ARTICLE INFO

Article History:
Received 1 January 2021
Revised 15 April 2021
Accepted 16 April 2021
Available online 16 May 2021

Keywords:
COVID-19
Occupational stress
Burnout
Nursing
Allied health professionals
Mental health

ABSTRACT

Background: COVID-19 has put extraordinary stress on healthcare workers. Few studies have evaluated stress by worker role, or focused on experiences of women and people of color.

Methods: The "Coping with COVID" survey assessed US healthcare worker stress. A stress summary score (SSS) incorporated stress, fear of exposure, anxiety/depression and workload (Omega 0.78). Differences from mean were expressed as Cohen's d Effect Sizes (ESs). Regression analyses tested associations with stress and burnout.

Findings: Between May 28 and October 1, 2020, 20,947 healthcare workers responded from 42 organizations (median response rate 20%, Interquartile range 7% to 35%). Sixty one percent reported fear of exposure or transmission, 38% reported anxiety/depression, 43% suffered work overload, and 49% had burnout. Stress scores were highest among nursing assistants, medical assistants, and social workers (small to moderate ESs, \(p < 0.001 \)), inpatient vs outpatient workers (small ES, \(p < 0.001 \)), women vs men (small ES, \(p < 0.001 \)), and in Black and Latinx workers vs Whites (small ESs, \(p < 0.001 \)). Fear of exposure was prevalent among nursing assistants and Black and Latinx workers, while housekeepers and Black and Latinx workers most often experienced enhanced meaning and purpose. In multilevel models, odds of burnout were 40% lower in those feeling valued by their organizations (odds ratio 0.60, 95% CIs [0.58, 0.63], \(p < 0.001 \)).

Interpretation: Stress is higher among nursing assistants, medical assistants, social workers, inpatient workers, women and persons of color, is related to workload and mental health, and is lower when feeling valued.

© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

As the United States (US) surpasses 28 million COVID-19 cases and 515,000 deaths as of March 4th, 2021, many healthcare workers continue to be overloaded by work associated with caring for COVID-19 patients. Burnout among healthcare workers is not a newly recognized crisis [1], and is associated with higher rates of anxiety, depression, and substance abuse [2]. Globally, COVID-19 has presented unique challenges, leading to increased mental health issues among healthcare workers. Studies from China and Italy have illustrated these consequences and cautioned of long-term sequelae [3,4].

While the stress and mental health impacts of COVID-19 have predominantly been evaluated within specialties and single institutions in the US [5–7], few studies have used large, diverse, and multi-institution samples [8]. Attention on doctors and nurses as “healthcare heroes” has remained high, yet little focus has been allocated to other healthcare team members comprising 80% of the workforce [9]. For example, nursing assistants and respiratory therapists provide expertise on the frontlines and are at high risk of exposure [10]. Previous work has shown increased risk among non-White patients [11–13] and healthcare workers [8,14,15] for contracting COVID-19. While reports from the US Centers for Disease Control have
Research in context

Evidence before this study

We searched PubMed for articles published between January 1, 2020 and February 1, 2021 using the Boolean search terms: ("healthcare workers" OR "clinicians") AND ("stress" OR "burnout" OR "distress") AND ("COVID-19" OR "sars cov 2"). While studies in many countries have evaluated COVID-related stress and burnout, few studies have been published across multiple institutions, multiple worker roles, and using large diverse samples including women and racially minoritized workers.

Added value of this study

In 20,947 healthcare workers in 42 organizations across the United States between May 28, 2020 and October 1, 2020, we found higher levels of stress and burnout in both clinical and non-clinical staff, including nursing assistants, medical assistants, housekeeping, and social workers. Higher stress scores were observed in female and racially minoritized workers. Fear of exposure to and transmission of COVID-19, mental health concerns, and work overload were associated with stress and burnout, while a sense of feeling valued was associated with improved outcomes.

Implications of all the available evidence

Understanding mediators of stress and burnout (i.e., fear, mental health, and work overload), and the potential mitigator of feeling valued may allow organizations to address these work-life factors and cultivate wellness among their healthcare workers.

illustrated increased prevalence of COVID-related mental health conditions among essential workers and Black and Hispanic people [16], no large-scale national study has characterized how stress from COVID-19 has impacted US healthcare workers, particularly those from racially and ethnically minoritized backgrounds.

Our study aims to provide a comprehensive view of how stress and burnout during the pandemic have impacted healthcare team members. We hypothesized stress would be higher among inpatient workers, such as nurses, respiratory therapists, nursing assistants, and housekeeping. Additionally, we suspected prevalence of self-reported psychological symptoms (i.e. anxiety and depression) would be high among all providers and highest among racially and ethnically minoritized workers. Finally, we anticipated that fear of exposure and transmission would be highest among minoritized staff.

2. Methods

2.1. Study design and participants

The Coping with COVID study has been described in detail elsewhere [17]. In brief, a US national survey was administered by multiple healthcare organizations at no cost beginning April 2020. Registration was available at a public website and open to organizations at no cost beginning April 2020. Each institution determined knowing if people responded more than once. COVID testing and COVID exposure were not available. Responses were returned to a data management organization in Madison, WI, USA, and were analyzed at the AMA and the Hennepin Healthcare Institute for Professional Worklife (IPW). The Hennepin Healthcare Institutional Review Board (IRB) deemed this study a quality improvement/program evaluation project exempt from research requirements as it was felt to be low risk (non-interventional, no randomization, and survey-based). Dataset and analyses were available to Dr. Roger Brown, statistician, and Dr. Linzer and Ms. Prasad, from November 2020 until March 2021.

