DFT Calculations for Mössbauer Properties on Dinuclear Center Models of the Resting Oxidized Cytochrome c Oxidase

Wen-Ge Han Du,[a] Andreas W. Götz,[b] and Louis Noodleman*[a]

Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP-D3(BJ) density functional method on previously obtained (W.-G. Han Du, et al., Inorg Chem. 2020, 59, 8906–8915) geometry optimized Fe_{a3}^{3+}–H_{2}O–Cu_{b3}^{2+} dinuclear center (DNC) clusters of the resting oxidized (O state) “as-isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H_{2}O molecule between the Fe_{a3}^{3+} and Cu_{b3}^{2+} sites in different DNCs, whether or not this central H_{2}O molecule has H-bonding interaction with another H_{2}O molecule, the different spin states having similar energies for the Fe_{a3}^{3+} and Cu_{b3}^{2+} sites, and whether the Fe_{a3}^{3+} and Cu_{b3}^{2+} sites are ferromagnetically or antiferromagnetically spin-coupled.

Introduction

Cytochrome c oxidases (CcOs) are the terminal electron acceptors in the respiratory chain of mitochondria and many bacteria.[1–3] These proteins reduce O_{2} to H_{2}O and use the resulting energy to pump protons across the membrane. This produces the chemiosmotic proton gradient that is subsequently harnessed by ATP synthase to synthesize ATP.[4–8] The catalytic site of CcO that binds and reduces O_{2} by 4e/4H^{+} transfer contains a heme a₁ (Fe_{a1}) and a Cu (Cu_{b}) ion that are in spatial vicinity (~5 Å distance). This Fe_{a1}–Cu_{b} active site is usually called the dinuclear (or binuclear) center/corexplex (DNC or BNC). In all types of CcO enzymes, the iron in the Fe_{a1} site is coordinated to heme and an axial histidine ligand (His384, residue numbers in this paper are by default for ba_{3} CcO from Thermus thermophilus (Tt)). The copper in the Cu_{b} site is coordinated to three histidine ligands: His233, His282, and His283, where the His283 side chain is also covalently linked to the side chain of Tyr237. This special tyrosine side chain can be alternatively in neutral (Tyr–OH), deprotonated ionic (Tyr–O⁻), or radical (Tyr–O²⁻) states, and plays an important role in electron and proton transfer in the DNC.[9]

The oxidation, spin, and ligation states of the Fe_{a1} and Cu_{b} sites change during the catalytic cycle.[8–19] Although many insights into the intermediate states of the DNC in the catalytic cycle have been obtained (Figure 1) (see review articles[10,11] and the references therein), the detailed DNC structure of the resting oxidized as-isolated CcO state (state O) has been under debate for over 20 years despite various spectral and structural analyses that have been made.[20–28]

The electron density lying directly between Fe_{a1} and Cu_{b} in the as-isolated oxidized aa_{3} type CcOs from Paracoccus denitrificans (Pd) and Rhodobacter sphaeroides (Rs) was initially interpreted as a H_{2}O and OH⁻ ligand pair.[21,22] Later, stronger and more compact electron density for a peroxide type dioxygen species (O{1–O2}) bridging the Fe_{a1} and Cu_{b} DNC was observed in higher resolution X-ray crystal structures of the oxidized CcOs from Pd (PDB code: 3HB3, 2.25 Å resolution),[23] from bovine heart (PDB code: 2ZXW, 1.95 Å resolution),[24] and from ba_{3} Tt (358G and 358F, 1.8 Å resolution).[25] Further, the peroxide type species in the resting oxidized DNC was also observed from analysis of an X-ray free-electron laser (XFEL) experiment (1.9 Å resolution),[26] and very recently from analysis of a single-particle cryo-electron microscopy (cryo-EM) experiment at similar resolution.[29] Different groups reported different O{1–O2} distances from 1.4~1.7 Å. Recently, a single hydroxide or alternatively a single water molecule between the Fe_{a1} and Cu_{b} sites was reported in a radiation-damage-free oxidized ba_{3} CcO structure (2.3 Å resolution) at room temperature.[27] However, analysis of very recent low-dose high-energy X-ray data on the oxidized-resting bovine heart CcO again showed a peroxide-shaped electron density between the Fe_{a1} and Cu_{b} sites.[30] Even at fairly high resolution currently available (1.9 Å), there is considerable uncertainty in the electron density.

[a] Dr. W.-G. Han Du, Prof. L. Noodleman
Department of Integrative Structural and Computational Biology,
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, CA 92037, USA
E-mail: lou@scripps.edu

[b] Dr. A. W. Götz
San Diego Supercomputer Center,
University of California San Diego
9500 Gilman Drive MC0505, La Jolla, CA 92093, USA

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cphc.202100831

Part of the Chemistry Europe joint Special Collection on Quantum Biology.

© 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH
between the metals, and in the correct modeling of the corresponding ligands, which are not clearly known prior to the fits. There is, in practice, both static and dynamic disorder in the ligand positions, typically represented by isotropic B factors. There is further disorder in the Fe and Cu positions as well. (While the variation in the Fe and Cu positions is expected to be geometrically smaller, they have much higher electron densities than di-oxygen or water species.) These B factors are variables with a potential range of values during the density fitting, and influence the final electron densities found.

