High-resolution ammonia emissions inventories in China from 1980–2012

Y. Kang1, M. Liu1, Y. Song1, X. Huang2, H. Yao1, X. Cai1, H. Zhang3, L. Kang1, X. Liu4, X. Yan5, H. He6, M. Shao1, and T. Zhu1

1State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing, 100871, China
2Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China
3Laboratory for Atmosphere–Ocean Studies, Department of Atmospheric and Oceanic Science, School of Physics, Peking University, Beijing, 100871, China
4College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100094, China
5State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
6Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
High-resolution ammonia emissions inventories in China from 1980–2012

Y. Kang et al.

Correspondence to: Y. Song (songyu@pku.edu.cn)

Received: 7 August 2015 – Accepted: 10 September 2015 – Published: 6 October 2015

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Ammonia (NH$_3$) can interact in the atmosphere with other trace chemical species, which can lead to detrimental environmental consequences, such as the formation of fine particulates and ultimately global climate change. China is a major agricultural country, and livestock numbers and nitrogen fertilizer use have increased drastically since 1978, following the rapid economic and industrial development experienced by the country. In this study, comprehensive NH$_3$ emissions inventories were compiled for China for 1980–2012. In a previous study, we parameterized emissions factors (EFs) considering ambient temperature, soil acidity, and the method and rate of fertilizer application. In this study, we refined these EFs by adding the effects of wind speed and new data from field experiments of NH$_3$ flux in cropland in northern China. We found that total NH$_3$ emissions in China increased from 5.9 to 11.2 Tg from 1980 to 1996, and then decreased to 9.5 Tg in 2012. The two major contributors were livestock manure and synthetic fertilizer application, which contributed 80–90% of the total emissions. Emissions from livestock manure rose from 2.87 Tg (1980) to 6.17 Tg (2005), and then decreased to 5.0 Tg (2012); beef cattle were the largest source followed by laying hens and pigs. The remarkable downward trend in livestock emissions that occurred in 2007 was attributed to a decrease in the numbers of various livestock animals, including beef cattle, goats, and sheep. Meanwhile, emissions from synthetic fertilizer ranged from 2.1 Tg (1980) to 4.7 Tg (1996), and then declined to 2.8 Tg (2012). Urea and ammonium bicarbonate (ABC) dominated this category of emissions, and a decline in ABC application led to the decrease in emissions that took place from the mid-1990s onwards. High emissions were concentrated in eastern and southwestern China. Seasonally, peak NH$_3$ emissions occurred in spring and summer. The inventories had a monthly temporal resolution and a spatial resolution of 1000 m, and thus are suitable for global and regional air-quality modeling.
1 Introduction

Ammonia (NH$_3$) is an important reactive nitrogen (N) compound, and has wide impacts on both atmospheric chemistry and ecosystems. As an alkaline gas in the atmosphere, it can readily neutralize both sulfate and nitric acid to form ammonium sulfate and ammonium nitrate, which are the major constituents of secondary inorganic aerosols (Behera and Sharma, 2012). Kirkby et al. (2011) found that atmospheric NH$_3$ could substantially accelerate the nucleation of sulfuric acid particles, thereby contributing to the formation of cloud condensation nuclei. The total mass of secondary ammonium salts accounts for 25–60 % of particulate matter less than or equal to 2.5 µm in aerodynamic diameter (PM$_{2.5}$) (Ianniello et al., 2011; He et al., 2001; Fang et al., 2009), and large amounts of this fine PM not only cause air pollution but also have a significant effect on radiative forcing (Charlson et al., 1992; Martin et al., 2004). In addition, the sinking of NH$_3$ into terrestrial and aquatic ecosystems can directly or indirectly cause severe environmental issues, such as soil acidification, eutrophication of water bodies, and even a decrease in biological diversity (Matson et al., 2002; Pearson and Stewart, 1993). When deposited into soils, NH$_3$ compounds can be converted into nitrate (NO$_3^-$) through nitrification, simultaneously releasing protons into the soil, resulting in soil acidification (Krupa, 2003).

Livestock manure and synthetic fertilizer represent the most important sources of NH$_3$ emissions, jointly accounting for more than 57 % of global emissions and more than 80 % of total emissions in Asia (Bouwman et al., 1997; Streets et al., 2003; Zhao and Wang, 1994). Previous studies have verified that China emits a considerable proportion of the total global NH$_3$ emissions budget due to its intensive agricultural activities (Streets et al., 2003). A major agricultural country, China has undergone rapid industrialization and urbanization since the Chinese government implemented its economic reform in 1978. The rapid economic development and rise in living standards over the last 30 years has resulted in a sharp increase in grain output and meat production. The use of synthetic fertilizers, which are applied by Chinese farmers to promote
the growth of crops, has also undergone a considerable, sustained increase. According to figures from the International Fertilizer Industry Association (Zhang et al., 2012), synthetic fertilizer production has increased 3-fold during the past three decades, from 10 million t in 1980 to 43 million t in 2012. Several factors have contributed to the dramatic rise in the use of synthetic fertilizers. First, their use grew dramatically in the latter half of the 20th century in most parts of the world, as farmers increasingly expected to achieve higher crop yields. Second, N over-fertilization has been common, resulting in higher NH₃ volatilization loss, especially in the North China Plain and Taihu region (Xiong et al., 2008; Ju et al., 2009). In addition, due to farmers’ increasing labor costs and income from off-farm activities, traditional farmyard manure has been gradually eliminated in much of China and replaced by synthetic fertilizers (Ma et al., 2009; Zhang et al., 2011). As a consequence, the surge in NH₃ emissions from synthetic fertilizer application during this period has been inevitable. Meanwhile, since 1980, when China began developing a series of policies to support livestock production, the industry has undergone rapid growth driven by the increasing demand for beef, pork, mutton, milk, and wool (Zhou et al., 2007). For example, in 2006, there were 56 million head of slaughtered cattle in China, representing a 16-fold increase from the number in 1980; the number of poultry in production increased 12-fold during this same period (EO-CAIY, 2007). The flourishing livestock industry has produced large volumes of manure that releases gaseous NH₃ through N hydrolyzation and volatilization. In conclusion, a marked increase in NH₃ emissions from livestock manure and synthetic fertilizer are expected from 1980 to the present, but specific data on annual emissions and variation in emissions are lacking.

Changes induced by anthropogenic activities can significantly influence the global N cycle (Vitousek et al., 1997). Therefore, to better understand the evolution of the global N budget and the impacts on living systems, it is essential to quantify NH₃ emissions during recent decades in China. Moreover, the compilation of multi-year regional and national NH₃ emissions inventories would also help elucidate the causes of severe air pollution in China.
In a previous study, we developed a comprehensive NH$_3$ inventory for 2006 to show the monthly variation and spatial distribution of NH$_3$ emissions in China based on a bottom-up method (Huang et al., 2012). Our method had several advantages over previous inventories. First, emissions factors (EFs) characterized by ambient temperature, soil acidity, and other crucial influences based on typical local agricultural practices were used to parameterize NH$_3$ volatilization from synthetic fertilizer and animal manure. In addition, we included as many different types of emission sources as possible, such as vehicle exhaust and waste disposal. Our NH$_3$ emissions inventory was compared with some recent studies to show its reliability. Paulot et al. (2014) used the adjoint of a global chemical transport model (GEOS-Chem) to optimize NH$_3$ emissions estimation in China; the results were similar to our previous study (Huang et al., 2012). In addition, the distribution of the total NH$_3$ column in eastern Asia retrieved from measurements of the Infrared Atmospheric Sounding Interferometer (IASI) aboard the European METeorological OPerational (MetOp) polar orbiting satellites (Van Damme et al., 2014) was also in agreement with the spatial pattern of NH$_3$ emissions calculated in our previous study. Hence, our bottom-up emissions inventory appears to be reliable, and the method can be used to estimate NH$_3$ emissions in China.

