fully automated organ segmentation in male pelvic CT images

Anjali Balagopal1, Samaneh Kazemifar1, Dan Nguyen1, Mu-Han Lin1, Raquibul Hannan1, Amir Owrangi1 and Steve Jiang2
1 Department of Radiation Oncology, Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern, Dallas, TX, United States of America
2 Co-first authors.
E-mail: Steve.Jiang@utsouthwestern.edu

Keywords: prostate, organs at risk, organ segmentation, CT images, deep learning, fully automated

Abstract

Accurate segmentation of prostate and surrounding organs at risk is important for prostate cancer radiotherapy treatment planning. We present a fully automated workflow for male pelvic CT image segmentation using deep learning. The architecture consists of a 2D organ volume localization network followed by a 3D segmentation network for volumetric segmentation of prostate, bladder, rectum, and femoral heads. We used a multi-channel 2D U-Net followed by a 3D U-Net with encoding arm modified with aggregated residual networks, known as ResNeXt. The models were trained and tested on a pelvic CT image dataset comprising 136 patients. Test results show that 3D U-Net based segmentation achieves mean (±SD) Dice coefficient values of 90 (±2.0)%, 96 (±3.0)% and 84 (±3.7)% for prostate, left femoral head, right femoral head, bladder, and rectum, respectively, using the proposed fully automated segmentation method.

Introduction

Accurate segmentation of prostate and surrounding organs at risk (OARs) is important for radiotherapy treatment planning. Manual segmentation by physicians currently used in clinical practice is time consuming and highly depends on the physicians’ skill and experience, leading to large inter and intra observer variation (Weiss and Hess 2003, Weiss et al 2003, Van Herk 2004, Rasch et al 2005, Vorwerk et al 2009, van Mourik et al 2010). Inter-observer variability (standard deviation) for the manually segmented prostate volumes was observed to range from 10% to 18% (Fiorino et al 2004, Pizer et al 1998), indicating the high demand for automated segmentation methods in clinical practice. Automated segmentation of prostate and organs from CT images, is challenging for two reasons: (1) The boundary between prostate and background is usually unclear because of low contrast in the CT images. (2) Variation in shape, size, and intensity of prostate, bladder, and rectum among different patients of different ages and at different times are large. Also, pelvic CT images are largely diverse. Sources of this diversity are described as follows: (1) Use of contrast agents in some patients may partially or fully brighten the bladder in CT images. (2) Since the images are often acquired with different fields of view, substantial organ position and volume dimension variation occurs. (3) Sometimes fiducial markers or catheters may be implanted into patients, changing the texture of major pelvic organs. The diversity of pelvic CT images further complicates the segmentation of male pelvic organs from CT images.

Segmentation algorithms have been developed to reduce these variabilities and improve accuracy and efficiency (Tang et al 2004, Pizer et al 2005, Rousson et al 2005, Costa et al 2007, Ghosh et al 2008, Chen et al 2009, Acosta et al 2010, 2013, Cosio et al 2010, Feng et al 2010, Bueno et al 2011, Li et al 2011, Gao et al 2012, 2016, Chai et al 2013, Lay et al 2013, Shi et al 2013, Martinez et al 2014, Shao et al 2014, Yang et al 2014, Li et al 2016, Ma et al 2016, 2017). Most developed methods fall into the category of deformable model-based segmentation, atlas-based segmentation, and learning-based segmentation.

In recent years, shape models based on prior knowledge and machine learning have been widely used in the automatic segmentation of CT images. These methods use a training dataset as prior knowledge. Even though these methods perform remarkably well, many require training samples from the previous treatment images of the same patient to learn patient-specific information for enhancing the prostate segmentation result. These
methods also rely on hand crafted features for accurate segmentation. Despite all the progress, an obvious gap between the automated segmentation results and manual annotations needs to be addressed.

Deep learning and specifically, convolutional neural networks (CNNs) have revolutionized the field of natural image processing. Instead of extracting features in a hand-designed manner, deep learning discovers the informative representations in a self-taught manner from a set of data with only minor preprocessing (Bengio et al 2009, LeCun et al 2015). The U-Net (Ronneberger et al 2015) is a well-known CNN architecture for medical images segmentation. Their architecture includes so-called skip connections between feature maps in the same depth level of the contracting and expanding path. The concatenation of the feature maps gives U-Net a significant advantage compared to the patch-wise approaches, preserving local features while propagating global features to higher resolution layers.

