Growth restriction of *Rhizoctonia solani* via breakage of intracellular organelles by crude extract of gallnut and clove

Jian Wang¹,²,³*, Xianfeng Hu¹,³*, Chenglong Yang², Xiaomao Wu¹,³, Rongyu Li¹,³*, and Li Ming¹,³*

¹ Institute of Plant Protection, Guizhou University, Guiyang 550025, Guizhou, P. R. China; Wangjian@sina.com (W.J.); huxianfenggzu@163.com (X.H.); wurum827@126.com (X.W.); lirongyu0328@126.com (R.L.); lm21959@163.com (M.L.)
² Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi, Guizhou, 562400, P. R. China; yangchenglong208@163.com (C.Y.)
³ The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, Guizhou, P. R. China

*Correspondence: lm21959@163.com; Tel.: +86-13885101658; lirongyu0328@126.com, Tel.: +86-15185148063

# These authors contributed equally to this work.

Abstract: Plant diseases reduce crop yield and quality, hampering the development of agriculture. Fungicides, which restrict chemical synthesis, are the strongest controls for plant diseases. However, the harmful effects on the environment due to continued and uncontrolled utilization of fungicides has become a major challenge in recent years. Plant-sourced fungicides are a class of plant antibacterial substances or compounds that induce plant defenses. They can kill or inhibit the growth of target pathogens efficiently with no or low toxicity, degrade readily, do not prompt development of resistance, which has led to their widespread use. In this study, the growth inhibition effect of 24 plant-sourced ethanol extracts on rice sprigs was studied. Ethanol extract of gallnuts and cloves inhibited the growth of rice sprigs by up to 100%. Indoor toxicity measurement results showed that the gallnut and clove constituents inhibition reached 39.23 μg/mL and 18.82 μg/mL, respectively. Extract treated rice sprigs were dry and wrinkled. Gallnut caused intracellular swelling and breakage of mitochondria, disintegration of nuclei, aggregation of protoplasts, and complete degradation of organelles in hyphae and aggregation of cellular contents. Protection of *Rhizoctonia solani* viability reached 46.8% for gallnut and 37.88% for clove in water emulsions of 1,000 μg/mL gallnut and clove in the presence of 0.1% Tween 80. The protection by gallnut was significantly stronger than that of clove. The data could inform the choice of plant-sourced fungicides for the comprehensive treatment of rice sprig disease. The studied extract effectively protected rice sprigs and could be a suitable alternative to commercially available chemical fungicides. Further optimized field trials are needed to effectively sterilize rice paddies.

Keywords: *Rhus chinensis* Mill; *Syzygium aromaticum*; Rice sheath blight; Antifungal activity

1. Introduction

Rice sheath blight, known as Moire disease, is one of the most serious fungal diseases or rice crops globally[1,2]. Sheath blight, caused by *Rhizoctonia solani* Kühn AG1 1A (teleomorph *Thanatephorus cucumeris* (A. B. Frank) Donk), is one of the most important diseases in rice worldwide[3,4]. Rice sheath blight affects both the quality and yield of rice. The prevalence of rice sheath blight is increasing in China, reflecting changes in rice farming that include increased planting density and lack of high resistance varieties. In high-temperature and humid environments, rice sheath blight has reduced rice yields by up to 50% [2-5]. Rice sheath blight hosts are widespread and the fungus core can survive for a long time in the soil, with a high rate of genetic
variation. These factors make it difficult to control the disease in the production process[6].

The lack of rice varieties with high resistance to rice sheath blight complicates the prevention and treatment. Current measures are mainly chemical and most commonly include tyrutin and mimide fluoroazoles. Jinggangmycin which is produced from water-absorbing streptomycin bacteria, is most commonly used in China[7,8]. Resistance was first described in Gushi County, Henan Province[9]. The field statistical resistance rate of Fujian Province reached 2.48% in 2015[10]. Surveillance of jinggangmycin resistance in 206 rice sheath blight strains in 26 districts of 12 cities found that the strains became resistant, with increasing dosages required year-by-year[11,12]. Additional new problems, including environmental pollution, deterioration of human health, damage to non-target organisms in the field, destruction of the ecological balance of rice paddies, and serious problems caused by the utilization of jinggangmycin, led the European Union to ban the use of jinggangmycin in 2002 (The Commission of European Communities, No. 2076/2002). Accordingly, there is a need for plant-sourced environmentally friendly pesticides with high efficiency, low toxicity, broad spectrum activity.

Important facets of biosynthetic pesticides attributed to plant-sourced pesticides include high efficiency, low or no toxicity, easy degradation, and lack of development of resistance to drugs. Antibacterial substances in plants or the induction of plant defenses can kill or inhibit the growth of pathogenic bacteria. More than 250,000 plant species have been identified globally. However, only 10% have been studied concerning their chemical composition [13]. Grange et al. reported that 2,400 plants have active ingredients for pest control [14]. Plant resources are extraordinarily rich in China, with more than 10,000 kinds of Chinese herbal medicine resources, 1,400 kinds of plants with inhibitory activity, and 4,000,000 kinds of secondary metabolites [13]. Fogliani studied the antibacterial activity of 50 species of fire-barrel tree plants from Scotland and reported that 49 inhibited spores to varying extents [15]. Ojala et al. showed that extracts of wrinkled parsley and fennel have antibacterial effects on antiseptic sclerosis [16]. Srinivasan et al. studied the antibacterial activity of 50 medicinal plant water products in India and found that 36 of the plants had antibacterial activity and 12 had broad spectrum antibacterial effects [17].

