The fat anchor orchiopexy technique: results and outcomes from 150 cases surgical experience

Claudio Spinelli1 · Alessia Bertocchini1 · Gianmartin Cito2 · Marco Ghionzoli1 · Silvia Strambi1

Accepted: 27 April 2021 / Published online: 11 May 2021 © The Author(s) 2021

Abstract
Purpose The purpose of the study is to evaluate results and outcomes in a long-time follow-up period, by performing a novel testicular fixation procedure, known as “fat anchor orchiopexy” (FAO), for the treatment of palpable low inguinal undescended testis.

Materials and methods We retrospectively reviewed all patients who underwent scrotal orchiopexy technique, from May 2013 to May 2019, at the Pediatric Surgery Division of Department of Surgical Pathology, University of Pisa (Italy). FAO (Spinelli’s technique) consists in anchoring the testicles to sub-scrotal fat with a single trans-scrotal incision. All the patients enrolled had history of unilateral or bilateral undescended testis. Data collected included patient’s age, operative times and complications.

Results A total of 150 children with cryptorchidism were treated using a single trans-scrotal orchiopexy. Of them, 130 patients (86.7%) had unilateral undescended testis and 20 (13.3%) bilateral cryptorchidism. Mean patient’s age was 21 months (range: 14–28 months). All the procedures were planned in a day-surgery setting. Trans-scrotal orchiopexy was successful in all cases and no patients required an additional groin incision. No intraoperatively and postoperatively major complications were observed. Patients’ post-operative pain was mild (mean pediatric visual analog scale = 2). In all cases, the healing process was rapid and no surgical wounds infections were reported during the post-operative period, referring excellent cosmesis results. During a mean 48-month follow-up period, no testicular retraction, recurrence or testis atrophy was reported.

Conclusion The original Spinelli’s technique (FAO) proves to be a safe and effective method for the treatment of palpable or distal-to-external-inguinal-ring testes. No immediate and delayed post-surgery complications were reported. In all cases, the anchored testicle remained in the scrotal position with normal vascularization. This novel surgical technique could give better options for scrotal fixation in case of low-lying cryptorchid testes.

Keywords Children · Cryptorchidism · Trans-scrotal orchiopexy · Fat anchor orchiopexy

Introduction
Undescended testis (UDT), is defined as a failure of a single testis or both, to descend into a scrotal position [1]. Most cases of UDT are unilateral (UT), as well as from 10 to 20% both testes are involved (bilateral, BT) [2, 3]. Its incidence varies between 3 and 5% in full-term newborn babies, depending on the geographical region, ethnic group and socioeconomic status [4–6]. UDT is associated with abnormal testicular development and semen motility, and to an incorrect morphology, leading to hyptrophy and long-term infertility issues [7, 8]. It is recommended to perform orchidopexy during early childhood to prevent infertility in adulthood [9–15]. Hormone therapy, as complementary to surgical treatment, may improve sperm maturation and later semen parameters in boys with UDT [16, 17]. Depending on
the position of the cryptorchid testis, the most used surgical techniques are the Shoemaker’s technique, which provides trans-inguinal access [18], Bianchi and Squire’s technique, which instead implies a trans-scrotal access [19], and his modification [20]. Children have a favorable anatomical condition to perform a less invasive approach, due to the short distance from external to the internal inguinal ring, as well as the very movable and thinner skin and subcutaneous tissue [21, 22]. These aspects suggest that a single scrotal incision, rather than a traditional inguinal incision, may be valuable for children with low palpable testes [23, 24]. This type of incision is a minimal-access approach that requires less dissection, less discomfort for the patient, and provides rapid healing, excellent cosmetic results and a good success rate [25, 26].

The purpose of the study is to evaluate results and outcomes in a long-time follow-up period, by performing a novel testicular fixation procedure, known as “fat anchor orchidopexy” (FAO) or “Spinelli’s technique”, for the treatment of palpable low inguinal undescended testis.

