Superconductivity in Topological Insulator Sb$_2$Te$_3$ Induced by Pressure

J. Zhu1, J. L. Zhang1, P. P. Kong1, S. J. Zhang1, X. H. Yu1,2, J. L. Zhu1,2, Q. Q. Liu1, X. Li1, R. C. Yu1, R. Ahuja3, W. G. Yang4, G. Y. Shen4, H. K. Mao4, H. M. Weng1, X. Dai1, Z. Fang1, Y. S. Zhao1,2 & C. Q. Jin1

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, 2HiPSEC, Department of Physics and Astronomy, University of Nevada at Las Vegas, Las Vegas, NV 89154-4002, USA, 3Department of Physics, Uppsala University, Sweden, 4High Pressure Synergetic Consortium (HPSync) & High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA.

Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi$_2$Se$_3$ topological compound or a Bi$_2$Te$_3$ topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb$_2$Te$_3$ when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb$_2$Te$_3$ retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.

A new states of quantum matter, topological insulators are characterized by an insulating gap in the bulk state and a robust metallic surface or edge state protected by time-reversal symmetry$^{1-4}$. Topological surface states have been theoretically predicted and experimentally observed in three-dimensional materials such as A$_2$B$_7$-type compounds of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$$^{5-7}$. Similar to topological insulators, topological superconductors are expected to have a full pairing gap in the bulk and gapless surface states that can support Majorana fermions at the edge states$^{8-13}$. Electronic excitations related to topological states, particularly Majorana fermions, are potentially useful in topological quantum computing and have thus attracted increasing attention14,15. Superconductivity in the bulk states of topological insulators together with well-defined Dirac-type surface states around the Fermi energy has been proposed to approach these novel states9. Recently, superconductivity with critical transition temperature (T_c) at $=3.8$ K was observed in Bi$_2$Se$_3$, a typical topological insulator, by intercalating Cu between adjacent quintuple units16,17.

Apart from chemical doping, an alternative approach to induce superconductivity is to tune the electronic structure in physical manner by applying high pressure. This process possesses advantages without introducing disorders or impurities. The application of pressure has recently been reported to turn the topological insulator Bi$_2$Te$_3$ into a superconducting state18. Isostructural to Bi$_2$Te$_3$ and Bi$_2$Se$_3$$^{19-25}$, Sb$_2Te_3$ is another well-studied three-dimensional topological insulator. In this study, we report the discovery of superconductivity in Sb$_2$Te$_3$ single crystals induced via pressure. The nonmonotonic dependence of the superconducting transition temperature (T_c) on pressure and its relation to the Hall coefficient were observed. The experimental results, together with theoretical calculations, indicate that the superconductivity induced via pressure in the ambient phase of Sb$_2$Te$_3$ is related to its topological nature. Furthermore, a systematic phase diagram on crystal and electronic properties of Sb$_2$Te$_3$ as a function of pressure is presented.

Results

Fig. 1(a) shows the evolution in resistance as a function of temperature of Sb$_2$Te$_3$ single crystals at various pressures. Below 4.0 GPa, Sb$_2$Te$_3$ does not display superconductivity at temperature to 1.5 K. When the pressure was increased beyond 4.0 GPa, a superconducting transition with a T_c of around 3 K was observed, as shown in Fig. 1(a). Further increasing pressure to 6.8 GPa, T_c grows rapidly with the resistance drop getting more pronounced and the zero-resistance state being fully realized. A superconducting transition with higher T_c was
observed at 7.5 GPa, after which \(T_c \) becomes constant up to 30 GPa. The pressure-induced superconductivity exhibits more complex behaviors when the pressure was further increased from 16.3 GPa to 30 GPa. When the pressure was higher than 30 GPa, the superconducting transition becomes sharp again, which indicates the good homogeneity of a single superconducting phase with \(T_c \) of about 7.3 K. We further measured the resistance versus temperature as a function of magnetic field to confirm if results shown in Fig. 1(a) are indeed superconducting transition. Fig. 1(b) exhibits the measured resistance at 6.7 GPa with applied magnetic \(H \). It is obvious that the drops of resistance shift toward lower temperature with increasing magnetic field, which indicates that the transition is superconductivity in nature. The inset of Fig. 1(b) shows the magnetic \(H \)-dependence of \(T_c \). The Werthamer-Helfand-Hohenberg formula\(^\text{26}\)

\[
H_{c2}(0) = 0.691 \frac{dH_{c2}(T)/dT}{T} T_c^2
\]

was used, and the upper critical \(H_{c2}(0) \) is extrapolated to be 2.6 Tesla for \(H_{c2} \) when the single crystal was placed inside the diamond anvil cell with the magnetic \(H \) direction perpendicular to the \(ab \)-plane.

The electronic properties of Sb\(_2\)Te\(_3\) below 12 GPa is of particular interest because the crystal structure within this pressure range remains the same as in the ambient phase (will be discussed later) where the topological insulator behavior has been predicted and observed. Fig. 2(a) shows the pressure dependence of \(T_c \) from 0 GPa to 10 GPa. The evolution of \(T_c \) as a function of pressure shows an abrupt increase at around 7.5 GPa, which enables us to divide the superconducting phase diagram into three regions as follows: region A with no superconductivity, and regions B and C with superconductivity. \(T_c \) in region B rapidly increases with increasing pressure at a rate of +0.45 K per GPa, whereas \(T_c \) in region C slightly increases with increasing pressure at a much lower rate of +0.02 K per GPa.

