Intense Pulsed Light Alone and in Combination with Erbium Yttrium-Aluminum-Garnet Laser on Small-to-Medium Sized Congenital Melanocytic Nevi: Single Center Experience Based on Retrospective Chart Review

Mi So Lee, Hee Jin Jun, Sang Hyun Cho¹, Jeong Deuk Lee¹, Hei Sung Kim¹

Department of Dermatology, Seoul St. Mary’s Hospital, Seoul, ¹Department of Dermatology, Incheon St. Mary’s Hospital, Incheon, Korea

Background: Treatment of congenital melanocytic nevi (CMN) with intense pulsed light (IPL) has recently produced promising results. Objective: To evaluate the clinical and histological outcomes of small-to-medium sized CMN treated with IPL alone and in combination with erbium: yttrium-aluminum-garnet (Er: YAG) laser. Methods: We performed a retrospective chart review of 26 small-to-medium sized CMN treated as described above. The reduction in visible pigmentation, signs of recurrence and any adverse skin changes were evaluated by two independent clinicians. Results: Seventeen patients completed treatment and were followed-up. Nine were not able to complete treatment due to work, change in residence, and treatment related stress. Ten patients received IPL alone (mean: 10.5 sessions) and 7 underwent treatment with IPL (mean: 7.7 sessions) and Er: YAG/IPL combination therapy (mean: 4.7 sessions). The initial treatment outcome was cleared in 5 patients and excellent in 12. Fourteen patients (82.4%) showed CMN recurrence one year after treatment completion. The histological results from a patient with an excellent clinical outcome showed remnant nevus cells nests in the deep dermis. Conclusion: IPL treatment alone and in combination with Er: YAG laser are not definitive treatments for CMN and should not be considered as first-line treatment. (Ann Dermatol 29(1) 39 ~ 47, 2017)

Keywords- Erbium YAG laser, Intense pulsed light therapy, Nevi, Outcome

INTRODUCTION

Congenital melanocytic nevi (CMN) are benign nevomelanocytic proliferations present at birth or which arise within the first few weeks of life. CMN are classified according to their diameter as small (< 1.5 cm), medium (1.5 ~ 19.9 cm) or large (≥ 20 cm)², where size is a predictor of malignant transformation. The estimated prevalence of CMN is 0.5% to 31.7%³, and is a common presentation for dermatologists. Treatment of CMN varies depending on the patients’ age, psychological effects, lesion size and location. Over the past decade, many CMN treatments have been described⁴. Excision has been the first-line treatment, especially for lesions with a high risk of malignant transformation⁵. While bulk removal of the nevus cells is possible, the associated risks include sepsis, scarring and restrictions in joint mobility⁶. The incidence rate of melanoma in small and medium CMN is < 1%⁷-¹⁰. Therefore,
these cases, the main aim of treatment is to reliably remove the pigmented skin with minimal scarring. With the evolution of laser and light technology, a number of lasers and intense pulsed light (IPL) have been applied to small and medium sized CMN. Although effective, removal of the deep-seated nevus cells in CMN is expected to be difficult using IPL alone. Recent case reports have described successful treatment of small sized and medium sized CMN combining erbium: yttrium-aluminum-garnet (Er: YAG) lasers with long pulsed laser or IPL. The exposure of deep-seated nevomelanocytes to IPL or long pulse laser forms the basis of combination treatment, along with the additional removal of superficial pigmented lesions and vascular lesions.

We herein present the clinical and histological outcomes of small-to-medium sized CMN treated by IPL alone and in combination with Er: YAG laser.

MATERIALS AND METHODS

The study was approved by the institutional review board of the Catholic Medical Center, Seoul, Korea (IRB no. XC15RIS0049KO). We retrospectively screened all patients who received IPL alone or in combination with Er: YAG laser under the diagnosis of small-to-medium sized CMN. Patients with incompatible clinical assessment or biopsy results were excluded. Data regarding patient age at referral, sex, location and size of the nevi, details of treatment, and complications were collected.

