Twisted sectors in three-dimensional gravity

Máximo Bañados
Departamento de Física Teórica, Universidad de Zaragoza,
Ciudad Universitaria 50009, Zaragoza, Spain.

Abstract

Twisted sectors –solutions to the equations of motion with non-trivial monodromies– of three dimensional Euclidean gravity are studied. We argue that upon quantization this new sector of the theory provides the necessary (and no more) degrees of freedom to account for the Bekenstein-Hawking entropy of three-dimensional black holes.

PACS: 04.70.Dy; 04.60.Kz

I. INTRODUCTION

The asymptotic form of three-dimensional anti-de Sitter space,

\[ds^2 \sim r^2dvd\bar{w} + \frac{dr^2}{r^2}, \]

enjoys remarkable properties. (Here \(w \) is a complex coordinate related to the spacetime real coordinates \(t \) and \(\varphi \) by,

\[w = \varphi + it. \]

Note that we work in the Euclidean sector.) The most general set of diffeomorphism leaving (1) invariant form the conformal group in two dimensions. This symmetry was discovered by Brown and Henneaux [1] more than 10 years ago, however, only recently it was realized [2] (see also [3]) that it plays a central role in the statistical mechanical description of three dimensional [4,5] black holes.

The metric (1) is a solution to Einstein equations in three dimensions with a negative cosmological constant \(\Lambda = -2/l^2 \). The action for Euclidean three-dimensional gravity can be written in the convenient form,

\[I_c[g] = \frac{c}{24\pi} \int \sqrt{g}(R + 2)d\tilde{x}^3, \]

where the constant \(c \) is the Brown-Henneaux central charge [4],

\[c = \frac{3l}{2G}, \]
and the coordinates $\tilde{x}^\mu = x^\mu / l$ are dimensionless. In this paper we shall refer all constants to c.

The result discovered in [1] states that the asymptotic group of symmetries of (1) is the conformal group generated by two copies of the Virasoro algebra

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12} n(n^2 - 1)\delta_{n+m,0}$$

where the central charge c is the parameter appearing in the action (3).

The first attempt to relate the conformal properties of asymptotic anti-de Sitter space with quantum black holes was done in [7]. It was pointed out in that reference that the degeneracy of states –treating L_0 as a number operator– was proportional to the black hole area but with a different coefficient. Strominger [2] made the striking observation that if one regards the conformal algebra as being generated by a 1+1 unitary conformal field theory, as suggested by the adS/CFT correspondence [8–10], then the degeneracy of states for large values of L_0 and \bar{L}_0 is exactly equal to the Bekenstein-Hawking entropy for the corresponding black hole with mass $Ml = L_0 + \bar{L}_0 - c/12$ and spin $J = L_0 - \bar{L}_0$. (See [11] and [12] for recent extensions of this idea to higher dimensions.)

In a purely gravitational calculation (like the one suggested in [7]), the boundary CFT is Liouville theory [13] which is a single field and has an effective central charge equal to one. This means that the degeneracy of states grows as $\exp(2\pi \sqrt{L_0/6})$ instead of the desired Cardy form $\exp(2\pi \sqrt{cL_0/6})$ which would give the right result. This happens because, contrary to a system of D free bosons with central charge D and a degeneracy growing with D, in Liouville theory the central charge is related to the coupling, not the number of fields. Accordingly, the degeneracy does not grow with c. In order to have the right counting one would need to have “c Liouville fields”. This has lead many authors to conclude that the gravitational degrees of freedom carry only the thermodynamical aspects of the Bekenstein-Hawking entropy [14, 15] (see [13] for an earlier discussion of this idea).

In this paper we will show that if one includes solutions to the equations of motions with twisted boundary conditions (on the torus) the degeneracy grows and provides the necessary degrees of freedom to account for the Bekenstein-Hawking entropy. We will show that the degeneracy in the twisted sector is,

$$\rho_q(L_0) = \exp \left(2\pi \sqrt{qL_0/6} \right)$$

where q, the order of the twisting, is a positive integer. On the other hand, unitarity in the twisted sector will restrict q by $c/q \geq 1$. Thus, the sector with the maximum degeneracy $q = c$ gives the right Bekenstein-Hawking value. (Note that the sum over q is dominated by its maximum value $q = c$.)

1 This form of the Virasoro algebra is appropriated to the anti-de Sitter sector with $SL(2,C)$ as an exact symmetry. In the black hole calculations we shall encounter a shifted zero mode $L'_0 = L_0 - c/24$ appropriated to a torus whose exact symmetries are $U(1) \times U(1)$, and the central term will have the $n^3\delta_{n+m}$ form.
It is important to stress here that the formula (6) has nothing to do with the Cardy formula (which requires modular invariance and unitarity). Eq. (6) will follow by counting states explicitly in a given representation of the Virasoro algebra. (In our situation, the sum over representations give subleading contributions to the degeneracy.)

The results of this paper provide a geometrical justification for the results reported in [20].

II. CLASSICAL SOLUTIONS IN ADS_3 GRAVITY

In this section we describe the structure of the classical space of solutions (untwisted and twisted) of three-dimensional anti-de Sitter gravity.

A. AdS_3 and Riemann surfaces

The metric (1) with \(w = \varphi + i t \) is defined on the “cylinder” because \(\varphi \) is an angle. It will be useful for our purposes to work on the plane. This is achieved by performing a conformal transformation which also serves as an example to illustrate the conformal properties of (1). Consider the transformation from the cylinder \(w \) to the plane \(z \) via,

\[
\begin{align*}
 z &= e^{-iw} \left(1 + \frac{1}{r^2} + ... \right) \\
 r' &= e^{i(w-\bar{w})/2} r
\end{align*}
\]

It is direct to see that the new metric in the coordinates \(\{ z, r' \} \) looks, to leading order in \(r \), exactly like (1). This is an example of the invariance of (1) under a finite conformal transformation. Note that the coordinate \(r \) is not invariant under the transformation. In fact, from (7) we see that \(r^2 \) transforms like a primary with conformal dimension \((1, 1)\). Of course this is necessary if one expects \(r^2 dwd\bar{w} \) to be invariant.

It will be convenient to introduce a new radial coordinate \(\rho \) defined as \(r' = e^\rho \). This change, plus the conformal transformation (7) bring (1) to the form,

\[
ds^2 \sim e^{2\rho} dzd\bar{z} + d\rho^2.
\]

This asymptotic metric will be our starting point.

