Effect of substrate and culture conditions on the production of amylase and pullulanase by thermophilic Clostridium thermosulfurogenes SVM17 in solid state fermentation

Mrudula, S.*, Gopal Reddy 2 and Seenayya, G. 3

1Department of Microbiology, M. G. R. College, Dr. M. G. R. Nagar, Hosur, T.N 635 109, India.
2Department of Microbiology, Osmania University, Hyderabad–500 007, A.P, India.
3R & D, Issar Pharmaceuticals Pvt.Ltd, Srinagar Colony, Hyderabad–500 073, A.P, India.
E-mail: somamrudula@hotmail.com

ABSTRACT

The endo acting enzyme with dual specificity towards α-1,4- and α-1,6-glycosidic linkages are named as amylolpullulanase. The production of extracellular thermostable amylolpullulanase by Clostridium thermosulfurogenes SVM17 was investigated in solid state fermentation (SSF). Coarse type wheat bran was found to be the best substrate among ten easily available complex organic substrates evaluated. The production of enzyme reached a peak in 72 h. A high level of enzyme was produced in wheat bran moistened with PYE medium with a moisture content of 73 %. The optimum temperature and pH for amylolpullulanase production was 60 °C and 7.5, respectively. An inoculum size of 20 % resulted in maximum production of amylolpullulanase. Under the optimum conditions the strain showed a maximum of 17,227 and 21,526 U of amylase and pullulanase activity, respectively per kilogram of bacterial bran (BB). The enzyme production was high in SSF than that in SmF. The use of SSF for the production of thermostable amylopullulanase by Clostridium thermosulfurogenes SVM17 resulted in maximum production of amylopullulanase. Under the optimum conditions the strain showed a maximum of 17,227 and 21,526 U of amylase and pullulanase activity, respectively per kilogram of bacterial bran (BB). The enzyme production was high in SSF than that in SmF. The use of SSF for the production of thermostable amylolpullulanase by C. thermosulfurogenes SVM17 could, therefore led to reduction in the overall cost of enzyme production.

Keywords: Clostridium thermosulfurogenes, amylase activity, pullulanase activity, process parameters, solid state fermentation.

INTRODUCTION

Maltose and maltooligosaccharides find wide range of applications in food, beverage, pharmaceutical and chemical industries (Fogarty and Kelly, 1990). They are produced by hydrolysis of starch using amylases from higher plants, certain mesophilic bacteria and fungi. The majority of amylases reported so far are optimally active at moderate temperatures (Haki and Rakshit, 2003). Thermal stability of amylolytic enzymes were reported in the range of 60-90 °C (Hyn and Zeikus, 1985a; b; Saha et al., 1990; Ramesh et al., 1994; Swamy et al., 1994; Chung et al., 1995; Busch and Stutzenberger, 1997; Ganghotner et al., 1998; Reddy et al., 1998; Gessesse and Mamo, 1999; Gomes et al., 2003; Sodhi et al., 2005). Therefore, a high value is placed on extreme thermostability and thermoactivity of the enzymes. Thermoanaerobic bacteria are of considerable interest as producers of thermostable amylolytic enzymes (Antranikian, 1990). In this direction, anaerobic and thermophilic bacteria that secrete amylases producing maltose and malto oligosaccharides were isolated in our laboratory (Swamy and Seenayya, 1996a; Mrudula, 2010). These strains (Reddy et al., 1998; Mrudula, 2010; Swamy and Seenayya, 1996a; b) were screened for the production of maltose and maltooligosaccharides and the

*Corresponding author.
enzymes so far reported have been studied in submerged fermentation (SmF). A very few reports on these enzymes have been reported in solid-state fermentation (SSF). α-Amylase by Bacillus megaterium 16M (Ramesh and Lonsane, 1987), B. subtilis (Baysal et al. 2003) B. cereus MTCC 1305 (Anto et al. 2006) B. licheniformis M27 (Ramesh and Lonsane., 1990), B. amylobioquefaciens (Gangadharan et al. 2006) and B. coagulans (Babu and Satyanarayana, 1995), β-amylase and pullulanase by Clostridium thermosulfurogenes SV2 (Reddy et al. 2000). No reports are available in the literature on the production of thermostable amylol pullulanase by SSF process. In the present study, the influence of various process parameters on the production of thermostable amylol pullulanase by SSF are reported.

