Colloquium: Cluster growth on surfaces - densities, size distributions and morphologies

Mario Einax,1∗ Wolfgang Dieterich,2† and Philipp Maass1‡
1 Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany
2 Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany

(Dated: March 3, 2014)

Understanding and control of cluster and thin film growth on solid surfaces is a subject of intensive research to develop nanomaterials with new physical properties. In this Colloquium we review basic theoretical concepts to describe submonolayer growth kinetics under non-equilibrium conditions. It is shown how these concepts can be extended and further developed to treat self-organized cluster formation in material systems of current interest, such as nanoalloys and molecular clusters in organic thin film growth. The presentation is focused on ideal flat surfaces to limit the scope and to discuss key ideas in a transparent way. Open experimental and theoretical challenges are pointed out.

CONTENTS

I. Introduction
II. Elementary processes and rate equations
III. How many islands form?
 A. Island densities of one-component adsorbates
 B. Island densities of binary alloys
 C. Beyond Γ scaling: Self-consistent capture numbers
IV. What is the distribution of island sizes?
 A. Predictions from rate equations
 B. Scaling approaches
 C. Limiting behavior for \(D/F \rightarrow \infty \)
V. When do islands survive upon continued deposition?
 A. Second-layer nucleation rate
 B. Applications
VI. What determines outer shape and inner structure of islands?
 A. Island shapes on (111) surfaces
 B. Second-layer induced morphologies
 C. Segregation and ordering effects
VII. Concluding remarks

Acknowledgments
References

I. INTRODUCTION

A widely applied method for the design of materials with nanoscale dimensions is to deposit atoms or molecules on a solid substrate. Adsorbed atoms diffuse along the surface, nucleate and form aggregates. The interplay of these processes leads to a rich variety of self-organized growth phenomena. Nanoscale structures built in this way in general are metastable, so that their physical properties can differ distinctly from the corresponding equilibrium bulk phases. Owing to the progress in experimental techniques, especially scanning tunneling microscopy (STM) and atomic force microscopy (AFM), it is possible to uncover microscopic details in the underlying structure formation with an unprecedented precision.

Starting out with the pioneering work by Venables and coworkers (Venables, 1973; Venables et al., 1984) important theoretical concepts were developed in the past. Today, the adatom kinetics of single-component metallic systems is rather well understood. From scaling properties of measured island densities and shapes important kinetic parameters can be extracted, like adatom diffusion coefficients and interaction energies, sizes of critical nuclei, step edge barriers for interlayer transport, etc. Knowledge of these parameters makes it possible to control the desired growth modes to a substantial degree.

Several extensive review articles give an excellent account of the state-of-the-art (Brune, 1998; Evans et al., 2006; Michely and Krug, 2004; Ratsch and Venables, 2003).

This Colloquium is motivated by the fact that many of the basic questions in the field of surface growth appear nowadays in a new context. This includes self-organized growth of nanoalloys, which can show unex-
pected physical properties emerging from frozen-in non-equilibrium atomic arrangements. The submonolayer regime of alloy growth offers a wealth of new problems relative to growth in one-component adatom systems. Other examples of wide current interest are epitaxial growth of colloids (Einstein and Stasevich, 2010; Ganapathy et al., 2010); growth of graphene on metal substrates (Coraux et al., 2009; Loginova et al., 2008; Zangwill and Vvedensky, 2011), and growth of metallic nanoparticles on graphene (Moldovan et al., 2012; Pandev et al., 2011; Zhou et al., 2010). While theoretical treatments of the growth kinetics for these systems are still rare, the general concepts, presented here, can be adapted and refined in order to understand the graphene and nanoparticle formation.

A further important problem is the self-organized growth of organic molecules on an inorganic substrate (Kowarik et al., 2008; Kühnic, 2009; Rahe et al., 2013). In the latter case, the complexity of building blocks, provided by organic chemistry, can be exploited for generating an even richer spectrum of surface structures. Such studies are largely driven by perspectives of molecular electronics (Cuevas and Scheer, 2010; Cuniberti et al., 2005; Nitzan and Ratner, 2003) and organic photovoltaics (Deibel and Dynakov, 2010; Nicholson and Castro, 2010).

A challenge in this area is to clarify how far concepts based on single atom surface kinetics remain valid, or require modification when dealing with the larger sizes, potential non-spherical shapes and internal degrees of freedom of the molecules. Such questions were addressed in recent experiments, but our understanding of mechanisms underlying organic surface growth is just at the beginning. Of particular relevance is to explain which type of island morphologies develop and how they can be controlled. Organic molecules exhibit often only weak interactions with the substrate. As a consequence, dewetting is often observed in molecular pattern formation (Burke et al., 2009). Examples are pentacene on SiO$_2$ (Käfer et al., 2009), perylene tetracarboxylic dianhydride (PTCDA) on NaCl (Burke et al., 2008), or C$_{60}$ on KBr (Burke et al., 2005, NaCl (Burke et al., 2007) and on CaF$_2$ (Loske et al., 2010). Finally, it is fair to note that even the standard theories of cluster growth in mono-component atomic systems still imply basic, partly long-standing open problems and we will point out a few of them.

Our focus will be on a set of general questions, which seemingly are well understood but indeed call for a more general treatment or deeper analysis: (i) How many islands form? (ii) What is the distribution of island sizes? (iii) When do islands survive upon continued deposition? (iv) What determines the outer shape and inner structure of clusters? The first two questions are specially important for submonolayer growth and the following ones for multilayer growth. Without reviewing in any detail the current knowledge about these questions, our attention in each case will be concentrated on specific open problems which are behind. Steps towards their solution are proposed, corroborated by simple model studies.

II. ELEMENTARY PROCESSES AND RATE EQUATIONS

Advanced computer simulation techniques have made it possible to study the growth of clusters and films on surfaces in great detail (for a recent review, see Clancy, 2011). Classical methods as molecular dynamics (Rapaport, 2004) and kinetic Monte-Carlo (KMC) simulations (Landau and Binder, 2005) can nowadays be supported by ab initio calculations, which provide precise force fields and/or microscopic parameters entering rates for elementary jump processes. Such approaches (Kratzer and Scheffler, 2001) are important to account for specifics of material systems. To capture large time and length scales in the growth kinetics, continuum phase-field models have been developed, where atomic features are resolved up to a certain extent (Provatas and Elder, 2010). Prominent ap-
proaches are the level set method (Gyure et al., 1998; Ratsch and Venables, 2003) and the phase-field crystal method (Elder et al., 2002, Greenwood et al., 2010). The latter is based on a modulated density field that minimizes a free energy functional. Construction of this functional to adequately describe patterning in ultra thin films is the major challenge of a phase-field crystal method (Elder et al., 2012).

To bring up the basic principles in a transparent way, we consider ideal surfaces, that is we disregard all complicating factors arising at real surfaces, as, for example, surface steps, impurities, anisotropies or reconstruction. Given this scope, surface structures evolve through elementary atomic or molecular moves that obey fairly simple rules, but a number of a large set of moves eventually leads to a high degree of self-organization and to complex terminal structures on the nanoscopic or even mesoscopic scale.

Figure 1(a) illustrates some types of atomic moves, which dominate the early stages of growth. Following deposition to the substrate surface, atoms can reevaporate, or stick to the surface and perform diffusional steps. Diffusing adatoms (monomers) can stick together when they meet, forming dimers, trimers or larger two-dimensional islands. Islands as a whole in general do not diffuse; they grow by attachment of other adatoms or decay by dissociation. Three-dimensional growth is due to direct deposition on top of an island that has formed before, or to interlayer jumps. In an interlayer jump, illustrated in Fig. 1(b), the atom in general must surmount an additional energy barrier, the so-called Ehrlich-Schwoebel barrier associated with a low-coordinated site at a step edge (Ehrlich and Hudda, 1966; Schwoebel, 1969).

Structure formation begins with the assembly of two-dimensional islands, composed of adsorbate atoms within the first monolayer. Usually a range of fairly low temperatures exists, where reevaporation can be ignored and thermal energies k_BT are significantly lower than the binding energy E_B between two adatoms, while diffusion is active. The condition $k_BT < E_B$ ensures that only few atoms are required to form a stable island. An important concept is the critical island size (critical nucleus). Islands composed of more than 1 atoms are more likely to grow than to decay.

Two factors influence the nucleation and growth of islands: deposition of atoms onto the surface with a flux F and thermally activated diffusion of adatoms along the surface with a diffusion coefficient

$$D \approx D_\infty \exp(-U/k_BT). \quad (1)$$

where U is the diffusion barrier. For atomic systems, the pre-exponential factor is given by $D_\infty = \nu a^2$, where ν is an attempt frequency and a is the lattice constant of the substrate. The mean time for a unit cell to be hit by an atom is $1/Fa^2$, and a^2/D is the mean time after which it leaves that cell by diffusion. Growth kinetics are controlled by the dimensionless ratio of these times, the “D/F-ratio” $\Gamma = D/Fa^2$. In the following, a is used as length unit and not always given explicitly.

Because adatom diffusion is thermally activated, the density N of stable islands is a sensitive function of temperature. At high temperatures, D is large and adatoms can diffuse over longer distances before encountering another adatom or attaching to an island. Accordingly, N becomes smaller with increasing T. This is demonstrated in Fig. 2 for fullerene (C_{60}) islands grown on an atomically flat CaF$_2$(111) surface (Loske et al., 2010).

