A criterion for the existence of zero modes for
the Pauli operator with fastly decaying fields

Rafael D. Benguria and Hanne Van Den Bosch
Pontificia Universidad Católica de Chile
Av. Vicuña Mackenna 4860, Santiago (Chile)

March 17, 2015

Abstract
We consider the Pauli operator in \mathbb{R}^3 for magnetic fields in $L^{3/2}$ that
decay at infinity as $|x|^{-2-\beta}$ with $\beta > 0$. In this case we are able to
prove that the existence of a zero mode for this operator is equivalent to
a quantity $\delta(B)$, defined below, being equal to zero. Complementing a
result from [4], this implies that for the class of magnetic fields considered,
Sobolev, Hardy and CLR inequalities hold whenever the magnetic field has
no zero mode.

1 Introduction
Consider the Pauli operator P_A acting on $L^2(\mathbb{R}^3, \mathbb{C}^2) \equiv \mathcal{H}$, formally defined by

$$P_A = (p - A)^2 - \sigma \cdot B$$

where $B = \text{curl} A$. In appropriate units, this operator describes the kinetic
energy of a non-relativistic electron in the magnetic field B. We will also need
the Schrödinger operator $S_A = (p - A)^2$, which gives the kinetic energy of a
spinless particle in a magnetic field. An element of the kernel of P_A is called a
zero mode for the corresponding Pauli operator.

The importance of zero modes for the Pauli operator was first pointed out in
[9], where the authors realized that their existence would imply a critical value of
the nuclear charge Z in order to have a bounded ground state energy for a one-
electron atom in a magnetic field. In [12], the first examples of magnetic fields
producing zero modes were given. Further examples were given in [12 6 5, 2]
provides explicit examples of magnetic fields with an arbitrary number of zero
modes while in [6] a compactly supported magnetic field having a zero mode is
constructed. In [8] the authors use a geometrical approach which allows, for a
certain class of magnetic fields on \mathbb{R}^3, to relate the problem to the one on S^2,
which is better understood.

All of the above papers deal with the problem of describing the kernel of the
Pauli operator for fixed magnetic fields. A different point of view is adopted in [3]
and [7]. In these cases the authors describe the set of magnetic fields producing
zero modes, in [3] for $B \in L^{3/2}$ and in [6] for continuous A decaying as $\alpha(|x|^{-1}).$
Both authors reach the conclusion that magnetic fields on \mathbb{R}^3 producing zero modes are rather rare which contrasts heavily with the situation in \mathbb{R}^2.

The existence of zero modes for the Pauli operator makes it impossible to use the kinetic energy of a wave function to control its potential energy as it is done for (magnetic) Schrödinger operators by Hardy’s inequality or the CLR-bound (5, 11, 13). However, in [4] it was shown that it is still possible to obtain this type of bounds for certain magnetic fields. Here, the goal is to give a more precise description of the class of magnetic fields for which this bound holds.

In order to make this statement precise, we first need to review some results of [3, 4].

If $|B| \in L^q$ for some $q \in [3^2, \infty]$, S_A and P_A have the same form domain $\mathcal{Q}(S_A)$. Both operators can be defined as Friedrich’s extensions of the respective quadratic forms. In addition, we will need the operator $\tilde{P}_A \equiv P_A + |B|$, with the same form domain. Since $\tilde{P}_A \geq S_A$, $\ker(\tilde{P}_A) = \{0\}$, so its range is dense in \mathcal{H}. The auxiliary Hilbert space $\tilde{\mathcal{H}}$ is defined as the completion of $\mathcal{Q}(S_A)$ with respect to the norm $\|u\|_{\tilde{\mathcal{H}}}^2 = (u, \tilde{P}_Au)$.

This space is not a subspace of \mathcal{H}. Its definition ensures $\tilde{P}_A^{-1/2}$ considered as an operator from $\text{Ran}(\tilde{P}_A^{1/2})$ to $\tilde{\mathcal{H}}$ preserves norms. As previously remarked, its domain is dense in \mathcal{H}. On the other hand, $\text{Ran}(\tilde{P}_A^{-1/2}) = \mathcal{D}(\tilde{P}_A^{1/2}) = \mathcal{Q}(P_A) = \mathcal{Q}(S_A)$, which is dense in $\tilde{\mathcal{H}}$ by construction. This means $\tilde{P}_A^{-1/2}$ can be extended to a unitary operator U from \mathcal{H} to $\tilde{\mathcal{H}}$. Multiplication by $|B|^{1/2}$ is a bounded operator from $\tilde{\mathcal{H}}$ to \mathcal{H}. This allows us to define

