HOMOLOGICAL INVARIANTS OF GENERALIZED BOUND PATH ALGEBRAS

VIKTOR CHUST AND FLÁVIO U. COELHO

ABSTRACT. We study some homological invariants of a given generalized bound path algebra in terms of those of the algebras used in its construction. We discuss the particular case where the algebra is a generalized path algebra and give conditions for those algebras to be shod or quasitilted.

1. INTRODUCTION

An important result in the representation theory of algebras states that a finite dimensional basic k-algebra A, where k is an algebraically closed field, is isomorphic to a quotient of a path algebra kQ_A/I_A where Q_A is a finite quiver and I_A is an admissible ideal (see below for details). This allows us to describe the finitely generated A-modules in terms of the representations of the corresponding quiver Q_A, a relation which proves to be of essential help in the theory.

In order to generalize such a construction, Coelho-Liu introduced in [6] the notion of generalized path algebras (gp-algebras for short). Instead of assigning the field k to each vertex i of the quiver Q as in the traditional construction of path algebras kQ, it is assigned a finite dimensional k-algebra. This was further generalized by us in the article [3] where we consider also some quotients of the gp-algebras. Specifically, let Γ denote a quiver and $\mathcal{A} = \{A_i : i \in \Gamma_0\}$ denote a family of basic finite dimensional k-algebras indexed by the set Γ_0 of the vertices of Γ. Consider also a set of relations I on the paths of Γ which generates an admissible ideal of $k\Gamma$. To such a data we have considered (see [3]) the generalized bound path algebra $\Lambda = k(\Gamma, \mathcal{A}, I)$ (gbp-algebra for short) with a natural multiplication given not only by the concatenation of paths of the quiver but also by the multiplication of the algebras associated with the vertices of Γ, modulo the relations in I (see below for details).

The idea behind such a construction is to compare properties of the algebras in \mathcal{A} and those for the algebra Λ. In the seminal work [6], the focus was more ring theoretical, and, as mentioned, the authors only considered the case where $I = 0$. We mention, for instance, [7, 9, 10], where such a particular case was also studied.

In [3, 4], we have studied the case where I is not necessarily zero, thus extending the description of the representations of the algebra Λ given in [9]. Clearly, a path algebra A can be realized as a generalized one in two trivial ways: the usual description as path...
algebra through its ordinary quiver Q_A but also by considering a quiver with a single vertex and no arrows and assigning to it the whole algebra A. In [3], we discuss when there are, besides the above two, other possibilities of realizing a path algebra as a generalized one. This is important because we can relate properties of a gp-algebra with those of the smaller algebras which appear in its definition. In [4], we studied the correspondence between modules over a gbp-algebra and representations of the corresponding quiver.

Here, our focus will be, using the description of the projective and injective modules from [4], to study some homological invariants of a given gbp-algebra in terms of those of the algebras used in its construction. This is done in Sections 3 and 4 after devoting Section 2 to preliminary concepts needed along the paper. The particular case of gp-algebras is discussed in Section 5 where we prove, for instance, that the global dimension of a gp-algebra is the maximum between one and the global dimension of the algebras assigned to each vertex (Theorem 5.1). Also, we provide a sufficient condition for a gp-algebra to belong to classes of algebras which can be defined using these invariants, such as $shod$ or quasitilted algebras (see [5, 8]).

2. Preliminaries

Along this paper, k will denote an algebraically closed field. For an algebra, we mean an associative and unitary basic finite dimensional k-algebra. Also, given an algebra A, an A-module (or just a module) will be a finitely generated right module over A. We refer to [1, 2] for unexplained details on Representation Theory.

2.1. Path algebras. A quiver Q is given by a tuple (Q_0, Q_1, s, e), where Q_0 is the set of vertices, Q_1 is the set of arrows and $s, e : Q_1 \to Q_0$ are maps which indicate, for each arrow $\alpha \in Q_1$, the starting vertex $s(\alpha) \in Q_0$ of α and the ending vertex $e(\alpha) \in Q_0$ of α. A vertex $i \in Q_0$ is called a source (respectively a sink) provided there are no arrows ending (or starting, respectively) at i. A path in Q of length $n \geq 1$ is given by $\alpha_1 \cdots \alpha_n$, where for each $i = 1, \cdots, n - 1$, $e(\alpha_i) = s(\alpha_{i+1})$. There are also paths of length zero which are in one-to-one correspondence to the vertices of Q.

We shall assume that all quivers are finite, that is, both sets Q_0 and Q_1 are finite.

Naturally, given a quiver Q one can assign a path algebra kQ with a k-basis given by all paths of Q and multiplication on that basis defined by concatenation. Even when Q is finite, the corresponding algebra could not be finite dimensional. However, a well-known result established by Gabriel states that given an algebra A, there exists a finite quiver Q and a set of relations on the paths of Q which generates an admissible ideal I such that $A \cong kQ/I$ (see [1] for details).

2.2. Generalized bound path algebras (gbp-algebras). Let $\Gamma = (\Gamma_0, \Gamma_1, s, e)$ be a quiver and $\mathcal{A} = (A_i)_{i \in \Gamma_0}$ be a family of algebras indexed by Γ_0. An \mathcal{A}-path of length n over Γ is defined as follows: for $n = 0$, such a path is an element of $\bigcup_{i \in \Gamma_0} A_i$, and for
\(n > 0 \), it is a sequence of the form

\[a_1 \beta_1 a_2 \ldots a_n \beta_n a_{n+1} \]

where \(\beta_1 \ldots \beta_n \) is an ordinary path in the quiver \(\Gamma \), \(a_i \in A_{s(\beta_i)} \) if \(i \leq n \), and \(a_{n+1} \in A_{e(\beta_n)} \).

Denote by \(k[\Gamma, \mathcal{A}] \) the \(k \)-vector space spanned by all \(\mathcal{A} \)-paths over \(\Gamma \).

