsened
									Behavioral changes, memory loss		improvement
									Seizure, memory loss	Improvement	
574%	56.2%	56	75	23.75	104	16	9.08				
reported that four patients had RN recurrence, but the type of intracranial disease (primary brain tumor, NPC, or BM) was not identified [54]. A single patient in the study by Wang et al. also had recurrence with no evidence of intracranial disease type [50].

Adverse events
Overall, five studies \(n = 63 \) reported adverse events occurring in 14 (22%) patients after bevacizumab treatment (Table 5) [33, 54–56, 58]. A retrospective study reported grade 1 side effects in two (14%) patients. Adverse events

Table 4 Radiographic responses and MRI changes after treatment with bevacizumab

Studies	No of patients	Radiographic responses	T1 Gd enhancement volume reduction (mean)	T2 FLAIR volume reduction (mean)
Wang, et al. (2012) [50]	5	4 (80%)	63.5%	49%
Furuse, et al. (2013) [52]	3	100%		75.1%
Boothe, et al. (2013) [51]	11	100%	67.1%	54.1%
Alessandretti, et al. (2013) [48]	2	100%		
Yonezawa, et al. (2014) [53]	2	100%	49.5%	76.9%
Xiang-Pan, et al. (2015) [49]	1	100%		
Sadraei, et al. (2015) [54]	17	16 (95.8%)	52%	53.7%
Zhuang, et al. (2015) [55]	14	13 (92.9%)	36%	59%
Ma, Y., et al. (2017) [57]	2	100%		
Glitza, I. et al. (2017) [58]	7	5 (71%)		
Zhuang, et al. (2019) [33]	21	20 (95.2%)	35%	74%
Tanigawa, et al. (2019) [56]	4	100%		
This study	89	83 (93%)	Mean: 47.03% (+/- 24.4)	Mean: 61.78% (+/- 23.2)

Adverse events
Overall, five studies \(n = 63 \) reported adverse events occurring in 14 (22%) patients after bevacizumab treatment (Table 5) [33, 54–56, 58]. A retrospective study reported grade 1 side effects in two (14%) patients. Adverse events

Fig. 2 Forest plot of meta-analysis of mean reduction rate on T1-contrast enhanced MRI (A) and T2W FLAIR MRI (B) after bevacizumab (BV) treatment for radiation necrosis (RN) in patients with brain metastases
reported were mild allergy and hypertension [55]. Hypertension resolved spontaneously. Similar side effects (mild allergy, hypertension) in two (9.5%) patients were reported in a prospective clinical trial conducted by the same group [33]. Side effects reported for individual patients were available in the study by Sadraei et al. [54]. One patient with non-small cell lung carcinoma (NSCLC) reported grade 1 proteinuria, for which bevacizumab treatment was withheld. Similarly, the other NSCLC patient reported a grade 2 urinary tract infection that also required withholding one dose of BV treatment. Of the 17 patients with RN, five (29%) patients (two with NSCLC, one with melanoma, one with breast cancer, and one with NSTC) reported side effects after BV treatment. Grade 3 deep venous thrombosis (DVT) and pulmonary embolism (PE) were observed in melanoma patients. The patient with breast cancer reported grade 2 fatigue, and the NTSC patient experienced grade 2 hypertension. All the participants in the case series \(n = 4 \) reported by Tanigawa et al. experienced side effects involving hypertension, edema, and proteinuria [56]. Only one patient had experienced side effects such as arthralgia and dysgeusia in the study by Glitza, I. et al. [58]. Adverse events were not reported in the remaining studies [48–53, 57].

Discussion

We retrieved studies evaluating the efficacy of BV in the management of RN in patients who had received radiation therapy for brain metastases [33, 48–58]. Most patients showed a reduction in the edema and RN volume by over 50% on MRI images until their last follow-up [33, 48–56]. In some studies, edema volume reduction was over 70% in patients with BM [52, 53]. Radiographic

