1 Introduction

In this lecture we will try to address the "frequently asked questions about fractals" in the field of large scale galaxy distribution. This paper takes its origin from a very interesting discussion we had at this meeting. A lot of points were raised, and we try to make clear the fundamentals ones. For a more detailed discussion we refer the reader to [1] [2] for a basic introduction to this approach, and to [3] and [4] for a review on the more recent results.

In Sec.2, we briefly introduce the basics concepts of fractal geometry and the methods of correlation analysis, that are usually used in Statistical Mechanics. Moreover we present the results of our analysis in the case of real galaxy and cluster three dimensional samples. In Sec.3 we discuss the main points that have been raised during the "Ringberg discussion". Finally in Sec.4 we summarize our main conclusions.

2 General properties of fractal distributions

A fractal consists of a system in which more and more structures appear at smaller and smaller scales and the structures at small scales are similar to the one at large scales. Starting from a point occupied by an object we count how many objects are present within a volume characterized by a certain length scale in order to establish a generalized "mass-length" relation from which one can define the fractal dimension. We can then write a relation between \(N \) ("mass") and \(r \) ("length") of type [5]:

\[
N(r) = B \cdot r^D
\]

where the fractal dimension is \(D \) and the prefactor \(B \) is instead related to the lower cut-offs. It should be noted that Eq.(1) corresponds to a smooth convolution of a strongly fluctuating function. Therefore a fractal structure is always connected with large fluctuations and clustering at all scales. From Eq.(1) we can readily compute the average density \(< n >\) for a spherical sample of radius \(R_s \) which contains a portion of the fractal structure:

\[
< n > = \frac{N(R_s)}{V(R_s)} = \frac{3}{4\pi} B R_s^{(3-D)}
\]
From Eq. 2 we see that the average density is not a meaningful concept in a fractal because it depends explicitly on the sample size R_s. We can also see that for $R_s \to \infty$ the average density $< n > \to 0$, therefore a fractal structure is asymptotically dominated by voids.

It is useful to introduce the conditional density from an occupied point as:

$$\Gamma(r) = S^{-1} \frac{dN(r)}{dr} = \frac{D}{4\pi} B r^{-(3-D)}$$

where $S(r)$ is the area of a spherical shell of radius r. Usually the exponent that defines the decay of the conditional density $(3-D)$ is called the codimension and it corresponds to the exponent γ of the galaxy distribution.

We can now describe how to perform the correct correlation analysis that can be applied in the case of an irregular distribution as well as of a regular one. We may start recalling the concept of correlation. If the presence of an object at the point r_1 influences the probability of finding another object at r_2, these two points are correlated. Therefore there is a correlation at r if, on average

$$G(r) = \langle n(0)n(r) \rangle \neq \langle n \rangle^2.$$ \hspace{1cm} (4)

where we average on all occupied points chosen as origin. On the other hand there is no correlation if

$$G(r) \approx \langle n \rangle^2.$$ \hspace{1cm} (5)

The physically meaningful definition of λ_0 is therefore the length scale which separates correlated regimes from uncorrelated ones.

In practice, it is useful to normalize the correlation function (CF) of Eq. 4 to the size of the sample under analysis. Then we use, following \cite{1}

$$\Gamma(r) = \frac{< n(r)n(0) >}{< n >} = \frac{G(r)}{< n >}.$$ \hspace{1cm} (6)

where $< n >$ is the average density of the sample. We stress that this normalization does not introduce any bias even if the average density is sample-depth dependent, as in the case of fractal distributions, because it represents only an overall normalizing factor. In order to compare results from different catalogs it is however more useful to use $\Gamma(r)$, in which the size of a catalog only appears via the combination $N^{-1} \sum_{i=1}^{N} n(r_i)$ so that a larger sample volume only enlarges the statistical sample over which averages are taken. $G(r)$ instead has an amplitude that is an explicit function of the sample’s size scale.

The CF of Eq. 6 can be computed by the following expression

$$\Gamma(r) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{4\pi r^2 \Delta r} \int_{r}^{r+\Delta r} n(\vec{r}_i + \vec{r}) d\vec{r} = \frac{BD}{4\pi} r^{D-3}$$ \hspace{1cm} (7)

where the last equality follows from Eq. 3. This function measures the average density at distance \vec{r} from an occupied point at \vec{r}_i and it is called the conditional density \cite{1}. If the distribution is fractal up to a certain distance λ_0, and then it becomes homogeneous, we have that

$$\Gamma(r) = \frac{BD}{4\pi} r^{D-3} r < \lambda_0$$
\[\Gamma(r) = \frac{BD}{4\pi} \lambda_0^{D-3} r \geq \lambda_0 \]

(8)

It is also very useful to use the conditional average density

\[\Gamma^*(r) = \frac{3}{4\pi r^3} \int_0^r 4\pi r'^2 \Gamma(r') dr' = \frac{3B}{4\pi} r^{D-3} \]

(9)

This function would produce an artificial smoothing of rapidly varying fluctuations, but it correctly reproduces global properties.[1]

For a fractal structure, \(\Gamma(r) \) has a power law behaviour and the conditional average density \(\Gamma^*(r) \) has the form

\[\Gamma^*(r) = \frac{3}{D} \Gamma(r) \]

(10)

for an homogenous distribution \((D = 3) \) these two functions are exactly the same and equal to the average density.

2.1 The \(\xi(r) \) correlation function for a fractal

Pietronero and collaborators[6][7][1] have clarified some crucial points of the standard correlations analysis, and in particular they have discussed the physical meaning of the so-called "correlation length" \(r_0 \) found with the standard approach[8][9] and defined by the relation:

\[\xi(r_0) = 1 \]

(11)

where

\[\xi(r) = \frac{< n(r_0)n(r_0 + \vec{r}) >}{< n >^2} - 1 \]

(12)

is the two point correlation function used in the standard analysis. The basic point that[1] stressed, is that the mean density, \(< n > \), used in the normalization of \(\xi(r) \), is not a well defined quantity in the case of self-similar distribution and it is a direct function of the sample size. Hence only in the case that the homogeneity has been reached well within the sample limits the \(\xi(r) \)-analysis is meaningful, otherwise the a priori assumption of homogeneity is incorrect and the characteristic lengths, like \(r_0 \), became spurious.

For example, following[1][10] the expression of the \(\xi(r) \) in the case of fractal distributions is:

\[\xi(r) = ((3 - \gamma)/3)(r/R_s)^{-\gamma} - 1 \]

(13)

where \(R_s \) is the depth of the spherical volume where one computes the average density from Eq.4. From Eq.13 it follows that

1.) the so-called correlation length \(r_0 \) (defined as \(\xi(r_0) = 1 \)) is a linear function of the sample size \(R_s \)

\[r_0 = ((3 - \gamma)/6)^\frac{1}{\gamma} R_s \]

(14)

and hence it is a spurious quantity without physical meaning but it is simply related to the sample finite size.

2.) \(\xi(r) \) is power law only for

\[((3 - \gamma)/3)(r/R_s)^{-\gamma} \gg 1 \]

(15)
Table 1: The volume limited catalogues are characterized by the following parameters: - $R_d (h^{-1} \text{Mpc})$ is the depth of the catalogue - Ω is the solid angle - $R_s (h^{-1} \text{Mpc})$ is the radius of the largest sphere that can be contained in the catalogue volume. This gives the limit of statistical validity of the sample. - $r_0 (h^{-1} \text{Mpc})$ is the length at which $\xi (r) \equiv 1$. - λ_0 is the eventual real crossover to a homogeneous distribution that is actually never observed. The value of r_0 is the one obtained in the deepest sample. The CfA2 and SSRS2 data are not yet available. (distance are expressed in $h^{-1} \text{Mpc}$).