Laser treatment

Patients were counseled regarding the risks and benefits of IPL and informed consent for treatment was obtained from the patient or parents (in cases where the patient was under 20 years of age). CMN lesions were photographed at referral, sex, location and size of the nevi, details of treatment, and complications were collected. IPL therapy using non-coherent broad-spectrum light has been effectively used for hair removal and for treating superficial pigmented lesions and vascular lesions. Although effective, removal of the deep-seated nevus cells in CMN is expected to be difficult using IPL alone. Recent case reports have described successful treatment of small sized and medium sized CMN combining erbium: yttrium-aluminum-garnet (Er: YAG) lasers with long pulsed laser or IPL. The exposure of deep-seated nevomelanocytes to IPL or long pulse laser forms the basis of combination treatment, along with the additional removal of superficial pigmented lesions and vascular lesions.

We herein present the clinical and histological outcomes of small-to-medium sized CMN treated by IPL alone and in combination with Er: YAG laser.

The study was approved by the institutional review board of the Catholic Medical Center, Seoul, Korea (IRB no. XC15RIS0049KO). We retrospectively screened all patients who received IPL alone or in combination with Er: YAG laser under the diagnosis of small-to-medium sized CMN. Patients with incompatible clinical assessment or biopsy results were excluded. Data regarding patient age at referral, sex, location and size of the nevi, details of treatment, and complications were collected.

Laser treatment

Patients were counseled regarding the risks and benefits of IPL and informed consent for treatment was obtained from the patient or parents (in cases where the patient was under 20 years of age). CMN lesions were photographed at referral, sex, location and size of the nevi, details of treatment, and complications were collected. IPL therapy using non-coherent broad-spectrum light has been effectively used for hair removal and for treating superficial pigmented lesions and vascular lesions. Although effective, removal of the deep-seated nevus cells in CMN is expected to be difficult using IPL alone. Recent case reports have described successful treatment of small sized and medium sized CMN combining erbium: yttrium-aluminum-garnet (Er: YAG) lasers with long pulsed laser or IPL. The exposure of deep-seated nevomelanocytes to IPL or long pulse laser forms the basis of combination treatment, along with the additional removal of superficial pigmented lesions and vascular lesions.

We herein present the clinical and histological outcomes of small-to-medium sized CMN treated by IPL alone and in combination with Er: YAG laser.
al. 2017. 41

Table 1. Overview of CMN patients who received IPL treatment (IPL alone or in combination with Er: YAG laser)

No.	Sex/age at start of treatment (yr)	Location	Size (cm)	No. of biopsy	No. of IPL Tx	No. of Er: YAG/IPL Tx	Length of treatment and follow-up (yr)	Initial outcome (at treatment completion)	FU outcome (at FU at least after a year)	Complication	Other findings
1	F/28	Right arm	5 x 2	1	8	7	4	4	3	Incomplete Tx	
2	M/13	Left arm	2 x 2	1	1	4	2	5	5	Incomplete Tx	
3	F/17	Right infraorbital area	1.5 x 1	1	13	4	5	5	5	Incomplete Tx	
4	M/24	Back	6 x 3	2	9		4	Incomplete Tx	Incomplete Tx		
5	M/6	Left calf	2.5 x 1.5	1	4	5	4	4	3	Incomplete Tx	
6	F/4	Chin	2 x 2	3	8	5	4	4	2	Incomplete Tx	
7	M/8	Right arm	8 x 3.5	1	5		3	Incomplete Tx, stress	Incomplete Tx		
8	F/6	Sternum	5.5 x 5	3	16	2	4	Incomplete Tx	Incomplete Tx		
9	M/5	Right arm	2 x 2	1	8		4	5	3	Bullae, mild scar	
10	M/19	Neck	7 x 4	3	10		4	4	4	Bullae, mild scar	
11	F/12	Abdomen	5 x 4	3	8		4	4	3	Incomplete Tx	
12	F/5	Right cheek	1.5 x 1	2	8		5	4	3	Incomplete Tx	
13	F/6	Chin	1.5 x 1	2	7	3	4	4	3	Incomplete Tx	
14	F/20	Left elbow	6 x 3	2	24		4	4	4	Incomplete Tx	
15	F/5	Left cheek	7.5 x 3	2	23	5	5	Incomplete Tx	Incomplete Tx		
16	F/5	Right perioral area	1.5 x 1	2	8	2	4	4	4	Incomplete Tx	
17	M/2 mo	Right leg	5.5 x 5.5	1	16	8	4	Incomplete Tx	Incomplete Tx		
18	F/5	Left calf	2 x 1	4		3	4	3	Incomplete Tx		
19	F/9	Right hand dorsum	3 x 2.5	1	14	10	3	4	2	Incomplete Tx	
20	M/9	Right thigh	9 x 4	4	6	3		Incomplete Tx, stress	Incomplete Tx		
21	F/28	Left calf	1.5 x 1	3	5	1	4	5	4	Incomplete Tx	
22	F/10	Left cheek	1 x 1	1	5		5	5	5	Bullae, Incomplete Tx	
23	M/13	Right arm	9 x 6	1	14		5	Incomplete Tx, stress	Incomplete Tx		
24	M/4	Right cheek	4 x 2	7		5		Incomplete Tx, stress	Incomplete Tx		
25	F/28	Left hand dorsum	5 x 3	1	13		5	4	2	Incomplete Tx	
26	F/21	Right arm	1.5 x 1.5	10		5	5	5	4	Incomplete Tx	