Rate equations (RE) have proven to be very useful to relate measured island densities to atomistic parameters (Venables, 1973, Zinsmeister, 1966). The approach follows the spirit of classical nucleation theory by Becker and Döring (1935) and is based on equations for the evolution of densities $n_s(t)$ of islands composed of s atoms. Monomers have a density $n_1(t) \equiv n(t)$. Islands with $s \geq 2$ are considered to be immobile. This leads to the infinite set of equations

$$\frac{dn}{dt} = F - 2D\sigma_1n^2 - Dn\sum_{s=2}^{\infty} \sigma_sn_s + 2K_{2n_2} + \sum_{s=3}^{\infty} K_sn_s, \quad (2a)$$

$$\frac{dn_s}{dt} = D\sigma_{s-1}n_{s-1} - D\sigma_sn_s + K_{s+1}n_{s+1} - K_sn_s, \quad s = 2, 3, \ldots \quad (2b)$$

Attachment of diffusing monomers to s-clusters occurs with rates $\sigma_s Dn_s$, where σ_s are called capture numbers. Detachment of monomers from s-clusters occurs with rates K_s, where $K_s = 0$ if $s > i$. Re-evaporation of atoms, direct impingement of arriving atoms onto clusters, coalescence of clusters or dissociation of clusters into subclusters are neglected in Eqs. (2) but can be incorporated by proper extension (Bruno, 1998; Venables, 2000; Venables et al., 1984).
A straightforward step in refining Eqs. (2) is to distinguish the impingement of atoms to the free surface from impingement to the islands edge, or to the top of an island and subsequent attachment to its edge. \(F \) is then replaced by \(F(1 - \Theta) \) and terms of the form \(F_{Ks}n_s \) are added, where \(\kappa_s \) is a direct capture area \([\text{Venables, 1973}] \). In Sec. [IV] we will refer to the corresponding rate equations as the refined RE.

From the above concepts it is clear that cluster growth on surfaces basically differs from growth in solutions. There, small clusters composed of only a few atoms (molecules) are generally unstable due to solvation effects. This implies that the critical nuclei are large, in contrast to metallic surface growth. In standard continuum theory they are characterized by a critical radius, which results from the competition of the surface free energy, increasing as \(R^2 \), and the bulk free energy, proportional to \(R^3 \). Cluster diffusion and cluster aggregation that both are affected by hydrodynamic effects, play an important role in distinction to processes shown \(\text{to be in the limit } \Gamma \rightarrow \infty \). An asymptotic solution of Eqs. (3) in this limit can be derived from the scaling ansatz \(n(\Gamma, \Theta) \sim \Gamma^{-3}N_{\infty}(\Theta) \) and \(N(\Gamma, \Theta) \sim \Gamma^{-3}N_{\infty}(\Theta) \) with \(\zeta, \chi > 0 \) \([\text{Dieterich et al., 2008}] \). Note that both \(n \) and \(N \) should decrease with increasing \(\Gamma \) at fixed \(\Theta \). Inserting this scaling ansatz into Eqs. (6) gives \(\zeta = 2/(i+2) \) and \(\chi = i/(i+2) \). Finally,

\[
N(\Gamma, \Theta) \sim \left[\frac{(i+2)\sigma b_i}{\Theta} \right]^{1/(i+2)} e^{-E_i/(i+2)k_BT} \Gamma^{-1/(i+2)},
\]

(6a)

\[
n(\Gamma, \Theta) \sim \frac{1}{\sigma \Gamma N(\Gamma, \Theta)}.
\]

(6b)

Equation (6b) is often used in the literature as “quasi-stationary” approximation in Eqs. (5) to derive Eq. (6a). Our derivation is more general and shows that this quasi-stationary relation becomes exact in the \(\Gamma \rightarrow \infty \) limit. Its range of validity for finite \(\Gamma \) can be estimated from the first-order corrections \(\Delta N(\Gamma, \Theta) \) and \(\Delta n(\Gamma, \Theta) \) to the solution (5). In the case \(i = 1 \), for example, both ratios \(\Delta N(\Gamma, \Theta)/N(\Gamma, \Theta) \) and \(\Delta n(\Gamma, \Theta)/n(\Gamma, \Theta) \) are found to behave as \(\sim (\Theta^2\Gamma)^{-1/3} \), and the criterion for Eq. (6a) to hold is

\[
(\Theta^2\Gamma)^{1/3} \gg \left(\frac{64\sigma_1}{9\sigma^2} \right)^{1/3},
\]

(7)

where the right hand side is of order unity. The smaller \(\Theta \), the larger \(\Gamma \) in order for the scaling solutions (5) to remain valid. For \(i = 1 \) the ratio \(N(\Gamma, \Theta)/n(\Gamma, \Theta) \) also behaves as \(\sim (\Theta^2\Gamma)^{1/3} \) according to Eqs. (6). This means that the applicability of Eqs. (6) is equivalent to the experimentally testable condition \(n(\Gamma, \Theta) \ll N(\Gamma, \Theta) \). Because \(\Gamma \) is large, this condition is well satisfied in a large range of \(\Theta \) before \(N \) steeply falls in the coalescence regime, which typically sets in near \(\Theta \approx 0.2 \). In other words, the scaling of the island density with respect to \(\Gamma \) is not restricted to a “saturation regime” of nearly \(\Theta \)-independent island density, although this regime preceding island coalescence is certainly most convenient for experiments. An alternative argument for obtaining the
crossover to the stationary regime has been given earlier by equating Eq. (6a) with the solution for N in the initial time regime \cite{Evan94}.

Measurements of N as a function of F and T allow one to extract critical island sizes, diffusion coefficients and binding energies. Via the Γ-dependent factor in Eq. (6a), one first determines i. In practice, because T competes with the binding energy E_B, i is constant only within certain temperature intervals and overall increases with T. This is illustrated in Fig. 3 for the system Ag/Pt(111) \cite{Brun98}. Knowing i, the slopes in an Arrhenius representation of N yield $(U + E_i)/(i + 2)$ as activation energy, which for $i = 1$ is $U/3$. The high-T extrapolation of N in addition allows one to obtain information about the pre-exponential factor D_∞. This “nucleation route” \cite{Barh00, Brun98, Brun94, Mull96} to measuring surface diffusion coefficients and binding energies has been found particular useful. Examples are diffusion of Pd on SrTiO$_3$(100) \cite{Rich09}, Co diffusion on Cu(111) \cite{Prie05}, or of C$_{60}$ molecules on CaF$_2$(111) \cite{Losk10}, and of hydrogenated tetraphenyl porphyrin (2H-PPT) on Ag(111) \cite{Roio11}. A thorough overview on similar analyses of surface diffusion on metals can be found in \cite{Antc10}.

For a quantitative description of N beyond Γ-scaling, it turns out that the approximation (3) of constant capture numbers is insufficient. In particular the Θ dependence predicted by Eq. (6a) does not account for the tendency for N to saturate at large Θ before the coalescence regime. A good quantitative account is provided by a self-consistent theory of the capture numbers, which will be discussed in Sec. III.C below.

The rate equations form a very useful basis for treating problems in more complicated situations. Extensions of the theory for predicting island densities of multi-component adsorbates are discussed in the following Secs. III.B and III.C. A beautiful example is the growth of graphene on metallic surfaces, induced by deposition of carbon atoms or hydrocarbon molecules. Nucleation can then proceed via a two-step process. Clusters of five carbon atoms, which still are mobile, form first. In turn, six such clusters react to a stable, immobile graphene island \cite{Zang11}. Measured carbon adatom densities on Ru(0001) \cite{Login08} could be analyzed in terms of coupled rate equations for the densities of adatoms (n), five-atom clusters (c), and stable islands (N), thereby giving insight into the detailed kinetics of this more complicated nucleation scenario. Because of the large “critical nuclei” in this case, one has $n \gg c \gg N$. Note that due to the scaling $n/N \sim \Gamma^{(i-2)/(i+2)}$, cf. Eq. (6), $n \gg N$ is in general expected to hold for $i > 2$.

Epitaxial growth of graphene was indeed observed on several metallic surfaces \cite{Cast09, Volo12}, such as Ru(0001) \cite{Login08, Zhou10}, Ir(111) \cite{Corau09, Rusp10}, Pt(111) \cite{Gao11, Sutt09}, Ni(111) \cite{Grue08}, and Cu(111) \cite{Gao10}. Single-layer graphene on metal surfaces as well as chemically modified graphene and few-layer graphene can conversely be used as substrate for growth of metals like Ag, Au, Fe, Pt, and Ti. Such substrates modify the energetics of adsorbed metal atoms, allowing the production of a variety of metallic nanoparticle structures \cite{Pand11, Mold12}.

B. Island densities of binary alloys

For binary (or multi-component) alloys, growth kinetics are controlled by an enlarged set of parameters including mixing ratios and surface diffusion coefficients, which can vary strongly among different atomic species. This poses the question of a multi-parameter scaling of island densities. Moreover, atoms of different type will differ in their mutual binding energies on the surface, which can lead to a competition of different nucleation paths. The coexistence of critical nuclei with different compositions together with asymmetries in adatom diffusion coefficients leads to new cross-over phenomena in the scaling of island densities. Detection of such crossovers by experiment and interpretation with the help of theoretical predictions, described below, should allow one to deduce novel information on the size and composition
of critical nuclei, in particular on the binding energies of unlike atoms in the presence of the surface.

Let us consider two species of atoms, \(\alpha = A \) and \(B \) to be co-deposited with partial fluxes \(F_\alpha = x_\alpha F \), where \(F = F_A + F_B \) is the total flux. In this way a binary alloy with mole fractions \(x_A \) and \(x_B = 1 - x_A \) is formed. Only monomers of densities \(n_\alpha \) are supposed to diffuse along the surface with diffusion coefficients \(D_\alpha = \nu_\alpha \exp(-U_\alpha/k_B T) \), while clusters with more than one atom \((s > 1) \) are immobile.

To elucidate the essential new physics compared to one-component systems, we limit our discussion to cases where the largest unstable clusters are composed of not more than two atoms (for the general treatment, see Einax et al. (2007c)). Stable islands of density \(N \), in particular trimers and larger clusters, are treated in an averaged manner irrespective of composition. Monomers with densities \(n_\alpha \) and all combinations of dimers (densities \(n_{\alpha\beta} \)) will be treated explicitly. Considering systems where the important differences between \(A \) and \(B \) atoms primarily arise from diffusion coefficients and fluxes, we do not distinguish between \(A \) and \(B \) atoms in their respective capture numbers.