Sample	$\Omega \ (\text{sr})$	R_d	R_s	r_0	D	λ_0
CfA1	1.83	80	20	6	1.7 ± 0.2	> 80
CfA2	1.23	130	30	10	2.0	?
PP	0.9	130	30	10	2.0 ± 0.1	> 130
SSRS1	1.75	120	35	12	2.0 ± 0.1	> 120
SSRS2	1.13	150	50	15	2.0	?
Stromlo-APM	1.3	100	30	10	2.2 ± 0.1	> 150
LEDA	4π	300	150	45	2.1 ± 0.2	> 150
LCRS	0.12	500	18	6	1.8 ± 0.2	> 500
IRAS 2Jy	4π	60	30	4.5	2.0 ± 0.1	> 50
IRAS 1.2Jy	4π	80	40	6	2.0 ± 0.1	> 50
ESP	0.006	700	10	5	1.9 ± 0.2	> 800

hence for $r \ll r_0$: for larger distances there is a clear deviation from the power law behaviour due to the definition of $\xi(r)$. This deviation, however, is just due to the size of the observational sample and does not correspond to any real change of the correlation properties. It is clear that if one estimates the exponent of $\xi(r)$ at distances $r \lesssim r_0$, one systematically obtains a higher value of the correlation exponent due to the break of $\xi(r)$ in the log-log plot.

The analysis performed by $\xi(r)$ is therefore mathematically inconsistent, if a clear cut-off towards homogeneity has not been reached, because it gives an information that is not related to the real physical features of the distribution in the sample, but to the size of the sample itself.

2.2 Analysis of the Galaxy distributions

One of the most important issues raised by all the recently catalogues is that the scale of the largest inhomogeneities is comparable with the extent of the surveys in which they are detected. These galaxy catalogues probe scales from $\sim 100 - 200 h^{-1} \text{Mpc}$ for the wide angle surveys, up to $\sim 1000 h^{-1} \text{Mpc}$ for the deeper pencil beam surveys (that cover a very narrow solid angle) and show that the Large Scale Structures (LSS) are the characteristic features of the visible matter distribution. From these data a new picture emerges in which the scale of homogeneity seems to shift to a very large value, not still identified.

In the past years [10] [11] [12] [13] [14] [3] (see [4] for a review) we have analyzed the statistical properties of several redshift surveys (see Tab.1) with the methods of modern Statistical Physics. The main data of our correlation analysis are collected in Fig.1 (left part) in which we report the conditional density as a function of scale for the various catalogues. The relative
position of the various lines is not arbitrary but it is fixed by the luminosity function, a part for the cases of IRAS and SSRS1 for which this is not possible. The properties derived from different catalogues are compatible with each other and show a power law decay for the conditional density from $1h^{-1}Mpc$ to $150h^{-1}Mpc$ without any tendency towards homogenization (flattening). This implies necessarily that the value of r_0 (derived from the $\xi(r)$ approach) will scale with the sample size R_s as shown also from the specific data about r_0 of the various catalogues. The behaviour observed corresponds to a fractal structure with dimension $D \approx 2$. The smaller value of CfA1 was due to its limited size. An homogeneous distribution would correspond to a flattening of the conditional density which is never observed. It is remarkable to stress that the amplitudes and the slopes of the different surveys match quite well. From this figure we conclude that galaxy correlations show very well defined fractal properties in the entire range $0.5 \div 1000h^{-1}Mpc$ with dimension $D = 2 \pm 0.2$. Moreover all the surveys are in agreement with each other.

It is interesting to compare the analysis of Fig.1 with the usual one, made with the function $\xi(r)$, for the same galaxy catalogs. This is reported in Fig.2 and, from this point of view, the various data the various data appear to be in strong disagreement with each other. This is due to the fact that the usual analysis looks at the data from the prospective of analyticity and large scale homogeneity (within each sample). These properties have never been tested and they are not present in the real galaxy distribution so the result is rather confusing (Fig.2). Once the same data are analyzed with a broader perspective the situation becomes clear (Fig.1) and the data of different catalogs result in agreement with each other. It is important to remark that analyses like those of Fig.2 have had a profound influence in the field in various ways: first the different catalogues appear in conflict with each other. This has generated the concept of not fair samples and a strong mutual criticism about the validity of the data between different authors. In the other cases the discrepancy observed in Fig.2 have been considered real physical problems for which various technical approaches have been proposed. These problems are, for example, the galaxy-cluster mismatch, luminosity segregation, the richness-clustering relation and the linear non-linear evolution of the perturbations corresponding to the "small" or "large" amplitudes of fluctuations. We can now see that all this problematic situation is not real and it arises only from a statistical analysis based on inappropriate and too restrictive assumptions that do not find any correspondence in the physical reality. It is also important to note that, even if the galaxy distribution would eventually became homogeneous at larger scales, the use of the above statistical concepts is anyhow inappropriate for the range of scales in which the system shows fractal correlations as those shown in Fig.1.

3 Main points raised in the debate with Dr. Martinez

- Treatment of boundary conditions and weighting schemes

Given a certain sample of solid angle Ω and depth R_d, it is important to define which is the maximum distance up to which it is possible to compute the correlation function ($\Gamma(r)$ or $\xi(r)$). As discussed in [1] (see also [11] [14] [10]), we have limited our analysis to an effective depth R_s that is of the order of the radius of the maximum sphere fully contained in the sample volume. For a catalog with the limits, for example, in right ascension ($\alpha_1 \leq \alpha \leq \alpha_2$) and declination ($\delta_1 \leq \delta \leq \delta_2$) we have that

$$R_s = \frac{R_d \sin(\delta \theta/2)}{1 + \sin(\delta \theta/2)}$$

5
Figure 1: Full correlation analysis for the various available redshift surveys in the range of distance $0.5 \div 1000h^{-1}\text{Mpc}$. A reference line with slope -1 is also shown, that corresponds to fractal dimension $D = 2$.
Figure 2: Traditional analyses based on the function $\xi(r)$ of the same galaxy catalogs of the previous figure. The usual analysis is based on the a priori untested assumptions of analyticity and homogeneity. These properties are not present in the real galaxy distribution and the results appear therefore rather confusing. This lead to the impression that galaxy catalogs are not good enough and to a variety of theoretical problems like the galaxy-cluster mismatch, luminosity segregation, linear and non-linear evolution, etc.. This situation changes completely and becomes quite clear if one adopts the more general conceptual framework that is at the basis the previous figure.
where $\delta \theta = \min(\alpha_2 - \alpha_1, \delta_2 - \delta_1)$. In such a way that we eliminate from the statistics the points for which a sphere of radius r is not fully included within the sample boundaries. Hence we do not make use of any weighting scheme with the advantage that we do not make any assumption in the treatment of the boundaries conditions. Of course in doing this, we have a smaller number of points and we stop our analysis at a smaller depth than that of other authors. In Tab. 1 we report the values of Ω, R_s and R_d for the various catalogs. We can see that, although LCRS or ESP are very deep, the value of R_s is of order of the one of CfA1, and this is the reason why the value of r_0 is almost the same in these different surveys. On the other hand, in CfA2 the value of r_0 has been measured to be $r_0 \approx 11 h^{-1}\text{Mpc}$ [15] and in SSRS2 $r_0 \approx 15 h^{-1}\text{Mpc}$ [16], because their solid angle is quite large.

The reason why $\Gamma(r)$ (or $\xi(r)$) cannot be computed for $r > R_s$ is essentially the following. When one evaluates the correlation function (or power spectrum [13]) beyond R_s, then one makes explicit assumptions on what lies beyond the sample’s boundary. In fact, even in absence of corrections for selection effects, one is forced to consider incomplete shells calculating $\Gamma(r)$ for $r > R_s$, thereby implicitly assuming that what one does not see in the part of the shell not included in the sample is equal to what is inside (or other similar weighting schemes). In other words, the standard calculation introduces a spurious homogenization which we are trying to remove.

