Alliin inhibits adipocyte differentiation by downregulating Akt expression: Implications for metabolic disease

NI LI1,2*, KAI CHEN3*, HONGWEI DONG2, JING YANG4, MICHIKO YOSHIZAWA2,5, HIDEAKI KAGAMI2,4 and XIANQI LI2,4,5

1Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200031, P.R. China; 2Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan; 3Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China; 4Department of Hard Tissue Research, Institute for Oral Science; 5Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan

Received March 23, 2020; Accepted July 23, 2020
DOI: 10.3892/etm.2021.9995

Abstract. Obesity is currently an important health problem and is associated with an increased likelihood of various diseases. The efficacies of various natural treatments have been assessed for their utility in treating obesity. Alliin (S-allyl-L-cysteine sulfoxides) is considered the major component of garlic and has a wide range of natural antioxidant properties. However, the direct effects of alliin on obesity have not been well clarified. The present study investigated the effects and possible mechanisms of alliin on adipocyte differentiation. The 3T3-L1 cells were treated with alliin (0-40 µg/ml) during adipogenic differentiation. The effect of alliin on lipid accumulation was evaluated by Oil red O staining. Reverse transcription-quantitative PCR was performed to investigate the expression levels of adipogenic differentiation-related genes. The accumulation of lipid droplets was markedly inhibited following alliin treatment. The expression levels of multiple adipogenic transcription markers, such as CCAAT/enhancer-binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor γ, were markedly decreased following treatment with alliin during adipogenic differentiation. Expression levels of several adipocyte-related genes were subsequently suppressed. Additionally, alliin suppressed PKB/Akt and PI3K expression. These results suggested that alliin exhibits anti-adipogenic activity by downregulating major adipogenic differentiation-related genes and Akt/PI3K expression. Alliin may have a potential therapeutic effect on metabolic disease.

Introduction

Obesity is a significant risk factor for many metabolic diseases such as obstructive sleep apnea, cardiovascular diseases, diabetes, cancers, and osteoarthritis (1,2). Obesity can be considered a consequence of energy imbalance, which causes an increase in differentiated adipocytes and excessive fat accumulation (3,4). Adipogenesis, the process of maturation of preadipocytes, is an integrated process involving the activation of several signaling pathways (5). The transcription factors such as the peroxisome proliferation-activity receptor (PPAR) γ and CCAAT/enhancer-binding protein (C/EBP) family are crucial for adipogenesis (6-8). These major adipogenic-related factors control the expression of the lipid metabolizing enzymes to form mature adipocytes. C/EBP families are expressed at certain times in the process of adipogenesis. C/EBP β and C/EBP δ promoters are activated in the early stage of differentiation and act in the direct regulation of adipogenesis (9). Activated C/EBP β then regulate its neighboring promoter element, which subsequently encodes the PPAR γ and C/EBP α genes during the later stage of differentiation (10,11). The major transcription factors upregulate adipocyte differentiation-related genes such as adiponectin, leptin, and fatty acid binding protein (Fabp4) during adipocyte differentiation (12,13). Therefore, the control of adipogenesis involves suppressing this transcriptional regulation. Many signaling pathways influence adipocyte differentiation. The Akt pathway and the extracellular signal-regulated kinase (ERK) 1/2 pathway are shown to be responsible for adipogenesis (14,15). The Akt is in a key position to promote insulin-like growth factor-1 expression and adipocyte differentiation, while Akt pathway inhibition is shown to reduce adipogenesis (16).
Many studies have focused on developing anti-obesity drugs (17). Although several drugs are currently available to treat obesity, their long-term use may cause severe side effects (18). Thus, multiple research studies are focused on new natural products with potential for anti-obesity activity (19). The anti-obesity activity of various plant extracts is reported to be mediated by the regulation of adipogenesis (20). Garlic (*Allium sativum*), one of the oldest medicinal plants, is originally from Asia. *Allium* vegetables comprise one of the natural sources of organosulfur compounds and show advantages in therapeutic application, mostly owing to their cardiovascular protective effects, lowering of cholesterol, and anti-cancer properties (21). In addition, *Allium* has possibly beneficial effects in the treatment of obesity by adipogenesis inhibition (22), energy expenditure increase (23) and influence on expression of inflammatory mediators from serum (24). The synthesis of alliin (S-allyl-L-cysteine sulfoxide, SACSO), considered to be the major component of garlic, was first reported by Stoll and Seebeck in 1951 (25). Alliin, which has strong antioxidant properties, has been used as a treatment remedy for some diseases (26,27). Previous research found that alliin can help in decreasing the serum levels of glucose and insulin (28). Alliin also can regulate the anti-inflammatory effects of preadipocytes by reducing cytokine levels, such as IL-6 and TNF (29). Alliin was shown to possess many biological effects. However, the direct effect of alliin in adipogenesis has not yet been explored. The aim of this study was to evaluate the effects of alliin on the adipogenic differentiation of 3T3-L1 cells and its potential association with the regulation of adipogenic transcription factors PPARγ, C/EBP, adiponectin and Fabp4, as well as possible mechanism.