MATERIALS AND METHODS

Bacterial strain

The bacterial strain used in the present study was isolated in our laboratory (Swamy and Seenayya, 1996a) and identified as Clostridium thermosulfurogenes SVM17.

Solid-state fermentation

Approximately 10 g of wheat bran having uniform particle size was taken in 120 mL serum vial moistened with 1:1.5 PYE medium (Swamy and Seenayya, 1996b) containing (g/L): NH₄Cl, 1.0; MgCl₂·6H₂O, 0.2; KH₂PO₄, 0.3; NaH₂PO₄·7H₂O, 2.0; peptone, 10.0; yeast extract, 3.0; 2.5% (w/v) FeSO₄·7H₂O, 0.03 mL; trace mineral solution, 10 mL; vitamin solution, 5 mL; resazurin, 0.002.

The trace mineral solution contained (g/L): Nitrilotriacetic acid, 12.8 (neutralized to pH 6.5 with KOH); FeSO₄·7H₂O, 0.1; MnCl₂·4H₂O, 0.1; CoCl₂·6H₂O, 0.16; CaCl₂·2H₂O, 0.1; ZnCl₂, 0.1; CuCl₂, 0.02; H₂BO₃, 0.01; NaMoO₄·2H₂O, 0.01; NaCl, 1.0; NiSO₄·6H₂O, 0.026; Na₂SeO₃, 0.02. The vitamin solution contained (µg/L): biotin, 1.0; cyanocobalamine, 2.0; pyrodoxnhydrocloride, 8.0; p-amionbenzoic acid, 4.0. The medium was flushed with nitrogen gas to create anaerobic conditions. The sealed vials were sterilized for 15 min at 15 psi-121 °C. After cooling to room temperature (28 ± 2 °C), a 2% (v/w) of 2.5% (w/v) Na₂S solution was added to maintain further reduced conditions followed by 2 mL of 24 h old inoculum. The contents in the vials were mixed thoroughly and incubated at 60 °C in horizontal position. The contents in the vials were periodically mixed by gentle shaking and accumulated gases were removed using a sterile needle. At the end of incubation (72 h), vials were taken out and enzyme from each vial was extracted with 0.1 M sodium acetate buffer (pH 5.5) at 1:5 w/v ratio 28 ± 2 °C with a contact time of 1 h at an agitation speed of 150 rpm on a rotary shaker. Extracts were clarified by squeezing through dampened cheese cloth (Ramesh and Lonsane., 1990), followed by centrifugation at 8000 rpm for 20 min at 4 °C, and the supernatant was used as source of extracellular enzyme.

Enzyme assay

Various methods of enzyme assays have been reported in literature. Recently Gupta et al. (2003) and Xiao et al., (2006) have reviewed the methodologies on enzyme assays. However the basic method of Miller (1959) is the most widely adapted for assay of amylase, pullulanase activities. In the present study amylase and pullulanase activities were assayed by measuring the reducing sugar released from the action of starch and pullulan respectively.

Amylase activity

The reaction mixture (3 mL) composed of 0.5 mL soluble starch (1% w/v) and 0.5 mL of approximately diluted enzyme source in 2 mL of sodium acetate buffer (0.1M, pH 5.5). After incubation at 70 °C for 30 min, the reaction was stopped by cooling the tubes in an ice bath and reducing sugar released by enzymatic hydrolysis of starch was determined by addition of 1 mL of 3,5-dinitrosalicylic acid (Miller, 1959; Ramesh et al., 1994; Okolo et al., 1995). Color development was read at 540nm using UV visible Spectrometer (Shimadzu UV-VIS 260A). A separate blank was set up for each sample to correct the non enzymatic release of sugars. One unit of amylase is defined as the amount of enzyme which released one micro mole of reducing sugars as glucose per min under standard assay conditions.

Pullulanase activity

The standard assay procedure used for measurement of pullulanase activity consisted of a reaction mixture (3 mL) composed of 0.5 mL pullulan (1% w/v) and 0.5 mL of approximately diluted enzyme source in 2 mL of sodium acetate buffer (0.1 M, pH 5.5). After incubation at 70 °C for 30 min, the reaction was stopped by cooling the tubes in an ice bath and reducing sugar released by enzymatic hydrolysis of pullulan was determined by addition of 1 mL of 3,5-dinitrosalicylic acid (Miller, 1959; Ramesh et al., 1994; Duffner et al., 2000). Color development was read at 540 nm using UV visible Spectrometer (Shimadzu UV-VIS 260A). A separate blank was set up for each sample to correct the non enzymatic release of sugars.

