Gibbs measure for the periodic derivative nonlinear Schrödinger equation

Laurent Thomann\(^1\) and Nikolay Tzvetkov\(^2\)

\(^1\) Université de Nantes, Laboratoire de Mathématiques J. Leray, UMR CNRS 6629 2, rue de la Houssinière F-44322 Nantes Cedex 03, France
\(^2\) Département de Mathématiques, Université de Cergy-Pontoise, Site Saint-Martin, 95302 Cergy-Pontoise Cedex, France

E-mail: laurent.thomann@univ-nantes.fr and nikolay.tzvetkov@u-cergy.fr

Received 24 January 2010, in final form 2 September 2010
Published 4 October 2010
Online at stacks.iop.org/Non/23/2771

Recommended by K Ohkitani

Abstract
In this paper we construct a Gibbs measure for the derivative Schrödinger equation on the circle. The construction uses some renormalizations of Gaussian series and Wiener chaos estimates, ideas which have already been used by the second author in a work on the Benjamin–Ono equation.

Mathematics Subject Classification: 35BXX, 37K05, 37L50, 35Q55

1. Introduction

Denote by \(\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}\) the circle. The purpose of this work is to construct a Gibbs measure associated with the derivative nonlinear Schrödinger equation

\[
\begin{align*}
 i\partial_t u + \partial_x^2 u &= i\partial_x(|u|^2 u), \\
 u(0, x) &= u_0(x),
\end{align*}
\]

Many recent results (see the end of section 1.2) show that a Gibbs measure is an efficient tool to construct global rough solutions of nonlinear dispersive equations. This is the main motivation of this paper: we hope that our result combined with a local existence theory for (1.1) (e.g. a result like Grünrock–Herr [6]) on the support of the measure will give a global existence result for irregular initial conditions. A second motivation is the fact that an invariant measure is an object which fits well in the study of recurrence properties given by the Poincaré theorem, of the flow of (1.1).

For \(f \in L^2(\mathbb{T})\), denote by \(\int_{\mathbb{T}} f(x) \, dx = (1/2\pi) \int_0^{2\pi} f(x) \, dx\). The following quantities are conserved (at least formally) by the flow of the equation

- The mass

\[M(u(t)) = \|u(t)\|_{L^2} = \|u_0\|_{L^2} = M(u_0).\]
The energy
\[H(u(t)) = \int_T |\partial_x u|^2 dx + \frac{3}{2} \Im \int_T |u|^2 u \partial_x \bar{u} dx + \frac{1}{2} \int_T |u|^6 dx \]
\[= \int_T |\partial_x u|^2 dx - \frac{3}{4} \Im \int_T |u|^6 dx \]
\[= \int_T |\partial_x u|^2 dx + \frac{3}{4} \Im \int_T |u|^6 dx \]
\[= H(u_0). \]

The conservation of the energy can be seen by a direct computation (see also the appendix of this paper.)

Note that the momentum
\[P(u(t)) = \frac{1}{2} \int_T |u|^4 dx + i \int_T \bar{u} \partial_x u dx \]
\[= \frac{1}{2} \int_T |u|^4 dx - \Im \int_T \bar{u} \partial_x u dx = P(u_0) \]
is also formally conserved by (1.1). Indeed, it is the Hamiltonian of (1.1) associated with a symplectic structure involving \(\partial_x \) (see [7]). However, we will not use this fact here. Instead, our measure will be deduced from a Hamiltonian formulation based on \(H \) of a transformed form of (1.1).

Let us define the complex vector space \(E_N = \text{span}(\{e^{inx} \}_{-N \leq n \leq N}) \). Then we introduce the spectral projector \(\Pi_N \) on \(E_N \) by
\[\Pi_N \left(\sum_{n \in \mathbb{Z}} c_n e^{inx} \right) = \sum_{n=-N}^{N} c_n e^{inx}. \]
(1.2)

Let \((\Omega, \mathcal{F}, p) \) be a probability space and \((g_n(\omega))_{n \in \mathbb{Z}} \) a sequence of independent complex normalized Gaussians, \(g_n \in \mathcal{N}_C(0, 1) \). We can write
\[g_n(\omega) = \frac{1}{\sqrt{2}} (h_n(\omega) + i l_n(\omega)), \]
where \((h_n(\omega))_{n \in \mathbb{Z}}, (l_n(\omega))_{n \in \mathbb{Z}} \) are independent standard real Gaussians \(\mathcal{N}_R(0, 1) \).

1.1. Definition of the measure for (1.1)

In the following we will use the notation \(\langle n \rangle = \sqrt{n^2 + 1} \).

Now write \(c_n = a_n + ib_n \).

For \(N \geq 1 \), consider the probability measure on \(\mathbb{R}^{2(2N+1)} \) defined by
\[d\mu_N = dN \prod_{n=-N}^{N} e^{-\langle n \rangle^2 (a_n^2 + b_n^2)} da_n db_n, \]
(1.4)
where \(dN \) is such that
\[\frac{1}{dN} = \prod_{n=-N}^{N} \int_{\mathbb{R}^2} e^{-\langle n \rangle^2 (a_n^2 + b_n^2)} da_n db_n = \pi^{2N+1} \left(\prod_{n=-N}^{N} \frac{1}{\langle n \rangle} \right)^2 = \pi^{2N+1} \left(\prod_{n=1}^{N} \frac{1}{\langle n \rangle} \right)^4. \]
(1.5)
The measure μ_N defines a measure on E_N via the map

$$(a_n, b_n)_{n=-N}^N \mapsto \sum_{n=-N}^N (a_n + i b_n)e^{inx},$$

which will still be denoted by μ_N. Then μ_N may be seen as the distribution of the E_N valued random variable

$$\omega \mapsto \sum_{|n| \leq N} \frac{g_n(\omega)}{n} e^{inx},$$

(1.6)

where $(g_n)_{n=-N}^N$ are Gaussians as in (1.3).

Let $\sigma < \frac{1}{2}$. Then (φ_N) is a Cauchy sequence in $L^2(\Omega; H^\sigma(\mathbb{T}))$ which defines

$$\varphi(\omega, x) = \sum_{n \in \mathbb{Z}} g_n(\omega) \langle n \rangle e^{inx},$$

(1.7)

as the limit of (φ_N). Indeed, the map

$$\omega \mapsto \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{n} e^{inx}$$

defines a (Gaussian) measure on $H^\sigma(\mathbb{T})$ which will be denoted by μ.

For $u \in L^2(\mathbb{T})$, we will write $u_N = \Pi_N u$. Now define

$$f_N(u) = \text{Im} \int_\mathbb{T} u_N^*(x) \partial_x u_N^2(x) \, dx.$$

Let $\kappa > 0$, and let $\chi : \mathbb{R} \to \mathbb{R}, 0 \leq \chi \leq 1$ be a continuous function with support $\text{supp} \, \chi \subset [-\kappa, \kappa]$ and so that $\chi = 1$ on $[-\frac{\kappa}{2}, \frac{\kappa}{2}]$. We define the density

$$G_N(u) = \chi(\|u_N\|_{L^2(\mathbb{T})}) e^{\frac{i}{2} \int_\mathbb{T} |u_N(x)|^2 \, dx} e^{\frac{i}{2} \int_\mathbb{T} |u_N(x)|^p \, dx},$$

(1.8)

and the measure ρ_N on $H^\sigma(\mathbb{T})$ by

$$d\rho_N(u) = G_N(u) d\mu(u).$$

(1.9)

1.2. Statement of the main result

Our main result which defines a formally invariant measure for (1.1) reads as follows.

Theorem 1.1. The sequence $G_N(u)$ defined in (1.8) converges in measure, as $N \to \infty$, with respect to the measure μ. Denote by $G(u)$ the limit of (1.8) as $N \to \infty$, and we define $d\rho(u) \equiv G(u) d\mu(u)$.

Moreover, for every $p \in [1, \infty]$, there exists $\kappa_p > 0$ so that for all $0 < \kappa \leq \kappa_p$, $G(u) \in L^p(d\mu(u))$ and the sequence G_N converges to G in $L^p(d\mu(u))$, as N tends to infinity.

Remark 1.2. In particular, for any Borel set $A \subset H^\sigma(\mathbb{T})$, $\lim_{N \to \infty} \rho_N(A) = \rho(A)$.

It is not clear to us how to prove the convergence property, if we define ρ_N as follows: for any Borel set $A \subset H^\sigma(\mathbb{T})$, $\rho_N(A) = \rho_N(A \cap E_N)$ where $d\rho_N = G_N(u) d\mu_N(u)$. In particular, the convergence stated in [11, theorem 1] is not proven there. However, if we define in the context of [11] ρ_N as we did here, the convergence property holds true. In addition, the measure ρ_N defined here (see also [4]) is more natural, since it is invariant by the truncated flow $\Phi_N(t)$ of equation (A.16).
One can show that by varying the cut-off χ, the support of ρ describes the support of μ (see lemma 4.3).

