Ethnobotanical Survey in Tampolo Forest (Fenoarivo Atsinanana, Northeastern Madagascar)

Guy E. Onjalalaina 1,2,3,4, Carole Sattler 2, Maelle B. Razafindravao 2, Vincent O. Wanga 1,3,4,5, Elijah M. Mkala 1,3,4,5, John K. Mwihaki 1,3,4,5, Besoa M. R. Ramanarinda 6, Vololoniaina H. Jeannoda 6 and Guangwan Hu 1,3,4,*

1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; g.onjalalaina@outlook.com (G.E.O.); vincentokelo@gmail.com (V.O.W.); mkala@wbucas.cn (E.M.M.); mwihakikarichu@gmail.com (J.K.M.)
2 AVERTEM-Association de Valorisation de l’Ethnopharmacologie en Régions Tropicales et Méditerranéennes, 3 rue du Professeur Laguesse, 59000 Lille, France; carolesattler@hotmail.com (C.S.); maellerazafindravao@gmail.com (M.B.R.)
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
5 East African Herbarium, National Museums of Kenya, P. O. Box 451660-0100, Nairobi, Kenya
6 Department of Plant Biology and Ecology, Faculty of Sciences, University of Antananarivo, BP 566, Antananarivo 101, Madagascar; systemamtith@gmail.com (B.M.R.R.); vololoniaina@yahoo.fr (V.H.J.)
* Correspondence: guangwanhu@wbucas.cn

Abstract: Background: Madagascar shelters over 14,000 plant species, of which 90% are endemic. Some of the plants are very important for the socio-cultural and economic potential. Tampolo forest, located in the northeastern part of Madagascar, is one of the remnant littoral forests hinged on by the adjacent local communities for their daily livelihood. However, it has considerably shrunk due to anthropogenic activities forming forest patches. Thus, documenting the useful plants in and around the forest is important for understanding the ethnobotany in this area. Methods: In this study we (1) collected and identified useful plants utilized by local communities. Voucher specimens were collected following the information given by interviewees, (2) recorded the collection activities and the consumption methods through semi-structured interviews of the local inhabitants, and (3) performed a phytochemical screening to identify the active compounds and the potential healing metabolites of the medicinal plants. Results: A total of 65 people between 25 and 75 years old were interviewed. Surveys recorded 123 species used as timber, food, or medicine. Among them, 92 were forest species and 31 were ruderal species. Medicinal plants were mostly used to cure stomach ailments (71%), fever (33.3%), and fatigue (25%) with leaves (68%) being the most used plant part. Phytochemical analyses of 20 endemic medicinal species showed the presence of compounds that could be responsible for the therapeutic effects of the plants. Conclusions: Tampolo forest proves to be an important littoral forest highly utilized by the adjacent local communities due to the presence of a high number of useful plants which are mostly endemic to the region. Hence, our investigation assessed the importance of these species in the locality and this can be used for further study on ecology, conservation, and valorization of these species.

Keywords: ethnobotany; Africa; littoral forest; traditional knowledge; phytochemical screening

1. Introduction

Tropical forests harbor a rich diversity of species which have a high productive and protective natural values [1,2]. They are also a driver of a significant social and economic development as a result of the exploitation of the existing natural resources [2,3]. Additionally, humans also depend on the forests for food, shelter, and medicines [4]. However, there is a rapid loss of tropical forests through deforestation driven by the increased land use change, natural resource overexploitation, and climate change [5].
Madagascar has a remarkable wealth in terms of vegetation and endemic species. The island is composed of a variety of natural environments, which harbor a unique and globally important assemblage of plant species [6]. It is home to over 14,000 plants species, of which 90% are endemic to the region [3,6]. Among the 490 tree genera on the island, 161 are endemic [7]. However, the increasing intense population growth has led to rapid deforestation as land is cleared for agricultural fields and for fuel. The rainforest cover in Madagascar has recorded a gradual decrease from 5,254,306 hectares in 1990 to 4,489,248 hectares in 2005 [5], and a further loss to 4,345,000 hectares in 2013 [8], which translates to one million hectares lost in 15 years.

Tampolo forest is part of the eastern littoral forest remnants of Madagascar which have shrunk considerably due to anthropogenic activities, hence forming forest patches [6]. The adjacent local communities substantially depend on farming and fishing which generally do not generate enough income, hence the improper exploitation of the forest’s natural resources to supplement daily incomes. Due to this direct addition into the wellness of the adjacent community, there is a greater risk of extinction of many endemic biota, such as Daubentonia madagascariensis Gmelin “Aye-Ayes” (Daubentoniidae) and Dalbergia baronii Baker (Fabaceae). This biodiversity loss is greatly propelled by the forestry sector which have, since the colonial period, focused on the wood production potential of the sites, rather than focus on the region’s plants and their practical uses through the traditional knowledge of the local culture and people’s perspective [9–14].

As rural communities, local people of Tampolo depend on natural resources for their daily livelihood [13,15,16], especially for their healthcare [17]. In many parts of the world, traditional knowledge has always been transferred orally from generation to generation [18]. However, there is a risk of loss of information over the years, hence the importance of gathering them through ethnobotanical studies all over the world [4,19–24]. In terms of traditional cures, despite the lack of written documents, forest medicinal plant species were used to treat various types of diseases. Unlike other parts of the island where works were completed [17,21,25,26], no related works were available for this present area of study. Therefore, this paper is aimed at (a) filling the gap of the previous literature available by documenting the floristic list of useful forest plants with emphasis on medicinal endemic species, (b) reviewing their traditional therapeutic uses, and (c) documenting other uses of the forest plants other than medicinal purposes. Additionally, it evaluates the significance of most salient plant families, genera, and species and their uses among the participants for the conservation of the biological resources and their sustainable utilization.

2. Materials and Methods

2.1. Study Area

Tampolo forest is located on the eastern coast of Madagascar covering 360 ha (Figure 1). It is about 110 km from Toamasina, the capital district and 10 km from Fenoarivo Atsinanana, in Analanjirofo region [27]. It is bordered by Lake Tampolo and the village of Rantolava to the north, the village of Ampasimazava to the south, the Indian Ocean to the east, and the National Road Number 5 and the village of Tanambao Tampolo to the west. It is classified as low altitude dense evergreen humid forest belonging to the series of Anthostema and Myristicaceae by Humbert and Cours-Darne [28] and as coastal forest by DuPuy and Moat [29], recording over 360 plant species [30]. Three types of soils can be found in the forest station: Sandy soils are mainly found on the southern side of the station, whereas on the north and western sides have clay-loamy grounds with hills having ferralitic soils. Tampolo region has an average annual temperature of 23 °C with the coldest month being July with 19 °C, and December is the hottest month with 26.5 °C. The region receives 3406 mm of rain per year with an average of 241 rainy days registered per
year. In terms of human population, nearly 6000 people are distributed within the following “fokontany”: Andapa II, Tanambao Tampolo, Rantolava, and Takobola, which belong to the rural “commune” of Ampasina Maningory as of 2014.

Figure 1. Map of the study area: Location of Tampolo forest and the adjacent communities living around the forest.

