Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignancy world-wide, with half a million new cases reported every year. HBV, HCV and alcoholic liver disease are the major risk factors in the etiology of HCC, and Southeast Asia and sub-Saharan Africa are the most affected regions. Over the past two decades, the incidence rate of HCC has tripled and the 5-year survival rate has increased from more than 1% to nearly 12% in the USA [1–3]. Although the early detection of small HCC has received much attention through recommended surveillance strategies in order to obtain a better response to curative treatments such as liver resection, liver transplantation and locoregional procedures, most patients with HCC are not candidates for curative therapies even at time of diagnosis due to poor liver function or tumor characteristics such as large or multifocal lesions. Survival rates for intermediate stage patients at 1, 3 and 5-years are 80%, 65% and 50%, and for patients with advanced disease are 29%, 16% and 8%, respectively [4].

Since the first report on transcatheter arterial chemoembolization (TACE) in the 1970s, TACE using Lipiodol mixed with anticancer emulsion and gelatin particles, now referred to as conventional TACE (cTACE), has been widely performed for unresectable HCC and other cancers as a palliative therapy [5]. Although the effectiveness of this technique remains controversial, a meta-analysis which included five randomized controlled trials (RCT) showed that TACE significantly reduced the overall 2-year mortality rate compared with nonactive treatment [6]. The drug eluting bead (DEB) is a new embolic agent as well as an anticancer agent carrier [7]. The use of DEBs which release the anticancer agent in the lesion in a controlled fashion is a new technique and has been shown to be associated with a reduction in systemic side effects and an increase in dose of the anticancer agent in the local lesion [8–16]. Pooled data from six clinical trials showed high local response rates ranging from 52% to 81% [17–24]. However, there is no strong evidence to show whether the cTACE is better than DEB-TACE in any terms of effectiveness.

Abstract

Background: Drug eluting beads (DEB) are relatively new embolic agents that allow sustained release of chemotherapeutic agents in a localized fashion to the tumor. This technique is associated with reduced systemic side effects relative to systemic chemotherapy and an increase in the dose of antineoplastic agent delivered to the lesion. The meta-analysis was undertaken to assess the effectiveness of DEB-transcatheter arterial chemoembolization (TACE) in the management of hepatocellular cancer.

Methods: We searched the Web of Science, PubMed, EBSCO, EMBASE, the Wiley Library and Google Scholar for studies on DEB-TACE in the management of hepatocellular cancer from 1979 to April 2013. The risk of bias was assessed using RevMan 5.1. Random and fixed-effects meta-analytical models were used where indicated, and between-study heterogeneity was assessed. Disease control, complications and severe complications were recorded.

Results: Five studies met the selection criteria, three RCTs and two case-control studies, published from 2010 to 2012, included 217 patients in the DEB-TACE group and 237 in the conventional-TACE group. There was no significance over disease control (OR 2.27, 95% CI 0.78–6.63) with moderate between-study heterogeneity ($\chi^2 = 6.83$, degrees of freedom [df] = 3; p < 0.08; I2 = 56%). Complications in both groups were assessed and no significant difference was observed ($\chi^2 = 6.34$, degrees of freedom [df] = 4; p < 0.18; I2 = 37%). Severe complications were also assessed and no significant difference was observed ($\chi^2 = 6.47$, degrees of freedom [df] = 4; p < 0.17; I2 = 38%). No publication bias relating to the above outcomes was detected by funnel plot. DEB-TACE benefited disease control without an increase in complications and severe complications.

Citation: Han S, Zhang X, Zou L, Lu C, Zhang J, et al. (2014) Does Drug-Eluting Bead Transcatheter Arterial Chemoembolization Improve the Management of Patients with Hepatocellular Carcinoma? A Meta-Analysis. PLoS ONE 9(8): e102686. doi:10.1371/journal.pone.0102686

Editor: Peter Starkel, St. Luc University Hospital, Belgium

Received December 27, 2013; **Accepted** June 22, 2014; **Published** August 1, 2014

Copyright: © 2014 Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAI15B06). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: cjr.limaoquan@163.vip.com (MQL); Jueli@tongji.edu.cn (JL)
We performed a meta-analysis to determine whether DEB-TACE was more effective than cTACE in patients with HCC.

Method

Search

A computerized bibliographic search from 1979 to April 2013 was conducted on Web of Science (including MEDLINE), PubMed, EBSCO, EMBASE, the Wiley Library and Google Scholar, using the following terms: DEB, drug eluting bead, drug eluting microsphere and TACE. The related-articles function was allowed to expand the search findings and all abstracts, studies and citations were reviewed irrespective of language. We also searched the related study on www.clinicaltrials.gov in an attempt to find unpublished studies. The updated search date was April 1\(^{st}\), 2013.

