Safety and Efficacy of Percutaneous Cholecystostomy for Emphysematous Cholecystitis

Amir Imanzadeh1, Nima Kokabi2, Sarvenaz Pourjabbar1, Igor Latich1, Jeffrey Pollak1, Hyun Kim1, Gowthaman Gunabushanam1

1Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, 2Department of Interventional Radiology, Emory University Hospital Midtown, Atlanta, Georgia.

INTRODUCTION

Emphysematous cholecystitis is an uncommon variant of acute cholecystitis that is caused by superimposed infection of the gallbladder by gas-forming organisms such as *Escherichia coli*, *Clostridium perfringens*, and *Bacteroides fragilis*. It predominantly affects men and is more common in diabetic patients. Emphysematous cholecystitis has been reported to have up to 50% morbidity and 25% mortality due to increased risk of pericholecystic abscess, gallbladder necrosis, and perforation; hence, early diagnosis and appropriate treatment is essential.[1,2]

The diagnosis of acute emphysematous cholecystitis is primarily made on imaging in a patient with the appropriate clinical presentation. The presence of gas within the lumen of gallbladder,
gallbladder wall, or pericholecystic tissues in the absence of a known communication with gastrointestinal tract is the imaging feature characteristic of this entity.\[^{[3]}\] While ultrasound (US) usually is the first-line imaging modality, CT is the most sensitive and most specific diagnostic imaging study for the detection of intraluminal or intramural gallbladder gas.\[^{[4]}\] Emergent cholecystectomy is considered the standard of care treatment. However, surgery may be very risky in a subset of patients, including those that are elderly with multiple comorbidities, at the time of diagnosis.\[^{[5-8]}\] There is limited consensus on the management strategy in such circumstances and no definite treatment has been recommended in this scenario.

Several studies have investigated the safety and efficacy of percutaneous cholecystostomy (PC) in the management of uncomplicated acute cholecystitis (non-emphysematous) both as definitive therapy and as a bridge to cholecystectomy.\[^{[9-13]}\] However, there is a paucity of information on the safety, efficacy, and therapeutic outcomes of PC in high-risk patients with acute emphysematous cholecystitis. The currently available data for emphysematous cholecystitis are limited to isolated case reports, and a few case series focus on acute cholecystitis that incidentally includes patients with emphysematous cholecystitis in the cohort.\[^{[9,14-17]}\]

The aim of this study is to evaluate the safety and efficacy of PC in critically ill patients with acute emphysematous cholecystitis who were deemed poor surgical candidates.

MATERIALS AND METHODS

Institutional Review Board exemption (\# 1608018211) from the Yale University Institutional Review Board was obtained on September 26, 2016, for this Health Insurance Portability and Accountability Act compliant retrospective study. The requirement for informed consent was waived for this retrospective chart review.

Patient selection

A search in the electronic medical record of our tertiary care teaching hospital between May 2008 and April 2017 using the terms “percutaneous cholecystostomy” and “cholecystitis” was done. From these results, only those patients with acute emphysematous cholecystitis, confirmed by cross-sectional imaging, in whom surgery was felt to be too risky by the treating surgeon, who, therefore, underwent PC by interventional radiology were included in the study. A request for cholecystostomy tube placement was made by the attending surgeon following an assessment of the patient’s clinical and imaging findings, comorbidities, and evaluation of the surgical risks versus benefits.

Defined variables

Standard demographics, medical comorbidities, imaging findings, vital signs, laboratory values, microbiology results (bile and blood culture), route of cholecystostomy access, technical success rate, duration of cholecystostomy tube placement, hospitalization course, clinical outcome, complications, and overall mortality rate were studied. Technical success was defined as the successful placement of PC tube. Duration of tube placement was calculated in days, from the time of PC placement until tube removal. Clinical outcome was defined as resolution of symptoms and complications (if any) related to the PC procedure. Mortality rate was considered as deaths within the first 1 year that is directly attributable to the complications of emphysematous cholecystitis.

PC placement

On admission, all patients received fluid resuscitation, analgesics, and broad-spectrum antibiotics (piperacillin, tazobactam, and metronidazole). Before the procedure, coagulopathy was corrected according to the Society of Interventional Radiology (SIR) guidelines\[^{[14,19]}\] with the goal of international normalized ratio (INR) <1.5 and platelet count >50,000 per µL. Under moderate sedation, cholecystostomy was performed through a short transhepatic approach under combined US and fluoroscopy guidance in all patients [Figures 1 and 2]. Aspirated bile was subsequently sent for microbiology assessment.
was achieved in the remaining 9 out of 10 (90%) patients at a mean time interval of 2.9 ± 1.4 days post-procedure. SIRS was also negative in these nine patients within 30 days after cholecystostomy tube placement. These nine patients were discharged in stable condition at a median duration of 8 days post-procedure (mean ± SD, 11.7 ± 10.8 days).