In this study, we made further improvements based on this bottom-up method and considered the following sources of NH$_3$: (1) farmland ecosystems (synthetic fertilizer application, soil and N fixing, and crop residue compost); (2) livestock waste; (3) biomass burning (forest and grassland fires, crop residue burning, and fuelwood combustion); and (4) other sources (excrement waste from rural populations, the chemical industry, waste disposal, NH$_3$ escape from thermal power plants, and traffic sources). The interannual variation and spatial patterns of NH$_3$ emissions from 1980 to 2012 on the Chinese mainland (excluding Hong Kong, Macao, and Taiwan) are discussed in this paper.
2 Methods and data

NH_3 emissions were calculated as a product of the activity data and corresponding condition-specific EFs, according to the following equation:

$$E(\text{NH}_3) = \sum_i \sum_p \sum_m (A_{i,p,m} \times EF_{i,p,m}),$$

where $E(\text{NH}_3)$ is the total NH_3 emissions; i, p, and m represent the source type, the province in China, and the month, respectively; $A_{i,p,m}$ is the activity data of a specific condition; and $EF_{i,p,m}$ is the corresponding EF. The emissions were allocated to a 1 km \times 1 km spatial resolution on the basis of land cover, rural population, and other proxies. Further details on the estimation methods and gridded allocation of the various sources are presented in Huang et al. (2012).

2.1 Synthetic fertilizer application

NH$_3$ volatilization from synthetic fertilizers represents an important pathway of N release from the soil, resulting in large losses of soil and plant N (Harrison and Webb, 2001). We classified the synthetic fertilizers used in Chinese agriculture as urea, ammonium bicarbonate (ABC), ammonium nitrate (AN), ammonium sulfate (AS), and others (including calcium ammonium nitrate, ammonium chloride, and ammonium phosphates). NH$_3$ emissions were estimated by multiplying gridded (1 km \times 1 km) EFs for five types of fertilizer by synthetic fertilizer use, which was calculated as the product of cultivated area and the application rate to crops (EOCAY, 1981–2013; Zhang et al., 2012; NBSC, 2003–2013b). In our previous inventory, we introduced the type of fertilizer, soil pH, ambient temperature, fertilization method, and application rate as parameters to develop gridded EFs for specific conditions. In the present study, the effects of wind speed and recent results from field experiments of NH$_3$ flux in cropland were added to further refine the EFs used to estimate NH$_3$ emissions from synthetic fertilizers, which is described below.
2.1.1 Wind speed

In addition to temperature, wind speed is a meteorological parameter that affects the partial pressure of NH$_3$ by regulating the exchange of NH$_3$ between the soil/floodwater and the air, thereby influencing NH$_3$ volatilization (Bouwman et al., 2002). Several previous studies have shown that high winds significantly influence NH$_3$ volatilization (Dennemead et al., 1982; Fillery et al., 1984; Freney et al., 1985). In this study, we followed the approach of Gyldenkaerne et al. (2005) to introduce the effects of wind speed on NH$_3$ volatilization from synthetic fertilizer application. The original EFs were multiplied by a factor that was an exponential function of wind speed. The monthly average wind speeds for a 1 km \times 1 km grid were based on the final analysis dataset of the National Centers for Environmental Prediction (NCEP).

2.1.2 Improvement of the EF for soil pH

Huang et al. (2012) used the measurements of Cai et al. (1986) and Zhu et al. (1989) to develop a linear relationship between NH$_3$ volatilization and soil pH that was applied to correct the EFs for soil acidity in different regions of China. To refine the correction so that it was nationally representative, we referred to recent results from field experiments to further adjust this relationship. Huo et al. (2015) conducted fertilization experiments in a representative area of farmland in the North China Plain in Hebei Province from 25 March to 6 May 2012, and measured a soil pH and average air temperature of 8.2 and 15 $^\circ$C, respectively. The results yielded an NH$_3$ EF for urea of 12\% \pm 3\%. We combined this condition-specific EF with that from Cai et al. (1986) and Zhu et al. (1989) to refine the correction for soil pH.

2.2 Livestock waste

A mass-flow approach has been widely used to estimate NH$_3$ emissions from livestock waste (Beusen et al., 2008; Velthof et al., 2012). Livestock waste can produce
ammoniacal N (TAN), which can be converted into gaseous NH₃ or lost through other pathways during manure management (Webb and Misselbrook, 2004; Webb et al., 2006). We estimated livestock emissions by multiplying TAN at four different stages of manure management: outdoor, housing, manure storage, and manure spreading onto farmland (Pain et al., 1998) with the corresponding EFs. TAN is the product of the daily amount of manure produced (kg day⁻¹ capita⁻¹), N content (%), and TAN content (%) (Table S1), all of the parameters for which were assumed to have not changed during the 30 year period. In addition, we also considered three main animal-rearing systems in China: free-range, intensive, and grazing. The first two systems are extensively implemented in most rural areas of the country. The free-range system is characterized by small-scale rearing belonging to individual families and has been rapidly developed over recent decades (http://www.caaa.cn/). Based on animal husbandry yearbooks, we defined an intensive rearing system as that where the number of a single livestock class on a single farm was larger than a certain value (Table S2).

The number of livestock in each class from 1980 to 2012 was provided by official statistical data and husbandry industry reports (EOCAIY, 1999–2013; EOCAY, 1981–2013). We applied specific EFs in different situations and took the ambient temperature from the NCEP final analysis dataset into account in the stage in which the manure was stored indoors.

2.3 Other sources

The other minor NH₃ emission sources included agricultural soil, N-fixing plants, the compost of crop residues, biomass burning, excrement waste from rural populations, the chemical industry, waste disposal, traffic sources, and NH₃ escape from thermal power plants. The data sources and EFs for each source type are summarized in Table 1. Further details on the estimation methods appear in Huang et al. (2012). NH₃ escape, which was not included in previous inventories, is a new source of NH₃ emissions that has emerged during the past 10 years in China, and refers to the NH₃ derived from the incomplete reactions of NH₃ additives used in NOₓ abatement in thermal
power plants (EEA, 2013). We roughly estimated the amount of NH$_3$ escape by multiplying the total flue gas released in power plants nationwide by the maximum allowable concentration of NH$_3$ carried in flue gas (NEA, 2011; CAEPI, 2013).

