Research Article

Topological Analysis of the Language Networks of Ancient Traditional Chinese Medicine Books

Qunsheng Zou,1,2 Yinyan Wang,1,2 Zixin Shu,1,2 Kuo Yang,1,2 Jingjing Wang,1,2 Kezhi Lu,1,2 Qiang Zhu,1,2 Baoyan Liu,3 Runshun Zhang,4 and Xuezhong Zhou1,2

1 Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
2 Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
3 Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
4 Guang’anmen Hospital, China Academy of Chinese Medicine, Beijing 100700, China

Correspondence should be addressed to Xuezhong Zhou; xzzhou@bjtu.edu.cn

Received 13 September 2020; Accepted 24 November 2020; Published 11 December 2020

Academic Editor: Zhaohui Liang

Copyright © 2020 Qunsheng Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study aims to explore the topological regularities of the character network of ancient traditional Chinese medicine (TCM) book. We applied the 2-gram model to construct language networks from ancient TCM books. Each text of the book was separated into sentences and a TCM book was generated as a directed network, in which nodes represent Chinese characters and links represent the sequential associations between Chinese characters in the sentences (the occurrence of identical sequential associations is considered as the weight of this link). We first calculated node degrees, average path lengths, and clustering coefficients of the book networks and explored the basic topological correlations between them. Then, we compared the similarity of network nodes to assess the specificity of TCM concepts in the network. In order to explore the relationship between TCM concepts, we screened TCM concepts and clustered them. Finally, we selected the binary groups whose weights are greater than 10 in Inner Canon of Huangdi (ICH, 黄帝内经) and Treatise on Cold Pathogenic Disease (TCPD, 伤寒论), hoping to find the core differences of these two ancient TCM books through them. We found that the degree distributions of ancient TCM book networks are consistent with power law distribution. Moreover, the average path lengths of book networks are much smaller than random networks of the same scale; clustering coefficients are higher, which means that ancient book networks have small-world patterns. In addition, the similar TCM concepts are displayed and linked closely, according to the results of cosine similarity comparison and clustering. Furthermore, the core words of Inner Canon of Huangdi and Treatise on Cold Pathogenic Diseases have essential differences, which might indicate the significant differences of language and conceptual patterns between theoretical and clinical books. This study adopts language network approach to investigate the basic conceptual characteristics of ancient TCM book networks, which proposes a useful method to identify the underlying conceptual meanings of particular concepts conceived in TCM theories and clinical operations.

1. Introduction

As a traditional medicine with medical theories and concepts mainly established thousands of years ago, TCM has abundance of high-value ancient books written or printed in the form of Chinese classical binding before 1912, which conceive important TCM theories and concepts and the clinical principle for disease diagnosis and treatment [1, 2]. Although many TCM antecessors performed significant theoretical investigations to digest the knowledge employed in these books, which has promoted the advances of contemporary clinical practical solutions for the managing of various complicated diseases in real-world clinical settings [3], it is particularly important to investigate the language characteristics of ancient TCM books, which will help understand the theoretical knowledge exactly expressed in those texts [4]. However, little research was conducted to understand the language regularities of the key TCM concepts (e.g., Yin, Yang, and Qi) in these ancient books using computational linguistics and complex network approaches [5].
Complex network has been developed as a mainstream approach for investigating the regularities in the fields with complex phenomena, such as social science, biological science, and linguistics [6–8]. For this approach, network or graph consisting of nodes and links is the form to represent the structures of the related systems. Due to the complex organization and interactions between various medical entities, complex network approaches have been used for exploring the rules of associations between herbs, symptoms, syndromes, and human meridians [9–12]. However, rare work was conducted on the analysis of language regularities of TCM books by complex network approaches [13].

In this paper, firstly, we constructed directed networks from the full texts of ancient TCM books. Then, we analyzed the statistical characteristics of the networks, identified the centrality patterns of core TCM concepts, and explored the similarities and differences between different ancient books. In addition, we demonstrated what the diversity of the concepts, such as “Qi (气)”, “Yin (阴)”, “Yang (阳)”, “Xie (泻)”, and “Li (理)”, in Chinese medicine, and what special conceptual meanings they would have.