We then performed Hall coefficient experiments on Sb\(_2\)Te\(_3\) at high pressure. The pressure dependence of the carrier density calculated from the linear part of a high magnetic field \(H \) at 2 K, 30 K and 218 K is shown in Fig. 2(b). At ambient conditions, the initial value of carrier density indicates that the Sb\(_2\)Te\(_3\) as grown single crystal is of p-type carrier nature with carrier density about \(5.3 \times 10^{19} \) /cm\(^3\).
similar to that of Bi$_2$Te$_3$18. Below 7.2 GPa, the carrier density rapidly increases with increasing pressure, and reaches about 4.7×10^{21} /cm3 at 7.2 GPa. After abnormal changes, the sample that is hole-dominated at ambient pressure assumes an electron-dominated character within the pressure range of 7.2 GPa–8.3 GPa, which is similar to some Bi$_2$Te$_3$ crystals25. When the pressure was further increased, the n-type carrier density remains constant and stabilized around 8×10^{21} /cm3.

The observed complex behavior of carrier density at high pressure invites us to study the pronounced electronic structure change hidden behind the pressure-induced superconductivity in Sb$_2$Te$_3$. Comparing Fig. 2(b) with Fig. 2(a), the carrier density slightly increases with increasing pressure in region A, where the sample is not superconducting. The carrier density sharply increases by almost two orders of magnitude when the pressure was further increased in region B, where superconductivity is induced. The rapid increase in the carrier density at low pressure, especially in region B, indicates that conductivity induced by pressure in the ambient phase of Sb$_2$Te$_3$ was significantly enhanced. When the pressure was increased to \sim8 GPa, superconductivity with higher T_c is induced, and accompanied the change in carrier type from hole-like into an electron-dominated superconductor. This kind of carrier type flip at high pressure was observed in several semiconductor materials, and is ascribed to the change in electronic structure, e.g., the Lifshitz phase transition27. Pressure greatly alters the electronic structure and has a pivotal function of inducing band crossing in Sb$_2$Te$_3$. Only a negligible increase in T_c was observed when the pressure was increased in region C, in which the n-type carrier density remains almost constant at $\sim 10^{21}$ /cm3. The combined results in Fig. 2(a) and (b) strongly indicate the dependence of T_c on carrier density, where a

![Figure 3](a) Synchrotron X-ray diffraction patterns of Sb$_2$Te$_3$ samples at selected pressures at 8 K. Arrows indicated the appearance of the diffractions peaks from high pressure phase. It is evident that the ambient pressure phase is stable at least up to 12 GPa, which shows that the pressure-induced superconductivity observed at the low-pressure range indeed comes from the ambient phase. (b) Pressure dependence of the lattice parameters for the ambient pressure phase of Sb$_2$Te$_3$.

![Figure 3](b) Pressure dependence of the lattice parameters for the ambient pressure phase of Sb$_2$Te$_3$.

Figure 3 | (a) Synchrotron X-ray diffraction patterns of Sb$_2$Te$_3$ samples at selected pressures at 8 K. Arrows indicated the appearance of the diffractions peaks from high pressure phase. It is evident that the ambient pressure phase is stable at least up to 12 GPa, which shows that the pressure-induced superconductivity observed at the low-pressure range indeed comes from the ambient phase. (b) Pressure dependence of the lattice parameters for the ambient pressure phase of Sb$_2$Te$_3$.

www.nature.com/scientificreports
higher carrier density results in an enhanced superconducting transition temperature.

We performed in situ high-pressure synchrotron X-ray powder diffraction experiments on Sb$_2$Te$_3$ to understand the complex high-pressure behavior of Sb$_2$Te$_3$ comprehensively. Note that the effect of low temperature on the structural evolution of Sb$_2$Te$_3$ is critical for studying the electronic property of topological insulators, therefore the in situ high-pressure experiments, with the temperature decreased to about 8 K, were performed as shown in Fig. 3(a). The results reveal that the first phase-transition pressure is above 12.9 GPa, which indicates that the pressure-induced superconductivity observed at a pressure range of 4 GPa to 12.9 GPa indeed comes from the ambient phase. Based on the ambient pressure phase structure, the lattice parameters from 0.2 GPa to 12.9 GPa were calculated using the Rietveld refinements, as shown in Fig. 3(b). The basal lattice parameters a and c in rhombohedra α phase of Sb$_2$Te$_3$ decrease by 3.7% and 3.9% below 9 GPa, respectively. Referring to the high pressure x-ray diffraction experiments for Sb$_2$Te$_3$ at higher pressures at room temperature reported in ref. 28, as well as the isostructural compound Bi$_2$Te$_3$[29], four phases are assigned, i.e., α, β, γ, δ being ambient phase, the high pressure phase I, high pressure phase II, high pressure phase II, respectively[29]. The crystal evolution information with the application of pressure in Sb$_2$Te$_3$ can be used to analyze the distinct pressure dependence of T_c. Fig. 4 illustrates the

