Association of Genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus

Shania Abbas, Syed Tasleem Raza*, Faisal Ahmed, Absar Ahmad, Saliha Rizvi and Farzana Mahdi

Abstract

Type 2 diabetes mellitus (T2DM) is a non-autoimmune, complex, heterogeneous and polygenic metabolic disease condition characterized by persistent elevated blood glucose levels (hyperglycemia). India as said to be the diabetic capital of the world is likely to experience the largest increase in T2DM and a greater number of diabetic individuals in the world by the year 2030. Identification of specific genetic variations in a particular ethnic group has a critical role in understanding the risk of developing T2DM in a much efficient way in future. These genetic variations include numerous types of polymorphisms among which single nucleotide polymorphisms (SNPs) is the most frequent. SNPs are basically located within the regulatory elements of several gene sequences. There are scores of genes interacting with various environmental factors affecting various pathways and sometimes even the whole signalling network that cause diseases like T2DM. This review discusses the biomarkers for early risk prediction of T2DM. Such predictions could be used in order to understand the pathogenesis of T2DM and to better diagnostics, treatment, and eventually prevention.

Keywords: Genome sequencing, Single nucleotide polymorphism, Genetic polymorphism, Peroxisome proliferator-activated receptor gamma, Angiotensin converting enzyme, Methylene tetrahydrofolate reductase, Fatty acid binding protein-2, Fat mass and obesity associated gene, Type 2 diabetes mellitus

Review

Overview of type 2 diabetes mellitus

T2DM is a chronic metabolic disorder with a rapidly increasing prevalence highlighting the importance of continued research and the need for novel methods to both prevent and treat this pandemic disease. In case of India, the disease burden is estimated to be 87 million around 2030 [1]. The negative impacts of T2DM are considerable: as a lifelong disease, which increases morbidity and mortality, ultimately decreasing the quality of life [2]. If diabetes is not efficiently controlled, then the patient has a significantly higher risk of developing complications such as, hypoglycemia, ketoacidosis, and non-ketotic hyperosmolar coma. Apart from these, long-standing complications could be cardiovascular disease, chronic kidney failure, retinal damage, nerve damage, poor healing of wounds, gangrene on the feet leading to amputation, and erectile dysfunction etc. The recent global epidemic of T2DM almost certainly indicates the importance of environmental triggers such as sedentary lifestyle and dietary changes over last several decades. Nevertheless T2DM is amongst those complex diseases for which genetic contribution is well accepted. Identification of genetic components of T2DM is the most important area of diabetes research because elucidation of the diabetes genes (alleles) will influence all efforts toward a mechanistic understanding of the disease, its complications, cure, treatment and prevention [3]. Basically, many genes perform key regulatory functions in the development of T2DM, which is a polygenic disorder with multiple genes located on different chromosomes contributing to its susceptibility. The analysis of genetic factors associated with T2DM is further complicated by the fact that a variety of environmental factors interact with these genes to produce the disorder. Thus, identification and characterization of the gene variants among a particular ethnic group that play a significant role in T2DM, is one of the most important areas of
Candidate genes for type 2 diabetes mellitus
Numerous reports have been published on the genetics of T2DM with most recent ones showcasing the effect of SNPs in various genes corresponding to risk prediction of T2DM such as, gene variants of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) [4-6], Angiotensin Converting Enzyme (ACE) [7-9], Methylene Tetrahydrofolate Reductase (MTHFR) [10-14], Fatty Acid Binding Protein-2 (FABP2) [15-19] and Fat Mass and Obesity associated gene (FTO) [20,21]. In this review, we will focus on candidate genes (PPAR-γ, ACE, MTHFR, FABP2 and FTO) in which the genetic variants have been well established to be functional and shown in more than one study for their association with T2DM, in various ethnic groups. Findings from Previously Conducted Meta-Analyses of different Gene Variant in T2DM are shown in Table 1.

Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) gene
PPARs (isoforms α, δ, and γ) are ligand-activated transcription factors that heterodimerise with retinoid X receptor (RXR). It has been shown that agonists of PPAR possess antidiabetogenic, anti-inflammatory, and antioxidative effects. PPAR-γ gene, encoding the nuclear receptor PPAR-γ, was the first gene reproducibly associated with T2DM [36]. PPAR-γ gene is located on chromosome 3p25 encodes a nuclear transcription factor involved in the expression of hundreds of genes. PPAR-γ gene contains 9 exons, spans more than 100 kilobases, because of alternative mRNA splicing results in the production of 2 protein isoforms: PPARγ-1 and PPARγ-2 [22]. PPARs constitute a distinct sub-family of the nuclear receptors that are activated by naturally occurring fatty acids [40]. The association between the substitution of alanine for proline at codon 12 of PPAR-γ and the risk for T2DM has been widely studied since Yen CJ, first reported this polymorphism [41]. Within a unique domain of PPARγ-2 gene that enhances ligand independent activation, a common Pro12Ala polymorphism has been identified [5]. This polymorphism has been reported to be associated with obesity. Using a family based design to control for population stratification, it was reported that Ala allele of this polymorphism was associated with a decreased risk of T2DM [36]. A meta-analysis conducted by Ludovico found that the alanine polymorphism conferred significantly greater protection against T2DM among Asians than Caucasians [23], contradictory result have been reported within the same study elsewhere where Ala12 variant was associated with a reduced risk for the development of diabetes [5,26,42]. Soon, it became apparent that most negative studies had been underpowered and after combining the data from all published studies in a meta-analysis it became evident that Pro12Ala variant was associated with T2DM [5,28,43]. PPAR-γ plays a critical role in glucose homeostasis and serves as the molecular target for a class of insulin-sensitizing drugs called thiazolidinediones (TZDs). TZDs is PPARγ2 ligands and widely used for treatment of T2DM [24], they had very minimal activity toward PPAR-α or PPAR-β. Although PPAR-γ levels are 10–30 times higher in fat than in muscle or liver, this receptor is expressed in these latter tissues. Effects on insulin action in other tissues would then occur as a consequence of alterations in signalling molecules produced by fat, such as free fatty acids, TNF-α, leptin, or others (Perspectives in Diabetes PPAR-γ: Adipogenic Regulator and TZDs Receptor) [44]. PPAR-γ activation controls one or more genes that regulate systemic insulin sensitivity like TNF-α and leptin.

Angiotensin Converting Enzyme (ACE) gene
Genetic studies have revealed that the genes of renin angiotensin are highly polymorphic, raising the possibility in addition to environmental factors. The genetic make-up of Renin Angiotensin System (RAS) affects the status of RAS in the individuals. The emerging picture of ACE function is that it is more than just a key enzyme that catalyses cleavage of angiotensin I to the potent vasconstrictor peptide angiotensin II [45]. ACE also hydrolyzes the inactive angiotensin (1–9) peptide into the vasodilator metabolite angiotensin (1–7) [46], and it is additionally thought to inactivate the vasodilator peptides bradykinin and kallidin [46]. Among the various SNP’s associated with RAS, one of the examples is insertion (I)/deletion (D) polymorphism of ACE gene, which consists of 26 exons and span 21 kb on chromosome 17. The polymorphism exists within intron 16, consisting the presence or absence of 287 bp fragment [47]. The II (Insertion-Insertion) genotype is reported to be protective against development and progression of diabetic and non-diabetic nephropathy to chronic kidney disease [48]. Clinically, serum ACE level is useful for the evaluation of disease activity and follow-up in T2DM [31,49-52]. All previous studies in non-diabetic and diabetic nephropathies have demonstrated that the deletion polymorphism of ACE gene, particularly the homozygote DD, is a risk factor for an accelerated loss of kidney function [53]. Studies of ACE gene with T2DM have shown contradictory results, where some have shown association of ACE gene with T2DM [7,9,31-34] while others have shown no such association [8,35]. Indian studies, reported a strong association of ACE gene polymorphisms with T2DM in Northern India [29]. Vishwanathan and Bhavani established positive association of ACE polymorphism with T2DM in south India [54,55]; while Prasad and Ajay Kumar reported no any relation between ACE gene and T2DM among North Indian population [56,57].