Studies	Patients	Patients (%)	Symptoms
Sadraei, et al. (2015) [54]	5	29%	Grade 1: proteinuria (1), Grade 2: hypertension (1), Grade 3: DVT/PE (1)
Zhuang, et al. (2015) [55]	2	14%	Grade 1: mild allergy (1), Hypertension (1)
Zhuang, et al. (2019) [33]	2	9.5%	Grade 1: mild allergy (1), Hypertension (1)
Tanigawa, et al. (2019) [56]	4	100%	Hypertension (3), Proteinuria (3), Edema (1)
Glitza, I. et al. (2017) [58]	1	14%	Arthralgia (1), Dysgeusia (1)
bevacizumab treatment was significant for both detected respectively. The mean change between before and after post-gd and T2W FLAIR MRI were 25.5 and 51.8%, re-
mean percentage change in RN volume observed on T1 mab revealed a 65.5% (38/58) response rate [32]. The RCT involving 58 NPC patients treated with bevacizu-
age change of 59 and 63% in RN volume on T1W and with primary brain tumors, showed an average percent-
every 3 weeks for seven patients with biopsy-proven RN controlled trial, using a bevacizumab dose of 7.5 mg/kg
ors [31, 32]. Levin et al., in a randomized placebo-
evidence for patients with primary brain and NPC tu-
addition to BM patients, seven other patients (five pri-
mary brain tumors and two arteriovenous malformations (AVM) patients) were also included in the study by Sadraei et al. [54]. The study reported an average reduc-
tion of 47.4 and 50.7% on both MRI images (T1W and FLAIR), respectively. Gonzalez et al. conducted a retro-
spective study showing radiographic and neurological symptom improvement in eight patients who had RN with primary brain tumors after being treated with BV (dosage: 5 mg/kg q 2 w /7.5 mg/kg q 3 w) [45]. Average reduction changes of 48 and 60% on post-contrast T1 and FLAIR MRI images were exhibited after a mean of 8.1 weeks from BV treatment start, respectively. In a sepa-
ate retrospective study by Torcuator et al., six patients with RN diagnosed using biopsy and treated with BV also demonstrated significant reductions in both MRI images (T1 post-gd: 79%, T2 FLAIR: 49%) [46]. Li et al., in their study comprising 50 NPC patients, though with a slightly lower response rate of 76.0% (38/50), had reported a significant decrease in edema volume reduction on FLAIR images (72.6%, p < 0.001) [47].

All these studies, however, constitute a low-level clinical evidence for the efficacy of BV therapy [45–47, 50, 52, 54, 56–58]. Zhuang et al. conducted a prospective clinical trial involving 21 patients who had RN with brain metastatic disease [33]. All patients, except for one, showed radiographic improvement. There is class I evidence for patients with primary brain and NPC tu-
mors [31, 32]. Levin et al., in a randomized placebo-
controlled trial, using a bevacizumab dose of 7.5 mg/kg every 3 weeks for seven patients with biopsy-proven RN with primary brain tumors, showed an average percent-
age change of 59 and 63% in RN volume on T1W and FLAIR images, respectively [31]. A recently concluded RCT involving 58 NPC patients treated with bevacizu-
mb revealed a 65.5% (38/58) response rate [32]. The mean percentage change in RN volume observed on T1 post-gd and T2W FLAIR MRI were 25.5 and 51.8%, re-
respectively. The mean change between before and after bevacizumab treatment was significant for both detected MRI images. Both these studies have reported significant differences in the radiographic responses and RN vol-
volume reduction rates observed on both MRI images be-
tween bevacizumab and placebo/corticosteroids, suggesting a better outcome for bevacizumab [31, 32].

In our systematic review, one study reported a very high RN recurrence rate (77%) in BM patients [55]. Other studies have failed to report recurrence of such a magnitude. Other than the two studies mentioned in the Results section, there are few other studies that also have cases of RN recurrence [50, 54]. Two patients in the RCT conducted by Levin et al. reported RN recurrence in glioma patients [31]. NPC patients from two other studies have also shown a moderate rate of recurrence [32, 47]. A recurrence rate of 39.5% was observed in a retrospective study of 50 NPC patients [47]. A similar recurrence rate (36.8%) was also demonstrated in the RCT of 58 NPC patients conducted by Xu et al. [32]. The underlying mechanism has not been exclusively in-
vestigated in these patients. Apparently, all three kinds of intracranial diseases (primary brain tumors, meta-
static, or NPC) have registered RN recurrence [31, 32, 47, 55]. Recurrence was slightly higher in BM patients as reported, but the study had a low level of evidence. Hence, no conclusions could be drawn about the relationship between RN recurrence and the underlying intracranial disease type. Zhuang et al. identified a correlation between RN recurrence and duration after the initial BV withdrawal [55]. Further, Li et al. indicated that duration from induction of radiation therapy RN diagnosis and BV intervention as predictive factors for RN recurrence [47]. Further investigations are required to establish any underlying cause of RN recurrence. An-
other important aspect of RN recurrence is its diagnosis. Pathology is the standard for diagnosing RN or recur-
rence [76–79]. However, almost all of these studies re-
lied on imaging criteria reported in previous studies for the diagnosis of RN and recurrence [31, 32, 47, 55, 76–
79]. For example, in a case report, re-enlargement of RBN after being on BV for 8 months was attributed to recurrence of lung cancer as resected specimen revealed necrotic areas with viable tumor cells [80]. Hence, an accurate recurrence rate could only be determined with pathology, which could be further examined by larger comprehensively organized trials.

