EQUIVARIANT EMBEDDING OF METRIZABLE G-SPACES IN LINEAR G-SPACES

AASA FERAGEN

(Communicated by Paul Goerss)

Abstract. Given a Lie group G we study the class M_G of proper metrizable G-spaces with metrizable orbit spaces, and show that any G-space $X \in M_G$ admits a closed G-embedding into a convex G-subset C of some locally convex linear G-space, such that X has some G-neighborhood in C which belongs to the class M_G. As a corollary we see that any G-ANR for M_G is a G-ANE for M_G.

1. Introduction

In this paper we study spaces in the class M_G of proper metrizable G-spaces with metrizable orbit spaces, where G is a Lie group. In the classical theory of retracts the Wojdyslawski embedding theorem (see [Hu, Chapter III, Theorem 2.1]) ensures that any metrizable space can be embedded as a closed subset of a convex subspace of some Banach space.

In the equivariant case, S. Antonyan has proved that for any topological group G, any G-space X with a G-invariant metric admits a G-embedding as a closed G-subset of a convex G-subspace C of some Banach G-space B with a G-invariant norm [An1 Proposition 8 and Theorem 1]. However, the motivation for our study lies in the theory of extensors and retracts for the class M_G, and hence we would like to know that B belongs to M_G, or at least that a neighborhood of the image of X in C does.

It was shown by E. Elfving [E1 Theorem 3.11] that for a linear Lie group G, any Palais proper metrizable G-space X which is locally compact, separable and finite-dimensional, and which has finitely many orbit types, admits a closed G-embedding in a linear G-space such that G acts Palais properly on a G-neighborhood of the image. In [E2] the linearity assumption on the group G is dropped and the assumptions on the space X weakened; see Theorem 5.4.

Here we will prove the following theorem:

Theorem 5.1. Let G be a Lie group and let $X \in M_G$. Then there exists a G-embedding $e : X \to L$ where L is a locally convex linear G-space such that $e(X)$ is a closed subset of some G-invariant convex subset C of L and $e(X)$ has some...
G-neighborhood V in C such that $V \in \mathcal{M}_G$.

Using Theorem 6.1, we show that the classes $\mathcal{M}_G \cap \text{G-ANE-M}_G$ and G-ANR-M_G are the same.

2. Preliminaries

Throughout the paper G will denote an arbitrary Lie group unless otherwise stated, where Lie groups are defined to be Hausdorff and second countable.

A G-space is a Hausdorff topological space X with a continuous action of the group G, namely a continuous map $\Phi: G \times X \to X$ such that $\Phi(e, x) = x$ and $\Phi(g_1, \Phi(g_2, x)) = \Phi(g_1g_2, x)$ for all $g_1, g_2 \in G$ and all $x \in X$, where $e \in G$ is the unit element. We usually denote $\Phi(g, x)$ by gx.

Let X be a G-space. Given any set $S \subset X$ and any subgroup H of G, denote $HS = \{gs \mid g \in H, s \in S\}$. A subset $S \subset X$ is said to be a G-subset if $GS = S$, and a neighborhood which is a G-subset is called a G-neighborhood. Given $x \in X$ we define the isotropy subgroup of G at x as the subgroup $G_x = \{g \in G \mid gx = x\}$.

Suppose X and Y are two G-spaces. A continuous map $f: X \to Y$ is a G-map if $f(gx) = gf(x)$ for every $g \in G$ and every $x \in X$. G-maps which are homeomorphisms, embeddings, retractions, etc., are called G-homeomorphisms, G-embeddings, G-retractions and so on.

A completely regular G-space X is said to be Cartan if every point has a neighborhood V such that the closure of the set $\{g \in G : gV \cap V \neq \emptyset\}$ is compact. The action of G on a completely regular G-space X is proper if for any pair of points $x, y \in X$ there exist neighborhoods V_x, V_y of x and y such that the closure of the set $\{g \in G : gV_x \cap V_y \neq \emptyset\}$ is compact. We say that X is a proper G-space. The action of G on a completely regular G-space X is Palais proper if for any point $x \in X$ there exists a neighborhood V_x such that any point $y \in X$ has a neighborhood V_y for which the closure of $\{g \in G : gV_x \cap V_y \neq \emptyset\}$ is compact. Then we say that X is a Palais proper G-space.

Clearly a Palais proper G-space is proper, and any proper G-space must be a Cartan G-space.

We will denote by \mathcal{M}_G the class of proper metrizable G-spaces X which have a metrizable orbit space X/G. By [An-Ne, Theorem B], for a proper metrizable G-space X, the metrizability of X/G is equivalent to X/G being paracompact, or X admitting a G-invariant metric, where a metric d on a G-space X is said to be G-invariant if $d(gx, gy) = d(x, y)$ for all $x, y \in X$ and all $g \in G$.

Let H be a closed subgroup of G. A subset S of a G-space X is an H-slice if GS is open in X and there exists a G-map $f: GS \to G/H$ such that $S = f^{-1}(eH)$.

The set S is a slice at the point $x \in X$ if $x \in S$ and S is a G_x-slice.