$$S = |B|^{1/2}U : \mathcal{H} \to \mathcal{H},$$

$$S = |B|^{1/2}(P_A + |B|)^{-1/2} \text{ on } \text{Ran}(\tilde{P}_A^{1/2}).$$

Finally, define

$$\delta(B) = \inf_{\|f\|=1, f \in \mathcal{H}} \|(1 - S^*S)f\|.$$ \hspace{1cm} (1)

With these definitions, we can state the main result.

Theorem 1.1. If $B \in L^{3/2}$ is such that $\delta(B) = 0$ and there exists $\beta > 0$, $C \geq 0$ and $r_0 \geq 0$ such that

$$|B|(x) \leq C|x|^{-2-\beta}$$

for all $|x| \geq r_0$, then the associated Pauli operator P_A has a zero mode.

We do not know whether the condition on the decay of B is optimal. In any case it can be replaced by the condition on the vector potential A in hypothesis of lemma [5, 2]. Our method does not work without this additional decay of A.

The quantity $\delta(B)$ was introduced in [4] were the following result was proven:

Theorem 1.2 (Balinsky, Evans, Lewis, [4]). If $B \in L^{3/2}$, then

$$P_A \geq \delta(B) S_A.$$ \hspace{1cm} (2)
If $\delta(B) > 0$, this result allows to deduce for instance a Hardy inequality for P_A. If the Pauli operator corresponding to the magnetic field B has a zero mode, then $\delta(B) = 0$. The content of theorem 1.1 is precisely the converse of this. For magnetic fields that decrease sufficiently fast at infinity, $\delta(B) = 0$ implies the existence of a zero mode for the corresponding Pauli operator. Unfortunately, inequality (2) still contains the positive but unknown quantity $\delta(B)$.

The remainder of this paper contains the proof of theorem 1.1. The next section contains some preliminary lemmas while the third section concludes the proof.

2 Simplifying the problem

To prove theorem 1.1 we will first simplify the statement, by reducing the condition $\delta(B) = 0$ to a simpler one and changing the hypothesis on the decay of B into a hypothesis on A. This is done in the following two lemmas.

Lemma 2.1. If $\delta(B) = 0$, then

$$\inf_{g \in \mathbb{C}(8\Lambda)} \frac{(g, P_A g)}{(g, |B| g)} = 0.$$
(3)

Proof. First, observe that if $\inf_{\|f\| = 1, Uf \in \mathcal{H}} \| (1 - S^*S)f \| = 0$, then

$$\sup_{\|f\| = 1, Uf \in \mathcal{H}} \| Sf \| = 1.$$

To see this, first notice that for any $f \in \mathcal{H}$, $\| Sf \| \leq \| f \|$, so the sup in the above expression is at most 1. Now if f_n is a minimizing sequence for the first problem,

$$(1 - S^*S)f_n \to 0 \text{ in } L^2$$

so in particular

$$(f_n, (1 - S^*S)f_n) \to 0.$$

This means $\| Sf_n \|^2 = (f_n, S^*Sf_n) \to 1$.

Since the range of \tilde{P}_A is dense in \mathcal{H} and S is bounded, nothing is lost by restricting the sup to functions $f \in \text{Ran}(\tilde{P}_A^{1/2})$. For these functions the condition $Uf \in \mathcal{H}$ is trivially satisfied. The problem can then be rewritten in terms of $g = Uf$:

$$1 = \sup_{\|f\| = 1, Uf \in \mathcal{H}} \| Sf \| = \sup_{f \in \text{Ran}(\tilde{P}_A^{1/2}) \setminus \{0\}} \frac{\| Sf \|}{\| f \|} = \sup_{g \in \mathcal{D}(\tilde{P}_A^{1/2}) \setminus \{0\}} \frac{\| B^{1/2}g \|}{\| \tilde{P}_A^{1/2} g \|}$$
The result is obtained by expanding \(\|\hat{P}_{A}^{1/2}g\|^2 = (g, P_A g) + (g, |B|g) \) and using \(D(\hat{P}_{A}^{1/2}) = Q(S_A) \):

\[
1 = \sup_{\|f\|=1, \forall f \in \mathcal{H}} \|Sf\|^2 = \sup_{g \in Q(S_A) \setminus \{0\}} \left(\frac{(g, P_A g)}{(g, |B|g) + 1} \right)^{-1},
\]

which is only possible if

\[
\inf_{g \in Q(S_A)} \frac{(g, P_A g)}{(g, |B|g) \neq 0} = 0. \tag*{\square}
\]

