Electrochemical determination of vitamin B$_6$ (pyridoxine) by reformed carbon paste electrode with iron oxide nanoparticles

Ayah Moustafa1 · Renad S. El-Kamel1 · S. Abdelgawad1 · A. M. Fekry1 · M. Shehata1

Received: 10 May 2022 / Revised: 30 June 2022 / Accepted: 3 July 2022 / Published online: 22 July 2022
© The Author(s) 2022

Abstract
This work aims to introduce a simple high-performance sensitive electrochemical sensor of reformed carbon paste (CP) with iron oxide nanoparticles (IONs). It was developed to determine one of the most important drugs called vitamin B$_6$ in a medium of phosphate buffer (PBS) over pH ranging from 5.0 to 8.0. The electrochemical and surface characterization was achieved by different techniques comprising electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and scanning electron microscopy (SEM). The studied effects were, pH, buffer, interference, scan rate, accumulation time, and calibration plot. The sensitive electrode produced a linear calibration curve in a concentration range from 8.88 up to 1000.0 µM, with limits of detection and qualification estimated at 9.06 and 30.2 µM, respectively. Also, this method was established in human urine real samples and pharmaceutical drugs which have been shown a good result for vitamin B$_6$ detection.

Keywords Vitamin B$_6$ · Iron oxide NPs · Phosphate buffer · Urine · Centrum multivitamin

Introduction
Every day, our body produces muscles, skin, and bones; also, it sends thousands of nerve signals between body and brain. But to have the opportunity for doing all of this, some useful raw materials are needed by your body, which contains 30 or more vitamins, minerals, and certain nutrients that the body cannot manufacture in enough quantities by itself [1]. Vitamins are nutrients essential for doing a various important bodily function as the generation of energy and red blood cell productions for managing anemia. It needs our body about 13 vitamins; eight of them construct the water soluble of a group B vitamins. One of such things is vitamin B$_6$ (pyridoxine) which acts as antioxidant, aids in the metabolism of protein, helps in neurotransmitters and hemoglobin production [2, 3]; may improve mood by reducing depression symptoms [4–7]; may be useful in treating symptoms of PMS [8]; handles nausea during pregnancy [9], promotes eye health for preventing eye diseases [10–14]; reduces Alzheimer’s [15–17], heart disease [18–21], and cancer risks [22, 23]; and may treat inflammation associated with rheumatoid arthritis [24–27]. Vitamin B$_6$-rich foods are chickpeas, turkey, fish (salmon, tuna), starchy vegetables, potatoes, bananas, meats, organ meats, fortified cereals, and whole grains [28]. The RDA (recommended dietary allowance) is 1.7 mg and 1.5 mg for men and women over 50, respectively [2, 29, 30].

Several studies have examined numerous analytical approaches for detecting vitamin B$_6$ including HPLC, spectrophotometric methods, electrophoresis, and fluorimetric methods. All those methods show little flexibility and portability, and also, they are time consuming. Electrocatalytic methods have received great attention in present as they show simple procedure, high sensitivity, fast response, and good accuracy [31–35]. Carbon paste electrodes (CPEs) and chemically modified CPEs are well recognized due to their vast applicable potential window, chemical inertness, low residual background current, ease of fabrication, low cost, excellent stability, low detection limits, and safe disposability after the use with diverse sorts of modulators [31, 36, 37]. Various previous studies for electrochemical techniques used to detect vitamin B$_6$ were mentioned as the determination of vitamin B$_6$ by using vanadium(III) Schiff base complex modified GCE [38], determination of vitamin B$_6$ in preparation of pharmaceutical...
compounds by cyclic voltammetry with a copper(II) hexacyano-ferrate(III) modified CPE [39], voltammetric sensor for simultaneous determination of vitamin B₆ and vitamin C using ZrO₂ nanoparticle/ionic liquids CPE in food samples [40]. So, we can say that electrochemical sensors are ideal systems to monitor insert of biological compound using portable devices especially when using the low-cost carbon paste electrode doped with nanoparticle like iron oxide nanoparticles (IONs) in this study [36, 41–44].

Nanomaterials combining electrochemical sensors for vitamin B₆ assurance are an amazing class of materials because of their special multi-functionality. Iron oxides (compounds) are a natural compound that could be synthesized easily in lab as a result of combination of iron and oxygen chemically. There are about 16 identified iron oxides including oxides, hydroxides, and oxide-hydroxides. These minerals are produced as a result of aqueous reactions under various pH and redox conditions. O, Fe, and/or OH are included in the basic composition, but differ in the valence of iron and the overall crystal structure [45–47]. IONs consist of maghemite (γ-Fe₂O₃) and/or magnetite (Fe₃O₄) particles with a ranging diameter from 1 to 100 nm.

