Time Estimation Model of Concurrent Computing Systems

A. A. Husainov, husainov51@yandex.ru
E. S. Kudryashova, ekatt@inbox.ru

Abstract

We consider an asynchronous system with transitions corresponding to the instructions of a computer system. For each instruction, a runtime is given. We propose a mathematical model, allowing us to construct an algorithm for finding the minimum time of the parallel process with a given trace. We consider a problem of constructing a parallel process which transforms the initial state to given and has the minimum execution time. We show that it is reduced to the problem of finding the shortest path in a directed graph with edge lengths equal to 1.

Keywords: asynchronous system, trace monoid, Foata normal form, time Petri nets.
2000 Mathematics Subject Classification 68Q10, 68Q85

Introduction

We study a computing system that have memory locations containing some data and a set of operations (instructions, machine commands), which change the states of the memory. Some instructions can be executed concurrently. It is known the system state at the initial time. Runtime is defined for each operation.

A sequential process is a sequence of instructions. Our first task is to find this process parallelization algorithm, which would have calculated instructions for each time point. The second task is to specify the minimum time to reach a given state of memory from the initial state.

1The paper is performed under the program of strategic development of state educational institution of higher professional education, №2011-PR-054
1 Basic notations and definitions

Asynchronous system [1] is a quintuple $A = (S, s_0, E, I, \text{Tran})$ consisting of the set S of states, initial state $s_0 \in S$, set of the instructions E, subset $\text{Tran} \subseteq S \times E \times S$ of transitions, and the irreflexive symmetric independence relation $I \subseteq E \times E$ which satisfy to conditions

1. If $(s, a, s') \in \text{Tran} \& (s, a, s'') \in \text{Tran}$ then $s' = s''$.
2. For all $s \in S$, if $(a, b) \in I \& (s, a, s') \in \text{Tran} \& (s', b, s'') \in \text{Tran}$, then there is $s_1 \in S$ such that $(s, b, s_1) \in \text{Tran} \& (s_1, a, s'') \in \text{Tran}$.

In particular, each Petri net can be considered as an asynchronous system whose states are markings and instructions are transitions. Independence relation consists of the pairs of transitions that have no common places.

Let E be a set and let $I \subseteq E \times E$ be an irreflexive symmetric relation. The elements $a, b \in E$ are independent if $(a, b) \in I$. The equivalence relation consisting of pairs of words produced from each other by using a series of permutations of adjacent independent letters is defined on the monoid of words E^*. Trace is the equivalence class $[w]$ for a word $w \in E^*$. It is easy to see that the operation on the traces defined by the rule $[w_1][w_2] = [w_1w_2]$ turns the set of equivalence classes in the monoid. This monoid is denoted by $M(E, I)$ and is called trace monoid or a free partially commutative monoid.

Traces $[w_1], [w_2] \in M(E, I)$ are called parallel if for any letter a_1 of the word w_1 and a_2 of w_2 we have $(a_1, a_2) \in I$. It is known [2] that any asynchronous system $A = (S, s_0, E, I, \text{Tran})$ can be defined as a set S with a partial right action of a monoid $M(E, I)$. The action is given by $s \cdot a = s'$ if $(s, a, s') \in \text{Tran}$. Action $s \cdot a$ undefined if there is no s' satisfies the condition $(s, a, s') \in \text{Tran}$.

This allows us to consider a morphism of asynchronous systems as a morphism of the corresponding sets with a partial trace monoid action.

Definition 1.1 Homomorphism of asynchronous systems $(\sigma, f) : A \to A'$ is a pair consisting of a map $\sigma : S \to S'$ and a homomorphism of monoids $f : M(E, I) \to M(E', I')$ satisfying the conditions

1. f maps parallel traces in parallel;
2. $\sigma(s_0) = s'_0$;
3. $\sigma(s \cdot a) = \sigma(s) \cdot f(a)$ if action $s \cdot a$ is defined.