By [Pa2, Theorem 2.3.3] we know that in a Cartan G-space, there exists a slice at every point and the isotropy subgroup of G at any point is compact.

The following lemma describes how a slice at $x \in X$ induces an H-slice for any subgroup H of G which is conjugate to G_x.

Lemma 2.1. Suppose that X is a Cartan G-space and let S be a slice at $x \in X$.

Let H be a subgroup of G which is conjugate to G_x by an element $\bar{g} \in G$; that is, $H = \bar{g}G_x\bar{g}^{-1} = G_{\bar{g}x}$. Then $\bar{g}S$ is a slice at $\bar{g}x$, and in particular $\bar{g}S$ is an H-slice.

Proof. By [Pa2, Proposition 1.1.5] the maps $G/G_x \to Gx$ and $G/G_{\bar{g}x} \to Gx$ given by $gG_x \mapsto gx$ and $gG_{\bar{g}x} \mapsto g\bar{g}x$, respectively, are G-homeomorphisms. Thus there
is a G-homeomorphism $h: G/G_x \to G/G\bar{g}_x$ given by $h: G/G_x \cong G \xrightarrow{\approx} G\bar{g}_x = G\bar{g}_x$. Hence an open refinement by G be a compact subgroup of S be an

Theorem 2.2 ([Pa2 Theorem 2.1.4]). Suppose X is a Cartan G-space and let H be a compact subgroup of G. A subset $S \subset X$ is an H-slice if and only if the following conditions hold:

1. S is closed in GS,
2. $S = HS$,
3. $gS \cap S \neq \emptyset$ implies $g \in H$,
4. GS is open in X,
5. S has a neighborhood V in GS such that the closure of $\{g \in G : gV \cap V \neq \emptyset\}$ is compact.

We say that the open set GS is a tubular neighborhood (of x) if S is an H-slice (a slice at x).

Definition 2.3 (Tubular covering). A tubular covering of a G-space X is a covering of X by tubular neighborhoods.

Lemma 2.4. An open G-subset of a tubular neighborhood is a tubular neighborhood. Hence an open refinement by G-sets of a tubular covering is a tubular covering.

Proof. Suppose H is a closed subgroup of G, let S be an H-slice and let $f: GS \to G/H$ be a corresponding G-map. Let U be an open G-invariant subset of GS. Now $S' = S \cap U$ is an H-slice since $GS' = U$ is open and $f' = f|U: U \to G/H$ is a G-map where $(f')^{-1}(eH) = f^{-1}(eH) \cap U = S \cap U = S'$.

Lemma 2.5. If $\{GS_k\}_{k \in K}$ is a family of pairwise disjoint tubular neighborhoods in X, where S_k is an H-slice for all $k \in K$, then $S = \bigcup_{k \in K} S_k$ is an H-slice.

Proof. Here a corresponding map $f: GS = \bigcup_{k \in K} GS_k \to G/H$ is defined by $f|GS_k = f_k$ where $f_k: GS_k \to G/H$ is a map corresponding to the slice S_k.

Given a closed subgroup H of G and an H-space S, there is an action of H on the product $G \times S$ given by $h(g, s) = (gh^{-1}, hs)$. We denote by $G \times H S$ the quotient space $(G \times S)/H$, which is called the twisted product of G and S with respect to H. There is an action of G on $G \times_H S$ defined by the formula $\bar{g}[g, s] = [\bar{g}g, s].$

Proposition 2.6 ([El Proposition 1.18]). Let H be a closed subgroup of G and let S be an H-slice in a G-space X. Then $G \times_H S \cong G \times H S$.

3. Countability of tubular coverings

The following lemma makes use of a technique originating with J. Milnor; see [Pa1 Theorem 1.8.2].

Lemma 3.1. Let X be a Cartan G-space and suppose that X/G is paracompact. Then X admits a countable locally finite tubular covering.

1 We assume that paracompact spaces are Hausdorff.
Proof. By [An4] Proposition 3.6 we know that G has at most countably many compact conjugacy types, represented by compact subgroups H_n of G where $n \in \mathbb{N}$. Suppose that $\{G_S\}_{i \in I}$ is a tubular covering of X such that for each $i \in I$, S_i is a slice at some point $x_i \in X$, where G_{x_i} is a compact subgroup of G. Then $gG_{x_i}g^{-1} = H_{x_i}$ for some $g \in G$ and some $n_i \in \mathbb{N}$, and by Lemma 2.4 gS_i is a slice at gx_i and $G_{gx_i} = gG_{x_i}g^{-1} = H_{n_i}$. Thus we may assume from the beginning that each S_i is an H_{n_i}-slice for some $n_i \in \mathbb{N}$. Let $\{\varphi_i : X \to [0, 1]\}_{i \in I}$ be a G-invariant partition of unity subordinate to $\{G_S\}_{i \in I}$. Such a partition of unity exists because X/G is paracompact.