In order to examine what species lies between the Fe$_3^{3+}$ and Cu$_8^{2+}$ sites producing the apparent extended di-oxygen type electron density in the DNC of the oxidized as-isolatedCcO, previously we have performed DFT calculations on a series of DNC model clusters based on the X-ray crystal structure [35] from Tt ba3 CcO. Our calculations have shown that the observed di-oxygen species cannot be represented by O$_2^{2-}$, O$_2^{+}$, or H$_2$O$_2$ since the DFT optimized structures with bridging O$_2^{2-}$ or O$_2^{+}$ have large structural discrepancies compared with the X-ray crystal structure, and the H$_2$O$_2$ is not stable between the Fe$_3^{3+}$ and Cu$_8^{2+}$ sites (Fe$_3^{3+}$ and Cu$_8^{2+}$ metal sites were assumed reduced in the synchrotron X-ray beam) [28]. We initially came to the conclusion that the observed di-oxygen species was best represented as HO$_2^-$, which could be a product of the photoreaction of the H$_2$O/OH$^-$ ligands in Fe$_3^{3+}$-H$_2$O/OH$^-$-Cu$_8^{2+}$ type DNC structures with associated 2e$^-$ transfer to the adjacent oxidized Fe$_3^{3+}$ and Cu$_8^{2+}$ sites in the X-ray beam. [28] However, if the resting oxidized DNC structure is originally (before X-ray irradiation) [30] in the Fe$_3^{3+}$-H$_2$O-OH$^-$-Cu$_8^{2+}$ or Fe$_3^{3+}$-OH$^-$-H$_2$O-Cu$_8^{2+}$ form, the X-ray crystallographic experiments should still show H$_2$O-OH$^-$ as the dominant bridging species in the DNC with long O-O distance, 2.5 Å or greater. Because the X-ray crystal structure represents both a spatial and time average over many billions of enzyme molecules, while some effects due to the X-ray irradiation are probably observable with careful attention to the time course, these effects are not likely to be dominant averaged over billions of structural sites. These arguments are even stronger when applied to XFEL experiments, since the total radiation dose is much smaller than in synchrotron X-ray experiments, and the relevant time scale for diffraction is far shorter. Further, our very recent calculations have demonstrated that the Fe$_3^{3+}$-H$_2$O-OH$^-$-Cu$_8^{2+}$/Fe$_3^{3+}$-OH$^-$-H$_2$O-Cu$_8^{2+}$ type structures are also unlikely to represent the resting state of the DNC, consistent with the structural evidence and analysis above. [32]

Our most recent calculations have shown that the observed peroxide type electron density between the two metal centers is probably a mistaken analysis due to superposition of the electron density of a water molecule located at alternative positions between Fe$_3^{3+}$ and Cu$_8^{2+}$ sites in DNC's of differentCcO molecules. [28] Our calculations indicate that the H$_2$O molecule in the resting state O[Fe$_3^{3+}$-H$_2$O-Cu$_8^{2+}$] DNC structures can bind with either the Fe$_3^{3+}$ or the Cu$_8^{2+}$ site, or...
can reside at several positions between the Fe$_{a3}^{3+}$ and Cu$_{a}^{2+}$ sites that are all energetically similar, depending on the Fe$_{a3}^{3+}$--Cu$_{a}^{2+}$ distance and H-bonding interaction with an additional H$_2$O molecule. (In our modeling, the latter water lies well off the direct line between the Fe and Cu ions.) Figure 2 shows the overlap of the electron density map reconstructed from the X-ray crystal structure 3S8G of Tt ba$_3$ and several of our geometry optimized O(Fe$_{a3}^{3+}$--H$_2$O--Cu$_{a}^{2+}$) DNC structures with very similar energies and with a H$_2$O molecule (in red) at different positions between the Fe$_{a3}^{3+}$ and Cu$_{a}^{2+}$ sites. Because the diffraction pattern and the inferred electron density map represents the effective long-range order averaged over a large number molecules and unit cells in the X-ray structure, this averaging can result in an apparent observed superposition of water at different positions between the Fe$_{a3}^{3+}$ and Cu$_{a}^{2+}$ metal sites.

Earlier $^{57}$Fe Mössbauer experiments also demonstrated extensive structural and electronic heterogeneities in the DNC for the resting O state CoOs.$^{33–36}$ The major Mössbauer experimental observations on different CoOs are summarized in Table 1. Initial experiments on both Tt c$_{a}a_{a3}$ and bovine a$_{a3}$ show broad $^{57}$Fe$_{a3}$ spectra with isomer shift ($\delta$) and quadrupole splitting ($\Delta E_Q$) values averaged at ($\delta = 0.41$ mm s$^{-1}$, $\Delta E_Q = 1.10$ mm s$^{-1}$) and ($\delta = 0.48 \pm 0.06$ mm s$^{-1}$, $\Delta E_Q = 1.0 \pm 0.1$ mm s$^{-1}$), respectively.$^{33,34}$ These particular values show that the Fe$_{a3}^{3+}$ site is in a high-spin (HS) state. Later, more complicated Mössbauer spectra were reported for Tt c$_{a}a_{a3}$ at different pH$^{35}$ which showed that at least three HS--Fe$_{a3}^{3+}$ species existed at pH=5.7, and at least two HS--Fe$_{a3}^{3+}$ complexes were observed at pH=6.5, 7.8, and 9.3.$^{35}$ However, only one set of the HS parameters was defined at ($\delta = 0.41$ mm s$^{-1}$, $\Delta E_Q = 1.3$ mm s$^{-1}$). In addition, a “low-spin” (LS) Fe$_{a3}^{3+}$ species was identified at pH=5.7, 7.8, and 9.3 with the parameters ($\delta = 0.29$ mm s$^{-1}$, $\Delta E_Q = 2.21$ mm s$^{-1}$). Note that this Fe$_{a3}^{3+}$ species may be alternatively in an intermediate-spin (IS) state based on the observed isomer shift and quadrupole splitting values. Further, more complex Fe$_{a3}^{3+}$ species which were temperature-dependent in Tt ba$_3$ were also observed in Mössbauer experiments.$^{36}$ Briefly, a HS--Fe$_{a3}^{3+}$ species with ($\delta = 0.41$ mm s$^{-1}$, $\Delta E_Q = 0.71$ mm s$^{-1}$) and a LS--Fe$_{a3}^{3+}$ (which may be an IS state instead) with ($\delta = 0.29$ mm s$^{-1}$, $\Delta E_Q = 2.24$ mm s$^{-1}$) coexisted at 4.2 K.$^{36}$ When the temperature was increased above 190 K, the “LS--Fe$_{a3}^{3+}$” species began to transform to a different HS species with $\Delta E_Q \approx 1$ mm s$^{-1}$. The $\delta$ value of this HS--Fe$_{a3}^{3+}$ species was not specifically reported. But from the context, we assume that it had the same value of $\delta = 0.41$ mm s$^{-1}$ as the other HS species. (Otherwise, the fit for the new HS species would have required a different isomer shift value from the other HS state.) The LS--HS transformation is 

