Sampling Arbitrary Subgraphs Exactly Uniformly in Sublinear Time

Hendrik Fichtenberger * Mingze Gao† Pan Peng ‡

We present a simple sublinear-time algorithm for sampling an arbitrary subgraph H exactly uniformly from a graph G, to which the algorithm has access by performing the following types of queries: (1) uniform vertex queries, (2) degree queries, (3) neighbor queries, (4) pair queries and (5) edge sampling queries. The query complexity and running time of our algorithm are $\tilde{O}(\min\{m, \frac{m\rho(H)}{\#H}\})$ and $\tilde{O}(m\rho(H)\#H)$, respectively, where $\rho(H)$ is the fractional edge-cover of H and $\#H$ is the number of copies of H in G. For any clique on r vertices, i.e., $H = K_r$, our algorithm is almost optimal as any algorithm that samples an H from any distribution that has $\Omega(1)$ total probability mass on the set of all copies of H must perform $\Omega(\min\{m, \frac{m\rho(H)}{\#H\cdot cr}\})$ queries.

Together with the query and time complexities of the $(1+\varepsilon)$-approximation algorithm for the number of subgraphs H by Assadi, Kapralov and Khanna [AKK18] and the lower bound by Eden and Rosenbaum [ER18a] for approximately counting cliques, our results suggest that in our query model, approximately counting cliques is “equivalent to” exactly uniformly sampling cliques, in the sense that the query and time complexities of exactly uniform sampling and randomized approximate counting are within a poly-logarithmic factor of each other. This stands in interesting contrast to an analogous relation between approximate counting and almost uniformly sampling for self-reducible problems in the polynomial-time regime by Jerrum, Valiant and Vazirani [JVV86].

1 Introduction

“Given a huge real graph, how can we derive a representative sample?” is a first question asked by Leskove and Faloutsos in their seminal work on graph mining [LF06], which is motivated by the practical concern that most classical graph algorithms are too expensive for massive graphs (with millions or billions of vertices), and graph sampling seems essential for lifting the dilemma.

In this paper, we study the question of how to sample a subgraph H uniformly at random from the set of all subgraphs that are isomorphic to H contained in a large graph G in sublinear time, where the algorithm is given query access to the graph G. That is, the algorithm only probes a small portion of the graph while still returning a sample with provable performance guarantee. Such a
question is relevant for statistical reasons: we might need a few representative and unbiased motifs from a large network [MSOI+02], or edge-colored subgraphs in a structured database [AGM08], in a limited time. A subroutine for extracting a uniform sample of H is also useful in streaming (e.g., [ADWR17]), parallel and distributed computing (e.g., [FSY17]) and other randomized graph algorithms (e.g., [HL13]).

Currently, our understanding of the above question is still rather limited. Kaufman, Krivelevich and Ron gave the first algorithm for sampling an edge almost uniformly at random [KKR04]. Eden and Rosenbaum gave a simpler and faster algorithm [ER18b]. Both works considered the general graph model, where an algorithm is allowed to perform the following queries, where each query will be answered in constant time:

uniform vertex query the algorithm can sample a vertex uniformly at random;

degree query for any vertex v, the algorithm can query its degree d_v;

neighbor query for any vertex v and index $i \leq d_v$, the algorithm can query the i-th neighbor of v;

pair query for any two vertices u,v, the algorithm can query if there is an edge between u,v.

In [ER18b], Eden and Rosenbaum gave an algorithm that takes as input a graph with n vertices and m edges (where m is unknown to the algorithm), uses $\tilde{O}(n/\sqrt{m})$ queries in expectation and returns an edge e that is sampled with probability $(1 \pm \varepsilon)/m$ (i.e., almost uniformly at random). This is almost optimal in the sense that any algorithm that samples an edge from an almost-uniform distribution requires $\Omega(n/\sqrt{m})$ queries. In their sublinear-time algorithm for approximately counting the number cliques [ERS18] (see below), Eden, Ron and Seshadhri use a procedure to sample cliques incident to a suitable vertex subset S almost uniformly at random. However, for an arbitrary subgraph H, it is still unclear how to obtain an almost uniform sample in sublinear time.

Approximate counting in sublinear-time In contrast to sampling subgraphs (almost) uniformly at random, the very related line of research on approximate counting the number of subgraphs in sublinear time has made some remarkable progress in the past few years. Feige gave a $(2 + \varepsilon)$-approximation algorithm with $\tilde{O}(n/\sqrt{m})$ queries for the average degree, which is equivalent to estimating the number of edges, of a graph in the model that only uses vertex sampling and degree queries [Fei06]. He also showed that any $(2 - o(1))$-approximation for the average degree using only vertex and degree queries requires $\Omega(n)$ queries. Goldreich and Ron then gave a $(1 + \varepsilon)$-approximation algorithm with $\tilde{O}(n/\sqrt{m})$ queries for the average degree in the model that allows vertex sampling, degree and neighbor queries [GR08].