For each finite $T \subset I$, denote

$$W(T) = \{x \in X : \varphi_i(x) > \varphi_j(x) \text{ for all } i \in T \text{ and for all } j \in I \setminus T\}.$$

Denote by $u_T : X \to [0, 1]$ the continuous G-invariant map

$$u_T(x) = \max\{0, \min_{i \in I, j \in I \setminus T} (\varphi_i(x) - \varphi_j(x))\}.$$

Then $W(T) = u_T^{-1}(0, 1]$ is open and G-invariant in X.

If $x \in W(T)$, then $\varphi_i(x) > \varphi_j(x) \geq 0$ for all $i \in T, j \in I \setminus T$, so in particular $x \in \varphi^{-1}_i(0, 1]$ for all $i \in T$. Thus $W(T)$ is an open G-invariant subset of $\varphi^{-1}_i(0, 1] \subset GS_i$ for each $i \in T$; hence $W(T)$ is a tubular neighborhood by Lemma 2.4.

If Card $T = \text{Card } T'$ and $T \neq T'$, then $W(T) \cap W(T') = \emptyset$, because if $i \in T \setminus T'$, $j \in T' \setminus T$ and $x \in W(T) \cap W(T')$, then simultaneously $\varphi_i(x) > \varphi_j(x)$ and $\varphi_j(x) < \varphi_i(x)$, which is impossible.

Define

$$W^m_n = \bigcup\{W(T) : \text{Card } T = n \text{ and } W(T) \text{ is an } H_m\text{-tubular neighborhood}\}$$

for all $m, n \in \mathbb{N}$. Now W^m_n is an H_m-tubular neighborhood by Lemma 2.5 because it is a disjoint union of H_m-tubular neighborhoods. It follows that $\{W^m_n\}_{(m,n) \in \mathbb{N} \times \mathbb{N}}$ is a countable tubular covering of X.

Denote by $\pi_X : X \to X/G$ the canonical projection. Since X/G is paracompact, the open covering $\{\pi_X(W^m_n)\}_{(m,n) \in \mathbb{N} \times \mathbb{N}}$ of X/G admits a precise locally finite refinement by [Du] Chapter VIII, Theorem 1.4], and in particular this refinement is countable. Denote it by $\{V^m_n\}_{n \in \mathbb{N}}$. Now $\pi^{-1}_X(V^m_n)$ is a countable locally finite refinement of $\{W^m_n\}_{(m,n) \in \mathbb{N} \times \mathbb{N}}$ by G-neighborhoods; hence it is a countable locally finite tubular covering of X by Lemma 2.4 and we are done. \hfill \square

4. Homeomorphism properties of isovariant G-maps

The main result in this section is an important homeomorphism property of isovariant G-maps between Cartan G-spaces, which we will use in proving our main theorem. Recall that a map $f : X \to Y$ between G-spaces is isovariant if $G_x = G_{f(x)}$ for all $x \in X$. Our lemma builds on the following result for compact transformation groups:

Lemma 4.1 ([Br] Exercise 10 of Chapter I]). Let H be a compact Hausdorff topological group, and let $f : X \to Y$ be an isovariant H-map between H-spaces. Then f is an open map if and only if the induced map $\bar{f} : X/H \to Y/H$ is an open map.
Lemma 4.2. Suppose that X and Y are Cartan G-spaces and that $f: X \to Y$ is an isovariant G-map. Then f is a G-homeomorphism if and only if the induced map $\bar{f}: X/G \to Y/G$ is a homeomorphism.

Proof. We have a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\pi_X & \downarrow & \pi_Y \\
X/G & \xrightarrow{\bar{f}} & Y/G
\end{array}
$$

where π_X and π_Y denote the canonical projections. Since π_X is continuous and π_Y is open, it is clear that if f is open, then so is \bar{f}. Hence if f is a homeomorphism, so is \bar{f}.

Now suppose \bar{f} is a homeomorphism; it then easily follows from the bijectivity of \bar{f} and the fact that any isovariant G-map restricts to a bijection on the orbits that f is a bijection. It remains to show that f is open. Being Cartan, Y has a covering $\{GS^Y_i\}_{i \in I}$ where each S^Y_i is a slice at a point $y_i \in Y$ such that the isotropy subgroups G_{y_i} are compact for all $i \in I$. Let $i \in I$. Then $S^X_i = f^{-1}(S^Y_i)$ is a slice at $x_i = f^{-1}(y_i)$. Note that by isovariance $G_{y_i} = G_{x_i}$. We consider now only the restrictions

$$
\begin{array}{ccc}
GS^X_i & \xrightarrow{f} & GF(S^X_i) = GS^Y_i \\
\pi_X & \downarrow & \pi_Y \\
GS^X_i/G & \xrightarrow{\bar{f}} & GS^Y_i/G = GS^Y_i/G.
\end{array}
$$

Since $GS^X_i/G \approx S^X_i/G_{x_i}$ and $GS^Y_i/G \approx S^Y_i/G_{x_i}$ by [2] Lemma 1.23, we see that the restriction $f[S^X_i]: S^X_i \to S^Y_i$ induces a map $\bar{f}: S^X_i/G_{x_i} \to S^Y_i/G_{x_i}$ given by $\bar{f}(G_{x_i}s) = G_{x_i}(f(s))$, which makes the following diagram commutative:

$$
\begin{array}{ccc}
S^X_i & \xrightarrow{f} & S^Y_i \\
\pi & \downarrow & \pi' \\
S^X_i/G_{x_i} & \xrightarrow{\bar{f}} & S^Y_i/G_{x_i} \\
\approx & \approx & \approx \\
GS^X_i/G & \xrightarrow{\bar{f}} & GS^Y_i/G.
\end{array}
$$

