Abstract. — In this article, we consider an analogue of Arakelov theory of arithmetic surfaces over a trivially valued field. In particular, we establish an arithmetic Hilbert-Samuel theorem and studies the effectivity up to \mathbb{R}-linear equivalence of pseudoeffective metrised \mathbb{R}-divisors.

1. Introduction

In Arakelov geometry, one considers an algebraic variety over the spectrum of a number field and studies various constructions and invariants on the variety such as metrised line bundles, intersection product, height functions etc. Although these notions have some similarities to those in classic algebraic geometry, their construction is often more sophisticated and get involved analytic tools.

Recently, an approach of \mathbb{R}-filtration has been proposed to study several invariants in Arakelov geometry, which allows to get around analytic technics in the study of some arithmetic invariants, see for example [13, 12]. Let us
recall briefly this approach in the setting of Euclidean lattices for simplicity. Let $\mathbf{E} = (E, \|\cdot\|)$ be a Euclidean lattice, namely a free \mathbb{Z}-module of finite type E equipped with a Euclidean norm $\|\cdot\|$ on $E_{\mathbb{R}} = E \otimes_{\mathbb{Z}} \mathbb{R}$. We construct a family of vector subspaces of $E_{\mathbb{Q}} = E \otimes_{\mathbb{Z}} \mathbb{Q}$ as follows. For any $t \in \mathbb{R}$, let $\mathcal{F}^t(\mathbf{E})$ be the \mathbb{Q}-vector subspace of $E_{\mathbb{Q}}$ generated by the lattice vectors s such that $\|s\| \leq e^{-t}$. This construction is closely related to the successive minima of Minkowski. In fact, the i-th minimum of the lattice \mathbf{E} is equal to

$$\exp \left(- \sup \{ t \in \mathbb{R} \mid \text{rk}_\mathbb{Q}(\mathcal{F}^t(\mathbf{E})) \geq i \} \right).$$

The family $(\mathcal{F}^t(\mathbf{E}))_{t \in \mathbb{R}}$ is therefore called the \mathbb{R}-filtration by minima of the Euclidean lattice \mathbf{E}.

Classically in Diophantine geometry, one focuses on the lattice points of small length, which are analogous to global sections of a vector bundle over a smooth projective curve. However, such points are in general not stable by addition. This phenomenon brings difficulties to the study of Arakelov geometry over a number field and prevents the direct transplantation of algebraic geometry methods in the arithmetic setting. In the \mathbb{R}-filtration approach, the arithmetic invariants are encoded in a family of vector spaces, which allows to apply directly algebraic geometry methods to study some problems in Arakelov geometry.

If we equipped \mathbb{Q} with the trivial absolute value $|\cdot|_0$ such that $|a|_0 = 1$ if a belongs to $\mathbb{Q} \setminus \{0\}$ and $|0|_0 = 0$, then the above \mathbb{R}-filtration by minima can be considered as an ultrametric norm $\|\cdot\|_0$ on the \mathbb{Q}-vector space $E_{\mathbb{Q}}$ such that

$$\|s\|_0 = \exp \left(- \sup \{ t \in \mathbb{R} \mid s \in \mathcal{F}^t(\mathbf{E}) \} \right).$$

Interestingly, finite-dimensional ultrametrically normed vector spaces over a trivially valued field are also similar to vector bundles over a smooth projective curve. This method is especially successful in the study of the arithmetic volume function. Moreover, \mathbb{R}-filtrations, or equivalently, ultrametric norms with respect to the trivial absolute value, are also closely related to the geometric invariant theory of the special linear group, as shown in [11, §6].

All this works suggest that there would be an Arakelov theory over a trivially valued field. From the philosophical point of view, the \mathbb{R}-filtration approach can be considered as a correspondence from the arithmetic geometry over a number field to that over a trivially valued field, which preserves some interesting arithmetic invariants. The purpose of this article is to build up such a theory for curves over a trivially valued field (which are actually analogous to arithmetic surfaces). Considering the simplicity of the trivial absolute value, one might expect such a theory to be simple. On the contrary, the arithmetic
intersection theory for adelic divisors in this setting is already highly non-trivial, which has interesting interactions with the convex analysis on infinite trees.

Let k be a field equipped with the trivial absolute value and X be a regular irreducible projective curve over $\text{Spec} \ k$. We denote by X^{an} the Berkovich analytic space associated with X, which identifies with a tree of length 1 whose leaves correspond to closed points of X (see [3, §3.5]).

For each closed point x of X, we denote by $[\eta_0, x_0]$ the edge connecting the root and the leaf corresponding to x. This edge is parametrised by the interval $[0, +\infty]$ and we denote by $t(\cdot) : [\eta_0, x_0] \to [0, +\infty]$ the parametrisation map.

Recall that an \mathbb{R}-divisor D on X can be viewed as an element in the free real vector space over the set $X^{(1)}$ of all closed points of X. We denote by $\text{ord}_x(D)$ the coefficient of $x \in X^{(1)}$ in the writing of D into a linear combination of elements of $X^{(1)}$. We call Green function of D any continuous map $g : X^{\text{an}} \to [-\infty, +\infty]$ such that there exists a continuous function $\phi_g : X^{\text{an}} \to \mathbb{R}$ which satisfies the following condition

$$\forall x \in X^{(1)}, \ \forall \xi \in [\eta_0, x_0], \ \phi_g(\xi) = g(\xi) - \text{ord}_x(D)t(\xi).$$

The couple $\overline{D} = (D, g)$ is called a metrised \mathbb{R}-divisor on X. Note that the set $\overline{\text{Div}}_{\mathbb{R}}(X)$ of metrised \mathbb{R}-divisors on X forms actually a vector space over \mathbb{R}.

Let D be an \mathbb{R}-divisor on X. We denote by $H^0(D)$ the subset of the field $\text{Rat}(X)$ of rational functions on X consisting of the zero rational function and all rational functions s such that $D + (s)$ is effective as an \mathbb{R}-divisor, where (s) denotes the principal divisor associated with s, whose coefficient of x is the order of s at x. The set $H^0(D)$ is actually a k-vector subspace of $\text{Rat}(X)$. Moreover, the Green function g determines an ultrametric norm $\|\|_g$ on the vector space $H^0(D)$ such that

$$\|s\|_g = \exp \left(- \inf_{\xi \in X^{\text{an}}} (g + g_{(s)})(\xi) \right).$$

Let $\overline{D}_1 = (D_1, g_1)$ and $\overline{D}_2 = (D_2, g_2)$ be adelic \mathbb{R}-divisors on X such that φ_{g_1} and φ_{g_2} are absolutely continuous with square integrable densities, we
define a pairing of \overline{D}_1 and \overline{D}_2 as (see §3.3 for details)

$$(\overline{D}_1 \cdot \overline{D}_2) := g_1(\eta_0)\deg(D_1) + g_2(\eta_0)\deg(D_1)$$

$$(1.1)$$

$\sum_{x \in X^{(1)}} [k(x) : k] \int_{\eta_0}^{x_0} g'_1(\xi)g'_2(\xi) \, dt(\xi)$$

Note that such pairing is similar to the local admissible pairing introduced in [27, §2] or, more closely, similar to the Arakelov intersection theory on arithmetic surfaces with L_2^1-Green functions (see [5, §5]). This construction is also naturally related to harmonic analysis on metrised graphs introduced in [11] (see also [16] for the capacity pairing in this setting), although the point η_0 is linked to an infinitely many vertices. A more conceptual way to understand the above intersection pairing (under diverse extra conditions on Green functions) is to introduce a base change to a field extension k' / k (see [6, Lemma 7.2]). It turns out that the push-forward of this measure on X^{an} does not depend on the choice of valued extension k'/k (see [6]). We can then interpret the intersection pairing as the height of D_2 with respect to (D_1,g_1) plus the integral of g_2 with respect to the push-forward of this Monge-Ampère measure.

One contribution of the article is to describe the asymptotic behaviour of the system of ultrametrically normed vector spaces $(H^0(nD),\|\cdot\|_{ng})$ in terms of the intersection pairing, under the condition that the Green function g is plurisubharmonic (see Definition 6.14). More precisely, we obtain an analogue of the arithmetic Hilbert-Samuel theorem as follows (see §7 infra).

Theorem 1.1. — Let $\overline{D} = (D,g)$ be an adelic \mathbb{R}-divisor on X. We assume that $\deg(D) > 0$ and g is plurisubharmonic. Then one has

$$\lim_{n \to +\infty} \frac{-\ln \|s_1 \wedge \cdots \wedge s_{r_n}\|_{ng,\det}}{n^2/2} = (\overline{D} \cdot \overline{D}),$$

where $(s_i)_{i=1}^{r_n}$ is a basis of $H^0(nD)$ over k (with r_n being the dimension of the k-vector space $H^0(nD)$), $\|\cdot\|_{ng,\det}$ denotes the determinant norm associated with $\|\cdot\|_{ng}$, and $(\overline{D} \cdot \overline{D})$ is the self-intersection number of \overline{D}.

Diverse notions of positivity, such as bigness and pseudo-effectivity, are discussed in the article. We also study the effectivity up to \mathbb{R}-linear equivalence of pseudo-effective metrised \mathbb{R}-divisors. The analogue of this problem in algebraic geometry is very deep. It is the core of the non-vanishing conjecture, which has applications in the existence of log minimal models [4]. It is also
related to Keel’s conjecture (see [21], Question 0.9 and [24], Question 0.3) for the ampleness of divisors on a projective surface over a finite field. In the setting of an arithmetic curve associated with a number field, this problem can actually be interpreted by Dirichlet’s unit theorem in algebraic number theory. In the setting of higher dimensional arithmetic varieties, the above effectivity problem is very subtle. Both examples and obstructions were studied in the literature, see for example [23, 15] for more details.

In this article, we establish the following result.

Theorem 1.2. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\). For any \(x \in X^{(1)}\), we let
\[
\mu_{\inf, x}(g) := \inf_{\xi \in \eta_{0, x_0}} \frac{g(\xi)}{t(\xi)}.
\]
Let
\[
\mu_{\inf}(g) := \sum_{x \in X^{(1)}} \mu_{\inf, x}(g)[k(x) : k].
\]
Then the following assertions hold.

1. \((D, g)\) is pseudo-effective if and only if \(\mu_{\inf}(g) \geq 0\).
2. \((D, g)\) is \(\mathbb{R}\)-linearly equivalent to an effective metrised \(\mathbb{R}\)-divisor if and only if \(\mu_{\inf, x}(g) \geq 0\) for all but finitely many \(x \in X^{(1)}\) and if one of the following conditions holds:
 a. \(\mu_{\inf}(g) > 0\),
 b. \(\sum_{x \in X^{(1)}} \mu_{\inf, x}(g)x\) is a principal \(\mathbb{R}\)-divisor.

The article is organised as follows. In the second section, we discuss several properties of convex functions on a half line. In the third section, we study Green functions on an infinite tree. The fourth section is devoted to a presentation of graded linear series on a regular projective curve. These sections prepares various tools to develop in the fifth section an Arakelov theory of metrised \(\mathbb{R}\)-divisors on a regular projective curve over a trivially valued field. In the sixth section, we discuss diverse notion of global and local positivity of metrised \(\mathbb{R}\)-divisors. Finally, in the seventh section, we prove the Hilbert-Samuel theorem for arithmetic surfaces in the setting of Arakelov geometry over a trivially valued field.

Acknowledgement: We are grateful to Walter Gubler and Klaus Kühnemenn for discussions.

2. Asymptotically linear functions

2.1. Asymptotic linear functions on \(\mathbb{R}_{>0}\). — We say that a continuous function \(g : \mathbb{R}_{>0} \to \mathbb{R}\) is **asymptotically linear** (at the infinity) if there exists a
real number $\mu(g)$ such that the function
\[\varphi_g : \mathbb{R}_{>0} \to \mathbb{R}, \quad \varphi_g(t) := g(t) - \mu(g)t \]
extends to a continuous function on $[0, +\infty]$. The real number $\mu(g)$ satisfying this condition is unique. We call it the asymptotic slope of g. The set of asymptotically linear continuous functions forms a real vector space with respect to the addition and the multiplication by a scalar. The map $\mu(\cdot)$ is a linear form on this vector space.

We denote by $L^2_1(\mathbb{R}_{>0})$ the vector space of continuous functions φ on $\mathbb{R}_{>0}$ such that the derivative (in the sense of distribution) φ' is represented by a square-integrable function on $\mathbb{R}_{>0}$. We say that an asymptotically linear continuous function g on $\mathbb{R}_{>0}$ is pairable if the function φ_g belongs to $L^2_1(\mathbb{R}_{>0})$.

Remark 2.1. — The functional space L^2_1 is a natural object of the potential theory on Riemann surfaces. In the classic setting of Arakelov geometry, it has been used in the intersection theory on arithmetic surfaces. We refer to [5, §3] for more details.

2.2. Convex function on $[0, +\infty]$. — Let φ be a convex function on $\mathbb{R}_{>0}$. Then φ is continuous on $\mathbb{R}_{>0}$. Moreover, for any $t \in \mathbb{R}_{>0}$, the right derivative of φ at t, given by
\[\lim_{\varepsilon \downarrow 0} \frac{\varphi(t + \varepsilon) - \varphi(t)}{\varepsilon}, \]
exists in \mathbb{R}. By abuse of notation, we denote by φ' the right derivative function of φ on $\mathbb{R}_{>0}$. It is a right continuous increasing function. We refer to [2, Theorem 1.26] for more details. Moreover, for any $(a, b) \in \mathbb{R}_{>0}^2$, one has
\[(2.1) \quad \varphi(b) - \varphi(a) = \int_{[a, b]} \varphi'(t) \, dt. \]
See [2, Theorem 1.28] for a proof. In particular, the function φ' represents the derivative of φ in the sense of distribution.

Proposition 2.2. — Let φ be a convex function on $\mathbb{R}_{>0}$ which is bounded.

1. One has $\varphi' \leq 0$ on $\mathbb{R}_{>0}$ and $\lim_{t \to +\infty} \varphi'(t) = 0$. In particular, the function φ is decreasing and extends to a continuous function on $[0, +\infty]$.
2. We extend φ continuously on $[0, +\infty]$. The function
\[(t \in \mathbb{R}_{>0}) \mapsto \frac{\varphi(t) - \varphi(0)}{t} \]
is increasing. Moreover, one has
\[\lim_{t \downarrow 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \downarrow 0} \varphi'(t) \in [-\infty, 0], \]
which is denoted by $\varphi'(0)$.
Proof. — (1) We assume by contradiction that \(\varphi'(a) > 0 \) at certain \(a \in \mathbb{R}_{>0} \). By (2.1), for any \(x \in \mathbb{R}_{>0} \) such that \(x > a \), one has
\[
\varphi(x) - \varphi(a) = \int_{[a,x]} \varphi'(t) \, dt \geq \int_{[a,x]} \varphi'(a) \, dt = (x - a) \varphi'(a),
\]
so that \(\lim_{x \to +\infty} \varphi(x) = +\infty \). This is a contradiction. Thus \(\varphi'(t) \leq 0 \) for all \(t \in \mathbb{R}_{>0} \). Therefore, one has
\[
\lim_{t \to +\infty} \varphi'(t) = \sup_{t \in \mathbb{R}_{>0}} \varphi'(t) \leq 0.
\]
To show that the equality \(\lim_{t \to +\infty} \varphi'(t) = 0 \) holds, we assume by contradiction that there exists \(\varepsilon > 0 \) such that \(\varphi'(t) \leq -\varepsilon \) for any \(t \in \mathbb{R}_{>1} \). Then, by (1), for any \(x \in \mathbb{R}_{>1} \),
\[
\varphi(x) - \varphi(1) = \int_{[1,x]} \varphi'(t) \, dt \leq \int_{[1,x]} (-\varepsilon) \, dt = -\varepsilon(x - 1).
\]
Therefore, \(\lim_{x \to +\infty} \varphi(x) = -\infty \), which leads to a contradiction.

(2) For \(0 < a < b \), since
\[
\varphi(a) = \varphi((1 - a/b)0 + (a/b)b) \leq (1 - a/b)\varphi(0) + (a/b)\varphi(b),
\]
one has
\[
\frac{\varphi(a) - \varphi(0)}{a} \leq \frac{\varphi(b) - \varphi(0)}{b}
\]
as required. Denote by \(\varphi'(0) \) the limite \(\lim_{s \downarrow 0} \varphi'(s) \). Note that the equality (2.1) actually holds for \((a,b) \in [0, +\infty]^2 \) (by the continuity of \(\varphi \) and the monotone convergence theorem). Therefore
\[
\varphi'(0) \leq \frac{\varphi(t) - \varphi(0)}{t} = \frac{1}{t} \int_{[0,t]} \varphi'(s) \, ds \leq \varphi'(t).
\]
By passing to limit when \(t \downarrow 0 \), we obtain the result. \(\square \)

Proposition 2.3. — Let \(\varphi \) and \(\psi \) be continuous functions on \([0, +\infty]\) which are convex on \(\mathbb{R}_{>0} \). One has
\[
\int_{[0, +\infty]} \varphi \, d\psi' = -\int_{\mathbb{R}_{>0}} \psi'(t)\varphi'(t) \, dt - \varphi(0)\psi'(0) \in [-\infty, +\infty].
\]
In particular, if \(\varphi(0) = \psi(0) = 0 \), then one has
\[
\int_{[0, +\infty]} \varphi \, d\psi' = \int_{[0, +\infty]} \psi \, d\varphi'.
\]
Proof. — By (2.1), one has
\[
\int_{[0, +\infty]} \varphi \, d\psi' = \int_{[0, +\infty]} \int_{[0,x]} \varphi'(t) \, dt \, d\psi'(x) + \varphi(0) \int_{[0, +\infty]} d\psi'.
\]
By Fubini’s theorem, the double integral is equal to
\[
\int_{\mathbb{R}^+} \varphi'(t) \int_{[t, +\infty]} d\psi' dt = -\int_{\mathbb{R}^+} \varphi'(t) \psi'(t) dt.
\]
Therefore, the equality \(2.2\) holds. In the case where \(\varphi(0) = \psi(0) = 0\), one has
\[
\int_{[0, +\infty]} \varphi d\psi' = -\int_{\mathbb{R}^+} \psi'(t) \varphi'(t) dt = \int_{[0, +\infty]} \psi d\varphi'.
\]

Proposition 2.4. — Let \(\varphi\) be a continuous function on \([0, +\infty]\) which is convex on \(\mathbb{R}^+\). One has
\[
(2.4) \quad \int_{\mathbb{R}^+} x d\varphi'(x) = \varphi(0) - \varphi(+\infty).
\]

Proof. — By Fubini’s theorem
\[
\int_{\mathbb{R}^+} x d\varphi'(x) = \int_{\mathbb{R}^+} \int_{[0, x]} dt d\varphi'(x) = \int_{\mathbb{R}^+} \int_{[t, +\infty]} d\varphi'(x) dt
\]
\[
= -\int_{\mathbb{R}^+} \varphi'(t) dt = \varphi(0) - \varphi(+\infty),
\]
where in the third equality we have used the fact that \(\lim_{t \to +\infty} \varphi'(t) = 0\) proved in Proposition 2.2.

2.3. Transform of Legendre type. —

Definition 2.5. — Let \(\varphi\) be a continuous function on \([0, +\infty]\) which is convex on \(\mathbb{R}^+\). We denote by \(\varphi^*\) the function on \([0, +\infty]\) defined as
\[
\forall \lambda \in [0, +\infty], \quad \varphi^*(\lambda) := \inf_{x \in [0, +\infty]} (x\lambda + \varphi(x) - \varphi(0)).
\]
Clearly the function \(\varphi^*\) is increasing and non-positive. Moreover, one has
\[
\varphi^*(0) = \inf_{x \in [0, +\infty]} \varphi(x) - \varphi(0) = \varphi(+\infty) - \varphi(0).
\]
Therefore, for any \(\lambda \in [0, +\infty]\), one has
\[
\varphi(+\infty) - \varphi(0) \leq \varphi^*(\lambda) \leq 0.
\]

Proposition 2.6. — Let \(\varphi\) be a continuous function on \([0, +\infty]\) which is convex on \(\mathbb{R}^+\). For \(p \in \mathbb{R}_+\), one has
\[
\int_{0}^{+\infty} (-\varphi'(x))^p dx = -(p-1)p \int_{0}^{+\infty} \lambda^{p-2} \varphi^*(\lambda) d\lambda.
\]
In particular,
\begin{equation}
\int_0^{+\infty} \varphi'(x)^2 \, dx = -2 \int_0^{+\infty} \varphi^* \, d\lambda.
\end{equation}

Proof. — Since \(\varphi' \) is increasing one has
\[\varphi^*(\lambda) = \inf_{x \in [0, +\infty]} \int_0^x (\lambda + \varphi'(t)) \, dt = \int_0^{+\infty} \min\{\lambda + \varphi'(t), 0\} \, dt. \]
Therefore, by Fubini’s theorem,
\begin{align*}
\int_0^{+\infty} \lambda^{p-2} \varphi^*(\lambda) \, d\lambda &= \int_0^{+\infty} \left(\int_0^{+\infty} \lambda^{p-2} \min\{\lambda + \varphi'(t), 0\} \, d\lambda \right) \, dt \\
&= \int_0^{+\infty} \left(\int_0^{-\varphi'(t)} \lambda^{p-2} (\lambda + \varphi'(t)) \, d\lambda \right) \, dt \\
&= \int_0^{+\infty} \left[\lambda^p \frac{\varphi'(t) \lambda^{p-1}}{p-1} \right]_0^{+\infty} \, dt \\
&= \frac{-1}{(p-1)p} \int_0^{+\infty} (-\varphi'(t))^p \, dt,
\end{align*}
as required.

2.4. Convex envelop of asymptotically linear functions. — Let \(g : \mathbb{R}_{>0} \to \mathbb{R} \) be an asymptotically linear continuous function (see §2.1). We define the convex envelop of \(g \) as the largest convex function \(\tilde{g} \) on \(\mathbb{R}_{>0} \) which is bounded from above by \(g \). Note that \(\tilde{g} \) identifies with the supremum of all affine functions bounded from above by \(g \).

