Non-Coding RNAs in Response to Drought Stress

Temesgen Assefa Gelaw 1,2,* and Neeti Sanan-Mishra 1,*

1 Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; temesgen.assefa2129@gmail.com
2 Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
* Correspondence: neeti@icgeb.res.in

Abstract: Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.

Keywords: epigenetic silencing; long non-coding RNA; miRNA; regulatory networks; stress response; water deficit

1. Introduction

About 80–95% fresh biomass of non-woody plants is occupied by water, which plays an important role in many aspects of plant life. Several abiotic factors, such as low rainfall, salinity, very high or very low temperature and high intensity of light lead to water deficit in plants [1]. The reduction in water exerts stress leading to changes in the physiological, morphological, ecological, biochemical and molecular characteristics [2,3]. These changes can affect overall plant development resulting in yield reduction and/or plant loss [4]. In arid and semi-arid environments, drought is one of the most important stress factors for plants [1,4,5]. The continuous increase in environmental temperature has increased the probability of occurrence, duration and severity of drought, thereby making it challenging to meet the global food demands of the ever-increasing world population [6,7].

Drought stress tolerance is a quantitatively controlled trait in plants [8,9]. It causes changes in gene-expression patterns, water transport and osmotic balance, oxidative homeostasis and repair mechanisms. This affects the vital metabolic processes, chlorophyll synthesis and photosynthesis, decelerates seed germination, reduces stomatal movement, inhibits root development and limits nutrient uptake [3,6,10]. As sessile organisms, plants have evolved several mechanisms to withstand water stress and/or drought by inducing changes at the developmental and functional levels [5,9,11,12]. The resistance mechanisms include strategies for avoiding, escaping, tolerating and recovering from drought [13]. To tide over short periods of drought or ‘drought escape’ plants have the ability to regulate growth [10,11]. Once the stress is over, plants resume growth to overcome drought injury and this is known as drought recovery [13].
An important universal physiological process to overcome drought stress involves regulating stomata movement to control respiration, transpiration, photosynthesis and temperature [11,14,15]. Plants can also endure severe water-stress scenarios through osmotic adjustments and accumulation of dehydration-induced proteins [10,12,16,17]. The other changes include regulating the onset of senescence and fine-tuning of phytohormones [2,9,10,12,16] (Figure 1). Plants also modulate the redox pathway by balancing the production of antioxidant enzymes, such as including superoxide dismutase, peroxidase and ascorbate peroxidase, to scavenge the reactive oxygen species (ROS) produced during drought stress [18]. This also helps to maintain organelle stability, protect chloroplast membranes and stabilize the PSII system [19]. Therefore, it is important to identify the factors that regulate the genetic components and govern the nature of plant response.

Figure 1. Schematic representation of different drought stress-response mechanisms operative in plants. The combined actions of these processes govern plant survival or susceptibility. The survival of plants can be grouped under drought avoidance, drought tolerance and drought escape, based on the plant response. ABA = abscisic acid, CSI = chlorophyll stability index, MSI = membrane stability index, PPO = polyphenol oxidase, ROS = reactive oxygen species, RWC = relative water content.

Relatively recent studies have shown that long and small non-coding RNAs (ncRNAs) are important modulators of drought tolerance in plants [12,20–24]. The networking between ncRNAs and their target genes is, in turn, controlled by various other enzymatic components in the cell [9,25]. The advances in high-throughput analysis, such as RNA sequencing (RNA-Seq) and bioinformatics, have accelerated scientific research [26]. Sequence analysis has proved to be an important tool to explore the differences in response to stress between sensitive and tolerant plants, such as sorghum [27], tomato [28], coffee [29], cassava [30], peanut [31], Populus [32], Trifolium [33], wheat [34], rice [35] and maize [36,37]. This has led to the identification of stress-responsive gene expression; however, our knowl-
edge about the regulatory processes is still limited. This review highlights important updates on the available literature on the role of long and small ncRNAs in response to drought stress response in plants.

2. Long Non-Coding RNAs

Over the last decade, long ncRNAs (lncRNAs), usually >200 nucleotides (nt) in size, have emerged as a pivot of genome regulation, adding a new layer of epigenetic control [38–40], but their clear evolutionary origins and functional specialization are still inexplicit. This group of ncRNAs lacks polypeptide-coding potential and possesses significant biochemical versatility, with each lncRNA having specific functions [39,41,42]. High-throughput RNA-Seq based investigations have primarily contributed to the identification of lncRNAs in many organisms [43]. Many investigations have been performed in humans and animals [44–46]; however, in plants, only a few molecules have been well characterized [39,47,48].

In eukaryotes, transcription followed by processing of the nascent RNA precedes the formation of messenger (mRNA). The biogenesis of a fully mature mRNA requires the coordinated action of enzymes that perform 7-methyl Guanosine (m7G) capping, splicing, polyadenylation, maturation, export and surveillance [49,50]. In a similar manner, primary transcripts of lncRNAs, which are produced by RNA Polymerases II or III and IV or V, undergo polyadenylation, m7G capping and splicing [24,51]. Most plant lncRNAs are polyadenylated, but in mammals and yeast, some non-polyadenylated lncRNAs have been found [52]; therefore, the presence of non-polyadenylated functional lncRNAs in plants cannot be completely ruled out [53]. The non-polyadenylated lncRNAs are processed by Ribonuclease P to generate free ends that are stabilized by the capping of small nucleolar RNA (snoRNA). In some cases, the snoRNAs have been found at both 3′ and 5′ ends. Reports have also shown that Ribonuclease P processed free ends can self-ligate to form circular structures [39,40,54,55].

Based on their biogenesis and location, the lncRNAs can be classified into several subgroups [56], as described below.

(a) Long intergenic ncRNAs (lincRNAs) are 200 to 2000 nt in length. These transcripts are derived from the intergenic region and have also been referred to as large/long intervening ncRNAs, very long intervening ncRNAs and macroRNAs [24,57]. They are polyadenylated, weakly spliced, exhibit tissue-specific expression and possess a trans-regulatory role [39,58]. These lncRNAs are characterized by rapid turnover rates, which present a challenge in understanding their functional significance [39,59]. The lincRNAs are localized at least 5 kb away from protein-coding regions and are, therefore, said to lie in gene deserts [60]. These have been sub-classified based on their association with specific regions [61,62], such as enhancer RNAs or eRNAs [52,60], upstream antisense RNA (uaRNA), promoter-associated long RNA (PALR) or promoter upstream transcripts (PROMPTs) [63] and telomeric repeat-containing RNA (TERRA). The PROMPTs and eRNAs are short-lived lncRNAs that have been identified mostly in humans.

(b) Transposable element (TE)-derived lncRNAs (TE-lncRNAs) are generated from the TEs [57]. These transcripts can sometimes act as precursors to microRNAs (miRNAs) and small interfering RNAs (siRNAs) [64–66]. In Arabidopsis, rice, maize and tomato TE-lncRNAs were reported, and their association with response to abiotic stresses was revealed [67–70]. TEs, also known as jumping genes, were first discovered in maize in the early 1950s [71]. They have the ability to copy/cut and paste themselves into other genome regions [72]. Based on the mechanism of transposition, they have been classified as Class I or RNA mediated/retro-elements and Class II or DNA elements. Class II classical TEs transpose via a cut-and-paste mechanism, while Class I TEs transpose through a reverse-transcription-based copy-and-paste mechanism. The DNA copy thus generated can get integrated anywhere in the plant genome [65,72,73]. In the maize genome, more than 85% of DNA is derived from TEs [72,74], so, correspondingly, a large number of TE-lncRNAs have been predicted to be present in maize [75,76].
(c) Intron-derived lncRNAs (incRNAs) originate from within the introns of protein-coding genes [77] and include totally intronic RNA (TIN) or partially intronic RNA (PIN). These transcripts therefore, are regulated by various transcription activation pathways [78]. The incRNAs may contain poly(A) modifications and are usually stable but they may not be highly conserved across different plant species [44,79]. It was reported that few miRNAs and snoRNAs originate from the intronic regions, so, initially, it was considered that the incRNAs may act as progenitors of the small ncRNAs; however, recent studies have confirmed their independent existence [80–82].

(d) Natural antisense transcripts (NATs) originate from coding regions (both exon and intron) in eukaryotic genomes and are amongst the widespread lncRNAs. They possess both cis and trans-action to regulate gene expression by silencing [83,84]. Cis-NATs are transcribed from the inverse strand of the target genomic locus to regulate the corresponding sense transcript [83]. Trans-NATs arise from a locus away from that of the target gene [83,85]. The binding of NATs triggers the production of specific siRNAs, which also exhibit a predominantly trans mode of action.

(e) Circular lncRNAs (circncRNAs) are highly conserved but low in abundance and are more stable than linear lncRNAs, as they cannot be degraded easily [86]. They were first characterized as non-polyadenylated circular RNAs in plant viroids [87]. CircncRNAs mostly arise in the nucleus from the back-splicing of exons in pre-mRNAs [39,86,88,89], while some arise in the cytoplasm. It is postulated that the failure of intronic lariat debranching during canonical splicing plays a role in the biogenesis of circncRNAs [88,90–92]. Most circncRNAs may consist of one or more extra exons and are categorized as extra-exon circular ncRNAs (eicircncRNAs), and others may be derived from the intron region of the parent gene and called circular intronic RNAs (circincRNAs) or intron retained circular ncRNAs; however, some arise from overlapping regions and are called exon-intron circincRNAs (eicircncRNAs) [90,93]. Since circncRNAs are derived from the internal exon regions, they can affect the splicing of their linear counterparts. They have been shown to regulate cell development by acting as endogenous target mimics (eTM) of miRNAs, miRNA sponges [43,91], protein scaffolds or templates for protein translation. The circncRNAs present in exosomes were shown to regulate the proliferation of the respective cells [92].

2.1. Function of IncRNAs

It is clear that a large number of IncRNAs are transcribed in plant cells, but their molecular mechanism is largely unknown [94–98]. They mainly play a regulatory role by facilitating gene silencing to control transcriptional regulation and genome imprinting. These regulations are associated with diverse biological processes, such as root organogenesis [99], photo-morphogenesis [100], control of flowering time, reproduction, nutrient homeostasis [95] and so on [58,67,101]. Their expression levels vary significantly in different tissues and over different developmental stages. The IncRNAs also undergo dynamic regulatory adjustments during the response to abiotic stress [96,102–106] and pathogen invasion [101].

It has been generalized that the Pol IV transcribed IncRNAs serve as precursors for siRNAs, while Pol V transcribed IncRNAs act by modulating the chromatin framework [107]. The IncRNAs can act in cis or trans orientation, forming simple and complex networks. For instance, in Arabidopsis, ~1400 light-responsive NATs were identified, and they could act in both the same and opposite directions [106,108]. They may act as signal molecules guide molecules, precursors for miRNAs and siRNAs, regulators of pre-mRNA splicing and modulators of chromatin [70,107,109–111]. Some of the identified functions of IncRNAs are listed in Table 1.
Table 1. Functions of lncRNAs identified in various plants.

Plant	IncRNA Name	Pathway	Functional Annotation	References
Arabidopsis	IPS1 IncRNA	Phosphate homeostasis	Target mimic for miR399, which regulates PHO2, a negative regulator of the phosphate transporters	[112]
	Hidden Treasure 1 (*HID1*)	Photomorphogenesis	Promotes photomorphogenesis in continuous red light by directly repressing *Phytochrome Interacting Factor 3* (*PIF3)*	[100]
	ASCO-IncRNA and NSR	Alternate splicing module	Recognizes alternatively spliced mRNA targets	[111]
	Drought Induced lncRNAs (DRIR)	Drought response	Positively regulates several drought responsive transcripts such as ABA-signal transducers (*P5CS1, RD29A,B and AB15*); annexins (*ANNA17*) and aquaporins (*TIP4, NIP1*)	[113]
Brassica napus, (Q2 and Qinyou8)	XLOC_042431 and XLOC_071559	Hormone signaling	Targets *BnaC06g05090D* gene to regulate ethylene metabolism, IAA, Cytokinins and ABA signaling	[114]
	XLOC_095305 and XLOC_100682		Targets *BnaA01g17750D* genes to regulate alpha trehalose phosphate synthase	
	linRNA340	Target mimicry	miR169 target mimicry, also targets *Nuclear Factor Y* (*NF-Y*)	
	TCONS_00003360, TCONS_00015102,	Signal transduction	Calcium and ABA signaling	
	TCONS_00149293		Ethylene metabolism	
	TCONS_00097416	Hormone signaling and target mimicry	Targets *CSLD5, ERL1* and *SPCH* genes to modulate ethylene signaling;	
	TCONS_00069665		Targets *LAX2, HDG11* and *SCR* genes; and regulates expression by targeting miR156	
	TCONS_00068063, TCONS_00068353		Targets *CYP707A1* gene and regulates in ABA catabolism	
	TCONS_00040721	MiRNA target	Targets *GRF1, HB51* and *DOX1*; regulates gene expression by targeting miR156, miR164, miR169 and miR172	
Cassava (TMS60444 and Ku50)	MSTRG.25585.13	Metabolic pathway	Regulates sucrose metabolism	
	MSTRG.42613.1		Regulates starch metabolism	
	MSTRG.43964.1, MSTRG.4400.2	Hormone signaling and target mimicry	Targets ABA pathway and related genes, regulates miR164, miR166, miR393 and miR397a,b and act as endogenous target mimic	[97]
Cleistogenes songorica	XLOC_033252	Hormone signaling	Regulates ABA synthesis and signaling by targeting *Pwwr.0184* gene	[117]
Panicum virgatum (Alamo)	linRNA20, linRNA2752, linRNA2962, linRNA1039, linRNA3241	miRNA regulation	Control drought stress by regulating ptc-miR476 and ptc-miR169	
Table 1. Cont.

Plant	IncRNA Name	Pathway	Functional Annotation	References
Oryza sativa	IncRNA MSTRG69391	Transcription regulation	Regulates biological process by targeting genes encoding calmodulin	[96]
	IncRNA MSTRG41712	Translation inhibition	Targeting genes encoding heat shock protein and mitochondrial carrier proteins	
	and MSTRG68635			
	IncRNA MSTRG65848,		Upregulated and downregulated the IncRNAs themselves; response to drought stress and	
	MSTRG27834 and		targets several genes	
	MSTRG46301			
Oryza sativa cv	NATOs02g0250700–01	Differential regulation	Regulate response to drought by targeting Os02g0250600-01 (encodes highly abundant	[119]
	andOs02g0180800–01		protein during late embryogenesis) and Os02g0180700-01 (encodes Cinnamoyl-CoA reductase)	
Triticum aestivum	c70772_g2_i1 and	IncRNA-miRNA-mRNA network	Targets c69036_g1_i1 and c9653_g1_i2 genes to regulate drought stress	[120]
	c90557_g1_i1			
Zea mays	Li_TCONS_00080887,	miRNA targets or decoys	Targets or decoys of zma-miR156e-3p, zma-miR156h-3p, zma-miR159c,d-3p, zma-miR159e-5p,	[59]
	Zhang_TCONS_00012690,		zma-miR160b,g-3p, zma-miR160c-3p, zma-miR162-5p, zma-miR164b-3p, zma-miR164d-3p,	
	625-646,		zma-miR164e-3p, zma-miR166h-5p, zma-miR166i-5p, zma-miR166n-5p, zma-miR169c-3p, zma-	
	Boerner_Z27kG1_14953,		miR169f-3p, zma-miR169l-3p, zma-miR169m-3p, respectively, etc.	
	Boerner_Z27kG1_09751,			
	Boerner_Z27kG1_15115,			
	Boerner_Z27kG1_08283,			
	Boerner_Z27kG1_16361,			
	Boerner_Z27kG1_23317,			
	Boerner_Z27kG1_13892,			
	Boerner_Z27kG1_01046,			
	Boerner_Z27kG1_22106,			
	Boerner_Z27kG1_03819,			
	Boerner_Z27kG1_17085,			
	Boerner_Z27kG1_06707,			
	Boerner_Z27kG1_17308,			
	Boerner_Z27kG1_01291,			
	Boerner_Z27kG1_22188,			
	Boerner_Z27kG1_15675,			
	Boerner_Z27kG1_06005,			
	Zhang_TCONS_00011169,			
	etc.			

2.1.1. IncRNAs as Target Mimics

The IncRNAs can regulate transcription directly or by acting as target mimics of the small ncRNAs [57,124,125]. Some IncRNAs, such as IPS1 (*induced by phosphate starvation*) and ASCO (*alternative splicing competitor*), contain sequences complementary to that of the miRNAs, so they can act as decoys or sponges or eTMs by competing for miRNA binding [59,112,125,126]. The mimic sites within the IncRNAs are non-cleaveable and block
the miRNA function, thus conferring translational regulation in cis orientation. Several of these target mimics are thought to have a role in plant growth and development [127].

The discovery of the IPS1 gene in Arabidopsis introduced the concept of eTMs and unveiled the novel cellular mechanism behind the regulation of the miRNAs [128]. IPS1 contains a region complementary to miR399, but it has a loop at the cleavage point of miR399. Thus, IPS1:miR399 forms a stable pair and quenches the silencing activity of the miRNA. Both IPS1 and miR399 expression are induced upon phosphate starvation and IPS1 expression seems to be required for fine-tuning of miR399 activity [112]. Subsequently, it was shown that IncRNA23468 functions as a decoy for miR482b to compete with transcripts of NBS-LRR genes [129].

The ASCO-lncRNA binds to transcripts encoding nuclear alternative splicing regulators, AtNSRa and AtNSRb to regulate lateral root development [111]. In addition, IncRNA16397 targets sGRX22 (glutaredoxin gene) to induce the expression of GRX21 and reduce ROS accumulation [130]. The dual regulators act to modulate gene expression during Phytophthora infestans infection in tomatoes.