2. Materials and Methods

2.1. Dataset of 80 Ancient TCM Books. The data we used was derived from texts of 80 ancient Chinese medicine books (Table 1 shows a typical collection of 30 books), with an emphasis on the analysis of the books of Inner Canon of Huangdi (ICH) and Treatise on Cold Pathogenic Disease (TCPD). For example, ICH contains 189,984 characters and TCPD contains 43,331 characters. Data cleaning was performed to remove the characters in ancient texts except for Chinese and periods and separated the whole text into sentences. For example, ICH and TCPD, after cleaning the data of these two ancient books, we obtained 6,237 sentences and 1,366 sentences, respectively.

2.2. Language Network Construction Using 2-Gram Model. In the field of computational linguistics, n-gram is a widely used method to model natural language; particularly, an n-gram is a contiguous sequence of n items from a given sequence of text [14, 15]. Here, we used 2-gram model to obtain the sequential links of characters in ancient TCM books. Given a sentence, we would generate a directed path with characters as nodes and the sequential associations between them as links. When all the sentences of a given book were processed, we would obtain a weighted directed language network, in which the number of identical sequential associations is considered as the weight of the link. For example, the sentence “阴阳者，天地之道也” in ICH can be processed to a directed path (Figure 1(a)) [16]. We have built the language networks for all the 80 ancient TCM books. In particular, the network of ICH contained 2,367 nodes and 35,502 directed links (see Figure 1(b)).

2.3. Basic Network Characteristics. The number of links connected to each node in TCM book networks, that is, the degree of the node [17]. We counted the degree of each node in the network and figured up the number of nodes with the same degree and attempted to find out whether the degree distributions of ancient book networks are consistent with the power law [18]. By calculating the average path length [19] and clustering coefficients [20] of networks, we judged whether these networks possess the small-world property.

The number of links connected to each node in TCM book networks is:

\[ l_G = \frac{1}{n(n-1)} \sum_{i \neq j} d(v_i, v_j), \]  

(1)

where \( l_G \) is the average path length of graph \( G \), \( n \) is the number of nodes, and \( d(v_i, v_j) \) denotes the shortest distance between \( v_i \)
edges in graph immediately connected with node where ditering coefficien

tiate between similar concepts and their random controls: concepts, we proposed the following methods to differen

investigate the homogeneity phenomenon of these similar dimensional representations for nodes in a graph [22]. To calculated by the Node2Vec framework which learns low-

vector representation of each node in book network is monogeneity compared with the random sets of concepts. fK_he concepts would display the same degree of centrality ho-

would finally have similar centralities; that is, the similar addition, we assumed that for those similar concepts, they

sentation of nodes in the directed language networks. In

2.4. Homogeneity of the Centrality of Similar TCM Concepts in the Language Network. In TCM theories, there are hundreds of similar basic concepts (often in the form of a single character word), such as “Yin and Yang (阴阳)”, “the five elements (五行)”, and “the five internal organs (五脏)”, which are essential for TCM theories and clinical solutions [21]. We supposed that this kind of essentiality or impor-
tance of the concepts could be captured by vector represen-
tation of nodes in the directed language networks. In addition, we assumed that for those similar concepts, they would finally have similar centralities; that is, the similar concepts would display the same degree of centrality homegeneity compared with the random sets of concepts. The vector representation of each node in book network is calculated by the Node2Vec framework which learns low-
dimensional representations for nodes in a graph [22]. To investigate the homogeneity phenomenon of these similar concepts, we proposed the following methods to differentiate between similar concepts and their random controls:

\[
\text{sim} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} a_i \times b_i}{\sqrt{\sum_{i=1}^{n} (a_i)^2} \times \sqrt{\sum_{i=1}^{n} (b_i)^2}}
\]  

(3)

where A and B are the low-dimensional representation of nodes, \(a_i\) and \(b_i\) are their components, and \(i = 1, 2, \ldots, n\), \(n\) is the dimension of vectors.

Determine \(S\) as a set of similar concepts and \(R\) as the set of another nodes in network. The similarity of concepts in groups will be defined by \(\text{sim}_{i, j}\) and similarity between in-group concepts and out-of-group concepts will be defined by \(\text{sim}_{i, k}\), where \(i, j \in S\) and \(k \in S\). If our hypothesis is correct, then \(\text{sim}_{i, j}\) is generally greater than \(\text{sim}_{i, k}\).

