The Impact of Myosteatosis Percentage on Short-Term Mortality in Patients with Septic Shock

June-sung Kim
Asan Medical Center

Jiyeon Ha
Gangdong Seongsim Byeongwon: Kangdong Sacred Heart Hospital

Youn-Jung Kim
Asan Medical Center

Youn-sun Ko
Asan Medical Center

Taeyong Park
Asan Medical Center

Kyung Won Kim
Asan Medical Center

Won Young Kim (✉ wonpia73@naver.com)
Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center
https://orcid.org/0000-0002-6904-5966

Research

Keywords: myosteatosis, mortality, septic shock.

Posted Date: August 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-779298/v1

License: © Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The impact of myosteatosis on septic patients has not been fully revealed. This study aimed to evaluate the impact of myosteatosis area and percentage on the 28-day mortality in patients with septic shock.

Methods: We conducted a single-center, retrospective study with prospectively collected data from a registry of adult patients with septic shock who presented to the emergency department and performed abdominal computed tomography (CT) from May 2016 to May 2020. Myosteatosis area defined as the sum of the low-attenuation muscle area and intramuscular adipose tissue at the level of the third lumbar vertebra was measured by CT. Myosteatosis percentages were calculated by dividing the myosteatosis area by the total abdominal muscle area. Odds ratios (ORs) and 95% confidence intervals (CIs) for 28-day mortality were estimated using a multivariate logistic regression model.

Results: Of the 896 patients, the 28-day mortality was 16.3% and the abnormal myosteatosis areas were commonly detected (81.7%). Among variables of body compositions, non-survivors had relatively lower normal-attenuation muscle area, higher low-attenuation muscle area, higher myosteatosis area, and higher myosteatosis percentage than survivors. Trends in myosteatosis according to age groups were different between the male and female groups. In subgroup analysis with male patients, the multivariate model showed that the myosteatosis percentage (adjusted OR 1.02 [95% CI 1.01–1.03]) was an independent risk factor for 28-day mortality. However, this association was not evident in the female group.

Conclusions: Myosteatosis was common and a high myosteatosis percentage was associated with short-term mortality in patients with septic shock. Our results implied that abnormal fatty disposition in the muscle could lead to increased mortality, especially in male patients.

Introduction

Sepsis and septic shock are still the leading cause of in-hospital death worldwide, even though early recognition and aggressive treatment had been applied since a few decades ago [1]. Because of its heterogeneity, identifying which patients with septic shock are at high risk of poor outcomes is needed for personalized management. The third international consensus definitions for sepsis and septic shock proposed to use the sequential organ failure assessment (SOFA) score for screening and prognostication [2]. However, assessing only organ dysfunction could not predict poor outcomes effectively, and intensive research efforts had tried to find out risk factors for septic shock. In this context, the body composition, which is composed of subcutaneous fat, visceral fat, and skeletal muscle, was focused as a potential biomarker to predict the clinical outcomes of patients with various diseases [3–5]. Lately, this concept has gained more interest because the concept of fat and muscle as secretory organs has been proposed. Body composition measurements could be done using computed tomography (CT) performed as a routine clinical practice [6]. The measured body composition by CT scan at the third lumbar vertebra
could be a representative value of the whole-body muscle mass [7–9]. To find out the source of infection and pre-intervention workup, abdominal CT evaluation in patients with septic shock is prevalent. Therefore, measuring body compositions for screening muscle depletion and abnormal fatty disposition can be applied in this group of patients.

We previously reported that a decreased skeletal muscle index was associated with poor outcomes in cancer patients with septic shock [10]. However, the skeletal muscle index only reflects muscle quantity and not function or strength; hence, it is limited [10]. Recent studies demonstrated that muscle quality and strength are associated with the degree of fatty infiltration or fatty degeneration called myosteatosis [11, 12]. Myosteatosis, once referred to as age-related excessive fatty disposition, is now considered to be a pathological phenomenon and can be estimated by the attenuation of skeletal muscle Hounsfield Units (HU) on CT scan [13, 14]. Although the impact of myosteatosis in patients with malignancy, liver cirrhosis, and inflammatory bowel disease had been reported, little is known about its impact on the outcome of patients with septic shock [15–18]. Recent studies with critically ill patients proved that abnormal fat disposition could be associated with poor prognosis due to an overactivated inflammatory response [19–21]. However, their sample sizes were relatively small and their definitions of myosteatosis were different. Furthermore, the mean muscle attenuation for the entire muscle area could be inaccurate for detecting the exact amount of myosteatosis because the proportion of myosteatosis might be markedly dependent on the entire muscle area [22]. Therefore, we hypothesized that the myosteatosis percentage, which is the myosteatosis area divided by total abdominal muscle area (MA), would be a better predictor of outcomes in patients with septic shock than the myosteatosis area alone.