Proposition 2.7. — Let \(g : \mathbb{R}_{>0} \to \mathbb{R} \) be an asymptotically linear continuous function. Then \(\tilde{g} \) is also an asymptotically linear continuous function. Moreover, one has \(\mu(g) = \mu(\tilde{g}) \) and \(\tilde{g}(0) = \tilde{g}(0) \).

Proof. — Let \(\varphi_g : [0, +\infty] \to \mathbb{R} \) be the continuous function such that \(\varphi_g(t) = g(t) - \mu(g)t \) on \(\mathbb{R}_{>0} \). Let \(M \) be a real number such that \(|\varphi_g(t)| \leq M \) for any \(t \in [0, +\infty] \). One has
\[\mu(g)t - M \leq g(t) \leq \mu(g)t + M. \]
Therefore,
\[\mu(g)t - M \leq \tilde{g}(t) \leq \mu(g)t + M. \]
By Proposition 2.2, the function
\[\varphi_{\tilde{g}} : \mathbb{R}_{>0} \to \mathbb{R}, \quad \varphi_{\tilde{g}}(t) := \tilde{g}(t) - \mu(g)t \]
extends continuously on \([0, +\infty]\). It remains to show that \(g(0) = \tilde{g}(0)\). Let
\(\varepsilon > 0\). The function \(t \mapsto (g(t) - g(0) + \varepsilon)/t\) is continuous on \([0, +\infty]\) and one has
\[
\lim_{t \downarrow 0} \frac{g(t) - g(0) + \varepsilon}{t} = +\infty.
\]
Therefore this function is bounded from below by a real number \(\alpha\). Hence the function \(g\) is bounded from below on \(\mathbb{R}_{>0}\) by the affine function
\[
t \mapsto \alpha t + g(0) - \varepsilon,
\]
which implies that \(\tilde{g}(0) \geq g(0) - \varepsilon\). Since \(g \geq \tilde{g}\) and since \(\varepsilon\) is arbitrary, we obtain \(\tilde{g}(0) = g(0)\).

3. Green functions on a tree of length 1

The purpose of this section is to establish a framework of Green functions on a tree of length 1, which serves as a fundamental of the arithmetic intersection theory of adelic \(\mathbb{R}\)-divisors on an arithmetic surface over a trivially valued field.

3.1. Tree of length 1 associated with a set. — Let \(S\) be a non-empty set. We denote by \(T(S)\) the quotient set of the disjoint union \(\coprod_{x \in S} [0, +\infty]\) obtained by gluing the points 0 in the copies of \([0, +\infty]\). The quotient map from \(\coprod_{x \in S} [0, +\infty]\) to \(T(S)\) is denoted by \(\pi\). For each \(x \in S\), we denote by \(\xi_x : [0, +\infty] \to T(S)\) the restriction of the quotient map \(\pi\) to the copy of \([0, +\infty]\) indexed by \(x\). The set \(T(S)\) is the union of \(\xi_x([0, +\infty])\), \(x \in S\).

Notation 3.1. — Note that the images of 0 in \(T(S)\) by all maps \(\xi_x\) are the same, which we denote by \(\eta_0\). The image of \(+\infty\) by the map \(\xi_x\) is denoted by \(x_0\). If \(a\) and \(b\) are elements of \([0, +\infty]\) such that \(a < b\), the images of the intervals \([a, b], [a, b[, [a, b],]a, b]\) by \(\xi_x\) are denoted by \([\xi_x(a), \xi_x(b)], \xi_x(a), \xi_x(b), \xi_x(a), \xi_x(b)\) respectively.

Definition 3.2. — We denote by \(t : T(S) \to [0, +\infty]\) the map which sends an element \(\xi \in \xi_x([0, +\infty])\) to the unique number \(a \in [0, +\infty]\) such that \(\xi_x(a) = \xi\). In other words, for any \(x \in S\), the restriction of \(t(\cdot)\) to \([\eta_0, x_0]\) is the inverse of the injective map \(\xi_x\). We call \(t(\cdot)\) the parametrisation map of \(T(S)\).

Definition 3.3. — We equip \(T(S)\) with the following topology. A subset \(U\) of \(T(S)\) is open if and only if the conditions below are simultaneously satisfied:

1. For any \(x \in S\), \(\xi_x^{-1}(U)\) is an open subset of \([0, +\infty]\).
2. If \(\eta_0 \in U\), then \(U\) contains \([\eta_0, x_0]\) for all but finitely many \(x \in S\).

By definition, all maps \(\xi_x : [0, +\infty] \to T(S)\) are continuous. However, if \(S\) is an infinite set, then the parametrisation map \(t(\cdot)\) is not continuous.
Note that the topological space $\mathcal{T}(S)$ is compact. We can visualise it as an infinite tree of depth 1 whose root is η_0 and whose leaves are x_0 with $x \in S$.

3.2. Green functions. — Let S be a non-empty set and $w : S \to \mathbb{R}_{>0}$ be a map. We call Green function on $\mathcal{T}(S)$ any continuous map g from $\mathcal{T}(S)$ to $[-\infty, +\infty]$ such that, for any $x \in S$, the composition of g with $\xi_x|_{\mathbb{R}_{>0}}$ defines an asymptotically linear function on $\mathbb{R}_{>0}$. For any $x \in S$, we denote by $\mu_x(g)$ the unique real number such that the function

$$(u \in \mathbb{R}_{>0}) \mapsto g(\xi_x(u)) - \mu_x(g)u.$$

extends to a continuous function on $[0, +\infty]$. We denote by $\varphi_g : \mathcal{T}(S) \to \mathbb{R}$ the continuous function on $\mathcal{T}(S)$ such that

$$\varphi_g(\xi) = g(\xi) - \mu_x(g)t(\xi) \text{ for any } \xi \in [\eta_0, x_0], x \in S.$$

Remark 3.4. — Let g be a Green function on $\mathcal{T}(S)$. It takes finite values on $\mathcal{T}(S) \setminus \{x_0 : x \in S\}$. Moreover, for any $x \in S$, the value of g at x_0 is finite if and only if $\mu_x(g) = 0$. As g is a continuous map, $g^{-1}(\mathbb{R})$ contains all but finitely many x_0 with $x \in S$. In other words, for all but finitely many $x \in S$, one has $\mu_x(g) = 0$. Note that the Green function g is bounded if and only if $\mu_x(g) = 0$ for any $x \in S$.

Definition 3.5. — Let g be a Green function on $\mathcal{T}(S)$. We denote by g_{can} the map from $\mathcal{T}(S)$ to $[-\infty, +\infty]$ which sends $\xi \in [\eta_0, x_0]$ to $\mu_x(g)t(\xi)$. Note that the composition of g_{can} with $\xi_x|_{\mathbb{R}_{>0}}$ is a linear function on $\mathbb{R}_{>0}$. We call it the canonical Green function associated with g. Let $\varphi_{g_{\text{can}}}$ be a Green function on $\mathcal{T}(S)$ such that $g = g_{\text{can}} + \varphi_g$. We call it the bounded Green function associated with g. The formula $g = g_{\text{can}} + \varphi_g$ is called the canonical decomposition of the Green function g. If $g = g_{\text{can}}$, we say that the Green function g is canonical.

Proposition 3.6. — Let g be a Green function on $\mathcal{T}(S)$. For all but countably many $x \in S$, the restriction of g on $[\eta_0, x_0]$ is a constant function.

Proof. — For any $n \in \mathbb{N}$ such that $n \geq 1$, let U_n be set of $\xi \in \mathcal{T}(S)$ such that

$$|g(\xi) - g(\eta_0)| < n^{-1}.$$

This is an open subset of $\mathcal{T}(S)$ which contains η_0. Hence there is a finite subset S_n of $\mathcal{T}(S)$ such that $[\eta_0, x_0] \subset U_n$ for any $x \in S \setminus S_n$. Let $S' = \bigcup_{n \in \mathbb{N}, n \geq 1} S_n$. This is a countable subset of S. For any $x \in S \setminus S'$ and any $\xi \in [\eta_0, x_0]$, one has $g(\xi) = g(\eta_0)$.

Remark 3.7. — It is clear that, if g is a Green function on $\mathcal{T}(S)$, for any $a \in \mathbb{R}$, the function $ag : \mathcal{T}(S) \to [-\infty, +\infty]$ is a Green function on $\mathcal{T}(S)$. Moreover, the canonical decomposition of Green functions allows to define the
sum of two Green functions. Let \(g_1 \) and \(g_2 \) be two Green functions on \(T(S) \). We define \(g_1 + g_2 \) as \((g_{1,\text{can}} + g_{2,\text{can}}) + (\varphi_{g_1} + \varphi_{g_2}) \).

Note that the set of all Green functions, equipped with the addition and the multiplication by a scalar, forms a vector space over \(\mathbb{R} \).

3.3. Pairing of Green functions. — Let \(S \) be a non-empty set and \(w : S \to \mathbb{R}_{>0} \) be a map, called a weight function. We say that a Green function \(g \) on \(T(S) \) is pairable with respect to \(w \) if the following conditions are satisfied:

(1) for any \(x \in S \), the function \(\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}} \) belongs to \(L^2((\mathbb{R}_{>0}) \) (see §2.1),

(2) one has
\[
\sum_{x \in S} w(x) \int_{\mathbb{R}_{>0}} (\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}})'(u)^2 \, du < +\infty.
\]

For each \(x \in S \) we fix a representative of the function \((\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}})' \) and we denote by
\[
\varphi'_g : \bigcup_{x \in S} (\eta_0, x_0[\to \mathbb{R}
\]
the function which sends \(\xi \in [\eta_0, x_0[\) to \((\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}})'(t(\xi)) \).

We equip \(\prod_{x \in S}[0, +\infty] \) with the disjoint union of the weighted Lebesgue measure \(w(x) \, du \), where \(du \) denotes the Lebesgue measure on \([0, +\infty] \). We denote by \(\nu_{S,w} \) the push-forward of this measure by the projection map
\[
\prod_{x \in S}[0, +\infty] \to T(S).
\]
Then the function \(\varphi'_g \) is square-integrable with respect to the measure \(\nu_{S,w} \).

Definition 3.8. — Note that pairable Green functions form a vector subspace of the vector space of Green functions. Let \(g_1 \) and \(g_2 \) be pairable Green functions on \(T(S) \). We define the pairing of \(g_1 \) and \(g_2 \) as
\[
\sum_{x \in S} w(x) \left(\mu_x(g_1)g_2(\eta_0) + \mu_x(g_2)g_1(\eta_0) \right) - \int_{T(S)} \varphi_{g_1}'(\xi)\varphi_{g_2}'(\xi) \, \nu_{S,w}(d\xi),
\]
denoted by \(\langle g_1, g_2 \rangle_w \), called the pairing of Green functions \(g_1 \) and \(g_2 \). Note that \(\langle , \rangle_w \) is a symmetric bilinear form on the vector space of pairable Green functions.

3.4. Convex Green functions. — Let \(S \) be a non-empty set. We say that a Green function \(g \) on \(T(S) \) is convex if, for any element \(x \) of \(S \), the function \(g \circ \xi_x \) on \(\mathbb{R}_{>0} \) is convex.

Convention 3.9. — If \(g \) is a convex Green function on \(T(S) \), by convention we choose, for each \(x \in S \), the right derivative of \(\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}} \) to represent the derivative of \(\varphi_g \circ \xi_x |_{\mathbb{R}_{>0}} \) in the sense of distribution. In other words, \(\varphi'_g \circ \xi_x |_{\mathbb{R}_{>0}} \)
is given by the right derivative of the function $\varphi_g \circ \xi_x |_{\mathbb{R} > 0}$. Moreover, for any $x \in S$, we denote by $\varphi'_g(\eta_0; x)$ the element $\varphi'_{g \circ \xi_x}(0) \in [-\infty, 0]$ (see Proposition 2.2 (2)). We emphasize that $\varphi'_{g \circ \xi_x}(0)$ could differ when x varies.

Definition 3.10. — Let g be a Green function on $\mathcal{T}(S)$. We call the convex envelope of g and we denote by \tilde{g} the continuous map from $\mathcal{T}(S)$ to $[-\infty, +\infty]$ such that, for any $x \in S$, $\tilde{g} \circ \xi_x |_{\mathbb{R} > 0}$ is the convex envelope of $g \circ \xi_x |_{\mathbb{R} > 0}$ (see §2.4).

By Proposition 2.7, the function \tilde{g} is well defined and defines a convex Green function on $\mathcal{T}(S)$ which is bounded from above by g.

Proposition 3.11. — Let g be a Green function on $\mathcal{T}(S)$. The following equalities hold:

$$g_{\text{can}} = \tilde{g}_{\text{can}}, \quad g(\eta_0) = \tilde{g}(\eta_0), \quad \varphi_g = \varphi_{\tilde{g}}.$$

Proof. — The first two equalities follows from Proposition 2.7. The third equality comes from the first one and the fact that $\tilde{g} = g_{\text{can}} + \varphi_\tilde{g}$.

3.5. Infimum slopes.

Let S be a non-empty set and g be a Green function on $\mathcal{T}(S)$. For any $x \in S$, we denote by $\mu_{\text{inf},x}(g)$ the element

$$\inf_{\xi \in [\eta_0, x]} \frac{g(\xi)}{\ell(\xi)} \in \mathbb{R} \cup \{-\infty\}.$$

Clearly one has $\mu_{\text{inf},x}(g) \leq \mu_x(g)$. Therefore, by Remark 3.2, we obtain that $\mu_{\text{inf},x}(g) \leq 0$ for all but finitely many $x \in S$. If $w : S \to \mathbb{R}_{\geq 0}$ is a weight function, we define the global infimum slope of g with respect to w as

$$\sum_{x \in X^{(1)}} \mu_{\text{inf},x}(g) w(x) \in \mathbb{R} \cup \{-\infty\}.$$

This element is well defined because $\mu_{\text{inf},x}(g) \leq 0$ for all but finitely many $x \in S$. If there is no ambiguity about the weight function (notably when S is the set of closed points of a regular projective curve cf. Definition 6.6), the global infimum slope of g is also denoted by $\mu_{\text{inf}}(g)$.

Proposition 3.12. — Let g be a convex Green function on $\mathcal{T}(S)$. For any $x \in S$ one has

$$\mu_{\text{inf},x}(g - g(\eta_0)) = \mu_x(g) + \varphi'_g(\eta_0; x).$$

Proof. — This is a direct consequence of Proposition 2.2 (2).
4. Graded linear series

Let k be a field and X be a regular projective curve over $\text{Spec } k$. We denote by $X^{(1)}$ the set of closed points of X. By \mathbb{R}-divisor on X, we mean an element in the free \mathbb{R}-vector space generated by $X^{(1)}$. We denote by $\text{Div}_\mathbb{R}(X)$ the \mathbb{R}-vector space of \mathbb{R}-divisors on X. If D is an element of $\text{Div}_\mathbb{R}(X)$, the coefficient of x in the expression of D into a linear combination of elements of $X^{(1)}$ is denoted by $\text{ord}_x(D)$. If $\text{ord}_x(D) \in \mathbb{Q}$ for any $x \in X^{(1)}$, we say that D is a \mathbb{Q}-divisor; if $\text{ord}_x(D) \in \mathbb{Z}$ for any $x \in X^{(1)}$, we say that D is a divisor on X. The subsets of $\text{Div}_\mathbb{R}(X)$ consisting of \mathbb{Q}-divisors and divisors are denoted by $\text{Div}_\mathbb{Q}(X)$ and $\text{Div}(X)$, respectively.

Let D be an \mathbb{R}-divisor on X. We define the degree of D to be

\begin{equation}
\text{deg}(D) := \sum_{x \in X^{(1)}} \lfloor k(x) : k \rfloor \text{ord}_x(D),
\end{equation}

where for $x \in X$, $k(x)$ denotes the residue field of x. Denote by $\text{Supp}(D)$ the set of all $x \in X^{(1)}$ such that $\text{ord}_x(D) \neq 0$, called the support of the \mathbb{R}-divisor D. This is a finite subset of $X^{(1)}$. Although $X^{(1)}$ is an infinite set, (4.1) is actually a finite sum: one has

\[\text{deg}(D) = \sum_{x \in \text{Supp}(D)} \text{ord}_x(D)[k(x) : k].\]

Denote by $\text{Rat}(X)$ the field of rational functions on X. If f is a non-zero element of $\text{Rat}(X)$, we denote by (f) the principal divisor associated with f, namely the divisor on X given by

\[\sum_{x \in X^{(1)}} \text{ord}_x(f)x,\]

where $\text{ord}_x(f) \in \mathbb{Z}$ denotes the valuation of f with respect to the discrete valuation ring $\mathcal{O}_{X,x}$. The map $\text{Rat}(X) \to \text{Div}(X)$ is additive and hence induces an \mathbb{R}-linear map

\[\text{Rat}(X)_{\mathbb{R}} := \text{Rat}(X) \otimes_{\mathbb{Z}} \mathbb{R} \to \text{Div}_\mathbb{R}(X),\]

which we still denote by $f \mapsto (f)$.

Definition 4.1. — We say that an \mathbb{R}-divisor D is effective if $\text{ord}_x(D) \geq 0$ for any $x \in X^{(1)}$. We denote by $D \geq 0$ the condition “D is effective”. For any \mathbb{R}-divisor D on X, we denote by $H^0(D)$ the set

\[\{f \in \text{Rat}(X) \times : (f) + D \geq 0\} \cup \{0\}.\]

It is a finite-dimensional k-vector subspace of $\text{Rat}(X)$. We denote by $\text{genus}(X)$ the genus of the curve X relatively to k. The theorem of Riemann-Roch implies
that, if D is a divisor such that $\deg(D) > 2 \text{genus}(X) - 2$, then one has

\begin{equation}
\dim_k(H^0(D)) = \deg(D) + 1 - \text{genus}(X). \tag{4.2}
\end{equation}

We refer the readers to \[14\, \text{Lemma 2.2}\] for a proof.

Let D be an \mathbb{R}-divisor on X. We denote by $\Gamma(D)_{\mathbb{R}}$ the set

$$\{f \in \text{Rat}(X)_{\mathbb{R}} : (f) + D \geq 0\}.$$

This is an \mathbb{R}-vector subspace of $\text{Rat}(X)_{\mathbb{R}}$. Similarly, we denote by $\Gamma(D)_{\mathbb{Q}}$ the \mathbb{Q}-vector subspace

$$\{f \in \text{Rat}(X)_{\mathbb{Q}} : (f) + D \geq 0\}.$$

of $\text{Rat}(X)_{\mathbb{Q}}$. Note that one has

\begin{equation}
\Gamma(D)_{\mathbb{Q}} = \bigcup_{n \in \mathbb{N}, n \geq 1} \{f^{1/n} : f \in H^0(nD) \setminus \{0\}\}. \tag{4.3}
\end{equation}

\textbf{Definition 4.2.} — Let D be an \mathbb{R}-divisor on X. We denote by $[D]$ and $\lceil D \rceil$ the divisors on C such that

$$\text{ord}_x([D]) = \lfloor \text{ord}_x(D) \rfloor, \quad \text{ord}_x(\lceil D \rceil) = \lceil \text{ord}_x(D) \rceil.$$

Clearly one has $\deg([D]) \leq \deg(D) < \deg(\lceil D \rceil)$. Moreover,

\begin{align}
\deg([D]) & > \deg(D) - \sum_{x \in \text{Supp}(D)} \lfloor k(x) : k \rfloor, \tag{4.4} \\
\deg(D) & < \deg(D) + \sum_{x \in \text{Supp}(D)} \lfloor k(x) : k \rfloor. \tag{4.5}
\end{align}

Let $(D_i)_{i \in I}$ be a family of \mathbb{R}-divisors on X such that

$$\sup_{i \in I} \text{ord}_x(D_i) = 0$$

for all but finitely many $x \in X^{(1)}$. We denote by $\sup_{i \in I} D_i$ the \mathbb{R}-divisor such that

$$\forall x \in X^{(1)}, \quad \text{ord}_x(\sup_{i \in I} D_i) = \sup_{i \in I} \text{ord}_x(D_i).$$

\textbf{Proposition 4.3.} — Let D be an \mathbb{R}-divisor on X such that $\deg(D) \geq 0$. One has

\begin{equation}
\lim_{n \to +\infty} \frac{\dim_k(H^0(nD))}{n} = \deg(D). \tag{4.6}
\end{equation}

\textbf{Proof.} — We first assume that $\deg(D) > 0$. By \[14\], for sufficiently positive integer n, one has $\deg([nD]) > 2 \text{genus}(X) - 2$. Therefore, (4.2) leads to

$$\dim_k(H^0([nD])) = \deg([nD]) + 1 - \text{genus}(X).$$

Moreover, since \(\deg(D) > 0 \) one has \(\deg([nD]) \geq n \deg(D) > 2 \text{genus}(X) - 2 \) for sufficiently positive \(n \in \mathbb{N}_{\geq 1} \). Hence (4.2) leads to
\[
\dim_k(H^0([nD])) = \deg([nD]) + 1 - \text{genus}(X).
\]
Since \(H^0([nD]) \subseteq H^0(nD) \subseteq H^0(\lceil nD \rceil) \), we obtain
\[
\frac{\deg([nD]) + 1 - \text{genus}(X)}{n} \leq \dim_k(H^0(nD)) \leq \frac{\deg([nD]) + 1 - \text{genus}(X)}{n}.
\]
Taking limit when \(n \to +\infty \), by (4.4) and (4.5) we obtain (4.6).

We now consider the case where \(\deg(D) = 0 \). Let \(E \) be an effective \(\mathbb{R} \)-Cartier divisor such that \(\deg(E) > 0 \). For any \(\epsilon > 0 \) one has
\[
\limsup_{n \to +\infty} \frac{\dim_k(H^0(nD))}{n} = \deg(D + \epsilon E) = \epsilon \deg(E).
\]
Since \(\epsilon \) is arbitrary, the equality (4.6) still holds.

