The effects of aqueous extract from watermelon (*Citrullus lanatus*) peel on the growth and physiological characteristics of *Dolichospermum flos-aquae*

Jin Yan¹, Peiyao Xu¹, Fengrui Zhang¹, Xinyue Huang², Yanmin Cao¹*¹ & Shenghua Zhang¹*²

Nowadays, the increasing *Dolichospermum* (*Anabaena*) blooms pose a major threat to the aquatic environment and public health worldwide. The use of naturally derived chemicals from plants to control cyanobacteria blooms has recently received a tremendous amount of attention. This study investigates the possibility of transforming watermelon peel (WMP) into a biological resource to allelopathically inhibit *Dolichospermum flos-aquae* blooms. The results demonstrated that the growth of *D. flos-aquae* was efficiently restricted by the aqueous extract of watermelon peel (WMPAE) in a concentration-dependent manner. Cell viability decreased quickly, intracellular structural damage occurred, chlorophyll *a* in algal cells degraded, and photosynthesis was clearly inhibited. At the same time, the levels of reactive oxygen species in viable cells increased significantly, as did malondialdehyde levels, indicating that WMPAE elucidated strong oxidative stress and corresponding damage to *D. flos-aquae*. Capsular polysaccharide (CPS) levels increased in all treatment groups, which represents an adaptive response indicative of the development of resistance to WMPAE stress and oxidative damage. Despite this, WMPAE had clear inhibitory effects on *D. flos-aquae*. These findings provide fundamental information on an allelopathic system that could be a novel and attractive approach for suppressing *D. flos-aquae* blooms in small aquatic environments, especially aquaculture ponds.

Toxic cyanobacterial blooms have adverse influences on aquatic ecosystems and water quality²⁻⁴. Specifically, the toxins released by cyanobacteria can harm other aquatic creatures and endanger human health¹⁻³. *Dolichospermum* (*Anabaena*), *Microcystis*, and *Aphanizomenon* are the most common species predominating cyanobacterial blooms⁶. *Dolichospermum flos-aquae* is one of the primary cyanobacterial species in Chaohu Lake in China⁷, with its blooms usually occurring during spring, autumn, and winter¹. The *D. flos-aquae* cells can produce various toxins, such as microcystin, anatoxin-a (s), and anatoxin-a₉⁻¹². Recently, the frequency and persistence of these blooms have increased, posing a great threat to the water environmental quality and public health. Therefore, there is an exigent necessity to develop practical, economical, and environmentally friendly approaches for the control and elimination of cyanobacteria blooms, including those dominated by *D. flos-aquae*.

In recent years, methods to use plant's naturally produced chemicals to control cyanobacteria blooms have been suggested due to an increasing in-depth cognition of the allelopathic effects of plants¹³⁻¹⁶. The advantage of using chemicals derived from plants is that they are easy to degrade (making them environmentally friendly) and are very effective at suppressing algal growth¹¹⁻¹². The elimination and control of cyanobacteria bloom by plant-derived algicides has been explored rather extensively for freshwater environments. Notably, barley straw has been applied in field and laboratory trials to suppress *Microcystis* blooms¹³⁻¹⁴. Aqueous extracts from *Spartina alterniflora* has also been utilized to control *Microcystis aeruginosa* blooms¹⁹⁻²⁰. Furthermore, eucalyptus extract, an algicide, has the potential to control *M. aeruginosa*¹⁹. However, in comparison with *Microcystis*, the inhibitory effects of plant-derived chemicals on *Dolichospermum* spp. have yet to be extensively researched²⁰.

¹Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, People's Republic of China. ²Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA. *email: ymcao@mail.scuec.edu.cn; shhzhang@mail.scuec.edu.cn
Watermelon (Citrus lanatus) is a sweet, popular fruit, and its peel is an agricultural waste product. Our previous study indicated that watermelon peel (WMP) can restrain the expansion of Aphaniomerom flos-aquae. However, we did not investigate the potential of the aqueous extract of watermelon peel (WMPAE) for D. flos-aquae control. Hence, we have examined the inhibitory effects and potential mechanisms of WMPAE on D. flos‑aquae by monitoring changes in cell viability, intracellular structures, pigments, photosynthetic activities, malondialdehyde (MDA), reactive oxygen species (ROS), and capsular polysaccharides (CPS).

