Clinicopathological Characteristics, Survival Outcomes, and Genetic Alterations of Younger Patient With Gastric Cancer: Results From China National Cancer Center and cBioPortal

Penghui Niu
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Huang Huang
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Lulu Zhao
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Tongbo Wang
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Xiaojie Zhang
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Wanqing Wang
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Yawei Zhang
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Chunguang Guo
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Dongbing Zhao
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Ying-Tai Chen (yingtaichen@126.com)
Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences

Research Article

Keywords: Gastric cancer, Younger patient, Clinicopathological characteristics, Survival outcomes, Genetic alterations

DOI: https://doi.org/10.21203/rs.3.rs-862005/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Survival outcomes of younger patients with gastric cancer (GC) remains controversial. The present study sought to explore clinicopathological characteristics, survival outcomes, and genetic alterations in the younger and older patients with GC.

Methods

Patients with GC were identified from the China National Cancer Center Gastric Cancer Database (NCCGCCDB) during 1998–2018. Survival analysis was conducted via Kaplan-Meier estimates and Cox proportional hazards models. Sequencing data were enrolled from the China National Cancer Center, TCGA, and MSKCC databases.

Results

A total of 1146 younger and 16988 older cases were included. Patients in the younger group were predominant in poor differentiation (53.7% versus 33.8%, P<0.001), and pTNM stage IV (19.5% versus 11.8%, P<0.001). The 5-year overall survival (OS) of patients in NCCGCCDB has noticeable increased from 1998 to 2018. Younger age was an independent prognostic factor for GC patients in pTNM stage III (P=0.014), while other stages showed no difference. Compared to the younger, older patients had a higher mutation frequency in LRP1B, GNAS, APC, KMT2D genes (all P< 0.05). In addition, although no significant difference, results of the China National Cancer Center, TCGA, and MSKCC cohorts indicated that younger patients dominated in CDH1, RHOA, and CTNNB1 mutations.

Conclusions

Stable proportion of younger cases and noticeable survival improvements were reported in the China National Cancer Center. Younger patients with pTNM stage III had a worse survival than older, while other tumor stages showed no difference. Furthermore, distinctive molecular characteristics were identified in younger GC patients, which might partly explain histopathological behaviors and prognosis of in this subpopulation.

Background

Gastric cancer (GC) remained one of the most frequent digestive cancers and represented the fourth leading cause of cancer-related death worldwide [1]. More than 40% of GC cases and deaths occurred in China, with an age-standardized 5-year survival rate of 35.1% [2, 3, 4]. It was generally considered that GC mostly onset in patients aged 50–70 years, and younger patients only account for 2.0-6.2% [5, 6]. Although the incidence of GC revealed a decline in the general population, concern has been raised about the stable or increased trends of younger patients in the last decades [7, 8, 9].

Younger patients with GC were more likely to exhibit distinctive biological behaviors, such as female predominance, poor differentiation, and advanced stage [10–13]. To date, results for the survival outcomes in younger patients with GC have been inconsistent [10–15]. Some studies reported that younger patients own a longer survival time than older [10, 11], whereas others showed no difference [12, 13]. Several studies even revealed poor survival of GC in younger adults [14, 15]. From the molecular perspective, the increased incidence of younger patients might owe to the distinctive pathogenesis, and certain genetic alterations have been demonstrated to play a critical role in the progression and prognosis of GC among age groups [16, 17]. However, recent knowledge regarding the mutation profiles in younger GC patients was limited, and a comprehensive molecular profile target younger patients should be defined to enhance understanding of molecular pathology in this subpopulation.

In this study, we sought to explore trends of clinicopathological characteristics and survival outcomes in younger and older patients from the China National Cancer Center over the past 20 years, which might serve as a reference for a large population-based study in China. Moreover, genetic alterations of younger patients were comprehensively investigated based on the China National Cancer Center and the cBioPortal for Cancer Genomics database, thus providing novel insights for the genomics and precision medicine of this subpopulation.

Methods

Data source and patient selection

The study population was described in detail in the previous research [18, 19]. Briefly, all histologically confirmed incident cases of GC diagnosed between 1998 and 2018 in the cancer center were identified through the China National Cancer Center Gastric Cancer Database (NCCGCCDB). Enrollment criteria included age between 18 and 85 years, residence in China, and without a previous cancer diagnosis, except for GC. All GC cases that met the inclusion criteria were divided into two age groups: the younger group (< 40 years of age) and older group (≥ 40 years of age). The rationale for younger group was to remain consistent with the majority of prior studies [11, 20, 21]. Clinical data abstracted from the NCCGCCDB included patients’ demographics, clinicopathological characteristics, and survival variables. Stage of GC was assessed according to the 8th edition of the American Joint Committee on Cancer (AJCC) TNM staging system. The primary endpoints of the study were OS and progression-free survival (PFS). According to the time of histological diagnosis, changing trends of the younger and older patients with GC were investigated in four consecutive periods: from 1998 to 2003 (period 1), from 2003 to 2008 (period 2), from 2008 to 2013 (period 3), and from 2013 to 2018 (period 4).

Of 29 patients with GC included in the further molecular analysis had their tumor specimens sequenced at our institution. All tumor samples were evaluated by pathologists prior to DNA extraction for sequencing. Moreover, we searched the online cBioPortal for Cancer Genomics (http://www.cbioportal.org/) to obtain high-volume genetic resources [19–22]. Finally, 8 gastric adenocarcinoma datasets from TCGA and MSKCC databases met our inclusion criteria, and a total of 1098 GC cases with clear clinical data and mutation detection by next-generation sequencing (NGS) were included in the comparative analysis.
DNA extraction and sequencing

DNA from tumor samples and peripheral blood was extracted via the QIAamp DNA Mini Kit (QIAGEN, Valencia, CA) according to the manufacturer's instructions. Qubit dsDNA assay was performed to measure the DNA concentration. A minimum of 50 ng of DNA is required for construction of an NGS library. For GC patients with available DNA, targeted DNA sequencing was performed. DNA was profiled by using a capture-based targeted sequencing panel (Burning Rock Biotech, Guangzhou, People's Republic of China), targeting 520 genes and spanning 1.67M of Human genomic regions.

Sequencing data analysis

Sequencing data were mapped to the human genome (hg19) using BWA aligner 0.7.10. Local alignment optimization and variant calling were performed using GATK v3.2-2, while DNA translocation analysis was performed using both Tophat2 and Factera 1.4.3. Different mutation calling thresholds were applied on samples with different DNA qualities to avoid false-positive mutation calls due to DNA damage. Single nucleotide variants (SNVs) and insertion-deletions (INDELs) indels identified were annotated using the dbNSFP(v30a), COSMIC (v69), and dbSNP (snp138) database. Variants with a global minor allele frequency greater than 1.0% in 1000Genome Project (http://www.1000genomes.org/data) were considered as common SNPs and removed. Tumor mutational burden (TMB) was defined as the number of somatic, coding, base substitution, and indels per megabase of genome examined. Synonymous mutations were counted to reduce sampling noise. White blood cells were used to filter germline mutations.

Statistical Analysis

The bar chart was plotted to evaluate the variation in tumor stage for younger and older patients from 1998 to 2018. The Chi-squared test was performed to compare categorical variables between the two groups, while continuous variables were evaluated using Student's t-test. OS and PFS for the younger and older group were calculated with the Kaplan-Meier method, while the log-rank test estimated the relevant survival discrepancy. Associations between risk factors and OS were investigated by univariate and multivariate Cox proportional hazard regression analysis, while the corresponding hazard ratio (HR) and 95% CI were generated. The covariates included in the final models were determined by using stepwise selection with minimized AIC. The significant level for adding variables was 0.05, and the significance level for removing variables was 0.10. Statistical significance was set at two-sided P values less than 0.05, and all analyses in the study were conducted using SAS software v9.4 (SAS Institute, Inc., Cary, NC).

