A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles

Malek Kammoun a,b, Brigitte Picard a,b, Joëlle Henry-Berger c, Isabelle Cassar-Malek a,b,*

Abstract: Thanks to genomics, we have previously identified markers of beef tenderness, and computed a bioinformatic analysis that enabled us to build an interactome in which we found Hsp27 at a crucial node. Here, we have used a network-based approach for understanding the contribution of Hsp27 to tenderness through the prediction of its interactors related to tenderness. We have revealed the direct interactors of Hsp27. The predicted partners of Hsp27 included proteins involved in different functions, e.g., members of Hsp families (Hsp20, Cryab, Hsp70a1a, and Hsp90a1), regulators of apoptosis (Fas, Chuk, and caspase-3), translation factors (Eif4E, and Eif4G1), cytoskeletal proteins (Desmin) and antioxidants (Sod1). The abundances of 15 proteins were quantified by Western blotting in two muscles of HspB1-null mice and their controls. We observed changes in the amount of most of the Hsp27 predicted targets in mice devoid of Hsp27 mainly in the most oxidative muscle. Our study demonstrates the functional links between Hsp27 and its predicted targets. It suggests that Hsp status, apoptotic processes and protection against oxidative stress are crucial for post-mortem muscle metabolism, subsequent proteolysis, and therefore for beef tenderness.

Introduction

Tenderness, flavour, juiciness, and marbling are very important attributes in the determination of beef quality even if payment on the basis of beef quality exists only in Australia at this moment. Among these attributes, there is specific attention to tenderness, which is the top priority quality attribute in beef [1]. A better control of beef tenderness is of major importance for beef producers and retailers in order to satisfy the consumers’ requirement for a consistently satisfactory product [2]. For this reason, the beef industry is looking for biological markers that would identify live animals with desirable quality attributes, in order to orientate them towards the most appropriate production systems. However, tenderness is highly variable partly due to the nature of muscle, which is a complex biological structure, consisting of fibres, adipocytes and connective tissue with different properties [3,4]. Tenderness is also highly dependent on mechanisms occurring during the post-mortem transformation of muscle [5].

Transcriptomic and proteomic studies including ours [6,7] have attempted to identify gene affecting phenotypic differences for tenderness in cattle using high-density microarrays and two-dimensional electrophoresis [6]. They have identified some potential biological markers of beef tenderness in different production systems. These biomarkers are involved in a lot of different cellular pathways such as muscle contraction, stress reactions, glycolysis and apoptosis [8]. In order to further understand the functional relationships between these markers that may participate in controlling tenderness, we computed a bioinformatic analysis [9]. It allowed the construction of a first “tenderness network” consisting of 330 proteins based on 24 initial biomarkers of beef tenderness. In this network, heat shock proteins and especially the Hsp27 were found at crucial nodes [9]. Hsp27 is encoded by the HspB1 gene and belongs to the small heat shock family also called Hsp20 family, comprising the Hsp20, Hsp27, and αβ-crystallin. Interestingly, several studies have shown that Hsp27 expression is correlated with tenderness and could be used as a tenderness biomarker [6,10-12]. Its role in tenderness could be achieved partly through apoptosis and be correlated with its phosphorylation and oligomeric size [13].

Hence, the aim of the present study was to analyze the consequences of the targeted invalidation of the HspB1 gene on the proteins interacting with Hsp27 and linked to beef tenderness. We performed a network analysis to reveal the partner proteins of Hsp27. Then, we analyzed their abundance in the muscle of HspB1-null mice and their controls. The study enabled the identification of several pathways potentially involved in the determination of tenderness.

Materials and methods

Bio-informatics

The first part of the work was devoted to the identification of proteins that interact with Hsp27 according to information stored and shared in bioinformatic databases. This was performed using the software for systems biology Pathway Studio (Ariadne Genomics). Pathway Studio helps to interpret experimental data in the context of pathways, gene regulation networks, protein interaction maps, and to automatically update pathways with newly published facts using MedScan technology (www.elsevier.com). The Medscan reader extracts the relationship information from literature. We used the ResNet Mammalian (human, rat and mouse) database which contained the latest information extracted from the literature and shared in bioinformatic research.
from published high-throughput experiments. The approach was to build a network centred on Hsp27 interactors also called nearest neighbours. The filter options used were “protein” as entity type and “regulation” and “direct regulation” as applicable relation types. Then, the intersection between the Hsp27 neighbours and the list of 330 proteins from a previous tenderness network [9] was computed to get a list of Hsp27 interactors putatively linked to tenderness.

Animals and experimental procedure

In this study we used a constitutive knock out by gene deletion of HspB1 in mice (HspB1-null mice. This was achieved through targeted insertion (homologous recombination) as described in Kammoun et al. [14]. About 100 % of the HspB1 coding sequence gene was replaced by bacterial vector obtained from BMQ BAC library (Mouse Micer vector set 369N20). The commercial heterozygous ES cells (HspB1+/−) were microinjected into the blastocysts of mouse embryos. Embryos that received ES cells were then implanted into surrogate mothers. The resulting chimeras with a high percentage of agouti coat color were mated to wild type C57BL/6 mice to generate F1 offspring. All experiments using HspB1 homozygous null mice (HspB1−/−) were performed on C57BL/6 background. The F2 offspring were mated in order to amplify the three strains. Mice were housed at the experimental plant of nutrition and microbiology of the National Institute of Agronomic Research (INRA-France), in a temperature and humidity controlled room under a 12-hour light and dark cycle. They were fed ad libitum. Ten males were selected to constitute 2 experimental groups. Experimental procedures and animal holding respected French animal protection legislation, including licensing of experimenters. They were controlled and approved by the French Veterinary Services (agreement number CE 84-12).

