Discovery of a Potent Thiazolidine Free Fatty Acid Receptor 2 Agonist with Favorable Pharmacokinetic Properties

Anders Højgaard Hansen, Eugenia Sergeev, Daniele Bolognini, Richard R. Sprenger, Jeppe Hvidtfeldt Ekberg, Christer S. Ejsing, Christine J. McKenzie, Elisabeth Rexen Ulven, Graeme Milligan, and Trond Ulven

ABSTRACT: Free fatty acid receptor 2 (FFA2/GPR43) is a receptor for short-chain fatty acids reported to be involved in regulation of metabolism, appetite, fat accumulation, and inflammatory responses and is a potential target for treatment of various inflammatory and metabolic diseases. By biosynthetic replacement of the central pyrrolidine core of a previously disclosed FFA2 agonist with a synthetically more tractable thiazolidine, we were able to rapidly synthesize and screen analogues modified at both the 2- and 3-positions on the thiazolidine core. Herein, we report SAR exploration of thiazolidine FFA2 agonists and the identification of 31 (TUG-1375), a compound with significantly increased potency (7-fold in a cAMP assay) and reduced lipophilicity (50-fold reduced

INTRODUCTION

The short-chain free fatty acid receptor FFA2 (formerly GPR43) is a G-protein-coupled receptor that is activated by physiological concentrations of short-chain fatty acids (SCFAs), primarily acetate and propionate. FFA2 is expressed in a variety of tissues including immune cells, adipocytes, pancreatic β-cells, and enteroendocrine L-cells. Colonization of dietary fiber produces large amounts of SCFAs, and results indicate that an interplay between FFA2 and dietary fiber via colonic fermentation to produce SCFAs is implicated in promoting a healthy composition of microorganisms in the gut. Fiber-rich diets and SCFAs can counteract colitis, and exacerbated inflammation in colitis models has been reported for FFA2-knockout mice. However, others have found that FFA2-knockout mice exhibited reduced inflammatory responses in colitis models and it is currently unclear if antagonists or agonists are preferable for the treatment of intestinal inflammation. So far, the antagonist GLPG0974 is the only FFA2 modulator that has undergone clinical trials but unfortunately failed to meet end points against ulcerative colitis.

Dietary fiber is also known to exert positive effects in diabetic subjects. Acetate has been shown to potentiate glucose-stimulated insulin secretion from β-cells in an FFA2-dependent manner, and SCFAs were able to promote secretion of the incretin glucagon-like peptide-1 (GLP-1) from colonic cultures through FFA2 and both GLP-1 and the appetite regulating peptide YY (PYY) in vivo, indicating that activation of FFA2 could have beneficial effects on type 2 diabetes (T2D). Interestingly and in contrast, loss of FFA2 and FFA3 was found to improve insulin secretion and glucose tolerance. Moreover, SCFA-mediated activation of FFA2 has been found to suppress adipose insulin signaling, leading to reduced fat accumulation in adipose tissue, and to promote GLP-1 secretion in the gut. Thus, both agonists and antagonists of FFA2 are considered to be potential therapeutics.

Supporting Information
for treatment of T2D and obesity. Several FFA2 agonists have been disclosed, including an allosteric agonist series from Amgen represented by 2 (known as AMG7703 or 4-CMTB) and an orthosteric agonist series originating from Euroscreen represented by 3. A recent study found that agonist 4, also originating from Euroscreen, caused only marginal GLP-1 secretion but led to significant PYY mucosal responses, inhibited insulin-promoted fat accumulation and intestinal functions, and suppressed food intake, supporting FFA2 as a possible antiobesity target.

The FFA2 agonists disclosed hitherto have relatively high lipophilicity, which is associated with several undesired properties, and only moderate potency (e.g., see Chart 1). Furthermore, the allosteric agonist 2 has solubility issues and has been reported to give results that differ from orthosteric FFA2 agonists, and the orthosteric agonist 3 was found to have stability issues. We therefore wished to explore 4, an FFA2 agonist reported to have properties useful for in vivo studies. Initially, we sought to explore the SAR around the pyrrolidine scaffold of 4; however, the synthetic route to obtain this class of FFA2 agonists is rather lengthy and precludes efficient exploration of parts of the molecule. We therefore opted for replacing the central pyrrolidine by a thiazolidine. This replacement strategy has previously been employed for HIV protease inhibitors. Herein, we report SAR investigations of substituted thiazolidine FFA2 agonists and the discovery of an FFA2 agonist with improved potency, reduced lipophilicity, and favorable physicochemical and pharmacokinetic properties.

RESULTS AND DISCUSSION

Synthesis. Pyrrolidine ligands were synthesized in seven linear steps from l-pyroglutamic acid (5, Scheme 1) essentially as previously described by Euroscreen with the modifications that the ring opening by aryllithium was allowed to reach room temperature and that the amide coupling with pyrrolidine 6 was performed with bis(tetramethylene)-fluoromaminidammonium hexafluorophosphate (BTFFH).

Thiazolidine ligands were synthesized in three steps by condensation of (R)-Cys-OMe hydrochloride with benzaldehydes via 7a–j (Scheme 2). In contrast to the pyrrolidine route, this strategy allowed rapid access also to variations on the 2-position of the thiazolidine scaffold in a single step from readily available starting materials and formation of the desired (2R,4R)-thiazolidine amide as the major product in the next step.

Condensation of (R)-Cys-OMe hydrochloride with aldehydes produced mixtures of C(2) epimeric methyl (4R)-2-arylthiazolidine-4-carboxylates (7a–j). To obtain the (2R,4R)-configuration, 7a–j were treated with Et3N and subsequently reacted with the relevant acid chlorides to give the desired (2R,4R)-products.

Finally, demethylation using Li in EtOAc afforded the corresponding (2R,4R)-N-acetylthiazolidine-4-carboxylic acids.

A second set of analogues aimed at exploring the N-benzoyl part of the ligands was synthesized from central intermediates 8a,b by Suzuki–Miyaura or Sonogashira cross-coupling followed by demethylation, affording the desired biaryl compounds in low to good yields (Scheme 3).

The crystal structure of 14 confirms unambiguously the (2R,4R)-configuration of thiazolidine substituents (Figure 1). A relatively short intramolecular hydrogen bond of 2.598(2) Å is found between the carboxylic acid and pyridine group. The crystal packing (Supporting Information, Figure S1) shows no significant intermolecular interactions stronger than van de Waals forces. The intramolecular hydrogen bond is a likely reason for why crystals suitable for structural information were not obtained.
Scheme 3. Synthesis of Biaryl Analogues via Coupling Reactionsa

![Scheme 3](image)

aReagents and conditions: (a) ArB(OH)\textsubscript{2} or ArBPin, Pd(PPh\textsubscript{3})\textsubscript{4}, MeOH, toluene, 6–27 h, 20–86%; or ArCCH, Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2}, CuI, Et\textsubscript{3}N, 4 h, rt, 76%; (b) LiI, EtOAc, 80 °C, 37–78%.

Figure 1. Perspective view of 14 drawn with 50% probability ellipsoids.

Table 1. SAR Investigations at the Thiazolidine 2-Position

compd	X	R	pFFA2			
	β-arrestin pEC\textsubscript{50} (E\textsubscript{max})	cAMP pEC\textsubscript{50} (E\textsubscript{max})	clogP	LLEd		
4	ClH		5.91 ± 0.21 (127)	6.28 ± 0.19 (96)	5.07	0.84/1.21
9	S		5.60 ± 0.10 (116)	5.61 ± 0.06 (96)	5.07	0.53/0.54
10	S		4.91 ± 0.29 (93)	5.15 ± 0.19 (106)	5.07	-0.16/0.08
11	S		4.73 ± 0.29 (136)	5.55 ± 0.19 (80)	5.07	-0.34/0.48
12	S		5.65 ± 0.18 (108)	5.45 ± 0.11 (90)	5.22	0.43/0.23
13	S		5.53 ± 0.16 (116)	6.03 ± 0.15 (88)	4.36	1.17/1.67
14	N		4.83 ± 0.09 (124)	5.87 ± 0.10 (75)	2.86	1.97/3.01
15	S		4.74 ± 0.38 (66)	5.66 ± 0.19 (70)	3.53	1.21/2.13
16	S		(−)−4′	(−)−m′	4.50	-
17	O		(−)−4′	(−)−m′	4.12	-

Installation of 2-pyridyl (14) or 2-furyl (15) onto the thiazolidine scaffold eroded potency in the β-arrestin-2 assay compared to the phenyl derivatives but mostly preserved potency in the cAMP assay, again suggesting a route to G-protein-biased agonists. Since the goal was both to increase potency and decrease lipophilicity, values for ligand-lipophilicity efficiency (LLE)d based on calculated lipophilicity of the neutral compounds (clogP) were also used to guide the optimization. The hydrophilic pyridyl led to a marked improvement in LLE for 14 compared to all previous compounds including 4 but insufficient potency. The introduction of a tert-butyl group in the 2-position of the thiazolidine scaffold resulted in a compound (16) that only caused 50% receptor activation at 100 μM. Replacing sulfur with oxygen on 16 led to a completely inactive compound (17); hence, the oxazolidine scaffold was not explored further.

We next directed attention to the N-acyl substituent. As evident from 18 (Table 2), the biphenyl system is important for activity, as removing the terminal ring leads to complete loss of activity. Removing only the 2’-methoxy (19) also resulted in a pronounced loss of potency in both assays, as did moving the terminal phenyl to the 3-position (20). The 2’-fluoro-3’-methoxy (21) and the 4’-methoxy (22) analogues both led to decreased potency in both assays relative to the 2’-methoxy analogue 9. Compared to 19, installation of either acetyl (23) or nitrite (24) in the 4-position markedly boosted

aBRET-based β-arrestin-2 recruitment assay. Efficacy (E\textsubscript{max}) is relative to propionate. bcAMP FFA2 assay. Efficacy (E\textsubscript{max}) is relative to propionate. cclogP values were calculated using ChemBioDraw v16.0.1.4. dBRET/cAMP LLE values (LLE = pEC\textsubscript{50} – clogP). e50% activation at 100 μM. fNo response up to 30 μM.
potency in both β-arrestin-2 and cAMP assays, indicating that certain hydrogen bond accepting groups are favored in this region.

Replacing the 2′-methoxy (9) with 2′-chloro (25) or 2′-methyl (26) resulted in a marked potency boost in the cAMP assay for 25, whereas 2′-methoxyphenyl remained the preferred ring system in the β-arrestin-2 assay (9 > 25 ~ 26).

Extension of the biphenyl 19 by insertion of acetylene between the rings (28) caused a minor loss of potency in the cAMP assay but no changes in the β-arrestin-2 assay. In a parallel manner, alkyne extension of 2-methoxyphenyl (9) into 29 reduced potency in the β-arrestin-2 assay but preserved activity in the cAMP assay.

Overall, 4-biphenyl compounds with the terminal phenyl ring carrying lipophilic (25, 26) or moderately hydrophilic (9) substituents in the ortho-position showed higher potencies than a nonsubstituted phenyl analogue such as 19 or 20, indicating that a nonplanar biphenyl conformation is favored for optimal binding of this compound class.

