Stationarity of the inter-event power-law distributions

Yerali Gandica1, Joao Carvalho2, Fernando Sampaio Dos Aidos2, Renaud Lambiotte1, and Timoteo Carletti1

1Department of Mathematics and Namur Center for Complex Systems - naXys, University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium
2CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

October 3, 2018

Abstract

A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia’s editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our result suggests there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance to start an activity, there is a robust distribution of new related actions, which does not depend on the time of day.
1 Introduction

The digital media are an important component of our lives. Nowadays, digital records of human activity of different sorts are systematically stored and made accessible for academic research. Hence a huge amount of data became available on the past couple of decades, which allows for a quantitative study of human behaviour. For a long time, scholars from different backgrounds have been studying this field. However, some interesting and basic properties still remained out of reach for researchers, mainly for lack of large amounts of reliable stored data. The increasing amount of data that is being gathered in this digital age is progressively opening up new possibilities for quantitative studies of these features. One such aspect, detected by means of data-gathering, is human bursty behaviour, that is the activity characterized by intervals of rapidly occurring events separated by long periods of inactivity [1]. The dynamic of a wide range of systems in nature displays such a behaviour [2].

Given the highly non-linear nature of human actions, their study could hence benefit from the insights provided by the field of complex systems. For the human being, the bursty behaviour phenomenon has been found to modulate several activities, such as sending letters, email messages and mobile text messages, as well as making phone calls and browsing the web [3, 4, 5, 6, 7]. The first works in this field suggested a decision-based queuing process, according to which the next task to be executed is chosen from a queue with a hierarchy of importance, in order to explain the observed behaviour. Different kinds of hierarchies were tested, such as the task length and deadline constraints [1, 3, 4]. Later on, Malmgren et al. [8, 6] argued that decision making is not a necessary component of the bursty human activity patterns. Instead, they maintained that this feature is caused by cyclic constraints in life and they proposed a mechanism based on the coupling of a cascading activity to cyclic repetition in order to explain it. Nonetheless, recently, Hang-Hyun Jo et al. [7] applied a de-seasoning method to remove the circadian cycle and weekly patterns from the time series, and obtained similar inter-event distributions, before and after this filtering procedure. In this way, the authors concluded that cyclic activity is also not a necessary ingredient of bursty behaviour.

The goal of the present work is to contribute to the issue of human burstiness universality, by looking at Wikipedia editing and Twitter posting. In particular, we show that the same inter-event distribution happens at each hour of the day. We relate this kind of universality, the result of a single person’s decision, to a kind of resource allocation (attention, time, energy), distributed in proportion to the different activities that the individual is able to do at specific times, and which is responsible for the broad distribution of inter-events, characteristic of a bursty behaviour. The bursty nature independence on the high or low activity, as a result of circadian patterns, is an important issue when trying to predict human activity in social media platforms [9, 10, 11].

2 Methods

Our study explores the editing activity of the super-editors (defined hereafter) in four separate Wikipedias (WP) [12], written in four different languages: English (EN-WP), Spanish (ES-WP), French (FR-WP) and Portuguese (PT-WP). In all
cases the data span a period of about ten years, ending between 2010 and 2011 (depending on the language). Each entry in the database contains the edited WP page name, the time stamp of the saving and the identification of the editor who performed the changes. Moreover, we discarded entries associated to IPs and bots, and only considered editors who login before editing, so that the editor is univocally identified.

Only editors with more than 2000 edits are considered, in order to reduce the impact of outliers and to have enough active editors in the data set. After the filters, the universe of our sample is composed by 10473 editors in EN-WP, 1110 in ES-WP, 955 in FR-WP and 551 in PT-WP. We define the normalized activity, or rank, of an editor as his total number of edits divided by the total number of days since he started to edit. Super-editors, in a given language, are defined as the editors whose normalized activity is greater than 25% of the largest normalized activity in that particular WP and with more than one year of editing activity. The number of super-editors is 20 in EN-WP, 10 in ES-WP, 15 in FR-WP and 24 in PT-WP. We have checked that neither WP-bots nor blocked editors are among the super-editors in our list. In Fig. 1 we plot the normalized activity for all the editors with more than 2000 edits in decreasing order, for the four WP’s. The darker areas in the plots show the regions where the super-editors lie. In each figure, we include an inset that contains a zoom with a better view of the super-editors zone. Note that we have not applied the one-year of activity filter yet, so some editors in the darker zone were not considered super-editors. We focused on super-editors because their high activity provides suitable statistics; moreover, as recently shown [13], their behaviour is quite similar to standard editors with respect to the memory coefficient M and the burstiness parameter B, as defined in [4].

