Near out-of-distribution detection for low-resolution radar micro-Doppler signatures

Martin Bauw1,2 \& Santiago Velasco-Forero1, Jesus Angulo1, Claude Adnet2, and Olivier Airiau2

1 Center for Mathematical Morphology, Mines Paris, PSL University, France
2 Thales LAS France, Advanced Radar Concepts, Limours, France
martin.bauw@minesparis.psl.eu

Abstract. Near out-of-distribution detection (OODD) aims at discriminating semantically similar data points without the supervision required for classification. This paper puts forward an OODD use case for radar targets detection extensible to other kinds of sensors and detection scenarios. We emphasize the relevance of OODD and its specific supervision requirements for the detection of a multimodal, diverse targets class among other similar radar targets and clutter in real-life critical systems. We propose a comparison of deep and non-deep OODD methods on simulated low-resolution pulse radar micro-Doppler signatures, considering both a spectral and a covariance matrix input representation. The covariance representation aims at estimating whether dedicated second-order processing is appropriate to discriminate signatures. The potential contributions of labeled anomalies in training, self-supervised learning, contrastive learning insights and innovative training losses are discussed, and the impact of training set contamination caused by mislabelling is investigated.

Keywords: Anomaly detection · Out-of-distribution detection · Micro-Doppler · Radar target discrimination · Deep learning · Self-supervised learning.

1 Introduction

Near out-of-distribution detection (OODD) aims at distinguishing one or several data classes from semantically similar data points. For instance, identifying samples from one class of CIFAR10 among samples of the other classes of the same dataset solves a near OODD task. On the other hand, separating CIFAR10 samples from MNIST samples is a far OODD task: there is no strong semantic proximity between the data points being separated. OODD defines a kind of anomaly detection (AD) since OODD can be seen as separating a normal class from infinitely diverse anomalies, with a training set only or mostly composed of normal samples, and anomalies being possibly semantically close to normal samples [24]. This training paradigm relies on lower supervision requirements compared to supervised classification, for which each class calls for a representative set of samples in the training data.
This work considers both unsupervised and semi-supervised AD (SAD). Unsupervised AD trains the model with a representative set of normal data samples, while semi-supervised AD also benefits from labeled anomalies [15, 26] that can not be representative, since anomalies are by definition infinitely diverse. A distinction can however be observed between benefiting from far and near anomalies, in analogy with far and near OODD, to refine the discrimination training. The contribution of self-supervision will be taken into account through the supply of far artificial anomalies for additional supervision during training.

Near OODD constitutes an ideal mean to achieve radar targets discrimination, where an operator wants an alarm to be raised everytime specific targets of interest are detected. This implies discriminating between different kinds of planes, or ships, sometimes being quite similar from a radar perspective. For example, two ships can have close hull and superstructure sizes, implying close radar cross-sections, even though their purpose and equipment on deck are completely different. Analogous observations could be made for helicopters, planes and drones. In an aerial radar context, whereas separating aerial vehicles would constitute a near OODD task, spotting weather-related clutter would define a far OODD. Such an OODD-based detection setup is directly applicable to other sensors.

The motivation behind the application of OODD methods to low-resolution pulse Doppler radar (PDR) signatures stems from the constraints of some air surveillance radars. Air surveillance PDRs with rotating antennas are required to produce very regular updates of the operational situation and to detect targets located at substantial ranges. The regular updates dictate the rotation rate and limit the number of pulses, and thus the number of Doppler spectrum bins, over which to integrate and refine a target characterization. The minimum effective range restricts the pulse repetition frequency (PRF), which in turns diminishes the range of velocities covered by the Doppler bins combined. The operating frequencies of air surveillance radars are such that they can not make up for this Doppler resolution loss [18]. This work aims at exploring the potential of machine learning to discriminate targets within these air surveillance radars limitations, using the targets Doppler spectrums. Refining radar targets discrimination with limited supervision is critical to enable the effective detection of targets usually hidden in cluttered domains, such as small and slow targets.

The AD methods examined will take a series of target Doppler spectrums as an input sample. This series is converted into a second-order representation through the computation of a covariance matrix to include an AD method adapted to process symmetric positive definite (SPD) inputs in our comparison. Radar Doppler signatures with sufficient resolution to reveal micro-Doppler spectrum modulations is a common way to achieve targets classification in the radar literature, notably when it comes to detecting drones hidden in clutter [9, 3, 13]. The processing of second-order representations is inspired by their recent use in the machine learning literature [16, 31], including in radar processing [6], and is part of the much larger and very active research on machine learning on Riemannian manifolds [7, 5].
This paper first details the simulation setup which generates the micro-Doppler dataset, then describes the OODD methods compared. Finally, an experimental section compares quantitatively various supervision scenarios involving SAD and self-supervision. The code for both the data generation and the OODD experiments is available3. The code made available does not restrict itself to the experiments put forward in the current document, pieces of less successful experiments being kept for openness and in case they help the community experiment on the data with similar approaches.

