Streptococcus vaginalis sp. nov., a novel bacterial species isolated from vaginal swabs of a pregnant woman with diabetes

An-Shine Chao1,2 · Chiao-Yun Lin2,3 · Angel Chao2,3 · Yun-Shien Lee4,5 · Yu-Chung Chang5 · Hui-Chung Wu5 · Yu-Jie Dai5 · Wei-Qi Liao5 · Fan-Ching Kao5 · Yi-Sheng Chen5

Received: 11 May 2021 / Revised: 12 August 2021 / Accepted: 15 August 2021 / Published online: 20 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Sequences targeted at the V3 and V4 16S rRNA hypervariable regions of a streptococcal strain (P1L01T) isolated from vaginal swabs of a pregnant woman with diabetes were 100% similar to those of Streptococcus anginosus subsp. whileyi. However, phylogenetic analysis based on 16S rRNA full-gene sequencing (1562 bp) revealed highest sequence similarity to Streptococcus periodonticum (98.7%), followed by Streptococcus anginosus subsp. whileyi (98.7%), and Streptococcus anginosus subsp. anginosus (98.4%). Phylogenies of housekeeping genes rpoB and groEL were compared to improve classification, and the results showed a clear separation between strain P1L01T and closely related Streptococcus type strains. The complete genome of strain P1L01T consisted of 2,108,769 bp with a G + C content of 38.5 mol%. Average nucleotide identity values, based on genome sequencing, between strain P1L01T and Streptococcus periodonticum KCOM 2412T, Streptococcus anginosus subsp. whileyi CCUG 39159T, and Streptococcus anginosus subsp. anginosus NCTC 10713T were 95.5%, 94.3%, and 95.3%, respectively. The highest in silico DNA–DNA hybridization value with respect to the closest species was 66.2%, i.e., below the species cutoff of 70% hybridization. The main cellular fatty acids of strain P1L01T were 16:0, 18:1ω7c, and 14:0. On the basis of phylogenetic, genotypic and phenotypic data, we propose to classify this isolate as representative of a novel species of the genus Streptococcus, Streptococcus vaginalis sp. nov., in reference to its isolation from vaginal swabs, with strain P1L01T (= NBRC 114754T = BCRC 81289T) as the type strain.

Keywords Streptococcus vaginalis · Diabetes · Pregnancy · Vaginal environment

Introduction
The genus Streptococcus, a heterogeneous group of Gram-positive bacteria, includes some of the most significant human pathogens – including S. pyogenes, S. pneumoniae (Megged 2020), Streptococcus suis (Yi et al. 2020), S. iniae, S. parauberis (Park et al. 2016), and S. agalactiae (Group B Streptococcus, GBS) (Opinion 2020). Of the 178 different species of the genus Streptococcus (https://lpsn.dsmz.de/), several are known to cause gynecological and obstetric infections. Notably, GBS is the predominant infectious organism that causes bacteremia or sepsis in newborns and young infants (Opinion 2020). During labor and delivery, the vertical transmission of GBS from an infected mother to her fetus can also lead to pneumonia or meningitis (Scholl et al. 2016; Yu et al. 2011). For this reason, antibiotics are routinely given for preventing peripartum infections in women who test positive for GBS colonization in the anogenital region (Francois Watkins et al. 2019; Opinion 2020). However, only a limited number of studies have investigated the prevalence of other streptococcal species within the vaginal environment during pregnancy (Al Majid et al. 2020; Kolter and Henneke 2017; Rabe et al. 1988).

