Bounds of Degree-Based Molecular Descriptors for Generalized F-sum Graphs

Jia Bao Liu,1 Sana Akram,2 Muhammad Javaid,2 Abdul Raheem,3 and Roslan Hasni4

1School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
2Department of Mathematics, School of Science, University of Management and Technology, Lahore, Pakistan
3Higher Education Department, Government Post Graduate College, Asghar Mall, Rawalpindi, Pakistan
4Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kuala Terengganu, Malaysia

Correspondence should be addressed to Muhammad Javaid; javaidmath@gmail.com

Received 12 August 2020; Accepted 8 February 2021; Published 2 March 2021

A molecular descriptor is a mathematical measure that associates a molecular graph with some real numbers and predicts the various biological, chemical, and structural properties of the underlying molecular graph. Wiener (1947) and Trinajstic and Gutman (1972) used molecular descriptors to find the boiling point of paraffin and total π-electron energy of the molecules, respectively. For molecular graphs, the general sum-connectivity and general Randić are well-studied fundamental topological indices (TIs) which are considered as degree-based molecular descriptors. In this paper, we obtain the bounds of the aforesaid TIs for the generalized F-sum graphs. The foresaid TIs are also obtained for some particular classes of the generalized F-sum graphs as the consequences of the obtained results. At the end, 3D-graphical presentations are also included to illustrate the results for better understanding.

1. Introduction

A molecular descriptor called by the topological index (TI) is a function from the set of (molecular) graphs to the set of real numbers. TIs are studied as a subtopic of chemical graph theory to predict the chemical reactions, biological attributes, and physical features of the compounds in theoretical chemistry, toxicology, pharmaceutical industry, and environmental chemistry, see [1]. In addition, these TIs are also used to characterize the molecular structure with respect to quantitative structure activity and property relationships which are studied in the subject of cheminformatics, see [2]. TIs have been classified into different classes but degree-based TIs play a significant part in the theory of chemical structures or networks. Firstly, Wiener [3] used the TI to find boiling point of paraffin. Gutman and Trinajstic calculated total π-electron energy of the molecules by a TI that is recognized as the first Zagreb index in the literature, see [4]. In 2009, Zhou and Trinajstic [5] suggested the sum-connectivity index, which was subsequently generalized in 2010 [6]. The Randić index was defined in 1975 [7]; later on the idea was subsequently extended to the generalized Randić connectivity index by Li and Gutman, see [8]. For more studies, we refer to [9–12].

In chemical graph theory, operations of graphs are frequently used to find the new families of graphs. Yan et al. [13] defined the four subdivision-related operations ($S_1^1, S_2^1, S_3^1, S_4^1$) on a molecular graph M and obtained the Wiener indices of the resultant graphs $S_1^1(M), S_2^1(M), S_3^1(M),$ and $S_4^1(M)$. After that, Eliasi and Taeri [14] defined the F-sum graph $M_1+F.M_2$ with the help of Cartesian product of M_1 and $F(M_2)$, where $F(e[S_i^1,S_2^1,S_3^1,S_4^1])$. Deng et al. [15] and Akhter and Imran [16] also computed the 1st and 2nd Zagreb and general sum-connectivity indices of the F-sum graphs, respectively. Recently, Liu et al. [17]
generalized these subdivision-related operations and defined the generalized F-sum graphs $M_1 + F_k M_2$ for $F_k \{S_{k,1}^L, S_{k,2}^L, S_{k,3}^L, S_{k,4}^L\}$, where $k \geq 1$ is an integral value. They also computed the 1st and 2nd Zagreb indices for these newly obtained graphs. For further studies of F-sum and generalized F-sum graphs, see [18–27].

Now, we extend this study by computing the bounds (upper and lower) of the general sum-connectivity and general Randić indices for the generalized F-sum graphs. In the remaining paper, Section 2 consists of main results of bounds and Section 3 has conclusion and applications of the obtained results.

2. Preliminaries

Throughout, we consider undirected, connected, and simple graphs with $V(M) = \{a_i : 1 \leq i \leq n\}$ and $E(M) \subseteq V(M) \times V(M)$ as vertex and edge sets, respectively. In addition, $|V(M)| = n$ and $|E(M)| = m$ are the order and size of M. For a vertex $a \in V(M)$ and $d_M(a)$ as a degree of a in M, $\Delta_M = \max\{d_M(a) : a \in V(M)\}$ and $\delta_M = \min\{d_M(a) : a \in V(M)\}$ are the maximum and minimum degrees of the graph M. The graphs $V(P_n) = \{a_i: 1 \leq i \leq n\}$ and $E(P_n) = \{a_i a_{i+1} : 1 \leq i \leq n-1\}$, where $V(C_n) = \{a_i : 1 \leq i \leq n\}$ and $E(C_n) = \{a_i a_{i+1} : 1 \leq i \leq n-1\} \cup \{a_n a_1\}$ and $V(K_n) = \{a_i : 1 \leq i \leq n\}$ and $E(K_n) = \{a_i a_j : 1 \leq i, j \leq n\}$ are called path (P_n), cycle (C_n), and complete (K_n), respectively. For further basic terminologies, see [28].

Definition 1. For a real number α and (molecular) graph M, the general sum-connectivity index (GSCI) and general Randić index (GRI) are

$$
\begin{align*}
\chi_\alpha(M) &= \sum_{x_i, x_j \in E(M)} [d_M(x_i) + d_M(x_j)]^\alpha, \\
R_\alpha(M) &= \sum_{x_i, x_j \in E(M)} [d_M(x_i) d_M(x_j)]^\alpha.
\end{align*}
$$

Moreover, $\alpha = 1, 2$ and then $\chi_\alpha(M)$ are known as the 1st Zagreb index and hyper-Zagreb index. If $\alpha = (-1/2), 1, (1/2)$, then $R_\alpha(M)$; it is known as Randić, 2nd Zagreb, and reciprocal Randić indices.

Liu [17] defined the following graphs using the generalized subdivision-related operations:

- (i) $S_1^L(M)$ graph is obtained by inserting k-vertices in each edge of M.
- (ii) $S_2^L(M)$ is obtained from $S_1^L(M)$ by joining the old vertices which are adjacent in M.
- (iii) $S_3^L(M)$ is obtained from $S_2^L(M)$ by joining the new vertices lying in an edge to the corresponding new vertices of the other edge, if these edges have some common vertexes in M.
- (iv) $S_4^L(M)$ is the union of $S_2^L(M)$ and $S_3^L(M)$ graphs.