2 Micro-Doppler dataset

A PDR is a radar system that transmits bursts of modulated pulses, and after each pulse transmission waits for the pulse returns. The pulse returns are sampled and separated into range bins depending on the amount of time observed between transmission and reception. The spectral content of the sampled pulses is evaluated individually in each range bin, as depicted on Fig. 1. This content translates into the Doppler information which amounts to a velocity descriptor: the mean Doppler shift reveals the target bulk speed, and the spectrum modulation its rotating blades. These Doppler features are available for each burst, under the assumption that the velocities detected in a given range bin change negligibly during a burst. The number of pulses in a burst, equating the number of samples available to compute a spectrum, determines the resolution of the Fourier bins or Doppler bins. The PRF sampling frequency defines the range of speeds covered by the spectrum. PDR signatures are generated by a MATLAB \cite{20} simulation. The Doppler signatures are a series of periodograms, i.e. the evolution of spectral density over several bursts, one periodogram being computed per burst. The samples on which the discrete Fourier transform is computed are sampled at the PRF frequency, i.e. one sample is available per pulse return for each range bin.

The main parameters of the simulation are close to realistic radar and target characteristics. A carrier frequency of 5 GHz was selected, with a PRF of 50 KHz. An input sample is a Doppler signature extracted from 64 bursts of 64 pulses, i.e. 64 spectrums of 64 samples, ensuring the full rank of the covariance matrix computed over non-normalized Doppler, i.e. Fourier, bins. The only simulation parameter changing across the classes of helicopter-like targets is the number of rotating blades: Doppler signatures are associated with either one, two, four or six rotating blades, as can be found on drones and radio-controlled helicopters. The quality of the dataset is visually verified: a non-expert human is easily able to distinguish the four target classes, confirming the discrimination task is feasible. The classes intrinsic diversity is ensured by receiver noise, blade size and revolutions-per-minute (RPM) respectively uniformly sampled in [4,5,7] and [450,650], and a bulk speed uniformly sampled so that the signature central frequency changes while staying approximately centered. The possible

3 https://github.com/Blupblupblup/Doppler-Signatures-Generation

https://github.com/Blupblupblup/Near-OOD-Doppler-Signatures
Fig. 1: Each pulse leads to one complex-valued I/Q sample per range bin, while each burst is composed of several pulses. Each range bin is thus associated with a complex-valued discrete signal with as many samples as there are pulses. Air surveillance radars with rotating antennas are required to provide regular situ-ation updates in every direction, severely constraining the number of pulses per burst acceptable.

Fig. 2: One sample of each target class: the varying number of rotating blades defines the classes, the modulation pattern being easily singled out. The first line of images shows Doppler signatures, i.e. the time-varying periodogram of targets over 64 bursts of 64 pulses. On those images, each row is the periodogram computed over one burst, and each column a Fourier i.e. a Doppler bin. The second line contains the covariance SPD representation of the first line samples. The width of the Doppler modulations around the bulk speed on the periodograms varies within each class, as well as the bulk speed, the latter being portrayed by the central vertical illumination of the signature.

bulk speeds and rotor speeds are chosen in order for the main Doppler shift and the associated modulations to remain in the unambiguous speeds covered by the Doppler signatures [18]. Example signatures and their covariance representations are depicted for each class on Fig. 2. For each class, 3000 samples are simulated, thus creating a 12000-samples dataset. While small for the deep learning community, possessing thousands of relevant and labeled real radar detections would not be trivial in the radar industry, making larger simulated datasets less realistic for this use case.
3 OODD methods

This work compares deep and non-deep OODD methods, called shallow, including second-order methods harnessing the SPD representations provided by the covariance matrix of the signatures. The extension of the deep learning architectures discussed to SAD and self-supervised learning (SSL) is part of the comparison. The use of SSL here consists in the exploitation of a rotated version of every training signature belonging to the normal class in addition to its non-rotated version, whereas SAD amounts to the use of a small minority of actual anomalies taken in one of the other classes of the dataset. In the first case one creates artificial anomalous samples from the already available samples of a single normal class, whereas in the second case labeled anomalies stemming from real target classes are made available. No SSL or SAD experiments were conducted on the SPD representations, since the SSL and SAD extensions of the deep methods are achieved through training loss modifications, and the SPD representations were confined to shallow baselines.

