

1H, 13C and 15N resonance assignments of S114A mutant of UVI31+ from Chlamydomonas reinhardtii

Himanshu Singh · Vandana Raghavan · Manish Shukla · Basuthkar J. Rao · Kandala V. R. Chary

Received: 6 October 2012 / Accepted: 13 December 2012 / Published online: 25 December 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Almost complete sequence specific 1H, 13C and 15N resonance assignments of S114A mutant of UVI31+ from *Chlamydomonas reinhardtii* are reported. The cDNA of S114A mutant of UVI31+ was cloned from a eukaryotic green algae (*C. reinhardtii*) and overexpressed in *E.coli* from where the protein was purified to homogeneity. The point mutation S114A in UVI31+ reduces its DNA endonuclease activity substantially as compared with its wild type. As a prelude to the structural characterization of S114A mutant of UVI31+, we report here complete sequence-specific 1H, 13C and 15N NMR assignments.

Keywords NMR · Resonance assignments · S114A · UVI31+ · *Chlamydomonas reinhardtii*

Biological context

Apoptosis in higher multi-cellular organisms plays an important role in homeostasis, development and defence; however its significance in unicellular organisms remains unclear. *Chlamydomonas reinhardtii*, a unicellular green alga, has been shown to undergo apoptosis in response to UV-C irradiation (Kim et al. 1997; Moharikar et al. 2006). In order to understand the process of UV mediated apoptosis in *C. reinhardtii*, we undertook in silico global genome analysis and found a protein, which was identified as UVI31+, one amongst several UV inducible transcripts/proteins and a novel β-lactamase (Moharikar et al. 2006, Rout et al. 2010). UVI31+ protein is also endowed with endonuclease activity, in vitro. Cell biological regulation reveals interesting localization changes of UVI31+ protein in *Chlamydomonas reinhardtii* chloroplast compartment (Shukla et al. 2012).

Chlamydomonas reinhardtii is about 10 μm in diameter that swims with two flagella. They have a cell wall made up of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an “eyespot” that senses light (Moharikar et al. 2006). It undergoes apoptosis in response to UV-C irradiation (Moharikar et al. 2007). It shows classical hall-marks of animal cell apoptosis and hence can be used as a model system for studying its molecular mechanism in a plant-like environment. Certain candidate molecules were recently identified as to be either UV-regulated or involved in apoptosis. They include apoptosis protease activating factor (APAF), a caspase-3 like protein and a defender against apoptotic death (*dad1*). All of them exhibited a distinct activation pattern correlating with onset of death following UV irradiation (Moharikar et al. 2006, 2007). One of the putative candidate molecules that is yet to be characterized is the aforementioned UV inducible gene, *uv31+,* the focus of the present study.

Uvi31+ was originally isolated from *Schizosaccharomyces pombe* (Lee et al. 1994), whose expression was unaltered by other DNA damaging or cytotoxic agents. Interestingly, *uvi31+* showed no significant sequence homology to the known DNA repair genes. It was observed that *uvi31+* transcript increases during normal cell cycle in G1 phase before septation and also during diauxic shift (Kim et al. 1997). A null mutant of *uvi31+* from *S. pombe*
showed sensitivity to UV-light, defects in septation and cytokinesis during the resumption of cell division following UV damage-induced cell cycle arrest (Kim et al. 2002).

The uvi31+ protein has structural homology with the BolA protein of *Escherichia coli*, which was identified by its ability to induce round cell morphology when over-expressed in cells and also following a general stress response (Aldea et al. 1988; Santos et al. 1999; Huynen et al. 2005). Recently, it has been found that uvi31+ exhibited endonuclease activity (Shukla et al. 2012). However, uvi31+ has no structural homology with the known endonucleases. The mutation at S114A site at uvi31+ reduced its endonuclease activity as derived from biochemical analysis (yet to be published). And it has also been speculated that the Ser residue (S114) may be responsible for this activity. With this in the backdrop, we have mutated Ser114 to Ala114 and set out to structurally characterize the mutant of UVI31+ (named as S114Auv31+) by NMR spectroscopy, to find out whether S114 is involved in endonuclease activity. Towards this goal, we report almost complete sequence specific 1H, 13C and 15N NMR assignments of S114A mutant of UVI31+.