Applications are found in drug delivery, magnetic data storage, biosensing, etc. [48–52]. Because of IONS’ super-paramagnetic properties, they had attracted a considerable interest, and hence, their potential for biomedical applications are arising from its nontoxicity and biocompatibility [53, 54]. Recently, IONs have attracted a great attention due to their unique properties like superparamagnetic, easy separation methodology, surface-to-volume ratio, and a greater surface area. Using a suitable surface chemistry, many chemical, biological, and physical methods have been adopted to synthesize magnetic NPs. Also, it exhibits great prospective in the fields of life sciences like agriculture, environment, and biomedicine [52, 54]. The convenience of using the iron oxide nanoparticle-modified carbon paste electrode (IONCPE) in sensing vitamin B₆ was checked using different voltammetric techniques. This proposed modification for vitamin B₆ detection has confirmed its utility as a sensitive, fast, and easily fabricated electrode with low cost. Both urine and centrum multivitamin samples showed an adequate response toward the newly proposed electrochemical sensor. Till now, no approved article has appeared to be dealing with the detection of vitamin B₆ using IONCPE near the biological pH.

Experimental

Chemicals and reagents

Vitamin B₆ in its pure form (≥ 99.0%) used to prepare its stock solution was purchased from Pharaonia Pharmaceuticals (Egypt). Sodium phosphate dibasic, sodium phosphate monobasic, ammonium hydroxide, sulfuric, hydrochloric, and phosphoric acids used in preparing 0.1 M supporting electrolytes were all purchased from Sigma-Aldrich. Graphite microparticles (<50 μm) was purchased from Merck, Darmstadt, Germany, and mixed with paraffin oil obtained from Aldrich, USA, to prepare CPE. Ferric chloride (FeCl₃) from El-Nasr Pharma and Ferrous sulphate (FeSO₄) from Riedl de Haen were used to prepare IONs.

Ascorbic acid from Merck and caffeine powder from Alpha Chemika (Mumbai, India) were used for the interference studies. Glucose, sucrose, starch, urea, and uric acid were obtained from MISR-Scientific Company. L-(+)-Ascorbic acid was brought from Alpha-Chem., India.

Instruments and methodology

The entire electrochemical experiments were done at room temperature in an ordinary 25.0 mL of three-electrode cell by applying the bare electrode or the IONCPE as working electrode (WE), a platinum rod as counter electrode (CE), and a saturated calomel electrode as reference electrode (RE).

This electrochemical cell was in connection with a Bio-logic SAS model SP-150 potentiostat supplied and a computer-controlled EC-Lab® electrochemical software, France, in order to perform all the electrochemical measurements including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS).

EIS measurements were accomplished using 10 mV ac amplitude over a range of frequency of 100 mHz to 100 kHz. The EC-Lab® software was used to analyze and fit the data with a superlative equivalent model circuit. To determine the pH of the solutions, Adwa 1030 digital pH meter (Romania) was linked to a glass electrode and utilized. Analyzing the electrode’s surface morphology and composition were done using a scanning electron microscope (SEM) (Model Quanta 250 Field Emission Gun) attached with energy-dispersive X-ray (EDX) unit (FEI Company, Japan).

To reach a reproducible result, measurements were repeated for at least three times.

ION preparations

A simple method for preparing IONs by preparing 50.0 mL of 0.2 M Fe⁺² salt solution (FeCl₃) and 50.0 mL of 0.1 M Fe⁺² (FeSO₄) in a proper cup and stirred for 30 min in water bath followed by heating. After that, NH₄OH was added drop wisely until pH 11.0 achieved and stirred further for 20.0 min in the same conditions, finally, let it to cool at room temperature.
IONCPE preparations

IONCPE sensor could be synthesized by hand blending 5.0 g of graphite powder with 3.0 mL of paraffin oil in a clean mortar for about 10 min to obtain a homogeneous paste [55]. After that, 0.05 g of IONs were chemically mixed with the acquired CP; the resulting mixture were then used to fill a hole of 3.0 mm diameter at a Teflon tube end to prepare the IONCPE. Finally, the electrode’s surface was refined and smoothed using a sand paper.

Sensor applications and preparation of real sample

Using two different samples (urine and Centrum multivitamin) and amount of vitamin B6 is being measured using a proper way.

Firstly, for detecting the Vitamin in urine samples we added 0.25 mL of urine to 100.0 mL, 0.1 M of PBS (pH 6.0), (1:400), in order to get rid of any matrix effect. After that we take 22.5 mL from this mixture in the electrochemical cell then make addition till we reach 25.0 mL wisely using vitamin B6 through the standard addition method.

Second, pharmacological samples were prepared by dissolving one tablet into 250.0 mL of distilled water. Then, 2.5 mL from the drug solution were added to 20.0 mL of 0.1 M of PBS (pH 6.0) and gather it with the electrochemical cell and make additions till reaching 25.0 mL wisely using vitamin B6.

Results and discussion

Characterizations of the surface

The surface of the modified electrode morphology was assigned using EDX and SEM analysis as presented in Fig. 1.

CP in Fig. 1A seems like a compact and opaque surface that enhances the good compatibility of graphite powder with the mineral oil and paste formation. The surface of the modified electrode was significantly different, exhibiting additional colony of well mixed iron nanoparticles with the CPE to give the new IONCPE in Fig. 1B. In the same manner, a further magnification for the electrode (Fig. 1C, D) shows the average size of the ION which is nearly 200 nm in size. The existence of iron, oxygen, and carbon peaks was confirmed by EDX data of the IONCPE surface as shown in Fig. 1E, indicating the well electrode preparation.