The main ideas of this paper come from the work of the second author [11] where a similar construction is made for the Benjamin–Ono equation using the pioneering work of Bourgain [3]. In [11], one of the main difficulties is that on the support of the measure μ, the L^2 norm is a.s. infinite, which is not the case in our setting, since for any $\sigma < \frac{1}{2}$, $\varphi(\omega) \in H^\sigma(\mathbb{T})$, for almost all $\omega \in \Omega$. Here the difficulty is to treat the term $\int_T \pi_2 \partial_x(u^2) \, dx$ in the conserved quantity H. Roughly speaking, it should be controlled by the $H^{\frac{1}{2}}$ norm, but this is not enough, since $\|u\|_{H^{\frac{1}{2}}(\mathbb{T})} = \infty$ on the support of $d\mu$. However, we will see in section 2 that we can handle this term thanks to an adapted decomposition and thanks to the integrability properties of the Gaussians. This is the main new idea in this paper.

The result of theorem 1.1 may be the first step to obtain almost sure global well-posedness for (1.1), with initial conditions of the form (1.7). To reach such a result, we will also need a suitable local existence theory on the statistical set, and prove the invariance of the measure $d\mu$ under this flow. For instance, this program was fruitful for Bourgain [2, 3] and Zhidkov [14] for NLS on the torus, Tzvetkov [12, 13] for NLS on the disc, Burq–Tzvetkov [5] for the wave equation, Oh [8, 9] for the Schrödinger–Benjamin–Ono and KdV systems, and Burq–Thomann–Tzvetkov [4] for the one-dimensional Schrödinger equation. For the DNLS equation, we plan to pursue this issue in a subsequent work.

1.3. Notations and structure of the paper

Notations. In this paper c, C denote constants the value of which may change from line to line. These constants will always be universal or uniformly bounded with respect to the other parameters.

We denote by \mathbb{Z} (respectively \mathbb{N}) the set of the integers (respectively non negative integers) and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.

For $x \in \mathbb{R}$, we write $\langle x \rangle = \sqrt{x^2 + 1}$. For $u \in L^2(\mathbb{T})$, we usually write $u_N = \Pi_N u$, where Π_N is the projector defined in (1.2).

The notation L^q stands for $L^q(\mathbb{T})$ and $H^s = H^s(\mathbb{T})$.

The paper is organized as follows. In section 2 we give some large deviation bounds and some results on the Wiener chaos at any order. In section 3 we study the term of the Hamiltonian containing the derivative, and section 4 is devoted to the proof of theorem 1.1.

In the appendix, we give the Hamiltonian formulation of the transformed form of (1.1).

2. Preliminaries: some stochastic estimates

2.1. Large deviation estimates

Lemma 2.1. Let $(\gamma_n(\omega))_{n \in \mathbb{Z}} \in \mathcal{N}_{\mathbb{R}}(0, 1)$ be a sequence of independent, normalized real Gaussians. Let $(c_n)_{n \in \mathbb{Z}}, (d_n)_{n \in \mathbb{Z}}$ be two bounded sequences of real numbers. Then there exist $c, C > 0$ so that for all $1 \leq N \leq \lambda$,

$$p\left(\omega \in \Omega : \sum_{|n_1|, |n_2| \leq N} c_{n_1} d_{n_2} \gamma_{n_1}(\omega) \gamma_{n_2}(\omega) > \lambda\right) \leq Ce^{-c\lambda}.$$
Proof. We estimate

\[
A_{\lambda,N} = p \left(\omega \in \Omega : \sum_{|n_1|,|n_2| \leq N} c_{n_1, n_2}^{0,1} \gamma_{n_1} (\omega) \gamma_{n_2} (\omega) > \lambda \right).
\]

For all \(t > 0 \) and all r.v. \(X \) we have, by the Tchebychev inequality,

\[
p(\omega \in \Omega : X > \lambda) \leq e^{-\lambda t} \mathbb{E}[e^{tX}].
\]

(2.1)

Thus, we obtain that for all \(\varepsilon > 0 \)

\[
A_{\lambda,N} \leq e^{-\lambda t} \mathbb{E} \left[\prod_{|n_1|,|n_2| \leq N} e^{\varepsilon \frac{c_{n_1, n_2}^{0,1} \gamma_{n_1} \gamma_{n_2}}{2N}} \right] \leq e^{-\lambda t} \mathbb{E} \left[\prod_{|n_1|,|n_2| \leq N} e^{\varepsilon \frac{1}{n_1} \gamma_{n_1}^{2} + \varepsilon \frac{1}{n_2} \gamma_{n_2}^{2}} \right] \]

(2.2)

Now, the Cauchy–Schwarz inequality and the independence of the \(\gamma_n \) give

\[
A_{\lambda,N} \leq e^{-\lambda t} \mathbb{E} \left[\prod_{|n_1| \leq N} e^{\varepsilon \frac{1}{n_1} \gamma_{n_1}^{2}} \right]^2 \mathbb{E} \left[\prod_{|n_1| \leq N} e^{\varepsilon \frac{1}{n_2} \gamma_{n_2}^{2}} \right]^2 \]

\[
= e^{-\lambda t} \left(\prod_{|n_1| \leq N} \mathbb{E} \left[e^{\varepsilon \frac{1}{n_1} \gamma_{n_1}^{2}} \right] \right)^{1/2} \left(\prod_{|n_2| \leq N} \mathbb{E} \left[e^{\varepsilon \frac{1}{n_2} \gamma_{n_2}^{2}} \right] \right)^{1/2}.
\]

(2.3)

Thanks to a change of variables we can compute explicitly the expectations in the right-hand side of (2.3). In fact, for \(\mu < \frac{1}{2} \)

\[
\mathbb{E}[e^{\varepsilon \gamma_n^{2}}] = (1 - 2\mu)^{-1/2}.
\]

For \(0 \leq \varepsilon \leq \frac{1}{2} \), we have the inequality \((1 - \varepsilon)^{-1} \leq e^{2\varepsilon} \), hence we deduce that for \(\mu < \frac{1}{2} \)

\[
\mathbb{E}[e^{\varepsilon \gamma_n^{2}}] \leq e^{2\mu}.
\]

(2.4)

Recall that \((c_n), (d_n)\) are bounded. We now fix \(\varepsilon > 0 \) so that for all \(|n| \leq N\), \(\varepsilon (c_n^2 / (n^2)) \leq \frac{1}{4} \).

Then, the bound (2.4) implies

\[
\prod_{|n_1| \leq N} \mathbb{E} \left[e^{\varepsilon \frac{1}{n_1} \gamma_{n_1}^{2}} \right] \leq \exp \left(2\varepsilon \sum_{|n_1| \leq N} \frac{c_n^2}{(n_1)^2} \right) \leq C.
\]

(2.5)

With the previous choice of \(\varepsilon > 0 \) and \(t > 0 \) small enough we also have

\[
\prod_{|n_2| \leq N} \mathbb{E} \left[e^{\varepsilon \frac{1}{n_2} \gamma_{n_2}^{2}} \right] \leq \exp \left(2\varepsilon \sum_{|n_2| \leq N} \frac{d_n^2}{(n_2)^2} / \varepsilon \right) \leq e^{Ct^2N},
\]

(2.6)

Finally, from (2.5), (2.6) and (2.3) we infer

\[
A_{\lambda,N} \leq C e^{-\lambda t + C t^2 N} \leq C e^{-\lambda t},
\]

for some \(c > 0 \), if \(t > 0 \) is chosen small enough and \(N \leq \lambda \).

Similarly for \(\lambda > 0 \),

\[
p \left(\omega \in \Omega : \sum_{|n_1|,|n_2| \leq N} c_{n_1, n_2}^{0,1} \gamma_{n_1} (\omega) \gamma_{n_2} (\omega) < -\lambda \right) \leq C e^{-\lambda t},
\]

and this yields the result. \(\square \)
Lemma 2.2. Fix $\sigma < \frac{1}{2}$ and $p \in [2, \infty)$. Then

$$\exists C > 0, \exists c > 0, \forall \lambda \geq 1, \forall N \geq 1, \mu(u \in H^\sigma : \|\Pi_N u\|_{L^p(T)} > \lambda) \leq C e^{-c \lambda^2}.$$

Moreover, there exists $\beta > 0$ such that

$$\exists C > 0, \exists c > 0, \forall \lambda \geq 1, \forall M \geq N \geq 1, \mu(u \in H^\sigma : \|\Pi_M u - \Pi_N u\|_{L^p(T)} > \lambda) \leq C e^{-c N \beta \lambda^2}.$$

Proof. This result is a consequence of the hypercontractivity of the Gaussian random variables: there exists $C > 0$ such that for all $r \geq 2$ and $(c_n) \in l^2(N)$

$$\left\| \sum_{n \geq 0} g_n(\omega) c_n \right\|_{L^r(\Omega)} \leq C \sqrt{r} \left(\sum_{n \geq 0} |c_n|^2 \right)^{\frac{1}{2}}.$$

See, e.g. [4, lemma 3.3] for the details of the proof. □

2.2. Wiener chaos estimates

The aim of this subsection is to obtain $L^p(\Omega)$ bounds on Gaussian series. These are obtained thanks to the smoothing effects of the Ornstein–Uhlenbeck semi-group. The following considerations are inspired from [11]. See also [1, 10] for more details on this topic.