Plant-sourced fungicides are an important part of biorational pesticides and have become the focus of current research. In this study, the growth inhibition effect of 24 plant-sourced active compounds on the growth of mycelia of rice sheath blight were studied. Indoor toxicology and viability protection studies revealed that gallnut and clove protected rice by inhibiting the mycelial growth of rice sheath blight. Further inhibition mechanisms were investigated by transmission electron microscopy and scanning electron microscopy. These findings demonstrated that internal cell structures of rice sheath blight were destroyed and the internal milieu was disordered. The results should inform new research strategies for the prevention and control of rice sheath blight and are expected to lead to the development of new botanical fungicides.

2. Results

2.1 Inhibition of R. solani plant-derived extracts

The biological control efficiency of 24 plant ethanol extracts against R. solani was analyzed at room temperature (Table 1). The incidence and inhibition percentage of all plant-based ethanol extracts were analyzed. The 24 plant ethanol extracts that were tested at a concentration of 10 mg/mL showed varying degrees of inhibition of R. solani. The inhibition effect of the ethanol extract of gallnut and cloves was the best, with antibacterial rates of 100%. They were followed by the ethanol extracts of Angelica sinensis and cinnamon, with respective rates of 51.31% and 66.99%. The
remaining ethanol extracts produced rates content <30%. Gallnut and clove extracts were selected for further analyses.

Table 1  Inhibition effects of ethanol extracts from two plants against R.solani

| Plants Resources                          | Colony diameter (cm) | Inhibition ratio (%) |
|-------------------------------------------|----------------------|----------------------|
| Cinnamomum cassia Presl                   | (2.02 ± 0.03)        | 66.99                |
| Forsythia suspensa                        | (4.62 ± 0.26)        | 17.5                 |
| Mentha haplocalyx Briel.                  | (4.42 ± 0.02)        | 21.07                |
| Saposhnikovia divaricata (Trucz.) Schischk. | (5.63±0.17)          | 7.24                 |
| Syzygium aromaticum (L.) Merr. EtPerry    |                      | 100                  |
| Xanthium sibiricum Patrin ex Widder       | (5.54±0.05)          | 8.73                 |
| Rhus chinensis Mill.                      | (0)                  | 100                  |
| Angelica sinensis                         | (2.98±0.2)           | 51.31                |
| Isatis tinctoria                          | (6.8±0.16)           | -                    |
| Eucommia ulmoides Oliver                  | (5.4±0.02)           | 15.09                |
| Glycyrrhiza uralensis Fisch.              | (5.28±0.015)         | 13.73                |
| Cynanchum oophylhum                       | (6.45±0.02)          | -                    |
| Salvia militorhiza Bunge                  | (5.07±0.53)          | 20.28                |
| Angelica dahurica (Fisch. ex Hoffm.)      | (6.07±0.12)          | 4.56                 |
| Benth. et Hook. f. ex Franch. et Sav      |                      |                      |
| Cnidium monnieri (L.)Cuss.                | (4.58±0.11)          | 24.55                |
| Reynoutria japonica Houtt.                | (5.62±0.05)          | 11.64                |
| Heartleaf Houttuynia Herb                 | (6.58±0.21)          | 29.25                |
| Rheum palmatum L.                         | (4.5±0.29)           | 29.25                |
| Atractyloides macrocephala Koidz.         | (4.28±0.37)          | 23.57                |
| Rhizoma Pinelliae                         | (5.22±0.11)          | 6.79                 |
| Coptis chinensis Franch.                  | (3.3±0.17)           | 41.07                |
| Angelica pubescens Maxim.f. biserrata     | (3.42±0.23)          | 38.93                |
| Shan et Yuan                              |                      |                      |
| Crataegus pinnatifida Bunge               | (4.35±0.19)          | 22.32                |
| Morus alba L.                             | (5.02±0.17)          | 10.36                |

Notes: Data in the table are mean value±standard deviation. The different letters in the same column indicate significant differences at the 0.05 levels.

2.2 Indoor toxicity test of plant-derived extracts against R. solani

Indoor toxicity tests were performed for the ethanol extracts of cloves and gallnut, since both completely inhibited R. solani at a concentration of 10 mg/mL. When the concentration of the ethanol extracts ranged from 10 to 75 μg/mL, the inhibition rate of ethanol extracts of clove at 50 μg/mL was 89.85%, and gallnut ethanol extract at 50 μg/mL was only 77.66%. The findings demonstrated that a low concentration of ethanol extract of clove effectively inhibited R. solani mycelium. With increasing extract concentration, a significant difference between the two extracts was observed (P<0.05, Table 2).
Table 2 Indoor toxicity of ethanol extracts from two plants to R. solani

