Inhibition of Interleukin-4-induced Class Switch Recombination by a Human Immunoglobulin Fcγ-Fcε Chimeric Protein*

Takechiyo Yamada‡§, Daocheng Zhu¶, Ke Zhang‡, and Andrew Saxon‡

From the ¥Hart and Louis Laboratory, Division of Clinical Immunology, Department of Medicine, UCLA School of Medicine, California 90095-1680 and the ¥Department of Otorhinolaryngology, Fukui Medical University, Fukui, 910-1193, Japan

Immunoglobulin E (IgE) is important in mediating human allergic diseases. We tested the hypothesis that a human Ig Fcγ-Fcε bifunctional chimeric protein, GE2, would inhibit IgE class switch recombination (CSR) by co-aggregating B-cell CD32 and CD23. Indeed, GE2 directly inhibited γ-germ-line transcription, subsequent CSR to γ and IgE protein production. This CSR inhibition was dependent on CD23 binding and the phosphorylation of extracellular signal-related kinase (ERK), and it was mediated via suppression of interleukin-4-induced STAT6 phosphorylation. Treatment with PD98059, a specific inhibitor of mitogen-activated protein kinase (p38 MAPK) plays an important role in CD40 signal transduction and activates γ-germ-line transcription with production of γ-germ-line transcripts (eGTs), which themselves are felt to be important for switching to IgE. For optimal γ-germ-line transcription and eGT production, synergy between IL-4 stimulation and a second signal through CD40 is required (13). Recently, it has been reported that p38 mitogen-activated protein kinase (p38 MAPK) plays an important role in CD40 induction of eGTs (14) and is related to Ig class switch recombination (CSR) in our system (15).

Here, we have examined whether GE2 could alter induced isotype switching in primary human B cells. Su-μSe recombination was measured by digestion-circularization PCR (DC-PCR), and switch circle transcripts (CTs) and eGTs were assessed by RT-PCR. We also examined the effect of GE2 on IL-4 and oCD40-driven phosphorylation and activation of STAT6 as well as on phosphorylation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK.

EXPERIMENTAL PROCEDURES

Reagents—Human IL-4 was purchased from R & D Systems. Anti-CD40 mAb G28.5 was purchased from ATCC (Manassas, VA). Anti-human IgE antibody (Mae1) against the Ch1 domain was a kind gift from Dr. Paul Jardieu (Genentech). Anti-ERK antibody (Ab), anti-phosphorylated ERK Ab, anti-JNK Ab, anti-phosphorylated JNK Ab, anti-p38 MAPK Ab, anti-phosphorylated p38 Ab, anti-phosphorylated JNK Ab, anti-p38 MAPK Ab, anti-phosphorylated p38 Ab, anti-phosphorylated STAT6 Ab, and U0126 were purchased from Cell Signaling (Beverly, MA). Anti-STAT6 Ab was purchased from Santa Cruz Biotechnology.
GE2 Construction and Expression—The construction and expression of the human Fcy-Fce Ig chimeric gene has been described in detail previously (6). The expression vector containing the novel Ig Fcy-Fce chimeric gene was transfected into SP20 cells. GE2 was expressed in cell culture supernatants and purified using an anti-human IgE affinity column. The GE2 protein was reacted with anti-human e- and y-chain specific antibodies.

Cells and Cell Culture—Peripheral blood mononuclear cells were isolated from healthy volunteers by centrifugation on Ficoll-Hypaque. Human B cells were purified from peripheral blood mononuclear cells by the rosetting technique after monocytes/macrophages and natural killer cells were removed. Human B cells were cultured in RPMI 1640 medium supplemented with 2 mM glutamine, 100 units/ml penicillin, 100 µg/ml streptomycin, and 10% fetal calf serum (Omega, Tarzana, CA). DC-PCR for Human Sµ-Sε Recombination—DC-PCR was performed as described (16) and was used to quantify the levels of Sµ-Sε recombination in stimulated primary human B cells. Genomic DNA was digested withBgIII followed by ligation under conditions favoring self-ligation. The resultant ligated DNA was precipitated, and the appropriate amounts of DNA were used as templates for PCR with 5′ end primer (5′-GATATTCCGTGTTGGCAAAATCAG-3′) and 3′ end primer (5′-AACCACTTCATGACCAACCTG-3′). Amplification for 40 cycles was performed at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min. The size of the expected PCR product was 222 bp. To verify the amount of ligated DNA between different groups and the efficiency for digestion and ligation of the input DNA sample, the human activation-induced cytokine deaminase (AID) gene was used as an unrelated control gene for the DC-PCR assay. BgIII digestion generated a 4578-bp fragment from the human AID gene (EMBL/GenBank accession no. AB040430). 5′ end primer 5′-CATGCGTCAAACTCTGAGCAAATC-3′ and 3′ end primer 5′-AGATGTTGAAAACCCGCTTCTATTAA-3′ were used. This pair of primers amplified a 238-bp product. PCR was conducted with 10 ng of ligated DNA as templates at 94°C for 1 min, 62°C for 1 min, and 72°C for 1 min for 40 cycles.

