Impaired Host Response and the Presence of Acinetobacter baumannii in the Serum Microbiome of Type-II Diabetic Patients

Dasith Perera
Sarah E. Kleinsein
Benjamin Hanson
Hatice Hasturk
Ryan Eveloff

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs
Authors
Dasith Perera, Sarah E. Kleinstein, Benjamin Hanson, Hatice Hasturk, Ryan Eveloff, Marcelo Freire, and Matthew M. Ramsey
Impaired host response and the presence of *Acinetobacter baumannii* in the serum microbiome of type-II diabetic patients

Highlights

- *Acinetobacter baumanii* was found in the serum of 23% type-II diabetic patients.
- Minor but significant serum microbiome changes between healthy vs type-II diabetic patients.
- Proinflammatory cytokines were elevated in *A. baumanii*-positive serum samples.
- *A. baumanii* + serum cytokine profiles were consistent with chronic inflammation.

Perera et al., iScience 24, 101941 January 22, 2021 © 2020 The Authors. https://doi.org/10.1016/j.isci.2020.101941
Impaired host response and the presence of *Acinetobacter baumannii* in the serum microbiome of type-II diabetic patients

Dasith Perera,1 Sarah E. Kleinstein,2 Benjamin Hanson,1 Hatice Hasturk,3 Ryan Eveloff,2 Marcelo Freire,2,4,* and Matthew Ramsey1,5,*

Summary

Type II diabetes (T2D) affects over 10% of the US population and is a growing disease worldwide that manifests with numerous comorbidities and defects in inflammation. This dysbiotic host response allows for infection of the host by numerous microorganisms. In the course of T2D disease, individuals can develop chronic infections including foot ulcers and periodontitis, which lead to further complications and opportunistic infections in multiple body sites. In this study, we investigated the serum of healthy subjects and patients with T2D with (T2DP) or without periodontitis for both microbiome signatures in addition to cytokine profiles. Surprisingly, we detected the presence of *Acinetobacter baumannii* in the serum of 23% individuals with T2D/T2DP tested. In T2DP, IL-1β, TNF-α, MCP-1, IL-6, IL-8, and IFN-γ were significantly elevated in ABC-positive subjects. As an emerging pathogen, *A. baumannii* infection represents a risk for impaired inflammation and the development of comorbidities in subjects with T2D.

Introduction

Type-II diabetes (T2D) is a chronic inflammatory disease affecting 10.5% of the US population, with rising prevalence both in the United States and worldwide (Whiting et al., 2011; National Diabetes Statistics Report | Data & Statistics | Diabetes | CDC, 2020). Individuals with T2D typically have numerous comorbidities and are at a greater risk of both opportunistic and nosocomial infections, which can result in significant morbidity, including amputations, and lost quality of life (QOL) measures (Vardakas et al., 2007; Erben et al., 2013; McDonald et al., 2014; Ferlita et al., 2019; Kim et al., 2019). Thus, care must be taken to prevent and monitor the infection status of these individuals, as the development of diabetic mucosal and skin lesions across the body can impact the host immune and diabetic responses. Key infection prevention includes minimizing portals of entry and colonization by numerous pathogens. One example of such a portal of entry is the emergence of diabetic foot ulcers, which can develop diabetic foot infections (DFIs). Roughly 15% of adults with T2D develop foot ulcers and ~14% of these subjects undergo amputation, with the remainder needing extensive debridement, negative pressure treatments, and other therapies including antibiotics, which result in prolonged hospitalization time, lengthy healing duration, and increased treatment costs (Reiber et al., 1998; Driver et al., 2010).

In addition to DFIs, subjects with T2D are ~3 times more likely to develop periodontitis (Emrich et al., 1991; Wu et al., 2020). Periodontitis is an inflammatory oral disease accompanied by a polymicrobial biofilm infection that can lead to tissue damage, chronic lesions, and tooth/bone loss in the oral cavity (Irfan et al., 2001; Genco et al., 2020; Mann et al., 2020). During periodontal infection, the healthy oral microbiome, especially in the subgingival space (along teeth below the gumline, including periodontal ligament, epithelium, alveolar bone, and connective tissues), transitions to one enriched with several opportunistic pathogens that exacerbate inflammation and host tissue damage both locally and systemically (Socransky et al., 1998; Giffen et al., 2012; Hajishengallis and Lamont, 2012; Roberts and Darveau, 2015; Nowicki et al., 2018; Curtis et al., 2020). Although protective, acute inflammation is a helpful immune response, it is characterized by rapid activation of inflammation and subsequent return to homeostasis (resolution). Unresolved inflammation that fails to control the trigger leads to chronic lesions and is a hallmark of both periodontitis and T2D.
More acute bacteremia can manifest in diseases such as endocarditis or other distal infections by oral microbes (Lockhart and Durack, 1999; Parahitiyawa et al., 2009; Carnizales-Sepúlveda et al., 2018). Various systemic diseases are in fact influenced by microbial metabolism and host interactions. “How” and “why” immune system imbalance fails to control microbial pathogenic transition remains an active area of investigation. Increasing evidence implicates periodontal diseases, especially periodontitis in adults, as a potential risk factor for increased morbidity and mortality from systemic conditions including diabetes, cardiovascular diseases, adverse pregnancy outcomes, and others (Genco et al., 2020; Kleinstein et al., 2020b). This is due to two plausible mechanisms: a direct pathway leading to migration of the bacteria to distal organs and an indirect pathway leading to production of microbial metabolites and/or activating inflammatory mediators that activate the immune system locally and systemically. This is likely made possible as periodontitis presents as a chronic inflammatory condition of the tooth-supporting structures occurring with oral microbiome dysbiosis and continuous inflammatory burden. Notably, oral microbes have also been detected (Dowd et al., 2008; Gardner et al., 2013) and isolated from DFIs (Bowler and Davies, 1999; Citron et al., 2007). Thus, we hypothesized that patients with T2D might be at a greater risk of extraroral infection and may exhibit changes in microbiota that transiently occupy their bloodstream. We further hypothesized that these changes would be even more apparent in patients with T2D with periodontitis (T2DP) and that these patients may carry potential DFI-colonizing oral species in their bloodstream. Our initial investigations toward these hypotheses utilized samples derived from previous work on resolution of inflammation in T2D (Freire et al., 2017) and are reported here, with unexpected results.

To investigate the possibility of oral species presence in the bloodstream, we compared the serum microbiomes of subjects with T2D and T2DP versus a healthy cohort. Unexpectedly, we detected Acinetobacter baumanii in 23% of the subjects with T2D/P in our study. A. baumanii is an emerging infectious pathogen (Villar et al., 2014) notorious for its evolving antibiotic resistances (Gootz and Marra, 2008; Vázquez-López et al., 2020) and nosocomial (Dijkstra et al., 2007; Ayoub Moubareck and Hammoudi Halat, 2020) and bloodstream infections (Peleg et al., 2008) and is part of a cluster of Acinetobacter species with similar clinical manifestations known as the AB or ABC complex (Gerner-Smidt and Tjernberg, 1993), which are highly similar via ribotyping. ABC complex organisms present several particular risks to subjects with T2D, specifically higher mortality rates for those with bacteremia (Leão et al., 2016) and for those with higher blood glucose concentrations (Leung and Liu, 2019). Patients infected with A. baumanii after burns were 9.8 times more likely to develop glucose intolerance, and ~3 times more patients with T2D with burns developed A. baumanii infections (27%) than patients without T2D (8.5%) (Furniss et al., 2005). Additionally, A. baumanii has also been observed in DFIs, particularly alongside other multidrug-resistant pathogens, presenting a grave concern for individuals with T2D (Castellanos et al., 2019; Henig et al., 2020). In addition to DFIs, ABC complex organisms can also spread through the body and form infections in numerous organs (Peleg et al., 2008; Al-Anazi and Al-Jasser, 2014). A. baumanii in a mouse pneumonia model led to increased proinflammatory cytokines, reduced neutrophil infiltration into the lung, and increased extrapulmonary dissemination (Qi et al., 2009). In T2D, neutrophils present failure in early chemotaxis, but a hyper-inflammatory feedback loop emerges to compensate the initial myeloid cell failure (Kleinstein et al., 2020a).

In this work, we first investigated whether or not we could detect signatures of oral bacteria; our findings indicated minor, yet significant, microbiome compositional changes between healthy cohort and patients with T2D and T2DP. We discovered that nearly one-fourth of the subjects with T2DP in our study contained sequence reads identical to that of A. baumanii. The specific presence of A. baumanii was confirmed by further clone library and 16S rDNA Sanger sequencing. In addition, we assayed the host response by cytokine profiles of sera. When stratifying A. baumanii-positive T2D versus A. baumanii-negative T2D samples we observed unique cytokine profiles, suggesting a specific microbial impact on systemic inflammation. Although our methodology cannot indicate if A. baumanii was transiently present or a subclinical colonizer of our T2DP cohort, we propose that these data reveal a much greater risk of currently “uninfected” individuals with T2D for A. baumanii exposure and infection than previously understood and should justify more intensive and thorough investigation into AB complex colonization of patients with T2D.

Results
Patient demographics
Serum samples were generated from the population described in Table 1. A total of 81 subjects were investigated in this study, 57 with T2D, of which 29 had periodontitis (T2DP) as defined by the American
Association of Diabetes (American Diabetes Association, 2015) and American Association of Periodontology (AAP) (Armitage, 1999) criteria, respectively. All T2D donors were poorly controlled diabetic subjects who had not taken antimicrobials, non-steroidal anti-inflammatory drugs, or insulin sensitizers within three months. Diagnostic serum glucose measures were taken for all subjects, and HbA1c was measured for diabetic patients to stage disease status. As expected, poorly controlled diabetic subjects (HbA1c% > 6.5%) showed significantly elevated glucose levels (p < 0.0001; Table 1). There were no significant differences in gender or ethnicity between healthy volunteers and diabetic patients. Diabetic patients showed elevated body mass index and tended to be older than healthy controls (p < 0.05), consistent with known disease biology. Periodontal condition was further stratified among the subjects according to the severity of irreversible tissue loss (mild, moderate, severe) and reversible lesions called gingivitis according to AAP (Armitage, 1999) criteria. Periodontal condition was significantly worse in diabetic compared with healthy controls (p < 0.0001).

Table 1. Study subject demographics

	Healthy (N = 24)	Type II diabetes (N = 57)	Total (N = 81)	p value
Age (mean in years ± SD)	46 ± 10.72	55 ± 10.78	52.78 ± 11.40	<0.001
Gender (no., %)				
Male	13 (54%)	29 (51%)	42 (51.85%)	
Female	11 (46%)	28 (49%)	39 (48.15%)	0.15
Ethnicity				
Caucasian	15 (63%)	25 (43.86%)	40 (49.38%)	
Hispanic	2 (8%)	7 (12.28%)	9 (11.11%)	
African American	6 (25%)	23 (40.35%)	29 (35.80%)	
Asian	0	2 (3.51%)	2 (2.47%)	
Other	1 (4%)	0	1 (1.23%)	0.02
Smoking status (no., %)				
Smokers	1 (4%)	5 (8.77%)	6 (7.41%)	
Former smokers	0	21 (36.84%)	21 (25.93%)	
Never smokers	23 (96%)	31 (54.39%)	54 (66.67%)	0.02
BMI (kg/m², mean ± SD)	29.34 ± 2.60	32.93 ± 6.02	31.87 ± 5.48	<0.01
Blood cholesterol (mg/dL, mean ± SD)	148.89 ± 36.71	211.73 ± 78.69	194.01 ± 74.84	<0.001
HbA1c (%; mean ± SD)	–	7.48 ± 1.61	–	
Blood Glucose (mg/dL, mean ± SD)	99.25 ± 19.29	190.84 ± 60.58	163.70 ± 66.69	<0.0001
Periodontal condition (no., %)				
Healthy	24 (100%)	7 (12.28%)	31 (38.27%)	
Mild	0	15 (26.32%)	15 (18.52%)	
Moderate	0	11 (19.30%)	11 (13.58%)	
Severe	0	12 (21.05%)	12 (14.81%)	
Gingivitis	0	10 (17.54%)	10 (12.35%)	
Stable periodontitis	0	2 (3.51%)	2 (2.47%)	<0.0001
ABC positive (no., %)				
Positive	0	13 (22.81%)	13 (16.05%)	
Negative	19 (79%)	29 (50.88%)	48 (59.26%)	
Not tested	5 (21%)	15 (26.32%)	20 (24.69%)	0.02
Neutrophil count (million cells, mean ± SD)	74.82 ± 58.56	158.22 ± 90.08	131.90 ± 94.51	<0.0001
Monocyte count (million cells, mean ± SD)	63.79 ± 50.35	113.91 ± 60.09	99.22 ± 63.28	<0.01

p values calculated by unpaired t tests or χ² (two-sided p values; italicized p < 0.05 significant).

