CONTINUITY OF FUNCTIONS BELONGING TO THE
FRACTIONAL ORDER SOBOLEV-GRAND LEBESGUE SPACES

E. Ostrovskya, L. Sirotab

a Corresponding Author. Department of Mathematics and computer science, Bar-Ilan University, 84105, Ramat Gan, Israel.
E-mail: galo@list.ru eugostrovsky@list.ru

b Department of Mathematics and computer science. Bar-Ilan University, 84105, Ramat Gan, Israel.
E-mail: sirota3@bezeqint.net

Abstract.

We extend in this article the classical Sobolev's inequalities for the module of continuity for the functions belonging to the integer order Sobolev's space on the fractional order Sobolev - Bilateral Grand Lebesgue spaces.

As a consequence, we deduce the fractional Orlicz - Sobolev imbedding theorems and investigate the rectangle module of continuity of non-Gaussian multiparameter random fields.

Key words and phrases: Sobolev, Aronszajn, Gagliardo or Slobodeckij spaces and inequalities, imbedding theorems, weight, upper and lower estimates, module of continuity, natural function, rectangle difference, distance and module of continuity, Garsia - Rodemich - Rumsey inequality, fundamental function, Bilateral Grand Lebesgue spaces, fractional order and norm, exactness, scaling method, dilation.

2000 Mathematics Subject Classification. Primary 37B30, 33K55; Secondary 34A34, 65M20, 42B25.

1 Notations. Statement of problem.

Let D be convex non-empty bounded closed domain with Lipschitz boundary in the whole space \mathbb{R}^d, $d = 1, 2, \ldots$, and let $f : D \to \mathbb{R}$ be measurable function. We assume further for simplicity that $D = [0, 1]^d$. We denote $|x| = (\sum_{i=1}^d x_i^2)^{1/2}$, $\alpha = \text{const} \in (0, 1]$,

\[|f|_p = |f|_{p,D} = \left(\int_D |f(x)|^p \, dx \right)^{1/p}, \quad |u(\cdot, \cdot)|_p = |u(\cdot, \cdot)|_{p,D^2} = \left(\int_D \int_D |u(x,y)|^p \, dxdy \right)^{1/p}, \quad p = \text{const} \geq 1, \]
\[
\omega(f, \delta) = \sup \{|f(x) - f(y)| : \ x, y \in D, |x - y| \leq \delta\}, \ \delta \in [0, \text{diam}(D)], \tag{1.0}
\]

\[
G_\alpha[f](x, y) = \frac{f(x) - f(y)}{|x - y|^{\alpha}}, \quad \nu(dx, dy) = \frac{dxdy}{|x - y|}, \tag{1.1}
\]

\[
|u(\cdot, \cdot)|_{p, \nu} = |u(\cdot, \cdot)|_{p, \nu, D^2} = \left[\int_D \int_D |u(x, y)|^p \nu(dx, dy)\right]^{1/p}, \tag{1.2}
\]

\[
||f||_{W(\alpha, p)} = |G_\alpha[f](\cdot, \cdot)|_{p, \nu, D^2}. \tag{1.3}
\]

The norm \(|| \cdot ||_{W(\alpha, p)} \), more precisely, semi-norm is said to be fractional Sobolev's norm or similar Aronszajn, Gagliardo or Slobodecki\j norm; see, e.g. [18].

If in the definition (1.3) instead the \(L_2(D^2) \) stands another norm \(|| \cdot ||_{V(D^2)} \), for instance, Lorentz, Marcinkiewicz or Grand Lebesgue, (we recall its definition further), we obtain correspondingly the definition of the fractional \(|| \cdot ||_{V(D^2)} \) norm.

The inequality

\[
|f(t) - f(s)| \leq 8 \cdot 4^{1/p} \cdot \left[\frac{\alpha + 1/p}{\alpha - 1/p}\right] \cdot |t - s|^{\alpha - 1/p} \cdot ||f||_{W(\alpha, p)}, \tag{1.4}
\]

which is true in the case \(d = 1 \) (the multidimensional case will be consider further), \(p > 1/\alpha \), is called fractional Sobolev, or Aronszajn, Gagliardo, Slobodecki\j inequality.

More precisely, the inequality (1.4) implies that the function \(f \) may be redefined on the set of measure zero as a continuous function for which (1.4) there holds.

Another look on the inequality (1.4): it may be construed as an imbedding theorem from the Sobolev fractional space into the space of (uniform) continuous functions on the set \(D \).

The proof of the our version of inequality (1.4) may be obtained immediately from an article [7], which based in turn on the famous Garsia - Rodemich - Rumsey inequality, see [6].

There are many generalizations of fractional Sobolev’s imbedding theorem: on the Sobolev - Orlicz’s spaces [1], p. 253-364, on the so-called integer Sobolev - Grand Lebesgue spaces [21], on the Lorentz and Marcinkiewicz spaces etc.

Our goal is to extend the Sobolev’s imbedding theorem from integer Sobolev Grand Lebesgue spaces on the fractional Sobolev Grand Lebesgue spaces.

We recall further the definition of these spaces.

The applications of fractional Sobolev and Sobolev-Grand Lebesgue spaces in the theory of Partial Differential Equations are described, e.g. in [15], [18], [25]; in the
Functional Analysis - in [1], [6], [10], [15], [17]; in the theory of Random Processes and Fields - in [6], [7], [8], [22]; see also reference therein.

We recall in the remainder part of this section briefly the definition of the so-called Grand Lebesgue spaces; more detail investigation of these spaces see in [5], [9], [11], [14], [19], [20]; see also reference therein.

Recently appear the so-called Grand Lebesgue Spaces \(GLS = G(\psi) = G(\psi; A, B), A, B = \text{const}, A \geq 1, A < B \leq \infty, \) spaces consisting on all the measurable functions \(f : X \to \mathbb{R} \) with finite norms

\[
\|f\|_{G(\psi)} \overset{def}{=} \sup_{p \in (A,B)} \left[\frac{|f|_p}{\psi(p)} \right].
\]

(1.6)

Here \(\psi(\cdot) \) is some continuous positive on the open interval \((A, B)\) function such that

\[
\inf_{p \in (A,B)} \psi(p) > 0, \quad \psi(p) = \infty, \quad p \notin (A, B).
\]

We will denote

\[
\text{supp}(\psi) \overset{def}{=} (A, B) = \{ p : \psi(p) < \infty, \}
\]

The set of all \(\psi \) functions with support \(\text{supp}(\psi) = (A, B) \) will be denoted by \(\Psi(A, B) \).

This spaces are rearrangement invariant, see [3], and are used, for example, in the theory of probability [11], [19], [20]; theory of Partial Differential Equations [5], [9]; functional analysis [5], [9], [14], [20]; theory of Fourier series, theory of martingales, mathematical statistics, theory of approximation etc.

Notice that in the case when \(\psi(\cdot) \in \Psi(A, \infty) \) and a function \(p \to p \cdot \log \psi(p) \) is convex, then the space \(G\psi \) coincides with some exponential Orlicz space.

