GHOST FORCE INFLUENCE OF A QUASICONTINUUM METHOD IN TWO DIMENSION

JINGRUN CHEN AND PINGBING MING

Abstract. We derive an analytical expression for the solution of a two-dimensional quasicontinuum method with a planar interface. The expression is used to prove that the ghost force may lead to a finite size error for the gradient of the solution. We estimate the width of the interfacial layer induced by the ghost force is of $O(\sqrt{\varepsilon})$ with ε the equilibrium bond length, which is much wider than that of the one-dimensional problem.

1. Introduction

Multiscale methods have been developed to simulate mechanical behaviors of solids for several decades [13]. Combination of models at different scales greatly enhances the dimension of problems that computers can deal with. However, problems regarding the consistency, stability and convergence of the multiscale methods may arise from the coupling [3]. Taking the quasicontinuum (QC) method [17, 10] for example, one of the main issues is the so called ghost force problem [16], which is the artificial non-zero force that the atoms experience at the equilibrium state. In the language of numerical analysis, the scheme lacks consistency at the interface between the atomistic region and the continuum region [3]. For the one-dimensional problem, it has been shown in [15] that the ghost force may lead to a finite size error for the gradient of the solution. This generates an interfacial layer with width $O(\varepsilon |\ln \varepsilon|)$, out of which the error for the gradient of the solution is of $O(\varepsilon)$.

To understand the influence of the ghost force for high dimensional problems, we study a two-dimensional triangular lattice model with a QC approximation. This QC method couples the Cauchy-Born elasticity model and the atomistic model with a planar interface. Numerical results show that the ghost force may lead to a finite size error for the gradient of the solution as in the one-dimensional problem. The error profile exhibits a layer-like structure. It seems that the width of the interfacial...
layer induced by the ghost force is of $O(\sqrt{\varepsilon})$, which is much wider than that of the one-dimensional problem.

To further characterize the influence of the ghost force, we introduce a square lattice model with a QC approximation. Compared to the triangular lattice model, this model can be solved \textit{analytically} and the error profile exhibits a clear layer-like structure. Based on the analytical solution, we prove the error committed by the ghost force for the gradient of the solution is $O(1)$ and the width of the induced interfacial layer is of $O(\sqrt{\varepsilon})$, which are also confirmed by the numerical results.

The paper is organized as follows. Numerical results for the triangular model and the square lattice model with QC approximations are presented in §\textsection 2 and §\textsection 3, respectively. We derive an analytical expression of the solution of the square lattice model with a QC approximation in §\textsection 4. The main results of the paper are proved in §\textsection 5.

2. A QUASICONTINUUM METHOD FOR TRIANGULAR LATTICE

2.1. Atomistic and continuum models. We consider the triangular lattice \mathbb{L}, which can be written as

$$\mathbb{L} = \{ x \in \mathbb{R}^2 \mid x = ma_1 + na_2, \ m, n \in \mathbb{Z} \}$$

with the basis vectors $a_1 = (1, 0), a_2 = (1/2, \sqrt{3}/2)$. Define the unit cell of \mathbb{L} as

$$\Gamma = \{ x \in \mathbb{R}^2 \mid x = c_1 a_1 + c_2 a_2, -1/2 \leq c_1, c_2 < 1/2 \}.$$

We shall consider lattice system $\varepsilon \mathbb{L}$ inside the domain Ω, and $\Omega_{\varepsilon} = \Omega \cap \varepsilon \mathbb{L}$, where ε is the equilibrium bond length. Assume that the atoms are interacted with the potential function V, which is usually a highly nonlinear function, e.g., the Lennard-Jones potential [12]. Denote by S_1 and S_2 the first and the second neighborhood interaction ranges; see Figure 1. In particular, we have

$$S_1 = \bigcup_{i=1}^6 s_i = \{ a_1, a_2, -a_1 + a_2, -a_1, -a_2, a_1 - a_2 \},$$

$$S_2 = \bigcup_{i=1}^{12} s_i = \{ a_1 + a_2, -a_1 + 2a_2, -2a_1 + a_2, -a_1 - a_2, a_1 - 2a_2, 2a_1 - a_2 \}.$$

For $\mu \in \mathbb{Z}^2$, the translation operator T_ε^μ is defined for any lattice function $z : \mathbb{L} \to \mathbb{R}^2$ as

$$(T_\varepsilon^\mu z)(x) = z(x + \varepsilon \mu_1 a_1 + \varepsilon \mu_2 a_2) \quad \text{for} \ x \in \mathbb{L}.$$

We define the forward and backward discrete gradient operators as

$$D^+_s = \varepsilon^{-1}(T_\varepsilon^\mu - I) \quad \text{and} \quad D^-_s = \varepsilon^{-1}(I - T_\varepsilon^\mu),$$

where $s = \mu_1 a_1 + \mu_2 a_2$ and I is the identity operator. We shall also use the shorthand $Dz = (D^+_s z, D^+_{s_2} z) = (D^+_{s_1} z, D^+_{s_2} z)$.
Consider an atomic system posed on Ω_ε. The total energy is given by
\begin{equation}
E_{\text{at}}^{\text{tot}} = \frac{1}{2} \sum_{x \in \Omega_\varepsilon} \sum_{s \in S_1 \cup S_2} V(|D_s^+ z(x)|),
\end{equation}
where V is a potential function. In this paper, we only consider the pairwise potential function, and leave the discussion on the more general potential functions in future publication. The atomistic problem is to minimize the total energy subject to certain boundary conditions that will be specified later on.

Next we turn to the Cauchy-Born elasticity model \cite{1,6,5,7}. Given a 2 by 2 matrix A, the stored energy density function is given by
\begin{equation}
W_{\text{cb}}(A) = \frac{1}{2 \vartheta_0} \sum_{s \in S_1 \cup S_2} V(|s \cdot A|),
\end{equation}
where ϑ_0 is the area of the unit cell and $\vartheta_0 = \sqrt{3} \varepsilon^2 / 2$. The stored energy function is defined by
\begin{equation}
E_{\text{cb}}^{\text{tot}} = \int_\Omega W_{\text{cb}}(\nabla z(x)) \, dx.
\end{equation}
The continuum problem is to minimize the stored energy function subject to certain boundary conditions. We employ the standard P_1 Lagrange finite element to approximate the Cauchy-Born elasticity model with the lattice \mathbb{L} as the triangulation. The approximate stored energy function is
\begin{equation}
E_{\text{cb},\varepsilon}^{\text{tot}} = \frac{1}{2} \sum_{x \in \Omega_\varepsilon} \sum_{i=1}^6 \left(V(|D_{s_i}^+ z(x)|) + V\left(|(D_{s_i}^+ + D_{s_{i+1}}^+) z(x)|\right) \right).
\end{equation}
One can see $E_{\text{cb},\varepsilon}^{\text{tot}}$ reproduces the atomistic energy $E_{\text{at}}^{\text{tot}}$; cf. \cite{17}, if only the nearest neighborhood interaction is considered.

We study the quasicontinuum method \cite{17}. Let $\varepsilon = 1/(2M)$. We assume that the interface between the continuum model and the atomistic model is $x_1 = 0$ as
shown in Figure 2. The total energy of the QC method is

\[E_{\text{tot}} = \frac{1}{2} \sum_{x_1 \leq -2\varepsilon} \sum_{i=1}^{6} \left(V(|D_{s_i}^+ z(x)|) + V\left(|(D_{s_i}^+ + D_{s_{i+1}}^+) z(x)|\right) \right) + \frac{1}{2} \sum_{x_1 = -\varepsilon} V\left(|D_{s_{i+1}}^+ z(x)|\right) + V\left(|(D_{s_i}^+ + D_{s_{i+1}}^+) z(x)|\right) \]

\[= \frac{1}{2} \sum_{x_1 = 0} \sum_{s \in S_1} V\left(|D_{s}^+ z(x)|\right) + 4 \sum_{i=2} V\left(|D_{s_i}^+ z(x)|\right) + \frac{1}{2} V\left(|D_{s_{i+1}}^+ z(x)|\right) + V\left(|(D_{s_i}^+ + D_{s_{i+1}}^+) z(x)|\right) \]

\[+ \frac{1}{2} \sum_{x_1 \geq 2\varepsilon} \sum_{s \in S_1 \cup S_2} V\left(|D_{s}^+ z(x)|\right). \]

The force at atom \(x \) is defined by

\[F_{\text{qc}}x = -\frac{\partial E_{\text{tot}}}{\partial z(x)}. \]

Since we only concern the influence of the ghost force, following [15], we assume that the potential function is a harmonic function, i.e.,

\[V(r) = \frac{1}{2} r^2. \]