In comparison with Eq. (2a), the equation of motion for \(A \) monomers involves additional terms due to capture of \(B \) atoms and to the decay of \(AB \) dimers. Similarly the rate equations for the dimer density involve additional terms. The structure of these equations is quite obvious. For example, for \(n_{AB}(t) \) the equation is

\[
\frac{dn_{AB}}{dt} = (D_A + D_B)\sigma_1 n_A n_B - \left(\sum_{\beta} D_\beta n_\beta \right) \sigma_2 n_{AB} - K_{AB} n_{AB}.
\] (8)

Note that the coefficient for relative diffusional motion of \(A \) and \(B \) monomers is \(D_A + D_B \). \(K_{\alpha\beta} = K_{\beta\alpha} \) denote the dissociation rates of dimers. A reduced set of rate equations for \(n_\alpha(t) \), \(n_{\alpha\beta}(t) \) and \(N(t) \) is thus obtained, which allows us to derive the scaling behavior of island densities.

In experiments with binary systems both conditions \(\Gamma_\alpha = D_\alpha/F \gg 1 \) hold in general and a scaling analysis similar to that for mono-component adsorbates can be worked out. The simplest situation arises when all dimers are stable. This corresponds to the case \(i = 1 \), where

\[
N \simeq \left(\frac{3\sigma_1 \Theta}{\sigma^2} \right)^{1/3} \Gamma_{\text{eff}}^{-1/3}.
\] (9)

The exponents agree with those in Eq. (6a) for one-component systems, but the scaling variable \(\Gamma_{\text{eff}} = D_{\text{eff}}/F \) with \(D_{\text{eff}} = D_A D_B / (x_A D_B + x_B D_A) \) now describes the influence of both the different diffusion coefficients and mole fractions of the two species. Clearly, the species with lower diffusion coefficient governs the dependence of \(N \) on temperature.

If all dimers are unstable \((i = 2)\), we first have to seek for generalized Walton relations (Einax et al. 2007c) to express dimer densities in terms of adatom densities. As in Sec. III.A, these are obtained by nearly balancing the formation and dissociation of dimers,

\[
\sigma_1 D_\alpha n_\alpha^2 \simeq K_{\alpha\alpha} n_{\alpha\alpha}, \quad \alpha = A, B,
\] (10)

\[
\sigma_1 (D_A + D_B) n_{AB} \simeq K_{AB} n_{AB},
\] (11)

Writing \(K_{\alpha\beta} = \mu_{\alpha\beta} D_{\alpha\beta} \exp(-E_{\alpha\beta}/k_B T) \) in terms of the diffusion coefficients \(D_{\alpha\alpha} = D_\alpha \), \(D_{AB} = (D_A + D_B)/2 \), and the dimer binding energies \(E_{\alpha\beta} \geq 0 \) (with \(\mu_{\alpha\beta} \) being constants), one obtains

\[
N \simeq \left(\frac{4\sigma_1 \sigma_2 \Theta}{\bar{\sigma}^4} \right)^{1/4} \left[\sum_{\alpha,\beta} \mu_{\alpha\beta}^{-1} \frac{E_{\alpha\beta}^{1/4} F_\alpha F_\beta}{D_\alpha D_\beta} \right]^{1/4}.
\] (12)

Equations 4 and 12 generalize the scaling relation 6a for \(i = 1, 2 \) to the binary case. The predictions are in excellent agreement with KMC simulations (Einax et al. 2007d), but still await experimental confirmation. Because of the dependence of \(N \) on \(E_{AB} \) in Eq. 12, binding energies between unlike atoms on a substrate should become accessible by experiment. To achieve this, \(U_\alpha \) and \(E_{\alpha\alpha} \) can first be determined under deposition of only one species and then \(N \) is measured under co-deposition. The feasibility of a corresponding procedure has been demonstrated by recovering all growth parameters from a “computer experiment” on island densities, in a way equivalent to analyzing a true experiment [for details, including consistency checks, see Einax et al. (2009)].

More complex situations arise, when dimers with different compositions have different stability. For example, only \(BB \) dimers could be unstable \((K_{AA} = K_{AB} = 0, \ldots)\), yet...
\(K_{BB} > 0 \), or only \(AA \) dimers stable \((K_{AB}, K_{BB} > 0, K_{AA} = 0)\). For these and similar situations a closed rate equation for \(N \) can be derived by factorizing dimer densities in terms of the adatom densities with the help of Eqs. (11) \(\text{(11)} \), and by expressing the adatom densities through \(N \) via the quasi-stationary condition analogous to Eq. (6a). In all cases this leads to
\[
\frac{dN}{d\Theta} = \frac{b}{N^2} + \frac{c}{\Theta^3}.
\]
(13)
The linear combination on the right hand side reflects nucleation via the dimer \((dN/d\Theta \sim N^{-2}) \) and trimer route \((dN/d\Theta \sim N^{-3}) \).

The full solution of Eq. (13) is given by
\[
N = \left(\frac{c}{b}\right) \psi(b^4\Theta/c^3),
\]
(14)
where \(\psi(.) \) is determined by a transcendental equation \[\text{(Einax et al., 2007c)}\]. The coefficients \(b \) and \(c \) in Eq. (13) depend on \(\Gamma_0 \) and \(\mathcal{M}_0 \), and their detailed form is given in \[\text{Dieterich et al., 2008}\]. If, for example, stable dimers are of \(AA \) type only, then \(b \propto F_A/D_A \), and \(c \) is a sum of two terms proportional to \((F_A F_B/D_A D_B) \) and to \((F_B/D_B)^2 \), corresponding to the two paths of trimer formation via \(AB \) and \(BB \) dimers. Each possible nucleation path in the above examples contributes additively to \(dN/d\Theta \). The dimer route is dominating for fast \(B \) diffusion and \(x_A \) large, and the trimer route for slow \(B \) diffusion and \(x_B \) large. The smooth cross-over is validated in Fig. 1 where KMC data for \(N \) versus \(D_B/F \) are plotted for a situation with stable \(AA \) dimers \((K_{AA} = 0)\) and zero binding energies of \(AB \) and \(BB \) dimers.

C. Beyond \(\Gamma \) scaling: Self-consistent capture numbers

The efficiency of islands to capture monomers is affected by the shielding by other islands in their neighborhood. Such shielding effects can be treated approximately by capture numbers that depend on the whole set of monomer and island densities \[\text{Bales and Chrzan, 1994; Bales and Zangwill, 1997}\]. The idea is to consider the diffusion equation for the local adatom profile \(\tilde{n}(r,t) \) around an \(s \)-cluster with radius \(R_s = (s/\pi)^{1/2} \) in the presence of the flux \(F \) and an effective medium with absorption rate \(D/\xi^2 \),
\[
\left(\frac{\partial}{\partial t} - D \Delta \right) \tilde{n}(r,t) = F - \frac{D}{\xi^2} \tilde{n}(r,t),
\]
(15)
where \(D/\xi^2 \) is identified with the loss terms in Eq. 2a,
\[
\xi^{-2} = 2\sigma_1 n + \sum_{s \geq 2} \sigma_s n_s.
\]
(16)
The sum over \(s \) can be replaced by \(\bar{\sigma}N \) as before, leading to a reduced self-consistent description already considered by \[\text{Venable, 1973}\]. In a quasi-stationary state, \(\partial \tilde{n}/\partial t \approx 0 \), \(D\xi^{-2} n \approx F \), and Eq. (15) becomes
\[
\Delta \tilde{n}(r) - \frac{1}{\xi^2} [\tilde{n}(r) - n] = 0.
\]
(17)
For large \(r \), \(\tilde{n}(r) \) should approach its mean value \(n \) considered in the rate equations and at the island edge \(r = R_s \), it must be zero in the absence of detachment processes \((\text{case } i = 1; \text{ for a generalization to higher } i, \text{ see } \text{Bales and Zangwill, 1997})\). With these boundary conditions, the solution of Eq. (17) becomes
\[
\tilde{n}(r) = n \frac{1 - K_0(r/\xi)/K_0(R_s/\xi)}{K_0(R_s/\xi)}, \text{ where } K_\nu(.) \text{ denotes the modified Bessel function of order } \nu.
\]
Equating the inward current of adatoms \(2\pi R_s D (\partial \tilde{n}/\partial r)|_{r=R_s} \) at the island edge with the aggregation rate \(\sigma_s D_n \), one obtains
\[
\sigma_s = \frac{2\pi R_s}{n} \left(\frac{\partial \tilde{n}}{\partial r} \right)_{r=R_s} = \frac{2\pi R_s K_1(R_s/\xi)}{\xi K_0(R_s/\xi)}.
\]
(18)
The merit of this approach is that a good quantitative description of \(n \) and \(N \) as a function of \(\Theta \) is provided despite of the fact that the \(\sigma_s \) themselves are not well predicted, as discussed later \([\text{cf. Fig. 2(a)}]\).

