Group Extensions of the Co-type of a Crossed Module and Strict Categorical Groups

NGUYEN TIEN QUANG

Department of Mathematics, Hanoi National University of Education, cn.nguyenquang@gmail.com

Abstract

Prolongations of a group extension can be studied in a more general situation that we call group extensions of the co-type of a crossed module. Cohomology classification of such extensions is obtained by applying the obstruction theory of monoidal functors.

AMS Subject Classification: Primary: 18D10, Secondary: 20J05, 20J06

Keywords: crossed module, categorical group, group extension, group cohomology, obstruction

1 Introduction

A description of group extensions by means of factor sets leads to a close relationship between the extension problem of a type of algebras and the corresponding cohomology theory. This allows to study extension problems using cohomology as an effective method [6].

Let A and Π be two groups, A abelian. An extension of A by Π is a short exact sequence

$$0 \to A \xrightarrow{j} B \xrightarrow{\beta} \Pi \to 1. \quad (1)$$

A classical theorem in homological algebra asserts that the group of isomorphism classes of extensions of A by Π with a fixed operator $\varphi : \Pi \to \text{Aut} A$ is isomorphic to the second cohomology group $H^2_{\varphi}(\Pi, A)$, [9]. After that, the group H^2 was applied to the problem of classifying all group extensions in the different situations. This theorem has been made more precise by establishing a categorical equivalence between the category of extensions and a certain category whose objects are 2-cocycles [8]. With the notion of a categorical group (or a Gr-category [14]), many aspects of group extension problem are raised to a categorical level which help to obtain applications in algebra (see [4], [15]). This article belongs to this type.

The article is derived from the following classical problem. For a group extension Π and a group homomorphism $\eta : \Pi' \to \Pi$, it follows from the existence of the pull-back of the pair (η, p) that there is an extension $E\eta$ making the following diagram commute

$$E\eta : \quad 0 \to A \xrightarrow{j'} B' \xrightarrow{\beta'} \Pi' \to 1$$

$$E : \quad 0 \to A \xrightarrow{j} B \xrightarrow{\beta} \Pi \to 1$$
The problem is that with a given extension \(E' \) and a homomorphism \(\eta : \Pi' \to \Pi \), let us find all extensions \(E \) of \(A \) by \(\Pi \) such that \(E' = E\eta \). Then, the extension \(E \) is said to be a \(\eta \)-prolongation of \(E' \). A brief and general description of this problem was introduced in [16] (Proposition 5.1.1). In [13] we show the better descriptions in the case of the central extensions and \(\eta \) is an injection. Each prolongation induces a model which is “dual” to a group extension of the type of a crossed module (see Section 6). This leads to the notion of group extension of co-type of a crossed module studied in this paper.

The plan of this paper is, briefly, as follows. In Section 2 we recall reduced categorical groups, monoidal functors of type \((\varphi, f)\). In Section 3 we show the relation between the category of crossed modules and the category of strict Gr-categories, which is a useful tool in the next proofs. Next, we introduce the notion of a \(\zeta \)-extension of the co-type of a crossed module in Section 4, and we construct the obstruction theory of a \(\zeta \)-extension (Theorem 6). In Section 5 we present Schreier theory for \(\zeta \)-extensions of the co-type of a crossed module (Theorem 9). The last section is devoted to applying the results of previous sections to the problem of prolongations of a group extension in [13].

2 Preliminaries

For later use, we recall here some basic facts and results about categorical groups (see [12], [13]).

A categorical group is a monoidal category \((\mathcal{G}, \otimes, I, a, l, r)\) in which every object is invertible and the underlying category is a groupoid. If \((F, F') \) is a monoidal functor between categorical groups, the isomorphism \(F_\ast : I' \to FI \) can be deduced from \(F \) and \(\tilde{F} \). Thus, we will refer to \((F, \tilde{F})\) as a monoidal functor.

Two monoidal functors \((F, \tilde{F})\) and \((F', \tilde{F}')\) from \(\mathcal{G} \) to \(\mathcal{G}' \) are homotopic if there is a natural monoidal equivalence (or a homotopy) \(\alpha : (F, \tilde{F}, F_\ast) \to (F', \tilde{F}', F'_\ast) \), which is a natural equivalence such that \(F'_\ast = \alpha_I \circ F_\ast \).

Each categorical group \(\mathcal{G} \) determines three invariants, as follows:

1. The set \(\pi_0 \mathcal{G} \) of isomorphism classes of the objects in \(\mathcal{G} \) is a group where the operation is induced by the tensor product in \(\mathcal{G} \).
2. The set \(\pi_1 \mathcal{G} \) of automorphisms of the unit object \(I \) is a \(\pi_0 \mathcal{G} \)-module.
3. An element \([k] \in H^3(\pi_0 \mathcal{G}, \pi_1 \mathcal{G})\) is induced by the associativity constraint of \(\mathcal{G} \).

