Narcissistic Self-Sorting and Enhanced Luminescence via Catenation in Water

Qiong Chen
Zhejiang University

Ye Lei
Zhejiang University

Hongye Wang
Zhejiang University

Guangcheng Wu
Zhejiang University

Wenwen Xu
Nankai University

Tianyu Jiao
Zhejiang University

Yuanjiang Pan
Zhejiang University

Qisheng Zhang
Zhejiang University

Ying-Ming Zhang
Nankai University

Yu Liu
Nankai University https://orcid.org/0000-0001-8723-1896

Hao Li (✉ lihao2015@zju.edu.cn)
Zhejiang University https://orcid.org/0000-0002-6959-3233

Keywords: narcissistic self-sorting, dynamic covalent bonds, acylhydrazone condensation, catenantion, luminescence

Posted Date: August 24th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-825032/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Version of Record: A version of this preprint was published at Materials Today Chemistry on March 1st, 2022. See the published version at https://doi.org/10.1016/j.mtchem.2021.100679.
Abstract

Narcissistic self-sorting, namely that components are able to distinguish “self” from “nonself” during self-assembly, was accomplished via catenation by condensing multiple hydrazides and an aldehyde, or a hydrazide and multiple aldehydes in water. The underneath mechanism of this behavior relies on the corresponding homo [2]catenanes are thermodynamically more favored than their hetero counterparts, because the former containing two identical macrocyclic components are able to maximize the inter-component noncovalent forces. One of these catenanes contains four 4-phenylpyridinium units, which are often considered barely luminescent due to intramolecular rotations and vibrations that lead to nonradiative annihilation of their excited states. These intramolecular motions, however, are restricted upon integrating 4-phenylpyridiniums within the catenane architecture. As a consequence, compared to its non-interlocked counterparts, this catenane exhibits enhanced fluorescence, which represents a novel conceptual model for developing luminescent materials.

Introduction

Nature employs self-assembly to obtain many functional molecular architectures, such as DNA double strands, and the protein shells of viruses, by gathering many subcomponents together, without the need of performing compound purification or reacting group protection/deprotection. Even though these subcomponents often contain many competitive ligating sites or interacting units such as base pairs, they are still able to undergo selective ligation in a noninterference manner to produce the target products. Chemists have attempted to mimic these biological behaviors of precise syntheses in artificial systems. Orthogonal reactivity\(^1\) was taken advantage of for this purpose, namely that two or more non-interacting reactions are used in ligation for synthesize complex molecules. Each of these reactions does not interfere with each other. Self-sorting\(^2\), which could be expressed in the manner of either narcissistic\(^3\) or social\(^4\), is also accomplished. These events are conceptually more reminiscent of the biological systems. Here, dynamic reactions are used, allowing the systems to perform error checking and search for their thermodynamic minima.\(^5\)\(^,\)\(^8\) The target molecules are sophisticatedly designed to represent the most thermodynamically favored products. When a “wrong” subcomponent takes the place of a “right” one in self-assembly, the self-assembled products become less thermodynamically favored, probably due to disturbance of some inter-component noncovalent forces. As a consequence, the “wrong” subcomponents are repelled, enabling the self-assembled systems to distinguish “self” from “nonself”, even though both ligands might have the same or competitive ligating groups. While most of the artificial self-sorting systems reported in the literature rely on metal-ligand coordination systems,\(^6\) using dynamic bonds or noncovalent forces\(^7\) are less extensively studied. In addition, given that Nature chooses water as the life medium, approaches to accomplish self-sorting in aqueous media must be developed, which helps to fully unravel the underneath mechanisms of the biological events.

Recently, a water-compatible dynamic covalent approach based on acylhydrazone condensation\(^8\) was developed by us\(^9\) and other groups.\(^10\) A variety of molecules with complex molecular architectures,
including rings, catenanes, cages and knots are successfully obtained. Here, we employed this dynamic approach to self-assemble a series of catenanes in relatively high yields, each of which is composed of two identical macrocycles. Within each framework of these homo [2]catenanes, the intramolecular noncovalent forces between their building blocks are maximized, including hydrophobic effect, \(\pi-\pi \) interactions, hydrogen bonding, as well as CH-\(\pi \) interactions, as inferred from crystallographic analysis. Such driving forces allow some of these [2]catenanes to be self-assembled in close to quantitative yields. Narcissistic self-sorting behaviors were clearly observed during self-assembly. That is, combining two different formyl precursor and one acylhydrazide, or one formyl precursor and two acylhydrazides in water only yielded the homo [2]catenanes composed of two identical macrocyclic components selectively, without forming their hybridized catenanes containing two different rings.

One of these homo [2]catenanes contains four luminescent 4-phenylpyridinium groups. In the literature, it is reported that the luminescence of 4-phenylpyridinium is relatively weak, because the central C-C single bond allows the occurrence of intramolecular rotations and vibrations that lead to nonradiative annihilation of its excited states. Within the framework of this [2]catenane, these intramolecular motions are efficiently restricted. As a consequence, the luminophore in the catenane exhibits enhanced luminescence compared to that of the noninterlocked counterparts, by nearly six times. We thus envision that the catenation here provides us a novel approach for developing luminescent materials.

