Urban Transportation: Performance and Problems
(Case Study: Route of ABG, CKL, and AT)

Septiana Hariyani
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
septianahariyani@ub.ac.id

Budi Sugianto Waloejo
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
budieswe@ub.ac.id

Mahasti Adityasari
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
adityasarimahasti@gmail.com

Abstract—ABG, CKL, and AT are public transportation (called angkot) with the longest route in Malang. The length of the routes of ABG, CKL, and AT is 26m, 22Km, and 18Km. This research aims to determine the performance of three public transportation and to provide a new route recommendation. The operational performance is assessed from headway, load factor, and travel time. The service performance is assessed from safety, comfort, affordability, and regularity. Result of the operational performance shows that the load factor of three public transportation has met the specified standard, the headway and the travel time of ABG and AT has met the standards, however, CKL’s headway and travel time have not met the standard. The Importance-Performance Analysis (IPA) shows that there are some service attributes which need to be improved. The recommendations that can be given are shortened the trajectory of ABG and extend the track for CKL and AT.

Keywords: Importance Performance Analysis, operational performance, public transportation, routes, service performance

I. INTRODUCTION

Transportation is a type of service that can be used to move goods from an area (origin) to another area (destination) [1], [2]. Transportation requests will arise if there is a purpose in the request, for example, the desire for recreation, the desire to work or go to school, the desire to shop and so on [3]. Transportation requests are inseparable from the needs and availability of transportation that serves the movement of people and goods.

One of the urban transportation that can be used by society is city transportation [4]. City transportation (angkot) is a facility that serves the movement of both passengers and goods in an urban area. Angkot is in the form of motorized vehicles and used by the community with certain fares collected directly or indirectly [5]. Angkot has a predetermined route and different travel times in serving community movements.

Malang has 25 public transportation routes with the number of vehicles in operation is 1153 vehicles [6]. Each angkot has different routes and destinations. The optimal city transportation route can be seen from the distance and travel time of a trip by paying attention to the density of the road at a certain time [7], [8]. The density of the road at a certain time can affect the travel time of an angkot from its origin to the destination. If the traffic volume exceeds the existing road capacity, it will cause transportation problems which are called congestion [9].

ABG, CKL, and AT are angkot with the longest routes compared to other angkot in Malang City. The length of the ABG route is 26 Km which stretches from the northern part of Malang City to the south. The length of the CKL route is 22 km that stretches from the east to the west of Malang City. Whereas AT has a route length of 18 Km that stretches from the north to the west of Malang City. The three angkot pass through the road sections which often experience congestion at certain times (peak time), namely Sunandar Priyo Sudamoro Street, Kol. Sugiono Street, Gatot Subroto Street, Ranu Grati Street, and Panji Suroso Street [6]. Those roads are not only passed by ABG, CKL, and AT but also by many other angkot with different routes so that overlapping routes occur. The overlapping route can affect service performance and operational performance of ABG, CKL, and AT.

The operational performance of ABG, CKL, and AT have not met the standards set by the Director-General of Land Transportation in 2002, i.e. the standard for load factor is 70% during peak hours and non-busy hours and the headway set is 2-5 minutes during peak hours and 5-10 minutes when the hours are not busy. The load factor for ABG routes is only 31% with 19 minutes of headway [10]. The CKL route load factor is 34% with 18 minutes headway while the load factor AT route is 43% with 27 minutes headway [6].

The objectives of this study are twofold. The first is to determine the performance of public transportation in Malang City, especially the ABG, CKL, and AT routes, by assessing the operational performance of public transportation and service performance. The second is to provide recommendations for optimal city transport route in Malang City based on the trip generation of Malang residents.

II. RESEARCH METHODOLOGY

Stratified Random Sampling is used to calculate the samples. The sample size is determined using the Slovin formula [11].

\[n = \frac{N(1+N(e)^2)}{1+N(e)^2} + \frac{77(1+77(10%)^2)}{2} \] \hspace{1cm} (1)
where,
\(n \) = number of sample \\
\(N \) = population \\
\(e \) = significance level =10%

Sample for each angkot can be calculated using (2).

\[n = (\text{angkot}/\text{population}) \times \text{Sample} \] \hspace{1cm} (2)

Summary of research sample is shown in TABLE I.