Then, we show that the imposed decay of \(B \) implies a good decay of \(A \) if we fix the gauge

\[
\frac{1}{4\pi} A(x) = \int \frac{x - y}{|x - y|^3} \times B(y) dy. \tag{4}
\]

Note that \(A \) as defined above is in \(L^3 \) by the weak Young inequality.

Lemma 2.2. If \(B \in L^{3/2} \) is such that there exists \(\beta > 0 \), \(C_B \geq 0 \) and \(r_0 \geq 0 \) such that

\[
|B|(x) \leq C_B|x|^{-2-\beta}
\]

for all \(|x| \geq r_0 \), then there exist \(r_1 \geq r_0 \) and \(C_A \) such that

\[
|A|(x) \equiv 4\pi \int \frac{x - y}{|x - y|^3} \times B(y) dy \leq C_A|x|^{-1-\alpha}
\]

for \(\alpha = \min(1/2, \beta/2) \) and all \(|x| \geq r_1 \).

Proof. Take \(r_1 = \max((2r_0)^2, 1) \). Take any \(x \) such that \(|x| \geq r_1 \) and define \(r_x = |x|^{1/2} \geq r_0 \). Split the domain of integration in the definition of \(A \) in two parts and apply Hölder's inequality to the first part to obtain

\[
|A|(x) \leq 4\pi \int_{B_{r_x}} |B(y)||x - y|^{-2} dy + 4\pi \int_{B_{r_x}} |B(y)||y - x|^{-2} dy
\]

\[
\leq 4\pi \|B\|_{3/2} \left(\int_{B_{r_x}} |x - y|^{-6} dy \right)^{1/3} + 4\pi C_B \int_{B_{r_x}} |y|^{-2-\beta} |x - y|^{-2} dy
\]

The integrand in the first term is bounded, so

\[
\int_{B_{r_x}} |x - y|^{-6} dy \leq \frac{4\pi}{3} r_x^3 (|x| - r_x)^{-6}
\]

\[
\leq \frac{2^3 \pi}{3} |x|^{-9/2}
\]

The second integral requires some more care:

\[
\int_{B_{r_x}} |y|^{-2-\beta} |x - y|^{-2} dy = 4\pi \int_{r_x}^{\infty} r^{-\beta} dr \int_{-1}^{1} dt (|x|^2 + r^2 - 2r|x|t)^{-1}
\]

\[
= 2\pi |x|^{-1} \int_{r_x}^{\infty} r^{-\beta - 1} \ln \left(\frac{|x| + r}{|x| - r} \right) dr
\]

\[
= 2\pi |x|^{-1-\beta} \int_{r_x/|x|}^{\infty} t^{-\beta - 1} \ln \left(\frac{1 + t}{|1 - t|} \right) dt.
\]
This last integral is finite since for large t, the integrand is bounded by a constant times $t^{-\beta-1}$, while for t close to 1 it diverges only as a logarithm. Separating the range of integration in $r_x/x \leq t \leq 1/2$ and $t > 1/2$ we note that the first part gives a contribution that behaves as $C_1(r_x/|x|)^{-\beta}$ while the contribution of the second part can be bounded by a constant. This means

$$\int_{B_{r_x}} |y|^{-2-\beta} |x - y|^{-2} dy \leq |x|^{-1-\beta} \left(C_1 \left(\frac{r_x}{|x|} \right)^{-\beta} + C_2 \right) \leq C_1 2^\beta |x|^{-1-\beta/2} + C_2 |x|^{-1-\beta}.$$

We conclude

$$|A|(x) \leq C_A(|x|^{-1-1/2} + |x|^{-1-\beta/2}) \leq 2C_A|x|^{-1-\alpha}.$$

3 Compactness and Integrability

Now we use a compactness-argument to find a candidate zero mode if the infimum in equation (3) equals zero.