Electrochemical functioning of vitamin B6 at IONCPE modified sensor

To improve the measurement conditions, different types of buffer solutions such as 0.1 M of Britton–Robinson buffer (B-R), H2SO4, HCl, and 0.1 M of phosphate buffer solution (PBS) were tried out for using as supporting electrolytes. From Fig. 2A, we can see that there is approximately no peak in the case of HCl and H2SO4 solutions. On the other hand, using B-R buffer solution gives wide and broad peak, while PBS exhibited a sharp and clear peak, so making it the proper working solution.

In order to develop any electrochemical sensor, it is necessary to know its performance toward vitamin B6 compared with bare CPE. Checking the sensitivity and validation of using the IONCPE in detecting vitamin B6 was done by CV technique. Figure 2B illustrates the CVs of CPE and IONCPE in 0.1 M of PBS at (pH = 6.0) as supporting electrolyte containing 1.0 mM vitamin B6 with scan rate 0.05 Vs−1. Obviously now the oxidation of vitamin B6 on IONCPE is an irreversible reaction with clear separate oxidation peak appears at peak potential of about 0.78 V and brilliant peak current around 140.0 µA, which is approximately 9.3 times greater than the one of the bare electrode (15.0 µA).

Electrochemical impedance spectroscopy (EIS) studies including both Bode and Nyquist plots shown in Fig. 2C and D, respectively, is an effective tool to confirm the results of the CVs and assure that a higher electrocatalytic activity is attained by IONCPE towards the oxidation of 1.0 mM vitamin B6 than the bare CPE. The Nyquist plot is a semicircle part which indicates that the process is not mainly diffusion but charge transfer dependent. The best fit to the data done using an equivalent circuit shown in Fig. 2D inset with an acceptable error of an average 1%, where R1 represents the resistance of the solution; Q2 is “the constant phase element, CPE,” which related in parallel combination to R2, “the resistance of outer layers”; and C1 is “the double-layer capacitance,” which also combined parallel with R3, “the inner layer resistance” [56–60]. Due to surface roughness, an empirical exponent (α = 0 to 1) is proposed to monitor the deviation from a capacitive ideality behavior. For ideal capacitor, it is always corresponding to α = 1, whereas at α = 0.5, it becomes the CPE in Warburg component [61–66]. Table 1 introduces the greatest fitting values obtained from the equivalent circuit for the two electrodes’ impedance data, BCPE and IONCPE. The resistance value of the solution, R1, was almost constant for each electrode within the experimental errors limits. IONCPE demonstrate relatively greater capacitance values or lower impedance values compared to BCPE, indicating a more conducting behavior and to confirm the highest oxidation peak current that was achieved from CV results.

Effect of solution pH

The CV technique revealed the effect of changing the pH of the solution on the electro-oxidation of vitamin B6 at a concentration of 1.0 mM in 0.1 M PBS (pH 5.0–7.0) at
IONCPE (Fig. 3A). It is clear that the electro-oxidation of vitamin B₆ is pH dependent due to the complex distribution of species resulting from acid base and hydration equilibria. In an acidic environment (pH 5.0), the current peak expands and begins to disappear, which can be attributed to the protonation of the vitamin B₆ molecule, which is electroactive only in its unprotonated form. As the pH
increases, an optimal peak appears and for this work so that the optimal operating pH has been set to be 6.0.

The pH influence on the current peak (Fig. 3A, inset) shows that the current increases as the pH rises from 5.0 to 6.0, then drops as the pH rises, confirming the process of vitamin B₆ protonation in an acidic media and becoming electro-inactive.

Also, the peak current was decreasing with increased solution pH and almost highest in the pH 6.0 as it is expected that the vitamin is in an anionic form only in very strong basic solution (pH > 9.0) due to the deprotonating of the (−OH) group bonded to the pyridinic ring. This may also cause to a decrease in the peak current. On the other hand, decreases of anodic peak current in the high basic pH may also be attributed to the changes in electrostatic interaction between vitamin B₆ and IONs and the changes in electrode reaction rates. Also, the influence of changing pH of PBS was studied using Nyquist and Bode plots (Fig. 3B). It gives the same tendency as CVs. It shows that the lowest value of impedance is obtained with lowest semicircle diameter for pH = 6.0 and the highest value of conductivity.

The change of the anodic peak potential E_p for the oxidation of vitamin B₆ as a function of pH is demonstrated

Table 1

R₁ + (Q₂/R₂) + (C₃/R₃)	Value	BCPE	IONCPE
R₁ (kΩ)	0.109	0.089	
Q₂ (µF)	47.65	105.7	
α	0.809	0.737	
R₂ (kΩ)	0.389	0.132	
C₃ (µF)	3.98 x 10⁻⁶	0.652 x 10⁻³	
R₃ (kΩ)	0.194	21.70	

Fig. 2 A CVs of 1.0 mM vitamin B₆ at scan rate 0.05 V s⁻¹ using four different supporting electrolytes. B CVs of 1.0 mM vitamin B₆ at BCPE and IONCPE in 0.1 M PBS (pH 6.0) and scan rate 0.05 V s⁻¹.