Study selection

Studies were excluded by reading the titles or abstracts, and all studies based on animal or in vitro experiments, single-arm studies, case reports, reviews and studies on metastatic liver lesions were excluded. Following careful reading of abstracts and full-texts, studies which examined DEB-TACE versus cTACE were included if the study complied with the following requirements: clinically diagnosed HCC, Child-Pugh A or B, case-controlled trial or RCT outcomes assessed by modified Response Evaluation Criteria in Solid Tumor (mRECIST) or the Europe Association for the Study of Liver Disease (EASL) measurement, complications and severe complications from both the DEB-TACE group and the cTACE group. For repeat studies conducted by the same author, the most recent and informative study was adopted if there were overlapping data.

Assessment of risk of bias in eligible studies

Two review authors (SH, LZ) independently assessed the risk of bias in each included study using Revman 5.1. Agreements were reached by discussion between the two review authors if there were disagreements on specific items in the studies.

Data extraction

All the articles searched were managed by Endnote X5. One reviewer (SH) retrieved articles that potentially met the inclusion criteria. The full text was requested from the authors if the study was included but not readily available on the database. From each included study, we extracted data on patient characteristics, demographics, country, study design, sample size, etiology of HCC, Child-Pugh score, Barcelona Clinic Liver Cancer (BCLC) classification, antineoplastic dose, DEB dose, tumor response, complications and severe complications from both the DEB-TACE group and the cTACE group. The primary endpoint of this meta-analysis was tumor response assessed by the EASL criteria or modified RECIST which focused on viable tumor on imaging evidence and included partial response (PR), complete response (CR), stable disease (SD), and progressive disease (PD) [25]. For converting continuous to dichotomous, we reclassified the PR, CR and SD in raw data as disease control (DC), which means disappearance of all detectable tumor, or a decrease of more than 50% or 30%, or an increase of <20% or 25%, without the appearance of new lesions based on CT or MRI. The minimum medical imaging follow-up time was 4 weeks after the procedure in all the included studies. Complications, namely post-TACE complications, were acute liver impairment, encephalopathy,
ascites, epigastric pain and fever. Severe complications included increased hospital stay, injury or death.

Statistical analysis

This meta-analysis was carried out in compliance with the recommendations of the Cochrane Reviewers’ handbook 4.2.2 [26]. The odds ratio (OR) was used as the summary statistic for statistical analysis of dichotomous variables and represented the odds of a favorable event occurring in the DEB-TACE group compared to the cTACE group and indicated the relative risk. An OR of more than 1 favored the DEB-TACE group. The point estimate of the OR was considered to be statistically significant or a p-value <0.05 was significant if the 95% CI did not include the value 1.

A fixed-effect or a random-effect model was used for the meta-analysis where indicated. Heterogeneity between the groups was evaluated by the χ^2 and I^2 statistic, and higher χ^2 and I^2 statistic values indicated greater heterogeneity between the groups [27]. The hypothesis of homogeneity between the groups was thought to be invalid if the p-value was <0.1 and the random-effect model was adopted and the cause of heterogeneity was investigated. The fixed-effect model was then considered. Publication bias was analyzed using a funnel plot. A two-tailed p-value <0.05 was considered statistically significant. Analysis was performed using Review Manager version 5.1.5 for Windows.

Results

In total, 135 potentially relevant articles were identified using the search strategy (Figure 1). One hundred and six articles were excluded after reading the title and abstract, which included 27 animal or in vitro experiments, 48 single arm studies, 18 studies involved patients with liver metastasis, 18 review articles, nine comparative studies which either had no full texts or were ineligible, four case reports and two official files. Following a
further review of the remaining nine articles, four were excluded due to overlapping data, not enough information or were ineligible, of which Frenette, who conducted an article involving 274 patients, provided the baseline characteristics of patients and are working on the outcomes.

Therefore five studies published between 2010 and 2012 met the selection criteria and were included in this meta-analysis [23, 28–31]. The references in these studies did not provide further studies for review. The analysis was performed on 217 patients in the DEB-TACE group and 237 in the cTACE group. Of these five studies, three were RCTs and two were case-control studies, of which four were from Europe and one from Asia.

