Original article
Scand J Work Environ Health 2001;27(2):133-139
doi:10.5271/sjweh.600

Total plasma protein adducts of allergenic hexahydrophthalic and methylhexahydrophthalic anhydrides as biomarkers of long-term exposure
by Rosqvist S, Johannesson G, Lindh CH, Jönsson BAG

Affiliation: Department of Occupational and Environmental Medicine, University Hospital, SE-221 85 Lund, Sweden. Bo.Jonsson@ymed.lu.se

Refers to the following texts of the Journal: 1997;23(3):214-220
1998;24(3):220-227

The following article refers to this text: 2003;29(4):297-303

Key terms: allergenic hexahydrophthalic; biological monitoring; biomarker; blood; gas chromatography; long-term exposure; mass spectrometry; methylhexahydrophthalic anhydride; occupational exposure; organic acid anhydride; total plasma protein adduct; toxicokinetics; type-1-allergy; urine

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/11409596

This work is licensed under a Creative Commons Attribution 4.0 International License.
Total plasma protein adducts of allergenic hexahydrophthalic and methylhexahydrophthalic anhydrides as biomarkers of long-term exposure

by Seema Rosqvist, BSc,1 Gunvor Johannesson, BSc,1 Christian H Lindh, PhD,1 Bo AG Jönsson, PhD1

Rosqvist S, Johannesson G, Lindh CH, Jönsson BAG. Total plasma protein adducts of allergenic hexahydrophthalic and methylhexahydrophthalic anhydrides as biomarkers of long-term exposure. Scand J Work Environ Health 2001;27(2):133—139.

Objectives The aim of this study was to evaluate the applicability of total plasma protein adducts (TPPA) of 2 sensitizing low-molecular-weight allergens, hexahydrophthalic anhydride (HHPA) and methylhexahydrophthalic anhydride (MHHPA), as biomarkers of long-term exposure.

Methods Urine samples from occupationally exposed workers were analyzed for the levels of urinary metabolites of HHPA and MHHPA, and the levels were used as the index of exposure. In addition, blood samples were obtained from the same persons, and the levels of TPPA were determined. Reversed solid phase extraction, derivatization using pentafluorobenzyl bromide, and gas chromatography-mass spectrometry analysis in the negative ion chemical ionization mode were used to quantify the exposure. To assess the suitability of TPPA as a biomarker of exposure to the anhydrides, the TPPA levels were correlated to urinary metabolite levels and hemoglobin (Hb) adducts. The toxicokinetics of TPPA were also studied to determine the elimination half-time of the adducts.

Results The levels of TPPA correlated exceptionally well with the metabolite levels in the urine sampled repeatedly, giving r=0.97 for HHPA and r=0.92 for MHHPA. The TPPA of HHPA correlated highly with the Hb adducts with r=0.86. There were also good correlations between single urinary determinations and the TPPA levels (r=0.71 and 0.81, respectively, for HHPA and MHHPA). The in vivo decay of TPPA gave an elimination half-time of 22 days for HHPA and 24 days for MHHPA.

Conclusions TPPA levels of HHPA and MHHPA are excellent biomarkers of long-term exposure to anhydrides.

Key terms biological monitoring, blood, gas chromatography, mass spectrometry, occupational exposure, organic acid anhydrides, toxicokinetics, type-1-allergy, urine.
MHHP acids in urine is only about 5—6 hours, and thus a single urine sample shows only 1 day’s exposure (9, 12). Long-term exposure can be assessed through repetitive sampling, but such sampling tends to be tedious and impractical, demanding much time and discipline. Biomonitoring using adducts between endogenous proteins and xenobiotics as biomarkers of exposure was an idea first suggested by Ehrenberg and his co-workers (13). These adducts are superior biomarkers in the sense that just 1 sample can give information about long-term exposure. Reports on hemoglobin (Hb) adducts of HHPA and MHHPA have been published earlier (14—16). These adducts have the advantage of monitoring cumulative exposure during the lifetime of the protein (4 months), but the degree of adduction tends to be low, especially for electrophilic xenobiotics, due to the erythrocyte membrane hindering access to Hb (17, 18). This phenomenon may result in poor detection limits when low exposures cannot be accurately and reliably quantified. In contrast, HSA may constitute a better index of integrated cumulative exposure, as it is easily accessible by the xenobiotics and is also abundant. Several methods have been published on the quantification of HSA adducts of various compounds (19—21). The common drawback in all these procedures is the laborious and tedious protein purification steps that make the methods impractical for bulk routine use.