The Streptococcus anginosus group is a subgroup of viridans streptococci that comprises three closely related
species: *S. intermedius*, *S. constellatus*, and *S. anginosus*, of which the last named is divided into two subspecies (*S. anginosus* subsp. *anginosus* and *S. anginosus* subsp. *whileyi*). In the current study, a streptococcal strain (termed P1L01T) was isolated from vaginal swabs of a pregnant woman with type 2 diabetes at 35 weeks of gestation. 16S rRNA gene-based phylogenetic analyses were undertaken, and species that showed >98.5% similarity were selected for further characterization and comparison (Lim et al. 2019). Phylogenies of housekeeping genes *rpoB* (Glazunova et al. 2006; Saito et al. 2016) and *groEL* (Glazunova et al. 2006; Niu et al. 2017; Zbinden et al. 2012) were also analyzed to improve classification. While sequences targeted at the V3 and V4 16S rRNA hypervariable regions were 100% similar to those of *Streptococcus anginosus* subsp. *anginosus* (*S. anginosus* subsp. *anginosus*), phylogenies of housekeeping genes *rpoB* and *groEL* revealed a clear separation between P1L01T and related type strains of *Streptococcus*. Herein, we investigated the taxonomic status of strain P1L01T and propose to classify this isolate as representative of a novel species of the genus *Streptococcus*, *Streptococcus vaginalis* sp. nov.

Materials and methods

Sample isolation

As recommended by the National Health Bureau Care Program (Taiwan), vaginal swabs of a Taiwanese pregnant woman with type 2 diabetes were obtained at 35 weeks of gestation as part of screening for GBS colonization. Swab specimens were submitted for bacterial species identification. Under institutional review board approval (IRB number: 201701371A3), the patient gave written informed consent. Strain P1L01T was isolated from cultures grown at 37 °C in brain–heart infusion (BHI) medium under anaerobic conditions. As the patient was at high risk for preterm labor, steroids and antibiotics were administered at 37 weeks of gestation to accelerate lung maturation and prevent peripartum infections.

Genomic features and gene phylogeny

Genomic DNA was extracted from strain P1L01T using the QIAGEN DNeasy Blood & Tissue kit (QIAGEN, Valencia, CA, USA). Phylogenies of housekeeping genes *rpoB* and *groEL* were compared to improve classification within the genus *Streptococcus* (Glazunova et al. 2006; Niu et al. 2017; Saito et al. 2016; Zbinden et al. 2012). Genomic sequences of the 16S rRNA, *rpoB*, and *groEL* genes were obtained from the DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp/) using ARSA (accession number: NZ_CP034543, NZ_CP012805, and NZ_LR134283). Neighbor-joining phylogenetic analyses, based on 16S rRNA gene sequence comparison, were performed using the EzBioCloud database (http://www.ezbiocloud.net/identify). Sequence homology analyses for the *rpoB* and *groEL* genes were undertaken using the Genetyx-Win software (version 5.1; Genetyx Corporation, Tokyo, Japan).

The draft genome sequence of strain P1L01T was obtained with an Illumina MiniSeq system (Illumina, San Diego, CA, USA) using the 600-cycle MiSeq Reagent Kit v3. De novo assembly of reads was performed using the SPAdes (version 3.10.1) (Bankevich et al. 2012). Gene annotation of the draft sequence was carried out using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html) (Klimke et al. 2009). Average nucleotide identity (ANI) values was calculated with Orthologous Average Nucleotide Identity tool (Lee et al. 2016). Digital DNA–DNA hybridization (dDDH) values were determined using Formula 2 of the Genome-to-Genome Distance (GGD) Calculator (Meier-Kolthoff et al. 2013).

Sequence alignment was carried out using the CLUSTAL W software (Thompson et al. 1997) and the MEGA X package (Kumar et al. 2018) was used for all analyses. Phylogenetic trees were constructed with different methods—including maximum likelihood (ML), minimum evolution (ME) (Rzhetsky and Nei 1992) and neighbor joining (NJ) with the Kimura’s two-parameter model (Kimura 1980; Saitou and Nei 1987)—using 1000 bootstrap replications.

