Title	EXISTENCE OF WEAK SOLUTION FOR VOLUME PRESERVING MEAN CURVATURE FLOW VIA PHASE FIELD METHOD
Author(s)	Takasao, Keisuke
Citation	Hokkaido University Preprint Series in Mathematics, 1080, 1-16
Issue Date	2015-11-12
DOI	10.14943/84224
Doc URL	http://hdl.handle.net/2115/69884
Type	bulletin (article)
EXISTENCE OF WEAK SOLUTION FOR VOLUME PRESERVING MEAN CURVATURE FLOW VIA PHASE FIELD METHOD

KEISUKE TAKASAO
GRADUATE SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF TOKYO
KOMABA 3-8-1, MEGURO JP-153-8914 TOKYO JAPAN

ABSTRACT. We study the phase field method for the volume preserving mean curvature flow. Given an initial \(C^1 \) hypersurface we proved the existence of the weak solution for the volume preserving mean curvature flow via the reaction diffusion equation with a nonlocal term. We also show the monotonicity formula and the density upper bound for the reaction diffusion equation.

1. Introduction

Let \(U_t \subset \mathbb{R}^d \) be a bounded open set and have a smooth boundary \(M_t \) for \(t \in [0, T) \). The family of hypersurfaces \(\{ M_t \}_{t \in [0, T)} \) is called the volume preserving mean curvature flow if the velocity vector \(v \) of \(M_t \) is given by

\[
v = h - \langle h \cdot \nu \rangle \nu \quad \text{on } M_t,
\]

where \(h \) and \(\nu \) are the mean curvature vector and the inner unit normal vector of \(M_t \) respectively, and \(\langle h \cdot \nu \rangle \) is given by

\[
\langle h \cdot \nu \rangle := \frac{1}{\mathcal{H}^{d-1}(M_t)} \int_{M_t} h \cdot \nu \, d\mathcal{H}^{d-1}.
\]

Here \(\mathcal{H}^{d-1} \) is the \((d-1)\)-dimensional Hausdorff measure. By (1.1), this flow has the volume preserving property, that is

\[
\frac{d}{dt} \mathcal{L}^d(U_t) = - \int_{M_t} v \cdot \nu \, d\mathcal{H}^{d-1} = 0,
\]

where \(\mathcal{L}^d \) is the \(d \)-dimensional Lebesgue measure. By (1.2), we obtain

\[
\frac{d}{dt} \mathcal{H}^{d-1}(M_t) = - \int_{M_t} h \cdot \nu \, d\mathcal{H}^{d-1} = - \int_{M_t} (v + \langle h \cdot \nu \rangle \nu) \cdot \nu \, d\mathcal{H}^{d-1} = - \int_{M_t} |v|^2 \, d\mathcal{H}^{d-1}.
\]

The time global existence of the classical solution to (1.1) for convex initial data is proved by Gage [10] \((d = 2)\) and Huisken [12] \((d \geq 2)\). Escher and Simonett [7] proved the short time existence of the solution to (1.1) for smooth initial data, and they show that if \(M_0 \) is sufficiently close to a Euclidean sphere, then there exists a time global solution. Li [16] also proved that if the traceless second fundamental form of initial data is sufficiently small then there exists a time global solution. Recently, Mugnai, Seis and Spadaro [19] proved the existence of the global distributional solution for (1.1) by using a variational approach.
Next we mention the approximation of the volume preserving mean curvature flow via the phase field method. Let \(\varepsilon \in (0, 1) \) and \(\Omega \) be the torus, that is \(\Omega := \mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d \). We also use \(\Omega \) to a set \([0, 1]^d \subset \mathbb{R}^d \). Rubinstein and Sternberg [21] considered the following Allen-Cahn equation with a nonlocal term:

\[
\begin{cases}
\varepsilon \varphi_t^\varepsilon = \varepsilon \Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon} + \lambda_1^\varepsilon, & (x, t) \in \Omega \times (0, \infty), \\
\varphi^\varepsilon(x, 0) = \varphi_0^\varepsilon(x), & x \in \Omega,
\end{cases}
\]

where \(W(s) := \frac{(1 - s^2)^2}{2} \) and \(\lambda_1(t) := \int_\Omega \frac{W'(\varphi^\varepsilon)}{\varepsilon} dx = \frac{1}{\mathcal{L}^d(\Omega)} \int_\Omega \frac{W'(\varphi^\varepsilon)}{\varepsilon} dx. \) (1.4) has the volume preserving property, that is

\[
\frac{d}{dt} \int_\Omega \varphi^\varepsilon dx = \int_\Omega \varphi_t^\varepsilon dx = 0.
\]

By (1.5) we obtain

\[
\frac{d}{dt} \int_\Omega \frac{\varepsilon |\nabla \varphi^\varepsilon|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} dx = \int_\Omega \left(\varepsilon \nabla \varphi^\varepsilon \cdot \nabla \varphi_t^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon} \varphi_t^\varepsilon \right) dx
\]

\[
= \int_\Omega \left(-\varepsilon \Delta \varphi^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon} \right) \varphi_t^\varepsilon dx = \int_\Omega (-\varepsilon \varphi_t^\varepsilon + \lambda_1^\varepsilon) \varphi_t^\varepsilon dx
\]

\[
= -\int_\Omega \varepsilon (\varphi_t^\varepsilon)^2 dx + \lambda_1^\varepsilon \int_\Omega \varphi_t^\varepsilon dx - \int_\Omega \varepsilon (\varphi_t^\varepsilon)^2 dx.
\]

By using the following approximate expressions (see [15])

\[
\mathcal{H}^{d-1}(M_t) \approx \frac{1}{\sigma} \int_\Omega \frac{\varepsilon |\nabla \varphi^\varepsilon|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} dx \quad \text{and} \quad \int_\Omega |v|^2 d\mathcal{H}^{d-1} \approx \frac{1}{\sigma} \int_\Omega \varepsilon (\varphi_t^\varepsilon)^2 dx,
\]

(1.6) corresponds to (1.3). Here \(\sigma := \int_{-1}^1 \sqrt{2W(s)} ds \). Bronsard and Stoth [3] studied the singular limit of radially symmetric solutions of (1.4). Chen, Hilhorst and Logak [6] proved that the zero level set of the solution of (1.4) converges to the classical solution of the volume preserving mean curvature flow under the suitable conditions.

Recently, Brassel and Bretin [5] studied following equation:

\[
\begin{cases}
\varepsilon \varphi_t^\varepsilon = \varepsilon \Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon} + \lambda_2^\varepsilon \sqrt{2W(\varphi^\varepsilon)}, & (x, t) \in \Omega \times (0, \infty), \\
\varphi^\varepsilon(x, 0) = \varphi_0^\varepsilon(x), & x \in \Omega,
\end{cases}
\]

where

\[
\lambda_2^\varepsilon = \lambda_2(t) := \frac{\int_\Omega W'(\varphi^\varepsilon) dx}{\int_\Omega \sqrt{2W(\varphi^\varepsilon)} dx}.
\]

The solution of (1.8) has also the property (1.5). Alfaro and Alifrangis [1] showed the convergence of (1.8) to the classical solution for (1.1). [5] showed that the numerical experiments via (1.8) is better than (1.4). But (1.8) has not the properties such as (1.6).

Whether the solution for (1.4) or (1.8) converges to the time global weak solution of the volume preserving mean curvature flow or not is an open problem, due to the difficulty of estimates of the Lagrange multipliers (see Remark 3.6).

In this paper, we consider the following reaction diffusion equation studied by Golyvaty [11]:

\[
\begin{cases}
\varepsilon \varphi_t^\varepsilon = \varepsilon \Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon} + \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)}, & (x, t) \in \Omega \times (0, \infty), \\
\varphi^\varepsilon(x, 0) = \varphi_0^\varepsilon(x), & x \in \Omega,
\end{cases}
\]

(1.9)
where
\[
\lambda^\varepsilon = \lambda^\varepsilon(t) := -\int_\Omega \frac{\sqrt{2W(\varphi^\varepsilon)(\varepsilon \Delta \varphi^\varepsilon - W'(\varphi^\varepsilon)/\varepsilon)}}{2} dx.
\]

Note that by the integration by parts, we have
\[
\lambda^\varepsilon = \frac{-2 \int_\Omega \varepsilon |\nabla \varphi^\varepsilon|^2/2 + W(\varphi^\varepsilon)/\varepsilon \, dx}{\int_\Omega W(\varphi^\varepsilon) \, dx}.
\]

[11] studied the asymptotic behavior of the radially symmetric solutions for (1.9). Define
\[
k(s) := \int_0^s \sqrt{2W(\tau)} \, d\tau = s - \frac{1}{2} s^3.
\]
(1.9) has a property similar to (1.5), that is,
\[
d \int_\Omega k(\varphi^\varepsilon) \, dx = \int_\Omega \varphi_i^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \, dx = 0.
\] (1.10)

We compute that
\[
\frac{d}{dt} \int_\Omega \varepsilon |\nabla \varphi^\varepsilon|^2 \, dx + \frac{W(\varphi^\varepsilon)}{\varepsilon} \, dx = \int_\Omega \left(\varepsilon \nabla \varphi^\varepsilon \cdot \nabla \varphi_i^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon} \varphi_i^\varepsilon \right) \, dx
\]
\[
= \int_\Omega \left(-\varepsilon \Delta \varphi^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon} \right) \varphi_i^\varepsilon \, dx = \int_\Omega \left(-\varepsilon \varphi_i^\varepsilon + \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \right) \varphi_i^\varepsilon \, dx
\] (1.11)
\[
= -\int_\Omega \varepsilon (\varphi_i^\varepsilon)^2 \, dx + \lambda^\varepsilon \int_\Omega \varphi_i^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \, dx = -\int_\Omega \varepsilon (\varphi_i^\varepsilon)^2 \, dx,
\]
where (1.10) is used. By using (1.7), (1.11) also corresponds to (1.3).