Treatment outcome 5-point scale: 1=poor (no change, with lightening of 15% or less); 2=fair (slight improvement, with lightening of 16%~50%); 3=good (improvement, with lightening of 51%~75%); 4=excellent (lightening of 76%~95%); and 5=clear (near-complete disappearance of the lesion, with lightening of 95% or more).

CMN: congenital melanocytic nevi, IPL: intense pulsed light, Er: YAG: erbium: yttrium-aluminum-garnet, Tx: treatment, FU: follow-up, F: female, M: male.
combination therapy (mean: 4.7±3.1 sessions) (Fig. 1, Table 2).

Of the 17 treatment complete nevi, 7 (41.2%) were small and 10 (58.8%) were medium in size. Four patients (57.1%) with small CMN received IPL alone with a mean of 9.5±4.2 sessions. Three (42.9%) small CMN were treated with IPL (mean: 6.7±1.5 sessions) and Er: YAG/IPL combination therapy (mean: 2±1 sessions). Six patients (60.0%) with medium sized CMN received IPL alone with a mean of 11.2±6.9 sessions. The remaining four (40%) medium sized CMN were treated with IPL (mean: 8.5±4.1 sessions) and Er: YAG/IPL combination therapy (mean: 6.8±2.4 sessions) (Fig. 1, Table 2).

The treatment outcome measured at treatment completion was clear in 5 patients and excellent in 12 (Fig. 2). In the small CMN group, 4 were scored clear and 3 excellent (mean: 4.6±0.5), whereas in the medium-sized CMN group, one was scored clear and 9 excellent (mean: 4.1±0.3). Follow-up evaluation, which was generally made at least one year after treatment completion, showed recurrence in 14 cases (82.4%) (Fig. 3). The overall follow-up scores were 2 clear, 3 excellent, 7 good and 5 fair. The small CMN scored as follows: 2 clear, 2 excellent, 2 good and one fair (mean: 3.7±1.1). The medium-sized CMN scored as follows: 1 excellent, 5 good and 4 fair (mean: 2.7±0.7) (Fig. 1, Table 3).

Histologically, the skin biopsy specimens showed features of a compound nevus with nevomelanocytic cell infiltration in the deep dermis and around the hair follicles. Epidermal detachment and profound collagen degeneration in the superficial and mid-dermis were the findings of a biopsy specimen taken immediately after IPL (Fig. 4).