This study aimed to determine the prognostic significance of the myosteatosis area and percentage in patients with septic shock treated with protocolized bundle therapy in the emergency department (ED).

Materials And Methods

Study design and population

This single-center, observational prospectively collected registry-based study was performed at the ED of a tertiary, university-affiliated hospital in Seoul, Korea, with an annual record of approximately 120,000 visits between May 2016 and May 2020. The ED of the study facility enrolled all adult (≥ 18 years old) patients with suspected or confirmed septic shock in the registry to monitor and improve outcomes [23]. Refractory shock was defined as persistent hypotension (systolic blood pressure < 90 mmHg, or a mean arterial pressure < 65 mmHg) [24]. Hypoperfusion was defined as a serum lactate level ≥ 4 mmol/L [25]. Patients were excluded in the registry if they were transferred from another hospital after initial resuscitation, were transferred to other hospitals, had “do-not-resuscitate” orders, refused management, developed septic shock 6 or more hours after ED arrival or did not require vasopressors after fluid loading.

All enrolled patients equally underwent protocol-driven resuscitation following the current guidelines and bundles of the Surviving Sepsis Campaign [24]. In brief, the administration of sufficient crystalloids with
the evaluation of volume status, acquisition of blood for both laboratory workup and blood cultures, and administration of broad-spectrum antibiotics were immediately performed for every patient.

This study included registry-enrolled patients who underwent abdominal CT examination, which had been taken for diagnostic purposes, at ED presentation. The institutional review board of the study facility approved this study (IRB number: 2021 – 0392) and waived the requirement for informed consent because of the retrospective characteristics.

Data Collection And Definition Of Variables

Demographic data, focus of infection, SOFA score, acute physiology and chronic health evaluation (APACHE) II score, and initial lactate level were extracted from the registry. The SOFA and APACHE II scores were calculated using the worst variables during the initial 24 hours after ED presentation. The primary outcome was 28-day mortality.

Electronic medical records were used to collect additional data to assess body morphometry, such as body weight, height, and the presence of an abdominal CT scan. The body mass index (BMI) was computed as the weight in kilograms divided by the height squared in meters (kg/m²). The body composition and quality, including the subcutaneous fat area (SFA), visceral fat area (VFA), skeletal muscle area (SMA), normal-attenuation MA, intramuscular adipose tissue area, and low-attenuation MA, were assessed at the third lumbar (L3) vertebral level of abdominal CT scan performed at ED presentation using a previously developed web-based iAID toolkit [26]. Briefly, this algorithm selected a single axial image at the inferior endplate level of the L3 vertebra at the portal venous phase and segmented the abdominal body compartments into three areas (i.e., total abdominal MA, SFA, and VFA). Moreover, total abdominal MA was divided into three muscle components using the pixel-wise measurement of CT density with the following range of HU for each component: normal-attenuation MA with + 30 HU to + 150 HU, low-attenuation MA with = 29 HU to + 29 HU, and intramuscular adipose tissue area with − 190 HU to − 30 HU [13, 27]. The accuracy of the generated muscle quality map composed of normal-attenuation MA, low-attenuation MA, and intramuscular adipose tissue area was confirmed by a board-certified abdominal radiologist by comparing the original CT image and the muscle quality map image (Fig. 1).

The skeletal muscle index was calculated as the SMA which was defined as the sum of normal-attenuation MA and low-attenuation MA in cm² divided by the height (in meters) squared (cm²/m²) [28]. Abnormal SMI was diagnosed based on the low muscle mass and impaired function and was defined using sex-specific SMIs [29]. Myosteatosis was defined as the sum of the low-attenuation MA and intramuscular adipose tissue area. Furthermore, the myosteatosis percentage was calculated as the myosteatosis area divided by the total abdominal MA to adjust the effect of the total muscle amount.

Statistical analysis
Descriptive statistics were stratified by 28-day all-cause mortality (i.e., survivor and non-survivor). Baseline demographics, clinical characteristics, laboratory results, and variables relating to body composition are presented as the frequency and percentage for categorical and median with interquartile range (IQR) for continuous variables. The Kolmogorov-Smirnov test was used to determine the normality of the distribution. Categorical variables were analyzed using Chi-squared or Fisher’s exact tests. We also evaluated the association between the skeletal muscle index, myosteatosis percentage and 28-day mortality separately according to gender. Univariate logistic regression tests were conducted with potential risk factors, which showed differences between survivors and non-survivors. Multivariate logistic regression was conducted with the variables that were statistically significant upon univariate logistic regression analysis. The absence of multicollinearity was checked by using regression analysis with calculations of the variance inflation factor values. We considered P values less than 0.05 as statistically significant. Analyses were performed using SPSS Statistics for Mac, version 26 (IBM Corp., Armonk, NY, USA) and R version 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Out of the 1160 patients with septic shock in the registry, 896 (77.2%) who underwent an abdominal CT at ED were included. The rate of 28-day mortality was 16.3% ($n = 146$) (Fig. 2).

