Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications

Aline Yen Ling Wang¹*, and Charles Yuen Yung Loh²*

Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.

Keywords
Episomal induced pluripotent stem cells, EiPSCs, iPSC, therapeutic application

Introduction
Application of the reprogramming techniques first developed by Yamanaka et al.¹ has made possible the conversion of somatic cells to pluripotent stem cells that resemble embryonic stem cells (ESCs). ESCs have been touted as the “Holy Grail” for unrestricted regeneration because of their potential to differentiate into any cell lineage in the body and to replace damaged tissue. Opponents of this technique commonly cite the potential for unethical use or donation of ESCs, which are potential sources of life and embryo formation. With the development of a method to create induced pluripotent stem cells (iPSCs), it is possible to harness the regenerative properties of iPSCs, which resemble ESCs, yet without the ethical controversies associated with the sources of ESCs.

For research purposes, iPSCs can be readily cultured in the laboratory from various somatic cells. Somatic cells of various lineages have been shown to be capable of changing both their morphology and pluripotent potential through the overexpression of four main pluripotent factors: Oct3/4, Sox2, Klf4, and c-Myc (OSKM). The replacement of c-Myc and Klf4 by Nanog and Lin28 has also been shown to be possible when used in conjunction with Oct3/4 and Sox2 during the reprogramming of cells into iPSCs. ² Overexpression of Oct4, Sox2, and Nanog can also reprogram human fetal gut mesentery-derived cells into iPSCs.³ Although Nanog is a dispensable reprogramming factor, it has been reported to be essential for the ability for self-renewal⁴ and generation of stable iPSCs.⁵ In some cases, such as adult mouse neural stem cells, expression of only one factor (Oct4) is sufficient for the generation of iPSCs, even using episomal reprogramming.⁶ A possible reason is the endogenous expression of Sox2, c-Myc, and Klf4 in neural stem cells. In addition, downregulation of p53 using knockdown⁷ and knockout⁸ methods can markedly improve the efficiency of iPSC generation, and only Oct4 and Sox2 are sufficient for iPSC generation under conditions of p53 downregulation.

¹ Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
² St. Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
*Both the authors contributed equally to this article

Submitted: November 21, 2018. Revised: June 11, 2019. Accepted: October 7, 2019.

Corresponding Author:
Aline Yen Ling Wang, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Gueishan, Taoyuan 333, Taiwan.
Email: aline2355@yahoo.com.tw

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
loss12. One possible mechanism to explain the suppression of iPSC generation by p53 is through the inhibition of the expression of Nanog and Oct413. Certain somatic and adult stem cells, such as keratinocytes14 and dental pulp stem cells15, have a greater propensity to be reprogrammed into iPSCs compared with fibroblasts.

The introduction of these pluripotent reprogramming techniques can be divided into integrative and non-integrative methods. When first discovered, viral transduction was used for the insertion of the OSKM genes into the somatic cell genome. However, this may cause disruption to the host’s genome and, with the use of the proto-oncogene c-Myc, gene reactivation could increase the risk of transgene-derived tumor formation16,17. Other methods have been used to reprogram somatic cells into iPSCs. In particular, non-integrative methods such as episomal plasmid delivery of pluripotent OSK genes without c-Myc have been touted as a safer alternative for iPSC generation18,19. Episomal plasmid vectors are also combined with p53 knockdown to generate iPSCs10,20,21. This review focuses on studies of the use of iPSCs generated using episomal plasmids, which are termed “episomal iPSCs” (EiPSCs) to reflect their origin.

Integrative Methods of iPSC Production

Potential issues with integrative methods of iPSC production include the inadvertent introduction of potentially harmful viral components that express certain oncogenes that may lead to tumor formation. Insertion of genes also carries the risk of disrupting the expression of host cell tumor suppressor genes, especially if the insertions occur in an open reading frame or alter the expression of oncogenes in close proximity17. Several viral systems have been introduced to circumvent this issue such as Cre-deletable22 or inducible lentiviruses, which reduce the risk of integration, although concerns have been raised about the use of viral vectors for therapeutic applications. Cre-deletable lentiviruses refer to a Cre recombinase-mediated deletion of a viral genome once integration is complete. This allows for the time-controlled integration, which is self-limiting and hence minimizes the chance of permanent viral genomic integration. Inducible lentivirus commonly refers to a tetracycline- or doxycycline-inducible expression system in lentiviruses, which allows the activation or deactivation of viral genomic DNA in the presence of tetracycline. This also provides some control over the duration of the viral genomic presence and, therefore, the risk of integration with the host genome.

Non-Integrative Methods of iPSC Production

The use of plasmids for the introduction of OSK pluripotent transcription factors has been described, and this method has been successful for reprogramming somatic and adult stem cells. The use of integration-defective viral delivery systems (adenoviruses23, Sendai viruses24), piggyBac systems25, minicircle vectors26, episomal delivery19, mRNA delivery27, protein delivery28, and chemical induction29 in the production of iPSCs has been described. The piggyBac transposition system allows the direct cutting and pasting of sections of DNA to allow insertion and removal of certain sections. Specific deletion and insertion of reprogramming genes can be performed. Minicircle vectors are small circular plasmid derivatives that are freed from all prokaryotic vector parts or bacterial plasmid DNA. However, these are not in widespread use because of the intensive production process. The delivery of mRNA and protein can be much more costly for experimental purposes, and the mRNA or protein is not always inducible downstream. Chemical induction uses specific sets of chemicals and mutagens to allow the reprogramming of cells. By subjecting cells to a specific set of chemicals, researchers have shown that cells can be reprogrammed to their pluripotent state. However, this method is extremely laborious and has unknown safety parameters at present. Episomal plasmid delivery is cost effective, and the plasmid does not integrate when used with common transfection methods. This method provides an effective method for the delivery of plasmids into cells for reprogramming30. The plasmids are readily available on multiple gene platforms and are removed from the host cell through cell division and serial dilution. The use of non-integrative methods of iPSC production has the advantage of producing iPSCs that are free of transgene integration. This has been confirmed by polymerase chain reaction (PCR) analysis, which shows no residual transgenes of viral origin31. For example, the Yamanaka group reported that no residual episomal plasmid DNA could be detected in clones after 11–20 passages20.

Two components of the oriP and Epstein–Barr nuclear antigen-1 (EBNA-1) are also used widely in episomal plasmids32–38. Yu et al. reported that human iPSCs that are completely free of plasmids and transgene sequences could be derived from fibroblasts by a single transfection with oriP/EBNA-1-based episomal plasmids39–42. The footprint-free iPSCs make them safer for clinical application because of the loss of plasmids and transgenes. OriP/EBNA-1 plasmids have a wide host cell range for episomal reprogramming, and a single transfection of episomal plasmids is sufficient for iPSC generation. Compared with the original episomal plasmids without EBNA-1, oriP/EBNA-1 can improve the efficiency of iPSC generation43 through the oriP/EBNA-1-mediated nuclear import and retention of vector DNA44. It can replicate only once per cell cycle. Episomal DNA is lost from cells at a rate of 5% per cell generation because of defects in plasmid synthesis and partitioning45. Subsequently, epimose-free iPSCs can be easily harvested. Although plasmids appear in the first few cell passages immediately after transfection, many studies have used PCR analysis to show complete loss of plasmids and transgenes during extended cell culture20,39–42,46–58. The time point of successful loss of episomes varies between different somatic cell types. The oriP/EBNA-1-based episomal plasmids have
been proven to generate iPSCs very efficiently without the risk of transgenic sequences inserted into the somatic cell genome. Certain comments exist saying iPSCs generated using episomal plasmids with EBNA-1 expressed have residual DNA. This does not appear to be true after reviewing the data presented by Yu et al.39, where the group demonstrated that in fact there were no residual plasmids and transgenes in iPSCs generated by EBNA-based episomal plasmids using PCR and Southern blot analysis.

In an interesting experiment, the efficiency of reprogramming was compared between various methods for generating iPSCs. Reprogramming success rates were similarly high, at around 80%, with Sendai-viral, episomal, and lentivirus methods. mRNA methods alone were reported to have a lower success rate because of massive cell death and detachment. Episomal methods seem to be a good method for producing iPSCs, and the materials can be manufactured using current good manufacturing practices (cGMP). As such, episomal methods remain very useful in the clinical setting.59

Human EiPSC Sources

Multiple cell lineages from humans have been reprogrammed into iPSCs using episomal plasmids. Episomal plasmid reprogramming differs markedly from other forms of reprogramming techniques, such as retroviral transduction, and varied success rates have been reported. Recent trends include the increasing use of episomal plasmid methods for reprogramming various types of human cells for research use and potential clinical applications. The human cells reported to have been successfully reprogrammed into EiPSCs include fibroblasts, epithelial cells, keratinocytes, mononuclear cells from adult peripheral blood, cord blood cells, amniotic fluid stem cells, mesenchymal stromal cells, lymphoblasts, lamina propria progenitor cells from oral mucosa, and urothelial cells obtained from urine. A summary of these reported human EiPSC sources is shown in Table 1. The variety of cell lineages that can be reprogrammed by episomal techniques demonstrates the versatility of this technique, which has been used in many laboratories around the world.

The ease of obtaining several of the human cell types, such as those in peripheral blood or urine, for reprogramming make this method less invasive for donors, and there is an equivalent success rate for producing EiPSCs of similar nature. Obtaining EiPSCs from donors with known specific genetic manipulations also allows for the establishment of cell lines for further research, especially with regards to future developments of gene therapy for these specific conditions. Episomal plasmids have been used to generate EiPSCs from various somatic cells of differing origins. Human mesenchymal stromal cells have been developed into EiPSCs through the episomal plasmid-based expression of Oct4, Sox2, Nanog, Lin28, SV40LT, Klf4, and c-Myc. Other sources reported include human fetal foreskin fibroblasts, and CD34+ cells from cord and peripheral human blood, which shows that peripheral blood mononuclear cells may be a good source of cells for iPSC reprogramming especially because of the low invasiveness when obtaining samples.