For $d \geq 1$, denote by L the operator

$$L = \Delta - x \cdot \nabla = \sum_{j=1}^d \left(\frac{\partial^2}{\partial x_j^2} - x_j \frac{\partial}{\partial x_j} \right).$$

This operator is self adjoint on $\mathcal{K} = L^2(\mathbb{R}^d, e^{-|x|^2/2} \, dx)$ with domain $\mathcal{D} = \{u : u(x) = e^{i|\alpha|^2/4} v(x), \ v \in H^2\}$, where $H^2 = \{u \in L^2(\mathbb{R}^d), x^\alpha \partial^\beta v(x) \in L^2(\mathbb{R}^d), \ \forall (\alpha, \beta) \in N^{2d}, \ |\alpha| + |\beta| \leq 2\}$. Denote by $k = k_1 + \ldots + k_d$ and by $(P_n)_{n \geq 0}$ the Hermite polynomials defined by

$$P_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}).$$

Then, a Hilbertian basis of eigenfunctions of L on \mathcal{K} is given by

$$P_k(x_1, \ldots, x_d) = P_{k_1}(x_1) \ldots P_{k_d}(x_d),$$

with eigenvalue $-k = -(k_1 + \ldots + k_d)$.

Finally define the measure γ_d on \mathbb{R}^d by

$$d\gamma_d(x) = (2\pi)^{-d/2} e^{-|x|^2/2} \, dx.$$

The next result is a direct consequence of [11, proposition 3.1]. See [1] for the proof.

Lemma 2.3. Let $d \geq 1$ and $k \in \mathbb{N}$. Assume that \tilde{P}_k is an eigenfunction of L with eigenvalue $-k$. Then for all $p \geq 2$

$$\|\tilde{P}_k\|_{L^p(\mathbb{R}^d, \gamma_d)} \leq (p - 1)^{\frac{1}{2}} \|\tilde{P}_k\|_{L^2(\mathbb{R}^d, \gamma_d)}.$$

Thanks to lemma 2.3, we will prove the following L^p smoothing effect for some stochastic series.
Proposition 2.4 (Wiener chaos). Let $d \geq 1$ and $c(n_1, \ldots, n_k) \in \mathbb{C}$. Let $(g_n)_{1 \leq n \leq d} \in \mathcal{N}_C(0,1)$ be complex L^2-normalized independent Gaussians.

For $k \geq 1$ denote by $A(k, d) = \{(n_1, \ldots, n_k) \in \{1, \ldots, d\}^k, n_1 \leq \cdots \leq n_k\}$ and

$$S_k(\omega) = \sum_{A(k,d)} c(n_1, \ldots, n_k) g_{n_1}(\omega) \cdots g_{n_k}(\omega).$$ \hfill (2.7)

Then for all $d \geq 1$ and $p \geq 2$

$$\|S_k\|_{L^p(\Omega)} \leq \sqrt{k+1} (p-1)\frac{1}{2} \|S_k\|_{L^2(\Omega)}.$$ \hfill (2.8)

Proof. Let $g_n \in \mathcal{N}_C(0,1)$. Then we can write $g_n = \frac{1}{\sqrt{2}}(\gamma_n + i \tilde{\gamma}_n)$ with $\gamma_n, \tilde{\gamma}_n \in \mathcal{N}_R(0,1)$ mutually independent Gaussians. Hence, up to a change of indices (and with d replaced with $2d$) we can assume that the random variables in (2.7) are real valued. Thus in the following we assume that $g_n \in \mathcal{N}_R(0,1)$ and are independent.

Denote by

$$\Sigma_k(x_1, \ldots, x_d) = \sum_{A(k,d)} c(n_1, \ldots, n_k) x_{n_1} \cdots x_{n_k}.$$ \hfill (2.9)

Then obviously for all $p \geq 1$,

$$\|S_k\|_{L^p(\Omega)} = \|\Sigma_k\|_{L^p(\mathbb{R}^d \times \mathbb{R}^d)}.$$ \hfill (2.8)

Let $(n_1, \ldots, n_k) \in A(k, d)$. Then we can write

$$x_{n_{k_1}} \cdots x_{n_{k_j}} = x_{m_1}^{p_{i_1}} \cdots x_{m_{k_j}}^{p_{i_j}},$$

where $l \leq k$, $p_1 + \cdots + p_l = k$ and $n_1 = m_1 < \cdots < m_l \leq n_k$. Now, each monomial $x_{m_j}^{p_j}$ can be expanded on the Hermite polynomials $(P_n)_{n \geq 0}$

$$x_{m_j}^{p_j} = \sum_{k_{j_1} = 0}^{p_j} \alpha_{j,k_{j_1}} P_{k_{j_1}}(x_{m_j}).$$

Therefore, there exists $\beta(k_1, \ldots, k_l) \in \mathbb{C}$ so that

$$x_{n_1} \cdots x_{n_k} = \sum_{j=0}^k \sum_{k_1 + \cdots + k_j = j \atop 0 \leq k_i \leq p_i} \beta(k_1, \ldots, k_j) P_{k_1}(x_{m_1}) \cdots P_{k_j}(x_{m_j}),$$

and we have

$$\Sigma_k(x_1, \ldots, x_d) = \sum_{j=0}^k \tilde{P}_j(x_1, \ldots, x_d),$$ \hfill (2.9)

where the polynomial \tilde{P}_j is given by

$$\tilde{P}_j(x_1, \ldots, x_d) = \sum_{A(k,d) \atop k_1 + \cdots + k_j = j \atop 0 \leq k_i \leq p_i} c(n_1, \ldots, n_k) \beta(k_1, \ldots, k_j) P_{k_1}(x_{m_1}) \cdots P_{k_j}(x_{m_j}).$$

For $0 \leq k_i \leq p_i$, so that $k_1 + \cdots + k_j = j$, the polynomial \tilde{P}_j is an eigenfunction of L with eigenvalue $-j$, hence by lemma 2.3 we have that for all $p \geq 2$

$$\|\tilde{P}_j\|_{L^p(\mathbb{R}^d \times \mathbb{R}^d)} \leq (p-1)\frac{1}{2} \|\tilde{P}_j\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}.$$
Therefore, by (2.9) and by the Cauchy–Schwarz inequality,
\[\| \Sigma_k \|_{L^p(\mathbb{R}^d, d\gamma_d)} \leq (p - 1)^{\frac{k}{2}} \sum_{j=0}^k \| \tilde{P}_j \|_{L^2(\mathbb{R}^d, d\gamma_d)} \leq \sqrt{k + 1}(p - 1)^{\frac{k}{2}} \left(\sum_{j=0}^k \| \tilde{P}_j \|_{L^2(\mathbb{R}^d, d\gamma_d)}^2 \right)^{\frac{1}{2}} \]

where in the last line we used that the polynomials \tilde{P}_j are orthogonal. This concludes the proof by (2.8). \[\Box\]

We will need the following lemma which is proved in [11, lemma 4.5]

Lemma 2.5. Let $F : H^\alpha (T) \to \mathbb{R}$ be a measurable function. Assume that there exist $\alpha > 0$, $N > 0$, $k \geq 1$ and $C > 0$ so that for every $p \geq 2$
\[\| F \|_{L^p(d\mu)} \leq CN^{-\alpha} p^{\frac{k}{2}}. \]
Then there exist $\delta > 0$, C_1 independent of N and α such that
\[\int_{H^\alpha (T)} e^{\frac{\lambda}{2} |F(u)|^2} d\mu(u) \leq C_1. \]
As a consequence, for all $\lambda > 0$,
\[\mu(\{ u \in H^\alpha (T) : |F(u)| > \lambda \}) \leq C_1 e^{-\delta N^{\frac{\alpha}{2}} \lambda^2}. \]

3. Study of the sequence $(f_N(u))_{N \geq 1}$

Recall that $f_N(u)$ is defined by $f_N(u) = \text{Im} \int_T \overline{u_N^2(x)} \partial_x (u_N^2(x)) \, dx$.

The main result of this section is the following.

Proposition 3.1. The sequence $(f_N(u))_{N \geq 1}$ is a Cauchy sequence in $L^2(H^\alpha (T), B, d\mu)$. Indeed for all $0 < \varepsilon < \frac{1}{2}$ there exists $C > 0$ so that for all $M > N \geq 1$
\[\| f_M(u) - f_N(u) \|_{L^2(H^\alpha (T), B, d\mu)} \leq \frac{C}{N^{\frac{1}{2} - \varepsilon}}. \] (3.1)
Moreover, for all $p \geq 2$ and $M > N \geq 1$
\[\| f_M(u) - f_N(u) \|_{L^p(H^\alpha (T), B, d\mu)} \leq \frac{C (p - 1)^{\frac{k}{2}}}{N^{\frac{1}{2} - \varepsilon}}. \] (3.2)

Then a combination of estimate (3.2) and lemma 2.5 yields the following large deviation estimate.