Materials and methods

Materials. Alliin, obtained from Abcam (ab141896), was dissolved in dimethyl sulfoxide (DMSO), and stored at -20°C.

Cell culture. 3T3-L1 fibroblasts were obtained from Japanese Collection of Research Bioreresources Cell Bank (Osaka, Japan). Cells were cultured in DMEM (Sigma-Aldrich; Merck KGaA) supplemented with 10% fetal bovine serum (FBS; Gibco Life Technologies), 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin B (Biological Industries) in a CO₂ incubator. The cells were then trypsinized after reaching 80-90% confluence. Cells at passages 2-15 were used in this study.

Adipocyte differentiation. The cells were differentiated following previously reported method with some modifications (30). Briefly, adipocyte differentiation begins after cell cultures reached 100% confluence. For adipogenic induction, the medium used was DMEM containing 10% FBS, 1 µM dexamethasone (Sigma-Aldrich; Merck KGaA), 0.5 mM 3-isobutyl-1-methylxanthine (Wako), and 10 µg/ml insulin (Funakoshi Co. Ltd.) for 2 days. The cells were then transferred to DMEM containing 10% FBS and 10 µg/ml insulin for 6 days. The medium was changed every 2-3 days. Mature adipocytes were obtained on day 7 or 8. To evaluate the effects of alliin on adipogenesis, various concentrations of alliin (10-40 µg/ml) were used during the induction process. Cells that were not treated with alliin were identified as the control.

Oil red O staining. To confirm the lipid accumulation in cultured cells, Oil red O staining (Sigma-Aldrich; Merck KGaA) was performed. Eight days after induction, mature adipocytes were fixed with 4% paraformaldehyde phosphate buffer solution for 30 min at room temperature and then stained with Oil red O working solution (6:4 of oil red stock solution: Distilled water) for 15 min. PBS was washed three times to remove the excess Oil red O dye. The images were observed under a parallel phase contrast microscope (Olympus IX70 inverted microscope, Olympus Optical CO, Ltd.). For quantitative analysis, the percentage of positively stained areas were calculated using imageJ. Results are expressed as percentage of Oil red O-stained area compared to control. For each sample, the experiments were performed in triplicates.

Measurement of cell viability. Cell viability was determined using a Cell Counting Kit-8 assay (CCK-8; DOJINDO Lab, Osaka, Japan). 3T3-L1 cells were seeded in 96-well plates (5x10^3 cells/well) for 2 days. Cells were then cultured with various concentrations of alliin (0-40 µg/ml) for 7 days. Cell Counting Kit-8 (CCK-8; Dojindo Laboratories) was used according the manufacturer's instruction. Cells were incubated with 10 µl of CCK-8 reagent for 2 h at 37°C. The result was determined using a Synergy™ HTX Multi-Mode Microplate Reader (BioTek Instruments) at 450 nm.

Reverse transcription-quantitative PCR (RT-qPCR). Total RNA was extracted from cells using TRIzol® reagent (Ambion®; Gibco Life Technologies) according to manufacturer’s instructions. The quantity and quality of isolated RNA were detected using a Nano Drop spectrophotometer (Nano Drop® ND-1000, Thermo Fisher Scientific, Inc.). Complementary DNA (cDNA) was synthesized in a 20-µl reaction using 2 µg RNA, 20 pmol Oligo dT12-18 (Invitrogen; Thermo Fisher Scientific, Inc.), 0.5 µl RNase inhibitor (Promega Corporation, N211A), 0.2 µl ReverTra Ace (Toyobo, TRT-101), 2 µl dNTP Mixture (Takara, 4030), 4 µl 5X RT buffer (Toyobo, TRT-101), and 10 mM DEPC water. RT-qPCR was performed in a 25-µl reaction, containing 1 µl cDNA, 10 pmol forward and reverse primers, and 12.5 µl SYBR Premix Ex Taq II (Takara, RR820A). PCR amplification was set as follows: 95°C for 30 sec, 40 cycles of 95°C for 5 sec, and 60°C for 30 sec; then the final dissociation was set at 95°C for 15 sec, 60°C for 30 sec, and 95°C for 15 sec. The data were quantified using the 2-∆∆Cq method and were normalized against the levels of β-actin (31). The primer sequences used for PCR are provided in Table I.

