Theory of magnetic switching of ferroelectricity in spiral magnets

Masahito Mochizuki1 and Nobuo Furukawa2,3

1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
2Department of Physics, Aoyama Gakuin University, Sagamihara, 229-8558 Japan
3Multiferroics Project, ERATO, Japan Science and Technology Agency (JST), Tokyo 113-8656, Japan

We propose a microscopic theory for magnetic switching of electric polarization (P) in the spin-spiral multiferroics by taking TbMnO$_3$ and DyMnO$_3$ as examples. We reproduce their phase diagrams under a magnetic field H_{ex} by Monte-Carlo simulation of an accurate spin model and reveal that competition among the Dzyaloshinskii-Moriya interaction, spin anisotropy, and spin exchange is controlled by the applied H_{ex}, resulting in magnetic transitions accompanied by reorientation or vanishing of P. We also discuss the relevance of the proposed mechanisms to many other multiferroics such as LiCu$_2$O$_2$, MnWO$_4$, and Ni$_3$V$_2$O$_4$.

Concurrently magnetic and ferroelectric materials, i.e. multiferroics, offer prospective systems to attain magnetic control of electricity via magnetoelectric (ME) coupling $^{[1,2]}$. It was experimentally demonstrated that an external magnetic field (H_{ex}) can cause reorientation, emergence, and vanishing of ferroelectric polarization P in many spin-spiral multiferroics such as RMnO$_3$ (R=Tb, Dy, Eu$_{1-x}$Y$_x$, etc) $^{[3,4]}$, LiCu$_2$O$_2$ $^{[5]}$, MnWO$_4$ $^{[6]}$, and Ni$_3$V$_2$O$_4$ $^{[7]}$. These ME phenomena are currently attracting enormous interest, and a thorough understanding of their mechanisms is an urgent issue. However, the number of theoretical studies is very few despite many experimental reports. Naively, the applied H_{ex} can determine the direction of P by controlling the conical spin structure via Zeeman coupling, but there are many examples that do not obey this simple picture.

In the spin-spiral multiferroics, inherent spin frustration as an origin of the spiral magnetism inevitably reduces the spin-exchange energy, and hence increases the relative importance of other tiny interactions, e.g. the single-ion spin anisotropy and the Dzyaloshinskii-Moriya (DM) interaction. Consequently, the magnetic switching of P in this new class of multiferroics is governed by their fine energy balance tuned by H_{ex}, which cannot be understood from a simple interplay between Zeeman coupling and the spin exchanges.

In this Letter, by taking the Mn perovskites TbMnO$_3$ and DyMnO$_3$ as examples, we propose a microscopic theory for the magnetic control of P in the spin-spiral multiferroics. Their puzzling T-H_{ex} phase diagrams are reproduced by the Monte-Carlo (MC) analysis of an accurate spin model. Our microscopic theory reveals that the applied H_{ex} controls conflicts among the spin exchanges, spin anisotropy, and DM interaction, resulting in magnetic transitions accompanied by reorientation or vanishing of P. The mechanisms proposed here are relevant to many other spin-spiral multiferroics such as LiCu$_2$O$_2$, MnWO$_4$, and Ni$_3$V$_2$O$_4$. We also discuss the influence of effective magnetic fields from rare-earth f moments.

The ferroelectricity in these materials is described by the spin-current model $^{[8,10]}$ as given by $P \propto Q \times \chi$, where Q is a propagation vector of the spiral and $\chi \propto \sum_{i,j} S_i \times S_j$ is the vector spin chirality. As shown in Fig. 1(b), the Mn spins in TbMnO$_3$ and DyMnO$_3$ are rotating within the bc plane ($\chi \| a$) to form a transverse spiral with $Q \| b$ $^{[11]}$, and thus $P \| c$ is realized.