Materials and methods

WMPAE preparation and D. flos-aquae cultivation. The most popular and highly productive watermelon named Ningxia stone watermelon, which is available in months between July to September, were purchased from a fruit market to obtain WMPs. After removing the thin skin layer (approximately 0.1 cm), WMPs were sliced into approximately 3–4 cm pieces, and immersed thoroughly with pure water. The washed WMPs were dried in a blast oven at 45 °C, and then frozen at −20 °C. Following this, 12 g of dried WMP was soaked in 1 L axenic water to begin the extraction process, which lasted for 3 d at 25 °C. Finally, 0.012 g mL⁻¹ WMPAE was obtained after nutrient addition and the removal of residues and microorganisms by filtration through a PES membrane (0.22 μm, Millipore Millex-GP).

The target cyanobacterial species D. flos-aquae (FACHB 245) was purchased from the Freshwater Algae Culture Collection of the Institute of Hydrobiology, Chinese Academy of Sciences. D. flos-aquae cells were cultivated in sterile BG-11 solution in a light incubator (25 ± 1 °C, 64 μmol photons m⁻² s⁻¹) under a well-controlled 14 h:10 h light/dark cycle. All culture operations were performed in a clean environment, using Erlenmeyer flasks and all materials that could be were sterilized in an autoclave at 121 °C for 30 min. Algal cells in logarithmic growth phase were inoculated at the start of each experiment.

Bioassays of the effects of WMPAE on D. flos-aquae. D. flos-aquae solution (80 mL; cell density of 7 × 10⁷ cells mL⁻¹ prepared from cells in exponential growth) was transferred into axenic 250-mL Erlenmeyer flasks. Then, 24, 48, or 72 mL of WMPAE (0.012 g mL⁻¹) was added with sterile BG-11 medium to reach a total volume of 160 mL. The corresponding concentrations of WMPAE were designated the 1.8 g L⁻¹, 3.6 g L⁻¹, and 5.4 g L⁻¹ treatment groups. The initial algal density for each experiment was approximately 3.5 × 10⁷ cells mL⁻¹. Cultures without WMPAE served as a control group (0 g L⁻¹ group). Each group had three replicates.

A quantitative measurement of cell viability was performed on a 96-well microplate using CCK-8 assay (Cell Counting Kit-8, Beyotime Biotechnology, China). Firstly, the culture solutions were condensed through centrifugation (8000 × g for 10 min). The collected cells were resuspended in 5 mL cold 80% acetone, and then placed in the dark at 4 °C for 24 h to extract chlorophyll a (Chl a) and carotenoid. Finally, the contents of Chl a and carotenoid were measured and calculated using the formula described by Lichtenthaler and Buschmann. In vivo single-cell Raman spectra were also used to describe the variation in carotenoid content. Culture solutions (1 mL) were centrifuged for 5 min at 1500 × g, and the cell pellets were resuspended in 0.3 mL PBS solution after washing with 0.01 M PBS solution (pH 7.2–7.4) twice. Following this, the micro-Raman spectra of D. flos-aquae cells were measured on a DXR Raman Microscope (ThermoFisher, America) excited by a 532 nm laser with 7 mW at 25 ± 1 °C. The laser was focused on D. flos-aquae cells using a ×10 objective. All spectra were collected twice with an acquisition time of 5 s, and wavenumber range of 600–1800 cm⁻¹.

Transmission electron microscopy (TEM) assays. Culture solution (35 mL) was centrifuged for 15 min at 1500 × g to collect D. flos-aquae cell samples. These were fixed and dehydrated, and ultrathin sections were prepared using the procedures depicted by Ozaki et al. Examination of the stained samples was performed on a transmission electron microscope (Hitachi 7700, Japan). Representative images of D. flos-aquae cells treated with 5.4 g L⁻¹ WMPAE at 24 h and 48 h were retained for presentation.

Observations and measurements of cell viability. A quantitative measurement of cell viability was performed on a 96-well microplate using CCK-8 assay (Cell Counting Kit-8, Beyotime Biotechnology, China). Firstly, the culture solutions were condensed through centrifugation (1500 × g for 15 min). The collected cell pellets were further washed using 0.01 M PBS solution (pH 7.2–7.4), and then resuspended in PBS solution to obtain an algal solution with a density of 100,000 cells mL⁻¹. Following this, 10 μL of CCK-8 solution and 100 μL algal solution (containing 10,000 cells) were combined in a microplate well. After shaking for 5 min in the dark on a micro-vibrator, the 96-well microplate was put into an incubator for 2 h under darkness at 35 °C. Finally, a microplate spectrophotometer (Spark 10 M, Tecan, Switzerland) was used to measure the absorbance of each microplate well at 450 nm. The cell viability of D. flos-aquae in the treatment groups was quantified according to the following equation: Cell viability (%) = ATreatment − ABlank