For a generalization of the self-consistent theory to multi-component systems, many-particle densities need to be introduced to obtain expressions for capture numbers that are symmetric under exchange of atomic species \[\text{Einax et al., 2013}\]. The method is best illustrated by considering the reaction rate \((D_A + D_B)\sigma_{1B} n_A n_B \) of \(A \) and \(B \) monomers to form \(AB \) dimers in the case of binary alloys with \(i = 1 \). The effective medium in this case is characterized by two mean free paths \(\xi_\alpha, \alpha = A, B \), which result from the loss terms \((D_\alpha/\xi_\alpha^2) n_\alpha \) in the rate equations of the monomer densities. Considering the pair distribution function of \(A \) and \(B \) monomers, this function satisfies a diffusion equation with symmetric diffusion coefficient \((D_A + D_B) \) and symmetric absorption rate \(\sum_\alpha D_\alpha \xi_\alpha^{-2} \). Taking into account the boundary conditions, the final result for \(\sigma_{1B} \) has the same structure as in the one-component theory \([\text{Bales and Chrzan, 1994}]\),
\[
\sigma_{1B} = 2\pi \frac{R_1 K_1(R_1/\xi_{\text{eff}})}{\xi_{\text{eff}} K_0(R_1/\xi_{\text{eff}})}
\]
(19)
with an effective mean free path \(\xi_{\text{eff}} \). In contrast to the one-component theory this mean free path depends on the diffusion coefficients,
\[
\xi_{\text{eff}}^{-2} = (D_A + D_B)^{-1} [D_A \xi_A^{-2} + D_B \xi_B^{-2}].
\]
(20)
One can show that \(\sigma_{1s} \) is also given by Eq. (19) with \(\xi_{\text{eff}} \) replaced by \(\xi_\alpha \). To get \(\sigma_{1s} \) for \(s > 1 \) one has in addition to replace \(R_1 \) by \(R_s \).

As in the mono-component case, an extension is possible also to include decay processes of clusters. The capture and decay rates in this extension satisfy the generalized (two-component) Walton relations. Again a good quantitative description of island densities is obtained.
FIG. 5 (Color online) Number densities of dimers and stable islands as a function of the coverage Θ for a case of mixed dimer stabilities, where AA dimers are stable, while AB and BB dimers are unstable with zero binding energies. Results from the self-consistent approach (solid lines) are compared with KMC simulations (symbols). Parameters are $x_A = x_B = 1/2$, $D_A/F = 10^8$, $D_B/F = 10^7$.

As an example we show in Fig. 5 calculated number densities N, n_A, and n_{AB} for mixed dimer stabilities in comparison with KMC data.

For critically testing the theory outlined here, it would be important to provide experimental data for island densities in multi-component systems. A particular challenge is to measure simultaneously the densities of the individual monomers or more generally, the densities of the subcritical clusters. This is already highly desirable for mono-component systems, because it allows one to test basic assumptions of the rate equation approach. For example, to our knowledge, neither the Walton relation [4] nor their generalized forms [10] and [11] have been tested in experiments.

To sum up, using rate equations and KMC simulations, it was shown that even for binary systems comparatively simple (multi-parameter) scaling relations can be established that describe the densities of stable islands as a function of adatom diffusion coefficients and partial deposition fluxes. Equation (18) entails a generalization to binary systems of the well-known “nucleation route” for obtaining microscopic parameters from island density measurements. In practice, this equation can be utilized to determine binding energies between unlike atoms in the presence of the surface. It would be interesting to compare these results with corresponding ones from electronic structure calculations. A particularly interesting feature is the occurrence of novel cross-over phenomena in the island densities, which emerge when critical nuclei of different composition compete with each other in determining the dominant nucleation pathway. A detailed quantitative description of island densities is possible, when considering many-particle densities in self-consistent theories for capture numbers. Also decay processes of unstable clusters can be treated successfully within this framework.

IV. WHAT IS THE DISTRIBUTION OF ISLAND SIZES?

A. Predictions from rate equations

More detailed information of the submonolayer growth kinetics is contained in the island size distribution (ISD) $n_s(\Theta, \Gamma)$. Imagine that the capture numbers σ_s in Eqs. (2) were known. Can we then expect that the RE predict the ISD in the pre-coalescence regime? This would mean that many-particle correlation effects can be incorporated in effective capture numbers, and that spatial fluctuations in shapes and capture zones of islands as well as coalescence events, despite rare in the early-stage growth, are negligible.

While Eq. (18) already implies that capture numbers have to regarded as effective ones, $\sigma_s = \sigma_s(\Theta, \Gamma)$, their full dependence on both island size s and external parameters has been determined recently in an extensive KMC study of models yielding different island morphologies [Körner et al. 2010, 2012]. In Fig. 6(a) we show representative results of this study for kinetic growth with hit-and-stick aggregation on a (100) surface. Integrating the refined RE [see discussion after Eqs. (2)] under consideration of the full Θ-dependence of $\sigma_s(\Theta, \Gamma)$ indeed gives a very good description of the ISD, as demonstrated in Fig. 6(b). To achieve this good agreement it is necessary to take into account details in the functional form of $\sigma_s(\Theta, \Gamma)$. For example, when neglecting the Θ-dependence by setting $\sigma_s(\Theta, \Gamma) = \sigma_s(\Theta_0, \Gamma)$ for a fixed reference coverage Θ_0, a good description is not obtained. It is moreover important to point out that for compact island morphologies the good agreement is of limited practical use, because coalescence events, not considered in the RE, become relevant already at rather small coverages of about 5%.

Since the refined RE with those simulated Θ-dependent σ_s were shown to be suitable for predicting the ISD the challenge is to find an accurate description of the functional form of the $\sigma_s(\Theta, \Gamma)$. Unfortunately the $\sigma_s(\Theta, \Gamma)$ show a high sensitivity with respect to the island morphologies and probably also to details of the growth kinetics. A general feature is that for island sizes s larger than the mean island size \bar{s}, $\sigma_s(\Theta, \Gamma)$ increases linearly with s, $\sigma_s(\Theta, \Gamma) \sim c_1(\Theta, \Gamma) + c_2(\Theta, \Gamma)s$. This can be reasoned by considering the areas for adatom capture surrounding the islands [Evans et al. 2006]. However, even for this generic feature the functions $c_1(\Theta, \Gamma)$ depend on details of the attachment kinetics (hit-and-stick or with limited edge diffusion, etc.). For improving theories for the ISD, it has been argued that correlation effects between island sizes and capture zones need to be taken into account. This can be achieved by consider-
malization and first moment conditions

2004; Mulheran and Robbie, 2000; Popescu

Amar

ing the joint probability of island size and capture area

Körner et al. (2012).

C. Limiting behavior for $D/F \to \infty$

Because the refined RE with the appropriate $\sigma_s(\Theta, \Gamma)$ predict the ISD, it should be possible to derive an evolution equation for the scaled island density $f(x, \Theta, \Gamma)$

In the original work [Pimpinelli and Einstein, 2005], $\beta = i + 1$ was suggested [see also Oliveira and Aarão Reis, 2011, 2012].
the onset of second layer nucleation: If realized, depends on the characteristic island radius of them before coalescences. Which of these two cases is before a new layer nucleates, or stable nuclei form on top either grow in the lateral direction and coalesce.

V. WHEN DO ISLANDS SURVIVE UPON CONTINUED DEPOSITION?

With ongoing deposition, when multilayer growth sets in, two contrasting growth modes can arise. Islands in the first layer either grow in the lateral direction and coalesce before a new layer nucleates, or stable nuclei form on top of them before coalescences. Which of these two cases is realized, depends on the characteristic island radius R_c at the onset of second layer nucleation: If R_c is larger than the mean distance $N^{-1/2}$ between islands, coalescence sets in before second layer nucleation and a smooth layer-by-layer growth behavior is obtained. On the other hand, if R_c is smaller than $N^{-1/2}$, islands grow in the normal direction before a smooth layer has developed and the film topography becomes rough.

It is important to note that the occurrence of smooth or rough films is answered differently from a thermodynamic viewpoint, where it is dictated by surface tensions and associated wetting properties. In this context a rough Volmer-Weber, a smooth Van-der-Merwe and an intermediate Stranski-Krastanov growth mode are distinguished. During growth, however, films are usually not in thermal equilibrium and the film topography is determined by kinetics rather than thermodynamics. Under non-equilibrium growth conditions, R_c is the decisive quantity that determines the film topography and that an atom has to surmount when passing an island edge. If ΔE_{ES} is large, the associated Boltzmann factor

$$W = \exp(-\Delta E_{\text{ES}}/k_B T)$$

becomes small and atoms can remain longer on top of islands, implying that second layer nucleation becomes more likely.

A. Second-layer nucleation rate

In order to develop a theory, which predicts how R_c depends on W and Γ, a precise definition of R_c is needed. More generally, consider at time t the fraction $f(t)$ of islands covered by stable clusters. This fraction is zero for small t and increases to one in some time window, after which all islands are covered. At a time t_c half of the islands are covered, $f(t_c) = 0.5$, and the critical radius R_c can be conveniently defined by $R_c = R(t_c)$, where $R(t)$ denotes the mean island radius at time t. Let us define by $\Omega(R)$ the second-layer nucleation rate. The fraction of covered islands then is [Tersoff et al., 1994]

$$f(t) = 1 - \exp(-\int_0^t dt' \Omega(R(t'))),$$

and the problem reduces to determine $\Omega(R)$ in dependence of W and Γ.

