Zi-Guo Yuan,1,2† Xiu-Xiang Zhang,3† Xian-Hui He,2 Eskild Petersen,4 Dong-Hui Zhou,2 Yong He,2 Rui-Qing Lin,2 Xi-Zhen Li,2 Xu-Li Chen,2 Xiao-Ru Shi,2 Xi-Ling Zhong,2 Bing Zhang,2 and Xing-Quan Zhu 1*
Department of Parasitology, State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province 730046, People’s Republic of China; Department of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People’s Republic of China; College of Agriculture, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong Province 510642, People’s Republic of China; and Department of Infectious Diseases, Clinical Institute, and Institute of Medical Microbiology and Immunology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark

Received 3 August 2010/Returned for modification 7 September 2010/Accepted 5 November 2010

Toxoplasma gondii can infect a large variety of domestic and wild animals and human beings, sometimes causing severe pathology. Rhothries are involved in T. gondii invasion and host cell interaction and have been implicated as important virulence factors. In this study, we constructed a DNA vaccine expressing rhoptry protein 16 (ROP16) of T. gondii and evaluated the immune responses it induced in Kunming mice. The gene sequence encoding ROP16 was inserted into the eukaryotic expression vector pVAX I. We immunized Kunming mice intramuscularly. After immunization, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged lethally. The results showed that mice immunized with pVAX-ROP16 developed a high level of specific antibody responses against T. gondii ROP16 expressed in Escherichia coli, a strong lymphoproliferative response, and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-4, and IL-10 production compared with results for other mice immunized with either empty plasmid or phosphate-buffered saline, respectively. The results showed that pVAX-ROP16 induces significant humoral and cellular Th1 immune responses. After lethal challenge, the mice immunized with pVAX-ROP16 showed a significantly (P < 0.05) prolonged survival time (21.6 ± 9.9 days) compared with control mice, which died within 7 days of challenge. Our data demonstrate, for the first time, that ROP16 triggers a strong humoral and cellular response against T. gondii and that ROP16 is a promising vaccine candidate against toxoplasmosis, worth further development.
signaling and, in consequence, interleukin-12 (IL-12) production in infected host cells, and is considered one of the key virulence factors in the pathogenesis of *T. gondii* infection (25, 28, 29). There have been no studies evaluating the potential of ROP16 as a vaccine candidate against *T. gondii*.

The objective of the present study was to examine the immunogenicity and protective efficacy of *T. gondii* ROP16 in mice by constructing a eukaryotic plasmid, pVAX-ROP16, expressing ROP16, and evaluating the potential of ROP16 as a vaccine candidate against toxoplasmosis in Kunming mice against lethal challenge infection with the highly virulent RH strain of *T. gondii*.

MATERIALS AND METHODS

Mice and parasites. Specific-pathogen-free (SPF)-grade female congenic Kunming mice, ages 6 to 8 weeks old, were purchased from Yat-Sen University Laboratory Animal Center. Tachyzoites of the highly virulent RH strain of *T. gondii* were preserved in our laboratory (Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University) and maintained by serial intraperitoneal passage in Kunming mice. The tachyzoites were collected from the peritoneal fluids, washed by centrifugation, and then suspended in sterile PBS, 100 μl in each thigh skeletal muscle, whereas control mice received PBS alone.

Construction of the eukaryotic expression plasmid. To construct the pVAX-ROP16 expression plasmid, the coding sequence of the *T. gondii* ROP16 gene (GenBank accession no. DQ116422, 2,124 bp from sequence positions 1 to 2124) was amplified by PCR from genomic DNA of the *T. gondii* RH strain with a pair of oligonucleotide primers (ROP16F, forward primer, 5'-GAAATTCTAGATGACGCTGTTGCCGAGGC-3'; ROP16R, reverse primer, 5'-TCTAGACTACATGGACCCGAAAGGGC-3'), and EcoRI and XbaI restriction sites (underlined) were introduced. The PCR product was cloned into the pGEM-T easy vector (Promega) and sequenced in both directions to ensure fidelity, generating pGEM-ROP16. The ROP16 fragment was cleaved by EcoRI/XbaI from pGEM-ROP16 and cloned into the EcoRI/XbaI sites of pVAX I (Invitrogen). The resulting plasmid was named pVAX-ROP16. The concentration of pVAX-ROP16 was determined by using a spectrophotometer at optical densities at 260 nm (OD260) and OD280.