Reports have also indicated that lncRNAs can be targeted and cleaved by the miRNAs [118,131,132]. A computational study by Fan et al. [59] found 466 maize lncRNAs as targets of 165 miRNAs and 86 lncRNAs as decoys for 58 miRNAs. In Populus, about 51 lncRNAs were reported as putative miRNA targets and 20 lncRNAs were reported as target mimics of the known miRNAs in response to drought stress [118]. In Cleistogenes, RNA-Seq analysis identified 52 lncRNAs as target mimics for miRNAs [97]. These analyses clearly showed that lncRNAs are associated with the miRNA nodes and supported their regulatory role in plants.

2.1.2. lncRNAs in DNA Modification

Numerous reports have indicated that, in plants, the lncRNAs participate in the modification of DNA at different developmental stages [105] such as reproduction [133], embryogenesis [134] and organogenesis [92] under stress conditions. The classical example is provided by cold-induced incRNA, COOLAIR, which inhibits FLC (Flowering Locus C) during vernalization to regulate the flowering time in Arabidopsis [135]. The repression is achieved by enrichment of Polycomb repressive complex 2 (PRC2) and subsequent trimethylation of Histone H3 Lysine 27 (H3K27me3) at the FLC locus [136].

Epigenetic silencing via DNA methylation and histone modification is an important mechanism for regulating gene expression. It is specifically significant for controlling transposons, repetitive sequences and centromeric regions and for imprinting [48,70,137]. The lncRNAs can also guide gene silencing through siRNA-dependent DNA methylation [47]. The role of small RNA-directed DNA methylation (RdDM) and heterochromatinization has been well studied in plants [138–140]. The plant-specific RNA polymerases, RNA Pol IV and V play a crucial role in this process [24,51,141–144]. Briefly, Pol IV, along with the CLASSY chromatin remodeling factors (CCRFs) and homeodomain transcription factors, such as DTF1/SHH1, transcribes transposons and repetitive sequences. The transcripts are converted to double-stranded RNAs (dsRNAs) by the action of RNA-dependent RNA polymerase-2 (RDR2) and the dsRNAs are processed into small ncRNAs, specifically siRNA duplexes by Dicer-like 3 (DCL3) enzyme [138,139]. These siRNAs are loaded in Argonaute 4 (AGO4)-containing complex to guide RdDM. In an alternate pathway, siRNAs are generated through Pol I–RDR6 transcription and are loaded into the AGO6 complex. At loci where Pol V is producing nascent transcripts, the siRNA-guided AGO4,6 complex interacts with the larger subunit of RNA Pol V, NRPE1 [145,146]. This complex is stabilized by the KTF1 (yeast transcription elongation factor, SPT5 homolog) to subsequently establish DNA methylation through domains rearranged methyltransferase 2 (DRM2) [141,146]. The methylated state of DNA is maintained through cell divisions through pathways catalyzed by methyltransferase1 (MET1) or chromomethylase3 (CMT3) [117,147].

It was shown that RdDM regulates the repetitive intergenic elements and their expression in maize. The RdDM function is supported by mediator of paramutation 1 (MOP1-1)
in maize, which is an ortholog of At-RDR2 [148]. It was shown that MOP1 copies the RNA Pol IV transcript for processing into siRNAs [144]. In another study, 110 maize lincRNAs and 46 genic lncRNAs were predicted as precursors for Mop1-sensitive siRNAs [149]. In addition, 26 lincRNAs and 97 genic lncRNAs were predicted as precursors for shRNA, while one lincRNA and two genic lncRNAs were predicted as precursors for miRNA. RdDM is a complex pathway that has also been implicated with short-term and long-term stress memory [105], so further investigations are required to understand the role of lincRNAs in regulating RdDM functions in maize in response to drought and other abiotic stresses.

3. Small Non-Coding RNAs

The small ncRNAs comprise a number of categories among which the miRNAs and siRNAs constitute the major groups. They function as key regulators of transcriptional and post-transcriptional gene expression [139,150–152] and are therefore implicated in the control of various physiological and developmental processes in plants, such as growth, organ formation, phase transition, nutrient balance and stress response [10,22,153–156]. Several online tools and databases have been developed that have enabled the prediction, documentation and analysis of the small ncRNAs and their targets [48,57,124]. Deep sequencing and degradome analyses, coupled with advanced tools and databases, have driven the identification of various small ncRNAs in response to single or combined abiotic stresses [20,157–159].

3.1. Small Interfering RNAs

Overall, siRNAs are generally 21–24 nt in length and are produced by the sequential processing of long dsRNAs in a phased or non-overlapping manner. They may arise either from endogenous sources, such as TEs, repetitive elements and centromere, or exogenous sources, such as invading viruses or aberrant inverted repeats [139,160]. The siRNAs can target endogenous as well as exogenous sequences serving as the first line of host defense [161]. The long dsRNAs are processed by DCLs into mature siRNAs, which get associated with AGO protein to form the catalytic core of the RNA-induced silencing complex (RISC) to facilitate gene silencing [139,162]. The siRNA strand that directs the RISC complex is called the guide strand, while the other strand is known as the passenger strand. The passenger strand is excluded and undergoes degradation, while the guide strand directs RISC to its target transcript for cleavage. The identity of the guide and passenger strand is regulated on the basis of the thermodynamic stability of 5′ end [163,164]. The siRNAs also mediate transcriptional gene silencing through the RNA induced transcriptional silencing (RITS) complex [139].

The siRNAs are involved in regulating gene expression, maintaining genome stability and aiding plant defense. In Arabidopsis, DCL2 and DCL4 are involved in production of primary siRNAs from aberrant dsRNAs. DCL2 processes 22 nt siRNAs that contribute to the antiviral defense and plant development while DCL4 processes 21 nt siRNAs to initiate primary defense against invasion of viruses and transgenes [113,139]. The DCL3 processes 24 nt siRNAs to direct methylation of DNA sequences resulting in chromatin modification and transcriptional gene silencing [142,145]. The functions of DCL2 and DCL4 are partially redundant and they are also involved in biogenesis of secondary or transitive siRNAs. The secondary siRNAs are processed from dsRNA produced by the action of RDR6 and SGS3 on single stranded RNA templates that are primed by primary siRNAs [139].

Depending on their site of origin, the siRNAs are classified as repeat-associated siRNA (rasiRNA), trans-acting siRNA (tasiRNA), natural-antisense siRNA (nat-siRNA), heterochromatic siRNA (hc-siRNA) and vi-siRNA (viral siRNAs).

(a) Ra-siRNAs are derived from TEs and repetitive DNAs [165] and mainly function in the silencing of retrotransposons and various abiotic stress factors, including drought [166]. Studies in maize and Arabidopsis have indicated complex feedback regulatory loops between rasiRNA and their target RNAs [166,167].
(b) TasiRNAs are derived by phased cleavage of dsRNA, which is produced after miRNA-mediated cleavage of the TAS gene-derived transcripts. In Arabidopsis, TAS1 and TAS2 transcripts are targeted by miR173, TAS3 transcripts are recognized by miR390 and TAS4 is targeted by miR828 [168]. They play a crucial regulatory role in development through post-transcriptional silencing [169,170]. TAS1, TAS2 and TAS3 were downregulated in response to drought and salinity stress [171]. The tasiRNA-ARF (auxin response factor) module is involved in regulating flower morphogenesis under drought and salt stress [172].

In Sorghum bicolor, two TAS3 gene homologs were identified to regulate the response to drought stress [170].

(c) Nat-siRNAs are a class of functional siRNAs, which originate from within the annealed regions of the natural antisense transcript (NAT) pairs [173]. Scientific evidence has indicated that NATs and Nat-siRNAs are involved in regulating various biological processes of plants and animals, such as phosphate homeostasis [174], stress response [175,176], chromatin remodeling and RNA editing [176–179].

(d) Hc-siRNAs are derived from heterochromatic intergenic regions including repeats and transposons [180]. The hc-siRNAs recognize the nascent Pol V-dependent transcript via base-pair complementarity and guide the DNA methylation and histone modification machinery to the loci for transcriptional gene silencing [180–182]. Their role has been reported in plants in response to several biotic [183–186] and abiotic stress factors [187,188].

(e) Vi-siRNAs are derived from dsRNA replicative intermediates of viruses to induce specific antiviral immunity [189]. They are generally processed from the sense strand of the viral genome [190]. Most of the vi-siRNAs have 5′ monophosphate, which indicates that vi-siRNAs can be produced by the viral RDR [191]. The role of vi-siRNAs has been reported in response to viral pathogen response in different plants, such as Arabidopsis [192], tomato [193], soybean [194], tobacco [195] and so on.

3.2. MicroRNAs

The miRNAs are processed from long primary transcripts that are transcribed from the genome. The steps in their biogenesis are complex and intricately regulated, as it involves the coordination of several proteins [196]. The primary transcripts (pri-miRNA) are sequentially processed by the DCL1 containing microprocessor complex into precursor miRNAs (pre-miRNA) and then into mature miRNAs. The steps in miRNA biogenesis are illustrated in Figure 2. Several other proteins, such as HYL and SE, are required for accurate DCL1 function [197]. The mature miRNA duplex is then methylated at the ends by HEN1 and transported to the cytoplasm, where it gets associated with the AGO containing RISC to form a functional complex, which can bring about transcript cleavage or suppress translation [198–200].

The miRNAs regulate various aspects of plant growth and development (Table 2) by regulating tissue or organ differentiation and development, shoot branching, root branching, lateral root development, panicle formation, flower development, seed development, primordial development, apical dominance, etc. [150,156,199–206]. The miRNAs also play an important role in promoting adaptation and tolerance to fluctuations in environmental conditions [207–210]. Moreover, miRNAs act in a coordinated manner by controlling the network of key genes, transcription factors and phytohormones [208,211–214].
Figure 2. Generalized scheme to illustrate the various steps involved in plant miRNA biogenesis and activity. The miRNA genes are transcribed to primary miRNA transcripts (pri-miRNAs) of 100–120 nt long by RNA polymerase II that are then capped and polyadenylated. In the first maturation step of miRNA synthesis, pri-miRNA is cleaved by DCL1 in collaborative action of other enzymes to form precursor miRNA (pre-miRNA) of approximately 70–100 nt long. In the second maturation step, the hairpin structured pre-miRNA is processed by the same enzymes to mature miRNA duplex. The DCL1 cleavage results in the formation of a miRNA–miRNA* duplex of 21 to 24 nt containing two nucleotide 3′ overhangs and 5′ monophosphate regions. This duplex is transported out of the nucleus and into the cytoplasm, where it associates with an AGO (Argonaute) containing protein complex to form RNA induced silencing complex (RISC). The RISC is guided to the target sequence of single-stranded mRNA. Depending upon the nature of miRNA and AGO, the target mRNA is either cleaved or subjected to suppression of translation.

It was seen that mutants in the miRNA biogenesis pathway exhibited an impaired response to abscisic acid (ABA), auxin and cytokinins [213,215], thus indicating the overlapping of regulatory hubs in plants. Later, it was shown that miR159 and miR164 modulated the levels of gibberellic acid (GA) and auxin, respectively [216–218]. The transcripts for auxin receptors, TIR1 (transport inhibitor response-1) and F-box protein 2 are targeted by miR393 [219–222]. The miRNA expression levels are also modulated by hormones, as exemplified by the downregulation of miR167 after treatment with ARF [223].

The first direct evidence that miRNAs are involved in plant stress responses came from the work of Jones-Rhoades and Bartel in the year 2004. Abiotic stress-regulated miRNAs were first reported in the model plant Arabidopsis thaliana [224] and, by now, the stress-responsive miRNAs have been reported in almost all plant species [225–229]. Functional
studies have also supported this role for miRNAs. For example, overexpression of miR393 reduced plant growth in drought stress by downregulating the auxin signals [230]. There are also reports on the functional involvement of the miRNA passenger strand (miRNA*) in various responses. For example, miR169g* and miR172b* were downregulated in tomato leaves under varying phosphate deficient conditions [199,231].

Plant miRNA activity is precisely controlled by the regulation of expression of miRNA genes, processing of mature miRNAs and function of miRNAs. The first level of control involves the development and tissue-specific regulation of pri-miRNA transcription in response to hormonal and environmental cues by a variety of transcription factors [232,233], such as ARF, LFY, MYC2, etc. The transcripts of many of these transcription factors are regulated by the miRNAs, indicating the existence of complex cellular feedback loops [234].

The second level of control is achieved by regulating the processing or biogenesis of mature miRNAs. This is indicated by differences in the levels of pri/pre-miRNA and mature miRNAs and by the presence of DCL3 dependent 24 nt long miRNAs [169,235]. The regulation of DCL1 transcripts by miR162 and AGO1 transcripts by miR168 also adds to the spatial or temporal differences in miRNA activities [236]. In 2008, it was reported that overexpression of SINEs (short interspaced elements) resulted in phenotypes similar to that of miRNA-deficient mutants. Later, it was discovered that stem-loops of SINEs mimic the pre-miRNAs to bind and quench HYL1 [237].

The third level of control can be achieved by sorting miRNAs in different AGO complexes. According to the most popular hypothesis, the 5′-terminal nucleotide of miRNA guide strand determines the selection of the specific AGO containing RISC and, hence, the subsequent mode of action [238,239]. For instance, Urudine at the 5′ end supports preferential sorting with AGO1, whereas adenosine at the 5′ end favors sorting with AGO2 and AGO4 [240].

Table 2. List of conserved miRNAs and their key target genes that function in plant growth and development.

miRNAs	Target Gene	Functions	References
miR156/157	SPL	Phase transition from vegetative to reproductive phase; flowering	[203]
miR159	MYB family	Development of male reproductive organs	[216]
miR160	ARF10, ARF16	Controls root development and gravitropism	[213]
miR165/166	HD-ZIPIII	Leaf development and polarity; lamina expansion	[202]
miR166	RDD1	Grain size and weight	[204]
miR167	ARF10, ARF16, ARF17	Floral patterning; controls anther and ovule development	[241]
	ARF6, ARF8	Stamen and gynoecium and maturation; seed development	[214]
miR168	AGOs	Leaf polarity	[200]
miR169	NF-YA	Floral organ identity	[242]
miR172	AP2	Floral patterning and floral organ development; regulates the inner whorl organ differentiation	[243]
miR319	TCP	Leaf morphogenesis	[226]
miR390	ARF2, ARF3, ARF4	Leaf development, adaxial identity of leaf blade, lateral organ development and leaf senescence	[172]
miR394	Leaf Curling Responsiveness (LCR)	Regulation of leaf curling, shoot meristem differentiation and maintenance in abscisic acid–dependent manner	[244]
miR396	Growth Regulating Factors (GRFs)	Adaxial–abaxial polarity of leaf and cell proliferation	[245]
miR399	PHO2	Control of flowering time	[227]
miR408	Plantacyanin	Root development	[246]
miR444	MADS box	Floral patterning and development control	[247]
4. Role of Long and Small Non-Coding RNAs during Drought Stress

The regulatory functions of plant lncRNAs and miRNAs in plant stress response have been comprehensively studied [67,106,109,251,252]. These two classes of ncRNAs also participate in response to water deficit and drought through complex cellular pathways involving chromatin modulation, target mimicry, transcriptional regulation, hormonal signaling and by directly regulating drought-responsive genes [57,117,158,230,253,254].

4.1. lncRNAs in Drought Stress

Genome-wide transcriptome studies have identified several drought-responsive lncRNAs in different plant species [96,97,115,255–258]. For example, studies on the identification of drought-responsive lncRNAs in grass families detected 664 potential candidates in maize [102], 98 in rice [119], 19 in foxtail millet [259] and 1597 in switchgrass [117]. The various reports on the identification of drought-responsive lncRNAs are presented in Table 3. Most lncRNAs regulate the drought response by acting on genes participating in ethylene and ABA synthesis or signaling, calcium signaling, starch and sucrose synthesis and several other metabolic processes.

Table 3. Some drought-responsive lncRNAs reported in different plants.

Plant	Number of Putative lncRNAs Identified	Platform of Identification	Functional Annotation	References
Arabidopsis thaliana	303	qRT-PCR	Responsive to heat, cold, drought and salt stress	[94]
	13,230	Transcriptome Analysis, published tiling array datasets	Response to drought, cold, high-salt and/or ABA treatments	[98]
Banana	8471	Transcriptome Analysis, HiSeq	Drought stress-response	[260]
Cassava	682	HiSeq 2500, qRT-PCR, CNCI, CPC	Hormone signal transduction, sucrose metabolism pathway, etc.	[115]
	124	qRT-PCR	Melatonin responsive, drought stress regulation, cellular metabolism, Calvin cycle, hormone regulation, etc.	[116]
Chickpea	56,840	RNA-Seq Transcriptome Analysis	Differential expression in cold or drought conditions	[262]
	3457	RT-qPCR, PLncPRO	Differentially expressed under drought stress	[257]
Table 3. Cont.

