Alignment-Based Discriminative String Similarity

Shane Bergsma and Greg Kondrak
University of Alberta
ACL 2007
String Similarity

- Input: Pair of Strings
- Output: Measure of Similarity
- Our approach: discriminative, data-driven
- Features are substrings extracted from a character-based alignment of the strings
- Evaluate on cognate identification
- Excellent results
Outline

1. String similarity and its applications
2. Previous approaches
3. Alignment-based discriminative similarity
4. Cognate Data Generation
5. Experiments and Results
1. String Similarity

- **Example: Spelling Correction:**

Wallmart	Wall-mart
Britany Spears	Britney Spears
Amtrack	Amtrak
Hillary Duff	Hilary Duff
Geneology	Genealogy

(From Yahoo’s most common search query spelling errors)
String Similarity

- Example: Word Alignment

```
startup properties and options
```

- Words with similar form and meaning are called cognates:

```
propriétés de démarrage et options
```

```
propriétés properties
options options
```
Cognate Identification

• Cognates:
 – Ancestral: English/German night/nacht
 – Borrowed: English/Japanese trampoline/toranporin

• Our focus: “translational” cognates

• String similarity indicates how likely the two words are to be translations based on their orthographic similarity
2. Previous Approaches

Traditional Approaches:

• Normalized Edit Distance
• Longest Common Subsequence Ratio (LCSR)

– Efficient, no training data needed, but not optimized for specific tasks
Improved Approaches

• Tiedemann (1999), Mulloni & Pekar (2006)
 – Look for consistent spelling changes across cognates: e.g. English/German *electric*- *elektrisch*
 – Re-weight LCSR/NED to add uncounted “mutations”
Klementiev and Roth (2006)

• Originally for Named-Entity Transliteration
• Discriminative String Similarity:
 – Extract features for pairs of strings: create feature vector
 – Label feature vectors as positive or negative
 – Train classifier on labelled feature vectors
Klementiev and Roth (2006)

For Cognates:

• E.g: Japanese/English *sutoresu:*stress

• *sutoresu* → \{ s, u, t, o, r, e, s, u, su, ut, ... \}

• *stress* → \{ s, t, r, e, s, s, st, tr, re, es, ss \}

• Gives features:

\{s-s, s-t, s-st, su-s, su-t, su-st, su-tr... r-s, r-s, r-es ... \}
3. Alignment-Based Discriminative

• The character-based alignment generates the features for discriminative learning:

 $\{\wedge s u t o r e s u, \wedge s t r e s s, s-s, s-u-s, u-t-t, t-t, \ldots, e-s-e-s, s-s, s-u-s-s \ldots\}$

• Gives features:

• Creates a more focused feature space for a given max substring size
Alignment-Based Discriminative

- Include other features like NED and special longer phrases
- Learn classifier with SVM, score by positive distance from SVM hyperplane.
 - See paper for more details
Outline

1. String similarity and its applications
2. Previous approaches
3. Alignment-based discriminative similarity
4. Cognate Data Generation
5. Experiments and Results
4. Cognate Data Generation

• Manual:
 – Get linguist (or computational linguist) to identify all cognates

• Automatic:
 – Define cognates to be all pairs with \(\text{LCSR} \geq 0.58 \) that have the same meaning (Melamed, 1999).
Cognate Data Generation

• Determining common meaning:
 – Method 1:
 • Are they translations in a translation lexicon?
 – Method 2:
 • Are they commonly aligned in a word-aligned bitext?
Cognate Data Generation

• For a given foreign word f, find cognates among E_f that have LCSR ≥ 0.58

 – Examples:

Language	Foreign word f	Cognates E_{f+}	False Friends E_{f-}
Japanese	napukin	napkin	nanking, pumpkin, snacking, sneaking
French	abondamment	abundantly	abandonment, abatement, wonderment
Cognate Data Generation