| Concentration (µg/mL) | The ethanol extracts from clove | Concentration (µg/mL) | The ethanol extracts from gala chinensis |
|-----------------------|---------------------------------|-----------------------|------------------------------------------|
|                       | Colony diameter (cm) | Inhibition ratio (%) | Colony diameter (cm) | Inhibition ratio (%) |
| 0                     | (6.85±0.1)a           | -                     | 0                         | (6.85±0.1)a           |
| 10                    | (5.62±0.2)b           | 17.96                 | 15                        | (6.56±0.07)b           | 4.23 |
| 20                    | (3.85±0.2)c           | 43.8                  | 30                        | (3.75±0.1)c           | 45.26 |
| 30                    | (2.69±0.12)d          | 60.73                 | 45                        | (3.22±0.11)d          | 52.99 |
| 40                    | (1.38±0.11)e          | 79.85                 | 60                        | (2.7±0.05)e          | 60.29 |
| 50                    | (0.68±0.15)f          | 89.49                 | 75                        | (1.57±0.03)f          | 77.66 |

Notes: Data in the table are mean value±standard deviation. The different letters in the same column indicate significant differences at the 0.05 levels.

Figure 1 a. The ethanol extracts from clove at concentrations from 10 to 50 µg/mL; b. The ethanol extracts from gala chinensis at concentrations from 15 to 75 µg/mL.

Statistical analysis of the data revealed a significant linear relationship between the concentration of the extract and the inhibition rate, with correlation coefficients of 0.9678 for gala chinensis and 0.9593 for clove. The EC\textsubscript{50} values of the ethanol extracts of gala chinensis and clove against R. solani was 41.84 and 21.68 µg/mL, respectively. The respective EC\textsubscript{75} value was 72.59 and 36.34 µg/mL. The results showed that both gala chinensis and clove extracts showed good effects (Table 3).

Table 3 Toxic regression equations of ethanol extracts from two plants to R. solani

| Plants         | Toxic regression equation \(Y = A + B \times X\) | Correlation coefficient | EC\textsubscript{50} (µg/mL) | EC\textsubscript{75} (µg/mL) |
|----------------|-----------------------------------------------|-------------------------|----------------------------|---------------------------|
| gala chinensis | \(Y=0.6717+3.5590x\)                          | 0.9678                  | 41.84                      | 72.59                     |
| clove          | \(Y=0.0250+3.9031x\)                          | 0.9593                  | 21.68                      | 36.34                     |

2.3 Effects of ethanol extracts from clove and gala chinensis on mycelial morphology of R. solani

The colony morphology of R. solani treated with different concentrations of ethanol extracts of gala chinensis and clove changed significantly. SEM revealed that the mycelia of the control treatment were uniform in diameter with a smooth surface,
good extension, and complete secondary mycelium growth (Figure 2a, b). In contrast, a 24 h treatment with 20 μg/mL clove extract produced seriously shriveled mycelia with thinner growth point of secondary mycelium (Figure 2c, d). After treatment with 40 μg/mL gallnut extract (Figure 2e, f) for 24 h, the mycelium of R. solani was deformed, shriveled, and folded, and the thickness was uneven. The growth point of the secondary mycelium was damaged and folded. Both extracts produced shriveled and shrivel mycelia. The effect of the clove ethanol extract at low concentrations was more pronounced than that of gallnut ethanol extract.
graphs of R.S.: Hyphae exposed to the ethanol extracts from two R.solani at concentrations of (a,b) 0 µg/mL, (c,d) EC₇₅ =36.34 µg/mL; the ethanol extracts from clove, (e,f)EC₇₅ =72.59 µg/mL; the ethanol extracts from galla chinensis. Arrows and arrowheads indicate hyphae shrinkage and partial distortion.

2.4 Effects of ethanol extracts from clove and gallnut on ultrastructure of mycelia of rice sheath blight

The mycelia of R. solani treated with ethanol extracts of gallnut and clove displayed significant changes in morphology and profound damage of cell ultrastructure. In particular, the permeability of mycelial cells and the structure and morphology of organelles, such as the cytoplasm and mitochondria, were significantly altered, as shown in Figure 3. The cell morphology of the control (Figure 3a, b) was regular and the structure was complete. The cell wall was uniform in texture and thickness, and was closely linked to the cell membrane. The protoplast was dense and uniform. The mitochondria, endoplasmic reticulum, vacuole, and other structures were clear and complete. Mycelia treated with 72.59 µg/mL gallnut ethanol extract displayed swelling and rupture of mitochondria, disintegrated nuclei, and aggregation of protoplasts (Figure 3c, d). The organelles in mycelia treated with 36.34 µg/mL ethanol extract of clove were completely degraded with aggregated cell contents (Figure 3e, f).
2.5 Protective effects of clove and gallnut ethanol extracts on rice in vivo

The control effect increased as the concentration of the ethanol extracts of gallnut and clove increased. The control effect of gallnut reached 46.80% when ethanol extract concentration ranged between 200 and 1,000 μg/mL. The value for clove was only 37.88% at the same concentration range. The control effect of gallnut ethanol extract was 8.92% higher than that of clove at 1,000 μg/mL. Thus, although the clove ethanol extract showed a good inhibitory effect on R. solani, it did not show a good control effect on rice plants(Table 4, Figure 4).

