Single Nucleotide Polymorphisms Associated with Colorectal Cancer Susceptibility and Loss of Heterozygosity in a Taiwanese Population

Chih-Yung Yang1,2,3, Ruey-Hwa Lu3,4, Chien-Hsing Lin4, Chih-Hung Jen5, Chien-Yi Tung5, Shung-Haur Yang6, Jen-Kou Lin6, Jeng-Kai Jiang6, Chi-Hung Lin1,2,5,6

1 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, 2 Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, 3 Department of Surgery, Taipei City Hospital, Taipei, Taiwan, 4 Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan, 5 VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, 6 Department of Surgery, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan

Abstract

Given the significant racial and ethnic diversity in genetic variation, we are intrigued to find out whether the single nucleotide polymorphisms (SNPs) identified in genome-wide association studies of colorectal cancer (CRC) susceptibility in East Asian populations are also relevant to the population of Taiwan. Moreover, loss of heterozygosity (LOH) may provide insight into how variants alter CRC risk and how regulatory elements control gene expression. To investigate the racial and ethnic diversity of CRC-susceptibility genetic variants and their relevance to the Taiwanese population, we genotyped 705 CRC cases and 1,802 healthy controls (Taiwan Biobank) for fifteen previously reported East Asian CRC-susceptibility SNPs and four novel genetic variants identified by whole-exome sequencing. We found that rs10795668 in FLJ3802842 and rs4631962 in CCND2 were significantly associated with CRC risk in the Taiwanese population. The previously unreported rs1338565 was associated with a significant increased risk of CRC. In addition, we also genotyped tumor tissue and paired adjacent normal tissues of these 705 CRC cases to search for LOH, as well as risk-associated and protective alleles. LOH analysis revealed preferential retention of three SNPs, rs12657484, rs3802842, and rs4444235, in tumor tissues. rs4444235 has been recently reported to be a cis-acting regulator of BMP4 gene; in this study, the C allele was preferentially retained in tumor tissues (p = 0.0023). rs4631962 and rs10795668 contribute to CRC risk in the Taiwanese and East Asian populations, and the newly identified rs1338565 was specifically associated with CRC, supporting the ethnic diversity of CRC-susceptibility SNPs. LOH analysis suggested that the three CRC risk variants, rs12657484, rs3802842, and rs4444235, exhibited somatic allele-specific imbalance and might be critical during neoplastic progression.

Introduction

Colorectal cancer (CRC) affects 1.23 million people worldwide and causes 0.6 million deaths annually; it is becoming the most frequently diagnosed cancer in developed countries [1]. During the last two decades, the incidence of CRC has increased dramatically in developed Asian countries, including Japan, Hong Kong, Singapore, Korea, and Taiwan, and is now comparable to that of Western countries [2,3]. In Taiwan, CRC has been the most frequently diagnosed cancer since 2007 [4,5]. A number of genetic and environmental factors are known to cause CRC [6–9].

There is a direct association between sporadic tumor occurrence and susceptibility variants carried by an individual. Two percent of the European population carries multiple inherited low-risk alleles that increase the rate of CRC incidence about four-fold [10,11]. Over the past two decades, many candidate gene studies have evaluated common genetic risk factors for CRC; however, only a few of these have been replicated in subsequent studies [12]. Recent genome-wide association studies (GWAS) identified 15 common genetic susceptibility loci for CRC [13–21]; however, less than 15% of CRC heritability could be explained by these newly identified genetic factors including known high-penetration variations in CRC susceptibility genes [13,14].

Neoplastic progression is often associated with accumulation of somatic-cell genetic changes as the tumor progresses [13–20]. Loss of heterozygosity [LOH] can be caused by mutation of one allele and loss of another allele through mitotic nondisjunction, chromosome nondisjunction, or physical deletion, followed by reduplication of the remaining mitotic, chromosome recombination, and gene conversion [21–23]. Identification of genome-wide LOH patterns in tumors may reveal the specific region that anchors tumor suppressor genes and suggest novel molecular mechanisms for carcinogenesis.