The metrics (1) and (8) are actually exact solutions to the field equations, although their global properties differ. The metric (1) corresponds to the vacuum black hole [4,5], while (8) to anti-de Sitter space. This can be seen by setting \(\lambda = 1/r \) in (1) and \(\lambda = e^{-\rho} \) in (8). Both metrics are mapped into the upper Poincare plane. Since \(\varphi \) in (1) is compact there are identifications in this case. The corresponding solution is the vacuum black hole. On the other hand, the coordinate \(z \) in (8) lives in the whole complex plane \(z = x + iy \), and the corresponding solution is anti-de Sitter space without any identifications. This change in the topology occurs because in the transition from (1) to (8) via (7) we have kept only the leading terms, ignoring Schwarzian derivative pieces which precisely relate anti-de Sitter space with the vacuum black hole through the shift \(L_0 \rightarrow L_0 - c/24 \).

The three dimensional black hole is asymptotically anti-de Sitter and it approaches (8) at infinity. In the Euclidean sector, the time coordinate is periodic in order to avoid conical
singularities, \(t \sim t + \beta \). The topology in the \(w \) plane is a torus with the identifications \(w \sim w + 2\pi n + 2\pi m\tau \) (\(n, m \in \mathbb{Z} \)) where \(\tau \) is related to the black hole temperature and angular velocity \[21\] \[22\]. In the \(z \)-plane this identification reads,

\[z \sim e^{-2\pi i\tau} z. \] (9)

The identification (9) can also be introduced in the anti-de Sitter sector and leads to thermal anti-de Sitter space (TadS) \[23\]. In three dimensions, thermal anti-de Sitter space is related to the black hole via a modular transformation \[22\].

The Euclidean sector of three-dimensional anti-de Sitter space is particularly interesting because the mathematics of Riemann surfaces is available. One can consider generalizations of (8) on which the coordinate \(z \) is defined on a Riemann surface with genus \(g \), and the conformal group will still act in a natural way. The solutions to the equations of motion can be summarized in the table,

2d – surface	3d – solution
sphere \((g = 0) \)	adS\(_3\)
torus \((g = 1) \)	black holes / TadS
Riemann surface \((g > 1) \)	?

(Note that in each case there may be conical or cusp singularities, if sources are added.) We shall see that admitting solutions with non-trivial monodromy properties leads to higher genus solutions, but we shall not discuss this point in any detail. To our knowledge solutions to the Euclidean equations of motion with higher genus (a solid Riemann surface) have not appeared in the literature. (See \[24\] for a recent discussion about solutions with higher genus in Minkowskian signature.)

B. The untwisted solution

A key property of three-dimensional gravity is the absence of bulk degrees of freedom. This makes possible to find the general solution to the equations of motion. Under the boundary conditions (8), the general solution has the form of a “travelling wave”,

\[ds^2 = f dz^2 + \bar{f} d\bar{z}^2 + \left(e^{2\rho} + f \bar{f} e^{-2\rho} \right) dzd\bar{z} + d\rho^2, \] (11)

where \(f = f(z) \) and \(\bar{f} = \bar{f}(\bar{z}) \) are arbitrary functions of their arguments \[25\]. Locally, this metric has constant curvature (as demanded by the vacuum three-dimensional Einstein equations) and, for \(\rho \to \infty \), it approaches (8) with the correct falloff behaviour \[1\].

To prove that (11) is the most general solution we resort to the analysis of (8). The most general perturbation of the background metric (8) which preserves its asymptotic structure is constructed by acting on it with a set of asymptotic conformal vectors \(\xi^\mu = \xi^\mu(\varepsilon, \bar{\varepsilon}) \) which depend on two arbitrary functions \(\varepsilon(z) \) and \(\bar{\varepsilon}(\bar{z}) \). Acting with these vectors on (8) one produces the solution (11) with,

\[f(z) = \frac{6}{c} T(z), \] (12)
where c is given in (4). The same formula holds for the anti-holomorphic side. We have named $f(z)$ as in (12) because the function $T(z)$ transform under the above symmetry as a Virasoro operator. In the following we shall denote the metric (11) as $ds^2(T, \bar{T})$.

Actually, this construction yield only the pieces linear in f and \bar{f} of (11) [26]. To obtain the full exact solution (11) we simply note that the term $f\bar{f} e^{-2\rho}dzd\bar{z}$ –which makes (11) an exact solution– does not affect the leading and first subleading terms. Since three-dimensional gravity does not have any bulk degrees of freedom, it follows that (11) is the most general solution with the boundary condition (8).

The construction of (11) by acting on (8) with the conformal gene rators parallels the way one constructs representations of the Virasoro algebra. The analogue of the vacuum state $|0\rangle$ is the anti-de Sitter background (8) which is $SL(2, C)$ invariant. Acting on it with the conformal generators one finds the general solution (11). The metric (11) is then a “descendant” of the metric (8) which is the “primary”. We shall make this point precise below in this section and in Sec. III.

Generically, the perturbations produced on the anti-de Sitter metric (8) via conformal transformations are defined only locally because, apart from the $SL(2, C)$ transformations for which (8) is invariant, all other conformal mappings are not globally well-defined. In this sense, the metric (8) is a background solution whose local perturbations, consistent with the equations of motion, are described by (11). In other words, since (11) has constant curvature, it can be obtained from (8) via identifications with some discrete group. However, this discrete subgroup will act freely only on some special cases.

The “vacuum” metric with $T = \bar{T} = 0$ is not the only possible background solution. There exists a continuum of metrics for which $T(z)$ has the particular form,

$$T(z) = \frac{\Delta}{z^2},$$

where Δ is some constant. These solutions are also globally well-defined and for suitable values of Δ they represent black holes. See [25] for the transition from a metric with $T(z)$ of the form (13) to a 3d black hole of mass $M = \Delta + \bar{\Delta} - c/12$ and spin $J = \Delta - \bar{\Delta}$. We shall denote this particular set of solutions as $ds^2(\Delta, \bar{\Delta})$.