With this and the encouraging results from 23 and 24 in mind, we wished to explore biaryl systems with ortho-substituted polar heterocycles as the terminal ring. Satisfyingly, installation of 1-methyl-1H-pyrazolyl produced a significantly improved compound (30), whereas introduction of 3,5-dimethylisoxazolyl (31) appeared as the most potent compound of the series with a pEC\textsubscript{50} of 7.11 in the cAMP assay and an LLE increased by 2.3 relative to the initial pyrrolidine 4. Replacement of the methyl groups of 31 by phenyl and cyclopropyl (32) resulted in a 40-fold lower potency in the β-arrestin-2 assay, indicating a limit to the acceptable steric bulk in this region.

Having identified 4-(3,5-dimethylisoxazolyl)benzoyl as a preferred N-substituent, we directed the attention back to the 2-substituent of the thiazolidine scaffold to screen for improved substituents in a second iteration (Table 3). This effort showed again that the 2-chloro (31) was clearly favored.

Table 3. Variations in the 2-Position and Pyrrolidine Analogue with the Optimized Acyl Part

cmpd	X	R	hFFA2		
	β-arrestin-2 pEC\textsubscript{50} (E\textsubscript{max})	cAMP pEC\textsubscript{50} (E\textsubscript{max})	clogP	LLEd	
33	S	5.64 ± 0.04 (79)	5.84 ± 0.08 (94)	2.92	2.72/2.92
34	S	5.99 ± 0.21 (73)	5.46 ± 0.12 (49)	3.19	2.80/2.27
35	S	5.09 ± 0.11 (79)	5.78 ± 0.04 (83)	2.84	2.25/2.94
36	S	4.45 ± 0.04 (102)	nre	1.42	3.03f
37	CH\textsubscript{3}	5.97 ± 0.08 (90)	6.82 ± 0.07 (85)	3.63	2.34/3.19

aBRET-based β-arrestin-2 recruitment assay. Efficacy (E\textsubscript{max}) is relative to propionate. bcAMP FFA2 assay. Efficacy (E\textsubscript{max}) is relative to propionate. cclogP values were calculated using ChemBioDraw v16.0.1.4. dLLE = pEC\textsubscript{50} (β-arrestin/cAMP) − clogP. eNo response up to 30 μM. fAverage response at highest concentration relative to propionate.

doi:10.1021/acs.jmedchem.8b00855
J. Med. Chem. 2018, 61, 9534–9550

9537
over a naked phenyl (33). The same was true for 2-ethynyl (34) and 2-methoxy (35). Furthermore, increasing the polarity by installation of 2-pyridyl (36) resulted in a weakly potent agonist in the β-arrestin-2 assay, whereas 36 was devoid of any activity when evaluated in the cAMP assay. Since pyridyl analog 14 was a reasonably potent compound in both β-arrestin-2 and cAMP assays, the observation that 36 lost activity is likely explained by this compound being too polar to effectively reach the lipophilic binding site of FFA2.

As the initial idea was to use the thiazolidine as a bioisostere for pyrrolidine in the optimization of the compound series, the corresponding pyrrolidine 37 of thiazolidine 31 was synthesized and tested (Table 3). Although pyrrolidine 37 displayed appreciable FFA2 activity, its potency was lower than that of 31.

The occasionally diverging results in the cAMP and β-arrestin-2 assays illustrate that potencies in the functional assays do not directly reflect receptor affinity. To better understand the relationship between affinity and functional activity, we proceeded with further examination of 31 and selected analogs in an FFA2 competition binding assay using a radiolabeled version of antagonist 1 (Table 4). It has previously been confirmed that 1 and radiotracer [3H]-1 are orthosteric ligands and fully displaceable by propionate and the synthetic orthosteric agonist.32,41 Pyrrolidines 4 and 37 and thiazolidines 9, 13, 19, and 31 were also all confirmed to fully displace [3H]-1. Parent pyrrolidine 4 exhibited a moderate binding affinity, and the corresponding thiazolidine (9) was found to be a slightly stronger binder, in contrast to the slightly lower potency observed in both functional assays. Upon comparing 9 with the analogue lacking the 2-chloro substituent of the 2-aryl (13) or lacking the 2′-methoxy (19) substituent at the biphenyl system, it becomes clear that both these features contribute significantly to the affinity (ΔpKᵦ = 0.55 and 0.46, respectively). The most potent thiazolidine (31) was indeed found to also exhibit the highest binding affinity within this selection. The corresponding pyrrolidine (37) displayed a significantly weaker binding affinity when compared to 31 (ΔpKᵦ = −0.29), which correlated well with the observed differences in functional potency between these two compounds. Hence, for isoxazoles 31 and 37, the thiazolidine central scaffold boosted both affinity and receptor activation compared to the pyrrolidine. Replacement of the 2-methoxyphenyl (9) by the more polar 3,5-dimethoxyisoxazole (31) not only gave rise to the more potent thiazolidine-based agonist (31) but also reduced lipophilicity resulting in a marked improvement in LLE over 4 (ΔLLE = 2.27), and 31 indeed exhibits the highest LLE of all compounds in the study.

Molecular Modeling. To better understand the interaction of 31 with FFA2, the compound was docked in a previously established homology model of the receptor.32 The lowest energy pose of 31 is depicted in Figure 2. Compound 31 was found to effectively engage Arg180 and Arg255 via ionic and hydrogen bonding interactions, an observation that is in agreement with previous reports that both residues are known to be vital for receptor binding and activation.30,41 Simultaneously, the carboxylate carbonyl also interacted with the conserved Tyr238 through hydrogen bonding. The 2-chlorophenyl moiety situated cis to the carboxylate was observed to interact with Phe89 via displaced π–π interactions, where the chloro substituent appears to orient the phenyl for

Table 4. Binding Affinities of Compounds for FFA2
compd
4
9
13
19
31
37

Binding affinities of agonists determined using [3H]-1 in radioligand binding assays.

Figure 2. Lowest energy pose of 31 (gray) docked into hFFA2 (gold) with strongly interacting residues shown (cyan) and hydrogen bonds highlighted (yellow stipple). (A) Receptor as ribbon viewed from the angle of helix 4 and 5. (B) Same pose with receptor as surface viewed from the angle of helix 3 and 4.
optimal contact. Furthermore, the dimethylisoxazole ring formed π–cation interactions with Lys65 and edge-to-face π–π interactions with Trp75 (Supporting Information, Figure S2). The shown pose also reflects higher energy poses. No alternative low-energy pose was identified.

Overall, groups of 31 found in the SAR analysis to be crucial for binding, such as 2-chlorophenyl and dimethylisoxazole, were confirmed by docking to contribute to the ligand receptor interaction, further supporting the proposed binding pose of 31 in hFFA2. Notably, both the carbonyl and the amide carbonyl of 31 were oriented toward the two arginine residues and Arg255 interacted directly with both groups through hydrogen bonds (Figure 2).

Characterization of 31. Since 31 showed the highest potency and LLE based on calculated lipophilicity in both functional assays and the binding assay, it was decided to characterize its properties in further detail. Thus, 31 was tested and confirmed to be active on the murine FFA2 orthologue (pEC50 = 6.44 ± 0.13 in the cAMP assay). The compound was found to be inactive up to 100 μM concentration at the closely related SCFA receptor FFA3 (formerly GPR41) and evoked no significant agonist or antagonist response in the long-chain fatty acid receptors FFA1 (GPR40) and FFA4 (GPR120) or in nuclear receptors PPARγ, PPARδ, LXRα, and LXRβ at 10 μM (see the Supporting Information).

Previous FFA2 ligands are generally, apart from SCFAs, lipophilic compounds. In contrast, experimental lipophilicity of 31 (Table 5) was found to be in the lower part of the optimal range,31 giving an LLE of 6.2 based on the cAMP assay and measured lipophilicity. The compound also showed high aqueous solubility and chemical stability (Table 5). Recovery after incubation with PBS at pH 7.4 or with fasted-state simulated gastric or intestinal fluid (FaSSGF/FaSSIF) was close to quantitative, indicating excellent chemical stability. Investigation of metabolic stability of 31 in mouse liver microsomes also resulted in a high recovery.

Hepatocyte stability is a better approximation to the in vivo properties than liver microsomes since mitochondrial metabolism and conjugation processes also take place. Incubation of 31 with primary mouse hepatocytes gave a recovery of 72% after 2 h and low intrinsic clearance (<8 (mL/min)/10⁶ cells), indicating high metabolic stability in mouse hepatocytes (Supporting Information, Figure S3 and Table S6).

The pharmacokinetic profile of 31 was investigated in mice to establish its properties as a tool for in vivo studies, revealing a satisfactory half-life of 2 h and a moderate to low clearance of 20.3 mL min⁻¹ kg⁻¹ in mice (Table 6). Oral dosing of 10 mg/kg resulted in a maximal plasma concentration of 6.5 μM after 15 min and a bioavailability of 32%. Furthermore, ip administration of 31 at 5 mg/kg in mice and analysis of plasma concentrations indicated an AUCₜ₀−∞ of 60 500 (ng/mL)-min a half-life of 82 min and thus a favorable profile relative to 4 (AUC₀−∞ ≈ 25 000 (ng/mL)-min, $t_{1/2}$ ≈ 50 min).21

Agonist 3 has been shown to affect inflammatory responses in human neutrophils via FFA2 by induction of intracellular calcium and superoxide production.42 Propionate is known to exert beneficial anti-inflammatory effects,9 and the elimination of FFA2 from mice has previously been shown to cause increased inflammation in tissue models.11 Although the FFA2 antagonist 1 failed to meet the end point in clinical trials with ulcerative colitis patients, the compound was found to modulate neutrophil recruitment,13 and the therapeutic potential of FFA2 modulation in inflammatory disease is still not clear, especially since neutrophil recruitment may have both beneficial and detrimental effects.43 Hence, 31 and propionate were examined for their ability to promote human neutrophil migration, as it is already established that antagonists, such as 1, can inhibit chemotaxis in vitro and that acetate can induce chemotaxis in mouse neutrophils.44,45 Compound 31 at 1 μM significantly induced migration of human neutrophils at a level comparable to propionate (C3) at a physiologically relevant concentration,45 an effect that was more than doubled at 10 μM (Figure 3).

SCFAs have been shown to inhibit lipolysis in adipocytes mediated through FFA2 via the Gαi pathway.46 In this study we demonstrate that thiazolidine 31, in particular when evaluated in cAMP assays, is a potent agonist of hFFA2 with

Table 5. Physicochemical Properties

assay	31
log D (n-octanol/PBS, pH 7.4)	0.94
aqueous solubility (PBS, pH 7.4)	182 μM
chemical stability	
PBS, 37 °C, 3 weeks	97.6%
FaSSIF, 2 h	95%
FaSSGF, 2 h	100%
metabolic stability (MLM, remaining, 1 h)	82%

Table 6. Pharmacokinetic Properties in Mice

parameters	31
Oral Administration	
$t_{1/2}$	138 min
AUC₀−∞	246 000 ng min mL⁻¹
V_d	4050 mL kg⁻¹
CL total	40 500 mL min⁻¹ kg⁻¹
Intravenous	
t_{max}	15 min
Cₜ₀	2880 ng mL⁻¹
AUC₀−∞	156 000 ng min mL⁻¹
F	32%

*Administered at 10 mg/kg po and 5 mg/kg iv in Balb/c mice.

