Abstract

Colonoscopy is the gold standard for colorectal cancer prevention; however, it is still an imperfect modality. Precancerous lesions can be lost during screening examinations, thus increasing the risk of interval cancer. A variety of factors either patient-, or endoscopist dependent or even the procedure itself may contribute to loss of lesions. Sophisticated modalities including advanced technology endoscopes and add-on devices have been developed in an effort to eliminate colonoscopy's drawbacks and maximize its ability to detect potentially culprit polyps. Novel colonoscopes aim to widen the field of view. They incorporate more than one cameras enabling simultaneous image transmission. In that way the field of view can expand up to 330°. On the other hand a plethora of add-on devices attachable on the standard colonoscope promise to detect lesions in the proximal aspect of colonic folds either by offering a retrograde view of the lumen or by straightening the haustral folds during withdrawal. In this minireview we discuss how these recent advances affect colonoscopy performance by improving its quality indicators (cecal intubation rate, adenoma detection rate) and other metrics (polyp detection rate, adenomas per colonoscopy, polyp/adenoma miss rate) associated with examination's outcomes.

Key words: Colonoscopy; Quality indicators; Wide-angle view colonoscopes; Add-on devices

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Accomplishing high intra-procedural colonoscopy quality indicators has been associated with better patients’ outcomes. Recently, a number of novel wide-angle view endoscopes as well as different add-on devices have been developed aiming to further improve colonoscopy performance.
INTRODUCTION

Colorectal cancer (CRC) ranks second regarding cancer-related mortality\[^{[3]}\]. Colonoscopy interrupts the carcinogenesis by detecting and removing precancerous lesions, namely adenomas, thus providing the opportunity for neoplasia screening\[^{[9]}\]. Despite its efficacy and widespread use, it is an imperfect examination. Almost a quarter of existing colonic adenomas remain undetected during a screening colonoscopy, while more recent studies raise that percentage up to 40\%\[^{[4-7]}\]. The so-called missed adenomas are considered independent risk factor for interval CRC\[^{[10]}\], defined as CRC rising within the surveillance intervals. Missed adenomas are of particular significance in the right colon (RC), where more than half of the interval CRC incidents occur\[^{[9]}\]. Furthermore, the usually flat serrated sessile adenomas (SSA) of the RC represent premalignant lesions of a distinct group of CRCs that also develop predominantly in the proximal colon\[^{[10,11]}\].

Missed adenomas are a consequence of multiple factors; poor bowel preparation\[^{[12]}\], inability to complete the colonoscopy by visualizing the cecum\[^{[13]}\], inadequate withdrawal times\[^{[14]}\], lack of expertise\[^{[15]}\] and poor inspection of the proximal side of the colonic folds, as well as of the region around the anatomic flexures and the ileocecal valve\[^{[16,17]}\].

Recent studies highlighted the importance of accurate adenoma detection during screening colonoscopies. Corley et al\[^{[18]}\] evaluated more than 300000 examinations and proved that patients of both genders undergoing screening colonoscopy by an endoscopist with high adenoma detection rate (ADR) are protected against interval CRC both in the proximal and the distal colon in comparison with individuals undergoing colonoscopy by a physician with lower ADR. Similarly, a mathematical model showed that 1\% increase of the ADR leads to 3\% decrease of colon cancer incidence\[^{[8]}\].

Aiming to provide patients the highest level of health services, scientific endoscopy Societies have recommended specific quality indicators to measure colonoscopy outcomes\[^{[19]}\]. Similarly, endoscopy industries make continuous efforts to develop novel endoscopes and several devices to improve colonoscopy’s intrinsic technical imperfection (Table 1). Almost a decade ago, a simple transparent plastic cap was one of the first devices introduced to increase endoscopists’ performance. Since then several studies have been conducted that led to two meta-analyses\[^{[20,21]}\]. Their results indicate marginal efficacy of cap-assisted colonoscopy (CAC) to increase detection of patients with polyps. Due to the lack of further remarkable evolvement, cap-assisted colonoscopy will not be discussed in this paper. Marginal improvement of colonoscopy performance was also associated with the advent of high-definition endoscopy\[^{[22]}\]. Due to this marginal positive effect and high costs of the investment, this technology is not the standard of care worldwide yet, and its detailed presentation is beyond the scope of this minireview.

In this minireview we focus on the intra-procedural quality indicators: cecal intubation rate (CIR), polyp detection rate (PDR), adenoma detection rate (ADR), adenomas per colonoscopy (APC), as well as the polyp- and adenoma miss rates (PMR/AMR) (Table 2) in studies evaluating wide angle view (>170°) colonoscopes and new add-on colonoscopy accessories. The term ADR-patients with at least one adenoma will be used to describe not only the adenoma detection rate in screening/surveillance populations, but also in symptomatic individuals. To facilitate readers’ comprehension the exact composition of each study population regarding its indication will be presented, whenever needed.

We conducted a comprehensive review of English literature published in MEDLINE electronic database from January 2008 until January 2017. The following key words were used: “wide-angle view colonoscopes”, “Third-Eye Retroscope”, “Full-Spectrum Endoscopy”, “balloon assisted colonoscope”, “Endocuff” and “Endorings”. Moreover, data from abstracts presented during the Digestive Diseases Week and the United European Gastroenterology Week from 2010 to 2016 were retrieved and manually searched. First author name, year of publication, study design, number of participants, their age and indications, CIR, PDR, ADR APC, PMR and AMR were extracted either as reported by the authors or after appropriate calculation.

WIDE-ANGLE VIEWING ENDOCOPES

One of the factors potentially accountable for missed lesions during colonoscopy is the relatively narrow field of view (140°-170°) of standard forward viewing (SFV) colonoscopes. In an effort to eliminate this limitation, novel wider field of view endoscopes have been manufactured, allowing meticulous inspection of the proximal aspect of the hastral folds. Table 3 summarizes data from studies regarding wide-angle view colonoscopy platforms.
Novelties for accurate colonoscopy

Table 1 Available endoscopes and add-on devices for improving colonoscopy outcomes

Wide-angle view colonoscopes	Add-on devices		
Brand	**Manufacturer**	**Brand**	**Manufacturer**
Full-spectrum endoscopy platform (Fuse)	EndoChoice, GA, United States	Third-Eye Retroscope (TER)	Avantis Medical Systems, Inc, Sunnyvale, CA, United States
Extra-wide angle view colonoscope	Olympus Co., Tokyo, Japan	Third-Eye Panoramic	Avantis Medical Systems, Inc, Sunnyvale, CA, United States
Self-propelled disposable colonoscopy system (Aer-O-Scope)	GI View Ltd, Ramat Gan, Israel	Endocuff	Arc Medical Design, Leeds, England

Table 2 Intra-procedural quality indicators

Metric	Definition	Suggested target (references)
Cecal intubation rate	The frequency of completed colonoscopies (cecum is visualized)	Overall: ≥ 90%
Screening: ≥ 95%[26]		
Women: ≥ 80%[27]		
Polyp detection rate	The proportion of patients with at least one polyp	N/A
Adenoma detection rate	The proportion of patients with at least one adenoma	N/A
Adenoma per colonoscopy	The mean number of adenomas detected per colonoscopy	N/A
Polyp miss rate (PMR)	The proportion of polyps missed during a first pass and detected by a second one	N/A
Adenoma miss rate	The proportion of adenomas missed during a first pass and detected by a second one	N/A

N/A: Recommendation not available.