In Figs. 1(c)-(f), we briefly summarize the puzzles in RMnO$_3$ $^{[4]}$. The applied H_{ex} induces the magnetization $M \| H_{ex}$ via Zeeman coupling, and hence forces the spin structure to be conical where $\chi \| H_{ex}$. When we apply $H_{ex} \| Q$ [see Fig. 1(c)], we expect a longitudinal conical spin order with $\chi(Q)$. In this case, P should be zero within the spin-current model. Thus we expect vanishing of P when we apply $H_{ex} \| b$ ($Pbnm$ setting) to TbMnO$_3$ and DyMnO$_3$. However, reorientation of P from $P \| c$ to $P \| a$ is observed in reality [see Fig. 1(e)]. A neutron-scattering experiment confirmed that this P reorientation results from the spin-chirality flop from $\chi \| a$ to $\chi \| c$ $^{[12,13]}$. This discrepancy has been naively attributed to the influence of f moments on the rare-earth ions thus far. $^{[13,16]}$. However, a similar behavior has been observed also in LiCu$_2$O$_2$ without f moments $^{[8]}$, suggesting an essentially new mechanism. Mostovoy reproduced the flop by introducing higher-order anisotropies in a phenomenological theory although their microscopic origins are unclear $^{[8]}$. On the other hand, the application of $H_{ex} \perp Q$ is expected to stabilize a transverse conical spin order with $\chi \perp Q$. As shown in Fig. 1(d), we expect the ab-plane transverse conical order with $P \| a$ when we apply $H_{ex} \| c$ to TbMnO$_3$ and DyMnO$_3$. However, in TbMnO$_3$, the first-order transition to paraelectric ($P=0$) phase is observed under $H_{ex} \| c$ as shown in Fig. 1(f). The H_{ex}-induced vanishing of P is also observed in MnWO$_4$ $^{[7]}$ and Ni$_3$V$_2$O$_4$ $^{[8]}$.

To solve these puzzles, we start with a classical Heisenberg model on a cubic lattice, in which the Mn $S=2$ spins are treated as classical vectors. The Hamiltonian is given by $\mathcal{H} = \mathcal{H}_J + \mathcal{H}_{\text{dia}} + \mathcal{H}_{\text{DM}} + \mathcal{H}_{\text{Zeeman}}$. The first term $\mathcal{H}_J = \sum_{i,j} J_{ij} S_i \cdot S_j$ describes spin-exchange in-

PACS numbers: 77.80.Fm, 75.80.+q, 75.30.Gw, 75.47.Lx
The second term \mathcal{H}_{sia} denotes the single-ion spin anisotropy, which consists of two parts as $\mathcal{H}_{\text{sia}} = \mathcal{H}_{\text{sia}}^d + \mathcal{H}_{\text{sia}}^e$ with $\mathcal{H}_{\text{sia}}^d = D \sum \mathcal{S}_i^2$ and $\mathcal{H}_{\text{sia}}^e = E \sum \xi_i \eta_i \zeta_i$. Here, ξ_i, η_i, and ζ_i are the tilted local axes attached to the ith Mno$_6$ octahedron. The term $\mathcal{H}_{\text{sia}}^a$ causes the hard-axis anisotropy along c, or, equivalently, the easy-plane anisotropy in the ab plane. The third term $\mathcal{H}_{\text{DM}} = \sum_{i<j} \mathbf{d}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$ represents the DM interaction where the vectors \mathbf{d}_{ij} are defined on the Mn(i)-O-Mn(j) bonds, and are expressed by five DM parameters, α_{ab}, β_{ab}, γ_{ab}, α_c, and β_c. This term consists of two parts, $\mathcal{H}_{\text{DM}}^a$ and $\mathcal{H}_{\text{DM}}^b$, where $\mathcal{H}_{\text{DM}}^a$ is associated with the DM vectors on the in-plane (out-of-plane) Mn-O-Mn bonds. The last term, $\mathcal{H}_{\text{Zeeman}} = g \mu_B \sum \mathbf{S}_i \cdot \mathbf{H}_{\text{ex}}$, stands for the Zeeman coupling. Note that the Mn spins feel the internal magnetic field \mathbf{H}_{ex}, which consists of two contributions, i.e., the applied field \mathbf{H}_{ex} and the effective field \mathbf{H}_{eff} from the f moments. This model has successfully reproduced the phase diagrams of RMnO$_3$ at $\mathbf{H}_{\text{ex}} = 0$.

