Dynamics of gut mucosal colonisation with extended spectrum beta-lactamase producing Enterobacterales in Malawi

Joseph M. Lewis¹,²,³,⁴, Madalitso Mphasa¹, Rachel Banda¹, Mathew A. Beale⁴, Eva Heinz², Jane Mallewa⁵, Christopher Jewell⁶, Brian Faragher², Nicholas R. Thomson⁴,⁷, Nicholas A Feasey¹,²

¹ Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
² Liverpool School of Tropical Medicine, Liverpool, UK
³ University of Liverpool, Liverpool, UK
⁴ Wellcome Sanger Institute, Hinxton, UK
⁵ Department of Medicine, College of Medicine, University of Malawi
⁶ University of Lancaster, Lancaster, UK
⁷ London School of Hygiene and Tropical Medicine, London, UK

Corresponding Author
Joseph M. Lewis
Department of Clinical Infection, Microbiology and Immunology
University of Liverpool
8 West Derby Street, Liverpool, L69 7BE
United Kingdom
jmlewis@liverpool.ac.uk
+44 (0)151 795 9687

Key words: Whole-genome sequencing; Africa south of the Sahara; Drug resistance, microbial.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Shortening courses of antimicrobials has been proposed to reduce risk of antimicrobial resistant (AMR) infections, but acquisition and selection dynamics under antimicrobial pressure at the individual level are poorly understood. We combine multi-state modelling and whole-genome sequencing to understand colonisation dynamics of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E) in Malawian adults. We demonstrate prolonged post-exposure antibiotic effect, meaning short courses exert similar colonisation pressure to longer ones. Genome data does not identify widespread hospital-associated ESBL-E transmission, hence apparent acquisitions may be selected from the patient microbiota by antimicrobial exposure. Understanding ESBL-E dynamics under antimicrobial pressure is crucial for evidence-based stewardship protocols.
Introduction

Antimicrobials are one of the most successful therapies available to modern medicine, but the spread of antimicrobial resistance (AMR) is a threat to their effective use. Significant global effort is being directed at antimicrobial stewardship programmes designed to optimise antimicrobial use, both to avoid dispensing these agents where not warranted and, where they are deemed to be necessary, minimising both duration of exposure and spectrum of bacteria affected\(^1\). These principles are guided in part by well-described population level associations between antimicrobial exposure and prevalence of AMR at multiple spatial and temporal scales\(^2^-^4\). Antimicrobial stewardship interventions at the individual level often emphasise rationalisation of antimicrobials through narrowing their spectrum of action as soon as possible after commencement of broad empiric antimicrobial therapy in severely unwell individuals. The time frame (e.g., 48 hours) for this is typically pragmatically selected based on likely availability of diagnostic test results. This rationalisation of therapy is, in part, based on the assumption that it will reduce emergence of AMR but at the individual patient level, the mechanism by which antimicrobial exposure acts to promote colonisation and/or infection with resistant pathogens, and the dynamics of colonisation and decolonisation, are not well understood\(^5^-^8\). Improved understanding of the dynamics of individual-level AMR-acquisition under antimicrobial pressure is therefore necessary as it has the potential to optimise stewardship protocols.

One setting in which antimicrobial stewardship is a significant challenge is in the treatment of severe febrile illness in the low- and middle-income countries (LMIC) of sub-Saharan Africa (sSA). In Blantyre, Malawi, for example, as in much of sSA, limited availability of diagnostics results in prolonged courses of broad-spectrum antimicrobials – largely ceftriaxone, a third-generation cephalosporin (3GC)
antibiotic9 - for people hospitalised with severe febrile illness. Ceftriaxone has a favourable spectrum and pharmacokinetics for locally circulating bacterial pathogens and hence has been extensively used since its introduction to the Malawian national formulary in 200510. However, this widespread use has been associated with an increase in 3GC resistance, particularly in bacteria of the order Enterobacterales, and largely mediated by extended spectrum beta-lactamase (ESBL) enzymes11. ESBL-producing Enterobacterales (henceforth ESBL-E) are an increasing public health challenge throughout much of sSA12,13, and often have few or no locally available treatment options; in Blantyre, 91% of invasive \textit{K. pneumoniae} are now ESBL producers11, and strategies to reduce ESBL-E infections are needed.

In ESBL-E, gut mucosal colonisation is thought to precede invasive infection.14–16 It is common across sSA, and has often been found to be associated with prior hospitalization and/or antimicrobial exposure13. An improved mechanistic understanding of colonisation dynamics following these exposures therefore has the potential to inform evidence-based interventions to reduce colonisation and hence opportunity for transmission. Here we present the results from a clinical study of longitudinal ESBL-E carriage in Blantyre, Malawi, sampling adults as they pass through the hospital and are exposed to antimicrobials. We use multi-state modelling17 and whole-genome sequencing as a high-resolution bacterial typing tool to describe and understand the dynamics of ESBL-E colonisation and de-colonisation.
Results

Antimicrobial exposure is associated with rapid and prolonged increase in ESBL-E prevalence

Between 19th February 2017 and 2nd October 2018, we recruited 425 adults; i) 225 patients with sepsis and antimicrobial exposure, admitted to Queen Elizabeth Central hospital (QECH) Blantyre; ii) 100 antimicrobial-unexposed inpatients and iii) 100 antimicrobial-unexposed community members (Table 1, Supplementary Figure 1). Participants were typically young (median age 35.6 years), 73/425 (41%) were HIV infected with a high proportion of these (144/173, 83%) established on antiretroviral therapy (ART) and lifelong co-trimoxazole preventative therapy (CPT, 110/171, 64%) as per WHO guidance. 1417 stool samples in total were collected from the participants, and one or more ESBL-E species was cultured in 723/1417 (51%) of samples. 1032 organisms were isolated, most commonly \textit{E. coli} (n = 686) followed by members of the \textit{K. pneumoniae} species complex (n = 245, Supplementary Table 1 and Supplementary Figures 2 and 3).

Baseline prevalence of ESBL-E colonization was 178/420 42% (95% CI 38-47%). In univariable modelling, HIV infection was associated with baseline ESBL-E colonization, an effect that multivariable logistic regression modelling suggested was largely driven by CPT exposure (Table 2). Other multivariable associations of ESBL-E colonization at enrolment (unprotected drinking and other household water sources [aOR of colonization 2.96 95% CI 1.07-8.75], sample collection in rainy season [aOR 2.21 95% CI 1.07-8.75], number of adults in the household [aOR 1.20 95% CI 1.03-1.40] and recent hospitalization [aOR 6.64 95% CI 1.98 – 30.75]), suggest importance of faecal-oral and within-household ESBL-E community transmission routes, as well as healthcare exposure in driving ESBL-E colonisation.
ESBL-E prevalence at baseline was higher in the participants recruited in hospital (Figure 1A and Supplementary Table 1) than community members, a finding that was explained by prior healthcare exposure and increased HIV prevalence (and hence CPT exposure) in the former group (Tables 1 and 2).