2.5. t-Test on Similarity Sequences. Through the above method, we gained the difference between similarity of each basic concept and random concept. However, the current results were only relative to a single basic concept, which did not indicate that similar concepts are homogeneous to some extent. There is a way to solve this problem, named the Student t-test, which is often used to assess whether the means of two classes are statistically different from each other by calculating a ratio between the difference of two class means and the variability of the two classes [23, 24]. In this way, we can verify the homogeneity of basic concepts indirectly through the results of \(t\)-test. Whereupon, we combined results of each basic concept into similarity se-

quence \(M\) and results of random concepts into similarity sequence \(N\). After performing \(t\)-test on these two sequences, if \(P\) value is less than 0.05, we believe these basic concepts are similar to each other and consistent with homogeneity.

2.6. Identifying the Concept Clusters. It is well recognized that the complex networks like language network often hold a kind of community structures with some subnetworks involving dense links while sparse links outside those subnetworks. These subnetworks, which are considered as network clusters or communities, would deliver domain meaningful knowledge for further investigation. To detect the concept clusters or communities in the TCM language network, we applied the Fast Unfolding Algorithm (FUA) which was a well-known community detection method.

![Figure 1: (a) An example of ancient TCM book network. (b) The language network of ICH.](image-url)
based on modularity [25] to detect the communities of a
given network by

\[ Q = \frac{1}{2m} \sum_{ij} \left( W_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j). \]  

(4)

Think of \( Q \) as the modularity of the entire network,
where \( m = (1/2)\sum_{ij} W_{ij} \) represents the sum of the weights of all
the edges in the network; \( W_{ij} \) is the weight between node \( i \)
and node \( j \), and \( k_i = \sum_j W_{ij} \) is the sum of the weights of the edges
which connected to node \( i \), and \( C_i \) indicates the community
which node \( i \) is assigned to. The value of \( \delta(C_i, C_j) \) is 0 or 1;
when \( \delta(C_i, C_j) = 1 \), it means node \( i \) and node \( j \) are in the
same community; otherwise, node \( i \) and node \( j \) are not in the
same community. Then, iteratively making the modularity
reach the maximum value, the final clustering results were
obtained.

3. Results

3.1. Basic Characteristics of TCM Language Network. It is
observed that the degree distribution of ancient Chinese
medicine nodes is consistent with the power law distribution
[26, 27] (Figures 2(a) and 2(b)), which means that although
most characters were rarely used together with other
characters; there are some “Hub” characters, such as “Qi”,
“Yin”, and “Yang”, connecting to a various number of
characters in the sentences. We listed the basic network
features of the 30 typical TCM books which are divided into
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
features of the 30 typical TCM books which are divided into
characters in the sentences. We listed the basic network
"Yin", and “Yang”, connecting to a various number of
characters; there are some “Hub” characters, such as “Qi”,
most characters were rarely used together with other
characters in the sentences. We listed the basic network
features of the 30 typical TCM books which are divided into
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
features of the 30 typical TCM books which are divided into
characters in the sentences. We listed the basic network
features of the 30 typical TCM books which are divided into
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of
books are close to 1.0; the biggest one is 1.3246 of the
10 categories. It can be found that the power exponents of

\[ p(k) \propto k^{-\gamma}, \]  

(5)

where \( k \) is the degree of the node, \( p(k) \) is the ratio of the
number of nodes with a degree of \( k \) to the total number of
nodes, and \( \gamma \) is the power exponent which floats above and
below 1.

In addition, the average path lengths of these networks
are around 3, in which the largest one is 3.819 and the
smallest one is 2.727. The clustering coefficients are distri-
buted between 0.1 and 0.3 (Table 2). Comparing these
ancient books with random networks of the same scale, it is
found that their average path lengths are smaller than
random networks and the clustering coefficients are larger
than random networks. It means that TCM language net-
works conform to the small-world pattern [7].