Table 4 Biocontrol efficiency of ethanol extracts from gala chinensis and clove against rice sheath blight pathogen R. solani under green house condition.

| Ethanol extract from gala chinensis | Treatment | Disease Index | Disease suppression(%) | Ethanol extract from clove | Treatment | Disease Index | Disease suppression(%) |
|-----------------------------------|-----------|---------------|------------------------|---------------------------|-----------|---------------|------------------------|
| CK                                | 3.59      |               |                        | CK                        | 3.59      |               |                        |
| 200 μg/mL                         | 2.92      | 18.66 e       |                        | 200 μg/mL                 | 3.26      | 9.19 e       |                        |
| 400 μg/mL                         | 2.75      | 23.40 d       |                        | 400 μg/mL                 | 2.96      | 17.55 d      |                        |
| 600 μg/mL                         | 2.47      | 31.20 c       |                        | 600 μg/mL                 | 2.83      | 21.17 c      |                        |
| 800 μg/mL                         | 2.32      | 35.38 b       |                        | 800 μg/mL                 | 2.56      | 28.69 b      |                        |
| 1000 μg/mL                        | 1.91      | 46.80 a       |                        | 1000 μg/mL                | 2.23      | 37.88 a      |                        |

Notes: Data in the table are mean value±standard deviation. The different letters in the same column indicate significant differences at the 0.05 levels.
Rice sheath blight is one of the main diseases of rice. This disease seriously affects rice yield. There are few highly resistant rice varieties [17]. Thus, chemical control is the main approach to disease control. The use of chemical agents approach is hindered by the “3R” problem. The impact on the environment and human health is a research priority. Among the numerous fungicides used to control rice sheath blight, jinggangmycin and its related improved products occupy an important market position [18]. They have become agricultural microbial antibiotics with the highest sales. However, negative impacts have spurred international appeals for prohibition. Therefore, the development of new biological pesticides to replace jinggangmycin has become a priority.

Plants are an important source of botanical fungicides and have become an important part of the development of environmentally harmonious pesticides and biorational pesticides. Advantages of plant-derived fungicides include pronounced efficiency, low toxicity, ease of degradation, and lack of development of resistance [19]. Compounds isolated from plant extracts, such as steroids, tannins, flavonoids, alkaloids, and saponins, have antibacterial activity [20]. Venkateswarlu et al. [21] reported that 2% preparations derived from Zanthoxylum bungeanum and Andrographis paniculata had good inhibitory effects on the sclerotium of stem rot. Lu et al. [22] studied the antifungal activities of the crude extracts of four Chinese herbal medicines and found that the minimum inhibitory concentration of gallnut and coca seed were both 3.9 μg/mL, with strong inhibitory effects on Candida albicans and Cryptococcus neoformans. Serrano et al. [23] treated sweet cherry with thymol, eugenol, and menthol, and found that the number of mold, yeast, and aerobic mesophilic bacteria decreased, especially mold and yeast.

In this study, 24 plant-derived extracts were selected to study the biological activity of R. solani. Only a few of the extracts displayed inhibitory activity on R. solani. In particular, the ethanol extracts of gallnut and clove at 10 mg/mL showed strong inhibitory effects followed by the ethanol extracts of A. sinensis and C. cassia. The bacteriostatic rate of 50% increased as the extract concentration increased. The ethanol extracts of gallnut and clove displayed good antibacterial effect (EC50 of 41.84 and 21.68 μg/mL, respectively).
The gallnut and clove extracts displayed inhibitory effects on the mycelia of rice sheath blight. SEM showed that both extracts produced wrinkles on the surface of the mycelium and caused varying extents of damage to the secondary growth point of the mycelium. After treatment with gallnut extract, the mitochondria in the mycelium were swollen and broken, the nuclei of cells were disintegrated, and protoplasts were aggregated. Gallnut reportedly has strong inhibitory effect on the β-galactosidase activity of Agrobacterium tumefaciens strain A136, with an inhibition rate of 33.20% [24]. Gallnut extract also inhibited enamel demineralization in vitro [25], and the survival of Vibrio parahaemolyticus and Listeria monocytogenes in cooked shrimp and raw tuna [26]. Li et al. [27] found that citral extracted from Litsea cubeba could destroy the integrity of the cell wall and membrane permeability of rice blast, resulting in physiological changes and cytotoxicity. Presently, after treatment with clove extract, organelles in the mycelia of R. solani were completely degraded, cell contents were aggregated, and the cell wall was ablated. Eugenol is one of the main components of clove. The compound has a minimal inhibitory concentration of 200 μg/mL against mycelia of Phytophthora nicotianae. Eugenol can significantly destroy the cell membrane of mycelium without affecting the integrity of the spore membrane [28]. Pasqua et al. [29] and Helander et al. [30] proposed that eugenol could inhibit the production of essential enzymes by bacteria and cause cell wall damage. Zambonelli et al. [31] reported that the cell morphology of fungal hyphae of R. solani and Colletotrichum gloeosporioides was characterized by increased cytoplasmic vacuoles, accumulation of liposomes, plasma membrane fluctuations, and mitochondrial and endoplasmic reticulum changes. Eugenol is also a volatile essential oil. It can ablate intracellular organelles of R. solani, similar to the mode of action of thymol on fungal cells. The site of action of eugenol on mycelial cells is the cell membrane [32, 33], yet the ultrastructural damage of the mycelia of rice sheath blight mainly involves intracellular organelles.