If one could reproduce via an analysis that uses weighting schemes, the correct properties of the distribution under analysis, it would be not necessary to produce wide angle survey, and from a single pencil beam deep survey it would be possible to study the entire matter distribution up to very deep scales. It is evident that this could not be the case.

By the way, we have done a test [4] on the homogenization effects of weighting schemes on artificial distributions as well as on real catalogs, finding that the flattening of the conditional density is indeed introduced owing to the weighting, and does not correspond to any real feature in the galaxy distribution.

- **Luminosity segregation**

 A possible explanation of the shift of r_0 is based on the luminosity segregation effect [17] [14] [16]. We briefly illustrate this approach. The fact that the giant galaxies are more clustered than the dwarf ones, i.e. that they are located in the peaks of the density field, has given rise to the proposition that larger objects may correlate up to larger length scales and that the amplitude of the $\xi(r)$ is larger for giants than for dwarfs one. The deeper VL subsamples contain galaxies that are in average brighter than those in the VL subsamples with smaller depths. As the brighter galaxies should have a larger correlation length the behavior found in Fig. 1 could be related, at least partially, with the phenomenon of luminosity segregation.

 We would like to stress that as long as $\Gamma(r)$ has a power law decay, r_0 must be a linear fraction of the sample size (see Eq. [14]), and that as far as a clear crossover towards homogeneity has been not identified, the “correlation length” r_0 has no physical meaning, just being related to the size of the sample. Moreover the authors (e.g. [12] [13] [16]) that have introduced the concept do not present any quantitative argument that explains the shift of r_0 with sample size. In addition as we have discussed previsoulsy, as far as a clear cut-off towards homogeneity has not been identified, the analysis performed by the $\xi(r)$ function is misleading, i.e. it does not give a physically meaningful result.
We have discussed in detail in [12] that the observation that the giant galaxies are more clustered than the dwarf ones, i.e. that the massive elliptical galaxies lie in the peaks of the density field, is a consequence of the self-similar behavior of the whole matter distribution. The increasing of the correlation length of the $\xi(r)$ has nothing to do with this effect [1][2].

Finally we would like to stress the conceptual problems of the interpretation of the scaling of r_0 by the luminosity segregation phenomenon. Suppose we have two kind of galaxies of different masses, one of type A and the other of type B. Suppose for simplicity that the mass of the galaxies of type A is twice that of the B. The proposition "galaxies of different luminosities (masses) correlate in different ways" implies that the gravitational interaction is able to distinguish between a situation in which there is, in a certain place, a galaxy of type A or two galaxies of type B placed very near. This seem to be not possible as the gravitational interaction is due the sum of all the masses.

We can go farther by showing the inconsistency of the proposition "galaxies of different luminosities have a different correlation length". Suppose that the galaxies of type A have a smaller correlation length than that of the galaxies of type B. This means that the galaxies of type B are still correlated (in terms of the conditional density) when the galaxies of type A are homogeneously distributed. This means that the galaxies of type A should fill the voids of galaxies of type B. This is not the case, as the voids are empty of all types of galaxies, and it seems that the large scale structures distribution is independent on the galaxy morphological types.

• Change of slope at small scale: is it a real physical effect?

The conditional density $\Gamma(r)$ (Eq.3 and Eq.7) measures the density in a shell of thickness Δr at distance r from an occupied point, and then it is averaged over all the points of the sample. In practice, we have three possibilities for $\Gamma(r)$: i) $D = 3$: in this case this function is simply a constant. ii) $0 < D < 3$ In this case the conditional density has a power law decay with exponent $-\gamma = D - 3$. Finally iii) $D = 0$: this is the limiting case in which there are no further points in the sample except the observer. In such a situation we have that $\Gamma(r)$ has a $1/r^3$, and scales as the three dimensional volume.

Suppose now, for simplicity, we have a spherical sample of volume V in which there are N points, and we want to measure the conditional density. The maximum depth is limited by the radius of the sample (as previously discussed), while the minimum depth depends on the number of points contained in the volume. For a Poisson distribution the mean average distance between near neighbor is of the order $\ell \sim (V/N)^{1/3}$. Strictly speaking such a relation does not holds in the case of a fractal distribution, but it gives just an order of magnitude of the distance between near neighbor. If we measure the conditional density at distances $r \ll \ell$, we are biased by a finite size effect: due the depletion of points at these distances we will underestimate the real conditional density finding an higher value for the correlation exponent (and hence a lower value for the fractal dimension). In the limiting case that we find no points in the range $l_{min} \lesssim r \lesssim \ell$ the slope will be $\gamma = -3$, that corresponds to $D = 0$. In general, when one measures $\Gamma(r)$ at distances that correspond to a fraction of ℓ, one finds systematically an higher value of the conditional density exponent. This is completely spurious and due to the depletion of points at such distances.
For example in a real survey, in order to check this effect, one should measure $\Gamma(r)$ in volume limited samples with different values of ℓ. In general we find that the more sparse samples exhibit a change of slope at small distances, while for the samples for which ℓ is quite small, the change of slope at small distances is found (e.g. [11]). In general for a typical sample of galaxies $\ell \sim 2 \div 10h^{-1}\text{Mpc}$, so that the behaviour of $\Gamma(r)$ at distances of some Megaparsec is generally affected by this finite size effect. A way to reduce this effect is to choose properly the thickness Δr of the shell in which the conditional density is computed: this means that at small distances Δr must be of the order of ℓ and not smaller than this value. In general we have found that best way to optimize this estimation is to choose logarithm interval for Δr, as a function of the scale.

• Statistical stability of the correlation analysis

To check that possible errors in the apparent magnitude do not affect seriously the behavior of $\Gamma(r)$ one can perform the various tests. For example one can change the apparent magnitude of galaxies in the whole catalog by a random factor δm with $\delta m = \pm 0.2, 0.4, 0.6, 0.8$ and 1. We find that the number of galaxies in the VL samples change from 5% up to 15% and that the amplitude and the slope of $\Gamma(r)$ are substantially stable and there are not any significant changes in their behavior. This is because $\Gamma(r)$ measures a global quantity that is very robust with respect to these possible errors. There are several other tests that one can perform, and that are discussed in detail in [4]. However would like to stress, that a fractal distribution has a very strong property: it shows power law correlations up to the sample depth. Such correlations cannot be due neither by an inhomogeneous sampling of an homogeneous distribution, nor by some selection effects that may occur in the observations. Namely, suppose that a certain kind of sampling reduces the number of galaxies as a function of distance [18]. Such an effect in no way can lead to long range correlations, because when one computes $\Gamma(r)$, one makes an average over all the points inside the survey.

• Samples validity and dilution effects: what is a fair sample?

How many galaxies one needs in order to characterize correctly (statistically) the large scale distribution of visible matter? This fundamental question is addressed in this section, and it will allows us to understand some basic properties of the statistical analysis of galaxy surveys. In such a way, we will be able to clarify the concept of "fair sample", i.e. a sample that contains a statistically meaningful information [10] [4].

We have discussed in the pervious sections the properties of fractal structures and in particular we have stressed the intrinsic highly fluctuating nature of such distributions. In this perspective it is important to clarify the concept of "fair sample". Often this concept is used as synonymous of a homogeneous sample (see for example [13]). So the analysis of catalogues along the traditional lines often leads to the conclusion that we still do not have a fair sample and deeper surveys are needed to derive the correct correlation properties. A corollary of this point of view is that since we do not have a fair sample its statistical analysis cannot be taken too seriously.

This point of view is highly misleading because we have seen (Sec.1) that self-similar structures never become homogeneous, so any sample containing a self-similar (fractal) structure would automatically be declared "not fair" and therefore impossible to analyze. The situation is actually much more interesting otherwise the statistical mechanics of
complex systems would not exist. Homogeneity is a property and not a condition of statistical validity of the sample. A non homogeneous system can have well defined statistical properties in terms of scale invariant correlations, that may be perfectly well defined. The whole studies of fractal structures are about this \[20\] \[21\]. Therefore one should distinguish between a ”statistical fair sample”, which is a sample in which there are enough points to derive some statistical properties unambiguously and a homogeneous sample, that is a property that can be present or not but that has nothing to do with the statistical validity of the sample itself. We have seen in Sec.3 that even the small sample like CfA1 is statistically fair up to a distance that can be defined unambiguously (i.e. $\sim 20h^{-1}\text{Mpc}$).

