Quark-Jet model for transverse momentum dependent fragmentation functions

W. Bentz,1, 2 A. Kotzinian,3, 4 H. H. Matevosyan,5 Y. Ninomiya,1 A. W. Thomas,5 and K. Yazaki6

1Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
2Radiation Laboratory, Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan
3Yerevan Physics Institute, 2 Alekhanyan Brothers Street, 375036 Yerevan, Armenia
4INFN, Sezione di Torino, 10125 Torino, Italy
5CSSM and ARC Centre of Excellence for Particle Physics at the Tera-Scale, Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
6Quantum Hadron Physics Laboratory, Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan

In order to describe the hadronization of polarized quarks, we discuss an extension of the quark-jet model to transverse momentum dependent fragmentation functions. The description is based on a product ansatz, where each factor in the product represents one of the transverse momentum dependent splitting functions, which can be calculated by using effective quark theories. The resulting integral equations and sum rules are discussed in detail for the case of inclusive pion production. In particular, we demonstrate that the 3-dimensional momentum sum rules are satisfied naturally in this transverse momentum dependent quark-jet model. Our results are well suited for numerical calculations in effective quark theories, and can be implemented in Monte-Carlo simulations of polarized quark hadronization processes.

PACS numbers: 13.60.Hb, 13.60.Le, 12.39.Ki

I. INTRODUCTION

Quark fragmentation functions (FFs) are key objects for the analysis of inclusive hadron production in hard scattering processes[1]. Transverse momentum dependent (TMD) quark FFs, both polarized and unpolarized, are of particular importance for semi-inclusive hadron production in $e^+ e^-$ annihilation, semi-inclusive deep inelastic lepton-nucleon scattering (SIDIS) and proton-proton collisions[2–11]. They are universal, non-perturbative objects, that contain vital information on the correlation between spin and orbital motion of the fragmenting quark and the produced hadrons[12–15]. TMD FFs also are crucial ingredients for accessing the TMD parton distribution functions (PDFs) in SIDIS, that encode the 3-dimensional picture of the nucleon in momentum space[10–21]. Particular attention was focused on the so-called Collins TMD FF[22–23] that allows access to the transversity PDF, the least well determined of the three leading order PDFs that do not vanish in the collinear limit. FFs cannot be calculated in lattice QCD, and therefore effective theories of QCD are very important tools to extract information and constraints on TMD FFs. Important representatives are the quark-jet model[1], the Lund model[24, 25], spectator models involving the coupling of quarks to mesons[26–31], and the Nambu-Jona-Lasinio (NJL) model[31] applied in the quark-jet framework[32] using Monte-Carlo techniques[33, 34].

It is well known[1, 32, 35] that a model description of quark FFs must include the effects of multiple fragmentations in order to reproduce the main features of the corresponding empirical functions[35, 36]. This is particularly important for the unfavored fragmentation functions, which cannot be described by assuming one single (elementary) fragmentation step[35, 36]. For the 1-dimensional FFs (integrated over the transverse momentum (TM) of the produced hadron), the quark-jet model of Field and Feynman[1] provides a simple framework to account for multi-fragmentation processes. It represents a chain of fragmentation processes by a product of elementary FFs, which can be evaluated in any effective quark theory. The resulting integral equations of the jet model can be solved directly, or by using Monte-Carlo methods, which is most convenient if many hadron channels and resonances are included[33, 34]. The inclusion of the spin, which is directly linked to the transverse momentum dependence, however, remains a challenging problem for model calculations including multi-fragmentation processes[22, 32]. The purpose of this paper is to provide an analytic framework, based on the assumptions of the successful jet model, which can be used for numerical calculations of TMD FFs. For this, we extend the generalized product ansatz for quark cascades of our previous work[32] to the description of TMD FFs. Limiting ourselves for simplicity and clarity to the case of inclusive pion production and quark flavor SU(2), we derive the explicit forms of the resulting integral equations, and demonstrate the validity of the sum rules in the TMD jet model. Our results will allow a self-consistent formulation of the Monte-Carlo method for polarized quark hadronization, much needed for the study of various correlations in polarized single- and dihadron FFs[43, 44].

The outline of the paper is as follows: In Section II we give the operator definitions of the TMD FFs and discuss their partonic interpretation. In Sect. III we derive

*Corresponding author: bentz@keyaki.cc.u-tokai.ac.jp
The dots labeled by α, β indicate the Dirac indices of the quark field operators, the line labeled by the momentum k represents the fragmenting quark, and the line labeled by the momentum p and polarization S represents the produced particle. The shaded oval represents the spectator states $|n\rangle$, and the cut goes through the shaded oval.

The integral equations for the TMD FFs from the basic product ansatz. The explicit forms of the equations will be presented for the case of inclusive pion production, and the validity of the sum rules will be confirmed analytically. A summary of our work is given in Section IV. Further details on the calculations are presented in five Appendices. In particular, Appendix C presents a list of analytic forms of the elementary FFs which have been obtained in earlier works by using effective quark theories.

The integral equations of the TMD jet model, which we will present in Sect. III.D, hold in any effective quark theory which does not involve explicit gluon and gauge link degrees of freedom, and which satisfies the elementary momentum conservation and positivity constraints summarized at the end of Sect. III.D. The integral equations can then readily be used for numerical calculations. It is our hope that our paper will contribute to a more quantitative understanding of spin dependent fragmentation processes.

