Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

Matt Crook,1 Awani Upadhyay, Liyana J. Ido, and Wendy Hanna-Rose2
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802

ABSTRACT Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

Copyright © 2016 Crook et al.
doi: 10.1534/g3.116.034850
Manuscript received June 30, 2016; accepted for publication August 26, 2016; published Early Online September 7, 2016.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplemental material is available online at www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034850/-/DC1.

1Present address: Biology Department, Whitman College, Walla Walla, WA 99362.
2Corresponding author: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 104D Life Science Building, University Park, PA 16802. E-mail: wxh21@psu.edu

KEYWORDS
TRPV necrosis phospholipid pmt-1 pnc-1
contexts, LET-23 EGFR signals via alternative pathways. LET-23 EGFR promotes ovulation and maintenance of health span by activating the phospholipase encoded by PLC-3 and the IP3 receptor ITR-1 (Cladninin et al. 1998; Yin et al. 2004; Iwasa et al. 2010; Yu and Driscoll 2011). And finally, PLC-3 and diacylglycerol binding proteins mediate LET-23 EGFR function in behavioral quiescence (Van Buskirk and Sternberg 2007). We have revealed a protective role for LET-23 signaling in antagonizing excitotoxic death in C. elegans and uncovered a novel mechanism required for signaling.

Excitotoxic cell death is a pathological response to conditions that hyperactivate ion channels in the nervous system, resulting in an ion imbalance and a necrotic-like death (Sattler and Tymiakstian 2001; Fujikawa 2015). The uv1 cells in the C. elegans uterus stimulate egg laying in response to stretching of the uterus upon accumulation of eggs (Jose et al. 2007). High levels of the nicotinamide (NAM) form of vitamin B3, produced by disrupting the function of the nicotinamidase PNC-1 or exogenous application of NAM, hyperactivate a TRPV cation channel and cause excitotoxic death of the uv1 cells (Huang and Hanna-Rose 2006; Vrablik et al. 2009; Upadhyay et al. 2016). Surprisingly, this excitotoxic death is efficiently suppressed by gain-of-function mutations in let-23, as well as by overexpression of the LET-23 ligand LIN-3 EGF (Huang and Hanna-Rose 2006). We have explored the signaling mechanisms used by LET-23 in this prosurvival role by exploring the roles of known downstream mediators of LET-23 signaling in C. elegans and by screening for additional signaling molecules. We demonstrate that while signaling through LET-60 Ras is required for LET-23 survival signaling, activation of LET-60 Ras or MAPK is not sufficient to mediate survival and that PLC-3 signaling is dispensable for LET-23 survival signaling. Finally, we show that phosphorylcholine biosynthesis is necessary and partially sufficient to mediate LET-23 survival function.

MATERIALS AND METHODS

C. elegans strains and maintenance

Strains were maintained under standard conditions at 20°C (Brenner 1974) using Escherichia coli OP50 as a food source. In supplementation experiments, solutions were added to preseeded culture plates and allowed to be absorbed into the agar overnight. Animals were supplemented with 25 mM NAM (Alfa Aesar, Ward Hill, MA), 30 mM choline (Fluka, St. Louis, MO), or 30 mM cytidine diphosphate choline (CDP-choline; Alfa Aesar) by diluting from a filter-sterilized 1 M stock solution in water. Animals were also supplemented with 30 μM L-α-phosphatidylcholine (PtdCholine) (Sigma Aldrich, St. Louis, MO) by diluting from a filter-sterilized 10 mM working solution prepared in water, which was in turn diluted from a 0.5 M stock solution prepared in 100% ethanol. An equal volume of 2% ethanol was applied to plates used as controls in the PtdCholine supplementation experiments. Strains used in this work are listed in Table 1.

Phenotypic analysis: uv1 survival and specification

uv1 cell survival was scored and calculated using two methods. In some experiments, healthy GFP-positive uv1 cells were counted using an integrated ida-1::gfp transgene, which results in GFP expression in all four uv1 cells in wild-type animals (Zahn et al. 2001). Percentage uv1 survival or specification was calculated using the following formula: number of GFP-positive cells observed/number of cells expected × 100. In other experiments where the integrated GFP marker was not available in the strain, uv1 cell corpses were counted, and the percentage uv1 survival was calculated using the following formula: (number of cells expected − number of corpses observed)/number of cells expected. Number of cells expected is calculated by multiplying the number of animals examined by 4 (the typical number of uv1 cells per animal) or by the appropriate multiplier, as determined in Table 2.

