Solution of the D-dimensional Klein-Gordon equation with equal scalar and vector ring-shaped pseudoharmonic potential

Sameer M. Ikhdair and Ramazan Sever

1Department of Physics, Near East University, Nicosia, Cyprus, Mersin 10, Turkey
†Department of Physics, Middle East Technical University, 06531 Ankara, Turkey.
(Dated: February 14, 2008)

We present the exact solution of the Klein-Gordon equation in D-dimensions in the presence of the noncentral equal scalar and vector pseudoharmonic potential plus the new ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound-state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this noncentral ring-shaped pseudoharmonic potential can be reduced to the three-dimensional pseudoharmonic solution once the coupling constant of the noncentral part of the potential becomes zero.

Keywords: Bound-states, energy eigenvalues and eigenfunctions, Klein-Gordon equation, pseudoharmonic potential, ring-shaped potential, non-central potentials, Nikiforov and Uvarov method.

PACS numbers: 03.65.-w; 03.65.Fd; 03.65.Ge.

PACS numbers:

INTRODUCTION

In nuclear and high energy physics [1,2], one of the interesting problems is to obtain exact solutions of the relativistic wave equations like Klein-Gordon, Dirac and Salpeter wave equations for mixed vector and scalar potential. The Klein-Gordon and Dirac wave equations are frequently used to describe the particle dynamics in relativistic quantum mechanics. The Klein-Gordon equation has also been used to understand the motion of a spin-0 particle in large class of potentials. In recent years, much works have been done to solve these relativistic wave equations for various potentials by using different methods. These relativistic equations contain two objects: the four-vector linear momentum operator and the scalar rest mass. They allow us to introduce two types of potential coupling, which are the four-vector potential (V) and the space-time scalar potential (S).

For the case $S = \pm V$, the solution of these wave equations with physical potentials has been studied recently. The exact solutions of these equations are possible only for certain central potentials such as Morse potential [3], Hulthen potential [4], Woods-Saxon potential [5], Pöschl-Teller potential [6], reflectionless-type potential [7], pseudoharmonic oscillator [8], ring-shaped harmonic oscillator [9], $V_0 \tanh^2(r/r_0)$ potential [10], five-parameter exponential potential [11], Rosen-Morse potential [12], and generalized symmetrical double-well potential [13], etc by using different methods. It is remarkable that in most works in this area, the scalar and vector potentials are almost taken to be equal (i.e., $S = V$) [2,14]. However, in some few other cases, it is considered the case where the scalar potential is greater than the vector potential (in order to guarantee the existence of Klein-Gordon bound states) (i.e., $S > V$) [15,16,17,18,19]. Nonetheless, such physical potentials are very few. The bound-state solutions for the last case is obtained for the exponential potential for the s-wave Klein-Gordon equation when the scalar potential is greater than the vector potential [15].

On the other hand, the other exactly solvable potentials are the noncentral ring-shaped potentials [20]. These potentials involve an attractive Coulomb potential plus a repulsive inverse square potential, that is, one like the Coulombic ring-shaped potential [21,22] revived in quantum chemistry by Hartmann et al [23]. The oscillatory ring-shaped potential studied by Quesne [24] have been investigated using various quantum mechanical approaches [25]. In taking the relativistic effects into account for spin-0 particle in the presence of a class of noncentral potentials, Yasuk et al [26] applied the Nikiforov-Uvarov method [27] to solve the Klein-Gordon equation for the noncentral Coulombic ring-shaped potential [21] for the case $V = S$. Further, Berkdemir [28] also applied the same method to solve the Klein-Gordon equation for the Kratzer-type potential.

Recently, Chen and Dong [29] proposed a new ring-shaped potential and obtained the exact solution of the Schrödinger equation for the Coulomb potential plus this new ring-shaped potential which has possible applications to ring-shaped organic molecules like cyclic polyenes and benzene. This type of potential used by Ref. [29] appears to be very similar to the potential used by Ref. [26]. Additionally, Cheng and Dai [30], proposed a new potential consisting from the modified Kratzer’s potential [31] plus the new proposed ring-shaped potential in [29]. They have presented the energy eigenvalues for this proposed exactly-solvable non-central potential in three dimensional Schrödinger equation using the NU method. The two quantum systems solved by Refs [29,30] are closely relevant to
each other as they deal with a Coulombic field interaction except for an additional change in the angular momentum barrier. In addition, the \(D \)-dimensional Schrödinger and Klein-Gordon wave equations have been solved for some types of ring-shaped potentials using the NU method [22, 25, 32].

The aim of the present paper is to obtain the exact bound-state solutions of the \(D \)-dimensional Klein-Gordon with an oscillatory-type plus new ring-shaped potential. The radial and angular parts of the Klein-Gordon equation with this type of noncentral potential are solved using the NU method.

This work is organized as follows: in section , we shall present the Klein-Gordon equation in spherical coordinates for spin-0 particle with an equal scalar and vector oscillatory-type ring-shaped potential. We separate the wave equation into radial and angular parts. Section is devoted to a brief description of the NU method. In section , we present the exact bound-state solutions to the radial and angular equations in \(D \)-dimensions. Finally, the relevant conclusions are given in section.

THE KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR POTENTIALS

In relativistic quantum mechanics, we usually use the Klein-Gordon equation for describing a scalar particle, i.e., the spin-0 particle dynamics. The discussion of the relativistic behavior of spin-zero particles requires understanding the single particle spectrum and the exact solutions to the Klein-Gordon equation which are constructed by using the four-vector potential \(A_\lambda \) \((\lambda = 0, 1, 2, 3) \) and the scalar potential \((S) \). In order to simplify the solution of the Klein-Gordon equation, the four-vector potential can be written as \(A_\lambda = (A_0, 0, 0, 0) \). The first component of the four-vector potential is represented by a vector potential \((V) \), i.e., \(A_0 = V \). In this case, the motion of a relativistic spin-0 particle in a potential is described by the Klein-Gordon equation with the potentials \(V \) and \(S \) [1]. For the case \(S \geq V \), there exist bound-state (real) solutions for a relativistic spin-zero particle [15, 16, 17, 18, 19]. On the other hand, for \(S = V \), the Klein-Gordon equation reduces to a Schrödinger-like equation and thereby the bound-state solutions are easily obtained by using the well-known methods developed in nonrelativistic quantum mechanics [2].

The Klein-Gordon equation describing a scalar particle (spin-0 particle) with scalar \(S(r, \theta, \varphi) \) and vector \(V(r, \theta, \varphi) \) potentials is given by [2, 14]

\[
\left\{ \nabla^2 - \left[V(r, \theta, \varphi) - E_R \right]^2 + \left[S(r, \theta, \varphi) + \mu^2 \right] \right\} \psi(r, \theta, \varphi) = 0,
\]

where \(\mu \) is the rest mass, \(E_R \) is the relativistic energy, \(\nabla \) is the momentum operator and \(S \) and \(V \) are the scalar and vectorial potentials. Alhaidari et al. [14] concluded that only the choice \(S = V \) produces a non trivial nonrelativistic limit with a potential function \(2V \) and not \(V \). Accordingly, it would be natural to scale the potential terms in Eq. (1) so that in the nonrelativistic limit the interaction potential becomes \(V \) and not \(2V \).

