TIME MONITORING OF RADIO JETS AND MAGNETOSPHERES IN THE NEARBY YOUNG STELLAR CLUSTER R CORONAE AUSTRALIS

HAUYU BAOBAB LIU1, ROBERTO GALVÁN-MADRIGAL2, JAN FORBRICH3, LUIS F. RODRÍGUEZ4, MICHIHIRO TAKAMI1, GRÁINNE COSTIGAN2,5,6, CARLO FELICE MANARA2, CHI-HUNG YAN1,7, JENNIFER KARR1, MEI-YIN CHOU1, PAUL T.-P. HO1,8, AND QIZHOU ZHANG8

1 Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 106, Taiwan; hyliu@asiaa.sinica.edu.tw
2 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching, Germany
3 Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180, Vienna, Austria
4 Centro de Radioastronomía y Astrofísica, UNAM, A.P. 3-72, Xangari, Morelia, 58089, Mexico
5 School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
6 Armagh Observatory, College Hill, Armagh BT61 9DG, UK
7 Department of Earth Sciences, National Taiwan Normal University, Taipei, 117, Taiwan
8 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2013 September 9; accepted 2013 November 18; published 2013 December 20

ABSTRACT

We report Karl G. Jansky Very Large Array 8–10 GHz (λ = 3.0–3.7 cm) monitoring observations toward the young stellar object (YSO) cluster R Coronae Australis (R CrA), taken from 2012 March 15 to 2012 September 12. These observations were planned to measure the radio flux variabilities in timescales from 0.5 hr to several days, to tens of days, and up to ~200 days. We found that among the YSOs detectable in individual epochs, in general, the most reddened objects in the Spitzer observations show the highest mean 3.5 cm Stokes I emission, and the lowest fractional variabilities on <200 day timescales. The brightest radio flux emitters in our observations are the two reddest sources IRS7W and IRS7E. In addition, by comparing our observations with observations taken from 1996 to 1998 and 2005, we found that the radio fluxes of these two sources have increased by a factor of ~1.5. The mean 3.5 cm fluxes of the three Class I/II sources, IRS1, IRS2, and IRS6, appear to be correlated with their accretion rates derived by a previous near-infrared line survey. The weakly accreting Class I/II YSOs, or those in later evolutionary stages, present radio flux variability on <0.5 hr timescales. Some YSOs were detected only during occasional flaring events. The source R CrA went below our detection limit during a few fading events.

Key words: circumstellar matter – stars: activity – stars: evolution – stars: formation – stars: magnetic field

Online-only material: color figures

1. INTRODUCTION

Young (proto)stars are known to show radio flux variability on various timescales. Magnetic reconnections on the (proto)stellar surface can cause non-thermal radio flares in timescales shorter than several minutes (Dulk 1985; Bower et al. 2003; Forbrich et al. 2008; Chen et al. 2013; Su et al. 2013), while the interaction of the decoupled magnetic fields between the protostars and the disks can result in non-thermal radio flares (Shu et al. 1997) on timescales from a few days to as long as the 10–15 days expected from protostellar rotation (e.g., Forbrich et al. 2006; see also Carpenter et al. 2001). In addition, accreting young stellar objects (YSOs) can emit thermal radio emission from the regions where the magnetohydrodynamic wind (Konigl 1982; Pudritz & Norman 1983, 1986; Shu et al. 1994, 1995) shocks the ambient gas (e.g., Rodríguez 1997, 1999; Anglada 1995; Anglada et al. 1998). If the accretion rate to the protostar and the mass-loss rate from the protostar are intimately linked as theories suggest (Calvet et al. 1993; Shang et al. 2004; see also Chou et al. 2013 and Reiter & Smith 2013), then the thermal radio flux is also expected to vary on the dynamical timescale of the accretion disk, the timescales of disk instabilities (several years; e.g., Zhu et al. 2009), and on the dynamic and hydrogen recombination timescales of the thermal radio jet core (as short as 1–3 months; e.g., Galván-Madrid et al. 2004).

Radio monitoring observations toward YSOs, planned to resolve the flux variability, spectral indices, and polarization percentages, can shed light on discriminating the aforementioned magnetospheric emission mechanisms (Forbrich et al. 2011). In addition, a comparison of the radio fluxes between a sample of YSOs occupying a broad range of evolutionary stages may provide hints on the evolution of the (proto)stellar magnetosphere on the 1 Myr YSO evolutionary timescale (e.g., Dzib et al. 2013; AMI Consortium et al. 2012). We therefore resumed the multi-epoch 3.5 cm radio observations toward the R Coronae Australis (R CrA) cluster since 2012 March using the National Radio Astronomy Observatory (NRAO) Karl G. Jansky Very Large Array (VLRA). This target was selected because it has a concentration of early YSOs in a field of a few arcminutes, and also due to its proximity (d ~ 130 pc; for a discussion of the distance; see Neuhäuser & Forbrich 2008).

The R CrA cluster is one of the nearest young, dense (i.e., >25 Class 0–II YSOs pc−2; see Myers 2009) clusters that remains embedded in the natal molecular cloud. Previous optical and near-infrared (OIR) observations (Taylor & Storey 1984; Wilking et al. 1985, 1992; López Martí et al. 2005; Haas et al. 2008; Peterson et al. 2011) found that the majority of the objects younger than Class II are located in the central r ~ 0.1 pc (~2.4′′) gas concentration (Loren 1979; Loren et al. 1983; Harju et al. 1993; Henning et al. 1994; Andreazza & Vilas-Boas 1996; Anderson et al. 1997a, 1997b; Chini et al. 2003; Groppi et al. 2004). High angular resolution mapping
observed and molecular line surveys further confirmed abundant protostellar cores in this region (Nutter et al. 2005; Brown 1987). Similar results were also given by the Australia Telescope Compact Array (ATCA) 3 cm, 6 cm, and 20 cm observations in 2002 (Brown 1987). Due to limited sensitivity, those previous radio observations generally have an on-source integration time of several hours to achieve an adequate significance for detections. We performed 16 epochs of filler-mode observations toward the R CrA region using the JVLA C, B, and BnA array configurations in 2012 from March to September. The pointing center for all epochs is R.A. = 19h01m48s000 (J2000), decl. = −36°57′59″000 (J2000). Each observation epoch has an overall duration of 30 minutes, and contains two ~220 s10 on-source scans (separated by ~50 s). This relatively short calibration cycle, as compared with the typical, longer than 20 minutes calibration duty cycles, helps compensate for the relatively large atmospheric effects for the low elevation target source (also mentioned in Forbrich et al. 2006). We lost one epoch of observations on 2012 March 25 due to missing the calibration data; and we lost another epoch of observations in 2012 September 13 because the weather conditions were too poor to allow robust antenna-based gain calibrations. The details of the remaining observations are listed in Table 1. The correlator setup of our observations can be found in Table 2. The total bandwidth after combining the 16 spectral windows in the two independently tunable intermediate frequencies (IFs) is 2 GHz (Table 2). We centered IF1 at a sky frequency ν = 8.5 GHz to enable comparison with the extensive earlier VLA data; and we lost another epoch of observations in 2012 September 13 because the weather conditions were too poor to allow robust antenna-based gain calibrations. The details of the remaining observations are listed in Table 1. The correlator setup of our observations can be found in Table 2. The total bandwidth after combining the 16 spectral windows in the two independently tunable intermediate frequencies (IFs) is 2 GHz (Table 2). We centered IF1 at a sky frequency 8.5 GHz to enable comparison with the extensive earlier VLA observations at the same frequency (Feigelson et al. 1998; Forbrich et al. 2006, 2007; Choi et al. 2008, 2009). The IF2 was tuned to complete a continuous 2 GHz total frequency coverage, and also to minimize differences in the primary beam

10 The exact on-source time slightly varies among epochs of observations because of the differences in antenna slewing time.