Proposition 4.4. — Let \(D \) be an \(\mathbb{R} \)-divisor on \(X \) such that \(\deg(D) > 0 \). Then one has
\[
\sup_{s \in \Gamma(D) \times \mathbb{Q}} (s^{-1}) = D.
\]

Proof. — For any \(s \in \Gamma(D) \times \mathbb{Q} \) one has
\[
\text{ord}_x(s) + \text{ord}_x(D) \geq 0
\]
and hence \(\text{ord}_x(s^{-1}) \leq \text{ord}_x(D) \).

For any \(x \in X(1) \) and any \(\epsilon > 0 \), we pick an \(\mathbb{R} \)-divisor \(D_{x,\epsilon} \) on \(X \) such that \(D - D_{x,\epsilon} \) is effective, \(\text{ord}_x(D_{x,\epsilon}) = \text{ord}_x(D) \) and \(0 < \deg(D_{x,\epsilon}) < \epsilon \). Since \(\deg(D_{x,\epsilon}) > 0 \), the set \(\Gamma(D_{x,\epsilon}) \times \mathbb{Q} \) is not empty (see (4.3) and Proposition 4.3). This set is also contained in \(\Gamma(D) \times \mathbb{Q} \) since \(D_{x,\epsilon} \leq D \). Let \(f \) be an element of \(\Gamma(D_{x,\epsilon}) \times \mathbb{Q} \). One has
\[
D_{x,\epsilon} + (f) \geq 0 \quad \text{and} \quad \deg(D_{x,\epsilon} + (f)) = \deg(D_{x,\epsilon}) < \epsilon.
\]
Therefore
\[
\text{ord}_x(D + (f)) = \text{ord}_x(D_{x,\epsilon} + (f)) \leq \frac{\epsilon}{[\kappa(x) : k]},
\]
which leads to
\[
\text{ord}_x(f^{-1}) \geq \frac{\epsilon}{[\kappa(x) : k]}.
\]
Since \(\epsilon > 0 \) is arbitrary, we obtain
\[
\sup_{s \in \Gamma(D) \times \mathbb{Q}} \text{ord}_x(s^{-1}) = \text{ord}_x(D).
\]

Remark 4.5. — Let \(D \) be an \(\mathbb{R} \)-divisor on \(X \). Note that one has
\[
\sup_{s \in \Gamma(D)_{\mathbb{R}}^0} (s^{-1}) \leq D.
\]
Therefore, the above proposition implies that, if \(\deg(D) > 0 \), then
\[
\sup_{s \in \Gamma(D)_{\mathbb{R}}^0} (s^{-1}) = D.
\]
This equality also holds when \(\deg(D) = 0 \) and \(\Gamma(D)_{\mathbb{R}}^0 \neq \emptyset \). In fact, if \(s \) is an element of \(\Gamma(D)_{\mathbb{R}}^0 \), then one has \(\deg(D + (s)) = \deg(D) + \deg((s)) = 0 \) and hence \(D + (s) = 0 \). Similarly, if \(D \) is an \(\mathbb{R} \)-divisor on \(X \) such that \(\Gamma(D)_{\mathbb{Q}}^0 \neq \emptyset \), then the equality
\[
\sup_{s \in \Gamma(D)_{\mathbb{Q}}^0} (s^{-1}) = D
\]
always holds.

Definition 4.6. — Let \(\text{Rat}(X) \) be the field of rational functions on \(X \). By graded linear series on \(X \), we refer to a graded sub-\(k \)-algebra \(V_{\bullet} = \bigoplus_{n \in \mathbb{N}} V_n T^n \) of \(\text{Rat}(X)[T] = \bigoplus_{n \in \mathbb{N}} \text{Rat}(X)T^n \) which satisfies the following conditions:

1. \(V_0 = k \),
2. there exists \(n \in \mathbb{N}_{\geq 1} \) such that \(V_n \neq \{0\} \)
3. there exists an \(\mathbb{R} \)-divisor \(D \) on \(X \) such that \(V_n \subseteq H^0(nD) \) for any \(n \in \mathbb{N} \).

If \(W \) is a \(k \)-vector subspace of \(\text{Rat}(X) \), we denote by \(k(W) \) the extension
\[
k(\{f/g : (f,g) \in (W \setminus \{0\})^2\})
\]
of \(k \). If \(V_{\bullet} \) is a graded linear series on \(X \), we set
\[
k(V_{\bullet}) := k \left(\bigcup_{n \in \mathbb{N}_{\geq 1}} \{f/g : (f,g) \in (V_n \setminus \{0\})^2\} \right).
\]
If \(k(V_{\bullet}) = \text{Rat}(X) \), we say that the graded linear series \(V_{\bullet} \) is birational.

Example 4.7. — Let \(D \) be an \(\mathbb{R} \)-divisor on \(X \) such that \(\deg(D) > 0 \). Then the total graded linear series \(\bigoplus_{n \in \mathbb{N}} H^0(nD) \) is birational.

Proposition 4.8. — Let \(V_{\bullet} \) be a graded linear series on \(X \). The set
\[
\mathbb{N}(V_{\bullet}) := \{n \in \mathbb{N}_{\geq 1} : V_n \neq \{0\}\}
\]
equipped with the additive law forms a sub-semigroup of \(\mathbb{N}_{\geq 1} \). Moreover, for any \(n \in \mathbb{N}(V_{\bullet}) \) which is sufficiently positive, one has \(k(V_{\bullet}) = k(V_n) \).
Proof. — Let n and m be elements of $\mathbb{N}(V_\bullet)$. If f and g are respectively non-zero elements of V_n and V_m, then fg is a non-zero element of V_{n+m}. Hence $n + m$ belongs to $\mathbb{N}(V_\bullet)$. Therefore, $\mathbb{N}(V_\bullet)$ is a sub-semigroup of $\mathbb{N}_{\geq 1}$. In particular, if $d \geq 1$ is a generator of the subgroup of \mathbb{Z} generated by $\mathbb{N}(V_\bullet)$, then there exists $N_0 \in \mathbb{N}_{\geq 1}$ such that $dn \in \mathbb{N}(V_\bullet)$ for any $n \in \mathbb{N}$, $n \geq N_0$.

Since $k \subseteq k(V_\bullet) \subseteq \mathrm{Rat}(X)$ and $\mathrm{Rat}(X)$ is finitely generated over k, the extension $k(V_\bullet)/k$ is finitely generated (see [7] Chapter V, §14, n°7, Corollary 3).

Therefore, there exist a finite family $\{n_1, \ldots, n_r\}$ of elements in $\mathbb{N}_{\geq 1}$, together with pairs $(f_i, g_i) \in (V_{dn_i} \setminus \{0\})^2$ such that $k(V_\bullet) = k(f_1/g_1, \ldots, f_r/g_r)$. Let $N \in \mathbb{N}$ such that $N - \max\{n_1, \ldots, n_r\} \geq N_0$.

For any $i \in \{1, \ldots, r\}$ and $M \in \mathbb{N}_{\geq N}$, let $h_{M,i} \in V_{d(M-n_i)} \setminus \{0\}$. Then

$$(h_{M,i}f_i, h_{M,i}g_i) \in (V_{dM} \setminus \{0\})^2,$$

which shows that $k(V_\bullet) = k(V_{dM})$. \hfill \Box

Definition 4.9. — If V_\bullet is a graded linear series, we define $\Gamma(V_\bullet)_{\mathbb{Q}}$ as

$$\bigcup_{n \in \mathbb{N}_{\geq 1}} \{f_n n^{-1} \mid f \in V_n \setminus \{0\}\},$$

and let $D(V_\bullet)$ be the following \mathbb{R}-divisor

$$\sup_{s \in \Gamma(V_\bullet)_{\mathbb{Q}}} (s^{-1}),$$

called the \mathbb{R}-divisor generated by V_\bullet. The conditions (2) and (3) in Definition 4.6 show that the \mathbb{R}-divisor $D(V_\bullet)$ is well defined and has non-negative degree.

Proposition 4.10. — Let V_\bullet be a birational graded linear series on X. One has

$$(4.8) \quad \lim_{n \in \mathbb{N}, V_n \neq \{0\} \to +\infty} \frac{\dim_k(V_n)}{n} = \deg(D(V_\bullet)) > 0.$$

Proof. — By definition, for any $n \in \mathbb{N}$ one has $V_n \subseteq H^0(nD(V_\bullet))$. Therefore Proposition 4.3 leads to

$$\limsup_{n \to +\infty} \frac{\dim_k(V_n)}{n} \leq \deg(D(V_\bullet)).$$

Let p be a sufficiently positive integer (so that $\mathrm{Rat}(X) = k(V_p)$). Let

$$V_\bullet[p] := \bigoplus_{n \in \mathbb{N}} \mathrm{Im}(S^nV_p \to V_{np})T^n.$$
Clearly one has $D(V_\{p\}) \leq pD(V)$. Moreover, since $\text{Rat}(X) = k(V_p)$, X identifies with the normalisation of $\text{Proj}(V_\{p\})$, and the pull-back on X of the tautological line bundle on $\text{Proj}(V_\{p\})$ identifies with $O(D(V_\{p\}))$. This leads to

$$\frac{1}{p} \deg(D(V_\{p\})) = \lim_{n \to +\infty} \frac{\dim_k(V_n^{[p]})}{pn} \leq \liminf_{n \to +\infty, V_n \neq \{0\}} \frac{\dim_k(V_n)}{n}.$$

As the map $p \mapsto \frac{1}{p}D(V_\{p\})$ preserves the order if we consider the relation of divisibility on p, by the relation $D(V) = \sup_p \frac{1}{p}D(V_\{p\})$ we obtain that

$$\deg(D(V)) = \sup_p \frac{1}{p} \deg(D(V_\{p\})) \leq \liminf_{n \to +\infty, V_n \neq \{0\}} \frac{\dim_k(V_n)}{n}.$$

Therefore the equality in (4.8) holds.

If p is a positive integer such that $\text{Rat}(X) = k(V_p)$, then V_p admits an element s which is transcendental over k. In particular, the graded linear series $V_\{p\}$ contains a polynomial ring of one variable, which shows that

$$\liminf_{n \to +\infty} \frac{\dim_k(V_n)}{n} > 0.$$

\[\square\]

5. Arithmetic surface over a trivially valued field

In this section, we fix a commutative field k and we denote by $|.|$ the trivial absolute value on k. Let X be a regular projective curve over $\text{Spec} k$. We denote by X_{an} the Berkovich topological space associated with X. Recall that, as a set X_{an} consists of couples of the form $\xi = (x, |.|_\xi)$, where x is a scheme point of X and $|.|_\xi$ is an absolute value on the residue field $\kappa(x)$ of x, which extends the trivial absolute value on k. We denote by $j : X_{\text{an}} \to X$ the map sending any pair in X_{an} to its first coordinate. For any $\xi \in X_{\text{an}}$, we denote by $\widehat{\kappa}(\xi)$ the completion of $\kappa(j(\xi))$ with respect to the absolute value $|.|_\xi$, on which $|.|_\xi$ extends in a unique way. For any regular function f on a Zariski open subset U of X, we let $|f|$ be the function on $j^{-1}(U)$ sending any ξ to the absolute value of $f(j(\xi)) \in \kappa(j(\xi))$ with respect to $|.|_\xi$. The Berkovich topology on X_{an} is defined as the most coarse topology making the map j and all functions of the form $|f|$ continuous, where f is a regular function on a Zariski open subset of X.

Remark 5.1. — Let $X^{(1)}$ be the set of all closed points of X. The Berkovich topological space X_{an} identifies with the tree $\mathcal{T}(X^{(1)})$, where
(a) the root point η_0 of the tree $T(X^{(1)})$ corresponds to the pair consisting of the generic point η of X and the trivial absolute value on the field of rational functions on X,
(b) for any $x \in X^{(1)}$, the leaf point $x_0 \in T(X^{(1)})$ corresponds to the closed point x of X together with the trivial absolute value on the residue field $\kappa(x)$,
(c) for any $x \in X^{(1)}$, any $\xi \in]\eta_0, x_0[$ corresponds to the pair consisting of the generic point η of X and the absolute value $e^{-\ell(\xi) \ord_x(-)}$, with $\ord_x(-)$ being the discrete valuation on the field of rational functions $\text{Rat}(X)$ corresponding to x.

5.1. Metrised divisors. — We call metrised \mathbb{R}-divisor on X any copy (D, g), where D is an \mathbb{R}-divisor on X and g is a Green function on $T(X^{(1)})$ such that $\mu_x(g) = \ord_x(D)$ for any $x \in X^{(1)}$ (see 3.2). If in addition D is a \mathbb{Q}-divisor (resp. divisor), we say that D is a metrised \mathbb{Q}-divisor (resp. metrised divisor).

If (D, g) is a metrised \mathbb{R}-divisor on X and a is a real number, then (aD, ag) is also a metrised \mathbb{R}-divisor, denoted by $a(D, g)$. Moreover, if (D_1, g_1) and (D_2, g_2) are two metrised \mathbb{R}-divisors on X, then $(D_1 + D_2, g_1 + g_2)$ is also a metrised \mathbb{R}-divisor, denoted by $(D_1, g_1) + (D_2, g_2)$. The set $\text{Div}_\mathbb{R}(X)$ of all metrised \mathbb{R}-divisors on X then forms a vector space over \mathbb{R}.

If (D, g) is a metrised \mathbb{R}-divisor on X, we say that g is a Green function of the \mathbb{R}-divisor D.

Remark 5.2. — (1) Let (D, g) be a metrised \mathbb{R}-divisor on X. Note that the \mathbb{R}-divisor part D is uniquely determined by the Green function g. Therefore the study of metrised \mathbb{R}-divisors on X is equivalent to that of Green functions on the infinite tree $T(X^{(1)})$. The notation of pair (D, g) facilitates however the presentation on the study of metrised linear series of (D, g).

(2) Let D be an \mathbb{R}-divisor on X, there is a unique canonical Green function on $T(X^{(1)})$ (see Definition 3.4), denoted by g_D, such that (D, g_D) is an metrised \mathbb{R}-divisor. Note that, for any metrised \mathbb{R}-divisor (D, g) which admits D as its underlying \mathbb{R}-divisor, one has $g_D = g_{\text{can}}$ (see Definition 3.4). In particular, if (D, g) is a metrised \mathbb{R}-divisor such that D is the zero \mathbb{R}-divisor, then the Green function g is bounded.

Definition 5.3. — Let $\text{Rat}(X)$ be the field of rational functions on X and $\text{Rat}(X)_{\mathbb{R}}^\times$ be the \mathbb{R}-vector space $\text{Rat}(X)^\times \otimes_{\mathbb{Z}} \mathbb{R}$. For any ϕ in $\text{Rat}(X)_{\mathbb{R}}^\times$, the couple $((\phi), g(\phi))$ is called the principal metrised \mathbb{R}-divisor associated with ϕ and is denoted by $\widehat{(\phi)}$.
Definition 5.4. — If \((D, g)\) is a metrised \(\mathbb{R}\)-divisor, for any \(\phi \in \Gamma(D)_{\mathbb{R}}^\times\), we define
\[
\|\phi\|_g := \exp \left(- \inf_{\xi \in T(X(1))} (g(\phi) + g)(\xi) \right).
\]

By convention, \(\|0\|_g\) is defined to be zero.

5.2. Ultrametrically normed vector spaces. — Let \(E\) be a finite-dimensional vector space over \(k\) (equipped with the trivial absolute value). By **ultrametric norm** on \(E\), we mean a map \(\|\cdot\|: E \to \mathbb{R}_{\geq 0}\) such that

1. for any \(x \in E\), \(\|x\| = 0\) if and only if \(x = 0\),
2. \(\|ax\| = \|x\|\) for any \(x \in E\) and \(a \in k \setminus \{0\}\),
3. for any \((x, y) \in E \times E\), \(\|x + y\| \leq \max\{\|x\|, \|y\|\}\).

Let \(r\) be the rank of \(E\) over \(k\). We define the **determinant norm associated with** \(\|\cdot\|\) the norm \(\|\cdot\|_{\det}\) on \(\det(E) = \Lambda^r(E)\) such that
\[
\forall \eta \in \det(E), \quad \|\eta\| = \inf_{s_1, \ldots, s_r \in E} \|s_1\| \cdots \|s_r\|.
\]

We define the **Arakelov degree** of \((E, \|\cdot\|)\) as
\[
\hat{\deg}(E, \|\cdot\|) = -\ln\|\eta\|_{\det},
\]
where \(\eta\) is a non-zero element of \(\det(E)\). We then define the **positive Arakelov degree** as
\[
\hat{\deg}_+(E, \|\cdot\|) := \sup_{F \subset E} \hat{\deg}(F, \|\cdot\|_F),
\]
where \(F\) runs over the set of all vector subspaces of \(E\), and \(\|\cdot\|_F\) denotes the restriction of \(\|\cdot\|\) to \(F\).

Example 5.5. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\). Note that the restriction of \(\|\cdot\|_g\) to \(H^0(D)\) defines an ultrametric norm on the \(k\)-vector space \(H^0(D)\).

Assume that \((E, \|\cdot\|)\) is a non-zero finite-dimensional ultrametrically normed vector space over \(k\). We introduce a Borel probability measure \(P_{(E, \|\cdot\|)}\) on \(\mathbb{R}\) such that, for any \(t \in \mathbb{R}\),
\[
P_{(E, \|\cdot\|)}([t, +\infty[) = \frac{\dim_k(\{s \in E : \|s\| < e^{-t}\})}{\dim_k(E)}.
\]
Then, for any random variable \(Z\) which follows \(P_{(E, \|\cdot\|)}\) as its probability law, one has
\[
\frac{\hat{\deg}(E, \|\cdot\|)}{\dim_k(E)} = \mathbb{E}[Z] = \int_{\mathbb{R}} t \, P_{(E, \|\cdot\|)}(dt)
\]
and

\[
\frac{\deg(E, \|\cdot\|)}{\dim_k(E)} = \mathbb{E}[\max(Z, 0)] = \int_0^{+\infty} t \mathbb{P}(E, \|\cdot\|)(dt).
\]

5.3. Essential infima. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\) such that \(\Gamma(D)_\mathbb{R}\) is not empty. We define

\[
\lambda_{\text{ess}}(D, g) := \sup_{\phi \in \Gamma(D)_\mathbb{R}} \inf_{\xi \in X_{\text{an}}} (g(\phi) + g)(\xi),
\]

called the essential infimum of the metrised \(\mathbb{R}\)-divisor \((D, g)\). By (5.1), we can also write \(\lambda_{\text{ess}}(D, g)\) as

\[
\sup_{\phi \in \Gamma(D)_\mathbb{R}} \left(-\ln \|\phi\|_g \right).
\]

Proposition 5.6. — Let \((D_1, g_1)\) and \((D_2, g_2)\) be metrised \(\mathbb{R}\)-divisors such that \(\Gamma(D_1)_\mathbb{R}\) and \(\Gamma(D_2)_\mathbb{R}\) are non-empty. Then one has

\[
(5.5) \quad \lambda_{\text{ess}}(D_1 + D_2, g_1 + g_2) \geq \lambda_{\text{ess}}(D_1, g_1) + \lambda_{\text{ess}}(D_2, g_2).
\]

Proof. — Let \(\phi_1\) and \(\phi_2\) be elements of \(\Gamma(D_1)_\mathbb{R}\) respectively. One has \(\phi_1 \phi_2 \in \Gamma(D_1 + D_2)_\mathbb{R}\). Moreover,

\[
g(\phi_1 \phi_2) = g(\phi_1) + g(\phi_2).
\]

Therefore

\[
g(\phi_1 \phi_2) + (g_1 + g_2) = (g(\phi_1) + g_1) + (\phi_2 + g_2),
\]

which leads to

\[
\left(\inf_{\xi \in X_{\text{an}}} (g(\phi_1) + g_1)(\xi) \right) + \left(\inf_{\xi \in X_{\text{an}}} (g(\phi_2) + g_2)(\xi) \right)
\]

\[
\leq \inf_{\xi \in X_{\text{an}}} (g(\phi_1 \phi_2) + (g_1 + g_2))(\xi)
\]

\[
\leq \lambda_{\text{ess}}(D_1 + D_2, g_1 + g_2).
\]

Taking the supremum with respect to \(\phi_1 \in \Gamma(D_1)_\mathbb{R}\) and \(\phi_2 \in \Gamma(D_2)_\mathbb{R}\), we obtain the inequality (5.5).

Remark 5.7. — In the literature, the essential infimum of height function is studied in the number field setting. We can consider its analogue in the setting of Arakelov geometry over a trivially valued field. For any closed point \(x\) of \(X\), we define the height of \(x\) with respect to \((D, g)\) as

\[
h_{(D, g)}(x) := \varphi_g(x_0),
\]

where \(\varphi_g = g - g_{\text{can}}\) is the bounded Green function associated with \(g\) (see Definition 3.5), and \(x_0\) denotes the point of \(X_{\text{an}}\) corresponding to the closed point.
equipped with the trivial absolute value on its residue field. In particular, for any element \(x \in X^{(1)} \) outside of the support of \(D \), one has

\[
h_{(D,g)}(x) = g(x_0).
\]

Then the essential infimum of the height function \(h_{(D,g)} \) is defined as

\[
\mu_{\text{ess}}(D,g) := \sup_{Z \subseteq X} \inf_{x \in X^{(1)} \setminus Z} h_{(D,g)}(x),
\]

where \(Z \) runs over the set of closed subschemes of \(X \) which are different from \(X \) (namely a finite subset of \(X^{(1)} \)). If \(\Gamma(D)_R^{\times} \) is not empty, one has

\[
\lambda_{\text{ess}}(D,g) \leq \sup_{\phi \in \Gamma(D)_R^{\times}} \inf_{x \in X^{(1)}} (g(\phi) + g)(x_0).
\]

For each \(\phi \in \Gamma(D)_R^{\times} \), one has

\[
\inf_{x \in X^{(1)}} (g(\phi) + g)(x_0) \leq \inf_{x \in X^{(1)} \setminus (\text{Supp}(D) \cup \text{Supp}(\phi))} g(x_0),
\]

which is clearly bounded from above by \(\mu_{\text{ess}}(D,g) \). Therefore, one has

\[
(5.6) \quad \lambda_{\text{ess}}(D,g) \leq \mu_{\text{ess}}(D,g).
\]

The following proposition implies that \(\lambda_{\text{ess}}(D,g) \) is actually finite.