2.2. Ethnobotanical Data Collection

Five field trips for ethnobotanical and biological surveys were carried out from February to November 2012. The participants were randomly selected based on the use and the in-depth knowledge on the medicinal plants. Some of the informants were chosen based on referrals by the local chiefs and elders. Ethnobotanical surveys were done using the methods of Martin [31]. To achieve this, open or semi-open interviews were used, which means that questionnaires (Appendix A), were asked in a manner that could not influence the answers of the participants and by following the International Society of Ethnobiology (ISE) code of ethics [32]. Researchers started their interaction with each prospective respondent by first explaining the aims and objectives of the project in order to solicit their consent and co-operation before any ethnobotanical data were gathered. Interviews were conducted with the selected informants to determine and explore the ethnobotanical knowledge regarding the utilization of plant species, their usefulness, their utilized parts, mode of preparation, or method of processing the plants. The ethnobotanical data for this research were gathered from altogether 53 farmers, three traditional healers, three fishermen, two chiefs of Fokontany, one forest guard, one Tangalamena (traditional chief of the village), one retired nurse, and one blacksmith. The participants were selected based on their consent to be interviewed, their vast knowledge in indigenous species, and their affirmation on the use of or having knowledge of at least one of the uses
of the forest plant species. At first, before any interview, we introduced ourselves to those responsible for the village; after their agreement, participants were asked if they can be interviewed in the context of our study. They were free to participate or not. The study was carried out under the permission and approved by the University of Antananarivo, Faculty of Sciences. No human or animal experiments were carried out.

Investigations were conducted in the three villages surrounding the forest: Tanambao Tampolo, Andapa II, and Rantolava where informants of the age 25 and above were interviewed and with their prior consent. The Nagoya protocol on access and benefit-sharing [33] has been followed. All the methods were performed in accordance with the relevant guidelines and regulations and, informed consent was obtained from all the participants during the period of this study.

The importance value of the use of each species by local population were assessed by calculating its Use Index by using the formula of Lance et al. [34]:

$$I(\%) = \frac{n}{N} \times 100$$ \hspace{1cm} (1)

where $I(\%)$ is the percentage index of use, n is the number of people citing the species, and N is the total number of people surveyed. The given species is heavily used if the value of $I(\%)$ is between 60 and 100% and moderately used if $I(\%)$ is between 30 and 60%; and if $I(\%)$ is less than 30%, it is rarely used.

2.3. Specimen Collection and Taxonomic Identification

Voucher specimens were collected with the help of the field guides and following the information given by interviewees relying on the local names of the plant taxa. Some of the plant species were identified in the field with the help of the locals and the remaining ones identified by Guy Eric Onjalalaina at the herbarium of Tsimbazaza Park (TAN), according to the Index Herbariorum list [35]. The plants were pressed and stored in the Herbarium. The taxonomy of taxa included in this study is consistent with Tropicos, International Plant Name Index (IPNI), the Plants of the World Online (POWO), and Plant List databases [36–39]. Duplicates were deposited at office of the “Association de Valorisation de l’Ethnopharmacologie en Regions Tropicales et Méditéranéennes (AVERTEM)” in Tampolo and at the herbarium of the “Département de Biologie et Ecologie Végétales (DBEV)” which is not yet listed at the Index Herbariorum, Faculty of Sciences Ankatso. A unique voucher specimen number was assigned to each herbarium specimen.

2.4. Phytochemical Screening for Medicinal Plants

2.4.1. Extraction Process by Reflux and Soxhlet Extractions

The leaves of the selected medicinal plant species were pre-washed with distilled water to rinse off the dirt and were dried in a ventilated area under a shade. Reflux and Soxhlet extraction involved distillation processes which are widely used in food and non-food industrial processes and laboratories. The process involves heating a solution to boiling and then returning the condensed vapor to the original flask. An aqueous extract was prepared by mixing 1 g of leaf powder with 20 mL of distilled water, then the solution was boiled and cooled [40–42].

2.4.2. Quantitative Analyses

The tannins were identified using the ferric chloride test where drops of 1% FeCl₃ solution in methanol were added to the 2 mL of hydroalcoholic extract, the blue color indicating the presence of tannins. On the other hand, phenolic compounds were detected when the color of the mixture switches to dark blue or blue-green by mixing four drops of ferric chloride in methanolic solution with 0.5 mL of the extract [42]. Then, anthraquinones were detected by using the Bornträger reaction [43,44]. 0.5 mL of the aqueous solution was mixed with 1 mL of benzene. After decantation, 0.5 mL of ammoniac 25% was added, the turn to red of the solution indicates the presence of anthraquinones.
The presence of desoxyoses were also detected by using 0.5 mL of the aqueous solution with, consecutively, 0.5 mL of cold acetic acid, 0.5 mL of ferric chloride 10% and 0.5 mL of sulfuric acid (H₂SO₄) 36 N, where “N” is the number of particles in the substance (reaction of Keller-Kiliiani [45]). The formation of a purplish ring at the interface of the tube confirms the presence of desoxyoses [46]. Iridoids were detected by adding some drops of hydrochloric acid (HCl) 12 N to 0.5 mL of the aqueous solution. The mixture was boiled in a water bath for 30 min, then a dark green or dark blue precipitate or color appears if these compounds are presents. For saponins, after dissolving in distilled water, there should be a formation of a foamy solution after strongly shaking for 2 min [40], and if the convoluted foam persisted within 15 min, it contained saponins.

Chloroform extract was used to detect the presence of steroids and terpenes. One gram of leaf powder was mixed with chloroform, stored in a cold place for one night, then filtered. The Libermann–Burchard test [47] was used by mixing 1 mL of the extract with 1 mL of acetic anhydride. After shaking, 1 mL of H₂SO₄ was then added. The formation of a purplish red ring indicates the presence of terpenes while the presence of steroids was indicated by the formation of a green color at the upper level of the solution. Additionally, the presence of sterols was detected by using the reaction of Salkowski [48,49]. The phase at the bottom of the test tube turns in red if they were presents when 0.5 mL of H₂SO₄ 34 N and three drops of anhydrous acetic were added to 0.5 mL of chloroform extract.

After that, 1 g of leaf powder was mixed with 10 mL of hydro ethanol (75%) then stored in a cold place for one night. To detect the presence of flavonoids, the Wilstater procedures [50,51] was used by adding four drops of HCl 12 N and two magnesium turnings to 2 mL of the extract. The color change to red indicates the presence of flavonoid compounds. Then, the detection of anthocyanins followed the procedures of Bate-Smith [52]. A mixture of 2 mL of the plant extract and 0.5 mL of HCl 12 N was boiled for 30 min and, when cooling, a red color appeared.

Finally, 1 g of leaf powder was mixed with 10 mL of HCl 2 N and marinated for one night. Then, 1 mL of the acid extract were then mixed with four drops of reagent of Mayer [53], Wagner [54] or Dragendorff [55] and produced a white precipitate or a flocculation if alkaloids were presents in the solution.

3. Results

3.1. Demographic Variables

During the study, 65 local inhabitants were surveyed, 41 (63.08%) were male and 24 (36.92%) were female. The age of the informants ranged from 25 and 75 years old (Table 1). The survey was done either by individual interviews (one-on-one consultations) or through focus groups.

Age (y)	Male	% Frequency	Female	% Frequency	Total
25–35	23	56.1	8	33.3	31
36–45	5	12.2	3	12.5	8
46–55	3	7.3	8	33.3	11
56–65	8	19.5	4	16.7	12
66–75	2	4.9	1	4.2	3
Total	41	100	24	100	65

3.2. Plant Utilizations

The following ethnobotanical information are reported for each taxon: the scientific name, the family name, the growth form, the plant part used, and uses. During these interviews, 123 taxa distributed within 62 families and 112 genera, including ruderal species, were cited as useful in the locality of Tampolo of which 59 were medicinal (48%), 54
for timber and firewood (44%) and 10 were edible (8%) (Figure 2). Among these useful plants, 92 taxa are exclusively from the forest, where 78 (84.78%) of them were endemic (Table 2) then distributed within 49 families and 83 genera. Most of the forest-utilized plant families were represented by two or three taxa.