https://doi.org/10.1038/s41598-022-12124-5
Determination of MDA, ROS, and CPS levels. The sample preparation process for MDA determination was as follows: algal culture was centrifuged for 20 min at 4 °C at 10,800×g, the harvested cell pellets were then diluted using 2 mL PBS (0.005 M, pH 7.2) and disrupted with an ultrasonic cell pulverizer at 300 W in an ice-bath with 5 s bursts and 3 s of rest time for 5 min (Scientz Biotechnology Co., Ltd., China). The broken homogenate was centrifugated at 14,800×g for 20 min at 4 °C to achieve a cell-free supernatant, which was used to determine MDA contents following the manufacturer’s instructions. Commercial MDA assay kits (Nanjing Jiancheng Bioengineering Institute, China) were used to assess MDA contents.

Commercialized ROS assay kits, produced by Nanjing Jiancheng Bioengineering Institute, were purchased to measure ROS levels in *D. flos-aquae* cells. The culture solution was centrifuged for 15 min at 1500×g and washed twice with PBS (0.01 M, pH 7.2–7.4). Following which the pellet was resuspended in PBS to achieve an algal density of 100,000 cells mL−1, and 100 μL of the suspended sample was transferred to a 96-well microplate washed twice with PBS (0.01 M, pH 7.2–7.4). Following which the pellet was resuspended in PBS to achieve an algal density of 100,000 cells mL−1, and 100 μL of the suspended sample was transferred to a 96-well microplate and incubated. The fluorescence intensity was determined using a Spark 10 M multimode microplate reader (Tecan, Switzerland) with excitation at 485 nm and emission at 530 nm. ROS levels in the treatment groups versus the control group (relative ROS level, %) were calculated as follows: Relative ROS level (%) = \(\frac{\text{Fluorescence}_{\text{Treatment}} - \text{Fluorescence}_{\text{Control}}}{\text{Fluorescence}_{\text{Control}}} \times 100 \).

Capsular polysaccharide (CPS) is the major chemical component of algal mucilaginous sheaths. CPS extraction from *D. flos-aquae* cells was performed according to the method of Staats and coworkers. The extracted CPS was measured using the phenol–sulfuric acid method.

Determination of chlorophyll fluorescence parameters. The chlorophyll fluorescence parameters of *D. flos-aquae* (3 mL) were determined on a pulse amplitude modulated fluorometer (FMS-2, Hansatech Instruments, Norfolk, UK) using the method described by Zhang et al. The maximum quantum yield (Fv/Fm) of photosystem II (PSII), the effective PSII quantum yield (Fv′/Fm′), and non-photochemical quenching (NPQ) were calculated basing on the equations from Roháček and Barták.

Data analysis. All control and treatment groups were performed in triplicate, data are presented as the mean ± standard deviation (SD). Independent-sample t-tests and Shapiro–Wilk tests were implemented in SPSS software (13.0, USA) to test the normality of the data and to detect differences between the treatment groups and control group, respectively. A result with p ≤ 0.05 was considered statistically significant. The units examined for cell viability, CPS, MDA, ROS, and pigment levels were defined using the cell-counting method. The growth inhibition efficiency of the WMPAE on *D. flos-aquae* was estimated by:

\[
\text{Inhibition efficiency} (\%) = \left(\frac{\text{Mean Cell density}_{\text{control}} - \text{Cell density}_{\text{treatment}}}{\text{Mean Cell density}_{\text{control}}} \right) \times 100.
\]

