Extending p-divisible groups and Barsotti-Tate deformation ring in the relative case

Yong Suk Moon

Abstract

Let k be a perfect field of characteristic $p > 2$, and let K be a finite totally ramified extension of $W(k)[\frac{1}{p}]$ of ramification degree e. We consider an unramified base ring R_0 over $W(k)$ satisfying certain conditions, and let $R = R_0 \otimes_{W(k)} O_K$. Examples of such R include $R = O_K[s_1, \ldots, s_d]$ and $R = O_K(t_1^{\pm 1}, \ldots, t_d^{\pm 1})$. We show that the generalization of Raynaud’s theorem on extending p-divisible groups holds over the base ring R when $e < p - 1$, whereas it does not hold when $R = O_K[s]$ with $e \geq p$. As an application, we prove that if R has Krull dimension 2 and $e < p - 1$, then the locus of Barsotti-Tate representations of $\text{Gal}(\overline{R}[\frac{1}{p}] / R[\frac{1}{p}])$ cuts out a closed subscheme of the universal deformation scheme. If $R = O_K[s]$ with $e \geq p$, we prove that such a locus is not p-adically closed.

Contents

1 Introduction 1
2 Relative Breuil-Kisin Classification 3
3 Étale φ-modules and Galois Representations 7
4 Extending p-divisible Groups 9
5 Barsotti-Tate Deformation Ring for Relative Base of Dimension 2 13

1 Introduction

Let k be a perfect field of characteristic $p > 2$, and $W(k)$ be its ring of Witt vectors. Let K be a finite totally ramified extension of $W(k)[\frac{1}{p}]$ of ramification degree e, and let O_K be its ring of integers. We consider an unramified base ring R_0 over $W(k)$ satisfying certain conditions (cf. Section 2), and let $R = R_0 \otimes_{W(k)} O_K$. Important examples of such R include
the formal power series ring $R = \mathcal{O}_K[s_1, \ldots, s_d]$, and $R = \mathcal{O}_K[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$ which is the p-adic completion of $\mathcal{O}_K[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$.

When $R = \mathcal{O}_K$, Raynaud showed the following theorem on extending p-divisible groups.

Theorem 1.1. ([Ray74, Proposition 2.3.1]) Let G be a p-divisible group over K. Suppose that for each $n \geq 1$, $G[p^n]$ extends to a finite flat group scheme over \mathcal{O}_K. Then G extends to a p-divisible group over \mathcal{O}_K, and such an extension is unique up to isomorphism.

In this paper, we prove that the generalization of Raynaud’s theorem holds over the relative base R when the ramification is small ($e < p - 1$). On the other hand, using an example from [VZ10] on purity of p-divisible groups, we show that such a statement does not hold when the ramification is large.

Theorem 1.2. Assume $e < p - 1$. Let G be a p-divisible group over $R[p^1]$. Suppose that for each $n \geq 1$, $G[p^n]$ extends to a finite locally free group scheme over R. Then G extends to a p-divisible group over R, and such an extension is unique up to isomorphism.

If $e \geq p$ and $R = \mathcal{O}_K[s]$, there exists a p-divisible group G over $R[p^1]$ such that $G[p^n]$ extends to a finite locally free group scheme over R for each n but G does not extend to a p-divisible group over R.

As an application, we study the geometry of the locus of representations arising from p-divisible groups over R when R has Krull dimension 2. Let G_R be the étale fundamental group of $\text{Spec} R[p^1]$. For a fixed absolutely irreducible \mathbf{F}_p-representation V_0 of G_R, there exists a universal deformation ring which parametrizes the deformations of V_0 ([SL97]).

We say that a finite continuous \mathbf{Q}_p-representation V of G_R is Barsotti-Tate if it arises from a p-divisible group over R, i.e., if there exists a p-divisible group G_R over R such that $V \cong T_p(G_R) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ where $T_p(G_R)$ denotes the Tate module of G_R. For a torsion \mathbf{Z}_p-representation T of G_R, we say it is torsion Barsotti-Tate if it is a quotient of a finite free \mathbf{Z}_p-representation T_1 such that $T_1[p^1]$ is Barsotti-Tate. By using Theorem 1.2, we prove:

Theorem 1.3. Suppose R has Krull dimension 2 and $e < p - 1$. Then the locus of Barsotti-Tate representations of G_R cuts out a closed subscheme of the universal deformation scheme.

If $R = \mathcal{O}_K[s]$ and $e \geq p$, then the locus of Barsotti-Tate representations is not p-adically closed in the following sense: there exists a finite free \mathbf{Z}_p-representation T of G_R such that T/p^nT is torsion Barsotti-Tate for each integer $n \geq 1$ but $T[p^1]$ is not Barsotti-Tate.

We give a more precise statement of Theorem 1.3 in Section 5.

Acknowledgements

I would like to express sincere gratitude to Mark Kisin for his guidance while working on this topic. This paper is partly based on author’s Ph.D. thesis under his supervision. I also thank Brian Conrad and Tong Liu for helpful discussions.
2 Relative Breuil-Kisin Classification

We first explain the classification of \(p \)-divisible groups and finite locally free group schemes over \(\text{Spec} R \) via certain Kisin modules, which is proved in [Kis06] when \(R = \mathcal{O}_K \) and generalized in [Kim15] for the relative case.

We will work over the relative base rings as considered in [Bri08] with some additional mild assumptions. Denote by \(W(k) \langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle \) the \(p \)-adic completion of the polynomial ring \(W(k)[t_1^{\pm 1}, \ldots, t_d^{\pm 1}] \). Let \(R_0 \) be a ring obtained from \(W(k)\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle \) by iterations of the following operations:

- \(p \)-adic completion of an étale extension;
- \(p \)-adic completion of a localization;
- completion with respect to an ideal containing \(p \).

We assume that either \(W(k)\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle \rightarrow R_0 \) has geometrically regular fibers or \(R_0 \) has Krull dimension less than 2, and that \(k \rightarrow R_0/pR_0 \) is geometrically integral and \(R_0 \) is an integral domain. Furthermore, we suppose that \(R_0 \) is formally smooth formally finite type over some Cohen ring (cf. [Kim15, Section 2.2.2]). In particular, \(R_0 \) is a regular ring.

\(R_0/pR_0 \) has a finite \(p \)-basis given by \(\{t_1, \ldots, t_d\} \) in the sense of [DJ95, Definition 1.1.1]. Let \(\hat{\Omega}_{R_0} = \lim_{\longrightarrow n} \Omega_{(R_0/p^n)/W(k)} \) be the module of \(p \)-adically continuous Kähler differentials. We have \(\hat{\Omega}_{R_0} \cong \bigoplus_{i=1}^d R_0 \cdot d(\log t_i) \) by [Bri08] Proposition 2.0.2. The Witt vector Frobenius on \(W(k) \) extends (not necessarily uniquely) to \(R_0 \). We fix such a Frobenius endomorphism \(\varphi : R_0 \rightarrow R_0 \), and let \(R = R_0 \otimes_{W(k)} \mathcal{O}_K \) be our base ring. Examples of such \(R \) include \(R = \mathcal{O}_K\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle \) and \(R = \mathcal{O}_K[s_1, \ldots, s_d] \) (for example, via \(s_i = 1 + t_i \)).

It will be useful later to consider the following natural maps between base rings. Let \(R_{0,g} \) be the \(p \)-adic completion of \(\lim_{\longrightarrow \varphi} (R_0/pR_0) \) with the induced Frobenius, and denote by \(k_g \) the perfect closure \(\varinjlim \text{Frac}(R_0/pR_0) \) of \(\text{Frac}(R_0/pR_0) \). By the universal property of \(p \)-adic Witt vectors, we have a unique continuous (with respect to the \(p \)-adic topology) morphism \(h : W(k_g) \rightarrow R_{0,g} \) commuting with their projections to \(k_g \). By unicity, \(h \) is compatible with Frobenius endomorphisms. Since \(h \) modulo \(p \) is an isomorphism and \(R_{0,g} \) is \(p \)-torsion free and \(p \)-adically complete and separated, \(h \) is an isomorphism. We will make use of this isomorphism later when we apply results from classical \(p \)-adic Hodge theory over \(p \)-adic fields, since such results will hold for the base ring \(R_{0,g} \otimes_{W(k)} \mathcal{O}_K \). Let \(b_g : R_0 \rightarrow R_{0,g} \) be the natural morphism compatible with Frobenius. This induces \(\mathcal{O}_K \)-linearly the base change map \(b_g : R \rightarrow R_{0,g} \otimes_{W(k)} \mathcal{O}_K \).

Lemma 2.1. The map \(b_g : R_0 \rightarrow R_{0,g} \) is injective. Furthermore, for each integer \(n \geq 1 \), the map \(R_0/(p^n) \rightarrow R_{0,g}/(p^n) \) induced from \(b_g \) is injective.
Proof. Since $R_0/(p)$ is an integral domain, the map $R_0/(p) \to R_{0,g}/(p) = k_g$ is injective. Thus, $b_g : R_0 \to R_{0,g}$ is injective as R_0 is p-adically separated and $R_{0,g}$ is p-torsion free. It also follows that $R_0/(p^n) \to R_{0,g}/(p^n)$ is injective for each $n \geq 1$.

Let $\mathcal{G} = R_0[u]$ equipped with the Frobenius extending that on R_0, given by $\varphi : u \mapsto u^p$. Denote by $E(u)$ the Eisenstein polynomial for the extension K over $W(k)\left[\frac{1}{p}\right]$.

Definition 2.2. A quasi-Kisin module of height 1 is a pair $(\mathcal{M}, \varphi_{\mathcal{M}})$ where

- \mathcal{M} is a finitely generated projective \mathcal{G}-module;
- $\varphi_{\mathcal{M}} : \mathcal{M} \to \mathcal{M}$ is a φ-semilinear map such that $\text{coker}(1 \otimes \varphi_{\mathcal{M}} : \mathcal{G} \otimes_{\mathcal{G}, \varphi} \mathcal{M} \to \mathcal{M})$ is annihilated by $E(u)$.

