Bendamustine, etoposide, and dexamethasone to mobilize peripheral blood hematopoietic stem cells for autologous transplantation in non-Hodgkin lymphoma

Adam M. Greenbaum1, Damian J. Green1, Leona A. Holmberg1, Ted Gooley1, Brian G. Till1, Lihua E. Budde2, Heather Rasmussen1, Oliver W. Press1, Ajay K. Gopal1

1Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; 2Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA

Background
Bendamustine is a chemotherapeutic agent that has shown broad activity in patients with lymphoid malignancies. It contains both alkylating and nucleoside analog moieties, and thus, is not commonly used for stem cell mobilization due to concerns that it may adversely affect stem cell collection. Here we describe the lymphoma subset of a prospective, non-randomized phase II study of bendamustine, etoposide, and dexamethasone (BED) as a mobilization agent for lymphoid malignancies.

Methods
This subset analysis includes diffuse large B-cell lymphoma (N=3), follicular lymphoma (N=1), primary mediastinal B-cell lymphoma (N=1), and NK/T-cell lymphoma (N=1). Patients received bendamustine (120 mg/m² IV d 1, 2), etoposide (200 mg/m² IV d 1–3), and dexamethasone (40 mg PO d 1–4) followed by filgrastim (10 mcg/kg/d sc. through collection).

Results
We successfully collected stem cells from all patients, with a median of 7.9×10⁶/kg of body weight (range, 4.4 to 17.3×10⁶/kg) over a median of 1.5 days (range, 1 to 3) of apheresis. All patients who received transplants were engrafted using kinetics that were comparable to those of other mobilization regimens. Three non-hematologic significant adverse events were observed in one patient, and included bacterial sepsis (grade 3), tumor lysis syndrome (grade 3), and disease progression (grade 5).

Conclusion
For non-Hodgkin lymphoma, mobilization with bendamustine is safe and effective.

Key Words
Bendamustine, Stem cell mobilization, Non-Hodgkin lymphoma

INTRODUCTION

Autologous stem cell transplantation (ASCT) is a standard of care for patients with refractory non-Hodgkin lymphoma (NHL) [1]. Bendamustine (Treanda, Teva Pharmaceuticals, Petach Tikva, Israel) is a nitrogen mustard chemotherapeutic agent with a unique mechanism of action. It has both alkylating and anti-metabolite properties, which may allow it to overcome cross-resistance to many other chemotherapeutic agents [2, 3]. Indeed, bendamustine-based regimens can salvage relapsed indolent, diffuse large B-cell, chronic lymphocytic, and T-cell lymphomas [4-7]. When bendamustine is used as a single chemomobilization agent for peripheral blood stem cell (PBSC) mobilization, it results in relatively poor and unpredictable mobilization, even when combined with G-CSF or plerixafor [8]. In order to overcome this limitation, we chose to combine bendamustine with etoposide, which is an effective mobilization agent for patients with refractory lymphoma, and the addition of etoposide to bendamustine can overcome the poor mobilization outcomes of bendamustine alone [9, 10]. We previously showed that a bendamust-
tine-based regimen is effective for mobilization in multiple myeloma [11]. Bendamustine has been used for cytoreduction in lymphoma, followed by mobilization with a different agent [12, 13]. However, no prospective studies have investigated the safety and efficacy of full-dose bendamustine as a stem cell mobilization agent in lymphoma before ASCT. Here, we report the outcomes of patients with lymphoma who were enrolled in the phase II BED mobilization trial.

MATERIALS AND METHODS

This single-center, open-label prospective trial was open to patients with lymphoid malignancies who were planning to undergo ASCT. This trial was approved by the Fred Hutchinson Cancer Research Center/University of Washington Cancer Consortium Institutional Review Board, and written informed consent was obtained from all patients. Eligibility criteria included an ECOG status ≤ 2, absolute neutrophil counts > 1.5×10^9/L, platelet counts > 100×10^9/L, creatinine clearance greater than 50 mL/min (Cockcroft-Gault formula), bilirubin < 1.5 times the upper limit of normal (ULN), and AST and ALT < 2.5 times ULN. Patients were excluded if they had prior resistance to bendamustine, > 4 prior different myelotoxic chemotherapy regimens (e.g., ICE, DHAP, MTX/HiDAC, hyperCVAD), symptomatic cardiopulmonary disease, fludarabine therapy in the preceding 24 months, a prior failed stem cell mobilization attempt, a prior autologous or allogeneic stem cell transplant, known HIV, hepatitis B or C, > 3 cycles of multi-agent myelotoxic salvage chemotherapy within four months of enrollment, prior pelvic/spinal irradiation, or systemic chemotherapy within three weeks of initiating BED.

