Data Article

Performance data of multiple-precision scalar and vector BLAS operations on CPU and GPU

Konstantin Isupov

Department of Electronic Computing Machines, Vyatka State University, Russian Federation

A R T I C L E I N F O

Article history:
Received 22 February 2020
Revised 14 March 2020
Accepted 23 March 2020
Available online 21 April 2020

Keywords:
Multiple-precision arithmetic
Floating-point computations
Graphics processing units
CUDA
BLAS

A B S T R A C T

Many optimized linear algebra packages support the single- and double-precision floating-point data types. However, there are a number of important applications that require a higher level of precision, up to hundreds or even thousands of digits. This article presents performance data of four dense basic linear algebra subprograms – ASUM, DOT, SCAL, and AXPY – implemented using existing extended-/multiple-precision software for conventional central processing units and CUDA compatible graphics processing units. The following open source packages are considered: MPFR, MPDECI-MAL, ARPREC, MPACK, XBLAS, GARPREC, CAMPARY, CUMP, and MPRES-BLAS. The execution time of CPU and GPU implementations is measured at a fixed problem size and various levels of numeric precision. The data in this article are related to the research article entitled “Design and implementation of multiple-precision BLAS Level 1 functions for graphics processing units” [1].

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)

E-mail address: ks_isupov@vyatsu.ru

https://doi.org/10.1016/j.dib.2020.105506

2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
Specifications table

Subject	Computer Science
Specific subject area	High-Precision Computations
Type of data	Tables and CSV files
How data were acquired	Execution of the compiled source code
Data format	Raw and processed
Parameters for data collection	Hardware system: Intel Core i5-4590 (3.30 GHz, 4 Cores/4 Threads), 16 GB DDR3 RAM, NVIDIA Turing RTX 2060 GPU (1920 CUDA Cores, Compute Capability 7.5, 6 GB GDDR6 memory). Software environment: Ubuntu 19.10 (development branch), GCC compiler version 7.4.0, CUDA Toolkit 10.1.105, nvcc flags: -O3 -DNDEBUG -use_fast_math -std=c++14 -Xcompiler=-O3,-fopenmp,-fast-math. The input data sets were composed of random numbers in the range of \(-1\) to 1. Measurements do not include the time spent transferring data between the CPU and the GPU.
Description of data collection	Performance data were collected at a fixed problem size and various arithmetic precisions. The CPU-based codes were developed using OpenMP and executed on multiple cores. Three runs were performed for each test case. At each test run, the BLAS function under evaluation was repeated several times, and the total execution time of all iterations was measured in milliseconds. Then the average execution time for one iteration was calculated.
Data source location	Vyatka State University, Kirov, Russian Federation
Data accessibility	Processed data are with this article. Raw data are available at the Mendeley Data repository [http://dx.doi.org/10.17632/yrdh6r3sgx.2]. The source code for the tests is available at GitHub (https://github.com/kisupov/mpres-blas).
Related research article	K. Isupov, V. Knyazkov, A. Kuvaev, Design and Implementation of Multiple-Precision BLAS Level 1 Functions for Graphics Processing Units, Journal of Parallel and Distributed Computing, 140 (2020) 25–36. [https://doi.org/10.1016/j.jpdc.2020.02.006].

Value of the data

- The data obtained allows comparing the efficiency (in terms of execution time) of various multiple-precision packages when performing BLAS Level 1 operations, which are the building blocks for many linear algebra algorithms.
- The data could be useful for developing GPU accelerated applications that require more precision than the standard double precision available in most existing BLAS libraries.
- They can benefit researchers dealing with scientific and engineering calculations that are sensitive to rounding errors (e.g., ill-conditioned linear systems and eigenvalue problems).
- These data can also be used to understand the impact on performance of computations with higher levels of precision performed on multicore processors and massively parallel graphics processing units.

1. Data description

The data presented in this paper are performance measurements of ASUM, DOT, SCAL and AXPY functions from Level 1 BLAS [2] implemented using multiple-precision software for central processing units (CPUs) and CUDA-enabled graphics processing units (GPUs). The ASUM operation computes the sum of magnitudes of the vector elements. The DOT operation computes a vector-dot product. The SCAL operation computes the product of a vector by a scalar. The AXPY operation computes a vector-scalar product and adds the result to a vector. All data consists of 60 CSV files (raw data) and two tables (processed data).

