Near-Optimal Sensor Placement for Linear Inverse Problems

Juri Ranieri*, Student Member, IEEE, Amina Chebira†, Member, IEEE and Martin Vetterli*, Fellow, IEEE

Abstract—A classic problem is the estimation of a set of parameters from measurements collected by few sensors. The number of sensors is often limited by physical or economical constraints and their placement is of fundamental importance to obtain accurate estimates. Unfortunately, the selection of the optimal sensor locations is intrinsically combinatorial and the available approximation algorithms are not guaranteed to generate good solutions in all cases of interest.

We propose FrameSense, a greedy algorithm for the selection of optimal sensor locations. The core cost function of the algorithm is the frame potential, a scalar property of matrices that measures the orthogonality of its rows. Notably, FrameSense is the first algorithm that is near-optimal in terms of mean square error, meaning that its solution is always guaranteed to be close to the optimal one.

Moreover, we show with an extensive set of numerical experiments that FrameSense achieves the state-of-the-art performance while having the lowest computational cost, when compared to other greedy methods.

Index Terms—Sensor placement, inverse problem, frame potential, greedy algorithm.

I. INTRODUCTION

In many contexts, it is of interest to measure physical phenomena that vary in space and time. Common examples are temperature, sound, and pollution. Modern approaches tackling this problem are often based on wireless sensor networks (WSN), that are systems composed of many sensing nodes, each capable of measuring, processing and communicating information about the surrounding environment.

Challenges and trade-offs characterize the design of a WSN. One of the key aspects to design a successful WSN is the optimization of the spatial locations of the sensors nodes, given the location’s impact on many relevant indicators, such as coverage, energy consumption and connectivity. When the data collected by the WSN is used to solve inverse problems, the optimization of the sensor locations becomes even more critical. In fact, the location of the sensor nodes determines the error of the solution of the inverse problem and its optimization represents the difference between being able to obtain a reasonable solution or not. In this work, we consider linear inverse problems defined as

\[f = \Psi \alpha, \]

where \(f \in \mathbb{R}^N \) is the measured physical field2 \(\alpha \in \mathbb{R}^K \) are the parameters to be estimated and \(\Psi \in \mathbb{R}^{N \times K} \) is the known linear model representing the relationship between the measurements and the parameters. Note that this simple model can be easily adapted to more complicated scenarios. For example, if the collected measurements are linear combinations of the physical field, as in the presence of a sampling kernel, we simply consider \(\Psi = \Phi \Theta \), where \(\Phi \) and \(\Theta \) represent the sampling kernel and the physical phenomenon, respectively.

The role of \(\alpha \) depends on the specific inverse problem. For example, if the WSN is designed for source localization, \(\alpha \) represents the location and the intensity of the field sources. On the other hand, if we are planning to interpolate the measured samples to recover the entire field, we may think of \(\alpha \) as its low-dimensional representation. In other scientific applications, for example \[1,3\], the solution of a linear inverse problem is a step inside a complex procedure and \(\alpha \) may not have a direct interpretation. Nonetheless, the accurate estimation of \(\alpha \) is of fundamental importance.

It is generally too expensive or even impossible to sense the physical field \(f \) with \(N \) sensor nodes, where \(N \) is determined by the resolution of the discrete physical field. Assume we have only \(L < N \) sensors, then we need to analyze how to choose the \(L \) sampling locations such that the solution of the linear inverse problem \[1\] has the least amount of error. Namely, we would like to choose the most informative \(L \) rows of \(\Psi \) out of the \(N \) available ones. One could simply adopt a brute force approach and inspect all the possible combinations for the \(L \) sensor locations. In this case the operation count, due to its combinatorial nature, is exponential making the approach unfeasible even for moderate \(N \).

It is possible to significantly reduce the computational cost by accepting a sub-optimal sensor placement produced by an approximation algorithm. In this case, near-optimal algorithms are desired, since they always produce a solution of guaranteed quality2. We measure this quality as the ratio between the value of the approximated solution and the value of the optimal one, and we call it approximation factor.

A. Problem Statement and Prior Art

We consider the linear model introduced in \[1\] and a WSN measuring the field at only \(L < N \) locations. We denote the set of measured locations and of available locations as \(\mathcal{L} = \{i_1, \ldots, i_L\} \) and \(\mathcal{N} = \{1, \ldots, N\} \), respectively. Note that \(\mathcal{L} \subseteq \mathcal{N} \) and \(|\mathcal{L}| = L\).

The measured field is denoted as \(f_{\mathcal{L}} \in \mathbb{R}^L \), where the subscript represents the selection of the elements of \(f \) indexed

\[^2 \text{While the interest is often on the average error, here we want to make sure that all the outcomes are of a good quality.} \]
by \(\mathcal{L} \). Consequently, we define a pruned matrix \(\Psi_L \in \mathbb{R}^{L \times K} \), where we kept only the rows of \(\Psi \) indexed by \(\mathcal{L} \). We obtain a smaller linear system of equations,

\[
f_L = \Psi_L \alpha, \tag{2}
\]

where we still recover \(\alpha \), but with a reduced set of measurements, \(L \geq K \). Note that, by definition we have \(\Psi_N = \Psi \) and \(f_N = f \).

Given the set of measurements \(f_L \), there may not exist an \(\hat{\alpha} \) that solves (2). If it exists, the solution may not be unique. To overcome this problem, we usually look for the least square solution, defined as \(\hat{\alpha} = \arg \min_{\alpha} \| \Psi_L \alpha - f_L \|_2^2 \). This solution is found using the Moore-Penrose pseudoinverse,

\[
\hat{\alpha} = \Psi_L^+ f_L,
\]

where \(\Psi_L^+ = (\Psi_L^T \Psi_L)^{-1} \Psi_L^T \). The pseudoinverse generalizes the concept of inverse matrix to non-square matrices and is also known as the canonical dual frame in frame theory. For simplicity of notation, we introduce \(T_L = \Psi_L^T \Psi_L \in \mathbb{R}^{K \times K} \), a hermitian-symmetric matrix that strongly influences the reconstruction performance. More precisely, the error of the least square solution depends on the spectrum of \(T_L \). That is, when the measurements \(f_L \) are perturbed by a zero-mean i.i.d. Gaussian noise with variance \(\sigma^2 \), the mean square error (MSE) of the least square solution [4] is

\[
\text{MSE}(\hat{\alpha}) = \| \hat{\alpha} - \alpha \|_2^2 = \sigma^2 \sum_{k=1}^{K} \frac{1}{\lambda_k}, \tag{3}
\]

where \(\lambda_k \) is the \(k \)-th eigenvalue of the matrix \(T_L \). We thus state the sensor placement problem as follows.