Results and discussion

Antialgal activity of WMPAE. The growth curves of *D. flos-aquae* and the algal inhibition efficiency of WMPAE are presented in Fig. 1. The *D. flos-aquae* in the 0 g L−1 group (control) grew quickly during the cultural period, with cell density increasing from 3.5 × 10⁷ at 0 h to 7.93 × 10⁷ cells mL−1 at 96 h (Fig. 1A). The growth of *D. flos-aquae* was inhibited in all three WMPAE treatment groups, with both time- and concentration-dependent trends observed during the 96-h exposure period. Growth inhibition was obvious in all three treatment groups from 24 h onward, with inhibition efficiencies of 13%, 24%, and 54% for the 1.8 g L⁻¹, 3.6 g L⁻¹, and 5.4 g L⁻¹ WMPAE treatments, respectively (Fig. 1B). Pronounced algicidal effects were noted at 96 h, with inhibi-
tions of 73%, 79%, and 95% for cells exposed to 1.8 g L\(^{-1}\), 3.6 g L\(^{-1}\), and 5.4 g L\(^{-1}\) WMPAE, respectively (\(p \leq 0.05\), Fig. 1B). It has been reported that extracts from *Hydrilla verticillate* can suppress the growth of *D. flos-aquae*\(^2\) as can compounds from the *Bacillus cereus* strain\(^2\). Moreover, Kaminski et al.\(^2\) suggested that *Lemna trisulca* could naturally eliminate *D. flos-aquae*. Similarly, the present results showed that the growth of *D. flos-aquae* could be inhibited efficiently by WMPAE. WMP is a common agricultural waste product. However, there were different watermelon varieties. So, in the pre-experiments, all the WMPs of various types available in the fruit market during winter to summer were tested and the results showed reproducible the inhibition effects (data not shown). Furthermore, our previous investigations revealed that *A. flos-aquae* could be suppressed by WMPAE\(^2\). The ability to also inhibit the growth of *D. flos-aquae* shows it has promise as a *D. flos-aquae* bloom control method.

Cell viability of *Dolichospermum flos-aquae*. The cell viability in *D. flos-aquae* treated with aqueous extract of watermelon peel (WMPAE): (A) Quantitative measurement results (Data are shown as mean ± standard deviation for \(n = 3\), * indicates \(p < 0.05\)); (B) Light images and fluorescent images of algal cells in 0 g L\(^{-1}\) and 5.4 g L\(^{-1}\) WMPAE group: B1, cells in 0 g L\(^{-1}\) group; B2, cells in 5.4 g L\(^{-1}\) group for 24 h; B3, cells in 5.4 g L\(^{-1}\) group for 48 h.
in cyanobacteria. Our results indicate that WMPAE can efficiently and promptly reduce \textit{D. flos-aquae} cell viability.

Intracellular structure of \textit{D. flos-aquae}. The intracellular structure of cyanobacteria could be destroyed by many allelochemicals. Therefore, we examined the ultrastructure of \textit{D. flos-aquae} cells in 0 g L-1 and 5.4 g L-1 WMPAE groups after 24 h and 48 h of exposure. Representative images taken by TEM are presented in Fig. 3. It is shown in Fig. 3A,B that the \textit{D. flos-aquae} cells in the 0 g L-1 WMPAE group retained their structural integrity. The thylakoids (Th), a uniform cell wall (CW), plasma membrane (PM), photosynthetic lamellae (PL), and a normal nucleoid zone (NZ) were observed. However, the intracellular structures of \textit{D. flos-aquae} cells treated with WMPAE were distinctly damaged (Fig. 3C–F). After 24 h of exposure, the intracellular structure became uneven, the NZ disappeared, and vacuolation was observed (see arrow 1 in Fig. 3C). We also observed clear disconnections between cells in the filaments (see arrow 2 in Fig. 3D), which contributed to the gradual shortening of the long \textit{D. flos-aquae} filaments. Intracellular structure damage of \textit{D. flos-aquae} was even prominent after 48 h of exposure, in which vacuolation (arrow 1) and pyknosis (arrow 3) were both observed (Fig. 3E,F). Moreover, the plasma membranes and cell walls were separated (arrow 4 in Fig. 3F), and the photosynthetic lamellae became blurred (arrow 5 in Fig. 3F). These phenomena demonstrate that the cell structures of \textit{D. flos-aquae} were damaged by the WMPAE.

Through TEM analysis, it was demonstrated that \textit{M. aeruginosa} cells in pyrogallic acid experience nucleoid disintegration, pyknosis, vacuolation, and photosynthetic lamellae rupture. Moreover, Chen et al. reported that vitamin C could induce extensive damage of the cell walls, membranes, and thylakoid structure in \textit{M. aeruginosa}. Additionally, in our previous study, WMPAE could induce intracellular structural damage in \textit{A. flos-aquae}. Similarly, \textit{D. flos-aquae} cells also displayed structural damage after exposure to WMPAE. The intracellular structure became inhomogeneous firstly over time, along with the vacuolation and the disappearance of NZ. Pyknosis and the separation of the plasma membrane and cell wall occurred subsequently. In addition, the photosynthetic lamellae became blurred. On the one hand, these phenomena indicated that the cell structure of \textit{D. flos-aquae} was damaged by WMPAE. On the other hand, the gradual changes of algal cells were considered as a process of \textit{D. flos-aquae} being damaged by WMPAE, and therefore, the specific broken inclusion structures apparent in the TEM images of \textit{D. flos-aquae} cells provide insight into the basic inhibitory mechanisms of WMPAE.