Muscle samples

The HspB1-null mice were sacrificed at 12 weeks postnatal. Two muscles with different composition in fibre types were collected, namely the m. Soleus (slow oxidative) and the m. Tibialis Anterior (fast glycolytic) [15]. Muscle samples were taken immediately after sacrifice, frozen in liquid nitrogen and kept at -80 °C until protein extraction. Total protein extractions were performed according to Bouley et al. [16] in a denaturation/extraction buffer (8.3 M urea, 2 M thiourea, 1% DTT, 2% CHAPS) and stored at -20°C until use. The protein concentration was determined by spectrophotometry with the Bradford assay [17].

Immunological protein quantification

The conditions for use and specificity of primary antibodies against candidate proteins were assessed by Western blotting in order to check the specificity of all the antibodies. An antibody was considered specific when its target bands were detected at the expected molecular weight. Fourteen primary antibodies were tested for their specificity and their optimal dilution ratios were determined. Conditions used and suppliers for all primary antibodies are reported in Table 1. Secondary fluorescent-conjugated IRDye 800CW antibodies were supplied by LI-COR Biosciences (Lincoln, NE, USA) and used at 1/20000.

The abundance of candidate proteins was measured by Western blotting in the m. Soleus and the m. Tibialis Anterior of HspB1-null mice vs their control littermates. Fifteen µg of proteins were separated by gel electrophoresis using SDS-PAGE for 2 hr according to the Laemmli method [18]. After migration, the proteins were transferred onto PVDF membrane Millipore (Bedford, MA01730, USA). Membranes were then blocked with 5% non-fat milk in TBS1 X buffer containing (blocking solution) and incubated under gentle agitation all night at room temperature in the presence of the primary antibodies. Then the membranes were incubated at 37°C for 30 minutes with the secondary fluorochrome-conjugated LICOR-antibody. Infrared fluorescence detection was then used for protein quantification. Membranes were scanned by the scanner Odyssey (LI-COR Biosciences) at 800 nm. Band volumes were quantified in the images using ImageQuant TL v 7.0.1.0 software (Amersham). Protein abundance for each sample is given in arbitrary units.
The differences in muscle protein abundance between HspB1-null mice (n=5) and their controls (n=5) were assessed by analysis of variance (ANOVA) using XLSTAT Software. The effects tested in the model included muscle (M), genotype (G), and muscle x genotype interaction (M X G). Results are expressed as the LS-mean ± standard error of mean (SEM). A difference between groups was considered significant when P<0.05.

Results

Network analysis

The first step of our study was to build a network of the Hsp27 nearest neighbours (direct interactors) using the Pathway Studio software according to the information stored and shared in bioinformatics databases of mammalian experiments. As shown in Table 2, the network comprised 34 proteins predicted as direct interactors of Hsp27, but was not a hub in the tenderness network. A gene ontology analysis indicated that these proteins belonged to different biological processes such as the response to heat, apoptotic process, and response to oxidative stress.

As the initial Hsp27 network was built independently of tenderness, we performed an intersection between both networks to keep the Hsp27 interactors potentially linked to beef tenderness. Thus we compared the list of the Hsp27 neighbours with the 330 proteins of the tenderness interactome. This led to a second network of 17 proteins directly interacting with Hsp27 (Figure 1). The Heat shock protein 22 (Hspb8) and Heat shock protein 90 (Hsp90aa1) were the only heat shock proteins found in this network. Five proteins involved in apoptosis were also identified (Cytochrome c, Apoptosis regulator Bcl-2, TNF receptor-associated factor 6, Death domain-associated protein 6, and Apoptotic protease-activating factor 1). Some proteins (e.g. Vinculin, Desmin, Amyloid beta A4 protein, Transforming protein A, and Microtubule-associated protein) were related to muscle contraction and structure. Two other groups of proteins included anti-oxidants (Superoxide dismutase and Glucose-6-phosphate 1-dehydrogenase) and proteins involved in cellular metabolism (Macrophage scavenger receptor types I, Eukaryotic translation initiation factor gamma 1, and the Inhibitor of nuclear factor kappa-B kinase subunit alpha).

In conclusion, the network approach predicted that 17 of the 34 interactors of Hsp27 may be related to meat tenderness (Figure 1). These proteins belonged to different biological families (Heat shock proteins, apoptosis, cell protein metabolism, structure, and response to oxidative stress).