In this systematic review, clinical improvement was observed in a majority of the patients; however, some patients did not show any clinical improvement or ex-
perienced symptomatic worsening and progression. Med-
cal literature also reveals similar examples. In the study by Gronier et al., no clinical improvement was observed in all three participants with malignant brain tumors after BV therapy (10 mg/kg per month) [81]. One patient had experienced lymphopenia after one perfusion of
bevacizumab; the other had developed a transient ischemic attack and a corneal ulcer. Side effects reported in our review were mild, and only one grade 3 pulmonary embolism was described [33, 54–58]. Several other investigations have also highlighted similar low-grade adverse events [31, 32, 46, 50, 53]. In the retrospective study of Torcuator, et al. (n = 6), only one patient experienced mild fatigue after BV treatment [46]. Grade 2 AEs, including hypertension, fatigue, and proteinuria, were observed in 18% (3/17) of participants of the study by Wang, et al. [50]. However, the patients’ primary intracranial diseases were not identified. In the study by Yonezawa, et al., 33% (3/11) of participants had also shown grade 1 or 2 side effects such as anemia, leukopenia, neutropenia, and lymphocytopenia [53]. More importantly, the class I evidence in this regard has shown the safety of BV therapy in primary brain tumors and NPC patients [31, 32]. Levin et al. reported that six (55%) patients experienced side effects [31]. Three of these adverse events were considered serious, including aspiration pneumonia, pulmonary embolus secondary to DVT, and superior sagittal sinus thrombosis. The other three patients showed ischemic changes due to small vessel thrombosis [31]. Another RCT conducted by Xu et al. reported 40 grade 1 or 2 adverse events experienced by 58 patients with NPC [32]. Only one grade 3 adverse event of ischemic stroke was observed. Furthermore, a similar portfolio was revealed for the corticosteroid-treated group, suggesting that BV treatment may not increase the toxicity experienced by patients with RN [32].

From the literature, it appears that bevacizumab was able to elicit therapeutic efficacy at any prescribed dose or frequency [31–33, 40–56]. The initial doses used were 5, 7.5, 10, and 15 mg/kg every 2 weeks to every 6 weeks. All doses were tolerated and were not associated with any increase in toxicity. It has been suggested that BV efficacy is associated with its anti-angiogenic effects rather than the dose [33]. In a case report, BV at a dose as low as 3 mg/kg was shown to be effective [48]. In a prospective clinical trial, patients were exposed to ultra-low doses of BV at 1 mg/kg [33]. Radiographic responses were observed in 20 of the 21 patients. Such a versatile dosing profile makes this treatment reachable to a broader population, as it is an expensive treatment. To date, exact cost-benefit relationship evaluation has not been adequately addressed for bevacizumab therapy [29]. It may cost around 4800 to 19,200 U.S. dollars (USD) for a single four to eight-week course of 5 to 10 mg/kg, administered every other week at a cost of 600 USD per 100 mg [82, 83]. An increase of 2.4 months in survival, a 20% improvement in a patient’s quality of life, or a linear combination of the two was required for bevacizumab treatment to be considered cost-effective according to a basic hypothetical calculation using 10,000 USD for a course of BV therapy and a quality-adjusted-life-year (QALY) threshold of 50,000 USD [84]. Hence, further studies are needed to establish a dose requirement for achieving the maximum benefit and to make the bevacizumab treatment cost-effective.