Based on the data: a group \(\Pi \), a \(\Pi \)-module \(A \) and \(k \in Z^3(\Pi, A) \), we construct a categorical group, denoted by \(\text{Red}(\Pi, A, k) \) whose objects are elements \(x \in \Pi \) and the morphisms are automorphisms \((x, a) : x \to x\), where \(x \in \Pi, a \in A \). The composition of two morphisms is induced by the
addition in A

$$(x, a) \circ (x, b) = (x, a + b).$$

The tensor products are given by

$$x \otimes y = x.y, \quad x, y \in \Pi,$$

$$\quad (x, a) \otimes (y, b) = (xy, a + xb), \quad a, b \in A.$$

The unit constraints of the categorical group $\text{Red}(\Pi, A, k)$ are strict, and its
associativity constraint is $\mathbf{a}_{x,y,z} = (xyz, k(x,y,z)).$

In the case where $\Pi, A, [k]$ are three invariants of a categorical group G
then $\text{Red}(\Pi, A, k)$ is monoidally equivalent to G and it is called a reduction
of G, hence denoted by $G(k)$.

A functor $F : \text{Red}(\Pi, A, k) \to \text{Red}(\Pi', A', k')$ is of type (φ, f) if

$$F(x) = \varphi(x), \quad F(x, a) = (\varphi(x), f(a)),$$

where $\varphi : \Pi \to \Pi'$, $f : A \to A'$ are group homomorphisms satisfying $f(xa) = \varphi(x)f(a)$, for $x \in \Pi, a \in A$. Note that if Π'-module A' is considered as a Π-module under the action $xa' = \varphi(x).a'$, then $f : A \to A'$ is a homomorphism of Π-modules. In this case, we call (φ, f) a pair of homomorphisms and call

$$\xi = \varphi^*k' - f_*k \in Z^3(\Pi, A')$$

an obstruction of the functor F, where φ^*, f_* are canonical homomorphisms

$$Z^3(\Pi, A) \xrightarrow{f_*} Z^3(\Pi, A') \xrightarrow{\varphi^*} Z^3(\Pi', A').$$

The results on monoidal functors of type (φ, f) stated in [12] are summarized
in the following proposition.

Proposition 1. Let G and G' be two categorical groups, $G(k)$ and $G'(k')$ be
their reductions, respectively.

i) Every monoidal functor $(F, \tilde{F}) : G \to G'$ induces one $G(k) \to G'(k')$
of type (φ, f).

ii) Every monoidal functor $G(k) \to G'(k')$ is a functor of type (φ, f).

iii) A functor $F : G(k) \to G'(k')$ of type (φ, f) is realizable, that is, it
induces a monoidal functor, if and only if its obstruction $[\xi]$ vanishes in
$H^3_F(\Pi, A')$. Then, there is a bijection

$$\text{Hom}_{(\varphi, f)}[G(k), G'(k')] \leftrightarrow H^3_F(\Pi, A'),$$

where $\text{Hom}_{(\varphi, f)}[G(k), G'(k')]$ is the set of all homotopy classes of monoidal
functors of type (φ, f) from $G(k)$ to $G'(k')$.

3
3 Categorical groups associated to a crossed module

A categorical group is strict, according to Joyal and Street [7], if all of its constraints are strict and every object has a strict inverse \((x \otimes y = 1 = y \otimes x)\). Brown and Spencer [3] called it a \(G\)-groupoid. The authors of [3] showed that there is a categorical equivalence between the category of crossed modules and that of \(G\)-groupoids, and hence crossed modules can be studied by means of category theory. The Brown-Spencer equivalence has recently developed for the category of (braided) crossed bimodules (see [10], Theorems 4.3, 4.4).

Definition. A crossed module is a quadruple \((B, D, d, \theta)\) where \(d : B \to D\), \(\theta : D \to \text{Aut}B\) are group homomorphisms such that the following relations hold

\[C_1. \quad \theta d = \mu, \]
\[C_2. \quad d(\theta_x(b)) = \mu_x(d(b)), \quad x \in D, b \in B, \]

where \(\mu_x\) is an inner automorphism given by conjugation of \(x\).

Definition. A homomorphism \((f_1, f_0) : (B, D, d, \theta) \to (B', D', d', \theta')\) of crossed modules consists of group homomorphisms \(f_1 : B \to B', f_0 : D \to D'\) satisfying

\[H_1. \quad f_0 d = d' f_1, \]
\[H_2. \quad f_1(\theta_x(b)) = \theta'_{f_0(x)} f_1(b), \]

for all \(x \in D, b \in B\).

In the present paper, the crossed module \((B, D, d, \theta)\) is sometimes denoted by \(B \xrightarrow{d} D\). For convenience, we denote by the addition for the operation in \(B\) and by the multiplication for that in \(D\).

The following properties follow from the definition of a crossed module.

Proposition 2. Let \((B, D, d, \theta)\) be a crossed module.

i) \(\text{Ker}d \subset Z(B)\).

ii) \(\text{Im}d\) is a normal subgroup in \(D\).

iii) The homomorphism \(\theta\) induces a homomorphism \(\varphi : D \to \text{Aut}(\text{Ker}d)\) given by

\[\varphi_x = \theta_x|\text{Ker}d. \]

iv) \(\text{Ker}d\) is a left \(\text{Coker}d\)-module with the action

\[sa = \varphi_x(a), \quad a \in \text{Ker}d, \quad x \in s \in \text{Coker}d. \]

As mentioned above, a categorical group can be seen as a crossed module [3], [7]. To help motivate the reader, we present this fact in detail.

