In vivo and In vitro hair growth promotion effects of extract from Glycine soja Siebold et Zucc

Jae Chan Yang1 · Bo Ae Kim1

Received: 6 January 2016 / Accepted: 18 March 2016 / Published Online: 30 June 2016
© The Korean Society for Applied Biological Chemistry 2016

Abstract Hair is a dermal adjunctive organ that protects the body from external physical and chemical stimuli; hair undergoes anagen, catagen, and telogen phases, with hair-loss occurring during the telogen phase. Alopecia is a condition wherein a person undergoes hair-loss far exceeding the normal amount, owing to diverse external factors. Wild beans are rich in isoflavone and amino acids known to prevent hair-loss; compared to cultivated beans, many wild bean species have higher protein content. This study aimed to develop a hair growth promoting solution, with superior hair growth promoting effects and fewer side effects, using naturally obtained Glycine soja Siebold et Zucc (GSSZ) extracts. Seven-week-old C57BL/6N male mice were classified into different experimental groups. Hair growth was observed in GSSZ-treated mice, and compared against that seen in 3 % minoxidil (MXD, positive control)-treated mice. Visual observations revealed a greater reduction in hair-loss in MXD and GSSZ application groups, compared to that in TXN group (hair loss induction using 1 % testosterone). Evaluation using an image analysis software revealed that compared to the positive control, TXN + GSSZ group showed the highest hair growth. TXN + MXD and control groups exhibited similar follicular cell growth, while the hair growth promotion patterns were similar in the negative control (normal), TXN + GSSZ, and TXN groups, as observed via histological analysis. GSSZ did not induce cytotoxicity (even at 2 mg/mL) in keratinocytes and dermal papilla cells; alternately, dermal papilla cell proliferation was activated in a (GSSZ) concentration-dependent manner. Therefore, the GSSZ extract promoted hair growth and increased hair growth-related cell activity, and could therefore be utilized in alopecia treatment.

Keywords Alopecia · Dermal papilla cells · Glycine soja Siebold et Zucc · Hair growth · Keratinocyte

Introduction

Human hair follows a repetitive cycle of maintaining the anagen phase for 3–8 years, undergoing hair loss during the catagen and telogen phases, and new hair growth at the site of hair-loss (Allegra et al. 1970; Arase and Sandamoto 1999). On an average, normal people experience a loss of 50–100 hairs on a daily basis; therefore, maintaining the balance between hair formation and loss allows for the retention of basic appearance. Alopecia is a generic term that describes hair loss from the scalp or body skin, owing to an increase in the extent of hair loss over that of hair formation; this mostly occurs on the scalp (Stenn et al. 1996; Arck et al. 2003). Recent social trends of gradual advancement and industrialization have led to the development of sociocultural factors that exert direct and indirect influences on alopecia, including excessive stress caused by increased social activities and lifestyle changes; consequently, this has resulted in a rapid increase in the number of people suffering from alopecia. Moreover, the population group suffering from alopecia has expanded from middle-aged males to young males and females; therefore, a number of studies have been performed to analyze the various causes of hair loss and identify potential solutions (Cash 1992). Causes of alopecia include genetic factors, secretion of androgens, excessive stress, blood circulation disorders, nutrient deficiencies, diet, smoking, drinking, and endocrine disorders; the major factors of alopecia are largely divided into internal factors and external environment factors (Stenn and Paus 2001).
Male pattern alopecia or male dominated-hair loss that displays a certain pattern in bangs is a type of progressive hair loss that occurs after the initiation of testicular secretion and is known to be caused by genetic factors, stress, scalp bloodstream disorders, and hypersecretion of male hormones (Messenger and Olsen 1994). Dihydrotestosterone (DHT), a byproduct of the male hormone testosterone, is known to be a cause of male pattern alopecia; a large quantity of DHT is produced in the head by 5-α-reductase. The presence of DHT in the follicles (of humans who are genetically predisposed to alopecia) gradually leads to follicle shrinkage and shortened hair length, i.e., follicle shrinkage and degeneration (Takahama et al. 1970; Takahama and Montagna 1971).