BMI, body-mass index; ABC, A. baumanii; %, percentage; mg/dL, milligrams per deciliter; kg/m², kilograms per square meter. Smoking classification according to CDC National Health Interview Survey (NHIS).
subjects (p < 0.0001). All healthy subjects had healthy periodontal condition compared with only 11% diabetic patients, with 15% diabetic subjects suffering from severe periodontitis. Current and former smokers were near uniformly part of the T2D and T2DP groups with only one current smoker in the healthy group. The entire study population had a median age range of 53 ± 11 years, and all subjects were outpatient and thus not part of an extended hospital stay cohort.

Microbiome analysis controls for low template sequencing

Data generated here was part of a post hoc study of serum samples collected for a previous study (Freire et al., 2017) and thus not available in the larger volumes ideal for 16S microbiome dataset generation. Low template concentrations can produce microbiome signatures not derived from that in the biological samples due to amplification of contaminating genomic DNA (gDNA) in sterile buffers and reagents (Kennedy et al., 2014; Salter et al., 2014; Kim et al., 2017), which often manifests as aquatic species signatures, many of which are not compatible with growth in the human host (i.e., many do not even grow at 37°C) (Kim et al., 2017). A description of no-template/reagent-only control samples is provided in the Methods. Data within this study are provided as either minimally filtered (mitochondrial, human, and chloroplast aligned reads removed) or strict filtered (reads removed based on homology with reagent-only controls) and indicated as such throughout the study. All sequence data are made available at NIH SRA Bioproject PRJNA664044, and all scripts used for data generation, filtering, and analyses are provided in the Supplemental Information.

We were able to generate abundant data from these samples with careful consideration paid to controls for amplification bias and background bacterial gDNA contamination of commercial sterile reagents. First, we utilized amplification of a mock standard library of 8 bacterial and 2 fungal species (Figures S1A and S1B) at 10 and 1 ng of total template, which indicated that our library preparation protocol was suitable for species-level analysis where possible by V1-V3 sequence. Second, we utilized 13 separate no-template/reagent-only controls, which were subjected to our sequence analysis pipeline, revealing frequently encountered contaminating taxa. These taxa were filtered from each human-derived sample in the strict-filtered datasets only.

V1-V3 16S microbiome diversity analyses reveal minor but significant differences between diabetic and nondiabetic groups

Serum and control samples were subject to bead beater lysis and gDNA purification. Purified gDNA was amplified using the V1-V3-targeted 27F-519R primer pair (Stackebrandt and Goodfellow, 1991; Turner et al., 1999). Quality trimmed reads were subjected to DADA2 analysis (Callahan et al., 2016) and aligned to the SILVA database (Quast et al., 2013) to determine species-level identity where possible. Rarefaction curve analysis was performed to ensure adequate sequencing depth (Figure S2), and resequencing of each Illumina index was performed to generate greater sequencing depth without further template amplification. Run-to-run variability between next-generation sequencing was found to be insignificant (Figure S3). Data analysis and comparisons were performed via QIIME2 (Bolten et al., 2019) as detailed in the Methods.

We first quantified alpha and beta diversity between the healthy, T2D, and T2DP subject groups for our strict filtered (Figures 1 and S7) and minimally filtered data (Figure S4). For both datasets, species richness for T2D and T2DP groups were significantly different than the healthy cohort, which was also significantly different when compared with T2DP in each dataset for species evenness (T2D more rich, T2DP less rich, and less even). Beta diversity was significantly less for healthy subjects versus T2D and greater when compared with T2D for either minimal or strict filtered datasets. Thus, we observed minor but significant shifts in microbiome composition between subject groups.

To begin investigating which taxa contributed to this composition difference we first looked at a phylum-level display of our taxonomically assigned data (Figure 2). Figures 2A and 2B, respectively, indicate phylum-level data for strict versus minimal filtered datasets. Similar trends in phyla distribution were evident for either dataset and reveal minor phylum-level changes between subject groups.

MED and DADA2 analysis reveal the presence of Acinetobacter baumanii

Given our initial investigation into whether or not there were differences between T2D and T2DP microbiota and a preliminary hypothesis that oral taxa would be enriched in T2DP serum, we first used a minimal entropy decomposition (MED) analysis identical to the one used previously to characterize oral
microbiomes (Eren et al., 2014). Oligotyped “nodes” or representative sequences were aligned to both the Human Oral Microbiome (HOMD) (Escapa et al., 2018) and Ribosomal Database Project (RDP) (Cole et al., 2014) databases, and species were assigned based on 98% or higher sequence identity when comparing nodes to reference databases. We next compared species-assigned data between subject groups by linear discriminate analysis effect size measurements (LEfSe) (Segata et al., 2011). Using MED-analyzed data for healthy versus all subjects with T2D (Figure 3) we detected significant enrichments of some oral species (Streptococcus cristatus, Neisseria flavescens) and also some known reagent contaminants (Ralstonia picketti, Afipia broomeae) alongside other soil and freshwater microbes that we suspect are also contaminants (Flectobacillus, Stenotrophomonas, Sphingobium, Arthrobacter). Surprisingly, we observed A. baumanii significantly enriched in the T2D population as a whole. For MED analysis, reads assigned as A. baumanii were present from 0.01% to 7.3% of total reads in 8 and 5 subjects with T2D and T2DP, respectively. No reads assigned to A. baumanii were detected in any healthy subject. DADA2 amplicon sequence variants (ASVs) are similar to MED nodes, and we observed that one ASV node was a perfect match to the singular MED node assigned to A. baumanii based on 100% RDP alignment across its full sequence. This ASV was assigned only to the Acinetobacter genus despite a 100% full-length match to A. baumanii sequence at the RDP database and the NCBI non-redundant database (not shown). Based on this, we manually assigned this ASV to A. baumanii and found that reads now assigned to A. baumanii were present from 0.01% to 9.1% of total reads in 8 and 5 subjects with T2D and T2DP, respectively, with no reads assigned to A. baumanii detected in any healthy subjects. This demonstrated agreement between both MED and

Figure 1. 16S alpha and beta diversity of serum microbiomes changes with subject status (A–C) Species richness is displayed based on Faith’s phylogenetic diversity (Faith, 1992) (A), and species evenness is based on Pielou’s evenness index (Pielou, 1966) (B) for healthy, type-II diabetic patients (T2D), and type-II diabetic patients with periodontitis (T2DP) samples. Significance was determined by Kruskal-Wallis analysis of variance (Kruskal and Wallis, 1952) for each comparison indicated, and Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) was applied to generate adjusted q-values. All data used were strictly filtered based on no-template control indexes. *q-value < 0.002 compared with healthy. **q-value < 0.0004 compared with healthy and with T2D. (C) Beta diversity Bray-Curtis distances. Pairwise PERMANOVA of each category versus each (group size of 3, n = 112) was performed in 999 permutations. ***q-value differs from “healthy” < 0.001. See also Figure S4.
DADA2-based 16S data analysis. LEfSe analysis was again performed on healthy subjects versus all with T2D, as well as between all three subject groups, and demonstrated again that *A. baumanii* was significantly elevated among all T2D samples (Figure S5).

We next looked at differences in microbiome compositions across subjects by plotting Bray-Curtis distances via non-metric multidimensional scaling (NMDS) while distinguishing subject groups as well as presence or absence of ABC bacteria (Figure 4). Broadly, T2D and T2DP samples had less overlap in composition, whereas healthy samples intersected either group. ABC status did not seem to form a distinct microbiome cluster, suggesting that there was no unique microbiota composition for ABC-positive subjects apart from *A. baumanii* sequence detection.

Validating the presence of *A. baumanii* in subjects with T2D

The finding of ABC sequences was unexpected, as study participants were not hospitalized or under treatment for any infection(s), and we wished to confirm this result by other techniques. This was especially needed as the V1-V3 portion of the 16S rDNA sequence only differs between *A. baumanii* and *Acinetobacter nosocomialis* by one nucleotide substitution. Using PCR primers for the 16S rDNA region that encompasses nearly all differentiating 16S nucleotides between Acinetobacter species we generated amplicons from a portion of our ABC-positive samples alongside negative healthy and no-template control samples.
samples (Figure 5). PCR products were ligated into a TA vector, and individual colonies were propagated and subjected to Sanger sequencing of plasmid inserts. The 1242-bp sequences were then aligned to the NCBI reference RNA sequence database (refseq_rna). Each sequence (12 clones across 5 samples) was identical and matched the A. baumanii 16S sequence across its length. This result validated our initial 16S detection of putative A. baumanii.

Host cytokine responses to T2D and T2DP versus health

In addition to serum microbiota, we also quantified 20 different human cytokines in serum samples across all 3 patient groups (Figure 6). Based on relative abundance profiles, we observed that proinflammatory cytokines were significantly elevated in A. baumannii-positive samples highlighted in the box (ABC+). MCP-1 and IL-1β, classic proinflammatory cytokines, were increased in diabetic patients. Intriguingly, T2D ABC-negative subjects did not show increase of these markers. ABC+ subjects showed significantly higher expression levels of cytokines IL-1β, IL-6, IL-8, MCP-1, and IFN-γ when compared with ABC-negative groups (I and V, p < 0.01).

Host cytokine responses to specific microbiota

Based on the cytokine abundance data and earlier microbiome sequencing, we were able to determine if any specific taxa were significantly correlated with cytokine presence or absence in subjects with T2D (Figure 7). A. baumanii was significantly correlated with elevated amounts of IFN-α, IFN-γ, IL-12p70, IL-8, and TNF-α. ABC+ subjects presented cytokine correlations consistent with a profile of chronic inflammation. IL-8 is a chemokine that impacts neutrophil phenotype and function, and excessive amounts of this cytokine lead to chronic activation of phagocytes (Moore and Kunkel, 2019). Excessive production of TNF-α increases failure of resolution of inflammation on innate immune cells by controlling a resolution receptor (Freire and Van Dyke, 2013). Here, TNF-α showed a significant increase in ABC+ subjects, suggesting co-existence with ABC in the serum of patients with T2D. We also performed an identical analysis for healthy subjects and saw several genera or species with significant correlations (Figure S6). In healthy subjects unique profiles were found, correlated with lower levels of proinflammatory cytokines and co-clustered with ABC-negative samples.

Although low template concentration microbiome profiling presents many challenges, we were able to utilize numerous control steps to minimize the impact of contaminating taxa. We were also able to demonstrate that there were significant differences between subject groups that include taxa of likely biological origins, and also that specific cytokines significantly correlated with the presence of distinct taxa. Most surprisingly, we were able to detect A. baumanii and confirm its presence in serum samples of patients with
T2D not known or currently diagnosed with any underlying infection. These data do not per se indicate active infection but could also indicate colonization or transient exposure to *A. baumanii* for these subjects compared with healthy subjects.