Figure 3. Ability of propionate (C3) and 31 to induce neutrophil migration relative to the highly potent chemotactic factor iMLP (n = 4–6): (*) $p < 0.05$, (***$p < 0.01$; one-way ANOVA followed by Dunnett post hoc test.
retained activity at mFFA2. Therefore, 31 was evaluated for its ability to inhibit isoproterenol-induced lipolysis in murine adipocytes, a process known to be Gt dependent.48 Even though 31 is slightly less potent on murine FFA2, 31 was, as predicted, 50-fold more potent than propionate in inhibiting lipolysis in isoproterenol-stimulated adipocytes (Figure 4).

![Figure 4](http://example.com/figure4.png)

Figure 4. Inhibition of isoproterenol-induced lipolysis by propionate (pEC50 = 3.6 ± 0.4) and 31 (pEC50 = 5.3 ± 0.6) in murine adipocytes (n = 3–4).

CONCLUSION

Substitution of the central pyrrolidine of a published FFA2 agonist by a synthetically more tractable thiazolidine and rapid screening of substituents at this scaffold led to the discovery of the potent and selective FFA2 agonist 31, a compound with lipophilicity in the lower part of the optimal range and therefore also high LLE. The compound furthermore has stability, and favorable pharmacokinetic properties. Compound 31 was able to induce migration of human neutrophils and to inhibit lipolysis in murine adipocytes. Collectively, these properties render 31 an interesting tool compound for further exploration of FFA2 as a potential therapeutic target for treatment of inflammatory and metabolic diseases.

EXPERIMENTAL SECTION

Synthesis. All commercial starting materials and solvents were used without further purification unless otherwise stated. THF was freshly distilled from sodium/benzophenone. MeOH was freshly distilled from Mg. DCM was freshly distilled and stored over 4 Å sieves. TLC was performed on TLC silica gel 60 F254 plates (Merck) and visualized at 254 nm or by staining with ninhydrin, KMnO4, or the potent and selective FFA2 agonist (Supporting Information). High-resolution mass spectra (HRMS) were obtained at 600 and 151 MHz, respectively, on an Agilent NMRS 600 at the indicated temperature (Supporting Information).

HPLC analysis was performed using a Dionex 120 C18 column (5 μm, 4.6 mm × 150 mm); flow, 1 mL/min; 10% MeCN in water (0–1 min), 10–100% MeCN in water (1–10 min), 100% MeCN (11–15 min), with both solvents containing 0.1% formic acid as modifier; UV detection at 254 nm. All test compounds were of ≥ 95% purity. None of the test compounds contain substructures associated with pan-assay interfering activities (PAINS) by inspection or by screening for PAINS or aggregators at http://zinc15.docking.org/patterns/home.

Methyl (4R)-2-(2-Chlorophenyl)thiazolidine-4-carboxylate (7a). Cysteine methyl ester hydrochloride (1.51 g, 8.80 mmol) was dissolved in water (6.6 mL) and potassium bicarbonate (879 mg, 9.78 mmol) was added followed by solution of 2-chlorobenzaldehyde (2.49 g, 18.1 mmol) in EtOH (6.6 mL). The reaction was stirred at rt for 12 h, whereafter the reaction mixture was diluted with water and extracted with DCM (×3). The combined organic phases were washed with brine, dried over Na2SO4, concentrated in vacuo, and purified by flash chromatography (EtOAc/PE, 1:5) to give 7a as a light yellow oil (1.66 g, 75% yield, 40% minor isomer and 60% major isomer). Rf = 0.22 (EtOAc/PE, 1:5); 1H NMR for minor isomer (400 MHz, CDCl3) δ 7.81 (dd, J = 7.6, 1.8 Hz, 1H), 7.50–7.24 (m, 6H) [minor and major], 6.04 (br s, 1H), 4.14–4.06 (m, 1H), 3.90 (s, 3H), 3.56 (dd, J = 10.3, 6.9 Hz, 1H), 3.24–3.14 (m, 2H) [minor and major], 2.83 (br s, 1H), 1H NMR for major isomer (400 MHz, CDCl3) δ 7.76 (dd, J = 7.7, 1.7 Hz, 1H), 7.50–7.23 (m, 6H) [minor and major], 6.18 (s, 1H), 4.34 (app t, J = 6.6 Hz, 1H), 3.91 (s, 3H), 3.43 (dd, J = 10.6, 6.5 Hz, 1H), 3.24–3.16 (m, 2H) [minor and major], 3.15 (br s, 1H); 13C NMR for mixture of diastereomers (101 MHz, CDCl3) δ 172.2, 171.7, 140.2, 136.0, 133.9, 133.1, 130.0, 129.9, 129.8, 128.3, 127.5, 127.0, 126.7, 68.5, 67.4, 65.6, 65.1, 52.8, 52.7, 39.1, 37.6; HRMS (ESI) calcd for C11H12ClNNaO2S (M + Na)+, 280.0169, found, 280.0162.

Methyl (4R)-2-(3-Chlorophenyl)thiazolidine-4-carboxylate (7b). The title compound was prepared as described for 7a using cysteine methyl ester hydrochloride (119 mg, 1.16 mmol) and 3-chlorobenzaldehyde (328 mg, 2.33 mmol) and obtained after flash chromatography (EtOAc/PE, 1:5) as a light yellow oil (214 mg, 71% yield, 44% minor isomer and 56% major isomer). Rf = 0.16 (EtOAc/PE, 1:5); 1H NMR for minor isomer (400 MHz, CDCl3) δ 7.50–7.48 (m, 1H), 7.41–7.28 (m, 4H) [minor and major], 7.25–7.20 (m, 2H) [minor and major], 5.78 (s, 1H), 4.12 (app t, J = 6.6 Hz, 1H), 3.79 (s, 3H), 3.37 (dd, J = 10.6, 7.0 Hz, 1H), 3.18–3.06 (m, 2H) [minor and major, 2.92 (br s, 1H); 1H NMR for major isomer (400 MHz, CDCl3) δ 7.54–7.25 (m, 1H), 7.41–7.28 (m, 4H) [minor and major], 7.25–7.20 (m, 2H) [minor and major], 5.50 (br s, 1H), 4.01–3.93 (m, 1H), 3.80 (s, 3H), 3.45 (dd, J = 10.3, 7.1 Hz, 1H), 3.18–3.06 (m, 2H) [minor and major, 2.62 (br s, 1H); 13C NMR for mixture of diastereomers (101 MHz, CDCl3) δ 172.1, 171.5, 143.9, 140.4, 134.6, 134.4, 134.0, 129.74, 129.0, 128.0, 127.8, 127.1, 125.9, 125.3, 71.8, 69.9, 65.6, 64.2, 52.7, 52.7, 39.2, 38.2; HRMS (ESI) calcd for C11H11ClO2N (M + H)+, 258.0350; found, 258.0356.

Methyl (4R)-2-(4-Chlorophenyl)thiazolidine-4-carboxylate (7c). The title compound was prepared as described for 7a using cysteine methyl ester hydrochloride (200 mg, 1.17 mmol) and 4-chlorobenzaldehyde (328 mg, 2.33 mmol) and obtained after flash chromatography (EtOAc/PE, 1:5) as a light yellow oil (208 mg, 69% yield, 42% minor isomer and 58% major isomer). Rf = 0.19 (EtOAc/PE, 1:5); 1H NMR for minor isomer (400 MHz, CDCl3) δ 7.36–7.25 (m, 4H), 5.77 (s, 1H), 4.13 (t, J = 6.5 Hz, 1H), 3.78 (s, 3H), 3.36 (dd, J = 10.6, 7.0 Hz, 1H), 3.16 (dd, J = 10.6, 6.1 Hz, 1H), 2.67 (br s, 2H) [minor and major]; 1H NMR for major isomer (400 MHz, CDCl3) δ 7.48–7.39 (m, 4H), 5.51 (s, 1H), 3.97 (dd, J = 8.8, 7.2 Hz, 1H), 3.45 (dd, J = 10.3, 7.1 Hz, 1H), 3.79 (s, 3H), 3.10 (dd, J = 9.0, 7.2 Hz, 1H), 2.67 (br s, 2H) [minor and major]; 13C NMR for mixture of diastereomers (101 MHz, CDCl3) δ 172.1, 171.5, 143.9, 133.6, 133.2, 132.8, 129.9, 128.3, 127.0, 126.7, 68.5, 67.5, 66.1, 52.8, 52.7, 39.2, 38.2; HRMS (ESI) calcd for C11H11ClNO (M + H)+, 258.0350; found, 258.0361.

DOI: 10.1021/acs.jmedchem.8b00855

J. Med. Chem. 2018, 61, 9534–9550
Methyl (2R,4R)-2-(2-Chlorophenyl)-3-(2-iodomobenzoyl)-thiazolidine-4-carboxylate (8b). The title compound was prepared as described for 8a using 7a (100 mg, 0.39 mmol) and 2'-methoxybiphenyl-4-carboxyl chloride (107 mg, 0.44 mmol) and obtained after flash chromatography (EtOAc/PE, 1:3) as a clear colorless viscous oil (141 mg, 77% yield). R_f = 0.20 (EtOAc/PE, 1:3); 1H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 6.1 Hz, 1H), 7.49–7.64 (m, 2H), 7.36–7.29 (m, 2H), 5.18–5.14 (m, 2H), 6.37 (br s, 1H), 6.01–5.98 (m, 2H), 5.85 (s, 1H), 3.98–3.91 (m, 1H), 3.89–3.87 (br s, 1H), 3.98–3.94 (m, 2H), 3.86–3.85 (br s, 1H), 3.79 (br s, 1H), 3.17–3.12 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ 170.1, 170.4, 136.1, 135.9, 135.8, 134.3, 133.0, 132.8, 131.7, 129.6, 129.4, 129.3, 129.1, 127.9, 126.9, 121.1, 115.6, 66.5, 55.6, 52.8, 31.3; HRMS (ESI) calcd for C₂₄H₁₉Cl₂N₂OS₂ (M + Na)⁺ 476.0482, found 476.0480.

Step 2: Methyl ester 9a (40 mg, 86 µmol) and LiI (46 mg, 0.34 mmol) were dissolved in degassed EtOAc (120 µL), the vial was capped, flushed with argon (x3), and the reaction stirred at 80 °C in the dark. To the reaction mixture were added water and 1 M HCl (1:1), and extraction was with EtOAc (x3). The combined organic phases were washed with Na₂SO₄ water, and brine. The organic layers were dried over Na₂SO₄ in vacuum, and purified by flash chromatography (EtOAc/PE, 2:1 [% AcOH]) to give the title compound 9 after freeze-drying as an amorphous solid (20 mg, 51% yield); R_f = 0.13 (EtOAc/PE, 2:1 [% AcOH]); 1H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 6.1 Hz, 1H), 7.49–7.64 (m, 2H), 7.36–7.29 (m, 2H), 5.18–5.14 (m, 2H), 6.37 (br s, 1H), 5.85–5.81 (m, 2H), 3.97–3.94 (m, 2H), 3.98–3.95 (m, 2H), 3.86–3.85 (br s, 1H), 3.79 (br s, 1H), 3.17–3.12 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ 172.9, 172.6, 156.6, 141.9, 138.9, 132.4, 131.7, 130.8, 129.6, 129.4, 129.3, 129.1, 127.9, 126.9, 121.1, 115.6, 66.5, 55.6, 52.8, 31.3; HRMS (ESI) calcd for C₂₅H₂₁N₂OS₂ (M + Na)⁺ 486.0804, found 486.0780 HPLC: τ_R = 12.28 min, 98.4%. [α]_D = +13° (c 0.25, DMF).

