Assessment of artemisinin and antioxidant activities of three wild Artemisia species of Algeria

Hamza Ahmed-Laloui, Hadjer Zaak, Abderrahman Rahmani, Imad Kashi, Smain Chemat, Mohamed Djamel Miara, Nora Cherbe, and Mouna Derdour

ABSTRACT
Artemisinin, a natural product, has received considerable attention in the last few years as a potent antimalarial drug. This study reports the presence of Artemisinin in three Algerian wild Artemisia species assessed by HPLC method: A. herba-alba (AH), A. campestris subsp. glutinosa (AC), and A. judaica subsp sahariensis (AJ). The HPLC analysis of the hexane extracts showed a difference in artemisinin content in studied species with a yield of 0.64%, 0.34% and 0.04% for AC, AH and AJ, respectively. Moreover, the level of artemisinin obtained in A. campestris was better than those found in A. sieberi and A. annua. This rate has been reported for the first time. Furthermore, the antiradical activities of methanolic extracts of plants were also tested. There was a remarkable antioxidant capacity found in all Artemisia methanolic extracts analysed.

ARTICLE HISTORY
Received 4 November 2021
Accepted 29 December 2021

KEYWORDS
Artemisia; artemisinin; biological activities; crystallization; HPLC analysis
1. Introduction

Natural products have been used for the treatment of a variety of diseases for many years. Among them artimisinin, isolated from the aerial parts of Artemisia annua, is a high value endoperoxide sesquiterpene lactone with proven effects even against multidrug resistant strains of the malaria parasite (Woerdenbag et al. 1992; Cheong et al. 2020). These properties of artemisinin and its derivatives received considerable attention from the scientific community (Kavak et al. 2021; Ozok et al. 2021).

Different methods and processes are used for the extraction of artimisinin in particular, Soxhlet extraction, maceration, hydrodistillation and sonication (Wang and Weller 2006; Chemat et al. 2017). However, several methods have been developed for their identification, mainly thin layer chromatography, gas chromatography, high performance liquid chromatography (HPLC) with UV as well as electrochemical detection, radioimmunoassay, enzyme immunoassay and HPLC/MS method (Ivanescu et al. 2011).

For the methods developed so far, HPLC with UV detection was the most suitable method to determine the artemisinin content in crude plant extracts (Qian et al. 2005; Reale et al. 2008).

In this context and in order to enhance our diverse and rich national heritage, the present study aimed to determine the amount of artemisinin contained in three species of wild Algerian Artemisia (A), namely: A. herba-alba (AH), A. campestris subsp. glutinoso (AC), and A. judaica subsp. sahariensis (AJ) and to evaluate the antioxidant effect of their methanolic extracts.
2. Results and discussion

The phytochemical profile of *Artemisia* genus has shown abundance in flavonoids, phenolic acids, coumarins, isocoumarins and fatty acid. However, the pharmacological activities span a wide range of potentials uses such as antioxidant, antifungal, insecticidal, antibacterial, antitumor and antihypertensive (Ramezani et al. 2004; Dib et al. 2017; Mohamed et al. 2021). The results of this study were compared to those previously published. In a recent study, he showed that the *Artemisia annua* also repellent activity against two storage pests (Liu et al. 2021).

2.1. Total phenolic (TPC), total flavonoids (TFC) and tannin contents (TC)

The results of TPC, TFC and TC reported in Table S1 indicate that *A. judaica* and *A. herba-alba* represent a rich source of phenolic compounds (692.82 mg GAE/g and 480.41 mg GAE/g) and also for flavonoid components (132.87 mg QE/g and 260.03 mg QE/g) compared to *A. campestris* which can be considered as the poorest source in such elements (189.49 mg GAE/g and 73.3 mg QE/g). The highest amount of tannins content was found in *A. judaica* (74.81 mg CE/g) followed by *A. herba-alba* and *A. campestris* with an amount estimated at 62.15 mg CE/g and 52.53 mg CE/g respectively.