3 Results and discussion

3.1 Annual NH$_3$ emissions

Over the past 30 years, China has undergone dramatic changes and significant economic development, and the annual variation in NH$_3$ emissions has changed correspondingly. Figure 1 illustrates the trends in total NH$_3$ emissions, which are divided into fertilizer application, livestock waste, and other minor sources. Total emissions increased from 5.9 to 11.2 Tg between 1980 and 1996, then decreased to 9.5 Tg in 2012. The most important contributor was livestock manure management, accounting for approximately 50 % of the total budget. Due to the extremely high consumption and high volatility of ABC and urea, synthetic fertilizer application was responsible for 30–43 % of the total emissions, second only to livestock manure. However, in Europe and the United States, where less-volatile synthetic fertilizers such as AN and AS are more popular (Bouwman and VanderHoek, 1997), livestock manure overwhelmingly dominate the NH$_3$ emissions inventory (Ferm, 1998). These two primary sources combined accounted for 80–90 % of the total emissions budget, with other minor sources accordingly accounting for 10–20 %.

3.1.1 Emissions from livestock waste

Livestock waste was the largest source of NH$_3$ emissions in China from 1980 to 2012, contributing approximately 50 % of total emissions each year. Since the 1980s, rapid economic development in China has driven the large increment of livestock production. The total number of the major livestock animals, namely, beef cattle, sheep, pigs, and poultry, increased from approximately 70 to 140 million, 180 to 370 million, 420 to 1400
Correspondingly, NH$_3$ emissions increased from 2.9 Tg in 1980 to 6.2 Tg in 2005, more than doubling during this period, and then decreased to 5.0 Tg in 2012 (Fig. 2). We divided livestock NH$_3$ emissions from 1980 to 2012 into four phases. In the first phase (1980–1990), emissions steadily increased with a mean growth rate of approximately 3%. Free-range production contributed most of the emissions (the population of free-range animals represented more than 90% of the major livestock animals; EOCAY, 1991). The second phase (1991–1996) saw the most rapid increase in emissions, and the growth rate rose to 10% between the years 1994 and 1995. In 1992, China began to implement a reform of the socialist market economic system, which had previously driven livestock production (CAAA, 2009), and accordingly, more NH$_3$ emissions from livestock waste were emitted. However, in 1997, there was a 0.5 Tg decrease in livestock emissions, compared to those in 1996. This observed decline could be attributed to the Asian financial crisis, which started in 1997 and may have a detrimental effect on the development of the Chinese livestock industry. From 1998 to 2005, as the third phase, NH$_3$ emissions continually rose in conjunction with an increase in livestock production due to improvements in cultivation technique and increases in market demand (Zhang et al., 2003). Compared to the first two phases, the contribution of intensive rearing systems to total emissions also increased, with the population of intensively reared animals representing nearly 20% of the major livestock animals (EOCAIY, 2006), because the Chinese government encouraged large-scale intensive methods for livestock production to gradually replace traditional free-range systems (CAAA, 2009). After a peak in 2005, there was a marked decrease, and emissions fluctuated around 5.0 Tg in the fourth phase, significantly lower than those in the mid-2000s, which can be explained by a decrease in several major livestock classes, including cattle and sheep (Fig. S1). Multiple factors inhibited the development of the livestock industry, and thus reduced NH$_3$ emissions from 2007 to 2012. These included a rural labor shortage, increased feeding costs for farmers, and market price fluctuations of meat products (Pu et al., 2008). Moreover, it should be noted that the class-
specific proportions of intensively reared animals for beef cattle, pigs, and laying hens significantly increased to approximately 30, 40 and 70% in 2012, respectively, which partly accounted for the reduced livestock emissions due to the lower NH₃ EFs of the intensive system compared to the free-range (EEA, 2013). In contrast to the free-range and intensive systems, in recent decades NH₃ emissions from grazing systems have demonstrated slight growth, from 0.13 Tg (1980) to 0.20 Tg (2012), without significant changes.

Table S3 presents the interannual emissions of the typical livestock categories. Among them, beef cattle were consistently the largest NH₃ emitter, contributing an annual mean 1.9 TgNH₃; pigs, laying hens, goats, and sheep were also major contributors to the total emissions in this period. Poultry had the most rapid growth rate in NH₃ emissions. Nevertheless, a marked downward trend has appeared since 2007 for several major NH₃ sources, including beef cattle, goats, and sheep, which led to the decrease in total emissions discussed above.

3.1.2 Emissions from synthetic fertilizer application

Figure 3 shows the estimations of NH₃ emissions from synthetic fertilizer application for the period 1980–2012. Annual levels consistently increased from 1980 (2.1 Tg) to 1996 (4.7 Tg), and then declined from 1996 to 2012 (2.8 Tg). ABC and urea were the major sources; NH₃ release from other synthetic fertilizers, such as AS and AN, made a negligible contribution to emissions (< 0.1%). In general, the interannual variation in emissions reflects the changes in farming practices in China. First, the relative contribution of urea and ABC has gradually changed over recent decades. During the 1980s, ABC represented a substantial fraction of synthetic fertilizers used in China, and because of its high volatilization (Zhu et al., 1989), emissions from this kind of chemical fertilizer dominated in this period. However, ABC was inefficient for crop production because of the low N content (17% N) and high N loss. In the mid-1990s, China introduced the technology of urea production, which promoted its widely application (Zhang et al., 2012). Urea, characterized by high N concentration (46% N), has gradually re-
placed ABC and become the dominant chemical fertilizer used in cropland over the last 20 years. In 1980, 3.0 million and 5.1 million t of urea and ABC, respectively, were produced; by 2012, these values had changed to approximately 28.8 million and 3.4 million t, accounting for approximately 66.7 and 7.9 % of total synthetic fertilizer production in China, respectively (Fig. S2). Because NH$_3$ volatilization from ABC is more than 2-fold that from urea (Roelcke et al., 2002; Cai et al., 1986), the increasing proportion of urea application relative to that of ABC has caused the decrease in total synthetic fertilizer emissions observed from the mid-1990s onwards. As shown in Fig. 3, although emissions from urea application increased by 1.0 Tg from 1996 to 2012, those from ABC fell by nearly 3.0 Tg. In addition, there have been seasonal disparities in NH$_3$ emissions from synthetic fertilizers, caused by variation in both the temperature and timing of fertilizer application for different crops. Generally, NH$_3$ volatilization began to rise in April with increasing temperatures, and the highest emissions occurred in summer (June–August), which can be attributed to the high temperatures and intensive application of fertilizer. The seasonal distribution of synthetic fertilizer emissions was almost constant from 1980 to 2012, corresponding to stability in the seasonal distribution of agricultural activities.

3.1.3 Source apportionments

Table 2 lists NH$_3$ emissions at the national level from 1980 to 2012 from various sources. NH$_3$ emissions released by biomass burning generally increased, of which crop-residue burning and housing fuelwood combustion jointly accounted for a large proportion of the biomass burning emissions. In particular, a large forest fire occurring in 1987 in the Greater Khingan Mountains, located in Heilongjiang Province, released more than 40 GgNH$_3$. NH$_3$ escape derived from the denitrification process in thermal power plants increased substantially, as the implementation of flue gas denitrification has rapidly increased in the past 10 years, especially in 2012. NH$_3$ emissions from human excrement decreased from 362 Gg (6.2 % of total) to 121 Gg (1.3 % of total), due to rural depopulation and improvements in sanitary conditions over the past three
decades. The contributions of different sources to total NH$_3$ emissions in 1980, 1996, 2006, and 2012 are illustrated in Fig. 4. Emissions from livestock and synthetic fertilizer dominated the total inventories. Specifically, the proportion of emissions from synthetic fertilizers of total emissions peaked at 42.3% in 1996, and then started to decrease in the following years, which can be attributed to changes in the types of fertilizer used. Furthermore, as mentioned above, the Asian financial crisis and the resulting depression in the livestock market led to a decline in the proportion of emissions from livestock after 1997 and 2006, respectively. The contributions of the chemical industry, waste disposal, traffic, and NH$_3$ escape from thermal power plants reached the peak values of 3.3, 2.8, 1.8, and 1%, respectively, in 2012.

