Additional Lipid Targets to Modulate Atherosclerotic Plaques beyond LDL-C Lowering

Yu Kataoka1, Jordan Andres2, Rishi Puri3, Peter Psaltis2 and Stephen J. Nicholls2

Residual cardiovascular risks under statin therapy suggest the need to develop additional therapeutic approach to further improve cardiovascular outcomes. Epidemiological and intravascular imaging studies have revealed the relationship of these lipid targets with atherosclerotic cardiovascular disease, indicating triglyceride and high-density lipoprotein cholesterol (HDL-C) as potential targets for achieving better clinical outcomes. However, clinical efficacy of lowering triglyceride and raising HDL-C level has not been established yet. Although findings from clinical trials testing novel agents targeting these lipid markers are disappointing, further search still continues to identify effective therapeutic approach due to their anti- or pro-atherogenic properties. Intravascular imaging modality has contributed to the elucidation of disease mechanism and the evaluation of novel drugs modulating triglyceride and HDL-C. In this review, anti- or pro-atherogenic properties of triglyceride and HDL-C, its association with clinical outcomes and atherosclerotic plaques will be summarized.

KEY WORDS: atherosclerosis, high-density lipoprotein cholesterol, imaging, triglyceride

I. Introduction

Lowering low-density lipoprotein cholesterol (LDL-C) is a cornerstone in the current therapeutic guideline to prevent atherosclerotic cardiovascular diseases1–7). This is because numerous large-scale randomized controlled trials have consistently demonstrated the beneficial effect of lowering LDL-C level with a statin for the primary and secondary prevention3–8). Furthermore, serial intravascular imaging studies have also supported its anti-atherosclerotic effects. Intensive lowering LDL-C has been shown to slow plaque progression and induce its regression if very low LDL-C level is achieved9–11). However, substantial amount of cardiovascular events still occurs even under intensive control of LDL-C level12, 13). The residual cardiovascular risks indicate the need to modulate additional therapeutic targets to further reduce atherosclerotic cardiovascular events.

The development and propagation of atherosclerosis is derived by the retention of cholesterol-rich lipoproteins within the subendothelial matrix of the arterial wall. While LDL has been considered as the main atherogenic cholesterol-rich particle, other apolipoprotein-B-containing lipoproteins also contribute to intimal cholesterol deposition. Triglyceride-rich lipoprotein is one of atherogenic particles potentially promoting formation and progression of atherosclerotic plaques14). In contrast to these lipoproteins, high-density lipoprotein harbours a variety of atheroprotective properties which may have the ability in halting atherosclerosis15). These properties suggest triglyceride-rich lipoprotein and high-density lipoprotein (HDL) as potential therapeutic targets for the prevention of atherosclerotic cardiovascular disease. However, controversies exist with regard to their associations with cardiovascular events and clinical efficacy of pharmacological modulation of triglyceride-rich lipoprotein and HDL.

Intravascular imaging modalities have contributed to the elucidation of atherosclerotic mechanisms and clinical efficacy of novel anti-atherosclerotic therapies5–8, 16–20). This review summarizes evidences from clinical and intravascular imaging studies to elucidate the contribution of triglyceride and HDL to atherosclerotic cardiovascular disease (ASCVD) and clinical impact of their modulation.

II. Triglyceride

Triglyceride exists in plasma as lipoprotein, pseudo lipid-protein complex. Apolipoprotein B is a component of triglyceride-rich lipoproteins including chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and LDL21, 22). Following the absorption of dietary lipids, chylomi-
cron is formulated and then hydrolyzed by lipoprotein lipase (LPL)\(^{21,22}\). This process leads to the development of chylomicron remnant, which is uptaken by liver through LDL receptor, hepatic triglyceride lipase and cell-surface proteoglycans\(^{23,24}\). Another triglyceride-rich lipoprotein, VLDL is assembled in the endoplasmic reticulum of hepatocytes. VLDL triglyceride is hydrolyzed by LPL, generating IDL and LDL. Partial hydrolysis causes VLDL remnants. Chylomicron and VLDL remnants are accumulated into vessel wall, leading to foam cell formation. In addition, these remnants have been shown to increase the expression of pro-inflammatory genes and induce apoptosis\(^{21,22}\). These atherogenic aspects of triglyceride suggest its potential contribution to atherosclerosis.

1. Epidemiological data (Table 1)

 a. Subjects who do not receive a statin

 Two observational studies (Copenhagen City Heart Study and Women’s Health Study) showed that elevated triglyceride level was associated with a higher risk of ASCVD including myocardial infarction, stroke and all-cause mortality\(^{23-25}\). One meta-analysis including 68 long-term prospective studies also reported that an increased level of triglyceride was associated with increased risk of ischemic heart disease and death in men and women.