Note that for a quasi-Kisin module \mathcal{M} of height 1, $1 \otimes \varphi_{\mathcal{M}} : \varphi^*\mathcal{M} := \mathcal{G} \otimes_{\mathcal{G}, \varphi} \mathcal{M} \to \mathcal{M}$ is injective since \mathcal{M} is finite projective over \mathcal{G} and $\text{coker}(1 \otimes \varphi_{\mathcal{M}})$ is killed by $E(u)$. Let $\text{Mod}_{\mathcal{G}}(\varphi)$ denote the category of quasi-Kisin modules of height 1 whose morphisms are \mathcal{G}-module maps compatible with Frobenius.

Consider the composite $\mathcal{G} \to \mathcal{G}/u\mathcal{G} = R_0 \xrightarrow{\varphi} R_0$. Let $\text{Mod}_{\mathcal{G}}(\varphi, \nabla)$ denote the category whose objects are tuples $(\mathcal{M}, \varphi_{\mathcal{M}}, \nabla_{\mathcal{M}})$ where $(\mathcal{M}, \varphi_{\mathcal{M}})$ is a quasi-Kisin module of height 1, $\mathcal{M} := \mathcal{M} \otimes_{\mathcal{G}, \varphi} R_0$, and $\nabla_{\mathcal{M}} : \mathcal{M} \to \mathcal{M} \otimes_{\mathcal{M}, \mathcal{G}} \mathcal{G}$ is a topologically quasi-nilpotent integrable connection commuting with $\varphi_{\mathcal{M}} := \varphi_{\mathcal{M}} \otimes \varphi_{R_0}$. (Here, $\nabla_{\mathcal{M}}$ being topologically quasi-nilpotent means that the induced connection on $\mathcal{M}/p\mathcal{M}$ is nilpotent). The morphisms in $\text{Mod}_{\mathcal{G}}(\varphi, \nabla)$ are \mathcal{G}-module maps compatible with Frobenius and connection. The objects in $\text{Mod}_{\mathcal{G}}(\varphi, \nabla)$ are called Kisin modules of height 1. The following theorem is proved in [?].

Theorem 2.3. (cf. [Kim15, Corollary 6.7 and Remark 6.9]) There exists an exact anti-equivalence of categories

$$\mathcal{M}^* : \{p\text{-divisible groups over } R\} \to \text{Mod}_{\mathcal{G}}(\varphi, \nabla).$$

Let R'_0 be another unramified ring satisfying the conditions as above equipped with a Frobenius, and let $b : R_0 \to R'_0$ be a φ-equivariant map. Then the formation of \mathcal{M}^* commutes with the base change $R \to R' := R'_0 \otimes_{W(k)} \mathcal{O}_K$ induced \mathcal{O}_K-linearly from b.

The classification of p-power order finite locally free group schemes over R can be obtained by considering torsion Kisin modules.

Definition 2.4. A torsion quasi-Kisin module of height 1 is a pair $(\mathcal{M}, \varphi_{\mathcal{M}})$ where

- \mathcal{M} is a finitely presented \mathcal{G}-module killed by a power of p, and of \mathcal{G}-projective dimension 1;
$\varphi_\mathfrak{M}: \mathcal{M} \to \mathcal{M}$ is a φ-semilinear endomorphism such that $\text{coker}(1 \otimes \varphi_\mathfrak{M} : \varphi^*\mathcal{M} \to \mathcal{M})$ is killed by $E(u)$.

Let $\text{Mod}^{\text{tor}}(\varphi)$ denote the category of torsion quasi-Kisin modules of height 1 whose morphisms are \mathcal{S}-linear maps compatible with φ. Let $\text{Mod}^{\text{tor}}(\varphi, \nabla)$ denote the category whose objects are tuples $(\mathcal{M}, \varphi_\mathfrak{M}, \nabla_\mathcal{M})$ where $(\mathcal{M}, \varphi_\mathfrak{M})$ is a torsion quasi-Kisin module of height 1, $\mathcal{M} := \mathcal{M} \otimes_{\mathcal{S}, \varphi} R_0$, and $\nabla_\mathcal{M}: \mathcal{M} \to \mathcal{M} \otimes_{R_0} \hat{\Omega}_{R_0}$ is a topologically quasi-nilpotent integrable connection commuting with $\varphi_\mathcal{M} := \varphi_\mathfrak{M} \otimes \varphi_{R_0}$. The morphisms in $\text{Mod}^{\text{tor}}(\varphi, \nabla)$ are \mathcal{S}-module maps compatible with φ and ∇. The objects are called torsion Kisin modules of height 1.

Lemma 2.5. Let \mathcal{M} be a torsion quasi-Kisin module of height 1. Then $1 \otimes \varphi_\mathfrak{M} : \varphi^*\mathcal{M} \to \mathcal{M}$ is injective.

Proof. Let $\mathcal{S}_g := R_{0,g}[u]$ equipped with the Frobenius given by $\varphi(u) = u^p$. By the local criterion for flatness, $b_g: R_0 \to R_{0,g}$ is flat since $R_0/(p) \to R_{0,g}/(p) = k_g$ is flat and $R_{0,g}$ is p-torsion free, and the map $\mathcal{S} \to \mathcal{S}_g$ is flat. Note that $\mathcal{M}_g := \mathcal{M} \otimes_{\mathcal{S}} \mathcal{S}_g$ equipped with $\varphi_{\mathfrak{M}_g} := \varphi_{\mathfrak{M}} \otimes \varphi_{\mathcal{S}_g}$ is a torsion Kisin module of height 1 over \mathcal{S}_g.

We first claim that the natural map $b: \mathcal{M} \to \mathcal{M}_g$ is injective. Since \mathcal{M} has projective dimension ≤ 1, there exists a short exact sequence $0 \to \mathcal{M}_1 \to \mathcal{M}_2 \to \mathcal{M} \to 0$ where \mathcal{M}_1 and \mathcal{M}_2 are finite projective \mathcal{S}-modules. \mathcal{M}_1 and \mathcal{M}_2 have the same rank since \mathcal{M} is killed by a power of p. We have a commutative diagram

$$
\begin{array}{cccc}
0 & \longrightarrow & \mathcal{M}_1 & \longrightarrow & \mathcal{M}_2 & \longrightarrow & \mathcal{M} & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow b & & \\
0 & \longrightarrow & \mathcal{M}_1 \otimes_{\mathcal{S}} \mathcal{S}_g & \longrightarrow & \mathcal{M}_2 \otimes_{\mathcal{S}} \mathcal{S}_g & \longrightarrow & \mathcal{M}_g & \longrightarrow & 0
\end{array}
$$

whose rows are exact. Since \mathcal{M}_1 and \mathcal{M}_2 are projective over \mathcal{S}, the left and middle vertical maps are injective. Furthermore, for $i = 1, 2$, we have $\text{coker}(\mathcal{M}_i \to \mathcal{M}_i \otimes_{\mathcal{S}} \mathcal{S}_g) \cong \mathcal{M}_i \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S})$ as \mathcal{S}-modules. On the other hand, all elements in the kernel of the induced map $\mathcal{M}_1 \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S}) \to \mathcal{M}_2 \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S})$ are killed by some power of p since $\mathcal{M}_1[\frac{1}{p}] \cong \mathcal{M}_2[\frac{1}{p}]$. And $\mathcal{S}_g/\mathcal{S}$ is p-torsion free since $R_0/(p) \to R_{0,g}/(p) = k_g$ is injective, so $\mathcal{M}_1 \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S})$ is p-torsion free as \mathcal{M}_1 is projective over \mathcal{S}. Hence, the map $\mathcal{M}_1 \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S}) \to \mathcal{M}_2 \otimes_{\mathcal{S}} (\mathcal{S}_g/\mathcal{S})$ is injective. By the snake Lemma, we deduce that $b: \mathcal{M} \to \mathcal{M}_g$ is injective.

Now, consider the following commutative diagram:

$$
\begin{array}{ccc}
\mathcal{S} \otimes_{\varphi, \mathcal{S}} \mathcal{M} & \xrightarrow{1 \otimes \varphi_\mathfrak{M}} & \mathcal{M} \\
\downarrow & & \downarrow b \\
\mathcal{S}_g \otimes_{\varphi, \mathcal{S}_g} \mathcal{M}_g & \xrightarrow{1 \otimes \varphi_{\mathfrak{M}_g}} & \mathcal{M}_g
\end{array}
$$

Since $\varphi: \mathcal{S} \to \mathcal{S}$ is flat by [Bri08, Lemma 7.1.8], $\mathcal{S} \otimes_{\varphi, \mathcal{S}} \mathcal{M}$ has projective dimension 1 as a \mathcal{S}-module and is killed by a power of p. By the same argument as above, the natural
map $\mathcal{S} \otimes_{\varphi, \mathcal{S}} \mathcal{M} \to \mathcal{S}_g \otimes_{\mathcal{S}} (\mathcal{S} \otimes_{\varphi, \mathcal{S}} \mathcal{M}) \cong \mathcal{S}_g \otimes_{\varphi, \mathcal{S}_g} \mathcal{M}_g$ is injective, which is the left vertical map. The bottom map is injective by [Lim07, Proposition 2.3.2] since $R_{0,g} \cong W(k_g)$. Thus, the top map is injective.

Denote by $(\text{Mod FI})_{\mathcal{S}}(\varphi, \nabla)$ the full subcategory of $\text{Mod}_{\mathcal{S}}(\varphi, \nabla)$ consisting of objects \mathcal{M} such that $\mathcal{M} \cong \bigoplus_i \mathcal{M}_i$ as \mathcal{S}-modules where \mathcal{M}_i’s are projective over $\mathcal{S}/(p^n_i)$ for some positive integers n_i. The following theorem is shown in [Kim15].

