Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

Daisuke Ishii1,5,6, Hiroko Horiguchi2,6, Yuji Hirai3,6, Hiroshi Yabu3, Yasutaka Matsuo4,6, Kuniharu Ijiri4,6, Kaoru Tsujii6, Tateo Shimozawa6, Takahiko Hartyama2,6 & Masatsugu Shimomura1,3,6

1WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan, 2Department of Biology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Japan, 3Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan, 4Research Institute for Electronic Science, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan, 5Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan, 6CREST, Japan Science and Technology Agency, Hon-cho 4-1-8, Kawaguchi 332-0012, Japan.

Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.
However, exact duplicates of the legs could not be obtained because of the complicated microstructures. Herein, to solve these big problems of investigation of smart water transport systems of the wharf roach possessing complicated biological microstructures and undefined surface chemistry, we developed a novel method including direct modifications of biological microstructures and wettability analysis of small areas.

Results

Open capillaries on the legs of wharf roach. The wharf roach Ligia exotica (Crustacea, Isopoda, Fig. 1a) is a fast-moving arthropod found on rocky seashores with seven pairs of legs used to escape the surging surf and drowning. However, water is essential for its existence11, especially for gaseous exchange through its gills during respiration12. It possesses a smart water transport system10 that transports water from the wet surface of the seashore using a pair of caudal VI and VII legs (Fig. 1b). Vertical water transport was observed on the wet surface of the VI leg, from the lower end of the 2nd podite to the upper end of the 5th podite (Fig. 1c and see Supplementary Movie S1 online). Scanning electron microscope (SEM) observations revealed that open capillaries are present from the 2nd to the 5th podite, except the 6th podite on the VI leg (Fig. 1d). On the VII leg, open capillaries are found only on the 6th podite. Water is transported to the gills via these open capillaries when VI and VII legs are firmly apposed10.

Detailed observations showed that open capillaries of the VI leg comprised two different cuticular protrusions, a hair-like protrusion (HLP) and a paddle-like protrusion (PLP). In the 4th and 5th podites, HLPs and PLPs are located at the edge and centre of open capillaries, respectively (Fig. 1e). Joints of legs contained HLPs (Fig. 1f) and each protrusion is approximately 50-\mu m long (Fig. 1j). PLPs were approximately 100-\mu m high and 200-nm thick and were aligned parallel to the water flow (Fig. 1g). The outsides of open capillaries were covered with small curved plates (ca. 10-\mu m high; Fig. 1h), so that the outside roughness was lower than that of open capillaries.

Surface chemical modification of open capillaries. Legs of L. exotica were cut, rinsed and freeze dried13 to maintain fine structures, which were physically modified by gold sputtering (Fig. 2a). The interfacial free energies of the gold-sputtered legs were chemically modified using hydrophilic and hydrophobic compounds14,15. The same modification was performed on flat mica substrates to verify the relationship between the molar ratio and wettability. To quantify the narrow area in open capillaries (Fig. 2b), water contact angles (\(\theta\)) were measured using 1.0 nanoliter droplet (Fig. 2c). We plotted \(\theta\) of the chemically modified flat mica substrates (\(\theta_f\), HLP (\(\theta_h\)) and PLP (\(\theta_p\)) areas and the outside of open capillaries (\(\theta_o\)) against the molar ratio of the hydrophobic thiol compound (\(r\)) (Fig. 2d and see Supplementary Movie S2–S4 online). \(\theta_f\) decreased gradually from 108\(^\circ\) (hydrophobic) to 13\(^\circ\) (hydrophilic) as \(r\) decreased. \(\theta_o\) also decreased gradually from 124\(^\circ\) to 48\(^\circ\) like \(\theta_p\), but it...
was slightly higher than $\theta_i (r \approx 0.15). \theta_h$ and θ_p decreased abruptly to 0° (superhydrophilic) at $r = 0.50$ and 0.35, respectively. According to the Cassie–Baxter wetting theory\(^1\), a rough surface containing small air pockets is more hydrophobic than a flat surface. On the hydrophobic-modified leg ($r = 1.0$), θ followed the order $\theta_p > \theta_h > \theta_o > \theta_i$. SEM images (Fig. 1e) clearly show that the roughness and amount of air pockets in PLP and HLP areas were greater than those on the outside. According to the Wenzel wetting theory\(^2\), when θ_i is smaller than 90°, a rough surface is more wettable than a flat surface. θ_h drastically decreased at $r \leq 0.6$ ($\theta_i \leq 90^\circ$). However, high hydrophobicity in the PLP area was maintained even when θ_i reached 72° ($r = 0.40$; Cassie–Baxter wetting). This wetting type was defined by roughness and the amount of air pockets, which depended on the shape of the surface microstructures in open capillaries.