Problem 1. Given a matrix \(\Psi \in \mathbb{R}^{N \times K} \) and a number of sensors \(L \), find the sensor placement \(\mathcal{L} \) such that

\[
\arg \min_{\mathcal{L}} \sum_{k=1}^{K} \frac{1}{\lambda_k}, \quad \text{subject to } |\mathcal{L}| = L.
\]

Note that if \(T_L \) is rank deficient, that is \(\text{rank}(T_L) < K \), the MSE is not bounded.

A trivial choice would be to design algorithms minimizing directly the MSE with some approximation procedure, such as greedy ones. In practice, the MSE is not used because it has many unfavorable local minima. Therefore, the research effort is focused in finding tight proxies of the MSE that can be efficiently optimized. In what follows, we survey different approximation strategies and proxies from the optimal solution. The authors in [6] define an online bound for the quality of the obtained solution by looking at the gap between the primal and the dual problem.

Heuristic methods [7,12] are valid options to reduce the cost of the exhaustive search, which has prohibitive cost. Again, even if the methods work in practice, little can be said about the quality or the optimality of the solution.

Greedy algorithms leveraging the submodularity of the cost function [13] are a class of algorithms having polynomial complexity and guaranteed performance w.r.t. the chosen cost function [5,14,16]. Since the MSE is not submodular in general [15], alternative cost functions have been considered. The proposed methods are theoretically near-optimal w.r.t. the chosen cost function, but little can be said about the achieved MSE. Moreover, the local optimization of the proposed cost functions are computationally demanding, often requiring the inversion of large matrices [14]. Therefore, approximations of the cost functions have been proposed [14], offering a significant speedup for an acceptable reduction of the solution’s quality.

Beside the approximation strategy, approximation algorithms are differentiated by the chosen cost function. Under restrictive assumptions, the MSE can be chosen as a cost function, see [15,17]. Common proxies of the MSE are inspired by information theoretic measures such as entropy [12], cross-entropy [16,18] and mutual information [14]. A popular choice is the minimization of the log volume (or mean radius) of the confidence ellipsoid given by the measurements, being also the determinant of \(T_L \). This proxy has been historically introduced in D-Optimal experiment design [19], but has also been successfully proposed as a cost function for a convex relaxed method [6] and greedy algorithms [5]. Other proxies have also been introduced in optimal experiment design, such as maximization of the smallest eigenvalue \(\lambda_K \) (E-Optimal design) or the maximization of the trace of \(T_L \) (T-Optimal design). A detailed description of the different choices available for experiment design can be found in [19].

Note that in some specific scenarios, optimal strategies with a reasonable computational cost are known in the literature. This is the case when we have the freedom of completely designing the matrix \(\Psi_L \), given the dimensions \(L \) and \(K \). More precisely, if \(L = K \), the optimal matrix is an orthonormal basis, while if \(L > K \), we are looking for a unit-norm\footnote{The unit-norm condition can be relaxed, but it must be replaced by a bound on the maximum sum of the eigenvalues of \(T_L \).} tight frame [20,21]. Benedetto et al. showed that each tight frame is a non-unique global minimizer of the frame potential (FP), that is a scalar property of the frame defined as

\[
\text{FP}(\Psi_L) = \sum_{i,j \in \mathcal{L}} | \langle \psi_i, \psi_j \rangle |^2,
\]

where \(\psi_i \) is the \(i \)-th row of \(\Psi \). One of the reasons of the popularity of the FP in the frame theory community is its interesting physical interpretation [22]. Namely, it is the potential energy of the so-called frame force, a force between vectors inspired by the Coulomb force. The frame force and its potential energy have been introduced for their...
orthogonality encouraging property: the force is repulsive when the angle between the two vectors is acute, null when they are orthogonal and attractive when the angle is obtuse. A graphical explanation of this physical interpretation is given in Figure 1 where the unit-norm rows of two matrices \(\Psi \) and \(\Phi \) belonging to \(\mathbb{R}^{3 \times 2} \) are represented. While \(\Psi \), that is the unit-norm tight frame minimizing the FP, has vectors as spread as possible and therefore in equilibrium w.r.t. the frame force, the vectors \(\Phi \) are not optimally spread and the FP is thus not minimized. Note that according to frame theory \([21]\), \(\Psi \) is the matrix that also achieves the minimum MSE.

Given its interpretation and its role in defining the existence of tight frames—the optimal frames in terms of MSE—we hypothesize that the FP is an interesting cost function for an approximation algorithm.

C. Our contributions

We propose FrameSense, a greedy sensor placement method that minimizes the frame potential to choose the sensing locations \(\mathcal{L} \). We briefly summarize the innovative aspects of the proposed algorithm:

- Under some stability conditions regarding the spectrum of \(\Psi \), FrameSense is the only known algorithm, to the best of our knowledge, that is near-optimal w.r.t. MSE.
- FrameSense outperforms other greedy algorithms in terms of MSE.
- FrameSense is on par with the method based on convex relaxation \([6]\), which uses many heuristics to improve the local solution and has a significantly higher computational cost.
- The computational cost of FrameSense is significantly lower w.r.t. the other considered algorithms.

The remainder of the paper uses the following notations: calligraphic letters as \(C \) indicate sets of elements, while bold letters as \(\Psi \) and \(\psi \) indicates matrices and vectors, respectively.