Citation: Yang C-Y, Lu R-H, Lin C-H, Jen C-H, Tung C-Y, et al. (2014) Single Nucleotide Polymorphisms Associated with Colorectal Cancer Susceptibility and Loss of Heterozygosity in a Taiwanese Population. PLOS ONE 9(6): e100060. doi:10.1371/journal.pone.0100060

Editor: Amanda Ewart Toland, Ohio State University Medical Center, United States of America

Received December 30, 2013; Accepted May 22, 2014; Published June 26, 2014

Copyright: © 2014 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by research grants NSC101-2321-B-075-001, NSC 102-2325-B-010-013 and NSC102-2319-B-010-001, National Science Council and Aim for the Top University Plan from Ministry of Education, Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jkjiang@vghtpe.gov.tw (JJ); linch@ym.edu.tw (CL)

These authors contributed equally to this work.
GWAS identify SNPs that tag linkage disequilibrium (LD) blocks in the genome, thus capturing a large proportion of common genetic variations. Fifteen SNPs associated with CRC in the East Asian populations (rs6687758, rs10936599, rs647161, rs10505477, rs8035267, rs7014346, rs10795668, rs1663650, rs3002842, rs10742124, rs4444235, rs4779584, rs9929218, rs1939827 and rs961253) were evaluated in a Taiwanese population [24]. The control minor allele frequency of rs10774214, rs647161, and rs16656650 in 653,291 SNPs on Taiwan-specific customized SNP array (Affymetrix Inc.) were not available in the Taiwan Biobank database; we searched in Taichung Biobank and identified rs4631962, rs12657484, and rs1665645, which are in strong LD ($r^2 \geq 0.8$) with the original SNPs.

In this study, the tumor and adjacent non-tumor tissues of 705 colorectal cancer patients in Taiwan were collected and genotyped in an attempt to replicate GWAS findings and evaluate the possibility of the allele-specific imbalance in tumor tissues. We found a novel SNP (rs1338565) and two published SNPs (rs10795668 and rs464631962) associated with CRC risk and three SNPs (rs12657484, rs3002842, and rs4444235) showing statistical significance in allele specific retention in tumors.

Materials and Methods

Study population and DNA preparation

The study included a population-based series of 705 paired CRC tumors and adjacent normal tissues collected since 2006 at Taipei Veterans General Hospitals. All tissue samples of FFPE were diagnosed by experienced pathologists. The tumor tissues consist of 50% or more tumor cells for collecting DNA. Germline DNA extracted from RNAlater-immersed adjacent normal colonic tissue and corresponding tumor DNA were available. The 1802 control subjects were anonymous healthy blood donors from the Taiwan Biobank (http://taiwanview.twbiobank.org.tw/taiwanview/search.do). Written informed consent was obtained from all patients and the study was approved by Institutional Review Board of Taipei Veterans General Hospital, Taipei, Taiwan. The genomic DNA of paired tumor and adjacent normal tissues were extracted using QIagen’s QIAamp Mini Kit according to the manufacturer’s protocols (Qiagen).

Exome Library Preparation and Sequencing

Exome sequence capture was performed following the procedure provided for the Agilent SureSelect Platform (SureSelect Human All Exon V4 kit). The captured library was performed with paired-end 90 base reads on the Illumina HiSeq 2000 platform. The average sequencing depth is more than 100-fold, and the coverage of target region is at least 99%.

Sequencing Data analysis: Alignment, Variant Calling, and Annotation

The adapter sequence in the raw data was removed, and low quality reads were discarded. Sequence reads were aligned to the reference genome (hg19) using the BWA program [25]. The alignment information were stored in BAM format files and for further processing, along with fixing mate-pair information to add read group information and marking duplicate reads caused by polymerase chain reaction. The variant calling and annotation of the processed BAM files were performed using different programs. Single Nucleotide Polymorphisms (SNPs) were detected by SOAPsnp [26] and small Insertion/Deletions (InDels) are detected by SAMtools and Single Nucleotide Variants (SNVs) were detected by Varscan [27] and somatic InDels were detected by GATK [28].