3.2 Spatial distribution of ammonia emissions

Figure 5 displays the spatial patterns of NH$_3$ emissions in 1980, 1990, 2000, and 2012, respectively. Over recent decades, high emission rates of greater than 2000 kg km$^{-2}$ were always concentrated in Hebei, Shandong, Henan, Jiangsu, Anhui, and East Sichuan provinces, which form the major areas of intensive agriculture in China. The sum of emissions from these provinces contributed approximately 40% of national NH$_3$ emissions annually from 1980 to 2012. Emissions rates in northeastern China, consisting of the Liaoning, Jilin, and Heilongjiang provinces, another major grain-producing area that is also important for cattle breeding, showed an increasing trend from the 1980s to the 2000s. Again, synthetic fertilizers and livestock waste dominated the spatial distribution of the total emissions.

As mentioned above, NH$_3$ volatilization from synthetic fertilizer application initially increased rapidly, reaching its peak value in the mid-1990s, and then consistently decreased. This decadal pattern can be observed in the temporal-spatial distribution of NH$_3$ emissions from fertilizers (middle column in Fig. 5). High emission rates, with more than 2000 kg km$^{-2}$ released in both 1980 and 1990, occurred mainly in Shandong, Henan, and Jiangsu provinces, where farmers consistently over-applied syn-
thetic fertilizers (Richter and Roelcke, 2000), as well as in Sichuan, which ranked first in ABC application among all provinces in the 1980s. In 2000, NH$_3$ emission rates from cultivated land in Shandong, Henan, Anhui, and Jiangsu provinces (the North China Plain) generally exceeded 3000 kg km$^{-2}$, but decreased to less than 2000 kg km$^{-2}$ in 2012 due to a reduction in the use of ABC. The total usage of ABC fertilizer in these provinces in 2000 was 5-fold that in 2012. Hubei, Hunan, Jiangxi, and Guangdong provinces, covering China’s major rice-production areas, displayed significant growth in NH$_3$ volatilization from 1980 to 1990, with emissions approximately doubling; however, emissions reduced after the mid-1990s possibly because of the transition of fertilizer usage from ABC to urea in these provinces. In contrast to the variation observed in the areas mentioned above, NH$_3$ emissions in the Northeast Plain encompassing Jilin, Heilongjiang, and Inner Mongolia, and in Xinjiang Province, have consistently increased in recent decades. From the 1990s onwards, grain production in the Northeast Plain entered a rapid growth period, accompanied by an increasing demand for synthetic fertilizers.

The spatial distribution of NH$_3$ emissions from livestock waste was similar to that from synthetic fertilizers, with high emission rates in eastern China, East Sichuan, and parts of Xinjiang. In the 1980s, Sichuan was the largest emitter among all of the provinces, accounting for more than 10% of emissions from livestock manure management, followed by Inner Mongolia and Henan. More than half of NH$_3$ emissions from livestock in Sichuan originated from cattle rearing. In Henan, both cattle and goats played significant roles in the NH$_3$ emissions, whereas in Inner Mongolia, Qinghai, and Xinjiang, large numbers of sheep were raised and were responsible for 33%, 30%, and 41% of livestock emissions in 1980, respectively. From the 1980s to 1990s, emissions in the North China Plain showed more rapid growth than in other areas in China, and almost doubled during this period in Shandong, Hebei, and Anhui, where the contribution of beef cattle, pigs, and poultry increased significantly. Until the 2000s, the North China Plain was the area of highest NH$_3$ emissions, with levels of 3000 kg km$^{-2}$ throughout most of Hebei, Shandong, and Henan provinces. The two largest contributors to livestock emis-
sions in these three provinces were beef cattle and laying hens, which contributed 38 and 19 % in 2000, respectively. Beef cattle and goats were extensively bred in Henan, Shandong, Sichuan, and Hebei provinces, and in 2012 the decrease in their population caused a corresponding decrease in NH₃ emissions from livestock manure in these provinces, by approximately 0.14, 0.14, 0.02, and 0.09 Tg, respectively. In addition, although emissions from grazing rearing system were less significant than those from other systems (free-range and intensive) in general, they did become significant in northern Inner Mongolia, central and southern Xinjiang, west-central Qinghai, western Sichuan, and large areas of Tibet.

3.3 Comparison with previous studies

Our NH₃ emissions inventories provide a detailed description of interannual variation from 1980 to 2012 in China. A comparison between this study and the Regional Emission Inventory in Asia (REAS) is presented in Fig. 6. The figures from REAS for 1980–2000 and 2000–2008 were derived from version 1.1 (Ohara et al., 2007) and 2.1 (Kurokawa et al., 2013), respectively. Note that the interannual variability in the emissions in our study was generally consistent with that in REAS before 1996. However, after that year the annual trend of emissions in our study differed from those in REAS. In addition, the NH₃ emissions in REAS were generally higher than those in our study. These differences are likely attributable to differences in the estimations of synthetic fertilizer emissions, discussed below.

In REAS, NH₃ emissions from animal manure applied as fertilizer were included as a category of fertilizer emissions (Yan et al., 2003). NH₃ from the application of animal waste onto croplands was 2.8 Tg in 2000 in REAS, accounting for approximately 60 % of the total fertilizer emissions in that year. To render these two inventories comparable, we excluded the application of animal waste from the fertilizer emissions in REAS using the value for 2000. A comparison of the emissions from synthetic fertilizer application is presented in Fig. 7. We found that the REAS values were 20–50 % higher than ours in 2000–2005, and this percentage rose to 100 % by 2008, which could be largely
responsible for the differences of total emissions between REAS and our study in the 2000s. It should be noted that in REAS 2.1, the agricultural emissions were extrapolated from REAS 1.1 for 2000 using the corresponding activity data of the target year (Kurokawa et al., 2013), which could have resulted in considerable inaccuracies due to various missing parameters. On the other hand, the discrepancy possibly originated from the treatment of the types of fertilizer and the corresponding EFs considered in the estimation methods. As mentioned above, the types of fertilizer applied have changed substantially since 1997. Although the total amount of synthetic fertilizers increased significantly, the proportion of highly volatile ABC consistently decreased, which could be responsible for the marked decline in NH$_3$ emissions. However, REAS considered only the total fertilization activities rather than the change in fertilizer types so the emissions in REAS continued to increase in recent years. Moreover, we took into account the local environmental conditions (soil pH, wind speed etc.) and agricultural practices, and used fields results from Chinese studies to correct the EFs, whereas REAS employed only uniform EFs based on European studies, and applied these across the whole of China. Fu et al. (2015) recently estimated synthetic fertilizer NH$_3$ emissions at approximately 3.0 Tg in 2011 using the bi-directional CMAQ model coupled to an agro-ecosystem model, which is similar to our value of 2.8 Tg for the same year and supports the reliability of our inventories.