In this study we took the simpler and easier approach of using the total plasma protein adducts (TPPA) of HHPA and MHHPA as the index of the exposure. The use of these adducts for the biomonitoring of long-term exposure to the anhydrides has been evaluated.

Subjects and methods

Subjects

The workers investigated were employed at a plant manufacturing electrical capacitors. They were exposed to HHPA and MHHPA mainly through the inhalation of the vapors. All of the workers had been exposed for at least 4 months prior to the investigation. Permission for the study was obtained from the Ethics Committee at the Lund University, and all the participating workers gave an informed consent.

Collection of biological samples

In an earlier study, long-term exposure to HHPA and MHHPA was assessed through the analysis of urine samples collected repeatedly from 10 exposed workers, during the last 4 hours of the workshift, on 10 to 12 different days, over a period of 4 weeks (14). The mean urinary HHP acid levels over the 4-week period were found to be in the range 76—3300 nmol/mmol creatinine. The mean urinary levels of MHHP acid ranged from 0 to 56 nmol/mmol creatinine. Blood was also sampled from the same 10 workers at the end of the 4-week period and was used to determine the Hb adduct levels. In the previous work (14), the mean HHPA-Hb adduct levels ranged from 0.45 to 25 pmol/g Hb. In our study, corresponding plasma from the same 10 workers was analyzed for the TPPA levels. In addition, urine samples from a total of 117 HHPA- and 116 MHHPA-exposed workers were collected during the last 4 hours of an 8-hour workshift. Blood samples for the determination of TPPA were also collected the same week from all the workers from which urine samples were obtained.

For the study of the kinetics of TPPA, blood samples were collected from 1 HHPA-exposed worker and 1 MHHPA-exposed worker who left employment and were thereafter unexposed. Blood samples from these 2 workers were taken on their last day at work and then once a month over 4 months after the termination of employment. We also collected blood samples from 5 HHPA-exposed and 3 MHHPA-exposed workers before and after a 28- to 35-day summer vacation to see how well the monitored TPPA levels compared with theoretically predicted adduct levels.

All the blood samples were drawn from an antecubital vein and collected in 10-ml Venoject® blood sampling tubes (Terumo Europe, Leuven, Belgium) containing sodium heparin. The blood was allowed to cool to room temperature, it was then centrifuged at 1500 g for 10 minutes, and the plasma was then separated. The urine and plasma samples were stored in polyethylene test tubes at –20°C until the analysis.

Determination of hexahydrophthalic acid and methylhexahydrophthalic acid in urine

The levels of HHP acid and MHHP acid in urine were determined as described elsewhere (10). Briefly, the acids were worked-up using reversed, solid-phase extraction (SPE) and then derivatized using pentafluorobenzyl bromide (PFBBr) and analyzed by gas chromatography-mass spectrometry (GC-MS) in the negative-ion chemical ionization (NICI) mode.

Determination of total plasma protein adducts of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride

The levels of HHPA and MHHPA bound to plasma proteins were determined as published recently (22). Thus aliquots of plasma were dialyzed, and the bound HHPA and MHHPA were hydrolyzed from the proteins to the corresponding acids. The acids were then purified by
SPE, derivatized to the corresponding esters using PFBBBr and analyzed by GC-MS in the NICI mode.

Statistical analysis

Spearman’s rank correlation coefficient (r_s) was used to analyze the results in cases when the data were distributed mainly in clusters with some outliers. Simple linear regression was used to describe the correlations between the pairs of values when the data were evenly spread between the lowest and the highest values.

Results

Correlations between total plasma protein adducts and urinary metabolite levels

The levels of TPPA of HHPA in the plasma of the 10 persons for whom frequent urine sampling was performed were between 700 and 13 400 fmol/ml. The TPPA levels of HHPA and the mean urinary HHP acid levels were very strongly correlated with a linear regression of 0.97 ($P=0.0001$, figure 1). The levels of the protein adducts of MHHPA in the plasma of the 10 workers ranged between 0 and 830 fmol/ml. Again a very strong linear correlation with $r = 0.92$ ($P=0.0001$) was found between the MHHPA TPPA levels and the mean urinary MHHP acid levels (figure 2). Furthermore, when the gradients of the 2 plots were compared, it could be seen that, at the same exposure levels, the amounts of MHHPA adducts were about 3 times higher than those of HHPA.