Recently, deep learning has been used for prostate segmentation in MRI (Yu et al 2017, Zhu et al 2017, Ishioka et al 2018, Tian et al 2018), achieving good results. MRI provides excellent soft-tissue contrast helping to better delineate organ boundaries. However, because current radiotherapy treatment planning workflow uses CT images for contouring and dose calculation, automated segmentation of prostate and OARs in CT image is highly desirable, despite being more challenging than segmentation in MR images.

Ma et al (2017) used a combination of deep learning and multi atlas fusion for the automatic segmentation of prostate on CT images. A 2D fully convolutional network (FCN) was used for initial segmentation followed by multi-atlas label fusion to refine the segments. The model was trained on a dataset of 92 patients and achieved a Dice similarity coefficient (DSC) value of 86.80% as compared to manual segmentation. In an earlier work, we have used a 2D U-Net for semi-automated segmentation of prostate and OARs in Pelvic CT and achieved a DSC value of 88% compared to manual segmentation (Kazemifar et al 2018). In this work, we present a fully automated workflow for pelvic CT multi organ segmentation that uses a multi-channel 2D U-Net for organ localization, followed by a 3D U-Net with ResNeXt blocks for accurate segmentation of prostate and organs-at-risk in pelvic CT. The significance of this work is two-fold: (1) This is the first fully automated workflow for pelvic CT segmentation using only deep learning for multi organ segmentation, (2) The proposed 3D network provides better segmentation accuracy compared to existing methods, and is easily translatable to clinical practice.

Methods

In general, an organ segmentation problem consists of two related tasks: organ volume localization and organ volume delineation. Organ localization determines the target object’s whereabouts on the image or its location, whereas organ delineation draws the object’s spatial extent and composition. A fully automated network should be capable of completing both tasks with good accuracy.

Only ~15% of the CT slices acquired for a pelvic CT scan for a patient contains Prostate. Identification of these slices are usually done manually even for the automated segmentation methods that exist (Shao et al 2014). To create a fully automated network, detection and localization of organs should be done automatically without any manual intervention before segmentation. However, Inter-patient variation in shape, size, and organs location hinders organ detection in CT images. Any error in localization accuracy would completely mislead segmentation. To perform organ localization efficiently on Pelvic CT scans, we have included a 2D U-Net in our workflow before segmentation.

Automation workflow

The proposed framework for the automated detection and segmentation of prostate, bladder, rectum, and femoral heads in pelvic CT scans is shown in figure 1.

The upper and lower 15% of the image does not contain any useful information or organs. However, because it increases memory consumption it has been cropped out. The cropping margin was determined for the patients scanned at UT Southwestern Medical Center. The value should be determined according to the dataset. This step was used only for increasing the computing speed and could be removed because it does not affect accuracy.

The images are then downsized before being fed into the localization network to speed up the network and to overcome memory issues. The entire CT volume is fed into the localization network to detect organ locations. Organ volumes are then extracted and fed into the final segmentation network.

Localization network

The localization network used is a five-channel 2D U-Net architecture (figure 2) where each channel corresponds to one of the organs to be localized. The CT and binary mask (for supervised training) corresponding to each organ is input separately into each channel. The final predicted output will have five channels with each channel corresponding to the predicted feature map for one organ. The network was trained by minimizing a custom weighted Dice loss function, DSCw (describe in the section on loss function), using the Adam optimizer (Kingma et al 2014).
For most organs, because the first and last few slices do not contain sufficient shape information, they would be difficult to segment using 2D networks. Applying 3D kernels would generate discriminative feature maps that contain 3D shape and surface of the related organ rather than generating 2D curves only. A 3D network could comprehend the continuity of sequential slices and also could better segment small parts of the organs compared to 2D networks.

We compared different variations of UNet for an optimal architecture selection. The employed U-Net architecture (figure 3) is the 3D extension described by Çiçek et al. (2016), developed from the U-Net proposed by Ronneberger et al. (2015) with the encoding arm consisting of ResNeXt blocks adapted from Xie et al. (2017) at each layer. Xie et al. (2017) introduced the concept of ‘cardinality’—an additional dimension to depth and width—and showed that aggregating residual blocks with the same topology and hyper-parameters is more effective in gaining accuracy than going deeper or wider. The ResNeXt block used in our network consists of \(n \) repetitions of two 3D convolutions (filter size, \(3 \times 3 \times 3 \)) and is represented in figure 3. The outputs of these \(n \) paths are concatenated. The resulting feature map is then concatenated with the input to the ResNeXt block. Maxpooling with stride (2,2,2) is performed on the ResNeXt output before being passed onto the next layer in the encoding arm.
The decoding arm consists of $(3 \times 3 \times 3)$ convolutions with up sampling (stride of $[2,2,2]$). All the layers use the ReLU activation function except for the output layer, which uses sigmoid.