3.1 Non-deep methods

Common non-deep anomaly detection methods constitute our baselines: one-class support vector machines (OC-SVM) [28], isolation forests (IF) [19], local outlier factor (LOF) [4] and random projections outlyingness (RPO) [12]. The three first methods are selected for their widespread use [10, 27, 1], and the diversity of the underlying algorithms. OC-SVM projects data points in a feature space where a hyperplane separates data points from the origin, thus creating a halfspace containing most samples. Samples whose representation lies outside of this halfspace are then considered to be anomalies. IF evaluates how easy it is to isolate data points in the feature space by recursively partitioning the representation space. The more partitions are required to isolate a data point, the more difficult it is to separate this point from other samples, and the less anomalous this point is. LOF uses the comparison of local densities in the feature space to determine whether a point is anomalous or not. Points that have local densities similar to the densities of their nearest neighbors are likely to be inliers, whereas an outlier will have a much different local density than its neighbors. RPO combines numerous normalized outlyingness measures over 1D projections with a max estimator in order to produce a unique and robust multivariate outlyingness measure, which translates into the following quantity:

\[
O(x; p, X) = \max_{u \in U} \frac{|u^T x - MED(u^T X)|}{MAD(u^T X)}
\]

where \(x\) is the data point we want to compute the outlyingness for, \(p\) the number of random projections (RP) \(u\) of unit norm gathered in \(U\), and \(X\) the training data matrix. \(MED\) stands for median and \(MAD\) for median absolute deviation. This outlyingness actually leads to the definition of a statistical depth approximation [12, 17].
3.2 Deep methods

The deep AD methods experimented on in this work are inspired by the deep support vector data description (SVDD) original paper [27]. Deep SVDD achieves one-class classification by concentrating latent space representations around a normality centroid with a neural network trained to minimize the distance of projected data samples to the centroid. The centroid is defined by the average of the initial forward pass of the training data, composed of normal samples. The intuition behind the use of Deep SVDD for AD is similar to the way one detects anomalies with generative models: whereas generative models detect outliers because they are not as well reconstructed as normal samples, deep SVDD projects outliers further away from the normality centroid in the latent space. One can note that Deep SVDD is a deep learning adaptation of SVDD [29], which can be equivalent to the OC-SVM method in our comparison if one uses a Gaussian kernel. The training loss of Deep SVDD for a sample of size n with a neural network Φ with weights W distributed over L layers is as follows:

$$\min_{W} \left[\frac{1}{n} \sum_{i=1}^{n} ||\Phi(x_i; W) - c||^2 + \frac{\lambda}{2} \sum_{l=1}^{L} ||W_l||^2 \right]$$

(2)

where c is the fixed normality centroid. The second term is a weights regularization adjusted with λ. Deep SVDD naturally calls for a latent multi-sphere extension. An example of such an extension is Deep multi-sphere SVDD (MSVDD) [14], which is part of our comparison. Deep MSVDD initializes numerous latent normality hyperspheres using k-means and progressively discards the irrelevant centroids during training. The relevance of latent hyperspheres is determined thanks to the cardinality of the latent cluster they encompass. The deep MSVDD training loss is:

$$\min_{w, r_1...r_K} \left[\frac{1}{K} \sum_{k=1}^{K} r_k^2 + \frac{1}{\nu n} \sum_{i=1}^{n} max(0, ||\Phi(x_i; W) - c_j||^2 - r_j^2) + \frac{\lambda}{2} \sum_{l=1}^{L} ||W_l||^2 \right]$$

(3)

The first term minimizes the volume of hyperspheres of radius r_k, while the second is controlled by $\nu \in [0, 1]$ and penalizes points lying outside of their assigned hypersphere, training samples being assigned to the nearest hypersphere of center c_j. A second Deep SVDD variant considered here is Deep RPO [2], which replaces the latent Euclidean distance to the normality centroid with a RPs-based outlyingness measure in the latent space. This outlyingness measure ensures normality is described by a latent ellipsoid instead of a latent hypersphere, and leads to the following loss:

$$\min_{W} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{|u^T \Phi(x_i; W) - MED(u^T \Phi(X; W))|}{MAD(u^T \Phi(X; W))} \right) + \frac{\lambda}{2} \sum_{l=1}^{L} ||W_l||^2 \right]$$

(4)
This training loss uses the outlyingness defined in Eq. 1, with a \textit{max} estimator transformed into a \textit{mean} as suggested in [2] for better integration with the deep learning setup.