Methyl (2R,4R)-2-(2-Chlorophenyl)-3-(2'-methoxyphenyl)-4-carboxylic acid (10). Step 1: The methyl ester of the title compound 10a was prepared as described for 8a using 7b (100 mg, 0.39 mmol) and 2'-methoxyphenyl-4-carboxyl chloride (105 mg, 0.43 mmol) and obtained after flash chromatography (EtOAc/PE, 1:3) as a clear viscous oil (152 mg, 83% yield); R_f = 0.18 (EtOAc/PE, 1:3); 1H NMR (400 MHz, CDCl₃) δ 7.71–7.67 (m, 2H), 7.57–7.55 (d, J = 5.9 Hz, 1H), 7.50–7.48 (m, 1H), 7.47–7.41 (m, 2H), 7.29–7.22 (m, 2H), 7.28–6.99 (m, 2H), 7.22 (s, 1H), 6.71–6.65 (m, 2H), 6.21 (br s, 1H), 5.17–4.92 (m, 1H), 3.85 (s, 1H), 3.79 (s, 1H), 3.56–3.51 (m, 2H), 3.48–3.45 (s, 3H), 3.13–3.07 (m, 1H), 13C NMR (400 MHz, CDCl₃) δ 171.0, 170.5, 156.5, 141.4, 134.4, 133.5, 130.8, 129.8, 129.6, 129.5, 129.4, 128.7, 127.0, 126.9, 126.7, 112.1, 55.2, 54.0, 31.3, 26.5; HRMS (ESI) calcd for C₁₉H₁₅N₂O₂ (M + Na)⁺ 313.0957, found 313.0951.
Step 2: The title compound 10 was prepared as described for 9 using methyl ester 10a (100 mg, 0.21 mmol) and Lil (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:2 [2% AcOH]) and subsequent freeze-drying as a white amorphous powder (65 mg, 67% yield); Rf = 0.16 (EtOAc/PE, 1:2 [2% AcOH]); 1H NMR (400 MHz, CDCl3) δ 3.72 (s, 3H), 3.40 (m, 2H), 7.03 (m, 2H), 7.73–7.37 (m, 2H), 7.25–7.23 (m, 1H), 7.20–7.09 (m, 2H), 6.03–6.89 (m, 2H), 6.25 (br s, 1H), 5.20–5.13 (m, 1H), 3.72 (s, 3H), 3.40–3.31 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 173.0, 172.6, 156.6, 141.7, 140.6, 133.3, 132.6, 130.8, 129.6, 129.4, 128.0, 127.0, 121.8, 121.0, 111.6, 69.2, 67.0, 55.7, 30.9; HRMS (ESI) calc'd for C18H12BrNO4S (M + H+) 498.0369, found 498.0345. HPLC: tR = 12.36 min, 99.8%. [α]D20 +17° (c 0.3, DCM).

(2R,4R)-3-(2-Methoxybiphenyl-4-carbonyl)-2-phenylthiazolidine-4-carboxylic Acid (13). Step 1: Methyl (2R,4R)-2-Phenylthiazolidine-4-carboxylate (7g). The thiazolidine was prepared as described for 7a using 1-cysteine methyl ester hydrochloride (201 mg, 1.17 mmol) and benzaldehyde (247 mg, 2.33 mmol). Crude methyl (2R)-2-phenylthiazolidine-4-carboxylate (7g) was used without further purification in the next step.

Step 2: Methyl (2R,4R)-3-(2-Methoxybiphenyl-4-carbonyl)-2-phenylthiazolidine-4-carboxylate (13a). Using crude 7g (105 mg) and 2-methoxybiphenyl-4-carboxylic chloride (128 mg, 0.52 mmol), the title compound was prepared as described for 8a and obtained after flash chromatography (EtOAc/PE, 1:3) as a white foam (146 mg, 72% yield); Rf = 0.18 (EtOAc/PE, 1:3); 1H NMR (400 MHz, CDCl3) δ 7.71–7.56 (m, 2H), 7.47–7.18 (m, 9H), 7.04–6.91 (m, 6H), 1.69 (br s, 1H), 5.17 (app s, 1H), 3.83 (br s, 3H), 3.76 (s, 3H), 3.44–3.16 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 171.1, 170.6, 156.5, 141.6, 141.2, 133.6, 130.8, 129.6, 129.5, 128.3, 127.9, 127.0, 126.8, 121.0, 111.4, 68.5, 65.2, 55.6, 52.8, 31.9; HRMS (ESI) calc'd for C25H24NO4S (M + H+) 434.1421, found 434.1412.

Step 3: The title compound 13 was prepared as described for 9 using methyl ester 13a (100 mg, 0.23 mmol) and Lil (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:2 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (67 mg, 45% yield); Rf = 0.23 (EtOAc/PE, 1:1 [1% AcOH]); 1H NMR (400 MHz, CDCl3) δ 8.79 (br s, 1H), 7.46–7.39 (m, 6H), 7.35–7.29 (m, 3H), 7.28–7.21 (m, 2H), 7.02–6.90 (m, 2H), 6.22 (br s, 1H), 5.24 (app s, 1H), 3.76 (s, 3H), 3.47–3.34 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 172.7, 172.3, 156.5, 141.7, 140.7, 132.8, 130.8, 129.6, 128.7, 128.4, 127.0, 121.0, 111.5, 69.1, 65.0, 55.6, 31.4; HRMS (ESI) calc'd for C25H24NO4S (M + H+) 420.1264, found 420.1259. HPLC: tR = 11.70 min, 97.6%. [α]D20 +22° (c 1.0, DCM).

(2R,4R)-3-(2-Methoxybiphenyl-4-carbonyl)-2-(pyrindin-2-yl)thiazolidine-4-carboxylate (14a). Using crude 7e (95 mg) and 2-methoxybiphenyl-4-carboxylic chloride (116 mg, 0.47 mmol), methyl ester 14a was prepared as described for 8a and obtained after flash chromatography (EtOAc/PE, 1:2 → 1:1) as a clear viscous oil (77 mg, 42% yield); Rf = 0.16 (EtOAc/PE, 1:1 [2% AcOH]); 1H NMR (400 MHz, CDCl3) δ 8.53 (d, J = 4.7 Hz, 1H), 8.15–7.99 (m, 1H), 7.80–7.71 (m, 1H), 7.44–7.37 (m, 3H), 7.37–7.27 (m, 2H), 7.26–7.16 (m, 2H), 7.05–6.91 (m, 2H), 6.18 (br s, 1H), 5.25 (app s, 1H), 3.85 (br s, 3H), 3.77 (s, 3H), 3.42–3.33 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 171.1, 170.9, 156.6, 149.6, 141.4, 137.1, 133.4, 130.8, 129.6, 129.3, 126.9, 122.7, 121.0, 120.6, 111.4, 69.6, 65.2, 55.6, 52.8, 32.0; HRMS (ESI) calc'd for C25H24NO4S (M + H+) 437.1573, found 435.1395.

Step 3: The title compound 14 was prepared as described for 9 using methyl ester 14a (75 mg, 0.17 mmol) and Lil (4 equiv) and obtained after flash chromatography (EtOAc/PE, 2:1 → EtOAc [1% AcOH]) as brown crystals (53 mg, 73% yield); Rf = 0.18 (EtOAc/PE, 2:1 [1% AcOH]); dec 114–120 °C; 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 4.8 Hz, 1H), 7.88 (br s, 1H), 7.61–7.49 (m, 4H), 7.45–7.39 (m, 3H), 7.37–7.30 (m, 1H), 7.29–7.13 (m, 2H), 7.07–6.95 (m, 2H), 6.63 (br s, 1H), 5.14 (app s, 1H), 3.79 (s, 3H), 3.58–3.41 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 173.4, 170.1, 157.4, 156.5, 147.4, 141.7, 139.6, 133.2, 130.8, 129.9, 129.5, 128.3, 127.6, 126.4, 123.3, 121.0, 111.4, 67.6, 65.9, 55.6, 37.5; HRMS (ESI) calc'd for C25H24NO4S (M + H+) 443.1036, found 443.1056. HPLC: tR = 10.25 min, 99.5%. [α]D20 +59° (c 1.0, DCM).

(2R,4R)-2-(Furanyl-2-yl)-3-(2-methoxybiphenyl-4-carbonyl)-thiazolidine-4-carboxylic Acid (15). Step 1: Methyl (2R,4R)-2-(Furanyl-2-yl)-3-thiazolidine-4-carboxylate (7). The thiazolidine was
prepared as described for 7α using 1-cysteine methyl ester hydrochloride (150 mg, 0.87 mmol) and 2-furancarboxaldehyde (168 mg, 1.75 mmol). Crude methyl (4R)-2-(furan-2-yl)thiazolidine-4-carboxylate (7b) was used without further purification in the next step.

Step 2: Methyl (2R,4R)-2-(Furan-2-yl)-3-(2’-methoxybiphenyl-4-carbonyl)thiazolidine-4-carboxylate (15a). Using crude 7b (91 mg) and methyl (4R)-2-(furan-2-yl)thiazolidine-4-carboxylate (116 mg, 0.48 mmol), the title compound 15a was prepared as described for 8a and obtained after flash chromatography (EtOAc/PE, 1:3) as a brown viscous oil (46 mg, 25% yield): Rf = 0.21 (EtOAc/PE, 1:3); \(\% \) H NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 7.59–7.48 (m, 4H), 7.42–7.39 (m, 1H), 3.76–7.31 (m, 1H), 7.29 (dd, \(J = 7.5, 1.7 \) Hz, 1H), 7.05–7.00 (m, 2H), 6.87–6.78 (m, 1H), 6.37 (dd, \(J = 3.1, 1.8 \) Hz, 1H), 6.14 (br s, 1H), 5.25–5.08 (m, 1H), 3.80 (s, 6H), 3.48–3.34 (m, 2H); \% C NMR (101 MHz, CDCl\(_3 \)) \(\delta \) 173.0, 156.5, 152.4, 142.8, 141.5, 133.2, 130.9, 129.7, 129.4, 127.8, 121.1, 111.5, 110.7, 109.4, 63.6, 62.7, 55.7, 52.9, 32.4; HRMS (ESI) calc. for C\(_{19}\)H\(_{18}\)N\(_2\)O\(_3\)S (M + Na\(^+\)) 370.0725, found 370.0728. HPLC: t\(_R\) = 11.73 min, 95.2\% [\(\alpha \)]\(_{20} \) = +30° (c 1.0, DCM).

