Supporting Information

Fully Solution-Induced Ultralow Voltage High Performance Indium Oxide Thin Film Transistors With ZrO\textsubscript{x} High-k Gate Dielectrics

Li Zhu,† Gang He,* † Jianguo Lv,‡ Elvira Fortunato,§ and Rodrigo Martins§

†School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230039, P.R. China

‡Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061, P.R. China

§Department of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New University of Lisbon and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal

E-mail: hegang@ahu.edu.cn
Figure S1. The output characteristics of the (a) 250°C-annealed In$_2$O$_3$/SiO$_2$ TFTs, (b) 275°C-annealed In$_2$O$_3$/SiO$_2$ TFTs, (c) 300°C-annealed In$_2$O$_3$/SiO$_2$ TFTs, (d) 325°C-annealed In$_2$O$_3$/SiO$_2$ TFTs.
Figure S2. The output characteristics of the (a) 250°C-annealed In$_2$O$_3$/ZrO$_x$ TFTs, (b) 275°C-annealed In$_2$O$_3$/ZrO$_x$ TFTs, (c) 300°C-annealed In$_2$O$_3$/ZrO$_x$ TFTs, (d) 325°C-annealed In$_2$O$_3$/ZrO$_x$ TFTs.