RNA Extraction and RT-PCR—Total mRNA was obtained from stimulated and unstimulated cells using TriZol reagent (Invitrogen). RNA samples were digested withDNase I (Sigma) to remove possible contaminating DNA and was precipitated and the equal amount of RNA was reverse-transcribed to cDNA, CTs were amplified with the forward primer 5′-CAGCGGAGCCACCCCGGAGG-3′ and 3′ end primer 5′-GTTGATTAGTCCCAGGAGCCACCCCGGAGG-3′ and 3′ end primer 5′-GGTGTAGCTCCCTGGGTGTTA-3′ were used to amplify eGTs. 5′ end primer 5′-C-TCGATCTGCTGTTTTGAG-3′ and 3′ end primer 5′-TTGTGACCTACCCAGTCTT-3′ were used for FcyRIIA. 5′ end primer 5′-ATCAGCTGCTGACACGGGACAGT-3′ and 3′ end primer 5′-TGTCATGCGTTTGAGGGAAGA-3′ were used for FcyRIIB. The amplification conditions used for FcyRIIA and FcyRIIB PCR were 40 cycles of 94°C for 1 min, 66°C for 1 min, and 72°C for 1 min.

Switch Circle RNA Transcripts—After total mRNA was obtained and reverse-transcribed to cDNA, CTs were amplified with the forward primer 5′-GAGCCGCCACCACTACCCAAGGCAAAAATGGCA-3′ together with the reverse primer Ca 5′-GTTGCCGTGTTGGGCTGTTGGAC-3′. 1e-Ca (408 bp) CTs were amplified for 25 cycles of 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min (18).

Densitometric Analysis—The images of ethidium-stained gels were recorded and documented in the PICT2 Platinum (Lightools Research, Encinitas, CA). The intensity of each band was measured with the Bioimage software Basic Quantifier (Genomic Solutions Inc., Ann Arbor, MI). The samples were diluted to 50, 20, 10, and 5% before PCR amplification. The final quantitative estimates for the densitometric analysis were taken from the linear part of the curve.

RESULTS

Inhibition of Sµ-Sε Recombination and IgE Production by Ig Fcy-Fce Fusion Protein—We assessed the ability of GE2 to modulate IL-4-induced isotype switching in primary human B cells using DC-PCR. Sµ-Sε recombination was detected in highly purified primary B cells stimulated with IL-4-plus-CD40 (Fig. 1b, 2nd lane from left) but not in unstimulated cells (1st lane). IL-4-plus-CD40-induced Sµ-Sε recombination was inhibited by GE2 in a dose-dependent manner (Fig. 1b, last 4 lanes). Sµ-Sε recombination was decreased by 85% at 5 µg/ml of GE2 as measured by densitometry of the DC-PCR products. Because cross-linking of CD32 with CD23 has been proposed as a therapeutic strategy to down-modulate IgE production and GE2 suppressed IL-4-induced CSR, we also tested the effects of GE2 on IgE production from human B cells. IL-4-plus-CD40-induced IgE production was decreased by 65 and 75%, respectively, in the presence of 5 or 10 µg/ml GE2, although IgA production was unchanged (Fig. 1d).

The Effect of GE2 on CTs—CSR from the mu gene generates an extrachromosomal reciprocal switch DNA recombination product, a switch circle with the Iµ promoter of the targeted Cµ gene, the switched DNA fragment, and Cµ (Fig. 2a). The Iµ promoter in the switch circle drives transcription of a chimeric I-µ µ product, referred to as CT (19). We also measured the effect of GE2 on IL-4-plus-CD40-induced CSR to e by measuring the respective switch CTs (Fig. 2b, 1e-Cµ). Densitometric analysis provided that the inhibitory effect of GE2 on CSR to e was 90%.