 - **Table 1** The association of triglyceride level with cardiovascular events

 Subjects without statin therapy

Authors	Journal	Subjects	Outcomes	Findings
Nordestgaard BG, et al.	JAMA 2007; 298: 299-308	13,981 subjects from the general population of Copenhagen, Denmark, aged 20 to 93 years	Incident myocardial infarction, ischemic heart disease and total death	Elevated nonfasting triglyceride level was associated with increased risk of myocardial infarction, ischemic heart disease and death in men and women.
Freiberg JJ, et al.	JAMA 2008; 300: 2142-2152	13,956 men and women aged 20 through 93 years	Ischemic stroke	Nonfasting triglyceride level was associated with risk of ischemic stroke in both men and women.
Bansal S, et al.	JAMA 2007; 298: 309-316	26,509 healthy US women participating in the Women’s Health Study	Non-fatal myocardial infarction, nonfatal ischemic stroke, coronary revascularization and cardiovascular death	Nonfasting triglyceride level was associated with incident cardiovascular events, independent of traditional cardiac risk factors, levels of other lipids, and markers of insulin resistance.
Emerging Risk Factors Collaboration\(^{26}\)	JAMA 2009; 302: 1993-2000	302,430 people without vascular disease	Nonfatal myocardial infarction, coronary heart disease death, ischemic stroke, hemorrhagic stroke and unclassified stroke	Adjusted HR for coronary heart disease was 0.99 (95% CI 0.94-1.05) with triglyceride.

 Subjects with statin therapy

Authors	Journal	Subjects	Outcomes	Findings
Miller M, et al.	J Am Coll Cardiol 2008; 51: 724-730	Atorvastatin 80 mg vs. pravastatin 40 mg (PROVEIT-TIMI22)	Death, myocardial infarction, recurrent acute coronary syndrome	Low on-treatment triglyceride (<150 mg/dl) was associated with reduced cardiovascular event risk (HR 0.80, 95% CI 0.66 to 0.97; p=0.025). Lower cardiovascular event risk was observed with triglyceride < 150 mg/dl and LDL-C < 70 mg/dl (HR 0.72, 95% CI 0.54 to 0.94; p=0.017) or low on-treatment triglyceride, LDL-C, and C-reactive protein (< 2 mg/l) (HR 0.59, 95% CI 0.41 to 0.83; p=0.002) compared with higher levels of these lipids markers.
Faergeman O, et al.	Am J Cardiol 2009; 104: 459-463	TNT trial: atorvastatin 80 mg vs. atorvastatin 10 mg IDEAL: atorvastatin 80 mg vs. simvastatin 20 to 40 mg	Coronary death, non-fatal myocardial infarction, resuscitation after cardiac arrest, fatal or non-fatal stroke, coronary revascularization, hospitalization for unstable angina or heart failure, peripheral artery disease	Risk of cardiovascular events increased with increasing TGs (p < 0.001).
not only triglyceride but also cholesterol content in remnant particles play a critical role in atheroma formation and progression.

b. Subjects receiving a statin

In recent clinical trials analyzing patients receiving a statin, the association of triglyceride with ASCVD was also observed. In the PROVEIT-TIMI (Pravastatin or Atorvastatin Evaluation and Infection Therapy – Thrombolysis in Myocardial Infarction) 22 trial, on-treatment triglyceride <150 mg/dl was independently associated with a lower risk of recurrent coronary events in patients with acute coronary syndrome (ACS) who achieved LDL-C below 70 mg/dl. Furthermore, pooled analysis of the TNT (Treating to New Targets) and IDEAL (Incremental Decrease in Clinical Endpoints Through Aggressive Lipid Lowering) trials demonstrated a trend for decreased cardiovascular event risks with lowering triglyceride levels. As such, while LDL-C lowering remains the first priority, additional therapies targeting an elevated triglyceride level may offer the possibility of incremental reduction in ASCVD risks in high-risk populations.

2. Intravascular imaging data

In vivo plaque imaging has enabled to identify the association of triglyceride level with atherosclerotic plaques. We retrospectively analyzed pooled intravascular ultrasound (IVUS) data from 9 clinical trials involving 4,957 patients with coronary artery disease. Over 95% of study population received a statin during the course of the study. On serial evaluation, progression rate increased when triglyceride level was above 110 mg/dl (Fig. 1). In addition, actual plaque progression occurred in association with triglyceride level above 200 mg/dl (Fig. 1). This relationship was further analyzed in subjects stratified into 4 groups according to LDL-C level and triglyceride levels. Achieving a lower level of triglyceride < 200 mg/dl was associated with more regression of coronary atherosclerosis regardless of on-treatment LDL-C levels (Fig. 2). Multivariate analysis demonstrated on-treatment triglyceride level as an independent predictor of atheroma progression. Furthermore, patients with achieved triglyceride level > 200 mg/dl exhibited a greater likelihood of experiencing a major cardiovascular event.

In diabetic patients, hypertriglyceridemia and low HDL-C level are characteristics of diabetic dyslipidemia. The association of this lipid feature with plaque instability was evaluated by using optical coherence tomography (OCT) imaging in diabetic subjects with coronary artery disease (CAD). This analysis included 128 patients with CAD who received percutaneous coronary intervention. On OCT imaging, high triglyceride/HDL-C ratio contributed to more vulnerable features such as a larger lipid arc and a higher frequency of cholesterol crystals. Even after adjusting differences in clinical demographics, triglyceride/HDL-C ratio was still related to lipidic materials within plaques.