Figure 1: Normalized activity for all the editors with more than 2000 edits, for the four WP’s. The darker areas show the super-editors zone. The inset in each figure displays a zoom for a better visualization of the super-editors region. Some editors in the darker zone were not considered super-editors because they did not edit for more than one year.
3 Results

In [14] we have shown that WP editing is strongly influenced by the circadian cycle, as reported before by Yasseri et al. [15]. Here we analyze whether these circadian patterns have consequences on the inter-event probability distribution, namely we check whether the time between edits depends on the hour of the day at which the first edit has been carried out. To perform such an analysis we computed the probability distribution for the inter-event duration, considering that the first event has taken place at a specific hour of the day. If this conditional probability depends on the hour of the day then we can conclude that circadian cycles have an influence on the human inter-event time and thus the origin of burstiness can possibly be ascribed to this dependence. In the opposite case we can conclude that burstiness in WP editing does not depend on the periodically changing conditions.

Results reported in Fig. 2 support the latter hypothesis. The inter-event conditional probability distributions computed in different one-hour windows – large enough to contain adequate statistics but not too large to avoid averaging features – exhibit a similar fat tail when they are normalized by the number of events in that time window. Note that only 17, out of 24, time windows are shown in Fig. 2; seven windows are associated to low activity periods, and data are scarce in these windows. Therefore, these windows were discarded as they could introduce spurious effects (see also Fig.2 in [14]). We also limited the maximum inter-event duration to seven hours, once again to avoid spurious effects in the queue distribution. Our fits were done using the software ROOT [16] and compared with the procedure by Clauset et al. [17].

Our results seem to indicate that, although the probability of editing is strongly influenced by circadian rhythms, the probability distribution for the time between successive edits is indeed independent from them. This suggests that the bursty nature of the process is independent from the circadian patterns. Note that a similar result, but on longer time scales, has been previously presented in [18], where the authors reported the robustness of the inter-event time distributions using 12 hours windows for binary contacts between conference participants.

The use of one-hour time windows is, in our opinion, a good proxy to demonstrate the stationarity of the inter-event distribution during the day. One should use even smaller time windows, but this would require a huge data sample to have enough statistics in each small period of time. The conditional probability to continue an action has been previously simulated by means of cascades of events, triggered by the initial event, which is conditioned by circadian patterns, by Malmgren et al. in [8].

The fat-tail distributions presented in Fig. 2 can be well described by a power law \(p(\tau | t) = c\tau^\alpha \), where \(t \) is the hour of the day when an event takes place and \(\tau \) is the time to the next event to take place. The exponent \(\alpha < 0 \) is independent of the hour of the day \(t \). In order to study the variability of the exponent values for different super-editors and time windows, we fit, for each super-editor, \(j \), and each time window, \(i \), the data in Fig. 2 and obtain the power law exponent \(\alpha^{(i)}_j \). We hence obtain the average exponent \(\langle \alpha^{(j)} \rangle = \sum_i \alpha^{(i)}_j / N_j \), being \(N_j \) the number of windows used for super-editor \(j \), and finally we compute the relative deviation \((\alpha^{(i)}_j - \langle \alpha^{(j)} \rangle) / \langle \alpha^{(j)} \rangle \). A histogram with the probability distribution...
Figure 2: Conditional probability distributions for the inter-event duration. We represent, for two of the most active editors, the conditional probability distribution to have an inter-event activity of duration τ given the hour of the day at which such action is registered, represented by a different color-symbol for the 17 one-hour windows used. Seven windows were left out because the small quantity of data they contain was not sufficient to draw statistically sound conclusions. The dotted lines represent the inter-event probability distribution using a window of 24 hours, containing all the data. One can clearly note the similar fat-tails in all the time windows, indicating they are independent from the circadian cycle. In both panels, the dashed lines represent the power law best fits, whose exponents are -1.59 ± 0.04 for the editor shown in the left panel and -1.58 ± 0.09 for the editor in the right one.
in the mechanism as the result of an internal process inherent to the general human activity, we complement the analysis with the activity of posting in a social micro-blogging platform, Twitter. Each posted tweet consists of a message of 140 characters. In the left panel of figure 5 we show the inter-event conditional probability distributions computed in different one-hour windows, for all the tweets posted by one representative user, starting in February 2010. Following the same procedure as before, we discard the hourly intervals of low activity (seven intervals, in this case), and we show the inter-event up to 7 hours. Again, we found the same power-law distribution for the inter-event times across the different hours of the day, but now with an exponent of about -1. In the right panel of the same figure the distribution of the power-law exponent best fit values in each active hour of the day is depicted.