Concerning the in vivo protective effects of gallnut and clove ethanol extracts on rice, when the concentrations of gallnut and clove ethanol extracts were 1000 μg/mL, the control effects were 45.8% and 37.88%, respectively. The effect of the gallnut extract was better than that of the clove extract. This was likely because the clove ethanol extract contains the volatile component clove phenol C_{10}H_{12}O_{2} (2-methoxy-4-allylphenol). It adopts an allyl chain structure to replace o-methoxyphenol. It is chemically unstable, thus improved stability will be necessary for its optimal use in control of plant diseases [32–34]. Gallnut extract displayed a good protective effect against rice sheath blight in vivo. Investigations of the effect of eugenol on P. nicotianae in vivo revealed an effective reduction of the incidence of P. nicotianae and good field control effect [28]. Acorus gramineus extract had good antibacterial activity, and the control effect on rice sheath blight was 25% at 500 μg/mL [35]. Khoa et al. [36] reported that seed soaking and spraying extracts from dry or fresh leaves of Chromolaena odorata can reduce the occurrence of sheath blight. The collective observations conclusively indicate that plant extracts can effectively control crop diseases.

4. Materials and Methods

4.1 Materials

4.1.1 Isolation and identification of rice sheath blight pathogen

The Rhizoctonia solani AG1 IA strain of rice sheath blight was isolated from infected rice. The strain was preserved at -80°C in the laboratory of the Crop Protection Institute of Guizhou University.

4.1.2 Collection of plant-derived materials

Raw materials of 24 species were purchased in September 2018 from YiPing Company, Huaxi District, Guiyang City, Guizhou. Details are provided in Table 5.

| Plants | Families | Extract position |
|--------|----------|------------------|
|        |          |                  |

Table 5 Names and extracted parts of Plants
Methods

4.2.1 Collection and preparation of plant-derived extracts

The crude plant extract was obtained using the organic solvent ethanol immersion method modified from a previous study [15]. The air-dried plant was ground into a powder with a shredder. One hundred grams of the powder was added to 250 mL anhydrous ethanol at 50°C for 2 h ultrasonic extraction. The extraction was repeated three times. The combined clear supernatant was filtered using a Buchner funnel and then steamed with a rotary evaporator at 46°C in water bath solvent. The crude extract was stored in a refrigerator at 4°C.

4.2.2 In vitro evaluation of rice sheath blight inhibition activity of plant-derived extracts

The inhibitory effect of the plant-derived ethanol extract on the growth of rice sprigs was determined by the growth rate of mycelia. The herbal extract for testing was first weighed and then completely dissolved in 200 μL of aqueous ethanol. The final concentration of the solution was adjusted to 10 mg/mL with sterile water. The solution was added to PDA medium, which was cooled to approximately 50°C in a 1:9 volume ratio.
The volume was poured into a petri dish and solidified. The procedure was repeated three times, with the same proportion of sterile water and PDA. A 5 mm punch was used to create blocks from plates cultured with the *R. solani* AG1 IA. The punched blocks were carefully added to the center of the drug-containing culture using an inoculation needle, with the mycelium facing down, with one piece added per dish. The samples were cultured for 3 days at 25°C in a constant-temperature Foster box. The diameter of the bacteria was measured by the cross-cutting method. The average value was determined and the antibacterial rate was calculated as follows:

\[
\text{Inhibition rate (\%)} = \frac{M_c - M_t}{M_c - 0.5} \times 100
\]

Where \(M_c\) and \(M_t\) represent the mycelial growth diameter in control, gallnuts-treated and cloves-treated conditions, respectively. The EC\(_{50}\) (effective dose for 50% inhibition) values were estimated statistically by probit analysis with the probit package of SPSS 22.0 software (SPSS Inc., Chicago, IL, USA) [37].

### 4.2.3 Indoor toxicity determination of plant-derived extracts

Based on the preceding results, clove and gallnut, which displayed 100% antibacterial rates, were selected for further toxicity tests. Clove extracts were 10, 20, 30, 40, and 50 \(\mu\text{g/mL}\). Gallnut extracts were set 15, 30, 45, 60, and 75 \(\mu\text{g/mL}\). The detailed antibacterial effects were also analyzed.

### 4.2.4 Scanning electron microscopy (SEM)

*R. solani* AG1 IA was cultured on medium containing 0 or 36.34 \(\mu\text{g/mL}\) (EC75 value) of clove ethanol extract and 72.59 \(\mu\text{g/mL}\) (EC75 value) gallnut ethanol extract for 3 days. Rectangular blocks (0.5 cm \(\times\) 0.3 cm) from the edge of the mycelium were placed in a centrifuge tube with 1 mL of 25% dialdehyde fixation fluid. Three blocks were taken for each treatment. Each sample was suctioned repeatedly with a 50 mL syringe until the bubbles on the surface of the mycelium disappeared. The centrifuge tube was sealed and stored overnight at 4°C. After suction, the retaining fluid was carefully rinsed three times with 0.1 M PBS for 10 min each time. Then, 0.5 mL of 1% nitric acid fixative was added within 2 h. Each sample was washed three times with PBS. Ethanol solutions of 30%, 50%, 70%, 80%, and 90% were used for dehydration for 10 min each time, followed by dehydration twice with waterless ethanol for 10 min each time. After dehydration, the specimens were dried in a freeze drier (LGJ-10D; Beijing Fourth Ring Scientific Instrument Co., Ltd., Beijing, China), and sputter-coated with gold. Microscopy was performed using a SEM (S-3400N; Hitachi, Tokyo, Japan) operated at an accelerating voltage of 20 kV. Controls consisted of untreated mycelia, which were prepared in parallel with experimental samples.