II. OPERATOR DEFINITIONS AND PARTONIC INTERPRETATION

The operator definitions of TMD quark FFs follow from the single particle inclusive quark decay matrix given by

$$n_{\beta \alpha}(p, k; S) = \sum_{n} \int \frac{d^4 \omega}{(2\pi)^4} e^{ik\omega} \langle 0 | \psi_\beta(\omega) | p, n\rangle \langle p, n | \bar{\psi}_\alpha(0) | 0 \rangle .$$

(II.2)

Here the field operators refer to a given quark flavor ($q = u, d$), which is not indicated explicitly in this Section, and k and p are the 4-momenta of the fragmenting quark and the produced particle. The state $|p, n\rangle$ refers to the produced particle of type h (including isospin and polarization S) and a complete set of spectator states $|n\rangle$. The generic vector S specifies the spin 4-vector of the produced particle of mass M and energy E_p as

$$S^a = \left(\frac{p \cdot S}{M}, \mathbf{S} + \frac{p (\mathbf{p} \cdot \mathbf{S})}{M (E_p + M)} \right).$$

(II.4)

The operator definitions (II.1), (II.2) refer to a frame where the TM of the produced particle vanishes ($p_\perp = 0$) while the fragmenting quark has nonzero k_\perp. The vector S in (II.4) can then be expressed in terms of its transverse components S_T and longitudinal component S_L (helicity) as $S = (S_T^1, S_T^2, S_L)$. By a transverse Lorentz transformation (see Appendix A for details) one can transform to a frame where the fragmenting quark has zero TM ($k_\perp = 0$) and the produced particle has $p_\perp = -z k_\perp$, so that we can consider the decay matrix (II.1) as a function of p_\perp, p_\perp and S.

The quark decay matrix (II.1) can be expanded in terms of Dirac matrices which are invariant under transverse Lorentz transformations. In leading order, which corresponds to the limit $p_\perp \to \infty$, a set of 4 Dirac matrices (Γ) contributes to the decay matrix. Their coefficient functions ($\Gamma \equiv \text{Tr}_{\gamma} (\Gamma n)$) can be parametrized in terms of 8 FFs in the following way:

$$\frac{1}{2p_-} \langle \gamma^+ \rangle = D(z, p_\perp^2) - \frac{1}{M} \epsilon^{ij} k_T S_T D_T^z(z, p_\perp^2),$$

(II.5)

$$\frac{1}{2p_-} \langle i\sigma^+ \gamma_5 \rangle = S_T^i H_T(z, p_\perp^2) + \frac{S_L}{M} \epsilon^{ij} k_T S_T^j H_L^z(z, p_\perp^2),$$

(II.6)

$$\frac{1}{2p_-} \langle \gamma^+ \gamma_5 \rangle = S_L G_L(z, p_\perp^2) + \frac{1}{M} (k_T \cdot S_T) G_T(z, p_\perp^2).$$

(II.7)

Here $i = 1, 2$ denote the transverse vector indices, $k_T = -p_\perp / z$, and $\epsilon^{ij} \equiv \epsilon^{-+ij}$ such that $\epsilon^{12} = 1$. The definitions and notations of the 8 leading order FFs in (II.5) - (II.7) follow the Trento conventions [46], except that we assume the large momentum component of the leading
produced particle as $p_- = zk_-$, and we omit the subscript 1 on all functions because we only consider the leading order here.

Next we wish to discuss the partonic interpretation of the various FFs as number densities of the produced particle (h) within a quark, and thereby derive an expression for the “total fragmentation function”, which will be used in the next Section to formulate the integral equations of the TMD jet model. For this purpose we formally define the Dirac matrix valued 4-vector Γ^μ as

$$\Gamma^\mu = (\gamma^+, \gamma^+ \gamma^1 \gamma_5, \gamma^+ \gamma^2 \gamma_5, \gamma^+ \gamma_5) \ .$$

(II.8)

and express the quantities on the left hand sides of Eqs. (II.5) - (II.7) as

$$\frac{1}{2p_-} (\Gamma^\mu) = \frac{1}{2p_-} \text{Tr}_D \left(\Gamma^\mu n(p_-, \mathbf{p}_\perp; \mathbf{S}) \right)$$

\[= \frac{p_\perp}{2z} \int d\omega^2 d^2\omega_T \ e^{i(p_\perp \cdot + \mathbf{p}_\perp \cdot \omega_T)/z} \]

\[\times (0|\psi \beta(\omega^-, \omega_T) a_h(p, S) a_h(p, S) \bar{\psi}_\alpha(0)|0) \Gamma^\mu_{\alpha \beta} \]

(II.9)

In the second step we used the relation (II.3) and the completeness of the spectator states $|n\rangle$, and in the third step we introduced the “good components” of the quark field operator by $\mathbf{14}$ - $\mathbf{49}$

$$\psi_+ = \frac{1}{\sqrt{2}} \gamma^0 \gamma^+ \psi \equiv \Lambda_+(\psi) \ ,$$

(II.10)

and noting that $\langle k\lambda|k\lambda\rangle \equiv \langle k|k\rangle$ is independent of λ, we can express (II.10) in a form which is independent of the normalization of states:

$$\frac{1}{2p_-} (\Gamma^\mu) = \frac{1}{4} \sum_{\lambda \lambda'} \left(\overline{u}_\lambda(k) \Gamma^\mu u_{\lambda'}(k) \right)$$

\[\times \frac{\langle k|\lambda|a_h(p, S) a_h(p, S)|k\lambda'\rangle}{\langle k|k\rangle} \ . \]

(II.11)