GE2 Negatively Regulates Production of IgH e Germ-line Transcripts—Expression of GTs from specific IgH loci is important in Ig CSR preceding the occurrence of isotype switching to those loci (20). Anti-CD23 monoclonal antibody has been reported recently to inhibit e GT production in B cells (21). Because GE2 binds to CD23, we examined the ability of GE2 to alter IL-4-plus-CD40 induction of e GT transcription. GE2 inhibited IL-4-plus-CD40-induced e GT production in primary human B cells in a dose-dependent manner (Fig. 3a). Semi-quantitative analysis comparing these data demonstrated that GE2 at 5 µg/ml reduced IL-4-plus-CD40-driven production of e GTs by 80% (Fig. 3, a and b). Because CD32 binding is predicted to be involved in the effects of GE2 that we observed, we examined B cell expression of the variant forms of CD32, FcyRIIA and FcyRIIB, using RT-PCR and flow cytometry. This determination is important because FcyRIIA is an “activating” ITAM (immunoreceptor tyrosine-based activation motif)-containing receptor, whereas FcyRIIB is an “inhibitory” ITIM (immunoreceptor tyrosine-based inhibitory motif)-containing receptor. We found that CD32 expressed on resting human B cells is almost exclusively expressed on FcyRIIA and FcyRIIB. FcyRIIA and FcyRIIB are expressed on the surface of resting human B cells, whereas FcyRIIB is expressed on the surface of resting human B cells.

GE2 Inhibited STAT6 Phosphorylation in Primary Human B Cells—Because activation of STAT6 is essential in mediating the IL-4 response (12) and plays an important role in both
expression of eGTs and isotype switching to IgE (22), we investigated whether IL-4-induced STAT6 activation was affected by GE2. Samples from appropriately stimulated cells were subjected to Western blot analysis with specific anti-phosphorylated STAT6. Phosphorylated STAT6 was detectable 1 h after IL-4 stimulation and remained elevated throughout incubation (Fig. 4). However, IL-4-stimulated B cells treated with GE2 failed to maintain STAT6 phosphorylation beyond 1 h.

PD98059 Reversed GE2-induced Suppression—It has been reported recently that MAPKs inhibit STAT activation and that a MEK inhibitor reversed this effect (23). To examine whether MAPK signaling is involved in the GE2 inhibition of CSR and IgE production, we tested the ability of PD98059, a specific inhibitor of MEK1 and MEK2, to reverse the GE2-driven decrease in STAT6 phosphorylation. MEK1 and MEK2 act directly upstream of ERK-1 and ERK-2. Treatment with PD98059 almost completely reversed the ability of GE2 to decrease STAT6 phosphorylation (Fig. 5, 4th lane from left). This same outcome was also observed using U0126, another specific MEK inhibitor that is structurally unrelated to PD98059, whereas the p38 MAPK inhibitor SB203580 or JNK inhibitor SP600125 did not reverse the GE2 effects (data not shown). To demonstrate the physiological relevance of this MEK inhibition, we examined its effect on GE2-induced suppression of IgE CSR. Pre-incubation of B cells with PD98059 also resulted in a near complete reversal of GE2-mediated inhibition of Sμ-Se CSR in human primary B cells (Fig. 5b, 4th lane). MEK inhibition also reversed GE2-induced suppression of IL-4-plus-CD40-induced eGTs (Fig. 5c, 4th lane). p38 MAPK inhibition with SB203580 did not alter this suppression of eGT induction (data not shown).
The Effect of GE2 on MAPK Phosphorylation—As the effects of GE2 on IgE CSR were reversed by specific inhibitors of MEK1 and MEK2, we examined the effect of GE2 on MAPK family signaling, which is critical in a variety of cellular functions. As expected, within 5 min after GE2 stimulation, ERK phosphorylation began to rise, reached a maximum at 15 min, and was maintained for 45 min (Fig. 6a). In contrast, GE2 did not alter the phosphorylation of JNK or p38 MAPK, although IL-4-plus-CD40 activated JNK and p38 MAPK (Fig. 6b, lane 3). We also tested for any effect of GE2 on IL-4-plus-CD40-driven phosphorylation of JNK and p38 MAPK; no effects were detected in our system.