Corollary 3.2. For every $\alpha > \frac{1}{2}$, there exist $C, \delta > 0$ such that for all $M > N \geq 1$ and $\lambda > 0$
\[\mu(\{ u \in H^\alpha (T) : |f_M(u) - f_N(u)| > \lambda \}) \leq Ce^{-\delta(N^{\alpha/2} \lambda^2)}. \]

Thanks to proposition 3.1, we are able to define the limit in $L^2(\Omega)$ of the sequence $(f_N(u))_{N \geq 1}$, which will be denoted by
\[f(u) = \text{Im} \int_T \overline{u^2(x)} \partial_x (u^2(x)) \, dx. \] (3.3)
This gives a sense to the rhs of (3.3) for u in the support of μ.
Lemma 3.3. Gibbs measure for the periodic DNLS

Proof. Let ϕ_N be defined by (3.8). Then there exists $C > 0$ so that for all $M > N > 0$,

$$\|S^1_M - S^1_N\|_{L^2(\Omega)} \leq \frac{C}{N^2}.$$

3.1. Study of S^1_N

Lemma 3.3. Let S^1_N be defined by (3.8). Then there exists $C > 0$ so that for all $M > N > 0$,

$$\|S^1_M - S^1_N\|_{L^2(\Omega)} \leq \frac{C}{N^2}.$$

Proof. Let $(m_1, m_2, n_1, n_2) \in B_N$. Then as $m_1 + m_2 = n_1 + n_2$, we have $(m_1, m_2) = (n_1, n_2)$ or $(m_1, m_2) = (n_2, n_1)$, and deduce that

$$S^1_N = \sum_{|n_1|, |n_2| \leq N} 2i(n_1 + n_2) \frac{|g_{n_1}(\omega)|^2 |g_{n_2}(\omega)|^2}{\langle n_1 \rangle^2 \langle n_2 \rangle^2} = X_N + Y_N,$$

or
where

\[X_N = \sum_{|n| \leq N} 4in \frac{|g_n(\omega)|^4}{<n|^4}, \]

and

\[Y_N = \sum_{|n_1|, |n_2| \leq N, \quad n_1 \neq n_2} 2i(n_1 + n_2) \frac{|g_{n_1}(\omega)|^2 |g_{n_2}(\omega)|^2}{<n_1|^2<n_2|^2}. \]

\[\diamondsuit \] First we will show that there exists \(C > 0 \) so that for all \(M > N > 0 \),

\[\|X_M - X_N\|_{L^2(\Omega)} \leq \frac{C}{N^2}. \]

(3.10)

Let \(M > N \geq 1 \). Then

\[|X_M - X_N|^2 = \sum_{N < |n_1|, |n_2| \leq M} 16i^4 n_1 n_2 |g_{n_1}(\omega)|^4 |g_{n_2}(\omega)|^4. \]

Thus

\[\|X_M - X_N\|_{L^2(\Omega)}^2 \leq C \sum_{N < |n_1|, |n_2| \leq M} \frac{1}{<n_1|^3<n_2|^3} \leq \frac{C}{N^4}, \]

which proves (3.10).

\[\diamondsuit \] To complete the proof of lemma 3.3, it remains to check that there exists \(C > 0 \) so that for all \(M > N > 0 \),

\[\|Y_M - Y_N\|_{L^2(\Omega)} \leq \frac{C}{N^2}. \]

(3.11)

For \(M \geq N \geq 1 \) we write

\[Y_N = \sum_{|n_1|, |n_2| \leq N, \quad n_1 \neq n_2} i(n_1 + n_2) \frac{|g_{n_1}(\omega)|^2 |g_{n_2}(\omega)|^2}{<n_1|^2<n_2|^2} = Y_N^1 + Y_N^2 + Y_N^3, \]

with

\[Y_N^1 = \sum_{|n_1|, |n_2| \leq N, \quad n_1 \neq n_2} i(n_1 + n_2) \frac{(|g_{n_1}(\omega)|^2 - 1) (|g_{n_2}(\omega)|^2 - 1)}{<n_1|^2<n_2|^2}, \]

(3.12)

\[Y_N^2 = \sum_{|n_1|, |n_2| \leq N, \quad n_1 \neq n_2} i(n_1 + n_2) \frac{(|g_{n_1}(\omega)|^2 - 1) + (|g_{n_2}(\omega)|^2 - 1)}{<n_1|^2<n_2|^2}, \]

(3.13)

and

\[Y_N^3 = \sum_{|n_1|, |n_2| \leq N, \quad n_1 \neq n_2} i(n_1 + n_2) \frac{1}{<n_1|^2<n_2|^2}. \]

By the symmetry \((n_1, n_2) \mapsto (-n_1, -n_2)\), we have that \(Y_N^3 = 0 \). For \(n \in \mathbb{Z} \), denote by

\[G_n(\omega) = |g_n(\omega)|^2 - 1. \]
Let \(n \neq m \). Then, since \(g_n \) and \(g_m \) are independent and since \(\mathbb{E}[|g_n(\omega)|^2] = 1 \), we have

\[
\mathbb{E}[G_n(\omega) G_m(\omega)] = \mathbb{E}[G_n(\omega)] \mathbb{E}[G_m(\omega)] = 0.
\] (3.14)

- First we analyse (3.12). We compute

\[
|Y_M^n - Y_N^n|^2 = \sum_{C_{M,N}} (n_1 + n_2)(m_1 + m_2) \frac{G_{n_1}(\omega) G_{n_2}(\omega) G_{m_1}(\omega) G_{m_2}(\omega)}{(m_1^2)(m_2^2)(n_1^2)(n_2^2)},
\]

where

\[
C_{M,N} = \{(m_1, m_2, n_1, n_2) \in \mathbb{Z}^4 \text{ s.t. } N < |m_1|, |m_2|, |n_1|, |n_2| \leq M \quad \text{and} \quad m_1 \neq m_2, \; n_1 \neq n_2\}.
\]

We compute \(\mathbb{E}[|Y_M^n - Y_N^n|^2] \), and thanks to (3.14) we see that only the terms \((n_1 = m_1 \text{ and } n_2 = m_2)\) or \((n_1 = m_2 \text{ and } n_2 = m_1)\) give some contribution, hence

\[
|Y_M^n - Y_N^n|^2 \leq C \sum_{N < |n_1|, |n_2| \leq M} \frac{(n_1 + n_2)^2}{(n_1)^4(n_2)^2} \leq C \sum_{N < |n_1|, |n_2| \leq M} \left(\frac{1}{(n_1)^2(n_2)^2} + \frac{1}{(n_1)^4(n_2)^2} \right) \leq C \frac{N^2}{N^4}.
\] (3.15)

- We now turn to (3.13). Similarly, we get

\[
|Y_M^\omega - Y_N^\omega|^2 = \sum_{C_{M,N}} (n_1 + n_2)(m_1 + m_2) \frac{(G_{n_1}(\omega) + G_{n_2}(\omega))(G_{m_1}(\omega) + G_{m_2}(\omega))}{(m_1^2)(m_2^2)(n_1^2)(n_2^2)},
\]

and using the symmetries in \((n_1, n_2, m_1, m_2)\), and with (3.14) we obtain

\[
|Y_M^\omega - Y_N^\omega|^2 \leq C \left| \sum_{C_{M,N}, m_1 = m_1} \frac{(n_1 + n_2)(n_1 + m_2)}{(m_2)^2(n_1)^4(n_2)^2} \right|.
\] (3.16)

We write

\[
\sum_{N < |n_2| \leq M, \; n_2 \neq n_1} \frac{(n_1 + n_2)(n_1 + m_2)}{(m_2^2)(n_1)^4(n_2)^2} = \left(\sum_{N < |n_2| \leq M} \frac{(n_1 + n_2)(n_1 + m_2)}{(m_2^2)(n_1)^4(n_2)^2} \right) - \frac{2n_1(n_1 + m_2)}{(m_2^2)(n_1)^6}.
\]

Then, by symmetry

\[
\sum_{N < |n_2| \leq M, \; n_2 \neq n_1} \frac{n_2(n_1 + m_2)}{(m_2^2)(n_1)^4(n_2)^2} = 0,
\]

thus

\[
\sum_{N < |n_2| \leq M, \; n_2 \neq n_1} \frac{(n_1 + n_2)(n_1 + m_2)}{(m_2^2)(n_1)^4(n_2)^2} = s_{M,N} \frac{n_1(n_1 + m_2)}{(m_2^2)(n_1)^4} - \frac{2n_1(n_1 + m_2)}{(m_2^2)(n_1)^6} = \frac{n_1}{(n_1)^4} \left(s_{M,N} - \frac{2}{(n_1)^2} \right) \frac{n_1 + m_2}{(m_2)^2},
\] (3.17)

with \(s_{M,N} = \sum_{N < |n_2| \leq M, \; n_2 \neq n_1} \frac{1}{(m_2)^2} \leq C \frac{1}{N} \).
Similarly, using that \(\sum_{N < |m_2| \leq M} \frac{m_3}{|m_2|^2} = 0 \), we obtain
\[
\sum_{N < |m_2| \leq M, \ m_2 \neq n_1} \frac{n_1 + m_2}{|m_2|^2} = \left(\sum_{N < |m_2| \leq M} \frac{n_1 + m_2}{|m_2|^2} \right) - \frac{2n_1}{\langle n_1 \rangle^2} = n_1 s_{M,N} - \frac{2n_1}{\langle n_1 \rangle^2}.
\] (3.18)

Then, from (3.17) and (3.18), we deduce
\[
\left| \sum_{N < |m_2| \leq M, \ m_2 \neq n_1} \sum_{n_2 \neq n_1} \frac{(n_1 + n_2)(n_1 + m_2)}{|m_2|^2 \langle n_1 \rangle^4 \langle n_2 \rangle^2} \right| \leq C \left(\frac{1}{N^2 \langle n_1 \rangle^2} + \frac{1}{\langle n_1 \rangle^6} \right),
\]
and from (3.16),
\[
\| Y_M^2 - Y_N^2 \|_{L^2(\Omega)} \leq \frac{C}{N^3}.
\] (3.19)

Finally, (3.15) and (3.19) yield estimate (3.11).