In Appendix B we show that the matrix elements in (II.14) take the form

$$\overline{u}_\lambda(k) \Gamma^\mu u_{\lambda'}(k) = 2k_-(\sigma^\mu)_{\lambda' \lambda} \ ,$$

(II.12)

where we defined $\sigma^\mu = (1, \sigma)$, with $\sigma = (\sigma^1, \sigma^2, \sigma^3)$ the usual Pauli matrices. If we insert (II.15) into (II.14) and multiply both sides by $s_\mu = (1, \mathbf{s})$, where the generic vector \mathbf{s} has Cartesian components $(s_1^\perp, s_2^\perp, s_L)$, we obtain

$$\frac{1}{2p_-} (s_\mu \Gamma^\mu)$$

\[= k_- \sum_{\lambda \lambda'} \frac{1}{2} (1 + \mathbf{s} \cdot \sigma)_{\lambda' \lambda} \frac{\langle k|\lambda|a_h(p, S) a_h(p, S)|k\lambda'\rangle}{\langle k|k\rangle} . \]

(II.13)

Note that in this expression the spin density matrix of the fragmenting quark, $\rho(s) = \frac{1}{2} (1 + s \cdot \sigma)$, appears naturally. Multiplying both sides of (II.16) by the weight factors $dz = dp_-/k_-$ and d^2p_\perp, and expressing the r.h.s. by a trace operation (Tr), we obtain

$$\frac{1}{2p_-} (s_\mu \Gamma^\mu) \ d^2p_\perp$$

\[= \text{Tr} \left(\rho(s) \langle k|\lambda|a_h(p, S) a_h(p, S)|k\rangle \right) dp_- \ d^2p_\perp . \]

(II.14)

From this relation it follows that the quantity

$$F(z, \mathbf{p}_\perp; \mathbf{S}, \mathbf{s}) \equiv \frac{1}{2p_-} (s_\mu \Gamma^\mu)$$

\[= \frac{1}{2p_-} \text{Tr}_D \left(\Gamma^\mu n(p_-, \mathbf{p}_\perp; \mathbf{S}) \right) \]

(II.15)

can be interpreted as the number density of the produced particle (h) with polarization \mathbf{S} within the fragmenting quark of polarization \mathbf{s}.

We can now write down the expression for $F(z, \mathbf{p}_\perp; \mathbf{S}, \mathbf{s})$, which follows from the definition (II.18)

\[\begin{align*}
\text{Like } \Gamma^\mu \text{ and } \sigma^\mu, \text{ the quantity } s_\mu \text{ is not a Lorentz 4-vector, but Einstein's summation convention still applies.}
\end{align*}\]
and the parametrizations (II.5) - (II.7):

\[
F(z, \mathbf{p}_\perp; \mathbf{S}, \mathbf{s}) = D(z, \mathbf{p}_\perp^2) - \frac{1}{\mathcal{M}} (\mathbf{k}_T \times \mathbf{S}_T)^3 D_L^+(z, \mathbf{p}_\perp^2) + (s_T \cdot \mathbf{S}_T) H_T(z, \mathbf{p}_\perp^2) + \frac{1}{\mathcal{M}} S_L (\mathbf{k}_T \cdot \mathbf{s}_T) H_L^+(z, \mathbf{p}_\perp^2) + \frac{1}{\mathcal{M}^2} (\mathbf{k}_T \cdot \mathbf{k}_T)(\mathbf{s}_T \cdot \mathbf{k}_T) H_T(z, \mathbf{p}_\perp^2)
\]

where both \(q \) for the spin represented by \(\mathbf{S} \) and the parametrizations (II.5) - (II.7):

\[
\sum_h \gamma_h \int_0^1 \frac{dz}{2zM_h} \int d^2p_\perp P(z, \mathbf{p}_\perp^2) = \frac{\tau_q}{2}.
\] (II.24)

The validity of the LM sum rule (II.22) and the isospin sum rule (II.24) in the quark jet model is well known \[32\], and in the following Section we will also confirm the validity of the TM sum rule (II.23).

III. FORMULATION OF THE TMD JET MODEL

In this Section we will formulate the TMD jet model, referring for definiteness and simplicity to the case of inclusive pion production. The inclusion of other hadron channels is straightforward, in particular if one uses Monte-Carlo methods \[33, 35\].

5 To derive (II.23), we use the following identity:

\[
\int d^2p_\perp p_\perp' H_L(q \to h)^{(q \to h)}(z, \mathbf{p}_\perp^2) = \frac{\delta^{ij}}{2} \int d^2p_\perp p_\perp' H_L(q \to h)^{(q \to h)}(z, \mathbf{p}_\perp^2).
\]
We first make a few comments on the elementary splitting functions. In Appendix C we present model forms of the elementary function $f^{(q \rightarrow Q)}$, which is expressed in terms of the 8 splitting functions $d^{(q \rightarrow Q)}$, $d_T^{(q \rightarrow Q)}$, \ldots, $g_T^{(q \rightarrow Q)}$ similar to Eq. (II.13), and the elementary function $f^{(q \rightarrow \pi)}$, for which only the spin independent term $d^{(q \rightarrow \pi)}$ and the quark–spin dependent term $\propto h^{(q \rightarrow \pi)}$ contribute. These forms, which are obtained in any effective theory which involves the coupling of constituent quarks to pions, are given in lowest order of the pion-quark coupling constant, i.e., the tree diagrams for the T-even functions (see Fig. 2 of Appendix C) and the one-loop graphs for the T-odd functions (see Figs. 3 and 4 of Appendix C). One peculiar feature of those functions is that the virtual quark can fragment into an on-shell quark and a real pion only with a certain probability $1 - Z_Q$, which is actually equal to the probability to find a constituent quark with its virtual pion cloud \cite{31,32}. (Typical values are $Z_Q \simeq 0.8$.) More precisely, the elementary $q \rightarrow Q$ FF can be expressed in the form