SNP selection and genotyping

Nineteen CRC-susceptibility SNPs were genotyped in all samples, and among them, 15 were reported to be directly or indirectly (LD $r^2 > 0.8$) associated with CRC susceptibility in East Asians [24]. For clarifying population stratification within cases and controls, 44 frequently-used unlinked SNPs were also genotyped in all cases and controls [29]. SNP genotyping were carried out by using the Sequenom MassARRAY system. The PCR and single-base extension primers were designed by using the MassARRAY Assay Design 3.1 software (Sequenom, San Diego, CA). PCR reactions in a final volume of 5 μl contained 1 pmol of the corresponding primers, 5 ng genomic DNA, and reaction mix (Sequenom) in 304-well plates. PCR conditions were as follows: 94°C for 15 min, followed by 40 cycles of 94°C (20 s), 56°C (30 s), 72°C (40 s), and a final extension of 72°C for 3 min. In the primer extension procedure, each sample was denatured at 94°C, followed by 40 cycles of 94°C (5 s), 52°C (5 s), 72°C (5 s). The mass spectrum from time-resolved spectra was retrieved by using a MassARRAY mass spectrometer (Sequenom), and each spectrum was then analyzed using the Sequenom Typer 4.0 software (Sequenom) to perform the SNP genotype calling.

Statistical analyses

Pearson’s χ² tests were used to compare the difference of SNP allele and genotype frequencies between cases and well-match controls. Hardy-Weinberg equilibrium of each SNP was tested by goodness-of-fit χ² test to compare the expected frequency of genotypes in controls. The effects of polymorphisms on the risk of colorectal cancer were expressed as odds ratios (ORs) with 95% confidence intervals (95% CIs), evaluated using unconditional logistic regression analysis. To identify allele-specific imbalance, the genotype of each SNP (called based on the Sequenom default algorithm) was compared in tumor and adjacent non-tumor tissues, and only patients with germline SNP heterozygous calls were used for following analysis. Fisher’s exact test was used for analyzing SNP LOH in cancer tissues. Principal component analysis (PCA) was used to clarify population stratification using 44 unlinked SNPs. Bonferroni and permutation methods were used to adjust p-values in multiple comparisons. All the above statistical analyses were performed using SAS/STAT version 8 software (SAS Institute, Cary, NC, USA).

Results

CRC-susceptibility SNP association analysis

Two resources of CRC candidates SNPs were used in this study. One was selected from previous East Asian CRC-susceptibility association article [24], and another is identified based on the exomic-sequencing data in few tumor tissues in this study. Based on the results of previous study [24], 15 SNPs, including rs6687758, rs10936599, rs647161, rs10505477, rs9083267, rs7014346, rs10795668, rs1663650, rs3002842, rs10742124, rs4444235, rs4779584, rs9929218, rs4939827 and rs961253, were associated with CRC susceptibility in East Asian population. Although only three SNPs showed more statistical associations with CRC susceptibility after Bonferroni strict p-value adjusted (rs9083267, rs10795668, rs4939827). Due to the current limitation of public Taiwan Biobank, three of these SNPs (3/15) were not included in the database. We selected rs4631962, rs12657484, and rs1665643 to represent rs10742124, rs647161, and rs16656650, respectively, due to the strong LD ($r^2 \geq 0.8$) between them.

We originally searched a set of genes and mutations in colorectal polyposis to assess patients’ subsequent carcinogenic risk. We performed exonic-sequencing experiments on paired tissues
from seven CRC patients (i.e. cancer tissues, cancer-synchronous polyps, and adjacent normal tissues) and six cases of incidental, non-cancer-related polyps. After differential analysis, we selected 62 CRC carcinogenesis-related gene variations present in tumors and cancer-synchronous polyph but absent in normal tissues and incidental polyphs to be verified in 47 pairs of CRC tumor and paired normal adjacent tissues by Sequenom MassArray (data not shown). We identified four candidate SNPs associated with CRC susceptibility in a comparison with 1902 healthy controls from the Taiwan Biobank.