(2R,4R)-3-(1,1’-Biphenyl)-3-carboxylate-2-(2-chlorophenyl)thiazolidine-4-carboxylic Acid (20). Step 1: The methyl ester of the title compound (20a) was prepared as described for 8b using 8b (84 mg, 0.172 mmol) and phenylboronic acid (21 mg, 0.172 mmol) and obtained after flash chromatography (EtOAc/PE, 1:3) as a clear viscous oil (45 mg, 63% yield): Rf = 0.41 (EtOAc/PE, 1:3); \% H NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 8.40 (d, \(J = 7.0 \) Hz, 1H), 7.68–7.71 (m, 1H), 7.04–7.14 (m, 4H), 6.85–6.92 (m, 4H), 6.63–6.66 (m, 2H), 4.01–3.95 (m, 2H); \% C NMR (101 MHz, CDCl\(_3 \)) \(\delta \) 157.4, 143.8, 133.5, 131.7, 130.8, 129.0, 128.7, 127.8, 127.4, 127.0, 66.1, 65.9, 59.2, 31.3; HRMS (ESI) calc. for C\(_{18}\)H\(_{16}\)Cl\(_2\)N\(_3\)O\(_4\)S (M + H\(^+\)) 474.0752, found 474.0751. HPLC: t\(_R\) = 11.33 min, 97.8\% [\(\alpha \)]\(_{20} \) = +39° (c 1.0, DCM).

(2R,4R)-2-(Isobenzofuran-1(3H)-one)-2-(2-chlorophenyl)thiazolidine-4-carboxylic Acid (21). Step 1: The methyl ester of the title compound (21a) was prepared as described for 19a using 8a (101 mg, 0.21 mmol) and methyl (4R)-2-(furan-2-yl)thiazolidine-4-carboxylate (39 mg, 0.23 mmol) and obtained after flash chromatography (EtOAc/PE, 1:4) as a clear oil (77 mg, 0.18 (EtOAc [1% AcOH]); mp 166–172 °C; \% H NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 11.39 (br s, 1H), 8.14 (d, \(J = 7.3 \) Hz, 1H), 7.43–7.30 (m, 4H), 7.30–7.18 (m, 4H), 6.62 (br s, 1H), 5.29–5.08 (m, 1H), 3.48–3.39 (m, 3H), 3.38–3.28 (m, 1H); \% C NMR (101 MHz, CDCl\(_3 \)) \(\delta \) 173.2, 172.2, 138.8, 134.5, 131.6, 131.2, 129.9, 128.3, 127.6, 127.5, 127.1, 66.2, 66.0, 31.1; HRMS (ESI) calc. for C\(_{18}\)H\(_{16}\)Cl\(_2\)N\(_2\)O\(_3\)S (M + Na\(^+\)) 370.0275, found 370.0285. HPLC: t\(_R\) = 4.58 min, 99.5\% [\(\alpha \)]\(_{20} \) = +48° (c 1.0, DCM).
Journal of Medicinal Chemistry

6760 mg: 7.1 mg, 6.7 Hz, 1H), 7.45–7.23 (m, 7H), 7.15–7.06 (m, 1H), 6.99–6.87 (m, 2H), 6.28 (br s, 1H), 5.13 (app s, 1H), 3.90 (s, 6H), 3.45–3.32 (m, 1H), 3.30–3.15 (m, 1H). 1H NMR (100 MHz, CDCl3) δ 7.83 (d, J = 7.9 Hz, 1H), 7.49–7.39 (m, 2H), 7.39–7.29 (m, 4H), 7.29–7.21 (m, 1H), 6.62 (br s, 1H), 5.26–5.11 (m, 1H), 3.48–3.31 (m, 2H), 2.62 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 179.8, 172.7, 172.0, 144.3, 142.7, 139.0, 136.6, 134.0, 134.1, 131.6, 129.1, 129.1, 128.0, 127.6, 127.4, 127.3, 66.5, 31.0, 26.8; HRMS (ESI) calc for C24H16Cl2FNNaO4S (M + Na+) 488.0694, found 488.0695. HPLC: tR = 12.18 min, 95.7%. [α]D 20 +64° (c 0.4, DCM).

(2R,4R)−2-(2-Chlorophenyl)-3-(3′-(4′-methoxyphenyl)-4-carboxybenzyl)thiazolidine-4-carboxylic Acid (24). Step 1: The methyl ester of the title compound (24a) was prepared as described for 19a using 8a (81 mg, 0.17 mmol) and (3-chlorophenyl)boronic acid (26 mg, 0.18 mmol) and obtained after flash chromatography (EtOAc/PE: 1:2 [% AcOH]) as a clear viscous oil (42 mg, 46% yield): Rf = 0.25 (EtOAc/PE: 1:2 [% AcOH]); mp 202–208 °C. 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 5.0 Hz, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.47–7.39 (m, 2H), 7.39–7.29 (m, 4H), 7.29–7.21 (m, 1H), 6.26 (br s, 1H), 5.26–5.11 (m, 1H), 3.48–3.31 (m, 2H), 2.62 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 179.8, 177.2, 172.0, 144.3, 142.7, 139.0, 136.6, 134.0, 134.1, 131.6, 129.1, 129.1, 128.0, 127.6, 127.4, 127.3, 66.5, 31.0, 26.8; HRMS (ESI) calc for C24H20Cl2FNNaO4S (M + Na+) 488.0694, found 488.0695. HPLC: tR = 12.18 min, 95.7%. [α]D 20 +64° (c 0.4, DCM).

(2R,4R)−2-(2-Chlorophenyl)-3′-(4′-(cyano(boronic acid)thiazolidine-4-carboxylic Acid (24). Step 1: The methyl ester of the title compound (24a) was prepared as described for 19a using 8a (81 mg, 0.17 mmol) and (4-cyano)boronic acid (26 mg, 0.18 mmol) and obtained after flash chromatography (EtOAc/PE: 2:7) as a white viscous oil (31 mg, 41% yield): Rf = 0.27 (EtOAc/PE: 1:3); 1H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 6.4 Hz, 1H), 7.74–7.70 (m, 2H), 7.64–7.60 (m, 2H), 7.49–7.33 (m, 6H), 7.32–7.28 (m, 1H), 6.24 (br s, 1H), 5.24–5.06 (m, 1H), 3.91 (s, 3H), 3.47–3.37 (m, 1H), 3.29–3.16 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 170.6, 170.5, 144.5, 141.6, 139.4, 134.3, 132.8, 131.7, 130.0, 129.4, 128.0, 127.9, 127.5, 127.2, 118.8, 111.8, 66.0, 65.8, 53.0, 31.3; HRMS (ESI) calc for C24H20Cl2FNNaO4S (M + Na+) 488.0694, found 485.0696.
Step 2: The title compound 26 was prepared as described for 9 using methyl ester 26a (81 mg, 0.18 mmol) and Lii (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:3 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (54 mg, 54% yield); \(R_f = 0.24 \) (EtOAc/PE, 1:3 [1% AcOH]); \(1^{1}H \) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.81 \) (d, \(J = 7.2 \) Hz, 1H), 8.04–7.93 (m, 1H), 7.52–7.47 (m, 2H), 7.42–7.32 (m, 1H), 7.29–7.23 (m, 2H), 6.24 (br s, 1H), 5.32–5.15 (m, 1H), 3.50–3.42 (m, 1H), 3.38–3.30 (m, 1H); \(1^{13}C \) NMR (101 MHz, CDCl\(_3\)) \(\delta 173.0, 171.6, 138.8, 133.7, 131.8, 131.0, 129.1, 128.8, 128.5, 127.6, 127.5, 126.5, 125.9, 125.6, 125.4, 122.9, 120.7, 112.0, 68.9, 68.6, 66.4, 66.1, 56.0, 30.9; HRMS (ESI) calcd for C\(_{29}\)H\(_{21}\)ClN\(_2\)O\(_4\)S (M + Na\(^+\)) 479.0609, found 479.0671.

Step 2: The title compound 29 was prepared as described for 9 using methyl ester 29a (55 mg, 0.11 mmol) and Lii (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:1 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (39 mg, 72% yield); \(R_f = 0.23 \) (EtOAc/PE, 1:1 [1% AcOH]); \(1^{1}H \) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.06 \) (d, \(J = 6.6 \) Hz, 1H), 7.50–7.21 (m, 1H), 6.98–6.86 (m, 2H), 6.25 (br s, 1H), 5.25–5.08 (m, 1H), 3.90 (s, 3H), 3.47–3.40 (m, 1H), 3.34–3.30 (m, 1H); \(1^{13}C \) NMR (101 MHz, CDCl\(_3\)) \(\delta 172.8, 171.9, 160.2, 138.8, 133.8, 133.5, 131.6, 130.4, 130.2, 129.9, 128.0, 127.6, 127.5, 126.7, 126.5, 125.0, 124.2, 123.8, 131.7, 130.0, 129.2, 128.0, 127.8, 127.4, 126.5, 125.9, 125.0, 124.2, 66.1, 65.9, 52.9, 31.2; HRMS (ESI) calcd for C\(_{30}\)H\(_{22}\)ClN\(_2\)O\(_4\)S (M + Na\(^+\)) 514.0850, found 514.0766.

Step 2: The title compound 30 was prepared as described for 9 using methyl ester 30a (75 mg, 0.15 mmol) and Lii (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:1 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (39 mg, 75% yield); \(R_f = 0.24 \) (EtOAc/PE, 1:1 [1% AcOH]); \(1^{1}H \) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.64 \) (d, \(J = 7.0 \) Hz, 1H), 7.45–7.30 (m, 4H), 7.30–7.22 (m, 7H), 7.11 (d, \(J = 3.5 \) Hz, 1H), 6.72–6.70 (m, 1H), 6.28 (br s, 1H), 5.17–5.04 (m, 1H), 3.88 (s, 3H), 3.41–3.33 (m, 1H), 3.25–3.16 (m, 1H), 2.48 (s, 3H); \(1^{13}C \) NMR (101 MHz, CDCl\(_3\)) \(\delta 170.4, 170.3, 170.2, 127.5, 127.4, 126.7, 126.5, 125.9, 125.0, 124.2, 123.8, 134.8, 134.7, 134.5, 134.3, 134.2, 133.6, 131.4, 129.4, 128.7, 128.4, 127.7, 127.4, 127.1, 126.0, 122.7, 119.0, 106.5, 105.6, 85.9, 85.6, 85.1, 57.0, 37.4, 36.3; HRMS (ESI) calcd for C\(_{24}\)H\(_{21}\)NO\(_2\)S\(_2\) (M + Na\(^+\)) 428.0830, found 428.0836. HPLC: \(t_\alpha = 10.84 \) min, 98.1%; \([\alpha]_D^{29} + 68^\circ \) (c 0.2, DCM).