Gene Delivery Methods

Delivery of plasmids into cells for reprogramming has been described. These methods include electroporation techniques (using Nucleofector kits), liposomal magnetofection, and Lipofectamine transfection reagents. Liposomal transfection using magnetofection or Lipofectamine refers to the delivery of plasmid DNA via liposomes and allows the merging of cationic liposomes carrying the DNA into the cells. Electroporation is the use of an electric current across cell membranes, which forcibly opens their channels to allow entry of reagents. This method has been described widely and has a higher rate of delivery efficiency but is known to cause cell damage. The use of non-liposomal transfection reagents for episomal plasmid delivery, such as FuGENE HD, has also been reported to have good transfection efficiencies. The company produces a proprietary formula that is touted as non-liposomal but can still deliver DNA and plasmids into cells and therefore works as a transfection kit. Recent work has also shown promise in producing EiPSCs using small molecules instead of feeder cells. A cocktail of molecules has been described for the reprogramming of human somatic cells to iPSCs. These include the MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/activin/nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100, and human leukemia inhibitory factor.

In Vivo Animal Model Applications

Cardiogenic Regeneration

Much attention has focused on the use of iPSCs in cardiac regeneration especially after cardiac infarction, which causes loss of cardiomyocytes that cannot regenerate and are replaced with scar tissue. Both EiPSCs and iPSCs have been differentiated into cardiomyocytes, which shows their potential use in both autologous and allogeneic therapies. A recent study demonstrated that allogeneic EiPSCs cultured from cynomolgus monkeys, when differentiated into cardiomyocytes and injected intramuscularly into infarcted cardiac muscle, induced remuscularization of infarcted muscle tissue. Fibroblasts obtained from the monkeys were reprogrammed using episomal plasmids into EiPSCs, and the EiPSCs-derived cardiomyocytes were then injected into the infarcted cardiac muscle. After a clinical regimen of immunosuppression using methylprednisolone and tacrolimus, the hearts showed improvement in cardiac contractile function without any signs of rejection on postoperative week. The results are promising in showing that direct application of EiPSCS-derived cardiomyocytes is possible. The local environment and conditions under which the EiPSCs were directly...
Type of cell	Source	Patient conditions	Method of transfection	Further differentiation	Author
Fibroblasts	Fetal foreskin	Healthy	Electroporation	N/A	Yu et al.29,41, Matz and Adjave62, Tandon et al.63, Tidball et al.64, Kamath et al.40, Kemel et al.35, Schmitt et al.97, Mah et al.68
Fibroblasts	Fetal foreskin	Healthy	Electroporation	CD235a⁺, CD45⁻ leukocyte-free red blood cells	Dias et al.69
Fibroblasts	Fetal foreskin	Healthy	Electroporation	Cardiomyocytes	Mehta et al.70
Fibroblasts	Fetal foreskin	Healthy	Electroporation	Hepatocyte-like cells	Wruck and Adjave71
Fibroblasts	Fetal lung	Healthy	Poly(beta-amino ester) nanoparticles: Electroporation	Neuronal cells	Bhise et al.72
Fibroblasts	Fetal foreskin	Healthy	Lipofectamine 3000 reagent	N/A	Skrzypczyk et al.73
Fibroblasts	Fetal right musculus quadriceps femoris	Healthy	Lipofectamine 3000 reagent	N/A	Csobonyeova et al.74
Fibroblasts	Fetal foreskin	Homozygous α-thalassemia (SEA/SEA)	Electroporation	Neurospheres	Tangprasertpip et al.75
Fibroblasts	Fetal epidermal tissue from rim of open neural placode and spinal cord	Spina bifida aperta (SBA)	Electroporation	N/A	Bamba et al.80
Fibroblasts	Adult skin	Healthy	Electroporation; Lipofectamine 3000 reagent; Nucleofector system	N/A	Manzini et al.88
Fibroblasts	Adult skin	Healthy	Electroporation	Neural stem cells	Capetian et al.89
Fibroblasts	Adult skin	Healthy	Electroporation	Motor neurons	Hu et al.90
Fibroblasts	Adult skin	Healthy	Electroporation	Neural cells	Wang et al.91
Fibroblasts	Adult skin	Healthy	Electroporation	Neural stem cells, motor neurons, cardiomocytes, and fibroblasts	Requena et al.92
Fibroblasts	Adult skin	Healthy	Electroporation	Dopaminergic neurons and retinal pigment epithelial cells	Okita et al.93
Fibroblasts	Adult skin	Healthy	Electroporation	Smooth muscle progenitor cells	Zhou et al.94
Fibroblasts	Adult skin	Healthy	Electroporation	Retinal pigment epithelial cells	Li et al.95
Fibroblasts	Adult skin	Healthy	Electroporation	Cardiomyocytes	Seqiwa et al.96
Fibroblasts	Adult skin	Healthy	FuGENE HD reagent	Hepatocyte-like and cardiac myocyte-like cells	Si-Tayeb et al.97
Fibroblasts	Adult skin	Healthy	Electroporation	Periodontal cells	Yin et al.98
Fibroblasts	Adult gingival tissues	Healthy	Electroporation	N/A	Tidball et al.99
Fibroblasts	Adult skin	Huntington’s disease	Electroporation	N/A	Hayashi et al.100
Fibroblasts	Adult skin	Fibroedema ossificans progressiva caused by a missense mutation in ACVR1 gene	Electroporation	N/A	Hansen et al.101
Fibroblasts	Adult skin	Spinoocerebellar ataxia type 3	Electroporation	N/A	Rasmussen et al.102,103
Fibroblasts	Adult skin	Frontotemporal dementia caused by mutations in microtubule-associated protein tau (MAPT) gene	Electroporation	N/A	Wang et al.104
Fibroblasts	Adult skin	Maturity-onset diabetes of the young 4 and type 2 diabetes mellitus caused by mutations in PDX1 gene	Electroporation	N/A	Wang et al.105
Fibroblasts	Adult skin	Autosomal recessive Stargardt disease caused by compound heterozygous mutations in ABCA4 gene	Electroporation	N/A	Claussen et al.106
Fibroblasts	Adult skin	X-Chromosomal disease	Electroporation	N/A	Hinz et al.107
Fibroblasts	Adult skin	Becker muscular dystrophy (BMD) caused by mutations in dystrophin gene on chromosome Xp21	Electroporation	N/A	Gowan et al.108

(continued)
Type of cell	Source	Patient conditions	Method of transfection	Further differentiation	Author
Fibroblasts	Adult skin	Spinoocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease) caused by a CAG trinucleotide repeat expansion in ATXN3 gene	Electroporation	N/A	Hayer et al.106
Fibroblasts	Adult skin	Adult-onset x-linked ocular atrophy with axonal spheroids and pigmentary glaucoma (ALSP) caused by a heterozygous mutation in CSF1R gene	Electroporation	N/A	Hayer et al.107
Fibroblasts	Adult skin	Healthy and kidney disease caused by an autosomal dominant mutation in HNF4A gene	Electroporation	N/A	Howden et al.108
Fibroblasts	Adult skin	Prostate adenocarcinoma (PCa)	Electroporation	N/A	Rithilaph et al.,109
Fibroblasts	Adult skin	Dravet syndrome caused by a heterozygous R1525X mutation in SCN1A gene	Electroporation	N/A	Tanaka et al.110
Fibroblasts	Adult skin	Mucopolysaccharidosis IIIA (MPSIIIA)	Electroporation	N/A	Vallejo et al.112
Fibroblasts	Adult skin	Mucopolysaccharidosis IIIB (MPSIIIB)	Electroporation	N/A	Vallejo-Diez et al.113
Fibroblasts	Adult skin	Late-onset non-syndromic retinitis pigmentosa caused by compound heterozygous mutations in CLN3 gene	Electroporation	N/A	Zhang et al.114
Fibroblasts	Adult skin	Autosomal recessive Alport syndrome (ARAS) caused by a homozgyous COL4A3 mutation	Electroporation	N/A	Kuebler et al.115
Fibroblasts	Adult skin	X-linked Alport syndrome (XLAS) caused by hemizygous COL4A5 mutations in exon 41 or exon 46	Electroporation	N/A	Kuebler et al.116
Fibroblasts	Adult skin	Duchenne muscular dystrophy (DMD) lacking DMD exons 49 and 50	Electroporation	N/A	Spaitro et al.117
Fibroblasts	Adult skin	Leber's hereditary optic neuropathy (LHON)	Electroporation	N/A	Hung et al.118
Fibroblasts	Adult skin	Low-grade stenosis	Electroporation	N/A	Kawai et al.119
Fibroblasts	Adult skin	Fibrodysplasia ossificans progressiva syndrome caused by a mutation in ACVR1 gene	Electroporation	N/A	Kim et al.120
Fibroblasts	Adult skin	Alzheimer's disease caused by mutations in PSEN1 gene	Electroporation	N/A	Li et al.,121-122, Poon et al.123, Tubuwan et al.124
Fibroblasts	Adult skin	Familial Mediterranean Fever (FMF)	Electroporation	N/A	Fidan et al.125
Fibroblasts	Adult skin	Turner syndrome (TS) caused by monosomy X	Electroporation	N/A	Luo et al.126
Fibroblasts	Adult skin	Retinitis pigmentosa; Severe combined immunodeficiency	Electroporation	N/A	Howden et al.127
Fibroblasts	Adult skin	Ankylosing spondylitis; Sjogren's syndrome; Systemic lupus erythematosus	Electroporation	N/A	Son et al.128
Fibroblasts	Adult skin	Retinitis pigmentosa-1 caused by a dominant nonsense mutation in PRPF31 gene	Electroporation	N/A	McLennan et al.129
Fibroblasts	Adult skin	Rare neurodevelopmental disorders (NDDs)	Electroporation	N/A	Bell et al.130
Fibroblasts	Adult skin	Down syndrome	Electroporation	N/A	Briggs et al.131
Fibroblasts	Adult skin	Alzheimer's disease caused by mutations in PSEN1 gene	Electroporation	N/A	Mahariskomics et al.132
Fibroblasts	Adult skin	Low-density lipoprotein receptor (LDLR) deficiency familial hypercholesterolemia (FH)	Electroporation	N/A	Ramakrishnan et al.133
Keratinocytes	Adult skin	Healthy	FuGENE HD reagent	N/A	Piao et al.134
Mononuclear cells	Fetal peripheral blood	Healthy	Electroporation	N/A	Dowey et al.135
Mononuclear cells	Neonatal peripheral blood and cord blood	Healthy	Electroporation	N/A	Kamath et al.136
Mononuclear cells	Adult peripheral blood	Healthy	Electroporation	N/A	Okita et al.137, Wen et al.138, Wang et al.139, Su et al.140, Ting-Pei et al.,141, Mack et al.142, Chou et al.143
Mononuclear cells	Adult peripheral blood	Healthy	Electroporation	N/A	Hu et al.144
Mononuclear cells	Adult peripheral blood	Healthy	Electroporation	N/A	Weng et al.145