We combined 15 reported and 4 newly-identified SNPs to genotype these SNPs in 705 independent CRC pairs of tumor and paired normal adjacent tissues. Although Taiwan Biobank is a database which randomly enrolled samples in the population and serves as good and public controls for other projects. Due to population stratification in these CRC patients and controls, we genotyped 44 frequently used unlinked SNPs (Table S1 in File S1) and performed PCA analysis. There was no population stratification within these samples (Figure S1 in File S1), and the estimated inflation factor (λ = 1.001) was very small, indicating cases are genetically matched with the public control database. Nineteen SNPs were genotyped by using the MassARRAY® system in the non-tumor tissue of 705 CRC patients, and compared to the data of 1,802 controls. As shown in Figure 1, we found a significant CRC risk association (unadjusted p-value <0.05) for rs10795668 (OR = 1.13, unadjusted p-value = 0.03) in FLJ3802842, rs4631962 (OR = 1.143, unadjusted p-value = 0.016) in CCND2 and the newly-identified rs1338565 (OR = 1.16, unadjusted p-value = 0.005) in allele- and genotype-based analyses. For the purpose of replicating these known CRC susceptibility SNPs, Bonferroni p-value adjustment was perhaps too strict because the sample size of these samples produced a candidate CRC susceptibility locus, rs1338565.

rs10795668 was reported to be associated with CRC risk and conferred better overall survival [34,35,43–45]. However, GWAS and several replication studies found no risk association of this variant in CRC [46–52]. In addition, rs10795668 allele frequencies differ between the European, Japanese, and African American populations [47]. rs10795668 maps to an 82-kb LD block (8.73–8.81 Mb) within 10p14 [53], but little is known about the function of the SNP and no known protein-coding genes are present in the surrounding 400 kb region. Like most risk variants identified by GWAS, rs10795668 also resides outside a gene-coding region; the nearest predicted genes are BC031880 and LOC389936 located 0.4 Mb and 0.7 Mb away, respectively. rs10795668 may increase expression of \(ATP5C1 \), which encodes the gamma subunit of the catalytic core (\(F_1 \)) of the mitochondrial ATP synthase [54]. The mitochondrial ATP synthase plays a central role in cellular respiration. The Warburg effect, the metabolic switch from respiration (in the mitochondria) to glycolysis (in the cytosol), commonly occurs in tumor cells [55]. Increased expression of \(ATP5C1 \) associated with the A allele of rs10795668 would be consistent with maintaining the activities of ATP synthase and cellular respiration and potentially inhibiting tumor progression in colorectal cancer.

The new CRC susceptibility locus rs10774214, distally located 150 kb upstream of \(CCND2 \), was identified in East Asians by GWAS [24]. It showed strong LD (\(r^2 = 0.825 \)) with rs4631962, for which the major allele frequency is known for healthy individuals in the Taiwan Biobank [56]. rs4631962 is proximally located just 10 kb upstream of \(CCND2 \), which encodes cyclin D2, a member of the D-type cyclin family. \(CCND2 \) is a critical mediator of cell cycle control (from G1 to S phase) and is overexpressed in a substantial proportion of human colorectal tumors [37–60]. Overexpression of \(CCND2 \) is an independent predictor of survival in individuals
with CRC [59]. PARP11, C12orf5, FGFR6, and RAD51API are also in close proximity to the SNP; C12orf5 and RAD51API are overexpressed in CRC tissue [60]. rs461962 is in strong LD with several SNPs in potential transcription factor-binding sites in the TRANSFAC database [60].

The newly identified rs1338563 is located in an intron of the ZNF239 gene on chromosome 10q11.22. Two neighboring SNPs, rs2230660 and rs2230661, produce missense variations in the exon region of ZNF239 and CRC has not been explored. ZNF239 is a zinc-finger protein that recognizes both DNA and RNA. This dual affinity suggests ZNF239 is involved in transcription and post-transcriptional regulation. As a DNA-binding transcriptional repressor, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the GRO (cone-rod homebox protein) transcriptional activator for DNA binding [61]. Previous studies have shown ZNF239 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription [62,63]. Additional research may be warranted to understand the mechanisms by which this SNP is related to CRC risk.