In \[10\] we have studied the following question. Given a sample with a well defined volume, which is the minimum number of points that it should contain in order to have a statistically fair sample, even if one computes averages over all the points, such as the conditional density and the conditional average density ?

Suppose that the sample volume is a portion of a sphere with a solid angle Ω and radius R, the mass ($N(< R)$) length (R) relation can be written as \[1\]

$$N(< R) = B \left(\frac{\Omega}{4\pi} \right) R^D \tag{17}$$

where D is the fractal dimension or, for the homogeneous case, $D = 3$. The prefactor B is a constant and it is related to the lower cut-off of the fractal structure \[1\] \[10\]. In this letter we consider galaxies of different luminosities having the same clustering properties (i.e. equal fractal dimension): this is a crude approximation and the more complex situation can be described in terms of multifractal \[12\].

In principle Eq.17 should refer to all the galaxies existing in a given volume. If instead we have a VL sample, we will see only a fraction $N_{VL}(R) = p \cdot N(< R)$ (where $p < 1$) of the total number $N(< R)$. In order to estimate the fraction p it is necessary to know the luminosity function $\phi(L)$ that gives the fraction of galaxies whose absolute luminosity (L) is between L and $L + dL$ \[22\]. This function has been extensively measured \[13\] and it consists of a power law extending from a minimal value L_{min} to a maximum value L^* defined by an exponential cut-off. Therefore we can express the fraction p as

$$0 < p = \frac{\int_{L_{min}}^{\infty} \phi(L) dL}{\int_{L_{min}}^{\infty} \phi(L) dL} < 1 \tag{18}$$

where L_{VL} is the minimal absolute luminosity that characterizes the VL sample. The quantity L_{min} is the fainter absolute flux (magnitude M_{lim}) surveyed in the catalog (usually $M_{min} \sim -11 \div -12$).

We have performed several tests in real galaxy samples as well as in artificial distributions with a priori assigned properties. In particular we have eliminated randomly points from the original distribution: such a procedure, for the law of codimension additivity \[3\] does not change the fractal dimension, but only the prefactor in Eq.17. In such a way we can control, quantitatively, the behaviour of the conditional density as the value of p decreases, and we are able to conclude that, if the system has self-similar properties, a reliable correlation analysis is only possible if p is substantially larger than $1 \div 2\%$ \[10\].
Below this value the statistical significance becomes questionable just because the sample is too sparse and large scale correlations are destroyed by this effect.

In relation to the statistical validity it is interesting to consider the IRAS catalogues because they seem to differ from all the other ones and to show some tendency towards homogenization at a relatively small scale. Actually the point of apparent homogeneity is only present in some samples, it varies from sample to sample between $\sim 15 \div 25 h^{-1} Mpc$ and it is strongly dependent on the dilution of the sample. Considering that structures and voids are much larger than this scale and that the IRAS galaxies appear to be just where luminous galaxies are it is clear that this tendency appears suspicious. One of the characteristic of the IRAS catalogues with respect to all the other ones is an extreme degree of dilution: this catalogue contains only a very small fraction of all the galaxies. It is important therefore to study what happens to the properties of a given sample if one dilutes randomly the galaxy distribution up to the IRAS limits. A good test can be done by considering the Perseus Pisces catalogue and eliminating galaxies from it. The original distribution shows a well defined fractal behavior. By diluting it to the level of IRAS one observes an artificial flattening of the correlations\[10\] (see Fig.3). This effect does not correspond to a real homogenization but it is due to the dilution. In fact it can be shown that when the dilution is such that the average distance between galaxies becomes comparable with the largest voids (lacunarity) of the original structure there is a loss of correlation and the shot noise of the sparse sampling overcomes the real correlations and produces an apparent trend to homogenization. This allows us to reconcile this peculiarity of the IRAS data with the properties of all the other catalogues. Analogous considerations for other sparse samples like QDOT and the Stromlo-APM samples\[4\].

- Problem of the power spectrum analysis

In the following we argue that both features, bending and scaling, are a manifestation of the finiteness of the survey volume, and that they cannot be interpreted as the convergence to homogeneity, nor to a power spectrum flattening\[13\]. The systematic effect of the survey finite size is in fact to suppress power at large scale, mimicking a real flattening. Clearly, this effect occurs whenever galaxies have not a definite correlation scale, with respect to the survey. We push this argument further, by showing that even a fractal distribution of matter, which never reaches homogeneity, shows a sharp flattening. Such a flattening is partially corrected, but not quite eliminated, when the correction proposed by\[23\] is applied to the data. We show also how the amplitude of the power spectrum depends on the survey size as long as the system shows long-range correlations.

The standard power spectrum (SPS) measures directly the contributions of different scales to the galaxy density contrast $\delta \rho / \rho$. It is clear that the density contrast, and all the quantities based on it, is meaningful only when one can define a constant density, i.e. reliably identify the sample density with the average density of all the Universe. In other words in the SPS analysis one assumes that the survey volume is large enough to contain a homogeneous sample. When this is not true, and we argue that is indeed an incorrect assumption in all the cases investigated so far, a false interpretation of the results may occur, since both the shape and the amplitude of the power spectrum (or correlation function) depend on the survey size.

As we have already mentioned, in a fractal quantities like $\xi(r)$ are scale dependent: in particular both the amplitude and the shape of $\xi(r)$ are therefore scale-dependent in
Figure 3: Top panels: The conditional density (left) for a volume limited sample of the full Perseus-Pisces redshift survey (right). The percentage of galaxies present in the sample is $\sim 6\%$. The slope is $-\gamma = -1$. Bottom panels: In this case the percentage of galaxies is $\sim 1\%$, and the number of galaxies is the same of the IRAS 1.2Jy sample in the same region of the sky. We can see that at small scale we have a $1/r^3$ decay just due to the sparseness of the sample, while at large scale the shot noise of the sparse sampling overcomes the real correlations and produces an apparent trend to homogenization. In our opinion, this effect, due to sparseness of this sample, is the origin of the apparent trend towards homogenization observed in some of the IRAS samples.
the case of a fractal distribution. It is clear that the same kind of finite size effects are also present when computing the SPS, so that it is very dangerous to identify real physical features induced from the SPS analysis without first a firm determination of the homogeneity scale.

The SPS for a fractal distribution inside a sphere of radius R_s is

$$P(k) = \int_0^{R_s} 4\pi \frac{\sin(kr)}{kr} \left[\frac{3 - \gamma}{3} \left(\frac{r}{R_s} \right)^{-\gamma} - 1 \right] r^2 dr = \frac{a(k, R_s) R_s^{3-D}}{k^D} - \frac{b(k, R_s)}{k^3}. \tag{19}$$

Notice that the integral has to be evaluated inside R_s because we want to compare $P(k)$ with its estimation in a finite size spherical survey of scale R_s. In the general case, we must deconvolve the window contribution from $P(k)$; R_s is then a characteristic window scale. Eq. (19) shows the two scale-dependent features of the PS. First, the amplitude of the PS depends on the sample depth. Secondly, the shape of the PS is characterized by two scaling regimes: the first one, at high wavenumbers, is related to the fractal dimension of the distribution in real space, while the second one arises only because of the finiteness of the sample.

