Role of T cell-glial cell interactions in creating and amplifying central nervous system inflammation and multiple sclerosis disease symptoms

Eric Huseby
University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Immune System Diseases Commons, Immunopathology Commons, Molecular and Cellular Neuroscience Commons, and the Nervous System Diseases Commons

Repository Citation
Huseby E, Kamimura D, Arima Y, Parello CS, Sasaki K, Murakami M. (2015). Role of T cell-glial cell interactions in creating and amplifying central nervous system inflammation and multiple sclerosis disease symptoms. Open Access Publications by UMass Chan Authors. https://doi.org/10.3389/fncel.2015.00295. Retrieved from https://escholarship.umassmed.edu/oapubs/2631

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Role of T cell—glial cell interactions in creating and amplifying central nervous system inflammation and multiple sclerosis disease symptoms

Eric S. Huseby1*, Daisuke Kamimura2, Yasunobu Arima2, Caitlin S. Parello1, Katsuhiro Sasaki1† and Masaaki Murakami2*

1 Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA, 2 Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan

Multiple Sclerosis (MS) is an inflammatory disease of the Central Nervous System (CNS) that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS induced NF-κB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cell—glial cell interactions and its contributions to CNS autoimmunity.

Keywords: T cell, autoimmunity, glial fibrillary acidic protein, multiple sclerosis, astrocytes, experimental autoimmune encephalomyelitis, cerebellum

Myelin-Specific T Cell Responses in MS and EAE

Multiple Sclerosis (MS), an inflammatory T cell-mediated autoimmune disease, is the most common neurological disease of young adults. MS causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons (Frohman et al., 2006; Lassmann et al., 2007), with highly variable clinical manifestations. Such clinical manifestations of MS often include hyperreflexia, ataxia, spasticity and visual defects (Noseworthy et al., 2000; Keegan and Noseworthy, 2002; Hafler et al., 2005; Frohman et al., 2006; McFarland and Martin, 2007), and in some cases there are sensory defects and partial or complete paralysis. In the majority of patients, disease manifests as relapsing-remitting cycles of impairment, usually converting over time to a chronic progressive stage; 10–15% of patients present with disease that is progressive from onset (Sospedra and Martin, 2005; Frohman et al., 2006; McFarland and Martin, 2007; Steinman, 2009).

MS is thought to be primarily a CD4 T cell-mediated disease. Susceptibility to MS is genetically linked to major histocompatibility complex (MHC) genes and genes associated with T cell activation and homeostasis; however, the strongest genetic linkage occurs with certain alleles of MHC class II, which suggests a direct relationship between autoreactive
CD4^+ T cells and MS disease development in humans (Hillert and Olerup, 1993; Fogdell-Hahn et al., 2000; Sospedra and Martin, 2005). CD4^+ T cells, in particular those that secrete IL-17, are considered to play an important role in the induction of central nervous system (CNS) autoimmunity (Korn et al., 2009). The identification of genes involved in CD4 T-cell differentiation and activation through genome wide association studies (GWAS) have further supported a role for CD4 T cells in the pathogenesis of MS (Patsopulos et al., 2011).

The ability of myelin-reactive CD4 T cells to cause experimental autoimmune encephalomyelitis (EAE) further supports the hypothesis that myelin-reactive CD4 T cells have a central role in MS disease pathogenesis (Kuchroo et al., 2002; Sospedra and Martin, 2005; Ercolini and Miller, 2006; Hafler et al., 2007; Goverman, 2009; Steinman, 2009). MS-like clinical symptoms can be induced in animals by immunization with CNS proteins, as well as peptides derived from these CNS proteins, including myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG; Ben-Nun et al., 2014). In addition, the adoptive transfer of activated CNS protein-specific CD4 T cells into naïve mice can induce paralytic diseases, allowing for in vivo study of the migratory behavior of pathogenic T cells (Jäger et al., 2009; Arima et al., 2012; Odaro et al., 2012). However, it is unlikely that CD4 T cells are the sole mediators of disease pathogenicity, as treatments specifically targeting these cells limit neither the rate of disease relapses nor the formation of new lesions. In contrast, therapies that deplete or inhibit CNS infiltration of all lymphocyte subsets have been more successful (Lindsey et al., 1994; van Oosten et al., 1996; Rice et al., 2005).