CRC susceptibility-associated genetic variations have been found to affect gene expression through distant regulatory elements. Our study showed rs4939827 had the highest rate of LOH in CRC patients (36%). rs4939827 reduces SMAD7 expression, leading to aberrant TGFβ signaling [64]; however, no significant difference in the alleles targeted by imbalance was detected in rs4939827 at 18q21 (p = 0.17) [64,65]. Given that subtle changes in distant regulatory elements result in low-penetrance of cancer susceptibility and play a role in tumor cell development, alterations in several loci of BMP4 [38,42,77], BMP7 [64,65], and SMAD7 expression has been associated with poor survival in CRC patients [74].

The newly identified rs1338563 is located in an intron of the ZNF239 gene on chromosome 10q11.22. Two neighboring SNPs, rs2230660 and rs2230661, produce missense variations in the exon region of ZNF239 and CRC has not been explored. ZNF239 is a zinc-finger protein that recognizes both DNA and RNA. This dual affinity suggests ZNF239 is involved in transcription and post-transcriptional regulation. As a DNA-binding transcriptional repressor, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the GRO (cone-rod homebox protein) transcriptional activator for DNA binding [61]. Previous studies have shown ZNF239 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription [62,63]. Additional research may be warranted to understand the mechanisms by which this SNP is related to CRC risk.

CRC susceptibility-associated genetic variations have been found to affect gene expression through distant regulatory elements. Our study showed rs4939827 had the highest rate of LOH in CRC patients (36%). rs4939827 reduces SMAD7 expression, leading to aberrant TGFβ signaling [64]; however, no significant difference in the alleles targeted by imbalance was detected in rs4939827 at 18q21 (p = 0.17) [64,65]. Given that subtle changes in distant regulatory elements result in low-penetrance of cancer susceptibility and play a role in tumor cell development, alterations in several loci of BMP4 [38,42,77], BMP7 [64,65], and SMAD7 expression has been associated with poor survival in CRC patients [74].

The newly identified rs1338563 is located in an intron of the ZNF239 gene on chromosome 10q11.22. Two neighboring SNPs, rs2230660 and rs2230661, produce missense variations in the exon region of ZNF239 and CRC has not been explored. ZNF239 is a zinc-finger protein that recognizes both DNA and RNA. This dual affinity suggests ZNF239 is involved in transcription and post-transcriptional regulation. As a DNA-binding transcriptional repressor, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the GRO (cone-rod homebox protein) transcriptional activator for DNA binding [61]. Previous studies have shown ZNF239 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription [62,63]. Additional research may be warranted to understand the mechanisms by which this SNP is related to CRC risk.

The newly identified rs1338563 is located in an intron of the ZNF239 gene on chromosome 10q11.22. Two neighboring SNPs, rs2230660 and rs2230661, produce missense variations in the exon region of ZNF239 and CRC has not been explored. ZNF239 is a zinc-finger protein that recognizes both DNA and RNA. This dual affinity suggests ZNF239 is involved in transcription and post-transcriptional regulation. As a DNA-binding transcriptional repressor, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the GRO (cone-rod homebox protein) transcriptional activator for DNA binding [61]. Previous studies have shown ZNF239 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription [62,63]. Additional research may be warranted to understand the mechanisms by which this SNP is related to CRC risk.
Table 1. Replication of colorectal cancer-susceptibility SNPs in Taiwan population.

