antiCODE: a natural sense-antisense transcripts database
Yifei Yin†1,2, Yi Zhao†2, Jie Wang3,4, Changning Liu2,4, Shuguang Chen1, Runsheng Chen*3 and Haitao Zhao*1

Address: 1Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, CAMS & PUMC, Beijing 100730, China, 2Bioinformatics Group, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China, 3Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and 4Graduate School of the Chinese Academy of Sciences, Beijing 100080, China

Email: Yifei Yin - yinyifei2005@yahoo.com; Yi Zhao - biozy@ict.ac.cn; Jie Wang - joyice_wang@hotmail.com; Changning Liu - lcn@ict.ac.cn; Shuguang Chen - csg959116@yahoo.com.cn; Runsheng Chen* - crs@sun5.ibp.ac.cn; Haitao Zhao* - dr_zht@yahoo.com.cn
* Corresponding authors †Equal contributors

Published: 30 August 2007
BMC Bioinformatics 2007, 8:319 doi:10.1186/1471-2105-8-319
Received: 27 November 2006
Accepted: 30 August 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/319
© 2007 Yin et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
Background: Natural antisense transcripts (NATs) are endogenous RNA molecules that exhibit partial or complete complementarity to other RNAs, and that may contribute to the regulation of molecular functions at various levels. Though many natural antisense transcripts were discovered through their regulatory function on the expression of mRNAs [1,2], some global predictions of NATs in several species have also been published [3-10]. The first of these used mRNA data to predict natural antisense transcripts [4]. With the appearance of more draft genomes and full length cDNA data, the scale of NATs predictions has been extended. Several datasets, mainly based on full length cDNAs, have been published for mouse [8,11], rice [12] and Arabidopsis thaliana [7]. Since 2006, the trend in NATs prediction has turned to multi-species comparisons [6,13]. A number of published NATs have been validated by various experimental approaches, such as RT-PCR [10] and microarray [5], fur-
ther confirming that antisense transcript is a common occurrence in eukaryotic transcriptomes.

The background for the emergence of so much NAT data in recent years, is on the one hand the availability of more genomic and full length cDNA data, and on the other hand a growing realization of the important functions of natural antisense transcripts. Antisense RNAs may contribute regulatory activity at various levels, such as post-transcription [14,15], splicing [16,17], transport [18], and genomic imprinting [19,20], and have been shown to be involved in the control of developmental processes [21], adaptation to various stresses [22], and viral infection [23,24] through annealing to complementary sequences.

To facilitate research, previous publications have suggested a few classification systems for NATs. The most basic of these is the cis/trans system [4] in which an antisense transcript from the same genomic loci as the sense transcript is labelled a cis-NAT, whereas a trans-NAT is an antisense transcript expressed from a genomic locus different from that of the sense transcript. A second classification system is based on the overlapping position of the complementary pair, which will be divided into 5–6 categories according to their patterns of gene structure, e.g. depending on whether the pair overlaps at their 5’ ends, 3’ ends, completely, or in the introns [6,7,10,11]. A third classification system considers the respective coding potential of the complementary pair, and includes the categories coding-coding, coding-noncoding and noncoding-noncoding [8,13].

Up to present, a number of large-scale NAT data have been published and several functional studies of NATs have been carried out, however, thus far no database has been published and several functional studies of NATs have been carried out, however, thus far no database has been published and various nucleotide databases

Reference	Species involved in the predictions	The number of transcripts
[4]	Human	372
[5]	Human	2,667
[11]	Mouse	4,279
[12]	Rice	1,374
[10]	Human	5,880
[7]	Arabidopsis thaliana	1,340
[8]	Mouse	37,562
[13]	Human, mouse, rat, chicken, fruit fly, and nematode	11,200
[6]	Human, mouse, frog, cow, fruit fly, worm, zebra fish and sea squirt	21,266

The background for the emergence of so much NAT data in recent years, is on the one hand the availability of more genomic and full length cDNA data, and on the other hand a growing realization of the important functions of natural antisense transcripts. Antisense RNAs may contribute regulatory activity at various levels, such as post-transcription [14,15], splicing [16,17], transport [18], and genomic imprinting [19,20], and have been shown to be involved in the control of developmental processes [21], adaptation to various stresses [22], and viral infection [23,24] through annealing to complementary sequences.