Accumulating evidence strongly suggests that CD8 T cells also contribute to MS disease. Studies have shown that CD8 T cells are found in MS plaques—these cells are often oligoclonal, accumulate over time and can outnumber CD4 T cells regardless of the stage of activity or disease (Booss et al., 1983; Traugott et al., 1983; Hauser et al., 1986; Babbe et al., 2000; Lucchinetti et al., 2000; Frohman et al., 2006; Lassmann et al., 2007; Huseby et al., 2012). Though the antigen specificity of CNS infiltrating CD8 T cells remains unclear, a role for CD8 T cells in MS is further supported by the finding that particular MHC class I alleles can contribute to disease susceptibility (Cree et al., 2010; Healy et al., 2010).

Both a pathogenic or protective role for CNS-infiltrating CD8 T cells has been proposed. Myelin-specific CD8 T cells that are capable of killing neuronal cells in vitro have been isolated from MS patients (Tsuchida et al., 1994; Dressel et al., 1997; Medana et al., 2001; Crawford et al., 2004; Zang et al., 2004), which supports the hypothesis that CD8 T cells play a pathogenic role in the MS disease process. Further in support of this hypothesis, CD8 T cells specific for myelin proteins, including MBP, MOG, and PLP, have been shown to be pathogenic in several animal models of CNS disease (Huseby et al., 2001a; Sun et al., 2001; Ford and Evavold, 2005; Friese et al., 2008; Anderson et al., 2012). The clinical symptoms induced by such CNS-reactive CD8 T cells can be diverse. For example, mice carrying activated MBP-specific CD8 T cells succumb to a non-paralytic, acute demyelinating CNS autoimmunity that is clinically and histologically different than those of classic CD4-EAE. These atypical-EAE disease pathologies have similarities to MS patients with upper motor neuron disease (Huseby et al., 2001a). In contrast, experiments with MOG- and PLP-specific CD8 T cells resulted in CNS disease symptoms similar to classical EAE (Sun et al., 2001; Ford and Evavold, 2005; Friese et al., 2008; Anderson et al., 2012). These data suggest that myelin-specific CD8 T cells may contribute to some of the disease heterogeneity observed in MS patients.

Conversely, other studies have suggested that CD8 T cells may be suppressive during the MS disease process. CD8 T cell clones that can lyse myelin-specific CD4 T cells have been detected in MS patients (Chou et al., 1992; Zhang et al., 1993; Correale et al., 2000), and longitudinal magnetic resonance imaging (MRI) analysis has shown a negative correlation between the percentage of Tc2 cytokine-producing CD8 T cells in the periphery of MS patients and the development of lesions (Killestein et al., 2003). Moreover, protective MHC class I alleles have been identified through GWA studies, suggesting a relationship between autoreactive regulatory CD8^+ T cells and MS disease development (International Multiple Sclerosis Genetics Consortium et al., 2011). In animal models, early studies found that polyclonal CD8 T cells can limit disease severity and relapses of CD4 T cell-mediated EAE (Jiang et al., 1992; Koh et al., 1992). The ability of CD8 T cells to regulate CNS autoimmune disease may occur by CD8 T cells targeting activated CD4 T cells through the recognition of peptide displayed on MHC class I and Ib molecules, as well as by secreting IL-10 and other anti-inflammatory soluble mediators (Jiang and Chess, 2006; Goverman, 2009; Kim and Cantor, 2011; Ortega et al., 2013). Thus, different subsets of CD8 T cells, like their CD4 counterparts, likely play pathogenic and immuno-regulatory roles in MS (Huseby et al., 2012).

Gray Matter Lesions in MS and EAE

MS has traditionally been thought of as a disease that targets myelin proteins within the white matter of the CNS. Recent findings indicate, however, that this may not always be the case. Using advanced MRI techniques, multiple investigators have identified gray matter lesions in MS patients that appear at the earliest stages of disease and accumulate over time (Lucchinetti et al., 2000, 2011; Peterson et al., 2001; Bo et al., 2003; Frohman et al., 2006; Calabrese et al., 2007; Lassmann et al., 2007; Fisher et al., 2008; Ontaneda et al., 2012). The presence of T cells within gray matter lesions of MS patients suggests that T cells reactive to antigens other than myelin proteins may contribute to MS disease progression. One potential cellular target of gray matter disease is astrocytes, which reside within the white and gray matter of the CNS. Astrocytes normally express low levels of MHC, however levels increase during inflammation (Wong et al., 1984; Ransohoff and Estes, 1991; De Keyser et al., 2010).

