Note on Trace Class Groups

Gerrit van Dijk

Abstract

A Lie group G is called a trace class group if for every irreducible unitary representation π of G and every C^∞ function f with compact support the operator $\pi(f)$ is of trace class. In this note we prove that the semidirect product of \mathbb{R}^n and a real semisimple algebraic subgroup G of $\text{GL}(n,\mathbb{R})$ is a trace class group only if G is compact. The converse has been shown elsewhere. We also make a descent start with the study of semidirect products with Heisenberg-type groups.

Mathematics Subject Classification 2010: 22D10, 43A80, 46C05.

Keywords and Phrases: Trace class group, semidirect product, induced representation, Heisenberg group.

1 Introduction

In this note we resume the study of trace class groups from [4]. An irreducible unitary representation π of a Lie group is said to be of trace class if for every C^∞ function f with compact support the operator $\pi(f)$ is of trace class. A Lie group is said to be of trace class, or briefly, a trace class group, if every irreducible unitary representation is of trace class. Well-known examples of such groups are reductive Lie groups and unipotent Lie groups. In general each (real algebraic) Lie group is a semidirect product of a reductive and a unipotent Lie group. One of the highlights of [4] is the theorem that the semidirect product of a real algebraic semisimple Lie group and its Lie algebra is a trace class group if and only if the group is compact. In this note we prove a generalization of this theorem, provided by the case of a semisimple real algebraic group G acting on a real finite-dimensional vector space V by linear transformations and considering the semidirect product of V and G. We also make a beginning with the study of real algebraic groups with unipotent radical equal to a Heisenberg group.
2 Formula for the character of an induced representation

Let \(G \) be a locally compact group and \(N \) a closed subgroup. Choose right Haar measures \(dg \) on \(G \) and \(dn \) on \(N \). We may find a strictly positive continuous function \(q \) on \(G \) satisfying

\[
q(e) = 1, \\
q(n) = \Delta_N(n) \Delta_G(n^{-1}) q(g) \quad (n \in N, g \in G),
\]

(1)

where \(\Delta_N, \Delta_G \) denote the modular functions on \(N, G \). For example

\[
\int_G f(a^{-1} g) dg = \Delta_G(a) \int_G f(g) dg
\]

for all \(a \in G \) and \(f \in C_c(G) \).

The function \(q \) defines a quasi-invariant measure \(d_q \) on \(G/N \) (the space of right cosets with respect to \(N \)) as follows. For \(f \in C_c(G) \) set \(T_N f(\hat{g}) = \int_N f(n g) dn, \hat{g} = N g \). Then \(d_q \) is defined by

\[
\int_{G/N} T_N f(\hat{g}) d_q(\hat{g}) = \int_G f(g) q(g) dg.
\]

Let \(\gamma \) be a unitary representation of \(N \) and set \(\pi = \text{Ind}_N^G \gamma \). We write down a formula for the character of \(\pi \) in terms of that for \(\gamma \). Let us give the definition of \(\pi \). Let \(\mathcal{H} \) be the Hilbert space of \(\gamma \). Then \(\pi \) acts on the space \(\mathcal{H}_\pi \) of function \(f: G \to \mathcal{H} \) satisfying

\[
f(n g) = \gamma(n) f(g) \quad \text{and} \quad \int_{G/N} \|f(\hat{g})\|^2 d_q \hat{g} < \infty.
\]

The action of \(\pi \) is

\[
\pi(g) f(x) = f(x g) [q(x g)/q(x)]^{1/2}.
\]

Theorem 2.1 ([2], Theorem 3.2). Let \(\varphi \in C_c(G) \), \(\varphi^* (g) = \overline{\varphi(g^{-1})} \Delta_G(g^{-1}) \) and set \(\psi = \varphi \ast_G \varphi^* \). Then

\[
\text{tr} \pi(\psi) = \int_{G/N} \Delta_G(g^{-1})^2 q(g^{-1}) \text{tr} [\int_N \psi(g^{-1} n g) \gamma(n) \Delta_G(n) \Delta_N(n^{-1/2} dn)] d_q \hat{g}
\]

(2)

in the sense that both sides are finite and equal or both \(+\infty \).
A group G is called unimodular if $\Delta_G = 1$. If G is a unimodular Lie group we have $\text{tr} \pi(\varphi)$ is finite for all functions $\varphi \in C_c^\infty(G)$ if and if $\text{tr} \pi(\psi)$ is for all functions ψ of the form $\psi = \varphi * G \varphi^*$ with $\varphi \in C_c^\infty(G)$. This is because any φ is a finite sum of functions of the form ψ by [1].