Full-spectrum endoscopy (Fuse) system

The full-spectrum endoscopy platform (Fuse, EndoChoice, GA, United States) consists of a video colonoscope and a processor. The colonoscope is a normal adult (168 cm working length, 12.8 mm outer diameter) flexible and reusable scope that allows both diagnostic and therapeutic procedures. It provides high-resolution, 330° field of view, achieved by three imagers and LED groups positioned one at the front and two at each side of the scope’s distal tip. The images in the three monitors (Figure 1) reflect transmission from the respective lenses (right image for the right-sided lens, center image for the central positioned lens and left image for the left-sided lens). The endoscopist is allowed to perform all potential maneuvers, such as complete tip deflection (180° up/down direction and 160° left/right direction).

This novel platform has been proven to be safe and feasible with CIR almost 100% in two non-randomized studies[23,24]. Gralnek et al[25] conducted an international, multicenter, randomized back-to-back study to investigate whether Fuse detects more missed adenomas in comparison to SFV colonoscopy. Participants (n = 197, mixed indications) were randomly assigned to undergo same day tandem colonoscopies (either Fuse colonoscopy first followed by SFV colonoscopy or vice versa). The Fuse system had significantly lower miss rates compared to SFV endoscopy for adenomas (7% vs 41%, P < 0.0001) and polyps (10% vs 43%, P < 0.0001). The majority of the 20 adenomas that were missed during SFV examination and detected by the Fuse were sessile (90%), diminutive (70%) and RC sited (70%). In a similar design cross over study, Papanikolau et al[26] showed that Fuse outperformed SFV complemented by examination of the right colon with scope retroflexion regarding adenoma (10.9% vs 33.7%, P < 0.001) and polyp (3.0% vs 33.5%, P < 0.001) miss rates. The same study showed that the incremental benefit of full-spectrum colonoscopy when performed, as a second examination, was 39% higher compared to that of conventional colonoscopy with retroflexion in the cecum, regarding adenoma miss-rate overall (Figure 2). Moreover, an even higher incremental benefit was shown in favor of FC in the proximal colon. This benefit might be ameliorated by the fact that the majority of missed lesions measured less than 1 cm, in both study arms.

The ability of Fuse system to improve colonoscopy outcomes has further been evaluated in parallel design non-randomized[27,28] and randomized studies[29-31]. Manes et al[27] conducted a non-randomized study (n = 529) comparing Fuse and standard HD colonoscope. The authors reported increased PDR (56.6% vs 44.3%, P < 0.01) and ADR (35.5% vs 29.9%) in the Fuse arm. In Denmark Roepstorff et al[28] recruited 205 consecutive individuals undergoing screening colonoscopy either with Fuse system or with the
conventional endoscope. Completion rate was lower with Fuse (83.4% vs 93.4%, \(P = 0.04 \)) but Fuse showed numerically higher ADR (67% vs 59.6%, \(P = 0.36 \)) and APC (1.8 vs 1.4, \(P = 0.09 \)).

Hassan et al\(^{31}\) compared the ADR of Fuse and SFV study arms in 658 individuals undergoing colonoscopy after positive FIT test in the context of a population-based massive screening program. Of interest, both ADR and APC were similar (43.6 vs 45.5 and 0.81 vs 0.85, respectively) between Fuse and conventional colonoscopy. Statistical significant difference was neither shown for advanced adenomas, sessile serrated adenomas and proximal adenomas. Authors acknowledged that the high ADR in the control group, potentially related to the disease enriched (FIT+) population of the study might have hindered detection of difference. Apart from that, sample size issues also rise, since randomized control trials of parallel design would normally require significantly more participants in order to achieve sufficient statistical power\(^{32}\).

Another small (\(n = 90 \), randomized, prospective study\(^{31}\)) that assigned patients to undergo either Fuse or conventional colonoscopy showed higher PDR (36% vs 24%) associated with Fuse use.

Finally, the Fuse system has also been evaluated in patients with inflammatory bowel diseases (IBD). In a randomized back-to-back study from Australia\(^{33}\), 52 IBD patients underwent tandem colonoscopies with Fuse system and conventional colonoscopy in order to evaluate dysplasia miss rate of the first examination (25 patients had Fuse index colonoscopy and 27 started with the conventional examination). Fuse was associated with a significant lower dysplasia miss rate (25% vs 71.4%, \(P = 0.0001 \)).

Table 3 New endoscopes and colonoscopy performance improvement

Ref.	Study design	Technology	Comparator	N	Indication	Age (yr), range	CIR (%)	PDR (%)	ADR (%)	APC	PMR (%)	AMR (%)
Gralnek et al\(^{35}\), 2013	Single-center prospective	FUSE	None	50	Mixed	18-70	100.0%	-	-	N/A	N/A	N/A
Gralnek et al\(^{36}\), 2014	Multicenter prospective, randomized	SFV	101 vs 96	Mixed	18-70	98.0% vs 98.9%	-	34.0% vs 28.0%	0.64 vs 0.33	10%	7% vs 41%	
Papanikolaou et al\(^{34}\), 2017	Multicenter prospective randomized, tandem	FUSE	SFV+R	107 vs 108	41-80	-	-	0.61 vs 0.50	13.0% vs 33.7%	10.9% vs 33.5%		
Hassan et al\(^{34}\), 2016	Multicenter prospective, randomized	FUSE	SFV	328 vs 330	Screening after (+) FIT	50-69	92.1%	43.6%	56.6%	N/A	N/A	N/A
Song et al\(^{34}\), 2016	Single-center retrospective	FUSE	None	262	Mixed	22-80	100.0%	36.0%	43.6%	0.81 vs 0.05	N/A	N/A
Rath et al\(^{34}\), 2016	Multicenter prospective, parallel	FUSE	SFV	90	Mixed	-	36.0%	-	24.0%	-	-	N/A
Mames et al\(^{35}\), 2016	Single-center prospective, parallel	FUSE	SFV	264 vs 265	Mixed	18-85	-	56.6% vs 44.3%	35.5% vs 29.9%	-	N/A	N/A
Roepstorff et al\(^{36}\), 2016	Single-center prospective, parallel	FUSE	SFV	109 vs 106	Screening	-	83.4%	N/A	67.0% vs 59.6%	1.8 vs 1.4	N/A	N/A
Leong et al\(^{36}\), 2016	Single-center prospective, randomized	FUSE	SFV	25 vs 27	IBD	-	-	-	-	25.0% vs 71.4%	-	
Uraoka et al\(^{35}\), 2015	Multicenter feasibility	EWAVC	None	47	Mixed	-	100.0%	-	-	0.64	N/A	N/A
Uraoka et al\(^{35}\), 2013	Multicenter prospective, randomized	EWAVC	SFV	316	Mixed	-	-	50.6% vs 45.6%	1.1 vs 1.0	N/A	N/A	N/A
Gluck et al\(^{35}\), 2016	Single-center prospective, tandem	Aer-O-Scope	SFV	56	Screening	27-72	98.2%	21.4%	25.0%	12.5%	-	for Aer-O-Scope