Results And Discussion

Two bisdialdehydes \(\text{1a}^{2+}\cdot 2\text{Cl}^- \), \(\text{1b}^{2+}\cdot 2\text{Br}^- \) were prepared via \(\text{S}_2\text{N}_2 \) reactions. Both of these two aldehydes are water soluble on account of their cationic nature. In \(\text{1a}^{2+}\cdot 2\text{Cl}^- \), each of the formyl units and the corresponding pyridinium unit are bridged by a phenyl functional group (Figure 1). In \(\text{1b}^{2+}\cdot 2\text{Br}^- \), the two formyl units are grafted directly onto the electron-withdrawing pyridinium units (Figure 1). These formyl units in \(\text{1b}^{2+} \) are more electrophilic than those in \(\text{1a}^{2+} \) and therefore, the former are fully hydrolyzed in water. A set of bishydrazide linkers, namely \(\text{2a} \), \(\text{2b} \) and \(\text{2c} \), were prepared (Schemes S1-3), each of which bears a glycol chain containing two, three and four \(-\text{OCH}_2\text{CH}_2-\) units, respectively (Figure 1).

The attempts to form [2]catenanes were performed by combining each of these bisaldehydes, namely either \(\text{1a}^{2+}\cdot 2\text{Cl}^- \) or \(\text{1b}^{2+}\cdot 2\text{Br}^- \), and each of these three bishyrazides in D\(_2\)O in the presence of catalytic amount of DCl (Figure 1, Schemes S4-5). \(^1\text{H} \)NMR spectroscopy (see the SI) indicated that after heating the corresponding 1:1 mixtures at 60°C for no less than 8 h, five [2]catenanes, including \((\text{1a}^{2+}\cdot \text{2a})_2 \), \((\text{1a}^{2+}\cdot \text{2b})_2 \), \((\text{1a}^{2+}\cdot \text{2c})_2 \), \((\text{1b}^{2+}\cdot \text{2b})_2 \) and \((\text{1b}^{2+}\cdot \text{2c})_2 \) whose counterions are either Cl\(^-\) or Br\(^-\), were successfully self-assembled. However, the condensation of \(\text{1b}^{2+}\cdot 2\text{Br}^- \) and \(\text{2a} \) produced a mixture of the macrocycle \(\text{1b}^{2+}\cdot 2\text{a} \) and the [2]catenane \(\text{1b}^{2+}\cdot 2\text{a} \), as inferred from \(^1\text{H} \)NMR spectra, mass spectra and the HPLC analytic results (Figures S23-26). The self-assembly yields in the corresponding NMR samples of \((\text{1a}^{2+}\cdot \text{2a})_2 \), \((\text{1a}^{2+}\cdot \text{2b})_2 \), \((\text{1a}^{2+}\cdot \text{2c})_2 \), \((\text{1b}^{2+}\cdot \text{2b})_2 \) and \((\text{1b}^{2+}\cdot \text{2c})_2 \), whose counterions are either Cl\(^-\) or Br\(^-\), were
measured to be 78%, 73 %, 94 %, 61 % and 94% (Figures S73-77). It seems that \(2c\) represents the best bishydrazide linker favoring catenation among these three bishydrazides, i.e., the yields of both \(1a^{2+}·2c\) \(_2\) and \(1b^{2+}·2c\) \(_2\) are significantly higher than those containing either \(2a\) or \(2b\). This is probably because \(2c\) is long enough to avoid ring strain when it forms macrocycles with each of the two bisaldehyde subcomponents. In fact, this is indeed the case in the solid state structures from crystallography, which will be discussed later. This hypothesis was also justified by competition experiments. Combining a 1:1:1 mixture of \(1a^{2+}·2Cl^−\), \(2b\) and \(2c\) in water selectively produced \((1a^{2+}·2c)\) \(_2\) as the predominant product, as indicated by the \(^1\)H NMR spectrum (Figure S52), leaving \(2b\) unreacted in the solution. Only trace amount of \((1a^{2+}·2b)\) \(_2\) was observed in the mass spectrum (Figure S58). Such self-assembly preference did not occur when a 1:1:1 mixture of \(1a^{2+}·2Cl^−\), \(2a\) and \(2b\) was combined in water, which produced both \((1a^{2+}·2a)\) \(_2\) and \((1a^{2+}·2b)\) \(_2\), as well as their hybridized catenane \((1a^{2+}·2a)(1a^{2+}·2b)\) (Figures S62B and S64). We also compared the self-assembly preference between \(1a^{2+}\) and \(1b^{2+}\). Combining \(1a^{2+}·2Cl^−\), \(1b^{2+}·2Br^−\) and bishydrazide \(2c\) in a 1:1:1 ratio in water produced \((1a^{2+}·2c)\) \(_2\) as the major product, leaving most of \(1b^{2+}\) as a unreacted reactant (Figures S45B and S47). Changing \(2c\) to \(2b\) provided similar results (Figures S48B and S50). This observation is not surprising, because compared to \(1b^{2+}\), \(1a^{2+}\) has two more phenyl units that enhance hydrophobic effect and thus favor catenation. The \([2]\)catenanes were isolated from the corresponding self-assembly solutions, by performing counterion exchange, yielding the corresponding solid-state samples, including \((1a^{2+}·2a)·4PF_6^−\), \((1a^{2+}·2b)·4PF_6^−\), \((1a^{2+}·2c)·4PF_6^−\), \((1b^{2+}·2b)·4PF_6^−\) and \((1b^{2+}·2c)·4PF_6^−\), all of which were soluble in MeCN and full characterized by both \(^1\)H NMR spectroscopy and mass spectrometry (see the SI).