TPC, TFC and TC displayed in all *Artemisia* extracts appeared to be significantly higher than those reported in other studies (Djeridane et al. 2006). Therefore, this richness in phenolic compounds was confirmed in recent studies (Allam et al. 2019; Mohammed et al. 2021). According to Laboukhi-Khorsi et Chemat et al. (2017), this wealth increases as and when the polarity of extraction solvents used increases (Laboukhi-Khorsi et al. 2017). In other reports, several factors, namely climatic, geographic conditions and ontogeny of collected plants may severely affect their composition, and their biological properties, as well as nurturing (Schlaepfer et al. 2014; Zouari et al. 2014).

2.2. Antioxidant activities

The presence of different antioxidant components in the plant tissues makes it relatively hard to quantify each antioxidant component separately. Therefore, in many studies, several intermediate extractions are used to ensure a maximum extraction of the available antioxidants (Kähkönen et al. 1999). Comparison with Svetlana V. Zhigzhitzhapova, data showed that two samples exhibited the high antiradical properties, whereas the activity of the essential oil from the mixture of flowers, leaves was 1.4 times higher than that from the whole aerial part (Zhigzhitzhapova et al. 2020).

The antioxidant activity of phenolics is mainly due to their redox properties, which make them, act as reducing agents, hydrogen donors, and singlet oxygen quenchers. They also may have a metallic chelating potential (Rice-Evans et al. 1995).

The antiradical activity of all *Artemisia* extracts was assessed using four methods and the results are given in Table S2 as a half-inhibitory concentration IC\textsubscript{50} and half absorbance A\textsubscript{0.5} values.

According to the obtained results, there was statistically a remarkable antioxidant capacity found in all *Artemisia* extracts tested by all methods. In the DPPH assay, *A.
judaica has exhibited the highest antioxidant effect (21.92 μg/mL) followed by A. campestris and A. herba-alba with a half-inhibitory concentration IC50 estimated at 40 μg/mL and 72.07 μg/mL, respectively. AH can be considered as the specie with a lowest effect then those expressed by two others.

The second antioxidant test assessed using ABTS showed once more that all studied extracts presented a high activity with an IC50 value extending from 11.01 μg/mL to 27.19 μg/mL. Furthermore, the greatest activity for this test was displayed by A. judaica extract when compared to the reference compounds BHA and BHT with IC50 values of 5.98 μg/mL and 1.68 μg/mL, respectively. These results concord with those reported in a recent study (Allam et al. 2019) carried also on an Algerian A. judaica which showed that its hydromethanolic extract of its aerial parts exhibited a high DPPH and ABTS activities (10.23 μg/mL and 15.07 μg/mL, respectively). It should be noted that the antiradical effect of the extracts is attributed to the phenolic compounds. Therefore, the low IC50 recorded for hydromethanolic extract indicated that it contained a high amount of phenolic compounds and flavonoids (El-Massry et al. 2002; Kordali et al. 2005; Djeridane et al. 2006; Al-Mustafa and Al-Thunibat 2008).

In the β-carotene/linoleic acid model system, the absence of an antioxidant produce a discoloration of β-carotene. This assay is widely used to evaluate the antioxidant activity of plant samples. Table S2 suggests that the antioxidant activity tested in A. campestris using β-carotene showed the strongest inhibition effect with an IC50 value less than 12.5 μg/mL. This effect was lowest using AJ and AH extracts (45.22 μg/mL and 58.64 μg/mL, respectively). However, the high activity recorded can be explained by the presence of kaempferol (Luo et al. 2004) and apigenin (Cavin et al. 1998) in high amounts in this extract. These two phenolic compounds were reported to inhibit the oxidation of β-carotene (Škerget et al. 2005; Sharififar et al. 2009).

The results obtained using the latest assay (CUPRAC) were also compared to those of BHA and BHT and the half absorbance was calculated (A0.5). This time, all extract showed approximately the same activity extended from 15.03 μg/mL to 28.66 μg/mL. Very little reports have been given on antioxidant activity of hydromethanolic extract of these Algerian species where the most are concentrated on the chemical composition analysed by Gas chromatography GC-MS.

