Review Article

Recent progress on the traditional Chinese medicines that regulate the blood

Hsin-Yi Hung a, Tian-Shung Wu a,b,

a School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan

b Department of Pharmacy, Tajen University, Pingtung 907, Taiwan

Article Info

Article history:
- Received 19 January 2015
- Received in revised form 13 October 2015
- Accepted 29 October 2015
- Available online 5 January 2016

Keywords:
- analytical methods
- traditional Chinese medicine

Abstract

In traditional Chinese medicine, the herbs that regulate blood play a vital role. Here, nine herbs including Typhae Pollen, Notoginseng Root, Common Bletilla Tuber, India Madder Root and Rhizome, Chinese Arborvitae Twig, Lignum Dalbergiae Oderiferae, Chuanxiong Rhizoma, Corydalis Tuber, and Motherwort Herb were selected and reviewed for their recent studies on anti-tumor, anti-inflammatory and cardiovascular effects. Besides, the analytical methods developed to qualify or quantify the active compounds of the herbs are also summarized.

Copyright © 2015, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Traditional Chinese medicine (TCM) has been used clinically for centuries viewed as a major source for new drug discovery. Chemical constituents, mechanism of actions, and clinical evidence have continually drawn thousands of researchers and funding. In traditional medicine theory, the balance of qi and blood is the most important factor for health. Therefore, TCMs that regulate the blood play an important role in treatment. Blood pathology can be divided into three categories in TCM: bleeding, blood stasis, and blood deficiency. Therefore, the herbs that regulate the blood can also be divided into three: those that stop bleeding, those that invigorate the blood, and those that tonify the blood [1]. This review summarizes research from the past 10 years on herbs that regulate the blood, including new mechanisms, usage, clinical evidence, and analytical methods. Due to the limitations of space and time, only nine herbs were selected in this review: Typhae Pollen, Notoginseng Root, Common Bletilla Tuber, India Madder Root and Rhizome, Chinese Arborvitae Twig, Lignum Dalbergiae Oderiferae, Chuanxiong Rhizoma, Corydalis Tuber, and Motherwort Herb. Some chemical structures of important bioactive compounds from these herbs are shown in Fig. 1.

2. Typhae Pollen (Typha angustifolia L., T. latifolia L., T. angustata Bory et Chaub., T. orientalis)

Typhae Pollen traditionally is used to stop bleeding of external traumatic injury, invigorate the blood, and dispel blood stasis [1]. Recent research is as follows.
1. *Typha angustifolia*

$$\text{(2S)-naringenin}$$

2. *Panax notoginseng*

- Notoginsenoside R₁
- Ginsenoside Rg₁
- Ginsenoside Rb₁

Fig. 1 – Structures of the pure compounds from the herbs that regulate the blood.
3. *Rubia cordifolia*

\[
\text{mollugin} \quad \text{1,4-dihydroxy-2-naphthoic acid}
\]

4. *Biota orientalis*

\[
\text{pinusolid} \quad \text{15-methoxypinusolid} \quad \text{sandaracopimaric acid}
\]

\[
\text{Juniperonic acid}
\]

\[
\text{isopimara-8(14),15-dien-19-oic acid}
\]

5. *Dalbergia odorifera*

\[
\text{6,4'-Dihydroxy-7-methoxyflavone} \quad \text{9-hydroxy-6,7-dimethoxydalbergiinol} \quad \text{6α-hydroxycycloferolidiol}
\]

\[
\text{(3R)-vestitol} \quad \text{4,2',5'-trihydroxy-4'-methylechalcone} \quad \text{(2R,3S)-obursufuran}
\]

\[
\text{isoparvifuran} \quad \text{(2S)-pinocembrin} \quad \text{isoliquiritigenin}
\]

\[
\text{fisetin}
\]

Fig. 1 – (continued).
6. *Ligusticum chuanxiong*

![Chemical structures]

- butylidenephthalide
- tetramethylpyrazine
- tokinolide B

7. *Corydalis yanhusuo*

![Chemical structures]

- N-methyltetrahydrocolumbamine
- N-methyltetrahydrocoptisine
- tetrahydropalmatine
- berberine
- dehydrocorydaline
- glaucine

8. *Leonurus heterophyllus*

![Chemical structures]

- stachydrine
- leoheteronin A
- leopersin G

Fig. 1 – (continued).
2.1. Phytoremediation

The recent main focus for this plant is so-called phytoremediation: its ability to remove heavy metal from wetland and recover the soil from heavy metal pollution [2–4].

2.2. Anti-inflammation

The pollen extract (2 μg/mL) may be used for the protection of H2O2-induced oxidative damage and dysfunction in MC3T3-E1 osteoblasts, and for the treatment of both acute and chronic inflammatory conditions in carrageenan-induced paw edema studies (500 mg/kg, 250 mg/kg, and 125 mg/kg methanol extract, orally) [5,6]. Dietary supplementation with 10% Typhae Pollen rhizome flour and its combination with prednisolone prevent colonic damage induced by 2,4,6-trinitrobenzenesulfonic acid in rats by improving intestinal oxidative stress, but no synergistic effects were observed [7].

2.3. Cardiovascular effects

(2S)-Naringenin can inhibit proliferation of vascular smooth muscle cells induced platelet-derived growth factor receptor β via a G0/G1 arrest and may be valuable for managing atherosclerosis and/or vascular restenosis [8].

3. Notoginseng Root (Panax notoginseng (Burk.) F. H. Chen)

Notoginseng Root traditionally is used to stop bleeding and transform blood stasis [1]. There is a lot of research on Notoginseng, therefore, only the recent review articles are summarized as follows.

3.1. Cardiovascular effects

Panax notoginseng saponin (PNS) is one of the most important compounds from roots of the herb Panax notoginseng. It has been used as a hemostatic agent to control internal and external bleeding in China for thousands of years. To date, at least 20 saponins have been identified and some of them, including notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1, were researched frequently in the area of cardiovascular protection, including the initiation and propagation of atherosclerosis. The mechanism of cardiovascular protection involved anti-oxidation [reduction of oxidized low-density lipoprotein (LDL)] anti-inflammation [reduction of interleukin (IL)-1, IL-1β, matrix metalloproteinase (MMP)-9, MMP-2, nuclear factor (NF)-κB, CD40, IL-6, C-reactive protein, monocyte chemoattractant protein (MCP-1)], and reduction of adhesion monocytes to epithelial cells [intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule-1] [9–11]. Moreover, from 17 randomized clinical trials (17 papers and 1747 participants), oral Notoginseng Root extract, compared with no intervention on the basis of conventional therapy, did not show any significant effect on reducing cardiovascular events, but it could alleviate angina pectoris, including improving the symptoms of angina pectoris, improving electrocardiography, decreasing the recurrence and duration of angina pectoris, and dose of nitroglycerin. In addition, oral Notoginseng Root extract had a comparable effect to isosorbide dinitrate on angina pectoris [12].

3.2. Anti-diabetes

Recently, hypoglycemic and anti-obesity properties of PNS have been demonstrated. Three major effects of PNS on the factors that are important in the development of diabetes are glucose production, glucose absorption, and inflammatory processes [13].

4. Common Bletilla Tuber (Bletilla stratiata (Thunb.) Reichb. F.)

Common Bletilla Tuber traditionally is used to stop bleeding mainly from the lungs and stomach [1]. Recent research is as follows.

4.1. Biomaterial for drug delivery and wound healing

Satisfactory mechanical features and unique biological functions are expected for the next-generation biomaterials. Several types of polysaccharide from Bletilla stratiata have emerged as new sources for development of biomaterials including drug delivery vehicles and wound healing dressings in varying shapes and sizes. They have demonstrated strong gelling properties, high biocompatibility, and remarkable convenience for processing and modification, as well as response to enzymes produced in special biological niches and/or affinity for carbohydrate receptors on specific cells (Table 1). Besides, a novel mucoadhesive polymer extracted from Bletilla stratiata for ocular delivery of 0.5% levofloxacin in rabbits appears to be a promising candidate as a vehicle for topical ophthalmic drug delivery, especially for antibiotics [14]. In addition, the polysaccharide from Common Bletilla Tuber (100 μL) injection into the subconjunctival space and anterior chamber in rabbits at low concentrations (such as 10 mg/mL) did not have adverse effects [15].