Then we consider the quotient vector space \(k(\Gamma, \mathcal{A}) = k[\Gamma, \mathcal{A}] / V \), where \(V \) is the subspace generated by all elements of the form

\[(a_1 \beta_1 \ldots \beta_{j-1} (a_j^1 + \ldots + a_j^m) \beta_j a_{j+1} \ldots \beta_n a_{n+1}) - \sum_{l=1}^{m} (a_1 \beta_1 \ldots \beta_{j-1} a_j^l \beta_j \ldots \beta_n a_{n+1}) \]

or, for \(\lambda \in k \),

\[(a_1 \beta_1 \ldots \beta_{j-1} (\lambda a_j) \beta_j a_{j+1} \ldots \beta_n a_{n+1}) - \lambda \cdot (a_1 \beta_1 \ldots \beta_{j-1} a_j \beta_j a_{j+1} \ldots \beta_n a_{n+1}) \]

The space \(k(\Gamma, \mathcal{A}) \) has a naturally defined multiplication, induced by the multiplications of the algebras \(A_i \)'s and the composition of the \(\mathcal{A} \)-paths. More explicitly, it is defined by linearity and the following rule:

\[(a_1 \beta_1 \ldots \beta_n a_{n+1}) (b_1 \gamma_1 \ldots \gamma_m b_{m+1}) = a_1 \beta_1 \ldots \beta_n (a_{n+1} b_1) \gamma_1 \ldots \gamma_m b_{m+1} \]

if \(e(\beta_n) = s(\gamma_1) \), and

\[(a_1 \beta_1 \ldots \beta_n a_{n+1}) (b_1 \gamma_1 \ldots \gamma_m b_{m+1}) = 0 \]

otherwise.

With this multiplication, \(k(\Gamma, \mathcal{A}) \) is an associative algebra, and since we are assuming the quivers to be finite, it has also an identity element, which is equal to \(\sum_{i \in \Gamma_0} 1_{A_i} \).

Finally, it is easy to observe that \(k(\Gamma, \mathcal{A}) \) is finite-dimensional over \(k \) if and only if so are the algebras \(A_i \) and if \(\Gamma \) is acyclic. We call \(k(\Gamma, \mathcal{A}) \) the \textbf{generalized path algebra} \((\text{gp-algebra}) \) over \(\Gamma \) and \(\mathcal{A} \) (see [6]). In case \(A_i = k \) for every \(i \in \Gamma_0 \), this construction gives the usual path algebra \(k\Gamma \).

Using the result mentioned above in [2, 11], for each \(i \in \Gamma_0 \), we fix a quiver \(\Sigma_i \) such that \(A_i \cong k\Sigma_i / \Omega_i \), with \(\Omega_i \) an admissible ideal of \(k\Sigma_i \).

Following [3], we shall now consider quotients of generalized path algebras by an ideal generated by relations. Namely, let \(I \) be a finite set of relations over \(\Gamma \) which generates an admissible ideal in \(k\Gamma \). Consider the ideal \((\mathcal{A}(I)) \) generated by the following subset of \(k(\Gamma, \mathcal{A}) \):

\[\mathcal{A}(I) = \left\{ \sum_{i=1}^{t} \lambda_i \beta_{i_1} \gamma_{i_1} \beta_{i_2} \ldots \gamma_{i(m_i-1)} \beta_{i m_i} : \right. \]

\[\sum_{i=1}^{t} \lambda_i \beta_{i_1} \ldots \beta_{i m_i} \text{ is a relation in } I \text{ and } \gamma_{ij} \text{ is a path in } \Sigma_{e(\beta_{ij})} \left\} \right. \]

The quotient \(k(\Gamma, \mathcal{A}) / (\mathcal{A}(I)) \) is said to be a \textbf{generalized bound path algebra} \((\text{gbp-algebra}) \). We may also write \(\frac{k(\Gamma, \mathcal{A})}{(\mathcal{A}(I))} = k(\Gamma, \mathcal{A}, I) \). When the context is clear, we simply denote the set \(\mathcal{A}(I) \) by \(I \).
We use the following notation in the sequel: Γ is an acyclic quiver, $\mathcal{A} = \{A_i : i \in \Gamma_0\}$ denotes a family of basic finite dimensional algebras over an algebraically closed field k, and I is a set of relations in Γ generating an admissible ideal in the path algebra $k\Gamma$. By $\Lambda = k(\Gamma, \mathcal{A}, I)$, we denote the gbp-algebra obtained from these data. Also, A_Λ will denote the product algebra $\prod_{i \in \Gamma_0} A_i$. We denote the identity element of the algebras A_i by 1_i instead of 1_{A_i}. Also, for an algebra A, we shall denote by $\text{mod}A$ the category of finitely generated right A-modules.

2.3. Representations

In [4], we have described the representations of a gbp-algebra, including those associated to projective and injective modules. We shall now recall the results needed in the sequel.

Definition 2.1. Let $\Lambda = k(\Gamma, \mathcal{A}, I)$ be a gbp-algebra.

(a) A **representation** of Λ is given by $((M_i)_{i \in \Gamma_0}, (M_\alpha)_{\alpha \in \Gamma_1})$ where

(i) M_i is an A_i-module, for each $i \in \Gamma_0$;

(ii) $M_\alpha : M_{s(\alpha)} \to M_{t(\alpha)}$ is a k-linear transformation, for each arrow $\alpha \in \Gamma_1$; and

(iii) whenever $\gamma = \sum_{i=1}^t \lambda_i \alpha_{i1} \alpha_{i2} \ldots \alpha_{in_\gamma}$ is a relation in I where $\lambda_i \in k$ and $\alpha_{ij} \in \Gamma_1$, then

\[
\sum_{i=1}^t \lambda_i M_{\alpha_{i1}} \circ \gamma_{i1} \circ \ldots \circ M_{\alpha_{i2}} \circ \gamma_{i2} \circ M_{\alpha_{i1}} = 0
\]

for every choice of paths γ_{ij} over $\Sigma_{s(\alpha_{ij})}$, with $1 \leq i \leq t$, $2 \leq j \leq n_i$.

(b) We say that a representation $((M_i)_{i \in \Gamma_0}, (M_\alpha)_{\alpha \in \Gamma_1})$ of Λ is **finitely generated** if each of the A_i-modules M_i is finitely generated.