Expression of ROP16 in vitro. Marc-145 cells were transfected with pVAX-ROP16 using the Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. Forty-eight hours after transfection, the cells were fixed with cold acetone for 15 min, and ROP16 expression was detected using indirect immunofluorescence assay (IFA), with anti-*T. gondii* polyclonal antibody (Roche Diagnostics, Germany) and activated with IFN-γ (100 U/ml) and lipopolysaccharide (LPS) (100 ng/ml), and 1 h later, pVAX-ROP16 was transfected into peritoneal macrophages at 1 μg/ml in each well of a 24-cell plate. Supernatants were collected and IL-6 and IL-12 ELISAs were performed following the manufacturer’s recommendations. Each sample had three replicates.

Statistical analysis. Data, including antibody responses, lymphoproliferation assays, and cytokine, were compared between the different groups by one-way analysis of variance (ANOVA). All statistical analyses were processed by SPSS13.0 Data Editor software (SPSS Inc., Chicago, IL). The results in comparisons between groups were considered different if *P* values were <0.05.

RESULTS

Expression of pVAX-ROP16 plasmid in Marc-145 cells. *In vitro* expression of pVAX-ROP16 was evaluated by IFA at 48 h posttransfection. Cells transfected with pVAX-ROP16 showed specific green fluorescence, but the negative controls transfected with the same amount of blank pVAX I did not show any fluorescent emission (Fig. 1). IFA analysis demonstrated that one heterologously expressed protein had specific antigenicity against *T. gondii*-specific antisera. This result showed that the ROP16 protein was expressed by pVAX-ROP16 in Marc-145 cells.

Humoral immune responses of pVAX-ROP16 in mice. After immunization of mice with the pVAX-ROP16, antibodies were detected against ROP16 using ELISA. Figure 2A shows that anti-ROP16 antibodies were detectable as early as 2 weeks postinoculation in group I. Throughout the testing period,
ROP16 antibody levels in group I were significantly higher than those in groups II, III, and IV ($P < 0.05$).

Analysis of cellular immune response. To measure the splenocyte proliferative response, the splenocytes from mice immunized with pVAX I or PBS alone or combined with ROP16 were prepared 2 weeks after the third immunization to assess the proliferative immune responses to ROP16. The splenocytes from mice immunized with pVAX-ROP16 showed a slight but significant proliferative response to ROP16 ($P < 0.05$), and splenocyte proliferation was ~8-fold higher than proliferation by splenocytes from groups immunized with pVAX I, PBS, and blank control ($P < 0.05$). In addition, splenocytes from all experimental and control groups proliferated to comparable levels in response to the mitogen ConA (data not shown). These observations were further confirmed by the results of the CTL assay. The spleen lymphocytes from Kunming mice inoculated with pVAX-ROP16, pVAX I, PBS, or nothing were assayed for their CTL activities. As shown in Fig. 2B, spleen lymphocytes from the pVAX-ROP16 group demonstrated a high degree of CTL activity against ROP16-expressing cells compared with the other control groups ($P < 0.05$).

Production of cytokine by spleen cells from pVAX-ROP16-immunized mice. The cell-mediated immunity produced in the immunized mice was indirectly evaluated by measuring the amounts of cytokines (IL-2, IL-4, IL-10, and IFN-γ) released in the supernatants of the cultures of ROP16-stimulated spleen cells. Table 1 shows that splenocytes from mice immunized with pVAX-ROP16 secreted large amounts of IFN-γ, IL-2, IL-4, and IL-10 compared with those from mice immunized...
with pVAX I, PBS, and nothing. On the other hand, low levels of IL-4 and IL-10 showed a slight but significant proliferative response in splenocytes from mice immunized with pVAX-ROP16 compared to those from mice immunized with pVAX I, PBS, or nothing (P < 0.05).