3 Application to semidirect products

Let V be a finite-dimensional real vector space and H a closed subgroup of $\text{GL}(V)$. Set $G = V \rtimes H$. The product in G is given by

$$(v, h)(v', h') = (v + h \cdot v', hh') \quad \text{for } v, v' \in V, h, h' \in H.$$

If dh is a right Haar measure on H and dv one on V, then $dg = dv dh$ is a right haar measure on G. Denote by \hat{V} the space of continuous unitary characters of V. For each $\chi \in \hat{V}$ and each $h \in H$ consider the function

$$v \mapsto \chi(h \cdot v) \quad (v \in V).$$

This is again a continuous unitary character of V, which we call $\chi \cdot h$. The set of all $\chi \cdot h$ is called the orbit of χ in \hat{V} and

$$H_\chi = \{ h \in H : \chi \cdot h = \chi \}$$

the stability subgroup of χ. Choose an irreducible unitary representation ρ of H_χ and define $\chi \otimes \rho$ by

$$(v, h) \mapsto \chi(v) \rho(h) \quad (v \in V, h \in H_\chi).$$

Then $\chi \otimes \rho$ is an irreducible unitary representation of $V \rtimes H_\chi$ and the induced representation $\pi_{\chi, \rho}$ is an irreducible unitary representation of $V \rtimes H$, see [3], p. 43. Now apply (2) with $G = V \rtimes H$, $N = V \rtimes H_\chi$ and $\pi = \pi_{\chi, \rho}$. Choose as before $dv dh$ and similarly $dv dh_\chi$ as right Haar mesures on G and N. Then Δ_G and Δ_N are given by

$$\Delta_G(v, h) = \det(h), \Delta_H(h) \quad (v \in V, h \in H)$$

and similarly

$$\Delta_N(v, h) = \det(h) \Delta_{H_\chi}(h) \quad (v \in V, h \in H_\chi).$$

Notice that q is left V-invariant, so we may write $q(v, h) = Q(h)$. Q satisfies

$$Q(h_0 h) = \Delta_{H_\chi}(h_0) \Delta_H(h_0^{-1})Q(h)$$

for $h \in H, h_0 \in H_\chi$. Let us now rewrite (2) for the above particular case.
Theorem 3.1 Let ψ be as in Theorem 2.1. Then

$$\text{tr} \pi(\psi) = \int_{H/H_x} \Delta_H(h)^{-1} Q(h)^{-1}.$$

$$\text{tr} \left[\int_V \int_{H_x} \psi(v, h^{-1} h_0 h)(\chi \cdot h)(v) \rho(h_0) \Delta_H(h_0)^{1/2} \Delta_{H_x}(h_0)^{-1/2} dv dh_0 \right] dQ(h).$$

(3)

4 A special case

Let V be a finite-dimensional real vector space with inner product $\langle \cdot, \cdot \rangle$ and with complexification V. Denote by G a connected, complex, semisimple, linear algebraic subgroup of $\text{GL}(V)$. Assume that G is defined over \mathbb{R} and set $G = G(\mathbb{R})$ for its group of real points. Then G is a semisimple Lie group with finite center and finitely many connected components. For any $g \in \text{GL}(V)$ set $\langle g \cdot v, w \rangle = \langle v, g^{-1} \cdot w \rangle$ for all $v, w \in V$. Assume that G is invariant under the Cartan involution θ defined by $\theta(g) = {}^t g^{-1}$ ($g \in G$).

Write $G_1 = V \rtimes G$. Notice that G_1 is unimodular. The purpose of this note is to show

Theorem 4.1 The group G_1 is a trace class group only if the group G is compact.

The converse of this theorem has been proved in [4], Lemma 14.2.