![Figure 2. The overlap of the electron density map that was reconstructed from the oxidized as-isolated Tt ba$_3$ X-ray crystal structure 3S8G data file with several of our calculated resting O state DNC structures, in which a water molecule (in red color) resides in different locations between the Fe$_{a3}^{3+}$ and Cu$_{a}^{2+}$ sites with very similar energies. Reprinted with permission from Figure 7 of Ref. [32], https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00724. Copyright (2020) American Chemical Society (further permissions for reusing this figure should be directed to the ACS).](image-url)
finished at 245 K. Therefore, the two different HS–Fe\(^{3+}\) species coexisted at 245 K.\(^{[36]}\)

In our recent publication,\(^{[32]}\) we have calculated O state Fe\(^{3+}\)–H\(_2\)O–Cu\(^{2+}\)–DNC structures with Fe\(^{3+}\) in HS, IS, and LS states. The Fe\(_{\text{HS/IS}}\)–H\(_2\)O–Cu\(^{2+}\) results were presented in the main text, while the Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\) and Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\) results have been given in the Supporting Information.\(^{[32]}\) Further, our calculations have also shown that the spin coupling between the Fe\(_{\text{3+}}\) and Cu\(^{2+}\) sites appears very weak. For a given O state Fe\(^{3+}\)–H\(_2\)O–Cu\(^{2+}\)–DNC structure, similar energies are obtained whether Fe\(^{3+}\)–Cu\(^{2+}\) are ferromagnetically (F) or anti-ferromagnetically (AF) coupled. In the current paper, based on the geometries we obtained for the O[Fe\(_{\text{HS/IS/LS}}\)–H\(_2\)O–Cu\(^{2+}\)–DNC structures,\(^{[32]}\) we will calculate their Fe\(^{3+}\) Mössbauer isomer shift and quadrupole splitting properties and see how the calculated values correlate with the experimental observations. In contrast to the X-ray structures derived using synchrotron X-ray beams, or XFEL pulses, Mössbauer gamma rays give far less intense radiation, so the resting O states and their structures will not be sensitive to the gamma irradiation.

**The Calculated O State Fe\(_{\text{3+}}\)–H\(_2\)O–Cu\(^{2+}\)–DNC Structures**

Our calculated O[Fe\(_{\text{HS/IS/LS}}\)–H\(_2\)O–Cu\(^{2+}\)–DNC structures are taken from our recent publication Ref.\(^{[32]}\). The initial geometries of the DNC model clusters were established based on the Cartesian coordinates of the \textit{b}0, C\(_{2\text{v}}\) X-ray crystal structure 3588.\(^{[29]}\) Then geometry optimization calculations were performed using DFT broken-symmetry\(^{[30–39]}\)/Olyp-D3(BJ)\(^{[40]}\)/Triple-\(\xi\)-Polarization(TZP) plus COSMO\(^{[17,41–44]}\) solvation model methodology implemented within the ADF2017 software package.\(^{[45–47]}\) The inclusion of dispersion D3(BJ) field-type effects on the geometries distinguishes our current Mössbauer calculations from those we performed previously both for the fit set of Fe structure complexes (see section \(^{[22]}\) Mössbauer Isomer Shift and Quadrupole Splitting Calculations, and for the O state structures. The inner cores of C(1s), N(1s), and O(1s) were treated by frozen core approximation during geometry optimizations. Several Fe\(_{\text{HS/IS/LS}}\)–H\(_2\)O–Cu\(^{2+}\)–local minima were found with the H\(_2\)O molecule residing at different positions between Fe\(_{\text{3+}}\) and Cu\(^{2+}\). Specifically, one structure for the Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\) state and four structures (noted as a, b, c, and d) for each of the Fe\(_{\text{HS}}\)–H\(_2\)O–Cu\(^{2+}\) and Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\) states were presented in our publication Ref.\(^{[32]}\), and now are given in Table 2. For each broken-symmetry optimized geometry, we have also performed an Fe\(_{\text{LS}}\)–Cu\(^{2+}\) F-coupled single-point energy calculation and have presented the relative energies in Table 2.

The four HS–Fe\(_{\text{3+}}\) structures Fe\(_{\text{HS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a–d) are very similar to the corresponding IS–Fe\(_{\text{3+}}\) structures Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a–d). Further, the optimized Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\) structure is also similar to Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a) structures. The full model cluster representing the Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a), Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a), and the Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a) structures, respectively. The H\(_2\)O molecule is also H-bonding with another H\(_2\)O molecule which probably originates from the Cu\(^{2+}\)-bound H\(_2\)O ligand in the prior reaction cycle state F (see Figure 1). For a clearer view, the top and the central portions of this structure are also given in Figure 4. The central portions of the Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(b–c) are also shown in Figure 4.