Results

Demographic and Clinicopathological features

From 1998 to 2018, a total of 1146 younger cases (6.3%) and 16988 older cases (93.7%) were finally included. Among all GC patients, 2035 were diagnosed in period 1, 3859 in period 2, 6054 in period 3, and 6150 in period 4 (As shown in Table 1). There were significant differences in the distribution of gender, smoking, alcohol history, BMI, primary tumor location, differentiation, pTNM stage between the younger group and older group (all P < 0.01). Distinctive demographic disparities among age groups were founded in the China National Cancer Center. Younger patients were predominant in females (50.1% versus 21.6%, P < 0.0001). Conversely, relatively higher percentages of smokers (21.1% versus 42.4%, P < 0.0001), alcohol drinkers (20.9% versus 34.5%, P < 0.0001), and overweight/obesity (BMI ≥ 23) (36.1% versus 53.4%, P < 0.0001) were revealed in older.
Period 1 (1998-2003)	Period 2 (2004-2008)	Period 3 (2009-2013)	Period 4 (2014-2018)
n (%)	n (%)	n (%)	n (%)
Male	83 (50.0%)	1,367 (73.14%)	27.5
Female	83 (50.0%)	502 (26.86%)	<0.0001
Smoking history			
No	132 (79.5%)	1,180 (63.1%)	206 (84.8%)
Yes	33 (19.9%)	670 (35.9%)	39 (16.1%)
Unknown	1 (0.6%)	9 (3.7%)	10 (4.1%)
Drinking history			
No	131 (78.9%)	1,328 (71.1%)	206 (84.8%)
Yes	34 (20.5%)	520 (27.8%)	27 (11.1%)
Unknown	1 (0.6%)	10 (4.1%)	12 (3.0%)
BMI (kg/m²) at diagnosis			
<18.5	29 (17.5%)	124 (6.6%)	264 (7.2%)
18.5-22.9	73 (44.0%)	733 (39.2%)	1,346 (36.9%)
23-27.4	48 (28.9%)	755 (40.4%)	1,388 (38.0%)
≥27.5	9 (5.4%)	196 (10.5%)	423 (11.6%)
Unknown	7 (4.2%)	14 (5.8%)	104 (6.3%)
Weight loss			
None	61 (36.8%)	615 (32.9%)	1,427 (39.1%)
<10%	44 (25.1%)	461 (24.7%)	842 (23.1%)
≥10%	25 (15.1%)	191 (10.2%)	339 (9.3%)
Unknown	36 (22.7%)	602 (32.2%)	1,044 (28.6%)
H. pylori infection			
Negative	0 (0.0%)	3 (0.2%)	51 (1.4%)
Positive	0 (0.0%)	11 (0.6%)	42 (1.2%)
Unknown	166 (100.0%)	1,855 (99.3%)	3,559 (97.5%)
Primary tumor location			
Proximal	28 (16.9%)	836 (44.7%)	32 (13.2%)

Table 1
Demographic and clinicopathological characteristics between younger group and older group in 4 consecutive periods (bidirectional cohort 1998-2018).
Classification	Count	Percentage
Distal	126	75.9%
Overlapping	6	3.6%
Lesions	198	11.5%
Unknown	159	8.8%
Lauren	1,373	77.5%
Classification		
Intestinal	16	6.2%
Diffuse	232	11.2%
Mixed	50	2.6%
Unknown	1,367	67.7%
Borrman	1,327	30.5%
Classification		
Borrman I	13	2.8%
Borrman II	45	7.1%
Borrman III	52	7.8%
Borrman IV	16	2.8%
Mixed	2	0.4%
Unknown	38	2.2%
Linitis plastica		
No	162	85.1%
Yes	4	2.0%
Unknown	0	0.0%
Differentiation		
Well	1	0.6%
Moderate	21	6.8%
Poor	87	29.5%
Undifferentiated	0	0.0%
Unknown	57	29.5%
HER2 score		
0 (-)	1	0.6%
1 (+)	0	0.0%
2 (++)	0	0.0%
3 (+++)	0	0.0%
Unknown	165	88.6%

Note: All percentages are rounded to one decimal place.
Pathologic T-stage

T0+Tis	0 (0.0%)	1 (0.1%)	2 (0.8%)	13 (0.4%)	1 (0.3%)	20 (0.4%)	0 (0.0%)	24 (0.4%)				
T1	17 (10.2%)	159 (8.5%)	37 (15.2%)	357 (9.8%)	59 (14.9%)	796 (14.1%)	81 (23.8%)	1,269 (21.8%)				
T2	13 (7.8%)	135 (7.2%)	15 (6.2%)	248 (6.8%)	30 (7.6%)	491 (8.7%)	36 (10.6%)	554 (9.5%)				
T3	2 (1.2%)	13 (0.7%)	22 (9.1%)	311 (8.5%)	80 (20.2%)	1,712 (30.3%)	39 (11.5%)	1,159 (20.0%)				
T4	98 (59.0%)	1,156 (61.9%)	110 (45.3%)	1,903 (52.1%)	116 (29.2%)	1,374 (24.3%)	114 (33.5%)	1,654 (28.5%)				
TX	36 (21.7%)	405 (21.7%)	0.74	57 (23.5%)	820 (22.5%)	0.066	111 (28.0%)	1,264 (22.3%)	0.0004	70 (20.6%)	1,150 (19.8%)	0.0

Pathologic N-stage

N0	27 (16.3%)	418 (22.4%)	62 (25.5%)	830 (22.7%)	97 (24.4%)	1,518 (26.8%)	110 (32.4%)	1,893 (32.6%)				
N1	21 (12.7%)	273 (14.6%)	31 (12.8%)	520 (14.2%)	41 (13.0%)	775 (13.7%)	31 (9.1%)	729 (12.6%)				
N2	29 (17.5%)	310 (16.6%)	24 (9.9%)	510 (14.0%)	52 (13.1%)	797 (14.1%)	55 (16.2%)	766 (13.2%)				
N3	50 (30.1%)	459 (24.6%)	64 (25.3%)	888 (24.3%)	91 (22.9%)	1,222 (21.6%)	70 (20.6%)	1,195 (20.6%)				
NX	39 (23.5%)	409 (21.9%)	0.27	62 (25.5%)	904 (24.8%)	0.36	116 (29.2%)	1,345 (23.8%)	0.060	74 (21.8%)	1,227 (21.1%)	0.2

Pathologic M-stage

M0	122 (73.5%)	1,563 (83.6%)	178 (73.3%)	2,939 (80.5%)	284 (71.5%)	4,517 (79.9%)	266 (78.2%)	4,882 (84.0%)				
M1	40 (24.1%)	261 (14.0%)	48 (19.8%)	430 (11.8%)	81 (20.4%)	714 (12.6%)	54 (15.9%)	601 (10.3%)				
MX	4 (2.4%)	45 (2.4%)	0.0020	17 (7.0%)	283 (7.8%)	0.0012	32 (8.1%)	426 (7.5%)	<0.0001	20 (5.9%)	327 (5.6%)	0.0

pTNM stage

0	0 (0.0%)	1 (0.1%)	2 (0.8%)	12 (0.3%)	1 (0.3%)	20 (0.4%)	0 (0.0%)	19 (0.3%)				
I	17 (10.2%)	210 (11.2%)	42 (17.3%)	470 (12.9%)	71 (17.9%)	1,010 (17.9%)	94 (27.7%)	1,422 (24.5%)				
II	10 (6.0%)	63 (3.4%)	24 (9.9%)	279 (7.6%)	40 (10.1%)	948 (16.8%)	34 (10.0%)	935 (16.1%)				
III	85 (51.2%)	1,103 (59.0%)	99 (40.7%)	1,895 (51.9%)	153 (38.5%)	2,182 (38.6%)	128 (37.7%)	2,048 (35.3%)				
IV	40 (24.1%)	261 (14.0%)	48 (19.8%)	430 (11.8%)	81 (20.4%)	714 (12.6%)	54 (15.9%)	601 (10.3%)				
Unknown	14 (8.4%)	231 (12.4%)	0.0039	28 (11.5%)	566 (15.5%)	<0.0001	51 (12.9%)	783 (13.8%)	<0.0001	30 (8.8%)	785 (13.5%)	0.0