The main result in this paper is the time global existence of the weak solution for (1.1) by using (1.9) (see Theorem 2.5). The weak solution is called \(L^2\)-flow defined by Mugnai and Röger [17] and the definition is similar to Brakke’s mean curvature flow [4]. In Proposition 3.3 and Proposition 3.4, we obtain the \(L^2\) estimates for \(\lambda^\varepsilon\) and the generalized mean curvature. Those are the key estimates for the existence theorem.

The monotonicity formula for the mean curvature flow is proved by Huisken [13]. Ilmanen proved the \(\varepsilon\)-version of Huisken’s monotonicity formula of the Allen-Cahn equation for the mean curvature flow [15]. In this paper we show the monotonicity formula for (1.9) (Proposition 3.7). We also obtain the upper density bounds for (1.9) by using the monotonicity formula (Proposition 3.8).

The organization of the paper is as follows. In Section 2 we set out the basic definitions and explain the main results. In Section 3 we show some energy estimates for (1.9) and the \(L^2\) estimates of the Lagrange multiplier \(\lambda^\varepsilon\). We also prove the monotonicity formula and density upper bounds for (1.9). In Section 4 we prove the main results.

2. Preliminaries and main results

We recall some notations from geometric measure theory and refer to [2, 4, 8, 9, 22] for more details. For \(r > 0\) and \(a \in \mathbb{R}^d\) we define \(B_r(a) := \{x \in \mathbb{R}^d \mid |x - a| < r\}\). Set \(\omega_d := \mathcal{L}^d(B_1(0))\). We denote the space of bounded variation functions on \(\mathbb{R}^d\) as \(BV(\mathbb{R}^d)\).

We write the characteristic function of a set \(A \subset \mathbb{R}^d\) as \(\chi_A\). For a set \(A \subset \mathbb{R}^d\) with finite perimeter, we denote the total variation measure of the distributional derivative \(\nabla \chi_A\) by \(\|
abla \chi_A\|\). For measures \(\mu\) and \(\tilde{\mu}\) such that \(\tilde{\mu}\) is absolutely continuous with respect to \(\mu\), we write the Radon-Nikodym derivative by \(\frac{d\tilde{\mu}}{d\mu}\). For \(a = (a_1, a_2, \ldots, a_d), b = (b_1, b_2, \ldots, b_d) \in \mathbb{R}^d\)
we denote $a \otimes b := (a_i b_j)$. For $A = (a_{ij})$, $B = (b_{ij}) \in \mathbb{R}^{d \times d}$, we define

$$A : B := \sum_{i,j=1}^{d} a_{ij} b_{ij}.$$

Let $G_k(\mathbb{R}^d)$ be the Grassman manifold of unoriented k-dimensional subspaces in \mathbb{R}^d. Let $S \in G_k(\mathbb{R}^d)$. We also use S to denote the d by d matrix representing the orthogonal projection $\mathbb{R}^d \to S$. Especially, if $k = d - 1$ then the projection for $S \in G_{d-1}(\mathbb{R}^d)$ is given by $S = I - \nu \otimes \nu$, where I is the identity matrix and ν is the unit normal vector of S.

We call a Radon measure on $\mathbb{R}^d \times G_k(\mathbb{R}^d)$ a general k-varifold in \mathbb{R}^d. We denote the set of all general k-varifolds by $V_k(\mathbb{R}^d)$. Let $V \in V_k(\mathbb{R}^d)$. We define a mass measure of V by

$$\|V\|(A) := V((\mathbb{R}^d \cap A) \times G_k(\mathbb{R}^d))$$

for any Borel set $A \subset \mathbb{R}^d$. We also denote

$$\|V\|(\phi) := \int_{\mathbb{R}^d \times G_k(\mathbb{R}^d)} \phi(x) dV(x, S) \quad \text{for } \phi \in C_c(\mathbb{R}^d).$$

The first variation $\delta V : C^1_c(\mathbb{R}^d; \mathbb{R}^d) \to \mathbb{R}$ of $V \in V_k(\mathbb{R}^d)$ is defined by

$$\delta V(g) := \int_{\mathbb{R}^d \times G_k(\mathbb{R}^d)} \nabla g(x) : S dV(x, S) \quad \text{for } g \in C^1_c(\mathbb{R}^d; \mathbb{R}^d).$$

We define a total variation $\|\delta V\|$ to be the largest Borel regular measure on \mathbb{R}^d determined by

$$\|\delta V\|(G) := \sup \{\delta V(g) \mid g \in C^1_c(G; \mathbb{R}^d), |g| \leq 1\}$$

for any open set $G \subset \mathbb{R}^d$. If $\|\delta V\|$ is locally bounded and absolutely continuous with respect to $\|V\|$, then by the Radon-Nikodym theorem, there exists a $\|V\|$-measurable function $h(x)$ with values in \mathbb{R}^d such that

$$\delta V(g) = - \int_{\mathbb{R}^d} h(x) \cdot g(x) d\|V\|(x) \quad \text{for } g \in C_c(\mathbb{R}^d; \mathbb{R}^d).$$

We call h the generalized mean curvature vector of V.

We call a Radon measure μ k-rectifiable if μ is represented by $\mu = \theta \mathcal{H}^k | M$, that is, $\mu(\phi) := \int_{\mathbb{R}^d} \phi d\mu = \int_M \phi \theta d\mathcal{H}^k$ for any $\phi \in C_c(\mathbb{R}^d)$. Here M is countably k-rectifiable and \mathcal{H}^k-measurable, and $\theta \in L^1_{loc}(\mathcal{H}^k | M)$ is positive valued \mathcal{H}^k-a.e. on M. Moreover if θ is positive and integer-valued \mathcal{H}^k-a.e. on M then we call μ k-integral. For a k-rectifiable Radon measure $\mu = \theta \mathcal{H}^k | M$ we define a unique k-varifold V by

$$\int_{\mathbb{R}^d \times G_k(\mathbb{R}^d)} \phi(x, S) dV(x, S) := \int_{\mathbb{R}^d} \phi(x, T_x M) \theta(x) d\mathcal{H}^k(x) \quad \text{for } \phi \in C_c(\mathbb{R}^d \times G_k(\mathbb{R}^d)),$$

where $T_x M$ is the approximate tangent space of M at x. Note that $T_x M$ exists \mathcal{H}^k-a.e. on M in this assumption, and $\mu = \|V\|$ under this correspondence. The following definition is similar to the formulation of Brakke’s mean curvature flow [4]:

Definition 2.1 (L^2-flow [17]). Let $T > 0$ and $\{\mu_t\}_{t \in (0,T)}$ be a family of Radon measures on \mathbb{R}^d. Set $d\mu := d\mu_t dt$. We call $\{\mu_t\}_{t \in (0,T)} L^2$-flow if the following hold:

1. μ_t is $(d - 1)$-rectifiable and has a generalized mean curvature vector $h \in L^2(\mu_t; \mathbb{R}^d)$ a.e. $t \in (0, T)$,
We extend Remark 2.2. If \(U \) is the approximate tangent space of \(\mu_t \) at \(x \). Moreover \(v \in L^2(\mu, \mathbb{R}^d) \) with (2.1) and (2.2) is called a generalized velocity vector.

Set \(q^\varepsilon(r) := \tanh(\xi) \) for \(r \in \mathbb{R} \) and \(\varepsilon > 0 \). Then the following hold:

1. \(q^\varepsilon \) is a solution for

\[
\frac{\varepsilon(q^\varepsilon_r)^2}{2} = \frac{W(q^\varepsilon)}{\varepsilon} \quad \text{and} \quad q^\varepsilon_{rr} = \frac{W'(q^\varepsilon)}{\varepsilon^2}
\]

with \(q^\varepsilon(0) = 0 \), \(q^\varepsilon(\pm \infty) = \pm 1 \) and \(q^\varepsilon_r(r) > 0 \) for any \(r \in \mathbb{R} \).