Theorem 2.6. (cf. [Kim15] Proposition 9.5 and Theorem 9.8] There exists an exact fully faithful functor $\mathcal{M}^*\text{ from the category of } p\text{-power order finite locally free group schemes over } R \text{ to } (\text{Mod FI})_{\mathcal{S}}(\varphi, \nabla)$ with the following properties:

- Let H be a p-power order finite locally free group scheme over R. If $H = \ker(h : G^0 \to G^1)$ for an isogeny h of p-divisible groups over R, then there exists a natural isomorphism $\mathcal{M}^*(H) \cong \coker(\mathcal{M}^*(h))$ of torsion Kisin modules of height 1;

- Let R'_0 be another unramified ring satisfying the conditions as above equipped with a Frobenius, and let $b : R_0 \to R'_0$ be a φ-equivariant map. Then the formation of \mathcal{M}^* commutes with the base change $R \to R' := R'_0 \otimes_{W(k)} \mathcal{O}_K$ induced \mathcal{O}_K-linearly from b.

Moreover, the functor \mathcal{M}^* induces an anti-equivalence from the category of p-power order finite locally free group schemes H over R such that $H[p^n]$ is locally free over R for all $n \geq 1$ to $(\text{Mod FI})_{\mathcal{S}}(\varphi, \nabla)$.

We end this section by recalling some necessary results on connections explained in [Kim15, Section 10.2], which is based on [Vas13]. Let $(\mathcal{M}, \varphi_{\mathcal{M}})$ be a quasi-Kisin module of height 1, and let $\mathcal{M} = \mathcal{M} \otimes_{\mathcal{S}, \varphi} R_0$ equipped with the induced Frobenius $\varphi_{\mathcal{M}} \otimes \varphi_{R_0}$. From [Kim15, Eq. (6.1), (6.2) and Remark 3.13], we have the R_0-submodule $\text{Fil}^1 \mathcal{M} \subset \mathcal{M}$ associated with \mathcal{M} such that $p\mathcal{M} \subset \text{Fil}^1 \mathcal{M}$, $\mathcal{M}/\text{Fil}^1 \mathcal{M}$ is projective over $R_0/(p)$, and $(1 \otimes \varphi)(\varphi_{\text{Fil}^1 \mathcal{M}}) = p\mathcal{M}$ as R_0-modules (cf. [Kim15, Definition 3.4 and 3.6] for the frame $(R_0, pR_0, R_0/(p), \varphi_{R_0}, \varphi_{R_0}/p))$. Fix an R_0-direct factor $\mathcal{M}^1 \subset \mathcal{M}$ which lifts $\text{Fil}^1 \mathcal{M}/p\mathcal{M} \subset \mathcal{M}/p\mathcal{M}$, and let $\hat{\mathcal{M}} := (\mathcal{M} + \frac{1}{p^n} \mathcal{M}^1) \otimes_{R_0, \varphi} R_0 \subset \mathcal{M} \otimes_{R_0, \varphi} R_0[\frac{1}{p}]$. For each integer $n \geq 1$, suppose $\nabla_n : R_0/(p^n) \otimes_{R_0} \mathcal{M} \to (R_0/(p^n) \otimes_{R_0} \mathcal{M}) \otimes_{R_0} \hat{\mathcal{M}}$ is a connection such that the following diagram is commutative:

$$
\begin{array}{c}
R_0/(p^n) \otimes_{R_0} \mathcal{M} \\
\downarrow \varphi^*(\nabla_n) \downarrow \varphi^*(\nabla_n) \\
R_0/(p^n) \otimes_{R_0} \hat{\mathcal{M}} & \xrightarrow{\alpha^{(n)}} & R_0/(p^n) \otimes_{R_0} \hat{\mathcal{M}} \otimes_{R_0} \hat{\mathcal{M}} \\
\downarrow \varphi^*(\nabla_n) & & \downarrow \varphi^*(\nabla_n) \\
R_0/(p^n) \otimes_{R_0} \mathcal{M} & \xrightarrow{\nabla_n} & R_0/(p^n) \otimes_{R_0} \mathcal{M} \otimes_{R_0} \hat{\mathcal{M}}
\end{array}
$$

Here, $\varphi^*(\nabla_n)$ is given by choosing an arbitrary lift of ∇_n on $R_0/(p^{n+1}) \otimes_{R_0} \mathcal{M}$, and $\varphi^*(\nabla_n)$ does not depend on the choice of such a lift (cf. [Vas13, Section 3.1.1 Equation (9)]).
Identify $\hat{\Omega}_{R_0} = \bigoplus_{i=1}^d R_0 \cdot d(\log t_i)$. By passing to a finite Zariski covering of $\text{Spf}(R_0, p)$, we may assume that \mathcal{M}^1 and $\mathcal{M}/\mathcal{M}^1$ are free over R_0. Fix such a choice of the covering, and fix a R_0-basis of \mathcal{M} adapted to the direct factor \mathcal{M}^1. By [Vas13, Section 3.2 Basic Theorem] and its proof, the set of connections ∇_1 on $R_0/(p) \otimes_{R_0} \mathcal{M}$ satisfying the commutative diagram (2.11) for $n = 1$ corresponds to the solutions over $R_0/(p)$ of a certain Artin-Schreier system of equations over $R_0/(p)$. In particular, if follows directly that we have finitely many such ∇_1 (cf. [Vas13 Theorem 2.4.1 (b)]). Furthermore, given a connection ∇_n on $R_0/(p^n) \otimes_{R_0} \mathcal{M}$, the set of connections ∇_{n+1} on $R_0/(p^{n+1}) \otimes_{R_0} \mathcal{M}$ which lift ∇_n and satisfy the commutative diagram (2.11) for $n + 1$ corresponds the solutions over $R_0/(p)$ of a certain Artin-Schreier system of equations over $R_0/(p)$ by loc. cit., and we have finitely many such ∇_{n+1}.

3 Étale φ-modules and Galois Representations

We recall the results in [Kim15, Section 7] on associating Galois representations with étale φ-modules in the relative setting. The underlying geometry is based on perfectoid spaces (cf. [Sch12]). We will use the results to translate our question on p-divisible groups into a question on Kisin modules and étale φ-modules.

Let \overline{R} denote the union of finite R-subalgebras R' of a fixed separable closure of $\text{Frac}(R)$ such that $R'[\frac{1}{p}]$ is étale over $R[\frac{1}{p}]$. Then $\text{Spec}(\overline{R}[\frac{1}{p}])$ is a pro-universal covering of $\text{Spec}(R[\frac{1}{p}])$, and \overline{R} is the integral closure of R in $\overline{R}[\frac{1}{p}]$. Let $G_R := \text{Gal}(\overline{R}[\frac{1}{p}]/R[\frac{1}{p}]) = \pi_1(\text{Spec}(R[\frac{1}{p}]), \eta)$ with a choice of a geometric point η. Choose a uniformizer $\varpi \in \mathcal{O}_K$. For integers $n \geq 0$, we choose compatibly $\varpi_n \in \overline{R}$ such that $\varpi_0 = \varpi$ and $\varpi_{n+1} = \varpi_n$, and let L be the p-adic completion of $\bigcup_{n \geq 0} K(\varpi_n)$. Then L is a perfectoid field and $(\hat{\overline{R}}[\frac{1}{p}], \hat{\overline{R}})$ is a perfectoid affinoid L-algebra, where $\hat{\overline{R}}$ denotes the p-adic completion of \overline{R}.

Let L° denote the tilt of L as defined in [Sch12], and let $\varpi := (\varpi_n) \in L^\circ$. Let $(\overline{R}[\frac{1}{p}], \overline{R})$ be the tilt of $(\overline{R}[\frac{1}{p}], \hat{\overline{R}})$. Let $E_{R_{\infty}}^+ = \mathcal{G}/p\mathcal{G}$, and let $\hat{E}_{R_{\infty}}^+$ be the u-adic completion of $\lim_{\leftarrow} E_{R_n}^+$. Let $E_{R_{\infty}} = E_{R_{\infty}}^+[\frac{1}{u}]$ and $\hat{E}_{R_{\infty}} = \hat{E}_{R_{\infty}}^+[\frac{1}{u}]$. By [Sch12, Proposition 5.9], $(\hat{E}_{R_{\infty}}, \hat{E}_{R_{\infty}}^+)$ is a perfectoid affinoid L°-algebra, and we have the natural injection $(\hat{E}_{R_{\infty}}, \hat{E}_{R_{\infty}}^+) \hookrightarrow (\overline{R}[\frac{1}{p}], \overline{R})$ given by $u \mapsto \varpi$. Let $(\hat{R}_{\infty}[\frac{1}{p}], \hat{R}_{\infty})$ be a perfectoid affinoid L-algebra whose tilt is $(\hat{E}_{R_{\infty}}, \hat{E}_{R_{\infty}}^+)$, and let $\mathcal{G}_{\hat{R}_{\infty}} = \pi_1(\text{Spec}(\hat{R}_{\infty}[\frac{1}{p}], \eta)$. Then we have a continuous map of Galois groups $\mathcal{G}_{\hat{R}_{\infty}} \rightarrow \mathcal{G}_R$, which is a closed embedding by [GR03, Proposition 5.4.54]. By the almost purity theorem in [Sch12], $\overline{R}[\frac{1}{p}]$ can be canonically identified with the ϖ-adic completion of $\mathcal{G}[\frac{1}{u}]$. Note that φ on \mathcal{G} extends naturally to
Definition 3.1. An étale \((\varphi, \mathcal{O}_E)\)-module is a pair \((M, \varphi_M)\) where \(M\) is a finitely generated \(\mathcal{O}_E\)-module and \(\varphi_M: M \to M\) is a \(\varphi\)-semilinear endomorphism such that \(1 \otimes \varphi_M: \varphi^* M \to M\) is an isomorphism. We say that an étale \((\varphi, \mathcal{O}_E)\)-module is projective (resp. torsion) if the underlying \(\mathcal{O}_E\)-module \(M\) is projective (resp. \(p\)-power torsion).