Without taking into account the external force, we write the equilibrium equations for the QC approximation as

\[F_{\text{qc}}x = 0 \]

with

\[F_{\text{qc}}x = -12z(x) + \sum_{i=1}^{12} z(x + \varepsilon s_i), \quad x \in \Omega_2, x_1 \leq -2\varepsilon, \]

\[F_{\text{qc}}x = -24z(x) + 4 \sum_{i=1}^{6} z(x + \varepsilon s_i), \quad x \in \Omega_2, x_1 \geq 2\varepsilon. \]

For \(x = (-\varepsilon, x_2) \),

\[F_{\text{qc}}x = -\frac{49}{2} z(x) + 4 \sum_{i=1}^{6} z(x + \varepsilon s_i) + \frac{1}{2} z(x + \varepsilon s_{12}). \]

For \(x = (0, x_2) \),

\[F_{\text{qc}}x = -18z(x) + [z(x + \varepsilon s_1) + z(x + \varepsilon s_6)] + \frac{5}{2} [z(x + \varepsilon s_2) + z(x + \varepsilon s_3)]
\]

\[+ 4[z(x + \varepsilon s_3) + z(x + \varepsilon s_4)] + [z(x + \varepsilon s_7) + z(x + \varepsilon s_{11}) + z(x + \varepsilon s_{12})]. \]
For $x = (\varepsilon, x_2)$,

$$F_{qc}[z](x) = -\frac{23}{2} z(x) + \sum_{i=1}^{12} z(x + \varepsilon s_i) - \frac{1}{2} z(x + \varepsilon s_9).$$

At the equilibrium state, we evaluate F_{qc} at $z(x) = x$ to get

$$F_{qc}x = \begin{cases}
 (-3\varepsilon/4, \sqrt{3}\varepsilon/4), & \text{if } x_1 = -\varepsilon, \\
 (3\varepsilon/2, -\sqrt{3}\varepsilon/2), & \text{if } x_1 = 0, \\
 (-3\varepsilon/4, \sqrt{3}\varepsilon/4), & \text{if } x_1 = \varepsilon, \\
 (0, 0), & \text{otherwise}.
\end{cases}$$

The above equations imply $z_1(x) = -\sqrt{3}z_2(x)$. Therefore, we only study the first component of $z(x)$ and neglect the subscript if no confusion will occur. The error of the displacement induced by the ghost force, denoted by $y(x) \equiv z(x) - x$, satisfies

$$(2.3) \quad F_{qc}[y](x) = F_{qc}[z](x) - F_{qc}x = -F_{qc}x \equiv f(x)$$

with

$$f(x) = \begin{cases}
 3\varepsilon/4, & \text{if } x_1 = -\varepsilon, \\
 -3\varepsilon/2, & \text{if } x_1 = 0, \\
 3\varepsilon/4, & \text{if } x_1 = \varepsilon, \\
 0 & \text{otherwise}.
\end{cases}$$

Boundary conditions need to be supplemented to close the system of equilibrium equations. Two types of boundary conditions will be considered in this paper. One is the periodic boundary condition in x_2 direction while homogeneous Dirichlet boundary condition in x_1 direction, which will be called periodic boundary condition if no confusion will occur. The other is the homogeneous Dirichlet boundary conditions in both x_1 and x_2 directions.

In what follows, we shall use a conventional notation $y(m, n) = y(x)$ with $x = \varepsilon(ma_1 + na_2)$.

Figure 2. Schematic picture of Ω_ε.

QC ANALYSIS

5
2.2. Periodic boundary condition. The periodic boundary condition can be written as
\[
\begin{align*}
&y(-M, n) = 0, \quad n = -N, \cdots, N, \\
y(m, n) = y(m, 2N + n), \quad m = -M, \cdots, M, n = -N, \cdots, N, \\
y(M, n) = y(M + 1, n) = 0, \quad n = -N, \cdots, N.
\end{align*}
\]

Observe that the solution of (2.3) with the periodic boundary condition takes a special form:
\[
y(x) = cy(x_1),
\]
namely, the solution is constant along \(x_2\) direction. Based on this observation, we conclude that the QC approximation with the periodic boundary condition reduces to a one-dimensional problem. The equilibrium equations satisfied by \(y(x_1)\) are as follows. In the continuum region, i.e., \(m = -M + 1, \cdots, -2,\)
\[
8y(m + 1) - 16y(m) + 8y(m - 1) = 0,
\]
and in the atomistic region, i.e., \(m = 2, \cdots, M - 1,\)
\[
y(m + 2) + 4y(m + 1) - 10y(m) + 4y(m - 1) + y(m - 2) = 0.
\]
The equations in the interfacial region are
\[
\begin{align*}
\frac{1}{2}y(1) + 8y(0) - \frac{33}{2}y(-1) + 8y(-2) &= \frac{3}{4} \varepsilon, \\
y(2) + 4y(1) - 13y(0) + 8y(-1) &= -\frac{3}{2} \varepsilon, \\
y(3) + 4y(2) - \frac{19}{2}y(1) + 4y(0) + \frac{1}{2}y(-1) &= \frac{3}{4} \varepsilon.
\end{align*}
\]
The boundary condition is
\[
y(-M) = y(M) = y(M + 1) = 0.
\]

The above equilibrium equations can also be obtained by considering a one-dimensional chain interacted with the following harmonic potential:
\[
V(\{y\}) = \frac{k_1}{2} \sum_{|i-j|=1} |y_i - y_j|^2 + \frac{k_2}{2} \sum_{|i-j|=2} |y_i - y_j|^2
\]
with \(k_1 = 4\) and \(k_2 = 1.\) This is the model studied in [2].

2.3. Dirichlet boundary condition. The Dirichlet boundary condition can be written as
\[
\begin{align*}
&y(-M, n) = y(M, n) = y(M + 1, n) = 0, \quad n = -N, \cdots, N, \\
y(m, -N) = y(m, N) = 0, \quad m = -M, \cdots, -1, \\
y(m, -N - 1) = y(m, -N) = y(m, N) = y(m, N + 1) = 0, \quad m = 0, \cdots, M.
\end{align*}
\]
This gives an essentially two-dimensional model. We show profiles of discrete gradients \(D_{s_1}y\) and \(D_{s_2}y\) in Figure 3 with \(M = N = 20.\) The profile of \(D_{s_1}y\) is similar
to that of the one-dimensional problem. However, if one zooms in the interface, there are some differences. To highlight the interface, for $i = 1, 2$, we define

$$E_i = \{ x \in \Omega_\varepsilon \mid |D_{s_i} y(x)| \geq c_0 \varepsilon \} ,$$

and let χ_{E_i} be their characteristic functions. We plot $\chi_{E_i}(x)$ in Figure 4 with $M = N = 640$ and $c_0 = 0.04$. In Figure 4(a) the width of the interface near the boundary is much wider than that in the interior domain. No interfacial layer for $D_{s_2}^+ y$ is observed in Figure 4(b). Therefore, we only measure the width of the interfacial layer for $D_{s_1}^+ y$, which is defined by

$$\max_n \left\{ |a_1| \varepsilon \left[\text{argmax}_m \{ x = ma_1 \varepsilon + na_2 \varepsilon \in \Omega_\varepsilon | \chi_1(x) = 1 \} - \text{argmin}_m \{ x = ma_1 \varepsilon + na_2 \varepsilon \in \Omega_\varepsilon | \chi_1(x) = 1 \} \right] \right\} .$$

Numerical results in Table 1 imply that the width of the interfacial layer scales $O(\sqrt{\varepsilon})$, while the one-dimensional problem has an interfacial layer with $O(\varepsilon |\ln \varepsilon|)$ width [15, 2].

$\varepsilon (5 \times 10^{-2})$	2^0	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	Rate
Layer width (10^{-1})	3.5	2.3	1.5	0.94	0.63	0.52	0.57

Table 1. Width of the interfacial layer versus the equilibrium bond length ε for the triangular lattice with Dirichlet boundary condition.

One may doubt the above result could be caused by the boundary condition instead of the ghost force. To clarify this issue, we enlarge the continuum region to weaken the influence of the boundary condition. We set $N = 3M$ and use different equilibrium equations for different regions as in Figure 5. Roughly speaking, along
Figure 4. Profiles of the characteristic functions for triangular lattice.

Figure 5. Padding technique to remove the boundary effect.

In the x_2 direction, the original QC method is employed in the interior region, and the continuum model is padded in the outer region.

We plot $D^+ \frac{\partial y}{\partial z}$, $D^+ \frac{\partial y}{\partial z}$, and their characteristic functions in Figure 6 and Figure 7. They are similar to those in Figure 3 and Figure 4.