2. By (2.3) we have

\[
\int_{\mathbb{R}} \frac{(q^\varepsilon_r)^2}{2} + \frac{W(q^\varepsilon)}{\varepsilon} \, dr = \int_{\mathbb{R}} \sqrt{2W(q^\varepsilon)} q^\varepsilon_r \, dr = \int_{-1}^{1} \sqrt{2W(s)} \, ds = \sigma.
\]

Let \(U_0 \subset \subset (0,1)^d \) be a bounded open set and we denote \(M_0 := \partial U_0 \). Throughout this paper, we assume the following:

1. There exists \(D_0 > 0 \) such that

\[
\sup_{x \in \mathbb{R}^d, R > 0} \frac{\mathcal{H}^{d-1}(M_0 \cap B_R(x))}{\omega_{d-1} R^{d-1}} \leq D_0 \quad \text{(Density upper bounds).}
\]

2. There exists a family of open sets \(\{U_i\}_{i=1}^{\infty} \) such that \(U_i^0 \) have a \(C^3 \) boundary \(M_i^0 \) such that \((U_0, M_0) \) be approximated strongly by \(\{(U_i^0, M_i^0)\}_{i=1}^{\infty} \), that is

\[
\lim_{i \to \infty} \mathcal{L}^d(U_0 \triangle U_i^0) = 0 \quad \text{and} \quad \lim_{i \to \infty} \|\nabla \chi_{U_i^0}\| = \|\nabla \chi_{U_0}\| \quad \text{as measures.}
\]

Remark 2.2. If \(M_0 \) is \(C^1 \), then (2.4) and (2.5) are satisfied.

We extend \(U_i^0 \) and \(M_i^0 \) periodically to \(\mathbb{R}^d \). Let \(\{\varepsilon_i\}_{i=1}^{\infty} \) be a sequence with \(\varepsilon_i \downarrow 0 \) as \(i \to \infty \). For \(U_i^0 \) we define

\[
r_{\varepsilon_i}(x) = \begin{cases} \text{dist}(x, M_i^0), & x \in U_i^0, \\ -\text{dist}(x, M_i^0), & x \notin U_i^0. \end{cases}
\]

We remark that \(|\nabla r_{\varepsilon_i}| \leq 1 \) a.e. \(x \in \mathbb{R}^d \) and \(r_{\varepsilon_i} \) is smooth near \(M_i^0 \). Let \(\overline{r}_{\varepsilon_i} \) be a smoothing of \(r_{\varepsilon_i} \) with \(|\nabla \overline{r}_{\varepsilon_i}| \leq 1 \) and \(|\nabla^2 \overline{r}_{\varepsilon_i}| \leq \varepsilon_i^{-1} \) in \(\mathbb{R}^d \), and \(\overline{r}_{\varepsilon_i} = r_{\varepsilon_i} \) near \(M_i^0 \).

Define

\[
\varphi_{0_i}^{\varepsilon_i}(x) := q^{\varepsilon_i}(\overline{r}_{\varepsilon_i}(x)), \quad i \geq 1.
\]

We remark that \(\varphi_{0_i}^{\varepsilon_i} \) is a periodic function with period \(\Omega \). Then there exists a time global solution \(\varphi^{\varepsilon_i} \) for (1.9) with the initial data \(\varphi_{0_i}^{\varepsilon_i} \) (see [11]). We remark that \(\int_{\Omega} k(\pm 1) \, dx = \pm \frac{2}{3} \mathcal{L}^d(\Omega) = \pm \frac{2}{3} \). So we may assume that there exists \(\omega = \omega(U_0) > 0 \) such that

\[
\left| \int_{\Omega} k(\varphi_{0_i}^{\varepsilon_i}) \, dx \right| \leq \frac{2}{3} - \omega, \quad i \geq 1.
\]
Note that by (1.10) we have
\[\left| \int k(\varphi^i(x, t)) \, dx \right| = \left| \int k(\varphi_0^i(x)) \, dx \right| \leq \frac{2}{3} \omega, \quad i \geq 1, \ t \geq 0. \]
(2.8)
We remark that \(W^i(s) = \sqrt{2W(s)} = 0 \) if \(s = \pm 1 \). Hence by the maximal principle we have

Proposition 2.3 (511).
\[\sup_{(x, t) \in \Omega \times [0, \infty)} |\varphi^i(x, t)| \leq 1, \ i \geq 1. \]
(2.9)
We denote \(\varphi^\varepsilon := \varphi^\varepsilon_i \) and extend \(\varphi^\varepsilon \) periodically to \(\mathbb{R}^d \). We define a Radon measure \(\mu^\varepsilon_i \) by
\[\mu^\varepsilon_i(\phi) := \frac{1}{\sigma} \int_{\mathbb{R}^d} \phi \left(\frac{\varepsilon |\nabla \varphi^\varepsilon|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} \right) \, dx \]
for any \(\phi \in C_c(\mathbb{R}^d) \). Moreover we define a Radon measure \(\mu^\varepsilon \) by
\[\mu^\varepsilon(\psi) := \frac{1}{\sigma} \int_{[0, \infty)} \int_{\mathbb{R}^d} \psi \left(\frac{\varepsilon |\nabla \varphi^\varepsilon|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} \right) \, dx \, dt \]
for any \(\psi \in C_c(\mathbb{R}^d \times [0, \infty)) \). By the definition of \(\varphi_0^\varepsilon \) we obtain the following:

Proposition 2.4 (Proposition 1.4 of [15]). Let \(\varphi_0^\varepsilon \) satisfy (2.6). Then the following hold:

1. There exists \(D_1 = D_1(D_0) > 0 \) such that for any \(\varepsilon > 0 \), we have
\[\sup_{x \in \mathbb{R}^d, R > 0} \left\{ \mu_0^\varepsilon(B_R(x)), \mu_0^\varepsilon(B_R(x)) \right\} \leq D_1. \]
(2.10)
2. \(\lim_{\varepsilon \to 0} \mu_0^\varepsilon = \mathcal{H}^{d-1} |M_0| \) as Radon measures, that is \(\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} \phi \, d\mu_0^\varepsilon = \int_{M_0} \phi \, d\mathcal{H}^{d-1} \) for any \(\phi \in C_c(\mathbb{R}^d) \).
3. \(\lim_{\varepsilon \to 0} \varphi_0^\varepsilon = 2\chi_{U_0} - 1 \) in \(BV_{loc} \).
4. For any \(\varepsilon > 0 \), we have
\[\frac{\varepsilon |\nabla \varphi_0^\varepsilon|^2}{2} \leq \frac{W(\varphi_0^\varepsilon)}{\varepsilon} \quad \text{on} \quad \Omega. \]
(2.11)
Set
\[\varphi^\varepsilon := \begin{cases} \frac{-\varphi_0^\varepsilon}{|\nabla \varphi^\varepsilon|} \nabla \varphi^\varepsilon & \text{if} \ |\nabla \varphi^\varepsilon| \neq 0, \\ 0 & \text{otherwise}. \end{cases} \]

The main result of this paper is the following:

Theorem 2.5. Let \(d = 2, 3 \) and \(U_0 \subset \Omega \) be an open set, where \(U_0 \) satisfies (2.4) and (2.5). Assume that \(\varphi^\varepsilon \) is a solution for (1.9) and the initial data satisfies (2.6). Then there exists a subsequence \(\varepsilon \to 0 \) such that the following hold:

(a) There exists a family of \((d - 1)\)-integral Radon measures \(\{\mu_t\}_{t \in [0, \infty)} \) on \(\mathbb{R}^d \) such that
\[\text{(a1)} \mu^\varepsilon \to \mu \quad \text{as Radon measures on} \quad \mathbb{R}^d \times [0, \infty), \quad \text{where} \quad d\mu := d\mu_t \, dt. \]
\[\text{(a2)} \mu_t^\varepsilon \to \mu_t \quad \text{as Radon measures on} \quad \mathbb{R}^d \quad \text{for any} \quad t \in [0, \infty). \]