(continued)
Type of cell	Source	Patient conditions	Method of transfection	Further differentiation	Author
Mononuclear cells	Adult peripheral blood	Healthy	Electroporation	Hepatocytes	Liu et al.
Mononuclear cells	Adult bone marrow	Healthy	Electroporation	Mesenchymal stem cells	Thien-Han et al.
Mononuclear cells	Adult peripheral blood	Alzheimer’s disease	Electroporation	N/A	Wang et al.
Mononuclear cells	Adult peripheral blood	Bipolar disorder (BD)	Electroporation	N/A	Wang et al.
Mononuclear cells	Adult peripheral blood	Obsessive compulsive disorder (OCD)	Electroporation	N/A	Wang et al.
Mononuclear cells	Adult peripheral blood	Parkinson disease	Electroporation	N/A	Zhao et al.
Mononuclear cells	Adult peripheral blood	Complete dopa-responsive dystonia (DYT5) caused by a GCH1 mutation	Electroporation	N/A	Murakami et al.
Mononuclear cells	Adult peripheral blood	Hypertrophic cardiomyopathy caused by mutations in beta-myosin heavy chain (MYH7) gene	Electroporation	N/A	Ross et al.
Mononuclear cells	Adult peripheral blood	Sick cell anemia (SCA)	Electroporation	CD34+CD56+ hematopoietic stem and progenitor cells	Junqueira Reis et al.
Mononuclear cells	Adult bone marrow	Myocardial infarction	Electroporation	Cardiomyocytes	Malecki et al.
Mononuclear cells	Adult bone marrow	Healthy	Electroporation	Mesenchymal stem cells, adipocytes, chondrocytes, and osteoblasts	Tang et al.
Mononuclear cells	Adult peripheral blood	Myelodysplastic syndromes (MDS) and bone marrow	Electroporation	CD34+CD56+ hematopoietic stem and progenitor cells (HPC), and CD71+CD235α+ erythroid cells	Hsu et al.
Erythroblast	Adult peripheral blood	Healthy; Chronic myeloid leukemia	Electroporation	CD34+CD43+CD45+ hematopoietic progenitors, CD34+CD117+CD45+ endothelial cells, and CD34+CD31+CD43+ mesenchymal cells	Hu et al.
Cord blood CD34+ cells	Fetal cord blood	Healthy	Electroporation	N/A	Chou et al.
Amniotic fluid cells	Fetal amniotic fluid	Healthy	Electroporation	N/A	Slamecka et al., He et al.
Amniotic fluid cells	Fetal amniotic fluid	Healthy	Electroporation	Neural cells	Wilson et al.
Amniotic fluid cells	Fetal amniotic fluid	Trisomy 18 (18T)	Electroporation	N/A	Xing et al.
Mesenchymal stromal cells	Fetal amnion	Healthy	Electroporation	N/A	Slamecka et al.
Mesenchymal stromal cells	Fetal femur	Healthy	Electroporation	N/A	Meggus et al.
Mesenchymal stromal cells	Adult subcutaneous fat	Healthy	Electroporation	N/A	Gobeli et al., Fojà et al.
Mesenchymal stromal cells	Adult dental pulp	Healthy	Electroporation	N/A	Qu et al.
Mesenchymal stromal cells	Adult parotid gland	Squamous cell carcinoma of oral cavity	Electroporation	N/A	Tan et al.
Neural stem cells	Neonate	Healthy	Electroporation	N/A	Marchetto et al.
Neural stem cells	Fetal cortical tissue	Healthy	Electroporation	N/A	Zhou et al.
Lymphoblast	Adult peripheral blood	Healthy	Electroporation	N/A	Schröter et al.
Lymphoblast	Adult peripheral blood	Parkinson’s disease	Electroporation	N/A	Barrett et al.
Lymphoblast	Adult peripheral blood	Alzheimer’s disease caused by a TREM2 missense mutation	Electroporation	N/A	Kumar et al.
Lymphoblast	Adult peripheral blood	Alzheimer’s disease caused by a homozygous APOE4 allele mutation	Electroporation	N/A	Zuffi et al.
Lymphoblast	Adult peripheral blood	Alzheimer’s disease with different genotypes of a functional copy number variation in the AD risk gene CR1; AD with TREM2 p.R47H variant	Electroporation	N/A	Schröter et al.
Lymphoblast	Adult peripheral blood	APOE e3/e3 genotype and expressing CR1 isoform F/F (low risk of Alzheimer’s disease)	Electroporation	N/A	Martins et al.
Type of cell	Source	Patient conditions	Method of transfection	Further differentiation	Author
----------------------	---------------------------------	---	------------------------	---	-------------------------
T cells	Adult peripheral blood	Healthy	Electroporation	Neuronal cells	Tsai et al.33
T cells	Adult peripheral blood	Age-related macular degeneration	Electroporation	Retinal pigment epithelial cells	Chang et al.34
B cells	Adult peripheral blood	Healthy	Electroporation	N/A	Choi et al.55
B cells	Adult peripheral blood	Healthy	Electroporation	Hematopoietic, cardiac, neural, and hepatocyte-like lines	Rajesh et al.42
B cells	Adult peripheral blood	Parkinson’s disease	Electroporation	Neurons and neural cells	Fujimori et al.187
Lamina propria progenitor cells	Adult oral mucosal	Healthy	Electroporation	N/A	Howard-Jones et al.188
Oral mucosa epithelial stem cells	Adult oral mucosal	Healthy	Electroporation	N/A	Alvisi et al.189
Oral mucosa epithelial stem cells	Adult oral mucosal	Ectrodactyly-ectodermal dysplasia-confing (EEC) syndrome caused by a R279H mutation in TP63 gene	Electroporation	N/A	Trevi et al.190
Urine cells	Adult urine	Healthy	Electroporation	N/A	Fujimori et al.187
Urine cells	Adult urine	Healthy	Electroporation	Hepatocyte-like cells	Si-Tayeb et al.192
Urine cells	Adult urine	Multiple endocrine neoplasia type 1 (MEN1) (also termed Wermer syndrome) caused by mutations in tumor suppressor gene MEN1	Electroporation	N/A	Guo et al.199
Urine cells	Adult urine	Type 2 long QT syndrome caused by a mutation in HERG A561P gene	Electroporation	Cardiomyocytes	Journi et al.194
Urine progenitor cells	Adult urine	Healthy	Lipofectamine 3000 reagent	N/A	Steichen et al.195
Urine epithelial cells	Adult urine	Healthy	Electroporation	Hepatocytes	Ju et al.196
Urine epithelial cells	Adult urine	Healthy	Electroporation	N/A	Sauer et al.197
Urine epithelial cells	Adult urine	Phenyketonuria (PKU)	Electroporation	Motor neurons	Qie et al.197
Urine epithelial cells	Adult urine	Spinal muscular atrophy (SMA) caused by mutations in survival motor neuron 1 (SMNI) gene	Electroporation	N/A	Zhou et al.198
SIX2-positive renal cells	Adult urine	An African male expressing the CYP2D6*4/*17 variant which confers intermediate drug metabolizing activity	Electroporation	N/A	Bohndorf et al.199
Epicardium-derived cells	Adult atrial biopsy	Healthy	Electroporation	Cardiac myocytes	
Neonatal fibroblasts; Adult skin fibroblasts; Urine epithelial cells; Amniotic fluid cells	Neonatal and adult skin; adult urine	Healthy	PEI reagent	N/A	
Fibroblasts; Urine epithelial cells	Adult skin; adult urine	Healthy	PEI reagent	Insulin producing cells	Walczak et al.38
Fibroblasts; Mononuclear cells	Adult skin; Adult peripheral blood	Healthy	PEI reagent	Cardiomyocytes, endothelial cells, and neuronal cell	Dicke et al.201
Fibroblasts; Mononuclear cells	Adult skin; Adult peripheral blood	Healthy	PEI reagent	Cardiomyocytes, endothelial cells, and neuronal cell	Dicke et al.201
Mononuclear cells,	Adult peripheral blood	Healthy	PEI reagent	Vascular endothelial cells	Ikeda et al.202
Fetal fibroblasts; Adult fibroblasts; Keratinocytes; Cord blood CD34+ cells	Adult skin; Adult skin; Adult skin; Fetal cord blood	Healthy	PEI reagent	Cardiomyocytes	Cheng et al.203
Fibroblasts; Cord blood CD34+ cells	Adult skin; Fetal cord blood	Healthy	PEI reagent	Vascular progenitor cells	Park et al.204
Fibroblasts; Keratinocytes	Adult skin; Hair follicle	Healthy	PEI reagent	Cardiomyocytes	Park et al.205
Cancer cells	Adult lung	Healthy	PEI reagent	Cardiomyocytes	Song et al.206
					Zhao et al.207
injected allowed for their direct use and differentiation according to clinical need. A diagram of the potential application for an EiPSCs-engineered cardiac cell sheet is shown in Fig. 1.

One problem with bioengineered tissue is that it cannot be used to create a large structure, which requires thorough oxygenation, because of the lack of vascularization in the bioengineered construct. EiPSCs were reported to regenerate vascular tissue if some were first converted to patient-specific cardiovascular progenitor cells, which then differentiated into vascular smooth muscle cells to make up the vascular scaffold present in blood vessels. This new development heralds the potential for integration and creation of larger bioengineered constructs that can become vascularized. This suggests the potential ability to design whole organs with vascularized networks made from the patient’s cells, which are then attached using conventional surgical methods. This may allow the organ to be manufactured in the laboratory and vascularized.

Peripheral Nerve Regeneration

EiPSCs have shown promise in promoting the regeneration of peripheral nerves in a mouse sciatic transection model. Transection or neurotmesis of peripheral nerves is notoriously difficult to recover and usually leads to wasting of motor end plates, muscle atrophy, and functional loss, which markedly impairs the patient’s quality of life. In this mouse model, undifferentiated EiPSCs were applied to the transected ends of the sciatic nerves after coaptation of both ends by suturing. Compared with the negative control without cell administration, sciatic nerves treated with EiPSCs displayed significantly faster axonal regeneration and a ration of the degree of myelination to axonal diameter. These positive changes were similar to those observed in the ESC group, which acted as a positive control. The results of this study demonstrate the neuroregenerative potential of EiPSCs. One possible mechanism includes the increased expression of neutrophin-3, a neuronal growth factor, which can accelerate axonal regeneration and myelination. Direct application of EiPSCs to the site of injury and nerve transection presumably allowed the EiPSCs to act through a paracrine mechanism due to its direct effect and fast nature; they probably differentiate but rather, when applied to the environment, promoted sciatic nerve recovery through the upregulation of neutrophin-3 and subsequent secretion of neuronal growth factor by the EiPSCs themselves. The diagram in Fig. 2 shows a depiction of the actions of EiPSCs on mouse transected peripheral nerve regeneration.