Validation of a set of the Hsp27 predicted targets

Depending on the availability of antibodies, the abundances of 15 proteins including 12 out of these 17 interactors, the Hsp40/Dnaja1 (a patented marker of beef toughness [54]), the Hsp70 (a well-known Hsp27 co-chaperone [55]), and Hsp27 were compared between the HspB1-null mice and control ones. As expected, the Hsp27 protein was not detectable in the muscles of the HspB1-null mice (Table 3). The statistical analysis showed a significant effect of muscle for all proteins except Hsp40, Cycs, and Eif4E, of genotype for all proteins except Hsp40, Chuk, Hspbap1 and Caspase3 (Table 3). A muscle x genotype interaction was detected for Cryab (P<0.1), Hspbap1 (P<0.1), Hsp70a1a (P<0.05), Sod1 (P<0.1), Casp3 (P<0.001), Eif4G1 (P<0.05), and Desmin (P<0.1) (Table 3).

Figure 1. Network of the intersection between Hsp27 neighbours (HspB1 gene) and the 330 proteins of the tenderness interactome [11]. The protein names are presented in Table 2. The network was built using Pathway Studio. The filter options are: protein as an applicable entity type, regulation and direct regulation as applicable relation types.
Table 2. Protein names, gene names and references in *Mus musculus* of 34 nearest neighbours of Hsp27.

Protein	Protein name	Protein ID SWISSPROT	Gene	Gene ID NCBI	Gene Ontology	References
Hspb6	Heat shock protein 20	Q5EBG6	hspb6	243912	Regulation of muscle contraction	[20]
Hspb8	Heat shock protein 22	Q9JK2	hspb8	80888	Response to stress	[21]
Hspb1	Heat shock protein 27	P14602	hspb1	15507	Regulation of apoptotic process	[22]
Hspbap1	Heat shock protein 27-associated protein 1	Q8R8K8	hspbap1	66667	Response to stress	[23]
Hsp90aa1	Heat shock protein 90-alpha	A0PJ1	hsp90aa1	15519	Response to stress	[24]
Ins2	Insulin-2	P01326	ins2	16334	Regulation of apoptotic process	[25]
Vcl	Vinculin	Q64727	vcl	22330	Regulation of cell migration and adhesion	[26] [30]
Des	Desmin	P31001	des	13346	Muscle development	[27]
Casp3	Caspase-3	P70677	casp3	12367	Regulation of apoptosis	[28]
Cald1	Caldesmon	Q8VCQ8	cald1	109624	Regulation of muscle contraction	[29]
Cys	Cytochrome c	P62897	cys	13063	Regulation of apoptotic process	[30]
Lplb3	Alpha-lactalbumin	P29752	lplb3	16770	Lactose biosynthetic process	[31]
Akt1	Protein kinase B alpha	P31750	akt1	11651	Regulation of apoptotic process	[32]
Sod1	Superoxide dismutase	P08228	sod1	20655	Muscle cell homeostasis	[33]
App	Amyloid beta A4 protein	P12023	app	11820	Regulation of mitotic cell cycle	[34]
Fgf2	Fibroblast growth factor 2	P15655	fgf2	14173	Regulation of apoptotic process	[35]
Cdh1	Cadherin-1	P09803	cdh1	12550	Regulation of cell adhesion	[36]
Tnn3	Troponin I, cardiac muscle	P48787	tnn3	21954	Regulation of muscle contraction	[37]
Tnn2	Troponin T, cardiac muscle	Q6PSZ7	tnn2	21956	Regulation of muscle contraction	[38]
Bcl2	Apoptosis regulator BCL-2	P10417	bcl2	12043	Regulation of apoptotic process	[39]
RhOa	Transforming protein RhOa	Q0QU10	rhOa	11848	Muscle development	[40]
Traf6	TNF receptor-associated factor 6	P70196	traf6	22034	Regulation of apoptotic process	[41]
Diablo	Diablo homolog, mitochondrial	D3ZQ3	diablo	66593	Regulation of apoptotic process	[42]
Nefl	Neurofilament light polypeptide	P08551	nefl	18039	Organization of the neurofilament	[43]
Daxx	Death domain-associated protein 6	O35613	daxx	13163	Regulation of transcription	[44]
Mapt	Microtubule-associated protein tau	P10637	mapt	17762	Regulation of microtubule polymerization	[45]
Dusp1	Dual specificity protein phosphatase 1	P28563	dusp1	19252	Regulation of apoptotic process	[46]
Msrl	Macrophage scavenger receptor types 1	P30204	msrl	20288	Regulation of cholesterol storage	[47]
Apaf1	Apoptotic protease-activating factor 1	O88879	apaf1	11783	Regulation of apoptotic process	[48]
G6pdx	Glucose-6-phosphate 1-dehydrogenase	Q00612	g6pdx	14381	Response to oxidative stress	[49]
Eif4e	Eukaryotic translation initiation factor 4E	P63073	eif4e	13684	Regulation of translation	[50]
Eif4g1	Eukaryotic translation initiation factor 4 gamma 1	Q6NZJ6	eif4g1	208643	Regulation of translation	[51]
Fas	Tumour necrosis factor receptor superfamily member 6, TRAF6	P25446	fas	14102	Regulation of apoptotic process	[52]
Chuk	Inhibitor of nuclear factor kappa-B kinase subunit alpha	A0AUU3	chuk	12675	I-kappaB phosphorylation	[53]

In the m. *Tibialis Anterior*, a lower abundance of the 17 kDa caspase-3 was detected in the HspB1-null mice (Table 3). A trend was observed for lower abundance of Hsp20 in the HspB1-null mice.