Plant	Number of Putative lncRNAs Identified	Platform of Identification	Functional Annotation	References
Cleistogenes songorica	3397	HiSeq2500, CPC, CNCI, CPATqRT-PCR	Regulate drought stress response	[97]
Dimocarpus longan Lour	7643	Real-time qPCR	Early somatic embryogenesis	[134]
Oryza sativa	98	HiSeq 2500, qRT-PCR	Regulatory role in drought response	[119]
Panicum virgatum L	3714	RT-qPCR, PLncPRO	Differentially expressed under drought stress	[242]
Populus trichocarpa	504	HiSeq™ 2000, RT-qPCR	Drought-stress response, putative targets and target mimics of miRNAs	[118]
Pyrus betulifolia	251	HiSeq 4000, CNCI, CPC, qRT-PCR	Regulate various metabolic processes	[263]
Setaria italica	19	HiSeq 2000, qRT-PCR	Control drought stress response	[259]
Solanum lycopersicum	521	RT-qPCR	Variety of biological processes via lncRNA-mRNA co-expression	[264]
Triticum aestivum (Kiziltan, TR39477 and TTD-22 varieties)	59,110, 57,944 and 40,858	HiSeq 2000, qRT-PCR	Differential expression under drought stress response in cultivated and wild varieties	[120]
Zea mays	1724	RT-qPCR	Regulatory role in drought response	[102]
	637	Ribosomal RNA depletion and ultra-deep total RNA sequencing	Regulatory roles in response to N stress	[265]
	1535	HiSeq 2500, qRT-PCR	Oxidoreductase activity, water binding and electron carrier activity	[122]
	1199	RiboMinus RNA-Seq	Control drought and salt stress	[266]
	1769	Strand-specific RNA sequencing,	NATs in drought stress response	[267]

The studies on cassava identified 51 drought-specific differentially expressed lncRNAs and qRT-PCR validation of selected molecules among them revealed the up-regulation of lincRNA101, lincRNA391 and lincRNA356. Other lncRNAs, such as lincRNA64, lincRNA350, lincRNA182 and lincRNA392, were downregulated under drought stress. The TCONS_00060863 and TCONS_00097416 lncRNAs were shown to regulate ABA and ethylene signaling pathways, respectively, under drought stress [116]. In switchgrass, drought stress upregulated the lncRNAs XLOC_053020, XLOC_014465 and XLOC_033252 to control ABA synthesis, XLOC_074836 to regulate ethylene signaling and XLOC_005809 to control trehalose phosphate synthase [117].

In rice, 98 drought-responsive NAT-lncRNAs were identified by using RNA-Seq analysis. These included two important drought-responsive lncRNAs viz NAT Os02g0250700-01 and NAT Os02g0180800-01, which targets the late embryogenesis abundant protein and cinnamoyl CoA reductase genes, respectively [119]. Studies in maize identified that the lncRNAs expressing at the R1 stage (siling stage) had a critical role in drought stress tolerance [122]. The possible role of lncRNAs as positive regulators of drought stress tolerance in Arabidopsis was identified with the discovery of a novel nucleus localized 755 nt long drought-induced...
lincRNA (DRIR). The DRIR overexpressing *Arabidopsis* lines had higher drought tolerance than wild-type seedlings [113]. This lincRNA was a nuclear-localized and controlled transcription of several drought stress-responsive genes, including ABA signaling genes (*ABI5*, *P5CS1*, *RD29A* and *RD29B*), aquaporin genes (*NIP1* and *TIP4*), annexin gene (*ANNAT7*), fucosyltransferase4 (*FUT4*) gene and transcription factor genes (*NAC3* and *WARKY8*) [113].

4.2. miRNAs in Drought Stress

Several studies have also shown the role of miRNAs in regulating plant response to drought stress (Table 4). A number of miRNAs, such as miR156, miR158, miR159, miR165, miR167, miR168, miR169, miR171, miR319, miR393, miR394 and miR396, were upregulated in response to drought stress in *Arabidopsis* [268]. The upregulation of *Arabidopsis* miR393, miR319 and miR397 in response to dehydration was reported earlier [224]. In drought-stressed rice seedlings, genome-wide analysis was carried out across different developmental stages, from tillering to inflorescence formation, using a microarray platform [269]. This analysis identified 30 miRNA gene families that were differentially regulated. Among these, 16 miRNA families, namely miR156, miR159, miR168, miR170, miR171, miR172, miR319, miR396, miR397, miR408, miR529, miR896, miR1030, miR1035, miR1050, miR1088 and miR1126, were significantly downregulated. Meanwhile, 14 miRNAs, namely miR159, miR169, miR171, miR319, miR395, miR474, miR845, miR851, miR854, miR896, miR901, miR903, miR1026 and miR1125, were significantly upregulated under drought stress. Another report showed that miR164c, miR319b and miR1861d were downregulated, while miR166h, miR172d and miR408 were upregulated under drought stress in rice [270]. In rice, pre-miRNA expression profiling indicated that miR171f was involved in the progression of rice root development and growth and response to drought stress [119]. In a different study, it was shown that miR169g was strongly upregulated and miR393 was transiently induced by drought stress in rice [271]. Inoculation of rice plants with *P. indica* caused upregulation of miR396, and this resulted in the downregulation of growth-regulating factor (GRF), which lowered the rate of transpiration and enabled the plants to tolerate drought [272].

Table 4. Drought-responsive miRNAs reported in different crop plants.

Plant Name	miRNAs	Target	Target Description	References
Arabidopsis	miR160	ARF		[273]
	miR165/166	HD-ZIPIII, CLP-1, RDD1, ABA signaling		[274–276]
	miR167	IAR3		[277]
	miR169	NFY-A, HAP2		[278]
	miR408	LAC		[279]
	miR397a	MLOC_54246.3	LAC-23	
	miR399	MLOC_52822.6	Phosphatase 2	
		MLOC_70587.1	PHD finger protein	
		LOC_50162.1	Sucrose synthase 1	
		MLOC_67419.2	PBS1, Ser/Thr-protein kinases	
		MLOC_67450.11	D27, beta-carotene isomerase	
		MLOC_73965.1	Homocysteine S methyltransferase 3	[280]
Barley	Novel-m0406-3p	MLOC_34795.2	RNA polymerase (25-kDa subunit)	
		MLOC_55820.2	Pectinesterase	
		MLOC_52822.6	Phosphatase 2	
	Novel-m0793-3p	MLOC_56261.3	ABC transporter C family member 2-like	
Plant Name	miRNAs	Target	Target Description	References
------------	--------	--------	--------------------	------------
Novel-m1738-3p	MLOC_3895.3	Dro1 (coding for early auxin response protein)		
Novel-m1900-5p	MLOC_16998.3	Glycine-rich RNA-binding protein 10		
Novel-m2311-5p	MLOC_61629.2	Transcription elongation factor, SPT6		
Novel-m2328-3p	MLOC_6972.2	DNA crosslink repair 1A protein		
miR159		GA-MYB-like		
miR160		ARF 16 (Seed germination and post germination stages)		
miR166		ATHB-15 (axillary meristem initiation, leaf and vascular development)		
miR167		ABI 5 (Gynoecium and stamen development)		
miR169		NFY-A (plant development and flowering timing; response to different biotic stresses) [281]		
miR171		NSP2 (response to abiotic stresses and floral development)		
miR172		RAP2-7 (flowering time, floral organ identity and cold stress response)		
miR393		AFB2 (susceptibility to virulent bacteria)		
miR396		CP29 (leaf and cotyledon development)		
miR408		Plantacyanin (regulation of DREB and other drought responsive gene) [282]		
Chickpea				
Chickpea				
Creeeping bentgrass	miR319	T159	MYB protein 306-like [283]	
Creeeping bentgrass	miR159	T167	ARF 8-like	
Creeeping bentgrass	miR170	T170	GRAS transcription factor	
Creeeping bentgrass	miR172	T172	Floral homeotic protein, APETALA 2-like	
Creeeping bentgrass	miR319	T319	Transcription factor, MYB75-like	
Creeeping bentgrass	b-miR-n-07	TB7	ATPase	
Creeeping bentgrass	b-miR-n10	TB10	GRAS transcription factor	
Creeeping bentgrass	b-miR-n24	TB24	DELLA protein GAI1-like [284]	
Cucumis sativus	miR169	T169	NFY-A-1-like	
Cucumis sativus	miR395	T395	ATP sulfurylase 1	
Cucumis sativus	miR398	T398	Superoxide dismutase	
Cucumis sativus	csa-miR-n19	TC19	Pleiotropic drug resistance protein 2-like	
Cucumis sativus	miR168	T168	Argonaute 1A-like	
Cucumis sativus	miR396	T396	Endoribonuclease dicer homolog 1-like	
Cucumis sativus	b-miR-n02	TB2	Pre-mRNA-processing factor 17-like	
Cucumis sativus	b-miR-n20	TB20	Dicer-like protein 4-like	
Cucumis sativus	miR30a,b	eugene3.00010640	Electron carrier activity	
Plant Name	miRNAs	Target	Target Description	References
------------	--------	--------	--------------------	------------
miR71*	eugene3.00010640	Electron carrier activity		
	grail3.000824501	Electron carrier activity		
	eugene3.105640001	Electron carrier activity		
	fgenesh4_pg_C_scaffold_263000013	Electron carrier activity		
miR77	eugene3.00002056	Electron carrier activity		
	estExt_Genewise1_v1.C_LG_XIV3469	Electron carrier activity		
miR84*	fgenesh4_pm.C_LG_XIII000061	Electron carrier activity		
miR101a	gw1.1.9350.1	Transcription factor		
miR131	fgenesh4_pg_C_LG_X001404	DNA binding		
	estExt_Genewise1_v1.C_LG_XV2187	Electron carrier activity		
	fgenesh4_pg_C_scaffold_9189000001	Electron carrier activity		
	fgenesh4_pg_C_LG_J001030	DNA binding		
miR58	estExt_Genewise1_v1.C_LG_XV2187	SBP-box Transcription factor		
miR67*	gw1.VIII.1137.1	Function unknown		
	eugene3.00031501	Vesicle transport v-SNARE		
miR93a	grail3.00100018301	Function unknown		
	estExt_Genewise1_v1.C_LG_JV3721	NADH-ubiquinone oxidoreductase		
miR93b	grail3.00100018301	Function unknown		
miR106*	estExt_fgenesh4_pg_C_17020003	Cytochrome oxidase biogenesis protein		
	estExt_fgenesh4_pm.C_1230037	Function unknown		
miR115a	gw1.57.264.1	Function unknown		
miR123a	estExt_fgenesh4_pg.C_LG_J11182	Development and cell-death domain		
miR156c		Putative protein phosphatase 2C		
miR159a,b		Serine/threonine protein phosphatase		
miR159a-d		GA-MYB transcription factor		
miR160a-e		S16, 40S ribosomal protein		
miR160b,i		ARR11, response regulator		
miR166l,m		Homeodomain–leucine zipper protein		
miR167a-i		ARF 12		
miR167c		ARF 17, Putative eIF3e		
miR167i,g		ARF 25		
miR167d		Phospholipase D		
miR168a,b		Serine/threonine-protein phosphatase		
miR168b		Receptor-like protein kinase		
miR168a,b	TC250636	DEAD-box ATP-dependent RNA helicase		
	TC251979	Putative early responsive to dehydration stress protein,		

[286]
Table 4. Cont.

Plant Name	miRNAs	Target	Target Description	References	
TC274109		GTPase			
TC259098		Heat shock protein 90,			
TC26999		GA-MYB-binding protein			
miR396d,e		Putative serine/threonine protein kinase			
TC248005		Pyruvate, orthophosphate dikinase,			
TC253981		Putative protein serine/threonine kinase,			
TC270251		Putative selenium binding protein,			
TC270802		Fructose-bisphosphate aldolase			
miR408		Leucine-rich repeat family protein			
miR474b		Putative CBL-interacting protein kinase,			
TC263244		Proline dehydrogenase family protein,			
miR474c		Putative transcription factor MYB,			
CF632829		WRKY transcription factor 31			
miR528		Cu/Zn SOD,			
TC274952		Peroxidase			
MiR827		N/Pi metabolism			
miR156a/b,c,d,e,g,h,k,l		DNA-binding putative protein			
GRMZM2G040785		Unknown			
GRMZM2G307588		SPL 6			
GRMZM2G414805		SPL 11			
GRMZM2G460544		SPL 7			
GRMZM2G067624		Homoserine kinase			
GRMZM2G465165		Serine/threonine protein kinase			
miR159a,b,f,c		DNA-binding protein			
GRMZM2G167088 and		Unknown			
GRMZM2G416652					
GRMZM2G027100		MYB55			
miR159a,b,f and miR319a,c		GA-MYB			
miR159a,b,f		DNA-binding protein			
GRMZM2G423833,					
GRMZM2G075064					
miR166d		MPPN domain			
GRMZM2G003509		Protein methyltransferase			
GRMZM2G499154		Metabolic process			
miR167a,c		Hormone stimulus			
GRMZM2G078274,					
GRMZM2G475882					
miR395b		Secondary active sulfate transmembrane transporter (1)			
GRMZM2G149952,		ATP sulfurylase			
GRMZM2G051270					
miR396f		Actin binding protein			
GRMZM2G178990					
Plant Name	miRNAs	Target	Target Description	References	
------------	--------	--------	--------------------	------------	
miR1432	miR1436	GRMZM2G423139	Calcium-binding allergen Ole e 8		
miR2097-5p	GRMZM2G151955	RNA binding protein			
mir319a-d-3p	GRMZM2G089361T01, GRMZM2G145112 T02, GRMZM2G106579 T02	TCP family transcription factor			
miR393ac-5p	GRMZM2G135978 Tol, GRMZM5G848945_T02	Putative uncharacterized protein			
miR396cd	GRMZM2G033612 T02	Putative uncharacterized protein			
miR398ab-3p	GRMZM2G023847 Tol, GRMZM2G097851 Tol	Putative uncharacterized protein			
miR444ab	GRMZM2G492156_T01, GRMZM2G033093_T01	Putative uncharacterized protein			
miR529	GRMZM2G98594_T06, GRMZM2G099862_T04, GRMZM2G119359_T01, GRMZM5G893117 T01, GRMZM2G105335_T02, GRMZM2G067743_T03	GRF-transcription factor			
miR529	GRMZM2G023847 Tol, GRMZM2G097851 Tol	Putative uncharacterized protein			
miR529	GRMZM2G352678 T01	Chemocyanin			
miR529	GRMZM5G866053_T01	Basic blue protein-like			
miR529	GRMZM2G122302_T01, GRMZM2G082940_T01	Blue copper protein			
miR529	GRMZM2G98594_T06, GRMZM2G099862_T04, GRMZM2G119359_T01, GRMZM5G893117 T01, GRMZM2G105335_T02, GRMZM2G067743_T03	AP2/EREBP transcription factor protein		[287]	
miR529	GRMZM2G023847 Tol, GRMZM2G097851 Tol	Putative uncharacterized protein			
miR529	GRMZM2G352678 T01	Chemocyanin			
miR529	GRMZM5G866053_T01	Basic blue protein-like			
miR529	GRMZM2G122302_T01, GRMZM2G082940_T01	Blue copper protein			
miR529	GRMZM2G98594_T06, GRMZM2G099862_T04, GRMZM2G119359_T01, GRMZM5G893117 T01, GRMZM2G105335_T02, GRMZM2G067743_T03	AP2/EREBP transcription factor protein		[287]	
miR529	GRMZM2G023847 Tol, GRMZM2G097851 Tol	Putative uncharacterized protein			
miR529	GRMZM2G352678 T01	Chemocyanin			
miR529	GRMZM5G866053_T01	Basic blue protein-like			
miR529	GRMZM2G122302_T01, GRMZM2G082940_T01	Blue copper protein			
miR399	PHO2, UBC24	Control Pi homeostasis		[288]	
miR399	PHO2, UBC24	Control Pi homeostasis		[288]	
miR399	PHO2, UBC24	Control Pi homeostasis		[288]	
miR156	SPL	Shoot development and delayed change in vegetative phase		[289]	
miR160	ARF (root development and auxin signals)	ARF (root development and auxin signals)		[288,289]	
miR166	HD-ZIPIII (leaf development and polarity)	HD-ZIPIII (leaf development and polarity)		[288,289]	
miR169	HAP2	Nitrogen homeostasis and stress response		[289]	
miR395	APS, AST	Control ATP Sulfurylase activity		[289]	
miR171	SCL	Regulate root development		[289]	
Plant Name	miRNAs	Target	Target Description	References	
----------------------------	---------	--------	---	------------	
miR172	AP2		Maintain nitrogen remobilization and floral development		
miR167	CCAAT-binding factor, ARF				
miR397	LAC (regulate copper homeostasis and reduces root growth)				
miR159	MYB		Regulate flowering time; leaf shape and size	[288]	
miR162	DCL1		Negative feedback regulatory function	[258]	
miR164	NAC1		Control lateral root development	[258,288]	
miR168	AGO1		Nutrient homeostasis and feedback regulation	[290]	
miR2275	gnl	GNOMON	155702013.m	Mitochondrial protein	[254]
miR393	gnl	GNOMON	39086093.m	Protein transport inhibitor response 1-like	
miR398	CSD		Copper homeostasis and oxidative stress	[291]	
miR156k	↓ in drought and submergence				
miR159ab	↑ in drought, ↓ in submergence				
miR164e	↓ in drought and submergence				
miR166b,d	↓ in drought and submergence				
miR167c,d,e,g	↓ in drought and submergence				
miR169c,r	↓ in drought and submergence				
miR319b	↑ in drought, ↓ in submergence			[292]	
miR396c,d	↓ in drought and submergence				
miR398a,b	↓ in drought and submergence				
miR398b	↓ in drought and submergence				
miR408	↓ in drought and submergence				
miR408b	↓ in drought and submergence				
miR528ab	↓ in drought and submergence				
miR166c	Constitutive expression				
Medicago sativa	miR156		SBP-like protein	[293]	
miR164	NAC domain transcription factor (lateral root development) ↓				
miR169	CBF (response to drought, cold and salinity, nodule development) ↓				
Medicago truncatula	miR171		GRAS transcription factors (response to drought, cold and salinity, nodule Morphogenesis and floral development) ↓	[294]	
miR396	GRF (response to drought and salt; cell proliferation) ↓				
miR398	Cu/Zn CSD1, CSD2 (response to oxidative stress) ↓				
miR399	PHO2		ubiquitin conjugating enzyme balance of phosphorus, ↑		
Plant Name	miRNAs	Target	Target Description	References	
------------	--------	--------	--------------------	------------	
Rice	miR167, miR9774, miR939, miR162, miR319, miR156, miR408, miR166, miR331, miR827 and miR8175	miR167, miR9774, miR398, miR162, miR319, miR156, miR408, miR166, miR331, miR827 and miR8175	↓ expression profiling in response to drought stress	[294]	
	miR6300, miR160, miR1861, miR440, miR9773, miR3982, miR171 and miR1876	miR6300, miR160, miR1861, miR440, miR9773, miR3982, miR171 and miR1876	↑ expression profiling in response to drought stress		
Rice	67 novel drought responsive miRNAs	66 miRNAs	Response to drought stress	[119]	
	Osa-miR159f, Osa-miR1871, Osa-miR9398b, Osa-miR408-3p, Osa-miR2878-5p, Osa-miR528-5p and Osa-miR397a	Osa-miR159f, Osa-miR1871, Osa-miR9398b, Osa-miR408-3p, Osa-miR2878-5p, Osa-miR528-5p and Osa-miR397a	↑ in the flag-leaves of tolerant cultivar (N22 and Vandana, while ↓ in sensitive cultivar (PB1 and IR64) during drought	[296]	
	miR398	CSD	Regulate copper homeostasis and oxidative stress	[292]	
Sugarcane	MiR160, miR399 and miR528	MiR160, miR399 and miR528	↑ in tolerant cultivar (RB867515)		
	miR160, miR394, miR399 and miR1432	miR160, miR394, miR399 and miR1432	↑ in sensitive cultivar (RB855536)	[297]	
	miR166, miR169, miR171, MiR172, miR393, miR396, miR399 and miR1432	miR166, miR169, miR171, MiR172, miR393, miR396, miR399 and miR1432	↓ in tolerant cultivar (RB867515)		
	miR166, miR171, miR396	miR166, miR171, miR396	↓ in sensitive cultivar (RB855536)		
Sunflower	miR399a-2	HannXRQ_chr02g0057111	Environment adaptation; leaf ↑; root ↑		
	Novel-mir40 4	HannXRQ_chr03g0090941	DNA repair protein XRCC; root ↑	[251]	
	Novel-mir3, Novel-mir42	HannXRQ_chr04g0098561	Putative toll/interleukin-1 receptor; root ↑		
	miR396b	HannXRQ_chr04g0115781	Serine/threonine protein kinase; leaf ↑		
Plant Name	miRNAs	Target	Target Description	References	
------------	--------	--------	--------------------	------------	
miR156a-5p,f,k,q, 157a-5p	HannXRQ_chr05g0138971	SBP transcription factor; leaf ↑			
Novel-mir3	HannXRQ_chr05g0149501	P-loop containing nucleoside triphosphate hydrolase; leaf ↓			
miR396a,b-5p	HannXRQ_chr05g0150421	Glutamyl tRNA reductase and chlorophyll metabolism; leaf ↓			
miR156h	HannXRQ_chr07g0196531	Leaf ↓			
miR396f-1	HannXRQ_chr08g0211484	Serine/threonine dual specificity protein kinase; root ↑			
miR394a-3p-1	HannXRQ_chr08g0216701	Related to Zn ion transport; leaf ↑			
Novel-mir36	HannXRQ_chr08g0219981	Putative plant disease resistance response protein; root ↓			
Novel-mir42	HannXRQ_chr09g0239281	Putative toll/interleukin-1 receptor homology (TIR) domain; root ↑			
Novel-mir3	HannXRQ_chr09g0239531	P-loop containing nucleoside triphosphate hydrolase; root ↑			
Novel-mir55	HannXRQ_chr09g0252001	C-terminal LisH motif-containing protein, Leaf ↑; root ↑			
Novel-mir42	HannXRQ_chr13g0396521	P-loop containing nucleoside triphosphate hydrolase; root ↑			
Novel-mir3	HannXRQ_chr13g0396531	Putative toll/interleukin-1 receptor; leaf ↓			
Novel-mir65	HannXRQ_chr13g0396531	Putative toll/interleukin-1 receptor; leaf ↓			
Novel-mir66	HannXRQ_chr14g0435571	Auxin-induced protein, leaf ↑			
MiR172a-2	HannXRQ_chr15g0491641	Leaf ↑; root ↑			
MiR156a-2	HannXRQ_chr17g0534011	(S)-urea glycine amidohydrolase; leaf ↑			
Novel-mir17	HannXRQ_chr17g0569261	Probable response regulator 11; root ↓			
miR156	HannXRQ_chr14g0435381	SPL; leaf ↑; root ↑			
miR159	HannXRQ_chr14g0435381	MYB transcription factor, leaf ↑; root ↓			
miR160	HannXRQ_chr14g0435381	ARF; leaf ↑; root ↑			
miR162	HannXRQ_chr14g0435381	GTPase activating protein-like; leaf ↑			
miR164	HannXRQ_chr14g0435381	NAC domain-containing protein; leaf ↑; root ↑			
miR169	HannXRQ_chr14g0435381	CCAAT-box-transcription factor; leaf ↓; root ↑			
miR172	HannXRQ_chr14g0435381	APETALA2 transcription factor; leaf ↓; root ↓			
miR319	HannXRQ_chr14g0435381	MYB transcription factor; leaf ↑; root ↓			
miR396	HannXRQ_chr14g0435381	Heat shock protein; leaf ↓; root ↓			
miR398	HannXRQ_chr14g0435381	Cu/Zn superoxide dismutase; leaf ↑; root ↓			
miR482	HannXRQ_chr14g0435381	TPG; leaf ↑; root ↑			
miR528	HannXRQ_chr14g0435381	Glyceraldehyde-3-phosphate dehydrogenase; leaf ↑; root ↓			
miR838	HannXRQ_chr14g0435381	Small heat shock protein (Mds1); leaf ↓			