### Table 1

| Epoch | Time° | Day | Array | Range | Medium | API | Cloud | Synthesized Beam | Noise | Flux/Pol. cal. |
|-------|-------|-----|-------|-------|--------|-----|-------|-----------------|-------|--------------|
|       | (UTC) | (day) | Config. | (m) | Elevation (deg) | rms (deg) | | θmaj × θmin | rms (µJy beam⁻¹) | |
| 1     | Mar 15 14:21 | 0 | C | 26–3387 | 19.1 | 1.2 | Sky clear | 8′8 × 2′4; 177° | 19 | 3C286/12355+4950 |
| 2     | Mar 16 14:27 | 1 | C | 26–3383 | 19.1 | 2.0 | Sky clear | 8′0 × 2′5; 178° | 18 | 3C286/12355+4950 |
| 3     | Mar 17 14:43 | 2 | C | 26–3381 | 19.1 | 1.2 | 10% covered | 8′1 × 2′5; 177° | 16 | 3C286/12355+4950 |
| 4     | Mar 17 14:43 | 2 | C | 28–3356 | 19.0 | 1.9 | 10% covered | 8′1 × 2′4; 2′6 | 23 | 3C286/12355+4950 |
| 5     | Mar 17 15:13 | 2 | C | 30–3314 | 18.5 | 1.4 | 10% covered | 8′4 × 2′6; 7′2 | 18 | 3C48/12355+4950 |
| 6     | Mar 17 15:43 | 2 | C | 26–3323 | 17.2 | 4.8 | 10% covered | 9′1 × 2′6; 14° | 21 | 3C48/12355+4950 |
| 7     | Mar 17 16:13 | 2 | C | 39–3099 | 15.3 | 2.5 | 20% covered | 9′6 × 2′7; 20° | 24 | 3C48/12355+4950 |
| 8     | Mar 22 13:53 | 7 | C | 26–3387 | 19.1 | 2.2 | 10% covered | 9′0 × 2′4; 178° | 20 | 3C286/12355+4950 |
| 9     | Mar 22 14:25 | 7 | C | 47–3352 | 19.0 | 2.7 | Sky clear | 9′0 × 2′4; 3′6 | 24 | 3C286/12355+4950 |
| 10    | Mar 25 14:14 | 10 | C | 28–3382 | 19.0 | 1.3 | 30% covered | 8′3 × 2′5; 3′4 | 22 | 3C286/12355+4950 |
| 11    | Mar 31 13:49 | 16 | C | 28–3362 | 19.0 | 2.4 | 50% covered | 8′5 × 2′3; 2′7 | 26 | 3C286/12355+4950 |
| 12    | Apr 2 13:08 | 18 | C | 26–3388 | 19.0 | 6.9 | 10% covered | 7′9 × 2′2; 174° | 32 | 3C48/12355+4950 |
| 13    | Jul 28 06:00 | 135 | B | 103–11069 | 19.1 | 7.1 | 10% covered | 2′6 × 1′1; 2′3 | 21 | 3C48/12355+4950 |
| 14    | Sep 12 01:45 | 181 | BnA | 166–10567 | 17.9 | 6.5 | 80% covered | 2′2 × 0′96; 166° | 34 | 3C286/12355+4950 |

Notes. All epochs were observed using the correlator setting described in Table 2. The pointing center for all epochs of observations is R.A. = 19h01m48s000 (J2000), decl. = −36°57′59″000 (J2000).

° All epochs are observed in 2012. The observations (including calibrations) started 15 minutes before the time noted here and ended 15 minutes after it. The first ~10 minutes in each epoch were used for taking dummy observing scans as required by the system.

• The relative day to the first epoch.

• From the minimum to the maximum of the baseline projected lengths. We present it in units of meters rather than kilo-wavelengths because of the large range of observing frequencies.

• The values of the atmospheric phase interferometer quoted from the observing log.

• The sky condition commented by the JVLA operator.

• Measured at the center of the IF1 Stokes I image generated utilizing the 1 GHz total bandwidth (centered at the sky frequency ν = 8.5 GHz).

• The observed quasar for absolute flux and polarization calibrations.
3. RESULTS

3.1. The Compact Sources in the 3.5 cm Stokes I Image

To yield a deep radio image, we combined and jointly imaged the phase self-calibrated IF1 data (Table 2) from all 14 epochs of observations listed in Table 1. The Briggs Robust=1 weighted combined image without the implementation of the >4.4 kÅ \(\lambda uv\) distance limit (Section 2) is shown in Figure 1. The compact radio sources were registered by performing two-dimensional Gaussian fittings on the Briggs Robust=0 weighted combined image, using the CASA task `imfit`. Because the Gaussian fitting is fundamentally ambiguous (e.g., it does not necessarily converge to a unique solution), we implemented the minimal possible number of Gaussian components that can recover the emission of the compact sources well. The Gaussian components are listed in Table 3. The primary beam attenuation of the fluxes was corrected only after the two-dimensional Gaussian fittings to avoid confusion by the noise. The primary beam attenuation factors for the individual sources are given in Table 4. Hereafter, we refer to the group of sources IRS7B, FPM15, and IRS7B-S as IRS7E, and to the group of sources IRS7A, B9, FPM13, and FPM10 as IRS7W, because they are not resolved in every epoch of our JVLA C array observations. The source IRS5 is known to be binary (its components are known as IRS5a, IRS5b; see Chen & Graham 1993; Choi et al. 2008; Deller et al. 2013), however, they cannot be separated given our angular resolution. The radio flux variability of the individual components in these groups will not be independently discussed in this manuscript (Section 3.2). From high angular resolution 7 mm continuum images (Choi & Tatematsu 2004), the group IRS7W is likely to be a cluster of young (proto)stars with associated thermal jet knots. The components FPM15 and IRS7B-S may trace discrete knots in the extended bipolar radio jet emanating from the YSO IRS7B (Forbrich et al. 2006; Choi et al. 2008). Alternatively, they may be tracing the base of this outflow. A future search for proper motions may clarify the nature of these components.

We found that the sources IRS7E, IRS7W, IRS5, and IRS6 are not sensitive to the \(\sqrt{\mu^2 + \nu^2}\) cut when it is longer than 4.4 kÅ. Cutting even at much larger \(\lambda uv\) distances (e.g., 45 kÅ) does not fundamentally change our measurements, however, it significantly degrades the sensitivity and the synthesized beam shapes of the C array observations. The rms noise levels achieved after combining the spectral windows 0–7 are given in Table 1. We note that these observations are sensitive to events at the 0.6–0.9 mJy level, such as the radio-jet knot eruption reported by Pech et al. (2010) in IRAS 16293-2422.


### Table 2

| IF | Spw ID | Central Frequency | Bandwidth | No. of Spectral Channels |
|----|-------|------------------|-----------|--------------------------|
| 1  | 0     | 8051             | 128       | 128                      |
| 1  | 1     | 8179             | 128       | 128                      |
| 2  | 2     | 8307             | 128       | 128                      |
| 3  | 3     | 8435             | 128       | 128                      |
| 4  | 4     | 8563             | 128       | 128                      |
| 5  | 5     | 8691             | 128       | 128                      |
| 6  | 6     | 8819             | 128       | 128                      |
| 7  | 7     | 8947             | 128       | 128                      |
| 2  | 8     | 9051             | 128       | 128                      |
| 9  | 9     | 9179             | 128       | 128                      |
| 10 | 10    | 9307             | 128       | 128                      |
| 11 | 11    | 9435             | 128       | 128                      |
| 12 | 12    | 9563             | 128       | 128                      |
| 13 | 13    | 9691             | 128       | 128                      |
| 14 | 14    | 9819             | 128       | 128                      |
| 15 | 15    | 9947             | 128       | 128                      |

Notes. There is no Doppler tracking in our observations.

- The ID of the observed spectral windows.
- The sky frequency at the center of the spectral window. The spectral windows spw 10 and 11 often had strong radio frequency interference (RFI) and thus were flagged out for all epochs of observations.

Notes: There is no Doppler tracking in our observations.

- The ID of the observed spectral windows.
- The sky frequency at the center of the spectral window. The spectral windows spw 10 and 11 often had strong radio frequency interference (RFI) and thus were flagged out for all epochs of observations.

