We demonstrate phase-matched second-harmonic generation (SHG) from three-dimensional metamaterials consisting of stacked metasurfaces. To achieve phase matching, we utilize a novel mechanism based on phase engineering of the metasurfaces at the interacting wavelengths, facilitating phase-matched SHG in the unconventional backward direction. By stacking up to five metasurfaces, we obtain the expected factor of 25 enhancement in SHG efficiency. Our results motivate further investigations to achieve higher conversion efficiencies also with more complex wavefronts.

Optical metamaterials and metasurfaces are artificial structures consisting of sub-wavelength building blocks, known as meta-atoms, and are associated with optical properties not found in nature [1]. These properties include magnetism at optical frequencies, strong optical activity, negative index of refraction, and epsilon-near-zero behavior [2–4]. In addition, recent work on phase-engineered metasurfaces has demonstrated the interesting possibilities to realize flat optical components, such as lenses, holographic components, and polarizers [5–11].

In addition to the linear optical properties of metamaterials, their nonlinear optical responses are also becoming important. Several technologically relevant photonic applications rely on the nonlinear responses of materials, including second-harmonic generation (SHG), photon-pair generation, all-optical switching, frequency combs, and supercontinuum generation [12–15]. The challenging part in these nonlinear applications is the fact that nonlinear optical processes in materials are intrinsically weak. Because of this fact, nonlinear processes in conventional materials, such as in crystals, rely on the concept of phase matching. In phase-matched materials, the generated nonlinear signal scales quadratically on the propagation length resulting in practical conversion efficiencies with sufficiently long materials (see Fig. 1) [16, 17].

For homogeneous materials and forward SHG signals, phase matching can be achieved if the refractive indices at the fundamental and second-harmonic frequencies are equal. However, this requirement is a significant limitation because of refractive-index dispersion, which can be overcome by the concept of quasi-phase-matching, i.e., by structuring the material in such a way that the sign of the nonlinear susceptibility is periodically reversed [18]. In principle, quasi-phase-matching is a very general concept that allows any nonlinear signal to be optimized. Unfortunately, quasi-phase-matching and other traditional phase-matching schemes seem unfeasible for miniaturization of optical devices. Additionally, these techniques are restricted in terms of, e.g., polarization and the spatial profiles of the interacting waves. These limitations motivate the ongoing development of efficient and less restricted nanoscale devices.

Utilization of metal nanoantennas has recently emerged as a promising route towards more efficient nonlinear metamaterials [19, 20]. Metal nanoantennas support collective oscillations of conduction electrons, known as localized surface plasmons. Under resonant conditions, these oscillations give rise to localized surface plasmon resonances (LSPRs), which can considerably enhance the local field near the particles [21]. Because nonlinear processes scale with high powers of the local field, the plasmon-assisted field enhancement can result in a dramatic increase in the otherwise weak nonlinear response. Consequently, numerous investigations have
The designed metamaterial devices consisted of a number of identical metasurfaces that were separated by identical spacer layers of thickness h. For such devices, the accumulated phase of the backward emitted SHG field should be a multiple of 2π resulting in the condition

$$2(\varphi_\omega + \delta_\omega) + \varphi_{2\omega} + \delta_{2\omega} = 2\pi m,$$

where m is an integer and terms $\varphi_{2\omega} = k_{2\omega}h$ and $\varphi_\omega = k_\omega h$ arise from the propagation of the fields. By now estimating the phase terms δ_ω and $\delta_{2\omega}$ for the particles of interest, Eq. (1) allows to solve for the spacer thickness h. The phase terms were numerically estimated by using the rigorous coupled wave analysis [23, 24].

Our metamaterials consisted of a varying number N metasurfaces composed of V-shaped gold nanoantennas with arm lengths of $L = 180$ nm (L180-N) and $L = 190$ nm (L190-N), arm widths of $w = 100$ nm, and
thicknesses of $d = 20$ nm. These nanostructures were arranged into square lattices with a lattice constant of $p = 1000$ nm (Fig. 3a). This lattice configuration was chosen because it has been earlier found to emit SHG strongly \[24\]. The above parameters were calculated to give rise to LSPRs centered near 1060 nm. According to Eq. (1), for $m = 0$ the phase-matching condition was fulfilled close to the LSPR wavelength by choosing the layer thickness of $h = 225$ nm. Specifically, the phase-matching condition for devices L180-N was fulfilled for linear input polarization orthogonal to the symmetry axis of the V-particles (x-axis) (Fig. 3b). For devices L190-N the condition was fulfilled for linear input polarization along the symmetry axis (y-axis) (Fig. 3b). Due to the symmetry properties of the samples, the generated SHG emission is polarized along the symmetry axis (y-axis) for all devices.