RNAi

RNAi clones, with the exception of pmt-2, were from the C. elegans RNAi Library (Source BioScience, Nottingham, UK). Constructs were sequenced by barcoding. In the case of pmt-2 RNAi was constructed by amplifying an 854 bp fragment, using primers described previously (Palavalli et al. 2006), ligating the fragment into the L4440 T7 vector (Addgene plasmid no. 1654) and transforming into RNAi feeding strain HT115. RNAi feeding assays were carried out as described (Ahringer 2006). Briefly, RNAi bacterial cultures were spotted onto Nematode Growth Medium (NGM) 25 μg/mL−1 carbenicillin 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) plates and allowed to grow at room temperature for 3 to 5 d. Five to ten L4s were placed onto each plate and incubated at 20°C until their L4 offspring could be scored.

Data and reagent availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplemental Material, Table S1. Strains and reagents are available upon request.

RESULTS

Ras/MAPK signaling is necessary but not sufficient for let-23(sa62gf) suppression of excitotoxic cell death

NAM is an agonist for the OSM-9/OCR-4 TRPV channel (Upadhyay et al. 2016). We have previously shown that accumulation of NAM caused by mutation of the nicotinamidase PNC-1 or direct supplementation of C. elegans cultures induces excitotoxic death in the cells that express the OSM-9/OCR-4 channel, including the uv1 cells (e.g., Figure 1) (Upadhyay et al. 2016). Notably, activation of LET-23 EGFR via the gain-of-function allele let-23(sa62gf) effectively prevents death of the uv1 cells caused by mutation of pnc-1 or by supplementation of wild-type cultures with NAM (Huang and Hanna-Rose 2006) (Figure 1).

We aimed to decipher the signaling mechanisms required downstream of LET-23 activation that act to counteract excitotoxic death and promote cell survival. We first investigated the role of signaling components known to mediate LET-23 signaling. Signaling via LET-60 Ras

Table 1 Strains used in this study

Strain	Genotype
BL5715	ins179 (ida-1::gfp)
HV285	ins179 (ida-1::gfp); IV let-60(n1046gf)
HV330	let-23(sa62gf) unc-4(e120); IV pnc-1(ku212); Ex(ida-1::GFP)
HV560	ins179 (ida-1::gfp); IV pnc-1(pk9605)
HV607	let-23(sa62gf) unc-4(e120); Ex(ida-1::gfp)
HV623	ins179 (ida-1::gfp); IV let-60(n1046gf) itr-1(sy290gf) unc-24(e138)
HV639	ins179 (ida-1::gfp); IV pnc-1(pk9605) let-60(n1046gf) itr-1(sy290gf) unc-24(e138)
HV651	ins179 (ida-1::gfp); IV itr-1(sy290gf) unc-24(e138)
HV662	ins179 (ida-1::gfp); IV pnc-1(pk9605) let-60(n1046gf) unc-24(e138)
HV663	ins179 (ida-1::gfp); IV pnc-1(pk9605) itr-1(sy290gf) unc-24(e138)
HV760	let-23(sa62gf) ins179 (ida-1::gfp)
HV776	let-23(sa62gf) unc-4(e120) ins179 (ida-1::gfp); IV pnc-1(pk9605)
PJ1063	IV let-60(ga89gf); V ccls55
PJ1115	IV gals37[E19a-D-mek1(gf); hs-mpk-1(gf)]; V ccls55
is required for multiple LET-23 functions (Beitel et al. 1990; Han and Sternberg 1991) and is specifically required for uv1 cell differentiation (Chang et al. 1999). Thus, we first asked if activation of LET-60 Ras could mimic the effect of let-23 activation in preventing uv1 cell death. However, activation of LET-60 via the n1046 gain-of-function allele did not prevent uv1 cell death in the pnc-1 mutant or in NAM-supplemented cultures (Figure 1, A and B). Instead, we noted that some let-60(n1046gf) animals had more than two cell corpses per side of the uterus (Figure 1F). We hypothesized that these were extra uv1 cells specified from the uterine lineage as the result of increased Ras signaling. Consistent with this hypothesis, let-60(n1046gf) single mutants have an increase in number of uv1 cells compared to wild-type animals (Table 2). We also examined let-60(sa89gf), a temperature-sensitive, gain-of-function allele (Eisenmann and Kim 1997). While only 28%