Lymphatic invasion

No	76 (45.8%)	986 (52.8%)	123 (50.6%)	1,777 (48.7%)	183 (46.1%)	2,830 (50.0%)	152 (44.7%)	2,384 (41.0%)				
Yes	36 (21.7%)	357 (19.1%)	34 (14.0%)	749 (20.5%)	75 (18.9%)	1,182 (20.9%)	82 (24.1%)	1,959 (33.7%)				
Unknown	54 (32.5%)	526 (28.1%)	0.23	86 (35.4%)	1,126 (30.8%)	0.039	139 (35.0%)	1,645 (29.1%)	0.043	106 (31.2%)	1,467 (25.3%)	0.0

Vascular invasion

No	76 (45.8%)	988 (52.9%)	124 (51.0%)	1,776 (48.6%)	183 (46.1%)	2,828 (50.0%)	152 (44.7%)	2,375 (40.9%)				
Yes	36 (21.7%)	354 (18.9%)	34 (14.0%)	742 (20.3%)	74 (18.6%)	1,185 (21.0%)	82 (24.1%)	1,973 (34.0%)				
Unknown	54 (32.5%)	526 (28.1%)	0.23	86 (35.4%)	1,126 (30.8%)	0.039	139 (35.0%)	1,645 (29.1%)	0.043	106 (31.2%)	1,467 (25.3%)	0.0
As for tumor, younger patients were more common in distal location (77.2% versus 53.5%, P < 0.0001), Borrmann IV (8.4% versus 5.8%, P < 0.05), poor differentiation (53.7% versus 33.8%, P < 0.0001), and pTNM stage IV (19.5% versus 11.8%, P < 0.001). The percentage of negative surgical margin in the patients aged ≥ 40 was higher than that in younger patients, but there were no significant statistical differences in all four periods (all P ≥ 0.05). Among patients in period 3 and period 4, GC in the younger group was more likely to present with diffuse classification (P < 0.0001), and also had more lymphatic invasion and vascular invasion (P = 0.043, P = 0.0008, P = 0.031, P = 0.0006, resp.). In period 1, period 3 and period 4, younger patients with GC also demonstrated a better acceptance of multimodality treatment (32.5% versus 24.2%, P = 0.014; 41.8% versus 31.8%, P < 0.001; 43.8% versus 35.3%, P = 0.0016).

Trends of clinicopathological features of younger patients with GC over the past 20 years were investigated. The median proportion of patients in the younger group over time was 6.2% (range 5.5–8.2%). No trend for the proportion of young patients from period 2 to period 4 was noted on linear regression (P = 0.053). The proportion of HER2 score of 0(-) and 1(+) had increased from period 3 to period 4 (22.7–35.3%, 24.2–31.5%, resp.), while the score of 2(++) and 3(+++) showed downward trends (6.8–5.6%, 3.0–2.1%, resp.). As shown in Fig. 1, the percentages of pTNM tumor stage I and pTNM stage II in the younger group had increased gradually with time (from 10.2% in period 1 to 22.7% in period 4, from 6.0% in period 1 to 10.0% in period 4, resp.), whereas GC in pTNM stage III and pTNM stage IV showed a decrease (from 51.2% in period 1 to 37.7% in period 4, from 24.1% in period 1 to 15.9% in period 4, resp.). In the therapeutic regimen, both the percentages of younger patients undergoing surgery and the patients after multimodality treatment had increased from period 1 to period 4 (1.8–16.2%, 32.5–42.8%, resp.). As for surgical margin, a significant decrease was observed in positive margin for the younger group during 20 years. (from 6.6% in period 1 to 2.1% in period 4).

OS and PFS for younger patients with GC

Changing trends of OS and PFS between younger and older groups were shown in Table 2 and Fig. 2. In general, a noticeable survival increment of GC was demonstrated in Cancer Center during 20 years. The 5-year OS in younger and older group has increased from 44.4% (95%CI: 28.2%-60.7%) to 86.0% (95%CI: 81.7%-90.4%) and from 40.4% (95%CI: 36.0%-44.8%) to 86.3% (95%CI: 85.2%-87.4%), respectively. After stratification by pTNM stage, the increased survival of younger cases was pronounced in stages III and IV (31.3% in period 1 to 83.6% in period 4, 0% in period 1 to 55.5% in period 4, resp.). Moreover, the 5-year PFS of younger patients has increased from 17.1% (95%CI: 8.3%-26.0%) in period 1 to 65.5% (95%CI: 58.4%-72.6%) in period 4, with an obvious dominance in pTNM stage III (8.1–62%).
Table 2
The 5-year overall and progression-free survival rates by cancer stages (bidirectional cohort 1998-2018).

