Femtoscopic scales in central A+A collisions at RHIC and LHC energies in hydrokinetic model

Yu.A. Karpenko¹, Yu.M. Sinyukov¹

¹ Bogolyubov Institute for Theoretical Physics, 14-b Metrologishn a Str. Kiev 143, 03680 Ukraine

Abstract. A study of the energy behavior of the interferometry radii is carried out for the RHIC and LHC energies within the hydrokinetic model (HKM). The hydrokinetic predictions for the HBT radii at LHC energies are compared with the recent results of the ALICE Collaboration. The role of non-equilibrium and non-hydrodynamic stage of the matter evolution in formation of the femtoscopy scales at the LHC energies is analyzed. For this aim we develop the hybrid hydrokinetic model.

Introduction— The first LHC results of the femtoscopy analysis in Pb+Pb collisions at $\sqrt{s} = 2.76$ TeV has been published recently by the ALICE Collaboration. The principal question is whether an understanding of the space-time matter evolution in Au+Au collisions at RHIC can be extrapolated to the LHC energies. Here we present the quantitative predictions given for LHC within hydrokinetic model (HKM) earlier, compare them with the recent ALICE LHC results and make the corresponding inference based on the first results of new hybrid hydrokinetic model (hHKM).

Hydrokinetic approach to A+A collisions— The detailed description of the hydrokinetic model (HKM) is done in Refs. It incorporates hydrodynamical expansion of the systems formed in A+A collisions and their dynamical continuous decoupling described by the escape probabilities. The HKM also is the correct basis to switch over a hydrodynamic evolution of continuous medium to an evolution of particles within cascade model like UrQMD. The model which matches the hydrokinetic model and UrQMD we call hybrid HKM (hHKM).

Our results are all related to the central rapidity slice where we use the boost-invariant Bjorken-like initial condition. We suppose the proper time of thermalization of quark-gluon matter to be $\tau_0 = 1$ fm/c. The initial energy density in the transverse plane is supposed to be Glauber-like with zero impact parameter. The maximal initial energy density $\epsilon(r = 0) = \epsilon_0$ is the fitting parameter. From the analysis of particle multiplicities we choose it for the top RHIC energy to be $\epsilon_0 = 15$ GeV/fm³. For the LHC energy $\sqrt{s} = 2.76$ TeV the corresponding value is $\epsilon_0 = 40$ GeV/fm³ that in hydrokinetic model corresponds to multiplicity of charged particles $dN_{ch}/d\eta \approx 1500$. The pre-thermal transverse flow which the system already has at $\tau_0 = 1$ fm/c is supposed to be linear in radius γ_T: $y_T = \alpha r_T / R_T$ where α is the second fitting parameter.

‡ The talk presented by Yuri Sinyukov at "‘Quark Matter - 2011’", May 23-28 2011, Annecy, France
and $R_T = \sqrt{\langle r_T^2 \rangle}$. From the best fit of the pion transverse spectra at the RHIC energy we take $\alpha = 0.28$ in HKM and $\alpha = 0.18$ for hHKM and the same value we keep for the LHC energy. Note that the fitting parameter α absorbs also a positive correction for underestimated resulting transverse flow especially in HKM where we do not account for the viscosity effects [8] (in hHKM these effects are effectively included at the hadronic stage, therefore α is essentially less than in HKM).

Following to Ref. [4] we use at high temperatures the EoS [9] adjusted to the QCD lattice data. We suppose the chemical freeze-out for the hadron gas at $T_{ch} = 165$ MeV [10]. Below T_{ch} a composition of the hadron gas is changed only due to resonance decays into expanding fluid. We include 359 hadron states made of u, d, s quarks with masses up to 2.6 GeV. The EoS in this non chemically equilibrated system depends on particle number densities n_i of all the 359 particle species i: $p = p(\epsilon, \{n_i\})$.

In the case of hHKM we provide a switch to UrQMD at the hypersurface $\tau(r) = \tau_{sw} = const$ where τ_{sw} is defined from the condition: temperature $T(\tau = \tau_{sw}, r_T = 0) = 165$ MeV. Then the non-equilibrium distribution functions in hadron resonance gas calculated in HKM are the input distribution functions for UrQMD at $\tau = \tau_{sw}$.

Results and conclusions— The pion emission functions per unit (central) rapidity, integrated over azimuthal angular and transverse momenta, are presented in Fig. 1 for the top RHIC and LHC $\sqrt{s} = 2.76$ TeV energies as a function of transverse radius r and proper time τ. As one can see the duration of particle emission in the central part of the fireball is half of its lifetime. At a periphery a surface emission is significant, it lasts a total lifetime of the fireballs. The hypersurface of the surface emission approaches the light cone when collision energy grows. The latter fact is correlated with a non trivial result on the energy behavior of the R_{out}/R_{side} ratio. It slowly drops when energy grows and apparently is saturated at fairly high energies at the value close to unity (Fig.1). In rough approximation $R_{out}/R_{side} \approx 1 + const/\epsilon_0$ [2]. This effect is caused by a strengthening of positive correlations between space and time positions of pions emitted at the radial periphery of the system as one can see in Fig.1, top (see theoretical details in Ref. [2]). This central prediction of [2] as for the energy dependence of the femtoscopy scales with energy growth is completely conformed by the ALICE results, see Fig. 1.