Before leaving this section, we note that the asymptotic conformal symmetries of (8) can be “lifted” to act on the space of solutions (11). Let $g_{\mu\nu}(T, \bar{T})$ the metric (11) and $x^\mu = \{z, \bar{z}, \rho\}$. There exists vector fields $\xi^\mu(x)$ depending on two arbitrary (anti-) holomorphic functions $\epsilon(z)$ ($\bar{\epsilon}(\bar{z})$) such that under the change $x^\mu \rightarrow x'^\mu = x^\mu + \xi^\mu(x)$ the metric (11) transform as,

$$g_{\mu\nu}(T, \bar{T}) + \delta g_{\mu\nu} = g_{\mu\nu}(T + \delta T, \bar{T} + \delta \bar{T})$$

with

$$\delta T = \epsilon \partial T + 2\partial \epsilon T + \frac{c}{12} \partial^3 \epsilon,$$

and c is given in (4). See [25] for the explicit form of the residual conformal vectors which, of course, coincide asymptotically with the vectors found in [4]. This symmetry is an infinite dimensional symmetry of the space of solutions. In the language of representations of the Virasoro algebra, it maps the members of a conformal family into themselves.
Suppose we start with the metric (8) and perform a finite conformal transformation \(z \rightarrow z' \). The finite form of (13) is known and involves a Schwarzian derivative. Since (8) can be regarded as a particular case of (11) for which \(T(z) = 0 \), making this finite transformation will give a solution of the form (11) with \(T'(z') = \frac{c}{12} \{ z, z' \} \), where \(\{,\} \) denotes the Schwarzian derivative. Defining \(A(z') = \ln(\partial z / \partial z') \) we find the Liouville type stress tensor,

\[
T'(z') = \frac{c}{24} \left(- (\partial A)^2 + 2 \partial^2 A \right). \tag{16}
\]

The function \(A \) can be identified with the holomorphic function appearing in the general solution to the Liouville equation. See [26] for a related approach to obtain the Liouville stress tensor.

Since the residual symmetries of (11) are nothing but changes of coordinates they can be generated by the constraints of general relativity, supplemented with appropriated boundary terms. In the gauge fixed form of the space of solutions (11), these generators are the functions \(T \) and \(\bar{T} \) and the associated algebra is the Virasoro algebra \([1]\). In terms of the modes \(L_n \) defined in the usual way,

\[
T(z) = \sum_{n \in \mathbb{Z}} \frac{L_n}{z^{n+2}}, \tag{17}
\]

one obtains the algebra (3).

An important property of these transformations is that \(e^\rho \) is not a scalar. Indeed \(e^{2\rho} \) is to leading order a primary field with conformal dimension \((1,1)\) and hence \(e^{2\rho} dz d\bar{z} \) is invariant. This also explains the presence of the term \(e^{-2\rho} T \bar{T} \) in the solution (11). Since \(T \) and \(\bar{T} \) are quasi-primaries with conformal dimensions \((2,0)\) and \((0,2)\) respectively, the product \(T \bar{T} \) has dimension \((2,2)\). The combination \(e^{-2\rho} T \bar{T} \) then has dimension \((1,1)\), as needed.

C. The twisted sector

Motivated by the problem of black hole entropy – lack of enough states to account for the large black hole degeneracy, see [15,16,25] for recent discussions – our goal in this section is to generalize the space of solutions described in the last section.

The generalization we have in mind is to admit non-trivial monodromies in the angular direction. In other words, we consider solutions of the form (11) for which the function \(f(z) \) has the property,

\[
f(e^{2\pi i} z) = g \cdot f(z), \tag{18}
\]

where \(g \) is a symmetry of the space of solutions. In Sec. [14] we shall make this notation precise. For the time being, we consider functions \(f(z) \) which have fractional powers in the variable \(z \). On the torus (black hole) the angular cycle is non-contractible and thus the twisting does not introduce singularities. On the sphere (adS) there will be two singularities in the north and south poles of the Riemann sphere.

We shall argue in Sec. [14] that in the Chern-Simons formulation of three-dimensional gravity the twisted solutions arise in a completely natural way.
We consider the solution (11) with a mode expansion for \(f(z) \) having fractional powers of \(z \). Let \(q \) be a non-negative integer, which will be called the order of the twisting. We replace (12) with
\[
f(z) = \frac{6}{c} q T(z)
\]
where
\[
T(z) = \frac{1}{q} \sum_{r=0}^{q-1} \sum_{m \in \mathbb{Z}} L_{m+r/q} z^{n+r/q+2}.
\]
The factors \(q \) and \(1/q \) appearing in (19) and (20) are conventional and included for future convenience. Similar formulae are assumed for the anti-holomorphic factor. The stress tensor \(T(z) \) is a finite sum of the form,
\[
q T(z) = T_0(z) + T_1(z) + \cdots + T_{q-1}(z),
\]
where \(T_r(e^{2\pi i z}) = e^{2\pi ir/q} T_r(z) \). Clearly \(T_0(z) \) corresponds to the untwisted solution mentioned in the previous paragraph. The parameter \(q \) is regarded as a new degree of freedom in the theory and we shall sum over it.

The modes \(L_{n+r/q} \) can be inverted in terms of \(T(z) \) in two steps. First we note that \(T_r \) can be expressed in terms of \(T \) as,
\[
T_r(z) = \sum_{s=0}^{q-1} T(e^{2\pi s}) e^{2\pi isr/q},
\]
and the modes \(L_{n+r/q} \) are given in terms of \(T_r \) as,
\[
L_{n+r/q} = \oint \frac{dz}{2\pi i} z^{n+r/q+1} T_r(z).
\]
The metric (11) is still an exact solution because the field equations only see the local properties. For the same reason, the modes \(L_{m+r/q} \) satisfy the same Virasoro algebra (5) but now the label \(n \) in (8) takes values on \(\mathbb{Z} + r/q \). One finds the twisted Virasoro algebra,
\[
[L_{n+r/q}, L_{m+s/q}] = (n - m + (r - s)/q) L_{n+m+(r+s)/q} + \frac{c}{12} (n + r/q)((n + r/q)^2 - 1) \delta_{n+m+(r+s)/q}.
\]
This algebra has appeared in [27] in the context of cyclic orbifolds [28].

Note that the modes \(L_{n+r/q} \) are defined such that \(0 \leq r < q \). The algebra (24) should be understood with the periodicity and reality conditions
\[
L_{n+(r+q)/q} = L_{n+1+r/q},
\]
\[
L_{n-r/q} = L_{n-1+(q-r)/q},
\]
\[
L^\dagger_{n+r/q} = L_{-n-r/q}.
\]
The algebra (24) has a Virasoro sub-algebra (for \(r = 0 \)) generating the single-valued conformal transformations of \(z \) with central charge \(c \). It is clear that this sub-algebra is isomorphic to the Brown-Henneaux generators \(L_n \) acting on the single valued, or untwisted, sector.

There is an important point here concerning the value of the central charge appearing in (24). If one computes the algebra, or OPE of the function \(T(z) \) defined in (20) using (24), one finds a central charge \(c/q \). This is correct. The function \(T(z) \) contains all sectors \(T_r(z) \), \(r = 0, 1, \ldots, q - 1 \). It is the trivial monodromy generator \(T_0(z) \) what needs to be matched with the Brown-Henneaux one, not the full \(T(z) \). \(T_0(z) \) defines a subalgebra of the full \(T(z) \) and satisfy the Virasoro algebra with central charge \(c \), as desired. This point will have an important consequence below.