Autoreactive T cells must avoid negative selection within the thymus and be exported to the peripheral T cell repertoire in order to contribute to the CNS autoimmune disease.
GFAP-Specific CD8 T Cells can Induce Relapsing/Remitting CNS Autoimmunity

The observation that CD8 T cells are present within gray matter lesions of MS patients (Peterson et al., 2001; Bo et al., 2003; Calabrese et al., 2007; Lassmann et al., 2007; Fisher et al., 2008; Lucchinetti et al., 2011; Ontaneda et al., 2012) inspired us to study astrocyte-specific CD8 T cells. We chose the astrocyte protein GFAP as the target antigen because GFAP expression and GFAP-peptide presentation by MHC class I and II molecules are increased within MS lesions (Nait-Oumesmar et al., 2007; Fissolo et al., 2009; Linker et al., 2009). Furthermore, although GFAP-specific T cells isolated from MS patients have not been studied, GFAP-specific CD8 T cells have been isolated from patients with type 1 diabetes, indicating that human T cells with this reactivity pattern populate the peripheral T cell repertoire (Standifer et al., 2006). CD8 T cells that target astrocytes and neurons have also been suggested in Rasmussen encephalitis (Schwab et al., 2009).

We have recently found that C57BL/6 mice carry CD8 T cells reactive to GFAPβ. We constructed TCR Tg mice expressing the GFAP-specific CD8 T cell clone, BG1 (BG1 mice), to follow the fate of naïve GFAP-specific T cells. To determine if BG1 mice maintain quiescence to GFAP over their lifetime, a cohort of WT, Rag1−/− and GFAP−/− BG1 mice were analyzed for clinical signs of CNS disease as they aged. We observed that BG1 mice do not maintain ignorance of GFAP: ~50% of WT BG1 mice and 100% of Rag1−/− BG1 mice succumb to spontaneous clinical signs of CNS autoimmunity by 6 months of age. The majority of diseased BG1 mice develop balancing defects, lethargy, uneven gait and ataxia—such symptoms are referred to as atypical disease (Sasaki et al., 2014)—whereas some diseased mice also succumb to mild ascending flaccid paralysis—such symptoms are referred to as classical EAE (Strømnes and Goverman, 2006). The atypical disease symptoms that develop in BG1 mice reflect the locations within the CNS that is targeted; BG1 mice develop lesions showing prominent glial responses within the cerebellum, mid-brain and spinal cord early in a spontaneous disease course that includes both white matter and gray matter (Figure 1).

The BG1 CD8 effector T cell populations that target the CNS during spontaneous CNS disease phenotypically resemble antiviral tissue-resident memory (TRM) cells that populate peripheral tissues following viral challenges (Schmalk and Masopust, 2014). Functionally, only low frequencies of CD8 T cells within the CNS are capable of producing IFNγ, IL-17 or granzyme B (GZB), indicating that many of the BG1 CD8 T cells present within the brain are not classic effector CD8 T cells. These data suggest that BG1 CD8 T cells that spontaneously enter into the brain interact with astrocytes to induce their differentiation into auto-reactive TRM, without gaining inflammatory cytokine expression or cytotoxic effector functions. Nevertheless, these auto-reactive TRM CD8 T cells can induce severe inflammation, glial responses and clinical disease symptoms. In contrast to CNS disease induced by auto-reactive TRM CD8 T cells, disease induced by classic IFNγ-producing pro-inflammatory CD8 T cells demonstrates severe ataxia and lethargy within 7 days, a disease pattern highly similar to those induced by in vitro or Vac-activated MBP-specific CD8 T cells (Huseby et al., 2001a; Sasaki et al., 2014). These differences in CNS disease pathologies suggest that different auto-reactive CD8 T cell lineages induce distinct CNS disease phenotypes, thereby contributing to MS disease heterogeneity. This hypothesis is consistent with studies of encephalogenic CD4 T cells. Through the observation of
CD4 T cells responding to different neuroantigens and different priming protocols, it has been demonstrated that the effector lineage and activation status of CD4 T cells within the CNS influence the location of lesions within the CNS, the severity of the acute disease as well as the overall clinical outcome (Kawakami et al., 2004; Jäger et al., 2009; Pierson et al., 2012).