The wettability-modified legs were classified into the following four regions according to the relationship between r (i.e. θ_3) and θ of the three microstructures (Fig. 2d). Region 1 indicated that all areas were modified to become superhydrophilic ($\theta_h = \theta_p = \theta_o = 0^\circ$). In region 2, open capillaries ($\theta_h = \theta_p = 0^\circ$) were superhydrophilic, whereas the outside was not wettable. In region 3, only the HLP area of open capillaries was wettable ($\theta_h = 0^\circ$). Strong water repellency of all areas was observed in region 4.

Water transport through open capillaries of the wettability-modified legs. Water transport from the 4th to 5th podite of the wettability-modified legs was observed using green coloured water to make a colour contrast with the gold background. Water accumulated in region 1 of the wettability-modified legs in open capillaries and spread to the outer area of each podite. However, water transport was not observed in region 4 because of its strong water repellency. Two types of water flow through open capillaries were observed in region 2, (i) water leaked from the joint between each podite and spread to the outside (Fig. 3a and see Supplementary Movie S5 online; $r = 0.30$, $\theta_i = 62^\circ$) and (ii) water flowed only through open capillaries (Fig. 3b and see Supplementary Movie S6 online; $r = 0.35$, $\theta_i = 71^\circ$). Water leaked readily to the outside when θ_i was low in region 2. However, water transport via open capillaries was only achieved efficiently when θ_i was high. In region 3, water was not transported to the 5th podite (Fig. 3c and see Supplementary Movie S7 online; $r = 0.4$, $\theta_i = 78^\circ$). These results indicate that water only climbed upward via open capillaries when they were superhydrophilic compared with the outside ($\theta_p = 0^\circ$ and $\theta_p \ll \theta_i$). Hydrophobicity of the outside had an important role in preventing water leakage from open capillaries.

Discussion

In the 2nd and 3rd podites, water flowed homogeneously along HLP, while in the 4th and 5th podites, water flowed along the HLP area initially, before filling the PLP area (Fig. 1c). To evaluate the wetting dynamics of open capillaries, penetration times of a 1-nL water droplet in HLP (θ_h) and PLP (θ_p) areas were measured using a high-speed camera (Fig. 4a, 4b). t_h and t_p of the wettability-modified legs at $r = 0.35$ were 17 ms and 66 ms, respectively. In region 2, t_h was always smaller than t_p, suggesting that the HLP area was more wettable than the PLP area. Water flow in the 4th and 5th podites comprised two steps (Fig. 4c), an initial slow infiltration into the HLP area and its spread into the PLP area in the centre of open capillaries without any leakage. The features of water flow in the
autotomized by controlling their free movements with the help of a pair of fine forceps at the proximal end of basipodite. The 6th and 7th legs were pre-fixed overnight in 2% buffered saline (0.13 M, pH 7.4) at room temperature, dehydrated through a graded series of ethanol solutions, and rinsed in 100% 1-butylalcohol three times at 37°C. Then, specimens were freeze-dried (EOO, JFD-300) for several hours at 2°C.

For scanning microscopy observations, dried specimens were coated with OsO4 (Meiwa, Plasma multicoater PMC-5000) and observed with a scanning electron microscope (Hitachi S-3000N). For water flow observations, legs were coated with gold ion spattering (5 mV, 225 s), in order to make them covered by same surface material. Various surface-modified legs with systematically changed interfacial free energies were made by surface treatment of hydrophilic and/or hydrophobic thiol compounds on gold-coated legs. The gold-coated legs were immersed in 1 mM ethanol solution including different molar ratios of hydrophilic thiol compound (11-mercaptop-1-undecanol) and hydrophobic one (1-dodecan thiol) for 12 h. After the surface treatments, the chemical-modified legs were rinsed by ethanol and dried naturally for at least overnight. The same treatments were applied to flat mica substrates to measure the surface wettability which is related with the interfacial free energy between the surface and water.

Observation of water flow using isolated legs. The law and wettability-modified legs were then attached to a fine plastic rod by dental wax to the autotomized proximal end. The other side of the rod was held in a manipulator (Narishige), so that the Pereiopod could be stationed in its natural vertical position. The Pereiopod was then immersed from the tip. The water was coloured with red/green water-soluble food dye (Tsukemoto Corporation) to facilitate observation of its flow with the help of a horizontally mounted stereomicroscope. To keep the position of pereiopod, the level of water was moved upward by a manipulator. The action was recorded on a digital camera (Olympus E-5, with video capture function),

Measurement of the interfacial free energy. The interfacial free energy was compared with surface wettability measured by the automatic microscopic contact angle meter (Kyowa MCA-3). A 1-nL microdroplet of water formed on the tip of a glass capillary having inner diameter of 0.5 μm was dropped on the surface with capturing of a projection view of the small volume droplet by a 1,000 fps high-speed camera. Water contact angles (θ) were measured by the captured image when the water microdroplet did not change for 10 ms. If the θ was 0°, in other words the wettability of the surface was superhydrophilic, penetration times (t) of a 1-nL water droplet were measured using a high-speed camera.

