Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating \textit{Kras}-4A

Alice Dassano1,6, Francesca Colombo1,6, Gaia Trincucci1,6, Elisa Frullanti1,6, Antonella Galvan1, Angela Pettinicchio1, Loris De Cecco1, Andrea Borrego2, Olga Célia Martinez Ibañez2, Tommaso A. Dragani1,6, Giacomo Manenti1

1 Department of Predictive and Preventive Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy, 2 Laboratory of Immunogenetics, Instituto Butantan, São Paulo, Brazil

Introduction

The Pulmonary adenoma susceptibility 1 (\textit{Pas1}) locus, mapping in the distal region of chromosome 6, is the major modulator of lung tumor susceptibility in mice [1,2]. In inbred mouse strains, the \textit{Pas1} locus has a conserved haplotype consisting of six genes clustered in a \~{}450-kb region [3]. From proximal to distal, these genes are branched chain aminotransferase 1 (\textit{Bcat1}), lymphoid-induced membrane protein (\textit{Lmp}), cancer susceptibility candidate 1 (\textit{Cas1}), LVR motif containing 5 (\textit{Lyr5}), \textit{v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog} (\textit{Kras}) and intermediate filament tail domain containing 1 (\textit{Ifh1}). Four of these genes, namely \textit{Lmp}, \textit{Cas1}, \textit{Kras} and \textit{Ifh1}, have been singled out as candidate genes for \textit{Pas1} locus functions in fine-mapping studies [4–6]. Although for none of these genes is there a clear demonstration of a role in lung tumor susceptibility, there is substantial evidence supporting the involvement of \textit{Kras} as the key effector of the \textit{Pas1} locus.

\textit{Kras} encodes a small GTPase that functions as a molecular switch in signal transduction, influencing cell proliferation [7]. Permanently activating mutations, at codons 12, 13 and 61, are frequently found in both spontaneous and chemically induced lung tumors in mice [8,9]. Moreover, in mouse models in which mutant \textit{Kras} can be activated by somatic recombination in the lung, animals are highly susceptible to lung tumorigenesis and develop multiple lung tumors at 100\% incidence with a short latency [10,11]. Nonetheless, as heterozygous \textit{Kras} knockout mice have higher susceptibility to chemically induced lung tumorigenesis than wild-type mice, the wild-type \textit{Kras} allele may have a tumor suppression function [12]. The double role of \textit{Kras} in lung carcinogenesis—tumor suppressor when wild-type and oncogene when mutated—led to the hypothesis that lung cancer susceptibility could result from the subtle balance between expression levels of wild-type and mutated \textit{Kras} [13]. Given the frequent occurrence of activating \textit{Kras} mutations in mouse lung tumors, an increase in \textit{Kras} gene expression in lung tumor tissue could be expected to raise the level of active \textit{Kras} protein, thereby providing the growth advantage characteristic of neoplasms. Evidence supporting this mechanism was provided by the observation that, in mice, \textit{Kras} mRNA levels in normal lung tissue were \~{}2-fold higher in strains susceptible to lung tumorigenesis [8,9].
Author Summary

A person’s risk of developing cancer depends on both genetic and environmental factors. To study the genetic predisposition to cancer without the influence of environmental variables, scientists study mice treated with urethane, a chemical carcinogen that induces lung tumors. By crossing inbred (genetically identical) strains of mice that are either resistant or susceptible to urethane-induced cancer, researchers can search for genes associated with tumor formation in the offspring. From previous work of this type using second-generation mice, it was already known that a region on chromosome 6 was associated with tumor formation. Now, a new study, carried out in a fourth-generation mouse population, focused to a single gene of chromosome 6 called Kras. This gene forms two different messenger RNA transcripts, called Kras-4A and Kras-4B, that produce two proteins with slightly different structure and, perhaps, function. The study found that mice susceptible to lung tumors have relatively more Kras-4A messenger RNA than resistant mice and that this difference may be due to small variations in the DNA near or within this gene.