Phenotyping

Sheep blood (final concentration, 5% in BHI medium) was used for hemolytic activity assays. Fermentation capacity was examined using a commercial kit (API 50 CHL; bioMérieux, Lyon, France) according to the manufacturer’s protocol. Halotolerance (2.5, 3.5, 4.5, 5.5 and 6.5% NaCl) and ranges of permissive growth temperatures (10, 20, 30, 37, 45, 50 °C) and pH (5.0 to 10.0 in increments of 0.5 pH units as adjusted with HCl and NaOH) were determined as described by Kozaki et al. (1992). The biochemical profiles of P1L01T and closely related strains (S. periodonticum, *S. anginosus* subsp. *whileyi*, and *S. anginosus* subsp. *anginosus*) were assessed using the API ZYM and API Rapid ID 32 Strep systems (bioMérieux). Whole-cell fatty acid methyl ester (FAME) profiling was performed using the Sherlock Microbial Identification system (MIDI). After incubation of bacterial cells on solid BHI medium for 48 h at 30 °C under anaerobic conditions, FAME extraction and preparation were carried out as described by Sasser (1990).
Results

Gene phylogeny

The 16S rRNA gene sequences (1562 bp) of strain P1L01T were compared with those stored in the EzBioCloud database. Maximum-likelihood phylogenetic tree analysis based on the 16S rRNA genes of the isolated strains and their closest related species is depicted in Fig. 1. Three species—Streptococcus periodontic ica JCM 33300T (Japan Collection of Microorganisms, Ibaraki, Japan), Streptococcus anginosus subsp. whileyi DSM 25818T (DSMZ GmbH, Braunschweig, Germany), and Streptococcus anginosus subsp. anginosus BCRC 14730T (BCRC, Hsinchu, Taiwan)—were most related to strain P1L01T. The genotypic characteristics and similarity of the 16S rDNA, rpoB and groEL genes of strain P1L01T and closely related species and subspecies are shown in Table 1. The highest sequence similarity was observed with Streptococcus periodontic ica (98.7%), followed by Streptococcus anginosus subsp. whileyi (98.7%), and Streptococcus anginosus subsp. anginosus (98.4%; Table 1). Similar findings were obtained using the NJ and ME algorithms (Supplementary Figures S1 and S2). The concatenated sequences (5190 bp) of two housekeeping genes (rpoB, 3567 bp; groEL, 1,623 bp) in strain P1L01T had 93.6–95.1% identity with those of S. periodontic ica, S. anginosus subsp. whileyi, and Streptococcus anginosus (Table 1).

Fig. 1 Phylogenetic tree analysis based on maximum-likelihood method with Kimura’s two-parameter model of S. vagi- nalis sp. nov. (strain P1L01T) and closely related species of the genus Streptococcus according to 16S rRNA sequences. GenBank accession numbers are shown in parentheses. Enterococcus faecalis ATCC 19433T was used as an outgroup to root the trees. Numbers indicate bootstrap percentages (based on 1000 replications), and boot- strap values > 70% are shown at branch points. The scale bar represents 0.002 substitutions per nucleotide position.
Table 1 Genotypic characteristics of *Streptococcus vaginalis* sp. nov. P1L01T and the closely related species and subspecies

Species	Strain No.	Similarity of each gene with strain P1L01T	GenBank accession number of genome	G+C content (%)	P1L01T ANI value (%)	GGD value (%)
S. periodonticum	KCOM 2412 T	96.85 95.63 93.83	NZCP034543	38.95	95.48	66.20% [63.3–69.1%]
S. anginosus subsp. *whitleyi*	CCUG 39159 T	96.85 93.28 94.45	NZCP012805	38.50	94.33	56.50% [53.8–59.3%]
S. anginosus subsp. *whitleyi*	MAS624	98.72 93.27 94.52	NZAP013072	38.34	94.25	56.70% [53.9–59.4%]
S. anginosus subsp. *anginosus*	NCTC 10713 T	98.44 95.10 94.82	NZLR134283	38.64	95.28	61.60% [58.7–64.4%]
S. anginosus subsp. *anginosus*	ATCC 33397 T	98.53 95.04 94.82	NA	38.63	95.1	61.50% [58.6–64.3%]
S. anginosus	NCTC 11,062	98.72 94.09 95.07	NA	38.84	94.05	54.90% [52.1–57.6%]
S. anginosus	NCTC 11,064	98.66 97.91 96.02	NZLR594037	38.66	95.82	64.10% [61.2–66.9%]
S. intermedius	SK54 T	96.56 95.04 94.82	NA	37.58	86.96	32.40% [30–34.9%]
S. intermedius	ATCC 27335 T	96.54 91.19 91.67	NA	37.66	87.04	32.60% [30.2–35.1%]
S. constellatus subsp. *constellatus*	NCTC 11325 T	96.48 92.79 92.09	NA	38.08	88.78	36.40% [34–39%]
S. constellatus subsp. *pharyngis*	CCUG 46377 T	96.39 92.67 92.43	NA	37.94	89.13	36.80% [34.4–39.3%]