Following enrolment, there was rapid increase in ESBL-E colonisation prevalence in the antimicrobial exposed inpatient group (109/222 [49%] at day 0 to 127/162 [78%] at day 7) compared to the inpatient antimicrobial-unexposed group (41/99 [41%] at day 0 to 32/62 [51%] at day 7, Figure 1A). The most commonly received antimicrobial was, as expected, ceftriaxone (183/225, 80%) but co-trimoxazole (110/225, 49%), ciprofloxacin (61/225, 27%) and antitubercular chemotherapy (52/225, 23%) were also commonly administered; because of prolonged continued CPT administration, exposure to co-trimoxazole in terms of person-days of exposure was significantly higher than for other antimicrobials (Supplementary Figure 4 and Supplementary Table 2).
Table 1: Baseline characteristics of included participants

Variable	Sepsis (n=225)	Inpatient (n=100)	Community (n=100)	p	Total (n = 425)
Demographics					
Age (yrs)	35.9 (27.8-43.5)	40.4 (29.1-48.3)	32.5 (24.0-38.4)	<0.001	35.6 (26.9-43.9)
Male	114/225 (51%)	51/100 (51%)	40/100 (40%)	0.163	205/425 (48%)
HIV status					
HIV Infected	143/225 (64%)	12/100 (12%)	18/100 (18%)	<0.001	173/425 (41%)
HIV Uninfected	70/225 (31%)	77/100 (77%)	22/100 (22%)	0.001	169/425 (40%)
HIV Unknown	12/225 (5%)	11/100 (11%)	60/100 (60%)	0.991	83/425 (20%)
ART status					
Current CPT	98/141 (70%)	5/12 (42%)	7/18 (39%)	0.013	110/171 (64%)
Current ART	117/143 (82%)	9/12 (75%)	18/18 (100%)	0.082	144/173 (83%)
Months on ART	28.7 (3.7-72.6)	35.1 (2.9-79.8)	31.5 (13.0-79.9)	0.698	29.5 (3.8-72.8)
Healthcare exposure					
Antibiotics within 28 days†	60/225 (27%)	0/100 (0%)	0/100 (0%)	<0.001	60/425 (14%)
Hospitalised within 28 days	18/225 (8%)	1/100 (1%)	0/100 (0%)	<0.001	19/425 (4%)
Current TB treatment	10/225 (4%)	0/100 (0%)	4/100 (4%)	0.083	14/425 (3%)
Household					
Number of adults	2.0 (2.0-3.0)	3.0 (2.0-4.0)	2.0 (2.0-4.0)	0.907	3.0 (2.0-4.0)
Number of children	2.0 (1.0-3.0)	2.0 (1.0-3.0)	2.0 (1.0-3.0)	0.395	2.0 (1.0-3.0)
Keep animals	71/225 (32%)	43/100 (43%)	15/100 (15%)	<0.001	129/425 (30%)
Poultry	46/71 (65%)	34/43 (79%)	10/15 (67%)	0.701	90/129 (70%)
Dogs	18/71 (25%)	11/43 (26%)	9/15 (60%)	0.127	38/129 (29%)
Goats	12/71 (17%)	7/43 (16%)	1/15 (7%)	0.035	20/129 (16%)
Other	3/77 (4%)	6/43 (14%)	0/15 (0%)	0.327	9/129 (7%)
Electricity in house	119/225 (53%)	41/100 (41%)	58/100 (58%)	0.041	218/425 (51%)
Flush toilet‡	14/225 (6%)	5/100 (5%)	1/100 (1%)	0.110	20/425 (5%)
Protected water source§	216/225 (96%)	92/100 (92%)	98/100 (98%)	0.124	406/425 (96%)
Treat drinking water with chlorine	19/225 (8%)	5/100 (5%)	0/100 (0%)	0.004	24/425 (6%)

ART = Antiretroviral therapy, CPT = Co-trimoxazole preventative therapy, TB = tuberculosis. Numeric variables are presented as median (IQR) and categorical variables as proportions. P-values are from Fisher’s exact test or Kruskal-Wallis tests (categorical or continuous variables respectively) across the three groups; p-value for HIV status compares distribution of HIV status across the three groups. In some cases denominator may be less than the total number of participants due to missing data.

* Denominator for ART status is HIV reactive participants only † Excluding TB treatment and CPT ‡ Flush toilet vs latrine (pit or hanging) or no toilet § Protected water source includes borehole, water piped into or outside dwelling or public standpipe; unprotected sources include surface water or unprotected springs.

ART = Antiretroviral therapy, CPT = Co-trimoxazole preventative therapy, TB = tuberculosis. Numeric variables are presented as median (IQR) and categorical variables as proportions. P-values are from Fisher’s exact test or Kruskal-Wallis tests (categorical or continuous variables respectively) across the three groups; p-value for HIV status compares distribution of HIV status across the three groups. In some cases denominator may be less than the total number of participants due to missing data.

* Denominator for ART status is HIV reactive participants only † Excluding TB treatment and CPT ‡ Flush toilet vs latrine (pit or hanging) or no toilet § Protected water source includes borehole, water piped into or outside dwelling or public standpipe; unprotected sources include surface water or unprotected springs.
Table 2: Univariable and multivariable associations of baseline ESBL colonisation

Variable	Univariable	Multivariable		
Study Arm				
Inpatient (vs community)	1.79 (1.00-3.26)	0.054	1.68 (0.81-3.53)	0.164
Sepsis (vs community)	2.45 (1.48-4.12)	<0.001	1.08 (0.54-2.22)	0.822
Demographics				
Age (per year)	1.00 (0.99-1.02)	0.709	1.00 (0.98-1.02)	0.922
Male sex (vs female)	1.23 (0.84-1.82)	0.287	1.44 (0.94-2.21)	0.098
HIV status				
HIV+ (vs HIV-)	1.68 (1.09-2.59)	0.018	1.21 (0.48-2.99)	0.679
HIV unknown (vs HIV-)	0.71 (0.40-1.24)	0.229	1.08 (0.54-2.16)	0.820
ART (vs none)	1.99 (1.32-3.00)	0.001	1.07 (0.35-3.23)	0.905
CPT (vs none)	2.46 (1.58-3.86)	<0.001	2.34 (1.00-5.66)	0.053
Healthcare exposure				
Current TB treatment	1.02 (0.33-2.99)	0.971	0.51 (0.13-1.80)	0.300
Antibiotics*†	1.81 (1.05-3.16)	0.034	1.24 (0.64-2.41)	0.528
Hospitalisation†	7.87 (2.57-34.22)	0.001	6.64 (1.98-30.75)	0.005
Household				
Unprotected water source	2.43 (0.96-6.64)	0.068	2.96 (1.07-8.75)	0.040
Treat water (vs not)	1.16 (0.50-2.66)	0.725	0.95 (0.37-2.37)	0.913
Flushing toilet (vs. not)	0.72 (0.29-1.80)	0.481	1.11 (0.41-3.04)	0.842
Adults (per 1)	1.14 (0.39-1.31)	0.064	1.20 (1.03-1.40)	0.024
Children (per 1)	1.00 (0.87-1.14)	0.979	0.98 (0.84-1.13)	0.747
Keep animals (vs. not)	1.33 (0.88-2.03)	0.176	1.15 (0.72-1.84)	0.552
Season				
Rainy season‡ (vs. dry)	2.05 (1.38-3.06)	<0.001	2.21 (1.40-3.50)	<0.001

CPT = Co-trimoxazole preventative therapy, ART = antiretroviral therapy, TB = tuberculosis. Entries in bold are those for which 95% confidence intervals do not cross 1.