Eden, Levi, Ron and Seshadhri recently gave the first sublinear-time algorithm for $(1 \pm \varepsilon)$-approximating the number of triangles [ELRS17]. Later, Eden, Ron and Seshadhri generalized it to $(1 \pm \varepsilon)$-approximating the number of r-cliques K_r [ERS18] in the general graph model that allows vertex sampling, degree, neighbor and vertex-pair queries. The query complexity and running time of their algorithms for r-clique K_r counting are $\tilde{O}(\frac{p}{\#K_r} \log n + \min\{m, \frac{m^{r/2}}{\#K_r}\})$ and $\tilde{O}(\frac{p}{(\#K_r)^{1/r}} \log n + \frac{m^{r/2}}{\#K_r})$ respectively, for any $r \geq 3$, where $\#K_r$ is the number of copies of K_r in G. Furthermore, in boths works it was proved that the query complexities of the respective algorithms are optimal up to polylogarithmic dependencies on n, ε and r.

Later, Assadi, Kapralov and Khanna [AKK18] gave a sublinear-time algorithm for $(1 \pm \varepsilon)$-approximating the number of copies of an arbitrary subgraph H in the augmented general graph.

\[^{1}\] Throughout the paper, we use $\tilde{O}(\cdot)$ to suppress any dependencies on the parameter ε, the size of the corresponding subgraph H and $\log(n)$-terms.
model \cite{ABG+17}. That is, besides the aforementioned vertex sampling, degree, neighbor and pair queries, the algorithm is allowed to perform the following type of queries:

edge sampling query the algorithm can sample an edge uniformly at random.

The algorithm in \cite{AKK18} uses $\tilde{O}(\min\{m, \frac{m\rho(H)}{\#H}\})$ queries and $\tilde{O}\left(\frac{m\rho(H)}{\#H}\right)$ time, where $\rho(H)$ is the fractional edge-cover of H and $\#H$ is the number of copies of H in G. For the special case $H = K_r$, their algorithm performs $\tilde{O}\left(\min\{m, \frac{m^{r/2}}{\#K_r}\}\right)$ queries and runs in $\tilde{O}\left(\frac{m^{r/2}}{\#K_r}\right)$ time, which do not have the additive term $\frac{n}{(\#K_r)^{1/3}}$ in the query complexity and running time of the algorithms in \cite{ELRS17,ERS18}. Eden and Rosenbaum provided simple proofs that most of the aforementioned results are nearly optimal in terms of their query complexities by reducing from communication complexity problems \cite{ER18a}. Further investigation of sampling an edge and estimating subgraphs in low arboricity graphs \cite{ERR19,ERS20} and approximately counting stars \cite{ABG+17} has also been performed.

Relation of approximate counting and almost uniform sampling One of our original motivations is to investigate the relation of approximate counting and almost uniform sampling in the sublinear-time regime. That is, we are interested in the question whether in the sublinear-time regime, is almost uniform sampling “computationally comparable” to approximate counting, or is it strictly harder or easier, in terms of the query and/or time complexities for solving these two problems? Indeed, in the polynomial-time regime, Jerrum, Valiant and Vazirani showed that for self-reducible problems (e.g., counting the number of perfect matchings of a graph), approximating counting is “equivalent to” almost uniform sampling \cite{JVV86}, in the sense that the time complexities of almost uniform sampling and randomized approximate counting are within polynomial factor of each other. Such a result has been instrumental for the development of the area of approximate counting (e.g., \cite{SJ89}). It is natural to ask if similar relations between approximate counting and sampling hold in the sublinear-time regime. In \cite{ERR19}, the authors mentioned that in the general graph model, the query complexities of approximate counting and almost uniformly sampling edges are the same (up to $\log n, 1/\varepsilon$ dependencies), while there exist constant-arboricity graphs from which sampling triangles almost uniformly requires $\Omega(n^{1/4})$ queries while approximately counting triangles can be done with $\tilde{O}(1)$ queries.

1.1 Our Results

In this paper, we consider the problem of (almost) uniformly sampling a subgraph in the augmented general graph model. As mentioned above, this model has been studied in \cite{ABG+17,AKK18}, in which the authors find that “allowing edge-sample queries results in considerably simpler and more general algorithms for subgraph counting and is hence worth studying on its own”. On the other hand, allowing edge sampling queries is also natural in models where neighbor queries are allowed, e.g., in the well-studied bounded-degree model and the general model: most graph representations that allow efficient neighbor queries (e.g., GEXF, GML or GraphML) store edges in linear data structures, which often allows efficient (nearly) uniformly sampling of edges. We refer to \cite{AKK18} for a deeper discussion on allowing edge sampling queries from both theoretical and practical perspectives.

We prove the following upper bound on sampling subgraphs (exactly) uniformly at random and provide a corresponding algorithm in Section 3.

Theorem 1.1. Let H be an arbitrary subgraph. Let $G = (V, E)$ be a graph with n vertices and m edges. There exists an algorithm in the augmented general graph model that uses $\tilde{O}(\min\{m, \frac{m\rho(H)}{\#H}\})$
queries in expectation, and with probability at least $2/3$, returns a copy of H, if $\#H > 0$. Each returned H is sampled according to the uniform distribution over all copies of H in G. The expected running time of the algorithm is $\tilde{O}(\frac{m^{\rho(H)}}{\#H})$.

We stress that our sampler is an exactly uniform sampler, i.e., the returned H is sampled from the uniform distribution, while to the best of our knowledge, the previous sublinear-time subgraph sampling algorithms are only almost uniform samplers. That is, they return an edge or a clique that is sampled from a distribution that is close to the corresponding uniform distribution. Indeed, it has been cast as an open question if it is possible to sample an edge exactly uniformly at random in the general graph model in \cite{ER18}.