The range of the HHPA TPPA levels in the plasma of the 117 workers was 0—10 700 (mean 800, median 92) fmol/ml, and the range of the HHP acid levels in urine was 6—3060 (mean 170, median 21) nmol/mmol creatinine. The plot of the HHPA TPPA against the urinary HHP acid levels is shown in figure 3. In Spearman’s rank correlation test, the HHPA TPPA levels significantly correlated with the urinary HHP acid levels ($r_s=0.71, P=0.0001$).

The range of the MHHPA TPPA levels in the plasma of the 116 workers was 0—40 300 (mean 1860, me-
Total plasma protein adducts of organic acid anhydrides

The urinary levels of MHHP acid were determined in urine sampled during the last 4 hours of 1 workshift, and they represent the exposure mainly during that day. Plasma adducts of methylhexahydrophthalic anhydride (MHHPA) were analyzed in a single blood sample, and they represent long-term exposure. The Spearman’s rank correlation coefficient was 0.81.

Table 1. Monitored and predicted decay of total plasma protein adducts (TPPA) of hexahydrophthalic anhydride (HHPA) and methylhexahydrophthalic anhydride (MHHPA) in exposed workers before and after a 28- to 33-day vacation.

Anhydride	Before vacation	After vacation	Predicted amount of TPPA (pmol/ml plasma)
HHPA	5.00	1.62	1.60
HHPA	4.18	1.24	1.59
HHPA	0.60	0.20	0.18
HHPA	0.48	0.15	0.15
HHPA	0.35	0.20	0.13
MHHPA	0.15	0.04	0.05
MHHPA	0.14	0.06	0.05
MHHPA	0.13	0.12	0.04

* Calculated theoretically, using a half-time of 20 days.
Theoretically predicted values on the assumption of a half-time of 20 days in plasma. The results are summarized in Table 1.

Discussion

Our major finding was that the TPPA levels of the 2 potent allergenic, low-molecular-weight chemicals HHPA and MHHPA are excellent indices of long-term exposure to these anhydrides.

Although the concept of protein adducts as a dosimeter of exposure has been around since 1974, progress with this type of monitoring has been slow, with remarkably few publications on the subject, and their use in exposure monitoring is still very limited, probably due to the need for special and advanced analytical instrumentation coupled with laborious and tedious sample work-up procedures. But now, as mass spectrometers are becoming more readily and cheaply available, there are better opportunities to investigate the full potential of this approach.

Some efforts have also been made to develop simpler work-up procedures (23). In this report we have used a recently developed method to quantify the levels of TPPA (22). This method is easy and convenient, and it dispenses with tedious, labor-intensive protein isolation steps. The protocol consists of simple steps such as dialysis, quick and mild hydrolysis, and one-step derivatization. It is also practical, using a minimum of basic reagents found commonly in most laboratories. However, it should be pointed out that this method is limited to lipophilic and hydrolyzable adducts.

The correlations between the levels of TPPA and long-term exposure as determined by repetitive urine sampling were exceptionally good for both HHPA and MHHPA. The correlation between the presented TPPA method and short-term biological monitoring using 1-day urine sampling was slightly lower, and this result was to be expected. Protein adducts reflect mean integrated, long-term exposure over a period of several weeks, and they are relatively less dependent on sampling time, whereas urinary metabolites reflect only the current (1-day) exposure from 1 workshift, which is influenced by variations in exposure patterns during the day with alternating peak, low, or periodic exposures.

There may be reasons to expect some problems with the precision of the biological monitoring method using TPPA, as the levels of protein between and within persons tend to vary. Therefore, if the level of exposure is quantified in terms of milliliters of plasma, a negative effect on the precision can be expected. However, we did not find any such effect in this study since we saw excellent correlations between exposure and the TPPA levels. In fact, the obtained correlations were far better than any previously reported associations between exposure and adduct levels in general. In addition, as reported in an earlier study, we found high correlations between the TPPA levels and the adducts with merely the HSA in 10 workers with differing protein levels (22). Furthermore, in this study, we found a close correlation also between TPPA and the Hb adducts of HHPA.

Adducts are conveniently stable, with a half-time that corresponds well with the half-time of HSA, and this phenomenon suggests that albumin may be the major adducting protein in plasma. This assumption agrees with the results of other studies (24). This is an interesting finding since conjugates between HSA and anhydrides have been used for many years in tests for specific antibodies. In addition, in vitro synthesized conjugates between serum albumin and anhydrides have been shown to induce the production of specific antibodies in rats (25).