The perturbed metric (11), for a general \(T(z) \) with twisted contributions, is no longer periodic under \(z \to e^{2\pi i}z \). For the purposes of this paper, this classical non-periodicity will be of no importance because, as we discussed above, the only globally defined metrics are those for which \(T(z) \) is of the form (13), for some value of \(\Delta \). These metrics are clearly periodic. The constant \(\Delta \) (equal to the conformal dimension of the state) is made up of periodic and non-periodic perturbations, but the observable globally defined metric is periodic. We shall come back to this point in the next section.

III. QUANTIZATION.

The goal of this section is to study the quantum version of the space of solutions described in the last section.

A. The spectrum.

The space of solution described by metrics of the form (11) is infinite dimensional, and so far, completely disorganized. Any function \(f(z) \), say \(f(z) = z^3 \) or \(f(z) = z^{1/2} \), provides a solution and there is no way to predetermine their physical properties.

Since there exists a Virasoro symmetry acting on (11) mapping solutions into solutions, one can classify the solutions using the representations of the Virasoro algebra. In particular, this will enable us to select the physically reasonable ones, e.g., with positive energy.

The idea is to find a map from the vectors in the representation space of the Virasoro algebra, and the space of solutions (11) [25]. We start by identifying the metric associated to the vacuum state \(|0\rangle \). There is a unique candidate to represent this state, namely the anti-de Sitter metric (8).

As we mentioned in Sec. 1A, the metric (8) is an exact solution to the field equations. In fact, it represents Euclidean anti-de Sitter space without any identifications. The metric (8) is invariant under global \(SL(2, C) \) transformations and it is a particular case of (11) on which \(T \) and \(\bar{T} \) are equal to zero. We are then led to the identification,

\[
|0\rangle \leftrightarrow ds^2(0, 0) = e^{2\rho} dzd\bar{z} + d\rho^2.
\] (28)

The next step is to identify the “primaries” from which all other representations will be constructed.
Other globally well-defined solutions are those for which \(T(z) \) is of the form (13). Consider the metric (11) with \(f(z) \) given in (19) and \(qT = h/z^2 \) where \(h \) is a positive real number (the same for the anti-holomorphic side). We denote this metric as \(ds^2(h, \bar{h}) \). We identify the primary fields \(|h, \bar{h}\rangle \) with the background solutions of the form (13),

\[
|h, \bar{h}\rangle \leftrightarrow ds^2(h, \bar{h}).
\] (29)

The metrics \(ds^2(h, \bar{h}) \) are isometric to black holes or conical singularities [29], depending on the values of \(h \) and \(\bar{h} \) [25]. In other words, the three-dimensional topologies associated to \(ds^2(h, \bar{h}) \) depend on the values of \(h \) and \(\bar{h} \). In complete analogy with Liouville theory, the conformal dimensions of the primaries \(h \) and \(\bar{h} \) are separated in various sectors (see also [16, 30, 31]):

\[
\begin{align*}
 h = \bar{h} = 0 & \quad \text{anti-de Sitter space} \\
 0 < h + \bar{h} < c/12, & \quad \text{conical singularities} \\
 h = \bar{h} = c/24 & \quad \text{vacuum black hole} \\
 h + \bar{h} > c/12, & \quad \text{black holes}
\end{align*}
\] (30)

Having defined the primaries, a full representation is constructed by acting with the conformal generators.

The above construction can be summarized and completed by the single formula

\[
T_\Psi(z) = \langle \Psi | \hat{T}(z) | \Psi \rangle,
\] (31)

where \(|\Psi\rangle \) is any normalized state in a given representation of the Virasoro algebra.

We identify the function \(T(z) \) appearing in (11) with the expectation value of the quantized operator \(\hat{T} \) on a given state \(|\Psi\rangle \); \(T(z) = T_\Psi(z) \). In other words, instead of considering (11) with arbitrary values for \(T(z) \), we consider only those functions \(T_\Psi(z) \) which are the expectation values of the quantised \(\hat{T}(z) \) on some state \(|\Psi\rangle \). This still leaves an infinite dimensional space of solutions, but they are now nicely organized according the the representations of the Virasoro algebra. In particular, if we only consider unitary representations, positivity of the ADM mass is guaranteed.

Note that since conformal transformations acting on the state \(|\Psi\rangle \) produce conformal transformations on \(T_\Psi(z) \) of the form (15), the identification (31) implements correctly the mapping of solutions into solutions via (15). Indeed, consider an infinitesimal conformal transformation \(z \rightarrow z + \epsilon(z) \). This transformation has an associated group element \(U_\epsilon = 1 + i \oint \epsilon(z) \hat{T}(z) \) acting on the representation space: \(|\Psi\rangle \rightarrow |\Psi'\rangle = U_\epsilon |\Psi\rangle \). It is direct to see that the effect of this transformation on \(T_\Psi \) is exactly equivalent to (15).

The map (31) can be extended to the full metric. We extend the above analysis to the anti-de holomorphic sector. To each state in the full Fock space \(|\Psi\rangle \) there is a corresponding solution to the equations of motion [25],

\[
ds^2_\Psi = \langle \Psi | ds^2 | \Psi \rangle,
\] (32)

where \(ds^2 \) is the metric (11) on which \(T \) and \(\hat{T} \) have been replaced by their quantized versions \(\hat{T} \) and \(\hat{T} \). Note that the metric (11) does not involve products of non-commuting operators.
and thus is well-defined as an operator.

The statistical mechanical picture which follows from the above analysis is the following. We construct the representations of the twisted Virasoro algebra (24). Then we seek (and count) those states which under the map (22) yield a black hole with a given mass and spin. We shall show that the number of these states is enough to account for the Bekenstein-Hawking degeneracy.

Before going to the representations of the algebra (24), let us study the effect of the twisting on the quantum metric. From the algebra (24) it is direct to prove the identity,

\[e^{-\alpha(n+r/q)}L_{n+r/q} = e^{\alpha L_0}L_{n+r/q}e^{-\alpha L_0}, \]

(33)

where \(\alpha \) is a complex number. Using this formula with \(\alpha = 2\pi i \) one can check that \(\hat{T}(z) \) given in (20) transforms as (here \(T(z) = T(z)dz^2 \) is understood as a quadratic differential),

\[\hat{T}(e^{2\pi i}z) = A \hat{T}(z) A^{-1}, \]

(34)

where \(A = e^{2\pi i L_0} \) is the generator of the cycle,

\[z \rightarrow e^{2\pi i}z, \]

(35)

acting on Fock space. In this sense the metric (11) as an operator is well-defined.