4.2. Anti-inflammation and wound healing

Another study was carried out to evaluate the fibrous root part (FRP), which is usually the discarded and harvested pseudobulb part of Bletilla striata. The FRP extracts showed that higher phenolic content was correlated with stronger 2,2-diphenyl-1-picrylhydrazyl scavenging activity, ferric-reducing antioxidant capacity, and tyrosinase inhibition activity, which suggests FRP can be used together with the pseudobulb part [16]. Common Bletilla Tuber polysaccharide hydrogel, prepared by an oxidation and crosslinking method, represents preferable swelling ability, appropriate water vapor transmission rate, and better healing results. The number of infiltrating inflammatory cells and level of tumor necrosis factor (TNF)-α in the Bletilla Tuber polysaccharide hydrogel group are attenuated, whereas secretion of epidermal growth factor is highly elevated [17]. Isolated Common Bletilla Tuber polysaccharide was found to enhance vascular endothelial cell proliferation and vascular endothelial growth factor (VEGF) expression. The
wound healing mechanism could be that Common Bletilla Tuber polysaccharide induces coordinate changes in inducible NO synthase (iNOS), TNF-α, and IL-1β mRNA levels, and enhances the expression of these cytokines, but has no effect on interferon (IFN)-γ level [18,19].

5. India Madder Root and Rhizome (Rubia cordifolia L.)

India Madder Root and Rhizome traditionally is used to stop bleeding, invigorate the blood and dispel blood stasis [1]. Recent research is as follows.

5.1. Anti-inflammation

The plant extracts can elicit over 50% inhibition in NO production in RAW264.7 cells (inhibition > 50% at 100 µg/mL) [20]. Rat peritoneal macrophages were used to prove that gold nanoparticles embedded in Rubia cordifolia matrix had a high therapeutic value relating to the anti-inflammatory characteristics of the nanoparticles by reducing lipopolysaccharide (LPS)-induced NO production [21].

5.2. Anti-tumor effects

Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anti-cancer efficacy in various cancer models including MKN45 (gastric cancer cells), MCF-7 (breast cancer cells), A549 (lung cancer cells), HT29 (colon cancer cells), U251MG and U87MG (glioblastoma cells). The suppression of cell viability (glioblastoma, U251MG and U87MG cells) was due to the induction of mitochondrial apoptosis and autophagy. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin/p70S6 kinase, and extracellular signal-regulated kinase (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis [22]. In human oral squamous cell carcinoma cells, mollugin induces cell death in a dose-dependent manner in primary (NH4) and metastatic (NH12) oral squamous cell carcinoma cells (IC50 40–80 µM, 72 hours). Western blot analysis and reverse transcriptase polymerase chain reaction revealed that mollugin suppressed activation of NF-κB and NF-κB-dependent gene products involved in anti-apoptosis (Bcl-2 and Bcl-xl), invasion (MMP-9 and ICAM-1), and angiogenesis (fibroblast growth factor-2 and VEGF). Furthermore, mollugin induced the activation of p38, ERK, and C-Jun N-terminal kinase (JNK) and expression of heme oxygenase (HO)-1 and nuclear factor E2-related factor 2 (Nrf2). Mollugin-induced growth inhibition and apoptosis of HO-1 were reversed by an HO-1 inhibitor and Nrf2 siRNA [23].

5.3. Inhibition of osteoclastogenesis

Rubia cordifolia extract (0.25 mg/mL, containing alizarin 4.8 mg/g extract) was found to inhibit osteoclastogenesis. Apoptosis increased significantly when cells were exposed to

| Table 1 — Biomaterials derived from Common Bletilla Tuber. |
|----------------|----------------|----------------|
| BSP | BSPb | BSPF2 |
| Backbone | Backbone | Backbone |
| Glucuronic acid | Glucuronic acid | Glucuronic acid |
| Glucuronic/xylopyranosyl (1→4)-linked D-glucopyranosyl residues and (1→3)-linked mannopyranosyl residues | Glucuronic/xylopyranosyl (1→4)-linked D-glucopyranosyl residues and (1→3)-linked mannopyranosyl residues | Glucuronic/xylopyranosyl (1→4)-linked D-glucopyranosyl residues and (1→3)-linked mannopyranosyl residues |
| Mannose: glucose = 9.4:2.6:1.0/235 kDa | Mannose: glucose = 9.4:2.6:1.0/235 kDa | Mannose: glucose = 9.4:2.6:1.0/235 kDa |
| Man: Glc: Gal = 3:1/260 kDa | Man: Glc: Gal = 3:1/260 kDa | Man: Glc: Gal = 3:1/260 kDa |
| Refs | Refs | Refs |
| MW | MW | MW |
| Molecular weight | Molecular weight | Molecular weight |
| Containing cholesteryl succinate | Containing cholesteryl succinate | Containing cholesteryl succinate |

Note: BSP = Bletilla striata polysaccharide; BSPb = Bletilla striata polysaccharide b; BSPF2 = Bletilla striata polysaccharide fraction 2; MW = molecular weight; SMA = smooth muscle actin; TGF = transforming growth factor.
Herb	Objective	Method	Refs
Typha angustifolia	Quantification of 11 major flavonoids in the pollen of Typha angustifolia.	- HPLC-PDA-MS - Apollo C18 column (250 × 4.6 mm, 5 µm), 35 °C - Gradient elution of acetonitrile-water and 0.05% formic acid (v/v) - Flow-rate of 0.8 mL/min - UPLC-PDA-MS - Acuity UPLCHSS T3 column (100 mm × 2.1 mm, 1.8 µm, C18), 35 °C - Gradient elution of 5 mM ammonium acetate and methanol solution - Flow-rate of 0.3 mL/min	[93]
	Determination of nucleosides and nucleobases in the pollen of Typha angustifolia.	- Total time < 12 min - Tchebichef moment method to analyze 3D fingerprint spectra: HPLC-DAD - Waters C-18 column (4.6 mm × 250 mm, 5 µm) - Gradient elution of acetonitrile-water - Visible and NIR spectroscopy - Two calibration methods of partial least square regression and least-squares support vector machines - NIR spectra, UV spectra - Uninformative variable elimination by partial least squares regression models - Direct analysis in real-time MS utilizing a surface flowing mode sample holder	[94]
Panax notoginseng	Determine notoginsenoside R1, ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1 in samples of P. notoginseng.	- HPLC-ELSD, HPLC-MS - Agilent SB-C18 column (250 mm × 4.6 mm, 5 µm) and an Agilent SB-C24 guard column (12.5 mm × 4.6 mm, 5 µm) - Gradient elution of acetonitrile and water - Flow rate: 1.1 mL/min - The Alltech ELSD conditions were optimized as follows: 45 °C of drift tube temperature and 1.2 L/min of nebulizer nitrogen gas flow rate.	[95]
	Rapid and non-destructive quantification of Panax notoginseng powder containing adulterants	- Using chemometrics and its ability to distinguish between different plant parts to help assure the identity and quality of the botanical raw materials and to support the safety and efficacy of the botanical drug products.	[96]
	• Qualitative and quantitative determination of 20(S)-protopanaxatriol saponins and 20(S)-protopanaxadiol saponins in Panax notoginseng, Panax ginseng and Panax quinquefolium	- HPLC-ESI-MS parallel with DAD - Waters Zorbax SB-C18 guard column (20 mm × 4 mm, 5 µm) - Gradient elution of 20(S)-protopanaxadiol saponins and 20(S)-protopanaxatriol saponins and 20(S)-protopanaxatriol saponins and 20(S)-protopanaxadiol saponins - Flow-rate of 0.3 mL/min - Total time < 12 min - Tchebichef moment method to analyze 3D fingerprint spectra: HPLC-DAD - Waters C-18 column (4.6 mm × 250 mm, 5 µm) - Gradient elution of acetonitrile-water - Visible and NIR spectroscopy - Two calibration methods of partial least square regression and least-squares support vector machines - NIR spectra, UV spectra - Uninformative variable elimination by partial least squares regression models - Direct analysis in real-time MS utilizing a surface flowing mode sample holder	[97]
	• Using chemometrics and its ability to distinguish between different plant parts to help assure the identity and quality of the botanical raw materials and to support the safety and efficacy of the botanical drug products.	- HLC - UPLC - capillary electrophoresis and NIR spectroscopy	[98]
	• Dencichine in Panax notoginseng and related species		[99]
Dalbergia odorifera	• Quantification of 10 major flavonoids from 60% methanol extract • 10 flavonoids: butin, (3R)-4’-methoxy 2’,3’,7’,8’-tetrahydroxyisoflavanone, liquiritigenin, melatin, violanine, vistitone, formononetin, dalbergin, sativanone and medicarpin	- HPLC-DAD - Eprogen Synchropak WAX column (4.6 × 250 mm, 6 µm) - 50 mM NaH2PO4 aqueous solution isocratic elution - Reverse-phase liquid chromatography - Agilent Zorbax SB-C18 column (250 mm × 4.6 mm, 5 µm) - gradient of acetonitrile and 0.3% (v/v) aqueous acetic acid - Flow rate of 0.8 mL/min - Detected at 275 nm - The complete separation was obtained within 55 min for the 10 target compounds.	[100]
	• Qualitative characterization of flavonoids • 23 flavonoids, including six iso-flavones, six neoflavones, four	- HPLC-ESI-MS parallel with DAD - Zorbax SB-C18 column (250 × 4.6 mm, 5 µm) with a Zorbax SB-C18 guard column (20 × 4 mm, 5 µm), 40 °C	[101]
	flavones, six neoflavones, four		[102]