Measurement of proinflammatory cytokine concentrations.

As shown in Fig. 3A and B, the production of IL-6 or IL-12 was significantly different between the group transfected with pVAX-ROP16 and the untransfected group (P < 0.05), and the level of IL-6 or IL-12 for the transfected group was significantly lower than that for the control.

Protection of mice against challenge with *T. gondii* RH strain.

Immunization of mice with pVAX-ROP16 dramatically increased their survival time (21.6 ± 9.9 days) compared with that of control mice, which died within 7 days of challenge. Survival curves for the four groups of mice are shown in Fig. 4. No difference was observed among the groups with pVAX I, PBS, and nothing, and the average survival time was 7 days after challenge.

DISCUSSION

DNA-based vaccines have been used as a potential approach to protect animals and humans against pathogenic microorganisms and particularly intracellular parasites, because of their capacity to induce long-lasting immunity (10, 19, 27) and their ease of production and low cost (2). In this study, we used a plasmid with high biosafety, pVAX I, as the vector, which meets U.S. Food and Drug Administration (FDA) guidelines for design of DNA vaccines.

We cloned the *T. gondii* ROP16 gene, one of the members of the rhoptries family, into the same mammalian expression backbone (pVAX I), designated pVAX-ROP16. With this eukaryotic system, the expressed proteins possessed authentic posttranslational modifications (e.g., glycosylation) and tertiary structure compared to a prokaryotic expression system. Consequently, conformational epitopes of the antigen should be effectively bound with antibody. By IFA analysis, we demonstrated that the FITC-labeled secondary antibody can react with ROP16 expressed in cells. Hence, the recombinant ROP16 possessed good immunogenicity (Fig. 1).

Many agents in administration of a DNA vaccine could affect immune efficacy, including immune dosages and routes; typical amounts of DNA used for i.m. inoculation of mice are 10 to 100 μg. One study has indicated that antibody titers were seen following i.m. delivery with an increase in the dose of the plasmid from 100 to 300 μg (21). Additionally, different immune routes could induce different immune response. It has been shown that i.m. inoculation resulted in higher and more persistent neutralizing antibody titers than intradermal (i.d.) inoculation (21). Although DNA vaccines are often weak (8), the immune responses may be enhanced and modulated by the use of molecular adjuvants (19, 34). In our study, we applied 100 μg recombinant plasmid alone with inoculation in mice by i.m. administration.

Pseudorabies virus and adenovirus have been demonstrated to elicit better immune response in some experiments (13, 37). In our laboratory, we are constructing the recombinant canine adenovirus expressing ROP16, and we hope to gain an ideal immune response. It has been demonstrated that a prime-boost immunization regime with a DNA plasmid and a recombinant virus, both expressing the same pathogen antigen, can

TABLE 1. Cytokine production by splenocytes of immunized Kunming mice after stimulation with ROP16

Group	IFN-γ (pg/ml)	IL-2 (pg/ml)	IL-4 (pg/ml)	IL-10 (pg/ml)	Proliferation SI
pVAX-ROP16	918 ± 12.77 a	887.33 ± 24.94 a	172.67 ± 7.51 a	168 ± 19.52 a	1.62 ± 0.02 a
pVAX I	50.24 ± 11.02 b	48.67 ± 20.55 b	52 ± 15.52 b	53.67 ± 8.50 b	0.19 ± 0.03 b
PBS	47.33 ± 5.13 b	41.00 ± 7.55 b	50.67 ± 4.73 b	50.67 ± 6.81 b	0.20 ± 0.06 b
Control	49.33 ± 10.50 b	45.33 ± 8.02 b	47.67 ± 13.58 b	50 ± 14.18 b	0.19 ± 0.08 b

FIG. 3. Measurement of proinflammatory cytokine concentrations. Peritoneal macrophages from Kunming mice were cultured with transfected pVAX-ROP16 in the presence of 20 U/ml IFN-γ and 100 ng/ml LPS for 24 h. Concentrations of IL-6 and IL-12 in the culture supernatants were measured by ELISA. Indicated values are means ± SD of triplicates, and statistically significant difference (P < 0.05) are indicated by an asterisk.
induce a strong immune response, especially cell-mediated immunity (9). So, we want to apply the “prime-boost” method, using the adjuvants which have been found to function as Th-1 adjuvants (e.g., CpG oligodeoxynucleotides and IL-12) (12, 31), to improve the immune response to T. gondii in the next serial experiments.