Within the framework of each \([2]\)catenane, the two macrocyclic components undergo circumvolution motion with respect to each other. The rates of this motion vary in different solvents, as inferred from the corresponding \(^1\)H NMR spectra. For example, in the \(^1\)H NMR spectrum of \((1a^{2+}·2c)·4Cl^−\) recorded in D\(_2\)O, the corresponding resonances split into two sets of peaks (Figure 2A), an observation indicating that within the catenane framework, the circumvolution occurs in a relatively slow rate on the \(^1\)H NMR timescale. As a consequence, each of the ring components becomes chemically asymmetrical, i.e., the building block in each macrocyclic component that is encircled within another ring is chemically inequivalent relative to the one outside. In contrast, the \(^1\)H NMR spectrum of \((1a^{2+}·2c)·4PF_6^−\) (Figure 2B) recorded in CD\(_3\)CN at room temperature exhibits only one set of resonances, indicating the circumvolution motion becomes faster on the \(^1\)H NMR timescale. By performing variable-temperature (VT) \(^1\)H NMR spectroscopic experiments, the energy barrier (\(\Delta G\)) of the circumvolution motion of \((1a^{2+}·2c)·4PF_6^−\) in CD\(_3\)CN was calculated to be 58.5 KJ·mol\(^{-1}\) (Figure S83). Calculating the corresponding (\(\Delta G\)) of \((1a^{2+}·2c)·4Cl^−\) in D\(_2\)O by using VT NMR experiments was unsuccessful, because of the relatively high frozen point of water.

Single crystals of \([2]\)catenanes \((1a^{2+}·2c)·4Cl^−\), \((1b^{2+}·2b)·4Cl^−\) and \((1b^{2+}·2c)·4Cl^−\) (Figures 3, S88-90), were prepared by slow vapor diffusion of THF into their corresponding aqueous solutions, which provided
unambiguous evidence to convince their mechanically interlocked architectures. In each of these [2]catenanes, the cavity of each of the two mutually mechanically interlocked rings is almost fully occupied by another ring, leading to a variety of inter-component close contacts. For example, the framework of \((1a^{2+} \cdot 2c)_2\) exhibits a tightly packed sandwich-shaped architecture. Each of the pyridinium building blocks in one ring undergoes \(\pi-\pi\) interactions with an adjacent phenyl unit in another ring, as inferred from their short interplane distances, i.e., around 3.4 Å (Figure 3). Close contacts also indicate the occurrence of \(\text{CH} \cdots \text{O}\) hydrogen bonding and \(\text{CH}-\pi\) interactions (Figure 3). In the framework of \((1b^{2+} \cdot 2b)_2\), ring strain is observed in each of the two macrocycles, i.e., some of its aromatic building blocks become bent to some extent. Such ring strain does not occur in either \((1a^{2+} \cdot 2c)_2\) or \((1b^{2+} \cdot 2c)_2\), an observation consistent with the aforementioned results that the formation of the catenanes containing \(2c\) residues is more favored and higher yielding than the [2]catenane counterparts containing either \(2a\) or \(2b\).

The ability of these homo [2]catenanes to maximize the intercomponent covalent interactions encourages us to envision that self-sorting might occur via catenation. When the two bisaldehydes \(1a^{2+} \cdot 2\text{Cl}^-\), \(1b^{2+} \cdot 2\text{Br}^-\) and bishydrazide \(2c\) were combined in \(D_2O\) in a 1:1:2 ratio, heating the mixture solution produced two homo [2]catenane products, namely \((1a^{2+} \cdot 2c)_2\) and \((1b^{2+} \cdot 2c)_2\), almost exclusively. The hybridized [2]catenane containing two different macrocycles, namely \((1a^{2+} \cdot 2c)(1b^{2+} \cdot 2c)\), was not observed in either \(^1\text{H} \text{NMR}\) (Figure S45C) or mass spectra (Figures 4 and S46). This observation is not surprising, because in such a putative heteroleptic [2]catenane \((1a^{2+} \cdot 2c)(1b^{2+} \cdot 2c)\), a larger ring namely \((1a^{2+} \cdot 2c)\) is mechanically interlocked by a smaller one namely \((1b^{2+} \cdot 2c)\). Because the larger ring could not be fully occupied by the smaller one, some of aforementioned intramolecular noncovalent forces were suppressed or weakened, and therefore the catenane becomes less thermodynamically favored compared to its homo counterparts. Similar narcissistic self-sorting behaviors also occurred by combining \(1a^{2+} \cdot 2\text{Cl}^-, 1b^{2+} \cdot 2\text{Br}^-, 2b\) and \(2b\) in a 1:1:2 ratio in water (Figures S48C and S49).