Soluble CD23 Blocked the Effect of GE2—To test whether the GE2-induced ERK phosphorylation and GE2 inhibition of CSR are dependent on CD23 binding, we used a trimeric soluble CD23 (sCD23), which competes with CD23 on B cells for binding to the Fc ε region of GE2. Primary human B cells were cultured with GE2, GE2-plus-sCD23, or the appropriate controls, and the resulting ERK phosphorylation was examined. GE2-induced ERK phosphorylation was blocked by sCD23 in a dose-dependent manner (Fig. 7a). Soluble CD23 (10 μg/ml) reversed GE2 (5 μg/ml)-induced phosphorylation by 50%. This treatment also reversed GE2-induced inhibition of eGTs by 40% as determined by densitometry analysis of eGTs (Fig. 7b). Treatment with soluble α-chain of the high affinity IgE receptor (FceRI), which binds with very high affinity to the Fcε region involved in interaction with CD23, also blocked (85%) the ability of GE2 to inhibit eGT production (data not shown). Furthermore, we showed that sCD23 was able to reverse GE2 inhibition of CSR to ε by measuring the production of CTs (Fig. 7c, Ig-ε-Cp).

To Optimally Inhibit eGTs and CTs, GE2 Needs To Be Present at the Time of Stimulation—To determine whether the inhibition of eGTs and CSR requires the presence of GE2 at the time of stimulation, cultures were established and GE2 was added at later time points. When GE2 was added 8 and 24 h following IL-4-plus-CD40 stimulation (Fig. 8), there was a marked loss of GE2 inhibitory effects. Densitometric analysis revealed that an 8-h delay led to a 45% decrease in the GE2 inhibitory effect on eGTs and a 20% decrease in the inhibition of CTs. A 24-h delay led to a 50% decrease in the GE2 inhibitory effect on eGTs and a 50% loss in the inhibition of CTs. Conversely, when GE2 was removed after an initial 1-h incubation, its inhibitory effect on the production of eGTs was reduced by 50% (data not shown).

DISCUSSION

In the present study, we demonstrated the ability of GE2 to directly alter B cells isotype switching to ε and examined the mechanisms underlying this effect. IL-4-plus-CD40-induced Sμ-Sε recombination was inhibited by GE2 in a dose-dependent manner. GE2 inhibited in a dose-dependent fashion the induction of IgE production and IL-4-plus-CD40-induced eGT production in primary human B cells. At the same time, GE2 inhibited STAT6 phosphorylation. Treatment with PD98059, a specific inhibitor of MEK1 and MEK2, reversed the ability of GE2 to decrease STAT6 phosphorylation, to inhibit of Sμ-Sε CSR, and to induce eGTs. Furthermore, GE2 induced ERK phosphorylation, although it did not alter the phosphorylation of JNK or p38 MAPK. IL-4-plus-CD40-induced IgE were decreased by 75% in the presence GE2, whereas IgA production was unchanged. GE2 blocked IL-4-plus-CD40-induced CSR to ε. GE2 also inhibited production of ε GTs. These data are underscored by our results showing that GE2 has an inhibitory effect on IL-4-induced signaling for CSR in B cells and are further supported by the
ability of GE2 to inhibit STAT6 phosphorylation, features known to play important roles in mediating the IL-4 response.

This report shows that a human Ig Fcγ-Fce bifunctional chimeric protein inhibits CSR and activates ERK in human B cells, effects not previously reported. At this time, it is difficult to be definitive as to the exact role of CD23 and/or FcR binding. As will be described below, we feel that the overall data support the hypothesis that binding to both CD23 and FcR is involved in the inhibitory effect of GE2 on CSR.

CD23 binding appears to play a pivotal role in the inhibitory effect of GE2s, as might be predicted from studies with monoclonal anti-CD23 (21). Although how GE2 induces ERK phosphorylation is unknown, we found that it is also dependent on CD23 binding. Monoclonal anti-CD23 antibody induces intracellular signaling, e.g. polyphosphoinositide hydrolysis, and a rise in intracellular Ca²⁺ linked to a GTP-binding protein (24) that controls ERK signaling (25).

Nakamura et al. (5) found that the inhibitory effect of αCD23 on human IgE production is dependent on the Fcy domain and GE2 is expected to function through FcγR binding. However, the role(s) of FcγRIIA versus -B in the effects of GE2 will require further dissection. It has been reported that the triggering of FcγRIIA activates ERK (26). If GE2 binds to and cross-links CD23 to FcγRIIA on the surface of B cells, this should lead to ERK activation and may be one likely pathway for the effect of GE2. This is further supported by our data in which GE2-induced ERK phosphorylation was observed within 15 min, a time frame wherein detectable FcγRIIA expression is exclusively of the type A form.