Let \(\text{Mod}_{\mathcal{O}_E}\) denote the category of étale \((\varphi, \mathcal{O}_E)\)-modules whose morphisms are \(\mathcal{O}_E\)-linear maps compatible with Frobenius. Let \(\text{Mod}^\text{pr}_{\mathcal{O}_E}\) and \(\text{Mod}^\text{tor}_{\mathcal{O}_E}\) respectively denote the full subcategories of projective and torsion objects.

Note that we have a natural notion of a subquotient, direct sum, and tensor product for étale \((\varphi, \mathcal{O}_E)\)-modules, and duality is defined for projective and torsion objects. If \((\mathfrak{M}, \varphi_{\mathfrak{M}})\) is a quasi-Kisin module (resp. torsion quasi-Kisin module) of height 1, then \((\mathfrak{M} \otimes_{\mathcal{O}} \mathcal{O}_E, \varphi_{\mathfrak{M}} \otimes \varphi_E)\) is a projective (resp. torsion) étale \((\varphi, \mathcal{O}_E)\)-module since \(1 \otimes \varphi_{\mathfrak{M}}\) is injective (by Lemma 2.5 for torsion quasi-Kisin modules) and its cokernel is killed by \(E(u)\) which is a unit in \(\mathcal{O}_E\). If we denote by \(\mathcal{O}_{E,g}\) the corresponding ring for \(R_{0,g}\), then for any étale \((\varphi, \mathcal{O}_E)\)-module \(M\), \(M \otimes_{\mathcal{O}_{E,b}} \mathcal{O}_{E,g}\) with the induced Frobenius is an étale \((\varphi, \mathcal{O}_{E,g})\)-module.

We consider \(W(\mathcal{O}_E[\frac{1}{p}])\) as an \(\mathcal{O}_E\)-algebra via mapping \(u\) to the Teichmüller lift \([\omega]\) of \(\varphi\) and let \(\mathcal{O}_E^{\text{ur}}\) be the integral closure of \(\mathcal{O}_E\) in \(W(\mathcal{O}_E[\frac{1}{p}])\). Let \(\mathcal{O}^{\text{ur}}_E\) be its \(p\)-adic completion. Since \(\mathcal{O}_E\) is normal, we have \(\text{Aut}_{\mathcal{O}_E}(\mathcal{O}_E^{\text{ur}}) \cong \mathcal{G}_{E_{R_\infty}} := \pi_1(\text{Spec} E_{R_\infty})\), and by [GR03, Proposition 5.4.54] and the almost purity theorem, we have \(\mathcal{G}_{E_{R_\infty}} \cong \mathcal{G}_{E_{R_\infty}} \cong \mathcal{G}_{R_\infty}\). This induces \(\mathcal{G}_{R_\infty}\)-action on \(\mathcal{O}_E^{\text{ur}}\). The following is shown in [Kim15].

Lemma 3.2. (cf. [Kim15, Lemma 7.5 and 7.6]) We have \((\mathcal{O}^{\text{ur}}_E)^{\mathcal{G}_{R_\infty}} = \mathcal{O}_E\) and the same holds modulo \(p^a\). Furthermore, there exists a unique \(\mathcal{G}_{R_\infty}\)-equivariant ring endomorphism \(\varphi\) on \(\mathcal{O}^{\text{ur}}_E\) lifting the \(p\)-th power map on \(\mathcal{O}^{\text{ur}}_E/p\) and extending \(\varphi\) on \(\mathcal{O}_E\). The inclusion \(\mathcal{O}^{\text{ur}}_E \hookrightarrow W(\mathcal{O}_E[\frac{1}{p}])\) is \(\varphi\)-equivariant where the latter ring is given the Witt vector Frobenius.

Let \(\text{Rep}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\) be the category of finite continuous \(\mathbb{Z}_p\)-representations of \(\mathcal{G}_{R_\infty}\), and let \(\text{Rep}^\text{free}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\) and \(\text{Rep}^\text{tor}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\) respectively denote the full subcategories of free and torsion objects. For \(M \in \text{Mod}_{\mathcal{O}_E}\) and \(T \in \text{Rep}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\), we define \(T(M) := (M \otimes_{\mathcal{O}_E} \mathcal{O}_E^{\text{ur}})^{\varphi=1}\) and \(M(T) := (T \otimes_{\mathbb{Z}_p} \mathcal{O}_E^{\text{ur}})^{\mathcal{G}_{R_\infty}}\). Then we have the following proposition from [Kim15].

Proposition 3.3. ([Kim15, Proposition 7.7]) The constructions \(T(\cdot)\) and \(M(\cdot)\) give exact quasi-inverse equivalences of \(\otimes\)-categories between \(\text{Mod}_{\mathcal{O}_E}\) and \(\text{Rep}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\). Moreover, \(T(\cdot)\) and \(M(\cdot)\) restrict to rank-preserving equivalences of categories between \(\text{Mod}^\text{pr}_{\mathcal{O}_E}\) and \(\text{Rep}^\text{free}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\), and length-preserving equivalences between \(\text{Mod}^\text{tor}_{\mathcal{O}_E}\) and \(\text{Rep}^\text{tor}_{\mathbb{Z}_p}(\mathcal{G}_{R_\infty})\). In both cases, \(T(\cdot)\) and \(M(\cdot)\) commute with taking duals.
For M in $\text{Mod}^{\text{pr}}_{G_{\mathbb{Z}}} \text{ (resp. in } \text{Mod}^{\text{tor}}_{G_{\mathbb{Z}}})$, we define the contravariant functor $T^\vee(\cdot)$ to $\text{Rep}_{\mathbb{Z}}(G_{\mathbb{R}_{\infty}})$ by $T^\vee(M) := \text{Hom}_{\mathbb{O}_E}\phi, (M, \tilde{\mathcal{O}}_{\mathbb{Z}}^{\text{pr}} \otimes \mathbb{Z}/\mathbb{Z}_p))$. Note that if we have a short exact sequence of étale (ϕ, \mathcal{O}_E)-modules $0 \to M_1 \to M_2 \to M \to 0$ where M_1, M_2 are projective over \mathcal{O}_E and M is p-power torsion, then it induces a short exact sequence

$$0 \to T^\vee(M_2) \to T^\vee(M_1) \to T^\vee(M) \to 0$$

in $\text{Rep}_{\mathbb{Z}}(G_{\mathbb{R}_{\infty}})$.

Now, if G_R is a p-divisible group over R, we write $T^\vee(G_R) := \text{Hom}_{\mathbb{R}(\mathbb{Q}_p/\mathbb{Z}_p, G_R \times R \mathbb{R})}$ to be the associated Tate module, which is a finite free \mathbb{Z}_p-representation of G_R. By [Kim15, Corollary 8.2], we have a natural $G_{\mathbb{R}_{\infty}}$-equivariant isomorphism $T^\vee(M^*G_R) \otimes_{\mathbb{O}_E} \mathcal{O}_E \cong T^\vee(G_R)$. If H is a p-power order finite locally free group scheme over R, then $H(\mathbb{R})$ is a finite torsion \mathbb{Z}_p-representation of G_R. By [Kim15, Proposition 9.10], there exists a natural $G_{\mathbb{R}_{\infty}}$-equivariant isomorphism $T^\vee(M^*H) \otimes_{\mathbb{O}_E} \mathcal{O}_E \cong H(\mathbb{R})$, and if $H = \ker(h : G^0 \to G^1)$ for some isogeny h of p-divisible groups over R, then the isomorphism $T^\vee(M^*H) \otimes_{\mathbb{O}_E} \mathcal{O}_E \cong H(\mathbb{R})$ is compatible with the isomorphisms $T^\vee(M^*(G^i) \otimes_{\mathbb{O}_E} \mathcal{O}_E) \cong T^\vee_{p}(G^i), \ i = 0, 1, 2$.

Note that any p-divisible group over $R_{\mathbb{Z}}$ is étale, so the category of p-divisible groups over $R_{\mathbb{Z}}$ is equivalent to the category of finite free \mathbb{Z}_p-representations of G_R. If we are given a p-divisible group G over $R_{\mathbb{Z}}$, then the corresponding Galois representation is given by $T^\vee(G) := \text{Hom}_{\mathbb{R}(\mathbb{Q}_p/\mathbb{Z}_p, G \times R_{\mathbb{Z}} \mathbb{R}))}$. By Proposition 3.3, there exists a unique (up to isomorphism) projective étale (ϕ, \mathcal{O}_E)-module M such that $T^\vee(M) \cong T^\vee(G)$ as $G_{\mathbb{R}_{\infty}}$-representations. We remark that if G extends to a p-divisible group G_R over R, then $T^\vee(G_R) = T^\vee(G)$ as G_R-representations.

4 Extending p-divisible Groups

We now prove the generalization of Raynaud’s theorem for the relative base R when $e < p - 1$, and use an example in [VZ10] on purity of p-divisible groups to show that when the ramification is large, such a generalization does not hold. We first consider the special case when the base ring R_0 as in Section 2 is equal to the formal power series ring over a Cohen ring.

Proposition 4.1. Suppose $R_0 = \mathcal{O}[s_1, \ldots, s_r]$ over a Cohen ring \mathcal{O} and $e < p - 1$. Let G be a p-divisible group over $R_{\mathbb{Z}}$, and let $n \geq 1$ be an integer. Suppose that $G[p^n]$ extends to a finite flat group scheme $G_{n,R}$ over R. Then for each integer $1 \leq m \leq n$, the group scheme $G_{n,R}[p^m]$ is finite flat over R.