Therefore, they modified Eq. (1) to read as follows (in the relativistic atomic units \(\hbar = c = 1 \)):

\[
\left\{ \nabla^2 + \left[\frac{1}{2} V(r, \theta, \varphi) - E_R \right]^2 - \left[\frac{1}{2} S(r, \theta, \varphi) + \mu \right]^2 \right\} \psi(r, \theta, \varphi) = 0.
\]

After substituting \(S(r, \theta, \varphi) = V(r, \theta, \varphi) \), the equal scalar and vector potentials case, Eq. (2) becomes

\[
\left\{ \nabla^2 - \left(E_R + \mu \right) V(r, \theta, \varphi) + E_R^2 - \mu^2 \right\} \psi(r, \theta, \varphi) = 0,
\]

If we take the interaction potential in Eq. (3) as a general noncentral oscillatory-type ring-shaped potential, the \(D \)-dimensional Klein-Gordon equation is separated into variables and the equation can be solved through the NU method.

We take the interaction potential in Eq. (3) to be of an oscillatory-type plus new ring-shaped potential which is the potential of a diatomic molecule, [32]:

\[
V(r, \theta, \varphi) = V_1(r) + \frac{V_2(\theta)}{r^2} + \frac{V_3(\varphi)}{r^2 \sin^2 \theta},
\]

\[
V_1(r) = Ar^2 + \frac{B}{r^2} + C, \quad V_2(\theta) = \beta \cot \theta, \quad V_3(\varphi) = 0,
\]

where \(A = a_0 r_0^2 \), \(B = a_0 r_0^2 \), \(C = -2a_0 \) and \(\beta \) is positive real constant with \(a_0 \) is the dissociation energy and \(r_0 \) is the equilibrium internuclear distance [33, 34]. The potentials in Eq. (4) can be reduced to pseudoharmonic potential
in the limiting case of $\beta = 0$ \cite{34}. Nonetheless, the energy spectrum for this potential can be obtained directly by considering it as a special case of the general non-central separable potentials \cite{20}.

Our aim is to derive analytically the exact energy spectrum for a moving particle in the presence of a non-central potential given by Eq. (4) in a very simple way. We begin by considering the Schrödinger equation in arbitrary dimensions D for our proposed potential \cite{32}

$$\left\{ \nabla^2_D + \frac{2\mu}{\hbar^2} \left[E - V(r) - \frac{1}{r^2} V(\theta) \right] \right\} \psi^{(\ell_{D-1}=\ell)}_{\ell_1,\ldots,\ell_{D-2}}(\mathbf{x}) = 0,$$

$$\nabla^2_D = \frac{\partial^2}{\partial r^2} + \frac{(D-1)}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left[\frac{1}{\sin^{D-2} \theta_{D-1}} \frac{\partial}{\partial \theta_{D-1}} \left(\sin^{D-2} \theta_{D-1} \frac{\partial}{\partial \theta_{D-1}} \right) - \frac{L^2_{D-2}}{\sin^2 \theta_{D-1}} \right],$$

$$\psi^{(\ell)}_{\ell_1,\ldots,\ell_{D-2}}(\mathbf{x}) = R_\ell(r) Y^{(\ell)}_{\ell_1,\ldots,\ell_{D-2}}(\hat{\mathbf{x}}), \quad R_\ell(r) = r^{-(D-1)/2} g(r), \quad \text{(5)}$$

where μ and E denote the reduced mass and energy of two interacting particles, respectively. \mathbf{x} is a D-dimensional position vector with the hyperspherical Cartesian components x_1, x_2, \ldots, x_D given as follows \cite{40,41}:

$$x_1 = r \cos \theta_1 \sin \theta_2 \cdots \sin \theta_{D-1},$$

$$x_2 = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{D-1},$$

$$x_3 = r \cos \theta_2 \sin \theta_3 \cdots \sin \theta_{D-1},$$

$$\vdots$$

$$x_j = r \cos \theta_{j-1} \sin \theta_j \cdots \sin \theta_{D-1}, \quad 3 \leq j \leq D-1,$$

$$\vdots$$

$$x_{D-1} = r \cos \theta_{D-2} \sin \theta_{D-1},$$

$$x_D = r \cos \theta_{D-1}, \quad \sum_{j=1}^{D} x_j^2 = r^2, \quad \text{(6)}$$

for $D = 2, 3, \ldots$. We have $x_1 = r \cos \varphi$, $x_2 = r \sin \varphi$ for $D = 2$ and $x_1 = r \cos \varphi \sin \theta$, $x_2 = r \sin \varphi \sin \theta$, $x_3 = r \cos \theta$ for $D = 3$. The Laplace operator ∇^2_D is defined by

$$\nabla^2_D = \sum_{j=1}^{D} \frac{\partial^2}{\partial x_j^2}. \quad \text{(7)}$$

The volume element of the configuration space is given by

$$\prod_{j=1}^{D} dx_j = r^{D-1} dr d\Omega, \quad d\Omega = \prod_{j=1}^{D-1} (\sin \theta_j)^{j-1} d\theta_j, \quad \text{(8)}$$
where \(r \in [0, \infty) \), \(\theta_1 \in [0, 2\pi] \) and \(\theta_j \in [0, \pi] \), \(j \in [2, D - 1] \). The wave function \(\psi_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{x}) \) with a given angular momentum \(\ell \) can be decomposed as a product of a radial wave function \(R_\ell(r) \) and the generalized spherical harmonics \(Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}) \) as \[33\]

\[
\psi_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{x}) = R_\ell(r)Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}),
\]

\[
Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}) = Y(\ell_1, \ell_2, \cdots, \ell_{D-2}, \ell), \quad \ell = |m| \text{ for } D = 2,
\]

\[
R_\ell(r) = r^{-(D-1)/2}g(r),
\]

\[
Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{x} = \theta_1, \theta_2, \cdots, \theta_{D-1}) = \Phi(\theta_1 = \varphi)H(\theta_2, \cdots, \theta_{D-1}),
\]

which is the simultaneous eigenfunction of \(L_j^2 \) :

\[
L_j^2Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}) = m^2Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}),
\]

\[
L_j^2Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}) = \ell_j(\ell_j + 1)Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}),
\]

\[
\ell = 0, 1, \cdots, \ell_k = 0, 1, \cdots, \ell_{k+1}, j \in [1, D - 1], k \in [2, D - 2],
\]

\[
\ell_1 = -\ell_2, -\ell_2 + 1, \cdots, \ell_2 - 1, \ell_2,
\]

\[
L_{D-1}^2Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}) = \ell(\ell + D - 2)Y_{\ell_1 \cdots \ell_{D-2}}^{(l)}(\mathbf{\hat{x}}),
\]

where the unit vector along \(\mathbf{x} \) is usually denoted by \(\mathbf{\hat{x}} = \mathbf{x}/r \).

