Variational Graph Normalized AutoEncoders

Seong Jin Ahn
sja1015@kaist.ac.kr
KAIST
Daejeon, Republic of Korea

MyoungHo Kim
mhkim@dbserver.kaist.ac.kr
KAIST
Daejeon, Republic of Korea

ABSTRACT

Link prediction is one of the key problems for graph-structured data. With the advancement of graph neural networks, graph autoencoders (GAEs) and variational graph autoencoders (VGAEs) have been proposed to learn graph embeddings in an unsupervised way. It has been shown that these methods are effective for link prediction tasks. However, they do not work well in link predictions when a node whose degree is zero (i.e., isolated node) is involved.

We have found that existing GAEs/VGAEs do not properly handle feature contents of isolated nodes. GAEs learn to make a low similarity of embeddings between a pair of unconnected nodes. Consider a graph consisting of eight nodes in Figure 1 (a). Figure 1 (c) shows vectors in an embedding space of the graph in Figure 1 (a) where \(v_i \) (i=1, 2, ..., 8) is a latent vector corresponding to node \(v_i \) (i=1, 2, ..., 8).

In many applications, there occur nodes in a graph that have no connection with other nodes. In this paper, we call such nodes, i.e., nodes with no connection isolated nodes. For example, consider the following scenario. There is a high school that maintains a social network G among members (e.g., students, professors, and staffs) where nodes are members and an edge between two members represents a "friendship" relation. Suppose the school has a number of freshmen. Here 'Find out friends of students' can be considered a link prediction task where new nodes (freshmen) are involved. Such new nodes do not have any connection initially, and hence are isolated nodes in G when link prediction tasks are performed. Since there are no connectivity information of this case, feature contents of isolated nodes (e.g. the circles or hobby of students) play a major role in link prediction.

We have found that existing GAEs do not properly handle feature contents of isolated nodes. GAEs learn to make a low similarity of embeddings between a pair of unconnected nodes. Consider a graph consisting of eight nodes in Figure 1 (a). Figure 1 (c) shows vectors in an embedding space of the graph in Figure 1 (a) where \(z_i \) (i=1, 2, ..., 8) is a latent vector corresponding to node \(v_i \) (i=1, 2, ..., 8).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:
Seong Jin Ahn and MyoungHo Kim. 2021. Variational Graph Normalized AutoEncoders. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3459637.3482215

KEYWORDS

Link Prediction, Graph Embedding, Graph Convolutional Networks, Normalization

Figure 1: (a) A graph with isolated nodes (v7 and v8), (b) content features of nodes and (c) embedding space of latent vectors corresponding to node \(v_i \) (i=1,2,...,8)
Relative positions of z_i are determined based on the content information and the connectivity information in Figure 1 (a). Now consider two isolated nodes v_7 and v_9. Since v_7 and v_9 are not connected with other nodes, similarities between their embeddings and all other nodes should be low. We have found that GAEs tend to make the Euclidean norm of embedding vectors of isolated nodes small in order to reduce similarities between embeddings of isolated nodes and all the other nodes. As a result, the embeddings of isolated nodes go close to zero regardless of their content features.

In this paper, we propose a novel graph embedding technique, called Variational Graph Normalized AutoEncoder (VGNAE) for link prediction where the aforementioned problem of isolated nodes is properly handled. We propose a Graph Normalized Convolutional Network (GNCN) that effectively use L_2-normalization to prevent embeddings of isolated nodes from going near zero. Our VGNAE is a VGAE model where a GNCN is used to derive the mean and a GCN is used to derive the variance. We show through extensive experiments that our proposed VGNAE effectively handles the problem of isolated nodes, and outperforms other existing state-of-the-art link prediction models.

2 PRELIMINARIES

A graph G can be represented as $G = (V, E, X)$ where V is a set of vertices, $E \subseteq V \times V$ is a set of edges, and X is a feature matrix of V. $N(v)$ denotes a set of neighbors of $v \in V$, $n = |V|$ denotes the number of vertices, and $A \in \mathbb{R}^{n \times n}$ is an adjacency matrix of G. Let x_v be a vector that is an embedding of a node v, and $||x_v||$ denotes an euclidean norm (L_2-norm) of vector x_v.