Table 3 shows the comparison of the emissions from livestock waste in our study with previous ones. Our results are generally in close agreement with those of Zhao and Wang (1994), Streets et al. (2003), and Yamaji et al. (2004). The majority of the previous inventories used European-based EFs, which could introduce significant inaccuracies. Our study employed a mass-flow approach, and considered three different livestock rearing systems, as well as four phases of manure management based on local agricultural practices. The EFs used in our study were also refined according to environmental conditions. Hence, our estimations employed more realistic parameters, and the differences between the present study and previous ones are expected. For the total NH$_3$ emissions, our result (10.1 Tg) was close to that reported (10.4 Tg) using
a global 3-D chemical transport model for 2005–2008 (Paulot et al., 2014). The global NH$_3$ column mapped with the observations of IASI sensor also demonstrated excellent qualitative agreement with the spatial distribution of our estimated emissions (Van Damme et al., 2014). More specifically, several emissions hotspots, including the North China Plain, Sichuan and Xinjiang provinces (near Ürümqi and in Dzungaria), and the region around the Tarim Basin were also detected by the IASI sensor.

3.4 Uncertainty

Uncertainties in NH$_3$ emissions originated from the values used for both the activity and EFs. Huang et al. (2012) summarized the possible sources of uncertainty in the emissions inventory, including extremely high activity data for fertilizer use and livestock, the numerous parameters involved in the EF adjustment, and large variation (≥ 100%) in the coefficients of biofuel combustion and chemical industry production. Furthermore, our method used constant EFs for estimating 30 year inventories, which may introduce additional uncertainties. First, the application rate and synthetic fertilization method may have changed during recent decades because Chinese farmers have come to expect higher grain production within limited areas of cropland, which may lead to uncertainties in NH$_3$ loss per unit area. Second, although we considered inter-annual changes in the percentage of intensive rearing systems to livestock emissions, manure management, which was divided into four phases in our method, could have also changed over time because it was affected by many factors including the N content of the feed, housing structure, manure storage system, spreading technique, and time spent outside or indoors (Zhang et al., 2010). In addition, over recent decades, excessive synthetic fertilizer use has caused significant soil acidification in China (Guo et al., 2010), but our inventories did not consider the influence on NH$_3$ volatilization, which may lead to more deviation in the emissions estimation. We ran 20 000 Monte Carlo simulations to estimate the range of NH$_3$ emissions with a 95% confidence interval for 1980, 1990, 2000, and 2012. The estimated emission ranges were 4.5–7.4, 6.3–11.1, 8.0–13.4, and 7.5–12.1 Tgyr$^{-1}$, respectively.
4 Conclusions

We developed comprehensive NH$_3$ emissions inventories from 1980 to 2012 in China. Generally, emissions increased from 1980 to 1996, reaching a peak value of approximately 11.2 Tg, then fluctuated at around 10.5 Tg from 1997 to 2006, but underwent a sharp decrease after 2006. The interannual variation in the emissions is attributable to changes in the types of synthetic fertilizer applied and livestock manure management. These factors were the two major NH$_3$ sources, accounting for more than 80% of total NH$_3$ emissions, while demonstrating different temporal trends. Emissions from synthetic fertilizers initially rose, from 2.1–4.72 Tg, in the period 1980–1996, and then decreased to 2.81 Tg by 2012, which was caused by a change in the relative contributions of urea and ABC consumption to total emissions. In contrast to synthetic fertilizer emissions, emissions from livestock, ranging from 2.9–6.1 Tg from 1980 to 2012, rose until 2005, but significantly decreased after 2006. Other sources were insignificant in the total budget, and exhibited distinct variation during this period. NH$_3$ emissions generally peaked in the spring and summer, corresponding to planting schedules and ambient temperatures. At the regional level, the spatial patterns of the total emissions have generally been consistent over recent decades, with high emissions rates of more than 2000 kg km$^{-2}$ concentrated in Hebei, Shandong, Henan, Jiangsu, Anhui, and East Sichuan provinces, which represent the major areas of intensive agriculture in China. Compared to NH$_3$ emissions in REAS, our results are more reliable because we considered more parameters when calculating specific EFs according to local ambient conditions and agricultural practices.

It should be noted that gaps still exist in these inventories due to uncertainties in the activity data, EFs, and related parameters, especially for earlier years. As many samples as possible should be used in statistical censuses, and more local field studies should be implemented for better estimates of the EFs to reduce uncertainties. Such high-resolution inventories can be used in global and regional modeling to simulate atmospheric aerosol formation, explore the impacts of NH$_3$ emissions on air quality,
Acknowledgement. The MCD45A1 burned area product was provided by the University of Maryland. The MODIS NDVI and VCF were provided by the Land Process Distributed Active Archive Center (LPDAAC), USA. The China Land Cover product was provided by the Environmental & Ecological Science Data Center for West China, National Natural Science Foundation of China. The 1 km population distribution dataset was developed by the Data Center for Resources and Environmental Sciences Chinese Academy of Sciences (RESDC). This study was supported by the Public Welfare Projects for Environmental Protection (201309009 and 201409002), National Natural Science Foundation of China (41275155 and 41121004) and Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010300).

References

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, doi:10.1029/2000gb001382, 2001.

Behera, S. and Sharma, M.: Transformation of atmospheric ammonia and acid gases into components of PM$_{2.5}$: an environmental chamber study, Environ. Sci. Pollut. R., 19, 1187–1197, doi:10.1007/s11356-011-0635-9, 2012.

Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G., and Van Der Hoek, K. W.: Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems, Atmos. Environ., 42, 6067–6077, doi:10.1016/j.atmosenv.2008.03.044, 2008.

Bouwman, A. F. and Vanderhoek, K. W.: Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries, Atmos. Environ., 31, 4095–4102, doi:10.1016/S1352-2310(97)00288-4, 1997.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Vanderhoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, doi:10.1029/97gb02266, 1997.

Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Estimation of global NH$_3$ volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochem. Cy., 16, 1024, doi:10.1029/2000gb001389, 2002.

Buijsman, E., Maas, H. F. M., and Asman, W. A. H.: Anthropogenic NH$_3$ emissions in Europe, Atmos. Environ., 21, 1009–1022, doi:10.1016/0004-6981(87)90230-7, 1987.

CAAA – China Animal Agriculture Association: The Reform and Development of China’s Animal Husbandry in the Past 30 Years (in Chinese), Guide to Chinese Poultry, 26, Beijing, 2009.

CAAM – China Association of Automobile Manufacturers: China Automotive Industry Yearbook 1983–2013 (in Chinese), China Automotive Industry Yearbook Press, Beijing, 1983–2013.

CAEPI – China Association Of Environmental Protection Industry: Development Report on China Desulfurization and Denitration Industries in 2012 (in Chinese), China Environmantal Protection Industry, Beijing, 2013.

Cai, G. X., Zhu, Z. L., Trevitt, A. C. F., Freney, J. R., and Simpson, J. R.: Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice, Fert. Res., 10, 203–215, doi:10.1007/Bf01049350, 1986.

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, doi:10.1126/science.255.5043.423, 1992.

CMF– China Ministry of Forestry: National Forestry Statistics (1988–1997) (in Chinese), China Forestry Press, Beijing, 1988–1997.

CMF – China Ministry of Forestry: National Forestry Statistics Compilation (1947–1987) (in Chinese), China Forestry Press, Beijing, 1990.

Denmead, O. T., Freney, J. R., and Simpson, J. R.: Dynamics of ammonia volatilization during furrow irrigation of maize, Soil Sci. Soc. Am. J., 46, 149–155, 1982.

