Is Hypercapnea a Predictor of Better Survival in the Patients who Underwent Mechanical Ventilation for Chronic Obstructive Pulmonary Disease (COPD)?

Joo Hun Park, M.D., Younsuck Koh, M.D., Chae-Man Lim, M.D., Sang-Bum Hong, M.D., Yeon Mok Oh, M.D., Tae Sun Shim, M.D., Sang Do Lee, M.D., Woo Sung Kim, M.D., Dong Soon Kim, M.D. and Won Dong Kim, M.D.

Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea; Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Background: There are contradictory reports concerning hypercapnia as a predictor of a better outcome in COPD. This study examined the clinical implications of hypercapnea in COPD patients (M:F = 59:19) who required mechanical ventilation.

Methods: The clinical parameters at the time of MICU admission, the total ventilation time, the APACHE II score and the pulmonary function testing were retrospectively analyzed between the survivors and nonsurvivors.

Results: Univariate analysis showed that compared with the nonsurvivors, the survivors had lower AaDO2 values (59.8±53.5 vs. 105.0±73.3 mmHg, \(p=0.000\)), higher PaCO2 values (64.9±16.0 vs. 48.9±17.8 mmHg, \(p=0.000\)), lower APACHE II scores (19.0±3.8 vs. 24.1±5.1, \(p=0.002\)), the more frequent application of initial noninvasive positive pressure ventilation (44.0 vs. 14.3%, \(p=0.008\)), and a lower combined rate of septic shock (4.0 vs. 39.3%, \(p=0.000\)). Multivariate analysis revealed that a lower PaCO2 (OR: 0.94, \(p=0.008\)), the presence of septic shock (OR: 10.16, \(p=0.011\)), a higher APACHE II score (OR: 1.22, \(p=0.040\)) and a longer ventilation time (OR: 1.002, \(p=0.041\)) were the risk factors for mortality. A lower PaCO2 was also verified as the predictor for mortality by multivariate analysis when excluding septic shock.

Conclusions: Hypercapnia at admission is thought to be an independent predictor of better survival for the COPD patients who require mechanical ventilation.

Key Words: COPD, Hypercapnia, Mechanical ventilation, Respiratory failure, Mortality

INTRODUCTION

Deterioration of lung function that leads to progressive acute respiratory failure in the patients with chronic obstructive pulmonary disease (COPD) requires the administration of mechanical ventilatory support. The mortality rates that have been reported for these patients range between 19% and 46%1-10. A number of prognostic factors have been reported for COPD patients, including the APACHE (acute physiology and chronic health evaluation) II score, age, the baseline pulmonary function, the oxygenation status, the number of organ failures, the nutritional status, the severity of the underlying disease and the appropriateness of the medical management1-10.

It may be that in COPD patients with hypercapnia, if oxygenation is equally maintained regardless of the serum carbon dioxide, a low minute ventilation is required to maintain the optimal arterial oxygenation, and this reflects the less advanced diffusion disturbances or the less severe ventilation-perfusion mismatch compared to the COPD patients with hypocapnea. The results from experimental models of acute
lung injury indicate that hypercapnea can attenuate lung injury via various mechanisms and it may have some therapeutic potential. Depending on the PaCO$_2$ level at admission, these physiological and therapeutic differences may affect survival for the COPD patients suffering with acute respiratory failure. However, there are conflicting reports regarding hypercapnia as a predictor for survival in COPD patients.

The aim of the present study was to determine whether the PaCO$_2$ level at admission was a prognostic indicator for survival in the COPD patients who underwent mechanical ventilatory support.