Table 2 shows the width of the interfacial layer in terms of ε. Numerical results suggest that the width of the interfacial layer is still of $O(\sqrt{\varepsilon})$, which is consistent with that in Table 1. Therefore, we conclude that the interface is caused by the ghost force instead of the boundary condition.

$\varepsilon (10^{-2})$	1.7	0.83	0.41	0.21	0.10	Rate
Layer width (10^{-2})	9.2	8.3	4.8	3.3	2.3	0.53

Table 2. Width of the interfacial layer versus the equilibrium bond length ε by removing the effect of the boundary condition.

The QC approximation discussed in this section is quite realistic except the potential function as shown in [15], which however seems enough to characterize the influence of the ghost force. Unfortunately, it does not seem easy to solve this
model analytically as we have done in [15] for the one-dimensional problem. In next section, we introduce a new QC method that can be solved analytically. We shall prove that this new QC method does capture the main feature of the ghost force for the triangular lattice model with a planar interface.

3. Square lattice model

We consider the square lattice with the harmonic potential. Compared to the standard interaction range of the square lattice, we assume a special interaction range as shown in Figure 8 (Left). Namely, the first and second neighborhood interactions in x_1 direction, and the first neighborhood interaction in x_2 direction are taken into account. This seemingly strange selection may be obtained from a rotated triangular lattice as in Figure 8 (Right). If we condense the interaction of
the atoms 9, 4, 5, 11 into one atom, and the atoms 8, 2, 1, 12 into another, then we obtain a square lattice model with the special interaction range described above, which may be the underlying reason why it can be regarded as a surrogate model. We shall show in the next two sections that this model not only captures the main features of the triangular lattice model with the QC approximation as shown in Figure 2, but also lends itself theoretically tractable.

Proceeding along the same line that leads to (2.3), we obtain the equilibrium equations for the error $y(x)$.

1. In the continuum region, i.e., $m = -M, \cdots , -2$ and $n = -N, \cdots , N$,

 $12y_i(m, n) - y_i(m, n - 1) - y_i(m, n + 1) - 5y_i(m - 1, n) - 5y_i(m + 1, n) = 0, \quad i = 1, 2, \quad (3.1)$

and in the atomistic region, i.e., $m = 2, \cdots , M$ and $n = -N, \cdots , N$,

 $6y_i(m, n) - y_i(m, n - 1) - y_i(m, n + 1) - y_i(m - 1, n) - y_i(m + 1, n) - y_i(m - 2, n) - y_i(m + 2, n) = 0, \quad i = 1, 2, \quad (3.2)$

The interface between the continuum model and the atomistic model is the line $m = 0$ as shown in Figure 3 and M is assumed to be even for simplicity. The equilibrium equations for the layers $m = -1, 0$ and 1 are as follows.

For layer $m = -1$ and $n = -N, \cdots , N$,

 $\frac{25}{2}y_i(-1, n) - y_i(-1, n - 1) - y_i(-1, n + 1) - 5y_i(-2, n) - 5y_i(0, n) - \frac{1}{2}y_i(1, n) = f_i, \quad i = 1, 2, \quad (3.3)$

where $f_1 = -\varepsilon$ and $f_2 = 0$.

1 We actually multiply -1 on both sides of (2.3).
For layer $m = 0$ and $n = -N, \cdots, N$,
\[
9y_i(0, n) - y_i(0, n - 1) - y_i(0, n + 1) - 5y_i(-1, n) - y_i(1, n)
\]
\[
- y_i(2, n) = f_i, \quad i = 1, 2,
\]
where $f_1 = 2\varepsilon$ and $f_2 = 0$.

For layer $m = 1$ and $n = -N, \cdots, N$,
\[
\frac{11}{2} y_i(1, n) - y_i(1, n - 1) - y_i(1, n + 1) - y_i(0, n) - y_i(2, n)
\]
\[
- \frac{1}{2} y_i(-1, n) - y_i(3, n) = f_i, \quad i = 1, 2,
\]
where $f_1 = -\varepsilon$ and $f_2 = 0$.

Observe that $y_2 = 0$.

Therefore, we only consider y_1 and omit the subscript from now on.

We first impose the Dirichlet boundary condition in the x_1 direction, and the periodic boundary condition in the x_2 direction as
\[
\begin{align*}
\left\{ \begin{array}{ll}
y(-M, n) = y(M, n) = y(M + 1, n) = 0, & n = -N, \cdots, N, \\
y(m, n) = y(m, n + 2N), & m = -M, \cdots, M, n = -N, \cdots, N.
\end{array} \right.
\end{align*}
\] (3.6)

Similar to the triangular lattice model, it is easy to check that the square lattice model reduces to a one-dimensional chain model with the following equilibrium equations and boundary condition.
\[
5y(m + 1) - 10y(m) + 5y(m - 1) = 0, \quad m = -M + 1, \cdots, -2,
\]
\[
y(m + 2) + y(m + 1) - 4y(m) + y(m - 1) + y(m - 2) = 0, \quad m = 2, \cdots, M - 1.
\]
The equations for the interface are

\[
\begin{aligned}
\frac{1}{2} y(1) + 5y(0) - \frac{21}{2} y(-1) + 5y(-2) &= \varepsilon, \\
y(2) + y(1) - 7y(0) + 5y(-1) &= -2\varepsilon, \\
y(3) + y(2) - \frac{7}{2} y(1) + y(0) + \frac{1}{2} y(-1) &= \varepsilon.
\end{aligned}
\]

The boundary condition is

\[y(-M) = y(M) = y(M + 1) = 0.\]

It is clear that the above model is exactly the same as that has been studied in [15], which can also be obtained from the one-dimensional model (2.4) with \(k_1 = k_2 = 1\).

Therefore, we impose the Dirichlet boundary condition in both \(x_1\) and \(x_2\) directions as follows.

\[
\begin{aligned}
y(-M, n) &= y(M, n) = y(M + 1, n) = 0, \quad n = -N, \ldots, N, \\
y(m, -N) &= y(m, N) = 0, \quad m = -M, \ldots, M.
\end{aligned}
\]

Choosing \(M = N = 20\), we show profiles of the discrete gradients \(D^+_1 y\) and \(D^+_2 y\) in Figure 10. The feature is similar to that of the triangular lattice model. To highlight the interface, we plot the characteristic functions \(\chi_{E_1}\) and \(\chi_{E_2}\) in Figure 11 with \(M = N = 320\) and \(c_0 = 0.04\).

![Profiles of the discrete gradients of \(y\) for square lattice with \(M = N = 20\) under Dirichlet boundary condition.](image)

Figure 10. Profiles of the discrete gradients of \(y\) for square lattice with \(M = N = 20\) under Dirichlet boundary condition.

We report the width of the interfacial layer in Table 3. It is clear that the width of the interfacial layer is of \(O(\sqrt{\varepsilon})\), which is consistent with that of the triangular lattice. In §5 we shall prove this fact.
4. Exact Solution for the Square Lattice Model

To find the exact solution of the QC approximation (3.1) – (3.5) with Dirichlet boundary condition (3.7), we follow the approach in [15]: firstly, we find the general expression for the solution of the continuum equation and the atomistic equation by separation of variables ansatz, with certain unspecified constants; secondly, we use the equations around the interface to determine these constants. The next lemma gives the general expression of the solution.

Lemma 4.1. For $m = -M, \cdots, -1$ and $n = -N, \cdots, N$, we have

\begin{equation}
 y(m, n) = \sum_{k=1}^{2N-1} a_k \sinh[(M + m)\alpha_k] \sin \frac{k\pi}{2N}(N + n),
\end{equation}

where

$$\cosh \alpha_k = 1 + \frac{\lambda_k}{5}, \quad \lambda_k = 2 \sin^2 \frac{k\pi}{4N}.$$

For $m = 0, \cdots, M$ and $n = -N, \cdots, N$, we have

\begin{equation}
 y(m, n) = \sum_{k=1}^{2N-1} \left(b_k (-1)^m F_m(\gamma_k, \delta_k) + c_k f_m(\gamma_k, \delta_k) \right) \sin \frac{k\pi}{2N}(N + n),
\end{equation}

where

\begin{equation}
 \cosh \gamma_k = \frac{1 + \sqrt{25 + 8\lambda_k}}{4}, \quad \cosh \delta_k = \frac{-1 + \sqrt{25 + 8\lambda_k}}{4},
\end{equation}
\begin{align}
F_m(\gamma, \delta) &= \frac{\sinh[(M + 1 - m)\gamma] + \sinh[(M - m)\gamma]\cosh\delta}{\cosh\gamma + \cosh\delta} \\
&\quad - (-1)^m \frac{m \cosh[(M - m)\delta] \sinh\gamma}{\cosh\gamma + \cosh\delta}, \\
f_m(\gamma, \delta) &= F_m(\delta, \gamma).
\end{align}

The coefficients \(b_k \) and \(c_k \) are parameters to be determined; See; cf., (4.13).