Our algorithm is based on one idea from \cite{AKK18} (see also \cite{AGM08}) that uses the fractional edge cover to partition a subgraph H into stars and odd cycles (i.e., Lemma 2.5). The authors of \cite{AKK18} also provided a scheme called subgraph-sampler trees for recursively sampling stars and odd cycles that compose H, while the resulting distribution is not (almost) uniform distribution. Instead, we show that one can sample stars and odd cycles by using rejection sampling in parallel (or, more precisely, sequentially but independently of each other) and check whether they form a copy of H.

To complement our algorithmic result, we give a lower bound on the query complexity for sampling a clique in sublinear time by using a simple reduction from \cite{ER18}. We show the following theorem and present its proof in Section 4.

Theorem 1.2. Let $r \geq 3$ be an integer. Suppose A is an algorithm in the augmented general graph model that for any graph $G = (V,E)$ on n vertices and m edges returns an arbitrary r-clique K_r, if one exists; furthermore, each returned clique K_r is sampled according to a distribution \mathcal{D}, such that the total probability mass of \mathcal{D} on the set of all copies of K_r is $\Omega(1)$. Then A requires $\Omega(\min\{m, \frac{m^{r/2}}{\#K_r(c^r)}\})$ queries, for some absolute constant $c > 0$.

Note that the above theorem gives a lower bound for sampling K_r from almost every non-trivial distribution \mathcal{D}. In particular, it holds if $\#K_r > 0$ and \mathcal{D} is a distribution that is only supported on the set of all copies of K_r, e.g., the (almost) uniform distribution on these copies. Together with the query and time complexities of the $(1 \pm \varepsilon)$-approximation algorithm for the number of subgraphs H by Assadi, Kapralov and Khanna \cite{AKK18} and the lower bound by Eden and Rosenbaum \cite{ER18} for approximately counting cliques, our Theorems 1.1 and 1.2 imply that in the augmented general graph model, approximately counting the number of cliques is equivalent to exactly sampling cliques in the sense that the query and time complexities of them are within a polylogarithmic factor of each other.

Future Work Considering real-world applications, it would be interesting to relax the guarantees of the queries available to the algorithm. In particular, one may not be able to sample vertices or edges exactly uniformly at random, but only approximately uniformly. For example, there exist works that consider weaker query models in which even uniform vertex query is disallowed, and instead they sample vertices almost uniformly at random by performing random walks from some fixed vertex (see, e.g., \cite{BHOP18,CDK16}). Implementing these changes in the model would result in a weaker guarantee for the distribution of sampled subgraphs in Theorem 1.1 but would be potentially more practical.
2 Preliminaries

Let $G = (V, E)$ be a simple graph with $|V| = n$ vertices and $|E| = m$ edges. For a vertex $v \in V$, we denote by d_v the degree of the vertex, by Γ_v the set of all the neighbors of v, and by E_v the set of edges incident to v. We fix a total order on vertices denoted by \prec as follows:

Definition 2.1. For any two vertices u and v, we say that $u \prec v$ if $d_u < d_v$ or $d_u = d_v$ and u appears before v in the lexicographic order.

For any two vertices, we denote by Γ_{uv} the set of the shared neighbors of u and v that are larger than u with respect to \prec, i.e., $\Gamma_{uv} := \{w | w \in \Gamma_u \cap \Gamma_v \land u \prec w\}$. Sometimes, we view our graph $G = (V, E)$ as a directed graph (V, \vec{E}) by treating each undirected edge $e = \{u, v\} \in E$ as two directed edges $\vec{e}_1 = (u, v)$ and $\vec{e}_2 = (v, u)$. The following was proven in [ELRS17].

Lemma 2.2 ([ELRS17]). For any vertex v, the number of neighbors w of v such that $v \prec w$ is at most $\sqrt{2m}$.

Given a graph H, we say that a subgraph H' of G is a copy or an instance of H if H' is isomorphic to H. An isomorphism-preserving mapping from H to a copy of H in G is called an embedding of H in G.

Rejection Sampling
Given a starting distribution \vec{p} and a target distribution \vec{q} supported on a set R, let $M := \max_{a \in R} \frac{\vec{q}(a)}{\vec{p}(a)}$. Algorithm 1 is called rejection sampling.

Algorithm 1 Rejection sampling with starting distribution \vec{p} and target distribution \vec{q}

1: procedure REJECTION_SAMPLING(\vec{p}, \vec{q})
2: $M \leftarrow \max_{a \in R} \frac{\vec{q}(a)}{\vec{p}(a)}$
3: while true do
4: sample a from \vec{p}.
5: sample a number $t \in [0, 1]$ uniformly at random.
6: if $t \leq \frac{\vec{q}(a)}{M \vec{p}(a)}$ then
7: return a
8: end if
9: end while

Observe that when the algorithm terminates, the probability that a is returned is $\vec{q}(a)$ for every $a \in R$. The following lemma is known.

Lemma 2.3 ([Neu50]). The expected number of iterations of REJECTION_SAMPLING(\vec{p}, \vec{q}) is M.

Edge Cover and Graph Decomposition
We use the following definition of the fractional edge cover of a graph and a decomposition result based on it by Assadi, Kapralov and Khanna [AKKT18].

Definition 2.4 (Fractional Edge-Cover Number). A fractional edge-cover of $H(V_H, E_H)$ is a mapping $\psi : E_H \to [0, 1]$ such that for each vertex $v \in V_H$, $\sum_{e \in E_H, v \in e} \psi(e) \geq 1$. The fractional edge-cover number $\rho(H)$ of H is the minimum value of $\sum_{e \in E_H} \psi(e)$ among all fractional edge-covers ψ.