Ischemic Stroke Therapy

Mouse embryonic fibroblasts reprogrammed into EiPSCs using episomal plasmid transfection were delivered and used
to treat mice in an ischemic stroke model213. To avoid oncogenic and virus integration, while generating EiPSCs, two expression plasmids, Oct4 and Sox2, were repeatedly transfected into fibroblasts under hypoxic condition. The EiPSCs were first differentiated into neural precursor cells before being injected into the brain of mice after the induced ischemic stroke. The authors observed evidence of the differentiation of precursor cells into neurons and astrocytes. They concluded that these observed changes resulted in better behavioral recovery including locomotor activity, beam walking, and rotarod movement compared with control mice.

Smooth Muscle Regeneration

The use of EiPSCs in the regeneration of smooth muscle cells for the treatment of stress-induced urinary incontinence has also been described214. Inadequate muscle sphincter function is a possible cause for urinary incontinence, and regeneration of smooth muscles at this sphincter may increase sphincter tone and hence urinary continence and control. The group here conducted experiments in rat urethral sphincters which were surgically weakened, resulting in urinary incontinence. Smooth muscle precursor cells were then differentiated from human EiPSCs and injected periurethrally to enhance muscle tone. Leak pressure and sphincter muscle electromyography were measured as markers of recovery. The group with the EiPSCs-derived smooth muscle injection showed recovery of the sphincter compared with the control without cell administration, which suggested that this method of treatment may be possible for restoration of urethral sphincter function.

EiPSCs currently have the potential for cardiac regeneration to replace damaged myocardium. The topical application of cells to regenerate a limited area appears promising, but reconstructing an entire cardiac structure requires further bioengineering advances to deliver blood supply to the entire organ. The use of EiPSCs in peripheral nerve regeneration can improve transected nerve recovery. Direct applications after surgical repair can enhance recovery through nerve growth factor secretion. In ischemic stroke therapy, EiPSCs may have potential for improving the recovery of damaged neural cells in the brain by differentiating into neurons and astrocytes, which should result in better motor recovery. EiPSCs can also play a role in regeneration of smooth muscle cells, leading to restoration of muscle sphincter function in urinary incontinence. A summary of the EiPSCs used in various functional studies is shown in Table 2211–214.

Clinical Trials

Current clinical trials known at the time of writing this review all involve iPSCs derived from retroviral transduction. A trial of the replacement of retinal pigment epithelium...
cells (RPEs) in age-related macular degeneration (ARMD) was recently continued and is in progress. The human iPSCs used in this case were derived from retroviral reprogramming. Human iPSC-derived RPE cell sheets were generated without any artificial scaffolds, express typical RPE cell markers, form tight junctions that exhibit polarized secretion of growth factors, and show phagocytotic ability and gene-expression patterns similar to those of native RPE cells. The monolayer cell sheets have potential use as a graft for tissue replacement therapy for ARMD.

The trial was temporarily halted because spontaneous genetic mutations were found in the generation of iPSCs. The spontaneous mutations comprised six mutations, in which three genes had been deleted and another three nucleotides changed. One of the mutations was an "oncogene," which has a low-risk link to cancer. None of these mutations were present in the patient’s original DNA makeup. The appearance of mutations was deemed to be either the result of the iPSC induction procedure or the presence of undetectable levels in the patient’s somatic skin cells initially. As the risk of carcinogenesis was low, the trial was continued as planned.

Currently registered trials focus on platelet generation for treating various anemias. However, the research group faced the problem of the mass production of platelets required for effective clinical use. Other trials involve the differentiation of dopaminergic neurons piloted for use in Parkinson’s disease. Retinal ganglion cells are also being used for treatment of glaucoma and optic neuropathies. Except for the current trial in Japan of the use of RPE cells for wet ARMD mentioned above, all of these trials are in the preclinical or animal model stages. Guidelines for further clinical trials for stem cell research involving patients and iPSCs were issued by the International Society for Stem Cell Research in 2016. These guidelines suggest that the donor cell procurement should be checked for the preclinical or animal model stages. Guidelines for further clinical trials for stem cell research involving patients and iPSCs were issued by the International Society for Stem Cell Research in 2016. These guidelines suggest that the donor cell procurement should be checked for the preclinical or animal model stages.

Table 2. Summary of EiPSCs used in Various Functional Studies.

Type of cell	Animal model	Method of transfection	Differentiated cell type	Functional application	Author
Mouse fibroblasts	Mouse	FuGENE HD reagent	Neural precursor cells	Ischemic stroke therapy	Liu et al.
Mouse fibroblasts	Mouse	Lipofectamine 3000 reagent	N/A	Transected peripheral nerve recovery	Loh et al.
Primate fibroblasts	Cynomolgus	Electroporation	Cardiomyocytes	Myocardial infarction recovery	Shiba et al.
Human fibroblasts	Rat monkey	Electroporation	Smooth muscle cells	Urethral spincter recovery	Wang et al.

The evidence for the safety of the use of EiPSCs in animal models is only now emerging, and there is a paucity of evidence in this area. Mice given EiPSCs at the site of the transected sciatic nerve displayed no formation of tumors locally at the site of application. Distant sites and major organs were also examined histologically for the presence of tumors after 1 year of follow-up. Normal behavior and health of the mice were recorded, and no ill effects of EiPSCs were reported in this group. Another study found no aberrant growths from differentiated EiPSCs that were added to primate hearts regeneration after a myocardial infarction. Neither macroscopic nor microscopic analysis revealed any evidence of tumor formation at 12 weeks after transplantation of the EiPSCs-derived cardiomyocytes. One possible reason is that the EiPSCs used were completely differentiated, with minimal residual EiPSCs present remaining after grafting, which resulted in no tumor formation. Because viral or integrative reprogramming techniques may alter gene expression, the use of episomal reprogramming techniques in the production of EiPSCs may reduce the risk of tumor transformation. Further evidence is required to understand more about the safety of the use of EiPSCs and to substantiate the hypothesized mechanisms of action. One possible future direction is to compare the formation of tumors in two groups—undifferentiated EiPSCs and iPSCs generated from other methods such as retroviruses grafted onto recipients. The possible lack of tumor formation seen in EiPSC-transplanted groups from such a study design would provide evidence of its safety.

Yamanaka Cell Bank: A Future in Autologous and Allo-iPSC Therapy

With the recent establishment of the Yamanaka stem cell bank at the RIKEN BioResource Center in Japan, several human iPSC cell lines have been produced in preparation for future research or clinical application. A switch to episomal methods of iPSC production is evident from the most recent human iPSC cell lines formed at the Yamanaka stem cell bank. As mentioned previously, to enable use of the cells clinically, particular attention should be paid to the methods of iPSC production that favor episomal methods. The Yamanaka stem cell bank has successfully produced multiple human cell lines of EiPSCs using transformation of human cells from various types. EiPSCs have been produced from human skin fibroblasts (cell numbers HPS0076, HPS0077), human cord blood (cell numbers HPS0328,
Other than the two initial cell lines produced from human, which were obtained using retroviral transduction without c-Myc, the five more recently developed human EiPSC cell lines were produced purely via episomal vectors. A diagram showing the potential for an EiPSC bank is depicted in Fig. 3.

The immunogenicity of iPSCs generated remains an unknown area of research. A recent study showed a possible immune response toward smooth muscle cells derived from iPSCs but not the RPE from iPSCs\(^{223}\). Possible strategies for by-passing a possible immune response include the development of humanized iPSC-derived RPE cells for transplantation. In a humanized mouse model, Zhao et al. found that the smooth muscle cells induced a strong antigenic response by the host’s immune system which was not evident when RPE cells were used. The potential use of immunosuppression must be considered for the clinical use and clinical trials of iPSCs. If there is evidence of rejection of tissue as for a foreign host, immunosuppressants should be administered when the cells are delivered to the recipient. The use of iPSCs for treating Parkinson’s disease has been reported in Japan. However, certain clinical considerations, such as the safety and therapeutic use of iPSCs in patients with Parkinson’s disease, are needed. Clinical trials are underway for examining this aspect of iPSC use and treatment. Current rapid integration into its clinical use should continue to surface within the next few years\(^{224}\).

Conclusion

The future of EiPSCs lies in the increasing trend for the use of cell therapy in the treatment of various diseases because of their regenerative properties. Differentiating these cells before use or their direct application requires further investigation. The immunogenicity of allogeneic EiPSCs will also need to be determined for the tissue both derived and differentiated from these cells.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This

Figure 3. The potential for an EiPSC bank. The pluripotent potential of EiPSCs allows them to differentiate into various cell lineages for repair and regeneration. Fibroblasts from healthy donors can be harvested and reprogrammed into EiPSCs and stored in a cell bank. These EiPSCs can then be differentiated into various cell lineages for repair and regeneration according to the needs of individual patients. So far, these cells include cardiomyocytes, hematopoietic progenitor cells, neural cells, adipocytes, and pancreatic islet cells. Each of these cells can be used to replace damaged cells in patients and provide a novel therapeutic potential for each clinical scenario. For any allogeneic transfer of EiPSCs, MHC mismatch typing can first be performed to minimize any chance of MHC mismatch incompatibility before selecting the least antigenic EiPSC bank sample to be transferred to the patient.
work was supported by grants from Chang Gung Medical Foundation, Chang Gung Memorial Hospital, Taiwan (CMRPG1F0082, CMRPG3F1431, CMRPG1H0081 and CMRPG1H0082) and Ministry of Science and Technology, Taiwan (MOST 108-2314-B-182A-009).