Proof. Assume G to be non-compact. The Cartan involution of G gives rise to a Cartan involution of the Lie algebra \mathfrak{g} of G, that we again denote by θ. Write $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ for the decomposition of \mathfrak{g} into ± 1-eigenspaces of θ. Then \mathfrak{k} consists of anti-symmetric and \mathfrak{p} of symmetric elements. Set $K = G \cap O(n, \mathbb{R})$. Then \mathfrak{k} is the Lie algebra of K. Select a non-trivial maximal Abelian subspace \mathfrak{a} of \mathfrak{p}, which exists because G is non-compact, and let Σ denote the set of roots of $\langle \mathfrak{g}, \mathfrak{a} \rangle$. Then Σ is root system (with multiplicities). Let Δ be a set of simple roots and Σ^+ the set of positive roots with respect to Δ. Denote by \mathfrak{n} the Lie subalgebra spanned by the positive root vectors and by N the corresponding algebraic subgroup. Then one has $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ and similarly $G = KAN$, the Iwasawa decomposition of G. Let ξ_0 be a highest weight vector in V with highest weight $\lambda \neq 1$ (with respect to N and A). Such a vector exists. Indeed, if all highest weight vectors have weight equal to one, then $G = \{1\}$, which is not the case.
Set G_0 for the stabilizer of ξ_0 in G. Denote by B the Killing form of \mathfrak{g} and define H_1 by
\[
\lambda(H) = B(H, H_1) \quad (H \in \mathfrak{a}),
\]
and set $A_1 = \exp \mathbb{R} H_1$. Let us denote by P the stabilizer of the half-line $\mathbb{R}_+^* \xi_0$. Then $P = A_1 G_0$, where $A_1 \cap G_0 = \{1\}$, $a_1 G_0 a_1^{-1} = G_0$ for all $a_1 \in A_1$. Let da_1 and dg_0 denote right Haar measures on A_1 and G_0 respectively. Then $dp = \delta(a_1) da_1 dg_0$, where $\delta(a_1) = \det \text{Ad}(a_1^{-1})|_{g_0}$ is a right Haar measure on P. Since $A \subset P$ and $N \subset P$ we have $G = PK$ and
\[
dg = d(g_0 a_1 k) = \Delta_{G_0} (g_0^{-1} a_1^{-1}) dg_0 da_1 dk.
\]
Define the character χ_0 of V by
\[
\chi_0(v) = e^{-2\pi i \langle \xi_0, v \rangle} \quad (v \in V).
\]
Then Stab $\chi_0 = \theta(G_0)$. Let us write $H_0 = \theta(G_0)$, and let dh_0 be a right Haar measure on H_0. In a similar way as above we have
\[
dg = d(h_0 a_1 k) = \Delta_{H_0} (h_0) \delta_0(a_1) dh_0 da_1 dk,
\]
where $\delta_0(a_1) = \det \text{Ad}(a_1)|_{h_0}$. We will consider the representation π given by
\[
\pi = \text{Ind}_{V \times H_0}^{V \times G} \chi_0 \otimes 1
\]
and determine whether its trace exists. Let
\[
Q(h_0 a_1 k) = \Delta_{H_0} (h_0) \delta_0(a_1).
\]
Equation (3) then becomes:
\[
\text{tr} (\psi) = \int_{A_1} \hat{\psi}_1(a_1 \cdot \xi_0) \left[\int_{H_0} \psi_2(h_0) \Delta_{H_0}(h_0)^{-1/2} dh_0 \right] da_1
\]
where we take $\psi \in C^\infty_c(G)$ of the form $\psi(v, g) = \psi_1(v) \psi_2(g)$ ($v \in V, g \in G$), both ψ_1 and ψ_2 K-invariant and $\hat{\psi}_1(w) = \int_V \psi_1(v) e^{-2\pi i \langle v, w \rangle} dv$ for $w \in V$. Clearly the integral
\[
\int_{A_1} \hat{\psi}_1(a_1 \cdot \xi_0) da_1 = \int_0^\infty \hat{\psi}_1(\mu \xi_0) \frac{d\mu}{\mu}
\]
diverges for suitable ψ_1. So we may conclude that G cannot be non-compact. This concludes the proof of the theorem. \qed
5 Semidirect products with Heisenberg groups

In this section we extend our scope to semidirect products $G = V \rtimes H$ with V a non-necessarily Abelian normal subgroup of G. Notice that any real algebraic group is of this form according to the Levi decomposition, see [4], Proposition 2.1. Let us begin with some preparations.