(c) Let $M = ((M_i)_{i \in \Gamma_0}, (M_\alpha)_{\alpha \in \Gamma_1})$ and $N = ((N_i)_{i \in \Gamma_0}, (N_\alpha)_{\alpha \in \Gamma_1})$ be representations of Λ. A **morphism of representations** $f : M \to N$ is given by a tuple $f = (f_i)_{i \in \Gamma_0}$, such that, for every $i \in \Gamma_0$, $f_i : M_i \to N_i$ is a morphism of A_i-modules; and such that, for every arrow $\alpha : i \to j \in \Gamma_1$, it holds that $f_\alpha M_\alpha = N_\alpha f_\alpha$, that is, the following diagram comutes:

\[
\begin{array}{ccc}
M_i & \xrightarrow{M_\alpha} & M_j \\
f_i \downarrow & & \downarrow f_j \\
N_i & \xrightarrow{N_\alpha} & N_j
\end{array}
\]

We shall denote by $\text{Rep}_k(\Gamma, \mathcal{A}, I)$ (or by $\text{rep}_k(\Gamma, \mathcal{A}, I)$) the category of the representations (or finitely generated representations, respectively) of the algebra $k(\Gamma, \mathcal{A}, I)$.

Theorem 2.2 ([4], see also [3]). There is a k-linear equivalence

\[
F : \text{Rep}_k(\Gamma, \mathcal{A}, I) \to \text{Mod} k(\Gamma, \mathcal{A}, I)
\]

which restricts to an equivalence

\[
F : \text{rep}_k(\Gamma, \mathcal{A}, I) \to \text{mod} k(\Gamma, \mathcal{A}, I)
\]
2.4. **Realizing an \(A_i \)-module as a \(\Lambda \)-module.** Let \(i \in \Gamma_0 \) and let \(M \) be an \(A_i \)-module. We consider three ways of realizing \(M \) as a \(\Lambda \)-module:

A- Natural inclusion. \(\mathcal{I}(M) = ((M_j)_{j \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1}) \) is the representation given by

\[
M_j = \begin{cases}
M & \text{if } j = i \\
0 & \text{if } j \neq i
\end{cases}
\quad \text{and} \quad \phi_\alpha = 0 \text{ for all } \alpha \in \Gamma_1.
\]

By abuse of notation, we shall identify \(\mathcal{I}(M) = M \), since these two have the same underlying space.

B-Cones. As observed in [6], if \(k(\Gamma, \mathcal{A}) \) is a gp-algebra, then it is a tensor algebra: if \(\mathcal{A} = \prod_{i \in \Gamma_0} A_i \) is the product of the algebras in \(\mathcal{A} \), then there is an \(\mathcal{A}_A - \mathcal{A}_A \)-bimodule \(M \) such that \(k(\Gamma, \mathcal{A}) \cong T(\mathcal{A}_A, M) \).

Since \(M \) is naturally an \(\mathcal{A}_A \)-module and there is a canonical map \(\mathcal{A}_A \to \Lambda = k(\Gamma, \mathcal{A})/I \), then, by extension of scalars, \(M \) originates a \(\Lambda \)-module \(\mathcal{C}_i(M) \), which is called the **cone** over \(M \).

We now recall the following results from [4]:

Proposition 2.3. Given \(i \in \Gamma_0 \), we have:

1. The cone functor \(\mathcal{C}_i : \text{mod } A_i \to \text{mod } \Lambda \) is exact.
2. If \(P \) is a projective \(A_i \)-module, then \(\mathcal{C}_i(P) \) is a projective \(\Lambda \)-module.

C-Dual cones. The **dual cone** over \(M \) is given by \(\mathcal{C}_i^*(M) \cong D\mathcal{C}_iD(M) \), where \(D = \text{Hom}_k(-, k) \) is the usual duality functor. A dual result of Proposition 2.3 for injective modules holds true (see [4]).

We refer to [4] for further details of the above constructions.

3. **Homological dimensions**

Using the notations established above, we shall concentrate now in the comparison of some homological dimensions of \(\Lambda \) with those in the algebras \(A_i, \ i \in \Gamma_0 \). Given an algebra \(A \) and an \(A \)-module \(M \), we denote by \(\text{pd}_A M \) and by \(\text{id}_A M \) the projective and the injective dimensions of \(M \), respectively. Also, the global dimension of \(A \) is denoted by \(\text{gl.dim} A \).

3.1. **First case.** We analyse the natural inclusion of \(A_i \)-modules in \(\text{mod } \Lambda \).

Lemma 3.1. Let \(i \in \Gamma_0 \) and let \(M \) be an \(A_i \)-module. Then

(a) \(\text{pd}_A M \geq \text{pd}_A A_i M \).

(b) if \(i \) is a sink, then \(\text{pd}_A M = \text{pd}_A A_i M \).

(c) \(\text{id}_A M \geq \text{id}_A A_i M \).

(d) if \(i \) is a source, then \(\text{id}_A M = \text{id}_A A_i M \).

Proof. We shall prove only (a) and (b) since the proofs of (c) and (d) are dual.

(a) There is nothing to show if \(\text{pd}_A M = \infty \). So, assume \(M \) has finite projective dimension
be a minimal projective Λ-resolution of M. Since a projective resolution is in particular an exact sequence, it yields an exact sequence of A_i-modules at the i-th component:

\[
0 \longrightarrow (P_m)_i \longrightarrow \cdots \longrightarrow (P_1)_i \longrightarrow (P_0)_i \longrightarrow M \longrightarrow 0
\]

It follows from the description of the projective modules over Λ (see [4], Subsection 5.1) that every component of a projective representation is projective (indeed, the i-th component is a direct sum of indecomposable projective modules over A_i, copies of A_i, or zero modules). Thus the exact sequence above is a projective resolution of M over A_i. This implies that $\text{pd}_{A_i} M \leq m = \text{pd}_{\Lambda} M$.

(b) Because i is a sink, every projective resolution of M over A_i is easily seen to yield a projective resolution of M over Λ with the same length. □

The next result follow now easily.

Corollary 3.2. $\text{gl.dim} \Lambda \geq \max\{\text{gl.dim} A_1, \ldots, \text{gl.dim} A_n\}$.

We shall see below examples of when equality in the above statement holds and when it does not.

3.2. **Cones and duals.** The next result, which relates the projective and the injective dimensions of a module over A_i with the corresponding dimension of its cone or its dual cone, is a direct consequence of Proposition 2.3 and its dual.

Lemma 3.3. Given $i \in \Gamma_0$ and M an A_i-module, Then

(a) $\text{pd}_{A_i} M = \text{pd}_{\Lambda} \mathcal{C}_i(M)$.
(b) $\text{id}_{A_i} M = \text{id}_{\Lambda} \mathcal{C}_i^*(M)$.