- **About multifractality**

 We now briefly introduce the multifractal picture that is a refinement and generalization of the fractal properties [24] [25] [1] [2] [11] [12] arising naturally in the case of self-similar distributions. If one does not consider the mass one has a simple set given by the galaxy positions (that we call the support of the measure distribution). Multifractality instead becomes interesting and a physically relevant property when one includes the galaxy masses and consider the entire matter distribution [6] [1]. In this case the measure distribution is defined by assigning to each galaxy a weight which is proportional to its mass. The question of the self-similarity versus homogeneity of this set can be exhaustively discussed in terms of the single correlation exponent that corresponds to the fractal dimension of the support of the measure distribution. Several authors [26] instead considered the eventual multifractality of the support itself. However the physical implication of such an analysis is not clear, and it does not add much to the question above.

 In the more complex case of MF distributions the scaling properties can be different for different regions of the system and one has to introduce a continuous set of exponents to characterize the system (the multifractal spectrum $f(\alpha)$). The discussion presented in the previous sections was meant to distinguish between homogeneity and scale invariant properties; it is appropriate also in the case of a multifractal. In the latter case the correlation functions we have considered would correspond to a single exponent of a multifractal spectrum of exponents, but the issue of homogeneity versus scale invariance (fractal or multifractal) remains exactly the same.

 We have shown [12] that it is possible to frame the main properties of the galaxy space and luminosity distribution in a unified scheme, by using the concept of multifractality (MF). In fact, the continuous set of exponents $[\alpha, f(\alpha)]$ that describes a MF distribution can characterize completely the galaxy distribution when one considers the mass (or luminosity) of galaxies in the analysis. In this way many observational evidences are linked together and arise naturally from the self-similar properties of the distribution.
Considering a MF distribution, the usual power-law space correlation properties correspond just to a single exponent of the $f(\alpha)$ spectrum: such an exponent simply describes the space distribution of the support of the MF measure. Furthermore the shape of the luminosity function (LF), i.e. the probability of finding a galaxy of a certain luminosity per unit volume, is related to the $f(\alpha)$ spectrum of exponents of the MF. We have shown that, under MF conditions, the LF is well approximated by a power law function with an exponential tail. Such a function corresponds to the Schechter LF observed in real galaxy catalogs. In this case the shape of the LF is almost independent on the sample size. Indeed we have shown that a weak dependence on sample size is still present because the cut-off of the Schechter function for a MF distribution turns out to be related to the sample depth: L^* increases with sample depth. In practice as this quantity is a strongly fluctuating one, in order to study its dependence on the sample size one should have a very large sample and should vary the depth over a large range of length scales. Given this situation a sample size independent shape of the LF can be well defined using the inhomogeneity-independent method in magnitude limited samples. Indeed such a technique has been introduced to take into account the highly irregular nature of the large scale galaxy distribution. For example a fractal distribution is non-analytic in each point and it is not possible to define a meaningful average density. This is because the intrinsic fluctuations that characterize such a distribution can be large as the sample itself, and the extent of the largest structures is limited only by the boundaries of the available catalogs. Moreover if the distribution is MF, the amplitude of the LF depends on the sample size as a power law function. To determine the amplitude of the LF, as well as the average density, one should have a well defined volume limited sample, extracted from a three dimensional survey.

In this scheme the space correlations and the luminosity function are then two aspects of the same phenomenon, the MF distribution of visible matter. The more complete and direct way to study such a distribution, and hence at the same time the space and the luminosity properties, is represented by the computation of the MF spectrum of exponents. This is the natural objective of theoretical investigation in order to explain the formation and the distribution of galactic structures. In fact, from a theoretical point of view one would like to identify the dynamical processes that can lead to such a MF distribution.

About Multiscaling

Previously we have introduced the MF spectrum $f(\alpha)$ and now we clarify its basic properties. Multifractality implies that if we select only the largest peaks in the measure distribution, the set defined by these peaks may have different fractal dimension than the set defined by the entire distribution. One can define a cut-off in the measure and consider only those singularities that are above it. If the distribution is MF the fractal dimension decreases as the cut-off increases. We note that, strictly speaking, the presence of the cut-off can lead (for a certain well defined value of the cut-off itself) to the so-called multiscaling behavior of the MF measure \[27\]. In fact, the presence of a lower cut-off in the calculation of the generalized correlation function affects the single-scaling regime of $\chi(\epsilon, q)$ for a well determined value of the cut-off $\alpha_{cut-off}$ such that $\alpha_{cut-off} < \alpha_c$, and this function exhibits a slowing varying exponent proportional to the logarithm of the scale ϵ. However some authors \[28\] misinterpret the multiscaling of a MF distribution as the variation of the fractal dimension with the density of the sample, or with the galaxy...
luminosities.

The fractal dimension\(D \) of the support corresponds to the peak of the \(f(\alpha) \)-spectrum and raising the cut-off implies a drift of \(\alpha \) towards \(\alpha_{\text{min}} \) so that \(f(\alpha) < D \). This behavior can be connected with the different correlation exponent found by the angular correlation function for the elliptical, lenticular and spiral galaxies. In particular the observational evidence is that the correlation exponent is higher for elliptical than for spiral galaxies: this trend is compatible with a lower fractal dimension for the more massive galaxies than for the smaller ones, in agreement with a MF behaviour.

Problem of \(\delta N/N \) and \(\sigma^2 \): linear and non linear dynamics

In the discussion of large-scale structures, is that it is true that larger samples show larger structures but their amplitudes are smaller and the value of \(\delta N/N \) tends to zero at the limits of the sample; therefore one expects that just going a bit further, homogeneity would finally be observed. Apart from the fact that this expectation has been systematically disproved, the argument is conceptually wrong for the same reasons of the previous discussion. In fact, we can consider a portion of a fractal structure of size \(R_s \) and study the behavior of \(\delta N/N \). The average density \(N \) is just given by Eq.2 while the overdensity \(\delta N \), as a function of the size \(r \) of a given in structure is (\(r \leq R_s \)):

\[
\delta N = \frac{N(r)}{V(r)} - <n> = \frac{3}{4\pi} B(r^{-(3-D)} - R_s^{-(3-D)})
\]

We have therefore

\[
\frac{\delta N}{N} = \left(\frac{r}{R_s} \right)^{-(3-D)} - 1
\]

Clearly for structures that approach the size of the small sample, the value of \(\delta N/N \) becomes very small and eventually becomes zero at \(r = R_s \).

This behavior, however, could not be interpreted as a tendency towards homogeneity because again the exercise refers to a self-similar fractal by construction. Also in this case the problems come from the fact that one defines an "amplitude" arbitrary by normalizing with the average density that is not an intrinsic quantity. A clarification of this point is very important because the argument that since \(\delta N/N \) becomes smaller at large scale, there is a clear evidence of homogenization is still quite popular [29] and it provides to add confusion to the discussion.

The correct interpretation of \(\delta N/N \) is also fundamental for the development of the appropriate theoretical concepts. For example a popular point of view is to say that \(\delta N/N \) is large (\(\gg 1 \)) for small structure and this implies that a non linear theory will be necessary to explain this. On the other hand \(\delta N/N \) becomes small (\(< 1 \)) for large structures, which require therefore a linear theory. The value of \(\delta N/N \) has therefore generated a conceptual distinction between small structures that would entail non linear dynamics and large structures with small amplitudes that correspond instead to a linear dynamics. If one would apply the same reasoning to a fractal structure we would conclude that for a structure up to (from Eq.[21]):

\[
r^* = 2^{-(\frac{1}{D})} R_s
\]
we have $\delta N/N > 1$ and so that a non linear theory is needed. On the other hand, for large structures ($r > r^*$) we have $\delta N/N < 1$ that would correspond to a linear dynamics. Since the fractal structure, that we have used to make this conceptual exercise, has scale invariant structures by construction, we can see the distinction between linear and non linear dynamics is completely artificial and wrong. The point is again that the value of N, we use to normalize the fluctuations is not intrinsic, but it just reflects the size of the sample that we consider (R_s).