Our understanding of the mode of action of Kras in lung tumorigenesis is further complicated by the existence of two main transcripts, namely Kras-4A and -4B, generated by alternative splicing of its fourth coding exon. The two transcripts differ in their 3’-termini and give rise to two proteins (of 189 and 188 residues, respectively) with different C-terminal sequences. Because the C-termini of Ras proteins function in plasma membrane binding (through both electrostatic binding of basic residues and hydrophobic binding of fatty acylated residues) [14], sequence variations in this region could affect the biological functions of the isoforms. Indeed, in transfected cells, human Kras-4A, but not Kras-4B, efficiently induced transformed foci and enabled anchorage-independent growth [15,16]. Additional differences between the two isoforms regard their expression levels, which were found to be modulated during mouse embryogenesis and to vary in different tissues [17,18]. Moreover, the ratio between Kras-4A and Kras-4B mRNA levels in lung tissue was higher in mouse strains susceptible to lung cancer than in resistant ones [17].

More recent evidence implicating the Kras-4A oncoprotein in lung tumorigenesis was provided by two studies in which mice expressing only the Kras-4B isoform had greater resistance to chemical carcinogenesis than did wild-type mice also expressing Kras-4A [19,20].

Despite these observations, several aspects of the candidacy of Kras as the major effector of the Pas1 locus in lung tumor susceptibility remain to be clarified. Wild-type alleles from susceptible and resistant mice code for the same protein; consequently, the mechanism by which Kras determines genetic susceptibility to lung tumorigenesis could, instead, depend on its overall expression level or on the ratio of its isoforms in normal lung tissue.

To address these points and to clarify the involvement of the two Kras isoforms, we studied Kras mRNA levels and germline variants using an established model of urethane-induced lung tumorigenesis in an advanced intercross population between A/J mice (tumor susceptible) and C57BL/6 mice (resistant). This model was previously instrumental in defining the Pas1 locus based on the pattern of tumorigenesis in F2 intercross mice [1]. In the present study, we used F4 mice (of a new pedigree) in order to have a greater resolution power. After confirming Pas1 as a quantitative trait locus (QTL) modulating lung tumor multiplicity in this pedigree, we performed a genome-wide association study to look for expression QTL modulating the levels of Kras-4A and Kras-4B transcripts in lung tumors and normal lung tissue. Our findings indicate that Kras-4A and, to some extent, also Kras-4B are modulated by cis-acting elements within the Pas1 locus itself. These results underpin a possible causal relationship between germline variations and mRNA levels of the Kras-4A isoform, consequently influencing lung tumor susceptibility.

Results

A/J and C57BL/6 mice were mated and bred to the fourth generation (ABF4) to establish a pedigree for the current study. Male ABF4 mice (n = 183) were treated with a single injection of urethane at 4 weeks of age to induce lung tumor formation, sacrificed 36 weeks later and assessed for lung tumor multiplicity (Nlung). Values of Nlung ranged from 0 (in 27 animals) to a maximum of 33.

To assess the genetic control of susceptibility to lung tumorigenesis in this pedigree, we performed genome-wide linkage analysis on the 183 urethane-treated ABF4 mice using Illumina SNP-arrays, which permit the genotyping of up to 1449 single nucleotide polymorphisms (SNPs). After quality control filtering, genotype data were obtained for 548 informative (polymorphic) non-redundant SNPs dispersed over the whole genome. Simple interval mapping was performed to detect QTLs associated with squared root-transformed values of Nlung. This analysis identified a single major locus in the telomeric region of chromosome 6 (Figure 1A). The QTL peak had a LOD score of 48.2 and was centered around marker rs6265387 (Pithl gene region) near the Pas1 locus; moreover, at the Kras-37-bp marker, located 2-Mb proximal to rs6265387 and distinguished from the SNP by 3 recombination events, the LOD score was almost identical (LOD = 48.0). The QTL accounted for 69% of the total phenotypic variance in the ABF4 population. When the mice were grouped according to genotype (Figure 1B), Nlung in the 39 animals homozygous for the A/J-derived allele (represented by a G at rs6265387) was 1.5-fold higher than that in the 82 heterozygous mice and ~24-fold higher than that in the 42 mice homozygous for the C57BL/6-derived allele (represented by an A at rs6265387; P<1.0×10^-8, ANOVA followed by Tukey’s test for multiple comparisons).

These results, which confirm the key role of the Pas1 locus in murine lung tumorigenesis, establish this new intercross population as suitable for studying Pas1 function. In this cross, lung carcinogenesis can be considered a monogenic trait due to the overwhelming genetic effect of the Pas1 locus. Therefore, we used this pedigree to test whether the Pas1 locus exerts its effect on lung tumorigenesis through a modulation of Kras mRNA levels. To this aim, we performed linkage analyses to identify expression QTLs associated with the levels of Kras-4A and Kras-4B mRNA.