When we combined the bisaldehyde \(1a^{2+} \cdot 2\text{Cl}^-\) with two bishydrazides, namely \(2b\) and \(2c\), in a 2:1:1 ratio in \(D_2O\), three different [2]catenanes, namely \((1a^{2+} \cdot 2b)_2\), \((1a^{2+} \cdot 2c)_2\) and their hybridized form \((1a^{2+} \cdot 2b)(1a^{2+} \cdot 2c)\) were observed in mass spectra (Figure S53). This observation can be explained by the fact that the difference in structures of the flexible bishydrazides \(2b\) and \(2c\) subcomponents has very subtle impact on the intramolecular forces within the catenanes. Or expressed in another way, the geometries and sizes of the macrocyclic components, namely \((1a^{2+} \cdot 2b)\) and \((1a^{2+} \cdot 2c)\), whose rigid parts are almost identical, are structurally similar. The intramolecular noncovalent forces within the framework of the hetero [2]catenane \((1a^{2+} \cdot 2b)(1a^{2+} \cdot 2c)\) are barely disturbed compared to the homo counterparts. The formation of heteroleptic [2]catenanes was also observed by combining the bisaldehyde \(1a^{2+} \cdot 2\text{Cl}^-\) with either \(2a\) and \(2b\) or \(2a\) and \(2c\), as well as by combining the bisaldehyde \(1b^{2+} \cdot 2\text{Br}^-\) with \(2b\) and \(2c\) (Figures S59-67).

The observation that \(2b\) and \(2c\) with analogous structures failed to undergo narcissistic self-sorting, encouraged us to introduce a bishydrazide namely \(2d\) (Figure 5), whose structure is sharply different from
those of \(2a-2c\). The \(2d\) (Figure 5) contains a \(p\)-xylene bridge between the two acylhydrazide units. Our previous result demonstrated that condensing \(2d\) and \(1a^{2+}\) produced a \([2]\)catenane \((1a^{2+} \cdot 2d)_2\) in close to quantitative yield\(^9e\). Heating a 1:1:2 mixture of \(2c, 2d\) and \(1a^{2+} \cdot 2Cl^–\) in \(D_2O\) produced two homo \([2]\)catenane products, namely \((1a^{2+} \cdot 2c)_2\) and \((1a^{2+} \cdot 2d)_2\) (Figures 5 and S68-69). The hybridized \([2]\)catenane containing two different macrocycles, namely \((1a^{2+} \cdot 2c)(1a^{2+} \cdot 2d)\), was not observed in either \(^1\)H NMR (Figure S68) or mass spectra (Figures 5 and S69). Again, narcissistic self-sorting here was driven by the intramolecular noncovalent forces that were maximized only in the homo \([2]\)catenanes. Such forces might be disturbed in the putative hetero \([2]\)catenane owing to its mismatched architectures of the two different rings.

4-Phenylpyridinium that has a \(\pi\)-conjugated molecular skeleton, is reported luminescent.\(^{11}\) However, the central C–C single bond allows the occurrence of intramolecular rotations and vibrations, which often leads to luminescence quenching via nonradiative annihilation of the excited states of this luminophore. The implication is that, the luminescence of 4-phenylpyridinium could be enhanced by prohibiting or restricting these intramolecular motions. Indeed, such goal was accomplished by using macrocycle to encircle 4-phenylpyridinium.\(^{11a}\) For example, when two 4-phenylpyridinium were concurrently encapsulated by cucurbit[8]uril, the phosphorescence emission was significantly enhanced.\(^{12c}\) In our homo \([2]\)catenanes such as \((1a^{2+} \cdot 2c)_2\), two of the four 4-phenylpyridinium units are encapsulated by another ring. We thus envision that catenation might also lead to luminescence enhancement. In order to justify such proposition, we recorded and compared the fluorences of \(1a^{2+} \cdot 2PF_6^–\), the \([2]\)catenane \((1a^{2+} \cdot 2c)_2\cdot 4PF_6^–\), as well as a linear reference compound \((1a^{2+} \cdot 2e) \cdot 2PF_6^–\). \((1a^{2+} \cdot 2e) \cdot 2PF_6^–\) is a non-interlocked counterpart of the \([2]\)catenane \((1a^{2+} \cdot 2c)_2\cdot 4PF_6^–\), because the attempts to synthesized a pure macrocycle \((1a^{2+} \cdot 2c)\) were unsuccessful. In fluorescence spectrum of \(1a^{2+} \cdot 2PF_6^–\) (Figure 6, black trace), a broad band with maximal emission at 387 nm was observed. As a comparison, in the case of both \((1a^{2+} \cdot 2c)_2 \cdot 4PF_6^–\) (Figure 6, blue trace) and \((1a^{2+} \cdot 2e) \cdot 2PF_6^–\) (Figure 6, red trace), the maximal emission underwent significant red shifts by nearly 110 nm. More remarkably, compared to \(1a^{2+} \cdot 2PF_6^–\) and \((1a^{2+} \cdot 2e) \cdot 2PF_6^–\), the emission at the maximal wavelength of \((1a^{2+} \cdot 2c)_2 \cdot 4PF_6^–\) was significantly enhanced. Accordingly, the absolute photoluminescence quantum yields (PLQY) of \((1a^{2+} \cdot 2c)_2 \cdot 4PF_6^–\), \(1a^{2+} \cdot 2PF_6^–\) and \((1a^{2+} \cdot 2e) \cdot 2PF_6^–\) were determined to be 0.82%, 0.15% and 0.14% in \(CH_3CN\), respectively, thus showing a relatively higher emission efficiency of the catenane system relative to its noninterlocked counterparts. Such observation confirms our hypothesis that the \([2]\)catenane framework is able to restrict the intramolecular motions of 4-phenylpyridinium. This mechanically interlocked architecture is thus believed to represent a novel conceptual model in attaining highly emissive nano-constructs.