NA: not available

Fig. 2 Phylogenetic tree analysis based on concatenated sequences of the two genes (*rpoB* and *groEL*) of *S. vaginalis* sp. nov. (strain P1L01T) and other species of the genus *Streptococcus*. The tree was reconstructed using the maximum-likelihood method with Kimura’s two-parameter model; the target region used for comparison was 1430 bp in length. *Enterococcus faecalis* CIP 103015T was used as an outgroup to root the trees. Bootstrap values (based on 1000 replications) are shown at branch points. The bar indicates 10% estimated sequence divergence.
Table 2. Characteristics helpful in differentiating \textit{S. vaginalis} sp. nov. P1L01T from closely related species of the genus \textit{Streptococcus}. All data are from this study

Characteristic	Strains			
	1	2	3	4
Hemolysis	γ	α	α	α
Acid production (API 50 CHL)				
N-Acetyl glucosamine	+	–	+	+
Amygdaline	+	–	+	+
Melibiose	+	–	–	–
d-Raffinose	+	–	–	+
β-Gentiobiose	+	–	+	+
Enzyme activity (API ZYM)				
Alkaline phosphatase	1	3	2	4
Esterase (C4)	0	1	0	1
Cystine aminopeptidase	1	0	1	2
β-galactosidase	0	3	0	1
α-glucosidase	0	3	1	4
API Rapid ID 32 Strep				
α-galactosidase	+	–	–	–
APPA	–	+	+	+
Strains: 1, strain P1L01T; 2, \textit{S. periodonticum} JCM 33300T; 3, \textit{S. anginosus} subsp. \textit{whileyi} DSM 25818T; 4, \textit{S. anginosus} subsp. \textit{anginosus} BCRC 14730T				

C\textsubscript{14:0} (14.7%)—with significant differences with the other three strains (Supplementary Table 2).

Phenotypic features

The cells were γ-hemolytic on BHI agar containing 5% sheep blood under aerobic or anaerobic conditions. After incubation in BHI broth anaerobically at different temperatures, strain P1L01T grew well at 30 and 37 °C for 48 h and grew weakly at 20 and 45 °C. Growth could be observed at pH 4.5–8.5. Growth at various NaCl concentrations on BHI broth was assessed and the results showed that growth occurred in the presence of up to 5.5% NaCl.

Discussion

Diabetes in pregnancy including gestation diabetes, type 1 and type 2 diabetes is the most common metabolic complications of pregnancy and is increasing in prevalence (American Diabetes Association Diabetes Care 2021; Dunlop et al. 2015). Diabetes in pregnancy is known to increase the risk of adverse maternal and fetal outcomes. While maternal microbiome has been shown to play an important role in affecting pregnancy outcomes (Tremaroli 2012, Tilg 2014, Dunlop et al. 2015), we have previously demonstrated that \textit{Prevotella bivia} dominated in pregnant women with severe hypertension (Lin et al. 2020). Diabetic mothers are, however, particularly prone to develop cervicovaginal infections such as GBS, \textit{mycoplasma hominis}, and \textit{ureaplasma urealyticum} (Dunlop et al. 2015; Lukic et al. 2017). The isolation of novel \textit{Streptococcus vaginalis} sp. nov. in this study corroborated the concept of dysbiosis in impaired glucose metabolism of pregnancy.