(b) There exists \(\psi \in BV_{loc}(\Omega \times [0, \infty)) \cap C^1_{loc}(\Omega \times [0, \infty); L^1(\Omega)) \) such that
\[\text{(b1)} \varphi^\varepsilon \to 2\psi - 1 \quad \text{in} \quad L^1_{loc}(\Omega \times [0, \infty)) \quad \text{and a.e. pointwise}. \]
\[\text{(b2)} \psi(\cdot, 0) = \chi_{U_0} \quad \text{a.e. on} \quad \Omega. \]
\[\text{(b3)} \text{Volume preserving property} \quad \text{1)} \quad \psi(\cdot, t) \quad \text{is a characteristic function with} \]
\[\int_{\Omega} \psi(\cdot, t) \, dx = \mathcal{L}^d(U_0) \]
for any \(t \in [0, \infty) \).
(b4) \(\| \nabla \psi(\cdot, t) \|_2(\phi) \leq \mu_t(\phi) \) for any \(t \in [0, \infty) \) and \(\phi \in C_c(\mathbb{R}^d; \mathbb{R}^+) \). Moreover \(\text{spt} \| \nabla \psi(\cdot, t) \|_2 \subset \text{spt} \mu_t \) for any \(t \in [0, \infty) \).
(c) There exist \(\epsilon \in (0, 1) \) and \(\lambda \in L^2_{\text{loc}}(0, \infty) \) such that for any \(T > 0 \), we have
\[
\sup_{\epsilon \in (0, \epsilon)} \int_0^T |\lambda^\epsilon(t)|^2 \, dt < \infty \quad \text{and} \quad \lambda^\epsilon \to \lambda \text{ weakly in } L^2(0, T).
\]
\[
(2.12)
\]
(d) There exists \(g \in L^2(\mu; \mathbb{R}^d) \) such that
\[
\lim_{\epsilon \to 0} \frac{1}{\sigma} \int_{\mathbb{R}^d \times (0, \infty)} -\lambda^\epsilon \sqrt{2W(\varphi^\epsilon)} \nabla \varphi^\epsilon \cdot \Phi \, dx \, dt = \int_{\mathbb{R}^d \times (0, \infty)} g \cdot \Phi \, d\mu
\]
for any \(\Phi \in C_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d) \).
(e) \(\{\mu_t\}_{t \in (0, \infty)} \) is a \(L^2 \)-flow with a generalized velocity vector
\[
v = h + g
\]
and
\[
\lim_{\epsilon \to 0} \int_{\mathbb{R}^d \times (0, \infty)} v^\epsilon \cdot \Phi \, d\mu^\epsilon = \int_{\mathbb{R}^d \times (0, \infty)} v \cdot \Phi \, d\mu
\]
for any \(\Phi \in C_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d) \). Moreover there exists a measurable function \(\theta : \partial^*\{\psi = 1\} \to \mathbb{N} \) such that
\[
v = h - \frac{1}{\theta} \lambda \nu \quad \mathcal{H}^d\text{-a.e. on } \partial^*\{\psi = 1\},
\]
where \(\nu \) is the inner unit normal vector of \(\{\psi(\cdot, t) = 1\} \) on \(\partial^*\{\psi(\cdot, t) = 1\} \).
(f) (Volume preserving property 2)
\[
\int_{\Omega} v \cdot \nu \, d\| \nabla \psi(\cdot, t) \| = 0
\]
for a.e. \(t \in (0, \infty) \).

3. Energy estimates

In this section, we show the \(L^2 \) estimates for the multiplier \(\lambda^\epsilon \). We also prove the monotonicity formula and the density upper bounds for (1.9) by using the negativity of the discrepancy measure \(\xi^\epsilon_t \). In this section we assume that \(d \geq 2 \), \(U_0 \subset \Omega \) is an open set, where \(U_0 \) satisfies (2.4) and (2.5) and \(\varphi^\epsilon \) is a solution for (1.9) and the initial data satisfies (2.6). Note that we do not need the assumption \(d = 2, 3 \) except Remark 3.5 in this section.

We define a Radon measure \(\xi^\epsilon_t \) by
\[
\xi^\epsilon_t(\phi) := \frac{1}{\sigma} \int_{\mathbb{R}^d} \phi \left(\frac{\| \nabla \varphi^\epsilon \|^2}{2} - \frac{W(\varphi^\epsilon)}{\epsilon} \right) \, dx,
\]
for any \(\phi \in C_c(\mathbb{R}^d) \). \(\xi^\epsilon_t \) is called the discrepancy measure. Set \(\xi^\epsilon(x, t) := \frac{\| \nabla \varphi^\epsilon(x, t) \|^2}{2} - \frac{W(\varphi^\epsilon(x, t))}{\epsilon} \).

Proposition 3.1. \(\xi^\epsilon(x, t) \leq 0 \) for any \((x, t) \in \mathbb{R}^d \times [0, \infty) \). Moreover \(\xi^\epsilon_t \) is a non-positive measure for \(t \in [0, \infty) \).
Proposition 3.3. There exist

\[\varphi^\varepsilon(x, t) = q^\varepsilon(r(x, t)) \].

By (2.3) we have

\[\frac{\varepsilon |\nabla \varphi^\varepsilon|^2/2}{W(\varphi^\varepsilon)/\varepsilon} \leq |\nabla r|^2 \text{ on } \mathbb{R}^d \times [0, \infty). \]

Hence, if $|\nabla r| \leq 1$ then $\varepsilon |\nabla \varphi^\varepsilon|^2/2 \leq 1$. Thus we only need to prove that $|\nabla r| \leq 1$ on $\mathbb{R}^d \times [0, \infty)$.

Let $g(q) := k'(q) = \sqrt{2W(q)}$ for $q \in \mathbb{R}$. By (2.3) we have

\[q^\varepsilon_r = \frac{g(q^\varepsilon)}{\varepsilon} \quad \text{and} \quad q^\varepsilon_{rr} = \frac{(g(q^\varepsilon))_r}{\varepsilon} = g^2 q^\varepsilon_{rr}. \]

(3.1)

By (1.9) and (3.1) we obtain

\[q^\varepsilon_r \Delta r + q^\varepsilon_{rr} |\nabla r|^2 - q^\varepsilon_{rr} + \lambda^\varepsilon q^\varepsilon_r = q^\varepsilon_r \Delta r + q^\varepsilon_{rr} g^2 (|\nabla r|^2 - 1) + \lambda^\varepsilon q^\varepsilon_r. \]

Thus we have

\[r_t = \Delta r + \frac{g^2}{\varepsilon} (|\nabla r|^2 - 1) + \lambda^\varepsilon \]

and

\[\partial_t |\nabla r|^2 = \Delta |\nabla r|^2 - 2 |\nabla^2 r|^2 - 2 \varepsilon \nabla r \cdot \nabla g_q (|\nabla r|^2 - 1) + \frac{2 g_q}{\varepsilon} \nabla r \cdot \nabla |\nabla r|^2. \]

(3.2)

Note that $\nabla \lambda^\varepsilon = 0$. By the assumption we have $|\nabla r(\cdot, 0)| = |\nabla r_0|^2 \leq 1$ on \mathbb{R}^d. By (3.2) and the maximal principle we obtain $|\nabla r| \leq 1$ in $\mathbb{R}^d \times [0, \infty).$ \(\square\)

By (1.11) and (2.10) we have

Proposition 3.2. For any $0 \leq t_1 < t_2 < \infty$ and $\varepsilon > 0$ we have

\[\mu_{t_2}(\Omega) + \frac{1}{\sigma} \int_{t_1}^{t_2} \int_{\Omega} |\partial_t \varphi^\varepsilon|^2 \, dx \, dt = \mu_{t_1}(\Omega) \leq D_1. \]

(3.3)

By an argument similar to that in [3], we obtain the following key estimate:

Proposition 3.3. There exist $c_1 = c_1(\omega, D_1) > 0$ and $\epsilon_1 = \epsilon_1(\omega) > 0$ such that

\[\sup_{\varepsilon \in (0, \epsilon_1)} \int_0^T |\lambda^\varepsilon(t)|^2 \, dt \leq c_1(1 + T). \]

(3.4)

Proof. Let $\Omega_\delta \subset \mathbb{R}^d$ be a open set with a smooth boundary $\partial \Omega_\delta$ such that $\Omega \subset \Omega_\delta$ and $\lim_{\delta \to 0} \text{dist}(\partial \Omega_\delta, \Omega) = 0$. Let $\zeta = (\zeta_1, \zeta_2, \ldots, \zeta_d) \in C^1(\Omega_\delta, \mathbb{R}^d)$ satisfy $\zeta \cdot n = 0$ on $\partial \Omega_\delta$, where n is the outer unit normal vector of Ω_δ. Multiply (1.9) by $\nabla \varphi^\varepsilon \cdot \zeta$ and integrate over Ω_δ. Then by the integration by parts we have

\[\int_{\Omega_\delta} \varepsilon \varphi^\varepsilon_1 \nabla \varphi^\varepsilon \cdot \zeta \, dx + \sum_{i,j=1}^d \int_{\Omega_\delta} \varepsilon \varphi^\varepsilon_{x_1} \varphi^\varepsilon_{x_j} \zeta^j \, dx - \int_{\Omega_\delta} \left(\frac{\varepsilon |\nabla \varphi^\varepsilon|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} \right) \text{div} \zeta \, dx \]

\[= - \lambda^\varepsilon \int_{\Omega_\delta} k(\varphi^\varepsilon) \text{div} \zeta \, dx. \]

(3.5)