![Figure 2. Graphic representation of the utilization of the plants.](image)

Table 2. List of useful plants of Tampolo forest (Fenoarivo Atsinanana, Madagascar) with their Use Index [I (%)]. M: Medicinal; T: Timber; E: Edible.

Family	Taxon	Collection Number	Local Name	Use	Endemism	Life Form	I (%)	IUCN Status						
1	**Anacardiaceae**	GE 109	Voantsirin drina	E	Not endemic	Liana	27.7	Not assessed						
	Sorindeia madagascariensis Thouars ex DC.													
2	**Campnospermacranteium** Marchand	GE 034	Tarantana	T	Endemic	Tree	6.1	LC						
	Anisophylla fallax Scott-Elliot													
3	**Annonaceae**	GE 124	Hazomamy	M	Endemic	Tree	9.2	LC						
	Xylopia buxifolia Baill													
	Fenerivia ghesquiereana (Cavaco & Keraudren) R.M.K. Saunders													
5	**Annonaceae**	GE 096	Tsiologondongo	T	Endemic	Tree	6.1	LC						
	Fenerivia ghesquiereana (Cavaco & Keraudren) R.M.K. Saunders													
No.	Family	Species Name	GE Code	Location	Life Form	Size	Status							
-----	------------------	--	---------	----------	-----------	------	------------							
6	Apocynaceae	*Landolphia nitens* Lassia Tabernaemon nitens Lassia Tabernaemon nitens (Lam.) Pichon Stephanoste gia capuronii Markgr	GE 013	Voahena	Liana	46.1	Not Assessed							
7	Araceae	*Lassia nitens* Tabernaemon nitens Lassia Tabernaemon nitens (Lam.) Pichon Stephanoste gia capuronii Markgr	GE 126	Livoro	Tree	9.2	LC							
8	Araceae	*Hazonдроняна* Stephanoste gia capuronii Markgr	GE 110	Hazonдроняна	Tree	9.2	LC							
9	Araceae	*Ravintampina* Lassia Tabernaemon nitens Lassia Tabernaemon nitens (Lam.) Pichon Stephanoste gia capuronii Markgr	GE 006	Ravintampina	Not endemic	Vine	9.2	Not Assessed						
10	Araliaceae	*Voantsilana* Stephanoste gia capuronii Markgr	GE 106	Voantsilana	Tree	3	LC							
11	Areceae	*Amboza* Stephanoste gia capuronii Markgr	GE 056	Amboza	Shrub	9.2	NT							
12	Asclepiadaceae	*Vahizahanana* Stephanoste gia capuronii Markgr	GE 090	Vahizahanana	Endemic	Vine	21.5	LC						
13	Asteropeiaceae	*Tambonana* Asteropeia micraster Hallier F. Asteropeia micraster (Capuron) G.E.Schatz, Lowry & A.-E.Wolf Phyllarthron bojeranum DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 024	Tambonana	Tree	24.6	VU							
14	Asteropeiaceae	*Matrambydy* Asteropeia micraster Hallier F. Asteropeia micraster (Capuron) G.E.Schatz, Lowry & A.-E.Wolf Phyllarthron bojeranum DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 023	Matrambydy	Tree	6.1	VU							
15	Bignoniaceae	*Antohirivina* Colea tetragona DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 093	M,T	Tree	27.7	LC							
16	Bignoniaceae	*Velonavohitra* Colea tetragona DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 102	T	Shrub	12.3	Not Assessed							
17	Burseraceae	*Sifontsoy* Colea tetragona DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 042	M	Shrub	6.1								
18	Burseraceae	*Akomea* Brexia klaineana Pierre Brexia klaineana Pierre Brexia klaineana Pierre	GE 123	T	Tree	27.7	VU							
19	Celastraceae	*Maimboholatra* Colea tetragona DC. Rhodocolea racemosa (Lam.) H.Perrier Colea tetragona DC.	GE 125	M	Shrub	9.2	LC							
No.	Family	Species	Status	Conservation	Exception	Endemicity	Tree/Shrub/Liana	Vulnerability						
-----	----------------------	----------------------------------	--------	--------------	-----------	------------	------------------	---------------						
20	Clusiaceae	*Symphonia fasciculata*	GE 112	Haziny	T	T	Endemic Tree	18.5 VU						
21		*Garcinia sp.*	GE 065	Ravisimasina	M	M Endemic Shrub	6.1 Unknown							
22		*Calophyllum paniculatum*	GE 033	Vintanona	T	T Endemic Tree	3 VU							
23		*Symphonia sp.*	GE 130	Haziny be ravina	T	T Endemic Shrub	1.5							
24	Combretaceae	*Terminalia catappa*	GE 116	Antafana	T	Not endemic Tree	18.5 LC							
25	Connaraceae	*Agelaea pentagyna*	GE 008	Vahimaintina	M	Not endemic Liana	43 Not Assessed							
26	Dilleniaceae	*Dillenia madagascariensis*	GE 016	Vahimaragna	M	Endemic Liana	12.3 Not Assessed							
27	Ebenaceae	*Hibbertia coriacea*	GE 067	Anjavidy vavy	M	Endemic Shrub	3 Not Assessed							
28		*Diospyros filipes*	GE 049	Hazomaintina	T	T Endemic Tree	12.3 VU							
29		*Diospyros sp.*	GE 050	Hazomaintina	T	Endemic Epiphyte	1.5 Unknown							
30	Elaeocarpaceae	*Elaeocarpus alnifolius*	GE 057	Aferonakavy	M	Endemic Shrub	3 LC							
31	Ericaceae	*Erica sp.*	GE 059	Anjavidy lahy	M	Endemic Shrub	40 Unknown							
32		*Vaccinium sp.*	GE 121	Voantsirihitra	E	Endemic Shrub	15.4 Unknown							
33	Euphorbiaceae	*Croton noronhae*	GE 043	Fotsy avadika	M	Endemic Shrub	18.5 Not Assessed							
34	Fabaceae	*(Colebr.)*	GE 073	Hintisina	T	Not endemic Tree	86 NT							
35		*Dalbergia baronii*	GE 047	Hazovola	T	Endemic Tree	77 VU							
No.	Scientific Name	Common Name	Degree of Endemicity	Category	Habitat	Assessment								
-----	-----------------	-------------------	----------------------	----------	---------	------------								
36	*Dialium unifoliolatum* Capuron	Zahana (zana)	M	Endemic	Tree	15.4	NT							
37	*Cynometra capuronii* Du Puy & R.Rabe	Mampay	M	Endemic	Tree	6	EN							
38	*Hymenaea verrucosa* Gaertn.	Mandrofo	T	Not endemic	Tree	6	Not Assessed							
39	*Gentianaceae*	Rangilo	M	Endemic	Herb	3	LC							
40	*Hymenaea verrucosa* Gaertn.	Dindemo	M	Endemic	Tree	1.5	LC							
41	*Psorospermum chiovantifolium* Spach	Harongamapanihi	T	Endemic	Shrub	3	Not Assessed							