1Refers to the first of the tandem examinations; \(^{3}\)Dysplasia miss-rate. N/A: Non-applicable; <: Data not provided; CIR: Cecal intubation rate; PDR: Polyp detection rate; ADR: Adenoma detection rate; APC: Adenoma per colonoscopy; PMR: Polyp miss rate; AMR: Adenoma miss rate; FUSE: Full-spectrum endoscopy platform; SFV: Standard forward view colonoscope; SFV + R: Standard forward view colonoscope + retroflexion in cecum; EWAC: Extra-wide-angle view colonoscope; IBD: Inflammatory bowel disease.
Extra-wide angle view colonoscope

This prototype colonoscope introduced by Olympus Co., Tokyo, Japan is composed of two lens’ systems: a standard 140°-angle forward-viewing lens and a 144-232°-angle lateral-backward viewing lens. A video monitor puts together the images of both lens and presents them simultaneously as a single image. Following an initial feasibility study\cite{33} showing CIR of 100%, Uraoka et al\cite{34} compared this prototype scope to SFV in a randomized parallel design study regarding APC and ADR. The sample consisted of 316 individuals undergoing colonoscopy for various indications. The extra-wide angle view colonoscope (EWAVC) had similar to the SFV system APC (1.1 vs 1.0, \(P = 0.36\)) and ADR (50.6% vs 45.6%, \(P = 0.43\)). However, this novel system may be proven of special
importance in angulated and narrow regions of the colon (i.e., sigmoid), as per segment analysis showed a statistically significant higher sigmoid-APC in favor of EAWVC (0.4 vs 0.2, P = 0.04).

Aer-O-Scope

The efficacy and safety of this self-propelled disposable colonoscopy (SPDC) system (Aer-O-Scope; GI View Ltd, Ramat Gan, Israel) has been evaluated in one non-randomized prospective study of 56 patients undergoing tandem screening colonoscopies. Its optical system consists of white-light LEDs and a CMOS high-definition digital camera; it allows a simultaneous 57° field of forward view an Omni 360° view of a cylindrical band of the colon. The Third-Eye Retroscope (TER) (Avantis Medical Systems, Inc, Sunnyvale, CA, United States) is one of the first auxiliary imaging devices that tried to provide a complement retrograde view of the colonic mucosa. These devices provide either a retrograde view of the lumen (Third-Eye Retroscope, Avantis Medical Systems, Inc, Sunnyvale, CA, United States), or wider field of view (Third-Eye Panoramic, Avantis Medical Systems, Inc, Sunnyvale, CA, United States) or flattening of colonic folds during withdrawal to allow visualization of their proximal side of the colonic folds (Endocuff, Arc Medical Design, Leeds, England; Endocuff-Vision, Arc Medical Design, Leeds, England; EndoRings, EndoAid Ltd., Caesarea, Israel and balloon assisted-colonoscopy using the G-EYE, SMART Medical Systems Ltd, Ramat Gan, Israel). Table 4 summarizes data originating from the available studies that evaluated their safety, feasibility and efficacy in improving colonoscopy performance.

“ADD-ON” COLONOSCOPY DEVICES

With the term “add-on” device we describe all those accessories appended on the distal end of a standard colonoscope to facilitate meticulous inspection of the colonic mucosa. These devices provide either a retrograde view of the lumen (Third-Eye Retroscope, Avantis Medical Systems, Inc, Sunnyvale, CA, United States), or wider field of view (Third-Eye Panoramic, Avantis Medical Systems, Inc, Sunnyvale, CA, United States) or flattening of colonic folds during withdrawal to allow visualization of their proximal side of the colonic folds (Endocuff, Arc Medical Design, Leeds, England; Endocuff-Vision, Arc Medical Design, Leeds, England; EndoRings, EndoAid Ltd., Caesarea, Israel and balloon assisted-colonoscopy using the G-EYE, SMART Medical Systems Ltd, Ramat Gan, Israel). Table 4 summarizes data originating from the available studies that evaluated their safety, feasibility and efficacy in improving colonoscopy performance.

Third-Eye Retroscope and the Third-Eye panoramic

The Third-Eye Retroscope (TER) (Avantis Medical Systems, Inc, Sunnyvale, CA, United States) is one of the first auxiliary imaging devices that tried to extend the field of view of the standard forward viewing colonoscope. The TER is inserted through the working channel, it extends beyond the distal tip of the SFV scope to bend 180° in a J-shape form, looking opposite of the scope main lens; thus, it provides a complement retrograde view of the colonic lumen during scope withdrawal. Three open-label, one-arm prospective studies implementing the device on the SFV colonoscope showed that in the absence of Third Eye the examinations’ polyp and adenoma miss rates would be 4.4%-12.9% and 7.8%-13.8%, respectively. In accordance with these findings, Leufkens et al[5] presented the results of a randomized tandem clinical study comparing PMR and AMR of SFV colonoscopy with SFV colonoscopy plus TER. In the per protocol analysis the TER arm was associated with significantly lower miss rates (PMR: 15.9% vs 32.8% and AMR: 18.4% vs 31.4%). However, the above studies underlined some limitations related to TER use. The device narrows almost 50% the diameter of the working channel making the suction of residues compulsory prior to withdrawal. Moreover, each time a polyp is detected by the retrograde view of TER the device must be removed to allow lesion removal, leading to significant prolongation of the procedure. Finally, the device procurement bears an additional financial burden. For these reasons the device has been abandoned.