$$f^{(q \rightarrow Q)}(z, p_\perp; s, s) \equiv Z_Q \delta(1 - z) \delta^{(2)}(p_\perp) \delta(\tau_Q, \tau_q)$$

$$\times \frac{1}{2} (1 + S \cdot s) + (1 - Z_Q) \tilde{f}^{(q \rightarrow Q)}(z, p_\perp; s, s), \quad (III.1)$$

where the first term involves the probability Z_Q that the quark does not fragment at all \cite{6}, and accordingly the new function $\tilde{f}^{(q \rightarrow Q)}$ is normalized to 1:

$$\int_0^1 dz \int d^2 p_\perp \sum_{\pm S} \sum_{\tau_Q} \tilde{f}^{(q \rightarrow Q)}(z, p_\perp; s, s) = 1. \quad (III.2)$$

This renormalized elementary function $\tilde{f}^{(q \rightarrow Q)}$ is again parametrized as in Eq. (II.13) in terms of the 8 splitting functions $\tilde{d}^{(q \rightarrow Q)}$, $\tilde{d}_T^{(q \rightarrow Q)}$, \ldots, $\tilde{g}_T^{(q \rightarrow Q)}$. (Explicit model forms obtained in lowest order perturbation theory are given in Appendix C.)

For the formulation of the product ansatz, it will be convenient to define the elementary $q \rightarrow Q$ FF for the case where the incoming quark (q) has polarization s and the outgoing quark (Q) is unpolarized:

$$\tilde{f}^{(q \rightarrow Q)}(z, p_\perp; s) \equiv \sum_{\pm S} \tilde{f}^{(q \rightarrow Q)}(z, p_\perp; s, s)$$

$$= 2 \left[\tilde{f}^{(q \rightarrow Q)}(z, p_\perp^2) + \frac{1}{M_z} (p_\perp \times s_T)^3 \tilde{h}^{(q \rightarrow Q)}(z, p_\perp^2) \right], \quad (III.3)$$

where M is the constituent quark mass. The renormalized elementary $q \rightarrow \pi$ FF is related to the above function

$$\tilde{f}^{(q \rightarrow \pi)}(z, p_\perp; s) \equiv \tilde{f}^{(q \rightarrow Q)}(1 - z, -p_\perp; s)|_{\tau_Q = \tau_q = -2\tau}, \quad (III.4)$$

and is normalized to 1 according to (III.2). For later reference, we finally note that from (III.2) the quark renormalization factor is expressed in terms of the unrenormalized integrated $q \rightarrow Q$ FF $d^{(q \rightarrow Q)}(z)$ as follows:

$$1 - Z_Q = 2 \sum_{\tau_Q} \int_0^1 dz \int d^2 p_\perp d^{(q \rightarrow Q)}(z). \quad (III.5)$$

A. Product ansatz

In order to describe multistep fragmentation (quark cascade) processes, in our previous work \cite{32} we expressed the integrated $q \rightarrow \pi$ FF by a sum of products of elementary $q \rightarrow Q$ FFs, introducing the maximum number of pions (N) which can be produced by the fragmenting quark. It was shown that the momentum and isospin sum rules are satisfied only in the limit of $N \rightarrow \infty$ \cite{8}. In this limit one recovers the original jet model of Field and Feynman \cite{1}, where the FF is expressed from the start by an infinite product of renormalized $q \rightarrow Q$ FFs, corresponding to our quantity $\tilde{f}^{(q \rightarrow Q)}$ of Eq. (III.1).

In Appendix D we show that the same line of argument can be used also for the TMD case, i.e., the first (non-fragmentation) term of (III.1) can be processed so as to express the full $q \rightarrow \pi$ FF in terms of products of the renormalized elementary $q \rightarrow Q$ FFs of (III.1). In order to keep the formulas of the main part as simple as possible, we use the limit $N \rightarrow \infty$ from the start here. We will use the following notations for multi-dimensional momentum integrations:

$$\int D^N q \equiv \int_0^1 d\eta_1 \int_0^1 d\eta_2 \cdots \int_0^1 d\eta_N$$

$$\int D^{2N} p_\perp \equiv \int_0^1 d^2 p_{1\perp} \int_0^1 d^2 p_{2\perp} \cdots \int_0^1 d^2 p_{N\perp}. \quad (III.6)$$

7 The spin structure of the non-fragmentation term is explained in Appendix C. In practice, this term only serves to renormalize the elementary fragmentation functions, as explained in Appendix D.