METHODS AND MATERIALS

Study population
The study retrospectively examined 78 consecutive COPD patients who underwent mechanical ventilation due to their acute respiratory, and they were treated in the medical intensive care unit (MICU) of a university-affiliated hospital from March 1991 to August 2003. The diagnosis of COPD was determined by the clinical criteria and the previously documented airflow limitation (FEV$_1$ < 80% of the predicted value in combination with an FEV$_1$/FVC < 70% that was not fully reversible). We used the clinical criteria, the clinical history with the compatible physical findings and/or evidence of hyperinflation on the chest radiography to support the diagnosis of COPD in the absence of the results for the previous pulmonary function testing. A positive bronchodilator response was defined according to the ATS criteria when there was an increase of either the FVC or FEV$_1$ by 12% or more and an absolute change of 200 mL of either one was documented. The study excluded patients with COPD combined with a tuberculous-destroyed lung, bronchiectasis, kyphosclerosis, malignancy, preexisting tracheostomy and stroke. The application of invasive or noninvasive ventilation was decided upon based on the judgment of the ICU attending physicians. Noninvasive positive pressure ventilation (NPPV) was not tried dor the patients who had respiratory arrest, unstable hemodynamics, problems of airway protection, excessive secretion, anatomic abnormalities that interfered with the mask fit and poor cooperation.

Data collection
We retrospectively analyzed the following data that was collected at the time of MICU admission: the complete blood count and blood chemistry, the radiological findings, the APACHE II scores (first day of MICU), the infection status, the presence of septic shock, the co-existing medical problems and the medication. The blood gas data obtained before the start of mechanical ventilation was also analyzed. In addition, the total ventilation time, the total ICU stay, the total hospital stay and the final outcome (survival or death) during the hospital stay were reviewed. The best results for the pulmonary function testing (PFT) and the baseline arterial blood gas analysis were also obtained when the patient was stable and this was done within the preceding 3 years. For the patients who had a history of frequent mechanical ventilation, the most recent application available was selected. PFT data were available for 64 of the 78 COPD patients, and the baseline arterial blood gas data with the patient in a stable condition were collected for 53 of the 78 COPD patients. The admission route, cor pulmonale, home oxygen therapy and smoking status were noted during the chart review. A detailed smoking history, including the total pack-years of smoking, was obtained for each patient. An ex-smoker was defined as an individual who had stopped smoking for more than one year.

Clinical parameters were analyzed either between the surviving and nonsurviving groups or depending upon the

Item	Data of COPD patients
Total No.	78
Age	67.6±8.7
Gender (M/F)	59:19 (75.6:24.4%)
Smoking (Sm: Ex-Sm: NonSm)	34:23:18
Admission Route	
OPD	2 (2.6%)
ER	60 (76.9%)
Ward	16 (20.5%)
NPPV	N=26 (33.3%)
MV after initial NPPV apply	19 (73.1%)
only NPPV	7 (26.9%)
Baseline PFT	
FVC (%)	61.6±19.6
FEV$_1$ (%)	31.8±11.1
FEV$_1$/ FVC (%)	40.3±13.9
BDR	29±50 (58%)
Home O$_2$ therapy	28±72 (35.9%)
Cor Pulmonale	40±71 (51.3%)
Total Ventilation Time (hour)	251±556.6
Total ICU stay (day)	14±5±22.8
Total hospital stay (days)	23.7±27.8
Baseline Blood Gas prior to admission	N=53
PaCO$_2$ (mmHg)	48±3±10.1
AaDO$_2$ (mmHg)	39±2±31.7
PaO$_2$/FiO$_2$ ratio (mmHg)	310±9±83.1
Blood Gas at the time of admission	N=78
PaCO$_2$ (mmHg)	59±1±18.3
AaDO$_2$ (mmHg)	76±0±64.7
PaO$_2$/FiO$_2$ ratio (mmHg)	188±8±62.1
APACHE II score	20±6±4.9
Pneumonia at admission	48 (61.5%)
Septic shock at admission	13 (16.7%)
Body Mass Index (kg/m2)	20±3±3.9

NPPV, noninvasive positive pressure ventilation; BDR, bronchodilator response.