3.2. Topological Homogeneity of TCM Basic Concept Groups.
To validate the power of complex network approach to
differentiate the semantic groups of basic TCM concepts
from the language network, we calculated the cosine simi-
larity of each node vector of 16 basic TCM concept groups
(Table 3). We assumed that the basic TCM concept groups,
such as these concepts of five elements, would have similar
values for the centrality measures, which would reflect their
similar semantic importance in the language network from
the topological measures. The results showed that most of
the basic TCM concept groups in basic theoretical books
(e.g., ICH) are more similar to each other than those of
random controls (Table 4), which indicated that these basic
TCM concept groups display a kind of linking homogeneity
reflecting their close category semantic similarities. For
example, the five elements concept category includes Mu,
Huo, Tu, Jin, and Shui as closely related members. We found
that, in the ICH book (Figure 2(c)), the cosine similarity of
these five elements ranges from 0.0499 to 0.2786 with a
rather high value of very narrow variance (mean: 0.1498 + std: 0.0669). This demonstrated the central role of
the concepts in the five elements category for TCM and the
categorical homogeneity of these five concepts. In addition,
these category similar concepts could be identified by
community detection methods due to their similar con-
nection patterns in the context of network. For example, in
ICH network, using FUA (see methods), we could identify
the concept groups as same communities, such as “Yin
and Yang”, “the five elements”, “the five notes”, and “the five
colors” from the whole network (Figure 3).

However, the results were different for those clinical
books (e.g., TCPD). The cosine similarity of the basic TCM
concept groups did not tend to show homogeneous patterns.
This might be due to the differently focused subjects of these
books. For example, TCPD is mainly focusing on the
manifestations of six types of syndromes and their regu-
larities of herb treatment.

3.3. Diversity of TCM Language Networks. To further in-
vestigate the distinct topological patterns involved in dif-
ferent TCM language networks, we screened the links whose
weights are >10 in ICH and TCPD and regarded the related
nodes (Chinese characters) as key concepts in these two
books (Figure 4). It is illustrated that the key concepts in ICH
mainly include the basic theoretical characters in TCM, such
as “Yin/Yang”, “the five elements” and its associated con-
cepts, quantifiers, emotions, and pulse (Figure 4(b)). In
contrast, although several basic theoretical concepts, such as
“Yin/Yang”, are still included in TCPD as the key concepts,
most of the others are related to herb prescriptions and
symptoms (Figure 4(b)). These results indicated the distinct
category of knowledge delivered in these two books. It is well
known that ICH ensembles the basic theories of TCM, while
TCPD is recognized as a representative clinical book fo-
cusing on disease manifestations, pathologies, and their
corresponding herb prescriptions.

3.4. Exploring the Specific Semantic Intensions of Core TCM
Concepts. To identify the specific meaning of a given
concept, we would like to see what exactly words or phrases
it occurred. The TCM language network could give help to
this investigation. It is well known that some basic con-
cepts, such as “Qi” and “Yin and Yang”, are of great sig-
nificance to TCM; however, the connotations of these
concepts are rather complicated [28–30]. We constructed
an integrated language network with various character
triples derived from 30 ancient TCM books, which finally consists of 6118 nodes and 381467 links. Here, we extracted the 1-order neighborhood of a given node and took four concepts, namely, “Qi”, “Yin/Yang”, “Xie”, and “Li” for demonstrations (Figure 5). It is interesting that for the basic concept of “Qi”, there are about 1864 characters (nodes) directly connecting to this node, in which the characters, such as “Yang”, “Xue”, “Yin”, “Yuan”, “Zheng”, and “Jing” together with “Qi” represent the main types of “Qi” recognized in TCM theories. Therefore, other connecting characters to “Qi” obtained the various manifestations and pathologies, such as “XiaQi”, “QiNi” and “QiXu”; “XieQi”, “HanQi”. Although these concepts are usually adopted by professional TCM practitioners, our network results could grasp and demonstrate the global connecting characters for TCM researchers. Similarly, we obtained 1736 characters related to “Yin and Yang”, which could form different “Yin and Yang”-related basic concepts, such as meridian-related concepts (e.g., “TaiYin”, “TaiYang”, “YangMai”, and “YinMai”), syndrome-related concepts (e.g., “YinXu” and “YangXu”). For the character “Xie”, our network approach clearly showed two types of semantics involved. One type of concept is related to different manifestations, such as “XieXie”, “TuXie”, “ShuiXie”, and “FengXie”. Another type of concept is related to the principles for prescriptions including “XieXin” and “XieHuo”. However, the concepts related to “Li” are only associated with disorders or diseases, such as “XueLi”, “NueLi”, “GanLi”, “LiChang”, and “LenLi”. The rigorous evaluation of these related concepts would help with the precise understanding of the
### Table 2: Basic topological characteristics of TCM ancient books.