SAD is achieved through outlier exposure [15, 26], which adds supervision to the training of the model thanks to the availability of few and non-representative labeled anomalies. To take into account anomalies during training, Deep SAD [26] repels the outliers from the normality centroid by replacing the minimization of the distance to the centroid with the minimization of its inverse in the training loss. Outliers could not globally be gathered around a reference point since they are not concentrated. This adaptation can be repeated for both Deep RPO and Deep MSVDD, although in Deep MSVDD the multiplicity of normality centers calls for an additional consideration on how to choose from which centroid the labeled anomalies should be repelled. The experiments implementing Deep MSVDD adapted to SAD with an additional loss term for labeled anomalies were inconclusive, such an adaptation will therefore not be part of the presented results. The reunion of normal latent representations achieved through the deep one-class classification methods mentioned is analogous to the alignment principle put forward in [30], which also argued for a latent uniformity. The extension of the Deep SVDD loss to encourage such latent uniformity using the pairwise distance between normal samples during training was investigated without ever improving the baselines.

3.3 Riemannian methods for covariance matrices

Two SPD-specific AD approaches were considered. The first approach consists in replacing the principal component analysis (PCA) dimensionality reduction preceding shallow AD with an SPD manifold-aware tangent PCA (tPCA). The tPCA projects SPD points on the tangent space of the Fréchet mean, a Riemannian mean which allows to compute an SPD mean, keeping the computed centroid on the Riemannian manifold naturally occupied by the data. Using tPCA offers the advantage of being sensible to the manifold on which the input samples lie, but implies that input data is centered around the Riemannian mean. This makes tPCA a questionable choice when the objective set is AD with multimodal normality [23], something that is part of the experiments put forward in this work. Nonetheless, the Euclidean PCA being a common tool in the shallow AD literature, tPCA remains a relevant candidate for this study since it enables us to take a step back with respect to non-deep dimensionality reduction.

The second SPD-specific approach defines a Riemannian equivalent to Deep SVDD: inspired by recent work on SPD neural networks, which learn representations while keeping them on the SPD matrices manifold, a Deep SVDD SPD would transform input covariance matrices and project the latter into a latent space comprised within the SPD manifold. Taking into account SAD and SSL labeled anomalies during training was expected to be done as for the semi and self-supervised adaptations of Deep SVDD described earlier, where labeled
anomalies are pushed away from the latent normality centroid thanks to an inverse distance term in the loss. Despite diverse attempts to make such a Deep SVDD SPD model work, with and without geometry-aware non-linearities in the neural network architecture, no effective learning was achieved on our dataset. This second approach will therefore be missing from the reported experimental results. Since this approach defined the ReEig [16] non-linearity rectifying small eigenvalues of SPD representations, the related shallow AD approach using the norm of the last PCA components as an anomaly score was also considered. This negated PCA is motivated by the possibility that, in one-class classification where fitting occurs on normal data only, the first principal components responsible for most of the variance in normal data are not the most discriminating ones when it comes to distinguishing normal samples from anomalies [21, 25]. This approach was applied to both spectral and covariance representations, with the PCA and tPCA last components respectively, but was discarded as well due to poor performances. The latter indicate that anomalous samples are close enough to the normal ones for their information to be carried in similar components, emphasizing the near OODD nature of the discrimination pursued.

4 Experiments

AD experiments are conducted for two setups: a first setup where normality is made of one target class, and a second setup where normality is made of two target classes. When a bimodal normality is experimented on, the normal classes are balanced. Moreover, the number of normal modes is not given in any way to the AD methods, making the experiments closer to the arbitrary and, to a certain extent, unspecified one-class classification useful to a radar operator. Within the simulated dataset, 90% of the samples are used to create the training set, while the rest is equally divided to create the validation and test sets. All non-deep AD methods include a preliminary PCA or tPCA dimensionality reduction.

Preprocessing This work is inspired by [26], which experimented on Fashion-MNIST, a dataset in which samples are images of objects without background or irrelevant patterns. In order to guarantee a relevant neural architecture choice, this kind of input format is deliberately reproduced. The series of periodograms, i.e. non-SPD representations are therefore preprocessed such that only the columns with top 15% values in them are kept, this operation being done after a switch to logarithmic scale. This results in periodograms where only the active Doppler bins, portraying target bulk speed and micro-Doppler modulations, have non-zero value. Only a grayscale region of interest (ROI) remains in the input matrix with various Doppler shifts and modulation widths, examples of which are shown on Figure 3. This preprocessing leads to the "(SP)" input format as indicated in the results tables, and is complementary to the covariance representation. Covariance matrices are computed without such preprocessing, except for the switch to logarithmic scale which precedes the covariance computation. Comparing covariance-based OODD to OODD on spectral representations is fair since
both representations stem from the same inputs, the covariance only implying an additional transformation of the input before training the AD. All input data is min-max normalized except for the covariance matrices used by tPCA.