Treatment and study design

Patients were administered one cycle of BED [bendamustine (120 mg/m^2 IV d 1, 2), etoposide (200 mg/m^2 IV d 1–3), dexamethasone (40 mg PO d 1–4), delivered in an outpatient setting, followed by filgrastim (initially 10 mcg/kg/d sc, starting on day 5 through end of collection)]. Apheresis was initiated when peripheral blood CD34+ cell counts were > 5/µL. The primary endpoint was successful mobilization in over 80% of patients, which was defined as the collection of > 2.0×10^6 CD34+ cells/kg. Adverse events (AEs) were graded using the common terminology criteria of adverse events (CTCAE) v4.0. Secondary endpoints included the number of apheresis cycles that were required to collect a minimum of > 2.0×10^6 CD34+ cells/kg (and ideally > 5×10^6 CD34+ cells/kg) and disease response rate to one cycle of BED. When patients’ absolute neutrophil counts dropped below 500/µL, prophylactic antibiotic therapy (fluoroquinolone) was initiated at the discretion of the treating physician. Standard Center for International Blood and Marrow Transplant Research (CIBMTR) criteria were used for assessing blood count recovery.

Response criteria

The response in patients with measurable disease was a secondary endpoint and was assessed after a single cycle of BED. Disease definitions, evaluation criteria, endpoint definitions, and response criteria were defined by the standard NCI criteria for lymphoid malignancies [14].

RESULTS

Patient characteristics

From July 2011 to September 2013, we enrolled six patients with lymphoma, three of whom had diffuse large B-cell lymphoma, one with primary mediastinal B-cell lymphoma, one with follicular lymphoma, and one with NK/T-cell lymphoma. The patient characteristics are described in Table 1. Patients were a median age of 58.5 years (range, 46–65). The patients had received a median of two lines of prior cytotoxic therapy (range, 1–3) with a median number of 8.5 cycles (range, 6–9), and one patient had received prior radiotherapy. Three of the patients had chemorefractory lymphoma with residual disease at enrollment, after their most recent cycle of prior therapy (Table 2).

Stem cell mobilization and collection

All patients were successfully mobilized, and no chemotherapy dose reductions were required. The median number of CD34+ cells collected was 7.9×10^6/kg (range, 4.35 to 17.3×10^6). Stem cells were collected at a median of 13 days (range, 11–21) after the start of mobilization. The median number of apheresis days was 1.5 (range, 1–3). The patient with NK/T cell lymphoma received an increased dose of G-CSF, to 16 mcg/kg/bid, due to prolonged neutropenia and a concurrent infection. This patient ultimately received plerixafor on days 20 and 21 after BED and successfully mobilized adequate stem cells (Table 2). Furthermore, this patient had previously received four cycles of vincristine/doxorubicin/cyclophosphamide, followed by four courses of high dose methotrexate/dexamethasone/ifosfamide/etoposide/L-asparaginase. The patient with primary mediastinal B-cell lymphoma also received a G-CSF dose increase to reduce the risk of infection in the setting of neutropenia. This patient had previously received six cycles of R-CHOP, three cycles of R-ICE, and one cycle of ESHAP before proceeding to BED mobilization.

Table 1. Patient characteristics and outcomes.

No.	Gender	Age	Diagnosis	Stage	Prior regimens	Cycles prior therapy	Prior XRT
1	F	49	PMBCL	IV	3	10	N
2	M	60	DLBCL	IIIA	2	8	N
3	F	57	NK/T-cell	I	2	8	N
4	M	65	DLBCL	IV	1	6	N
5	F	61	DLBCL	IV	2	9	N
6	M	46	DLBCL	IV	2	9	N
Table 2. Responses to BED.

No.	Diagnosis	Cells collected (×10⁶/kg)	Days collected	Time to collection (days)	G-CSF dose increase	Plerixafor	Residual disease	Response
1	PMBCL	4.4	3	16	Y	N	Y	PD
2	FL	17.3	1	12	N	N	Y	PR
3	NK/T-cell	7.6	2	21	Y	Y	N	PD
4	DLBCL	5.1	2	13	N	N	Y	PD
5	DLBCL	10.8	1	11	N	N	N	Mixed
6	DLBCL	8.3	1	12	N	N	N	Unable to be evaluated

Abbreviations: PD, progressive disease; PR, partial response.

Table 3. Treatment-related toxicities.