Survival analysis	Total (n = 13,533)	pTNM stage I (n = 837)	pTNM stage II (n = 12,696)	pTNM stage III (n = 12,728)	pTNM stage IV (n = 17,738)	
Overall survival						
Total	68.1 (67.2-68.9)	96.6 (95.8-97.3)	85.1 (83.3-86.8)	61.8 (60.4-63.2)	19.0 (16.3-21.8)	
Younger	61.8 (58.2-65.4)	99.5 (98.5-100.0)	80.6 (71.6-89.5)	55.1 (49.0-61.2)	16.2 (8.4-24.0)	
Older	68.5 (67.6-69.4)	96.3 (95.5-97.1)	85.3 (83.5-87.0)	62.3 (60.8-63.7)	19.4 (16.5-22.4)	
Younger (n = 837)						
Overall survival						
Total	53.4 (52.4-54.3)	90.4 (89.1-91.7)	75.4 (73.2-77.5)	46.8 (45.4-48.2)	8.5 (6.6-10.4)	
Younger	46.0 (42.4-49.6)	95.6 (92.4-98.8)	63.1 (52.2-74.1)	36.3 (30.7-42.0)	8.7 (3.6-13.8)	
Older	53.9 (53.0-54.9)	89.9 (88.6-91.3)	76.0 (73.9-78.2)	47.5 (46.0-49.0)	8.4 (6.3-10.4)	
Progress-free survival						
Total	40.7 (36.4-45.0)	94.0 (88.9-99.1)	78.3 (61.4-95.1)	32.4 (26.9-37.8)	4.8 (0.0-10.2)	
Younger	44.4 (28.2-60.7)	100.0 (100.0-100.0)	100.0 (100.0-100.0)	31.3 (8.5-54.0)	0.0 (0.0-0.0)	
Older	40.4 (36.0-44.8)	93.3 (87.7-99.0)	75.0 (56.0-94.0)	32.5 (26.8-38.1)	5.4 (0.0-11.3)	
Progress-free survival						
Total	26.5 (23.4-29.5)	79.8 (71.9-87.7)	42.4 (25.6-59.3)	21.7 (17.9-25.4)	2.2 (0.0-5.1)	
Younger	17.1 (8.3-26.0)	88.9 (68.3-100.0)	16.7 (0.0-46.5)	8.1 (0.0-16.9)	0.0 (0.0-0.0)	
Older	27.4 (24.1-30.6)	78.9 (70.5-87.3)	48.2 (29.3-67.0)	22.8 (18.8-26.8)	2.4 (0.0-5.7)	
Period 1						
Overall survival						
Total	60.7 (58.9-62.5)	93.9 (91.7-96.2)	77.2 (72.0-82.4)	57.5 (54.9-60.1)	12.2 (8.0-16.3)	
Younger	56.7 (49.5-64.0)	100.0 (100.0-100.0)	66.7 (46.5-86.8)	45.7 (34.0-57.4)	16.7 (3.3-30.0)	
Older	60.9 (59.1-62.8)	93.4 (90.9-95.8)	78.2 (72.8-83.5)	58.2 (55.5-60.8)	11.5 (7.2-15.9)	
Progress-free survival						
Total	47.3 (45.4-49.2)	87.8 (84.5-91.0)	67.9 (62.0-73.7)	45.4 (42.7-48.0)	9.8 (6.1-13.4)	
Younger	46.0 (38.7-53.4)	94.3 (86.6-100.0)	52.2 (31.7-72.6)	37.3 (26.4-48.3)	16.1 (3.2-29.1)	
Older	47.4 (45.4-49.4)	87.1 (83.6-90.6)	69.5 (63.5-75.5)	45.9 (43.1-48.6)	8.9 (5.2-12.6)	
Period 2						
Overall survival						
Total	63.8 (62.5-65.1)	96.6 (95.5-97.7)	83.3 (80.8-85.7)	58.3 (56.2-60.5)	9.4 (6.9-11.9)	
Younger	52.9 (47.5-58.2)	98.6 (95.7-100.0)	80.0 (66.8-93.2)	49.2 (40.2-58.1)	6.7 (0.4-13.0)	
Older	64.6 (63.2-65.9)	96.4 (95.3-97.6)	83.4 (80.9-85.8)	58.9 (56.7-61.1)	9.8 (7.0-12.5)	
Progress-free survival						
Total	50.1 (48.6-51.5)	91.3 (89.4-93.2)	74.4 (71.4-77.5)	43.7 (41.4-45.9)	4.3 (2.6-6.0)	
Younger	39.6 (34.2-45.0)	96.4 (91.6-100.0)	71.9 (56.3-87.5)	31.7 (23.5-39.9)	5.9 (0.3-11.5)	
Older	50.9 (49.4-52.3)	90.9 (88.9-92.9)	74.5 (71.5-77.6)	44.5 (42.2-46.9)	4.1 (2.4-5.9)	
Period 3						
Overall survival						
Total	50.7 (48.6-52.7)	90.8 (88.4-93.2)	74.4 (71.4-77.5)	43.0 (40.3-45.7)	4.4 (3.0-5.8)	
Younger	39.6 (34.2-45.0)	96.4 (91.6-100.0)	71.9 (56.3-87.5)	31.7 (23.5-39.9)	5.9 (0.3-11.5)	
Older	50.9 (49.4-52.3)	90.9 (88.9-92.9)	74.5 (71.5-77.6)	44.5 (42.2-46.9)	4.1 (2.4-5.9)	
Period 4						
Overall survival						
	Total (n = 5,010)	Younger (n = 292)	Older (n = 4,718)	Total (n = 4,738)	Younger (n = 292)	Older (n = 4,446)
--------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------
Total (%)	86.3 (85.2-87.3)	86.0 (81.7-90.4)	86.3 (85.2-87.4)	69.8 (67.9-71.7)	65.5 (58.4-72.6)	70.1 (68.1-72.0)
98.7 (98.0-99.4)	100.0 (100.0-100.0)	98.6 (97.9-99.3)	92.2 (89.4-94.9)	92.2 (89.4-94.9)	95.3 (88.6-100.0)	91.9 (89.0-94.9)
94.1 (92.3-95.9)	96.9 (90.8-100.0)	94.0 (92.1-95.8)	84.8 (81.9-87.7)	80.3 (60.7-99.9)	85.0 (82.1-87.9)	85.0 (82.1-87.9)
83.5 (81.5-85.5)	83.6 (75.8-91.4)	83.5 (81.4-85.6)	66.5 (63.3-69.6)	62.0 (50.9-73.1)	66.8 (63.5-70.0)	66.8 (63.5-70.0)
53.0 (47.0-59.0)	55.5 (37.5-73.5)	52.8 (46.5-59.1)				

Progression-free survival

	Total (n = 4,738)	Younger (n = 292)	Older (n = 4,446)
Total (%)	69.8 (67.9-71.7)	65.5 (58.4-72.6)	70.1 (68.1-72.0)
92.2 (89.4-94.9)	95.3 (88.6-100.0)	91.9 (89.0-94.9)	
84.8 (81.9-87.7)	80.3 (60.7-99.9)	85.0 (82.1-87.9)	
66.5 (63.3-69.6)	62.0 (50.9-73.1)	66.8 (63.5-70.0)	
6.8 (0.3-13.4)	0.0 (0.0-0.0)	7.7 (0.4-15.1)	

Figure 3 revealed the Kaplan-Meier curves for OS between the younger and older groups (Fig. 3). The analysis showed younger patients had a worse survival outcome in stage III (P = 0.0095) but a better prognosis in stage I (P = 0.03). However, no significant difference was found in stage II and stage IV (P = 0.60, P = 0.37, resp.).

Prognostic Factors in Univariate and Multivariate Analyses

To investigate the significant factors impacting survival outcomes in young patients with GC, univariate and multivariate analyses were performed. The results revealed significantly different survival of GC based on the following parameters (Table 3): the period of diagnosis, drinking consumption, overweight/obesity (BMI ≥ 23, < 27.4), Weight loss ≥ 10%, H. pylori infection, distal tumor location, Borrmann IV, Linitis plastic, poor differentiation, pTNM stage II, III, and IV, Vascular invasion, and surgical margin (all P < 0.05). For the younger adults, prognosis factors only involved diagnosis period 4 (P < 0.0001), distal tumor location (P = 0.0007), Linitis plastica (P = 0.024), pTNM stage III (P < 0.0001), pTNM stage IV (P < 0.0001), and surgical margin (P = 0.011) (Supplementary Table 1).
Table 3

Univariate and multivariate survival analysis of predictors associated with overall survival for gastric cancer (bidirectional cohort 1998–2018).