On the other hand, FcγRIIB is highly expressed on activated B cells. Co-aggregation of FcγRIIB with other receptors (e.g. B cell receptor) is well known to have inhibitory effects on B cells by activating an inositol polyphosphate 5'-phosphatase (SHIP) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) (27, 28). Thus, a pathway(s) utilizing cross-linking CD23 to FcγRIIB may also be involved in GE2 effects. However, GE2 inhibition of eGT and CSR was markedly but not completely abrogated when the GE2 were added 24 h after IL-4-plus-CD40 stimulation (Fig. 8), a time when FcγRIIB expression was enhanced. Further supporting the interaction of GE2 with FcγRIIA was the loss of 50% of the GE2 effect when it was removed after 1 h. Overall, these data showing that GE2-driven inhibition of CSR mainly occurs early suggests that it is mediated via FcγRIIA, although some lesser effect at later times via other pathway(s) is likely.

An alternative explanation for the effects of GE2 is that it binds to and limits the mobility of FcγRIIA in the cell membrane. Although possible, we find this explanation less likely, as it has been found from studies with intact monoclonal antibodies to B cell surface molecules other than CD23 (e.g. CD19 or CD22), which would be expected to limit the mobility of FcγR in the B cell membrane, that they generally fail to inhibit CSR. We have also recently developed a human bifunctional human Ig Fcγ-
Fcγ protein for other purposes and took the opportunity to test the effect of this protein on CSR. This human Ig Fcγ-Fcγ protein, in doses up to 10 μg/ml, had no effect on primary B cell CSR in our system (data not shown). Although we cannot completely exclude the possibility of GE2 working via altering the mobility of FcγRII, we think it unlikely.

That GE2 appears to work, at least in part, via ERK activation, raises the question as to how ERK activation would effect CSR. Extensive studies on the mechanisms underlying IL-4 signaling have provided insight into how IL-4 regulates immune responses that involve a complex interaction of signaling pathways including the activation of JAK1, JAK3, and STAT6 (29). ERK has been shown to regulate suppressor of cytokine signaling-3 (SOCS-3) (23). Since SOCS-1 and -3 control STAT6 activation (30, 31) via JAK1, this is one plausible pathway as to how GE2, via ERK activation, may participate in CSR.

In this study we have demonstrated that GE2, a novel human Ig Fcγ-Fcγ bifunctional chimeric protein that cross-links CD23 and CD32 on the surface of human B cells, is able to directly inhibit CSR to the IgH locus. This effect was mediated, at least partially, by an effect on the ERK-STAT pathway. GE2 has recently been shown to inhibit antigen-driven IgE-induced activation of and mediator release in basophils and mast cells by co-aggregating FcγRI with FcγRIIB (6). Thus, our demonstration of the ability of GE2 to inhibit CSR to IgE makes GE2 increasingly interesting as a potential therapy in human allergic diseases.

Acknowledgments—We thank Dan Conrad for providing the trimeric soluble CD23. We also thank Paula Jardieu for anti-human IgE antibody against the Chε1 domain. We are grateful to Michael W. Robertson for the gift of the FcεRIα ectodomain protein. We thank M. Jyrala, L. Zhang, and M. Rainof for excellent technical assistance.
REFERENCES

1. Milgrom, H., Fick, R. B., Jr., Su, J. Q., Reimann, J. D., Bush, R. K., Watrous, M. L., and Metzger, W. J. (1999) *N. Engl. J. Med.* 341, 1966–1973

2. Sutton, B. J., and Gould, H. J. (1993) *Nature* 366, 421–428

3. Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G., and Lammers, M. C. (1994) *Nature* 369, 753–756

4. Flores-Romo, L., Shields, J., Humbert, Y., Graber, P., Aubry, J. P., Gauchat, J. F., Ayala, G., Allet, B., Chavez, M., and Bazin, H. (1993) *Science* 261, 1038–1041

5. Nakamura, T., Kloetzer, W. S., Brams, P., Hariharan, K., Chamat, S., Cao, X., LaBarre, M. J., Chinn, P. C., Morena, R. A., Shestowsky, W. S., Li, Y. P., Chen, A., and Reff, M. E. (2000) *Int. J. Immunopharmacol.* 22, 131–141