Let C_k denote the cycle of length k. Let S_k denote a star with k petals, i.e., $S_k = \{u, v_1, \ldots, v_k\}$, $\cup_{i \in [k]} \{u, v_i\}$. Let K_k denote a clique on k vertices. It is known that $\rho(C_{2k+1}) = k + 1/2$, $\rho(S_k) = k$ and $\rho(K_k) = k/2$.

Lemma 2.5 ([AKK18]). Any subgraph H can be decomposed into a collection of vertex-disjoint odd cycles C_1, \ldots, C_o and star graphs S_1, \ldots, S_s such that

$$
\rho(H) = \sum_{i=1}^{o} \rho(C_i) + \sum_{j=1}^{s} \rho(S_j).
$$

By a result of Atserias, Grohe and Marx [AGM08], the number of instances of H in a graph G with m edges is $O(m^{o(H)})$.

3 Sampling an Arbitrary Subgraph H

In this section, we present sampling algorithms for odd cycles and stars and show how to combine them to obtain a sampling algorithm for arbitrary subgraphs. Note that we do not need to know the exact number of edges m to run our algorithm; it is sufficient to have a constant approximation \hat{m} of m so that $m \leq \hat{m} \leq cm$ for some $c > 1$. Such an approximation can be obtained by using the algorithm from [Fei06, GR08]. This increases the query complexity only by a constant factor. For the sake of simplicity, we will continue to use m in the following.

3.1 Sampling an Odd-Length Cycle

We describe our algorithm SampleOddCycle for sampling a uniformly random odd-length k-cycle. For any instance of C_{2k+1} in the input graph, our goal is to guarantee that it will be sampled with probability $1/m^{k+1}$. Let e_1, \ldots, e_{2k+1} be a sequence of edges that represents a cycle of length $2k+1$. While we can use edge sampling to sample every second edge of the first $2k$ edges sequentially, i.e., $e_1, e_3, \ldots, e_{2k-1}$, and query the edges inbetween, i.e., e_2, \ldots, e_{2k-2}, by vertex pair queries, we use a different strategy to sample e_{2k} and e_{2k+1}. Let $\{u, v\} = e_1$. If u has low degree, i.e., $d_u \leq \sqrt{2m}$, we can afford to sample each neighbor of u with probability $1/\sqrt{2m}$ and fail if no neighbor is sampled. In particular, we need that a distinguished neighbor x_1 of u is sampled with probability at least $1/\sqrt{2m}$. However, if $d_u \geq \sqrt{2m}$, this is too costly. Instead, we invoke rejection sampling with the following starting distribution and target distribution. We note that such an idea of using rejection sampling has also been used for sampling a clique in [ERSIS18] (cf. Lemma 14 therein), and one can show that if edge sampling queries are allowed, their algorithm can be used to sample a neighbor of a vertex with degree larger than $\sqrt{2m}$ with probability $1/\sqrt{2m}$.

Definition 3.1. Let u, v be two vertices such that $d_u > \sqrt{2m}$. Let \bar{p}_u be a (starting) distribution with support Γ_u such that:

$$
\bar{p}_u(w) = \frac{1}{d_u}, \quad w \in \Gamma_u.
$$

Let \bar{q}_u be a (target) distribution with support Γ_u such that:

$$
\bar{q}_u(w) = \begin{cases}
\frac{1}{\sqrt{2m}}, & w \in \Gamma_{uv} \\
\frac{1}{d_u - |\Gamma_{uv}|} \cdot \frac{1}{\sqrt{2m}}, & w \notin \Gamma_{uv}.
\end{cases}
$$

We note that by Lemma 2.2, it always holds that $|\Gamma_{uv}| \leq \sqrt{2m}$. Furthermore,

$$
\sum_{w \in \Gamma_u} \bar{q}_u(w) = \sum_{w \in \Gamma_{uv}} \frac{1}{\sqrt{2m}} + \sum_{w \notin \Gamma_{uv}} \left(1 - \frac{|\Gamma_{uv}|}{\sqrt{2m}}\right) \cdot \frac{1}{d_u - |\Gamma_{uv}|} = \frac{|\Gamma_{uv}|}{\sqrt{2m}} + (d_u - |\Gamma_{uv}|) \left(1 - \frac{|\Gamma_{uv}|}{\sqrt{2m}}\right) \cdot \frac{1}{d_u - |\Gamma_{uv}|} = 1.
$$
Thus the distribution \tilde{q}_u is well-defined. Let $M_u = \max_{w \in \Gamma_u} \frac{\tilde{q}_u(w)}{\tilde{p}_u(w)}$ (as in Algorithm 1). Then, M_u is bounded as follows.

Lemma 3.2. Let M_u be defined as above. Recall that $d_u > \sqrt{2m}$. Then $M_u = \frac{d_u}{\sqrt{2m}}$.