Du, W. P., Gao, Q. Q., Zhang, E. S., Miu, Q. L., and Wu, J. G.: The treatment and trend analysis of municipal solid waste in China (in Chinese), Res. Environ. Sci., 19, 115–120, 2006.

EEA – European Environment Agency: EMEP/EEA Air Pollutant Emission Inventory Guidebook 2006, European Environment Agency, Denmark, 2006.

EEA – European Environment Agency: EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013, European Environment Agency, Denmark, 2013.
High-resolution ammonia emissions inventories in China from 1980–2012

Y. Kang et al.

EOCAIY – Editorial Office of China Animal Industry Yearbook: China Animal Industry Yearbook 1999–2013 (in Chinese), China Agriculture Press, Beijing, 1999–2013.

EOCAIY – Editorial Office of China Animal Industry Yearbook: China Animal Industry Yearbook 2006 (in Chinese), China Agriculture Press, Beijing, 2006.

EOCAIY – Editorial Office of China Animal Industry Yearbook: China Animal Industry Yearbook 2007 (in Chinese), China Agriculture Press, Beijing, 2007.

EOCAIY – Editorial Office of China Animal Industry Yearbook: China Animal Industry Yearbook 2006 (in Chinese), China Agriculture Press, Beijing, 2006.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2006 (in Chinese), China Agriculture Press, Beijing, 2006.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2007 (in Chinese), China Agriculture Press, Beijing, 2007.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2008 (in Chinese), China Agriculture Press, Beijing, 2008.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2009 (in Chinese), China Agriculture Press, Beijing, 2009.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2010 (in Chinese), China Agriculture Press, Beijing, 2010.

EOCAIY – Editorial Office of China Agriculture Yearbook: China Agriculture Yearbook 2011 (in Chinese), China Agriculture Press, Beijing, 2011.

EPBG – Environmental Protection Monitoring Center of Guangdong Province: Guidelines of Air Pollutant Emission Inventories in the Pearl River Delta, Environmental Protection Bureau of Guangdong Province, Guangzhou, 2005.

Fang, M., Chan, C. K., and Yao, X. H.: Managing air quality in a rapidly developing nation: China, Atmos. Environ., 43, 79–86, doi:10.1016/j.atmosenv.2008.09.064, 2009.

Ferm, M.: Atmospheric ammonia and ammonium transport in Europe and critical loads: a review, Nutr. Cycl. Agroecosys., 51, 5–17, doi:10.1023/A:1009780030477, 1998.

Fillery, R. P., Simpson, J. R., and Dedatta, S. K.: Influence of field environment and fertilizer management on ammonia loss from flooded rice, Soil Sci. Soc. Am. J., 48, 914–920, 1984.

Freny, J. R., Simpson, J. R., Denmee, O. T., Muirhead, W. A., and Leuning, R.: Transformations and transfers of nitrogen after irrigating a cracking clay soil with a urea solution, Aust. J. Agr. Res., 36, 685–694, 1985.

Fu, X., Wang, S. X., Ran, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson, V., and Hao, J. M.: Estimating NH\textsubscript{3} emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model, Atmos. Chem. Phys., 15, 6637–6649, doi:10.5194/acp-15-6637-2015, 2015.

Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., and Zhang, F. S.: Significant acidification in major Chinese croplands, Science, 327, 1008–1010, doi:10.1126/science.1182570, 2010.

Gyldenkaerne, S., Skjøth, C. A., Hertel, O., and Ellermann, T.: A dynamical ammonia emission parameterization for use in air pollution models, J. Geophys. Res.-Atmos., 110, D07108, doi:10.1029/2004jd005459, 2005.
Harrison, R. and Webb, J.: A review of the effect of n fertilizer type on gaseous emissions, Adv. Agron., 73, 65–108, doi:10.1016/S0065-2113(01)73005-2, 2001.

He, K. B., Yang, F. M., Ma, Y. L., Zhang, Q., Yao, X. H., Chan, C. K., Cadle, S., Chan, T., and Mulawa, P.: The characteristics of PM$_{2.5}$ in Beijing, China, Atmos. Environ., 35, 4959–4970, doi:10.1016/S1352-2310(01)00301-6, 2001.

Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, H. S.: A high-resolution ammonia emission inventory in China, Global Biogeochem. Cy., 26, Gb1030, doi:10.1029/2011gb004161, 2012.

Huo, Q., Cai, X. H., Kang, L., Zhang, H. S., Song, Y., and Zhu, T.: Estimating ammonia emissions from awinter wheat cropland in North China plain with field experiments and inverse dispersion modeling, Atmos. Environ., 104, 1–10, doi:10.1016/j.atmosenv.2015.01.003, 2015.

Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., and Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM$_{2.5}$ in the atmosphere of Beijing (China), Atmos. Chem. Phys., 11, 10803–10822, doi:10.5194/acp-11-10803-2011, 2011.

Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P., Zhu, Z. L., and Zhang, F. S.: Reducing environmental risk by improving n management in intensive Chinese agricultural systems, P. Natl. Acad. Sci. USA, 106, 3041–3046, doi:10.1073/pnas.0902655106, 2009.

Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne, S., Ickes, L., Kurten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Häider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walthier, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429-477, doi:10.1038/nature10343, 2011.

Krupa, S. V.: Effects of atmospheric ammonia (NH$_3$) on terrestrial vegetation: a review, Environ. Pollut., 124, 179–221, doi:10.1016/S0269-7491(02)00434-7, 2003.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in Asia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, doi:10.5194/acp-13-11019-2013, 2013.

Li, X. G., Wang, S. X., Duan, L., Hao, J., Li, C., Chen, Y. S., and Yang, L.: Particulate and trace gas emissions from open burning of wheat straw and corn stover in China, Environ. Sci. Technol., 41, 6052–6058, doi:10.1021/Es0705137, 2007.

Ma, J. Z., Ding, Z. Y., Wei, G. X., Zhao, H., and Huang, T. M.: Sources of water pollution and evolution of water quality in the Wuwei Basin of Shiyang River, Northwest China, J. Environ. Manage., 90, 1168–1177, doi:10.1016/j.jenvman.2008.05.007, 2009.

Martin, S. T., Hung, H.-M., Park, R. J., Jacob, D. J., Spurr, R. J. D., Chance, K. V., and Chin, M.: Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing, Atmos. Chem. Phys., 4, 183–214, doi:10.5194/acp-4-183-2004, 2004.

Matson, P., Lohse, K. A., and Hall, S. J.: The globalization of nitrogen deposition: consequences for terrestrial ecosystems, Ambio, 31, 113–119, doi:10.1639/0044-7447, 2002.

Moller, D. and Schieferdecker, H.: Ammonia emission and deposition of NH$_x$ in the GDR, Atmos. Environ., 23, 1187–1193, doi:10.1016/0004-6981(89)90145-5, 1989.

NEA – National Energy Administration: Guide for flue gas denitrification technology in thermal power plant (in Chinese), National Energy Administration, 2011.

NBSC – National Bureau of Statistics of China: China Statistical Yearbook 1981–2013 (in Chinese), China Statistics Press, Beijing, 1981–2013a.

NBSC – National Bureau of Statistics of China: China Industry Economy Statistical Yearbook 1981–2013 (in Chinese), China Statistics Press, Beijing, 1981–2013b.

