Case Report

Delayed rebleeding of a spontaneously thrombosed aneurysm after subarachnoid hemorrhage

Muhammad Omar Chohan, Franklin D. Westhout, Christopher L. Taylor

Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA

E-mail: *Muhammad Omar Chohan - mchohan@salud.unm.edu; Franklin D. Westhout - westhout@yahoo.com; Christopher L. Taylor -ctaylor@salud.unm.edu

*Corresponding author

Received: 07 November 13 Accepted: 14 February 14 Published: 28 March 14

Abstract

Background: This report provides a rare documentation of spontaneous thrombosis of a ruptured aneurysm followed by delayed recanalization and subsequent rerupture.

Case Description: A 47-year-old female presented with spontaneous subarachnoid hemorrhage (SAH). Four aneurysms were identified on CT angiogram including a basilar apex aneurysm, considered source of bleeding. Cerebral angiogram on postbleed day (PBD) #1 showed spontaneous thrombosis of basilar apex aneurysm. The patient was discharged to a nursing home on PBD #18 after two subsequent studies showed no recanalization of the basilar aneurysm. The patient returned on PBD #26 with a second episode of spontaneous SAH. The previously thrombosed basilar aneurysm had recanalized and reruptured, which was now treated with coil embolization.

Conclusion: We are not aware of a previous report of saccular cerebral aneurysm documenting spontaneous thrombosis after SAH and recanalization with second hemorrhage. This occurrence presents a dilemma regarding the timing and frequency of subsequent cerebrovascular imaging and treatment.

Key Words: Aneurysm, embolization, recanalization, subarachnoid hemorrhage, thrombosis

INTRODUCTION

Spontaneous thrombosis of cerebral aneurysms is known to occur.\cite{1,3,10} Spontaneous thrombosis after subarachnoid hemorrhage (SAH) may result in early false-negative vascular studies prompting delayed vascular studies when the initial workup is negative.\cite{9} This report provides rare documentation of spontaneous thrombosis of a ruptured aneurysm followed by delayed recanalization and subsequent rerupture. The challenges of managing a known, thrombosed intracranial aneurysm are discussed.

CASE REPORT

A 47-year-old female presented with spontaneous SAH. Computed tomography angiography (CTA) demonstrated diffuse SAH and intraventricular haemorrhage [Figure 1a]. Four aneurysms were identified including an 8 mm basilar apex aneurysm, a 7 mm anterior communicating artery (AComm) aneurysm, and smaller bilateral middle cerebral artery aneurysms [Figure 1b]. Based on the pattern of bleeding and the size of the aneurysms, the basilar apex aneurysm was identified as the source of bleeding.
First intervention
Catheter angiography on postbleed day (PBD) #1 showed irregularity at the basilar apex with no filling of the dome of the basilar aneurysm, consistent with spontaneous thrombosis [Figure 2a-d]. The AComm aneurysm was treated with coil embolization. No anticoagulation was given.

Subsequent course
CTA on PBD #2 showed no filling of the basilar aneurysm. Catheter angiography on PBD #8 showed moderate vasospasm of the basilar artery, fullness of the basilar apex with less irregularity of the apex, but no filling of the dome or neck of the aneurysm [Figure 2e-f]. Routine CT imaging showed progressive resolution of SAH and the neurological exam improved. The patient was transferred to a long-term acute care facility after an 18-day hospital stay. At the time of discharge she was arousable to voice and following simple commands with a mild paresis of the left upper extremity and paralysis in the right upper extremity.

Second presentation and intervention
A rapid decline in her neurologic functioning occurred on PBD #26. Head CT showed new acute SAH in the fourth ventricle and in the preptone cistern, extending inferiorly along the medulla [Figure 3a]. Catheter angiography on PBD #27 showed recanalization of the basilar apex aneurysm [Figure 3b-d]. There was no filling of the anterior communicating artery aneurysm. The basilar artery aneurysm was treated with coil embolization [Figure 3e and f].