All three RCTs were considered to be of high methodological quality. One of the RCTs conducted by Lammer and colleagues was an international, multicenter, prospective and single-blind study which included 189 patients and constituted the major part (41.6%) of this meta-analysis. The other two RCTs were single-center and randomized studies, but failed to provide the specific randomization method. Two case-control studies focused on a definite issue with appropriate method, but failed to provide the exposure factor. Song and colleagues concluded that DEB-TACE resulted in a better treatment response than cTACE, while Wiggermann concluded that there was no significant increase in terms of disease control between the treatment groups. The risk of bias for each study is shown in Figure 2 and Figure 3. The study characteristics and patient demographics are shown in Table 1.

Two studies described treatment cycles patients received. In Lammer’s study, 82% patients received two cycles of treatment in each group, and 61%, 57% patients received three cycles in DEB-TACE and cTACE group, respectively. Whereas, in Sacco’s study, 22.4% received two cycles of treatment in each group and 4.5%, 5.5% received three cycles in DEB-TACE and cTACE group. However, no significant difference was found in both studies.

Pooled data from the included studies which assessed disease control showed no significance between two groups (OR 2.27, 95% CI 0.78–6.63) with moderate between-study heterogeneity ($\chi^2 = 6.83$, degrees of freedom [df] = 3; p < 0.08; I$^2 = 56%$). No publication bias was detected by the funnel plot (Figure 4A).

Data on complications in both groups were assessed and no significant difference between the two groups was observed ($\chi^2 = 6.34$, degrees of freedom [df] = 4; p < 0.18; I$^2 = 37%$). No publication bias was detected by the funnel plot (Figure 4B).

Data on severe complications in the studies were assessed and no significant difference between the two groups was observed ($\chi^2 = 6.47$, degrees of freedom [df] = 4; p < 0.17; I$^2 = 38%$). No publication bias was detected by the funnel plot (Figure 4C).

Discussion

This meta-analysis examined the efficacy of DEB-TACE versus cTACE in patients with HCC. Though the analytical results showed no statistical significance, but the odds ratio is high in terms of disease control and there is no increase in complications or severe complications. There are currently two types of DEB on the market: polyvinyl alcohol-based microspheres (DC Bead, BioCompaniies Ltd., Farnham, UK) and superabsorbent polymer microspheres (HeepaSphere, Biosphere Medical, Rockland, MA, USA) [22]. The initial report on the DEB was by Lewis and colleagues in 2006 which presented detailed in vitro characterization of the DEB (DC Bead) [7]. The study showed that modeling of the kinetics of drug elution from the beads in vitro at a loading dose of 25 mg/ml yielded calculated half-lives of 150 hours for the 100–300 μm size range to a maximum of 1,730 hours for the 700–
900 μm size range, which was dependent on the ionic strength of the elution medium in comparison with an unstable Lipiodol emulsion that showed a rapid loss of drug with a half-life of approximately 1 hour. Therefore, long-term interaction with the tumor and the high concentration of antineoplastic agent in the lesion were the main advantages over the conventional drug carrier and embolic agent. The largest study as well as RCT, conducted by Lammer, did not show significance in terms of disease control, but the subgroup analyses showed that in 67% of patients with more advanced disease (Child-pugh B, ECOG 1, bilobar or recurrent disease), the incidence of overall survival and disease control were statistically higher (p = 0.038 and p = 0.026, respectively) in DEB-TACE group compared with the cTACE group. The supplementary post hoc analysis indicated that the incidence of severe adverse events within 30 days of a procedure was consistently lower, and AST as well as ALT was significantly less in the DEB-TACE group. The largest retrospective study from Song showed the treatment response in the DEB-TACE group was significantly higher than that in the cTACE group (p = 0.001) and the subgroup analysis according to BCLC stage indicated that the treatment responses in intermediate stage was significantly better in DEB-TACE group than cTACE group as well (p < 0.001). We may therefore surmise that DEB-TACE could improve the clinical effectiveness in patients with more advanced HCC.

Limitations

There are limitations in this meta-analysis. First, there are limited numbers of articles focusing on DEB-TACE, and even less on the comparison of cTACE and DEB-TACE. The ongoing clinical trials on DEB-TACE are mostly single-arm study. Second, only five studies which included 454 patients were eligible for the inclusion criteria, and four of the included studies have small sample sizes. Therefore, a sensitivity analysis to gain further knowledge on the factors affecting tumor response and other outcomes was not applied. Third, cTACE performed in different medical centers can vary either due to the different embolic agents used or different levels of manual expertise. In terms of the antineoplastics used, four studies used Adriamycin and one used cisplatin in the cTACE group. Forth, medical imaging follow-up varied greatly from 6 weeks to 18 months and is quite short, which may have affected the primary endpoint of the meta-analysis. Fifth, survival time was not described in the meta-analysis although three studies recorded survival time in different ways. Finally, we noted that the primary endpoint of the largest RCT by Lammer and colleagues played an important role in this meta-analysis (weighted, 40.9%) and the initial in vitro study was sponsored by DC Bead, BioCompatibles Ltd.