Conversely, if \(B < \infty \), then the space \(G\psi(A, B) \) does not coincides with the classical rearrangement invariant spaces: Orlicz, Lorentz, Marcinkiewicz etc.

The fundamental function of these spaces \(\phi(G(\psi), \delta) = ||I_A||G(\psi), \text{mes}(A) = \delta, \delta > 0, \) where \(I_A \) denotes as ordinary the indicator function of the measurable set \(A, \) by the formulae

\[
\phi(G(\psi), \delta) = \sup_{p \in \text{supp}(\psi)} \left[\frac{\delta^{1/p}}{\psi(p)} \right].
\]

(1.7)

The fundamental function of arbitrary rearrangement invariant spaces plays very important role in functional analysis, theory of Fourier series and transform [3] as well as in our further narration.

Many examples of fundamental functions for some \(G\psi \) spaces are calculated in [19], [20].

Remark 1.1 If we introduce the discontinuous function

\[
\psi_{(r)}(p) = 1, \quad p = r; \quad \psi_{(r)}(p) = \infty, \quad p \neq r, \quad p, r \in (A, B)
\]

and define formally \(C/\infty = 0, \) \(C = \text{const} \in \mathbb{R}^1, \) then the norm in the space \(G(\psi_r) \) coincides with the \(L_r \) norm:
Thus, the Grand Lebesgue Spaces are direct generalization of the classical exponential Orlicz’s spaces and Lebesgue spaces L_r.

Remark 1.2 The function $\psi(\cdot)$ may be generated as follows. Let $\xi = \xi(x)$ be some measurable function: $\xi : X \to R$ such that $\exists (A, B) : 1 \leq A < B \leq \infty$, $\forall p \in (A, B) |\xi|_p < \infty$. Then we can choose

$$\psi(p) = \psi_\xi(p) = |\xi|_p.$$

Analogously let $\xi(t, \cdot) = \xi(t, x)$, $t \in T$, T is arbitrary set, be some family $F = \{\xi(t, \cdot)\}$ of the measurable functions: $\forall t \in T \xi(t, \cdot) : X \to R$ such that

$$\exists (A, B) : 1 \leq A < B \leq \infty, \sup_{t \in T} |\xi(t, \cdot)|_p < \infty.$$

Then we can choose

$$\psi(p) = \psi_F(p) = \sup_{t \in T} |\xi(t, \cdot)|_p.$$

The function $\psi_F(p)$ may be called as a natural function for the family F. This method was used in the probability theory, more exactly, in the theory of random fields, see [11], [19], chapters 3,4.

Remark 1.3 Note that the so-called exponential Orlicz spaces are particular cases of Grand Lebesgue spaces [11], [19], p. 34-37. In detail, let the $N-$ Young-Orlicz function has a view

$$N(u) = e^{\mu(u)}, \quad (1.8)$$

where the function $u \to \mu(u)$ is convex even twice differentiable function such that

$$\lim_{u \to \infty} \mu'(u) = \infty.$$

Introduce a new function

$$\psi_{\{N\}}(x) = \exp \left\{ \frac{[\log N(e^x)]^*}{x} \right\}, \quad (1.9)$$

where $g^*(\cdot)$ denotes the Young-Fenchel transform of the function $g :$

$$g^*(x) = \sup_y (xy - g(y)).$$

Conversely, the $N-$ function may be calculated up to equivalence through corresponding function $\psi(\cdot)$ as follows:

$$N(u) = e^{\tilde{\psi}^*(\log |u|)}, \quad |u| > 3; \quad N(u) = Cu^2, \quad |u| \leq 3; \quad \tilde{\psi}(p) = p \log \psi(p). \quad (1.10)$$

The Orlicz’s space $L(N)$ over our probabilistic space is equivalent up to sublinear norms equality with Grand Lebesgue space $G_{\psi_{\{N\}}}$.

\[\|f\|_{G(\psi)} = |f|_r. \]
For instance, if \(N(u) = N_2(u) := \exp(u^2/2) - 1 \), then \(\psi_{N_2}(p) \asymp \sqrt{p}, \ p \geq 1 \). The centered r.v. belonging to the Orlicz’s space \(L(N_2) \) are called subgaussian.

More generally, if \(N(u) = N_m(u) := \exp(u^m/m) - 1, \ m = \text{const} > 0 \), then \(\psi_{N_m}(p) \asymp p^{1/m}, \ p \geq 1 \).

Remark 1.4. The theory of probabilistic exponential Grand Lebesgue spaces or equally exponential Orlicz spaces gives a very convenient apparatus for investigation of the r.v. with exponential decreasing tails of distributions. Namely, the non-zero r.v. \(\eta \) belongs to the Orlicz space \(L(N) \), where \(N = \psi_\cdot, ||\eta||_L(N) \) in equality (1.8), if and only if

\[
P(\max(\eta, -\eta) > z) \leq \exp(-\mu(Cz)), \quad z > 1, \quad C = C(\cdot, ||\eta||_L(N)) \in (0, \infty).
\]

(Orlicz’s version).

Analogously may be written a Grand Lebesgue version of this inequality. In detail, if \(0 < ||\eta||_G \psi < \infty \), then

\[
P(\max(\eta, -\eta) > z) \leq 2 \exp\left(-\tilde{\psi}(\log[z/||\eta||_G \psi])\right), \quad z \geq ||\eta||_G \psi.
\]

Conversely, if

\[
P(\max(\eta, -\eta) > z) \leq 2 \exp\left(-\tilde{\psi}(\log[z/K])\right), \quad z \geq K,
\]

then \(||\eta||_G \psi \leq C(\psi) \cdot K, \ C(\psi) \in (0, \infty) \).

2 One dimensional result.

Let as before \(\alpha = \text{const} \in (0, 1] \); the case \(\alpha > 1 \) in this section is trivial. We introduce the \(\Psi \) function \(\zeta_\alpha(p) \) as follows:

\[
\zeta_\alpha(p) := ||f||W(\alpha, p), \ (A, B) := \text{supp} [\zeta_\alpha(\cdot)]
\]

and suppose \(1 \leq A < B \leq \infty \).

Denote \(A(\alpha) = \max(A, 1/\alpha) \) and suppose also

\[
A(\alpha) < B.
\]

Obviously, the restriction (2.1) is satisfied always in the case \(B = \infty \).

We define a new psi - function \(\psi_\alpha(p) \) as follows.

\[
\psi_\alpha(p) := \zeta_\alpha(p) \cdot 8 \cdot 4^{1/p} \cdot \frac{\alpha + 1/p}{\alpha - 1/p}, \quad p \in (A(\alpha), B)
\]

and \(\psi_\alpha(p) = \infty \) otherwise.