For each crossed module \((B, D, d, \theta)\), one can construct a strict categorical group \(\mathcal{G}_{B \to D} = \mathcal{G}\), called the categorical group associated to the crossed module \(B \to D\), as follows.

\[\text{Ob}\mathcal{G} = D, \quad \text{Hom}(x, y) = \{b \in B \mid x = d(b)y\}, \]
where x, y are objects of G. The composition of two morphisms is given by

$$(x \overset{b}{\to} y \overset{c}{\to} z) = (x \overset{b+c}{\to} z).$$

The tensor functor is given by $x \otimes y = xy$ and

$$(x \overset{b}{\to} y) \otimes (x' \overset{b'}{\to} y') = (xx' \overset{b+b'+\theta y b'}{\to} yy'). \quad (3)$$

Conversely, for a strict categorical group (G, \otimes), we define a crossed module $C_G = (B, D, d, \theta)$ as follows. Set

$D = \text{Ob}G, \quad B = \{ x \overset{b}{\to} 1 | x \in D \}.$

The operations on D and on B are given by

$xy = x \otimes y, \quad b + c = b \otimes c,$

respectively. Then, the set D becomes a group in which the unit is 1, the inverse of x is x^{-1} ($x \otimes x^{-1} = 1$). The set B is a group in which the unit is the morphism $(1 \overset{id}{\to} 1)$ and the inverse of $(x \overset{b}{\to} 1)$ is the morphism $(x^{-1} \overset{\bar{b}}{\to} 1)(b \otimes \bar{b} = id_1)$.

The homomorphisms $d : B \to D$ and $\theta : D \to \text{Aut} B$ are respectively given by

$$d(x \overset{b}{\to} 1) = x,$$

$$\theta_y(x \overset{b}{\to} 1) = (xy^{-1} \overset{id_b+b+id_{y^{-1}}}{\to} 1).$$

The following result shows the relationship between homomorphisms of crossed modules and monoidal functors of associated categorical groups.

Proposition 3 ([1]). Let $(f_1, f_0) : (B, D, d, \theta) \to (B', D', d', \theta')$ be a homomorphism of crossed module.

i) There is a functor $F : G_B \to G_{B'}$ given by

$$F(x) = f_0(x), \quad F(b) = f_1(b),$$

where $x \in \text{Ob}G, \ b \in \text{Mor}G$.

ii) Natural isomorphisms $\tilde{F}_{x,y}$ together with F is a monoidal functor if and only if $\tilde{F}_{x,y} = \varphi(\overline{x}, \overline{y})$, where $\varphi \in Z^2(\text{Coker}d, \text{Ker}d')$.

Note. In the category of G-groupoids in [3], the morphisms (\tilde{F}, \tilde{F}) satisfy $\tilde{F} = id.$
4 Group extensions of the co-type of a crossed module

In this section we introduce a concept which is “dual” to the concept of group extension of type $B \xrightarrow{d} D$ in [1, 2]. As will be showed later, it is also regarded as a generalization of the prolongation problem of group extensions [13].

Definition. Let $d : B \to D$ be a crossed module. A group *extension* of A of co-type $B \xrightarrow{d} D$ is a diagram of group homomorphisms

$$
\begin{array}{cccccc}
B & \xrightarrow{d} & D \\
\downarrow{\beta} & & \\
0 & \xrightarrow{j} & E & \xrightarrow{p} & D & \xrightarrow{1},
\end{array}
$$

where the bottom row is exact, $j(A) \subset Z(E)$, the pair (β, id_D) is a morphism of crossed modules.

Since the bottom row is exact and since $p \circ \beta \circ i = d \circ i = 0$, where $i : \text{Ker} d \to B$ is an inclusion, there exists a unique homomorphism $\zeta : \text{Ker} d \to A$ such that the left hand side square commutes

$$
\begin{array}{cccccc}
\text{Ker} d & \xrightarrow{i} & B & \xrightarrow{d} & D \\
\downarrow{\zeta} & & \downarrow{\beta} & & \\
0 & \xrightarrow{j} & E & \xrightarrow{p} & D & \xrightarrow{1}.
\end{array}
$$

This homomorphism is defined by

$$j(\zeta(c)) = \beta(ic), \ c \in \text{Ker} d. \quad (5)$$

Moreover, ζ depends only on the equivalence class of the extension E.

Note on terminologies. Since the homomorphism θ' of the crossed module $E \xrightarrow{p} D$ is the conjugation and since $j(A) \subset Z(E)$, θ'_x acts on A as an identity. Thus, the group A can be seen as a D-module with the trivial action. Then,

$$\zeta(sc) = \zeta(c), \ s \in \text{Coker} \ d, c \in \text{Ker} d. \quad (6)$$

Indeed, By Proposition [2] $\theta_x(c) \in \text{Ker} d$, so one has

$$j\zeta(\theta_x(c)) = \beta(\theta_x c) = \beta \circ i(\theta_x c) \quad (5)$$

$$\Rightarrow \quad \theta'_x(\beta c) = \theta'_x(j\zeta(c)) = j\zeta(c).$$

Since j is injective, we obtain [10]. Thus, it defines a trivial Coker d-module structure on $\text{Im} \zeta$.