Triticum aestivum

[298]
Table 4. Cont.

Plant Name	miRNAs	Target	Target Description	References	
	miR1120	Glyceraldehyde-3-phosphate dehydrogenase; leaf ↑			
	miR1169	Small GTP-binding protein; root ↑			
	miR1436	Glutathione S-transferase; root ↑			
	miR1450	Manganese superoxide dismutase; leaf ↓			
	miR2102	Calmodulin-binding family protein; root ↑			
	miR4393	ARF; leaf ↑; root ↓			
	miR4993	SKP1/ASK1-like protein; root ↑			
	miR5048	RPG1, serine/threonine protein kinase; root ↓			
	miR5049	Wpk4 protein kinase, leaf ↑; root ↑			
	miR5059	Heat shock protein; root ↑			
	miR5075	Serine/threonine protein kinase 3; root ↑			
	miR5083	Hydroxymethylglutaryl-CoA synthase; leaf ↑			
	miR5174	NBS-LRR genes, leaf ↑; root ↑			
	miR5175	Methylene-tetrahydrofolate reductase; leaf ↑			
	miR5205	Malate dehydrogenase, CBS domain-containing protein; leaf ↑			
	miR5568	Pathogenesis-related protein, leaf ↑; root ↓			
	miR6108	Glycosyltransferase; leaf ↑			
	miR396a-5p	Superoxide dismutase [Mn] 1, mitochondrial			
	miR834	Superoxide dismutase [Fe], chloroplastic-like isoform X2			
Zanthoxylum bungeanum	miR167a-3p	Peroxiredoxin-2E, chloroplastic (POD)			
	miR169b-3p	Catalase isozyme 1(CAT)			
	miR447a-3p	L-ascorbate peroxidase 3			
	miR773b-3p	Phospholipid hydroperoxide glutathione peroxidase 1, chloroplastic			
	miR397b	Delta-1-pyrroline-5-carboxylate synthase, key enzyme for the synthesis of proline			
	miR397b	JAR1	Jasmonic acid-amido synthetase (participate in the synthesis of jasmonic acid)		[14]
	miR859	ABSCISIC ACID–INSENSITIVE 5-like protein 5, (regulate a variety of ABA responses, such as stomatal closure, plasma membrane permeability and water permeability)			
	miR5632-5p	Mitogen-activated protein kinase 1			
	miR1888a	Protein disulfide-isomerase 5-2 isoform X1			
Table 4. Cont.

Plant Name	miRNAs	Target Description	References
	miR5638a	Respiratory burst oxidase homolog protein C (Citrus sinensis)	
	miR398a-3p	Probable nucleoredoxin 1	
	miR3434-3p	Translationally controlled tumor protein homolog; involved in the regulation of abscisic acid–mediated and calcium-mediated stomatal closure	

In *Medicago truncatula*, miR169 was downregulated only in the roots while miR398a,b and miR408 were strongly upregulated in both shoots and roots under drought stress [299].

In a *Populus* plant, miR156, miR159, miR171, miR319, miR395 and miR474 were upregulated in response to drought stress [300]. In *Populus tomentosa*, about 152 conserved miRNAs were identified and the expression of 17 conserved and nine novel miRNAs was investigated in response to drought stress [301]. In *Vitis vinifera*, 12 novel and species-specific miRNA candidates were reported in response to drought stress. Moreover, 70 conserved miRNAs were identified and 28 novel miRNAs were predicted in a drought-resistant grapevine [302].

Differential regulation of miRNAs in response to drought stress has been well studied in maize [253,286,288,302–304]. For example, miR398 was upregulated after treatment with polyethylene glycol and downregulated under soil drought [305]. The downregulation of miR167 during drought stress upregulated its target PLD (Phospholipase D), which is involved in controlling ABA response and stomatal movement [21]. Similarly, the downregulation of miR159 in drought triggered the expression of HD-ZIP, ARF and GA-MYB transcription factors, which contributed to greater adventitious and lateral root formation.

Moreover, miR474 was upregulated in drought to inhibit proline dehydrogenase (PDH) [306], while miR827 was upregulated during drought stress to act on NADP-binding and SPX (SYG1/Pho81/XPR) transcripts to activate stress signal transduction pathways [305].

It was shown that miR156 interacts with the ABA-dependent strigolactone signaling pathways in tomatoes under drought stress. The study identified miR156 as a mediator of stomatal movements and the findings indicated a cause–effect link between miR156 accumulation and regulation of water relations and stomatal functioning [307]. In sugarcane, miR169* was shown to target various transcripts such as *Elongation Factor 1-alpha (EF 1α)* in response to water depletion [297]. It was identified that miR529, miR535 and miR156 regulate transcripts of *Squamosa-promoter binding protein-like* (SPL) to control organ development and morphogenesis during stress. Similarly, miR159 targets MYB33 and miR172 targets AP2 (*Apetala 2*) to regulate plant development in response to drought stress [152].

Functional studies have provided an insight into the role of miRNAs in regulating the response to drought stress. In *Arabidopsis*, overexpression of ath-miR169a [308] and gma-169c [309], which targets the *Nuclear factor Y-A* (NF-Y-A) resulted in increased drought stress sensitivity. In contrast, similar studies in tomatoes have reported that overexpressing sly-miR169c show negative regulation of stomatal movement, reduced leaf water loss and transpiration rate, and improved drought tolerance [310]. Overexpression of Osa-miR393, which targets the auxin-responsive OsTIR1 and OsAFB2, lowered the tolerance of rice plants to salt and drought stress [230]. In another example, Osa-miR319 overexpression in creeping bentgrass led to greater tolerance to salinity and drought, by decreasing the expression of its putative target genes: *AsPCF5, AsPCF6, AsPCF8, AsTCP14*.
and AsNAC60 [283]. In Populus ussuriensis, overexpression of Pu-miR172d significantly decreased stomatal density by directly repressing the expression of PuGTL1 and PuSDD1. This resulted in increased water use efficiency and drought tolerance by reducing net photosynthetic rate, stomatal conductance and rate of transpiration [311]. This study showed that Pu-miR172d-PuGTL1-PuSDD1 module played an important role in stomatal differentiation and acted as a potential target for creating drought-tolerant plants. Similar studies in other plants showed that overexpression of miR156 in Alfalfa [312], miR408 in chickpea [282], Osa-miR319a in creeping bentgrass [283], miR169 in tomato [310] and miR159 in potato [313] resulted in enhanced drought stress tolerance. Recently, it was shown that miR535 overexpressing and CRISPR/Cas9 knockout rice showed enhanced stress tolerance when tested in presence of sodium chloride, polyethylene glycol, abscisic acid and dehydration stresses parameters [314].

4.3. Interaction between Long and Small ncRNAs in Drought Stress

Studies on the mechanism of action of IncRNAs have revealed their complex interaction with the small ncRNAs. Together, they form complex regulatory hubs for controlling various drought responsive pathways at the transcription, post-transcription and epigenome levels. Studies in Cassava showed that 11 drought-specific differentially expressed IncRNAs acted as target mimics for miR156, miR164, miR169 and miR172 [116]. Under drought stress, lincRNA340 acts as a target mimic of miR169 to enhance the expression of its target gene NFY [115]. The IncRNA, TCONS_00068353 acted as a target mimic for miR156k and miR172c to control several abiotic stress-responsive genes [116].

Many plant TEs contain stress-responsive cis-acting elements and produce IncRNAs in response to specific stress [315], and many of these are possible sources of small ncRNAs that can regulate both TE and non-TE transcripts based on sequence complementarity. In maize, eight drought-responsive IncRNAs acted as precursors of miRNAs [102]. It was shown that TE-derived epigenetically activated siRNAs (easiRNAs) participated in transcriptional silencing. In rice, TE-siRNA815 could induce a de novo DNA methylation process via the RdDM pathway [316]. The stress-downregulated Osa-miR820 originates from CACTA-TE [317] and targets de novo DNA methyltransferase (DRM2) transcripts. Overexpression of Osa-miR820 enhanced salt tolerance in rice plants [318]. It was also shown that ZmNAC111 expression is repressed by miniature inverted-repeat transposable element (MITE) through RdDM and H3K9 dimethylation during drought tolerance [121]. Overexpression of the ZmaNAC111 gene boosted drought tolerance in maize seedlings [319]. This phenomenon has unveiled functional crosstalk between small ncRNAs and the TEs, indicating that novel stress-responsive regulatory networks may be operative in plants [70,320].

5. Conclusions and Perspectives

The steadily increasing world population has challenged the agricultural sector to produce a substantial amount of crops. However, crop productivity all over the world is anticipating challenges by the ever-changing climate, variable weather conditions and environmental stresses. The limited availability of water and global warming has increased the incidence of drought, making it a major contributor to agricultural losses. To tackle this problem and produce enough food to feed the growing world population, it is important to generate crops that can survive underwater limiting conditions and can evade drought stress. This process can be aided by a thorough understanding of plant responses to water deficit and drought stress.

The exciting discovery of RNA-mediated gene silencing has highlighted the role of long and small ncRNAs in maintaining the homeostasis of gene expression. Advances in RNA-Seq analysis, computational analysis and functional genomic studies have enabled the discovery of several long and small ncRNAs and facilitated the understanding of their regulations. However, their functional characterization and annotation are limited to select plant species. Though the studies on ncRNAs are still in their infancy, their discovery has unraveled a novel mechanism of gene regulation. The small ncRNAs, such
as miRNAs, regulate various aspects of plant biology, while the long ncRNAs have a role in regulating the miRNAs by acting as target mimics, sponges or decoys. The ncRNAs normally work in highly complex and intricately connected networks to regulate plant growth and development. The small ncRNAs belong to large families where specific members may be associated with a definite development stage or response.

In the last few years, substantial progress has been made in deciphering the mechanisms of ncRNAs. It has been shown that the small ncRNAs have the ability to move systemically within the plant’s vasculature or locally from one cell to another. This was demonstrated by micro-grafting miR399 overexpressing Arabidopsis shoots on wild-type roots. The chimeric plants accumulated very high levels of mature miR399 species in the wild-type roots, where the primary transcripts were virtually absent. The chimeric plants showed downregulation of PHO2 in the wild-type roots and Pi accumulation in the shoots. This indicated a role for the miRNAs in long-distance signaling for maintaining nutrient balance [321]. The miR399 could not only move through the phloem tissues, but the transported molecules retained their biological activity in the recipient tissues. In another report, both ath-miR399d and its star sequence were identified as the mobile elements. During phosphate starvation, translocation by miR827 and miR2111a between shoots and roots was also demonstrated [322]. The long-distance mobility of miRNA species reflects on their potential in root–shoot communications during stress responses [323,324]. The miRNA shuttles may be operative in response to drought stress, as well. Indications towards this come from studies on gma-miR172, which is induced under salt and drought treatments. The miR172 cleaves/inhibits the transcript encoding AP2/EREBP-type transcription factor (SSAC1) to relieve inhibition of thiamine biosynthesis gene (THI1) that encodes a positive regulator of salt stress tolerance [325].

There is no doubt that the ncRNAs play a crucial role in regulating plant growth and stress responses. Many important issues remain to be answered, such as how do the ncRNAs move from the cells where they are produced and move into the recipient cells? How are the ncRNAs transported, and in what way are they protected from nucleolytic degradation during movement? Are there specific proteins or chemical tags which help them in such transfers?

The information related to long ncRNAs is still emerging, and there is still a lot more to discover with respect to their functions and regulations. Dedicated and systematic efforts will be required to understand how the ncRNAs networks operate in different crop plants over spatiotemporal boundaries and identify their association with response to drought and related stresses. It will be a lot more exciting to understand if they have any role in influencing inter-organ communications and stress responses. In this context, genetic screens and transgenic approaches will aid in unraveling their novel functionalities and features. It is envisaged that such studies will open up opportunities for designing efficient strategies for development of stress-tolerant crops.