The fractional Sobolev - Grand Lebesgue norm \(||f||S(\alpha, \psi) \) for arbitrary function \(\psi \in \Psi \) of the function \(f : D \to R \) may be defined in accordance with first section up to multiplicative constant as follows: \(||f||S(\alpha, \psi) \overset{df}{=} \)}
so that the function \(\psi_\alpha(p) \) is the natural function for the function \(G_\alpha(x, y) \) relative the two dimensional measure \(\nu \).

Theorem 2.1. Let \(d = 1 \) and let the condition 2.1 be satisfied. Then

\[
\omega(f, \delta) \leq \frac{\delta^\alpha}{\phi(G_\psi \alpha, \delta)} \cdot \|f\|S(\alpha, \psi_\alpha), \quad \delta \in (0, \text{diam } D). \tag{2.4}
\]

Proof. We can and will suppose without loss of generality \(D = [0, 1] \) and \(\|f\|S(\alpha, \psi_\alpha) = 1 \). Let \(p \in (A(\alpha), B) \). It follows from the definition for \(\|f\|S(\alpha, \psi_\alpha) \) (2.3) that

\[
8 \cdot 4^{1/p} \cdot \left[\frac{\alpha + 1/p}{\alpha - 1/p} \right] \cdot \left(\int_D \int_D \frac{|f(x) - f(y)|^p \, dx \, dy}{|x - y|^{\alpha p + 1}} \right)^{1/p} \leq \psi_\alpha(p). \tag{2.5}
\]

The application of estimate (1.5) yields

\[
\omega(f, \delta) \leq \delta^{\alpha - 1/p} \psi_\alpha(p),
\]

or equally

\[
\frac{\omega(f, \delta)}{\delta^\alpha} \leq \frac{1}{\delta^{1/p} / \psi_\alpha(p)}.
\]

Since the value \(p \) is arbitrary in the interval \(p \in (A(\alpha), B) \), we conclude

\[
\frac{\omega(f, \delta)}{\delta^\alpha} \leq \inf_{p \in (A(\alpha), B)} \left[\frac{1}{\delta^{1/p} / \psi_\alpha(p)} \right] = \frac{1}{\phi(G_\psi \alpha, \delta)} = \frac{||f||S(\alpha, \psi_\alpha)}{\phi(G_\psi \alpha, \delta)}, \tag{2.6}
\]

Q.E.D.

Example 2.1. Suppose

\[
\psi_\alpha(p) \asymp \psi^{(a, b; A, B)}_\alpha(p) := (p - A)^{-a} (B - p)^{-b}, \quad p \in (A, B), \quad A \geq 1/\alpha, \quad a, b = \text{const } \in (0, \infty).
\]

The fundamental function for the spaces \(G^{(a, b; A, B)}_\psi \) is investigated in [20]. Take note only that as \(\delta \to 0^+ \)

\[
\phi(G^{(a, b; A, B)}_\psi, \delta) \asymp \delta^{1/B} |\log \delta|^{-b}, \quad 0 < \delta < 1/e.
\]

Therefore in the considered case

\[
\omega(f, \delta) \leq C(\alpha, a, b; A, B) \cdot \delta^{\alpha - 1/B} \cdot |\log \delta|^b \cdot ||f||(G^{(a, b; A, B)}_\psi), \quad 0 < \delta < 1/e.
\]
Example 2.2. Let now

\[\psi_\alpha(p) \asymp \psi_{[\beta]}(p) := p^\beta, \ \beta = \text{const} > 0, p > 1/\alpha. \]

We find analogously the example 2.1

\[\phi(G\psi_{[\beta]}, \delta) \asymp |\log \delta|^{-\beta}, \ \omega(f, \delta) \leq C(\alpha, \beta) \cdot |\log \delta|^{\beta} \cdot ||f||G\psi_{[\beta]}, \ \delta > 0, \frac{1}{e}. \]

Remark 2.1. Assume in addition to the condition of theorem 2.1 \(\alpha = 1 \). Recall that for arbitrary rearrangement invariant space \(X \)

\[\phi(X', \delta) = \frac{\delta}{\phi(X, \delta)}, \]

see [3], chapter 3; here \(X' \) denotes the associate space to the space \(X \).

The conclusion of theorem 2.1 in the considered case \(\alpha = 1 \) may be rewritten as follows:

\[\omega(f, \delta) \leq \phi((G\psi)'(\delta)) \cdot ||f||S(1, \psi_1), \ \delta \in (0, \text{diam } D). \] (2.7)

In general case \(\alpha \in (0, 1] \) we have

\[\omega(f, \delta) \leq \delta^{\alpha-1} \cdot \phi((G\psi_\alpha)'(\delta)) \cdot ||f||S(\alpha, \psi_\alpha), \ \delta \in (0, \text{diam } D). \] (2.8)

Remark 2.2. Instead the function \(\nu_\alpha(p) \) may be used arbitrary it majorant.

Remark 2.3. We discus the exactness of the assertion of theorem 2.1 further; now we proceed to the consideration of multidimensional case.

Remark 2.4. If we use in the capacity of the function \(\nu_\alpha(p) \) the discontinuous function \(\psi_{(\nu)}(p) \), we return to the inequality 1.5.

Remark 2.5. If the value \(\alpha \) in the assertion (2.4) of theorem 2.1 is \emph{variable} in some interval \(\alpha \in (\alpha_-, \alpha_+) \), then obviously

\[\omega(f, \delta) \leq \inf_{\alpha \in (\alpha_-, \alpha_+)} \left[\frac{\delta^\alpha}{\phi(G\psi_\alpha, \delta)} \cdot ||f||G\psi_\alpha \right], \ \delta \in (0, \text{diam } D). \] (2.9)

3 Multi-dimensional result.

The multidimensional case \(d = \dim D = 2, 3, \ldots \) is more complicated. Suppose for simplicity \(D = [0, 1]^d \). This imply that \(x \in D \Leftrightarrow x = \bar{x} = (x_1, x_2, \ldots, x_d), \ 0 \leq x_i \leq 1. \)

We define as in [22], [7] the \emph{rectangle difference} operator \(\Box[f](\bar{x}, \bar{y}) = \Box[f](x, y), \ x, y \in D, \ f : D \to R \) as follows.