| Book       | Average path length (APL) | APL random | P value   | Average clustering coefficients | ACC random | P value |
|------------|---------------------------|------------|-----------|---------------------------------|------------|---------|
| ICH        | 3.036                     | 2.973      | <2.23E−308| 0.249                           | 0.0077     | <2.23E−308|
| CMP        | 3.590                     | 4.012      | <2.23E−308| 0.123                           | 0.0092     | 7.7E−71  |
| YJYJ       | 2.912                     | 2.957      | <2.23E−308| 0.297                           | 0.0077     | <2.23E−308|
| HSZZJ      | 3.674                     | 3.219      | <2.23E−308| 0.097                           | 0.0078     | 9.44E−129|
| YXQY       | 3.434                     | 3.292      | <2.23E−308| 0.140                           | 0.0076     | 3.7E−164 |
| WXDY       | 3.329                     | 2.967      | <2.23E−308| 0.154                           | 0.0076     | 1.9E−298 |
| TCPD       | 3.584                     | 3.367      | <2.23E−308| 0.119                           | 0.0077     | 5.06E−120|
| SGC        | 3.548                     | 3.340      | <2.23E−308| 0.107                           | 0.0067     | 3.34E−127|
| ZQZSHL     | 3.199                     | 3.164      | 2.77E−167 | 0.202                           | 0.0074     | 6.57E−276|
| CBZN       | 3.702                     | 3.509      | <2.23E−308| 0.098                           | 0.0073     | 4.76E−91 |
| YDXY       | 3.103                     | 2.847      | <2.23E−308| 0.188                           | 0.0075     | <2.23E−308|
| ZISY       | 3.505                     | 3.712      | <2.23E−308| 0.135                           | 0.0082     | 2.03E−89 |
| A-B CAM    | 3.096                     | 3.060      | <2.23E−308| 0.232                           | 0.0074     | <2.23E−308|
| ZIZN       | 3.749                     | 3.472      | <2.23E−308| 0.085                           | 0.0069     | 7.3E−74  |
| ZJJSJ      | 3.275                     | 3.062      | <2.23E−308| 0.158                           | 0.0077     | 5.62E−275|
| EMM        | 3.227                     | 2.884      | <2.23E−308| 0.154                           | 0.0074     | <2.23E−308|
| CMCNM      | 3.327                     | 2.929      | <2.23E−308| 0.144                           | 0.0074     | <2.23E−308|
| SCNM      | 3.622                     | 2.935      | <2.23E−308| 0.112                           | 0.0076     | 4.21E−209|
| VPE        | **3.819**                 | 3.259      | <2.23E−308| **0.078**                       | 0.0075     | 3.66E−99 |
| BZBY       | 3.406                     | 3.064      | <2.23E−308| 0.127                           | 0.0075     | 5.41E−231|
| YJY        | 3.521                     | 3.086      | <2.23E−308| 0.106                           | 0.0075     | 3.49E−180|
| BQHB       | 3.488                     | 3.009      | <2.23E−308| 0.116                           | 0.0076     | 2.49E−197|
| SBOC       | 3.302                     | 3.259      | <2.23E−308| 0.158                           | 0.0075     | 3.06E−206|
| CDP        | 3.143                     | 2.875      | <2.23E−308| 0.191                           | 0.0076     | <2.23E−308|
| BPZNP      | 3.185                     | 2.831      | <2.23E−308| 0.168                           | 0.0073     | <2.23E−308|
| BP2WP      | 3.167                     | 2.877      | <2.23E−308| 0.159                           | 0.0074     | <2.23E−308|
| YSM      | 3.814                     | 3.461      | <2.23E−308| 0.086                           | 0.0077     | 2.05E−75 |
| GIUMYHC   | 3.043                     | 2.932      | <2.23E−308| 0.244                           | 0.0072     | <2.23E−308|
| MCB A-M    | **2.727**                 | 2.767      | <2.23E−308| **0.319**                       | 0.0075     | <2.23E−308|
| EM         | 2.843                     | 2.795      | <2.23E−308| 0.270                           | 0.0075     | <2.23E−308|

* t-test was used to compare the real and random measures.