Notes. There is no Doppler tracking in our observations.
Figure 1. 3.5 cm radio image of the R CrA YSO cluster (gray scale). The right panel zooms into the sub-field around the groups of compact radio sources IRS7E and IRS7W (Table 3). This image is generated using Briggs weighting with Robust = 1, incorporating all IF1 data described in Tables 1 and 2. The $\theta_{maj} \times \theta_{min} = 4.3'' \times 2.0''$, P.A. = $-179^\circ$. The synthesized beam is shown in bottom left of the right panel. The rms noise level is 8.5 $\mu$Jy beam$^{-1}$. Contours in the left and right panels are $[5\sigma, 2.5\sigma, 5\sigma]$, respectively. To avoid noisier edges, the images presented are not yet corrected for primary beam attenuation. The annotated sources and the primary beam attenuation at their location can be found in Tables 3 and 4. The scale bars in both panels are drawn assuming a distance of 130 pc (see Deller et al. 2013, references therein). The red diamonds, orange crosses, and green crosses mark the locations of the Class I, Class II, and flat SEDs, and Class III YSOs (Peterson et al. 2011), which were not detected in our JVLA observations, respectively. (A color version of this figure is available in the online journal.)

Table 3

Two-dimensional Gaussian Components for Initializing the Source Fits

| Source Name | R.A. (J2000) | Decl. (J2000) | Major Axis FWHM (arcsec) | Minor Axis FWHM (arcsec) | P.A. (deg) | Flux (mJy) | P11 Classification |
|-------------|-------------|--------------|--------------------------|--------------------------|-----------|-----------|-------------------|
| IRS7B       | 19:01:56.422| -36:57:27.6  | 2.88                     | 1.24                     | 5.0       | 1.46      | Class I           |
| FPM15       | 19:01:56.476| -36:57:25.6  | 5.60                     | 1.00                     | 18.9      | 0.84      |                   |
| IRS7B-S     | 19:01:56.326| -36:57:30.8  | 3.49                     | 1.22                     | 178.1     | 0.25      |                   |
| IRS7W       | 19:01:55.325| -36:57:21.2  | 2.74                     | 1.31                     | 175.9     | 6.63      | Class I           |
| B9          | 19:01:55.291| -36:57:16.6  | 2.69                     | 1.31                     | 176.0     | 1.19      |                   |
| FPM13       | 19:01:55.375| -36:57:13.0  | 5.56                     | 1.71                     | 178.3     | 0.66      |                   |
| FPM10       | 19:01:54.974| -36:57:16.0  | 4.80                     | 2.36                     | 178.5     | 0.26      |                   |
| JVLA3 (CXO 34) | 19:01:55.793| -36:57:27.1  | 2.10                     | 0.96                     | 172.0     | 0.060     | Class I           |
| JVLA2 (WMB55) | 19:01:58.616| -36:57:26.0  | 2.70                     | 1.20                     | 178.0     | 0.10      | Class I           |
| IRS5N       | 19:01:48.484| -36:57:14.8  | 2.10                     | 0.69                     | 166.0     | 0.049     | Class I           |
| IRS5        | 19:01:48.666| -36:57:22.0  | 3.05                     | 1.42                     | 0.9       | 1.09      |                   |
| IRS1        | 19:01:50.667| -36:56:09.7  | 2.98                     | 1.21                     | 179.3     | 0.64      | Class I           |
| JVL4 (Haas 4) | 19:01:40.667| -36:56:05.2  | 2.10                     | 0.96                     | 169.0     | 0.084     | Flat SED          |
| IRS2        | 19:01:41.579| -36:58:31.3  | 2.88                     | 1.20                     | 178.4     | 0.37      | Class I           |
| IRS6        | 19:01:50.484| -36:56:38.3  | 3.83                     | 1.26                     | 167.0     | 0.12      | Class II          |
| T CrA       | 19:01:58.784| -36:57:49.7  | 3.18                     | 1.70                     | 176.0     | 0.18      | Class II          |
| JVLA1 (CrA PMS 1) | 19:01:34.858| -37:00:55.7  | 2.69                     | 1.11                     | 178.2     | 0.13      | Class III         |
| R CrA       | 19:01:53.686| -36:57:08.0  | 3.49                     | 1.22                     | 178.1     | 0.28      | Class III         |
| B5          | 19:01:43.283| -36:59:12.0  | 2.71                     | 1.14                     | 174.9     | 0.68      | Galaxy            |

Notes. This target list is generated by fitting the compact sources in the deep Briggs Robust=0 weighted image, incorporating all IF1 data described in Tables 1 and 2. IRS7E resolved at higher angular resolution into IRS7B, FPM15, and IRS7B-S. IRS7W resolves into IRS7A, B9, FPM10, and FPM13. The $1\sigma$ rms noise levels at the individual locations of these sources are $\sim 8.5$ $\mu$Jy beam$^{-1}$ divided by the primary beam attenuation factors listed in Table 4. The listed values of FWHM are not yet deconvolved from the $\theta_{maj} \times \theta_{min} = 2.7'' \times 1.1''$ synthesized beam. Several of the listed sources are consistent with point sources at our angular resolution, thus cannot be deconvolved.

YSO classification quoted from Peterson et al. (2011), except for the extragalactic source B5.

be the weakly detected radio source, WMB55, reported in Choi et al. (2008; see also Wilking et al. 1997), which is associated with the submillimeter core SMM2 (Groppi et al. 2007).

The radio source B5, which was previously proposed to be a brown dwarf candidate (Feigelson et al. 1998), is now confirmed to be extragalactic (J. Forbrich 2013, private communication), and thus will be omitted in the following discussion.

To provide a sense of the evolutionary stages of the detected YSOs, we quote the Peterson et al. (2011) classification of YSOs in Table 3, and show the Spitzer color–color diagram...
in Figure 2. The \textit{Spitzer} fluxes in the color–color diagram are also from Peterson et al. (2011). The \textit{Spitzer} fluxes of the well known Class I YSO candidate IRS9 (Forbrich & Preibisch 2007; Peterson et al. 2011) cannot be measured because it is located too close to the bright source R CrA. We do not detect 3.5 cm radio emission from IRS9 either and will omit this source from the following discussion.

The YSOs at earlier evolutionary stages should in general be redder and will appear at the top right of the \textit{Spitzer} color–color diagram. Contamination and short-period infrared variations of the YSOs may cause uncertainties in the \textit{Spitzer} colors. We note that although the loci in the \textit{Spitzer} color–color diagram help to divide the sample into the conventional Class 0–III evolutionary stages, the actual evolutionary tracks of the YSOs may be more continuous. For sources located very near a boundary, for example, IRS2 and IRS6, their classification as Class I or II is not intrinsically important. We also note that the source R CrA is in fact a Herbig Ae star (Peterson et al. 2011, and references therein). By comparing Figure 1 with Figure 2, we conclude that the non-detections of some Class II and Class III YSOs are not due to primary-beam attenuation. It is more likely that the majority of these sources were fainter than our sensitivity limit at all epochs.

Figure 2 shows that while practically all Class 0/I sources are detected in the radio, sources in the Classes II/III are only rarely detected. A possible explanation is that in the Class 0/I sources, we are detecting free–free emission from an ionized outflow that is systematically present in this type of objects. In contrast, in the Class II/III sources, we are probably detecting gyrosynchrotron emission from active magnetospheres (see also Gibb 1999). This is a time-variable process that is not necessarily present in all Class II/III stars (this will be discussed further in Section 4.3). In addition, the left panel of Figure 1 shows a clear spatial differentiation of the Class 0/I and Class II/III sources. While Class 0/I sources are confined to the inner part of the cluster, in a region of about 2′ in extent, the Class II/III sources extend over 4′–5′. This may suggest that star formation did not take place simultaneously in the whole cluster, but that it propagated inward with time. Alternatively, it may be explained by the fact that the Class II and III objects are old enough and have had time to diffuse (a star moving at \( \sim 1 \) km s\(^{-1}\) travels 1 pc in 1 Myr).