Proof. By separation of variables, we get (4.1).

The explicit expression for the solution of the atomistic model can also be obtained by separation of variables ansatz. Substituting \(y(m, n) = f(m)g(n) \) into (3.2), we get

\[
\sum_{i=-2}^{2} \frac{[f(m + i) - f(m)]g(n)}{f(m)} + \sum_{i=-1}^{1} \frac{[g(n + i) - g(n)]f(m)}{g(n)} = 0.
\]

By (3.7), we have

\[g(-N) = g(N) = 0 \quad \text{and} \quad f(M) = f(M + 1) = 0.\]

We write the above equation as

\[
\sum_{i=-2}^{2} \frac{[f(m + i) - f(m)]}{f(m)} + \sum_{i=-1}^{1} \frac{[g(n + i) - g(n)]}{g(n)} = 0.
\]

For \(\lambda \in \mathbb{R} \), we get

\[
\begin{cases}
g(n + 1) + (2\lambda - 2)g(n) + g(n - 1) = 0, \\
f(m + 2) + f(m + 1) - (4 + 2\lambda)f(m) + f(m - 1) + f(m - 2) = 0.
\end{cases}
\]

Using the boundary condition for \(g \), i.e., \(g(N) = g(-N) = 0 \), we have, for any \(c \in \mathbb{R} \),

\[g(n) = c \sin \frac{k\pi}{2N}(n + N) \quad \text{and} \quad \lambda = 2 \sin \frac{k\pi}{4N}.\]

The characteristic equation for \(f(m) \) is:

\[t^2 + t^{-2} + t + t^{-1} - 2(\lambda + 2) = 0.\]

Denote the roots of the above equation by \(t_1, \ldots, t_4 \). It is clear that

\[t_1 = -e^\gamma, \quad t_2 = -e^{-\gamma}, \quad t_3 = e^\delta, \quad t_4 = e^{-\delta},\]

with

\[2 \cosh \gamma = -s_1, \quad s_1 = \frac{-1 - \sqrt{25 + 8\lambda}}{2},\]
\[2 \cosh \delta = s_2, \quad s_2 = \frac{-1 + \sqrt{25 + 8\lambda}}{2},\]
This leads to
\[
 f(m) = a(-1)^m \sinh[(M - m)\gamma] + b(-1)^m \cosh[(M - m)\gamma]
 + c\sinh[(M - m)\delta] + d\cosh[(M - m)\delta]
\]
with constants \(a, b, c\) and \(d\) that will be determined by the following conditions
\[
f(M) = f(M + 1) = 0.
\]
Since \(M\) is even, by \(f(M) = 0\), we obtain
\[
b = -d.
\]
By \(f(M + 1) = 0\), we obtain
\[
a \sinh \gamma - c \sinh \delta - b(\cosh \gamma + \cosh \delta) = 0.
\]
Therefore,
\[
b = \frac{a \sinh \gamma - c \sinh \delta}{\cosh \gamma + \cosh \delta}.
\]
We write \(f(m)\) as
\[
f(m) = a(-1)^m \sinh[(M - m)\gamma] + c \sinh[(M - m)\delta]
 + \frac{a \sinh \gamma - c \sinh \delta}{\cosh \gamma + \cosh \delta}\left\{(-1)^m \cosh[(M - m)\gamma] - \cosh[(M - m)\delta]\right\}.
\]
It is easy to rewrite \(f(m)\) into a symmetrical form
\[
f(m) = a(-1)^m F_m(\gamma, \delta) + cF_m(\delta, \gamma),
\]
where \(F_m(\gamma, \delta)\) is given in (4.4), this gives (4.3). \(\square\)

Remark 4.2. The exact solution based on the series expansion is common in finite difference. We refer to [13] and [8] for a thorough discussion.

Next we use the interfacial equations (3.3) – (3.5) to determine the coefficients \(a_k, b_k\) and \(c_k\). Denote
\[
y_{cb}(m, n) = y(m, n) \quad - M \leq m \leq -1, -N \leq n \leq N,
\]
\[
y_{at}(m, n) = y(m, n) \quad 0 \leq m \leq M, -N \leq n \leq N.
\]
Though \(y_{cb}\) and \(y_{at}\) are only defined piecewisely, they actually admit a trivial extension for any \((m, n) \in \mathbb{Z}^2\) as
\[
F_{\varepsilon}[y_{cb}](m, n) = 0, \quad F_{at}[y_{at}](m, n) = 0, \quad \text{for } (m, n) \in \mathbb{Z}^2,
\]
where
\[
F_{\varepsilon}[y](m, n) \equiv 12y(m, n) - y(m, n - 1) - y(m, n + 1) - 5y(m - 1, n) - 5y(m + 1, n),
\]
\[
F_{at}[y](m, n) \equiv 6y(m, n) - y(m, n - 1) - y(m, n + 1) - y(m - 1, n) - y(m + 1, n)
 - y(m - 2, n) - y(m + 2, n).
\]
This observation is crucial to simplify the equations around the interface.
The equation for \(m = -1 \) changes to

\[
F_{\varepsilon}[y_{cb}(\bar{1}, n)] + 5(y_{cb} - y_{at})(0, n) + \frac{1}{2}(y_{cb}(\bar{1}, n) - y_{at}(1, n)) = -\varepsilon.
\]

Using

\[
F_{\varepsilon}[y_{cb}(\bar{1}, n)] = 0,
\]

we have

\[
5(y_{cb} - y_{at})(0, n) + \frac{1}{2}(y_{cb}(\bar{1}, n) - y_{at}(1, n)) = -\varepsilon.
\]

(4.6)

Proceeding in the same fashion, we get

\[
y_{at}(\bar{1}, n) - \frac{1}{2}y_{at}(1, n) - \frac{1}{2}y_{cb}(\bar{1}, n) = -\varepsilon,
\]

(4.7)

\[
3y_{at}(0, n) + y_{at}(\bar{1}, n) + y_{at}(\bar{2}, n) - 5y_{cb}(\bar{1}, n) = 2\varepsilon.
\]

(4.8)

In what follows, we use the above simplified interfacial equations and the representation formulas to determine \(a_k, b_k \) and \(c_k \).

Subtracting (4.7) from (4.6), we obtain

\[
5y_{cb}(0, n) + y_{cb}(\bar{1}, n) = 5y_{at}(0, n) + y_{at}(\bar{1}, n).
\]

Substituting (4.1) and (4.2) into the above equation, we get

\[
a_k = \frac{b_k(5F_0 - F_1)(\gamma_k, \delta_k) + c_k(5f_0 + f_1)(\gamma_k, \delta_k)}{5 \sinh[M\alpha_k] + \sinh[(M - 1)\alpha_k]}.
\]

(4.9)

Substituting (4.1) and (4.2) into (4.7), we get

\[
\sum_{k=1}^{2N-1} \ell_k \sin \left(\frac{k\pi}{2N}(n + N) \right) = -2\varepsilon
\]

with

\[
\ell_k = -\sinh[(M - 1)\alpha_k]a_k + (-2F_1 + F_1)(\gamma_k, \delta_k)b_k + (2f_1 - f_1)(\gamma_k, \delta_k)c_k.
\]

Using the discrete Fourier transform, we get

\[
\ell_k = \frac{2 \times (-2\varepsilon)}{2N - 1 + 1} \sum_{j=1}^{2N-1} \sin \left(\frac{k\pi j}{2N} \right) = \begin{cases} -\frac{2\varepsilon}{N} \cot \frac{k\pi}{4N}, & \text{if } k \text{ is odd}, \\ 0, & \text{if } k \text{ is even}. \end{cases}
\]

This leads to

\[
P_kb_k + p_kc_k = \ell_k,
\]

(4.10)

where

\[
\begin{align*}
P_k &= [-2F_1 + F_1 - \rho_k(-F_1 + 5F_0)](\gamma_k, \delta_k), \\
p_k &= [2f_1 - f_1 - \rho_k(f_1 + 5f_0)](\gamma_k, \delta_k), \\
\rho_k &= \frac{\sinh[(M - 1)\alpha_k]}{5 \sinh[M\alpha_k] + \sinh[(M - 1)\alpha_k]}.
\end{align*}
\]