(continued on next page)
Table 2 (continued)

Herb	Objective	Method	Refs
	isoflavones, three flavanones, two chalcones, one isoflavanonol and one pterocarpan	Gradient elution of acetonitrile and 0.3% aqueous acetic acid (v/v)	
		Flow rate was 0.8 mL/min	
		Collision-induced dissociations of the [M-H]⁻ ions were studied to clarify the MS behavior of the different types of flavonoids. In negative ion ESI-MS all the flavonoids yielded prominent [M-H]⁻ ions in the first-order mass spectra. Fragments involving losses of CH₃, H₂O, CO, C₂H₂O, and CO₂ were observed in the MS/MS spectra. Each of the seven types of flavonoid showed characteristic MS/MS fragmentation patterns. The isoflavonones, flavanones and chalcones were observed to undergo retro-Diels–Alder fragmentations. The spectra of almost all the neoflavonoids unexpectedly exhibited only [M-H-CH₃]⁻ radical anions as base peaks without any further fragmentation. Substitution positions also remarkably influenced the fragmentation behavior, which could assist in distinction among the flavonoid isomers. The fragmentation rules deduced here could aid in the characterization of other flavonoids of these types.	
Dalbergia odorifera	Qualitative characterization of 82 flavonoids	XTerra MS C(18) column	[104]
T. Chen and Scutellaria baikalensis	Orthogonal parallel separation and accurate molecular weight confirmation	a home-made Click OEG (Oligo(ethylene glycol)) column, and a Click CD (β-cyclodextrin) column	
Ligusticum chuanxiong Hort.	Extract ferulic acid, senkyunolide I, senkyunolide H, senkyunolide A, ligustilide and levestilide A from Ligusticum chuanxiong rhizomes.	High-pressure ultrasound-assisted extraction	[105]
Ligusticum chuanxiong Hort.	Senkyunolide I metabolites in rats after its intravenous administration.	UPLC/Q-TOF-MS	[106]
Bu-yang-huawu-tang (Astragalus membranaceus, Angelica sinensis, Paeonia lactiflora, Ligusticum chuanxiong, Carthamus tinctorius, Amygdalus persica and Pheretima aspergillum)	Cycloartane-type triterpene glycosides of astragaloside I, astragaloside II and astragaloside IV; isoflavones of formononetin, ononin calycosin, calycosin-7-O-β-d-glucoside, ligustilide and paeoniflorin	Ultra-fast liquid chromatography coupled with DAD	[107]
Corydalis yanhusuo W.T. Wang and its formula Jin Ling Zi San (combination of Corydalis Rhizoma and Toosendan Fructus)	Vinegar and wine processing on the content of the main alkaloids of Corydalis Rhizoma was investigated	HPLC-DAD	[109]
	Eleven alkaloids from Corydalis Rhizoma, namely protopine, α-allocryptopine,	In the two water decoctions, wine and vinegar processing increased the amount of tertiary alkaloids.	
		The differences were more pronounced for Jin Ling Zi San, in which case the content of all tertiary alkaloids (protopine, α-allocryptopine,	
Table 2 — (continued)

Herb	Objective	Method	Refs
Corydalis yanhusuo	tetrahydrocolumbamine, coptisine, palmatine, berberine, dehydrocorydaline, dl-tetrahydro- dropalmatine, THB, corydaline and tetrahydrocoptisine was increased by wine processing.	Chiral HPLC	[110]
	THB, a racemic mixture of (+)- and (−)-enantiomer in rat plasma	Chiral-AD column using methanol:ethanol (80:20, v/v) as the mobile phase at the flow rate 0.4 mL/min.	
		UV detection was set at 230 nm.	
		The calibration curves were linear over the range of 0.01–2.5 µg/mL for (+)-THB and 0.01–5.0 µg/mL for (−)-THB, respectively. The lower limit of quantification was 0.01 µg/mL for both (+)-THB and (−)-THB.	
		Mean plasma levels of (−)-THB were higher at almost all time points than those of (+)-THB. (−)-THB also exhibited greater C(max), and AUC(0–∞), smaller CL clearance and V(d) volume of distribution.	
	Optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline	pH-zone-refining counter-current chromatography with normal phase elution	[111]
		Chloroform–methanol–water (2:1:1, v/v), in which the lower organic phase containing 10mM triethylamine was used as the mobile phase, while the upper aqueous phase containing 10mM hydrochloric acid was used as the stationary phase.	
		Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.	
	Purification of alkaloids	HPLC	[112]
		Polar-copolymerized stationary phase named C18HCE	
		About 6.8 mg palmatine (HPLC purity > 98%) and 44.4 mg dehydrocorydaline (HPLC purity > 98%) were rapidly derived from 200 mg crude alkaloid sample, and the recoveries of these two compounds were 76.5 and 81.7%, respectively.	
	Quaternary alkaloids in ethanol extract of Corydalis yanhusuo	HPLC-ESI-MS/MS	[113]
		C18 column	
		Mobile phase was water (0.2% acetic acid, 0.1% triethylamine, v/v)-acetonitrile (24:76, v/v)	
		Recovery: 97–105%	
	Alkaloids in Corydalis yanhusuo	2D preparative multi-channel parallel HPLC	[114]
		off-line mode using the same preparative chromatographic column with pH 3.5 in the first and pH 10.0 in the second separation dimension	
		UV and MS	
		1St: UV; 2nd: UV and MS	[115]
	Alkaloids in Corydalis yanhusuo	UPLC-Q-TOF-MS-MS	
		Sixteen alkaloids were screened out	
		HPLC-UV and MS	[116]
		Ten alkaloids, including seven tertiary alkaloids and three quaternary alkaloids, were identified by comparing their retention times, UV and MS spectra with those of authentic compounds.	
	Direct determination of dl-tetrahydrodropalmatine in Corydalis yanhusuo	1-THP imprinted monolithic precolumn online/off-line coupling with reversed-phase HPLC	[117]
		The 1-THP imprinted monolithic column has been prepared by in situ polymerization using	

(continued on next page)
the highest concentration of *Emblica officinalis*, *Hemidesmus indicus*, and *Rubia cordifolia* (2 mg/mL) [24].

5.4. Skin disease treatment

Psoriasis is a chronic inflammatory skin disorder characterized by epidermal keratinocyte hyperproliferation, abnormal differentiation, and inflammatory infiltration. The anthraquinone precursor, 1,4-dihydroxy-2-naphthoic acid, was identified from the ethyl acetate extract and can induce HaCaT keratinocyte apoptosis (IC_{50} = 38 μM, 72 hours), via G0/G1 cell cycle arrest through both caspase-dependent and caspase-independent pathways [25]. 1,4-Dihydroxy-2-naphthoic acid has similar apoptotic effects as dithanol, which is commonly used to treat psoriasis in many countries but causes less irritation [25]. The topical application of *Rubia cordifolia* root extract and rose oil obtained from Rosa spp. flowers stimulated keratinocyte differentiation in mouse models by skin-barrier-reinforcing properties [26].

6. Chinese Arborvitae Twig (Biota orientalis (L.) Endl.)

Chinese Arborvitae Twig traditionally is used to stop bleeding [1]. Recent research is as follows.