C, D EIS (in the form of Bode and Nyquist plots, respectively) technique at 1.0 mM vitamin B₆ and in 0.1 M PBS (pH 6.0). D (inset) The most optimum equivalent circuit
in Fig. 3C. The anodic E_p shifted negatively with enlarging pH value according to a linear relation between pH and the potential peak corresponding to the following equation:

$$E_p (V) = 1.01 - 0.022 \text{pH} \ (r^2 = 0.930)$$

(1)

With a proton-transfer step in the electro-oxidation of vitamin B$_6$, the anodic peak potential dependence on pH is demonstrated. The slope (0.022 V/pH) differs from the ideal Nernstian slope (0.059 V/pH) at 25 °C, indicating that the number of transferred electrons and protons are not equal, which could be due to the oxidation mechanism’s complexity.

Effect of scan rate

The scan rate effect on the anodic peak current of 1.0 mM vitamin B$_6$ in 0.1 M PBS was demonstrated using the CV technique (Fig. 4A). We can see that increasing the scanning rate in a very wide range from 0.01 to 2.0 Vs$^{-1}$ increases the peak current and also shifts the peak potential to more positive values, ensuring irreversible electrochemical oxidation [67].

A linear relationship between the anodic peak current and the square root of the scan rate (Fig. 4B) asserts the presence of a diffusion-controlled mechanism and represented as:
1 3

Also, a linear relationship between \(\log(I) \) versus \(\log(\nu) \) with slope of 0.37 (Fig. 4C) indicates an adsorption-controlled mechanism which reflects that CPEs are excellent for adsorbing particles on its active surface through the electrode reaction, due to their surface passivation. So overall, it is a mixed diffusion–adsorption mechanism.

The kinetic parameters from Fig. 4D are determined using the Laviron model (Eq. 4), which represents a linear relationship between the peak potential and the logarithm of scan rate and is represented as follows [68]:

\[
I(\mu A) = 1.78 \nu^{1/2} + 7.12; \quad r^2 = 0.97 \text{ for BCPE} \tag{2}
\]

\[
I(\mu A) = 13.25 \nu^{1/2} + 43.86; \quad r^2 = 0.99 \text{ for IONCPE} \tag{3}
\]

Also, a linear relationship between \(\log(I) \) versus \(\log(\nu) \) with slope of 0.37 (Fig. 4C) indicates an adsorption-controlled mechanism which reflects that CPEs are excellent for adsorbing particles on its active surface through the electrode reaction, due to their surface passivation. So overall, it is a mixed diffusion–adsorption mechanism.

The kinetic parameters from Fig. 4D are determined using the Laviron model (Eq. 4), which represents a linear relationship between the peak potential and the logarithm of scan rate and is represented as follows [68]:

\[
E_{pa} = E^0 + 2.3 RT/[(1 - \alpha)nF] \times \log \nu
\]

\[
E_{pa}(V) = 0.67 + 0.08 \log \nu(Vs^{-1}) \quad (r^2 = 0.984) \tag{4}
\]

where \(\alpha \) is the electron-transfer coefficient, which for irreversible processes is around 0.4–0.6 [69] and \(n \) is the number of electrons exchanged in the electro-oxidation reaction, which for vitamin \(\text{B}_6 \) was calculated from Eq. 4 to be approximately two electrons [70].

The active surface area of IONCPE was assigned using the CV technique in 1.0 mM \(\text{K}_4\text{Fe(CN)}_6 \) and 0.1 M KCl as an electrolyte. By applying the Randles–Svćik equation (Eq. 5) [58, 71]:

\[
I_{pa} = (2.69 \times 10^5)n^{3/2}ACD^{1/2}\nu^{1/2}
\]
where I_{pa} is the anodic peak current (A), n is the number of transferred electrons through the redox reaction and is equal to 1, A is the electro-active area of the electrode (cm^2), C is the concentration of $K_4Fe(CN)_6$ (mol cm$^{-3}$), D is the diffusion coefficient = 7.6×10^{-6} (cm2 s$^{-1}$), and v is the scan rate (Vs$^{-1}$). For the BCPE, the area is calculated to be 0.069 cm2. For the IONCPE, the average electro-active area is 0.439 cm2.

The electro-oxidation mechanism of pyridoxine may proceed with the formation of the aldehyde (pyridoxal) and the subsequent oxidation to pyridoxic acid, according to the scheme reported in Scheme 1. In some cases, only an overall process was observed because pyridoxal is present as hemiacetal form but the free aldehyde (the electroactive one) is negligible, and then a previous chemical transformation at the electrode is necessary on the time scale of the voltammetric experiment [70].