The baseline characteristics of the study population are presented in Table 1. The median age was 67.0 (58.0–75.0) years with male predominance (58.8%). Non-survivors had higher proportions of chronic pulmonary disease (8.9% vs. 4.5%), malignancy (50.7% vs. 40.4%), hematologic disorder (11.6% vs. 5.5%), and liver cirrhosis (21.2% vs. 14.4%) than survivors. Except for unknown foci and the bloodstream, most sites of infection differed significantly between groups. Non-survivors showed more frequent pulmonary (24.0% vs. 14.9%) and intra-abdominal sources (22.6% vs. 14.4%), but less in the urinary tract (9.6% vs. 16.9%), hepato-biliary-pancreas sources (32.2% vs. 41.5%) than survivors. Also, the non-survivor group had significantly higher lactate levels, SOFA scores, and APACHE scores than the survivor group. Based on diagnosing with current cut-off values, low SMI (63.3%) and myosteatosis (81.7%) were common in the study population; however, there were no significant differences between the two groups. Separate demographics and clinical characteristics of each gender are presented in the supplementary tables (Supplementary Table S1, Supplementary Table S2).
Table 1
Baseline characteristics of septic shock according to 28-day mortality

Characteristics	Total (n = 896)	Survivor (n = 750)	Non-survivor (n = 146)	P-value
Age	67.0 (58.0–75.0)	69.0 (60.0–76.0)	63.5 (53.8–69.0)	0.11
Male	527 (58.8)	433 (57.7)	94 (64.4)	0.14
Past illness				
HTN	299 (33.4)	253 (33.7)	46 (31.5)	0.60
DM	230 (25.7)	195 (26.0)	35 (24.0)	0.61
CAD	77 (8.6)	69 (9.2)	8 (5.5)	0.14
Chronic pulmonary disease	47 (5.2)	34 (4.5)	13 (8.9)	0.03
Malignancy	377 (42.1)	303 (40.4)	74 (50.7)	0.02
Hematologic disorder	58 (6.5)	41 (5.5)	17 (11.6)	< 0.01
CKD	51 (5.7)	45 (6.0)	6 (4.1)	0.37
LC	139 (15.5)	108 (14.4)	31 (21.2)	0.04
Site of infection				
Unknown	82 (9.2)	67 (8.9)	15 (10.3)	0.61
Lung	147 (16.4)	112 (14.9)	35 (24.0)	< 0.01
Urinary tract	141 (15.7)	127 (16.9)	14 (9.6)	0.03
Intra-abdomen	141 (15.7)	108 (14.4)	33 (22.6)	0.01
Hepato-biliary-pancreas	358 (40.0)	311 (41.5)	47 (32.2)	0.04
Blood stream	66 (7.4)	51 (6.8)	15 (10.3)	0.20
Lactate level	3.6 (1.9–5.8)	3.2 (1.7–5.4)	5.4 (2.6–9.2)	< 0.01
SOFA score	7.0 (5.0–10.0)	7.0 (5.0–9.0)	10.0 (6.0–13.0)	< 0.01
APACHE score	15.0 (11.0–20.0)	13.0 (11.0–23.0)	17.0 (11.0–23.0)	< 0.01
Low SMI	567 (63.3)	474 (63.2)	93 (63.7)	0.91
Myosteatosis	732 (81.7)	607 (80.9)	125 (85.6)	0.19

Data are presented as n (%) or median (interquartile range).

Abbreviations: HTN, hypertension; DM, diabetes mellitus; CAD, coronary artery disease; CKD, chronic kidney disease; LC, liver cirrhosis; SOFA, sequential organ failure assessment; APACHE, acute physiology and chronic health evaluation; SMI, skeletal muscle index.
The baseline characteristics and body composition of the study population according to the presence of abnormal myosteatosis are summarized in Supplementary Table S3. Patients with abnormal myosteatosis were older (68.0 vs. 61.0 years), had fewer males (57.2% vs. 65.9%), more frequent hypertension (37.6% vs. 14.6%), diabetes mellitus (27.0% vs. 19.5%), coronary artery disease (9.6% vs. 4.3%), urinary tract infection (17.1% vs. 9.8%), higher lactate level (4.0 vs. 2.6 mmol/L), SOFA score (7.0 vs. 6.0), APACHE score (16.0% vs. 13.0), BMI (23.0 vs. 19.3 kg/m²), SFA (119.0 vs. 57.9 cm²), VFA (117.8 vs. 33.9 cm²), intramuscular adipose tissue area (18.3 vs. 6.1 cm²), low-attenuation MA (53.5 vs. 28.0 cm²), total abdominal MA (126.5 vs. 110.6 cm²), myosteatosis area (72.8 vs. 35.0 cm²), and myosteatosis percentage (58.1% vs. 29.2%). Normal-attenuation MA (51.4 vs. 80.4 cm²) was significantly lower in the abnormal myosteatosis patient group.