The raw data of the experiments are available at the Mendeley Data repository [3]. The raw data are organized in two folders named “1. Precision from 120 to 2400 bits” and “2. Precision from 106 to 424 bits”. The first folder contains the performance data of implementations using the MPFR, ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP, and MPRES-BLAS packages for
precisions of 120, 240, 480, 720, 960, 1200, 1440, 1680, 1920, 2160, and 2400 bits. The second folder contains the performance data of implementations using the XBLAS, CAMPARY, and MPRES-BLAS packages for precisions of 106, 212, 318, and 424 bits. Each raw file contains the results of three test runs at a fixed operation size of 1,000,000. For each test run, the BLAS func-

Table 1
Average execution time of multiple-precision BLAS Level 1 operations based on MPFR, ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP, and MPRES-BLAS. Measurements are in milliseconds.

Precision, bits	Intel Core i5 4590	NVIDIA Turing RTX 2060						
	MPFR	ARPREC	MPDECIMAL	MPACK	GARPREC	CUMP	MPRES-BLAS	
Sum of absolute values (ASUM)	120	7.05	60.31	55.12	114.03	2.78	4.43	0.79
	240	9.30	62.82	55.63	129.57	3.79	5.23	1.27
	480	9.75	66.30	57.35	128.37	7.38	6.89	2.98
	720	11.25	80.50	57.01	139.05	13.63	9.96	3.93
	960	13.31	91.86	58.07	142.67	15.16	12.94	5.95
	1200	14.20	91.54	58.39	153.44	18.30	16.60	6.46
	1440	15.22	93.83	60.81	154.51	21.49	19.94	9.29
	1680	17.05	98.35	60.76	164.56	26.85	23.47	8.96
	1920	19.31	108.70	59.72	174.48	29.65	25.57	11.91
	2160	22.70	109.41	59.04	197.77	32.23	29.41	11.20
	2400	22.98	117.13	61.57	201.50	35.51	32.13	16.07
Dot product of two vectors (DOT)	120	14.16	100.03	56.93	29.51	9.70	3.84	1.93
	240	16.34	112.55	62.62	42.08	13.01	5.01	2.93
	480	19.11	170.23	58.53	59.93	31.95	8.08	5.84
	720	24.82	246.81	62.19	78.84	50.01	12.86	8.43
	960	27.69	353.26	71.95	99.19	85.96	16.88	10.48
	1200	32.26	430.39	92.62	134.25	115.05	23.05	12.51
	1440	36.18	565.67	104.22	66.61	156.96	29.87	16.05
	1680	41.95	741.57	131.85	74.48	222.28	37.93	16.67
	1920	47.10	938.14	157.48	89.72	278.08	44.36	20.82
	2160	53.79	1096.66	204.60	101.37	328.02	53.30	21.49
	2400	59.14	1338.25	221.97	109.38	402.19	62.67	25.60
Vector-scalar product (SCAL)	120	6.93	43.12	27.52	92.29	6.83	0.61	0.79
	240	11.80	58.52	28.42	106.25	9.62	0.95	1.10
	480	23.64	107.11	28.07	115.61	25.51	1.93	1.88
	720	40.78	173.31	32.08	134.30	42.21	3.72	3.38
	960	66.72	289.82	40.59	165.11	74.27	5.53	3.22
	1200	92.92	386.84	48.62	197.50	102.64	8.35	5.10
	1440	26.28	514.54	65.99	235.13	142.76	11.56	4.58
	1680	30.39	732.00	90.03	284.39	203.65	14.99	6.57
	1920	33.47	901.76	111.28	332.91	256.73	18.73	5.82
	2160	38.86	1051.37	136.83	388.47	306.08	22.96	8.12
	2400	44.04	1326.25	162.87	468.98	376.58	27.79	7.56
Constant times a vector plus a vector (AXPY)	120	11.56	76.79	59.40	30.53	9.11	1.30	2.23
	240	15.13	92.98	61.76	37.14	12.33	2.34	2.99
	480	18.05	166.53	63.64	42.82	26.92	4.74	4.63
	720	24.91	253.53	69.85	57.69	46.24	7.98	7.27
	960	28.22	382.67	79.03	61.34	79.77	10.95	7.52
	1200	32.82	503.74	102.08	75.93	107.60	15.47	10.44
	1440	37.57	661.71	116.52	93.61	150.13	20.12	10.50
	1680	42.32	885.10	135.75	108.75	209.87	25.28	13.02
	1920	49.09	1091.15	166.22	129.85	268.98	30.04	13.12
	2160	52.97	1285.11	192.59	151.76	316.18	35.94	16.27
	2400	62.06	1466.24	218.83	167.63	389.25	42.49	16.44
tion was repeated ten times, and the raw file presents the total execution time of ten iterations (in milliseconds).