42	*Lauraceae*	Tafononana	T	Endemic	Tree	6.1	LC							
43	*Cryptocarya sp.*	Tavolo	T	Endemic	Tree	6.1	Unknown							
44	*Cryptocarya acuminata* Merr.	Tavolomalama	T	Not endemic	Tree	3	Not Assessed							
45	*Liliaceae*	Felana	T	Not endemic	Shrub	1.5	LC							
46	*Medinilla parvifolia* Baker	Raviinasina	M	Endemic	Epiphyte	9.2	Not Assessed							
47	*Medinilla quadranularis* Jum. & H. Perrier	Raviinasina	M	Endemic	Epiphyte	1.5	Not Assessed							
48	*Menispermaceae*	Tsimahamamatzokina	T	Endemic	Tree	6.1	EN							
49	*Menispermaceae*	Andanitrehy	M	Endemic	Liana	9.2	Unknown							
No.	Family	Species	Code	Location	Growth Form	Status	Conservation Status							
-----	------------	--	------	----------	-------------	--------	---------------------							
53	Monimiaceae	Tambourissa religiosa (Tul.) A. DC	GE 114	Ambora	T	Endemic	Shrub 3							
54	Moraceae	Trilepisium sp. Streblus dipinapate (Bureau) C.C. Berg	GE 028	Tsopatika	T	Endemic	Tree 12.3							
55		Maherihele Ficus lutea Vahl	GE 127	Maherihele	T	Endemic	Tree 9.2							
56		Brochoneura acuminata (Lam.) Warb.	GE 062	Amontana	M	Not endemic	Tree 3							
57	Myristicaceae	Moraceae Trilepisium sp. Streblus dipinapate (Bureau) C.C. Berg	GE 030	Rara	M	Endemic	Tree 15.3							
58	Myrsinaceae	Oncostemum botryoides Baker Syzygium bernieri (Bail. ex Drake) Labat & Schatz Campylospermum	GE 088	Hazontoho	T	Endemic	Shrub 6 Not Assessed							
59	Myrtaceae	Streblus dimepate (Bureau) C.C. Berg Ficus lutea Vahl	GE 113	Hompa	T	Endemic	Tree 21.5							
60	Ochnaceae	Ochnaceae obtusifolium (DC.) Tiegh. Olax emirrensis Baker Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 089	Menahihy	M	Endemic	Shrub 9.2 Not Assessed							
61	Olacaceae	Olax emirrensis Baker Noronhia boivinii Dubard	GE 087	Famelondrika	M	Endemic	Tree 1.5							
62	Oleaceae	Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 084	Tsilaitra	M	Endemic	Tree 9.2 NT							
63		Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 131	Tsilaitra beravina	T	Endemic	Tree 1.5 Unknown							
64	Phyllanthaceae	Phyllantha ceae Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 009	Roihavitra	M	Endemic	Tree 15.3							
65		Lohendry Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 039	Lohendry	T	Endemic	Tree 6.1 EN							
66		Voapaka Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 120	Voapaka	M,T,E	Endemic	Tree 98.5 LC							
67		Beando Noronhia boivinii Dubard Noronhia sp. Bridelia tulasierna Baill. Cleistanthus capuronii Leandri Uapaca thouarsi Baill. Wielandia mimosoides (Baill.) Petra	GE 027	Beando	T	Endemic	Shrub 3							
No.	Family	Scientific Name	GenBank Accession	Country	Kingdom	Phylum	Class	Order	Family	Genus	Species	Endemism	Threat Level	Notes
-----	--------------	---	-------------------	---------	---------	----------	----------	-----------	------------	------------	--------------	----------	--------------	----------------
68	Physenaceae	*Physena madagascariensis* Steud.	GE 094	M	Endemic	Shrub	9.2	LC						
69	Physenaceae	*Physena madagascariensis* Steud.	GE 095	M	Endemic	Shrub	6.1	LC						
70	Physenaceae	*Physena madagascariensis* Steud.	GE 054	M	Endemic	Shrub	15.3	LC						
71	Pittosporaceae	*Pittosporum ochrosifolium* Bojer	GE 026	M	Endemic	Tree	1.5	LC						
72	Putranjivaceae	*Putranjivia madagascariensis* (Lam.) Humbert & Leandri	GE 080	M	Endemic	Tree	15.3	LC						
73	Putranjivaceae	*Putranjivia madagascariensis* (Lam.) Humbert & Leandri	GE 128	T	Endemic	Tree	6.1	LC						
74	Pittosporaceae	*Pittosporum ochrosifolium* Bojer	GE 103	M	Endemic	Shrub	6.1	Not Assessed						
75	Rhamnaceae	*Rhamnus lowelii* (H.Perrier) Capuron	GE 101	T	Endemic	Shrub	6.1	LC						
76	Rhamnaceae	*Rhamnus lowelii* (H.Perrier) Capuron	GE 029	M	Endemic	Tree	3	CR						
77	Rhamnaceae	*Rhamnus lowelii* (H.Perrier) Capuron	GE 100	M	Endemic	Tree	3	LC						
78	Rhamnaceae	*Rhamnus lowelii* (H.Perrier) Capuron	GE 072	T	Endemic	Tree	3	NT						
	Taxonomic Family	Scientific Name	Code	Common Name	Life Form	IUCN Status	Exploitation	Note						
---	------------------	-----------------	------	-------------	------------	-------------	--------------	------						
79	**Gaertnera** sp.	*Homalium erianthum* (Tul.) Baill.	**GE 064**	Sadôdôka	M	Endemic	Tree	3	Unknown					
80	**Salicaceae**	*Homalium erianthum* (Tul.) Baill.	**GE 068**	Hazomb-bato	T	Endemic	Tree	9.2	VU					
81	**Sapindaceae**	*Fanenton’a koholahy* Clos	**GE 077**	Unknown	M	Endemic	Shrub	3	LC					
82	**Sapindaceae**	*Hazomana njara* Baill.	**GE 097**	Unknown	M	Endemic	Shrub	6.1	Not Assessed					
83	**Salicaceae**	*Elatrangidina*	**GE 063**	Unknown	T	Endemic	Tree	3	NT					
84	**Sapotaceae**	*Voaranto* Miq.	**GE 083**	Unknown	E	Not endemic	Tree	61.5	Not Assessed					
85	**Sapotaceae**	*Nanto*	**GE 061**	Unknown	O	Endemic	Tree	46	Not Assessed					
86	**Sapotaceae**	*Nanto vasihy* A.DC.	**GE 074**	Unknown	T	Endemic	Tree	6.1	Not Assessed					
87	**Sapotaceae**	*Famelona* Baehni	**GE 038**	Unknown	M	Not endemic	Tree	3	LC					
88	**Sapotaceae**	*Amanin’ao mbilahy* G.E.Schatz & Lowry	**GE 075**	Unknown	T	Endemic	Tree	21.5	NT					
89	**Sapotaceae**	*Tsariagnany* Thouars	**GE 107**	Unknown	T	Endemic	Tree	9.2	VU					
90	**Sapotaceae**	*Helana* Thouars	**GE 104**	Unknown	T	Endemic	Tree	6	VU					
91	**Sapotaceae**	*Schizolaena sp.*	**GE 108**	Unknown	T	Endemic	Tree	6	Unknown					
92	**Simaroubaeae**	*Quassia indica* (Gaertn.) Noot.	**GE 129**	Unknown	M	Not endemic	Tree	1.5	LC					