Hence since \bar{f} is open, so is \bar{f}. The isotropy subgroup G_{x_i} is compact by [2] Theorem 2.3.3 since the G-action on X is Cartan and thus by Lemma [1] the restriction $f[S^X_i]$ is open.
The map $\text{id}_G \times f|S_i^X$ induces a map $G \times_{G_{x_i}} f|S_i^X: G \times_{G_{x_i}} S_i^X \to G \times_{G_{x_i}} S_i^Y$ as in [Br] Chapter II, Proposition 2.1] which makes the following diagram commutative:

$$
\begin{array}{ccc}
G \times S_i^X & \xrightarrow{\text{id}_G \times f|S_i^X} & G \times S_i^Y \\
\downarrow & & \downarrow \\
G \times_{G_{x_i}} S_i^X & \xrightarrow{G \times_{G_{x_i}} f|S_i^X} & G \times_{G_{x_i}} S_i^Y \\
\downarrow & & \downarrow \\
GS_i^X & \xrightarrow{f} & GS_i^Y
\end{array}
$$

and since $f|S_i^X$ is open, $G \times_{G_{x_i}} f|S_i^X$ is open by [Br Proposition II 2.1]. Hence $f|GS_i^X$ is open onto its image; i.e., it is a homeomorphism onto its image.

Since the S_i^Y are slices, the set GS_i^Y is open in Y for each $i \in I$. Hence f is open; i.e., it is a homeomorphism.

5. Embedding theorem

Now we are able to prove the following theorem, which is the main result of this note:

Theorem 5.1. Let G be a Lie group and let $X \in \mathcal{M}_G$. Then there exists a G-embedding $e: X \to L$ where L is a locally convex linear G-space such that $e(X)$ is a closed subset of some G-invariant convex subset C of L and $e(X)$ has some G-neighborhood V in C such that $V \in \mathcal{M}_G$.

We will prove Theorem 5.1 by finding an isovariant G-map $e: X \to L$ which induces an embedding $X/G \to L/G$ under suitable conditions, and by applying Lemma 4.2. The same method has been used by J. Jaworowski [Ja] and by G. Bredon [Br] Chapter II.10 for compact Lie group actions.

Definition 5.2 (LCL G-space). A locally convex linear G-space (for short, an LCL G-space) is a G-space L which is a locally convex topological vector space where each element $g \in G$ represents a linear map $L \to L$.

Lemma 5.3. A product of LCL G-spaces with diagonal action is an LCL G-space.

Proof. Let X_i be a family of LCL G-spaces where the indices i run through some set I. Set $X = \prod_{i \in I} X_i$; now it is clear that X is a topological vector space and a G-space where each $g \in G$ represents a linear map $X \to X$. Furthermore X is locally convex.

Indeed, suppose U is an open neighborhood of $x \in X$. Then there is some basic open set $V = \prod_{i \in I} V_i$ such that $x \in V \subset U$. For V to be an element in the basis, we know that each V_i is open in X_i and $V_i = X_i$ for all but finitely many $i \in I$. Now for each $V_i \neq X_i$ there exists a convex neighborhood W_i of $\text{pr}_i(x)$ such that $W_i \subset V_i$. Whenever $V_i = X_i$, set $W_i = X_i$. Define $W = \prod_{i \in I} W_i$. Now W is a convex neighborhood of x and $W \subset V \subset U$. □
We are going to use the following result, which is obtained in \[\text{[E2]}\] Section 3, although there it is not explicitly stated as a theorem:

Theorem 5.4. Let G be a Lie group and assume that a G-space $X \in \mathcal{M}_G$ admits a metric d which satisfies

$$(*) \quad \forall r > 0 \forall x \in X : \bar{B}_r^d(x) \text{ is compact,}$$

where $\bar{B}_r^d(x)$ denotes the closed ball of radius r about x with respect to the metric d.

Then there exists a Banach G-space B and a closed G-embedding $i : X \to B$ such that $i(X) \subset B \setminus \{0\}$ and G acts properly on $B \setminus \{0\}$.

Remark 5.5.

i) Note that the metric d satisfying $(*)$ can be any metric on X, independent of the G-action.

ii) A normed vector space is locally convex.

iii) From the construction of the space B one easily sees that the norm in B is G-invariant, inducing a G-invariant metric on B and, by restriction, on $B \setminus \{0\}$. Hence, $B \setminus \{0\} \in \mathcal{M}_G$.