The Coping with COVID survey (sample questions in Appendix Fig. 1A), adapted in part from existing measures [18], is an approximately 10 item worklife survey with several demographic items (race/ethnicity, gender, years in practice, outpatient vs. inpatient practice environment, and work role). It begins with a single item stress measure, scored 1–4, followed by three items assessing fear of exposure or transmission, self-reported anxiety/depression attributed to COVID-19 (one item), and work overload, also measured with 4-point Likert scales. In final scoring, these first four items were merged into a stress summary score (SSS). There was a single item to assess burnout, previously validated against emotional exhaustion in the Maslach Burnout Inventory [19], scored from no burnout (1) through highly burned out (5). Scores of 3, 4, or 5 comprised “burnout.” For items ranging from 1 (not at all) to 4 (very high); 3 or 4 were considered “high” (e.g. highest identified categories of stress = 3 or 4). Summed SSSs varied between 4 and 16. Construct validity for the SSS was assessed with internal consistency measures, an inter-correlation matrix and correlations with the validated burnout score [17].

Statistical Analysis: Descriptive statistics portrayed stress and burnout levels as well as potentiators and mitigators. SSSs were calculated for the entire sample, and then by gender, race/ethnicity, inpatient vs outpatient, and worker role. The four items of the SSS had a Cronbach’s alpha of 0.739, a McDonald’s Omega of 0.782 (both acceptable to good), and a correlation matrix with high correlations between items (most correlations > 0.3, p’s < 0.001, see Appendix Table 1A).

Differences between results by race/ethnicity, gender, specialty, location (outpatient vs inpatient) and worker role were tested for significance by Chi Square. Differences in SSSs were tested via t tests, normality assumptions were met. To overcome problems of multiple testing, the False Discovery Rate [20] was used which is not as conservative as Bonferroni’s correction. It provides adjusted p-values, reducing the number of false positives, but allowing preservation of the number of true discoveries.

Since the sample size is large, Effect Sizes (ESs) were reported on most contrasts (Cohen’s (d) for continuous measures (dES), and Cohen’s (h) arcsine transformation for proportional differences (hES)). As is the convention, 0.2 was considered small, 0.5 moderate and 0.8 large [21]. In multivariate models, a Cohen’s d ES of 0.2 was felt to be comparable to a Percent of Maximal Possible Change (POMP) of 9%. Missing data for demographics were less than 0.5%; subject characteristics such as years in practice and setting were as high as 23%, while missing data for perceptual measures (purpose and value) were less than 0.2% and considered missing at random. Given the low frequency of missingness on perceptual measures (a primary study focus), and the likelihood of these being missing at random (although not completely at random, shown by missing completely at random (MCAR) testing), impact of missing data was considered to be modest among responders.

Multilevel linear regressions and ordered logistic regression models were performed to assess correlates of stress and burnout, using the SSS, the single item stress score, and the single item burnout measure as outcomes. Because respondents were nested within...
organizations, we used multilevel models which recognize the existence of such data hierarchies. These multivariate findings were used to develop a comprehensive model of stress during the pandemic and subsequently tested via Structural Equation Modeling. Data were analyzed using Stata/SE 16.1.

Role of the funding source: The AMA had no role in determining study design, data interpretation, or writing or submission of the report. ML, CS, RB and KP had full access to all data in the study and final responsibility for manuscript submission.

3. Results

In 20,947 respondents, median response rate in 42 organizations was 20.0% (range 2% to 100%, interquartile range 7% to 35%). Of the organizations, 71.4% (n = 30) had completed data collection by October 1 (median response rate in “completed” organizations 24%). Of organizations in the sample, 62% were located in the US Northeast, 19% Midwest, 10% Western region, and 7% from the South. Forty percent were integrated health systems while 12% were academic medical centers. Large organizations (500+ beds) represented 43% of the sample, 40% were medium-sized (100–499 beds), and 10% were small (<100 beds). There were 15,041 female (71.8%) and 14,221 (67.9%) White respondents (with 1,199 Black (5.7%) and 1,271 Latinx (6.1%) respondents, see Table 1). Inpatient care was the focus for 10,729 workers (51.2%), with 5,359 in outpatient care (25.6%). Daily stress was scored as high or very high in 30% of respondents, while 61% had high fear of exposure or transmission (Table 2). Anxiety or depression was described by 38%, with work overload in 43%. Fifty percent noted an enhanced sense of meaning and purpose, while 61% felt highly valued by their organization. Average SSS was 9.52 (SD 2.82, possible range 4–16), with burnout (present, high or very high) in 49%.