For more details, see Figure 1 for $k = 4$.

Definition 2. Let M_1 and M_2 be two connected graphs, $F_k \{S_{k,1}^L, S_{k,2}^L, S_{k,3}^L, S_{k,4}^L\}$ and $F_k(M_1)$ be a graph (obtained after applying the operation F_k on M_1 with vertex set $V(F_k(M_1))$ and edge set $E(F_k(M_1))$). Then, the generalized F-sum graph $M_1 + F_k M_2$ is a graph with vertex set $V(M_1 + F_k M_2) = V(F_k(M_1)) \times V(M_2) = (V(M_1) \cup E(M_1)) \times V(M_2)$ in such a way that $(x_1, y_1), (x_2, y_2) \in E(M_1) \times E(M_2)$ are adjacent if $[x_1 = x_2 \in V(M_1)$ and $(y_1, y_2) \in E(M_2)]$ or $[y_1 = y_2 \in V(M_2)$ and $(x_1, x_2) \in E(F_k(M_1))], where $k \geq 1$ is an integral value.

For more details, see Figures 2 and 3.

3. Main Results

In this section, we find out the sharp bounds of GSCI and GRI of generalized F-sum graphs.

Theorem 1. For a real number $\alpha > 0$ and counting number $k \geq 1$, the lower and upper bounds on the GSCI and GRI of generalized F-sum graph $(M_1 + S_k^L M_2)$ are as follows:

$$
\begin{align*}
(a) \quad 2^n n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 2^n n_2 m_1 (\Delta_{M_1} + \Delta_{M_2} + 2)^\alpha + 4^n n_1 m_1 (k - 1) \leq & \chi_\alpha (M_1 + S_k^L M_2) \\
& \leq 2^n n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 2^n n_2 m_1 (\Delta_{M_1} + \Delta_{M_2} + 2)^\alpha + 4^n n_1 m_1 (k - 1), \\
(b) \quad n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 2^n n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 4^n n_1 m_1 (k - 1) \leq & R_\alpha (M_1 + S_k^L M_2) \\
& \leq n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 2^n n_1 m_1 (\Delta_{M_1} + \Delta_{M_2})^\alpha + 4^n n_1 m_1 (k - 1),
\end{align*}
$$

where equalities hold if M_1 and M_2 are regular graphs.

Proof. (a) By the definition of GSCI, we have
Figure 1: (a) $M \cong P_4$, (b) $S_4(M)$, (c) $R_4(M)$, (d) $Q_4(M)$, and (e) $T_4(M)$.

Figure 2: (a) $M_1 \cong P_4$, (b) $M_2 \cong P_4$, (c) $M_1 \otimes S_2 M_2$, and (d) $M_{1 \oplus R M_2}$.
\[X_a \left(M_1 + S_{\ell}^1 M_2 \right) = \sum_{(x_1, y_1), (x_2, y_2) \in E(M_1 + S_{\ell}^1 M_2)} \left[d(M_1 + S_{\ell}^1 M_2)(x_1, y_1) + d(M_1 + S_{\ell}^1 M_2)(x_2, y_2) \right]^a, \]

\[= \sum_{x \in V(M_1)} \sum_{y \in \tilde{S}^1(M_2)} \left[d(M_1 + S_{\ell}^1 M_2)(x, y) \right]^a + \sum_{y \in V(M_2)} \sum_{x \in \tilde{S}^1(M_1)} \left[d(M_1 + S_{\ell}^1 M_2)(x, y) + d(M_1 + S_{\ell}^1 M_2)(x, y) \right]^a \]

\[= \sum_{x \in V(M_1)} \sum_{y \in \tilde{S}^1(M_2)} \left[d(M_1 + S_{\ell}^1 M_2)(x, y) \right]^a + \sum_{y \in V(M_2)} \sum_{x \in \tilde{S}^1(M_1)} \left[d(M_1 + S_{\ell}^1 M_2)(x, y) + d(M_1 + S_{\ell}^1 M_2)(x, y) \right]^a = \sum 1 + \sum 2 + \sum 3. \]

Consider

\[\sum 1 = \sum_{x \in V(M_1)} \sum_{y \in e(M_1)} \left[d(M_1 + S_{\ell}^1 M_2)(x, y) + d(M_1 + S_{\ell}^1 M_2)(x, y) \right]^a \]

\[= \sum_{x \in V(M_1)} \sum_{y \in e(M_1)} \left[2d_{M_1}(x) + d_{M_2}(y_1) + d_{M_2}(y_2) \right]^a \leq 2^a n_1 m_2 (\Delta_{M_1} + \Delta_{M_2})^a. \]
Since \(|E(S^i_k(M_1))| = 2|E(M_1)| \) and \(\Delta S^i_k(M_1) = \Delta_{M_1} \), we have

\[
\sum 2 = \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a,
\]

\[
= \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a,
\]

\[
\leq 2n_1m_1(\Delta_{M_1} + \Delta_{M_1} + 2)^a
\]

\[
\sum 3 = \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a
\]

\[
\sum 3 = \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [2 + 2]^a.
\]

Consequently,

\[
(k-1)|E(M_1)| \sum_{y \in V(M_2)} (4)^a
\]

\[
= 4^a(k-1)|E(M_1)||V(M_2)| = 4^a(k-1)n_2m_1.
\]

\[
2^n_1m_2(\Delta_{M_1} + \Delta_{M_1})^a + 2n_2m_1(\Delta_{M_1} + \Delta_{M_1} + 2)^a + 4^n_1m_1(1-k) \leq \chi_a(M_1 + S^i_kM_2)
\]

\[
\leq 2^n_1m_2(\delta_{M_1} + \delta_{M_1})^a + 2n_2m_1(\delta_{M_1} + \delta_{M_1} + 2)^a + 4^n_1m_1(1-k),
\]

where equalities hold if \(M_1 \) and \(M_2 \) are regular graphs. □

Proof. (b) By the definition of GRI, we have

\[
R_a(M_1 + S^i_kM_2) = \sum_{(x,y)} [d_{(M_1+S^i_kM_1)}(x_1, y_1) + d_{(M_1+S^i_kM_1)}(x_2, y_2)]^a
\]

\[
= \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} [d_{(M_1+S^i_kM_1)}(x, y_1) + d_{(M_1+S^i_kM_1)}(x, y_2)]^a
\]

\[
+ \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a
\]

\[
= \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} [d_{(M_1+S^i_kM_1)}(x, y_1) + d_{(M_1+S^i_kM_1)}(x, y_2)]^a
\]

\[
+ \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a
\]