Proof. If $w \in \Gamma_{uv}$, we have that $\frac{\tilde{q}_u(w)}{\tilde{p}_u(w)} = \frac{d_u}{\sqrt{2m}}$. If $w \notin \Gamma_{uv}$, we have that

$$\frac{\tilde{q}_u(w)}{\tilde{p}_u(w)} = \frac{d_u(1 - |\Gamma_{uv}|/\sqrt{2m})}{d_u - |\Gamma_{uv}|} \leq \frac{d_u}{\sqrt{2m}},$$

where the last inequality uses the fact that $d_u > \sqrt{2m}$. \qed

Algorithm 2 Sampling a wedge

1: procedure SampleWedge(G, u, v)
2: \hspace{1em} if $d_u \leq \sqrt{2m}$ then
3: \hspace{2em} sample a number $i \in \{1, \ldots, \sqrt{2m}\}$ uniformly at random
4: \hspace{2em} if $i > d_u$ then
5: \hspace{3em} return Fail
6: \hspace{2em} $w \leftarrow i^{th}$ neighbor of u
7: \hspace{1em} else
8: \hspace{2em} $w \leftarrow$ RejectionSampling(\tilde{p}_u, \tilde{q}_u) \quad \triangleright \text{see Definition 3.1}
9: \hspace{1em} return w

Algorithm 3 Sampling a cycle of length $2k + 1$

1: procedure SampleOddCycle($G, 2k + 1$)
2: \hspace{1em} sample k directed edges $(u_1, v_1), \ldots, (u_k, v_k)$ u.a.r. and i.i.d.
3: \hspace{1em} if $u_1, v_1, \ldots, u_k, v_k$ is a path of length $2k - 1$ and $u_1 \prec v_1, \forall i > 1 : u_i \prec u_i, v_i$ then
4: \hspace{2em} if SampleWedge(G, u_1, v_k) returns w and $w \prec v_1$ then
5: \hspace{3em} return $\{(u_1, v_1), \ldots, (u_k, v_k)\} \cup \{(v_k, w), (w, u_1)\}$
6: \hspace{1em} return Fail

As there exists a linear number of automorphisms for every cycle, it is crucial in our algorithm to define a unique embedding based on the order of vertices for every instance of a k-cycle. Otherwise, bounding the probability that an instance is sampled exactly uniformly is hard as some instance might be sampled less likely because, e.g., its edges participate in many overlapping cycles. We take care of this by enforcing that only uniquely defined embeddings are sampled in SampleOddCycle. In particular, we sample k directed edges $(u_1, v_1), \ldots, (u_k, v_k)$ independently and uniformly at random and require that (i) they induce a path $u_1, v_1, u_2, \ldots, v_k$ and (ii) for the first edge (u_1, v_1), u_1 is the smallest vertex according to the order “\prec” among all $u_i, v_i, i \geq 1$. Then, we call SampleWedge on the two ends u_1, v_k of this path to close a cycle and define an orientation of this cycle by requiring that $w \prec v_1$, where for $(v_k, w) = e_{2k+1}$. If any of these requirements is not met, we have not sampled the uniquely defined embedding we are looking for, and the algorithm fails.

Lemma 3.3. For any instance of an odd cycle C_{2k+1} in G, the probability that it will be returned by SampleOddCycle($G, 2k + 1$) is $\frac{1}{(2m)^{k+1/2}}$.

7
Proof. Let C_{2k+1} be any instance of a cycle of odd length $2k+1$ in G. Let x_0 be the smallest vertex on C_{2k+1} according to the total order “$<$". Let x_1, x_{2k} be the two neighbors of x_0 on C_{2k+1} such that $x_1 < x_{2k}$. Then, we let x_i denote the vertices on C_{2k+1} such that $(x_i, x_{i+1}) \in E(C_{2k+1})$ for $0 \leq i \leq 2k-1$ and $(x_{2k}, x_0) \in E(C_{2k+1})$. Note that for any C_{2k+1}, there is a unique way of mapping its vertices to x_i, for $0 \leq i \leq 2k$. Thus, SAMPLEODDCYCLE returns C_{2k+1} if and only if

1. $u_1 = x_0$ and $v_1 = x_{2k}$;
2. $u_i = x_{2k-2i+3}$ and $v_i = x_{2k-2i+2}$ for $2 \leq i \leq k$;
3. $\text{SAMPLEWEDGE}(G, u_k, v_k)$ returns x_1.

Event 1 occurs with probability $1/(2m)$, and event 2 occurs with probability $1/(2m)^k - 1$, as each directed edge is sampled with probability $1/(2m)$.

Now we bound the probability of event 3. In the call to SAMPLEWEDGE, let $u := u_1$ and $v := v_k$, which satisfies that $u < v$. We first note that if $d_u < \sqrt{2m}$ in $\text{SAMPLEWEDGE}(G, u_1, v_k)$, then the vertex x_1 will be sampled with probability $1/\sqrt{2m}$. Now we consider the case that $d_u \geq \sqrt{2m}$. Then, $\text{REJECTION SAMPLING}(p_u, q_u)$ will return x_1 with probability $q_{u1}(x_1) = 1/\sqrt{2m}$, as x_1 is a common neighbor of u_1, v_k and $u_1 < x_1$. Thus in both cases, the probability that event 3 occurs is $1/\sqrt{2m}$. Therefore, the probability that SAMPLEODDCYCLE returns C_{2k+1} is $1/\sqrt{2m} \cdot (1/\sqrt{2m})^{k-1} = 1/(2m)^k$. \hfill \qed

Remark. Our procedure SAMPLEWEDGE is similar to a subroutine of one algorithm “Sample-a-Clique” in [ERS18] (cf. Lemma 14 therein) that samples an almost uniform clique adjacent to a vertex set S. If edge sampling queries are allowed, one can modify their algorithm to produce a uniform clique K_r in the graph with probability $1/(2m)^{r/2}$.