Deep learning experiments The test AUC score of the best validation epoch in terms of AUC is retained, in line with [11]. All experiments were conducted with large 1000 samples batches, which stabilizes the evolution of the train, validation and test AUCs during training. The training is conducted during 300 epochs, the last 100 epochs being fine-tuning epochs with a reduced learning rate, a setup close to the one in [27]. A relatively small learning rate of 10^{-4} is chosen to help avoid the latent normality hypersphere collapse, i.e. the convergence to a constant projection point in the latent space, in the non-SAD and non-SSL cases, with $\lambda = 10^{-6}$. Hyperparameters are kept constant across all experiments conducted, in order to ensure fair comparisons. In the results tables, the second and third columns indicate whether SAD and SSL samples were used for additional supervision during training, and describe how such samples affected the training loss if present. When the SAD or SSL loss term is defined by a centroid, it means that the distance to the mentioned centroid is minimized during training, whereas "away" implies the projection of the SAD or SSL samples are repelled from the normality centroid thanks to an inverse distance as described previously. For example, the first line of the second part of Table 2 describes an experiment where SAD samples are concentrated around the SAD samples latent centroid, and SSL samples concentrated around the SSL samples latent centroid. Centroids are computed, as for the normal training samples, with the averaging of an initial forward pass, therefore yielding the average latent representation.

Non-deep learning experiments Shallow AD conducted on the covariance representation after a common PCA uses the upper triangular part of the min-max normalized input as a starting point, avoiding redundant values. This contrasts with the Riemannian approach replacing PCA with the tPCA, the latter requiring the raw SPD representation. Furthermore, shallow approaches were also tried on the periodograms individually, where each row of an input signature, i.e. one vector of Doppler bins described for one burst, was given a score, the complete signature being then given the mean score of all its periodograms. This ensemble method did not yield relevant results and is therefore missing from our comparison. Such an approach ignores the order of periodograms in signatures.

Neural network architecture While the Fashion-MNIST input format is thus replicated, the 2D features remain specific to radar signal processing and may therefore benefit from a different neural network architecture. Several neural networks architectures were considered, including architectures beginning with wider square and rectangular convolutions extended along the (vertical) bursts input axis, with none of the investigated architectures scoring systematically higher than the Fashion-MNIST architecture from the original Deep SAD work [26], which was only modified in order to handle the larger input size. The latter was consequently selected to produce the presented results. This architecture projects
data with two convolutional layers followed by two dense layers, each layer being separated from the next one by a batch normalization and a leaky ReLU activation. The outputs of the two convolutional layers are additionally passed through a 2D max-pooling layer.

Riemannian AD The tPCA was computed thanks to the dedicated Geomstats [22] function, while experiments implementing a Riemannian equivalent of Deep SVDD were conducted using the SPD neural networks library torchspdnet [8]. The AD experiments based on a SPD neural network ending up inconclusive, they are not part of the results tables.

4.1 Unsupervised OODD with shallow and deep learning

Unsupervised AD results, for which the training is only supervised by normal training samples, are presented in Table 1. These results indicate the superiority of deep learning for the OODD task considered, while demonstrating the substantial contribution of geometry-aware dimensionality reduction through the use of tPCA for non-deep AD. RPO is kept in Table 1 even though it does not achieve useful discrimination because it is the shallow equivalent of Deep RPO, one of the highlighted deep AD methods, deprived of the neural network encoder and with a max estimator instead of a mean, as was previously justified. Deep MSVDD does not lead to the best performances, and is as effective as Deep SVDD and Deep RPO, which could seem surprising at least when normality is made of two target classes.

4.2 Potential contribution of SAD and SSL

The contribution of additional supervision during training through the introduction of SAD samples and SSL samples is examined in Table 2. Regarding SAD
Table 1: Unsupervised AD experiments results (average test AUCs in % ± Std-Devs over ten seeds). These machine learning methods are trained on fully normal training sets, without labeled anomalies for SAD or self-supervision transformations. The four last methods are our deep AD baselines, trained on normalized spectral representations only. Deep MSVDD "mean best" indicates the neural network was trained using a simpler loss, analogous to the Deep SVDD loss, where only the distance to the best latent normality centroid is minimized, thus discarding the radius loss term. One should note that whereas Deep SVDD uses the Euclidean distance to the latent normality centroid as a test score, Deep MSVDD replaces this score with the distance to the nearest latent centroid remaining after training, from which the associated radius is subtracted. Very often in our experiments, even with multimodal normality during training, only one latent sphere remains at the end of Deep MSVDD training. Deep RPO replaces the Euclidean distance score with an RPO computed in the encoding neural network output space. PCA and tPCA indicate that the AD model is trained after an initial dimensionality reduction, which is either PCA or tangent PCA. RPO, with or without prior neural network encoding, is always implemented with 1000 random projections.