(4.11)
Using (4.7) and (4.8) to eliminate \(y_{ch}(\bar{1}, n) \), we obtain
\[
3y_{at}(0, n) - 9y_{at}(\bar{1}, n) + y_{at}(2, n) + 5y_{at}(1, n) = 12\varepsilon.
\]
The coefficients \(b_k \) and \(c_k \) satisfy
\[
(4.12) \quad R_k b_k + r_k c_k = -6\ell_k,
\]
where
\[
\begin{aligned}
R_k &= (3F_0 + 9F_1 + F_2 - 5F_1)(\gamma_k, \delta_k), \\
r_k &= (3f_0 - 9f_1 + f_2 + 5f_1)(\gamma_k, \delta_k).
\end{aligned}
\]
To solve the linear system (4.10) and (4.12), we need to check whether \(P_k r_k - p_k R_k \) is nonzero for all \(k \). We shall prove in Lemma 5.6 that this is indeed the case. Therefore, we may solve (4.10) and (4.12) to obtain
\[
(4.13) \quad b_k = \frac{r_k + 6p_k}{P_k r_k - p_k R_k} \ell_k, \quad c_k = -\frac{R_k + 6P_k}{P_k r_k - p_k R_k} \ell_k.
\]
Substituting the above equation into (4.9), we get
\[
(4.14) \quad a_k = \frac{(r_k + 6p_k)(5F_0 - F_1)(\gamma_k, \delta_k) - (R_k + 6P_k)(5f_0 + f_1)(\gamma_k, \delta_k)}{(5\sinh[M\alpha_k] + \sinh[(M - 1)\alpha_k])(P_k r_k - p_k R_k)} \ell_k.
\]
To sum up, we obtain the representation formulas for the solution of the QC approximation by specifying the parameters \(a_k, b_k \) and \(c_k \) in Lemma 4.1.

Theorem 4.3. Let \(y \) be the solution of (3.1) - (3.5). Then for \(m = -N, \ldots, \bar{1} \) and \(n = -N, \ldots, N \),
\[
y(m, n) = -\frac{2\varepsilon}{N} \sum_{k=1}^{2N-1} \frac{Q_k}{P_k r_k - R_k p_k} \frac{\sinh[(M + m)\alpha_k]}{\sinh[(M - 1)\alpha_k]} \rho_k \\
\quad \times \cot \frac{k\pi}{4N} \sin \left[\frac{k\pi}{2N}(n + N) \right],
\]
where \(\rho_k \) is given in (4.13).

For \(m = 0, \ldots, M \) and \(n = -N, \ldots, N \),
\[
y(m, n) = -\frac{2\varepsilon}{N} \sum_{k=1}^{2N-1} \frac{Q_{m,k}}{P_k r_k - R_k p_k} \cot \frac{k\pi}{4N} \sin \left[\frac{k\pi}{2N}(n + N) \right],
\]
where
\[
P_k r_k - R_k p_k = 6(8\rho_k - 1) \begin{vmatrix} F_0 & -F_1 \\ f_0 & f_1 \end{vmatrix} + (25\rho_k - 3) \begin{vmatrix} -F_1 & F_0 \\ f_1 & f_0 \end{vmatrix} - \begin{vmatrix} F_1 & F_2 \\ f_1 & f_2 \end{vmatrix} \\
+ (2 - \rho_k) \begin{vmatrix} -F_1 & F_2 \\ f_1 & f_2 \end{vmatrix} + (5\rho_k - 1) \begin{vmatrix} -F_1 & -F_1 \\ f_1 & f_1 \end{vmatrix} - 5\rho_k \begin{vmatrix} F_0 & F_2 \\ f_0 & f_2 \end{vmatrix}.
\]
and
\[Q_k = 12 \begin{vmatrix} F_0 & -F_1 \\ f_0 & f_1 \end{vmatrix} + 5 \begin{vmatrix} F_0 & F_2 + F_1 \\ f_0 & f_2 - f_1 \end{vmatrix} + \begin{vmatrix} -F_1 & F_2 + F_1 \\ f_1 & f_2 - f_1 \end{vmatrix}, \]

and
\[Q_{m,k} = 3(1 - 10\rho_k) \begin{vmatrix} (-1)mF_m & F_0 \\ f_m & f_0 \end{vmatrix} + 3(1 - 2\rho_k) \begin{vmatrix} (-1)mF_m & -F_1 \\ f_m & f_1 \end{vmatrix} + \begin{vmatrix} (-1)mF_m & F_2 + F_1 \\ f_m & f_2 - f_1 \end{vmatrix}. \]

As an immediate consequence of the above theorem, the solution is symmetrical with respect to \(n = 0 \), i.e.,
\[(4.16) \quad y(m, n) = y(m, -n), \]
which can be easily verified from the representation formulas (4.14) and (4.15).

5. Estimate of the QC Solution for the square lattice model

The main result of this section is the following pointwise estimate of the solution.

Theorem 5.1. Let \(y \) be the solution of (3.1) – (3.5). Then
\[|Dy(m, n)| \leq C \frac{|m|}{m^2} \exp \left[-\frac{|m|}{6\sqrt{5}N} \right], \quad m \leq -1, \]
\[(5.1) \]
\[|Dy(m, n)| \leq C \left(\frac{3 - \sqrt{5}}{2} \right)^m + \frac{1}{m^2 + 1} \exp \left[-\frac{2m}{15N} \right], \quad m \geq 0. \]
\[(5.2) \]
A direct consequence of the above theorem is the estimate of the width of the interfacial layer, that is, the region beyond which \(|Dy| = O(\varepsilon) \).

Corollary 5.2. The width of the interfacial layer is \(O(\sqrt{\varepsilon}) \).

We exploit the explicit expression of the solution in Theorem 4.3 to prove Theorem 5.1. Note that the terms \(P_k r_k - R_k p_k, Q_k \) and \(Q_{m,k} \) consist of the terms like \((-1)^m F_m f_n - (-1)^n F_n f_m \) for different integers \(m \) and \(n \). The asymptotical behavior of such terms will be given in a series of lemmas, i.e., Lemma 5.6, Lemma 5.7 and Lemma 5.8. We begin with certain elementary estimates that will be frequently used later on.

Lemma 5.3. For \(1 \leq k \leq 2N - 1 \), there holds
\[\frac{\lambda_k}{6} \leq \cosh \gamma_k - \frac{3}{2} \leq \frac{\lambda_k}{5}, \]
\[(5.3) \]
\[\sinh \delta_k \geq \sqrt{\frac{\lambda_k}{3}}, \]
\[(5.4) \]
\[\sinh \alpha_k \geq \sqrt{\frac{2\lambda_k}{5}}, \quad \sinh \frac{\alpha_k}{2} = \sqrt{\frac{\lambda_k}{10}}. \]
\[(5.5) \]
Proof. Invoking (4.3), we have
\[
cosh \gamma_k - \frac{3}{2} = \frac{1}{4} \left(\sqrt{25 + 8\lambda_k} - 5 \right) = \frac{2\lambda_k}{\sqrt{25 + 8\lambda_k} + 5},
\]
which immediately implies (5.3).

The estimate (5.5) follows from (4.1) by definition.

Using (4.3), we have
\[
(5.6) \quad \cosh \gamma_k - \cosh \delta_k = \frac{1}{2},
\]
which together with the definition leads to
\[
\sinh^2 \delta_k = \cosh^2 \delta_k - 1 = (\cosh \gamma_k - 1/2)^2 - 1
= (\cosh \gamma_k + 1/2)(\cosh \gamma_k - 3/2)
= (\cosh \gamma_k - 3/2 + 2)(\cosh \gamma_k - 3/2).
\]

Using (5.3), we have
\[
\sinh^2 \delta_k \geq 2(\cosh \gamma_k - 3/2) \geq \frac{2\lambda_k}{3}.
\]
This gives (5.4). \hfill \square

To proceed further, we need the following estimates.

Lemma 5.4. For \(1 \leq k \leq 2N - 1\), there holds
\[
(5.7) \quad \exp(-\alpha_k) \leq \exp\left[\frac{-k}{2\sqrt{5N}}\right],
\]
\[
(5.8) \quad \exp(-\gamma_k) \leq \frac{3 - \sqrt{5}}{2}, \quad \exp(-\delta_k) \leq \exp\left[\frac{-k}{5N}\right].
\]

Proof. We only prove (5.7). Other cases are similar.