In the m. *Soleus* muscle, more differences were observed between HspB1-null mice and their controls than in the m. *Tibialis Anterior* (Table 3). The abundances of the Cryab, Hsp70a1A and Hsp90a1I were higher and that of Hsp20 was lower in the HspB1-null mice. Abundances of the 17 kDa Caspase-3, and Fas were higher and Cyts was lower in the HspB1-null mice than in controls. The abundance of the translation factors Eif4E and Eif4G1 was higher in HspB1-null mice than in controls (P<0.05 and P<0.01, respectively). Lastly, Sod1 was higher (P<0.05) and Desmin was lower (P<0.01) in the HspB1-null mice.

In conclusion, we observed changes in the amount of most of the Hsp27 predicted targets in the HspB1-null mice. These changes were more marked in the oxidative muscle.
Hsp27 knock-out targets

Table 3. Abundance of Hsp27 interactors in the m. Tibialis Anterior and m. Soleus of mice.

Protein	m. Tibialis Anterior	m. Soleus	SEM	Significance of effect		
	HspB1-null mice	Control mice	HspB1-null mice	Control mice		
Hsp27	0	51879b	0	114175b	3525	M−, G−, Mg−
Hsp20	156240b	185010	98369b	178891a	12984	M+, G+
Cryab	45020δ	32919δ	673101δ	4918470δ	344702	M−, G, Mg
Hspbap1	118207δ	128968δ	60568δ	45241b	4864	M−, Mg
Hsp40	24857δ	26989δ	24529δ	16046δ	2727	-
Hsp70a1a	1697δ	8980δ	357462δ	268393δ	7658	M−, G, Mg
Hsp90a1	23368b	13718δ	46043δ	22752δ	3020	M+, G−
Fas	103957δ	88394δ	48383δ	27529δ	4551	M−, G−
Chuk	57503a	55918δ	13081δ	17995δ	1859	M−
Sod1	797670δ	782077δ	659073δ	532988δ	25989	M−, G, Mg
17 kDa Casp3	364366δ	46469δ	35280δ	22977δ	1724	M−, Mg
Cycs	1859951b	1930851b	1841464b	2366463b	112016	G+
EifiE	267606b	23925b	30538δ	22413δ	1460	G+
EifiG1	141750δ	128482	429500δ	33318b	9464	M−, G, Mg
Desmin	106167b	12890b	150110δ	242959b	15125	M+, G, Mg

The abundances of 15 Hsp27 interactors were measured by Western blotting. The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

The abundances of 15 Hsp27 interactors were measured by Western blotting. The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

The abundances of 15 Hsp27 interactors were measured by Western blotting. The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

The abundances of 15 Hsp27 interactors were measured by Western blotting. The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

The abundances of 15 Hsp27 interactors were measured by Western blotting. The protein names are presented in Table 1. Protein abundance for each sample is given in arbitrary units.

Discussion

Our previous studies have brought out Hsp27 as a beef quality biomarker [10,54,56-58]. However, the relationships between the expression of HspB1 (encoding Hsp27) and tenderness are not fully understood. A positive correlation of Hsp27 protein level and shear force value in Korean cattle was shown. Recent studies with French breeds confirm that correlation of Hsp27 level may be positive or negative depending on the cattle breed [10,59]. In order to understand Hsp27 function in muscle and its putative role in tenderness, we have used HspB1-null mice (devoid of Hsp27) as a model. Our strategy was to analyze the consequences of HspB1 targeted invalidation on the abundance of other muscle proteins related to beef tenderness. These proteins were investigated by a network-based approach that allowed a prediction of the effect of HspB1 knock-out. The prediction was borne out by a biochemical approach. Interestingly, 10 of 14 proteins were upregulated in the HspB1-null mice. The Hsp27 targets putatively related to tenderness belonged to five main protein families (Hsps, pro/anti-apoptotic factors, translation factors, cytoskeletal proteins, and antioxidants).

Hsp status

Firstly, the approach enabled the identification of six Hsps belonging to different groups, namely the small Hsp (Cryab, Hsp20, and HspBap1), Hsp70, and Hsp90. The Hsp status was modified, except for Hspbap1 and Hsp40, in response to HspB1 invalidation in the m. Soleus. This was not observed in the m. Tibialis Anterior. Hsps are ubiquitously expressed molecular chaperones that are involved in the post translational folding of proteins. They promote the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. They interact dynamically with various chaperones that modulate their substrate recognition, ATPase cycle and chaperone function. They also play an important role in the anti-apoptotic pathway, in the inhibition of reactive oxygen species (ROS) formation and their chaperone activity ensures a good functioning of the muscle under constitutive oxidative stress conditions [60]. Cells usually overexpress Hsps in response to a multitude of insults (e.g. heat, oxidative stress, heavy metals, or cytotoxic agents among others) to prevent cell death and enable cells to survive under otherwise stressful and lethal conditions [61].