The \(i \)-th largest eigenvalue of \(\mathbf{T}_\mathcal{L} = \Psi_\mathcal{L}^* \Psi_\mathcal{L} \) is denoted as \(\lambda_i \). Moreover, we always consider a real physical field \(f \) and real matrices \(\Psi \) for simplicity, but the extension to the complex domain is easy with proper adjustments.

The content is organized as follows. In Section II we introduce some frame theory concepts focusing on the role of the FP. We describe FrameSense and the analysis of its near-optimality in Section III and we numerically compare its performance with various other algorithms in Section IV.

II. THE FRAME POTENTIAL IN FRAME THEORY

This section briefly introduces some of the basic concepts of frame theory, that are useful to understand and analyze the proposed algorithm. Frame theory studies and designs families of matrices \(\Psi_\mathcal{L} \) such that \(\mathbf{T}_\mathcal{L} \) is well-conditioned. More precisely, \(\Psi_\mathcal{L} \) is a frame for a Hilbert space \(\mathbb{H} \) if there exists two scalars \(A \) and \(B \) such that \(0 < A \leq B < \infty \) satisfying for every \(x \in \mathbb{H} \):

\[
A \| x \|_2^2 \leq \| \Psi_\mathcal{L} x \|_2^2 \leq B \| x \|_2^2,
\]

where \(A \) and \(B \) are called frame bounds. \(\Psi_\mathcal{L} \) is a tight frame when \(A = B \) and its columns are orthogonal by construction. Of particular interest is the case of unit norm tight frames (UNTF); these are tight frames whose frame elements—the rows \(\psi \)—have unit norm. These provide Parseval-like relationships, despite the non-orthogonality of the frame elements of \(\Psi_\mathcal{L} \). In addition to \([3]\), there are other interesting relationships between the characteristics of \(\Psi_\mathcal{L} \) and the spectrum of \(\mathbf{T}_\mathcal{L} \). For example, we can express the FP as:

\[
\text{FP}(\Psi_\mathcal{L}) = \text{Trace}(\mathbf{T}_\mathcal{L}^* \mathbf{T}_\mathcal{L}) = \sum_{k=1}^{K} |\lambda_k|^2.
\]

Moreover, the sum of the eigenvalues of \(\mathbf{T}_\mathcal{L} \) is equal to the sum of the norm of the rows, \(\sum_{i=1}^{L} \| \psi_i \|_2^2 = \sum_{k=1}^{K} \lambda_k \).

These quantities of interest take a simplified analytical form for UNTFs. In this scenario, we know \([21]\) that the FP is minimum w.r.t. all other matrices of the same size with unit-norm rows and it is equal to \(\text{FP}_{\text{UNTF}} = \frac{L^2}{K} \). According to \([21]\), the optimal MSE is also achieved when the FP is minimized and it is equal to \(\text{MSE}_{\text{UNTF}} = \frac{K^2}{L^2} \). Note that in this case all the eigenvalues are equal, \(\lambda_{\text{UNTF}} = \lambda_1 = \frac{L}{K} \forall i \).

Next, we would like to intuitively explain why the FP is a good candidate to be a proxy for the MSE. Consider the distance between the FP of a matrix with unit-norm rows \(\Psi_\mathcal{L} \in \mathbb{R}^{L \times K} \) and the FP of a unit-norm tight frame. Then, it is possible to show that this distance is always positive and equal to:

\[
\text{FP}(\Psi_\mathcal{L}) - \text{FP}_{\text{UNTF}} = \sum_{k=1}^{K} \left(\lambda_k - \frac{L}{K} \right)^2,
\]

where \(\frac{L}{K} \) is the value of the eigenvalues \(\lambda_{\text{UNTF}} \). Note that if we minimize the FP of \(\Psi_\mathcal{L} \), then each \(\lambda_k \) converges to \(\frac{L}{K} \).

At the same time, the distance between the MSE of \(\Psi_\mathcal{L} \)
and the MSE of the tight frame can be expressed as

\[\text{MSE}(\Psi_L) - \text{MSE}_\text{UNTF} = \sum_{k=1}^{K} \left(\frac{1}{\lambda_k} - \frac{K}{L} \right). \]

Now, it is easy to see that if the eigenvalues converge to \(\frac{L}{K} \), then \(\text{MSE}(\Psi_L) \) converges to the MSE of a UNTF, being also the optimal one [21].

III. FRAMESENSE: A NEAR-OPTIMAL SENSOR PLACEMENT

Even if the intuition given in Section II is clear, it does not directly explain why an algorithm optimizing the FP places the sensors with some guarantees in terms of MSE. Indeed, we need to address some complications such as matrices \(\Psi \) having rows with different norms and the non-uniform convergence of the eigenvalues. In what follows, we first describe the details of FrameSense and then analyze its near-optimality in terms of both the FP and the MSE.

A. The algorithm

FrameSense finds the sensor locations \(L \) given the known model \(\Psi \) and the number of available sensors nodes \(L \) with a greedy minimization of the FP. It is a greedy “worst-out” algorithm: at each iteration it removes the row of \(\Psi \) that maximally increases the FP. In other words, we define a set of locations \(S \) that are not suitable for sensing and at each iteration we add to \(S \) the row that maximizes the following cost function,

\[F(S) = \text{FP}(\Psi) - \text{FP}(\Psi_{N \setminus S}). \tag{4} \]

The pseudo-code for FrameSense is given in Algorithm 1.

Algorithm 1 FrameSense

Require: Linear Model \(\Psi \), Number of sensors \(L \)
Ensure: Sensor locations \(L \)

1) Initialize the set of locations, \(L = \emptyset \).
2) Initialize the set of available locations, \(N = \{1, \ldots, N\} \).
3) Find the first two rows to eliminate, \(S = \arg \max_{i,j \in N} |\langle \psi_i, \psi_j \rangle|^2 \).
4) Update the available locations, \(L = N \setminus S \).
5) Repeat until \(L \) locations are found
 a) If \(|S| = N - L\), stop.
 b) Find the optimal row, \(i^* = \arg \min_{i \in L} F(S \cup i) \).
 c) Update the set of removed locations, \(S = S \cup i^* \).
 d) Update the available locations, \(L = L \setminus i^* \).