Abbas et al. Journal of Biomedical Science 2013, 20:80
http://www.jbiomedsci.com/content/20/1/80
Methylenetetrahydrofolate reductase (MTHFR) gene

Methylenetetrahydrofolate reductase (MTHFR) has a major impact on regulating the folic acid pathway; it catalyzes the irreversible conversion of 5, 10-methylenetetrahydrofolate, which is the methyl donor (for the conversion of dUMP to dTMP), into 5-methyltetrahydrofolate. Genetic and environmental (e.g., dietary) factors play a key role in affecting the homocysteine levels [58]. One of the most common genetic defects of homocysteine metabolism is a mutation in MTHFR gene. The gene encoding MTHFR is located at

Table 1 A comparative study of PPARγ2, ACE, MTHFR, FABP2 and FTO genes polymorphism with T2DM in various ethnic groups

PPARγ2	Ethnicity	Reference	OR	P value	95%CI	Significant (Y/N)
	Japanese	[22]	4.35	<0.05		Y
	USA	[23]	1.24	<0.05	0.99–1.57	Y
	UK	[24]	0.86	<0.05	0.81–0.90	Y
	Caucasians	[25]	0.81	<0.05	0.72–0.91	Y
	Europeans	[26]	0.81	<0.05	0.75–0.88	Y
	North Indian	[27]	0.65	<0.05	0.42–0.99	Y
	USA	[21]	0.12	<0.05	0.03–0.52	Y
	French population	[28]	1.37	<0.05		Y

ACE	Ethnicity	Reference	OR	P value	95%CI	Significant (Y/N)
	North Indian	[29]	<0.05			Y
	Indian	[30]	8.826	<0.05	1.012–76.96	Y
	Malaysian	[9]	>0.05			N
	Taiwanese	[31]	<0.05			Y
	Iranian	[10]	3.122	<0.05	1.12–8.64	Y
	Japanese	[32]	1.49	<0.05	1.01–2.21	Y
	UK	[7]	1.55	<0.05	0.89–2.60	Y
	Turkish	[33]	<0.05			Y
	Australian	[34]	1.16	>0.05	0.94–1.43	N
	Caucasians	[35]	>0.05			N

MTHFR	Ethnicity	Reference	OR	P value	95%CI	Significant (Y/N)
	Turkish	[11]	3.76	<0.05	1.28–11.00	Y
	Brazilian	[13]	>0.05			N
	Chinese	[14]	4.04	<0.05	1.95–8.34	Y
	North Indian	[27]	0.54	<0.05	0.29–0.98	Y

FABP2	Ethnicity	Reference	OR	P value	95%CI	Significant (Y/N)
	North Indian	[29]	>0.05			N
	USA	[19]	<0.05			Y