To facilitate research, previous publications have suggested a few classification systems for NATs. The most basic of these is the cis/trans system [4] in which an antisense transcript from the same genomic loci as the sense transcript is labelled a cis-NAT, whereas a trans-NAT is an antisense transcript expressed from a genomic locus different from that of the sense transcript. A second classification system is based on the overlapping position of the complementary pair, which will be divided into 5–6 categories according to their patterns of gene structure, e.g. depending on whether the pair overlaps at their 5’ ends, 3’ ends, completely, or in the introns [6,7,10,11]. A third classification system considers the respective coding potential of the complementary pair, and includes the categories coding-coding, coding-noncoding and noncoding-noncoding [8,13].

Up to present, a number of large-scale NAT data have been published and several functional studies of NATs have been carried out, however, thus far no database has been published and various nucleotide databases

Reference	Species involved in the predictions	The number of transcripts
[4]	Human	372
[5]	Human	2,667
[11]	Mouse	4,279
[12]	Rice	1,374
[10]	Human	5,880
[7]	Arabidopsis thaliana	1,340
[8]	Mouse	37,562
[13]	Human, mouse, rat, chicken, fruit fly, and nematode	11,200
[6]	Human, mouse, frog, cow, fruit fly, worm, zebra fish and sea squirt	21,266

The background for the emergence of so much NAT data in recent years, is on the one hand the availability of more genomic and full length cDNA data, and on the other hand a growing realization of the important functions of natural antisense transcripts. Antisense RNAs may contribute regulatory activity at various levels, such as post-transcription [14,15], splicing [16,17], transport [18], and genomic imprinting [19,20], and have been shown to be involved in the control of developmental processes [21], adaptation to various stresses [22], and viral infection [23,24] through annealing to complementary sequences.

To facilitate research, previous publications have suggested a few classification systems for NATs. The most basic of these is the cis/trans system [4] in which an antisense transcript from the same genomic loci as the sense transcript is labelled a cis-NAT, whereas a trans-NAT is an antisense transcript expressed from a genomic locus different from that of the sense transcript. A second classification system is based on the overlapping position of the complementary pair, which will be divided into 5–6 categories according to their patterns of gene structure, e.g. depending on whether the pair overlaps at their 5’ ends, 3’ ends, completely, or in the introns [6,7,10,11]. A third classification system considers the respective coding potential of the complementary pair, and includes the categories coding-coding, coding-noncoding and noncoding-noncoding [8,13].

Up to present, a number of large-scale NAT data have been published and several functional studies of NATs have been carried out, however, thus far no database has been published and various nucleotide databases

Reference	Species involved in the predictions	The number of transcripts
[4]	Human	372
[5]	Human	2,667
[11]	Mouse	4,279
[12]	Rice	1,374
[10]	Human	5,880
[7]	Arabidopsis thaliana	1,340
[8]	Mouse	37,562
[13]	Human, mouse, rat, chicken, fruit fly, and nematode	11,200
[6]	Human, mouse, frog, cow, fruit fly, worm, zebra fish and sea squirt	21,266

The background for the emergence of so much NAT data in recent years, is on the one hand the availability of more genomic and full length cDNA data, and on the other hand a growing realization of the important functions of natural antisense transcripts. Antisense RNAs may contribute regulatory activity at various levels, such as post-transcription [14,15], splicing [16,17], transport [18], and genomic imprinting [19,20], and have been shown to be involved in the control of developmental processes [21], adaptation to various stresses [22], and viral infection [23,24] through annealing to complementary sequences.

To facilitate research, previous publications have suggested a few classification systems for NATs. The most basic of these is the cis/trans system [4] in which an antisense transcript from the same genomic loci as the sense transcript is labelled a cis-NAT, whereas a trans-NAT is an antisense transcript expressed from a genomic locus different from that of the sense transcript. A second classification system is based on the overlapping position of the complementary pair, which will be divided into 5–6 categories according to their patterns of gene structure, e.g. depending on whether the pair overlaps at their 5’ ends, 3’ ends, completely, or in the introns [6,7,10,11]. A third classification system considers the respective coding potential of the complementary pair, and includes the categories coding-coding, coding-noncoding and noncoding-noncoding [8,13].

Up to present, a number of large-scale NAT data have been published and several functional studies of NATs have been carried out, however, thus far no database has been published and various nucleotide databases

Reference	Species involved in the predictions	The number of transcripts
[4]	Human	372
[5]	Human	2,667
[11]	Mouse	4,279
[12]	Rice	1,374
[10]	Human	5,880
[7]	Arabidopsis thaliana	1,340
[8]	Mouse	37,562
[13]	Human, mouse, rat, chicken, fruit fly, and nematode	11,200
[6]	Human, mouse, frog, cow, fruit fly, worm, zebra fish and sea squirt	21,266
according to information in referenced papers. The second step was to classify the NAT pairs according to the coding/noncoding system, thus, all NAT pairs were sorted as coding-coding, coding-noncoding and noncoding-noncoding. In the third step, Blat [25] was used to classify the NAT pairs according to the 5/3/c/o system. Finally, we have removed redundant NAT pairs derived from different datasets.