Endocuff

Endocuff (Arc Medical Design, Leeds, United Kingdom) is a plastic, 2 cm long cuff that can be mounted onto the tip of the scope. Endocuff entails two rows of “finger”-like projections, which remain smooth during insertion and bend in the withdrawal phase to flatten the colonic folds and allow assessment of a greater, otherwise unsighted, mucosal area (Figure 3). Table 4 summarizes data originating from the available studies that evaluated their safety, feasibility and efficacy in improving colonoscopy performance.
Table 4 Add-on devices and colonoscopy performance improvement

Ref.	Study design	Device	Comparator	N	Indication	Age (yr)	CIR (%)	PDR (%)	ADR (%)	APC	PMR (%)	AMR (%)			
Triadafilopoulos et al, 2008	Single-center, prospective, pilot	TER	SFV	24	Screening Surveillance	mean: 64	54	105.9	11.1	35.4%	-	-			
Wayne et al, 2010	Multicenter, prospective, open-label	TER	SFV	249	Screening Surveillance	mean: 63	0.61 vs 0.55	11.7%	9.9%	-	-	-			
DeMarco et al, 2010	Multicenter, prospective, open-label	TER	SFV	298	Mixed	mean: 57	0.39 vs 0.34	12.9%	13.8%	-	-	-			
Leufkens et al, 2011	Multicenter, prospective, randomized, tandem	Single-center, prospective	TER	SFV	68	Mixed	-	-	4.4%	7.8%	-	-			
Mishkin et al, 2012	Single center, prospective	TEP	SFV	33	Mixed	mean: 60 100%	44%	74.4%	N/A	N/A	-	-			
Gralnek et al, 2014	Single-center, prospective, cohort	G-EYE	None	47	Mixed	mean: 59 100%	53.2	44.70%	0.76	N/A	N/A	-			
Halpern et al, 2014	Multicenter, prospective, randomized, tandem	G-EYE	SFV	54 vs 52	Mixed	mean: 55 vs 58 100% vs 100%	40.4%	25.9%	-	7.5%	44.7%	-			
Halpern et al, 2014	Multicenter, prospective, randomized, tandem	G-EYE	SFV	105 vs 117	Screening Surveillance	≥ 50 vs 50	-	-	35.4%	23.5%	0.63 vs 0.36	N/A	N/A	-	
Rey et al, 2015	Multicenter, prospective, randomized, tandem	G-EYE	SFV	25 vs 24	Referral for colonoscopy	- vs -	- vs -	- vs -	- vs -	-	17 vs 21	-			
Hendel et al, 2015	Multicenter, prospective, randomized, tandem	G-EYE HD	SFV	54 vs 50	Mixed	≥ 50 vs 50	76% vs 46%	59% vs 39%	1.15 vs 0.66	-	-	N/A	N/A	-	
Shirin et al, 2016	Multicenter, prospective, randomized, parallel	G-EYE HD	SFV	242 vs 238	Mixed	mean: 65 vs 65	- vs -	49.2% vs 33.8%	0.95 vs 0.57	-	-	N/A	N/A	-	
Dik et al, 2015	Multicenter, prospective, randomized, tandem	Endorings	SFV	57 vs 59	Mixed	mean: 59 vs 59	68.4% vs 40.7%	49% vs 26.8%	1.05 vs 0.51	9.1% vs 10.4%	48.3%	-	-		
Lenze et al, 2014	Single-center, retrospective	Endocuff	None	50	Mixed	mean: 57 vs 57	98% vs -	- vs 34%	0.72	N/A	N/A	-	-		
Floer et al, 2014	Multicenter, prospective, randomized, parallel	Endocuff	SFV	249 vs 243	Mixed	median: 64 vs 64	96% vs 94%	55.4% vs 38.4%	35.4% vs 20.7%	0.58 vs 0.36	-	-	N/A	N/A	-
Biecker et al, 2015	Two-center, prospective, randomized, parallel	Endocuff	SFV	245 vs 253	Mixed	median: 67 vs 67	98% vs 98%	56% vs 42%	36% vs 28%	-	N/A	N/A	-	-	
Sawatzki et al, 2015	Multicenter, prospective, feasibility	Endocuff	None	104	Screening Surveillance	mean: 59 vs 59	99% vs 72%	72% vs 47%	-	N/A	N/A	-	-		
Van Doorn et al, 2015	Two-center, prospective, randomized, parallel	Endocuff	SFV	1033 (ITT: 504 vs 529 PP: 486 vs 514)	Mixed	median: 65 vs 65 ITT: 98% vs 99%	- vs -	ITT: 52% vs 52%	ITT: 1.36 vs 1.17	N/A	N/A	-	-	-	-

Note:
- CIR: Colonoscopy Improvement Rate
- PDR: Polyp Detection Rate
- ADR: Advanced Neoplasia Rate
- APC: Advanced Polyp Prevalence
- PMR: Polyp Miss Rate
- AMR: Adenoma Miss Rate
indications failed to reveal any advantage of Endocuff use regarding the proportion of patients with at least one adenoma (ADR: 52% for both arms) and the mean number of adenomas per patient (APC: 1.36 vs 1.17).

Two studies have evaluated Endocuff regarding adenoma miss rate \(^3\) \(^6\) \(^6\) \(^6\) \(^6\) \(^6\). De Palma et al. \(^6\) \(^6\) \(^6\) randomized 274 patients to undergo same day back-to-back colonoscopies (either with Endocuff use first and then without it or vice versa). In this study any lesion detected during the first procedure was left in situ in order to be redetected -or not- during the second one. Adenoma miss rate was significantly lower when Endocuff was used (1.1% vs 29.7%, \(P < 0.001\)). Similarly, we recently presented the results of a multicenter tandem study showing that Endocuff use outperformed its comparator (standard colonoscopy) in terms of AMR, overall (14.7% vs 37.6%, \(P = 0.0004\)) and in the proximal colon (10.4% vs 39%, \(P = 0.004\)).

There is also certain amount of data from parallel design studies, reporting increased PDR/ADR \(^4\) \(^8\) \(^9\) \(^1\) \(^0\) \(^1\) \(^0\) \(^1\) \(^0\) \(^1\) \(^0\) \(^1\) \(^0\) in the Endocuff arms published in abstract form only. However, three other studies failed to reveal Endocuff

\(^3\)Refers to the first of the tandem examinations; \(^1\)Use of TER/TEP on SFV; \(^2\)Miss rate if TER/TEP was not used. N/A: Non applicable; -: Data not provided; CIR: Cecal intubation rate; PDR: Polyp detection rate; ADR: Adenoma detection rate; APC: Adenoma per colonoscopy; FMR: Polyp miss rate; AMR: Adenoma miss rate; SFV: Standard forward view colonoscope; CAC: Cap-assisted colonoscopy; TER: Third-Eye Retroscope; TEP: Third Eye Panoramic Cap; EAC: Endocuff-assisted colonoscopy; ITT: Intention to treat analysis; PP: Per protocol analysis.
superiority\cite{54-56}. A recent meta-analysis tried to sum up these data\cite{57}. Taking into account data from 8 studies (\(n = 4387\)) the authors concluded that Endocuff use is associated with higher ADR compared to standard colonoscopy (50.4\% vs 43.3\%, OR = 1.49, 95%CI: 1.23-1.80, \(I^2 = 50\%\), \(P < 0.01\)).