Hence for a nonrelativistic treatment with the potential given in Eq. (4), the Schrödinger equation in spherical coordinates is

\[
\left\{ \frac{1}{r^{D-1}} \frac{\partial}{\partial r} \left(r^{D-1} \frac{\partial}{\partial r} \right) - \frac{\ell D-1 + D - 2}{r^2} + \frac{2\mu}{\hbar^2} \left(E_{NR} - V_1(\theta) - \frac{V_2(\theta)}{r^2} - \frac{V_3(\varphi)}{r^2 \sin^2 \theta} \right) \right\} \times R_\ell(r) = 0,
\]

where \(\mu \) and \(E_{NR} \) are the reduced mass and the nonrelativistic energy, respectively. The angular momentum operators \(L_j^2 \) are defined as \[33, 36, 37, 38, 39\]:

\[
L_1^2 = -\frac{\partial^2}{\partial \theta_1^2},
\]

\[
L_k^2 = \sum_{a < b = k}^{k+1} L_{ab}^2 = -\frac{1}{\sin^{k-2} \theta_k} \frac{\partial}{\partial \theta_k} \left(\sin^{k-1} \theta_k \frac{\partial}{\partial \theta_k} \right) + \frac{L_{k-1}^2}{\sin^2 \theta_k}, \quad 2 \leq k \leq D - 1,
\]

\[
L_{ab} = -i \left[x_a \frac{\partial}{\partial x_b} - x_b \frac{\partial}{\partial x_a} \right].
\]

Making use of Eqs. (10) and (12), leads to the separation of Eq. (11) into the following set of second-order differential equations:

\[
\frac{d^2 \Phi(\theta_1 = \varphi)}{d\theta_1^2} + m^2 \Phi(\theta_1 = \varphi) = 0,
\]
\[
\left[\frac{1}{\sin^{j-1} \theta_j} \frac{d}{d \theta_j} \left(\sin^{j-1} \theta_j \frac{d}{d \theta_j} \right) + \ell_j \left(\ell_j + j - 1 \right) \right. \\
\left. - \frac{\ell_{j-1} \left(\ell_{j-1} + j - 2 \right)}{\sin^2 \theta_j} \right] H(\theta_j) = 0, \; j \in [2, D - 2], \tag{14}\]

\[
\left[\frac{1}{\sin^{D-2} \theta_{D-1}} \frac{d}{d \theta_{D-1}} \left(\sin^{D-2} \theta_{D-1} \frac{d}{d \theta_{D-1}} \right) + \lambda_{\ell} \right. \\
\left. - \frac{1}{\sin^2 \theta_{D-1}} \left(L_{D-2}^2 + \frac{2 \mu C}{\hbar^2} \cos^2 \theta_{D-1} \right) \right] H(\theta_{D-1}) = 0, \tag{15}\]

where \(m^2\) and \(\lambda_{\ell} = \ell (\ell + D - 2)\) are two separation constants whereas \(\mu\) and \(E_{NR}\) are the reduced mass and the nonrelativistic energy, respectively.

On the other hand, in the relativistic atomic units (\(\hbar = c = 1\)), the \(D\)-dimensional Klein-Gordon equation in Eq. (1) becomes \[28\]

\[
\left\{ \frac{1}{r^{D-1}} \frac{\partial}{\partial r} \left(r^{D-1} \frac{\partial}{\partial r} \right) - \frac{\ell (\ell + D - 2)}{r^2} \right. \\
\left. - (E_R + \mu) \left(V_1(r) + \frac{V_2(\theta)}{r^2} + (E_R^2 - \mu^2) \right) \right\} \psi_{n\ell m}(r, \theta, \varphi) = 0. \tag{17}\]

With the total wave function has the same representation as in Eq. (9) but with the transformation \(\ell \to \bar{\ell}\),

\[
\psi_{n\ell m}(r, \theta, \varphi) = R_{\bar{\ell}}(r)Y_{\bar{\ell}}^m(\theta, \varphi), \; R_{\bar{\ell}}(r) = r^{-(D-1)/2}g(r), \; Y_{\bar{\ell}}^m(\theta, \varphi) = \prod_{j=2}^{D-1} H_j(\theta)\Phi(\varphi). \tag{18}\]

and employing the method of separation of variables leads to the following differential equations \[25, 32, 41\]:

\[
\frac{d^2 \Phi(\varphi)}{d \varphi^2} + m^2 \Phi(\varphi) = 0, \tag{19}\]

\[
\left[\frac{1}{\sin^{j-1} \theta_j} \frac{d}{d \theta_j} \left(\sin^{j-1} \theta_j \frac{d}{d \theta_j} \right) + \bar{\ell}_j \left(\bar{\ell}_j + j - 1 \right) \right. \\
\left. - \frac{\bar{\ell}_{j-1} \left(\bar{\ell}_{j-1} + j - 2 \right)}{\sin^2 \theta_j} \right] H(\theta_j) = 0, \; j \in [2, D - 2], \tag{20}\]

\[
\left[\frac{1}{\sin^{D-2} \theta_{D-1}} \frac{d}{d \theta_{D-1}} \left(\sin^{D-2} \theta_{D-1} \frac{d}{d \theta_{D-1}} \right) + \lambda_{\bar{\ell}} \right. \\
\left. - \frac{1}{\sin^2 \theta_{D-1}} \left(L_{D-2}^2 + \frac{2 \mu C}{\hbar^2} \cos^2 \theta_{D-1} \right) \right] H(\theta_{D-1}) = 0, \tag{21}\]
\[
H(\theta_{D-1}) = 0,
\]
(21)

\[
\frac{1}{r^{D-1}} \frac{d}{dr} \left(r^{D-1} \frac{dR(r)}{dr} \right) - \left[\frac{\lambda_\ell}{r^2} + \alpha_2^2 \left(\frac{\alpha_1^2 - A}{r^2} + \frac{B}{r^2} \right) \right] R_\ell(r) = 0,
\]
(22)

where \(\alpha_1^2 = \mu - E_{NR} \), \(\alpha_2^2 = \mu + E_{NR} \), \(m \) and \(\tilde{\ell} \) are constants with \(m^2 \) and \(\lambda_\ell = \tilde{\ell}(\tilde{\ell} + D - 2) \) are the separation constants.

Equations (19)-(22) have the same functional form as Eqs (13)-(16). Therefore, the solution of the Klein-Gordon equation can be reduced to the solution of the Schrödinger equation with the appropriate choice of parameters:

\[
\tilde{\ell} \rightarrow \ell, \quad \alpha_1^2 \rightarrow -E_{NR} \quad \text{and} \quad \alpha_2^2 \rightarrow 2\mu/\hbar^2.
\]

The solution of Eq. (19) is well-known periodic and must satisfy the period boundary condition \(\Phi(\varphi + 2\pi) = \Phi(\varphi) \) which is the azimuthal angle solution:

\[
\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} \exp(\pm im\varphi), \quad m = 0, 1, 2, \ldots.
\]
(23)

Additionally, Eqs (20)-(22), the polar angle and radial equations, are to be solved by using NU method \([27]\) which is given briefly in the following section.