Website Features
The three core functions of antiCODE database are browse, search and sequence alignment with Blast. Under the browse option, there are five sub-options – Pair ID, cis/trans, overlap, coding/noncoding, and species – by which users can browse all NAT pairs by pair ID, or NAT pair classes.

More specific lookups can be executed by the search function. Users can enter the exact gene accession number or clone ID to see whether a sequence of interest has a possible complementary transcript. If one is interested in NAT pairs relating to some particular condition, e.g. cancer, a relevant key word can be entered in the Text search frame under the search option.

If a sequence of interest cannot be found in the database or a user want to investigate whether some novel sequence possibly overlap with known NAT pairs, the Blast option will be very useful. Users just needs to paste her sequence in the sequence window, or load them into the Blast web page, and select the appropriate choices, such as expected number of hits (Figure 2), and then the Blast result will be returned.

After a NAT pairs of interest have been found, all information pertaining to the NAT pair, including annotation and map view links to other databases, affiliated classes, a simple description and references, will appear. More detailed annotations and comments can be obtained through the links to other relevant databases.

Utility and discussion
Recently, new technologies, such as microarray, SAGE, and MPSS have played prominent roles in the identification of NAT pairs. Before 2005 only EST (UniGene) and mRNAs had been used for NAT prediction. Later large scale full-length cDNA data emerged, based on which more than 1,000 rice NATs[12] were first reported, closely followed by mouse [8,11] and Arabidopsis [7] NATs. For NAT prediction in Arabidopsis [7] also MPSS data has been used, and in 2005, a new NAT dataset based on SAGE was reported in mouse [26]. In 2007, data [27] from whole-genome arrays was employed for NAT prediction in Arabidopsis. It is expected that along with the improvement in array technology, more transcripts from tillig microarrays will be used for future NAT predictions, hopefully resulting in an accurate and exhaustive set of NAT data.

Conclusion
The most recently released NAT datasets [9,26-28] have yet not been included in antiCODE, but will be included in the next release of the database. However, compared with other existing databases [29], antiCODE is presently the most comprehensive and integrated database for NAT pairs. The most distinctive features of antiCODE are as follows; (i) antiCODE includes almost all known natural antisense transcript (NAT) pairs from 12 eukaryotic model organisms, (ii) antiCODE provides substantial and compact information relating to NATs (e.g. accession number, clone ID, species, classification etc.), (iii) we have introduced a classification system based on the previous notions which should give users an immediate impression of the basic features of each NAT pair, (iv) a Blast service is provided, and (v) antiCODE provides a user-friendly interface and a convenient search option.
allowing efficient investigation and verification of natural antisense pairs from different species.

Availability and requirements
The antiCODE database and related resources can be freely accessed at its websites http://bioinfo.ibp.ac.cn/ANTICODE or http://www.anticode.org

Authors’ contributions
Yifei Yin and Yi Zhao carried out the design and the collection of data. Jie Wang carried for building the database. Changning Liu participated in the design of the study. Shuguang Chen helped to draft the manuscript. Runsheng Chen and Haitao Zhao participated in the design and coordination. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by grants from Youth Foundation of Peking Union Medical College Hospital (No. 2005 37A), National Natural Science Foundation of China (No. 30570393 and No. 30600729) and China Medical Board in New York (No.06837).

References
1. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W: Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci U S A 2001, 98(25):14428-14433.
2. Faghihi MA, Wahlestedt C: RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol 2006, 2(4):R47.
3. Engstrom PG, Suzuki H, Ninomiya N, Akalin A, Sessa L, Lavorgna G, Brozzi A, Luzi L, Tan SL, Yang L, Kunarso G, Ng EL, Batalov S, Wahlestedt C, Kai C, Kawai J, Carminci P, Hayashizaki Y, Wells C, Bajic VB, Orlando V, Reid JF, Lenhard B, Lipovich L: Complex Loci in human and mouse genomes. PLoS Genet 2006, 2(4):e47.
4. Lehner B, Williams G, Campbell RD, Sanderson CM: Antisense transcripts in the human genome. Trends Genet 2002, 18(2):63-65.
5. Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G: Widespread occurrence of antisense transcripts in the human genome. Nat Biotechnol 2003, 21(4):379-386.