Next-generation sequencing (NGS) is increasingly being applied for the analysis of complex microbial communities (Boers et al. 2019; Graspeunten et al. 2018). Most published studies in the field have relied on sequences targeted at the V3 and V4 16S rRNA hypervariable regions (319F–806R). During the analysis of vaginal swabs obtained from a Taiwanese pregnant woman with type 2 diabetes, we isolated a strain (P1L01T) that could not be identified conclusively to the species level based on 16S V3–V4 rRNA gene sequence analysis. The highest sequence homology at these regions was obtained with \textit{Streptococcus anginosus} subsp. \textit{whileyi} and \textit{Streptococcus anginosus} subsp. \textit{anginosus} (100% and 99.8%, respectively). On analyzing the sequences targeted at the V6 region (926F–1100R), strain P1L01T was distinctly different from \textit{S. anginosus} subsp. \textit{whileyi} (similarity: 90.2%), \textit{S. anginosus} subsp. \textit{anginosus} (similarity: 90.2%), and \textit{S. periodonticum} (similarity: 94.3%). The highest ANI and dDDH values among strain P1L01T and the \textit{S. periodonticum} type strain were 95.5% and 66.2%, respectively. While dDDH values were lower than the commonly accepted cut-off (70%), the ANI value between strain P1L01T and \textit{S. periodonticum} was of uncertain significance (Goris et al. 2007; Rossello-Mora and Amann 2015). Recent studies have suggested that bacterial isolates with ANI values < 95–96% or dDDH values < 70% with respect to type strains of their closest related species and genera should be classified in novel species Chun et al. 2018; Lim et al. 2019). Thus, a hypothesis was set forth that strain P1L01T might represent a novel species of the genus \textit{Streptococcus}.

Additional phenotyping of strain P1L01T further supported this possibility. First, strain P1L01T was γ-hemolytic, whereas the other three strains investigated in this study showed α-hemolytic activity. Second, biochemical analysis of strain P1L01T demonstrated distinct characteristics compared to other strains in terms of the carbohydrate metabolism—with clear differences in acid production from melibiose, N-acetyl glucosamine, amygdaline, d-raffinose and β-gentiobiose. Additionally, strain P1L01T can be distinguished from other strains through α-galactosidase and alanyl-phenylalanyl-proline arylamidase activities.

Based on phylogenetic, genotypic and phenotypic data, we therefore propose to classify this isolate as representative of a novel species of the genus \textit{Streptococcus}, \textit{Streptococcus vaginalis} sp. nov., in reference to its isolation from vaginal swabs. However, the question as to whether this novel species should be considered a pathogen or a cause...
of gynecological and/or obstetrics infections remains unanswered. While we found no clinical signs of infection in the patient from whom Streptococcus vaginalis sp. nov. was isolated, further research is needed to examine more rigorously its potential pathogenicity. Notably, bacteria of the S. anginosus group—which are closely related to the novel species of the genus Streptococcus identified in this study—have been shown to cause anogenital infections (mainly abscesses) and have been isolated in episiotomy site infections (Al Majid et al. 2020; Lampen and Bearman 2005; Rabe et al. 1988). The main virulence factors of the S. anginosus group include secreted toxins (exotoxins), hydrolytic enzymes, and capsular polysaccharides. To reveal the virulence potential of Streptococcus vaginalis sp. nov., further in vitro investigations would be required to evaluate its contribution to the cytotoxicity against human cell lines. Murine vaginal colonization models in preestrogenized mice may also be useful to investigate the mucosal biology of the novel species.

In conclusion, we have confidently recognized a novel species of the genus Streptococcus, termed Streptococcus vaginalis sp. nov., using phylogenetic, genotypic and phenotypic identification methods. The novel species was isolated from vaginal swabs of a pregnant woman with diabetes and was most closely related to S. anginosus. The role of Streptococcus vaginalis sp. nov. in the pathogenesis of gynecological and/or obstetrics infections is currently questionable. More studies are necessary to clarify whether the novel species should be considered a pathogen or a cause of human infection.

Description of Streptococcus vaginalis sp. nov.