### 3.2. The 3.5 cm Stokes I Flux Variabilities

To analyze the 3.5 cm Stokes I flux variabilities, images with low noise and minimal phase decoherence are required. For each epoch of observations, we therefore jointly imaged the \( \sqrt{\nu^2 + v^2} > 4.4 \) k\( \lambda \) phase self-calibrated data in IF1 (Table 2). We perform two-dimensional Gaussian fits to these broad band images to obtain the fluxes. The derived Gaussian components in Table 3 were used to initialize the Gaussian fits for all epochs. The residual noise level, as well as the shapes of the Gaussian models and the residuals, were inspected to verify the convergence of the fits. The errors from the Gaussian fits were obtained by taking the maximum of the two estimates described in the AIPS++ Note 24412, and in Condon et al. (1998), as well as Richards et al. (1999). These two methods are based on the signal-to-noise ratio (S/N) of the fitted Gaussian component, and the goodness of fit, respectively. For most of the epochs, the positions of each Gaussian component only need to be shifted by \(<2\) pixels (0′04) relative to the initial model, which is not significant as compared with the synthesized beam sizes (Table 1). However, the Gaussian components that can fit images of Epoch 6, 7, and 12 are offset from the initial model by up to 20% of the synthesized beam FWHM. This probably results from a combination of noise and spatial drifts of the images due to the phase self-calibration.

Alternative methods to obtain the fluxes are summing the fluxes within box regions enclosing the sources (e.g., Feigelson et al. 1998), or summing the fluxes in regions (partially) defined by contours at certain significance levels (e.g., 2\( \sigma \); Choi et al. 2008). We did not use the former method because it is hard to uniformly define the box regions, given the variations of the synthesized beam sizes and position angles in our 2012 observations (Table 1). The latter method is potentially biased in observations with high noise levels. In our observations, the differences of the measured fluxes with all mentioned methods are typically less than 10% for IRS7W and IRS7E, and are much smaller for point sources. This systematic effect is smaller than the intrinsic flux variabilities for most of the sources (Section 4.1). However, these methods are subject to different errors (i.e., the error bars can be different).

The measured broad band 3.5 cm Stokes I fluxes are shown in Figure 3. We also quote the 3.5 cm fluxes in earlier VLA A-array observations on 1996 December 29 (Choi et al. 2008), BnA-array observations on 1997 January 19 and 20 (Feigelson et al. 1998), BnA array observations on 1998 June 27 (Forbrich et al. 2006), eight epochs of B-array observations from 1998 July 19 to October 13 (Forbrich et al. 2006), and BnA-array observations on 2005 February 3 (Choi et al. 2008). We note that the radio flux of IRS5 flared to up to \( \sim 3.3 \) mJy in some epochs in 1998, which exceeds the plotted range. The flux of IRS2 on 1997 January 19–20 is 0.67 mJy, which also exceeds the plotted range. These large variations of bright sources will

---

12 http://www.astron.nl/casacore/trunk/casacore/doc/notes/224.html
be addressed in Section 4. Figure 4 zooms in to better present the observations from 2012 March 15 to April 2, and the consecutive five epochs of observations on 2012 March 17.

In our JVLA field of view (Figure 1), three Class 0/I sources (IRS7E, IRS7W, IRS5), and one source in between the Class I and Class II stages (IRS6) are associated with diffuse Stokes I emission. However, two of these sources (i.e., IRS7W and IRS5) show higher 3.6 cm fluxes in the more extended B-array and BnA-array measurements, which can only be explained by flux variations on the unresolved spatial scales. The source IRS7E shows lower flux in the BnA array epoch (Epoch 14), but this is still consistent with short-term intrinsic flux variations. Because the $uv$ distance ranges of the B-array and the BnA-array observations are not very different as compared to the C-array observations (Table 1), we do not think the drop of the IRS7E flux in Epoch 14 is due to the $uv$ sampling. After implementing the $\sqrt{u^2 + v^2} > 4.4 \, k \, \lambda$ cut (Section 2), the source IRS6 is consistent with a point source. As can be seen in Figure 3, the radio variability of IRS6 is dominated by occasional short-duration flares, so contamination from the diffuse emission should be negligible. The rest of the sources in our field are point sources, so flux variability can be measured without any bias from the JVLA array configuration.

We found that the fluxes of the four bright sources IRS7W, IRS7E, IRS5, and IRS2 dropped by $\sim$10% simultaneously in Epoch 6 (Table 1; Figure 4). Because of the larger API rms (Table 1) and larger errors of the Gaussian fits, we think that this may be due to the loss of coherence caused by the phase noise. To some extent the larger error bars can take care of this systematic effect. We do not manually correct the fluxes because we cannot rule out that this is a real, simultaneous flux drop. Nevertheless, we also found that manually correcting the fluxes by 10% does not qualitatively affect our statistical analysis (Section 4). We did not identify the same issue in other epochs of observations. The 1996 fluxes of all sources appear to be systematically lower. We hypothesize that this is due to both the poor S/N and the loss of phase coherence, but it is not completely clear. Although we will exclude these data points from the following discussion and statistical analysis, we found that including them does not change our results qualitatively.

Figure 3 shows that the 3.5 cm fluxes of the two youngest sources, IRS7E and IRS7W, (Figure 2) have increased since as early as 1997 January, and are now fluctuating around their 2005 February values (Choi et al. 2008). The mean radio fluxes of these two sources are $\sim$1.5 times larger than the measurements from 1997 to 1998. The excess fluxes over the past 14 yr are much larger than the measurement errors (Figure 3), the <1 month flux fluctuations (Section 4.2), and all the aforementioned systematic effects. However, we do not know if any flux variation occurred in these two sources between 2005 and 2012. The $\lesssim$0.1 mJy sources JVLA2, JVLA3, JVLA4, and IRS5N cannot be detected in individual epochs because they are faint (Table 3), and also some of them are subject to a rather large primary beam attenuation (Table 4). In particular, the source JVLA3 resides near the two brightest sources, and thus cannot be properly imaged given the poor $uv$ coverage in each snapshot JVLA epoch. The 2012 fluxes of IRS5 fluctuated about its 2005 value (Choi et al. 2008), which is $\sim$1/3 of the maximum of 3.3 mJy detected in 1998 (Forbrich et al. 2006). The 2012 fluxes of two of the three sources between the Class I and Class II stages (Figure 2, IRS1 and IRS2) are pretty consistent with all earlier observations. They show variability on timescales of $10^{-3}$ to $10^{2}$ days. The source IRS6 is only detected in occasional flares, similar to the Class II and Class III sources T CrA, R CrA, and JVLA1. The source R CrA (the brightest in the near-infrared) occasionally falls below our detection limits ($<2\sigma$) in our 2012 observations, whereas it was detected in all epochs of earlier observations. However, from Figure 4, the
The Astrophysical Journal, 780:155 (14pp), 2014 January 10

Figure 4. Similar to Figure 3. The left panel zooms into the time periods of the C-array observations listed in Table 1. The right panels zooms in further to show only the five epochs taken on 2012 March 17.

(A color version of this figure is available in the online journal.)

low state of R CrA may only last for <30 minutes. Because all previous observations required at least several hours of on source integration to achieve the adequate S/N, they might not be sensitive to the low states of R CrA.

The 2012 fluxes of the extragalactic source B5 fluctuated within the same range as in the earlier observations for timescales >0.1 day. The very small differences (±6%) in the measured flux of B5 among the five epochs of observations on March 17, and the two epochs of observations on March 22 (Figure 4, Table 1), may be explained by the characteristic >10^4 s variability of the innermost accretion flow around a supermassive black hole (e.g., Miniutti et al. 2006), which in fact makes the gain calibration of JVLA data possible (Section 2). The small flux variations observed in B5 on <0.1 day timescales may provide an upper limit on the flux measurement uncertainties.