Materials and methods

Study population

We performed a retrospective analysis of 150 children with cryptorchidism, who underwent the “fat anchor orchidopexy” from May 2013 to May 2019 at the Pediatric Surgery Division of Department of Surgical Pathology, University of Pisa (Italy). All the patients enrolled had history of unilateral or bilateral undescended testis. Data collected included patient’s age, operative times and complications.

On clinical and ultrasound examination, all selected patients presented low palpable testicles. None of the patients were diagnosed with retractile testis. The a-priori exclusion criteria were: previous hormonal treatment, presence of hernia or hydrocele.

Technique

All the patients underwent the fat anchor orchidopexy (FAO) technique, performed by the same surgeon (C.S.) The surgical procedure was performed under general anesthesia with the patient in supine position. The actual testicular location was accurately assessed after the anesthesia induction before surgery. The testis was massaged down into the most caudal extent of the scrotum. A transverse scrotal incision was done at the level of the hemiscrotum, though which the testicle was exposed and delivered. The external spermatic fascia covering the spermatic cord was then meticulously dissected from its surrounding fat pad. Later, a fan of adipose tissue of the sub-scrotal fat of trapezoidal shape—so called “fat fan” was prepared (Figs. 1, 2). The sub-scrotal fat represents a continuation of the superficial fascia (Camper’s fascia and Scarpa’s fascia) covering the anterior abdominal wall [27–29]. This pad of fat is well represented in small children, but tends to decrease as age increases. An accurate funiculolysis was carried out until reaching the external inguinal ring. The external spermatic fascia, cremasteric muscle and internal spermatic fascia were incised and separated from the vas deferens and spermatic vessel. Thereafter, the vaginal tunic of the testis was opened and the processus vaginalis was possibly examined, dissected free and ligated high, as would be done for conventional herniotomy. Once the testis was mobilized, a keyhole was performed through the mid portion of the “fat-fan” and the testis is passed through it
Subsequently, the testis was anchored to the adipose fan with two points, one medial and one lateral (using 4/0 mono thread absorbable), to prevent testicular ascending. Thus, the testis was placed inside the ipsilateral scrotum without tension. Finally, dartos and scrotal skin were sutured 5/0 absorbable stitches (Fig. 5).

Main outcomes measures

Postoperative pain was assessed using the pediatric visual analog scale (VAS). The VAS consisted of a 100-mm horizontal line without any other visual markers on or around it [30]. Intraoperative and post-operative complications were recorded. Each patient underwent a clinical examination and abdominal/scrotal-groin ultrasounds at 3 months, 6 months and 12 months after surgery and then annually. Additionally, a monthly self-examination of the testicles was suggested to the patients, as advised by Radmayr [31].

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki Declaration.

Results

The fat anchor orchiopexy technique was performed in 150 patients: 130 (86.7%) presented UT-UDT, 20 (13.3%) had BT-UDT. The mean patient’s age at surgery was 21 months (range: 14–28 months). All the procedures were planned in a day-surgery setting. The mean operating time was 37 min (range: 30–50 min) in case of UT-UDT. In 60 patients...
(40.0%), the patency of the processus vaginalis was detected, requiring a careful dissection with high ligature. In all cases, no intraoperative complications occurred. Patient’s post-operative pain was mild (mean visual analog scale = 2). All patients received a pain regimen with acetaminophen as needed until the first post-operative day, not requiring additional narcotic pain medication. Twenty patients (13.3%) needed antalgic therapy up to 3 days after surgery. No hormonal therapy was given postoperatively. No post-operative complications were recorded. All the children returned to their normal activities 3 days after surgery. In all cases, the healing process was rapid and no surgical wounds infections were reported during the post-operative period, referring excellent cosmesis results.

A mean follow-up period of 48 months (range: 18—84 months) was performed. No testicular retraction, recurrence or testis atrophy was reported.