The devices were fabricated on a cleaned SiO$_2$ substrate through a sequence of steps repeated N times \[35\]. The sequence consists of the following eight steps: i) spin-coating polymethyl methacrylate (PMMA) resist EL8 at 5000 rpm speed for one minute followed by baking the sample on a hot plate at 150°C for five minutes. ii) Spin-coating PMMA resist A2 at 2000 rpm for one minute and baking at 180°C for five minutes, iii) spin-coating a third layer of conductive polymer (E-spacer) at 2000 rpm for one minute, in order to avoid charging effects during fabrication due to the insulating substrate. iv) Electron beam lithography of the nanostructures and bathing in deionized water in order to remove the E-spacer. v) Development in methyl isobutyl ketone: isopropanol (1:3) for 12 minutes at 0°C followed by rinsing in isopropanol. vi) Deposition of a thin chromium layer (3 nm) and a layer of gold (20 nm) on the patterned resist by electron beam evaporation at 1 Å/s. vii) Lift-off by bathing with acetone at 50°C for one minute. viii) Spin-coating spacer layer (spin-on-glass IC1-200) at 6000 rpm for one minute followed by baking at 250°C for five minutes in order to obtain a $h = 225$ nm thick spacer layer. Representative scanning electron micrographs of one realized metamaterial device (L180-3) are shown in Fig. 3b–c.

The SHG responses of the devices were characterized using a setup described in detail elsewhere \[34\]. Briefly, a fs-laser oscillator (Chameleon Vision II, Ti:sapphire, 80 MHz) combined with an optical parametric oscillator (Chameleon Compact, 1000–1300 nm) was used as the pump, while the backward-emitted SHG signals were measured using a power-calibrated photomultiplier tube. See Supplemental Material at [URL will be inserted by publisher] for more detailed description of the setup. Here, we limited our input mean power to 10 mW in order to avoid possible sample damage. The SHG responses of the fabricated metamaterial devices (L180-N and L190-N) consisting of varying number of metasurfaces ($N = 1, 2, ..., 5$) were measured as a function of the pump wavelength (see Fig. 4).

The measured backward emitted SHG signals from the two sets of devices L180-N (Fig. 4a) and L190-N (Fig. 4b) both show a clear increase of the average SHG power when the number of metasurfaces (N) grows. The device with arm length of 180 nm composed of five metasurfaces (L180-5) resulted in the strongest signal corresponding to SHG power of 70 fW. When comparing the SHG responses from the two different sets of metamaterial devices (L180 and L190), one notices that the SHG enhancement as a function of N is strongest (weakest) close to the wavelength range 1100–1150 nm (1000–1050 nm). We attribute these regions to be where the constructive (destructive) phase matching occurs. A closer analysis of the results reveals that the SHG responses at the fundamental wavelengths near 1120 nm (for L180-N) and 1140 nm (for L190-N) no longer depend linearly on the number of metasurfaces N (Figs. 4a and 4b). Instead, the SHG signals follow...
FIG. 4. Measured SHG emission power spectra from two sets of metamaterial devices (a) L180-N and (b) L190-N. For devices L180-N (L190-N), the constructive phase matching occurs near the pump wavelength of 1200 nm (1140 nm). (c) Calculated SHG enhancement at 1120 nm and 1140 nm for devices L180-N (red circles) and L190-N (blue triangles). Enhancements for devices L180-N (L190-N) are normalized to the SHG signals detected from device L180-1 (L190-1). Enhancements are not proportional to \(N \) (grey dashed line), but rather follow a quadratic trend (grey solid line).

close-to-quadratic dependence on \(N \) (SHG \(\propto N^2 \)) confirming that the devices were successfully phase matched (Fig. 4). Furthermore, the devices were successfully phase matched in the challenging backward direction [36].

