Current Evidence on the Association between Mmp-7 (-181A>G) Polymorphism and Digestive System Cancer Risk

Pan Ke, Zhong De Wu, Hua Song Wen, Miao Xiong Ying, Huo Cheng Long and Liu Guo Qing*

Department of General Surgery, Xiang-Ya 2nd Hospital, Central South University, Chang-Sha, Hunan Province, China

Abstract

The matrix metalloproteinase (MMPs) family comprise of more than 20 enzymes that are capable of degrading extracellular matrix proteins [1-3]. MMPs not only play important roles in physiological ECM remodelling, such as wound repair, tissue regeneration and embryo development, but are also associated with pathological conditions, such as arthritis, atherosclerosis and autoimmune blistering disorders of the skin. There is also growing evidence suggesting that MMPs can degrade various components of the extracellular matrix and are involved in cancer development by modulating cell proliferation, apoptosis, angiogenesis, and so on [1,2] MMP7, localised on chromosome 11q21-q22, is one of the smallest members of the MMPs family, which can degrade elastin, proteoglycans, fibronectin and type IV collagen [3-23]. It also cleaves non-matrix substrates from the cell surface, such as E-cadherin, pro-tumour necrosis factor and Fas ligand. An A to G transition at -181 base pair position upstream of the transcription start site of MMP7 gene has been reported. The G allele has greater basal transcriptional activity than A allele in vitro [24]. Over-expression of MMP7 has been shown to occur in a wide variety of cancers, including tumours of the oesophagus, stomach, colorectal, kidney and breast [5,6], and this is correlated with tumour size, lymph node involvement and decreased survival. Recently, many studies indicating that the common MMP-7 (-181A>G) genetic polymorphism was correlated with cancer risk in many cancer types [7-22]. However, this relationship remains controversial in digestive system cancer, this meta-analysis was performed to evaluate the association between the MMP-7 (-181A>G) genetic polymorphism and digestive system cancer risk.

Search Strategy and Data Extraction

In this analysis, a literature research of the Pub Med database,
ISI Web of Knowledge, Medline, Embase and Google Scholar Search (up to date as of October, 2012) were conducted using the search terms including (“MMP7” or “matrix metalloproteinase 7”), “polymorphisms”, “cancer”, to obtain all genetic studies on the relationship of MMP-7 (-181A>G) polymorphism and cancer. We also used the combined phrases and a hand search of references of original studies on this topic. Figure 1 showed the flow diagram of study identification.

Data extraction was carried out independently by two investigators. We record the following information of each eligible study: the first author, year of publication, country of origin, genotyping methods, source of controls, number of cases and controls with different groups.

Statistical Analysis

The strength of relationship between MMP-7 (-181A>G) polymorphism and cancer was assessed by using Crude OR with 95% CI. We examined the association between the MMP-7 (-181A>G) polymorphism and digestive cancer risk using homozygote comparison (GG vs. AA), heterozygote comparison (GA vs. AA), dominant genetic model (GG + GA vs. AA) and recessive genetic model (GG vs. GA + AA). Between-study heterogeneity was evaluated by Q-test. Fixed effects model was used to pool the data when the P-value of Q-test ≥ 0.05, otherwise, random-effects model was selected. Egger’s test was used to

Table 1: Main characteristics of included studies in the meta-analysis.

Author	Year	Cancer type	Country	Ethnicity	Genotype assay	Source of Control	Case/Control	P‡
Zhang	2005	Gastric	China	Asian	PCR-RFLP	Population	201/350	Yes
Kim	2011	Gastric	Korea	Asian	PCR-RFLP	Hospital	153/326	Yes
Malik	2011	Gastric	India	Asian	PCR-RFLP	Population	108/195	Yes
Sugimoto	2008	Gastric	Japan	Asian	PCR-RFLP	Hospital	160/434	Yes
Kubben	2006	Gastric	Holland	European	PCR-RFLP	Population	79/169	Yes
Li	2008	Gastric	China	Asian	PCR-RFLP	Population	338/380	Yes
Zhang	2005	ESCC	China	Asian	PCR-RFLP	Population	258/350	Yes
Malik	2011	ESCC	India	Asian	PCR-RFLP	Population	135/195	Yes
Lievre	2006	Colorectal	France	European	Tagman	Population	596/565	Yes
Dziki	2011	Colorectal	Poland	European	PCR-RFLP	Hospital	184/205	Yes
Ohtani	2009	Colorectal	Japan	Asian	PCR-RFLP	Hospital	119/67	Yes
Ghilardi	2003	Colorectal	Italy	European	Sequencing	Population	58/111	Yes
Woo	2007	Colorectal	Korea	Asian	PCR-RFLP	Population	185/304	Yes
Fang	2010	Colorectal	China	Asian	PCR-RFLP	Population	252/237	Yes
de Lima	2009	Colorectal	Brazil	South America	PCR-RFLP	Hospital	108/113	Yes
Vairaktaris	2007	Oral	Germany, Greek	European	PCR-RFLP	Population	159/120	No
Qiu	2008	Hepatocellular	China	Asian	PCR-RFLP	Population	425/475	Yes