2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) generalize the convolution operations to the graph domain. The SpectralCNN [Bruna et al. 2013] first proposes convolutional networks to the graph domains using the graph fourier transform. The ChebyConv [Defferrard et al. 2016] parameterizes the graph convolution with chebyshev polynomials for efficient and localized filters. The GCN [Kipf and Welling 2016a] simplifies ChebyConv by using a normalization trick. Some unsupervised learning methods using GCNs have been proposed. Kipf et al. [Kipf and Welling 2016b] propose two graph auto-encoders (GAEs and VGAEs) that reconstruct the adjacency matrix by node embeddings generated by GCNs. LGAE [Salha et al. 2020] is a simple and interpretable linear models leveraging one-hop linear encoding. ARGA and ARVGA [Pan et al. 2018] are two variants of adversarial approaches to learn robust embeddings. GraphInfoClust [Mavromatis and Karypis 2020] captures richer information and nodal interaction by maximizing the mutual information between nodes of a same cluster. sGraphite-VAE [Di et al. 2020] extends the GNNs by exploring the aggregation using mutual information.

2.2 L_2-normalization

Certain properties about the norm of the embedding of the object ($||z_i||$) have been addressed in several studies. In neural translation models, an infrequent word is prone to have a embedding with a low L_2-norm ($||\tilde{w}||$) [Arefeyev et al. 2018; Kobayashi et al. 2020; Nguyen and Chiang 2017; Nguyen and Salazar 2019; Schakel and Wilson 2015]. In image recognition models, an embedding representing poor quality image has a low L_2-norm and vice versa [Liu et al. 2017; Wang et al. 2018]. Also in image search, methods in [Eghbali and Tahvildari 2019; Wu et al. 2017] normalizes the embedding to minimize the quantization error in high-resolution image search. They and their subsequent studies use L_2-normalization [Ranjian et al. 2017; Wang et al. 2017; Zheng et al. 2018] to minimize errors caused by the imbalance between norms. In addition, some works [Merrill et al. 2020; Nguyen and Salazar 2019] show that the magnitude of the parameter continues (norm) to increase during gradient descent. Zhang et al. [Zhang et al. 2020] turns out that the imbalance between norms causes an unstable direction update and uses L_2-normalization to resolve the problem.

As far as we know, PairNorm [Zhao and Akoglu 2019] and MSG-Norm [Li et al. 2020] are the only approach that use L_2-normalization in GCNs. However, they are proposed to solve the over-smoothing problem, not for the problem caused by isolated nodes.

3 OUR APPROACH

3.1 Norm-zero tendency of isolated nodes

For node $v \in \{v_1, v_2, \ldots, v_n\}$ in a graph, there are certain relationships between the norm of nodes ($||z_i||$) from GAEs and degrees d_v. Figure 2 (a) shows node embeddings from a GAE for the Cora and CiteSeer datasets in a 2-dimensional embedding space. Figure 2 (b) shows the norms of node embeddings ($||z_i||$) from the GAE with respect to degrees of nodes for the Cora and CiteSeer datasets. As shown in Figure 2 (a), embeddings of isolated nodes are around $\vec{0}$. The norm of those vectors will be close to zero. In Figure 2 (b), we can find out the norms of an embedding vectors of isolated nodes tend to be close to zero. This also happens with the mean vector of VGAEs. We call this phenomenon “norm-zero tendency of isolated nodes”, which is an extreme case of the imbalance between norms. This tendency makes embeddings of isolated nodes indistinguishable regardless of values of their content features.

3.2 Graph Normalized Convolutional Network

We propose a novel graph neural network called a Graph Normalized Convolutional Network (GNCN) that uses L_2-normalization before propagation. Consider a feature matrix $X = [\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n]^T$ where $\tilde{x}_i \in \mathbb{R}^m$ is a content feature vector of node v_i and n is the number of nodes. A GNCN first generates the feature transformed vectors ($\tilde{h} \in \mathbb{R}^n$) with a learnable matrix $W \in \mathbb{R}^{m \times f}$.

$$\tilde{h}_i = \tilde{x}_i W$$

Let $s \in \mathbb{R}$ be a scaling constant that represents a norm of the hidden feature being propagated. Our proposed GNCN generates the normalized feature transformed vectors ($\vec{h} \in \mathbb{R}^n$) and propagates the normalized vector to generates node embeddings ($\vec{z} \in \mathbb{R}^n$).

$$\vec{h}_i = s \frac{\tilde{h}_i}{||\tilde{h}_i||}$$

$$\vec{z}_i = \frac{1}{d_i + 1} \vec{h}_i + \sum_{j \in N(i)} \frac{1}{d_j + 1} \sqrt{d_j + 1} \vec{h}_j$$

where $i \in \{1, 2, \ldots, n\}$
Now, for a feature matrix $X \in \mathbb{R}^{n \times m}$ and an adjacency matrix A, $\text{GNCN}(X, A, s)$ is defined as follows:

\[
\text{GNCN}(X, A, s) = s\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}g(XW)
\] \hspace{1cm} (4)