Lemma 3.1. If $B \in L^{3/2}$, and $\delta(B) = 0$ then there exist $g \in W^{1,2}_{\text{loc}} \cap L^6$ such that

$$\sigma \cdot (p - A)g = 0$$

in the particular gauge for A defined in (4).

Proof. Take (g_n) a minimizing sequence for the problem (3) with $(g_n, |B|g_n) = 1$. Then $(g_n, P_A g_n)$ is bounded, which implies by the diamagnetic inequality that (pg_n) is bounded in L^2 so (g_n) is bounded in L^6. By the Banach-Alaoglu theorem, this guarantees the existence of a subsequence such that pg_n converges weakly in L^2 to some pg and $g_n \rightharpoonup g$ weakly in L^6. Since $|B| \in L^{3/2}$, this implies $(g, |B|g) = 1$, so $g \neq 0$. In addition, since $A \in L^3$, $(A g_n)$ is bounded in L^2 so we can assume $A g_n \rightharpoonup A g$ weakly in L^2. Using the fact that L^p-norms are weakly lower-semi-continuous, we obtain $\| \sigma \cdot (p - A) g \|_2 = 0$.

To conclude the proof of theorem 1.1 we only need to show that this candidate zero mode is in L^2. This is achieved by using the decay of A given by lemma 2.2 in a bootstrap argument. The procedure is not that straightforward since the decay of $A g$ and the Pauli equation imply only a decay of $\sigma \cdot p g$, which does not directly imply the decay of $p g$.

Lemma 3.2. If there exist $\alpha > 0$ and $r_1 > 0$ such that $|A|(x) < C_A|x|^{-1-\alpha}$ for all $x \in \mathbb{R}^3$ with $|x| \geq r_1$ and $g \in W^{1,2}_{\text{loc}} \cap L^p$, with $p \geq 2$, is such that

$$\sigma \cdot (p - A)g = 0,$$

then $g \in L^2$.

In order to prove this lemma, one more technical lemma will be necessary. Its proof can be found in the appendix. The inner product in $L^2(S^2, C^2)$ will be denoted by $\langle \cdot , \cdot \rangle$. When f and g are defined on all of \mathbb{R}^3, we will abuse notation and write $\langle f, g \rangle (r) \equiv \langle f(r \omega), g(r \omega) \rangle$. We will also use the notation $\langle f \rangle (r) = (\langle f \rangle)^{1/2} (r)$.
Lemma 3.3. If \(f \in W^{1,2}_{\text{loc}}(\mathbb{R}^3) \) then \(f \in W^{1,2}([a,b]) \) for all \(b > a > 0 \), and its weak derivative equals

\[
h(r) = \begin{cases}
(f^{-1}(r)\Re \langle f, \partial_r f \rangle & \text{if } \langle f \rangle(r) > 0 \\
0 & \text{else.}
\end{cases}
\]

In particular \(\langle f \rangle \) is continuous except maybe at 0.

Proof of lemma 3.2. Define

\[
K = -1 - \sigma \cdot L,
\]

which can be considered as a self-adjoint operator on \(L^2(S^2, \mathbb{C}^2) \) with eigenvalues \(\pm 1, \pm 2, \ldots \) (see for instance [10], section 1.5). Write \(g = g_+ + g_- \) where \(\langle g_+, Kg_+ \rangle > 0 \) and \(\langle g_-, Kg_- \rangle < 0 \). If \(g \in L^p(\mathbb{R}^3) \), there exists \(C > 0 \) such that

\[
\int_{S^2} |g|^p(r \omega) d\omega \leq Cr^{-3}.
\]

By Jensen’s inequality, this implies

\[
Cr^{-3} \geq \int_{S^2} |g|^p(r \omega) d\omega \geq (4\pi)^{1-p/2} \left(\int_{S^2} |g|^2(r \omega) d\omega \right)^{p/2} = (4\pi)^{1-p/2} \left(\langle g_+, g_+ \rangle + \langle g_-, g_- \rangle \right)^{p/2},
\]

so both \(\langle g_+ \rangle(r) \) and \(\langle g_- \rangle(r) \) decay as \(Cr^{-3/p} \).