All extracts in this study showed antioxidant effects. Although the antioxidant activity is generally related to the phenolic compounds present in the plant (El-Massry et al. 2002; Kordali et al. 2005; Djeridane et al. 2006; Al-Mustafa and Al-Thunibat 2008). In addition, based on previous research, the efficiency of phenolic compounds as antiradicals and antioxidants depends on many factors. One major factor is the number of hydroxyl groups directly bonded to the aromatic rings (Sroka and Cisowski 2003). However, the difference in the antioxidant activities may also be attributed to the structural diversity as well as to the interactions in the extracts of the phenolic compounds (Allam et al. 2019).

2.3. Artemisinin content assessment

Literature reports indicated that extraction of artemisinin (Figure S3) can be carried out by different extraction methods: traditional solvent extraction, microwave-assisted...
extraction, ultrasound-aided extraction, and supercritical fluid extraction method using CO as a solvent (Bayarmaa and De Zorzi 2011; Briars and Paniwnyk 2012) (Bayarmaa and De Zorzi 2011; Briars and Paniwnyk 2013). n-hexane (Ivanescu et al. 2011; Badshah et al. 2018), toluene (Zhang et al. 2018), chloroform (Efferth 2017), petroleum ether (Ferreira and Gonzalez 2009), acetone, and ethanol (Huter et al. 2018) were the solvents most widely used for artemisinin extraction from Artemisia species.

It should be noted that hexane was the best extraction solvent, giving 0.21% artemisinin in the case of Artemisia annua Romanian, followed by chloroform and dichloromethane with the same artemisinin concentration. Methanol extracted almost the same amount of artemisinin as chloroform and dichloromethane, probably due to the fact that the methanolic extract was subjected to ultrasonication for 30 min, and not only to maceration as in the case of the other extracts (Ivanescu et al. 2011).

The most common method for analysis of artemisinin is based on high performance liquid chromatography (HPLC). In our study, quantification of the artemisinin was performed using a linear calibration graph with increasing amounts of artemisinin and their peak area response with UV detection (220 nm) (Table S3). This calibration curve was obtained by injection of different concentrations of artemisinin standard solution (0.125–5 mg/mL) into the HPLC system, run at least three times for each concentration.

Using the regression line equation, the content of artemisinin per dry weight of Artemisia species was ranged from 0.04 to 0.65%. The highest content of artemisinin was observed in A. campestris extract with a yield estimated at 0.65% which was higher even then that obtained in A. annua (0.11%-0.45%), considered as the highest content of artemisinin (Hao et al. 2002; Ivanescu et al. 2011; Numonov et al. 2019). In the same context, A. herba-alba presented a yield less than campestris (0.34%) while A. judaica showed the lowest yield of artemisinin 0.04% in this study. The HPLC chromatograms of the analysed artemisia samples are showed in Figures S4–S6.

HPLC chromatograms of the plant samples showed many resolved peaks. The peaks were identified by comparison of their retention times to that of standard artemisinin (Table S3). Linear regression was used to establish the calibration curve. The good linearity of artemisinin was found within the range of 0.125–2.5 mg/mL ($r^2 = 0.99854$). The regression equation and correlation coefficient were determined as Formula: $y = mx + b$.

Previous works have reported that artemisinin concentration varied due to differences in methods of artemisinin extraction as well as the solvents used (Efferth 2017; Zhang et al. 2018). In others, the content of artemisinin, found in the plant, is affected by some factors such as growth conditions, seasonal and geographical variations as well as breeding (Pavarini et al. 2012).

According to our results, ultrasound-aided extraction and n-hexane as a solvent for artemisinin extraction were suitable for the extraction of artemisinin from Artemisia species. Our experiments are in agreement with previous reports that the yield of artemisinin extraction is enhanced by ultrasound-aided extraction when compared to comparable conventional extraction processes (Briars and Paniwnyk 2013).
2.4. Artemisinin crystallisation

The extracts obtained from plant material using organic solvent extraction are very complex, and have several unwanted components such as chlorophylls and other coloured organic molecules from the feed material. Removal of the contaminants from the extracts has been performed with charcoal and clays (Patil et al. 2012; Chemat-Djenni and Sakhri 2013).