Grade	Leukopenia	Lymphopenia	Neutropenia	Thrombocytopenia	Elevated AST	Elevated Bilirubin	Hypophosphatemia	Pruritis	Bacterial sepsis	Tumor lysis syndrome	Progressive disease	SAE
1	0	0	0	0	0	0	0	1	0	0	0	N
2	0	0	0	1	0	0	0	0	0	0	0	Y
3	0	0	0	2	0	0	0	0	0	0	1	N
4	0	0	0	3	0	0	0	0	0	0	0	N
5	0	0	0	0	0	0	0	0	0	1	0	Y

DISCUSSION

Decreasing lymphoma burden prior to transplant has been shown to improve transplant outcomes [15]. Currently, salvage chemotherapy is commonly used for mobilization, and the most common regimen is ifosfamide, etoposide, and carboplatin (ICE) [16]. While etoposide alone is an effective mobilization agent, many patients have been exposed to this drug during prior cytotoxic chemotherapy. For diseases that are refractory to these chemotherapies, there is an unmet need for mobilization agents that do not have cross resistance. Bendamustine is an attractive agent for mobilization because it may have less cross-resistance to other agents. However, there are concerns that it may adversely affect stem cell collection or engraftment. Here, we show that mobilization with a single cycle of BED in non-Hodgkin lymphoma is sufficiently safe and effective, even in patients who are heavily pre-treated. All patients met the primary endpoint of adequate CD34⁺ cell mobilization, with a median of 7.9×10⁶ cells/kg. Two of the six patients required increased doses of G-CSF, and one required plerixafor. Adequate stem cell collection required a median of 1.5 days of apheresis. This compares favorably to ICE±rituximab with routine G-CSF, which yields cell numbers of 5.07×10⁶ cells/kg over a median of two apheresis days. Additionally, the toxicity that has been associated with BED is similar to that of this regimen [17]. The addition of bendamustine to etoposide also has improved effects over single agent bendamustine, which only mobilizes poorly, even when G-CSF and plerixafor are administered [8].

All of the patients who received transplants engrafted within 21 days. As part of the larger phase II trial, we showed that BED was effective for mobilization in multiple myeloma [11]. This study extends those results to demonstrate that BED can also be successfully used for mobilization in non-Hodgkin lymphoma.

We also evaluated the efficacy of BED as a secondary endpoint. After a single cycle of this regimen, we only observed anti-tumor activity in patients who were previously responsive to R-CHOP, relapsed, and then achieved a CR to R-ICE. He remained in remission after chemomobilization.
Bendamustine, a drugs that displays a distinct pattern cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin Cancer Res 2008;14:309-17.

4. Robinson KS, Williams ME, van der Jagt RH, et al. Phase II multicenter study of bendamustine plus rituximab in patients with relapsed indolent B-cell and mantle cell non-Hodgkin’s lymphoma. J Clin Oncol 2008;26:4473-9.

5. Ohmachi K, Niitsu N, Uchida T, et al. Multicenter phase II study of bendamustine plus rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2013;31:2103-9.

6. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2011;29:3559-66.

7. Damaj G, Gressin R, Bouabdallah K, et al. Results from a prospective, open-label, phase II trial of bendamustine in refractory or relapsed T-cell lymphomas: the BENTLY trial. J Clin Oncol 2013;31:104-10.

8. Gac AC, Azar N, Daguidau E, et al. Does bendamustine impact the mobilization of peripheral blood stem cells? A multicenter retrospective study of 23 cases. Leuk Lymphoma 2016;57:1149-53.

9. Reiser M, Josting A, Draube A, et al. Successful peripheral blood stem cell mobilization with etoposide (VP-16) in patients with relapsed or resistant lymphoma who failed cyclophosphamide mobilization. Bone Marrow Transplant 1999;23:1223-8.

10. Green DJ, Bensinger WI, Holmberg L, et al. Bendamustine (Treanda®), etoposide and dexamethasone (BED) followed by GCSF effectively mobilizes autologous peripheral blood hematopoietic stem cells. Blood (ASH Annual Meeting Abstracts) 2012;120(Suppl):abst 4126.

11. Green DJ, Bensinger WI, Holmberg LA, et al. Bendamustine, etoposide and dexamethasone to mobilize peripheral blood hematopoietic stem cells for autologous transplantation in patients with multiple myeloma. Bone Marrow Transplant 2016;51:1330-6.

12. Chen RW, Li H, Bernstein SH, et al. RB but not R-HCVAD is a feasible induction regimen prior to auto-HCT in frontline MCL: results of SWOG Study S1106. Br J Haematol 2017;176:759-69.

13. Armand P, Redd R, Bsat J, et al. A phase 2 study of rituximab-bendamustine and rituximab-cytarabine for transplant-eligible patients with mantle cell lymphoma. Br J Haematol 2016;173:89-95.

14. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25:579-86.

15. Cowan AJ, Stevenson PA, Cassaday RD, et al. Pretransplantation minimal residual disease predicts survival in patients with mantle cell lymphoma undergoing autologous stem cell transplantation in complete remission. Biol Blood Marrow Transplant 2016;22:380-5.

16. Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2004;103:3684-8.

17. Fox CP, McMillan AK, Bishton MJ, Haynes AP, Russell NH. IVE (ifosfamide, epirubicin and etoposide) is a more effective stem cell mobilisation regimen than ICE (ifosfamide, carboplatin and etoposide) in the context of salvage therapy for lymphoma. Br J Haematol 2008;141:244-8.