Prognostic Factors	Univariate analysis	Multivariate analysis					
	Hazard ratio	95% CI	P Value	Hazard ratio	95% CI	P Value	
Period of diagnosis							
Period 1 (1998–2003)	1.00	1.00		1.00	1.00		
Period 2 (2004–2008)	0.54	0.48–0.61	< 0.0001	0.55	0.49–0.62	< 0.0001	
Period 3 (2009–2013)	0.42	0.42–0.53	< 0.0001	0.60	0.53–0.69	< 0.0001	
Period 4 (2014–2018)	0.18	0.16–0.21	< 0.0001	0.24	0.20–0.28	< 0.0001	
Gender							
Male	1.00			1.00			
Female	1.06	0.99–1.14	0.091				
Smoking history							
No	1.00			1.00			
Yes	0.90	0.84–0.96	0.0009	0.93	0.87–1.00	0.045	
Unknown	1.06	0.89–1.25	0.54				
Drinking history							
No	1.00			1.00			
Yes	0.88	0.82–0.94	0.0001	0.93	0.87–1.00	0.045	
Unknown	1.06	0.89–1.25	0.52	0.86	0.70–1.07	0.18	
BMI (kg/m²) at diagnosis							
< 18.5	1.17	1.04–1.32	0.0080	1.05	0.93–1.19	0.42	
18.5–22.9	1.00			1.00			
23–27.4	0.80	0.74–0.85	< 0.0001	0.93	0.86–1.00	0.036	
≥ 27.5	0.75	0.68–0.83	< 0.0001	0.94	0.85–1.05	0.25	
Unknown	1.51	1.31–1.74	< 0.0001	1.14	0.96–1.35	0.14	
Weight loss							
None	1.00			1.00			
< 10%	1.38	1.28–1.48	< 0.0001	1.05	0.97–1.13	0.22	
≥ 10%	2.14	1.95–2.35	< 0.0001	1.22	1.11–1.35	< 0.0001	
Unknown	1.82	1.67–1.99	< 0.0001	1.07	0.97–1.19	0.16	
H. pylori infection							
Negative	1.00			1.00			
Positive	1.64	1.32–2.05	< 0.0001	1.29	1.03–1.61	0.024	
Unknown	3.09	2.62–3.66	< 0.0001	1.54	1.30–1.83	< 0.0001	
Primary tumor location							
Proximal	1.00			1.00			
Distal	0.87	0.81–0.92	< 0.0001	0.93	0.87–1.00	0.038	
Overlapping lesions	1.56	1.36–1.78	< 0.0001	1.10	0.96–1.27	0.18	
Unknown	1.20	1.02–1.40	0.026	0.65	0.53–0.80	< 0.0001	
Lauren classification							
Intestinal	1.00			1.00			
Diffuse	1.83	1.58–2.12	< 0.0001	1.17	0.99–1.38	0.069	
Mixed	1.36	1.14–1.61	0.0005	0.97	0.81–1.15	0.70	
Prognostic Factors	Univariate analysis				Multivariate analysis		
----------------------------	---------------------	-----------	-----------	-----------	-----------------------	-----------	-----------
	Hazard ratio	95% CI	P Value	Hazard ratio	95% CI	P Value	
Unknown	3.75	3.33–4.23	<0.0001	1.09	0.93–1.27	0.30	
Borrmann classification							
Borrmann I	1.00			1.00			
Borrmann II	0.94	0.83–1.07	0.37	0.90	0.79–1.02	0.089	
Borrmann III	1.17	1.03–1.33	0.019	0.97	0.85–1.11	0.68	
Borrmann IV	2.48	2.13–2.88	<0.0001	1.40	1.19–1.65	<0.0001	
Mixed	0.42	0.25–0.70	0.0009	0.97	0.57–1.63	0.90	
Unknown	2.50	2.21–2.84	<0.0001	1.06	0.93–1.21	0.42	
Linitis plastica							
No	1.00			1.00			
Yes	2.33	1.84–2.94	<0.0001	1.29	1.01–1.64	0.044	
Unknown	1.51	1.33–1.71	<0.0001	0.85	0.72–0.99	0.042	
Differentiation							
Well	1.00			1.00			
Moderate	3.10	2.03–4.74	<0.0001	1.45	0.94–2.22	0.090	
Poor	4.48	2.94–6.83	<0.0001	1.56	1.02–2.40	0.041	
Undifferentiated	0.001	0.001–999.99	0.91	0.000	0.000–999.999	0.90	
Unknown	9.73	6.39–14.81	<0.0001	1.59	1.02–2.48	0.042	
HER2 score							
0 (-)	1.00			1.00			
1 (+)	0.84	0.74–0.96	0.0082	0.96	0.85–1.09	0.54	
2 (++)	0.71	0.59–0.84	0.0001	0.90	0.75–1.08	0.27	
3 (+++)	1.05	0.85–1.29	0.68	1.08	0.87–1.33	0.51	
Unknown	2.41	2.20–2.64	<0.0001	1.21	1.06–1.37	0.0042	
Pathologic T-stage							
T0 + Tis	2.67	1.17–6.08	0.020	1.38	0.19–10.14	0.75	
T1	1.00			1.00			
T2	2.72	2.10–3.51	<0.0001	1.44	1.07–1.95	0.017	
T3	7.01	5.70–8.62	<0.0001	2.10	1.51–2.92	<0.0001	
T4	11.29	9.24–13.80	<0.0001	2.55	1.82–3.57	<0.0001	
TX	19.07	15.58–23.33	<0.0001	2.50	1.72–3.62	<0.0001	
Pathologic N-stage							
N0	1.00			1.00			
N1	2.28	1.98–2.63	<0.0001	1.27	1.09–1.49	0.0020	
N2	3.52	3.09–4.00	<0.0001	1.74	1.48–2.04	<0.0001	
N3	6.85	6.11–7.67	<0.0001	2.82	2.41–3.29	<0.0001	
NX	8.72	7.79–9.75	<0.0001	1.74	1.35–2.26	<0.0001	
Pathologic M-stage							
M0	1.00			1.00			
M1	5.76	5.34–6.22	<0.0001				
MX	1.98	1.78–2.20	<0.0001				
pTNM stage							
Prognostic Factors	Univariate analysis	Multivariate analysis					
-------------------	-------------------	-------------------					
	Hazard ratio	95% CI	P Value	Hazard ratio	95% CI	P Value	
0	2.53	1.04–6.19	0.042	1.76	0.20–15.49	0.61	
I	1.00			1.00			
II	3.70	2.99–4.57	<0.0001	1.69	1.29–2.32	0.0012	
III	10.42	8.66–12.54	<0.0001	1.85	1.29–2.66	0.0009	
IV	39.04	32.23–47.29	<0.0001	5.04	3.42–7.42	<0.0001	
Unknown	13.19	10.88–15.99	<0.0001	1.80	1.21–2.68	0.0036	

Lymphatic invasion

- No: 1.00
- Yes: 1.76 (1.62–1.92, <0.0001)
- Unknown: 3.73 (3.47–4.00, <0.0001)

Vascular invasion

- No: 1.00
- Yes: 1.77 (1.63–1.92, <0.0001)
- Unknown: 3.74 (3.48–4.01, <0.0001)

Nerve invasion

- No: 1.00
- Yes: 1.06 (0.96–1.16, 0.23)
- Unknown: 3.15 (2.95–3.37, <0.0001)

Therapeutic regimen

- Surgery only: 1.00
- Multimodality treatment: 3.73 (3.04–4.58, <0.0001)
- Unknown: 5.67 (4.64–6.93, <0.0001)

Surgical margin

- Negative: 1.00
- Positive: 2.47 (2.08–2.94, <0.0001)
- Unknown: 3.10 (2.91–3.30, <0.0001)

Age group

- Younger group (<40 years): 1.00
- Older group (≥40 years): 0.80 (0.71–0.90, 0.0001)

The final model was built by using stepwise selection with minimized AIC, and the covariates included in the final models were selected by the stepwise selection method, with a significant level for adding variables of 0.05 and a significant level of removing variables of 0.10.

In the univariate analysis, older patients with GC had better survival outcomes than the younger (HR = 0.80, 95% CI: 0.71–0.90, P = 0.0001). After stratification by pTNM stage, compared to the older, younger group showed a better prognosis in stage I (P = 0.04) but worse in stage III (P < 0.01) (Supplementary Table 2).

However, the multivariate analysis demonstrated that younger age was not an independent factor for poor survival outcomes (P = 0.20). In subdivided pTNM stages, a comparison presented that younger group was associated with worse survival outcomes in tumor stage III (P = 0.014), but no statistical significance in stages I, II, and IV (P = 0.074, 0.59 and 0.76, resp.).

Genetic alterations of younger patients with GC

The genetic alterations of GC patients from the China National Cancer Center were shown in Fig. 4A and Supplementary Fig. 1. Of 29 eligible patients with cancer genomics data, 20 were older (68.9%), and the rest of 9 were younger (31.1%). Although no statistical disparity was found in the mutational profile, younger patients have a higher mutation frequency in RHOA (33% versus 15%), CDH1 (22% versus 5%), KMT2D (22% versus 10%), SMAD4 (11% versus 0%), ARID1A (11% versus 5%), ATM (11% versus 5%), CTNNB1 (11% versus 5%), and PIK3CA (11% versus 5%), while older patients had dominated in TP53 (70% versus 44%), LRP1B (30% versus 11%), FGFR2 (20% versus 0%), ARID2 (15% versus 0%), EP300 (15% versus 0%), GNAS (15% versus 11%), IRS2 (15% versus 11%), BRCA2 (10% versus 0%), and APC (5% versus 0%). Moreover, a high-volume analysis of the relationship between genetic alterations and age groups was
Further performed via the TCGA and MSKCC databases (Fig. 4B and Supplementary Fig. 2). GC tissues from older patients had higher likelihoods of LRPIB (30% vs 9%, P < 0.05), KMT2D (13% vs 0%, P < 0.05), APC (13% vs 2%, P < 0.05), GNAS mutations (11% vs 1%, P < 0.05) than the younger. Similar to the China National Cancer Center, although no significant differences were found, younger patients had mutation predominance in CDH1 (17% vs 9%), RHOA (7% vs 5%), and CTNNB1 mutations (9% vs 6%). In addition, of the pooled 8 gastric adenocarcinoma datasets, high-TMB was closely associated with older age at diagnosis (P < 0.0001) (Supplementary Fig. 3).