ORCID iD
Aline Yen Ling Wang @ https://orcid.org/0000-0001-6272-6948

References

1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruott V, Stewart R, Slukvin II, et al. Induced pluripotent stem cells lines derived from human somatic cells. Science. 2007;318(5858):1917–1920.
3. Li Y, Zhao H, Lan F, Lee A, Chen L, Lin C, Yao Y, Li L. Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG. Cell Reprogram. 2010;12(3):237–247.
4. Schwarz BA, Bar-Nur O, Silva JC, Hochedlinger K. Nanog is dispensable for the generation of induced pluripotent stem cells. Curr Biol. 2014;24(3):347–350.
5. Olariu V, Lövkvist C, Sneppen K. Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep. 2016;6:25438.
6. Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verna PJ. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci. 2011;89(9):2708–2716.
7. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrlich M, van den Boom D, Meyer J, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–419.
8. Zhou S, Liu Y, Feng R, Wang C, Jiang S, Zhang X, Lan F, Li Y. Survivin improves reprogramming efficiency of human neural progenitors by single molecule OCT4. Stem Cells Int. 2016. doi:10.1155/2016/472935.
9. Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, et al. Two supporting factors greatly improve the efficiency of human iPS cell generation. Cell Stem Cell. 2008;3(5):475–479.
10. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460(7259):1132–1135.
11. Li Y, Feng H, Gu H, Lewis DW, Yuan Y, Zhang L, Yu H, Zhang P, Cheng H, Miao W, Yuan W, et al. The p53-PUMA axis suppresses iPS generation. Nat Commun. 2013;4:2174.
12. Lin T, Lin Y. p53 switches off pluripotency on differentiation. Stem Cell Res Ther. 2017;8(1):44.
13. Solozobova V, Blattner C. p53 in stem cells. World J Biol Chem. 2011;2(9):202–214.
14. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–1284.
15. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19(4):469–480.
16. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321(5889):699–702.
17. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–317.
18. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5930):949–953.
19. Okita K, Hong H, Takahashi K, Yamanaka S. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc. 2010;5(3):418–428.
20. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–412.
21. Tidball AM, Neely MD, Chamberlin R, Aboud AA, Kumar KK, Han B, Bryan MR, Aschner M, Ess KC, Bowman AB. Genomic instability associated with p53 knockdown in the generation of Huntington’s disease human induced pluripotent stem cells. PLoS One. 2010;11(3):e0150372.
22. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–1923.
23. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27(11):2667–2674.
24. Fusaki N, Ban H, Nishiyama A, Sasaki N, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–362.
25. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–770.
26. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, et al. A nonviral minicircle vector for deriving human iPS cells from adult mouse liver. Nature. 2009;458(7239):766–770.
27. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–630.
28. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–476.

29. Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell. 2009;4(1):16–19.

30. Vdovin AS, Lupatov AY, Khloodenko IV, Yarygin KN. Comparison of the efficiency of viral transduction and episomal transfection in human fibroblast reprogramming. Bull Exp Biol Med. 2015;160(1):123–128.

31. O’Doherty R, Greiser U, Wang W. Nonviral methods for inducing pluripotency to cells. Biomed Res Int. 2013;2013:705902.

32. Drozd AM, Walczak MP, Piaskowska S, Stocznyska-Fidelus E, Rieske P, Grzelza DP. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 2015;6(1):122.

33. Tsai PH, Chang YC, Lee YY, KoYL, Yang YH, Lin CF, Chang YL, Yu WC, Shih YH, Chen MT. Differentiation of blood T cells: reprogramming human induced pluripotent stem cells into neuronal cells. J Chin Med Assoc. 2015;78(6):353–359.

34. Chang YC, Chang WC, Hung KH, Yang DM, Cheng YH, Liao YW, Woung LC, Tsai CY, Hsu CC, Lin TC, Liu JH, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191.

35. Hayashi Y, Hsiao EC, Sami S, Lancerro M, Schlieve CR, Nguyen T, Yano K, Nagashishi A, Ikeya M, Matsumoto Y, Nishimura K, et al. BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci U S A. 2016;113(46):13057–13062.

36. Bharathasan VP, Manian KV, Aalam SM, Palani D, Deshpande PA, Pratheesh MD, Srivastava A, Velayudhan SR. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6(1):100–108.

37. Weitner JL, Balboa D, Katayama S, Bespalov M, Krijtusov K, Jouhihali EM, Trokovic R, Kere J, Jotonkoski T. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9(1):2643.

38. Wallczak MP, Drozd AM, Stocznyska-Fidelus E, Rieske P, Grzelza DP. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PD1X and NKK6.1 factors in IPC progenitors. J Transl Med. 2016;14(1):341.

39. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.

40. Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y. Efficient feeder-free episomal reprogramming with small molecules. PLoS One. 2011;6(3):e17557.
stem cells from chimpanzees: a resource for comparative functional genomics. Elife. 2015;4:1–29.
54. Jung-Klawitter S, Blau N, Sebe A, Ebersold J, Gühring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17(3):580–583.
55. Choi SM, Liu H, Chaudhari P, Kim Y, Cheng L, Feng J, Sarkis S, Ye Z, Jang YY. Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood. 2011;118(7):1801–1805.
56. Meng X, Neises A, Su RJ, Payne KJ, Ritter L, Gridley DS, Wang J, Sheng M, Lau KH, Baylink DJ, Zhang XB. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther. 2012;20(2):408–416.
57. Pollini D, Loffredo R, Cardano M, Conti L, Lattante S, Notarangelo A, Sabatelli M, Provenzani A. Generation and characterization of a human iPSC line from an ALS patient carrying the Q66K-MATR3 mutation. Stem Cell Res. 2018;33:146–150.
58. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One. 2009;4(9):e7076.
59. Schlaeger TM, Daheron L, Brickler TR, Entwistle S, Chan K, Cianci A, DeVine A, Ettinger A, Fitzgerald K, Godfrey M, Gupta D, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015;33(1):58–63.
60. Megges M, Oreffo RO, Adajye J. Episomal plasmid-based generation of induced pluripotent stem cells from fetal femur-derived human mesenchymal stromal cells. Stem Cell Res. 2016;16(1):128–132.
61. Hu J, Wang Y, Jiao J, Liu Z, Zhao C, Zhou Z, Zhang Z, Forde K, Wang L, Wang J, Baylink DJ, et al. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials. 2015;73:51–59.
62. Matz P, Adajye J. Episomal-based generation of an iPSC cell line from human fetal foreskin fibroblasts. Stem Cell Res. 2016;16(1):67–69.
63. Tandon R, Brändl B, Baryshnikova N, Landshammer A, Steenpaß L, Kemeni O, Pless O, Müller FJ. Generation of two human isogenic iPSC lines from fetal dermal fibroblasts. Stem Cell Res. 2018;33:120–124.
64. Tidball AM, Swaminathan P, Pang LT, Parent JM. Generating loss-of-function iPSC lines with combined CRISPR indel formation and reprogramming from human fibroblasts. Bio Protoc. 2018;8(7):e2794.
65. Kamath A, Ternes S, McGowan S, English A, Mallampalli R, Moy AB. Efficient method to create integration-free, virus-free, Myc and Lin28-free human induced pluripotent stem cells from adherent cells. Future Sci OA. 2017;3(3):FSO211.
66. Kim KM, Heo DR, Lee JY, Seo CS, Chung SK. High-efficiency generation of induced pluripotent stem cells from human foreskin fibroblast cells using the Sagunja-tang herbal formula. BMC Complement Altern Med. 2017;17(1):529.
67. Schmitt CE, Morales BM, Schmitz EMH, Hawkins JS, Lizama CO, Zape JP, Hsiao EC, Zovein AC. Fluorescent tagged epiposmals for stoichiometric induced pluripotent stem cell reprogramming. Stem Cell Res Ther. 2017;8(1):132.
68. Mah N, Wang Y, Liao MC, Prigione A, Jozefczuk J, Lichtner B, Wolfrum K, Haltmeier M, Flöttmann M, Schafer M, Hahn A, et al. Molecular insights into reprogramming-initiation events mediated by the OSKM gene regulatory network. PLoS One. 2011;6(8):e24351.
69. Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, Slukvin II. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20(9):1639–1647.
70. Mehta A, Chung YY, Ng A, Iskandar F, Atan S, Wei H, Dusting G, Sun W, Wong P, Shim W. Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovasc Res. 2011;91(4):577–586.
71. Wruck W, Adjaye J. Human pluripotent stem cell derived HLC transcriptome data enables molecular dissection of hepatogenesis. Sci Data. 2018;5:180035.
72. Bhise NS, Wahlin KJ, Zack DJ, Green JJ. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells. Int J Nanomedicine. 2013;8:4641–4658.
73. Skrzypczyk A, Giri S, Bader A. Generation of induced pluripotent stem cell line from foreskin fibroblasts. Stem Cell Res. 2016;17(3):572–575.
74. Csonboyeviová M, Krajciiova L, Nicodemou A, Polak S, Danisovic L. Induction of pluripotency in long-term cryopreserved human neonatal fibroblasts in feeder-free condition. Cell Tissue Bank. 2017;18(1):45–52.
75. Tangprasittipap A, Satirapod C, Jittorntrum B, Lertritanan S, Anurathaphan U, Phanthong P, Sitiyannant N, Hongeng S. Generation of iPSC line MU011.A-hiPS from homozygous alpha-thalassemia fetal skin fibroblasts. Stem Cell Res. 2015;15(3):506–509.
76. Bamba Y, Nonaka M, Sasaki N, Shofuda T, Kanematsu D, Suemizu H, Higuchi Y, Pooh RK, Kanemura Y, Okano H, Yamasaki M. Generation of induced pluripotent stem cells and neural stem/progenitor cells from newborns with spina bifida aperta. Asian Spine J. 2017;11(6):870–879.
77. Wong RCB, Hung SS, Jackson S, Singh V, Khan S, Liang HH, Kearns LS, Nguyen T, Conquest A, Daniszewski M, Hewitt AW, et al. Generation of a human induced pluripotent stem cell line CERAi001-A-6 using episomal vectors. Stem Cell Res. 2017;22:13–15.
78. Bang JS, Choi NY, Lee M, Ko K, Lee HJ, Park YS, Jeong J, Chung HN, Ko K. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts. Anim Cells Syst (Seoul). 2018;22(2):132–139.
79. Hey CAB, Saltökova KB, Bisgaard HC, Möller LB. Comparison of two different culture conditions for derivation of early hiPSC. Cell Biol Int. 2018;42(11):1467–1473.
80. Jaffer S, Goh P, Abbassian M, Nathwani AC. Mbd3 promotes reprogramming of primary human fibroblasts. Int J Stem Cells. 2018;11(2):235–241.

81. Trevisan M, Desole G, Costanzi G, Lavezzi E, Palù G, Barzon L. Reprogramming methods do not affect gene expression profile of human induced pluripotent stem cells. Int J Mol Sci. 2017;18(1):206.