Women described more challenging work environments than men (Table 2). For example, 61.2% of women feared exposure and transmission, vs 54.0% of men (p < 0.001). Self-reported prevalence of anxiety and depression was more common among women (39.3% vs 26.4%, p < 0.001), as was work overload (42.2% vs 37.7%, p < 0.001). Fewer women felt valued by their organizations (45.9% vs 55.5% of men, p < 0.001), and SSSs (9.5 vs 8.9) and burnout (49.4% vs 41.5%) were higher/more frequent in women (p < 0.001). In 58 non-binary and 1,672 respondents not indicating gender, stress was substantially higher (mean SSS in “did not identify gender” (10.9) and non-binary gender (12.1) vs 9.5 in females, ES(d)=0.50 and 0.92, respectively, p < 0.001). Similarly, burnout was more often seen in those preferring not to indicate gender (67.2% vs 49.4% in women (p < 0.001, ES(h)=0.36) and in the non-binary group (72.4% vs 49.4% in females, ES(h)=0.48, p < 0.001, see Supplementary Appendix Table 2A).

Fear of exposure was higher among Black and Latinx workers versus Whites (70.1% and 74.4%, respectively, vs 56.0% in Whites, p’s < 0.001). SSSs were higher (9.6 in Black, 10.1 in Latinx, 9.3 in White workers, p’s < 0.001) although burnout rates were slightly to moderately lower among minority workers (p < 0.05 for Latinx workers and p < 0.001 for Black workers compared to Whites). The 2,667 respondents who preferred not to indicate (PNTI) race (Appendix Table 2A) had a high average SSS of 10.6 vs 9.6 in the 1,199 Black respondents (p<0.001, ES(d)= 0.31); burnout rates were 61.8% in PNTI respondents vs 41.7% in Black (p<0.001, ES(h)=0.40) and versus 45.3% in 1,271 Latinx respondents (p<0.001, ES(h)=0.33). An enhanced sense of meaning and purpose was frequently noted among racially minoritized workers (68.3% in Black, 67.2% in Latinx vs 45.6% in Whites, p’s< 0.001). A far lower prevalence of feeling valued was seen in PNTI respondents. In gender comparisons, 22.7% of PNTI persons felt valued vs 45.9% of females (p<0.001, ES(h)=–0.50). In race/ethnicity comparisons, 29.2% of PNTI respondents felt valued vs 51.4% of Black (p<0.001, ES(h)=–0.46) and 52.8% of Latinx workers (p<0.001, ES(h) =–0.49).

Fig. 1. Occupational variability in stress scores. Range of stress summary scores (4–16).
Burnout was highest in speech therapists (prevalence = 60.7% vs others prevalence=50.1%, hES = 0.53), nursing assistants (prevalence = 69.7% vs others prevalence = 50.1%, hES = 0.41) and respiratory therapists (prevalence = 63.2% vs others prevalence = 50.1%, hES= 0.26). Of all respondents, 45.9% felt highly valued. Respiratory therapists (prevalence 55.9% vs other prevalence 45.8%, hES = 0.20), administration (prevalence 55.7% vs other 44.3%, hES = 0.23), and IT support (prevalence 55.6% vs others prevalence 45.7%, hES = 0.28) felt highly valued (top 2 scores on 4-point scale) most often, while medical assistants (prevalence 35.0% vs other prevalence 46.2%, hES = –0.23) felt valued less often.

In multilevel models, burnout was associated with anxiety/depression (Odds Ratio (OR) 2.17, 95% CIs [2.07, 2.28], p < 0.001) and work overload (OR 2.17, [2.07, 2.26], p < 0.001). Feeling valued was related to lower burnout (OR 0.60, [0.58, 0.63], 40% lower odds of burnout, p < 0.001). In post hoc analyses, work overload was significantly associated in a dose response manner with lower odds of feeling valued (OR 0.19, CI [0.17, 0.21]) for highest work overload and lower value, OR 0.40 [0.37, 0.42] for moderate work overload, and OR 0.62 [0.58, 0.66] for being somewhat overloaded). Enhanced meaning and purpose was significantly associated with greater odds of feeling valued, also in a dose related manner (OR 10.21, CI [9.31, 11.20]) for increased sense of value with highest levels of purpose, OR 4.31 [3.97, 4.69] for moderate purpose, and OR 2.15 [1.99, 2.33] for some what elevated purpose).

Table 4 shows variables and worker roles related to SSSs in two level regressions, including Latinx and female workers, those with fewer years in their role, and those in roles such as nursing assistants, administration, medical assistants, and social workers. These models showed significant associations of roles with SSSs even after adjustment for multiple comparisons, although none reached a Percent of Maximal Possible Change (POMP) of 9% (comparable to a small Cohen's d ES). Feeling valued was strongly related to lower stress (beta coefficient –2.866, POMP 23.9%), while an enhanced sense of meaning and purpose was borderline in terms of its relation to higher stress (beta 1.073, POMP 8.9%). At the organizational level, this multi-level model explained 41% of variance in stress, meaning the model explains 2/5 of what is associated with stress within organizations.

Fig. 2’s conceptual model links background variables (demographics, location and role) to mediators (fear, mental health, work load, purpose, and value); these relate to stress (identified by the single-item stress score) and burnout. Structural equation modeling revealed this conceptual model explained 55% of variance in burnout. Stress was highly correlated with burnout (beta coefficient 1.01, p < 0.001). Fear, anxiety/depression and workload showed strong associations with stress, while feeling valued was associated with less stress.