Methods and results

Cloning, over-expression and purification of UVI31+ were carried out as described earlier (Rout et al. 2010). 13C6-glucose or/and 15NH4Cl (Cambridge Isotopes Inc.) were used as the sole source of carbon or/and nitrogen. The purification of the protein was achieved by Ni2+-NTA (Ni2+- nitrilotriacetate) agarose (Qiagen, Hilgen, Germany). His6-tagged S114A mutant of UVI31+ was eluted with 250 mM imidazole in 50 mM sodium phosphate (pH 7.6), 100 mM NaCl. The eluted fractions were dialyzed overnight against 50 mM sodium phosphate (pH 6.4), 100 mM NaCl.

For NMR experiments, protein samples were prepared in a mixed solvent of 90 % H2O and 10 % 2H2O containing 50 mM sodium phosphate (pH 6.4) and 100 mM NaCl. The protein concentrations were 0.8 mM. NMR experiments were recorded on a Bruker Avance 800 MHz NMR spectrometer equipped with a 5 mm triple-resonance cryogenic probe. Experiments recorded at 298 K with uniformly 15N-labeled-S114A mutant of UVI31+ included sensitivity-enhanced 2D [15N–1H]–HSQC using water-flipback for minimizing water saturation (Bax et al. 1991). The 3D experiments recorded with doubly (13C and 15N) labeled samples were, HNCO, HN (CA)CO, CBCANH, and CBCA(CO)NH (Bax et al. 1991; Bax and Grzesiek 1993; Wuthrich et al. 1986), essentially for the assignment of backbone resonances. For the assignment of the side chain 1H and 13C resonances, we recorded were assigned using 3D C(CO)NH and 3D H(CCO)NH (Montelione et al. 1992) and 13C- and 15N-edited NOESY spectra (Muhandiram et al. 1993). NMR data processing was carried out using Bruker Topsin 3.1 software and analyzed with TATAPRO (Atreya et al. 2000, 2002) and CARA (Keller 2002). 1H chemical shifts were referenced with respect to the external standard 2,2-dimethyl-2-silapentene-5-sulfonates (DSS), while 15N and 13C chemical shifts were...
Sequence specific resonance assignments of S114A mutant of UV131+, which is free of Cys and Trp, could be carried out for nearly all \(^{1}H\), \(^{13}C\) and \(^{15}N\) spins using a suite of 3D NMR experiments mentioned in Methods. The \(^{1}H\) and \(^{15}N\) assignments thus derived are shown in the 2D \(^{15}N–^{1}H\)–HSQC (Fig. 1). A total of 117 (1Hi, 13Ci and 15Ni) correlations revealed that the protein is in a well folded state. The secondary structure elements (Fig. 2) of the protein have been characterized using the well known empirical relations of \(^{13}C\) chemical shifts (\(\Delta C_{\text{a}}–\Delta C_{\text{p}}\)) (Spera and Bax 1991; Wishart et al. 1995; Barnwal et al. 2008). The CSI plot (Fig. 2) reveals the presence of both \(\alpha\)-helical and \(\beta\)-strand segments separated by short stretches of unstructured elements. Comparison of [\(^{15}N–^{1}H\)]–HSQC spectra of (S114A)-UV131+ with that of wild type-uvi31+, both recorded under similar experimental conditions reveal subtle spectral changes between them, though most of the \(^{15}N–^{1}H\) peaks are unperturbed, suggesting that the overall structural topology of the protein may remain same with substantial conformational changes in the structure particularly near and around the S114A point mutation. Complete 3D structural characterization of the mutant UV131+ will throw more light on the intricate structural changes caused by the point mutation. This work is in progress.