\[
+ \sum_{y \in V(M_2)} \sum_{x \in E(S^i_k(M_1))} [d_{(M_1+S^i_kM_1)}(x_1, y) + d_{(M_1+S^i_kM_1)}(x_2, y)]^a = \sum 1 + \sum 2 + \sum 3.
\]
Consider
\[
\sum 1 = \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} \left[d_{(M_1+\delta M_2)}(x, y) + d_{(M_1+\delta M_2)}(x, y) \right]^a
\]
\[
= \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} \left[d_{M_1}(x) + d_{M_2}(y) \right] \left[d_{M_1}(x) + d_{M_2}(y) \right]^a
\]
\[
= \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} \left[d_{M_1}^2(x) + d_{M_1}(x) \left[d_{M_1}(y) + d_{M_2}(y)\right] + d_{M_1}(y) d_{M_2}(y) \right]^a
\]
\[
\leq n_1 m_2(\Delta_{M_1} + \Delta_{M_2})^{2a}.
\]

Since \(|E(S^1_1(M_1))] = 2|E(M_1)|\) and \(\Delta^{S^1_1}(M_1) = \Delta_{M_1}\), we have
\[
\sum 2 = \sum_{y \in V(M_1)} \sum_{x \in V(S^1_1(M_1))} \left[d_{(M_1+\delta M_2)}(x_1, y) + d_{(M_1+S^1_1 M_2)}(x_2, y) \right]^a,
\]
\[
= \sum_{y \in V(M_1)} \sum_{x \in V(S^1_1(M_1))} \left[d_{M_1}(x_1) + d_{M_2}(y) \right] \left[d_{S^1_1(M_1)}(x_2) \right]^a
\]
\[
= \sum_{y \in V(M_1)} \sum_{x \in V(S^1_1(M_1))} \left[(\Delta_{M_1} + \Delta_{M_2})^{2a} \right] \leq 2^{2a} n_2 m_1 (\Delta_{M_1} + \Delta_{M_2})^a
\]
\[
\sum 3 = \sum_{y \in V(M_1)} \sum_{x \in V(S^1_1(M_1))} \left[d_{(M_1+S^1_1 M_2)}(x_1, y) + d_{(M_1+\delta M_2)}(x_2, y) \right]^a
\]
\[
= \sum_{y \in V(M_1)} \sum_{x \in V(S^1_1(M_1))} \left[2 \times 2 \right]^a.
\]

Since in this case \(|E(S^1_1(M_1) - E(S^1_1))| = (k-1)|E(M_1)|\), we have \((k-1)|E(M_1)| \sum_{y \in V(M_1)} (4)^a = 4^a (k-1) n_2 m_1 \). Consequently,
\[
n_1 m_2 (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{2a+1} n_2 m_1 (\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_2 m_1 (k-1) \leq R_\alpha (M_1 + S^1_1 M_2)
\]
\[
\leq n_2 m_2 (\delta_{M_1} + \delta_{M_2})^{2a} + 2^{2a+1} n_2 m_1 (\delta_{M_1} + \delta_{M_2})^a + 4^a n_2 m_1 (k-1),
\]

where equalities hold if \(M_1\) and \(M_2\) are regular graphs. \(\square\)

Theorem 2. For a real number \(\alpha > 0\) and counting number \(k \geq 1\), the lower and upper bounds on the GSCI and GRI of the generalized F-sum graph \((M_1 + S^1_1 M_2)\) are as follows:

(a) \(2^a (n_1 m_2 + n_1 m_1) (2\Delta_{M_1} + \Delta_{M_2})^{2a} + 2 n_1 m_1 (2\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_2 m_1 (k-1) \leq \chi_\alpha (M_1 + S^1_1 M_2) \leq 2^a (n_1 m_2 + n_1 m_1) (2\delta_{M_1} + \delta_{M_2})^{2a} + 2 n_1 m_1 (2\delta_{M_1} + \delta_{M_2})^a + 4^a n_2 m_1 (k-1),\)

(b) \((n_1 m_2 + n_1 m_1) (2\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{2a+1} n_2 m_1 (2\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_2 m_1 (k-1) \leq R_\alpha (M_1 + S^1_1 M_2) \leq (n_1 m_2 + n_1 m_1) (2\delta_{M_1} + \delta_{M_2})^{2a} + 2^{2a+1} n_2 m_1 (2\delta_{M_1} + \delta_{M_2})^a + 4^a n_2 m_1 (k-1),\)
where equalities hold if and only if \(M_1 \) and \(M_2 \) are regular graphs.

Proof. (a) By the definition of the GSCI, we have

\[
\chi_a(M_1 + S^2_aM_2) = \sum_{(x_1,y_1) \in \mathcal{E}(M_1 + S^2_aM_2)} \left[d((M_1 + S^2_aM_2)(x_1, y_1)) + d((M_1 + S^2_aM_2)(x_2, y_2)) \right]^a
\]

\[
= \sum_{x \in V(M_1)} \sum_{y : (x,y) \in \mathcal{E}(M_1)} \left[d((M_1 + S^2_aM_2)(x, y_1)) + d((M_1 + S^2_aM_2)(x, y_2)) \right]^a
\]

\[
+ \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(M_1)} \left[d((M_1 + S^2_aM_2)(x_1, y)) + d((M_1 + S^2_aM_2)(x_2, y)) \right]^a = \sum 1 + \sum 2.
\]

Consider

\[
\sum 1 = \sum_{x \in V(M_1)} \sum_{y : (x,y) \in \mathcal{E}(M_1)} \left[d((M_1 + S^2_aM_2)(x, y_1)) + d((M_1 + S^2_aM_2)(x, y_2)) \right]^a
\]

\[
= \sum_{x \in V(M_1)} \sum_{y : (x,y) \in \mathcal{E}(M_1)} \left[4d(x) + d(x_1) + d(x_2) \right]^a \leq 2^a m_1 \left(2 \Delta_{M_1} + \Delta_{M_1} \right)^a
\]

\[
\sum 2 = \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(M_1)} \left[d(x_1, y) + d(x_2, y) \right]^a
\]

\[
+ \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(S^2_aM_2)} \left[d(x_1, y) + d(x_2, y) \right]^a
\]

\[
+ \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(S^2_aM_2)} \left[d(x_1, y) + d(x_2, y) \right]^a = \sum 2 + \sum 2 + \sum 2.
\]

Consider for \(x_1,x_2 \in V(M_1) \), we have \(x_1,x_2 \in \mathcal{E}(S^2_aM_2) \) if \(x_1,x_2 \in \mathcal{E}(M_1) \); for \(x_1 \in V(M_1) \), we obtain \(d_{S^2_aM_2}(x_1) = 2d_{M_1}(x_1) \) and for \(x_2 \in \mathcal{E}(S^2_aM_2) - V(M_1) \), we have \(d_{S^2_aM_2}(x_2) = 2 \).