One unit of pullulanase is defined as the amount of enzyme which released one micro mole of reducing sugars as glucose per min under standard assay conditions.

Effect of various complex organic solid substrates on enzyme production

The strain SVM17 was grown in 120 mL serum vials containing 10 g each of various solid substrates (de oiled cakes of coconut and ground nut, coarse type of brans of pulses such as red gram, black gram, bengal gram, green gram, coarse as well as fine types of rice and wheat brans) and moistened with 1:1.5 PYE medium, sterilized, inoculated and incubated at 60 °C for 24, 48 and 72 h,
respectively. At the end of incubation, the enzyme was extracted and assayed.

Effect of incubation temperature on enzyme production

Effect of incubation temperature on production of thermostable amylopullulanase by *C. thermosulfurogenes SVM17* was studied by incubating the serum vials containing SSF medium at different temperatures ranging between 30 and 70 °C.

Effect of initial pH on enzyme production

The procedure followed for adjusting the pH was based on methodology of Suresh and Chandrasekaran (1999). The effect of initial pH of the medium on the yield of amylopullulanase was studied by growing the culture at different initial pH between 4.0 and 9.0. The pH of the PYE medium (moistening agent) was adjusted with 1 N H$_2$SO$_4$ or 1 N NaOH before using it for moistening wheat bran.

Effect of moisture content on enzyme production

The influence of initial moisture level on enzyme production was studied by varying the ratio (w/v) of wheat bran to PYE medium (moistening agent) between 0.5 and 2.5 (i.e., 30 and 75% moisture content).

Effect of moistening agents on amylopullulanase production

The effect of moistening agents such as tap water, distilled water and PYE medium on enzyme production was studied.

Inoculum size

The SSF medium was inoculated with 5, 10, 15, 20 and 25% of exponentially grown culture and incubated at 60 °C for 72 h. The enzyme was assayed at the end of incubation period.

RESULTS AND DISCUSSION

It is clear from Figures 1 and 2 that the incubation time required for maximum production of enzyme varied on the type of substrate used. Among the different solid substrates screened, coarse type of wheat bran supported maximum yields of both amylase and pullulanase at 72 h, followed by fine type of wheat bran, rice bran, groundnut cake, black gram bran in the decreasing order. The peak production of enzyme yields was observed at 48 h on red gram bran and coarse type of rice bran. The enzyme yields of both amylase and pullulanase decreased gradually after 24 h when grown on coconut cake, brans of green gram and bengal gram. Thus, wheat bran was found to be a better substrate. In SSF, the substrate supplies the nutrients for growth of the microorganisms and also provides anchorage to the cells (Lonsane et al., 1985; Babu and Satyanarayana, 1996). Presence of sufficient nutrients and non sticky property even in moist conditions and there by providing large surface area (Babu and Satyanarayana, 1995; Feniksova et al., 1960) may be responsible for the wheat bran to be more suitable.
The maximum yield of the enzyme reached in 72 h and further increase in the incubation time did not influence on the enzyme yields (Figure 3). Considerable amounts of enzyme yield was recorded over a range of pH and temperatures (Figures 4 and 5) and the optimum pH and temperature required for the production of the enzyme were 7.5 and 60 °C, respectively. The maximum growth and enzyme production of *C. thermosulfurogenes* SVM17 occurred at a temperature of 60 °C. Similar observations were reported for β-amylase and pullulanase production by *C. thermosulfurogenes* SV2 (Reddy *et al.*, 2000). For α-amylase production by *B. cereus* MTCC 1305, 55 °C was found optimum (Anto *et al.*, 2006).

The moisture content is an important factor that influences the growth and product yield in SSF (Ramesh and Lonsane, 1990). Moisture is reported to cause swelling of the substrates, thereby facilitating better utilization of the substrate by microorganisms (Kim *et al.*, 1985; Nagendra and Chandrasekaran, 1996). The data presented in the Figure 6, clearly indicates that the yield of amylopullulanase by *C. thermosulfurogenes* SVM17 increased with an increase in solid to moistening agent ratio from 1:0.5 to 1:2.5 (30 to 75%) with a maximum at 1:2.25 (73%). Any further increase in the ratio resulted in
the decrease of enzyme yields may be due to clumping of solid particles which results in the decrease of interparticle space leading to decreased diffusion of nutrients (Babu and Satyanarayana, 1996; Nagendra and Chandrasekaran, 1996; Sandhya and Lonsane, 1994; Zadrazil and Brunert, 1981). In contrast, the low moisture content leads to the decreased solubility of nutrients present in the wheat bran thereby decreases enzyme yields (Feniksova, et al., 1960).