Author Contributions: T.A.G. wrote the manuscript and drew the figures. N.S.-M. edited and improved the manuscript. Both authors have approved the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by grants from ICGEB. TAG acknowledges the Arturo Falaschi ICGEB Fellowships Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Salehi-Lisar, S.Y.; Bakhshayeshan-Agdam, H. Drought stress tolerance in plants. In Drought Stress in Plants: Causes, Consequences and Tolerance; Hossain, M.A., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S., Eds.; Springer: Cham, Switzerland, 2016; Volume 1. [CrossRef]
2. Bhargava, S.; Sawant, K. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. *Plant Breed.* 2013, 132, 21–32. [CrossRef]

3. Kranich, C.T.; Maletzki, L.; Kurowsky, C.; Horn, R. Network candidate genes in breeding for drought tolerant crops. *Int. J. Mol. Sci.* 2015, 16, 16378–16400. [CrossRef]

4. Wang, C.; Linderholm, H.W.; Song, Y.; Wang, F.; Liu, Y.; Tian, J.; Xu, J.; Song, Y.; Ren, G. Impacts of drought on maize and soybean production in northeast China during the past five decades. *Int. J. Environ. Res. Public Health* 2020, 17, 2459. [CrossRef] [PubMed]

5. Arbona, V.; Manzi, M.; de Ollas, C.; Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. *Int. J. Mol. Sci.* 2013, 14, 4885–4911. [CrossRef] [PubMed]

6. Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. *Front. Plant Sci.* 2015, 6, 1–20. [CrossRef]

7. Tigchelaar, M.; Battisti, D.S.; Naylor, R.L.; Ray, D.K. Future warming increases probability of globally synchronized maize production shocks. *Proc. Natl. Acad. Sci. USA* 2018, 115, 6644–6649. [CrossRef]

8. Anupama, A.; Bhugra, S.; Lall, B.; Chaudhury, S.; Chugh, A. Assessing the correlation of genotypic and phenotypic responses of indica rice varieties under drought stress. *Plant Physiol. Biochem.* 2018, 127, 343–354. [CrossRef]

9. Loka, D.A.; Oosterhuis, D.M.; Ritchie, G.L. Water-Deficit Stress in Cotton. *Stress Physiol./Cott.* 2016, 17, 37–72.

10. Khan, A.; Pan, X.; Najeeb, U.; Tan, D.K.Y.; Fahad, S.; Zahoor, R.; Luo, H. Coping with drought: Stress and adaptive mechanisms and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. *Birol. Res.* 2018, 51, 1–17. [CrossRef]

11. Manavalan, L.P.; Guttiokonda, S.K.; Tran, L.S.P.; Nguyen, H.T. Physiological and molecular approaches to improve drought resistance in soybean. *Plant Cell Physiol.* 2009, 50, 1260–1276. [CrossRef] [PubMed]

12. Golldack, D.; Luking, I.; Yang, O. Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network. *Plant Cell Rep.* 2011, 30, 1383–1391. [CrossRef]

13. Fang, Y.; Liao, K.; Du, H.; Xu, Y.; Song, H.; Li, X.; Xiong, L. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. *J. Exp. Bot.* 2015, 66, 6803–6817. [CrossRef]

14. Feia, X.; Lia, J.; Konga, L.; Hua, T.; Tiana, J.; Liua, Y.; Weia, A. MiRNAs and their target genes regulate the antioxidant system of *Zanthoxylum bungeanum* under drought stress. *Plant Physiol. Biochem.* 2020, 150, 196–203. [CrossRef]

15. Martin-StPaul, N.; Delzon, S.; Coillard, H. Plant resistance to drought depends on timely stomatal closure. *Ecol. Lett.* 2017, 20, 1437–1447. [CrossRef] [PubMed]

16. Luo, L.J. Breeding for water-saving and drought-resistance rice (WDR) in China. *J. Exp. Bot.* 2010, 61, 3509–3517. [CrossRef] [PubMed]

17. Isah, T. Stress and defense responses in plant secondary metabolites production. *Biol. Res.* 2019, 52, 39. [CrossRef]

18. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. *Plant Physiol. Biochem.* 2010, 48, 909–930. [CrossRef] [PubMed]

19. Lima, C.S.; Ferreira-Silvab, S.L.; Carvalho, F.E.L.; Netoc, M.C.L.; Aragao, R.M.; Silvea, E.N.; Sousa, R.M.; Silveira, G. Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. *Environ. Exp. Bot.* 2018, 149, 59–69. [CrossRef]

20. Xu, J.; Hou, Q.M.; Khare, T.; Verma, S.K.; Kumar, V. Exploring miRNAs for developing climate-resilient crops: A perspective review. *Sci. Tot. Environ.* 2019, 653, 91–104. [CrossRef]

21. Ding, Y.; Tao, Y.; Zhu, C. Emerging roles of microRNAs in the mediation of drought stress response in plants. *J. Exp. Bot.* 2013, 64, 3077–3086. [CrossRef]

22. Koroban, N.V.; Kudryavtseva, A.V.; Krasnov, G.S.; Sadritdinova, A.F.; Fedorova, M.S.; Snezhkina, A.V.; Bolsheva, N.L.; Muravenko, O.V.; Dmitriev, A.A.; Melnikova, N.V. The role of microRNAs in abiotic stress response in plants. *Mol. Biol.* 2016, 50, 337–343. [CrossRef]

23. Shengli, L.; Yanjie, N.; Qian, H.E.; Jinyu, W.; Yuzhen, C.; Cunfu, L.U. Genome-wide Identification of microRNAs that respond to drought stress in seedlings of tertiary relict *Ammopiptanthus mongolicus*. *Hortic. Plant J.* 2017, 3, 209–218. [CrossRef]

24. Yu, Y.; Zhang, Y.; Chen, X.; Chen, Y. Plant noncoding RNAs: Hidden players in development and stress responses. *Annu. Rev. Cell Dev. Biol.* 2019, 35, 407–431. [CrossRef] [PubMed]

25. Hu, J.; Zeng, T.; Xia, Q.; Qian, Q.; Yang, C.; Ding, Y.; Chen, L.; Wang, W. Unravelling miRNA regulation in yield of rice (*Oryza sativa*) based on differential network model. *Sci. Rep.* 2018, 8, 1–10. [CrossRef]

26. Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. *Nat. Rev. Genet.* 2016, 17, 333–351. [CrossRef] [PubMed]

27. Fracasso, A.; Trindade, L.M.; Amaducci, S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. *BMC Plant Biol.* 2016, 16, 1–18. [CrossRef] [PubMed]

28. Zhong, S.; Fei, Z.; Chen, Y.R.; Huang, M.; Vrebalov, J.; Mcquinn, R.; Gapper, N.; Liu, B.; Xiang, J.; Shao, Y.; et al. Single-base resolution methyolomes of tomato fruit development reveal epigenome modifications associated with ripening. *Nat. Biotechnol.* 2013, 31, 154–159. [CrossRef]

29. Mofatto, L.S.; Carneiro, F.A.; Vieira, N.G.; Duarte, K.E.; Vidal, R.O.; Alekevetch, J.C.; Cotta, M.G.; Verdeil, J.-L.; Lapeyre-Montes, F.; Lartaud, M.; et al. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different *Coffea arabica* cultivars. *BMC Plant Biol.* 2016, 16, 94. [CrossRef]
30. Hu, W.; Xia, Z.Q.; Yan, Y.; Ding, Z.H.; Tie, W.W.; Wang, L.Z.; Zou, M.; Wei, Y.; Lu, C.; Hou, X.; et al. Genome-wide gene phylogeny of CiPK family in cassava and expression analysis of partial drought-induced genes. *Front. Plant Sci.* 2015, 6, 1–15. [CrossRef]

31. Brasileiro, A.C.; Morgante, C.V.; Araujo, A.C.; Leal-Bertioli, S.C.; Silva, A.K.; Martins, A.C.; Vinson, C.C.; Santos, C.M.R.; Bonfim, O.; Togawa, R.C.; et al. Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. *Plant Mol. Biol. Rep.* 2015, 33, 1876–1892. [CrossRef]

32. Tang, S.; Liang, H.; Yan, D.; Zhao, Y.; Han, X.; Carlson, J.E.; Xia, X.; Yin, W. *Populus euphratica*: The transcriptomic response to drought stress. *Plant Mol. Biol.* 2013, 83, 539–557. [CrossRef]

33. Yates, S.A.; Swain, M.T.; Hegarty, M.J.; Chernukin, L.; Lowe, M.; Allison, G.G.; Ruttink, T.; Abberton, M.T.; Jenkins, G.; Skot, L. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. *BMC Genom.* 2014, 15, 453. [CrossRef] [PubMed]

34. Hua, Y.; Zhang, C.; Shi, W.; Chen, H. High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (*Triticum aestivum* L.). *Biotechnol. Biotechnol. Equip.* 2019, 33, 465–471. [CrossRef]

35. Mutum, R.D.; Kumar, S.; Balyan, S.; Kansal, S.; Mathur, S.; Raghuvanshi, S. Identification of novel miRNAs from drought tolerant rice variety Nagina 22. *Sci. Rep.* 2016, 6, 1–15. [CrossRef]

36. Wang, X.; Elling, A.A.; Li, X.; Li, N.; Peng, Z.; He, G.; Sun, H.; Qi, Y.; Liu, X.S.; Deng, X.W. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. *Plant Cell* 2009, 21, 1053–1069. [CrossRef]

37. Xu, J.; Yuan, Y.; Xu, Y.; Zhang, G.; Guo, X.; Wu, F.; Wang, Q.; Rong, T.; Pan, G.; Cao, M.; et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. *BMC Plant Biol.* 2014, 14, 83. [CrossRef]

38. Espinosa, J.M. On the Origin of lncRNAs: Missing link found. *Trends Genet.* 2017, 33, 660–662. [CrossRef]

39. Wu, H.; Yang, L.; Chen, L.L. The diversity of long noncoding RNAs and their generation. *Trends Genet.* 2017, 33, 540–552. [CrossRef]

40. Zampetaki, A.; Albrecht, A.; Steinhofel, K. Long non-coding RNA structure and function: Is there a link? *Front. Physiol.* 2018, 9, 1–8. [CrossRef]

41. Gloss, B.S.; Dinger, M.E. The specificity of long noncoding RNA expression. *Biochim. Biophys. Acta* 2016, 1859, 16–22. [CrossRef] [PubMed]

42. Hirose, T.; Nakagawa, S. Clues to long noncoding RNA taxonomy. *Biochim. Biophys. Acta* 2016, 1859, 1–2. [CrossRef]

43. Liu, J.; Wang, H.; Chua, N.H. Long noncoding RNA transcriptome of plants. *Plant Biotechnol. J.* 2015, 13, 319–328. [CrossRef] [PubMed]

44. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution and expression. *Genome Res.* 2012, 22, 1775–1789. [CrossRef]

45. Xie, J.; Yuan, Y.; Xu, Y.; Zhang, G.; Guo, X.; Wu, F.; Wang, Q.; Rong, T.; Pan, G.; Cao, M.; et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. *BMC Plant Biol.* 2014, 14, 83. [CrossRef]

46. Espinosa, J.M. On the Origin of lncRNAs: Missing link found. *Trends Genet.* 2017, 33, 660–662. [CrossRef]

47. Wang, H.L.V.; Chekanova, J.A. Long noncoding RNAs in plants. *Adv. Exp. Med. Biol.* 2017, 1008, 33–154. [CrossRef]

48. Liu, X.; Hao, L.; Li, D.; Zhu, L.; Hu, S. Long non-coding RNAs and their biological roles in plants. *Genom. Proteom. Bioinform.* 2015, 13, 137–147. [CrossRef]

49. Moore, M.J.; Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. *Cell* 2009, 136, 688–700. [CrossRef]

50. Bentley, D.L. Coupling mRNA processing with transcription in time and space. *Nat. Rev. Genet.* 2014, 15, 163–175. [CrossRef]

51. Wierzbiicki, A.T.; Haag, J.R.; Pikaard, C.S. Noncoding transcription by RNA Polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. *Cell* 2008, 135, 635–648. [CrossRef]

52. Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. *Nature* 2014, 507, 455–461. [CrossRef] [PubMed]

53. Wilusz, J.E.; Freier, S.M.; Spector, D.L. 3‘ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. *Cell* 2008, 135, 919–932. [CrossRef]

54. Zhang, X.O.; Yin, Q.F.; Wang, H.B.; Zhang, Y.; Chen, T.; Zheng, P.; Lu, X.; Chen, L.L.; Yang, L. Species-specific alternative splicing leads to unique expression of sno-IncRNAs. *BMC Genom.* 2014, 15, 287. [CrossRef]

55. Sibley, C.R.; Blazquez, L.; Ule, J. Lessons from non-canonical splicing. *Nat. Rev. Genet.* 2016, 17, 407–421. [CrossRef] [PubMed]

56. Lucero, L.; Ferrero, L.; Fonouni-Farde, C.; Ariel, F. Functional classification of plant long noncoding RNAs: A transcript is known by the company it keeps. *New Phytol.* 2021, 229, 1251–1260. [CrossRef] [PubMed]

57. Jha, U.C.; Nayyar, H.; Jha, R.; Khurshid, M.; Zhou, M.; Mantri, N.; Siddique, K.H.M. Long non-coding RNAs: Emerging players regulating plant abiotic stress response and adaptation. *BMC Plant Biol.* 2020, 20, 1–20. [CrossRef]

58. Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. *Nat. Rev. Mol. Cell Biol.* 2021, 22, 96–118. [CrossRef]

59. Fan, C.; Hao, Z.; Yan, J.; Li, G. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. *BMC Genom.* 2015, 16, 1. [CrossRef] [PubMed]
91. Qin, T.; Li, J.; Zhang, K.Q. Structure, regulation and function of linear and circular long non-coding RNAs. *Front. Genet.* 2020, **11**, 150. [CrossRef]

92. Vicens, Q.; Westhof, E. Biogenesis of circular RNAs. *Cell* 2014, **159**, 13–14. [CrossRef]

93. Meng, S.; Zhou, H.; Feng, Z.; Xu, Z.; Tang, Y.; Li, P.; Wu, M. CircRNA: Functions and properties of a novel potential biomarker for cancer. *Mol. Cancer* 2017, **16**, 1. [CrossRef]

94. Di, C.; Yuan, J.; Wu, Y.; Li, J.; Lin, H.; Hu, L.; Zhang, T.; Qi, Y.; Gerstein, M.B.; Guo, Y.; et al. Characterization of stress-responsive IncRNAs in *Arabidopsis thaliana* by integrating expression, epigenetic and structural features. *Plant J.* 2014, **80**, 848–861. [CrossRef]

95. Yuan, J.; Zhang, Y.; Dong, J.; Sun, Y.; Lin, B.L.; Liu, D.; Lu, Z.J. Systematic characterization of novel IncRNAs responding to phosphate starvation in *Arabidopsis thaliana*. *BMC Genom.* 2016, **17**, 1–16. [CrossRef] [PubMed]

96. Weidong, Q.; Hongping, C.; Zuozen, Y.; Biaolin, H.; Xiangdong, L.; Bing, A.; Yuan, L.; Yu, H.; Jiankun, X.; Fantao, Z. Systematic characterization of long non-coding RNAs and their responses to drought stress in Dongxiang wild rice. *Rice Sci.* 2020, **27**, 21–31. [CrossRef]

97. Yan, Q.; Wu, F.; Yan, Z.; Li, J.; Ma, T.; Zhang, Y.; Zhao, Y.; Wang, Y.; Zhang, J. Differential co-expression networks of long non-coding RNAs and mRNAs in *Cleistogenes songorica* under water stress and during recovery. *BMC Plant Biol.* 2019, **19**, 1. [CrossRef]

98. Liu, J.; Jung, C.; Xu, J.; Wang, H.; Deng, S.; Bernad, L.; Arenas-Huertero, C.; Chua, N.H. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in *Arabidopsis* CW. *Plant Cell* 2012, **24**, 4333–4345. [CrossRef] [PubMed]

99. Li, S.; Yamada, M.; Han, X.; Ohler, U.; Benfey, P.N. High-resolution expression map of the *Arabidopsis* root reveals alternative splicing and lincRNA regulation. *Dev. Cell* 2016, **9**, 508–522. [CrossRef]

100. Wang, Y.; Fan, X.; Lin, F.; He, G.; Terzaghi, W.; Zhu, D.; Deng, X.W. *Arabidopsis* noncoding RNA mediates control of photomorphogenesis by red light. *Proc. Natl. Acad. Sci. USA* 2014, **111**, 10359–10364. [CrossRef]

101. Seo, J.S.; Sun, H.X.; Park, B.S.; Huang, C.H.; Yeh, S.D.; Jung, C.; Chua, N.H. ELF18-induced long-noncoding RNA associates with mediator to enhance expression of innate immune response genes in *Arabidopsis*. *Plant Cell* 2017, **29**, 1024–01038. [CrossRef]

102. Zhang, W.; Han, Z.; Guo, Q.; Liu, Y.; Zheng, Y.; Fangli, W.; Jin, W. Identification of maize long non-coding RNAs responsive to drought stress. *PloS ONE* 2014, **9**, e98958. [CrossRef]

103. Chen, R.; Li, M.; Zhang, H.; Duan, L.; Sun, X.; Jiang, Q.; Zhang, H.; Hu, Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. *BMC Genom.* 2019, **20**, 1–12. [CrossRef]

104. Unver, S.; Tombuloglu, H. Barley long non-coding RNAs (lncRNA) responsive to excess boron. *Genomics* 2020, **112**, 1947–1955. [CrossRef]

105. de Urquiaga, M.C.O.; Thiebaut, F.; Hemerly, A.S.; Ferreira, P.C.G. From trash to luxury: The potential role of plant lncRNA in DNA methylation during abiotic stress. *Front. Plant Sci.* 2021, **11**, 1–10. [CrossRef] [PubMed]

106. Zhao, M.; Wang, T.; Sun, T.; Yu, X.; Tian, R.; Zhang, W.H. Identification of tissue-specific and cold-responsive IncRNAs in *Medicago truncatula* by high-throughput RNA sequencing. *BMC Plant Biol.* 2020, **2**, 116. [CrossRef]

107. Ariel, F.; Romero-Barrios, N.; Jégou, T.; Benhamed, M.; Crespi, M. Battles and hijacks: Noncoding transcription in plants. *Trends Plant Sci.* 2015, **20**, 362–371. [CrossRef]

108. Wang, H.; Chung, P.J.; Liu, J.; Jang, I.C.; Kean, M.J.; Xu, J.; Chua, N.H. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in *Arabidopsis*. *Genome Res.* 2014, **24**, 444–453. [CrossRef]

109. Wang, T.; Zhao, M.; Zhang, X.; Liu, M.; Yang, C.; Chen, Y.; Chen, R.; Wen, J.; Mysore, K.S.; Zhang, W.H. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant *Medicago truncatula*. *J. Exp. Bot.* 2017, **68**, 5937–5948. [CrossRef] [PubMed]