4. Discussion

In this study of 20,947 US healthcare workers, we found higher stress scores among women, Black and Latinx individuals, inpatient workers, and in nursing assistants, medical assistants, and social workers. Almost half of workers indicated burnout, with certain allied health professionals – speech therapists, occupational therapists and social workers – reporting the highest rates. Stress and
burnout were associated with fear of exposure or transmission, self-reported anxiety/depression, and work overload, while less stress was associated with feeling valued. A predictive model including these variables explained 55% of variance in burnout. A four-item stress summary score had good psychometric performance. These data may be of interest due to the large sample, assessment of stress levels in racially minoritized workers, the portrayal of experiences of numerous healthcare team members, and the high stress and burnout noted among those preferring not to identify their race or gender.

Around the world, studies have highlighted pandemic-related stress in China [3], Italy [22] Singapore [23], and other countries. [24–26] Results show mental health concerns, with findings emphasizing the risks to those on the frontlines, such as nurses [27]. Mental health concerns include anxiety (24–68%), depression (12–56%) and stress (30–63%), with stress higher in females, nurses, younger clinicians, and those more exposed to COVID [28]. A recent study similarly found that infection with COVID-19, occurring most frequently in Latinx workers, contributed to mental health symptoms and burnout [8]. Other studies speak to the occurrence of post-traumatic stress [24,25,29] and to fear being especially high among individuals with vulnerable elderly family members at home [24]. Our study addresses gaps in the literature by offering initial US prevalence estimates for COVID-related stress and burnout.

As in other studies of COVID-related stress [3,30,31], our study found that female workers were at somewhat higher risk, with adverse scores on fear, anxiety/depression and workload. These findings may reflect their predominance in patient-facing roles. Other factors may include gender-related discrimination, gendered expectations in providing care [32], and lack of attention to “dual shift” work with high workloads at home. Non-binary gender groups and those choosing not to identify gender identity had higher stress and burnout, perhaps due to interruption of important social support networks. Potential reasons for these findings should be explored in future work.

Stress predictors were somewhat higher among Black and Latinx healthcare workers compared to Whites, with 70.1% and 74.4%, respectively, endorsing fear of exposure. In spite of increased stress and fear of exposure, Black and Latinx individuals also endorsed increased meaning and purpose. As Black and Latinx individuals continue to be overrepresented among patients hospitalized with COVID-19 [11–13], racial concordance between workers and patients may relate to both increased fear and meaning. Further, racially minoritized workers disproportionately hold entry-level, patient-facing jobs with few options for advancement [33]. These occupations may lend themselves to increased stress as well as positive aspects of delivering care. Increased stress and fear among Black and Latinx workers may also result from impacts of structural racism, including differential quality of housing, economic opportunity, and healthcare options [34]. Continued violence [35] against these communities may exacerbate community-based traumas. For Black and Latinx workers, the pandemic has posed complex personal, economic, and professional challenges, all of which may have led to amplified fear of exposure and stress.

While causes for lower burnout in Black and Latinx workers in our study are not clear, a recent systematic review suggests that inconsistent burnout findings in underrepresented groups in medicine (UiM) may be due to the failed accounting of structural and systemic barriers that inform UiM’s lived experiences including racism, tokenism, and lack of inclusion or social support [36]. High rates of burnout (61.8%) among the large number (2,667) in the “prefer not to indicate” race/ethnicity category may, in part, explain these racial and ethnic differences in burnout, particularly if most of those in this category were minoritized individuals. This large group of non-identified workers appeared to be the most vulnerable group among our respondents, with substantially higher stress scores and burnout rates, and a strikingly lower prevalence of feeling valued. Future studies should re-assess existing burnout metrics in minoritized workers and create study designs that are more inclusive of minoritized individuals and their lived experiences.

Table 2

| Stress factors and mitigators by demographics and role location in Coping with COVID study. |
|--|--------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Gender (a)** | **Overall** | Male (M) | Female (F) | (M – F) |
| Male (M) | 4,174 | (19.9%) | 15,041 | (71.8%) |
| Female (F) | 15,041 | (80.1%) | 4,174 | (28.4%) |
| (M – F) | 1,517 | 12.9% | 10.8% | 4.5% |
| **Race/Ethnicity (b)** | | | | |
| White/Caucasian (W) | 14,221 | (67.9%) | 4,655 | (21.8%) |
| Latinx/Hispanic (L) | 1,271 | (6.1%) | 351 | (1.7%) |
| Black/African American (B) | 1,199 | (5.7%) | 2,317 | (11.1%) |
| **Practice Setting** | | | | |
| Inpatient (I) | 10,729 | (51.2%) | 5,328 | (25.6%) |
| Outpatient (O) | 5,359 | (25.6%) | 3,025 | (14.6%) |
| (I – O) | 5,170 | 30.3% | 3,095 | 16.0% |