3.3. The Stokes I 8.2–9.1 GHz Spectral Index

We provide a preliminary analysis of the spectral index and the fluctuations of the spectral index of bright sources by comparing the radio fluxes measured from spectral window 1 and spectral window 8 (Table 2). These two spectral windows have low noise levels and are adequately separated in frequency. Ideally, the spectral index analysis should incorporate the fluxes from higher frequency spectral windows. This is presently hindered by the higher noise in those spectral windows, and our inability to correctly combine the data (Section 2).
Table 4

| Source Name | Spw 1 | Spw 8 | IF1a |
|-------------|-------|-------|------|
| IRS7E       | 0.76  | 0.71  | 0.74 |
| IRS7W       | 0.79  | 0.75  | 0.78 |
| JVLA3 (CXO 34) | 0.79  | 0.74  | 0.77 |
| JVLA2 (WMB55) | 0.62  | 0.56  | 0.60 |
| IRS5N       | 0.94  | 0.94  | 0.95 |
| IRS7       | 0.97  | 0.96  | 0.96 |
| IRS1        | 0.97  | 0.97  | 0.97 |
| Jvla4 (Haas 4) | 0.59  | 0.52  | 0.56 |
| IRS2        | 0.84  | 0.81  | 0.83 |
| IRS6        | 0.83  | 0.80  | 0.82 |
| T CrA       | 0.65  | 0.59  | 0.63 |
| Jvla1 (CrA PMS 1) | 0.20  | 0.13  | 0.18 |
| R CrA       | 0.84  | 0.80  | 0.83 |
| B5          | 0.81  | 0.77  | 0.80 |

Notes. The columns Spw 1 and Spw 8 are the primary beam attenuation factors for images generated using the data in spectral window 1 and in spectral window 8, respectively.

a The averaged primary beam attenuation factors while incorporating all spectral windows in IF1.

Table 5

| Source Name | 1996 Dec 29a | 1998 Jan 9/10b |
|-------------|--------------|---------------|
| IRS7A       | 0.04 ± 0.05  | 0.19 ± 0.04   |
| B9          | −0.36 ± 0.08 | ...           |
| FPM13       | −0.2 ± 0.4   | ...           |
| IRS7B       | −1.41 ± 0.09 | 0.38 ± 0.02   |
| IRS5        | −0.4 ± 0.4   | −0.12 ± 0.07  |
| IRS1        | 0.9 ± 0.3    | ...           |
| IRS2        | ...          | ...           |

Notes.

a Derived from the VLA observations reported in Choi et al. (2008).
b Derived from the ATCA observations reported in Miettinen et al. (2008). We note that these ATCA observations cannot resolve FPM15 from IRS7B; and cannot resolve FPM10 and FPM13 from IRS7A and B9.

We smoothed the image of spectral window 8 to the same angular resolution of spectral window 1 before measuring the fluxes. The images of spectral windows 1 and 8 are subject to a higher noise than the broad band images (Section 3.2, Table 1) because of the smaller bandwidth. Therefore, we trimmed both images to the 3σ level to avoid confusion by noise. In some epochs, the sources could not be detected in the images of spectral window 8 after trimming, thus the spectral indices were not derived. The obtained spectral indices, if available, are presented with the 3.5 cm fluxes of the 3.5 cm emission. The results are shown in Figure 5, which is available in the online journal.

Figure 5. 3.5 cm spectral indices of the five most significantly detected YSO sources. The horizontal axis shows the fluxes of the 3.5 cm emission measured from the IF1 data (Table 2). The error bars represent the 1σ uncertainties. The spectral indices derived from the five epochs of observations on 2012 March 17 (Table 1) are presented in cyan. The spectral indices derived from our JVLA B array and BnA array observations are presented in red. The spectral indices derived from other of the 2012 JVLA C array observations are presented in black. The dotted line and the shaded area show the results of linear regression for spectral indices derived from the JVLA C array observations and the 1σ uncertainties returned by the IDL fitting program POLY_FIT.

Notes. The columns Spw 1 and Spw 8 are the primary beam attenuation factors for images generated using the data in spectral window 1 and in spectral window 8, respectively.

Because spectral window 1 is more sensitive and is subject to a higher noise than the broad band images (Section 3.2, Table 1) because of the smaller bandwidth. Therefore, we trimmed both images to the 3σ level to avoid confusion by noise. In some epochs, the sources could not be detected in the images of spectral window 8 after trimming, thus the spectral indices were not derived. The obtained spectral indices, if available, are presented with the 3.5 cm fluxes of the 3.5 cm emission. The results are shown in Figure 5, which is available in the online journal.

For comparison, in Table 5 we quote the spectral indices previously measured between 6 cm and 3 cm. The quoted spectral indices were derived from observations taken on the same date, but not exactly simultaneous. Although IRS2 is too faint to obtain a meaningful constraint on its spectral index, the rest of the measurements presented in Figure 5 are consistent with earlier observations. In particular, our measurements of the spectral index of IRS7E (α_{IRS7E}) vary within a range consistent with the previously reported spectral index of IRS7B. α_{IRS7E} shows a general trend of being more negative when the 3.5 cm flux is higher, but it has an exception with IRS7E. The spectral indices derived from our JVLA B array and BnA array observations are presented in red. The spectral indices derived from other of the 2012 JVLA C array observations are presented in black. The dotted line and the shaded area show the results of linear regression for spectral indices derived from the JVLA C array observations and the 1σ uncertainties returned by the IDL fitting program POLY_FIT.

3.4. The Stokes V Flares

We used the method introduced in Section 3.2 to measure the fluxes of the 3.5 cm Stokes V emission. The results are shown...
in Figure 6 and Table 6. We detected Stokes V flares toward the three Class 0/I sources IRS7E, IRS7W, and IRS5. From the position of the detection, the Stokes V flares observed in IRS7W are likely to be dominated by the component IRS7A, rather than by B9 or any component. However, given the angular resolution of our observations (Table 1), we cannot rule out that B9 contributed partially.

Stokes V emission from IRS7A and IRS5 was also reported in previous VLA observations (Feigelson et al. 1998; Forbrich et al. 2006; Choi et al. 2008, 2009). While the Stokes V flares of IRS5 were observed to have durations >30 days (Forbrich et al. 2006; Choi et al. 2008, 2009), the Stokes V emission from IRS7A was detected in only one previous observation (Choi et al. 2008). Our results are qualitatively similar to previous reports, and will be briefly discussed in Section 4.3.

4. DISCUSSION

We examine the statistics of the measured Stokes I fluxes in the 2012 JVLA observations in Section 4.1. We compare our observations with the earlier VLA observations in Section 4.2. Our tentative interpretation of the observational results is provided in Section 4.3.

4.1. Statistics of Stokes I Emission in 2012

We used the biweight method in robust statistics (Hoaglin et al. 1983) to estimate the steady flux levels and the dispersions of the fluxes. This method is advantageous because it can objectively lower the weights or reject the measurements that are largely deviated from the mean value. Therefore, the steady flux levels and dispersions derived using this method are less biased by fast flaring or fading of the YSOs, as well as the occasional impact of potential calibration issues (e.g., see Section 3.2). We used the BIWEIGHT_MEAN routine in the IDL Astronomy User’s Library (Landsman 1993) to iteratively estimate the biweight mean (F), the biweighted standard deviation (σbw), and the normalized biweighted standard deviation σbw/F for the 3.5 cm Stokes I fluxes (Section 3.2). For the non-detections in individual epochs, we use the 1σ rms noise in one synthesized beam (i.e., units in mJy beam−1). The values derived from the JVLA observations taken in 2012 from March 15 to September 12 (Table 1), and derived from the five epochs of JVLA observations taken on 2012 March 17, are given in Figures 7 and 8, respectively. In the same figures, we also provide the (fractional) maximal deviation of the fluxes (i.e., ΔFmax and ΔFmax/F) in these two periods.

The results in Figures 7 and 8 show similar trends, suggesting that some of the detected flux variations within ~10−102 days can be attributed to phenomena with shorter durations. Observations separated by days may also be capable of characterizing (at least partially) the mean flux level and the variability in shorter periods. In addition, adding or removing a few records does not seem to impact the statistics qualitatively, thanks to the moderate resistance of the biweight method. We note that the steady flux level of JVL A1 is potentially comparable to that of R CrA. However, JVL A1 was only detected when it flared to >1 mJy because of its large primary beam attenuation (Table 4). The Class II source T CrA, and the Class I/II source IRS6 are the least active sources at all timescales (Figures 3 and 4). For these two sources, only the upper limit of the biweight mean 3.5 cm fluxes can be given. The faintest sources JVL A2, JVL A3, JVL A4, and IRS5N, which cannot be detected in any of the individual epochs, are omitted from Figures 7 and 8, but will be discussed in Section 4.3.