If we have a sample with depth \tilde{R}_s greater than the eventual scale of homogeneity λ_0, then the average density will be constant in the range $\lambda_0 < r < \tilde{R}_s$, apart from small amplitude fluctuations. The distance at which $\delta N/N = 1$ will be given by:

$$r^* = 2^{-\left(\frac{1}{D}\right)}\lambda_0$$ \hspace{1cm} (23)

If, for example, $D = 2$ and $\lambda_0 = 200 Mpc$ then $r^* = 100 Mpc$: therefore a homogeneity scale of this order of magnitude is incompatible with the standard normalization of $\delta N/N = 1$ at $8h^{-1}Mpc$.

We can see therefore that the whole discussion about large and small amplitudes and the corresponding non linear and linear dynamics, has no meaning until an unambiguous value of the average density has been defined, so that the concepts like large and small amplitudes can take a physical meaning and be independent on the size of the catalogue.

The basic point of all this discussion is that in a self-similar structure one cannot say that correlation are "large" or "small", because these words have no physical meaning due to the lack of a characteristic quantity with respect to which one can normalize these properties. The deep implication of this fact is that one cannot discuss a self-similar structure in terms of amplitudes of correlation. The only meaningful physical quantity is the exponent that characterized the power law behavior. Note that this problem of the "amplitude" is not only present in the data analysis but also in the theoretical models. Meaningful amplitudes can only be defined once one has unambiguous evidence for homogeneity but this is clearly not the case for galaxy and cluster distributions.

• **Power laws, self-similarity and non analiticity: Amplitudes versus exponents**

Most of theoretical physics is based on analytical functions and differential equations. This implies that structures should be essentially smooth and irregularities are treated as single fluctuations or isolated singularities. The study of critical phenomena and the development of the Renormalization Group (RG) theory in the seventies was therefore a major breakthrough [30] [31]. One could observe and describe phenomena in which *intrinsic self-similar irregularities develop at all scales* and fluctuations cannot be described in terms of analytical functions. The theoretical methods to describe this situation could not be based on ordinary differential equations because self-similarity implies the absence of analyticity and the familiar mathematical physics becomes inapplicable. In some sense the RG corresponds to the search of a space in which the problem becomes again analytical. This is the space of scale transformations but not the real space in which fluctuations are extremely irregular. For a while this peculiar situation seemed to be restricted to the specific critical point corresponding to the competition between order and disorder. In the past years instead, the development of Fractal Geometry [3], has allowed us to realize that a large variety of structures in nature are intrinsically irregular and self-similar (Fig.4).
Figure 4: Example of analytical and nonanalytic structures. Top panels (Left) A cluster in a homogenous distribution. (Right) Density profile. In this case the fluctuation corresponds to an enhancement of a factor 3 with respect to the average density. Bottom panels (Left) Fractal distribution in the two dimensional Euclidean space. (Right) Density profile. In this case the fluctuations are non-analytical and there is no reference value, i.e. the average density. The average density scales as a power law from any occupied point of the structure.
Mathematically this situation corresponds to the fact that these structures are singular in every point. This property can be now characterized in a quantitative mathematical way by the fractal dimension and other suitable concepts. However, given these subtle properties, it is clear that making a theory for the physical origin of these structures is going to be a rather challenging task. This is actually the objective of the present activity in the field \[21\]. The main difference between the popular fractals like coastlines, mountains, trees, clouds, lightnings etc. and the self-similarity of critical phenomena is that criticality at phase transitions occurs only with an extremely accurate fine tuning of the critical parameters involved. In the more familiar structures observed in nature, instead, the fractal properties are self-organized, they develop spontaneously from the dynamical process. It is probably in view of this important difference that the two fields of critical phenomena and Fractal Geometry have proceeded somewhat independently, at least at the beginning.

The fact that we are traditionally accustomed to think in terms of analytical structures has a crucial effect of the type of questions we ask and on the methods we use to answer them. If one has never been exposed to the subtleties on nonanalytic structures, it is natural that analyticity is not even questioned. It is only after the above developments that we could realize that the property of analyticity can be tested experimentally and that it may or may not be present in a given physical system.

These results have important consequences from a theoretical point of view. In fact, when one deals with self-similar structures the relevant physical phenomenon that leads to the scale-invariant structures is characterized by the exponent and not the amplitude of the physical quantities that characterizes such distributions.

Indeed, the only relevant and meaningful quantity is the exponent of the power law correlation function (or of the space density), while the amplitude of the correlation function, or of the space density and of the LF, is just related to the sample size and to the lower cut-offs of the distribution. The geometric self-similarity has deep implications for the non-analyticity of these structures. In fact, analyticity or regularity would imply that at some small scale the profile becomes smooth and one can define a unique tangent. Clearly this is impossible in a self-similar structure because at any small scale a new structure appears and the distribution is never smooth. Self-similar structures are therefore intrinsically irregular at all scales and correspondingly one has to change the theoretical framework into one which is capable of dealing with non-analytical fluctuations. This means going from differential equations to something like the Renormalization Group to study the exponents. For example the so-called ”Biased theory of galaxy formation” \[32\] is implemented considering the evolution of density fluctuations within an analytic Gaussian framework, while the non-analyticity of fractal fluctuations implies a breakdown of the central limit theorem which is the cornerstone of Gaussian processes \[0\] \[1\] \[21\] \[2\].

- **Number counts and ”evolution”**

Historically \[23\] \[29\] the oldest type of data about galaxy distribution is given by the relation between the number of observed galaxies \(N(> f)\) and their apparent brightness \(f\). It is easy to show that \[29\]

\[
N(> f) \sim f^{-D/2} \tag{24}
\]

where \(D\) is the fractal dimension of the galaxy distribution. Usually this relation is written in terms of the apparent magnitude \(f \sim 10^{-0.4m}\) (note that bright galaxies correspond to
small \(m \). In terms of \(m \), Eq.24 becomes \(\log N(< m) \sim \alpha m \) with \(\alpha = D/5 \) \[10\] \[29\]. The behaviour of the number versus magnitude relation \((N(< m)) \) is reported in Fig.5. One can see that at small scales \((\text{small} \ m) \) the exponent is \(\alpha \approx 0.6 \), while at larger scales \((\text{large} \ m) \) it changes into \(\alpha \approx 0.4 \). The usual interpretation \[29\] \[34\] is that \(\alpha \approx 0.6 \) corresponds to \(D \approx 3 \) consistent with homogeneity, while at large scales galaxy evolution and space time expansion effects are invoked to explain the lower value \(\alpha \approx 0.4 \). On the basis of the previous discussion of the VL samples we can see that this interpretation is untenable. In fact, there are very clear evidences that, at least up to \(150 h^{-1}\text{Mpc} \) there are fractal correlations \[1\]-\[14\], so one would eventually expect the opposite behaviour. Namely small value of \(\alpha \approx 0.4 \) (consistent with \(D \approx 2 \)) at small scales, where the effects of galaxy evolution, the K-corrections, or the modification of Euclidean geometry are certainly negligible \((z \sim < 0.05) \) followed by a crossover to an eventual homogeneous distribution at large scales \((\alpha \approx 0.6 \) and \(D \approx 3) \).

We are going to see that this conflictual situation arises from the fact that, given the limited amount of statistical information corresponding to the various methods of analysis, only some of them can be considered as statistically valid, while others are strongly affected by finite size and other spurious fluctuations that may be confused with real homogenization \[10\]. In order to understand the nature of the finite size fluctuations arising in the observation from a single point, we have to briefly discuss the case of the radial density, i.e. the conditional density computed from the origin.

Previously we have discussed the methods that allow one to measure the conditional (average) density in real galaxy surveys. This statistical quantity is an average one, since it is determined by making an average over all the points of the sample. We have discussed in detail the robustness and the limits of such a measurement. In particular, we have seen that the estimation of the conditional density can be done up to a distance \(R_s \) that is of the order of the radius of the maximum sphere fully contained in the sample volume. This is because the conditional density must be computed only in spherical shells. This condition puts a great limitation to the volume studied, especially in the case of deep and narrow surveys, for which the maximum depth \(R_d \) can be one order of magnitude, or more, than the effective depth \(R_s \).