Pas1 is an expression QTL controlling Kras-4A transcript levels in lung tumors of urethane-treated mice

From 80 of the 183 ABF4 urethane-treated mice used in the genetic linkage analysis, we were able to resect a tumor specimen from lung tissue. This subgroup included 37 mice homozygous at rs6265387 for the A/J-derived allele (associated with tumor susceptibility), 34 heterozygous mice, and 9 mice homozygous for the C57BL/6 resistant allele that nevertheless had developed a lung tumor. Indeed, the intrinsic low susceptibility to lung tumorigenesis of the 42 animals homozygous for the C57BL/6-derived allele (only 9 of these mice developed a lung tumor) did
not allow us to analyze a subgroup of the original population with a genotype ratio typical of such intercrosses (i.e., 1:2:1).

RNA was extracted from each specimen and used in quantitative PCR to measure the levels of Kras-4A and -4B mRNA. Genome-wide linkage analysis for Kras-4A found a single expression QTL on chromosome 6 (peak LOD = 4.5), corresponding to the Pas1 locus (Figure 2A). In contrast, no expression QTL was found for Kras-4B on any chromosome, including chromosome 6 where LOD scores remained below the threshold for significance. When the 80 mice were grouped according to the genotype at rs6265387, we found that Kras-4A mRNA was highest in mice homozygous for the A/J-derived susceptible allele (GG), intermediate in heterozygous (AG) animals, and lowest in mice homozygous for the C57BL/6 resistant allele (AA); these differences were significant (GG vs. AG, $P=3.2\times10^{-5}$; GG vs. AA, $P=8.9\times10^{-5}$; ANOVA followed by Tukey’s test for multiple comparisons, Figure 2B). These results implicate Kras-4A in the mechanism of Pas1-dependent tumor formation.

Pas1-dependent tumor susceptibility correlates with Kras-4A transcript levels in normal lung tissue

The genetic susceptibility to cancer is an intrinsic feature of normal tissue that, in urethane-treated mice, influences both the probability of tumor initiation and the number of tumors that develop. Consequently, it is likely that the fundamental elements underlying this phenomenon are present not only in tumors but also in normal tissue. To test this hypothesis, we attempted to validate in normal lung tissue the genetic linkage we observed in lung tumors. Therefore, we genotyped 111 untreated male ABF4 mice for nine markers on chromosome 6 spanning from 96.7 Mb to 148.3 Mb. These markers include 8 SNPs and one 37-bp sequence variation that in C57BL/6 mice occurs as a tandem repeat; this insertion mutation is located in the second intron of Kras [21]. Additionally, we assayed lung mRNA from these mice for the two Kras isoforms, and examined the association of mRNA levels with genotype.

A strong linkage was found between the level of Kras-4A mRNA and genotyped markers in the Pas1 locus, describing a LOD curve with a peak of 23.2 (Figure 3A); this expression QTL explained 62% of the phenotypic variance. A much weaker, yet statistically significant linkage for the Kras-4B transcript was observed (maximum LOD score = 4.1). These results confirm and strengthen the major role of Kras-4A isoform found in tumors (Figure 2). We then grouped the mice according to genotype at the Kras 37-bp insertion to examine the relationship between Kras mRNA levels and the number of inherited A/J-derived alleles of the Pas1 locus. A strong association was found for Kras-4A levels ($P=9.7\times10^{-14}$, ANOVA; square-root-transformed values are shown in Figure 3B: mice with two A/J-derived alleles (i.e., no insertion, -/-) had on average 1.9-times more transcript than did mice receiving two C57BL/6-derived alleles (ins/ins), and heterozygous mice had intermediate levels. In contrast, the linkage between Pas1 genotype and Kras-4B transcript levels was weaker ($P=9.7\times10^{-5}$, ANOVA, Figure 3C).

We then examined whether this specific genetic control exerted by the Pas1 locus was also present in normal lung of the parental inbred strains A/J and C57BL/6 (Figure 4). The median level of the Kras-4A transcript in A/J (tumor-susceptible) mice was 2.3-fold higher than that of C57BL/6 (resistant) mice ($P=6.0\times10^{-9}$, ANOVA; square-root-transformed values are shown in Figure 4A). In contrast, the Kras-4B levels were not significantly different between mouse strains (Figure 4B).
Altogether, these results indicate that the A/J-derived allele of the \textit{Pas1} locus, which confers susceptibility to lung tumorigenesis, is also associated with higher steady-state levels of the \textit{Kras}-4A splice variant. These observations suggest that subtle modulation of \textit{Kras}-4A mRNA production or stability may be the key effector of \textit{Pas1}-controlled lung tumor susceptibility, possibly via a \textit{cis} acting element within \textit{Pas1} itself.