For the more reddened YSOs, we found that although σbw is the largest, F is large enough such that σbw/F < 0.2. The biweight mean of IRS7W appears to be far larger than for the rest of the sources, most likely due to the fact that we cannot resolve the multiple embedded YSOs and jet knots (Choi & Tatematsu 2004), and also because IRS7W is currently in a high state (Figure 3). The 3.5 cm fluxes of the less reddened YSOs have larger variations compared to their steady flux level, as seen from their larger σbw/F and ΔFmax/F.

In 2002 the accretion rates of the four sources IRS5, IRS1, IRS2, and IRS6 were constrained by a near-infrared spectroscopic survey (Nisini et al. 2005)13. We compare the biweight mean of their 3.5 cm Stokes I fluxes from March 15 to September 12 with the reported accretion rates (Figure 9). A weak point of this comparison is that the radio fluxes from all available observations are separated from the observations of the accretion rates by ~3−10 yr. However, based on the monitoring observations of the accretion rates on a large number of Class II YSOs (Costigan et al. 2012), we hypothesize that the accretion

---

13 Nisini et al. (2005) estimated the differences between the observed bolometric luminosity and the stellar luminosity. We refer to this original paper for uncertainties in their estimates. We are planning to obtain new values of accretion rates in future programs.
rate of the YSOs may not change too much on this timescale, except for the case of accretion instabilities (e.g., Feigelson et al. 2013, and references therein). In the three Class I/II sources (IRS1, IRS2, and IRS6; see Figure 2), IRS1 was observed to have the highest accretion rate ($M_{\text{in}} \sim 2 \times 10^{-6} M_\odot \, \text{yr}^{-1}$). The accretion rate of IRS2 was $M_{\text{in}} \sim 3 \times 10^{-8} M_\odot \, \text{yr}^{-1}$, and the source IRS6 showed no obvious accretion signature in Nisini et al. (2005) and only an upper limit on the accretion rate of $M_{\text{in}} \lesssim 5 \times 10^{-9} M_\odot \, \text{yr}^{-1}$ was given. Among these three sources, the accretion rates and the steady 3.5 cm fluxes seem to be correlated. The younger binary source IRS5 is deviated from this correlation (Figure 9), which suggests that comparison between different types of sources may not be straightforward. We note that the large polarization percentage of IRS5 as compared with IRS7W and IRS7E (Table 6), and the large variation of the spectral index (Figure 5), indicate that a good fraction of the Stokes $I$ flux from IRS5 is non-thermal emission. Because of the >30 day timescale of the Stokes $V$ flare observed in IRS5 (Figure 6), we think that for this particular source, the non-thermal emission cannot be filtered out by the biweight statistics, and thus will contribute significantly to the steady flux level. By observing where the spectral index of IRS5 converges (Figure 5), we hypothesize that the flux of the more stationary thermal emission may be at most 0.4–0.6 mJy.

4.2. The Time-domain Structure Function

We compare our observations with the previous observations reported by Feigelson et al. (1998), Forbrich et al. (2006), and Choi et al. (2008, 2009). We note that there were four additional epochs of radio observations on 2005 August 9, 10, 12, and 13, which were reported by Forbrich & Preibisch (2007). These observations were executed in the most compact VLA D array configuration and can contain extended emission that hinders a comparison with observations in more extended array configurations. They may be included in our statistical analysis in the future, after the effect of the extended emission is better modeled. We do not include these observations in our current analysis. Nevertheless, the daily flux variabilities provided by these 2005 observations were also well sampled in our 2012 March observations (Table 1).

We modified the structure function analysis introduced in Bondi et al. (1994), which was used to derive the timescale of variability. For each YSO source (Table 3), for each pair of data points $i, j$, we calculate the time-lag $t_{ij} = t_i - t_j$, and the normalized flux dispersion $S_{ij} = |B_i - B_j| / \sigma_{\text{bw}}$, where $B_i$ is the flux observed in epoch $i$, and $\sigma_{\text{bw}}$ is the biweighted standard deviation of the Stokes $I$ fluxes calculated from 2012 March 15 to September 12. This analysis can only be performed for IRS7W, IRS7E, IRS5, IRS1, IRS2, and R CrA, because the other sources are too faint to be detected in individual epochs of the earlier observations. The derived $t_{ij}$ and $S_{ij}$ are plotted in Figure 10. Because our sampling of the time-domain baselines is not very uniform, the biweight mean and the biweighted standard deviation of $S_{ij}$ can only be calculated in arbitrarily selected bins of time-lag. The $S_{ij}$ in the time-lag range of $[0.1, 1]$ days cannot be sampled by ground-based radio
Figure 8. Similar to Figure 7, however, we incorporate only the five epochs taken on 2012 March 17 in the analysis. The two sources T CrA and IRS6 were only detected once in these epochs. The values of $F$ and $\sigma_{\text{bw}}$ for these sources are therefore upper limits, and the values of $\Delta F_{\text{max}}/F$ are lower limits. The biweight mean and standard deviation of JVLA1 in this figure are significant because they are detected in more than half of the epochs in these observations. (A color version of this figure is available in the online journal.)

observations. For the time-lag bins with relatively poor statistics, possible flaring or fading events can dramatically bias the means and the standard deviations of $S_{ij}$. The most obvious example is observed in IRS2, in which the 0.67 mJy flux on 1997 January 19–20 contributed to the large $S_{ij}$ values at $>300$ day timescales. In fact, the mean and standard deviation of $S_{ij}$ in the time-lag range of $[300, 1000]$ days are affected by this poor-statistics issue for all sources. In the other time-lag intervals, the behavior of IRS2 is similar to that of IRS1.

We observe that from the top to the bottom panels in Figure 10 (i.e., from early to late YSOs), the timescale of the most significant flux variability shifts from over 1000 days to about 1 day. In most time-lag bins, the $S_{ij}$ of R CrA is consistent with 1 within 2$\sigma$. Its long-term flux variability appears to be less significant than short-period variations (Section 4.1). Also, we do not find obvious decadal variability in IRS1 and IRS2. For IRS5, the Stokes I flare with a duration of $\sim30$–120 days in 1998 (Choi et al. 2009) leads to the some large values of $S_{ij}$ in the corresponding time-lag bins. Because of the large circular polarization percentage during the 1998 IRS5 flare event, it is likely to be (at least partially) non-thermal (Choi et al. 2009). Because no VLA observation was taken between 1998 October 14 and 2005 February 3, we cannot know how long that IRS5 flare event lasted. Figures 3 and 10 consistently suggest that the decadal variability of IRS7E is marginally larger than its short-period variabilities, and the decadal variability of IRS7W is significantly larger than its short-term variability. Choi et al. (2008) also suggested that source IRS7W may be undergoing a long duration outflow eruption.

4.3. Interpretation

We think that the detected 3.5 cm Stokes I emission from the young YSOs IRS7W, IRS7E, IRS5, IRS1, and IRS2 is produced by a mixture of thermal radio emission from the jet cores and gyrosynchrotron emission from the magnetic reconnection events. The measured spectral indices (Figure 5) provide hints on this. Statistical studies on observations of solar flares with durations of 1–1000 s (e.g., Nita et al. 2004) suggested that the centimeter-band spectral energy distribution can be described by the following gyrosynchrotron-like spectral shape (Stahli et al. 1989)

$$S(\nu) = e^{A_{\nu}^{\alpha_{\nu}} [1 - \exp(-e^{-B_{\nu}^{-\beta}})]},$$

(1)

where $S(\nu)$ is the radio flux at a frequency $\nu$, and $A$ and $B$ are parameters affecting the normalization. The asymptotic behavior of this spectral function above and below the peak frequency follows the positive spectral index $\alpha_{\nu}$ and the negative spectral index $(\alpha_{\nu} - \beta)$, respectively (e.g., Lim et al. 1994). The detected values of $\alpha_{\nu}$ and $(\alpha_{\nu} - \beta)$ from the sun can be up to $\sim \pm 6$. At a certain observing frequency, whether one sees positive or negative spectral indices from the flares more often depends on the distribution function of the peak frequency. Due to averaging during integration times much longer than the duration of the flares, the observed spectral indices $\alpha_{\text{obs}}$
are likely to be closer to those of the most frequent events. Regarding the thermal contribution to the flux, the spectral index of optically thin thermal radio emission is \( \sim -0.1 \) (e.g., Anglada et al. 1998). Optically thicker thermal radio emission can have spectral indices up to +2. From analytical calculations, Reynolds (1986) suggested that the spectral indices of radio jet cores range from +0.2 to +2.