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]

\[\Delta^{(i)}[f](x, y) := f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_d) - f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d), \]
with obvious modification when \(i = 1 \) or \(i = d \);

\[
\square[f](x, y) \overset{\text{def}}{=} \left\{ \otimes_{i=1}^{d} \Delta^{(i)} \right\} [f](x, y).
\]

(3.1)

For instance, if \(d = 2 \), then

\[
\square[f](x, y) = f(y_1, y_2) - f(x_1, y_2) - f(y_1, x_2) + f(x_1, x_2).
\]

If the function \(f : [0,1]^d \to R \) is \(d \) times continuous differentiable, then

\[
\square[f](\vec{x}, \vec{y}) = \int_{x_1}^{y_1} \int_{x_2}^{y_2} \ldots \int_{x_d}^{y_d} \frac{\partial^d f}{\partial x_1 \partial x_2 \ldots \partial x_d} \, dx_1 dx_2 \ldots dx_d.
\]

The rectangle module of continuity \(\Omega(f, \vec{\delta}) = \Omega(f, \delta) \) for the (continuous a.e.) function \(f \) and vector \(\vec{\delta} = \delta = (\delta_1, \delta_2, \ldots, \delta_d) \in [0,1]^d \) may be defined as well as ordinary module of continuity \(\omega(f, \delta) \) as follows:

\[
\Omega(f, \vec{\delta}) \overset{\text{def}}{=} \sup \{|\square[f](x, y)|, (x, y) : |x_i - y_i| \leq \delta_i, \ i = 1, 2, \ldots, d\}.
\]

Let \(\vec{\alpha} = \{\alpha_k\}, \ \alpha_k \in (0,1], \ k = 1, 2, \ldots, d; \ p > p_0 \overset{\text{def}}{=} \max_k (1/\alpha_k), \ M = \text{card} \{i, \alpha_i = \min_k \alpha_k\}, \delta_i = |x_i - y_i|, \vec{\delta} = \{\delta_i\}, i = 1, 2, \ldots, d; \)

\[
\vec{x}^{\vec{\alpha}} := \prod_{i=1}^{d} x_i^{\alpha_i}, \vec{\delta}^{\pm 1/p} := \left[\prod_{i=1}^{d} \delta_i \right]^{\pm 1/p},
\]

\[
G_{\vec{\alpha}}[f](x, y) = \frac{\square[f](x, y)}{|(\vec{x} - \vec{y})^{\vec{\alpha}}|}, \ \nu(dx, dy) = \frac{dxdy}{|x - y|},
\]

\[
||f||W(\vec{\alpha}, p) = ||G_{\vec{\alpha}}[f](\cdot, \cdot)||_{p,v,D^2}.
\]

The norm \(|| \cdot ||W(\vec{\alpha}, p) \), more precisely, semi-norm is said to be multidimensional fractional Sobolev’s norm or similar Aronszajn, Gagliardo or Slobodeckij norm.

Define also as well as in the second section

\[
\zeta_{\vec{\alpha}}(p) := ||f||W(\vec{\alpha}, p), \ (A, B) := \text{supp} \ [\zeta_{\vec{\alpha}}(\cdot)]
\]

and suppose \(1 \leq A < B \leq \infty \).

Denote \(A(\vec{\alpha}) = \max(A, p_0) \) and suppose also \(A(\vec{\alpha}) < B \).

We define a new psi - function \(\psi_{\alpha}(p) \) as follows.

\[
\psi_{\alpha}(p) := \zeta_{\alpha}(p) \cdot 8^d \cdot \frac{4^d}{d/p} \cdot \prod_{k=1}^{d} \frac{\alpha_k + 1/p}{\alpha_k - 1/p}, \ p \in (A(\vec{\alpha}), B).
\]

Theorem 3.1. Let \(d = 1 \) and let all our condition be satisfied. Then then there exists a continuous modification on the set of measure zero of the function \(f \), which we will denote again \(f \), for which

\[
\Omega(f, \vec{\delta}) \leq \frac{\vec{\delta}^{\vec{\alpha}}}{\phi(G_{\vec{\alpha}}, \prod_{k=1}^{d} \delta_k)} \cdot ||f||G_{\vec{\alpha}}.
\]
Proof is similar to one in theorem 2.1. We can take as before $|f|G_\psi\alpha = 1$. The multidimensional Garsia - Rodemich - Rumsey inequality was done by Konstantin Ral’chenko [22] (2007) at $d = 2$ and Yaozhong Hu and Khoa Le [7] (2012) in general case. Namely, let $\Phi = \Phi(y)$ be Young-Orlicz continuous even strictly increasing on the right-hand semi-axis function such that

$$\Phi(0) = 0, \lim_{y \to \infty} \Phi(y) = \infty.$$

Let also $p_k = p_k(u), u \in [0, 1], k = 1, 2, \ldots, d$ be continuous strictly increasing functions. We denote

$$B := \int \int \ldots \int_{[0,1]^d} \Phi \left[\frac{|\Box f(x, y)|}{\prod_{k=1}^{d} p_k(|x_k - y_k|)} \right] dx dy$$

and assume $B < \infty$. Then

$$|\Omega(f, \vec{\delta})| \leq 8^d \int_0^{\delta_1} \int_0^{\delta_2} \ldots \int_0^{\delta_d} \Phi^{-1} \left[\frac{4^d B}{\prod_{j=1}^{d} u_j^2} \right] dp_1(u_1) dp_2(u_2) \ldots dp_d(u_d).$$

We refer further using for us the particular case of this inequality. It asserts that for some modification of the multidimensional version of the function f

$$|\Box f(x, y)| \leq 8^d 4^{d/p} \prod_{i=1}^{d} \frac{\alpha_i + 1/p}{\alpha_i - 1/p} \cdot \delta^{\vec{\alpha}} \cdot \delta^{-1/p} \times$$

$$\left[\int \int \ldots \int_{[0,1]^d} \frac{|\Box f(x, y)|^p}{\prod_{k=1}^{d} |x_k - y_k|^\alpha p + 1} dx dy \right]^{1/p} < \infty; \quad (3.2)$$

or equally

$$\Omega(f, \vec{\delta}) \leq \delta^{\vec{\alpha}} \cdot \delta^{-1/p} \cdot \psi\alpha(p), \quad (3.3)$$

whence

$$\frac{\Omega(f, \vec{\delta})}{\delta^{\vec{\alpha}}} \leq \frac{1}{\delta^{1/p} / \psi\alpha(p)} = \frac{1}{[\prod_{k=1}^{d} \delta_k^{1/p}] / \psi\alpha(p)}. \quad (3.4)$$

Since the value p is arbitrary in the interval $p \in (A(\vec{\alpha}), B)$, we conclude

$$\frac{\Omega(f, \vec{\delta})}{\delta^{\vec{\alpha}}} \leq \inf_{p \in (A(\vec{\alpha}), B)} \frac{1}{[\prod_{k=1}^{d} \delta_k^{1/p}] / \psi\alpha(p)} =$$

$$\frac{1}{\phi(G(\psi\alpha), [\prod_{k=1}^{d} \delta_k])} = \frac{\|f\| G_{\psi\alpha}}{\phi(G(\psi\alpha), [\prod_{k=1}^{d} \delta_k])},$$

Q.E.D.
4 Application to the theory of random fields.

Let \(\xi = \xi(x) = \xi(x_1, x_2, \ldots, x_d) = \xi(\vec{x}), \ x_i \in [0, 1] \) be separable random field (r.f), not necessary to be Gaussian. The correspondent probability and expectation we will denote by \(P, E \), and the probabilistic Lebesgue-Riesz \(L_p \) norm of a random variable (r.v) \(\eta \) we will denote as follows:

\[
|\eta|_p \overset{def}{=} \left[E[|\eta|^p] \right]^{1/p}.
\]

We find in this section some sufficient condition for continuity of \(\xi(x) \) and estimates for it rectangle modulus of continuity \(\Omega(f, \vec{\delta}) \). We apply in this section the results obtained before. Recall that the first publication about fractional Sobolev’s inequalities [6] was devoted in particular to the such a problem; see also articles [7], [22].