**Table 2.** OLYP-D3(BJ) calculated distances (in Å), relative energies (\(\Delta E\), in kcal mol\(^{-1}\)), Mössbauer isomer shift (\(\delta\), in mms \(^{-1}\)) and quadrupole splitting (\(\Delta E_q\), in mms \(^{-1}\)) values of the resting-as-isolated Fe\(_{\text{3+}}\)–H\(_2\)O–Cu\(^{2+}\)–optimized DNC structures with different Fe\(_{\text{3+}}\)–Cu\(^{2+}\) spin states.

| Fe\(_{\text{3+}}\)–Spin\(^{(a)}\) | Structure | Distances (Å) | Spin-Coupling | \(\Delta E\) | \(\delta\) | \(\Delta E_q\) |
|----------------|----------------|-------------|-------------|----------------|----------------|----------------|
| HS Fe\(_{\text{HS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a) | 2.39 | 2.94 | 4.98 | AF | 0.0 | 0.40 | 0.80 |
| Fe\(_{\text{HS}}\)–H\(_2\)O–Cu\(^{2+}\)–(b) | 2.47 | 2.77 | 4.90 | AF | –0.2 | 0.41 | 0.92 |
| Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(c) | 3.55 | 2.21 | 4.73 | AF | 0.3 | 0.43 | 0.78 |
| Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(d) | 3.26 | 2.20 | 4.73 | AF | 0.5 | 0.41 | 0.77 |
| IS Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a) | 2.40 | 2.90 | 4.94 | AF | 0.3 | 0.43 | 1.24 |
| Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\)–(b) | 2.46 | 2.67 | 4.78 | AF | –6.2 | 0.36 | 2.42 |
| Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\)–(c) | 3.00 | 2.24 | 4.56 | AF | –4.3 | 0.34 | 2.34 |
| Fe\(_{\text{IS}}\)–H\(_2\)O–Cu\(^{2+}\)–(d) | 3.00 | 2.24 | 4.56 | AF | 0.5 | 0.35 | 2.66 |
| LS Fe\(_{\text{LS}}\)–H\(_2\)O–Cu\(^{2+}\)–(a) | 2.37 | 3.10 | 5.04 | AF | 0.5 | 0.35 | 2.66 |

\(\text{[a]}\) HS stands for high-spin; IS is for intermediate-spin; and LS is for low-spin.
In general, the isomer shifts ($\delta$) can be calculated according to the fit equation [Eq. (1)]:

$$\delta = \alpha |\rho(0) - A| + C$$

(1)

where $\rho(0)$ is the calculated electron density at Fe nucleus and $A$ is a predefined constant close to the value of $\rho(0)$. The parameters $\alpha$ and $C$ are normally obtained by linear fitting between the calculated $|\rho(0)|$ and the experimental (exp) $\delta$ values of a set of Fe$^{2+}$, Fe$^{3+}$, and Fe$^{4+}$ complexes. However, we have found that a global fitting of a single equation for all Fe$^{2+}$, Fe$^{3+}$, and Fe$^{4+}$ complexes in general underestimates the isomer shifts for the Fe$^{2+}$ and Fe$^{4+}$ sites, but overestimates the $\delta$ values for the Fe$^{3+}$ state.\cite{48–50} In order to reasonably predict the $^{57}$Fe isomer shifts in different oxidation states, we have fit the parameters separately for the Fe$^{2+}$ and for Fe$^{3+}$--Fe$^{4+}$ complexes with PW91, OLYP, and OPBE functionals;\cite{49,50} and have successfully predicted the isomer shifts for various states of the Fe--Fe, Fe--Mn, and Fe$_4$S$_4$ clusters in methane.

$^{57}$Fe$^{3+}$ Mössbauer Isomer Shift and Quadrupole Splitting Calculations

Figure 3. Our full DNC model cluster representing the Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ (a), Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ (a), and Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ (a) states, in which the H$_2$O molecule is much closer to the Fe$_{a3}^{3+}$ site. The top and the central portions of the cluster are also shown in Figure 4. Linking hydrogen atoms were fixed during geometry optimization.

Figure 4. Four optimized O state DNC model clusters (noted as a, b, c, and d) for each of the Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ and Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ states and one structure for the Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ state were presented in our publication Ref. [32]. Here is a closer look at the top and the central portions of these clusters. "a-d" show the central Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ (a-d) structures. "a" also represents the central part of the Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ model cluster. The Fe--O, Cu--O and Fe--Cu distances of the optimized Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ (a-d) and Fe$_{a3}^{3+}$--H$_2$O--Cu$^{2+}$ structures are given in Table 2. Relative energies of different states are reported in Tables 2 and 3.
monooxygenase\textsuperscript{[48–51]} ribonucleotide reductases,\textsuperscript{[49,52–56]} and APS-reductase.\textsuperscript{[57]} We have also calculated the isomer shift and quadrupole splitting values with OLYP functional for the Fe\textsubscript{3}\textsuperscript{3+} site of \textit{ba}\textsubscript{2} CoC based on several X-ray crystal structures.\textsuperscript{[31]} However, at that time, we did not propose that a single water molecule resides between the Fe\textsubscript{3}\textsuperscript{3+} and Cu\textsubscript{3}\textsuperscript{2+} sites in the DNC of oxidized as-isolated CoC. In the current paper, we have performed the \(\rho(0)\) vs. \(\delta_{exp}\) linear fitting for the OLYP-D3(BJ) potential on the same training set of the Fe\textsubscript{25}\textsuperscript{3+–3.5+4+} complexes as we have done for the PW91, OLYP, and OPBE potentials.\textsuperscript{[49,50]} The training set contains 19 Fe\textsubscript{25}\textsuperscript{3+–3.5+4+} sample complexes with total 30 Fe sites. Previously, we used our own program to calculate the electron density \(\rho(0)\) at the Fe nuclei. More recently, the ADF computer code package by default also reports the electron density at the nuclei. Based on their description, the electron density is not calculated exactly at the center of the nucleus. Instead, the electron density is calculated at sample points on a small spherical surface surrounding the center of a nucleus. The computed electron density in the output of ADF is the average electron density on \(\delta_{exp}\) = \frac{1}{2}eQVzz(1 + \eta^2/3)^{1/2} (4)

where \(e\) is the electrical charge of a positive electron, \(Q\) is the nuclear quadrupole moment of Fe. Recently, the ADF software package determines the \(\Delta E_Q\) value using \(Q = 0.16\) barn, the current best experimental value.