Several observations limit the results of our study. As a systematic review, the incorporated data comes from heterogeneous populations, diverse treatment centers, and a variety of research designs used for investigations. Moreover, the time period in which the case reports/studies were undertaken also varied. We included case reports and some retrospective studies [48–56]. Retrospective studies are prone to selection bias, recall bias, or misclassification bias and are subject to confounding [85]. Most of these studies mainly constitute class III level evidence, except for two prospective studies [48–56]. The types of radiation also differed from patient to patient. Moreover, pathology reports are used as standard for the diagnosis of RN; however, these studies mostly used imaging studies for RN diagnosis [48–56]. Some of the studies reported global adverse events/recurrence rates without differentiating between tumor types; however, they also contained participants other than BM patients [50, 53, 54]. Nonetheless, we presented the recurrence rates in results and side effects in the Discussion section to construct a better recurrence rate/adverse event profile for the readers. The follow-up for different studies also varied. The likelihood of only BV-responding patients being included in the study may also be prone to publication bias.

Conclusions
According to our results, bevacizumab can be considered safe and efficacious for BM patients diagnosed with RN. However, the level of evidence presented was low, making our bevacizumab efficacy results inconclusive. Furthermore, several dimensions of BV treatment for RN were less clarified and should be investigated in future trials. These include the diagnosis standard used for RN, impact of type/dose/fractionation of radiation therapy used on RN, patterns, and underlying mechanism of recurrence. The pending results of a phase II trial (NCT02490878) of BV plus corticosteroids versus corticosteroids plus placebo for radiation necrosis after radiosurgery for brain metastases will further define the role of bevacizumab in the management of radiation necrosis.

Acknowledgements
None

Authors’ contributions
MK and GL wrote the manuscript. MK, ZZ and SA performed the data search and data analysis. All authors corrected and proofed the final text. All authors read and approved the final manuscript.
with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurol Oncol. 2010;96(1):45–68. https://doi.org/10.1007/s11060-009-0073-4 Epub 2009/12/05. PubMed PMID: 19960227; PubMed Central PMCID: PMCPmc2808519.

11. Lippitz B, Lindquist C, Padddick I, Peterson D, O'Neill K, Beaney R. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev. 2014;40(1):48–59. https://doi.org/10.1016/j.ctrv.2013.05.002.

12. Khan M, Lin J, Liao G, Li R, Wang B, Xie G, et al. Comparison of WBRT alone, SRS alone, and their combination in the treatment of one or more brain metastases: review and meta-analyst. Tumour Biol. 2017;39(7):1010428317702903. https://doi.org/10.1177/1027063417702903 Epub 2017/07/05. PubMed PMID: 28676121.

13. Khan M, Lin J, Liao G, Tian Y, Liang Y, Li R, et al. Whole brain radiation therapy plus stereotactic radiosurgery in the treatment of brain metastases leading to improved survival in patients with favorable prognostic factors. Front Oncol. 2019;9:205. https://doi.org/10.3389/fonc.2019.00205.

14. Barbour AB, Jacobs CD, Williamson H, Floyd SR, Suneya G, Torok JA, et al. Radiation therapy practice patterns for brain metastases in the United States in the stereotactic radiosurgery era. Adv Radiat Oncol. 2020;5(1):43–52. https://doi.org/10.1101/advrads.2020.05.01.20013435.

15. Tallet AV, Dhermain F, Le Rhun E, Noël G, Kirova YM. Combined radiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol. 2017;28(12):2962–76. https://doi.org/10.1093/annonc/mdx488.

16. Johnson AG, Ruiz J, Hughes R, Page BR, Isom S, Lucas JT, et al. Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases. Oncotarget. 2015;6(22):19894–55. https://doi.org/10.18632/oncotarget.4153. PubMed PMID: 26897184.

17. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001. https://doi.org/10.1016/j.ijrobp.2009.06.006 Epub 2009/09. PubMed PMID: 19783374.

18. Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci. 2013;20(4):485–502. https://doi.org/10.1016/j.jocn.2012.09.011 Epub 2013/02/19. PubMed PMID: 23416129.

19. Chung C, Bryant A, Brown PD, et al. Cochrane Database Syst Rev. 2018;7(7):CD011492. https://doi.org/10.1002/14651858.CD011492.pub2 Epub 2018/07/11. PubMed PMID: 29987845; PubMed Central PMCID: PMCPmc6513335.

20. Miller JA, Bennett EE, Xiao R, Kotecha R, Chao ST, Vogelbaum MA, et al. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. J Radiat Oncol Biol Phys. 2016;96(5):1060–9. https://doi.org/10.1016/j.jrobp.2016.08.039 Epub 2016/10/16. PubMed PMID: 27742540.