Furthermore, if H is another finite flat group scheme over R extending $G[p^n]$ and if we identify the associated étale (ϕ, \mathcal{O}_E)-modules $M_n := \mathfrak{M}^*(G_{n,R}) \otimes_{\mathbb{O}_E} \mathcal{O}_E = \mathfrak{M}^*(H) \otimes_{\mathbb{O}_E} \mathcal{O}_E$, then $\mathfrak{M}^*(G_{R,n}) = \mathfrak{M}^*(H)$ as \mathfrak{G}-submodules of M_n with compatible Frobenius.
Proof. Let M be the projective étale (φ, \mathcal{O}_E)-module such that $T^\vee(M) = T_p(G)$ as $\mathcal{G}_{\mathcal{R}_\infty}$-representations. Denote $\mathcal{M}_n = \mathfrak{M}^*(G_{n,R})$. Since $T_p(G[p^n]) \cong T_p(G)/p^n T_p(G)$, we have $M_n = \mathcal{M}_n \otimes_{\mathcal{O}_E} \mathcal{O}_E \cong M/p^n M$ as étale (φ, \mathcal{O}_E)-modules.

For proving the first statement, we can make the following choice of Frobenius on R_0 without loss of generality. Let $k' = \mathcal{O}/(p)$. Note that since $R_0/pR_0 \cong k'[s_1, \ldots, s_r]$ has a finite p-basis, we have $[k': k^p] < \infty$, i.e., k' has a finite p-basis. Choose a Frobenius $\varphi : \mathcal{O} \to \mathcal{O}$ lifting the natural Frobenius on $W(k)$, and equip R_0 with Frobenius given by $\varphi_\mathcal{O}$ and $\varphi(s_i) = s_i^p$. Let $b_0 : R_0 \to \mathcal{O}$ be the \mathcal{O}-linear map given by $s_i \mapsto 0$, which is φ-equivariant. Let $b_g : R_0 \to R_{0, g} \cong W(k_g)$ be the φ-equivariant map considered in Section 2. Note that $\mathcal{M}_n \otimes_{\mathcal{O}, b_0} W(k_g)[u]$ and $\mathcal{M}_n \otimes_{\mathcal{O}, b_0} \mathcal{O}[u]$ with the induced diagonal Frobenius are torsion quasi-Kisin modules of height 1 over $W(k_g)[u]$ and $\mathcal{O}[u]$ respectively. Denote by I_j the j-th Fitting ideal of \mathcal{M}_n over $\mathcal{S}_n := \mathcal{S}/p^n \mathcal{S}$. Let $I_{j, 0}$ and $I_{j, g}$ be the j-th Fitting ideal of $\mathcal{M}_n \otimes_{\mathcal{S}, b_0} W(k_g)[u]$ and $\mathcal{M}_n \otimes_{\mathcal{S}, b_0} \mathcal{O}[u]$ over $W(k_g)[u]/(p^n)$ and $\mathcal{O}[u]/(p^n)$ respectively. Then $I_{j, 0}$ and $I_{j, g}$ are given by the images of I_j under the corresponding maps b_0 and b_g respectively.

Let h be the height of G. Since $e < p - 1$, we deduce from [Liu07] Lemma 4.3.1 and Corollary 4.2.5 that $\mathcal{M}_n \otimes_{\mathcal{S}, b_g} W(k_g)[u]$ is free of rank h over $W(k_g)[u]/(p^n)$. Furthermore, if we denote by \mathcal{O}_g the p-adic completion of $\varprojlim_\varphi \mathcal{O}/(p)$ with the induced Frobenius and $\kappa := \varprojlim_\varphi \mathcal{O}/(p)$, then by the universal property of p-adic Witt vectors as in Section 2, $\mathcal{O}_g \cong W(\kappa)$ compatibly with Frobenius endomorphisms. The map $\mathcal{O}[u]/(p^n) \to W(\kappa)[u]/(p^n)$ is faithfully flat, and the induced torsion Kisin module $(\mathcal{M}_n \otimes_{\mathcal{S}, b_0} \mathcal{O}[u]) \otimes_{\mathcal{O}[u]} W(\kappa)[u]$ is free of rank h over $W(\kappa)[u]/(p^n)$ by loc. cit. Hence, $\mathcal{M}_n \otimes_{\mathcal{S}, b_0} \mathcal{O}[u]$ is free of rank h over $\mathcal{O}[u]/(p^n)$. We obtain

$$I_{j, g} = \begin{cases} 0 & \text{if } j < h \\ W(k_g)[u]/(p^n) & \text{if } j \geq h, \end{cases}$$

$$I_{j, 0} = \begin{cases} 0 & \text{if } j < h \\ \mathcal{O}[u]/(p^n) & \text{if } j \geq h. \end{cases}$$

By Lemma 2.1, the map $\mathcal{S}_n \to W(k_g)[u]/(p^n)$ induced from b_g is injective. For $j < h$, the image of I_j under b_g in $W(k_g)[u]/(p^n)$ is equal to $I_{j, g}$ which is 0. Thus, $I_j = 0$ if $j < h$. Suppose $j \geq h$. If I_j is contained in the maximal ideal (p, s_1, \ldots, s_r, u) of \mathcal{S}_n, then the image of I_j under b_0 would be contained in the maximal ideal of $\mathcal{O}[u]/(p^n)$. Since $I_{j, 0} = \mathcal{O}[u]/(p^n)$, we have $I_j = \mathcal{S}_n$. Hence, \mathcal{M}_n is projective and thus free of rank h over \mathcal{S}_n. By Theorem 2.3 $G_{n,R}[p^m]$ is finite flat over R for each $m \geq 1$.

Now we show the second statement, for any choice of Frobenius on R_0. Suppose that $G[p^n]$ extends to another finite flat group scheme H over R, and let $\mathfrak{N} := \mathfrak{M}^*(H)$ be the associated torsion Kisin module. Identify $\mathfrak{N} \otimes_{\mathcal{O}_E} \mathcal{O}_E = \mathcal{M}_n \otimes_{\mathcal{O}_E} \mathcal{O}_E = M_n$ as étale (φ, \mathcal{O}_E)-modules, and consider both \mathfrak{N} and \mathcal{M}_n as \mathcal{S}_n-submodules of M_n. Since $G_{n,R}[p^m]$ is finite flat over R for each $m \geq 1$ and similarly for H, and since M_n is projective over $\mathcal{O}_{E,n} := \mathcal{O}_E/(p^n)$,
we have by Theorem 2.6 that \(\mathfrak{M}_n \) and \(\mathfrak{N} \) are projective and thus flat over \(\mathcal{S}_n \). By [Liu07 Corollary 4.2.5], we have \(\mathfrak{M}_n \otimes_{\mathcal{O}_k} W(k)[u] = \mathfrak{N} \otimes_{\mathcal{O}_k} W(k)[u] \) as \(W(k)[u] \)-submodules of \(M_n \otimes \mathcal{O} W(k)[u] \). Note that by Lemma 2.11 the induced map \(\mathcal{O}_{\epsilon,n} \to W_n(k)[u][\frac{1}{u}] \) is injective, and \(\mathcal{O}_{\epsilon,n} \cap W_n(k)[u] = \mathcal{S}_n \) as subrings of \(W_n(k)[u][\frac{1}{u}] \). Since \(\mathfrak{M}_n \) is flat over \(\mathcal{S}_n \), we deduce

\[
(\mathfrak{M}_n \otimes_{\mathcal{S}_n} \mathcal{O}_{\epsilon,n}) \cap (\mathfrak{M}_n \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}]) = \mathfrak{M}_n \otimes_{\mathcal{S}_n} \mathcal{S}_n = \mathfrak{M}_n
\]
as \(\mathcal{S}_n \)-submodules of \(\mathfrak{M}_n \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}] = M_n \otimes \mathcal{O} W(k)[u] \), and similarly

\[
(\mathfrak{N} \otimes_{\mathcal{S}_n} \mathcal{O}_{\epsilon,n}) \cap (\mathfrak{N} \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}]) = \mathfrak{N}
\]
as \(\mathcal{S}_n \)-submodules of \(\mathfrak{N} \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}] = M_n \otimes \mathcal{O} W(k)[u] \). Since \(\mathfrak{M}_n \otimes_{\mathcal{S}_n} \mathcal{O}_{\epsilon,n} = M_n = \mathfrak{N} \otimes_{\mathcal{S}_n} \mathcal{O}_{\epsilon,n} \) and \(\mathfrak{M}_n \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}] = \mathfrak{N} \otimes_{\mathcal{S}_n} W_n(k)[u][\frac{1}{u}] \) as submodules of \(M_n \otimes \mathcal{O} W(k)[u] \), we obtain \(\mathfrak{M}_n = \mathfrak{N} \) with compatible Frobenius.

We remark that in the second statement of above Proposition 4.1 we do not know whether \(\mathfrak{M}^*(G_{R,n}) \cong \mathfrak{M}^*(H) \) as Kisin modules, i.e., whether the connections on both sides are compatible.

Now we consider the general base ring \(R \) as in Section 2.

Theorem 4.2. Assume \(e < p - 1 \). Let \(G \) be a \(p \)-divisible group over \(R[\frac{1}{p}] \). Suppose that for each \(n \), \(G[p^n] \) extends to a finite locally free group scheme \(G_{n,R} \) over \(R \). Then \(G \) extends to a \(p \)-divisible group over \(R \), and such an extension is unique up to isomorphism.

If \(e \geq p \) and \(R = \mathcal{O}_K[s] \), then there exists a \(p \)-divisible group \(G \) over \(R[\frac{1}{p}] \) such that \(G[p^n] \) extends to a finite locally free group scheme \(G_{n,R} \) over \(R \) for each \(n \) but \(G \) does not extend to a \(p \)-divisible group over \(R \).