3. Clinical efficacy of agents modifying triglyceride

Suggestive evidences from epidemiological studies have stimulated considerable interests to investigate efficacy of lowering triglyceride on cardiovascular outcomes. Fibrates, which are peroxisome proliferator-activated receptor α agonist, lowers triglyceride by 20–50% and raise HDL-C levels by 10%. Recent three large-scale clinical trials failed to prove its benefit for reduction of ASCVD. In the ACCORD (Action to Control Cardiovascular Risk in Diabetes) study analyzing 5,518 type 2 diabetic subjects, despite a significant lowering of triglyceride...
levels with an increased level of HDL-C under fibrate therapy, additive cardiovascular risk reduction was not observed (p=0.32). Subgroup analyses identified diabetic patients with both high triglyceride and low HDL-C levels were less likely to develop cardiovascular events under fibrate use although this comparison did not meet statistical significance (p=0.06). Similar observation was identified by one recent meta-analysis including 45,058 patients. This analysis showed favourable benefit of fibrates in subjects with high triglyceride level with or without low HDL-C. These findings must be confirmed in a dedicated trial. Other new agents such as omega-3 fatty acids and selective peroxisome proliferator-activated receptor β modulators are expected to be efficacious for improvement of cardiovascular outcomes. Large clinical trials will be warranted to elucidate their clinical impact on ASCVD.

III. High-density lipoprotein

HDL particle is composed of triglyceride and cholesterol ester-rich hydrophobic core with an outer amphipathic layer of free cholesterol, phospholipid, and several apolipoproteins. The main protein component of HDL is apolipoprotein A-I (apoA-I) which plays a key role in the biogenesis and function of HDL. In addition, HDL particles carry a variety of enzymes, such as paraoxonase, platelet activating factor-acetyhylidrolase, lecithin cholesterol acyltransferase, and cholesteryl ester transfer protein (CETP). These components of HDL have been shown to contribute to its anti-atherosclerotic properties. One major atheroprotective ability of HDL is to promote cholesterol efflux from cells such as macrophages and the related complex physiological process of reverse cholesterol transport. This attractive process has been reported to occur through several mechanism: unidirectional ATP-dependent pathway mediated by ATP-binding cassette transporter A1 (ABCA1), a unidirectional ATP-dependent pathway mediated by the ATP-binding cassette G1 transporter (ABCG1), an ATP-independent, bidirectional pathway involving scavenger receptor class B type I (SR-BI), and receptor-independent passive diffusion according to cholesterol concentration gradient. Lipid-poor apoA-I promotes efflux of cholesterol via the transporter ABCA1 and that mature HDL contributes to cholesterol efflux via ABCG1, SR-BI and other mechanisms. Recently, one cross-sectional study have elucidated that HDL cholesterol efflux capacity is inversely associated with carotid intima-media thickness (β coefficient per 1-SD increase in efflux capacity; −0.03, 95% CI; −0.06 to −0.01, p=0.003) and the likelihood of angiographic CAD (odds ratio per 1-SD increase, 0.75; 95% CI, 0.63 to 0.90; p=0.002) even after adjusting HDL-C. This finding supports functionality but not quantity of HDL as an important factor associated with ASCVD.

HDL also harbours several properties which favourable modulate atherosclerosis such as anti-oxidative, anti-inflammatory and anti-thrombotic effects and vasodilatory ability. The association of these HDL-mediated functions with cardiovascular outcomes is not fully evaluated yet. However, modifying these properties also have great potential to halt atherosclerosis and prevent atherosclerotic cardiovascular events.

1. Diminished functionality of HDL and atherosclerosis

Recent investigations suggest that patients with cardiovascular disease have ‘dysfunctional’ HDL, which lacks typical atheroprotective properties and promotes pro-inflammatory effects. This observation was also identified in patients with ACS, type 2 diabetes or inflammatory diseases. Myeloperoxidase (MPO) is considered to cause functional impairment of HDL. This mechanistic link is supported by several studies, which elucidated HDL isolated from atherosclerotic lesions contain numerous MPO-derived peptides. In population studies, the direct association of serum MPO level with mortality or cardiovascular events in patients with or without CAD has been reported. IVUS imaging studies have elucidated that MPO level was associated with progression of coronary atherosclerosis in diabetic patients with CAD (Fig. 3). These observations might suggest MPO as another important therapeutic target for the prevention of cardiovascular events.

2. Epidemiological data (Table 2)

Many prospective studies from different racial and ethnic groups have confirmed that HDL-C is a strong, consistent, and independent predictor of incident cardiovascular events. An inverse association of triglyceride with risk of ischemic heart disease was identified in the Framingham Heart Study, Lipid Research Clinics Prevalence Mortality Follow-up Study, Coronary Primary Prevention Trial, Multiple Risk Factor Intervention trial.
Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) trial cohort, HDL-C level was inversely related to vascular risk in the placebo group, whereas there was no significant relationship between HDL-C level and cardiovascular events in patients given rosvastatin 20 mg. Similar observation was recognized by other statin trials including AFCAPS/TexCAPS (Air Force/Texas Coronary Atherosclerosis Prevention Study) and CARE (Cholesterol and Recurrent Events). However, in a large meta-analysis of eight statin trials, HDL-C level was strongly associated with a reduced cardiovascular risk, even

Subjects without statin therapy

Authors	Journal	Subjects	Outcomes	Findings
Gordon T, et al.	Am J Med 1977; 62: 707-714	2,815 men and women aged 49 to 82 years	Coronary heart disease	HDL-C had an inverse association with the incidence of coronary heart disease (p<0.001) in either men or women.
Rhoads GG, et al.	N Engl J Med 1976; 294: 293-298	1,859 Hawaii Japanese men 50 to 72 years old	Coronary heart disease	An inverse relationship between HDL-C and coronary heart disease existed.
Jacobs DR Jr, et al.	Am J Epidemiol 1990; 131: 32-47	8,825 male and female participants	Cardiovascular disease mortality	Multivariate analysis demonstrated an inverse relationship between HDL-C and cardiovascular disease mortality.