Discussion

The principles which inspire the surgical treatment of UDT, described by Park and Choi [32], according to Bevan’s studies [33] are: the mobilization of the testis, spermatic vessels and deferent, the repair of associated hernia or better the peritoneo-vaginal duct, and the testicular fixation in the scrotal bag. Many surgical techniques have been proposed to anchor the testicle, after it was brought down into the scrotum, to maintain its position; however, the optimal method remains controversial. Ombredanne et al. in 1945 [34] first introduced fixing the testis into the contralateral scrotal pouch through a window in the scrotal septum. Cabot and Nesbit in 1931 [35] anchored the testes to the contralateral thigh using a rubber band attached to a silk suture. Also Torek et al. in 1931 [36] proposed to anchor the testis to the fascia of the thigh. Shoemaker in 1932 [18] and later Latterimer in 1957 [37], suggested fixing the testes in a subcutaneous position, in an extradartos pouch, between dartos and scrotal skin. The incorporation of the sub-scrotal fat in fixing the testes inside the scrotum was first suggested by Spinelli et al. in 2017 [27, 38]. The surgical approach depends on the testicular position on physical examination. Most of the orchidopexies for palpable testicles are performed through an inguinal incision, although a scrotal approach can be safely used depending on the position of the testis [39, 40]. The possibility of a scrotal approach is allowed by the fact that, in the majority of palpable undescended testicles, the testicular vessels and the vasa, after dissection of the spermatic fascia, cremasteric muscle and the processus vaginalis, are long enough to allow the testes to reach the scrotum without tension, as confirmed by the experiences of Bianchi and Squire [19] and Hazebroek et al. [41]. Both inguinal and scrotal orchiopexy are two traditional approaches with high efficacy, both performed as relatively quick and without complications [42]. This issue is confirmed by a meta-analysis performed by Feng et al. [43] and a study conducted by Al-Mandil’s et al. [44], which highlight how the trans-scrotal orchiopexy is associated with shorter operating times when compared with the standard inguinal orchiopexy. According to literature [45], the duration of the scrotal approach ranges from 18.9 to 40.5 min, making this procedure significantly shorter than the inguinal approach, as shown in our study. In addition, Hyuga’s et al. [45] demonstrated a slightly lower incidence of post-operative wound infection in the trans-scrotal approach, compared to the inguinal one (1.1 vs. 2.5%, respectively), although this difference is not significant. According to other authors [46–48], the single scrotal incision has the advantages of lower post-operative pain, compared with the inguinal access.

Moreover, Novaes et al. [49] reported, after a single scrotal-incision orchiopexy: 1.43% of relapse, 0.1% of persistent or recurrent hernia and 0.3% of testicular atrophy, resulted by sperm vessels injury during surgery or even to the spermatic cord itself. However, in our case series, all the patients did not report complications, during a long-term follow-up period, confirming the scrotal position of the testes.