Let us introduce the following natural \(\Psi \) function: \(\theta_{\vec{\alpha}}(p) = \)

\[
\theta_{\vec{\alpha}}(p) = 8^d \cdot 4^{d/p} \cdot \prod_{k=1}^{d} \left[\frac{\alpha_k + 1/p}{\alpha_k - 1/p} \right] \cdot \left[\int_0^1 \int_0^1 E|G_{\vec{\alpha}}[\xi](x,y)|^p \nu(dx, dy) \right]^{1/p}, \quad (4.1)
\]

\(\alpha = \vec{\alpha} = \{\alpha_1, \alpha_2, \ldots, \alpha_d\}, \ \alpha_k = \text{const} > 0; \)

and suppose the function \(\theta_{\vec{\alpha}}(p) \) has non-trivial support such that

\[
A = \inf \text{supp} \theta_{\vec{\alpha}}(\cdot) \geq 1/ \min_k \alpha_k, \quad B = \sup \text{supp} \theta_{\vec{\alpha}} \in (A, \infty].
\]

Theorem 4.1.

\[
|\Omega[\xi], \vec{\delta}|_A \leq \frac{\vec{\delta}^{\vec{\alpha}}}{\phi(G_{\vec{\alpha}}; \prod_{k=1}^d \delta_k)}.
\]

Proof. We use the inequality (3.2):

\[
\square[\xi](x, y) \leq 8^d \cdot 4^{d/p} \prod_{i=1}^{d} \left[\frac{\alpha_i + 1/p}{\alpha_i - 1/p} \right] \cdot \vec{\delta}^{\vec{\alpha}} \cdot \vec{\delta}^{-1/p} \times \left[\int \int \cdots \int_{[0,1]^d} \frac{|\square[\xi](x, y)|^p}{\prod_{k=1}^d |x_k - y_k|^{\alpha_k p+1}} dxdy \right]^{1/p}, \quad (4.3)
\]

or equally

\[
|\square[\xi](x, y)|^p \leq 8^d p \cdot 4^{d/p} \prod_{i=1}^{d} \left[\frac{\alpha_i + 1/p}{\alpha_i - 1/p} \right]^p \cdot \vec{\delta}^{\vec{\alpha} p} \cdot \vec{\delta}^{-1/p} \times \left[\int \int \cdots \int_{[0,1]^d} \frac{|\square[\xi](x, y)|^p}{\prod_{k=1}^d |x_k - y_k|^{\alpha_k p+1}} dxdy \right]. \quad (4.4)
\]

We get taking expectation:
\[|\Box[\xi], \bar{\delta}|_p \leq \bar{\delta}^{\alpha} \cdot \bar{\delta}^{-1/p} \cdot \theta_\alpha(p). \]

We intend to take the infimum of bide-side inequalities (4.5) over \(p \in (A, B) \). Note that

\[
\inf_{p \in (A, B)} |\Box[\xi], \bar{\delta}|_p = |\Box[\xi], \bar{\delta}|_A
\]

(Lyapunov’s inequality) and

\[
\inf_{p \in (A, B)} \bar{\delta}^{\alpha} \cdot \bar{\delta}^{-1/p} \cdot \theta_\alpha(p) = \bar{\delta}^{\alpha} \cdot \frac{1}{\sup_{p \in (A, B)} \left(\prod_{k=1}^d \delta_k \right)^{1/p} \theta_\alpha(p)} = \frac{\bar{\delta}^{\alpha}}{\phi(G \theta_\alpha, \prod_{k=1}^d \delta_k)}. \tag{4.6}
\]

Q.E.D.

Remark 4.1. We can obtain the exponential bounds for the tail of distribution of r.v. \(\Omega[\xi], \bar{\delta} \) as follows. Let us define the so-called *truncated* fundamental function

\[
\phi_q(G \psi, \delta) = \sup_{p \in (q, B)} \frac{\delta^{1/p}}{\psi(p)}, \quad A < q < B.
\]

Denote also

\[
\lambda(q, \delta) = \frac{1}{\phi_q(G \theta_\alpha, \delta)}.
\]

It follows from the proposition of theorem 4.1 that

\[
\frac{\Omega[\xi], (\bar{\delta})}{\bar{\delta}^{\alpha}} \leq \lambda(q, \prod_k \delta_k),
\]

or equally

\[
\left| \frac{\Omega[\xi], (\bar{\delta})}{\bar{\delta}^{\alpha}} \right| G \lambda(\cdot, \prod_k \delta_k) \leq 1.
\]

It remains to use the conclusion of remark 1.4.

Theorem 4.2. Suppose that for some finite positive constants \(K, \alpha, \{\beta_k\}, k = 1, 2, \ldots, d \)

\[
\mathbb{E}|\Box[\xi](x, y)|^\alpha \leq K \cdot \prod_{k=1}^d |x_k - y_k|^{1+\beta_k}. \tag{4.7}
\]

Then there exists a non-negative random variable \(\tau \) with finite moment of order \(\alpha : \mathbb{E} \tau^\alpha \leq 1 \) such that

\[
\Omega[\xi](\bar{\delta}) \leq C(\alpha, \bar{\delta}, d) \cdot \tau \cdot K^{1/\alpha} \cdot \prod_{k=1}^d \left[\delta_k^{\beta_k/\alpha} \left| \log \delta_k \right|^{1/\alpha} \right], \quad 0 < \delta_e \leq 1/e. \tag{4.8}
\]

Proof. We can assume \(K = 1 \) and use the multidimensional Garsia-Rodemich-Rumsey inequality, in which we choose
\[\Phi(x) = |x|^\alpha, \ p_k(x) = |x|^{\gamma_k}, \ 2/\alpha < \gamma_k < (2 + \beta_k)/\alpha, \ \gamma_k = (2 + \beta_k)/\alpha - \epsilon_k. \quad (4.9) \]

Let us introduce the following random variable (r.v.)

\[B = \int \int \cdots \int_{[0,1]^{2d}} \left(\frac{|\nabla \xi(x,y)|}{\prod_{k=1}^d |x_k - y_k|^{\gamma_k}} \right)^{\alpha} \, dx \, dy. \quad (4.10) \]

We have using polar coordinates:

\[\mathbb{E}B \leq \int \int \cdots \int_{[0,1]^{2d}} \frac{\prod_{k=1}^d |x_k - y_k|^{1+\beta_k}}{\prod_{k=1}^d |x_k - y_k|^{2+\beta_k-\gamma_k}} \, dx \, dy \leq \]

\[C_2(\alpha, \bar{\beta}, d) \prod_{k=1}^d \int_0^{\sqrt{d}} r_k^{-1+\alpha \epsilon_k} \, dr_k = C_3(\alpha, \bar{\beta}, d) \prod_{k=1}^d (1/\epsilon_k). \quad (4.11) \]

Therefore the r.v. \(B \) may be represented as a product

\[B = C_3(\alpha, \bar{\beta}, d) \tau^{1/\alpha} \prod_{k=1}^d (1/\epsilon_k), \quad (4.12) \]

where \(\mathbb{E}\tau^{\alpha} \leq 1 \).