Subjects with statin therapy

Authors	Journal	Subjects	Outcomes	Findings
Olsson AG, et al.	Eur Heart J 2005; 26: 890-896	3,086 ACS patients, randomized to either atorvastatin 80 mg/day or placebo	Death, non-fatal myocardial infarction, cardiac arrest, worsening angina, repeat emergency hospitalization	Baseline HDL-C predicted outcome with a hazard ratio of 0.986 per mg/dl increment in HDL-C, p<0.001, indicating 1.4% reduction in risk for each 1 mg/dl increase in HDL-C.
Ray KK, et al.	Arterioscler Thromb Vasc Biol 2009; 29: 424-430	4,162 patients with ACS who were randomized to atorvastatin 80 mg versus pravastatin 40 mg	Death and non-fatal acute coronary syndrome	apoB/AI (HR 1.10, 95% CI 1.01 to 1.20), TC/HDL (HR 1.12, 95% CI 1.01 to 1.24), and non–HDL-C (HR 1.20, 95% CI 1.07 to 1.35) predicted events, but HDL-C did not.
Ridker PM, et al.	Lancet 2010; 376: 333-339	17,802 subjects with randomization to rosvastatin 20 mg or placebo	Non-fatal myocardial infarction, stroke, hospitalization for unstable angina, revascularization, cardiovascular death	In the placebo group, HDL-C was inversely related to vascular risk both at baseline (top quartile vs bottom quartile HR 0.54, 95% CI 0.35-0.83, p=0.0039) and on-treatment (HR 0.55, 95% CI 0.35-0.87, p=0.0047). By contrast, in the rosvastatin 20 mg group, no significant relationships were noted between quartiles of HDL-C concentration and vascular risk either at baseline (HR 1.12, 95% CI 0.62-2.03, p=0.82) or on-treatment (HR 1.03, 95% CI 0.57-1.87, p=0.97).
Gotto AM Jr, et al.	Circulation 2000; 101: 477-484	6,605 patients	Acute major coronary event	Baseline HDL-C was a significant predictor of AMCE (p=0.01). However on-treatment HDL-C level was not.
Sacks FM, et al.	Circulation 1998; 97: 1446-1452	4,159 patients randomized to pravastatin 40 mg or placebo	Coronary death or non-fatal myocardial infarction	On multivariate analysis, on-treatment HDL-C level was weakly but significantly associated with the coronary event rate.
Boekholdt SM, et al.	Circulation 2013; 128: 1504-1512	38,153 subjects from 8 statin trial	Fatal or non-fatal myocardial infarction, fatal other coronary heart disease, hospitalization for unstable angina, fatal or nonfatal stroke	HDL-C levels were associated with a reduced risk of major cardiovascular events (adjusted HR 0.83; 95% CI 0.81-0.86 per 1 standard deviation increment). This association was also observed among patients achieving on-statin LDL-C < 50 mg/dl.

Table 2 The association of HDL-C level with cardiovascular events

and Honolulu Heart Study. By contrast, in patients treated with a statin, published studies showed inconsistent results. In the MIRACL (Myocardial Ischemia Reduction with Acute Cholesterol Lowering) study, HDL-C level predicted cardiovascular outcomes, indicating 1.4% reduction in risk for each 1mg/dl increase in HDL-C in ACS subjects receiving atorvastatin 80 mg. By contrast, post-hoc analysis from the PROVE IT-TIMI 22 has shown that on-treatment HDL-C did not provide prognostic information in ACS patients treated with either pravastatin 40 mg or atorvastatin 80 mg. In the JUPITER (Justification for the
among those achieving very low LDL-C level55. Exact mechanism of these observations requires further investigation in the future.

3. Intravascular imaging data

The association of HDL-C level with atheroma progression was analyzed in 1,455 subjects with CAD receiving a statin56. In this analysis, change in HDL-C level was inversely associated with atheroma progression on IVUS imaging. Multivariate analysis demonstrated that an increase in HDL-C level as well as on-treatment LDL-C level predicted atheroma regression. Furthermore, substantial atheroma regression was observed in subjects who achieved LDL-C level < 85 mg/dl and percent increase in HDL-C >8.5 % during the course of the study. Post-hoc analysis from the SATURN (the Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin) study elucidated that an increase in HDL-C under maximally intensive statin use induced plaque regression (p<0.001) and reduced necrotic core volume (p=0.03) on virtual-histology IVUS imaging57.