8 Although this indicates a conceptual limitation of the jet model, which arises from several assumptions like scaling, leading twist and factorization, we take the limit $N \rightarrow \infty$ here, because one of the purposes of this paper is just to demonstrate the validity of the sum rules in this limit for the TMD case.
The product ansatz is then as follows:

\[
F(q \rightarrow \pi)(z, p_{\perp} ; s) = \lim_{N \rightarrow \infty} \sum_{m=1}^{N} \int D^N \eta \int D_{2N} p_{\perp} \sum_{\pi_{2N}} \delta(z - z_m) \frac{f(q \rightarrow Q_m)(\eta_1, p_{\perp 1} ; s)}{\prod_{i} f(Q_{m-1} \rightarrow Q_N)(\eta_i, p_{\perp i} ; \{S_i\})} \delta(\tau_{Q_m} - \tau_{Q_{m-1}})/2 \equiv \lim_{N \rightarrow \infty} \sum_{m=1}^{N} \tilde{F}(q \rightarrow \pi)(z, p_{\perp} ; s).
\]

(III.7)

Here the function \(\tilde{f}(q \rightarrow Q_1)(\eta_1, p_{\perp 1} ; s) \) is the elementary FF for the first step, which refers to the case where the incoming quark \(q \) has polarization \(s \) and no TM (\(k_{\perp} = 0 \)), and the outgoing quark \(Q_1 \) is unpolarized and has momentum variables \((\eta_1, p_{\perp 1}) \). The function \(\tilde{f}(Q_{m-1} \rightarrow Q_m)(\eta_i, p_{\perp i} ; \{S_i\}) \) for the \(j \)th step refers to the case where the incoming quark \(Q_j \) has momentum variables \((\eta_j, p_{\perp j}) \) and a polarization \(\{S_i\} \), which is defined as the mean polarization density of the outgoing quark of the \(j \)th step (which depends implicitly on the momentum variables of the steps \(1, 2, \ldots, j \)), while the outgoing quark \(Q_j \) has momentum variables \((\eta_j, p_{\perp j}) \) and its spin is not observed. In (III.7) we applied the rule \((\underline{A}_3) \) for making a transverse Lorentz transformation in each step of the fragmentation chain. The delta functions in (III.7) select a meson which is produced in the \(m \)-th step with LM fraction \(z_m \) of the initial quark, where

\[
z_m = \frac{\eta_1 \eta_2 \cdots \eta_{m-1} \cdot (1 - \eta_m)}{\prod_{m=1}^{\infty} \eta_1 - \eta_m}
\]

(III.8)

for \(m > 1 \), and \(z_1 = 1 - \eta_1 \) for \(m = 1 \). In (III.7) a sum over repeated quark flavor indices is implied, and for \(m = 1 \) we define \(p_{\perp 1} \equiv k_{\perp 1} = 0 \) and \(S_1 = s \).

The main difference to the case of the integrated FFs \((\underline{A}_2) \), is the spin structure of the product ansatz (III.7), which will be explained in the following Subsection.

B. Spin structure of the product ansatz

Here we wish to explain the spin structure of the product ansatz (III.7). For this purpose, we keep only the spin variables in most parts of this Subsection, suppressing momentum and isospin labels for simplicity.

Because the \(q \rightarrow \pi \) FF is obtained from a chain of elementary fragmentation processes, averaging over the spin of the final quark remainder, we express it formally as

\[
F(s) = \lim_{N \rightarrow \infty} \text{Tr} \left[(a + b \cdot \sigma)^N \rho(s) (a + b \cdot \sigma)^N \right].
\]

(III.9)

Here \(\text{Tr} \) denotes the trace of a spin \(2 \times 2 \) matrix, \(\rho(s) \) is the spin density matrix of the initial quark as before, and in order to avoid long expressions for products we use the symbolic notations

\[
(a + b \cdot \sigma)^n \equiv (a_1 + b_1 \cdot \sigma) \cdot (a_2 + b_2 \cdot \sigma) \cdot \cdots \cdot (a_n + b_n \cdot \sigma),
\]

(III.10)

\[
(a^* + b^* \cdot \sigma)^n \equiv (a_1^* + b_1^* \cdot \sigma) \cdot (a_2^* + b_2^* \cdot \sigma) \cdot \cdots \cdot (a_n^* + b_n^* \cdot \sigma),
\]

(III.11)

where \(a_n \) and \(b_n \) depend on the momentum variables of the \(n \)th fragmentation step.

Our aim is to express (III.9) as a product of \(N \) factors. For this, we first note that the matrix corresponding to the first fragmentation step \((q \rightarrow Q_1) \) can be expressed as

\[
\tilde{f}_1(s) = (a_1^* + b_1^* \cdot \sigma) \rho(s) (a_1 + b_1 \cdot \sigma) = \frac{1}{2} \left(f_1(s) + \sigma \cdot f_1(s) \right), \quad \text{(III.12)}
\]

\[
f_1(s) = \text{Tr} \left[(a_1^* + b_1^* \cdot \sigma) \rho(s) (a_1 + b_1 \cdot \sigma) \right], \quad \text{(III.13)}
\]

while in (III.13) we used the spin density matrix \(\rho(S_1) = \frac{1}{2} (1 + \langle S_1 \rangle \cdot \sigma) \), where

\[
\langle S_1 \rangle = \frac{f_1(s)}{\tilde{f}_1(s)} \quad \text{(III.16)}
\]

is the average polarization density of \(Q_1 \) (after the first step).

The matrix corresponding to the first and second fragmentation steps \((q \rightarrow Q_1 \rightarrow Q_2) \) can then be expressed as

\[
\tilde{f}_2(s) = (a_2^* + b_2^* \cdot \sigma) f_1(s) \rho(S_1) (a_2 + b_2 \cdot \sigma) = f_1(s) f_2(S_1), \quad \text{(III.17)}
\]

\[
f_2(S_1) = \text{Tr} \left[(a_2^* + b_2^* \cdot \sigma) \rho(S_1) (a_2 + b_2 \cdot \sigma) \right], \quad \text{(III.18)}
\]

where in (III.17) we defined the functions

\[
f_2(S_1) = \text{Tr} \left[(a_2^* + b_2^* \cdot \sigma) \rho(S_1) (a_2 + b_2 \cdot \sigma) \right], \quad \text{(III.19)}
\]

\[
f_2(S_1) = \text{Tr} \left[(a_2^* + b_2^* \cdot \sigma) \rho(S_1) (a_2 + b_2 \cdot \sigma) \right], \quad \text{(III.20)}
\]

while in (III.18) we used the spin density matrix \(\rho(S_2) = \frac{1}{2} (1 + \langle S_2 \rangle \cdot \sigma) \), where

\[
\langle S_2 \rangle = \frac{f_2(S_1)}{f_2(S_1)} \quad \text{(III.21)}
\]
is the average polarization density of Q_2 (after the second step).