AD method (input format)	SAD loss	SSL loss	Mean test AUC (1 mode)	Mean test AUC (2 modes)
OC-SVM (SP-PCA)	/	/	49.16 ± 26.69	45.48 ± 27.53
OC-SVM (SPD-PCA)	/	/	64.68 ± 9.10	58.23 ± 15.12
OC-SVM (SPD+tPCA)	/	/	57.59 ± 3.91	55.33 ± 9.48
IF (SP-PCA)	/	/	50.96 ± 17.37	48.50 ± 18.76
IF (SPD-PCA)	/	/	52.36 ± 22.47	47.50 ± 20.32
IF (SPD+tPCA)	/	/	66.91 ± 9.65	61.23 ± 12.65
LOF (SP-PCA)	/	/	56.80 ± 2.38	61.55 ± 10.29
LOF (SPD-PCA)	/	/	66.44 ± 21.37	65.83 ± 19.52
LOF (SPD+tPCA)	/	/	78.38 ± 8.86	73.56 ± 10.09
RPO (SP-PCA)	/	/	49.61 ± 6.89	50.43 ± 7.13
RPO (SPD-PCA)	/	/	51.08 ± 19.66	54.95 ± 17.58
RPO (SPD+tPCA)	/	/	33.97 ± 7.36	38.08 ± 14.58
Deep SVDD (SP)	no SAD	no SSL	83.03 ± 6.83	78.29 ± 6.68
Deep MSVDD (SP)	no SAD	no SSL	82.27 ± 9.67	78.30 ± 8.28
Deep MSVDD "mean best" (SP)	no SAD	no SSL	82.29 ± 7.20	78.02 ± 6.80
Deep RPO (SP)	no SAD	no SSL	83.60 ± 5.35	78.13 ± 6.02

experiments, labeled anomalies will be taken from a single anomalous class for simplicity, and because only four classes are being separated, this avoids unrealistic experiments where labeled anomalies from every anomalous class are seen during training. When SAD samples are used during training, labeled anomalies represent one percent of the original training set size. This respects the spirit of SAD, for which labeled anomalies can only be a minority of training samples, which is not representative of anomalies. This is especially realistic in the radar processing setup initially described where labeled detections would rarely be available. SSL samples are generated thanks to a rotation of the spectral input
format, rendering the latter absurd but encouraging better features extraction since the network is asked to separate similar patterns with different orientations. SSL samples are as numerous as normal training samples, implying they don’t define a minority of labeled anomalies for training as SAD samples do, when they are taken into account.

Individually, SAD samples lead to better performances than SSL ones, but the best results are obtained when combining the two sets of samples for maximal training supervision. Deep SVDD appears to be substantially better at taking advantage of the additional supervision provided by SAD and SSL samples. Quite surprisingly for a radar operator, the best test AUC is obtained when SSL samples are concentrated around a specialized centroid while SAD samples are repelled from the normality centroid. Indeed, SSL samples being the only absurd samples considered in our experiments radarwise, it could seem more intuitive to project SAD samples, which remain valid targets, next to a dedicated centroid while repelling SSL samples. Likewise, on an ideal outlyingness scale, SSL samples should be further away from normality than SAD samples. This counter-intuitive performance could stem from the test set which only evaluates the separation of targets in a near OODD context. No invalid target representation, like the SSL samples are, is present in the test set, only valid representation from the four targets classes make up the latter. This is consistent with the application put forward in this study: use OODD to discriminate between various kinds of radar detections.

4.3 Training with a contaminated training set

Unsupervised AD refers to the experiments of Table 1 where only training samples assumed to be normal supervise the training of the neural network. Real-life datasets, labeled by algorithms or experts, are unlikely to respect that assumption and will suffer from contamination of normal samples with unlabeled anomalies. The results in Table 3 depict how sensible the deep AD methods previously introduced are to training set contamination. The contamination is carried out using the one percent SAD samples already used for SAD experiments. While in the SAD experiments SAD samples were repelled from the normality centroid or concentrated next to their dedicated latent reference point, here they will be processed as normal samples. SSL samples again appear to better contribute to improving AD when concentrated next to a specialized centroid, while the performance drop due to contamination does not seem to be particularly stronger for one of the approaches considered.

5 Conclusion

The near OODD performances of various deep and non-deep AD methods were compared on a radar Doppler signatures simulated dataset. Deep AD approaches were evaluated in various supervision setups, which revealed the relevance of combining a minority of labeled anomalies with transformed normal training
Table 2: Experiments with additional supervision provided by SAD and/or SSL labeled samples during training (average test AUCs in % ± StdDevs over ten seeds). When available, SAD samples are the equivalent of one percent of the normal training samples in quantity. The first half of the Table reports performances where only one of the two kinds of additional supervision is leveraged, while the second half describes the performances for setups where both SAD and SSL labeled samples contribute to the model training. Each couple of lines compares Deep SVDD and Deep RPO in a shared AD supervision setup, thus allowing a direct comparison. c. stands for centroid.