6
The homomorphism $\zeta : \text{Ker } d \to A$ satisfying the condition (6) is called an abstract ζ-kernel of the crossed module $B \xrightarrow{d} D$. An extension of A of co-type $B \xrightarrow{d} D$ inducing $\zeta : \text{Ker } d \to A$ is said to be an extension of the abstract ζ-kernel, or a ζ-extension of co-type $B \xrightarrow{d} D$.

• The obstruction theory: the case ζ is surjective

From now on, assume that $\zeta : \text{Ker } d \to A$ is an onto homomorphism. We use the obstruction theory of monoidal functors to deal with the existence of ζ-extensions.

Let $G = \mathbb{G}_{B \to D}$ be the categorical group associated to crossed module $B \to D$. Since $\pi_0 G = \text{Coker } d$ and $\pi_1 G = \text{Ker } d$, the reduced categorical group $G(k)$ is of form $G(k) = \text{Red}(\text{Coker } d, \text{Ker } d, k)$, $[k] \in H^3(\text{Coker } d, A)$, where the associativity constraint k is defined as follows. Choose a set of representatives $\{x_s \mid s \in \text{Coker } d\}$ in D. For each $x \in s$ choose an element $b_x \in B$ satisfying $x_s = d(b_x)x$, $b_{xs} = 0$. According to [14], the family (x_s, b_x) is called a stick. It defines a monoidal functor $(H, \tilde{H}) : G(k) \to G$ by

$$H(s) = x_s, \quad H(s, a) = a, \quad \tilde{H}_{r,s} = -b_{x_rx_s}.$$

Then, k is determined by the following commutative diagram

$$
\begin{align*}
\begin{array}{ccc}
 x_s(x_{rt}) & \xrightarrow{x_s \otimes \tilde{H}_{r,t}} & x_s x_{rt} \\
 \| & & \downarrow k(s, r, t) \\
(\tilde{H}_{s,r} \otimes x_t) x_{rt} & \xrightarrow{x_{sr} x_t} & \tilde{H}_{s,rt} \otimes x_{rt}.
\end{array}
\end{align*}
$$

By the relation (3), this diagram implies

$$\theta_{x_s}(\tilde{H}_{r,t}) + \tilde{H}_{s,rt} + k(s, r, t) = \tilde{H}_{s,r} + \tilde{H}_{sr,t}.$$

We write $k = \delta(\tilde{H})$ even though the function \tilde{H} takes values in B. The cohomology class $\text{Obs}(\zeta) = [\zeta, k] \in H^3(\text{Coker } d, A)$ is called the obstruction of the abstract ζ-kernel.

The onto homomorphism $\zeta : \text{Ker } d \to A$ induces a quotient category $G/\text{Ker } \zeta$ with the same objects of $G (= D)$, but morphisms are homotopy classes of morphisms in G, i.e., elements of the group $\mathbb{B} = B/\text{Ker } \zeta$. The category $G/\text{Ker } \zeta$ is just the categorical group associated to the crossed module $(\mathbb{B}, \mathbb{A}, \mathbb{F}, D)$ induced by the crossed module (B, d, θ, D).

Lemma 4. If the obstruction $\text{Obs}(\zeta)$ vanishes in $H^3(\text{Coker } d, A)$, there exists a monoidal functor $\text{Red}(D, A, 0) \to G/\text{Ker } \zeta$.

7
Proof. If \(\text{Obs}(\zeta) \) vanishes in \(H^3(\text{Coker} d, A) \), then \(\zeta_* k = \delta g \), where \(g : (\text{Coker} d)^2 \to A \). Consider a functor

\[
F : \text{Red}(D, A, 0) \to \text{Red}(\text{Coker} d, A, \delta g),
\]

for \(F = (q, \text{id}) \), where \(q \) is the natural projection. The obstruction of \(F \) is

\[
q^*(\delta g) = \delta (q^* g).
\]

Thus, \(F \) together with \(\bar{F} = q^* g \) is a monoidal functor. It follows the existence of a monoidal functor from \(\text{Red}(D, A, 0) \) to \(\mathbb{G}/\text{Ker} \zeta \).

Lemma 5. Each monoidal functor \(\text{Red}(D, A, 0) \to \mathbb{G}/\text{Ker} \zeta \) defines a \(\zeta \)-extension of co-type \(B \overset{d}{\to} D \).

Proof. Construction of the crossed product from a monoidal functor \((\Gamma, \bar{\Gamma}) : \text{Red}(D, A, 0) \to \mathbb{G}/\text{Ker} \zeta \).