Using (5.5) and \(\cosh \alpha_k \geq 1\), we have
\[
\exp \alpha_k = \cosh \alpha_k + \sinh \alpha_k
\geq 1 + \sqrt{\frac{2\lambda_k}{5}}
= 1 + \frac{2}{\sqrt{5}} \sin \frac{k\pi}{4N}.
\]

Using Jordan’s inequality
\[
\sin x \geq \frac{2}{\pi} x \quad \text{for} \quad x \in [0, \pi/2],
\]
we have
\[
\exp \alpha_k \geq 1 + \frac{k}{\sqrt{5N}}.
\]
For any \(0 < x < 2/\sqrt{5}\), we have
\[
\ln(1 + x) \geq x(1 - x/2) \geq x(1 - 1/\sqrt{5}) \geq x/2.
\]
Using the fact that $k/(\sqrt{5}N) \leq 2/\sqrt{5}$ since $1 \leq k \leq 2N - 1$, and combining the above two inequalities, we obtain
\[
\exp(-\alpha_k) \leq \left(1 + \frac{k}{\sqrt{5}N}\right)^{-1} = \exp[-\ln(1 + k/(\sqrt{5}N))]
\leq \exp\left[-\frac{k}{2\sqrt{5}N}\right].
\]

The next lemma concerns the estimate of ρ_k.

Lemma 5.5.

(5.9) \[0 < 1 - 6\rho_k \leq \frac{5}{6} \left(\frac{\lambda_k}{5} + \frac{1}{M-1} + \sinh \alpha_k\right).\]

Proof. Using the definition of ρ_k, we get
\[
1 - 6\rho_k = \frac{5}{6} \left(\frac{\sinh [M\alpha_k] - \sinh [(M-1)\alpha_k]}{\sinh [M\alpha_k] + \sinh [(M-1)\alpha_k]}\right),
\]
which implies the left hand side of (5.9). Moreover
\[
1 - 6\rho_k \leq \frac{5}{6} \left(\frac{\sinh [M\alpha_k]}{\sinh [(M-1)\alpha_k]} - 1\right)
= \frac{5}{6} \left(\cosh \alpha_k - 1 + \cot [(M-1)\alpha_k] \sinh \alpha_k\right).
\]
Using $\cosh t \leq 1 + \sinh t$ for any $t \in \mathbb{R}$, we have
\[
\cot [(M-1)\alpha_k] \sinh \alpha_k \leq \sinh \alpha_k + \frac{\sinh \alpha_k}{\sinh [(M-1)\alpha_k]}
\leq \sinh \alpha_k + \frac{1}{M-1},
\]
where we have used the elementary inequality
\[
\frac{\sinh [Mt]}{\sinh t} \geq M.
\]
Combining the above three inequalities, we obtain the right hand side of (5.9).

By the definition of ρ_k and the left hand side of (5.9), we get
(5.10) \[0 < \rho_k \leq 1/6.\]

A direct calculation gives
\[
(cosh \gamma + cosh \delta)((-1)^m F_m f_n - (-1)^n F_n f_m)
= A \sinh [M\gamma] \sinh [M\delta] + B \cosh [M\gamma] \sinh [M\delta]
+ C \sinh [M\gamma] \cosh [M\delta] + D \cosh [M\gamma] \cosh [M\delta]
- \sinh [(m - n)\delta] \sinh \gamma + (-1)^{m+n} \sinh [(m - n)\gamma] \sinh \delta,
\]
where

\[A = (-1)^m \cosh[m\gamma] \cosh[(n - 1)\delta] + (-1)^m \cosh[n\delta] \cosh[(m - 1)\gamma] \]

\[- (-1)^n \cosh[n\gamma] \cosh[(m - 1)\delta] - (-1)^n \cosh[m\delta] \cosh[(n - 1)\gamma], \]

and

\[B = -(-1)^m \sinh[m\gamma] \cosh[(n - 1)\delta] - (-1)^m \sinh[(m - 1)\gamma] \cosh[n\delta] \]

\[+ (-1)^n \sinh[n\gamma] \cosh[(m - 1)\delta] + (-1)^n \sinh[(n - 1)\gamma] \cosh[m\delta], \]

and

\[C = -(-1)^m \cosh[m\gamma] \sinh[(n - 1)\delta] - (-1)^m \cosh[(m - 1)\gamma] \sinh[n\delta] \]

\[+ (-1)^n \cosh[n\gamma] \sinh[(m - 1)\delta] + (-1)^n \cosh[(n - 1)\gamma] \sinh[m\delta], \]

and

\[D = (-1)^m \sinh[m\gamma] \sinh[(n - 1)\delta] + (-1)^m \sinh[(m - 1)\gamma] \sinh[n\delta] \]

\[- (-1)^n \sinh[n\gamma] \sinh[(m - 1)\delta] - (-1)^n \sinh[(n - 1)\gamma] \sinh[m\delta]. \]

The following lemma gives a lower bound for \(|P_{kr} - R_{kp}| \).

Lemma 5.6. There holds

\[(\cosh \gamma_k + \cosh \delta_k)(P_{kr} - R_{kp}) \geq \frac{5}{24} \left(1 - \exp \left[\frac{-2M}{\sqrt{N}} \right] \right) \exp \left[M(\gamma_k + \delta_k) \right]. \]

Proof. A direct calculation gives

\[(\cosh \gamma_k + \cosh \delta_k)(P_{kr} - R_{kp}) \]

\[= A_k \sinh[M\gamma_k] \sinh[M\delta_k] + B_k \cosh[M\gamma_k] \sinh[M\delta_k] \]

\[+ C_k \cosh[M\gamma_k] \cosh[M\delta_k] + D_k \cosh[M\gamma_k] \cosh[M\delta_k] \]

\[+ 2(12 + 2\lambda_k - 72\rho_k) \sinh \gamma_k \sinh \delta_k, \]

where

\[A_k = \left(4\lambda_k^2 + \frac{313}{2}\lambda_k + 315 \right) \rho_k - 6\lambda_k^2 - 39\lambda_k - \frac{105}{2}, \]

\[B_k = \left(18\lambda_k + \frac{225}{4} + \left(\frac{229}{4} + 2\lambda_k \right) \sqrt{25 + 8\lambda_k} \right) \rho_k \sinh \gamma_k \]

\[+ \left(\frac{25}{2} + 4\lambda_k - (14 + 4\lambda_k) \sqrt{25 + 8\lambda_k} \right) \sinh \gamma_k, \]

\[C_k = \left(-18\lambda_k - \frac{225}{4} + \left(\frac{229}{4} + 2\lambda_k \right) \sqrt{25 + 8\lambda_k} \right) \rho_k \sinh \delta_k \]

\[+ \left(\frac{25}{2} - 4\lambda_k - (14 + 4\lambda_k) \sqrt{25 + 8\lambda_k} \right) \sinh \delta_k, \]

\[D_k = ((169 + 8\lambda_k)\rho_k - (74 + 20\lambda_k)) \sinh \gamma_k \sinh \delta_k. \]
Using (5.10), we may show

\[A_k, B_k, C_k, D_k < 0. \]

Using \(D_k < 0 \) and invoking (5.10) once again, we have

\[D_k \cosh[M \gamma_k] \cosh[M \delta_k] + 2(12 + 2 \lambda_k - 72 \rho_k) \sinh \gamma_k \sinh \delta_k \leq D_k + 2(12 + 2 \lambda_k - 72 \rho_k) \sinh \gamma_k \sinh \delta_k = ((169 + 8 \lambda_k) \rho_k - (74 + 20 \lambda_k) + 2(12 + 2 \lambda_k - 72 \rho_k)) \sinh \gamma_k \sinh \delta_k \leq -(46 + 44 \lambda_k/3) \sinh \gamma_k \sinh \delta_k \]

\[< 0, \]

which together with (5.12) implies

\[(\cosh \gamma_k + \cosh \delta_k) (P_k r_k - R_k p_k) < 0. \]

Combining the above equation with (5.12) and (5.13), we obtain

\[|(\cosh \gamma_k + \cosh \delta_k) (P_k r_k - R_k p_k)| = -B_k \cosh[M \gamma_k] \sinh[2 M \delta_k] - A_k \sinh[2 M \gamma_k] \cosh[2 M \delta_k] - C_k \cosh[2 M \gamma_k] \cosh[2 M \delta_k] - 2(12 + 2 \lambda_k - 72 \rho_k) \sinh \gamma_k \sinh \delta_k \geq |B_k| \cosh[M \gamma_k] \sinh[2 M \delta_k]. \]