Discussion

Our study provided a comprehensive analysis of younger GC patients at clinical and molecular levels. A primary finding was the stable proportion and significant survival improvements of younger cases in the China National Cancer Center from 1988 to 2018. Younger age was proven to be an independent prognostic factor for GC patients in pTNM stage III, while patients in stage I, stage II, and stage IV had similar survival among different age groups. Compare to the younger, a higher mutation frequency of LRPIB, KMT2D, APC, and GNAS genes in older patients was demonstrated in the current sequencing analysis, which might partly explain the histopathological behaviors and prognosis between the young and old groups.

Consistent with the previous study [10–15, 23, 24], our findings revealed unique clinical features in younger patients, including female dominance, higher proportions of poor differentiation, and advanced tumor stage. Although the mechanisms for female predominance in younger patients were not clear, some studies indicated that hormonal factors might account for the sex difference [25, 26]. Apart from H. pylori infection [27] and some gene distinctions [28], the vague symptoms and delayed diagnosis were also considerable reasons for the advanced stage of younger patients [29, 30].

With an increase of 41.6% for the younger group and 45.9% for the older group, a significant 5-year survival improvement of GC was revealed in our center, which was in line with the increasing trend of pTNM stages I and II, surgery, and multimodality treatment. In China, survival trends of GC could be attributed to an improvement of quality of clinical services, including the improved access to primary healthcare, greater availability of diagnostic facilities, as well as enhanced effectiveness of the treatment [4]. Until 2015, the screening and early detection programs including GC have expanded to 31 provinces [31]. Encouragingly, the detection rate of GC has increased steadily benefit from the large-scale application of upper gastrointestinal endoscopy [32]. In addition, the widespread decision-making by the multi-disciplinary team (MDT) [33] and the emergence of individually multimodal therapies [34] were also closely related to a better prognosis for GC.

To date, survival outcomes of younger patients were still controversial. Previous studies suggested younger patients had a worse survival [14, 15], while several analyses showed on difference [12, 13]. Current data demonstrated a worse prognosis for younger patients in pTNM stage III, whereas other stages showed similar survival. Therefore, variations of prognosis between the younger and older group might be related to stage distributions. Compare to older patients, the higher proportion of multimodality treatment in younger reflected a better tolerance for GC, while more advanced stage and aggressive behaviors might be related to a worse survival in this subpopulation [14]. Besides, the reduced organ functions and rising risk of comorbidities also potentially effect GC prognosis that occurred with age [35]. In addition, although genomic profiles of younger patients were not yet fully ascertained, several studies demonstrated a strong association between certain gene mutations and the prognosis of GC among age groups [16, 17].

The present study observed the differences in the prevalence of several gene mutations between younger and older patients, indicating a specific mutational spectrum in younger patients with GC. Significantly, a higher prevalence of LRPIB mutations were identified in old patients. LRPIB encoded a unique low-density lipoprotein receptor (LDLR) that functioned in the binding and internalization of ligands [36]. Until now, the concrete functions of LRPIB in carcinogenesis were controversial [37–40]. Considered as a tumor suppressor, several findings indicated the impaired LRPIB expression could promote the proliferation, migration, and invasion of carcinoma cells [38, 39]. However, the latest update of the Network of Cancer Genes (NCG 6.0) listed LRPIB as a potentially false-positive tumor suppressor [39]. Zhou et al. [40] also demonstrated LRPIB was one of the recurrently mutated driver genes, which was strongly associated with the development of GC. Further analysis was required to investigate the pathobiological property of LRPIB in GC.

We also observed that older patients had a higher likelihood of GNAS mutations than younger. GNAS was situated on chromosome 20q13.3 and encoded alpha subunit of the stimulatory G-protein [41]. It was suggested that mutations of GNAS caused the activation of Wnt and ERK1/2 MAPK pathways via autonomous synthesis of cyclic adenosine monophosphate (cAMP), thus promoting intestinal tumorigenesis [42]. After that, several studies demonstrated the frequent GNAS mutations in gastric adenocarcinoma [43, 44]. Consistent to current study, Esser et al.[41] also indicated the expression of GNAS was more prevalent in well- and moderately-differentiated GC, which was potentially correlated with older patients. Although the underlying mechanism was currently unclear, GNAS mutation might potentially affect the progression of GC via the protein kinase A (PKA), MAPK, and Wnt signaling pathways [45].

As in the past reports [46, 47], our analysis showed older patients had a higher prevalence of APC mutation than younger. Long considered a canonical tumor suppressor, APC could inhibit the excessive proliferation of tumor cells via regulating Wnt signaling pathway [48]. Mutation of APC was common in GC, particularly in well-differentiated adenocarcinoma [49, 50]. Zhan et al. [51] proposed a strong synergy between APC alterations and MEK inhibitors in enhancing the signaling output of the Wnt cascades. Gerner et al. [52] also observed mutant APC was associated with the elevation of nitric oxide synthase 2 and the dysregulation of polyamine metabolism. These data suggested that APC mutation might contribute to the oncogenesis of GC. In addition, a recent study also demonstrated a significant association target high expression of APC and adverse prognosis of GC patients [53]. The observed prognostic alteration could be the result of the disruption of Wnt cascades, metabolic dysregulation, or some other unknown mechanisms.

KMT2D was among the most frequently mutated genes in some types of cancer including GC [54–57]. Through encoding histone methyltransferase, KMT2D was critically involved in the epigenetic and transcriptional regulation of certain tumor-associated genes [56–60]. Lv et al. [56] suggested that KMT2D potentially prompt prostate carcinogenesis and metastasis via activating LIFR and KLF4 gene. Later, Xiong et al. [57] confirmed that KMT2D might play a role in cell proliferation and apoptosis of GC via the down-regulation of PTEN and up-regulation of LIFR and KLF4. However, recent studies also found the inhibiting effects of KMT2D in medulloblastoma [58], lung tumors [59], and lymphoma [60], as KMT2D could activate some specific pro-apoptotic genes or...
repress certain genes related to cell growth and survival pathways. The above results revealed that the *KMT2D* gene had different functions and biological effects depending on the type of cancer. Furthermore, several studies indicated that mutations of *KMT2D* were substantially higher in older patients than in younger [61, 62], and the age disparity was also demonstrated in our analysis. More experimental studies were necessary to elucidate the underlying functions of *KMT2D* in GC among age groups.

Our study has several strengths. First, clinicopathological characteristics and survival trends of the younger patients from 1998 to 2018 were comprehensively described based on NCCGCDB, which might serve as a reference for a large population-based study in China. Second, our study, for the first time, suggested distinctive mutation disparities including *LRP1B, GNAS, APC, and KMT2D* genes in younger and older patients, which might partly explain the progression and survival of GC among age groups in molecular levels. The major limitation of our study was the insufficient sequencing sample size, particularly for pTNM subtype analysis. As such, possibility might not be ruled out for some of the significant findings. Based on the TCGA and MSKCC, we further analyze a larger-volume sequencing sample to compare genetic alterations among age groups. In addition, regional and racial disparity of younger patients from China and western counties might also exist, which could affect the clinicopathological and molecular property of GC potentially. Therefore, parts of findings from TCGA and MSKCC might not be strongly generalizable to Chinese patients. Finally, some variables including tumor markers, neoadjuvant therapy, and adjuvant therapy were also needed to compare between the younger and older patients.

Conclusions

Our study found a stable proportion of young cases and significant survival improvements of younger patients in the China National Cancer Center from 1998 to 2018. Multivariate analysis suggested that younger patients with pTNM stage III had a worse survival than older, while other tumor stages showed no difference. Distinctive genetic alterations were further identified in younger patients, thus improving precision and personalized medicine in this subpopulation. Further large-scale studies are warranted to investigate more molecular characteristics and related mechanisms for GC patients at younger age.