The morphism \(\bar{\Gamma} \) defines an associated function \(g : D^2 \to A \) by \(\bar{\Gamma}_{s,r} = (1, g(s, r)) \). Now, we set \(\varphi : \text{Coker} d \to \text{Aut} \overline{B} \) by

\[
\varphi_s(\overline{b}) = \overline{x_s b} \overline{(= \overline{b}_{x_s}(b))}.
\]

Since \(x_r x_s = d(\bar{\Gamma}_{r,s}) x_{rs} \), the functions \(\varphi, g \) satisfy the rule

\[
\varphi_s \varphi_r = \mu_g(s, r) \varphi_{sr}.
\]

Since \(\delta g = 0 \), according to Lemma 8.1 \([9]\) one can defines a crossed product \(E_g = \overline{B} \times \text{Coker} d \). Namely, \(E_g = \overline{B} \times \text{Coker} d \) and the operation on \(E_g \) is

\[
(\overline{b}, s) + (\overline{c}, r) = (\overline{b} + \varphi_s(\overline{c}) + g(s, r), sr).
\]

In this group \((0, 1)\) is the zero, while the negative of the element \((\overline{b}, s)\) is \((\overline{b}, s^{-1})\), where \(\varphi_s(\overline{b}) = -\overline{b} - g(s, s^{-1}) \). One obtains an exact sequence

\[
E_g : 0 \to A \overset{j_g}{\to} E_g \overset{p_g}{\to} D \to 1,
\]

where \(j_g(\zeta(c)) = (\overline{c}, 1) \), \(p_g(\overline{b}, s) = db.x_s \). Indeed,

\[
p_g j_g(\zeta(c)) = p_g(\overline{c}, 1) = dc.x_s = 1,
\]

and for \((\overline{b}, s) \in \text{Ker}(p_g)\), then \(p_g(\overline{b}, s) = db.x_s = 1 \). By the uniqueness of the representation in \(D \), we have \(db = 1 \) and \(x_s = 1 \), it follows that \(b \in \text{Ker} d \) and \(s = 1 \), or \((\overline{b}, s) \in \text{Im}(j_g)\).

We prove that \(j_g(A) \subset Z(E_g) \). For \(b, c \in B \), one has

\[
\mu_{(\overline{b}, s)}(\overline{c}, 1) = (\mu_{\overline{b}} \varphi_s(\overline{c}), 1)
\]

(10)
If \(c \in \text{Ker} \, d \), then by (6), \(\varphi_s(\overline{c}) = \overline{c} \). Hence,
\[
\mu(\overline{b}, s)(\overline{c}, 1) = (\mu_{\overline{c}}(\overline{c}), 1) = (\overline{b} + c - \overline{b}, 1) = (\overline{c}, 1).
\]

Since \(j_g(A) \subset Z(E_g) \) and \(p_g \) is a surjection, \(E_g \xrightarrow{p_g} D \) is a crossed module in which the homomorphism \(\theta' : D \to \text{Aut} \, E_g \) is the conjugation. To define the morphism \((\beta, \text{id}_D) \) of crossed modules, one set
\[
\beta : B \to E_g, \quad \beta(b) = (\overline{b}, 1).
\]

This correspondence is a homomorphism thanks to the relation (9). Clearly, \(p_g \circ \beta = d \). Moreover, for all \(c \in B \) and \(x = db.x_s \in D \), we have
\[
\beta(\theta_x(c)) = \beta(\theta_{db}(\theta_x(c))) = (\mu_b \theta_x(c), 1) = (\mu_{\overline{b}} \varphi_s(\overline{c}), 1).
\]

Since \(\theta_x' = \mu(\overline{b}, s) \),
\[
\theta_x' \beta(c) = \mu(\overline{b}, s)(\overline{c}, 1) = (\mu_{\overline{b}} \varphi_s(\overline{c}), 1)
\]

Thus, the relation \(H_2 \) holds, and \(E_g \) is a \(\zeta \)-extension of co-type \(B \xrightarrow{d} D \). \(\Box \)

We state one of the paper’s main results.

Theorem 6. Let \(\zeta : \text{Ker} \, d \to A \) be the abstract \(\zeta \)-kernel of the crossed module \(B \xrightarrow{d} D \). Then, the vanishing of the obstruction \(\text{Obs}(\zeta) \) in \(H^3(\text{Coker} \, d, A) \) is necessary and sufficient for there to exist a \(\zeta \)-extension of co-type \(B \xrightarrow{d} D \).

Proof. Necessary condition. Let \(E \) be a \(\zeta \)-extension of co-type \(B \to D \) satisfying the diagram (4). Then, the reduced categorical group of the categorical group \(G' \) associated to the crossed module \(E \xrightarrow{d} D \) is \(\text{Red}(1, A, 0) \). By Proposition 3, the pair \((\beta, \text{id}_D) \) determines a monoidal functor \((F, \tilde{F}) : G \to G' \).

By Proposition 1, \((F, \tilde{F}) \) induces a monoidal functor of type \((0, \zeta) \) from \(\text{Red}(\text{Coker} \, d, \text{Ker} \, d, k) \) to \(\text{Red}(1, A, 0) \). Also by Proposition 1, the obstruction \([\zeta, k] \) of the pair \((0, \zeta) \) vanishes in \(H^3(\text{Coker} \, d, A) \).