OCT imaging elucidated the relationship of HDL-C level with plaque instability in 261 ACS subjects who received PCI58. In this analysis, patients who exhibited thin-capped fibroatheroma at their culprit lesions were more likely to have lower HDL-C level, higher level of LDL-C and high sensitivity-CRP. In addition, HDL-C level was significantly associated with fibrous cap thickness59. On multivariate analysis, HDL-C level was an independent predictors of thinner fibrous cap thickness and the presence of thin-capped fibroatheroma60. These observations highlight more high-risk plaque phenotypes in CAD patients with low level of HDL-C.

4. Clinical efficacy of novel agents modulating HDL

a. Cholesteryl ester transfer protein (CETP) inhibitor

CETP is a hydrophobic glycoprotein which is synthesized by mainly liver61. The main role of CETP is to transfer esterified cholesterol from HDL to VLDL and LDL particles accompanied by exchange for triglycerides62. Its effect on atherogenesis is still controversial, but previous observational and animal studies have reported proatherogenic property of CETP. Subjects with CETP mutations have been shown to exhibit an increased level of HDL-C and lower incidence of CAD63,64. In several animal studies using rodents without plasma CETP activity, an elevated HDL-C level and less atheroma formation were observed65. Moreover, lower occurrence of cardiovascular events has been identified in patients with low CETP levels66. Based on these observations, the efficacy of pharmacological CETP inhibition has been investigated in clinical trials. ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events) study evaluated the clinical efficacy of torcetrapib, the first CETP inhibitor on clinical outcomes in 15,067 patients at high cardiovascular risk67. Torcetrapib increased HDL-C by 72.1% as well as lowered LDL-C level by 24.9%. However, a significant increase in mortality and cardiovascular events was observed in patients receiving this agent, resulting in the early termination of the study. In this trial, off-target effects elevating blood pressure level was observed in the torcetrapib group. Additionally, basic studies have identified torcetrapib stimulated renin-angiotensin system68. These negative effects of torcetrapib are considered to associate with worse clinical outcomes in torcetrapib group. The effect of torcetrapib on atheroma progression was evaluated by the ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation) study69. This study compared progression of coronary atherosclerosis on IVUS imaging between torcetrapib versus placebo groups. While there was no significant difference in atheroma progression rate between two groups despite a significant increase in HDL-C level in patients treated with torcetrapib (change in percent atheroma volume, +0.19 vs. +0.12%, p=0.72), post-hoc analysis had demonstrated that the greatest increase in HDL-C with torcetrapib showed significant plaque regression (change in percent atheroma volume, −0.69% p=0.01 compared to baseline70). This finding suggests the concept of intact HDL functionality in patients treated with torcetrapib.

Dalcetrapib is a less potent CETP inhibitor, which raises HDL-C levels by 25% to 35% but does not affect LDL cholesterol levels71. The efficacy of this agent was tested in plaque imaging [The dal-PLAQUE study (Safety and efficacy of dalcetrapib on atherosclerotic study using novel non-invasive multimodality imaging)] and clinical outcome [Dal-OCTIMES study (A Study of Dalcetrapib in Patients with Stable Coronary Heart Disease, with Coronary Heart Disease Risk Equivalents or at Elevated Risk for Cardiovascular Disease)] studies69,70. Similar to findings in trials using torcetrapib, favourable effect of dalcetrapib on atheroma burden, its inflammation and cardiovascular outcomes was not observed (least square mean ; 0.49 vs. 2.69 mm2, p=0.12, cumulative event rate ; 8.3% vs. 8.0%, p=0.52)70,71. In contrast to torcetrapib, any adverse effect on blood pressure was not identified under dalcetrapib for 24 months69,70.

Anacetrapib is a more potent CETP inhibitor, with the ability to raise HDL-C by 138.1% and lower LDL cholesterol by 39.8%71. The impact of anacetrapib on cardiovascular outcomes is currently being evaluated by REVEAL (Randomized Evaluation of the Effects of Anacetrapib through Lipid-modification) study72.

Evacetrapib is the most recent CETP inhibitor which has the selective and potent ability in modulating CETP inhibitory activ-
ity \(^73\). In a phase 2 study, evacetrapib was associated with dose-dependent increase in HDL-C (from 53.6% to 128.8%) and decrease in LDL-C (13.6% to 35.9%) and triglyceride levels \(^74\). In addition, there was no adverse effect of evacetrapib on blood pressure or mineralocorticoid activity \(^76\). The clinical efficacy of evacetrapib has been investigated by the ACCELERATE (Assessment of Clinical Effects of Cholesteryl Ester Transfer Protein Inhibition with Evacetrapib in Patients at a High-Risk for Vascular Outcomes) study which enrolled 12,000 patients with atherosclerotic vascular disease who already received a statin. Despite favourable effect of evacetrapib on lipid profiles, any additive effect on cardiovascular outcomes was not observed.