Discussion

Issues with amplification-based 16S studies from low template concentrations are well known (Sinha et al., 2015; Kim et al., 2017; Pollock et al., 2018). We began this study as a post hoc analysis of existing serum samples from a
previous bank of anonymized specimens (Freire et al., 2017). As sample volumes of serum were mostly limited, we relied on amplification of 16S rDNA, using V1-V3 region primers to improve the likelihood of identifying oral taxa (Eren et al., 2014) that we hypothesized to exist in the diabetic with periodontitis part of our cohort. To minimize effects of amplification, we performed multiple high-throughput sequencing runs of amplified libraries to increase sequence depth as opposed to further amplification and using a higher capacity sequencing platform. Additionally, we also included numerous no-template controls throughout sample preparation and purification to identify as many outside contaminants as we could (Kennedy et al., 2014; Salter et al., 2014; Kim et al., 2017). As a further control, we carried out amplification of mock community libraries (Figure S1) to determine if amplification bias or infidelity affected taxonomic assignment. We also used two separate methods for correction of Illumina-sequenced amplicon errors, DADA2 (Callahan et al., 2016) and minimal entropy decomposition/oligotyping (MED) (Eren et al., 2015), as well as comparing our data from multiple ribosomal databases for taxonomic assignment (DeSantis et al., 2006; Quast et al., 2013; Cole et al., 2014). In addition to Illumina sequencing, we performed a separate amplification of 16S rDNA followed by Sanger sequencing to independently confirm the identity of putative A. baumanii sequence presence in a subset of our diabetic samples (Figure 5). Thus, we have made great efforts to validate our findings as far as is feasible and have taken care not to overinterpret data presented here.

We initially hypothesized that oral taxa would be enriched in the bloodstream of subjects with T2DP, and potentially all subjects with T2D, compared with healthy subjects. Our microbiome data revealed changes in composition between our three subject groups (Figures 1, 2, 3, 4, S4, and S5). However, there was only enrichment of few oral taxa when healthy subjects were compared with all subjects with T2D and not with subjects with T2DP alone, specifically S. cristatus and N. flavescens (Figure 3), which are not associated with periodontitis. Their presence here could indicate further access to the bloodstream by oral microbes in the T2D cohort, although this requires further verification. Given the limited template available for each sample, we cannot rule out that other oral taxa are not elevated in subjects with T2D/P, but more rigorous testing of that hypothesis would require larger serum volumes and using a longitudinal approach. By far the most surprising element of this dataset was the detection of A. baumanii- (Figures 3 and S5) assigned reads unique to 13 subjects with T2DP and not present in any control or healthy subject samples.

A. baumanii represents a considerable risk to subjects with T2D including higher mortality rates (Leão et al., 2016) and a higher risk of infection in burn wounds, as well as DFIs (Furniss et al., 2005; Castellanos et al., 2019; Henig et al., 2020). To confirm our V1-V3 amplicon data and to determine whether or not these were A. baumanii or another ABC species, we used targeted near-full-length 16S rDNA primers that allowed us to sequence the majority of differentiating nucleotides necessary for ribotyping. Sequencing individual clones of these amplicons
revealed 100% matches to *A. baumanii*, and no clones (n = 50) were *A. baumanii* positive from indicated control samples (Figure 5). This result was surprising, as none of the subjects in our T2D/P cohort were currently under inpatient treatment or had any indication of underlying infection (apart from periodontitis). Given the methodology here, neither can we speculate on the true infection status of these individuals nor can we be certain if the *A. baumanii* present were circulating in the bloodstream or were on the skin and mixed with the sample during a blood draw. No matter the route of entry, we were able to determine significant cytokine profile changes in T2D/P *A. baumanii*-positive subjects, as well as broader inflammatory changes in cytokine profiles between subjects with T2D/P and T2D and healthy subjects (Figure 6).

Cytokine dysregulation can impact the host locally and systemically, making the subject more prone to severe infections and increased tissue damage (Tisoncik et al., 2012). Individuals who have T2D present

Figure 6. Cytokine profile quantification reveals distinct differences between subject groupings and *A. baumanii* (ABC) presence

Heatmap showing immune mediator concentrations derived from serum of diabetic and healthy samples were compared to understand the role of ABC in each sample group. (I) Diabetic/Healthy, (II) All ABC+/All ABC-, (III) ABC+ Diabetic/ABC- Diabetic, (IV) ABC+ Diabetic/Healthy, (V) ABC- Diabetic/Healthy. Data are clustered according to comparison groups (red, highest expression; yellow, lowest expression). Hierarchical clustering was employed by Morpheus from the Broad Institute (Morpheus, https://software.broadinstitute.org/morpheus). Observations from hierarchical clustering are shown in a tree, with ABC groups highlighted in the box. ABC+ groups (II, III, and IV) showed significantly different (p < 0.01) levels of IL-1β, IL-6, IL-8, MCP-1, IFN-γ. *p value <0.01 between groups via unpaired Student’s t test (red, highest expression; yellow, lowest expression).
an increased metabolic burden, while often comorbid periodontal disease promotes microbial dysbiosis, with both diseases resulting in a chronic state of inflammation. In the present study, *A. baumannii* was only found in the serum of diabetic subjects, where an increase in proinflammatory cytokines was also observed (Figures 6 and 7). We utilized an unbiased panel of 20 human cytokines to survey specific immune responses to T2D and T2DP compared with those of healthy individuals. Although there are complications presented by low template sizes in our samples, cytokine profiling from these same volumes were well within desired assay volumes. As mediators of inflammation, cytokine production feeds forward a cascade of signals that can impact tissue, organ, and overall host immunometabolism. In T2D, IL-1β, TNF-α, MCP-1, IL-6, IL-8, and IFN-γ were significantly elevated in ABC+ subjects and not in ABC-negative subjects. Of these proinflammatory cytokines, IL-1β, TNF-α, and IL-8 suppression has been investigated as therapeutic targets for clinical management of diabetes and associated chronic lesions (Peiró et al., 2017; Feng et al., 2018). We previously observed increased TNF-α levels in cell cultured neutrophils from subjects with T2D relative to cells derived from healthy subjects (Kleinstein et al., 2020a). Co-occurrence of bacteria in the serum and cytokines also differed among controls. In the current study, co-occurrence among cytokines was more evident in diabetic subjects (100 significant co-occurrences) versus healthy individuals (30 significant co-occurrences) (Figures 7 and S6). A baumannii especially correlated with neutrophil inflammatory signaling cytokine IL-8, which was not observed in healthy subjects. We have previously shown differences in gene expression in neutrophils of individuals with T2D, which are primed to mount an aberrant inflammatory response when compared with neutrophils of healthy individuals (Kleinstein et al., 2020a), consistent with production of inflammatory cytokines observed here. In contrast, IL-17α, P-selectin, and E-selectin levels were increased in diabetic subjects who were ABC-negative compared with ABC+ diabetic subjects. IL-4 and IL-10 did not co-occur with *A. baumannii* in any of the healthy versus diabetic groups. The cytokine results provide an initial glimpse into the host response to chronic inflammatory diseases, T2DP with and without the presence of *A. baumannii*, which may warrant further investigation in larger studies.

In conclusion, this study has revealed modest serum microbiome compositional changes and significant cytokine profile changes between subjects with T2D with or without periodontitis versus non-T2D individuals, revealing an impaired host response when *A. baumannii* was present. We also present here the potential for lurking *A. baumannii* colonization in asymptomatic subjects with T2D, possibly to
a much larger extent than previously reported. In our opinion, these data present a strong justification for further monitoring of individuals with T2D for A. baumanii colonization and support the need for a more robust study to characterize the potentially greater spread of A. baumanii among individuals with T2D.

Limitations of the study
Limitations of this study primarily include small template volumes available for serum samples in this post hoc study. Blood and sera microbiome studies will always be more complex due to low bacterial template concentrations inherent to these types of sample. Although we have made utmost efforts to validate our main findings regarding A. baumanii presence, there are likely more interesting aspects to our study cohort microbiota that have been missed. These and other minor limitations have been indicated in the article.

Resource availability

Lead contact
Further information and requests for resources, data, code, and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Matthew Ramsey (mramsey@uri.edu).

Materials availability
This study did not generate new unique reagents or genetic constructs.

Data and code availability
All data is available at NIH – SRA Bioproject: PRJNA664044. All other code used for data analysis has been provided in the Transparent Methods section (see Scripts) in the Supplemental Information.

Methods
All methods can be found in the accompanying Transparent Methods supplemental file.

Supplemental information
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101941.

Acknowledgments
Thanks to the M. Ramsey and M. Freire lab members for their valuable input and assistance with both experimental work and writing. Thanks to Dr. Janet Atoyan at the Rhode Island Genomics and Sequencing Center for assistance with sequence library preparation and suggestions on sequence data analysis. Thanks to Dr. Thomas E. Van Dyke for helpful discussion and to the Forsyth Center for Clinical and Translational Research Center staff for recruiting patient samples and providing clinical data used in this study. Funding Sources: This work was supported by U.S. Public Health Service Grants from the National Institutes of Health/National Institute of Dental and Craniofacial Research, R00 DE0234804 (Freire), K23 DE018917 (Has turk) and R01 DE027958 (Ramsey) NIGMS/RI-INBRE early career development award (P20GM103430, Ramsey), and the Rhode Island Foundation Medical Research Fund (20164348, Ramsey).

Author contributions
D.P., B.H., and S.E.K. performed the work. D.P., S.E.K., M.F., and M.R. wrote and edited the manuscript. M.F., H.H., and M.R. provided reagents and samples. D.P., R.E., S.E.K., M.F., and M.R. designed the experiments. M.F. and M.R. secured funding.

Declaration of interests
The authors declare no competing interests.
Diabetes Care 126, 1–26.

Armitage, G.C. (1999). Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4, 1–6.

National diabetes Statistics Report | data & Statistics | diabetes | CDC (2020). https://www.cdc.gov/diabetes/data/statistics/statistics-report.html

Ayoub Moubareck, C., and Hammoudi Halat, D. (2000). Insights into acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial threat. Microbiol. (Basel) 9, 119.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57, 289–300.

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghailth, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857.

Bowler, P.G., and Davies, B.J. (1999). The microbiology of infected and noninfected leg ulcers. Int. J. Dermatol. 38, 573–578.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583.

Carrazzoni-Sepulveda, E.F., Ordonez-Farias, A., Vera-Pineda, R., and Flores-Ramirez, J. (2019). Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ. 27, 1327–1334.

Castellanos, N., Nakanouchi, J., Yuzen, D.I., Fung, S., Fernandez, J.S., Barberis, C., Tuchscherr, L., and Ramirez, M.S. (2019). A study on acinetobacter baumannii and Staphylococcus aureus strains recovered from the same infection site of a diabetic patient. Curr. Microbiol. 76, 842–847.

Cronin, D.M., Goldstein, E.J., Menhan, C.V., Lipsky, B.A., and Abramson, M.A. (2007). Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45, 2819–2826.

Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Poinar, Alfaro, A., Kuske, C.R., and Tiedje, J.M. (2005). Ribosomal Database Project: data and tools for high-throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642.

Curtis, M.A., Diaz, P.I., and Van Dyke, T.E. (2020). The role of the microbiota in periodontal disease. Periodontology 2000, 14–25.

DeGurso, T.Z., Hugenholz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rDNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

Dijkshoorn, L., Nemec, A., and Seifert, H. (2007). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5, 939–951.

Dowd, S.E., Wolcott, R.D., Sun, Y., McKeehan, T., Smith, E., and Brown, D. (2008). Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLUX amplicon pyrosequencing (bTEFAP). PLoS One 3, e3526.

Driver, V.R., Fabbi, M., Lavery, L.A., and Gibbons, G. (2010). The costs of diabetic foot: the economic case for the limb salvage team. J. Am. Podiatr. Med. Assoc. 100, 335–341.

Emrich, L.J., Shlissman, M., and Genco, R.J. (1991). Periodontal disease in non-insulin-dependent diabetes mellitus. J. Periodontol. 62, 123–131.

Erben, N., Osgunes, I., Akst, F., Doyuk Kartal, E., Colak, E., and Ulusler, G. (2013). Healthcare-associated infections and the distribution of causative pathogens in patients with diabetes mellitus. Eur. J. Clin. Microbiol. Infect. Dis. 32, 821–825.

Eren, A.M., Borisov, G.G., Huse, S.M., and Mark Welch, J.L. (2014). Oligotyping analysis of the human oral microbiome. Proc. Natl Acad Sci. U.S.A 111, E2875–E2884.

Eren, A.M., Morrison, H.G., Lescault, P.J., Revellaud, J., Vines, J.H., and Sogin, M.L. (2015). Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979.