No.	Route	Angkot Sample	Passengers Sample
1	ABG	20	83
2	CKL	10	72
3	AT	14	77
Total		44	232

Headway analysis is used to determine the difference in time needed between two city transports with the same route [4], [13].

\[\text{Headway (H)} = \frac{60}{\text{Frequency}} \] \hspace{1cm} (3)

Load Factor Analysis is used to compare the number of passengers in city transportation with the transport capacity [4], [12].

\[\text{Load Factor (LF)} = \frac{(\text{No. of Passengers}/\text{Capacity}) \times 100\%}{(4)} \]

Travel Time Analysis aims to determine the effectiveness of public transport by calculating the travel time of public transport trips from origin to destination [4], [13].

\[W = \frac{T}{J} \] \hspace{1cm} (5)

Importance-Performance Analysis (IPA) used to measure the level of importance along with the satisfaction of angkot customers towards the services of security, safety, comfort, affordability, and regularity of angkot in Malang City [14]. The level of conformity is calculated using:

\[T_{ki} = \left(\frac{X_i}{Y_i} \right) \times 100\% \] \hspace{1cm} (6)

where,
\(T_{ki} \) = Level of conformity \\
\(X_i \) = Performance score \\
\(Y_i \) = Importance score

The average score for each variable was plotted in the two-dimensional state space to create the IPA diagram. The vertical axis illustrates the importance score, while the performance score is labeled by the horizontal axis. The IPA diagram consists of four quadrants, i.e., concentrate here, keep up with the good work, low priority, and possibly overkill. The first-quadrant, i.e., concentrate here, which is located in the north-west corner is the one with low performance but importantly perceived by the customers, therefore the company should invest more to improve these attributes so the customers will be delighted. The second-quadrant is kept up with the good work. It is the one that is considered as important and the customers are fond of the performance of the service. The third-quadrant is a low priority. The attribute belongs here are performing well but customers perceive them as less important when compared with other attributes. The last or the fourth-quadrant is considered less important by the customers and felt too excessive so that need to be reduced due to the excessive investment. Trip Generation Analysis aims to estimate the amount of movement from the origin zone to the destination zone [3], [7]. Malang City is divided into 27 zones spread in each sub-district.

III. RESULT

A. Passenger Profile

The participants of this survey were required to have been experienced in doing transactions with the object of the study. The potential participants were first approached and asked if they agreed to participate in the survey. The profile of the passengers is shown in TABLE II.

No.	Question Item	ABG	CKL	AT
1	Age in year	21-30	21-30	31-40
2	Sex	Female	Female	Female
3	Occupation	Employee	Student	Employee
4	Income level	Rp 1.000.000 – Rp 1.500.000	< Rp 1.000.000	Rp 1.000.000 – Rp 1.500.000
5	Intention	Transport to work	Transport to work	Transport to work
6	Travel time	<30 minutes	<30 minutes	<30 minutes
7	Fare	< Rp 10.000	< Rp 10.000	< Rp 10.000

B. Headway Analysis

The headway of ABG, CKL, and AT is declared correspond if it meets the standards set by the Director-General of Land Transportation in 2002 which are shown in TABLE III. TABLE III summarizes the headway of ABG, CKL, and AT.

Route	Operational Hour	Weekday (in minutes)	Weekend (in minutes)	Explanation
Arjosari – Gadang	Busy	3.58	3.18	Met the standard
Non-busy	4.5	5.43		Met the standard
Gadang – Arjosari	Busy	3.66	4.1	Met the standard
Non-busy	4.84	5.16		Met the standard
Cemoro Kandang – Landungsari	Busy	11.68	8.81	Haven’t met the standard
Non-busy	20.15	22.70		Haven’t met the standard
TABLE IV. SUMMARY OF LOAD FACTOR OF ABG, CKL, AND AT

Route	Operational Hour	Weekday (in minutes)	Weekend (in minutes)	Explanation
Arjosari – Gadang	Busy	25%	23.81%	Haven’t met the standard
	Non-busy	12.62%	17.14%	Haven’t met the standard
Gadang – Arjosari	Busy	21.43%	27.3%	Haven’t met the standard
	Non-busy	19.79%	23.96%	Haven’t met the standard
Cemoro Kandang – Landungsari	Busy	19.68%	13.75%	Haven’t met the standard
	Non-busy	20.06%	11.7%	Haven’t met the standard
Landungsari – Cemoro Kandang	Busy	21.35%	22.22%	Haven’t met the standard
	Non-busy	23.65%	19.84%	Haven’t met the standard
Arjosari – Tidar	Busy	34.67%	35.28%	Haven’t met the standard
	Non-busy	24.55%	21.08%	Haven’t met the standard
Tidar – Arjosari	Busy	30.15%	34.30%	Haven’t met the standard
	Non-busy	24.99%	22.92%	Haven’t met the standard

C. Load Factor Analysis

The load factor of ABG, CKL, and AT is declared correspond if it meets the standards set by the Director-General of Land Transportation in 2002 which are shown in TABLE IV. TABLE IV summarizes the load factor of ABG, CKL, and AT.