Statistical analysis. The results are presented as the mean ± standard error of the mean (SEM) of three experiments. SPSS 13.0 and GraphPad Prism 6 software were used for statistical analysis. The statistical significance between each group was computed using one-way analysis of variance followed by Dunnett’s test. P<0.05 was considered statistically significant.

Results

Effect of alliin on intracellular lipid accumulation during adipogenic differentiation. 3T3-L1 cells showed fibroblastic-like...
morbidity before adipogenic induction (Fig. 1A-a and -b). Then, the suppression effect of alliin on adipogenic differentiation was examined. During adipogenic differentiation, the 3T3-L1 cells were treated with different concentrations of alliin (10, 20, 40 µg/ml) for 7 days, and the cells treated without alliin were used as control. 3T3-L1 cells showed a morphological change from fibroblastic-shape to round-shape, and then oil droplets were formed and maintained after 7 days of induction (Fig. 1A-c-f). Oil red O staining was performed to evaluate lipid accumulation levels. The Oil red O-stained area decreased significantly in the alliin-treated groups compared with the control group (Fig. 1A-g-j). Meanwhile, quantitative analysis showed that alliin-treated group displayed dramatically lower lipid accumulation in a dose-dependent manner compared to the control group. 40 µg/ml alliin treatment showed the greatest effects on lipid accumulation which level dropped to 39.5% (Fig. 1B). The effect of alliin on cell viability was examined. 3T3-L1 cells were treated with different concentrations of alliin (10-40 µg/ml) for 7 days. Alliin has no effect on cell viability even at a concentration of 40 µg/ml (Fig. 1C). These data indicated that alliin may contain anti-adipogenic potential.

Effect of alliin on adipogenic transcription markers C/EBP β, C/EBP α, and PPAR γ. To examine the effect of alliin on adipogenic transcription markers during induction, cells were analyzed by RT-qPCR. The expression levels of C/EBP β, C/EBP α and PPAR γ were assessed on days 1, 3 and 7 of induction, respectively. The mRNA level of C/EBP β, induced by the differentiation medium, reached its peak on day 1, and then decreased gradually over time. Cells treated with 40 µg/ml alliin on day 3 showed a significant decrease in lipid accumulation compared to cells in the control group, but there was no significant difference on day 7 (Fig. 2A). The expression of C/EBP α and PPAR γ were gradually induced during adipogenic differentiation in control group. Expression level of C/EBP α was significantly reduced by treatment with 40 µg/ml alliin compared to without treatment on day 1 and day 7 (Fig. 2B). Treatment with 40 µg/ml alliin also significantly inhibited the expression of PPAR γ on day 7 (Fig. 2C). These results indicate that 40 µg/ml alliin suppress adipogenesis by downregulating the expression of C/EBP α and PPAR γ.

Effect of alliin on adipocyte-related genes adiponectin, Fabp4, and leptin. Expression of adipocyte-related genes was also analyzed using RT-qPCR. During adipogenic differentiation, expression of adiponectin mRNA increased over time. The level of adiponectin mRNA was significantly lower with treatment of 40 µg/ml alliin than without treatment at all time points examined (Fig. 3A). The level of Fabp4 mRNA was significantly lower with treatment of 40 µg/ml alliin than without treatment at all time points examined (Fig. 3B). The level of leptin mRNA was significantly lower with treatment of 40 µg/ml alliin than without treatment at all time points examined (Fig. 3C).

Table I. Primer sequences for reverse transcription-quantitative PCR.