We can continue in this way, and after N steps we obtain for the FF (III.9)

\[
F(s) = \lim_{N \to \infty} f_1(s) f_2((S_1)) \ldots f_N((S_{N-1})) \text{Tr} \rho((S_N))
\]

\[
= \lim_{N \to \infty} f_1(s) f_2((S_1)) \ldots f_N((S_{N-1})). \tag{III.22}
\]

Eq. (III.22) is the desired result, because it expresses the quantity (III.9) by a product of N factors, where each factor is given in terms of the elementary FF. This concludes the derivation of the spin structure of the product ansatz (III.7).

We finally comment on the relation between the matrix representation of the elementary FFs used in this Subsection, and the form (II.19). For definiteness we consider the FF for the first step, which in Eq. (III.12) was expressed in spin matrix form as

\[
\tilde{f}_1(s) = \frac{1}{2}(f_1(s) + \sigma \cdot f_1(s)).
\]

The connection to the form (II.19) for the elementary $q \to Q_1$ case is given by

\[
f_1(S_1, s) = \text{Tr}(\tilde{f}_1(s) \rho(S_1)) = \frac{1}{2}(f_1(s) + S_1 \cdot f_1(s)), \tag{III.23}
\]

where again the subscript 1 on the functions f and \tilde{f} is used to denote the dependence on the momentum variables for the first step. In (III.23), S_1 is considered simply as an auxiliary variable, i.e., if one knows $f_1(S_1, s)$ as a function of S_1, one also knows the matrix valued function $\tilde{f}_1(s)$. (We note that an analogous trace operation was performed in (II.17) for the initial quark.)

Eq. (III.23) also provides a natural extension of the formalism in Sect. II, where the polarization S in (III.1) implicitly referred to a fully polarized state, to the case of partial polarization.

Returning to the full notations including the momentum and isospin variables, comparison of (III.9) with (III.23) gives

\[
\tilde{f}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}; s) = 2 \left[\tilde{f}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{2 \perp}) + \frac{1}{M \eta_1} (\mathbf{p}_{1 \perp} \times \mathbf{s}_T)^3 \hat{h}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}) \right]. \tag{III.24}
\]

in agreement with (III.3), and

\[
\begin{align*}
\tilde{f}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}; s) &= 2 \left[
\frac{1}{M \eta_1} \mathbf{p}_{1 \perp} \frac{d}{d_T} \tilde{f}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{2 \perp}^2) + s_T \hat{h}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}^2)
\right] \\
&+ \frac{1}{M^2 \eta_1^2} \mathbf{p}_{1 \perp} \cdot (s_T \cdot \mathbf{p}_{1 \perp}) \hat{h}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}^2). \tag{III.25}
\end{align*}
\]

If $\mathbf{p}_{1 \perp} = (p_{1 \perp, 1}^1, p_{1 \perp, 2}^2)$, the vector $\mathbf{p}_{1 \perp}^1$ is defined by $p_{1 \perp, 1}^1 = (-p_{1 \perp, 2}^2, p_{1 \perp, 1}^1)$. To get the corresponding functions for the second step, one has to replace the momentum variables $(\eta_1, \mathbf{p}_{1 \perp})$ by $(\eta_2, \mathbf{p}_{2 \perp} - \eta_2 \mathbf{p}_{1 \perp})$, while according to (III.18) the spin variable s should be replaced by $\langle S_1 \rangle$, which is the ratio of the 2 functions given above for the first step.

C. Integral equations

Let us now proceed with the product ansatz (III.7) to derive the integral equation for the FF in the TMD jet model. For a fixed m in (III.7), we can integrate over the variables $\eta_k, \mathbf{p}_{k \perp}$ for $k > m$ using the normalization (III.2). The integrations over $\eta_m, \mathbf{p}_{m \perp}$ are then performed by using the delta functions. Making a shift $\eta_m \to 1 - \eta_m$ and using (III.4), the result of these integrations is

\[
\sum_{\tau_Q - m} \int_0^1 d\eta_m \int d^2 p_{m \perp} \delta(z - z_m)
\times \tilde{f}^{(Q_{m-1} \to Q_m)}(\eta_m, \mathbf{p}_{m \perp} - \eta_m \mathbf{p}_{m-1 \perp}; \langle S_{m-1} \rangle) \\
\times \delta(\mathbf{p}_{m-1 \perp} - \mathbf{p}_{m \perp}) \delta(\tau_{Q_{m-1}} - \tau_{Q_m})/2
\]

\[
= \int_0^1 d\eta_m \delta(z - \eta_1 \eta_2 \ldots \eta_m)
\times \tilde{f}^{(Q_{m-1} \to \pi)}(\eta_m, \mathbf{p}_{m \perp} - \eta_m \mathbf{p}_{m-1 \perp}; \langle S_{m-1} \rangle). \tag{III.26}
\]