Here $g((\tilde{h}_1, \tilde{h}_2, ..., \tilde{h}_n)^T) = [\frac{\tilde{h}_1}{||\tilde{h}_1||}, \frac{\tilde{h}_2}{||\tilde{h}_2||}, ..., \frac{\tilde{h}_n}{||\tilde{h}_n||}]^T$, $Z = [\tilde{z}_1, \tilde{z}_2, ..., \tilde{z}_n]^T \in \mathbb{R}^{n \times f}$ is a node embedding matrix, $W \in \mathbb{R}^{m \times f}$ is a trainable matrix, $\tilde{A} = A + I_N$, \tilde{D} is a degree matrix of \tilde{A}, and s is a scaling constant. We will show that our proposed GNCN properly handles the norm-zero tendency of isolated nodes through experiments in Sec 4.4.1.

3.3 Variational Graph Normalized AutoEncoder

In this paper, we propose two variants of graph autoencoder called Graph Normalized AutoEncoder (GNAE) and Variational Graph Normalized AutoEncoder (VNGAE). For each node $v \in \{1, 2, ..., n\}$, GNAE encodes the local structural information and node feature information of its neighborhood to derive latent variables $\tilde{z}_v \in \mathbb{R}^f$. To generate $Z = [\tilde{z}_1, \tilde{z}_2, ..., \tilde{z}_n]^T \in \mathbb{R}^{n \times f}$, GNAE uses a GNN encoder that avoids the norm-zero tendency of isolated nodes. GNAE uses an inner-product decoder to create the reconstructed adjacent matrix \hat{A} from Z as follows:

\[
\hat{A} = s\sigma(Z^TZ), \quad \text{with} \quad Z = \text{GNCN}(X, A, s)
\] \hspace{1cm} (5)

where σ is a sigmoid function.

We also propose a Variational Graph Normalized AutoEncoder (VNGAE). Since mean vectors in VGEAs also have norm-zero tendency of isolated nodes, we derive mean vectors of VNGAE with a GNCN encoder. Our VNGAE takes a simple inference model by using the mean field approximation to define the variational family as follows:

\[
q(Z|X, A) = \prod_{i=1}^{n} q(z_i|X, A) \quad \text{with} \quad q(z_i|X, A) = N(z_i|\mu_i, \text{diag}(\sigma_i^2))
\] \hspace{1cm} (6)

where $\mu = [\mu_1, \mu_2, ..., \mu_n]^T = \text{GNCN}(X, A, c)$ is the matrix of mean vectors μ_i; similarly $\sigma = [\sigma_1, ..., \sigma_n]^T = \text{GCN}(X, A)$.

Our generative model reconstructs graph structure A by using a simple inner product decoder:

\[
p(A|Z) = \prod_{i=1}^{n} \prod_{j=1}^{n} p(A_{ij}|\tilde{z}_i, \tilde{z}_j) \quad \text{with} \quad p(A_{ij} = 1|Z) = \sigma(\tilde{z}_i^T\tilde{z}_j)
\] \hspace{1cm} (7)

For GNAE, we minimize the reconstruction error of \hat{A}. For VNGAE, optimization is made by maximizing a tractable variational lower bound (ELBO) as follows:

\[
L_{\text{ELBO}} = E_q(Z|X, A)\left[\log p(A|Z) \right] - KL(q(Z|X, A)||p(Z))
\] \hspace{1cm} (8)

where $KL(q||p) = \sum_j Q_j \log \frac{Q_j}{P_j}$ is the Kullback-Leibler divergence between q and p. We use a Gaussian prior $p(Z) = \prod_{i=1}^{n} N(z_i|0, I)$.

4 EXPERIMENTS

We conduct various experiments to show performance improvements of our proposed VNGAE in link prediction when isolated nodes are involved. First, we show the performance improvement of our GNCN by comparing the AUC scores of isolated nodes in different types of attributed graphs. Then, we evaluate our GAE/VNGAE employing the GNN.

4.1 Datasets

We use various types of attributed graphs. First, we use three citation network datasets (Cora, CiteSeer, and PubMed). Second, we use a coauthor network Coauthor CS [Shchur et al. 2018]. Third, we use a co-purchase graph Amazon Photo [Shchur et al. 2018]. Statistics about datasets are described in Table 1.