Acknowledgments The facilities provided by National Facility for High Field NMR at TIFR supported by (DST), Department of Biotechnology (DBT), Council of Scientific and Industrial Research (CSIR) and Tata Institute of Fundamental Research, Mumbai, India are acknowledged. KVRC and BJ thank DST for JC Bose Fellowship. This manuscript is dedicated to Late Prof. Ivano Bertini.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of *Escherichia coli*. J Bacteriol 170:5169–5176

Atreya HS, Sahu SC, Chary KV, Govil G (2000) A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17:125–136

Barnwal RP, Rout AK, Atrya HS, Chary KVR (2008) Identification of C-terminal neighbours of amino acid residues without an aliphatic \(^{13}C\) as an aid to NMR assignments in proteins. J Biomol NMR 4:191–197

Bax A, Grzesieks S (1993) Methodological advances in protein NMR. Acc Chem Res 22:131–138

Bax A, Ikura M, Kay LE, Barbato G, Spera S (1991) Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. Ciba Found Symp 161:108–119

Chary KVR, Govil G (2008) NMR in biological systems: from molecules to humans. Springer, The Netherlands

Edison AS, Ablidgaard F, Westler WM, Mooberry ES, Markley J (1994) Practical introduction to theory and implementation of multinouclear, multidimensional nuclear magnetic resonance experiments. Methods Enzymol 239:3–79

Huynen MA, Sprok CA, Gabaldon T, Stel B (2005) Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett 579:591–596

Keller R (2002) The computer aided NMR resonance assignment tutorial, CANTINA Verlag Goldau

Kim SH, Kim M, Lee JI, Kim MJ, Jin YH, Seong RH, Hong SH, Joe CO, Park SD (1997) Identification and expression of uvi31+, a
UV-inducible gene from *Schizosaccharomyces pombe*. Environ Mol Mutagen 30:72–81

Kim MJ, Kim HS, Lee JK, Lee CB, Park SD (2002) Regulation of septation and cytokinesis during resumption of cell division requires uvi31+, a UV-inducible gene of fission yeast. Mol Cells 14:425–430

Lee JK, Park EJ, Chung HK, Hong SH, Joe CO, Park SD (1994) Isolation of UV-inducible transcripts from *Schizosaccharomyces pombe*. Biochem Biophys Res Commun 202:1113–1119

Moharikar S, D’Souza JS, Kulkarni AB, Rao BJ (2006) Apoptotic-like cell death pathway is induced in unicellular chlorophyte *Chlamydomonas reinhardtii* cells following UV irradiation: detection and functional analyses. J Phycol 42:423–433

Moharikar S, D’Souza JS, Rao BJ (2007) A homologue of the defender against the apoptotic death gene (dad1) in UV-exposed Chlamydomonas cells is downregulated with the onset of programmed cell death. J Biosci 32:261–270

Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotopic mixing for determining sequence-specific resonance assignment of isotopically enriched proteins. J Am Chem Soc 113:5490–5492

Muhandiram DR, Farrow NA, Xu KY, Smallcombe SH, Kay LE (1993) A gradient “C NOESY-HSQC experiment for recording NOESY spectra of “C-labeled proteins dissolved in H2O. J Magn Reson B 102:317–321

Rout AK, Minda R, Peri D, Ramakrishnan V, Bhattacharjee SK, Rao BJ, Chary KVR (2010) Sequence specific 1H, 13C and 15N backbone resonance assignments of UVI31+ from *Chlamydomonas reinhardtii*. Biomol NMR Assign 4:171–174

Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from *Escherichia coli* is induced by stress during early stages of growth. Mol Microbiol 32:789–798

Shukla M, Minda R, Singh H, Tirumani S, Chary KVR and Rao BJ. (2012) UVI31+ is a DNA endonuclease that dynamically localizes to chloroplast pyrenoids in *C. reinhardtii*. Plos One In press

Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C13 nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C, and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbour effects. J Biomol NMR 5:67–81

Wuthrich K, Thrice KW, Wuthrich K (1986) NMR of Proteins And Nucleic Acids. Wiley, London