6.1. GABA receptor

An ethyl acetate extract of *Biota orientalis* leaves (100 μg/mL) potentiated γ-aminobutyric acid (GABA)-induced control current by 92.6 ± 22.5% in Xenopus *laevis* oocytes expressing GABA(A) receptors (α1β2γ2S subtype). Isopimaric acid and sanderacopimamic acid were identified as the compounds responsible for the activity via high-performance liquid chromatography activity profiling. The highest efficiency was reached on α2- and α3-containing receptor subtypes. In the open field test, intraperitoneal administration of sandaracopimamic acid induced a dose-dependent decrease in locomotor activity in mice (3–30 mg/kg). No significant anxiolytic activity was observed at this dose range [27].

6.2. Inhibition of leukotriene C4 generation

Pinusolide can inhibited 5-lipooxygenase-dependent leukotriene C4 generation in IgE/antigen-induced bone-marrow-derived mast cells in a concentration-dependent manner (1–10 μM) via suppression of calcium influx and JNK phosphorylation [28].

6.3. Anti-inflammation

Pinusolide and its derivative, 15-methoxy pinusolidic acid (15-MPA), suppressed NO generation by suppressing iNOS, and exerted anti-inflammatory functions. 15-MPA, not pinusolide, suppressed adipocyte differentiation in a dose-dependent manner (10–200 μM), as revealed by lipid droplet formation and expression of adipogenic genes dependent on peroxisome proliferator-activated receptor-γ, such as adiponectin and adipocyte protein 2 (aP2) [29]. In addition, 15-MPA induced apoptosis in murine microglial cells (12.5–50 μM), presumably via inhibition of cell cycle progression [30]. Moreover, 15-MPA can inhibit LPS-induced iNOS expression and NO production, independent of mitogen-activated protein kinase (MAPK) and NF-κB in microglial cells [31]. As microglial activation is detrimental in central nervous system (CNS) injuries, these data suggest a strong therapeutic potential of 15-MPA.

6.4. Anti-tumor effects

Juniperonic acid (Δ-5c, 11c, 14c, 17c-20:4), a polymethylene-interrupted fatty acid, has anti-proliferative activity in Swiss 3T3 cells treated with bombesin, a mitogenic neuropeptide. The eicosapentaenoic acid-like (EPA-like) activity of juniperonic acid may be involved in the pharmacological activity of biota seeds, a psychoactive TCM [32].

6.5. Antifibrotic effects

The antifibrotic effect of 12 diterpenes from the 90% methanolic fraction was evaluated using rat hepatic stellate cell line HSC-T6, by assessing cell proliferation and morphological changes. Among these diterpenes, totarol and isopimara-8,15-dien-19-oic acid (1 μM, 10 μM and 100 μM) dose- and time-dependent reduced cell proliferation and caused different patterns of morphological changes [33].
7. **Lignum Dalbergiae Oderiferae (Dalbergia odorifera T. Chen)**

Lignum Dalbergiae Oderiferae traditionally is used to stop bleeding, invigorate the blood and dispel blood stasis [1]. Recent research is as follows.

7.1. **Osteoclastogenesis**

6,4′-Dihydroxy-7-methoxyflavanone (DMF) can inhibit receptor activators of nuclear factor κ-B ligand (RANKL) induced osteoclastogenesis dose-dependently (10–30 μM). In addition, DMF decreased osteoclast function through disruption of actin ring formation and consequently suppression of the pit-forming activity of mature osteoclasts. Mechanistically, DMF inhibited RANKL-induced expression of NFATc1 (NF of activated T cells, cytoplasmic, calcineurin-dependent 1), and c-Fos via inhibition of the MAPK pathway [34]. 9-Hydroxy-6,7-dimethoxydalbergiquinol (HDDQ) dose-dependently (10–40 μM) inhibited the early stage of RANKL-mediated osteoclast differentiation in bone marrow macrophages, without cytotoxicity. HDDQ prevented osteoclast differentiation via downregulation of Akt, c-Fos, and NFATc1 signaling molecules [35].

7.2. **Antibacterial and antifungal effects**

A sesquiterpene, 6α-hydroxyicycleromediol (25 μL, 20 mg/mL), showed an inhibitory effect on Candida albicans (inhibition zone diameter of 9.21 mm) and Staphylococcus aureus (inhibition zone diameter of 11.02 mm) by paper disk diffusion [36]. Flavonoids, sativanone, (3R)-vestitone, (3R)-2′,3′,7′-trihydroxy-4′-methoxyisoflavanone, (3R)-4′-methoxy-2′,3,7-trihydroxyisoflavanone, carthamidin, licoritigenin, isoliquiritigenin, (3R)-vestitol, and sulfuretin were evaluated for their inhibitory activity against Ralstonia solanacearum. (3R)-Vestitol showed the strongest antibacterial activities (inhibition zone diameter of 16.62 mm) [37].

7.3. **Anti-inflammation**

4,2′,5′-Trihydroxy-4′-methoxychalcone inhibited cyclooxygenase-2 and iNOS expression (5–40 μM), leading to a reduction in cyclooxygenase-2-induced prostaglandin E2 and iNOS-induced NO production in LPS-stimulated murine peritoneal macrophages by inducing the expression of anti-inflammatory HO-1 via the Nrf2 pathway [38]. Neuro-inflammation is a key mechanism against infection, injury, and trauma in the CNS. 6,4′-Dihydroxy-7-methoxyflavanone, latifolin, (2R, 3R)-obtusafuran, and isoparvifuran (1–20 μM) effectively modulates the regulation of antioxidative and anti-inflammatory action, via upregulation of HO-1 in hippocampal neuronal cell line HT22andBV2 microglia [39,40]. In addition, (2R, 3R)-obtusafuran and latifolin also reduced TNF-α and IL-1β production [41]. 9-Hydroxy-6,7-dimethoxydalbergiquinol (5–40 μM) can reduce neurodegenerative diseases caused by neuroinflammation [42]. Ethyl acetate-soluble fraction was found to inhibit LPS-induced NO production in RAW 264.7 cells. (2S)-Pinocembrin was characterized as the most potent inhibitory effect with an IC50 value of 18.1 μM [43]. Two flavonoids, 4,2′,5′-trihydroxy-4′-methoxychalcone and (2S)-6,7,4′-trihydroxyflavan, along with 14 known flavonoids and two known arylbenzofurans, were isolated from the heartwood of Dalbergia odorifera. Of the isolates, eight compounds were found to have a potent protective effect on glutamate-induced oxidative injury in HT22 cells. (2S)-6,4′-Dihydroxy-7-methoxyflavan was the most effective with EC50 2.85μM [44]. Isoliquiritigenin (1–10 μM) is reported to exert anti-inflammatory effects by effectively inducing HO-1 [45].

7.4. **Anti-tumor effects**

Methanol extract of the root of Dalbergia odorifera showed the strongest MMP inhibitory activity. Fisetin has been characterized as the effective compound via fractionation methods. In addition, fisetin inhibits MMP-1, MMP-3, MMP-7, MMP-9 and MMP-14 more efficiently than a naturally occurring MMP inhibitor tetracycline. Fisetin (10–100 μM) dose-dependently inhibits proliferation of fibrosarcoma HT-1080 cells and human umbilical vascular endothelial cells (HUVECs), MMP-14-mediated activation of proMMP-2 in HT-1080 cells, invasiveness of HT-1080 cells, and in vitro tube formation of HUVECs, suggesting a valuable chemopreventive agent [46].

7.5. **Anti-diabetes**

Ethyl acetate-soluble fraction had a remarkable inhibitory effect on α-glucosidase. (2S)-Liquiritigenin, (2S)-4′,6′-dihydroxy-7-methoxyflavanone, and isoliquiritigenin inhibit yeast α-glucosidases, as shown by ultrafiltration liquid chromatography/mass spectrometry [47]. Besides, 11 isoflavones, medicarpin (1), formononetin (2), mucronulatol (3), (3R)-calussequinone (5), (3R)-5′-methoxyvestitol (6), tectorigenin (7), biochanin A (8), tuberosin (9), calycosin (10), daidzein (11), and genistein (12), as well as a flavone, liciruigenin (4), from two leguminous plant extracts, the heartwood extract of Dalbergia odorifera and the roots extract of Pueraria thunbergiana were screened for yeast α-glucosidase inhibitory activity. The IC50 values were calculated as 2.93mM (1), 0.51mM (2), 3.52mM (7) 0.35mM (8), 3.52mM (9), 0.85mM (11), and 0.15mM (12), while that of reference drug acarbose was calculated as 9.11mM in vitro [48].