b. Infusional agents of HDL

Infusional agent of HDL is another novel approach to raise this anti-atherosclerotic particle. It is generally composed of isolated, partially delipidated HDL proteins and native apoA-I or genetic variants such as apoA-I Milano complexed with phospholipids \(^75\). The advantage of this agent is to induce a rapid and time-dependent elevation in apoA-I and pre-βHDL particles \(^79\). Its clinical efficacy on coronary atherosclerosis has been investigated by using serial IVUS imaging. Nissen et al. tested intravenous infusions of reconstituted HDL containing recombinant human apoA-I Milano for 5 weeks in ACS subjects \(^80\). This study found out a significant reduction in atheroma burden under the therapies (change in percent atheroma volume, −1.29 and −0.73% in 15 and 45 mg/kg infusional HDL, respectively) \(^76\). Another IVUS clinical trial, ERASE (Evaluation the Effects of Reconstituted High-density Lipoprotein) trial, infusing HDL containing wild-type apoA-I for 4 weeks induces plaque regression in ACS patients \(^77\). However, the extent of plaque regression was comparable between reconstituted HDL infusion and placebo (change in percent atheroma volume, −3.4 vs. −1.6%, p=0.48, change in total atheroma volume, −5.3 vs. −2.3 mm\(^3\), p=0.39). Waksman et al. evaluated the effect of autologous infusion of delipidated HDL by using 2-D gel electrophoresis \(^78\). This system enabled to delipidate plasmas successfully converted from α HDL to preβ-like HDL. Serial evaluation on IVUS imaging showed a favourable trend toward regression of total atheroma volume (−12.18±36.75 mm\(^3\)) in patients receiving infusion of delipidated HDL compared to placebo (−2.8±21.25 mm\(^3\), p=0.26 between the groups) in 28 ACS patients \(^79\). The CHI-SQUARE (Can HDL Infusions Significantly QUicken Atherosclerosis Regression) study evaluated the efficacy of infusion of preβ HDL mimetic agent, CER-001 on atherosclerotic plaques in 417 ACS patients \(^80\). There were no significant differences in change in percent atheroma volume between placebo versus CER-001. However, favourable efficacy was observed in subjects with more extensive atheroma burden. In particular, the lowest dose of CER-001 significantly regressed atheroma compared to placebo (Fig. 4). This finding suggested ACS cases with extensive atheroma as important targets who benefit from infusional agent of HDL. The impact of HDL infusions on clinical outcomes will be warranted in dedicated studies in the future.

c. ApoA-I induction therapy

Enhancing apoA-I synthesis is another attractive strategy enabling to generate new HDL particles. The first oral agent to selectively induce hepatic synthesis of apoA-I is RVX-208 \(^82\). This agent has been shown to promote apoA-I transcription in hepatic cell lines \(^80\). In addition, a significant increase in apoA-I, HDL-C and large HDL particles were observed in subjects receiving RVX-208 \(^81\). The efficacy of RVX-208 on atheroma progression was investigated by the ASSURE (ApoA-I Synthesis Stimulation and Intravascular Ultrasound for Coronary Atheroma Regression Evaluation) study in 310 patients with ACS \(^82\). The use of RVX-208 for 6 months did not modulate change in atheroma volume compared to placebo. However, post-hoc analysis using virtual histology IVUS imaging has elucidated that RVX-208 was associated with a significant reduction of necrotic core and an increase in calcification. This observation suggests the ability of RVX-208 to stabilize atherosclerotic plaques in ACS cases. The impact of RVX-208 on cardiovascular outcome study is under investigation in on-going clinical trial.

IV. Conclusion

Continuing cardiovascular risk despite statin therapy indicates the on-going needs to establish additional novel therapeutic approaches. Epidemiological and intravascular imaging studies have provided insights into the potential benefit of modulating lipid targets including triglyceride and HDL-C. The clinical efficacy of novel agents modifying these targets is not established yet. However, due to complexity of mechanistic link between triglyceride, HDL-C and atherosclerosis, further extensive search
for effective therapeutic approach will continue.

Financial & competing interests disclosure

Yu Kataoka has received research support from Cerenis. Stephen J Nicholls has received speaking honoraria from AstraZeneca, Pfizer, Merck Schering-Plough and Takeda, consulting fees from AstraZeneca, Pfizer, Merck Schering-Plough, Takeda, Roche, NovoNordisk, LipoScience and Anthera and research support from AstraZeneca, Lipid Sciences and Cerenis.

Abbreviations

ABCA1 = ATP-binding cassette transporter A1
ABCG1 = ATP-binding cassette G1 transporter
ACS = acute coronary syndrome
apoA-I = apolipoprotein A-I
ASCVD = atherosclerotic cardiovascular disease
CETP = cholesteryl ester transfer protein
IDL = intermediate-density lipoprotein cholesterol
IVUS = intravascular ultrasound
HDL-C = high-density lipoprotein cholesterol
LDL = low-density lipoprotein
LPL = lipoprotein lipase
MPO = myeloperoxidase
OCT = optical coherence tomography
PROVEIT-TIMI = Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction
SR-BI = scavenger receptor class B type I
VLDL = very-low-density lipoprotein