A recent systematic review which focused on the safety and efficacy of DEB-TACE in HCC patients showed that there was sufficient evidence to support the use of the DC Bead as a safe and effective embolic treatment, however, there was overlapping information in this meta-analysis [5]. In our meta-analysis, no severe adverse events related to the safety of DEB were reported. Complications and severe complications between the two groups were not significantly different. With the exception of the RCTs and case-control studies, almost 40 single-arm studies included information on the efficacy of DEB since 2006 which showed the promising application of this treatment in clinical practice [32–55]. Based on this meta-analysis, further high quality randomized clinical trials with longer follow-up may focus on patients with more advanced stage, who may be of more benefit with DEB-TACE.

Table 1. Demographic characteristics of the included studies.

Year	Article Type	Bead Type	Patient Mean age	Etiology	Child-Pugh	BCLC	Drop out Median Follow-up
2010	RCT	DC Bead	67.3±8.7	HCV/HBV/AC/O	A/B	60.9±7.3	8/4/14/4 6w
2011	RCT	DC Bead	67.3±8.7	HCV/HBV/AC/O	A/B	60.9±7.3	8/4/14/4 6w
2012	Retrospective	DC Bead	67.3±8.7	HCV/HBV/AC/O	A/B	60.9±7.3	8/4/14/4 6w
2011	RCT	DC Bead	67.3±8.7	HCV/HBV/AC/O	A/B	60.9±7.3	8/4/14/4 6w
2011	RCT	DC Bead	67.3±8.7	HCV/HBV/AC/O	A/B	60.9±7.3	8/4/14/4 6w

Child-Pugh = Child-Pugh classification. BCLC = Barcelona Clinic Liver Cancer tumor staging. D = DEB-TACE group. C = cTACE group. O = others. RCT = randomized controlled trial.

do:10.1371/journal.pone.0102686.t001

Drug-Eluting Bead TACE Improve Management of HCC
Author Contributions

Conceived and designed the experiments: SLH JL MQL. Analyzed the data: SLH LLZ. Contributed reagents/materials/analysis tools: XPZ LLZ CHL JZ. Wrote the paper: SLH.

References

1. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365: 1118–1127.
2. Han KH, Kudo M, Ye SL, Choi JY, Poon RT, et al. (2011) Asian consensus workshop report: expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia. Oncology 81 Suppl 1: 158–164.
3. Walzer N, Kulik LM (2008) Hepatocellular carcinoma: latest developments. Curr Opin Gastroenterol 24: 312–319.
4. Martin R, Geller D, Espat J, Kooby D, Sellars M, et al. (2012) Safety and efficacy of trans arterial chemoembolization with drug-eluting beads in hepatocellular cancer: a systematic review. Hepatogastroenterology 59: 255–260.
5. Takayasu K (2012) Transarterial chemoembolization for hepatocellular carcinoma over three decades: current progress and perspective. Jpn J Clin Oncol 42: 130–146.
6. Camma C, Schepis F, Orlando A, Albanese M, Shahied L, et al. (2002) Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 224: 47–54.
7. Hong K, Khwaaja A, Lippi E, Forbenison MS, Geppicker JS, et al. (2006) New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 12: 2563–2567.
8. Lewis AL, Gonzalez MV, Lloyd AW, Hall B, Tang Y, et al. (2006) DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17: 335–342.
9. Lewis AL, Taylor RR, Hall B, Gonzalez MV, Wills SL, et al. (2006) Pharmacokinetic and safety study of doxorubicin-eluting beads in a porcine model of hepatic arterial embolization. J Vasc Interv Radiol 17: 1335–1343.
10. Taylor RR, Tang Y, Gonzalez MV, Stratford PW, Lewis AL (2007) Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties. Eur J Pharm Sci 30: 7–14.
11. Eyrol E, Belej A, Taylor RR, Lewis AL, Berger MR (2006) Chemoembolisation of rat colorectal liver metastases with drug eluting bead loaded with irinotecan or doxorubicin. Clin Exp Metastasis 25: 273–282.
12. Jordan O, Denys A, De Baere T, Boulens N, Doelker E (2010) Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. J Vasc Interv Radiol 21: 1084–1090.
13. Maeda N, Osuga K, Higashihara H, Mikami K, Tomoda K, et al. (2010) In vitro characterization of cisplatin-loaded superabsorbent polymer microspheres designed for chemoembolization. J Vasc Interv Radiol 21: 877–881.
14. Gupta S, Wright KC, Evers J, Van Pelt CS, Dixon KA, et al. (2011) Hepatic arterial embolization with doxorubicin-loaded superabsorbent polymer microspheres in a rabbit liver tumor model. Cardiovasc Intervent Radiol 34: 1021–1028.
15. Liu DM, Kos S, Buczkowski A, Kee S, Munk PL, et al. (2012) Optimization of doxorubicin loading for superabsorbent polymer microspheres in a rabbit liver tumor model. Cardiovasc Intervent Radiol 35: 391–396.
16. Osuga K, Maeda N, Higashihara H, Hori S, Nakazawa T, et al. (2012) Current status of embolic agents for liver tumor embolization. Int J Clin Oncol 17: 306–315.