The mechanism of the luminescence enhancement via catenation is essentially not different from the host-guest recognition systems,\(^{12}\) as well as the aggregation-induced emission\(^{13}\) (AIE) systems. However, our approach represents one step of advance. First, different from AIE materials that often function in solid state, the luminescence enhanced via catenation occurs in a homogeneous solution, where the
Catenane molecules are homogeneously dispersed. Second, the supramolecular complexes are essentially a library of mixture, i.e., the ratio of complexes and the dissociated components might differ by modulating the conditions, such as concentrations, temperature, as well as solvent. As a comparison, the luminescent molecules obtained via catenation are essentially pure substances. This feature, at least to some extent, would help to develop luminescent materials with better quantitative controllability and stability.

Conclusion

In summary, a series of homo [2]catenanes were self-assembled in water via hydrazone condensation. Some of their yields are remarkably high, on account of a variety of intramolecular noncovalent interactions, including hydrophobic effect, \(\pi-\pi \) interactions, \(\text{CH}-\pi \) interactions, as well as hydrogen bonding. When two competitive bisaldehydes namely \(1a^{2+} \) and \(1b^{2+} \) were combined with a bishydrazide, or two competitive bishydrazides namely \(2c \) and \(2d \) with sharply different structures were combined with a bisaldehyde, narcissistic self-sorting occurred, yielding the corresponding homo [2]catenanes selectively. Such narcissistic self-sorting results from the inherent tendency of a macrocycle to template another version of “itself”, in order to maximize the inter-component noncovalent forces that might be disturbed in the putative hetero [2]catenanes. In contrast, combining \(1a^{2+} \) with two structurally analogous hydrazides namely \(2b \) and \(2c \) in aqueous media, yielded both homo- and hetero- [2]catenanes. Such self-sorting accomplished in artificial systems in aqueous solution improves our fundamental understanding on how nature takes advantage of noncovalent interactions to achieve precise syntheses of molecular entities with complex three-dimensional structures when the subcomponents contain same or competitive ligating sites. That is, the target molecules are able to maximize the inter-component noncovalent driving forces.

Within the catenane framework, the intramolecular motions of the 4-phenylpyridinium units, such as rotation around the central C-C bond, are efficiently restricted. Such behaviour helps to suppress nonradiative annihilation of the luminophore, helping to enhance the fluorescence of the [2]catenanes. Different from the luminescence enhancement based on supramolecular manner which allows host-guest association/dissociation, the fluorescent molecules obtained via catenation are pure substances. We envision that the usage of such strategy could be expanded to a broader field of developing luminescent materials, which requires better repeatability and quantitative controllability.

Declarations

Acknowledgements

H.L. thanks the National Natural Science Foundation of China (Nos. 91856116, 21772173 and 21922108), the Natural Science Foundation of Zhejiang Province (No. LR18B020001), as well as the Fundamental Research Funds for the Central Universities (No. 2019FZA3007) for financial support.
References

1. (a) Huck, W. T. S. et al. Noncovalent Synthesis of Nanostructures: Combining Coordination Chemistry and Hydrogen Bonding. *Angew. Chem. Int. Ed. Engl.* **36**, 1006 – 1008 (1997); (b) Goral, V. et al. Double-level “orthogonal” dynamic combinatorial libraries on transition metal template. *Proc. Natl. Acad. Sci. USA* **98**, 1347 – 1352 (2001); (c) Saha, M. L. et al. Orthogonality in discrete self-assembly – survey of current concepts. *Chem. Soc. Rev.* **42**, 6860 – 6909 (2013); (d) Hu, X.-Y. et al. Dynamic Supramolecular Complexes Constructed by Orthogonal Self-Assembly. *Acc. Chem. Res.* **47**, 2041 – 2051 (2014); (e) Wilson, A. et al. Functional systems with orthogonal dynamic covalent bonds. *Chem. Soc. Rev.* **42**, 6860 – 6909 (2013); (f) Wei, P. et al. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. *Chem. Soc. Rev.* **44**, 815-832 (2015); (g) Lu, C. et al. Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host-Guest Interactions. *J. Am. Chem. Soc.* **140**, 7674 – 7680 (2018); (h) Zhang, Q. et al. Self-Healing Heterometallic Supramolecular Polymers Constructed by Hierarchical Assembly of Triply Orthogonal Interactions with Tunable Photophysical Properties. *J. Am. Chem. Soc.* **141**, 17909–17917 (2019).