Fig. 1. Flow chart of patients with congenital melanocytic nevi (CMN) treated with intense pulsed light (IPL) alone and in combination with erbium: yttrium-aluminum-garnet (Er: YAG) laser. FU: follow-up.
Table 2. Number of IPL treatment alone and the number of Er: YAG/IPL combined between the small and medium sized CMN

	No. of IPL Tx alone	Paired t-test	No. of Er: YAG+IPL combined	Paired t-test
IPL alone (n=10)	10.5±5.8			
Small CMN (n=4)	9.5±4.2			
Medium sized CMN (n=6)	11.2±6.9	p=0.681		
IPL alone+Er: YAG/IPL combined (n=7)	7.7±3.2		4.7±3.1	
Small CMN (n=3)	6.7±1.5	p=0.504	2±1	p=0.024
Medium sized CMN (n=4)	8.5±4.1			

Values are presented as mean±standard deviation.
IPL: intense pulsed light, Er: YAG: erbium: yttrium-aluminum-garnet, CMN: congenital melanocytic nevi, Tx: treatment.

In terms of complication, 2 patients (7.7%) experienced bullae from IPL therapy (Fig. 5) and one patient (3.8%) experienced focal scarring later on. Treatment related crusting, erythema and post-inflammatory hyperpigmentation and changes in skin texture were experienced by all, but faded with time and was not so significant by the time of their follow-up visit post treatment completion.

One patient who received 23 sessions of IPL and 5 sessions of Er: YAG/IPL combination therapy achieved improvement of CMN but was not able to complete treatment due to change in residence. In the follow-up photos sent from her mother, significant re-pigmentation was noticed. We recommended staged excision which was successfully performed by a derm-surgeon (Fig. 6).

DISCUSSION

IPL emits non-coherent, broad-spectrum light, usually in the 500 ~ 1200 nm range. Apart from wavelength, a wide range of treatment parameters including pulse duration, pulse sequences and pulse delay time are flexible with IPL, allowing it to eliminate hair, treat vascular lesions and remove pigment. Treatment of pigmented melanocytic lesions by means of IPL has been the object of recent research.
Table 3. Initial treatment outcome and the follow-up outcome between the small CMN and the medium sized CMN

	Small CMN (n=7)	Medium sized CMN (n=10)	Paired t-test
Initial outcome at treatment completion	4.6±0.5	4.1±0.3	p=0.037
FU outcome	3.7±1.1	2.7±0.7	p=0.033

Values are presented as mean±standard deviation. Treatment outcome 5-point scale: 1=poor (no change, with lightening of 15% or less); 2=fair (slight improvement, with lightening of 16%∼50%); 3=good (improvement, with lightening of 51%∼75%); 4=excellent (lightening of 76%∼95%); and 5=clear (near-complete disappearance of the lesion, with lightening of 95% or more).

CMN: congenital melanocytic nevi, FU: follow-up.

Fig. 4. Epidermal detachment and profound collagen degeneration in the superficial and mid dermis are the findings of a biopsy specimen from patient 1 taken immediately after intense pulsed light treatment (×50; A: H&E, B: periodic acid-Schiff [PAS]).

Fig. 5. (A) Photo before treatment. (B) Patient 10 experiences bullae following intense pulsed light therapy. (C) congenital melanocytic nevi is cleared at the time of treatment completion with mild scarring and erythema. (D) Follow-up 29 months after treatment completion.
Fig. 6. (A) Photo before treatment. (B) Patient 15, who receives 23 sessions of intense pulsed light (IPL) and 5 sessions of erbium:yttrium-aluminum-garnet/IPL combination therapy achieves improvement of congenital melanocytic nevi but is not able to complete treatment due to change of residence. (C) Follow-up (FU) photo sent from her mother, 5 months after the last treatment shows significant repigmentation. (D) Photo FU after the first staged excision.

are compound nevi, we presumed that the broad wavelength of IPL would be beneficial in CMN treatment. We have applied a 590 nm filter (590 ∼ 1,200 nm) and a 755 nm filter (755 ∼ 1,200 nm) to our CMN patients, targeting both the superficial and deep melanosomes. However, to our disappointment, a skin biopsy taken immediately after IPL treatment revealed the effective depth of IPL to be the mid-dermis, sparing the deep nevus cells.

Pulse width is also an important factor to consider. The IPL pulse duration is on the order of ms whereas the thermal relaxation time of melanosomes is 70 ∼ 250 ns. The long pulse duration of IPL allows less spatially selective, but more gentle, heating of the target chromophores (melanosomes), making it more effective than Q-switched mode lasers for the treatment of melanocytic nevi as they target individual cells and clusters of nevus cells. However, with the high density of melanosomes in CMN, heat accumulation can be excessive at times, resulting in bullae formation.