AD method (input format)	SAD loss	SSL loss	Mean test AUC (1 mode)	Mean test AUC (2 modes)
Deep SVDD (SP)	no SAD	no SSL	86.79 ± 6.54	83.91 ± 7.92
Deep RPO (SP)	no SAD	no SSL	88.70 ± 5.10	84.59 ± 8.54
Deep SVDD (SP)	no SAD	away	81.43 ± 6.82	77.01 ± 8.20
Deep RPO (SP)	no SAD	away	80.21 ± 9.06	78.93 ± 9.39
Deep SVDD (SP)	SAD c.	no SSL	86.79 ± 8.94	87.65 ± 6.44
Deep RPO (SP)	SAD c.	no SSL	81.38 ± 6.09	76.45 ± 6.30
Deep SVDD (SP)	away	no SSL	93.93 ± 4.82	93.50 ± 7.61
Deep RPO (SP)	away	no SSL	84.19 ± 5.32	80.37 ± 7.22
Deep SVDD (SP)	SAD c.	SSL c.	91.00 ± 6.45	90.51 ± 7.38
Deep RPO (SP)	SAD c.	SSL c.	87.79 ± 5.81	82.69 ± 8.51
Deep SVDD (SP)	SAD c.	away	89.98 ± 7.79	91.03 ± 6.71
Deep RPO (SP)	SAD c.	away	78.86 ± 9.10	79.11 ± 9.64
Deep SVDD (SP)	away	SSL c.	95.06 ± 4.20	93.91 ± 7.31
Deep RPO (SP)	away	SSL c.	95.06 ± 4.20	93.91 ± 7.31

Table 3: Contamination experiments results (average test AUCs in % ± StdDevs over ten seeds): the SAD labeled anomalies are integrated within the training samples and taken into account as normal samples during training, thus no SAD loss term is used for SAD samples. The contamination rate is one percent, i.e. the equivalent of one percent of the normal training samples in labeled anomalies is added to confuse the AD.

AD method (input format)	SAD loss	SSL loss	Mean test AUC (1 mode)	Mean test AUC (2 modes)
Deep SVDD (SP)	no SAD	no SSL	80.76 ± 7.11	76.02 ± 6.66
Deep MSVDD (SP)	no SAD	no SSL	78.31 ± 11.18	74.49 ± 9.13
Deep MSVDD "mean best" (SP)	no SAD	no SSL	79.84 ± 7.82	74.89 ± 7.01
Deep RPO (SP)	no SAD	no SSL	81.29 ± 5.92	74.82 ± 5.89
Deep SVDD (SP)	no SAD	SSL c.	85.34 ± 6.85	81.36 ± 7.47
Deep RPO (SP)	no SAD	SSL c.	86.66 ± 6.41	82.78 ± 8.25
Deep SVDD (SP)	no SAD	away	79.62 ± 9.02	75.38 ± 8.28
Deep RPO (SP)	no SAD	away	76.16 ± 9.87	76.56 ± 8.69

samples to improve near OOODD performances, and avoid latent normality hy-
Fig. 4: **Left** - Training metrics of a successful run where normal samples are concentrated around their average initial projection, and SAD and SSL samples are pushed away thanks to a loss term using the inverse of the distance with respect to the normality latent centroid. This is one of the most successful setups in Table 2, and one of the easiest AD experiments since the two classes defining normality here are class 3 (four blades are responsible for the modulation pattern around the central Doppler shift) and class 4 (six blades are responsible for the modulation pattern around the central Doppler shift), meaning the separation with the other classes deemed anomalous is actually a binary modulation complexity threshold. One of the contributions of the SAD and SSL supervisions can be observed on the evolution of AUCs during training: no AUC collapse can be seen during training. Experiments showed that large training batches contributed to stable AUCs growth. Spikes in the training loss match the drops in AUCs. **Right** - Latent distribution of the training samples visualized in 2D using t-SNE after projection by the untrained (top) and the trained neural network (bottom). One can notice that normal training samples from both normal classes are completely mixed up with the minority of SAD labeled anomalies from class 1 in red (one blade), semantically similar, whereas SSL samples which are rotated normal training samples are already gathered in their own latent subclusters. SAD labeled anomalies end up well separated after training.

persphere collapse. Among the limitations of our study, one can note the lack of OODD experiments on a multimodal normal training set with unbalanced normal classes, which would make the OODD task more realistic. The benefits of deep learning clearly showed, and while not leading to the best overall per-
formances, geometry-aware processing proved to be the source of a substantial improvement for non-deep AD.