6. Zhu, D., Kepley, C. L., Zhang, M., Zhang, K., and Saxon, A. (2002) *Nat. Med.* 8, 518–521

7. Lehman, D. A., and Coffman, R. L. (1988) *J. Exp. Med.* 168, 853–862

8. Berton, M. T., Uhr., J. W., and Vitetta, E. S. (1989) *Proc. Natl. Acad. Sci. U. S. A.* 86, 2829–2833

9. Witthuhn, B. A., Silvennoinen, O., Miura, O., Lai, K. S., Cwik, C., Liu, E. T., and Ihle, J. N. (1994) *Nature* 370, 153–157

10. Keegan, A. D., Johnston, J. A., Tortolani, P. J., McReynolds, L. J., Kinzer, C., O'Shea, J. J., and Paul, W. E. (1995) *Proc. Natl. Acad. Sci. U. S. A.* 92, 7681–7685

11. Fenghao, X., Saxon, A., Nguyen, A., Zhang, K., Diaz-Sanchez, D., and Nel, A. (1995) *J. Clin. Invest.* 96, 907–914

12. Takeda, K., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiyama, S., Nakahashi, K., Yoshida, N., Kishimoto, T., and Akira, S. (1996) *Nature* 380, 627–630

13. Shapira, S. K., Vercelli, D., Jabara, H. H., Fu, S. M., and Geha, R. S. (1992) *J. Exp. Med.* 175, 289–292

14. Brady, K., Fitzgerald, S., Ingvarsson, S., Borregaard, C. A., and Moya, P. N. (2001) *Biochem. Biophys. Res. Commun.* 289, 276–281

15. Zhang, K., Zhang, L., Zhu, D., Bae, D., Nel, A., and Saxon A. (2002) *J. Allergy Clin. Immunol.* 110, 421–428

16. Yamada, T., Zhu, D., Saxon, A., and Zhang, K. (2002) *J. Biol. Chem.* 277, 28303–28305

17. Zhang, K., Zhang, L., Yamada, T., Wu, M., Lee, A., and Saxon, A. (2002) *Eur. J. Immunol.* 32, 424–434

18. Littinsky, B., Nardelli, B., Hilbert, D. M., He, B., Schaffer, A., Casali, P., and Cerutti, A. (2002) *Nat. Immunol.* 3, 822–829

19. Knossitha, K., Harigai, M., Fagarasan, S., Muramatsu, M., and Honjo, T. (2001) *Proc. Natl. Acad. Sci. U. S. A.* 98, 12620–12623

20. Skvjerne-Nordgren, J., and Sirfin, S. (1986) *EMBO J.* 5, 95–102

21. Yabuuchi, S., Nakamura, T., Kloetzer, W. S., and Reff, M. E. (2002) *Int. Immunopharmacol.* 2, 453–461

22. Linehan, L. A., Warren, W. D., Thompson, P. A., Grusky, M. J., and Berton, M. T. (1998) *J. Immunol.* 161, 302–310

23. Terstegen, L., Gatsius, P., Bode, J. G., Schaper, F., Heinrich, P. C., and Graeve, L. (2000) *J. Biol. Chem.* 275, 18810–18817

24. Kolb, J. P., Renard, D., Dugas, B., Genot, E., Petit-Koskas, E., Sarfati, M., Delépine, G., and Poghossi, J. (1996) *J. Immunol.* 154, 429–437

25. Wood, K. W., Sarnecki, C., Roberts, T. M., and Blenis, J. (1992) *Cell* 68, 1041–1050

26. Fernandez, N., Renedo, M., and Sanchez Crespo, M. (2002) *Eur. J. Immunol.* 32, 383–392

27. Ono, M., Okada, H., Bolland, S., Yanagi, S., Kurosaki, T., and Ravetch, J. V. (1997) *Cell* 90, 293–301

28. D'Ambrosio, D., Hippen, K. L., Minkoff, S. A., Mellman, I., Pani, G., Siminovitch, K. A., and Cambier, J. C. (1995) *Science* 268, 293–297

29. Jiang, H., Harris, M. B., and Rothman, P. (2000) *J. Allergy Clin. Immunol.* 105, 1063–1070

30. Hasque, S. J., Harbor, P. C., and Williams, B. R. (2000) *J. Biol. Chem.* 275, 26500–26506

31. Nakao, T., Tsuchi, H., Fujimoto, M., Kawazoe, Y., Kuhuzi, H., Morita, Y., Nakagawa, R., Narazaki, M., Adachi, K., Yoshimoto, T., Nakamichi, K., and Kishimoto, T. (2001) *Immunity* 14, 535–545

32824

Ig Fcγ-Fce Controls IL-4-induced Class Switch Recombination