Survival rate at 30 days after the procedure was 90% (9/10). Survival rate remained 90% (9/10) at 60, 90, and 180 days. Two patients died on post-procedure days 276 and 288 due to unrelated causes: Congestive heart failure and peritoneal carcinomatosis, respectively. About 50% (5/10) of patients underwent elective cholecystectomy at a median interval of 69 days (mean ± SD, 61.6 ± 23.2 days) post-procedure. There was no conversion from laparoscopic to open cholecystectomy in this subgroup of patients. In 40% (4/10) of patients, cholecystostomy was the definitive treatment, with tube removal at a median of 140 days (mean ± SD, 151.8 ± 107.0 days) post-procedure.

DISCUSSION

Emphysematous cholecystitis is an uncommon but potentially fatal variant of acute cholecystitis. Emergent surgical intervention (laparoscopic cholecystectomy) is considered the standard of care for this condition. Nevertheless, the risks of surgery and general anesthesia may be too great in some patients such as the elderly and in those with multiple medical comorbidities. In these circumstances, PC may be used as an alternative management strategy.

In this study, technical success rate for cholecystostomy drain placement was 100%. No procedure-related complications such as bleeding, bile leak, or internal organ injury were encountered. In addition, there were no instances of tube dislodgement or secondary cholangitis.

Numerous studies have demonstrated that PC can serve as the definitive treatment in patients with calculous or...
acalculous acute cholecystitis in 30–80% of cases depending on index presentation and comorbidities.\cite{7,13,20} In our study, PC was the definitive treatment in 40% of patients (4/10) with tube removal at a median interval of 140 days post-procedure. None of these patients redeveloped acute cholecystitis within 1 year following index presentation. Our results also suggest that PC can be used as a safe bridge to elective cholecystectomy in patients who cannot undergo emergent surgery. Five patients (50%) eventually underwent laparoscopic cholecystectomy at a median interval of 69 days post-cholecystostomy drain placement. The reported cholecystectomy rates (laparoscopy and/or open) as definitive treatment after PC placement for acute cholecystitis vary considerably between studies\cite{10,20-24} ranging from 17% to 57%.\cite{20,21} This broad range may be explained by differences in patient population as well as the criteria used for surgical decision-making, among other factors.

In the current study, there was one patient death (10%) that is directly attributable to emphysematous cholecystitis and resultant sepsis. Two more deaths occurred within 1 year post-procedure due to unrelated comorbidities including congestive heart failure and peritoneal carcinomatosis. It is difficult to compare mortality rates across studies due to differences in patient selection, but the 30-day mortality rate of 10% observed in the current study is similar to the reported mortality rates of 6–20% in high-risk patients with acute non-emphysematous cholecystitis who underwent PC.\cite{12,23} The median hospitalization length of 8 days is also similar to the median duration of 7–21 days in studies evaluating PC in critically ill patients with acute non-emphysematous cholecystitis.\cite{9,11}

Bile cultures were positive in 70% of patients in our study, which is within the range of 40–83%\cite{20,24,25} described in other series where patients with acute non-emphysematous as well as emphysematous cholecystitis were included. However, this is less than 100% positive culture rate reported by Garcia-Sancho Tellez et al.\cite{2} in 20 patients with acute emphysematous cholecystitis that was treated using emergent surgery. The reason for these differences is unclear, but it is noted that the study by Garcia-Sancho Tellez included patients that were treated between 1977 and 1998, but the other referenced studies included patients that were treated in the past two decades. Furthermore, all patients in our study had received broad-spectrum antibiotics before the procedure.

This study is limited by its retrospective nature, relatively small sample size, and lack of a comparison group. In addition, the clinical determination that the patient is at very high risk for surgical cholecystectomy was made by the patient’s attending surgeon at the time of presentation. Different surgeons may use variable criteria to make this determination depending on their past experience and personal preferences. Given the rarity of acute emphysematous cholecystitis, some of these limitations may be addressed in a prospective multicenter case registry.

CONCLUSION

PC may be a safe and effective alternative treatment option in patients with emphysematous cholecystitis that is too high risk to undergo surgery.

Acknowledgments

This study was presented in the Radiological Society of North America meeting in 2017 as an oral paper.
Declarations of patient consent