In this study we found that a mean urinary MHHP acid level of 50 nmol/mmol creatinine corresponds to a TPPA level of about 650 fmol/ml. In a previous study in the same factory we found that a urinary MHHP acid level of 50 nmol/mmol creatinine corresponded to about 7 µg/m3 (12). The detection limit of the TPPA method for MHHPA is about 30 fmol/ml. Thus detectable levels of adduct are formed at average air levels corresponding to less than 1 µg/m3. There is a definite need for monitoring such low exposure levels because it has been reported that up to 20% of workers exposed to HHPA and MHHPA below 10 µg/m3 have antibody-specific IgE antibodies (5). The lowest exposure levels that can be monitored by the Hb adduct method previously described is an order of magnitude higher. This TPPA method is also capable of monitoring high exposures; levels up to more than 500 µg/m3 can be quantified. Thus HHPA and MHHPA TPPA are suitable and appropriate dosimeters for variable exposure assessments.

In the monitoring of exposure to carcinogenic compounds, protein adducts are often considered to be biomarkers of effective dose (ie, they indicate the dose of the compound at the target site) (20). The formation of protein adducts from allergenic, low-molecular-weight chemicals is believed to be an important step in the IgE sensitization process. Thus there are reasons for investigating the possibility that these protein adducts may also be usable as biomarkers of effective dose and exposure. In this study we found that the 2 anhydrides behave differently, MHHPA giving more adducts than HHPA for the same levels of exposure. It would therefore be interesting to see whether MHHPA is indeed somewhat more sensitizing than HHPA. Welinder et al (26) studied the sensitizing potentials of 13 cyclic acid anhydrides following the intradermal injection of the...
anhydrides into guinea pigs and found a wide range of responses. However, the responses to HHPA and MHHPA in their study seemed to be almost equal. Similar results were obtained by Zhang and his co-workers (25) when they studied antibody levels from 14 anhydrides after intradermal injection into rats. Currently no studies of occupationally exposed workers are available indicating whether MHHPA is more sensitizing than HHPA. This possibility should be studied further.

We have, in this work, shown that the TPPA levels of HHPA and MHHPA are excellent biomarkers for assessing long-term exposures to these chemicals. Thus we have used low-molecular-weight allergens to assess the applicability of TPPA as an index of exposure, but this approach can also be applied in studies of the exposure-response and dose-response relationships of other xenobiotics.

Acknowledgments

The excellent technical assistance given by Ms K Olsson, Ms H Ottosson and Mr KO Lennartsson is gratefully acknowledged.

This work was supported by grants from the Swedish Medical Research Council (11336), the Swedish Council for Work Life Research, the Värdal Foundation, the European Union (BMH4-CT-98-3951), and the Medical Faculty at Lund University.