* Antibiotics includes TB therapy but excludes CPT. † Hospitalisation and antimicrobial exposure within 28 days prior to enrolment. ‡ Rainy season defined as November-April.
Figure 1: Prevalence and determinants of longitudinal ESBL-E carriage. A: ESBL prevalence stratified by the three study groups; inpatients exposed to antimicrobials (red), inpatients without antimicrobial exposure (blue), community members (green), showing sharp increase in prevalence following antimicrobial exposure. Prevalence is estimated using a LOESS non-parametric regression with 95% confidence interval. Community members are censored on antimicrobial exposure or hospitalization and antimicrobial-unexposed inpatients on antimicrobial exposure. B: simulated ESBL-E prevalence using final fitted model for a hypothetical cohort of patients with initial ESBL-E colonisation prevalence 50%, admitted to hospital for seven days and exposed to seven, two or zero days of antimicrobials, showing that there is little difference between seven and two days. C-E: posterior estimates of parameter values from final fitted model. Shaded grey areas shows 95% credible interval and vertical line shows median parameter estimate. C: hazard ratio of gain or loss of ESBL-E (expressed as natural logarithm) showing that antimicrobial exposure acts primarily to prolong carriage by reducing ESBL-E loss, whereas hospitalization acts to increase both gain and loss, with a net effect to increase prevalence. D: Mean time in colonised/uncolonised states with all covariate values set to 0 (i.e. no hospitalization or antimicrobial exposure). E: Half-life of effect of antimicrobial exposure, showing that antimicrobial exposure acts with a prolonged effect to prolong colonisation.
We used continuous-time multi-state Markov models to understand determinants of ESBL-E carriage. In this model, each patient was assumed to exist at any one time in either a “colonised” or “non-colonised” state, with the transition rate between states governed by a linear function of time-varying covariates (hospitalisation and antimicrobial exposure). When comparing a stepwise-constant covariate model (where the effect of hospitalization and antimicrobial exposure cease immediately as exposure ceases) to a model which included a prolonged effect of antimicrobial exposure, modelled as an exponential decay that continues to exert an effect when exposure ceases, the latter was a better fit to the data as assessed by leave-one-out cross validation (estimated expected pointwise log predictive value [ELPD] difference 10.5 [standard error 4.2] in favour of the exponential decay model) and posterior predictive checks (Supplementary Figure 5). In this final model the estimated mean time in the ESBL-E colonised and uncolonised states in the absence of antimicrobial exposure or hospitalization was 9.7 (95% CrI 4.2-25.1) and 5.8 (95% CrI 2.5-14.3) days respectively. Hospitalisation significantly increased both ESBL-E gain and loss parameters resulting in a modest increase in overall carriage prevalence, whereas antibacterial therapy largely acted to prolong ESBL-E carriage by reducing loss and acted with a prolonged effect with half-life 43.7 (95% CrI 15.4-97.7) days (Figure 1C-E, Supplementary Table 3). Posterior plots of pairs of parameters revealed some non-identifiability between the gain and loss parameters, manifesting as correlation (Supplementary Figure 6).

Posterior predictive simulations from the final fitted model (Figure 1B) considering a hypothetical seven-day hospital admission with seven, two, or zero days of antimicrobial therapy suggest that antimicrobial therapy and hospitalization act in synergy to produce the observed rapid increase in ESBL-E, but that there is very
little difference in ESBL-E prevalence carriage from truncating seven days of antimicrobial therapy to two days.

Whole genome sequencing does not support horizontal gene transfer as the primary mechanism of within-participant ESBL persistence

Next we used short-read whole-genome sequencing as a high-resolution typing tool to track bacteria and ESBL genes within study participants. Following quality control, 473 *E. coli* and 203 *K. pneumoniae* species complex genomes, respectively, were included in the analysis with a median 3 (2-4) *E. coli* isolates per participant from 230 participants and 2 (1-2) *K. pneumoniae* complex isolates from 142 participants, each from a different collection time point. An analysis of population structure, core gene phylogeny and AMR gene content of these isolates has been described elsewhere\(^\text{18,19}\); (the majority (n= 190) of *K. pneumoniae* complex isolates were *K. pneumoniae* subsp. *pneumoniae*. To track bacteria within participant we used assemblies constructed by mapping reads to reference genomes to define sequence clusters (using popPUNK), and SNP-clusters (defined by whole-genome SNP distance of 5 or fewer SNPs). PopPUNK grouped *E. coli* into 87 clusters representing 58 sequence types (STs), and *K. pneumoniae* complex into 91 clusters representing 75 STs, 55 of these *K. pneumoniae sensu stricto*. These clusters (henceforth referred to as popPUNK clusters) were concordant with the core-gene phylogenies (Supplementary Figure 7). To track ESBL genes and their genomic environment we clustered *de novo* assembled contigs containing 3GC resistance genes using the cd-hit algorithm, including those from both *Klebsiella* and *E. coli*. 714 3GC-resistance gene containing contigs were identified in 672/676 samples; 18 different genes were carried on contigs of median length 11.9kb (IQR 4.7-102.2kb) and formed 195 clusters (henceforth, contig-clusters), of median size 1 (range 1-42, Supplementary Figure 8). They were genus and lineage associated (Supplementary
Figure 9), though 21/195 (11%) of contig-clusters contained both *E. coli* and *K. pneumoniae* complex genomes.

For participants colonised with *E. coli* or *K. pneumoniae* complex at a time t=0, the probability of remaining colonised returned to a baseline by 100-150 days (Figure 2A-B), but the probability of remaining colonised with the same contig-cluster or popPUNK cluster was lower, and the probability of remaining colonised with an organism differing by five or fewer SNPs was lower still (Figure 2C-D). Sensitivity analysis varying the definition of SNP cluster from 0 to 20 SNPs did not alter these conclusions (Supplementary Figure 10). Comparing within-patient sample pairs to between-patient sample pairs the popPUNK-cluster contig-cluster combination was conserved more than either popPUNK-cluster or contig-cluster alone (Figure 2D-E), consistent with the hypothesis that within-participant persistence of ESBL, where it occurs, is caused by persistence of ESBL-containing bacteria rather than horizontal gene transfer of ESBL gene.
Figure 2: Within-participant dynamics of ESBL-E colonisation. A-B: Proportion of participants who, at time 0 have detectable ESBL producing *E. coli* (A) or *K. pneumoniae* complex (B) who remain colonised as a function of time. Dotted lines show the baseline proportion for the dataset of between-participant samples that contain the same genus. C-D: Proportion of participants with detectable ESBL producing *E. coli* (A) or *K. pneumoniae* complex (B) at time 0, who remain colonised with the same contig-cluster, popPUNK cluster, or an isolate of SNP distance ≤5 as a function of time with dotted lines showing the baseline (between-participant) proportion, as above. E-F: Odds ratio of within-participant sample pairs containing the same popPUNK cluster alone, contig-cluster alone, or both, compared to between-participant pairs, for *E. coli* (E) and *K. pneumoniae* complex (F) showing that the element that is most likely to be conserved is the popPUNK cluster-contig cluster combination.
Hospital associated lineages or transmission clusters are unusual

Next, we examined any hospital association of popPUNK clusters. In-hospital and post-discharge isolates were distributed throughout the core-gene phylogenies and only one popPUNK cluster contained more hospital isolates than would be expected by chance following correction for multiple comparisons (Figure 4A-C). This corresponded to *E. coli* ST410; however, 20% (9/44) of isolates belonging to this popPUNK cluster classified as community-associated highlighting that it is not exclusively hospital-associated. Similarly, one contig-cluster was associated with in-hospital isolation (Figure 4D); the *blaCTX-M-15* containing contig-cluster was primarily associated with the hospital associated popPUNK cluster (Supplementary Figure 9B).