3.2. Study of \(S^2_N \)

We first state the following elementary lemma.

Lemma 3.4. Let \(n \in \mathbb{Z} \) and \(N \geq 1 \). Then for all \(0 < \varepsilon \leq \frac{1}{2} \)
\[
\sum_{n_1 \in \mathbb{Z}} \frac{1}{\langle n_1 \rangle^2 (n - n_1)^2} \leq \frac{C}{N^{\frac{1}{2} - \varepsilon} \langle n \rangle^{\frac{1}{2} + \varepsilon}}.
\]

Proof. Let \(N \geq 1 \). For \(\alpha > 1 \) we have the inequalities
\[
\langle n \rangle^\alpha \leq C (\langle n_1 \rangle^\alpha + (n - n_1)^\alpha),
\]
and
\[
\langle n_1 \rangle^\alpha (n - n_1)^\alpha \geq CN^{4-2\alpha} \langle n_1 \rangle^{\alpha} (n - n_1)^\alpha \quad \text{for } |n_1|, |n - n_1| \geq N.
\]

Now choose \(\alpha = \frac{1}{2} + \varepsilon \leq 2 \) to get
\[
\frac{\langle n \rangle^{\frac{1}{2} + \varepsilon}}{\langle n_1 \rangle^2 (n - n_1)^2} \leq \frac{C}{N^{1-2\varepsilon} \langle n_1 \rangle^{\frac{1}{2} + \varepsilon} + \langle n - n_1 \rangle^{\frac{1}{2} + \varepsilon}} \quad \text{for } |n_1|, |n - n_1| \geq N.
\] (3.20)

We sum up (3.20), thus
\[
\sum_{n_1 \in \mathbb{Z}} \frac{1}{\langle n_1 \rangle^2 (n - n_1)^2} \leq \frac{C}{N^{1-2\varepsilon} \langle n \rangle^{\frac{1}{2} + \varepsilon}} \sum_{n_1 \in \mathbb{Z}} \left(\frac{1}{\langle n_1 \rangle^{\frac{1}{2} + \varepsilon}} + \frac{1}{\langle n - n_1 \rangle^{\frac{1}{2} + \varepsilon}} \right)
\]
\[
\leq \frac{C}{N^{\frac{1}{2} - \varepsilon} \langle n \rangle^{\frac{1}{2} + \varepsilon}},
\]
which was the claim.
We are now able to prove the following lemma.

Lemma 3.5. Let S^2_M be defined by (3.9). For all $0 < \varepsilon \leq \frac{1}{2}$, there exists $C > 0$ so that for all $M > N > 0$,

$$\|S^2_M - S^2_N\|_{L^2(\Omega)} \leq \frac{C}{N^{1-\varepsilon}}.$$

Proof. We compute

$$|S^2_M - S^2_N| = \sum_{D_{M,N} \times D_{M,N}} (n_1 + n_2)(p_1 + p_2) \frac{g_{m_1} g_{m_2} g_{n_1} g_{n_2} g_{p_1} g_{p_2} g_{q_1} g_{q_2}}{(m_1)(m_2)(n_1)(n_2)(p_1)(p_2)(q_1)(q_2)},$$

where

$$D_{M,N} = \{(m_1, m_2, n_1, n_2) \in \mathbb{Z}^4 \text{ s.t. } N < |m_1|, |m_2|, |n_1|, |n_2| \leq M$$

and $m_1 + m_2 = n_1 + n_2$, $m_1 \neq n_1$, $m_i \neq n_2$.

The expectation of each term of the previous sum vanishes, unless $(n_1, n_2) = (m_1, m_2)$ or (m_1, m_2) and $(n_1, n_2) = (p_1, p_2)$ or (p_1, p_2). Hence

$$\|S^2_M - S^2_N\|_{L^2(\Omega)} \leq C \sum_{D_{M,N}} \frac{(n_1 + n_2)(m_1 + m_2)}{(n_1)^2(n_2)^2(m_1)^2(m_2)^2}.$$

Write $n = n_1 + n_2 = m_1 + m_2$, therefore

$$\|S^2_M - S^2_N\|_{L^2(\Omega)} \leq C \sum_{n \in \mathbb{Z}} \sum_{|n_1|, |n_2| > N, |m_1, |n - n_1| > N} \frac{n^2}{(n_1)^2(n_2)^2(m_1)^2(m_2)^2}$$

$$= C \sum_{n \in \mathbb{Z}} n^2 \left(\sum_{|n_1|, |n - n_1| > N} \frac{1}{(n_1)^2(n_2)^2} \right)^2 \leq \frac{C}{N^{3-2\varepsilon}} \sum_{n \in \mathbb{Z}} \frac{n^2}{(n)^{3+2\varepsilon}} \leq \frac{C}{N^{3-2\varepsilon}},$$

by lemma 3.4.

The results of lemmas 3.3 and 3.5 imply (3.1).

To complete the proof of proposition 3.1, it remains to show (3.2). But this is a direct consequence of (3.1) and proposition 2.4.

We are now able to define the density $G : H^s(\mathbb{T}) \rightarrow \mathbb{R}$ (with respect to the measure μ) of the measure ρ. By (3.4) and proposition 3.1 and lemma 2.2, we have the following convergences in the measure μ: $f_N(u)$ converges to $f(u)$ and $\|u_N\|_{L^2(\mathbb{T})}$ to $\|u\|_{L^2(\mathbb{T})}$. Then, by composition and multiplication of continuous functions, we obtain

$$\chi(\|u_N\|_{L^2(\mathbb{T})})e^{\frac{i}{s}f_N(u) - \frac{1}{2} \int f_N(x)dx} \longrightarrow \chi(\|u\|_{L^2(\mathbb{T})})e^{\frac{i}{s}f(u) - \frac{1}{2} \int f(x)dx} = G(u),$$

in measure, with respect to the measure μ. As a consequence, G is measurable from $(H^s(\mathbb{T}), B)$ to \mathbb{R}.

(3.21)
4. Integrability of the density of \(d\rho \)

We now state a result which will be useful for the \(L^p \) estimates in theorem 1.1.

Proposition 4.1. There exist \(\kappa_0 > 0 \) and \(c, C > 0 \) so that for all \(0 < \kappa \leq \kappa_0, \lambda \geq 2 \) and \(1 \leq N \leq \lambda \)

\[
\mu(u \in H^s(T) : \|\partial_s(u_N^2)\|_{L^\infty(T)} \geq \lambda, \|u_N\|_{L^2(T)} \leq \kappa) \leq Ce^{-c\lambda}.
\]

Proof. We can follow the main lines of the proof of [11, proposition 4.1].

For \(j \in \{0, \ldots, \lceil\lambda^5\rceil\} \), we define the points \(x_j \in T \) by

\[
x_j = \frac{2\pi j}{\lambda^5}.
\]

Denote by \(\text{dist} \) the distance on \(T \). Then by construction, \(\text{dist}(x_j, x_{j+1}) \leq \frac{2\pi}{\lambda^5} \), with \(x_{\lceil\lambda^5\rceil+1} \equiv x_0 \). We define the set \(K_{\lambda} \) by

\[
K_{\lambda} = \left\{ u \in H^s(T) : \|\partial_s(u_N^2)\|_{L^\infty(T)} \geq \lambda, \|u_N\|_{L^2(T)} \leq \kappa \right\},
\]

and the sets \(K_{\lambda,j} \) by

\[
K_{\lambda,j} = \left\{ u \in H^s(T) : |\partial_s(u_N^2)(x_j)| \geq \frac{\lambda}{2}, \|u_N\|_{L^2(T)} \leq \kappa \right\}.
\]

As in [11] we will show that

\[
K_{\lambda} \subset \bigcup_{j=0}^{\lceil\lambda^5\rceil} K_{\lambda,j}.
\] \hfill (4.1)

Let \(u \in K_{\lambda} \), and denote by \(v_N = \partial_s(u_N^2) \). Let \(x^* \in T \) be such that

\[
|v_N(x^*)| = \max_{x \in T} |v_N(x)|.
\]