At first, we will prove the theorem in the case that \(g_+ \) and \(g_- \) are \(C^2 \)-functions. The Pauli operator can be written conveniently as

\[
\sigma \cdot p = (\sigma \cdot \hat{x})^2 \sigma \cdot p = -i\sigma \cdot \hat{x} \left(\partial_r + \frac{K+1}{r} \right),
\]

where the operator inside the parenthesis commutes with \(K \). This allows to rewrite the equation for \(g \) as

\[
\partial_r g + \frac{K+1}{r} g = i\sigma \cdot \hat{x} \sigma \cdot A g.
\]

For shortness, define \(\sigma_A = \sigma \cdot \hat{x} \sigma \cdot A \). The only property of this matrix needed is \(\|\sigma_A(r \omega)\| \leq C_A r^{-1-\alpha} \) when \(r \geq r_1 \). Taking the \(C^2 \) product with \(g_+ \) and \(g_- \) and integrating over \(S^2 \), we obtain

\[
\begin{align*}
\langle g_+, \partial_r g_+ \rangle(r) &= -\frac{1}{r} \langle g_+, (K+1)g_+ \rangle(r) + i \langle g_+, \sigma_A (g_+ + g_-) \rangle \quad (5) \\
\langle g_-, \partial_r g_- \rangle(r) &= -\frac{1}{r} \langle g_-, (K+1)g_- \rangle(r) + i \langle g_-, \sigma_A (g_+ + g_-) \rangle.
\end{align*}
\]

By taking the real part of these equations, we obtain a differential equation for \(\langle g_+ \rangle \) and \(\langle g_- \rangle \):

\[
\frac{d}{dr} \langle g_+ \rangle^2 = -2\frac{1}{r} \langle g_+, (K+1)g_+ \rangle(r) - 2\Re \langle g_+, \sigma_A (g_+ + g_-) \rangle
\]

\[
\frac{d}{dr} \langle g_- \rangle^2 = -2\frac{1}{r} \langle g_-, (K+1)g_- \rangle(r) - 2\Re \langle g_-, \sigma_A (g_+ + g_-) \rangle.
\]

6
Defining $\bar{g}_+ = g+r^2$ we get the system of equations
\[
\frac{d}{dr}(\bar{g}_+)^2 = -2\frac{1}{r} (\bar{g}_+, (K - 1)\bar{g}_+) (r) - 2\mathbb{A} (\bar{g}_+, \sigma \mathbb{A} (\bar{g}_+ + r^2 g_-))
\]
\[
\frac{d}{dr}(g_-)^2 = -2\frac{1}{r} (g_-, (K + 1)g_-) (r) - 2\mathbb{A} (g_-, \sigma \mathbb{A} (r^{-2} \bar{g}_+ + g_-))
\]

Fix $r \geq r_1$. We now use a bootstrap argument to obtain \((g_\pm) (r) \leq C r^{-2} \).
As remarked previously \((g_-)^2 (r) \leq C r^{-\epsilon} \) and \((\bar{g}_+)^2 (r) \leq C r^{3 - \epsilon} \) with \(\epsilon = 3/p \).
We will see the equations imply \((g_-)^2 (r) \leq C r^{-\epsilon - \alpha} \) and \((\bar{g}_+)^2 (r) \leq C r^{4 - \epsilon} \),
where \(\epsilon_1 = \min (\epsilon + \alpha, 4) \).

For \bar{g}_+, we can use $\langle \bar{g}_+, K \bar{g}_+ \rangle \geq \langle \bar{g}_+ \rangle^2$ in order to obtain
\[
\langle \bar{g}_+ \rangle^2 = \int_{r_1}^r -2s^{-1} (\bar{g}_+, (K - 1)\bar{g}_+) (s) - 2\mathbb{A} (\bar{g}_+, \sigma \mathbb{A} (\bar{g}_+ + s^2 g_-)) \, ds + C_1
\]
\[
\leq 2 \int_{r_1}^r |\bar{g}_+, \sigma \mathbb{A} \bar{g}_+ \rangle (s) |s^{-2}| \rangle (\bar{g}_+, \sigma \mathbb{A} g_- \rangle (s) |ds + C_1
\]
\[
\leq 4CC_A \int_{r_1}^r s^{4 - \epsilon - 1 - \alpha} + C_1
\]
\[
= \frac{4CC_A}{\epsilon - \alpha} (r^{4 - \epsilon - \alpha} - 1) + C_1.
\]