As hospital associated popPUNK clusters were unusual, we investigated putative hospital-related transmission clusters which differed by five or fewer whole genome SNPs (a “SNP-cluster”). 151/473 (32%) *E. coli* and 21/203 (10%) *K. pneumoniae* were members of a SNP-cluster and hence represent possible transmission events (Figure 5). The clusters were generally small (median size 2 [IQR 2-5] for *E. coli* and 2 [IQR 2-3] for *K. pneumoniae* complex) and, in *E. coli*, largely contained samples from different participants rather than the same participant: only 6% (10/175) of pairwise comparisons of within-SNP-cluster *E. coli* samples were from the same participant. Fewer *K. pneumoniae* formed a SNP-cluster but more were from the same participant (58% [7/12]) rather than between participants. SNP-clusters in both *E. coli* and *K. pneumoniae* complex contained community and hospital associated samples: 54/151 (35%) of *E. coli* samples that were members of a SNP-cluster were community associated, and hence had no apparent epidemiologic link, similar to the 117/321 (36%) of *E. coli* isolates that were not members of a SNP-cluster (p = 0.92 comparing prevalence of community-associated isolates using Fisher’s exact test).
4/21 (20%) *K. pneumoniae* isolates that were members of a SNP cluster were community associated, compared to 70/181 (39%) of those that were not members of a SNP cluster (*p* = 0.1). The choice of 5 SNPs to define a SNP-cluster is a common convention but is arbitrary; but in sensitivity analysis varying the SNP threshold from 0 to 10 did not significantly alter the conclusions (Supplementary Figures 11-13).
Figure 3: Hospital association of popPUNK clusters and contig-clusters. A-B: Maximum-likelihood core gene phylogenetic tree for *E. coli* (A) and *K. pneumoniae* subsp. *pneumoniae* (B) showing in-hospital (black), post discharge (dark grey) and community (light grey) isolates, where post-discharge is defined as up to 120 days post hospital discharge. Hospital-associated samples are distributed across the tree, but only the popPUNK cluster highlighted in red shows an association with in-hospital isolation. C-D: Manhattan plots showing p-value of Fisher’s exact test for association of popPUNK cluster (C) and contig-cluster (D) with in-hospital isolation. Dotted line shows Bonferroni-corrected value corresponding to p = 0.05. Only one popPUNK cluster is significantly associated with in-hospital isolation (highlighted in red on the plot, C, and core gene tree, A) at this level. Similarly one contig-cluster is associated with in-hospital isolation, highlighted in red; this is the contig-cluster which is associated with the hospital-associated lineage.
Figure 5: Network plot of SNP-clusters (putative transmission clusters) for *E. coli* (A) and *K. pneumoniae* (B) showing that putative transmission clusters are not exclusively hospital associated. Points are samples, coloured by place of isolation (in-hospital [black], community [white], or up to 120 days post-discharge [grey]). Red lines link samples that are within a single participant. Blue lines link samples that differ by five or fewer SNPs. The plot shows that most samples are not members of a SNP-cluster; that most SNP clusters encompass samples from different (rather than multiple samples from the same) participants; and that SNP-clusters are not exclusively hospital-associated, i.e. they contain in-hospital, community, and post-discharge samples.
Combining longitudinal sampling, multi-state modelling and whole genome sequencing, we describe the dynamics of ESBL-E colonisation in Malawian adults. These findings advance our understanding of the effects of antimicrobial exposure on AMR-acquisition, with potentially significant implications for both the design of antimicrobial stewardship protocols and directions for future research.

First, baseline sampling provides insight into drivers of ESBL-E colonisation in Blantyre. ESBL-E colonisation is very common, consistent with other studies across sSA13. This, along with identification of community risk factors for baseline colonisation, suggest significant community spread. Observed associations of unprotected water use for drinking and higher prevalence in rainy season suggest inadequate access to water, sanitation and hygiene (WASH) infrastructure and/or WASH behavioural practices may be strongly contributing, and associations of colonisation with household crowding suggests within-household transmission may be significant.

Second, novel Markov models fitted to longitudinal sampling data allow insight into the dynamics of ESBL-E colonisation and de-colonisation. We demonstrate a rapid increase in ESBL-E colonisation following hospital admission and antimicrobial exposure. Modelling suggests that antimicrobial exposure may act to drive this increase and promote sustained carriage by exerting an effect long after antimicrobial exposure finishes, with a half-life of 43.7 (95% CrI 15.4-97.7) days. Simulations using the fitted models suggest that, due to the sustained effect of antimicrobials, short courses of antimicrobials could exert a similar effect to prolonged courses in terms of ESBL-E carriage. This finding has clear implications for antimicrobial stewardship protocols, suggesting that truncating courses of
Antimicrobials may have limited effect on ESBL-E carriage compared to avoiding antimicrobial administration altogether. Previous ESBL-E longitudinal sampling and modelling studies examining the effect of antimicrobials on colonization have examined community and post-travel carriage in adults in the Netherlands and transmission of ESBL-E in neonatal units in the high prevalence setting of Cambodia. In the former studies, some association of ESBL-E carriage with antimicrobial exposure was found, but antimicrobial exposure was not common, further, sampling was neither intensive nor linked to antimicrobial exposure to fully define the effects. In a Cambodian neonatal unit, antimicrobial therapy was robustly linked to an increased daily probability of acquiring K. pneumoniae colonisation but long-term sampling was not available to define long term antimicrobial effects as we have done here. Understanding the dynamics of ESBL-E colonisation and decolonisation under antimicrobial pressure to guide stewardship efforts should be a priority in other settings.

More broadly, these findings highlight a need to define and measure clinically relevant individual-level AMR endpoints in trials of antimicrobial treatment strategies. An expanding evidence base has demonstrated equivalence of clinical outcomes in a variety of clinical infection syndromes for shorter versus longer courses of antimicrobial therapy, but quantifying the effect of antimicrobials on promoting AMR at the individual level is not the norm. A non-linear relationship between antimicrobial exposure and colonisation with AMR-bacteria, as we demonstrate here, may mean that seven compared to fourteen days of antimicrobials has little benefit in reducing colonisation. Defining clinically relevant AMR endpoints for trials, measuring them, and understanding their relationship with antimicrobial exposure is crucial for optimising the way in which antimicrobials are used to minimise pressure for AMR development at the individual level.
Third, using whole-genome sequencing as a high-resolution typing tool allowed us to approach the mechanism of the effect of antimicrobials in promoting ESBL-E carriage. A key question is whether the apparent rapid ESBL-E acquisition following the combination of hospital and antimicrobial exposure represents true transmission from healthcare settings facilitated by antimicrobial-induced loss of colonisation resistance, or selection for low abundance resistant bacteria that were already present in the microbiota but not detected by bacterial culture. We found limited support for hospital associated lineages or hospital-associated transmission clusters suggesting either that ESBL-E acquisition had occurred in the community and was selected for by antimicrobial exposure in hospital, or that the diversity of isolates transmitted in the hospital was contained in the diversity of isolates in the community, which is a distinct possibility in our setting. Genomic epidemiology studies of ESBL-E colonisation and infection clearly demonstrate that true healthcare associated transmission of ESBL-E occurs15,24,25 but few studies have longitudinal sampling pre-, during- and post- antimicrobial exposure. Defining the contribution of antimicrobial selection versus novel acquisition events in driving ESBL-E prevalence following antimicrobial exposure across high and low-income settings will guide prevention efforts and should be a priority for future studies. Healthcare associated transmission could be reduced by infection prevention and control procedures, but antimicrobial selection pressure would need novel strategies to protect the microbiota against selection for resistant bacteria such as antimicrobial binding compounds26 or oral beta lactamases27.

We demonstrate considerable within-participant ESBL-E bacterial diversity (as defined by SNP- and popPUNK-clusters) over time even in participants who remain colonised with the same genus; a further key question is whether this temporal bacterial diversity with preserved ESBL-E colonisation could represent horizontal
gene transfer of ESBL genes between bacteria. Horizontal gene transfer could also explain an apparent lack of hospital-associated transmission clusters, if ESBL genes disseminated into diverse clones in the healthcare setting. We find that within-participant the popPUNK-cluster contig-cluster combination was conserved more than either popPUNK-cluster or contig-cluster alone, consistent with the hypothesis that within-participant persistence of ESBL, where it occurs, is caused by persistence of ESBL-containing bacteria rather than horizontal gene transfer of ESBL genes to differing bacterial hosts. This does not support the hypothesis of horizontal gene transfer as primary mechanism of ESBL temporal persistence within-participant on the timescale of the study.