In the present work, the crystallization of artemisinin molecule was tested on *A. herba-alba*. This method should be preceded by a purification of the hexane extract by using activated charcoal and silica gel as adsorbent to eliminate all pigments and impurities which can help in the enrichment of artemisinin.

Crystallization was clearly marked under 4°C for 24 h for treated extract with adsorbents as reported in other studies (Liu et al. 2011). After treatment using adsorbents, the total peaks in the chromatograms decreased from 16 to 8 (Figure S8).

Using silica gel compared to an adsorbent with specific ligands was less effective. However, silica gel is a cheap alternative that can be used for primary treatment of crude artemisinin extracts from the feed material (Numonov et al. 2019).

Crystallization under the cited conditions shows a marked difference in crystalline form for crude extracts compared to those treated with adsorbents. The untreated extracts give low crystal yield with yellowish colour.

However, HPLC profiles of artemisinin standard, ultrasound crude extract at 40°C and the purification show clearly the disappearance of some of the interfering peaks on purified extract indicating a success in eliminating most co-metabolites, which is believed to be a good argument for an easier crystallisation of artemisinin (Chemat et al. 2017).

3. Experimental section

See Supplementary materials.

4. Conclusion

This article was the subject of an identification and quantification of artemisinin in samples of three plants of Artemisia sp from the native Algerian flora by HPLC method. The artemisinin content of these three artemisia species is also reported for the first time. The level of artemisinin in the studied plants varied between 0.04 and 0.65%, the extraction of each was assisted by ultrasound and hexane was used as solvent. However, the artemisinin content of these Algerian wild plants mainly in *A. campestris* subsp. glutinosa (0.65%) is much higher than that found in wild *A. annua* Romanian (0.17 to 0.22% of artemisinin in the leaves) (Ivanescu et al. 2011) and lower than that contained in cultivated *A. annua* (0.88-1.49% of artemisinin in aerial parts) (Bhakuni et al. 2001).

Our samples exhibited a remarkable antioxidant capacity, which is found in all the methanolic extracts of Artemisia tested, in particular *Artemisia judaica* which proved to be the most promising. The variability of antioxidant activities between the three plants can be attributed to the different chemical profiles of each of them.
Upon this study, we can state that the obtained result could be used further to develop a powerful method for extraction of artemisinin from the selected species to be applied in various pharmaceutical applications. It can be also noted that Artemisia is considered as good sources of natural antioxidants that holds a great potential for human health and its therapeutic effects should be more strictly and intensively analysed.

Acknowledgments

We are highly grateful to the Ministry of Higher Education and Scientific Research in Algeria (MESRS) and to General Research Direction (DGRSDT) for funding this project.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Hamza Ahmed-Laloui http://orcid.org/0000-0001-9285-2726
Smain Chemat http://orcid.org/0000-0003-2123-9603
Mohamed Djamel Miara http://orcid.org/0000-0002-7610-5277