Note that since $\nabla (k(\varphi^\varepsilon)) = \sqrt{2W(\varphi^\varepsilon)} \nabla \varphi^\varepsilon$ we have

\[\int_{\Omega_\delta} \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \nabla \varphi^\varepsilon \cdot \zeta \, dx = \lambda^\varepsilon \int_{\Omega_\delta} \nabla (k(\varphi^\varepsilon)) \cdot \zeta \, dx = - \lambda^\varepsilon \int_{\Omega_\delta} k(\varphi^\varepsilon) \text{div} \zeta \, dx. \]
Let \(\Psi_\delta \in C^\infty_c(B_\delta(0)) \) be a Dirac sequence and \(\eta \) be a solution of the following equation:

\[
\begin{aligned}
-\Delta \eta &= k(\varphi^e(\cdot, t)) \ast \Psi_\delta - \int_{\Omega} (k(\varphi^e(\cdot, t)) \ast \Psi_\delta) \quad \text{in } \Omega_\delta, \\
\frac{\partial \eta}{\partial n} &= 0 \quad \text{on } \partial \Omega_\delta,
\end{aligned}
\]

for \(t \geq 0 \). By the standard arguments of the elliptic PDE and (2.9) we have

\[
\|\eta(\cdot, t)\|_{C^{2,\alpha}(\Omega)} \leq c_2, \quad t \geq 0,
\]

where \(c_2 = c_2(\delta, d) > 0 \). Set \(\zeta := \nabla \eta \). Then by (3.5), (3.6) and (3.7) we have

\[
\begin{aligned}
|\lambda^e| \int_{\Omega_\delta} k(\varphi^e) \left(k(\varphi^e) \ast \Psi_\delta - \int_{\Omega_\delta} k(\varphi^e) \ast \Psi_\delta \right) dx &= |\lambda^e| \int_{\Omega_\delta} k(\varphi^e)(-\operatorname{div} \zeta) dx \\
\leq & \left(\int_{\Omega_\delta} \varepsilon |\nabla \varphi^e|^2 dx \right)^\frac{1}{2} \left(\int_{\Omega_\delta} \varepsilon (\varphi^e)^2 dx \right)^\frac{1}{2} \|\zeta\|_{C^0(\Omega_\delta)} + 2 \|\zeta\|_{C^1(\Omega_\delta)} \mu^e_1(\Omega_\delta) \\
\leq & c_3 \left(\left(\int_{\Omega_\delta} \varepsilon (\varphi^e)^2 dx \right)^\frac{1}{2} + 1 \right),
\end{aligned}
\]

where \(c_3 = c_3(\delta, D_1) > 0 \). We compute that

\[
k^2(s) - \frac{4}{9} \geq -W(s)
\]

for \(|s| \leq 1\). By using the arguments of [23, p161] and \(\|\varphi^e\|_{\infty} \leq 1 \), there exists \(C > 0 \) such that

\[
\sup_{|a| \leq \delta} \int_{\Omega_\delta} |k(\varphi^e(x + a, t)) - k(\varphi^e(x, t))| dx \\
\leq 2 \sup_{|a| \leq \delta} \int_{\Omega_\delta} |\varphi^e(x + a, t) - \varphi^e(x, t)| dx \leq C \delta^\frac{1}{2}.
\]

By (2.8), (3.8) and (3.9) we compute that

\[
\begin{aligned}
\int_{\Omega_\delta} k(\varphi^e) \left(k(\varphi^e) \ast \Psi_\delta - \int_{\Omega_\delta} k(\varphi^e) \ast \Psi_\delta \right) dx &= \frac{4}{9} L^d(\Omega_\delta) + \int_{\Omega_\delta} k^2(\varphi^e) dx - \frac{4}{9} dx - \int_{\Omega_\delta} (k(\varphi^e) - k(\varphi^e) \ast \Psi_\delta) k(\varphi^e) dx \\
&\quad - \frac{1}{L^d(\Omega_\delta)} \left(\int_{\Omega_\delta} k(\varphi^e) dx \right)^2 + \frac{1}{L^d(\Omega_\delta)} \int_{\Omega_\delta} k(\varphi^e) dx \int_{\Omega_\delta} k(\varphi^e) - k(\varphi^e) \ast \Psi_\delta dx \\
\geq & \frac{1}{L^d(\Omega_\delta)} \left(\frac{4}{9} L^d(\Omega_\delta)^2 \right)^2 - \left(\int_{\Omega_\delta} k(\varphi^e) dx \right)^2 - \int_{\Omega_\delta} W(\varphi^e) dx \\
&\quad - C \sup_{|a| \leq \delta} \int_{\Omega_\delta} |k(\varphi^e(x + a, t)) - k(\varphi^e(x, t))| dx \\
\geq & \frac{1}{L^d(\Omega_\delta)} \left(\frac{4}{9} L^d(\Omega_\delta)^2 \right)^2 - \left(\int_{\Omega_\delta} k(\varphi^e) dx \right)^2 - C(\varepsilon + \delta^\frac{1}{2}) \geq \frac{\omega}{3},
\end{aligned}
\]

for sufficiently small \(\varepsilon \) and \(\delta \). By (3.7) and (3.10) we obtain

\[
|\lambda^e| \leq 2\omega^{-1}c_3 \left(\left(\int_{\Omega} \varepsilon(\varphi^e)^2 dx \right)^\frac{1}{2} + 1 \right)
\]
By (1.9), (3.3) and (3.4) we have

\[
\int_{0}^{T} \int_{\Omega} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2} \right)^2 \, dx \, dt \leq 4 \omega^{-2} c_3^2 \int_{0}^{T} \left(\int_{\Omega} (\varphi_1^\varepsilon)^2 \, dx + 1 \right) \, dt \\
\leq 4 \omega^{-2} c_3^2 (\sigma \mu_0(\Omega) + T) \leq 4 \omega^{-2} c_3^2 (\sigma D_1 + T),
\]

where (3.3) is used.

Proposition 3.4. There exist \(c_4 = c_4(\omega, D_1) > 0 \) such that

\[
\int_{0}^{T} \int_{\Omega} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2} \right)^2 \, dx \, dt \leq c_4 (1 + T)
\]

for any \(T > 0 \) and \(\varepsilon \in (0, \varepsilon_1) \).

Proof. By (1.9), (3.3) and (3.4) we have

\[
\int_{0}^{T} \int_{\Omega} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2} \right)^2 \, dx \, dt \\
\leq \int_{0}^{T} \int_{\Omega} \varepsilon (\varphi_1^\varepsilon)^2 \, dx \, dt + \int_{0}^{T} \int_{\Omega} \varepsilon \left(\frac{\sqrt{2W(\varphi^\varepsilon)}}{\varepsilon} \right)^2 \, dx \, dt \\
\leq D_1 + \int_{0}^{T} (\lambda_1^\varepsilon)^2 \int_{\Omega} \frac{2W(\varphi^\varepsilon)}{\varepsilon} \, dx \, dt \leq D_1 + 2D_1 \int_{0}^{T} (\lambda_1^\varepsilon)^2 \, dt \\
\leq D_1 (1 + 2c_1 (1 + T)),
\]

where \(\int_{\Omega} \frac{2W(\varphi^\varepsilon)}{\varepsilon} \, dx \leq 2\mu_1^\varepsilon(\Omega) \leq 2D_1 \) is used. \(\square \)

Remark 3.5. By (3.11), we have

\[
\liminf_{\varepsilon \to 0} \int_{\Omega} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2} \right)^2 \, dx < \infty \quad \text{for a.e. } t \geq 0.
\]

Assume that \(d = 2, 3 \) and there exists a family of Radon measures \(\{\mu_t\}_{t \in (0, \infty)} \) such that \(\mu_t^\varepsilon \to \mu_t \) for \(t \geq 0 \). Then by (3.3), (3.12) and [20, Theorem 4.1], we have

\[
\int_{\Omega} |h|^2 \, d\mu_t \leq \liminf_{\varepsilon \to 0} \int_{\Omega} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2} \right)^2 \, dx < \infty \quad \text{for a.e. } t \geq 0,
\]

where \(h \) is the generalized mean curvature for \(\mu_t \).

Remark 3.6. For (1.4), [3] proved the boundedness of \(\sup_{\varepsilon} \int_{0}^{T} (\lambda_1^\varepsilon)^2 \, dt \). But we need the boundedness of \(\sup_{\varepsilon} \varepsilon^{-1} \int_{0}^{T} (\lambda_1^\varepsilon)^2 \, dt \) to obtain (3.11) for (1.4).

Next we show the monotonicity formula. Define

\[
\rho = \rho_{y,s}(x, t) := \frac{1}{(4\pi(s-t))^{d/2}} e^{-\frac{|x-y|^2}{4(s-t)}}, \quad t < s, \ x, y \in \mathbb{R}^d.
\]

To localize the monotonicity formula, we choose a radially symmetric cut-off function \(\eta(x) \in C^\infty_0(B_{1/2}(0)) \) with \(\eta = 1 \) on \(B_{1/4}(0) \) and \(0 \leq \eta \leq 1 \). Define

\[
\tilde{\rho}_{(y,s)}(x, t) := \rho_{y,s}(x, t) \eta(x-y) = \frac{1}{(4\pi(s-t))^{d/2}} e^{-\frac{|x-y|^2}{4(s-t)}} \eta(x-y), \quad t < s, \ x, y \in \mathbb{R}^d.
\]
Furthermore by integration by parts we have
\[\int_{\mathbb{R}^d} \hat{\rho} \, d\mu_t^\varepsilon(x) \bigg|_{t=t_2}^{t=t_1} \leq \left(\int_{\mathbb{R}^d} \hat{\rho} \, d\mu_t^\varepsilon(x) \right|_{t=t_1}^{t=t_2} + C_5 \int_{t_1}^{t_2} e^{-\frac{1}{s-\varepsilon t}} \mu_t^\varepsilon(B_{\frac{1}{2}}(y)) \, dt \right) e^{\varepsilon^2 t^2 |x(t)|^2} dt \] (3.13)
for \(y \in \mathbb{R}^d \) and \(0 \leq t_1 < t_2 \).