110. Geisler, S.; Coller, J. RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. *Nat. Rev. Mol. Cell Biol.* 2013, **14**, 69–72. [CrossRef] [PubMed]

111. Bardou, F.; Ariël, F.; Simpson, C.G.; Romero-Barrios, N.; Laporte, P.; Balzergue, S.; Brown, J.W.S.; Crespi, M. Long noncoding RNA modulates alternative splicing regulators in *Arabidopsis*. *Dev. Cell* 2014, **30**, 166–176. [CrossRef]

112. Franco-Zorrilla, J.M.; Valjé, A.; Todisco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J.A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. *Nat. Genet.* 2007, **39**, 1033–1037. [CrossRef] [PubMed]

113. Qin, T.; Zhao, H.; Cui, P.; Albesher, N.; Xiongla, L. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. *Plant Physiol.* 2017, **175**, 1321–1336. [CrossRef]

114. Tan, X.; Li, S.; Hu, L.; Zhang, C. Genome-wide analysis of long non-coding RNAs (IncRNAs) in two contrasting rapeseed (*Brassica napus* L.) genotypes subjected to drought stress and re-watering. *BMC Plant Biol.* 2020, **20**, 1–20. [CrossRef] [PubMed]

115. Li, S.; Yu, X.; Lei, N.; Cheng, Z.; Zhao, P.; He, Y.; Wang, W.; Peng, M. Genome-wide identification and functional prediction of cold and/or drought-responsive lincRNAs in *cassava*. *Sci. Rep.* 2016, **7**, 1–17. [CrossRef]

116. Ding, Z.; Wu, C.; Tie, W.; Yan, Y.; He, G.; Hu, W. Strand-specific RNA-seq based identification and functional prediction of lincRNAs in response to melatonin and simulated drought stresses in *cassava*. *Plant Physiol. Biochem.* 2019, **140**, 96–104. [CrossRef]

117. Zhang, C.; Tang, G.; Peng, X.; Sun, F.; Liu, S.; Xi, Y. Long non-coding RNAs of switchgrass (*Panicum virgatum*) in multiple dehydration stresses. *BMC Plant Biol.* 2018, **18**, 1–15. [CrossRef]

118. Shuai, P.; Liang, D.; Tang, S.; Zhang, Z.; Ye, C.Y.; Su, Y.; Xia, X.; Yin, W. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in *Populus trichocarpa*. *J. Exp. Bot.* 2014, **65**, 4975–4983. [CrossRef]
119. Chung, P.J.; Jung, H.; Jeong, D.H.; Ha, S.H.; Choi, Y.D.; Kim, J.K. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. *BMC Genom.* 2016, 17, 1. [CrossRef] [PubMed]

120. Cagirici, H.B.; Alptekin, B.; Budak, H. RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. *Sci. Rep.* 2017, 7, 1–16. [CrossRef]

121. Mao, H.; Wang, H.; Liu, S.; Li, Z.; Yang, X.; Yan, J.; Li, J.; Tran, L.S.P.; Qin, F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. *Nat. Commun.* 2015, 6, 1–13. [CrossRef]

122. Pang, J.; Zhang, X.; Ma, X.; Zhao, J. Spatio-temporal transcriptional dynamics of maize long non-coding RNAs responsive to drought stress. *Genes* 2019, 10, 138. [CrossRef] [PubMed]

123. Du, Q.; Wang, K.; Zou, C.; Xu, C.; Li, W.X. The PiLNCRI-miR399 regulatory module is important for low phosphate tolerance in maize. *Plant Physiol.* 2018, 177, 1743–1753. [CrossRef]

124. Waseem, M.; Liu, Y.; Xia, R. Long non-coding RNAs, the dark matter: An emerging regulatory component in plants. *Int. J. Mol. Sci.* 2021, 22, 86. [CrossRef] [PubMed]

125. Wang, J.; Yu, W.; Yang, Y.; Li, X.; Chen, T.; Liu, T.; Ma, N.; Yang, X.; Liu, R.; Zhang, B. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. *Sci. Rep.* 2015, 5, 1–16. [CrossRef]

126. Wang, J.; Yu, W.; Yang, Y.; Li, X.; Chen, T.; Liu, T.; Ma, N.; Yang, X.; Liu, R.; Zhang, B. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. *Sci. Rep.* 2015, 5, 1–16. [CrossRef]

127. Todesco, M.; Rubio-Somoza, I.; Paz-Ares, J.; Weigel, D. A collection of target mimics for comprehensive analysis of MicroRNA functions and applications in virology. *Rev. Mol. Cell Biol.* 2009, 128, 115–137. [CrossRef] [PubMed]

128. Borah, P.; Das, A.; Milner, M.J.; Ali, A.; Bentley, A.R.; Pandey, R. Long non-coding RNAs as endogenous target mimics and exploration of their role in low nutrient stress tolerance in plants. *Genes* 2018, 9, 459. [CrossRef] [PubMed]

129. Jiang, N.; Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to *Phytophthora infestans* by co-expressing glutaredoxin. *Plant J.* 2017, 89, 577–589. [CrossRef] [PubMed]

130. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to *Phytophthora infestans* by co-expressing glutaredoxin. *Plant J.* 2017, 89, 577–589. [CrossRef] [PubMed]

131. Jalali, S.; Bhartiya, D.; Lalwani, M.K.; Sivasubbu, S.; Scaria, V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. *PLoS ONE* 2013, 8, e53823. [CrossRef] [PubMed]

132. Juan, L.; Wang, G.; Radovich, M.; Schneider, B.P.; Clare, S.E.; Wang, Y.; Liu, Y. Potential roles of microRNAs in regulating photoperiod-sensitive male sterility in rice. *Mol. Plant.* 2012, 5, 1210–1216. [CrossRef]

133. Ding, J.; Shen, J.; Mao, H.; Xie, W.; Li, X.; Zhang, Q. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. *Mol. Plant.* 2012, 5, 1210–1216. [CrossRef]

134. Chen, Y.; Li, X.; Su, L.; Chen, X.; Zhang, S.; Hu, X.; Yang, X.; Lan, Y.; et al. Genome-wide identification and characterization of long non-coding RNAs involved in the early somatic embryogenesis in *Dimocarpus longan* Lour. *BMC Genom.* 2018, 19, 1–19. [CrossRef] [PubMed]

135. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to *Phytophthora infestans* by co-expressing glutaredoxin. *Plant J.* 2017, 89, 577–589. [CrossRef] [PubMed]

136. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to *Phytophthora infestans* by co-expressing glutaredoxin. *Plant J.* 2017, 89, 577–589. [CrossRef] [PubMed]

137. Chen, Y.; Li, X.; Su, L.; Chen, X.; Zhang, S.; Xu, X.; Zhang, Z.; Chen, Y.; Xu, H.; Lin, Y.; et al. Genome-wide identification and characterization of long non-coding RNAs involved in the early somatic embryogenesis in *Dimocarpus longan* Lour. *BMC Genom.* 2018, 19, 1–19. [CrossRef] [PubMed]

138. Chen, Y.; Li, X.; Su, L.; Chen, X.; Zhang, S.; Xu, X.; Zhang, Z.; Chen, Y.; Xu, H.; Lin, Y.; et al. Genome-wide identification and characterization of long non-coding RNAs involved in the early somatic embryogenesis in *Dimocarpus longan* Lour. *BMC Genom.* 2018, 19, 1–19. [CrossRef] [PubMed]

139. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to *Phytophthora infestans* by co-expressing glutaredoxin. *Plant J.* 2017, 89, 577–589. [CrossRef] [PubMed]

140. Matzke, M.; Kanno, T.; Daxinger, L.; Huettel, B.; Matzke, A.J. Secondary siRNAs in plants: Biosynthesis, various functions and applications in virology. *Front. Plant Sci.* 2021, 12, 1–32. [CrossRef]

141. Matzke, M.; Kanno, T.; Daxinger, L.; Huettel, B.; Matzke, A.J. RNA-mediated epigenetic silencing by a long intronic noncoding RNA. *Curr. Opin. Cell Biol.* 2009, 21, 367–376. [CrossRef]

142. Gao, Z.; Liu, H.L.; Daxinger, L.; Pontes, O.; He, X.; Qian, W.; Lin, H.; Xie, M.; Lorkovic, Z.J.; Zhang, S.; et al. An RNA polymerase II and AGO4-associated protein acts in RNA-directed DNA methylation. *Nature* 2010, 465, 106–109. [CrossRef]

143. Zheng, B.; Wang, Z.; Li, S.; Yu, B.; Liu, J.Y.; Chen, X. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in *Arabidopsis*. *Genes Dev.* 2009, 23, 2850–2860. [CrossRef]

144. Law, J.A.; Vashisht, A.A.; Wohlschlegel, J.A.; Jacobsen, S.E. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4 and chromatin remodeling factors, associate with RNA Polymerase IV. *PLoS Genet.* 2011, 7, 7. [CrossRef] [PubMed]

145. Haag, J.R.; Pikaard, C.S. Multi-subunit RNA polymerases IV and V: Purveyors of non-coding RNA for plant gene silencing. *Nat. Rev. Mol. Cell Biol.* 2011, 12, 483–492. [CrossRef] [PubMed]

146. Wierzbiacki, A.T.; Ream, T.S.; Haag, J.R.; Pikaard, C.S. RNA polymerase v transcription guides ARGAONTE4 to chromatin. *Nat. Genet.* 2009, 41, 630–634. [CrossRef] [PubMed]
146. Zhong, X.; Hale, C.J.; Law, J.A.; Johnson, L.M.; Feng, S.; Tu, A.; Jacobsen, S.E. DDR complex facilitates global association of RNA polymerase v to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 2012, 9, 870–875. [CrossRef]

147. Ramirez-Prado, J.S.; Piquerez, S.J.M.; Bendahmane, A.; Hirt, H.; Raynaud, C.; Benhamed, M. Modify the histone to win the battle: Chromatin dynamics in plant-pathogen interactions. Front. Plant Sci. 2018, 9, 1–18. [CrossRef] [PubMed]

148. Nobuta, K.; Lu, C.; Shrivastava, R.; Pillay, M.; De Paoli, E.; Acerbi, M.; Artega-Vazquez, M.; Sidorenko, L.; Jeong, D.H.; Yen, Y.; et al. Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc. Natl. Acad. Sci. USA 2008, 105, 14958–14963. [CrossRef]

149. Boerner, S.; McGinnis, K.M. Computational identification and functional predictions of long noncoding RNA in Arabidopsis. EMBO Rep. 2012, 7, e34074. [CrossRef] [PubMed]

150. Li, S.; Castillo-Gonzalez, C.; Yu, B.; Zhang, X. The functions of plant small RNAs in development and in stress responses. Plant J. 2017, 90, 654–670. [CrossRef]

151. Zhao, C.; Sun, X.; Li, B. Biogenesis and function of extracellular miRNAs. ExRNA 2019, 1, 1–9. [CrossRef]

152. Nadarajah, K.; Kumar, I.S. Drought response in rice: The miRNA story. Int. J. Mol. Sci. 2019, 20, 3766. [CrossRef] [PubMed]

153. Betti, F.; Ladera-Carmona, M.J.; Perata, P.; Loreti, E. RNAi mediated hypoxia stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 9394. [CrossRef]

154. Brant, E.J.; Budak, H. Plant small non-coding RNAs and their roles in biotic stresses. Front. Plant Sci. 2018, 9, 1–9. [CrossRef] [PubMed]

155. César de Lima, J.; Loss-Morais, G.; Margis, R. MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet. Mol. Biol. 2012, 35, 1069–1077. [CrossRef]

156. Djami-Tchatchou, A.T.; Sanan-Mishra, N.; Ntushelo, K.; Dubery, I.A. Functional roles of microRNAs in agronomically important plants:potential as targets for crop protection and production. Front. Plant Sci. 2017, 8, 378. [CrossRef]

157. Celton, J.M.; Gaillard, S.; Bruneau, M.; Pelletier, S.; Aubourg, S.; Martin-Magniette, M.L.; Navarro, L.; Laurens, F.; Renou, J.P. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol. 2014, 203, 287–299. [CrossRef]

158. Zhang, N.; Yang, J.; Wang, Z.; Wen, Y.; Wang, J.; He, W.; Liu, B.; Si, H.; Wang, D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE 2014, 9, e95489. [CrossRef]

159. Zhang, L.; Chia, J.-M.; Kumari, S.; Stein, J.C.; Liu, Z.; Narechana, A.; Maher, C.A.; Guill, K.; McMullen, M.D.; Ware, D. A genome-wide characterization of microRNA genes in maize. PLoS Genet. 2009, 5, e1000716. [CrossRef] [PubMed]

160. Lippman, Z.; Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 2004, 431, 364–370. [CrossRef]

161. Agrawal, N.; Dasaradhi, P.V.; Mohammed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [CrossRef]

162. MacRae, I.J.; Li, F.; Zhou, K.; Cande, W.Z.; Doudna, J.A. Structure of dicer and mechanistic implications for RNAi. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 73–80. [CrossRef] [PubMed]

163. Elbashir, S.M.; Martinez, J.; Patkaniowska, A.; Lendeckel, W.; Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001, 20, 6877–6888. [CrossRef]

164. Schwarz, D.S.; Hvitvånger, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P.D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199–208. [CrossRef]

165. Guo, Q.; Liu, Q.; Smith, N.A.; Liang, G.; Wang, M.B. RNA silencing in Plants: Mechanisms, technologies and applications in horticultural crops.Curr. Genet. 2016, 17, 476–489. [CrossRef] [PubMed]

166. Barber, W.T.; Zhang, W.; Win, H.; Varala, K.K.; Dorweiler, J.E.; Hudson, M.E.; Moose, S.P. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 10444–10449. [CrossRef]

167. Mallory, A.C.; Vaucheret, H. ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO Rep. 2009, 10, 521–526. [CrossRef] [PubMed]

168. Rajagopalan, R.; Vaucheret, H.; Trejo, J.; Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006, 20, 3407–3425. [CrossRef]

169. Vazquez, F.; Vaucheret, H.; Rajagopalan, R.; Lepers, C.; Gasciolli, V.; Mallory, A.C.; Hilbert, J.L.; Bartel, D.P.; Crete, P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 2004, 16, 69–79. [CrossRef] [PubMed]

170. Katiyar, A.; Smita, S.; Muthusamy, S.K.; Chinnusamy, V.; Pandey, D.M.; Bansal, K.C. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front. Plant Sci. 2015, 6, 506. [CrossRef]

171. Matsui, A.; Mizunashi, K.; Tanaka, M.; Kaminema, E.; Nguyen, A.H.; Nakajima, M.; Kim, J.M.; Nguyen, D.; Van Toyoda, T.; Seki, M. TasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. BioMed Res. Int. 2014, 2014, 303451. [CrossRef]

172. Hunter, C.; Willmann, M.R.; Wu, G.; Yoshikawa, M.; de Gutierrez-Nava, M.L.L.; Poethig, R.S. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 2006, 133, 2973–2981. [CrossRef]

173. Yu, D.; Meng, Y.; Zuo, Z.; Xue, J.; Wang, H. NATpipe: An integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes. Sci. Rep. 2016, 6, 8–13. [CrossRef]
174. Jabnoune, M.; Secco, D.; Lecampion, C.; Robaglia, C.; Shu, Q.; Poirier, Y. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 2013, 25, 4166–4182. [CrossRef]

175. Wang, X.J.; Gaasterland, T.; Chua, N.H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 2005, 6, 4. [CrossRef]

176. Lapidot, M.; Pilpel, Y. Genome-wide natural antisense transcription: Coupling its regulation to different regulatory mechanisms. EMBO Rep. 2006, 7, 1216–1222. [CrossRef] [PubMed]

177. Faghihi, M.A.; Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 2009, 10, 637–643. [CrossRef]

178. Faghihi, M.A.; Zhang, M.; Huang, J.; Modarresi, F.; Van der Brug, M.P.; Nalls, M.A.; Cookson, M.R.; St-Laurent, G.; Wahlestedt, C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010, 11, 1–13. [CrossRef] [PubMed]

179. Lu, T.; Zhu, C.; Lu, G.; Guo, Y.; Zhou, Y.; Zhang, Z.; Zhao, Y.; Li, W.; Lu, Y.; Tang, W.; et al. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genom. 2012, 13, 1. [CrossRef] [PubMed]

180. Castel, S.E.; Martienssen, R.A. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013, 14, 100–112. [CrossRef] [PubMed]

181. Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2011, 20, 104–202. [CrossRef] [PubMed]

182. Azevedo, J.; Cooke, R.; Lagrange, T. Taking RISCs with AGO hookers. Curr. Opin. Plant Biol. 2011, 14, 594–600. [CrossRef] [PubMed]

183. Lopez, A.; Ramirez, V.; Garcia-Andrade, J.; Flors, V.; Vera, P. The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genet. 2011, 7, 12. [CrossRef] [PubMed]

184. Dowen, R.H.; Pelizzola, M.; Schmitz, R.J.; Lister, R.; Dowen, J.M.; Nery, J.R.; Dixon, J.E.; Ecker, J.R. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 2012, 109, 32. [CrossRef] [PubMed]

185. Yu, A.; Lepre, G.; Jay, F.; Wang, J.; Bapaume, L.; Wang, Y.; Abraham, A.L.; Penterman, J.; Fischer, R.L.; Voinnet, O.; et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. USA 2013, 110, 2389–2394. [CrossRef] [PubMed]

186. Medina, C.; Da Rocha, M.; Magliano, M.; Raptopoulo, A.; Marteau, N.; Lebrigand, K.; Abad, P.; Favery, B.; Jaubert-Possamai, S. Characterization of siRNAs clusters in Arabidopsis thaliana galls induced by the root-knot nematode Meloidogyne incognita. BMC Genom. 2018, 19, 1–16. [CrossRef] [PubMed]

187. Chinnusamy, V.; Zhu, J.K. RNA-directed DNA methylation and demethylation in plants. Sci. China C Life Sci. 2009, 52, 331–343. [CrossRef] [PubMed]