Escapa, I.F., Morrison, H.G., Lescault, P.J., Revellaud, J., Vines, J.H., and Sogin, M.L. (2018). New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. Xu, ed. J. 3, http://myosystems.36/movies/00187-18. atom, e00187–18.

Faith, D.P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10.

Feng, S., Yu, H., Yu, Y., Geng, Y., Li, D., Yang, C., Lv, Q., Lu, L., Liu, T., Li, G., and Yuan, L. (2018). Levels of inflammatory cytokines IL-1β, IL-6, IL-8, IL-17A, and TNF-α in aqueous humour of patients with diabetic retinopathy. J. Diabetes Res. 2018, 1–6.

Ferita, S., Yegiazaryan, A., Noon, N., Lal, G., Nguyen, T., To, K., and Venketaraman, V. (2019). Type 2 diabetes mellitus and altered immune system leading to susceptibility to pathogenic, especially Mycobacterium tuberculosis. J. Clin. Med. 8, 2219.

Freire, M.O., Dalli, J., Serhan, C.N., and Van Dyke, T.E. (2017). Neutrophil-resolvins E1 receptor expression and function in type 2 diabetes. J. Immunol. 198, 718–728.

Furniss, D., Gore, S., Azadian, B., and Myers, S.R. (2005). Acinetobacter infection is associated with acquired glucose intolerance in burn patients. J. Burn Care Rehabil. 26, 405–408.

Gardner, S.E., Hills, S.L., Heilmann, K., Segre, J.A., and Grice, E.A. (2013). The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 62, 923–930.

Genco, R.J., Graziani, F., and Hartusk, H. (2020). Effects of periodontal disease on glycemic complications, and incidence of diabetes mellitus. Periodontology 83, 59–65.

Gerner-Smith, P., and Tjernberg, I. (1993). Acinetobacter: molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101, 826–832.

Gootz, T.D., and Marra, A. (2008). Acinetobacter baumannii: an emerging multidrug-resistant threat. Expert Rev. Anti Infect. Ther. 6, 309–325.

Griffen, A.L., Beall, C.J., Campbell, J.H., Firestone, N.D., Kumar, P.S., Yang, Z.K., Podar, M., and Ley, E.J. (2012). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6, 1176–1185.

Hajishengallis, G., and Lamont, R.J. (2012). Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 27, 409–419.

Henig, O., Pogue, J.M., Martin, E., Hayat, U., Ja’ara, M., Kilgore, P.E., Cha, R., Dhar, S., and Kaye, K.S. (2020). The impact of multidrug-resistant organisms on outcomes in patients with diabetic foot infections. Open Forum Infect. Dis. 7, e0161.

Irfan, U.M., Dawson, D.V., and Bissada, N.F. (2001). Epidemiology of periodontal disease: a review and clinical perspectives. J. Int. Acad. Periodontol. 3, 14–21.

Kennedy, K., Hall, M.W., Lynch, M.D., Moreno-Hagelsieb, G., and Neufeld, J.D. (2014). Evaluating bias of illumina-based bacterial 16S rRNA gene profiles.K.E. Wommack, ed. iScience 24, 80–101.

Kim, D., Hofstaedter, C.E., Zhao, C., Mattei, L., Tanes, C., Clarke, E., Lauder, A., Sherrell-Mix, S., Chehoud, C., Kelsens, J., et al. (2017). Optimizing methods and doping pitfalls in microbiome research. Microbiome 5, 52.

Kim, E.J., Ha, K.H., Kim, D.J., and Choi, Y.H. (2019). Diabetes and the risk of infection: a national cohort study. Diabetes Metab. J. 43, 804–814.

Kleinsteuber, S.E., McCorrisson, J., Ahmed, A., Hartusk, H., Van Dyke, T.E., and Freire, M. (2020a). Transcriptomics of type 2 Diabetic and healthy human neutrophils. https://doi.org/10.21203/rs.2.21951/v1.
Kleinstein, S.E., Nelson, K.E., and Freire, M. (2020b). Inflammatory networks linking oral microbiome with systemic health and disease. J. Dental Res. 99, 1131–1139.

Kruskal, W.H., and Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621.

Leão, A.C.Q., Menezes, P.R., Oliveira, M.S., and Levin, A.S. (2016). Acinetobacter spp. associated with a higher mortality in intensive care patients with bacteremia: a survival analysis. BMC Infect. Dis. 16, 386.

Leung, C.-H., and Liu, C.-P. (2019). Diabetic status and the relationship of blood glucose to mortality in adults with carbapenem-resistant Acinetobacter baumannii complex bacteremia. J. Microbiol. Immunol. Infect. 52, 654–662.

Lockhart, P.B., and Durack, D.T. (1999). Oral microflora as a cause of endocarditis and other distant site infections. Infect. Dis. Clin. North Am. 13, 833–850.

Mann, J., Bernstein, Y., and Findler, M. (2020). Periodontal disease and its prevention, by traditional and new avenues. Exp. Ther. Med. 19, 1504–1506.

McDonald, H.I., Nitsch, D., Millett, E.R.C., Sinclair, A., and Thomas, S.L. (2014). New estimates of the burden of acute community-acquired infections among older people with diabetes mellitus: a retrospective cohort study using linked electronic health records. Diabet. Med. 31, 606–614.

Moore, B.B., and Kunkel, S.L. (2019). Attracting attention: discovery of IL-8/CXCL8 and the birth of the chemokine field. J. Immunol. 202, 3–4.

Nowicki, E.M., Shroff, R., Singleton, J.A., Renaud, D.E., Wallace, D., Drury, J., Zimheld, J., Colleti, B., Ellington, A.D., Lamont, R.J., et al. (2018). Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio 9, e00575-18.

Parahitiyawa, N.B., Jin, L.J., Leung, W.K., Yam, W.C., and Samaranayake, L.P. (2009). Microbiology of odontogenic bacteremia: beyond endocarditis. Clin. Microbiol. Rev. 22, 46–64.

Peiro, C., Lorenzo, O., Carraro, R., and Sánchez-Ferrer, C.F. (2017). IL-18 inhibition in cardiovascular complications associated to diabetes mellitus. Front. Pharmacol. 8, 363.

Peleg, A.Y., Seifert, H., and Paterson, D.L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582.

Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144.

Pollock, J., Glendingin, L., Wisedchinwet, T., and Watson, M. (2018). The relationship of blood glucose to mortality in different types of biological collections. J. Microbiol. Immunol. Infect. 52, 946–955.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596.

Reiber, G.E., Lipsky, B.A., and Gibbons, G.W. (1998). The burden of diabetic foot ulcers. Am. J. Surg. 176, 55–105.

Roberts, F.A., and Darveau, R.P. (2015). Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontology 69, 16–32.

Salter, S.J., Cox, M.J., Turek, E.M., Calu, S.T., Coolsen, W.O., Moffatt, M.F., Turner, P., Parkhill, J., Loman, N.J., and Walker, A.W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

Sinha, R., Abnet, C.C., White, O., Knight, R., and Huttenhower, C. (2015). The microbiome quality control project: baseline study design and future directions. Genome Biol. 16, 276.

Socransky, S.S., Haffajee, A.D., Cugini, M.A., Smith, C., and Kent, R.L., Jr. (1998). Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144.

E. Stackebrandt, and M. Goodfellow, eds. (1991). Nucleic Acid Techniques in Bacterial Systematics (Wiley), pp. 225–236.

Tisoncik, J.R., Korth, M.J., Simmons, C.P., Farrar, J., Martin, T.R., and Katze, M.G. (2012). Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16–32.

Turner, S., Pryer, K.M., Miao, V.P., and Palmer, J.D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327–338.

Vardakas, K.Z., Siempos, I.I., and Falagas, M.E. (2007). ‘Diabetes mellitus as a risk factor for nosocomial pneumonia and associated mortality’, Diabetic Medicine A.J. Br. Diabetic Assoc. 24, 1168–1171.

Vázquez-López, R., Solano-Gálvez, S.G., Juárez Vignon-Whaley, J.J., Abelio Vaamonde, J.A., Padro Alonso, L.A., Rivera Reséndiz, A., Muleiro Álvarez, M., Vega López, E.N., Franyuti-Kelly, G., Álvarez-Hernández, D.A., et al. (2020). Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics (Basel) 9, 205.

Villar, M., Cano, M.E., Gato, E., Garnacho- Montero, J., Miguel Cisneros, J., Ruiz de Alegría, C., Fernández-Cuenca, F., Martínez-Martínez, L., Vila, J., Pascual, A., et al. (2014). Epidemiologic and clinical impact of Acinetobacter baumannii colonization and infection: a reappraisal. Medicine 93, 202–210.

Whiting, D.R., Guariguata, L., Weil, C., and Shaw, J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321.

Wu, C.-Z., Yuan, Y.H., Liu, H.H., Li, S.S., Zhang, B.W., Chen, W., An, Z.J., Chen, S.Y., Wu, Y.Z., Han, B., et al. (2020). Epidemiologic relationship between periodontitis and type 2 diabetes mellitus. BMC Oral Health 20, 204.
Supplemental Information

Impaired host response and the presence of *Acinetobacter baumannii* in the serum microbiome of type-II diabetic patients

Dasith Perera, Sarah E. Kleinstein, Benjamin Hanson, Hatice Hasturk, Ryan Eveloff, Marcelo Freire, and Matthew Ramsey
Figure S1. Mock library composition evaluation. Related to Figure 1. A Zymogen mock community library was used for sequence library construction at 10 and 1 ng in duplicate between both sequencing runs. QIIME2 / DADA2 unfiltered data was given taxonomical assignment via SILVA and assessed via the "q2-quality-control" plugin. (A) Taxon accuracy rate (TAR), taxon detection rate (TDR) and linear regression scores (r-squared) are plotted at each taxonomic level. (B) Expected vs observed abundance of each species in the mock community is plotted at each taxonomic level. (C) Distance between false positive observations vs nearest expected feature. Misclassifications were unique to environmental contaminant taxa and no false negative features were observed (not shown).
Figure S2. Alpha-diversity at different rarefaction levels. Related to Figure 1. Total observed OTUs (here ASVs) are plotted (A) vs sequencing depth and each sample that can accommodate that sequencing depth is plotted in (B).
Figure S3. Run to Run variability quantification. Related to Figure 1. A Run vs Run Beta diversity comparison was performed for unfiltered data by comparing unweighted Unifrac distances as described in the methods. Pairwise PERMANOVA of Run-1 vs Run-2 (group size of 2, sample size of n=134 total indexes) was performed in 999 permutations resulting in a pseudo-F value of 0.567, p-value of 0.999 and corrected q-value of 0.999. No significant differences were observed between each run.
Figure S4. 16S Alpha and Beta diversity of serum microbiomes changes with subject status. Related to Figure 1. Species richness is displayed based on Faith’s phylogenetic diversity (Faith, 1992) (A) and species evenness based on Pielou’s evenness index (Pielou, 1966) (B) for healthy, type-II diabetic (T2D) and type-II diabetics with periodontitis (T2DP) samples. Each graph used minimally filtered data for analysis. Significance was determined by Kruskal-Wallis analysis of variance (Kruskal and Wallis, 1952) for each comparison indicated and Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) was applied to generate adjusted q-values. * indicates q-value < 2e-3 vs healthy, ** indicates q-value < 0.024 vs healthy, (C) Beta-diversity Bray Curtis distances. Pairwise PERMANOVA of each category vs each (group size of 3, n=112) was performed in 999 permutations. *** indicates q-value differs from healthy < 0.001.
Figure S5. LEfSe Comparisons reveal taxonomical differences between subject groups.