Proposition 5.8. — Let \((D,g) \) be a metrised \(\mathbb{R} \)-divisor on \(X \). One has \(\mu_{\text{ess}}(D,g) = g(\eta_0) \), where \(\eta_0 \) denotes the point of \(X^{\text{an}} \) corresponding to the generic point of \(X \) equipped with the trivial absolute value on its residue field.

Proof. — Let \(\alpha \) be a real number that is \(> g(\eta_0) \). The set

\[
\{ \xi \in X^{\text{an}} : g(\xi) < \alpha \}
\]

is an open subset of \(X^{\text{an}} \) containing \(\eta_0 \) and hence there exists a finite subset \(S \) of \(X^{(1)} \) such that \(g(x_0) < \alpha \) for any \(x \in X^{(1)} \setminus S \). Therefore we obtain \(\mu_{\text{ess}}(D,g) \leq \alpha \). Since \(\alpha > g(\eta_0) \) is arbitrary, we get \(\mu_{\text{ess}}(D,g) \leq g(\eta_0) \).

Conversely, if \(\beta \) is a real number such that \(\beta < g(\eta_0) \), then

\[
\{ \xi \in X^{\text{an}} : g(\xi) > \beta \}
\]

is an open subset of \(X^{\text{an}} \) containing \(\eta_0 \). Hence there exists a finite subset \(S' \) of \(X^{(1)} \) such that \(g(x_0) > \beta \) for any \(x \in X^{(1)} \setminus S' \). Hence \(\mu_{\text{ess}}(D,g) \geq \beta \). Since \(\beta < g(\eta_0) \) is arbitrary, we obtain \(\mu_{\text{ess}}(D,g) \geq g(\eta_0) \).

Lemma 5.9. — Let \(r \in \mathbb{N} \geq 1 \) and \(s_1, \ldots, s_r \) be elements of \(\text{Rat}(X)^\times_{\mathbb{Q}} \) and \(a_1, \ldots, a_r \) be real numbers which are linearly independent over \(\mathbb{Q} \). Let \(s := s_1^{a_1} \cdots s_r^{a_r} \in \text{Rat}(X)^\times_{\mathbb{R}} \). Then for any \(i \in \{1, \ldots, r\} \) one has \(\text{Supp}((s_i)) \subset \text{Supp}((s)) \).
Proof. — Let \(x \) be a closed point of \(X \) which does not lie in the support of \((s) \). One has

\[
\sum_{i=1}^{r} \text{ord}_x(s_i)a_i = 0
\]

and hence \(\text{ord}_x(s_1) = \ldots = \text{ord}_x(s_r) = 0 \) since \(a_1, \ldots, a_r \) are linearly independent over \(\mathbb{Q} \).

\[\square\]

Lemma 5.10. — Let \(n \) and \(r \) be two positive integers, \(\ell_1, \ldots, \ell_n \) be linear forms on \(\mathbb{R}^r \) of the form

\[
\ell_j(y) = b_{j,1}y_1 + \cdots + b_{j,r}y_r, \quad \text{where} \quad (b_{j,1}, \ldots, b_{j,r}) \in \mathbb{Q}^r
\]

and \(q_1, \ldots, q_n \) be non-negative real numbers. Let \(a = (a_1, \ldots, a_r) \) be an element of \(\mathbb{R}_{\geq 0}^r \) which forms a linearly independent family over \(\mathbb{Q} \), and such that \(\ell_j(a) + q_j \geq 0 \) for any \(j \in \{1, \ldots, n\} \). Then, for any \(\varepsilon > 0 \), there exists a sequence

\[\delta^{(m)} = (\delta_1^{(m)}, \ldots, \delta_r^{(m)}) , \quad m \in \mathbb{N}\]

in \(\mathbb{R}_{\geq 0}^r \), which converges to \((0, \ldots, 0)\) and verifies the following conditions:

1. for any \(j \in \{1, \ldots, n\} \), one has \(\ell_j(\delta^{(m)}) + \varepsilon q_j \geq 0 \),
2. for any \(m \in \mathbb{N} \) and any \(i \in \{1, \ldots, r\} \), one has \(\delta_i^{(m)} + a_i \in \mathbb{Q} \).

Proof. — Without loss of generality, we may assume that \(q_1 = \cdots = q_d = 0 \) and \(\min\{q_{d+1}, \ldots, q_n\} > 0 \). Since \(a_1, \ldots, a_r \) are linearly independent over \(\mathbb{Q} \), for \(j \in \{1, \ldots, d\} \), one has \(\ell_j(a) > 0 \). Hence there exists an open convex cone \(C \) in \(\mathbb{R}_{\geq 0}^r \) which contains \(a \), such that \(\ell_j(y) > 0 \) for any \(y \in C \) and \(j \in \{1, \ldots, d\} \).

Moreover, if we denote by \(\|\cdot\|_{\text{sup}} \) the norm on \(\mathbb{R}^r \) (where \(\mathbb{R} \) is equipped with its usual absolute value) defined as

\[
\|(y_1, \ldots, y_r)\|_{\text{sup}} := \max\{|y_1|, \ldots, |y_r|\},
\]

then there exists \(\lambda > 0 \) such that, for any \(z \in C \) such that \(\|z\|_{\text{sup}} < \lambda \) and any \(j \in \{d+1, \ldots, n\} \), one has \(\ell_j(z) + \varepsilon q_j \geq 0 \). Let

\[C_\lambda = \{y \in C : \|y\|_{\text{sup}} < \lambda\}.
\]

It is a convex open subset of \(\mathbb{R}^r \). For any \(y \in C_\lambda \) and any \(j \in \{1, \ldots, n\} \), one has

\[
\ell_j(y) + \varepsilon q_j \geq 0.
\]

Since \(C_\lambda \) is open and convex, also is its translation by \(-a\). Note that the set of rational points in a convex open subset of \(\mathbb{R}^r \) is dense in the convex open subset. Therefore, the set of all points \(\delta \in C_\lambda \) such that \(\delta + a \in \mathbb{Q}^r \) is dense in \(C_\lambda \). Since \((0, \ldots, 0)\) lies on the boundary of \(C_\lambda \), it can be approximated by a sequence \((\delta^{(m)})_{m \in \mathbb{N}} \) of elements in \(C_\lambda \) such that \(\delta^{(m)} + a \in \mathbb{Q}^r \) for any \(m \in \mathbb{N} \).

\[\square\]
Remark 5.11. — We keep the notation and hypotheses of Lemma 5.10. For any \(m \in \mathbb{N}, j \in \{1, \ldots, n\} \) one has
\[
\ell_j (a + \delta (m)) + (1 + \varepsilon)q_j \geq 0,
\]
or equivalently,
\[
\ell_j \left(\frac{1}{1 + \varepsilon} (a + \delta (m)) \right) + q_j \geq 0.
\]
Therefore, one can find a sequence \((a^{(p)})_{p \in \mathbb{N}}\) of elements in \(\mathbb{Q}^r \) which converges to \(a \) and such that
\[
\ell_j (a^{(p)}) + q_j \geq 0
\]
holds for any \(j \in \{1, \ldots, n\} \) and any \(p \in \mathbb{N} \).

Proposition 5.12. — Let \((D, g)\) be an arithmetic \(\mathbb{R} \)-divisor on \(X \) such that \(\Gamma(D)^\times_\mathbb{Q} \neq \emptyset \). One has
\[
\lambda_{\text{ess}} (D, g) = \sup_{\phi \in \Gamma(D)^\times_\mathbb{Q}} \inf_{\xi \in X^\mathrm{an}} \left((g(\phi) + g)(\xi) = \sup_{\phi \in \Gamma(D)^\times_\mathbb{Q}} \left(- \ln \|\phi\|_g \right) \right)
\]
(5.7)
\[
= \sup_{n \in \mathbb{N}, n \geq 1} \frac{1}{n} \sup_{n \in H^0(nD) \setminus \{0\}} \left(- \ln \|s\|_{ng} \right).
\]

Proof. — By definition one has
\[
\Gamma(D)^\times_\mathbb{Q} = \bigcup_{n \in \mathbb{N}, n \geq 1} \left\{ s^{\frac{1}{n}} : s \in H^0(nD) \setminus \{0\} \right\}.
\]
Moreover, for \(\phi \in \Gamma(D)^\times_\mathbb{Q}, \) one has
\[
\inf_{\xi \in X^\mathrm{an}} (g(\phi) + g)(\xi) = - \ln \|\phi\|_g.
\]
Therefore the second and third equalities of (5.7) hold. To show the first equality, we denote temporarily by \(\lambda_{\text{ess}}(D, g) \) the second term of (5.7).

Let \(a \) be an arbitrary positive rational number. The correspondence \(\Gamma(D)^\times_\mathbb{Q} \to \Gamma(aD)^\times_\mathbb{Q} \) given by \(\phi \mapsto \phi^a \) is a bijection. Moreover, for \(\phi \in \Gamma(D)^\times_\mathbb{Q} \) one has \(\|\phi^a\|_{ag} = \|\phi\|^a_g \). Hence the equality
\[
\lambda_{\text{ess}}(aD, ag) = a\lambda_{\text{ess}}(D, g)
\]
holds.

By our assumption, we can choose \(\phi \in \Gamma(D)^\times_\mathbb{Q} \). For \(\mathbb{K} \in \{\mathbb{Q}, \mathbb{R}\}, \) the map
\[
\alpha_\psi : \Gamma(D)^\times_{\mathbb{K}} \to \Gamma(D + (\psi))_{\mathbb{K}}, \quad \phi \mapsto \phi \psi^{-1}
\]
is a bijection. Moreover, for any \(\phi \in \Gamma(D)^\times_{\mathbb{K}}, \)
\[
\|\phi\|_g = \|\alpha_\psi(\phi)\|_{g + g(\psi)}.
\]
Hence one has
\begin{align}
\lambda_{Q,\text{ess}}(D,g) &= \lambda_{Q,\text{ess}}(D + (\psi), g + g(\psi)), \\
\lambda_{\text{ess}}(D,g) &= \lambda_{\text{ess}}(D + (\psi), g + g(\psi)).
\end{align}
Furthermore, for any \(c \in \mathbb{R} \), one has
\begin{align}
\lambda_{Q,\text{ess}}(D,g + c) &= \lambda_{Q,\text{ess}}(D,g) + c, \\
\lambda_{\text{ess}}(D,g + c) &= \lambda_{\text{ess}}(D,g) + c.
\end{align}
Therefore, to prove the proposition, we may assume without loss of generality that \(D \) is effective and \(\varphi_g \geq 0 \).

By definition one has \(\lambda_{Q,\text{ess}}(D,g) \leq \lambda_{\text{ess}}(D,g) \). To show the converse inequality, it suffices to prove that, for any \(s \in \Gamma(D)^+_{\mathbb{R}} \), one has
\[-\ln \|s\|_g \leq \lambda_{Q,\text{ess}}(D,g).\]
We choose \(s_1, \ldots, s_r \) in \(\text{Rat}(X)^+_{\mathbb{Q}} \) and \(a_1, \ldots, a_r \) in \(\mathbb{R}_{>0} \) such that \(a_1, \ldots, a_r \) are linearly independent over \(\mathbb{Q} \) and that \(s = s_1^{a_1} \cdots s_r^{a_r} \). By Lemma 5.10, for any \(s \in \Gamma(D)^+_{\mathbb{R}} \), for \(j \in \{1, \ldots, r\} \), the support of \((s_i) \) is contained in that of \((s) \). Assume that \(\text{Supp}(s) = \{x_1, \ldots, x_n\} \). Since \(s \in \Gamma(D)^+_{\mathbb{R}} \), for \(j \in \{1, \ldots, n\} \), one has
\begin{equation}
\lambda_{Q,\text{ess}}(D,g) = \lambda_{\text{ess}}(D,g) + c.
\end{equation}
By Lemma 5.10 for any rational number \(\varepsilon > 0 \), there exists a sequence
\[(\delta_1^{(m)}, \ldots, \delta_r^{(m)}), \quad m \in \mathbb{N}\]
in \(\mathbb{R}^r \), which converges to \((0, \ldots, 0)\), and such that,
1. for any \(j \in \{1, \ldots, n\} \) and any \(m \in \mathbb{N} \), one has
\[\delta_1^{(m)} \|s_j^{(1)}(s_1) + \cdots + \delta_r^{(m)} \|s_j^{(r)}(s_r) + \varepsilon \|s_j(D) \geq 0.\]
2. for any \(i \in \{1, \ldots, r\} \) and any \(m \in \mathbb{N} \), \(\delta_i^{(m)} + a_i \in \mathbb{Q} \).
For any \(m \in \mathbb{N} \), let
\[s^{(m)} = s_1^{\delta_1^{(m)}} \cdots s_r^{\delta_r^{(m)}} \in \Gamma(\varepsilon D)^+_{\mathbb{R}}.\]
The conditions (1) and (2) above imply that \(s \cdot s^{(m)} \in \Gamma((1 + \varepsilon)D)^+_{\mathbb{Q}} \). Hence one has
\[\inf_{\xi \in X^{an}} (1 + \varepsilon) g + g(s^{(m)})(\xi) \leq \lambda_{Q,\text{ess}}((1 + \varepsilon)D, (1 + \varepsilon)g).
\]
Since \(D \) is effective and \(\varphi_g \geq 0 \) by \(s^{(m)} \in \Gamma(\varepsilon D)^+_{\mathbb{R}} \), one has
\[\varepsilon g + g(s^{(m)}) \geq \varepsilon \varphi_g \geq 0.\]
Therefore we obtain
\[-\ln \|s\|_g = \inf_{\xi \in X^{an}} (g + g(s))(\xi) \leq \lambda_{Q,\text{ess}}((1 + \varepsilon)D, (1 + \varepsilon)g) = (1 + \varepsilon)\lambda_{Q,\text{ess}}(D,g),\]
where the last equality comes from (5.8). Taking the limit when \(\varepsilon \in \mathbb{Q}_{>0} \) tends to 0, we obtain the desired inequality.

5.4. \(\chi \)-volume. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\). We define the \(\chi\)-volume of \((D, g)\) as

\[
\hat{\text{vol}}_{\chi}(D, g) := \limsup_{n \to +\infty} \frac{\deg(H^0(nD), \| \cdot \|_{ng})}{n^2 / 2}.
\]

This invariant is similar to the \(\chi\)-volume function in the number field setting introduced in [25]. Note that, if \(\deg(D) < 0\), then \(H^0(D) = \{0\}\) for all \(n \in \mathbb{Z}_{>0}\). Indeed, if \(f \in H^0(D) \setminus \{0\}\), then \(0 \leq \deg(D + (f)) = \deg(D) < 0\), which is a contradiction. Hence \(\hat{\text{vol}}_{\chi}(D, g) = 0\).

Proposition 5.13. — Let \(D\) be an \(\mathbb{R}\)-divisor on \(X\), and \(g\) and \(g'\) be Green functions of \(D\). If \(g \leq g'\), then

\[
\hat{\text{vol}}_{\chi}(D, g) \leq \hat{\text{vol}}_{\chi}(D, g').
\]

Proof. — Note that \(\| \cdot \|_{ng} \geq \| \cdot \|_{ng'}\) on \(H^0(X, nD)\), so that one can see that \(\| \cdot \|_{ng, \det} \geq \| \cdot \|_{ng', \det}\) on \(\det H^0(X, nD)\). Therefore we obtain

\[
\hat{\deg}(H^0(X, nD), \| \cdot \|_{ng}) \leq \hat{\deg}(H^0(X, nD), \| \cdot \|_{ng'})
\]

for all \(n \geq 1\). Thus the assertion follows.

Proposition 5.14. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) \geq 0\). For any \(c \in \mathbb{R}\), one has

\[
\hat{\text{vol}}_{\chi}(D, g + c) = 2c \deg(D) + \hat{\text{vol}}_{\chi}(D, g).
\]

Proof. — For any \(n \in \mathbb{N}\), one has \(\| \cdot \|_{n(g+c)} = \| \cdot \|_{ng+nc} = e^{-nc} \| \cdot \|_{ng}\). Therefore, one has

\[
\hat{\deg}(H^0(nD), \| \cdot \|_{n(g+c)}) = \hat{\deg}(H^0(nD), \| \cdot \|_{ng}) + nc \dim_k(H^0(nD)).
\]

Note that, by Proposition 4.3

\[
\dim_k(H^0(nD)) = \deg(D)n + o(n), \quad n \to +\infty.
\]

Therefore, one has

\[
\frac{\hat{\deg}(H^0(nD), \| \cdot \|_{n(g+c)})}{n^2 / 2} = \frac{\hat{\deg}(H^0(nD), \| \cdot \|_{ng})}{n^2 / 2} + 2c \deg(D) + o(1), \quad n \to +\infty.
\]

Taking the superior limit when \(n \to +\infty\), we obtain (5.14).
Definition 5.15. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) > 0\). We denote by \(\Gamma(D, g)\) the set of \(s \in \Gamma(D)\) such that \(\|s\| < 1\). Similarly, we denote by \(\Gamma'(D, g)\) the set of \(s \in \Gamma(D)\) such that \(\|s\| < 1\).

For any \(t \in \mathbb{R}\) such that \(t < \lambda_{\text{ess}}(D, g)\), let \(D_{g,t}\) be the \(\mathbb{R}\)-divisor
\[
\sup_{s \in \Gamma(D, g-t)} (s^{-1}).
\]
For sufficiently negative number \(t\) such that \(\|s\| < e^{-t}\) for any \(s \in \Gamma(D)\), one has
\[
\Gamma(D, g-t) = \Gamma(D)_{\mathbb{Q}}
\]
and hence, by Proposition 4.4, one has
\[
\Gamma(D, g-t) = \Gamma(D)_{\mathbb{Q}}
\]
Proposition 5.16. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) > 0\), and \(t \in \mathbb{R}\) such that \(t < \lambda_{\text{ess}}(D, g)\). Let
\[
V_{g}^{t}(D, g) := \bigoplus_{n \in \mathbb{N}} (s \in H^{0}(nD) : \|s\|_{mg} < e^{-tn}) T^{n} \subseteq K[T].
\]
Then one has
\[
\lim_{n \to +\infty} \frac{\dim_{k}(V_{g}^{t}(D, g))}{n} = \deg(D_{g,t}) > 0.
\]

Proof. — By Proposition 4.10 it suffices to show that the graded linear series \(V_{g}^{t}(D, g)\) is birational (see Definition 4.9). As \(\deg(D) > 0\), there exists \(m \in \mathbb{N}_{\geq 1}\) such that \(k(H^{0}(mD)) = \text{Rat}(X)\) (see Example 4.7 and Proposition 4.8). Note that the norm \(\|\cdot\|_{mg}\) is a bounded function on \(H^{0}(mD)\). In fact, if \((s_{i})_{i=1}^{m}\) is a basis of \(H^{0}(mD)\), as the norm \(\|\cdot\|_{mg}\) is ultrametric, for any \((\lambda_{i})_{i=1}^{m} \in k^{m}\), one has
\[
\|\lambda_{1}s_{1} + \cdots + \lambda_{m}s_{m}\|_{mg} \leq \max_{i=1, \ldots, m} \|s_{i}\|_{mg}.
\]
We choose \(\varepsilon > 0\) such that \(t + \varepsilon < \lambda_{\text{ess}}(D, g)\). By (5.7) we obtain that there exist \(n \in \mathbb{N}_{\geq 1}\) and \(s \in H^{0}(nD)\) such that \(\|s\|_{mg} \leq e^{-n(t+\varepsilon)}\). Let \(d\) be a positive integer such that
\[
d > \frac{1}{n\varepsilon} \left(tm + \max_{i=1, \ldots, m} \ln \|s_{i}\|_{mg} \right).
\]

Then, for any \(s' \in H^{0}(mD)\), one has
\[
\|s'^{d}s'^{(dn+m)}g\| < e^{-(dn+m)t},
\]
which means that \(s'^{d}s' \in V_{dn+m}^{t}(D, g)\). Therefore we obtain \(k(V_{dn+m}^{t}(D, g)) = \text{Rat}(X)\) since it contains \(k(H^{0}(mD))\). The graded linear series \(V_{g}^{t}(D, g)\) is thus birational and (5.15) is proved. \(\square\)
Theorem 5.17. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) > 0\). Let \(\mathbb{P}_{(D,g)}\) be the Borel probability measure on \(\mathbb{R}\) such that
\[
\mathbb{P}_{(D,g)}([t, +\infty[) = \deg(D_g, t)
\]
for \(t < \lambda_{\text{ess}}(D, g)\) and \(\mathbb{P}_{(D,g)}([t, +\infty[) = 0\) for \(t \geq \lambda_{\text{ess}}(D, g)\). Then one has
\[
\frac{\hat{\text{vol}}_\chi(D, g)}{2\deg(D)} = \int_\mathbb{R} t \mathbb{P}_{(D,g)}(dt).
\]

Proof. — For any \(n \in \mathbb{N}\), let \(P_n\) be the Borel probability measure on \(\mathbb{R}\) such that
\[
P_n([t, +\infty[) = \frac{\dim_k(V^*_n(D, g))}{\dim_k(H^0(nD))}
\]
for \(t < \lambda_{\text{ess}}(D, g)\) and \(P_n([t, +\infty[) = 0\) for \(t \geq \lambda_{\text{ess}}(D, g)\). By Propositions 5.16 and 4.3, one has
\[
\lim_{n \to +\infty} P_n([t, +\infty[) = \mathbb{P}_{(D,g)}([t, +\infty[).
\]
Therefore the sequence of probability measures \((P_n)_{n \in \mathbb{N}}\) converges weakly to \(\mathbb{P}\). Moreover, if we write \(g\) as \(g_D + f\), where \(f\) is a continuous function on \(X^\text{an}\), then the supports of the probability measures \(P_n\) are contained in \([\inf f, g(\eta)]\).