### 4.2.5 Transmission electron microscopy (TEM)

The mycelium collected as described above was poured into a centrifuge tube with 1 mL of 2.5% dialdehyde fixation fluid. The tube was sealed and incubated overnight at 4°C. After the remaining fluid was carefully suctioned off, the sample was rinsed three times with 0.1 M PBS, for 10 min each time. Then, 0.5 mL of 1% nitric acid fixative was added within 2 h. Each sample was washed three times with PBS. Ethanol solutions with concentrations of 30%, 50%, 70%, 80%, and 90% were used for dehydration for 10 min each time, followed by dehydration twice with waterless ethanol for 10 min each time. After dehydration, the specimens were dried in a freeze drier (LG-J10D; Beijing Fourth Ring Scientific Instrument Co., Ltd., Beijing, China), and sputter-coated with gold. Microscopy was performed using a SEM (S-3400N; Hitachi, Tokyo, Japan) operated at an accelerating voltage of 20 kV. Controls consisted of untreated mycelia, which were prepared in parallel with experimental samples.
for preparation of ultra-thin sections. The sections were stained with lead citrate and uranium diacetate, dried, and observed by TEM.

4.2.6 Protective effect of plant-derived extracts on rice in vivo

Rice was sown in a plastic basin with a diameter of 16 cm and a height of 12 cm. At the tillering stage, the ethanol extracts of gallnut and clove were diluted with a 0.1% Tween 80 emulsified water solution to 200, 400, 600, 800, or 1,000 μg/mL. Each preparation was sprayed on rice plants with 0.1% Tween 80 emulsified water solution as the blank control. After 24 h of spraying, the rice sprigs were inoculated with R. solani AG1 IA embedded in a cake (0.6 cm in diameter) on the leaves of the penultimate leaf of the plant. Twenty plants were inoculated per treatment and were cultured in an incubator at a temperature of 25±2°C, relative humidity of 90%, and 12 h of lighting time. After 7 days of inoculation, the data were acquired according to the classification standard of rice sheath blight, the average value was determined, and the control effect was calculated.

4.2.7 Data processing and analysis

The growth inhibition rate was converted to an inhibition probability value. The toxicity regression equation, inhibition medium concentration (EC50), and correlation coefficient (R) were calculated using the logarithm of extract concentration and inhibition probability value. Excel software and SPSS statistical software package release 22.0 (SPSS Inc., Chicago, IL, USA) were used to process relevant data.

5. Conclusions

Gallnut and clove ethanol extracts appear to be effective botanical fungicides, with effective antifungal activity against rice sheath blight. Both extracts are non-toxic and biodegradable natural compounds that can be applied to crops. Although these extracts inhibit the mycelium of rice sheath blight and improve the plant defense, they have not yet been developed into pesticides for application in rice agriculture as suitable substitutes for commercial chemical fungicides. To achieve this, optimized field trials are needed in terms of effective sterilization to determine their application doses in paddy fields.

Author Contributions: The listed authors contributed to this work as described in the following: Conceptualization, M.L., gave the concepts of this work, designed the whole experiments and provided financial support; J.W. did the experiments and prepared the original draft; X.H., C.Y., X.W., and R.L. did part of the experiment and data creation; M.L., R.L., X.H., C.Y., and X.W. reviewed and edited this manuscript; X.H., C.Y. and X.W. did the methodology and formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by National Natural Science Foundation of China (No. 31701816, 31460480), the National Key R & D Program of China (No. 2016YFD0200500), Science and Technique Foundation of Guizhou Province (No. [2017]1038), and Technology Platform and Talent Team Foundation of Guizhou province (No. [2017]5788).

Conflicts of Interest: Declare conflicts of interest or state “The authors declare no conflict of interest.” Authors must identify and declare any personal circumstances or interest that may be perceived as inappropriately influencing the representation or interpretation of reported research results. Any role of the funders in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results must be declared in this section. If there is no role, please state “The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results”.