Figure 3 illustrates the median myosteatosis area and percentage according to age groups for male and female patients. Trends in myosteatosis area and percentage according to age groups showed differed significantly between males and females. The detailed body morphometry in all patients and by sex is presented in Table 2. Compared with females, the body compositions of males tended to differ significantly between the survivor and non-survivor groups. Male non-survivors had smaller SMA (114.4 vs. 120.3 cm²), smaller normal-attenuation MA (60.3 vs. 73.3 cm²), smaller total abdominal MA (128.8 vs. 138.4 cm²), larger low-attenuation MA (53.8 vs. 49.0 cm²), and larger myosteatosis percentage (51.8% vs. 46.1%). However, these differences were not observed in female patients, except low-attenuation MA (54.3 vs. 46.5 cm²) and myosteatosis percentage (69.1% vs. 60.9%).
Table 2
Body composition of the study population

Body composition	Total (n = 896)	Survivors (n = 750)	Non-survivors (n = 146)	P-value
Total				
BMI, kg/m²	22.2 (19.7–24.6)	22.3 (19.7–24.6)	21.9 (19.7–24.9)	0.64
SFA, cm²	107.3 (65.7–157.0)	110.0 (66.6–157.2)	94.9 (56.6–150.5)	0.07
VFA, cm²	101.0 (57.7–158.9)	102.3 (57.4–160.4)	90.9 (59.0–147.7)	0.20
SMA, cm²	106.2 (90.6–125.6)	106.1 (89.8–126.7)	106.7 (93.8–119.6)	0.76
SMI, cm²/m²	40.6 (36.3–46.0)	40.6 (36.3–46.4)	41.0 (36.0–44.6)	0.67
Normal-attenuation MA, cm²	56.8 (37.8–78.4)	57.4 (39.6–79.7)	52.8 (32.8–69.6)	< 0.01
Intramuscular adipose tissue area, cm²	16.0 (9.6–23.2)	16.3 (9.7–23.3)	14.9 (9.2–22.6)	0.42
Low-attenuation MA, cm²	49.2 (36.8–60.9)	47.6 (36.0–59.5)	54.1 (42.7–66.4)	< 0.01
Total abdominal MA, cm²	123.5 (109.2–142.1)	123.2 (109.0–143.3)	124.9 (109.9–136.2)	0.59
Myosteatosis area, cm²	66.6 (47.5–84.1)	65.9 (46.6–83.3)	70.7 (55.2–90.5)	0.03
Myosteatosis percentage, %	0.53 (0.40–0.67)	0.53 (0.39–0.66)	0.57 (0.44–0.71)	< 0.01

Male

- **Total abdominal MA** was derived by adding the Normal-attenuation MA, Intramuscular adipose tissue area, and Low-attenuation MA.
- **Myosteatosis area** was derived by adding the Low-attenuation MA and Intramuscular adipose tissue area.
- **Myosteatosis proportion** was defined as myostatosis divided by Total abdominal MA.

Data are presented as median (interquartile range).

Abbreviations: BMI, body mass index; SFA, subcutaneous fat area; VFA, visceral fat area; SMA, skeletal muscle area; SMI, skeletal muscle area index; MA, muscle area.
Body composition	Total (n = 896)	Survivors (n = 750)	Non-survivors (n = 146)	P-value
BMI, kg/m²	22.0 (19.7–24.4)	22.1 (19.7–24.4)	21.6 (20.0–24.4)	0.63
SFA, cm²	87.7 (52.6–131.1)	88.8 (55.8–131.3)	83.9 (49.6–123.8)	0.26
VFA, cm²	110.1 (60.4–170.2)	113.1 (59.0–171.7)	97.2 (65.4–158.0)	0.30
SMA, cm²	118.9 (105.3–137.2)	120.3 (106.2–138.3)	114.4 (101.0–125.9)	< 0.01
SMI, cm²/m²	42.7 (38.5–49.3)	42.8 (38.6–49.6)	42.1 (37.4–46.0)	0.07
Normal-attenuation MA, cm²	70.2 (52.0–89.3)	73.3 (54.3–92.2)	60.3 (45.5–73.0)	< 0.01
Intramuscular adipose tissue area, cm²	14.9 (8.6–21.1)	14.9 (8.7–21.1)	14.0 (7.5–21.7)	0.57
Low-attenuation MA, cm²	50.0 (36.6–62.8)	49.0 (35.3–62.6)	53.8 (44.8–65.0)	0.02
Total abdominal MA, cm²	135.2 (120.4–152.6)	138.4 (121.3–154.6)	128.8 (115.1–144.7)	< 0.01
Myosteatosis area, cm²	65.9 (46.3–84.1)	65.5 (45.7–83.5)	67.0 (55.2–86.4)	0.13
Myosteatosis percentage, %	47.7 (35.1–60.2)	46.1 (33.7–59.4)	51.8 (40.5–66.2)	< 0.01