There are limitations to our study. Most importantly, due to resource limitation, we took only one colony pick from each patient-time point sample for sequencing and so we may have missed intra-host ESBL-E diversity. Within-participant ESBL-E diversity was considerable over time, and we are unable to say whether this represents frequent colonisation and de-colonisation or sampling of within-host diversity; previous studies have shown that some ESBL-E colonised participants harbour significant ESBL-E diversity\(^28\), so the latter is probable. Even so, if the single colony pick represented an unbiased sampling of one ESBL-E at each time point, our observations regarding temporal trends should remain valid. We used short read sequencing and clustered ESBL-containing contigs as a proxy for mobile genetic elements (MGEs), which is likely to have introduced some error: short read sequencing and de-novo assembly is usually unable to fully assemble MGEs such as plasmids, upon which many ESBL genes would be expected to be carried. It is possible that short partially assembled ESBL-contigs representing (for example) common ESBL-E containing transposons could be matched to longer plasmid fragments where the same transposon is carried on a different plasmid backbone.
Also some ESBL genes are likely to be chromosomally integrated. Long read sequencing could provide the resolution to fully describe MGEs but was not carried out due to resource limitation. We used an arbitrary SNP threshold of 5 SNPs to define SNP-clusters, a strong assumption; this cut-off (empirically derived) has been used by public health bodies in England and Canada to define possible *E. coli* outbreaks\(^{29,30}\); other authors have suggested a cut-off of 10 or below\(^{31}\). Similar empirically derived SNP cut-offs of 7-12 have been suggested for *K. pneumoniae* complex\(^{32-34}\). Nevertheless this assumption could misclassify isolates, a risk we have tried to mitigate with sensitivity analysis. We did not account for temporal distance between samples though variation in SNP distance due to acquisition of mutations over the course of the study (18 months) would be expected to be small based on experimentally determined rates of mutation acquisition\(^{35}\). We used a map-to-reference approach to identify core-genome SNPs that could have introduced bias due to the choice of reference. We have looked at high-level clustering with popPUNK and it may be that a high-resolution clustering approach using local, lineage-specific references would give the resolution to identify more hospital associated transmission events. The models of AMR carriage assumed a 100% sensitivity and specificity of sampling, which may not be valid. We were not able to disaggregate the effect of different antimicrobial agents because of the sample size and so all were treated equivalently in the models, but it is likely that there is a differential effect on ESBL-E colonization between antimicrobial classes and agents. The data do not allow us to comment on the generalisability of our modelling findings to other settings, including high income countries.

In conclusion, we describe the dynamics of ESBL-E colonisation in Malawian adults as they are exposed to antimicrobial therapy and hospitalization. Antimicrobial therapy acts rapidly to promote ESBL-E colonisation via a prolonged effect which
means that truncated courses of antimicrobials may have a similar effect to longer ones, which has implications for stewardship protocols. Short-read whole-genome sequencing did not identify widespread hospital associated lineages or hospital-associated transmission clusters suggesting either that ESBL-E acquisition had occurred in the community and was selected for by antimicrobial exposure in hospital, or that the diversity of isolates transmitted in the hospital was contained in the diversity of isolates in the community. Future work should define dynamics of intra-host ESBL-E diversity under antimicrobial pressure, using longitudinal sampling, metagenomic sequencing methods to describe diversity and long-read sequencing to characterize MGEs. This will facilitate development of clinically relevant AMR endpoints for clinical trials and the development of a sound evidence base for stewardship protocols at the individual level – an evidence base which is currently lacking.

Methods

Study setting and design

The study took place in Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, a government tertiary referral hospital for the Southern Region of Malawi which provides free healthcare to the ~800,000 residents of urban Blantyre. Adults (> 15 years) with sepsis, defined by fever and organ dysfunction criteria, were recruited from the emergency department of QECH 0700-1700 Monday to Friday as part of a study of sepsis aetiology, as described elsewhere. Two comparator cohorts of participants were recruited: age and sex matched adults from QECH emergency department who had a plan from their attending clinical team to admit to hospital but no plan for antimicrobial administration; and community members matched by age, sex and home location to recruited sepsis patients. Exclusion criteria for the latter
two groups were antimicrobial exposure within the past four weeks (except co-
trimoxazole preventative therapy [CPT] and antituberculous chemotherapy);

hospitalised participants who lacked capacity to give informed consent and had no
guardian to give proxy consent; participants who spoke neither English nor
Chichewa; and participants who lived > 30km from Blantyre city. Geographic
matching on home location between community members and sepsis patients was
achieved by random walk from the houses of sepsis participants with initial direction
established by spinning a bottle on the floor. Written informed consent was obtained
from all participants. An admission questionnaire was administered to all participants
at enrolment and hospitalised patients were reviewed daily by a study team member
until discharge to extract details of antimicrobial therapy from the clinical record. All
clinical decisions were at the discretion of the attending clinical team. Further review
by the study team occurred at day 7, 28, 90 and 180, except for community
members in whom the day 7 and 90 visits were omitted. If participants failed to come
to their scheduled visits, then they were traced by telephone or, if that failed, by
home visit. Hospitalised patients were not financially compensated for their time, but
all other participants were at a rate of 500MWK for home visits and 2000MWK for
hospital visits. Data were captured using a combination of direct electronic data entry
by study team members onto tablet devices (ODK38, Get ODK inc. United States)
and paper forms (TeleForm, Opentext, Canada).

Ethical and data availability statements

The study was approved by the research ethics committees of the Liverpool School
of Tropical Medicine (16-062) and Malawi College of Medicine (P.11/16/2063). All
data and code to replicate this analysis are available as the *blantyreESBL* R v1.0.039
package at [https://github.com/joelw...
Microbiologic methods

At each study visit (enrolment, day 7, 28, 80 and 190 for hospitalised participants and enrolment, day 28 and 190 for community members) stool was collected in a sterile polypropylene pot; if a participant was not able to provide a stool sample, then a rectal swab was taken by a trained study team member and stored in Ames' medium for transport. Stool and rectal swab samples were stored at 4ºC before being batch processed weekly: samples were plated directly onto commercially available ESBL selective chromogenic agar (CHROMagar ESBL, CHROMagar, France) and cultured aerobically overnight. Morphologically distinct white or blue colonies were speciated with the API 20E system (Biomerieux, France); pink colonies were identified as *E. coli*. ESBL production was confirmed with the combination disc method on iso-sensi test agar with discs of cefotaxime (30 micrograms) and ceftazidime (30 micrograms) with and without clavulanic acid (10 micrograms), with ESBL production confirmed if there was a difference of 5mm or more between the clavulanic acid and non-clavulanic acid discs for either cephalosporin. For organisms likely to carry a chromosomal *bla*_{ampC} beta-lactamase gene and hence able to hydrolyse cefotaxime and ceftazidime (defined for our purposes as *Enterobacter* spp., *Citrobacter freundii*, *Morganella morganii*, *Providencia stuartii*, *Serratia* spp., *Hafnia alvei*); cefipime (30 micrograms), an AmpC-stable cephalosporin was used with and without clavulanic acid (10 micrograms), and ESBL production confirmed if there was a difference of 5mm or more between the clavulanic acid and non-clavulanic acid discs.