2. (a) Kramer, R. et al. Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. *Proc. Natl. Acad. Sci. USA* **90**, 5394 – 5398 (1993); (b) Rowan, S. J. et al. Automated Recognition, Sorting, and Covalent Self-Assembly by Predisposed Building Blocks in a Mixture. *J. Am. Chem. Soc.* **119**, 2578 – 2579 (1997); (c) Wu, A. et al. Self-Sorting: The Exception or the Rule. *J. Am. Chem. Soc.* **125**, 4831 – 4835 (2003); (d) He, Z. et al. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. *Chem. Soc. Rev.* **44**, 779 – 789 (2015); (e) Wang, W. et al. Supramolecular transformations within discrete coordination-driven supramolecular architectures. *Chem. Soc. Rev.* **45**, 2656 – 2693 (2016); (f) Saha, S. et al. Structure relationships between bis-monodentate ligands and coordination driven self-assemblies. *Coord. Chem. Rev.* **374**, 1 – 14 (2018).

3. (a) Acharyya, K. et al. Molecular Marriage through Partner Preferences in Covalent Cage Formation and Cage-to-Cage Transformation. *J. Am. Chem. Soc.* **135**, 554 – 557 (2013); (b) Gidron, O. et al. Homochiral [2]Catenane and Bis[2]catenane from Alleno-AcetylenicHelicates - A Highly Selective Narcissistic Self-Sorting Process. *J. Am. Chem. Soc.* **137**, 12502–12505 (2015); (c) Beaudoin, D. et al. Chiral Self-Sorting of [2+3] Salicylimine Cage Compounds. *Angew. Chem. Int. Ed.* **56**, 1244–1248 (2017); (d) Wang, X. et al. Narcissistic chiral self-sorting of molecular face-rotating polyhedral. *Org. Biomol. Chem.* **16**, 34– 37 (2018); (e) Kolodziejski, M. et al. Dynamic polyimine macrobicyclic cryptands – self-sorting with component selection. *Chem. Sci.* **10**, 1836–1843 (2019); (f) Zhao, X. et al. Narcissistic self-sorting in anion-coordination-driven assemblies. *Chem. Commun.*, **57**, 6078–6081 (2021).

4. (a) Mukhopadhyay, P. et al. Social Self-Sorting in Aqueous Solution. *J. Org. Chem.* **69**, 6157–6164 (2004); (b) Tomimasu, N. et al. Social Self-Sorting: Alternating Supramolecular Oligomer Consisting of Isomers. *J. Am. Chem. Soc.* **131**, 12339–12343 (2009); (c) Joseph, R. et al. Stabilization of
Cucurbituril/Guest Assemblies via Long-Range Coulombic and CH···O Interactions. *J. Am. Chem. Soc.* **136**, 6602–6607 (2014); (d) Klotzbach, S. et al. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds. *Angew. Chem. Int. Ed.* **54**, 10356 – 10360 (2015); (e) Beuerle, F. et al. Let’s Sort It Out: Self-Sorting of Covalent Organic Cage Compounds. *Synlett* **27**, 1133–1138 (2016); (f) Greenaway, R. L. et al. From Concept to Crystals via Prediction: Multi-Component Organic Cage Pots by Social Self-Sorting. *Angew. Chem. Int. Ed.* **58**, 16275 –16281 (2019); (g) Abet, V. et al. Inducing Social Self-Sorting in Organic Cages To Tune The Shape of The Internal Cavity. *Angew. Chem. Int. Ed.* **59**, 16755 – 16763 (2020).

5. Meyer, C. D. et al. Template-directed synthesis employing reversible imine bond formation. *Chem. Soc. Rev.* **36**, 1705 – 1723 (2007).

