Anisotropic Magnetic Fluctuations and Superconductivity in Ferromagnetic Superconductor UCoGe

T Hattori, Y Ihara, K Karube, Y Nakai, K Ishida, K Deguchi, N K Sato and I Satoh

1 Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
2 Transformative Research Project on Iron Pnictides (TRIP), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
3 Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
4 Institute for Materials Research, Tohoku University, Sendai 980-8577 Japan.

E-mail: y.hattori@scphys.kyoto-u.ac.jp

Abstract. We have performed 59Co NQR / NMR measurements on the single-crystalline UCoGe, in order to investigate the relationship between ferromagnetism and superconductivity. The measurements of Knight-shift and nuclear spin-lattice relaxation rate provide clear evidence that both static and dynamic susceptibilities are ferromagnetic with Ising anisotropy. In addition, H_{c2} also shows extremely large anisotropy which can not be explained by the GL model with anisotropy of effective mass. These data suggest intimate relationship between Ising magnetization and anisotropic superconductivity in UCoGe.

1. Introduction
After the discovery of superconductivity in the ferromagnetic UGe$_2$ under pressure, the relationship between ferromagnetism and superconductivity has attracted much interest. In 2007, Huy et al. reported superconductivity with $T_{SC} \approx 0.6$ K in the U-based compound UCoGe at ambient pressure, where ferromagnetic(FM) ordering occurs at $T_{Curie} \approx 3.0$ K, and ferromagnetism and superconductivity are considered to coexist[1]. From our NQR / NMR measurements, we have shown that superconductivity coexists with ferromagnetism microscopically[2]. For further study on the relationship between ferromagnetism and superconductivity, we investigated the anisotropic properties of the superconductivity via the angle resolved Meissner-signal measurements, as well as of magnetic fluctuations via the direction dependence of nuclear spin-lattice relaxation rate $1/T_1$ measurements[3].

2. Experiment
We used a 55 mg single crystal sample with $1.65 \times 1.65 \times 1.89$ mm3, grown by the Czochralski method in a tetra-arc furnace. T_{Curie} of the single-crystal sample was evaluated to be 2.55 ± 0.1 K from the Arrot plots[2]. Figure 1 represents the resistivity measured along each direction, and the temperature dependence below 2 K is approximately expressed $\rho = \rho_0 + AT^2$ as shown in the inset. From the anisotropy of A coefficient, the anisotropy of effective mass is estimated as $m^*_c/m^*_b \approx 1.65$ using a relation of $A \propto \sqrt{m^*}$. In contrast to the small anisotropy of m^*,
magnetization has large Ising-type anisotropy with the easy axis along the c axis. The FM and superconducting(SC) properties of our single crystal are in good agreement with previous reports by Huy et al.[4] and Aoki et al.[5]. Large Residual-Resistivity-Ratio ($RRR \parallel b$ axis ≈ 30) and the clear specific-heat jump at T_{Curie} and T_{SC} ensure high quality of the sample[6].

We measured the direction dependences of the Knight-shift (K) and $1/T_1$ with field orientations controlled carefully in situ using a single-axis rotator. The nuclear quadrupole splitting of the 59Co NMR spectra allowed us to determine the field directions precisely[7].

3. Result and Discussion

Figure 2 shows the temperature dependence of K. Large enhancement of K_c and small $K_{a,b}$ ensures the Ising anisotropy from microscopic view. K_α is related to the static susceptibility $\chi(q = 0)$ as $K_\alpha = A_{\text{hf}}^\alpha \chi^\alpha(0) + K_{\text{orb}}^\alpha$, where A_{hf}^α is a hyperfine coupling constant along the α direction, and K_{orb} is an orbital contribution, and temperature independent. K versus χ plot, presented in Fig. 2 inset, indicates that a hyperfine coupling constant A_{hf}^α is nearly isotropic. This indicates that the U-5f spins themselves possess the anisotropy due to the spin-orbit interaction, since A_{hf}^α is positive and isotropic when the U-5f electrons are transferred to the Co-4s orbital and interact with the Co nuclei directly.

Dynamic susceptibility which is detected with the measurement of $1/T_1$ has also Ising anisotropy. Figure 3 presents the temperature dependence of $1/T_1/T$, which is proportional to the magnetic fluctuations perpendicular to the magnetic field.
even if field dependence of m this steep angular dependence of H the values are different with a factor 3 with each other, as shown in Fig. 7. It should be noted that along c H of the Meissner signal is plotted in Fig. 6. Determined from the angular dependence of H for suppression of the superconductivity when the magnetic field is applied to c axis. This angular dependence of H in the SC pairing mechanism in UCoGe, and it is considered that another mechanism might work to be stable when field is applied along the spin easy axis (c anisotropy of onset of the Meissner signal, the temperature dependence of H dependence of ac susceptibility by the transverse spin fluctuations.