The slope in Fig. 4B equals $(2.69 \times 10^5) n^{3/2} ACD^{1/2}$ according to the Randles–Sevcik equation and by substituting with the electrode area; the diffusion coefficients of both CPE and IONCPE were estimated to be 8.0×10^{-5} and 25.1×10^{-2} cm2 s$^{-1}$, respectively. It is obvious that using ION as a modifier has facilitated the diffusion of vitamin B$_6$ molecules through the electrolyte as well as increasing the active surface area by a factor of 6.9.

Effect of accumulation time

In order to examine the response of IONCPE, CVs for 1.0 mM vitamin B$_6$ in 0.1 M of PBS solution (pH 7.4) were recorded over different time intervals (Fig. 5). A rapid increase in the anodic peak currents with the immersion time of sensor occurs, till reach maximum at 5.0 min, then decrease again till a stable plateau at high times above 25.0 min.

Calibration curve study

In order to validate the sensitivity of IONCPE for vitamin B$_6$ electrochemical determination, a linear relation between the anodic current peak and a different

Scheme 1 The suggested oxidation mechanism

Fig. 5 The obtained CVs using the same IONCPE in 0.1 M PBS pH 6.0 containing 1.0 mM vitamin B$_6$ at increasing times (0–35.0 min). Inset: Variation of anodic peak current (I_{pa}) obtained for successive analyses at increasing times (0–35.0 min)
concentrations of vitamin B₆ (Fig. 6) can be represented by the linear equation:

\[I(\mu A) = 0.95 + 0.114 C (\mu M); r^2 = 0.987 \]

Figure 6 inset shows the corresponding differential pulse curves for increasing vitamin B₆ concentrations (from 8.88 up to 1000.0 µM) in 0.1 M of PBS (pH 6.0) and scan rate 0.01 V s⁻¹ using IONCPE. Limit of quantification (LOQ) and limit of detection (LOD) were calculated by the following equations [72]:

\[\text{LOQ} = 10 s/m \] \hspace{1cm} (6)

\[\text{LOD} = 3 s/m \] \hspace{1cm} (7)

They were found to be 30.2 and 9.06 µM, respectively, which enhanced the electrode sensitivity. The reproducibility of the suggested electrode was controlled five times under the same terms by repeated measurements resulting in a relative standard deviation (RSD) of 3.7%.

Comparison with several electrochemical sensors already described for vitamin B₆ detection is given in Table 2. However, those methods are using expensive or toxic chemicals besides the difficulty in fabrication compared to the proposed modified electrode in this work. So, this method has confirmed its reliability and sensitivity for vitamin B₆ detection with a relatively low detection limit and a good selectivity.

Commercial samples analysis

Vitamin B₆ was detected in actual samples such as urine and pharmaceuticals to identify the application of the new sensor through DPV, by spiking the samples with standard concentrations of vitamin B₆ using the standard addition method.

Figure 7 shows the calibration curve for using the IONCP sensor with baby urine samples, which gave a straight line in a concentration range of 8–1000 µM. From the equation of the calibration curve (\(I_{pa} (\mu A) = 0.057 C (M) + 10.135 \)), the concentration of vitamin B₆ in urine samples was calculated. The correlation coefficient was \(r^2 = 0.966 \), the LOD was 52.63 µM, and the LOQ was 175.44 µM. To guarantee that the suggested approach is validated in urine samples, Table 3 shows the suggested technique of detection of vitamin B₆ for four distinct concentrations on the curve exhibits accuracy and precision; each of these was done five times.

Results are shown in Table 3, confirming that the modified electrode can be used for estimating vitamin B₆ in pharmaceutical samples with satisfactory recoveries for every sample between 98.03 and 102.0% with RSDs of 1.1–3.7%. Every measurement of the oxidation current peak was accomplished with average of five replicate measurements determining the amount in the actual samples of vitamin B₆.
Interfering materials, sensor selectivity, reproducibility, and long-term stability

To assess the impact of different interfering substances on the detection of vitamin B6 by IONCPE, a constant concentration of vitamin B6 (500 µM) was spiked with the same and doubled concentrations of different compounds, including sucrose, glucose, starch, urea, uric acid, and vitamins such as ascorbic acid (B6), thiamine hydrochloride (B1), riboflavin (B2), nicotinic acid (B3), pantothenic acid (B5), biotin (B8), folic acid (B9), and cyanocobalamin (B12). Vitamin B6 has been studied on the voltammetric response as presented in Table 4. B1, B2, B3, B5, and B8 resulted not to be electroactive in the reported system (within the explored potential range and in the chosen supporting electrolyte). Also, other vitamins such as ascorbic acid (vitamin C) were examined for selection of the suggested technique for vitamin B6. By using the same experimental conditions, CV measurements were performed and the sensor could detect both of them at separate peak potentials of 1.13 V for vitamin B6 and 0.42 V for vitamin C.

![Fig. 7](image-url) The calibration plot of vitamin B6 in PBS (pH 6.0) using IONCPE in urine real sample. Inset: The corresponding curves for increasing vitamin B6 concentrations using DPV at step potential of 0.004 V, modulation amplitude of 0.025 V and scan rate 0.01 Vs⁻¹.