The convergence of \( \alpha_{\text{obs}}^{\text{IRS7E}}, \alpha_{\text{obs}}^{\text{IRS7W}}, \alpha_{\text{obs}}^{\text{IRS5}}, \alpha_{\text{obs}}^{\text{IRS1}} \) toward 0 or slightly positive values during their lower flux status may be consistent with steady emission from the thermal radio jet cores (Section 3.3, Figure 5). The frequent \( \alpha_{\text{obs}} < 0 \) gyrosynchrotron flares can be expected if the distribution functions of the peak frequency are similar to the case of solar flares, which achieve the maximum around 7 GHz (Nita et al. 2004). This argument is not always valid for IRS5 because part of its non-thermal emission may be from the larger scale magnetic field, and thus can have >30 day durations. However, \( \alpha_{\text{IRS}}^{\text{obs}} \) on 2012 March 17 (Figure 5) varies from \( \sim 0 \) to \( \sim 2 \) within 3 hr (see Table 1), which may also be attributed to a mechanism similar to solar flares. We do not provide a good constraint on \( \alpha_{\text{IRS2}}^{\text{obs}} \) besides that it seems to be positive. We tentatively think that the emission mechanism of IRS2 is similar to IRS1, because of the similarity in the Stokes I flux variability (Figures 3 and 4 and Section 4.2) as well as the similarity in their Spitzer colors (Figure 2). A non-thermal emission mechanism was also suggested from comparisons between the X-ray and the radio emission associated with YSOs (Feigelson et al. 1998), although the underlying connection is not yet fully understood (e.g., Güdel 2002). However, X-ray emission is a clear sign of magnetospheric activity, and in Table 3, only the two radio faint Class 0/I YSOs JVLA2 and JVLA4 were not detected in the earlier deep X-ray survey (Forbrich & Preibisch 2007). These non-detections could, however, be due to foreground extinction.

The Stokes V flares detected from IRS7E and IRS7W support the idea that the active magnetospheres were developed while some magnetic loops occasionally break through the optically thick radio emission wind (Figure 6). The very low circular polarization percentages of these two sources as compared with that of IRS5 (Table 6) suggest that either the dominant emission mechanism of these two sources is thermal, or that the non-thermal emission originated from the obscured inner regions. This is also supported by the decadal flux variability of these two sources (Section 4.2). The magnetosphere of IRS5 may be less obscured by a radio jet core, thus its circular polarization percentage during the Stokes V flares is closer to what usually is observed from the gyrosynchrotron sources (Andre 1996).
The variability of the 3.5 cm Stokes I emission from the rest of the sources, except JVLA2, JVLCA3, JVLCA4, and IRS5N (Figure 4) on timescales <30 minutes, suggests that gyrosynchrotron emission is dominant. Their Stokes V emission, unfortunately, could only be detected with S/N > 2 if the circular polarization percentage is much larger than 20%. We are surprised that although the Spitzer colors of IRS6 are similar to IRS1 and IRS2 (Figure 2), the radio flux and variability of this weakly accreting YSO (Section 4.1) behave more similar to those of the Class II source T CrA (Figures 3 and 4). The Class III source JVLCA1 (CrA PMS 1) is also only occasionally detected at 3.5 cm, but shows a peak flux ~7 times larger than IRS6 and R CrA (Figure 3), and has the highest fractional maximal flux deviation among all observed sources (Figure 8).

Overall, we speculate that the YSOs at the earliest evolutionary stage, such as IRS7W and IRS7E, have their large-scale magnetosphere embedded inside the optically thick thermal radio jet cores. The more extended part of the thermal radio jet can contribute with $a_{\text{obs}} \sim 0$ emission. Bright non-thermal flares can be observed when the large magnetic loops occasionally break through the optically thick jet core, or if the jet core is porous. The mass loss (and the accretion) of YSOs in the evolutionary stage of IRS5 may be less active than for IRS7W and IRS7E. The non-thermal emission then becomes easier to observe because the jet core is optically thinner or more porous. At the evolutionary stage of IRS6 and T CrA, the YSOs fade in radio emission due to both weaker mass loss and a not fully developed stellar magnetic field. At later stages, gyrosynchrotron emission becomes dominant after the full development of the stellar magnetic field. The radio emission of the Class 0/1 YSOs in our sample appears to be bimodal: the emission is always either very bright (e.g., IRS7E, IRS7W, IRS5), or faint (e.g., JVLCA2, JVLCA3, IRS5N, CrA-24). This may imply that the radio emission of Class 0/1 YSOs has variability in a much longer timescale than what is probed by the radio observations presented in this paper (~15 yr). Accretion disk instabilities could cause variability on such a timescale. A deep infrared spectral-line survey is required to check whether the radio faint Class 0/1 YSOs are weakly accreting sources. From inspecting the flux variability of the radio-faint Class 0/1 YSOs, it seems that the large-scale magnetosphere is more active in the radio when strong mass-loss occurs (see also Figures 7 and 8). Another possible exception is the luminous radio emission from some FU Orionis stars (Rodríguez et al. 1990; Anglada et al. 1994; Velázquez & Rodríguez 2001), which might be classical T Tauri stars (Class II) during their quiescent phase (Hartmann & Kenyon 1996). Because of the small number of observed YSOs in our study, in particular in the Class II and Class III stages, the proposed scenario needs to be verified by more extensive surveys.

5. SUMMARY AND OUTLOOK

We performed 8–10 GHz monitoring observations toward the young stellar cluster T CrA in 2012, using the JVLA. Efforts have been taken to ensure that the changes of the JVLA array configurations do not interrupt or hinder the analysis of long-term radio flux variations. We found that for this particularly nearby field, after implementing a cut in $uv$ distance >4.4 kλ, the effects of changing the JVLA array configuration are negligible compared with the daily and hourly radio flux variabilities.

From comparison with previous observations, radio flux variability was detected in timescales from <30 minutes, up to ~15 yr. Our current consensus is that the 3.5 cm radio emission from YSOs is dominated by the active magnetosphere and by the thermal emission wind. The active magnetosphere, which produces hourly and daily radio flux variability, is developed as early as when the transition from the Class 0 to the Class I phase occurs. The thermal wind seems to be correlated with the accretion rate and varies in a longer, dynamical timescale. The optically thick wind can partially obscure the active magnetosphere during the earliest stages, thus alleviating the non-thermal confusion in the diagnosis of the thermal radio jet variability. In stages later than Class II, the mass loss becomes weak, and the radio flux is dominated by gyrosynchrotron emission from the stellar magnetic field.

Our scheme needs to be verified because of the small number of observed YSOs. In particular, there is only one detectable Class II YSO and two detectable Class III YSOs in our sample. Besides, the radio flux variability of exceptional cases like the FU Orionis objects cannot yet be incorporated. Those exceptional cases might be very important for understanding protostellar evolution. A more extensive JVLA survey may shed light on these issues.

We also note that the right radio emission mechanisms should show not only the correct timescales, spectral indices, or polarization percentages, but also the characteristic flux scales. In the future, more sensitive observations using the Square Kilometer Array will be important for characterizing the physical mechanisms of fainter, shorter duration emission.

H.B.L. thanks Dr. Joseph L. Hora for his help and useful comments while organizing this project. R.G.-M. acknowledges funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 229517R.