Pointed out that the Ising FM fluctuations are favorable for spin-triplet superconductivity since noteworthily that magnetic fluctuations are along the magnetic easy axis (longitudinal mode). In addition, it is noteworthy that S_c scales linearly to K^{c}_{spin} above 8 K, indicative of the predominance of the FM fluctuations, since this scaling is anticipated for three-dimensional FM fluctuations on the basis of the self-consistent renormalization (SCR) theory[8]. As for the relationship between magnetic fluctuations and superconductivity, P. Monthoux and G. G. Lonzarich[9] and Fujimoto[10] have pointed out that the Ising FM fluctuations are favorable for spin-triplet superconductivity since the Ising FM fluctuations with only the longitudinal mode can minimize the pair breaking caused by the transverse spin fluctuations.

In order to investigate the anisotropic properties of superconductivity, the temperature dependence of ac susceptibility χ_{ac} along each direction was measured (Fig. 4). From the onset of the Meissner signal, the temperature dependence of H_{c2} was plotted in Fig. 5. The anisotropy of H_{c2} is in good agreement with the previous reports[4, 5]. The smallest H_{c2} along c axis is one of the mysterious behaviors of UCoGe, since spin-triplet superconductivity seems to be stable when field is applied along the spin easy axis (c axis).

To further examine, we measured the angular dependence of H_{c2} in the ac plane. H_{c2} is determined from the angular dependence of χ_{ac} in various applied fields at 85 mK, and the onset of the Meissner signal is plotted in Fig. 6. H_{c2} is drastically suppressed by the magnetic field along c axis. This angular dependence of H_{c2} is qualitatively the same as previous report[5], but the values are different with a factor 3 with each other, as shown in Fig. 7. It should be noted that this steep angular dependence of H_{c2} cannot be explained at all with the anisotropic GL formula even if field dependence of m^* is taken into account, since $m^*(H^c = 1T)/ m^*(H = 0) \simeq 0.75$ was reported around H_{c2} along c axis[5].

Therefore interpretation of the extraordinary anisotropy of H_{c2} is crucial for understanding the SC pairing mechanism in UCoGe, and it is considered that another mechanism might work for suppression of the superconductivity when the magnetic field is applied to c axis.
Figure 6. Angular dependence of the Meissner signals detected by the ac susceptibility in various magnetic fields in ac plane at $T = 85$ mK.

Figure 7. Angle dependence of H_{c2} in ac plane at $T = 85$ mK, which is determined by the onset of Meissner signal. H_{c2} data reported by D. Aoki et al. are also plotted, which are determined by resistive measurements[5].

4. Summary

Direction-dependent 59Co NMR was performed, and the K and $1/T_1$ measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy along c axis. In addition, we measured the angular dependence of H_{c2} from observation of the Meissner signal probed by ac susceptibility. H_{c2} also shows extremely large anisotropy, which cannot be explained by anisotropic GL model. Interpretation of these behaviors is crucial for understanding the SC pairing mechanism in UCoGe.

The authors thank S. Yonezawa, and Y. Maeno for experimental support and valuable discussions, and D. Aoki, J. Flouquet, A. de Visser, Y. Tada, S. Fujimoto, H. Harima, and H. Ikeda for valuable discussions. This work was partially supported by Kyoto Univ. LTM centre, Yukawa Institute, the “Heavy Electrons” Grant-in-Aid for Scientific Research on Innovative Areas (No. 20102006) from MEXT of Japan, a Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from MEXT of Japan, a grant-in-aid for Scientific Research from JSPS, KAKENHI (S) (No. 20224015).

References

[1] Huy N T, Gasparini A, de Nijs D E, Huang Y, Klaasse J C P, Gortenmulder T, de Visser A, Hamann A, Görlach T and v Lönniensen H 2007 Phys. Rev. Lett. 99 067006
[2] Ohta T, Hattori T, Ishida K, Nakai Y, Osaki E, Deguchi K, Sato N K and Satoh I 2010 J. Phys. Soc. Jpn. 79 023707
[3] Ihara Y, Hattori T, Ishida K, Nakai Y, Osaki E, Deguchi K, Sato N K and Satoh I 2010 Phys. Rev. Lett. 105 206403
[4] Huy N T, de Nijs D E, Huang Y K and de Visser A 2008 Phys. Rev. Lett. 100 077002
[5] Aoki D, Matsuda T D, Taufour V, Hassinger E, Knebel G and Flouquet J 2009 J. Phys. Soc. Jpn. 78 113709
[6] Deguchi K, Osaki E, Ban S, Tamura N, Simura Y, Sakakibara T, Satoh I and Sato N K 2010 J. Phys. Soc. Jpn. 79 083708
[7] Hattori T, Ihara Y, Ishida K, Nakai Y, Osaki E, Deguchi K, Sato N K and Satoh I 2011 J. Phys. Soc. Jpn. Suppl. 80 SA077
[8] Moriya T 1991 J. Magn. Magn. Matter. 100 261
[9] Monthoux P and Lonzarich G G 1999 Phys. Rev. B 59 14598
[10] Fujimoto S 2004 J. Phys. Soc. Jpn. 73 2061