Endocuff-Vision (Arc Medical Design, Leeds, England) - the evolution of the initial device, with a single row of projections (Figure 4) has also been evaluated in studies measuring colonoscopy outcomes. Tsiamoulos \textit{et al.}\cite{58} reported extremely high ADR for Endocuff-Vision assisted and conventional colonoscopy in a screening population. However, both ADR and APC were even higher in the Endocuff-Vision arms (68.9\% vs 58.5 and 2.2 vs 1.4, respectively). In a large study of more than 1700 patients\cite{59}, Endocuff-Vision use was associated with a significant higher ADR (40.9\% vs 36.2\%) in patients of various indications for colonoscopy. Contrariwise, these findings were not confirmed in a single-center prospective parallel design study that involved screening population\cite{60}: similar ADR and APC between Endocuff-Vision-assisted and cap-assisted colonoscopy were noted.

EndoRings

EndoRings (EndoAid Ltd., Caesarea, Israel) is a silicone-rubber add-on device consisting of three circular rings. It fits onto the distal tip of the endoscope and allows not only the mechanical stretching of the haustral folds during withdrawal, but also maintains the lumen in the center of the inspection field. At the time of insertion the view of field is not affected since the device does not project beyond the distal end of the scope, allowing the unimpeded cecal intubation. This device has been evaluated only in one multicenter randomized tandem study\cite{61}. In the per protocol analysis of 116 patients of mixed indications, the use of EndoRings was associated with a statistically significant lower polyp (9.1\% vs 52.8\%, \(P < 0.001\)) and adenoma (10.4\% vs 48.3\%, \(P < 0.001\)) miss rate. The benefit of EndoRings use was higher for the detection of diminutive adenomas (AMR: 13.5\% vs 54.2\%, \(P < 0.001\)) and adenomas found both at the proximal and distal colon (AMR: 10.6\% vs 58.1\%, \(P <
0.001 and 10% vs 37%, \(P < 0.001 \), respectively\(^{[61]}\).

Balloon-assisted colonoscopy-The G-EYE

The NaviAid G-EYE (SMART Medical Systems Ltd, Ra'anana, Israel) is a novel balloon-colonoscope consisting of a standard adult colonoscope combined with an inflatable balloon at the bending part of the scope. The balloon is located 1-2 cm proximally to the distal tip of the colonoscope and it can be inflated up to 60mm diameter with unremarkable alteration in scope's outer caliber\(^{[62]}\). A special inflation system - the SPARK\(^{2}\)C - manipulated by the endoscopist via a foot-pedal, inflates the balloon once cecum intubation achieved and retains a constant pressure within the colon during withdrawal. With the balloon inflates during withdrawal, colonic folds and flexures are mechanically straightened revealing potential suspicious lesions located in their proximal aspect\(^{[62]}\). Two randomized tandem studies\(^{[63,64]}\) evaluated G-EYE's lesions miss rates compared to SFV. Both studies examined individuals undergoing colonoscopy for various reasons. Halpern et al\(^{[63]}\) demonstrated a significant lower adenoma miss rate for G-EYE (7.5% vs 44.7%, \(P = 0.0002 \)), while Rey et al\(^{[64]}\) showed a lower polyp miss rate in favor of the G-EYE (7% vs 41%). In terms of ADR and adenomas per colonoscopy this device has been evaluated in three randomized parallel design studies\(^{[65-67]}\). Halpern et al\(^{[65]}\) randomized 222 individuals undergoing screening colonoscopy to receive either balloon-assisted assisted colonoscopy or SFV examination. The G-EYE use was related to higher ADR and APC (35.4% vs 23.5% and 0.63 vs 0.36). The last two multicenter randomized trials\(^{[66,67]}\) used G-EYE in combination with a HD colonoscope. In both studies the reported rate of adenoma detection was higher in the G-EYE arm (59% vs 39%, and 49.2% vs 33.8%, respectively).

CRITICAL APPRAISAL AND CONCLUSION

The volume of presented data clearly illustrates the unmet need of optimizing technology to improve colonoscopy performance. The results of the aforementioned studies of novel wide-angle view endoscopes and add-on devices appear promising. Despite some contradictory results the majority of the data are in favor of the new endoscopes/devices regarding polyp and adenoma detection rates, as well as, polyp and adenomas miss rates. However, these data should be interpreted cautiously for a number of reasons:

Firstly, 50% of the reviewed studies have been published as abstracts only. The Extra-wide Angle View Colonoscope and the Third-Eye\(^{[5]}\) Panoramic are still under development, while Aer-O-Scope and Third Eye have been abandoned. Moreover, several new colonoscopy add on devices appear in the endoscopy accessories market without having been adequately evaluated, yet.

Secondly, heterogeneity characterizes the presented studies. Different target populations and lack of a solid integrated design do not allow safe generalization of the results. It should be noted that the plethora of parallel design studies has not enrolled adequate number of participants to detect differences in ADR with sound statistical power. Moreover, the comparator to the examined novelties comprises either standard or high definition endoscopes or both categories, thus adding more confounders to data interpretation. Of note, there are no direct comparisons between new wide angle view colonoscopes and add on devices regarding colonoscopy outcomes, yet and we can hardly expect any to come in the literature soon.

Thirdly, more attention should be paid to studies recruiting asymptomatic subjects at average risk for CRC. This is the particular population in which it is proven that improvement in colonoscopy outcomes (e.g., increased ADR) is correlated to improved patients’ outcomes (reduced risk for interval CRC).

Fourthly, it is still unknown if these novelties are of benefit for the low or the average performing endoscopist only or the benefit is also extended to the high detectors. Whether different levels of endoscopists’ experience and performance or different endoscopic environment (e.g., academic vs community or private practice) could lead to different acceptance of these technologies and to different levels of quality indicators improvement, pends to be answered.

Finally, cost is an important factor that could influence the widespread use of these novelties. It has been shown that in the era of financial recession expensive technologies used for patients’ management are not favored\(^{[68]}\). In this setting, attachable cuffs and rings present a relatively low cost investment.