The classical function \(T_\Psi(z) \) appearing in the classical solution (11) transforms as,

\[T_\Psi(e^{2\pi i}z) = T'_\Psi(z), \]

(36)

where \(\Psi' \) is the transported state,

\[|\Psi\rangle \rightarrow |\Psi'\rangle = e^{2\pi i L_0} |\Psi\rangle. \]

(37)

The particular set of states for which \(T_\Psi \) is invariant under (37), \(T_\Psi = T'_\Psi \), yield a well-defined univalued metric. These states are those for which \(L_0 \) is diagonal because the transportation (37) gives a phase not seen by the expectation value \(T_\Psi(z) = \langle \Psi | T(z) | \Psi \rangle \).

As expected, the classical solutions associated to these states are the globally well-defined metrics with \(T(z) \) given in (13).

2This property will not survive in a full gauge invariant quantization. Note, however, that in a Chern-Simons formulation one would need to regulate at most a quadratic function of the currents (Sugawara type).

3The proof is as follows. We consider \(X(\alpha) = e^{\alpha L_0}L_{n+r/q}e^{-\alpha L_0} \). Using the algebra (24) it is direct to see that \(X \) satisfies the differential equation \(dX/d\alpha = -(n + r/q)X \) whose solution is \(X = e^{-\alpha(n+r/q)}X_0 \). The constant \(X_0 \) does not depend on \(\alpha \) and thus can be evaluated on \(\alpha = 0 \) yielding \(X_0 = L_{n+r/q} \).
B. Black hole states

The space of states which diagonalize L_0 are those in the Verma module, or linear combinations of them at a given level. These states have the extra property that the associated classical metric, through (32), is univalued and isometric to a black hole with a mass and spin given by

$$M = L'_0 + L'_0, \quad J = L'_0 - L'_0,$$

(38)

where $L'_0 = L_0 - c/24$ (see footnote [1]).

We shall now count the number of states compatible with a given value of L'_0 in a representation created by a “primary” $|h\rangle$ of the twisted algebra (24). Since we are interested in the microscopic structure of black holes, we take as primary state the vacuum black hole with $h = c/24$ and $L'_0 = 0$. There is a subtle issue here because the vacuum black hole does not have the same topology as the massive black hole. We shall imagine that the primary is arbitrarily close to be a vacuum black hole, but its topology will be that of a massive black hole: a solid torus. In particular, the boundary described by the coordinate z is a torus.

For $h = c/24$ and $c > 1$ (and $q \leq c$, see below), the representations of (24) are unitary and irreducible. The excited levels are given by the states

$$|n_i, r_i\rangle = L_{-n_1+r_1/q} \cdots L_{-n_s+r_s/q}|c/24\rangle$$

(39)

where $n_i = 1, 2, 3, \ldots$ and $r_i = 0, 1, 2, \ldots, q-1$. These states satisfy (assuming they have been normalized),

$$\langle n_i, r_i|L_{n+q/r}|n_i, r_i\rangle = \delta_0^0 \delta_i^0 L_0.$$

(40)

The associated metric, through (32), is then univalued and globally defined with $T(z)$ of the form (13) and $\triangle = L_0$.

From (24), we deduce that L_0 is a number operator and its value on the state $|n_i, r_i\rangle$ is given by,

$$L'_0 := L_0 - \frac{c}{24} = \sum_{i=1}^{s}(n_i - r_i/q).$$

(41)

Note that since we take the vacuum black hole as background metric with $h = c/24$, there is a direct relation between the excited levels and L'_0 which is the quantity related directly to the black hole mass and spin, as in (38), with no added constants.

The sum over n_i in (41) is the contribution from the untwisted sector which we know does not give the right degeneracy. The second piece r_i/q provides a ‘hyperfine structure’ which increases the degeneracy.

Eq. (41) can be rewritten in the form,

$$qL_0 = \sum_i m_i, \quad \text{with} \quad m_i = qn_i - r_i.$$

(42)

The number of states compatible with a given value of L_0 is given by the number of combinations of the pair n_i, r_i such that (42) is satisfied.
In what follows, the following (trivial) lemma will be of great help. Let \(n \in \mathbb{Z} \) and \(0 \leq r < q \):

\[
\text{The map: } \{n, r\} \rightarrow m = qn - r \\
is one to one (and invertible). \tag{43}
\]

Given any \(m \in \mathbb{Z} \) there exists a unique pair \(\{n, r\} \) such that \(m = qn - r \). Then, it follows that all possible combinations of \(\{n_i, r_i\} \) give all possible positive integers \(m_i \) once. The problem of how many states –varying \(n_i \) and \(r_i \)– can exist for a given \(L'_0 \) can then be formulated as the number of ways that the integer \(qL'_0 \) can be written as a sum of integers \(m_i \). This is of course given by the Ramanujan formula,

\[
\rho \sim e^{2\pi \sqrt{qL'_0/6}}, \tag{44}
\]

which is valid for large values of \(qL'_0 \). Note the factor of \(q \) multiplying \(L'_0 \). Since \(q \) is an integer greater than one, the degeneracy has certainly grown with respect to the pure Liouville calculation which has an affective central charge equal to one. The key step in this counting is that even though \(L'_0 \) is not an integer, the combination \(qL'_0 \) is.

If we choose \(q = c \), then (44) gives the expected value for the black hole entropy \(\rho \). Thus, in principle, we have enough states but this is certainly not satisfactory. We would like to prove that \(q \) must not exceed \(c \). We shall now argue that for integer values of the Brown-Henneaux central charge \(c \), unitarity in the representations of the algebra (24) restricts the possible twistings and \(q \) must indeed lie in the range,

\[
1 \leq q \leq c. \tag{45}
\]

Thus, \(q = c \) is the sector with the maximum degeneracy (maximum twisting) and yield the correct Bekenstein-Hawking value. (Note that the sum over \(q \) is dominated by the highest twisting sector \(q = c \).)

This condition arises from a re-ordering of the generators \(L_{n+r/q} \rightarrow Q_m \) \((m \in \mathbb{Z})\) given by,

\[
L_{n+r/q} = \frac{1}{q} Q_{qn+r}. \tag{46}
\]

This is a purely algebraic step. We choose to enumerate the \(L \)'s by integers subscripts according to (46). A geometrical interpretation for the \(Q \)'s (on the sphere) will be given in next section.

In view of (43), it is evident that the map (46) is one to one. The set of all \(Q_n \) with \(n \in \mathbb{Z} \) contains all \(L_{n+r/q} \) and viceversa. Some examples of the above transformation are:

\[
Q_0 = qL_0, \quad Q_1 = qL_1/q, \quad Q_q = qL_1, \quad \text{etc.}
\]

The transformation (46) is a particular case of a general procedure studied in [27].