References

Allam H, Benamar H, Ben Mansour R, Ksouri R, Bennaceur M. 2019. Phenolic composition, antioxidant, and antibacterial activities of Artemisia judaica Subsp. Sahariensis. J Herbs Spices Med Plant. 25(4):347–362.
Al-Mustafa AH, Al-Thunibat OY. 2008. Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pakistan J Biol Sci. 11(3):351–358.
Badshah SL, Ullah A, Ahmad N, Almarhooon ZM, Mabkhot Y. 2018. Increasing the strength and production of artemisinin and its derivatives. Molecules. 23(1):100.
Bayarmaa J, De Zorzi G. 2011. Determination of artemisinin content in Artemisia annua L. Mongolian J Biol Sci. 9:47–51.
Bhakuni R, Jain D, Sharma R, Kumar S. 2001. Secondary metabolites of Artemisia annua and their biological activity. Curr Sci. 35–48.
Briars R, Paniwnyk L. 2012. Examining the extraction of artemisinin from Artemisia annua using ultrasound. AIP Conference Proc. 1433:581–585.
Briars R, Paniwnyk L. 2013. Effect of ultrasound on the extraction of artemisinin from Artemisia annua. Ind Crops Prod. 42:595–600.
Cavin A, Hostettmann K, Dyatmyko W, Potterat O. 1998. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med. 64(5):393–396.
Chemat S, Aissa A, Boumetchhour A, Arous O, Ait-Amar H. 2017. Extraction mechanism of ultrasound assisted extraction and its effect on higher yielding and purity of artemisinin crystals from Artemisia annua L. leaves. Ultraso Sonochem. 34:310–316.
Chemat-Djenni Z, Sakhri A. 2013. Purification of artemisinin excerpt from *Artemisia annua* L. Proceedings of the MATEC Web of Conferences; EDP Sciences.

Cheong DHJ, Tan DWS, Wong FWS, Tran T. 2020. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res. 2020/08/01/158:104901.

Dib I, Angenot L, Mihamou A, Ziyyat A, Tits M. 2017. *Artemisia campestris* L.: Ethnomedicinal, phytochemical and pharmacological review. J Herb Med. 7:1–10.

Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97(4):654–660.

Effert H. 2017. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 46:65–83.

El-Massry KF, El-Ghorab AH, Farouk A. 2002. Antioxidant activity and volatile components of Egyptian *Artemisia judaica* L. Food Chem. 79(3):331–336.

Ferreira JFS, Gonzalez JM. 2009. Analysis of underivatized artemisinin and related sesquiterpene lactones by high-performance liquid chromatography with ultraviolet detection. Phytochem Anal. 20(2):91–97.

Hao J-y, Han W, Huang S-d, Xue B-y, Deng X. 2002. Microwave-assisted extraction of artemisinin from *Artemisia annua* L. Sep Purif Technol. 28(3):191–196.

Huter MJ, Schmidt A, Mestmäcker F, Sixt M, Strube J. 2018. Systematic and model-assisted process design for the extraction and purification of artemisinin from *Artemisia annua* L.—Part IV: crystallization. Processes. 6(10):181.

Ivanescu B, Vlase L, Corciova A, Lazar MI. 2011. Artemisinin evaluation in Romanian *Artemisia annua* wild plants using a new HPLC/MS method. Nat Prod Res. 25(7):716–722. doi:10.1080/14786410903169847.

Kakkonen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 47(10):3954–3962. doi:10.1021/jf990146l.

Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. 2021. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res. 1–9. doi:10.1080/14786419.2020.1865954.

Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. 2005. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J Agric Food Chem. 53(5):1408–1416. doi:10.1021/jf048429n.

Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. 2005. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of *Artemisia absinthium*, *A. dracunculus*, *Artemisia santonicum*, and *Artemisia spicigera* Essential Oils. J Agric Food Chem. 53(24):9452–9458. doi:10.1021/jf0516538.

Laboukhi-Khorsi S, Daoud K, Chemat S. 2017. Efficient solvent selection approach for high solubility of active phytochemicals: application for the extraction of an antimalarial compound from medicinal plants. ACS Sustainable Chem Eng. 5(5):4332–4339.

Liu H, Guo S-S, Lu L, Li D, Liang J, Huang Z-H, Zhou Y-M, Zhang W-J, Du S. 2021. Essential oil from *Artemisia annua* aerial parts: composition and repellent activity against two storage pests. Nat Prod Res. 35(5):822–825. doi:10.1080/14786419.2019.1599887.

Liu NQ, Schuehly W, von Freyhold M, van der Kooy F. 2011. A novel purification method of artemisinin from *Artemisia annua*. Ind Crops Prod. 34(1):1084–1088.

Luo Q, Cai Y, Yan J, Sun M, Corke H. 2004. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from *Lycium barbarum*. Life Sci. 76(2):137–149.