7.6. **Anti-platelet**

Two sesquiterpenes from the essential oil of the heartwood of Dalbergia odorifera T. Chen showed anti-platelet activity, but poor antithrombotic activity (10 μmol/mL of compound, anti-platelet inhibition rate = 51.4%) [49].

8. **Chuanxiong Rhizoma (Ligusticum chuanxiong Hortorum)**

Chuanxiong Rhizoma traditionally is used to invigorate the blood and promote the movement of qi [1]. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides, and cerebrosides are the main components responsible for the bioactivities. The studies before
2012 are summarized in two reviews [50,51]. The most recent 2 years research is as follows.

8.1. K⁺ channel blockade

Butylenephthalide (30–300 μM) significantly enhanced tension in isolated guinea pig trachea, with a mechanism similar to 4-aminopyridine, a blocker of the Kv1 family of K⁺ channels [52].

8.2. Anti-inflammation

The rhizome ethanol extract (600 mg/kg/day, orally) significantly reduced body weight gain, improved serum lipid profiles (by lowering total cholesterol and LDL-cholesterol but raising high-density lipoprotein-cholesterol), and protected vascular endothelium in ovariectomized rats fed a high-fat diet. It is postulated that this extract could exert its vascular protective effect through multiple targets by: (1) improving serum lipid profiles; (2) reducing the reactive oxygen species (ROS) level in the body via enhancing the hepatic antioxidative activity or antioxidant level to scavenge the ROS generated during postmenopausal hypercholesterolemia; (3) stimulating endothelial-NOS-derived NO production; and (4) counteracting the upregulation of inflammatory cytokine (TNF-α, vascular cell adhesion molecule-1 and ICAM-1) expression so as to reduce endothelial damage [53].

8.3. Neuroinflammation

Microglial cells are the prime effectors in immune and inflammatory responses of the CNS. Negative regulators of microglial activation have been considered as potential therapeutic candidates to target neurodegeneration, such as that in Alzheimer’s and Parkinson’s diseases. Neuroprotective potential of tetramethylpyrazine (TMP) has been demonstrated in neuropathic animal models. TMP (300–400 μg/mL) significantly inhibited the Ajβ25-35 and IFN-γ-stimulated productions of NO, TNF-α, IL-1β, MCP-1, and intracellular ROS from primary microglial cells, and effectively reduced Ajβ25-35 and IFN-γ-elicited NF-κB activation. In organotypic hippocampal slice cultures (OHSCs), TMP significantly blocked Ajβ25-35-induced ROS generation and phosphorylation of Akt. TMP also inhibited Ajβ1-42-induced TNF-α and IL-1β production in primary microglial cells and neuronal death in OHSCs [54]. Butylenephthalide (25–400 μM) significantly inhibited the LPS-induced production of NO, TNF-α and IL-1β in rat brain microglia. In OHSCs, butylenephthalide clearly blocked the effect of LPS on hippocampal cell death and inhibited LPS-induced NO production in culture medium, suggesting a neuroprotective effect of butylenephthalide by reducing the release of various proinflammatory molecules from activated microglia [55]. Among 12 phthalides from Chuanxiong Rhizoma, tokinolide B (50 μM) showed significant inhibitory effects against LPS-induced NO production in LPS-triggered RAW 264.7 macrophages [56].

8.4. Anti-cancer

Chuanxiong Rhizoma extract was shown to have a great effect on ERBB2 gene expression, and synergistically with estrogen, to stimulate MCF-7 cell growth, which provides important information that may affect clinical treatment strategies among breast cancer patients receiving hormonal or targeted therapies [57]. Chuanxiong Rhizoma alcohol extract (0.183–1.5 mg/mL) can inhibit the proliferation of pancreatic cancer HS 766 T cells and lead to apoptosis via reduced intracellular Ca²⁺ concentration. The cell cycle was blocked in G0/G1 phase, and the cell membrane was damaged [58]. Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from overproduction of fibroblasts and excessive deposition of collagen. Essential oil from the rhizome, prepared as a liposomal formulation, was tested on hypertrophic scars formed in a rabbit ear model. The treatment significantly alleviated hypertrophic scars. The levels of transforming growth factor-β1, MMP-1, collagen I, and collagen III were evidently decreased, and caspase-3 and -9 levels and apoptotic cells were markedly increased in the scar tissue. The scar elevation index was also significantly reduced. Histological findings exhibited significant amelioration of the collagen tissue, suggesting a potential effective cure for human hypertrophic scars [59].

8.5. Cardiovascular effects

Apolipoprotein-E-deficient mice treated with the extract full of lactones (30 mg/kg and 60 mg/kg) showed significant reduction in lesion size in thoracic segments of the aorta, and decreased serum triglyceride, total cholesterol and LDL-cholesterol levels, as well as expression of CD31, ICAM-1, MCP-1, and NF-κB in the atherosclerotic plaques [60]. Two new phthalides, chuanxiongdiolides A and B (50 μM, 25 μL), showed different degrees of inhibitory effects against butyrylcholine esterase (inhibitory rates: 36% and 21%, respectively) [61]. In ovariectomized rats, the ethanol extract (600 mg/kg/day, orally) reduced body weight gain, improved serum lipid profile, treated nonalcoholic fatty liver disease, and protected the vascular endothelium [62]. All these effects may be associated with antioxidant or vasorelaxant compounds, suggesting a promising natural supplement for postmenopausal women to prevent nonalcoholic fatty liver disease and cardiovascular disease [62]. Ferulic acid (100 mg/kg, intravenously) exerted a neuroprotective effect by regulating the Akt/glycogen synthase kinase-3/β/collapsin response mediator protein-2 signaling pathway, and ameliorated the injury-induced increase of collapsin response mediator protein-2 in focal cerebral ischemia [63]. Ligustrazine (tetramethylpyrazine) not only significantly inhibits L-type calcium current I in a concentration-dependent manner (10μM, 20μM, 40μM and 80μM) but also suppresses calcium transient and contraction in the absence and presence of isoprenaline in rabbit ventricular myocytes [64]. A meta-analysis of 25 randomized controlled trials was performed to evaluate the clinical effect of ligustrazine on diabetic nephropathy. The randomized controlled trials included 1645 patients (858 in the treatment group and 787 in the control group). Compared with the control group, ligustrazine injection had a significant therapeutic effect of improving renal function (blood urea nitrogen [BUN] and serum creatinine [SCr] and reducing in urine protein in patients with diabetic nephropathy [65].
9. **Corydalis Tuber (Corydalis yanhusuo W.T. Wang.)**

Corydalis Tuber traditionally is used to invigorate the blood and alleviate pain [1]. The recent research is as follows.

9.1. **κ-Opioid receptor agonists**

Two \(N \)-methyltetrahydropseudoberberines, \(N \)-methyltetrahydrocolumbamine and \(N \)-methylenehydrocorybulbine, with \(\kappa \)-opioid receptor agonist activities (\(EC_{50} = 220 \mu M \) and 170 \(\mu M \)) were isolated using 2D-liquid chromatography with C18HCE (Polarcopolymerized stationary phase) as the first dimension and a strong cation exchange column as the second dimension [66].

9.2. **GABA A receptor**

Tetrahydropalmatine (THP; 25 mg/kg) given via intraperitoneal injection results in significant anxiolysis and decreased motor movements. Furthermore, flumazenil, 3 mg/kg, does not fully antagonize the effects of THP [67].

9.3. **Hyperalgesia**

Common chemotherapeutic agents such as oxaliplatin often cause neuropathic pain during cancer treatment. This study found that l-THP (1–4 mg/kg, intraperitoneally) produced a dose-dependent antihyperalgesic effect, involving a dopamine D1 receptor mechanism, in a mouse model of oxaloplatin-induced neuropathic pain [68].