rs#	Chr	Position	Case MAF	Control MAF	Allele Test p-value (adjusted)	Odds Ratio (OR)	95% OR	HW Test p-value	Published study unadjusted p-value
rs6687758	1	222164948	0.203	0.196	0.529 (0.878)	1.042	0.895–1.212	0.77	0.005
rs10936599	3	169492101	0.451	0.457	0.654 (0.795)	1.024	0.906–1.156	0.67	0.03
rs12657484	5	134903751	0.331	0.342	0.344 (0.654)	1.055	0.926–1.200	0.27	NA
rs11525793	7	15648935	0.407	0.412	0.71 (0.891)	1.020	0.901–1.154	0.59	NA
rs10505477	8	128407443	0.446	0.426	0.128 (0.315)	1.083	0.959–1.224	0.63	0.005
rs9832677	8	128413305	0.444	0.428	0.225 (0.415)	1.066	0.943–1.204	0.5	8.5 × 10^{-5}
rs7014346	8	128424792	0.324	0.333	0.466 (0.571)	1.042	0.915–1.185	0.83	0.016
rs746603	9	94483198	0.072	0.077	0.484 (0.647)	1.073	0.850–1.354	0.13	NA
*rs10795668	10	8701219	0.35	0.378	0.03 (0.087)	1.126	0.992–1.278	1	3.84 × 10^{-3}
*rs1338565	10	44059676	0.439	0.476	0.005 (0.015)	1.160	1.027–1.311	0.17	NA
rs165645	10	118487954	0.288	0.309	0.086 (0.124)	1.104	0.966–1.261	0.25	NA
rs382842	11	111171709	0.473	0.453	0.133 (0.216)	1.081	0.958–1.221	0.6	0.021
*rs4631962	12	4373132	0.328	0.299	0.016 (0.043)	1.143	1.004–1.302	0.34	NA
rs4444235	14	54410919	0.473	0.497	0.068 (0.101)	1.100	0.974–1.242	0.28	0.025
rs4779584	15	32994756	0.192	0.197	0.677 (0.715)	1.028	0.882–1.198	0.46	0.002
rs9929218	16	68820946	0.187	0.195	0.434 (0.491)	1.054	0.903–1.230	0.71	0.01
rs4939827	18	46653463	0.304	0.297	0.548 (0.637)	1.034	0.907–1.180	0.37	2.86 × 10^{-4}
rs10404811	19	58154807	0.368	0.366	0.856 (0.861)	1.010	0.873–1.123	0.48	NA
rs961253	20	6404281	0.076	0.075	0.903 (0.921)	1.012	0.786–1.243	1	0.03

Note: Fifteen reported and four newly-identified CRC-susceptibility SNPs were genotyped in 705 cases and compared to 1802 healthy control in Taiwan View Biobank. Allele and genotype frequencies were compared using Chi-square tests.

*SNP showed significant differences in allele frequencies between cases and controls (unadjusted p-value < 0.05).

Permutation-based p-value adjustments (bootstrap n = 1,000) was applied.

Ja WH et al. Nature Genet 45:191–196. doi:10.1371/journal.pone.0100060.t001
imbalance from individual of European ancestry. But the SNP was not replicated in our study and it may be due to our tumor number of LOH limitation. The percent of major-genotype shift was high (82%) for this SNP, but perhaps because only 11 total tumors showed LOH.

In conclusion, several CRC-susceptibility SNPs identified in East Asian studies are also associated with increased CRC risk in the Taiwanese population. However, the incongruent results between this study and previous East Asian associations could be attributed to the racial and ethnic differences of the respective study populations because allele frequencies of these SNPs may be different. Another possible reason that these SNPs were not found to be susceptibility variants for CRC might be that the sample size was not large enough to provide sufficient statistical power in this study. Despite the small sample size of this replication study, the GWAS-identified novel SNP rs1338565 was associated with an increased risk of CRC in our population. The East Asian CRC-susceptibility SNPs rs10795668 and rs46310962 also contribute to

Figure 2. The percent of tumors with loss-of-heterozygosity compared to paired adjacent non-tumors. Fifteen reported and four newly-identified CRC-susceptibility SNPs were genotyped in tumor and adjacent non-tumor tissues in 705 CRC cases. Only cases with heterozygous genotypes, which provide di-allelic information, were used, and the total number of informative cases carrying homozygous calls in tumor tissues was measured as the LOH percentage.

doi:10.1371/journal.pone.0100060.g002

Figure 3. The predominance of risk allele in tumors. (A) The percent of tumors with risk allele retention. (B) Statistical significance of risk allele retentions. The difference in the retention of specific alleles was compared using Fisher exact tests. Red dashed line indicates p = 0.05. The asterisk indicates significant p-value.