Sufficient condition. It follows directly from Lemma 4 and Lemma 5. \(\Box \)

5 Classification theorem

Definition. Two \(\zeta \)-extensions of co-type \((B, D, d, \theta) \),
\[
0 \to A \xrightarrow{j} E \xrightarrow{p} D \to 1, \quad B \xrightarrow{\beta} E
\]
\[
0 \to A \xrightarrow{j'} E' \xrightarrow{p'} D \to 1, \quad B \xrightarrow{\beta'} E'
\]
are equivalent if there is an isomorphism \(\omega : E \to E' \) such that \(\omega j = j' \), \(p' \omega = p \) and \(\omega \beta = \beta' \).
We denote by \(\text{Ext}_B^D(D, A, \zeta) \)
the set of all equivalence classes of \(\zeta \)-extensions of co-type \(B \to D \) inducing \(\zeta \). We describe this set by means of the set

\[
\text{Hom}_{(0, \zeta)}(\text{Red}(D, A, 0), \frac{G}{\text{Ker} \zeta})
\]

of homotopy classes of monoidal functors of type \((0, \zeta)\) from \(\text{Red}(D, A, 0) \) to \(\frac{G}{\text{Ker} \zeta} \). First, let \(q : B \to \overline{B} = B/\text{Ker} \zeta \) and \(\sigma : D \to \text{Coker} d \) be the natural projections, one states the following lemma.

Lemma 7. If \(\zeta \) is surjective, then the commutative diagram (11) induces a short exact sequence

\[
0 \to \overline{B} \xrightarrow{\varepsilon} E \xrightarrow{\sigma p} \text{Coker} d \to 1,
\]

where \(\varepsilon(b + \text{Ker} \zeta) = \beta(b) \).

Proof. Obviously, \(\sigma p \) is surjective. It is easy to see that \(\text{Ker} \beta = \text{Ker} \zeta \), so \(\varepsilon \) is injective. The diagram (11) implies \(\sigma \varepsilon(\overline{b}) = \sigma p \beta(b) = \sigma d(b) = 1 \), this means that the above sequence is semi-exact. For \(e \in \text{Ker}(\sigma p) \), \(p(e) \in \text{Ker} \sigma = \text{Im} d \), and hence \(p(e) = d(\overline{b}) = p \beta(b) = p \varepsilon(\overline{b}) \). Then, \(e = \varepsilon(\overline{b}) + ja \). Since \(ja = j \zeta(c) = \beta(c) = \varepsilon(\overline{c}) \), \(e = \varepsilon(\overline{b + c}) \in \text{Im} \varepsilon \). Thus, the sequence (11) is exact.

Lemma 8. Each \(\zeta \)-extension of co-type \(B \to D \) is equivalent to a crossed product extension which is constructed from a monoidal functor of type \((0, \zeta)\), \((\Gamma, \tilde{\Gamma}) : \text{Red}(D, A, 0) \to \frac{G}{\text{Ker} \zeta} \).

Proof. Let \(E \) be a \(\zeta \)-extension of co-type \(B \xrightarrow{d} D \). By the proof of Theorem 6 there is a monoidal functor \((\Gamma, \tilde{\Gamma}) : \text{Red}(D, A, 0) \to \frac{G}{\text{Ker} \zeta} \). By Lemma 4 the crossed product \(E_g \), where \(g \) is the function associated with \(\tilde{\Gamma} \), is a \(\zeta \)-extension of co-type \(B \xrightarrow{d} D \) in which

\[
\beta_g : B \to E_g, \ b \mapsto (\overline{b}, 1).
\]

Thanks to the exact sequence (11) in Lemma 7 each element of \(E \) can be represented uniquely as \(\varepsilon \overline{b} + e_s \), where \(\{e_s, s \in \text{Coker} d\} \) is a set of representatives of Coker \(d \) in \(E \). It is easy to check that the correspondence

\[
\omega : E \to E_g, \ \varepsilon \overline{b} + e_s \mapsto (\overline{b}, s)
\]

is a group isomorphism. Moreover, \(\omega \) makes two extensions \(E \) and \(E_g \) equivalent.

\[\square \]
Theorem 9 (Schreier theory for extensions of co-type of a crossed module).

If ζ-extensions of co-type $B \xrightarrow{d} D$ exist, then there is a bijection

$$\Omega : \text{Ext}_{B \rightarrow D}(D, A, \zeta) \rightarrow \text{Hom}_{(0,\zeta)}[\text{Red}(D, A, 0), G / \text{Ker } \zeta].$$

Proof. The correspondence $E \mapsto (\Gamma, \tilde{\Gamma})$ in Lemma defines a correspondence $[E] \mapsto [(\Gamma, \tilde{\Gamma})]$. The fact that Ω is injective implies by following steps.

Step 1: If monoidal functors $(\Gamma, \tilde{\Gamma})$ and $(\Gamma', \tilde{\Gamma}')$ are homotopic, then two extensions E_g and $E_{g'}$ are equivalent.

Let $\Gamma, \Gamma' : \text{Red}(D, A, 0) \rightarrow G / \text{Ker } \zeta$ be two monoidal functors and $\alpha : \Gamma \rightarrow \Gamma'$ be a homotopic. Then, the following diagram commutes

$$\begin{array}{ccc}
\Gamma s \Gamma r & \xrightarrow{\Gamma s} & \Gamma s r \\
\downarrow \alpha_s \otimes \alpha_r & & \downarrow \alpha_{sr} \\
\Gamma' s \Gamma' r & \xrightarrow{\Gamma' s} & \Gamma' s r.
\end{array}$$

Since the morphisms α_s are of forms $(1, a_s)$, it follows from the above diagram that

$$g(s, r) - g'(s, r) = a_s + a_r - a_{sr} = (\delta a)(s, r). \quad (12)$$

Since ζ is surjective, $a_s = \zeta(z_s)$, where $z : \text{Coker } d \rightarrow \text{Ker } d$ is a normalized function.