Table 1	Theoretically (theo) optimized lattice parameters of Sb$_2$Te$_3$ under different pressure 0, and 6.9 GPa within GGA + SOC calculation, in comparison with experimentally (exp) determined values under 6.9 GPa		
	0 GPa	6.9 GPa	
a	4.322536333	4.16325	4.1143
c	30.8679419028	29.73047	29.1700
u(Te)	0.213299533	0.208001	0.20815
v(Sb)	0.397758538	0.399645	0.40161

Figure 4 | Superconducting phase diagram of Sb$_2$Te$_3$ single crystals as a function of pressure. The green and yellow spheres in the α and β phases represent Sb and Te atoms, respectively, whereas the mixed color spheres in the γ and δ phases indicate that Sb and Te atoms are disordered and randomly occupied the lattice sites. Circles with various colors indicate the superconducting behaviors at different pressure phases. The superconductivity observed in the ambient phase of Sb$_2$Te$_3$ is labeled as TSC to indicate its topological nature.
superconducting and structural phase diagram as a function of pressure up to 30 GPa.

Discussion

We studied both the bulk and surface states via first principle calculations by taking into account spin orbital coupling based on the experimental measurements of the crystal structure to investigate the electronic structure evolution of Sb$_2$Te$_3$. Firstly, we obtain the lattice parameters under different pressure by varying the volume of Sb$_2$Te$_3$ with fixed c/a ratio and internal atomic site. Secondly, the atomic sites are relaxed with fixed lattice parameters corresponding to specified external pressure. The theoretically optimized structure is compared with experimental value in Table 1. We present the electronic structures calculated from theoretically optimized crystal structure since those obtained from experimental structure are nearly the same. We construct the projected atomic Wannier functions29,30 for p orbitals of both Sb and Te. With this basis set, an effective model Hamiltonian for a slab of 45 QLs is established and superconductor by applying pressure, a proximate effect changes the electronic structure at high pressures for the ambient phase, except for a small relative shift. A Dirac cone remains stable at a pressure of 6.9 GPa. This result provides strong support the occurrence of superconduction at a pressure of 6.9 GPa, although the band gap is reduced. Therefore the superconducting states observed in the high pressure phases are topological trivial as indicated in Fig. 4. However, the results show that the presence of a topological structure at high pressures for the ambient phase is related to the Hall coefficient of Bi$_2$Te$_3$ single crystals. The electronic transport properties of Sb$_2$Te$_3$ under high pressure at low temperatures were investigated via four-probe electrical conductivity methods in a diamond anvil cell (DAC) made of CuBe alloy18,19,32, which has very good low-temperature properties. Pressure was generated by a pair of diamonds with a 500-μm diameter culet. A gasket made of T301 stainless steel was covered with cubic BN fine powders to protect the electrode leads from the gasket. The electrodes were slim Au wires with a diameter of 18 μm. The gasket, preindented from a thickness of 250 μm to 60 μm, was drilled to produce a hole with a diameter of about 200 μm. The insulating layer was pressed into this hole. A 100-μm-diameter hole, which was used as the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The temperature was automatically controlled by a program of the Mag Lab system upon loading. The temperature was measured via a four-probe electrical conductivity methods in a diamond anvil cell (DAC) made of CuBe alloy18,19,32, which has very good low-temperature properties. Pressure was generated by a pair of diamonds with a 500-μm diameter culet. A gasket made of T301 stainless steel was covered with cubic BN fine powders to protect the electrode leads from the gasket. The electrodes were slim Au wires with a diameter of 18 μm. The gasket, preindented from a thickness of 250 μm to 60 μm, was drilled to produce a hole with a diameter of about 200 μm. The insulating layer was pressed into this hole. A 100-μm-diameter hole, which was used as the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer. The dimension of the Sb$_2$Te$_3$ single crystal was 90 μm × 90 μm × 10 μm, which was used for the sample chamber, was drilled at the center of the insulating layer.
Acknowledgments
The work was supported by NSF & MOST of China through research projects. W. G. Y., G. Y. S. acknowledge support by EFRee, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE) under Award DE-SC0001057. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF.

Author contributions
C.Q.J. conceived the work; J.L.Z. grown Sb$_2$Te$_3$ single crystals with preliminary characterizations; J.Z., P.P.K., S.J.Z., X.L., Q.Q.L., R.C.Y. conducted the high pressure transport measurements; X.H.Y., J.L.Z., W.G.Y. contributed to the measurements of high pressure structures with the helps of Y.S.Z., G.Y.S.; R.A., H.M.W., Z.F., X.D. contributed to the theoretical analysis; C.Q.J., J.Z., P.P.K. analyzed the data; C.Q.J., J.Z., wrote the paper. All authors contributed to the discussions of the work.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhu, J. et al. Superconductivity in Topological Insulator Sb$_2$Te$_3$ Induced by Pressure. Sci. Rep. 3, 2016; DOI:10.1038/srep02016 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0