The algebra of the modes \(Q_n \) can be computed directly from the algebra (24) and yields,

\[
[Q_n, Q_m] = (n - m)Q_{n+m} + \frac{c}{12} q(n^2 - q^2)\delta_{n+m}. \tag{47}
\]

This algebra, up to a shift in the zero mode \(Q_0 \) that we discuss below, is a Virasoro algebra with central charge \(c/q \).
It should now be clear where does condition (45) comes from. Unitary representations for (47) exist only for $c/q \geq 1$ thus leading to (45).

Unitarity is also achieved for a central charge c/q smaller than one provided it has the Kac form $c/q = 1 - 6/((m + 2)(m + 3))$ with $m = 0, 1, 2, \ldots$. This condition yields a strange quantization condition for c, and thus for Newton’s constant. The degeneracy in this case is more complicated to determined because there are null states in the Verma module. Most likely, the counting will still give the correct degeneracy provided one includes all conformal dimensions producing a modular invariant partition function and using the Cardy formula.

Since the central charge is c/q and $Q_0 = qL_0$, one would have $\sqrt{(c/q)}Q_0 = \sqrt{cL_0}$, as desired. We shall not consider this situation here.

The form of the central term in (47) may seem strange. Note that the transformation (46) maps $L_0, L_{\pm 1}$ into $Q_0, Q_{\pm q}$ generating an $SL(q)(2, \mathbb{R})$ sub-algebra. Let us shift Q_0 such that the central term in (47) acquires the usual form with $Q_0, Q_{\pm 1}$ generating an $SL(2, \mathbb{R})$ algebra. This is achieved by redefining the new Q_0^{new},

$$Q_0^{\text{new}} = Q_0 - \frac{c}{24} \left(q - \frac{1}{q} \right). \quad (48)$$

Let us take the sector $q = c$. In terms of this new zero mode, unitary representations for (47) exists provided $Q_0^{\text{new}} \geq 0$. From (48) and (46) we obtain the bound for L_0

$$L_0 \geq \frac{c}{24} - \frac{1}{24c}. \quad (49)$$

For c large the first term dominates and this is the condition that eliminates (almost all) conical singularities leaving only black holes in the spectrum.

IV. REMARKS

We have exhibit in this note a set of solutions to the vacuum Einstein equations which upon quantization yield the correct Bekenstein-Hawking entropy. In order to have a complete picture of the Hawking evaporation process, we should consider also transitions between states i.e., emissions of states. This type of process will certainly need other correlation functions beyond the partition function. We shall not consider this problem here. However, we would like to end by making a number of remarks which hopefully will clarify the nature of the solutions that we have presented (at least on the sphere), and may be the starting point towards a dynamical modeling of the evaporation process in 2+1 dimensions.

In particular, in section [IV-C], we shall argue that the multivalued solutions –twisted sector– arise in a natural way within the Chern-Simons formulation of three-dimensional gravity.

A. The conformal algebra in the covering space

Working with multivalued functions is often problematic and thus it is convenient to pass to the covering space on which the stress tensor is single valued. It is well-known in the theory of complex variables that for any multivalued function of a complex coordinate
z, there exists a covering surface for which the given function is single valued. In our case this covering is simply given by the equation

\[z = u^q. \]

(50)

This transformation map the Riemann sphere (adS$_3$) into itself (up to two singularities in the north and south poles where (50) has fixed points). For the torus, this transformation changes the genus \mathbb{Z}_2. Since we do not have much control on the three-dimensional solutions with higher genus 2d-boundaries, we shall restrict ourselves in this section to the genus zero situation.

We consider the metric (11) with f given in (19) and T in (20). Let us transform this metric with (50). Two clarifications are necessary here. First, we shall only transform the complex coordinate z, not the radial coordinate. This means that this transformation is not one of the residual transformations mentioned before and we will obtain a different metric. We could modify (50) including a radial dependence plus adding the corresponding transformations for ρ and obtain the same metric defined on the covering space. For our purposes here this is not necessary and would bring unnecessary complications. Second, we shall treat T classically and therefore we do not include any Schwarztian derivative terms. Of course, if we did include the radial reparametrization, there would be the classical Schwarztian derivative piece.

So, we simply plug (50) into (11) and find the new metric

\[ds^2 = f du^2 + \bar{f} \bar{d}u^2 + \left(q^2 |u|^{2q-2} e^{2\rho} + \frac{f \bar{f} e^{-2\rho}}{q^2 |u|^{2q-2}} \right) dud\bar{u} + d\rho^2 \]

(51)

with

\[f(u) = \frac{6q}{c} Q(u). \]

(52)

A similar formula is valid for the anti-holomorphic side. The field Q is simply the conformally transformed version of T under (50),

\[Q(u) = \left(\frac{\partial z}{\partial u} \right)^2 T(u^q) \]

\[=: \sum_{n \in \mathbb{Z}} \frac{Q_n}{u^{n+2}} \]

(53)

and is single valued. The modes Q_n are related to the modes of T as

\[\sum_{n \in \mathbb{Z}} \frac{c_n}{u^{n+q}} = \sum_{r=0}^{q-1} \sum_{m \in \mathbb{Z}} \frac{c_{mq+r}}{x^{m+r/q}}. \]

4Here we have used the monodromy decomposition:
\[L_{n+r/q} = \frac{1}{q} Q_{qn+r}. \]

These are exactly the generators introduced in Sec. III (see Eq. (46)) which satisfy the Virasoro algebra (47) with central charge \(c/q \). In this context they appear as generators of the conformal symmetry acting on the covering space.

The metric (51) is an exact solution to the equations of motion and it is single-valued. However, it does not satisfy the boundary conditions (8). We shall see in Sec. IV.C that working in the Chern-Simons formulation one can easily deal with metrics of the form (51).

How do we recover from (47), the original Brown-Henneaux algebra? The Virasoro algebra (47) has the symmetry

\[Q_n \rightarrow e^{-2\pi in/q} Q_n. \]

It is direct to see that the subalgebra of the \(Q' \)'s invariant under (55) is generated by the subset of generators

\[L_n = \frac{1}{q} Q_{qn} \]

and have central charge \(c \). The sub-algebra spanned by the \(L_n \)'s generates the single-valued conformal transformations acting on \(z = u^q \). Thus, they correspond to the Brown-Henneaux generators.

This can also be seen as follows. We start with (53) and act on this operator with the transformation (55),

\[Q(u)du^2 = \sum \frac{Q_n}{u^{n+2}} du^2 \rightarrow \sum \frac{e^{-2\pi in/q}Q_n}{u^{n+2}} du^2 = Q(e^{2\pi i/q}u)du^2 \]

Thus, (55) act on the plane \(u \) as

\[u \rightarrow e^{2\pi i/q}u, \]

and the invariant coordinate is, as expected, \(z = u^q \).