Therefore one has
\[
\lim_{n \to +\infty} \int_\mathbb{R} t P_n(dt) = \int_\mathbb{R} t \mathbb{P}_{(D,g)}(dt).
\]
By \([5.3]\), for any \(n \in \mathbb{N}_{\geq 1}\) such that \(H^0(nD) \neq \{0\}\), one has
\[
\int_\mathbb{R} t P_n(dt) = \frac{\deg(H^0(nD), |\cdot|_{n^g})}{\dim_k(H^0(nD))}.
\]
Therefore we obtain \((5.17)\).

Remark 5.18. — Theorem 5.17 and Proposition 4.3 show that the sequence defining the \(\chi\)-volume function has a limit. More precisely, if \((D, g)\) is a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) > 0\), then one has
\[
\hat{\text{vol}}_\chi(D, g) = \lim_{n \to +\infty} \frac{\deg(H^0(nD), |\cdot|_{n^g})}{n^2/2}.
\]

Definition 5.19. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-Cartier divisor on \(X\) such that \(\deg(D) > 0\). We denote by \(G_{(D,g)} : [0, \deg(D)] \to \mathbb{R}\) the function sending \(u \in [0, \deg(D)]\) to
\[
\sup\{t \in \mathbb{R} : g(\eta) : \deg(D_g, t) > u\}.
\]
For any \(t < g(\eta_0)\) one has
\[
\mathbb{P}_{(D,g)}([G_{(D,g)}(\lambda), +\infty[) = \frac{\deg(D_g, G_{(D,g)}(\lambda))}{\deg(D)}.
\]
namely, the probability measure $\mathbb{P}_{(D,g)}$ coincides with the direct image of the uniform distribution on $[0, \deg(D)]$ by the map $G_{(D,g)}$.

Proposition 5.20. — Let (D, g) be a metrised \mathbb{R}-divisor such that $\deg(D) > 0$. For any $t \in \mathbb{R}$ such that $t < \lambda_{\text{ess}}(D, g)$, one has

$$D_{g,t} = \sup_{s \in \Gamma(D, g-t)_{\mathbb{R}}} (s^{-1}).$$

Proof. — Since $\deg(D) > 0$, the set $\Gamma(D)_{\mathbb{Q}}^\times$ is not empty. Let $\phi \in \Gamma(D)_{\mathbb{Q}}^\times$ and $(D', g') = (D, g) + (\phi)$. By (5.9), one has $\lambda_{\text{ess}}(D, g) = \lambda_{\text{ess}}(D', g')$. Moreover, the correspondence $s \mapsto s \cdot \phi^{-1}$ defines a bijection from $\Gamma(D, g-t)_{\mathbb{K}}^\times$ to $\Gamma(D', g-t)_{\mathbb{K}}^\times$ for $\mathbb{K} = \mathbb{Q}$ or \mathbb{R}. Therefore, without loss of generality, we may assume that D is effective. Moreover, by replacing g by $g - t$ and t by 0 we may assume that $\lambda_{\text{ess}}(D, g) > 0$ and $t = 0$.

It suffices to check that $D_{g,0} \geq (s^{-1})$ for any $s \in \Gamma(D, g)_{\mathbb{K}}^\times$. We write s as $s_1^{a_1} \cdots s_r^{a_r}$, where s_1, \ldots, s_r are elements of $\text{Rat}(X)_{\mathbb{Q}}^\times$, and a_1, \ldots, a_r are positive real numbers which are linearly independent over \mathbb{Q}. Assume that $\text{Supp}(s) = \{x_1, \ldots, x_n\}$. By Lemma 5.9 for any $i \in \{1, \ldots, r\}$, the support of (s_i) is contained in $\{x_1, \ldots, x_n\}$. For any $j \in \{1, \ldots, n\}$, one has

$$\text{ord}_{x_j}(D) + \sum_{i=1}^r \text{ord}_{x_j}(s_i) a_i \geq 0.$$

By Lemma 5.10 and Remark 5.11 there exists a sequence of vectors

$$\mathbf{a}^{(m)} = (a_1^{(m)}, \ldots, a_r^{(m)}), \quad m \in \mathbb{N}$$

in \mathbb{Q}^r such that

$$\text{ord}_{x_j}(D) + \sum_{i=1}^r \text{ord}_{x_j}(s_i) a_i^{(m)} \geq 0$$

and

$$\lim_{m \to +\infty} \mathbf{a}^{(m)} = (a_1, \ldots, a_r).$$

For any $m \in \mathbb{N}$, let

$$s^{(m)} = s_1^{a_1^{(m)}} \cdots s_r^{a_r^{(m)}}.$$

By (5.19) one has $s^{(m)} \in \Gamma(D)_{\mathbb{Q}}^\times$. Moreover, by (5.20) and the fact that $\|s\|_g < 1$, for sufficiently positive m, one has $\|s^{(m)}\|_g < 1$ and hence $D_{g,0} \geq ((s^{(m)})^{-1})$. By taking the limit when $m \to +\infty$, we obtain $D_{g,0} \geq (s^{-1})$. \qed
Corollary 5.21. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-Cartier divisor such that \(\deg(D) > 0\). For any \(a > 0\) one has
\[
\hat{\deg}_\chi(aD, ag) = a^2 \hat{\deg}_\chi(D, g).
\]

Proof. — By Proposition 5.20 one has
\[(aD)_{ag, at} = aD_{g, t}.
\]
By (5.17) one has
\[
\hat{\text{vol}}_\chi(aD, ag) = 2 \int_{-M}^{\lambda_{\text{ess}}(D, g)} \deg((aD)_{ag, at}) \, dt + 2aM \deg(D)
\]
\[
= 2a^2 \int_{-M}^{\lambda_{\text{ess}}(D, g)} \deg(D_{g, t}) \, dt + 2a^2 M \deg(D) = a^2 \hat{\deg}_\chi(D, g).
\]

Theorem 5.22. — Let \((D_1, g_1)\) and \((D_2, g_2)\) be metrised \(\mathbb{R}\)-Cartier divisors such that \(\deg(D_1) > 0\) and \(\deg(D_2) > 0\). One has
\[
\hat{\text{vol}}_\chi(D_1 + D_2, g_1 + g_2) \geq \frac{\hat{\text{vol}}_\chi(D_1, g_1)}{\deg(D_1)} + \frac{\hat{\text{vol}}_\chi(D_2, g_2)}{\deg(D_2)}
\]

Proof. — Let \(t_1\) and \(t_2\) be real numbers such that \(t_1 < \lambda_{\text{ess}}(D_1, g_2)\) and \(t_2 < \lambda_{\text{ess}}(D_2, g_2)\). For all \(s_1 \in \Gamma(D_1, g_1 - t_1)_\mathbb{R}^\times\) and \(s_2 \in \Gamma(D_2, g_2 - t_2)_\mathbb{R}^\times\) one has
\[s_1 s_2 \in \Gamma(D_1 + D_2, g_1 + g_2 - t_1 - t_2)_\mathbb{R}^\times.
\]
Therefore, by Proposition 5.20 one has
\[
(D_1 + D_2)_{g_1 + g_2, t_1 + t_2} \geq (D_1)_{g_1, t_1} + (D_2)_{g_2, t_2}.
\]
As a consequence, for any \((\lambda_1, \lambda_2) \in [0, \deg(D_1)] \times [0, \deg(D_2)]\), one has
\[
G_{(D_1+D_2, g_1+g_2)}(\lambda_1 + \lambda_2) \geq G_{(D_1, g_1)}(\lambda_1) + G_{(D_2, g_2)}(\lambda_2).
\]
Let \(U\) be a random variable which follows the uniform distribution on \([0, \deg(D_1)]\). Let \(f : [0, \deg(D_1)] \to [0, \deg(D_2)]\) be the linear map sending \(u\) to \(u \deg(D_2) / \deg(D_1)\). By Theorem 5.17 one has
\[
\hat{\text{vol}}_\chi(D_1 + D_2, g_1 + g_2) / (2\deg(D_1) + \deg(D_2)) = \mathbb{E}[G_{(D_1+D_2, g_1+g_2)}(U + f(U))]
\]
since \(U + f(U) \) follows the uniform distribution on \([0, \deg(D_1) + \deg(D_2)]\). By (3.22) we obtain
\[
\frac{\vol_\chi(D_1 + D_2, g_1 + g_2)}{2(\deg(D_1) + \deg(D_2))} \geq \mathbb{E}[G_{(D_1, g_1)}(U)] + \mathbb{E}[G_{(D_2, g_2)}(f(U))]
\]
\[
\geq \frac{\vol_\chi(D_1, g_1)}{2 \deg(D_1)} + \frac{\vol_\chi(D_2, g_2)}{2 \deg(D_2)}.
\]

The theorem is thus proved.

Finally let us consider other properties of \(\vol_\chi(\cdot) \).

Proposition 5.23. — Let \(D \) be an \(\mathbb{R} \)-divisor on \(X \) such that \(\deg(D) \geq 0 \), and \(g \) and \(g' \) be Green functions of \(D \). Then one has the following:

1. \(\deg(D) \min_{\xi \in X^{an}} \{ \varphi_g(\xi) \} \leq \vol_\chi(D, g) \leq \deg(D) \max_{\xi \in X^{an}} \{ \varphi_g(\xi) \} \).
2. \(|\vol_\chi(D, g) - \vol_\chi(D, g')| \leq 2 \| \varphi_g - \varphi_{g'} \|_{\text{sup}} \deg(D) \).
3. If \(\deg(D) = 0 \), then \(\vol_\chi(D, g) = 0 \).

Proof. — (1) If we set \(m = \min_{\xi \in X^{an}} \{ \varphi_g(\xi) \} \) and \(M = \max_{\xi \in X^{an}} \{ \varphi_g(\xi) \} \), then \(g_D + m \leq g \leq g_D + M \).

Note that \(\vol_\chi(D, g_D) = 0 \), so that the assertion follows from Propositions 5.13 and 5.14.

(2) If we set \(c = \| \varphi_g - \varphi_{g'} \|_{\text{sup}} \), then \(g - c \leq g' \leq g + c \), so that (2) follows from Propositions 5.13 and 5.14.

(3) is a consequence of (1).

Proposition 5.24. — Let \(V \) be a finite-dimensional vector subspace of \(\text{Div}_\mathbb{R}(X) \). Then \(\vol_\chi(\cdot) \) is continuous on \(V \).

Proof. — We denote by \(V_+ \) the subset of \((D, g) \) such that \(\deg(D) > 0 \). The function \(V_+ \to \mathbb{R} \) given by \((D, g) \mapsto \vol_\chi(D, g) / \deg(D) \) is concave by Corollary 5.21 and Theorem 5.22 and hence it is continuous on \(V_+ \).

We fix \((D, g) \in V \). If \(\deg(D) < 0 \), then there exists a neighbourhood \(U \) of \((D, g) \) in \(V \) such that \(\deg(D') < 0 \) for any \((D', g') \in U \). Hence \(\vol_\chi(\cdot) \) vanishes on \(U \). If \(\deg(D) > 0 \), then the above observation shows the continuity at \((D, g) \), so that we may assume that \(\deg(D) = 0 \). Then, by (3), \(\vol_\chi(D, g) = 0 \). Therefore it is sufficient to show that
\[
\lim_{(\varepsilon_1, \ldots, \varepsilon_r, n) \to (0, \ldots, 0)} \vol_\chi(\varepsilon_1 n(D_1, g_1) + \cdots + \varepsilon_r n(D_r, g_r) + (D, g)) = 0,
\]
where \((D_1, g_1), \ldots, (D_r, g_r) \in V\). By using (1),
\[
\left| \hat{\text{vol}}_{\chi}(\varepsilon_1, n(D_1, g_1) + \cdots + \varepsilon_r, n(D_r, g_r) + (D, g)) \right| \\
\leq 2\|\varepsilon_1 \varphi_{g_1} + \cdots + \varepsilon_r \varphi_{g_r} + \varphi_g\|_{\sup} \deg(\varepsilon_1 D_1 + \cdots + \varepsilon_r D_r + D).
\]
On the other hand, note that
\[
\lim_{\varepsilon_1, n, \ldots, \varepsilon_r, n \to (0, \ldots, 0)} \left\| \varepsilon_1 \varphi_{g_1} + \cdots + \varepsilon_r \varphi_{g_r} + \varphi_g \right\|_{\sup} = \|\varphi_g\|_{\sup},
\]
and
\[
\lim_{\varepsilon_1, n, \ldots, \varepsilon_r, n \to (0, \ldots, 0)} \deg(\varepsilon_1 D_1 + \cdots + \varepsilon_r D_r + D) = \deg(D) = 0.
\]
Thus the assertion follows.

5.5. Volume function. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\). We define the volume of \((D, g)\) as
\[
\hat{\text{vol}}(D, g) := \lim_{n \to +\infty} \text{deg}_+(nD, ng) / n^2 / 2.
\]
Note that this function is analogous to the arithmetic volume function introduced in [22].

Proposition 5.25. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor such that \(\deg(D) > 0\). Let \(\mathbb{P}(D, g)\) be the Borel probability measure on \(\mathbb{R}\) defined in Theorem 5.17. Then one has
\[
\hat{\text{vol}}(D, g) = \int_{\mathbb{R}} \max\{t, 0\} \mathbb{P}_{(D, g)}(dt),
\]
\[
\hat{\text{vol}}(D, g) = \int_0^{+\infty} \deg(D_{g,t}) dt.
\]
Proof. — We keep the notation introduced in the proof of Theorem 5.17. By (5.4), for any \(n \in \mathbb{N}_{\geq 1}\) one has
\[
\text{deg}_+(H^0(nD), \|\cdot\|_{ng}) / \text{dim}_k(H^0(nD)) = \int_{\mathbb{R}} \max\{t, 0\} \mathbb{P}_{n}(dt).
\]
By passing to limit when \(n \to +\infty\), we obtain the first equality. The second equality comes from the first one and [5.16] by integration by part.

6. Positivity

The purpose of this section is to discuss several positivity conditions of metrised \(\mathbb{R}\)-divisors. We fix in this section a field \(k\) equipped with the trivial absolute value \(|\cdot|\) and a regular integral projective curve \(X\) sur Spec \(k\).
6.1. Bigness and pseudo-effectivity. — Let (D, g) be a metrised \mathbb{R}-divisor on X. If $\hat{\text{vol}}(D, g) > 0$, we say that (D, g) is big; if for any big metrised \mathbb{R}-divisor (D_0, g_0) on X, the metrised \mathbb{R}-divisor $(D + D_0, g + g_0)$ is big, we say that (D, g) is pseudo-effective.

Remark 6.1. — Let (D, g) be a metrised \mathbb{R}-divisor. Let $n \in \mathbb{N}$, $n \geq 1$. If $H^0(nD) \neq \{0\}$, then $\Gamma(D)^\times_{\mathbb{Q}}$ is not empty. Moreover, for any non-zero element $s \in H^0(nD)$, one has

$$-\ln\|s\|_g \leq n \lambda_{\text{ess}}(D, g)$$

by (5.7), (5.6) and Proposition 5.8. In particular, one has

$$\deg_+(H^0(nD), \|\cdot\|_{ng}) \leq n \max\{\lambda_{\text{ess}}(D, g), 0\} \dim_k(H^0(nD)).$$

Therefore, if $\hat{\text{vol}}(D, g) > 0$, then one has $\deg(D) > 0$ and $\lambda_{\text{ess}}(D, g) > 0$. Moreover, in the case where (D, g) is big, one has

$$\frac{\hat{\text{vol}}(D, g)}{2\deg(D)} \leq \lambda_{\text{ess}}(D, g).$$

Proposition 6.2. — Let (D, g) be a metrised divisor on X. The following assertions are equivalent.

1. (D, g) is big.
2. $\deg(D) > 0$ and $\lambda_{\text{ess}}(D, g) > 0$
3. $\deg(D) > 0$ and there exists $s \in \Gamma(D)^\times_{\mathbb{Q}}$ such that $\|s\|_g < 1$.
4. $\deg(D) > 0$ and there exists $s \in \Gamma(D)^\times_{\mathbb{Q}}$ such that $\|s\|_g < 1$.

Proof. — “(1) \iff (2)” We have seen in the above Remark that, if (D, g) is big, then $\deg(D) > 0$ and $\lambda_{\text{ess}}(D, g) > 0$. The converse comes from the equality

$$\hat{\text{vol}}(D, g) = \int_0^{+\infty} \deg(D_{g,t}) \, dt.$$

proved in Proposition 5.25. Note that the function $t \mapsto \deg(D_{g,t})$ is decreasing. Moreover, by Proposition 5.16 one has $\deg(D_{g,t}) > 0$ once $t < \lambda_{\text{ess}}(D, g)$.

Therefore, if $\lambda_{\text{ess}}(D, g) > 0$, then $\hat{\text{vol}}(D, g) > 0$.

“(2)\iff(3)” comes from the definition of $\lambda_{\text{ess}}(D, g)$.

“(2)\iff(4)” comes from Proposition 5.12.

Corollary 6.3. — (1) If (D, g) is a big metrised \mathbb{R}-divisor on X, then, for any positive real number ε, the metrised \mathbb{R}-divisor $\varepsilon(D, g) = (\varepsilon D, \varepsilon g)$ is big.

(2) If (D_1, g_1) and (D_2, g_2) are two metrised \mathbb{R}-divisor on X which are big, then $(D_1 + D_2, g_1 + g_2)$ is also big.
The first assertion follows from Proposition \(6.2\) and the equalities \(\deg(\varepsilon D) = \varepsilon \deg(D)\) and \(\lambda_{\text{ess}}(\varepsilon(D, g)) = \varepsilon \lambda_{\text{ess}}(D, g)\).

We then prove the second assertion. Since \((D_1, g_1)\) and \((D_2, g_2)\) are big, one has \(\deg(D_1) > 0, \deg(D_2) > 0, \lambda_{\text{ess}}(D_1, g_1) > 0, \lambda_{\text{ess}}(D_2, g_2) > 0\). Therefore, \(\deg(D_1 + D_2) = \deg(D_1) + \deg(D_2) > 0\). Moreover, by \((5.5)\) one has

\[
\lambda_{\text{ess}}(D_1 + D_2, g_1 + g_2) \geq \lambda_{\text{ess}}(D_1, g_1) + \lambda_{\text{ess}}(D_2, g_2) > 0.
\]

Therefore \((D_1 + D_2, g_1 + g_2)\) is big. \(\square\)

Corollary 6.4. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\) such that \(\deg(D) > 0\). Then \((D, g)\) is pseudo-effective if and only if \(\lambda_{\text{ess}}(D, g) \geq 0\).

Proof. — Suppose that \((D, g)\) is pseudo-effective. Since \(\deg(D) > 0\), by \((6.12)\) there exists \(c > 0\) such that \(\lambda_{\text{ess}}(D, g + c) > 0\) (and thus \((D, g + c)\) is big by Proposition \(6.2\)). Hence for any \(\varepsilon \in [0, 1[\),

\[
(1 - \varepsilon)(D, g) + \varepsilon(D, g + c) = (1 - \varepsilon)((D, g) + \frac{\varepsilon}{1 - \varepsilon}(D, g + c))
\]

is big. Therefore,

\[
\lambda_{\text{ess}}((1 - \varepsilon)(D, g) + \varepsilon(D, g + c)) = \lambda_{\text{ess}}(D, g + \varepsilon c) = \lambda_{\text{ess}}(D, g) + \varepsilon c > 0.
\]

Since \(\varepsilon \in [0, 1[\) is arbitrary, we obtain \(\lambda_{\text{ess}}(D, g) \geq 0\).

In the following, we assume that \(\lambda_{\text{ess}}(D, g) \geq 0\) and we prove that \((D, g)\) is pseudo-effective. For any big metrised \(\mathbb{R}\)-divisor \((D_1, g_1)\) one has

\[
\deg(D + D_1) = \deg(D) + \deg(D_1) > 0
\]

and, by \((5.5)\),

\[
\lambda_{\text{ess}}(D + D_1, g + g_1) \geq \lambda_{\text{ess}}(D, g) + \lambda_{\text{ess}}(D_1, g_1) > 0.
\]

Therefore \((D + D_1, g + g_1)\) is big. \(\square\)

Proposition 6.5. — Let \((D, g)\) be a metrised \(\mathbb{R}\)-divisor on \(X\) which is pseudo-effective. Then one has \(\deg(D) \geq 0\) and \(g(\eta_0) \geq 0\).

Proof. — Let \((D_1, g_1)\) be a big metrised \(\mathbb{R}\)-divisor. For any \(\varepsilon > 0\), the metrised \(\mathbb{R}\)-divisor \((D + \varepsilon D_1, g + \varepsilon g_1)\) is big. Therefore, by Proposition \(6.2\) one has

\[
\deg(D + \varepsilon D_1) = \deg(D) + \varepsilon \deg(D_1) > 0.
\]

Moreover, by Proposition \(6.2\) the inequality \((5.6)\) and Proposition \(5.8\) one has

\[
g(\eta_0) + \varepsilon g_1(\eta_0) \geq \lambda_{\text{ess}}(D + \varepsilon D_1, g + \varepsilon g_1) > 0.
\]

Since \(\varepsilon > 0\) is arbitrary, we obtain \(\deg(D) \geq 0\) and \(g(\eta_0) \geq 0\). \(\square\)
6.2. Criteria of effectivity up to \mathbb{R}-linear equivalence. — Let (D, g) be a metrised \mathbb{R}-divisor on X. We say that (D, g) is effective if D is effective and g is a non-negative function. We say that two metrised \mathbb{R}-divisor are \mathbb{R}-linear equivalent if there exists an element $\varphi \in \text{Rat}(X)_{\mathbb{R}}^\times$ such that

$$(D_2, g_2) = (D_1, g_1) + (\varphi).$$

By Proposition 6.2, if (D, g) is big, then it is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor.