Conclusions

The original Spinelli’s technique provides a trans-scrotal access, using a fan of adipose tissue. This approach proves to be a safe and alternative method to traditional inguinal approach for palpable or distal-to-external-inguinal-ring testes, ensuring excellent cosmetic results. Moreover, this technique is associated with a shorter operating time, not reporting immediate and delayed post-surgery complications. This novel surgical technique could give better options for scrotal fixation in case of low-lying cryptorchid testes.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Kolon TF, Herron DCA, Baker LA et al (2014) Evaluation and Treatment of Cryptorchidism: AUA Guideline 2014. 0022–5347/14/1922–03370. The Journal of Urology
2. Nah SA, Yeo CS, How GY et al (2014) Undescended testis: 513 patient’s characteristics, age at orchidopexy and patterns of referral. Arch Dis Child 99:401–406
3. Sapin E (2014) Ectope testiculaire et cryptorchidie; de quoi parle-t-on? Indications opératoires§ Cryptorchidism: guidelines for surgical management. Arch Pediatr 21:113–117
4. Sepúlveda X, Egaña PL (2016) Current management of non-palpable testes: a literature review and clinical results. Transl Pediatr 5:233–239
5. Serrano T, Chevrier C, Multigner L et al (2013) International geographic correlation study of the prevalence of disorders of male reproductive health. Hum Reprod 28(7):1974–1986
6. Ghirri P, Ciulli C, Spinelli C et al (2002) Incidence at birth and natural history, of cryptorchidism: a study of 10730 consecutive male infants. J Endocrinol Invest 25:709–715
7. Canavese F, Mussa A, Manenti M et al (2009) Sperm count of young men surgically treated for cryptorchidism in the first and second year of life: Fertility is better in children treated at a younger age. Eur J Pediatr Surg. https://doi.org/10.1055/s-0029-1241171
8. Murphy F, Sri Paran T, Puri P (2007) Orchidopexy and its impact on fertility. Pediatr Surg Int 23:625–632
9. Niedzieliski JK, Oszkowska E, Słowikowska-Hilczer J (2016) Undescended testis - current trends and guidelines: a review of the literature. Arch Med Sci 12:667–677
10. Mengel W, Hienz HA, Sippe WG II et al (1974) Studies on the male infants. J Urol 111:1006
11. Hadziselimovic F, Herzog B, Seguchi H (1975) Surgical correction of cryptorchism at 2 years: electron microscopic and morphometric investigations. J Pediatr Surg 10:19–26
12. Tekgül TS, Dogan HS, Hoebbe P, et al (2016) EAU guidelines on paediatric urology, 2016. Available at: https://uroweb.org/wp-content/uploads/EAUGuidelines- Paediatric-Urology-2016-Pocket-1.pdf. Accessed Apr 2017
13. Hensel KO, Caspers T, Jenke AC et al (2015) Operative management of cryptorchidism: guidelines and reality—a 10-year observational analysis of 3857 cases. BMC Pediatric 15:116
14. Boehme P, Geis B, Doerner J et al (2018) Shortcomings in the management of undescended testis: guideline intention vs reality and the underlying causes—insights from the biggest German center. BJU Int 122(4):644–653
15. DinkovKalinovaGeorgiev DKK et al (2016) Surgical treatment of Cryptorchidism in childhood Trakia. J Sci 4:379–385
16. Spinelli C, Strambà S, Busetto M et al (2014) Effects on normalized testicular atrophy index (TAI) in cryptorchid infants treated with GnRHa pre and post-operative vs surgery alone: a prospective randomized trial and long-term follow-up on 62 cases. Pediatr Surg Int 30:1061–1067
17. Ong C, Hassthorpe S, Hutson JM (2005) Germ cell development in the descended and cryptorchid testes and the effects of hormonal manipulation. Pediatr Surg Int 21:240–254
18. Schoemaker J (1932) Uber Kryptochrusmus und seine Behandlung. Chirurg 1:1–9
19. Bianchi A, Squire BR (1989) Transscrotal orchidopexy-orchidopexy revised. Pediatr Surg Int 4(3):189–192
20. Cloutier J, Moore K, Nadeau G et al (2011) Modified scrotal (Bianchi) mid raphe single incision orchiopexy for low palpable undescended testes: early outcomes. J Urol 185(3):1088–1092. https://doi.org/10.1016/j.juro.2010.10.039
21. Dayanc M, Kibar Y, Irikilata HC et al (2007) Long-term outcome of scrotal incision orchiopexy for undescended testes. Urology 70(4):786–788
22. Parnis SJ, Roberts JP, Hutson JM (1997) Anatomical landmarks of the inguinal canal in prepubescent children. Aust N Z J Surg 67:335–337