Differential allelic expression of \textit{Kras}-4A is due to sequence variants in \textit{cis}-regulatory elements

To test whether the allele-specific levels of \textit{Kras} isoforms are attributable to variations in \textit{cis}-regulatory elements also mapping in the \textit{Pas1} locus, we examined the possibility of differential allelic expression. For this analysis, we considered two SNPs (rs29968550 and rs30022167, mapping in a region of \textit{Kras} mRNA common to the two isoforms) whose genotypes permitted us to distinguish the A/J- from the C57BL/6J-derived allele. By pyrosequencing, we determined the frequencies of the two alleles in \textit{Kras}-4A and -4B cDNA from normal lung tissue of 20 heterozygous untreated ABF4 mice and from lung tumor specimens of 15 heterozygous treated mice and in genomic DNA from the same animals, used as control for the amplification efficiency of the two alleles (Figure S1). Indeed, when allelic imbalance is tested, uneven amplification unrelated to differential transcription may occur in some of the assays. Therefore, the experimentally obtained allelic ratio for genomic DNA, which in principle is equal to 1 in heterozygotes, is used as the baseline to evaluate the ratios observed for cDNAs.

Based on the results for both SNPs, comparing the mean allelic ratios for \textit{Kras}-4A cDNA with those of the corresponding genomic DNA, we observed a ~2-fold higher expression of the A/J-derived allele in \textit{Kras}-4A cDNA in both tumor and normal tissue indicating a higher steady state of this isoform associated with the A/J-derived allele, possibly due to either a higher production rate or a lower degradation rate (Figure 5). For \textit{Kras}-4B, the mean allelic ratios for cDNA from tumors were similar to those for genomic DNA, meaning equal production from both alleles; in normal tissue, however, a slightly higher ratio for \textit{Kras}-4B cDNA relative to genomic DNA was observed (Figure 5).

In the statistical analysis, allelic ratios were log$_{10}$-transformed to approximate a normal distribution before applying Welch’s \textit{t} test (Table 1). This analysis showed that the high allelic ratios for \textit{Kras}-4A cDNA, observed at two SNPs and in both normal and tumoral lung tissue, are significantly different from those of genomic DNA (\textit{P}<0.001, see Table 1). In the case of \textit{Kras}-4B cDNA, the allelic ratios were significantly different from that of genomic DNA only for normal lung tissue (\textit{P}<0.001). These results provide evidence for the differential allelic expression of \textit{Kras} transcripts, with higher levels being produced from the A/J-derived allele in ABF4 intercross mice. These findings are compatible with the presence of allele-specific germline variations in \textit{cis}-acting elements that mainly influence the selection or stability of the \textit{Kras}-4A isoform.

Discussion

In this study, we verified the major role of the \textit{Pas1} locus in modulating lung tumorigenesis in an ABF4 advanced intercross population, where the lung tumor multiplicity (\textit{Nlung}) phenotype behaved as a monogenic trait under the control of the \textit{Pas1} locus, explaining almost 70% of the phenotypic variance. In addition, we found that \textit{Pas1} is an expression QTL because it controls the level of the \textit{Kras}-4A isoform in urethane-induced lung tumors. This genetic control is an inherited trait, in that it was already present in normal lung tissue of untreated mice. Finally, we observed the
Figure 3. *Kras* -4A expression is highly controlled by *Pas1* locus in normal lung. (a) Genetic linkage analysis of expression levels (square root transformed) of two *Kras* transcripts in 111 untreated ABF4 mice showed that the *Kras* -4A isoform was strongly linked to the *Pas1* locus (LOD score = 23.2) whereas the *Kras* -4B isoform showed a weaker linkage (LOD score = 4.1). Horizontal line at LOD = 2.13 marks the threshold for significance. Tick marks show the position, in a recombinational map, of the nine genotyped markers spanning from chromosome 6 position 96.7 Mb to 148.3 Mb. (b, c) Expression levels of *Kras* -4A and -4B in normal lung tissue, by genotype for the 37-bp insertion mutation common to both isoforms. The A/J-derived susceptible allele is negative (-) for the insertion whereas the C57BL/6 allele is positive (ins); 30 mice were -/-, 52 ins/-, and 29 ins/ins. (b) For *Kras* -4A, \(P = 9.7 \times 10^{-14} \), ANOVA. Tukey’s test for multiple comparisons, *\(P = 0.01 \), **\(P = 7.4 \times 10^{-14} \) vs. -/-. (c) For *Kras* -4B, \(P = 9.7 \times 10^{-2} \), ANOVA. Tukey’s test for multiple comparisons, **\(P = 1.5 \times 10^{-4} \) vs. -/-. Values are means and SE.