Summing up, new wide-angle view endoscopes and add-on devices are promising technologies to improve colonoscopy and patients outcomes. More studies are definitely needed in order to provide answers to the aforementioned open questions. Until conclusive data are obtained, endoscopists should use these novelties in a personalized manner taking into account their availability and stuff experience. At the same time, the fundamental principles of colonoscopy like adequate bowel preparation, meticulous inspection independently of endoscope and devices used and suitable withdrawal time should govern our practice.

REFERENCES

1. SEER Stat Facts Sheets: Colon and Rectum Cancer. Accessed December 2016. Available from: URL: https://seer.cancer.gov/statfacts/html/colorect.html.
2. Rex DK, Johnson DA, Anderson JC, Schoenfeld PS, Burke CA, Inadomi JM. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. *Am J Gastroenterol* 2009; 104: 739-750 [PMID: 19240699 DOI: 10.1038/ajg.2009.104].
3. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp-Vogelaar I, van Ballegooijen M, Hanken BF, Shi W, Bond JH, Schapiro M, Panish JP, Stewart ET, Waye JD. Colonoscopic polypectomy and long...
term prevention of colorectal-cancer deaths. *N Engl J Med* 2012; 366: 687-696 [PMID: 22356322 DOI: 10.1056/NEJMoa1100370]

4. *Heresbach D*, Barrioz T, Lapalus MG, Coumaros D, Bauret P, Potier P, Sautereau D, Boustière C, Grimaud JC, Barthélemy C, Sée J, Soriano DI, D’Halluin PN, Branger B, Ponchon T. Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. *Endoscopy* 2008; 40: 284-290 [PMID: 18389446 DOI: 10.1055/s-2007-956518]

5. *Leufkens AM*, DeMarco DC, Rastogi A, Akerman PA, Azzouzi K, Rothstein RJ, Vleggaar FP, Repici A, Rando G, Okolo PI, Dewit O, Ignjatovic A, Odstrcil E, East J, Deprez PH, Saunders BP, Kalloo AN, Creel B, Singh V, Lennon AM, Siersema PD. Effect of a retrograde-viewing device on adenoma detection rate during colonoscopy: the TERRACE study. *Gastrointest Endosc* 2011; 73: 489-498 [PMID: 21067735 DOI: 10.1016/j.gie.2010.09.004]

6. *Rex DK*, Cutler CS, Lemmel GT, Rahman EI, Clark DW, Helper DJ, Lehman GA, Mark DG. Colonicoscopy miss rates of adenomas determined by back-to-back colonoscopies. *Gastroenterology* 1997; 112: 24-28 [PMID: 8978338]

7. *van Rijn JC*, Reitsma JB, Stoker J, Bosuwt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. *Am J Gastroenterol* 2006; 101: 343-350 [PMID: 16454841 DOI: 10.1111/j.1572-0241.2006.00390.x]

8. *Kaminski MF*, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Dikowski J, Zvierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. *N Engl J Med* 2010; 362: 1795-1803 [PMID: 20463339 DOI: 10.1056/NEJMoa0907667]

9. *Brenner H*, Chang-Claude J, Seiler CM, Hoffmeister M. Interval cancers after negative colonoscopy: population-based case-control study. *Gut* 2012; 61: 1576-1582 [PMID: 22200840 DOI: 10.1136/gutjnl-2011-301531]

10. *Lieberman DA*, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. *Gastroenterology* 2013; 144: 844-857 [PMID: 22763141 DOI: 10.1016/j.gastro.2012.06.001]

11. *Bressler B*, Paszat LF, Vinden C, Li C, He J, Rabeneck L. Analysis of administrative data finds endoscopist-blinded colonoscopy versus standard video endoscopy for the detection of colonic polyps: Korea’s first full-spectrum endoscopy colonoscopy trial. *World J Gastroenterol* 2016; 22: 2621-2629 [PMID: 26937190 DOI: 10.3748/wjg.v22.i8.2621]

12. *Gralnek IM*, Segol O, Sussa A, Siersema PD, Carr-Locke DL, Halpern Z, Santo E, Domanov S. A prospective cohort study evaluating a novel colonoscopy platform featuring full-spectrum endoscopy. *Endoscopy* 2013; 45: 697-702 [PMID: 23939509 DOI: 10.1055/s-0033-1344395]

13. *Song JY*, Cho YH, Kim MA, Kim JA, Lee CT, Lee MS. Feasibility of full-spectrum endoscopy: Korea’s first full-spectrum endoscopy colonoscopy trial. *World J Gastroenterol* 2016; 22: 2621-2629 [PMID: 26937190 DOI: 10.3748/wjg.v22.i8.2621]

14. *Gralnek IM*, Siersema PD, Halpern Z, Segol O, Melhem A, Sussa A, Santo E, Soyer A, Fenster J, Moons LM, Dík VK, D’Agostino RB, Rex DK. Standard forward-viewing colonoscopy versus full-spectrum endoscopy: an international, multicentre, randomised, tandem colonoscopy trial. *Lancet Oncol* 2014; 15: 353-360 [PMID: 24560453 DOI: 10.1016/S1470-2045(14)70020-8]

15. *Papanikolaou IS*, Apostolopoulos P, Tziatziou G, Vlachou V, Sioulas AD, Polymeros D, Karameris A, Panayiotides I, Alexandrakis G, Dimitriadis GD, Triantafyllou K. Lower adenoma miss rate with FUSE vs. conventional colonoscopy with proximal polypectomy: a randomized back-to-back trial. *Endoscopy 2017; 49: 468-475 [PMID: 28107765 DOI: 10.1055/s-0042-124415]

16. *Manes G*, Devani M, Saibeni S, Arena I, de Nucci G, Andreozzi P, Omazzi B. Optimizing withdrawal time and use of FUSE endoscopy achieve similar results in terms of increasing adenoma detection rate. Results of a preliminary observational study. *UEG J* 2016; 2 Suppl 1

17. *Roepstorff S*, Hadi S, Rasmussen M. Full Spectrum Endoscopy (FUSE) versus standard forward viewing endoscopy (SFVE) in a high risk population. *UEG J* 2016; 2 Suppl 1

18. *Hassan C*, Senore C, Radaelli F, De Pretis G, Sassatelli R, Arrigoni A, Manes G, Amato A, Anderloni A, Armelao F, Mondardini A, Spada C, Omazzi B, Cavina M, Miori G, Campanale C, Sereni G, Segnan N, Repici A. Full-spectrum (FUSE) versus standard forward-viewing colonoscopy in an organised colorectal cancer screening programme. *Gut* 2016; Epub ahead of print [PMID: 27507903 DOI: 10.1136/gutjnl-2016-311906]