Using (5.9), we bound \(|B_k|\) as

\[|B_k| = -B_k \]

\[= - \left(18 \lambda_k + \frac{225}{4} + \left(\frac{229}{4} + 2 \lambda_k \right) \sqrt{25 + 8 \lambda_k} \right) \rho_k \sinh \gamma_k \]

\[- \left(\frac{25}{2} + 4 \lambda_k - (14 + 4 \lambda_k) \sqrt{25 + 8 \lambda_k} \right) \sinh \gamma_k \]

\[\geq \left(\frac{107}{24} + \frac{11}{3} \lambda_k \right) \sqrt{25 + 8 \lambda_k} - \frac{175}{8} - 7 \lambda_k \sinh \gamma_k. \]

A direct calculation gives \(\sinh \gamma_k \geq \sqrt{5}/2\), which together with the above inequality yields

\[|B_k| \geq \frac{5}{6}. \]

By (5.8),

\[\exp[2 M \delta_k] \geq \exp[2k M/(5N)] \geq \exp[2 M/(5N)]. \]
It follows from the above inequality that
\[
\sinh[M\delta_k] = \frac{1}{2} \exp[M\delta_k] (1 - \exp[-2M\delta_k]) \\
\geq \frac{1}{2} (1 - \exp[-2M/(5N)]) \exp[M\delta_k].
\]
Substituting the above inequality and (5.15) into (5.14) implies (5.11). □

Next two lemmas concern the upper bounds of \(Q_k\) and \(Q_{m,k}\). Instead of calculating all the coefficients of \(Q_k\) and \(Q_{m,k}\) as we have done for \((\cosh\gamma_k + \cosh\delta_k)|P_kr_k - R_kp_k|\), we consider the coefficients of the leading order terms of \(Q_k\) and \(Q_{m,k}\). We write
\[
(cosh \gamma + cosh \delta)(-(1)^m F_m f_n - (-1)^n F_n f_m) = \frac{1}{4}(A + B + C + D)e^{M(\gamma + \delta)} \\
+ \frac{1}{4}(-A - B + C + D)e^{M(\gamma - \delta)} + \text{L.O.T.}
\]
with
\[
A + B + C + D = (e^{\gamma} + e^{\delta}) \left((-1)^m e^{(n\delta + m\gamma)} - (-1)^n e^{(n\gamma + m\delta)}\right), \\
- A - B + C + D = (e^{\gamma} + e^{-\delta}) \left((-1)^m e^{n\delta - m\gamma} + (-1)^n e^{m\delta - n\gamma}\right),
\]
and L.O.T. stands for the terms that are of lower order than \(e^{M(\gamma + \delta)}\) and \(e^{M(\gamma - \delta)}\).

Using (4.14), we write \((cosh\gamma_k + cosh\delta_k)Q_k\) as
\[
(cosh \gamma_k + cosh \delta_k)Q_k = Q^0_k \exp[M(\gamma_k + \delta_k)] + Q^1_k \exp[M(\gamma_k - \delta_k)] + \text{L.O.T.}
\]
with
\[
Q^0_k = \frac{1}{4}(e^{\gamma_k} + e^{\delta_k}) \left\{ 12(e^{\gamma_k} + e^{\delta_k}) + 5(e^{2\delta_k} - e^{2\gamma_k}) - 5(e^{-\gamma_k} + e^{-\delta_k}) \\
- e^{\gamma_k + \delta_k}(e^{\gamma_k} + e^{\delta_k}) + e^{\gamma_k - \delta_k} - e^{\delta_k - \gamma_k} \right\}, \\
Q^1_k = \frac{1}{4}(e^{\gamma_k} + e^{-\delta_k}) \left\{ -12(e^{\gamma_k} + e^{-\delta_k}) + 5(e^{2\gamma_k} - e^{-2\delta_k}) + 5(e^{-\gamma_k} + e^{\delta_k}) \\
+ e^{\gamma_k - \delta_k}(e^{\gamma_k} + e^{-\delta_k}) + e^{-\gamma_k - \delta_k} - e^{\gamma_k + \delta_k} \right\}.
\]
We have the following estimate for \(Q^0_k\).

Lemma 5.7. There exists \(C\) such that
\[
|Q^0_k| + |Q^1_k| \leq C\sqrt{\lambda_k}.
\]

Proof. We only estimate \(Q^0_k\), and \(Q^1_k\) can be bounded similarly. We firstly write \(Q^0_k\) as
\[
Q^0_k = \frac{1}{4}(e^{\gamma_k} + e^{\delta_k}) \left\{ (12 + e^{-\delta_k} - e^{2\delta_k})e^{\gamma_k} - (5 + e^{\delta_k})(e^{2\gamma_k} + e^{-\gamma_k}) \\
+ 12e^{\delta_k} - 5e^{-\delta_k} + 5e^{2\delta_k} \right\}.
\]
By definition, we have
\[(5.20) \quad \cosh[2\gamma_k] = 2 \cosh^2 \gamma_k - 1 = \cosh \gamma_k + \lambda_k + 2, \]
which implies
\[
e^{2\gamma_k} + e^{-\gamma_k} = \cosh[2\gamma_k] + \sinh[2\gamma_k] + \cosh \gamma_k - \sinh \gamma_k
\]
\[
= 2 \cosh \gamma_k + \lambda_k + 2 + \sinh \gamma_k(2 \cosh \gamma_k - 1)
\]
\[
= 2(e^{\gamma_k} + 1) + \lambda_k + \sinh \gamma_k(2 \cosh \gamma_k - 3).
\]
Substituting the above equation into (5.19) produces
\[
Q_0^k = \frac{1}{4} (e^{\gamma_k} + e^{\delta_k}) \left\{ (5 - e^{\gamma_k})(e^{\delta_k} - 1) - e^{-\delta_k} + e^{2\delta_k} \right\}
\]
\[
- (5 + e^{\delta_k})[\lambda_k + \sinh \gamma_k(2 \cosh \gamma_k - 3)]\right\}.
\]
Using (5.6), we get
\[
2(e^{\delta_k} - 1) - e^{-\delta_k} + e^{2\delta_k} = (e^{\delta_k} - 1)(3 + 2 \cosh \delta_k)
\]
\[
= 2(\cosh \gamma_k + 1)(e^{\delta_k} - 1).
\]
Combining the above two equations, we obtain
\[
Q_0^k = (e^{\gamma_k} + e^{\delta_k}) \left\{ 2(5 - e^{\gamma_k})(\cosh \gamma_k + 1)(e^{\delta_k} - 1)
\right\}
\]
\[
- (5 + e^{\delta_k})[\lambda_k + \sinh \gamma_k(2 \cosh \gamma_k - 3)]\right\}.
\]
Proceeding along the same way that leads to (5.21), we obtain
\[
Q_1^k = \frac{1}{4} (e^{\gamma_k} + e^{\delta_k}) \left\{ (5 - e^{\gamma_k})(5 + e^{\delta_k} + 2 \cosh \gamma_k)(2 \cosh \gamma_k - 3)
\right\}
\]
\[
+ (5 - e^{\gamma_k})(1 + 3e^{-\delta_k} + e^{-2\delta_k})(e^{\delta_k} - 1)\right\}.
\]
Using (5.6) gives
\[
e^{\delta_k} - 1 = \cosh \delta_k + \sinh \delta_k - 1 = \cosh \gamma_k - \frac{3}{2} + \sinh \delta_k.
\]
Substituting the above equation into (5.21) and (5.22), and using the estimates (5.3) and (5.4), we obtain (5.18).

Next we write \((\cosh \gamma_k + \cosh \delta_k)Q_{m,k}\) as
\[
(\cosh \gamma_k + \cosh \delta_k)Q_{m,k} = Q_{m,k}^0 \exp[M(\gamma_k + \delta_k)]
\]
\[
+ Q_{m,k}^1 \exp[M(\gamma_k - \delta_k)] + \text{L.O.T.}
\]
with
\[
\begin{align*}
Q_{m,k}^0 &= \frac{1}{4} (e^{\gamma_k} + e^{\delta_k}) \left((-1)^m e^{-m\gamma_k} Q_1 - e^{-m\delta_k} Q_2 \right), \\
Q_1 &= 3(1 + e^{\delta_k}) + e^{2\delta_k} - e^{-\delta_k} - 6\rho_k(5 + e^{\delta_k}), \\
Q_2 &= e^{2\gamma_k} + e^{-\gamma_k} - 3(e^{\gamma_k} - 1) + 6\rho_k(e^{\gamma_k} - 5),
\end{align*}
\]
We have the following estimate for $Q^0_{m,k}$ and $Q^1_{m,k}$.

Lemma 5.8. There holds

\[
|Q_1| + |Q_2| + |Q_3| + |Q_4| \leq C \left(\sqrt{\lambda_k} + \frac{1}{M-1} \right).
\]

Proof. We only estimate Q_1 and Q_2. The terms Q_3 and Q_4 can be bounded similarly.