In both WT and Rag1−/− BG1 mice, spontaneous clinical symptoms begin as episodic bouts of functional impairment, with many mice displaying severe CNS dysfunction and then remitting to unobservable clinical symptoms. Rag1−/− BG1 mice, however, develop more severe bouts of disease, and have more relapses than WT BG1 mice, with the majority progressing to a chronic disease stage. The observed differences in the frequency and severity of spontaneous disease between WT BG1 and Rag1−/− BG1 mice suggests that GFAP-specific CD8 T cells are subject to extrinsic sources of immune regulation. To genetically map the lymphocytes that regulate GFAP-specific CD8 T cells, IAβ−/− (MHC II-deficient) and μMT−/− (B cell-deficient) BG1 mice were generated. Spontaneous CNS disease in IAβ−/− BG1 mice was similar in frequency and severity to WT BG1 mice. In contrast, μMT−/− BG1 mice were found to be highly susceptible to spontaneous CNS disease, with ~80% of μMT−/− BG1 mice developing chronic clinical disease, a fundamentally distinct disease course as compared to the relapsing-remitting disease most often observed in WT BG1 and Rag1−/− BG1 mice (Sasaki et al., 2014). Thus, GFAP-specific CD8 T cell-mediated spontaneous relapsing-remitting and chronic disease is associated with the infiltration of tissue resident memory-like CD8 T cells into the CNS parenchyma and is regulated by polyclonal B cells. How B cells regulate CD8 T cell CNS autoimmunity, inflammation and disease remission is currently unknown.

Does the Inflammation Amplifier Regulate Relapsing/Remitting CNS Disease?

In addition to immune cells, we have demonstrated that non-immune cells, including vascular endothelial cells and glial cells, play critical roles in the induction of chronic inflammatory diseases such as EAE. Glial cells of the CNS can secrete large quantities of chemokines, growth factors and IL-6 in response to inflammatory stimuli, all of which can activate the NF-κB and STAT signaling pathways (Ogura et al., 2008; Atsumi et al., 2014). This induction of inflammation, mediated by IL-17, TNFα, IFNγ, IL-6 or various neurotransmitters, is synergistically enhanced when both the NF-κB and STAT signaling pathways are induced in glial cells. We termed this synergistic effect the inflammation amplifier (Atsumi et al., 2014). Importantly, clinical symptoms of EAE, and several additional chronic inflammatory diseases, are significantly improved in mice unable to activate the inflammation amplifier (Ogura et al., 2008; Arima et al., 2012; Lee et al., 2012; Murakami et al., 2013; Harada et al., 2015). These findings indicate that the inflammation amplifier has a central role in chronic inflammatory diseases.
The inflammation amplifier is regulated by the production of several neurotransmitters, including norepinephrine and ATP. These findings led us to hypothesize that the inflammation amplifier may link the onset and severity of CNS diseases to mental and physical stress. Indeed, regional neural activity created by gravity of the Earth on the soleus muscles, formally demonstrating that neuronal activity can be induced artificially using electric stimulation of peripheral muscles, enhances chemokine expressions within the CNS, resulting in inflammation occurring around the dorsal vessels of the fifth lumbar cord, during early stages of EAE. CNS inflammation is regulated by the production of chemokine expression within the CNS, which can be induced artificially using electric stimulation of peripheral muscles, formally demonstrating that neuronal activity can regulate the inflammation amplifier in vivo (Arima et al., 2012). These phenomena have been termed the “gateway reflex” as these neural stimulations can create “gateways” for immune cells to enter into the CNS (Kamimura et al., 2013; Sabharwal et al., 2014).

References

Anderson, A. C., Chandwaskar, R., Lee, D. H., Sullivan, J. M., Solomon, A., Rodriguez-Manzanet, R., et al. (2012). A transgenic model of central nervous system autoimmunity mediated by CD4+ and CD8+ T and B cells. J. Immunol. 188, 2084–2092. doi: 10.4049/jimmunol.1102186

Arima, Y., Harada, M., Kamimura, D., Park, J. H., Kawano, F., Yull, F. E., et al. (2012). Regional neural activation defines a gateway for autoreactive T cells to enter into the CNS. Neurol. 54, 33–50. doi: 10.1016/j.jaut.2014.06.004

Bo, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D., and Mork, S. J. (2003). Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732.