Definition 6.6. — Let (D, g) be a metrised \mathbb{R}-divisor on X. We denote by $\mu_{\text{inf}}(g)$ the value

$$\sum_{x \in X^{(1)}} \mu_{\text{inf}, x}(g)[k(x) : k] \in \mathbb{R} \cup \{-\infty\},$$

where by definition (see §3.5)

$$\mu_{\text{inf}, x}(g) = \inf_{\xi \in [0, x_0]} \frac{g(\xi)}{t(\xi)}.$$

Note that

$$\mu_{\text{inf}, x}(g) \leq \lim_{\xi \to x_0} \frac{g(\xi)}{t(\xi)} = \text{ord}_x(D).$$

Therefore,

$$\sum_{x \in X^{(1)}} \mu_{\text{inf}, x}(g)[k(x) : k] = \deg(D).$$

Moreover, if D_1 is an \mathbb{R}-divisor and g_{D_1} is the canonical Green function associated with D_1, then one has

$$\forall x \in X^{(1)}, \quad \mu_{\text{inf}, x}(g + g_{D_1}) = \mu_{\text{inf}, x}(g) + \text{ord}_x(D_1)$$

and hence

$$\mu_{\text{inf}}(g + g_{D_1}) = \mu_{\text{inf}}(g) + \deg(D_1).$$

The invariant $\mu_{\text{inf}}(\cdot)$ is closely related to the effectivity of a metrised \mathbb{R}-divisor.

Proposition 6.7. — Let (D, g) be a metrised \mathbb{R}-divisor. Assume that there exists an element $\phi \in \Gamma(D)_{\mathbb{R}}^\times$ such that $g + g(\phi) \geq 0$. Then for all but a finite number of $x \in X^{(1)}$ one has $\mu_{\text{inf}, x}(g) = 0$. Moreover, $\mu_{\text{inf}}(g) \geq 0$.

Proof. — By (6.3), for any $x \in X^{(1)}$ one has

$$\mu_{\text{inf}, x}(g + g(\phi)) = \mu_{\text{inf}, x}(g) + \text{ord}_x(\phi).$$

Therefore, for all but a finite number of $x \in X^{(1)}$, one has

$$\mu_{\text{inf}, x}(g) = \mu_{\text{inf}, x}(g + g(\phi)) \geq 0.$$
Note that $\mu_{\text{inf},x}(g) \leq \text{ord}_x(D)$ for any $x \in X^{(1)}$, and hence $\mu_{\text{inf},x}(g) \leq 0$ for $x \in X^{(1)} \setminus \text{Supp}(D)$. We then deduce that $\mu_{\text{inf},x}(g)$ vanishes for all but finitely many $x \in X^{(1)}$. Moreover, by (5.4) one has

$$\mu_{\text{inf}}(g) = \mu_{\text{inf}}(g + g(\phi)) \geq 0.$$

Proposition 6.8. — Let (D, g) be a metrised \mathbb{R}-divisor on X.

1. (D, g) is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor if and only if there exists $s \in \Gamma(D)_{\mathbb{R}}^\infty$ with $\|s\|_g \leq 1$.
2. If (D, g) is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor, then (D, g) is pseudo-effective.
3. Assume that $\mu_{\text{inf},x}(g) > 0$ for all but finitely many $x \in X^{(1)}$ and $\mu_{\text{inf}}(g) > 0$, then (D, g) is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor.
4. Assume that $\mu_{\text{inf},x}(g) > 0$ for all but finitely many $x \in X^{(1)}$, and $\mu_{\text{inf}}(g) = 0$, then (D, g) is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor if and only if the \mathbb{R}-divisor $\sum_{x \in X^{(1)}} \mu_{\text{inf},x}(g)x$ is principal.

Proof. — (1) Let s be an element of $\Gamma(D)_{\mathbb{R}}^\infty$, one has

$$(D, g) + (s) = (D + (s), g(s) + g).$$

By definition, $D + (s)$ is effective. Moreover,

$$-\ln\|s\|_g = \inf(g(s) + g).$$

Therefore, $\|s\|_g \leq 1$ if and only if $g(s) + g \geq 0$.

(2) Since there exists $s \in \Gamma(D)_{\mathbb{R}}^\infty$ such that $\|s\|_g \leq 1$, one has $\lambda_{\text{ess}}(D, g) \geq 0$ and $\deg(D) \geq 0$. Let (D_1, g_1) be a big metrised \mathbb{R}-divisor. By Proposition 6.2 one has $\deg(D) > 0$ and $\lambda_{\text{ess}}(D, g) > 0$. Therefore,

$$\deg(D + D_1) = \deg(D) + \deg(D_1) > 0,$$

and, by Proposition 5.6

$$\lambda_{\text{ess}}(D + D_1, g + g_1) \geq \lambda_{\text{ess}}(D, g) + \lambda_{\text{ess}}(D_1, g_1) > 0.$$

Still by Proposition 6.2 we obtain that $(D + D_1, g + g_1)$ is big.

(3) Let S be a finite subset of $X^{(1)}$ which contains $\text{Supp}(D)$ and all $x \in X^{(1)}$ such that $\mu_{\text{inf},x}(g) < 0$, and which satisfies the inequality

$$\sum_{x \in S} \mu_{\text{inf},x}(g)[k(x) : k] > 0.$$
Since the \mathbb{R}-divisor $\sum_{x \in S} \mu_{\inf,x}(g)x$ has a positive degree, there exists an element φ of $\text{Rat}(X)_{\mathbb{R}}$ such that

$$\text{ord}_x(\varphi) \geq \begin{cases} -\mu_{\inf,x}(g), & \text{if } x \in S, \\ 0, & \text{if } x \in X^{(1)} \setminus S. \end{cases}$$

(6.5)

Note that $\mu_{\inf,x}(g) \leq \text{ord}_x(D)$ for any $x \in X^{(1)}$. Hence $\varphi \in \Gamma(D)^\times_{\mathbb{R}}$. Moreover, by (6.5) one has

$$g + g(\varphi) \geq 0.$$

Hence $(D, g) + (\widehat{\varphi})$ is effective.

(4) Note that $\mu_{\inf,x}(g) \leq \text{ord}_x(D) = 0$ for any $x \in X^{(1)} \setminus \text{Supp}(D)$, we obtain that $\mu_{\inf,x}(g) = 0$ for all but finitely many $x \in X^{(1)}$. Therefore $\sum_{x \in X^{(1)}} \mu_{\inf,x}(g)x$ is well-defined as an \mathbb{R}-divisor on X.

Assume that the \mathbb{R}-divisor $\sum_{x \in S} \mu_{\inf,x}(g)x$ is principal, namely of the form (φ) for some $\varphi \in \text{Rat}(X)_{\mathbb{R}}$. Then the metrised \mathbb{R}-divisor $(D, g) - (\widehat{\varphi})$ is effective. Conversely, if ϕ is an element of $\text{Rat}(X)_{\mathbb{R}}$ which is different from $-\sum_{x \in X^{(1)}} \mu_{\inf,x}(g)x$, then there exists $x \in X^{(1)}$ such that $\text{ord}_x(\phi) < -\mu_{\inf,x}(g)$ since

$$\sum_{x \in X^{(1)}} \text{ord}_x(\phi)[k(x) : k] = - \sum_{x \in X^{(1)}} \mu_{\inf,x}(g)[k(x) : k] = 0.$$

Therefore the function $g + g(\phi)$ can not be non-negative.

Combining Propositions 6.7 and 6.8, we obtain the following criterion of effectivity up to \mathbb{R}-linear equivalence for metrised \mathbb{R}-divisors.

Theorem 6.9. Let (D, g) be a metrised \mathbb{R}-divisor on X. Then (D, g) is \mathbb{R}-linearly equivalent to an effective metrised \mathbb{R}-divisor if and only if $\mu_{\inf,x}(g) = 0$ for all but finitely many $x \in X^{(1)}$ and if one of the following conditions holds:

(a) $\mu_{\inf}(g) > 0$,
(b) $\sum_{x \in X^{(1)}} \mu_{\inf,x}(g)x$ is a principal \mathbb{R}-divisor on X.

6.3. Criterion of pseudo-effectivity. By using the criteria of effectivity up to \mathbb{R}-linear equivalence in the previous subsection, we prove a numerical criterion of pseudo-effectivity in terms of the invariant $\mu_{\inf}(\cdot)$.

Lemma 6.10. Let (D, g) be a metrised \mathbb{R}-divisor. Assume that $(D, g + \varepsilon)$ is pseudo-effective for any $\varepsilon > 0$. Then (D, g) is also pseudo-effective.
Proof. — Let \((D_1, g_1)\) be a big metrised \(\mathbb{R}\)-divisor. By Proposition 6.2 one has \(\deg(D_1) > 0\) and \(\lambda_{\text{ess}}(D_1, g_1) > 0\). Let \(\varepsilon\) be a positive number such that \(\varepsilon < \lambda_{\text{ess}}(D_1, g_1)\). By (5.12) one has
\[
\lambda_{\text{ess}}(D_1, g_1 - \varepsilon) = \lambda_{\text{ess}}(D_1, g_1) - \varepsilon > 0.
\]
Hence \((D_1, g_1 - \varepsilon)\) is big (by Proposition 6.2). Therefore,
\[
(D, g) + (D_1, g_1) = (D + D_1, g + g_1) = (D, g + \varepsilon) + (D_1, g_1 - \varepsilon)
\]
is big.

Proposition 6.11. — A metrised \(\mathbb{R}\)-divisor \((D, g)\) on \(X\) is pseudo-effective if and only if \(\mu_{\text{inf}}(g) \geq 0\).

Proof. — “\(\Leftarrow\)”: For any \(\varepsilon > 0\), one has \(\mu_{\text{inf}}(g + \varepsilon) > 0\). By Theorem 6.9 \((D, g + \varepsilon)\) is \(\mathbb{R}\)-linearly equivalent to an effective metrised \(\mathbb{R}\)-divisor, and hence is pseudo-effective (see Proposition 6.8 (2)). By Lemma 6.10, we obtain that \((D, g)\) is pseudo-effective.

“\(\Rightarrow\)”: We begin with the case where \(\deg(D) > 0\). If \((D, g)\) is pseudo-effective, then by Corollary 6.3 one has \(\lambda_{\text{ess}}(D, g) \geq 0\). Hence \((D, g + \varepsilon)\) is big for any \(\varepsilon > 0\) (by (5.12) and Proposition 6.2). In particular, one has \(\mu_{\text{inf}}(g + \varepsilon) \geq 0\) for any \(\varepsilon > 0\). For each \(x \in X^{(1)}\), the function \((\varepsilon > 0) \mapsto \mu_{\text{inf}, x}(g + \varepsilon)\) is decreasing and bounded from below by \(\mu_{\text{inf}, x}(g)\). Moreover, for any \(\xi \in \eta_0, x_0\) one has
\[
\inf_{\varepsilon > 0} \frac{g(\xi) + \varepsilon}{t(\xi)} = \frac{g(\xi)}{t(\xi)}
\]
and hence
\[
\inf_{\varepsilon > 0} \mu_{\text{inf}, x}(g + \varepsilon) \leq \frac{g(\xi)}{t(\xi)}.
\]
Therefore we obtain
\[
\inf_{\varepsilon > 0} \mu_{\text{inf}, x}(g + \varepsilon) = \mu_{\text{inf}, x}(g).
\]
By the monotone convergence theorem we deduce that
\[
\mu_{\text{inf}}(g) = \inf_{\varepsilon > 0} \mu_{\text{inf}}(g + \varepsilon) \geq 0.
\]

We now treat the general case. Let \(y\) be a closed point of \(X\). We consider \(y\) as an \(\mathbb{R}\)-divisor on \(X\) and denote it by \(D_y\). Let \(g_y\) be the canonical Green function associated with \(D_y\). As \(D_y\) is effective and \(g_y \geq 0\), we obtain that \((D_y, g_y)\) is effective and hence pseudo-effective. Therefore, for any \(\delta > 0\),
\[
(D, g) + \delta(D_y, g_y) = (D + \delta D_y, g + \delta g_y)
\]
is pseudo-effective. Moreover, one has \(\deg(D + \delta D_y) > 0\). Therefore, by what we have shown above, one has
\[
\mu_{\text{inf}}(g + \delta g_y) = \mu_{\text{inf}}(g) + \delta[k(y) : k] \geq 0.
\]
Since $\delta > 0$ is arbitrary, one obtains $\mu_{\text{inf}}(g) \geq 0$.

6.4. Positivity of Green functions.

Let D be an \mathbb{R}-divisor on X such that $\Gamma(D)^{\times}_\mathbb{R}$ is not empty. For any Green function g of D, we define a map

$$\tilde{g} : X^{\text{an}} \setminus \{x_0 : x \in X^{(1)}\} \rightarrow \mathbb{R}$$

as follows. For any $\xi \in X^{\text{an}} \setminus \{x_0 : x \in X^{(1)}\}$, let

$$\tilde{g}(\xi) := \sup_{s \in \Gamma(D)^{\times}_\mathbb{R}} \left(\ln |s|_0(\xi) - \ln \|s\|_g \right).$$

Proposition 6.12. Let D be an \mathbb{R}-divisor on X such that $\Gamma(D)^{\times}_\mathbb{Q}$ is not empty. For any $\xi \in X^{\text{an}} \setminus \{x_0 : x \in X^{(1)}\}$ one has

$$\tilde{g}(\xi) = \sup_{s \in \Gamma(D)^{\times}_\mathbb{Q}} \left(\ln |s|_0(\xi) - \ln \|s\|_g \right).$$

Proof. Without loss of generality, we may assume that D is effective. For clarifying the presentation, we denote temporarily by

$$\tilde{g}_0(\xi) := \sup_{s \in \Gamma(D)^{\times}_\mathbb{Q}} \left(\ln |s|_0(\xi) - \ln \|s\|_g \right).$$

Let s be an element of $\Gamma(D)^{\times}_\mathbb{R}$, which is written in the form $s_1^{a_1} \cdots s_r^{a_r}$, where s_1, \ldots, s_r are elements of $\text{Rat}(X)^{\times}_\mathbb{Q}$ and a_1, \ldots, a_r are positive real numbers, which are linearly independent over \mathbb{Q}. Let $\{x_1, \ldots, x_n\}$ be the support of (s). By Lemma 5.9 for any $i \in \{1, \ldots, r\}$, the support of (s_i) is contained in $\{x_1, \ldots, x_n\}$. Since s belongs to $\Gamma(D)^{\times}_\mathbb{Q}$, for $j \in \{1, \ldots, n\}$, one has

$$a_1 \text{ord}_{x_j}(s_1) + \cdots + a_r \text{ord}_{x_j}(s_r) + \text{ord}_{x_j}(D) \geq 0.$$

By Lemma 5.10 and Remark 5.11 there exist a sequence $(\varepsilon^{(m)})_{m \in \mathbb{N}}$ in $\mathbb{Q}_{>0}$ and a sequence

$$\delta^{(m)} = (\delta_1^{(m)}, \ldots, \delta_r^{(m)}), \quad m \in \mathbb{N}$$

of elements of $\mathbb{R}_{>0}$ which satisfy the following conditions

1. the sequence $(\varepsilon^{(m)})_{m \in \mathbb{N}}$ converges to 0,
2. the sequence $(\delta^{(m)})_{m \in \mathbb{N}}$ converges to $(0, \ldots, 0),
3. if we denote by $u^{(m)}$ the element

$$s_1^{\delta_1^{(m)}} \cdots s_r^{\delta_r^{(m)}}$$

in $\text{Rat}(X)^{\times}_\mathbb{R}$, one has $u^{(m)} \in \Gamma(\varepsilon^{(m)}D)^{\times}_\mathbb{R}$ and

$$s^{(m)} := (su^{(m)})(1+\varepsilon^{(m)})^{-1} \in \text{Rat}(X)^{\times}_\mathbb{Q},$$

and hence it belongs to $\Gamma(D)^{\times}_\mathbb{Q}$.
Note that one has
\[
\|s u^{(m)}\|_{1+(\varepsilon^{(m)})g} \leq \|s\|_g \cdot \|u^{(m)}\|_{\varepsilon^{(m)}g}.
\]
Since \(u^{(m)} \in \Gamma(\varepsilon^{(m)}D)_{\mathbb{R}}^\times\), one has
\[
-\ln\|u^{(m)}\|_{\varepsilon^{(m)}} = \inf (\varepsilon^{(m)} g + \sum_{i=1}^r \delta_i^{(m)} g_i(s_i)) \geq \varepsilon^{(m)} \inf \varphi_g.
\]
Therefore,
\[
-\ln\|s\|_g \leq -(1 + \varepsilon^{(m)}) \ln\|s^{(m)}\|_g - \varepsilon^{(m)} \inf \varphi_g.
\]
Thus
\[
\ln |s|_g - \ln\|s\|_g = (1 + \varepsilon^{(m)}) \ln |s^{(m)}|_g - \sum_{i=1}^r \delta_i^{(m)} \ln |s_i|_g - \ln\|s\|_g \leq (1 + \varepsilon^{(m)}) \tilde{g}_0(\xi) - \sum_{i=1}^r \delta_i^{(m)} \ln |s_i|_g - \varepsilon^{(m)} \inf \varphi_g.
\]
Taking the limit when \(m \to +\infty\), we obtain
\[
\ln |s|_g - \ln\|s\|_g \leq \tilde{g}_0(\xi).
\]
The proposition is thus proved. \(\square\)

Proposition 6.13. — Let \(D\) be an \(\mathbb{R}\)-divisor on \(X\) such that \(\Gamma(D)_{\mathbb{R}}^\times\) is not empty. For any Green function \(g\) of \(D\), the function \(\tilde{g}\) extends on \(X^\times\) to a convex Green function of \(D\) which is bounded from above by \(g\).

Proof. — We first show that \(\tilde{g}\) is bounded from above by \(g\). For any \(s \in \Gamma(D)_{\mathbb{R}}^\times\) one has
\[
\forall \xi \in X^\times, \quad -\ln\|s\|_g = \inf (g(s) + g) \leq g(\xi) - \ln |s|_g,
\]
so that
\[
\forall \xi \in X^\times, \quad \ln |s|_g - \ln\|s\|_g \leq g(\xi).
\]
It remains to check that \(\tilde{g}\) extends by continuity to a convex Green function of \(D\).

We first treat the case where \(\deg(D) = 0\). By Remark 4.5 we obtain that \(\Gamma(D)_{\mathbb{R}}^\times\) contains a unique element \(s\) and one has \(D = -(s)\). Therefore
\[
\tilde{g} = \ln |s| - \ln\|s\|_g = gD - \ln\|s\|_g,
\]
which clearly extends to a convex Green function of \(D\).

In the following, we assume that \(\deg(D) > 0\). Let \(x\) be an element of \(X^{(1)}\).

The function \(\tilde{g} \circ \varepsilon_x|_{\mathbb{R}_{>0}}\) can be written as
\[
(t \in \mathbb{R}_{>0}) \mapsto \sup_{s \in \Gamma(D)_{\mathbb{R}}^\times} -t \ord_x(s) - \ln\|s\|_g,
\]
which is the supremum of a family of affine functions on $t > 0$. Therefore \(\tilde{g} \circ \xi_x|_{\mathbb{R}_{>0}} \) is a convex function on \(\mathbb{R}_{>0} \). This expression also shows that, for any \(s \in \Gamma(D)_{\mathbb{R}}^\times \), one has
\[
\liminf_{\xi \to x_0} \frac{\tilde{g}(\xi)}{t(\xi)} \geq \text{ord}_x(s^{-1}).
\]
By Proposition 4.4 (see also Remark 4.5), one has
\[
\liminf_{\xi \to x_0} \frac{\tilde{g}(\xi)}{t(\xi)} \geq \sup_{s \in \Gamma(D)_{\mathbb{R}}^\times} \text{ord}_x(s^{-1}) = \text{ord}_x(D).
\]
Moreover, since \(\tilde{g} \leq g \) and since \(g \) is a Green function of \(D \), one has
\[
\limsup_{\xi \to x_0} \frac{\tilde{g}(\xi)}{t(\xi)} \leq \lim_{\xi \to x_0} \frac{g(\xi)}{t(\xi)} = \text{ord}_x(D).
\]
Therefore one has
\[
\lim_{\xi \to x_0} \frac{\tilde{g}(\xi)}{t(\xi)} = \text{ord}_x(D).
\]
The proposition is thus proved.

Definition 6.14. — Let \((D, g)\) be a metrised \(\mathbb{R} \)-divisor on \(X \) such that \(\Gamma(D)_{\mathbb{R}}^\times \) is not empty. We call \(\tilde{g} \) the plurisubharmonic envelope of the Green function \(g \). In the case where the equality \(g = \tilde{g} \) holds, we say that the Green function \(g \) is plurisubharmonic. Note that \(\tilde{g} \) is bounded from above by the convex envelope \(g \).

Remark 6.15. — If we set \(\varphi = g - \tilde{g} \), then \(\varphi \) is a non-negative continuous function on \(X^{an} \), so that, in some sense, the decomposition \((D, g) = (D, \tilde{g}) + (0, \varphi)\) gives rise to a Zariski decomposition of \((D, g)\) on \(X \).

Theorem 6.16. — Let \((D, g)\) be an adelic \(\mathbb{R} \)-Cartier divisor on \(X \) such that \(\Gamma(D)_{\mathbb{R}}^\times \) is not empty. Then \(\tilde{g}(\eta_0) = g(\eta_0) \) if and only if \(\mu_{\text{inf}}(g - g(\eta_0)) \geq 0 \). Moreover, in the case where these equivalent conditions are satisfied, \(\tilde{g} \) identifies with the convex envelop \(\tilde{g} \) of \(g \).