Table 2 LET-23 EGFR and LET-60 Ras induce ectopic uv1 specification

Genotype	No. of GFP-Positive uv1 Cells	Average No. of uv1 Cells Specified				
	7	6	5	4	n	
Wild-type (strain BL5715)	0	0	0	60	4	60
let-23(sa62gf) (strain HV760)	0	1	8	49	4.17	58
let-60(n1046gf) (strain HV285)	1	29	55	51	4.85***	136
itr-1(sy290gf) (strain HV651)	0	0	0	111	4	111
let-60(n1046gf) itr-1(sy290gf) (strain HV623)	1	38	71	19	5.16***	129

n, number of animals examined.
*p < 0.005.
**p < 0.001, Student’s t-test, comparison to let-60(n1046gf).
***p < 0.001, Student’s t-test, comparisons to wild type.

Figure 1 Activation of known signaling pathways downstream of LET-23 fails to mimic activation of LET-23 in cell survival signaling. (A) While let-23 (sa62gf) promotes uv1 cell survival in pnc-1 mutants, neither the let-60(n1046) nor itr-1(sy290) gain-of-function alleles, alone or in combination, are sufficient to provide a cell survival signal in pnc-1 mutants. Strains used are HV560, HV776, HV662, HV663, and HV639. (B) Similarly, let-23(sa62gf) promotes uv1 cell survival in animals supplemented with 25 mM nicotinamide (NAM). However, neither the let-60(n1046) nor itr-1(sy290) gain-of-function alleles, alone or in combination, nor activation of MAP kinases, is sufficient to provide a full cell survival signal in NAM-supplemented animals. Strains used are BL5715 (control), HV607, HV285, HV651, HV623, and PJ1115. Percentage uv1 cells surviving and number of animals examined are indicated on or above each bar in panel (A) and (B). Error bars are 95% C.I. Asterisks indicate statistical tests performed via comparison to pnc-1 in (A) and relative to control plus NAM or relative to control + heat shock (HS) in (B). *** P < 0.001, calculated using Fisher’s exact test with Bonferroni correction considering four pairwise comparisons for (A) and 10 pairwise comparisons for (B). (C-F) DIC and corresponding fluorescence photomicrographs for animals carrying the lin179(ida-1::GFP) transgene, a uv1 cell marker. uv1 cells are marked with arrows and the unrelated GFP-positive ventral cord neurons.

GFP-positive uv1 cells (E’). We documented an older animal in these panels to demonstrate the lack of death even at later stages. (F, F’) let-60 (n1046gf) pnc-1 (strain HV662) L4 animal with a mid-L4 stage vulva with three visible uv1 cell corpses (arrows in F) and no GFP-positive uv1 cells (F’). The small GFP-positive cells on the ventral surface of the animal are ida-1::GFP-positive ventral cord neurons.
RNAi screen for genes that mediate LET-23 cell survival signaling

Because let-60 appears to be required for let-23-mediated cell survival signaling but let-60(n1046gf) is not sufficient to mimic the effect of let-23(sa62gf), we hypothesized that other signaling pathways and mechanisms are acting downstream of, or in parallel to let-60 to mediate let-23 activity in uv1 cell survival. To identify these genes we carried out a targeted RNAi screen in let-23(sa62gf); pnc-1 strain that carries a transgene causing GFP expression in uv1 cells. Knockdown of any gene that is required for let-23 function in promoting uv1 cell survival is expected to result in increased cell death in let-23(sa62gf); pnc-1 animals, and thus a decrease in number of healthy GFP-positive uv1 cells. To rule out RNAi clones that simply prevent or reduce uv1 cell specification and thus decrease the number of GFP-positive uv1 cells present, we eliminated genes whose RNAi resulted in reduced numbers of GFP-positive uv1 cells. Knockdown of pnc-1 was shown to be sufficient to prevent uv1 cell survival in a wild-type background. We assembled a list of candidate genes with known signaling roles that consisted primarily of kinases. A screen of 234 candidates (Table S1) revealed two positive genes, including pmt-1, which was serendipitously included among the kinase candidates, likely because of cross-contamination from an adjacent well in the library plate. Knockdown of pmt-1 reduced let-23(sa62gf)-mediated uv1 survival by almost half in the let-23(sa62gf); pnc-1 animals but did not affect uv1 specification in a wild-type background (Figure 3). We conclude that pmt-1 is required for LET-23 to promote cell survival in pnc-1 animals. Because of the robust effect of pmt-1 RNAi and the novel and unexpected role for the gene, we chose to continue characterizing pmt-1.