Booss, J., Esiri, M. M., Tourtelotte, W. W., and Mason, D. Y. (1983). Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurosci. 62, 219–232. doi: 10.1016/0022-510x(83)90201-0

Calabrese, M., De Stefano, N., Atzori, M., Bernardi, V., Mattissi, I., Barachino, L., et al. (2007). Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch. Neurol. 64, 1416–1422. doi: 10.1001/archneur.64.10.1416

Chou, Y. K., Henderikx, P., Jones, R. E., Kotzin, B., Hashim, G. A., Offner, H., et al. (1992). Human CD8+ T cell clone regulates autologous CD4+ myelin basic protein specific T cells. Autoimmunity 14, 111–119. doi: 10.3109/08916939209083129

Correale, J., Lund, B., McMillan, M., Ko, D. Y., McCarthy, K., and Weiner, L. P. (2000). T cell vaccination in secondary progressive multiple sclerosis. J. Neuroimmunol. 107, 130–139. doi: 10.1016/s0165-5728(00)00235-6

Crawford, M. P., Yan, S. X., Ortega, S. B., Mehta, R. S., Hewitt, R. E., Price, D. A., et al. (2004). High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103, 4222–4231. doi: 10.1182/blood-2003-11-4025

Cree, B. A., Rious, J. D., McCauley, J. L., Gourraud, P. A., Goyette, P., McElroy, J., et al. (2010). A major histocompatibility Class I locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1*15:01. PLoS One 5:e1296. doi: 10.1371/journal.pone.0011296

De Keyser, J., Laureys, G., Demol, F., Wilczak, N., Mostert, J., and Clincners, R. (2010). Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem. Int. 57, 446–450. doi: 10.1016/j.neuint.2010.02.012

Dressel, A., Chin, J. L., Sette, A., Gausling, R., Hollsberg, P., and Hafler, D. A. (1997). Autoantigen recognition by human CD8+ T cell clones: enhanced agonist response induced by altered peptide ligands. J. Immunol. 159, 4943–4951.

Ercolini, A. M., and Miller, S. D. (2006). Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J. Immunol. 176, 3293–3298. doi: 10.4049/jimmunol.176.6.3293

Fisher, E., Lee, J. C., Nakamura, K., and Rudick, R. A. (2008). Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 64, 255–265. doi: 10.1002/ana.21436

Fissolo, N., Haag, S., de Graaf, K. L., Drews, O., Stevanovic, S., Rammensee, H. G., et al. (2009). Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol. Cell. Proteomics 8, 2190–2191. doi: 10.1074/mcp.M900001-MCP200

Fogdell-Hahn, A., Ligers, A., Gronning, M., Hillert, J., and Olerup, O. (2000). Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55, 140–148. doi: 10.1034/j.1399-0039.2000.550205.x

Ford, M. L., and Evavold, B. D. (2005). Specificity, magnitude and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 35, 76–85. doi: 10.1002/eji.200425660

Friese, M. A., Jakobsen, K. B., Friis, L., Etzensperger, R., Craner, M. J., McMahon, R. M., et al. (2008). Opposing effects of HLA Class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14, 1227–1235. doi: 10.1038/nm.1881

Frohman, E. M., Racke, M. K., and Raine, C. S. (2006). Multiple sclerosis—the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955. doi: 10.1056/nejmra052130

Goverman, J. (2009). Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407. doi: 10.1038/nri2530

Hafer, D. A., Compston, A., Sawyer, S., Lander, E. S., Daly, M. J., De Jager, P. L., et al. (2007). Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862. doi: 10.1056/nejmoa073493

Hafer, D. A., Slavik, J. M., Anderson, D. E., O’Connor, K. C., De Jager, P., and Baeche-Allan, C. (2005). Multiple sclerosis. Immunol. Rev. 204, 208–231. doi: 10.1111/j.0105-2896.2005.00240.x

Future Studies

The inflammation amplifier can be turned on or off in response to acute inflammation, as well as to mental and physical stress. Thus, the temporal regulation of NF-kB and STAT signaling pathways in glial cells may regulate episodic cycles of relapsing/remitting clinical disease in MS patients. Mechanistically, one way this may occur is by recruiting or limiting immune cell migration through the “gateway” present within the spinal cord and potentially through other sites within the brain. Clarifying these mechanisms, and identifying how different immune cell lineages and subsets respond to and regulate the inflammation amplifier, will provide insights into the pathogenesis of relapsing/remitting CNS diseases, and identify drug-targetable molecular pathways that can be exploited to minimize MS disease relapses.
Huseby, E. S., Huseby, P. G., Shah, S., Smith, R., and Stadinski, B. D. (2012). Pathogenic CD8+ T cells in multiple sclerosis and its experimental models. Front. Immunol. 3:64. doi: 10.3389/fimmu.2012.00064

Huseby, E. S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C., and Governan, J. (2001a). A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676. doi: 10.1084/jem.194.5.669

Huseby, E. S., Sather, B., Huseby, P. G., and Governan, J. (2001b). Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 14, 471–481. doi: 10.1016/s1074-7613(01)00127-3

Huseby, E. S., Ohlen, C., and Governan, J. (1999). Cutting edge: myelin basic protein-specific cytoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol. 163, 1115–1118.