The abundance of Hsps is regulated by heat shock factors (Hsfs), the upstream transcriptional regulators of Hsps [62]. Among the Hsf family, Hsf1 is crucial for the heat shock response in mammalian organisms [63]. Under normal conditions, Hsf1 exists in a transcriptionally repressed state, associated to Hsp90 and Hsp70. The dissociation of Hsp90 and Hsp70 from Hsf1 under stress conditions leads to the activation of Hsf1. Then the nonmoneric Hsf1 trimerizes, phosphorylates and translocates to the nucleus where it transactivates the Hsp genes (e.g. Hsp27, Hsp70 and Hsp90) [61]. The existence of a negative feedback mechanism to return Hsf1 to its inactive monomeric state has been proposed [64]. Hsp27 exerts a feedback inhibition of Hsf1 transactivation [65]. Therefore, in the absence of Hsp27, Hsf1 would remain activated and the transcription of Hsp70 and Hsp90 genes would remain turned on. Accordingly, we showed higher abundance of Hsp70 (Hsp70a1a) and Hsp90 (Hsp90a1) in the m. Soleus of HspB1-null mice. The abundance of
the related small heat shock protein Cryab increased. However, Hsp20 was down-regulated in the HspB1-null mice. Compared to the other Hsps, the expression of HspB1 probably does not depend on the action of heat shock factor (Hsf1) [66].

Altogether, these data suggest that the HspB1-null mice could adapt to the loss of Hsp27 through compensatory changes in the muscle expression of cognate members of the Hsp family. Thus Hsp27 could also play a crucial role in orchestrating Hsp abundance under physiological and unstressed conditions. However, our data were not in accordance with Huang et al. [67], who did not observe any significant differences in the basal level of several Hsps (e.g. Hsp70, Hsp90, Hsp40, and Cryab) in the muscles after HspB1 invalidation.

Regulation of apoptosis

In our study, some proteins involved in the regulation of apoptosis were also predicted as Hsp27 targets based on our network analysis. This was validated by Western blot analysis. We detected up-regulation of pro-apoptotic proteins (e.g. active caspase-3, and Fas) in the m. Soleus of HspB1-null mice. These data are in agreement with the well-known anti-apoptotic effects of Hsp27 [68] and more generally of members of the small Hsp family. Hsp27 protects the cells from apoptosis by interacting with Daxx, bflid, Cytochrome c, Ikk, Caspase-3 and etc. [66,69]. Some studies showed that overexpression of Hsp27 and Hsp20 prevents the cytochrome c activation of Caspase 9 and 3 playing a central role in the execution of apoptosis [70]. Reports have already mentioned decreased levels of procaspase-3 [71-73] in cells devoid of Hsp27. An interaction has been described between the pro-domain of procaspase-3 and Hsp27, which modulates procaspase-3 cleavage and activation [69]. Gibert et al. [74] proposed that Hsp27 could modulate procaspase-3 half-life. In the absence of Hsp27, procaspase-3 would be rapidly degraded through the ubiquitin/proteasome pathway. Accordingly, procaspase-3 tended to decrease in the m. Tibialis Anterior of the HspB1-null mice and was undetectable in their m. Soleus (data not shown).

Thus, our data suggest that the decrease in small Hsps (Hsp27 and Hsp20) with anti-apoptotic activity would increase apoptosis in the muscles of HspB1-null mice. Indeed, Hsp27 can interfere with the signals leading to apoptosis [66], at different stages of the apoptotic process (receptors, effectors, and inhibitors). Interestingly, the abundance of the inhibitor of nuclear factor kappa-B kinase subunit alpha (Ikk-α, also known as Chuk) was decreased in the HspB1-null mice. Ikk-α is part of the IKB protein kinase complex. It is the predominant form of Ikk in the mammalian cells [75] that plays an important role in regulating the NF-κB transcription factor activity. NF-κB is present in the cytoplasm in an inactive form complexed with IκB that prevents its translocation to the nucleus where it binds to DNA and induces the transcription of a number of anti-apoptotic genes [76]. Activation of NF-κB transcriptional activity has been proposed as another pathway providing for the anti-apoptotic effect of Hsp27 [66]. The phosphorylation of IκB by protein kinase promotes its ubiquitylation and proteasomal degradation. This process is enhanced by Hsp27, which forms tight complexes with ubiquitylated IκB and 26S proteasome and promotes its proteosomal degradation [66]. In our study, there were no elements to account for the reduction in Ikk-α in the absence of Hsp27.

Translation factors

Eif4E and Eif4G, two eukaryotic translation initiation factors were identified by the network approach. Their abundances were found to be increased in the m. Soleus of the HspB1-null mice. This was in favour of an increase in the availability of Eif4E (the principal activator of cap-dependent translation) and Eif4G for protein translation. There are some data linking small Hsps to translation. Hsp27 specifically binds Eif4G during heat shock, preventing assembly of the cap-initiation/Eif4F complex and trapping Eif4G in insoluble granules [77] and/or promoting a more rapid recovery of translation initiation after stress [78]. Moreover, some studies have also shown that the overexpression of Eif4E rescues cells from apoptosis [79] by inhibiting the release of cytochrome c from the mitochondria. Bel- XL has been found to be the mediator of Eif4E-dependent anti-apoptotic signaling upstream of mitochondria. In our study, the increased Eif4E (and Eif4G) could be part of a mechanism by which transcripts are translationally activated to mitigate the stimulation of the apoptotic pathway. Thereby, the cells could survive in the absence of Hsp27.