The functional form of $\Omega(R)$ can be deduced from scaling arguments [Heinrichs et al., 2000; Krug, 2000; Krug et al., 2000; Rottler and Maass, 1999]. To this end we consider a state, where in total n adatoms are simultaneously on top of an island of size R. A number of

$$s^2 n_{z \sigma}/\Theta. \text{ Due to the normalization this function will approach a limiting curve } f_{\infty}(x, \Theta) \text{ for } \Gamma \to \infty, \text{ and an interesting question is whether this curve is independent of } \Theta. \text{ To discuss this, we concentrate on the case } i = 1. \text{ For large } \Gamma, \bar{s} \sim N^{-1} \sim \Gamma^{1/3}, \text{ and } x = s/\bar{s} \text{ becomes a continuous variable. This allows to consider a continuum version of the refined RE model (Bartelt and Evans, 1996; Evans and Bartelt, 2001; Körner et al., 2012), which gives a partial differential equation for } f(x, \Theta, \Gamma) \text{ in the variables } x \text{ and } \Theta. \text{ This equation includes the scaled capture numbers } C(x, \Theta, \Gamma) = \sigma(x)/\bar{\sigma} \text{ and scaled areas for direct capture } K(x, \Theta, \Gamma) = \kappa(x)/\bar{\kappa}. \text{ Taking the } \Gamma \to \infty \text{ limit then yields a determining equation for } f_{\infty}(x, \Theta). \text{ If } f_{\infty} \text{ is independent of } \Theta, \text{ this equation becomes an ordinary differential equation that can be solved exactly (Bartelt and Evans, 1996) and yields a power-law decay for large } x. \text{ However, arguments presented by Oliveira and Aarão Reis (2012) support a stretched exponential decay of the scaling function.}

To study this question of a } \Theta \text{ dependence of } f_{\infty}(x, \Theta) \text{ for different island morphologies in the case } i = 1, \text{ one can use the simulated capture numbers } \sigma(x, \Theta), \text{ discussed in Sec. IIIA (Körner et al., 2012). In addition, the connection of } f_{\infty}(x, \Theta) \text{ to the scaled capture numbers and areas in the limit } \Gamma \to \infty \text{ was studied. For the point island model (Bartelt and Evans, 1992), where islands have no extension and } \Theta = \tau_1, \text{ plays the role of the deposition time, } f_{\infty} \text{ indeed turned out to independent of } \Theta, \text{ while for extended islands the results indicate that } f_{\infty} \text{ exhibits a (weak) } \Theta \text{ dependence.}

To conclude taking into account the full dependence of capture numbers on island size, coverage and } D/F\text{-ratio, the rate equation approach predicts well the ISD in the pre-coalescence regime. Moreover, analysis of ISDs and capture cone area distributions allow for a determination of } i, \text{ independent of the methods presented in Sec. III.}

Further theoretical work is required in order to establish the behavior of the limiting curve } f_{\infty}(x).\)
(i+1) adatoms can encounter at a point of the island with a probability \(\sim (a^2/\pi R^2)^{(i+1)} \prod_{k=0}^{i} (n-k) \), where the product takes into account that there are \(n(n-1)/2 \) possibilities to form an (intermediate) pair, and, for \(i > 1 \), \((n-2) \times (n-3) \ldots \times (n-i) \) further possibilities for the remaining \((i-1) \) adatoms to attach to the pair. Multiplying this probability with the adatom diffusion rate \(D/2a^2 \) and integrating over the island area (factor \(\pi R^2 \)) yields the encounter rate of \((i+1) \) atoms in the presence of \(n \geq (i+1) \) atoms on an island of size \(R \).

\[
\omega_n(R) = \kappa_a D/2a^2 \left[\prod_{k=0}^{i} (n-k) \right] \left(a^2/\pi R^2 \right)^i . \tag{26}
\]

Logarithmic corrections need to be included in this expression when taking into account that the encounter problem involves the number of distinct sites visited by a diffusing adatom (Politi and Castellani 2002).

The decay time \(\tau_n(R) \) of a state with \(n \) non-interacting adatoms on top of an island is the \(n \)th fraction of the lifetime \(\tau_1(R) \) of one adatom. The latter is given by the typical time \(\sim R^2/D \) to reach the island edge plus the time \(\sim R\alpha/D \) to return to the edge, which on average is taking place \(W^{-1} \) times before the step edge barrier is eventually passed (if no second layer nucleation occurs). Accordingly,

\[
\tau_n(R) = \frac{1}{n} \tau_1(R) = \frac{1}{n} \left(\kappa_1 R^2/D + \kappa_2 R\alpha/WD \right) . \tag{27}
\]

Equations (26) and (27) have been validated by more detailed analytical calculations and tested against KMC simulations in Heinrichs et al. (2000), where in particular the constants \(\kappa_1 \) and \(\kappa_2 \) were determined and \(\kappa_a \) was shown to depend on \(i \) due to memory effects.

Knowledge of the \(\tau_n(R) \) allows us to calculate the probabilities \(p_n(R(t)) \) of finding \(n \) adatoms on top of the island at a time \(t \) before the onset of second layer nucleation. These are given by the Poisson distribution

\[
p_n(R) = \frac{\bar{n}(R)^n}{n!} \exp[-\bar{n}(R)] , \tag{28}
\]

where an analytical expression for the mean number \(\bar{n} = \bar{n}(R(t)) \) of adatoms was derived in Heinrichs et al. (2000). It holds \(\bar{n}(R) = \pi FR^2 \tau_1(R) \), except for a regime of small \(R/\alpha \ll W^{-1} \Gamma^{-2/(i+2)} \).

With the encounter rates \(\omega_n(R) \), the lifetimes \(\tau_n(R) \), and the probabilities \(p_n(R) \), the second-layer nucleation rate can be evaluated. Different from what one may intuitively expect, it is possible that second layer nucleation sets in at times when \(\bar{n}(R(t)) \ll (i+1) \), that means when on average less than \((i+1) \) adatoms are on top of the island (Rottler and Maass 1999). In this case the nucleation is caused by fluctuations, where by chance \((i+1) \) adatoms are on top of an island and encounter each other to form a stable nucleus.

To calculate the corresponding fluctuation-dominated nucleation rate \(\Omega(R) \), consider the probability of a second layer nucleation event in a finite time interval \(\Delta t \).

This equals the probability \(p_i(R(t)) \) of finding \(i \) atoms on top of the island (states with \(n > i \) can be neglected in the fluctuation-dominated situation), times the probability \(\pi F R^2 \Delta t \) to deposit an additional atom on the island, times the probability \((1 - \exp[-\omega_{i+1}(R)\tau_{i+1}(R)]) \) that \((i+1) \) adatoms encounter each other during the lifetime \(\tau_{i+1}(R) \). Dividing the probability of a nucleation event in \(\Delta t \) by \(\Delta t \) yields

\[
\Omega(R) = \pi F R^2 \frac{\bar{n}(R)^i}{i!} e^{-\bar{n}(R)} \left(1 - e^{-\omega_{i+1}(R)\tau_{i+1}(R)} \right) . \tag{29}
\]

For \(i = 1 \), Eqs. (26) and (27) give \(\omega_2(R) \tau_2(R) \sim (1/RW) \) for \(RW \ll 1 \) and \(\omega_2(R) \tau_2(R) \sim \text{const.} \) for \(RW \gg 1 \), which means that the encounter probability \((1 - \exp[-\omega_2(R)\tau_2(R)]) \) in Eq. (29) is always of order one. One thus obtains

\[
\Omega(R) \sim F R^2 \bar{n}(R) \sim F R^2 \bar{n}(R) \tau_1(R) \sim \begin{cases} \text{FW}^{-1} \Gamma^{-1} R^5, & \Gamma^{-11/12} \ll WR \ll 1 \\ \text{FT}^{-1} R^6, & 1 \ll WR \end{cases} \tag{30}
\]

For \(WR \ll \Gamma^{-11/12} \) it holds \(\Omega(R) \sim \Gamma^{-11/3} R^6 \).

If \(\bar{n}(R(t)) \gtrsim (i+1) \) at the onset of second layer nucleation, the rate follows from the weighted sum of the encounter rates \(\omega_n(R) \) over all states with \(n \geq (i+1) \),

\[
\Omega_{\text{mf}}(R) = \sum_{n=i+1}^{\infty} p_n(R) \omega_n(R) = \kappa_a D/2a^2 \bar{n}(R)^{i+1} \left(a^2/\pi R^2 \right) . \tag{31}
\]

This agrees with the result of mean-field theory (Tersoff et al. 1994), which predicts that \(\Omega(R) \) is given by an integration of the local nucleation rate \(D\bar{n}^{i+1} \sim D(\bar{n}(R)/\pi R^2)^{i+1} \) over the island area (factor \(\pi R^2 \)).

By a self-consistent analysis it can be decided which of the two different situations leading to Eqs. (29) and (31) actually occurs. Assume that the fluctuation-dominated situation is relevant. Then, calculating \(f(t) \) from Eq. (25) with \(\Omega(R) = \Omega(R) \) from Eq. (29), and determining \(R_c \),

\[
\text{To keep the notation simple, we have not introduced a new coefficient } D' \text{ for adatom diffusion in the second layer, which, of course, can be different from } D \text{ in the first layer.}
\]

\[
\text{The interval } \Delta t \text{ should be large compared to } \omega_n^{-1} \text{ and small compared to times scales of changes of } R(t).
\]
one can check if $\tilde{n}(R_c) \ll (i + 1)$. If this is true, the assumption of a fluctuation-dominated nucleation was correct, while otherwise the mean-field rate from Eq. (31) must be used. When $R(t)$ evolves according to the natural growth law $(FN^{-1}t)^{1/2} \sim F^{1/2}R^{1/2}(i+2)^{1/2}$, it turns out that for $i \leq 2$ the fluctuation-dominated rate $\Omega_{fl}(R)$ is relevant, while for $i > 2$ it is the mean-field rate $\Omega_{mf}(R)$ [Heinrichs et al. (2000)].

With respect to the dependence of R_c on W and Γ the theory based on Eq. (29) predicts various scaling regimes in different intervals of W, where $R_c \sim W^{\eta} \Gamma^\gamma$ with exponents η and γ depending on i. For example, for $i = 1$, one finds $R_c \sim W^{1/7} \Gamma^{4/21}$ for $W^{(1)} \ll W \ll W^{(2)}$, where $W^{(1)} \sim \Gamma^{-3/4}$ and $W^{(2)} \sim \Gamma^{-1/6}$. The occurrence of the different regimes and their scaling properties were confirmed by KMC simulations [Heinrichs and Maass (2000), Rottler and Maass (1999)].

In extensions of this theory, also more complicated cases of second layer nucleation can be treated, including the presence of metastable clusters and of interaction effects between adatoms [Heinrichs and Maass (2002), Heinrichs et al. (2000)]. Moreover, the same type of fluctuation effects as discussed here lead to a failure of mean-field rate equations for describing chemical reaction kinetics in confined geometries, as, for example, hydrogen recombination on interstellar dust grains. Similar scaling arguments can be used to tackle this related problem [Krug (2003)].