International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium, Sawyer, S., Hellenthal, G., Pirinen, M., Spencer, C. C., et al. (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219. doi: 10.1038/nature10251

Jäger, A., Dardalhon, V., Sobel, R. A., Bettelli, E., and Kuchroo, V. K. (2009). Th1, Th17 and Th9 effector cells induce autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177. doi: 10.4049/jimmunol.0901906

Jiang, H., and Chess, L. (2006). Regulation of immune responses by T cells. N. Engl. J. Med. 354, 1166–1176. doi: 10.1056/nejmoa055446

Jiang, H., Zhang, S. I., and Pernis, B. (1992). Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256, 1213–1215. doi: 10.1126/science.256.5060.1213

Kamimura, D., Yamada, M., Harada, M., Sabharwal, L., Meng, J., Bando, H., et al. (2013). The gateway theory: bridging neural and immune interactions in the CNS. Front. Neurol. 4. doi: 10.3389/fneur.2013.00224

Kawakami, N., Lassmann, S., Li, Z., Odordi, F., Ritter, T., Ziemssen, T., et al. (2004). The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197. doi: 10.1084/jem.20031064

Keegan, B. M., and Noseworthy, J. H. (2002). Multiple sclerosis. Annu. Rev. Med. 53, 285–302. doi: 10.1146/annurev.med.53.082901.103909

Killestein, J., Eikelenboom, M. J., Izeboud, T., Barkhof, F., et al. (2003). Cytokine producing CD8+ T cells are correlated to MRI features of tissue destruction in MS. J. Neuroimmunol. 142, 141–148. doi: 10.1016/s0165-5728(03)00265-0

Kim, H. J., and Cantor, H. (2011). Regulation of self-tolerance by Qa-1-restricted CD8+ T cell responses. Immunol. Lett. 136, 121–127. doi: 10.1016/j.imlet.2011.09.002

Kim, J. H., and Oh, E. M. (2011). GEAP in health and disease. Prog. Neurobiol. 93, 421–443. doi: 10.1016/j.pneurobio.2011.01.005

Kurakami, M., Harada, M., Kamimura, D., Ogura, H., Okuyama, Y., Kumai, N., et al. (2013). Disease-assocation analysis of an inflammation-related feedback loop. Cell Res. 3, 946–959. doi: 10.1038/celrep.2013.01.028

Kurakami, M., Harada, M., Kamimura, D., Ogura, H., Okuyama, Y., Kumai, N., et al. (2013). Disease-assocation analysis of an inflammation-related feedback loop. Cell Res. 3, 946–959. doi: 10.1038/celrep.2013.01.028

Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., Decker, L., Seilhean, D., and Lucchinetti, C. F. (2007). The gateway theory: bridging neural and immune interactions in the CNS. Front. Neurol. 17, 210–218. doi: 10.3389/fneur.2010.00064

Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517. doi: 10.1146/annurev.immunol.021908.102948

Koskin, J., Berger, T., Lassmann, H., Hinze-Selch, D., Zhang, Y., Gehrmann, J., et al. (1994). Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the SI100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med. 180, 817–829. doi: 10.1083/jem.180.3.817

Koskin, J., Berger, T., Lassmann, H., Hinze-Selch, D., Zhang, Y., Gehrmann, J., et al. (1994). Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the SI100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med. 180, 817–829. doi: 10.1083/jem.180.3.817
CD8 T cells is mediated by targeting of encephalitogenic CD4 T cells in experimental autoimmune encephalomyelitis. J. Immunol. 191, 117–126. doi: 10.4049/jimmunol.1300452

Patsopoulos, N. A., Esposito, F., Reischl, J., Lehr, S., Bauer, D., Heubach, J., et al. (2011). Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 70, 897–912. doi: 10.1002/ana.22609