doi:10.1371/journal.pgen.1004307.g003

Figure 4. *Kras* -4A is expressed at higher levels in susceptible (A/J) than resistant (C57BL/6) strains. Expression levels of *Kras* -4A (a) and *Kras* -4B (b) isoforms were measured by qPCR in normal lung of 11 A/J and 11 C57BL/6 mice. *\(P = 7.1 \times 10^{-5} \), ANOVA. The line within each box represents the median of square root transformed values; upper and lower edges of each box are 75th and 25th percentiles, respectively; upper and lower bars indicate the highest and lowest values less than one interquartile range from the extremes of the box.

doi:10.1371/journal.pgen.1004307.g004
Figure 5. Differential allelic expression of Kras-4A isoform indicates the existence of functional polymorphisms in Kras gene. Allelic ratios were determined by pyrosequencing for rs30022167 and rs29968550, which map in a region of the Kras 3'-UTR common to both isoforms, on genomic DNA and cDNA from normal lung tissue (n = 20) and lung tumor specimens (n = 15) from ABF4 heterozygous mice. Values are mean and SE; *** P < 0.001, two-sided Welch’s t test (see Table 1 for complete data). doi:10.1371/journal.pgen.1004307.g005

Table 1. Differential allelic expression of Kras isoforms in lung tumor specimens and normal lung tissues from ABF4 intercross mice.

SNP	Tissue	Isoform	cDNA	Genomic DNA	Difference (95% CI)	P value*
rs30022167	Tumor	Kras-4A	0.26	−0.05	0.31 (0.20 to 0.43)	3.7 × 10^-5
		Kras-4B	0.01	−0.05	0.06 (−0.03 to 0.16)	0.17
	Normal	Kras-4A	0.22	−0.07	0.29 (0.26 to 0.32)	<2.2 × 10^-16
		Kras-4B	0.02	−0.07	0.09 (0.06 to 0.12)	6.1 × 10^-8
rs29968550	Tumor	Kras-4A	0.42	0.16	0.26 (0.13 to 0.39)	8.4 × 10^-4
		Kras-4B	0.22	0.16	0.06 (−0.03 to 0.15)	0.19
	Normal	Kras-4A	0.37	0.04	0.33 (0.30 to 0.37)	<2.2 × 10^-16
		Kras-4B	0.21	0.04	0.17 (0.15 to 0.20)	<2.2 × 10^-16

* Mean of log_{10} transformed allelic ratios (A/J-derived allele/C57BL/6-derived allele) for 20 samples (normal tissue) or 15 samples (tumor tissue).

Calculated on differences between cDNA and DNA allelic ratios using a two-tailed Welch’s t test.

doi:10.1371/journal.pgen.1004307.t001
preferential expression of $Kras$-4A from the A/J-derived allele in heterozygous mice, suggesting the existence of allele-specific germline variations in cis-acting elements that influence splicing bias, selection or stability of this isoform.

We carried out this genetic study in an ABF4 intercross since it was an effective way to accumulate, in a population of a relatively small size, 3-fold more recombination events than those possible in a conventional F2 intercross population of the same size [22]. Indeed, each ABF4 mouse underwent six informative meioses compared to the two informative meioses of an F2 mouse, thus providing improved resolution for mapping loci affecting strain-related phenotypes [22]. This methodological choice allowed us to obtain a sharp peak of linkage between $Pas1$ and Nlung, with very high association (LOD score = 48 in 183 ABF4 mice). The high rate of recombination in this intercross was also useful for testing our hypothesis that $Kras$ isoform expression is modulated by $Pas1$.