Proof. We shall prove only (a) since the proof of (b) is dual. Let

\[
0 \longrightarrow P_m \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0
\]

be a minimal projective resolution of M in $\text{mod} A_i$. Thus $m = \text{pd}_{A_i} M$. Applying the functor \mathcal{C}_i, we have

\[
0 \longrightarrow \mathcal{C}_i(P_m) \longrightarrow \cdots \longrightarrow \mathcal{C}_i(P_1) \longrightarrow \mathcal{C}_i(P_0) \longrightarrow \mathcal{C}_i(M) \longrightarrow 0
\]

Because of Proposition 2.3 this sequence is exact. Moreover, also by Proposition 2.3 every term except possibly for $\mathcal{C}_i(M)$ is known to be projective. So this is a projective resolution in $\text{mod} \Lambda$, proving that $\text{pd}_{\Lambda} \mathcal{C}_i(M) \leq \text{pd}_{A_i} M$. Since the i-th component of $\mathcal{C}_i(M)$ is M, we know from Proposition 3.1 that the inverse inequality also holds. □
3.3. General case. Having studied the projective and injective dimensions of modules which are inclusion or cones of A_i-modules, we turn our attention to general Λ-representations.

Definition 3.4. Let $M = ((M_i)_{i \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1})$ be a representation over $k(\Gamma, A, I)$. The support of M is defined as the set of vertices $\text{supp} M = \{ i \in \Gamma_0 : M_i \neq 0 \}$.

Proposition 3.5. For a Λ-module M,

(a) $\text{pd}_\Lambda M \leq \max_{j \in \text{supp} M} \{ \text{pd}_\Lambda M_j \}$

(b) $\text{id}_\Lambda M \leq \max_{j \in \text{supp} M} \{ \text{pd}_\Lambda M_j \}$

Proof. We shall prove only (a) since the proof of (b) is dual.

We proceed by induction on $|\text{supp} M|$. If $|\text{supp} M| = 1$ then M has only one non-zero component, say the i-th component, and it is clear that $\text{pd}_\Lambda M = \text{pd}_\Lambda M_i$.

Suppose $|\text{supp} M| > 1$ and that the statement holds for representations whose support is smaller than that of M. Then, since Γ is acyclic, there is at least one vertex $i \in \Gamma_0$ which is a source in the full subquiver determined by $\text{supp} M$. We consider the following representations:

- $N = ((N_j)_{j \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1})$ given by $N_i = M_i$, $N_j = 0$ if $j \neq i$, $\psi_\alpha = 0$; and $T = ((T_j)_{j \in \Gamma_0}, (\rho_\alpha)_{\alpha \in \Gamma_1})$ given by $T_i = 0$, $T_j = M_j$ if $j \neq i$, $\rho_\alpha = \phi_\alpha|_{T_i(\alpha)}$

Observe that, since the support of N has size 1, it satisfies the relations in I. Also, it is easy to see that T also satisfies these relations, because M does.

We also consider two morphisms of representations $f = (f_j)_{j \in \Gamma_0} : T \rightarrow M$, and $g = (g_j)_{j \in \Gamma_0} : M \rightarrow N$, given by:

- $f_j : T_j \rightarrow M_j$, $f_i = 0$, $f_j = \text{id}_M$ if $j \neq i$; and
- $g_j : M_j \rightarrow N_j$, $g_i = \text{id}_M$, $g_j = 0$ if $j \neq i$

It is directly verified that these are in fact morphisms of representations. Thus we have a short exact sequence of representations:

$$0 \rightarrow T \overset{f}{\rightarrow} M \overset{g}{\rightarrow} N \rightarrow 0$$

It is indeed exact because the i-th component is

$$0 \rightarrow 0 \rightarrow M_i \overset{i_{M_i}}{\rightarrow} M_i \rightarrow 0$$

and for $j \neq i$, the j-component is

$$0 \rightarrow M_j \overset{i_{M_j}}{\rightarrow} M_j \rightarrow 0 \rightarrow 0$$

and these are clearly exact sequences.

We obtain that $\text{pd}_\Lambda M \leq \max\{ \text{pd}_\Lambda T, \text{pd}_\Lambda N \}$. Note that $|\text{supp} T| = n - 1$ and $|\text{supp} N| = 1$. Therefore, by the induction hypothesis,

$$\text{pd}_\Lambda N = \text{pd}_\Lambda N_i = \text{pd}_\Lambda M_i$$
\[
\text{pd}_A T \leq \max_{j \in \text{supp} T} \{ \text{pd}_A T_j \} = \max_{j \neq i} \{ \text{pd}_A T_j \} = \max_{j \neq i} \{ \text{pd}_A M_j \}
\]

Assembling the pieces together, we conclude that

\[
\text{pd}_A M \leq \max \{ \text{pd}_A N, \text{pd}_A T \} \leq \max_{j \in \text{supp} M} \{ \text{pd}_A M_j \},
\]

as we wanted to prove. \qed

4. Homological dimensions for gbp-algebras

We shall prove in this section some general results involving gbp-algebras, leaving the particular case of gp-algebras for the next section. We will adopt the following notation from here on: if \(i \) is a source vertex of \(\Gamma \), then \(\Gamma \setminus \{i\} \) shall denote the quiver obtained from \(\Gamma \) by deleting the vertex \(i \) and the arrows starting at \(i \). Moreover, if \(\Gamma \) is equipped with a set of relations \(I \), \(I \setminus \{i\} \) will be the set obtained from \(I \) by excluding the relations starting at \(i \). Also, since \(\Gamma \) is acyclic, we can iterate this process and enumerate \(\Gamma_0 = \{1, \ldots, n\} \) in such a way that \(i \) is a source vertex of \(\Gamma \setminus \{1, \ldots, i-1\} \) for every \(i \).