We have listed our calculated \(^{57}\text{Fe}\textsubscript{3}\textsuperscript{3+}\) isomer shift and quadrupole splitting results for our O state Fe\textsubscript{3}\textsuperscript{3+–57}\textsuperscript{O–Cu\textsubscript{3}\textsuperscript{2+}} DNC model clusters in Table 2.

**Results and Discussion**

**Calculated Mössbauer Properties for the High-Spin–Fe\textsubscript{3}\textsuperscript{3+–HS}\textsuperscript{H}_{2}O–Cu\textsubscript{3}\textsuperscript{2+}(a–d) DNC Model Clusters**

First, we compare our calculated Mössbauer properties with experimental data for Fe\textsubscript{3}\textsuperscript{3+} in high-spin state. In Table 1, the observed isomer shift values for the Fe\textsubscript{3}\textsuperscript{3+–HS} are around 0.41–0.48 mm s\textsuperscript{−1}. Our calculated \(\delta(\text{Fe}_{3}\textsuperscript{3+–HS})\) values (see Table 2) for our Fe\textsubscript{3}\textsuperscript{3+–HS}\textsuperscript{−H}_{2}O–Cu\textsubscript{3}\textsuperscript{2+}(a–d) DNC models are 0.40–0.45 mm s\textsuperscript{−1}, which are highly consistent with these experiments. The available observed \(\Delta E_Q(\text{Fe}_{3}\textsuperscript{3+–HS})_{Exp}\) values for different CoCoO are reported as 0.7, 1.0 ± 0.1, 1.10, and 1.3 mm s\textsuperscript{−1}, while our calculated \(\Delta E_Q(\text{Fe}_{3}\textsuperscript{3+–HS})\) values are 0.77, 0.78, 0.80, 0.92, 1.21, and 1.24 mm s\textsuperscript{−1}, which also match the experimental values very well.

Note that in our DNC models shown in Figures 3 and 4 and the corresponding calculation results in Table 2, there is another H\textsubscript{2}O molecule, which likely originates from the Cu\textsubscript{3} bound H\textsubscript{2}O ligand in state \(F\) (see Figure 1), and has H-bonding interaction with the central H\textsubscript{2}O molecule. In the X-ray crystal structure 358G\textsuperscript{[35]} a water molecule (HO\textsubscript{2}H\textsubscript{6}O) was seen 3.01 Å above one of the dioxygen atoms that is closer to Cu\textsubscript{3}. Therefore, the HO\textsubscript{2}H\textsubscript{6}O may have H-bonding interaction with the H\textsubscript{2}O ligand in a position similar to Fe\textsubscript{3}\textsuperscript{3+–H}_{2}O–Cu\textsubscript{3}\textsuperscript{2+}(c) (Figure 4c). No other H\textsubscript{2}O molecules were identified within the H-bonding distances around the dioxygen in 358G. This probably implies that not all CoCoO molecules in the crystal have an H-bonding H\textsubscript{2}O interacting with the central bridging H\textsubscript{2}O molecule, and even if there is an H-bonding H\textsubscript{2}O molecule in some of the CoCoDNCs, the H-bonding patterns and the positions of the H-bonding H\textsubscript{2}O molecules may differ, and therefore, they may not be identified in the X-ray crystal structure.

Since it is not clear whether there is an H-bonding H\textsubscript{2}O molecule in the DNC of the O state, in our previous work in Ref. [32], we also performed broken-symmetry state geometry optimizations on the four Fe\textsubscript{3}\textsuperscript{3+–H}_{2}O–Cu\textsubscript{3}\textsuperscript{2+}(a–d) structures obtained by removing the H-bonding H\textsubscript{2}O. The four corresponding optimized structures (S) were labeled as S1, S2, S3, and S4 in Figure 6 of Ref. [32], respectively. Their main bond distances and the calculated energies were given in Table 2 of Ref. [32], and are also given in Table 3 here, together with the single-point energy Fe\textsubscript{3}\textsuperscript{3+–Cu\textsubscript{3}\textsuperscript{2+}} F-coupled state calculations on the broken-symmetry optimized geometries.
Without the H-bonding H$_2$O molecule, the binding of the H$_2$O ligand with the two metal sites, especially with the Fe$_{a3}^{HS,3+}$ site, are weakened. But still the overlap of the S1–S4 structures with the DNC of 358G shows the H$_2$O molecules in S1–S4 reside along the apparent dioxygen species direction in 358G (see Figure 2). We therefore also calculated the $^{57}$Fe$_{a3}^{HS,3+}$ Mössbauer isomer shift and quadrupole splitting properties of these four structures in both AF- (broken-symmetry) and F-coupled states, and presented the results in Table 3. The calculated isomer shifts are almost the same as those given in Table 2, and are again highly consistent with the observed values.