We have microscopically determined the values of J_{ab}, J_b, J_c, D, and E, and have estimated the values of five DM parameters in Ref. [19]. We perform calculations using two sets of the model parameters (A and B) as (A) $(J_{ab}, J_b, J_c) = (-0.74, 0.64, 1.0)$, $(D, E) = (0.2, 0.25)$, $(\alpha_{ab}, \beta_{ab}, \gamma_{ab}) = (0.1, 0.1, 0.14)$ and $(\alpha_c, \beta_c) = (0.48, 0.1)$, and (B) $(J_{ab}, J_b, J_c) = (-0.7, 0.99, 1.0)$, $(D, E) = (0.22, 0.25)$, $(\alpha_{ab}, \beta_{ab}, \gamma_{ab}) = (0.1, 0.1, 0.14)$ and $(\alpha_c, \beta_c) = (0.45, 0.1)$. Here the energy unit is meV. These parameter sets give the bc-plane spin spirals propagating along the b axis with wave numbers $Q_a = 0.3\pi$ and $Q_b = 0.47\pi$, respectively. They reproduce well the spiral spin states in TbMnO$_3$ ($Q_b = 0.28\pi$) and DyMnO$_3$ ($Q_b = 0.39\pi$) at $\mathbf{H}_{\text{ex}} = 0$.

In Figs. 2(a) and (b) we display theoretically obtained $T-H_{\text{in}}$ phase diagrams of TbMnO$_3$ and DyMnO$_3$ for $H_{\text{in}} || b$, respectively. They successfully reproduce the observed reorientation of P from $P || c$ to $P || a$ as a flop of the spin chirality from $\chi || a$ to $\chi || c$. We determine the transition points and the spin structures by calculating the T dependence of specific heat $C(T)$ and spin chiralities $\chi_\gamma(T)$ using $C(T) = \frac{1}{4T} \partial \langle H \rangle / \partial (k_B T)$ and spin chiralities $\chi_\gamma(T) = \frac{1}{S^2} \langle (\sum (\mathbf{S}_i \times \mathbf{S}_{i+1})_c) \rangle$ ($\gamma = a, b, c$). Here the brackets denote thermal averages. Concerning the spin chiralities, the $\chi_\gamma(T)$ [$\chi_c(T)$] has a large value, while other two components are nearly zero in the bc-plane [ab-plane] spiral or conical phases. Figure 2(c) shows $C(T)$ and $\chi_\gamma(T)$ at $T=0$ or 8 T. (d) Spin structure in the bc-plane spiral state at $H_{\text{in}} = 0$, and arrangement of the a-axis components of DM vectors on the out-of-plane Mn-O-Mn bonds. The symbols \circ and \otimes express their signs, i.e., positive and negative, respectively. In the inset, the arrows (dashed lines) show the spin directions in the presence (absence) of DM interaction.
but alternate along the c axis, while their magnitudes are all equal to $\alpha \phi_c$ [see Fig. 2(d)]. Without DM interaction, angles between adjacent two spins along the c axis are uniformly $\phi_c=\pi$ because of the strong antiferromagnetic (AFM) coupling J_c. In the presence of DM interaction, the angles alternate between $\pi + \Delta \phi_c$ and $\pi - \Delta \phi_c$ with $\Delta \phi_c>0$ [see the inset of Fig. 2(d)]. We can derive a gain of the DM energy due to this angle modulation as $\Delta E_{\text{DM}}^c/N = -\alpha S^2 \cos \phi_c \Delta \phi_c$. Without H_{in}, the gain ΔE_{DM}^c in the bc-plane spiral dominates over the easy-(ab)-plane [or the hard-(c)-axis] spin anisotropy from H_{D}^b, which favors the ab-plane spiral with $\chi || c$. Note that the value of $|\cos \phi_c|$ is maximum ($=1$) at $\phi_c=\pi$, but decreases as ϕ_c decreases. This means that the application of $H_{\text{in}}||b$ suppresses this energy gain since it destroys the interplane AFM coupling and reduces the angle ϕ_c from π. The bc-plane spiral becomes destabilized when the reduced energy gain ΔE_{DM}^c is defeated by the easy-(ab)-plane anisotropy H_{D}^b, resulting in the spiral-plane (chirality) flop from bc ($\chi || a$) to ab ($\chi || c$). Note that in RMnO$_3$, the ac-plane spiral or conical is unfavorable. This is because it can energetically benefit neither from H_{D}^a nor from H_{D}^c, whereas the ab- and bc-plane spirals can take advantage of one of these two. We expect that the above mechanism is relevant also to the $H_{\text{ex}}||b$ induced P flop from $P||c$ to $P||a$ in LiCu$_2$O$_2$ [4] in terms of the role of H_{ex}, which destabilizes the spin spiral with $P||c$ [14] through destroying the AFM coupling along c. Note that the single-ion anisotropy H_{D}^a cannot work in this quantum S=1/2 spin system in contrast to RMnO$_3$ with S=2 spins. We expect that the spin spiral with $P||a$ under H_{ex} (possibly the ab-plane spiral) is stabilized by the other interaction, and the DM coupling with the c-axis components of DM vectors is a possible candidate.