Acknowledgements This work was supported by the French Defense Innovation Agency (Cifre-Défense 001/2019/AID).

References

1. Bauw, M., Velasco-Forero, S., Angulo, J., Adnet, C., Airiau, O.: From unsupervised to semi-supervised anomaly detection methods for HRRP targets. In: 2020 IEEE Radar Conference (RadarConf20). pp. 1–6. IEEE (2020)
2. Bauw, M., Velasco-Forero, S., Angulo, J., Adnet, C., Airiau, O.: Deep random projection outlyingness for unsupervised anomaly detection. arXiv preprint arXiv:2106.15307 (2021)
3. Björklund, S., Wadströmer, N.: Target detection and classification of small drones by deep learning on radar micro-doppler. In: 2019 International Radar Conference (RADAR). pp. 1–6. IEEE (2019)
4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data. pp. 93–104 (2000)
5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine 34(4), 18–42 (2017)
6. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: A Hermitian positive definite neural network for micro-doppler complex covariance processing. In: 2019 International Radar Conference (RADAR). pp. 1–6. IEEE (2019)
7. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Riemannian batch normalization for spd neural networks. Advances in Neural Information Processing Systems 32 (2019)
8. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Second-order networks in pytorch. In: International Conference on Geometric Science of Information. pp. 751–758. Springer (2019)
9. Brooks, D.A., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Temporal deep learning for drone micro-doppler classification. In: 2018 19th International Radar Symposium (IRS). pp. 1–10. IEEE (2018)
10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM computing surveys (CSUR) 41(3), 1–58 (2009)
11. Chong, P., Ruff, L., Kloft, M., Binder, A.: Simple and effective prevention of mode collapse in deep one-class classification. In: 2020 International Joint Conference on Neural Networks (IJCNN). pp. 1–9. IEEE (2020)
12. Donoho, D.L., Gasko, M., et al.: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics 20(4), 1803–1827 (1992)
13. Gérard, J., Tomasiak, J., Morisseau, C., Rimmel, A., Vieillard, G.: Micro-doppler signal representation for drone classification by deep learning. In: 2020 28th European Signal Processing Conference (EUSIPCO). pp. 1561–1565. IEEE (2021)
14. Ghafoori, Z., Leckie, C.: Deep multi-sphere support vector data description. In: Proceedings of the 2020 SIAM International Conference on Data Mining. pp. 109–117. SIAM (2020)
15. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. Proceedings of the International Conference on Learning Representations (2019)
16. Huang, Z., Van Gool, L.: A riemannian network for spd matrix learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
17. Huber, P.J.: Projection pursuit. The annals of Statistics pp. 435–475 (1985)
18. Levanon, N., Mozeson, E.: Radar signals. John Wiley & Sons (2004)
19. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth ieee international conference on data mining. pp. 413–422. IEEE (2008)
20. MATLAB: version 9.11.0 (R2021b). The MathWorks Inc., Natick, Massachusetts (2021)
21. Miolane, N., Caorsi, M., Lupo, U., et al.: ICLR 2021 challenge for computational geometry & topology: Design and results. arXiv preprint arXiv:2108.09810 (2021)
22. Miolane, N., Guigui, N., Brigant, A.L., et al.: Geomstats: A python package for Riemannian geometry in machine learning. Journal of Machine Learning Research 21(223), 1–9 (2020), http://jmlr.org/papers/v21/19-027.html
23. Pennec, X.: Barycentric subspace analysis on manifolds. The Annals of Statistics 46(6A), 2711–2746 (2018)
24. Ren, J., Fort, S., Liu, J., et al.: A simple fix to Mahalanobis distance for improving near-ood detection. arXiv preprint arXiv:2106.09022 (2021)
25. Rippel, O., Mertens, P., Merhof, D.: Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: 2020 25th International Conference on Pattern Recognition (ICPR). pp. 6726–6733. IEEE (2021)
26. Ruff, L., Vandermeulen, R.A., Görnitz, N., et al.: Deep semi-supervised anomaly detection. In: International Conference on Learning Representations (2020), https://openreview.net/forum?id=HkgH0TEYwH
27. Ruff, L., Vandermeulen, R.A., Görnitz, N., et al.: Deep one-class classification. In: Proceedings of the 35th International Conference on Machine Learning. vol. 80, pp. 4393–4402 (2018)
28. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001)
29. Tax, D.M., Duin, R.P.: Support vector data description. Machine learning 54(1), 45–66 (2004)
30. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: International Conference on Machine Learning. pp. 9929–9939. PMLR (2020)
31. Yu, K., Salzmann, M.: Second-order convolutional neural networks. arXiv preprint arXiv:1703.06817 (2017)