Table 1. Characteristics of the patients with COPD
Table 2. Comparison of the parameters at the time of MICU admission according to the PaCO2

PaCO2 level	50 mmHg	< 50 mmHg	p-value
Total No.	55	23	
Age	67.6±8.8	67.7±8.7	0.544
Male : Female (% of male)	40:15 (72.7%)	19:4 (82.6%)	0.354
Smoking (Sm : Ex-Sm : Non-Sm)	25:14:15	9:3	0.630
Home O2 therapy	22 (26.1%)	6 (40.0%)	0.243
Cor Pulmonale	31:52 (59.6%)	9:19 (47.4%)	0.357
Respiratory Rate (Frequency/min.)	26.3±4.5	27.0±5.4	0.507
Pulmonary function test	N=47	N=17	0.491
FVC (%)	62.6±19.3	58.8±20.9	0.963
FEV1 (%)	31.9±10.2	31.7±13.8	0.572
FEV1/FVC (%)	40.9±15.0	38.7±10.8	0.507
BDR (No of positive / total No)	19/34 (55.9%)	10/16 (62.5%)	0.658
Blood Gas at the time of admission	N=45	N=23	0.000
pH	7.32±0.11	7.42±0.10	0.000
PaCO2 (mmHg)	68.4±12.0	37.0±9.2	0.003
AaDO2 (mmHg)	65.9±58.4	100.2±73.4	0.793
PaO2/FiO2 ratio (mm Hg)	183.1±53.1	202.5±79.3	0.320
Base excess	8.1±8.8	0.3±6.7	0.000
Baseline Gas prior to admission	N=40	N=13	0.120
pH	7.42±0.05	7.44±0.05	0.003
PaCO2 (mmHg)	50.6±9.6	41.4±8.5	0.003
AaDO2 (mmHg)	38.6±32.7	41.3±29.6	0.793
PaO2/FiO2 ratio (mm Hg)	304.4±83.2	331.0±82.7	0.320
Base excess	4.7±3.1	2.5±3.8	0.036
Mechanical Ventilation	N=55	N=23	0.063
NIV at admission	22 (40.0%)	4 (17.4%)	0.304
Total Ventilation Time (hour)	293.4±644.9	150.6±219.6	0.633
Total ICU stay (day)	15.3±26.3	12.6±10.6	0.146
Total hospital stay (day)	25.7±31.2	19.0±17.0	0.035
Previous Mechanical Ventilation	18 (32.7%)	6 (26.1%)	0.066
APACHE II score	20.1±3.9	22.4±6.6	0.014
Pneumonia at admission	31 (58.4%)	17 (73.9%)	0.035
Septic shock at admission	6 (10.9%)	7 (30.4%)	0.003
Survival	41 (74.5%)	9 (39.1%)	0.126
Body Mass Index (kg/m²)	20.8±4.0	19.2±3.3	0.033
Cholesterol (mg/dL)	150.6±41.6	180.1±55.2	0.083
Albumin (g/dL)	3.3±0.6	3.0±0.7	0.067

NPPV, noninvasive positive pressure ventilation; BDR, bronchodilator response

PaCO2 value at admission: the hypercapnic group had ≥50 mm Hg, and the non-hypercapnic group had <50 mmHg. Hypercapnia was defined as a PaCO2 level ≥50 mmHg.28 PAO2 (the alveolar oxygen tension) was calculated using the following formula: PAO2=(760-47)×FiO2–PaCO2/R, where R was assumed to be 0.8. The alveolar–arterial PO2 difference was calculated by subtracting the PaO2 from the PAO2. The body mass index (BMI) at the time of admission was calculated as weight (kg) divided by the square of height (m²).

Data analysis

All the data were analyzed using SPSS version 11.0. All the values are expressed as mean±standard deviation (SD), or as the numbers of patients and a percentage. Chi-Square and/or Fisher’s exact tests were used for comparison of the categorical data. For the continuous data, Student’s t-test was used for comparison of the parametric data, and the Mann–Whitney test was used for comparison of the nonparametric data. Multiple logistic regression using the stepwise forward method was used to evaluate the independent risk factors by including all the significant and nearly significant parameters (p<0.1). The results of the logistic regression analysis are reported as odds ratios (OR) with 95% confidence intervals (CI), p-values less than 0.05 were considered statistically significant.