Lemma 4.1. Let \(i \in \Gamma_0 \), \(M \) be an \(A_i \)-module, and let \((P,g) \) be its projective cover in \(\text{mod} \ A_i \). Then there is an exact sequence of \(\Lambda \)-modules:

\[
0 \rightarrow C_i(\text{Ker} \ g) \oplus L \rightarrow C_i(P) \rightarrow M \rightarrow 0
\]

where \(L \) is a \(\Lambda \)-module such that

\[
\text{supp} \ L \subseteq \{ j \in \Gamma_0 : j \neq i \text{ and there is a path } i \rightarrow j \}
\]

Moreover,

(a) \(L_j \) is free for every vertex \(j \), and

(b) If \(i \in \Gamma_0 \) is such that \(I \setminus \{1, \ldots, i\} = I \setminus \{1, \ldots, i-1\} \), then \(L \) is projective over \(\Lambda \).

Proof. (a) It follows from [4] (Proposition 5 and Remark 5) that \((C_i(P))_i = P \). So, we can define a morphism of representations \(g' : C_i(P) \rightarrow M \) by establishing that \(g'_i = g \) and that \(g'_j = 0 \) for \(j \neq i \). We want to show that \(\text{Ker} \ g' = C_i(\text{Ker} \ g) \oplus L \), where \(L \) satisfies the conditions in the statement.

Let \(\{p_1, \ldots, p_r\} \) be a \(k \)-basis of \(\text{Ker} \ g \) and complete it to a \(k \)-basis \(\{p_1, \ldots, p_r, \ldots, p_s\} \) of \(P \). Also let, for every \(j \in \Gamma_0 \), \(\{a^j_1, \ldots, a^j_{i_j}\} \) be a \(k \)-basis of \(A_j \). For a path \(\gamma : i = l_0 \rightarrow l_1 \rightarrow \cdots \rightarrow l_t = j \) from \(i \) to \(j \) in \(\Gamma \) denote

\[
\theta_{\gamma,h,i_1,\ldots,i_t} = p_h \otimes \gamma_1 a^{e(\gamma_1)}_{i_1} \gamma_2 a^{e(\gamma_2)}_{i_2} \cdots \gamma_t a^{e(\gamma_t)}_{i_t} \in \text{Ker} \ g'
\]

Remember that since \(g' \) was defined as a morphism of representations, it corresponds to a morphism of \(\Lambda \)-modules, because of Theorem 2.2. Therefore,

\[
g' (\theta_{\gamma,h,i_1,\ldots,i_t}) = g' (p_h \otimes \gamma_1 a^{e(\gamma_1)}_{i_1} \gamma_2 a^{e(\gamma_2)}_{i_2} \cdots \gamma_t a^{e(\gamma_t)}_{i_t}) = g(p_h)
\]
So \(\theta_{\gamma,h,i_1,\ldots,i_t} \notin \text{Ker} \, g' \) if and only if \(\gamma \) is the zero-length path \(\varepsilon_i \) and \(r < h \leq s \). Thus we can write

\[
\text{Ker} \, g' = (\theta_{\varepsilon_i,h} : 1 \leq h \leq r) + (\theta_{\gamma,h,i_1,\ldots,i_t} : l(\gamma) > 0)
\]

\[
= (\theta_{\gamma,h,i_1,\ldots,i_t} : 1 \leq h \leq r) \oplus (\theta_{\gamma,h,i_1,\ldots,i_t} : l(\gamma) > 0 \text{ and } r < h \leq s)
\]

\[
= C_i(\text{Ker} \, g) \oplus L
\]

where \(L = (\theta_{\gamma,h,i_1,\ldots,i_t} : l(\gamma) > 0 \text{ and } r < h \leq s) \). Since the generators of \(L \) involve only paths of length strictly greater than zero, the only components of \(L \) that are non-zero are the ones over the successors of \(i \), except for \(i \) itself. Therefore the condition about the support of \(L \) in the statement is satisfied. It remains to prove the other two assertions in the statement.

To prove (a), fix \(j \in \Gamma_0 \). If \(j = i \) or if \(j \) is not a successor of \(i \), then \(L_j = 0 \), so we may suppose this is not the case. Again using the equivalence given by Theorem 2.2,

\[
L_j = L \cdot 1_j = (\theta_{\gamma,h,i_1,\ldots,i_t} : \gamma : i \leadsto j \text{ and } r < h \leq s)
\]

\[
= (p_h \otimes \gamma_1 a_{i_1}^{e(\gamma_1)} \gamma_2 a_{i_2}^{e(\gamma_2)} \ldots \gamma_t a_{i_t}^{e(\gamma_t)} : \gamma : i \leadsto j \text{ and } r < h \leq s)
\]

So \(L_j \) is isomorphic to the free \(A_j \)-module whose basis is the set of all possible elements \(p_h \otimes \gamma_1 a_{i_1}^{e(\gamma_1)} \gamma_2 a_{i_2}^{e(\gamma_2)} \ldots \gamma_t a_{i_t}^{e(\gamma_t)} \). In particular, \(L_j \) is free over \(A_j \), and this proves (a).

(b) Assume that \(I \setminus \{1,\ldots,i\} = I \setminus \{1,\ldots,i-1\} \) and let \(i^+ \) denote the set of immediate successors of \(i \). Since, by hypothesis, there are no relations starting at \(i \), we can write:

\[
L = (\theta_{\gamma,h,i_1,\ldots,i_t} : l(\gamma) > 0 \text{ and } r < h \leq s)
\]

\[
= (p_h \otimes \gamma_1 a_{i_1}^{e(\gamma_1)} \gamma_2 a_{i_2}^{e(\gamma_2)} \ldots \gamma_t a_{i_t}^{e(\gamma_t)} : l(\gamma) > 0 \text{ and } r < h \leq s)
\]

\[
= (p_h \otimes \gamma_1 a_{i_1}^{e(\gamma_1)} \otimes \gamma_2 a_{i_2}^{e(\gamma_2)} \ldots \gamma_t a_{i_t}^{e(\gamma_t)} : l(\gamma) > 0 \text{ and } r < h \leq s)
\]

\[
\cong (a_{i_1}^{e(\gamma_1)} \otimes \gamma_2 a_{i_2}^{e(\gamma_2)} \ldots \gamma_t a_{i_t}^{e(\gamma_t)} : l(\gamma) > 0)^{s-r}
\]

\[
\cong \bigoplus_{i' \in i^+} C_i(A_{i'})^{s-r}
\]

Since \(A_{i'} \) is projective over \(A_i \), then \(C_i(A_{i'}) \) is projective over \(\Lambda \) by Proposition 2.3.