4.2 Setup

We implement all our models using Pytorch 1.4.0 [Paszke et al. 2019]. We use the Adam optimizer [Kingma and Ba 2014] with a learning rate of 0.005. We train all models for a maximum of 300 epochs and early stopping with a window size of 50. In all experiments, 64 dimensions are used for node embeddings. A scaling constant (σ) in GNCN is set as 1.8. For GCN [Kipf and Welling 2016a], we use a two-layer GCN with the dimension of hidden embeddings is set to 128. For GraphHeat [Xu et al. 2020] and APPNP [Klicpera et al. 2018], the optimal hyper-parameters (e.g. scaling parameter σ and

Dataset	Type	#Nodes	#Edges	#Features
Cora	Citation	2,708	5,429	1,433
CiteSeer	Citation	3,327	4,732	3,703
PubMed	Citation	19,717	44,338	500
CS	Coauthor	18,333	81,894	6,805
Photo	Co-purchase	7,487	119,043	745
teleport rate \(t \) are chosen through validation set. For GraphHeat [Xu et al. 2020], 0.4 is used for the coefficient \(s \). For APPNP [Klicpera et al. 2018], 0.15 is used for the teleport rate and 10 is used for the number of propagations. The link prediction models are evaluated by the area under the ROC curve (AUC) and average precision (AP) scores.

4.3 Results

4.3.1 GNCN: Power of normalization for isolated nodes. In this section, we present that performance of GAEs with existing GCN encoders degrades when isolated nodes are involved. We also present that GAEs using our proposed GNCN encoders effectively encode isolated nodes. We compare the performance of GAEs using various GCN-based encoders for isolated nodes and connected nodes on Cora, CiteSeer, CS and, Photo datasets. The compared GCN-based encoders are GCN [Kipf and Welling 2016a], GAT [Velickovic et al. 2017], SGCN [Wu et al. 2019], SuperGAT [Kim and Oh 2020], APPNP [Klicpera et al. 2018], GraphHeat [Xu et al. 2020], PairNorm [Zhao and Akoglu 2019], and MSGNorm [Li et al. 2020].

For every dataset, we use a training set 60%, a validation set 10%, and a test set 30% among all edges. We add the same number of randomly sampled negative edges to the valid set and test set. We measured the AUC score for isolated nodes and connected nodes in test sets. The results are shown in Figures 3. Figure 3 shows that the AUC scores of GAEs with other GCN encoders of isolated nodes is significantly lower than that of connected nodes (10 ~ 20%) for all types of graphs. Experimental results on graphs of various types show that the degrade of performance in isolated nodes occurs in general graphs. In addition, it can be seen that the accuracy at the isolated nodes for each GCN varies depending on the type of dataset. We confirmed that existing GCNs are not suitable encoders of GAEs when isolated nodes are involved. The methods using proposed GNCN ensured the highest performance of the isolated nodes for all graphs without compromising the performance of the connected nodes.

4.3.2 Performance Comparison of GNAE/VGNAE with state-of-the-art methods. We conduct experiments on citation networks (Cora, CiteSeer, and PubMed) to compare the performance of GNAE/VGNAE with state-of-the-art link prediction models, i.e., LGAE [Salha et al. 2020], ARGA [Pan et al. 2018], ARGVA [Pan et al. 2018], Graph InfoClust (GIC) [Mavromatis and Karypis 2020], and sGraphite-VAE [Di et al. 2020]. For all datasets, 20%, 40%, and 80% of edges are used for training sets. For the remaining edges, the ratio of 1 to 3 are used for validation sets and test sets. We add the same number of randomly sampled negative edges for each valid and test set. For each dataset divided in this way, the AUC and AP scores are measured. The results of link prediction in the dataset are shown in Table 2.

As can be seen in Table 2, our GNAE/VGNAE show superior results compared to other methods in all divisions. Also we can observe that the fewer observed edges (the smaller the ratio of the training rate), the better the performance of our proposed method compared to other SOTA models. This is because as the ratio of unobserved edges increase, the number of isolated nodes also increases.

5 CONCLUSIONS

We have presented that in GAE and Vgae embeddings of isolated nodes tends to go to zero regardless of their content features on
We have shown through extensive experiments that our proposed VGNAE performs better than other existing methods.

ACKNOWLEDGEMENTS

This work was supported by the Bio-Synergy Research Project of the MSIT (No. 2013M3A9C4078137), the National Research Foundation of Korea(NRF) grant (No. 2020R1A2C1004032), and the ITRC support program (IITP-2020-2020-0-01795) supervised by the IITP.