The number of alopecia patients has been observed to increase every year; however, the currently available medications and treatment (implants) methods for alopecia patients have not been entirely successful. Alopecia is known to be accompanied with pain and considerable adverse effects; therefore, there is an urgent need for the development of novel materials for overall clinical utilization.

Over the past few years, a number of universities and company research centers have been actively involved in conducting cytological, biochemical, and molecular biological investigations into hair growth and hair loss (Stenn 1991), and have attempted the development of therapeutic methods for the treatment of hair loss and promotion of hair growth (Burton and Marshall 1979). Minoxidil is known to induce such as hirsutism, it was further developed as a solution for hair growth by increasing the nutrient supply via vasodilation and arteriolization (Kaufman 1996).

Minoxidil and finasteride, compounds that have been officially approved by the US Food and Drug Administration (FDA), and Propecia, are currently being used to promote hair growth. Minoxidil was originally prepared and sold for use as an antihypertensive (Buhl et al. 1990). However, following reports of side effects, such as hirsutism, it was further developed as a solution for hair growth (Burton and Marshall 1979). Minoxidil is known to induce hair growth by increasing the nutrient supply via vasodilation and opening the potassium channel (Meisher et al. 1988; Buhl et al. 1990). Finasteride (Merck Sharp & Dohme Corp., Summerville Pike West Point, Pennsylvania, USA) and Propecia (MSD S.A., Opfikon, Switzerland) assist in promoting hair growth by inhibiting 5-α-reductase activity, which in turn affects the male hormone metabolism (Kaufman 1996).

Intensified research on anti-hair loss agents and hair growth promoting solutions over the past few years has resulted in the development of diverse products; however, the safety and efficacy of these anti-hair loss agents remain to be validated and developed. The major aim of this study was to investigate the hair loss prevention and hair growth promotion effects of extract from black beans, which has been classically (since ancient times) considered to prevent hair loss. Beans are a major protein source, containing 40 % qualified proteins, and an effective nutrient source. Beans contain cysteine, an essential component for hair growth, which has been shown to effectively prevent hair loss in humans (Jones and Rivett 1997; Kovalenko et al. 2006). Among these, black beans contain abundant quantities of lecithin, phytoestrogen, unsaturated fatty acids, and anthocyanin, in addition to proteins, and exhibit a range of medicinal activities, including antioxidant, anti-cancer, anti-obesity, estrogenic, and immunomodulatory activities (Maeda et al. 1992; Liao et al. 2001; Zhao and Lou 2006; Jang et al. 2008). In addition, black beans are known to improve blood circulation by inhibiting the formation of thrombi; previous reports have suggested that the vitamin E, unsaturated fatty acid, and anthocyanin content of black beans expand the blood vessels in order to facilitate blood circulation in the peripheral blood vessels (Shimizu et al. 2001; Kim et al. 2011).

A number of previous studies have utilized ethanol as the major solvent to evaluate the various effects of black beans. Black beans are known to promote hair growth and dermal papilla cell growth and exert a hemotherapeutic effect (Jeon et al. 2011); in addition, the use of black beans improves blood circulation by inhibiting the formation of thrombi, and it has excellent therapeutic effects against a number of diseases (Kim et al. 2011). Black beans provide nutrition to the roots of the hair by improving blood circulation in the scalp, effectively preventing hair loss; therefore, these are widely prescribed as food to prevent hair loss in folk medicine. Some studies have reported the effects of cultivated soybean and black bean extracts on hair cycle and growth (Kim et al. 2007); however, so far, the effect of wild beans (a variety of black beans) on hair growth has not been investigated. Wild beans are vines belonging to the Leguminosae family, which grow in annual cycles in the wild. Oriental medicine has identified the fruits of wild beans as Seomoktae (small black beans), and the stems and seeds as Yadaeudeung and Yaryodu respectively. Wild beans are used to prevent diseases affecting adults, such as breast cancer, prostate cancer, and heart disease, and contain antioxidants that are known to be effective against hyperlipidemia, atherosclerosis, and lung cancer. Several studies have attempted to devise methods for the effective utilization of wild beans; several species of wild beans have higher protein content than do cultivated beans. Wild beans have an average crude protein content of 45.4 % (37.4–50.2 %), which is approximately 5 % higher than that seen in general cultivated species (Kim and Park 2005). Based on the findings of the aforementioned studies, this study investigated the cytotoxic and cell proliferative effects of wild beans on keratinocytes and dermal papilla cells, which are generally used to stimulate hair growth in in vitro experiments. In addition, the effect of wild beans on C57BL/6 mice with testosterone induced-hair loss was analyzed in vivo. The skin was treated with wild bean extract in ethanol; the hair loss and hair growth characteristics of the experimental group was compared against that of the positive control treated with 3 % minoxidil, in order to investigate the possible hair growth-promoter characteristics of extracts from wild bean.
Materials and Methods