Proof. Suppose \(e < p - 1 \). Let \(M \) be the projective étale \((\varphi, \mathcal{O}_k) \)-module such that \(T^\vee(M) = T_p(G) \) as \(\mathcal{G}_{R_{\alpha}} \)-representations. For each \(n \geq 1 \), let \(\mathfrak{M}_n := \mathfrak{M}^*(G_{n,R}) \in \text{Mod}_{\varphi}^\text{ét}(\varphi, \nabla) \) be the torsion Kisin module of height 1 corresponding to \(G_{n,R} \). We have \(\mathfrak{M}_n \otimes \mathcal{O}_k \cong M_n := M/p^n M \) as étale \((\varphi, \mathcal{O}_k) \)-modules. Let \(h \) be the height of \(G \).

For each maximal ideal \(q \) of \(R \), denote \(q_0 := q \cap R_0 \subset R_0 \) the corresponding maximal ideal of \(R_0 \), and let \(b_q : R_0 \to \widehat{R}_{0,q_0} \) be the natural \(\varphi \)-equivariant map where \(\widehat{R}_{0,q_0} \) denotes the \(q_0 \)-adic completion of \(R_{0,q_0} \). By the structure theorem for complete regular local rings, \(\widehat{R}_{0,q_0} \) is isomorphic to a formal power series ring \(\widehat{R}_{0,q_0} \cong \mathcal{O}[s_1, \ldots, s_r] \) over a Cohen ring \(\mathcal{O} \). We have the induced base change \(b_q : R \to \widehat{R}_q \cong \widehat{R}_{0,q_0} \otimes_{\mathcal{O}} \mathcal{O}_K, \) where \(\widehat{R}_q \) is the \(q \)-adic completion of \(R_q \). Denote \(\mathcal{S}_q := \widehat{R}_{0,q_0}[u] \). For the \(p \)-divisible group \(G \times_{R[\frac{1}{p}],b_q} \widehat{R}_q[\frac{1}{p}] \) over \(\widehat{R}_q[\frac{1}{p}] \), note that \((G \times_{R[\frac{1}{p}],b_q} \widehat{R}_q[\frac{1}{p}])[p^n] \) extends to the finite locally free group scheme \(G_{n,q} := G_{n,R} \times_{R,b_q} \widehat{R}_q \) over \(\widehat{R}_q \) for each \(n \geq 1 \). By Proposition 4.1 \(G_{n,q}[p^n] \) is finite locally free over \(\widehat{R}_q \) for each \(m \geq 1 \), and thus \(\mathfrak{M}^*(G_{n,q}) := \mathfrak{M}_n \otimes_{\mathcal{S}_q} \mathcal{S}_q \) is projective over \(\mathcal{S}_q/(p^n) \).
by Theorem [2.6]. Since this holds for each maximal ideal \(q \) of \(R \), we deduce that \(\mathcal{M}_n \) is projective over \(\mathcal{G}/(p^n) \) of rank \(h \). In particular, \(G_{n,R}[p^m] \) is finite locally free over \(R \) for each \(m \geq 1 \). Note that \(G_{n,R}[p^m] \times_R R[p^{\frac{1}{p}}] \cong (G_{n,R} \times_R R[p^{\frac{1}{p}}])[p^m] \cong G[p^m] \), and \(G_{n,R}[p^m] \) has order \(p^{mh} \) for each \(1 \leq m \leq n \).

By considering the orders of the groups, we see that the natural sequence of finite locally free group schemes

\[
0 \to G_{n+1,R}[p] \to G_{n+1,R} \to G_{n+1,R}[p^n] \to 0,
\]

where the map \(G_{n+1,R} \to G_{n+1,R}[p^n] \) is induced by multiplication by \(p \), is short exact. Furthermore, it follows easily from the construction of the functor \(\mathcal{M}^*(\cdot) \) in [Kim15] Proof of Proposition 9.5 using isogeny of \(p \)-divisible groups that \(\mathcal{M}^*(G_{n+1,R}[p]) \cong \mathcal{M}_{n+1}/p\mathcal{M}_{n+1} \) as torsion Kisin modules, where \(\mathcal{M}_{n+1}/p\mathcal{M}_{n+1} \) is equipped with Frobenius and connection induced from \(\mathcal{M}_{n+1} \). Since \(\mathcal{M}^*(\cdot) \) is exact, we have \(\mathcal{M}^*(G_{n+1,R}[p^n]) \cong p\mathcal{M}_{n+1} \) where \(p\mathcal{M}_{n+1} \) is equipped with Frobenius and connection induced from \(\mathcal{M}_{n+1} \). We claim that \(\mathcal{M}_n \cong p\mathcal{M}_{n+1} \) as torsion quasi-Kisin modules with compatible Frobenius. Identify \(p\mathcal{M}_{n+1} \otimes_{\mathcal{G}} \mathcal{O}_E = M_n = \mathcal{M}_n \otimes_{\mathcal{G}} \mathcal{O}_E \) as étale \((\varphi, \mathcal{O}_E) \)-modules, and consider both \(p\mathcal{M}_{n+1} \) and \(\mathcal{M}_n \) as \(\mathcal{G}_n \)-submodules of \(M_n \). For the natural injective map \(\mathcal{M}_n \hookrightarrow \mathcal{M}_n + p\mathcal{M}_{n+1} \) of \(\mathcal{G}_n \)-modules, consider the induced map \(\mathcal{M}_n \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q \to (\mathcal{M}_n + p\mathcal{M}_{n+1}) \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q \) for each maximal ideal \(q \) of \(R \). Since \(b_q : \mathcal{G} \to \mathcal{G}_q \) is flat, we have \((\mathcal{M}_n + p\mathcal{M}_{n+1}) \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q = \mathcal{M}_n \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q + p\mathcal{M}_{n+1} \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q \) as submodules of \(\mathcal{M}_n \otimes_{\mathcal{G}_n, b_q} \mathcal{G}_q \). Thus, \(\mathcal{M}_n \otimes_{\mathcal{G}_n} \mathcal{G}_q \cong (\mathcal{M}_n + p\mathcal{M}_{n+1}) \otimes_{\mathcal{G}_n} \mathcal{G}_q \) for each \(q \), which implies that injective map \(\mathcal{M}_n \hookrightarrow \mathcal{M}_n + p\mathcal{M}_{n+1} \) is also surjective. Thus, \(p\mathcal{M}_{n+1} \subset \mathcal{M}_n \), and similarly \(\mathcal{M}_n \subset p\mathcal{M}_{n+1} \). This shows the claim \(\mathcal{M}_n = p\mathcal{M}_{n+1} \) with compatible Frobenius.

Thus, \(\mathcal{M} := \varprojlim_n \mathcal{M}_n \) with the induced Frobenius is a quasi-Kisin module of height 1 over \(\mathcal{G} \). We now equip \(\mathcal{M} := \mathcal{M} \otimes_{\mathcal{G}, \varphi} R_0 \) with a connection. Denote by \(\nabla_{\mathcal{M}_k} : \mathcal{M}_k \otimes_{\mathcal{G}_k, \varphi} R_0 \to (\mathcal{M}_k \otimes_{\mathcal{G}_k, \varphi} R_0) \otimes_{R_0} \widehat{\mathcal{O}}_{R_0} \) the connection for the torsion Kisin module \(\mathcal{M}_n \), and let \(\mathcal{M}_n = \mathcal{M} \otimes_{R_0} R_0/(p^n) \). Consider the multisets

\[
S_n = \{\nabla_{\mathcal{M}_k} \otimes_{R_0} R_0/(p^n) \mid k \geq n + 1\}
\]

of connections on \(\mathcal{M}_n \). Note that for each \(k \geq n + 1 \), the connection \(\nabla_{\mathcal{M}_k} \otimes_{R_0} R_0/(p^n) \) satisfies the commutative diagram (2.1) in Section 2. Using the result discussed at the end of Section 2 we choose a compatible system of connections \(\nabla_n \) on \(\mathcal{M}_n \) inductively as follows. Identify \(\widehat{\mathcal{O}}_{R_0} = \bigoplus_{i=1}^d R_0 \cdot d(\log t_i) \). Let \(\mathcal{M}_1 \subset \mathcal{M} \) be a direct factor lifting \(\text{Fil}^1 \mathcal{M}/p\mathcal{M} \subset \mathcal{M}/p\mathcal{M} \) as in Section 2 and we fix a choice of a finite Zariski covering of \(\text{Spf}(R_0, p) \) over which \(\mathcal{M}_1 \) and \(\mathcal{M}/\mathcal{M}_1 \) are free, and fix a basis of \(\mathcal{M} \) adapted to \(\mathcal{M}_1 \) after passing to the covering. For \(n = 1 \), \(S_1 \) is finite as a set of connections on \(\mathcal{M}_1 \), and we choose a connection \(\nabla_1 \) on \(\mathcal{M}_1 \) which has infinite multiplicity in the multisets \(S_1 \). When we are given a choice of connection \(\nabla_n \) on \(\mathcal{M}_n \), the elements in \(S_{n+1} \) which lift \(\nabla_n \) are contained in a finite set of connections, and we choose a connection \(\nabla_{n+1} \) on \(\mathcal{M}_{n+1} \) which has infinite multiplicity in the multisets \(S_{n+1} \).
multiplicity in S_{n+1}. Let $\nabla := \lim_p \nabla_n$ be the induced connection on \mathcal{M}. Then ∇ is compatible with Frobenius, integrable, and topologically quasi-nilpotent. Hence, (\mathfrak{M}, ∇) is a Kisin module of height 1, and the corresponding p-divisible group over R extends G. The uniqueness of extending G up to isomorphism follows from [Tat67, Theorem 4].