RESULTS

Baseline characteristics of the patients (Table 1)

Males comprised 75.6% of the study group. The emergency
Table 3. Comparison of the parameters at the time of MICU admission between the survivals and non-survivals

Parameter	Survival	Non-survival	p-value
Total No.	50	28	
Age	68.1±8.6	66.8±9.1	0.544
Male : Female (% of male)	38:12 (76%)	21:7 (75%)	1.000
Smoking (Sm : Ex-Sm : Non-Sm)	23:13:13	11:10:5	0.892
Home O2 therapy	20 (40%)	8 (28.6%)	0.313
Cor Pulmonale	25/45 (55.6%)	15/26 (57.7%)	1.000
Respiratory Rate (Frequency/min.)	25.5±4.1	28.3±5.3	0.013
Pulmonary function test			
FVC (%)	61.3±18.3	62.4±22.9	0.834
FEV1(%)	31.7±9.8	32.1±14.1	0.901
FEV1/FVC (%)	41.1±14.7	38.5±12.3	0.499
BDR (No of positive / total No)	20/33 (60.6%)	9/17 (52.9%)	0.603
Blood Gas at the time of admission			
pH	7.32±0.10	7.39±0.11	0.008
PaCO2 (mmHg)	64.9±16.0	48.9±17.8	0.000
AaDO2 (mmHg)	59.8±53.5	105.0±73.3	0.002
PaO2/FiO2 ratio (mmHg)	193.7±61.4	180.0±63.5	0.393
Base excess	6.3±7.0	5.0±11.7	0.582
Baseline Gas prior to admission			
pH	7.39±0.05	7.32±0.05	0.213
PaCO2 (mmHg)	48.7±9.8	47.4±11.1	0.696
AaDO2 (mmHg)	36.1±29.9	47.9±36.1	0.237
PaO2/FiO2 ratio (mmHg)	317.7±86.0	291.9±73.8	0.323
Base excess	4.0±3.4	4.6±3.3	0.617
Mechanical Ventilation			
NPPV at admission	22 (44.0%)	4 (14.3%)	0.011
Total Ventilation Time (hour)	145.4±285.3	440.3±823.2	0.076
Total ICU stay (day)	10.5±12.4	21.6±33.5	0.101
Total hospital stay (day)	22.0±7.1	26.8±40.7	0.557
Previous Mechanical Ventilation	15 (30%)	9 (32.2%)	0.844
APACHE II score	19.0±3.8	24.1±5.1	0.000
Pneumonia at admission	28 (56.0%)	20 (71.4%)	0.228
Septic shock at admission	2 (4.0%)	11 (39.3%)	0.000
Body Mass Index (kg/m²)	20.9±4.0	19.1±3.4	0.058
Cholesterol (mg/dL)	167.0±43.7	162.9±52.4	0.717
Albumin (g/dL)	3.3±0.5	3.0±0.7	0.100

NPPV, noninvasive positive pressure ventilation; BDR, bronchodilator response; PaCO2, partial pressure of carbon dioxide in arterial blood

We found that the PaCO2 level was inversely correlated with the APACHE II score (r=-0.313, p=0.005) (Figure 2). Although not statistically significant, the group with higher PaCO2 values (≥50 mmHg) appeared to have lower APACHE II scores (20.1±3.9 vs. 22.4±6.6, p=0.066) and more use of NPPV (40.0 vs. 17.4%, p=0.053) than did the group with the lower PaCO2 values (<50 mmHg). The higher PaCO2 group had more survivors (74.5% vs. 39.1%, p=0.003) and less cases of septic shock (10.9% vs. 30.4%, p=0.035) as compared to the lower group. There was no difference between the two groups in terms of the baseline pulmonary function test results, the total ventilation time or the BMI.

Comparison of the clinical indices between the survivors and non-survivors by univariate analysis (Table 3, 4).

Relationship between the clinical parameters and the PaCO2 (Table 2)
Table 4. Comparison of the parameters at the time of MICU admission between the survivals and non-survivals in the COPD patient group without septic shock.