Suppose that the G-space X has a global H-slice S with H a compact subgroup of G, i.e. $X = GS$. Then there exists an isovariant H-map

$$\varphi : S \to \prod_{n \in \mathbb{N}} E_n$$

where each E_n is a Euclidean representation space for H (see \[\text{[An2]}\] Lemma 5). The twisted product $G \times_H E_n$ is a G-space, and there is an H-embedding $i_n : E_n \to G \times_H E_n$ defined by $i_n(x) = [e, x]$. This defines an isovariant H-map

$$\tilde{\varphi} : S \to \prod_{n \in \mathbb{N}} E_n \xrightarrow{\prod i_n} \prod_{n \in \mathbb{N}} G \times_H E_n.$$

Using this we obtain a G-map $\psi : X = GS \to \prod_{n \in \mathbb{N}} G \times_H E_n$ by setting $\psi(gx) = g\tilde{\varphi}(x)$.

Lemma 5.6. The map ψ is isovariant.

Proof. By equivariance $G_{gs} \subset G_{\psi(gs)}$ for all $gs \in GS$. Thus we only need to show that $G_{gs} \supset G_{\psi(gs)}$.

Assume that $g\tilde{\varphi}(S) \cap \tilde{\varphi}(S) \neq \emptyset$ for some $g \in G$. Then $[g, \varphi_n(s_1)] = [e, \varphi_n(s_2)]$ for all $n \in \mathbb{N}$ and for some $s_1, s_2 \in S$, where $\varphi_n = \text{pr}_n \circ \varphi$. But then $g \in H$.

If we now assume that $g \in G_{\psi(gs)}$ for some $gs \in GS$, then $g\tilde{\psi}(gs) = \psi(gs)$, giving $g\tilde{\varphi}(s) = g\tilde{\varphi}(s)$; hence $g^{-1}g\varphi(s) = \varphi(s)$ and thus by the previous argument $g^{-1}gs = H_s$. But then $g^{-1}gs = s$; hence $gs = gs$ and thus $g \in G_{gs}$. It follows that $G_{\psi(gs)} = G_{gs}$ for all $gs \in GS$ and thus ψ is isovariant.

Now $G \times_H E_n$ is a proper G-space by \[\text{[E1]}\] Proposition 1.3, it is second countable and it is a manifold because $G \times_H E_n \to G/H$ is a vector bundle by \[\text{[Kaw]}\] Theorem 2.26. It has a metric with the property $(*)$ because any second countable manifold can be embedded as a closed subset of some Euclidean space (see \[\text{[H-W]}\] Theorem V.3) for the embedding theorem, and see \[\text{[Br]}\] Chapter III, Corollary 10.2.
for the closedness). Note that this embedding does not need to be a G-embedding, as the condition (*) on the metric is independent of the action of G.

Furthermore, $(G \times_H E_n)/G$ is metrizable by [Pa2] Theorem 4.3.4, giving $G \times_H E_n \in \mathcal{M}_G$. Hence, by Theorem 5.3, we obtain a G-embedding $G \times_H E_n \rightarrow B_n$, where B_n is a Banach G-space and G acts properly on $B_n \setminus \{0\}$. This gives an isovariant G-map

$$\tilde{\psi}: X = GS \rightarrow N \rightarrow \prod_{n \in N} G \times_H E_n \rightarrow \prod_{n \in N} B_n =: \tilde{Z},$$

where $\tilde{\psi}(GS) \subset \tilde{Z} \setminus \{0\}$.

Lemma 5.7. There is a G-invariant metric d on \tilde{Z}, which induces a pseudometric \tilde{d} on \tilde{Z}/G.

Proof. We have $\tilde{Z} = \Pi_{n \in N} B_n$ where each B_n is a Banach G-space with a G-invariant metric d_n induced by the norm as noted in Remark 5.5. In each B_n we define a new metric e_n by setting $e_n(x, y) = \min\{d_n(x, y), \frac{1}{n}\}$. The metric e_n is equivalent to d_n by [Du] Chapter IX, Theorem 3.3] and e_n is G-invariant because each d_n is so.

Denote by $\pi_m : \tilde{Z} = \Pi_{n \in N} B_n \rightarrow B_m$ the mth projection; we define a metric $d : \tilde{Z} \times \tilde{Z} \rightarrow \mathbb{R}$ by setting

$$d(z, z') = \sup_{m \in N} e_m(\pi_m(z), \pi_m(z')).$$

The map d metrizes the product topology on \tilde{Z} by [Du] Chapter IX, Theorem 7.2] since $e_n(B_n) \rightarrow 0$ as $n \rightarrow \infty$, and d is G-invariant because each e_n is so.

The metric d induces a pseudometric \tilde{d} on \tilde{Z}/G by $\tilde{d}(\tilde{x}, \tilde{y}) = d(Gx, Gy)$, where $\tilde{x} = \pi(x)$, $\tilde{y} = \pi(y)$, and $\pi : \tilde{Z} \rightarrow \tilde{Z}/G$ is the canonical projection. The pseudometric \tilde{d} induces the quotient topology on \tilde{Z}/G since the arguments

$$y \in B_d(x, r) \Rightarrow \tilde{d}(\tilde{x}, \tilde{y}) \leq d(x, y) < r \Rightarrow \pi(y) = \tilde{y} \in B_{\tilde{d}}(\tilde{x}, r)$$

and

$$\tilde{y} \in B_{\tilde{d}}(\tilde{x}, r) \Rightarrow \inf_{g \in G} d(x, gy) = \tilde{d}(\tilde{x}, \tilde{y}) < r \Rightarrow gy \in B_d(x, r) \text{ for some } g \in G$$

$$\Rightarrow \tilde{y} = \pi(gy) \in \pi B_d(x, r)$$

imply that $\pi B_d(x, r) = B_{\tilde{d}}(\tilde{x}, r)$.