Now, consider

\[
\sum 2 = \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(M_1)} \left[d(x_1, y) + d(x_2, y) \right]^a = \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(M_1)} \left[d(x_1, y) + d(x_2, y) \right]^a
\]

\[
= \sum_{y \in V(M_1)} \sum_{x : (x,y) \in \mathcal{E}(M_1)} \left[2d_{M_1}(y) + 2d_{M_1}(x_1) + 2d_{M_1}(x_2) \right]^a \leq 2^a m_1 \left(2 \Delta_{M_1} + \Delta_{M_1} \right)^a.
\]
Note that \(|E(S'_1(M_1))| = 2|E(M_1)|\) and if \(x_1 \in V(M_1)\), then \(d_{S'_1(M_1)} x_1 = 2d_{M_1}(x_1)\), and if \(x_2 \in V(S'_2(M_1)) = V(M_1)\), then \(d_{S'_2(M_1)} x_2 = 2\).

Note that \(1\), then

\[
\sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} (d(x_1, y) + d(x_2, y))^a
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E((M_1))} [2d_{M_1}(x_1) + d_{S'_1(M_1)}(x_2) + d_{M_1}(y)]^a
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E((M_1))} [2d_{M_1}(x_1) + 2 + d_{M_1}(y)]^a \leq 2n_2m_1(2\Delta_{M_1} + \Delta_{M_1} + 2)^a
\tag{14}
\]

\[
\sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} (d(x_1, y) + d(x_2, y))^a
= (k - 1) \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E((M_1))} \left[d_{S'_1(M_1)}(x_1) + d_{S'_1(M_1)}(x_2)\right]^a = 4^a(k - 1)m_1n_2.
\]

Hence,

\[
2^a(n_1m_2 + n_2m_1)(2\Delta_{M_1} + \Delta_{M_1})^a + 2n_2m_1(2\Delta_{M_1} + \Delta_{M_1} + 2)^a + 4^a n_2m_1 (k - 1) \leq \chi_a
\]

\[
(M_1 + S'_k M_2) \leq 2^a(n_1m_2 + n_2m_1)(2\delta_{M_1} + \delta_{M_1})^a + 2n_2m_1(2\delta_{M_1} + \delta_{M_1} + 2)^a + 4^a n_2m_1 (k - 1).
\tag{15}
\]

Equality holds if \(M_1\) and \(M_2\) are regular graphs. \(\square \)

Proof. (b) By the definition of GRI, we have

\[
R_a(M_1 + S'_k M_2) = \sum_{(x_1, y_1), (x_2, y_2) \in E(M_1 + S'_k M_2)} \left[d_{(G + S'_k M_2)}(x_1, y_1)d_{(M_1 + S'_k M_2)}(x_2, y_2)\right]^a,
= \sum_{x \in V(M_2)} \sum_{y \in V(M_1 + S'_k M_2)} \left[d_{(M_1 + S'_k M_2)}(x, y_1)d_{(M_1 + S'_k M_2)}(x, y_2)\right]^a
+ \sum_{y \in V(M_2)} \sum_{x \in V(S'_k M_2)} \left[d_{(M_1 + S'_k M_2)}(x, y_1)d_{(M_1 + S'_k M_2)}(x, y_2)\right]^a = \sum 1 + \sum 2.
\tag{16}
\]
Consider
\[
\sum_{x \in V(M_1)} \sum_{y \in \epsilon E(M_1)} \left[d_{(M_1, s(M_1))}(x, y_1) d_{(M_1, s(M_1))}(x, y_2) \right]^a,
\]
\[
= \sum_{x \in V(M_1)} \sum_{y_1, y_2 \in E(M_1)} \left[2d_{M_1}(x) + d_{M_1}(y_1) \right] \left[2d_{M_1}(x) + d_{M_1}(y_2) \right]^a
\]
\[
= \sum_{x \in V(M_1)} \sum_{y_1, y_2 \in E(M_1)} \left[4d_{M_1}^2(x) + 2d_{M_1}(x) d_{M_1}(y_1) + d_{M_1}(y_1) d_{M_1}(y_2) \right]^a
\]
\[
\leq m_1 m_1 (2\Delta_{M_1} + \Delta_{M_2})^{2a}.
\]

\[\sum_1 \] (17)

\[\sum_2 = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a
\]
\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a + \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \sum_{x \in V(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a
\]
\[
+ \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \sum_{x \in V(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a = \sum_2 + \sum_2 + \sum_2.
\]

Consider for \(x_1 x_2 E(M_1) \), we have \(x_1 x_2 E(S_2(M_1)) \) if \(x_1 x_2 E(M_1) \); for \(x_1 E(M_1) \), we obtain \(d_{S_2(M_1)}(x_1) = 2d_{M_1}(x_1) \) and for \(x_2 E(S_2(M_1)) - V(M_1) \), we have \(d_{S_2(M_1)}(x_2) = 2 \). Now, consider

\[\sum_2 = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[d(x_1, y) d(x_2, y) \right]^a,
\]
\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[\left[d_{S_2(M_1)}(x_1) + d_{M_1}(y) \right] \left[d_{S_2(M_1)}(x_2) + d_{M_1}(y) \right] \right]^a
\]
\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[4d_{M_1}(x_1) d_{M_1}(x_2) + 2d_{M_1}(x_1) d_{M_1}(y) + 2d_{M_1}(x_2) d_{M_1}(y) + d_{M_1}^2(y) \right]^a
\]
\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(M_1)} \left[4\Delta_{M_1} \Delta_{M_1} + 2\Delta_{M_1} \left[\Delta_{M_1} + \Delta_{M_1} \right] + \Delta_{M_1}^2 \right]^a \leq n_2 m_1 (2\Delta_{M_1} + \Delta_{M_2})^{2a}.
\]
Note that \(|E(S_k^i(M_1))| = 2|E(M_1)|\) and if \(x_1 \epsilon V(M_1)\), then \(d_{S_k^i(M_1)}(x_1) = 2d_{M_1}(x_1)\), and if \(x_2 \epsilon V(S_k^i(M_1)) - V(M_1)\), then \(d_{S_k^i(M_1)}(x_2) = 2\).