	Survival	Non-survival	p-value
Total No.	48	17	
Age	68.1±8.7	66.2±7.2	0.428
Male : Female (% of male)	36:12 (75.0%)	11:6 (64.7%)	0.415
Smoking (Sm : Ex-Sm : Non-Sm)	22:13:12	6:3:3	0.873
Home O2 therapy	19 (39.6%)	4 (23.5%)	0.376
Cor Pulmonale	24/44 (54.5%)	9/16 (56.3%)	0.907
Respiratory Rate (Frequency/min.)	25.4±4.2	28.1±5.8	0.650
Pulmonary function test	N=44	N=13	
FVC (%)	61.9±18.0	55.1±19.2	0.243
FEV1 (%)	31.9±9.9	28.5±14.1	0.337
FEV1/FVC (%)	40.6±14.4	39.1±12.8	0.746
BDR (No of positive / total No)	20/33 (60.6%)	7/11 (63.6%)	1.000
Blood Gas at the time of admission	N=48	N=17	
pH	7.32±0.10	7.42±0.12	0.002
PaCO2 (mmHg)	65.4±15.9	51.6±18.1	0.004
AaDO2 (mmHg)	59.5±54.3	91.7±77.8	0.067
PaO2/FIO2ratio (mmHg)	194.8±62.1	180.2±68.8	0.442
Base excess	6.3±7.1	8.2±11.6	0.433
Baseline Gas prior to admission	N=38	N=11	
pH	7.42±0.05	7.44±0.06	0.225
PaCO2 (mmHg)	48.7±9.9	47.1±12.1	0.657
AaDO2 (mmHg)	33.5±25.3	40.3±32.8	0.466
PaO2/FIO2ratio (mmHg)	321.6±83.7	303.4±69.2	0.515
Base excess	3.9±3.4	4.3±3.7	0.741
Mechanical Ventilation	N=48	N=17	
NPPV at admission	21 (43.8%)	3 (17.6%)	0.080
Total Ventilation Time (hour)	150.3±290.3	648.1±1008.0	0.061
Total ICU stay (day)	9.9±12.1	30.9±40.3	0.049
Total hospital stay (day)	21.1±15.7	38.0±40.0	0.180
Previous Mechanical Ventilation	14 (29.2%)	6 (35.3%)	0.683
APACHE II score	19.0±3.8	22.1±3.4	0.005
Pneumonia at admission	27 (56.3%)	10 (58.8%)	0.854
Body Mass Index (kg/m²)	20.9±4.1	19.6±3.6	0.279
Cholesterol (mg/dL)	161.9±43.2	177.0±55.6	0.554
Albumin (g/dL)	3.3±0.5	3.2±0.7	0.413

NPPV, noninvasive positive pressure ventilation; BDR, bronchodilator response

The mortality rate while receiving mechanical ventilation was 29.5% (28/78 patients). The cause of death was identified in 21 patients: respiratory failure (7 cases, 33.3%), septic shock (6 cases, 28.6%), pneumonia (6 cases, 28.6%) and arrhythmia (2 cases, 9.5%).

Age and gender did not differ between the survivors and nonsurvivors, and neither did the baseline PFT including the FVC, FEV1 and FEV1/FVC. Although both groups had similar degrees of severe obstructive ventilatory defect (FEV1; 31.7±9.8% vs. 32.1±14.1%, p=0.901) and identical PaCO2 levels when stable, the survivors had higher PaCO2 values (64.9±16.0% vs. 48.9±17.8%, p=0.002) and lower AaDO2 (59.8±53.5 vs. 105.0±73.3 mmHg, p=0.000) levels at the time of ICU admission compared to the nonsurvivors (Figure 1). The PaO2/FIO2 ratio was not different between the two groups.

Regarding the parameters of mechanical ventilation, compared...
to nonsurvivors, the survivors used NPPV more frequently (44.0% vs. 14.3%, $p=0.011$), and they appeared to have longer ventilation times, although this latter difference was not found to be statistically significant (440.3±823.2 vs. 145.4±285.3 h, $p=0.076$). There were no significant differences for the ICU stay, the total hospital stay and the number of previous mechanical ventilations between the survivors and nonsurvivors.

The survivors had lower APACHE II scores (19.0±3.8 vs. 24.1±5.1, $p=0.000$) and fewer cases of septic shock (4.0 vs. 39.3%, $p=0.228$). Although the BMI appeared to be higher in the survivors, this difference was not statistically significant (20.9±4.0 vs. 19.1±3.4, $p=0.058$). In the analysis with excluding the patients with septic shock, the survivors had a lower pH, a higher PaCO$_2$ and a longer ICU stay than did the non-survivors.