NIKIFOROV-UVAROV METHOD

The NU method is based on reducing the second-order differential equation to a generalized equation of hypergeometric type \([20, 27, 43, 44, 45]\). In this sense, the Schrödinger equation, after employing an appropriate coordinate transformation \(s = s(r) \), transforms to the following form:

\[
\psi_n''(s) + \frac{\sigma(s)}{\sigma(s)} \psi_n'(s) + \frac{\bar{\sigma}(s)}{\bar{\sigma}(s)} \psi_n(s) = 0,
\]
(24)

where \(\sigma(s) \) and \(\bar{\sigma}(s) \) are polynomials, at most of second-degree, and \(\bar{\sigma}(s) \) is a first-degree polynomial. Using a wave function, \(\psi_n(s) \), of the simple form

\[
\psi_n(s) = \phi_n(s) y_n(s),
\]
(25)

reduces (24) into an equation of a hypergeometric type

\[
\sigma(s)y_n''(s) + \tau(s)y_n'(s) + \lambda y_n(s) = 0,
\]
(26)

where

\[
\sigma(s) = \pi(s) \frac{\phi(s)}{\phi'(s)},
\]
(27)

\[
\tau(s) = \bar{\tau}(s) + 2\pi(s), \quad \tau'(s) < 0,
\]
(28)

and \(\lambda \) is a parameter defined as

\[
\lambda = \lambda_n = -n \tau'(s) - \frac{n(n-1)}{2} \sigma''(s), \quad n = 0, 1, 2, \ldots.
\]
(29)

The polynomial \(\tau(s) \) with the parameter \(s \) and prime factors show the differentials at first degree be negative. It is worthwhile to note that \(\lambda \) or \(\lambda_n \) are obtained from a particular solution of the form \(y(s) = y_n(s) \) which is a polynomial of degree \(n \). Further, the other part \(y_n(s) \) of the wave function (25) is the hypergeometric-type function whose polynomial solutions are given by Rodrigues relation.
where \(B_n \) is the normalization constant and the weight function \(\rho(s) \) must satisfy the condition \[27\]

\[
\frac{d}{ds} w(s) = \frac{\tau(s)}{\sigma(s)} w(s), \quad w(s) = \sigma(s) \rho(s).
\]

The function \(\pi \) and the parameter \(\lambda \) are defined as

\[
\pi(s) = \frac{\sigma'(s) - \bar{\pi}(s)}{2} \pm \sqrt{\left(\frac{\sigma'(s) - \bar{\pi}(s)}{2}\right)^2 - \bar{\sigma}(s) + k\sigma(s)},
\]

\[
\lambda = k + \pi'(s).
\]

In principle, since \(\pi(s) \) has to be a polynomial of degree at most one, the expression under the square root sign in (32) can be arranged to be the square of a polynomial of first degree \[27\]. This is possible only if its discriminant is zero. In this case, an equation for \(k \) is obtained. After solving this equation, the obtained values of \(k \) are substituted in (32). In addition, by comparing equations (29) and (33), we obtain the energy eigenvalues.

EXACT SOLUTIONS OF THE RADIAL AND ANGLE-DEPENDENT EQUATIONS

The solutions of the \(D \)-dimensional angular equations

At the beginning, we rewrite Eqs. (20) and (21) representing the angular wave equations in the following simple forms \[42\]:

\[
\frac{d^2 H(\theta_j)}{d\theta_j^2} + (j - 1)c\theta \frac{dH(\theta_j)}{d\theta_j} + \left(\Lambda_j - \Lambda_{j-1}\right) H(\theta_j) = 0, \quad j \in [2, D-2], D > 3,
\]

\[
\frac{d^2 H(\theta_{D-1})}{d\theta_{D-1}^2} + (D - 2)c\theta \frac{dH(\theta_{D-1})}{d\theta_{D-1}}
\]

\[
+ \left[\ell(\ell + D - 2) - \Lambda_{D-2} + 2\beta \alpha^2 \cos^2 \theta_{D-1}\right] H(\theta_{D-1}) = 0,
\]

where \(\Lambda_p = \ell_p(\ell_p + p - 1), p = j - 1, j \) which is well-known in three-dimensional space \[50\]. Equations (34) and (35) will be solved in the following subsection. Employing \(s = \cos \theta_j \), we transform Eq. (34) to the associated-Legendre equation

\[
\frac{d^2 H(s)}{ds^2} - \frac{j s}{1 - s^2} \frac{dH(s)}{ds} + \frac{\Lambda_j - \Lambda_{j-1} - \Lambda_j s^2}{(1 - s^2)^2} H(s) = 0, \quad j \in [2, D-2], D > 3.
\]

By comparing Eqs. (36) and (24), the corresponding polynomials are obtained

\[
\bar{\pi}(s) = -j s, \quad \sigma(s) = 1 - s^2, \quad \bar{\sigma}(s) = -\Lambda_j s^2 + \Lambda_j - \Lambda_{j-1}.
\]

Inserting the above expressions into Eq. (32) and taking \(\sigma'(s) = -2s \), one obtains the following function:

\[
\pi(s) = \frac{(j - 2)}{2} s \pm \sqrt{\left(\frac{j - 2}{2}\right)^2 + \Lambda_j - k} s^2 + k - \Lambda_j + \Lambda_{j-1}.
\]
Following the method, the polynomial $\pi(s)$ is found to have the following four possible values:

$$\pi(s) = \begin{cases}
\left(\frac{j-2}{2} + \tilde{\Lambda}_{j-1}\right)s & \text{for } k_1 = \Lambda_j - \Lambda_{j-1}, \\
\left(\frac{j-2}{2} - \tilde{\Lambda}_{j-1}\right)s & \text{for } k_1 = \Lambda_j - \Lambda_{j-1}, \\
\left(\frac{j-2}{2}\right)s + \tilde{\Lambda}_{j-1} & \text{for } k_2 = \Lambda_j + \left(\frac{j-2}{2}\right)^2, \\
\left(\frac{j-2}{2}\right)s - \tilde{\Lambda}_{j-1} & \text{for } k_2 = \Lambda_j + \left(\frac{j-2}{2}\right)^2,
\end{cases}$$

(39)

where $\tilde{\Lambda}_p = \tilde{\ell}_p + (p-1)/2$, with $p = j - 1$, j and $j \in [2, D - 2], D > 3$. Imposing the condition $\tau'(s) < 0$ for Eq. (28), one selects the following physically valid solutions with $\tau' = \tau'(\tilde{\ell}_{j-1})$: that is, a function of the angular momentum:

$$k_1 = \Lambda_j - \Lambda_{j-1} \quad \text{and} \quad \pi(s) = \left(\frac{j-2}{2} - \tilde{\Lambda}_{j-1}\right)s.$$

(40)

This condition leads to writing

$$\tau(s) = -2(1 + \tilde{\Lambda}_{j-1})s.$$

(41)

Making use from Eqs. (29) and (33), the following expressions for λ are obtained, respectively,

$$\lambda = \lambda_{n_j} = 2n_j(1 + \tilde{\Lambda}_{j-1}) + n_j(n_j - 1), \quad j \in [2, D - 2], D > 3$$