In this way, the function $F_m^{(q \to \pi)}$ of Eq. (III.7) becomes

\[
F_m^{(q \to \pi)}(z, \mathbf{p}_{m \perp}; s) = \int \mathcal{D}^m \eta \int \mathcal{D}^2(\mathbf{p}_{m \perp}) \tilde{f}^{(q \to \pi)}(\eta_1, \mathbf{p}_{1 \perp}^1; \langle S_1 \rangle) \\
\times \tilde{f}^{(q \to Q_1)}(\eta_1, \mathbf{p}_{1 \perp}^1; \mathbf{s}_T) \tilde{f}^{(Q_1 \to Q_2)}(\eta_2, \mathbf{p}_{2 \perp} - \eta_2 \mathbf{p}_{1 \perp}^1; \langle S_1 \rangle) \ldots \\
\times \tilde{f}^{(Q_{m-2} \to Q_{m-1})}(\eta_{m-1}, \mathbf{p}_{m-1 \perp} - \eta_{m-1} \mathbf{p}_{m-2 \perp}; \langle S_{m-2} \rangle) \\
\times \tilde{f}^{(Q_{m-1} \to \pi)}(\eta_m, \mathbf{p}_{m \perp} - \eta_m \mathbf{p}_{m-1 \perp}; \langle S_{m-1} \rangle) \delta(z - \eta_1 \eta_2 \ldots \eta_m). \tag{III.27}
\]

9 Eq. (III.25) shows only the transverse part of $\tilde{f}^{(q \to Q_1)}$ without the contribution from the last term $\propto s_L$ in the elementary version of Eq. (II.19). It will become clear in Subsection III.D, that this term does not contribute to inclusive pion production. Also, there is a longitudinal part of $\tilde{f}^{(q \to Q_1)}$ which arises from the terms $\propto s_L$ in the elementary version of (II.19). Because the total FF for $q \to \pi$ consists only of the unpolarized (D) and the Collins (H^+) terms of (II.19), this part does not contribute either.
In order to obtain a recursion relation for the functions \(F_m^{(q \rightarrow \pi)} \), we carry out the steps explained in Appendix D (see Eqs. (D.33) - (D.44)), and obtain for \(m > 1 \)

\[
F_m^{(q \rightarrow \pi)}(z, p_\perp; s) = \int D^2 \eta \int D^4 p_\perp \\
\times \delta(z - \eta_1 \eta_2) \delta^{(2)}(p_\perp - p_2 \perp - \eta_2 p_1 \perp) \hat{f}^{(q \rightarrow \pi)}(\eta_1, p_1 \perp; s) \\
\times F_{m-1}^{(q \rightarrow \pi)}(\eta_2, p_2 \perp; \langle S_1 \rangle),
\]

(III.28)

where \(\langle S_1 \rangle \) is the mean polarization density of the quark produced in the first step and depends on the momentum variables (\(\eta_1, p_1 \perp \)) (for the explicit form, see Eq. (III.38) of the following Subsection), while for \(m = 1 \) we have

\[
F_1^{(q \rightarrow \pi)}(z, p_\perp; s) = \hat{f}^{(q \rightarrow \pi)}(z, p_\perp; s).
\]

(III.29)

Because the total FF is obtained by performing the sum over \(m \) and taking the limit \(N \rightarrow \infty \) (see (III.7)), it satisfies the following integral equation:

\[
F^{(q \rightarrow \pi)}(z, p_\perp; s) = \hat{f}^{(q \rightarrow \pi)}(z, p_\perp; s) \\
+ \int D^2 \eta \int D^4 p_\perp \delta(z - \eta_1 \eta_2) \\
\times \delta^{(2)}(p_\perp - p_2 \perp - \eta_2 p_1 \perp) \hat{f}^{(q \rightarrow \pi)}(\eta_1, p_1 \perp; s) \\
\times F^{(q \rightarrow \pi)}(\eta_2, p_2 \perp; \langle S_1 \rangle).
\]

(III.30)

More explicit forms of this integral equation will be derived in the following Subsection. Here we add remarks on the following two points: First, the SU(2) flavor dependence of all \(q \rightarrow \pi \) and \(q \rightarrow Q \) FFs in this paper (elementary or full) can be expressed by

\[
Z^{(q \rightarrow \pi)} = \frac{1}{3} Z^{(q \rightarrow \pi)}(0) + \frac{2}{3} \tau_3 Z^{(q \rightarrow \pi)}(1),
\]

(III.31)

\[
Z^{(q \rightarrow Q)} = \frac{1}{2} Z^{(q \rightarrow Q)}(0) + \frac{1}{2} \tau_3 Q Z^{(q \rightarrow Q)}(1).
\]

(III.32)

Here \(Z = \hat{f} \) for the elementary functions, and \(Z = F \) for the full functions, and the subscripts (0) and (1) denote the isoscalar and isovector parts.\(^{10}\) These definitions are convenient for the discussion of sum rules because of the following relations:

\[
\sum_{\tau_3} Z^{(q \rightarrow \pi)} = Z^{(q \rightarrow \pi)}(0), \\
\sum_{\tau_3} \tau_3 Z^{(q \rightarrow \pi)} = \tau_3 Z^{(q \rightarrow \pi)}(1).
\]

(III.33)