Then, by (12), α determines a map $\omega : E_g \rightarrow E_{g'}$ by

$$(b, s) \mapsto [b + z_s, s]. \quad (13)$$

By the relation (13) and by the definition of operations in $E_g, E_{g'}$, the map ω is a group homomorphism. Further, it makes two extensions E and E_g equivalent.

Step 2: If two extensions E_g and $E_{g'}$ are equivalent, then $(\Gamma, \tilde{\Gamma})$ and $(\Gamma', \tilde{\Gamma}')$ are homotopic.

Let E_g and $E_{g'}$ be equivalent via the isomorphism $\omega : E_g \rightarrow E_{g'}$. From $p_g = p_{g'} : E_g \rightarrow E_{g'} \rightarrow D$, it follows that ω is of the form (13), where $z : \text{Coker } d \rightarrow \text{Ker } d$ is a normalized function. Since ω is a homomorphism, $\alpha = \zeta k$ is a homotopy between Γ and Γ'.

It follows from Lemma 5 that Ω is surjective.

It follows from Proposition 1 and Theorem 9 that

Corollary 10. If ζ-extensions of co-type $B \xrightarrow{d} D$ exist, then there is a bijection

$$\text{Ext}_{B \rightarrow D}(D, A, \zeta) \leftrightarrow H^2(\text{Coker } d, A).$$
6 Prolongations of a group extension

In this section we show an application of \(\zeta \)-extensions of co-type of a crossed module in order to obtain the results on prolongations of a group extension in the sense of [13]. Given a commutative diagram of group homomorphisms

\[
\begin{array}{ccc}
\mathcal{B} : & 0 & \longrightarrow \text{Ker } \pi \overset{i}{\longrightarrow} B \overset{\pi}{\longrightarrow} \Pi \overset{\eta}{\longrightarrow} 1 \\
\mathcal{E} : & 0 & \longrightarrow A \overset{j}{\longrightarrow} E \overset{p}{\longrightarrow} D \overset{1}{\longrightarrow} \\
\end{array}
\]

where the rows are exact, \(\text{Ker } \pi \subset ZB, \eta \) is a normal monomorphism (in the sense that \(\eta \Pi \) is a normal subgroup of \(D \)) and \(\zeta \) is an epimorphism. Then, \(\mathcal{E} \) is said to be a \((\zeta, \eta)\)-prolongation of \(\mathcal{B} \).

For the quotient group \(\overline{\mathcal{B}} = B / \text{Ker } \zeta \), the homomorphisms \(i, \eta \pi, \zeta, \beta \) in the commutative diagram (14) induce the homomorphisms \(\iota, \delta, \zeta, \beta \), respectively, such that the following diagram commutes

\[
\begin{array}{ccc}
\text{Ker } \delta & \longrightarrow & \overline{\mathcal{B}} \overset{d}{\longrightarrow} D \\
\iota & \downarrow & \beta \\
0 & \longrightarrow & A \overset{j}{\longrightarrow} E \overset{p}{\longrightarrow} D \overset{1}{\longrightarrow}
\end{array}
\]

Besides, according to Theorem 2 [13], \(\mathcal{E} \) induces a homomorphism \(\theta : D \rightarrow \text{Aut}(\overline{\mathcal{B}}) \) such that the quadruple \((\overline{\mathcal{B}}, D, d, \theta) \) is a crossed module.

Theorem 11. \(\mathcal{E} \) is a \(\zeta \)-extension of co-type \((\overline{\mathcal{B}}, D, d, \theta) \).

Proof. In the diagram (15), since the bottom row is exact and \(jA \subset ZE \) (Theorem 10 [13]), the epimorphism \(p : E \rightarrow D \) together with the conjugation in \(E \) is a crossed module. It is easy to see that the pair \((\iota, id_{D})\) is a homomorphism of crossed modules, so \(\mathcal{E} \) is a \(\zeta \)-extension of co-type \((\overline{\mathcal{B}}, D, d, \theta) \).

- The problem of prolongations of a group extension.

Given a diagram of group homomorphisms

\[
\begin{array}{ccc}
\mathcal{E} : & 0 & \longrightarrow \text{Ker } \pi \overset{i}{\longrightarrow} B \overset{\pi}{\longrightarrow} \Pi \overset{\eta}{\longrightarrow} 1 \\
\end{array}
\]

where the row is exact, \(i \) is an inclusion map, \(\text{Ker } \pi \subset ZB, \eta \) is a normal monomorphism, \(\zeta \) is surjective, and a group homomorphism \(\theta : D \rightarrow \text{Aut}(\overline{\mathcal{B}}) \) such that the quadruple \((\overline{\mathcal{B}}, D, d, \theta) \) is a crossed module (where the notations \(\overline{\mathcal{B}}, d \) are defined as above). These data are denoted by the triple \((\zeta, \eta, \theta) \),
called a pre-prolongation of E. A (ζ, η)-prolongation of E inducing θ is also called a covering of the pre-prolongation (ζ, η, θ).