Figure 7: Effect of inoculum size on amylopullulanase production by C. thermosulfurogenes SVM17 under solid state fermentation. The values reported in the figure are the average values of two experiments in triplicates carried out on different occasions.

Maximum enzyme yield was obtained with 20% v/w inoculum. Further increase in inoculum concentration resulted into a gradual decrease in the enzyme yield. An inoculum size of less than 10% was found to be insufficient for growth and enzyme production (Figure 7). Similar observation was made on production of α-amylase by B. megaterium 16M (Ramesh and Lonsane, 1987), B. coagulans B49 (Babu and Satyanarayana, 1995) and B. cereus MTCC 1305 (Anto et al., 2006). Tap water, distilled water and PYE medium used as moistening agents supported amylopullulanase production to a varied extent. PYE medium supported maximum enzyme production followed by distilled water and tap water (Table 1). A number of moistening agents such as tap water (Jaleel et al., 1992; Babu and Satyanarayana, 1995; Archana and Satyanarayana, 1997), phosphate buffer (Ramesh and Lonsane, 1987), distilled water (Archana and Satyanarayana, 1997) and variety of mineral salt solutions (Babu and Satyanarayana, 1995; Archana and Satyanarayana, 1997) have been used in SSF processes for the production of enzymes.

Table 1: Effect of moistening agents on amylopullulanase production by C. thermosulfurogenes SVM17 under solid state fermentation

Moistening agent	Amylopullulanase production (U/kg BB)	
	Amylase	Pullulanase
Distilled water	9,221	10,086
Tap water	8,576	9,735
PYE medium	16,520	19,379

The values reported in the Table 1 are the average values of two experiments in triplicates carried out on different occasion.

The strain produced 2,600 and 1,300 U of thermostable amylase and pullulanase activities, respectively per liter in submerged fermentation. Whereas under SSF, the strain produced a maximum of 17,627 and 21,526 U of amylase and pullulanase activities respectively, per kilogram of bacterial bran. Thus the use of SSF for production of amylopullulanase by C. thermosulfurogenes SVM17 gave significantly higher yields as compared to those achieved in SmF and is therefore considered to be more economical.

ACKNOWLEDGEMENTS

The authors acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing funds. One of the authors (Mrudula, S) is thankful to the CSIR for the award of senior research fellowship during the course of this investigation.

REFERENCES

Antranikian, G. (1990). Physiology and enzymology of thermophilic anaerobic bacteria degrading starch. FEMS Microbiology Reviews 75, 201-218.

Anto, H., Ujval, T. and KamLesh, P. (2006). α-Amylase production by Bacillus cereus MTCC 1305 using solid state fermentation. Food Technology and Biotechnology 44, 241-245.

Archana, A. and Satyanarayana, T. (1997). Xylanase production by thermophilic Bacillus licheniformis A99 in solid state fermentation. Enzyme and Microbial Technology 21, 12-17.

Baysal, Z., Uyar, F. and Aytekin, C. (2003). Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot spring water. Process Biochemistry 38, 1665-1668.

Babu, K. R. and Satyanarayana, T. (1995). α-Amylase production by thermophilic Bacillus coagulans in solid-state fermentation. Process Biochemistry 30, 305-309.

Babu, K. R. and Satyanarayana, T. (1996). Production of bacterial enzymes by solid-state fermentation. Journal of Scientific and Industrial Research 55, 464-467.
Busch, J. E. and Stutzenberger, F. J. (1997). Amylolytic activity of Thermomonospora fusca. World Journal of Microbiology and Biotechnology 13, 637-642.

Chung, Y. C., Kobayashi, T., Kanai, H. and Akiba, T. (1995). Purification and properties of extracellular amylase from hyperthermophilic archeon Thermococcus profundus DT 5432. Applied and Environmental Microbiology 61, 1502-1506.

Duffner, F., Bertoldo, C., Andersen, J. T., Wagner, K. and Antranikian, G. (2000). A new thermoactive pullulanase from Desulflurococcus mucosus: Cloning, sequencing, characterization of the recombinant enzyme after expression in Bacillus subtilis. Journal of Bacteriology 182, 6331-6338.