Based on the calculated $^{57}$Fe$_{a3}^{HS,3+}$ Mössbauer properties given in Tables 2 and 3, it appears that the $^{57}$Fe$_{a3}^{HS,3+}$ isomer shifts only slightly vary with the position of the H$_2$O molecule, whether or not there is an H-bonding H$_2$O molecule, and whether Fe$_{a3}^{HS,3+}$ is F- or AF-coupled with Cu$_b^{2+}$. However, the $^{57}$Fe$_{a3}^{HS,3+}$ quadrupole splitting values are very sensitive to these factors. This explains that the observed Mössbauer spectra are broad, that the parameters are difficult to define precisely, and that many of the reported parameters are averaged values\cite{[33–35]}. Our calculated versus the several reported experimentally defined $^{57}$Fe$_{a3}^{HS,3+}$ Mössbauer isomer shift and quadrupole splitting values are compared in Figure 5.

In general, when the H$_2$O molecule is much closer to the Fe$_{a3}^{HS,3+}$ site (Fe$_{a3}^{HS,3+}$ → H$_2$O–Cu$_b^{2+}$ (a)–(b)), the calculated $^{57}$Fe$_{a3}^{HS,3+}$ quadrupole splitting values for the F- and AF-coupled states are similar to each other. On the other hand, when the H$_2$O molecule is much closer to the Cu$_b^{2+}$ site (Fe$_{a3}^{HS,3+}$ → H$_2$O–Cu$_b^{2+}$ (c)–(d)), the calculated $\Delta E_{Q}(Fe_{a3}^{HS,3+})$ values for the F-coupled state are much larger than the corresponding AF-coupled state. The observed $\Delta E_{Q}(Fe_{a3}^{HS,3+})$ values around 1.0 to 1.3 mm s$^{-1}$ (see Table 1)\cite{[33–34]} likely arise from the DNC structures in which the H$_2$O molecule is much closer to the Cu$_b^{2+}$ site and the Fe$_{a3}^{HS,3+}$ and Cu$_b^{2+}$ sites are F-coupled (see Tables 2 and 3). Meanwhile, the observed $\Delta E_{Q}(Fe_{a3}^{HS,3+})$ values around 0.7 mm s$^{-1}$ (see Table 1)\cite{[33–34]} likely arise from the structures where the H$_2$O molecule is close to the Fe$_{a3}^{HS,3+}$ site (whether the Fe$_{a3}^{HS,3+}$ and Cu$_b^{2+}$ sites are F- or AF-coupled), or from the structures where the H$_2$O molecule is much closer to Cu$_b^{2+}$ and the two metal sites are AF-coupled.

![Figure 5](image.png)

**Figure 5.** Calculated (black circles, data are given in Tables 2 and 3) versus several experimentally defined (red dots, data are given in Table 1) Mössbauer isomer shift and quadrupole splitting values for the high-spin (HS) $^{57}$Fe$_{a3}^{HS,3+}$ site in CcOs.

**Table 3.** OLYP-D3-BJ calculated properties (relative energies $\Delta E$ in kcal mol$^{-1}$, Mössbauer isomer shift $\delta$ in mm s$^{-1}$, quadrupole splitting $\Delta E_Q$ in mm s$^{-1}$) for the four geometry optimized high-spin–Fe$_{a3}^{HS,3+}$ DNC structures starting from Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (a–d) by deleting the H$_2$O molecule which has H-bonding interaction with the central H$_2$O molecule.$^{(a)}$

| Starting from Structure | Name in Ref. [32] | Optimized Geometry [Å] | Spin-Coupling | $\Delta E$ | $\delta$ | $\Delta E_Q$ |
|------------------------|-------------------|------------------------|--------------|----------|--------|-----------|
| Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (a) | S1 | Fe–O 2.61, Cu–O 2.82, Fe–Cu 5.03 | AF | 0.0 | 0.41 | 0.85 |
| Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (b) | S2 | Fe–O 2.97, Cu–O 2.52, Fe–Cu 4.98 | AF | -1.1 | 0.41 | 0.66 |
| Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (c) | S3 | Fe–O 3.54, Cu–O 2.29, Fe–Cu 4.76 | AF | -1.5 | 0.42 | 0.60 |
| Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (d) | S4 | Fe–O 3.07, Cu–O 2.41, Fe–Cu 4.87 | AF | -0.8 | 0.41 | 0.64 |

$^{(a)}$ These four geometry optimized structures (S) were given as S1, S2, S3, and S4, respectively, in Table 2 of Ref. [32].

**Calculated Mössbauer Properties for the Intermediate- and Low-Spin–Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ DNC Model Clusters**

In $T_t$ c$_1$a$_3$ and b$_t$ at certain pH or at low temperature (see Table 1),$^{[35,36]}$ a "low-spin" Fe$_{a3}^{3+}$ species was observed with $\delta = 0.29$ mm s$^{-1}$ and $\Delta E_Q = 2.21/2.24$ mm s$^{-1}$. Although this was proposed to be a low-spin Fe$_{a3}^{3+}$ species, such $\delta$ and $\Delta E_Q$ values could also originate from an intermediate-spin Fe$_{b3}$ site. Therefore, we have performed Mössbauer property calculations on our IS and LS Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ models listed in Table 2. Unlike the high-spin–Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ models, the F- and AF-coupled spin states yield essentially the same isomer shift and quadrupole splitting results for the same Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ structure. Further, the position of the H$_2$O molecule does not have significant effect on the calculated $^{57}$Fe$_{a3}^{HS,3+}$ isomer shift and quadrupole splitting values on the four Fe$_{a3}^{HS,3+}$–H$_2$O–Cu$_b^{2+}$ (a)–(d) structures. Overall, the calculated $\delta(Fe_{a3}^{HS,3+})$ only varies from 0.34 to 0.36 mm s$^{-1}$, and $\Delta E_Q(Fe_{a3}^{HS,3+})$ from 2.33 to 2.66 mm s$^{-1}$.