Multivariate Analysis for the Prognostic Factors (Table 5, 6)

Multiple logistic regression analysis that included the variables whose p-values were less than $p<0.1$ showed that a low PaCO$_2$ as well as the presence of septic shock, a high APACHE II score and a long total ventilation time were the independent prognostic factors for a worse outcome in the COPD patients who underwent mechanical ventilation. Multiple logistic regression analysis for the COPD patients without septic shock also demonstrated that not only were a high APACHE II score and a long total ventilation time independent prognostic factors, but a low PaCO$_2$ was also an independent prognostic factor.

DISCUSSION

This study showed that hypercapnia at admission was an independent predictor for better survival in the COPD patients who underwent mechanical ventilation. In addition, the study found that septic shock, a high APACHE II score and a long ventilation time were independent factors for a worse prognosis.

The PaCO$_2$ levels prior to the start of mechanical ventilation were analyzed in the present study. This approach was taken since the PaCO$_2$ levels can be altered by the tidal volumes from a mechanical ventilator or by other therapeutic measures designed to relieve airway obstruction during the ICU stay, and such PaCO$_2$ level changes are thought to make the carbon dioxide levels less reliable as a prognostic marker.

The principal finding of this study is that elevated systemic carbon dioxide tension at the time of MICU admission was linked to better survival, and this was despite that both the survivors and nonsurvivors had similar pulmonary function and PaCO$_2$ levels during their stable condition. This study also demonstrated that the PaCO$_2$ levels were inversely correlated with the APACHE II scores, and that the higher PaCO$_2$ group had a lower AaDO$_2$ compared to the lower PaCO$_2$ group. Because septic shock that causes hyperventilation and hypocapnia could have been a confounding factor in our study,
we analyzed our subjects with excluding the patients without septic shock. This result also showed that hypocapnia was an independent factor for a worse outcome by the multivariate analysis. The findings suggest that high carbon dioxide levels can be an independent marker for survival before mechanical ventilation is applied in the clinical context of a COPD patient with respiratory failure.

There are conflicting data in the literature regarding hypocapnia as a predictor for survival in COPD patients. There is a concern that acidosis and hypercapnia may carry the risk of pulmonary vasoconstriction and pulmonary hyperten-
sion. Many in vivo and in vitro experimental models have demonstrated that hypercapnia causes no harm, and indeed it directly ameliorates lung injury after ischemic–reperfusion, free radical exposure and ventilator-induced lung damage. There are additional reports that hypercapnic acidosis attenuates several aspects of the inflammatory response, and that acidosis per se has a cytoprotective effect. Indeed, hypercapnic acidosis is reported to alleviate ischemia-induced injury, and even in the heart and brain. Elevation of the systemic carbon dioxide tension has been considered as a negligible side-effect that is the consequence of limiting alveolar stress for lung-protective ventilation, and permissive hyper-
capnia (acceptance of increased concentrations of carbon dioxide in mechanically-ventilated patients) has been found to increase survival. Conversely, hypocapnia, which is related to many acute illnesses, is thought to reflect the underlying hyperventilation. However, we could not say that our results indirectly support the above-mentioned studies. Moreover, the present study was unable to determine whether acidosis or hypercapnia has the greater beneficial effect because the effects of pH and pCO2 were not separately analyzed.

Hypercapnia has been reported in clinical studies to result in a better prognosis for COPD and interstitial fibrosis patients. We have also observed that a higher PaCO2 level could be an independent parameter of better survival in respiratory failure patients with tuberculosis-destroyed lungs.

With reference to hypocapnia, it has been suggested that low PaCO2 levels identical to those observed during hypoxia indicate a condition that requires a higher degree of ventilation to maintain the oxygenation, and this suggests the presence of more advanced diffusion disturbances or a more advanced ventilation–perfusion mismatch. There is also a possibility that some degree of hypoventilation related to hypercapnia could delay respiratory muscle fatigue and improve the survival rate.

An issue for this study was the classification of COPD into emphysema and chronic bronchitis. Hypercapnia linked to a better COPD prognosis may be attributed to the possibility that late stage emphysema may have played a role, and this was more common in the hypocapnic group. We were unable to separate the COPD patients into emphysema and chronic bronchitis groups because the HRCT data was not available.