References

1. Wu, W.; Shah, F.; Shah, F.; Huang, J.L. Rice sheath blight evaluation as affected by fertilization rate and planting density. Aust-
2. Wu, W.; Liao, Y.C.; Shah, F.; Nie, L.X.; Peng, S.B.; Cui, K.H.; Huang, J.L. Plant growth suppression due to sheath blight and the associated yield reduction under double rice-cropping system in central China. *Field Crop Res.* 2013, 144, 268-280. doi: https://doi.org/10.1016/j.fcr.2013.01.012

3. Zheng, L.; Liu, H.Q.; Zhang, M.L.; Cao, X.; Zhou, E.X. The complete genomic sequence of a novel mycovirus from *Rhizoctonia solani* AG-I 1A strain B275. *Arch. Virol.* 2013, 158, 1609-1612. doi:https://doi.org/10.1007/s00705-013-1637-3

4. Srinivasachary; Willocquet, L.; Savary, S. Resistance to rice sheath blight (*Rhizoctonia solani* Kühn) (teleomorph: *Thanatephorus cucumeris* (A.B. Frank) Donk.) disease: current status and perspectives. *Euphytica* 2011, 178, 1–22. doi:https://doi.org/10.1007/s10681-010-0296-7

5. Singh, P.; Mazumdar, P.; Harikrishna, J.A.; Babu, S. Sheath blight of rice: a review and identification of priorities for future research. *Planta* 2019, 250, 1387–1407. doi: https://doi.org/10.1007/s00425-019-03246-8

6. Ou, S.H. *Rice Diseases*, 2nd ed.; Kew Surrey: Commonwealth Mycological Institute, UK, 1985; pp109-201.

7. Basu, A.; Chowdhury, S.; Chaudhuri, R.T.; Kundu, S. Differential behaviour of sheath blight pathogen *Rhizoctonia solani* in tolerant and susceptible rice varieties before and during infection. *Plant Pathol.* 2016, 65(8), 1333-1346. doi: https://doi.org/10.1111/ppa.12502

8. Singh, D.; Seo, M.J.; Kwon, H.J.; Rajkarnikar, A.; Kim, K.R.; Kim, S.O.; Suh, J.W. Genetic Localization and Heterologous Expression of Validamycin Biosynthetic Gene Cluster Isolated from *Streptomyces hygroscopicus* var. *limoneus* KCCM 11405(IF0 12704). *Gene* 2006, 376:13-23. doi: https://doi.org/10.1016/j.gene.2005.12.035

9. Zhang, S.; Zhou, M.X.; Song, W.C.; Song B. A study on the sensitivity of rice sheath blight fungus *Rhizoctonia solani* to jinggangmycin in Gushi county of Henan province. *Acta Phytophylacica Sinica* 1999, 26:189-190. (in Chinese with English abstract) doi: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWBF199902020.htm

10. Müller, J.; Boller, T.; Wiemken, A. Effect of Validamycin A a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and nodules of soybean and cowpea. *Planta*, 1995, 197:362-368. doi: 10.1007/BF00202658

11. Wu, J.; Xi, Y.D.; Li, H.H.; Wang, L.X.; Peng, H.X. Monitoring of Resistance of *Thanatephorus cucumeris* to Jinggangmycin in Sichuan. *Southwest China Journal of Agricultural Sciences*. 2015, 6:2501-2504.(in Chinese with English abstract) doi: http://qikan.cnki.com.cn/Qikan/Article/Detail?id=667717151

12. Chen, Y.; Yao, J.; Yang, X.; Zhang, A.F.; Gao, T.C. Sensitivity of *Rhizoctonia solani* causing rice sheath blight to fluxapyroxad in China. *Eur J Plant Pathol*. 2014, 140:419-428. doi: 10.1007/s10658-014-0477-7

13. Swain, T. Secondary compound as protective agents. *Ann. Rev. Plant Physiol.* 1977, 28:479-501. doi:
14. Grange, M. Ahmed, S. Handbook of plants with pest-control properties. New York: Wiley-Interscience 1988, p65.

15. Fogliani, B.; Bouraïma-Madjebi, S.; Medevielle, V.; Pineau, R. Screening of 50 Cunoniaceae species from New Caledonia for antimicrobial properties. New Zeal J Bot. 2002, 40:511-520. doi:https://doi.org/10.1080/0028825X.2002.9512810

16. Ojala, T.; Rames, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Hahtela, K.; Vuorela, P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol 2000, 73:299-305. doi:https://doi.org/10.1016/S0378-8741(00)00279-8

17. Srinivasan, D.; Nathana, S., Suresh, T., Perumasamy, P.L. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol 2001, 74:217-220. doi: https://doi.org/10.1016/S0378-8741(00)00345-7

18. Padaria, J.C.; Tarafdar, A.; Raipuria, R.; Lone, S.A.; Gahlot, P.; Shakil, N.A.; Kumar, J. Identification of phenazine-1-carboxylic acid gene (phc CD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani. Basic Microbiol. 2016, 56:999-1008. doi: https://doi.org/10.1002/jobm.201500574

19. Li, A.H.; Xu, X.P.; Dai, Z.Y.; Chen, Z.X.; Li, B.J.; Zhang, H.X.; Pan, X.B. Analysis of Resistance to Rice Sheath Blight for Transgenic line of rice. Chinese J Rice Sci. 2003, 17:302-306.

