Supplementary Data

Comparative studies of optoelectrical properties of prominent PV materials: Halide Perovskite, CdTe, and GaAs

Fan Zhang, Jose F. Castaneda, Shangshang Chen, Wuqiang Wu, Michael J. DiNezza, Maxwell Lassise, Wanyi Nie, Aditya Mohite, Yucheng Liu, Shengzhong Liu, Daniel Friedman, Henan Liu, Qiong Chen, Yong-Hang Zhang, Jinsong Huang, and Yong Zhang

1Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

2Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

3School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA

4Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

5Department of Chemical and Biomolecular Engineering and Department of Material Science and Nanoengineering, Rice University, Houston, Texas 77005, USA

6Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China

7National Renewable Energy Laboratory, Golden, Colorado 80401, USA

*Correspondence: yong.zhang@uncc.edu
1. Effect of numerical aperture in confocal PL measurement

![Figure S1. PL intensity vs. excitation density using two microscope lenses: 4× with NA = 0.1, and 10× with NA = 0.25. Results are shown for three samples: MAPbI3 (UNC-passivated), CdTe (CdTe-DH-A1671), and GaAs (GaAs-DH-B2206).](image)

2. PL intensity time dependence

![Figure S2. PL intensity time map of thin film perovskite under 10× lens. (a) MAPbI3-LANL at 0.83 W/cm² and 8.3 W/cm²; (b) MAPbI3-UNC-passivated at 0.83 W/cm² and 8.3 W/cm².](image)

3. Absorption spectra of thin-film perovskite MAPbI3
Figure S3. (a) Absorption spectra of thin film perovskite measured by 10× lens. Reflection has been considered. (b) Tauc plot of UNC-passivated sample, corresponding to red dashed box in Figure S3(a). Dashed lines show possible extrapolation.

4. Photon-recycling effect

Figure S4. Excitation density dependent external quantum efficiency for MAPbI$_3$ sample UNC-passivated. Black solid lines are fitted curve and vertical dashed line
shows one sun illumination. Red line is the internal quantum efficiency for the same data.

We use UNC-passivated as an example to examine the possible effect of photo-recycling on the extracted internal quantum efficiency value.

\[
\eta_{IQE} = \frac{1}{2} \left(1 - \beta_0 \left(1 + dx \right) \frac{u(1+dP^*)+1}{p} \right. \\
\left. \sqrt{(1 + \beta_0' \left(1 + dP^* \right) \frac{u(1+dP^*)+1}{p})^2 - 4\beta_0' \left(1 + dP^* \right)} \right)
\]

(S1)

\[
\eta_{EQE} = \frac{C \eta_{IQE}}{2n_r^2} \frac{1}{\eta_{IQE}^2 + \frac{1}{4a_0d_0}}
\]

(S2)

Internal quantum efficiency \(\eta_{IQE} \) given by Eq. (S1) is the same formula as Eq. (4) in main text for relative external quantum efficiency \(\eta_{EQE} \), except for removing the constant C from Eq. (5). Measured relative external efficiency \(\eta_{EQE} \) can be linked to \(\eta_{IQE} \) through Eq. (S2) that adopts the relationship between IQE and absolute EQE proposed in Ref. [1], where C is a scaling factor because we do not measure the absolute EQE. \(n_r \) is the average refractive index at the perovskite PL peak position, \(a_0 \) is the average band-edge absorption coefficient over the perovskite emission band, \(d_0 \) is the absorber thickness, \(L \) is the loss factor, defined as \(L = 1 - \text{Reflectivity} \). Eq. (S2) can be used to fit the experimental data of relative EQE. The absolute EQE can then be calculated by dividing fitting curve of Eq. (S2) and the experimental data with C. Taking the same value of \(n_r = 2.65 \), and the same \(a_0 \) value as in Ref. [2], but adjusted for the thickness difference (in our case \(d_0 = 500 \) nm), yielding \(a_0d_0 = 0.6 \), and \(L = 0.796 \). The fitting results of the IQE and absolute EQE curve are shown in Figure S4. Not only the relative EQE curves are very similar between this work and that in Ref. [2], if fitted with Eq. (S2), our data would also give rise to a similar IQE (85%) vs. 92% there under 1 Sun equivalent (60 mW/cm²) [2].

[1] I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures, Applied Physics Letters, 62 (1993) 131-133.
[2] I.L. Braly, D.W. deQuilettes, L.M. Pazos-Outon, S. Burke, M.E. Ziffer, D.S. Ginger, H.W. Hillhouse, Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency, Nature Photonics, 12 (2018) 355-361.