19. *Leong R*, Ooi M, Corte C, Yau Y, Kermeen M, Alswaifi R, Katlaris P, McDonald C, Ngu M. Full Spectrum Endoscopy (FUSE) in the detection of inflammatory bowel disease neoplasia (FUSION): A randomized crossover tandem study versus conventional colonoscopy. *UEG J* 2016; 2 Suppl 1

20. *Rath T*, Gralnek IM, Grauer M, Tontini G, Vieth M, Neurath M, Neumann H. Prospective 1: 1 randomized study to assess the performance characteristics of colorectal full spectrum endoscopy (FUSE). *UEG J* 2015; 2 Suppl 1

21. *van den Broek FJ*, Kuiper T, Dekker E, Zwijnenburg AM, Fockens P, Reitsma JB. Study designs to compare new colonoscopic techniques: clinical considerations, data analysis, and sample size calculations. *Endoscopy 2013; 45: 922-927 [PMID: 23918622 DOI: 10.1055/s-0033-1344434]

22. *Uraoka T*, Tanaka S, Oka S, Matsuda T, Saito Y, Moriyama T, Gkolfakis P et al. Novelties for accurate colonoscopy.
Prospective Swiss pilot study of Endocuff-assisted colonoscopy: A Multicenter Randomized Controlled Trial. Gastrointest Endosc 2013; 77: AB440

DeMarco DC, Odstrcil E, Lara LF, Bass D, Herdman C, Kinney T, Gupta K, Wolf L, Dewar D, Teas DM, Mehta MK, Anwer MB, Pessell R, Hamilton JK, Polter D, Reddy KG, Hanan I. Impact of experience with a retrograde-viewing device on adenoma detection rates and withdrawal times during colonoscopy: the Third Eye Retroscope study group. Gastrointest Endosc 2010; 71: 542-550 [PMID: 20189513 DOI: 10.1016/j.gie.2009.12.021]

Mishkin D. The Effect f the Third Eye® Retroscope® (TER) on Additional Adenoma Detection Rates (DR) During Colonoscopy in Above-Average Risk Patients for Colorectal Cancer in a Community Setting. Gastrointest Endosc 2012; 75: AB480-AB481

Waye JD, Heigh RI, Fleischer DE, Leighton JA, Guru­du S, Ablin DB, Li J, Ramrakhiani S, Edmundowicz SA, Early DS, Jonnalagadda S, Bresalier RS, Kessler WR, Rex DK. A retrograde-viewing device improves detection of adenomas in the colon: a prospective efficacy evaluation (with videos). Gastrointest Endosc 2010; 71: 551-556 [PMID: 20018280 DOI: 10.1016/j.gie.2009.04.043]

Rubin M, Lurie B, Bose K, Kim SH. Expand­ing the view of a standard colonoscope with the Third Eye Panoramic cap. World J Gastroenterol 2015; 21: 10683-10687 [PMID: 26457029 DOI: 10.3748/wjg.v21.i37.10683]

Lenze F, Beyna T, Lenz P, Heinzow HS, Hengst K, Ullerich H. Endocuff-assisted colonoscopy: a new accessory to improve adenoma detection rate? Technical aspects and first clinical experiences. Endoscopy 2014; 46: 610-614 [PMID: 24824090 DOI: 10.1055/s-0034-1365446]

Sawatzki M, Meyenberger C, Marbet UA, Haer­rer J, Frei R. Prospective Swiss pilot study of Endocuff-assisted colonoscopy in a serendipitous population. Endosc Int Open 2013; 3: E232-E239 [PMID: 26171436 DOI: 10.1055/s-0033-1391418]

Floer M, Biecker E, Fitzlaff R, Ameis D, Heinecke A, Kuschn S, Ellen­rieder V, Ströbel P, Schepeke M, Meister T. Higher adenoma detection rates with endocuff-assisted colonoscopy - a randomized controlled multicenter trial. PLoS One 2014; 9: e114267 [PMID: 25470133 DOI: 10.1371/journal.pone.0114267]

Biecker E, Floer M, Heinecke A, Ströbel P, Böhme R, Schepeke M, Meister T. Novel endocuff-assisted colonoscopy significantly increases the polyp detection rate: a randomized controlled trial. Clin J Gastroenterol 2015; 49: 413-418 [PMID: 24921209 DOI: 10.1097/MCG.0000000000001616]

van Doorn SC, van der Slu­gt M, Depla A, Wientjes CA, Mallant-Hent RC, Siersema PD, Tytgat G, Tuynman H, Kuiken SD, Houwen G, Stokkers P, Moons L, Bossuyt P, Fockens P, Mundt MW, Deker­ker E. Adenoma detection with Endocuff colonoscopy versus conventional colonoscopy: a multicentre randomised controlled trial. Gut 2017; 66: 438-445 [PMID: 26674360 DOI: 10.1136/gutjnl-2015-310997]

De Palma GD, Giglio MC, Bruzzese D, Gennarelli M, Maione F, Siciliano S, Manzo B, Cassese G, Luglio G. Cap euffed-colonoscopy versus standard colonoscopy for adenoma detection: a randomized back-to-back study. Gastrointest Endosc 2017; Epub ahead of print [PMID: 28082115 DOI: 10.1016/j.gie.2016.12.027]

Triantafyllou K, Polymeros D, Apostolopoulos P, Brandão C, Gkolakis P, Repici A, Papanikolaou IS, Dinis-Ribeiro M, Alexandrakis G, Hassan C. Endocuff-assisted colonoscopy outperforms conventional colonoscopy to detect missed adenomas: European multicenter, randomized, back-to-back study. UEG J 2016; 2 Suppl 1: 54-88

Floer M, Biecker E, Ameis D, Heinecke A, Ströbel P, Domagk M, Schepeke M, Meister T. Endocuff-assisted colonoscopy significantly increases the adenoma detection rate: a randomized multicenter trial with 652 patients. UEG J 2014; 2 Suppl 1

Wada Y, Wada Y, Wada M, Fukushima Y, Fukuda M, Ohtsuka K. Effect of Endocuff-assisted colonoscopy in the detection of colorectal polyps. UEG J 2016; 2 Suppl 1

Marsano J, Tzamas D, McKinley M, Robbins D, Mammen A, Sun E, Chugh P, Razavi F, Hasan N, Buscaglia J, Bacobo J, Nagula S, Goodman A, M. P, Gross S. Endocuff Assisted Colonoscopy Increases Adenoma Detection Rates: A Multi-Center Study. Gastrointest Endosc 2014; 79: AB550

García D, Gonzalez-Fernandez C, Barreto-Zuniga R, Aguilar-Olivos N, Romano A, Grajales-Figueroa G, Tellez-Avila F. Higher Adenoma Detection Rate With Endocuff: A Randomized Controlled Trial. Gastrointest Endosc 2016; 83: AB193