(Diethylamino)acetic Acid (29). Step 2: The title compound 29 was prepared as described for 9 using methyl ester 29a (79 mg, 0.15 mmol) and Lii (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:1 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (39 mg, 72% yield); \(R_f = 0.23 \) (EtOAc/PE, 1:1 [1% AcOH]); \(1^{1}H \) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.06 \) (d, \(J = 6.6 \) Hz, 1H), 7.50–7.21 (m, 1H), 6.98–6.86 (m, 2H), 6.25 (br s, 1H), 5.25–5.08 (m, 1H), 3.90 (s, 3H), 3.47–3.40 (m, 1H), 3.34–3.30 (m, 1H); \(1^{13}C \) NMR (101 MHz, CDCl\(_3\)) \(\delta 172.8, 171.9, 160.2, 138.8, 133.8, 133.5, 131.6, 130.4, 130.2, 129.9, 128.0, 127.6, 127.5, 126.7, 126.5, 125.9, 125.0, 124.2, 66.1, 65.9, 52.9, 31.2; HRMS (ESI) calcd for C\(_{29}\)H\(_{21}\)ClN\(_2\)O\(_4\)S (M + Na\(^+\)) 479.0809, found 479.0714.

HPLC: \(t_\alpha = 10.84 \) min, 98.1%; \([\alpha]_D^{29} + 68^\circ \) (c 0.2, DCM).

References

1. Journal of Medicinal Chemistry

2. DOI: 10.1021/acs.jmedchem.8b00855

3. J. Med. Chem. 2018, 61, 9334–9330
Step 2: The title compound 33 was prepared as described for 9 using methyl ester 33a (61 mg, 0.13 mmol) and LiI (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:2 → EtOAc [2% AcOH]) and subsequent freeze-drying gave 33 as a powder (25 mg, 42% yield); \(R_f = 0.21 \) (EtOAc/PE, 1:2 [2% AcOH]); \(^1 \)H NMR (600 MHz, DMSO-\(d_6 \), 100 °C) \(\delta \) 8.35 (dd, \(J = 7.8, 1.0 \) Hz, 1H), 7.42–7.34 (m, 6H), 7.33–7.30 (m, 1H), 7.29–7.26 (m, 1H), 6.41 (s, 1H), 5.02 (t, \(J = 6.5 \) Hz, 1H), 3.62 (dd, \(J = 12.0, 6.6 \) Hz, 1H), 3.30 (dd, \(J = 12.1, 6.4 \) Hz, 1H), 2.35 (s, 3H), 2.17 (s, 3H); \(^{13} \)C NMR (151 MHz, DMSO-\(d_6 \)) \(\delta \) 170.5, 168.9, 164.8, 157.3, 138.2, 134.6, 131.1, 130.6, 128.6, 128.5, 128.1, 127.7, 126.7, 126.3, 114.9, 64.9, 63.9, 32.1, 10.5; HRMS (ESI) calcd for \(\text{C}_9\text{H}_7\text{ClIN}_2\text{O}_4\text{S} \ (M + Na^+) \) 545.1296, found 545.1267. HPLC: \(t_R = 11.65 \) min, 98.3%. [\(\alpha \] \(\text{D} \) \(+72^\circ \) (c 0.5, MeOH).

(2R,4R)-2-(2-Chlorophenyl)-3-(4-cyclopropyl-3-phenylisoxazol-4-yl)benzoyl)-2-phenyl-thiazolidine-4-carboxylic Acid (32). Step 1: Methyl (2R,4R)-2-(2-Chlorophenyl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-2-phenyl-thiazolidine-4-carboxylate. In a vial, a mixture of 8a (120 mg, 0.25 mmol), bis(pinacolato)diaboron (69 mg, 0.27 mmol), and potassium acetate (61 mg, 0.62 mmol) in DMF (0.35 mL) was purged with argon (X) followed by the addition of 1,1'-bis(phenylphosphino)ferrocene palladium dichloride (9.0 mg, 12.50 μmol), and the mixture was again purged with argon (X). The reaction was capped and stirred at 50 °C under argon until consumption of starting material (20 h). The reaction was treated with water and extracted with EtOAc (3 × 150 mg), washed with brine, dried over \(\text{Na}_2\text{SO}_4 \), and concentrated in vacuo.

Step 2: 5-Cyclopropyl-4-iodo-3-phenylisoxazole. To (Z)-3-cyclopropyl-1-phenylprop-2-yn-1-one (90 mg, 0.69 mmol) dissolved in dry DCM (3.5 mL) was added IBr (143 mg, 0.69 mmol), and the reaction was stirred at rt until consumption of starting material. The reaction mixture was washed with saturated \(\text{Na}_2\text{SO}_4 \) and extracted with DCM (X), dried over \(\text{Na}_2\text{SO}_4 \), and concentrated in vacuo. The crude 5-cyclopropyl-4-iodo-3-phenylisoxazole was filtered through a plug of silica using PE (1% EtOAc) and used without further purification in the next step.

Step 3: Methyl (2R,4R)-2-(2-Chlorophenyl)-3-(4-(5-cyclopropyl-3-phenylisoxazol-4-yl)benzoyl)-2-phenyl-thiazolidine-4-carboxylate (32a). In a vial, crude boronate from step 1 (100 mg) were added crude 5-cyclopropyl-4-iodo-3-phenylisoxazole (55 mg, 0.18 mmol) and XPhos Pd G4 precatalyst (3.8 mg, 4.4 μmol). The vial was capped and purged with argon (X). Reactions were dissolved in THF (0.41 mL, degassed), after which \(\text{K}_2\text{PO}_4 \) (0.82 mL, 5.0 M, degassed) was added and the reaction was stirred at 80 °C for 5 h under argon. The reaction was treated with water and extracted with EtOAc (5 × 150 mg), washed with DCM, concentrated in vacuo. The title compound was obtained after flash chromatography (EtOAc/PE, 1:3) as a cloudy viscous oil (25 mg, 26% yield); \(R_f = 0.20 \) (EtOAc/PE, 1:3); \(^1 \)H NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 8.34 (dd, \(J = 7.3, 1.7 \) Hz, 1H), 7.41–7.28 (m, 8H), 7.27–7.22 (m, 2H), 7.17–7.06 (m, 2H), 6.23 (s, 1H), 5.17–5.03 (m, 1H), 3.90 (s, 3H), 3.41 (dd, \(J = 6.4, 12.1 \) Hz, 1H), 3.29–3.19 (m, 1H), 1.98–1.89 (m, 1H), 1.20–1.12 (m, 2H), 1.06–0.97 (m, 2H); \(^{13} \)C NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 170.9, 170.6, 161.2, 139.4, 134.1, 133.3, 131.5, 129.9, 129.6, 129.3, 128.8, 128.7, 127.9, 127.5, 127.4, 114.4, 65.9, 65.8, 53.0, 31.4, 8.3, 7.8; HRMS (ESI) calcd for \(\text{C}_{28}\text{H}_{18}\text{ClIN}_2\text{O}_4\text{S} \ (M + H^+) \) 454.1296, found 454.1309.

Step 4: The title compound 33 was prepared as described for 9 using methyl ester 33a (27 mg, 49 μmol) and LiI (4 equiv) and obtained after flash chromatography (EtOAc/PE, 1:1 [1% AcOH]) and subsequent freeze-drying as a white amorphous powder (19 mg, 75% yield); \(R_f = 0.17 \) (EtOAc/PE, 1:1 [1% AcOH]); \(^1 \)H NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 8.08 (dd, \(J = 6.8, 1.7 \) Hz, 1H), 7.40–7.27 (m, 8H), 7.25–7.19 (m, 2H), 7.18–7.09 (m, 2H), 6.27 (s, 1H), 5.25–5.12 (m, 1H), 3.52–3.42 (m, 2H), 1.99–1.87 (m, 1H), 1.20–1.14 (m, 2H), 1.05–0.99 (m, 2H); \(^{13} \)C NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 172.7, 172.0, 171.0, 161.2, 138.9, 133.6, 131.5, 130.1, 129.9, 129.7, 128.7, 128.5, 127.6, 127.4, 114.3, 66.3, 66.0, 31.2, 8.5, 7.8; HRMS (ESI) calcd for \(\text{C}_{30}\text{H}_{26}\text{ClIN}_2\text{O}_4\text{S} \ (M + Na^+) \) 553.0959, found 553.0965. HPLC: \(t_R = 13.58 \) min, 98.8%.
(m, 1H), 3.29–3.18 (m, 1H), 2.35 (s, 3H), 2.21 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 170.6, 170.5, 165.5, 158.3, 155.2, 134.3, 132.9, 130.5, 129.2, 128.6, 127.8, 126.9, 120.9, 115.9, 110.6, 65.6, 63.1, 55.5, 52.7, 31.5, 11.6, 10.7; HRMS (ESI) calcd for C24H21N2Os (M + H+) 439.1419; found, 439.1420.

Step 2: The title compound 35 was prepared as described for 9 using methyl ester 35a (91 mg, 0.20 mmol) and Li(tBu)4 (4 equiv) and obtained after flash chromatography (EtOAc/PE, 3:1 [1% AcOH]) and subsequent freeze-drying as a brownish amorphous powder (32 mg, 86%).

Synthesis of (2R,4R)-3-(4-(3,5-Dimethylisoxazol-4-yl)benzoyl)-2-(pyridin-2-yl)thiazolidine-4-carboxylic Acid (36). In a predried vial, to a suspension of 4-(3,5-dimethylisoxazol-4-yl)benzoic acid (24 mg, 0.13 mmol) and LiI (4 equiv) and obtained after flash chromatography (EtOAc/PE, 2:1) as a brownish viscous oil (95 mg, 73% yield): Rr = 0.21 (DCM [4% MeOH]). 1H NMR (101 MHz, CDCl3) δ 8.55–8.37 (m, 1H), 8.16–8.00 (m, 1H), 7.83–7.64 (m, 1H), 7.57–7.67 (m, 3H), 6.41 (br s, 1H), 6.07 (app m, 1H), 5.63–5.52 (m, 1H), 5.35–4.94 (m, 1H), 3.82 (br s, 3H), 3.64 (s, 3H), 3.52–3.16 (m, 2H), 2.31 (s, 3H), 2.17 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 170.6, 170.4, 165.6, 158.3, 149.6, 149.4, 137.1, 134.3, 133.1, 128.9, 127.6, 122.7, 120.6, 115.8, 69.4, 65.0, 52.9, 52.8, 31.8, 11.6, 10.7; HRMS (ESI) calcd for C22H22N3O4S (M + H+) 424.1326, found 424.1317.

Molecular Modeling. A homology model of hFFA2 in complex with 1 was obtained as described previously.32 The model was based on a crystal structure of hFFA1 (PDB code 4PHU).54 As 31 fully displaces [3H]-1 at increasing concentrations in a radioligand binding assay (Table 4), the compound was docked into the binding site defined by 1. Prior to docking, 31 was prepared (LigPrep, version 2.7, Schrödinger, LLC) using the OPLS-2005 force field.33 Ionization states were generated using Epik at pH 7.0 ± 2.0 (Epik, version 2.5, Schrödinger, LLC). Induced-fit docking was performed using the IFD 2000 protocol (Glide version 5.9, Schrödinger, LLC; Prime version 3.2, Schrödinger, LLC.). Ligand conformational sampling was executed using default settings; initial Glide docking was performed using standard settings; the maximum number of poses of 31 was restricted to 20. Redocking was executed for 31-hFFA2 complexes within 30 kcal/mol of the lowest energy ligand–protein complex. Residues were refined within 5 Å of bound 31.