Related to Figure 3. (A) LEfSe Cladogram plots (Segata et al., 2011) reveal general taxonomic shifts compared to (B) specifically enriched genera or species in all diabetics vs healthy and (C) compared across all 3 subject groups. Data was generated from DADA2 / QIIME2 analyzed data aligned to the SILVA database that was then filtered for contaminating taxa abundant in no-template control indexes. *Pseudomonas* genus / species level results were also removed for clarity.
Figure S6. Cytokine correlation with specific taxa in healthy subjects. Related to Figure 7.
HOMD/RDP assigned taxonomy of MED analyzed 16S data for healthy samples and cytokine concentrations were analyzed via Pearson correlation coefficient in R using the `rcorr` function. Significance was determined using the asymptotic p-values generated by `rcorr` with * = p-value <0.05 ** = p-value <0.01. Data are strictly filtered with taxa present in no-template controls subtracted.
Figure S7. 16S Alpha and Beta diversity of serum microbiomes changes with subject status. Related to Figure 1. Alpha diversity is displayed based on Shannon’s index (Shannon and Weaver, 1975) (A) and species evenness based on Simpson’s evenness measure (Simpson, 1949) (B) for healthy, type-II diabetic (T2D) and type-II diabetics with periodontitis (T2DP) samples. Each graph used minimally filtered data for analysis. Significance was determined by Kruskal-Wallis analysis of variance (Kruskal and Wallis, 1952) for each comparison indicated and Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) was applied to generate adjusted q-values. * indicates q-value < 1e-5, ** indicates q-value < 0.007, (C) Beta-diversity unweighted Unifrac distances. Pairwise PERMANOVA of each category vs each (group size of 3, n=112) was performed in 999 permutations. *** indicates q-value differs from ‘healthy’ < 0.02.
Figure S8. Host-microbial correlation resolved type-II diabetic associations with inflammatory cytokines. Related to Figure 7. SILVA assigned taxonomy of DADA2 analyzed 16S data for both T2D and T2DP samples and cytokine concentrations were analyzed via Pearson correlation coefficient in R using the `rcorr` function. Significance was determined using the asymptotic p-values generated by `rcorr` with * = p-value <0.05 ** = p-value <0.01. Data are strictly filtered with taxa present in no-template controls subtracted.
Figure S9. Cytokine correlation with specific taxa in healthy subjects. Related to Figure 7.
SILVA assigned taxonomy of DADA2 analyzed 16S data for healthy samples and cytokine concentrations were analyzed via Pearson correlation coefficient in R using the `rcorr` function. Significance was determined using the asymptotic p-values generated by `rcorr` with * = p-value <0.05 ** = p-value <0.01. Data are strictly filtered with taxa present in no-template controls subtracted.
Transparent Methods

Subject recruitment, sampling and storage

Subject recruitment has been described previously (Freire et al., 2017). Peripheral venous blood (~60 ml) was collected from patients diagnosed with T2D and from healthy nondiabetic controls. Blood samples were collected and centrifuged at 2300 rpm, and serum was isolated and frozen at -80°C until analysis under IRB protocol #13-07. All subjects gave signed informed consent prior to study evaluations. Clinical periodontal data and peripheral venous blood were collected. The diagnosis of T2D was made by the subject’s primary care physician following American Association of Diabetes guidelines (American Diabetes Association, 2015). Information was collected on subject demographics (age, gender, self-reported ethnicity, and self-reported smoking status), body-mass index (BMI; kg/m2), blood total cholesterol, blood glucose (point-of-care), percent hemoglobin A1C (HbA1c), and periodontal condition (Armitage, 1999). HbA1c was used to determine the level of glycemic control for diabetic subjects. One T2D individual lacked HbA1c measurements but fit based on all other diagnostic criteria (blood glucose >200 mg/dl) as well as cytokine profiles in accord with other T2D individuals. Neutrophil and monocyte cell counts were determined by lab assay (described below). Individuals were excluded if they were taking insulin sensitizers, nonsteroidal anti-inflammatory drugs, or antimicrobials within 3 months of study initiation. Smoking status was defined by CDC NHIS terms (https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm#:~:text=Former%20smoker%3A %20An%20adult%20who,in%20his%20or%20her%20lifetime).

Site collection before blood draw: Samples were drawn in clinical phlebotomy settings. From all serum sampled for this microbiome study, a total of 81 subjects (N=24 healthy, N=57 T2D) were included for analysis, all of whom were unrelated and over 18 years of age (range: 28-79 years of age).

Sample preparation for 16S analysis

DNA Extraction

Frozen serum from N=81 samples (N=24 healthy, N=32 T2D and N=25 T2DP) were thawed on ice and aliquots were separated for DNA extraction. DNA was extracted using the Epicentre MasterPure Complete DNA and RNA Purification kit (Lucigen, WI, USA). Extraction was carried out using the manufacturer's instructions, with modifications that enabled bead beating. Briefly, 200 µL of Tissue and Cell Lysis Solution (2x), 100 µL of nuclease free water and 2 µL of Proteinase K were added to Lysing matrix B (LMB) tubes (MP Biomedicals, Santa Ana, CA). Thereafter 100 µL of serum was added to the tubes and placed in a Beadbeater (Biospec) for 30 seconds, then placed on ice for 3 minutes and then repeated. Each round of DNA extractions included a no template control, which consisted of 100 µL nuclease free water instead of serum. The samples were then incubated and extracted as described in the manufacturer’s instructions. Total DNA was precipitated using the manufacturer’s instructions, however 300 µL of MPC Protein Precipitation Reagent was used to accommodate the increased volume. DNA was eluted in 50 µL of nuclease free water.

16s rDNA primers 27F (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGTTTGATYMTGGCTCAG) and 519R (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGWATTACCGCGGCKGCTG) (Stackebrandt and Goodfellow, 1991; Turner et al., 1999) were used to amplify the V1-V3 regions of 16s rDNA in a 50 µL reaction using 2x Q5 HiFi mastermix (New England Biolabs, Ipswitch, MA) and 23 µL of extracted DNA (35 cycles).
After the first round of PCR was carried out it was cleaned with Ampure XP beads (Beckman Coulter, Pasadena, CA) and then visualized by agarose gel electrophoresis. Full indices and adapters were added using the Illumina Nextera Index Kit (Illumina, San Diego, CA) by running the second round of PCR (50 ng of template DNA, 5 cycles) in 2x Phusion HF Master Mix (New England Biolabs, Ipswitch, MA). PCR were then cleaned with Ampure XP beads and analyzed by agarose gel electrophoresis and using the Agilent BioAnalyzer DNA1000 chip (Agilent Technologies, Santa Clara, CA). Samples were then quantified and normalized prior to pooling using a Qubit fluorimeter (Invitrogen, Carlsbad, CA). The final pooled library was quantified with the KAPA Biosystems Illumina Kit (KAPA Biosystems, Woburn, MA) via qPCR in a Roche LightCycler480. Samples were sequenced (2x250 bp paired-end) on an Illumina MiSeq (Illumina, San Diego, CA) at the Rhode Island Genomics and Sequencing Center (Kingston, RI).

Mock Community Standards Preparation

In order to quantify potential bias due to low template concentrations, PCR amplification, and contamination, we performed mock library assemblies with commercially available bacterial genomic DNA templates (Zymo Research #D6305). We amplified 2 libraries using 10 and 1 ng total starting templates in both sequencing runs for a total of 4 mock libraries synthesized. Total DNA species composition is provided in the manufacturer’s instructions.

16S clone library resequencing

Primers were made to amplify regions of 16s rDNA that enable differentiation of the Acinetobacter species. Primers used were oMR328 (TAGCGGCGGACGGGTGAGTAATGCTTA) and oMR329 (TTCCGACTTCATGGAGTGCAGAC). 50 µL reactions in 2x Q5 mastermix (New England Biolabs, Ipswitch, MA) were run for 35 cycles using 23 µL of DNA extracted from serum as the template. The products were then purified using the Qiagen PCR purification kit according to the manufacturer’s instructions. Gotaq 2x mastermix (Promega, Madison, WI) was used to generate ‘A’ overhangs via PCR for 5 cycles using 10 µL of purified DNA as the template. 4µL of the resulting PCR products were then used to generate clones using the TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions which was modified to use 0.5µL of TOPO vector. Clones were then transformed into NEB5α cells using the manufacturer’s instructions and plated on LB plates supplemented with 0.1mM IPTG and 40µg/mL Kanamycin. Additionally, 40µl of 40mg/mL of X-gal was spread onto each plate prior to plating to enable blue-white screening. The plates were incubated for 24 hours at 37°C. White colonies were inoculated into liquid cultures of LB supplemented with 40µg/mL kanamycin. Plasmids were extracted using QIAprep Spin Miniprep kit (Qiagen, Venlo, Netherlands). Inserts were sequenced using the M13 Forward (GTAAAACGACGGCCAGTG) and M13 Reverse (CACAGGAAAACGCTATGACC) primers on an Applied Biosystems 3500xl using the “BigDye” Terminator v3.1 Cycle sequencing kit. Sequences were analyzed using NCBI BLAST (NCBI Resource Coordinators, 2018). A maximum of 10 colonies were screened for each sample or until a sequence matched a species belonging to the Acinetobacter baumanii- calcoaceticus complex.

Cytokine Quantification
Frozen (-80°C) subject serum was brought up to room temperature and assayed using the Invitrogen human inflammation 20-plex ProcartaPlex cytokine panel (Thermo Fisher Scientific, Waltham, MA) on a Luminex 200 instrument (Luminex, Austin, TX) in universal assay buffer. Assayed cytokines included: MIP-1α, IL-1β, IL-4, IP-10, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IFN-γ, GM-CSF, TNF-α, MIP-1β, IFN-α, MCP-1, P-Selectin, IL-1α, sICAM-1, and E-Selectin. Following manufacturer protocols, all samples were run on a plate with 7 standards (diluted 1:4) and a control (universal assay buffer only), with all samples, standards, and controls run in duplicate similar to our methods previously (Pessoa et al., 2019; Kleinstein et al., 2020).

Quality control (QC) steps were conducted according to manufacturer recommendations by xPONENT 4.2 software (Affymetrix eBioscience, San Diego, USA). Any standards with <70 or >130 % recovery of beads were invalidated. Samples were required to have a bead count of >30 beads recovered (all samples had >100 beads recovered and none were excluded at this step). Following QC, results were reported as average pg/mL for all measured cytokines. The lower limit of quantification (LLOQ) was determined based on the standard curve (after QC) as the average value of the lowest validated standards. Values at or below the LLOQ for each cytokine were reported at the LLOQ. As samples were run in two batches (with similar LLOQs for each batch), LLOQ for the cytokines (in pg/mL) were averaged across both runs: MIP-1α=1.79, IL-1β=5.58, IL-4=23.99, IP-10=1.17, IL-6=18.89, IL-8=2.48, IL-10=2.01, IL-12p70=11.72, IL-13=5.63, IL-17A=4.63, IFN-γ=11.93, GM-CSF=14.57, TNF-α=9.66, MIP-1β=7.66, IFN-α=1.32, MCP-1=3.73, P-Selectin=1077.15, IL-1α=0.74, sICAM-1=442.80, and E-Selectin=441.00. To compare cytokine levels between study groups, unpaired t-tests were used with a significance threshold of p<0.05 and no assumption of consistent standard deviation.

Minimum Entropy Decomposition analysis of sequence libraries

Poor quality reads were discarded using flexbar (Dodt et al., 2012). Reads were then treated as single end reads and trimmed for quality and to a length of 160bp using Trimmomatic (Bolger, Lohse and Usadel, 2014). Minimum Entropy Decomposition (MED) was performed as described in the oligotyping pipeline (Eren et al., 2015), generating a list of node representative sequences and their relative abundances. Taxonomic assignment of representative sequences were generated based on aligning 16s rRNA sequences at 98.5% identity against the eHOMD database (Escapa et al., 2018) and further evaluated using the Ribosomal Database Project (RDP) database (Cole et al., 2014). MED nodes were assigned species level taxonomy based on >98.5% identity matches to eHOMD and/or RDP with eHOMD designations used as 1st priority as our initial aim was to identify oral taxa. Node frequency tables now assigned taxonomy were then used in association with sample metadata for Linear Discriminate Effect Size analysis (LEfSe) (Segata et al., 2011).

QIIME2 analysis of sequence libraries

*All Scripts at end of this document. All work was performed on the University of Rhode Island High Performance Computing Bluewaves cluster:

https://web.uri.edu/hpc-research-computing/clusterSpecifications/

Data Import
Fastq sequence data were imported using the `import-fastq.sh` script. Generated demux.qzv files were viewed using https://view.qiime2.org/ via the “quality viewer” function to determine location for sequence quality trimming used in the following step.