82. Fidan K, Ebrahimi A, Çağlayan OH, Özçimen B, Önder TT. Transgene-free disease-specific iPSC generation from fibroblasts and peripheral blood mononuclear cells. Methods Mol Biol. 2016;1353:215–231.

83. Wang PY, Hung SS, Thiessen H, Kingshott P, Wong RC. Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs). Sci Rep. 2016;6. doi:10.1038/srep36845.

84. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–429.

85. Polanco JC, Ho MS, Wang B, Zhou Q, Wolvateg E, Mason E, Wells CA, Kolle G, Grimmond SM, Bertoncello I, O’Brien C, et al. Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency. Stem Cells. 2013;31(8):1498–1510.

86. Willmann CA, Hemeda H, Pieper LA, Lenz M, Qin J, Joussen S, Sontag S, Wanek P, Denecke B, Schüler HM, Zenke M, et al. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture. PLoS One. 2013;8(5):e65324.

87. Hoffding MK, Hyttel P. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cell Res. 2015;14(1):39–53.

88. Manzini S, Viiri LE, Marttila S, Aalto-Setälä K. A comparative view on easy to deploy non-integrating methods for patient-specific iPSC production. Stem Cell Rev. 2015;11(6):900–908.

89. Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhard EM, Klett M, Meier B, Seibler P, Stanisłowsky N, Moser A, et al. Plasmid-based generation of induced neural stem cells from adult human fibroblasts. Front Cell Neurosci. 2016;10:245.

90. Wang J, Gu Q, Hao J, Bai D, Wang L, Liu Z, Zhou Q. Efficient derivation of human induced pluripotent stem cells with a c-myc-free non-integrating episomal vector. J Genet Genomics. 2016;43(3):161–164.

91. Requena J, Alvarez-Palomo AB, Codina-Pascual M, Delgadomorales R, Moran S, Esteller M, Sal M, Juan M, Boronat Barado A, Consiglio A, Bogle OA, et al. Global proteomic and methylome analysis in human induced pluripotent stem cells reveals overexpression of a human thr3 affecting proper innate immune response signaling. Stem Cells. 2019;37(4):476–488.

92. Zhou Y, Kang G, Wen Y, Briggs M, Sebastiano V, Pederson R, Chen B. Do induced pluripotent stem cell characteristics correlate with efficient in vitro smooth muscle cell differentiation? A comparison of three patient-derived induced pluripotent stem cell lines. Stem Cells Dev. 2018;27(20):1438–1448.

93. Li P, Sun X, Ma Z, Liu Y, Jin Y, Ge R, Hao L, Ma Y, Han S, Sun H, Zhang M, et al. Transcriptional reactivation of OTX2, RX1 and SIX3 during reprogramming contributes to the generation of RPE cells from human iPSCs. Int J Biol Sci. 2016;12(5):505–517.

94. Sequiera GL, Mehta A, Ooi TH, Shim W. Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart. Life Sci. 2013;92(1):63–71.

95. Si-Tayeb K, Noto FK, Sepac A, Sedlíc F, Bosnjak ZI, Lough JW, Duncan SA. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol. 2010;10(1):81.

96. Yin X, Li Y, Li J, Li P, Liu Y, Wen J, Luan Q. Generation and periodontal differentiation of gingival fibroblast-derived integration-free induced pluripotent stem cells. Biomed Biophys Res Commun. 2016;473(3):726–732.

97. Hansen SK, Borland H, Hasholt LF, Tümker Z, Nielsen JE, Rasmussen MA, Nielsen TT, Stumphmann TC, Fog K, Hyttel P. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res. 2016;16(3):589–592.

98. Hansen SK, Borland H, Hasholt LF, Tümker Z, Nielsen JE, Rasmussen MA, Nielsen TT, Stumphmann TC, Fog K, Hyttel P. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11. Stem Cell Res. 2016;16(3):553–556.

99. Rasmussen MA, Hjermind LE, Hasholt LF, Waldemar G, Nielsen JE, Clausen C, Hyttel P, Holst B. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a R406 W mutation in microtubule-associated protein tau (MAPT). Stem Cell Res. 2016;16(1):75–78.

100. Rasmussen MA, Hjermind LE, Hasholt LF, Waldemar G, Nielsen JE, Clausen C, Hyttel P, Holst B. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a P301 L mutation in microtubule-associated protein tau (MAPT). Stem Cell Res. 2016;16(1):70–74.

101. Rasmussen MA, Hjermind LE, Hasholt LF, Waldemar G, Nielsen JE, Clausen C, Hyttel P, Holst B. Induced pluripotent stem cells (iPSCs) derived from a pre-symptomatic carrier of a R406 W mutation in microtubule-associated protein tau (MAPT) causing frontotemporal dementia. Stem Cell Res. 2016;16(1):105–109.

102. Wang X, Chen S, Burtscher I, Sterr M, Hieronimus A, Machiacco F, Staiger H, Häring HU, Lederger B, Meitinger T, Lickert H. Generation of a human induced pluripotent stem cell (iPSC) line from a patient carrying a P33 T mutation in the PDX1 gene. Stem Cell Res. 2016;17(2):273–276.

103. Claassen JN, Zhang D, Chen SC, Moon SY, Lamsey T, Thompson JA, McLaren T, De Roach JN, McNenachan S, Chen FK. Generation of the induced pluripotent stem cell line from a patient with autosomal recessive ABCA4-mediated...
Stargardt Macular Dystrophy. Stem Cell Res. 2019;34:101-352.
104. Hinz L, Hoeckstra SD, Watanabe K, Posthuma D, Heine VM. Generation of isogenic controls for in vitro disease modelling of X-chromosomal disorders. Stem Cell Rev. 2019;15(2):276–285.
105. Gowran A, Spalton G, Casalnuovo F, Vigorelli V, Spinelli P, Castiglioni E, Rovina D, Paganini S, Di Segni M, Gervasini C, Nigro P, et al. Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCM002BMD-A-9 ΔA55-55). Stem Cell Res. 2018;28:21–24.
106. Hayer SN, Schelling Y, Huebener-Schmid J, Weber JJ, Hauser S, Schöls L. Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HHIHCNi002-A. Stem Cell Res. 2018;30:171–174.
107. Hayer SN, Schelling Y, Hoeflinger P, Hauser S, Schöls L. Generation of an induced pluripotent stem cell line from a patient with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): HIHCNi003-A. Stem Cell Res. 2018;30:206–209.
108. Howden SE, Thomson JA, Little MH. Simultaneous reprogramming and gene editing of human fibroblasts. Nat Protoc. 2018;13(5):875–898.
109. Kahounová Z, Slabáková E, Binó L, Remšík J, Fedr R, Bou- howden SE, Thomson JA, Little MH. Simultaneous reprogramming and gene editing of human fibroblasts. Nat Protoc. 2018;13(5):875–898.
110. Kawala MA, Bohndorf M, Graffmann N, Wruck W, Zatloukal K, Adjaye J. Characterization of dermal fibroblast-derived iPSCs from a patient with low grade steatosis. Stem Cell Res. 2018;30:113–116.
111. Tanaka Y, Higurashi N, Shirasu N, Yasunaga S, Moreira KM, Okano H, Hirose S. Establishment of a human induced stem cell line (FU002-A) from Dravet syndrome patient carrying heterozygous R1525X mutation in SCN1A gene. Stem Cell Res. 2018;17(3):470–473.
112. Vallejo S, Fleischer A, Martin JM, Sánchez A, Palomino E, Bachiller D. Generation of two induced pluripotent stem cells lines from Mucopolysaccharidosis IIIA patient: IMEDEAi004-A and IMEDEAi004-B. Stem Cell Res. 2018;32:110–114.
113. Vallejo-Diez S, Fleischer A, Martín-Fernández JM, Sánchez-Gilabert A, Bachiller D. Generation of two induced pluripotent stem cells lines from a Mucopolysaccharidosis IIIB (MPSIIIB) patient. Stem Cell Res. 2018;33:180–184.
114. Zhang X, Zhang D, Chen SC, Lamey T, Thompson JA, McLaren T, De Roach JN, Chen FK, McLennan S. Generation of an induced pluripotent stem cell line from a patient with non-syndromic CLN3-associated retinal degeneration and a coisogenic control line. Stem Cell Res. 2018;29:245–249.
115. Kuebler B, Aran B, Miquel-Serra L, Muñoz Y, Ars E, Büllich G, Furlano M, Torra R, Marti M, Veiga A, Raya A. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS). Stem Cell Res. 2017;25:1–5.
116. Kuebler B, Aran B, Miquel-Serra L, Muñoz Y, Ars E, Büllich G, Furlano M, Torra R, Marti M, Veiga A, Raya A. Generation of integration-free induced pluripotent stem cell lines derived from two patients with X-linked Alport syndrome (XLAS). Stem Cell Res. 2017;25:291–295.
117. Spalton G, Vigorelli V, Casalnuovo F, Spinelli P, Castiglioni E, Rovina D, Paganini S, Di Segni M, Nigro P, Gervasini C, Pompilio G, et al. Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCM001DMD-A-3, 49, 50). Stem Cell Res. 2017;25:128–131.
118. Hung SS, Van Bergen NJ, Jackson S, Liang H, Mackey DA, Hernandez D, Lim SY, Hewitt AW, Trounce I, Pébay A, Wong RC. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells. Aging (Albany NY). 2016;8(5):945–957.
119. Kawano MA, Bohndorf M, Graffmann N, Wruck W, Zatloukal K, Adjaye J. Characterization of dermal fibroblast-derived iPSCs from a patient with low grade steatosis. Stem Cell Res. 2016;17(10):1354–1357.
120. Kim BY, Jeong S, Lee SY, Lee SM, Gweon EJ, Ahn H, Kim J, Chung SK. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC. Exp Mol Med. 2016;48(6):e237.
121. Li T, Pires C, Nielsen TT, Waldemar G, Hjer- mind LE, Nielsen JE, Dinnyes A, Holst B, Hyttel P, Freude KK. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer’s disease patient carrying a M146I mutation in PSEN1. Stem Cell Res. 2016;16(2):334–337.
122. Li T, Pires C, Nielsen TT, Waldemar G, Hjermand LE, Nielsen JE, Dinnyes A, Hyttel P, Freude KK. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer’s disease patient carrying an A79 V mutation in PSEN1. Stem Cell Res. 2016;16(1):229–232.
123. Poon A, Li T, Pires C, Nielsen TT, Nielsen JE, Holst B, Dinnyes A, Hyttel P, Freude KK. Derivation of induced pluripotent stem cells from a familial Alzheimer’s disease patient carrying the L282F mutation in presenilin 1. Stem Cell Res. 2016;17(3):470–473.
124. Tubsuwan A, Pires C, Rasmussen MA, Schmid B, Nielsen JE, Hjermand LE, Hall V, Nielsen TT, Waldemar G, Hyttel P, Clausen C, et al. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer’s disease patient carrying the L282F mutation in presenilin 1. Stem Cell Res. 2016;17(3):470–473.
125. Fidan K, Kavaklioglu G, Ebrahimi A, Özlu C, Ay NZ, Ruacan A, Gül A, Önder TT. Generation of integration-free induced pluripotent stem cells from a patient with Familial Mediterranean Fever (FMF). Stem Cell Res. 2015;15(3):694–696.
126. Luo Y, Zhu D, Du R, Gong Y, Xie C, Xu X, Fan Y, Yu B, Sun X, Chen Y. Uniparental disomy of the entire X chromosome
128. McLenachan S, Zhang D, Zhang X, Chen SC, Lamey T, Thompson JA, McLaren T, De Roach JN, Fletcher S, Chen FK. Generation of two induced pluripotent stem cell lines from a patient with dominant PRPF31 mutation and a related non-penetrant carrier. Stem Cell Res. 2019;101357.