\[
\sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i(M_1))} \begin{bmatrix} d(x_1, y) d(x_2, y) \end{bmatrix}^a,
\]

\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i(M_1))} \begin{bmatrix} d_{S_k^i(M_1)}(x_1) + d_{M_1}(y) \end{bmatrix} \begin{bmatrix} d_{S_k^i(M_1)}(x_2) \end{bmatrix}^a
\]

\[
= \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i(M_1))} \left(\begin{bmatrix} 2d_{M_1}(x_1) + d_{M_1}(y) \end{bmatrix} \right) \left(\begin{bmatrix} 2d_{M_1}(x_2) \end{bmatrix} \right)^a \leq 2^{a+1} n_{M_1}(2\Delta_{M_1} + \Delta_{M_1})^a
\]

(19)

\[
\sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i(M_1))} \begin{bmatrix} d(x_1, y) d(x_2, y) \end{bmatrix}^a,
\]

\[
= (k-1) \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i(M_1))} \begin{bmatrix} d_{S_k^i(M_1)}(x_1) d_{S_k^i(M_1)}(x_2) \end{bmatrix}^a = 4^a (k-1) m_{1} n_{2}.
\]

Hence,

\[
(n_{1} m_{2} + n_{2} m_{1})(2\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1}(2\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_{2} m_{1}(k-1) \leq R_{a}
\]

\[
(M_1 + S_k^i M_2) \leq (n_{1} m_{2} + n_{2} m_{1})(2\delta_{M_1} + \delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1}(2\delta_{M_1} + \delta_{M_2})^a + 4^a n_{2} m_{1} (k-1).
\]

Equality holds if \(M_1\) and \(M_2\) are regular graphs. \(\square\)

Theorem 3. For a real number \(\alpha > 0\) and counting number \(k \geq 1\), the lower and upper bounds on the GSCI and GRI of the generalized F-sum graph \((M_1 + S_k^i M_2)\) are as follows:

(a) \(2^a n_{1} m_{2} (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1} (\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_{2} m_{1} (2 \Delta_{M_1} + \Delta_{M_2})^a \leq \chi_{a}(M_1 + S_k^i M_2) \leq 2^a n_{1} m_{2} (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1} (\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_{2} m_{1} (2 \Delta_{M_1} + \Delta_{M_2})^a + (2 - k - 1) n_{1} [Z_1(M_1)]^{a+1} + 2^{a+1} n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^a +
\]

(b) \(n_{1} m_{2} (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1} (\Delta_{M_1} + \Delta_{M_2})^a + 4^a n_{2} m_{1} (2 \Delta_{M_1} + \Delta_{M_2})^a + 2(k - 1) n_{1} Z_2(M_1)^a + 2^a n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^{2a} + 2^{a+1} n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^a + 2^{a+1} n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^a + 2^{a+1} n_{2} m_{1} (\delta_{M_1} + \delta_{M_2})^a +
\]

where equalities hold if and only if \(M_1\) and \(M_2\) are regular graphs.

Proof. (a) By the definition of the GSCI, we have

\[
\chi_{a}(M_1 + S_k^i M_2) = \sum_{x \in V(M_2)} \sum_{y \in E(M_2)} \begin{bmatrix} d_{M_1 + S_k^i M_2}(x, y) \end{bmatrix}^a,
\]

\[
= \sum_{x \in V(M_2)} \sum_{y \in E(M_2)} \begin{bmatrix} d(x, y_1) + d(x, y_2) \end{bmatrix}^a + \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S_k^i M_2)} \begin{bmatrix} d(x_1, y) + d(x_2, y) \end{bmatrix}^a
\]

(21)
Now,

\[
\sum_1 = \sum_{x \in V(M_1)} \sum_{y, z \in E(M_2)} [d(x, y) + d(x, y)]^a \\
= \sum_{x \in V(M_1)} \sum_{y, z \in E(M_2)} [2d_{M_1}(x) + d_{M_2}(y_1) + d_{M_2}(y_2)]^a \leq 2^a n_1 m_2 (\Delta_{M_1} + \Delta_{M_2})^a
\]

\[
\sum_2 = \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} [d(x_1, y) + d(x_2, y)]^a \\
= \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} [d(x_1, y) + d(x_2, y)]^a \\
+ \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} [d(x_1, y) + d(x_2, y)]^a = \sum_2 + \sum_2.
\]

Now,

\[
\sum_2 = \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} [d(x_1, y) + d(x_2, y)]^a,
\]

\[
= \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} \left[d_{S_y(M_1)}(x_1) + d_{M_2}(y) + d_{S_y(M_1)}(x_2) \right]^a \tag{23}
\]

\[
= \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} \left[d_{S_y(M_1)}(x_1) + d_{M_2}(y) + d_{S_y(M_1)}(x_2) \right]^a.
\]

Note that \(d_{S_y(M_1)}(x_2) = d_{M_1}(w_i) = d_{M_1}(w_j)\) for \(a_2 \in V(S_y(M_1)) - V(M_1)\), where \(a_2\) is the vertex inserted into the edge \(w_iw_j\) of \(M_1\). Then, we have

\[
= \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} \left[d_{S_y(M_1)}(x_1) + d_{M_2}(y) + d_{M_1}(w_i) + d_{M_1}(w_j) \right]^a \leq 2n_2 m_1 (3\Delta_{M_1} + \Delta_{M_2})^a \tag{24}
\]

\[
\sum_2 = \sum_{y \in V(M_2)} \sum_{x, z \in E(S_y(M_1))} [d(x_1, y) + d(x_2, y)].
\]
We break this sum into two parts\(\sum 2 = \sum 3 + \sum 4\), where \(\sum 3\) belong the \(S^2(M)\) edges and \(\sum 4\) belong the \(S^2(M_1)\).

\[
\sum 3 = \sum_{x \in V(M_1)} \sum_{x \neq y \in E(M_1)} \sum_{x \neq z \in V(M_1)} \left[d_{S^2(M_1)}(x_1) + d_{S^2(M_1)}(x_2) \right]^a,
\]

\[
= 2(k - 1) \sum_{x \in V(M_1)} \sum_{y \in E(V(M))} \left[d_{M_1}(w_i) + d_{M_1}(w_j) \right]^a \leq 2(k - 1)n_1 [Z_1(M_1)]^a
\]

\[
\sum 4 = \sum_{x \in V(M_1)} \sum_{x \neq y \in E(M_1)} \sum_{x \neq z \in V(M_1)} \left[d_{S^2(M_1)}(x_1) + d_{S^2(M_1)}(x_2) \right]^a.
\]