The output of the localization network is used for predicting organ volumes that is input into the segmentation network. Since the organ volumes vary from patient to patient and the 3D network requires a common volume size, a fixed number of total slices (32 for prostate and 64 each for the OARs) is selected around the predicted volume. The 3D network was trained by minimizing the boundary weighted dice loss function, DSC_{bw} (described in the next section), using the Adam optimizer (Kingma et al 2014). The number of layers, filter sizes, and also the value of n and hyper parameters varied for different organs.

Loss functions

The Dice similarity coefficient (DSC), also called the overlap index, is the most used metric in validating medical volume segmentations. DSC measures the amount of agreement between two image regions. It is widely used as a metric to evaluate the segmentation performance with the given ground truth in medical images. DSC is defined as

$$DSC = \frac{2 |True \cap Pred|}{|True| + |Pred|}. \quad (1)$$

We use $|$ to indicate the number of foreground voxels in the ground truth (True) and predicted (Pred) segmentations. DSC is a useful loss function for segmentation networks because of its efficiency in addressing class imbalance issue.

Organ weighted dice function for localization network

Since organs vary in size, we have to make sure that all the organs are contributing equally to the dice loss function. To achieve this, a custom weighted Dice function was used for the localization network as defined in (2). All pixels corresponding to annotated areas were assigned a weight inversely proportional to the number of samples belonging to the organ. True and Pred are the gold standard and predicted segmentation results, respectively.

$$DSC_{o} = \sum \{w_{x}\} \frac{2 |True \cap Pred|}{|True| + |Pred|}. \quad (2)$$

Here $\{w_{x}\}$ = weights vector for organ x determined during training from the number of samples belonging to the organ. True and Pred are the gold standard and predicted segmentation results, respectively.

Boundary weighted dice function for segmentation network

To mitigate the issue of fuzzy boundary we have used a boundary weighted Dice function defined in (3) for the segmentation network. More importance is given to the pixels near the organ boundary. The closer a pixel is to the boundary, the higher the weight would be and hence larger the loss ($1 - DSC_{bw}$).

$$DSC_{bw} = \sum \frac{2 |\{w_{b} \ast \{True \cap Pred\}\}|}{|\{w_{b} \ast True\}| + |\{w_{b} \ast Pred\}|}. \quad (3)$$

Here w_{b} = border weight matrix for the organ determined during training.
Experiments and results

Patient data
The dataset consisted of raw CT scan images of 136 prostate cancer patients collected at The University of Texas Southwestern Medical Center (UTSW). All CT images were acquired using a 16-slice CT scanner (Royal Philips Electronics, Eindhoven, The Netherlands). The target organ (prostate) and OARs (bladder, rectum and femoral heads) were contoured by experienced radiation oncologists. All images were acquired with a 512 × 512 matrix and 2 mm slice thickness (voxel size 1.17 mm × 1.17 mm × 2 mm).

Training data
Eighty percent of the patient data were used for training and the remaining 20% were used for testing. The training data was split into 4 groups and leave-one-out cross validation strategy was used for training (figure 4). One set was reserved as the validation data set, and the training was performed to minimize the loss on that validation set. The average of the predictions of the four models was used for predicting the test set.

Training strategies

Architecture selection
In order to design the most optimal network, we applied different CNN architecture variations to UNet. We finalized on a ResNeXt variation of UNet. Using ResNeXt, accuracy can be gained more efficiently by increasing the cardinality than by going deeper or wider. ResNeXt uses a split-transform-merge strategy where inputs are split, then transformed and the outputs of these different paths are merged by adding them together. By applying ResNeXt only along the encoding path of the 3D UNet, we were able to produce good results without going very deep and keeping computational complexity within what NVIDIA Tesla K80 dual-GPU graphic card can handle for a 3D network. Details of the 2D as well as 3D architectures can be found in appendix.