Let $A = (S, s_0, E, I, \text{Tran})$ is asynchronous system. A function of time on A is an arbitrary function $\tau : E \to N$ taking values in the set of integers $N = \{0, 1, 2, \ldots\}$.
Triples \((s, e, s') \in Tran\) are denoted by arrows \(s \xrightarrow{e} s'\). Every sequence of instructions
\[
s \xrightarrow{e_1} s_1 \xrightarrow{e_2} s_2 \rightarrow ... \rightarrow s_{n-1} \xrightarrow{e_n} s_n = s'
\]
consisting of triples belonging \(Tran\) we call the process or path connecting the states \(s\) and \(s'\). In this case, the action of the monoid \(M(E, I)\) on \(S\) assigns the pair \((s, [e_1...e_n])\) into element \(s' \in S\).

2 The minimum trace runtime

If the execution times for instructions are the same and equal to 1, then the minimum execution time for the trace will be equal to the height of its Foata normal form \([3]\). In general, if the time \(\tau(e) \in N\) corresponds to instruction \(e \in E\), then we decompose each instruction into the composition of small pairwise dependent instructions the execution of which are 1 and apply the algorithm to construct the Foata normal form for the resulting trace. These small instructions can be described as an instruction in the expansion which they participate, and the instruction will be equal to \(e^{\tau(e)}\).

Also we have to enter the intermediate states. For this purpose we introduce a new asynchronous system associated with a function of time.

Let \(A\) is asynchronous system with the function \(\tau : E \rightarrow N\). We define a total order relation on the set \(E\) and consider an asynchronous system \(A_{\tau} = (S_{\tau}, s_0, E, I, Tran_{\tau})\) defined as follows. One has a set of states
\[
S_{\tau} = \{(s, a_1^i a_2^j ... a_m^i) \mid s \in S, \ s \cdot a_1 a_2 ... a_m \in S, \ a_1 < a_2 < ... < a_m, \ (a_i, a_j) \in I, \\
\text{for all } 1 \leq i < j \leq m, \ 1 \leq i_1 < \tau(a_1), ..., 1 \leq i_m < \tau(a_m)\}.
\]

For technical reasons, it will be convenient to consider the states \((s, a_1^i a_2^j ... a_m^i)\) where for some \(q \in \{1, 2, ..., m\}\) we have \(i_q = 0\) or \(i_q = \tau(a_q)\). They will be identified with the elements of \(S_{\tau}\) using formulas
\[
(s, a_1^i a_2^j ... a_q^{i-1} a_q^0 a_{q+1}^{i+1} ... a_m^i) = (s, a_1^i a_2^j ... a_q^{i-1} a_{q+1}^i ... a_m^i) \\
(s, a_1^i a_2^j ... a_q^{i-1} a_q^\tau(a_q) a_{q+1}^{i+1} ... a_m^i) = (s \cdot a_q, a_1^i a_2^j ... a_{q-1}^i a_{q+1}^{i+1} ... a_m^i).
\]

We define a partial action of the monoid \(M(E, I)\) on the \(S_{\tau}\) considering
\[
(s, a_1^i a_2^j ... a_m^i) \cdot a = (s, a_1^i a_2^j ... a_{q-1}^i a_q^0 a_{q+1}^i ... a_m^i)
\]
if \(a = a_q \) for some \(q \in \{1, 2, ..., m\} \). If \((a, a_r) \in I\) for all \(r \in \{1, 2, ..., m\}\), then we insert an element \(a \in E \) in sequence so that there are inequalities
\[
a_1 < a_2 < ... < a_{q-1} < a < a_q < ... < a_m
\]
for some \(q \) and let \((s, a_1^{i_1} a_2^{i_2} ... a_m^{i_m}) \cdot a = (s, a_1^{i_1} a_2^{i_2} ... a_{q-1}^{i_{q-1}} a a_q^{i_q} ... a_m^{i_m})\).

Action is not defined in the other cases.

Define the sets mapping \(i : S \to S \) by the formula

\[
i(s) = (s, 1).\]

Let \(t : M(E, I) \to M(E, I) \) be homomorphism which is defined by values on the elements \(a \in E \) equal to \(t(a) = a^{\tau(a)} \).

Proposition 2.1 Pair \((i, t)\) is homomorphism of the asynchronous systems \(A \to A_\tau \).

Parallel process, which realizes the trace \(\mu \), is the composition of traces

\[
[a_1 a_2 ... a_p][a_1 a_2 ... a_p] [a_k a_k ... a_k] = \mu
\]

which is equal to the trace and consisting of units within each of which the directions pairwise independent.