For g_-, we can use the fact $\langle g_- \rangle$ tends to zero as $r \to \infty$ and $\langle g_-, Kg_- \rangle \leq -\langle g_- \rangle^2$
to write
\[
\langle g_- \rangle^2 = \int_r^\infty 2s^{-1} (g_-, (K + 1)g_-) (s) + 2\mathbb{A} (g_-, \sigma \mathbb{A} (s^{-2} \bar{g}_+ + g_-)) \, ds
\]
\[
\leq \int_r^\infty 2 |\langle g_-, \sigma \mathbb{A} (s^{-2} \bar{g}_+ + g_-) \rangle |ds
\]
\[
\leq 2CC_A \int_r^\infty 2s^{-\epsilon - 1 - \alpha} ds
\]
\[
= \frac{2CC_A}{\epsilon + \alpha} r^{-\epsilon - \alpha}.
\]

By iterating this procedure a finite number of times we reach the conclusion
\(\langle g_\pm \rangle (r) \leq C r^{-2} \) and \((g_-) (r) \leq C r^{-\epsilon} \), so $g \in L^2 (\mathbb{R}^3)$.
This concludes the proof of the lemma when g_+ and g_- are C^2-functions.

In the general case, g has a decomposition in a series of spherical spinors (see
for example [10], section 1.5) where the coefficients are functions of r belonging
to $W^{1,2}_{loc} (\mathbb{R}^3, r^2 dr)$. By taking the projections on the positive and negative
eigenspaces of K and using dominated convergence, we conclude g_+ and g_- are
in $W^{1,2}_{loc} (\mathbb{R}^3)$. Thus, by Fubini’s theorem, g_\pm, and $\partial_r g_\pm$ are
in $L^2 (S^2 (r))$ for almost every $r > 0$. This justifies the integration over S^2 used to obtain [5].

By lemma 4, (g_+) and (g_-) are in $W^{1,2} ([a, b])$ for any $b > a > 0$ and thus continuous. The use of the fundamental theorem of calculus in [3]
can be justified by applying it to a sequence of C^∞-functions converging to (g_+)
pointwise and in $W^{1,2} ([r_1, r])$. In the same way we can obtain
\((g_-) = \frac{d}{dr} (g_-) (r) dr + (g_-) (r_2) \) for any $r_2 > r > r_1$.
Since $\frac{d}{dr} (g_-) (r)$ is in
$L^1 ([r_1, +\infty))$, we can let $r_2 \to \infty$ in order to obtain [4].

\[\Box\]
Acknowledgements

Work partially supported by Fondecyt (Chile) project 112-0836 and the Ini-

ciativa Científica Milenio (Chile) through the Millenium Nucleus RC–120002

“Física Matemática” (R.D.B. and H.VDB) and partially by Conicyt (Chile)

through CONICYT-PCHA/Doctorado Nacional/2014 and Beca Ayudante de

VRI (H.VDB).

Appendix A: proof of lemma [3.3]

By Fubini’s theorem, f and $\partial_r f$ are in $L^2(S^2(r))$ for almost every $r > 0$ and

$(f), (\partial_r f)$ are in $L^2_{\text{loc}}(\mathbb{R}^3, r^2 dr)$. Fix $b > a > 0$ and define the annulus $A = \{x \in \mathbb{R}^3 | a \leq |x| \leq b\}$.

Fix $\epsilon > 0$. As a first step, we will prove $f_\epsilon \equiv (|f|^2 + \epsilon)^{1/2} \in W^{1,2}([a, b])$. Define $h_\epsilon = \langle f_\epsilon \rangle^{-1} R \langle f, \partial_r f \rangle$. By the Cauchy-Schwarz inequality h_ϵ is in $L^2([a, b])$. It remains to check whether h_ϵ is the distributional derivative of f_ϵ.

To this end, take a sequence $(f_n) \subset C^1(A, \mathbb{C}^2)$ approaching f in $W^{1,2}(A)$ and pointwise almost everywhere in A. This means $(f_n) \to (f)$ in $L^2([a, b])$ so by extracting a subsequence we may assume $(f_n)(r) \to (f)(r)$ for almost every $r \in [a, b]$. Define $h_n \equiv \partial_r ((|f_n|^2 + \epsilon)^{1/2})$. We have $h_n = (|f_n|^2 + \epsilon)^{-1/2} R \langle f_n, \partial_r f_n \rangle (r)$. In order to conclude, we should prove that, for any test function $\phi \in C^\infty_0([a, b])$,

\[\int_a^b \phi(r) h_n(r) dr \to \int_a^b \phi(r) h_\epsilon(r) dr \quad \text{as } n \to \infty. \]

