A construction of finite-dimensional faithful representation of Lie algebra

YURI A. NERETIN

The Ado theorem is a fundamental fact, which has a reputation to be a 'strange theorem'. We give its natural proof.

1. Construction of faithful representation. Consider a finite-dimensional Lie algebra \(g \). Assume that \(g \) is a semidirect product \(p \ltimes n \) of a subalgebra \(p \) and a nilpotent ideal \(n \). Assume that the adjoint action of \(p \) on \(n \) is faithful, i.e., for any \(z \in p \), there exists \(x \in n \) such that \([z, x] \neq 0\).

Consider the minimal \(k \) such that all the commutators
\[
\ldots [[x_1, x_2], x_3], \ldots, x_k], \quad x_j \in n
\]
are 0.

Denote by \(U(n) \) the enveloping algebra of \(n \). The algebra \(n \) acts on \(U(n) \) by the left multiplications. The algebra \(p \) acts on \(U(n) \) by the derivations
\[
d_z x_1 x_2 x_3 \ldots x_l = [z, x_1] x_2 x_3 \ldots x_l + x_1 [z, x_2] x_3 \ldots x_l + \ldots, \quad \text{where} \ z \in p.
\]
This defines the action of the semidirect product \(p \ltimes n = g \) on \(U(n) \).

Denote by \(I \) the subspace in \(U(n) \) spanned by all the products \(x_1 x_2 \ldots x_N \), where \(N > k + 2 \). Obviously,
1. \(I \) is the two-side ideal in \(U(n) \).
2. Consider the linear span \(A \) of all the elements having the form 1, \(x, x_1 x_2 \in U(n) \). Obviously, \(I \cap A = 0 \).
3. \(I \) is invariant with respect to the derivations \(d_z \).

Obviously, the module \(U(n)/I \) is a finite-dimensional faithful module over \(g \).

2. The Ado theorem.

Lemma 1. Any finite-dimensional Lie algebra \(q \) admits an embedding to an algebra \(g \) such that
a) \(g \) is a semidirect product of a reductive subalgebra \(p \) and a nilpotent ideal \(n \);
b) the action of \(p \) on \(n \) is completely reducible.

Obviously, Lemma 1 implies the Ado theorem. Indeed, \(g \) admits a decomposition
\[
g = p' \oplus (p'' \ltimes n)
\]
where \(p', p'' \) are reductive subalgebras and the action of \(p'' \) on \(n \) is faithful. After this, it is sufficient to apply the construction of p.1.

Remark. The Ado theorem implies Lemma 1 modulo the Chevalley construction of algebraic envelope of a Lie algebra. But Lemma 1 itself can be easily proved directly.

3. Killing lemma. Let \(g \) be a Lie algebra, let \(d \) be its derivation. For an eigenvalue \(\lambda \), denote by \(g_\lambda \) its root subspace \(g_\lambda = \oplus \ker(d - \lambda)^k \); we have \(g = \oplus g_\lambda \). As it was observed by Killing, \(x \in g_\lambda, y \in g_\mu \) implies \([x, y] \in g_{\lambda + \mu}\).

Thus the Lie algebra \(g \) admits the gradation by the eigenvalues of \(d \). Consider the gradation operator \(d_\lambda : g \rightarrow g \) defined by \(d_\lambda v = \lambda v \) if \(v \in g_\lambda \). Obviously, \(d_\lambda \) is a derivation, and \(dd_\lambda = d_\lambda d \). We also consider the derivation \(d_n := d - d_n \), this operator is nilpotent (the equality \(d = d_n + d_n \) is called the Jordan–Chevalley decomposition). Clearly,
\[
\ker d_n \subset \ker d; \quad \ker d_n \subset \ker d; \quad \text{(1)}
\]
\[
im d_n \subset \im d; \quad \im d_n \subset \im d \quad \text{(2)}
\]

4. Elementary expansions. Let \(q \) be a Lie algebra, let \(I \) be an ideal of codimension 1. Let \(x \notin I \). Denote by \(d \) the operator \(\text{Ad}_x : I \rightarrow I \). Consider the corresponding pair of derivations \(d_n, d_n \). Consider the space
\[
q' = \mathbb{C} y + \mathbb{C} z + I
\]
where y, z are formal vectors. We equip this space with a structure of a Lie algebra by the rule

$$[y, z] = 0, \quad [y, u] = dsu, \quad [z, u] = dnu,$$

for all $u \in I$

and the commutator of $u, v \in I$ is the same as it was in I.

The subalgebra $\mathbb{C}(y + z) \oplus I \subset q'$ is isomorphic q. We say that q' is an elementary expansion of q.

Obviously, $[q', q'] = [q, q]$.

For a general Lie algebra, the required embedding to a semidirect product can be obtained by a sequence of elementary expansions.

5. Proof of Lemma 1. Let q be a Lie algebra. Let \mathfrak{h} be its Levi part, and \mathfrak{r} be the radical. Denote by \mathfrak{m} the nilradical of q, i.e., $\mathfrak{m} = [q, r]$; recall that \mathfrak{m} is a nilpotent ideal, and $[q, q] = \mathfrak{h} \ltimes \mathfrak{m}$ (see [1], 1.4.9).

Consider a nilpotent ideal \mathfrak{n} of q containing the nilradical \mathfrak{m}. Consider a subalgebra $\mathfrak{p} \supset \mathfrak{h}$ such that the adjoint action of \mathfrak{p} on q is completely reducible and $\mathfrak{p} \cap \mathfrak{n} = 0$; for instance, the can choice $\mathfrak{n} = \mathfrak{m}$, $\mathfrak{p} = \mathfrak{h}$.

Obviously, the q-module $q/(\mathfrak{p} \ltimes \mathfrak{n})$ is trivial. Consider any subspace I of codimension 1 containing $\mathfrak{p} \ltimes \mathfrak{n}$, obviously I is an ideal in q. Since the action of \mathfrak{p} on q is completely reducible, there exists a \mathfrak{p}-invariant complementary subspace for I. Let x be an element of this subspace. Since the \mathfrak{p}-module q/I is trivial, x commutes with \mathfrak{p}. We apply the elementary expansion to these data.

We obtain the new algebra $q' = \mathbb{C}y + \mathbb{C}z + I$ with the nilpotent ideal $\mathfrak{n}' = \mathbb{C}z + \mathfrak{n}$ and with the reductive subagebra $\mathfrak{p}' = \mathbb{C}y \oplus \mathfrak{p}$ (by (1), y commutes with \mathfrak{p}).

It remains to notice that

$$\dim q' - \dim \mathfrak{p}' - \dim \mathfrak{n}' = \dim q - \dim \mathfrak{p} - \dim \mathfrak{n} - 1$$

and we can repeat the same construction.

References

[1] J.Dixmier, *Enveloping algebras*, North.Holland Publ.Co, 1977