GSSZ extract preparation
The wild beans (Glycine soja Siebold et Zucc; GSSZ) used in this study were collected from Daedeok Mountain, Jeonbuk, Korea. Wild beans (500 g) were mixed with 20 % (v/v) ethanol in a shaker incubator (Jisico Co., Ltd., Bucheon, Korea) for 24 h at room temperature, with constant stirring, in order to obtain the extract. The extract was subjected to vacuum filtration and concentrated using a rotary evaporator (EYELA, Tokyo, Japan). An average yield of 18 % was obtained, and the extract was stored at −80 °C until further analysis. The GSSZ extract was dissolved in dimethyl sulfoxide (DMSO) for vehicle; Sigma-Aldrich, St. Louis, MO, USA) at a final DMSO concentration not exceeding 0.2 %.

Lactate dehydrogenase (LDH) cytotoxicity measurement
The cytotoxic effect of the GSSZ extract was identified using a lactate dehydrogenase (LDH) release assay (CytoTox 96 Kit; Promega, Madison, WI, USA). The human keratinocyte HaCaT strain was cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco BRL, Grand Island, New York, USA) supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin (Gibco Inc., Life Technologies, Carlsbad, CA, USA), and 10 % heat-inactivated fetal bovine serum (FBS; Gibco Inc.) and incubated at 37 °C in a 5 % CO2 constant-temperature chamber; the cells were sub-cultured every 3 days. 1×10^5 cells/mL/well were seeded in a 96-well plate and incubated for 24 h. The culture solution and LDH reagent (50 µL each) were added to the cells, and allowed to react at room temperature for 30 min. Subsequently, the stop solution (50 µL) was added to arrest the reaction; the absorbance was then measured at 490 nm by using a micro-plate reader (Emax microplate reader; Molecular Devices, Sunnyvale, CA, USA).

Effect of GSSZ extract on dermal papilla cell proliferation
Dermal papilla cells (DPCs) were cultured in DMEM supplemented with penicillin-streptomycin and 10 % FBS (as described in the previous subsection), incubated at 37 °C in a 5 % CO2 constant-temperature chamber, and sub-cultured every 3 days. DPCs (1 × 10^4 cells/mL) were treated with GSSZ extracts at concentrations of 1, 5, 10, and 20 µg/mL GSSZ extract, or 0.3 mM H2O2 (control), and incubated for 24 h. The culture solution and LDH reagent (50 µL each) were added to the cells, and allowed to react at room temperature for 30 min. Subsequently, the stop solution (50 µL) was added to arrest the reaction; the absorbance was then measured at 490 nm by using a micro-plate reader (Emax microplate reader; Molecular Devices, Sunnyvale, CA, USA).

Animal experimentation (hair removal and application methods)
The animals subjected to 1 week of dietary adaptation were divided into the experimental groups (n = 6 per group). Hair on the dorsal skin of the experimental animals was shaved off a day before treatment with the GSSZ extract; an electronic clipper was used to shave the small animals. Testosterone (1 %, 80 µL) was applied to the dorsal skin once a day for 7 days to induce hair loss; the GSSZ extract (80 µL) was applied to the skin using a dropping pipette and rubbed 3−4 times to accelerate the absorption; this was repeated every morning for 5 weeks. Purified water was used as the negative control (control, CON). Mice belonging to the first and second positive control (TXN and TXN-MXD) groups were treated with 1 % testosterone (to induce hair loss) and 3 % minoxidil (after inducing hair loss with testosterone), respectively. In the TXN + GSSZ experimental group, the mice were treated with 20 µg/mL GSSZ for 5 weeks after induction of hair loss by testosterone; after hair loss induction, the 80 µL GSSZ extract was applied to the mouse dorsal skin surface once a day for 5 weeks.