Fastq Trimming, DADA2 Analysis, Run-run Merging

A second sequencing run of the prepared Illumina libraries was performed to ensure maximum sequencing depth without further PCR amplification of starting template. At the end of the “D2-merge.sh” script we then used the `Rarefaction-alpha.sh` script output (Fig. S2) to determine read depth (22,000) to use in downstream commands.

Initial Alpha and Beta Diversity Measurements and Run-run Comparison Testing

Merged libraries were used in the `Alpha-Beta-An.sh` script to determine initial phylogenetics on unfiltered data using the QIIME2 `core-metrics-phylogenetic` function, Alpha and Beta diversity calculations via QIIME2 `alpha- or beta-group-significance` functions as well as Beta diversity difference calculation (`beta-group-significance`) between sequencing Run 1 vs. Run 2 (Figs. S3, S4).

Mock Community Standards Quality Control Testing

This section uses the `mocklibQC1.sh` and `mocklibQC2.sh` scripts. Taxonomy files used are described below. The *-bar-plots.qzv file generated in the 1st script was viewed at https://view.qiime2.org/ and the level 6 data from this plot was exported as a .csv file which provides the reads per each taxa. This data was converted to proportion of total reads per each taxa and converted into the Zymo_actual.tsv file. The Zymo_expected.tsv file was generated by editing the Zymo_actual.tsv file with the proportion for each taxa present as provided in the manufacturers reference: https://files.zymoresearch.com/protocols/_d6305_d6306_zymobiomics_microbial_community_dna_standard.pdf

These .tsv inputs were then used in the `mocklibQC2.sh` script to output the visualizations seen in Figure S1.

Classifier Setup and Editing

Initial import of the SILVA 132 classifier was performed by running the following command:

```bash
wget https://data.qiime2.org/2019.7/common/silva-132-99-nb-classifier.qza
```

Classifier setup was then performed using the `classifier.sh` script. Upon searching the silva-taxonomy.qzv file generated, we noted that there were no reads that matched *A. baumanii* sequences at all. We used the rep-seqs.merge.qzv file output from the `D2merge.sh` script saved as a FASTA file from within the QIIME2 viewer function and performed a pairwise blast vs the full length *A. baumanii* 16S sequence from NCBI:

```bash
>A.baumanii 16s
AACGCTGGCCGCGACGCTTAAACACATGCAAGTCGAGCAGGGGGAAGGTAGCGTACCTTTGCTACCGG
ACCTAGCGGCAGGGGTAGTAAATGCGCTTAGGAAATCTGGCTATTTAGTGGGGGACAACATC
TCGAAAGGGAATGCTTAAACCTACCGCATACGTCCTACGGGAGAAAGCAGGGGATCTTGAGACCT
TGCCGCTATAGTGAAGCCTAAGTCGAGTTAGCTACGTCTTGGTGGGTGAAGCCTACCAAGG
CGACGATCTGTAGCGGATGTGATTCGAGGAGTATCCGACCCAGCAACTGAGGACTGAGACACGGCC
```
One ASV from the rep-seqs.merge.qzv file (e875355f3179838110485d8f5013d4a6) returned a 100% match homology to the above *A. baumanii* sequence. This ASV was just annotated as *Acinetobacter* in the SILVA-132-99 taxonomy. We then edited the silva classifier taxonomy file by first exporting it using the following commands:

```bash
module load QIIME2/2019.7
qiime tools export
    --input-path silva-taxonomy.qza
    --output-path silva-taxonomy
```

This output the file in *.tsv format which was then opened in a text editor and searched for the ASV node identity and then modified as indicated here:

before

```plaintext
| ID                  | Abundance | Phylum                        | Class                        | Order                        | Family                       | Genus                         | Species                     | Score |
|---------------------|-----------|-------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------|-------|
| D_0__Bacteria       | 1.0000    | **D_1__Proteobacteria**       | **D_2__Gammaproteobacteria** | **D_3__Pseudomonadales**     | **D_4__Moraxellaceae**      | **D_5__Acinetobacter**       | *A. baumanii*               | 1.0000|
```

after

```plaintext
| ID                  | Abundance | Phylum                        | Class                        | Order                        | Family                       | Genus                         | Species                     | Score |
|---------------------|-----------|-------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------|-------|
| D_0__Bacteria       | 1.0000    | **D_1__Proteobacteria**       | **D_2__Gammaproteobacteria** | **D_3__Pseudomonadales**     | **D_4__Moraxellaceae**      | **D_5__Acinetobacter**       | *A. baumanii*               | 1.0000|
```

The edited file was then saved as taxonomy-1.tsv and imported via the following command:

```bash
qiime tools import
```

270 AGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAACCCTGATCCAG
271 CCATGCCGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGGC
272 TACTTTAGTTAATACCTAGAGATAGTGGACGTTACTCGCAGAATAAGCACCGGCTAACTCT
273 GTGCCAGCAGCCGCGGTAATACAGAGGGTGCGAGCGTTAATCGGATTTACTGGGCGTAAA
274 GCGTGCGTAGGCGGCTTATTAAGTCGGATGTGAAATCCCCGAGCTTAACTTGGGAATTG
275 ATTCGATACTGGTGAGCTAGAGTATGGGAGAGGATGGTAGAATTCCAGGAGCGGAGCG276 AATACAGAGGGTGCGAGCGTTAATCGGATTTACTGGGCGTAAA
277 GCTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTA
278 AACGATGTCTACTAGCGCATGGGCGGCTTTGAGGCTTTAGTGGCGCAGCTAACGCGATAAG
279 TAGACCACCTCGGGAGTACCGGTGCAAGACTAAAACCTCAATGAATTGACGGGGGCCG
280 ACAAGGGGTTGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTG
281 CATACTGAAACACCTCCAGAGATGGGTTGGTGCTTCCGGAGAATCTAGATACAGGCTGCA
282 TGGCTGCTCGAGCTCTGCTGCTGCTGAGATGTTGGGTTTAATGCTCCGGCAACGAGCGCAACCT
283 TTTGCTTTACTTGCCAGCATTTCGGATGGGAATTCTTCTTAGGTGAGCGAGCTTAACTCT
284 GGAAGGGGAGGACAGGTTCAGTACATGCTGCTGCTGAGATGTTGGGTTTAATGCTCCGGCAACG
285 ACAATGGGCTGTAACAGGGACGGTCTACACACGAGCTTAACTCTAGCTGCTGCTGCTG
286 GTAGTCCGGATGGGATGTGGTCTCTGCTAACAGGTGTAACAGGTGTAACAGGTGTAACAGG
287 ATCAGAATTCCGCGGCTTAACCTGGTCTACACACGAGCTTAACTCTAGCTGCTGCTGCTG
288 GAGTTTGTTGACCCAGAAGTACCTGACCTAACTGCAAGAGGAGGCGGTTACCACGCTGTTG
289 CCGATGACTGGGGTGAACT
290 One ASV from the rep-seqs.merge.qzv file (e875355f3179838110485d8f5013d4a6) returned a 100% match homology to the above *A. baumanii* sequence. This ASV was just annotated as *Acinetobacter* in the SILVA-132-99 taxonomy. We then edited the silva classifier taxonomy file by first exporting it using the following commands:
294 module load QIIME2/2019.7
295 qiime tools export
296 --input-path silva-taxonomy.qza
297 --output-path silva-taxonomy
298 This output the file in *.tsv format which was then opened in a text editor and searched for the ASV node identity and then modified as indicated here:
299 before
300 | ID | Abundance | Phylum | Class | Order | Family | Genus | Species | Score |
301 | D_0__Bacteria | 1.0000 | **D_1__Proteobacteria** | **D_2__Gammaproteobacteria** | **D_3__Pseudomonadales** | **D_4__Moraxellaceae** | **D_5__Acinetobacter** | *A. baumanii* | 1.0000|
302 after
303 | D_0__Bacteria | 1.0000 | **D_1__Proteobacteria** | **D_2__Gammaproteobacteria** | **D_3__Pseudomonadales** | **D_4__Moraxellaceae** | **D_5__Acinetobacter** | *A. baumanii* | 1.0000|
304 The edited file was then saved as taxonomy-1.tsv and imported via the following command:
309 qiime tools import

--input-path /data/mramseylab/classifiers/silva-taxonomy/taxonomy-1.tsv \
--type 'FeatureData[Taxonomy]' \
--input-format TSVTaxonomyFormat \
--output-path silva-mod-taxonomy.qza

qiime metadata tabulate \
--m-input-file silva-mod-taxonomy.qza \
--o-visualization silva-mod-taxonomy.qzv

The silva-mod-taxonomy.qza file was used for the rest of our analyses.

Data Filtering

Data presented throughout the manuscript is generally described as “Minimally Filtered” or “Strict Filtered”. We 1st began with all ASV assigned data from the above scripts and used metadata based filtering to separate out all data from control samples which included no-template and PCR only control indexes. This was done using the control-filter.sh script. Data output from the script was exported so it could be viewed and then used to subtract taxa from human-derived datasets in downstream filtering steps. Next we applied the meta-filter.sh script to our data to extract only human derived samples for further analysis and filtering. After this we applied the minimal-filter.sh script. Outputs from this script were used in all “Minimally Filtered” described data in the manuscript. Minimal filtering included removal of instances of taxa that appeared in only 2 samples or less, features (ASV sequences) that appeared less than 10 times across all samples and any taxa with less than 20 reads per sample.

Next we took our output files from the above control-filter.sh script and used them as part of the input for the auto-filter.sh script to exclude these taxa from the remaining minimally filtered data. While this removed many spurious taxa from our samples we observed high abundance of known aquatic microbial contaminant sequences not typically human associated (ex: Sphingomonas, Ralstonia). These and other taxa were manually excluded using the strict-filter.sh script and further removal of highly abundant Pseudomonas sequences were also removed via the nopa-filter.sh script. Data filtered to this extent are referred to as “Strictly” filtered in the manuscript.

Re-analysis of Filtered Data

A reanalysis of filtered data was performed 1st for Alpha and Beta diversity measurements via the alpha-beta2.sh script (Fig. 1). Further description and statistical analysis of Beta diversity differences were performed in R using the vegan package via the metaMDS and Adonis functions primarily as demonstrated in the MMR20_ellipses_NMDS.R script below.

LEfSe Analysis Comparison

Initial LEfSe analysis was performed using ASV output abundance data directly from the initial MED pipeline (Fig. 3). Further analysis on QIIME2 / DADA2 assigned strictly filtered data (Fig. S5) was performed first using the lefse-noTax.sh script to export and format data for analysis on the LEfSe Galaxy server (https://huttenhower.sph.harvard.edu/galaxy/). This script only outputs ASV node information without taxonomic assignment. Manual taxonomic assignment was performed comparing ASV node names to the rep-seqs-merge.qza file from the
D2merge.sh script. LEfSe analysis was performed using default settings, *.svg output files were further edited in Inkscape software for clarity.
Supplemental References

American Diabetes Association (2015) ‘(2) Classification and diagnosis of diabetes’, *Diabetes Care*, 38 Suppl, pp. S8–S16.

Armitage, G. C. (1999) ‘Development of a classification system for periodontal diseases and conditions’, *Annals of Periodontology*, 4(1), pp. 1–6.

Benjamini, Y. and Hochberg, Y. (1995) ‘Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing’, *Journal of the Royal Statistical Society: Series B (Methodological)*, 57(1), pp. 289–300.

Bolger, A. M., Lohse, M. and Usadel, B. (2014) ‘Trimmomatic: a flexible trimmer for Illumina sequence data’, *Bioinformatics (Oxford, England)*, 30(15), pp. 2114–2120.

Cole, J. R. *et al.* (2014) ‘Ribosomal Database Project: data and tools for high throughput rRNA analysis’, *Nucleic Acids Research*, 42(Database issue), pp. D633-D642.

Dodt, M. *et al.* (2012) ‘FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms’, *Biology*, 1(3), pp. 895–905.

Eren, A. M. *et al.* (2015) ‘Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences’, *The ISME journal*, 9(4), pp. 968–979.