Peterson, J. W., Bo, L., Mork, S., Chang, A., and Trapp, B. D. (2001). Transected neurites, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400. doi: 10.1002/ana.1123

Pierson, E., Simmons, S. B., Castelli, L., and Goverman, J. M. (2012). Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunity 38, 205–215. doi: 10.1016/j.immuni.2012.01126.x

Ransohoff, R. M., and Estes, M. L. (1991). Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy. Arch. Neurol. 48, 1244–1246. doi: 10.1001/archneur.1991.05530240048017

Rice, G. P., Hartung, H. P., and Calabresi, P. A. (2005). Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64, 1336–1342. doi: 10.1212/01.wnl.0000153839.30470.d0

Sabharwal, L., Kamimura, D., Bengtsson, L., and Goverman, J. M. (2009). The gateway reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J. Immunol. 192, 3029–3042. doi: 10.4049/jimmunol.1302911

Schenkel, J. M., and Masopust, D. (2014). Tissue-resident memory T cells. Immunity 41, 886–897. doi: 10.1016/j.immuni.2014.12.007

Schmidt, S., Linington, C., Zipp, F., Oger, H., Nakayama, C., et al. (2014). The gateway reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J. Immunol. 187, 7690157

Stamper, N. E., Ouyang, Q., Panagiotopoulos, C., Verchere, C. B., Tan, R., Greenbaum, C. J., et al. (2006). Identification of Novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 55, 3061–3067. doi: 10.2337/db06-0650

Steinman, L. (2009). A molecular trio in relapse and remission in multiple sclerosis. Nat. Rev. Immunol. 9, 440–447. doi: 10.1038/nri2548

Stromnes, I. M., and Goverman, J. M. (2006). Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810–1819. doi: 10.1038/nprot.2006.285

Sun, D., Whitaker, J. N., Huang, Z., Liu, D., Coleclough, C., Wekerle, H., et al. (2001). Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587. doi: 10.4049/jimmunol.166.12.7579

Targoni, O. S., and Lehmann, P. V. (1998). Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J. Exp. Med. 187, 2055–2063. doi: 10.1084/jem.187.12.2055

Tauskott, L., Reichen, E. L., and Raine, C. S. (1983). Multiple sclerosis. Distribution of T cells, T cell subsets and Ia-positive macrophages in lesions of different ages. J. Neuroimmunol. 4, 201–221. doi: 10.1016/0165-5728(83)90036-x

Tsuda, T., Parker, K. C., Turner, R. V., McFarland, H. F., Coligan, J. E., and Bidwasser, W. E. (1994). Autoreactive CD8+ T cell responses to human myelin protein-derived peptides. Proc. Natl. Acad. Sci. U S A 91, 10859–10863. doi: 10.1073/pnas.91.23.10859

van Oosten, B. W., Barkhof, F., Truyen, L., Boringa, J. B., Bertelsmann, F. W., von Blomberg, B. M., et al. (1996). Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534. doi: 10.1212/wnl.47.6.1531

Wong, G. H., Bartlett, P. F., Clark-Lewis, I., Batbye, F., and Schrader, J. W. (1984). Inducible expression of H-2 and Ia antigens on brain cells. Nature 310, 688–691. doi: 10.1038/310688a0

Zang, Y. C., Li, S., Rivera, V. M., Hong, J., Robinson, R. R., Breitbach, W. T., et al. (2004). Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J. Immunol. 172, 5120–5127. doi: 10.4049/jimmunol.172.8.5120

Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995). A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res. Mol. Brain Res. 30, 251–258. doi: 10.1016/0169-328X(95)00010-p

Zhang, J., Medera, R., Stinissen, P., Haller, D., and Raus, J. (1993). MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261, 1451–1454. doi: 10.1126/science.7690157

Zimmer, D. B., Cornwall, E. H., Landar, A., and Song, W. (1995). The S100 protein-derived peptides. J. Biochem. 117, 7579–7587. doi: 10.1212/01.wnl.120.Pt.8.1437

Zielasek, Z., Flitsch, S., and Cancro, M. P. (1990). The significance of CD4+ T cell help for NOD diabetes: role of the H-2Kb restricting element. J. Immunol. 145, 1126–1133. doi: 10.4049/jimmunol.145.3.1126

Zimmer, D. B., Cornwall, E. H., Landar, A., and Song, W. (1995). The $100 protein family: history, function and expression. Brain Res. Bull. 4, 201–221. doi: 10.1016/0361-9230(95)00040-2

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.