Stress Measure	**Total (%)**	**% High Single-Item Stress Measure**	**% Fear of Exposure**	**% Anxiety & Depression**	**% Work Overload**	**% High Meaning and Purpose**	**% Feeling Valued**	**% Burnout**	**Average Stress Summary Score (SD)**
Overall	20,947	29.5%	60.8%	37.7%	42.7%	50.1%	45.9%	49.4%	9.52 (2.82)
Male (M)	4,174	1,122	2,254	1,104	1,572	2,059	2,317	1,733	8.88 (2.78)
Female (F)	15,041	4,268	9,201	5,904	6,344	7,083	6,903	7,425	9.53 (2.76)
(M – F)	1,517	12.9%	10.8%	4.5%					
Gender (a)	**Overall**	Male (M)	Female (F)	(M – F)					
Practice Setting	**Total (%)**	**%高 Single-Item Stress Measure**	**% Fear of Exposure**	**% Anxiety & Depression**	**% Work Overload**	**% High Meaning and Purpose**	**% Feeling Valued**	**% Burnout**	**Average Stress Summary Score (SD)**
Inpatient (I)	10,729	(51.2%)	5,328	(25.6%)					
Outpatient (O)	5,359	(25.6%)	3,016	(15.6%)					
(I – O)	5,170	30.3%	3,095	16.0%					

FDR adjusted values, * p < 0.05, ** p < 0.01, *** p <0.001, (a) prefer not to answer and non-binary gender not included (n = 1,730), Male SSS vs. (non-binary + prefer not to answer) SSS: Male mean = 8.88 (SD=2.77) vs non-binary, non-identified mean = 10.88 (SD=2.88) p < 0.001. (b) + other races (Native American, Asian, other, and prefer not to answer) not included (n = 4,207). Burnout rates were higher (62%) than others in 2,667 respondents who chose not to identify race or ethnicity. See Supplementary Appendix Table 2A.
	Freq (n)	% Female	% Workers of Color	% High stress	% Fear exposure	% Anxiety	% Work Overload	% Purpose	% Valued	% Burnout	Avg Stress score
Overall	20,947	15,041	4,010	6,190	12,728	7,904	8,947	10,498	9,615	10,322	20,947
	(71.81%)	(19.14%)	(29.53%)	(60.76%)	(37.73%)	(42.71%)	(50.12%)	(45.90%)	(49.28%)	(50.97%)	(9.52)
Clinicians	9,513	6,624	1,532	2,812	5,758	3,393	3,902	4,407	4,100	4,925	2.81
	(45.41%)	(69.63%)	(16.10%)	(29.56%)	(60.53%)	(13.67%)	(41.02%)	(46.33%)	(43.10%)	(51.77%)	(19.44)
Nurse	5,027	4,249	810	1,521	3,375	2,135	2,327	2,712	1,945	2,708	2.78
	(24.04%)	(84.52%)	(16.11%)	(30.26%)	(67.14%)	(42.47%)	(44.50%)	(53.95%)	(38.69%)	(53.87%)	(8.41)
Physician	3,128	1,328	537	1,156	2,794	1,167	1,160	1,164	1,564	8.91	12.73
	(14.96%)	(44.18%)	(17.17%)	(50.83%)	(25.38%)	(37.31%)	(37.08%)	(50.00%)	(47.73%)	(7.21)	(10.52)
Advanced Practice Provider	1,055	854	83	1,271	631	371	37,823	399	461	571	9.28
	(5.04%)	(80.95%)	(7.87%)	(25.69%)	(39.81%)	(35.17%)	(38.48%)	(43.70%)	(51.42%)	(12.62)	(1.84)
Medical Assistant	508	445	102	162	93	92	448,88%	387,53%	136	130	38.77
	(2.77%)	(45.41%)	(24.04%)	(30.26%)	(30.69%)	(30.36%)	(44.88%)	(42.90%)	(50.50%)	(2.72)	(13.87)
Social worker	500	404	111	159	225	259	263,199	299	10.04		
	(2.39%)	(80.80%)	(22.10%)	(31.80%)	(65.80%)	(45.00%)	(51.80%)	(50.60%)	(2.69)		
Nursing Assistant	535	428	213	199	427	280	373,219	271	10.51		
	(2.56%)	(80.00%)	(39.81%)	(37.20%)	(79.81%)	(49.72%)	(52.34%)	(69.72%)	(50.65%)	(2.91)	(11.13)
Physicall Therapist	405	280	37	234	134	162	169,191	216	9.13		
Pharmacists	291	185	55	180	113	125	182,142	138	9.39		
Respiratory Therapist	152	104	35	46	105	68	96,636	595	9.45		
Occupational Therapist	104	85	9	67	47	41	51,46	63	9.55		
Speech Therapist	64	77	3	19	46	31	42,34	63	9.64		
Medical Technologists	767	545	153	217	470	261	396,304	358	9.52		
Lab or X-Ray Tech	420	283	39	103	265	176	204,160	196	9.32		
Laboratory Staff	347	262	114	205	130	165	192,144	162	9.77		
Administrative Staff	4,749	3,545	1,199	1,092	2811	1,816	2,489,249	2,190	9.54		
Administrative	2,967	2,288	602	882	1,733	1,124	1,628,1,021	1,333	9.54		
Receptionist/	679	589	172	212	422	282	351,264	344	9.69		
Scheduler	325	260	65	148	117	110	100,139	132	9.41		
Researcher	280	190	54	109	208	147	199,176	145	9.44		
Finance	474	339	151	133	300	183	234,250	186	9.43		
IT Support	349	139	80	109	209	162	176,204	194	9.46		
Non-clinical Staff	193	131	47	58	123	80	126,86	81	9.52		
Food Service	132	100	26	85	54	48	80,55	104	9.43		
Housekeeping	61	51	21	24	38	32	46,31	28	9.72		
	(0.29%)	(50.82%)	(34.43%)	(39.34%)	(62.30%)	(39.34%)	(52.46%)	(54.42%)	(9.50%)	(3.53)	(1.72)
Table 4
Two level regression analysis and model parameters assessing correlates of Stress Summary Score (SSS).