188. Ku, Y.S.; Wong, J.W.H.; Mui, Z.; Liu, X.; Hui, J.H.L.; Chan, T.F.; Lam, H.M. Small RNAs in plant responses to abiotic stresses: Regulatory roles and study methods. Int. J. Mol. Sci. 2015, 16, 24532–24554. [CrossRef]

189. Ding, S.W.; Lu, R. Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Curr. Opin. Virol. 2011, 1, 533–544. [CrossRef] [PubMed]

190. Sharma, N.; Sahu, P.P.; Puranik, S.; Prasad, M. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol. Biotechnol. 2013, 55, 63–77. [CrossRef]

191. Szittya, G.; Moxon, S.; Pantaleo, V.; Toth, G.; Pilcher, R.L.R.; Moulton, V.; Burgyan, J.; Dalmay, T. Structural and functional analysis of viral siRNAs. PLoS Pathog. 2010, 6, e1000838. [CrossRef]

192. Zhu, B.; Gao, H.; Xu, G.; Wu, D.; Song, S.; Jiang, H.; Zhu, S.; Qi, T.; Xie, D. Arabidopsis ALA1 and ALA2 mediate RNAi-based antiviral immunity. Front. Plant Sci. 2017, 8, 1–9. [CrossRef] [PubMed]

193. Glick, E.; Zrachya, A.; Levy, Y.; Mett, A.; Gafni, Y.; Citovsky, V.; Gafni, Y. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc. Natl. Acad. Sci. USA 2008, 105, 157–161. [CrossRef] [PubMed]

194. Yadav, R.K.; Chattopadhyay, D. Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol. Plant Microbe Interact. 2011, 24, 1189–1197. [CrossRef] [PubMed]

195. Donaire, L.; Wang, Y.; Gonzalez-Ibeas, D.; Mayer, K.F.; Aranda, M.A.; Llave, C. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 2009, 392, 203–214. [CrossRef]

196. Wang, H.; Wang, H.; Duan, X.; Liu, C.; Li, Z. Digital quantitative analysis of microRNA in single cell based on ligation-dependent polymerase colony (Polony). Biosens. Bioelectron. 2017, 95, 146–151. [CrossRef]

197. Dong, Z.; Han, M.H.; Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc. Natl. Acad. Sci. USA 2008, 105, 9970–9975. [CrossRef]

198. Catalanotto, C.; Cognoni, C.; Zardo, G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016, 17, 1712. [CrossRef]

199. Liu, W.W.; Meng, J.; Cui, J.; Luan, Y.S. Characterization and function of microRNA’s in plants. Front. Plant Sci. 2017, 8, 1–7. [CrossRef] [PubMed]
200. Vaucheret, H.; Vazquez, F.; Crete, P.; Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. *Genes* **2004**, *18*, 1187–1197. [CrossRef]

201. Rubio-Somoza, I.; Weigel, D. MicroRNA networks and developmental plasticity in plants. *Trends Plant Sci.* **2011**, *16*, 258–264. [CrossRef]

202. Ochando, I.; Jover-Gil, S.; Jose’ Ripoll, J.; Candela, H.; Vera, A.; Ponce, M.R.; Martinez-Laborda, A.; Micol, J.L. Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in *Arabidopsis*. *Plant Physiol.* **2006**, *141*, 607–619. [CrossRef]

203. Jin, D.; Wang, Y.; Zhao, Y.; Chen, M. MicroRNAs and their cross-talks in plant development. *J. Genet. Genom.* **2013**, *40*, 161–170. [CrossRef] [PubMed]

204. Liu, H.; Yu, H.; Tang, G.; Huang, T. Small but powerful: Function of microRNAs in plant development. *Plant Cell Rep.* **2018**, *37*, 515–528. [CrossRef] [PubMed]

205. Li, C.; Zhang, B. MicroRNAs in control of plant development. *J. Cell. Physiol.* **2016**, *231*, 303–313. [CrossRef]

206. Chen, C.; Zeng, Z.; Liu, Z.; Xia, R. Small RNAs, emerging regulators critical for the development of horticultural traits. *Hortic. Res.* **2018**, *5*, 1–14. [CrossRef]

207. Sunkar, R.; Li, Y.F.; Jagadeeswaran, G. Functions of microRNAs in plant stress responses. *Trends Plant Sci.* **2012**, *17*, 196–203. [CrossRef] [PubMed]

208. Crisp, P.A.; Ganguly, D.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover and epigenetics. *Sci. Adv.* **2016**, *2*, 2. [CrossRef] [PubMed]

209. Shriram, V.; Kumar, V.; Devarumath, R.M.; Khare, T.S.; Wani, S.H. MicroRNAs as potential targets for abiotic stress tolerance in *Arabidopsis thaliana*. *Plant Cell Physiol.* **2016**, *57*, 1–18. [CrossRef]

210. Jatan, R.; Lata, C. Role of microRNAs in abiotic and biotic stress resistance in plants. *Proc. Indian Natl. Sci. Acad.* **2019**, *85*, 553–567. [CrossRef]

211. Zhu, J.; Geisler, M. Keeping it all together: Auxin-actin crosstalk in plant development. *J. Exp. Bot.* **2015**, *66*, 4983–4998. [CrossRef]

212. Hernández, Y.; Sanan-Mishra, N. miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. *Plant Gene* **2017**, *11*, 190–198. [CrossRef]

213. Wang, J.W.; Wang, L.J.; Mao, Y.B.; Cai, W.J.; Xue, H.W.; Chen, X.Y. Control of root cap formation by MicroRNA-targeted auxin response factors in *Arabidopsis*. *Plant Cell* **2005**, *17*, 2204–2216. [CrossRef]

214. Wu, M.F.; Tian, Q.; Reed, J.W. *Arabidopsis* microRNA 167 controls patterns of ARF6 and ARF8 expression and regulates both female and male reproduction. *Development* **2006**, *133*, 4211–4218. [CrossRef] [PubMed]

215. Lu, C.; Fedoroff, N. A mutation in the *Arabidopsis* HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. *Plant Cell* **2000**, *12*, 2351–2365. [CrossRef] [PubMed]

216. Tsuji, H.; Aya, K.; Ueguchi-Tanaka, M.; Shimada, Y.; Nakazono, M.; Watanabe, R.; Nishizawa, N.K.; Gomi, K.; Shimada, A.; Kitano, H.; et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. *Plant J.* **2006**, *47*, 427–444. [CrossRef]

217. Achard, P.; Herr, A.; Baulcombe, D.C.; Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. *Development* **2004**, *131*, 3357–3365. [CrossRef]

218. Guo, H.S.; Xie, Q.; Fei, J.F.; Chua, N.H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for *Arabidopsis* lateral root development. *Plant Cell* **2005**, *17*, 1376–1386. [CrossRef]

219. Iglesias, M.J.; Terrile, M.C.; Windels, D.; Lombardo, M.C.; Bartoli, C.G.; Vazquez, F.; Estelle, M.; Casalongué, C.A. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in *Arabidopsis*. *Plant Cell Physiol.* **2012**, *53*, e107678. [CrossRef]

220. Chen, Z.; Hu, L.; Han, N.; Hu, J.; Yang, Y.; Xiang, T.; Zhang, X.; Wang, L. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in *Arabidopsis thaliana*. *Plant Cell Physiol.* **2015**, *56*, 73–83. [CrossRef]

221. Guo, F.; Han, N.; Xie, Y.; Fang, K.; Yang, Y.; Zhu, M.; Wang, J.; Bian, H. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (*Oryza sativa* L.). *Plant Cell Environ.* **2016**, *39*, 2288–2302. [CrossRef]

222. Jodder, J.; Sieh, D.; Pant, B.D.; May, P.; Devers, E.A.; Elkrog, A.; Schauer, L.; Scheible, W.-R.; Krajinski, F. Expression pattern suggests a role of miR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. *Mol. Plant Microbe Interact.* **2010**, *23*, 915–926. [CrossRef] [PubMed]
228. Fang, X.; Zhao, Y.; Ma, Q.; Huang, Y.; Wang, P.; Zhang, J.; Nian, H.; Yang, C. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. *PLoS ONE* 2013, 8, 12. [CrossRef] [PubMed]

229. Huang, J.; Yang, M.; Zhang, X. The function of small RNAs in plant biotic stress response. *J. Integr. Plant Biol.* 2016, 58, 312–327. [CrossRef]

230. Xia, K.; Wang, R.; Ou, X.; Fang, Z.; Tian, C.; Duan, J.; Wang, Y.; Zhang, M. OsTIR1 and OsAFB2 down regulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. *PLoS ONE* 2012, 7, e30039. [CrossRef]

231. Gu, M.; Xu, K.; Chen, A.; Zhu, Y.; Tang, G.; Xu, G. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in *Solanum lycopersicum*. *Physiol. Plant.* 2010, 138, 226–237. [CrossRef]

232. Xie, Z.; Allen, E.; Fahlgren, N.; Calamari, A.; Givan, S.A.; Carrington, J.C. Expression of *Arabidopsis* miRNA genes. *Plant Physiol.* 2005, 138, 2145–2154. [CrossRef]

233. Kawashima, C.G.; Yoshimoto, N.; Maruyama-Nakashita, A.; Tsuchiya, Y.N.; Saito, K.; Takahashi, H.; Dalmay, T. Sulphur starvation induces the expression of micro-RNA-395 and one of its target genes but in different cell types. *Plant J.* 2009, 57, 313–321. [CrossRef] [PubMed]

234. Megraw, M.; Baev, V.; Rusinov, V.; Jensen, S.T.; Kalantidis, K.; Hatzigeorgiou, A.G. MicroRNA promoter element discovery in *Arabidopsis*. *RNA* 2006, 12, 1612–1619. [CrossRef]

235. Parizotto, E.A.; Dunoyer, P.; Rahm, N.; Himber, C.; Voinnet, O. In vivo investigation of the transcription, processing, endonucleolytic activity and functional relevance of the spatial distribution of a plant miRNA. *Genes Dev.* 2004, 1818, 2237–2242. [CrossRef]

236. Xie, Z.; Kasschau, K.D.; Carrington, J.C. Negative feedback regulation of Dicer-Like1 in *Arabidopsis* by microRNA-guided mRNA degradation. *Curr. Biol.* 2003, 13, 784–789. [CrossRef]

237. Pouch-Pelissier, M.N.; Pelissier, T.; Elmayan, T.; Vaucheret, H.; Boko, D.; Jantsch, M.F.; Deragon, J.M. SINE RNA induces severe developmental defects in *Arabidopsis thaliana* and interacts with *HYLI* (DRB1), a key member of the DCL1 complex. *PLoS Genet.* 2008, 4, e1000096. [CrossRef] [PubMed]

238. Montgomery, T.A.; Howell, M.D.; Cuperus, J.T.; Li, D.; Hansen, J.E.; Alexander, A.L.; Chapman, E.J.; Fahlgren, N.; Allen, E.; Carrington, J.C. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. *Cell* 2008, 133, 128–141. [CrossRef]

239. Takeda, A.; Iwasaki, S.; Watanabe, T.; Usutumi, M.; Watanabe, Y. The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. *Plant Cell Physiol.* 2008, 49, 493–500. [CrossRef]

240. Vazquez, F.; Blevins, T.; Althas, J.; Boller, T.; Meins, F. Jr. Evolution of *Arabidopsis* miR genes generates novel microRNA classes. *Nucleic Acids Res.* 2008, 36, 6429–6438. [CrossRef]

241. Ru, P.; Xu, L.; Ma, H.; Huang, H. Plant fertility defects induced by the enhanced expression of microRNA167. *Cell Res.* 2006, 16, 457–465. [CrossRef]

242. Cartolano, M.; Castillo, R.; Efremova, N.; Kuckenberg, M.; Zethof, J.; Gerats, T.; Schwarz-Sommer, Z.; Vandenbussche, M. A conserved microRNA module exerts homeotic control over *Petunia hybrida* and *Antirrhinum majus* floral organ identity. *Nat. Genet.* 2007, 39, 901–905. [CrossRef] [PubMed]

243. Mlotshwa, S.; Yang, Z.; Kim, Y.J.; Chen, X. Floral patterning defects induced by *Arabidopsis* APETALA2 and microRNA172 expression in *Nicotiana benthamiana*. *Plant Mol. Biol.* 2006, 61, 781–793. [CrossRef] [PubMed]

244. Song, J.B.; Gao, S.; Sun, D.; Li, H.; Shu, X.X.; Yang, Z.M. miR394 and LCR are involved in *Arabidopsis* salt and drought stress responses in an abscisic acid-dependent manner. *BMC Plant Biol.* 2013, 13, 210. [CrossRef] [PubMed]

245. Rodriguez, R.E.; Mechcia, M.A.; Debernardi, J.M.; Schommer, C.; Weigel, D.; Palatnik, J.F. Control of cell proliferation in *Arabidopsis thaliana* by microRNA miR396. *Development* 2010, 137, 103–112. [CrossRef] [PubMed]

246. Song, Z.; Zhang, L.; Wang, Y.; Li, H.; Li, S.; Zhao, H.; Zhang, H. Constitutive expression of miR408 improves biomass and seed yield in *Arabidopsis*. *Front. Plant Sci.* 2018, 8, 1–14. [CrossRef]

247. Gupta, S.K.; Rai, A.K.; Kanwar, S.S.; Chand, D.; Singh, N.K.; Sharma, T.R. The single functional blast resistance gene *Pi54* activates a complex defense mechanism in rice. *J. Exp. Bot.* 2012, 63, 757–772. [CrossRef]

248. Kutter, C.; Schoh, H.; Stadler, M.; Meins, F.; Si-Ammour, A. MicroRNA-mediated regulation of stomatal development in *Arabidopsis*. *Plant Cell* 2007, 19, 2417–2429. [CrossRef]

249. Rybel, B.D.; Vassileva, V.; Parizot, B.; Demeulemaere, M.; Grunewald, W.; Audenaert, D.; Campenhout, J.V.; Overvoorde, P.; Jansen, L.; Vanneste, S. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. *Curr. Biol.* 2010, 20, 1697–1706. [CrossRef]

250. Talmor-Neiman, M.; Stav, R.; Frank, W.; Voss, B.; Arazzi, T. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. *Plant J.* 2006, 47, 25–37. [CrossRef]

251. liang, C.; Wang, W.; Ma, J.; Wang, J.; Zhou, F.; Li, W.; Yu, Y.; Zhang, L.; Huang, W.; Huang, X. Identification of differentially expressed microRNAs of sunflower seedlings under drought stress. *Agron. J.* 2020, 112, 2472–2484. [CrossRef]

252. Banerjee, S.; Sirohi, A.; Ansari, A.A.; Gill, S.S. Role of small RNAs in abiotic stress responses in plants. *Plant Gene* 2017, 11, 180–189. [CrossRef]

253. Das, R.; Mondal, S.K. Plant miRNAs: Biogenesis and its functional validation to combat drought stress with special focus on maize. *Plant Gene* 2021, 27, 100294. [CrossRef]
254. Upadhyay, U.; Singh, P.; Verma, O.P. Role of microRNAs in regulating drought stress tolerance in maize. *J. Pharmacogn. Phytochem.* 2019, 8, 328–331.

255. Niu, C.; Li, H.; Jiang, L.; Yan, M.; Li, C.; Geng, D.; Xie, Y.; Yan, Y.; Shen, X.; Chen, P.; et al. Genome-wide identification of drought-responsive microRNAs in two sets of malus from interspecific hybrid progenies. *Hortic. Res.* 2019, 6, 1. [CrossRef] [PubMed]

256. Chakraborty, A.; Viswanath, A.; Malipatil, R.; Rathore, A.; Thirunavukkarasu, N. Structural and functional characteristics of miRNAs in five strategic millet species and their utility in drought tolerance. *Front. Genet.* 2020, 11, 1–15. [CrossRef]

257. Singh, U.; Khemka, N.; Rajkumar, M.S.; Garg, R.; Jain, M. PmIPcPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. *Nucleic Acids Res.* 2017, 45, 22. [CrossRef]

258. Liu, X.; Zhang, X.; Sun, B.; Hao, L.; Liu, C.; Zhang, D.; Tang, H.; Li, C.; Li, Y.; Shi, Y.; et al. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. *PLoS ONE* 2019, 14, e0219176. [CrossRef]

259. Qi, X.; Xie, S.; Liu, Y.; Yi, F.; Yu, J. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. *Plant Mol. Biol.* 2013, 83, 459–473. [CrossRef]

260. Muthusamy, M.; Uma, S.; Backiyarani, S.; Saraswathi, M.S. Genome-wide screening for novel, drought stress-responsive long non-coding RNAs in drought-stressed leaf transcriptome of drought-tolerant and -susceptible banana (*Musa* spp.) cultivars using Illumina high-throughput sequencing. *Plant Biotechnol. Rep.* 2015, 9, 279–286. [CrossRef]

261. Wu, C.; Ding, Z.; Chen, M.; Yang, G.; Tie, W.; Yan, Y.; Zeng, J.; He, G.; Hu, W. Identification and functional prediction of IncRNAs in response to PEG andABA treatment in cassava. *Environ. Exp. Bot.* 2019, 166, 103809. [CrossRef]

262. Sukasmanr, R.; Saithong, T.; Thammarongtham, C.; Kalapanulak, S. Genomic and transcriptomic analysis identified novel putative cassava IncRNAs involved in cold and drought stress. *Genes* 2020, 11, 366. [CrossRef]

263. Wang, J.; Lin, J.; Kan, J.; Wang, H.; Li, X.; Yang, Q.; Li, H.; Chang, Y. Genome-wide identification and functional prediction of novel drought-responsive IncRNAs in *Pyrus betulifolia*. *Genes* 2018, 9, 311. [CrossRef]

264. Eom, S.H.; Lee, H.J.; Lee, J.H.; Wi, S.H.; Kim, S.K.; Hyun, T.K. Identification and functional prediction of drought-responsive long non-coding RNA in tomato. *Agronomy* 2019, 9, 629. [CrossRef]