DISCUSSION
We are not aware of a previous report of saccular cerebral aneurysm documenting spontaneous thrombosis after SAH and recanalization with second hemorrhage. We performed a PubMed database search with the following key words: “intracranial aneurysm”, “rupture”, “spontaneous thrombosis”, “rerupture”, and “recanalization”. Spontaneous thrombosis is uncommon but well documented.\(^{[5,3,10,12]}\) Khurana et al. describe a case of ruptured giant middle cerebral artery aneurysm with thrombosis and fatal rerupture, but do not angiographically document complete thrombosis after initial rupture.\(^{[6]}\) Atkinson et al. reported recanalization of a posterior cerebral artery fusiform aneurysm and subsequent surgical treatment.\(^{[1]}\) They identified six previous reported cases of angiographic reappearance of a known, thrombosed aneurysm, but did not report rebleeding. Explanations for spontaneous thrombosis have considered anatomic and hemodynamic factors, inflammation, and hypercoagulability.

More recently, hemorrhage after apparent “complete” thrombosis has been reported with endovascular flow-diversion treatment.\(^{[4,7]}\) Raymond et al. studied thrombosis and hemorrhage in a swine model.\(^{[11]}\) They found that thrombosis was accompanied by degeneration...
factor-1α (HIF-1α) is upregulated in the aneurysm wall and has been shown to promote pathological smooth muscle remodeling and neo-vascularization, likely contributing to aneurysm progression and rupture.[9]

Our practice in patients with SAH (exceeding the perimesencephalic cistern) and negative CTA has been to perform catheter angiography immediately, and at one week and four weeks as needed. Patients with negative immediate angiography are screened for spinal pathology with magnetic resonance imaging (MRI). We intended to follow the same protocol with this patient, however, the basilar aneurysm recanalized and reruptured prior to the delayed study. The likelihood of this sequence of events is too low to justify a more aggressive imaging protocol. However, if faced again with the same situation, we will likely screen weekly with CTA or MRA for at least the first month and less frequently thereafter.

REFERENCES

1. Atkinson JL, Lane JJ, Colbassani HJ, Llewellyn DM. Spontaneous thrombosis of posterior cerebral artery aneurysm with angiographic reappearance. Case report. J Neurosurg 1993;79:434-7.
2. Gerber S, Dormont D, Sahel M, Grob R, Focin JF, Marsault C. Complete spontaneous thrombosis of a giant intracranial aneurysm. Neuroradiology 1994;36:316-7.
3. Hamilton MG, Dold ON. Spontaneous disappearance of an intracranial aneurysm after subarachnoid hemorrhage. Can J Neurol Sci 1992;19:389-91.
4. Hampton T, Walsh D, Tolias C, Fiorella D. Mural destabilization after aneurysm treatment with a flow-diverting device: A report of two cases. J Neurointerv Surg 2011;3:167-71.
5. Kansaku K, Hirai S, Kobayashi E, Ono J, Yamaura A. Serial magnetic resonance imaging of acute spontaneous thrombosis of a giant intracranial aneurysm: Case report. J Neurosurg 1998;89:562-5.
6. Khurana VG, Wijdicks EF, Parisi JE, Piepgras DG. Acute deterioration from thrombosis and rerupture of a giant intracranial aneurysm. Neurology 1999;52:1697-9.
7. Kulcsár Z, Houdart E, Bonafé A, Parker G, Millar J, Goddard AJ, et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 2011;32:20-5.
8. Kurki M, Hakkinen SK, Frösen J, Talamo R, von und zu Fraunberg M, Wörg G, et al. Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: An emerging regulatory role of Toll-like receptor signaling and nuclear factor-kappaB, hypoxia-inducible factor-1α, and ETS transcription factors. Neurosurgery 2011;68:1667-76.
9. Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013;58:219-30.
10. Mathur T, Srivastava T, Mitral RS, Tejwani S, Raghavendra BS, Jain R. Rapid thrombosis of middle cerebral artery aneurysm after subarachnoid haemorrhage. BMJ Case Rep 2013;2013: http://www.ncbi.nlm.nih.gov/pubmed/23576642.
11. Raymond J, Daraut AE, Kotowski M, Makoyeva A, Grevy G, Berthelet F, et al. Thrombosis heralding aneurysmal rupture: An exploration of potential mechanisms in a novel giant swine aneurysm model. AJNR Am J Neuroradiol 2013;34:346-53.
12. Warschewski G, Breidenf G, Lehmann TH, Lankisch W. Spontaneous thrombosis of an intracranial giant aneurysm. Interv Neuroradiol 1999;5:327-32.