Kernel size
Initially, we tried a kernel size of 5 × 5 × 5 for the convolutional layers, but this led the output segmentations to become inaccurate around edges and small contours for the validation data. Intuitively this made sense as we were grouping large sections together and when up-sampling was performed, they did not map to precise points. After trying different kernel sizes of 5 × 5 × 5, 3 × 3 × 3 and 1 × 1 × 1, we settled on 3 × 3 × 3 exclusively. The model’s accuracy and training speed changed drastically when we used different learning rates. A high learning rate of 1 × 10⁻² with a decay of 0.1, when loss plateaus, led to the best validation set Dice coefficient value.

Overfitting
Even though the architecture we employed is efficient enough for accurate prediction, over fitting issues still occur. To overcome over fitting, we used early stopping and dropout (Srivastava et al 2014). Batch normalization (Ioffe et al 2015) was added at each layer to increase network stability. For efficient learning, the learning rate was decayed when validation loss plateaus.

Deep learning models were implemented using the open source Keras package (Chollet 2015), and computational processing was performed with an NVIDIA Tesla K80 dual-GPU graphic card.

Results
Examples of the segmentations predicted by the model versus the ground truth segmentation are shown in figures 5 and 6. The segmentations predicted by the automation network (Blue) closely resemble the manual segmentations (Red). Examples of ground truth versus predicted segmentation for base, middle, and apex slices for prostate are illustrated in figure 7.

The calculated DSC values for each of the four cross validation models and the averaged model for prostate segmentation are plotted in figure 8. With the averaged model, the maximum DSC was 93% and the minimum DSC was 85.9%.

The result of cross validation training for bladder, prostate, and rectum is summarized in table 1. The box whisker plot showing the distribution of Dice coefficient of the organs segmented for all patients is shown in figure 9.

The final test accuracy was obtained by averaging the prediction of the four cross validation models on the test dataset. We have also trained the network with a weighted (to compensate for class imbalance) binary cross entropy loss instead of a weighted DSC loss for comparison and have estimated the statistical significance of the improvement in the result when using weighted DSC loss. Average DSC, Average Surface distance and Average Hausdorff distance for the testing data while using DSC loss and, Average DSC while using BCE loss along with the results of significance tests are reported in table 2.
Accurate segmentation of prostate and OARs is important for radiotherapy treatment planning. The low soft tissue contrast in CT images and organ size, shape, and intensity variations among patients hinder automated segmentation. The proposed fully automated method provides accurate and fast segmentation of prostate and
A Balagopal et al

Once training is completed and the weights for the network are saved, final segmentation for the test set (27 patients) only takes a few seconds. The entire workflow which includes 2D localization, volume cropping, and 3D segmentation only takes a few minutes for each patient. The mean DSC values obtained for prostate, bladder, rectum, left femoral head, and right femoral head were 0.90, 0.95, 0.84, 0.95 and 0.96, respectively. These results indicate high similarity between automated and manual segmentations of the organs. The low mean DSC value as well as the large variation for the rectum is likely due to the large variation in the size and shape of this organ.

Figure 7. Predicted segmentation versus ground truth results for prostate at base, middle, and apex slices, from left to right.

Figure 8. Plot showing the prostate segmentation DSC values for the cross validation model and the final averaged model.

Table 1. Cross validation result for bladder, prostate, and rectum.

Organ	Accuracy of cross validation set 1 (%)	Accuracy of cross validation set 2 (%)	Accuracy of cross validation set 3 (%)	Accuracy of cross validation set 4 (%)
Bladder	95.6	92.2	96.0	95.4
Prostate	91.2	90.5	88.5	91.2
Rectum	86.5	85.4	80.2	82.4

Figure 9. Box whisker plot showing the distribution of dice coefficient for all the organs segmented.

OARs. Once training is completed and the weights for the network are saved, final segmentation for the test set (27 patients) only takes a few seconds. The entire workflow which includes 2D localization, volume cropping, and 3D segmentation only takes a few minutes for each patient. The mean DSC values obtained for prostate, bladder, rectum, left femoral head, and right femoral head were 0.90, 0.95, 0.84, 0.95 and 0.96, respectively. These results indicate high similarity between automated and manual segmentations of the organs. The low mean DSC value as well as the large variation for the rectum is likely due to the large variation in the size and shape of this organ.
organ among patients. The dataset included patients with rectal balloon inserts. Even though these cases were predicted well (figure 10), large variation is introduced into the data. This and the fact that most rectum manual segmentations are performed with the help of MRI may explain the suboptimal results. In the future, we hope that larger datasets will help improve accuracy.