Figure 3 pmt-1 is required for efficient survival of uv1 cells in the let-23(sa62gf); pnc-1 background but does not affect differentiation or survival of uv1 cells in a wild-type background. Percentage of uv1 cells surviving is plotted for RNAi and the novel and unexpected effect as let-23 RNAi itself (Figure 2), which was surprisingly resistant to knockdown by RNAi, suggesting that LET-60 Ras and the downstream MAP kinase MPK-1 are at least partially required for LET-23 function in preventing cell death. The RNAi experiments and gain-of-function experiments together demonstrate that signaling via LET-60 Ras downstream of LET-23 is necessary but not fully sufficient for LET-23 signaling function in promoting uv1 survival. In contrast, we detected no role for itr-1 or plc-3, uv1 cell survival remained robust in the let-23(sa62gf); pnc-1 strain upon itr-1 RNAI (86% survival, n = 42) or plc-3 RNAI (87% survival, n = 46).

Figure 2 The LET-60 Ras MPK-1 MAPK signaling pathway is required for full cell survival signaling by LET-23. After RNAi of the indicated gene in let-23(sa62gf); pnc-1 (strain HV330), animals that were no longer multinucleate (demonstrating effectiveness of the RNAi) were scored for surviving uv1 cells. Percentage of uv1 cells surviving is plotted. The actual percentages and number of animals scored are indicated on each bar. Error bars are 1 SD. ** P < 0.001, calculated using Fisher's exact test with Bonferroni correction considering three pairwise comparisons.

(n = 25) of let-23(sa62gf) animals have one or more dying uv1 cells, 100% of NAM-treated let-60(sa89gf) animals have one or more dying uv1 cells at 15°C (n = 66) and 25°C (n = 49). Moreover, 20% of let-60(sa89gf) animals also have more than two dying uv1 cells at 25°C (n = 49). These results demonstrate that overactivation of Ras sufficient to cause ectopic uv1 cell induction using two distinct gain-of-function alleles is insufficient to promote cell survival.

To further investigate any potential role of the Ras/MAPK pathway in mediating LET-23 cell survival functioning, we also examined animals in which the pathway is activated via heat shock–inducible coexpression of gain-of-function D-MEK and MPK-1, which encode MAP kinases that act downstream of Ras (Lackner et al. 1994; Lackner and Kim 1998). Activation of the pathway in this manner marginally promoted cell survival in NAM-treated animals (Figure 1B). We conclude that Ras/MAPK signaling may be involved but is likely not sufficient to substitute for LET-23 activity in cell survival signaling.

We next asked if activation of the signaling pathway involving the second messenger, IP₃, which mediates the effect of let-23(sa62gf) in healthspan extension and ovoation (Clandinin et al. 1998; Yin et al. 2004; Iwasa et al. 2010), would mimic let-60 cell survival effects. However, activation of the IP₃ receptor using the gain-of-function allele itr-1(sy290gf) failed to mimic let-23 cell survival effects. However, activation of the IP₃ receptor using the gain-of-function allele itr-1(sy290gf) failed to mimic let-23 cell survival effects. Finally, we combined let-60(n1046gf) and itr-1(sy290gf) to test if there might be a requirement for simultaneous activation of these two pathways for let-23(sa62gf)-mediated cell survival signaling. The combination of these alleles had no effect on uv1 cell survival (Figure 1A), but they did cooperate to produce ectopic uv1 cell induction (Table 2). We conclude that while activation of LET-23 is sufficient to prevent death of uv1 cells in the pnc-1 mutant, activation of ITR-1 alone or in combination with LET-60 is not.