Patel A, Grewal J, Karnes W. Endocuff Improves GI Fellows Colonoscopy Performance (PDR, ADR and number of polyps/colonoscopy) Without Affecting Time of Procedure. Gastrointest Endosc 2016; 83: AB535

Chin M, Chen CL, Karnes W. Improved Polyp Detection Among High Risk Patients With Endocuff. Gastrointest Endosc 2015; 81: AB283

Bensaleh Y, Ikеzawa N, Sasaki K, Yoshi­da S, Myou­jou S, Nakajima T, Yoshi­da S. Adenoma detection with Endocuff-assisted versus cap-assisted colonoscopy. UEG J 2016; 2 Suppl 1

Cavallaro L, Pierin­erico L, Galliani E, Dal Pont E, Giacomini A, Iuzzolino P, E. M, Roldo C, Soppelsa F, Di Camillo S, Mel R, Germän­a B. Higher number of small (<10mm) adenomas detected with Endocuff-assisted colonoscopy in a screening population. UEG J 2016; 2 Suppl 1

Higham-Kessler J, Austin G. Endocuff-Assisted Colonoscopy is Associated with an Increase in the Mean Number of Polyps but a Similar Adenoma Detection Rate, Surveillance Interval Recommendation, and Amount of Sedation Medications. Gastrointest Endosc 2016; 83: AB538

Chin M, Karnes W, Jamal MM, Lee JG, Lee R, Samar­asena J, Bechtold ML, Nguyen DL. Use of the Endocuff during routine colonoscopy examination improves adenoma detection: A meta-analysis. World J Gastroenterol 2016; 22: 9642-9649 [PMID: 27920485 DOI: 10.3748/wjg.v22.i43.9642]

Tsiamoulos Z, Misra R, Bou­rikas L, Rajarat­nam R, Patel K, Thomas-Gibson S, Haycock A, Suzuki N, Beintaris I, Saunders B. Endocuff­Vision: Impact on Colonoscopy­Per­formance During Screening. Gastrointest Endosc 2015; 81: AB209

Ngo WS, Bev­an R, Tsiamoulos Z, Bassett P, Hoare R, Rutter M, Totton N, Lee T, Ramad­as A, Sil­cock J, Painter J, Neils­on L, Saunders B, J, Rees C. Improved adenoma detection with Endocuff­Vision­TM: A multicentre randomised­controlled trial. UEG J 2016; 2 Suppl 1

Bhattacharya R, Ched­dy F, Kandia­h K, Fogg C, Higgs B, Hay­som-New­port B, Gadeke L, Thursby-Pelham F, Ellis R, Gogg­in P, Longcroft-Wheaton G, Bharda­ri P. The first randomized controlled trial of Endocuff Vision®-assisted colonoscopy versus standard colonoscopy for polyp detection in bowel cancer screening (E-cap study). UEG J 2016; 2 Suppl 1

Dik V, Grlach­nek IM, Sel­gol O, Sippia­ A, Belder­bos TD, Moons LM, Segev M, Domanov S, Rex DK, Siersema PD. Multicenter, randomized, tandem evaluation of EndoRings colonoscopy results—the CLEVER study. Endos­copy 2015; 47: 1151-1158 [PMID: 26220283 DOI: 10.1055/s-0034-1392421]

Gralnek IM, Sippia­A, Domanov S. Safety and efficacy of a novel balloon colonoscope: a prospective cohort study. Endos­copy 2014; 46: 883-887 [PMID: 25225962 DOI: 10.1055/s-0034-1377968]
Gkolfakis P et al. Novelties for accurate colonoscopy

63 Halpern Z, Gross SA, Gralnek IM, Shpak B, Pochapin M, Hoffman A, Mizrahi M, Rochberger YS, Moshkowitz M, Santo E, Melhem A, Grinshpon R, Pfefer J, Kiesslich R. Comparison of adenoma detection and miss rates between a novel balloon colonoscope and standard colonoscopy: a randomized tandem study. *Endoscopy* 2015; 47: 301 [PMID: 25826167 DOI: 10.1055/s-0034-1391894]

64 Rey JW, Haschemi J, Tresp A, DuMcke S, Borger D, Kirchner A, Kiesslich R, Hoffman A. G-EYE Advanced Colonoscopy for Increased Polyp Detection Rate - Randomized Tandem Study With Different Endoscopist. *Gastrointest Endosc* 2015; 81: AB215

65 Halpern Z, Ishaq S, Neumann H, Dobosz M, Viale E, Hoffman A, Hendel J, Senturk H, Jacob H, Kiesslich R. G-EYE colonoscopy significantly improves adenoma detection rates - initia results of a multicenter prospective cohort study. *UEG J* 2014; 2 Suppl 1

66 Hendel J, Mizrahi M, Hoffman A, Epshtein J, Ishaq S, Jacob H, Israeli E, Vilmann P, Hershcovici T, Rey JW, Tsvang E, Thielsen P, Neumann H, Goetz M, Siersema P, Teubner D, Karstensen J, Kiesslich R. Prospective Randomized Multicenter Trial to Compare Adenoma Detection Rate of HD Colonoscopy With Standard HD Colonoscopy - Intermediate Results. *Gastrointest Endosc* 2015; 81: AB145-AB146

67 Shirin H, Shpak B, Epshtein J, Vilman P, Hoffman A, Ishaq S, Testoni P, Sanduleanu S, Neumann H, Goetz M, Siersema P, Gross SA, Abramowich D, Shnell M, Mizrahi M, Hendel J, Viale E, de Ridder R, Pochapin M, Yair M, Gluck N, Yaari S, Stigaard T, Miali A, Moskhowitz M, Israeli E, Matalon S, Hershcovici T, Simantov R, Jacob H, Shachar E, Karstensen J, Teubner D, Bogic R, Kiesslich R. Comparison of Adenoma Detection Rate by a High Definition Colonoscopy versus Standard High Definition Colonoscopy - A Prospective Randomized Multicenter Trial. *Gastrointest Endosc* 2016; 83: AB192

68 Triantafyllou K, Gkolfakis P, Viazis N, Tsibouris P, Tsigaridas A, Apostolopoulos P, Anastasiou J, Hounda E, Skianis I, Katopodi K, Ndini X, Alexandrakis G, Karamanolis DG. A 13-year time trend analysis of 3724 small bowel video capsule endoscopies and a forecast model during the financial crisis in Greece. *Eur J Gastroenterol Hepatol* 2017; 29: 185-191 [PMID: 27775952 DOI: 10.1097/MEG.0000000000000771]

P- Reviewer: Cao HL, Christodoulou DK S- Editor: Qi Y L- Editor: A E- Editor: Wang CH