FTO	Ethnicity	Reference	OR	P value	95%CI	Significant (Y/N)
	North Indian	[21]	1.46	<0.05	1.11–1.93	Y
	South Asian Indians	[36]	<0.05			Y
	South African	[37]	>0.05			N
	Spanish	[38]	0.97	>0.05	0.85–1.16	N
	Scotland	[39]	<0.05			Y
triglyceride-rich lipoprotein [19,70,71,73-75]. It has been
and increased concentrations of fasting and postprandial
lipid oxidation, reduced insulin-stimulated glucose uptake
[72]. FABP2 Ala54Thr variant has been associated with an
increased BMI, percent body fat, and plasma triglycerides
Cree Indians, the Thr encoding allele was associated with
Thr-encoding allele [69,71]. In a study of Canadian Oji-
mor emancipating triglycerides in cells expressing
volving FABP2 have focussed on the Ala
substitution in exon-2 which is responsible for increased
insulin resistance and a region on chromosome 4q near the FABP2
locus [67]. This finding is supported by a positive linkage
between post challenge insulin levels and FABP2 in
Mexican–Americans [68]. Molecular scanning of FABP2
identified a missense mutation (Ala54Thr) responsible for
T2DM. In the search for T2DM loci in Pima Indians,
Prochazka and co-workers found linkage between insulin
resistance and a region on chromosome 4q near the FABP2
locus [67]. This finding is supported by a positive linkage
between post challenge insulin levels and FABP2 in
Mexican–Americans [68]. Molecular scanning of FABP2
identified a missense mutation (Ala54Thr) responsible for
insulin resistance [69]. Carriers of the Thr54 allele in
FABP2 have a twofold greater affinity for the absorption
for the long-chain fatty acids than those with the Ala54-
containing FABP2 [70]. Genotypic/Phenotypic studies in-
volving FABP2 have focussed on the Ala→Thr (G→A)
substitution in exon-2 which is responsible for increased
binding affinity, transport of long chain fatty acids and
more efficient secretion of triglycerides in cells expressing
Thr-encoding allele [69,71]. In a study of Canadian Oji-
Cree Indians, the Thr encoding allele was associated with
increased BMI, percent body fat, and plasma triglycerides
[72]. FABP2 Ala54Thr variant has been associated with an
increased fasting insulin concentration, increased rate of
lipid oxidation, reduced insulin-stimulated glucose uptake
and increased concentrations of fasting and postprandial
triglyceride-rich lipoprotein [19,70,71,73-75]. It has been
suggested that the Ala54Thr polymorphism might associ-
ate with the risk for atherosclerosis because it causes a
compositional change in LDL particles [76], an altered
postprandial lipemia [70]. Previous studies have found
contradictory associations between FABP2 genotypes and
the occurrence of T2DM, obesity or decreased insulin sen-
sitivity [17,70,71,77-79]. Contradictory to it, several studies
have reported the association between the Ala54Thr poly-
orphism of FABP2 with insulin resistance and T2DM
[17,19,69,80-82]. In contrast, studies in other Japanese
[83,84], Caucasians [85,86], and African-American [87]
cohorts have not found an association of T2DM, insulin
levels, or obesity with the Thr54 variant.

Fat Mass and Obesity associated gene (FTO)

Fat mass and obesity associated (FTO) gene was found in
a genome-wide association (GWA) study for T2DM and
showed to predispose individuals to diabetes through an
effect on Body mass Index (BMI). The FTO gene, which is
located on chromosome 16q12.2 consists nine exons and
emerged 450 million years ago [88]. FTO is primarily
expressed in the hypothalamus and encodes a 2-
oxoglutarate-dependent nuclear acid demethylase. Se-
quen e analysis suggested that FTO has homology with the
AlkB family of DNA repair enzymes. Subsequent in
vitro biochemical studies revealed FTO to be a member of
the Fe (II) and 2-oxoglutarate (2OG) dependent oxygen-
ase superfamily [89]. In metazoans these enzymes are
involved in diverse processes including oxygen sensing,
DNA repair, fatty acid metabolism and post-translational
modifications [90]. A number of SNPs in tight linkage dis-
equilibrium with rs9939609, and residing in the first in-
tron of the FTO gene, had been associated with obesity in
large populations of adults and children. Recently, part of
a genome-wide association study found that SNPs of the
FTO were strongly associated with obesity and T2DM
[91,92]. FTO gene encodes for a protein 2-oxoglutarate
dependent nuclear acid demethylase involved in fatty acid
metabolism, DNA repair and post-translational modifi-
cations [93]. It may also play important roles in the
management of energy homeostasis [88,94], nuclear acid
demethylation, and regulation of body fat masses by lip-
olysis [95]. The hypothalamic expression of FTO sug-
ests a potential role in the control of food intake and
whole body metabolism wherein physical activity and
food intake is unchanged but metabolic rate is increased.
The association of FTO variants with T2DM and BMI
has been independently identified in a number of white
European populations [96] but the findings are somewhat
inconsistent in Asians, which may be the result of varying
study designs, inadequate sample sizes or ethnic differences
[97-99]. A recent study in north Indian Sikhs demonstrated
a strong association of FTO variants with type 2 diabetes,
which did not seem to be mediated through BMI [21]. This
Conclusion