6. (a) Baxter, P. N. W. et al. Multicomponent Self-Assembly: Spontaneous Formation of a Cylindrical Complex from Five Ligands and Six Metal Ions. *Angew. Chem. Int. Ed. Engl.* **32**, 69 – 72 (1993); (b) Caulder, D. L. et al. Superamolecular Self-Recognition and Self-Assembly in Gallium(III) Catecholamide Triple Helices. *Angew. Chem. Int. Ed. Engl.* **36**, 1440 – 1442 (1997); (c) Taylor, P. N. et al. Cooperative Self-Assembly of Double-Strand Conjugated Porphyrin Ladders. *J. Am. Chem. Soc.* **121**, 11538 – 11545 (1999); (d) Ibukuro, F. et al. Quantitative and Spontaneous Formation of a Doubly Interlocking [2]Catenane Using Copper(I) and Palladium(II) as Templating and Assembling Centers. *J. Am. Chem. Soc.* **121**, 11014 – 11015 (1999); (e) Schultz, D. et al. Choices of Iron and Copper: Cooperative Selection during Self-Assembly. *Angew. Chem. Int. Ed.* **45**, 2453 – 2456 (2006); (f) Mahata, K. et al. From 2-Fold Collective to Integrative Self-Sorting: A Five-Component Supramolecular Trapezoid. *J. Am. Chem. Soc.* **131**, 16544 – 16554 (2009); (g) Zheng, Y. R. et al. Multicomponent Supramolecular Systems: Self-Organization in Coordination-Driven Self-Assembly. *Chem. Eur. J.* **15**, 7203 – 7214 (2009); (h) Schmittel, M. et al. Scaffolding a Cage-Like 3D Framework by Coordination and Constitutional Dynamic Chemistry. *Org. Lett.* **13**, 3916 – 3919 (2011); (i) Campbell, C. J. et al. A Simple and Highly Effective Ligand System for the Copper(I)-Mediated Assembly of Rotaxanes. *Angew. Chem. Int. Ed.* **53**, 13771 – 13774 (2014); (j) Lu, X. et al. Probing a Hidden World of Molecular Self-Assembly: Concentration-Dependent, Three-Dimensional Supramolecular Interconversions. *J. Am. Chem. Soc.* **136**, 18149 – 18155 (2014); (k) Ramsay, W. J. et al. Designed Enclosure Enables Guest Binding Within the 4200 Å3 Cavity of a Self-Assembled Cube. *Angew. Chem. Int. Ed.* **54**, 5636 – 5640 (2015); (l) Gidron, O. et al. Homochiral [2]Catenane and Bis[2]catenane from Alleno-Acetylenic Helicates - A Highly Selective Narcissistic Self-Sorting Process. *J. Am. Chem. Soc.* **137**, 12502–12505 (2015); (m) Bloch, W. M. et al. Morphological Control of Heteroleptic cis- and trans-Pd2L2L′2 Cages. *Angew. Chem. Int. Ed.* **56**, 8285 – 8289 (2017); (n) Sepehrpour, H. et al. Fe–Pt Twisted Heterometallic Bicyclic Supramolecules via Multicomponent Self-Assembly. *J. Am. Chem. Soc.* **139**, 2553 – 2556 (2017); (o) Gaikwad, S. et al. Five-component trigonal nanoprisms with six dynamic corners. *Chem. Commun.* **53**, 8034 – 8037 (2017); (p) Rizzuto, F. J. et al. Otherwise Unstable Structures Self-Assemble in the Cavities of Cuboctahedral Coordination Cages. *J. Am. Chem. Soc.* **140**, 11502 – 11509 (2018); (q) Ayme, J.-F. et al. Inside Cover: Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Umpolung 1,4-Addition of Aryl Iodides to Enals. *Angew. Chem. Int. Ed.* **59**, 2 – 11 (2020).
7. (a) Otto, S. et al. Selection and Amplification of Hosts From Dynamic Combinatorial Libraries of Macrocyclic Disulfides. *Science* **297**, 590-593 (2002); (b) Sadownik, J.W. et al. A Simple Synthetic Replicator Amplifies Itself from a Dynamic Reagent Pool. *Angew.Chem. Int. Ed.* **47**, 9965 – 9970 (2008); (c) Vongvilai, P. et al. Dynamic Asymmetric Multicomponent Resolution: Lipase-Mediated Amidation of a Double Dynamic Covalent System. *J. Am. Chem. Soc.* **131**, 14419 – 14425 (2009); (d) Ajami, D. et al. Compressed alkanes in reversible encapsulation complexes. *Nat. Chem.* **1**, 87 – 90 (2009); (e) Osowska, K. et al. Oxidative Kinetic Self-Sorting of a Dynamic Imine Library. *J. Am. Chem. Soc.* **133**, 724–727 (2011); (f) Jiang, W. et al. Guest-Induced, Selective Formation of Isomeric Capsules with Imperfect Walls. *J. Am. Chem. Soc.* **134**, 17498–17501 (2012); (g) Ji, Q. et al. Distillative Self-Sorting of Dynamic Ester Libraries. *J. Org. Chem.* **78**, 12710–12716 (2013); (h) Klotzbach, S. et al. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds. *Angew.Chem. Int. Ed.* **54**, 10356 – 10360 (2015).

8. Jiao, T. et al. Self-Assembly in Water with N-Substituted Imines. *Angew.Chem. Int. Ed.* **59**, 18350 – 18367 (2020).

9. (a) Li, H. et al. Quantitative self-assembly of a purely organic three-dimensional catenane in water. *Nat. Chem.* **7**, 1003 – 1008 (2015). (b) Zheng, X. et al. Temperature-dependent self-assembly of a purely organic cage in water. *Chem. Commun.* **54**, 3138 –3141 (2018); (c) Zhang, Y. et al. A Kinetically Stable Macrocycle Self-Assembled in Water. *Org. Lett.* **20**, 2356 – 2359 (2018); (d) Wu, G. et al. Controllable Self-Assembly of Macropores in Water for Isolating Aromatic Hydrocarbon Isomers. *J. Am. Chem. Soc.* **140**, 5955 – 5961 (2018); (e) Wang, C.-Y. et al. Precursor control over the self-assembly of [2]catenanes via hydrazone condensation in water. *Chem. Commun.* **54**, 5106 – 5109 (2018); (f) Chen, Q. et al. Ultramacrocyclization via selective catenation in water. *Chem. Commun.* **55**, 13108 – 13111 (2019).