Lemma 5.1 Let G be a Lie group and N a closed normal subgroup of G. If G is a trace class group, then the quotient group $\hat{G} = G/H$ is

Proof. Let $\hat{\pi}$ be an irreducible unitary representation of \hat{G} and π the corresponding representation of G. Choose a right Haarmeasure dn on N and define for $f \in C_c^\infty(G)$

$$T_N f(\hat{x}) = \int_{G/N} f(nx)dn.$$

Then $f \mapsto T_N f$ is a continuous surjective linear map $C_c^\infty(G) \to C_c^\infty(\hat{G})$ and one has

$$\pi(f) = \hat{\pi}(T_N f) \quad (f \in C_c^\infty(G)).$$

So the result follows. \square

Let us consider a special case. Denote by G a Lie group, being the semidirect product $G = V \rtimes H$ where H is a closed subgroup of G and V a closed normal subgroup of G. Let W be a closed normal subgroup of G contained in V. Denote by $v \mapsto \hat{v}$ the canonical map $V \to V/W = \hat{V}$. The group H acts on \hat{V} by

$$h \cdot \hat{v} = \hat{h} \cdot v \quad (h \in H, v \in V).$$

Set $\hat{G} = \hat{V} \rtimes H$. Then we have

Lemma 5.2 The map $(v, h) \mapsto (\hat{v}, h)$ is a surjective homomorphism from G to \hat{G} with kernel W.

We will now specialize to real algebraic groups G of the form $G = V \rtimes H$ with V a unipotent and H a semisimple real algebraic group. Set

$$V_1 \supset V_2 \supset \cdots \supset V_k \supset \{1\}$$

for the descending series of V, where $V_1 = V$, $V_i = [V, V_{i-1}]$, $V_k = Z$, the (non-trivial center of V. Notice that each V_i is normal in G, so in particular H-invariant. Define

$$L = \{h \in H : h = id \text{ on } V_i/V_{i+1} \text{ for all } i = 1, \ldots, k\}$$

6
Clearly L is a closed real algebraic normal subgroup of H. We can now formulate a conjecture.

Conjecture 5.3 Let $G = V \rtimes H$ with V a unipotent and H a semisimple real algebraic group. Then G is a trace class group if and only if H/L is compact.

Let us consider an example with V of a special nature, namely a Heisenberg group. Such a group can be seen as the most simple choice for a non-Abelian group V. We shall show that the conjecture holds in this case.

Example 5.4 Denote by V the $(2n+1)$-dimensional Heisenberg group with Lie algebra basis $x_1, \ldots, x_n, y_1, \ldots, y_n, z$ with $[x_i, y_i] = z$ and all other brackets equal to zero. Then Z is one-dimensional and spanned by z. Let H be any semisimple real algebraic group acting on V algebraically and set $G = V \rtimes H$.

There are two kinds of irreducible unitary representations π of V, depending on their behaviour on Z. By Schur’s Lemma we have $\pi(z) = \lambda(z) I$ ($z \in Z$) for some character λ of Z.

If $\lambda \neq 1$, then π is equivalent with an infinite-dimensional representation π_{λ} satisfying $\pi_{\lambda}(z) = \lambda(z) I$ and π_{λ} is square-integrable modulo Z.

If $\lambda = 1$, then π is actually a one-dimensional representation of $V/Z \simeq \mathbb{R}^{2n}$, so a character χ of V.

Let us now perform the usual construction for the determination of the irreducible unitary representations of G, see [2], p. 470. Let us begin with π_{λ}. Since H acts trivially on Z, one has $\text{Stab} \pi_{\lambda} = H$. If ρ is an irreducible unitary representation of H then $\pi_{\lambda} \otimes \rho$ in one of G, of trace class. Let now χ be a character of V/Z (hence of V). By the usual construction (see [4]), we always obtain a trace class representation of $V/Z \rtimes H = G/Z$, so of G, if and only if H/L_0 is compact, where $L_0 = \{ h \in H : h = id \text{ on } V/Z \}$. Clearly $L_0 = L$, so if and only if H/L is compact. Resuming, $G = V \rtimes H$ is trace class if and only if H/L is compact.

References

[1] J. Dixmier and P. Malliavin, *Factorisations de fonctions et de vecteurs indéfiniment différentiables*, Bull. Sci. Math. 102, (1978), 307 – 330.

[2] A. Kleppner and R.L. Lipsman, *The Plancherel formula for group extensions*, Ann. Scient. Éc. Norm. Sup. 5, (1972), 459 – 516.2, p. 470.

[3] G.W. Mackey, *Induced representations of groups and quantum mechanics*, W.A. Benjamin Inc., New York 1968.
[4] G. van Dijk, *Trace class groups: the case of semidirect products*, J. Lie Theory **29** (2019), to appear.

Gerrit van Dijk
Mathematisch Instituut
Niels Bohrweg 1
2333 CA Leiden, The Netherlands
dijk@math.leidenuniv.nl