Multiple genes are involved in pathogenesis of T2DM, each contributing a small amount to the overall risk making T2DM, a truly complex disorder. Our understanding of genetics of diseases gives a better prospective of biochemical and molecular mechanism of disease on the whole. The data could help to identify at-risk patients in early stages and may provide opportunities for early prevention. Our better understanding of such phenomena will throw new light on how common variants can alter disease susceptibility and it is necessary to understand the physiologic importance of the genetic associations those are uncovered. The utility of genetic approaches will depend on a holistic understanding of the interactions among the genes and also between genes and the environment. Combining these genetic variations with new developments in the fields of bioinformatics, genomics, and proteomics will lead to a greater understanding of the pathogenesis of T2DM and may present new information on diagnostics, treatment and eventual prevention of the disease. Additionally, inclusion of genetic studies in design and analysis of drug trials could lead to development of genetic biomarkers that predict treatment response. Prediction can be made on the basis of biomarkers in connection to the course of disease; treatment-response and possibilities of side-effects will be vastly appreciated. As a result of wide range of investigations over the last few years, a few biomarkers have been introduced into clinical practices. This requires a personalized medicine approach. This genetic information may also form the basis for development of new drug therapies such as individually specific or targeted pharmacotherapy. Thus, an understanding of common variants and of the genetic/non-genetic factors with which they interact can improve public health by focussing on genetic individuality in the diagnosis and treatment of disease.

Abbreviations

T2DM: Type 2 diabetes mellitus; ACE: Angiotensin converting enzyme; RAAS: Renin–angiotensin–aldosterone system; PPARγ: Peroxisome proliferator-activated receptor gamma; MTHFR: Methylene tetrahydrofolate reductase; FTO: Fat mass and obesity associated gene; type 2 diabetes mellitus; FABP: Fatty acid-binding proteins; SNPs: Single nucleotide polymorphisms; Pro: Proline; Ala: Alanine; Thr: Threonine; LDL: Low-density lipoprotein; GWA: Genome wide association; BMI: Body mass index.

Competing interests

The authors declare that they have no competing interests.

References

1. Snehalatha, Ramachnadaran: Insight into the Mechanism of Primary Prevention of Type 2 Diabetes: Improvement in Insulin Sensitivity and Beta cell function. "Genetic and Epigenetic Basis of Complex Diseases, Conference in Centre for Cellular and Molecular Biology, 2009.
2. Hoppke SS, Joshi SR: Are Indians destined to be diabetic. J Assoc Physicians India 2008, 56:225–226.
3. Das SK: Genetic epidemiology of adult onset type 2 diabetes in asian indian population: past, present and future. Int J Hum Genet 2006, 6(1):1–13.
4. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soor MA, Marken GL, Williams TD, Lewis H, Schaefer AJ, Chatterjee YK, O’Rahilly S: Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402(6764):880–3.
5. Altshuler D, Hinrich HN, Klannemar M, Lindgren CM, Vahl MC, Nemesh J, Lane CR, Schaffner SF, Bulk S, Brewer C, Tuomila T, Gautel D, Jackson DJ, Daly M, Groop L, Lander ES: The common PPAR Pro12Ala polymorphism in associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.
6. Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, Groop L, Lander ES: The common PPAR Pro12Ala polymorphism in associated with increased risk of type 2 diabetes mellitus. J Intern Med 2003, 254(2):220–6.
7. Barraz JT, Shojapoor M, Najem H: Polymorphism in the angiotensin converting enzyme (ACE) gene on susceptibility to diabetes and severity of diabetic retinopathy in Iranian patients. Mol Genet Metab 2006, 90:210–19.
8. Djaujapani JS, Muniandy S, Chan SP: Null association between ACE gene I/D common gene variant is associated with type 2 diabetes mellitus in Caucasians. Mol Genet Metab 2005, 84(1):83–89.
9. Jayapalan JJ, Muniandy S, Chan SP: Polymorphisms in the angiotensin converting enzyme (ACE) gene and ACE activity in type 2 diabetic patients. Acta Med Iran 2008, 46(12):277–282.
10. Yilmaz H, Agachan B, Ergen A, Karaali ZE, Isbir T: Allele 54Thr variant of FABP2 gene have associations with metabolic syndrome and hypertriglyceridemia in urban South Indians. J Clin Endocrinol Metab 2013, 85:2804.
11. Abbas et al. Journal of Biomedical Science 2013, 20:80
http://www.jbiomedsci.com/content/20/1/80
Published: 25 October 2013
Received: 6 July 2013 Accepted: 1 October 2013