### Table 3: The mean and standard deviation of cosine similarity of each node of 16 basic TCM concept groups in ICH.

| Concept groups | Mean | Standard deviation |
|----------------|------|--------------------|
| WuXing (五行)  | 0.1498 | 0.0669 |
| WuZang (五脏) | 0.4378 | 0.0996 |
| WuSe (五色)   | 0.3407 | 0.0712 |
| WuWei (五味)  | 0.4363 | 0.0633 |
| WuYin (五音)  | 0.3351 | 0.1487 |
| WuQing (五情)| 0.3581 | 0.0756 |
| WuYe (五液)   | 0.3587 | 0.1144 |
| WuGuan (五官)| 0.2855 | 0.0681 |
| WuTi (五体)   | 0.1692 | 0.1104 |
| WuZhi (五志)  | 0.3144 | 0.1496 |
| WuSheng (五声)| 0.3703 | 0.1674 |
| SiXing (四性)| 0.3496 | 0.0767 |
| SiJi (四季)   | 0.3963 | 0.1243 |
| YinYang (阴阳)| 0.3606 | 0.1178 |
| SanBao (三宝)| 0.2824 | 0.0969 |
| JingMai (经脉)| 0.0904 | 0.1222 |
manifestations related to “Li” and improve distilling the high-value disease or prescription knowledge from TCM ancient literatures.

4. Discussion

Medical concepts constitute the basic knowledge framework of TCM theories devoted to the clinical observation of the complicated manifestations and their understanding of the underlying pathologies from TCM perspectives. Therefore, the development of TCM terminologies even with international translations is an important task in TCM field [31–33]. However, as most TCM concepts derived from ancient textbooks, it is difficult for contemporary practitioners to definitely grasp the whole meanings and connotations in the framework of TCM theories, in which the semantic diversity of a specific TCM concept is one of the key issues. Language network proposes an efficient approach to investigate the semantic properties of concepts of words in large-scale text corpora [34]. The application of complex network in linguistics has made it possible for us to adopt real network analysis tools in ancient TCM book studies. Unfortunately, the current researchers of TCM are mostly those with medical science background, who usually concern themselves with clinical medicine. It lacks some approaches, which focus on ancient TCM books’ concepts, are not only helpful to the research on basic theory of TCM but also helpful to nonprofessionals understanding the basic concepts.

Ancient TCM books are carriers of Chinese medicine knowledge and have great significance for the entire Chinese civilization [35]. In this paper, we analyzed TCM books in the form of network and explored some characteristics of ancient language networks. First of all, the node degree distributions, average path lengths, and clustering coefficients of the networks showed that TCM character-language networks follow a kind of scale-free and small-world networks. Secondly, we analyzed the basic concepts in ancient TCM book networks and found that these concepts play special roles in language networks. Furthermore, we extracted key TCM concepts of each book and found that the key concepts in different categories of ancient books have obvious differences. Finally, we drew a conclusion that Chinese medicine concepts such as “Qi” have rich medical connotations in ancient books.

There are several limitations in our manuscript. Firstly, we only constructed dozens of language networks, which might influence the extensions of the obtained results to more general context. In addition, the character-based 2-gram modeling also limits the investigation capability of the language network for semantic issues. Secondly, although most TCM basic concepts could be grasped by single character (e.g., Qi), there exist many key concepts, such as those of acupuncture points, herbs, and disorders, which would necessarily be represented by words or phrases to further explore their semantic regularities. Furthermore, it is notable that network approach is adept in investigating the global patterns of a given domain, which could be combined with other data analysis methods (e.g., association rules) to generate more specific results to deliver TCM meaningful knowledge.