(42)

$$\lambda = \Lambda_j - \Lambda_{j-1} - \tilde{\Lambda}_{j-1} + \frac{j-2}{2}.$$

(43)

Upon comparing Eqs. (42) and (43), we obtain

$$n_j = \tilde{\ell}_j - \tilde{\ell}_{j-1}.$$

(44)

Additionally, using Eqs. (25)-(27) and (30)-(31), we obtain

$$\phi(s) = (1 - s^2)^\left(\frac{\tilde{\Lambda}_{j-1} - (j-2)/2}{2}\right), \quad \rho(s) = (1 - s^2)^\tilde{\Lambda}_{j-1}, \quad j \in [2, D - 2], D > 3.$$

(45)

Besides, we substitute the weight function $\rho(s)$ given in Eq. (45) into the Rodrigues relation Eq. (30) to obtain one of the wavefunctions in the form

$$y_{n_j}(s) = A_{n_j} (1 - s^2)^{-\tilde{\Lambda}_{j-1}} \frac{dq^n}{ds^n} (1 - s^2)^{n_j + \tilde{\Lambda}_{j-1}},$$

(46)

where A_{n_j} is the normalization factor. Finally the angular wavefunction is

$$H_{n_j}(\theta_j) = N_{n_j} (\sin \theta_j)^{\frac{(\tilde{\Lambda}_{j-1} - (j-2)/2)}{2}} P_{n_j}^{(\tilde{\Lambda}_{j-1}, \tilde{\Lambda}_{j-1})}(\cos \theta_j), \quad j \in [2, D - 2], \quad D > 3$$

(47)

with the normalization factor

$$N_{n_j} = \sqrt{\frac{(2\tilde{\ell}_j + 1)\Gamma(\tilde{\ell}_j - m')}{2\Gamma(\tilde{\ell}_j + m')}} = \sqrt{\frac{(2n_j + 2\tilde{\ell}_{j-1} + j - 1)\ n_j!}{2\Gamma(n_j + 2\tilde{\ell}_{j-1} + j - 2)}}, \quad j \in [2, D - 2], \quad D > 3.$$

(48)

Likewise, in solving Eq. (35), we introduce a new variable $s = \cos \theta_{D-1}$. Thus, we can also rearrange it as the universal associated-Legendre differential equation

$$\frac{d^2 H(s)}{ds^2} - \frac{(D - 1)s}{1 - s^2} \frac{dH(s)}{ds} + \nu'(1 - s^2) - \frac{\Lambda_{D-2}'}{(1 - s^2)^2} H(s) = 0,$$

(49)
where

\[\nu' = \ell'(\ell' + D - 2) = \tilde{\ell}(\tilde{\ell} + D - 2) + \beta \alpha_2^2 \quad \text{and} \quad \Lambda'_{D-2} = \Lambda_{D-2} + \beta \alpha_2^2. \]

Equation (49) has been recently solved in 2D and 3D by the NU method in [22, 23, 31]. However, the aim in this subsection is to solve it in D-dimensions. Upon letting \(D = 3 \), we can readily restore 3D solution given in [30]. By comparing Eqs. (49) and (24), the corresponding polynomials are obtained

\[\tilde{\tau}(s) = -(D - 1)s, \quad \sigma(s) = 1 - s^2, \quad \tilde{\sigma}(s) = -\nu' s^2 + \nu' - \Lambda'_{D-2}. \]

Inserting the above expressions into Eq. (32) and taking \(\sigma'(s) = -2s \), one obtains the following function:

\[\pi(s) = \frac{(D - 3)}{2} s \pm \sqrt{\left(\frac{(D - 3)}{2} \right)^2 + \nu' - k} s^2 + k - \nu' + \Lambda'_{D-2}. \]

Following the method, the polynomial \(\pi(s) \) is found to have the following four possible values:

\[\pi(s) = \begin{cases} \left(\frac{D - 3}{2} + \tilde{\Lambda}_{D-2} \right)s & \text{for } k_1 = \nu' - \Lambda'_{D-2}, \\ \left(\frac{D - 3}{2} - \tilde{\Lambda}_{D-2} \right)s & \text{for } k_1 = \nu' - \Lambda'_{D-2}, \\ \left(\frac{D - 3}{2} s + \tilde{\Lambda}_{D-2} \right) & \text{for } k_2 = \nu' + \left(\frac{D - 3}{2} \right)^2, \\ \left(\frac{D - 3}{2} s - \tilde{\Lambda}_{D-2} \right) & \text{for } k_2 = \nu' + \left(\frac{D - 3}{2} \right)^2, \end{cases} \]

where \(\tilde{\Lambda}_{D-2} = \sqrt{\tilde{\ell}_{D-2} + \frac{D - 3}{2}} \). Imposing the condition \(\tau'(s) < 0 \) for Eq. (28), one selects the following physically valid solutions with \(\tau' = \tau'(\tilde{\ell}_{D-2}) \); that is, a function of the angular momentum.[51]

\[k_1 = \nu' - \Lambda'_{D-2} \quad \text{and} \quad \pi(s) = \left(\frac{D - 3}{2} - \tilde{\Lambda}_{D-2} \right)s, \]

which yields from Eq. (28) that

\[\tau(s) = -2(1 + \tilde{\Lambda}_{D-2})s. \]

Making use from Eqs. (29) and (33), the following expressions for \(\lambda \) are obtained, respectively,

\[\lambda = \lambda_{n_{D-1}} = 2n_{D-1}(1 + \tilde{\Lambda}_{D-2}) + n_{D-1}(n_{D-1} - 1), \]

\[\lambda = \nu' - \Lambda'_{D-2} - \tilde{\Lambda}_{D-2} + \frac{D - 3}{2}. \]

We compare Eqs. (56) and (57) and from the definition \(\nu' = \ell'(\ell' + D - 2) \), the new angular momentum \(\ell', \tilde{\ell}_{D-2} \) and \(\tilde{\ell} \) values are obtained as

\[\tilde{\ell} = -\frac{(D - 2)}{2} + \sqrt{\left(n_j + m' + \frac{1}{2} \right)^2 - \alpha_2^2 \beta}, \]

\[\ell' = -\frac{1}{2} + \sqrt{\left(\frac{\tilde{\ell}}{2} + \frac{D - 2}{2} \right)^2 + \beta \alpha_2^2} = n_{D-1} + m', \]
\[m' = \sqrt{\left(\ell_{D-2} + \frac{D - 3}{2}\right)^2 + \alpha_2^2\beta}, \]

where \(\ell = \ell_{D-1} \), which can be easily reduced to the well-known definition

\[\ell' = n + \sqrt{m^2 + \alpha_2^2\beta}, \]

where \(n_{D-1} = n, \ell_{D-2} = m, \tilde{\lambda}_{D-2} = m' \) in 3D space [30]. Using Eqs. (25)-(27) and (30)-(31), we obtain

\[\phi(s) = (1 - s^2)^{(2\tilde{\lambda}_{D-1}+3-D)/4}, \quad \rho(s) = (1 - s^2)^{\tilde{\lambda}_{D-2}}. \]