References

1) Stone NJ, Robinson J, Lichtenstein AH, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2889–2934
2) European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G, et al; ESC Committee for Practice Guidelines (CPG) 2008–2010 and 2010–2012 Committees: ESC/EAS guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32: 1769–1818
3) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–1389
4) Cannon CP, Braunwald E, McCabe CH, et al; Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495–1504
5) Austin PC, Mamdani MM: Impact of the pravastatin or atorvastatin evaluation and infection therapy–thrombolysis in myocardial infarction 22/Reversal of Atherosclerosis with Aggressive Lipid Lowering trials on trends in intensive versus moderate statin therapy in Ontario, Canada. Circulation 2005; 112: 1296–1300
6) Colhoun HM, Betteridge DJ, Durrington PN, et al; CARDS investigators: Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364: 685–696
7) The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group: Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349–1357
8) Shepherd J, Blauw GJ, Murphy MB, et al; PROSPER study group: PROspective Study of Pravastatin in the Elderly at Risk: Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360: 1623–1630
9) Nissen SE, Tuzcu EM, Schoenhagen P, et al; REVERSAL Investigators: Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291: 1071–1080
10) Nissen SE, Nicholls SJ, Sipahi I, et al; ASTEROID Investigators: Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006; 295: 1556–1565
11) Nicholls SJ, Ballantyne CM, Barter PJ, et al; IDENTITY Investigators: Primary prevention of cardiovascular disease with atorvastatin in patients with stable coronary disease. N Engl J Med 2011; 365: 2078–2087
12) Pedersen TR, Faergeman O, Kastelein JJ, et al; Incremental Decrease in End Points Through Aggressive Lipid Lowering (IDEAL) Study Group: High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA 2005; 294: 2437–2445
13) LaRosa JC, Grundy SM, Waters DD, et al; Treating to New Targets (TNT) Investigators. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352: 1425–1435
14) Nordestgaard BG, Varbo A: Triglycerides and cardiovascular disease. Lancet 2014; 384: 626–635
15) Rader DJ, Hovingh GK: HDL and cardiovascular disease. Lancet 2014; 384: 618–625
16) Kataoka Y, Wolski K, Uno K, et al; Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. J Am Coll Cardiol 2012; 59: 1592–1597
17) Kataoka Y, Wolski K, Balog C, et al: Progression of coronary atherosclerosis in stable patients with ultrasonic features of high-risk plaques. Eur Heart J Cardiovasc Imaging 2014; 15: 1035–1041
18) Kataoka Y, St John J, Wolski K, et al: Atheroma progression in hyporesponders to statin therapy. Arterioscler Thromb Vasc Biol 2015; 35: 990–995
19) Kataoka Y, Shao M, Wolski K, et al: Multiple risk factor intervention and progression of coronary atherosclerosis in patients with type 2 di-
abdominum. Eur J Prev Cardiol 2013; 20: 209–217
20) Kataoka Y, Shao M, Wolksi K, et al: Myeloperoxidase levels predict accelerated progression of coronary atherosclerosis in diabetic patients: insights from intravascular ultrasound. Atherosclerosis 2014; 232: 377–383
21) Miller M, Stone NJ, Ballantyne C, et al: American Heart Association Clinical Lipidology, Thrombosisis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease: Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011; 123: 2292–2333
22) Chapman MJ, Ginsberg HN, Amarenco P, et al: European Atherosclerosis Society Consensus Panel: Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011; 32: 1345–1361
23) Nordestgaard BG, Benn M, Schnohr P, et al: Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298: 299–308
24) Bansal S, Buring JE, Rifai N, et al: Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007; 298: 309–316
25) Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, et al: Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 2008; 300: 2142–2152
26) Emerging Risk Factors Collaboration; Di Angelantonio E, Sarwar N, Perry P, et al: Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302: 1993–2000
27) Miller M, Cannon CP, Murphy SA, et al: PROVE IT-TIMI 22 Investigators: Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2008; 51: 724–730
28) Faergeman O, Holme I, Fayyad R, et al: Steering Committees of IDEAL and TNT Trials: Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol 2009; 104: 459–463
29) Puri R, Nissen SE, Shao M, et al: Non-HDL cholesterol and triglycerides: implications for coronary atheroma progression and clinical events. Arterioscler Thromb Vasc Biol 2016; 36: 2220–2228
30) Rubins HB, Robins SJ, Collins D, et al: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341: 410–418
31) Frick MH, Elo O, Haapa K, et al: Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–1245
32) Bezafibrate Infarction Prevention (BIP) study: Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 2000; 102: 21–27
33) Keech A, Simes RJ, Barter P, et al: FIELD study investigators: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366: 1849–1861
34) ACCORD Study Group; Ginsberg HN, Elam MB, Lovato LC, et al: Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563–1574
35) Jun M, Foote C, Lv J, et al: Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010; 375: 1875–1884
36) Fisher EA, Feig JE, Hewing B, et al: High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2012; 32: 2813–2820
37) Gordon DJ, Probstfield JL, Garrison RJ, et al: High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989; 79: 8–15
38) Rohatgi A, Khera A, Berry JD, et al: HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371: 2383–2393
39) Hiukka A, Westerbacka J, Leinonen ES, et al: Long-term effects of fenofibrate on carotid intima-media thickness and augmentation index in subjects with type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 2190–2197
40) Davidson MH, Rosenson RS, Maki KC, et al: Effects of fenofibrate acid on carotid intima-media thickness in patients with mixed dyslipidemia on atorvastatin therapy: randomized, placebo-controlled study (FIRST). Arterioscler Thromb Vasc Biol 2014; 34: 1298–1306
41) Kamanna VS, Ganji SH, Kashyap ML: Recent advances in niacin and lipid metabolism. Curr Opin Lipidol 2013; 24: 239–245
42) Cashin-Hemphill L, Mack WJ, Pogoda JM, et al: Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA 1990; 264: 3013–3017
43) Huang Y, DiDonato JA, Levison BS, et al: An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 2014; 20: 193–203
44) Mocatta TJ, Pilbrow AP, Cameron VA, et al: Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol 2007; 49: 1993–2000
45) Meuwese MC, Stroes ES, Hazen SL, et al: Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 2007; 50: 159–165
46) Brevetti G, Schiano V, Laurenzano E, et al: Myeloperoxidase, but not C-reactive protein, predicts cardiovascular risk in peripheral arterial disease. Eur Heart J 2008; 29: 224–230
47) Gordon T, Castelli WP, Hjortland MC, et al: High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 1977; 62: 707–714
48) Rhoads GG, Bulbrandsen CL, Kagan A: Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men. N Engl J Med 1976; 294: 293–298
49) Jacobs DR Jr, Mebane IL, Bangdiwala SI, et al: High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am J Epidemiol 1990; 131: 32–47
50) Olsson AG, Schwartz GG, Szarek M, et al: High-density lipoprotein,
but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial. Eur Heart J 2005; 26: 890–896