Note: LC-Least Concern; VU-Vulnerable; NT-Near Threatened; CR-Critically Endangered; EN-Endangered.

3.3. Growth Form of the Plants

Trees (56 taxa) and shrubs (25 taxa) were cited by the participants to be the most exploited (Figure 3) while climbers (seven taxa), epiphytes (three taxa), and herbs (one
four species, such as *Uapaca thouarsii* Baill., *Intsia bijuga* Kuntze, *Dalbergia baronii* Baker, and *Mimusops coriacea* Miq., had their use index greater than 60% because they were highly valued by the local people as timber. Moreover, *U. thouarsii* was used as medicinal plant. Few forest species were edible and fruits were the major part that were eaten by the local people. Furthermore, these species were also eaten by lemurs and birds.

![Figure 3. Distribution of taxa for each lifeform.](image)

3.4. Medicinal Plants

Among the useful forest plants, 43 taxa were medicinal having therapeutical values. However, among the 43 taxa, three taxa were also used as timber as well as food, while 37 of them were endemic to Madagascar (Table 2). The most frequent diseases that are treated with plants were diarrhea, stomachache, oral, dental, genital infections, and non-malaria fever (Table 3). In the case of malaria, all of the interviewees affirmed that they consult a doctor. In particular, leaves were the most frequently used parts (68%) that were used in the cure of most of the diseases as shown in the Figure 4. The other parts or components of the plant such as stem, root, bark, and latex or a mixture of two or more of them were also used in low proportions.
Figure 4. Graphic representation of plant parts frequently used for treatment.

Table 3. Method of use of the forest medicinal plants.

Family	Taxon	Healing Properties	Part Used	Method of Preparation
Anisophylleaceae	*Anisophyllea fallax* Scott-Elliot	Anti-fever	Leaf	Decoction
Annonaceae	*Xylopia buxifolia* Baill.	Antidiarrheal, Anti-fatigue	Leaf	Decoction
Apocynaceae	*Tabernaemontana retusa* (Lam.) Pichon*	Against toothache	Latex	Poultice
Asclepiadaceae	*Secamone obovata* Decne.	Anti-yellow fever	Leafy branch	Decoction
Bignoniaceae	*Colea tetragona* DC.	Anti-genital infections	Leaf	Decoction, infusion
	Phyllarthron bojeranum DC.	Anti-stomach ache, Anti-fatigue	Leaf	Decoction
Clusiaceae	*Garcinia sp.*	Anti-prolonged cough for kid	Leaf	Decoction
Dilleniaceae	*Hibertia coriacea* (Pers.) Baill.	Anti-fever	Leafy branch	Decoction
	Tetracera madagascariensis Willd. ex Schlldl.	Child anti-oral candidiasis. Anti-asthma	Leaf	Poultice, Decoction
Elaeocarpaceae	*Elaecarpus alnifolius* Baker	Anti-flu	Leaf	Decoction
Ericaceae	*Erica sp.*	Anti-fever	Leafy branch	Decoction
Euphorbiaceae	*Croton noronhae* Baill.	Antidiarrheal, Anti-fatigue	Leaf	Decoction
Fabaceae	*Cynometra capuronii* Du Puy & R.Ravey.	Anti-yellow fever	Leaf	Decoction
	Dialium unifoliolatum Capuron	Anti-stomach ache	Leaf	Decoction
Gentianaceae	*Antholeista madagascariensis* Baker	Antidiarrheal	Leaf	Decoction
Family	Species	Part(s)	Uses	Preparation
---------------------	--	----------------------------------	---	----------------------
Hypericaceae	*Tachiadenus carinatus* (Desr.) Griseb. *Pisorospermum chionanthifolium* Spach *Medinilla parvifolia* Baker *Medinilla quadranularis* Jum. & H. Perrier	Aerial part, Root, Leaf, stem, root	Anti-fever, Root: deworming, Anti-prolonged cough for adults, Anti-prolonged cough for adults, Anti-fatigue against hernia face mask (masonjoany), Invigorating; anti-stomach ache against hernia	Decoction, Leaf
Melastomataceae	*Burasaia madagascariensis* DC.	Bark	Antidiarrheal	Decoction, Poultice
Menispermaceae	*Tinospora sp.*	Stem	Anti-fatigue; anti-stomach ache against hernia	Decoction
Myristicaceae	*Brochoneura acuminata* (Lam.) Warb. *Campylospermum obtusifolium* (DC.) Tiegh.	Bark, latex	Child anti-oral candidiasis; anti-stomach ache	Poultice
Ochnaceae	*Campylospermum obtusifolium* (DC.) Tiegh.	Bark	Teeth care	Poultice
Olacaceae	*Olax emirnensis* Baker	Bark	Limitation of severe bleeding during delivery; anti-flu Anti-fatigue; against swelling of the feet	Decoction
	Norontia boivinii Dubard	Leaf	Anti-yellow fever, anti-oedema, Dietetic Aphrodisiac Antidote emetic; anti-stomach ache	Decoction
Phyllanthaceae	*Bridelia tulasneana* Baill.	Leaf, stem	Against toothache	Decoction
Physenaceae	*Physena madagascariensis* Steud.	Leaf	Antidiarrheal	Decoction
Pittosporaceae	*Pittosporum ochrosifolium* Bojer *Drypetes madagascariensis* (Lam.) Humbert & Leandri *Bathiorhamnus louvelii* (H.Perrier) Capuron *Macarisa pyramidata* Thouars	Leaf	Against eye infection	Poultice, Infusion
Putranjivaceae	*Saldinia axillaris* (Lam. ex Poir.) Bremek.	Leaf	Revitalizing	Decoction
Rhamnaceae	*Breonia madagascariensis* A.Rich. ex DC.	Root	Anti-fever; anti-diarrheal.	Decoction
Rhizophoraceae	*Pyrostria major* (A.Rich. ex DC.) Cavaco *Saldinia axillaris* (Lam. ex Poir.) Bremek.	Bark, Leaf	Against toothache, Used for abortion	Decoction, Infusion
Rubiaceae	*Breonia madagascariensis* A.Rich. ex DC.	Latex	Anti-stomach ache	Poultice
3.5. Phytochemical Screening for Medicinal Plants

Twenty taxa out of the 43 medicinal plants were selected for the phytochemical analysis due to the cost and time; and also some of the plant were rained on while in the field and they got damp being destroyed by fungal attack. Leaves of 20 taxa were used for the phytochemical analysis (Tables 4 and 5). The result revealed that polyphenols, deoxysugar, steroids, and unsaturated sterols were the most frequently present in the analyzed medicinal plants. In contrast, alkaloids, iridoids, and flavonoids were only present in a few species.

Species	Alkaloid	Polyphenols	Catechic Tannins	Gallotannins	Saponin	Iridoid	Deoxy-Sugar
Brexia madagascariensis (Lam.)	-	±	+	-	+	±	-
Thouars ex Ker Gawl.							
Bridelia tulasneana Baill.		-	+	+	+	-	+
Brochoneura acuminata (Lam.)		-	-	+	+	-	+
(Lam.) Warb. Burasaia							
madagascariensis is DC.							
Cynometra capuronii Du Puy & R.Rabev	+	+	+	-	-		+
Dialium unifoliolatum Capuron		-	-	-	-		-
Drypetes madagascariensis is (Lam.)							
Humbert & Leandri Elaeocarpus							
alnifolius Baker Ludia	-	+	-	-	-		-
Ludia madagascariensis Clos	-	+	+	+	-		+

Table 4. Secondary metabolites present in the leaf samples. (+: Present; -: Absent; ±: Trace).
Species	Anthraquinone	Flavonoid	Leucoanthocyanins	Steroid(s)	Triterpene	Unsaturated Sterols
Brexia madagascariensis (Lam.) Thouars ex Ker Gawl.	-	-	+	+	+	+
Bridelia tulasneana Baill.	-	-	-	+	+	+
Brochoneura acuminata (Lam.) Warb.	+	-	+	-	+	+
Burasaia madagascariensis DC.	-	-	-	+	+	+
Cynometra capuronii Du Puy & R. Rabeve.	±	-	+	-	-	-
Dialium unifoliolatum Capuron Driedges madagascariensis (Lam.) Humbert & Leandri	-	+	-	+	+	+
Elaeocarpus alnifolius Baker	+	-	+	-	-	+
Ludia madagascariensis Clos	+	-	-	+	-	-
Macarisia pyramidata Thouars	+	-	+	+	+	+

Table 5. Secondary metabolites present in the leaf samples. (+: Present; -: Absent; ±: Trace) (Continuation of Table 4).
3.6. Conservation (IUCN) Status

The conservation status of most of the taxa (41%) collected from Tampolo forest were of least concern (Figure 5). However, they were recorded to show a decreasing trend with few having a stable population. This was followed by vulnerable species (VU), and near threatened (NT), which recorded 11% and 8%, respectively. The endangered taxa were three, which included *Cynometra capuronii* Du Puy & R.Rabe, *Memecylon thouarsianum* Naudin, and *Cleistanthus capuronii* Leandri, whereas one taxa, *Breonia madagascariensis* A.Rich. ex DC. was recorded which is critically endangered (CR). A total of 22% of the species were not assessed for their conservation status, and 14% of the taxa we could not identify to the species level, hence we could not assess their conservation status, and thus recorded them under unknown section.