Besides, we substitute the weight function \(\rho(s) \) given in Eq. (60) into the Rodrigues relation (30) and obtain one of the wavefunctions in the form

\[y_{n_{D-1}}(s) = B_{n_{D-1}} (1 - s^2)^{-\tilde{\lambda}_{D-2}} \frac{d^{n_{D-1}}}{ds^{n_{D-1}}} (1 - s^2)^{n_{D-1}+\tilde{\lambda}_{D-2}}, \]

where \(B_{n_{D-1}} \) is the normalization factor. Finally the angular wavefunction is

\[H_{n_{D-1}}(\theta_{D-1}) = N_{n_{D-1}} (\sin \theta_{D-1})^{\tilde{\lambda}_{D-2}-\frac{(D-3)}{2}} P_n(\tilde{\lambda}_{D-2}\tilde{\lambda}_{D-2}) (\cos \theta_{D-1}), \]

where the normalization factor

\[N_{n_{D-1}} = \sqrt{\frac{(2n_{D-1} + 2m' + 1)n_{D-1}!}{2\Gamma(n_{D-1} + 2m')}}. \]

where \(m' \) is given in Eq. (58).

The eigenvalues and eigenfunctions of the radial equation

We seek to present the exact bound-state solutions, i.e., the energy spectra and radial wave function \(R_\ell(r) \) of the Klein-Gordon equation in Eq. (22), by simply writting it in the following simple form [22, 25, 41]:

\[\frac{d^2g(r)}{dr^2} - \left[\frac{(M-1)(M-3)}{4r^2} + \alpha_2^2 \left(Ar^2 + B + C \right) + \alpha_1^2\alpha_2^2 \right] g(r) = 0, \]

where

\[M = D + 2\ell, \]

with \(\ell \) is given in (58). It is worthwhile to note that for bound states, we require that the wavefunction \(g(r) \) must satisfy the boundary condition that \(g(r) \) becomes zero where \(r \to \infty \), and \(g(r) \) is finite at \(r = 0 \). Further, applying the following simple transformation of variables, \(s = r^2 \), and making some algebraic manipulations, we may rewrite Eq. (64) in the standard form,

\[\frac{d^2g(s)}{ds^2} + \frac{1}{2s} \frac{dg(s)}{ds} + \frac{1}{(2s)^2} \left[-\alpha_2^2 s^2 - \varepsilon^2 s - \gamma^2 \right] g(s) = 0, \]

with the following definitions

\[\varepsilon^2 = \alpha_2^2(\alpha_1^2 + C), \quad \gamma^2 = (M-1)(M-3) + 4B\alpha_2^2, \quad \alpha_2^2 = A\alpha_2^2. \]

Comparing Eq. (66) with Eq. (24), gives the following expressions:

\[\bar{\ell}(s) = 1, \quad \sigma(s) = 2s, \quad \bar{\sigma}(r) = -\alpha_2^2 s^2 - \varepsilon^2 s - \gamma^2. \]
Substituting the above expressions into Eq. (32) gives

\[\pi(s) = \frac{1}{2} + \frac{1}{2} \sqrt{4\alpha^2 s^2 + 4(\varepsilon^2 + 2k)s + 4\gamma^2 + 1}. \]

(69)

Therefore, we can determine the constant \(k \) by using the condition that the discriminant of the square root is zero, that is

\[k = -\frac{\varepsilon^2}{2} \pm \frac{\alpha}{2} \sqrt{4\gamma^2 + 1}, \quad 4\gamma^2 + 1 = (D + 2j - 2)^2 + 4B\alpha^2. \]

(70)

In view of that, we arrive at the following four possible functions of \(\pi(s) \):

\[\pi(s) = \begin{cases} \frac{1}{2} + \left[\frac{\alpha s + 1}{2} \sqrt{4\gamma^2 + 1} \right] & \text{for } k_1 = -\frac{\varepsilon^2}{2} + \frac{\alpha}{2} \sqrt{4\gamma^2 + 1}, \\ \frac{1}{2} - \left[\frac{\alpha s}{2} \sqrt{4\gamma^2 + 1} \right] & \text{for } k_1 = -\frac{\varepsilon^2}{2} + \frac{\alpha}{2} \sqrt{4\gamma^2 + 1}, \\ \frac{1}{2} + \left[\frac{\alpha s}{2} \sqrt{4\gamma^2 + 1} \right] & \text{for } k_2 = -\frac{\varepsilon^2}{2} - \frac{\alpha}{2} \sqrt{4\gamma^2 + 1}, \\ \frac{1}{2} - \left[\frac{\alpha s}{2} \sqrt{4\gamma^2 + 1} \right] & \text{for } k_2 = -\frac{\varepsilon^2}{2} - \frac{\alpha}{2} \sqrt{4\gamma^2 + 1}. \end{cases} \]

(71)

The correct value of \(\pi(s) \) is chosen such that the function \(\tau(s) \) given by Eq. (28) will have negative derivative \([27]\). So we can select the physical values to be

\[k = -\frac{\varepsilon^2}{2} - \frac{\alpha}{2} \sqrt{4\gamma^2 + 1} \quad \text{and} \quad \pi(s) = \frac{1}{2} - \left[\frac{\alpha s}{2} - \frac{1}{2} \sqrt{4\gamma^2 + 1} \right], \]

(72)

which yield

\[\tau(s) = -2\alpha s + 2 + \sqrt{4\gamma^2 + 1}, \quad \tau'(s) = -2\alpha < 0. \]

(73)

Using Eqs. (29) and (33), the following expressions for \(\lambda \) are obtained, respectively,

\[\lambda = \lambda_n = 2\alpha n, \quad n = 0, 1, 2, \ldots \]

(74)

\[\lambda = -\frac{\varepsilon^2}{2} - \frac{\alpha}{2} (2 + \sqrt{4\gamma^2 + 1}). \]

(75)

So we can obtain the energy levels of the Klein-Gordon from the following relation:

\[-\sqrt{A} \left[4n + 2 + \sqrt{(D + 2\ell - 2)^2 + 4(\mu + E_R)B} \right] = \sqrt{\mu + E_R (\mu - E_R + C)}, \]

(76)

and hence for the pseudoharmonic plus the new ring-shaped potential, it becomes

\[-\sqrt{a_0} \left[4n + 2 + \sqrt{(D + 2\tilde{\ell} - 2)^2 + 4a_0r_0^2(\mu + E_R)} \right] = r_0 \sqrt{\mu + E_R (\mu - E_R - 2a_0)}. \]

(77)

where \(\tilde{\ell} \) is given in Eq. (58). The energy \(E_R \) is defined implicitly by Eq. (77) which is a rather complicated transcendental equation having many solutions for a given values of \(n \) and \(\tilde{\ell} \).