Since \(x_1\) is the vertex inserted into the edge \(w_i, w_j\) of \(M_1\) and \(a_2\) is the vertex inserted into the edge \(w_j, w_k\) of \(M_1\),

\[
= \sum_{x \in V(M_1)} \sum_{w \in E(M_1)} \left[d_{M_1}(w_i) + d_{M_1}(w_j) + d_{M_1}(w_k) \right]^a
\]

\[
= \sum_{x \in V(M_1)} \sum_{w \in E(M_1)} \left[d_{M_1}(w_i) + d_{M_1}(w_k) + 2d_{M_1}(w_j) \right]^a \leq 4^a k \Delta^a n_2 \left(\frac{1}{2} Z_1(M_1) + m_1 \right)^a.
\]

Consequently, we have

\[
2^a n_1 m_2 \left(\Delta_{M_1} + \Delta_{M_1} \right)^a + 2 n_1 m_1 \left(3 \Delta_{M_1} + \Delta_{M_1} \right)^a + 2 \left(k - 1 \right) n_1 [Z_1(M_1)]^a
\]

\[
+ 4^a \Delta^a \left(\frac{1}{2} Z_1(M_1) + m_1 \right)^a \leq x_a \left(\left(M_1 + s^2 M_2 \right) \leq 2^a n_1 m_2 \left(\delta_{M_1} + \delta_{M_1} \right)^a + 2 n_1 m_1 \left(3 \delta_{M_1} + \delta_{M_1} \right)^a
\]

\[
+ 2 \left(k - 1 \right) n_1 [(Z_1(M_1)]^a + 4^a \delta^a m_2 \left(\frac{1}{2} Z_1(M_1) + m_1 \right)^a.
\]

Proof. (b) By the definition of the GRI, we have

\[
R_a \left(M_1 + s^2 M_2 \right) = \sum_{(x_1, y_1)(x_2, y_2) \in E(M_1 + s^2 M_2)} \left[d_{M_1 + s^2 M_2}(x_1, y_1) \right] d_{M_1 + s^2 M_2}(x_2, y_2)^a,
\]

\[
= \sum_{x \in V(M_1)} \sum_{y \in E(M_1)} \left[d(x, y_1) \right] d(x, y_2)^a + \sum_{y \in V(M_2)} \sum_{x \in E(M_2)} \left[d(x_1, y) \right] d(x_2, y)^a = \sum 1 + \sum 2.
\]
Now,

\[\sum_{1} = \sum_{x \in V(M_1)} \sum_{y \in V(E(M_2))} \left[d_{(M_1 + S'_2 M_2)}(x, y) d_{(M_1 + S'_2 M_2)}(x, y_2) \right]^a, \]

\[= \sum_{x \in V(M_1)} \sum_{y \in V(E(M_2))} \left[d_{M_1}(x) + d_{M_1}(y) \right][d_{M_1}(x) + d_{M_1}(y_2)]^a \]

\[= \sum_{x \in V(M_1)} \sum_{y \in V(E(M_2))} \left[d_{M_1}^2(x) + d_{M_1}(x_1) \right][d_{M_1}(y_1) + d_{M_1}(y_2)] + d_{M_1}(y_1) d_{M_1}(y_2)]^a \]

\[\leq n_1 m_2 \left(\Delta^2_{M_1} + \Delta_{M_1} \left(2\Delta_{M_1} + \Delta^2_{M_1} \right) \right) \]

\[\leq n_1 m_2 \left(\Delta^2_{M_1} + \Delta_{M_1} \Delta^2_{M_1} \right) \]

\[\sum_{2} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d(x_1, y) d(x_2, y) \right]^a, \]

\[\sum_{r} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d(x_1, y) d(x_2, y) \right]^a = \sum_{2} + \sum_{2}. \]

Now,

\[\sum_{2} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d(x_1, y) d(x_2, y) \right]^a, \]

\[\sum_{r} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d(x_1, y) d(x_2, y) \right]^a. \]

Note that \(d_{S'_1(M_1)}(x_2) = d_{M_1}(u_i) + d_{M_1}(u_j) \) for \(x_2 \in V(S'_1(M_1)) - V(M_1) \), where \(x_2 \) is the vertex inserted into the edge \(u_i u_j \) of \(M_1 \). Then, we have

\[\sum_{r} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d_{M_1}(x_1) + d_{M_1}(y) \right][d_{M_1}(u_i) + d_{M_1}(u_j)]^a \]

\[\leq 2^a n_2 m_1 \left(\Delta^2_{M_1} + \Delta_{M_1} \Delta_{M_2} \right) \]

\[\sum_{2} = \sum_{y \in V(M_2)} \sum_{x_1, x_2 \in E(S'_1(M_1))} \sum_{x_1, x_2 \in V(E(S'_1(M_1)))} \sum_{x_1, x_2 \in V} \left[d(x_1, y) d(x_2, y) \right]. \]
We break this sum into two parts \(\sum 2 = \sum 3 + \sum 4 \), where \(\sum 3 \) belong the \(S_2^e(M) \) edges and \(\sum 4 \) belong the \(S_1^e(M_1) \).

\[
\sum 3 = \sum_{y \in V(M_1)} x_1, x_2 \in E\left(S_1^e(M_1) \right) \left[d_{S_1^e(M_1)}(x_1) d_{S_1^e(M_1)}(x_2) \right]^a,
\]

\[
= 2(k-1) \sum_{y \in V(M_1)} \sum_{w \in V(M_1)} \left[d_{M_1}(w) d_{M_1}(w) \right]^a \leq 2(k-1)n_z Z_2(M_1)^a
\]

\[
\sum 4 = \sum_{y \in V(M_1)} x_1, x_2 \in E\left(S_1^e(M_1) \right) \left[d(x_1, y) d(x_2, y) \right]^a,
\]

\[
= \left[d_{S_1^e(M_1)}(x_1) d_{S_1^e(M_1)}(x_2) \right]^a \left[d_{S_1^e(M_1)}(x_1) d_{S_1^e(M_1)}(x_2) \right]^a.
\]

Since \(x_1 \) is the vertex inserted into the edge \(w_j w_k \) of \(M_1 \)
and \(a_2 \) is the vertex inserted into the edge \(w_j w_k \) of \(M_1 \),

\[
= \sum_{y \in V(M_1)} \sum_{w \in V(M_1)} \left[d_{M_1}(w_j) + d_{M_1}(w_j) \right] \left[d_{M_1}(w_j) + d_{M_1}(w_j) \right] \leq 4^a \Delta_{M_1}^n n_2.
\]