Animals homozygous for the C57BL/6-derived allele had low susceptibility to lung tumorigenesis and, therefore, rarely developed lung tumors after urethane treatment. Hence, the genetic class with the resistant phenotype was under-represented in the experiment designed to identify expression QTLs in tumors. Another difficulty that presented in our research was the known dysregulation of gene expression architecture in cancer, including mouse lung tumors [23,24], which could have reduced the detectability of expression QTLs. Despite these limitations, we observed a significant linkage of the $Pas1$ locus with mRNA levels of $Kras$-4A (LOD score = 4.5 in 80 mice) but not of $Kras$-4B.

In normal lung tissues from untreated mice, where all three genotypes were present at roughly the expected ratio and where no pathologic alterations could have played a confounding role, we observed that the $Kras$-4A isoform levels were again significantly linked with the $Pas1$ locus (LOD score = 23.2 in 111 mice). In these untreated animals, the $Kras$-4B isoform also had significant linkage with $Pas1$, although the LOD score of 4.1 was only ~17% that obtained for $Kras$-4A.

The differential allelic expression of $Kras$-4A and, to some extent, $Kras$-4B, in normal lung tissue and in lung tumor specimens, indicated the existence of regulatory polymorphisms located within the $Pas1$ locus. These cis-acting elements have not yet been identified. However, since the $Kras$ gene promoter has been shown to have similar activity in susceptible and resistant mice [25], it is conceivable that these cis-acting elements are located in other regions such as introns or the 3’-untranslated region of the $Kras$ transcript. Regulatory elements in these regions can be expected to impact more on mRNA splicing and stability than on promoter activity. Several polymorphisms in non-coding regions of $Kras$ have already been found in various mouse inbred strains and the functional roles of some of them have been investigated [21,25,26]; these studies, however, reached contrasting conclusions. Future investigations could focus on the targeted re-sequencing of the A/J-derived $Kras$ gene and flanking regions, to search for not yet identified polymorphisms that affect splicing selection or mRNA stability of $Kras$ isoforms. The candidate functional polymorphisms could then be tested by cloning into reporter vectors for transfection and assay of cell lines.

Overall, these results shed new light on the role of expression QTLs in mouse lung tumorigenesis, since they indicate that the genetic control exerted by $Pas1$ mostly affects the expression of the $Kras$-4A transcript. These results point to the 4A isoform as the functional element of $Pas1$, the major locus modulating lung tumorigenesis in mice.

Materials and Methods

Ethics statement

All animals received humane care according to the criteria outlined in a protocol approved during the meeting board of December 21, 2006, by the institutional ethical committee for animal use (CESA) at the Fondazione IRCCS Istituto Nazionale dei Tumori.

Mouse crosses, tissues, DNA and RNA

A pedigree of intercross mice was generated by mating lung tumor-susceptible A/J mice (A; 5 females) with lung tumor-resistant C57BL/6 mice (B; 5 males). From generation ABF2 to ABF4, male and female mice were individually labeled, randomly selected using a random number generator and bred, avoiding the pairing of siblings (20 female and 20 male ABF2 mice, and 55 female and 55 male ABF3 mice were mated). After weaning, ABF4 mice were sexed and ear-tagged, and a section of tail was collected for DNA extraction. Male ABF4 mice were then randomly assigned to two groups: untreated mice (n = 131) were raised under standard conditions, while 188 male mice were treated with a single intraperitoneal injection of urethane (1 g/kg body weight) at 4 weeks of age to induce the development of lung tumors [27]. To obtain normal lung tissue, 111 untreated ABF4 mice, 11 A/J and 11 C57BL/6 mice (all males) were anesthetized and killed at 16 weeks of age; lung lobes were isolated and frozen in liquid nitrogen. To obtain lung tumor tissue, the 183 urethane-treated mice were killed at 40 weeks of age; the chest was opened, the trachea was dissected to permit needle access, and the lungs were filled with 0.5 ml RNALater solution. Then, the lung lobes were removed, placed in RNALater, and kept overnight at 4°C degrees. The next day, lungs were examined for surface tumors. For each mouse, we recorded the total number of tumors (Nlung) and, whenever possible, resected one tumor of about 1–1.5 mm under a stereo-microscope. These tumor specimens were frozen and stored at ~80°C degrees.