Female

| BMI, kg/m² | 22.6 (19.7–24.9) | 22.6 (19.7–24.8) | 22.4 (19.6–25.8) | 0.96 |

Female BMI was derived by adding the Normal-attenuation MA, Intramuscular adipose tissue area, and Low-attenuation MA.

Myosteatosis area was derived by adding the Low-attenuation MA and Intramuscular adipose tissue area.

Myosteatosis proportion was defined as myostatosis divided by Total abdominal MA.

Data are presented as median (interquartile range).

Abbreviations: BMI, body mass index; SFA, subcutaneous fat area; VFA, visceral fat area; SMA, skeletal muscle area; SMI, skeletal muscle area index; MA, muscle area.
Body composition	Total (n = 896)	Survivors (n = 750)	Non-survivors (n = 146)	P-value
SFA, cm²	137.8 (93.8–181.4)	138.4 (95.6–181.4)	124.9 (81.0–186.6)	0.53
VFA, cm²	91.1 (53.8–133.0)	91.7 (55.6–136.4)	85.4 (33.3–130.1)	0.27
SMA, cm²	90.6 (80.0–100.8)	90.9 (80.3–100.4)	89.3 (79.1–104.0)	0.51
SMI, cm²/m²	37.9 (34.1–41.7)	37.8 (33.9–41.5)	37.9 (34.1–43.6)	0.60
Normal-attenuation AMA, cm²	41.0 (28.2–55.9)	42.4 (28.6–56.0)	33.7 (23.5–53.3)	0.08
Intramuscular adipose tissue area, cm²	17.9 (12.0–25.7)	18.0 (11.9–25.5)	16.8 (12.6–27.0)	0.71
Low-attenuation MA, cm²	48.0 (36.9–58.7)	46.5 (36.6–57.8)	54.3 (40.6–66.6)	<0.01
Total abdominal MA, cm²	109.8 (98.8–121.7)	109.3 (98.7–120.9)	114.8 (99.1–127.7)	0.29
Myosteatosis area, cm²	67.3 (49.4–84.3)	66.8 (48.7–83.0)	75.2 (54.0–95.2)	0.13
Myosteatosis percentage, %	61.5 (47.8–75.1)	60.9 (47.3–74.6)	69.1 (53.1–77.7)	0.05

Total abdominal MA was derived by adding the Normal-attenuation MA, Intramuscular adipose tissue area, and Low-attenuation MA.

Myosteatosis area was derived by adding the Low-attenuation MA and Intramuscular adipose tissue area.

Myosteatosis proportion was defined as myostatosis divided by Total abdominal MA.

Data are presented as median (interquartile range).

Abbreviations: BMI, body mass index; SFA, subcutaneous fat area; VFA, visceral fat area; SMA, skeletal muscle area; SMI, skeletal muscle area index; MA, muscle area.
Table 3
Multivariate analysis of septic shock patients for its association with 28-day mortality

Variables	Univariate analysis				Multivariate analysis		
	OR	95% CI	P-value	OR	95% CI	P-value	
Male				Adjusted			
CAD	0.44	0.16–1.26	0.13	0.44	0.16–1.25	0.12	
Hematologic disorder	1.09	0.44–2.73	0.85				
CKD	0.24	0.05–1.20	0.08	0.22	0.04–1.06	0.06	
Chronic liver disease	1.45	0.76–2.78	0.26				
Urinary tract infection	0.40	0.13–1.28	0.12	0.33	0.11–0.99	0.05	
Intra-abdominal infection	1.39	0.69–2.81	0.36				
Hepato-biliary-pancreas infection	0.52	0.28–0.97	0.04	0.45	0.26–0.77	< 0.01	
Blood stream infection	2.46	0.77–7.88	0.13				
Lactate	1.18	1.09–1.28	< 0.01	1.19	1.10–1.29	< 0.01	
SOFA	1.11	1.02–1.21	0.02	1.13	1.05–1.21	< 0.01	
APACHE	1.01	0.97–1.05	0.68				
SMI	0.97	0.94–1.00	0.07	0.97	0.94–0.99	0.05	
Myosteatosis percentage	1.02	1.01–1.03	0.04	1.02	1.01–1.03	0.04	
Female				Adjusted			
Hematologic disorder	0.65	0.13–3.34	0.61				
Malignancy	2.59	1.25–5.37	0.01	2.77	1.35–5.67	< 0.01	
Lung infection	2.00	0.82–4.88	0.13				
Blood stream infection	3.32	0.87–12.63	0.08	2.97	0.87–10.11	0.08	
Lactate	1.07	0.96–1.19	0.22				
SOFA	1.15	1.01–1.31	0.04	1.19	1.05–1.34	< 0.01	
APACHE	1.08	1.01–1.14	0.02	1.08	1.02–1.14	0.01	