On the other hand, assume $e \geq p$ and $R_0 = W(k)[s]$. Let $U = \text{Spec} R \setminus \{m\}$ be the open subscheme of $\text{Spec} R$, where m is the closed point given by the maximal ideal of R. By [VZ10, Theorem 28], there exists a p-divisible group G_U over U which does not extend to a p-divisible group over R. By [FC90, Chapter V, Lemma 6.2], for each $n \geq 1$, the finite locally free group scheme $G_U[p^n]$ extends uniquely to a finite locally free group scheme over R (if A denotes the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}]$ and B denotes the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}]$), then identifying $C := A[\frac{1}{s}] = B[\frac{1}{p}]$ as the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}]$, the unique extension is given by $A \cap B$ with the induced Hopf algebra structure over R). Let $G = G_U \times_U R[\frac{1}{p}]$ be the p-divisible group over $R_0[\frac{1}{p}]$, and suppose G extends to a p-divisible group G_R over R. Since $G_U \times_U (R[\frac{1}{s}])[\frac{1}{p}] = G_R \times_R (R[\frac{1}{s}])[\frac{1}{p}]$, we have by [Tat67, Theorem 4] that $G_U \times_U R[\frac{1}{p}] = G_R \times_R R[\frac{1}{p}]$. Thus, $G_R \times_R U = G_U$, which contradicts to that G_U does not extend over R. This shows that G cannot be extended to a p-divisible group over R. \hfill \Box

5 Barsotti-Tate Deformation Ring for Relative Base of Dimension 2

Throughout this section, we assume that the Krull dimension of R is equal to 2. For a finite \mathbb{Q}_p-representation V of G_R, we say it is Barsotti-Tate if there exists a p-divisible group G_R over R such that $V = T_p(G_R) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ as G_R-representations.

Proposition 5.1. Assume $e < p - 1$. Let T be a finite free \mathbb{Z}_p-representation of G_R such that $T[\frac{1}{p}]$ is Barsotti-Tate. Then there exists a p-divisible group G_R over R such that $T = T_p(G_R)$.

Proof. Since $T[\frac{1}{p}]$ is Barsotti-Tate, there exists a p-divisible group G'_R over R such that $T_p(G'_R)[\frac{1}{p}] = T[\frac{1}{p}]$. Denote $T' = T_p(G'_R)$, $G' = G'_R \times_R R[\frac{1}{p}]$, and let G be the p-divisible group over $R[\frac{1}{p}]$ corresponding to the representation T.

Since $p^n T \subset T'$ and $p^n T' \subset T$ for some positive integer n, we have an isogeny $f : G' \rightarrow G$. Let $H := \ker(f)$, which is a finite locally free group scheme over $R[\frac{1}{p}]$. Then we have a closed immersion $h : H \hookrightarrow G'[p^m]$ for some positive integer m. Note that $G'[p^m]$ extends to the finite locally free group scheme $G'_R[p^m]$ over R.

Let H_R be the scheme theoretic closure of H over R obtained from h and $G'_R[p^m]$, given similarly as in [Ray74, Section 2.1]. By the construction of the scheme theoretic closure, H_R is a finite group scheme. We claim that it is locally free over R. For that, let q be a
maximal ideal of R and let $q_0 = q \cap R_0$, and consider the base change map $b_q : R \to \hat{R}_q$ as in the proof of Theorem 12. Since R has Krull dimension 2, we have $\hat{R}_q \cong \mathcal{O}_{q_0}[s] \otimes_{W(k)} \mathcal{O}_K$ for some Cohen ring \mathcal{O}_{q_0} with the maximal ideal (p). Let $U_q \subseteq \text{Spec}\hat{R}_q$ be the closed subscheme obtained by deleting the closed point given by q. Since U_q is a Dedekind scheme, $(H_R \times_R \hat{R}_q) \otimes_{\hat{R}_q} U_q$ is locally free over U_q as the corresponding sheaf of Hopf algebras is torsion free. It extends uniquely to a finite locally free group scheme H_q over \hat{R}_q by [FC90, Chapter V, Lemma 6.2]. On the other hand, since $e < p - 1$, note that $p \notin (q \hat{R}_q)^{p-1}$. Since h is a monomorphism, we deduce from [VZ10, Proposition 15] applied for \hat{R}_q that the map $H_q \to G'_R[p^m] \times_R \hat{R}_q$ of finite flat group schemes is a monomorphism and hence a closed immersion. Thus, $H_R \times_R \hat{R}_q = H_q$. Since this holds for every maximal ideal q of R, H_R is locally free over R.

The map h induces a closed immersion $H_R \hookrightarrow G'_R[p^m]$, and $G_R := G'_R/H_R$ is a p-divisible group over R. It is clear from the construction that $T_p(G_R) = T$ as $\mathbb{Z}_p[G_R]$-modules.

For a finite free \mathbb{Z}_p-representation T of G_R, it makes sense by Proposition 5.1 to say that T is Barsotti-Tate if there exists a p-divisible group G_R over R such that $T = T_p(G_R)$.

Lemma 5.2. Assume $e < p - 1$. Let H_R be a p-power order finite locally free group scheme over R, and let $T = H_R(\hat{R})$ be the corresponding torsion \mathbb{Z}_p-representation of G_R. If we have a short exact sequence of $\mathbb{Z}_p[G_R]$-modules

$$0 \to T_1 \to T \to T_2 \to 0,$$

then there exist p-power order finite locally free group schemes $H_{1,R}$ and $H_{2,R}$ over R such that $T_i = H_{i,R}(\hat{R})$ for $i = 1, 2$ as G_R-representations.

Proof. Let $H := H_R \times_R R[[1/p]]$. Let H_i for $i = 1, 2$ be finite locally free group schemes over $R[[1/p]]$ such that $H_i(\hat{R}[[1/p]]) = T_i$ as G_R-representations. The given exact sequence of G_R-representations induce the short exact sequence

$$0 \to H_1 \to H \to H_2 \to 0$$

of finite locally free group schemes. Let $H_{1,R}$ be the scheme theoretic closure of H_1 over R obtained from the closed embedding $H_1 \hookrightarrow H$ and H_R. By the same argument as in the proof of Proposition 5.1, $H_{1,R}$ is a finite locally free group scheme over R extending H_1. Furthermore, $H_{2,R} := H_R/H_{1,R}$ is a finite locally free group scheme over R extending H_2 (cf. [Ray67]). It is clear that $T_i = H_{i,R}(\hat{R})$ for $i = 1, 2$.

Corollary 5.3. Assume $e < p - 1$. Let $A_1 \hookrightarrow A_2$ be an injective map of finite free \mathbb{Z}_p-algebras. Let T_{A_1} be a finite free A_1-module given the p-adic topology and equipped with a continuous A_1-linear G_R-action. Let $T_{A_2} := T_{A_1} \otimes_{A_1} A_2$ be the induced representation with the A_2-linear G_R-action. Then T_{A_1} is Barsotti-Tate if and only if T_{A_2} is Barsotti-Tate.
Barsotti-Tate by Theorem 4.2. A given by T.

Since by Lemma 5.2, G is injective. Hence, by Lemma 5.2 and Theorem 4.2 similarly as above, T is Barsotti-Tate by Proposition 5.1.

Conversely, suppose T is Barsotti-Tate. Let B_3 be the quotient of the induced injection $A_1[\frac{1}{p}] \to A_2[\frac{1}{p}]$ of \mathbb{Q}_p-algebras, and let $T \subset T_A$ be the kernel of the induced map of representations $T_A \to T_{A_2} \otimes_{A_1} B_3$. Then for each integer $n \geq 1$, the map $T/p^n \to T_{A_2}/p^n$ is injective. Hence, by Lemma 5.2 and Theorem 4.2 similarly as above, T is Barsotti-Tate. Since $T[\frac{1}{p}] = T_A[\frac{1}{p}]$, T_A is Barsotti-Tate by Proposition 5.1.

We now study the geometry of the locus of Barsotti-Tate representations. Denote by \mathcal{C} the category of topological local \mathbb{Z}_p-algebras A satisfying the following conditions:

- the natural map $\mathbb{Z}_p \to A/m_A$ is surjective, where m_A denotes the maximal ideal of A;
- the map from A to the projective limit of its discrete artinian quotients is a topological isomorphism.

Note that the first condition implies that the residue field of A is \mathbb{F}_p. The second condition is equivalent to the condition that A is complete and its topology can be given by a collection of open ideals $a \subset A$ for which A/a is artinian. Morphisms in \mathcal{C} are continuous \mathbb{Z}_p-algebra morphisms. The following proposition is shown in [SL97].

Proposition 5.4. (cf. [SL97, Proposition 2.4]) Suppose A is a Noetherian ring in \mathcal{C}. Then the topology on A is equal to the m_A-adic topology.

For $A \in \mathcal{C}$, we mean by an A-representation of G_R a finite free A-module equipped with a continuous A-linear G_R-action. We fix an \mathbb{F}_p-representation V_0 of G_R which is absolutely irreducible. For $A \in \mathcal{C}$, a deformation of V_0 in A is an isomorphism class of A-representations of V of G_R satisfying $V \otimes A \mathbb{F}_p \cong V_0$ as $\mathbb{F}_p[G_R]$-modules. We denote by $\text{Def}(V_0, A)$ the set of such deformations. A morphism $f : A \to A'$ in \mathcal{C} induces a map $f_* : \text{Def}(V_0, A) \to \text{Def}(V_0, A')$ sending the class of an A-representation V to the class of $V \otimes_{A,f} A'$. The following theorem on universal deformation ring is proved in [SL97].

Theorem 5.5. (cf. [SL97, Theorem 2.3]) There exists a universal deformation ring $A_{univ} \in \mathcal{C}$ and a deformation $V_{univ} \in \text{Def}(V_0, A_{univ})$ such that for all $A \in \mathcal{C}$, we have a bijection

$$
\text{Hom}_{\mathcal{C}}(A_{univ}, A) \stackrel{\cong}{\to} \text{Def}(V_0, A)
$$

(5.1)
given by $f \mapsto f_*(V_{univ})$.