3.2 Sampling a Star

Similarly to odd cycles, we observe that every k-star admits an exponential number of automorphisms. Therefore, we enforce a unique embedding of every instance of a k-star in our sampling algorithm SAMPLESTAR. Let e_1, \ldots, e_k be the petals of an instance of a k-star. We sample e_1, \ldots, e_k sequentially. If these edges form a star, we output it only if the leaves where sampled in ascending order with respect to “$<$”.

Algorithm 4 Sampling a star with k petals

1: procedure $\text{SAMPLESTAR}(G, k)$
2: Sequentially sample k directed edges $\{(u_1, v_1), \ldots, (u_k, v_k)\}$ u.a.r. and i.i.d.
3: if $u_1 = u_2 = \ldots = u_k$ and $v_1 < v_2 < \ldots < v_k$ then
4: return (u_1, v_1, \ldots, v_k)
5: return Fail

Lemma 3.4. For any instance of a k-star S_k in G, the probability that it will be returned by the algorithm $\text{SAMPLESTAR}(G, k)$ is $1/(2m)^k$.

Proof. Consider any instance of S_k with root x and petals y_1, \ldots, y_k such that $y_1 < \ldots < y_k$. Note that it will be returned by SAMPLESTAR if and only if all the directed edges $(x, y_1), \ldots, (x, y_k)$ are sequentially sampled, which occurs with probability $1/(2m)^k$. \hfill \qed
3.3 Sampling H

Let H be a subgraph. It can be decomposed into collections of o odd cycles \overline{C}_i and s stars \overline{S}_j as given in Lemma 2.5. We say that H has a (decomposition) type $\mathcal{T} = \{\overline{C}_1, \ldots, \overline{C}_o, \overline{S}_1, \ldots, \overline{S}_s\}$.

Definition 3.5. Given a graph G, for each potential instance \mathcal{H} of H, we say that \mathcal{H} can be decomposed into configurations $\mathcal{T} = \{C_1, \ldots, C_o, S_1, \ldots, S_s\}$ with respect to type $\mathcal{T} = \{\overline{C}_1, \ldots, \overline{C}_o, \overline{S}_1, \ldots, \overline{S}_s\}$, if

1. $C_i \cong \overline{C}_i$ for any $1 \leq i \leq o$, and $S_j \cong \overline{S}_j$, for any $1 \leq i \leq s$.

2. all the remaining edges of H between vertices specified in \mathcal{T} all are present in G.

We let $f_\mathcal{T}(H)$ denote the number of all possible configurations \mathcal{T} into which H can be decomposed with respect to \mathcal{T}.

Algorithm 5 Sampling a copy of subgraph H

1: procedure *SAMPLESUBGRAPH(G, H)
2: Let $\mathcal{T} = \{\overline{C}_1, \ldots, \overline{C}_o, \overline{S}_1, \ldots, \overline{S}_s\}$ denote a (decomposition) type of H.
3: for all $i = 1 \ldots o$ do
4: if SAMPLEODDCYCLE($G, |E(\overline{C}_i)|$) returns a cycle C then
5: $C_i \leftarrow C$
6: else
7: return Fail
8: for all $j = 1 \ldots s$ do
9: if SAMPLESTAR($G, |V(\overline{S}_j)| - 1$) returns a star S then
10: $S_j \leftarrow S$
11: else
12: return Fail
13: Query all edges ($\cup_{i \in [o]} V(C_i) \cup \cup_{j \in [s]} V(S_j))^2$
14: if $S := (C_1, \ldots, C_o, S_1, \ldots, S_s)$ forms a copy of H then
15: flip a coin and with probability $\frac{1}{f_\mathcal{T}(H)}$: return S
16: return Fail

Lemma 3.6. For any instance of a subgraph H in G, the probability that it will be returned by the algorithm *SAMPLESUBGRAPH(G, H)* is $\frac{1}{(2m)^{\rho(H)}}$.

Proof. For any instance \mathcal{H} of H in G, and any configuration $\mathcal{T} = \{C_1, \ldots, C_o, S_1, \ldots, S_s\}$ of \mathcal{H} with respect to \mathcal{T}, \mathcal{H} will be returned by *SAMPLESUBGRAPH(G, H)* if and only if

1. C_i is returned in Line 3 for each $1 \leq i \leq o$, and S_j is returned in Line 10 for any $1 \leq j \leq s$;

2. the configuration is returned with probability $\frac{1}{f_\mathcal{T}(H)}$ in Line 15.

By Lemma 3.3, each C_i will be returned with probability $\frac{1}{(2m)^{\rho(C_i)}} = \frac{1}{(2m)^{\rho(\overline{C}_i)}}$. By Lemma 3.4, each S_j will be returned with probability $\frac{1}{(2m)^{\rho(S_j)}} = \frac{1}{(2m)^{\rho(\overline{S}_j)}}$. Thus, \mathcal{T} will be returned with probability

$$\prod_{i=1}^{o} \frac{1}{(2m)^{\rho(C_i)}} \cdot \prod_{j=1}^{s} \frac{1}{(2m)^{\rho(S_j)}} \cdot \frac{1}{f_\mathcal{T}(H)} = \frac{1}{(2m)^{\rho(H)}} \cdot \frac{1}{f_\mathcal{T}(H)}.$$

Finally, since there are $f_\mathcal{T}(H)$ configurations of \mathcal{H} with respect to \mathcal{T}, the instance will be returned with probability $f_\mathcal{T}(H) \cdot \frac{1}{(2m)^{\rho(H)}} \cdot \frac{1}{f_\mathcal{T}(H)} = \frac{1}{(2m)^{\rho(H)}}$.