### Table 4: The difference between basic TCM concept groups and random controls in ancient books (by t-test).

| Book | P value |
|------|---------|
| ICH  | $1.08 \times 10^{-12}$ |
| CMP  | 0.064492 |
| YJYZ | $6.28 \times 10^{-3}$ |
| HSZZ | 0.418429 |
| YXQY | 0.361999 |
| WXZY | $3.58 \times 10^{-3}$ |
| TCPD | 0.856763 |
| SGC  | 0.807354 |
| ZQZSHL| 0.182582 |
| CBZN | 0.650913 |
| YDXY | 0.239566 |
| ZJSY | 0.677128 |
| A-B-CAM| $3.93 \times 10^{-6}$ |
| ZIZN | 0.061295 |
| ZIZSJ | 0.018853 |
| EMM  | 0.086299 |
| CNCMM| 0.575891 |
| SNMCM | 0.059049 |
| VPE  | $5.95 \times 10^{-6}$ |
| BZYBY| $0.012146$ |
| JYF  | 0.027935 |
| BQHB | 0.000277 |
| SBOC | 0.499433 |
| CDP  | 0.281999 |
| BPZNP| $4.97 \times 10^{-6}$ |
| BPZWP| $1.10 \times 10^{-7}$ |
| YSMO | 0.740321 |
| GJMYYC| $3.84 \times 10^{-6}$ |
| MCB-A-M| 0.000839b |
| EM   | 0.572089 |

Note. $P$ value $< 0.05$ means that most of the basic TCM concept groups in this book are more similar to each other than random controls. $^a P$ value $< 0.01$, $^b P$ value $< 0.05$, and $^c P$ value $< 0.001$.
Figure 4: Two cases of TCM language networks. (a) The key TCM concepts of *Inner Canon of Huangdi*. (b) The key TCM concepts of *Treatise on Cold Pathogenic Diseases*.

Figure 5: (a) The network centered on “Qi.” (b) The network centered on “Yin” and “Yang.” (c) The network centered on “Xie.” (d) The network centered on “Li.”
5. Conclusion

In summary, we found that the degree distribution of ancient TCM book networks is consistent with power law distribution and small-world patterns. In addition, similar concepts in ancient books are displayed and linked closely. Moreover, we realized that there are essential differences in language and conceptual patterns between theoretical and clinical books. To sum up, the exploration of ancient TCM books provides an effective method to identify the underlying conceptual meanings of particular concepts conceived in TCM theories and clinical operations.

Data Availability

Data used in this paper are found at https://gitee.com/zouqunsheng/ancient-tcm-books.git.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was partially supported by the National Key Research and Development Program, China (2017YFC1703506, 2017YFC1703502, 2017YFC1703505, and 2020YFC0841600), the Special Programs of Traditional Chinese Medicine China (JDZX2015168, JDZX2015171, and JDZX2015170), and the Fundamental Research Funds for the Central Universities, China (no. 2018JBZ006).

References

[1] P. Jiang, Y. Li, Y. Zhou et al., “Reflections on the collation of ancient books of traditional Chinese medicine,” Chinese Medicine Modern Distance Education of China, vol. 16, no. 6, pp. 62-63, 2018.

[2] F. Meng, W. Shang, S. Li et al., “Classification systems of ancient books on traditional Chinese medicine and their evolution,” Chinese Journal of Medical Library and Information Science, vol. 24, no. 9, pp. 62-66, 2015.

[3] T. Yu, J. Li, Q. Yu et al., “Knowledge graph for TCM health preservation: design, construction, and applications,” Artificial Intelligence in Medicine, vol. 77, pp. 48–52, 2017.

[4] J. Xie and C. Jia, “Types and functions of metaphorical language in internal classic of huang di,” Acta Chinese Medicine and Pharmacology, vol. 39, no. 1, pp. 1–4, 2011.

[5] X. Zhou, Y. Peng, and B. Liu, “Text mining for traditional Chinese medical knowledge discovery: a survey,” Journal of Biomedical Informatics, vol. 43, no. 4, pp. 650–660, 2010.

[6] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[7] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, p. 268, 2001.

[8] H. Liu, “Linguistic Complex Networks: a new approach to language exploration,” Grundlagenstudien Aus Kybernetik Geisteswissenschaft (grkg/Humankybernetik), vol. 52, pp. 151–170, 2011.

[9] S. Li, B. Zhang, D. Jiang et al., “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, no. 11, p. S6, 2010.