To achieve this, fix $\phi \in C^\infty_0([a, b])$ and define $\Phi_n = (|f_n|^2 + \epsilon)^{-1/2} \phi f_n$ and $\Phi_\epsilon = f_\epsilon^{-1} \phi f_\epsilon$. $\Phi_n(x)$ converges to $\Phi_\epsilon(x)$ when $x \in A$ is such that $\langle f_n \rangle(|x|)$ converges to $\langle f \rangle(|x|)$ and $f_n(x) \to f(x)$, which holds for almost every x in A. Since (Φ_n) is bounded in $L^2(A)$, by dominated convergence $\Phi_n \to \Phi_\epsilon$ in $L^2(A[a, b])$. This allows us to obtain

\[\int_a^b |\phi(h_n - h_\epsilon)| \leq \int_a^b |(\Phi_n, \partial_r f_n) - (\Phi_\epsilon, \partial_r f_\epsilon)| \]

\[\leq \int_a^b |(\Phi_n - \Phi_\epsilon, \partial_r f_n)| + \int_a^b |(\Phi_\epsilon, \partial_r f_n - \partial_r f_\epsilon)| \]

\[\leq a^{-2} |\Phi_n - \Phi_\epsilon|_{2, A} \|\partial_r f_n\|_{2, A} + a^{-2} |\Phi_\epsilon|_{2, A} \|\partial_r f_n - \partial_r f_\epsilon\|_{2, A}. \]

In the last line, we used $1 \leq a^{-2} r^2$ in the domain of integration to transform the integral over an interval in an integral over A. Since f_n tends to f in $W^{1,2}(A)$, the second term tends to zero and the second factor of the first term is bounded. As previously remarked, $\Phi_n - \Phi_\epsilon$ tends to zero in $L^2(A)$ so the first term goes to zero too. This means $f_\epsilon \in W^{1,2}(A[a, b])$ and its distributional derivative equals h_ϵ.

Now, we can let ϵ tend to zero. Then $f_\epsilon \to (f)$ and $h_\epsilon(r) \to h(r)$ in $L^2([a, b])$. We conclude $(f) \in W^{1,2}(a, b)$ and $h = \frac{d}{dr} (f)$. \hfill \Box

References

[1] C. Adam, B. Muratori, and C. Nash, Zero modes of the Dirac operator in three dimensions, Phys. Rev. D 60 (1999), 125001.
[2] C. Adam, B. Muratori, and C. Nash, Degeneracy of zero modes of the Dirac operator in three dimensions, Phys. Lett. B 485 (2000), 314 – 318.

[3] A.A. Balinsky and W.D. Evans, On the zero modes of Pauli operators, J. Funct. Anal. 179 (2001), 120 – 135.

[4] A.A. Balinsky, W.D. Evans, and R. T. Lewis, Sobolev, Hardy and CLR inequalities associated with Pauli operators in \mathbb{R}^3, J. Phys. A 34 (2001), L19–L23.

[5] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), 93–100.

[6] D. M. Elton, New examples of zero modes, J. Phys. A 33 (2000), 7297–7303.

[7] D. M. Elton, The local structure of zero mode producing magnetic potentials, Comm. Math. Phys. 229 (2002), 121–139.

[8] László Erdős and Jan Philip Solovej, The kernel of Dirac operators on S^3 and \mathbb{R}^3, Rev. Math. Phys. 13 (2001), 1247–1280.

[9] J. Fröhlich, E. H. Lieb, and M. Loss, Stability of Coulomb systems with magnetic fields. I. the one-electron atom, Comm. Math. Phys. 104 (1986), 251–270.

[10] W. R. Johnson, Atomic structure theory, Springer, Berlin, Heidelberg, New York, 2007.

[11] E. H. Lieb, The number of bound states of one-body Schroedinger operators and the Weyl problem, Proc. Sympos. Pure Math., XXXVI, 1980, pp. 241–252.

[12] M. Loss and H.-T. Yau, Stability of Coulomb systems with magnetic fields. III. zero energy bound states of the Pauli operator, Comm. Math. Phys. 104 (1986), 283–290.

[13] G. V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Izv. Vysš. Učebn. Zaved. Matematika (1976), no. 1(164), 75–86, English transl. Soviet Math. (iz. VUZ) 45 63-71 (1976).