In addition to the quadratic dependence of the measured SHG signals on \(N \), the SHG peaks of devices L180-N blueshift from 1150 nm to 1120 nm when \(N \) increases from three to five (Fig. 4). Such behavior can be attributed to optical coupling of adjacent metasurfaces [37, 38]. It is known that adjacent particles in planar metasurfaces can become optically coupled forming collective responses known as surface lattice resonances, that have been found to enhance SHG emissions from metasurfaces [24, 39, 41]. It is only expected that similar effects could occur in 3D metamaterials also along the propagation direction [38]. In fact, it seems plausible that the detected very close to quadratic dependence of SHG signals on \(N \) is also an outcome of this optical coupling mechanism, because the ideal quadratic dependence occurs only for materials with negligible losses. However, the fabricated devices exhibited losses, that were estimated by measuring the transmittance of a single metasurface to be close to 90% near the pump wavelengths of 1120–1140 nm (See the measured transmittance spectra in the Supplemental Material at [URL will be inserted by publisher]). By taking into account this reduction in the pump intensity for subsequent metasurfaces, one would expect only around 12-fold SHG enhancement. Instead, we measured a 25-fold enhancement from both devices L180-N, and L190-N. The fact that the measured SHG enhancement was clearly above the simple estimation suggests that adjacent metasurfaces may have been already optically coupled.

In this proof-of-principle demonstration, the relative positions of adjacent metasurfaces were not fully controlled. Therefore, we did not yet realize devices that would have allowed to more carefully investigate and utilize the radiative coupling mechanism between adjacent metasurfaces in order to further enhance the SHG emission. However, in the future it will be very interesting to investigate how to utilize this inter-metasurface optical coupling. For example, such coupling mechanism might allow designing nonlinear metamaterials where the SHG emission scales more favorably with the number of metasurfaces (SHG \(\propto N^{n>2} \)) than what is possible by using conventional nonlinear materials and their at most quadratic dependence (\(n = 2 \)) on the device length [16].

In addition to enhancing the overall conversion efficiencies of nonlinear metamaterials, this demonstration of phase engineered nonlinear metamaterials has several other fundamental implications. For example, one can envisage how nonlinear metamaterials could be utilized for adiabatic frequency conversion, enabling broadband frequency conversion in nanomaterials [42, 43]. Furthermore, this methodology could allow designing more efficient nonlinear terahertz-emitting metamaterials [44, 46]. Finally, the presented phase-engineering principles apply also for arbitrary wavefronts. Successful phase matching of nonlinear processes using complex spatial modes would have applications in holography and quantum computing [24, 27].

To conclude, we have demonstrated how the performance of nonlinear metamaterials can be substantially increased by stacking metasurfaces into three-dimensional metamaterials. Phase-matching considerations that are often difficult to fulfill using conventional materials can be easily solved by controlling the dimensions of the nanoantennas and the separation between the metasurfaces. We demonstrated this by phase matching second-harmonic generation emission from fabricated metamaterials in the challenging backward direction. We fabricated nonlinear metamaterial devices consisting of
up to five stacked metasurfaces and demonstrated an up to 25-fold increase in the backward emitted second-harmonic intensities from the devices. Our results open a new paradigm of phase engineered three-dimensional nonlinear metamaterials, that could be used for example to realize more efficient nonlinear metamaterials.

ACKNOWLEDGEMENTS

We acknowledge the support of the Academy of Finland (Grant No. 308596), the Flagship of Photonics Research and Innovation (PREIN) funded by the Academy of Finland (Grant No. 320165), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreements no. 639109 and no. 724881), and the National Research Foundation (NRF) grants (NRF-2019R1A2C3003129, NRF-2019M3A6B3030637, NRF-2019R1A5A0802990) funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea.