The processed data are reported in Tables 1 and 2. Table 1 presents the average execution time of the MPFR, ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP, and MPRES-BLAS packages with precisions from 120 to 2400 bits. Table 2 reports the average time of the XBLAS, CAMPARY, and MPRES-BLAS packages with precisions of 106, 212, 318, and 424 bits. The tables allow evaluating the benefits of using GPUs to perform computation with extended/multiple precision.

2. Experimental design, materials, and methods

All the experiments were carried out at a fixed operation size of 1,000,000. The input vectors were composed of randomly generated floating-point numbers in the range \([-1; 1]\). In order to generate uniformly distributed random significands, we used the `mpz_urandomb` function from the GNU MP Bignum Library (https://gmplib.org/). Measurements do not include the time spent transferring data between the CPU and the GPU. We have also excluded the time of converting data into internal multiple-precision representations.

The function `clock_gettime` was used to measure the execution times of CPU implementations. For GPU implementations, the execution times were measured using CUDA Events. In order to reduce the impact of noise, no other applications were launched during the test execution, and the GUI was not used. Three runs were performed for each test case. At each test run, the BLAS function under evaluation was repeated ten times, and the total execution time of all iterations was measured.

A summary of the experimental setup is given in Table 3. Table 4 contains a brief description of the considered multiple-precision software.

Using arithmetic operations from MPFR, ARPREC, MPDECIMAL, GARPREC, CUMP and CAMPARY, we have implemented multiple-precision ASUM, DOT, SCAL, and AXPY for CPU and GPU. The CPU-based codes were developed using OpenMP and executed in parallel with 4 threads on 4 physical cores.

For MPACK, we used the `mpreal` data type and the `Rasum`, `Rdot`, `Rscal`, and `Raxpy` routines, which are based on MPFR C++ (http://www.holoborodko.com/pavel/mpfr/). Note that only the `Rdot` and `Raxpy` routines support multi-threaded calculations, and these routines were performed with 4 OpenMP threads, whereas `Rasum` and `Rscal` were performed with a single thread.
For XBLAS, the double-double precision routines \texttt{BLAS_dsum_x}, \texttt{BLAS_ddot_x}, and \texttt{BLAS_dwaxphy_x} were evaluated, which provide 106 bits of internal precision. Since XBLAS does not support parallel computation, these routines were executed with a single thread. Note that the \texttt{BLAS_dsum_x} routine computes the sum of the vector elements, not the sum of absolute values of the vector elements. Furthermore, XBLAS does not implement the \texttt{SCAL} operation.

In the case of MPRES-BLAS, we used the routines \texttt{mpasum}, \texttt{mpdot}, \texttt{mpscal}, and \texttt{mpaxpy}. These routines are implemented as host functions that invoke GPU kernels. Each routine has a set of template parameters that specify the kernel execution configurations. These parameters are described in Table 5. Table 6 shows the kernel execution configurations used in the experiments.
Table 5
Template parameters of the MPRES-BLAS routines; for details, see [1].