The transverse femtoscopy scales, predicted for LHC are quite close (but slightly less) to the corresponding experimental data. As for the longitudinal HBT radius, R_{long}, it is underestimated in HKM by around 20%. As the result, HKM gives smaller interferometry volume than is observed at LHC, see Fig.1, bottom. The reason could be that HKM describes a gradual decay of the system which evolves hydrodynamically until fairly large times. It is known [11] that at the isentropic and chemically frozen hydrodynamic evolution the interferometry volume increases quite moderate with initial energy density growth in collisions of the same/similar nucleus. The RHIC results support such a theoretical view (see experimental and HKM results for SPS and RHIC, Fig1, bottom), while the ALICE Collaboration observes a significant increase of the interferometry volume at LHC. An essential growth of the interferometry
Figure 1. The p_T-integrated emission functions of negative pions for the top RHIC and LHC energies in HKM(top); the interferometry radii and R_{out}/R_{side} ratio (middle); the transverse momentum spectra of all charged pions at the LHC energy 2.76 TeV in hHKM model, and multiplicity dependence of the pion interferometry volume for central heavy ion collisions at AGS, SPS, RHIC and LHC energies in comparison with the results in p+p collisions (bottom). The solid lines connect the points obtained within HKM and hHKM. The experimental data for A+A collisions are taken from [1, 12, 13, 14, 15, 16, 17, 18]. For p+p collisions at LHC the points for $p_T = 0.3$ GeV are interpolated from the results of Ref. [19].
volume in Pb+Pb collisions at the LHC energy is conditioned by a dominance of very non-equilibrium and non-hydrodynamic stage of the matter evolution at LHC. We demonstrate it within the hHKM that contains such a stage, see Fig. 1. Then the results obtained in [11] for isentropic and chemically frozen evolution are violated. Most significant effect is observed for the LHC energy. It is worthy noting that no one linear fit cannot be done to describe simultaneously $V_{int}(dN/dη)$-dependence for both heavy (Pb, Au) ion and proton collisions, see for the latter the data discovered by the ALICE Collaboration [19] (Fig. 1, bottom). This experimental observation supports the theoretical result that the interferometry volume depends not only on multiplicity but also on intial size of colliding systems [11]. So, qualitatively, we see no new “LHC HBT puzzle” in the newest HBT results obtained at LHC in Pb+Pb and p+p collisions.

We conclude that the behavior of femtoscopy scales at LHC energy can be understood with the same hydrokinetic basis as was used for RHIC [2, 5] supplemented by hadronic cascade model at the latest stage of the evolution: HKM \rightarrow hHKM. In this approach the following factors are important: a presence of prethermal transverse flow, a crossover transition between quark-gluon and hadron matters, non-hydrodynamic behavior of the hadron gas at the latest stage, and correct matching between hydrodynamic and non-hydrodynamic stages. Then the particle spectra together with the femtoscopy data at RHIC and LHC energies can be well described.

Acknowledgments— The researches were carried out within GDRE: Heavy ions at ultrarelativistic energies and is supported by NAS of Ukraine (Agreement No F8-2011) and State Fund for Fundamental Researches of Ukraine (Project No. F33.2/001).

References

[1] K. Aamodt, et al (ALICE Collaboration). Phys.Lett. B696, 328 (2011).
[2] Iu.A. Karpenko, Yu.M. Sinyukov. Phys.Lett. B688 50 (2010).
[3] Yu.M. Sinyukov, S.V. Akkelin, Y. Hama. Phys.Rev.Lett. 89 052301 (2002).
[4] S.V. Akkelin, Y. Hama, Yu.A. Karpenko, Yu.M. Sinyukov. Phys.Rev. C78 034906 (2008).
[5] Iu.A. Karpenko, Yu.M. Sinyukov. Phys.Rev. C81 50 (2010)
[6] P.F. Kolb, J. Sollfrank, U.Heinz. Phys.Lett. B459 667 (1999); Phys.Rev. C62 054909 (2000).
[7] Yu.M. Sinyukov. Acta Phys.Polon. B37 4333 (2006); M. Gyulassy et al. Braz.J.Phys. 37 1031 (2007).
[8] D. Teaney Phys.Rev. C68 034913 (2003).
[9] M. Laine, Y. Schröder. Phys.Rev. D73 085009(2006).
[10] F. Becattini, J. Manninen J.Phys. G: Nucl.Part.Phys. 35 104013 (2008); A. Andronic, P.Braun-Munzinger, J. Stachel. ArXiv 2008:0812.1186; arXiv 2009:0901.2909.
[11] S.V. Akkelin, Yu.M. Sinyukov. Phys.Rev. C70 064901 (2004); Phys.Rev. C73 034908 (2006).
[12] Dariusz Antonczyk. Acta Phys.Polon. B40 1137 (2009).
[13] S.V. Afanasiev et al, NA49 Collaboration. Phys. Rev. C66 054902 (2002).
[14] C. Alt et al, NA49 Collaboration. Phys.Rev. C77 064908 (2008).
[15] J. Adams et al. (STAR Collaboration). Phys.Rev.Lett.92 112301 (2004).
[16] J. Adams et al. (STAR Collaboration). Phys.Rev. C71 044906 (2004).
[17] S.S. Adler et al. (PHENIX Collaboration). Phys.Rev. C69 034909 (2004).
[18] S.S. Adler et al. (PHENIX Collaboration). Phys.Rev.Lett. 93 152302 (2004).
[19] The ALICE Collaboration. ArXiv [hep-ex] 2011:1101.3665