Escapa, I. F. *et al.* (2018) ‘New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract’, *mSystems*. Edited by J. Xu, 3(6), pp. e00187-18, /msystems/3/6/msys.00187-18.atom.

Faith, D. P. (1992) ‘Conservation evaluation and phylogenetic diversity’, *Biological Conservation*, 61(1), pp. 1–10.

Freire, M. O. *et al.* (2017) ‘Neutrophil Resolvin E1 Receptor Expression and Function in Type 2 Diabetes’, *Journal of Immunology (Baltimore, Md.: 1950)*, 198(2), pp. 718–728.

Kleinstein, S. E. *et al.* (2020) *Transcriptomics of Type 2 Diabetic and Healthy Human Neutrophils*. preprint. In Review.

Kruskal, W. H. and Wallis, W. A. (1952) ‘Use of Ranks in One-Criterion Variance Analysis’, *Journal of the American Statistical Association*, 47(260), pp. 583–621.

NCBI Resource Coordinators (2018) ‘Database resources of the National Center for Biotechnology Information’, *Nucleic Acids Research*, 46(D1), pp. D8–D13.

Pessoa, L. *et al.* (2019) ‘Host-Microbial Interactions in Systemic Lupus Erythematosus and Periodontitis’, *Frontiers in Immunology*, 10, p. 2602.

Pielou, E. C. (1966) ‘The measurement of diversity in different types of biological collections’, *Journal of Theoretical Biology*, 13, pp. 131–144.
Segata, N. et al. (2011) ‘Metagenomic biomarker discovery and explanation’, Genome Biology, 12(6), p. R60.

Shannon, C. E. and Weaver, W. (1975) The mathematical theory of communication. Urbana: University of Illinois Press.

Simpson, E. H. (1949) ‘Measurement of Diversity’, Nature, 163(4148), pp. 688–688.

Stackebrandt, E. and Goodfellow, M. (eds) (1991) Nucleic acid techniques in bacterial systematics. Chichester; New York: Wiley (Modern microbiological methods).

Turner, S. et al. (1999) ‘Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis’, The Journal of Eukaryotic Microbiology, 46(4), pp. 327–338.
Supplemental Data (Data S1.) Related to Transparent Methods

Scripts used for analyses:

```bash
import-fastq.sh

module load QIIME2/2019.7

for d in /data/mramseylab/raw_reads/2018_Serum/Run* ;
    do
        SUFX=${d#*Run}

        qmi tools import \
            --type 'SampleData[PairedEndSequencesWithQuality]' \ 
            --input-path /data/mramseylab/raw_reads/2018_Serum/Run$SUFX \ 
            --input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
            --output-path /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/demux-$SUFX.qza

        qiime demux summarize \
            --i-data /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/demux-$SUFX.qza \ 
            --o-visualization /data/mramseylab/visualizations/demux-$SUFX.qzv

    done
```
module load QIIME2/2019.7

for d in /data/mramseylab/raw_reads/2018_Serum/Run* ; do
 SUFX=${d#*Run}
 qiime dada2 denoise
 --i-demultiplexed-seqs
 /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/demux-$SUFX.qza
 --p-trim-left 13
 --p-trunc-len 250
 --o-table /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/denoise-table-$SUFX.qza
 --o-representative-sequences
 /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/rep-seqs-$SUFX.qza
 --o-denoising-stats
 /data/mramseylab/raw_reads/2018_Serum/Run$SUFX/denoising-stats-$SUFX.qza

done

Have to MERGE Run1 and Run2 to get pairwise comparison
Must make directory before running below else it will error out.

mkdir /data/mramseylab/raw_reads/2018_Serum/Merge_runs/

qiime feature-table merge
 --i-tables /data/mramseylab/raw_reads/2018_Serum/Run1/denoise-table-1.qza
 --i-tables /data/mramseylab/raw_reads/2018_Serum/Run2/denoise-table-2.qza
qiime feature-table merge-seqs \\
 --i-data /data/mramseylab/raw_reads/2018_Serum/Run1/rep-seqs-1.qza \\
 --i-data /data/mramseylab/raw_reads/2018_Serum/Run2/rep-seqs-2.qza \\
 --o-merged-data \\
 /data/mramseylab/raw_reads/2018_Serum/Merge_runs/rep-seqs-merge.qza

qiime feature-table summarize \\
 --i-table /data/mramseylab/raw_reads/2018_Serum/Merge_runs/denoise-table-merge.qza \\
 --o-visualization /data/mramseylab/visualizations/denoise-table-merge.qzv \\
 --m-sample-metadata-file /data/mramseylab/metadata/Serum5.tsv

qiime feature-table tabulate-seqs \\
 --i-data /data/mramseylab/raw_reads/2018_Serum/Merge_runs/rep-seqs-merge.qza \\
 --o-visualization /data/mramseylab/visualizations/rep-seqs-merge.qzv

qiime phylogeny align-to-tree-mafft-fasttree \\
 --i-sequences /data/mramseylab/raw_reads/2018_Serum/Merge_runs/rep-seqs-merge.qza \\
 --o-alignment \\
 /data/mramseylab/raw_reads/2018_Serum/Merge_runs/aligned-rep-seqs-merge.qza \\
 --o-masked-alignment \\
 /data/mramseylab/raw_reads/2018_Serum/Merge_runs/masked-aligned-rep-seqs-merge.qza \\
 --o-tree /data/mramseylab/raw_reads/2018_Serum/Merge_runs/unrooted-tree-merge.qza \\
 --o-rooted-tree \\
 /data/mramseylab/raw_reads/2018_Serum/Merge_runs/rooted-tree-merge.qza
Rarefaction-alpha.sh

module load QIIME2/2019.7

rawdir=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/
procdir=/data/mramseylab/proc_reads/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/

qiime diversity alpha-rarefaction \
 --i-table $rawdir/denoise-table-merge.qza \
 --i-phylogeny $rawdir/rooted-tree-merge.qza \
 --p-max-depth 25000 \
 --m-metadata-file $metadir/Serum4.tsv \
 --o-visualization $visdir/alpha-rarefaction.qzv
module load QIIME2/2019.7

rawdir=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/
procdir=/data/mramseylab/proc_reads/
metadir=/data/mramseylab/metadata/
cmr="core-metrics-results"

qiime diversity core-metrics-phylogenetic \
 --i-phylogeny $rawdir\rooted-tree-merge.qza \
 --i-table $rawdir\denoise-table-merge.qza \
 --p-sampling-depth 22000 \
 --m-metadata-file $metadir\Serum5.tsv \
 --output-dir $procdir$cmr\-initial

qiime diversity alpha-group-significance \
 --i-alpha-diversity $procdir$cmr\-initial/faith_pd_vector.qza \
 --m-metadata-file $metadir\Serum5.tsv \
 --o-visualization $procdir$cmr\-initial/faith-pd-group-significance.qzv

qiime diversity alpha-group-significance \
 --i-alpha-diversity $procdir$cmr\-initial/evenness_vector.qza \
 --m-metadata-file $metadir\Serum5.tsv \
 --o-visualization $procdir$cmr\-initial/evenness-group-significance.qzv

array=(unweighted_unifrac_distance_matrix \
 weighted_unifrac_distance_matrix bray_curtis_distance_matrix)
for i in "${array[@]}"

do

qiime diversity beta-group-significance \
 --i-distance-matrix $procdir$cmr\-initial/$i.qza \
 --m-metadata-file $metadir\Serum5.tsv \
 --m-metadata-column Condition \
 --o-visualization $procdir$cmr\-initial/$i.qzv \
 --p-pairwise

done

#Generates data for run1 vs run2 variability to measure batch effect
qiime diversity beta-group-significance \
 --i-distance-matrix $procdir$cmr\-\ initial/unweighted_unifrac_distance_matrix.qza \
 --m-metadata-file $metadir\Serum4.tsv \
 --m-metadata-column Run \
 --o-visualization $procdir$cmr\-initial/unweighted-unifrac-Run-significance.qzv \
 --p-pairwise
module load QIIME2/2019.7

rawdir=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/
clsdir=/data/mramseylab/classifiers/

#for the silva release 132 99 .fna file

qiime feature-classifier classify-sklearn \
 --i-classifier $clsdir\silva-132-99-nb-classifier.qza \
 --i-reads $rawdir\rep-seqs-merge.qza \
 --o-classification $clsdir\silva-taxonomy.qza

#output the taxonomy table to check for A. baumanii strains in it afterwards.

qiime metadata tabulate \
 --m-input-file $clsdir\silva-taxonomy.qza \
 --o-visualization $clsdir\silva-taxonomy.qzv
Control-filter.sh

module load QIIME2/2019.7

tablein=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/denoise-table-merge.qza
clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/

filter status of input files, "ctrl-filter" is just for taxa belonging to no template controls
fil=ctrl-filter

#must make the directory you are filtering to 1st or else it will error
mkdir $filtdir$fil

qiime feature-table filter-samples \
 --i-table $tablein \
 --m-metadata-file $metadir\Serum5.tsv \
 --p-where "[Source]='Control'" \
 --o-filtered-table $filtdir$fil/$fil-table.qza

qiime taxa collapse \
 --i-table $filtdir$fil/$fil-table.qza \
 --i-taxonomy $clsdir\silva-mod-taxonomy.qza \
 --p-level 6 \
 --o-collapsed-table $filtdir$fil/$fil-collapse-table.qza
qiime feature-table relative-frequency
 --i-table $filtdir$fil/$fil-collapsetable.qza
 --o-relative-frequency-table $filtdir$fil/$fil-relative-collapse-table.qza

qiime tools export
 --input-path $filtdir$fil/$fil-relative-collapse-table.qza
 --output-path $filtdir$fil/

biom convert
 -i $filtdir$fil/feature-table.biom
 -o $filtdir$fil/$fil-relative-collapse-table.txt
 --header-key "taxonomy"
 --to-tsv

Use above taxa table to filter out based on taxa present in controls
qiime feature-table filter-features
 --i-table $tablein
 --m-metadata-file $filtdir$fil/$fil-collapse-table.qza
 --o-filtered-table $filtdir$fil/$fil-excluded-table.qza
 --p-exclude-ids

Use excluded table to generate barplot for checking
qiime taxa barplot
 --i-table $filtdir$fil/$fil-excluded-table.qza
 --i-taxonomy $clsdir\silva-mod-taxonomy.qza
--m-metadata-file $metadir\Serum5.tsv \
--o-visualization $filtdir$fil/$fil-excluded-table.qzv
module load QIIME2/2019.7

tablein=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/denoise-table-merge.qza
clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/

filter status of input files, "initial" is the 1st pass no filter at all
"initial-human" is the initial data but for only human samples, no mock or control samples
fil=initial-human

#note must make directories needed BEFORE running the below command
mkdir $filtdir$fil

qiime feature-table filter-samples \
 --i-table $tablein \
 --m-metadata-file $metadir\Serum5.tsv \
 --p-where "[Source]='Human'" \
 --o-filtered-table $filtdir$fil/$fil-table.qza
module load QIIME2/2019.7

tablein=/data/mramseylab/proc_reads/minF-hum/table3.qza
clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/

filter status of input files, "ctrl-filter" is just for taxa belonging to no template controls
fil=AF-hum

#must make the directory you are filtering to 1st or else it will error
mkdir $filtdir$fil

#Filtering list from mock samples was generated previously with the control-filter.sh script

qiime feature-table filter-features \
 --i-table $tablein \
 --m-metadata-file /data/mramseylab/proc_reads/ctrl-filter/ctrl-filter-collapse-table.qza \
 --o-filtered-table $filtdir$fil/$fil-excluded-table.qza \
 --p-exclude-ids

#Use excluded table to generate barplot for checking
qiime taxa barplot \
 --i-table $filtdir$fil/$fil-excluded-table.qza \
 --i-taxonomy $clsdir\silva-mod-taxonomy2.qza \
 --m-metadata-file $metadir\Serum5.tsv \

---o-visualization $filtdir$fil/$fil-excluded-table.qzv

#Generate viewable feature table to look for ASVs of interest / filtering stats
qiime feature-table summarize \
 --i-table $filtdir$fil/$fil-excluded-table.qza \n --o-visualization $filtdir$fil/$fil-excluded-table2.qzv \n --m-sample-metadata-file $metadir\Serum5.tsv