NBSC – National Bureau of Statistics of China: China Rural Statistical Yearbook 1985–2013 (in Chinese), China Statistics Press, Beijing, 1985–2013.

NBSC – National Bureau of Statistics of China: Cost and income of Chinese farm produce 2003–2013 (in Chinese), China Statistics Press, Beijing, 2003–2013a.

NBSC – National Bureau of Statistics of China: China Statistical Yearbook on Environment 2003–2013 (in Chinese), China Statistics Press, Beijing, 2003–2013b.

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, doi:10.5194/acp-7-4419-2007, 2007.
Pain, B. F., Van der Weerden, T. J., Chambers, B. J., Phillips, V. R., and Jarvis, S. C.: A new inventory for ammonia emissions from UK agriculture, Atmos. Environ., 32, 309–313, doi:10.1016/S1352-2310(96)00352-4, 1998.

Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH₃), J. Geophys. Res.-Atmos., 119, 4343–4364, doi:10.1002/2013jd021130, 2014.

Pearson, J. and Stewart, G. R.: The deposition of atmospheric ammonia and its effects on plants, New Phytol., 125, 283–305, doi:10.1111/j.1469-8137.1993.tb03882.x, 1993.

Pu, H., Zheng, Y., and Wachsmuth, H.: Current production situation and suggestion for development of livestock industry in China (in Chinese), J. Agr. Sci. Technol., 10, 63–66, doi:10.3969/j.issn.1008-0864.2008.01.011, 2008.

Richter, J. and Roelcke, M.: The N-cycle as determined by intensive agriculture – examples from central Europe and China, Nutr. Cycl. Agroecosys., 57, 33–46, doi:10.1023/A:1009802225307, 2000.

Roe, S. M., Spivey, M. D., Lindquist, H. C., Thesing, K. B., Strait, R. P., and Pechan, E. H., and Associates, Inc.: Estimating ammonia emissions from anthropogenic nonagricultural sources, Emission Inventory Improvement Program, Rep. US Environmental Protection Agency, Washington, 87 pp., 2004.

Roelcke, M., Li, S. X., Tian, X. H., Gao, Y. J., and Richter, J.: In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils, Nutr. Cycl. Agroecosys., 62, 73–88, doi:10.1023/A:1015186605419, 2002.

Seiler, W. and Crutzen, P. J.: Estimates of Gross and Net Fluxes of Carbon between the Biosphere and the Atmosphere from Biomass Burning, Climatic Change, 2, 207–247, doi:10.1007/Bf00137988, 1980.

SFA – State Forestry Administration of China: China Forestry Statistical Yearbook 1999–2000 (in Chinese), China Forestry Press, Beijing, 1999–2000.

Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res.-Atmos., 108, 8809, doi:10.1029/2002jd003093, 2003.
Sutton, M. A., Dragosits, U., Tang, Y. S., and Fowler, D.: Ammonia emissions from non-agricultural sources in the UK, Atmos. Environ., 34, 855–869, doi:10.1016/S1352-2310(99)00362-3, 2000.

Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia (NH$_3$) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905–2922, doi:10.5194/acp-14-2905-2014, 2014.

Velthof, G. L., van Bruggen, C., Groenestein, C. M., de Haan, B. J., Hoogeveen, M. W., and Huijmsmans, J. F. M.: A model for inventory of ammonia emissions from agriculture in the Netherlands, Atmos. Environ., 46, 248–255, doi:10.1016/j.atmosenv.2011.09.075, 2012.

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilman, D.: Human alteration of the global nitrogen cycle: sources and consequences, Ecol. Appl., 7, 737–750, doi:10.2307/2269431, 1997.

Webb, J. and Misselbrook, T. H.: A mass-flow model of ammonia emissions from UK livestock production, Atmos. Environ., 38, 2163–2176, doi:10.1016/j.atmosenv.2004.01.023, 2004.

Webb, J., Ryan, M., Anthony, S. G., Brewer, A., Laws, J., Aller, M. F., and Misselbrook, T. H.: Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model, Atmos. Environ., 40, 7222–7233, doi:10.1016/j.atmosenv.2006.06.029, 2006.

Xiong, Z. Q., Freney, J. R., Mosier, A. R., Zhu, Z. L., Lee, Y., and Yagi, K.: Impacts of population growth, changing food preferences and agricultural practices on the nitrogen cycle in East Asia, Nutr. Cycl. Agroecosys., 80, 189–198, doi:10.1007/s10705-007-9132-4, 2008.

Yamaji, K., Ohara, T., and Akimoto, H.: Regional-specific emission inventory for NH$_3$, N$_2$O, and CH$_4$ via animal farming in south, southeast, and East Asia, Atmos. Environ., 38, 7111–7121, doi:10.1016/j.atmosenv.2004.06.045, 2004.

Yan, X. Y., Akimoto, H., and Ohara, T.: Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia, Global Change Biol., 9, 1080–1096, doi:10.1046/j.1365-2486.2003.00649.x, 2003.

Zhang, W. F., Zhang, F. S., Li, Y. X., Huang, G. Q., and Wu, L.: China Fertilizer Development Report (in Chinese), China Agricultural University Press, Beijing, 2012.

Zhang, X. H., Yan, X. H., Yang, D. G., and Tao, J.: A study on the change of animal husbandry spatio-temporal development in China (in Chinese), Arid Land Geography, 26, 281–285, 2003.
Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and Zhang, F. S.: Agricultural ammonia emissions inventory and spatial distribution in the North China Plain, Environ. Pollut., 158, 490–501, doi:10.1016/j.envpol.2009.08.033, 2010.
Zhang, Y. S., Luan, S. J., Chen, L. L., and Shao, M.: Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China, J. Environ. Manage., 92, 480–493, doi:10.1016/j.jenvman.2010.09.018, 2011.
Zhao, B., Wang, S. X., Wang, J. D., Fu, J. S., Liu, T. H., Xu, J. Y., Fu, X., and Hao, J. M.: Impact of national NO\textsubscript{x} and SO\textsubscript{2} control policies on particulate matter pollution in China, Atmos. Environ., 77, 453–463, doi:10.1016/j.atmosenv.2013.05.012, 2013.
Zhao, D. W. and Wang, A. P.: Estimation of anthropogenic ammonia emissions in Asia, Atmos. Environ., 28, 689–694, 1994.
Zhao, R. F., Chen, X. P., Zhang, F. S., Zhang, H. L., Schroder, J., and Römheld, V.: Fertilization and nitrogen balance in a wheat-maize rotation system in North China, Agron. J., 98, 938–945, doi:10.2134/agronj2005.0157, 2006.
Zhou, J. B., Jiang, M. M., and Chen, G. Q.: Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003, Energ. Policy, 35, 3759–3767, doi:10.1016/j.enpol.2007.01.013, 2007.
Zhu, Z. L., Cai, G. X., Simpson, J. R., Zhang, S. L., Chen, D. L., Jackson, A. V., and Freney, J. R.: Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in North-Central China, Fert. Res., 18, 101–115, 1989.
Table 1. Activity dataset and EFs of other minor NH$_3$ sources used in our study.