6. Zhang Y, Liu XS, Liu QR, Wei L: Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 2006, 34(12):3465-3475.

7. Wang XJ, Gaasterland T, Chua NH: Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 2005, 6(4):R30.

8. RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) and the FANTOM Consortium, Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanih M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Han J, Mastick J, Hum D, Lipovich L, Batalov S, Enstrom PG, Haring R, Eash A, Nakamura K, Mortagus-Tub T, Liang Z, Lenhard B, Walsewski C: Antisense Transcription in the Mammalian Transcriptome 10.1126/science.1112009. Science 2003, 309(5740):1564-1566.

9. Li YY, Qin L, Guo ZH, Liu L, Xu H, Hao P, Su J, Shi Y, He WZ, Li YX: In silico detection of human natural antisense transcripts. BMC Bioinformatics 2006, 7:18.

10. Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD: Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res 2004, 32(16):4812-4820.

11. Kiyosawa H, Yamana I, Ohto N, Kondo S, Hayashizaki Y: Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 2003, 13(4B):1324-1334.

12. Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y: Antisense transcripts with rice full-length cDNAs. Genome Biol 2003, 5(1):R5.

13. Sun M, Hurst LD, Carmichael GG, Chen J: Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res 2006, 16(7):922-933.

14. Luther HP: Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med 2005, 83(1):26-32.

15. Lassar AB, Lazar MA, Marmorstein R: Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J Biol Chem 2000, 275(15):11507-11513.

16. Enery E, Sheng Z, Li KB: Natural antisense as potential regulator of alternative initiation, splicing and termination. In Silico Biol 2005, 5(4):367-377.

17. Munroe SH: Antisense RNA inhibits splicing of pre-mRNA in vitro. Embryo J 1988, 7(8):2523-2532.

18. Werner A, Preston-Fayers K, Delmele L, Nalbant P: Regulation of the NPT gene by a naturally occurring antisense transcript. Cell Biochem Biophys 2002, 36(2-3):241-252.

19. Sleutels F, Barlow DP, Lyle R: The uniqueness of the imprinting mechanism. Curr Opin Genet Dev 2000, 10(2):229-233.

20. Rouguette C, Heard E: Antisense RNA in imprinting: spreading silence through Air. Trends Genet 2003, 19(9):343-347.

21. Coudeï AE, Pibouin L, Vi-Fane B, Thomas BL, Macdougall M, Choudhury A, Robert B, Sharpe PT, Berdal A, Lezot F: Expression and regulation of the Mxs1 natural antisense transcript during development. Nucleic Acids Res 2003, 31(16):5208-5218.

22. Borsani O, Zhu J, Wang Z, Pe Sunkar R, Zhu JK: Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 2005, 123(7):1279-1291.

23. Michael NL, Vahey MT, d’Arcy L, Ehrenberg PK, Mosca JD, Rappaport J, Redfield RR: Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J Virol 1994, 68(2):979-987.

24. Biquet S, Richardson J, Vanhee-Brossollet C, Vaquero C: Natural antisense transcripts are detected in different cell lines and tissues of cats infected with feline immunodeficiency virus. Gene 2001, 267(2):157-164.

25. Kent WJ: BLAT—the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.

26. Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, Asano J, Babakaff R, Barber S, Beland J, Bohacec S, Brown-John M, Chaud S, Charest D, Charters AM, Gullum R, Dhatta N, Featherstone R, Gerhard DS, Hoffman B, Holt RA, Hou J, Kuo BY, Lee LL, Lee S, Leung D, Ma K, Matsuo C, Mayo M, McDonald H, Prabhu AL, Pandoh P, Riggins GJ, de Algarra TR, Ruppert J, Smallis D, Scott J, Tsai M, Varhol R, Vrijakt P, Wong D, Wu MK, Xie YY, Yang G, Zhang I, Hirst M, Jones S, Liaw CD, Simpson EM, Hoodless PA, Marra MA: A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad Sci U S A 2005, 102(51):18485-18490.

27. Yamada K, Kim J, Dale JM, Chen H, Shirn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng M, Akiyama K, Ansari Y, Arakawa T, Bann J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koese E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaybreg K, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinohara K, Davis RW, Theologis A, Eckert JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 2003, 302(5646):842-846.

28. Wang H, Chua NH, Wang XJ: Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 2006, 7(10):R92.

29. Zhang Y, Li J, Kong L, Gao G, Liu QR, Wei L: NATsDB: Natural Antisense Transcripts Database. Nucleic Acids Res 2006.