ROS levels and lipid peroxidation of \textit{D. flos-aquae}. Oxidative stress can lead to cellular damage through undermining the basic functioning of some molecules and intracellular balance. MDA could act as a good indicator of lipid peroxidation and oxidative stress in cyanobacteria. In the present study, MDA and intracellular ROS levels were measured to evaluate the oxidative stress in \textit{D. flos-aquae} under WMPAE (Fig. 4). Treatment with WMPAE significantly accelerated MDA accumulation in cyanobacteria cells in a dose-dependent and time-dependent manner (Fig. 4A). The MDA concentrations after 48 h of exposure to 1.8 g L-1, 3.6 g L-1, and 5.4 g L-1 WMPAE were 3.0 times, 5.1 times, and 7.2 times, respectively, than that of the control group. Abnormal lipid peroxidation in algal cells caused by bioactive compounds have been observed by many researchers, including an MDA level increase in \textit{A. flos-aquae} after luteolin exposure. Furthermore, it was also found that the MDA levels of \textit{A. flos-aquae} cells and \textit{M. aeruginosa} cells increase greatly after treatment with \textit{Sagittaria trifolia} extract. In this study, the significant increase in the MDA level of \textit{D. flos-aquae} was also observed during exposure to WMPAE. This result clearly demonstrates heavy oxidative stress and severe damage to cell membranes by WMPAE.

In contrast to the results for MDA, the ROS levels in all treatment groups decreased gradually during the first 24 h of exposure (Fig. 4B). The enhanced MDA level (Fig. 4A) of \textit{D. flos-aquae} with increasing WMPAE was a distinct indication of intracellular oxidative stress, which is commonly caused by increased ROS production. Considering the large decreases observed in the cell viability of \textit{D. flos-aquae}, the lower ROS levels might be due to the dramatic loss of viable cells after treatment with WMPAE. Therefore, the ROS levels in the viable cells treated with different concentrations of WMPAE were recalculated based on the cell viability (Fig. 4C). Compared to the viable cells in the control group, ROS levels in viable \textit{D. flos-aquae} cells of the treatment groups increased significantly. This result was demonstrated time-dependent effects, increasing to 172%, 386%, and 401% of the control level after 24 h of exposure to 1.8 g L-1, 3.6 g L-1, and 5.4 g L-1 WMPAE, respectively. An enhanced ROS level can destroy normal metabolic function and lead to cell death. Our quantitative results showed that in viable cells, both ROS and MDA levels markedly increased, indicating that the WMPAE can induce oxidative stress in \textit{D. flos-aquae} cells. These findings are similar to the observations of Mecina and coworkers, who reported that \textit{Hordeum vulgare} extract could induce a rise in ROS levels in \textit{M. aeruginosa}.

Pigments of \textit{D. flos-aquae}. The WMPAE significantly affected the Chl a and carotenoid concentrations in \textit{D. flos-aquae} cells (Fig. 5). Chl a is one of the major light-harvesting pigments in cyanobacterial cells. A reduction in cyanobacteria induced by allelochemicals or other environmental stressors have previously been reported. We observed an evident Chl a reduction in treated \textit{D. flos-aquae} in a dose-dependent and time-dependent manner (Fig. 5A). In the 0 g L-1 WMPAE group (control), the Chl a concentration was maintained steadily at 3.1 mg 10-10 cells during the 96-h exposure period. After 72 h of exposure, the Chl a concentrations of \textit{D. flos-aquae} in the 1.8 g L-1, 3.6 g L-1, and 5.4 g L-1 WMPAE group reduced to 76%, 53%, and 26% of the control group level, respectively. The maximum decrease in Chl a (to 14% of the control level) was observed in the 5.4 g L-1 WMPAE treatment group after 96 h of exposure. These results imply that WMPAE affects the photosynthetic pigment of \textit{D. flos-aquae} significantly, and that Chl a is susceptible to degradation under WMPAE-induced stress.
Intracellular structure of *D. flos-aquae*