B. Applications

The theory of second layer nucleation allows one to determine phase diagrams, where in dependence of the two parameters Γ and W it is predicted whether films grow into smooth or rough topographies. While such phase diagrams have been validated by KMC simulations [Rottler and Maass (1999), corresponding experimental studies are still lacking. For a given adsorbate and substrate, different paths in the W-Γ diagram could be explored by changing the flux F and the temperature T. Care would be needed in analyzing such studies because changes in i can go along with changes of T.

A further application of second-layer nucleation theory is the determination of step edge barriers from measurements of the fraction of covered islands. This supplements other techniques as field ion microscopy [Kellogg (1994)], which can suffer from the problem that step edges are not resolved with a sufficient resolution. With STM Bromann et al. (1995a) have analyzed the fraction of covered islands in homo- and heteroepitaxial Ag growth on Ag(111) and Pt(111). They first generated size-tailored Ag islands with a narrow size distribution around a mean radius R_0 by deposition of 10% of a monolayer and subsequent annealing. Different R_0 in the range 10-100 Å were obtained in dependence of the annealing time. After a subsequent evaporation of again 10% of a monolayer of Ag on a Pt(111) surface with size-tailored islands of mean radius R_0 at three different temperatures $i = 1$. The symbols refer to the measured data by Bromann et al. (1995a), and the solid and dashed lines (almost identical) refer to fits with the second-layer nucleation theory under neglect [Eqs. (29) or (30)] and inclusion of additional ring barriers between mutually approaching adatoms, respectively. From Heinrichs and Maass (2002).

In the case of rough multilayer growth, an alternative way for determining ΔE_{res} is to measure the mean radius R_{top} of the top terrace after mound formation, in the so-called “wedding cake regime” [Politi (1997)]. During mound growth, see Fig. 3 the rate F of creating a new layer should balance the rate of creating a new nucleus on the top terrace, which yields $\Omega(R_{\text{top}}) \sim F$ as a simple determining equation for R_{top}. Krug et al. (2000) refined this argument, developed an analytical theory for the size distribution of top terraces and applied this theory to the mound formation of Pt on Pt(111) shown in Fig. 3.

A strength of the theory of second layer nucleation is that it does not depend on microscopic details of the interlayer transport. What counts is that there is an effective barrier ΔE_{res} that hinders the escape of particles from an island. This generality was nicely demon-
strated by Hlawacek et al. (2008) who applied the theory to mound formation of rodlike para-sexiphenyl molecules in organic thin-film growth. Upon deposition on an ion-bombarded mica surface these molecules are going to stand upright on the surface with some tilt angle. By analyzing \(R_{\text{top}} \) for films with large thicknesses a value \(\Delta E_{\text{ES}} \simeq 0.67 \text{ eV} \) was determined by using the stochastic theory with \(i = 1 \) in this case. Using a molecular model, the authors could show that a large contribution to this effective barrier stems from the bending of a molecule when it slides down a step edge, a mechanism very different from those responsible for \(\Delta E_{\text{ES}} \) in metal epitaxy. For the first molecular layers a lower value \(\Delta E_{\text{ES}} \simeq 0.26 \text{ eV} \) was determined based on an analysis of the critical radius \(R_c \). This lower value could be traced back to a smaller tilt angle of the molecules in the first layers and an associated lowering of the bending barrier (Hlawacek et al. 2008).

Extension of second-layer nucleation theories to multi-component systems is an open problem. Differing mobilities in the second-layer and differing step edge barriers of the components are expected to give rise to interesting new effects. For example, under codeposition of two species with high and low \(\Delta E_{\text{ES}} \), the species with higher \(\Delta E_{\text{ES}} \) should enrich on top of islands. Accordingly island compositions will depend on temperature and fluxes. In later stages of growth this may lead to compositional profiles that are tunable by experiment.

The essential insight from this section is that for small critical island sizes \(i \leq 2 \) second layer nucleation relies on rare fluctuations in the number of adatoms on top of the island, which occur within a time domain where \(\pi(R(t)) \ll i + 1 \). A stochastic theory capturing these fluctuations reveals a nucleation rate differing from mean-field predictions. Fitting that theory to metal and organic growth experiments can yield pronounced corrections to the step edge barriers \(\Delta E_{\text{ES}} \) when compared with predictions from mean-field theory. The criterion distinguishes between 3-d island and smooth surface growth will be modified accordingly.

VI. WHAT DETERMINES OUTER SHAPE AND INNER STRUCTURE OF ISLANDS?

At thermodynamic equilibrium, cluster shapes for a given cluster size are governed by the principle of minimal interfacial free energy, which involves the familiar Wulff construction (Wulff, 1901). For two-dimensional islands on surfaces, it is the step free energy which enters. Under non-equilibrium conditions, cluster shapes are controlled by atomic or molecular moves at or near the cluster surface. When attaching to a cluster, adatoms can encounter many different environments such as facets, edges, kinks, corners, etc. with associated changes of elementary jump energies. This leads to a large variety of outer shapes and inner configurational arrangements. In the following we discuss some key mechanisms for this kinetically controlled structure formation.

A. Island shapes on (111) surfaces

Shapes of two-dimensional islands on (111) surfaces were studied for various systems in metal epitaxy, as for Pt/Pt(111) (Brune et al. 1996), Ag/Pt(111) (Hohage et al. 1996), Al/Al(111) (Ovesson et al. 1999), Ag/Ag(111) (Cox et al. 2003), and Au/Pt(111) (Ogura et al. 2006). They are widely known and well understood examples of island structures controlled by non-equilibrium kinetics.

At high temperature, edge and corner diffusion are generally fast enough to create sharp island edges (“line facets”). However, different from what one may intuitively expect, islands typically do not exhibit hexagonal but triangular shapes, which implies a breaking of the hexagonal symmetry of the (111) substrate lattice.

To understand this, one must notice that two boundary steps of a hexagon, which meet at one corner, are geometrically inequivalent relative to the substrate. These are often designated as A and B steps, and the distinction between both becomes clear from Fig. 7(a). If diffusion properties with respect to these different step types were the same, islands would assume a hexagonal shape. Differences in the diffusion properties originate primarily from three sources: (i) Stronger binding of adatoms to, say, A steps. Attaching adatoms then have a tendency to enrich at A steps (Jacobsen et al. 1993). (ii) Same binding energy, but faster diffusion of adatoms along A, caused by a lower energy barrier (Michely et al. 1993). This leads to a faster nucleation of new atomic rows at A steps (Michely and Krug 2004). (iii) Asymmetric corner diffusion, which means that a one-fold coordinated adatom at a corner site goes preferentially to, say, A.

FIG. 8 STM image of mound formation of Pt after deposition on Pt(111). From Krug et al. (2000).
corner diffusion before eventually the compact triangular/hexagonal shape is formed at even lower E_{edge}. Note that an overall triangular/hexagonal symmetry is also visible for the island shapes simulated with large E_{edge}.

It is also possible to obtain compact island shapes with curved edges, if corner diffusion is suppressed \cite{brune1998}. By comparison with measurements, features as the thickness of side branches or the degree of ramification and further details of compact island shapes can be used to identify kinetic parameters in specific models for local diffusion at island boundaries \cite{michely2004}.

\section{B. Second-layer induced morphologies}

The second layer occupation can have a significant influence on the shape and morphology of islands in the first layer. For example, the A and B steps on (111) surfaces give rise to different step edge barriers in the second layer. The downward fluxes across A and B steps hence differ, which modifies the in-plane aspect ratio for island shapes \cite{li2008}.

Quite unexpected complex morphologies can arise due to upward transitions from the first to the second layer on weakly interacting substrates. Such morphologies were recently found for fullerene (C$_{60}$ molecules) adsorbed on ionic surfaces \cite{burke2007, burke2009, loske2010}. Figure 11 shows AFM images of the self-assembly of C$_{60}$ after deposition on CaF$_2$(111). At high temperatures [Fig. 11(a) and(d)] triangular islands form that are two monolayers high [Fig. 11(g)], while at lower temperatures islands with an overall hexagonal shape emerge [Fig. 11(b),(c),(e), and (f)] that have a base of one monolayer [Fig. 11(h)] and exhibit a complicated structure with double layer rims at the island edges and channels directed towards the interior of the islands. These low-temperature morphologies are very different from the fractal-dendritic island shapes found in metal epitaxy.

The emergence of these morphologies can be understood from a mechanism of facilitated dewetting \cite{kornier2011}. Facilitated dewetting means that a C$_{60}$ molecule on an edge site in the second layer lowers the energy barrier for an upward transition of another molecule to a neighboring edge site in the second layer. At high temperatures a first upward transition over a bare dewetting barrier typically occurs early during growth of an island, when it consists of only a few C$_{60}$ molecules. C$_{60}$ molecules in the second layer subsequently lower the energy barrier for further upward transitions to neighboring sites, and as a consequence islands grow as double-layers. That these double-layer islands evolve into triangular rather than hexagonal shapes has its origin, similar as for island growth on (111) surfaces in metal epitaxy \cite{vlachas1998}, in a symmetry breaking effect associated with A and B steps. The distinction

![Figure 9](image-url)
compared to the lattice constant of the CaF$_2$ from Körner than the process at the B step involving three C$_{60}$ molecules in the second layer is nucleated close to an edge or close to the center of the island.