[1] C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011)
[2] M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502 (2006).
[3] A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[4] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhan, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[5] N. Yu and F. Capasso, Nat. Mater. 13, 139 (2014).
[6] X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, Light Sci. Appl. 6, e17016 (2017).
[7] P. Genevet, F. Capasso, F. Aietà, M. Khorasaninejad, and R. Devlin, Optica 4, 139 (2017).
[8] L. Huang, S. Zhang, and T. Zentgraf, Nanophotonics 7, 1169 (2018).
[9] E. Arbabi, S. M. Kamali, A. Arbabi, and A. Farao, ACS Photonics 5, 3132 (2018).
[10] H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, Nat. Commun. 10, 2986 (2019).
[11] N. A. Rubin, G. D’Aversa, F. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, Science 365, 43 (2019).
[12] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
[13] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[14] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[15] M. R. Scherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Cho, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett. 15, 6985 (2015).
[16] R. W. Boyd, Nonlinear optics (Academic Press, San Diego, 2020).
[17] C. Wang, Z. Li, M. H. Kim, X. Xiong, X. F. Ren, G. C. Guo, N. Yu, and M. Lončar, Nat. Commun. 8, 2098 (2017).
[18] E. J. Lim, M. M. Fejer, and R. L. Byer, Electron. Lett. 25, 174 (1989).
[19] M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[20] J. Lee, M. Tynchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, Nature 511, 65 (2014).
[21] S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
[22] M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Rev. Mod. Phys. 86, 1093 (2014).
[23] J. Butet, P. F. Brevet, and O. J. Martin, ACS Nano 9, 10545 (2015).
[24] G. Li, S. Zhang, and T. Zentgraf, Nat. Rev. Mater. 2, 1 (2017).
[25] E. Rahimi and R. Gordon, Adv. Opt. Mater. 6, 1 (2018).
[26] M. J. Huttunen, R. Czaplicki, and M. Kauranen, J. Nonlinear Opt. Phys. Mater. 28, 1950001 (2019).
[27] G. Li, S. Chen, N. Pholchaj, B. Reineke, F. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Nat. Mater. 14, 607 (2015).
[28] C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, Adv. Mater. 30, 1703843 (2018).
[29] M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004).
[30] X. P. Hu, P. Xu, and S. N. Zhu, Photonics Res. 1, 171 (2013).
[31] H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, Science 342, 1223 (2013).
[32] E. N. Glytsis and T. K. Gaylord, J. Opt. Soc. Am. A 4, 2061 (1987).
[33] F. Lalanne and E. Silberstein, Opt. Lett. 25, 1092 (2000).
[34] R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, Nano Lett. 18, 7709 (2018).
[35] G. Yoon, I. Kim, S. So, J. Mun, M. Kim, and J. Rho, Sci. Rep. 7, 6668 (2017).
[36] L. Liu, L. Wu, J. Zhang, Z. Li, B. Zhang, and Y. Luo, Adv. Sci. 5, 1 (2018).
[37] M. J. Huttunen, K. Dolgaleva, P. Törnä, and R. W. Boyd, Opt. Express 24, 28279 (2016).
[38] N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Nat. Photonics 9, 180 (2015).
[39] L. Michaeli, S. Keren-Zur, O. Ayavu, H. Suchowski, and T. Ellenbogen, Phys. Rev. Lett. 118, 243904 (2017).
[40] M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, Phys. Rev. A 97, 053817 (2018).
[41] D. C. Hooper, C. Kuppe, D. Wang, W. Wang, J. Guan, T. W. Odom, and V. K. Valev, Nano Lett. 19, 165 (2018).
Supplemental Material for
"Backward phase-matched second-harmonic generation from stacked metasurfaces"

I. TRANSMISSION MEASUREMENTS

In our Letter, we discuss the phase-engineering capabilities of our phase-matched metamaterial devices. These capabilities are governed by the localized surface plasmon resonances (LSPRs) of single metasurfaces. For the single metasurface devices L180-1 and L190-1, their transmission spectra (see Fig. S1) reveal the spectral locations of LSPRs. With y-polarized (x-polarized) incident light, the LSPRs peak near 975 nm (1230 nm) and 980 nm (1200 nm) for L180-1 and L190-1 devices, respectively. Close to these resonance wavelengths, light scattered from the metal nanoantenna exhibits phase changes, that allows to fulfill the phase-matching condition for devices made by stacking several metasurfaces on top of each other.

FIG. S1. Transmission spectra of single layer devices (a) L180-1 (blue) and (b) L190-1 (red). Broad plasmon resonances are visible near 970 nm and 1200 nm for y-polarized (dashed) and x-polarized (solid) light, respectively.

II. SETUP FOR MEASURING BACKWARD-EMITTED SECOND-HARMONIC LIGHT

The second-harmonic (SH) emission from our devices was measured using the setup illustrated in Fig. S2 which is a modified version of the setup used in [34]. We used an optical parametric oscillator pumped with a titanium sapphire femtosecond laser as a wavelength-tunable laser source. A long-pass filter ensured that only the correct wavelength range (1000–1300 nm) was guided to the sample. Then, we used a linear polarizer to limit the power of the laser beam to 10 mW and set the polarization of the beam with a half-wave plate. An achromatic lens was used to focus the laser on the sample that we imaged with a CMOS camera and a camera lens (MVL50M23). The back-propagating SHG emission was collected with another achromatic lens and guided to the reflection path (dashed green line in Fig. S2) with a dichroic mirror. The short-pass filter then ensured that the correct signal wavelengths were measured by the photomultiplier tube.
FIG. S2. The setup used to measure SHG response of the sample. The setup consists of an optical parametric oscillator (OPO) pumped with a titanium sapphire femtosecond laser, long-pass filter (LPF), a linear polarizer (LP), a half-wave plate (HWP), lenses (L1, L2, and L3), dichroic mirror (DM), mirrors, an adjustable sample holder, short-pass filters (SPF1 and SPF2), a camera, and a photomultiplier tube (PMT).