Proof. First we show
\[\frac{d}{dt} \int_{\mathbb{R}^d} \hat{\rho} \, d\mu_t^\varepsilon \leq \frac{1}{2(s-t)} \int_{\mathbb{R}^d} \hat{\rho} \, d\xi_t^\varepsilon + \frac{1}{2} (\lambda^\varepsilon)^2 \int_{\mathbb{R}^d} \hat{\rho} \, d\mu_t^\varepsilon + C_5 e^{-\frac{1}{s-\varepsilon t}} \mu_t^\varepsilon(B_{\frac{1}{2}}(y)). \] (3.14)
Define
\[L^\varepsilon := \varphi_t^\varepsilon - \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)} = \Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2}. \]
Let \(e_\varepsilon := \frac{\varepsilon |\nabla \varphi|^2}{2} + \frac{W(\varphi^\varepsilon)}{\varepsilon} \). By integration by parts we obtain
\[\int_{\mathbb{R}^d} e_\varepsilon \hat{\rho} \, dx = \int_{\mathbb{R}^d} \{ e_\varepsilon \hat{\rho}_t - e_\varepsilon \left(L^\varepsilon + \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \right) \} \, dx \
\leq \int_{\mathbb{R}^d} \{ e_\varepsilon \hat{\rho}_t + e_\varepsilon \left(L^\varepsilon \nabla \hat{\rho} \cdot \nabla \varphi^\varepsilon + \frac{\nabla \rho \cdot \nabla \varphi^\varepsilon}{\rho} \right) \} \, dx \] (3.15)
Furthermore by integration by parts we have
\[\int_{\mathbb{R}^d} e_\varepsilon L^\varepsilon \nabla \hat{\rho} \cdot \nabla \varphi^\varepsilon \, dx = \int_{\mathbb{R}^d} -\varepsilon (\nabla \varphi^\varepsilon \otimes \nabla \varphi^\varepsilon) : \nabla^2 \hat{\rho} + e_\varepsilon \Delta \hat{\rho} \, dx. \] (3.16)
Substitution of (3.15) into (3.16) gives
\[\frac{d}{dt} \int_{\mathbb{R}^d} e_\varepsilon \hat{\rho} \, dx \leq \int_{\mathbb{R}^d} (-\xi_\varepsilon) \left(\partial_t \hat{\rho} + \Delta \hat{\rho} \right) + \varepsilon |\nabla \varphi^\varepsilon|^2 \left(\partial_t \hat{\rho} + \Delta \hat{\rho} - \frac{\nabla \varphi^\varepsilon \otimes \nabla \varphi^\varepsilon}{|\nabla \varphi^\varepsilon|^2} : \nabla^2 \hat{\rho} \right) + \frac{\nabla \rho \cdot \nabla \varphi^\varepsilon}{\rho} \right) \, dx + \frac{1}{2} (\lambda^\varepsilon)^2 \int_{\mathbb{R}^d} e_\varepsilon \hat{\rho} \, dx. \] (3.17)
Note that \(\partial_t (\text{without multiplication } \eta) \) satisfies the following:
\[\rho_t + \Delta \rho = -\frac{\rho}{2(s-t)}, \quad \rho_t + \Delta \rho - \frac{\nabla \varphi^\varepsilon \otimes \nabla \varphi^\varepsilon}{|\nabla \varphi^\varepsilon|^2} : \nabla^2 \rho - \frac{\nabla \rho \cdot \nabla \varphi^\varepsilon}{\rho} = 0. \] (3.18)
When one computes (3.18) with \(\rho \) instead of \(\hat{\rho} \), we obtain additional term coming from differentiation of \(\eta \). Note that \(|\nabla^j \rho| \leq C(j, d) e^{-\frac{s-t}{s-\varepsilon t}} \) for any \(x, y \in \mathbb{R}^d \) with \(|x-y| > \frac{1}{4} \)
and \(j = 0, 1 \). Hence the integration of these terms can be estimated by \(C \mu_t^\varepsilon(B_{\frac{1}{2}}(y)) e^{-\frac{s-t}{s-\varepsilon t}} \)
for \(C = C(d) > 0 \). Thus we obtain (3.14). By (3.14), Proposition 3.1 and Gronwall's inequality we have (3.13).

Next we prove the upper density ratio bounds of \(\mu_t^\varepsilon \).

Proposition 3.8. There exists \(c_6 = c_6(d) > 0 \) such that
\[\frac{\mu_t^\varepsilon(B_t(x))}{R^{d-1}} \leq c_6 D_1(1 + t) e^{c_1(1+t)} \] (3.19)
for \((x, t) \in \Omega \times [0, \infty), \varepsilon \in (0, \varepsilon_1)\) and \(0 < R < \frac{1}{4} \).
Proof. We compute that
\[
\int_{\mathbb{R}^d} \tilde{\rho}_{y,s}(x,0) \, d\mu_0^\varepsilon(x) \leq \frac{1}{(4\pi s)^{d+1}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4s}} \, d\mu_0^\varepsilon(x)
\]
\[
= \frac{1}{(4\pi s)^{d+1}} \int_0^1 \mu_0^\varepsilon(\{x \mid e^{-\frac{|x-y|^2}{4s}} > k\}) \, dk = \frac{1}{(4\pi s)^{d+1}} \int_0^1 \mu_0^\varepsilon(B\sqrt{4s \log k^{-1}}(y)) \, dk
\]
\[
\leq \frac{1}{(4\pi s)^{d+1}} \int_0^1 D_4 \omega_{d-1}(\sqrt{4s \log k^{-1}}) \, dk \leq c_7 D_4,
\]
where \(c_7 > 0\) is depending only on \(d\) and the density upper bound (2.10) is used. By (3.3), (3.13) and (3.20), we have
\[
\int_{\mathbb{R}^d} \tilde{\rho}_{y,s}(x,t) \, d\mu_t^\varepsilon(x) = \left(\int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4s}} \, d\mu_t^\varepsilon(x) + c_5 \int_0^t e^{-\frac{\log(1+\tau)}{4s}} \mu_s^\varepsilon(B_2(y)) \, d\tau \right) e^{\int_0^t \| \varphi \|^2 \, d\tau}
\]
\[
\leq (c_7 D_1 + c_5 D_2 t) \, e^{c_1(1+t)}
\]
for any \(0 < t < s\) and \(y \in \Omega\). Fix \(R \in (0, \frac{1}{4})\) and set \(s = t + \frac{R^2}{r} \). Then
\[
\int_{\mathbb{R}^d} \tilde{\rho}_{y,s}(x,t) \, d\mu_t^\varepsilon(x) = \int_{\mathbb{R}^d} \frac{1}{\pi^{d-1} R^{d-1}} e^{-\frac{|x-y|^2}{R^2}} \eta(x-y) \, d\mu_t^\varepsilon(x)
\]
\[
\geq \int_{B_R(y)} \frac{1}{\pi^{d-1} R^{d-1}} e^{-\frac{|x-y|^2}{R^2}} \, d\mu_t^\varepsilon \geq \int_{B_R(y)} \frac{1}{\pi^{d-1} R^{d-1}} e^{-1} \, d\mu_t^\varepsilon = \frac{1}{e} \pi^{d-1} R^{d-1} \mu_t^\varepsilon(B_R(y)),
\]
where \(\eta(x-y) = 1\) on \(B_R(y)\) is used. By (3.21) and (3.22) we obtain (3.19). \(\square\)

4. Existence of \(L^2\)-flow

To prove Theorem 2.5, we use the following theorem:

Theorem 4.1 ([18]). Let \(d = 2, 3\) and \(\varphi^\varepsilon\) be a solution for the following equation:
\[
\begin{cases}
\varepsilon \varphi_t^\varepsilon = \varepsilon \Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon} + g^\varepsilon, & (x, t) \in \Omega \times (0, \infty),
\varphi^\varepsilon(x, 0) = \varphi_0^\varepsilon(x), & x \in \Omega.
\end{cases}
\]

We assume that there exists \(\epsilon > 0\) such that
\[
\sup_{\epsilon \in (0, \epsilon)} \left(\mu_0^\varepsilon(\Omega) + \int_{\Omega \times (0,T)} \frac{1}{\epsilon} (g^\varepsilon)^2 \, dx \, dt \right) < \infty
\]
for any \(T > 0\). Then there exits a subsequence \(\epsilon \to 0\) such that the following hold:

1. There exists a family of \((d-1)\)-integral Radon measures \(\{\mu_t\}_{t \in [0, \infty)}\) on \(\mathbb{R}^d\) such that
 \(\mu_0^\varepsilon \to \mu\) as Radon measures on \(\mathbb{R}^d \times [0, \infty)\), where \(d\mu = d\mu_t \, dt\).
2. There exists \(g \in L^2(\mu; \mathbb{R}^d)\) such that
 \[
 \lim_{\varepsilon \to 0} \frac{1}{\varepsilon \cdot \sigma} \int_{\mathbb{R}^d \times (0, \infty)} -g^\varepsilon \nabla \varphi^\varepsilon \cdot \Phi \, dx \, dt = \int_{\mathbb{R}^d \times (0, \infty)} g \cdot \Phi \, d\mu
 \]
 for any \(\Phi \in C_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d)\).
Proof of Theorem 2.5. Let \(\{ \mu_t \}_{t \in (0, \infty)} \) be a \(L^2 \)-flow with a generalized velocity vector \(v = h + g \) and

\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d \times (0, \infty)} v^\varepsilon \cdot \Phi \, d\mu^\varepsilon = \int_{\mathbb{R}^d \times (0, \infty)} v \cdot \Phi \, d\mu
\]

for any \(\Phi \in C_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d) \), where

\[
v^\varepsilon := \begin{cases} \frac{-\varepsilon i}{|\nabla \varphi^\varepsilon|}\frac{\nabla \varphi^\varepsilon}{|\nabla \varphi^\varepsilon|} & \text{if } |\nabla \varphi^\varepsilon| \neq 0, \\ 0 & \text{otherwise}. \end{cases}
\]

Remark 4.2. The boundary conditions of (4.1) of the original theorem is Neumann conditions. But by an argument similar to the proof, we also obtain same results for periodic boundary conditions (see [17, Remark 2.3]).

Proof of Theorem 2.5. Set \(g^\varepsilon := \lambda^\varepsilon \sqrt{2W(\varphi^\varepsilon)} \). By (3.3) and (3.4) we have (2.12) and

\[
\sup_{\varepsilon \in (0,1)} \int_0^T \int_{\Omega} \frac{1}{\varepsilon} (g^\varepsilon)^2 \, dx \, dt = \sup_{\varepsilon \in (0,1)} \int_0^T \int_{\Omega} \frac{2W(\varphi^\varepsilon)}{\varepsilon} \, dx \, dt \leq 2c_1 D_1 (1 + T). \tag{4.3}
\]

By (2.10) and (4.3), \(\varphi^\varepsilon \) satisfy all the assumptions of Theorem 4.1. Then (a) of Theorem 2.5 holds and \(\{ \mu_t \}_{t \in (0, \infty)} \) is a \(L^2 \)-flow with a generalized velocity vector \(v = h + g \) with (2.13).

As a supplement, we show the key estimate (2.2) directly in Proposition 4.3. So we only need to prove (b), (2.14) and (f).

Next we prove (b). Set \(w^i := G \circ \varphi^i \), where \(G(s) := \sigma^{-1} \int_{-1}^s \sqrt{2W(y)} \, dy \) and \(\varphi^i := \varphi^\varepsilon \). Note that \(G(-1) = 0 \) and \(G(1) = 1 \). We compute that

\[
|\nabla w^i| = |\nabla \varphi^i| \sqrt{2W(\varphi^i)} \leq \sigma^{-1} \left(\frac{\varepsilon |\nabla \varphi^i|^2}{2} + \frac{W(\varphi^i)}{\varepsilon} \right).
\]

Hence by (3.3) we have

\[
\int_{\Omega} |\nabla w^i| \, dx \leq \int_{\Omega} \sigma^{-1} \left(\frac{\varepsilon |\nabla \varphi^i|^2}{2} + \frac{W(\varphi^i)}{\varepsilon} \right) \, dx = \mu^i \Omega \leq D_1 \tag{4.4}
\]

for \(t \geq 0 \). Fix \(T > 0 \). By the similar argument and (3.3) we obtain

\[
\int_0^T \int_{\Omega} |\partial_t w^i| \, dx \, dt \leq \sigma^{-1} \int_0^T \int_{\Omega} \left(\frac{\varepsilon |\partial_t \varphi^i|^2}{2} + \frac{W(\varphi^i)}{\varepsilon} \right) \, dx \, dt \leq D_1 (1 + T). \tag{4.5}
\]

By (4.4) and (4.5), \(\{ w^i \}_{i=1}^\infty \) is bounded in \(BV(\Omega \times [0, T]) \). By the standard compactness theorem and the diagonal argument there is subsequence \(\{ w^j \}_{j=1}^{\infty} \) (denoted by the same index) and \(w \in BV_{loc}(\Omega \times [0, \infty)) \) such that

\[
w^i \to w \quad \text{in } L^1_{loc}(\Omega \times [0, \infty)) \tag{4.6}
\]

and a.e. pointwise. We denote \(\psi(x, t) := \lim_{i \to \infty} (1 + G^{-1} \circ w^i(x, t)) / 2 \). Then we have

\[
\varphi^i \to 2\psi - 1 \quad \text{in } L^1_{loc}(\Omega \times [0, \infty)) \tag{4.7}
\]

and a.e. pointwise. Hence we obtain (b1). By Proposition 2.4 (3) we obtain (b2). We have \(\varphi^i \to \pm 1 \) a.e. and \(\psi = 1 \) or \(= 0 \) a.e. on \(\Omega \times [0, \infty) \) by the boundedness of \(\int_{\Omega} \frac{W(\varphi^i)}{\varepsilon} \, dx \). Moreover \(\psi = w \) a.e. on \(\Omega \times [0, \infty) \). Thus \(\psi \in BV_{loc}(\Omega \times [0, \infty)) \). For any open set \(U \subset \Omega \)
we obtain
\[\lim_{t \to \infty} \int_{\Omega} |\nabla \psi(\cdot, t) - \nabla \psi(\cdot, 1)| \, dx \]
\[\leq \lim \inf_{t \to \infty} \int_{\Omega} \int_{t_1}^{t_2} |\partial_t w_i| \, dt \, dx \]
\[\leq C_2 D_1 \sqrt{t_2 - t_1}, \]
where \(C_2 = C_2(n, T) > 0 \). By (4.7) and \(\mathcal{L}_d(U_0) < \infty \), \(\psi(\cdot, t) \in L^1(\mathbb{R}^d) \) for a.e. \(t \geq 0 \). By this and (4.7), we may define \(\psi(\cdot, t) \) for any \(t \geq 0 \) such that \(\psi \in C^{\frac{1}{2}}_{ loc}([0, \infty); L^1(\Omega)) \). Moreover by (b2), (1.10) and \(\psi = 1 \) or \(= 0 \) a.e. on \(\Omega \times [0, \infty) \) we have \(\int_{\Omega} \psi(\cdot, t) \, dx = \mathcal{L}_d(U_0) \) for any \(t \geq 0 \). Hence we obtain (b3). For \(\phi \in C_c(\Omega; \mathbb{R}^+) \) and \(t \geq 0 \) we compute that
\[\int_{\Omega} \phi \| \nabla \psi(\cdot, t) \| \leq \lim \inf_{t \to \infty} \int_{\Omega} \phi |\nabla w_i| \, dx \]
\[\leq \lim_{t \to \infty} \sigma^{-1} \int_{\Omega} \phi \left(\frac{2 \| \nabla \phi_i \|}{\varepsilon_i} + \frac{W(\phi^i)}{\varepsilon_i} \right) \, dx = \int_{\Omega} \phi \, d\mu_t. \]
Hence we obtain (b4).

Next we prove (2.14). By (4.2), for any \(\Phi \in C^1_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d) \) we have
\[\int_{\Omega \times (0, \infty)} g \cdot \nabla \phi \, d\mu = \lim_{t \to \infty} \frac{1}{\sigma} \int_{\Omega \times (0, \infty)} -\lambda^t \sqrt{2W(\phi^i)} \nabla \phi \cdot \Phi \, dx \, dt \]
\[= \lim_{t \to \infty} \frac{1}{\sigma} \int_{\Omega \times (0, \infty)} -\lambda^t \nabla k(\phi^i) \cdot \Phi \, dx \, dt = \lim_{t \to \infty} \frac{1}{\sigma} \int_{\Omega \times (0, \infty)} \lambda^t k(\phi^i) \text{div} \Phi \, dx \, dt. \]

Set \(\varphi := \lim_{t \to \infty} \phi^i \). By (4.8), the Radon-Nikodym theorem and
\[\lim_{t \to \infty} \lambda^t \sqrt{2W(s)} \, ds = \frac{\sigma}{2} \varphi = \sigma \left(\psi - \frac{1}{2} \right) \quad \text{a.e. on } \Omega \times (0, \infty), \]
we obtain
\[\int_{\Omega \times (0, \infty)} g \cdot \Phi \, d\mu = \int_{0}^{\infty} \lambda \int_{\Omega} \left(\psi - \frac{1}{2} \right) \text{div} \Phi \, dx \, dt = \int_{0}^{\infty} \lambda \int_{\Omega} \psi \text{div} \Phi \, dx \, dt \]
\[= -\int_{0}^{\infty} \lambda \int_{\Omega} \nu \cdot \Phi \, d\| \nabla \psi(\cdot, t) \| \, dt = \int_{\Omega \times (0, \infty)} -\lambda \frac{d\| \nabla \psi(\cdot, t) \|}{d\mu_t} \nu \cdot \Phi \, d\mu_t \]
for any \(\Phi \in C^1_c(\mathbb{R}^d \times [0, \infty); \mathbb{R}^d) \), where \(\nu \) is the inner normal vector of \(\{ \psi(\cdot, t) = 1 \} \) on \(\partial^* \{ \psi(\cdot, t) = 1 \} \). Set \(\theta : \partial^* \{ \psi = 1 \} \to (0, \infty) \) by \(\theta := \left(\frac{d\| \nabla \psi(\cdot, t) \|}{d\mu_t} \right)^{-1} \). By the integrality of \(\mu_t \), \(\theta \in \mathcal{N} \mathcal{H}^d \)-a.e. Hence we have (2.14).