Authors’ contributions

SA and ST have done overall search and compilation of data. AA and SR have done literature search and preparation of table. FA helps in the correction of grammatical and typological mistake. FM has done overall supervision. All authors read and approved the final manuscript.

Published: 25 October 2013

Competing interests

The authors declare that they have no competing interests.
58. Bostom AG, Shemin D, Yobum D, Fisher DH, Nadeau MR, Selhub J. Hyperhomocysteinemia and traditional cardiovascular diseases risk factor in end stage renal disease patient on dialysis: a case-control study. *Am J Nephrol* 1995, 15:114–123.

59. Ounis AM, Sook SK, Liaw PC, Sarge KD, Madaa N, Hirst J, Ribaj JB, Poder TJ. Characterization of the stress-inducing effects of homocysteine. *Biochim Biophys Acta* 1995, 1231:213–221.

60. Agullo Ortuno MT, Albaladejo MD, Parra S, Rodriguez-Manotas M, Fendler M, Ruiz-Espejo F, Tebar J, Martinez P. Plasmonic homocysteinemia and its relationship and with compensation associated to diabetes mellitus. *Clin Chim Acta* 2002, 325:105–112.

61. Frost P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthew RG, Boers GJ, den Heijer M, Kluitmans LA, van den Hoveu JP. Candidate genetic risk factors for vascular disease: a common mutation in methylethyltetrahydrofurfurate reductase: isolation of Cdna, mapping and mutation identification. *Nat Genet* 1995, 10:110–113.

62. Russo GT, Di Benedetto A, Alesi E, Corrado F, Di Cesare E, Alessi E, Nicocia A. et al. Journal of Biomedical Science 2006, 29:201–207.

63. Di Renzo L, Bignoli M, Del Gobbo V, Premrov MG, Cianci R, De Lorenzo R. Interleukin-1 (IL-1) receptor antagonist gene polymorphism in normal weight obese syndrome: relationship to body composition and IL-1 alpha and beta plasma levels. *Pharmacol Res* 2007, 55:131–138.

64. Ozmen B, Ozmen D, Turgan N, Habib S, Mutaf I, Bayindir O. Association between homocysteinemia and renal function in patients with type 2 diabetes mellitus. *Ann Clin Lab Sci* 2002, 32(3):279–86.

65. Maeda M, Yamamoto I, Fukuda M, Nishida M, Fujitsu M, Nonen S, Fujio Y, Kasayama S, Azuma J. MTHFR gene polymorphism as a risk factor for diabetic retinopathy in type 2 diabetic patients without serum creatinine elevation. *Diabetes Care* 2003, 26:547–8.

66. Ksiazek P, Bednarek-Skublewska A, Buraczynska M. The C677T mutation of methionyltetrahydrofurfurate reductase gene and methylnorpropionylnaphthoquinone in type 2 diabetes mellitus. *Am J Clin Nutr* 2004, 80(2):378–87.

67. Mitchell BD, Kammerer CM, O’Connell P, Hamilton GR, Maniee M, Shipman P, Moyer MP, Stern MP, Frazier ML. Evidence for linkage of postchallenge insulin levels with intestinal fatty acid-binding protein (FABP2) in Mexican-Americans. *Diabetes* 1995, 44:1046.