Regulation of the cytoskeleton

Small Hsps have been shown to be associated with the three major cytoskeletal components: microtubules, intermediate filaments and micro-filaments [80]. In our study, there was a significant decrease in the abundance of Desmin in the m. soleus of the HspB1-null mice. It was reported that Hsp27 protects Desmin from Calpain proteolysis [81]. Hsp20 also plays an important role in the protection of structural proteins like Desmin (intermyofibrillar cytoskeleton), Actin and Titin [9], and inhibits the formation of aggregates [82]. On the other hand, Panagopoulos et al. [83] demonstrate that Caspase mediated Desmin degradation and could act in parallel with Calpains which are known to be activated by TNF-α [84]. In the HspB1-null mice there was an increase in the abundance of TNF-α receptor associated factor (Fas) and caspase-3, which could lead to a decrease in Desmin abundance. This could have a consequence for the kinetics of post-mortem degradation of the ultra-structure of muscle detected in the HspB1-null mice (Kammoun et al., submitted).

Protection against oxidative stress

Small heat shock proteins modulate the ability of the cells to respond to oxidative stress. For Hsp27 this effect includes a role in regulating enzymes such as the glucose-6-phosphate [80]. HspB1-null mice showed a significant increase in the abundance of the superoxide dismutase Sod1 in the m. Soleus compared to control mice. Sod1 is an enzyme that dismutates the superoxide anion and is involved in antioxidant defences [85]. Oxidative stress is accompanied by increased levels of toxic ROS, such as peroxides and free radicals. Overexpression of Hsp27 led to a significant decrease in basal levels of ROS and ROS production under conditions of oxidative stress [66]. In our study, the loss of Hsp27 could have led to increased basal ROS levels and subsequently to increased Sod1 levels protecting cells from antioxidative stress.

In conclusion, our study demonstrates the functional links between Hsp27 and its predicted targets as illustrated in mice devoid of Hsp27 under basal conditions (thermo neutrality, no physical or emotional stress). Particularly, changes in the abundance of these targets in HspB1-null muscles may be a mechanism to compensate for the absence of Hsp27. Our data also suggested that the apoptotic pathway may be stimulated in the HspB1-null mice through receptors, effectors, and inhibitors of apoptosis. This phenomenon being mediated by mitochondria, it may not be surprising to see the more dramatic effects in high mitochondrial content slow muscle. Additionally, Hsp27 seemed to modulate many elements of the cytoskeleton and would thus play an important role in the regulation of its dynamics and remodelling. All these elements are crucial for the tenderizing process. Based on these data, we can hypothesize that the post-mortem ageing and tenderizing process in beef could rely not
only on proteolysis but also on regulation of apoptotic processes, and protection against oxidative stress. In the future, integration of the knowledge gained from this study could finally result in optimizing meat production through detection of desirable animals. Moreover, the effect of Hsp27 loss was detected in the slow oxidative muscle (Soleus) rather than in the fast glycolytic muscle (Tibialis Anterior). This indicated that the invalidation of HspB1 has muscle-specific effects probably in relation to the higher abundance of Hsps in the slow oxidative muscles. This is consistent with the weight assigned to Hsp in beef tenderness prediction in oxidative muscles [86].

Acknowledgements
We are grateful to Nicolas Allegre, Geneviève Gentes and Christiane Barboiron for their excellent technical support and advice. We also thank Florian Guillou, Denise Aubert and Véronique Blanquet for their helpful discussion.

Citation
Kammoun M, Picard B, Henry-Berger J, Cassar-Malek I (2013) A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles Computational and Structural Biotechnology Journal. 6 (7): e201303008. doi: http://dx.doi.org/10.5936/csbj.201303008