Table 2 Comparison of IONCPE to other analytical and electrochemical techniques in the literature

Sensor name	Technique	LOD (µM)	LDR (M)	References
Amperometric electrochemical detection	Micellar electrokinetic chromatography	1.0	2.5 × 10⁻⁶–1.0 × 10⁻³	[73]
Electrochemically pretreated glassy carbon electrode	CV	0.8	7.5 × 10⁻⁵–7.5 × 10⁻²	[74]
Glassy carbon electrode	CV	37.0		[75]
Pencil graphite electrode	CV	2.81		[76]
Glassy carbon electrodes	DPV	0.05		[77]
High performance liquid chromatography	HPLC-RP method	0.03		[78]
MWCNTs-Mn³⁺salen	DPV	0.42		[79]
Coulometric electrochemical and ultraviolet detection	HPLC	0.013	2.4 × 10⁻⁶–1.7 × 10⁻⁵	[80]
Multiwall carbon nanotube modified carbon-ceramic electrode	CV	0.41	1.2 × 10⁻⁶–6.9 × 10⁻⁴	[81]
Glassy carbon electrode modified with chromium(III) hexacyanoferrate(II)	CV	0.35	1.3 × 10⁻⁶–1.3 × 10⁻⁵	[82]
Glassy carbon electrode	DPV	0.1	3 × 10⁻⁷–2 × 10⁻⁴	[83]
Carbon-based electrode with ION	DPV	9.06	8.88 × 10⁻⁶–1 × 10⁻³	This work

© Springer
For reproducibility of IONCPE validation in terms of RSD, 5 sequential voltammetric determinations for 50 μM of vitamin B₆ have been carried out without evident vitamin B₆ peak current alteration with RSD value of 2.4%. This guarantees the accuracy of the investigated electrode. The long-term stability of the proposed procedure was assessed by keeping IONCPE in a fridge (4 °C) for a week. Then, a voltammetric measurement for vitamin B₆ was carried out, revealing a current response at 98% of the value obtained after new preparation immediately reflects high electrode storage stability.