Now we compare our results with experimental ones. Between Figs. 1(c) and Fig. 2(b), there are a few discrepancies. First, threshold fields for the P reorientation are different; i.e., the calculated threshold value of H_{in}^P for DyMnO$_3$ is approximately 18 T, whereas the experimental value of H_{ex}^c is 1-4 T. Second, the slope of the phase boundary is very steep in the theoretical T-H_{ex} diagram of Fig. 2(b), while in the experimental T-H_{ex} diagram of Fig. 1(c), it is rather gradual. These discrepancies are solved by considering the effective magnetic field H_{fd} generated by the rare-earth f moments, which acts on the Mn spins via the f-d coupling J_{f-d}. Because of the AFM J_{f-d}, H_{fd} and H_{ex}^c are antiparallel, and the internal field $H_{\text{in}}^c (\gamma = a, b, c)$ is given by $H_{\text{in}}^c = H_{\text{ex}}^c - H_{\text{fd}}$. Here H_{fd}^c is written using the f-electron magnetization m_f as a function of T and H_{ex}^c as $H_{\text{fd}}^c(T, H_{\text{ex}}^c) = z J_{f-d} m_f (T, H_{\text{ex}}^c)$. Here $z (=8)$ is the coordination number of R ions around the Mn ion. We assume $J_{f-d} = 0.45$ T/µB for DyMnO$_3$. Figure 3(a) displays a color plot of the internal magnetic field H_{in}^c in the T-H_{ex} plane calculated using the experimental magnetization data. A solid line on which H_{in}^c is
equal to the calculated threshold value is drawn. This figure coincides with the experimental diagram of DyMnO$_3$ in Fig. 1(e). A similar analysis for TbMnO$_3$ has also reproduced the experimental diagram (not shown). The roles of the f-d coupling in RMnO$_3$ at $H_{\text{ex}}=0$ have been studied by recent neutron-scattering experiments [13, 14]. We find that the switching of P can be qualitatively understood even without considering the f-d coupling, but it should be taken into account for quantitative discussion.

Next we discuss the case of $H_{\text{ex}} \parallel c$. The theoretical T-H_{in}^c phase diagrams of TbMnO$_3$ and DyMnO$_3$ are displayed in Figs. 1(a) and (b). In Fig. 1(a), we find the transition to a coplanar spin state with $P=0$ for TbMnO$_3$ at $H_{\text{in}}^c \approx 3$ T, which coincides with the experimental observation of paraelectric phase under $H_{\text{ex}} \parallel c$. For its magnetic structure, see Fig. 1(c). Again, there are a few discrepancies between the theoretical and experimental results [compare Figs. 1(f) and Fig. 1(a)]. They are resolved by considering the influence of Tb moments.

In Fig. 2(b), we display the T and H_{ex}^c dependence of the internal field H_{in}^c calculated from the experimental magnetization data. Here we assume $J_{pd}=0.65$ T/μ_B for TbMnO$_3$. Solid lines on which H_{in}^c is equal to the calculated threshold value are drawn. This figure coincides well with the experimental diagram of TbMnO$_3$ in Fig. 1(f). On the other hand, the transition to the ab-plane transverse conical state with $P \parallel a$ [see Fig. 1(d)] is found for DyMnO$_3$ in Fig. 2(b), which has not been observed in experiments up to $H_{\text{ex}}^c=9$ T. The required H_{ex}^c for this transition deviates from the calculated critical value of H_{in}^c by the field H_{fd} from the Dy f moments antiparallel to H_{ex}. Hopefully, the reorientation of P will be observed in DyMnO$_3$ under a higher H_{ex}^c.