The pseudometric \tilde{d} restricted to the set $(\tilde{Z} \setminus \{0\})/G$ is the same as the pseudometric induced by the metric d restricted to $\tilde{Z} \setminus \{0\}$; hence the restriction of \tilde{d} is a pseudometric inducing the quotient topology on $(\tilde{Z} \setminus \{0\})/G$, denoted by \tilde{d}.

Lemma 5.8. G acts properly on $\tilde{Z} \setminus \{0\}$.

Proof. G acts properly on $B_n \setminus \{0\}$ for each $n \in N$ and hence the space $\tilde{Z}_n = \left(\prod_{i=1}^{n-1} B_i \right) \times (B_n \setminus \{0\}) \times \left(\prod_{i=n+1}^{\infty} B_i \right)$ is a proper G-space for all $n \in N$. Furthermore $\tilde{Z} \setminus \{0\} = \bigcup_{n \in \mathbb{N}} \tilde{Z}_n$. Now $\tilde{Z} \setminus \{0\}$ is a Cartan G-space since any completely regular G-space which is the union of open Cartan G-subspaces is a Cartan G-space. Since $(\tilde{Z} \setminus \{0\})/G$ admits a pseudometric \tilde{d}, it is regular, and it follows that the action of G on $\tilde{Z} \setminus \{0\}$ is Palais proper by [Pa2] Proposition 1.2.5], so it is certainly proper. \qed
Lemma 5.9. The pseudometric \bar{d} on $(\tilde{Z} \setminus \{0\})/G$ is a metric.

Proof. Since G acts properly on $\tilde{Z} \setminus \{0\}$ by Lemma 5.8, the quotient space $(\tilde{Z} \setminus \{0\})/G$ is Hausdorff by [Pa2, Proposition 1.1.4], and we have seen that \bar{d} induces this topology. But then \bar{d} must be a metric.

Next we pass from the global slice situation above to the more complicated situation with arbitrary spaces from \mathcal{M}_G.

Lemma 5.10. Let X be as in Theorem 5.1. There exists an LCL G-space Z and an isovariant G-map $\tilde{f}: X \to Z$ such that $\tilde{f}(X) \subset Z \setminus \{0\}$ and $Z \setminus \{0\} \in \mathcal{M}_G$.

Proof. By Lemma 3.1 we may assume that $\{GS_n\}_{n \in \mathbb{N}}$ is a locally finite tubular covering of X. By Lemma 2.4 and by the normality of X/G we may let $\{GR_n\}_{n \in \mathbb{N}}$ and $\{GT_n\}_{n \in \mathbb{N}}$ be similar coverings such that $GT_n \subset GR_n \subset GR_n \subset GS_n$ for each $n \in \mathbb{N}$. According to the discussion above each GS_n admits an isovariant G-map \tilde{f}_n into an LCL G-space Z_n, where $\tilde{f}_n(GS_n) \subset Z_n \setminus \{0\}$, and G acts properly on $Z_n \setminus \{0\}$. For each $n \in \mathbb{N}$ we may construct a G-invariant map $\lambda_n: X \to I$ such that $\lambda_n(GT_n) = \{1\}$ and $\lambda_n(X \setminus GR_n) = \{0\}$, since X/G is normal.

We obtain a continuous and isovariant G-map $\tilde{f}: X \to \prod_{n \in \mathbb{N}} Z_n =: Z$ by setting $\tilde{f}(x) = (\lambda_1(x)\tilde{f}_1(x), \ldots, \lambda_i(x)\tilde{f}_i(x), \ldots)$.

Clearly $\tilde{f}(X) \subset Z \setminus \{0\}$, and Z, being a product of LCL G-spaces, is an LCL G-space by Lemma 5.9.

Furthermore, Z admits a G-invariant metric which induces a pseudometric on Z/G just as in Lemma 5.7. G acts properly on $Z \setminus \{0\}$ as in Lemma 5.8 and the pseudometric on Z/G restricts to a metric on $(Z \setminus \{0\})/G$ as in Lemma 5.9. In other words, $Z \setminus \{0\} \in \mathcal{M}_G$.

Lemma 5.11. With X as in Theorem 5.1, there exists a G-embedding $e: X \to L$ where L is an LCL G-space, $e(X) \subset C$ for some convex G-subset C of L and $e(X)$ has a G-neighborhood V in C such that $V \in \mathcal{M}_G$.