23. Na SW, Kim SO, Hwang EC et al (2011) Single scrotal incision orchiopexy for children with palpable low-lying undescended testis: early outcome of a prospective randomized controlled study. Korean J Urol 52:637e41
24. Zouari M, Ben Dhaou M, Jallouli M et al (2015) Single scrotal-incision orchiopexy for palpable undescended testes in children. Arab J Urol 13:112–115
25. Gordon M, Cervellione RM, Morabito A, Bianchi A (2010) 20 years of transcutaneous orchiopexy for undescended testis: results and outcomes. J Pediatric Urol 6:506e512
26. Canning D (2009) Urological survey. J Urol 182:1169e71
27. Al-Omar K, Bakkar S, Spinelli C (2021) Introducing a new scrotal orchiopexy technique: the fat anchor orchiopexy. J Ped Surg 56 (3):632-634
28. Patel AP (2017) Anatomy and physiology of chronic scrotal pain. Trans Androl Urol 6(Suppl 1):551–556
29. MacKay MD, Mudreac A, Varacallo M (2020) Anatomy, abdomen and pelvis. StatPears Publishing. Camper Fascia
30. Shields BJ, Cohen DM, Harbeck-Weber C, Powers JD, Smith GA (2003) Pediatric pain measurement using a visual analogue scale: a comparison of two teaching methods. Clin Pediatr (Phila) 42(3):227–234. https://doi.org/10.1177/000992280304200306 (PMID: 12739921)
31. Radmayr C, Dogan HS, Hoebbe P et al (2016) Management of undescended testes: European Association of Urology/European Society for Paediatric Urology Guidelines. J Pediatric Urol 12:335343
32. Park K, Choi H (2010) An evolution of orchiopexy: historical aspect. Korean J Urol 55(3):155–160
33. Bevan AD (1899) Operation for undescended testicle and congenital inguinal hernia. JAMA 33:773
34. McCormack JL, Kretz AW, Nelson OA (1959) Transseptal orchiopexy. J Urol 81(1):153–156
35. Cabot H, Nesbit RM (1931) Undescended testes: principles and methods of treatment. Arch Surg 22(5):850–856
36. Benson CD, Lotfi MW (1967) The pouch technique in the surgical correction of cryptorchidism in infants and children. Surgery 62(5):967–973
37. Lattimer JK (1957) Scrotal pouch technique for orchiopexy. J Urol 78:628–632
38. Spinelli C, Lilioia C, Paolini S et al (2017) Management of Undescended Testes: Italian Experience of a Single Center of Pediatric Surgery. Ann Reprod Med Treat 2(1):1006
39. Kurz D (2016) Current management of undescended testes. Curr Treat Options Pediatr 2(1):43–51. https://doi.org/10.1007/s40746-016-0039-7
40. Misra D, Dias R, Kapila L (1997) Scrotal fixation: a different surgical approach in the management of the low undescended testes. Urology 49:762–765
41. Hazerbroek FWJ, De Muinck K-S, Van Maarschalkerweerd M et al (1987) Why luteinizing hormone-releasing nasal spray will not replace orchiopexy in the treatment of boys with undescended testes. J Pediatric Surg 22:1177–1182
42. Takahashi M, Kurokawa Y, Nakanishi R et al (2009) Low trans-scrotal orchidopexy is a safe and effective approach for undescended testes distal to the external inguinal ring. Urol Int 82:92
43. Feng S, Yang H, Li X et al (2016) Single scrotal incision orchidopexy versus the inguinal approach in children with palpable undescended testis: a systematic review and meta-analysis. Pediatr Surg Int 32:989–995
44. Al-Mandil M, Khoury AE, El-Hout Y et al (2008) Potential complications with the prescrotal approach for the palpable undescended testis? A comparison of single prescrotal incision to the traditional inguinal approach. J Urol 180(2):686–689
45. Hyuga T, Kawai S, Nakamura S et al (2016) Long-term outcome of low scrotal approach orchidopexy without ligation of the processus vaginalis. From the Department of Pediatric Urology, Jichi Medical University, Children’s Medical Center Tochigi, Tochigi Japan. J Urol 196:542–547
46. Ramzan M, Sheikh AH, Qureshi MS et al (2012) Single incision trans-scrotal versus standard inguino-scrotal orchidopexy in children with palpable undescended testis: our experience from April 2007 to April 2010. Pak J Med Sci 28:827–829
47. Warde N (2010) Orchidopexy via a single scrotal incision in boys with palpable and impalpable undescended testis. Nat Rev Urol 7:180
48. Zouari M, Dhaou MB, Jalloul M et al (2015) Single scrotal-incision orchidopexy for palpable undescended testis in children. Arab J Urol 13:112–115
49. Novaes HF, Carneiro Neto JA, Macedo A Jr et al (2013) Single scrotal incision orchidopexy- a systematic review. Int Braz J Urol 39:305–311

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.