Analysis of body hair and measurement of hair length using the image analysis software
Visual confirmation of hair growth was obtained by taking photographs of the experimental mice by using a D70 model camera (Nikon, Tokyo, Japan). The photos were analyzed using an image analysis software (Each system ships with 1 full version of Quantity One and unlimited copies of Quantity One Basic Mode; Bio-Rad, Hercules, CA, USA).

Histological analysis
The follicle changes in the skin were histologically analyzed; the mice were subjected to cervical dislocation, and the mouse dorsal skin showing hair growth was excised. The excised skin tissue was fixed with 10 % formalin buffer solution, and embedded in paraffin to create 4-µm-thick paraffin tissue sections by using a Microtome (HM-315 model, Microm Co., Walldorf, Germany). The sections were then stained with hematoxylin and eosin (H&E) stain. The histological changes in follicle tissues were observed using an optical microscope (Olympus, Tokyo, Japan); in addition, the rate and characteristics of follicle formation during the anagen phase were evaluated.

Statistical analysis
All results were expressed as means ± standard deviation or standard error of mean; the data was statistically analyzed using Student’s t-test. p-values less than 0.05 were considered to be statistically significant.
Results

Cytotoxicity of keratinocytes
The cytotoxicity of keratinocytes subjected to GSSZ extracts was investigated. The keratinocytes were treated with GSSZ at concentrations of 0.1, 0.5, 1.0, and 2.0 µg/mL; simultaneously, the positive control (0.5 mM) (H2O2) was used to induce cell damage. The H2O2-treated HaCaT cells showed high cytotoxicity (>80 %), while the cells exposed to GSSZ did not exhibit cytotoxicity (even at 2 mg/mL GSSZ concentration) (Fig. 1).

Rate of proliferation of dermal papilla cells
The addition of GSSZ extracts at 0.1, 0.5, 1.0, and 2.0 mg/mL, resulted in increased proliferation in the dermal papilla cells, by 102.10±0.87, 106.17±9.12, 108.82±10.38, and 109.25±16.57 %, respectively, compared to the negative control; this suggested a dose-dependent increase. The positive control minoxidil resulted in the highest increase in dermal papilla cell proliferation, at 119.28±6.3 % (Fig. 2). These results confirmed the hair growth-inductive effect of GSSZ extracts, through the proliferation of dermal papilla cells.

In vivo measurement of hair growth in the anagen phase
The hair on the dorsal skin of C57bl/6N mice were removed and subjected to 1 % TXN for 1 week to inhibit hair growth. Subsequently, MXD and GSSZ were applied for 7 weeks; on the day of experiment completion, the hair was collected and the hair growth in the anagen phase was examined up to 0.1 mm by using vernier calipers (Mitutoyo Corp., Tokyo, Japan). The measurement of the hair length after hair growth inhibition revealed that the CON and TXN groups (normal and positive control with 1 % testosterone treatment, respectively) manifested the longest and shortest hair lengths at 0.55±0.09 and 0.43±0.05 mm, respectively. The TXN + MXD and TXN + GSSZ groups exhibited lengths of 0.51±0.10 and 0.53±0.03 mm, indicating greater hair growth compared to the positive control (TXN); however, it was lesser (shorter) than that observed in the normal group. The TXN + GSSZ group (testosterone + GSSZ) showed hair growth similar to that observed in the TXN + MXD group (Fig. 3).
Analysis of hair growth using an image analysis software

Hair growth was visually confirmed by taking photos of the dorsal skin in the experimental mice every 2 weeks (once) after initiation of the hair growth experiment. The obtained images were analyzed using the Scion image analysis 1.63 software (Scion Image, Scion, Frederick, MD, USA). The TXN group showed the lowest value at 116.26±4.39, while the TXN + MXD and TXN + GSSZ groups showed values of 150.21±5.61 and 114.61±6.85, respectively (Fig. 4).