One may ask why we do not optimize directly the MSE instead of minimizing the FP which indirectly optimizes the MSE. As we have already indicated, a greedy algorithm optimizing a general function, like the MSE, converges to a local stationary point of the cost function and we have no guarantee on the distance from the global optimum. On the other hand, we can prove that FrameSense is near-optimal w.r.t. the FP by exploiting the submodularity of the cost function. Then, the link between FP and MSE allows us to guarantee the performance of FrameSense also in terms of the MSE.

B. Near-optimality of FrameSense w.r.t. FP

We define the performance of FrameSense w.r.t. FP using the theory of submodular functions. We start by defining the concept of submodularity that relates to the concept of diminishing returns: if we add an element to a set \(\mathcal{Y} \), the benefit is smaller or equal than adding the same element to one of the subsets of \(\mathcal{Y} \). Then, we introduce a theorem by Nemhauser et al. [13] that defines the approximation factor of greedy algorithms maximizing a submodular function. We continue by showing that FrameSense satisfies the conditions of Nemhauser’s theorem and we derive its approximation factor in terms of FP.

Definition 1 (Submodular function). Given two sets \(\mathcal{X} \) and \(\mathcal{Y} \) such that \(\mathcal{X} \subseteq \mathcal{Y} \subseteq \mathcal{N} \) and given an element \(i \in \mathcal{N} \setminus \mathcal{Y} \), a function \(G \) is submodular if it satisfies

\[G(\mathcal{X} \cup i) - G(\mathcal{X}) \geq G(\mathcal{Y} \cup i) - G(\mathcal{Y}) \tag{5} \]

Submodular functions are useful in combinatorial optimization because greedy algorithms have favorable properties when optimizing a function with such a property. More precisely, it has been proved that the greedy maximization of submodular functions is near-optimal [13].

Theorem 1 (Near-optimal maximization of submodular function [13]). Let \(G \) be a normalized, monotone, submodular set function over a finite ground set \(N \). Let \(L \) be the set of the first \(L \) elements chosen by the greedy algorithm, and let \(\text{OPT} = \max_{A \subseteq N, |A| = L} G(A) \) be the optimal set of elements. Then

\[G(L) \geq \left(1 - \frac{1}{e} \right) G(\text{OPT}), \]

where \(e \) is Euler’s number.

Namely, if \(G \) satisfies the conditions of Theorem 1 then the solution of the greedy algorithm is always close to the optimal one. These conditions are satisfied by the cost function \(F \) in (4), as shown in the following lemma.

Lemma 1 (Submodularity of the cost function). The set function maximized in Algorithm 7

\[F(S) = \text{FP}(\Psi) - \text{FP}(\Psi_{N \setminus S}) \tag{6} \]

is a normalized, monotone, submodular function.

Proof: The set function \(F \) is normalized if \(F(\emptyset) = 0 \). Here, normalization is trivially shown since \(\Psi = \Psi_N \) by definition. To show monotonicity, we pick a generic matrix \(\Psi \) of \(N \) rows, a set \(\mathcal{X} \) and an index \(i \notin \mathcal{X} \). Then, we compute the increment of \(F \) due to the element \(i \) w.r.t. to the set \(\mathcal{X} \) and we show that it is always positive.

\[
F(\mathcal{X} \cup i) - F(\mathcal{X}) = \text{FP}(\Psi_N \cup \mathcal{X}) - \text{FP}(\Psi_N \setminus \mathcal{X} \cup i)
\]

\[
= \sum_{n,m \in \mathcal{A}, i \notin \mathcal{X}} |\langle \psi_n, \psi_m \rangle|^2 - \sum_{n,m \in \mathcal{A}, i \notin \mathcal{X} \cup i} |\langle \psi_n, \psi_m \rangle|^2
\]

\[
= 2 \sum_{n \in \mathcal{A}} |\langle \psi_n, \psi_i \rangle|^2 + |\langle \psi_i, \psi_i \rangle|^2 \geq 0
\]
where \((a)\) is due to a change of variable \(\mathcal{N} \setminus \mathcal{X} = A\). We check the submodularity according to Definition 1 and assuming
\[
S = \{ i, j \}
\]
Using this in (8), we obtain
\[
F(\mathcal{X} \cup i) - F(\mathcal{X}) - F(\mathcal{Y} \cup i) + F(\mathcal{Y})
= F(\mathcal{X} \cup i) - F(\mathcal{X}) - F(\mathcal{X} \cup \{i, j\}) + F(\mathcal{X} \cup j)
= \text{FP}(\Psi_{A \cup \{i,j\}}) - \text{FP}(\Psi_{A \cup j}) - \text{FP}(\Psi_{A \cup i}) + \text{FP}(\Psi_A)
= 2 \sum_{n \in A \cup j} |\langle \psi_n, \psi_i \rangle|^2 - 2 \sum_{n \in A} |\langle \psi_n, \psi_i \rangle|^2
= 2 |\langle \psi_i, \psi_j \rangle|^2 \geq 0.
\]

Now, we use Theorem 1 to derive the approximation factor of FrameSense w.r.t. the FP.

Theorem 2 (FP approximation factor). Consider a matrix \(\Psi \in \mathbb{R}^{N \times K}\) and a given number of sensors \(L\), such that \(K \leq L < N\). Denote the optimal set of locations as \(\text{OPT} = \arg \max_{A \subseteq \mathcal{N} \setminus \mathcal{X}} \text{FP}(\Psi_A)\) and the greedy solution found by FrameSense as \(L\). Then, \(L\) is near-optimal in a FP sense and
\[
\text{FP}(\Psi_L) \leq \gamma \text{FP}(\Psi_{\text{OPT}}),
\]
where \(\gamma = \left(1 + \frac{1}{e} \left(\text{FP}(\Psi) \frac{1}{L_{\text{min}}} - 1\right)\right)\) is the approximation factor and \(L_{\text{MIN}} = \min_{A \subseteq \mathcal{N} \setminus \mathcal{X}} |\psi_i|^2\) is the sum of the norms of the \(L\) rows with the smallest norm.