The contrasting behaviors of P under $H_{\text{ex}} \parallel c$ between DyMnO$_3$ and TbMnO$_3$ can be attributed to the difference in magnitude of the in-plane spin-exchange J_p. TbMnO$_3$ has much smaller $J_p=0.64$ meV than DyMnO$_3$ with $J_p=0.99$ meV. At $H_{\text{ex}}=0$, the Mn spins form a spiral order to minimize the spin-exchange energy in both compounds. Once we apply $H_{\text{ex}} \parallel c$, the ferromagnetic moment is induced along the c axis, and hence rotating components of the spins become reduced. Then in TbMnO$_3$ with a small J_p, the spiral and conical spin orders no longer take advantage of the spin exchanges under $H_{\text{ex}} \parallel c$, resulting in the first-order transition to the coplanar state as shown in Fig. 1(c). This state can benefit from all of the large a-axis components of the DM vectors on the out-of-plane bonds, which are perpendicular to the coplanar spin plane. The H_{ex}-induced ferroelectric-to-paraelectric transition with sudden vanishing of P has also been observed in many other spin-spiral multiferroics, e.g., Ni$_3$V$_2$O$_8$ [8] and MnWO$_3$ [9]. We expect that the above mechanism is relevant also to them.

In summary, we have theoretically studied the puzzling T-H_{ex} phase diagrams of the spin-spiral multiferroic RMnO$_3$ ($R=$Tb and Dy) and have revealed new mechanisms for the magnetic control of P by analyzing a microscopic spin model using the MC technique. We have shown that the applied $H_{\text{ex}} \parallel Q$ (parallel in the present case) reduces the DM energy through modulating the interplane spin angles, and thereby controls a competition between H_{DM}^c and other interaction (H_{dia} in the present case), which results in the spiral-plane or spin-chirality flop with reorientation of P. On the other hand, the applied $H_{\text{ex}} \perp Q$ (perpendicular in the present case) suppresses the spin-exchange energy through reducing the rotating components of spins, and thereby causes a competition between the spin exchanges H_{ex} and other interaction (H_{DM}^c in the present case). As a result, the first-order transition from spiral to coplanar spin phases occurs in TbMnO$_3$ with a rather small J_p accompanied by the sudden disappearance of P. We have discussed that the proposed mechanisms are also applicable to many other spin-spiral multiferroics. Additionally, we have found that the experimental results can be quantitatively reproduced by considering the effective field H_{fd} from the rare-earth f moments.

We thank Y. Tokura and N. Nagaosa for valuable discussions. MM thanks H. Murakawa and Y. Tokumaga for their experimental supports. This work was supported by Grant-in-Aid (No.22740214) and G-COE Program (“Physical Sciences Frontier”) from MEXT Japan, and Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from JSPS.

[1] T. Kimura et al., Nature (London) 426, 55 (2003).
[2] Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007); S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[3] T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).
[4] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).
[5] H. Murakawa et al., Phys. Rev. Lett. 101, 197207 (2008).
[6] S. Park, Y. J. Choi, C. L. Zhang, and S.-W. Cheong, Phys. Rev. Lett. 98, 057601 (2007).
[7] K. Taniguchi et al., Phys. Rev. B 77, 064408 (2008).
[8] M. Kenzelmann et al., Phys. Rev. B 74, 014429 (2006).
[9] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[10] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[11] M. Kenzelmann et al., Phys. Rev. Lett. 95, 087206 (2005).
[12] N. Aliouane et al., Phys. Rev. Lett. 102, 207205 (2009).
[13] Y. Hamada, K. Terakura et al., Phys. Rev. Lett. 101, 097204 (2008).
[14] Y. Kobayashi et al., J. Phys. Soc. Jpn. 78, 084721 (2009).
[15] O. Prokhnenko et al., Phys. Rev. Lett. 98, 057206 (2007).
[16] O. Prokhnenko et al., Phys. Rev. Lett. 99, 177206 (2007).
[17] For their direction vectors, we use the structural data of TbMnO$_3$ and DyMnO$_3$; see J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, and M. T. Fernández-Díaz, Inorg. Chem. 39, 917 (2000).
[18] I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev.
Lett. 76, 4825 (1996).
[19] M. Mochizuki, and N. Furukawa, Phys. Rev. B 80, 134416 (2009).
[20] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).