Figure 3. Representative TEM images of *Dolichospermum flos-aquae* cells treated with 0 g L⁻¹ and 5.4 g L⁻¹ aqueous extract of watermelon peel (WMPAE). (A) (B), normal cells in 0 g L⁻¹ WMPAE group. (C,D), cells in 5.4 g L⁻¹ WMPAE group after 24 h exposure. (E,F), cells in 5.4 g L⁻¹ WMPAE group after 48 h exposure. (Abbreviations and arrows number indicate: plasma membrane, (PM); cell wall, (CW); photosynthetic lamellae, (PL); nucleoid zone, (NZ); Thylakoid, (Th); 1, vacuolation; 2, disconnection between cells in filaments; 3, pyknosis formation; 4, the separation of cell wall and plasma membrane; 5, blurring of photosynthetic lamellae).
Unlike Chl a, carotenoid concentrations in treated *D. flos-aquae* varied throughout the exposure period (Fig. 5B). In the 1.8 g L\(^{-1}\) group, the carotenoid concentration decreased slightly over 24 h; however, it exceeded that of the control group from 48 h onward, reaching a maximum value of 6.3 mg 10\(^{-10}\) cells at 96 h. In the 3.6 g L\(^{-1}\) group, the carotenoid concentration remained stable, similar to the control group. The carotenoid concentration in the 5.4 g L\(^{-1}\) group decreased significantly, reaching 0.20 mg 10\(^{-10}\) cells at 96 h, which represented 8.8% of the control group level. Raman spectra of *D. flos-aquae* cells produced by in vivo single-cell Raman spectroscopy confirmed the variations in carotenoids (Fig. 6). In the Raman spectra, 1513 cm\(^{-1}\) was assigned to conjugated C = C stretching vibrations, 1155 cm\(^{-1}\) was allocated to C–C vibrations coupled to C-CH\(_3\) stretches or C-H in-plane bending, and 1000 cm\(^{-1}\) was allotted to CH\(_3\) stretching modes, these data were considered characteristics of carotenoids\(^{48,49}\). The peak intensities were inhibited significantly in *D. flos-aquae* cells treated

Figure 4. MDA level (A), ROS level (B), and ROS level in viable cells (C) of the *Dolichospermum flos-aquae* treated with aqueous extract of watermelon peel (WMPAE) at different concentrations. (Data are shown as mean ± standard deviation for n = 3, * indicates p < 0.05).
with 3.6 g L⁻¹ and 5.4 g L⁻¹ WMPAE, while those of *D. flos-aquae* cells treated with 1.8 g L⁻¹ WMPAE were markedly enhanced.

As carotenoids have outstanding antioxidant activities, their increase is indicative of the cells’ remarkable capacity to resist oxidative stress and dissipate excited energy in non-photochemical ways. In this study, the obvious carotenoid rises in *D. flos-aquae* cells treated with 1.8 g L⁻¹ WMPAE hinted that WMPAE may bring oxidative stress and strengthen the pressure on energy dissipation in *D. flos-aquae*. However, the carotenoid concentrations of *D. flos-aquae* treated by 45% WMPAE were obviously decreased, that may invalidate such a boycott mechanism at high exposure levels.

Photosynthetic activities of *D. flos-aquae*. Changes in algal photosynthesis under stress can be reflected in chlorophyll fluorescence parameters. The parameters Fv/Fm, Fv′/Fm′, and NPQ of PSII are widely used as perceptive indicators of intracellular damage in cyanobacteria. Figure 7 presented the changes in PSII Fv/Fm, Fv′/Fm′, and NPQ of *D. flos-aquae* induced by WMPAE. Significant inhibition of both Fv/Fm and Fv′/Fm′ was observed in a dose-dependent and time-dependent manner. As shown in Fig. 7A,B, the Fv/Fm and Fv′/Fm′ of *D. flos-aquae* declined promptly after 4 h of exposure to 3.6 g L⁻¹ and 5.4 g L⁻¹ WMPAE. After 48 h of exposure, the photosynthetic yield of *D. flos-aquae* in the 1.8 g L⁻¹, 3.6 g L⁻¹, and 5.4 g L⁻¹ WMPAE treatment groups was significantly inhibited by 39%, 64%, 72% (for Fv/Fm) and 39%, 63%, 70% (for Fv′/Fm′), respectively. Significant decreases in photosynthetic yield of *D. flos-aquae* were observed after exposure to WMPAE, this result has also been reported in previous studies. The photosynthetic yield of PSII in *M. aeruginosa* could be reduced significantly by metribuzin. Dramatic decreases in the PSII photosynthetic yield of *Microcystis flos-aquae* were also observed under the stress of erythromycin. Moreover, the Fv/Fm and Fv′/Fm′ values in *M. aeruginosa* were decreased by ferulic acid. Additionally, the filtrate from *Alexandrium minutum* could intensely
inhibit the quantum yield of PSII in Chaetoceros muelleri. Fv/Fm and F_{v}'/F_{m}' reflect the photosystem capacity of light conversion into chemical energy, and their reduction in D. flos-aquae cells treated by WMPAE indicates an inhibited conversion capacity.