Proof. Let $h: X/G \to B$ be an embedding of the metrizable space X/G into a Banach space B such that $h(X/G)$ is a closed subset of C' where C' is a convex subset of B. Such a map exists by the Wojdyslawski embedding theorem. With Z as in Lemma 5.10 define a map $e: X \to X \times B =: X$ by setting $e = (\tilde{f}, h \circ \pi_X)$ where \tilde{f} is the isovariant G-map obtained in Lemma 5.10 and $\pi_X: X \to X/G$ is the natural projection. Let G act trivially on B. Now we have

i) e is an isovariant G-map because \tilde{f} is isovariant.

ii) e is injective since the induced map $\bar{e}: X \to Z/G \times B$ and e is injective. The map \bar{e} is injective because h is injective.

iii) The map \bar{e} is a homeomorphism onto its image, whose inverse $\bar{e}^{-1}: \bar{e}(X/G) \to X/G$ is given by $h^{-1} \circ pr_2$, where $\pi_Z: Z \to Z/G$ is the natural projection and $pr_2: Z \times B \to B$ is the projection to the second coordinate.

iv) $e(X) \subset Z \times C' = C$, which is convex, and G acts properly on $Z \setminus \{0\} \times C' = V$, which is a neighborhood of $e(X)$ in C.

Now $e(X) \subset V$, which is proper, and in particular $e(X)$ is Cartan. Thus by Lemma 4.2 the map e is a homeomorphism onto its image. The space $V/G = (Z \setminus \{0\})/G \times C'$ is metrizable; thus $V \in \mathcal{M}_G$. □
Lemma 5.12. The image $e(X)$ is a closed subset of $Z \times C'$.

Proof. Assume that $y = (u, v) \in (Z \times C') \setminus e(X)$. In case $v \not\in h(X/G)$, since h is a closed embedding, there exists a neighborhood U of v in C' such that $U \cap h(X/G) = \emptyset$. Thus $Z \times U$ is a neighborhood of (u, v) which does not intersect $e(X)$.

In case $v \in h(X/G)$ we have $v = h(\pi_X(x))$ for some $x \in X$ and then we must have $Gu \cap G\tilde{f}(x) = \emptyset$ (if not, then $u = g\tilde{f}(x) = \tilde{f}(gx)$ for some $g \in G$, giving $v = h(\pi_X(x)) = h(\pi_X(gx))$, which implies $y = (u, v) = e(gx) \in e(X)$).

If $u \neq 0$, then u and $\tilde{f}(x)$ are points in the open subset $Z \setminus \{0\}$ of Z, where $(Z \setminus \{0\})/G$ is metrizable. Thus there exist disjoint G-neighborhoods U and W of Gu and $G\tilde{f}(x)$ in $Z \setminus \{0\}$ and hence in Z. If $u = 0$, then $\pi_Z(u)$ is closed in Z/G, which is pseudometrizable and hence regular, so there exist again disjoint G-neighborhoods U and W of Gu and $G\tilde{f}(x)$ in Z. Thus we see that in any case there exist disjoint G-neighborhoods U and W of Gu and $G\tilde{f}(x)$ in Z.

Since \tilde{f} is continuous and equivariant there exists a G-neighborhood \tilde{W} of Gx in X such that $\tilde{f}(\tilde{W}) \subset W$. Since π_X is an open map and h is an embedding there exists an open neighborhood M of $h(\pi_X(x))$ in C' such that $M \cap h(\pi_X(X)) = h(\pi_X(\tilde{W}))$.

Clearly $U \times M$ is an open neighborhood of y in $Z \times C'$; we show that it is disjoint from $e(X)$. If $(x, u) \in e(X) \cap (U \times M)$, then $x = \tilde{f}(z) \in U$ and $w = h(\pi_X(z)) \in M$ for some $z \in X$. But then $\tilde{f}(z) \not\in \tilde{W}$ giving $z \not\in \tilde{W}$ and since \tilde{W} is G-invariant we have $\pi_X(z) \not\in \pi_X(\tilde{W})$, which gives $h(\pi_X(z)) \not\in h(\pi_X(\tilde{W}))$ since h is injective.

However, $Z \times X$ and $h(\pi_X(z)) \in M$ implies that $h(\pi_X(z)) \in M \cap h(\pi_X(X)) = h(\pi_X(\tilde{W}))$, which gives a contradiction. Hence we must have $e(X) \cap (U \times M) = \emptyset$.

It follows that $e(X)$ is closed in $Z \times C'$. □

The rest of the proof of Theorem 5.1 If we now set $L = Z \times B$, then L is an LCL G-space. Set $C = Z \times C'$ and $V = (Z \setminus \{0\}) \times C'$ as before. Then V is a G-neighborhood of $e(X)$ in C, C is a G-invariant convex subset of L, $e(X)$ is closed in V, and $V \in \mathcal{M}_G$. Hence the theorem is true. □

6. Application

We say that a G-space Y is a G-equivariant absolute neighborhood extensor (G-ANE) for \mathcal{M}_G, written $Y \in G$-ANE-\mathcal{M}_G, if for any G-space $X \in \mathcal{M}_G$ and any closed G-invariant subset A in X with a G-map $f: A \to Y$ there exists a G-extension $F: U \to Y$ of f over some G-neighborhood U of A in X.