Sources	Activity dataset	EFs	Reference
Nitrogen-fixing plants	EOCAY (1981–2013)	0.01 kg NH$_3$ kg$^{-1}$ N	EEA (2006)
Compost of Crop Residues	EOCAY (1981–2013)	0.32 kg NH$_3$ t$^{-1}$	Roe et al. (2004)
Biomass burning			
Forest fires	MODIS Burned Area (2000–2012), CMF (1990), CMF (1989–1998) and SFA (1999–2000)	1.1 g NH$_3$ kg$^{-1}$	Andreae and Merlet (2001)
Grassland fires	MODIS Burned Area (2000–2012)	0.7 g NH$_3$ kg$^{-1}$	Seiler and Crutzen (1980)
Crop residues burning	EOCAY (1981–2013) and NBSC (1985–2013)	0.37 (wheat) g NH$_3$ kg$^{-1}$ 0.32 (maize) 0.88 (others)	Li et al. (2007)
Fuelwood combustion	NBSC (1985–2013)	1.3 g NH$_3$ kg$^{-1}$	Andreae and Merlet (2001)
Human excrement	NBSC (1981–2013a) and NBSC (2003–2013a)	0.787 kg NH$_3$ yr$^{-1}$ cap$^{-1}$	Buijsman et al. (1987), Moller and Schierferdecker (1989), EPBG (2005)
Chemical industry			
Synthetic ammonia	NBSC (1981–2013b)	0.01 kg NH$_3$ t$^{-1}$	EEA (2013)
N fertilizers production	NBSC (1981–2013b)	5 kg NH$_3$ t$^{-1}$	Roe et al. (2004)
Waste disposal			
Wastewater	NBSC (2003–2013a), Du et al. (2006)	0.003 kg NH$_3$ m$^{-3}$	EPBG (2005)
Landfill		0.560 kg NH$_3$ t$^{-1}$	Roe et al. (2004)
Compost		1.275 kg NH$_3$ t$^{-1}$	Roe et al. (2004)
Incineration		0.210 kg NH$_3$ t$^{-1}$	Sutton et al. (2000)
Traffic			
Light-duty gasoline vehicles	CAAM (1983–2013)	0.025 g NH$_3$ km$^{-1}$	Roe et al. (2004)
Heavy-duty gasoline vehicles	CAAM (1983–2013)	0.028 g NH$_3$ km$^{-1}$	Roe et al. (2004)
Light-duty diesel vehicles	CAAM (1983–2013)	0.04 g NH$_3$ km$^{-1}$	Roe et al. (2004)
Heavy-duty diesel vehicles	CAAM (1983–2013)	0.017 g NH$_3$ km$^{-1}$	Roe et al. (2004)
Motorcycles	CAAM (1983–2013)	0.007 g NH$_3$ km$^{-1}$	Roe et al. (2004)
Ammonia escape	CAEPI (2013)	2.3 mg NH$_3$ m$^{-3}$	NEA (2011)
Table 2. Contributions to NH$_3$ emissions (Gg) from various sources from 1980 to 2012.

Year	Synthetic fertilizer	Agricultural soil	N-fixing crop	Compost	Livestock	Biomass burning	Human excrement	Chemical industry	Waste disposal	Traffic	Ammonia escape	Total
1980	2103	175	20	42	2874	214	362	61	5	3	5859	
1981	2077	175	19	43	2900	214	368	60	5	4	5865	
1982	2368	175	20	48	3023	220	375	62	6	4	6299	
1983	2616	175	18	51	3041	219	383	68	7	4	6582	
1984	2812	175	17	54	3124	223	389	74	7	5	6880	
1985	2686	175	18	52	3271	218	397	70	8	6	6900	
1986	2880	175	18	54	3418	226	405	71	7	7	7260	
1987	3015	175	18	57	3523	267	413	82	8	8	7565	
1988	3349	174	17	56	3707	231	420	83	9	9	8055	
1989	3562	174	17	57	3812	224	430	87	10	10	8383	
1990	3474	174	17	63	3886	234	432	89	17	10	8397	
1991	3861	174	16	63	3920	234	435	92	28	12	8835	
1992	3808	174	16	63	4023	234	438	96	36	13	8900	
1993	3803	173	18	66	4270	237	442	93	43	16	9160	
1994	4007	173	19	65	4684	236	424	106	45	18	9775	
1995	4329	173	17	67	5179	242	404	113	57	20	10601	
1996	4720	174	15	74	5339	255	377	130	60	21	11164	
1997	4528	174	16	72	4860	246	353	126	69	23	10467	
1998	4391	174	16	76	5065	255	327	132	75	25	10537	
1999	4331	174	19	76	5133	257	309	139	80	28	10546	
2000	3797	237	21	76	5355	249	283	146	96	31	0.02	
2001	3835	237	22	69	5367	278	271	154	92	25	0.04	
2002	3957	237	21	69	5546	308	269	171	97	36	0.07	
2003	3692	237	22	65	5714	310	253	173	103	45	0.09	
2004	3683	237	21	70	5988	324	234	203	111	50	0.12	
2005	3492	237	21	76	6181	303	209	232	110	58	0.12	
2006	3319	237	21	77	5863	313	200	238	113	67	0.29	
2007	3258	222	19	79	4982	305	195	258	128	78	0.60	
2008	3105	221	20	79	5024	306	185	264	140	90	0.96	
2009	3244	221	20	84	5200	315	169	277	152	107	1.77	
2010	2967	221	20	85	5090	309	182	271	168	130	3.14	
2011	2804	221	19	91	4967	326	131	296	186	153	4.98	
2012	2811	221	18	95	5053	332	121	308	268	174	86.63	9487
Table 3. Comparison of NH₃ emissions (Tg yr⁻¹) from our study with other published results.*

Reference	Base year	Total	Synthetic fertilizer	Husbandry	Biomass burning	Others
Zhao and Wang (1994)	1990	13.6/9.8	6.4/4.0	4.2/4.7		3.0/0.9
Yan et al. (2003)	1995	4.3/4.3				
Streets et al. (2003)	2000	13.6/10.3	6.7/3.8	5.0/5.3	0.8/0.25	1.1/0.95
Yamaji et al. (2004)	1995		5.1/5.2	5.6/5.4		
	2000					
Ohara et al. (2007)	2000				0.5/0.24	
Zhang et al. (2011)	2005		4.3/3.5			
Zhao et al. (2013)	2010		9.8/3.0			
Paulot et al. (2014)	2005–2008	10.4/10.1				
Fu et al. (2015)	2011	3.0/2.8				

* Before and after the slash represent other studies and this study, respectively.
Figure 1. Interannual variation in total NH$_3$ emissions in China from 1980 to 2012; the sources of the emissions were categorized as synthetic fertilizer application, livestock manure, and other sources.
Figure 2. Interannual variation in NH$_3$ emissions from livestock manure for three different rearing systems.
Figure 3. Interannual variation in NH$_3$ emissions from synthetic fertilizer in China from 1980 to 2012; types of synthetic fertilizer were categorized as urea, ABC, and others (AN, AS, and others).
Figure 4. Source contributions (%) to NH₃ emissions in China in (a) 1980, (b) 1996, (c) 2006, and (d) 2012.
Figure 5. Spatial distribution of NH$_3$ emissions in China in 1980, 1990, 2000, and 2012 (from left to right: total emissions, synthetic fertilizer emissions, and livestock emissions).
Figure 6. Comparison of total NH$_3$ emissions between this study and REAS.
Figure 7. Comparison of NH$_3$ emissions from synthetic fertilizers between this study and REAS.