Histological analysis

Compared to the CON group, the TXN group (treated with 1% testosterone to induce hair loss) showed fixed follicular cells and circular hair roots. The TXN + MXD group showed longer hair roots in the follicles, suggesting active follicular cell growth. The TXN + GSSZ group, treated with the GSSZ extract, showed increased follicular cell growth, although this growth was slower than that observed in the positive control (TXN + MXD group) (Fig. 5).

Discussion

Recently, the number of males and females psychologically suffering from alopecia has increased drastically. Therefore, it is very important to develop medicinal substances that are effective for hair loss prevention and hair growth. The use of alternative medicine developed from oriental medicines or medicinal herbs has attained worldwide attention over the past few years. The morphological, histological, and biochemical aspects of hair loss in males were elucidated by the study of macaques. Representative male hair loss patterns include a prolonged telogen phase and a shortened anagen phase. The histological characteristic of hair loss, observed by H&E skin staining, was the insufficient increase in length of anagen follicles. The thickness of growing hair is determined by follicle size. Therefore, the length of the follicle, which grows between the initial anagen and middle anagen phase, is very important for the normal hair cycle (Taksahima 1974). The C57BL/6 mice used in this study are known to enter the telogen phase of hair cycle within 6 weeks after birth. Mice at the telogen phase show a pink skin surface after shaving; the surface of the

![Fig. 4](Image analysis on dorsal skin). Hair length measurement using Scion Image 1.63 software. Image analysis software was used to quantify the percentage of hair length relative to the total area of the dorsal skin of C57BL/6

![Fig. 5](Histological observation of hair follicles (HF) in a male C57BL/6 mouse model of alopecia after topical application of samples for 4 weeks. A: Negative Control (CON), B: treated 1 % testosterone (TXN), C: treated 3 % minoxidil after treated 1 % testosterone (TXN + MXD), D: treated 2 % Glycine soja Siebold et Zucc extract after treated 1 % testosterone (TXN + GSSZ))
skin turned black with experiment progression, which indicates the resurgence of the anagen phase from the telogen phase (Tobin et al. 1998).

Minoxidil, a hair growth promotion agent that is currently seeing widespread usage, is used for percutaneous applications; finasteride and dutasteride, on the other hand, are administered orally. These agents are approved by the FDA and used extensively in clinical settings (Cash, 1992). However, clinical cases have indicated that the use of minoxidil may result in an increase in weight, edema, angina, dermatitis, and itching, while finasteride indicated that the use of minoxidil may result in an increase in clinical settings (Cash, 1992). However, clinical cases have seen widespread usage, is used for percutaneous applications; finasteride and dutasteride, on the other hand, are administered orally. These agents are approved by the FDA and used extensively in clinical settings (Cash, 1992). However, clinical cases have