For the low-spin–Fe$_{a3}^{LS,3+}$–H$_2$O–Cu$_b^{2+}$ structure, our calculations give $\delta(Fe_{a3}^{LS,3+}) = 0.31$ mm s$^{-1}$ and $\Delta E_Q(Fe_{a3}^{LS,3+}) = 2.96$ mm s$^{-1}$.
Compared with experimental $\delta = 0.29 \text{ mm s}^{-1}$ and $\Delta E_Q = 2.21/2.24 \text{ mm s}^{-1}$ values, the calculated $\delta(\text{Fe}_{3}^{3+}) = 0.31 \text{ mm s}^{-1}$ is a little closer to experiment than the calculated $\delta(\text{Fe}_{3}^{5+})$ values (0.34 to 0.36 mm s$^{-1}$). However, the $\Delta E_Q(\text{Fe}_{3}^{5+}) = 2.96 \text{ mm s}^{-1}$ deviates more from experiment than the $\Delta E_Q(\text{Fe}_{3}^{3+})$ results (2.33 to 2.66 mm s$^{-1}$). In the Supporting Information, we have used linear regression on the training set of Fe complexes to find the standard deviation (SD) of the fit for the isomer shifts, $SD = 0.068 \text{ mm s}^{-1}$, and also the standard deviation of the fit for the corresponding quadrupole splittings, $SD = 0.30 \text{ mm s}^{-1}$. The experimentally observed Mössbauer spectrum with $\delta = 0.29 \text{ mm s}^{-1}$ and $\Delta E_Q = 2.21/2.24 \text{ mm s}^{-1}$ spectra has an isomer shift within 1 SD from either the DFT calculated low-spin or an intermediate-spin $\text{Fe}_{3}^{3+}$ species. By contrast, for the predicted versus experimental quadrupole splitting, the calculated low-spin quadrupole splitting differs by more than 2 SD from experiment, while the calculated intermediate-spin quadrupole splittings are much closer <1.5 SD.

In addition, the intermediate-spin $\text{Fe}_{3}^{3+}$–$\text{H}_{2} \text{O}$–$\text{Cu}_{8}^{2+}$ (a)–(d) structures have lower energy than the low-spin $\text{Fe}_{3}^{5+}$–$\text{H}_{2} \text{O}$–$\text{Cu}_{8}^{2+}$ state, and the structure $\text{Fe}_{3}^{5+}$–$\text{H}_{2} \text{O}$–$\text{Cu}_{8}^{2+}$ (c) has calculated $\delta = 0.34 \text{ mm s}^{-1}$ and $\Delta E_Q = 2.33 \text{ mm s}^{-1}$, which are the closest to the experiment. Therefore, the experimentally observed $\delta = 0.29 \text{ mm s}^{-1}$ and $\Delta E_Q = 2.21/2.24 \text{ mm s}^{-1}$ spectra are probably from intermediate-spin–$\text{Fe}_{3}^{3+}$ DNCs.

Conclusions

In our previous study,[32] we proposed that a single water molecule is in between the $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ sites in the resting oxidized as-isolated O state ofCcO. Depending on the $\text{Fe}_{3}^{3+}$–$\text{Cu}_{8}^{2+}$ distance and presence or absence of H-bonding to another H$_2$O molecule, this single H$_2$O molecule can coordinate to either the $\text{Fe}_{3}^{3+}$ or the $\text{Cu}_{8}^{2+}$ site, or remain at different positions between the $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ sites that are energetically very close on the potential energy surface. We have also proposed that the extended peroxide type electron density between $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ observed in several CcO X-ray crystal structures[23–25] is the consequence of the superposition of the electron density of a water molecule at different locations between $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ in different CcO molecules within the crystals.

The structural heterogeneities of the DNC in the resting oxidized state CcOs (O state) were demonstrated by earlier $^{57}\text{Fe}^{3+}$ Mössbauer experiments,[33–36] in which the spectra were broad, the parameters were difficult to define precisely, and the reported parameters were averaged values.

In this paper, we have calculated the $^{57}\text{Fe}^{3+}$ Mössbauer isomer shift ($\delta$) and quadrupole splitting ($\Delta E_Q$) properties of the resting state $\text{OFe}_{3}^{3+}$–$\text{H}_{2} \text{O}$–$\text{Cu}_{8}^{2+}$ DNC structures that we obtained in Ref. [32], and have compared the calculated results with the available experimental values (see Table 1). Overall, the span of our calculated $\delta$ and $\Delta E_Q$ results for the high-spin–$\text{Fe}_{3}^{3+}$ DNC structures agree very well with the experimental values. Our calculations show that the change of the high-spin–$\text{Fe}_{3}^{3+}$ isomer shift among different DNC structures is within 0.05 mm s$^{-1}$. However, the quadrupole splitting values vary with the position of the central H$_2$O molecule, whether or not this H$_2$O molecule has H-bonding interaction with another H$_2$O molecule, and whether the high-spin–$\text{Fe}_{3}^{3+}$ site is F- or AF-coupled with $\text{Cu}_{8}^{2+}$. The observed $\Delta E_Q$ values around 1.0 to 1.3 mm s$^{-1}$ (see Table 1)[33–36] likely result from the DNC structures in which the central H$_2$O molecule is much closer to the $\text{Cu}_{8}^{2+}$ site and the high-spin–$\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ sites are F-coupled. Meanwhile, the observed $\Delta E_Q$ values around 0.7 mm s$^{-1}$ probably result from the structures where the H$_2$O molecule is close to the high-spin–$\text{Fe}_{3}^{3+}$ site with the two metal sites either F- or AF-coupled, or from the structures where the H$_2$O molecule is much closer to $\text{Cu}_{8}^{2+}$ and the two metal sites are AF-coupled.