Similar to (5.20), we have

\[
cosh[2\delta_k] = -\cosh\delta_k + \lambda_k + 2.
\]

Using the above equation, we write Q_1 as

\[
Q_1 = 3(1 + \cosh\delta_k + \sinh\delta_k) - \cosh\delta_k + \lambda_k + 2 + \sinh[2\delta_k]
- (\cosh\delta_k - \sinh\delta_k) - 6\rho_k(5 + e^{\delta_k})
= \lambda_k + 5 + \cosh\delta_k + 4\sinh\delta_k + \sinh[2\delta_k] - 6\rho_k(5 + e^{\delta_k})
= \lambda_k + (5 + e^{\delta_k})(1 - 6\rho_k) + \sinh\delta_k(3 + 2\cosh\delta_k).
\]

Using (5.20) and proceeding along the same line that leads to the above expression of Q_1, we obtain

\[
Q_2 = 2\cosh^2\gamma_k + 2 + \sinh[2\gamma_k] - 3(\cosh\gamma_k + \sinh\gamma_k) + \cosh\gamma_k - \sinh\gamma_k
+ 6\rho_k(e^{\gamma_k} - 5)
= \lambda_k + 5 - \cosh\gamma_k + \sinh[2\gamma_k] - 4\sinh\gamma_k + 6\rho_k(e^{\gamma_k} - 5)
= \lambda_k + (1 - 6\rho_k)(5 - e^{\gamma_k}) + 2\sinh\gamma_k(\cosh\gamma_k - 3/2).
\]

Using (5.20), (5.3) and (5.9), we get

\[
|Q_1| + |Q_2| \leq C \left(\sqrt{\lambda_k} + \frac{1}{M-1} \right).
\]

\[\square\]

To prove Theorem 5.1, we need the following identity that can be found in [9, p. 38, formula 1.353(1)].

Lemma 5.9. For any $\varrho \in (0, 1)$, we have

\[
\sum_{k=1}^{N} \varrho^{2k-1} \sin[(2k-1)x] = \frac{(\varrho + \varrho^3)\sin x - \varrho^{2N+1} \sin[(2N + 1)x] + \varrho^{2N+3} \sin[(2N - 1)x]}{1 - 2\varrho^2 \cos[2x] + \varrho^4}.
\]
Based on the above estimates, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Using (5.11) and (5.18), we have, for $m \leq -2$,

\[
|Dy(m, n)| \leq C \frac{2N-1}{N} \sum_{k=1}^{2N} \exp(-|m| \alpha_k) \sin \frac{k\pi}{2N}.
\]

By (5.11) and (5.25), we have, for $m \geq 0$,

\[
|D_1 y(m, n)| \leq C \frac{2N-1}{N} \sum_{k=1}^{2N} \left(\exp(-m \gamma_k) + \exp(-m \delta_k) \sin \frac{k\pi}{2N} \right),
\]

\[
|D_2 y(m, n)| \leq C \frac{2N-1}{N} \sum_{k=1}^{2N} \left(\exp(-m \gamma_k) \sin \frac{k\pi}{2N} + \exp(-m \delta_k) \sin \frac{k\pi}{2N} \right).
\]

Let $\varrho = \exp[|m|/(2\sqrt{5}N)]$ and $x = \pi/[2N]$, and using Lemma 5.9, we have

\[
\sum_{k=1}^{2N} \exp(-|m| \alpha_k) \sin \frac{k\pi}{2N} \leq \sum_{k=1}^{N} \varrho^{2k-1} \sin\left((2k - 1)x\right) = \frac{\varrho(1 + \varrho^2)(1 + \varrho^{2N})}{(1 - \varrho^2)^2 + 4\varrho^2 \sin^2 x} \sin x \leq \frac{2\varrho(1 + \varrho)^2}{(1 - \varrho^2)^2} \sin x = \frac{2\varrho}{(1 - \varrho^2)^2} \sin x.
\]

Using Lozarević’s inequality [11]:

\[\cosh t \leq \left(\frac{\sinh t}{t} \right)^3, \quad t \neq 0,\]

and the elementary inequality $\cosh t \geq e^t/2, t \in \mathbb{R}$, we obtain

\[
\frac{2\varrho}{(1 - \varrho^2)^2} \sin x = \frac{\sin \frac{2\pi}{N}}{2 \sinh^2 \left(\frac{|m|}{4\sqrt{5}N} \right)} \leq \frac{\pi}{2N} \left(\frac{|m|}{4\sqrt{5}N} \right)^2 \cosh^{3/2} \left(\frac{|m|}{4\sqrt{5}N} \right) \leq \frac{23/3}{40\pi N} \exp \left[-\frac{|m|}{2\sqrt{5}N} \right] \leq \frac{80\pi N}{m^2} \exp \left[-\frac{|m|}{6\sqrt{5}N} \right],
\]
which together with (5.24) leads to (5.1).

For $m \geq 1$ and let $\tau = \exp[-m/(5N)]$, we immediately have (5.2).

The proof of the case when $m = -1$ can be done in the same way that leads to (5.1). We leave it to the interested readers. □

Proceeding along the same line that leads to Theorem 5.1, we have the following estimate on the solution.

Corollary 5.10. There exists C such that

$$
|y(m, n)| \leq C \frac{\varepsilon}{|m|}, \quad m \leq -1,
$$

$$
|y(m, n)| \leq C \varepsilon \left(\left(\frac{3 - \sqrt{5}}{2} \right)^m + \frac{1}{m+1} \right), \quad m \geq 0.
$$

The above estimate suggests that the ghost force actually induces a negligible error on the solution, which is as small as ε.

References

1. M. Born and K. Huang, *Dynamical Theory of Crystal Lattices*, Oxford University Press, 1954.
2. M. Dobson and M. Luskin, *An analysis of the effect of ghost force oscillation on quasicontinuum error*, Math. Model. Numer. Anal. **43** (2009), 591–604.
3. W. E, *Principles of Multiscale Modeling*, Cambridge University Press, 2011.
4. W. E, J. Lu, and J.Z. Yang, *Uniform accuracy of the quasicontinuum method*, Phys. Rev. B **74** (2006), 214115.
5. W. E and P.B. Ming, *Cauchy-Born rule and the stability of crystalline solids: static problems*, Arch. Ration. Mech. Anal. **183** (2007), 241–297.
6. J.L. Ericksen, *The Cauchy and Born hypotheses for crystals*, Phase Transformations and Material Instabilities in Solids, Gurtin, M.E. (Editor), Academic Press, 1984, pp. 61–77.
7. , *On the Cauchy-Born rule*, Math. Mech. Solids **13** (2008), 199–220.
8. B.I. Henry and M.T. Batchelor, *Random walks on finite lattice tubes*, Physical Review E **68** (2003), 016112.
9. A. Jeffrey and D. Zwillinger, *Table of Integrals, Series, and Products*, 7th eds., Elsevier (Singapore) Pte Ltd., 2007.
10. J. Knap and M. Ortiz, *An analysis of the quasicontinuum method*, J. Mech. Phys. Solids **49** (2001), 1899–1923.
11. I. Lazarević, *Neke nejednakosti sa hiperbolickim funkcijama*, Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika **170** (1966), 41–48.
12. J.E. Lennard-Jones, *On the determination of molecular fields-ii. from the equation of state of a gas*, Proc. Roy. Soc. London Ser. A **106** (1924), 463–477.
13. W.H. McCrea and F.J.W. Whipple, *Random paths in two and three dimensions*, Proc. Roy. Soc. Edinburgh **60** (1940), 281–298.
14. R. E. Miller and E. B. Tadmor, *A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods*, Modelling Simul. Mater. Sci. Eng. **17** (2009), no. 5, 053001–053051.
15. P.B. Ming and J.Z. Yang, *Analysis of a one-dimensional nonlocal quasicontinuum method*, Multiscale Model. Simul. **7** (2009), 1838–1875.
16. V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, *An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method*, J. Mech. Phys. Solids 47 (1999), 611–642.

17. E.B. Tadmor, M. Ortiz, and R. Phillips, *Quasicontinuum analysis of defects in solids*, Philos. Mag. A 73 (1996), 1529–1563.

Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, No. 55, Zhong-Guan-Cun East Road, Beijing, 100190, China

E-mail address: chenjr@lsec.cc.ac.cn

Current address: South Hall 6705, Mathematics Department, University of California, Santa Barbara, CA 93106, USA

E-mail address: cjr@math.ucsb.edu

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, No. 55 Zhong-Guan-Cun East Road, Beijing, 100190, China

E-mail address: mpb@lsec.cc.ac.cn