Table 2. Mean DSC accuracy for the averaged model and significance test result.

	Average DSC (with weighted dice loss)	Average DSC (with weighted binary cross entropy loss)	Significance test (Wilcoxon signed rank test for non-normal distribution and paired t-test for normal distribution)
Bladder	95.0(±1.5)%	90.3(±3.7)%	Z = −3.9748, p = 4 × 10^{-5} Significant
Prostate	90.2(±2.0)%	84.09(±4.1)%	Z = 1.6 × 10^{-8} p = 0.035 Significant
Rectum	84.3(±3.7)%	81.2%(±4.0)%	Z = −1.35, p = 0.123 Not significant
Right femoral head	95.0(±1.3)%	93.4%(±1.3)%	Z = −1.359, p = 0.137 Not significant
Left femoral head	96.0(±3.0)%	93.8%(±2.9)%	

Figure 10. Predicted segmentation (blue) versus ground truth (red) result for a rectum with rectal balloon insert.

Table 3. Comparison of proposed segmentation result with other published results.

Metrics	Prostate	Bladder	Rectum	
Shao Y et al (2014)	DSC(±SD)%	88(±2)%	86(±8)%	85(±5)%
	(ASD ± SD) mm	1.86 ± 0.21	2.22 ± 1.01	2.21 ± 0.5
	(HD ± SD) mm	—	—	—
Gao Y et al (2012)	DSC(±SD)%	86(±5)%	91(±10)%	79(±20)%
	(ASD ± SD) mm	1.85 ± 0.74	1.71 ± 3.74	2.13 ± 2.97
	(HD ± SD) mm	—	—	—
Gao Y et al (2016)	DSC(±SD)%	87(±4)%	92(±5)%	88(±5)%
	(ASD ± SD) mm	1.77 ± 0.66	1.37 ± 0.82	1.38 ± 0.75
	(HD ± SD) mm	—	—	—
Feng Q et al (2010)	DSC(±SD)%	89(±5)%	—	—
	(ASD ± SD) mm	2.08 ± 0.79	—	—
	(HD ± SD) mm	—	—	—
Martinez et al (2014)	DSC(±SD)%	87(±7)%	89(±8)%	82(±8)%
	(ASD ± SD) mm	—	—	—
	(HD ± SD) mm	9.98 ± 3.4	25.07 ± 4.6	13.52 ± 5.1
Ma J et al (2017)	DSC(±SD)%	86.8(±6.4)%	—	—
	(ASD ± SD) mm	—	—	—
	(HD ± SD) mm	—	—	—
Our method	DSC(±SD)%	90(±2.0)%	93(±1.5)%	84(±3.7)%
	(ASD ± SD) mm	0.7 ± 0.5	0.5 ± 0.7	0.8 ± 0.7
	(HD ± SD) mm	5.3 ± 2.8	17.0 ± 14.6	4.9 ± 3.9
Several deformation-based, multi-atlas-based and learning-based methods were developed for the same purpose. A direct comparison is not possible, however, table 3 shows the comparison between the DSC, Average surface distance (the average distance (in mm) from the ground truth surface to the predicted surface) and Average Hausdorff distance (average of the 90 percentile of surface distances) of our proposed method with the corresponding metrics of the methods that have values reported in their publications.

Also, we compared the performance of our network with several variations of U-Net model. A comparison of prostate segmentation accuracy and computation time for different segmentation architectures is shown in table 4. These network configurations were trained and tested using the same patient dataset. Each network was fine-tuned individually and hence the number of layers, depth and dropout rate values were different for each network architecture. The use of ResNet (He et al 2016) improved the results, though they were not significant and involved higher computation times. The performance of DenseNet (Huang et al 2018) was even poorer. Our proposed 3D network performed the best, as indicated by a cross validation balanced accuracy of 90.2% for prostate and lowest computation time. The prediction time for all the networks was 6–8 s for the test set containing 27 patients. All of these models performed poorly without a boundary weighted Dice loss function (1 – DSCbw). We present an example of the predicted segmentation result when the network was trained with the boundary weighted dice loss function (1 – DSCbw) versus when it was trained with normal dice loss function (1 – DSC) in figure 11.