We get substituting into the multidimensional Garsia-Rodemich-Rumsey inequality

\[|\nabla \xi(\bar{\delta})| \leq C_4(\alpha, \bar{\beta}, d) \int_{\delta_1}^{\delta_2} \int_{\delta_2}^{\delta_3} \cdots \int_{\delta_{d-1}}^{\delta_d} \left(\frac{B}{\prod_{k=1}^d u_k^2} \right)^{1/\alpha} \prod_{k=1}^d \gamma_k u_k^{\gamma_k-1} \, du_k = \]

\[C_5(\alpha, \bar{\beta}, d) K^{1/\alpha} \tau \prod_{k=1}^d \delta_k^{\beta_k/\alpha} \prod_{k=1}^d \left[\epsilon_k^{1/\alpha} \delta_k^{-\epsilon_k} \right]. \quad (4.13) \]

Choosing \(\epsilon_k = C_6(\alpha, \beta_k, k)/|\log \delta_k| \), we arrive to the assertion of theorem 4.2.

Remark 4.2. Let us show the exactness of assertion of theorem 4.2. It is sufficient to consider simple example. Let \(d = 1 \) and let \(\xi(t) = w(t) \), \(t \in [0,1] \) be ordinary Brownian motion. We can choose \(\alpha = \alpha(\Delta) := 2 + 2\Delta, \ \beta = \beta(\Delta) := \Delta, \Delta = \text{const} \geq 1 \). Indeed:

\[\mathbb{E}|w(t) - w(s)|^{2+2\Delta} = C(\Delta) |t - s|^{1+\Delta}, \ s, t \in [0,1]; \]

Note that

\[\lim_{\Delta \to \infty} \frac{\beta(\Delta)}{\alpha(\Delta)} = 1/2. \]

But it is well known that

\[\lim_{\delta \to 0^+} \frac{\omega(w, \delta)}{\delta^{1/2} |\log \delta|^{1/2}} > 0 \]

almost everywhere.

12
Obtained in this section results specify and generalize ones in the articles [6], [7], [22].

Another approach to the problem of (ordinary) continuity of random fields based on the so-called generic chaining method and entropy technique with described applications see in [2], [4], [11], [13], [19], [28], [29] etc.

5 Concluding remarks.

A. Exactness of our estimations: one dimensional case.

Note that at $\alpha = d$ and following $\alpha = d = 1$ our estimation in the second section and the integer order results from the article [21] coincides up to multiplicative constants. But it is proved in [21] that the integer order estimates are asymptotically exact.

B. Exactness of our estimations: multidimensional case.

Let us prove that the exponents $\tilde{\alpha} - 1/p$ in (3.2) - (3.3) are unimprovable. Recall that $p > \max_k (1/\alpha_k)$. As before, $\psi_\alpha(\cdot) = \psi(p)(\cdot)$.

Namely, let us denote in the one-dimensional case $d = 1$

$$V_\alpha(f, \delta) = \lvert \log \omega(f, \delta) \rvert : \log \left[\frac{\delta^\alpha}{\phi(G\psi(p), \delta)} \cdot \lVert f \rVert G\psi(p) \right],$$

(5.1)

$$V_\alpha = \inf_{f \in G\psi(p), \delta \neq \text{const}} \lim_{\delta \to 0+} V_\alpha(f, \delta).$$

(5.2)

It follows from theorem 2.1 that $V_\alpha \geq 1$; let us prove the opposite inequality. Consider the following example (more precisely, the family of examples):

$$f_{\Delta, \alpha}(x) = x^{\alpha - 1/p + \Delta}, \quad \Delta = \text{const} \in (0, 1 - \alpha + 1/p).$$

(5.3)

Obviously,

$$\omega(f_{\Delta, \alpha}, \delta) = \delta^{\alpha - 1/p + \Delta}.$$

Further, it is no hard to compute using polar coordinates: as $\delta \to 0+$

$$\frac{\delta^\alpha}{\phi(G\psi(p), \delta)} \cdot \lVert f_{\Delta, \alpha} \rVert G\psi(p) \sim C(\alpha, p, \Delta) \delta^{\alpha - 1/p}.$$

Since the value Δ is arbitrary, we conclude $V_\alpha \leq 1$.

The multidimensional example may be constructed as a factorable function of a view

$$g_{\Delta, \vec{\alpha}}(\vec{x}) = \prod_{k=1}^{d} f_{\Delta, \alpha_k}(x_k).$$

(5.4)

C. Simplification of our multidimensional estimate.

Let us consider in this paragraph the following important coefficient:
\[L = \prod_{k=1}^{d} \frac{\alpha_k + 1/p}{\alpha_k - 1/p}, \quad p > 1/\alpha_0, \quad \alpha_0 := \min_k \alpha_k, \]

meaning to extract the main factor as \(p \to 1/\alpha_0 \).

We have:
\[
L = \prod_{k: \alpha_k > \alpha_0} \frac{\alpha_k + 1/p}{\alpha_k - 1/p} \times \prod_{k: \alpha_k = \alpha_0} \frac{\alpha_k + 1/p}{\alpha_k - 1/p} \leq \prod_{k: \alpha_k > \alpha_0} \frac{\alpha_k + \alpha_0}{\alpha_k - \alpha_0} \times \left\{ \frac{\alpha_0 + 1/p}{\alpha_0 - 1/p} \right\}^M.
\]

D. General rectangle distance.

1. Let \(X_j = \{x_j\}, j = 1, 2, \ldots, d \) be arbitrary sets and \(f : Z = \otimes_{j=1}^{d} X_j \to R \) be a numerical function. Define the following function
\[
\rho_f(x, y) = |\Box f(x, y)|, \quad x, y \in Z.
\]

Note the following properties of the function \(\rho_f(x, y) \).

(a) \(\rho_f(x, y) \geq 0; \exists j = 1, 2, \ldots, d \) \(x_j = y_j \Rightarrow \rho_f(x, y) = 0 \).

(non-negativity);

(b) \(\rho_f(x, y) = \rho_f(y, x) \).

(symmetry);

(c) \(\rho_f(x, z) \leq \rho_f(x, y) + \rho_f(y, z), \quad x, y, z \in Z, \)

(rectangle inequality).

Definition of a rectangle distance.

Arbitrary numerical function of 2d variables \(\rho(x, y), \quad x, y \in Z \) which satisfies the properties (a,b,c) is said to be a rectangle distance.