DNA extraction, sequencing and bioinformatic analysis

One of each morphologically distinct *K. pneumoniae* species complex and *E. coli* colony, respectively, from each patient at each time point was taken forward for DNA
extraction and whole-genome sequencing. DNA was extracted from overnight
nutrient broth culture using the Qiagen DNA mini kit as per the manufacturer's
instructions. Extracted DNA was shipped to the Wellcome Sanger Institute to
undergo whole-genome sequencing using Illumina HiSeq X10 to produce 150bp
paired end reads. Quality control, de-novo assembly and construction of core gene
phylogeny are described elsewhere18,19; in brief, species was confirmed with Kraken
v0.10.6 and Braken v1.040 before de-novo assembly with SPAdes41, with the
modifications described by Page et al.42 and annotation with prokka v1.543 using a
genus specific database from RefSeq. The Roary v1.007 pan-genome pipeline44
were used to identify core genes, considering genes contained in at least 99%
isolates to be core. Samples with assembly failure (< 4Mb assembled length) and
samples with > 10% contamination (as defined by CheckM v1.1.345) were excluded
from the analysis. A core gene multiple sequence alignment was generated using
mafft v7.20546, SNP-sites identified using SNP-sites v2.4.147 and the resultant SNP
alignment (99,693 variable sites from a core gene alignment of 1.39Mb bases for \textit{E. coli}
and 378,596 variable sites from a 2.82Mb core gene alignment for \textit{K. pneumoniae}
complex) used to infer a maximum-likelihood phylogenetic tree using
IQ-TREE v1.6.348 with ascertainment bias correction and the ModelFinder module,
which selected the generalised time reversible model with FreeRate heterogeneity
with 5 parameters for \textit{E. coli} and 8 parameters for \textit{K. pneumoniae} complex. 1000
ultrafast bootstrap replicates were generated. Trees were visualized with ggtree
v2.2.449.

AMR genes and plasmid replicons were identified using ARIBA50 and the curated
ARG-ANNOT database used by SRST251 and PlasmidFinder52 databases,
respectively, on the sequence reads. ARIBA was also used to identify multilocus
sequence type (ST) using the 7-gene \textit{Klebsiella}53 and 7-gene Achtman54 \textit{E. coli}
schemes hosted at pubMLST (https://pubmlst.org/). To track putative mobile genetic elements within-participant over time we clustered ESBL-containing contigs from the de novo assemblies (identified with BLAST55 using the SRST2 database) to form contig-clusters using cd-hit-est v4.8.156 with 95% sequence identity and otherwise default settings. To track bacteria within-participant we used popPUNK57 on mapped assemblies: we used snippy v4.6.058 to map reads to K-12 MG1655 E. coli (ENA accession U00096) and MGH78578 K. pneumoniae (ENA accession GCA_000016305.1) references. The E. coli mapped assemblies had a mean (SD) coverage and depth of 92% (2%) and 58x (8x) respectively and the K. pneumoniae complex 92% (3%) and 52x (16x). We then used popPUNK v2.0.2 on these assemblies, forming a new database with minimum kmer size 15 (and otherwise default settings) and clustering with the DBSCAN algorithm. To compare SNP distances between samples, we used these snippy-generated assemblies (i.e. using reads mapped to the references above) to construct a multiple sequence alignment, filtered regions of presumed recombination with gubbins59 and calculated pairwise SNP distances using snp-dist v0.6.2 (https://github.com/tseemann/snp-dist) and considered two isolates with 5 or fewer SNPs difference across the genome to be likely to represent the same isolate. We hence used this SNP difference to define a “SNP-cluster”, clustering isolates with hierarchical clustering using the function stats::hclust in R. We performed sensitivity analysis and varied this SNP threshold from 0 -10.

Statistical analysis

All statistical analyses were carried out in R v4.0.2 (R foundation for statistical computing, Vienna, Austria). Summaries of variables are presented as proportions (with exact binomial confidence intervals where appropriate) or medians with interquartile ranges. Kruskal-Wallace and Fisher’s Exact tests were used to test the
equivalence of patient characteristics across the three study groups for continuous and categorical variables, respectively. Associations of baseline ESBL-E carriage were assessed using logistic regression, including all variables that were felt a priori to be associated with ESBL-E carriage as predictors, and presenting results as odds ratios for predictor variables with 95% confidence intervals.

To assess within-participant conservation of organism, popPUNK cluster, contig-cluster, and SNP-cluster, we plotted within participant correlation curves, including all participants who were colonised with *E. coli* or *K. pneumoniae* at time $t = 0$ then using non-parametric LOESS regression as implemented in the R `stats::loess` function with parameters $n=80$, $span = 0.75$ to estimate the proportion at a time t later who were colonised with the same organism, popPUNK cluster, contig-cluster, or SNP-cluster. To assess the probability of two within-participant samples containing the same cluster by chance we compared the within-participant cluster conservation proportion to the proportion of between-sample participants that contained the same cluster. Odds ratios with 95% confidence intervals were used to assess the odds of within-participant conservation of popPUNK cluster and contig-cluster together or each alone compared to between-participant conservation.

We assessed for hospital associated lineages by mapping metadata to the core gene trees, defining isolates as either in-hospital (if they were isolated from a sample taken in hospital) recent discharge (if they were isolated from a sample taken up to 120 days following hospital admission) or community (if they were neither in-hospital nor recent discharge). We tested the hypothesis that popPUNK and contig clusters are healthcare associated by comparing the proportion of healthcare-associated isolates (defined as in-hospital or recent discharge) for each cluster to the proportion of the remaining samples, using a Bonferroni-corrected Fisher's exact test.
We looked for putative transmission clusters by plotting SNP clusters using the R packages *igraph*\(^6\) and *ggraph*. We used Fisher’s exact test to compare the proportion of isolates that were community-associated between isolates that were members of a SNP-cluster and those that were not.

Modelling of ESBL-E carriage

Defining the likelihood of the model

To understand the dynamics of ESBL-E carriage, we extended the continuous time Markov models as implemented in the MSM\(^1\) package in R. MSM allows stepwise constant time-varying continuous time Markov models, whereas we aimed to assess the biologically plausible effect of allowing antimicrobial exposure to act with a non-stepwise time-varying effect.

We assumed a two-state system with \(N\) participants, where at time \(t\) participant \(n\) will be in a state \(S_n(t)\) — either ESBL-E colonised \((S_n(t) = 1)\) or ESBL-E uncolonised \((S_n(t) = 0)\). For each participant \(n\) we assume have a measured value of \(S_n(t)\) at \(i_n\) time points, the times of which are given by \(t_j^n, j = 1, 2 \ldots i_n\), and so the \(i_n\) values of \(S_n(t_j^n), j = 1, 2 \ldots i_n\) are known.

If we develop a model with parameters \(\theta\) that predicts the probability of a particular participant being in a state \(S_n(t_b)\) at a time point \(t_b\) given that they were in a state \(S_n(t_a)\) at an earlier time point \(t_a\) then then the likelihood of this observation is:

\[
P(S_n(t_b)|S_n(t_a), \theta) \tag{Equation 1}
\]

Where | indicates “conditional on” as per standard probability notation. Assuming that all observations are independent then the likelihood for any participant is the
product of all the transitions for that participant; and the likelihood of the data we observe is the product of all transitions for all participant:

\[
\prod_{n=1}^{N} \prod_{k=2}^{K} P(S_n(t^n_k)|S_n(t^n_{k-1}), \theta) \quad [\text{Equation 2}]
\]

We assume a Markov model as the data-generating process, where the instantaneous probability of transition from a state \(i\) to state \(j\) is given by \(q_{ij}\), or traditionally in matrix notation as the Q-matrix\(^{17,58}\) (for a two state system):

\[
Q(t) = \begin{pmatrix}
q_{00}(t) & q_{01}(t) \\
q_{10}(t) & q_{11}(t)
\end{pmatrix} = \begin{pmatrix}
-\lambda(t) & \lambda(t) \\
\mu(t) & -\mu(t)
\end{pmatrix} \quad [\text{Equation 3}]
\]