References
1. Geay Y, Bauchart D, Hocquette JF, Culioli J (2001) Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reproduction Nutrition Development 41: 1-26. Erratum, 41, 377.
2. Chrilik S, Picard B, Jurie C, Reichstadt M, Micol D, et al. (2012) Meta-analysis of the comparison of the metabolic and contractile characteristics of two bovine muscles: Longissimus thoracis and semitendinosus. Meat Science 91: 423-429.
3. Dransfield E, Martin JF, Bauchart D, Abouelkaram S, Lepeit J, et al. (2003) Meat quality and composition of three muscles from French cull cows and young bulls. Animal Science 76: 387-399.
4. Picard B, Jurie C, Bauchart D, Dransfield E, Ouali A, et al. (2007) Muscle and meat characteristics from the main beef breeds of the Massif Central. Sciences des Aliments 27: 168-180.
5. Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A (2012) “Muscle to meat” molecular events and technological transformations: the proteomics insight. Journal of Proteomics 75: 4275-4289.
6. Picard B, Berri C, Lefaucheur I, Molette C, Sayd T, et al. (2010) Skeletal muscle proteomics in livestock production. Briefings in Functional Genomics 9: 259-278.
7. Bernard C, Cassar-Malek I, LeCunff M, Dubroeucq H, Renand G, et al. (2007) New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes. Journal of Agricultural and Food Chemistry 55: 5229-5237.
8. Guillemín N, Jurie C, Cassar-Malek I, Hocquette J, Renand G, et al. (2011) Variations in the abundance of 24 proteins biomarkers of beef tenderness according to muscle and animal type. Animal 6: 867 - 874.
9. Guillemín N, Bonnet M, Jurie C, Picard B (2011) Functional analysis of beef tenderness. Journal of Proteomics 75: 352-365.
10. Hocquette JF, Bernard-Capel C, Vidal V, Jesson B, Leveziel H, et al. (2012) The GENOTEND chip: a new tool to analyse gene expression in muscles of beef cattle for beef quality prediction. BMC Veterinary Research 8: (15 August 2012).
11. Lomiwes D, Farouk MM, Wiklund E, Young OAm Small heat shock proteins and their role in meat tenderness: A review. Meat Science. 12. Lomiwes D, Hurst SM, Dobbie P, Frost DA, Hurst RD, et al. (2013) The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Submitted.
13. Paul C, Simon S, Gibert B, Virot S, Manero F, et al. (2010) Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Experimental Cell Research 316: 1535-1552.
14. Kammoun M, Picard B, Cassar-Malek I (2011) Targeted invalidation of a gene bio-marker of beef tenderness in the mouse model. Second COST Action 925 Workshop.
15. Bloemberg D, Quadrilateral J (2012) Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis. Plos One 7.
16. Bouley J, Chambon C, Picard B (2004) Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4: 1811-1824.
17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
18. Laemmli UK (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227: 680-685.
19. Microsoft o (2013) XLSTAT Software In: Data analysis and statistics with MS Excel A, editor.
20. Skarnes WC, Rosen B, West AP, Kousourakis M, Bushell W, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337-361.
21. García-Lax N, Tomás-Roca L, Marín F (2012) Developmental Expression Pattern of HspB8 mRNA in the Mouse Brain: Analysis Through Online Databases. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 295: 492-503.
22. Ke L, Meijering RAM, Hooogastra-Berends F, Mackovicova K, Van MJ, et al. (2011) HSPB1, HSPB6, HSPB7 and HSPB8 Protect against RhoA GTPase-Induced Remodeling in Tachypneic Atrial Myocytes. Plos One 6.
23. Liu CH, Gilmont RR, Benndorf R, Welsh MJ (2000) Identification and characterization of a novel protein from sertoli cells, PASS1, that associates with mammalian small stress protein hsp27. Journal of Biological Chemistry 275: 18724-18731.
24. Imai T, Kato Y, Kajiwara C, Mizukami S, Ishige I, et al. (2011) Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 108: 16363-16368.
25. Stroemer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolded proteins. Journal of Biological Chemistry 278: 18015-18021.
26. Koshimizu T, Kawai M, Kondou H, Tachikawa K, Sakai N, et al. (2012) Vinculin Functions as Regulator of Chondrogenesis. Journal of Biological Chemistry 287: 15760-15775.
27. Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, et al. (1994) inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators myod and myogenin. Journal of Cell Biology 124: 827-841.
28. Ghaneen N, Andrusiak MG, Svoboda D, Al Lafl SM, Julian LM, et al. (2012) The Rb/E2F Pathway Modulates Neurogenesis through
Hsp27 knock-out targets

Direct Regulation of the Dhs1/Dhs2 Bigene Cluster. Journal of Neuroscience 32: 8219-8230.

29. Morin R, Team MGCP (2006) The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC) (vol 14, pg 2121, 2006). Genome Research 16: 804-804.

30. Carlson SS, Moss GA, Wilson AC, Mead RT, Wolin LD, et al. (1977) primary structure of mouse, rat, and guinea-pig cytotoxic c. Biochemistry 16: 1437-1442.

31. Prasad RV, Burkowski RJ, Hamilton JW, Ebner KE (1982) amino-acid-sequence of rat alpha-lactalbumin - a unique alpha-lactalbumin. Biochemistry 21: 1479-1482.

32. Bellacosa A, Franke TF, Gonzalezportal ME, Datta K, Taguchi T, et al. (1993) structure, expression and chromosomal mapping of c-akt - relationship to v-akt and its implications. Oncogene 8: 745-754.

33. Wei R, Bhattacharya A, Chintakaramulu N, Jernigan AL, Liu YH, et al. (2012) Protein misfolding, mitochondrial dysfunction and muscle loss are not directly dependent on soluble and aggregation state of mSOD1 protein in skeletal muscle of ALS. Biochemical and Biophysical Research Communications 417: 1275-1279.

34. Bryson JB, Hobbs C, Parsons MJ, Bosch KD, Pandraud A, et al. (2012) Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics 21: 3871-3882.

35. Kurtz A, Wang HL, Darwiche N, Harris V, Wellstein A (1997) Expression of a binding protein for FGF is associated with epithelial development and skin carcinogenesis. Oncogene 14: 2671-2681.

36. Tanoue T, Takeichi M (2004) Mammalian Fak1 cadherin regulates actin dynamics and cell-cell contact. Journal of Cell Biology 165: 517-528.

37. Oliveira SM, Zhang YH, Solis RS, Isackson H, Bellahcene M, et al. (2012) AMP-Activated Protein Kinase Phosphorylates Cardiac Troponin I and Alters Contractility of Murine Ventricular Myocytes. Circulation Research 110: 1192-1201.

38. Lu D, Ma YW, Zhang W, Bao D, Dong W, et al. (2012) Knockdown of Cyclochrome P450 2E1 Inhibits Oxidative Stress and Apoptosis in the cTnT(R141W) Dilated Cardiomyopathy Transgenic Mice. Hypertension 60: 81-89.