Routine	Parameter	Description
mpasum	gridDim1	The number of blocks for parallel summation
	blockDim1	The number of threads per block for parallel summation
mpdot	gridDim1	The number of blocks for computing the signs, exponents, RNS interval
	blockDim1	evaluations, and for rounding the result in vector-vector multiplication
	blockDim1	The number of threads per block for computing the signs, exponents, RNS
		interval evaluations, and for rounding the result in vector-vector
		multiplication
mpasum	gridDim2	The number of blocks for computing the digits (residues) of multiple-precision
		significands in vector-vector multiplication
mpasum	gridDim3	The number of blocks for reducing the vector of products
mpasum	blockDim3	The number of threads per block for reducing the vector of products
mpasum	gridDim1	The number of blocks for computing the signs, exponents, RNS interval
	blockDim1	evaluations, and for rounding the result
	blockDim1	The number of threads per block for computing the signs, exponents, RNS
		interval evaluations, and for rounding the result
		also for rounding the result
	gridDim2	The number of blocks for computing the digits (residues) of multiple-precision
		significands

Table 6
MPRES-BLAS execution configurations used in the experiments.

Precision, bits	mpasum gridDim1	blockDim1	mpdot gridDim1	blockDim1	gridDim2	blockDim1	gridDim3	blockDim1	mpasum gridDim1	blockDim1	mpasum gridDim1	blockDim1	gridDim2	blockDim1
120	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
240	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
480	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
720	256	64	512	128	8192	256	64	512	256	128	512	128	8192	
960	256	64	512	128	8192	256	64	512	256	128	512	128	8192	
1200	256	32	512	128	8192	256	64	512	256	128	512	128	8192	
1440	512	64	512	128	8192	512	64	512	128	512	512	128	8192	
1680	512	64	512	128	8192	512	64	512	128	512	512	128	8192	
1920	512	32	512	128	8192	512	32	512	128	512	512	128	8192	
2160	512	32	512	128	8192	512	32	512	128	512	512	128	8192	
2400	512	32	512	128	8192	512	32	512	128	512	512	128	8192	
106	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
212	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
318	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	
424	256	128	512	128	8192	256	128	8192	256	128	512	128	8192	

Among the various configurations considered, these configurations provide better performance on the machine employed in the experiments.

Acknowledgments

This work was supported by the Russian Science Foundation, grant number 18–71–00063.

Declaration of Competing Interest

The author declares that he has no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.
References

[1] K. Isupov, V. Knyazkov, A. Kuvaev, Design and implementation of multiple-precision BLAS Level 1 functions for graphics processing units, J. Parallel Distrib. Comput. 140 (2020) 25–36, doi: 10.1016/j.jpdc.2020.02.006.

[2] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/, 2017 (accessed 24 September 2019).

[3] K. Isupov, V. Knyazkov, A. Kuvaev, Execution time of high-precision BLAS Level 1 operations on Intel Core i5-4590 and NVIDIA Turing RTX 2060, Mendely Data (2020) https://doi.org/10.17632/yrdh6r3sgx2.

[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Softw. 33 (2) (2007) 13, doi: 10.1145/1236463.1236468.

[5] D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, ARPREC: An arbitrary Precision Computation Package, Lawrence Berkeley National Lab, Berkeley, CA, USA, 2002, p. 8. Technical Report LBNL-53651, doi: 10.2172/817634.

[6] S. Krah, mpfr. http://www.bytereef.org/mpfr/index.html, 2016 (accessed 20 September 2019).

[7] M. Nakata, Poster: MPACK 0.7.0: Multiple precision version of BLAS and LAPACK, in: Proc. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 2012, p. 1353, doi: 10.1109/SC.Companion.2012.183.

[8] X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Martin, B.J. Thompson, T. Tung, D.J. Yoo, Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Softw. 28 (2) (2002) 152–205, doi: 10.1145/567806.567808.

[9] M. Lu, B. He, Q. Luo, Supporting extended precision on graphics processors, in: Sixth International Workshop on Data Management on New Hardware, DaMoN’10, Indianapolis, Indiana, USA, 2010, pp. 19–26, doi: 10.1145/1869389.1869392.

[10] M. Joldes, J.-M. Muller, V. Popescu, Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming, in: Proc. 2017 IEEE 24th Symposium on Computer Arithmetic, ARITH, London, UK, 2017, pp. 27–34, doi: 10.1109/ARITH.2017.18.

[11] T. Nakayama, D. Takahashi, Implementation of multiple-precision floating-point arithmetic library for GPU computing, in: Proc. 23rd IASTED International Conference on Parallel and Distributed Computing and Systems, PDCS 2011, Dallas, USA, 2011, pp. 343–349, doi: 10.2316/P.2011.757-041.