Name of gene	Primers (5’-3’)	Melting temperature (˚C)	Product length (bp)	Genbank code
β-actin	F: CATCCGTAAGAAGCCTCTATGCCAAC ATGGAGCCACCGATCCACA R: ATGGAGCCACCGATCCACA	64.1	193	NM_007393.5
PPAR γ	F: GTGCCAGTTTCGATCCCTGTA R: G GCCAGCATCGTGTAGATGA	66.2	237	NM_00113418.1
C/EBP α	F: GGACAAGAACAGCAACGAGTA R: GCAGTTGCCATCGGCCTTGA	69.7	70.0	
C/EBP β	F: TGGACAAGGCTGAGCGACGA R: T GTGCTGCTGCTCAGGGTTCGA	69.1	192	NM_001287738.1
Adiponectin	F: GCACCTGCAAGTCTACTGCA R: GTAGGTGAAGAGAACGGGCTTGT	66.4	156	NM_009605.5
Leptin	F: CCAACACACAGCTGGAACCT R: GCCCTTCTCAGATCCATCC	65.9	216	NM_008493.3
Fabp4	F: CCAATGAGCAAGTGCCAAGA R: GATGCCAGGCTCCAGGATAG	65.9	65.9	
PI3K	F: TTCCTGCTCTCATACCGAATT R: CATGACATTTCTCCTCTTGT	63.8	212	NM_001024955.2
AKT	F: CCCCTCTACAACCAGACCA R: ATACACATCTCGGACACAGA	63.9	210	NM_009652.3
MAPK	F: TGCCAGGCTGAACTACAGTT R: CACAAAGGCTCCTCCTAGAC	64.1	169	NM_008927.4
ERK	F: TCAGAGCAGTGTTGATCTC R: GGTGCCATCATCAACATCTG	64.0	188	NM_011949.3

F, forward; R, reverse.
decreased in cells cultured with 40 µg/ml alliin than in those without treatment on day 1 and day 7 (Fig. 3B). Whereas, the level of leptin mRNA was significantly lower in the 40 µg/ml alliin treatment group than in the control group on day 1 (Fig. 3C). These results indicate that 40 µg/ml alliin inhibits adipogenesis and leads to reduce expression of adiponectin and Fabp4.
Effect of Alliin on the Akt and ERK 1/2 pathways related genes during adipogenic differentiation. Akt and ERK 1/2 are upstream regulators in the adipocyte differentiation pathway, including C/EBP α and PPAR γ pathways. To investigate the possible mechanism of alliin on adipogenic differentiation, the Akt and ERK 1/2 pathways related genes were examined. The 3T3-L1 cells were cultured with various concentrations of alliin during the differentiation of adipocyte. Results showed that expression of PI3K and Akt was significantly increased at the early stage of differentiation. Expression of PI3K was significantly inhibited in the 20 or 40 µg/ml alliin treatment group compared to that in the control group at all time points examined (Fig. 4A). The level of AKT mRNA was significantly lower with treatment of 40 µg/ml alliin than without treatment on days 3 and 7 (Fig. 4B). However, increased expression of MAPK and ERK was observed in the
treatment groups compared to that in the control groups on day 7 (Fig. 4C). The level of ERK mRNA increased significantly with 40 µg/ml alliin treatment compared to that without treatment after 7 days (Fig. 4D). These results suggest that 40 µg/ml alliin inhibits adipocyte differentiation by reducing the expression of PI3K and Akt.

Discussion

In the current study, we indicated that alliin treatment may contribute to decreased adipogenesis of 3T3-L1 adipocyte. This study revealed, for the first time, the direct effect of alliin on adipogenesis. Moreover, we found an effect of alliin on adipogenesis may be achieved by downregulating the Akt and PI3K expression. Several recent reports indicate the benefit of plant extracts as drugs (19,32). Compared to conventional drugs, herbal medicines show less potentially dangerous side effects. Many plant compounds, such as ginsenoside, caffeic acid, berberine, anthocyanin, and capsaicin, have been shown to inhibit adipogenesis (33-35).