Genomic DNA was extracted from tail samples using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA) and quantified using PicoGreen dsDNA Quantitation Kit (Invitrogen, Life Technologies, Paisley, UK). Total RNA was extracted from normal lung tissue and from lung tumor specimens using RNAeasy Midi Kit (Qiagen), purified with RNAeasy MinElute Cleanup (Qiagen), and quantified by spectrophotometry (ND-1000 spectrophotometer, NanoDrop, Wilmington, DE, USA). RNA integrity was verified using the RNA 6000 Nano Assay Kit (Agilent Technologies, Palo Alto, CA, USA); the mean RIN value was 8.9 (SD = 0.8; range, 6.7 to 9.9).

Genome-wide SNP and $Pas1$ locus genotyping

Genomic DNA from urethane-treated ABF4 mice was used for genome-wide SNP genotyping carried out with the GoldenGate Genotyping Assay according to the manufacturer’s protocol (Illumina, San Diego, CA, USA), using the Mouse MD Linkage Panel representing 1449 mouse loci. Additionally, the $Pas1$ locus in untreated ABF4 mice was genotyped for nine genetic markers, including eight SNPs (rs6349084, rs33863668, rs31000839, rs31005929, rs13479063, rs3393742, rs13479082, rs3711088) and a 37-bp tandem repeat in $Kras$ [21]. Briefly, a genomic fragment surrounding each marker was PCR-amplified in reactions containing 30 ng genomic DNA, 1 U AmpliTaq Gold (Applied Biosystems, Life Technologies), 1× AmpliTaq Gold buffer (Applied Biosystems, Life Technologies), 1.5 mM MgCl₂, 200 μM dNTPs and 5 pmol of each of a pair of specific primers (Table S1) in a total volume of 25 μl. To
The eight SNPs were pyrosequenced on a PyroMark Q96 ID system running PyroMark Q96 ID Software (Qiagen). To genotype the Kras-37-bp repeat, PCR amplicons were analyzed by 3% agarose gel electrophoresis for fragment size.

Quantitative real-time PCR
RNA from normal lung (1 μg) or from lung tumor specimens (0.5 μg) was used to synthesize cDNA by reverse transcription using the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland). Kras-4A and -4B transcript levels in the cDNA were measured in quantitative PCR (qPCR) assays using Fast SYBR Green PCR Master Mix (Applied Biosystems) and 300 nM intron-spanning primers (Table S1). Hypoxanthine phosphoribosyltransferase 1 (Hprt1, Table S1) was used as reference gene. Relative expression levels were calculated using the comparative Ct method using one of the synthesized cDNA samples as calibrator.

Detection of differential allelic expression of Kras-4A and -4B transcripts
The allelic expression of Kras-4A and Kras-4B isoforms was analyzed taking into consideration two SNPs in the 3' UTR region of the Kras gene (Figure S1): rs30022167 (A or C, for the A/J- or C57BL/6-derived allele, respectively) and rs29968550 (A or G, for the A/J- or C57BL/6-derived allele, respectively). Among the animals heterozygous for markers at the Pas1 locus, we selected 20 mice from the untreated group and 15 from the urethane-treated group, from which we already had genomic DNA. In addition, from these animals, we also had cDNA from normal lung (n=20) or from tumor specimens (n=15), having been reverse-transcribed for the qPCR experiments. For each Kras isoform, we carried out a first amplification step on the cDNA samples using a forward primer located in exon 4A (Kras-4A) or in the junction between exon 3 and exon 4B (Kras-4B) and a common reverse primer located in the 3’ UTR region of the Kras gene downstream of rs29968550 (blue triangle) and rs30022167 (orange triangle). (b) For pyrosequencing, SNP-containing fragments were amplified from the PCR amplicons obtained in the previous step and from genomic DNA of the same animals, using SNP-specific forward and reverse primers (blue arrows for rs29968550 and orange arrows for rs30022167) and a sequencing primer (dashed blue arrow for rs29968550 and dashed orange arrow for rs30022167). (TIF)

Table S1 Primers used for PCR, genotyping and detection of differential allelic expression (DAE). (DOC)

Acknowledgments
Valerie Matarese provided scientific editing.

Author Contributions
Conceived and designed the experiments: TAD GM OCMI. Performed the experiments: AD FC EF AG AP LDC AB. Analyzed the data: TAD GM. Wrote the paper: FC AD TAD GM OCMI.