[10] C. van Borkulo, L. Boschloo, D. Borsboom, B. W. J. H. Penninx, L. J. Waldorp, and R. A. Schoevers, “Association of symptom network structure with the course of depression,” JAMA Psychiatry, vol. 72, no. 12, pp. 1219–1226, 2015.

[11] R. Goekoop and J. G. Goekoop, “A network view on psychiatric disorders: network clusters of symptoms as elementary syndromes of psychopathology,” PLoS One, vol. 9, no. 11, Article ID e112734, 2014.

[12] Y. Bai, J. Wang, J.-P Wu et al., “Review of evidence suggesting that the fascia network could be the anatomical basis for acupoints and meridians in the human body,” Evidence-based Complementary and Alternative Medicine, p. 2011, 2011.

[13] H. Wan, M.-F. Moens, W. Luyten et al., “Extracting relations from traditional Chinese medicine literature via heterogeneous entity networks,” Journal of the American Medical Informatics Association, vol. 23, no. 2, p. 356, 2016.

[14] P. F. Brown, P. V. Desouza, R. L. Mercer et al., “Class-based n-gram models of natural language,” Computational Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[15] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,” 1994.

[16] J. H. Martin and D. Jurafsky, “Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition,” Pearson/Prentice Hall, vol. 23, 2009.

[17] M. Brede, “Networks—an introduction,” Artificial Life, vol. 18, no. 2, pp. 241-242, 2010.

[18] M. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005.

[19] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[20] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[21] Q. Jane, “Traditional medicine: a culture in the balance,” Nature, vol. 448, no. 7150, p. 126, 2007.

[22] A. Grover and J. Leskovec, “node2vec: scalable feature learning for networks,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 4, pp. 855–864, 2016.

[23] J. F. Box, “Guinness, Gosset, Fisher, and small samples,” Statistical Science, vol. 2, no. 1, pp. 45–52, 1987.

[24] J. L. Devore and R. Peck, “Statistics: the exploration and analysis of data,” Duxbury Press, vol. 4, 2005.

[25] V. D. Blondel, J. L. Guillaume, R. Lambiotte et al., “Fast unfolding of communities in large networks,” Journal of Statistical Mechanics, vol. 2008, no. 10, pp. 155–168, 2008.

[26] C. M. Bernat and R. V. Solé, “Universality of Zipf’s law,” Journal of Statistical Mechanics, vol. 82, no. 1, Article ID 011102, 2010.

[27] B. Albert-László, “Scale-free networks: a decade and beyond,” Science, vol. 325, no. 5939, pp. 412–413, 2009.

[28] X. Dong, “The meaning evolution of “material force” and the theory in traditional Chinese medicine,” Journal of Liaoning Medical College: Social Science Edition, vol. 14, no. 4, pp. 63–66, 2016.

[29] M. Yan and Y. Wang, “Objectization of conceptual and state of affairs of spatiotemporal sequence by qi’s reference in traditional Chinese medicine,” Journal of Beijing University of Traditional Chinese Medicine, vol. 41, no. 9, pp. 717–725, 2018.

[30] Z. Wang, “Study on the essence of Yin and Yang,” Traditional Chinese Medicine and Related Issues, vol. 41, 2014.
[31] Z. Li, “Standardizing English translation of traditional Chinese medical terminology: an analysis of the Concepts, Principles and methods concerned,” *Chinese Translators Journal*, vol. 29, no. 4, pp. 63–70, 2008.

[32] J. Zhu, “Standardization of terms of traditional Chinese medicine (TCM) and modernization and internationalization of TCM,” *China Journal of Traditional Chinese Medicine and Pharmacy*, vol. 1, pp. 6–8, 2006.

[33] Z. Xie, “Discussion on English translation of traditional Chinese medicine terms,” *Chinese Journal of Integrated Traditional and Western Medicine*, vol. 9, pp. 706–709, 2000.

[34] C. Biemann, S. Roos, and K. Weihe, “Quantifying semantics using complex network analysis,” *Proceedings of COLING*, vol. 2012, pp. 263–278, 2012.

[35] Y. Fu, G. Liu, B. Li et al., “Digital research on ancient books of traditional Chinese medicine,” *Chinese Journal of Information on Traditional Chinese Medicine*, vol. 6, pp. 563-564, 2004.