We have thus shown that \(L \) is isomorphic to a direct sum of projective \(\Lambda \)-modules, and therefore it is also projective, concluding the proof.

4.1. **A special kind of gbp-algebras.** Before our next result, we need a further definition. For a vertex \(j \) of \(\Gamma \), denote by \(S_j \) the simple \(k\Gamma/I \)-module over \(j \).

Definition 4.2. A gbp-algebra \(\Lambda \) is called **terraced** provided for every \(i \in \Gamma_0 \) such that \(I \setminus \{1,\ldots,i\} \neq I \setminus \{1,\ldots,i-1\} \) (i.e., every time there are relations starting at \(i \)), one has

\[
\text{pd}_{k\Gamma/I} S_i \geq \max\{\text{pd}_{k\Gamma/I} S_j : j \text{ is a successor of } i\} + 1.
\]

Observe that any gp-algebra (that is, when \(I = 0 \), which makes \(k\Gamma \) hereditary) is terraced.
Theorem 4.3. Let $\Lambda = k(\Gamma, A, I)$ be a terraced gbp-algebra. Then, for every representation M over Λ,

$$\text{pd}_\Lambda M \leq \max_{i \in \text{supp } M} \{ \text{pd}_{A_i} M_i, \text{pd}_{k\Gamma/I} S_i \}$$

where S_i denotes the simple $k\Gamma/I$-module associated with the vertex i.

Proof. The proof is done by induction. First, suppose $\text{supp } M = \{ n \}$. By the assumption on the numbering of the vertices, we know that n is a sink vertex of Γ_0. It follows from Lemma 3.1(b) that $\text{pd}_\Lambda M = \text{pd}_{A_n} M_n$. Since n is a sink vertex, the simple $k\Gamma/I$-module S_n is projective, and thus it holds that $\text{pd}_\Lambda M = \max \{ \text{pd}_{A_n} M_n, \text{pd}_{k\Gamma/I} S_n \}$. This proves the initial step of induction.

Now suppose that $\text{supp } M \subseteq \{ i, \ldots, n \}$ and that the statement is valid for representations whose support is contained in $\{ i + 1, \ldots, n \}$. Initially we are going to study the projective dimension of M_i over Λ. If i is a sink vertex, then, similarly to above, we have that $\text{pd}_\Lambda M_i = \max \{ \text{pd}_{A_i} M_i, \text{pd}_{k\Gamma/I} S_i \}$, so suppose i is not a sink vertex. Let (P, g) be a projective cover of M_i over A_i. Then, because of Lemma 4.1, there is an exact sequence in $\text{mod } \Lambda$:

$$0 \longrightarrow C_i(\text{Ker } g) \oplus L \longrightarrow C_i(P) \longrightarrow M_i \longrightarrow 0$$

where L satisfies the conditions given in the statement of the cited lemma. From this exact sequence, we deduce that

$$\text{pd}_\Lambda M_i \leq \max \{ \text{pd}_\Lambda C_i(P), \text{pd}_\Lambda (C_i(\text{Ker } g) \oplus L) + 1 \}$$

Since P is projective over A_i, Proposition 2.3 implies that $\text{pd}_\Lambda C_i(P) = 0$. Thus

$$\text{pd}_\Lambda M_i \leq \text{pd}_\Lambda (C_i(\text{Ker } g) \oplus L) + 1 \leq \max \{ \text{pd}_\Lambda C_i(\text{Ker } g), \text{pd}_\Lambda L \} + 1$$

Using Corollary 3.3, we have

$$(4.1) \quad \text{pd}_\Lambda M_i \leq \max \{ \text{pd}_{A_i} \text{Ker } g, \text{pd}_\Lambda L \} + 1$$

Now we divide our analysis in cases:

Case 1: $\text{pd}_{A_i} \text{Ker } g \geq \text{pd}_\Lambda L$.

In this case, Equation 4.1 implies that $\text{pd}_\Lambda M_i \leq \text{pd}_{A_i} \text{Ker } g + 1 = \text{pd}_{A_i} M_i$, because (P, g) is the projective cover of M_i.

Case 2: $\text{pd}_{A_i} \text{Ker } g \leq \text{pd}_\Lambda L$.

Now, from Equation 4.1, $\text{pd}_\Lambda M_i \leq \text{pd}_\Lambda L + 1$. In case $I \setminus \{ 1, \ldots, i \} = I \setminus \{ 1, \ldots, i - 1 \}$, from Lemma 4.1, we get that $\text{pd}_\Lambda L = 0$. Since we have already supposed in this case that $\text{pd}_{A_i} \text{Ker } g \leq \text{pd}_\Lambda L$, then $\text{pd}_{A_i} \text{Ker } g = 0$. Again from Equation 4.1, $\text{pd}_\Lambda M_i \leq 1$. Since i is not a sink, we know that S_i is not projective over $k\Lambda/I$ and so $\text{pd}_{k\Lambda/I} S_i \geq 1$. Thus $\text{pd}_\Lambda M_i \leq \text{pd}_{k\Lambda/I} S_i$.

Assume now $I \setminus \{ 1, \ldots, i \} \neq I \setminus \{ 1, \ldots, i - 1 \}$. By Lemma 4.1, $\text{pd}_{A_j} L_j = 0$ for every j, and since the support of L is contained in $\{ i + 1, \ldots, n \}$, by the induction hypothesis and because Λ is terraced:

$$\text{pd}_\Lambda L \leq \max_{j \in \text{supp } L} \{ \text{pd}_{k\Gamma/I} S_j \} \leq \text{pd}_{k\Gamma/I} S_i - 1$$
Then $\text{pd}_A M_i \leq \text{pd}_A L + 1 \leq \text{pd}_{k\Gamma/I} S_i - 1 + 1 = \text{pd}_{k\Gamma/I} S_i$.