The “prolongation problem” is that of finding whether there is any covering of the pre-prolongation (ζ, η, θ) of E and, if so, how many.

According to [13], each pre-prolongation (ζ, η, θ) of E induces an obstruction k. This obstruction is just the obstruction of an abstract ζ-kernel of the crossed module $\overline{B} \overset{d}{\rightarrow} D$. Thus, from the results on crossed modules in previous sections, one obtains the solution of the problem of prolongations of a group extension (Theorem 8 and Theorem 15 in [13]).

Theorem 12. Let (ζ, η, θ) be a pre-prolongation.

i) The vanishing of the obstruction $[\zeta, k]$ in $H^3(\text{Coker } d, A)$ is necessary and sufficient for there to exist a covering of (ζ, η, θ).

ii) If $[\zeta, k]$ vanishes, there is a bijection

$$\text{Ext}(\zeta, \eta)(D, A) \leftrightarrow H^2(\text{Coker } d, A),$$

where $\text{Ext}(\zeta, \eta)(D, A)$ is the set of equivalence classes of (ζ, η)-prolongations of the extension B inducing θ.

Proof. i) According to Theorem[13] the vanishing of $[\zeta, k]$ in $H^3(\text{Coker } d, A)$ is necessary and sufficient for there to exist a $\overline{\zeta}$-extension E of co-type $\overline{B} \overset{d}{\rightarrow} D$. Thanks to the following diagram, this is equivalent to the fact that E is a covering of the pre-prolongation (ζ, η, θ),

\[
\begin{array}{ccccccccc}
B : & 0 & \rightarrow & \text{Ker} \pi & i & B & \rightarrow & \Pi & \rightarrow & 1 \\
\downarrow \zeta & & \downarrow \pi_0 & & \downarrow \eta & & \downarrow \eta & & \downarrow 1 \\
E : & 0 & \rightarrow & A & j & E & \rightarrow & D & \rightarrow & 1.
\end{array}
\]

ii) It is clear that two coverings of the pre-prolongation (ζ, η, θ) are equivalent if and only if they are two equivalent $\overline{\zeta}$-extensions of co-type $\overline{B} \overset{d}{\rightarrow} D$, that is, there is a bijection

$$\text{Ext}(\zeta, \eta)(D, A) \leftrightarrow \text{Ext}_{\overline{B} \overset{d}{\rightarrow} D}(D, A, \overline{\zeta}).$$

Now, by Corollary[10] we have the bijection

$$\text{Ext}(\zeta, \eta)(D, A) \leftrightarrow H^2(\text{Coker } d, A).$$

References

[1] R. Brown, O. Mucuk, *Covering groups of non-connected topological groups revisited*, Math. Proc. Camb. Phil. Soc., 115 (1994), 97–110.
[2] R. Brown, T. Porter, *On the Schreier theory of nonabelian extensions: generalisations and computations*, Proceeding Royal Irish Academy, 96A (1996), 213–227.

[3] R. Brown, C. B. Spencer, *G-groupoids, crossed modules and the fundamental groupoid of a topological group*, Proc. Konn. Ned. Akad. v. Wet., 79 (1976) 296 - 302.

[4] A. M. Cegarra, J. M. García - Calcines, J. A. Ortega, *On graded categorical groups and equivariant group extensions*, Canad. J. Math. 54 (5) (2002), 970–997.

[5] P. Hilton, U. Stammbach, *A course in homological algebra*, Second edition, Graduate Texts in Mathematics, 4, Springer-Verlag New York, 1997.

[6] C. Hochschild, J. P. Serre, *Cohomology of group extensions*, Trans Amer, Math., Soc 74 (1953), 110–134.

[7] A. Joyal, R. Street, *Braided tensor categories*, Adv. Math. (1) 82 (1991), 20–78.

[8] R. Lavendhomme, J. R. Roisin, *Cohomologie non abelienne de structures algébriques*, J. Algebra 67, 1980, 385–414.

[9] S. Mac Lane, *Homology*, Springer-Verlag, 1963.

[10] Nguyen Tien Quang, *Braided strict Ann-categories and commutative extensions of rings*, Mathematical Communications, Vol 19 (2014) 159-182.

[11] N. T. Quang, P. T. Cuc and N. T. Thuy, *Crosed modules and Strict Gr-categories*, Commun. Korean Math. Soc., 29 No 1 (2014) 9-22.

[12] N. T. Quang, N. T. Thuy, P. T. Cuc, *Monoidal functors between (braided) Gr-categories and their applications*, East-West J. Mathematics 13, No 2 (2011) 163-186.

[13] N.T. Quang, C. T. K. Phung, P. T. Cuc, *The prolongation of central extensions*, International Journal of Group Theory, Vol 1, No 2 (2010) 39-49.

[14] H. X. Sinh, *Gr-catégories strictes*, Acta mathematica Vietnamica Tom. 3, No. 2 (1978), 47–59.

[15] E. M. Vitale, *On the categorical structure of H2*, J. Pure. Appl. Algebra 177, 2003, 303–308.

[16] A. Weiss, *Cohomology of groups*, Pure and Applied Mathematics, AP, Academic Press, INC. London, 1969.