Proof. — **Step 1:** We first treat the case where \(\deg(D) = 0 \). In this case \(\Gamma(D)_{\mathbb{R}}^\times \) contains a unique element \(s \) (with \(D = -s(s) \)) and one has (see the proof of Proposition 6.13)
\[
\tilde{g} = gD - \ln\|s\|_g.
\]
Hence
\[
\tilde{g}(\eta_0) = -\ln\|s\|_g = \inf(g(s) + g) = \inf \varphi_g.
\]
Note that \(g(\eta_0) = \varphi_g(\eta_0) \). Therefore, the equality \(\tilde{g}(\eta_0) = g(\eta_0) \) holds if and only if \(\varphi_g \) attains its minimal value at \(\eta_0 \), or equivalently
\[
\forall x \in X^{(1)}, \quad \mu_{\text{inf}, x}(g - g(\eta_0)) = \text{ord}_x(g).
\]
In particular, if \(\tilde{g}(\eta_0) = g(\eta_0) \), then
\[
\mu_{\inf}(g - g(\eta_0)) = \sum_{x \in X(1)} \text{ord}_x(g)[k(x) : k] = 0.
\]
Conversely, if \(\mu_{\inf}(g - g(\eta_0)) \geq 0 \), then by (6.2) one obtains that
\[
\mu_{\inf}(g - g(\eta_0)) = 0
\]
and the equality \(\mu_{\inf, x}(g - g(\eta_0)) = \text{ord}_x(g) \) holds for any \(x \in X(1) \). Hence \(\tilde{g}(\eta_0) = g(\eta_0) \).

If \(\varphi \) is a bounded Green function on \(X^{an} \), which is bounded from above by \(\varphi_g \), by Proposition 6.2 one has
\[
\varphi(\xi) \leq \varphi(\eta_0) \leq \varphi_g(\eta_0) = g(\eta_0)
\]
for any \(\xi \in X^{an} \). In the case where the inequality \(\tilde{g}(\eta_0) = g(\eta_0) \) holds, the function \(\tilde{g} = g_D + g(\eta_0) \) is the largest convex Green function of \(D \) which is bounded from above by \(g \), namely the equality \(\tilde{g} = \tilde{g} \) holds.

Step 2: In the following, we assume that \(\text{deg}(D) > 0 \). By replacing \(g \) by \(g - g(\eta_0) \) it suffices to check that, in the case where \(g(\eta_0) = 0 \), the equality \(\tilde{g}(\eta_0) = 0 \) holds if and only if \(\mu_{\inf}(g) \geq 0 \). By definition one has
\[
\tilde{g}(\eta_0) = \sup_{s \in \Gamma(D) \times \mathbb{R}} (-\ln\|s\|_g).
\]

Step 2.1: We first assume that \(\tilde{g}(\eta_0) = 0 \) and show that \(\mu_{\inf}(g) \geq 0 \). Let \(s \) be an element of \(\Gamma(D) \times \mathbb{R} \). By definition one has
\[
-\ln\|s\|_g = \inf_{\xi \in X^{an}} (g + g(s))(\xi).
\]
Let \((D_1, g_1) \) be a big metrised \(\mathbb{R} \)-divisor. We fix \(s_1 \in \Gamma(D_1) \times \mathbb{R} \) such that \(\|s_1\|_{g_1} < 1 \) (see Proposition 6.2 for the existence of \(s_1 \)). Since \(\tilde{g}(\eta_0) = 0 \), there exists \(s \in \Gamma(D) \times \mathbb{R} \) such that
\[
\|ss_1\|_{g + g_1} \leq \|s\|_g : \|s_1\|_{g_1} < 1.
\]
Therefore \(\lambda_{\text{ess}}(D + D_1, g + g_1) > 0 \) and hence \((D + D_1, g + g_1) \) is big (see Proposition 6.2). We then obtain that \((D, g) \) is pseudo-effective and hence \(\mu_{\inf}(g) \geq 0 \) (see Proposition 6.5).

Step 2.2: We now show that \(\mu_{\inf}(g) > 0 \) implies \(\tilde{g}(\eta_0) = 0 \). For \(\varepsilon > 0 \), let
\[
U_\varepsilon := \{ \xi \in X^{an} : g(\xi) > -\varepsilon \}.
\]
This is an open subset of \(X^{an} \) which contains \(\eta_0 \). Hence there exists a finite set \(X^{(1)}_\varepsilon \) of closed points of \(X \), which contains the support of \(D \) and such that, for any closed point \(x \) of \(X \) lying outside of \(X^{(1)}_\varepsilon \), one has \(g|_{[\eta_0, x_0]} > -\varepsilon \). Moreover,
for any $x \in X^{(1)} \setminus \text{Supp}(D)$ one has $\mu_{\text{inf},x}(g) \leq 0$ since g is bounded on $[\eta_0, x_0]$. Therefore, the condition $\mu_{\text{inf}}(g) > 0$ implies that
\[
\sum_{x \in X^{(1)}_\varepsilon} \mu_{\text{inf},x}(g)[k(x) : k] > 0.
\]

We let s_ε be an element of $\text{Rat}(X)_R^\times$ such that $\text{ord}_x(s_\varepsilon) \geq -\mu_{\text{inf},x}(g)$ for any $x \in X^{(1)}_\varepsilon$ and that $\text{ord}_x(s_\varepsilon) \geq 0$ for any $x \in X^{(1)} \setminus X^{(1)}_\varepsilon$. This is possible by the inequality (6.8). In fact, the \mathbb{R}-divisor
\[
E = \sum_{x \in X^{(1)}_\varepsilon} \mu_{\text{inf},x}(g) \cdot x
\]
has a positive degree, and hence $\Gamma(E)_{\mathbb{R}}^X$ is not empty. Note that $\mu_{\text{inf},x}(g) \leq \text{ord}_x(D)$ for any $x \in X^{(1)}$. Therefore $D + (s_\varepsilon)$ is effective. Moreover, for any $x \in X^{(1)} \setminus X^{(1)}_\varepsilon$ and $\xi \in [\eta_0, x_0]$ one has
\[
(g - \ln|s_\varepsilon|)(\xi) \geq g(\xi) \geq -\varepsilon.
\]
This leads to $\tilde{g}(\eta_0) = 0$ since ε is arbitrary.

Step 2.3: We assume that $\mu_{\text{inf}}(g) > 0$ and show that $\tilde{g} = \tilde{g}$. By definition, for any $x \in X^{(1)}$, the function $\tilde{g} \circ \xi \mid_{\mathbb{R}^+} \epsilon$ can be written as the supremum of a family of affine functions, hence it is a convex function on $\mathbb{R}^+ \epsilon$ bounded from above by g. In the following, we fix a closed point x of X.

Without loss of generality, we may assume that x belongs to $X^{(1)}_\varepsilon$ for any $\varepsilon > 0$. Note that for any $\xi \in [\eta_0, x_0]$ one has
\[
\tilde{g}(\xi) \geq \ln|s_\varepsilon| - \ln\|s_\varepsilon\|_g \geq \mu_{\text{inf},x}(g)t(\xi) - \varepsilon.
\]
Since $\varepsilon > 0$ is arbitrary, one has $\tilde{g}(\xi) \geq \mu_{\text{inf},x}(g)t(\xi)$.

Let a and b be real numbers such that $at(\xi) + b \leq g(\xi)$ for any $\xi \in [\eta_0, x_0]$. Then one has $b \leq 0$ since $g(\eta_0) = 0$. Moreover, one has
\[
a = \lim_{\xi \to x_0} \frac{at(\xi) + b}{t(\xi)} \leq \lim_{\xi \to x_0} \frac{g(\xi)}{t(\xi)} = \text{ord}_x(D).
\]
We will show that $at(\xi) + b \leq \tilde{g}(\xi)$ for any $\xi \in [\eta_0, x_0]$. This inequality is trivial when $a \leq \mu_x(g)$ since $\tilde{g}(\xi) \geq \mu_{\text{inf},x}(g)t(\xi)$ and $b \leq 0$. In the following, we assume that $a > \mu_x(g)$.

For any $\varepsilon > 0$, we let $s_a^{a,b}$ an element of $\text{Rat}(X)_R^\times$ such that
\[
\text{ord}_y(s_a^{a,b}) \geq \begin{cases} -a & \text{if } y = x, \\ -\mu_{\text{inf},y}(g) & \text{if } y \in X^{(1)}_\varepsilon, y \neq x, \\ 0 & \text{if } y \in X^{(1)} \setminus X^{(1)}_\varepsilon. \end{cases}
\]
This is possible since $\mu_{\inf}(g) > 0$ and $a > \mu_{\inf,x}(g)$. Note that $s^{a,b}_\varepsilon$ belongs to $\Gamma(D)^{\times}_{\mathbb{R}}$. Moreover, for $\xi \in [\eta_0, x_0]$, one has
\[
g(\xi) - \ln |s^{a,b}_\varepsilon(\xi)| \geq g(\xi) - at(\xi) \geq b;
\]
for any $y \in X^{(1)} \setminus \{x\}$, one has
\[
g(\xi) - \ln |s^{a,b}_\varepsilon(\xi)| = g(\xi) - \mu_{\inf,y}(g)t(\xi) \geq 0;
\]
for any $y \in X^{(1)} \setminus X_x$, one has $g(\xi) - \ln |s^{a,b}_\varepsilon(\xi)| \geq g(\xi) \geq -\varepsilon$. Therefore we obtain
\[-\ln \|s^{a,b}_\varepsilon\| \geq \min\{-\varepsilon, b\}.
\]
As a consequence, for any $\xi \in [\eta_0, x_0]$, one has
\[\tilde{g}(\xi) \geq \ln |s^{a,b}_\varepsilon(\xi)| - \ln \|s\|_g = at(\xi) + \min\{-\varepsilon, b\}.
\]
Since $b \leq 0$ and since $\varepsilon > 0$ is arbitrary, we obtain $\tilde{g}(\xi) \geq at(\xi) + b$.

Step 3: In this step, we assume that $\deg(D) > 0$ and $\mu_{\inf}(g - g(\eta_0)) = 0$. We show that and $\tilde{g} = \tilde{g}$. Without loss of generality, we assume that $g(\eta_0) = 0$. Since
\[\deg(D) = \sum_{x \in X^{(1)}} \mu_x(g)[k(x) : k] > 0,
\]
there exists $y \in X^{(1)}$ such that
\[\mu_{\inf,y}(g) < \ord_x(D) = \mu_y(g).
\]
We let g_0 be the bounded Green function on $\mathcal{T}(X^{(1)})$ such that $g_0(\xi) = 0$ for
\[\xi \in \bigcup_{x \in X^{(1)}, x \neq y} [\xi_0, x_0],
\]
and
\[g_0(\xi) = \min\{t(\xi), 1\}, \quad \text{for } \xi \in [\eta_0, y_0].
\]
One has $g_0 \geq 0$, and
\[\sup_{\xi \in X^{(1)}} g_0(\xi) \leq 1.
\]
For any $\varepsilon > 0$, we denote by g_ε the Green function $g + \varepsilon g_0$. One has
\[\mu_{\inf,x}(g_\varepsilon) > \mu_{\inf,x}(g) \geq 0.
\]
Moreover, by definition $g_\varepsilon(\eta_0) = 0$. Therefore, by what we have shown in Step 2.2, one has
\[\tilde{g}_\varepsilon(\eta_0) = \sup_{s \in \Gamma(D)^{\times}_{\mathbb{R}}} (\ln \|s\|_{g_\varepsilon}) = 0.
\]
Note that for any $s \in \Gamma(D)^{\times}_{\mathbb{R}}$ one has
\[e^\varepsilon \|s\|_{g_\varepsilon} \geq \|s\|_g \geq \|s\|_{g_\varepsilon}.
\]
Hence we obtain
\[\tilde{g}_\varepsilon - \varepsilon \leq \tilde{g} \leq \tilde{g}_\varepsilon. \]
Since \(\tilde{g}_\varepsilon(\eta_0) = 0 \) for any \(\varepsilon > 0 \), we obtain \(\tilde{g}(\eta_0) = 0 \). Finally, the inequalities
\[g_\varepsilon - \varepsilon \leq g \leq g_\varepsilon \]
leads to
\[\tilde{g}_\varepsilon - \varepsilon \leq \tilde{g} \leq \tilde{g}_\varepsilon. \]
By what we have shown in Step 2.3, one has \(\tilde{g}_\varepsilon = \tilde{g} \varepsilon \) for any \(\varepsilon > 0 \). Therefore the equality \(\tilde{g} = \tilde{g} \varepsilon \) holds.

Corollary 6.17. — Let \((D, g) \) be a metrised \(\mathbb{R} \)-divisor on \(X \) such that \(\Gamma(D)_{\mathbb{R}}^\times \neq \emptyset \). Then \(g \) is plurisubharmonic if and only if it is convex and \(\mu_{\text{int}}(g - g(\eta_0)) \geq 0 \).

6.5. Global positivity conditions under metric positivity. — Let \(X \) be a regular projective curve over \(\text{Spec } k \) and \((D, g) \) be a metrised \(\mathbb{R} \)-divisor. In this section, we consider global positivity conditions under the hypothesis that \(g \) is plurisubharmonic.

Proposition 6.18. — Let \((D, g) \) be a metrised \(\mathbb{R} \)-divisor such that \(\Gamma(D)_{\mathbb{R}}^\times \) is not empty and that the Green function \(g \) is plurisubharmonic.

1. \((D, g) \) is pseudo-effective if and only if \(g(\eta_0) \geq 0 \).
2. One has \(\lambda_{\text{ess}}(D, g) = g(\eta_0) \).
3. The metrised \(\mathbb{R} \)-divisor \((D, g) \) is big if and only if \(\deg(D) > 0 \) and \(g(\eta_0) > 0 \).

Proof. — [1] We have already seen in Proposition 6.5 that, if \((D, g) \) is pseudo-effective, then \(g(\eta_0) \geq 0 \). It suffices to prove that \(g(\eta_0) \geq 0 \) implies that \((D, g) \) is pseudo-effective. Since \(g \) is plurisubharmonic, by Theorem 6.16 one has
\[\mu_{\text{int}}(g) \geq \mu_{\text{int}}(g - g(\eta_0)) \geq 0. \]

By Proposition 6.11 one obtains that \((D, g) \) is pseudo-effective. [2] By [6.9] and Proposition 6.8 it suffices to prove that \(g(\eta_0) \leq \lambda_{\text{ess}}(D, g) \).

In the case where \(\deg(D) = 0 \), the hypotheses that \(\Gamma(D)_{\mathbb{R}}^\times \) is not empty and \(g \) is plurisubharmonic imply that \(D \) is a principal \(\mathbb{R} \)-divisor, \(\Gamma(D)_{\mathbb{R}}^\times \) contains a unique element \(s \) with \(D = -(s) \), and \(g - g(\eta_0) \) is the canonical Green function of \(D \) (see the first step of the proof of Theorem 6.16). Therefore one has
\[\lambda_{\text{ess}}(D, g) = -\ln \|s\|_g = g(\eta_0). \]

In the following we treat the case where \(\deg(D) > 0 \). Since \(g \) is plurisubharmonic, by Theorem 6.16 one has \(\mu_{\text{int}}(g - g(\eta_0)) \geq 0 \), so that \((D, g - g(\eta_0)) \) is
pseudo-effective (see Proposition 6.11). As \(\deg(D) > 0 \), by Corollary 6.4 and (5.12), one has
\[
\lambda_{\text{ess}}(g - g(\eta_0)) = \lambda_{\text{ess}}(g) - g(\eta_0) \geq 0.
\]
(3) follows from (2) and Proposition 6.2.

7. Hilbert-Samuel formula on curves

Let \(k \) be a field equipped with the trivial valuation. Let \(X \) be a regular and irreducible projective curve of genus \(R \) over \(k \). The purpose of this section is to prove a Hilbert-Samuel formula for metrised \(\mathbb{R} \)-divisors on \(X \).

Definition 7.1. — We identify \(X \) with the infinite tree \(T(X^{(1)}) \) and consider the weight function \(w : X^{(1)} \to]0, +\infty[\) defined as \(w(x) = [k(x) : k] \). If \(\overline{D}_1 = (D_1, g_1) \) and \(\overline{D}_2 = (D_2, g_2) \) are metrised \(\mathbb{R} \)-divisors on \(X \) such that \(g_1 \) and \(g_2 \) are both pairable (see Definition 3.8) we define \(\langle \overline{D}_1, \overline{D}_2 \rangle \) as the pairing
\[
\langle \overline{D}_1, \overline{D}_2 \rangle = g_2(\eta_0) \deg(D_1) + g_1(\eta_0) \deg(D_2)
\]
(7.1)

\[- \sum_{x \in X^{(1)}} [k(x) : k] \int_{0}^{+\infty} \phi'_{g_1 \circ \xi_x}(t) \phi'_{g_2 \circ \xi_x}(t) \, dt. \]

Remark 7.2. — Assume that \(s \) is an element of \(\text{Rat}(X)^{\times}_\mathbb{R} \) such that
\[
\overline{D}_2 = (\tilde{s}, g(s)) = ((s), g(s)).
\]
One has (see Definition 3.8)
\[
\langle \overline{D}_1, \overline{D}_2 \rangle = \langle g_1, g(s) \rangle_w = g_1(\eta_0) \deg((s)) = 0.
\]

Theorem 7.3. — Let \(\overline{D} = (D, g) \) be a metrised \(\mathbb{R} \)-divisor on \(X \) such that \(\Gamma(D)^{\times}_\mathbb{R} \neq \emptyset \) and \(g \) is plurisubharmonic. Then
\[
\text{vol}_\chi(\overline{D}) = (\overline{D} \cdot \overline{D}).
\]

Remark 7.4. — Let \(g_D \) be the canonical admissible Green function of \(D \) and \(\varphi_g := g - g_D \) (considered as a continuous function on \(X^{\text{an}} \)). Note that a plurisubharmonic Green function is convex (see Proposition 6.13). Therefore, by Proposition 3.12 one has
\[
\mu_{\inf, x}(g - g(\eta_0)) = g'(\eta_0; x) = \text{ord}_x(D) + \varphi'_g(\eta_0; x).
\]

Theorem 6.16 shows that
\[
(7.2) \quad \mu_{\inf}(g - g(\eta_0)) = \deg(D) + \sum_{x \in X^{(1)}} \varphi'_g(\eta_0; x)[k(x) : k] \geq 0.
\]
In the case where $\deg(D) = 0$, one has $g = g(\eta_0) + g_D$ (see Step 1 in the proof of Theorem 6.16). Therefore one has

$$(\overline{D} \cdot \overline{D}) = 2g(\eta_0)\deg(D) = 0 = \overline{\vol}(\overline{D}),$$

where the last equality comes from (3) of Proposition 5.23. Therefore, to prove Theorem 7.3 it suffices to treat the case where $\deg(D) > 0$.

Assumption 7.5. — Let Σ be the set consisting of closed points x of X such that φ_g is not a constant function on $[\eta_0, x_0]$. Note that Σ is countable by Proposition 3.6. Here we consider additional assumptions (i) – (iv).

(i) D is a divisor.

(ii) Σ is finite.

(iii) $\varphi_g(\eta_0) = 0$.

(iv) $\mu_{\inf}(g - g(\eta_0)) \geq 0$.

These assumptions actually describes a special case of the setting of the above theorem, but it is an essential case because the theorem in general is a consequence of its assertion under these assumptions by using the continuity of $\overline{\vol}(\cdot)$. Before starting the proof of Theorem 7.3 under the above assumptions, we need to prepare several facts. For a moment, we proceed with arguments under Assumption 7.5. Let $L = O_X(D)$ and h be the continuous metric of L given by $\exp(-\varphi_g)$. For $x \in \Sigma$, let

$$a_x := \varphi'_g(\eta_0; x) \quad \text{and} \quad \varphi'_x := \varphi'_{g \circ \xi_x}.$$

For $x \in \Sigma$ and $n \in \mathbb{N}_{\geq 1}$, we set $a_{x,n} = [-na_x]$. One has

$$a_{x,n} \leq - na_x < a_{x,n} + 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{a_{x,n}}{n} = -a_x.$$

Moreover, as

$$\sum_{x \in \Sigma} a_x[k(x) : k] + \deg(L) > 0$$

by our assumptions, there exists $n_0 \in \mathbb{N}_{\geq 1}$ such that

$$2\text{genus}(X) - 1 + \sum_{x \in \Sigma} a_{x,n}[k(x) : k] + \sum_{x \in \Sigma} k(x) : x \leq 2\text{genus}(X) - 1 + \sum_{x \in \Sigma} [k(x) : k] - \sum_{x \in \Sigma} a_x[k(x) : k] < \deg(L)$$

holds for any integer $n \geq n_0$, that is,

$$(7.3) \quad \forall n \in \mathbb{N}_{\geq n_0}, \quad 2\text{genus}(X) - 1 + \sum_{x \in \Sigma} (a_{x,n} + 1)[k(x) : k] < n \deg(L).$$

We set

$$D_n = \sum_{x \in \Sigma} (a_{x,n} + 1)x \quad \text{and} \quad D_{x,n} = D_n - (a_{x,n} + 1)x.$$
Note that
\[
\begin{align*}
H^0(X, nL \otimes \mathcal{O}_X(-D_n)) &= \{ s \in H^0(X, nL) : \text{ord}_x(s) \geq a_{x,n} + 1 \ (\forall x \in \Sigma) \}, \\
H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - i)) &= \{ s \in H^0(X, nL) : \text{ord}_y(s) \geq a_{y,n} + 1 \ (\forall y \in \Sigma \setminus \{x\}) \text{ and } \text{ord}_x(s) \geq i \}
\end{align*}
\]

Lemma 7.6. — For any integer \(n\) such that \(n \geq 0\), the following assertions hold.