	Coef	Std. Error	Z-value	P	FDR	[95% Conf. Interval]	POMP
						Lower	
						Upper	
Race							
White (REF)							
Latinx	.357	.087	4.10	0.001	.003	.186	.527
Black	−.091	.090	−1.01	0.313	.456	−.268	.086
Sex							
Female (REF)							
	.312	.0577	5.41	0.001	.003	.199	.426
Years							
1–5 years (REF)							
6–10 years	.132	.069	1.92	0.055	.106	−.002	.268
11–15 years	−.055	.074	−.74	0.457	.571	−.200	.090
16–20 years	−.014	.079	−1.78	0.075	.131	−.295	.014
More than 20 years	−.533	.059	−8.93	0.001	.003	−.649	−.416
Purpose							
Not at all (REF)							
Somewhat	−.078	.065	−1.21	0.228	.347	−.207	.049
Moderately	.533	.069	7.68	0.001	.003	.397	.669
To a great extent	1.073	.077	13.93	0.001	.003	.922	1.225
Valued							
Not at all (REF)							
Somewhat	−1.370	.063	−21.55	0.001	.003	−1.495	−1.246
Moderately	−2.130	.067	−31.42	0.001	.003	−2.263	−1.997
To a great extent	−2.866	.076	−37.34	0.001	.003	−3.016	−2.715
Role							
Other (REF)							
Physician	.082	.089	0.92	0.355	.460	−.092	.258
Advanced Practice Provider	−.0076	.106	−0.71	0.475	.573	−.285	.132
Nurse	.157	.072	2.18	0.029	.067	.015	.298
Pharmacist	−.106	.182	−0.58	0.560	.653	−.465	−.251
Nursing Assistant	.604	1.43	4.23	0.001	.003	.324	.885
Housekeeping	.086	.399	0.22	0.828	.888	−.696	.870
Respiratory Therapist	.611	.249	2.45	0.014	.035	.121	1.100
Physical Therapist	−.025	.155	−0.16	0.871	.895	−.329	.278
Occupational Therapist	.268	.287	0.93	0.351	.460	−.295	.831
Speech Therapist	.040	.304	0.13	0.895	.895	−.556	.636
Administrative	.385	.086	4.47	0.001	.003	.216	.554
Medical Assistant	.364	.140	2.60	0.009	.024	.089	.639
Receptionist/Scheduler	.179	.134	1.33	0.183	.291	−.084	.443
Random-effects Parameters							
Organization:							
Identity var(Con)							
var(Con)	.137	.045	3.07	0.000	.000	−.545	.545
var(Residual)							
Snijders/Bosker R-squared Level 1	6.319	.074	6.174	6.468			
Snijders/Bosker R-squared Level 2	0.413						
Our conceptual model of COVID-related stress is an important contribution of this study. We identified anxiety/depression and work overload as correlates of burnout and found feeling valued to be a critical stress mitigator. Further work will be required to better understand the observed relationships between stress and enhanced sense of meaning and purpose.

Feeling valued was correlated with lower stress in early studies from the Coping with COVID dataset [17], and was associated with lower burnout, lower workload, and enhanced meaning and purpose in this study. Recent work complements our findings, identifying that higher perceived support from hospital leadership was associated with a lower risk of anxiety, depression, and post-traumatic stress disorder assessed using validated scales [37]. As our current study identified that approximately 50% of workers do not feel valued, organizations might consider exploring the mediators of feeling valued (fear, mental health and workload) in order to address burnout and support the mental wellbeing of their workforces. Interventions aimed at increasing feelings of being valued by one’s organization may be of particular benefit to healthcare workers with high levels of stress, including women and minoritized workers. We suggest interventions related to peer support programs, changes in care infrastructure to facilitate support, and improvements in the electronic health record related to increasing telehealth options after the pandemic; we reference several practical modules [38] and a recent study to inform these strategies [39].

Learnings from COVID-19 and past epidemics such as Middle East Respiratory Syndrome suggest that stress and psychosocial adjustments among workers should be monitored throughout the pandemic and afterward, as long-term mental health consequences should be expected [4,24,40,41]. As in the Severe Acute Respiratory Syndrome epidemic, stress and mental health consequences may be distinct for workers of different disciplines [42]. Studies from Italy [43], Saudi Arabia [44], and Norway [25] mirror these findings and illustrate the increased presence of anxiety, depression, secondary trauma, and post-traumatic symptoms. As COVID-19 continues to overwhelm US healthcare systems, the magnitude of its long-term impact on mental health remains to be seen.