Conclusion

A new selective and sensitive electrochemical sensor with excellent performance for vitamin B₆ was constructed on the basis of the modification of CPE with IONs. Several electrochemical methods were used to optimize the circumstances of measurement to achieve the best sensitive determination of vitamin B₆. The newly prepared sensor showed its efficiency in detection with a wide linear dynamic range of 8.88–1000 μM of vitamin B₆ and LOD of 9.06 μM. The proposed method was simple, easy, affordable, and sufficiently sensitive for detecting vitamin B₆ in pharmacological and baby urine real samples under physiological conditions precisely.
Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Clifford J, Curely J, Water-soluble vitamins: B-complex and vitamin C. Colorado State University Libraries
2. Skarupska KA et al (2010) Longitudinal association of vitamin B-6, folic, and vitamin B-12 with depressive symptoms among older adults over time. Am J Clin Nutr 92(2):330–335
3. Farag AS et al (2019) Simultaneous determination of caffeine and pyridoxine in energy drinks using differential pulse voltammetry at glassy carbon electrode modified with nafion®. Electroanalysis 31(8):1494–1499
4. Clayton PT (2006) B 6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29(2):317–326
5. Lenze EJ et al (2007) Onset of depression in elderly persons after hip fracture: Implications for prevention and early intervention of late-life depression. J Am Geriatr Soc 55(1):81–86
6. Hvas A-M et al (2004) Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom 73(6):340–343
7. Merete C, Falcon LM, Tucker KL (2008) Vitamin B6 is associated with depressive symptomatology in Massachusetts elders. J Am Coll Nutr 27(3):421–427
8. Doll H et al (1989) Pyridoxine (vitamin B6) and the premenstrual syndrome: a randomized crossover trial. J R Coll Gen Pract 39(326):364–368
9. Vutyanovich T, Wongtra-ngan S, Ruangsri R-A (1995) Pyridoxine for nausea and vomiting of pregnancy: a randomized, double-blind, placebo-controlled trial. Am J Obstet Gynecol 173(3):881–884
10. Christen WG et al (2009) Folic acid, vitamin B6, and vitamin B12 in combination and age-related macular degeneration in a randomized trial of women. Arch Intern Med 169(4):335
11. Sofi F et al (2008) Low vitamin B6 and folic acid levels are associated with retinal vein occlusion independently of homocysteine levels. Atherosclerosis 198(1):223–227
12. Axer-Siegel R et al (2004) Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol 137(1):84–89
13. Seddon JM et al (2006) Evaluation of plasma homocysteine and risk of age-related macular degeneration. Am J Ophthalmol 141(1):201–203
14. Seddon JM et al (2006) C-reactive protein and homocysteine are associated with dietary and behavioral risk factors for age-related macular degeneration. Nutrition 22(4):441–443
15. Malouf R, Evans JG (2003) Vitamin B6 for cognition. Cochrane Database of Syst Rev (4).
16. Seshadri S et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483
17. Oulhaj A et al (2010) Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry 25(1):82–90
18. Lin P-T et al (2006) Low pyridoxal 5'-phosphate is associated with increased risk of coronary artery disease. Nutrition 22(11–12):1146–1151
19. Vermeulen E et al (2004) Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on cerebrovascular atherosclerosis and white matter abnormalities as determined by MRA and MRI: a placebo-controlled, randomized trial. Eur J Clin Invest 34(4):256–261
20. Vermeulen EG et al (2000) Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. The Lancet 355(9203):517–522
21. Endo N et al (2006) Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr 95(6):1088–1093
22. Bird RP (2018) The emerging role of vitamin B6 in inflammation and carcinogenesis. Adv Food Nutr Res 83:151–194
23. Ueland PM et al (2017) Inflammation, vitamin B6 and related pathways. Mol Aspects Med 53:10–27
24. Chiang E-Pi et al (2003) Abnormal vitamin B6 status is associated with severity of symptoms in patients with rheumatoid arthritis. Am J Med 114(4):283–287
25. Chiang E-Pi et al (2005) Pyridoxine supplementation corrects vitamin B6 deficiency but does not improve inflammation in patients with rheumatoid arthritis. Arthritis Res Ther 7(6):1–8
26. Woolf K, Manore MM (2008) Elevated plasma homocysteine and low vitamin B-6 status in nonsupplementing older women with rheumatoid arthritis. J Am Diet Assoc 108(3):443–453
27. Huang S et al (2010) Vitamin B6 supplement changes pro-inflammatory responses in patients with rheumatoid arthritis. Eur J Clin Nutr 64(9):1007–1013
28. Tabanligil Calam T (2021) A novel, efficient and sensitive method for the simultaneous determination of riboflavin (vitamin B2) and pyridoxine hydrochloride (vitamin B6) in food and pharmaceutical samples using an electrochemical sensor based on 4,4′-diamino benzophenone
29. Katan M (2005) How much vitamin B6 is toxic? Ned Tijdschr Geneesk 149(46):2545–2546
30. Spinneker A et al (2007) Vitamin B6 status, deficiency and its consequences—an overview. Nutr Hosp 22(1):7–24
31. Reddy YVM et al (2022) Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science p. 102664.
32. Hareesha N, Manjunatha J (2020) Elevated and rapid voltammetric sensing of riboflavin at poly (helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation. J Iran Chem Soc 17(6):1507–1519
33. Manjunatha J et al (2013) Simultaneous determination of ascorbic acid, dopamine and uric acid at poly (aminole) modified carbon paste electrode: a cyclic voltammetric study. Int J Pharm Pharm Sci 5(2):355–362
34. Tigar G, Manunjathà J (2019) Electrochemical preparation of poly (arginine)-modified carbon nanotube paste electrode and its application for the determination of pyridoxine in the presence of riboflavin: an electroanalytical approach. J Anal Test 3(4):331–340
35. Raril C, Manunjathà JG (2020) Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J Anal Sci Technol 11(1):1–10
36. Shetti NP et al (2020) Skin-patchable electrodes for biosensor applications: a review. ACS Biomater Sci Eng 6(4):1823–1835
37. Killeadar L et al (2022) Fast and facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor. Mater Chem Phys 285:126131
38. Prasad PS et al (2018) Determination of Vitamin-B6 by Vanadium (III) Schiff base complex modified GCE. Mater Today: Proceedings 5(2):9026–9032
39. Mekonnen A et al (2014) Square wave voltammetric determination of pyridoxine in pharmaceutical preparations using cobalthexacyanoferrate modified carbon paste electrode. J Chem Pharm Res 6(1):544–551
40. Baghizadeh A et al (2015) A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal Methods 8(3):549–557