Consequently, we have

\[
\Delta_{M_1} + \Delta_{M_2} \leq n_1 n_2 \left[\delta_{M_1} + \delta_{M_2} \right]^{2a} + 2^a n_2 m_1 \left(\delta_{M_1} + \delta_{M_2} \right)^{2a} + 2^a n_2 m_1 \left(\delta_{M_1} + \delta_{M_2} \right)^{2a} + 2(k-1)n_z Z_2(M_1)^a + 4^a \Delta_{M_1}^n n_2 \leq \Delta_{M_1} + \Delta_{M_2}.
\]

\[
\left(M_1 + S_1^e(M_2) \right) \leq n_1 n_2 \left[\delta_{M_1} + \delta_{M_2} \right]^{2a} + 2^a n_2 m_1 \left(\delta_{M_1} + \delta_{M_2} \right)^{2a} + 2(k-1)n_z Z_2(M_1)^a + 4^a \Delta_{M_1}^n n_2.
\]

Theorem 4. For a real number \(a > 0 \) and counting number \(k \geq 1 \), the lower and upper bounds on the GSCI and GRI of the generalized F-sum graph \((M_1 + S_1^e(M_2)) \) are

(a) \(2^a n_1 m_2 (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^a n_1 m_1 (2\Delta_{M_1} + \Delta_{M_2})^{2a} + 2n_2 m_1 (3\Delta_{M_1} + \Delta_{M_2})^{2a} + 2(k-1)n_1 \left[Z_2(M_1) \right]^{2a} + 4^a \Delta_{M_1}^{2a} n_2 \leq \Delta_{M_1} + \Delta_{M_2} \)

(b) \(n_1 n_2 (\Delta_{M_1} + \Delta_{M_2})^{2a} + 2^a n_1 m_1 (2\Delta_{M_1} + \Delta_{M_2})^{2a} + 2n_2 m_1 \left(\Delta_{M_1}^2 + \Delta_{M_2} \right)^{2a} + 2(k-1)n_1 \left[Z_2(M_1) \right]^{2a} + 4^a \Delta_{M_1}^{2a} n_2 \leq \Delta_{M_1} + \Delta_{M_2} \)

where \(r \) is the number of common neighbors of \(x_1 \) and \(x_2 \) in \(M_1 \).

Proof. The proof follows by Theorem 2 and Theorem 3. \(\square \)

4. Applications

For a real number \(a > 0 \), the lower and upper bounds on GSCI and GRI of the generalized F-sum graphs obtained by the particular classes of graphs as the consequences of the obtained results are given in Figures 4–11.

Example 1. For \(M_1 = P_n, M_2 = P_m \), and \(k = 4 \), we have

(a) \(mn(6.4^n) + m4^n - 4^n n \leq \chi_a(p_n + S_1^e(p_m)) \leq mn (8^n + 2.6^n + 3.4^n) - m(2.6^n - 3.4^n) - 8^n n \), and

(b) \(mn(2^{4^n} + 2^{3n+1} + 3.4^n) - m(2^{3n+1} - 3.4^n) - 2^{4^n} n \leq \chi_a (P_n + S_1^e(p_m)) \leq mn (2^{4^n} + 2^{3n+1} + 3.4^n) - m(2^{3n+1} - 3.4^n) - 22an \).

The graphical representation of Example 1(a) is depicted in Figure 4, the lower bounds are represented by the blue graph and the upper bounds are represented by the red graph. The graphical representation of Example 1(b) is depicted in Figure 5, the lower bounds are represented by the green graph and the upper bounds are represented by the blue graph.
Example 2. For $M_1 = P_n$, $M_2 = P_m$, and $k = 4$, we have

(a) $mn(2.12^n + 2.8^n + 3.4^n) - m(12^n + 2.8^n + 3.4^n) - 12^n
\leq X_n(P_n + S^1_m P_m) \leq mn(2.6^n + 2.5^n + 3.4^n) - m(6^n + 2.5^n + 3.4^n) - 6^n n$,

(b) $mn(2.62^n + 3^n + 2.2^n + 3.4^n) - m(62^n + 3^n + 2.2^n + 3.4^n)
- 62^n n \leq R_n(P_n + S^1_m P_m) \leq mn(2.32^n + 3^n + 2.2^n + 3.4^n) - m(32^n + 3^n + 2.2^n + 3.4^n) - 32^n n$.

The graphical representation of Example 2(a) is depicted in Figure 6. The lower bounds are represented by the Niagara Azure graph and the upper bounds are represented by the gold graph. The graphical representation of Example 2(b) is depicted in Figure 7. The lower bounds are represented by the pink graph and the upper bounds are represented by the yellow graph.

Example 3. For $M_1 = P_n$, $M_2 = P_m$, and $k = 4$, we have

(a) $8^n (mn - n) + 2.8^n (mn - m) + 6n (4n - 6)^n + 8^n m (3n - 4)^n \leq X_n(P_n + S^1_m P_m) \leq 4^n (mn - n) + 2.4^n (mn - m) + 6n (4n - 6)^n + 4^n m (3n - 4)^n$,

(b) $16^n (mn - n) + 16^n (mn - m) + 6n (4n - 6)^n + 16^n \leq R_n(P_n + S^1_m P_m) \leq 4^n (mn - n) + 4^n (mn - m) + 6n (4n - 6)^n + 4^n$.

The graphical representation of Example 3(a) is depicted in Figure 8. The lower bounds are represented by the blue graph and the upper bounds are represented by the green graph. The graphical representation of Example 3(b) is depicted in Figure 9. The lower bounds are represented by the yellow graph and the upper bounds are represented by the gray graph.
Example 4. For \(M_1 = P_n \) and \(M_2 = P_m \), and \(k = 4 \), we have

(a) \(8^n (mn - n) + 12^n (mn - m) + 2.8^a (mn - m) + 6n (4n - 6)^a + 8^n m (3n - 4)^a \leq \chi_a (P_n + S_k^a P_m) \leq 4^a (mn - n) + 6^n (mn - m) + 2.4^a (mn - m) + 6n (4n - 6)^a + 4^n m (3n - 4)^a \),

(b) \(2^{4n} (mn - n) + 2^{2^n} 3^a (mn - m) + 24^a (mn - m) + 6m (4m - 6)^a + 24^a m \leq R_a (P_n + S_k^a P_m) \leq 2^{2a} (mn - n) + 6a (mn - m) + 22^a (mn - m) + 6m (4m - 6)^a + 4^n m \).