51) Ray KK, Cannon CP, Cairns R, et al: Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol 2009; 29: 424–430

52) Ridker PM, Genest J, Boekholdt SM, et al: HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet 2010; 376: 333–339

53) Gotto AM Jr, Whitney E, Stein EA, et al: Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101: 477–484

54) Sacks FM, Moyé LA, Davis BR, et al: Relationship between plasma LDL concentration during treatment with pravastatin and recurrent coronary events in the Cholesterol and Recurrent Events Trial. Circulation 1998; 97: 1446–1452

55) Boekholdt SM, Arsenault BJ, Hovingh GK, et al: Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation 2013; 128: 1504–1512

56) Nicholls SJ, Tuzcu EM, Sipahi I, et al: Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007; 297: 499–508

57) Puri R, Libby P, Nissen SE, et al: Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from SATURAN. Eur Heart J Cardiovasc Imaging 2014; 15: 380–388

58) Ozaki Y, Tanaka A, Komukai K, et al: High-density lipoprotein cholesterol level is associated with fibrous cap thickness in acute coronary syndrome. Circ J 2013; 77: 2982–2989

59) Barter PJ, Rye KA: Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J Lipid Res 2012; 53: 1755–1766

60) Koizumi J, Mabuchi H, Yoshimura A, et al: Deficiency of serum cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–1238

61) Harder C, Lau P, Meng A, et al: Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 858–864

62) Boekholdt SM, Kuivenhoven JA, Wareham NJ, et al: Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and nutrition)-Norfolk population study. Circulation 2004; 110: 1418–1423

63) Barter PJ, Caulfield M, Eriksson M, et al: ILLUMINATE Investigators: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357: 2109–2122

64) Vergeer M, Bots ML, van Leuven SI, et al: Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation 2008; 118: 2515–2522

65) Nissen SE, Tardif JC, Nicholls SJ, et al: ILLUSTRATE Investigators: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007; 356: 1304–1316

66) Nicholls SJ, Tuzcu EM, Brennan DM, et al: Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 2008; 118: 2506–2514

67) Robinson JG: Dalceptrapib: a review of Phase II data. Expert Opin Investig Drugs 2010; 19: 795–805

68) Fayad ZA, Mani V, Woodward M, et al: dal-PLAQUE Investigators: Safety and efficacy of dalceptrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 2011; 378: 1547–1559

69) Schwartz GG, Olsson AG, Abt M, et al: dal-OUTCOMES Investigators: Effects of dalceptrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367: 2089–2099

70) Masson D: Anacetrapib, a cholesterol ester transfer protein (CETP) inhibitor for the treatment of atherosclerosis. Curr Opin Investig Drugs 2009;10: 980–987

71) Page MM, Hooper AJ, Burnett JR: Anacetrapib for the treatment of dyslipidaemia: the last bastion of the cholesteryl ester transfer protein inhibitors? Expert Opin Pharmacother 2016; 17: 275–281

72) Nicholls SJ: Evacetrapib. Curr Cardiol Rep 2012; 14: 245–250

73) Nicholls SJ, Brewer HB, Kastelein JJ, et al: Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA 2011; 306: 2099–2109

74) Kingwell BA, Chapman MJ: Future of high-density lipoprotein infusion therapies: potential for clinical management of vascular disease. Circulation 2013; 128: 1112–1121

75) Nissen SE, Tsunoda T, Tuzcu EM, et al: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003; 290: 2292–2300

76) Tardif JC, Grégoire J, L’Allier PL, et al: Effect of rHDL on Atherosclerosis-Safety and Efficacy (ERASE) Investigators: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007; 297: 1675–1682

77) Waksman R, Torguson R, Kent KM, et al: A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol 2010; 55: 2727–2735

78) Tardif JC, Ballantyne CM, Barter P, et al: Can HDL Infusions Significantly Quicken Atherosclerosis REgression (CHI-SQUARE) Investigators: Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J 2014; 35: 3277–3286
80) Bailey D, Jahagirdar R, Gordon A, et al: RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol 2010; 55: 2580–2589
81) Nicholls SJ, Gordon A, Johansson J, et al: Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Jpn Coron Assoc 2016; 22: 217–227
82) Nicholls SJ, Puri R, Wolski K, et al: Effect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am J Cardiovasc Drugs 2016; 16: 55–65