To determine if either let-60 or itr-1 has any function in let-23(sa62gf)-mediated suppression of cell death, we knocked down expression of these genes in the let-23(sa62gf); pnc-1 animals and scored uv1 cell survival. let-60 RNAi resulted in a decrease in cell survival as did mpk-1 RNAi (Figure 2). These RNAi treatments gave as robust of an
PtdCholine synthesis is necessary for LET-23-mediated suppression of cell death

PMT-1 is a phosphoethanolamine N-methyltransferase that adds a methyl group to phosphoethanolamine at the start of the sequential methylation pathway of phosphocholine (pCholine) synthesis (Brendza et al. 2007) (Figure 4). Given that PMT-1 functions within a defined biochemical pathway (Palavalli et al. 2006; Brendza et al. 2007), we wanted to determine if a specific metabolite from the sequential methylation pathway or the Kennedy pathway, which subsequently converts pCholine to PtdCholine (Figure 4), was required for let-23 activity in preventing cell death. We first asked if PMT-2, a second phosphoethanolamine N-methyltransferase that acts after PMT-1 in the sequential methylation pathway, was also necessary for let-23-mediated uv1 survival. Knockdown of pmr-2 in the let-23(sae23gf); pnc-1 background results in an increase in cell death similar to that of pmr-1 RNAi (Figure 5A). We conclude that pmr-2 is also required for let-23 to promote uv1 survival. To test if pmr-1 and pmr-2 are required for function of let-23 in other signaling events, we examined the effect of RNAi of these genes on vulval development and uv1 specification. let-23(sae23gf) causes both increased vulval induction (Katz et al. 1996) and ectopic uv1 specification. Addition of 30 mM choline to pmr-1 or pmr-2 RNAi plates significantly restored uv1 cell survival (Figure 5A), suggesting that pCholine, the metabolic product of the sequential methylation pathway, is required downstream of or in parallel to LET-23 in suppressing cell death.

A primary role of pCholine is the production of PtdCholine. To determine if PtdCholine production is required for LET-23 function in suppressing cell death, we next examined the functional role of the genes involved in the Kennedy pathway for production of PtdCholine from pCholine (Figure 4). PCYT-1 encodes the C. elegans CTP:phosphocholine cytidylyltransferase (Kennedy and Weiss 1956), and CEPT-1 and CEPT-2 encode choline-ethanolamine phosphotransferases (Xu et al. 1994). Individual knockdown of both genes together (82% survival, \(P < 0.001 \)) or knockdown of both genes together (82% survival, \(n = 85 \)) did not affect uv1 survival. However, supplementation of PtdCholine reversed the effect of pcyt-1 RNAi (Figure 5B), suggesting that production of the final product of the Kennedy pathway is the metabolite with relevant function.
in preventing uv1 cell death in response to LET-23 activity in the pnc-1 mutants.

To test this model, we asked if boosting levels of PtdCholine would be sufficient to mimic let-23(sa62gf) activity. Supplementation of PtdCholine to pnc-1(pk9605) cultures resulted in a small but significant increase in uv1 survival (Figure 6A), whereas supplementation with CDP-choline did not (7% survival, n = 117). Supplementation of PtdCholine to pnc-1(pk9605) let-60(n1046gf) (strain HV662) cultures did not increase survival compared with pnc-1(pk9605) (18% survival, n = 232). A second cell type, called OLQ cells, is sensitive to NAM-induced excitotoxic death (Upadhyay et al. 2016). However, let-23 is not reported to be expressed in OLQ cells (Van Buskirk and Sternberg 2007) and has no effect on OLQ cell survival (Figure 6B). As a further test of our model that PtdCholine production is protective against excitotoxic death in this model, we asked if PtdCholine supplementation could prevent OLQ death in the pnc-1 mutant. Supplementation of PtdCholine to pnc-1(pk9605) cultures resulted in a small but significant increase in OLQ survival as well (Figure 6B). Our results are consistent with a role for the Kennedy pathway, and specifically PtdCholine, in mediating cell survival signaling.

DISCUSSION

Activation of LET-23 EGFR has a protective effect on uv1 cells that would otherwise die in response to OSM-9/OCR-4 TRPV channel-induced excitotoxicity. We show that the known signaling pathways downstream of LET-23 EGFR in C. elegans are differentially required to provide the protective effect. While let-60 Ras is required for the full protective effect, we detected no role for signaling via ITR-1 IP3 receptor or PLC-3 phospholipase. Also, we found that our methods to increase activity of Ras or MAPK were not sufficient to promote full survival. The failure of constitutive Ras pathway signaling indicates that other unidentified signaling components are being used downstream of LET-23 in promoting cell survival. Alternatively, it remains possible that stronger LET-60 activity might prove sufficient for uv1 cell survival.

By screening for components required for LET-23-mediated survival signaling, we found that efficient PtdCholine biosynthesis is required for full survival signaling by LET-23. Moreover, supplementation of cultures with PtdCholine can protect pnc-1 mutant cells from death, suggesting that EGFR regulation of lipid biosynthesis may underlie its survival function.