Feniksova, R. V., Tikhomirova, A. S. and Rakheeva, B. (1960). Conditions for forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologiya 29, 745-747.

Fogarty, W. M. and Kelly, C. T. (1990). Recent advances in microbial amylases. In: Microbial Enzymes and Biotechnology. Fogarty, W. M. and Kelley, C. T. (eds.). Elsevier Applied Science Publishers, London. pp. 71-132.

Gangadharan, D., Sivaramakrishnan, S., Kesavan, M. N. and Ashok, P. (2006). Solid state culturing of Bacillus amyloliquefacien ce for α-amylase production. Food Technology and Biotechnology 44, 269-274.

Ganghofner, D., Kellermann, J., Staudenbauer, L. W. and Bronnenmeier, K. (1998). Purification and properties of an amylopullulanase, a glucoamylase, and an α-glucosidase in the amylolytic enzyme system of Thermoanaerobacter thermosaccharolyticum. Bioscience Biotechnology Biochemistry 62, 302-308.

Gessesse, A. and Mamo, G. (1999). A novel xylanase production by an alkalophilic Bacillus sp. by using solid-state fermentation. Enzyme and Microbial and Technology 25, 68-72.

Gomes, I., Gomes, J. and Steiner, W. (2003). Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization. Bioresource Technology 90, 207-214.

Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K. and Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process Biochemistry 38, 1501-1516.

Haki, G. D. and Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology 89, 17-34.

Hyun, H. H. and Zeikus, J. G. (1985a). General and biochemical characterization of thermostable extracellular β-amylase from Clostridium thermosulfurogenes. Applied and Environmental Microbiology 49, 1162-1167.

Hyun, H. H. and Zeikus, J. G. (1985b). General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrodsulfuricum. Applied Environmental Microbiology 49, 1168-1173.

Jaleel, S. A., Srikanta, S. and Karanth, N. G. (1992). Production of fungal amyloglucosidase by solid-state fermentation: Influence of some parameters. Journal of Microbial Biotechnology 7, 1-8.

Kim, J. H., Hosobuchi, M., Kishimoto, M., Seki, T. and Ryu, D. D. Y. (1985). Cellulase production by a solid-state culture system. Biotechnology and Bioengineering 27, 1445-1450.

Kim, J. H., Sunako, M., Ono, H., Muroook, Y., Fukusaki, E. and Yamshita, M. (2008). Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137. Journal of Bioscience and Bioengineering 106, 449-459.

Kwak, Y. S., Akiba, T. and Kudo, T. (1998). Purification and characterization of α-amylase from hyperthermophilic archeon Thermococcus profundus, which hydrolyses both α-1,4 and α-1,6 glucosidic linkages. Journal of Fermentation and Bioengineering 86, 363-367.

Lonsane, B. K., Ghildyal, N. P., Budlatman, S. and Ramakrishna, S. V. (1985). Engineering aspects of solid-state fermentation. Enzyme and Microbial Technology 7, 256-265.

Melasniemi, H. (1987). Characterization of α-amylase and pullulanase activities of Clostridium thermohydrodsulfuricum. Biochemical Journal 246, 193-197.

Melasniemi, H. (1988). Purification and some properties of the extracellular α-amylase- pullulanase produced by Clostridium thermohydrodsulfuricum. Biochemical Journal 250, 813-818.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 3, 426-428.

Mrudula, S. (2001). Thermostable amylopalullanase production in submerged and solid state fermentation by Clostridium thermosulfurogenes SVM17. Ph.D. Thesis, Osmania University, Hyderabad, India.

Mrudula, S. (2010). Optimization of thermostable amylopalullanase production in solid state fermentation by Clostridium thermosulfurogenes SVM17 through Plackett-Burman and response surface methodological approaches. Malaysian Journal of Microbiology 6(2), 181-195.

Nagendra, P. G. and Chandrasekharan, M. (1996). L-Glutaminase production by marine Vibrio costicola under solid-state fermentation using different substrates. Journal of Marine Biotechnology 4, 176-179.

Nakamura, N., Sashihara, N., Nagayama, H. and Horikoshi, K. (1989). Characterization of pullulanase and α-amylase activities of a Thermus sp. AMD 33. Starch/staeke 41, 112-117.

Okolo, B. N., Ezeogu, L. I. and Mba, C. N. (1995). Production of raw starch digesting amylosase by Aspergillus niger grown on native starch sources. Journal of Science Food and Agriculture 69, 109-115.
Plant, A. R., Morgan, H. W. and Daniel, R. M. (1986). A highly stable pullulanase from Thermus aquaticus YT-1. Enzyme and Microbial Technology 668-672.