Proof: According to Lemma 1, the cost function used in FrameSense satisfies the conditions of Theorem 1. Therefore, \(F(\text{OPT}) - F(S) \leq \frac{1}{e} (F(\text{OPT}))\), where \(F(S) = \text{FP}(\Psi) - \text{FP}(\Psi_{\mathcal{N} \setminus S})\) is the considered cost function, \(S\) is the set of rows eliminated by FrameSense and \(\text{OPT} = \mathcal{N} \setminus \text{OPT}\). If we consider the cost function, we obtain
\[
\text{FP}(\Psi_{\mathcal{N} \setminus S}) \leq \left(1 - \frac{1}{e}\right) \text{FP}(\Psi_{\mathcal{N} \setminus \text{OPT}}) + \frac{1}{e} \text{FP}(\Psi).
\]
Then, we note that the following minimization problem,
minimize \(L\)
subject to \(|L| = L\)

is equivalent, under the change of variable \(L = \mathcal{N} \setminus S\), to
minimize \(S\)
subject to \(|S| = N - L\)

Using this in (8), we obtain
\[
\text{FP}(\Psi_L) \leq \left(1 + \frac{1}{e} \left(\text{FP}(\Psi) \frac{1}{L_{\text{min}}} - 1\right)\right) \text{FP}(\Psi_{\text{OPT}})
\]
To conclude the proof, we bound from above the term \(\frac{1}{e} \frac{\text{FP}(\Psi)}{\text{FP}(\Psi_{\text{OPT}})}\).

First, we consider the optimal solution OPT to select a tight frame whose rows have a summed norm of \(L_{\text{OPT}} = \sum_{i \in \text{OPT}} |\psi_i|^2\),
\[
\text{FP}(\Psi_L) \leq \left(1 + \frac{1}{e} \left(\text{FP}(\Psi) \frac{K}{L_{\text{OPT}}} - 1\right)\right) \text{FP}(\Psi_{\text{OPT}}).
\]
We finish assuming that the optimal selection is also the one selecting the rows having the smallest norm, \(L_{\text{OPT}} \geq L_{\text{MIN}} = \min_{|L| = L} \sum_{i \in L} |\psi_i|^2\).

Note that the FP of the original matrix influences significantly the final result: the lower the FP of \(\Psi\), the tighter the approximation obtained by the greedy algorithm. Therefore, FrameSense performs better when the original matrix \(\Psi\) is closer to a tight frame. Moreover, Theorem 1 suggests removing the \(\Psi\) the rows whose norm is significantly smaller w.r.t. the others to improve the performance of FrameSense. This suggestion has an intuitive explanation, since such rows are also the less informative.

C. Near-optimality of FrameSense w.r.t. MSE

Having a near-optimal FP does not necessarily mean that the obtained MSE is also close to the optimal one. In this section, we show that under some assumptions on the spectrum of \(\Psi\), FrameSense is near optimal w.r.t. MSE as well.

Before going further into technical details, we generalize the concept of number of sensors to account for the norms of the rows of \(\Psi\). More precisely, we keep \(L\) as the number of rows and we define \(L_{\text{SUM}} = \sum_{i \in A} ||\psi_i||^2\) as the sum of the norms of the rows of \(\Psi_A\) for a generic set \(A\). We also define the two extremal values of \(L_{\text{SUM}}\),
\[
L_{\text{MIN}} = \min_{A \subseteq \mathcal{N} \setminus \mathcal{X}} \sum_{i \in A} ||\psi_i||^2
\]
\[
L_{\text{MAX}} = \max_{A \subseteq \mathcal{N} \setminus \mathcal{X}} \sum_{i \in A} ||\psi_i||^2,
\]
indicating respectively the minimum and the maximum value of \(L_{\text{SUM}}\) among all possible selections of \(L\) out of \(N\) rows of \(\Psi\). \(L_{\text{SUM}}\) is also connected to the spectrum of \(T_A\). Indeed, \(L_{\text{SUM}}\) is the trace of \(T_A\) and thus it is also the sum of its eigenvalues,
\[
L_{\text{SUM}} = \sum_{i \in A} ||\psi_i||^2 = \text{Trace}(T_A) = \sum_{i \in A} \lambda_i.
\]
Finally, note that if \(\Psi\) has rows with unit-norm, then \(L_{\text{SUM}} = L_{\text{MIN}} = L_{\text{MAX}} = L\).

As a first step to prove the near-optimality w.r.t. MSE, we consider a possible placement \(A\) and we bound the MSE of the matrix \(\Psi_A\) using its FP and the spectrum of \(T_A\). To obtain such a bound, we use a known inequality [23] involving variance, arithmetic mean and harmonic mean of a set of positive bounded numbers, in this case the eigenvalues of \(T_A\).

The following lemma describes the bound, while its proof is given in Appendix A.

Lemma 2 (MSE bound). Consider any \(\Psi_A \in \mathbb{R}^{L \times K}\) with \(L \leq K\), obtained from \(\Psi\) for \(|A| = L\), with a frame potential \(\text{FP}(\Psi_A)\). Denote the spectrum of \(T_A\) as \(\lambda_1 \geq \ldots \geq \lambda_K\). Then the MSE is bounded as follows
\[
\text{MSE}(\Psi_A) \leq \frac{K}{L_{\text{MIN}}} \frac{\text{FP}(\Psi_A)}{\lambda_K^2},
\]
\[
\text{MSE}(\Psi_A) \geq \frac{K}{L_{\text{MAX}}} \frac{\text{FP}(\Psi_A)}{\lambda_1^2},
\]
where \(L_{\text{MIN}}\) and \(L_{\text{MAX}}\) are defined as in (9) and (10).
Lemma 2 is key to study the approximation factor w.r.t. MSE. Specifically, it allows to analyze the two extremal cases:

- given the optimal FP, what is the lowest MSE we can achieve?
- given the worst case FP according to Theorem 2 what is the largest MSE we may encounter?