1. Attenborough, D. [The Baking Deserts] The Living Planet: A Portrait of the Earth [148] (Collins and British Broadcasting Corporation, London, 1984).
2. Bentley, P. J. & Yorio, T. Do frogs drink? J. Exp. Biol. 79, 41–46 (1970).
3. Reis, P. M., Jung, S., Arist, J. L. & Stocker, R. How cats lap: water uptake by Felis catus. Science 330, 1231–1234 (2010).
4. Prakash, M., Quéré, D. & Bush, J. W. M. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 303, 931–934 (2008).
5. Fox, H. M. Anal and oral intake of water by crustacea. J. Exp. Biol. 29, 583–599 (1952).
6. Porter, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).
7. Bentley, P. J. & Blumer, W. F. C. Water uptake by the lizard, Moloch horridus. Nature 194, 699–670 (1962).
8. Gans, C., Merlin, R. & Blumer, W. F. C. The water-collecting mechanism of Moloch horridus re-examined. Amphibia-Reptilia 3, 57–64 (1982).
9. Cadé, T. J. & Maclean, G. L. Transport of water by adult sandgrouse to their young. The Condor 69, 323–343 (1967).
10. Horiguchi, H., Hironaka, M., Meyer-Rochow, V. B. & Hariyama, T. Water uptake via two pairs of specialized legs in Ligia exotica (Crustacea, Isopoda). Biol. Bull. 213, 196–203 (2007).
11. Edney, E. B. The temperature of woodlice in the sun. J. Exp. Biol. 30, 331–349 (1953).
12. Edney, E. B. [Water Loss–Respiratory] Water Balance in Land Arthropods [66–86] (Springer-Verlag, Berlin, 1977).
13. Otsatake, H. & Inoue, T. Drying method of biological specimens for scanning method microscopy: the 1-butyl alcohol. Arch. Hist. Cytol. 51, 53–59 (1988).
14. Porter, M. E. D. Spotted salamanders: organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568 (1987).
15. Ullman, A., Evans, S. D., Shnidman, Y., Sharma, R., Eilers, J. E. & Chang, J. C. A. Concentration-driven surface transition in the wetting of mixed alkanethiol monolayers on gold. J. Am. Chem. Soc. 113, 1499–1506 (1991).
16. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).
17. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

Methods

Animals. Adult specimens of the wharf roach *Ligia exotica* were collected from the boulders of the littoral of Lake Hamanako (34°45′N, 137°35′E), a brackish lake in Shizuoka Prefecture, on the Pacific Ocean side of Japan. The animals were maintained in the laboratory in plastic tanks containing shallow amounts of filtered seawater and a broken piece of plant pots.

Preparation of legs for scanning electron microscopy and gold spattering. The body length of ca. 2 cm was used for this experiment. The legs of animals were easily

Figure 4 | Mechanism of water transport by open capillaries. (a,b) HLP and (b) PLP areas of the wettability-modified legs at r = 0.35 captured using a high-speed camera (1,000 frames per second). (c) Schematic illustration of the water transport mechanism by open capillaries on the 4th and 5th podites. Water initially rapidly infiltrated into the HLP area, before spreading to the PLP area in the centre of open capillaries without any leakage. The PLP area in the centre of open capillaries played an important role as a water reservoir.
18. Thomas, E. A., Weislogel, M. M. & Klaus, D. M. Design considerations for sustainable spacecraft water management systems. *Adv. Space Res.* **46**, 761–767 (2010).

Acknowledgments
This research was partly supported by Grant-in-Aid for Young Scientists (A) (No. 24686076) of The Japan Society for the Promotion of Science (JSPS) and Grant-in-Aid for Scientific Research on Innovative Areas “Engineering Neo-Biomimetics” (No. 24120004) of The Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

Author contributions
H.H. collected animals and prepared dried samples; Y.H. performed surface modifications; D.I. collected SEM images and data and performed wettability analysis; Y.M., H.Y. and K.I. performed conventional surface chemical analyses; K.T. and T.S. discussed wettability; D.I., T.H. and M.S. designed the study and wrote the paper. All authors discussed the results and commented on the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ishii, D. et al. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces. *Sci. Rep.*, 3, 3024; DOI:10.1038/srep03024 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0