In the process of examining uv1 cell death, we also revealed that let-60 activation is sufficient to induce ectopic specification of uv1 cells, a result that has not been previously noted. While let-60 is known to be required for specification of uv1 cells, the ability of constitutive activation of either let-60 or let-23 to induce ectopic uv1 cells is novel. Interestingly, itr-1(sa290gf) does not mimic let-60(n1046gf) in this function but can enhance let-60 activity in ectopic uv1 cell induction.

The ability of LET-23 activation to induce ectopic uv1 cells is somewhat surprising, given that let-23 expression has not been previously detected within cells of the uterine π lineage other than the presumptive uv1s (Van Buskirk and Sternberg 2007).

Regulation of lipids by EGFR has been noted previously in various systems. During Drosophila oogenesis, EGFR regulates expression of the gene Cct1, which is functionally required for ovarian morphogenesis and encodes the phosphocholine cytidylyltransferase orthologous to Yeast Cct1, which is functionally required for ovarian morphogenesis and encodes the phosphocholine cytidylyltransferase orthologous to PtdCho.

Table 3 Reduction of phosphocholine synthesis via pmt RNAi does not reduce LET-23 activity in vulval development or uv1 cell specification

	No. of Vulval Invaginations L4 Stage	No. of GFP-Positive uv1 Cells
	1 2 3 4 n Average	4 5 6 n Average
Wild type*	50 0 0 0 50 1.00	30 0 0 30 4.00
let-23(sa62gf)b	2 21 10 1 34 2.29	49 8 1 58 4.17
let-23(sa62gf); pmt-1 RNAi	0 13 37 8 58 2.91*	32 8 0 40 4.20
let-23(sa62gf); pmt-2 RNAi	0 8 10 0 18 2.56	36 11 2 49 4.31

*P < 0.05, calculated using Student’s t-test.

*Strain BL5715.

**Strain HV760.

![Figure 6 Exogenous phosphatidylcholine is sufficient to promote significant cell survival in an excitotoxicity model.](image)

(A) Supplementation with 30 μM phosphatidylcholine partially prevents uv1 death in pnc-1(pk9605) animals (strain HV560), but does not further increase survival in let-23(sa62gf); pnc-1 animals (strain HV776). Error bars are 1 SD. (B) Supplementation with 30 μM phosphatidylcholine partially prevents OLQ death in pnc-1(pk9605) animals (strain HV560). The actual percentages and number of animals scored are indicated on or above each bar. Error bars are 95% C.I. ns, not significant; *** P < 0.001, calculated using Fisher’s exact test with Bonferroni correction considering five pairwise comparisons.
to *C. elegans* PYCT-1 (Gupta and Schüpbach 2003). In other systems, EGFR also affects lipid biosynthesis via regulation of FASN activity (Bollu et al. 2014; Bian et al. 2015; Dahlof et al. 2015). Mutation of *Drosophila cct1* mutants reduces PtdCholine levels and negatively affects EGF and Notch signaling via regulation of endosome recycling (Weber et al. 2003). We directly examined whether the negative effect on LET-23 activity observed after inhibition of PtdCholine biosynthesis genes might be because of such an upstream effect on the LET-23 EGFR receptor. If interfering with PtdCholine biosynthesis similarly inhibits LET-23 activity in our experiments, we might expect all functions of LET-23 to be compromised upon pmt-1 RNAi. In contrast, we found that while pmt-1 RNAi interfered with LET-23-induced uv1 cell survival, it had no effect on LET-23-induced vulval induction (Table 3). Thus, our results are more consistent with a model whereby PtdCholine biosynthesis is required downstream of or in parallel to LET-23 specifically in cell survival signaling.

While both pmt methyltransferase genes in the sequential methylation pathway for pCholine biosynthesis as well as pyc-t, the subsequent gene in the Kennedy pathway, are all similarly required for full LET-23-mediated survival signaling, we detected no effect of either cept-1 or cept-2 RNAi. Yet, supplementation with PtdCholine restored survival signaling activity to the let-23(sa62gf); pnc-1(pk9605); pyc-t RNAi animals and even provided significant protective effect on its own to the pnc-1 mutants, suggesting that the final product of the Kennedy pathway, PtdCholine, is a relevant metabolite required for promoting cell survival although the mechanism by which exogenous PtdCholine restores uv1 cell survival is not known. The reason for the lack of detected role for cept-1 or cept-2 is unclear. However, the experiments could be complicated by full or partial redundancy of the cept genes. The double RNAi experiment may not be sufficient to remove enough enzyme activity to curtail function. While we favor an interpretation that posits a protective role for PtdCholine, we have not ruled experiments could be complicated by full or partial redundancy of the pcholine biosynthesis genes.