Where we have defined \(\lambda(t)\) as the instantaneous rate of ESBL-E loss, and \(\mu(t)\) as the instantaneous rate of ESBL-E gain, and used the fact that the rows of the Q-matrix must sum to one (i.e. every participant has to be in one state or another). If we define the probability of a participant being in a state \(i\) at time 0 and a state \(j\) a time \(t\) as \(p_{ij}(t) = P(t)\), then these probabilities are linked to the Q-matrix by the set of differential equations:

\[
\frac{dp(t)}{dt} = Q(t).P(t) \quad [\text{Equation 4}]
\]

Or, simplified if participants start in a state 0 or 1 to:

\[
\frac{dp_0(t)}{dt} = -\lambda(t)P_0(t) + \mu(t)P_1(t) \quad [\text{Equation 5}]
\]

\[
\frac{dp_1(t)}{dt} = \lambda(t)P_0(t) - \mu(t)P_1(t) \quad [\text{Equation 6}]
\]

Where \(P_i(t)\) is the probability of being in state \(i\) at time \(t\). These differential equations can be solved with numerical ordinary differential equation (ODE) solvers for all state transitions and all patients to calculate the likelihood.

Incorporating covariates
Following * msm and Marshall and Jones* we incorporated covariates with a proportional hazard approach where the k covariates $x_k, k = 1, 2 \ldots k$ can act upon the hazard of transition via:

$$\lambda(t) = \lambda_0 \exp (\beta_1 x_1(t) + \ldots + \beta_k x_k(t)) \quad [\text{Equation 7}]$$

$$\mu(t) = \mu_0 \exp (\alpha_1 x_1(t) + \ldots + \alpha_k x_k(t)) \quad [\text{Equation 8}]$$

Where the x_k take the value 0 when an exposure is absent and 1 when it is present – this is the stepwise constant model. λ_0 and μ_0 are the instantaneous rate of ESBL-E loss, and the instantaneous rate of ESBL-E gain, respectively, with all covariates set to 0. The parameters β and α can therefore be thought of as the log transform of the hazard ratio of ESBL-E loss and gain, respectively; and the parameters λ_0 and μ_0 can be interpreted as the reciprocal of the mean time in the uncolonised or colonised state respectively with all covariates set to 0.

Finally, the motivation for developing this model was to allow a time-varying effect of antimicrobial exposure. Assuming that antimicrobial exposure begins at time t_{start} and ends at t_{end}, the value of the covariate $x_{\text{antimicrobial}}(t)$ takes the form of an exponential decay following exposure:

$$x_{\text{antimicrobial}} = \begin{cases}
0 & 0 < t < t_{\text{start}} \\
\frac{1}{\exp \left(\frac{-(t-t_{\text{end}})}{\gamma} \right)} & t_{\text{start}} \leq t \leq t_{\text{end}} \\
0 & t > t_{\text{end}} \end{cases} \quad [\text{Equation 9}]$$

Where the parameter γ is the half life of the decay of antimicrobial exposure effect, multiplied by the natural log of 2.

Fitting and comparing models
The models were coded and fit in a Bayesian framework in Stan v2.1961 accessed via the Rstan v2.19.2 interface in R, and plotted using the bayesplot v1.8 R package. All code and data to fit the models is contained in the blantyreESBL39 v1.0.0 R package available at https://github.com/joelewis101/blantyreESBL. Weakly informative priors were used; a normal distribution with mean 0 and standard deviation 2 for alpha and beta (corresponding to a hazard ratio of 7.4), a normal distribution with mean 0 and standard distribution 0.2 for mu and lambda and a normal distribution with a mean of 0 and standard deviation of 50 days for gamma. In each case models were fit with four chains of 1000 iterations each with 500 warmup iterations. Convergence was evaluated by inspection of traceplots and the Gelman-Rubin statistic62 being close to 1. Posterior estimates of parameters were expressed as medians with 95\% credible intervals generated from the quantiles of the posterior, excluding warmup iterations. We fit two models: one with the stepwise-constant covariates and one with exponentially-decaying being close to 1. Posterior estimates of parameters were expressed as medians with 95\% credible intervals generated from the quantiles of the posterior, excluding warmup iterations. We fit two models: one with the stepwise-constant covariates and one with exponentially-decaying effect of antimicrobial exposure.

To compare between the two models we used leave one out cross validation as implemented in the loo v2.1.0 package in R63, quantifying model fit with an estimate of the expected log predictive density (ELPD) and comparing models with the ELPD difference and standard error of the difference, where a difference in ELPD of greater than two times the standard error of the difference could be interpreted as evidence in favour of the better fitting model63. We also used graphical posterior predictive checks, simulating the predicted prevalence of ESBL-E across the three arms of the study by generating a probability of ESBL-E carriage for each participant.
at each time point for each posterior samples (excluding warmup draws) and sampling from a Bernoulli distribution using the predicted probability. We simulated from the posterior by fixing covariate values, assuming a baseline prevalence of 50% ESBL carriage at t=0 and using all posterior draw covariate values (excluding warmup draws) and solving the likelihood differential equations using the R package deSolve v1.28 to generate daily predicted probabilities of carriage at time t, with 95% confidence intervals defined by simple quantiles.

Author contributions

Conceptualisation: JL, NT, NAF, BF, CJ. Methodology: JL, NT, NAF, MAB, EH, JM, CJ. Investigation: JL, MM, RB. Formal analysis: JL, NT, NAF, EH, MAB, CJ, BF. Writing – original draft preparation; JL. Writing – review and editing: JL, MM, RB, MB, JM, EH, NT, NAF, CJ, BF. Supervision: NAF, NT

Funding

This work was supported by the Wellcome Trust [Clinical PhD fellowship 109105z/15/a to JL and 206545/Z/17/Z, the core grant to the Malawi-Liverpool-Wellcome Programme]. MAB and NRT are supported by Wellcome funding to the Sanger Institute (#206194).

Acknowledgements

Many thanks to the study team: Lucy Keyala, Tusekile Phiri, Grace Mwaminawa, Witness Mtambo, Gladys Namacha, Monica Matola; to the MLW laboratory teams, particularly Brigitte Denis; and to the MLW data team, particularly Lumbani Makhaza and Clemens Masesa. The authors acknowledge the sequencing team at the Wellcome Sanger Institute, and Christoph Puethe and the Pathogen Informatics team for computational support. The authors have no conflicts of interest to declare.
1. Schuts, E. C. et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. *Lancet Infect Dis* **16**, 847–856 (2016).

2. Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., & ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. *The Lancet* **365**, 579–587 (2005).

3. Fridkin, S. K. et al. The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. *Ann Intern Med* **135**, 175–183 (2001).

4. Steinke, D. & Davey, P. Association between antibiotic resistance and community prescribing: a critical review of bias and confounding in published studies. *Clin Infect Dis* **33 Suppl 3**, S193-205 (2001).

5. Teunis, P. F. M. et al. Time to acquire and lose carriership of ESBL/pAmpC producing E. coli in humans in the Netherlands. *PLOS ONE* **13**, e0193834 (2018).

6. van den Bunt, G. et al. Dynamics of Intestinal Carriage of Extended-Spectrum Beta-lactamase–Producing Enterobacteriaceae in the Dutch General Population, 2014–2016. *Clinical Infectious Diseases* **71**, 1847–1855 (2020).

7. van Duijkeren, E. et al. Long-term Carriage of Extended-Spectrum β-Lactamase–Producing Escherichia coli and Klebsiella pneumoniae in the General Population in The Netherlands. *Clinical Infectious Diseases* **66**, 1368–1376 (2018).

8. Arcilla, M. S. et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a
prospective, multicentre cohort study. The Lancet Infectious Diseases 17, 78–85 (2017).