Abbreviations

GC: gastric cancer; NCCGCDB: China National Cancer Center Gastric Cancer Database; OS: overall survival; AJCC: the American Joint Committee on Cancer; PFS: progression-free survival; NGS: next-generation sequencing; SNVs: single nucleotide variants; INDELs: insertion-deletions; TMB: tumor mutational burden; HR: hazard ratio; LDLR: low-density lipoprotein receptor; cAMP: cyclic adenosine monophosphate; PKA: the protein kinase A

Declarations

Ethics approval and consent to participate

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. This study was approved by the ethics committee of National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (No. 17-156/1412).

Consent for publication

Informed consent was obtained from all participants for publication.

Availability of data and materials

All data generated during this study are included in this published article and its supplementary files.

Competing interests

No potential conflicts of interest were disclosed.

Funding

This work was supported in part by the National Key R&D Program of China (No. 2017YFC0908300).

Authors’ contributions

YC and DZ considered and designed the study. PN, HH and LZ performed experiments. TW, XZ and WW did data analyses. TW, XZ and WW collected tumor samples, tissue specimens and clinical data. PN, HH and LZ wrote the manuscript. YZ and CG contributed to the revision of manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank anonymous reviewers and editor for reading and commenting on the manuscript.

References
1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-1953.

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu QG, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-32.

3. Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, Zhang L, Tang J, Chen J, Wei K, et al. Cancer survival in China, 2003-2005: a population-based study. Int J Cancer. 2015;136(8):1921-30.

4. Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, Xia C, Sun K, Yang Z, Li H, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health. 2018;6(5):e555-e567.

5. Camargo MC, Anderson WF, King JB, Correa P, Thomas CC, Rosenberg PS, Eshman CR, Rabkin CS. Divergent trends for gastric cancer incidence by anatomical subsite in US adults. Gut. 2011;60(12):1644-9.

6. Kulig J, Popiela T, Kolodziejczyk P, Sierzega M, Jedrys J, Szczepanik AM, Polish Gastric Cancer Study Group. Clinicopathological profile and long-term outcome in young adults with gastric cancer: multicenter evaluation of 214 patients. Langenbecks Arch Surg. 2008;393(1):37-43.

7. Yin J, Song JN, Bai ZG, Cai J, Zhang J, Zheng Z, Wu HW, Ye PP, Gao X, Zhang ZT. Gastric Cancer Mortality Trends in China (2006-2013) Reveal Increasing Mortality in Young Subjects. Anticancer Res. 2017;37(8):4671-4679.

8. Islami F, DeSantis CE, Jemal A. Incidence Trends of Esophageal and Gastric Cancer Subtypes by Race, Ethnicity, and Age in the United States, 1997-2014. Clin Gastroenterol Hepatol. 2019;17(3):429-439.

9. Anderson WF, Camargo MC, Fraumeni JF Jr, Correa P, Rosenberg PS, Rabkin CS. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA. 2010;303(17):1723-8.

10. Zhou F, Shi J, Fang C, Zou X, Huang Q. Gastric Carcinomas in Young (Younger than 40 Years) Chinese Patients: Clinicopathology, Family History, and Postresection Survival. Medicine (Baltimore). 2016;95(9):e2873.

11. Bautista MC, Jiang SF, Armstrong MA, Postlethwaite D, Li D. Impact of age on clinicopathological features and survival of patients with noncardia gastric adenocarcinoma. J Gastric Cancer. 2014;14(4):238-45.

12. Liu S, Feng F, Xu G, Liu Z, Tian Y, Guo M, Lian X, Cai L, Fan D, Zhang H. Clinicopathological features and prognosis of gastric cancer in young patients. BMC Cancer. 2016;16:478.

13. Tekesin K, Emin Gunes M, Tural D, Akar E, Zirtligluoglu A, Karaca M, Selcukbiricik F, Bayrak S, Ozet A. Clinicopathological characteristics, prognosis and survival outcome of gastric cancer in young patients: A large cohort retrospective study. J BUON. 2019;24(2):672-678.

14. Tavares A, Gandra A, Viveiros F, Cidade C, Maciel J. Analysis of clinicopathological characteristics and prognosis of gastric cancer in young and older patients. Pathol Oncol Res. 2013;19(1):111-7.

15. Saito H, Takaya S, Fukumoto Y, Osaki T, Tatebe S, Ikeguchi M. Clinicopathologic characteristics and prognosis of gastric cancer in young patients. Yonago Acta Med. 2012;55(3):57-61.

16. Wu CW, Chen MH, Huang KH, Chang SC, Fang WL, Lin CH, Chao Y, Lo SS, Li AF, Shyr YM. The clinicopathological characteristics and genetic alterations between younger and older gastric cancer patients with curative surgery. Aging (Albany NY). 2020;12(18):18137-18150.

17. Seo JY, Jin EH, Jo HJ, Yoon H, Shin CM, Park YS, Kim N, Jung HC, Lee DH. Clinicopathological and molecular features associated with patient age in gastric cancer. World J Gastroenterol. 2015;21(22):6905-13.

18. Zhao L, Huang H, Zhao D, Wang C, Tian Y, Yuan X, Ma F, Ren H, Zhao Y, Aimaiti S, et al. Clinicopathological Characteristics and Prognosis of Proximal and Distal Gastric Cancer during 1997-2017 in China National Cancer Center. J Oncol. 2019;2019:9784039.

19. Zhao LL, Huang H, Wang Y, Wang TB, Zhou H, Ma FH, Ren H, Niu PH, Zhao DB, et al. Lifestyle factors and long-term survival of gastric cancer patients: A large bidirectional cohort study from China. World J Gastroenterol. 2020;26(14):1613-1627.

20. Smith AW, Bellizzi KM, Keeghan TH, Zebrack B, Chen VW, Neale AV, Hamilton AS, Shnorrhaviorian M, Lynch CF. Health-related quality of life of adolescents and young adult patients with cancer in the United States: the Adolescent and Young Adult Health Outcomes and Patient Experience study. J Clin Oncol. 2013;31(17):2136-45.

21. Adolescent, Group YAOPR, Closing the Gap: Research and Care Imperatives for Adolescents and Young Adults with Cancer (NIH Publication No. 06-6067), Department of Health and Human Services, National Institutes of Health, National Cancer Institute, and the LIVESTRONG Young Adult Alliance Bethesda, MD, 2006.

22. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):p11.

23. Song M, Kang D, Yang JJ, Choi JY, Sung H, Lee Y, Yoon HS, Choi Y, Kong SH, Lee HJ, et al. Age and sex interactions in gastric cancer incidence and mortality trends in Korea. Gastric Cancer. 2015;18(3):580-9.

24. Dhobi MA, Wani KA, Parray FQ, Wani RA, Wani ML, Peer GQ, Abdullah S, Wani IA, Wani MA, Shah MA, et al. Gastric cancer in young patients. Int J Surg Oncol. 2013;2013:981654.

25. Di Domenico M, Castoria G, Bilancio A, Migliaccio A, Auricchio F. Estradiol activation of human colon carcinoma-derived Caco-2 cell growth. Cancer Res. 1996;56(19):4516-21.

26. Wang Z, Butler LM, Wu AH, Koh WP, Jin A, Wang R, Yuan JM. Reproductive factors, hormone use and gastric cancer risk: The Singapore Chinese Health Study. Int J Cancer. 2016;138(12):2837-45.

27. Hirahashi M, Yao T, Matsumoto T, Nishiyama K, Oya M, Iida M, Tsuneyoshi M. Intramucosal gastric adenocarcinoma of poorly differentiated type in the young is characterized by Helicobacter pylori infection and antral lymphoid hyperplasia. Mod Pathol. 2007;20(1):29-34.
28. Gurzu S, Kadar Z, Sugimura H, Bara T, Bara T Jr, Halmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APIMS. 2015;123(3):223-33.