In Vitro Assays. β-Arrestin-2 Interaction Assay. HEK293T cells were maintained in Dulbecco’s modification of Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM l-glutamine, and 1x penicillin/streptomycin mixture (Sigma) at 37 °C and 5% CO2. Cells were grown to 60% density and co-transfected at a 4:1 ratio with plasmids encoding an eYFP-tagged form of the receptor construct of interest and a β-arrestin-2 fused to Renilla luciferase using a polyethyleneimine-based transfection protocol.56,57 Cells were transferred into white 96-well plates at 24 h post-transfection and incubated for 24 h at 37 °C. Immediately prior to conducting the assay, cells were washed, and the culture medium was replaced with Hanks’ balanced salt solution. To quantify β-arrestin-2 recruitment to the receptor induced by FFA2 agonists, the Renilla luciferase substrate coelenterazine h (Nanolight Tech, Pinetop, CA) was added to a final concentration of 2.5 μM, and cells were incubated for 5 min at 37 °C. Next, varying concentrations of agonist were added, and cells were incubated for an additional 10 min at 37 °C. BRET resulting from receptor-β-arrestin-2 interaction was assessed by measuring the ratio of luminescence at 535 and 475 nm using a PHERAstar FS plate reader fitted with the BRETr1 optic module (BMG Labtech, Aylesbury, U.K.). pEC50 values were determined with at least three independent replicates.
cAMP Assay. All cAMP experiments were performed using Flp-In T-REx 293 cells modified to express receptors of interest in an inducible manner, which were maintained in DMEM without sodium pyruvate supplemented with 10% fetal bovine serum, 1X penicillin/streptomycin mixture, 5 μg/mL blasticidin, and 200 μg/mL hygromycin B. Experiments were carried out using a homogeneous time-resolved FRET-based detection kit (Cis-Bio Bioassays, Codolet, France) in accordance with the manufacturer's protocol. Cells were plated at 2000 cells/well in low-volume white 384-well plates. The ability of compounds to inhibit 1 μM forskolin-induced cAMP production was quantified following a 30 min incubation of agonist compounds with cells, which were induced to express receptors of interest by a 16 h treatment with 100 ng/mL doxycycline. pEC50 values were determined with at least three independent replicates.

Radioligand Binding Assay. Radioligand competition binding experiments were performed as established previously. The radioligand [3H]-1 at approximately Kᵣ concentration was incubated with varying concentrations of unlabeled compounds and 5 μg of purified membranes isolated from Flp-In T-REx cells induced to express the receptor construct of interest. Nonspecific binding of the radioligand was determined in the presence of 10 μM CATPB. After a 2 h incubation at 25 °C, bound [3H]-1 and free [3H]-1 were separated by rapid vacuum filtration and radioactivity was quantified by liquid scintillation spectrometry. To determine the affinity of unlabeled ligands in terms of Kᵣ values, competition binding curves were fit to an inverse three-parameter sigmoidal one-site Kᵣ value fit with radioligand affinity and concentration as constraints. Kᵣ values were determined with n = 6 independent experiments for 31 and with n = 3 for all other compounds.

Isolation of Human Neutrophils and Migration Assay. Neutrophils were isolated from human whole blood as described previously. After isolation, neutrophils were immediately resuspended in RPMI 1640 containing 0.5% fatty acid-free bovine serum albumin. Test compounds were prepared at the indicated concentrations in the same buffer and added at the bottom of a 96-well plate (Sigma-Aldrich). Inserts were then mounted to the plate, and neutrophils were added (3000 cells/μL). Cells were incubated at 37 °C for 1.5 h, and migrated cells were then collected and ATP content was assessed using ATPlitE luminescence assay system (PerkinElmer) according to the manufacturer's instructions. Each experiment was performed with n = 4–6 independent replicates.

Derivation of Primary Mouse Adipocytes and Lipolysis Assay. Epididymal fat was collected from male mice, and isolation of preadipocytes was obtained as described previously. Animals were cared for in accordance with national guidelines on animal experimentation. Preadipocytes were subsequently differentiated in DMEM medium (DMEM, 10% fetal bovine serum, 4 mM glutamine, 10 mM HEPES, 10 μg/mL insulin, 25 μg/mL sodium ascorbate, 10 μg/mL rosiglitazone) for 8 days. After this, mature adipocytes were challenged with test compounds and glycerol production was quantified as previously reported. Each experiment was performed with n = 3–4 independent replicates.

Chemical Stability. A 10 mM stock solution of 31 in DMSO was diluted in phosphate buffer (10 mM, pH = 7.4) obtaining 1.2 mL of 50 μM compound solution in phosphate buffer. The sample was shaken (650 rpm) at 37 °C, and samples were taken out at different time intervals during the 3-week experiment. The study was performed in duplicate, each parallel and with double injection. The stability was calculated based on peak area of the 0 point sample. Stability in Simulated Gastric and Intestinal Fluids. FaSSIF and FaSSGF were prepared in accordance with the manufacturer's procedure. A 50 μM solution of 31 was prepared from FaSSIF/FaSSGF and a 10 mM stock solution of 31 in DMSO, and the samples were incubated in a thermostimulator (37 °C, 650 rpm) for 0 and 120 min. Afterward, the samples were quenched with acetonitrile (+0.5% HCOOH), centrifuged for 10 min at 10 000 rpm and the supernatant was analyzed by HPLC. The stability was calculated based on peak area of the 0 point sample. The study was performed in duplicate. Average values are reported.

Microsomal Stability. Microsomal stability was studied in mouse liver microsomes (0.5 mg/mL) at a final test compound concentration of 1 μM, essentially as previously described. In brief, prewarmed (37 °C) 0.1 M PBS, was added to 10 mM NADPH in PBS and test compound 31 (1 mM in DMSO). The samples were incubated for 5 min at 37 °C before addition of newly thawed microsomes. The samples were mixed by gentle vortexing and incubated for 1 h at 37 °C, 300 rpm in a thermomixer. Samples were quenched by addition of ice-cold MeOH/MeCN (1:1) and centrifuged for 5 min at 10 000g. The supernatant was transferred to HPLC vials and stored in the freezer until analysis by HPLC. The metabolic stability was calculated based on the 0 min sample. The experiment was performed in triplicate.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.8b00855.

Synthetic procedures, collection and crystallographic data for 14, and high- and low-temperature 1H and 13C NMR spectra of 31 (PDF)

Coordinates for crystal structure of 14 (PDF)

Molecular strings formula and some data (CSV)

AUTHOR INFORMATION

Corresponding Author

*E-mail: tu@sund.ku.dk.

ORCID

Richard R. Sprenger: 0000-0002-3947-1606
Christine J. McKenzie: 0000-0001-5587-0626
Elisabeth Rexen Ulven: 0000-0003-1243-7587
Trond Ulven: 0000-0002-8135-1755

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

CCDC 1844850 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

ACKNOWLEDGMENTS

We thank Paul C. Stein for recording of high temperature 1H and 13C NMR spectra of 31, Britt Grathwohl for assistance with in vitro stability studies, Rikke L. Jorgensen for help with synthesis, and Thue W. Schwartz for helpful discussions. This research was funded by the Danish Strategic Research Foundation (Grant 11-116196), the Biotechnology and Biological Sciences Research Council (Grant BB/L027887/1), and the University of Southern Denmark. E.R.U. is supported by a fellowship from the Lundbeck Foundation (Grant R181-2014-3247). We are grateful for funding from the Carlsberg Foundation Grant CF15-0675 for the X-ray diffractometer.

ABBREVIATIONS USED

BRET, bioluminescence resonance energy transfer; BTFFH, N,N,N′,N′-bis(tetramethylene)fluorouracilimidinium hexafluorophosphate; DIPEA, N,N-diisopropylethylamine;
FaSSGF, fasted state simulated gastric fluid; FFA1, free fatty acid receptor 1 (GPR40); FFA2, free fatty acid receptor 2 (GPR43); FFA3, free fatty acid receptor 3 (GPR41); LLE, lipophilic ligand efficiency; nr, no response; PE, petroleum ether; PYY, peptide tyrosine tyrosine; SCFA, short-chain fatty acid.

REFERENCES

(1) Nilsson, N. E. E.; Kotarsky, K.; Owman, C.; Olde, B. Identification of a free fatty acid receptor, FFA1, expressed on leukocytes and activated by short-chain fatty acids. Biochim. Biophys. Acta. 2003, 1590, 1047-1052.

(2) Brown, A. J.; Goldsworthy, S. M.; Barnes, A. E.; Eilert, M. M.; Tcheang, L.; Daniels, D.; Muir, A. I.; Wigglesworth, M. J.; Kinghorn, I.; Fraser, N. J.; Pike, N. B.; Strum, J. C.; Steplewski, K. M.; Murdock, P. R.; Holder, J. C.; Marshall, F. H.; Szeckeres, P. G.; Wilson, S.; Ignar, D. M.; Foord, S. M.; Wise, A.; Dowell, S. J. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312–11319.

(3) Le Poul, E.; Loison, C.; Struyf, S.; Springael, J. Y.; Lannoy, V.; Debroeck, M. E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; Parmentier, M.; Dethieux, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481−25489.

(4) Offermanns, S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 407–434.

(5) Milligan, G.; Shimpukade, B.; Ulven, T.; Hudson, B. D. Complex pharmacology of free fatty acid receptors. Chem. Rev. 2017, 117, 67–110.

(6) Hong, Y. H.; Nishimura, Y.; Hishikawa, D.; Tsuchi, H.; Miyaahara, H.; Gotoh, C.; Choi, K. C.; Feng, D. D.; Chen, C.; Lee, H. G.; Katoh, K.; Roh, S. G.; Sasaki, S. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPR43. Endocrinology 2005, 146, 5092–5099.

(7) Karaki, S.; Mitsui, R.; Hayashi, H.; Kato, I.; Sugiyah, H.; Iwanaga, T.; Furness, J. B.; Kuwahara, A. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006, 324, 353–360.

(8) Sivaprasakam, S.; Gurav, A.; Paschall, A. V.; Cee, G. L.; Chaudhary, K.; Cai, Y.; Kolhe, R.; Martin, P.; Browning, D.; Huang, L.; Shi, H.; Sifer, M.; Vijay-Kumar, M.; Thompson, S. A.; Munn, D. H.; Mellor, A.; McGaha, T. L.; Shiao, P.; Cutler, C. W.; Liu, K.; Ganapathy, V.; Li, H.; Singh, N. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016, 5, e238.

(9) Harig, J. M.; Soergel, K. H.; Komorowski, R. A.; Wood, C. M. Treatment of diversion colitis with short-chain fatty-acid irritation. N. Engl. J. Med. 1989, 320, 23–28.

(10) Verna, P.; Marcheggiiano, A.; Caprilli, R.; Gritti, G.; Corraro, G.; Valpiani, D.; Di Paolo, M. C.; Paoluzi, P.; Torsoli, A. Short-chain fatty acid topical treatment in distal ulcerative colitis. Handb. Exp. Pharmacol. 2015, 27, 653–664.