![Figure 5](image.png)

Figure 5. The conservation status of the taxa collected from Tampolo forest basing on the IUCN database: LC- Least Concern; VU- Vulnerable; NT- Near Threatened; CR- Critically Endangered; EN- Endangered.
The major threats to the taxa recorded were biological resource use, agriculture and aquaculture, and natural system modifications (Figure 6). Human intrusions and disturbances and invasive and other problematic species, genes, and diseases were recorded to be of the least threat to the taxa.

Figure 6. The most recorded threats from the IUCN database of the plant taxa.

4. Discussion

All the informants who participated in this study were over 25 years old, mostly dwelling in Tampolo which is a rural area. Rural communities have been known to utilize the natural resources to satisfy their daily needs [56]. This is due to the low income, lack of alternative sources of income, and lack of modern healthcare facilities within the regions [57,58]. It was observed in the survey that their knowledge of useful plants, mostly medicinal plants, was passed down from their ancestors through oral traditions. Preliminary engagements have shown that younger people are ignorant of traditional knowledge; in contrast, the elderly interviewees depend mostly or entirely on natural forest resources.

Despite its small size of about 1/6500 (0.015%) of the total cover the Malagasy Rainforests, the flora of Tampolo forest is highly diverse having 360 plant taxa [30], which represents 2.6% of the flora of Madagascar [3]. The assumption that local communities use forest plant species as timber, firewood and especially for medicinal purpose was demonstrated in this work. This study demonstrated most of the plant taxa found in this region were useful in the treatment of various illnesses. Hence, the use of traditional medicine is an important part of the healthcare of the Tampolo Community. Their dependence on natural resources for their livelihood and basic healthcare were due to their economic state, lack of health facilities in the remote regions of the country, and their socio-cultural situation [59–61]. These species are utilized by the local adjacent communities to fulfill their daily livelihood needs [9,12,15,62,63].

Our findings were similar with other botanical surveys that showed the importance of forest species to the local communities [13]. The conservation status of most of the plant taxa were of least concern, however, from the IUCN database, they were shown to show a decreasing trend. Hence, protection of these forests where they occur is critical, in addition to awareness to the researchers and policy-makers and also the local communities.
Non-severe health problems, such as fever and digestive disorders, were the most commonly treated with medicinal plants. Similarity in the mode of use and the recorded healing properties of several species were observed in different areas across Madagascar [64]. For example, leaves of *Phyllarthron bojeranum* DC (Bignoniaceae) were also used as treatment of fatigue in Analangazaha Farafangana [26,65], in Ambalabe Vatomandry [21], in Antananarivo [25,66] and in Tampolo. This is also the case of *Anthocleista madagascariensis* Baker which was an antidiarrheal [25]. Phytochemical analysis revealed the presence of active secondary metabolites which have been linked to the treatment of various diseases [67] in the 20 selected forest taxa. However, more studies need to be undertaken to test their efficacy. The healing properties of the medicinal plants are, in part, due to the presence of the secondary metabolites such as alkaloids, saponins, flavonoids, tannins, glycosides, anthraquinones, steroids, and terpenoids [68]. Phytochemical screening was used to detect the presence of them following the procedure of Cordell [41], Hemingway and Karchesky [42], and Bruneton [40]. Some secondary metabolites, such as phenols, tannins, flavonoids, and quinones, show antidiarrheal effects [69–72]. Compounds such as alkaloids, phenols, tannins, iridoids, flavonoids, steroids, and terpenes have been shown to have anti-inflammatory, antioxidant, antiseptic properties [69–74]. Based on these previous literatures, their presence can justify the specified therapeutic properties of the plant.

In this study, *Saldinia axillaris* (Lam. ex Poir.) Bremek., indicated as an antidiarrheal, contains polyphenols, and *Tetracera madagascariensis* Willd. ex Schltdl., used to treat oral candidiasis, contains polyphenols and tannins which are antiseptics. However, further analysis should be done to prove an indepth understanding into their efficacy.

Medicinal plant gathering by the local people is generally non-destructive because the quantity of the collected leaves is relatively small and only used for daily dose and family use. The same holds true for the need of firewood because only dead wood can be collected and that is under the control of the protected area managers. Moreover, although most of the population did not go past elementary school in terms of their education level, awareness campaigns have been implemented by the ESSA-Forêt (Ecole Supérieure des Sciences Agronomiques-Forêt) and their partners, allowing the raising of awareness of these people of the ecological, environmental, and socio-economic importance of the biodiversity that Tampolo forest shelters and that their participation in conservation acts have been noticed. However, due to the increasing demand for wood products, exploitation of the forest species focused more on the timber harvesting rather than the medicinal uses or the edibles, essentially to feed the markets of certain cities, such as Fenoarivo, Atsinanana, and Ampasina Maningory, promoting the non-selective and illegal logging which worsen the pressures weighing heavily on the protected area. In addition, the lack of written documents from the herbalists and the traditional healers [20], and the lack of interest from young generation to the tradition, has led to the decrease of traditional medicine and medicinal plant knowledge. This loss of knowledge was reported by Ravelonanosy in 2018 [63], while only 53 medicinal species were documented instead of 59 in 2012.

5. Conclusions

This survey generally revealed that most of the plant taxa from the Tampolo forest were mostly utilized for medicinal purposes and for timber by the adjacent local community. A total of 84.8% of these useful plant taxa are endemic to the Madagascar region. This documentation of ethnobotanical knowledge provides a catalog of useful plants of the Tampolo, and will serve as a physical record of their culture for the education of future generations. It will also strengthen their culture by recognizing their traditional knowledge on medicinal plants and providing scientific basis for it. However, the overexploitation may disturb the ecological balance of the area which subsequently can lead to the disappearance of these species. Hence, further efforts on environmental education still should be provided because Tampolo is one of the last remnant littoral forests of East Madagascar, thus, this could help conserve this area/forest. Necessary measures should
also be taken to protect these most exploited species to avoid their future extinction. The current finding can be used as a reference point for various studies within the forest to help reconcile the local livelihood needs with forest conservation. Based on the findings, we recommend further studies regarding ecology, conservation, and chemistry of the remaining species which constitute the flora of the littoral forest of Tampolo.