While NPPV is known to reduce mortality in COPD patients, the application of NPPV in this retrospective study was not randomized and multivariate analysis did not identify the independent benefits of NPPV. In this study, the mortality rate of all the patients who received mechanical ventilation while in MICU was 29.5%. The reported mortality rates for the COPD patients while they received mechanical ventilation due to acute respiratory failure range between 19% and 46%. This wide range in the reported mortality may reflect differences in the severity of organ dysfunction and the different inclusion criteria for each study.

The data for the present study were collected over 10 years. Recent advances in mechanical ventilation strategies may be a confounding factor for the parameters such as the total ventilation time and survival. However, differing mechanical ventilation strategies were not considered in the analysis as the study focused on the initial manifestations at the time of MICU admission.

In conclusion, to the best of our knowledge, the present study is the first to show data indicating that hypercapnia is an independent predictor for survival in the COPD patients who undergo mechanical ventilation. In addition, the study showed that shock, a high APACHE II score and a long ventilation time were also independent prognostic factors.

REFERENCES

1) Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946, 2004
2) Menzies R, Gibbons W, Goldberg P. Determinants of weaning and survival among patients with COPD who require mechanical ventilation for acute respiratory failure. Chest 95:398–405, 1989
3) Spicher JE, White DP. Outcome and function following prolonged mechanical ventilation. Arch Intern Med 147:421–425, 1987
4) Stauffer JL, Fayter NA, Graves B, Cram M, Lynch JC, Goebel P. Survival following mechanical ventilation for acute respiratory failure in adult men. Chest 104:1222–1229, 1993
5) Driver AG, McAlevy MT, Smith JL. Nutritional assessment of patients with chronic obstructive pulmonary disease and acute respiratory failure. Chest 82:508–517, 1982
6) Corrada A, Gorini M, Cinanni R, Pelagatti C, Villetta G, Buoncristiano U, Guidi F, Pagni E, Peris A, de Paola E. Negative pressure ventilation versus conventional mechanical ventilation in the treatment of acute respiratory failure in COPD patients. Eur Respir J 12:519–525, 1998
7) Nevins ML, Epstein SK. Predictors of outcome for patients with COPD requiring invasive mechanical ventilation. Chest 119:1840–
22) Emerman CL, Connors AF, Lukens TW, Effron D, May ME.

23) American Thoracic Society, Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis 136:225-244, 1987

24) American Thoracic Society, Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:S77-S121, 1995

25) Siafakas NM, Vermeire P, Pride NB, Paciotti P, Gibson J, Howard P, Yernault JC, Decramer M, Higenbottom T, Postma DS, Rees J. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur Respir J 8:1388–1420, 1995

26) Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 163:1256–1276, 2001

27) American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 144:1202–1218, 1991

28) Calverley PM. Respiratory failure in chronic obstructive pulmonary disease Eur Respir J Suppl 47:265–30s, 2003

29) Horsfield K, Segel N, Bishop JM. The pulmonary circulation in chronic bronchitis at rest and during exercise breathing air and 80% oxygen. Clin Sci 34:473–483, 1968

30) Aber GM, Bayley TJ, Bishop JM. Inter-relationships between renal and cardiac function and respiratory gas exchange in obstructive airways disease. Clin Sci 25:159–170, 1963

31) Durand J, Leroy–Ladurie M, Ransoms-Bitker B. Effects of hypoxia and hypercapnia on the repartition of pulmonary blood flow in supine subjects. Prog Respir Res 5:156–165, 1970

32) Enson Y, Giuntini C, Lewis ML, Morris TQ, Ferrer MI, Harvey RM. The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J Clin Invest 43:1146–1162, 1964

33) Housley E, Clarke SW, Hedworth-Wrighty RB, Bishop JM. Effect of acute and chronic acidemia and associated hypoxia on the pulmonary circulation of patients with chronic bronchitis. Cardiovasc Res 4:482–489, 1970

34) Rahimzona S, Hauge BN, Siesj BK. Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: difference in effect by lactic acid and CO2. J Cereb Blood Flow Metab 14:496–508, 1994