Here we discuss the measurement of the radial density in VL samples \[10\]. The determination of such a quantity will allow us to extend the analysis of the space density well beyond the depth \(R_s \). The price to pay is that such a measurement is strongly affected by finite size spurious fluctuations, because it is not an average quantity. These finite size effects require a great cautious, as we are going to see in the following \[10\].

Considering homogeneous distribution we can define, in average, a characteristics volume associated to each particle. This is the Voronoi volume \(v_v \), whose radius \(\ell_v \) is of the order of the mean particle separation. It is clear that the statistical properties of the system can be defined only in volumes much larger than \(v_v \). Up to this volume in fact we observe essentially nothing. Then one begins to include a few (strongly fluctuating) points, and finally, the correct scaling behavior is recovered (Fig.6). For a Poisson sample consisting of \(N \) particles inside a volume \(V \) then the Voronoi volume is of the order

\[
\frac{v_v}{N} \sim \frac{V}{N}
\] \hspace{1cm} (25)

and \(\ell_v \approx v_v^{1/3} \). In the case of homogeneous distribution, where the fluctuations have
Figure 5: The galaxy number counts in the B-band, from several surveys. In the range $12 \lesssim m \lesssim 19$ the counts show an exponent $\alpha \simeq 0.6 \pm 0.1$, while in the range $19 \lesssim m \lesssim 28$ the exponent is $\alpha \simeq 0.4$. The amplitude of the galaxy number counts for $m \gtrsim 19$ (solid line) is computed from the determination of the prefactor B of the density $n(r) = Br^{D-3}$ (with $D = 2$ - see text) at small scale and from the knowledge of the galaxy luminosity function. The distance is computed for a galaxy with $M = -16$ and we have used $H_0 = 75 \text{km sec}^{-1} \text{Mpc}^{-1}$.
Figure 6: (a) The behaviour of the conditional density computed from a single point in the ideal case of a fractal structure. Before the distance ℓ_v (that is of the order of the characteristic size of the Voronoi polyhedron) in average, one does not find any other points. Beyond this distance one sees a fluctuating region up to the scale λ that is related to the intrinsic properties of the fractal structure. Finally the correct scaling regime is reached. (b) The $N(> S)$ relation for the fractal structure whose density is shown in (a). At faint fluxes, corresponding to large distances, one observes the correct scaling behaviour with an exponent $-D/2$, while at bright fluxes the finite size effects dominate the behaviour. In this case one detects an exponent $\gtrsim -3/2$ that seems to be in agreement with the homogenous case, but that is just due to the highly fluctuating behaviour of the density.
small amplitude with respect to the average density, one readily recovers the statistical properties of the system at small distances, say, \(r \gtrsim 5\ell_v \).

The case of fractal distribution is more subtle. For a self-similar distribution one has, within a certain radius \(r_0 \), \(N_0 \) objects. Following [1] we can write the mass-length relation between \(N(< R) \), the number of points inside a sphere of radius \(R \), and the distance \(R \) of the type

\[
N(< R) = BR^D
\]

where the prefactor \(B \) is related to the lower cut-offs \(N_0 \) and \(r_0 \)

\[
B = \frac{N_0}{r_0^D}.
\]

In this case, the prefactor \(B \) is defined for spherical samples. If we have a portion of a sphere characterized by a solid angle \(\Omega \), we write Eq.26 as

\[
N(< R) = BR^D \frac{\Omega}{4\pi}.
\]

In the case of a finite fractal structure, we have to take into account the statistical fluctuations. In the paper [10] we have proposed an argument to take into accounts the finite size fluctuations based on extension of the concept of Voronoi length in the case of a fractal. Such an argument holds for samples in which the scaling region is of the order of the finite size effects region. Here we present a new and more general argument for the description of the finite size fluctuations, that is heuristic as well (see [33] for a more detailed discussion of the finite size fluctuations).

We can identify two basic kind of fluctuations: the first ones are intrinsic \(f(r) \) and are due to the highly fluctuating nature of fractal distributions. Such an intrinsic noise can be seen as a modulating term in Eq.28 [4]. The second \(F(r) \) term is an additive one, and it takes into account spurious finite size fluctuations is simply due to shot nois This term becomes negligible if the shot noise fluctuations are small: for example, if

\[
N(< r) > 10\sqrt{N(< r)}.
\]

From this condition we can have a condition on \(\lambda \):

\[
\lambda \sim \left(10^2 \frac{4\pi}{B\Omega}\right)^{\frac{1}{D}}
\]

The minimal statistical length \(\lambda \) is an explicit function of the prefactor \(B \) and of the solid angle of the survey \(\Omega \).

In the case of real galaxy catalogs we have to consider the luminosity selection effects. In such a case we obtain for a typical volume limited sample with \(M_{lim} \approx M^* \),

\[
\lambda \approx \frac{(20 \div 60)h^{-1}Mpc}{\Omega^{\frac{1}{D}}}.
\]

where we have used \(B \sim 10 \div 15(h^{-1}Mpc)^{-D} \), obtained in the various different redshift surveys [14] [4].
We are now able to clarify the problem of magnitude limited (ML) catalogs. Suppose to have a certain survey characterized by a solid angle \(\Omega \) and we ask the following question: up to which apparent magnitude limit \(m_{\text{lim}} \) we have to push our observations to obtain that the majority of the galaxies lie in the statistically significant region (\(r \gtrsim \lambda \)) defined by Eq.31. Beyond this value of \(m_{\text{lim}} \) we should recover the genuine properties of the sample because, as we have enough statistics, the finite size effects self-average. From the previous condition for each \(\Omega \) we can find a solid angle \(m_{\text{lim}} \) so that finally we are able to obtain \(m_{\text{lim}} = m_{\text{lim}}(\Omega) \) in the following way.

In order to give an estimation of this effect, we can impose the condition that, in a ML sample, the peak of the selection function, that occurs at distance \(r_{\text{peak}} \), satisfies the condition

\[
 r_{\text{peak}} > \lambda
\]

where \(\lambda \) in the minimal statistical length defined by Eq.31. The peak of the selection function occurs for \(M \approx -19 \) (Sec.6) so that \(r_{\text{peak}} \approx 10^{-\frac{m_{\text{lim}}}{5}} \). From the previous relation and from Eq.32 and Eq.31 we have that

\[
 \Omega \gtrsim 10^{\frac{32-2m_{\text{lim}}}{5}}
\]

From the previous relation it follows that for \(m > 19 \) the statistically significant region is reached for almost any reasonable value of the survey solid angle. This implies that in the deep surveys, if we have enough statistics, we readily find the right behavior (\(\alpha = D/5 \)) while it does not happen in a self-averaging way for the nearby samples. Hence the exponent \(\alpha \approx 0.4 \) found in the deep surveys (\(m > 19 \)) is a genuine feature of galaxy distribution, and corresponds to real correlation properties.

In the nearby surveys \(m < 17 \) we do not find the scaling region in the ML sample for almost any reasonable value of the solid angle. Correspondingly the value of the exponent is subject to the finite size effects, and to recover the real statistical properties of the distribution one has to perform an average.

From the previous discussion it appears now clear why a change of slope is found at \(m \sim 19 \): this is just a reflection of the lower cut-off of the fractal structure and in the surveys with \(m_{\text{lim}} > 19 \) the self-averaging properties of the distribution cancel out the finite size effects. This result depend very weakly on the fractal dimension \(D \) and on the parameters of the luminosity function \(\delta \) and \(M^* \) used. Our conclusion is therefore that the exponent \(\alpha \approx 0.4 \) for \(m > 19 \) is a genuine feature of the galaxy distribution and it is related to a fractal dimension \(D \approx 2 \), that is found for \(m < 19 \) in redshift surveys only performing averages. We note that this result is based on the assumption that the Schechter luminosity function holds also at high redshift, or, at least to \(m \sim 20 \). This result is confirmed by the analysis of Vettolani et al. who found that the luminosity function up to \(z \sim 0.2 \) is in excellent agreement with that found in local surveys.