9.4. **Acetylcholinesterase inhibition**

In a bioassay-guided search for acetylcholinesterase (AChE) inhibitors from Chinese natural resources, eight isouquinoline alkaloids, tetrahydropalmatine, corydaline, protopine, berberine, palmatine, jatrorrhizine, coptisine, and dehydrocorydaline, were isolated from the methanolic extract of the tubers of *Corydalis yanhusuo*. Berberine exhibited the most potent effect (\(IC_{50} = 0.47 \pm 0.01 \)). Structure–activity relationship analysis suggested that aromatization at ring C, as well as substitutions at C-2, C-3, C-9, C-10 and C-13 affect the AChE activity of protoberberine alkaloids [69].

9.5. **Drug addiction/dopamine receptor**

l-Isocorypalmine (tetrahydrocolumbamine, l-ICP), a monodemethylated analog of l-tetrahydropalmatine, acts as a \(D_1 \) partial agonist and a \(D_2 \) antagonist to produce its in vivo effects. Administration of l-ICP (10 mg/kg) before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on Days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion, which suggests that l-isocorypalmine is a promising agent for treatment of cocaine addiction [70]. Formalin-evoked spontaneous nociceptive responses (licking behavior) were inhibited significantly by giving (intraperitoneal) the total alkaloids of *Corydalis yanhusuo* in a single dose of 150 mg/kg. Subsequently, an online comprehensive 2D biochromatography method with a silica-bonded human serum albumin column in the first dimension and a monolithic ODS column in the second screened 13 bioactive components in *Corydalis yanhusuo*: protopine, tetrahydrocolumbamine, glaucine, tetrahydropalmatine, corydaline, palmatine, berberine, dehydrocorydaline, canadine, tetrahydrocoptisine, fumaricine, columbamine, and dehydrocorybulbine [71].

9.6. **Dopamine receptor**

Bioactivity-guided fractionation of *Corydalis yanhusuo* has resulted in the isolation of eight known isouquinoline alkaloids: tetrahydropalmatine, isocorypalmine, stylopine, corydaline, columbamine, coptisin, 13-methylpalmatine, and dehydrocorybulbine. The isolated compounds were screened for their binding affinities at the dopamine \(D_1 \) receptor. Isocorypalmine had the highest affinity (\(K_i = 83 \text{nM} \)). The structure–affinity relationships of these alkaloids are discussed [72].

9.7. **Pain**

Oral administration of a single dose of the extracts of *Corydalis yanhusuo* and *Angelicae dahuricae* (low dose: 3.25 g raw herbs; high dose: 6.5 g raw herbs) significantly decreased pain intensity in humans in a dose-dependent manner, which may have clinical value for treating mild to moderate pain [73].

9.8. **Cardiovascular effects**

l-THP (20 mg/kg) exerted cardioprotective in rat myocardial ischemia-reperfusion injury by activating the phosphatidylinositide 3-kinase/Akt/endothelial NOS/NO pathway, increasing expression of hypoxia-inducible factor-1α and VEGF, depressing iNOS-derived NO production in myocardium, decreasing accumulation of inflammatory factors, including TNF-α and myeloperoxidase, and lessening the extent of apoptosis [74]. Alcohol extract (200 mg/kg/day or 50 mg/kg/day) from the rhizome significantly improved heart function and prevented cardiac hypertrophy, with parallel reductions in myocardial fibrosis, as demonstrated by reduced left ventricular (LV) collagen volume fraction CVF and reduced levels of type I collagen on pressure-overloaded cardiac hypertrophy induced by transverse abdominal aorta constriction in rats [75]. Administration of ethanol extract *Corydalis yanhusuo* (50 mg/kg/day, 100 mg/kg/day or 200 mg/kg/day for 8 weeks in a rat heart failure model) led to a significant reduction in infarct size, LV/body weight ratio, lung/body weight ratio, inhibition of neurohormonal activation, and improvement in cardiac function, as demonstrated by lower LV end-diastolic pressure and elevated +/−dp/dt(max), suggesting a cardioprotective effect [76]. The extract from *Corydalis yanhusuo* (200 mg/kg or 100 mg/kg) also exerted a protective effect in a myocardial ischemia/reperfusion injury rat model by inhibition of myocardial apoptosis through modulation of the Bcl-2 family [77].

9.9. **Anti-inflammation**

Dehydrocorydaline (6–24 \(\mu M \)) reduced the viability of macrophage-derived RAW264.7 cells and primary
macrophages in the presence of LPS by inhibiting the elevation of mitochondrial membrane potential and inducing ATP depletion in LPS-stimulated macrophages [78]. THP inhibited LPS-induced IL-8 production in a dose-dependent manner by blocking MAPK phosphorylation in the human monocytic cell line, THP-1 [79].

9.10. Anti-tumor effects

The ethanol extract (50–200 μg/mL) inhibited MCF-7 cell proliferation by inducing G2/M cell cycle arrest, which might be mediated by inducing ROS formation, decreasing ΔΨm, and regulating cell-cycle-related protein expression [80]. The quaternary protoberberine alkaloids and the tertiary protoberberine alkaloids exhibited potent aromatase binding activities (extract 2 mg/mL; pure compound 100μM). The quaternary ammonium group and the methyl group at C-13 position of tertiary protoberberine alkaloids might be necessary for this activity [81]. Both extract and its active compound berberine significantly suppressed the VEGF-triggered ERK1/2 pathways upregulation of MMP-2 at both mRNA and protein levels [82]. The extract (3–30 μg/mL) inhibited the migration and invasion of MDA-MB-231 cells in vitro, involving the activation of p38 and inhibition of ERK1/2 and stress-activated protein kinase/JNK MAPK signaling [83]. Glaucine (3.125–50μM) inhibits P-glycoprotein and MRP1-mediated efflux and activates ATPase activities of the transporters, indicating that it is a substrate and inhibits P-glycoprotein and multidrug resistance protein 1 (MRP1) competitively. Furthermore, glaucine suppresses expression of ABC transporter mRNA and protein levels. This extract (3–30 μg/mL) inhibited the migration of MCF-7/ADR to adriamycin and mitoxantrone effectively [84].

9.11. Motherwort Herb (Leonurus heterophyllos Sweet)

Motherwort Herb traditionally is used to invigorate the blood and regulate menses [1]. Recent research is as follows.

9.12. Neurite outgrowth-promoting effect

Four new spirocyclic nortriterpenoids, leonurosoleanalide A, leonurosoleanalide B, leonurosoleanalide C, and leonurosoleanalide D, were isolated from the methanol extract of the fruits of Motherwort Herb. Mixtures of all four nortriterpenoids significantly enhanced the neurite outgrowth of PC12 cells treated with nerve growth factor, at concentrations of 1–30μM [85].

9.13. Cardiovascular effects

Alkaloid extract from Motherwort Herb at 7.2 mg/kg or 14.4 mg/kg induced significantly decreasing neurological deficit scores and reduced the infarct volume in rats with focal cerebral ischemic injury. At these two doses, the myeloperoxidase content was significantly decreased in ischemic brain as compared with a control group. The extract at 14.4 mg/kg significantly decreased the NO level as well as the apoptosis ratio of nerve fiber compared with the control group [86]. Stachydrine (10⁻⁸–10⁻³M), a major constituent to promote blood circulation and dispel blood stasis, ameliorates HUVEC injury induced by anoxia–reoxygenation, and its putative mechanisms are related to inhibition of anoxia–reoxygenation and tissue factor expression [87]. Two new cyclic nonapeptides (100μM), cycloleuninepeptide E, cyclo-(Ala-Pro-Ile-Val-Ala-Ala-Phe-Thr-Pro-), and cycloleuninepeptide F, cyclo-(Gly-Tyr-Pro-Leu-Pro-Phe-Tyr-Pro-Pro-), have been isolated from the fruits of Motherwort Herb, and show moderate vasorelaxant effects on rat aorta [88].

9.14. AChE inhibition

Seventy percent ethanol extract of the aerial parts of Motherwort Herb showed significant AChE inhibitory activity. Bioassay-guided fractionation and repeated column chromatography led to the isolation of new labdane-type diterpenoids, leoheteronin F, and six known compounds. Leoheteronin A (IC₅₀ = 11.6μM) and leopersin G (IC₅₀ = 12.9μM) with a 15,16-epoxy group at the side chain were found to be potent inhibitors of AChE [89]. In addition, analytical reports regarding these nine herbs are also summarized in Table 2 [93–118].