Abbreviations: OR, odds ratio; CI, confidence interval; CAD, coronary artery disease; CKD, chronic kidney disease; SOFA, sequential organ failure assessment; APACHE, acute physiology and chronic health evaluation.
In the univariate analysis, the following covariates were associated with 28-day mortality: coronary artery disease, hematologic disorder, chronic kidney disease, chronic liver disease, urinary tract infection, intra-abdominal infection, hepato-biliary-pancreas infection, bloodstream infection, initial lactate level, SOFA, APACHE, SMI, and myosteatosis percentage for males; hematologic disorders, malignancy, lung infection, bloodstream infection, initial lactate level, SOFA, APACHE, and myosteatosis percentage for females (Supplementary Table 1 and Supplementary Table 2). Multivariable logistic regression analyses for male patients showed that the lower SMI (adjusted OR 0.97; 95% CI 0.94–0.99; \(P = 0.05 \)) and higher myosteatosis percentage (adjusted OR 1.02; 95% CI 1.01–1.03; \(P = 0.04 \)) were independently associated with a lower 28-day mortality. Meanwhile, neither SMI nor myosteatosis percentage was significantly associated with 28-day mortality in females.

Discussion

In this study of body composition involving patients with septic shock, in which SMI was included as independent parameter, the myosteatosis percentage was the parameter that was associated with short-term survivors. Our results implied that abnormal fat disposition in the muscle could negatively impact clinical outcomes by weakening the immune response to pathogens or reducing tolerability to treatment, with the effect being more prominent in males than in females.

Myosteatosis is an abnormal fat depot that increases with age and is known to negatively correlate with muscle strength and mobility and also to impede metabolism [30]. Our results show that myosteatosis is predominant in patients with septic shock. A recent review reported that the overall prevalence of myosteatosis in critically ill patients ranged from 25–40% [17, 31]. This relatively low prevalence was attributed to the difference in the definition of myosteatosis between their study and ours. Traditionally, quantifying myosteatosis was defined by using the mean muscle density of total abdominal muscle [22]. This definition could be inaccurate in detecting the extent of myosteatosis and might under- or over-estimate the proportion of the ectopic fat deposit. Moreover, most studies set single cut-off values (e.g., below 40 HU) for detecting myosteatosis [22]. However, previous studies with healthy study populations showed that the degree of myosteatosis was differed according to age and sex. In this manner, we measured the direct area of normal-attenuation MA and intramuscular adipose tissue and diagnosed myosteatosis based on previously reported cut-off values according to age and sex [26]. Interestingly, this method revealed that a surprising portion of patients with septic shock had myosteatosis and the
differences were largely due to normal-attenuation MA than intramuscular adipose tissue in both males and females.

We identified statistical differences in myosteatosis percentages among 28-day survivors and non-survivors in both males and females. This scaling has a definite physiological basis that the myosteatosis area was largely affected by total abdominal MA. Although causality can be inferred only from randomized controlled trials, we found that myosteatosis could be a surrogate marker for short-term survival among patients with septic shock. This result is in line with those of previous studies which report that the progression of myosteatosis contributed to the development of sepsis [32]. Furthermore, a recent longitudinal laboratory study carried out on mice reported that the amount of myosteatosis had a positive correlation with the severity of inflammation with non-alcoholic fatty liver disease [33]. Although the exact pathologic mechanism has not been completely revealed, it seems to be the result of a complex cascade involving dysregulation of the inflammatory response by excess adipose tissue [34]. A recent pre-clinical study also announced that a worse muscle quality was associated with abnormally higher levels of expression of inflammatory markers, suggesting the existence of abnormal responses to pathogens [35]. Our results also supported this assumption that patients with myosteatosis had more chronic illnesses (such as hypertension, diabetes, and coronary artery disease) and tended to suffer more frequently from severe septic shock (i.e., higher lactate level, SOFA, and APACHE score) (Supplementary Table 3).