Thus \(|v_N(x^*)| \geq \lambda \). Then there exists \(j_0 \in \{0, \ldots, \lceil\lambda^5\rceil\} \) such that

\[
|x^* - x_{j_0}| \leq \frac{2\pi}{\lambda^5}.
\] \hfill (4.2)

Then thanks to the Taylor formula, we have

\[
|v_N(x^*) - v_N(x_{j_0})| = \left| \int_{x_{j_0}}^{x^*} \partial_s v_N(t) \, dt \right| \leq |x^* - x_{j_0}|^{1/2} \|\partial_s v_N\|_{L^2(T)}.
\] \hfill (4.3)

Now by the Sobolev embeddings we obtain the bound (with \(N \leq \lambda \))

\[
\|\partial_s v_N\|_{L^2(T)} \leq CN\|v_N\|_{L^2(T)} \leq CN\|u_N\|_{L^2(T)}\|\partial_s u_N\|_{L^\infty(T)} \leq CN^2\|u_N\|_{L^2(T)}^2 \leq C\lambda^2\kappa^2.
\] \hfill (4.4)

Therefore, from (4.2), (4.3) and (4.4) we deduce that for \(\kappa > 0 \) small enough

\[
|v_N(x^*) - u_N(x_{j_0})| \leq C\kappa^2 \leq \frac{1}{2}\lambda.
\]

Thus, by the triangle inequality

\[
|v_N(x_{j_0})| \geq |v_N(x^*)| - |v_N(x^*) - u_N(x_{j_0})| \geq \lambda - \frac{1}{2}\lambda = \frac{1}{2}\lambda,
\]

we can conclude that \(u \in K_{\lambda,j_0} \), which proves (4.1).

We now estimate \(\mu(K_{\lambda,j}) \).

As in [11], we can forget the \(L^2 \) constraint and write

\[
\mu(K_{\lambda,j}) \leq p(\omega \in \Omega : |\partial_s(\varphi_N^2)(x_j)| \geq \frac{\lambda}{2}).
\]
First observe that
\[\{ \omega \in \Omega : |\partial_x (\phi_N^2)(x_j)| \geq \frac{\lambda}{2} \} \subset \{ \omega \in \Omega : |\text{Re}\partial_x (\phi_N^2)(x_j)| \geq \frac{\lambda}{4} \} \cup \{ \omega \in \Omega : |\text{Im}\partial_x (\phi_N^2)(x_j)| \geq \frac{\lambda}{4} \}. \]

Indeed, we can describe the previous sets by the following way. Write
\[
\frac{1}{2} \partial_x (\phi_N^2)(x_j) = \sum_{|n_1|,|n_2| \leq N} \frac{c_{n_1} d_{n_2}}{(n_1)(n_2)} \gamma_{n_1}(\omega) \gamma_{n_2}(\omega),
\]
with \(|c_n|, |d_n| \leq C\) and where \((\gamma_n)_{n \in \mathbb{Z}} \in \mathcal{N}_R(0, 1)\) is an independent family of real Gaussians (indeed \(\gamma_n = h_n\) or \(\gamma_n = l_n\)). Therefore, we can apply lemma 2.1 to get
\[
\mu(K_{\lambda,j}) \leq Ce^{-c\lambda}. \tag{4.5}
\]
Finally by (4.1) and (4.5) we deduce that
\[
\mu(K_{\lambda}) \leq \sum_{j=0}^{[\lambda]} \mu(K_{\lambda,j}) \leq C\lambda^5 e^{-c\lambda} \leq Ce^{-c\lambda},
\]
which was the claim. \(\Box\)

Proposition 4.2. For all \(1 \leq p < \infty\), there exists \(\kappa_p > 0\) so that for all \(0 < \kappa \leq \kappa_p\) there exists \(C > 0\) such that for every \(N \geq 1\).
\[
\left\| \chi \left(\|u_N\|_{L^2(T)} \right) e^{\frac{1}{2} f_N(u) - \frac{1}{2} \int_T |u_N(x)|^6 \, dx} \right\|_{L^p(\mu(u))} \leq C.
\]

Proof. Here we can follow the proof of [11, proposition 4.9]. To prove the proposition, it is sufficient to show that the integral
\[
\int_0^\infty \lambda^{p-1} \mu(A_{\lambda,N}) \, d\lambda \tag{4.6}
\]
is convergent uniformly with respect to \(N\) for \(\kappa > 0\) small enough and where
\[A_{\lambda,N} = \left\{ u \in H^\sigma : \chi \left(\|u_N\|_{L^2(T)} \right) e^{\frac{1}{2} f_N(u) - \frac{1}{2} \int_T |u_N(x)|^6 \, dx} > \lambda \right\}. \]
We set \(N_0 = \ln \lambda\).

- Assume that \(N_0 \geq N\).

On the support of \(\chi\), \(\|u_N\|_{L^2(T)} \leq \kappa\), thus we have
\[
|f_N(u)| = \left| \text{Im} \int_T u_N(x)^2 \partial_x (u_N(x)^2) \, dx \right| \leq C \|u_N\|_{L^2(T)}^2 \|\partial_x (u_N^2)\|_{L^\infty(T)}
\leq C\kappa^2 \|\partial_x (u_N^2)\|_{L^\infty(T)}.
\]
Then by proposition 4.1 (which can be applied, since $N \leq N_0 = \ln \lambda \leq (c_1/\kappa^2) \ln \lambda$ for $\kappa > 0$ small enough), we obtain
\[
\mu(A_{\lambda,N}) \leq \mu \left(u \in H^{\sigma} : |f_N(u)| > \frac{4}{3} \ln \lambda, \quad \|u_N\|_{L^2(\mathbb{T})} \leq \kappa \right)
\]
\[
\leq \mu \left(u \in H^{\sigma} : \|\partial_x(u_N^2)\|_{L^\infty(\mathbb{T})} > \frac{c_1}{\kappa^2} \ln \lambda, \quad \|u_N\|_{L^2(\mathbb{T})} \leq \kappa \right)
\]
\[
\leq C e^{-\frac{c_2}{2} \ln \lambda} = C\lambda^{-\frac{c_2}{2}},
\]
where c_2 is independent of κ. Hence integral (4.6) is convergent if $\kappa = \kappa_p > 0$ is small enough.

Assume now $N > N_0$. Thanks to the triangle inequality $A_{\lambda,N} \subset B_{\lambda,N} \cup C_{\lambda,N}$, where
\[
B_{\lambda,N} \equiv \left\{ u \in H^{\sigma} : |f_{N_0}(u)| > \frac{1}{2} \ln \lambda, \quad \|u_N\|_{L^2(\mathbb{T})} \leq \kappa \right\},
\]
and
\[
C_{\lambda,N} \equiv \left\{ u \in H^{\sigma} : |f_N(u) - f_{N_0}(u)| > \frac{1}{2} \ln \lambda, \quad \|u_N\|_{L^2(\mathbb{T})} \leq \kappa \right\}.
\]
The measure of $B_{\lambda,N}$ can be estimated exactly as we did in the analysis of the case $N_0 \geq N$. Finally, by corollary 3.2, as $N_0 = \ln \lambda$, we obtain that for all $1 < \alpha < \frac{3}{2}$
\[
\mu(C_{\lambda,N}) \leq Ce^{-\delta(\ln \lambda)} 1 + \alpha \leq C\lambda^{-L},
\]
for all $L \geq 1$. This completes the proof of the proposition. □

Proof of theorem 1.1. Recall (3.21). Let $p \in [1, +\infty)$ and choose $\kappa_p > 0$ so that proposition 4.2 holds. Then there exists a subsequence $G_{N_k}(u)$ so that $G_{N_k}(u) \rightarrow G(u)$, μ a.s. Then by Fatou’s lemma,
\[
\int_{H^\sigma(\mathbb{T})} |G(u)|^p \, d\mu(u) \leq \liminf_{k \rightarrow \infty} \int_{H^\sigma(\mathbb{T})} |G_{N_k}(u)|^p \, d\mu(u) \leq C,
\]
thus $G(u) \in L^p(d\mu(u))$.

Now it remains to check the convergence in $L^p(d\mu(u))$ for $1 \leq p < \infty$. As in [11], for $N \geq 0$ and $\varepsilon > 0$, we introduce the set
\[
A_{N,\varepsilon} = \{ u \in H^\sigma(\mathbb{T}) : |G_N(u) - G(u)| \leq \varepsilon \},
\]
and denote by $\overline{A}_{N,\varepsilon}$ its complement.

Firstly, there exists $C > 0$ so that for all $N \geq 0$, $\varepsilon > 0$
\[
\int_{A_{N,\varepsilon}} |G_N(u) - G(u)|^p \, d\mu(u) \leq C\varepsilon^p.
\]

Secondly, by Cauchy–Schwarz, proposition 4.2 and as $G(u) \in L^{2p}(d\mu(u))$, we obtain
\[
\int_{A_{N,\varepsilon}} |G_N(u) - G(u)|^p \, d\mu(u) \leq \|G_N - G\|_{L^{2p}(d\mu)}^p \mu(A_{N,\varepsilon}) \leq C\mu(A_{N,\varepsilon}) \leq C\mu(\overline{A}_{N,\varepsilon}) \leq C\mu(\overline{A}_{N,\varepsilon}) \leq C\varepsilon^p.
\]

By (3.21), we deduce that for all $\varepsilon > 0$
\[
\mu(\overline{A}_{N,\varepsilon}) \rightarrow 0, \quad N \rightarrow +\infty,
\]
which yields the result. This ends the proof of theorem 1.1.