Supporting Information

Checklist S1 PRISMA Checklist.

Figure 4. A. Forest plot comparison of DEB-TACE vs. cTACE group in terms of disease control shows no significance of odds ratio. The Lammer’s study takes greater weight against other studies. No publication bias in the funnel plot. B. Forest plot comparison of DEB-TACE vs. cTACE group in terms of complications show there is no significance of odds ratio and no publication bias. C. Forest plot comparison of severe complications show there is no significance of odds ratio between these two groups and report no publication bias.
doi:10.1371/journal.pone.0102686.g004
36. Dhanasekaran R, Kooby DA, Staley CA, Kauh JS, Khanna V, et al. (2010)
35. Smith BW, Jeffrey GP, Macquillan GC, Tibballs J, Ratman L, et al. (2009)
34. Grosso M, Vignali C, Quaretti P, Nicolini A, Melchiorre F, et al. (2008)
33. van Malenstein H, Maleux G, Vandecaveye V, Heye S, Laleman W, et al. (2011) Conventional
32. Doi SA, Barendregt JJ, Mozurkewich EL (2011) Meta-analysis of heterogeneous
31. Clarke M, Horton R (2001) Bringing it all together: Lancet-Cochrane
30. Prajapati HJ, Spivey JR, Hanish SI, El-Rayes BF, Kauh JS, et al. (2013)
29. Malagari K, Chatzimichael K, Alexopoulos E, Kelekis A, Hall B, et al. (2008)
28. Sacco R, Bargellini I, Bertini M, Bozzi E, Romano A, et al. (2011)
27. Varela M, Real MI, Burrel M, Forner A, Sala M, et al. (2007) Chemoemboliza-
26. Gomez J, Pinto Varela JM, et al. (2010) [Treatment of hepatocellular carcinoma with drug eluting beads: results of an open-label study of 62 patients. Cardiovasc
25. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
24. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
23. Tam KY, Leung KC, Wang YX (2011) Chemoembolization with Epirubicin-Loaded Superabsorbent Polymer Micro-
22. Malagari K, Chatzimichael K, Alexopoulos E, Kelekis A, Hall B, et al. (2008) Transarterial chemoembolization of unresectable hepatocellular carcinoma with drug eluting beads: results of an open-label study of 62 patients. Cardiovascular Interv Radiol 31: 289–298.
21. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vase Interv Radiol 22: 1545–1552.
20. van Malenstein H, Maleux G, Vandecaveye V, Heye S, Laleman W, et al. (2011) A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Oncology 34: 366–376.
19. Sacco R, Bargellini I, Bertini M, Bozzi E, Romano A, et al. (2011) Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vase Interv Radiol 22: 1545–1552.
18. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
17. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
16. Sacco R, Bargellini I, Bertini M, Bozzi E, Romano A, et al. (2011) Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vase Interv Radiol 22: 1545–1552.
15. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
14. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
13. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
12. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vase Interv Radiol 22: 1545–1552.
11. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
10. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
9. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
8. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
7. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
6. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
5. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
4. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
3. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Chemoembolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. Journal of Hepatology 55: 1332–1338.
2. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.
1. Malagari K, Pomoni M, Spyridonopoulos TN, Moschouris H, Kelekis A, et al. (2011) Safety Profile of Sequential Transcatheter Chemoembolization with DC Bead (TM): Results of 237 Hepatocellular Carcinoma (HCC) Patients. Cardiovascular and Interventional Radiology 34: 774–785.