Streptococcus vaginalis sp. nov. (va-gi.na’lis. N.L. masc. adj. vaginalis from the vagina which is a female genital organ; vaginalis referring to the vagina) cells are Gram-stain-positive, catalase-negative, facultatively anaerobic, non-spor-forming cocci (diameter: 0.5 – 1.0 μm) that can be arranged in pairs, short chains, or small groups. The addition of 5% sheep blood to BHI agar showed γ-hemolytic activity after incubation at 37 °C for 48 h. Growth was observed on BHI agar at 30–45 °C under anaerobic conditions, but temperatures of 10 °C and 50 °C were not tolerated. Additionally, the new species tolerated 5.5%—but not 6.5%—NaCl. Growth was observed in a wide range of pH variations (4.5–8.5). Acid production was found from galactose, d-glucose, d-fructose, d-mannose, N-acetyl glucosamine, amygdalin, esculin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, α-raffinose, and β-gentiobiose. The major fatty acids detected in strain P1L01*T are 16:0, 18:1 ω7c, and 14:0.

The type strain, P1L01*T (= NBRC 114754*T = BCRC 81289*T), was isolated from vaginal swabs of a pregnant woman with diabetes in Taiwan.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-021-02532-y.

Acknowledgements We are grateful to Jung-Erh Yang and Hui-Jin Liao for their excellent technical assistance.

Funding This study was supported by Chang Gung Medical Foundation (CMRPG3H0711, CMRPG3J0771, CMRPG3J1731 and CMRPVJ0031/2).

Declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Ethical statement All participants signed an informed consent to authorize the use of samples for research purposes. This study was approved by the Ethics Committee of Research of Chang Gung Memorial Hospital (IRB NO. 201701371A3).

References

Al Majid F, Aldrees A, Barry M, Binkhamis K, Allam A, Almohaya A (2020) Streptococcus anginosus group infections: management and outcome at a tertiary care hospital. J Infect Public Health 13:1749–1754. https://doi.org/10.1016/j.jiph.2020.07.017

American Diabetes Association Diabetes Care (2021) Management of diabetes in pregnancy. Stand Med Care Diabetes 44(Supplement 1):200–210. https://doi.org/10.2337/dc21-S014

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyrbelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyeva MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070. https://doi.org/10.1007/s10096-019-03520-3

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

Dunlop AL, Mulle JG, Ferranti EP, Edwards S, Dunn AB, Corwin EJ (2015) Maternal microbiome and pregnancy outcomes that impact infant health: a review. Adv Neonatal Care 15:377–385. https://doi.org/10.1097/ANC.0000000000000218

Francois Watkins LK, McGee L, Schrag SJ, Beall B, Jain JH, Pond T, Farley MM, Harrison LH, Zansky SM, Baumbach J, Lynfield R, Slippes Vagnone P, Miller LA, Schaffner W, Thomas AR, Watt JP, Petit S, Langley GE (2019) Epidemiology of Invasive Group B streptococcal infections among nonpregnant adults in the United States, 2008–2016. JAMA Intern Med 179:479–488. https://doi.org/10.1001/jamainternmed.2018.7269

© Springer
Streptococcus massiliensis

Niu L, Lu S, Lai XH, Hu S, Chen C, Zhang G, Yang J, Jin D, Wang Lin CY et al (2020) Severe preeclampsia is associated with a higher

Lim YK, Park SN, Shin JH, Chang YH, Shin Y, Paek J, Kim H, Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved

Kozaki M, Uchimura T, Okada S (1992) Experimental manual of lactic

Kolter J, Henneke P (2017) Codevelopment of microbiota and innate

Kimura M (1980) A simple method for estimating evolutionary rates

Graspeuntner S, Loeper N, Kunzel S, Baines JF, Rupp J (2018) Selecd

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome

Megged O (2020) Characteristics of Streptococcus pyogenes versus

Lampen R, Bearman G (2005) Epideral abscess caused by Streptococcus milleri in a pregnant woman. BMC Infect Dis 5:100. https://

Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved

Lim YK, Park SN, Shin JH, Chang YH, Shin Y, Paek J, Kim H, Kook JK (2019) Streptococcus periodonticum sp. nov., isolated from human subgingival dental plaque of periodontitis lesion. Curr Microbiol 76:835–841. https://doi.org/10.1007/s00284-019-01695-8

Lin CY et al (2020) Severe preeclampsia is associated with a higher relative abundance of Prevotella hibivia in the vaginal microbiota. Sci Rep 10:18249. https://doi.org/10.1038/s41598-020-75534-3

Lukic A et al (2017) Cervicovaginal bacteria and fungi in pregnant diabetic and non-diabetic women: a multicenter observational cohort study. Eur Rev Med Pharmacol Sci 21:2303–2315

Meggod O (2020) Characteristics of Streptococcus pyogenes versus Streptococcus pneumoniae pleural empyema and pneumonia with pleural effusion in children, Pediatr Infect Dis J 39:799–802. https://doi.org/10.1097/INF.0000000000002699

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

Niu L, Lu S, Lai XH, Hu S, Chen C, Zhang G, Yang J, Jin D, Wang Y, Lan R, Lu G, Xie Y, Ye C, Xu J (2017) Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 67:256–261. https://doi.org/10.1099/ijsem.0.001609

Opinion AC (2020) Prevention of group B streptococcal early-onset disease in newborns: ACOG committee opinion, number 797. Obstet Gynecol 135:e51–e72. https://doi.org/10.1097/AOG.0000000000003668

Park JW, Wendt M, Heo GJ (2016) Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Lab Anim Res 32:87–90. https://doi.org/10.5625/lar.2016.32.2.87

Rabe LK, Winterscheid KK, Hillier SL (1988) Association of viridans group streptococci from pregnant women with bacterial vaginsis and upper genital tract infection. J Clin Microbiol 26:1156–1160. https://doi.org/10.1128/jcm.26.6.1156-1160.1988

Rzhetsky A, Nei M (1992) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Klimk W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O’Neill K, Resch W, Resenichuks, Schafer S, Tolstoy I, Tatusova T (2009) The National Center for biotechnology information’s protein clusters database. Nucleic Acids Res 37:D216-223. https://doi.org/10.1093/nar/gkn734

Kolter J, Henneke P (2017) Codevelopment of microbiota and innate immunity and the risk for Group B streptococcal disease. Front Immunol 8:1497. https://doi.org/10.3389/fimmu.2017.01497

Kozaki M, Uchimura T, Okada S (1992) Experimental manual of lactic acid bacteria. Asakurasuyoten, Tokyo, pp 34–37

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFC News 20:16

Scholl J, Nasioudis D, Boester A, Speleotes M, Grunebaum A, Witkin SS (2016) Group B streptococcus alters properties of vaginal epithelial cells in pregnant women. Am J Obstet Gynecol 214(383):e381-385. https://doi.org/10.1016/j.ajog.2015.12.053

Thompson JD, Gibson TJ, Plewniak F, Jeannouin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521

Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

Yu L, Jin M, Li J, Grenier D, Wang Y (2020) Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 104:8649–8660. https://doi.org/10.1007/s00253-020-10873-9

Yu HW, Lin HC, Tseng YC (2011) Group B streptococcal infection in Taiwan: maternal colonization and neonatal infection. Pediatr Neonatol 52:190–195. https://doi.org/10.1016/j.pedneo.2011.05.008

Zbinden A, Mueller NJ, Tarr PE, Sproer C, Keller PM, Bloemberg GV (2007) DNA-DNA hybridization values and their jurisdictonal claims in published maps and institutional affiliations. Springer Nature remains neutral with regard to

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

An-Shine Chao1,2 · Chiao-Yun Lin2,3 · Angel Chao2,3 · Yun-Shien Lee4,5 · Yu-Chung Chang5 · Hui-Chung Wu5 · Yu-Jie Dai5 · Wei-Qi Liao5 · Fan-Ching Kao5 · Yi-Sheng Chen5

1 Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
2 Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
3 Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
4 Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
5 Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan 333, Taiwan