REFERENCES

[1] Bensky D, Gamble A, Kaptchuk T. Chinese herbal medicine: materia medica. Revised edition. Eastland Press; 1993.
[2] Guo Y, Gong H, Guo X. Rhizosphere bacterial community of Typha angustifolia L. and water quality in a river wetland supplied with reclaimed water. Appl Microbiol Biotechnol 2015;99:2883–93.
[3] Chen YL, Hong XQ, He H, Luo HW, Qian TT, Li RZ, Jiang H, Yu HQ. Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. Bioresour Technol 2014;160:89–92.
[4] Chandra R, Yadav S. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites communis, Typha angustifolia and Cyperus esculentus. Int J Phytoremediation 2011;13:580–91.
[5] Lee YS, Choi EM. Effect of pollen from Typha angustata on hydrogen peroxide induced toxicity in osteoblastic MC3T3-E1 cells. J Oral Pathol Med 2012;41:171–7.
[6] Varpe SS, Juvekar AR, Bidikar MP, Juvekar PR. Evaluation of anti-inflammatory activity of Typha angustifolia pollen grains extracts in experimental animals. Ind J Pharmacol 2012;44:788–91.
[7] Fruet AC, Seito LN, Rall VL, Di Stasi LC. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L) prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis. BMC Complement Altern Med 2012;12:62.
[8] Lee JJ, Yi H, Kim IS, Kim Y, Niiem NX, Kim YH, Myung CS. (2S)-naringenin from Typha angustata inhibits vascular smooth muscle cell proliferation via a G0/G1 arrest. J Ethnopharmacol 2012;139:873–8.
[9] Zeng Y, Song JX, Shen XC. Herbal remedies supply a novel prospect for the treatment of atherosclerosis: a review of current mechanism studies. Phytother Res 2012;26:159–67.
[10] Yang X, Xiong X, Wang H, Wang J. Protective effects of Panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid Based Complement Alternat Med 2014;2014:204840.
[11] Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic
gene expression using the human breast cancer MCF-7 cell line. Evid Based Complement Alternat Med 2014;2014:965486. Xie X, Tian Y, Yin S, Lin Y, Tan G. Anticancer effects of Ligusticum chuanxiong Hort alcohol extracts on Hs766T cell. Afr J Tradit Complement Altern Med 2013;10:542–6. Zhang H, Ran X, Hu CL, Qin LP, Lu Y, Peng C. Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model. PLoS One 2012;7:e31157. Xiao Y, Wang YC, Li LL, Jin YC, Sironi L, Wang W, Wang Y. Lactones from Ligusticum chuanxiong Hort. reduces atherosclerotic lesions in apoE-deficient mice via inhibiting over expression of NF-kB-dependent adhesion molecules. Fitoterapia 2014;95:240–6. Huang J, Lu XQ, Lu J, Li GY, Wang HY, Li LH, Lin RC, Wang JH. Two new phthalidines with BuChE inhibitory activity from Ligusticum chuanxiong. J Asian Nat Prod Res 2013;15:1237–42. Li CM, Wu JH, Yang RF, Dong XL, He ZY, Tian XL, Guo DJ, Wang MS, Qiu TQ, Chan SW. Ligusticum chuanxiong prevents ovary-oxygenated-induced liver and vascular damage in rats. Am J Chin Med 2013;41:831–48. Gim SA, Sung JH, Sha B, Kim MO, Koh PQ. Ferulic acid regulates the AKT/GSK-3beta/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2013;29:63–9. Ren Z, Ma J, Zhang P, Luo A, Zhang S, Kong L, Qian C. The effect of liguistane on L-type calcium current, calcium transient and contractility in rabbit ventricular myocytes. J Ethnopharmacol 2012;144:555–61. Wang B, Ni Q, Wang X, Lin L. Meta-analysis of the clinical effect of liguizane on diabetic nephropathy. Am J Chin Med 2012;40:25–37. Zhang Y, Wang C, Guo Z, Zhang X, Wang Z, Liang X, Civilli O. Discovery of N-methyltetrahydroprotoberberines with kappa-opioid receptor agonists-opioid receptor agonist activities from Corydalis yanhusuo W.T Wang by using two-dimensional liquid chromatography. J Ethnopharmacol 2014;155:1597–602. Henkes H, Franz M, Kendall O, Monroe J, Legaspi A, LeDoux J, Haese C, Williams D, McCaill S, Johnson AD, Ceremuga TE. Evaluation of the anxiolytic properties of tetrahydropalmatine, a Cordydis yanhusuo compound, in the male Sprague–Dawley rat. AANA J 2011;79:S75–80. Guo Z, Man Y, Wang X, Lin H, Sun X, Su X, Hao J, Mi W. Levo-tetrahydropalmatine attenuates oxaliplatin-induced mechanical hyperalgesia in mice. Sci Rep 2014;4:3905. Xiao HT, Peng J, Liang Y, Yang J, Bai X, Hao Y, Yang FM, Sun QY. Acetylcholinesterase inhibitors from Corydalis yanhusuo. Nat Prod Res 2011;25:1418–22. Xu W, Wang Y, Ma Z, Chiu YT, Huang P, Rasakhah K, Unterwald E, Lee DY, Liu-Chen LY. L-isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors. Drug Alcohol Depend 2013;133:693–703. Wang C, Wang S, Fan G, Zhou H. Screening of antinociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/ tandem mass spectrometry. Anal Bioanal Chem 2010;396:1731–40. Ma ZZ, Xu W, Jensen NH, Roth BL, Liu-Chen LY, Lee DY. Isoquinoline alkaloids isolated from Corydalis yanhusuo and their binding affinities at the dopamine D1 receptor. Molecules 2008;13:2303–12. Yuan CS, Mehandele SR, Wang CZ, Aung HH, Jiang T, Guan X, Shoyama Y. Effects of Corydalis yanhusuo and Angelicae dahuricae on cold pressor-induced pain in humans: a controlled trial. J Clin Pharmacol 2004;44:1323–7.
[74] Han Y, Zhang W, Tang Y, Bai W, Yang F, Xie L, Li X, Zhou S, Pan S, Chen Q, Ferro A, Ji Y. l-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemia/reperfusion injury in rats. PloS One 2012;7:e38627.

[75] Wen C, Wu L, Ling H, Li L. Salutary effects of Corydalis yanhusuo extract on cardiac hypertrophy due to pressure overload in rats. J Pharm Pharmacol 2007;59:1159–65.

[76] Wu L, Ling H, Jiang L, He M. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following myocardial infarction. J Pharm Pharmacol 2007;59:695–701.

[77] Ling H, Wu L, Li L. Corydalis yanhusuo rhizoma extract reduces infarct size and improves heart function during myocardial ischaemia/reperfusion by inhibiting apoptosis in rats. Phytother Res 2006;20:448–53.

[78] Ishiguro K, Ando T, Maeda O, Watanabe O, Goto H. Dehydrocorydine inhibits elevated mitochondrial membrane potential in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2011;11:1362–7.

[79] Oh YC, Choi JG, Lee YS, Brice OO, Lee SC, Kwak HS, Byun YH, Kang OH, Rho JR, Shin DW, Kwon DY. Tetrahydropalmatine inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated THP-1 cells. J Med Food 2010;13:1125–32.

[80] Xu Z, Chen X, Zhang Q, Chen L, Wang Y. Corydalis yanhusuo W.T. Wang extract inhibits MCF-7 cell proliferation by inducing cell cycle G2/M arrest. Am J Chin Med 2011;39:579–86.

[81] Shi J, Zhang X, Ma Z, Zhang M, Sun F. Characterization of aromatase binding agents from the dichloromethane extract of Corydalis yanhusuo using ultrafiltration and liquid chromatography tandem mass spectrometry. Molecules 2010;15:3556–66.

[82] Gao JL, Shi JM, Lee SM, Zhang QW, Wang YT. Angiogenic pathway inhibition of Corydalis yanhusuo and berberine in human umbilical vein endothelial cells. Oncol Res 2009;17:519–26.

[83] Gao JL, Shi JM, He K, Zhang QW, Li SP, Lee SM, Wang YT. Yanhusuo extract inhibits metastasis of breast cancer cells by modulating mitogen-activated protein kinase signaling pathways. Oncol Rep 2008;20:819–24.

[84] Lei Y, Tan J, Wink M, Ma Y, Li N, Su G. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem 2013;136:1117–21.

[85] Liu Y, Kubo M, Fukuyama Y. Spirocyclic nortriterpenoids with NGF-potentiating activity from the fruits of Leonurus heterophyllus. J Nat Prod 2012;75:1533–8.