Patient’s consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Mentzer RM Jr, Golden GT, Chandler JG, Horsley J 3rd. A comparative appraisal of emphysematous cholecystitis. Am J Surg 1975;129:10-5.
2. Garcia-Sancho Tellez L, Rodriguez-Montes JA, Fernandez de Lis S, Garcia-Sancho Martin L. Acute emphysematous cholecystitis. Report of twenty cases. Hepatogastroenterology 1999;46:2144-8.
3. Revzin MV, Scullt O, Smitaman E, Israel GM. The gallbladder: Uncommon gallbladder conditions and unusual presentations of the common gallbladder pathological processes. Abdom Imaging 2015;40:385-99.
4. Patel NB, Oto A, Thomas S. Multidetector CT of emergent biliary pathologic conditions. Radiographics 2013;33:1867-88.
5. Akyürek N, Salman B, Yüksel O, Tezcaner T, İrköçü O, Yücel C, et al. Management of acute calculus cholecystitis in high-risk patients: Percutaneous cholecystectomy followed by early laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech 2005;15:315-20.
6. Kortram K, van Ramshorst B, Bollen TL, Besselink MG, Gouma DJ, Karsten T, et al. Acute cholecystitis in high risk surgical patients: Percutaneous cholecystostomy versus laparoscopic cholecystectomy (CHOCOLATE trial): Study protocol for a randomized controlled trial. Trials 2012;13:7.
7. Nasim S, Khan S, Alvi R, Chaudhary M. Emerging indications for percutaneous cholecystostomy for the management of acute cholecystitis-a retrospective review. Int J Surg 2011;9:456-9.
8. Van Steenbergen W, Rigouts H, Ponette E, Peetemans W, Pelemans W, Favery J. Percutaneous transhepatic cholecystostomy for acute complicated calculus cholecystitis in elderly patients. J Am Geriatr Soc 1993;41:157-62.
9. Al-Jundi W, Cannon T, Antakia R, Anoop U, Balamurugan R, Everitt N, et al. Percutaneous cholecystostomy as an alternative to cholecystectomy in high risk patients with biliary sepsis: A district general hospital experience. Ann R Coll Surg Engl 2012;94:99-101.
10. Byrne MF, Suhocki P, Mitchell RM, Pappas TN, Stiffler HL, Jewell PS, et al. Percutaneous cholecystostomy in patients with acute cholecystitis: Experience of 45 patients at a US referral center. J Am Coll Surg 2003;197:206-11.
11. Kim D, Iqbal SI, Ahari HK, Molgaard CR, Flacke S, Davison BD. Expanding role of percutaneous cholecystostomy and interventional radiology for the management of acute cholecystitis: An analysis of 144 patients. Diagn Interv Imaging 2018;99:15-21.
12. McKay A, Abulfaraj M, Lipschitz J. Short- and long-term outcomes following percutaneous cholecystostomy for acute cholecystitis in high-risk patients. Surg Endosc 2012;26:1343-51.
13. Kirkegård J, Horn T, Christensen SD, Larsen LP, Knudsen AR, Mortensen FV. Percutaneous cholecystostomy is an effective definitive treatment option for acute acalculous cholecystitis. Scand J Surg 2015;104:238-43.
14. Vingan HL, Wohlgemuth SD, Bell JS 3rd. Percutaneous cholecystostomy drainage for the treatment of acute emphysematous cholecystitis. AJR Am J Roentgenol 1990;155:1013-4.
15. Liu Y, Guo S, Zhu H, Yu Y, Wang Z, Yu X. Emphysematous cholecystitis treated by percutaneous transhepatic biliary drainage. J Trauma Acute Care Surg 2012;72:E114.
16. Zeebregts CJ, Wijffels RT, de Jong KP, Peeters PM, Slooff MJ. Percutaneous drainage of emphysematous cholecystitis associated with pneumoperitoneum. Hepatogastroenterology 1999;46:771-4.
17. Martínez Isla A, Rouco Rouco J, Pereiro Alvarez M, Taboas Paz J, Rey Ferro F, Mosquera Luengo J. [Emphysematous cholecystitis: Percutaneous treatment]. Rev Esp Enferm Dig 1993;83:108-10.
18. Patel IJ, Davidson JC, Nikolic B, Salazar GM, Schwartzberg MS, Walker TG, et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 2012;23:727-36.
19. Patel IJ, Davidson JC, Nikolic B, Salazar GM, Schwartzberg MS, Walker TG, et al. Addendum of newer anticoagulants to the SIR consensus guideline. J Vasc Interv Radiol 2013;24:641-5.
20. Zerem E, Omerović S. Can percutaneous cholecystostomy be a definitive management for acute cholecystitis in high-risk patients? Surg Laparosc Endosc Percutan Tech 2014;24:187-91.
21. Cheng N, Witkowski ET, Sneider EB, Wiseman JT, Lewis J, Litwin DE, et al. Use of cholecystostomy tubes in the management of patients with primary diagnosis of acute cholecystitis. J Am Coll Surg 2012;214:196-201.
22. Peters R, Kolderman S, Peters B, Simoens M, Braak S. Percutaneous cholecystostomy: Single centre experience in 111 patients with an acute cholecystitis. JBR-BTR 2014;97:197-201.
23. Yeo CS, Tay VW, Low JK, Woon WW, Punamiya SJ, Shelat VG. Outcomes of percutaneous cholecystostomy and predictors of eventual cholecystectomy. J Hepatobiliary Pancreat Sci 2016;23:65-73.
24. Bundy J, Srinivasa RN, Gemmete JJ, Shields JJ, Chick JE. Percutaneous cholecystostomy: Long-term outcomes in 324 patients. Cardiovasc Intervent Radiol 2018;41:928-34.
25. Joseph T, Unver K, Hwang GL, Rosenberg J, Sze DY, Hashimi S, et al. Percutaneous cholecystostomy for acute cholecystitis: Ten-year experience. J Vasc Interv Radiol 2012;23:83-8.

How to cite this article: Imanzadeh A, Kokabi N, Pourjabbar S, Latich I, Pollak J, Kim H, et al. Safety and Efficacy of Percutaneous Cholecystostomy for Emphysematous Cholecystitis. J Clin Imaging Sci 2020;10:9.