Author Contributions: G.E.O. conducted the interviews and completed the data analysis. C.S. and M.B.R. offered technical support in the field, C.S., V.H.J. and G.H. supervised the work, and gave constructive comments. V.O.W., E.M.M., J.K.M. performed and reviewed the analyzed data. B.M.R.R. drew the map. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Association de Valorisation de l’Ethnopharmacologie en Régions Tropicales et Méditerranéennes (AVERTEM), University of Lilles, France, and grants from National Natural Science Foundation of China (31970211) and Sino-Africa Joint Research Center, CAS, China (SAJC202101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: The authors would like to thank the Association de Valorisation de l’Ethnopharmacologie en Régions Tropicales et Méditerranéennes (AVERTEM) for the financial and technical support of this study and the Department of Plant Biology and Ecology Antanarivo to allow them to carry out this research. We also sincerely thank Ministère de l’Environnement de du Développement Durable for issuance of the permits for the research. Finally, they would like to thank all of the people who contributed to the elaboration of this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appendix A

Questionnaire for conducting the ethnobotanical survey on useful plants of the Tampolo forest.

(A) Information on the person to be investigated
- Name:
- Age:
- Gender:
- Profession:

(B) Questionnaire
- Do you use plants for healing?
- If yes, do you know of plants to treat such a disease? (For example, diarrhea).
- How do you use this plant? and how much and what part?
- And for other diseases, which plants do you use? and how?
- How much are you taking and for how long?
- How do you recognize that such a plant has medicinal properties?
- Where do you find these plants? Are you planting them or picking them somewhere? If this is the second case, where?
- What are some the medicinal forest species?
- What other species do you collect from the forest? What parts and what quantities?
- Is it for your own use that you collect these plants or for business purposes?
- What are the criteria for recognizing each plant? Does his name have anything to do with this criterion?
- Have you thought of ways to prevent these plants from going extinct?
References

1. MEEA. Ecosystems and Human Well-Being. Report of the Conceptual Framework Working Group of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2003; p. 235.

2. Njiva, M. Les Problèmes Économiques Liés à L’environnement; Faculty DEGS, University of Antananarivo: Antananarivo, Madagascar, 2012; p. 42.

3. Callmander, M.W.; Phillipson, P.B.; Schatz, G.E.; Andriambololonera, S.; Rabarimanarivo, M.; Rakotonirina, N.; Raharimampionona, J.; Chatelain, C.; Gautier, L.; Lowry, P.P. The endemic and non-endemic vascular flora of Madagascar updated. Plant Ecol. Evol. 2011, 144, 121–125.

4. Tefera, N.B.; Kim, Y.-D. Ethnobotanical study of medicinal plants in the Hawassa Zuria District, Sidama zone, Southern Ethiopia. J. Ethnobiol. Ethnomed. 2019, 15, 21.

5. MEFT, USAID & CI (Conservation International). Evolution de la Couverture de Forêts Naturelles à Madagascar 1990–2000–2005; Rapport Technique: Antananarivo, Madagascar, 2009; p. 61.

6. Moat, J.; Smith, S. Atlas of Vegetation of Madagascar; Royal Botanic Gardens, Kew: London, UK, 2007.

7. Schatz, G. Generic Tree Flora of Madagascar; The board of trustees, Royal Botanic Gardens, Kew: London, UK, 2001; p. 503.

8. Rakotomalala, F. Estimation de la déforestation des forêts humides à Madagascar utilisant une classification multidate d’images Landsat entre 2005, 2010 et 2013. Rev. Fr. Photogramm. Télédet. 2015, 1, 11–23. (In French)

9. Rarivoson, C. Analyse Sylvoïcde d’Une Forêt Littorale Exploitée à Tampolo (Fenerive Est). Mémoire de fin d’études. Ph.D. Thesis, ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 1988; p. 69. (In French)

10. Andriamanarivo, L. Comportement de l’Occasion sous Divers Régimes Sylvoïcdes à Tampolo (Fenoarivo Antsinananana); ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 1989; p. 87. (In French)

11. Rajoelison, L.G. Etude de la Structure et de la Dynamique d’une Forêt Littorale Exploitée en Vue de Son Aménagement Sylvoïc; (Exemple de la Forêt de Tampolo Fenoarivo Antsinananana). Ph.D. Thesis, Sciences Agronomiques Option Eaux et Forêts, Université d’Antananarivo, Madagascar, 1995; p. 181. (In French)

12. Razafimanonjy, N.N. Inventaires des Ressources Forestières de la Station Forestière de Tampolo en vue de son Exploitation et Comparaison avec l’analyse sylvoïcde. Mémoire de fin d’études. Ph.D. Thesis, ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 1995; p. 70. (In French)

13. Rabeson, H.D. Proposition de Stratégie de Conservation de l’Intsia bijuga (Leguminoseae) et de l’Uapaca thouarsi (Euphorbiaceae) de la Forêt Classée de Tampolo avec la Participation Villageoise. Mémoire de fin d’Étude. Ph.D. Thesis, ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 2001; p. 105. (In French)

14. Ratsirarson, J.; Ranaivony, J.; Rafilipoarijaona, H. Schéma D’aménagement Simplifiée de la Forêt Littorale de Tampolo en vue de sa Gestion Durable dans le Cadre du Système d’Aires Protégées de Madagascar (SAPM); ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 2006; p. 101. (In French)

15. Andriamiharisoa, J.A. Analyse de la Filière de Quelques Produits non Ligneux d’Intérêt Social et Économique Dans la Zone Périphérique de la Station Forestière de Tampolo: Tels que le Dypsis, le Pandanus, le Ravenea et les Plantes Médicinales. Mémoire de fin d’étude. Doctoral Dissertation, Université d’Antananarivo, Madagascar, 1998; p. 78. (In French)

16. Rafanomezantsoa, I.A. Contribution au Développement de Méthode D’évaluation de L’utilisation de Produits non Ligneux: Expérimentation sur Dypsis Arenarum et Ravenea Sabimarianensis dans la Forêt Classée de Tampolo. Mémoire de fin d’étude. Doctoral Dissertation, ESSA Département Eaux et Forêts, Université d’Antananarivo, Madagascar, 2001; p. 124. (In French)

17. Randriarivelosojosia, M.; Rasidimanana, V.T.; Rabarison, H.; Cheplologi, P.K.; Ratsimbason, M.; Mulholland, D.A.; Maucle, P. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malaria J. 2003, 2, 25.

18. Boucher, N. La Transmission Intergénérationnelle des Savoirs dans la Communauté Inne de Mashteuiatsh: Les Savoir-Faire et les Savoir-Être au Cœur des Relations Entre les Pekuakamiulnuatsh. Mémoire Pour l’Obtention du Grade de Maitre ès Arts; Faculté des Sciences Sociales Université Laval Québec: Québec, QC, Canada, 2005; p. 172. Available online: http://hdl.handle.net/20.500.11794/18019 (accessed on 11 April 2018). (In French)

19. Maruca, G.; Spampinato, G.; Turiano, D.; Legghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). Gen. Resour. Crop Evolut. 2019, 66, 1027–1040.

20. Ogbo, O.O.; Gbolade, A.A.; Ajayieoba, E.O. Ethnobotanical survey of plants used in treatment of inflammatory diseases in Ogun State of Nigeria. Eur. J. Sci. Res. 2010, 43, 183–190.

21. Rabearivony, A.D.; Kuhlman, A.R.; Razafarison, Z.R.; Raharimalala, F.; Rakotoarivony, F.; Randrianarivony, T.; Rakotoarivelona, N.; Randrianasolo, A.; Bussmann, R.W. Ethnobotanical study of the medicinal plants known by men in Ambalabe, Madagascar. Ethnobot. Res. Appl. 2015, 14, 123–138.

22. Hiben, M.G.; Louise, J.; de Haan, L.H.; Rietjens, I.M. The endemic and non-endemic vascular flora of Madagascar updated. Plant Ecol. Evol. 2011, 144, 121–125.