References

1. Moller GA, Gallagher JS, Bernstein DI, Wilcox TG, Burroughs HE, Bernstein IL. Detection of IgE mediated respiratory sensitization in workers exposed to hexahydrophthalic anhydride. J Allergy Clin Immunol 1985;75:663—72.
2. Venables KM. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides. Br J Ind Med 1989;46:222—32.
3. Nielsen J, Welinder H, Horstmann V, Skerfving S. Allergy to methyltetrahydrophthalic anhydride in epoxy resin workers. Br J Ind Med 1992;49:769—75.
4. Yokota K, Johyama Y, Yamaguchi K, Fujiki Y, Takeshita T, Morimoto K. Specific antibodies against methylytetrahydrophthalic anhydride and risk factors for sensitization in occupationally exposed subjects. Scand J Work Environ Health 1997;23:214—20.
5. Welinder H, Jönsson BAG, Nielsen J, Ottosson H, Gustavsson C. Exposure-response relationships in the formation of specific antibodies to hexahydrophthalic anhydride in exposed workers. Scand J Work Environ Health 1994;20:459—65.
6. Welinder H, Nielsen J, Rylander L, Ståhlbom B. A prospective study of the relationship between exposure and specific antibodies in workers exposed to organic acid anhydrides. Allergy. In press.
7. Jönsson B, Skarping G. Method for the biological monitoring of hexahydrophthalic anhydride by the determination of hexahydrophthalic acid in urine using gas chromatography and selected-ion monitoring. J Chromatogr 1991;572:117—31.
8. Jönsson BAG, Skerfving S. Toxicokinetics and biological monitoring in experimental exposure of humans to gaseous hexahydrophthalic anhydride. Scand J Work Environ Health 1993;19:183—90.
9. Jönsson BAG, Welinder H, Hansson C, Ståhlbom B. Occupational exposure to hexahydrophthalic anhydride: air analysis, percutaneous absorption, and biological monitoring. Int Arch Occup Environ Health 1993;65:43—7.
10. Jönsson BAG, Lindh CH. Determination of hexahydrophthalic acid and methylyhexahydrophthalic acid in urine by gas chromatography-negative-ion chemical-ionisation mass spectrometry. Chromatographia 1996;42:647—52.
11. Lindh CH, Jönsson BAG. Analysis of methylyhexahydrophthalic acid in human urine. Chromatographia 1996;43:668—70.
12. Lindh CH, Jönsson BAG, Welinder H. Biological monitoring of methylyhexahydrophthalic anhydride by determination of methylyhexahydrophthalic acid in urine and plasma from exposed workers. Int Arch Occup Environ Health 1997;70:128—32.
13. Ehrenberg L, Hiesche KD, Osterman-Golkar S, Wennberg I. Evaluation of the genetic risk of alkylating agents: tissue doses in the mouse from air contaminated with ethylene oxide. Mutat Res 1974;24:83—102.
14. Jönsson BAG, Lindh CH, Welinder H. Hemoglobin adducts and specific immunoglobulin G in humans as biomarkers of exposure to hexahydrophthalic anhydride. Biomarkers 1997;2:239—46.
15. Lindh CH, Jönsson BAG. Quantification method of human hemoglobin adducts from hexahydrophthalic anhydride and methylyhexahydrophthalic anhydride. J Chromatogr 1998;710:81—90.
16. Lindh CH, Jönsson BAG. Human hemoglobin adducts following exposure to hexahydrophthalic anhydride and methylyhexahydrophthalic anhydride. Toxicol Appl Pharmacol 1998;153:152—60.
17. Sepai O, Henschler D, Sabbaoni G. Albumin adducts, hemoglobin adducts and urinary metabolites in workers exposed to 4,4'-methylenediphenyl diisocyanate. Carcinogenesis 1995;16:2583—7.
18. Yewell O’Connell K, Rothman N, Smith MT, Hayes RB, Li G, Waidyanatha S, et al. Hemoglobin and albumin adducts of benzene oxide among workers exposed to high levels of benzene. Carcinogenesis 1998;19:1565—71.
19. Skipper PL, Green LC, Bryant MS, Tannenbaum SR, Kadlubar FF, editors. Monitoring exposure to 4-aminobiphenyl via blood protein adducts. In: Berlin A, Draper M, Hemminki K, Kadlubar FF, editors. Monitoring exposure to carcino- and mutagenic agents. Lyon: International Agency for Research on Cancer (IARC), 1984:143—50. IARC Scientific Publications, vol 59.
20. Van Welie RTH, Van Dijck RGM. Vermeulen NPE, Van Sittert NJ. Mercapturic acids, protein adducts, and DNA adducts as biomarkers of electrophilic chemicals. Crit Rev Toxicol 1992;22:271—306.
21. Lambert GR, Padgett WT, Georg MH, Kitchin KT, Nesnow S. Quantitative measurement of alachlor protein adducts by gas chromatography-mass spectrometry. Anal Biochem 1999;268:289—96.
22. Rosqvist S, Johannesson G, Lindh CH, Jönsson BAG. Quan-
ification of protein adducts of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride in human plasma. J Environ Monit 2000;2:155—60.

23. Törnqvist M, Mowrer J, Jensen S, Ehrenberg L. Monitoring of environmental cancer initiators through hemoglobin adducts by a modified Edman degradation method. Anal Biochem 1986;154:255—66.

24. Johannesson G, Rosqvist S, Lindh CH, Welinder H, Jönsson BAG. Serum albumins are the major site for in vivo formation of hapten-carrier protein adducts in plasma from humans and guinea pigs exposed to type-1 allergy inducing hexahydrophthalic anhydride. Clin Exp Allergy. In press.

25. Zhang XD, Welinder H, Jönsson BAG, Skerfving S. Antibody responses of rats after immunization with organic acid anhydrides as a model of predictive testing. Scand J Work Environ Health 1998;24:220—7.

26. Welinder H, Zhang XD, Gustavsson C, Björk B, Skerfving S. Structure-activity relationships of organic acid anhydrides as antigens in an animal model. Toxicology 1995;103:127—36.

Received for publication: 18 September 2000