‡ P value of Hardy-Weinberg equilibrium in controls; ESCC: esophageal squamous cell carcinoma

Table 2: Results of meta-analysis for MMP-7 (-181A>G) polymorphism and digestive cancer risks.

Study groups	OR (95% CI)	£						
Total	1.21 (1.12-1.60)‡	<0.001	1.06 (0.99-1.13)	0.536	1.16 (1.03-1.36)‡	<0.001	1.12 (0.95-1.31)‡	<0.001
Cancer type								
Hepatocellular	1.43 (1.10-1.87)‡	0.851	1.29 (0.99-1.68)	0.771	1.36 (1.02-1.81)	0.796	1.17 (0.96-1.93)	0.215
Gastric	1.22 (1.02-1.46)‡	0.523	1.82 (1.61-2.87)	0.704	1.13 (1.01-1.28)	0.711	1.25 (1.06-1.49)	0.542
Colorectal	1.13 (1.01-1.26)‡	0.020	0.805 (0.50-1.30)‡	0.006	0.86 (0.54-1.35)‡	0.006	1.08 (0.80-1.45)	0.215
Esophagus	1.00 (0.24-4.30)‡	<0.001	1.45 (1.11-1.91)‡	0.146	1.19 (0.48-2.96)‡	0.002	0.81 (0.27-2.39)‡	<0.001
Oral	1.73 (0.38-1.39)‡	0.312	1.09 (0.26-4.55)‡	0.013	1.02 (0.30-4.35)‡	0.026	0.88 (0.56-1.36)‡	0.478
Ethnicity								
Asian	1.40 (1.12-1.69)‡	<0.001	1.26 (1.02-1.51)‡	<0.001	1.18 (1.08-1.55)‡	<0.001	1.14 (0.96-1.36)‡	<0.001
European	1.13 (0.60-1.97)‡	0.070	0.98 (0.49-1.77)‡	0.070	1.11 (0.76-1.52)‡	0.029	1.01 (0.73-1.51)‡	0.154
Source of Control								
Population-based	1.19 (0.91-1.90)‡	<0.001	1.16 (0.98-1.37)‡	0.029	1.10 (1.01-1.72)‡	<0.001	0.95 (0.68-1.37)‡	<0.001
Hospital-based	1.25 (1.01-1.74)‡	<0.001	1.15 (0.88-1.50)‡	<0.001	1.14 (0.84-1.54)‡	<0.001	0.97 (0.82-1.39)‡	0.150

Abbreviations: CI, confidence interval; OR, odds ratio.

* Studies of comparison,P-value of Q-test for heterogeneity test, ‡ Random model was used.
assess the publication bias. (P<0.10 was considered representative of statistical significance). All statistical analyses were performed using STATA11.0 software and Review Manage (v.5; Oxford, England).

Results

Eligible studies

The main characteristics of these studies are shown in table 1. Genotype distribution of the MMP-7 (-181A>G) polymorphism among cancer cases and controls of the 16 studies are shown in table 2. The genotyping method contains the classic polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay, DNA sequencing, Affymetrix and Taqman. Among all the studies, seven colorectal cancer studies, six gastric cancer studies, two esophageal squamous cell carcinoma studies, one oral carcinoma and one hepatocellular carcinoma were included. Twelve studies were Asian descent, four studies were Caucasian descent and one study was South America descent. Hospital based controls were carried out in 5 studies, while population based controls were carried out in twelve studies.

Meta-analysis

Overall, as shown in table 2, we observed that the MMP-7 (-181A>G) polymorphism increased the digestive system cancer risk in homozygote comparison (GG vs. AA, OR=1.21, 95% CI=1.12-1.60) and dominant model (GG/GA vs. AA, OR=1.16, 95% CI=1.03-1.46) when all the eligible studies were pooled into the meta-analysis (Table 2). In the subgroup analysis, we found that the MMP-7 (-181A>G) polymorphism elevates gastric cancer risk in all the four models (GG vs. AA, OR=1.22, 95% CI=1.02-1.46; GA vs. AA, OR=1.82, 95% CI=1.16-2.87; GG/AG vs. AA, OR=1.13, 95% CI=1.01-1.26; GG/AG vs. AA, OR=1.25, 95% CI=1.06-2.39). Furthermore, we found significant association of MMP-7 (-181A>G) polymorphism with ESCC and colorectal cancer in homozygote comparison (GA vs. AA, OR=1.45, 95% CI=1.11-1.91) and homozygote comparison (GG vs. AA, OR=1.13, 95% CI=1.01-1.26) respectively. Compared with gastric cancer, ESCC and colorectal cancer, no significant associations were found in oral carcinoma and hepatocellular carcinoma.