10. (a) Coughon, F. B. L. et al. A Strategy to Synthesize Molecular Knots and Links Using the Hydrophobic Effect. *J. Am. Chem. Soc.* **140**, 12442 – 12450 (2018); (b) Caprice, K. et al. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. *Angew. Chem. Int. Ed.* **58**, 8053 – 8057 (2019); (c) Kruve, A. et al. Ion-Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. *Angew. Chem. Int. Ed.* **58**, 11324 – 11328 (2019); (d) Neira, I. et al. Adjusting the Dynamism of Covalent Imine Chemistry in the Aqueous Synthesis of Cucurbit[7]uril-based [2]Rotaxanes. *Org. Lett.* **21**, 8976 – 8980 (2019); (e) Blanco-Gómez, A. et al. Thinking Outside the “Blue Box”: Induced Fit within a Unique Self-Assembled Polycationic Cyclophane. *J. Am. Chem. Soc.* **141**, 3959 – 3964 (2019); (f) Caprice, K. et al. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. *Chem. Eur. J.* **26**, 1576 –1587 (2020).

11. (a) Zhang, Z.-Y. et al. Efficient Room-Temperature Phosphorescence of a Solid-State Supramolecule Enhanced by Cucurbit[6]uril. *Angew. Chem. Int. Ed.* **58**, 6028–6032 (2019); (b) Zhang, Z.-Y. et al. Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril. *Chem. Sci.* **10**, 7773 – 7778 (2019); (c) Zhang, Z.-Y. et al. Inside Cover: Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Umpolung 1,4-Addition of Aryl Iodides to Enals. *Angew. Chem. Int. Ed.* **59**, 2–9 (2020).
12. (a) Wu, H. et al. Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. *J. Am. Chem. Soc.*, **142**, 16849–16860 (2020); (b) Shen, F.-F. et al. Purely organic light-harvesting phosphorescence energy transfer by b-cyclodextrin pseudorotaxane for mitochondria targeted imaging. *Chem. Sci.*, **12**, 1851–1857 (2020); (c) Ma, X.-K. et al. Supramolecular Pins with Ultralong Efficient Phosphorescence. *Adv. Mater.*, **33**, 2007476 (2021).

13. Mei, J. et al. Aggregation-Induced Emission: Together We Shine, United We Soar! *Chem. Rev.*, **115**, 11718–11940 (2015).

Figures

![Diagram of supramolecular complexes and reaction scheme](image)

Figure 1
Structural formulas of two dicationic bisaldehydes 1a2+, 1b2+ and three bishydrazides 2a, 2b and 2c. Upon combining one bisaldehyde and one bishydrazide in water, a set of [2]catenanes including (1a2+·2a)2, (1a2+·2b)2, (1a2+·2c)2, (1b2+·2a)2, (1b2+·2b)2 and (1b2+·2c)2 are self-assembled. Charges are balanced by Cl− or Br− counteranions, which are omitted here for the sake of clarity.

Figure 2

Partial 1H NMR spectra (500 MHz, 298 K) of A) (1a2+·2c)2·4Cl− and B) (1a2+·2c)2·4PF6−, which were recorded in D2O and CD3CN respectively. The assignment of each resonance was made by the corresponding two-dimensional NMR spectra shown in the SI. Counterions are omitted in the figure for the sake of clarity.
Figure 3

Solid-state structures of (1b2+·2b)2 (top), (1b2+·2c)2 (middle), and (1a2+·2c)2 (bottom), obtained from single-crystal X-ray diffraction analysis. Oxygen atoms, red; nitrogen, blue; carbon, gray; hydrogen, white. Counteranions and solvent molecules are omitted for clarity. Some of the close contacts were labeled with dash lines, indicating the occurrence of intramolecular interactions.
Figure 4

Partial high resolution ESI-MS spectrum of a 1:1:2 mixture of 1a2+·2Cl─, 1b2+·2Br─ and 2c in water. The signals labeled in the spectrum correspond to molecular cations of the homo [2]catenanes namely (1b2+·2c)2 and (1a2+·2c)2 that contain four charges. Counterions are omitted in the figure for the sake of clarity.
Figure 5

Partial high resolution ESI-MS spectrum of a 2:1:1 mixture of 1a2+·2Cl−, 2c and 2d in water. The signals labeled in the spectrum correspond to molecular cations of the homo [2]catenanes namely (1a2+·2c)2 and (1a2+·2d)2 that contain four charges. Counterions are omitted in the figure for the sake of clarity.
Fluorescence spectra of (1a2+·2c)2·4PF6─ (1 × 10−5 M, blue), 1a2+·2PF6─ (2 × 10−5 M, black), and (1a2+·2e)·2PF6─ (2 × 10−5 M, red) in CH3CN, excited at 317 nm. In all the three compounds, the concentration of 4-Phenylpyridinium was kept constant, namely 4 × 10−5 M.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 2014867.cif
- SI8.18.docx
- 2014869.cif
- 2014868.cif