doi:10.1371/journal.pone.0100060.g003
rs#	Chr	Position	No of adjacent non-tumors with heterozygous genotype	No of tumors with Allele1 homozygous genotype	No of tumors with Allele2 homozygous genotype	Total No of tumors with LOH	The percent of tumors with LOH	The percent of Major-Genotype Shift	Fisher Exact Test unadjusted p-value
rs6687758	1	22164948	237	2	3	5	2%	60%	1
rs10936599	3	169492101	354	6	4	10	3%	60%	1
*rs12657484	5	134503751	276	37	13	50	18%	74%	0.0228
rs11525793	7	15648935	330	10	3	13	4%	77%	0.2262
rs10505477	8	128407443	308	8	15	23	7%	65%	0.3726
rs6983267	8	128413305	311	9	2	11	4%	82%	0.1827
rs7014346	8	128424792	284	8	3	11	4%	73%	0.387
rs7466003	9	94483198	92	1	1	2	2%	50%	1
rs10795668	10	8701219	297	5	6	11	4%	55%	1
rs1338565	10	44059676	320	5	6	11	3%	55%	1
rs1665645	10	118487954	292	10	8	18	6%	56%	1
*rs3802842	11	111171709	355	21	5	26	7%	81%	0.0399
rs4631962	12	4373132	281	8	5	13	5%	62%	0.6951
*rs4444235	14	54410919	302	27	4	31	10%	87%	0.0023
rs4779584	15	32994756	207	15	17	32	15%	53%	1
rs9929218	16	68820946	211	6	0	6	3%	100%	0.1818
rs4938627	18	46453463	251	55	35	90	36%	61%	0.1769
rs10406811	19	58154807	311	7	10	17	5%	59%	0.7319
rs961253	20	6404281	87	5	9	14	16%	64%	0.7036

Note: Fifteen reported and four newly identified CRC-susceptibility SNPs were genotyped in tumor and adjacent non-tumor tissues in 705 CRC cases. Only cases with heterozygous genotypes, which provide di-allelic information, were used in the following analysis. Differences in retention of specific alleles were compared using Fisher exact tests. The asterisk indicates significant p-value.

doi:10.1371/journal.pone.0100060.t002
of tumor and non-tumor data. Nineteen SNPs that were typed in 705 independent CRC pairs of tumor (T) and paired normal adjacent tissues (N) using Sequenom iPLEX genotyping method and default calling algorithm. **Table S1:** Allele frequency comparisons of 705 cases and 1,802 controls using 44 unlinked SNPs. (DOCX)

Acknowledgments

We thank Dr. Li-Li Li for language revision of the manuscript.