□
3.4 The Final Sampler

Let X_H be an estimate of $\#H$. Such an estimate can be obtained by, e.g., the subgraph counting algorithm of Assadi, Kapralov and Khanna [AKK18] in expected time $\tilde{O}(m^{\rho(H)/\#H})$. We show that by sufficiently many calls to SAMPLESUBGRAPH, we can obtain a uniformly random sample of an instance of H with constant probability.

Algorithm 6 Sampling a copy of subgraph H uniformly at random

1: procedure SAMPLESUBGRAPHUNIFORMLY(G, H, X_H)
2: for all $j = 1, \ldots, q = 10 \cdot (2m)^{\rho(H)}/X_H$ do
3: Invoke SAMPLESUBGRAPH(G, H)
4: if a subgraph H is returned then return H
5: return Fail

Lemma 3.7. If $\#H \leq X_H \leq 2\#H$, then Algorithm SAMPLESUBGRAPHUNIFORMLY(G, H, X_H) returns a copy H with probability at least $2/3$. The distribution induced by the algorithm is (exactly) uniform over the set of all instances of H in G.

Proof. Since $\#H \leq X_H \leq 2\#H$, the probability that no instance of H is returned in $q = 10 \cdot (2m)^{\rho(H)}/X_H$ invocations is at most

$$\left(1 - \frac{\#H}{(2m)^{\rho(H)}}\right)^q \leq e^{-\frac{\#H}{(2m)^{\rho(H)}q}} < \frac{1}{3}$$

by Lemma 3.6. Let \mathcal{H} be an instance of H. By Lemma 3.6, the probability that SAMPLESUBGRAPH(H) returns \mathcal{H} is $\frac{1}{(2m)^{\rho(H)}}$. Thus, the probability that SAMPLESUBGRAPHUNIFORMLY(G, H) successfully output an instance of H is

$$\frac{\#H}{(2m)^{\rho(H)}}.$$

Conditioned on the event that SAMPLESUBGRAPHUNIFORMLY(G, H) succeeds, the probability that any specific instance \mathcal{H} will be returned is

$$p_\mathcal{H} = \frac{1}{(2m)^{\rho(H)}} = \frac{\#H}{\#H^*} = \frac{1}{\#H}.$$

That is, with probability at least $\frac{2}{3}$, an instance \mathcal{H} is sampled from the uniform distribution over all the instances of H in G. \hfill \Box

Finally, we prove the expected query and time complexity of SAMPLESUBGRAPHUNIFORMLY.

Lemma 3.8. The expected query and time complexity of SAMPLESUBGRAPHUNIFORMLY(G, H, X_H) is $O(m^{\rho(H)/X_H})$.

Proof. We analyze the query complexity of SAMPLEODDCYCLE($G, 2k + 1$) for $d_{u_1} < \sqrt{2m}$ and $d_{u_1} \geq \sqrt{2m}$ separately. The probability that $d_{u_1} < \sqrt{2m}$ is at most 1, and the query complexity is at most $O(1)$ in this case.

To bound the probability that SAMPLEWEDGE(G, u_1, v_k) is invoked such that $d_{u_1} \geq \sqrt{2m}$, recall that sampling an edge uniformly at random is equivalent to sampling a vertex proportionally to
its degree and selecting a neighbor uniformly at random. The probability to sample a neighbor
x of u1 is 1/d_u1. There are at most 2m/\sqrt{2m} = \sqrt{2m} vertices that have degree at least \sqrt{2m},
so the probability that a uniformly random neighbor v1 of u1 has degree at least \sqrt{2m} is at most
\sqrt{2m}/d_u1. Therefore, the probability that v1 has degree at least \sqrt{2m}, which is implied by the
check u1 < v1 in line 3, is bounded by \sqrt{2m}/d_u1. By Lemmas 2.3 and 3.2, the expected number of
queries in SAMPLEWEDGE(G, u1, v_k) is at most M ≤ d_u1/\sqrt{2m} if d_u1 ≥ \sqrt{2m}. Thus, the expected
query complexity of SAMPLEODDCYCLE(G, 2k + 1) is bounded by
\[
\sum_{u_1 \in V \text{ such that } d_{u_1} < \sqrt{2m}} \frac{d_{u_1}}{2m} \cdot O(1) + \sum_{u_1 \in V \text{ such that } d_{u_1} \geq \sqrt{2m}} \frac{\sqrt{2m}}{d_{u_1}} \cdot \frac{d_{u_1}}{\sqrt{2m}} \leq O(1) + \sum_{u_1 \in V \text{ such that } d_{u_1} \geq \sqrt{2m}} \frac{d_{u_1}}{2m} = O(1).
\]

The expected query complexity of SAMPLESTAR(G, k) is bounded by k ∈ O(1). It follows that
the expected query complexity of SAMPLESUBGRAPH(G, H) is at most (o + s + |H|^2) · O(1) ⊆ |H| · O(1). The expected query complexity of SAMPLESUBGRAPHUNIFORMLY(G, H) is O((2m)^\rho(H)/X_H) · |H|^2 = \tilde{O}((2m)^\rho(H)/X_H). To bound the expected running time, we observe that every loop in
our algorithm issues at least one query, and we only perform isomorphism checks on subgraphs of
constant size. Thus the running time is still \tilde{O}((2m)^\rho(H)/X_H).