23. Mattalia, G.; Sökand, R.; Corvo, P.; Pieron, A. Blended divergences: Local food and medicinal plant uses among Arbëreshë, Occitans, and autochthonous Calabrians living in Calabria, Southern Italy. Int. J. Deal. Asp. Plant Biol. 2019, 154, 615–626.

24. Singh, B.; Thakur, S.; Tashi, N.; Singh, B.; Dutt, H.C. Ethnobotanical plants used for gastrointestinal ailments by the inhabitants of Kishthwar plateau in Northwestern Himalaya, India. Indian J. Tradit. Knowl. 2020, 19, 288–298.
25. Randriamiharisoa, M.N.; Kuhlman, A.R.; Jeannoda, V.; Rabarison, H.; Rakotoariveloa, N.; Randrianyarivony, T.; Rakotoarivony, F.; Randrianasolo, A.; Bussmann, R.W. Medicinal plants sold in the markets of Antananarivo, Madagascar. *J. Ethnobiol. Ethnomed.* 2015, 11, 1–3.

26. Razafindraibe, M.; Kuhlman, A.R.; Rabarison, H.; Rakotoarimanana, V.; Rajeriarison, C.; Rakotoariveloa, N.; Randrianyarivony, T.; Rakotoarivony, F.; Ludovic, R.; Randrianasolo, A.; et al. Medicinal plants used by women from Agnalazaha littoral forest (Southeastern Madagascar). *J. Ethnobiol. Ethnomed.* 2013, 9, 1–3.

27. ESSA-Forêt, T. Donées climatologiques de la Station forestière de Tampolo, Fenoarivo Atsinanana, Ananajirofo, Madagascar; 2001. Available online: https://en.climate-data.org/africa/madagascar/fenoarivo-atsinanana/fenoarivo-atsinanana-48979/ (accessed on 30 April 2021).

28. Humbert, H.; Darne, G.C. *Notice de la Carte Madagascar; Notices—Institut de la Carte Internationale Du Tapis Vegetal*; Institut français de Pondichéry: Pondichéry, France, 1965; p. 162. (In French)

29. Du Puy, D.J.; Moat, J. Vegetation mapping and classification in Madagascar (using GIS): Implications and recommendations for the conservation of biodiversity. In *Chorology, Taxonomy and Ecology of the Floras of Africa and Madagascar*; Royal Botanic Gardens Kew: Richmond, UK, 1998; pp. 97–117.

30. Ratsirarson, J.; Goodman, S. Inventaire biologique de la forêt littorale de Tampolo (Fenoarivo Atsinanana). Série Sciences Biologiques. *Rech. Dévelop.* 1998, 14, 107–131. (In French)

31. Martin, G.J. *Ethnobotany—A People and Plants. Conservation Manual*; Parthenon Publishing Group: Lancashire, UK, 1995; pp. 13–21.

32. ISE. International Society Ethnobiology Code of Ethics (with 2008 Additions). 2006. Available online: http://ethnobiology.net/code-of-ethics (accessed on 29 April 2021).

33. Greiber, T.; Moreno, S.P.; Ahren, M.; Carrasco, J.N.; Kamau, E.C.; Medaglia, J.C.; Oliva, M.J.; Perron-Welch, F.; Ali, N.; Williams, C. An Explanatory Guide to the Nagoya Protocol on Access and Benefit-Sharing; IUCN: Gland, Switzerland, 2012.

34. Lance, K.; Kremen, C.; Raymond, L. Extraction of Forest Products: Quantitative of a Park and Buffer Zone and Long-Term Monitoring. *Antananarivo Report Park Delimitation Unit WCS/PCDIM 1994*, 549–563. Available online: https://scholar.google.com/scholar_lookup?title=Extraction+of+forest+Products:+quantitative+of+a+park+and+buffer+zone+and+long+term+monitoring&author=K+Lance&author=C+Kremen&author=I+Raymond&publication_year=1994& (accessed on 30 April 2021).

35. Thiéry, B. *Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff*; New York Botanical Garden’s Virtual Herbarium: Bronx, NY, USA, 2016. Available online: http://sweetgum.nybg.org/ih (accessed on 29 April 2020).

36. IPNI. The International Plant Names Index. 2019. Available online: http://www.ipni.org/ (accessed on 27 December 2020).

37. POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2019. Available online: http://www.plantsoftheworldonline.org (accessed on 26 January 2021).

38. The Plant List. Version 1.1. 2013. Available online: http://www.theplantlist.org/ (accessed on 20 February 2021).

39. Tropicos. Catalogue of the Vascular Plants of Madagascar. 2019. Available online: http://www.tropicos.org/Project/Madagascar (accessed on 29 April 2021).

40. Bruneton, J. *Pharmacognosie: Phytochimie Plantes Médicinales; Technique et Documentation Lavoisier*; Paris, France, 1993; p. 915. (In French)

41. Cordell, G.A. *Introduction to Alkaloids: A Biogenetic Approach*; John Wiley & Sons: Hoboken, NJ, USA, 1981.

42. Hemingway, R.W.; Karchesy, J.J. *Chemistry and Significance of Condensed Tannins*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 532.

43. Devi Priya, M.; Siril, E. Pharmacognostic studies on Indian madder (*Rubia cordifolia L.*). *J. Pharmacogn. Phytochem.* 2013, 1, 112–119.

44. Xu, Y.L.; Tang, L.Y.; Zhou, X.D.; Zhou, G.H.; Wang, Z.J. Five new anthraquinones from the seed of Cassia obtusifolia. *Arch. Pharmacal. Res.* 2015, 38, 1054–1058.

45. Randrianyarivo, H.R.; Razafindrakoto, A.R.; Ratsimanohatra, H.C.; Randriampampanina, L.J.; Rajemiarimoelisoa, C.F.; Ramamonjisoa, L.; Ramanitrahasimbola, D.; Rakoto, D.A.; Jeannoda, V.L. Toxic effects of seed methanolic extracts of endemic Albizia species (Fabaceae) from Madagascar on animals. *J. Life Sci.* 2014, 8, no. 8. Available online: https://www academy.edu/download/4656866/Journal_of_Life_Sciences_2014-8.pdf&page=48 (accessed on 29 April 2021).

46. Fong, H.H.; Tin-Wa, M.; Farnsworth, N.R. *Phytochemical Screening Methods*; Department of Pharmacognosy and Pharmacology, College of Pharmacy, University of Illinois: Champaign, IL, USA, 1977.

47. Xiong, Q.; Wilson, W.K.; Pang, J. The Liebermann-Burchard reaction: Sulfonation, desaturation, and rearrangement of cholesterol in acid. *Lipids 2007*, 42, 87–96.

48. Myant, N.B. *The Biology of Cholesterol and Related Steroids*; Butterworth-Heinemann: Oxford, UK, 2014.

49. Salkowski, H. Über die Chrysannisäure. *Justus Liebigs Ann. Chem.* 1872, 163, 1–64. (In German)

50. Rohyani, S.I.; Aryanti, E.; Suripto, S. Phytochemical content of some of local plant species frequently used as raw materials for traditional medicine in Lombok Island. *Proc. Semin. Nas. Masy. Biodiversitas Indonesia*. 2015, 1, 388–391, doi:10.13057/psnmbi/m010237.

51. Randriampionona, H.R.; Aimée, C.; Rasolohery, V.E.; Bodo, B.; Marie, R. Flavonoid and triterpenes from the leaves of Senecio gossypinus Baker from Madagascar. *J. Pharmacogn. Phytochem.* 2020, 9, 1279–1282.