Our study has several limitations, including a convenience sample of organizations. The Coping with COVID instrument, with mainly single item questions, has not been fully validated, and thus questions about stress, depression and anxiety as well as SSSs do not represent the medical concepts of stress, depression and anxiety syndromes. However, internal consistency is reasonable for the SSS and several aspects of construct validity (including correlation with the validated single item burnout measure) have been met. Our response rate is relatively low, although comparable to US national physician surveys [45]; and we do not have response rates by worker roles or information on non-respondents. Response rates varied in part due to many organizations still enrolling patients when the dataset was closed; the impact of varying response rates on the study's findings is uncertain. Due to this “rolling enrollment”, several organizations were still enrolling subjects when the dataset was closed; the impact of varying response rates on the study is relatively low, although comparable to US national surveys.

In conclusion, our study found somewhat higher stress and burnout in several health professions, including nursing assistants, medical assistants, housekeeping, and social workers, as well as in female and racially minoritized workers. Fear of exposure or transmission, self-reported anxiety/depression, and work overload were associated with stress and burnout, while a sense of feeling valued was associated with improved outcomes. Workers not identifying race, ethnicity or gender appear to be at high risk of stress and burnout. Future studies should investigate the structural reforms needed to sustain our healthcare workers as valued human beings existing at the intersection of calling and crisis.

Data sharing statement

Requests for access to the study data set should be directed to the AMA and will be considered on a case-by-case basis.

Funding source

Funding for this study was provided by the AMA.

Contributors

Study concept and design (ML, CS, MS, EG, KP, KC, NN); data acquisition and curation (CM, KC, ST, RB, MB, ML); data analysis (ML, KP, ST, RB, CS); initial drafting of manuscript (KP, ML, RB, CS). All authors contributed to the interpretation of data and review of the manuscript. ML, CS, CM contributed to study supervision.

Declaration of Competing Interest

Dr. Linzer reports being supported by the American Medical Association during the conduct of the study; and grants from American College of Physicians, National Institutes of Health, Institute for Healthcare Improvement, American Board of Internal Medicine (salary support through Hennepin Healthcare) outside the submitted work; consulting for Harvard University on a grant concerning work conditions and diagnostic accuracy, and has received honoraria from Harvard University and University of Chicago for Medical Grand Rounds. Mr. Barbouche is affiliated with Forward Health Group, Inc. during the conduct of the study. Forward Health Group, Inc. (FHG) is the Technology Partner to the American Medical Association (AMA). FHG supports the AMA and its research partners with data, technology, and analytics support. AMA has a contract with FHG to reimburse FHG's services. Ms. Poplau reports salary support through Hennepin Healthcare from American Medical Association during the conduct of the study; and grants from American College of Physicians, the National Institutes of Health, and the American Board of Internal Medicine outside the submitted work. Dr. Goelz reports salary support paid through Hennepin Healthcare from American Medical Association during the conduct of the study; and salary support through Hennepin Healthcare from the Institute for Healthcare Improvement outside the submitted work. Dr. Stillman is supported for his work on burnout prevention by the AMA (salary support paid through Hennepin Healthcare for studying provider stress and burnout). Ms. McLoughlin, Ms. Nankivil, Ms. Cappelucci and Dr. Sinsky work for the AMA. Mr. Taylor worked for the AMA at the time the study was conducted. Ms. Prasad reports personal fees from Hennepin Healthcare Foundation, during the conduct of the study.
Dr. Brown was paid by theAMA for his work on the study. The opinions expressed in this article are those of the authors and should not be interpreted as American Medical Association policy.

Acknowledgments

Additional assistance in the conduct of this study was provided by Crissy Buhr BA, Frank Byrne MD, Bernadette Lim MBA, Michael Tutt PhD, Crystal Audi BA, Michele LeClaire MD, Kate DeBaene BA, Kerra Guffey MBA, David Joerres BS, and Subbu Ravi MBA.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2021.100879.