9. Lester, R. et al. Sustained Reduction in Third-generation Cephalosporin Usage in Adult Inpatients Following Introduction of an Antimicrobial Stewardship Program in a Large, Urban Hospital in Malawi. Clinical Infectious Diseases 71, e478–e486 (2020).

10. Ministry of Health. Government of Malawi. Malawi standard treatment guidelines (MSTG) 5th edition 2015. (2015).

11. Musicha, P. et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. The Lancet Infectious Diseases 17, 1042–1052 (2017).

12. Lester, R. et al. Prevalence and outcome of bloodstream infections due to third-generation cephalosporin-resistant Enterobacteriaceae in sub-Saharan Africa: a systematic review. Journal of Antimicrobial Chemotherapy 75, 492–507 (2020).

13. Lewis, J. M., Lester, R., Garner, P. & Feasey, N. A. Gut mucosal colonisation with extended-spectrum beta-lactamase producing Enterobacteriaceae in sub-Saharan Africa: a systematic review and meta-analysis. Wellcome Open Res 4, 160 (2019).

14. Frencken, J. F. et al. Associations Between Enteral Colonization With Gram-Negative Bacteria and Intensive Care Unit-Acquired Infections and Colonization of the Respiratory Tract. Clin Infect Dis 66, 497–503 (2018).

15. Gorrie, C. L. et al. Antimicrobial-Resistant Klebsiella pneumoniae Carriage and Infection in Specialized Geriatric Care Wards Linked to Acquisition in the Referring Hospital. Clinical Infectious Diseases 67, 161–170 (2018).
16. Gorrie, C. L. et al. Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients. *Clinical Infectious Diseases* **65**, 208–215 (2017).

17. Jackson, C. H. Multi-State Models for Panel Data: The msm package for R. *Journal of Statistical Software* **38**, 1–28 (2011).

18. Lewis, J. et al. Genomic analysis of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli colonising adults in Blantyre, Malawi reveals previously undescribed diversity [submitted]. *bioRxiv*.

19. Lewis, J. et al. Genomic and antigenic diversity of carried Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi [submitted]. *bioRxiv*.

20. Crellen, T. et al. Transmission dynamics and control of multidrug-resistant Klebsiella pneumoniae in neonates in a developing country. *Elife* **8**, (2019).

21. Wald-Dickler, N. & Spellberg, B. Short-course Antibiotic Therapy-Replacing Constantine Units With ‘Shorter Is Better’. *Clin Infect Dis* **69**, 1476–1479 (2019).

22. Royer, S., DeMerle, K. M., Dickson, R. P. & Prescott, H. C. Shorter Versus Longer Courses of Antibiotics for Infection in Hospitalized Patients: A Systematic Review and Meta-Analysis. *J Hosp Med* **13**, 336–342 (2018).

23. Hanretty, A. M. & Gallagher, J. C. Shortened Courses of Antibiotics for Bacterial Infections: A Systematic Review of Randomized Controlled Trials. *Pharmacotherapy* **38**, 674–687 (2018).
24. Snitkin, E. S. et al. Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak. *Sci Transl Med* **9**, (2017).

25. Brodrick, H. J. et al. Longitudinal genomic surveillance of multidrug-resistant *Escherichia coli* carriage in a long-term care facility in the United Kingdom. *Genome Medicine* **9**, 70 (2017).

26. de Gunzburg, J. et al. Protection of the Human Gut Microbiome From Antibiotics. *J Infect Dis* **217**, 628–636 (2018).

27. Kokai-Kun, J. F. et al. Ribaxamase, an Orally Administered β-Lactamase, Diminishes Changes to Acquired Antimicrobial Resistance of the Gut Resistome in Patients Treated with Ceftriaxone. *Infect Drug Resist* **13**, 2521–2535 (2020).

28. Stoesser, N. et al. Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing *Escherichia coli* Isolates: Implications for Transmission Analyses. *Journal of clinical microbiology* **53**, 2122–31 (2015).

29. Dallman, T. J. et al. Whole-Genome Sequencing for National Surveillance of Shiga Toxin–Producing *Escherichia coli* O157. *Clinical Infectious Diseases* **61**, 305–312 (2015).

30. Rumore, J. et al. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic *Escherichia coli* O157:H7 from the Canadian perspective. *BMC Genomics* **19**, 870 (2018).

31. Wang, L. Y. R. et al. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic *Escherichia coli* serotypes within a closed beef herd in Canada. *Microbial Genomics* **6**, e000376.
32. Spencer, M. D. et al. Whole Genome Sequencing detects Inter-Facility Transmission of Carbapenem-resistant Klebsiella pneumoniae. *Journal of Infection* 78, 187–199 (2019).

33. Haller, S. et al. What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing. *BMJ Open* 5, e007397 (2015).

34. Zhou, K. et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. *Sci Rep* 6, (2016).

35. Duchêne, S. et al. Genome-scale rates of evolutionary change in bacteria. *Microb Genom* 2, e000094 (2016).

36. Malawi National Statistical Office. *2018 Malawi Population and Housing Census Main Report*. http://www.nsomalawi.mw/ (2019).

37. Lewis, J. M. et al. A longitudinal observational study of aetiology and long-term outcomes of sepsis in Malawi revealing the key role of disseminated tuberculosis. *Clinical Infectious Diseases* (2021) doi:10.1093/cid/ciab710.

38. Hartung, C. et al. Open data kit: tools to build information services for developing regions. in *Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development - ICTD ’10* (2010). doi:10.1145/2369220.2369236.

39. Lewis, J. *joelewis101/blantyreESBL: v1.0.0*. (Zenodo, 2021). doi:10.5281/zenodo.5554082.
40. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biology* 15, R46 (2014).

41. Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology: a journal of computational molecular cell biology* 19, 455–77 (2012).

42. Page, A. J. *et al.* Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. *Microbial Genomics* 2, e000083.

43. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068–2069 (2014).

44. Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 31, 3691–3693 (2015).

45. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome research* 25, 1043–55 (2015).

46. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30, 772–80 (2013).

47. Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. *Microbial Genomics* 2, e000056 (2016).

48. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular Biology and Evolution* 32, 268–274 (2015).
49. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution* **8**, 28–36 (2017).

50. Hunt, M. *et al.* ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. *Microbial genomics* **3**, e000131 (2017).

51. Inouye, M. *et al.* SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. *Genome Medicine* **6**, 90 (2014).

52. Carattoli, A. *et al.* In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrobial agents and chemotherapy* **58**, 3895–903 (2014).

53. Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A. D. & Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. *J Clin Microbiol* **43**, 4178–4182 (2005).

54. Wirth, T. *et al.* Sex and virulence in Escherichia coli: an evolutionary perspective. *Mol Microbiol* **60**, 1136–1151 (2006).

55. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *Journal of Molecular Biology* **215**, 403–410 (1990).

56. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

57. Lees, J. A. *et al.* Fast and flexible bacterial genomic epidemiology with PopPUNK. *Genome Res.* (2019) doi:10.1101/gr.241455.118.

58. Seemann, T. *snippy: fast bacterial variant calling from NGS reads.* (2015).
59. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. *Nucleic Acids Res* 43, e15 (2015).

60. Csardi, G. & Nepusz, T. The igraph software package for complex network research. *InterJournal* 1695 (2006).

61. Carpenter, B. et al. Stan: A Probabilistic Programming Language. *Journal of Statistical Software* 76, 1–32 (2017).

62. Gelman, A. et al. *Bayesian data analysis*. (Chapman and Hall/CRC, 2004).

63. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing* 27, 1413–1432 (2017).

64. Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving Differential Equations in R: Package deSolve. *Journal of Statistical Software* 33, 1–25 (2010).