Lemma 4.3. The measure ρ is not trivial
Proof. First observe that for all \(\kappa > 0 \)
\[
\mu(u \in H^p(T) : \|u\|_{L^2(T)} \leq \kappa) = p \left(\omega \in \Omega : \sum_{n \in \mathbb{N}} \frac{1}{(n)^2} |g_n(\omega)|^2 \leq \kappa^2 \right) > 0.
\]
Then, by lemma 2.2 and proposition 3.1, the quantities \(\|u\|_{L^2(T)} \) and \(f(u) \) are \(\mu \) almost surely finite. Hence, the density of \(\rho \) does not vanish on a set of positive \(\mu \) measure. In other words, \(\rho \) is not trivial. \(\square \)

Acknowledgments

The authors were supported in part by the grant ANR-07-BLAN-0250.

Appendix A.

Appendix A.1. Hamiltonian structure of the transformed form of (1.1)

In this section we give the Hamiltonian structure of the equation related to (1.1).

First we define the projection \(\Pi_{\Omega_1} \) on the 0-mean functions:
\[
\Pi_{\Omega_1} = \sum_{n \in \mathbb{Z} \{0\}} \alpha_n e^{inx},
\]
for \(f(x) = \sum_{n \in \mathbb{Z}} \alpha_n e^{inx} \),

then we introduce the integral operator
\[
\partial^{-1} : f(x) = \sum_{n \in \mathbb{Z}} \alpha_n e^{inx} \mapsto \sum_{n \in \mathbb{Z} \{0\}} \alpha_n e^{inx}.
\]

Note that we have
\[
\partial^{-1}(f') = \Pi f = f - \int_T f(x) \, dx.
\]

Next we define the operator
\[
K(u, v) = \left(\begin{array}{cc} -u \partial^{-1} u & -i + u \partial^{-1} v \\ i + v \partial^{-1} u & -v \partial^{-1} v \end{array} \right).
\]

Lemma A.1. For \(u, v \), the operator \(K(u, v) \) is skew symmetric: \(K(u, v)^* = -K(u, v) \).

Proof. This is a straightforward computation. We only have to use that \((\partial^{-1})^* = -\partial^{-1} \).

Define
\[
H(u, v) = \int_T \partial_x u \partial_x v + \frac{3}{4} i \int_T v^2 \partial_x (u^2) + \frac{1}{2} \int_T u^3 v^3.
\]

Note that we also have the expressions
\[
H(u, v) = -\int_T \partial_x^2 u v + \frac{3}{4} i \int_T v^2 \partial_x (u^2) + \frac{1}{2} \int_T u^3 v^3
\]
\[
= -\int_T u \partial_x^2 v - \frac{3}{4} i \int_T u^2 \partial_x (v^2) + \frac{1}{2} \int_T u^3 v^3,
\]

therefore, we can deduce the variational derivatives
\[
\frac{\delta H}{\delta u}(u, v) = -\partial_x^2 v - \frac{3}{2} i u \partial_x (v^2) + \frac{3}{2} u^2 v^3 \quad (A.2)
\]
\[
\frac{\delta H}{\delta v}(u, v) = -\partial_x^2 u + \frac{3}{2} i v \partial_x (u^2) + \frac{3}{2} u^3 v^2. \quad (A.3)
\]
We consider the Hamiltonian system
\[
\left(\begin{array}{c}
\partial_t u \\
\partial_t v
\end{array} \right) = K(u, v) \left(\begin{array}{c}
\delta H \frac{\delta}{\delta u}(u, v) \\
\delta H \frac{\delta}{\delta v}(u, v)
\end{array} \right).
\] (A.4)

Denote by
\[
F_u(t) = 2 \text{ Im} \int_T u \partial_x \bar{u} + \frac{3}{2} \int_T |u|^4,
\]
and note that for all \(t \in \mathbb{R} \), \(F_u(t) \in \mathbb{R} \).

Proposition A.2. System (A.4) is a Hamiltonian formulation of the equation
\[
i \partial_t u + \partial_x^2 u = i \partial_x(|u|^2 u) + F_u(t) u,
\] (A.5)
in the coordinates \((u, v) = (u, \bar{u})\).

As a consequence, if we set
\[
v(t, x) = e^{i \int_0^t F_u(s) ds} u(t, x),
\] (A.6)
then \(v \) is the solution of the equation
\[
\left\{ \begin{array}{l}
i \partial_t v + \partial_x^2 v = i \partial_x(|v|^2 v), \\
v(0, x) = u_0(x).
\end{array} \right.
\] (A.7)

Moreover, if \(u \) and \(v \) are linked by (A.6), we have \(F_u = F_v \).

Proof. We have
\[
u \partial_x^2 v = v \partial_x^2 u + (u \partial_x v)' - (v \partial_x u)',
\]
therefore
\[
\partial^\perp (u \partial_x^2 v) = \partial^\perp (v \partial_x^2 u) + u \partial_x v - v \partial_x u - \int_T (u \partial_x v - v \partial_x u). \tag{A.8}
\]

Similarly, we obtain the relation
\[
\partial^\perp (u^2 \partial_x (v^2)) = -\partial^\perp (v^2 \partial_x (u^2)) + u^2 v^2 - \int_T u^2 v^2. \tag{A.9}
\]

By (A.2), (A.3), using (A.8) and (A.9), a straightforward computation gives
\[
\partial_t u = -u \partial^\perp \left(u \frac{\delta H}{\delta u} - \frac{\delta H}{\delta v} + u \partial^\perp \left(v \frac{\delta H}{\delta v} \right) \right)
= i \partial_x^2 u + \partial_x (u^2 v) - u \int_T (u \partial_x v - v \partial_x u) - \frac{3}{2} i u \int_T u^2 v^2,
\]
and
\[
\partial_t v = i \frac{\delta H}{\delta u} + v \partial^\perp \left(u \frac{\delta H}{\delta u} - \frac{\delta H}{\delta v} + v \partial^\perp \left(v \frac{\delta H}{\delta v} \right) \right)
= -i \partial_x^2 v + \partial_x (u^2 v^2) - v \int_T (v \partial_x u - u \partial_x v) - \frac{3}{2} i u \int_T u^2 v^2.
\]

Now assume that \(v = \bar{u} \). This yields the result, as
\[
\int_T (u \partial_x \bar{u} - \bar{u} \partial_x u) = 2i \text{ Im} \int_T u \partial_x \bar{u}.
\]

\(\square \)
A.2. Invariance of the measure \(\rho_N \) under a truncated flow of (A.5)

We present here a natural approximation of (A.5) for which \(\rho_N \) is an invariant measure.

Let \(N \geq 1 \). Recall that \(E_N \) is the complex vector space \(E_N = \text{span}(\{e^{inx} \}_{N \leq n \leq N}) \), that \(\Pi_N \) is the spectral projector from \(L^2(\mathbb{T}) \) to \(E_N \) and that \(u_N = \Pi_N u \).

Let \(K \) be given by (A.1), and consider the following system:

\[
\begin{pmatrix}
\partial_t u \\
\partial_t v
\end{pmatrix} = \Pi_N K(u_N, v_N) \Pi_N \begin{pmatrix}
\frac{\delta H}{\delta u}(u_N, v_N) \\
\frac{\delta H}{\delta v}(u_N, v_N)
\end{pmatrix},
\tag{A.10}
\]

This an Hamiltonian system with Hamiltonian \(H(\Pi_N u, \Pi_N v) \). Now we assume that \(v = 0 \) and we compute the equation satisfied by \(u \): this will be an infinite dimensional approximation of (A.5), but where the flow on the high frequency part is trivial. Denote by \(\Pi_N^\perp = 1 - \Pi_N \), then we have

Lemma A.3. In the coordinates \(v_N = \overline{u_N} \), system (A.10) reads

\[
i\partial_t u + \partial_t^2 u = i\Pi_N (\partial_t (|u_N|^2 u_N)) + u_N F_N(t) + R_N(u_N),
\tag{A.11}
\]

where

\[
R_N(u_N) = \frac{3}{2} \Pi_N (u_N \partial^{-1}[u_N \Pi_N^\perp (u_N \partial_x (\overline{u_N}^2))] + \overline{u_N} \Pi_N^\perp (|u_N|^4 u_N))
+ \frac{i}{2} \Pi_N (u_N \partial^{-1}[u_N \Pi_N^\perp (|u_N|^4 u_N)]).
\]