Author Contributions

Conceived and designed the experiments: CY JJ Chi-Hung Lin. Performed the experiments: CY RL CJ CT Chien-Hsing Lin. Analyzed the data: CY RL CJ CT Chien-Hsing Lin. Contributed reagents/materials/analysis tools: SY JL JJ Chi-Hung Lin. Wrote the paper: CY Chien-Hsing Lin.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Sung JJ, Lau JY, Young GP, Sano Y, Chiu HM, et al. (2008) Asia Pacific consensus recommendations for colorectal screening. Gut 57: 1166–1176.
3. Byeon JS, Yang SK, Kim TJ, Kim WH, Lau JY, et al. (2007) Colorectal neoplasm in asymptomatic Asians: a prospective multinational multicenter colonoscopy survey. Gastrointest Endosc 65: 1015–1022.
4. Ministry of Health and Welfare & Cancer Registry annual report in Taiwan. Taiwan ROC, 2012.
5. Verhaak RG, van der Vijgh WJ, Bovenberg RA, Stassen L, Huisman RP, et al. (2006) Gene expression profiling of colorectal cancer using cDNA microarrays. J Pathol 209: 294–305.
6. Jia WH, Zhang B, Matsuoka K, Shin A, Xiang YB, et al. (2013) Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet 45: 191–196.
7. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
8. Li K, Li Y, Fang X, Yang H, Wang J, et al. (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19: 1124–1132.
9. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. VarScan website. Available: http://varscan.sourceforge.net/. Accessed 2013 Mar 20.
10. The Genome Analysis Toolkit (GATK) website. Available: http://www.broadinstitute.org/gatk/. Accessed 2013 Jan 10.
11. Sanchez JJ, Phillips C, Borsting C, Baloghi K, Bogus M, et al. (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27: 1713–1724.
12. Cui R, Okada Y, Jiang SG, Ku JL, Park JG, et al. (2011) Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 60: 799–805.
13. Matsuo K, Suzuki T, Ito H, Hosono S, Kawanami T, et al. (2009) Association study-identified genetic variants for colorectal cancer in a Chinese population. Gut 58: 1175–1180.
14. Matsuo K, Suzuki T, Ito H, Hosono S, Kawanami T, et al. (2010) Genome-wide association analysis identified a novel susceptible locus for colorectal cancer at 11q24. PLoS Genet 6: e1000660.
15. Thea LF, Li H, Joo YS, Koh WP, Yuan JM, et al. (2012) Association of Caucasian-identified variants with colorectal cancer risk in Singapore Chinese. PLoS One 7: e42407.
16. Ho JW, Chai SC, Lee VF, Hui TG, Cherms SS, et al. (2011) Replication study of SNP associations for colorectal cancer in Hong Kong Chinese. Br J Cancer 104: 369–375.
17. Xiong F, Wu C, Bi X, Yuan J, Huang L, et al. (2010) Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev 19: 1855–1861.
18. Knudsen AG Jr (1985) Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 45: 1437–1441.
19. Hafner MA, Cavenee WK (1987) Genetics of cancer predisposition. Cancer Res 47: 5318–5327.
20. Brown MA (1999) Tumor suppressor genes and human cancer. Adv Genet 45: 1–135.
21. Thrash-Bingham CA, Greenberg RE, Howard S, Bruzel A, Bremer M, et al. (1995) Comprehensive allelotyping of human renal cell carcinomas using microsatellite DNA probes. Proc Natl Acad Sci U S A 92: 2853–2858.
22. Reid BJ, Barrett MT, Galipau PC, Sanchez CA, Neshat K, et al. (1996) Barrett’s oesophagus: ordering the events that lead to cancer. Eur J Cancer Prev 5 Suppl. 2: 57–63.
23. Sanchez JJ, Phillips C, Borsting C, Baloghi K, Bogus M, et al. (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27: 1713–1724.
24. Cui R, Okada Y, Jiang SG, Ku JL, Park JG, et al. (2011) Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 60: 799–805.
25. Matsuo K, Suzuki T, Ito H, Hosono S, Kawanami T, et al. (2009) Association study-identified genetic variants for colorectal cancer in a Chinese population. Gut 58: 1175–1180.
26. Matsuo K, Suzuki T, Ito H, Hosono S, Kawanami T, et al. (2010) Genome-wide association analysis identified a novel susceptible locus for colorectal cancer at 11q24. PLoS Genet 6: e1000660.
27. Thea LF, Li H, Joo YS, Koh WP, Yuan JM, et al. (2012) Association of Caucasian-identified variants with colorectal cancer risk in Singapore Chinese. PLoS One 7: e42407.
28. Ho JW, Chai SC, Lee VF, Hui TG, Cherms SS, et al. (2011) Replication study of SNP associations for colorectal cancer in Hong Kong Chinese. Br J Cancer 104: 369–375.
29. Xiong F, Wu C, Bi X, Yuan J, Huang L, et al. (2010) Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev 19: 1855–1861.
30. Report of Taiwan Cancer Registry 2007. Available: http://www.bhp.doh.gov.tw/BHpert/Portal/PressShow.aspx?No=201008250001.
31. National Institute of Health of USA Report Fact Sheet of colorectal cancer. Available: http://www.ni.nlm.nih.gov/NIH Factsheets/Pdfs/ ColorectalCancer%28NCI%29.pdf.
32. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, et al. (2007) A genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–637.
33. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, et al. (2007) A genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–637.