Obesity is commonly caused by an excessive increase of adipocytes. Adipogenesis is a complex regulated cellular differentiation process involving many signaling pathways and related molecules (36,37). The inhibition of adipogenesis process can provide a target for the control and treatment of obesity. During 3T3-L1 adipocyte differentiation, C/EBP β is rapidly induced and is responsible for activating the adipogenic regulators C/EBPα and PPARγ (38). PPARγ plays a crucial role in adipogenesis of embryonic stem cells and fibroblasts. PPARγ levels are significantly induced when preadipocytes are converted into adipocytes (39,40). The research suggested that white adipose tissue under obesity condition a significant increment in oxidative stress, pro-inflammatory status and depletion of n-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) (41). Whereas PPARγ transcription factor is regulated by n-3 LCPUFA that participate in the metabolism of adipose tissue (42). So, the regulation of adipogenesis occurs by controlling PPARγ levels (20). Moreover, PPARγ has been shown to induce and activate the transcriptional factor C/EBPα promoter (43). C/EBPα is a transcriptional factor of the C/EBP family and also plays an important role in regulating adipogenesis (44). Thus, PPARγ and C/EBPα genes are upregulated and together activate the adipogenesis pathways (45). In this study, a direct effect of alliin on adipocyte differentiation was performed. Alliin significantly decreased the lipid droplet accumulation. Expression level of C/EBPβ was significantly decreased in presence of 40 µg/ml alliin on day 3. Expression of C/EBPα and PPARγ was lower with 40 µg/ml alliin treatment on day 7, while the level of C/EBPβ was not affected. These result may correspond to C/EBPβ induced in the early stage of differentiation that subsequently activates the adipogenesis markers, PPARγ and C/EBPα, at the later stage of differentiation. The results suggest that alliin may inhibit adipogenesis by reducing C/EBPβ, C/EBPα, and PPARγ levels during adipocyte differentiation.

In addition, PPARγ and C/EBPα can be part of a feedback loop and promote adipogenesis by leading the expression of downstream genes, such as adiponectin, Fabp4, and leptin. These downstream genes play major roles in inducing and maintaining mature adipocytes (5). A recent study indicated that the expression of adipocyte-related genes during induction is PPARγ dependent (46). In the alliin treatment group, expression of leptin was lower during the early stage of differentiation, while the level was not affected at day 7. This may be due to the existence of different regulatory mechanisms of leptin expression. Recent study noted that leptin can directly induce the adipocyte differentiation in the early stage of adipogenesis, while showing anti-adiposity effects after maturation of adipocytes (47). Expression of adiponectin and Fabp4 was significantly inhibited with alliin treatment after adipocyte induction. These results clearly imply that alliin inhibits adipogenic differentiation by reducing the expression of adipocyte-related genes, which may be through the repression of PPARγ and C/EBPα related pathways.

Insulin signaling pathway plays a critical role in modulating adipogenesis. In the presence of insulin, the insulin receptor is autophosphorylated, and subsequently proteins in the insulin receptor substrate family are also phosphorylated, thereby activating the two main signaling pathways, PI3K/Akt and MAPK/ERK pathways (48). The function of PI3K/Akt signaling is to activate adipogenic transcription marker such as C/EBPα and promote adipocyte maturation during adipogenesis (49). A study also showed that expression of PPARγ is significantly impeded in Akt-deficient mice (50). Thus, inhibition of PI3K/Akt signaling pathway may provide a therapeutic target for obesity (51). The MAPK/ERK signaling pathway plays a complicated role in the regulation of adipogenesis. Activation of the MAPK/ERK pathway can both inhibit and promote adipocyte differentiation. Tanabe et al (52) reported that the MAPK/ERK pathway works in a suppressive manner on adipocyte differentiation when receiving a long-term or sustained stimulation. In this study, the higher expression levels of ERK with alliin treatment may correspond to the inhibition effects of MAPK pathway on adipogenesis. In contrast, the expression level of PI3K and Akt mRNA expression were markedly decreased with alliin treatment. Collectively, our study indicated that alliin resulted in PI3K/Akt inhibition, thereby suppressing the expression of C/EBPβ, C/EBPα, and PPARγ and adipocyte-related genes (Fig. 5). Although the results from this study indicated that the Akt signaling pathway play an important role in alliin inhibit adipocyte differentiation, there are still limitations. First, the phosphorylation levels of Akt signaling related proteins should be test. Second, whether the validity of this theory still needs further experimental investigation.

In conclusion, the results demonstrated that alliin in garlic can inhibit adipogenesis by reducing expression of major transcriptional activators and their downstream genes, which may be mediated by regulation of Akt signaling pathway. Alliin may provide a possible naturally occurring therapeutic method for the prevention and treatment of metabolic disease.