[86] Liang H, Liu P, Wang Y, Song S, Ji A. Protective effects of alkaloid extract from Leonurus heterophyllus on cerebral ischemia reperfusion injury by middle cerebral ischemic injury (MCAO) in rats. Phytomedicine 2011;18:811–8.

[87] Yin J, Zhang ZW, Wu YJ, Liao JY, Luo XG, Shen YJ. Stachydrine, a major constituent of the Chinese herb Leonurus heterophyllus sweet, ameliorates human umbilical vein endothelial cells injury induced by anoxia-reoxygenation. Am J Chin Med 2010;38:157–71.

[88] Morita H, Iizuka T, Gonda A, Itokawa H, Takeya K. Cyclcloenouripeptides E and F, cyclic nonapeptides from Leonurus heterophyllus. J Nat Prod 2006;69:839–41.

[89] Hung TM, Luan TC, Vinh BT, Cuong TD, Min BS. Labdane-type diterpenoids from Leonurus heterophyllus and their cholesterase inhibitory activity. Phytother Res 2011;25:611–4.

[90] Zhang M, Sun L, Zhao W, Peng X, Liu F, Wang Y, Bi Y, Zhang H, Zhou Y. Cholesteryl-modification of a glucomannan from Bletilla striata and its hydrogel properties. Molecules 2014;19:9089–100.

[91] Feng Q, Li M, Xue F, Liu H. Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydr Polym 2014;107:119–23.

[92] Wang Y, Liu D, Chen S, Wang Y, Jiang H, Yin H. A new glucosanmonn from Bletilla striata: structural and anti-inflammatory effects. Fitoterapia 2014;92:72–8.

[93] Tao W, Wang N, Duan JA, Wu D, Guo J, Tang Y, Qian D, Zhu Z. Simultaneous determination of eleven major flavonoids in the pollen of Typha angustifolia by HPLC-PDA-MS. Phytochem Anal 2011;22:455–61.

[94] Tao WW, Duan JA, Yang NY, Guo S, Zhu ZH, Tang YP, Qian DW. Determination of nucleosides and nucleobases in the pollen of Typha angustifolia by UPLC-PDA-MS. Phytochem Anal 2012;23:373–8.

[95] Li BQ, Chen J, Li JJ, Wang X, Zhai HL. The application of a Tchebichef moment method to the quantitative analysis of multiple compounds based on three-dimensional HPLC fingerprint spectra. Analyst 2014;140:630–6.

[96] Nie P, Wu D, Sun DW, Cao F, Bao Y, He Y. Potential of visible and near infrared spectroscopy and pattern recognition for rapid quantification of notoginseng powder with adulterants. Sensors 2013;13:13820–34.

[97] Jiang C, Qu H. A comparative study of using in-line near-infrared spectra, ultraviolet spectra and fused spectra to monitor Panax notoginseng adorption process. J Pharm Biomed Anal 2015;102:78–84.

[98] Zeng S, Wang L, Chen T, Qu H. On-line coupling of macroporous resin column chromatography with direct analysis in real time mass spectrometry utilizing a surface flowing mode sample holder. Anal Chim Acta 2014;811:43–50.

[99] Xu FX, Yuan C, Wang JB, Yan R, Hu H, Li SP, Zhang QW. A novel strategy for rapid quantification of 20(S)-protopanaxatriol and 20(S)-protopanaxadiol saponins in Panax notoginseng. P. ginseng and P. quinquefolium. Nat Prod Res 2015;29:46–52.

[100] Zhu J, Fan X, Cheng Y, Agarwal R, Moore CM, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: a case study using Panax notoginseng. PloS One 2014;9:e87462.

[101] Qiao CF, Liu XM, Cui XM, Hu DJ, Chen YW, Zhao J, Li SP. High-performance anion-exchange chromatography coupled with diode array detection for the determination of dencichine in Panax notoginseng and related species. J Sep Sci 2013;36:2401–6.

[102] Liu RX, Wang Q, Guo HZ, Li L, Bi KS, Guo DA. Simultaneous determination of 10 major flavonoids in Dalbergia odorifera by high performance liquid chromatography. J Pharm Biomed Anal 2005;39:469–76.

[103] Liu R, Ye M, Guo H, Bi K, Guo DA. Liquid chromatography/electrospray ionization mass spectrometry for the characterization of twenty-three flavonoids in the extract of Dalbergia odorifera. Rapid Commun Mass Spectrom 2005;19:1557–65.

[104] Zeng J, Zhang X, Guo Z, Feng J, Xue X, Liang X. A new method for chemical identification based on orthogonal parallel liquid chromatography separation and accurate molecular weight confirmation. J Chromatogr A 2011;1218:1749–55.

[105] Liu JL, Zheng SL, Fan QJ, Yuan JC, Yang SM, Kong FL. Optimization of high-pressure ultrasonic-assisted simultaneous extraction of six major constituents from Ligusticum chuanxiong rhizome using response surface methodology. Molecules 2014;19:1887–911.

[106] Xiong YK, Lin X, Liang S, Hong YL, Shen L, Feng Y. Identification of senkyunolide I metabolites in rats using...
ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2013;81:81–86.

[107] Song E, Xu L. Rapid fingerprint analysis of *Ligusticum chuanxiong* by UFLC-DAD. J Chromatogr Sci 2013;51:331–4.

[108] Shaw LH, Chen WM, Tsai TH. Identification of multiple ingredients for a Traditional Chinese Medicine preparation (bu-yang-huan-wu-tang) by liquid chromatography coupled with tandem mass spectrometry. Molecules 2013;18:11281–86.

[109] Wu H, Waldbauer K, Tang L, Xie L, McKinnon R, Zehl M, Yang H, Xu H, Kopp B. Influence of vinegar and wine processing on the alkaloid content and composition of the traditional Chinese medicine *Corydalis Rhizoma* (Yanhusuo). Molecules 2014;19:11487–504.

[110] Zhang Y, Shi K, Wen J, Fan G, Chai Y, Hong Z. Chiral HPLC determination and stereoselective pharmacokinetics of tetrahydroberberine enantiomers in rats. Chirality 2012;24:239–44.

[111] Yu Q, Tong S, Yan J, Hong C, Zhai W, Li Y. Preparative separation of quaternary ammonium alkaloids from *Corydalis yanhusuo* W.T. Wang by pH-zone-refining countercurrent chromatography. J Sep Sci 2011;34:278–85.

[112] Wang C, Guo Z, Zhang J, Zeng J, Zhang X, Liang X. High-performance purification of quaternary alkaloids from *Corydalis yanhusuo* W.T. Wang using a new polycopolymerized stationary phase. J Sep Sci 2011;34:53–8.

[113] Cheng XY, Shi Y, Zhen SL, Sun H, Jin W. HPLC-MS analysis of ethanol extract of *Corydalis yanhusuo* and simultaneous determination of eight protoberberine quaternary alkaloids by HPLC-DAD. J Chromatogr Sci 2010;48:441–4.

[114] Zhang J, Jin Y, Liu Y, Xiao Y, Feng J, Xue X, Zhang X, Liang X. Purification of alkaloids from *Corydalis yanhusuo* W.T. Wang using preparative 2-D HPLC. J Sep Sci 2009;32:1401–6.

[115] Zhang J, Jin Y, Dong J, Xiao Y, Feng J, Xue X, Zhang X, Liang X. Systematic screening and characterization of tertiary and quaternary alkaloids from *Corydalis yanhusuo* W.T. Wang using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Talanta 2009;78:513–22.

[116] Ding B, Zhou T, Fan G, Hong Z, Wu Y. Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine *Corydalis yanhusuo* W.T. Wang by LC-MS/MS and LC-DAD. J Pharm Biomed Anal 2007;45:219–26.

[117] Ou J, Kong L, Pan C, Su X, Lei X, Zou H. Determination of DL-tetrahydropalmatine in *Corydalis yanhusuo* by L-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography. J Chromatogr A 2006;1117:163–9.

[118] Zhai ZD, Shi YP, Wu XM, Luo XP. Chiral high-performance liquid chromatographic separation of the enantiomers of tetrahydropalmatine and tetrahydroberberine, isolated from *Corydalis yanhusuo*. Anal Bioanal Chem 2006;384:939–45.