Proposition 2.2 The minimum runtime of trace \([a_1 a_2 ... a_n]\), transforming the system from state \(s \) to a state \(s' \), is equal to the height of the Foata normal form of trace \([a_1^{\tau(a_1)} a_2^{\tau(a_2)} ... a_n^{\tau(a_n)}]\). Parallel process with minimum time is equal to that normal form.

Example 2.1 Let us consider the pipeline Petri net consisting of three operating units

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\]

Figure 1: The pipeline Petri net

Let the execution times are \(\tau(a) = 3, \tau(b) = 1, \tau(c) = 2 \). If the input received \(n \) numbers the time process trace will be \([(a^3b^2c^1)^n]\). It is easy to see that the Foata normal form is

\[
[a][a][a](b[ac][ac]a)^{n-1}[b][c][c]
\]

Its height is equal to \(4n + 2 \). Hence the minimum runtime using three processors power is \(T_3 = 4n + 2 \). Runtime on a single processor is \(T_1 = 6n \). Consequently, the average acceleration power is \(6n/(4n + 2) \approx 3/2 \).
3 Search for a parallel process with minimal time to achieve a given reachable state from the initial state

Let us consider an asynchronous system \(A \) with the function of time \(\tau : E \to N \). Let \(A_\tau \) is the corresponding asynchronous system. We construct a directed graph whose vertex set is \(S_\tau \). If

\[
(s, a_1^{i_1} a_2^{i_2} \ldots a_p^{i_p}) \cdot e_1 \cdot e_2 \ldots \cdot e_n = (s', b_1^{j_1} b_2^{j_2} \ldots b_q^{j_q})
\]

for some vertices \((s, a_1^{i_1} a_2^{i_2} \ldots a_p^{i_p}) \in S_\tau, (s', b_1^{j_1} b_2^{j_2} \ldots b_q^{j_q}) \in S_\tau\) and such \(e_1, e_2, \ldots, e_n \in E \) that \((e_i, e_j) \in I\) for all \(1 \leq i < j \leq n\), then these vertices are joined by directional arrow of length 1.

The elements \(s \in S \) are identified with pairs \((s, 1) \in S_\tau\) where 1 is the neutral element of the monoid \(M(E, I) \).

Proposition 3.1 A parallel process of the minimum time that takes the system \(A \) from state \(s_0 \) to state \(s \) corresponds to the shortest path in the constructed graph connecting vertices \((s_0, 1)\) and \((s, 1)\).

Algorithms for finding the shortest directed path are well known. For example, the vertices are colored with the colors 0, 1, 2, ... as follows: first, the vertex \(s_0 \) is painted the color of 0. Then unpainted ends coming out of her arrows are painted color of 1. Then unpainted ends of arrows coming out of the vertex colors of 1 are painted color of 2, etc. until we color the top \(s \). Vertex color \(s \) will be the shortest path length. A slight modification of the algorithm leads to a method of finding a path of minimum length.

Conclusion

The proposed time model \(A_\tau \) can be interpreted as a discrete model of E. Goubault timed automaton [4]. A similar model can be constructed for the distributed asynchronous automata entered in [5]. But in order to enable it to build algorithms for time estimates, it is necessary to involve some additional conditions on these automata.
References

[1] M. Bednarczyk. “Categories of Asynchronous Systems”, PhD Thesis, Brighton: University of Sussex, 1987.

[2] A. A. Husainov. “On the homology of small categories and asynchronous transition systems”, Homology Homotopy Appl, 2004. V.1, №6. P. 439-471.

[3] V. Diekert. “Combinatorics on Traces”, Lecture Notes in Computer Science, 454, Spring-er-Verlag, Berlin, 1990.

[4] E. Goubault. “Durations for truly-concurrent transitions”, Programming Languages and Systems - ESOP ’96, Lecture Notes in Computer Science, 1058, Springer-Verlag, Berlin, 1996, 173-187.

[5] E. S. Kudryashova, A. A. Khusainov, “Generalized Asynchronous Systems”, Modeling and Analysis of Information Systems, 2012. №4. P. 78-86. (Russian)