We say that a G-space $X \in \mathcal{M}_G$ is a G-equivariant absolute neighborhood retract (G-ANR) for \mathcal{M}_G, written $X \in G$-ANR-\mathcal{M}_G, if, whenever there exists a closed G-embedding $i: X \to Y$ of X into some G-space $Y \in \mathcal{M}_G$, then there exists a G-neighborhood retraction $r: U \to i(X)$ where U is a G-neighborhood of $i(X)$ in Y.

It is easy to show that then $\mathcal{M}_G \cap G$-ANE-$\mathcal{M}_G \subset G$-ANR-\mathcal{M}_G. Here we show that the two classes are the same, following the classical proof from the non-equivariant case (see, for instance, [Hu Chapter III, Theorem 3.2]).

Corollary 6.1. G-ANR-$\mathcal{M}_G = \mathcal{M}_G \cap G$-ANE-$\mathcal{M}_G$.

Proof. We should show that G-ANR-$\mathcal{M}_G \subset \mathcal{M}_G \cap G$-ANE-$\mathcal{M}_G$. Suppose that $Y \in G$-ANR-\mathcal{M}_G. Then $Y \in \mathcal{M}_G$ by definition. By Theorem 5.1 we may assume that Y is a closed G-subset of a convex G-subset C of some LCL G-space, where Y
EMBEDDING OF METRIZABLE G-SPACES IN LINEAR G-SPACES

has a G-neighborhood U in C such that $U \in \mathcal{M}_G$. Since $Y \in G$-ANR-\mathcal{M}_G, there exists a G-neighborhood V of Y in U (and hence in C) and a G-retraction $r: V \to Y$. Let $X \in \mathcal{M}_G$ and let A be a closed G-invariant subset of X with a G-map $f: A \to Y$. By the equivariant Dugundji extension theorem [An3 Corollary 1] we know that $C \in G$-ANE-\mathcal{M}_G; hence the map $i \circ f: A \to Y \hookrightarrow C$ admits a G-extension $h: W \to C$, where W is a G-neighborhood of A in X. Set $W' = W \cap h^{-1}(V)$. Now W' is a G-neighborhood of A in X and the map $r \circ h|W': W' \to V \hookrightarrow Y$ is a neighborhood G-extension of f. It follows that $Y \in G$-ANE-\mathcal{M}_G. □

7. ACKNOWLEDGMENT

We would like to thank the referee for his/her careful review and many helpful remarks and suggestions.

REFERENCES

[An1] S. Antonyan. Equivariant embeddings into G-ARs. Glas. Mat. Ser. III, 22(42)(2):503–533, 1987. MR097632 (89k:54041)

[An2] S. Antonyan. Retraction properties of an orbit space. Math. USSR-Sb., 65(2):305–321, 1990. MR0976513 (89k:54042)

[An3] S. Antonyan. Extensorial properties of orbit spaces of proper group actions. Topology Appl., 98(1-3):35–46, 1999. MR1719992

[An4] S. Antonyan. Universal proper G-spaces. Topology Appl., 117(1):23–43, 2002. MR1874002

[An-Ne] S. Antonyan and S. de Neymet. Invariant pseudometrics on Palais proper G-spaces. Acta Math. Hung., 98(1-2):59–69, 2003. MR1958466 (2003m:22025)

[Br] G. Bredon. Introduction to compact transformation groups. Academic Press, New York, 1972. MR0413144 (54:1265)

[Du] J. Dugundji. Topology. Allyn and Bacon Inc., Boston, Mass., 1966. MR0193606 (33:1824)

[E1] E. Elfving. The G-homotopy type of proper locally linear G-manifolds. Ann. Acad. Sci. Fenn. Math. Diss., 108, 1996. MR1413841 (97g:57055)

[E2] E. Elfving. The G-homotopy type of proper locally linear G-manifolds. II. Manuscripta Math., 105(2):235–251, 2001. MR1846619 (2002c:57053)

[Hu] S. T. Hu. Theory of retracts. Wayne State University Press, Detroit, 1965. MR0181977 (31:6202)

[H-W] W. Hurewicz and H. Wallman. Dimension Theory. Princeton University Press, Princeton, NJ, 1941. MR0006493 (3:312b)

[Ja] J. Jaworowski. G-spaces with a finite structure and their embedding in G-vector spaces. Acta Math. Acad. Sci. Hungar., 39(1-3):175–177, 1982. MR0653689 (83h:57040)

[Kaw] K. Kawakubo. The theory of transformation groups. The Clarendon Press, Oxford University Press, New York, 1991. MR1150492 (93g:57044)

[Pa1] R. Palais. The classification of G-spaces. Mem. Amer. Math. Soc. No. 36, 1960. MR01177401 (31:1664)

[Pa2] R. Palais. On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2), 73:295–323, 1961. MR0126506 (23:A3802)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI, F-1-00014 HELSINKI, FINLAND
Current address: Department of Mathematical Sciences, University of Aarhus, NY Munkegade, Building 1530, DK-8000 Aarhus, Denmark
E-mail address: aasa.feragen@helsinki.fi