Acknowledgements

Not applicable.

Funding

The present study was supported in part by Grants-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS; KAKENHI grant no. JP19K10192).
Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Authors' contributions
NL and KC performed all experiments, acquired data, analyzed the data and drafted the manuscript. KC and HD contributed to the acquisition of data. JY, MY, HK and XL designed the experiment. XL revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
The authors declare that they have no competing interests.

1. Wilson PW, Bozeman SR, Burton TM, Haoglin DC, Ben-Joseph R and Pashos CL: Prediction of first events of coronary heart disease and stroke with consideration of adiposity. Circulation 118: 124-130, 2008.
2. Jehan S, Myers AK, Zizi F, Pandi-Perumal SR, Jean-Louis G and McFarlane SL: Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiological insights. Sleep Med Disord 2: 52-58, 2018.
3. Faria SL, Faria OP, Menezes CS, de Gouveia HR and de Almeida Cardeal M: Metabolic profile of clinically severe obese patients. Obes Surg 22: 1257-1262, 2012.
4. Kipper E and Tappy L: Regulation of body weight in humans. Physiol Rev 79: 451-480, 1999.
5. Moseti D, Regassa A and Kim WK: Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci 17: 124, 2016.
6. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ and Spiegelman BM: C/EBPdelta gene. EMBO J 16: 7432-7443, 1997.
7. El-Jack AK, Hamm JK, Pitch PF and Farmer SR: Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. J Biol Chem 274: 7946-7951, 1999.
8. Leteforova MI and Lazar MA: New developments in adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci 17: 124, 2016.
9. Tanaka T, Yoshida N, Kishimoto T and Akira S: Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J 16: 7432-7443, 1997.
10. Clarke SL, Robinson CE and Gimble JM: CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma2 promoter. Biochem Biophys Res Commun 240: 99-103, 1997.
11. Farmer SR: Transcriptional control of adipocyte formation. Cell Metab 4: 263-273, 2006.
12. Wei S, Zan LS, Wang HB, Cheng G, Du M, Jiang Z, Hausman GJ, Mcfarlane DC and Dondson MV: Adenovirus-mediated interference of FABP4 regulates mRNA expression of ADIPOQ, LEP and LEPR in bovine adipocytes. Genet Mol Res 12: 494-505, 2013.
13. Rosen ED, Walkey CI, Puigserver P and Spiegelman BM: Transcriptional regulation of adipogenesis. Genes Dev 14: 1293-1307, 2000.
37. Guo L, Li X and Tang QQ: Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 290: 755-761, 2015.
38. Salma N, Xiao H and Imbalzano AN: Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J Mol Endocrinol 36: 139-151, 2006.
39. Tontonoz P, Hu E and Spiegelman BM: Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79: 1147-1156, 1994.
40. Wang F, Mullican SE, DiSpirito JR, Peed LC and Lazar MA: Lipotoxicity and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci USA 110: 18656-18661, 2013.
41. Ilesca P, Valenzuela R, Echeverría F, Soto-Alarcon S, Ortiz M and Videla LA: Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed Pharmacother 109: 2472-2481, 2019.
42. Echeverría F, Ortiz M, Valenzuela R and Videla LA: Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids 114: 28-34, 2016.
43. Wu Z, Rosen ED, Brun R, Hauser S, Adelman G, Troy AE, McKeon C, Darlington GJ and Spiegelman BM: Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3: 151-158, 1999.
44. Tang QQ, Otto TC and Lane MD: CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA 100: 850-855, 2003.
45. Ghaben AL and Scherer PE: Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 20: 242-258, 2019.
46. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, et al: Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 143: 2106-2118, 2002.
47. Lukaszewski MA, Eberlé D, Vieu D and Breton C: Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 305: E1195-E1207, 2013.
48. Son YH, Ka S, Kim AY and Kim JB: Regulation of adipocyte differentiation via microRNAs. Endocrinol Metab (Seoul) 29: 122-135, 2014.
49. Saltiel AR and Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799-806, 2001.
50. Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skee J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG and Hay N: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17: 1352-1365, 2003.
51. Tang QQ, Gronborg M, Huang H, Kim JW, Otto TC, Pandey A and Lane MD: Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA 102: 9766-9771, 2005.
52. Tanabe Y, Koga M, Saito M, Matsunaga Y and Nakayama K: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci 117: 3605-3614, 2004.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.