REFERENCES

Nikolay Arefyev, Pavel Ermolov, and Alexander Panchenko. 2018. How much does a word weigh? Weighting word embeddings for word sense induction. arXiv preprint arXiv:1805.09209 (2018).

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems 29 (2016), 3844–3852.

Xinhan Di, Pengqian Yu, Rui Bu, and Mingchao Sun. 2020. Mutual Information Maximization in Graph Neural Networks. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

Sepehr Eghbali and Ladan Talbivard. 2019. Deep spherical quantization for image search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11690–11699.

Dongkwan Kim and Alice Oh. 2020. How to find your friendly neighborhood: Graph attention design with self-supervision. In International Conference on Learning Representations.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016a. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Thomas N Kipf and Max Welling. 2016b. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018).

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2020. Attention J. Advances in neural information processing systems 33 (2020), 8026–8037.

Toan Q Nguyen and David Chiang. 2017. Improving lexical choice in neural machine translation. arXiv preprint arXiv:1710.03329 (2017).

Toan Q Nguyen and Julian Salazar. 2019. Transformers without tears: Improving the normalization of self-attention. arXiv preprint arXiv:1910.05895 (2019).

Shuici Pan, Ruigui Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengu Zhang. 2018. Adversarially regularized graph autoencoders for graph embedding. arXiv preprint arXiv:1802.04407 (2018).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019), 8026–8037.

Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. 2017. L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017).

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. 2020. Simple and effective graph autoencoders with one-hop linear models. arXiv preprint arXiv:2001.08714 (2020).

Adriaan MJ Schakel and Benjamin J Wilson. 2015. Measuring word significance using distributed representations of words. arXiv preprint arXiv:1508.02297 (2015).

Oleksandr Shchur, Maximilian Mamme, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018).

Petr Velicković, Gueim Tucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

Feng Wang, Xiang Xian, Jian Cheng, and Alan Liddon Yuille. 2017. Normalface: L2 hypersphere embedding for face verification. In Proceedings of the 25th ACM international conference on Multimedia. 1041–1049.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhilong Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 5265–5274.

Felix Wu, Amoura Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplicity graph convolutional networks. In International conference on machine learning. PMLR, 6861–6871.

Xian Wang, Ruqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale quantization for fast similarity search. Advances in Neural Information Processing Systems 30 (2017), 5745–5755.

Bingbing Xu, Huawei Shen, Q Cao, Keting Cen, and Xueqi Cheng. 2020. Convolutional networks using heat kernel for semi-supervised learning. arXiv preprint arXiv:2007.16002 (2020).

Dingyi Zhang, Yiming Li, and Zhongfei Zhang. 2020. Deep Metric Learning with Spherical Embedding. Advances in Neural Information Processing Systems 33 (2020).

Linxiao Zhao and Leman Akoglu. 2019. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint arXiv:1909.12223 (2019).

Ziyuwu Zheng, Dipan K Pal, and Marios Savvides. 2018. Ring loss: Convex feature weighting word embeddings for word sense induction. arXiv preprint arXiv:1802.04407 (2018).

Costas Mavromatis and George Karvounis. 2020. Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning. arXiv preprint arXiv:2009.06946 (2020).

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah Smith. 2020. Parameter Norm Growth During Training of Transformers. arXiv preprint arXiv:2010.09697 (2020).

Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. 2020. Graph transformation. arXiv preprint arXiv:1909.12223 (2019).

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah Smith. 2020. Parameter Norm Growth During Training of Transformers. arXiv preprint arXiv:2010.09697 (2020).

Felix Wu, Amauri Souza, Tianyi Zhang, Christoper Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplicity graph convolutional networks. In International conference on machine learning. PMLR, 6861–6871.

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale quantization for fast similarity search. Advances in Neural Information Processing Systems 30 (2017), 5745–5755.

Bingbing Xu, Huawei Shen, Q Cao, Keting Cen, and Xueqi Cheng. 2020. Graph convolutional networks using heat kernel for semi-supervised learning. arXiv preprint arXiv:2007.16002 (2020).

Dingyi Zhang, Yiming Li, and Zhongfei Zhang. 2020. Deep Metric Learning with Spherical Embedding. Advances in Neural Information Processing Systems 33 (2020).

Linxiao Zhao and Leman Akoglu. 2019. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint arXiv:1909.12223 (2019).