We then evaluated the effects of the MMP-7 (-181A>G) polymorphism according to different ethnicities and different source of control. As shown in table 2, in the stratified analysis by ethnicity, a significantly increased risk was found among Asian populations in both ethnic subgroups. The results did not present any obvious evidence of publication bias in the subgroup analyses for GG vs. AA p=0.576, AA vs. AA P=0.872GG+GA vs. AA p=0.675, GG vs. GA+AA P=0.721.

Discussion

The result of this meta-analysis involving 3,518 cases and 4,596 controls suggested that the MMP-7 -181A/G polymorphism was overall significantly associated with digestive system cancer risk, especially in Asian population.

Recently, Malik MA conducted one study indicating that individuals who living in the Kashmir Valley carrying -181 GG genotype were related to high risk of gastric cancer [9]. Besides, Ghilardi et al. observed the -181A/G polymorphism was associated with increased risk of colorectal cancer development [17]. However, Peng et al. performed a meta-analysis and suggested the association between MMP7 -181 A G and increased cancer risk was found in the gastric cancer subgroup, no significant difference was found in the colorectal cancer subgroup [23].

In this meta-analysis, significant association was found between the MMP7 -181 A/G polymorphism and risk of gastric cancer. Besides, the association was more significant in the recessive model compared with the dominant model. Functional analysis in vitro has shown that nuclear proteins bind with higher affinity to the -181 G allele than to the -181A allele and promoter activity variation of the -181G allele may induce elevation of the protein expression, so individuals with GG genotype may have a higher risk of the gastric cancer than with GA genotype. For ESCC and colorectal cancer, the significant associations were just found in the dominant model and homozygote model respectively. We also found Asians with GG genotype had higher risk of cancer compared to Caucasians. Several factors such as environmental factors and different genetic backgrounds might contribute to the difference. Furthermore, inconsistent results were observed between hospital-based studies and population-based studies. Controls in population-based studies were more representative of general population than controls from hospital-based studies.

As in all research, our study has limitations. First, the controls were not uniformly defined. Second, studies involved in different ethnicities are warranted to estimate the effects of this functional polymorphism on digestive system cancer risk. Third, due to the original data of the eligible studies are not available. It is difficult to evaluate the roles of diet, alcohol consumption, and smoking status in digestive cancer development.

In conclusion, our meta-analysis suggested that the MMP7 -181
A/G polymorphism may be a risk factor in digestive system cancer development, especially among Asian population. Large well-designed studies are needed to validate our findings in the future.

References

1. Lia Y, Jina X, Kangb S, Wang Y, Dub H, et al. (2006) Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7, and -9 and the risk of epithelial ovarian cancer in China. Gynecol Oncol 101: 92-96.

2. Singh H, Jain M, Mittal B (2008) MMP-7 (-181A > G) promoter polymorphisms and risk for cervical cancer. Gynecol Oncol 110: 71-75.

3. Wu S, Lu S, Tao H, Zhang L, Lin W, et al. (2011) Correlation of polymorphism of IL-8 and MMP-7 with occurrence and lymph node metastasis of early stage cervical cancer. J Huazhong Univ Sci Technolog Med Sci 31: 114-119.

4. Yi YC, Chou PT, Chen LY, Kuo WH, Shih-Chu Ho E, et al. (2010) Matrix metalloproteinase-7 (-181A > G) polymorphism is a risk factor for endometrial cancer susceptibility. Clin Chem Lab Med 48: 337-44.

5. Hodi FS, Mihm MC, Soffier RJ, Haluska FG, Butler M, et al. (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma andovarian carcinoma patients. Proc Natl Acad Sci 100: 4712-4717.

6. Greenwald RJ, Oosterwegel MA, Diane van der Woude, Kubal A, Mandelbrot DA, et al. (2002) CTLA-4 regulates cell cycle progression during a primaryimmune response. Eur J Immunol 32: 366-373.