For completeness, we find that it is necessary to consider the solution for the central harmonic oscillator potential, \(V(r) = \frac{1}{2}k^2r^2 \) [33]. Therefore, applying the parameters transformation for this potential as: \(A = \frac{1}{2}k^2, \quad B = C = \beta = 0 \) and \(\tilde{\ell} = \ell \), the non central potential in (4) turns into the harmonic oscillator with Klein Gordon solution for the energy spectra as

\[(\mu + E_R) (\mu - E_R)^2 = \frac{k^2}{2} [4n + 2\ell + D]^2, \quad n, \ell = 0, 1, 2, \ldots. \]

(78)
On the other hand, in the nonrelativistic limit, applying the following appropriate transformation: \(\mu + E_R \to 2\mu, \mu - E_R \to -E_{NR}, \ell \to \ell \) to Eq. (78) yields \[33, 34\]

\[
E_{NR} = \frac{k}{\sqrt{\mu}} \left[2n + \ell + \frac{D}{2} \right], \quad n, \ell = 0, 1, 2, \ldots
\] (79)

In addition, from Eq. (76), we obtain the solution for the pseudoharmonic potential (\(\beta = 0 \) case) in the 3D-Schrödinger equation as \[34\]

\[
E_{NR} = -2a_0 + \sqrt{2a_0 \mu r_0^2} \left[2n + 1 + \sqrt{\left(\ell + \frac{1}{2} \right)^2 + 2\mu a_0 r_0^2} \right],
\] (80)

and for the ring-shaped pseudoharmonic potential (\(\beta \neq 0 \) case) \[25\]:

\[
E_{NR} = -2a_0 + \sqrt{\frac{2a_0}{\mu r_0^2}} \left[2n + 1 + \sqrt{\left(\tilde{n} + \sqrt{m^2 + \frac{2\mu}{2}} + \frac{1}{2} \right)^2 + 2\mu (a_0 r_0^2 - \beta)} \right],
\] (81)

where \(\tilde{n} \) and \(m \) are two constants coming from the solution of the angular wave equation with \(\ell = \tilde{n} + \sqrt{m^2 + 2\mu\beta} \).

Further, inserting the values of \(\sigma(s), \pi(s) \) and \(\tau(s) \) in Eqs (37), (40) and (41) into Eqs. (27) and (31), we obtain the wavefunctions

\[
\phi(s) = s^{(\zeta+1)/4} e^{-\alpha s/2},
\] (82)

\[
\rho(s) = s^{\zeta/2} e^{-\alpha s},
\] (83)

where \(\zeta = \sqrt{4\gamma^2 + 1} \). Further, from Eq. (30), we obtain

\[
g_{n\ell}(s) = B_n e^{\alpha s} s^{-\zeta/2} \frac{d^n}{ds^n} \left[e^{-\alpha s} s^{\zeta/2} \right] = B_n \ell^L_n(\Lambda+1/2)(\alpha s),
\] (84)

where \(2\Lambda + 1 = \zeta \) and consequently the wave function \(g(s) \) can be expressed in terms of the generalized Laguerre polynomials as

\[
g(s) = C_n s^{(\Lambda+1)/2} e^{-\alpha s/2} L_n^{(\Lambda+1/2)}(\alpha s),
\] (85)

where for the ring-shaped pseudoharmonic potential we have

\[
\zeta = \sqrt{\left(D + 2\tilde{\ell} - 2 \right)^2 + 4a_0 a_0^2 (\mu + E_R)}, \quad \alpha = \sqrt{a_0 (\mu + E_R) r_0}.
\] (86)

Finally, the radial wave functions of the Klein-Gordon equation are obtained from Eqs. (9) and (85) as

\[
R_{\tilde{\ell}}(r) = C_{n\tilde{\ell}} r^{\Lambda+1-(D-1)/2} \exp(-\alpha r^2/2) L_n^{(\Lambda+1/2)}(\alpha r^2),
\] (87)

where \[46, 47\]

\[
C_{n\tilde{\ell}} = \frac{2^{\Lambda+3/2} n!}{\Gamma(\Lambda + n + 3/2)},
\] (88)

and we can finally obtain the re-normalized total wavefunctions
\[
\psi_{\ell_1\ldots\ell_{D-2}}(x) = \frac{1}{2^m (\tilde{n} + m')!} \sqrt{\frac{\alpha^{\Lambda+3/2} n!}{\pi^\Gamma (\Lambda + n + 3/2)}} \times r^{\Lambda+1-(D-1)/2} \exp(-\alpha r^2/2) L_n^{(\Lambda+1/2)}(\alpha r^2)
\]
\[
\exp(\pm im\varphi) \prod_{j=2}^{D-2} \left(\frac{(2n_j + 2\tilde{\ell}_j - j - 1)}{2\Gamma(n_j + 2\tilde{\ell}_j - j - 2)} \right) \beta_{\tilde{\ell}_j-1}(\tilde{\ell}_j-1) P_{n_j}^{\tilde{\ell}_j-1}(\cos \theta_j)
\]
\[
\sqrt{\frac{(2n_{D-1} + m'+1) n_{D-1}!}{2\Gamma(n_{D-1} + 2m')}} \sin(\theta_{D-1}) P_{n_{D-1}}^{D-2-3/2}(\alpha r^2) (\cos \theta_{D-1}),
\]
where \(\Lambda = \frac{1}{2}(\zeta - 1)\).

CONCLUSIONS

We have calculated the exact bound-state energy eigenvalues and the corresponding eigenfunctions of the relativistic spin-0 particle in the \(D\)-dimensional Klein-Gordon equation with equal scalar and vector ring-shaped pseudoharmonic potential using the NU method. The analytical expressions for the total energy levels and eigenfunctions of this system can be reduced to their well-known 3D Schrödinger equation. Further, the noncentral potentials treated in Ref. [20] can be introduced as perturbation to the pseudoharmonic potential by adjusting the strength of the coupling constant \(\beta\) in terms of \(a_0\), which is the coupling constant of the pseudoharmonic potential. The relativistic energy \(E_R\) defined implicitly by Eq. (76) is rather complicated transcendental equation and it has many solutions for any arbitrarily given values of \(n\) and \(\tilde{\ell}\). Additionally, the radial and polar angle wave functions of the Klein-Gordon equation are found in terms of Laguerre and Jacobi polynomials, respectively. The method presented in this paper is general and worth extending to the solution of other interaction problems. This method is very simple and useful in solving other complicated systems without a restriction on the solution of some quantum systems as the case in the other models. Therefore, we have seen that for the nonrelativistic model, the exact energy spectra can be obtained either by solving the Schrödinger equation in Eq. (11) (cf. Eq. (48) in Ref. [22]) or rather by applying appropriate transformation to the relativistic solution. Finally, we emphasize that the exact bound-state spectra obtained in this work might have some interesting applications in different branches like atomic and molecular physics and quantum chemistry. They describe the molecular structures and interactions in diatomic molecules [48].

This research was partially supported by the Scientific and Technical Research Council of Turkey.