Although the myosteatosis percentages differed between survivors and non-survivors, only the male group presented this variable as an independent risk factor for 28-day mortality. Sex-specific differences have been largely reported for fat distribution, properties, secretory function, and fatty acid handling in healthy participants and pre-clinical models [36]. The exact mechanism of this dimorphism is not yet elucidated; however, one possibility is the different proportions of sex hormones because sex steroids seem to act as endogenous modulators of development and function, and also influence the distribution of fat [37, 38].

Limitations

Our study has several limitations. First, because of the single-center retrospective design in South Korea, it might be hard to generalize the results of this study to other populations. Race-ethnic differences in body composition have been widely announced [39]. Because there were no definite cut-off values for myosteatosis area or percentage, we diagnosed myosteatosis based on previous reports and this could over- or under-estimate the prevalence of the condition [26]. However, our study results added data on body composition in the population of Asians who developed septic shock. Second, we analyzed only patients with septic shock who clinically performed CT; given that the utility of CT is limited by its high cost, radiocontrast, and high-dose radiation exposure, the baseline characteristics of the study population showed a relatively low proportion of lung infection and a high proportion of abdominal infection. Finally, the septic shock registry of the study facility excludes patients who refused admission or who signed a “do-not-attempt-resuscitation” order; all these could lead to selection bias.
Conclusion

In conclusion, most patients with septic shock had myosteatosis, which was independently associated with 28-day mortality. Even though this association was evident in male patients, myosteatosis could be a modifiable risk factor for short-term outcomes; therefore, it could be the target of future therapeutic modalities.

List Of Abbreviations

APACHE, acute physiology and chronic health evaluation
BMI, body mass index
CT, computed tomography
ED, emergency department
MA, myosteatosis area
HU, hounsfield units
IQR, interquartile range
SMA, skeletal muscle area
SMI, skeletal muscle index
SFA, subcutaneous fat area
SOFA, sequential organ failure assessment
VFA, visceral fat area

Declarations

Acknowledgments:

Author's contributions: W.Y.K. designed the study and supervised the writing of the paper. J.S.K. contributed to the literature search, figures, study design, data analysis, interpretation and writing, and revisions. J.Y.H. contributed to the figures, data analysis, and revisions. Y.J.K. contributed to the revisions and validation of the study. Y.S.K., T.P., and K.W.K contributed to the study design and data collection.

Funding: This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C1216).
Availability of data and materials: The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate: Reviewed and approved by the IRB of the Asan Medical Center, which waived the requirement for written informed consent.

Consent for publication: Not applicable.

Competing interests: The authors had no competing interests to declare.

References

1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11.

2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315:801–10.

3. Akahori T, Sho M, Kinoshita S, Nagai M, Nishiwada S, Tanaka T, et al. Prognostic significance of muscle attenuation in pancreatic cancer patients treated with neoadjuvant chemoradiotherapy. World J Surg. 2015;39:2975–82.

4. Chu MP, Lieffers J, Ghosh S, Belch A, Chua NS, Fontaine A, et al. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J Cachexia Sarcopenia Muscle. 2017;8:298–304.

5. Dijksterhuis WPM, Pruijt MJ, Woude SO, Klaassen R, Kurk SA, Oijen MGH, et al. Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. J Cachexia Sarcopenia Muscle. 2019;10:199–206.

6. Park J, Gil JR, Shin Y, Won SE, Huh J, You M-W, et al. Reliable and robust method for abdominal muscle mass quantification using CT/MRI: An explorative study in healthy subjects. Plos One. 2019;14:e0222042.

7. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48:16–31.

8. Shen W, Punyanitya M, Wang Z, Gallagher D, St.-Onge M-P, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97:2333–8.

9. Lee K, Shin Y, Huh J, Sung YS, Lee I-S, Yoon K-H, et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol. 2018;20:205.

10. Kim Y-J, Seo D-W, Kang J, Huh JW, Kim KW, Kim WY. Impact of body composition status on 90-day mortality in cancer patients with septic shock: sex differences in the skeletal muscle index. J Clin Medicine. 2019;8:1583.
11. Kaibori M, Ishizaki M, Iida H, Matsui K, Sakaguchi T, Inoue K, et al. Effect of intramuscular adipose tissue content on prognosis in patients undergoing hepatocellular carcinoma resection. J Gastrointest Surg. 2015;19:1315–23.

12. Miljkovic I, Cauley JA, Wang PY, Holton KF, Lee CG, Sheu Y, et al. Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity. 2013;21:2118–25.

13. Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014;210:489–97.

14. Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr. 2010;13:260–4.

15. Okumura S, Kaido T, Hamaguchi Y, Kobayashi A, Shirai H, Fujimoto Y, et al. Impact of skeletal muscle mass, muscle quality, and visceral adiposity on outcomes following resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24:1037–45.

