Predicting Translation Performance with Referential Translation Machines

Ergun Biçici
orcid.org/0000-0002-2293-2031
bicici.github.com

Abstract

Referential translation machines achieve top performance in both bilingual and monolingual settings without accessing any task or domain specific information or resource. RTMs achieve the 3rd system results for German to English sentence-level prediction of translation quality and the 2nd system results according to root mean squared error. In addition to the new features about substring distances, punctuation tokens, character n-grams, and alignment crossings, and additional learning models, we average prediction scores from different models using weights based on their training performance for improved results.

1 Introduction

Quality estimation task (QET) in WMT17 (Bojar et al., 2017) (QET17) is about prediction of the quality of machine translation output at the sentence- (Task 1), word- (Task 2), and phrase-level (Task 3) in IT and pharmaceutical domains without using reference translations. Prediction of translation performance can help in estimating the effort required for correcting the translations during post-editing by human translators if needed. RTMs are capable to model different domains and tasks while achieving top performance in both monolingual (Biçici and Way, 2015) and bilingual settings (Biçici, 2016b). We develop RTM models for all of the three subtasks of QET17, which include English to German (en-de), and German to English (de-en) translation directions. Task 1 is about predicting HTER (human-targeted translation edit rate) scores (Snover et al., 2006), Task 2 is about binary classification of word-level quality, and Task 3 is about binary classification of phrase-level quality.

2 Referential Translation Machines

Referential translation machine (RTM) models are predict data translation between the instances in the training set and the test set. RTMs use interpreters, data close to the task instances, to derive features measuring the closeness of the test sentences to the training data, the difficulty of translating them, and to identify translation acts between any two data sets for building prediction models. RTMs are applicable in different domains and tasks and in both monolingual and bilingual settings. Figure 1 depicts RTMs and explains the model building process. RTMs use ParFDA (Biçici, 2016a) for instance selection and machine translation performance prediction system (MTPPS) (Biçici and Way, 2015) for generat-
Table 1: Task 1 test results of the top 2 individual RTM models. RTM becomes the 2nd system according to RMSE and 3rd system in de-en and 6th system in en-de. r_P is Pearson’s correlation and r_S is Spearman’s correlation.

Task	Model	DeltaAvg	r_P	r_S	RMSE	MAE	RAE	MAER	MRAER	Rank
en-de MIX 4	PLS GBR	8.64	0.4544	0.4768	0.1707	0.1296	0.8483	0.7594	0.7962	9
de-en MIX 4	TREE	8.94	0.5604	0.5729	0.1580	0.1186	0.8586	0.7769	0.8099	10

Table 2: Number of instances used as interpretants by the RTM models.

Task	Train	Test	RTM Interpretants	LM
Task 1, 2, 3 (en-de)	26000	2000	1.1M	17.6M
Task 1, 2, 3 (de-en)	26000	2000	1.1M	17.6M

We use Global Linear Models (GLM) (Collins, 2002) with dynamic learning (GLMd) (Bicici, 2002) as learning models in combination with feature selection (FS) (Guyon et al., 2002) and partial least squares (PLS) (Wold et al., 1984). We use scikit-learn for all these models. The following parameters are optimized: λ for RR, k for KNN, γ, C, and ϵ for SVR, minimum number of samples for leaf nodes and for splitting an internal node for TREE, the number of features for FS, and the number of dimensions for PLS. For AdaBoost, we do not optimize but use exponential weights are inverted to decrease error.

We use Ridge regression (RR), k-nearest neighbors (KNN), support vector regression (SVR), AdaBoost (Freund and Schapire, 1997), and extremely randomized trees (TREE) (Geurts et al., 2006) as learning models in combination with feature selection (FS) (Guyon et al., 2002) and partial least squares (PLS). We use grid search for SVR. Evaluation metrics we use are Pearson’s correlation (r), mean absolute error (MAE), relative absolute error (RAE), MAER (mean absolute error relative), and MRAER (mean relative absolute error relative) (Bicici and Way, 2015). DeltaAvg (Callison-Burch et al., 2012) calculates the average quality difference between the top $n-1$ quartiles and the overall quality for the test set. The final evaluation metrics include r, MAE, and DeltaAvg.

We improved RTM models (Bicici, 2016b) with additional features:

* normalized Levenshtein distance between the source sentence and its translation and their longest common prefix, suffix, and substring (Tian et al., 2017) normalized by the minimum length of the compared sentences.