The results of previous studies have indicated that external stress induces cell oxidation; in addition, hair formation from the keratinocytes of dead skin cell layers is believed to be disrupted, resulting in weakening of the hair, leading to the catagen phase. The decreased follicle activity results in the progression of hair to the dystrophic anagen phase. In addition, stressed mice were reported to induce inflammation around the follicles via the Substance P (SP; a neuropeptide) route and through follicle development during the immature catagen phase, leading to inhibition of hair growth (Arck et al. 2003). Using an approach similar to the one described in the aforementioned study, another study reported that stress suppressed the keratinocyte proliferation in the telogen phase and accelerated apoptosis (Arck et al. 2001). This study investigated the cytotoxicity and cell proliferation rate using keratinocytes and dermal papilla cells. The oxidation of keratinocytes by hydrogen peroxide resulted in high cytotoxicity; on the other hand, the use of GSSZ extracts did not result in cytotoxicity even at high concentrations (20 µg/mL). In addition, the GSSZ extract was observed to activate cell proliferation, thereby assisting in similar dermal papilla cell growth as that effected by minoxidil, a commonly used hair growth promoting solution. Dermal papilla cells, which have originated from mesoblasts and are located in the base of the follicles, are known to play a critical role in hair formation and growth by interacting with the matrix cells, including epithelial cells (Chi et al. 2013). In this study, *in vivo* experiments were performed in the C57BL/6 animal model; the size and morphology of follicles before and after experimentation was observed by histological analyses. The histological examination by H&E staining revealed distinct differences in the follicle length and size between the TXN + GSSZ (treated with 1 % testosterone) groups. The TXN group showed small and circular hair roots in the follicles, while the GSSZ group revealed follicles that were exposed to the skin because of the increased follicle length, suggesting the association of such a phenomenon with the hair growth effects of the GSSZ extract. A previous study used minoxidil, the positive control used in this study, to induce sufficient growth in follicles (length), and stimulate re-growth of the hair via follicle stimulation in C57BL/6 mice. Minoxidil sulfate is converted to active metabolites in the follicles, thereby improving blood circulation in the scalp (Bihl et al. 1990). The GSSZ extract also facilitated hair re-growth in C57BL/6 mice, similar to minoxidil. Although the mechanism underlying the hair growth promoting effects of the GSSZ extract remain to be elucidated, the results of this study confirmed that the GSSZ-induced accelerated follicle growth facilitated a resurgence of the anagen phase in the follicles. In other words, the time required for sufficient hair re-growth is shortened in the GSSZ extract-treatment group. Based on these results, GSSZ extract was believed to stimulate follicle growth to promote hair growth and increase the activity of hair growth-related cells in humans; therefore, the GSSZ extract may prove to be useful for the treatment of alopecia.

References

Allegra F, Giacometti L, Uno H, Adachi K (1970) Studies of common baldness in the stump-tailed macaque. III. DNA synthesis in regrowing hair. Acta Derm-Venerol 50: 169–175

Arase S, Sandamoto Y (1999) Co-culture of human hair follicles and dermal papilla in a collagen matrix. J Dermatol 17: 667–676

Arck PC, Handjiski B, Hagen E, Joachim R, Klapp BF, Paus R (2001) Indications for a ‘brain-hair follicle axis’ (BHA): inhibition of keratinocyte proliferation and up-regulation of keratinocyte apoptosis in telogen hair follicles by stress and substance P. FASEB J 15: 2536–2538

Arck PC, Handjiski B, Peters EM, Peter AS, Hagen E, Fischer A, Klapp BF, Paus R (2003) Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am J Pathol 162: 803–814

Bihl AE, Waldon DJ, Baker CA, Johnson GA (1990) Minoxidil sulfate is the active metabolite that stimulates hair follicles. J Invest Dermatol 95: 553–557

Buhle AE, Waldon DJ, Miller BF and Brumen MW (1990) Differences in activity of minoxidil and cyclosporin A on hair growth in nude and normal mice. Lab Inves 62: 104–107

Burton JL, Marshall A (1979) Hypertrichosis due to minoxidil. Br J Dermatol 100: 593–595

Cash TF (1992) The psychological effects of androgenetic alopecia in men. J Am Acad Dermatol 26: 926–931

Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140: 1676–1683

Hagemann T, Schlutter-Bohmer B, Allam JP, Bieber T, Novak N (2005) Positive lymphocyte transformation test in a patient with allergic contact dermatitis of the scalp after short-term use of topical minoxidil solution. Contact Dermatitis 53: 85–97