16. Rier HN, Jager A, Sleijfer S, Rosmalen J van, Kock MCJM, Levin M-D. Low muscle attenuation is a prognostic factor for survival in metastatic breast cancer patients treated with first line palliative chemotherapy. Breast. 2017;31:9–15.

17. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018;12:377–86.

18. O’Brien S, Kavanagh RG, Carey BW, Maher MM, O’Connor OJ, Andrews EJ. The impact of sarcopenia and myosteatosis on postoperative outcomes in patients with inflammatory bowel disease. European Radiology Exp. 2018;2:37.

19. Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17:R206.

20. Mueller N, Murthy S, Tainter CR, Lee J, Richard K, Fintelmann FJ, et al. Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients and frailty? A prospective, observational cohort study. Ann Surg. 2016;6:1116–24.

21. Shashaty MGS, Kalkan E, Bellamy SL, Reilly JP, Holena DN, Cummins K, et al. Computed tomography–defined abdominal adiposity is associated with acute kidney injury in critically ill trauma patients. Crit Care Med. 2014;42:1619–28.

22. Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Castillo LM, Williams GR. Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Crit Rev Oncol Hemat. 2019;145:102839.

23. Kim J, Kim Y-J, Kim WY. Characteristics and clinical outcomes of culture-negative and culture-positive septic shock: a single-center retrospective cohort study. Crit Care. 2021;25:11.

24. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.

25. Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion. Crit Care Med. 2015;43:567–73.
26. Kim DW, Kim KW, Ko Y, Park T, Khang S, Jeong H, et al. Assessment of myosteatosis on computed tomography by automatic generation of a muscle quality map using a web-based toolkit: feasibility study. Jmir Medical Informatics. 2020;8:e23049.

27. Poltronieri TS, Paula NS, Chaves GV. Assessing skeletal muscle radiodensity by computed tomography: An integrative review of the applied methodologies. Clin Physiol Funct I. 2020;40:207–23.

28. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.

29. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.”. Clin Nutr. 2010;29:154–9.

30. Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging. Front Physiol. 2020;11:963.

31. Zhuang C-L, Shen X, Huang Y-Y, Zhang F-M, Chen X-Y, Ma L-L, et al. Myosteatosis predicts prognosis after radical gastrectomy for gastric cancer: A propensity score–matched analysis from a large-scale cohort. Surgery. 2019;166:297–304.

32. Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CMM, Sawyer MB, Beaumont C, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7:126–35.

33. Nachit M, Rudder MD, Thissen J, Schakman O, Bouzin C, Horsmans Y, et al. Myosteatosis rather than sarcopenia associates with non-alcoholic steatohepatitis in non-alcoholic fatty liver disease preclinical models. J Cachexia Sarcopenia Muscle. 2021;12:144–58.

34. Reisinger KW, Vugt JLA van, Tegels JJW, Snijders C, Hulsewé KWE, Hoofwijk AGM, et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann Surg. 2015;261:345–52.

35. Zoico E, Corzato F, Bambace C, Rossi AP, Micciolo R, Cinti S, et al. Myosteatosis and myofibrosis: Relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriat. 2013;57:411–6.

36. Santosa S, Hensrud DD, Votruba SB, Jensen MD. The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am J Clinic Nutr. 2008;4:1134–41.

37. White UA, Tchoukalova YD. Sex dimorphism and depot differences in adipose tissue function. Biochimica Et Biophysica Acta Bba - Mol Basis Dis. 2014;1842:377–92.

38. Schorr M, Dichtel LE, Gerweck AV, Valera RD, Torriani M, Miller KK, et al. Sex differences in body composition and association with cardiometabolic risk. Biol Sex Differ. 2018;9:28.

39. Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF, Bauer DC, et al. Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the
health, aging, and body composition study. J Bone Miner Res. 2001;7:1343–52.

Figures

Example of body composition measurements. Muscle quality map generation using a web-based toolkit. After dividing the body composition into three parts (i.e., subcutaneous fat, visceral fat, and skeletal muscle), skeletal muscle was classified into three areas according to certain attenuations (i.e., NAMA, LAMA, and IMAT). The myosteatosis area was defined as the sum of LAMA and IMAT. Abbreviations: IMAT, inter/intramuscular adipose tissue area, LAMA, low-attenuation muscle area, NAMA, normal-attenuation muscle area, SMA, skeletal muscle area, TAMA, total abdominal muscle area.
Flowchart of patient enrollment and allocation in the study. Abbreviations: DNR, do-not-resuscitation; CT, computed tomography.
Figure 3

Distribution of myosteatosis areas and percentage according to the age groups in male and female patients

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Myosteatosissupplementarytable.pdf
- Myosteatosisvisual.pptx