Lemma 2 implies the necessity to properly bound the spectrum of any Ψ_A with a given FP obtained from Ψ. While it is possible to bound λ_i with the FP, it is also easy to build matrices with $\lambda_K = 0$ compromising the bound given in (11). Therefore, we introduce the following property to control the eigenvalues of any T_A.

Definition 2 (\((\delta, L)\)-bounded frame). Consider a matrix $\Psi \in \mathbb{R}^{N \times K}$ where $N \geq L$ and $N > K$. Then, we say that Ψ is (δ, L)-bounded if for every $A \subseteq \mathcal{N}$ such that $|A| = L$, T_A has a bounded spectrum

$$\frac{L_{\text{MEAN}}}{K} - \delta \leq \lambda_i \leq \frac{L_{\text{MEAN}}}{K} + \delta,$$

where $1 \leq i \leq K$, $\delta \geq 0$ and $L_{\text{MEAN}} = \frac{1}{N} \sum_{i \in \mathcal{N}} \|\psi_i\|^2$ is average value of L_{SUM}.

The concept of (δ, L)-bounded frames is similar to the notion of RIP matrices used in compressive sensing to guarantee the reconstruction of a sparse vector from a limited number of linear measurements [23]. Moreover, it allows us to define an approximation factor for the MSE that does not depend on the FP, the cost-function we minimize.

Theorem 3 (MSE approximation factor for (δ, L)-bounded frames). Consider a matrix $\Psi \in \mathbb{R}^{N \times K}$ and $L \geq K$ sensors. Assume Ψ to be a (δ, L)-bounded frame, let d be the ratio L_{MEAN}/K and define the optimal placement in terms of MSE as $\text{OPT} = \arg \min_{A \subseteq \mathcal{N}, |A| = L} \text{MSE}(\Psi_A)$. Then the solution \mathcal{L} of FrameSense is near-optimal w.r.t. MSE,

$$\text{MSE}(\Psi_{\mathcal{L}}) \leq \eta \text{MSE}(\Psi_{\text{OPT}}) \text{ with } \eta = \gamma \frac{(d + \delta)^2 L_{\text{MAX}}}{(d - \delta)^2 L_{\text{MIN}}},$$

where η is the approximation factor of the MSE and γ is the approximation factor of the FP.

Proof: First, we compute the worst case MSE when FrameSense yields the worst FP, that is for $FP(\Psi_{\mathcal{L}}) = \gamma FP(\Psi_{\text{OPT}})$, using the upper bound (11) and the bounds on the spectrum for (δ, L)-bounded frames,

$$\text{MSE}(\Psi_{\mathcal{L}}) \leq \frac{K}{L_{\text{MIN}}} \frac{\gamma \text{FP}(\Psi_{\text{OPT}})}{(d - \delta)^2}. \quad (13)$$

Then, we compute the best case MSE when the FP is optimal. We note that the lower bound (12) of the MSE is monotonically decreasing w.r.t. the FP. Therefore, we use the previous simple strategy on the lower bound,

$$\text{MSE}(\Psi_{\text{OPT}}) \leq \frac{K}{L_{\text{MAX}}} \text{FP}(\Psi_{\text{OPT}}) \frac{(d + \delta)^2}{(d - \delta)^2}. \quad (14)$$

Note that we consider the optimal MSE is achieved for the optimal FP because the lower bound of the MSE is monotonically decreasing w.r.t. to FP. Finally, we compute the MSE approximation ratio as the ratio between (13) and (14), obtaining the desired result. ■

Here, the key is the definition of (δ, L)-bounded frames. It turns out that many families of random matrices adequately normalized satisfy Definition 2 but it is very hard to build deterministic matrices with such spectral properties. Nonetheless, as is the case for compressed sensing and RIP matrices [25], FrameSense works well even for Ψ that are not (δ, L)-bounded.

IV. Numerical Results

In this section, we analyze the performance of FrameSense and compare it with the state-of-the-art algorithms for sensor placement.

A. Synthetic data

First, we compare the FP with other cost functions when used in a naive greedy algorithm. Among the one listed in Section 1B we select the following four cost functions: entropy [12], mutual information [14], determinant of T_L [5], and MSE [15]. We also consider an algorithm that randomly places the sensors to relate the obtained results to a random selection.

The greedy algorithms are tested on different types of sensing matrices Ψ:

- random matrices with Gaussian i.i.d. entries,
- random matrices with Gaussian i.i.d. entries whose rows are normalized,
- random matrices with Gaussian i.i.d. entries with orthogonal columns,
- DCT matrices of size N where $N - K$ columns are randomly discarded.

We consider $\Psi \in \mathbb{R}^{100 \times 20}$ and evaluate the performance in terms of MSE for $L = \{30, 35, 40, 45, 50, 55, 60\}$. We use 20 different instances\(^4\) for each combination, and we plotted the average MSE as a function of L. The results are given in Figure 2. We note that FrameSense is consistently outperforming all other cost functions. In the random Gaussian matrices case, mutual information shows similar results. However, looking at subsampled DCT matrices, we see that mutual information leads to a significantly worse MSE. Note that certain cost functions show worse performance than a random selection of the rows. While this phenomena could be partially explained by the special properties of certain families of random matrices, it indicates the importance of choosing a well-studied cost function for which we can obtain performance bounds w.r.t. to the MSE.