A number of T. gondii antigens have been assessed as vaccine candidates against T. gondii infection. These include the microneme proteins (MIC1, MIC4, and MIC6) (17, 22), dense granule proteins (GRA1 to GRA7) (14, 19), rhoptry antigens (ROP1 and ROP2) (5, 32), the matrix protein MAG1 (7), and surface antigens (SAG1) (19). ROP16 of T. gondii is one of the key virulence factors (25, 29), and there have previously been no reported studies evaluating the immunogenicity of ROP16. We therefore constructed the pVAX-ROP16 plasmid, and the results showed that the vaccine induced high levels of specific anti-T. gondii ROP16 antibodies (Fig. 2).

Several studies have shown that DNA vaccines, such as those with SAG1 and ROP2, can induce protective immune responses against T. gondii (20, 30, 33). However, a DNA vaccine containing multiantigenic SAG1-ROP2 induced only low-level immunity. At the same time, many recombinant antigens, including SAG1 and ROP2, have been proved to induce a protective immune response against toxoplasmosis in a mouse experimental model (23, 39). In the present study, although the mortality of mice was 100% in the group vaccinated with pVAX-ROP16, the life spans of mice were greatly increased compared to those in the other three groups, demonstrating that T. gondii ROP16 could induce protective immune efficacy against challenge with the virulent RH strain of T. gondii.

Recent studies have shown that multiantigenic DNA vaccines and viral vectors provided excellent protection against toxoplasmosis (16, 23, 39) and were superior to a single DNA vaccine (36).

An important goal with the present vaccine constructs was to induce a T cell response as strong as the response after natural infection, and in naturally occurring T. gondii infections, the Th1 immune response is predominant (6). Compared with results with pVAX I and PBS, immunization with ROP16 enhanced the Th1 cell-mediated immunity, with high levels of IFN-γ and IL-2, but induced low levels of IL-4 and IL-10 (Table 1). Immunological aberrance occurs when locally synthesized (cerebral) IL-4 and IL-10 induce anergic immune suppression. These findings demonstrate that i.m. immunization with pVAX-ROP16 could potentiate the Th1-type and Th2-type cytokine responses, and it could induce the highest levels of IL-2 and IFN-γ; however, a modulated Th1-type response plays a major deterministic role in inducing cell-mediated immune responses and controlling acute T. gondii infections.

ROP16 of type I T. gondii has been shown to suppress the production of IL-6 and IL-12 when expressed in mammalian cells via activation of signal transducer and activator of transcription 3 (STAT3) and STAT6 (24). In our study, we measured the levels of IL-6 and IL-12, which were suppressed in the macrophages transfected with pVAX-ROP16 (Fig. 3). We speculate that STAT3 and STAT6 should be activated according to findings in related studies (24, 35). We will examine whether STAT3 and STAT6 were activated in further studies.

It is yet to be determined whether the immune response induced by ROP16 of type I T. gondii could be effective against type II T. gondii strains. We have sequenced and compared the nucleotide sequences of ROP16 from the RH strain (type I) and the OHO strain (type II) and found a sequence difference of 2.7% between the two genotypes of T. gondii (unpublished data), indicating that the genetic variation is low and that very similar ROP16 proteins could be expressed between type I and type II T strains, which may stimulate similar immune responses. This will be demonstrated experimentally in further studies.

The present study comprehensively evaluated the immunogenicity and protective potency of a DNA vaccine expressing T. gondii ROP16. This vaccine construct was able to elicit a significant humoral and cellular immune response, which significantly increased the survival time of Kunming mice challenged with the lethal T. gondii RH strain tachyzoites compared with that of controls. T. gondii ROP16 should provide a promising vaccine candidate against toxoplasmosis, worth further evaluation and development using other animal species.