Facility: JVLA

REFERENCES

AMIConsortium, Ainsworth, R. E., Scaife, A. M. M., et al. 2012, MNRAS, 423, 1089
Anderson, I. M., Harju, J., & Haikala, L. K. 1997a, A&A, 326, 366
Anderson, I. M., Harju, J., Knee, L. B. G., & Haikala, L. K. 1997b, A&A, 321, 575
Andre, P. 1996, in ASP Conf. Ser. 93, Radio Emission from the Stars and the Sun, ed. A. R. Taylor & J. M. Paredes (San Francisco, CA: ASP), 273
Andreazzo, C. M., & Vilas-Boas, J. W. S. 1996, A&AS, 116, 21
Anglada, G. 1995, RMsXAA, 1, 67
Anglada, G., Rodriguez, L. F., Girart, J. M., Estalella, R., & Torrelles, J. M. 1994, ApJL, 420, L91
Anglada, G., Villuendas, E., Estalella, R., et al. 1998, AJ, 116, 2953
Allen, L. E., Calvet, N., D’Alessio, P., et al. 2004, ApJS, 154, 363
Bondi, M., Padrielli, L., Gregorini, L., et al. 1994, A&A, 287, 390
Bower, G. C., Plambeck, R. L., Bolatto, A., et al. 2003, ApJ, 598, 1140
Brown, A. 1987, ApJL, 322, L31
Calvet, N., Hartmann, L., & Kenyon, S. J. 1993, ApJ, 402, 623
Carpenter, J. M., Hillenbrand, L. A., & Skrutskie, M. F. 2001, AJ, 121, 3160
Chen, B., Bastian, T. S., White, S. M., et al. 2013, ApJL, 763, L21
Chen, W. P., & Graham, J. A. 1993, ApJ, 409, 319
Chen, X., & Averte, H. G. 2010, ApJL, 720, L169
Chini, R., Käppgen, K., Reipurth, B., et al. 2003, A&A, 409, 235
Choi, M., Hamaguchi, K., Lee, J.-E., & Tamatani, K. 2008, ApJ, 687, 406
Choi, M., & Tamatani, K. 2004, ApJL, 600, L55
Choi, M., Tamatani, K., Hamaguchi, K., & Lee, J.-E. 2009, ApJ, 690, 1901
Chou, M.-Y., Takami, M., Manset, N., et al. 2013, AJ, 145, 108
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 2020
Costigan, G., Scholz, A., Stelzer, B., et al. 2012, MNRAS, 427, 1344
Deller, A. T., Forbrich, J., & Loinard, L. 2013, A&A, 552, A51
Dulk, G. A. 1985, ARA&A, 23, 169
Dziembowski, S. A., Loinard, L., Mioduszewski, A. J., et al. 2013, ApJ, 775, 63
Feigelson, E. D., Carkner, L., & Wilking, B. A. 1998, ApJL, 494, L215
Fiebisen, K., Hillenbrand, L., Ofek, E., et al. 2013, ApJ, 768, 93
Forbrich, J., Menten, K. M., & Reid, M. J. 2008, A&A, 477, 267
Forbrich, J., Osten, R. A., & Wolk, S. J. 2011, ApJ, 736, 25
Forbrich, J., & Preibisch, T. 2007, A&A, 475, 959
Forbrich, J., Preibisch, T., & Menten, K. M. 2006, A&A, 446, 155
Forbrich, J., Preibisch, T., Menten, K. M., et al. 2007, A&A, 464, 1003
Galván-Madrid, R., Avila, R., & Rodríguez, L. F. 2004, RMxAA, 40, 31
Gibb, A. G. 1999, MNRAS, 304, 1
Groppi, C. E., Hunter, T. R., Blundell, R., & Sandell, G. 2007, ApJ, 670, 489
Groppi, C. E., Kulesa, C., Walker, C., & Martin, C. L. 2004, ApJ, 612, 946
Güdel, M. 2002, ARA&A, 40, 217
Haas, M., Heymann, F., Domke, I., et al. 2008, A&A, 488, 987
Harju, J., Haikala, L. K., Mattila, K., et al. 1993, A&A, 278, 569
Hartmann, L., & Kenyon, S. J. 1996, ARA&A, 34, 207
Henning, T., Launhardt, R., Steinacker, J., & Thamm, E. 1994, A&A, 291, 546
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (ed.) 1983, Understanding Robust and Exploratory Data Analysis (New York: Wiley)
Kraus, S., Hofmann, K.-H., Malbet, F., et al. 2009, A&A, 508, 787
Landsman, W. B. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes (San Francisco, CA: ASP), 246
Lee, J.-E., Di Francesco, J., Lai, S.-P., et al. 2006, ApJ, 648, 491
Lim, J., Gary, D. E., Hurford, G. J., & Lemen, J. R. 1994, ApJ, 430, 425
Lindberg, J. E., & Jørgensen, J. K. 2012, A&A, 548, A24
López Martí, B., Eisloeffel, J., & Mundt, R. 2005, A&A, 444, 175
Loren, R. B. 1979, ApJ, 227, 832
Loren, R. B., Sandqvist, A., & Wootten, A. 1983, ApJ, 270, 620
Miettinen, O., Kontinen, S., Harju, J., & Higdon, J. L. 2008, A&A, 486, 799
Miniutti, G., Iwasawa, K., & Fabian, A. C. 2006, in The X-ray Universe 2005, ed. A. Wilson (ESA SP-604; Noordwijk: ESA), 469
Myers, P. C. 2009, ApJ, 700, 1609
Neuhäuser, R., & Forbrich, J. 2008, in Handbook of Star Forming Regions, Vol. II: The Southern Sky, ed. B. Reipurth (ASP Monograph, Vol. 5; San Francisco, CA: ASP), 735
Nisini, B., Antoniucci, S., Giannini, T., & Lorenzetti, D. 2005, A&A, 429, 543
Nita, G. M., Gary, D. E., & Lee, J. 2004, ApJ, 605, 528
Nutter, D. J., Ward-Thompson, D., & Andrés, P. 2005, MNRAS, 357, 975
Pech, G., Loinard, L., Chandler, C. J., et al. 2010, ApJ, 712, 1403
Peterson, D. E., Caratti o Garatti, A., Bourke, T. L., et al. 2011, ApJS, 194, 43
Pudritz, R. E., & Norman, C. A. 1983, ApJ, 274, 677
Pudritz, R. E., & Norman, C. A. 1986, ApJ, 301, 571
Reiter, M., & Smith, N. 2013, MNRAS, 433, 2226
Reynolds, S. P. 1986, ApJ, 304, 713
Richards, A. M. S., Yates, J. A., & Cohen, R. J. 1999, MNRAS, 306, 954
Rodríguez, L. F. 1997, in IAU Symp. 182, Herbig-Haro Flows and the Birth of Stars, ed. B. Reipurth & C. Bertout (Dordrecht: Kluwer), 83
Rodríguez, L. F. 1999, in Proc. Star Formation 1999, ed. T. Nakamoto (Nagoya: Nobeyama Radio Observatory), 257
Rodríguez, L. F., Hartmann, L. W., & Chavira, E. 1990, PASP, 102, 1413
Schoier, F. L., Jørgensen, J. K., Pontoppidan, K. M., & Lundgren, A. A. 2006, A&A, 454, L67
Shang, H., Lizano, S., Glassgold, A., & Shu, F. 2004, ApJL, 612, L69
Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781
Shu, F. H., Najita, J., Ostriker, E. C., & Shang, H. 1995, ApJL, 455, L155
Shu, F. H., Shang, H., Glassgold, A. E., & Lee, T. 1997, Sci, 277, 1475
Sicilia-Aguilar, A., Henning, T., Kainulainen, J., & Rocca-Soti, V. 2011, ApJ, 736, 137
Sicilia-Aguilar, A., Henning, T., Linz, H., et al. 2013, A&A, 551, A34
Stahil, M., Gary, D. E., & Hurford, G. J. 1989, SoPh, 120, 351
Su, Y., Veronig, A. M., Holman, G. D., et al. 2013, NaPh, 9, 489
Suters, M., Stewart, R. T., Brown, A., & Zealey, W. 1996, AJ, 111, 320
Taylor, K. N. R., & Storey, J. W. V. 1984, MNRAS, 209, 5P
Velázquez, P. F., & Rodríguez, L. F. 2001, RMxAA, 37, 261
Watanabe, Y., Sakai, N., Lindberg, J. E., et al. 2012, ApJ, 745, 126
Wilking, B. A., Greene, T. P., Lada, C. J., Meyer, M. R., & Young, E. T. 1992, ApJ, 397, 520
Wilking, B. A., Harvey, P. M., Joy, M., Hyland, A. R., & Jones, T. J. 1985, ApJ, 293, 165
Wilking, B. A., McCaughrean, M. J., Burton, M. G., et al. 1997, AI, 114, 2029
Zhu, Z., Hartmann, L., & Gammie, C. 2009, ApJ, 694, 1045

14