41. Estelrich J et al (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070–8101
42. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384
43. Hareesh N, Manjunatha J (2020) Fast and enhanced electrochemical sensing of dopamine at cost-effective polyl (D-phenylalanine) based graphite electrode. J Electroanal Chem 878:114533
44. Manjunatha J (2020) A surfactant enhanced graphene paste electrode as an effective electrochemical sensor for the sensitive and simultaneous determination of catechol and resorcinol. Chem Data Collect 25:100331
45. Schwertmann U, Cornell RM (2008) Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons.
46. Cornell RM and Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons.
47. Fernández-Remolar DC (2015) Iron oxides, hydroxides and oxyhydroxides. Encyclopedia of astrobiology, p. 1268–1270
48. Cordova G et al (2017) Magnetic force microscopy characterization of superparamagnetic iron oxide nanoparticles (SPIONS). arXiv preprint arXiv:1704.08316
49. Hasany FS et al (2013) Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci 9(5):561–575
50. Xie J, Jon S (2012) Magnetic nanoparticle-based theranostics. Theranostics 2(1):122
51. Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110
52. Shetti NP et al (2018) Electrochemical behavior of thiosalicylic acid at γ-Fe2O3 nanoparticles and clay composite carbon electrode. Electrochim Acta 269:204–211
53. Pankhurst QA et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167
54. Shetti NP et al (2020) Hetero-nanostructured iron oxide and benonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem J 155:104727
55. Atta NF, Galal A, Azab SM (2011) Electrochemical morphine sensing using gold nanoparticles modified carbon paste electrode. Int J Electrochem Sci 6:5066–5081
56. Fekry A (2010) Impedance and hydrogen evolution studies on magnesium alloy in oxalic acid solution containing different anions. Int J Hydrog Energy 35(23):12948–12951
57. Fekry A, Ameer M (2011) Electrochemical investigation on the corrosion and hydrogen evolution rate of mild steel in sulphuric acid solution. Int J Hydrog Energy 36(17):11207–11215
58. Fekry A et al (2015) A novel electrochemical nicotinic sensor based on cerium nanoparticles with anionic surfactant. RSC Adv 5(64):51662–51671
59. Fekry AM (2017) A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. Biosens Bioelectron 87:1065–1070
60. Fekry AM (2016) Electrochemical behavior of a novel nano-composite coat on Ti alloy in phosphate buffer solution for biomedical applications. RSC Adv 6(24):20276–20285
61. Abdelrahman E, Essa K (2015) Three least-squares minimization approaches to interpret gravity data due to dipping faults. Pure Appl Geophys 172(2):427–438
62. Abdelrahman E-SM, Abo-Ezz EER, Essa KS (2012) Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Explor Geophys 43(3):178–189
63. Abo-Ezz E, Essa K (2016) A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure Appl Geophys 173(4):1265–1278
64. Essa K, Mehanee S, Smith PD (2008) A new inversion algorithm for estimating the best fitting parameters of some geometrically simple bodies to measured self-potential anomalies. Explor Geophys 39(3):155–163
65. Essa KS, Elhussein M (2019) Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geological structure. Acta Geophysica, p. 1–12
66. Essa KS, Elhussein M (2017) A new approach for the interpretation of magnetic data by a 2-D dipping dike. J Appl Geophys 136:431–443
67. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical. Methods 2:482
68. Azab SM, Fekry AM (2017) Electrochemical design of a new nanosensor based on cobalt nanoparticles, chitosan and MWNT for the determination of daclatasvir: a hepatitis C antiviral drug. RSC Adv 7(2):1118–1126
69. Peloso G et al (2013) Controlling interfacial electron transfer and electrocatalysis by pH or iron-switchable DNA monolayer-modified electrodes. Chem Sci 4(3):1137–1144
70. Brunetti B, Desimoni E (2014) Voltammetric determination of vitamin B6 in food samples and dietary supplements. J Food Compos Anal 33(2):155–160
71. Luan F et al (2018) CoS2-decorated ionic liquid-functionalized graphene as a novel hydrazine electrochemical sensor. Talanta 182:529–535
72. Shehata M, Fekry AM, Walarcius A (2020) Moxifloxacin hydrochloride electrochemical detection at gold nanoparticles modified screen-printed electrode. Sensors 20(10):2797
73. Hu Q et al (2001) Separation and determination of three water-soluble vitamins in pharmaceutical preparations and food by micellar electrokinetic chromatography with amperometric electrochemical detection. Anal Chim Acta 437(1):123–129
74. Gu H-Y, Yu A-M, Chen H-Y (2001) Electrochemical behavior and simultaneous determination of vitamin B2, B6, and C at electrochemically pretreated glassy carbon electrode. Anal Lett 34(13):2361–2374
75. Teixeira MF et al (2004) Voltammetric determination of pyridoxine (Vitamin B6) at a carbon paste electrode modified with vanadyl (IV)-Salen complex. Anal Chim Acta 508(1):79–85
76. David IG et al (2015) Voltammetric determination of B 1 and B 6 vitamins using a pencil graphite electrode. Chem Pap 69(7):901–910
77. Nie T et al (2013) Electroactive species-doped poly (3, 4-ethylenedioxythiophene) films: Enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosens Bioelectron 50:244–250
78. Markopoulos C, Kagkas K, Koundourellis J (2002) An optimized method for the simultaneous determination of vitamins B1, B6, B12, in multivitamin tablets by high performance liquid chromatography. J Pharm Biomed Anal 30(4):1403–1410
79. Sonkar PK et al (2017) Highly dispersed multiwalled carbon nanotubes coupled manganese salen nanostructure for simultaneous electrochemical sensing of vitamin B2 and B6. J Electroanal Chem 807:235–243
80. Marszall ML et al (2005) High-performance liquid chromatography method for the simultaneous determination of thiamine hydrochloride, pyridoxine hydrochloride and cyanocobalamin in
pharmaceutical formulations using coulometric electrochemical and ultraviolet detection. J Chromatogr A 1094(1–2):91–98
81. Habibi B, Jahanbakhshi M, Abazari M (2014) A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine. J Iran Chem Soc 11(2):511–521
82. Cottica SM et al (2009) Voltammetric determination of pyridoxine (vitamin B6) in drugs using a glassy carbon electrode modified with chromium (III) hexacyanoferrate (II). J Braz Chem Soc 20:496–501
83. Wu Y-H, Song F-J (2008) Voltammetric Investigation of Vitamin B,6 at a Glassy Carbon Electrode and Its Application in Determination. Bull Korean Chem Soc 29(1):38–42

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.