Finally we prove (f). By [17, Proposition 4.5] we have
\[\int_{0}^{T} \int_{\mathbb{R}^d} v \cdot \nu \eta \, dt \, dx = -\int_{0}^{T} \int_{\mathbb{R}^d} \varphi \eta_t \, dx \, dt \]
(4.10)
for any \(T > 0 \) and \(\eta \in C^1_c(\mathbb{R}^d \times [0, T]) \). By (4.10), (b3) and the periodic boundary condition,
\[\int_{0}^{T} \zeta \int_{\Omega} v \cdot \nu \, dt \, dx = -\int_{0}^{T} \zeta_t \int_{\Omega} \varphi \, dx \, dt = -(2\mathcal{L}_d(U_0) - 1) \int_{0}^{T} \zeta_t \, dt = 0 \]
(4.11)
holds for any $\zeta \in C_c^1((0, T))$. By (4.11) and $\|\nabla \psi(\cdot, t)\| = \frac{1}{2}\|\nabla \varphi(\cdot, t)\|$ for any $t \geq 0$, we have
\[
\int_0^T \zeta \int_\Omega v \cdot \nu d\|\nabla \psi(\cdot, t)\| dt = \frac{1}{2} \int_0^T \zeta \int_\Omega v \cdot \nu d\|\nabla \varphi(\cdot, t)\| dt = 0
\]
for any $\zeta \in C_c^1((0, T))$. Hence we obtain (f).

Proposition 4.3. Let all the assumptions of Theorem 2.5 hold and a family of Radon measures $\{\mu_t\}_{t \in [0, \infty)}$ satisfy $\mu^\varepsilon_t \rightarrow \mu_t$ as Radon measures for any $t \in [0, \infty)$. Then there exists a subsequence $\varepsilon \rightarrow 0$ such that (2.2) holds.

Proof. For any $\eta \in C_c^1(\mathbb{R}^d \times (0, T))$ we compute that
\[
\frac{d}{dt} \int_{\mathbb{R}^d} \eta \ d\mu_t^\varepsilon = \int_{\mathbb{R}^d} \eta_t \ d\mu_t^\varepsilon + \frac{1}{\sigma} \int_{\mathbb{R}^d} \eta \left(\eta \nabla \varphi^\varepsilon \cdot \nabla \varphi_t^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon} \varphi_t^\varepsilon\right) dx
\]
\[
= \int_{\mathbb{R}^d} \eta_t \ d\mu_t^\varepsilon + \frac{1}{\sigma} \int_{\mathbb{R}^d} \eta \left(- \Delta \varphi^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon^2}\right) \varphi_t^\varepsilon dx - \frac{1}{\sigma} \int_{\mathbb{R}^d} \eta \left(\nabla \eta \cdot \nabla \varphi^\varepsilon\right) \varphi_t^\varepsilon dx
\]
\[
= \int_{\mathbb{R}^d} \eta_t \ d\mu_t^\varepsilon + \frac{1}{\sigma} \int_{\mathbb{R}^d} \eta \left(- \Delta \varphi^\varepsilon + \frac{W'(\varphi^\varepsilon)}{\varepsilon^2}\right) \varphi_t^\varepsilon dx + \int_{\mathbb{R}^d} \nabla \eta \cdot \varphi_t^\varepsilon d\mu_t^\varepsilon,
\]
where $d\mu_t^\varepsilon := \frac{\varepsilon}{\sigma} |\nabla \varphi^\varepsilon|^2 dx$. By (3.3), (3.11) and (4.12), there exists $C > 0$ such that
\[
\left|\int_0^T \left(\int_{\mathbb{R}^d} \eta_t \ d\mu_t^\varepsilon + \int_{\mathbb{R}^d} \nabla \eta \cdot \varphi_t^\varepsilon d\mu_t^\varepsilon \right) dt \right|
\leq \|\eta\|_{C^0(\mathbb{R}^d \times (0, T))} \left\{ \mu_0(\text{spt} \eta) + \mu_T(\text{spt} \eta) \right. \\
+ \left. \frac{1}{\sigma} \left(\int_0^T \int_{\text{spt} \eta} \varepsilon \left(\Delta \varphi^\varepsilon - \frac{W'(\varphi^\varepsilon)}{\varepsilon^2}\right)^2 dx dt \right)^{\frac{1}{2}} \left(\int_0^T \int_{\text{spt} \eta} \varepsilon (\varphi^\varepsilon)^2 dx dt \right)^{\frac{1}{2}} \right\}
\leq C\|\eta\|_{C^0(\mathbb{R}^d \times (0, T))}.
\]
Note that by (3.3), (3.11) and [20, Proposition 4.9] there exists a subsequence $\varepsilon \rightarrow 0$ such that $\xi^\varepsilon_t \rightarrow 0$ as Radon measures for a.e. $t \in [0, \infty)$. Hence $\mu^\varepsilon_t \rightarrow \mu_t$ as Radon measures for a.e. $t \in [0, \infty)$. By (3.3), we have
\[
\sup_{\varepsilon \in (0, \varepsilon_1)} \int_0^T \int_{\mathbb{R}^d} |v|^2 d\mu_t^\varepsilon dt = \sup_{\varepsilon \in (0, \varepsilon_1)} \int_0^T \int_{\mathbb{R}^d} \varepsilon |\varphi_t^\varepsilon|^2 dx dt \leq \sigma D_1.
\]
Hence there exist $v \in L^2(\mu; \mathbb{R}^d)$ and a subsequence $\varepsilon \rightarrow 0$ such that
\[
\lim_{\varepsilon \rightarrow 0} \int_0^T \int_{\mathbb{R}^d} \Phi \cdot v^\varepsilon d\mu_t^\varepsilon dt = \int_0^T \int_{\mathbb{R}^d} \Phi \cdot v d\mu
\]
for any $\Phi \in C_c(\mathbb{R}^d \times (0, \infty); \mathbb{R}^d)$ (see [14, Theorem 4.4.2]). Hence by (4.13) and (4.14) we obtain (2.2). \qed

References

[1] Alfaro, M. and Alifrangis, P., Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound., 16 (2014), 243–268.
[2] Allard, W., On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491.
[3] Bronsard, L. and Stoth, B., Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769–807.
[4] Brakke, K. A., The motion of a surface by its mean curvature, Princeton University Press, Princeton, N.J., (1978).
[5] Brassel, M. and Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34 (2011), 1157–1180.
[6] Chen, X., Hilhorst, D. and Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12 (2010), 527–549.
[7] Escher, J. and Simonett, G., The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789–2796.
[8] Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992).
[9] Federer, H., Geometric Measure Theory, Springer-Verlag, New York, (1969).
[10] Gage, M., On an area-preserving evolution equation for plane curves, Nonlinear problems in geometry (Mobile, Ala., 1985), Contemp. Math., 51 (1986), 51–62.
[11] Golovaty, D., The volume-preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Quart. Appl. Math., 55 (1997), 243–298.
[12] Huískens, G., The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35–48.
[13] Huískens, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285–299.
[14] Hutchinson, J.E., Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ. Math. J. 35 (1986), 45–71.
[15] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom., 38 (1993), 417–461.
[16] Li, H., The volume-preserving mean curvature flow in Euclidean space, Pacific J. Math., 243 (2009), 331–355.
[17] Mugnai, L. and Röger, M., The Allen-Cahn action functional in higher dimensions, Interfaces Free Bound., 10 (2008), 45–78.
[18] Mugnai, L. and Röger, M., Convergence of perturbed Allen-Cahn equations to forced mean curvature flow, Indiana Univ. Math. J., 60 (2011), 41–75.
[19] Mugnai, L., Seis, C. and Spadaro, E., Global solutions to the volume-preserving mean-curvature flow, arXiv:1502.07232 [math.AP].
[20] Röger, M. and Schätzle, R., On a modified conjecture of De Giorgi, Math. Z., 254 (2006), 675–714.
[21] Rubinstein, J. and Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992), 249–264.
[22] Simon, L., Lectures on geometric measure theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3 (1983).
[23] Stoth, B., Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry, J. Differential Equations, 125 (1996), 154–183.

E-mail address: takasao@ms.u-tokyo.ac.jp