Among our patients, 2 (7.7%) experienced bullae formation; both patients had dark colored (heavily pigmented) CMN. We advise reducing the fluence energy in treating such patients. For the results, a Er: YAG/IPL combination was used less often for small CMN, but the number of IPL sessions required for completion of treatment was similar between the small and medium sized CMN. The findings were slightly different from what we had expected, and suggest that the depth rather than the size of the CMN is the primary determinant of treatment number. The small CMN were found to have a better outcome (measured at the time of treatment completion) and follow-up outcome (generally made at least one year after treatment completion) with a comparatively lower recurrence rate (71.4%) to medium sized CMN (90%). Recurrence was observed in the majority of treatment completed patients (82.4%) suggesting the presence of a remnant nevus. In fact, a skin biopsy from one of our treatment completed CMN patient showed remnant nevus cells in the deep dermis confirming the hypothesis (Fig. 7).

Three patients (ages 4, 8, and 9 years) were not able to complete treatment due to treatment related stress. For anesthesia, we have routinely applied EMLA cream with lidocaine 2.5% and prilocaine 2.5% under occlusion for 40 ∼ 50 minutes. In some cases, lidocaine injection was added. Many Asian parents disapprove of the use of general anesthesia and its avoidance was initially thought as an advantage of IPL treatment over surgery. However, our results suggest that local anesthesia may not be sufficient for IPL on CMN, especially in young children.

Unlike most lasers, IPL has a large spot size (15 mm×35 mm in case of Lumenis One™) and is convenient in treating bigger lesions. From our experience, it took less than 5 minutes to treat small to medium sized CMN with IPL. Initially, the combination of broad wavelength, the ms pulse duration, and the large spot size of IPL was felt very much suitable for CMN treatment. IPL alone or in combination with Er: YAG laser effectively decreased the clinical pigmentation and destroyed the superficial nevus cells without significant scarring. Unfortunately, due to the persistence of the deep nevus cells, there was high recurrence. Compared to CMN, acquired melanocytic nevi are more superficially located, and may be successfully removed with IPL alone or in combination with Er: YAG laser effectively decreased the clinical pigmentation and destroyed the superficial nevus cells without significant scarring. Unfortunately, due to the persistence of the deep nevus cells, there was high recurrence. Compared to CMN, acquired melanocytic nevi are more superficially located, and may be successfully removed with IPL alone or in combination with Er: YAG laser effectively decreased the clinical pigmentation and destroyed the superficial nevus cells without significant scarring. Unfortunately, due to the persistence of the deep nevus cells, there was high recurrence.
Despite the limitations, we feel that our study is meaningful in that it is the first large-scale study to evaluate the efficacy and safety of IPL application on CMN. The findings of this study suggest that IPL alone and in combination with Er: YAG laser are not definitive treatments and should not be considered as the first-line treatment.

ACKNOWLEDGMENT

This study was supported by a grant of the Korean Healthcare technology R & D project, Ministry of Health & Welfare, Republic of Korea (Grant No. HN15C0105).