Growth of a stable second layer cluster close to the island boundary soon leads to a contact with an edge, which triggers the process of facilitated dewetting. Starting from the point of contact, double-layer rims are growing along the island edges due to facilitated upward transitions of C$_{60}$. During the period of C$_{60}$ deposition, these rims do not succeed to surround the island, because the island area extends faster by newly attaching C$_{60}$ to the rim-free edges than to the edges with rim, where facilitated dewetting leads to a broadening of the rim. In the post-deposition regime, however, the ends of the rim grow further by facilitated upward transitions of C$_{60}$ that stem from the rim-free edges and diffuse along the island edges. If the two ends of the rim eventually approach each other along the same edge, a funnel starts to form and further growth of this funnel leads to a trench extending towards the interior of the island together with the rim. This leads to morphology I with a typical example shown in Fig. (11(e)).

If a stable second layer cluster nucleates close to the island center, a dendritic-skeletal cluster shape evolves, which resembles the simulated morphology in the second last structure (from left to right) of the upper panel of Fig. (9) in Sec. V.A. In the post-deposition period the skeletal dendrite grows very slowly by rare upward transitions of C$_{60}$ over the bare dewetting barrier until one of the three finger tips reaches an island edge. At this moment facilitated dewetting transitions set in and a rim starts to grow along both sides of the finger terminus at the island edge. The formation of the rim is accompanied by a loss of C$_{60}$ molecules at the rim-free edges causing one of the two other finger tips of the dendrite to reach an island edge. A rim then starts to grow also from this finger terminus and thereafter also the third finger tip reaches the island edge with subsequent rim formation. Eventually the three growing rims move towards each other close to edge points located half way between the tip termini, where funnels form and subsequently trenches grow towards the island interior. As a result, morphology II with an approximate threefold symmetry is obtained with a typical example shown in Fig. (11(f)).

All these complicated structures found in experiment were successfully modeled by a kinetic growth model based on the mechanism of facilitated dewetting (Körner et al. [2011]).
C. Segregation and ordering effects

Questions concerning the inner structure of clusters are most relevant for 3d binary systems, produced by co-deposition of different atomic species. Compositional fluctuations in these systems are characterized primarily in terms of atomic short- or long-range order in the cluster’s interior, and in terms of surface segregation, i.e. in the enrichment of one atomic species at the cluster surface. At equilibrium these two features generally compete with each other (Polak and Rubinovich, 2000). This can be understood intuitively because strong ordering interactions inside the “bulk” will enforce atomic order up to the surface and hence impede surface segregation. Conversely, surface interactions favoring segregation will suppress ordering tendencies, at least in the near-surface region.

For cluster growth outside equilibrium, these arguments remain qualitatively valid, but the degree of ordering and segregation diminishes. Although atomic diffusion, necessary for equilibration, is often frozen in the bulk, some remanent bulk order can develop, as a result of previous diffusion steps of surface atoms before being buried by the external flux. So the question arises: What kind of metastable compositional fluctuations are generated below the advancing surface of a 3d nanocluster under the condition of active surface but frozen bulk kinetics?

Theoretically, the relationship between surface kinetics and emerging frozen bulk structure has remained largely unexplored. Some aspects were recently studied with the help of an analytically solvable model for 1d growth (Eina and Dieterich, 2008). Quite obviously, remanent bulk order depends on the ratio between the time scales for surface diffusion and atomic deposition. Coming from high temperatures, ordering will initially increase burried by the external flux. So the question arises: What kind of metastable compositional fluctuations are generated below the advancing surface of a 3d nanocluster under the condition of active surface but frozen bulk kinetics?

Particularly interesting is the structure of alloy clusters with magnetic components. Special attention have received attempts to generate perpendicular magnetic anisotropy (PMA), where the easy axis of magnetization is perpendicular to the substrate plane. This requires the magneto-crystalline perpendicular anisotropy to be stronger than the shape anisotropy due to dipolar interactions, which generally favors in-plane magnetization. PMA is well known to occur in multilayer films (Johnson et al., 1996) and has been exploited to increase storage capacities in magnetic devices. Its occurrence in nanoclusters was detected, for example, in FePt or CoPt alloy clusters. Depending on the technique and on the conditions of growth, the experiments suggest an anisotropic short-range (Liscio et al., 2010) or layer L1_0-type long-range order (Andersson et al., 2006; Moulas et al., 2008; Perumal et al., 2008; Zeng et al., 2002) to be associated with the PMA.

Magneto-crystalline anisotropies are caused by quantum-mechanical effects, which lead to a preferential alignment of magnetic moments along symmetry directions in the crystal lattice. Most important are hybridization of d electron states between neighboring atoms and a strong spin-orbit coupling. A theoretical description requires sophisticated \textit{ab initio} calculations for the electronic structure, together with the Dirac equation to include relativistic effects [see, e.g., Sipr et al. (2011)].

To get an understanding of the connection between the compositional structure of clusters and the occurrence of PMA, one can adopt a simplified bond picture (Néel, 1954; Victorica and MacLaren, 1993). For an AB binary alloy nanocluster with vacancies \(V \) the magneto-crystalline anisotropy energy is then expressed as

\[
H_A = -\sum_{\langle i,j \rangle} \sum_{\alpha,\beta} A_{\alpha\beta} (\mu_i^\alpha \cdot \delta_{ij} \cdot \mu_j^\beta)^2 m_i^\alpha m_j^\beta ,
\]

where the sum runs over all cluster sites \(i \) and their nearest-neighbor sites \(j \), connected by bond vectors \(\delta_{ij} \); \(m_i^\alpha \) are occupation numbers (\(m_i^\alpha = 1 \) if site \(i \) is occupied by species \(\alpha \) or zero else, \(\alpha = A, B, V \)), and \(\mu_i^\alpha \) are the magnetic moments (\(\mu_i^V = 0 \)); \(\delta_{ij} \) and \(\mu_i^\alpha \) designate unit vectors. The parameters \(A_{\alpha\beta} \) quantify the magnetic anisotropy energies for moments \(\mu_i^\alpha \) associated with an occupation of neighboring sites by \(\beta \) species. They can be
estimated from experiments or determined from \textit{ab initio} calculations. Note that Eq. (32) represents the lowest order term of an expansion in powers of magnetic moments implied by symmetry arguments.

Using Eq. (32), the structural magnetic anisotropy energy of a fully magnetized cluster is given by $E_{\text{str}} = H_A\{\text{all } \mu_i^\alpha \text{ in plane}\} - H_A\{\text{all } \mu_i^\alpha \text{ out of plane}\}$. This can be reduced to calculating the numbers $n_{\alpha\beta}^{str}$ and $n_{\alpha\beta}^{\text{all}}$ of in-plane and out-of-plane $\alpha - \beta$ bonds with direction parallel to the substrate and with components perpendicular to it, respectively.

The procedure has been applied to study the occurrence of PMA for chemically disordered CoPt$_3$ clusters, which were grown on a van der Waals substrate (Albrecht \textit{et al.} 2001, 2002). These clusters are at low temperature in a metastable state, where the formation of L1$_2$ type chemical order is kinetically suppressed. PMA occurs below and near the onset of L1$_2$ ordering, see Fig. 12. As observed for films, one can expect that this PMA vanishes for even lower temperatures and hence occurs in a temperature window. Using values reported for Co and Pt moments as well as experimental results for Co-Pt multilayers and theoretical results for the Co-vacuum interfaces, one can estimate that the dominant contribution in Eq. (32) comes from Co-Pt bonds with $\Delta_{\text{CoPt}} \approx 250 \text{ meV}$, and accordingly $E_{\text{str}} \propto n_{\text{CoPt}}^{\text{CoPt}} - n_{\text{CoPt}}^{\text{str}}$ (Heinrichs \textit{et al.} 2007). Taking into account the strong surface segregation of Pt caused by its larger size compared to Co (Gauthier \textit{et al.} 1992), a mechanism for the PMA as depicted in Fig. 13 is conceivable. At low T, flat clusters with extended top and small side facets occur and surface segregation is kinetically suppressed. At high T the side facets become comparatively large. Depending on details of the interactions, an intermediate temperature range can exist, where the cluster is still fairly flat and the surface segregation is sufficiently strong. In this case the contribution to the magnetic anisotropy energy coming from the out-of-plane Co-Pt bonds at the top facet can be larger than the contribution from the in-plane Co-Pt bonds at the side facets. Accordingly, PMA is expected to occur.

Indeed, this mechanism for the occurrence of PMA could be corroborated by KMC simulations of an AB_3 alloy with nearest neighbor interactions V_{AA}, V_{BB}, and V_{AB} adjusted to equilibrium properties of CoPt$_3$ (Heinrichs \textit{et al.} 2006, 2007). The substrate was modelled by a weak attractive substrate potential. Growth of the clusters in time proceeds by co-deposition of Co and Pt atoms, vacancy-assisted nearest neighbor hopping and by direct exchange between unlike low-coordinated atoms on top of terraces or step edges. Such direct exchange processes are often observed in heteroepitaxial growth, and in particular were seen for Co deposited on Pt(111) (De Santis \textit{et al.} 2002, Gambardella \textit{et al.} 2004). As the model is fully three-dimensional, interlayer diffusion and Ehrlich-Schwoebel barriers are automatically taken into account.

Figure 14 shows model results for the magnetic anisotropy energy, both for its structural contribution E_{str} and the total energy $E_{\text{tot}} = E_{\text{str}} + E_{\text{dip}}$ obtained by adding the (negative) dipolar contribution. The maximum $E_{\text{str}} \approx 40 \text{ meV}$ at $T \approx 145^\circ \text{C}$ was shown to originate from the interplay of Pt surface segregation, facilitated by direct exchange processes, with T-dependent cluster shapes. It hence reflects the mechanism sketched in Fig. 13 so that PMA indeed is a surface effect.

Simulations with varying cluster size N show that $E_{\text{str}} \propto N^{2/3}$, so that PMA indeed is a surface effect. The N-dependence of the total anisotropy energy therefore is given by

$$E_{\text{tot}} = E_{\text{str}} + E_{\text{dip}} = K_{\text{str}} N^{2/3} - K_{\text{dip}} N$$ (33)

![Figure 13](image1.png)

FIG. 13 (Color online) Sketch of changes in the structure and shape of binary alloy nanoclusters (e.g. CoPt$_3$) with temperature. Atoms of the two components are marked in red (e.g. Co) and blue (e.g. Pt), where the latter tend to segregate at the cluster surface. With increasing T the fraction of side facets increases relative to the top facet and the surface segregation becomes stronger. The two competing effects for PMA lead to a temperature window of its occurrence.