In the second experiment, we compare FrameSense with a state-of-the-art method based on convex optimization [6]. Since the algorithm proposed by Joshi et al. [6] is structurally different from FrameSense, we focus this analysis on two parameters: the computational time and the MSE. We fix $K = 20$ and the ratio between the number of sensors and the number of available locations as $L/N = 0.5$. Then, we vary the number\(^4\)The relatively small size of Ψ and the small number of trials are due to the lack of scalability of certain cost functions which require the computation of large matrices.
Fig. 2. Performance comparison between FrameSense and other greedy algorithms using commonly considered cost functions. We randomly generate matrices with \(N = 100\) and \(K = 20\) and test a varying number of sensors with different greedy algorithms. The performance is measured in terms of MSE, so the lower the curve, the higher the performance. We consider four different types of sensing matrices, and in all cases FrameSense outperforms the other algorithms. We underline the consistency of FrameSense over the four types of matrices. Indeed, even if the mutual information is slightly better than FrameSense for Gaussian random matrices, it shows poor results for the other matrices.

Fig. 3. Analysis of the tradeoff between computational time and MSE for FrameSense and the convex relaxed algorithm proposed by Joshi et al. \([6]\). We generate 30 Gaussian matrices with \(K = 20\) and of increasing size \(N = \{50, 100, 150, 200\}\), while we place \(L = 0.5N\) sensors. We measure the average computational time together with the average MSE, showing that while FrameSense is significantly faster than the convex algorithm, the difference in MSE is minimal. Moreover, the gap in the quality of the solution decreases for an increasing size of the problem \(N\).
the heuristics proposed in [6].

To conclude the performance analysis, we study the trade-off between computational complexity and performance for all the considered algorithms, greedy and not. We also consider the lazy greedy algorithm optimizing the mutual information proposed by Krause et al. [14], since it reduces the number of evaluated locations by avoiding the ones close to the already selected locations. We picked 20 instances of each of the random matrices proposed in the first experiment with $N = 100$, $L = 50$ and $K = 30$. We measured the average computational time and average MSE obtained by each algorithm and the results are given in Figure 4. We note a general trend connecting the four subfigures: FrameSense is the fastest algorithm, by at least an order of magnitude, while its performance is just second, as previously shown, to the convex relaxed method proposed by Joshi et al. [6].

A critic to the computational cost analysis is the following: sensor placement is an off-line procedure and computational time is of secondary importance. While this is true in many applications, there are certain applications where it is necessary to recompute L regularly. This is usually the case when Ψ changes in time due to changes of the physical field and it is possible to adaptively reallocate the sensors. In other applications, such as the ones where we attempt to interpolate the entire field from L measurements, the number of possible locations N grows with the desired resolution. In this case, a lower computational time is of critical importance.

B. Temperature estimation on many-core processors

We now analyze the impact of FrameSense on a well-known real-world problem where sensor placement is of fundamental importance. We describe the problem briefly, followed up by a simulation showing the improvement w.r.t. the state-of-the-art.

The continuous evolution of process technology increases the performance of processors by including more cores memories and complex interconnection fabrics on a single chip. Unfortunately, a higher density of components increases the power densities and amplifies the concerns for thermal issues. In particular, it is key to design many-core processors that prevent hot spots and large on-chip temperature gradients, as both conditions severely affect the overall system’s characteristics.

A non-exhaustive list of problems induced by thermal stress includes higher failure rate, reduced performance, increased power consumption due to current leakage and increased cooling costs. To overcome these issues, the latest designs include
We considered the same matrix Ψ used in [30] and we compare our previous greedy algorithm with FrameSense. The results are shown in Figure 5. We note that the performance of the placement algorithm has been further improved by FrameSense, without increasing the computational cost nor changing the reconstruction strategy. Moreover, we are now able to guarantee the near-optimality of the algorithm w.r.t. the MSE of the estimated thermal map. An example of a thermal map and the two reconstructions obtained by the sensor placements optimized by the two considered algorithms; notably, the reconstruction obtained by FrameSense is significantly more precise.

V. Conclusions

We studied the optimization of sensor placement when the collected measurements are used to solve a linear inverse problem. The problem is equivalent to choosing L rows out of N from a matrix Ψ such that the resulting matrix has favorable spectral properties. The problem is intrinsically combinatorial and approximation algorithms are necessary for real-world scenarios. While many approximation algorithms have been proposed, performance in terms of the MSE of the solution of the inverse problem, which is the key merit figure.

We propose FrameSense, a greedy worst-out algorithm minimizing the frame potential. Even if the chosen cost function is well-known in frame theory for its fundamental role in the construction of frames with optimal MSE, FrameSense is the first algorithm exploiting it as a cost function for the sensor placement problem. Our theoretical analysis demonstrates the following innovative aspects:

- FrameSense is near-optimal w.r.t. the frame potential, meaning that it always places the sensors such that the obtained frame potential is guaranteed to be close to the optimal one.
- under RIP-like assumptions for Ψ, FrameSense is also near-optimal w.r.t. the MSE. Note that FrameSense is the first algorithm with this important feature.

We provided extensive numerical experiments showing that FrameSense achieves the best performance in terms of MSE while having the lowest computational complexity when compared to many other greedy algorithms. FrameSense is also competitive performance-wise with a state-of-the-art algorithm based on a convex relaxation proposed in [6], while having a substantially smaller computational time.

We showed that FrameSense has appealing performance on a real-world scenario, the reconstruction of thermal maps of many-core processors. Its improvement shows a potential for reducing the number of sensors required to estimate precisely the thermal distribution on a chip, reducing the occupied area and the consumed power by the sensors.

Future work will be two-fold. First, it is imaginable to relax the RIP-like condition on Ψ by considering that the characteristics of the frame potential are potentially sufficient to avoid $\Psi\mathcal{L}$ matrices with an unfavorable spectral distribution. Second, we believe that a convex relaxed scheme based on the frame potential integrating the heuristics proposed by Joshi et
al. could improve significantly the MSE of the obtained solution, while keeping the near-optimality thanks to the frame potential.

APPENDIX

A. Bounding the MSE with the frame potential

In this section, we bound the MSE of a matrix $\Psi_A \in \mathbb{R}^{L \times K}$ as a function of its FP and the spectrum $\{\lambda_i\}_{i=1}^K$ of T_L.