Plant, A. R., Clemens, R. M., Daniel, R. M. and Morgan, H. W. (1987). Purification and preliminary characterization of an extra cellular pullulanase from Thermoanaerobium Tok6-BI. Applied Microbiology and Biotechnology 26, 427-443.

Ramesh, M. V. and Lonsane, B. K. (1987). Solid-state fermentation for production of α-amylase by Bacillus megaterium 16M. Biotechnology Letters 9, 323-328.

Ramesh, M. V. and Lonsane, B. K. (1990). Critical importance of moisture content of the medium in α-amylase by Bacillus licheniformis M27 in a solid-state fermentation system. Applied Microbiology and Biotechnology 33, 501-505.

Ramesh, M. V., Sergey, M. P., Susan, E. L. and Zeikus, J. G. (1994). Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification of the amylopullulanase from Escherichia coli. Applied Environmental Microbiology 60, 94-104.

Reddy, P. R. M., Swamy, M. V. and Seenayya, G. (1998). Purification and characterization of thermostable β-amylase and pullulanase from high-yielding Clostridium thermosulfurogenes SV2. World Journal of Microbiology Biotechnology. 14, 89-94.

Reddy, P. R. M., Mrudula, S., Ramesh, B., Gopal, R. and Seenayya, G. (2000). Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid state fermentation: optimization of enzyme leaching conditions using response surface methodology. Bioprocess Engineering 23, 107-112.

Saha, B. C., Mathupala, S. P. and Zeikus, J. G. (1988). Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulphuricum. Biochemical Journal 252, 343-348.

Saha, B. C., Shen, G. J., Srivastava, K. C., Lecureux, L. W. and Zeikus, J. G. (1989). New thermostable α-amylase like pullulanase from thermophilic Bacillus sp. 3183. Enzyme and Microbial Technology 11, 760-764.

Saha, B. C. and Zeikus, J. G. (1989). Novel highly thermostable pullulanase from thermophiles. Trends in Biotechnology 7, 234-239.

Saha, B. C., Lamed, R., Lee, C. Y., Mathupala, S. P. and Zeikus, J. G. (1990). Characterization of an endo-acting amylopullulanase from Thermoanaerobacter strain B6A. Applied Environmental Microbiology 56, 881-886.

Sandhya, X. and Lonsane, B. K. (1994). Factors influencing fungal degradation of total soluble carbohydrates in sugarcane pressmud under solid-state fermentation. Process Biochemistry 29, 295-301.

Sodhi, H. K., Sharma, K., Gupta, J. K. and Soni, S. K. (2005). Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry 40, 525-534.

Spreimat, A. and Antranikian, G. (1990). Purification and properties of a thermostable pullulanase from Clostridium thermosulfurogenes EM1 which hydrolyses both α-1,6- and α-1,4- glycosidic linkages. Applied Microbiology and Biotechnology 33, 511-518.

Suress, P. V. and Chandrasekaran, M. (1999). Impact of process parameters on chitinase production by an alkaliphilic marine Beauveria bassiana in solid state fermentation. Process Biochemistry 34, 257-267.

Swamy, M. V., Sai Ram, M. and Seenayya, G. (1994). β-Amylase from Clostridium thermocellum SS8-A thermophilic, anaerobic, cellulolytic bacterium. Letters Applied Microbiology 18, 301-304.

Swamy, M. V. and Seenayya, G. (1996a). Clostridium thermosulfurogenes SV9: A therophilic amylases producer. Indian Journal of Microbiology 36, 181-184.

Swamy, M. V. and Seenayya, G. (1996b). Thermostable pullulanase and α-amylase from Clostridium thermosulfurogenes SV9: Optimization of culture conditions for enzymes production. Process Biochemistry 31, 157-162.

Xiao, Z., Storms, R. and Tsang, A. (2006). A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry 351, 146-148.

Zadrazil, I. and Brunert, H. (1981). Investigations of physical parameters important for solid-state fermentation of straw by white rot fungi. European Journal of Applied Microbiology and Biotechnology 11, 183-188.

Zareian, S., Khajeh, K., Ranjbar, B., Dabirmanesh, B., Ghollasi, M. and Mollania, N. (2010). Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzyme and Microbial Technology 46, 57-63.