![Figure 14](image2.png)

FIG. 14 (Color online) Magnetic anisotropy energies E_{tot} (solid line) E_{str} (dotted line), and the chemical order parameter (dashed-dotted line) versus temperature of simulated CoPt$_3$ nanoclusters with 1000 atoms for strong surface segregation of Pt ($V_{\text{PtPt}} - V_{\text{CoCo}} = 180 \text{ meV}$) and high exchange rates of Co and Pt at the cluster surface. Adapted from Heinrichs \textit{et al.} (2007).
with anisotropy constants K_{str} and K_{dip}. Equation 63 was shown to represent the KMC data very well. It predicts an optimal mean cluster size, where PMA is strongest, and a critical mean cluster size, above which the magnetization switches to an in-plane orientation (when $E_{\text{tot}} < 0$). These predictions have yet to be confirmed in experiments. For cluster sizes $N \approx 1200$, as used in the measurements by Albrecht et al. (2001), E_{tot} calculated from the model has the right order of magnitude when compared with the experimental one. Also shown in Fig. 11 is the structural order parameter for L1$_2$ ordering, which quantifies the preferential occupation of one of the four simple cubic sublattices of the fcc lattice by Co atoms. While L1$_2$ ordering remains kinetically suppressed up to room temperature, it becomes significant only at higher temperatures, where PMA has already passed its maximum. These trends obviously agree with the experimental behavior displayed in Fig. 12.

Let us remark that measurements of the local order in CoPt$_3$ nanostructures on a van der Waals substrate confirmed preferential Co-Pt/Co-Co binding out-of-plane/in-plane as the origin of PMA at room temperature (Liscio et al., 2010), but in addition uncovered structural details which go beyond the above model. We further note that Maranville et al. (2006), using simulations on a more microscopic level, were able to interpret PMA in ultrathin continuous CoPt$_3$ films occurring at elevated temperatures in terms of Co segregation along step edges.

In this Section our main focus was on examples of unexpected cluster shape and structure formation, as discovered in recent experiments. Specific mechanisms were identified that can explain these experiments. For fullerenes (C$_{60}$) adsorbed on a weakly interacting substrate, see Sec. VI.B, a distinction between A- and B-steps and anisotropic growth arises through second layer occupation. This is in contrast to Sec. VI.A where the distinction between A- and B-steps is due to the substrate. In turn, a new mechanism of second-layer facilitated dewetting was proposed, which explains the triangular to hexagonal shape transition of fullerene islands, followed in the post-deposition regime by the evolution of complex morphologies.

To unravel the possible origins of PMA in nanoclusters, CoPt$_3$ nanocluster growth on a van der Waals substrate was considered in Sec. VI.C. It turned out that PMA occurs as a result of an anisotropic atomic short range order in the cluster. Important features in the clusters’ atomic structure and their magnetic properties were interpreted by a mechanism based on active surface but frozen bulk kinetics and a concomitant competition between cluster shapes and Pt surface segregation.

VII. CONCLUDING REMARKS

Cluster growth on surfaces is a field that connects fundamental studies of non-equilibrium phenomena with questions related to the development of nanomaterials of practical use. Modern topics such as growth of organic molecules and of nanoalloys with functional properties make it necessary to reanalyze specific questions which are central to this field. In this Colloquium we summarized basic concepts of surface growth kinetics and showed for a number of examples how these can be extended and further developed to tackle open problems of current interest.

An important basis for describing cluster growth on surfaces is laid by the rate equation approach. Extending this approach to binary alloys, or, more generally, to multi-component adsorbates provides an accurate framework for the analysis of future experiments on the monolayer kinetics driven by codeposition of two (or more) atomic species. We hope that this framework, presented in Sec. III, will stimulate experimental tests of our findings and eventually will help to control nanoalloy surface growth.

Even for one-component metallic growth the exact behavior of the ISD is still not known, not even in the $D/F \to \infty$ limit. Section IV provides evidence from simulations that rate equations based on “correct” capture numbers do have predictive power for the ISDs. With respect to extensions to multi-component systems, this feature is expected to remain valid. However, for predicting ISDs from the rate equations, no analytical theory of sufficient accuracy exists so far for the capture numbers. Promising approaches for resolving this problem are theories for joint probabilities of island size and capture area. Further developments of such theories may provide a route also to account for coverage dependencies of scaled ISDs in the $D/F \to \infty$ limit.

Nucleation of stable islands in confined geometries can be dominated by rare fluctuations with the consequence that mean-field type descriptions fail. This fact is particularly important for the problem of second layer nucleation when the size of the critical nucleus is one or two (Sec. V). Stochastic methods developed for treating rare fluctuations proved applicable also to organic thin film growth, when bending energies are involved in the passing of step edges, and they were useful for making progress in other contexts such as chemical reaction kinetics. There is yet more to be explored. For example, rare fluctuations should play an important role also for island nucleation on reconstructed surfaces, and different Ehrlich-Schwoebel barriers for different type of atoms should have a relevant influence on island shapes, similar to different barriers associated with A and B steps on (111)-surfaces (Evans et al., 2006).

Alloy cluster formation under non-equilibrium growth conditions allows one to generate new atomic configu-
For organic thin film growth, the established concepts of submonolayer growth kinetics should be revisited in order to incorporate inter-molecular interaction effects such as π-stacking and hydrogen bonding, which are absent in metal and semiconductor adsorbates. In addition, new degrees of freedom, like rotation and bending of molecules, need to be considered. Because of orientational constraints for bonding and strong incommensurabilities of molecular sizes (or of sizes of molecular subgroups) with substrate lattice constants, critical nuclei can be composed of quite a large number of molecules. These larger sizes of critical nuclei may be considered as an intermediate case between the small critical nuclei in metal growth and the large critical nuclei in three-dimensional crystallite formation from solution. Theoretical descriptions of the consequences of these and other features of molecular adsorbates for the growth kinetics are only at the beginning. Novel island morphologies can emerge already due to weak substrate-molecule interactions and an associated upward transport of molecules from the first to the second layer. An unsettled question is to what degree second-layer facilitated dewetting transitions, as found for fullerences on insulating surfaces, are a rather generic mechanism influencing shapes of molecular clusters.

ACKNOWLEDGMENTS

We have greatly benefited from numerous discussions with our colleagues and collaborators M. Albrecht, S. Heinrichs, A. Majhofer, M. Körner, A. Kühne, M. Reichling, J. Rottler, and G. Schatz.

REFERENCES

Albrecht, M., M. Maier, F. Treubel, M. Maret, R. Poinso, and G. Schatz (2001), Europhys. Lett. 56, 884.
Albrecht, M., M. Maret, A. Maier, F. Treubel, B. Riedlinger, U. Mazur, G. Schatz, and S. Anders (2002), J. Appl. Phys. 91, 8153.
Amar, J. G., and F. Family (1995), Phys. Rev. Lett. 74, 2066.
Amar, J. G., M. N. Popescu, and F. Family (2001), Phys. Rev. Lett. 86 (14), 3092.
Andersson, G., T. Burkert, P. Warnicke, M. Björe, B. Sanyal, C. Chacon, C. Zlatea, L. Nordström, P. Nordblad, and O. Eriksson (2006), Phys. Rev. Lett. 96, 037205.
Antczak, G., and G. Ehrlich (2010), Surface Diffusion: Metals, Metal Alloys, and Clusters (Cambridge University Press, Cambridge).
Bales, G. S., and D. C. Chrzan (1994), Phys. Rev. B. 50, 6057.
Bales, G. S., and A. Zangwill (1997), Phys. Rev. B. 55, R1973.
Bartelt, M. C., and J. W. Evans (1992), Phys. Rev. B 46 (19), 12675.
Bartelt, M. C., and J. W. Evans (1996), Phys. Rev. B. 54, 17359.
Barth, J. V., H. Brune, B. Fischer, J. Weckesser, and K. Kern (2000), Phys. Rev. Lett. 84, 1732.
Becker, R., and W. Döring (1935), Ann. Phys. 24, 719.
Bromann, K., H. Brune, H. Röder, and K. Kern (1995a), Phys. Rev. Lett. 75, 677.
Bromann, K., H. Brune, H. Röder, and K. Kern (1995b), Phys. Rev. Lett. 75, 677.
Brune, H. (1998), Surf. Sci. Rep. 31, 125.
Brune, H., S. Bales, J. Jacobsen, C. Boragno, and K. Kern (1999), Phys. Rev. B. 60, 5991.
Brune, H., H. Röder, C. Boragno, and K. Kern (1994), Phys. Rev. Lett. 73, 1955.
Brune, H., H. Röder, K. Bromann, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Norskov (1996), Surf. Sci. 349, L115.
Burke, S. A., W. Ji, J. M. Mativetsky, J. M. Topple, S. Fostner, H.-J. Gao, H. Guo, and P. Grütter (2008), Phys. Rev. Lett. 100, 186104.
Burke, S. A., J. M. Mativetsky, S. Fostner, and P. Grütter (2007), Phys. Rev. B 76, 035419.
Burke, S. A., J. M. Mativetsky, R. Hoffmann, and P. Grütter (2005), Phys. Rev. Lett. 94, 096102.
Burke, S. A., J. M. Topple, and P. Grütter (2009), J. Phys.: Condens. Matter 21, 423101.
Castro Neto, A. H., F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim (2009), Rev. Mod. Phys. 81, 109.
Clancy, P. (2011), Chem. Mater. 23 (3), 522.
Coraux, J., A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf,