References
1. Gariboldi M, Manenti G, Canziani F, Falvezza FS, Radice MT, et al. (1993) A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nature Genet 3: 132–136.
2. Manenti G, Drapu TA. (2003) Pas1 haplotype-dependent genetic predisposition to lung tumorigenesis in rodents: A meta-analysis. Carcinogenesis 26: 875–882.
3. Manenti G, Galbiati F, Gianni Barrera R, Pettinichio A, Avevedo A, et al. (2004) Haplotype sharing suggests that a genomic segment containing six genes accounts for the pulmonary adenoma susceptibility 1 (Pas1) locus activity in mice. Oncogene 23: 4495–4504.
4. Wang M, Lemon WJ, Liu G, Wang Y, Iqbal FA, et al. (2003) Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines. Cancer Res 63: 3317–3324.
5. Wang M, Kusamura M, Wang Y, You M. (2005) Pas1elix is a candidate for the mouse pulmonary adenoma susceptibility 1 locus. Oncogene 24: 1956–1963.
6. Liu P, Wang Y, Vikis H, Maciag A, Wang D, et al. (2006) Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 38: 888–895.
7. King PD, Lubeck BA, Lapinski PE. (2013) Nonredundant functions for ras GTPase-activating proteins in tissue homeostasis. Sci Signal 6: re1.
8. You M, Candiotti U, Maropoulo RR, Stoner GD, Anderson MW. (1989) Activation of the kras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 86: 3070–3074.
9. Re FC, Manenti G, Borello MG, Colombo MP, Fisher JH, et al. (1992) Multiple molecular alterations in mouse lung tumors. Mol Carcinog 5: 155–160.
10. Johnson L, Mercer K, Greenbaum B, Bronson RT, Crowley D, et al. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111–1116.
11. Meuwissen R, Lin SC, van d,v, Mooi WJ, Berns A. (2001) Mouse model for lung tumorigenesis through cre/lox controlled sporadic activation of the K-ras oncogene, Oncogene 20: 6531–6536.
12. Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, et al. (2001) Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 29: 25–33.
13. To MD, Perez-Losada J, Mao JH, Hsu J, Jacks T, et al. (2006) A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2/2 mice. Nat Genet 38: 926–930.
14. Prior IA, Hancock JF. (2012) Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 23: 145–153.
15. Voice JK, Klemke RL, Le A, Jackson JH. (1999) Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem 274: 17164–17170.
16. Plowman SJ, Arends MJ, Brownstein DG, Luo F, Devenney PS, et al. (2006) The K-ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res 312: 16–26.
17. Wang Y, You M, Wang Y. (2001) Alternative splicing of the K-ras gene in mouse tissues and cell lines. Exp Lung Res 27: 255–267.
18. Pells S, Diejak M, Romanowski P, Impey H, Haskins NJ, et al. (1997) Developmentally-regulated expression of murine K-ras isoforms. Oncogene 15: 1781–1786.
19. To MD, Weng CE, Karnezis AN, Del Rosario R, Di Lauro R, et al. (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 40: 1240–1244.
20. Patek CE, Arends MJ, Wallace WA, Luo F, Hagan S, et al. (2008) Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Exp Cell Res 314: 1105–1114.
21. Chen B, Johanson L, Wiest JS, Anderson MW, You M. (1994) The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc Natl Acad Sci USA 91: 1509–1509.
22. Darvasi A, Soller M. (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141: 1199–1207.
23. Bonner AE, Lemon WJ, Devereux TR, Lubet RA, You M. (2004) Molecular profiling of mouse lung tumors: Association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene 23: 1166–1176.
24. Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F. (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31: 252–258.
25. Jones-Bolin SE, Johansson E, Palmisano WA, Anderson MW, Wiest JS, et al. (1998) Effect of promoter and intron 2 polymorphisms on murine lung K-ras gene expression. Carcinogenesis 19: 1503–1508.
26. Timofeeva OA, Gershenkova EV, Levashova ZB, Kobzev VF, Filipenko ML, et al. (2002) Pulmonary carcinogenesis susceptibility-associated single-nucleotide polymorphisms in K-ras intron 2 affect the binding of factor gata-6 but not gene expression. Mol Biol (Mosk) 36: 817–824.
27. Shimkin MB, Stoner GD. (1975) Lung tumors in mice: Application to carcinogenesis bioassay. Adv Cancer Res 21: 1–58.
28. Broman KW, Wu H, Sen S, Churchill GA. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.