[1] T. Y. Wu and W. Y. Pauchy Hwang, Relativistic Quantum Mechanics and Quantum Fields (World Scientific, Singapore, 1991).
[2] W. Greiner, Relativistic Quantum Mechanics: Wave Equations, 3rd edn (Springer, Berlin, 2000).
[3] A. D. Alhaidari, Phys. Rev. Lett. 87 (2001) 210405; 88 (2002) 189901.
[4] G. Chen, Mod. Phys. Lett. A 19 (2004) 2009; J. -Y. Guo, J. Meng and F. -X. Xu, Chin. Phys. Lett. 20 (2003) 602; A. D. Alhaidari, J. Phys. A: Math. Gen. 34 (2001) 9827; 35 (2002) 6207; M. Şinşek and H. Eğrifes, J. Phys. A: Math. Gen. 37 (2004) 4379.
[5] J. -Y. Guo, X. -Z. Fang and F. -X. Xu, Phys. Rev. A 66 (2002) 062105; C. Berkdemir, A. Berkdemir and R. Sever, J. Phys. A: Math. Gen. 39 (2006) 13455.
[6] G. Chen, Acta Phys. Sinica 50 (2001) 1651; Ö. Yeşiltaş, Phys. Scr. 75 (2007) 41.
[7] G. Chen and Z. M. Lou, Acta Phys. Sinica 52 (2003) 1071.
[8] G. Chen, Z. D. Chen and Z. M. Lou, Chin. Phys. 13 (2004) 279.
[9] W. C. Qiang, Chin. Phys. 12 (2003) 136.
[10] W. C. Qiang, Chin. Phys. 13 (2004) 571.
11. G. Chen, Phys. Lett. A 328 (2004) 116; Y. F. Diao, L. Z. Yi and C. S. Jia, Phys. Lett. A 332 (2004) 157.
12. L. Z. Yi et al, Phys. Lett. A 333 (2004) 212.
13. X. Q. Zhao, C. S. Jia and Q. B. Yang, Phys. Lett. A 337 (2005) 189.
14. A. D. Alhaidari, H. Bahroui and A. Al-Hasan, Phys. Lett. A 349 (2006) 87.
15. G. Chen, Phys. Lett. A 339 (2005) 300.
16. A. de Souza Dutra and G. Chen, Phys. Lett. A 349 (2006) 297.
17. F. Dominguez-Adame, Phys. Lett. A 136 (1989) 175.
18. A. S. de Castro, Phys. Lett. A 338 (2005) 81.
19. L. Z. Yi et al, Phys. Lett. A 333 (2004) 212.
20. X. Q. Zhao, C. S. Jia and Q. B. Yang, Phys. Lett. A 337 (2005) 189.
21. M. Kibler and P. Winternitz, J. Phys. A 20 (1987) 4097.
22. G. Chen, Acta Phys. Sinica 53 (2004) 680; G. Chen and D. F. Zhao, Acta Phys. Sinica 52 (2003) 2954.
23. A. D. Alhaidari, H. Bahroui and A. Al-Hasan, Phys. Lett. A 349 (2006) 87.
24. Y. F. Diao, L. Z. Yi and C. S. Jia, Phys. Lett. A 332 (2004) 157.
25. S. M. Ikhdair and R. Sever, Phys. Lett. A 338 (2005) 81.
26. S. M. Ikhdair and R. Sever, Phys. Lett. A 338 (2005) 81.
27. F. Dominguez-Adame, Phys. Lett. A 136 (1989) 175.
28. A. de Castro, Phys. Lett. A 338 (2005) 81.
29. G. Chen, Acta Phys. Sinica 53 (2004) 680; G. Chen and D. F. Zhao, Acta Phys. Sinica 52 (2003) 2954.
30. S. M. Ikhdair and R. Sever, Int. J. Theor. Phys. 46 (10) (2007) 2384.
31. M. Kibler and P. Winternitz, J. Phys. A 20 (1987) 4097.
32. S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 18 (10) (2007) 1571; preprint quant-ph/0703008 to appear in Int. J. Mod. Phys. C.
33. H. Hartmann and D. Schuch, Int. J. Quantum Chem. 18 (1980) 125.
34. C. Quesne, J. Phys. A 21 (1988) 3093.
35. S. M. Ikhdair and R. Sever, preprint quant-ph/0703131 to appear in Cent. E. J. Phys.
36. F. Yasuk, A. Durmuš and I. Boztosun, J. Math. Phys. 47 (2006) 082302.
37. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basell, 1988).
38. C. Berkdemir, Am. J. Phys. 75 (2007) 81.
39. C. Berkdemir and S. H. Dong, Phys. Lett. A 335 (2005) 374.
40. Y. F. Diao, L. Z. Yi and C. S. Jia, Phys. Lett. A 338 (2005) 81.
41. C. Berkdemir and S. H. Dong, Phys. Lett. A 335 (2005) 374.
42. S. M. Ikhdair and R. Sever, arXiv: 0704.0573 to appear in the Cent. E. J. Phys.
43. M. Sage and J. Goodisman, Am. J. Phys. 53 (1985) 350.
44. S. M. Ikhdair and R. Sever, J. Mol. Struct.-Theochem 806 (2007) 155; Cent. E. J. Phys. 5 (4) (2007) 516; preprint quant-ph/0702052 to appear in the Cent. E. J. Phys.; doi:10.1016/j.theochem.2007.12.044, to appear in J. Mol. Struct.-Theochem.
45. L. -Y. Wang, X. -Y. Gu, Z. -Q. Ma and S. -H. Dong, Found. Phys. Lett. 15 (2002) 569; S. -H. Dong, App. Math. Lett. 16 (2003) 199.
46. J. D. Louck and W. H. Shaffer, J. Mol. Spec. 4 (1960) 285; D. Louck, J. Mol. Spec. 4 (1960) 298; J. D. Louck, J. Mol. Spec. 4 (1960) 334.
47. J. D. Louck, Theory of Angular Momentum in D-Dimensional Space, Los Alamos Scientific Laboratory monograph LA-2451, LASL, Los Alamos, 1960.
48. J. D. Louck and H. W. Galbraith, Rev. Mod. Phys. 48 (1976) 69.
49. A. Chatterjee, Phys. Rep. 186 (1990) 249.
50. A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1953.
51. G. Chen, Phys. Lett. A 349 (2006) 297.
52. S. M. Ikhdair and R. Sever, Phys. Lett. A 338 (2005) 81.
53. S. M. Ikhdair and R. Sever, Phys. Lett. A 338 (2005) 81.
54. G. Chen, Phys. Lett. A 338 (2005) 81.
55. S. M. Ikhdair and R. Sever, Ann. Phys. (Leipzig) 16 (3) (2007) 218.
56. S. M. Ikhdair and R. Sever, preprint quant-ph/0605045 to appear in the Int. J. Mod. Phys. E.
57. G. Sezgo, Orthogonal Polynomials (American Mathematical Society, New York, 1939).
58. N. N. Lebedev, Special Functions and Their Applications (Prentice-Hall, Englewood Cliffs, NJ, 1965).
59. R. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 52 (1970) 3869.
60. It is worth noting that such a definition was introduced by Erdélyi early in 1950s (cf. [40], pp. 232-5, chapter 11) even though the notation used by him is quite different from that by Louck and Chatterjee.
61. A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1953.