29. Koea JB, Karpeh MS, Brennan MF. Gastric cancer in young patients: demographic, clinicopathological, and prognostic factors in 92 patients. Ann Surg Oncol. 2000;7(9):346-51.

30. Chung HW, Noh SH, Lim JB. Analysis of demographic characteristics in 3242 young age gastric cancer patients in Korea. World J Gastroenterol. 2010;16(2):256-63.

31. Zou XN. Epidemic trend, screening, and early detection and treatment of cancer in Chinese population. Cancer Biol Med. 2017;14(1):50-59.

32. Liu K, Yang K, Zhang W, Chen X, Chen X, Zhang B, Chen Z, Chen J, Zhao Y, Zhou Z, et al. Changes of Esophagogastric Junctional Adenocarcinoma and Gastroesophageal Reflux Disease Among Surgical Patients During 1988-2012: A Single-institution, High-volume Experience in China. Ann Surg. 2016;263(1):88-95.

33. Blazevy JM, Wilson L, Metcalfe C, Nicklin J, English R, Donovan JL. Analysis of clinical decision-making in multi-disciplinary cancer teams. Ann Oncol. 2006;17(3):457-60.

34. Giampieri R, Del Prete M, Cantini L, Baleani MG, Bittoni A, Maccaroni E, Berardi R. Optimal management of resected gastric cancer. Cancer Manag Res. 2018;10:1605-1618.

35. Joharatnam-Hogan N, Shiu KK, Khan K. Challenges in the treatment of gastric cancer in the older patient. Cancer Treat Rev. 2020;85:101980.

36. Go GW, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 2012;85(1):19-28.

37. Yasufuku I, Saigo C, Kito Y, Yoshida K, Takeuchi T. Prognostic significance of LDL receptor-related protein 1B in patients with gastric cancer. J Mol Histol. 2021;52(2):165-172.

38. Wang Z, Sun P, Gao C, Chen J, Li J, Chen Z, Xu M, Shao J, Zhang Y, Xie J. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells. Exp Cell Res. 2017;357(1):1-8.

39. Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourma A, Yakovleva A, Palmiter T, Ciccarelli FD. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 2019;20(1):1.

40. Zhou J, Zhao W, Wu J, Lu J, Ding Y, Wu W, Wang H, Ding D, Mo F, Zhou Z, et al. Neoantigens Derived From Recurrently Mutated Genes As Potential Immunotherapy Targets for Gastric Cancer. Biomed Res Int. 2019;2019:8103142.

41. Esser D, Holze N, Haag J, Schreiber S, Krüger S, Wameke V. Interpreting whole genome and exome sequencing data of individual gastric cancer samples. BMC Genomics. 2017;18(1):517.

42. Wilson CH, McIntyre RE, Arends MJ, Adams DJ. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min+/-) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene. 2010;29(32):4567-75.

43. Nomura R, Saito T, Mitomi H, Hidaka Y, Lee SY, Watanabe S, Yao T. GNAS mutation as an alternative mechanism of activation of the Wnt/β-catenin signaling pathway in gastric adenocarcinoma of the fundic gland type. Hum Pathol. 2014;45(12):2488-96.

44. Matsubara A, Sekine S, Kushima R, Ogawa R, Taniguchi H, Tsuda H, Kanai Y. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol. 2013;229(4):579-87.

45. Alakus H, Babicky ML, Ghosh P, Yost S, Jepsen K, Dai Y, Arias A, Samuels ML, Mose ES, Schwab RB, et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014;6(5):43.

46. Wang F, Cheng H, Zhang X, Shan L, Bai B, Chen K, Lou F, Cao S, Wang H, Dai S. Comparative genomic signatures in young and old Chinese patients with colorectal cancer. Cancer Med. 2021;10(13):4375-4386.

47. Lieu CH, Golemis EA, Serebriiskii IG, Newberg J, Hemmerich A, Connelly C, Messersmith WA, Eng C, Eckhardt SG, Frampton G, et al. Comprehensive Genomic Landscapes in Early and Later Onset Colorectal Cancer. Clin Cancer Res. 2019;25(19):5852-5858.

48. Ghatak S, Chakraborty P, Sarkar SR, Chowdhury B, Bhaumik A, Kumar NS. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer. BMC Med Genet. 2017;18(1):517.

49. Alkus H, Babicky ML, Ghosh P, Yost S, Jepsen K, Dai Y, Arias A, Samuels ML, Mose ES, Schwab RB, et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014;6(5):43.

50. Wang F, Cheng H, Zhang X, Shan L, Bai B, Chen K, Lou F, Cao S, Wang H, Dai S. Comparative genomic signatures in young and old Chinese patients with colorectal cancer. Cancer Med. 2021;10(13):4375-4386.

51. Lieu CH, Golemis EA, Serebriiskii IG, Newberg J, Hemmerich A, Connelly C, Messersmith WA, Eng C, Eckhardt SG, Frampton G, et al. Comprehensive Genomic Landscapes in Early and Later Onset Colorectal Cancer. Clin Cancer Res. 2019;25(19):5852-5858.

52. Ghatak S, Chakraborty P, Sarkar SR, Chowdhury B, Bhaumik A, Kumar NS. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer. BMC Med Genet. 2017;18(1):517.

53. Du WB, Lin CH, Chen WB. High expression of APC is an unfavorable prognostic biomarker in T4 gastric cancer patients. World J Gastroenterol. 2019;25(31):4452-4467.

54. Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, Dean W, Stewart AF, Colomé-Tatché M, Kelsey G. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol. 2018;25(1):73-82.

55. Toska E, Osmanbayoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, Dickler MN, Scaltriti M, Leslie CS, Armstrong SA, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355(6331):1324-1330.
56. Lv S, Ji L, Chen B, Liu S, Lei C, Liu X. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene. 2018;37(10):1354-1368.
57. Xiong W, Deng Z, Tang Y, Deng Z, Li M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochem Biophys Res Commun. 2018;504(1):129-136.
58. Dhar SS, Zhao D, Lin T, Gu B, Pal K, Wu S. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Mol Cell. 2018;70(5):825-841.e6.
59. Alam H, Tang M, Maitituoheti M, Dhar SS, Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY, et al. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell. 2020;37(4):599-617.e7.
60. Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015;21(10):1199-208.
61. Ramis-Zaldivar JE, Gonzalez-Farré B, Balagué O, Celis V, Nadeu F, Salmerón-Villalobos J, Andrés M, Martin-Guerrero I, Garrido-Pontnou M, Gaafer A, et al. Distinct molecular profile of IRF4-rearranged large B-cell lymphoma. Blood. 2020;135(4):274-286.
62. Ma D, Jiang YZ, Xiao Y, Xie MD, Zhao S, Jin X, Xu YE, Shao ZM. Integrated molecular profiling of young and elderly patients with triple-negative breast cancer indicates different biological bases and clinical management strategies. Cancer. 2020;126(14):3209-3218.

Figures

Figure 1

Changing trends of the proportion of younger and older groups by period and pTNM tumor stage.
Figure 2
Survival trends between younger and older groups during 20 years. A: The 5-year overall survival. B: The 5-year progression-free survival

Figure 3
Kaplan-Meier survival curves of gastric cancer patients between YG and OG. A: Kaplan-Meier survival curves of patients in pTNM stage I. B: Kaplan-Meier survival curves of patients in pTNM stage II. C: Kaplan-Meier survival curves of patients in pTNM stage III. D: Kaplan-Meier survival curves of patients in pTNM stage IV.
Figure 4

Comparison of mutation frequencies between younger and older groups. A: Genetic alterations from the China National Cancer Center. B: Genetic alterations from the TCGA and MSKCC databases.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureS1.jpg
- FigureS2.jpg
- FigureS3.png
- SupplementalDocument1.pdf
- SupplementalDocument2.pdf
- SupplementalTables.docx