129. Bell S, Peng H, Crapper L, Kolobova I, Maussion G, Vasuta C, Yerko V, Wong TP, Ernst C. A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing. Stem Cells Transl Med. 2017;6(3):886–896.

130. Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, Kao LP, Morrow CA, Thakar NY, Soo SY, Peura T, et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013;31(3):467–478.

131. Mahairaki V, Ryu J, Peters A, Chang Q, Li T, Park TS, Burridge PW, Talbot CC Jr, Asnaghi L, Martin LJ, Zambidis ET, et al. Induced pluripotent stem cells from familial Alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev. 2014;23(24):2996–3010.

132. Ramakrishnan VM, Yang JY, Tien KT, McKinley TR, Bocard BR, Majub JG, Burchell PO, Williams SK, Morris ME, Hoving JB, Wade-Martins R, et al. Restoration of physiologically responsive low-density lipoprotein receptor-mediated endocytosis in genetically deficient induced pluripotent stem cells. Sci Rep. 2015;5:13231.

133. Piao Y, Hung SS, Lim SY, Wong RC, Ko MS. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 2014;3(7):787–791.

134. Dowey SN, Huang X, Chou BK, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 2012;7(11):2013–2021.

135. Kamath A, Ternes S, McGowan S, Moy AB. Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease. Regen Med. 2018;13(8):889–915.

136. Wen W, Cheng X, Fu Y, Meng F, Zhang JP, Zhang L, Li XL, Yang Z, Xu J, Zhang F, Botimer GD, et al. High-level precise knockin of iPSCs by simultaneous reprogramming and genome editing of human peripheral blood mononuclear cells. Stem Cell Reports. 2018;10(6):1821–1834.

137. Wen W, Zhang JP, Xu J, Su RJ, Neises A, Ji GZ, Yuan W, Cheng T, Zhang XB. Enhanced generation of integration-free iPSCs from human adult peripheral blood mononuclear cells with an optimal combination of episomal vectors. Stem Cell Reports. 2016;6(6):873–884.

138. Wang Y, Zhang Y, Zhang J, Lu J, Yang C, Zhao J, Li G, Liu Z, Lei Y. Generation of a human control PBMC derived iPSC cell line TUSMi001-A from a healthy male donor of Han Chinese genetic background. Stem Cell Res. 2017;25:22–25.

139. Wang Y, Zhang J, Zhang Y, Huang D, Zhao J, Li G, Lei Y. Generation of a human induced pluripotent stem cell line from a 65-year old healthy female donor with Chinese Han genetic background. Stem Cell Res. 2017;24:33–35.

140. Su RJ, Neises A, Zhang XB. Generation of iPSCs from human peripheral blood mononuclear cells using episomal vectors. Methods Mol Biol. 2016;1357:57–69.

141. Tangprasitipap A, Jitoomtrum B, Wongkummoow W, Kityanant N, Tubsuwan A. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman. Stem Cell Res. 2017;20:91–93.

142. Mack AA, Krobath S, Rajesh D, Wang WB. Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. PLoS One. 2011;6(11):e27956.

143. Chou BK, Gu H, Gao Y, Dowey SN, Wang Y, Shi J, Li Y, Ye Z, Cheng T, Cheng L. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med. 2015;4(4):320–332.

144. Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan W, Keung W, et al. A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev. 2014;23(14):1704–1716.

145. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson RA, Gallagher R, Ross JA. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338(2):203–213.

146. TheinHaw W, Liu J, Tang M, Chen W, Cheng L, Xu HH. Induced pluripotent stem cell-derived mesenchymal stem cell seeding on biofunctionalized calcium phosphate cements. Bone Res. 2013;4:371–384.

147. Wang Y, Zhang J, Hu J, Li G, Lei Y, Zhao J. Establishment of TUSMi008-A, an induced pluripotent stem cell (iPSC) line from a 76-year old Alzheimer’s disease (AD) patient with PAXIP1 gene mutation. Stem Cell Res. 2019;36:101391.

148. Wang Y, Zhang J, Lei Y, Zhao J. Establishment of TUSMi007-A, an induced pluripotent stem cell (iPSC) line from an 83-year old Chinese Han patient with Alzheimer’s disease (AD). Stem Cell Res. 2018;33:265–268.

149. Wang Y, Yu H, Zhang Y, Zhang J, Chen K, Sun H, Meng S, Li G, Lei Y, Zhao J. Establishment of TUSMi003-A, an induced pluripotent stem cell (iPSC) line from a 62-year old Chinese Han patient with Alzheimer’s disease with ApoE3/4 genetic background. Stem Cell Res. 2018;27:57–60.

150. Wang Y, Yu H, Chen Y, Li G, Lei Y, Zhao J. Derivation of induced pluripotent stem cells TUSMi006 from an 87-year old Chinese Han Alzheimer’s disease patient carrying GRINB and SORL1 mutations. Stem Cell Res. 2018;31:127–130.
151. Wang Y, Fen Q, Yu H, Qiu H, Ma X, Lei Y, Zhao J. Establishment of TUSMi005-A, an induced pluripotent stem cell (iPSC) line from a 32-year old Chinese Han patient with Bipolar Disorder (BD). Stem Cell Res. 2018;33:65–68.

152. Wang Y, Kang C, Yu H, Fen J, Ma X, Lei Y, Zhao J. Establishment of TUSMi004-A, an induced pluripotent stem cell (iPSC) line from a 32-year old Chinese Han patient with Obsessive-Compulsive Disorder (OCD). Stem Cell Res. 2018;32:83–86.

153. Zhao Z, Ji S, Shi Z, Liu H. Generation of CSi001-A, a transgene-free, induced pluripotent stem cell line derived from a Parkinson Disease (PD) patient. Stem Cell Res. 2018;33:1–5.

154. Murakami N, Ishikawa T, Kondo T, Imamura K, Tsukita K, Enami T, Funayama M, Shibukawa R, Matsumoto S, Izumi Y, Ohta E, et al. Establishment of DYTS patient-specific induced pluripotent stem cells with a GCH1 mutation. Stem Cell Res. 2017;24:36–39.

155. Ross SB, Fraser ST, Nowak N, Semsarian C. Generation of induced pluripotent stem cells (iPSCs) from a hypertrophic cardiomyopathy patient with the pathogenic variant p. Val698Ala in beta-myosin heavy chain (MYH7) gene. Stem Cell Res. 2017;20:88–90.

156. Junqueira Reis LC, Picanço-Castro V, Paes BCMF, Pereira OA, Gerdes Gyuriicz I, de Araújo FT, Morato-Marques M, Moreira LF, Costa EBO, Dos Santos TPM, Covas DT, et al. Induced pluripotent stem cell for the study and treatment of sickle cell anemia. Stem Cells Int. 2017;2017:7492914.

157. Malecki M, Putzer E, Sabo C, Fooroohar A, Quach C, Stampe J, Cui Y, Luan J, Zhou X, Shi L, Han J. Establishment of NCCSi004-A from umbilical cord blood (UCB) derived CD34(-) cells obtained from donor belonging to Indian ethnicity. Stem Cell Res. 2019;35:101392.

158. Fernandes S, Shinde P, Khan N, Singh S, Vardhan S, Nair V, Kale V, Limaye L. Development and characterization of human iPSC line NCCSi004-A from umbilical cord blood (UCB) derived CD34(+) cells obtained from donor belonging to Indian ethnic population. Stem Cell Res. 2019;26:80–83.

159. Fernandes S, Talwadekar M, Agarwal R, Nair V, Kale V, Limaye L. Generation and characterization of human iPSC line from CD34(+) cells isolated from umbilical cord blood belonging to Indian origin. Stem Cell Res. 2017;18:60–63.

160. Slamecka J, Salimova L, McClellan S, van Kelle M, Kehl D, Laurini J, Cinelli P, Owen L, Hoorstorp SP, Weber B. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle. 2016;15(2):234–249.

161. He W, Kang X, Du H, Song B, Lu Z, Huang Y, Wang D, Sun X, Yu Y, Fan Y. Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray. PLoS One. 2014;9(9):e108350.

162. Wilson PG, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. PeerJ. 2014;2:e668.

163. Xing K, Cui Y, Luan J, Zhou X, Shi L, Han J. Establishment of a human trisomy 18 induced pluripotent stem cell line from amniotic fluid cells. Intractable Rare Dis Res. 2018;7(2):94–99.

164. Slamecka J, McClellan S, Wilk A, Laurini J, Manci E, Hooostrup SP, Weber B, Owen L. Induced pluripotent stem cells derived from human amnion in chemically defined conditions. Cell Cycle. 2018;17(3):330–347.

165. Göbel C, Goetzke R, Eggermann T, Wagner W. Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep. 2018;8(1):11676.

166. Foja S, Jung M, Harwardt B, Riemann D, Pelz-Ackermann O, Schroeder IS. Hypoxia supports reprogramming of mesenchymal stromal cells via induction of embryonic stem cell-specific microRNA-302 cluster and pluripotency-associated genes. Cell Reprogram. 2013;15(1):68–79.