21. Loganadane G, Dhermain F, Louvel G, Kauv P, Deutsch E, Lépichoux C, et al. Brain radiation necrosis: current management with a focus on non-small cell lung cancer patients. Front Oncol. 2018;8:336. https://doi.org/10.3389/fonc.2018.00336.

22. Jalouli A, Miller J, Parsai S, Kotecha R, Ahluwalia M, Mohammadi A, et al. Overall survival and response to radiation and targeted therapies among patients with renal cell carcinoma brain metastases. J Neurolurg. 2019;132:1–9. https://doi.org/10.3171/2018.8.JNS182100.

23. Kim JM, Miller JA, Kotecha R, Xiao R, Jalouli A, Ward MC, et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neurosurg. 2017;133(2):357–68. https://doi.org/10.3171/2016.10.JNS151500. Epub 2016/05.15. PubMed PMID: 27742539.

24. Ali FS, Arevalo O, Zorzochan S, Patritz A, Rascos R, Tandon N, et al. Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep. 2019;21(8):66. https://doi.org/10.1007/s11912-019-0818-y.

25. Xing S, Fan Z, Shi L, Yang Z, Bai Y. Successful treatment of brain radiation necrosis resulting from triple-negative breast cancer with Endostar and short-term hyperbaric oxygen therapy: a case report. Oncco Targets Ther. 2012;7(2297–35. https://doi.org/10.2147/OTT.2011.004094.

26. Hong CS, Deng D, Vera A, Chiang VL. Laser-Interstitial thermal therapy compared to cranitotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neurol Oncol. 2019;14(2):309–17. https://doi.org/10.1007/s11910-019-00997-z.
64. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36. https://doi.org/10.18637/jss.v036.i03.

65. Wallace B, Tikalinos T, Lau J, Trow P, Schmid C. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2011:49. https://doi.org/10.18637/jss.v049.i05.

66. DeSimonean R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2.

67. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(744):557–60. https://doi.org/10.1136/bmj.327.7441.557.

68. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217(2):377–84. https://doi.org/10.1148/radiology.217.2.00nnv36377.

69. Van Tassel P, Bruler JM, Maor MH, Leeds NE, Gleason MJ, Yung WK, et al. MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. AJNR Am J Neuroradiol. 1995;16(4):715–26.

70. Mullini ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26(8):1967–72.

71. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72. https://doi.org/10.3174/ajnr.A1362.

72. Reddy K, Westerly D, Chen C. MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high-grade glioma. J Med Imaging Radiat Oncol. 2013;57(3):349–55. https://doi.org/10.1111/j.1754-9485.2012.02472.x.

73. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002;51(4):912–9, discussion 9-20. https://doi.org/10.1097/00006123-200204000-00010.

74. Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al. Comparison of {1H}-methylamine, {1H}-choline, and {18}F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neuro Med Chir (Tokyo). 2014;54(4):280–8. https://doi.org/10.2176/nmc.oa.2013-0117.

75. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80. https://doi.org/10.1200/jco.1990.8.7.1277. Epub 1990/07/01. PubMed PMID: 2358840.

76. Miyatake S-I, Nonoguchi N, Furuse K, Nishiyama A, Yoshioka H, Yokoyama T, Ishida T. Reenlargement of radiation necrosis in the brain: imaging features and differentiation from pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15(7):11832–46. https://doi.org/10.3390/ijms150711832.

77. Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghie P, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):1343–59. https://doi.org/10.1148/rg.325125002.

78. Chernov MF, Hayashi M, Izawa M, Yoshida S, Ono Y, et al. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 2006;23(1):19–27. https://doi.org/10.1007/s10014-006-0194-9.

79. Furushchi K, Nishiyama A, Yoshioka H, Yokoyama T, Ishida T. Reenlargement of radiation necrosis after stereotactic radiotherapy for brain metastasis from lung cancer during bevacizumab treatment. Respir Investig. 2017;55(2):184–7. https://doi.org/10.1148/rri.201615071182.

80. Gronier S, Bourg V, Frenay M, Cohen M, Mondot L, Thomas P, et al. Bevacizumab for the treatment of cerebral radionecrosis. Rev Neurol (Paris). 2011;167(4):331–6. https://doi.org/10.1016/j.neurol.2010.01.012.

81. Thompson EM, Frenkel EP, Neuweit EA. The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology. 2011;76(1):87–93. https://doi.org/10.1212/WNL.0b013e318204a3af.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.