* number of tokens about punctuation in the source sentence and the translation (Kozlova et al., 2016) and the cosine between them.

* modified CHRF$_3$ (Popovic, 2015) to compute character n-grams split by word boundary space with $n \in [3, 7]$ whereas the F_1 (Bicici, 2011) we already use compute with word n-grams up to $n = 5$.

* proportion of alignments that cross (\textless{}A\textgreater{}) the link (Sagemo and Stymne, 2016) of any other alignments:

$$\sqrt{0.5 \times \frac{|a \textless{}A\textgreater{} a|}{|A|}}$$ (1)

* word alignment correspondence features (Sagemo and Stymne, 2016).

* additional learning models including KNN, AdaBoost, and gradient boosting regressor (GBR) (Tian et al., 2017; Hastie et al., 2009).

We also use prediction averaging (Bicici, 2017), where the performance on the training set is used to obtain weighted average of the top k predictions, \hat{y} with evaluation metrics indexed by $j \in J$:

$$\hat{y}_{j,k} = \frac{1}{k} \sum_{i=1}^{k} \hat{y}_i$$

MEAN

$$\hat{y}_{j,w,k} = \frac{1}{\sum_{i=1}^{k} \frac{1}{w_{j,i}}} \sum_{i=1}^{k} \frac{1}{w_{j,i}} \hat{y}_i$$

MIX

$$\hat{y}_k = \frac{1}{|J|} \sum_{j \in J} \hat{y}_{j,w,k}$$

MAER is used to select the predictions and weights are inverted to decrease error.

We use Global Linear Models (GLM) (Collins, 2002) with dynamic learning (GLMd) (Bicici,
Table 3: RTM Task 2 training results where GLMd parallelized over 4 splits is referred as GLMd s4 and GLMd with 5 splits as GLMd s5.

Model	splits	% error	weights
en-de	GLMd	4	0.0773
	GLMd	5	0.0668
de-en	GLMd	4	0.0468
	GLMd	5	0.0469
phrase	GLMd	4	0.0668
	GLMd	5	0.0509
word	en-de	GLMd	0.0468
	GLMd	5	0.0469
phrase	en-de	GLMd	0.0129
	GLMd	5	0.0125

Table 4: RTM Task 2 results on the test set after the challenge. wF_1 is average weighted F_1 score.

Model	F_1 BAD	F_1 OK	wF_1		
en-de	GLMd s4	0.318	0.8844	0.2813	
	GLMd s5	0.36	0.8778	0.3158	
de-en	GLMd s4	0.3363	0.9386	0.3157	
	GLMd s5	0.3381	0.9395	0.3176	
phrase	en-de	GLMd s4	0.4043	0.8079	0.3283
	GLMd s5	0.4114	0.8079	0.3323	
phrase	de-en	GLMd s4	0.2472	0.9073	0.2242
	GLMd s5	0.3598	0.8884	0.3197	

3 Results

Table 2 lists the number of sentences in the training and test sets for each task and the number of instances used as interpretants in the RTM models (M for million). We tokenize and truecase all of the corpora using Moses's (Koehn et al., 2007) processing tools. LMs are built using KENLM (Heafield et al., 2013).

3.1 QET 2017 Results

The results on the Task 1 test set are listed in Table 1. For Task 2 and Task 3, we list the results we obtain after the challenge for coherent presentation on the training sets in Table 3 and on the test set in Table 4. The results we obtained in the challenge are similar. Ranks for Task 1 are out of 14 submissions and 9 systems. Top RTM models that competed in Task 1 were MIX 4, which combines top 4 predictions, PLS GBR, and TREE. RTM becomes the 2nd system according to RMSE and 3rd system in de-en and 6th system in en-de.

3.2 Recomputing QET 2016 Results

QET17 also compares results on QET16 test sets. QET16 test set domain was different than the domain of QET17, overlapping on the IT domain. We use the RTM models built for QET17 to obtain results on the QET16 test sets, which is categorized as transductive transfer learning. Transfer learning attempt to re-use and transfer knowledge from models developed in different domains or for different tasks such as using models developed for handwritten digit recognition for handwritten character recognition (Guyon et al., 2012). The results are in Table 5 for Task 1, which does not show improvement, and in Table 7, which show improvements with RTM models built for QET17.