Putting together all cases discussed above, we conclude that

$$\text{pd}_A M_i \leq \max \{ \text{pd}_A M_i, \text{pd}_{k\Gamma/I} S_i \}$$

Now, using Proposition 3.5, we have that

$$\text{pd}_A M \leq \max_{j \in \text{supp} M} \text{pd}_A M_j \leq \max_{j \in \text{supp} M} \{ \text{pd}_A M_j, \text{pd}_{k\Gamma/I} S_j \}$$

which proves the theorem.

\[\square \]

Corollary 4.4. Let $\Lambda = k(\Gamma, \mathcal{A}, I)$ be a terraced gbp-algebra. Then, for every $j \in \Gamma_0$, $\text{gl.dim} A_j \leq \text{gl.dim} \Lambda$, and the following inequality holds:

$$\text{gl.dim} \Lambda \leq \max_{j \in \Gamma_0} \left\{ \text{gl.dim} \frac{k\Gamma}{I}, \text{gl.dim} A_j \right\}$$

4.2. Opposite algebras.

Before our next corollary, let us recall some facts concerning the opposite algebra of $\Lambda = k(\Gamma, \mathcal{A}, I)$. Denote by Γ^{op} the quiver with the same vertices of Γ and with reversed arrows. Also, I^{op} will denote the set of relations in Γ^{op} obtained through inversion of the arrows in I. Finally, $\mathcal{A}^{\text{op}} = \{ A_i^{\text{op}} : i \in \Gamma_0 \}$ is the set where A_i^{op} is the opposite algebra of A_i. With this notation, we have that $\Lambda^{\text{op}} \cong k(\Gamma^{\text{op}}, \mathcal{A}^{\text{op}}, I^{\text{op}})$. (See [1], Proposition 2. We shall refer to this in the next proof as Fact I).

Also, in a natural way, one can describe the representations of the opposite algebra in terms of the representations of the original one using the duality functor $D = \text{Hom}_k(-, k)$. Namely, if $((M_i)_{i \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1})$ is the representation of the Λ-module M, then the representation of the Λ^{op}-module DM is isomorphic to $(D(M_i)_{i \in \Gamma_0}, D(\phi_\alpha)_{\alpha \in \Gamma_1})$. (See [1], Proposition 3. We shall refer to this in the next proof as Fact II). As a consequence, we will have:

Corollary 4.5. Let $\Lambda = k(\Gamma, \mathcal{A}, I)$ be a terraced gbp-algebra, and let M be a representation over Λ. Then

$$\text{id}_\Lambda M = \max_{i \in \text{supp} M} \{ \text{id}_{A_i} M_i, \text{id}_{k\Gamma/I} S_i \}$$

where S_i denotes the simple $k\Gamma/I$-module over the vertex i.

Proof. The idea is to use Theorem 4.3 and the fact that the duality functor anti-preserves homological properties. Again, let $D = \text{Hom}_k(-, k)$ denote the duality functor. Let S'_i denote the simple $k\Gamma^{\text{op}}/I^{\text{op}}$-module over the vertex i. Thus:

$$\text{id}_\Lambda M = \text{pd}_{\Lambda^{\text{op}}} DM$$

$$= \max_{i \in \text{supp} M} \{ \text{pd}_{\Lambda_i^{\text{op}}} (DM)_i, \text{pd}_{k\Gamma^{\text{op}}/I^{\text{op}}} S'_i \}$$

(by Theorem 4.3 and Fact I)

$$= \max_{i \in \text{supp} M} \{ \text{pd}_{A_i^{\text{op}}} D(M_i), \text{pd}_{k\Gamma^{\text{op}}/I^{\text{op}}} S'_i \}$$

(by Fact II)

$$= \max_{i \in \text{supp} M} \{ \text{id}_{A_i} M_i, \text{id}_{k\Gamma/I} S_i \}$$

(by D is a duality)

\[\square \]
4.3. **Finitistic dimension.** Given an algebra A, its **finitistic dimension** is given by:

$$\text{fin.dim } A = \sup \{ \text{pd}_A M : M \text{ is an } A\text{-module of finite projective dimension} \}$$

A still open conjecture, called the **Finitistic Dimension Conjecture**, states that every algebra has finite finitistic dimension.

Proposition 4.6. Let $\Lambda = k(\Gamma, \mathcal{A}, I)$ be a terraced gbp-algebra. Then

$$\text{fin.dim } \Lambda \leq \max_{i \in \Gamma_0} \left\{ \text{gl.dim } \frac{k\Gamma}{I}, \text{fin.dim } A_i \right\}$$

In particular, if the bound path algebra $k\Gamma/I$ has finite global dimension and $\text{fin.dim } A_i < \infty$ for each i, then also $\text{fin.dim } \Lambda < \infty$.

Proof. Let $M = ((M_i)_{i \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1})$ be a representation of finite projective dimension over Λ. From Lemma 3.1 for every $i \in \Gamma_0$, $\text{pd}_{A_i} M_i \leq \text{pd}_A M$, so M_i has finite projective dimension over A_i, and thus $\text{pd}_{A_i} M_i \leq \text{fin.dim } A_i$. Using Theorem 4.3

$$\text{pd}_A M \leq \max_{i \in \Gamma_0} \{ \text{pd}_{k\Gamma/I} S_i, \text{pd}_{A_i} M_i \} \leq \max_{i \in \Gamma_0} \{ \text{gl.dim } k\Gamma/I, \text{fin.dim } A_i \}.$$

Since M is arbitrary, the statement follows. \qed

5. **Homological dimensions for gp-algebras**

We shall now concentrate in gp-algebras which are, as observed above, terraced gbp-algebras. We start with the following result which is a direct consequence of the above considerations.

Theorem 5.1. Let $\Lambda = k(\Gamma, \mathcal{A})$ be a gp-algebra, with Γ having at least one arrow. Then

$$\text{gl.dim } \Lambda = \max_{j \in \Gamma_0} \{ 1, \text{gl.dim } A_j \}.$$

Proof. Observe that $\text{gl.dim } k\Gamma = 1$ in this case and so, by Corollary 4.4, $\text{gl.dim } \Lambda \leq \max_{j \in \Gamma_0} \{ 1, \text{gl.dim } A_j \}$. The equality now follows using Corollary 3.2 and the fact that Λ is not semisimple (since $k\Gamma$ is not). \qed

5.1. **Shod and quasitilted algebras.** The next result is an application to the study of shod and quasitilted algebras. Quasitilted algebras were introduced in [8] as a generalization of tilted algebras, by considering tilting objects in abelian categories. We shall, however, use a characterization of quasitilted algebras, also proven in [8], which suits better our purpose here. The shod algebras were then introduced in [5] in order to generalize the concept of quasitilted. The acronym shod stands for small homological dimension, as it is clear from the definition below. We refer to [5, 8] for more details.