Our calculations also show that the observed “low-spin” $\text{Fe}_{3}^{3+}$ species with $\delta = 0.29 \text{ mm s}^{-1}$ and $\Delta E_Q = 2.21/2.24 \text{ mm s}^{-1}$ more probably arises from an intermediate-spin–$\text{Fe}_{3}^{3+}$ state, which exists at low temperature[36] or is more populated at certain pH values.[35]

Overall, our calculations demonstrate that the structural heterogeneities of the resting as-isolated oxidized state observed in several Mössbauer properties experiments are very consistent with the DFT predicted properties and structures of a single H$_2$O molecule bridging the $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$ sites with variable positions, with further variations explained by the $\text{Fe}_{3}^{3+}$ spin states, and by the different spin-couplings between $\text{Fe}_{3}^{3+}$ and $\text{Cu}_{8}^{2+}$.

Supporting Information

The details of the Mössbauer isomer shift parameters fitting for the OLYP-D3(BJ) functional, the $\text{Fe}_{3}^{2.5+}$–$\text{Cu}_{8}^{2+}$–$\text{Fe}_{3}^{3+}$ complexes in the training set, and the $\rho(0)$ vs. $\delta_{obs}$ linear regression plots are given in the Supporting Information.

Acknowledgments

We thank NIH for financial support (R01GM100934) and thank The Scripps Research Institute for computational resources. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (grant number ACI-1053575, resources at the San Diego Supercomputer Center through award TG-CHE130010 to AWG). We greatly appreciate highly valuable discussions with Duncan McRee and Ying Chen from our Scripps Research group, and with Tzanko Doukov and Aina Cohen from SSRL on X-ray structural issues related to this work.

Conflict of Interest

The authors declare no conflict of interest.
Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: cytochrome c oxidase · resting state · Mössbauer · isomer shift · quadrupole splitting

[1] O. M. H. Richter, B. Ludwig, Rev. Physiol. Biochem. Pharmacol. 2003, 147, 47–74.
[2] G. T. Babcock, M. Wikström, Nature 1992, 356, 301–309.
[3] S. Ferguson-Miller, G. T. Babcock, Chem. Rev. 1996, 96, 2889–2907.
[4] M. Wikström, Biochim. Biophys. Acta 2012, 1817, 468–475.
[5] V. R. I. Kaila, M. I. Verkhovsky, M. Wikström, Chem. Rev. 2010, 110, 7062–7081.
[6] A. A. Konstantinov, FEBS Lett. 2012, 586, 630–639.
[7] C. von Ballmoos, P. Adelroth, R. B. Gennis, P. Brzezinski, Biochim. Biophys. Acta Bioenerg. 2012, 1817, 650–657.
[8] M. Wikström, K. Krab, V. Sharma, Chem. Rev. 2018, 118, 2469–2490.
[9] M. R. A. Blomberg, Front. Chem. 2021, 9, 640155.
[10] S. Yoshikawa, A. Shimada, Chem. Rev. 2015, 115, 1936–1989.
[11] I. Ishigami, M. Hikita, T. Egawa, S. R. Yeh, D. L. Rousseau, Biochim. Biophys. Acta Bioenerg. 1987, 948, 108–109.
[12] M. R. A. Blomberg, P. E. M. Siegbahn, Biochim. Biophys. Acta Bioenerg. 2015, 1847, 364–376.
[13] M. R. A. Blomberg, P. E. M. Siegbahn, Biochim. Biophys. Acta Bioenerg. 2015, 1847, 1173–1180.
[14] M. R. A. Blomberg, P. E. M. Siegbahn, Biochim. Biophys. Acta 2012, 1817, 495–505.
[15] L. Noodleman, W.-G. Han Du, J. A. Fee, A. W. Götz, R. C. Walker, Inorg. Chem. 2014, 53, 6458–6472.
[16] W.-G. Han Du, A. W. Götz, L. H. Yang, R. C. Walker, L. Noodleman, Phys. Chem. Chem. Phys. 2016, 18, 21162–21171.
[17] W.-G. Han Du, A. W. Götz, L. Noodleman, Inorg. Chem. 2018, 57, 1048–1059.
[18] W.-G. Han Du, A. W. Götz, L. Noodleman, Inorg. Chem. 2019, 58, 13933–13944.
[19] L. Noodleman, W.-G. Han Du, D. McRee, Y. Chen, T. Goh, A. W. Götz, Phys. Chem. Chem. Phys. 2020, 22, 26652–26668.
[20] A. J. Moody, Biochim. Biophys. Acta Bioenerg. 1996, 1276, 6–20.
[21] C. Ostermeier, A. Harrensa, U. Ermler, H. Michel, Proc. Natl. Acad. Sci. USA 1997, 94, 10547–10553.
[22] L. Qin, C. Hiser, A. Mulichak, R. M. Garavito, S. Ferguson-Miller, Proc. Natl. Acad. Sci. USA 2006, 103, 16117–16122.
[23] J. Koepke, E. Olikhova, H. Angerer, H. Muller, G. H. Peng, H. Michel, Biochim. Biophys. Acta 2009, 1787, 635–645.
[24] A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans 2 1993, 799–805.
[25] A. Klamt, J. Phys. Chem. 1995, 99, 2224–2235.
[26] A. Klamt, V. Jonas, J. Chem. Phys. 1996, 105, 9972–9981.
[27] R. Andersson, C. Safari, R. Dods, E. Nango, R. Tanaka, A. Yamashita, T. Nakane, K. Tono, Y. Joti, P. Bath, E. Dunevall, R. Bosman, O. Nureki, S. Iwata, R. Neutze, G. Branden, Sci. Rep. 2017, 7, 4518.