35) Allen DB, Maguire JJ, MadHAVian M, Wicke C, Marcocci L, Scheuenstuhl H, Chang M, Le AX, Hopf HW, Hunt TK. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132:991–996, 1997

36) Xu L, Glassford AJ, Giaccia AJ, Giffard RG. Acidosis reduces neuronal apoptosis. Neuronreport 9:875–879, 1998

37) Wang H, Harrison–Shostak DC, Lemasters JJ, Herman B. Contribution of pH-dependent group II phospholipase A2 to chemical hypoxic injury in rat hepatocytes: FASEB J 10:1319–1325, 1996

38) Serrano CV Jr, Fraticelli A, Panicella R, Teli A, Noble B, Corda S, Faraggiana T, Ziegelstein RC, Zweier JL, Calvogrossi MC. pH dependence of neutrophil-endothelial cell adhesion and adhesion molecule expression. Am J Physiol 271:C922–C970, 1996

39) Gewirtz AT, Seetoo KF, Simons ER. Neutrophil degranulation and phospholipase D activation are enhanced if the Na+/ H+ antiport is blocked. J Leukoc Biol 64:38–103, 1998

40) Yamaguchi K, Takasugi T, Fujita H, Morii M, Oyama Y, Suzuki K, Miyata A, Aoki T, Suzuki Y. Endothelial modulation of pH-dependent pressor response in isolated perfused rabbit lungs. Am J Physiol 270:H252–H258, 1996

41) Parfenova H, Lefler CW. Effects of hypercapnia on prostacyclin and cAMP production by cerebral microvascular cell cultures. Am J
42) Abu Romeh S, Tannen RL. Amelioration of hypoxia-induced lactic acidosis by superimposed hypercapnea or hypochloride acid infusion. Am J Physiol 250:F702–F709, 1986

43) Swallow CJ, Grinstein S, Sudsberry RA, Rotstein OD. Modulation of the macrophage respiratory burst by an acidic environment: the critical role of cytoplasmic pH regulation by proton extrusion pumps. Surgery 108:363–369, 1990

44) Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927, 1988

45) Kitakaze M, Takashima S, Funaya H, Minamino T, Node K, Shinozaki Y, Mori H, Hori M. Temporary acidosis during reperfusion limits myocardial infarct size in dogs. Am J Physiol 272:H2071–H2078, 1997

46) Kitakaze M, Node K, Takashima S, Asanuma H, Asakura M, Sanada S, Shinozaki Y, Mori H, Sato H, Kuzuya T, Hori M. Role of cellular acidosis in production of nitric oxide in canine ischemic myocardium. J Mol Cell Cardiol 33:1727–1737, 2001

47) Nomura F, Aoki M, Forbess JM, Mayer JE Jr. Effects of hypercarbic acidotic reperfusion on recovery of myocardial function after cardioplegic ischemia in neonatal lambs. Circulation 90;I321–I327, 1994

48) Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM. Carbon dioxide protects the perinatal brain from hypoxiaischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874, 1995

49) Vannucci RC, Brucklacher RM, Vannucci SJ. Effect of carbon dioxide on cerebral metabolism during hypoxiaischemia in the immature rat. Pediatr Res 42:24–29, 1997

50) Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22;1568–1573, 1994

51) Milberg JA, Davis DR, Steinberg KP, Hudson LD. Improved survival in patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309, 1995

52) Montgomery AB, Stager MA, Carrico CJ, Hudson LD. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132:485–489, 1985

53) Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354, 1998

54) Park JH, Na JO, Kim EK, Lim OM, Shim TS, Lee SD, Kim WS, Kim DS, Kim WD, Koh Y. The prognosis of respiratory failure in patients with tuberculous destroyed lung. Int J Tuberc Lung Dis 5:963–967, 2001

55) Girou E, Brun-Buisson C, Taille S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. JAMA 290:2985–2991, 2003

56) Peter JV, Moran JL, Phillips-Hughes J, Warn D. Noninvasive ventilation in acute respiratory failure: a meta-analysis update. Crit Care Med 30:555–562, 2002