Proof. The proof is a direct computation. By (A.10), the equation on \(u_N \) reads as

\[
\partial_t u = \Pi_N (-u_N \partial^{-1}(u_N f_N)) = i f_N + u_N \partial^{-1}(u_N f_N),
\tag{A.12}
\]

where

\[
f_N = \Pi_N \left(-\partial_t^2 \overline{u_N} - \frac{1}{2} i u_N \partial_x (\overline{u_N}^2) + \frac{3}{2} |u_N|^4 \overline{u_N} \right).
\]

Thanks to (A.8) we deduce from (A.12) that

\[
\begin{align*}
\partial_t u &= i \partial_t^2 u_N + \frac{3}{2} \Pi_N (\overline{u_N} \partial_x (u_N^2)) - \frac{3}{2} i \Pi_N (|u_N|^4 u_N) + \Pi_N (u_N \partial_x \overline{u_N} - |u_N|^2 \partial_x u_N) \\
& - u_N \int_T (u_N \partial_x \overline{u_N} - \overline{u_N} \partial_x u_N) + \frac{3}{2} \Pi_N (u_N \partial^{-1}[u_N \Pi_N (u_N \partial_x (\overline{u_N}^2))]
+ \overline{u_N} \Pi_N (|u_N|^4 u_N)) + \frac{3}{2} \Pi_N (u_N \partial^{-1}[\overline{u_N} \Pi_N (|u_N|^4 u_N)] - u_N \Pi_N (|u_N|^4 \overline{u_N})).
\end{align*}
\tag{A.13}
\]

Using (A.9) we obtain, with \(\Pi_N^\perp = 1 - \Pi_N \)

\[
\begin{align*}
\partial^{-1}[u_N \Pi_N (u_N \partial_x (\overline{u_N}^2))] + \overline{u_N} \Pi_N (|u_N|^4 \overline{u_N})
& = -\partial^{-1}[u_N \Pi_N^\perp (u_N \partial_x (\overline{u_N}^2)) + \overline{u_N} \Pi_N^\perp (|u_N|^4 \overline{u_N})]
+ \partial^{-1}[u_N \Pi_N^\perp (u_N \partial_x (\overline{u_N}^2))]
= -\partial^{-1}[u_N \Pi_N^\perp (u_N \partial_x (\overline{u_N}^2))]
+ \overline{u_N} \Pi_N^\perp (|u_N|^4 \overline{u_N}) + |u_N|^4 - \int_T |u_N|^4.
\end{align*}
\tag{A.14}
\]

We can also write

\[
\overline{u_N} \Pi_N (|u_N|^4 u_N) - u_N \Pi_N (|u_N|^4 \overline{u_N}) = -\overline{u_N} \Pi_N^\perp (|u_N|^4 u_N) + u_N \Pi_N^\perp (|u_N|^4 \overline{u_N}).
\tag{A.15}
\]
Thus, by (A.14) and (A.15), equation (A.13) becomes
\[
\partial_t u = i \partial_x^2 u + \Pi_N (|u_N|^2 u_N) - \frac{2i}{\Pi_N} (u_N \partial_x^{-1}[u_N \Pi_N^{-1}(u_N \partial_x |u_N|)]) \\
+ \frac{3}{2} \Pi_N (u_N \partial_x (u_N^2)) + \frac{1}{2} \Pi_N (u_N \partial_x^{-1}[u_N \Pi_N^{-1}(|u_N|^4 u_N)]) - \Pi_N (u_N |u_N|^4 u_N)),
\]
which is the claim. □

In the following we fix \(\sigma < \frac{1}{2}\), and we consider (A.17) as a Cauchy problem with initial condition in \(H^\sigma (\mathbb{T})\)
\[
\begin{align*}
\partial_t u + \partial_x^2 u &= i \Pi_N (|u_N|^2 u_N) + u_N F(u_N) + R(u_N), \\
(t, x) &\in \mathbb{R} \times \mathbb{T},
\end{align*}
\]
(A.16)

We now state the main result of this section.

Proposition A.4. Equation (A.16) has a well-defined global flow \(\Phi_1^N\). Moreover, the measure \(\rho_N\) is invariant under \(\Phi_1^N\): for any Borel set \(A \subset H^\sigma (\mathbb{T})\) and for all \(t \in \mathbb{R}\),
\[
\rho_N (\Phi_1^N (t)(A)) = \rho_N (A).
\]

For the proof of proposition A.4, we first need the following result.

Lemma A.5. Equation
\[
\begin{align*}
\partial_t u + \partial_x^2 u &= i \Pi_N (|u_N|^2 u_N) + u_N F(u_N) + R(u_N), \\
(t, x) &\in \mathbb{R} \times \mathbb{T},
\end{align*}
\]
(A.17)
is an Hamiltonian ODE. Moreover, the mass \(\|u(t)\|_{L^2(\mathbb{T})}\) is conserved under the flow of (A.17). As a consequence, (A.17) has a well-defined global flow \(\tilde{\Phi}_1^N\).

Proof. The first statement is clear by the previous construction. We now check that the \(L^2\)-norm of \(u\) is conserved. Multiply (A.11) with \(u\), integrate over \(x \in \mathbb{T}\) and take the imaginary part. In the following we use that \(\Pi_N^2 = \Pi_N\) and \(\Pi_N^\ast = \Pi_N\). Firstly by integration by parts,
\[
\int_\mathbb{T} u \partial_x^2 u_N = \int_\mathbb{T} u_N \partial_x^2 \Upsilon_N = -\int_\mathbb{T} |\partial_x u_N|^2 \in \mathbb{R}.
\]
(A.18)

Then
\[
\text{Im} \int_\mathbb{T} i \Pi_N (|u_N|^2 u_N) = \text{Re} \int_\mathbb{T} \Pi_N (|u_N|^2 u_N)
\]
\[
= -\text{Re} \int_\mathbb{T} (\partial_x \Pi_N) |u_N|^2 u_N = -\frac{1}{4} \int_\mathbb{T} (|u_N|^4) = 0.
\]
(A.19)

Now observe that if \(f\) is real valued, then \(\partial^{-1} f\) is also real valued. Then it is easy to see that
\[
\int_\mathbb{T} R(u_N) = \int_\mathbb{T} \Pi_N R(u_N) \in \mathbb{R}.
\]
(A.20)

Finally by (A.18), (A.19) and (A.20) we obtain that \(\frac{d}{dt} \|u(t)\|_{L^2(\mathbb{T})}^2 = 0\) which yields the result. □

Recall definitions (1.4) of \(\mu_N\) and (1.8) of \(G_N\). Then we define the measure \(\tilde{\mu}_N\) on \(E_N\) by
\[
d\tilde{\mu}_N (u) = G_N (u) \mu_N (u).
\]
Then we have the following lemma.

Lemma A.6. The measure \(\tilde{\mu}_N\) is invariant under the flow \(\tilde{\Phi}_N\) of (A.17).
Gibbs measure for the periodic DNLS

Proof. The proof is a direct application of the Liouville theorem. See, e.g. [4, section 8] for a similar argument.

Proof of proposition A.4. We decompose the space $H^0(T) = E_N^\perp \oplus E_N$. From the previous analysis, we observe that the flow Φ_N of (A.16) is given by $\Phi_N = (Id, \tilde{\Phi}_N)$. Finally, the invariance of ρ_N follows from lemma A.6 and invariance of the Gaussian measure under the trivial flow on the high frequency part.

References

[1] Ané C, Blachère S, Chafaï D, Fougères P, Gentil I, Malrieu F, Cyril R and Scheffer G 2000 Sur les inégalités de Sobolev logarithmiques Panoramas et Synthèses 10 (Paris: Société Mathématique de France)
[2] Bourgain J 1994 Periodic nonlinear Schrödinger equation and invariant measures Commun. Math. Phys. 166 1–26
[3] Bourgain J 1996 Invariant measures for the 2D-defocusing nonlinear Schrödinger equation Commun. Math. Phys. 176 421–45
[4] Burq N, Thomann L and Tzvetkov N 2010 Long time dynamics for the one dimensional nonlinear Schrödinger equation arXiv:1002.4054
[5] Burq N and Tzvetkov N 2008 Random data Cauchy theory for supercritical wave equations: II. A global existence result Invent. Math. 173 477–96
[6] Grünrock A and Herr S 2008 Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data SIAM J. Math. Anal. 39 1890–920
[7] Kaup D and Newell A 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 798–801
[8] Oh T 2009 Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono system SIAM J. Math. Anal. 41 2207–25
[9] Oh T 2009 Invariant Gibbs measures and a.s. global well-posedness for coupled KdV systems Diff. Integ. Eqns 22 637–68
[10] Ledoux M and Talagrand M 1991 Probability in Banach spaces (Berlin: Springer)
[11] Tzvetkov N 2010 Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation Probab. Theory Relat. Fields. 146 481–514
[12] Tzvetkov N 2008 Invariant measures for the defocusing NLS Ann. Inst. Fourier 58 2543–604
[13] Tzvetkov N 2006 Invariant measures for the Nonlinear Schrödinger equation on the disc Dyn. Partial Diff. Eqns 3 111–60
[14] Zhidkov P 2001 KdV and Nonlinear Schrödinger Equations: Qualitative Theory (Lecture Notes in Mathematics vol 1756) (Berlin: Springer)