4 Discussion

To summarize, in this work we provide numerical evidence that the conditional probability, \(p(\tau|t) \), to have an inter-event of duration \(\tau \) for an edit of WP registered at time \(t \), is independent from the latter. Moreover this probability is fat-tailed, well described by a power law. It could be related to some sort of queuing process, but we prefer to see it as due to a resource allocation (attention, time, energy) process, which exhibits a broad distribution: shorter activities are more likely to be executed next than the longer ones, which ultimately may be responsible for the bursty nature of human behaviour.

Using the data for the editing of WP and for the activity of tweeting, our results seem to indicate that there is an intrinsic mechanism to human nature: before performing an action (make a phone call, send a tweet, edit Wikipedia, etc) we must overcome a “barrier”, acting as a cost, which depends, among many other things, on the time of day. However, once that “barrier” has been crossed, there exist a robust distribution of activities, which no longer depends
on the time of day at which we decide to start it. Our findings suggest that the bursty nature of human beings is mainly independent of circadian patterns, in agreement with the results found, using a different method, by Hang-Hyun et al. [7]. This result could open the perspective to applications less specific than the study of Wikipedia. Future work includes simulations taking into account circadian patterns to reproduce the probability to perform an action, while maintaining a constant conditional probability distribution for

Acknowledgments The work of Y.G., T.C. and R. L. presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimisation), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office.

References

[1] Barabási A-L 2005 The origin of bursts and heavy tails in human dynamics Nature 435 207-11.

[2] Hidalgo C 2006 Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems Physica A 369 877-83.
Figure 5: Left panel: Conditional probability distributions for the inter-event duration of all the tweets posted by a user who started in February 2010, with a total of 8266 tweets. Right panel: distribution of the power law exponents from a fit to each of the 17 hourly inter-event distributions. Each color-symbol in the left panel represents the probability distribution of all the inter-events registered in each one-hour window. Seven windows were left out because the small amount of data they contain was not statistically relevant. The dotted lines represent the inter-event probability using a window of 24 hours, containing all the data. The dashed line represents the power law exponent best fit -0.96 ± 0.07.

[3] Vázquez A, Gama Oliveira J, Dezső Z, Goh K-I, Kondor Barabási A-L 2006 Modeling bursts and heavy tails in human dynamics Phys. Rev. E 73, 036127.

[4] Goh K-I and Barabási A-L 2008 Burstiness and memory in complex systems EPL 81 48002.

[5] Wu Y et al. 2010 Evidence for a bimodal distribution in human communication PNAS 107 18803.

[6] Malmgren RD et al. 2009 On Universality in Human Correspondence Activity Science 325 1696.

[7] Hang-Hyun J et al. 2012 Circadian pattern and burstiness in mobile phone communication New Journal of Physics 14 013055.

[8] Malmgren RD et al. 2008 Poissonian explanation for heavy tails in e-mail communication PNAS 105 no. 47, 18153.

[9] Harada J et al. 2012 Forecasting High Tide: Predicting Times of Elevated Activity in Online Social Media. Robert H. Smith School Research Paper No. RHS 2589568. SSRN: http://ssrn.com/abstract=2589568

[10] Kobayashi R and Lambiotte R 2016 TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics. Proceedings of the The 10th International AAAI Conference on WEB and Social Media (ICWSM-16) Age 91.
[11] Leskovec J, Backstrom L and Kleinberg J 2009 Meme-tracking and the dynamics of the news cycle, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining Pages 497-506.

[12] http://wwm.phy.bme.hu/.

[13] Gandica Y, Lambiotte R and Carletti T 2016 What can Wikipedia tell us about the global or local measurements for burstiness? To appear in the Proceeding for the 10th International AAAI Conference on Web and Social Media (ICWSM16).

[14] Gandica Y, Lambiotte R, Carletti T, Sampaio dos Aidos F, Carvalho J 2016 Circadian Patterns on Wikipedia Edits, Complex Networks VII, Springer International Publishing.

[15] Yasseri T, Sumi R and Kertész J 2012 Circadian Patterns of Wikipedia Editorial Activity: A Demographic Analysis, PLoS One 7, e30091.

[16] Brun R and Rademakers F 1997 ROOT An object oriented data analysis framework, Nucl. Instrum. Meths. Phys. Res. A389, 81-86; see also http://root.cern.ch/drupal.

[17] Clauset A, Rohilla Shalizi C and Newman M E J 2009 Power-law distributions in empirical data, SIAM Rev. 51, 661703.

[18] Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J-F, Vespignani A 2010 Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks, PlosOne 5, 7:e11596.

[19] Yasseri T and Kertész J 2013 Value production in a collaborative environment – sociophysical studies of Wikipedia, J Stat Phys 151:414439.