We can now go back to Fig.6 and give to it a completely new interpretation. At relatively small scales we observe \(\alpha \approx 0.6 \) just because of finite size effects and not because of real homogeneity. This resolves the apparent contradiction between the number counts and the correlation in VL samples that show fractal behaviour up to a few hundreds megaparsecs. In the region where \(m > 19 \) we are instead sampling a distribution in which the majority of galaxies are at distances larger than \(\lambda \) and indeed \(\alpha \approx 0.4 \), corresponding
to $D \approx 2$, in full agreement with the correlation analysis. Note that the change of slope at $m \approx 19$ depends only weakly on the solid angle of the survey. In order to check that the exponent $\alpha \approx 0.4$ is the real one we have made various tests on PP where also one observes $\alpha \approx 0.6$ at small values of m, but we know that the sample has fractal correlations from the complete space analysis [10]. An average of the number counts from all points leads instead to the correct exponent $\alpha \approx 0.4$ because for average quantities the effective value of λ becomes actually appreciably smaller. We will discuss this point in detail elsewhere [10]. Our conclusion is therefore that there is not *any change of slope* at $m \sim 19$, and we see the same exponent in the range $12 \lesssim m \lesssim 18$, where the combined effects K-corrections, galaxy evolution and modification of the Euclidean geometry are certainly negligible, and in the range $19 \lesssim m \lesssim 28$. The counts, if properly determined, do not exhibit any change of slope.

4 Conclusions

In summary our main points are:

- The highly irregular galaxy distributions with large structures and voids strongly point to a new statistical approach in which the existence of a well-defined average density is not assumed a priori and the possibility of non-analytical properties should be addressed specifically.

- The new approach for the study of galaxy correlations in all the available catalogues shows that their properties are actually compatible with each other and they are statistically valid samples. The severe discrepancies between different catalogues that have led various authors to consider these catalogues as *not fair*, were due to the inappropriate methods of analysis.

- The correct two-point correlation analysis shows well-defined fractal correlations up to the present observational limits, from 1 to $1000h^{-1}\text{Mpc}$ with fractal dimension $D \approx 2$. Of course the statistical quality and solidity of the results is stronger up to $100 \div 200h^{-1}\text{Mpc}$ and weaker for larger scales due to the limited data. It is remarkable, however, that at these larger scales one observes exactly the continuation of the correlation properties of the small and intermediate scales.

- These new methods have been extended also to the analysis of the number counts and the angular catalogues which are shown to be fully compatible with the direct space correlation analysis. The new analysis of the number counts suggests that fractal correlations may extend also to scales larger that $1000h^{-1}\text{Mpc}$.

- The inclusion of the galaxy luminosity (mass) leads to a distribution which is shown to have well-defined multifractal properties. This leads to a new, important relation between the luminosity function and that galaxy correlations in space.

- It is worth to notice Kerscher *et al.* [37] presented at this meeting the morphological analysis of the IRAS 1.2 Jy by means of the Minkowski functional. Their conclusion that the scale of homogeneity is "considerably larger than $200h^{-1}\text{Mpc}$", is in complete agreement with ours. Moreover they have done a morphological characterization of structures that
is complementary to the studies of the correlations properties presented in this lecture. Finally, we would like to stress also that these authors find again the "apparent homogenization" due to sparse sampling: the same kind of effect has been discussed here and in [10].

- Finally one should note that there are various indirect arguments and always require an interpretation based on some assumptions. The most direct evidence for the properties of galaxy distribution arises from the correct correlation analysis of the 3-d volume limited samples that has been the central point of our work.

Acknowledgments

F.S.L. has the pleasure to thank T. Buchert and H. Wagner for their kind hospitality, and the organization of the interesting discussion we had at this meeting.

References

[1] Coleman, P.H. and Pietronero, L., 1992 Phys.Rep. 231,311
[2] Baryshev, Y., Sylos Labini, F., Montuori, M., Pietronero, L. Vistas in Astron. 1994, 38, 419
[3] Pietronero L. Montuori, M. and Sylos Labini, F. in the Proc. of the Conference "Critical Dialogues in Cosmology" N. Turok ed., 1997
[4] Sylos Labini, F., Montuori, M. and Pietronero, L. 1996, preprint
[5] Mandelbrot B., 1982 The Fractal Geometry of Nature, Freeman, New York
[6] Pietronero L., Physica A, 144, 257
[7] Coleman, P.H. Pietronero, L., & Sanders, R.H., 1988, A&A, 245,1
[8] Peebles, P.E.J., 1980 "The Large Scale Structure of The Universe" (Princeton Univ.Press.);
[9] Davis, M., Peebles, P. J. E. 1983 Ap.J., 267,465
[10] Sylos Labini, F., Gabrielli, A., Montuori, M., Pietronero, L. 1996, Physica A, 266, 149
[11] Sylos Labini, F., Montuori, M., Pietronero, L. 1996, Physica A, 230, 368;
[12] Sylos Labini, F., Pietronero, L. 1996. Ap.J. 469, 28
[13] Sylos Labini, F. Amendola, L. 1996, Ap.J. Lett, 468, L1
[14] Di Nella H., Montuori M., Paturel G., Pietronero L., and Sylos Labini F., Astron.Astrophys.Lett. 1996, 308, L33
[15] Park, C., Vogeley, M.S., Geller, M., Huchra, J. 1994 Ap.J., 431, 569;
[16] Benoist C. et al. 1996 ApJ in print
[17] Davis M. et al., 1988 ApJ Lett 333, L9

[18] Davis M., [astro-ph/9610149] in the Proc. of the Conference "Critical Dialogues in Cosmology" N. Turok ed., 1997

[19] Da Costa L.N., et al., ApJ Lett 424, (1994) L1

[20] Pietronero L., and Tosatti E. Eds (1986) Fractal in Physics North-Holland, Amsterdam

[21] Erzan A, Pietronero L., Vespignani A. Rev. Mod. Phys. 1995, 67, 554

[22] Schechter P., Astrophys.J. 203, (1976) 297

[23] Peacock, J.A., Nicholson, D. Mon.Not.R.Acad.Soc 235, (1991) 307

[24] Paladin, G., Vulpiani, A. Phys. Rep. 156, (1987) 147

[25] Benzi, R., Paladin, G., Parisi, G., Vulpiani, A. J.Phys. A., 17, (1984) 3251.

[26] Martinez, V. T., Jones, B. J. T Mon. Not. R. astr. Soc., 242, (1990) 517

[27] Jensen M.H., Paladin G., Vulpiani A. Phys.Rev.Lett. 67, (1991) 208

[28] Martinez et al., Science 269, (1995) 1245

[29] Peebles, P.E.J. 1993 "Principles of physical Cosmology" (Princeton Univ.Press.)

[30] Wilson K.G., 1974 Phys. Rep. 12, 75

[31] Amit D., 1978 "Field theory, the Renormalization Group and Critical Phenomena (Mc Graw-Hill, New York)

[32] Kaiser N., Astrophys.J. . 284, (1984) L9

[33] Hubble, E. Astrophys.J. 64, (1926) 321

[34] Yoshii, Astrophys.J, 403, (1993) 552

[35] Montuori M., Amici A., Gabrielli I., Sylos Labini F., in preparation, 1997

[36] Vettolani, G., et al. (1994) Proc. of Scloss Rindberg workshop Studying the Universe with Clusters of Galaxies;

[37] Kerscher M., Schmalzing J., Buchert T. and Wagner H., 1997, in this Proceedings.