- Not a ranking task – not every foreign word has a cognate
- Rather, a pairwise classification:
 + napukin, napkin
 - napukin, nanking
 - napukin, pumpkin
- Note: automatically creates competitive counter-examples for learning
5. Experiments and Results

1) Bitext Experiments
 – French-English, Spanish-English, German-English
 – Word-aligned data from the Europarl corpus

2) Dictionary Experiments
 – Word pairs from www.Freelang.net
 – French-English, Spanish-English, German-English, Greek-English, Japanese-English, Russian-English
 – Romanization of Greek, Russian
String Similarity Performance

11-pt Average Precision (%)

- Fr
- Es
- De
- Fr
- Es
- De
- Gr
- Jp
- Rs

Bitext ➔ Dictionary
String Similarity Performance

- LCSR
- Tiedemann
- Klementiev & Roth

11-pt Average Precision (%)

Fr - Es - De - Fr - Es - De - Gr - Jp - Rs

Bitext Dictionary
String Similarity Performance

- LCSR
- Tiedemann
- Klementiev & Roth
- Alignment-Based Discriminative

11-pt Average Precision (%)
Bitext Fr-En Learning Curve
Important Features

Language	Feature	Weight	Example
French	ées-ed	+8.0	vérifiéées:verified
German	k-c	+5.5	kreativ:creative
Greek	f-ph	+4.1	symfonia:symphony
Japanese	ou-ou	-2.6	handoutai:handout*
Spanish	mos-s	-5.1	toleramoss:tolerates*
Conclusion

• First approach to apply discriminative string similarity to cognate identification
• Alignment-based features allow for strong gains in performance
• Phonetic, syntactic or semantic features can be incorporated into this framework
Thanks
String Similarity

- Example: Named Entity Transliteration:

English NE	Russian NE
lilic	лилич
fletcher	флетчер
bradford	брэдфорд
isabel	изабель
hoffmann	гофман
kathmandu	катманду

(From Klementiev & Roth (2006))
Brill and Moore (2000)

- Get probability of edit operations for spelling correction
- Expand non-match substitutions with adjacent edits
- Learn generative model with EM

```
actual
/    \
|     |
|     |
akgsual
```

```
a → a, c → k, e → g, t → s, u → u, a → a, l → l

c → k, ac → ak, c → kg, ac → ak, ct → kgs
```
Other Features

• Issues:
 – to learn: “economic” – “économique”
 – has ending mutation: “ic$” – “ique$”
 – requires a length-5 substring

• Solution:
 – Include all (arbitrary-length) substrings with aligned end characters, mismatching middles

• Also: Include NED as a feature
Learning Approach

• Support Vector Machine, linear kernel
 – optimize regularization parameter on dev. set
 – score pairs by positive distance from SVM hyperplane
Cognate Data Generation

• Is LCSR ≥ 0.58 a good working definition of cognation? French-English Dictionary:
System Development

System	Prec
Klementiev-Roth (KR) $L\leq 2$	58.6
KR $L\leq 2$ (normalized, boundary markers)	62.9
phrases $L\leq 2$	61.0
phrases $L\leq 3$	65.1
phrases $L\leq 3 + mismatches$	65.6
phrases $L\leq 3 + mismatches + NED$	65.8

Table 2: Bitext French-English *development set* cognate identification 11-pt average precision (%).
Example Most-Similar Words

Greek-English – Dictionary	Spanish-English - Bitext
alkali:alkali	agenda:agenda
makaroni:macaroni*	natural:natural
adrenalini:adrenaline	márgenes:margins
flamingko:flamingo	hormonal:hormonal
spasmodikos:spasmodic	radón:radon
amvrosia:ambrosia	higiénico:hygenic
Other Approaches

• Ristad & Yаниlos (1999)
 – stochastic transducer version of Edit Distance
 – can work with string pairs from different alphabets

• CRFs – learn to align as well as calculate similarity