Hee YJ, Kim SH, Shin HJ, Seo DB, Lee SJ (2012) Synergistic Effects of the Combination of Oral Herbal Composition and Topical Hair Tonic on...
Hair Growth in C57BL6 Mice. Korean J Food Sci Technol 44: 257–262
Jang EH, Moon JS, Ko JH, Ahn CW, Lee HH, Shin JK, Park CS, Kang JH (2008) Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int J Obesity 32: 1161–1170
Jeon HY, Kim SH, Kim CW, Shin HJ, Seo DB, Lee SJ (2011) Hair Growth Promoting Effect of Black Soybean Extract in vitro and in vivo. Korean J Food Sci Technol 43: 747–753
Jones LN, Rivett DE (1997) The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron 28: 469–485
Kaufman KD (1996) Clinical studies on the effects of oral finasteride, a type 5-reductase inhibitor, on scaple hair in men with male pattern baldness. In Hair Research for the Next Millenium. Elsevier, Amsterdam
Kim HJ, Bae IY, Ahn CW, Lee S, Lee HG (2007) Purification and identification of adipogenesis inhibitory peptide from black soybean protein hydrolysate. Peptides 28: 2096–2103
Kim K, Lim KM, Kim CW, Shin HJ, Seo DB, Lee SJ, Noh JY, Bae ON, Shin S, Chung JH (2011) Black soybean extract can attenuate thrombosis through inhibition of collagen-induced platelet activation. J Nutr Biochem 22: 964–970
Kim KC, Park EH (2005) Variation of Protein, Oil Contents and Fatty Acid Composition of Korean Wild Soybean (Glycine soja Sieb. & Zucc.) Seeds. Korean J Crop Sci 50: 118–122
Kovalenko IV, Rippke GR, Hurburgh CR (2006) Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J Agr Food Chem 54: 3485–3491
Liao HF, Chou C, Wu SH, Khoo KH. Chen CF, Wang SY (2001) Isolation and characterization of an active compound from black soybean[Glycine max (L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells. Anti-cancer Drug 12: 841–846
Maeda H, Katsuki T, Akaike T, Yasutake R (1992) High correlation between lipid peroxide radical and tumor-promoter effect: suppression of tumor promotion in the Epstein-Barr virus/B-lymphocyte system and scavenging of alkyl peroxide radicals by various vegetable extracts. Jpn J Cancer Res 83: 923–928
McClellan KJ, Markhan A (1999) Finasteride: a review of its use in male pattern hair loss. Drugs 57: 111–126
Meisheki KD, Cipkus LA, Tayor CJ (1988) Mechanism of action of minoxidil sulfate-induced vasodilation: a role for increased K+ permeability. J Pharmacol Exp 245: 751–760
Messenger AG, Olsen EA (1994) The control of hair growth and pigmentation: Disorders of Hair Growth. McGraw-Hill, New York, 39–58
Shimizu I, Igarashi J, Ohtaka Y, Oguchi S, Kaneko K, Yamashiro Y (2001) Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis. Digestion 63: 49–54
Stenn KS (1991) The molecular and structural biology of hair: introduction. Ann N Y Acad Sci 642: xi–xiii
Stenn KS, Combates NJ, Gordon JS, Pardinas JR, Parimoo S, Prouty SM (1996) Hair follicle growth controls. Dermatol Clin 14: 543–558
Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81: 449–494
Takashima I (1974) Studies of common baldness in the stump-tailed macaque. V. Regional difference of testosterone metabolites in the hair follicles. J Dermatol 1: 14–21
Takashima I, Adachi K, Montagna W (1970) Studies of common baldness in the stumptailed macaque. IV. In vitro metabolism of testosterone in the hair follicles. J Invest Dermatol 55: 329–334
Takashima I, Montagna W (1971) Studies of common baldness of the stump-tailed macaque (Maca-caspeciosa). VI. The effect of testosterone on common baldness. Arch Dermatol 103: 527–534
Takahashi R, Obmori R, Kiyose C, Moniyama Y, Obitsu F, Kondo K (2005) Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agr Food Chem 53: 4578–4582
Tobin DJ, Hagen E, Botchkareva VA, Paus R (1998) Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? J Invest Dermatol 111: 941–947
Yoo HG, Chung YJ, Pyo HK, Kang YJ, Lee SH, Kwon OS, Cho KH, Eun HC, Kim KH (2007) The Additive Effects of Minoxidil and Retinol on Human Hair Growth in vitro. Biol Pharm Bull 30: 21–26
Zhao QW, Lou YJ (2006) Estrogenic activity and its mechanism of ethanol extract from black soybean. J Chinese Materials Med 31: 825–828