Mohamed TA, Abd El Aty AA, Shahat AA, Abdel-Azim NS, Shams KA, Elshamy AA, Ahmed MM, Youns SHH, El-Wassimy TM, El-Toumy SA, et al. 2021. New antimicrobial metabolites from the medicinal herb *Artemisia herba-Alba*. Nat Prod Res. 35(12):1959–1967. doi:10.1080/14786419.2019.1647430.
Numonov S, Sharopov F, Salimov A, Sukhrobov P, Atolikshoeva S, Safarzoda R, Habasi M, Aisa HA. 2019. Assessment of artemisinin contents in selected artemisia species from Tajikistan (Central Asia). Medicines. 6(1):23.

Ozok O, Kavak E, Kivrak A. 2021. Synthesis of novel artesunate-benzothiophene and artemisinin-benzothiophene derivatives. Nat Prod Res. :1–7. doi:10.1080/14786419.2021.1928116.

Patil AR, Arora JS, Gaikar VG. 2012. Purification of artemisinin from artemisia annua extract by sorption on different ligand loaded polymeric adsorbents designed by molecular simulation. Sep Sci Technol. 47(8):1156–1166. doi:10.1080/01496395.2011.644876.

Pavariini DP, Pavariini SP, Niehuues M, Lopes NP. 2012. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol. 176(1–4):5–16.

Qian GP, Yang YW, Ren QL. 2005. Determination of Artemisinin in *Artemisia annua* L. by reversed phase HPLC. J Liquid Chromatograph Relat Technol. 28(5):705–712. doi:10.1081/JLC-200048890.

Ramezani M, Fazli-Bazzaz BS, Saghafi-Khadem F, Dabaghania A. 2004. Antimicrobial activity of four Artemisia species of Iran. Fitoterapia. 75(2):201–203.

Reale S, Pace L, Monti P, Angelis FD, Marcozzi G. 2008. A rapid method for the quantification of artemisinin in *Artemisia annua* L. plants cultivated for the first time in Burundi. Nat Prod Res. 22(4):360–364. doi:10.1080/14786410701855951.

Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res. 22(4):375–383. doi:10.3109/10715769509145649.

Schlaepfer DR, Lauenroth WK, Bradford JB. 2014. Natural regeneration processes in Big Sagebrush (*Artemisia tridentata*). Rangeland Ecol Manage. 67(4):344–357.

Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. 2009. Major flavonoids with antioxidant activity from *Teucrium polium* L. Food Chem. 112(4):885–888.

Škerget M, Kotnik P, Hadolín M, Kraš AR, Simonič M, Kniz Z. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89(2):191–198.

Sroka Z, Cisowski W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol. 41(6):753–758.

Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trend Food Sci Technol. 17(6):300–312.

Woerdenbag HJ, Pras N, Uden WV, Boer AD, Battersman S, Visser JF, Malingré TM. 1992. High peroxidase activity in cell cultures of *Artemisia annua* with minute artemisinin contents. Natural Product Letters. 1(2):121–128. doi:10.1080/10575639208048899.

Zhang Y, Xu G, Zhang S, Wang D, Prabha PS, Zuo Z. 2018. Antitumor research on artemisinin and its bioactive derivatives. Nat Prod Bioprospect. 8(4):303–319. doi:10.1007/s13659-018-0162-1.

Zhigzhitzhapova SV, Dylenova EP, Gulyaev SM, Randalova TE, Taraskin VV, Tykheev ZA, Radnayaev LD. 2020. Composition and antioxidant activity of the essential oil of *Artemisia annua* L. Nat Prod Res. 34(18):2668–2671. doi:10.1080/14786419.2018.1548461.

Zouari S, Ayadi I, Fakhfakh N, Jdir H, Aloui L, Kossentini M, Rebai A, Zouari N. 2014. Essential oil variation in wild populations of *Artemisia saharae* (Asteraceae) from Tunisia: chemical composition, antibacterial and antioxidant properties. Bot Stud. 55(1):76–10. doi:10.1186/s40529-014-0076-0.