References

[1] National Academies of Sciences E. Taking action against clinician burnout: a systems approach to professional well-being. 2019.10.7226/25521.
[2] Dzau VJ, Kirsch D, Nasca T. Preventing a parallel pandemic — a national strategy to protect clinicians’ well-being. N Engl J Med 2020;383:513–5.
[3] Lai JM, Ma S, Wang Y, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open 2020;3:e203976–e203979.
[4] de Girolamo G, Cerveri, Clerici M, et al. Mental health in the coronavirus disease 2019 emergency—the Italian experience. JAMA Psychiatry 2020 published online April 30. doi: 10.1001/jamapsychiatry.2020.1276.
[5] Shen X, Zou X, Zhong X, Yan J, Li L. Psychological stress of ICU nurses in the time of COVID-19. Crit Care 2020;24:200.
[6] Shechter A, Diaz F, Moise N, et al. Psychological distress, coping behaviors, and preferences for support among New York healthcare workers during the COVID-19 pandemic. Gen Hosp Psychiatry 2020;66:1–8.
[7] Sasangohar F, Jones SL, Masud FN, Vahidy FS, Kash BA. Provider burnout and fatigue during the COVID-19 pandemic: lessons learned from a high-volume intensive care unit. Anesth Analges 2020;131:106–11.
[8] Fiere T, Sano ED, Lee JW, et al. Protecting the front line: a cross-sectional survey analysis of the occupational factors contributing to healthcare workers’ infection and psychological distress during the COVID-19 pandemic in the USA. BMJ Open 2020;10:e042752.
[9] Kinder M. Essential but undervalued: millions of health care workers aren’t getting the pay or respect they deserve in the COVID-19 pandemic. Brookings 2020 published online May 28 https://www.brookings.edu/research/essential-but-undervalued-millions-of-health-care-workers-arent-getting-the-pay-or-respect-they-deserve-in-covid-19-pandemic/ (accessed Aug 16, 2020).
[10] Guan L, Zhou L, Zhang J, Peng W, Chen R. More awareness is needed for severe acute respiratory syndrome coronavirus 2019 transmission through exhaled air during non-invasive respiratory support: experience from China. Eur Respir J 2020;55:55. doi: 10.1183/13993003.01532-2020.
[11] Killery ME. Characteristics associated with hospitalization among patients with COVID-19 — Metropolitan Atlanta, Georgia, March–April 2020. MMWR Morb Mortal Wkly Rep 2020;69. doi: 10.15585/mmwr.mm6925e1.
[12] Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med 2020;383:513–5.
[13] Alenazi TH, BinDhim NF, Alenazi MH, et al. Prevalence and predictors of anxiety among healthcare workers in Saudi Arabia during the COVID-19 pandemic. J Infect Public Health 2020;13:1645–51.
[14] Johnson SU, Ebrahimzadeh M, Lofaso F, et al. Mental health outcomes among frontline and second-line health care workers during the coronavirus disease 2019 (COVID-19) pandemic in Italy. JAMA Netw Open 2020;3:e2010185–e2010185.
[15] Tan BYQ, Chew NWS, Lee GKH, et al. Psychological impact of the COVID-19 pandemic on health care workers in Singapore. Ann Intern Med 2020 published online April 6. doi: 10.7326/M20-1083.
[16] Alenazi TH, BinDhim NF, Alenazi MH, et al. Prevalence and predictors of anxiety among healthcare workers in Saudi Arabia during the COVID-19 pandemic. J Infect Public Health 2020;13:1645–51.
[17] Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-line health care workers in the United States, June 24–July 6, 2020. Mayo Clin Proc 2021.
[18] Olson K, Sinsky C, Rine ST, et al. Cross-sectional survey of workplace stresses associated with physician burnout measured by the Mini-Z and the Maslach Burnout Inventory. Stress Health 2019;35:157–75.
[19] Stirling K, Kruse CR, Rohrer JE. Validation of a single-item measure of burnout against the Maslach Burnout Inventory among physicians. Stress and Health 2004;20:75–9.
[20] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995;57:289–300.
[21] Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.
[22] Linzer M, Stillman M, Brown R, et al. Preliminary report: US physician stress during the early days of the COVID19 pandemic. Mayo Clin Proc 2021.
[23] Schoenheit DS, Ripp J, Schwartz G, et al. Gendered expectations: do they contribute to high burnout among female physicians? J Gen Intern Med 2018;33:963–71.
[24] Vazhie M, Qorbani M, Arzaghi SM, Sjahbandar Z, Esmaeilzadeh M. The mental health of healthcare workers in the COVID-19 pandemic: a systematic review. J Diabetes Metab Disord 2020;1:1–12.
[25] Song X, Fu W, Liu X, et al. Mental health status of medical staff in emergency departments during the Coronavirus disease 2019 epidemic in China. Brain Behav Immun 2020;88:60–70.
[26] Wang C, Pan R, Wan X, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health 2020;17:1729.
[27] Demartini B, Nistico V, D’Agostino A, Priori A, Gambini O. Early psychiatric impact of COVID-19 pandemic on the general population and healthcare workers in Italy: a preliminary study. Front Psychiatry 2020;11. doi: 10.3389/fpsyt.2020.561345.
[28] Linzer M, Harwood E. Gendered expectations: do they contribute to high burnout among female physicians? J Gen Intern Med 2018;33:963–71.
[29] Vizheh M, Qorbani M, Arzaghi SM, Sjahbandar Z, Esmaeilzadeh M. The mental health of healthcare workers in the COVID-19 pandemic: a systematic review. J Diabetes Metab Disord 2020;1:1–12.
[30] Khazanchi R, Evans CT, Marcelin JR. Not race, drives inequity across the COVID-19 continuum. JAMA Netw Open 2020;3:e2019933–e2019933.
[31] Nuriddin A, Mooney G, White AIR. Reckoning with histories of medical racism and public service providers during the COVID-19 outbreak. PLoS ONE 2020;15:e0241032.
[32] Mattis et al. / EClinicalMedicine 35 (2021) 100879
[33] Marlow JW, Prasad et al. / EClinicalMedicine 35 (2021) 100879
[34] Khazanchi R, Evans CT, Marcelin JR. Not race, drives inequity across the COVID-19 continuum. JAMA Netw Open 2020;3:e2019933–e2019933.
[35] Sibbald B, Vignola A, D’Agostino A, Priori A, Gambini O. Early psychiatric impact of COVID-19 pandemic on the general population and healthcare workers in Italy: a preliminary study. Front Psychiatry 2020;11. doi: 10.3389/fpsyt.2020.561345.