Although it is considered the ‘gold standard’, manual segmentation is not perfect ground truth because of inter-observer variability. In our future work we will ask multiple observers to contour pelvic CT and take an average of the contours as ground truth. Also, we will create an ensemble network to effectively combine the segmentations of all the organs in images without any overlap.

Conclusion

The proposed 2D–3D hybrid network only requires CT images as input, demonstrates a unique ability in dealing with irregular prostates and rectums, and exhibits superior segmentation performance (i.e. higher DSC value) compared with the state-of-the-art methods (including our own 2D model). Our deep-learning based method is more effective than other automated segmentation methods, and does not require any manual intervention. The proposed workflow could also be easily adapted for segmenting other organs.
Acknowledgments

AB and SJ would like to thank the Cancer Prevention and Research Institute of Texas (CPRIT) for their financial support through grant IIRA RP150485. The authors thank Dr Damiana Chiavolini for proof-reading and editing the manuscript.

Appendix A. Details on the five-channel 2D U-Net architectures used for organ localization

Layer number	Layer type	Number of features
1	Input	5
2	Conv	8
3	Conv	8
4	Conv	8
5	Max pooling	8
6	Conv	16
7	Conv	16
8	Conv	16
9	Max pooling	16
10	Conv	32
11	Conv	32
12	Conv	32
13	Max pooling	32
14	Conv	64
15	Conv	64
16	Conv	64
17	Conv	128
18	Conv	128
19	U-Net upsample	128
20	Conv	64
21	Conv	64
22	U-Net upsample	64
23	Conv	32
24	Conv	32
25	U-Net upsample	32
26	Conv	32
27	Conv	32
28	U-Net upsample	16
29	Conv	16
30	Conv	16
31	Conv	16
Appendix B. Details on the modified 3D U-Net architectures used for organ segmentation

Layer number	Layer type	Number of features						
1	Input	1	Input	1	Input	1	Input	1
2	Conv 8	4	Conv 2	2	Conv 2	2	Conv 2	2
3	Conv 2	2	Concatenate 4	2	Concatenate 4	2	Concatenate 4	4
4	Conv 2	4	Conv 4	4	Conv 4	4	Conv 4	4
5	Conv 2	2	Concatenate 4	2	Concatenate 4	2	Concatenate 4	4
6	Add 4	4	Conv 2	2	Add 4	4	Conv 2	2
7	Concatenate 8	4	Concatenate 8	2	Concatenate 8	2	Concatenate 4	4
8	Add 8	8	Conv 8	8	Add 8	8	Conv 8	8
9	Max pooling 8	8	Conv 4	4	Max pooling 8	8	Conv 4	4
10	Conv 16	16						
11	Conv 4	4	Concatenate 8	8	Concatenate 8	8	Concatenate 8	8
12	Add 8	8	Conv 4	4	Add 8	8	Conv 4	4
13	Max pooling 8	8	Conv 4	4	Max pooling 8	8	Conv 4	4
14	Conv 4	4	Conv 16	16	Conv 4	4	Conv 16	16
15	Conv 16	16	Conv 8	8	Add 16	16	Conv 8	8
16	Add 16	16	Conv 8	8	Add 16	16	Conv 8	8
17	Max pooling 16	16	Conv 8	8	Max pooling 16	16	Conv 8	8
18	Conv 32	32	Add 16	16	Add 32	32	Add 16	16
19	Conv 8	8	Max pooling 16	8	Max pooling 16	8	Conv 32	32
20	Conv 8	8	Conv 8	8	Conv 8	8	Conv 32	32
21	Conv 8	8	Conv 8	8	Conv 8	8	Conv 32	32
22	Conv 8	8	Conv 8	8	Conv 8	8	Conv 32	32
23	Concatenate 32	32						
24	Add 32	32						
25	Max pooling 32	32	Max pooling 32	32	Max pooling 32	32	Conv 64	64
26	Conv 64	64	Conv 16	16	Conv 64	64	Conv 64	64
27	Conv 16	16	Conv 32	32	Conv 16	16	Conv 32	32
28	Conv 16	16	Conv 32	32	Conv 16	16	Conv 32	32
29	Conv 16	16	Concatenate 64	32	Concatenate 64	32	Concatenate 64	32
30	Conv 16	16	Add 64	64	Add 16	64	Add 16	64
31	Concatenate 64	128	Concatenate 128	64	Concatenate 128	64	Concatenate 128	64
32	Add 64	64	Conv 128	128	Conv 128	128	Conv 128	128
33	Max pooling 64	64	Conv 64	64	Conv 64	64	Conv 64	64
34	Conv 128	128	Concatenate 128	64	Concatenate 128	64	Concatenate 128	64
35	Conv 64	64	Add 128	128	Add 128	128	Add 128	128
36	Conv 64	64	3D upsample 128	64	3D upsample 128	64	3D upsample 128	64
37	Conv 64	64	Conv 64	64	Conv 64	64	Conv 64	64
38	Conv 64	64	Conv 64	64	Conv 64	64	Conv 64	64
39	Concatenate 128	64	Concatenate 128	64	Concatenate 128	64	3D upsample 128	64
40	Add 128	128	Conv 32	32	Add 128	128	Conv 32	32
41	3D upsample 128	32	3D upsample 32	32	3D upsample 32	32	3D upsample 32	32
42	Conv 64	64	3D upsample 32	32	3D upsample 32	32	3D upsample 32	32
43	Conv 64	64	Conv 16	16	Conv 64	64	Conv 16	16
44	3D upsample 64	16	3D upsample 16	16	3D upsample 16	16	Conv 32	32
45	Conv 32	32	3D upsample 16	16	3D upsample 16	16	Conv 32	32
46	Conv 32	32	Conv 8	8	Conv 32	32	Conv 8	8
47	3D upsample 32	8	3D upsample 8	32	3D upsample 8	32	Conv 8	8
48	Conv 16	16	3D upsample 8	32	3D upsample 8	32	Conv 16	16
49	Conv 16	16	Conv 4	4	Conv 16	16	Conv 4	4
50	3D upsample 16	4	3D upsample 4	16	3D upsample 4	16	Conv 8	8
51	Conv 8	8	Conv 1	1	Conv 8	8	Conv 1	1
52	Conv 8	8	Conv 8	8	Conv 8	8	Conv 8	8
53	Conv 1	1	Conv 1	1	Conv 1	1	Conv 1	1
Appendix C. Learning curve for a single validation set for prostate segmentation