The proof of Theorem 1.1 follows almost directly from Lemmas 3.7 and 3.8.

Proof of Theorem 1.2 For the case that m ≥ m^\rho(H)/\#H, the claim follows from Lemmas 3.7 and 3.8. If m < m^\rho(H)/\#H, we can query the whole graph, which requires O(m) degree
and neighbor queries, store the graph and answer the queries of the algorithm from this internal memory.

4 Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2 which follows by adapting the proofs for the
lower bounds on the query complexity for approximate counting subgraphs given by Eden and
Rosenbaum [ER18a].

Theorem 4.1 (see Theorems 4.7 and B.1 in [ER18a]). For any choices of n, m, r, c_r > 0, there
exist families of graphs with n vertices and m edges, F_0 and F_1, such that

- all graphs in F_0 are K_r-free,
- all graphs in F_1 contain at least c_r copies of K_r,
- and any algorithm in the augmented general graph model that distinguishes a graph G ∈ F_0 from G ∈ F_1 with probability Ω(1) requires Ω(\min\{m, m^{r/2}/(c_r r^r)\}) queries for some constant c > 0.

Now we prove our Theorem 1.2

Proof of Theorem 1.2 Let A be an algorithm that for any graph G = (V, E) on n vertices and m
edges returns an arbitrary r-clique K_r, if one exists; and each K_r is sampled according to D, using
f(m, r, \#K_r) ∈ o(\min\{m, \#K_r^{m^2/(c_r r^r)}\}) neighbor, degree, pair and edge sampling queries.

Let n, m, c_r > 0 and let F_0, F_1 be the families from Theorem 1.1. Consider the following algorithm
A': run A on a graph from F_0 ∪ F_1 and terminate A if it did not produce a K_r after f(m, r, c_r)
queries. If it output a clique, A' claims that $G \in F_1$, otherwise it claims that $G \in F_0$. By the assumption, A returns a clique after at most $f(m, r, c_r)$ queries with probability $\Omega(1)$ if $G \in F_1$ because then G contains at least c_r copies of K_r and the probability mass of D on the set of all copies of K_r is $\Omega(1)$. Otherwise, $G \in F_0$, which implies that G contains no triangle. Therefore, A cannot output a triangle from G.

It follows that A' can distinguish F_0 and F_1, which is a contradiction to Theorem 4.1.

Acknowledgements

We would like to thank the anonymous reviewers for their detailed comments. In particular, we would like to thank an anonymous reviewer for their suggestion to improve the presentation of the proof of Theorem 1.2 and their comment on applications, which we included as future work.

References

[ABG+17] Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee. Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling. *Algorithmica*, 2017.

[ADWR17] Nesreen K Ahmed, Nick Duffield, Theodore L Willke, and Ryan A Rossi. On sampling from massive graph streams. *Proceedings of the VLDB Endowment*, 10(11), 2017.

[AGM08] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational joins. In *Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, 2008.

[AKK18] Sepelhr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. In *Proceedings of the 10th Innovations in Theoretical Computer Science Conference (ITCS)*, volume 124. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[BHOP18] Anna Ben-Hamou, Roberto I Oliveira, and Yuval Peres. Estimating graph parameters via random walks with restarts. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, 2018.

[CDK+16] Flavio Chiericetti, Anirban Dasgupta, Ravi Kumar, Silvio Lattanzi, and Tamás Sarlós. On sampling nodes in a network. In *Proceedings of the 25th International Conference on World Wide Web*, 2016.

[ELRS17] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in sublinear time. *SIAM Journal on Computing*, 46(5), 2017.

[ER18a] Talya Eden and Will Rosenbaum. Lower Bounds for Approximating Graph Parameters via Communication Complexity. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)*, volume 116. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[ER18b] Talya Eden and Will Rosenbaum. On Sampling Edges Almost Uniformly. In *1st Symposium on Simplicity in Algorithms (SOSA)*, volume 61. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
[ERR19] Talya Eden, Dana Ron, and Will Rosenbaum. The Arboricity Captures the Complexity of Sampling Edges. In 46th International Colloquium on Automata, Languages, and Programming (ICALP), volume 132. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[ERS18] Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018.

[ERS20] Talya Eden, Dana Ron, and C Seshadhri. Faster sublinear approximation of the number of k-cliques in low-arboricity graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1467–1478. SIAM, 2020.

[Fei06] Uriel Feige. On sums of independent random variables with unbounded variance and estimating the average degree in a graph. SIAM Journal on Computing, 35(4), 2006.

[FSY17] Weiming Feng, Yuxin Sun, and Yitong Yin. What can be sampled locally? In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), 2017.

[GR08] Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random Structures & Algorithms, 32(4), 2008.

[HL13] Pili Hu and Wing Cheong Lau. A survey and taxonomy of graph sampling. arXiv preprint arXiv:1308.5865, 2013.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43, 1986.

[KKR04] Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness in general graphs. SIAM Journal on Computing, 33(6), 2004.

[LF06] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594), 2002.

[Neu50] Von Neumann. Various techniques used in connection with random digits. National Bureau of Standards, Applied Math Series, 12, 1950.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly mixing markov chains. Information and Computation, 82(1), 1989.