39. Chand HS, Harris JF, Mebratu Y, Chen YD, Wright PS, et al. (2012) Intracellular Insulin-like Growth Factor-1 Induces Bcl-2 Expression in Airway Epithelial Cells. Journal of Immunology 18: 4581-4589.

40. Ma XJ, Zhao Y, Daaka YH, Nie ZZ. (2012) Acute Activation of beta(2)-Adrenergic Receptor Regulates Focal Adhesions through beta Arrestin2 and p115RhoGEF Protein-mediated Activation of RhoA. Journal of Biological Chemistry 287: 18925-18936.

41. Mueck T, Berger F, Buechslr I, Valchanova RS, Landuzzi L, et al. (2011) TRAF6 regulates proliferation and differentiation of skeletal myoblasts. Differentiation 81: 99-106.

42. Verhagen AM, Eket PG, Pakusch M, Silke J, Connolly LM, et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43-53.

43. Gerhard DS, Wagner L, Feigold EA, Shenmen CM, Grouws LH, et al. (2004) The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Research 14: 2121-2127.

44. Yang XL, KhosraviFar R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89: 1067-1076.

45. Bottiglieri T, Arning E, Wasek B, Nunnbakhdi-Craig V, Sontag JM, et al. (2012) Acute Administration of L-Dopa Induces Changes in Methylation Metabolites, Reduced Protein Phosphatase 2A Methylation, and Hyperphosphorylation of Tau Protein in Mouse Brain. Journal of Neuroscience 32: 9173-9181.

46. Charles CH, Abler AS, Lau LF (1992) cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene 7: 187-190.

47. Wang WJ, He B, Shi W, Liang XL, Ma JC, et al. (2012) Deletion of scavenger receptor A protects mice from progressive nephropathy independent of lipid control during diet-induced hyperlipidemia. Kidney International 81: 1002-1014.

48. Ferraro E, Pesaresi MG, De Zio D, Cencioni MT, Gortat A, et al. (2011) Apaf1 plays a pro-survival role by regulating centrosome morphology and function. Journal of Cell Science 124: 3450-3463.

49. Ko CH, Li KR, Li CL, Ng PC, Fung KP, et al. (2011) Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells. Blood Cells Molecules and Diseases 47: 176-181.

50. Furic L, Rong LW, Larsson O, Koumakpayi IH, Yoshida K, et al. (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America 107: 14134-14139.

51. Hu SI, Katz M, Chinn S, Qi XQ, Cruz J, et al. (2012) MNK2 Inhibits eIF4G Activation Through a Pathway Involving Serine-Arginine-Rich Protein Kinase in Skeletal Muscle. Science Signaling 5.

52. Swagiaery SS, Medhi S, Deka M, Kar P (2008) Study of regulatory polymorphism of TNF ligand and receptor superfamily, member 6 in HCV related liver diseases. Journal of Gastroenterology and Hepatology 23: A32-A33.

53. Connelly MA, Marcu KB (1995) CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine threonine kinase catalytic domain. Cellular & Molecular Biology Research 41: 537-549.

54. Bernard C, Cassar-Malek I, Le Cunff M, Dubrooeucq H, Renard G, et al. (2007) New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry 55: 5229 - 5237.

55. Gobbo J, Gaucher-Di-Stasio C, Weidmann S, Guzzo J, Garrido C (2011) Quantification of HSP27 and HSP70 molecular chaperone activities. Methods Mol Biol 787: 137-143.

56. Morzel M, Terlouw C, Chamblon C, Micol D, Picard B (2008) Muscle proteome and meat eating qualities of Longissimus thoracis of "Blonde d’Aquitaine" young bulls: A central role of HSP27 isoforms. Meat Science 78: 297-304.

57. Kim N, Cho S, Lee S, Park H, Lee C, et al. (2008) Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Science 80: 1068-1073.

58. Hocquette JF, Botreau R, Picard B, Jacquet A, Pethick DW, et al. (2012) Opportunities for predicting and manipulating beef quality. Meat Science 92: 197-209.

59. Picard B, Hocquette JF, Cassar-Malek I (2010) Marqueurs biologiques de la qualité sensorielle des viandes bovines. In: Bauchart D, Picard B, editors. Muscle et viande de ruminants: Quae. pp. 143-150.

60. Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortality: A housekeeper, guardian and killer. Experimental Gerontology 42: 263-274.

61. Xia Y, Rocchi P, Iovanna JL, Peng L (2012) Targeting heat shock response pathways to treat pancreatic cancer. Drug Discovery Today 17: 35-43.
Bioinformatics, Tenderness, Muscle, Interactome, Hsp27, HspB1-null mice

Competing Interests: The authors have declared that no competing interests exist.

What is the advantage to you of publishing in Computational and Structural Biotechnology Journal (CSBJ)?

- Easy 5 step online submission system & online manuscript tracking
- Fastest turnaround time with thorough peer review
- Inclusion in scholarly databases
- Low Article Processing Charges
- Author Copyright
- Open access, available to anyone in the world to download for free

Keywords:
Bioinformatics, Tenderness, Muscle, Interactome, Hsp27, HspB1-null mice