Definition 5.2. Let A be an algebra. We say that A is a **shod** algebra if, for every indecomposable A-module M, either $\text{pd}_A M \leq 1$ or $\text{id}_A M \leq 1$. If, besides from being shod, A has global dimension of at most two, we say that A is **quasitilted**.
Our next result allows us to produce a quasitilted or shod gp-algebra from other algebras. It is worth mentioning that it is not intended as a complete description of which generalized (bound) path algebras are quasitilted or shod. Before stating it, please note that every hereditary algebra is quasitilted, and thus also shod.

Proposition 5.3. Let $\Lambda = k(\Gamma, A)$ be a gp-algebra, with Γ acyclic. Suppose that A_j is hereditary for every $j \in \Gamma_0$, except possibly for a single vertex $i \in \Gamma_0$. Then:

(a) If A_i is shod, then Λ is shod.

(b) If A_i is quasitilted, then Λ is quasitilted.

Proof. (a) Let $M = ((M_j)_{j \in \Gamma_0}, (\phi_\alpha)_{\alpha \in \Gamma_1})$ be an indecomposable representation over Λ. Since Γ is acyclic, we infer that the algebra $k\Gamma$ is hereditary and so every simple module over it will have projective and injective dimension of at most one. Observe also that, since A_j is hereditary for $j \neq i$, we also have $\text{pd}_{A_j} M_j \leq 1$ and $\text{id}_{A_j} M_j \leq 1$ if $j \neq i$.

Now, since A_i is shod, either $\text{pd}_{A_i} M_i \leq 1$ or $\text{id}_{A_i} M_i \leq 1$. In the former case, from Theorem 4.3, we have that $\text{pd}_{A} M \leq \max_{j \in \Gamma_0}\{\text{pd}_{A_j} M_j, \text{pd}_{k\Gamma} S_j\} \leq 1$, and in the latter, using Corollary 4.5 in an analogous manner, one obtains that $\text{id}_{A} M \leq 1$. Thus Λ is shod.

(b) Since A_i is quasitilted, it is shod and from the previous item we get that Λ is shod. It remains to prove that $\text{gl.dim } \Lambda \leq 2$. Applying Corollary 4.4,

$$\text{gl.dim } \Lambda \leq \max_{j \in \Gamma_0}\{k\Gamma, \text{gl.dim } A_j\} \leq 2,$$

using that A_i is quasitilted and that the other algebras are hereditary. \qed

Example 5.4. This example will show that the converse of proposition above could not hold. Let A be the bound path algebra over the quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

bound by $\alpha\beta = 0$, and let Λ be the generalized path algebra given by

$$A \xrightarrow{k} A$$

We have that, with this setting, Λ does not satisfy the hypothesis from the last proposition: there is more than one vertex upon which the algebra is quasitilted and non-hereditary. However, using [9], Theorem 3.3 or [3], Theorem 3.9, we see that Λ is isomorphic to the bound path algebra over the quiver

$$\begin{align*}
1 & \xrightarrow{\alpha} 2 \\
2 & \xrightarrow{\beta} 4 \xrightarrow{\gamma} 5 \\
3 & \xrightarrow{\delta} 7 \\
4 & \xrightarrow{\delta} 6
\end{align*}$$

bound by $\alpha\beta = \gamma\delta = 0$. Then it is easy to see that Λ is a quasitilted algebra. The same example shows that the converse of the above proposition also does not hold for shod algebras.
We finish our considerations with a result which is a direct consequence of Proposition 4.6.

Proposition 5.5. Let \(\Lambda = k(\Gamma, A) \) be a gp-algebra, with \(\Gamma \) having at least one arrow. Then

\[
\text{fin.dim} \Lambda = \max_{i \in \Gamma_0} \{1, \text{fin.dim} A_i\}
\]

In particular, if \(\text{fin.dim} A_i < \infty \) for each \(i \), then also \(\text{fin.dim} \Lambda < \infty \).

Proof. Just observe that \(\text{gl.dim} k\Gamma = 1 \), and use Proposition 4.6. \(\square \)

Acknowledgements. The authors gratefully acknowledge financial support by São Paulo Research Foundation (FAPESP), grants #2018/18123-5, #2020/13925-6 and #2022/02403-4. The second author has also a grant by CNPq (Pq 312590/2020-2).

References

[1] Assem, I., Coelho, F. U., *Basic Representation Theory of Algebras*, Graduate Texts in Mathematics 283 Springer, 2020, x+311.

[2] Auslander, M., Reiten, I., Smalø, S. O., *Representation theory of Artin algebras* Cambridge Studies in Advanced Mathematics, vol 36, Cambridge University Press, 1995.

[3] Chust, V., Coelho, F. U., *On the correspondence between path algebras and generalized path algebras*, Comm. Algebra 50:5 (2022), 2056-2071.

[4] Chust, V., Coelho, F. U., *Representations of generalized bound path algebras*, São Paulo J. Math. Sci. 17 (2023) 483-504.

[5] Coelho, F. U., Lanzilotta, M., *Algebras with small homological dimensions*, Manus. Math. 100 (1999), 1-11.

[6] Coelho, F. U., Liu, S.X, *Generalized path algebras in: Interaction between ring theory and representations of algebras*. Proceedings of the conference held in Murcia, Spain. 53–66, Lecture Notes in Pure and Appl. Math., 210, Dekker, New York, 2000.

[7] Li, F., *Characterization of left artinian algebras through pseudo path algebras*. J. Aust. Math. Soc., 83 (2007), 385-416.

[8] Happel, D., Reiten, I., Smalø, S. O., * Tilting in abelian categories and quasitilted algebras*, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp.

[9] Ibáñez-Cobos, R. M., Navarro, G., López-Peña, J., *A note on generalized path algebras*, Rev. Roumaine Math. Pures Appl. 53:1 (2008), 25–36.

[10] Külshammer, J., *Pro-species of algebras I: basic properties*. Algebras and Representation Theory 20:5 (2017), 1215-1238.
(Viktor Chust) Institute of Mathematics and Statistics - University of São Paulo, São Paulo, Brazil
Email address: viktorchust.math@gmail.com

(Flávio U. Coelho) Institute of Mathematics and Statistics - University of São Paulo, São Paulo, Brazil
Email address: fucoelho@ime.usp.br