68. Baier LJ, Sacchettini JC, Knowler WC, Mott DM, Sraul M, Bennett PH, Bogardus C. Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians. *Diabetes* 1993, 42:514.

69. Baier LJ, Sacchettini JC, Knowler WC, Mott DM, Sraul M, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. *J Clin Invest* 1995, 95:1281.

70. Agren JJ, Vidgren HW, Valve RS, Laakso M, Uusitupa M. Postprandial response of individual fatty acids in subjects homozygous for the threonine or alanine encoding allele in codon 54 of the intestinal fatty acid binding protein gene 2. *Am J Clin Nutr* 2001, 73:31–35, 19.

71. Agren JJ, Bogardus C, Sacchettini JC. A polymorphism in the human intestinal fatty acid binding proteins alters fatty acid transport across Caco-2 cells. *J Biol Chem* 1996, 271:10892–10896.

72. Hegele RA, Harris SB, Hanley AJ, Sadiqian S, Connelly PW, Zimman B. Genetic variation of intestinal fatty acid binding protein associated with variation in body mass in aboriginal Canadians. *J Clin Endocrinol Metab* 1996, 81(12):4334–4337.

73. Lefevere M, Louwe JC, Smith SR, Delany JP, Champagne C, Most MM: Comparison of the acute response to meals enriched with cis or trans fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. *Metabolism* 2005, 54:1652–1658.

74. Marin C, Pérez-Jimenez F, Gilmez P, Delgado J, Pariagüa JA, Lozano A. The Ala54Thr polymorphism of the fatty acid binding protein gene 2 is associated with a change in insulin sensitivity after a change in the type of dietary fat. *Obesity* 2008, 16:469–474.

75. Agren JJ, Bogardus C, Sacchettini JC, Knowler WC, Mott DM, Sraul M, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. *J Clin Invest* 1995, 95:1281.

76. Agren JJ, Vidgren HW, Valve RS, Laakso M, Uusitupa M. Postprandial response of individual fatty acids in subjects homozygous for the threonine or alanine encoding allele in codon 54 of the intestinal fatty acid binding protein gene 2. *Am J Clin Nutr* 2001, 73:31–35, 19.

77. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N. Structural studies on 2-oxoglutaratedependent nucleic acid demethylase. *Science* 2007, 318:1469–1472.

78. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N. Structural studies on 2-oxoglutaratedependent nucleic acid demethylase. *Science* 2007, 318:1469–1472.
96. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczná N, Herberg S, Le Stirniff C, Bougnères P, Kovacs P, Maire M, Ballau B, Cauchi S, Chèvre JC, Froguel P: Variation in FTO contributes to childhood obesity and severe adult obesity. *Nat Genet* 2007, 39:706–707.

97. Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, Yu Z, Lin X: Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. *Diabetes* 2008, 57:264–268.

98. Hotta K, Nakato Y, Matsu T, Kamohara S, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Masuzaki H, Yoneda M, Nakajima A, Miyazaki S, Tokunaga K, Kawamoto M, Funahashi T, Hamaguchi K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Nakao K, Sakata T, Matsuzawa Y, Tanaka K, Kamatani N, Nakamura Y: Variations in the FTO gene are associated with severe obesity in the Japanese. *J Hum Genet* 2008, 53:546–553.

99. Ng MC, Park KS, Tam CH, Ob, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS, Kim HL, Lee HK, Chan JC, Cho NH: Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2 and FTO in type 2 diabetes and obesity in 6719 Asians. *Diabetes* 2008, 57:2226–2233.

100. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Meizer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. *Science* (Wash DC) 2007, 316:89–94.

101. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Ornú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR: Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. *PLoS Genet* 2007, 3:e115.

102. Chang YC, Liu PH, Lee WJ, Chang TJ, Jiang YD, Li HY, Kuo SS, Lee KC, Chuang LM: Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. *Diabetes* 2008, 57:2245–2252.

103. Bresler J, Kao WH, Pankow JS, Boerwinkle E: Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study. *PLoS One* 2010, 5:e10521.