Example. Let \(\xi = \xi(x), \quad x \in Z \) be a random field with condition
\[
\exists q \in [1, \infty], \quad \sup_{x \in Z} [E|\xi(x)|^q]^{1/q} < \infty.
\]

The function
\[
\rho^{(\xi, q)}(x, y) = \{E|\Box \xi(x, y)|^q\}^{1/q}
\]

is bounded natural rectangle distance generated by r.f. \(\xi = \xi(x) \), regarded before.

Obviously, instead the classical \(L_q \) norm may be used arbitrary rearrangement norm, for instance, Orlicz, Grand Lebesgue, Lorentz or Marcinkiewicz norm etc.

E. Scaling method.
We intend to prove here the exactness of inequality (1.5) by means of the so-called scaling method, see [26], [27]. Indeed, we can extrapolate the function f in (1.5) as continuous function in the closed interval $[0,2]$ with support $[0,2]$ such that on the set $[1,2]$ f is linear, $f(2) = 0$. For such a function (1.5) also holds.

Introduce the dilation operator $T_\lambda[f] = f(\lambda x)$, $\lambda > 0$. Consider the following strengthening of (1.5) for any continuous function with compact support belonging to the space $C^{(0)}_{\alpha-1/p}$, where by definition the space $C^{(0)}_{\alpha}$, $\beta \in (0,1]$ consists on all (continuous) function with finite semi-norm

$$
||f||_{C^{(0)}_{\beta}} = \sup_{\delta > 0} \frac{\omega(f, \delta)}{\delta^\beta}
$$

$$
\omega(f, \delta) \leq 8 \cdot 4^{1/p} \cdot \left[\frac{\alpha + 1/p}{\alpha - 1/p} \right] \cdot \delta^{\alpha - 1/p} \cdot \gamma(\delta) \cdot \left[\int_0^\infty \int_0^\infty \frac{|f(x) - f(y)|^p \, dx \, dy}{|x - y|^{\alpha p + 1}} \right]^{1/p} =: \delta^{\alpha - 1/p} \cdot \gamma(\delta) ||f||_{U(\alpha,p)},
$$

where $\lim_{\delta \to 0^+} \gamma(\delta) = 0$.

Applying (5.5) for the non-constant function $T_\lambda[f]$, we obtain after simple calculations:

$$
||T_\lambda f||^p_{U(\alpha,p)} = \int_0^\infty \int_0^\infty \frac{|f(\lambda x) - f(\lambda y)|^p \, dx \, dy}{|x - y|^{\alpha p + 1}} = \lambda^{-2} \int_0^\infty \int_0^\infty \frac{|f(x) - f(y)|^p \, dx \, dy}{|x/\lambda - y/\lambda|^{\alpha p + 1}} = \lambda^{-1+\alpha p} \int_0^\infty \int_0^\infty \frac{|f(x) - f(y)|^p \, dx \, dy}{|x - y|^{\alpha p + 1}} = \lambda^{-1+\alpha p} ||f||^p_{U(\alpha,p)},
$$

$$
||T_\lambda f||_{U(\alpha,p)} = \lambda^{\alpha - 1/p} ||f||_{U(\alpha,p)};
$$

$$
\frac{\omega(f, \lambda \delta)}{(\lambda \delta)^{\alpha - 1/p}} \leq \gamma(\delta) ||f||_{U(\alpha,p)}.
$$

We get taking supremum over λ:

$$
||f||_{C^{(0)}_{\alpha-1/p}} \leq \gamma(\delta) ||f||_{U(\alpha,p)},
$$

which is not true as $\delta \to 0^+$.

F. General Orlicz approach.

Let $\Phi = \Phi(u)$ be again the Young-Orlicz function. We will denote the Orlicz norm by means of the function Φ of a r.v. κ defined on our probabilistic space as $|||\kappa|||L(\Phi)$.

We introduce the natural rectangle distance $\rho_\Phi(x,y)$ as follows:

$$
\rho_\Phi(x,y) := |||\Box[\xi](x,y)|, x, y \in D = [0,1]^d,
$$

so that for the r.v.
\[Y = \int_D \int_D \Phi \left(\frac{\square [\xi](x, y)}{\rho_{\Phi}(x, y)} \right) \, dx \, dy \]

we have

\[\mathbb{E} Y = \int_D \int_D \mathbb{E} \Phi \left(\frac{\square [\xi](x, y)}{\rho_{\Phi}(x, y)} \right) \, dx \, dy \leq 1, \quad (5.8) \]

since \(\int_D \int_D \, dx \, dy = 1 \).

Let also \(\rho^{(\Phi)}(x-y) \) be translation invariant strictly increasing continuous distance majored \(\rho_{\Phi}(x, y) : \)

\[\rho_{\Phi}(x, y) \leq \rho^{(\Phi)}(x - y). \]

We denote the particular distances

\[p_k(|y_k - x_k|) = \rho^{(\Phi)}(1, 1, \ldots, 1, |x_k - y_k|, 1, \ldots, 1). \]

It follows immediately from the multidimensional version of Garsia-Rodemich-Rumsey inequality that

\[\Omega[\xi](\vec{\delta}) \leq 8^d \int_0^{\delta_1} \int_0^{\delta_2} \ldots \int_0^{\delta_d} \Phi^{-1} \left(\frac{4^d \mathbb{E} Y}{\prod_{k=1}^d u_k^2} \right) \prod_{k=1}^d dp_k(u_k). \quad (5.9) \]

Of course, the inequality (5.9) is pithy if the integral the right-hand side convergent; then the r.f. \(\xi(\cdot) \) is continuous with probability one.

The Gaussian (more precisely, subgaussian) case considered in [6], [7], [22] may be obtained by choosing \(\Phi(z) = \exp(z^2/2) - 1 \). It may be considered easily the example when \(\Phi(z) = \exp(|z|^m/m) - 1, \ m = \text{const} > 0 \).

G. Fractional Orlicz - Sobolev inequalities.

Let \(f : D = [0, 1]^d \rightarrow \mathbb{R} \) be (measurable) function. We define the following natural \(\Psi \) function depending on the vector positive parameter \(\vec{\alpha} : \)

\[\tau_{\vec{\alpha}}(p) = ||G_{\vec{\alpha}}[f]||_{p, p^2, \nu}, \quad p > 1/\min(\alpha_k). \quad (5.10) \]

It will be presumed that the function \(\tau_{\vec{\alpha}}(p) \) there exists:

\[\text{supp} \tau_{\vec{\alpha}}(\cdot) = (A, \infty), \ A > 1/\min(\alpha_k). \]

We can construct the following exponential \(N = N_{\vec{\alpha}} \) Young-Orlicz function as in remark 1.3:

\[N_{\vec{\alpha}}(u) = e^{[p^2 \log \tau_{\vec{\alpha}}(p)]^{\frac{1}{p^2}}} (\log |u|), \ |u| > 3. \quad (5.11) \]

We offer in this subsection a multidimensional (rectangle) version of fractional Orlicz-Sobolev inequality for the exponential Orlicz’s space \(L(N_{\vec{\alpha}}(\cdot)) \). Note that the integer ordinary (interval) Orlicz-Sobolev inequality for the arbitrary Orlicz’s space is considered, e.g. in [1], chapter 11; [23], chapter 9.