20. Rajendra, P.; Ayub, K.; Wendy-Ann, I.; Wayne, G.; Duraisamy, S. Plant extracts, bioagents and new generation fungicides in the control of rice sheath blight in Guyana. Crop Prot. 2019, 119:30-37. doi: https://doi.org/10.1016/j.cropro.2019.01.008

21. Venkateswarlu, N.; Vijaya, T.; Suresh, B.D.; Chandra, M.K.; Pragathi, D.; Anitha, D.; Sreeramulu, A. In vitro inhibitory effects of medicinal plants extracts on sclerotium oryzae- a fungi causing stem rot disease in paddy. Int. J. Pharm. Bio. Sci. 2013, 3:147-151. doi: https://www.ijpbs.com/ijpbsadmin/upload/ijpbs5215eba022256.pdf

22. Lu, R.Y.; Wu, J.; Jiang, Y.Y. Study on the Antifungal Activity of Four Kinds of Traditional Chinese Medicine Extracts. Guangdong Chem. 2020, 22:49-52.(in Chinese with English abstract) doi : http://www.cnki.com.cn/Article/CJFDOTAL-GDHG202022017.htm

23. Serrano, M.; Martinez-Romero, D.; Castillo, S.; Guillén, F.; Valero, D. The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innov Food Sci Emerg 2005, 1:115-123. doi: 10.1016/j.ifset.2004.09.001

24. Zhang, Y.; Djakpoa, O.; Xie, Y.F.; Guo, Y.H.; Yu, H.; Cheng, Y.L.; Qian, H.; Shi, R.; Yao, W.R. Anti-quorum sensing of Galla chinensis and Coptis chinensis on bacteria. Food Sci Technol. 2019, 101:806-811. doi: https://doi.org/10.1016/j.lwt.2018.11.090

25. Huang, X.L.; Liu, M.D.; Li, J.Y.; Zhou, X.D.; Cate, J.M.T. Chemical composition of Galla chinensis extract and the effect of its main component(s) on the prevention of enamel demineralization in vitro. Int J Oral Sci. 2012, 4:146–151. doi: https://doi.org/10.1038/ijos.2012.44
26. Wu, J.; Jahncke, M.L.; Eifert, J.D.; O’Keefe, S.F.; Welbaum, G.E. Pomegranate peel (Punica granatum L) extract and Chinese gall (Galla chinensis) extract inhibit Vibrio parahaemolyticus and Listeria monocytogenes on cooked shrimp and raw tuna. *Food Control* **2016**, 59:695-699. doi: https://doi.org/10.1016/j.foodcont.2015.06.050

27. Li, R.Y.; Wu, X.M.; Yin, X.H.; Long, Y.H.; Li, M. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea. *Pestic Biochem Physiol* **2014**, 118:19-25. doi: https://doi.org/10.1016/j.pestbp.2014.10.015

28. Jing, C.L.; Gou, J.Y.; Han, X.B.; Wu, Q.; Zhang, C.S. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae. *Pestic Biochem Physiol* **2017**, 142:148-154. doi: https://doi.org/10.1016/j.pestbp.2017.07.001

29. Pasqua, D.R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. *J. Agr. Food Chem.* **2007**, 55:4863-4870. doi: https://doi.org/10.1021/jf0636465

30. Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Wright, A.V. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. *J. Agr. Food Chem.* **1998**, 46:3590-3595. doi: https://doi.org/10.1021/jf980154m

31. Zambonelli, A.D.; D’Aulerio, A.Z.; Severi, A.; Benvenuti, S.; Maggi, L.; Bianchi, A. Chemical Composition and Fungicidal Activity of Commercial Essential Oils of *Thymus vulgaris* L. *J. Essent. Oil Res.* **2004**, 16:69-74. doi: https://doi.org/10.1080/10412905.2004.9698653

32. Mallavarapu, G.R.; Ramesh, S.; Chandrasekhara, R.S.; Rajeswara Rao, B.R.; Kaul, P.N.; Bhattacharya, A.K. In vestigation of the essential oil of cinnamon leaf grown at Bangalore and Hyderabad. *Flavour Frag J.* **1995**, 10:239-242. doi: https://doi.org/10.1002/ffj.2730100403

33. Amrania, S.E.; Lalamb, A.E.O.; Zoubic, Y.E.; Moukhafia, K.; Bouslamtia, R.; Lairinia, S. Evaluation of antibacterial and antioxidant effects of cinnamon and clove essential oils from Madagascar. *Materials Today: Proceedings* **2019**, 13:762-770. doi: https://doi.org/10.1016/j.matpr.2019.04.038

34. Briozzo, J.; Núñez, L.; Chirife, J.; Herszage, L.; D’aquino, M. Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. *J. Appl. Microbiol.* **1989**, 66:69-75. doi: https://doi.org/10.1111/j.1365-2672.1989.tb02456.x

35. Lee, S.E., Park, B.S., Kim, M.K., Choi, W.S.; Kim, H.T.; Cho, K.Y.; Lee, S.G.; Lee, H.S. Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, *Piper longum* L., against phytopathogenic fungi. *Crop Prot.* **2001**, 20:523-528. doi: https://doi.org/10.1016/S0261-2194(00)00172-1

36. Khoa, N.D.; Thuy, P.T.H.; Thuy, T.T.T.; Collinge, D.B.; Jørgensen, H.J.L. Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases. *Phytopathology* **2011**, 101:231-240. doi:10.1094/PHYTO-04-10-0113
37. Gao, X.B.; Guo, C.; Li, M.; Li, R.Y.; Wu, X.M.; Hu, A.L.; Hu, X.F.; Mo, F.X.; Wu, S. Physicochemical Properties and Bioactivity of a New Guar Gum-Based Film Incorporated with Citral to Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). *Molecules* **2020**, *25*, 2044. doi:10.3390/molecules25092044