(11) Milligan, G.; Bolognini, D.; Sergeev, E. Ligands at the free fatty acid receptors 2/3 (GPR43/GPR41) as new potential therapeutic targets. Trends Endocrinol. Metab. 2016, 27, 563–644.

(12) Tang, C.; Ahmed, K.; Gille, A.; Lu, S.; Grone, H. J.; Tunaru, S.; Offermanns, S. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat. Med. 2015, 21, 173–177.

(13) Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; Takahashi, T.; Miyazaki, S.; Shim, G.; Inoue, H.; Tsujimoto, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829.

(14) Ulven, T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front. Endocrinol. 2012, 3, 111.

(15) Forbes, S.; Stafford, S.; Coope, G.; Heffron, H.; Real, K.; Newman, R.; Davenport, R.; Barnes, M.; Grosse, J.; Cox, H. Selective FFA2 agonism appears to act via intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 2015, 64, 3763–3771.

(16) Tang, C.; Offermanns, S. FFA2 and FFA3 in metabolic regulation. Handb. Exp. Pharmacol. 2016, 236, 205–220.

(17) Priyadarshini, M.; Wicksteed, B.; Schiltz, G. E.; Gilchrist, A.; Layden, R. B. SCFA receptors in pancreatic beta cells: novel diabetes targets? Trends Endocrinol. Metab. 2017, 28, 653–664.

(18) Psichas, A.; Ahmed, K.; Gilchrist, A.; Layden, B. T. SCFA receptors in pancreatic beta cells: novel diabetes targets? Trends Endocrinol. Metab. 2017, 28, 653–664.

(19) Milligan, G.; Bhoginini, D.; George, E. Ligands at the free fatty acid receptors 2/3 (GPR43/GPR41). Handb. Exp. Pharmacol. 2016, 236, 17–32.

(20) Buckow, A. T.; Briscoe, C. P. Key questions for translation of FFA receptors: From pharmacology to medicines. Handb. Exp. Pharmacol. 2016, 236, 101–131.

(21) Lee, T.; Schwander, R.; Swaminath, G.; Weizsäcker, J.; Cardozo, M.; Greenberg, J.; Jaaeceli, P.; Ge, H. F.; Wang, Y. C.; Jiao, X. Y.; Liu, J.; Kayser, F.; Tian, H.; Li, Y. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 2008, 74, 1599–1609.

(22) Wang, Y. C.; Jiao, X. Y.; Kayser, F.; Liu, J. W.; Wang, Z. Y.; Wanska, M.; Greenberg, J.; Weizsäcker, J.; Ge, H. F.; Tian, H.; Wong, S.; Schwander, R.; Lee, T.; Li, Y. The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 20, 493–498.

(23) Smith, N. J.; Ward, R. J.; Stoddart, L. A.; Hudson, B. D.; Kostenis, E.; Ulven, T.; Morris, J. C.; Crankle, T.; Tikhonova, I. G.; Adams, D. R.; Milligan, G. Extracellular loop 2 of the Free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol. Pharmacol. 2011, 80, 163–173.

(24) Hoveyda, H.; Brantis, C. E.; Duthieul, G.; Zoute, L.; Schils, D.; Bernard, J. Compounds, Pharmaceutical Composition and Methods for Use in Treating Metabolic Disorders. WO2010006668A1, 2010.

(25) Hudson, B. D.; Due-Hansen, M. E.; Christiansen, E.; Hansen, A. M.; Mackenzie, A. E.; Murdoch, H.; Pandey, S. K.; Ward, R. J.;
Marquez, R.; Tikhonova, I. G.; Ulven, T.; Milligan, G. Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. *J. Biol. Chem.* 2013, 288, 17296–17312.

(31) Hoveyda, H.; Schils, D.; Zoute, L.; Parcq, J.; Bernard, J.; Fraser, G. Compounds, Pharmaceutical Composition and Methods for Use in Treating Inflammatory Diseases. WO2015078494A1, 2015.

(32) Sergeev, E.; Hansen, A. H.; Bolognini, D.; Kawakami, K.; Kishi, T.; Aoki, J.; Ulven, T.; Inoue, A.; Hudson, B. D.; Milligan, G. A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias. *Sci. Rep.* 2017, 7, 13741.

(33) Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. *Nat. Rev. Drug Discovery* 2007, 6, 881–890.

(34) Waring, M. J. Lipophilicity in drug discovery. *Expert Opin. Drug Discovery* 2010, 5, 235–246.

(35) Waring, M. J.; Arrowsmith, J.; Leach, A. R.; Leeson, P. D.; Mandrell, S.; Owen, R. M.; Paireaudieu, G.; Pennie, W. D.; Pickett, S. D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. *Nat. Rev. Drug Discovery* 2015, 14, 475–486.

(36) Due-Hansen, M. E.; Pandey, S. K.; Christiansen, E.; Andersen, R.; Hansen, S. V.; Ulven, T. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates. *Org. Biomol. Chem.* 2016, 14, 430–433.

(37) Ghosh, A. K.; Anderson, D. D. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors. *Future Med. Chem.* 2011, 3, 1181–1197.

(38) Pinho e Melo, T. M. V. D.; Santos, C. I. A.; Rocha Gonsalves, A. M. d. A.; Paixão, J. A.; Beja, A. M. Synthesis of tricyclic isoindoles with pharmacological variation between species orthologs. *Chem. Biol.* 2010, 17312.

(39) Pinho e Melo, T. M. V. D.; Santos, C. I. A.; Rocha Gonsalves, A. M. d. A.; Paixão, J. A.; Beja, A. M.; Ramos Silva, M.; Alte da Veiga, L. CyclodDITION reactions of 3-aryl-5-phenyl-SH,7H-thiazolo[3,4-c]oxazol-4-ium-1-olates. *Tetrahedron* 2002, 58, 5093–5102.

(40) Hudson, B. D.; Christiansen, E.; Tikhonova, I. G.; Grundmann, M.; Kostenis, E.; Adams, D. R.; Ulven, T.; Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. *FASEB J.* 2012, 26, 4951–4965.

(41) Sergeev, E.; Hansen, A. H.; Pandey, S. K.; MacKenzie, A. E.; Hudson, B. D.; Ulven, T.; Milligan, G. Non-equivalence of key functional bias.

(42) Bjorkman, L.; Martensson, J.; Winther, M.; Gabl, M.; Holdfeldt, A.; Uhbrorn, M.; Bylund, J.; Hoigaard Hansen, A.; Pandey, S. K.; Ulven, T.; Forsman, H.; Dahlgren, C. The neutrophil response induced by an agonist for free fatty acid receptor 2 (GRPR3) is primed by tumor necrosis factor alpha and by receptor uncoupling from the cytoskeleton but attenuated by tissue recruitment. *Mol. Cell. Biol.* 2016, 36, 2583–2595.

(43) Vermeire, S.; Kojecký, V.; Knoflícek, V.; Reinisch, W.; Van Kaem, T.; Namour, F.; Beetens, J.; Vanhoufte, F. GLPG0974, an FFA2 antagonist, in ulcerative colitis: efficacy and safety in a multicenter proof-of-concept study. *J. Crohns Colitis* 2015, 9 (Suppl. 1), S39.

(44) Kolačzkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. *Nat. Rev. Immunol.* 2013, 13, 159–175.

(45) Pirzonen, M.; Dupont, S.; Babel, M.; Beaumont, S.; Bienvenu, N.; Blanche, R.; Cherel, L.; Christophe, T.; Crescenzi, B.; De Lemos, E.; Delerive, P.; Deprez, P.; De Vos, S.; Djata, F.; Fletcher, S.; Kopiejewski, S.; L'Ebrary, C.; Lefrancois, J. M.; Lavazais, S.; Manioci, M.; Nelles, L.; Oste, L.; Polancec, D.; Quenehen, V.; Soulas, F.; Triballeau, N.; van der Aar, E. M.; Vandehinste, N.; Wakselman, E.; Brys, R.; Saniere, L. Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: From hit to clinic. *J. Med. Chem.* 2014, 57, 10044–10057.

(46) Vinolo, M. A. R.; Ferguson, G. J.; Kulkarni, S.; Damoulakis, G.; Anderson, K.; Bohlooly-Y, M.; Stephens, L.; Hawkins, P. T.; Curi, R. SCFAs induce mouse neutrophil chemotaxis through the GRPR3 receptor. *PloS One* 2011, 6, e21205.

(47) Ghosh, A. K.; Anderson, D. D. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors. *Future Med. Chem.* 2011, 3, 1181–1197.

(48) Ge, H.; Li, X.; Weismann, J.; Wang, P.; Baribault, H.; Chen, J. L.; Tian, H.; Li, Y. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. *Endocrinology* 2008, 149, 4519–4526.

(49) Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* 2010, 53, 2719–2740.

(50) Crystalis PRO 1.171.39.12h; Rigaku Oxford Diffraction, 2015.

(51) Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B. Shelixx: a QD graphical user interface for SHELXL. *J. Appl. Crystallogr.* 2011, 44, 1281–1284.

(52) Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found. Adv.* 2015, 71, 3–8.

(53) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* 2015, 71, 3–8.

(54) Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.; Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.; Okada, K. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. *Nature* 2014, 513, 124–127.

(55) Banks, J. L.; Bear, H. S.; Cao, Y.; Cho, A. E.; Damm, W.; Farid, R.; Felts, A. K.; Halgren, T.; Mainz, D. T.; Maple, J. R.; Murphy, R.; Philipp, D. M.; Repasky, M. P.; Zhang, L. Y.; Berne, B. J.; Friesen, R. A.; Gallicchio, E.; Levy, R. Integrated modeling program, applied chemical theory (IMPACT). *J. Comput. Chem.* 2005, 26, 1752–1780.

(56) Hudson, B. D.; Shimpukade, B.; Milligan, G.; Ulven, T. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). *J. Biol. Chem.* 2014, 289, 20345–20358.

(57) MacKenzie, A. E.; Caltabiano, G.; Kent, T. C.; Jenkins, L.; McCallum, J. E.; Hudson, B. D.; Nicklin, S. A.; Fawcett, L.; Markwick, R.; Charlton, S. J.; Milligan, G. The antiallergic mast cell stabilizers lodoxamide and bufalin as the first high and equipotent agonists of human and rat GPR35. *Mol. Pharmacol.* 2014, 85, 91–104.

(58) Ward, R. J.; Alvarez-Curto, E.; Milligan, G. Using the Flp-In T-Rex system to regulate GPCR expression. *Methods Mol. Biol.* 2011, 746, 21–37.

(59) Bolognini, D.; Moss, C. E.; Nilsson, K.; Peterson, A. U.; Donnelly, I.; Sergeev, E.; Konig, G. M.; Kostenis, E.; Kurowska-Stolarska, M.; Miller, A.; Dekker, N.; Tobin, A. B.; Milligan, G. A novel allosteric activator of free fatty acid 2 receptor displays unique Gi-functional bias. *J. Biol. Chem.* 2016, 291, 18915–18931.

(60) Hill, J. R. In vitro drug metabolism using liver microsomes. *Curr. Protoc. Pharmacol.* 2003, 7, 7.8.1–7.8.11.