We infer on the basis of theorem 3.1 and remark 1.3:

Proposition 5.1.
\[\Omega[f](\tilde{\delta}) \leq C(\tilde{\alpha}, d) \frac{\tilde{\delta}^{\tilde{\alpha}} \cdot ||f||L(N_{\tilde{\alpha}}(\cdot))}{\phi(G_{\tilde{\tau}_{\alpha}}, \prod_{k=1}^{d} \delta_k)}. \]

(5.12)

As a slight strengthening:

Proposition 5.2.

\[\Omega[f](\tilde{\delta}) \leq \inf_{\tilde{\alpha}} \left[C(\tilde{\alpha}, d) \frac{\tilde{\delta}^{\tilde{\alpha}} \cdot ||f||L(N_{\tilde{\alpha}}(\cdot))}{\phi(G_{\tilde{\tau}_{\alpha}}, \prod_{k=1}^{d} \delta_k)} \right]. \]

(5.13)

Note in addition that the fundamental function \(\phi(L(\Phi), \delta) \) for arbitrary probabilistic Orlicz's spaces \(L(\Phi) \) is calculated, e.g. in the classical book of Krasnoselsky M.A., Rutizky Ya.B. [12], chapter 2, section 9:

\[\phi(L(\Phi), \delta) = \delta \cdot \Phi^{-1}(1/\delta). \]

(5.14)

See also more modern books [23], [24].

Acknowledgements. The authors would very like to thank prof. S.V. Astashkin, M.M.Milman, and L.Maligranda for sending of Yours remarkable papers and several useful suggestions.

References

[1] **Adams R.A. Sobolev Spaces.** Academic Press, (1978), New York, San Francisco, London.

[2] **Bednorz W.** (2006). *A theorem on Majorizing Measures.* Ann. Probab., 34, 1771-1781. MR1825156.

[3] **Bennett C. and Sharpley R.** *Interpolation of operators.* Orlando, Academic Press Inc.,1988.

[4] **Fernique X.** (1975). *Regularite des trajectoires des function aleatoires gaussiennes.* Ecole de Probablite de Saint-Flour, IV - 1974, Lecture Notes in Mathematic. 480, 1 - 96, Springer Verlag, Berlin.

[5] **Fiorenza A., and Karadzhov G.E.** *Grand and small Lebesgue spaces and their analogs.* Consiglio Nationale Delle Ricerche, Instituto per le Applicazioni del Calcolo Mauro Picone, Sezione di Napoli, Rapporto tecnico n. 272/03, (2005).

[6] **Garsia, A. M.; Rodemich, E.; and Rumsey, H., Jr.** *A real variable lemma and the continuity of paths of some Gaussian processes.* Indiana Univ. Math. J. 20 (1970/1971), 565-578.
[7] Yaozhong Hu and Khoa Le. *A multiparameter Garsia-Rodemich-Rumsey inequality and some applications.* arXiv:1211.6809v1 [math.PR] 29 Nov 2012

[8] Yuzuru Inahama. *Large deviation principle for certain spatially lifted Gaussian rough path.* arXiv:1212.1249v1 [math.PR] 6 Dec 2012

[9] Iwaniec T., P. Koskela P., and Onninen J. *Mapping of finite distortion: Monotonicity and Continuity.* Invent. Math. 144 (2001), 507 - 531.

[10] Kaminska A. and Maligranda L. *On Lorentz spaces* $\Gamma_{p,w}$, Israel J. Math. 140 (2004), 285-318. MR2054849 (2005c:46032)

[11] Kozachenko Yu. V., Ostrovsky E.I. (1985). *The Banach Spaces of random Variables of subgaussian type.* Theory of Probab. and Math. Stat. (in Russian). Kiev, KSU, 32, 43 - 57.

[12] Krasnosel’sky M.A., Rutizky Ya.B. *Convex function and Orlicz spaces.* GIFML, Moskow, 1958 (in Russian).

[13] Ledoux M., Talagrand M. (1991) *Probability in Banach Spaces.* Springer, Berlin, MR 1102015.

[14] Liflyand E., Ostrovsky E., Sirota L. *Structural Properties of Bilateral Grand Lebesgue Spaces.* Turk. J. Math.; 34 (2010), 207-219.

[15] Lieb E., Loss M. *Analysis.* Providence, Rhode Island, 1997.

[16] Martin J. and Milman M.M. *Modes of Convergence: Interpolation Methods.* Journal of Approximation Theory. 111, (2001), 91-127.

[17] Milman M.M. (1978). *Some new function spaces and their tensor products.* Bulletin of the Australian Mathematical Society, 19, pp 147-149 doi:10.1017/S0004972700008583

[18] Nezzaa E.D., Palatuccia G., Valdinocia E. *Hitchhikers guide to the fractional Sobolev spaces.* arXiv:1104.4345v3 [math.FA] 19 Nov 2011

[19] Ostrovsky E.I. (1999). *Exponential estimations for random Fields and its applications (in Russian).* Moscow - Obninsk, OINPE.

[20] Ostrovsky E. and Sirota L. *Moment Banach spaces: theory and applications.* HIAT Journal of Science and Engineering, C, Volume 4, Issues 1 - 2, pp. 233 - 262, (2007).

[21] Ostrovsky E. and Sirota L. *Module of continuity for the functions belonging to the Sobolev-Grand Lebesgue Spaces.* arXiv:1006.4177v1 [math.FA] 21 Jun 2010

[22] Ral’chenko, K. V. *The two-parameter Garsia-Rodemich-Rumsey inequality and its application to fractional Brownian fields.* Theory Probab. Math. Statist. No. 75 (2007), 167-178.
[23] Rao M.M., Ren Z.D. *Theory of Orlicz Spaces*. Basel - New York, Marcel Decker, (1991).

[24] Rao M.M., Ren Z.D. *Application of Orlicz Spaces*. Basel - New York, Marcel Decker, (2002).

[25] Runst T., Sickel W. *New Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Didderential Equations*. (1996), De Gruyter Incorporated, Walter; Berlin, Heidelberg, London, New York, Hong Kong.

[26] Stein E.M., Weiss G. *Introduction to Fourier Analysis on Euclidean Spaces*. Princeton, University Press, 1971.

[27] Talenti G. *Inequalities in Rearrangement Invariant Function Spaces*. Nonlinear Analysis, Function Spaces and Applications. Prometheus, Prague, 5, (1995), 177-230.

[28] Talagrand M. (1996). *Majorizing measure: The generic chaining*. Ann. Probab., 24 1049 - 1103. MR1825156

[29] Talagrand M. (2005). *The Generic Chaining. Upper and Lower Bounds of Stochastic Processes*. Springer, Berlin. MR2133757.