1. \(\sum_{x \in \Sigma} H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n})) = H^0(X, nL)\).
2. One has
\[
H^0(X, nL)/H^0(X, nL \otimes \mathcal{O}_X(-D_n)) = \bigoplus_{x \in \Sigma} H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n}))/H^0(X, nL \otimes \mathcal{O}_X(-D_n))
\]

Proof. — (1) Let us consider a natural homomorphism
\[
\bigoplus_{x \in \Sigma} nL \otimes \mathcal{O}_X(-D_{x,n}) \to nL.
\]

Note that the above homomorphism is surjective and the kernel is isomorphic to \((nL \otimes \mathcal{O}_X(-D_n))^{\oplus \text{card(\Sigma)}-1}\). Moreover, by Serre’s duality,
\[
H^1(X, nL \otimes \mathcal{O}_X(-D_n)) \simeq H^0(X, \omega_X \otimes -nL \otimes \mathcal{O}_X(D_n))^\vee
\]
and
\[
\deg(\omega_X \otimes -nL \otimes \mathcal{O}_X(D_n)) = 2(\text{genus}(X) - 1) - n \deg(L) + \sum_{x \in \Sigma} (a_{x,n} + 1)[k(x) : k] < 0,
\]
so that \(H^1(X, nL \otimes \mathcal{O}_X(-D_n)) = 0\). Therefore one has (1).

(2) By (1), it is sufficient to see that if
\[
\sum_{x \in \Sigma} s_x \in H^0(X, nL \otimes \mathcal{O}_X(-D_n))
\]
and
\[
\forall x \in \Sigma, \ s_x \in H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n})),
\]
then
\[
\forall x \in \Sigma, \ s_x \in H^0(X, nL \otimes \mathcal{O}_X(-D_n))
\]
for all \(x \in \Sigma\). Indeed, as
\[
\forall y \in \Sigma \setminus \{x\}, \ s_y \in H^0(X, \mathcal{O}_X(-(a_{x,n} + 1)x))
\]
and
\[
\sum_{y \in \Sigma} s_y \in H^0(X, \mathcal{O}_X(-(a_{x,n} + 1)x)),
\]
we obtain
\[s_x \in H^0(X, \mathcal{O}_X(-(a_{x,n} + 1)x)), \]
so that \(s_x \in H^0(X, \mathcal{O}_X(-D_n)) \), as required. □

Lemma 7.7. — For \(x \in \Sigma \) and \(i \in \{0, \ldots, a_{x,n}\} \),
\[\dim_k \left(H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - ix))/H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n}-(i+1)x)) \right) = [k(x) : k]. \]

Proof. — Let us consider an exact sequence
\[0 \to nL \otimes \mathcal{O}_X(-D_{x,n} - (i + 1)x) \to nL \otimes \mathcal{O}_X(-D_{x,n} - ix) \to k(x) \to 0, \]
so that, since
\[\deg(\omega_X \otimes -nL \otimes \mathcal{O}_X(D_{x,n} + (i + 1)x)) = 2(\text{genus}(X) - 1) - n \deg(L) + ((i + 1) - (a_{x,n} + 1))[k(x) : k] + \sum_{y \in \Sigma} (a_{y,n} + 1)[k(y) : k] \]
\[\leq 2(\text{genus}(X) - 1) - n \deg(L) + \sum_{y \in \Sigma} (a_{y,n} + 1)[k(y) : k] < 0, \]
one has the assertion as before. □

By Lemma 7.7, for each \(x \in \Sigma \), there are
\[s^{(\ell)}_{x,0}, \ldots, s^{(\ell)}_{x,a_{x,n}} \in H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n})), \quad \ell \in \{1, \ldots, [k(x) : k]\} \]
such that the classes of \(s^{(\ell)}_{x,0}, \ldots, s^{(\ell)}_{x,a_{x,n}} \) form a basis of
\[H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n}))/H^0(X, nL \otimes \mathcal{O}_X(-D_n)) \]
and
\[s^{(\ell)}_{x,i} \in H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - iix)) \setminus H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - (i + 1)x)) \]
whose classes form a basis of
\[H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - ix))/H^0(X, nL \otimes \mathcal{O}_X(-D_{x,n} - (i + 1)x)) \]
for \(i = 0, \ldots, a_{x,n} \). Moreover we choose a basis \(\{t_1, \ldots, t_{e_n}\} \) of \(H^0(X, nL \otimes \mathcal{O}_X(-D_n)) \). Then, by Lemma 7.6,
\[\Delta_n := \{t_1, \ldots, t_{e_n}\} \cup \bigcup_{x \in \Sigma} \{s^{(\ell)}_{x,0}, \ldots, s^{(\ell)}_{x,a_{x,n}} : \ell \in \{1, \ldots, [k(x) : k]\}\} \]
forms a basis of \(H^0(X, nL) \).
Lemma 7.8. — (1) The equality

\[\|s^{(\ell)}_{x,i}\|_{nh} = \exp(-n\varphi^*_x(i/n)) \]

holds for \(x \in \Sigma, \ell \in \{1, \ldots, [k(x) : k]\} \) and \(i \in \{0, \ldots, a_{x,n}\} \). Moreover \(\|t_j\|_{nh} = 1 \) for all \(j \in \{1, \ldots, e_n\} \).

(2) The basis \(\Delta_n \) of \(H^0(X, nL) \) is orthogonal with respect to \(\|\cdot\|_{nh} \).

Proof. — First of all, note that, for \(s \in H^0(X, nL) \setminus \{0\} \) and \(\xi \in X^{an} \),

\[-\ln |s|_{nh}(\xi) = \begin{cases} t(\xi) \text{ord}_x(s) \geq 0 & \text{if } \xi \in [\eta_0, x_0] \text{ and } x \not\in \Sigma, \\ n(t(\xi)(\text{ord}_x(s)/n) + \varphi_x(t(\xi))) & \text{if } \xi \in [\eta_0, x_0] \text{ and } x \in \Sigma, \end{cases} \]

so that

\[\|s\|_{nh} = \max \left\{ 1, \max_{x \in \Sigma} \{\exp(-n\varphi^*_x(\text{ord}_x(s)/n))\} \right\}. \]

(1) The assertion follows from (7.4) because \(\varphi^*_x(\lambda) = 0 \) if \(\lambda \geq -a_x \).

(2) Fix \(s \in H^0(X, nL) \setminus \{0\} \). We set

\[s = b_1t_1 + \cdots + b_\ell t_\ell + \sum_{x \in \Sigma} \sum_{i=0}^{a_{x,n}} \sum_{\ell=1}^{|k(x) : k|} c^{(\ell)}_{x,i}s^{(\ell)}_{x,i}. \]

If \(s \in H^0(X, nL \otimes \mathcal{O}_X(-D_n)) \), then \(c^{(\ell)}_{x,i} = 0 \) for all \(x, i \) and \(\ell \). Thus

\[1 = \max_{j \in \{1, \ldots, e_n\}} \{ |b_j| \cdot \|t_j\|_{nh} \} = \|s\|_{nh}. \]

Next we assume that \(s \not\in H^0(X, nL \otimes \mathcal{O}_X(-D_n)) \). If we set

\[T = \{ x \in \Sigma : \text{ord}_x(s) \leq a_{x,n} \}, \]

then \(T \neq \emptyset \) and, for \(x \in \Sigma \) and \(\ell \in \{1, \ldots, [k(x) : k]\} \),

\[\begin{cases} c^{(\ell)}_{x,0} = \cdots = c^{(\ell)}_{x,a_{x,n}} = 0 & \text{if } x \not\in T, \\ c^{(\ell)}_{x,0} = \cdots = c^{(\ell)}_{x,\text{ord}_x(s)-1} = 0, & (c^{(\ell)}_{x,\text{ord}_x(s)})_{\ell=1} \neq (0, \ldots, 0) \text{ if } x \in T. \end{cases} \]

Therefore, by (7.4),

\[\max_{x \in \Sigma} \{ |b_j| \cdot \|t_j\|_{nh} \} = \max_{x \in T, \ell} \{ \|s^{(\ell)}_{x,\text{ord}_x(s)}\|_{nh} \} \]

\[= \max_{x \in \Sigma, \ell} \{ \|s^{(\ell)}_{x,\text{ord}_x(s)}\|_{nh} \} = \max_{x \in \Sigma} \{ \exp(-n\varphi^*_x(\text{ord}_x(s)/n)) \} = \|s\|_{nh}, \]

as required. \(\Box \)
Let us begin the proof of Theorem 7.3 under Assumption 7.5. By Lemma 7.8 together with Definition 3.8 and Proposition 2.6,
\[
\lim_{n \to \infty} \frac{\deg \left(H^0(X, nL), \| \cdot \|_{nh} \right)}{n^2/2} = 2 \sum_{x \in \Sigma} \lim_{n \to \infty} [k(x) : k] \sum_{i=0}^{a_x} \frac{1}{n} \varphi_x^*(i/n)
\]
\[
= 2 \sum_{x \in \Sigma} [k(x) : k] \int_{0}^{\alpha_x} \varphi_x^*(\lambda) d\lambda = -\sum_{x \in \Sigma} [k(x) : k] \int_{0}^{\infty} (\varphi'_x)^2 d\lambda = (D \cdot D),
\]
as required.

Proof of Theorem 7.3 without additional assumptions. — First of all, note that \(\Sigma \) is a countable set (cf. Proposition 3.6).

Step 1: (the case where \(D \) is Cartier divisor, \(\Sigma \) is finite and \(\varphi'_g(\eta_0) + \deg(D) > 0 \)). By the previous observation,
\[
\hat{\text{vol}}_X(D, g - g(\eta_0)) = ((D, g - g(\eta_0)) \cdot (D, g - g(\eta_0))).
\]
On the other hand, by Proposition 5.14, one has
\[
\hat{\text{vol}}_X(D, g) = \hat{\text{vol}}_X(D, g - g(\eta_0)) + 2 \deg(D)g(\eta_0).
\]
Moreover, by the bilinearity of the arithmetic intersection pairing, one has
\[
(D \cdot D) = ((D, g - g(\eta_0)) \cdot (D, g - g(\eta_0))) + 2 \deg(D)g(\eta_0).
\]
Thus the assertion follows.

Step 2: (the case where \(D \) is Cartier divisor and \(\Sigma \) is finite). For \(0 < \varepsilon < 1 \), we set \(g_\varepsilon := g_D^{\text{an}} + \varepsilon \varphi_g \). If \(\varphi'_g(\eta_0) = 0 \), then \(\Sigma = \emptyset \), so that the assertion is obvious. Thus we may assume that \(\varphi'_g(\eta_0) < 0 \). As \(\varphi'_g(\eta_0) + \deg(D) \geq 0 \), we have \(\varepsilon \varphi'_g(\eta_0) + \deg(D) > 0 \). Therefore, by Step 1,
\[
\hat{\text{vol}}_X(D, g_\varepsilon) = ((D, g_\varepsilon) \cdot (D, g_\varepsilon)).
\]
Thus the assertion follows by Proposition 5.24.

Step 3: (the case where \(D \) is Cartier divisor and \(\Sigma \) is infinite). We write \(\Sigma \) in the form of a sequence \(\{x_1, \ldots, x_n, \ldots\} \). For any \(n \in \mathbb{Z}_{\geq 1} \), let \(g_n \) be the Green function defined as follows:
\[
\forall \xi \in X^{\text{an}}, \quad g_n(\xi) = g_D(\xi) + \begin{cases}
\varphi_g(\xi) & \text{if } \xi \in \bigcup_{i=1}^{n}[\eta_0, x_i, 0], \\
g(\eta_0) & \text{otherwise}.
\end{cases}
\]
Note that
\[
\lim_{n \to \infty} \sup_{\xi \in X^{\text{an}}} |\varphi_{g_n}(\xi) - \varphi_g(\xi)| = 0.
\]
Indeed, as \(\varphi_g \) is continuous at \(\eta_0 \), for any \(\varepsilon > 0 \), there is an open set \(U \) of \(X^\mathrm{an} \) such that \(\eta_0 \in U \) and \(|\varphi_g(\xi) - \varphi_g(\eta_0)| \leq \varepsilon \) for any \(\xi \in U \). Since \(\eta_0 \in U \), one can find \(N \) such that \(|\eta_n, x_{i,0}| \leq U \) for all \(n \geq N \). Then, for \(n \geq N \),

\[
|\varphi_g(\xi) - \varphi_{g_n}(\xi)| \begin{cases}
\leq \varepsilon & \text{if } \xi \in [\eta_0, x_{i,0}] \text{ for some } i > n, \\
0 & \text{otherwise},
\end{cases}
\]

as required. Thus, by (2) in Proposition 5.23 the assertion is a consequence of Step 2.

Step 4: (the case where \(D \) is \(\mathbb{Q} \)-Cartier divisor). Choose a positive integer \(a \) such that \(aD \) is Cartier divisor. Then, by Step 3,

\[
\widetilde{\vol}_\chi(aD) = (aD \cdot D) = a^2 (D \cdot D).
\]

By Corollary 5.21 one has \(\vol_\chi(aD) = a^2 \widetilde{\vol}_\chi(D) \). Hence the equality

\[
\widetilde{\vol}_\chi(D) = (D \cdot D)
\]

holds.

Step 5: (general case). By our assumption, there are adelic \(\mathbb{Q} \)-Cartier divisors \((D_1, g_1), \ldots, (D_r, g_r) \) and \(a_1, \ldots, a_r \in \mathbb{R}_{>0} \) such that \(D_1, \ldots, D_r \) are semiample, \(g_1, \ldots, g_r \) are plurisubharmonic, and \((D, g) = a_1(D_1, g_1) + \cdots + a_r(D_r, g_r) \). We choose sequences \(\{a_{i,n}\}_{n=1}^\infty, \{a_{r,n}\}_{n=1}^\infty \) of positive rational numbers such that \(\lim_{n \to \infty} a_{i,n} = a_i \) for \(i = 1, \ldots, r \). We set \((D_n, g_n) = a_1/n(D_1, g_1) + \cdots + a_{r,n}(D_r, g_r) \). Then we may assume that \(\deg(D_n) > 0 \). By Step 4, then \(\vol_\chi(D_n, g_n) = (D_n, g_n)^2 \). On the other hand, by Proposition 5.24 \(\vol_\chi(D, g) = \lim_{n \to \infty} \vol_\chi(D_n, g_n) \). Moreover,

\[
((D, g) \cdot (D, g)) = \lim_{n \to \infty} ((D_n, g_n) \cdot (D_n, g_n))
\]

Thus the assertion follows.

Remark 7.9. — Let \(\overline{D}_1 = (D_1, g_1) \) and \(\overline{D}_2 = (D_2, g_2) \) be adelic \(\mathbb{R} \)-divisors such that \(\deg(D_1) > 0 \) and \(\deg(D_2) > 0 \). Let \(\overline{D} = (D_1 + D_2, g_1 + g_2) \). If \(g_1 \) and \(g_2 \) are plurisubharmonic, then Theorems 5.22 and 7.3 lead to the following inequality

\[
\frac{(D \cdot D)}{\deg(D)} \geq \frac{(\overline{D}_1 \cdot \overline{D}_1)}{\deg(D_1)} + \frac{(\overline{D}_2 \cdot \overline{D}_2)}{\deg(D_2)}.
\]

This inequality actually holds without plurisubharmonic condition (namely it suffices that \(g_1 \) and \(g_2 \) are pairable). In fact, by (7.1) one has

\[
\frac{(\overline{D}_1 \cdot \overline{D}_1)}{\deg(D_1)} = 2g_1(\eta_0) - \sum_{x \in X^{(1)}} \frac{[k(x) : k]}{\deg(D_i)} \int_0^{+\infty} \varphi_{g_1, \xi_x}(t)^2 \, dt
\]

\[
\varphi_{g_1, \xi_x}(t) = \int_0^{+\infty} \varphi_{g_1, \xi_x}(t) e^{-st} \, dt
\]
for $i \in \{1, 2\}$, and
\[
\frac{(D \cdot D)}{\deg(D)} = 2(g_1(\eta_0) + g_2(\eta_0)) - \sum_{x \in X^{(1)}} \frac{[k(x) : k]}{\deg(D_1) + \deg(D_2)} \int_0^{+\infty} (\varphi'_{g_1 \circ \xi_x}(t) + \varphi'_{g_2 \circ \xi_x}(t))^2 \, dt,
\]
which leads to
\[
\frac{(\deg(D_1) + \deg(D_2))^{\deg(D)}}{\deg(D)} - \frac{(D_1 \cdot D_1)}{\deg(D_1)} - \frac{(D_2 \cdot D_2)}{\deg(D_2)} = \sum_{x \in X^{(1)}} \frac{[k(x) : k]}{\deg(D_1) + \deg(D_2)} \left(\int_0^{+\infty} \varphi'_{g_1 \circ \xi_x}(t)^2 \, dt + \int_0^{+\infty} \varphi'_{g_2 \circ \xi_x}(t)^2 \, dt - 2 \int_0^{+\infty} \varphi'_{g_1 \circ \xi_x}(t) \varphi'_{g_2 \circ \xi_x}(t) \, dt \right) \geq 0,
\]
by using Cauchy-Schwarz inequality and the inequality of arithmetic and geometric means.

The inequality (7.5) leads to
\[
2(\overline{D_1} \cdot D_2) \geq \frac{\deg(D_2)}{\deg(D_1)} (\overline{D_1} \cdot D_1) + \frac{\deg(D_1)}{\deg(D_2)} (\overline{D_2} \cdot D_2).
\]
In the case where $(\overline{D_1} \cdot D_2)$ and $(\overline{D_2} \cdot D_2)$ are non-negative, by the inequality of arithmetic and geometric means, we obtain that
\[
(\overline{D_1} \cdot D_2) \geq \sqrt{(\overline{D_1} \cdot D_1)(\overline{D_2} \cdot D_2)},
\]
where the equality holds if and only if $\overline{D_1}$ and $\overline{D_2}$ are proportional up to \mathbb{R}-linear equivalence. This could be considered as an analogue of the arithmetic Hodge index inequality of Faltings [17, Theorem 4] and Hriljac [20, Theorem 3.4], see also [26, Theorem 7.1] and [5, §5.5].

References

[1] Matt Baker and Robert Rumely. Harmonic analysis on metrized graphs. Canadian Journal of Mathematics. Journal Canadien de Mathématiques, 59(2):225–275, 2007.
[2] Simon Barry. Convexity: An Analytic Viewpoint, volume 187 of Cambridge Tracts in Mathematics. Cambridge University Press, 1 edition, 2011.
[3] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1990.
[4] Caucher Birkar. On existence of log minimal models II. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal], 658:99–113, 2011.
[5] J.-B. Bost. Potential theory and Lefschetz theorems for arithmetic surfaces. *Annales Scientifiques de l’École Normale Supérieure. Quatrième Série*, 32(2):241–312, 1999.

[6] S. Boucksom and D. Eriksson. Space of forms, determinant of cohomology and fekete points in non-archimedean geometry. arxiv:1805.01016, 2018.

[7] Nicolas Bourbaki. *Éléments de mathématique*. Masson, Paris, 1981. Algèbre. Chapitres 4 à 7.

[8] Antoine Chambert-Loir. Mesures et équidistribution sur les espaces de Berkovich. *Journal für die Reine und Angewandte Mathematik*, 595:215–235, 2006.

[9] Antoine Chambert-Loir and Antoine Ducros. Formes différentielles réelles et courants sur les espaces de berkovich. arXiv:1204.6277, 2012.

[10] Antoine Chambert-Loir and Amaury Thuillier. Mesures de Mahler et équidistribution logarithmique. *Université de Grenoble. Annales de l’Institut Fourier*, 59(3):977–1014, 2009.

[11] Huayi Chen. Maximal slope of tensor product of Hermitian vector bundles. *Journal of Algebraic Geometry*, 18(3):575–603, 2009.

[12] Huayi Chen. Arithmetic Fujita approximation. *Annales Scientifiques de l’École Normale Supérieure. Quatrième Série*, 43(4):555–578, 2010.

[13] Huayi Chen. Convergence des polygones de Harder-Narasimhan. *Mémoires de la Société Mathématique de France. Nouvelle Série*, (120):116, 2010.

[14] Huayi Chen. Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique. *Math. Z.*, 279(1-2):99–137, 2015.

[15] Huayi Chen and Atsushi Moriwaki. Algebraic dynamical systems and Dirichlet’s unit theorem on arithmetic varieties. *International Mathematics Research Notices. IMRN*, (24):13669–13716, 2015.

[16] Ted Chinburg and Robert Rumely. The capacity pairing. *Journal für die Reine und Angewandte Mathematik*, 434:1–44, 1993.

[17] Gerd Faltings. Calculus on arithmetic surfaces. *Annals of Mathematics. Second Series*, 119(2):387–424, 1984.

[18] Walter Gubler and Klaus Künnemann. A tropical approach to nonarchimedean Arakelov geometry. *Algebra & Number Theory*, 11(1):77–180, 2017.

[19] Walter Gubler and Klaus Künnemann. Positivity properties of metrics and delta-forms. *Journal für die Reine und Angewandte Mathematik*, 752:141–177, 2019.

[20] Paul Hriljac. Heights and Arakelov’s intersection theory. *American Journal of Mathematics*, 107(1):23–38, 1985.

[21] Sean Keel. Polarized pushouts over finite fields. *Comm. Algebra*, 31(8):3955–3982, 2003. Special issue in honor of Steven L. Kleiman.

[22] Atsushi Moriwaki. Continuity of volumes on arithmetic varieties. *Journal of Algebraic Geometry*, 18(3):407–457, 2009.

[23] Atsushi Moriwaki. Toward Dirichlet’s unit theorem on arithmetic varieties. *Kyoto Journal of Mathematics*, 53(1):197–259, 2013.

[24] Atsushi Moriwaki. Toward a geometric analogue of Dirichlet’s unit theorem. *Kyoto Journal of Mathematics*, 55(4):799–817, 2015.
[25] Xinyi Yuan. Big line bundles over arithmetic varieties. *Invent. Math.*, 173(3):603–649, 2008.

[26] Shouwu Zhang. Positive line bundles on arithmetic surfaces. *Annals of Mathematics. Second Series*, 136(3):569–587, 1992.

[27] Shouwu Zhang. Admissible pairing on a curve. *Inventiones Mathematicae*, 112(1):171–193, 1993.