First, consider the harmonic mean $H = \frac{1}{\sum_1^K \frac{1}{\lambda_i}}$ and the standard deviation $S = \sqrt{\frac{1}{K} \sum_1^K (\lambda_i - A)^2}$ of the eigenvalues of T_L. All these quantities are linked to $\text{MSE}(\Psi_A)$, the number of sensors L and FP $\text{FP}(\Psi_A)$. More precisely, we have

$$H = \frac{K}{\text{MSE}(\Psi_A)},$$

$$A = \frac{L_{\text{SUM}}}{K},$$

$$S = \sqrt{\frac{1}{K} \left(\text{FP}(\Psi_A) - \frac{L_{\text{SUM}}^2}{K} \right)}.$$

Then, we consider the following bounds for the harmonic mean of a set of positive numbers derived by Sharma [23],

$$M - S \leq A \leq \frac{(m + S)^2}{m(m + 2S)},$$

where m and M are the smallest and the largest number in the set. We use the expressions of A and H and we remove the mixed term in the denominator to obtain,

$$\frac{K^2}{L_{\text{SUM}}} \left(1 + \frac{S^2}{M^2} \right) \leq \text{MSE}(\Psi_A) \leq \frac{K^2}{L_{\text{SUM}}} \left(1 + \frac{S^2}{m^2} \right).$$

As expected when the FP achieves its global minima, that is $S = 0$, we achieve the optimal MSE of a tight frame.

To conclude the proof, we consider the two bounds separately starting from the lower one. Let $M = \lambda_1$ and we plug in the value of S. We also consider w.l.o.g. $L_{\text{SUM}} \leq L_{\text{MAX}}$, since we can always improve the MSE by increasing the sensing power L_{SUM}. Then,

$$\text{MSE}(\Psi_L) \geq \frac{K^2}{L_{\text{MAX}}} \left(1 + \frac{\text{FP}(\Psi_A)}{K\lambda_1^2} \right).$$

We obtain the final result by using lower bound on the largest eigenvalue: $\lambda_1 \geq \frac{L_{\text{MAX}}}{K}$. The approach to prove the upper bound is exactly symmetrical. Specifically, consider $m = \lambda_N$, $L_{\text{SUM}} \geq L_{\text{MIN}}$ and use the upper bound on the smallest eigenvalue $\lambda_N \leq \frac{L_{\text{MAX}}}{K}$.

Acknowledgment

The authors would like to thank Ivan Dokmanič and Prof. Ola Svensson whose suggestions were fundamental to strengthen the results described in the paper. This research was supported by an ERC Advanced Grant – Support for Frontier Research – SPARSAM Nr: 247006.

Juri Ranieri received both his M.S. and B.S. degree in Electronic Engineering in 2009 and 2007, respectively, from Università di Bologna, Italy. From July to December 2009, he joined as a visiting student the Audiovisual Communications Laboratory (LCAV) at EPFL Lausanne, Switzerland. From January 2010 to August 2010, he was with IBM Zurich to investigate the lithographic process as a signal processing problem. From September 2010, he is in the doctoral school at EPFL where he joined LCAV under the supervision of Prof. Martin Vetterli and Dr. Amina Chebira. From April 2013 to July 2013, he was an intern at Lyric Labs of Analog Devices, Cambridge, USA. His main research interests are inverse problems of physical fields and the spectral factorization of autocorrelation functions.

Amina Chebira is a senior research and development engineer at the Swiss Center for Electronics and Microtechnology (CSEM) in Neuchâtel, Switzerland. In 1998, she obtained a Bachelor degree in mathematics from University Paris 7 Denis Diderot. She received the B.S. and M.S. degrees in communication systems from the Ecole Polytechnique Federale de Lausanne (EPFL) in 2003 and the Ph.D. degree from the Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, in 2008, for which she received the biomedical engineering research award. She then held a Postdoctoral Researcher position with the Audiovisual Communications Laboratory, EPFL, from 2008 to 2012. Her research interests include frame theory and design, biomedical signal and image processing, pattern recognition, filterbanks and multisolution theory.

Martin Vetterli was born in 1957 and grew up near Neuchâtel. He received the Dipl. El.-Ing. degree from Eidgenossische Technische Hochschule (ETHZ), Zurich, in 1981, the Master of Science degree from Stanford University in 1982, and the Doctorat es Sciences degree from the Ecole Polytechnique Federale, Lausanne, in 1986. After his dissertation, he was an Assistant and then Associate Professor in Electrical Engineering at Columbia University in New York, and in 1993, he became an Associate and then Full Professor at the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley. In 1995, he joined the EPFL as a Full Professor. He held several positions at EPFL, including Chair of Communication Systems and founding director of the National Competence Center in Research on Mobile Information and Communication systems (NCCR-MICS). From 2004 to 2011 he was Vice President of EPFL and from March 2011 to December 2012, he was the Dean of the School of Computer and Communications Sciences. Since January 2013, he leads the Swiss National Science Foundation. He works in the areas of electrical engineering, computer sciences and applied mathematics. His work covers wavelet theory and applications, image and video compression, self-organized communications systems and sensor networks, as well as fast algorithms, and has led to about 150 journal papers. He is the co-author of three textbooks, with J. Kovacevic, Wavelets and Subband Coding (PrenticeHall, 1995), with P. Prandoni, Signal Processing for Communications, (CRC Press, 2008) and with J. Kovacevic and V. Goyal, of the forthcoming book Fourier and Wavelet Signal Processing (2012). His research resulted also in about two dozen patents that led to technology transfers to high-tech companies and the creation of several start-ups. His work won him numerous prizes, like best paper awards from EURASIP in 1984 and of the IEEE Signal Processing Society in 1991, 1996 and 2006, the Swiss National Latsis Prize in 1996, the SPIE Presidential award in 1999, the IEEE Signal Processing Technical Achievement Award in 2001 and the IEEE Signal Processing Society Award in 2010. He is a Fellow of IEEE, of ACM and EURASIP, was a member of the Swiss Council on Science and Technology (2000-2004), and is an ISI highly cited researcher in engineering.