TABLE V. SUMMARY OF TRAVEL TIME OF ABG, CKL, AND AT

Route	Operational Hour	Weekday (in minutes)	Weekend (in minutes)	Explanation
Arjosari – Gadang	Busy	55	52.5	Met the standard
	Non-busy	73	70	Met the standard
Gadang – Arjosari	Busy	55.5	53	Met the standard
	Non-busy	62	65	Met the standard

E. Service Performance of ABG, CKL, and AT

The IPA diagram of the result of the ABG study is shown in Fig. 1. The item statements belong to the first quadrant are smoking prohibition (6), waiting time (9), and route conformity (13). It means that the service provider (ABG) needs to pay attention to those item statements and invest more to gain satisfaction from the customers. The statements belong to the second quadrant are exit and entrance (12), and load factor (4), windows (5), fares (7), and travel time (11). Since the second quadrant shows the attributes that have high performance and high importance values, the ABG needs to keep up its good work to maintain a satisfactory level from the customers. The statements belong to the third quadrant are lighting (1), window film usage (2), and smoking prohibition (6). The ABG angkot does not need to invest more on those item statements because the customers do not consider them as important. The last, the statements that belong to the fourth quadrant are angkot availability (8) and arrival schedule (12). These attributes need to be reduced due to excessive investment.

The IPA diagram of the result of the CKL angkot study is shown in Fig. 1. The item statements belong to the first quadrant are waiting time (9), headway (10), travel time (11), and arrival schedule (12). It means that the service provider (CKL angkot) needs to pay attention to those item statements and invest more to gain satisfaction from the customers. The statements belong to the second quadrant are exit and entrance (3), load factor (4), windows (5), fares (7), angkot availability (8), and route conformity (13). Since the second quadrant shows the attributes that have high performance and high importance values, the CKL angkot needs to keep up its good work to maintain the satisfactory level from the customers. The statements belong to the third quadrant are lighting (1), window film usage (2), and smoking prohibition (6). The CKL angkot does not need to invest more on those item statements because the customers do not consider them as important. The last, there are no statements that belong to the fourth quadrant.

The IPA diagram of the result of the AT angkot study is shown in Fig. 1. The item statements belong to the first quadrant are waiting time (9), headway (10), arrival schedule (12), and route conformity (13). It means that the service provider (AT angkot) needs to pay attention to those item statements and invest more to gain satisfaction from the customers. The statements belong to the second quadrant are window film usage (2), load factor (4), fares (7), angkot availability (8), and travel time (11). Since the second quadrant shows the attributes that have high performance and high importance values, the CKL angkot needs to keep up its...
good work to maintain the satisfactory level from the customers. The statements belong to the third quadrant are lighting (1), exit and entrance (3), windows (5), and smoking prohibition (6). The AT angkot does not need to invest more on those item statements because the customers do not consider them as important. The last, there are no statements that belong to the fourth quadrant.

F. Trip Generation Analysis
- ABG passes through settlements and public facilities. Whereas public facilities that are passed are offices, educational facilities, trade and services, religious facilities, health facilities, and recreational facilities.
- CKL passes through settlements, public facilities, and agriculture that located on Cemoro Kandang Street. The public facilities that passed by CKL are in the form of offices, educational facilities, trade and services, health facilities, and recreational facilities.
- AT passes used lands in the form of settlements and public facilities. Whereas public facilities that are passed by AT angkot are in the form of offices, educational facilities, trade and services, religious facilities, and recreational facilities.