The graphical representation of Example 4(a) is depicted in Figure 10. The lower bounds are represented by the blue graph and the upper bounds are represented by the green graph. The graphical representation of Example 4(b) is depicted in Figure 11. The lower bounds are represented by the yellow graph and the upper bounds are represented by the blue graph.

5. Conclusion

In this paper, the lower and upper bounds of the general sum-connectivity and general Randić indices of the generalized \(F_k \)-sum graphs (\(F_k \)-sum graphs) are computed in terms of the order, size, maximum, and/or minimum degree and Zagreb indices of the factor graphs, where the \(F_k \)-sum graphs are obtained with the help of four generalized subdivision-related operations and the Cartesian product of graphs. However, the problem is still open for other types of product of graphs.
Data Availability
All the data are included within this paper. However, the reader may contact the corresponding author for more details of the data.

Conflicts of Interest
The authors have no conflicts of interest.

Acknowledgments
This research was funded by the Project of Anhui Jianzhu University under Grant nos. 2016QD116 and 2017dc03.

References
[1] H. Gonzalez-Diaz, S. Vilar, L. Santana, and E. Uriarte, “Medicinal chemistry and bioinformatics - current trends in drugs discovery with networks topological indices,” Current Topics in Medicinal Chemistry, vol. 7, no. 10, pp. 1015–1029, 2007.
[2] A. R. Matamala and E. Estrada, “Simplex optimization of general sum-connectivity index (GTI-simplex): a unified approach to optimize QSPR models,” The Journal of Physical Chemistry A, vol. 43, no. 109, pp. 9890–9895, 2005.
[3] H. Wiener, “Structural determination of paraffin boiling points,” Journal of the American Chemical Society, vol. 69, no. 1, pp. 17–20, 1947.
[4] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,” Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.
[5] B. Zhou and N. Trinajstić, “On a novel connectivity index,” Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1252–1270, 2009.
[6] B. Zhou and N. Trinajstić, “On general sum-connectivity index,” Journal of Mathematical Chemistry, vol. 47, no. 1, pp. 210–218, 2010.
[7] M. Randic, “Characterization of molecular branching,” Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609–6615, 1975.
[8] X. Li and I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors: Mathematical Chemistry Monographs No.1, University of Kragujevac, Kragujevac, Serbia, 2006.
[9] P. Balister, B. Bollobás, and S. Gerke, “The generalized Randić index of trees,” Journal of Graph Theory, vol. 56, no. 4, pp. 270–286, 2007.
[10] R.-M. Tache, “General sum connectivity index with $\alpha \geq 1$ for bicyclic graphs,” MATCH Commun. Math. Comput. Chem., vol. 72, pp. 761–774, 2014.
[11] I. Tomescu and S. Kanwal, “Unicyclic graphs of given girthk≥ 4 having smallest general sum-connectivity index,” Discrete Applied Mathematics, vol. 164, pp. 344–348, 2014.
[12] Z. Zhu and H. Lu, “On the general sum-connectivity index of tricyclic graphs,” Journal of Applied Mathematics and Computing, vol. 51, no. 1–2, pp. 177–188, 2015.
[13] W. Yan, B.-Y. Yang, and Y.-N. Yeh, “The behavior of wiener indices and polynomials of graphs under five graph decorations,” Applied Mathematics Letters, vol. 20, no. 3, pp. 290–295, Mar. 2007.
[14] M. Eliasi and B. Taeri, “Four new sums of graphs and their wiener indices,” Discrete Applied Mathematics, vol. 157, no. 4, pp. 794–803, 2009.
[15] H. Deng, D. Sarala, S. K. Ayyaswamy, and S. Balachandran, “The zagreb indices of four operations on graphs,” Applied Mathematics and Computation, vol. 275, pp. 423–431, Feb 2016.
[16] S. Akhter and M. Imran, “The Sharp bounds on general sum-connectivity index of four operations on graphs,” Journal of Inequalities and Applications, vol. 24110 pages, 2016.
[17] J.-B. Liu, M. Javaid, and H. M. Awais, “Computing zagreb indices of the subdivision-related generalized operations of graphs,” IEEE Access, vol. 7, pp. 105479–105488, 2019.
[18] M. Ahmad, M. Saeed, M. Javaid, and M. Hussain, “Exact formula and improved bounds for general sum-connectivity index of graph-operations,” IEEE Access, vol. 7, pp. 167290–167299, 2019.
[19] H. M. Awais, M. Javaid, and M. Jamal, “Forgotten index of generalized F-sum graphs,” Journal of Prime Research in Mathematics, vol. 15, pp. 115–128, 2019.
[20] H. M. Awais, M. Javaid, and A. Raheem, “Hyper-zagreb index of graphs based on generalized subdivision related operations,” Punjab University Journal of Mathematics, vol. 52, no. 5, pp. 89–103, 2019.
[21] H. M. Awais, M. Javaid, and A. Akbar, “First general zagreb index of generalized F-sum graphs,” Discrete Dynamics in Nature and Society, vol. 2020, Article ID 2954975, 16 pages, 2020.
[22] Y.-M. Chu, S. Javed, M. Javaid, and M. Kamran Siddiqui, “On bounds for topological descriptors of α-sum graphs,” Journal of Taibah University for Science, vol. 14, no. 1, pp. 1288–1301, 2020.
[23] M. Javaid, S. Javed, A. M. Alanazi, and M. R. Aloitaibi, “Computing analysis of zagreb indices for generalized sum graphs under strong product,” Journal of Chemistry, vol. 2021, Article ID 6663624, 20 pages, 2021.
[24] M. Javaid, “Masood ur Rehman, and Jinde Cao, topological indices of rhombus type silicate and oxide networks,” Canadian Journal of Chemistry, vol. 2, no. 95, pp. 134–143, 2017.
[25] X. Li, M. Ahmad, M. Javaid, M. Saeed, and J.-B. Liu, “Bounds on general randić index for F-sum graphs,” Journal of Mathematics, vol. 2020, Article ID 9129365, 17 pages, 2020.
[26] J.-B. Liu, S. Javed, M. Javaid, and K. Shabbir, “Computing first general zagreb index of operations on graphs,” IEEE Access, vol. 7, pp. 47494–47502, 2019.
[27] X. Zhang, H. M. Awais, M. Javaid, and M. Kamran Siddiqui, “On bounds for topological descriptors of α-sum graphs,” Journal of Chemistry, vol. 2021, Article ID 5294198, 19 pages, 2019.
[28] D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, NY, USA, 1980.