B. The action in the covering space

We have considered twisted solutions to the equations of motion associated to the action (3), with the boundary condition (8). As shown in the last section, instead of working with a multivalued function \(T \), one can work with a single valued function defined on a different space. In this section we study the action on that space. This shed some light on the reduction in the central charge in the covering space algebra. Due to conformal invariance, the action in the covering space has the same local form as the action in the original space. However, since the plane \(u \) covers \(q \) times the original plane \(z \), the coupling constant in the covering manifold is \(c/q \) instead of \(c \).

This can be summarised in the following table.
Physical spacetime: z

$\frac{c}{24\pi} \int_z (R + 2)$	$\frac{c}{q} \int_u (R + 2)$
$\{L_{n+r/q}, \ c\}$	$\{Q_n, \ \frac{c}{q}\}$

It is useful to read this table backwards, from right to left. If we restrict the action in the covering space to the space of functions invariant under (58) it reduces to an action of single valued functions with coupling c (recall that the sphere u covers q times the sphere z). This is our starting point and shows that the coupling c/q in the upper right corner is correct. In the same way, as showed in the last section, the generators Q_n acting on the invariant subspace reduce to the L_n’s ($r = 0$).

This analysis posses the question of what is the coupling constant of general relativity. In principle, the action in the plane z is not preferable in any form with respect to the action in the plane u. We could then argue that c/q should be related to Newton’s instead of c. The answer to this ambiguity, as in four dimensional gravity, is found in the boundary conditions. We define the action in the plane z with the boundary conditions (8) as the physical action. The transformation (50) changes the boundary conditions.

C. Chern-Simons formulation and the value of the coupling

The Chern-Simons formulation provides a natural motivation to look for multivalued solutions to the equations of motion. Putting the argument the other way around, within the Chern-Simons formulation, the most natural solution to the equations of motion is (51), of which (11) is only a particular case. Thus, when making the conformal transformation (50) that brings (51) to the asymptotic form (8), one finds the multi-valued solutions introduced above.

We consider here Euclidean three-dimensional gravity formulated as a Chern-Simons theory [33,34] for the group $SL(2, C)$. The level of the Chern-Simons theory will be fixed below.

The Chern-Simons action appropriated to the black hole problem is the covariant one \[21,33\] supplemented by the chiral boundary conditions,

\[A^a_z = 0, \quad A^a_{\bar{z}} = 0. \] (60)

Recall that $A^a = w^a + i e^a$. At the boundary, the real and imaginary parts of A^a are linked by (60). The non-zero components A_z and $\bar{A_z}$ can be written as [25],

\[A^a_z = 2w^a_z, \quad \bar{A}^a_{\bar{z}} = 2w^a_{\bar{z}}. \] (61)

Thus, (60) reduces the $SL(2, C)$ gauge field at the boundary to two real currents A^a_z and $\bar{A}^a_{\bar{z}}$ satisfying the affine $SU(2)$ algebra at level k.

Conditions (60) are not enough to ensure anti-de Sitter asymptotics [13]. Let $\{A^+, A^-, A^3\}$ and $\{\bar{A}^+, \bar{A}^-, \bar{A}^3\}$ the components of the $SU(2)_k \times SU(2)_k$ affine currents at the boundary (we omit here the subscripts z and \bar{z}). To ensure that the associated metric is
asymptotically anti-de Sitter, as in (5), the boundary conditions (60) must be supplemented with the reduction conditions [13] (see [36] for a different approach)

\[A^+ = 1, \quad \bar{A}^- = 1, \quad A^3 = 0, \quad \bar{A}^3 = 0. \] (62)

(63)

This leaves only \(L := A^-/k \) and \(\bar{L} := \bar{A}^+/k \) as arbitrary functions. It follows [34] that the affine \(SU(2)_k \) algebra reduced by (62) and (63) yields for \(L \) and \(\bar{L} \) the Virasoro algebra with central charge \(c \). Identifying the level \(k \) with the usual value \(k = l^2/4G \) yields \(c = 3l^2/2G \) and confirms that the generators \(L = A^-/k \) and \(\bar{L} = \bar{A}^+/k \) are the Brown-Henneaux ones.

As a motivation to a more general situation consider imposing only (63). The leading piece in the metric with these boundary conditions is easily computed and yields,

\[ds^2 \sim e^{2\rho} A^+(u)\bar{A}^-(\bar{u})dud\bar{u} + dp^2. \] (64)

It is clear that further restricting the gauge field with (62) leads to (8). However, if we keep them as arbitrary, but fixed, functions we discover that (64) is precisely the asymptotic behaviour of (51) with

\[A^+ = qu^{q-1}, \quad \bar{A}^- = q\bar{u}^{q-1}. \] (65)

Thus, the Chern-Simons formulation leads to (51) in natural way.

It should be clear that, from the point of view of the Chern-Simons formulation, there is no a priori reason to select the boundary (8) instead of (64). The non trivial point is that in the transition from (64) to (8) via \(z = u^q \), we have kept the twisted states, i.e., all branches of \(z^{1/q} \), by letting \(T(z) \) to be a multivalued function. This is the step that follows naturally in the Chern-Simons formulation because there is no reason a priori to set \(q = 1 \) in (55). The multivaluedness of \(T(z) \) is then a simple consequence of the more general boundary conditions in the covering space.

The next question is what is the algebra leaving (64) invariant. As a direct generalization of the above case, one can prove that the restriction of the affine \(SU(2)_k \) algebra via (63) and (53) lead for the combination \(Q(u) := (1/k)A^+A^- = (q/k)u^{q-1}A^-(u) \) the Virasoro algebra with a central charge \(c = 6k \). In this case, however, it is not correct to identify \(Q \) with the original Brown-Henneaux generators \(L \), nor the central term \(6k \) with the central charge (4).

The generators \(Q \) are the operators introduced in Sec. (IV A), acting on the covering space with central charge \(c/q \), and leave invariant the generalized boundary conditions (64). We are then led to identify the level \(k \) as,

\[6kq = c = \frac{3l}{2G}, \] (66)

in order to match the center of the algebra (17). Note also that this is in agreement with (59). The above Chern-Simons theory, with the boundary conditions (64), is appropriated to the action in the covering space with coupling \(k = c/6q \).