7. Zhang J, Jin X, Fang S, Wang R, Li Y, et al. (2005) The functional polymorphism in the matrix metalloproteinase-7 promoter increases susceptibility to esophageal squamous cell carcinoma, gastric cardiac adencarcinoma and non-small cell lung carcinoma. Carcinogenesis 26: 1748-1753.

8. Kim JH, Pyun JA, Lee KJ, Cho SW, Kwack KB (2011) Study on Association between Single Nucleotide Polymorphisms of MMP7, MMP8, MMP9 Genes and Development of Gastric Cancer and Lymph Node Metastasis. Korean J Gastroenterology 58: 245-251.

9. Malik MA, Zargar SA, Mittal B (2011) Role of the matrix metalloproteinase-7 (181A>G) polymorphism in gastric cancer susceptibility: a case control study in Kashmir valley. Asian Pac J Cancer Prev 12: 73-76.

10. Sugimoto M, Furutu T, Kodaira C, Nishino M, Yamade M, et al. (2008) Polymorphisms of matrix metalloproteinase-7 and chymase are associated with susceptibility to and progression of gastric cancer in Japan. J Gastroenterology 43: 751-761.

11. Kubzen S, Sier CF, Meijer MJ, van der Berg M, van der Reijden JJ, et al. (2006) Clinical impact of MMP and TIMP gene polymorphisms in gastric cancer. Br J Cancer 95: 744-751.

12. Li JY, Tian MM, Zhao AL (2008) Polymorphism in the promoter region of the metalloproteinase-7 increases susceptibility and risk of metastasis of gastric adenocarcinoma. Gastroenterology 134: A603.

13. Malik MA, Sharma KL, Zargar SA, Mittal B (2011) Association of matrix metalloproteinase-7 (-181A>G) polymorphism with risk of esophageal squamous cell carcinoma in Kashmir Valley. Saudi J Gastroenterol 17: 301-306.

14. Lieve R, Milet J, Carayol J, Le Corre D, Milian C, et al. (2006) Genetic polymorphisms of MMP1, MMP3 and MMP7 gene promoter and risk of colorectal adenoma. BMC Cancer 6: 270.

15. Dzikl L, Przybylskowska K, Majsterek I, Trzciński R, M, et al. (2011) A/G Polymorphism of the MMP-7 Gene Promoter Region in Colorectal Cancer. Pol PrzeglChir 83: 622-626.

16. Ohtani H, Maeda N, Murawaki Y (2009) Functional polymorphisms in the promoter regions of matrix metalloproteinase-2, -3, -7, -9 and TNF- alpha genes, and the risk of colorectal neoplasm in Japanese. YonagoActamedica 52: 47-56.

17. Ghiardi G, Biondi ML, Erario M, Guagnelli E, Scorza R (2003) Colorectal carcinoma susceptibility and metastases are associated with matrix metalloproteinase-7 promoter polymorphisms. Clin Chem 49: 1940-1942.

18. Woo M, Park K, Nam J (2007) Clinical implications of matrix metalloproteinase-1, -3, -7, -9, and plasminogen activator inhibitor-1 gene polymorphisms in colorectal cancer. J Gastroenterol Hep 22: 1064-1070.

19. Fang WL, Liang WB, He H, Zhu Y, Li SL, et al. (2010) Association of Matrix Metalloproteinases 1, 7, and 9 Gene Polymorphisms with Genetic Susceptibility to Colorectal Carcinoma in a Han Chinese Population. DNA Cell Biol 29: 657-661.

20. de Lima JM, de Souza LG, da Silva ID (2009) E-cadherin and metalloproteinase-1 and -7 polymorphisms in colorectal cancer. Int J Biol Markers 24: 99-106.

21. Qiu W, Zhou G, Zhai Y, Zhang X, Xie W, et al. (2008) No Association of MMP-7, MMP-8, and MMP-21 Polymorphisms with the Risk of Hepatocellular Carcinoma in a Chinese Population. Cancer Epidemiol Biomarkers Prev 17: 2514-2518.

22. Vairaktaris E, Serefoglou Z, Yapijakis C, Vylliotis A, Nkenke E, et al. (2007) High gene expression of matrix metalloproteinase-7 is associated with early stages of oral cancer. Anticancer Res 27: 2493-2498.

23. Peng B, Cao L, Ma X, Wang W, Wang D, et al. (2010) Meta-analysis of association between matrix metalloproteinases 2, 7 and 9 promoter polymorphisms and cancer risk. Mutagenesis 25: 371-379.

24. Jormsjo S, Whatling C, Walter DH, Zeilier AM, Hamsten A, et al. (2003) Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 21: 1834-1839.

This article was originally published in a special issue, Cancer Stem Cells handled by Editor(s): Dr. Daotai Nie, Southern Illinois University, USA