ACKNOWLEDGMENTS

This study is supported in part by grants from the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (SKLVEB2009FKKT014 and SKLVEB2010FKKT010), the National Natural Science Foundation of China (grant no. 30901067), the National Natural Science Foundation of Guangdong Province (grant no. 945106420103715), the Scientific and Technological Planning Project of Guangdong Province (grant no. 2010B020307006), the Program for Changjiang Scholars and Innovative Research Team in University (grant no. IRT0723), the Specialized Research Fund for the Doctoral Program of Higher Education (grant no. 20094404120016), the President’s Fund of South China Agricultural University (grants no. 2009K034, 5500-209073, and 4100-K09320), and the Program for Science and Technology Innovation Activity of SCAU (grant no. L09086).
REFERENCES

1. Boumous, D. L., R. P. Campagnoli, and J. Brown. 1992. Comparison of MTT colorimetric assay and titrated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Dis. 36:1022–1027.

2. Bunnell, B. A., and R. A. Morgan. 1998. Gene therapy for infectious diseases. Microbiol. Rev. 11:42–56.

3. Buxton, D. 1993. Toxoplasmosis: the first commercial vaccine. Parasitol. Today 9:335–337.

4. Buxton, D. 1998. Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances. Vet. Res. 29:289–310.

5. Chen, H., G. Chen, H. Zheng, and H. Guo. 2003. Induction of immune responses in mice by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii SAG1 and ROP1 genes. Chin. Med. J. (Engl.). 116:1561–1566.

6. Denkers, E. Y., and R. T. Gazzinelli. 1998. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev. 11:569–586.

7. Di Cristina, M., et al. 2004. The Toxoplasma gondii bradyzoite antigens BAG1 and MAG1 induce early humoral and cell-mediated immune responses upon human infection. Microbes Infect. 6:164–171.

8. Domelly, J. J., B. Wahren, and M. A. Liu. 2005. DNA vaccines: progress and challenges. J. Immunol. 175:633–639.

9. Doria-Rose, N. A., and N. L. Haigwood. 2005. Toxoplasmosis in pregnancy. J. Immunol. 175:1780–1783.

10. Donnelly, J. J., B. Wahren, and M. A. Liu. 2005. Toxoplasmosis in pregnancy. J. Immunol. 175:1780–1783.

11. Doria-Rose, N. A., and N. L. Haigwood. 2005. Toxoplasmosis in pregnancy. J. Immunol. 175:1780–1783.

12. Edwards, J. R., and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

13. Eriji, J. P. J., et al. 2007. Toxoplasma co-opt host gene expression by injection of a polymorphic kinase homologue. Nature 445:324–327.

14. Eriji, J., et al. 2006. Polymorphic secreted kinases are virulence factors in toxoplasmosis. Science 314:1780–1783.

15. Eriji, J. P. J., et al. 2007. Toxoplasma co-opt host gene expression by injection of a polymorphic kinase homologue. Nature 445:324–327.

16. Eriji, J. J., and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

17. Eriji, J. P. J., et al. 2007. Toxoplasma co-opt host gene expression by injection of a polymorphic kinase homologue. Nature 445:324–327.

18. Eriji, J., et al. 2006. Polymorphic secreted kinases are virulence factors in toxoplasmosis. Science 314:1780–1783.

19. Eriji, J., et al. 2006. Polymorphic secreted kinases are virulence factors in toxoplasmosis. Science 314:1780–1783.

20. Mohamed, R. M., et al. 2003. Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21:2852–2861.

21. Osorio, J. E., et al. 1999. Immunization of dogs and cats with a DNA vaccine against rabies virus. Vaccine 17:1109–1116.

22. Peng, G. H., et al. 2009. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine 27:6570–6574.

23. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

24. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

25. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

26. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

27. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

28. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.

29. Roque-Resendiz, J. L., R. Rosales, and P. Herion. 2004. MVA ROP2 vaccine virus recombinant as a vaccine candidate for toxoplasmosis. Parasitol. Today 20:397–405.