5In [28], the central charge was written as \(c = -6k \). This sign can be changed by a different orientation for the modes. Note that the Virasoro algebra is invariant under \(L_n \rightarrow -L_{-n} \) and \(c \rightarrow -c \). The following discussion is only a qualitative analysis and this sign is irrelevant.
This issue brings in a problem of interpretation for the calculations of partitions functions that have been done using the Chern-Simons formulation, and its connection to chiral WZW models [38,21]. The main assumption on this type of calculation is to quantize the full gauge field A^a without imposing and kind of reduction conditions. However, as we have emphasized above, the values of A^+ and \bar{A}^- change the global properties of the spacetime. The coupling k is not only related to Newton’s constant but also to the wrapping of the cover space into spacetime.

There is another curious consequence of (66). When quantising a string theory on the adS_3 background, a formula can be given for the spacetime conformal generators [18]. The associated central charge is $c = 6k_{st} p$ where $k_{st} = l^2 / l_{st}^2$ is the coupling of the $SL(2, \mathbb{R})$ WZW model, p is the winding number of the spacetime coordinate $X(\sigma)$ in the worldsheet, and l_{st} is the string length. Newton’s constant G_3 was associated in [18] to the winding number p via

$$6k_{st} p = \frac{3l}{2G_3}.$$ \hfill (67)

The similarity between (66) and (67) makes it tempting to identify $k \sim k_{st}$ and $q \sim p$. This amounts to identify the black hole boundary coordinate $z(u)$ with the string worldsheet coordinate $X(\sigma)$ (compactified on a circle), i.e., treating the covering coordinate as a string worldsheet. The fact that in the quantum gravity approach one quantizes functions of z and thus it corresponds to string field theory has recently been discussed in [39]. Further, we note that in the sector with the maximum degeneracy $c = q$ (see Sec. III), k is of the order of one which is also the value of k_{st} is one expects the Correspondence Principle [40] between black holes and string states [11] to work in three dimensions. Finally, the degrees of freedom of three-dimensional gravity, as formulated in [13], are described by a (constrained) non-chiral $SL(2, \mathbb{R})$ WZW model at level k. Following this line of reasoning, it would be nice to see an explicit connection between the counting presented in section III, and the string theory approach to black holes.

ACKNOWLEDGMENTS

Useful discussions and correspondence with M. Asorey, F. Falceto, A. Gomberoff, A. Mikovic, P. Navarro, J. Navarro-Salas and, especially, A. Ritz are gratefully acknowledged. Financial support from CICYT (Spain) grant AEN-97-1680, and the Spanish postdoctoral program of Ministerio de Educación y Ciencia is also acknowledged.
REFERENCES

[1] J.D. Brown and M. Henneaux, Commun. Math. Phys. 104, 207 (1986).
[2] A. Strominger, High Energy Phys. 02 009 (1998).
[3] D. Birmingham, I. Sachs and S. Sen, Phys. Lett. B424 275 (1998).
[4] M. Bañados, C. Teitelboim and J.Zanelli, Phys.Rev.Lett. 69, 1849 (1992).
[5] M. Bañados, M. Henneaux, C. Teitelboi m and J.Zanelli, Phys. Rev. D48, 1506 (1993).
[6] O. Coussaert, M. Henneaux, Phys. Rev. Lett. 72, 183 (1994).
[7] S. Carlip, C. Teitelboim, Phys. Rev. D51 622 (1995).
[8] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[9] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B428, 105 (1998).
[10] E. Witten, Adv. Theor. Math. Phys. 2 253 (1998).
[11] S. Carlip, “Black hole entropy from conformal field theory in any dimension”, hep-th/9812013.
[12] S. N. Solodukhin, “Conformal description of horizon’s states”, hep-th/9812056.
[13] O. Coussaert, M. Henneaux, P. van Driel Class. Quant. Grav. 12, 2961 (1995).
[14] D. Kutasov, N. Seiberg, Nucl. Phys. B358 600 (1991).
[15] S. Carlip, Class. Quant. Grav. 15 3609 (1998).
[16] E. Martinec, “Conformal field theory, geometry, and entropy”, hep-th/9809021.
[17] S. Hyun, W.T. Kim and J. Lee, Phys. Rev. D59, 084020 (1999).
[18] A. Giveon, D. Kutasov and N. Seiberg, Adv.Theor.Math.Phys. 2, 733 (1998).
[19] T. Jacobson, Phys.Rev.Lett.75, 1260 (1995).
[20] M. Bañados, Phys.Rev.Lett. 82, 2030 (1999).
[21] M. Bañados, T. Brotz and M. Ortiz, “Boundary dynamics and the statistical mechanics of the 2+1 dimensional black hole”, hep-th/9802076, To appear in Nucl.Phys.B.
[22] J. Maldacena, A. Strominger, “adS(3) black holes and a stringy exclusion principle”. e-Print Archive: hep-th/9804083.
[23] S.W. Hawking and Don N. Page, Commun.Math.Phys. 87, 577 (1983).
[24] S. Aminneborg, I. Bengtsson, Dieter Brill, S. Holst and Peter Peldan Class.Quant.Grav. 15, 627 (1998).
[25] M. Bañados, “Three dimensional quantum geometry and black holes”, hep-th/9901148.
[26] P. Navarro and J. Navarro-Salas, Phys. Lett. B439, 262 (1998).
[27] L. Borisov, M.B. Halpern, C. Schweigert, Int. J. Mod. Phys. A13, 125 (1998).
[28] A. Klemm and M.G. Schmidt, Phys.Lett. B245, 53 (1990).
[29] S. Deser and R. Jackiw, Ann. Phys. (NY), 153, 405 (1984).
[30] V. Frolov, D. Fursaev, J. Gegenberg, G. Kunstatter, “Thermodynamics and Statistical Mechanics of Induced Liouville Gravity”, hep-th/9901087.
[31] P. Navarro and J. Navarro-Salas, “Virasoro orbits, adS3 quantum gravity and entropy”, hep-th/9903249.
[32] S. Hamidi, C. Vafa, Nucl.Phys.B279, 465 (1987).
[33] A. Achúcarro and P.K. Townsend, Phys. Lett. B180, 89 (1986).
[34] E. Witten, Nucl. Phys. B 311, 4 (1988).
[35] M. Bañados, F. Méndez, Phys. Rev. D58 104014 (1998).
[36] M. Bañados, Phys. Rev. D52, 5816 (1995).
[37] A.M. Polyakov, Int. J. Mod. Phys. A5 (1990) 833.
[38] S. Carlip, Phys. Rev. D55, 878 (1997).
[39] J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, “String theory on adS3, hep-th/9812046

[40] G.T. Horowitz, J. Polchinski, Phys.Rev. D55, 6189 (1997).

[41] A. Mikovic, unpublished (private communication).