3.3 Comparison with Previous Results

We compare the difficulty of tasks according to MRAER levels achieved. In Table 6, we list the RTM test results when predicting sentence-level HTER in 2013–2017. Compared with QET16, we observe improvements in MRAER and both MAE and RAE are improved when QET17 is compared with others.

4 Conclusion

Referential translation machines achieve top performance in automatic, accurate, and language independent prediction of translation performance and achieve to become the 2nd system according to RMSE when predicting the translation performance from German to English. RTMs pioneer a language independent approach for predicting translation performance and remove the need to access any task or domain specific information or resource.
Table 5: QET16 Task 1 results are not improved with QET17 Task 1 RTM models.

Model	DeltaAvg	r	MAE	RMSE	RAE	MAER	MRAER
2017 ST TREE	5.14	0.2052	0.1456	0.1875	0.9634	0.8844	0.8666
PLS GBR	3.71	0.1875	0.1474	0.1914	0.9755	0.8706	0.8966
2016 SVR	6.38	0.3581	0.1359	0.1806	0.8992	0.7509	0.8567
FS SVR	6.66	0.3764	0.1346	0.1781	0.8905	0.7537	0.8388

Table 6: Test performance of the top RTM results when predicting sentence-level HTER in 2013–2017.

Model	wF₁	F₁ OK	F₁ BAD
2017 Word	0.2857	0.8775	0.3256
	0.3053	0.8653	0.3528
Phrase	0.3421	**0.8122**	0.4176
	0.3504	**0.817**	0.4289
2016 Word	0.2725	**0.8884**	0.3068
	0.3081	0.8820	0.3494
Phrase	0.3070	**0.8145**	0.3770
	0.3274	**0.8016**	0.4084

Table 7: QET16 Task 2 and Task 2p results show improvement.

References

- Ergun Biciçi. 2011. *The Regression Model of Machine Translation*. Ph.D. thesis, Koç University. Supervisor: Deniz Yuret.

- Ergun Biciçi. 2016a. *ParFDA for instance selection for statistical machine translation*. In *Proc. of the First Conference on Statistical Machine Translation (WMT16)*. Association for Computational Linguistics, Berlin, Germany. http://aclanthology.info/papers/parfda-for-instance-selection-for-statistical-machine-translation.

- Ergun Biciçi. 2016b. *Referential translation machines for predicting translation performance*. In *Proc. of the First Conference on Statistical Machine Translation (WMT16)*. Association for Computational Linguistics, Berlin, Germany. http://aclanthology.info/papers/referential-translation-machines-for-predicting-translation-performance.

- Ergun Biciçi. 2017. *RTM at SemEval-2017 task 1: Referential translation machines for predicting semantic similarity*. In *Proc. of the 11th International Workshop on Semantic Evaluation (SemEval-2017)*. Association for Computational Linguistics, Vancouver, Canada, pages 194–198. http://nlp.arizona.edu/SemEval-2017/pdf/SemEval030.pdf.

- Ergun Biciçi and Andy Way. 2015. *Referential translation machines for predicting semantic similarity*. *Language Resources and Evaluation* pages 1–27. https://doi.org/10.1007/s10579-015-9322-7.

- Ondrej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck, Jincen Antonio Yepes, Julia Kreutzer, Varvara Logacheva, Aurelie Neveol, Mariana Neves, Philipp Koehn, Christof Monz, Matteo Negri, Matt Post, Stefan Riezler, Artem Sokolov, Lucia Specia, Karin Verspoor, and Marco Turchi. 2017. *Proc. of the Second Conference on Machine Translation*. In *Proc. of the Second Conference on Machine Translation*. Association for Computational Linguistics, Copenhagen, Denmark.

- Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia. 2012. *Findings of the 2012 workshop on statistical machine translation*. In *Proc. of the Seventh Workshop on Statistical Machine Translation*. Montréal, Canada, pages 10–51.

- Michael Collins. 2002. *Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms*. In *Proc. of the ACL-02 conference on Empirical methods in natural language processing - Volume 10*. Stroudsburg, PA, USA, EMNLP ’02, pages 1–8. https://doi.org/10.3115/1118693.1118694.

- Yoav Freund and Robert E Schapire. 1997. *A decision-theoretic generalization of on-line learning and an application to boosting*. *Journal of Computer and System Sciences* 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504.