Non-photochemical quenching (NPQ) is a safely and non-radiatively deactivation process of excess excitation energy in PSII, which may aid in avoiding photo-damage in the photosynthetic system. NPQ could be used as one of the most apposite signals of inhibitory effects due to its high susceptibility and response speed.

Compared with photosynthetic yield, the NPQ of D. flos-aquae changed in a slightly different manner after exposure to WMPAE. Specifically, a palpable reduction in the NPQ value of D. flos-aquae was only demonstrated in the 5.4 g L$^{-1}$ WMPAE treatment group (Fig. 7C). Furthermore, the NPQ of D. flos-aquae in the 5.4 g L$^{-1}$ WMPAE treatment group was almost entirely suppressed after 48 h of treatment. The dramatic reduction in the NPQ of D. flos-aquae under a high exposure level indicates the failure of this photoprotective mechanism.

Figure 7. The Fv/Fm, F_{v}'/F_{m}', and NPQ of Dolichospermum flos-aquae treated with aqueous extract of watermelon peel (WMPAE) at different concentrations. (Data are shown as mean ± standard deviation for n = 3, * indicates $p < 0.05$).
Capsular polysaccharide (CPS) is capsular EPS which may help to build a protective layer (a mucilage sheath) that keeps algal cells in an isolated microenvironment to assist the cells resist poisonous substances or other environmental stressors. Algae adapt to stress and defend themselves by increasing their EPS content. It has been reported that EPS can scavenge H₂O₂ to further avoid oxidative damage to the algal cells. Moreover, Zhang et al. verified the ability of CPS in Thalassiosira pseudonana on weakening toxicity of CdSe quantum dots. We also observed a CPS rise in Dolichospermum flos-aquae after WMPAE treatment (Fig. 8). The CPS contents in all treatment groups increased markedly after 24 h. The relative CPS contents of the treatment groups when compared to the control group after 72 h of exposure were 4.98 times (1.8 g L⁻¹ WMPAE), 7.82 times (3.6 g L⁻¹ WMPAE), and 11.48 times (5.4 g L⁻¹ WMPAE) higher. These large increases in CPS contents are consistent with findings in Microcystis cells, in which two morphological Microcystis strains showed obvious increases in CPS in response to exposure to Acorus calamus root hexane extract. The gradual but pronounced increase in CPS content of Dolichospermum flos-aquae hints that the initial response of algal cells to WMPAE stress is to synthesize more CPS, allowing stronger interactions between its hydrophobic components and the toxic substance.

Conclusions
The algacidal efficiency of WMPAE on Dolichospermum flos-aquae blooms were investigated in the present study. The analyses explored several physiological and photosynthetic indexes, as well as the inhibitory mechanisms involved. Our results indicate that WMPAE can inhibit growth, decrease cell viability, induce intracellular oxidative stress, and cause intracellular damage in Dolichospermum flos-aquae. Furthermore, WMPAE also degrade Chl a in algal cells and intensively impair the photosynthesis in Dolichospermum flos-aquae. Carotenoid (in the low exposure level only) and CPS contents in all treatment groups were stimulated. These responses represent attempts to increase the resistance of the algal cells to WMPAE-induced stress. Overall, our results suggest that WMP, an agricultural waste product, is a promising candidate for the control of Dolichospermum flos-aquae blooms, which pose environmental and human health threats. However, for successful administration more detailed research is required in the future e.g., allelochemical analyses.

Data availability
The data are available from the corresponding author on reasonable request.

Received: 9 October 2021; Accepted: 6 May 2022
Published online: 16 May 2022

References
1. Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ. Sci. Technol. 42, 8916–8921. https://doi.org/10.1021/es801717y (2008).
2. Vikram, K. et al. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193 (2018).
3. Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327. https://doi.org/10.1016/j.envint.2013.06.013 (2013).
4. Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).
5. Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).