Further work will be needed to clarify if LET-23 is affecting PtdCholine synthesis directly and if PtdCholine levels are important cell autonomously in the uv1 cells. However, our data are consistent with a speculative model that LET-23-mediated effects on PtdCholine biosynthesis affect aspects of channel activity in the membrane. It will be of interest to measure effects of LET-23-mediating signaling on PtdCholine levels and to examine effects of further manipulation of PtdCholine levels.

ACKNOWLEDGMENTS

Some nematode strains used in this work were provided by the *Caenorhabditis* Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. This work was funded by NIH grant GM086786 to WHR.

LITERATURE CITED

Ahringer, J., 2006 Reverse genetics (April 6, 2006), *WormBook*, ed. The *C. elegans* Research Community *WormBook*, doi/10.1895/wormbook.1.47.1, http://www.wormbook.org.

Armstrong, D. K., S. H. Kaufmann, Y. L. Ottaviano, Y. Furuya, J. A. Buckley et al., 1994 Epidermal growth factor-mediated apoptosis of MDA-MB-468 human breast cancer cells. Cancer Res. 54: 5280–5283.

Beitel, G., S. Clark, and H. R. Horvitz, 1990 The *Caenorhabditis elegans ras* gene let-60 acts as a switch in the pathway of vulval induction. Nature 348: 503–509.

Bergmann, A., M. Tugmenta, B. Z. Shilo, and H. Steller, 2002 Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell 2: 159–170.

Bian, Y., Y. Yu, S. Wang, and L. Li, 2015 Up-regulation of fatty acid synthesis induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem. Biophys. Res. Commun. 463: 612–617.

Bollu, L. R., J. Ren, A. M. Blessing, R. R. Katreddy, G. Gao et al., 2014 Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF-induced mitochondrial fusion of cancer cells. Cell Cycle 13: 2415–2430.

Brendza, K. M., W. Haakenson, R. E. Cahoon, L. M. Hicks, L. H. Palavalli et al., 2007 Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in *Caenorhabditis elegans*. Biochem. J. 404: 439–448.

Brenner, S., 1974 The genetics of *Caenorhabditis elegans*. Genetics 77: 71–94.

Chang, C., A. P. Newman, and P. W. Sternberg, 1999 Reciprocal EGF signaling back to the uterus from the induced *C. elegans* vulva coordinates morphogenesis of epithelia. Curr. Biol. 9: 237–246.

Clandinin, T. R., J. A. DeModena, and P. W. Sternberg, 1998 Inositol triphosphate mediates a Ras-independent response to LET-23 receptor tyrosine kinase activation in *C. elegans*. Cell 92: 523–533.

Crook, M., M. R. Mcreynolds, W. Wang, and W. Hanna-Rose, 2014 An NAD+ biosynthetic pathway enzyme functions cell non-autonomously in *C. elegans* development. Dev. Dyn. 243: 965–976.

Dahlof, M., E. Camera, M. Ludowici, M. Picardo, U. Müller et al., 2015 EGFR/ERBB receptors differentially modulate sebaceous lipogenesis. FEBS Lett. 589: 1376–1382.

Eisenmann, D. M., and S. K. Kim, 1997 Mechanism of activation of the *Caenorhabditis elegans ras* homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics 146: 553–565.

Fujikawa, D. G., 2015 The role of excitotoxic programmed necrosis in acute brain injury. Comput. Struct. Biotechnol. J. 13: 212–221.

Garcia, R. A. Franklin, and J. A. McCubrey, 2006 Cell death of MCF-7 human breast cancer cells induced by EGFR activation in the absence of other growth factors. Cell Cycle 5: 1840–1846.

Gibson, E. M., E. S. Henson, N. Haney, J. Villanueva, and S. B. Gibson, 2002 Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release. Cancer Res. 62: 488–496.

Gulli, L. F., K. C. Palmer, Y. Q. Chen, and K. B. Reddy, 1996 Epidermal growth-factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ. 7: 173–178.