Strict-filter.sh

module load QIIME2/2019.7

tablein=/data/mramseylab/proc_reads/AF-hum/AF-hum-excluded-table
clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/

filter status of input files, "ctrl-filter" is just for taxa belonging to no template controls
fil=SF-hum

#must make the directory you are filtering to 1st or else it will error
mkdir $filtdir$fil

#Filtering list from mock samples was generated previously with the auto-filter.sh script

#Tidying up name here so I can repeatedly use the same input below through the loop
cp $tablein.qza /$filtdir$fil/$fil-table.qza

#Array here contains all taxa I wish to remove
array=(Chloroplast Mitochondria Ralstonia Chryseobacterium Sphingomonas Enhydrobacter Bradyrhizobium Sphingomonadales Rhizobiales Rhodobacterales Sphingobacteriales Halomonadaceae Deinococcales)

for i in "${array[@]}"
do
qiime taxa filter-table \

--i-table /$filtdir$fil/$fil-table.qza \
--i-taxonomy $clsdir\silva-mod-taxonomy2.qza \
--p-mode contains \
--p-exclude "$i" \
--o-filtered-table /$filtdir$fil/$fil-table.qza

done

Use excluded table to generate barplot for checking
qiime taxa barplot \
--i-table /$filtdir$fil/$fil-table.qza \
--i-taxonomy $clsdir\silva-mod-taxonomy2.qza \
--m-metadata-file $metadir\Serum5.tsv \
--o-visualization /$filtdir$fil/$fil-table-barplot.qzv

Generate viewable feature table to look for ASVs of interest /
filtering stats
qiime feature-table summarize \
--i-table /$filtdir$fil/$fil-table.qza \
--o-visualization /$filtdir$fil/$fil-table.qzv \
--m-sample-metadata-file $metadir\Serum5.tsv
module load QIIME2/2019.7

tablein=/data/mramseylab/proc_reads/SF-hum/SF-hum-table.qza
clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/

filter status of input files, "ctrl-filter" is just for taxa belonging to no template controls
fil=NP-hum

#must make the directory you are filtering to 1st or else it will error
mkdir $filtdir$fil

#Filtering list from mock samples was generated previously with the strict-filter.sh script
qiime taxa filter-table \\ --i-table $tablein \\ --i-taxonomy $clsdir\silva-mod-taxonomy2.qza \\ --p-mode contains \\ --p-exclude "Pseudomonas" \\ --o-filtered-table $filtdir$fil$/fil-table.qza

#Use excluded table to generate barplot for checking
qiime taxa barplot \\ --i-table $filtdir$fil$/fil-table.qza \\ --i-taxonomy $clsdir\silva-mod-taxonomy2.qza \\

--m-metadata-file $metadir\Serum5.tsv \
--o-visualization $filtdir$fil/$fil-table-barplot.qzv

#Generate viewable feature table to look for ASVs of interest / filtering stats
qiime feature-table summarize \
 --i-table $filtdir$fil/$fil-table.qza \
 --o-visualization $filtdir$fil/$fil-table.qzv \
 --m-sample-metadata-file $metadir\Serum5.tsv
Alpha-beta2.sh

module load QIIME2/2019.7

rawdir=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/
procdir=/data/mramseylab/proc_reads/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/

cmr="core-metrics-results"

filter status of input files, "initial" is the 1st pass no filter at all
fil=-initial

#note change name of input tables for the 1st command below. Some input tables did not have standardized filename conventions
#changed to AF-hum-table.qza and table3.qza to minF-hum-table.qza

array=(minF AF SF NP)

for i in "${array[@]}"
do
done

qiime diversity core-metrics-phylogenetic \
 --i-phylogeny $rawdir\rooted-tree-merge.qza \
 --i-table $procdir$i\hum/$i\hum-table.qza \
 --p-sampling-depth 5000 \
 --m-metadata-file $metadir\Serum5.tsv \
 --output-dir $procdir$i\hum/$cmr

qiime diversity alpha-group-significance \
 --i-alpha-diversity $procdir$i\hum/$cmr\faith_pd_vector.qza \

qiime diversity alpha-group-significance \
--i-alpha-diversity $procdir$i-hum/$cmr/evenness_vector.qza \
--m-metadata-file $metadir\Serum5.tsv \
--o-visualization $procdir$i-hum/$cmr/evenness-group-\nsignificance.qzv

done

#dual array taking the directories above and then running the next
command on the 3 filenames in array2 for each directory prefix in
array 1
#note different array command syntax from above vs below

array1=(minF AF SF NP)
array2=(unweighted_unifrac_distance_matrix
weighted_unifrac_distance_matrix bray_curtis_distance_matrix)
for indirs in ${array1[@]}
do
 for infils in ${array2[@]}
do

qiime diversity beta-group-significance \
--i-distance-matrix $procdir$indirs-hum/$cmr/$infils\.qza \
--m-metadata-file $metadir\Serum5.tsv \
--m-metadata-column Condition \
--o-visualization $procdir$indirs-hum/$cmr/$infils\.qzv \
--p-pairwise
862 done
863 done
864
```r
setwd("E:/2019_Diabetic_Serum/Figure Materials/R-Plots/")
library(vegan)
library(ggplot2)
library(dplyr)
set.seed(30)

metadata<-read.csv("Serum5.tsv", header=TRUE, sep="\t", stringsAsFactors = F)
featuredf<-read.csv("NP-hum-features.tsv", header=TRUE, sep="\t", stringsAsFactors = F)

#making a subset of human only metadata and a few other criteria.
metadata <- metadata %>% filter(Source == 'Human') %>%
select("sample.id","Condition","Run","Source","ABC")

#Fixing 1st row to make it row names
featuredf <- data.frame(featuredf[-1,], row.names = featuredf[,1])

#transposing trial1 table to match Evelyns data format
featuredf <- as.data.frame(t(featuredf))

#Brings tables into agreement on matching sample.id values
featuredf = featuredf %>% mutate(sample.id = rownames(featuredf))

#Brings tables into agreement on matching sample.id values
table_all = left_join(featuredf, metadata)

#This gets metadata to agree with row numbers of the features table
after splitting out from table_all
```
metadata <-
select(table_all,"sample.id","Condition","Run","Source","ABC")

filter the "sample.id" column off the very end of the dataframe and turn it into rownames
NOTE THIS VALUE MUST BE CHANGED FOR EACH INPUT
featuredf <- data.frame(featuredf[,~1101], row.names = featuredf[,1101])

normalize data by sum of ASVs in each sample (this was from ZP's code)
featuredf <- sweep(featuredf,2,colSums(featuredf),`/``)

Above this was all data input / manipulation, Below this is data analysis and plotting##

The function metaMDS is used to calculate the dissimilarity matrix using the bray curtis distance metrics and at the same time generates the values from the dissimilarity matrix for an ordination plot.
MDS <-metaMDS(featuredf ,distance = "bray", k = 3, trymax = 500)

Next, extract the x and y coordinates from the MDS plot into a new data frame and add the metadata factors to the coordinates the data should be plotted based on.
MMR- added ABC=as.factor and changed [,3] to [,5] to agree with my own metadata file.
NMDS_t1=data.frame(NMDS1=MDS$point[,1],NMDS2=MDS$point[,2],
 Condition=table_all$Condition,ABC=table_all$ABC)

set theme for following plots
theme_set(theme_bw())
Generate the ordination based on the solution from above and selected grouping factor (Condition)

```r
plot.new()

ord <- ordiellipse(MDS, table_all$Condition,
                   display = "sites", kind = "sd", conf = 0.95, label = T)

dev.off()
```

Data frame df_ell_t1 contains values to show ellipses. It is calculated with function veganCovEllipse which is hidden in vegan package.

This function is applied to each level of NMDS (group) and it uses also function cov.wt to calculate covariance matrix.

```r
derganCovEllipse <- function (cov, center = c(0, 0), scale = 1, npoints = 100)
{
  theta <- (0:npoints) * 2 * pi/npoints
  Circle <- cbind(cos(theta), sin(theta))
  t(center + scale * t(Circle %*% chol(cov)))
}
```

Generate ellipse points based on 95% confidence (SD) intervals

Reference : http://stackoverflow.com/questions/13794419/plotting-ordiellipse-function-from-vegan-package-onto-nmds-plot-created-in-ggplot

Data frame df_ell contains values to show ellipses. It is calculated with function veganCovEllipse which is hidden in vegan package. This function is applied to each level of NMDS (group) and it uses also function cov.wt to calculate covariance matrix.

```r
df_ell_t1 <- data.frame()

for(g in levels(NMDS_t1$Condition)) {
  if(g!="" && (g %in% names(ord))) {
    df_ell_t1 <- rbind(df_ell_t1, cbind(as.data.frame(with(NMDS_t1[NMDS_t1$Condition==g],
```
veganCovEllipse(ord[[g]]$cov, ord[[g]]$center, ord[[g]]$scale), Condition=g))}}

Calculate p-value:
adon_t1<-adonis2(featuredf ~Condition, data=metadata, by=NULL, method="bray", k=3)

NMDSplot_t1<-ggplot(data=NMDS_t1, aes(NMDS1, NMDS2, col=Condition)) +
 #update from Evelyn to add metadata text to plot if wanted
 #This is useful to identify outlier points if using sample ID text here, Remove for final plot
 ###
 geom_text(aes(NMDS1, NMDS2, label=table_all$sample.id), size=2, vjust=0) +
 # add the p-value in the bottom right corner
 annotate("text", x=min(NMDS_t1$NMDS1), y=min(NMDS_t1$NMDS2-0.5),
 label=paste("p= ", adon_t1`Pr(>F)`[1]), size=3) +
 # draw the ellipses and define color based on the grouping factor
 geom_path(data=df_ell_t1, aes(x=NMDS1, y=NMDS2, linetype=Condition), size=1) +
 #scale_linetype_manual(values=c("4-Con"="dotted", "3-S4"="solid", "2-RI-old"="longdash")) +
 #scale_colour_manual(values=c("4-Con"="red", "3-S4"="darkgreen", "2-RI-old"="purple")) +
 # add the points per sample and define shape based on TankLocation
 geom_point(aes(shape=ABC), size=2) +
 # Reorder the legend
 guides(color = guide_legend(order=1), lty = guide_legend(order=1),
 shape = guide_legend(order=2), legend.position = "bottom")

Adding other Aesthetics
NMDS_by_Trial1 <- NMDSplot_t1 + theme(axis.text.y =
 element_text(size="12", color="black"), axis.title.y =
 element_text(face="bold", size="12", color="black") +
 theme(axis.text.x = element_text(size="12", color="black"),
 axis.title.x.bottom = element_text(face="bold", size="12",
 color="black")) +

 theme(axis.text.x.top = element_text(face="bold", size="12",
 color="black")) +

 # change name of the legend

 theme(legend.title = element_blank()) +

 theme(legend.position = "right", legend.title =
 element_text(colour="black", size=16, face="bold"))

print(NMDS_by_Trial1)
print(NMDSplot_t1)
Lefse-noTax.sh

module load QIIME2/2019.7

clsdir=/data/mramseylab/classifiers/
metadir=/data/mramseylab/metadata/
visdir=/data/mramseylab/visualizations/
filtdir=/data/mramseylab/proc_reads/
rawdir=/data/mramseylab/raw_reads/2018_Serum/Merge_runs/
procdir=/data/mramseylab/proc_reads/

array=(minF-hum AF-hum SF-hum NP-hum)

for i in "${array[@]}"
do

qiime feature-table relative-frequency \\
 --i-table $filtdir$i/$i-table.qza \\
 --o-relative-frequency-table $filtdir$i/$i-table.notax.qza

qiime tools export \\
 --input-path $filtdir$i/$i-table.notax.qza \\
 --output-path $filtdir$i/

#note, must use single hashes for -i / -o unlike other qiime commands.
biom convert \\
 -i $filtdir$i/feature-table.biom \\
 -o $filtdir$i/$i-notax.table.txt \\
 --header-key "taxonomy" \\
 --to-tsv