REFERENCES

1. Krengel S. Nevogenesis—new thoughts regarding a classical problem. Am J Dermatopathol 2005;27:456-465.
2. Kopf AW, Bart RS, Hennessey P. Congenital nevocytic nevi and malignant melanomas. J Am Acad Dermatol 1979;1:123-130.
3. Alikhan A, Ibrahimi OA, Eisen DB. Congenital melanocytic nevi: where are we now? Part I. Clinical presentation, epidemiology, pathogenesis, histology, malignant transformation, and neurocutaneous melanosis. J Am Acad Dermatol 2012;67:495.e1-e17.
4. Ibrahimi OA, Alikhan A, Eisen DB. Congenital melanocytic nevi: where are we now? Part II. Treatment options and approach to treatment. J Am Acad Dermatol 2012;67:515.e1-e13.
5. Marghoob AA, Agero AL, Benvenuto-Andrade C, Dusza SW. Large congenital melanocytic nevi, risk of cutaneous melanoma, and prophylactic surgery. J Am Acad Dermatol 2006;54:868-870.
6. Kinsler VA, Chong WK, Aylett SE, Atherton DJ. Complications of congenital melanocytic naevi in children: analysis of 16 years’ experience and clinical practice. Br J Dermatol 2008;159:907-914.
7. Dawson HA, Atherton DJ, Mayou B. A prospective study of congenital melanocytic naevi: progress report and evaluation after 6 years. Br J Dermatol 1996;134:617-623.
8. Berg P, Lindelöf B. Congenital melanocytic naevi and cutaneous melanoma. Melanoma Res 2003;13:441-445.
9. Tannous ZS, Mihm MC Jr, Sober AJ, Duncan LM. Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management. J Am Acad Dermatol 2005;52:197-203.

10. Zaal LH, Mooi WJ, Klip H, van der Horst CM. Risk of malignant transformation of congenital melanocytic nevi: a retrospective nationwide study from The Netherlands. Plast Reconstr Surg 2005;116:1902-1909.

11. Al-Hadithy N, Al-Nakib K, Quaba A. Outcomes of 52 patients with congenital melanocytic naevi treated with UltraPulse Carbon Dioxide and Frequency Doubled Q-Switched Nd-Yag laser. J Plast Reconstr Aesthet Surg 2012;65:1019-1028.

12. Lee JM, Kim IH, Rhyu II, Ryu HJ. Combined intense pulsed light and Er:YAG laser treatment of congenital melanocytic nevus. J Cosmet Laser Ther 2015;17:162-164.

13. Moreno-Arias GA, Ferrando J. Noncoherent-intense-pulsed light for the treatment of relapsing hairy intradermal melanocytic nevus after shave excision. Lasers Surg Med 2001;29:142-144.

14. Minakawa S, Takeda H, Korekawa A, Kaneko T, Urushidate S, Sawamura D. Q-switched ruby laser therapy and long-term follow-up evaluation of small to medium-sized congenital melanocytic naevi. Clin Exp Dermatol 2012;37:438-440.

15. Lee SE, Choi JY, Hong KT, Lee KR. Treatment of acquired and small congenital melanocytic nevi with combined Er:YAG laser and long-pulsed alexandrite laser in Asian skin. Dermatol Surg 2015;41:473-480.

16. Arora H, Falto-Aizpurua I, Chacon A, Griffith RD, Nouri K. Lasers for nevi: a review. Lasers Med Sci 2015;30:1991-2001.

17. Moreno Arias GA, Ferrando J. Intense pulsed light for melanocytic lesions. Dermatol Surg 2001;27:397-400.

18. Martín JM, Monteagudo C, Bella R, Reig I, Jordá E. Complete regression of a melanocytic nevus under intense pulsed light therapy for axillary hair removal in a cosmetic center. Dermatology 2012;224:193-197.

19. Raulin C, Hellwig S, Schönemarck MP. Treatment of a nonresponding port-wine stain with a new pulsed light source (PhotoDerm VL). Lasers Surg Med 1997;21:203-208.

20. Weiss RA, Weiss MA, Marwaha S, Harrington AC. Hair removal with a non-coherent filtered flashlamp intense pulsed light source. Lasers Surg Med 1999;24:128-132.

21. Kawada A, Shiraishi H, Asai M, Kameyama H, Sangen Y, Aragane Y, et al. Clinical improvement of solar lentigines and ephelides with an intense pulsed light source. Dermatol Surg 2002;28:504-508.

22. Goldberg DJ. Current trends in intense pulsed light. J Clin Aesthet Dermatol 2012;5:45-53.

23. Kilmer SL, Lee MS, Grevelink JM, Flotte TJ, Anderson RR. The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose-response study. Arch Dermatol 1993;129:971-978.

24. Bjerring P, Christiansen K. Intense pulsed light source for treatment of small melanocytic nevi and solar lentigines. J Cutan Laser Ther 2000;2:177-181.

25. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;220:524-527.