15
We remark that A_{univ} is Noetherian if and only if $\dim_{\mathbb{F}_p} H^1(G_R, \text{End}_{\mathbb{F}_p}(V_0))$ is finite (cf. loc. cit.). Thus, A_{univ} is not Noetherian in general, even when $R = \mathcal{O}_K$ if K/\mathbb{Q}_p is infinite.

Let C^0 be the full subcategory of C consisting of artinian rings. Abusing the notation, we write $V \in \text{Def}(V_0, A)$ for an A-representation V to mean that $V \otimes_A \mathbb{F}_p \cong V_0$. For $A \in C^0$ and a representation $V_A \in \text{Def}(V_0, A)$, we say V_A is torsion Barsotti-Tate if there exists a p-power order finite locally free group scheme H_R over R such that $V_A \cong H_R(R)$ as $\mathbb{Z}_p[H_R]$-modules. We remark that if R is local, then every p-power order finite locally free group scheme over R embeds into a p-divisible group over R, and thus V_A is torsion Barsotti-Tate if and only if it is a quotient of a finite free \mathbb{Z}_p-representation which is Barsotti-Tate. For $A \in C$, denote by $BT(V_0, A)$ the subset of $\text{Def}(V_0, A)$ consisting of the isomorphism classes of representations V_A such that $V_A \otimes_A A/\mathfrak{a}$ is torsion Barsotti-Tate for all open ideals $\mathfrak{a} \subsetneq A$.

Proposition 5.6. Assume $e < p - 1$. For any C-morphism $f : A \to A'$, we have $f_* (BT(V_0, A)) \subset BT(V_0, A')$. Furthermore, there exists a closed ideal \mathfrak{a}_{BT} of the universal deformation ring A_{univ} such that the map \((5.7)\) induces a bijection $\text{Hom}_C(A_{\text{univ}}/\mathfrak{a}_{BT}, A) \xrightarrow{\cong} BT(V_0, A)$.

Proof. We check the conditions in [SL97, Section 6]. Let $f : A \hookrightarrow A'$ be an injective morphism of artinian rings in C, and let $V_A \in \text{Def}(V_0, A)$ be a representation. We first claim that $V_A \in BT(V_0, A)$ if and only if $V_A' := V_A \otimes_A f A' \in BT(V_0, A')$. Suppose that $V_A \in BT(V_0, A)$. Note that A' is a finite A-module. Let x_1, \ldots, x_m generate A' over A. Then we have a surjective map of $\mathbb{Z}_p[H_R]$-modules $V_A^m \twoheadrightarrow V_A'$ sending the canonical basis elements e_i of V_A^m for $i = 1, \ldots, m$ to x_i. Since V_A^m is the direct sum of m-copies of V_A, it is torsion Barsotti-Tate. Thus, by Lemma 5.2, $V_A' \in BT(V_0, A')$. Conversely, suppose $V_A' \in BT(V_0, A')$. Since we have an injective map of $\mathbb{Z}_p[H_R]$-modules $V_A \hookrightarrow V_A'$, we get $V_A \in BT(V_0, A)$ by Lemma 5.2.

Now, for $A \in C$ and a representation $V_A \in \text{Def}(V_0, A)$, suppose $\mathfrak{a}_1, \mathfrak{a}_2 \subsetneq A$ are open ideals such that $V_A \otimes_A (A/\mathfrak{a}_i) \in BT(V_0, A/\mathfrak{a}_i)$ for $i = 1, 2$. The natural map $A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \to A/\mathfrak{a}_1 \oplus A/\mathfrak{a}_2$ is injective, and it induces the injective map of $\mathbb{Z}_p[H_R]$-modules $V_A \otimes_A A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \hookrightarrow (V_A \otimes_A A/\mathfrak{a}_1) \oplus (V_A \otimes_A A/\mathfrak{a}_2)$.

Since the direct sum $(V_A \otimes_A A/\mathfrak{a}_1) \oplus (V_A \otimes_A A/\mathfrak{a}_2)$ is torsion Barsotti-Tate, we see from Lemma 5.2 that $V_A \otimes_A A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \in BT(V_0, A/(\mathfrak{a}_1 \cap \mathfrak{a}_2))$. The assertion then follows from [SL97, Proposition 6.1].

We now show that when $e < p - 1$, the locus of Barsotti-Tate representations cuts out a closed subscheme of the universal deformation scheme $\text{Spec}(A_{\text{univ}})$:

Theorem 5.7. Suppose $e < p - 1$ (and recall that the Krull dimension of R is assumed to be equal to 2). Let A be a finite flat \mathbb{Z}_p-algebra equipped with the p-adic topology, and let $f : A_{\text{univ}} \to A$ be a continuous \mathbb{Z}_p-algebra homomorphism. Then the induced representation $V_{\text{univ}} \otimes_{A_{\text{univ}}, f} A[1/p]$ of G_R is Barsotti-Tate if and only if f factors through the quotient $A_{\text{univ}}/\mathfrak{a}_{BT}$.

16
Proof. Let $A_1 := \text{im}(f) \subset A$, and let $T_{A_1} = V_{\text{univ}} \otimes_{A_{\text{univ}, f}} A_1$. Then $T_{A_1} \otimes_{A_1} A = V_{\text{univ}} \otimes_{A_{\text{univ}, f}} A$, and by Proposition 5.1 and Corollary 5.3 it suffices to show that T_{A_1} is Barsotti-Tate if and only if f factors through $A_{\text{univ}}/a_{\text{BT}}$. Note that $A_1 \in C$, and since A_1 is finite flat over \mathbb{Z}_p, the topology on A_1 is equivalent to the p-adic topology and $f : A_{\text{univ}} \to A_1$ is continuous by Proposition 5.4. Suppose first that T_{A_1} is Barsotti-Tate, so that there exists a p-divisible group G_R over R such that $T_p(G_R) \cong T_{A_1}$. For each integer $n \geq 1$, we then have $(V_{\text{univ}} \otimes_{A_{\text{univ}, f}} A_1) \otimes_{A_1} A_1/(p^n) = T_{A_1}/p^n \cong (G_R[p^n])(R)$, so $V_{\text{univ}} \otimes_{A_{\text{univ}, f}} A_1/(p^n) \in \text{BT}(V_0, A_1/(p^n))$. Hence, by Proposition 5.6, f factors through $A_{\text{univ}}/a_{\text{BT}}$.

Conversely, suppose f factors through $A_{\text{univ}}/a_{\text{BT}}$. Let G be the p-divisible group over $R[[\frac{1}{p}]]$ corresponding to T_{A_1}. For each $n \geq 1$, T_{A_1}/p^n is torsion Barsotti-Tate by Proposition 5.6, so $G[p^n]$ extends to a finite locally free group scheme over R. Then by Theorem 4.2, T_{A_1} is Barsotti-Tate.

On the other hand, if the ramification is large, we can deduce that the locus of Barsotti-Tate representations is not p-adically closed in general:

Proposition 5.8. Let $R = \mathcal{O}_K[[s]]$ and suppose $e \geq p$. There exists a \mathbb{Z}_p-representation T of \mathcal{G}_R such that T/p^nT is torsion Barsotti-Tate for each $n \geq 1$ but T is not Barsotti-Tate.

Proof. By Theorem 4.2 there exists a p-divisible group G over $R[[\frac{1}{p}]]$ such that $G[p^n]$ extends to a finite locally free group scheme $G_{n,R}$ over R but G does not extend to a p-divisible group over R. Let T be the representation corresponding to G. Then for each n, we have $T/p^nT \cong G_{n,R}(R)$ so it is torsion Barsotti-Tate. However, T is not Barsotti-Tate since G does not extend over R.

References

[Bri08] Olivier Brinon, *Représentations p-adiques cristallines et de de rham dans le cas relatif*, Mém. Soc. Math. Fr. 112 (2008).

[DJ95] Aise Johan De Jong, *Crystalline Dieudonné module theory via formal and rigid geometry*, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 5–96.

[FC90] Gerd Faltings and Ching-Li Chai, *Degeneration of abelian varieties* (Berlin), Ergeb. Math. Grenzgeb., vol. 22, Springer-Verlag, 1990.

[GR03] Ofer Gabber and Lorenzo Ramero, *Almost ring theory*, Lecture Notes in Math., vol. 1800, Springer-Verlag, 2003.

[Kim15] Wansu Kim, *The relative Breuil-Kisin classification of p-divisible groups and finite flat group schemes*, Int. Math. Res. Not. IMRN (2015), 8152–8232.
[Kis06] Mark Kisin, *Crystalline representations and F-crystals*, Algebraic geometry and number theory (Boston), Progr. Math., vol. 253, Birkhäuser, 2006, pp. 459–496.

[Liu07] Tong Liu, *Torsion p-adic Galois representations and a conjecture of Fontaine*, Ann. Sci. Éc. Norm. Supér. **40** (2007), 633–674.

[Ray67] Michel Raynaud, *Passage au quotient par une relation déquivalence plate*, Proceedings of a conference on local fields (Berlin, Heidelberg), Springer, 1967, pp. 78–85.

[Ray74] ______, *Schémas en groupes de type (p, . . . , p)*, Bull. Soc. Math. France **102** (1974), 241–280.

[Sch12] Peter Scholze, *Perfectoid spaces*, Publ. Math. Inst. Hautes Études Sci. **116** (2012), 245–313.

[SL97] Bart De Smit and Hendrick W. Lenstra, *Explicit construction of universal deformation rings*, Modular forms and Fermat’s last theorem (New York), Springer-Verlag, 1997, pp. 313–326.

[Tat67] John Tate, *p-divisible groups*, Proceedings of a conference on local fields (Berlin, Heidelberg), Springer, 1967, pp. 158–183.

[Vas13] Adrian Vasiu, *A motivic conjecture of Milne*, J. Reine Angew. Math. **685** (2013), 181–247.

[VZ10] Adrian Vasiu and Thomas Zink, *Purity results for p-divisible groups and abelian schemes over regular bases of mixed characteristic*, Doc. Math. **15** (2010), 571–599.