G. Route Recommendations
- Route for ABG Angkot
 The new route recommended for ABG angkot is from Arjosari Terminal to Martadinata Street. The length of the new ABG angkot route reaches 22 Km, while the route to Gadang Terminal reaches 26 Km. This is because customers who are driven to Kol. Sugiono Street and Raya Gadang Street declined. Here is the routes recommendation for ABG angkot:

 1. Departure Route
 Arjosari Terminal – Blimbing Indah Utara Street – Simpang Raden Panji Suroso Street – Raden Intan Street – Jend. A. Yani Street – Borobudur Street – Sukarno Hatta Street – Bunga Coklat Street – Cengkeh Street – Kalpataru Street – Melati Street – Bungur Street – Mawar Street – Sarangan Street – Tawamangu Street – Kaliurang Street – WR. Supratman Street – Panglima Sudirman Street – Pattimura Street – Trunojoyo Street – Gatot Subroto Street – Laks. Martadinata Street.

 2. Return Route
 Laks. Martadinata Street – Gatot Subroto Street – Trunojoyo Street – Cokroaminoto Street – Dr. Cipto Street – Panglima Sudirman Street – WR. Supratman Street – Kaliurang Street – Tawamangu Street – Sarangan Street – Mawar Street – Bungur Street – Melati Street – Kalpataru Street – Cengkeh Street – Bunga Coklat Street – Sukarno Hatta Street – Borobudur Street – Jend. A. Yani Street – Raden Intan Street – Arjosari Terminal.

- Route for CKL Angkot
 The length of the new recommended route for CKL angkot is 22.3 Km which was previously only 22 Km. The route passes Candi Panggung Barat Street, which along the way there are housing, trade and services, government and public services, and educational facilities. The following is the recommended CKL angkot routes:

Fig. 1. IPA Diagram of ABG, CKL, and AT.
1. Departure Route

APK Cemoro Kandang – Raya Cemoro Kandang Street – Raya Madyopuro Street – Raya Ki Ageng Gribig Street – Danau Jonge Street – Simpang Terusan Danau Sentani Street – Danau Sentani Street – Danau Tigi Street – Kerinci Street – Danau Limboto Street – Tondano Street – Raya Sawojajar Street – Ranu Grati Street – Mayjen M. Wiyono Street – Kesatrian Terusan Street – Mayor Hamid Rusdi Street – Raya Madyopuro Street – Danau Jonge Street – Raya Ki Ageng Gribig Street – Raya Madyopuro Street – Raya Cemoro Kandang Street – APK Cemoro Kandang.

The transfer of the route from Simpang Candi Panggung Barat Street to Simpang Terusan Danau Sentani Street increased the load factor of the CLK angkot from 35.71% to 59.74%. While the load factor of the CLK public transportation when passing Candi Panggung Street increased from 35.71% to 71.4%. On this road, the load factor of CLK angkot is under the standard set at 70%. Fig. 2 shows the route recommendation for CLK angkot.

2. Return Route

Landungsari Terminal – Raya Tlogomas Street – MT. Haryono Street – MT. Haryono Gg 13 Street – Vinolia Street – Candi Panggung Barat Street – Candi Panggung Street – Sukarno Hatta Street – Coklat Street – Cengkeh Street – Kalpataru Street – Candi Panggung Barat Street – Vinolia Street – Keramik Street – MT. Haryono Street – Raya Tlogomas Street – Landungsari Terminal.

The recommended route has a length of 18.5 Km which was previously only 18 Km. The transfer of the AT angkot route from Gading Street and Sanggabuana Street to Dieng Highway increased the load factor of the AT angkot from 28.57% to 57.13%. Whereas the transfer of routes from Bukit Barisan Street and Lokon Street to Galunggung Street increases the load factor from 28.57% to 41.06%. Fig. 2, Fig. 3 and Fig. 4 show the route recommendation.

• Route for AT Angkot

The recommendation of the new AT angkot route is the transfer of AT angkot routes from Gading Street and Sanggabuana Street to Dieng Highway and the transfer of routes from Bukit Barisan Street and Lokon Street to Galunggung Street. Land usage passed by CLK angkot is more varied including housing, trade and services, as well as government and public services. The recommendations for AT angkot routes are as follows:

1. Departure Route

Arjosari Terminal – Blimbing Indah Utara Street – Simpang Raden Panji Suroso Street – Raden Panji Suroso Street – Raden Intan Street – Hend. A. Yani Street – Letjen. S. Parman Street – Ciliwung Street – Letjen. Sunandar Priyosudarmo Street – Raden Tumenggung Suryo Street – Panglima Sudirman Street – Pattimura Street – Belakang RSU Syaiful Anwar Street – Kahuripan Street – Semeru Street – Arjuno Street – Kawi Street – Panderman Street – Wilis Street – Raya Dieng Street – Galunggung Street – Raya Tidar Street – Puncak Mandala Street – Puncak Yamin Street – Esberg Street – APK Tidar.
IV. CONCLUSIONS

From the analysis of operational performance using headway, load factor, and travel time analysis, it is known that the ABG and AT headways are in line with service standards while the CKL headway still has not met headway standards. The load factor for this angkot is still below 70%, it means that the load factors are not under the standard. While the travel time for these three angkot has met the standard except for the travel time for CKL in the direction of Landungsari - Cemoro Kandang Terminal on weekends and weekdays. From the analysis of service performance using IPA, the attributes of ABG angkot services that need to be improved are smoking prohibition, waiting time, and route conformity. The attributes of CKL public transportation services that need to be updated are waiting time, the time between, travel time, and arrival schedule. While the attributes of AT angkot services that need to be improved are waiting time, the time between, arrival schedule, and route conformity. The route recommendations for the ABG is to shorten the route from a length of 26 Km to 22 Km. Where as the other two angkot routes are extended from 22 Km to 22.3 Km for CKL angkot and from 18 Km to 18.5 Km for AT angkot.

REFERENCES

[1] Miro, F. Introduction to the Transportation System (in Indonesian). Jakarta: Erlangga, 2012.
[2] Sriastuti, D. A., & Armaeni, N. K.. Performance Evaluation of Trans Sarbagita TP 02 Feeder Operation in Denpasar City (in Indonesian). Paduraksa, Vol. 5 No. 1, 2016, pp 1-9.
[3] Fuady, B. H., Buchari, E., & Ariansyah, J. Transportation Characteristics of Banyuasin Regency, Palembang City Buffering Area (in Indonesian). The 18th FSTPT International Symposium. Bandar Lampung: Lampung University, 2015.
[4] Amin, S. R. Analysis of DAMRI Bus Public Transport in Semarang City (in Indonesian). Jejak, Vol. 4 No. 2, 2011, pp 135-143.
[5] Nugroho, B. C., Suraharta, I. M., & Djoko, Planning for the Public Transportation Route Network in the Purwokerto Urban Area (in Indonesian). FSTPT International Symposium. 2015.
[6] Transportation Agency, Local Transportation Level in Malang City (in Indonesian). Malang: Transportation Agency, 2016.
[7] Tamin, O. Z. Transportation Planning and Modeling (in Indonesian). Bandung: Bandung Institute of Technology, 2000.
[8] Ratriaga, A. R., & Sardjito. Determination of Optimal Public Transport Routes With the Transport Network Simulator (TRANETSIM) in Tuban City (in Indonesian). Jurnal Teknik ITS, C-87 - C-91, 2015.
[9] Fadhillah, G., Somantri, L., & Jupri. Evaluation of City Transportation Routes Using Geographic Information Systems (Case Study in Bogor City) (in Indonesian). Geo Geography Education Journal Vol. 18 No. 2, 2018, pp 163-180.
[10] K., A. M., Wicakseno, A. & Subaryanto, A. Evaluation of City Transport Routes Based on the Needs of Community Movements with GIS Method in Malang City (in Indonesian). Civil Engineering Media, 2015.
[11] Napitupulu, Darmawan. Study of Validity and Reliability of Success Factors for E-Government Implementation Based on the Kappa Approach (in Indonesian). Journal of Information Systems, Volume 10, Issue 2, 2014.
[12] Medi, N. Operational Performance Analysis (Travel Time, Travel Speed, and Load Factor) Public Transport (Pete-Pete) of Kendari City on Routes R01 and R02 (in Indonesian). Civil Engineering Journal, 2017.
[13] Safe, Y. T., Udiana, I. M., & Bella, R. A. Evaluation of Public Transportation Performance of the Oebobo-Kupang Terminal Route and the Kupang-Noelbaki PP Terminal (in Indonesian). Civil Engineering Journal, 2015.
[14] Suhendra, A., & Prasetyanto, D. Study on Satisfaction Level of Trans Metro Bandung Corridor 2 Users Using the Importance-Performance Analysis Approach (in Indonesian). National Institute of Technology Online Journal Design, 2016.