265. Lv, Y.; Liang, Z.; Ge, M.; Qi, W.; Zhang, T.; Lin, F.; Peng, Z.; Zhao, H. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (*Zea mays* L.). *BMC Genom.* 2016, 17, 1–15. [CrossRef] [PubMed]

266. Han, Y.; Li, X.; Yan, Y.; Duan, M.-H.; Xu, J.-H. Identification, characterization and functional prediction of circular RNAs in maize. *Mol. Genet. Genom.* 2020, 295, 491–503. [CrossRef]

267. Xu, J.; Wang, Q.; Freeling, M.; Zhang, X.; Xu, Y.; Mao, Y.; Tang, X.; Wu, F.; Lan, H.; Cao, M.; et al. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. *Nucleic Acids Res.* 2017, 45, 5126–5141. [CrossRef] [PubMed]

268. Liu, H.H.; Tian, X.; Li, Y.J.; Wu, C.A.; Zheng, C.C. Microarray-based analysis of stress-regulated microRNAs in *Arabidopsis thaliana*. *RNA* 2008, 14, 836–843. [CrossRef] [PubMed]

269. Zhou, L.; Liu, Y.; Liu, Z.; Kong, D.; Duan, M.; Luo, L. Genome-wide identification and analysis of drought-responsive microRNAs in *Oryza sativa*. *J. Exp. Bot.* 2011, 61, 4157–4168. [CrossRef] [PubMed]

270. Zhang, F.; Luo, X.; Zhou, Y.; Xie, J. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (*Oryza rufipogon* Griff.). *Biotechnol. Lett.* 2016, 38, 711–721. [CrossRef] [PubMed]

271. Zhao, B.; Liang, R.; Ge, L.; Li, W.; Xiao, H.; Lin, H.; Ruan, K.; Jin, Y. Identification of drought-induced microRNAs in rice. *Biochem. Biophys. Res. Commun.* 2007, 354, 585–590. [CrossRef]

272. Fard, E.M.; Ghabooli, M.; Mehri, N.; Bakhshi, B. Regulation of miR159 and miR396 mediated by *Piriformospora indica* confer drought tolerance in rice. *J. Plant Mol. Breed.* 2017, 5, 10–18. [CrossRef]

273. Liu, X.; Dong, X.; Liu, Z.; Shi, Z.; Jiang, Y.; Qi, M.; Xu, T.; Li, T. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. *J. Plant Biol.* 2016, 92, 313–336. [CrossRef]

274. Ramachandran, P.; Wang, G.; Augstein, F.; De Vries, J.; Carlsbecker, A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signaling via miR165. *Development* 2018, 145, 1–7. [CrossRef]

275. Yan, J.; Zhao, C.; Zhou, J.; Yang, Y.; Wang, P.; Zhu, X.; Tang, G.; Bressan, R.A.; Zhu, J.-K. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in *Arabidopsis thaliana*. *PLoS Genet.* 2016, 12, e1006416. [CrossRef] [PubMed]

276. Zhang, J.; Zhang, H.; Srivastava, A.K.; Pan, Y.; Bai, J.; Fang, J.; Shi, H.; Zhu, J.-K. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. *Plant Physiol.* 2018, 176, 2082–2094. [CrossRef] [PubMed]

277. Kinoshiita, N.; Wang, H.; Kasahara, H.; Liu, J.; MacPherson, C.; Machida, Y.; Kamiya, Y.; Hannah, M.A.; Chua, N.-H. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates *Arabidopsis* root architecture changes during high osmotic stress. *Plant Cell* 2012, 24, 3590–3602. [CrossRef]

278. Du, Q.; Zhao, M.; Gao, W.; Sun, S.; Li, W.X. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in *Arabidopsis*. *Plant J.* 2017, 91, 22–33. [CrossRef] [PubMed]

279. Ma, C.; Burd, S.; Lers, A. miR408 is involved in abiotic stress responses in *Arabidopsis*. *Plant J.* 2015, 84, 169–187. [CrossRef]
294. Wang, T.; Chen, L.; Zhao, M.; Tian, Q.; Zhang, W.H. Identification of drought-responsive microRNAs in Tibetan wild barley. *Int. J. Mol. Sci.* 2020, 21, 2795. [CrossRef]

281. Jatan, R.; Chauhan, P.S.; Lata, C. *Pseudomonas putida* modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (*Cicer arietinum* L.). *Genomica* 2019, 1114, 509–519. [CrossRef]

285. Li, B.; Qin, Y.; Duan, H.; Yin, W.; Xia, X. Genome-wide characterization of new and drought stress responsive microRNAs in *Populus euphratica*. *Plant Biotechnol. J.* 2013, 12, 293–305. [CrossRef] [PubMed]

289. Mica, E.; Gianfranceschi, L.; Pe, M.E. Characterization of five microRNA families in maize. *Agric. Sci.* 2013, 62, 3765–3779. [CrossRef]

286. Wei, L.; Zhang, D.; Xiang, F.; Zhang, Z. Differentially expressed miRNAs potentially involved in the regulation of drought mechanism to drought stress in maize seedlings. *Int. J. Plant Sci.* 2009, 170, 979–989. [CrossRef]

287. Seeve, C.M.; Sunkar, R.; Zheng, Y.; Liu, L.; Liu, Z.; McMullen, M.; Nelson, S.; Sharp, R.E.; Oliver, M.J. Water-deficit responsive microRNAs in the primary root growth zone of maize. *BMC Plant Biol.* 2019, 19, 1–16. [CrossRef]

288. Aravind, J.; Rinku, S.; Pooja, B.; Shikha, M.; Mallikarjuna, M.G.; Kumar, A.; Rao, A.R.; Nepolean, T. Identification, characterization and functional validation of drought-responsive microRNAs in subtropical maize inbreds. *Front. Plant Sci.* 2017, 8, 941. [CrossRef]

280. Qiu, C.W.; Liu, L.; Feng, X.; Hao, P.F.; He, X.; Cao, F.; Wu, F. Genome-wide identification and characterization of drought stress responsive microRNAs in *Pseudomonas putida* modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (*Cicer arrietinum* L.). *Genomica* 2019, 1114, 509–519. [CrossRef]

284. Li, C.; Li, Y.; Bai, L.; He, C.; Yu, X. Dynamic expression of miRNAs and their targets in the response to drought stress of grafted cucumber seedlings. *Hortic. Plant J.* 2016, 2, 41–49. [CrossRef]

281. Jatan, R.; Chauhan, P.S.; Lata, C. *Pseudomonas putida* modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (*Cicer arrietinum* L.). *Genomica* 2019, 1114, 509–519. [CrossRef]

285. Li, B.; Qin, Y.; Duan, H.; Yin, W.; Xia, X. Genome-wide characterization of new and drought stress responsive microRNAs in *Populus euphratica*. *Plant Biotechnol. J.* 2013, 12, 293–305. [CrossRef] [PubMed]

282. Wei, L.; Zhang, D.; Xiang, F.; Zhang, Z. Differentially expressed miRNAs potentially involved in the regulation of drought mechanism to drought stress in maize seedlings. *Int. J. Plant Sci.* 2009, 170, 979–989. [CrossRef]

283. Zhou, M.; Li, D.; Li, Z.; Hu, Q.; Yang, C.; Zhu, L.; Luo, H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic Creeping bentgrass. *Plant Physiol.* 2013, 161, 1375–1391. [CrossRef] [PubMed]

286. Wei, L.; Zhang, D.; Xiang, F.; Zhang, Z. Differentially expressed miRNAs potentially involved in the regulation of drought mechanism to drought stress in maize seedlings. *Int. J. Plant Sci.* 2009, 170, 979–989. [CrossRef]

287. Seeve, C.M.; Sunkar, R.; Zheng, Y.; Liu, L.; Liu, Z.; McMullen, M.; Nelson, S.; Sharp, R.E.; Oliver, M.J. Water-deficit responsive microRNAs in the primary root growth zone of maize. *BMC Plant Biol.* 2019, 19, 1–16. [CrossRef]

288. Aravind, J.; Rinku, S.; Pooja, B.; Shikha, M.; Mallikarjuna, M.G.; Kumar, A.; Rao, A.R.; Nepolean, T. Identification, characterization and functional validation of drought-responsive microRNAs in subtropical maize inbreds. *Front. Plant Sci.* 2017, 8, 941. [CrossRef]

289. Mica, E.; Gianfranceschi, L.; Pe, M.E. Characterization of five microRNA families in maize. *J. Exp. Bot.* 2006, 57, 2601–2612. [CrossRef]

290. Lu-yang, H.; Xu-yang, L.; Xiao-Jing, Z.; Bao-Cheng, S.; Cheng, L.; Deng-Feng, Z.; Huai-Jun, T.; Chuan-hui, L.; Yong-Xiang, L.; Yun-Su, S. Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing. *J. Integr. Agric.* 2020, 19, 449–464. [CrossRef]

291. Bakhshi, B.; Fard, E.M.; Salekdeh, G.H.; Bihamta, M.R. Evaluation of miR398 differential expression in rice under drought stress condition. *Bull. Georg. Natl. Acad. Sci.* 2014, 12, 8–92.

292. Sepúlveda-García, E.B.; Pulido-Barajas, J.F.; Huerta-Heredia, A.A.; Peña-Castro, J.M.; Liu, R.; Barrera-Figueroa, B.E. Differential expression of maize and teosinte micrornas under submergence, drought and alternated stress. *Plants* 2020, 9, 1367. [CrossRef] [PubMed]

293. Arshad, M.; Feyissa, B.A.; Amyot, L.; Aung, B.; Hannoufa, A. MicroRNA156 improves drought stress tolerance in alfalfa (*Medicago sativa*) by silencing SPL13. *Plant Sci.* 2017, 258, 122–136. [CrossRef] [PubMed]

294. Wang, T.; Chen, L.; Zhao, M.; Tian, Q.; Zhang, W.H. Identification of drought-responsive microRNAs in *Medicago truncatula* by genome-wide high-throughput sequencing. *BMC Genom.* 2011, 12, 8–13. [CrossRef]

295. Singh, S.; Kumbar, A.; Pandab, D.; Modi, M.K.; Sena, P. Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. *Plant Gene* 2020, 21, 100213. [CrossRef]

296. Fantao, Z.; Yuan, L.; Meng, Z.; Yi, Z.; Hongping, C.; Bional, H.; Jiankun, X. Identification and characterization of drought stress-responsive novel microRNAs in Dongxiang wild rice. *Rice Sci.* 2018, 25, 175–184. [CrossRef]

297. Gentile, A.; Ferreira, T.H.; Mattos, R.S.; Dias, L.L.; Hoshino, A.A.; Carneiro, M.S.; Souza, G.M.; Tercillo, C., Jr.; Nogueira, R.M.; Endres, L.; et al. Effects of drought on the microtranscriptome of field-grown sugarcane plants. *Planta* 2013, 237, 783–798. [CrossRef]

298. Balyan, S.; Kumar, M.; Mutum, R.D.; Raghuvanshi, U.; Agarwal, P.; Mathur, S.; Raghuvanshi, S. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina. *Sci. Rep.* 2017, 71, 1–17. [CrossRef]

299. Trindade, I.; Capitao, C.; Dalmay, T.; Fevereiro, M.P.; Santos, D.M. miR398 and miR408 are up regulated in response to water deficit in Medicago truncatula. *Plantana* 2010, 231, 705–716. [CrossRef] [PubMed]

300. Shuai, P.; Liang, D.; Zhang, Z.; Yin, W.; Xia, X. Identification of drought-responsive novel and conserved *Populus trichocarpa* microRNAs by high-throughput sequencing and their targets using degradome analysis. *BMC Genom.* 2013, 14, 1. [CrossRef]

301. Ren, Y.; Chen, L.; Zhang, Y.; Kang, X.; Zhang, Z.; Wang, Y. Identification of novel and conserved *Populus tomentosa* microRNA as components of a response to water stress. *Funct. Integr. Genom.* 2012, 12, 327–339. [CrossRef]

302. Pagliarani, C.; Vitali, M.; Ferrero, M.; Vitulo, N.; Incarbone, M.; Lovisois, C.; Valle, G.; Schubert, A. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. *Plant Physiol.* 2017, 173, 2180–2195. [CrossRef]

303. Kong, Y.; Endres, L.; et al. Effects of drought on the microtranscriptome of field-grown sugarcane plants. *Planta* 2013, 237, 783–798. [CrossRef]

304. Li, J.; Fu, F.; An, M.; Zhou, S.; She, Y.; Li, W. Differential expression of microRNAs in response to drought stress in maize. *J. Integr. Agric.* 2013, 12, 1414–1422. [CrossRef]

305. Ferdous, J.; Hussain, S.S.; Shi, B.J. Role of microRNAs in plant drought tolerance. *Plant Biotechnol. J.* 2015, 13, 293–305. [CrossRef] [PubMed]

306. Pradhan, A.; Naik, N.; Sahoo, K.K. RNAi mediated drought and salinity stress tolerance in plants. *Am. J. Plant Sci.* 2015, 06, 1990–2008. [CrossRef]
307. Visentin, I.; Pagliarani, C.; Deva, E.; Caracci, A.; Turečková, V.; Novák, O.; Lovisołô, C.; Schubert, A.; Cardinale, F. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. *Plant Cell Environ.* 2020, 43, 1613–1624. [CrossRef] [PubMed]

308. Li, W.X.; Oono, Y.; Zhu, J.; He, X.J.; Wu, J.M.; Iida, K.; Lu, X.Y.; Cui, X.; Jin, H.; Zhu, J.K. The *Arabidopsis* NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. *Plant Cell* 2008, 20, 2238–2251. [CrossRef]

309. Yu, Y.; Ni, Z.; Wang, Y.; Wán, H.; Hu, Z.; Jiang, Q.; Sun, X.; Zhang, H. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic *Arabidopsis thaliana*. *Plant Sci.* 2019, 285, 68–78. [CrossRef]

310. Zhang, X.; Zou, Z.; Gong, P.; Zhang, J.; Ziaf, K.; Li, H.; Xiao, F.; Ye, Z. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. *Biotechnol. Lett.* 2011, 33, 403–409. [CrossRef] [PubMed]

311. Liu, Q.; Wang, Z.; Yu, S.; Li, W.; Zhang, M.; Yang, J.; Li, D.; Yang, J.; Li, C. Pu-miR172d regulates stomatal density and water-use efficiency via targeting *PuGTL1* in poplar. *J. Exp. Bot.* 2021, 72, 1370–1383. [CrossRef]

312. Arshad, M.; Gruber, M.Y.; Hannoufa, A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. *Sci. Rep.* 2018, 8, 1–13. [CrossRef] [PubMed]

313. Pieczynski, M.; Marczewski, W.; Hennig, J.; Dolata, J.; Bielewicz, D.; Piontek, P.; Wyrzykowska, A.; Krusiewicz, D.; Strzelczyk-Zyta, D.; Konopka-Postupolska, D.; et al. Down regulation of *CBP80* gene expression as a strategy to engineer a drought-tolerant potato. *Plant Biotech. J.* 2013, 11, 459–469. [CrossRef] [PubMed]

314. Yue, E.; Cao, H.; Liu, B. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in *Oryza sativa*. *Plants* 2020, 9, 1377. [CrossRef] [PubMed]

315. Quattro, C.; De Enrico Pe, M.; Bertolini, E. Long noncoding RNAs in the model species *Brachypodium distachyon*. *Sci. Rep.* 2017, 7, 1–14. [CrossRef] [PubMed]

316. Zhang, H.; Tao, Z.; Hong, H.; Chen, Z.; Wu, C.; Li, X.; Xiao, J.; Wang, S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. *Nat. Plants* 2016, 2, 3. [CrossRef]

317. Nosaka, M.; Itoh, J.I.; Nagato, Y.; Ono, A.; Ishiwata, A.; Sato, Y. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. *PLoS Genet.* 2012, 8, e1002953. [CrossRef]

318. Sharma, N.; Kumar, S.; Sanan-Mishra, N. Osa-miR820 regulatory node primes rice plants to tolerate salt stress in an agronomically advantageous manner. *bioRxiv* 2021. [CrossRef]

319. Creasey, K.M.; Zhai, J.; Borges, F.; Van Ex, F.; Regulski, M.; Meyers, B.C.; Martienssen, R.A. miRNAs trigger widespread epigenetically activated siRNAs from transposons in *Arabidopsis*. *Nature* 2014, 508, 411–415. [CrossRef]

320. Li, Y.; Li, C.; Xia, J.; Jin, Y. Domestication of transposable elements into microRNA genes in plants. *PLoS ONE* 2011, 6, e19212. [CrossRef]

321. Pant, B.D.; Buhtz, A.; Kehr, J.; Scheible, W.R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. *Plant J.* 2008, 53, 731–738. [CrossRef]

322. Huen, A.K.; Rodriguez-Medina, C.; Ho, A.Y.Y.; Atkins, C.A.; Smith, P.M.C. Long-distance movement of phosphate starvation-responsive microRNAs in *Arabidopsis*. *Plant Biol.* 2017, 19, 643–649. [CrossRef] [PubMed]

323. Akdogan, G.; Tufekci, E.D.; Uranbey, S.; Unver, T. miRNA-based drought regulation in wheat. *Funct. Integr. Genom.* 2016, 16, 221–233. [CrossRef] [PubMed]

324. Pagliarani, C.; Gambino, G. Small RNA mobility: Spread of RNA silencing effectors and its effect on developmental processes and stress adaptation in plants. *Int. J. Mol. Sci.* 2019, 20, 4306. [CrossRef]

325. Pan, W.J.; Tao, J.J.; Cheng, T.; Bian, X.H.; Wei, W.; Zhang, W.K.; Ma, B.; Chen, S.Y.; Zhang, J.S. Soybean miR172a improves salt tolerance and can function as a long-distance signal. *Mol. Plant* 2016, 9, 1337–1340. [CrossRef]