ORCID iDs

Dan Nguyen https://orcid.org/0000-0002-9590-0655
Amir Owrangi https://orcid.org/0000-0002-3228-2431

References

Acosta O et al 2010 Atlas based segmentation and mapping of organs at risk from planning CT for the development of voxel-wise predictive models of toxicity in prostate radiotherapy Int. Workshop on Prostate Cancer Imaging ed A Madabhushi et al (Berlin: Springer) pp 42–51

Acosta O, Dowling J, Drean G, Simon A, de Crevoisier R and Haigron P 2013 Multi-atlas-based segmentation of pelvic structures from CT scans for planning in prostate cancer radiotherapy Abdomen and Thoracic Imaging: an Engineering & Clinical Perspective (New York: Springer) pp 623–56

Bengio Y 2009 Learning Deep Architectures for AI Foundations and Trends® in Machine Learning vol 2 (Netherlands: Now Publishers Inc) pp 1–127

Bueno G, Deniz O, Salido J, Carrascosa C and Delgado J M 2011 A geodesic deformable model for automatic segmentation of image sequences applied to radiation therapy Int. J. Comput. Assist. Radiol. Surg. 6 341–50

Chai X and Xing J. 2013 SU-E-J-92: multi-atlas based prostate segmentation guided by partial active shape model for CT image with gold markers Med. Phys. 40 171
Weiss E, Richter S, Krauss T, Metzelthin S I, Hille A, Pradier O, Siekmeyer B, Vorwerk H and Hess C F 2003 Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume: a comparison between gynaecologic and radiation oncologists. *Radiother. Oncol.* 67 87–95

Xie S, Girshick R B, Dollar P, Tu Z and He K 2017 Aggregated residual transformations for deep neural networks. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI, 21–26 July 2017) (https://doi.org/10.1109/CVPR.2017.634)

Yang X, Rossi P, Ogunleye T, Jani A B, Curran W J and Liu T 2014 A new CT prostate segmentation for CT-based HDR brachytherapy. *Proc. SPIE* 9036 90362K

Yu L and Xin Y 2017 Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. AAAI Publications, 31 AAAI Conf. on Artificial Intelligence

Zhu Q, Du B, Turkbey B, Choyke P L and Yan P 2017 Deeply-supervised CNN for prostate segmentation. 2017 Int. Joint Conf. on Neural Networks (IJCNN) (Anchorage, AK, 14–19 May 2017) pp 178–84