167. Qu X, Liu T, Song K, Li X, Ge D. Induced pluripotent stem cells generated from human adipose-derived stem cells using with Ataxia-Telangiectasia (A-T). Stem Cell Res. 2016;17(2):205–207.
a non-viral polycistronic plasmid in feeder-free conditions. PLoS One. 2012;7(10):e48161.

176. Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, Kasim NHA, Sugii S. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Res Ther. 2018;9(1):68.

177. Saitoh I, Inada E, Iwase Y, Noguchi H, Murakami T, Soda M, Kubota N, Hasegawa H, Akasaka E, Matsumoto Y, Oka K, et al. Choice of feeders is important when first establishing iPSCs derived from primarily cultured human deciduous tooth dental pulp cells. Cell Med. 2015;8(1-2):9–23.

178. Yan X, Xu N, Meng C, Wang B, Yuan J, Wang C, Li Y. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin. Am J Transl Res. 2016;8(2):419–432.

179. Schröter F, Slegers K, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPSC cell line from a 69-year-old male. Stem Cell Res. 2016;16(1):29–31.

180. Barrett R, Ornelas L, Yeager N, Mandefro B, Sahaban A, Lenaues L, Targan SR, Svendsen CN, Sarrean D. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl Med. 2014;3(12):1429–1434.

181. Schröter F, Slegers K, Cuyvers E, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPSC cell line from a female 67-year-old Alzheimer’s disease patient with TREM2 (R47 H) missense mutation. Stem Cell Res. 2016;17(3):553–555.

182. Zulfiqar S, Fritz B, Nieweg K. Episomal plasmid-based generation of an iPSC line from a 79-year-old individual carrying the APOE4/4 genotype: i11001. Stem Cell Res. 2016;17(3):544–546.

183. Zulfiqar S, Fritz B, Nieweg K. Episomal plasmid-based generation of an iPSC line from an 83-year-old individual carrying the APOE4/4 genotype: i10984. Stem Cell Res. 2016;17(3):523–525.

184. Schröter F, Slegers K, Van Cauwenberghc E, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPSC lines from a female and male Alzheimer’s disease patient expressing different copy numbers of a coding CNV in the Alzheimer risk gene CR1. Stem Cell Res. 2016;17(3):560–563.

185. Schröter F, Slegers K, Cuyvers E, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPSC cell line from a 65-year-old Alzheimer’s disease patient expressing the TREM2 p.R47 H variant. Stem Cell Res. 2016;16(1):113–115.

186. Martins S, Bohndorf M, Schröter F, Assar F, Wruck W, Slegers K, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free ISRM-CON9 iPSC cell line from a 75year old female. Stem Cell Res. 2018;26:76–79.

187. Fujimori K, Tezuka T, Ishiura H, Mitsui J, Doi K, Yoshimura J, Tada H, Matsumoto T, Isoda M, Hashimoto R, Hattori N, et al. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Mol Brain. 2016;9(1):88.

188. Howard-Jones RA, Cheung OK, Glen A, Allen ND, Stephens P. Integration-free reprogramming of lamina propria progenitor cells. J Dent Res. 2016;95(8):882–888.

189. Alvisi G, Trevisan M, Masi G, Canel V, Caenazzo L, Nespeca P, Barzon L, Di Iorio E, Barbaro V, Palù G. Generation of a transgene-free human induced pluripotent stem cell line (UNIPDi001-A) from oral mucosa epithelial stem cells. Stem Cell Res. 2018;28:177–180.

190. Trevisan M, Di Iorio E, Masi G, Riccetti S, Barzon L, Alvisi G, Caenazzo L, Barbaro V, Palù G. Induced pluripotent stem cells line (UNIPDi003-A) from a patient affected by EEC syndrome carrying the R279 H mutation in TP63 gene. Stem Cell Res. 2018;28:141–144.

191. Wang L, Chen Y, Guan C, Zhao Z, Li Q, Yang J, Mo J, Wang B, Wu W, Yang X, Song L, et al. Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Stem Cell Res Ther. 2017;8(1):245.

192. Si-Tayeb K, Idriss S, Champon B, Caillaud A, Pichelin M, Arnaud L, Lemarchand P, Le May C, Zibara K, Cardiob. Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia. Dis Model Mech. 2016;9(1):81–90.

193. Guo D, Wu F, Liu H, Gao G, Kou S, Yang F, Abbas N, Zhou T, Cai X, Zhang H, Qin D, et al. Generation of non-integrated induced pluripotent stem cells from a 59-year-old female with multiple endocrine neoplasia type 1 syndrome. Stem Cell Res. 2017;18:64–66.

194. Jouni M, Si-Tayeb K, Es-Salah-Lamoureux Z, Latypova X, Champon B, Caillaud A, Rungo A, Charpentier F, Louisouarn G, Baro I, Zibara K, et al. Toward personalized medicine: using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J Am Heart Assoc. 2015;4(9):e002159.

195. Steichen C, Si-Tayeb K, Wulkan F, Crestani T, Rosas G, Dariolli R, Pereira AC, Krieger JE. Human Induced Pluripotent Stem (hiPS) cells from urine samples: a non-integrating and feeder-free reprogramming strategy. Curr Protoc Hum Genet. 2017;92:21.7.1–21.7.22.

196. Ju Z, Ma J, Wang C, Yu J, Qiao Y, Hei F. Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation. 2017;40(2):486–496.

197. Qi Z, Cui Y, Shi L, Luan J, Zhou X, Han J. Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria. Intractable Rare Dis Res. 2018;7(2):87–93.

198. Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, et al. Seamless genetic conversion of SMN2 to SMN1 via CRISPR/Cp1 and single-stranded oligodeoxynucleotides in spinal muscular atrophy patient-specific induced pluripotent stem cells. Hum Gene Ther. 2018;29(11):1252–1263.
199. Bohndorf M, Ncube A, Spitzhorn LS, Enczmann J, Wruck W, Adjaeye J. Derivation and characterization of integration-free iPSC line ISRM-UM51 derived from SIX2-positive renal cells isolated from urine of an African male expressing the CYP2D6 *4/*17 variant which confers intermediate drug metabolizing activity. Stem Cell Res. 2017;25:18–21.

200. Paulitschek C, Schulze-Matz P, Hesse J, Schmidt T, Wruck W, Adjaeye J, Schrader J. Generation and characterization of two iPSC lines from human epicardium-derived cells. Stem Cell Res. 2017;20:50–53.

201. Diecke S, Lu J, Lee J, Termglinchan V, Kooreman NG, Burridge PW, Ebert AD, Churko JM, Sharma A, Kay MA, Wu JC. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci Rep. 2015;5:8081.

202. Ikeda K, Mizoro Y, Ameku T, Nomiya Y, Mae SI, Matsu S, Kuchitsu Y, Suzuki C, Hamaoka-Okamoto A, Yahata T, Sone M, et al. Transcriptional analysis of intravenous immunoglobulin resistance in Kawasaki disease using an induced pluripotent stem cell disease model. Circ J. 2016;81(1):110–118.

203. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, Chou BK, Zhou G, Li S, Dowen SN, Ye Z, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell. 2012;10(3):337–344.

204. Park TS, HUO JS, Peters A, Talbot CC Jr, Verma K, Zimmerlin L, Kaplan IM, Zambidis ET. Growth factor-activated stem cell circuits and stomal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors. PLoS One. 2012;7(8):e42838.

205. Park TS, Bhutto I, Zimmerlin L, HUO JS, Nagarja P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation. 2014;129(3):359–372.

206. Song L, Awari DW, Han EY, Uche-Anya E, Park SH, Yabe YA, Chung WK, Yazawa M. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators. Stem Cells Transl Med. 2015;4(5):468–475.

207. Zhao H, Davies TJ, Ning J, Chang Y, Sachamitr P, Sattler S, Fairchild PJ, Huang FP. A highly optimized protocol for reprogramming cancer cells to pluripotency using nonviral plasmid vectors. Cell Reprogram. 2015;17(1):7–18.

208. Park HY, Noh EH, Chung HM, Kang MJ, Kim EY, Park SP. Efficient generation of virus-free iPSC cells using liposomal magnetofection. PLoS One. 2012;7(9):e45812.

209. Cao F, Xie X, Gollan T, Zhao L, Narinsih K, Lee RJ, Wu JC. Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imaging Biol. 2010;12(1):15–24.

210. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Dual gene expression in embryoid bodies derived from human induced pluripotent stem cells using episomal vectors. Tissue Eng Part A. 2014;20(23-24):3154–3162.

211. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, et al. Allogeneic transplantation of iPSC cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538(7625):388–391.

212. Loh CY, Wang HY, Kao HK, Cardona E, Chuang SH, Wei FC. Episomal induced pluripotent stem cells promote functional recovery of transected murine peripheral nerve. PLoS One. 2016;11(10):e0164966.

213. Liu SP, Fu RH, Wu DC, Hsu CY, Chang CH, Lee W, Lee YD, Liu CH, Chien YJ, Lin SZ, Shyu WC. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev. 2014;23(4):421–433.

214. Wang Z, Wen Y, Li YH, Wei Y, Green M, Wani P, Zhang P, Pera RR, Chen B. Smooth muscle precursor cells derived from human pluripotent stem cells for treatment of stress urinary incontinence. Stem Cells Dev. 2016;25(6):453–461.

215. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cells sheets aiming for clinical application. Stem Cell Reports. 2014;2(2):205–218.

216. Cell Engineering Division / RIKEN BioResource Research Center. 2016. [accessed May 23]. https://www.newscientist.com/article/dn27986/.

217. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200.

218. Garber K. Inducing translation. Nat Biotechnol. 2013;31(6):483–486.

219. Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, Breuer CK, Caulfield T, Cedars MJ, Frey-Vasconells J, Heslop HE, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Reports. 2016;6(6):787–797.

220. Health / New Scientist. 2015. [July 31]. http://cell.brc.riken.jp/en/hps/search_hps_en.

221. Takahashi K, Tanabe K, Ohmuki M, Narita M, Ichisaka T, Tomoda K, Yamakawa S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872.

222. Nakagawa M, Koyanagi M, Tanabe K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Effects of nuclear transplantation on the epigenetic status of somatic cells. Stem Cells. 2013;31(5):926–935.

223. Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation. 2014;129(3):359–372.

224. Song L, Awari DW, Han EY, Uche-Anya E, Park SH, Yabe YA, Chung WK, Yazawa M. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators. Stem Cells Transl Med. 2015;4(5):468–475.