Figure 8. Capsular polysaccharide (CPS) levels in Dolichospermum flos-aquae treated with aqueous extract of watermelon peel (WMPAE) at different concentrations. (Data in the figure are shown as mean ± standard deviation for n = 3, *indicates p < 0.05).
44. Derks, A., Scharen, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BBA-Bioenergetics 1847, 468–485. https://doi.org/10.1016/j.bbabe.2015.02.008 (2015).
45. Jiang, H. & Qiu, B. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged uv-b exposure. J. Phycol. 41, 983–992. https://doi.org/10.1111/j.1529-8817.2005.00126.x (2005).
46. Azizzullah, A., Richter, P. & Hader, D. P. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis: As sensitive endpoints for toxicity evaluation of liquid detergents. J. Photochem. Photobiol. B Biol. 133, 18–26. https://doi.org/10.1016/j.jphotobiol.2014.02.011 (2014).
47. Singh, D. P., Khattar, J. I. S., Gupta, M. & Kaur, G. Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. Pestic. Biochem. Phys. 110, 63–70. https://doi.org/10.1016/j.pestbp.2014.03.002 (2014).
48. Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541. https://doi.org/10.1080/05704920701551530 (2007).
49. Li, K. et al. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy. Bioresource Technol. 244, 1439–1444. https://doi.org/10.1016/j.biortech.2017.04.116 (2017).
50. Beutner, S. et al. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: Carotenoids, flavonoids, phenols and indigoids. The role of beta-carotene in antioxidant functions. J. Sci. Food. Agric. 81, 559–568. https://doi.org/10.1002/jsfa.849 (2001).
51. Kelman, D., Ben-Amotz, A. & Berman-Frank, I. Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmium. Environ. Microbiol. 11, 1897–1908. https://doi.org/10.1111/j.1462-2920.2009.01913.x (2009).
52. Zhou, T. et al. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H2O2: A new insight into extracellular and intracellular damage pathways. Chemosphere 211, 1098–1108. https://doi.org/10.1016/j.chemosphere.2018.08.042 (2018).
53. Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).
54. Kumar, K. S. et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotox. Environ. Safe. 104, 51–71. https://doi.org/10.1016/j.ecoenv.2014.01.042 (2014).
55. Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence: A practical guide. J. Exp Bot 51, 659–668. https://doi.org/10.1093/jxb/51.345.659 (2000).
56. Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: Impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626. https://doi.org/10.1016/j.chemosphere.2006.01.073 (2006).
57. Zhu, J. Y., Liu, B. Y., Wang, J., Gao, Y. N. & Wu, Z. B. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat. Toxicol. 98, 196–203. https://doi.org/10.1016/j.aquatox.2010.02.011 (2010).
58. Wan, J., Gao, P., Peng, X. & Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flor-aquae. J. Hazard. Mater. 283, 778–786. https://doi.org/10.1016/j.jhazmat.2014.10.026 (2015).
59. Wang, R. et al. Evaluating the effects of allelochemical furanic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147, 264–271. https://doi.org/10.1016/j.chemosphere.2015.12.109 (2016).
60. Long, M. et al. Allelochemicals from Alexandria minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 35, 508–518. https://doi.org/10.1016/j.algal.2018.09.023 (2018).
61. Congrove, J. & Borowitzka, M. A. Chlorophyll fluorescence terminology: An introduction. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Developments in Applied Phycology Vol. 4 (eds Sugget, D. J. et al.) 1–18 (Springer, 2010).
62. Kumar, K. S. & Han, T. Physiological response of Lemma species to herbicides and its probable use in toxicity testing. Toxicol. Environ. Health Sci. 2, 39–49. https://doi.org/10.1017/BF03216512 (2010).
63. Ricart, M. et al. Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. J. Hydrology 383, 52–61. https://doi.org/10.1016/j.jhydrol.2009.08.014 (2010).
64. Deng, C., Pan, X. & Zhang, D. Influence of loxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biotech. Bioeng. 119, 159–164. https://doi.org/10.1002/jb.1470.2014.07.014 (2015).
65. Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Res. 33, 917–941. https://doi.org/10.1111/1574-6976.2009.00183.x (2009).
66. Gao, L. et al. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res. 69, 51–58. https://doi.org/10.1016/j.watres.2014.10.060 (2015).
67. Zhang, S. et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat. Toxicol. 126, 214–223. https://doi.org/10.1016/j.aquatox.2012.11.012 (2013).
68. Herrer, D. I. D. S. & Love, N. G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 41, 4177–4185. https://doi.org/10.1016/j.watres.2007.05.001 (2007).
69. Zheng, S. M. et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067 (2019).

Acknowledgements
This work was supported by the National Natural Science Fund of China (41877428, 51468066) and Fundamental Research Funds for the Central Universities, South-Central Minzu University (CZY20030).

Author contributions
J.Y., P.X., and F.Z. conducted experiments and collected data. S.Z. and J.Y. contributed to writing the manuscript. S.Z. and Y.C. contributed to research concept, experiment design, funding acquisition and revising & editing manuscript. X.H. contributed to the statistical analysis. All the authors have reviewed the manuscript and agree with the submission to Scientific Reports.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.C. or S.Z.