By using the forms (III.31) and (III.32) in the integral equation (III.30), the sum over the intermediate quark flavors can be easily carried out, and one obtains two separate integral equations, of the same form as the original equation (III.30), for the isoscalar (\(\alpha = 0 \)) and isovector (\(\alpha = 1 \)) parts:

\[
F_1^{(q \rightarrow \pi)}(z, p_\perp; s) = \hat{f}_1^{(q \rightarrow \pi)}(z, p_\perp; s) \\
+ \int D^2 \eta \int D^4 p_\perp \delta(z - \eta_1 \eta_2) \\
\times \delta^{(2)}(p_\perp - p_2 \perp - \eta_2 p_1 \perp) \hat{f}^{(q \rightarrow \pi)}(\eta_1, p_1 \perp; s) \\
\times F_1^{(q \rightarrow \pi)}(\eta_2, p_2 \perp; \langle S_1 \rangle).
\]

(III.34)

From this equation it follows that the “favored” combination \(\frac{1}{3} F^{(q \rightarrow \pi)}(0) + \frac{1}{2} F^{(q \rightarrow \pi)}(1) \) and the “neutral” function \(\frac{1}{3} F^{(q \rightarrow \pi)}(0) - \frac{1}{2} F^{(q \rightarrow \pi)}(1) \) have non-zero driving terms, while the “unfavored” combination \(\frac{1}{3} F^{(q \rightarrow \pi)}(0) - \frac{1}{2} F^{(q \rightarrow \pi)}(1) \) has no driving term, which is a simple consequence of charge conservation.

Second, we note that the momentum and isospin sum rules for the elementary FFs follow from the general forms (III.22) - (III.24), if the sum over \(h \) includes both the produced pion and the outgoing quark. Namely, the elementary counterpart of the LM sum rule (III.22) is

\[
\int_0^1 dz \int d^2 p_\perp \left(\sum_{\tau_3} \hat{d}^{(q \rightarrow \pi)}(z, p_\perp^2) + 2 \sum_{\tau Q} \hat{d}^{(q \rightarrow Q)}(z, p_\perp^2) \right) = 1,
\]

(III.35)

that of the TM sum rule (III.23) is

\[
\int_0^1 \frac{dz}{z} \int d^2 p_\perp \left(\frac{1}{m_\pi} \sum_{\tau_3} \hat{h}_1^{(q \rightarrow \pi)}(z, p_\perp^2) + \frac{2}{M} \sum_{\tau Q} \hat{h}_1^{(q \rightarrow Q)}(z, p_\perp^2) \right) = 0,
\]

(III.36)

and that of the isospin sum rule (III.24) is

\[
\int_0^1 \frac{dz}{z} \int d^2 p_\perp \left(\sum_{\tau_3} \tau_3 \hat{d}^{(q \rightarrow \pi)}(z, p_\perp^2) + 2 \sum_{\tau Q} \tau_Q \hat{d}^{(q \rightarrow Q)}(z, p_\perp^2) \right) = \frac{\tau_3}{2}.
\]

(III.37)

The sum rules (III.35) - (III.37) just express the momentum and isospin conservation laws for the elementary fragmentation process, and are therefore model independent. (Explicit model forms for pseudoscalar (ps) and pseudovector (pv) pion-quark coupling are collected in Appendix C.) We stress again that in the “full” sum rules (III.22) - (III.24) the summation \(\Sigma_h \) refers only to the pions, because after an infinite chain of elementary fragmentation processes the final quark remainder will have zero LM and, on average, also zero TM and zero isospin \(z \) component. We will confirm this point in the TMD jet model in the next Subsection and in Appendix E.

\(^{10}\) For the isoscalar and isovector functions \(Z_\alpha \), the distinction between the quark labels \(q \) and \(Q \) is irrelevant.
D. Explicit forms of TMD jet integral equations and sum rules

In this Subsection we give the explicit forms of the integral equations for the spin independent \((D(q\rightarrow\pi))\) and quark - spin dependent \((H^{⊥(q\rightarrow\pi)}))\) FFs and confirm the associated sum rules. For this, we have to insert the elementary FFs for an incoming polarized quark and outgoing pion or unpolarized quark, as given by \((III.3)\) and \((III.4)\), into the integral equation \((III.30)\) and use the following expression for the mean polarization density of the quark produced in the first step (see Eqs. \((III.19)\) and \((III.24), (III.25)\)):

\[
< S_1 > = \frac{2}{f(q\rightarrow Q)(\eta_1, p_{1⊥}; S)} \\ \int \left[\frac{1}{M\eta_1} \left(\frac{1}{2} \times [\hat{T} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2) + s_T \hat{T}(q\rightarrow Q)(\eta_1, p_{1⊥}^2)] \right) \right] . \tag{III.38}
\]

We then obtain for the product on the r.h.s. of \((III.30)\):

\[
f(q\rightarrow Q)(\eta_1, p_{1⊥}; S) \times F^{(Q\rightarrow\pi)}(\eta_2, p_{2⊥}; (S_1)) = \frac{2}{f(q\rightarrow Q)(\eta_1, p_{1⊥}; S)} \times \left[\frac{1}{M\eta_1} \left(\frac{1}{2} \times [\hat{T} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2) + s_T \hat{T}(q\rightarrow Q)(\eta_1, p_{1⊥}^2)] \right) \right] . \tag{III.39}
\]

Inserting everything into \((III.30)\) we obtain the following two coupled integral equations \(^\dagger\):

\[
D^{(q\rightarrow\pi)}(z, p_{2⊥}^2) = \tilde{d}^{(q\rightarrow\pi)}(z, p_{2⊥}^2) + 2 \int D^2\eta \int D^4p_\perp \delta(z - \eta_1\eta_2) \times \left[\frac{1}{M\eta_1} \left(\frac{1}{2} \times [\hat{T} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2) + s_T \hat{T}(q\rightarrow Q)(\eta_1, p_{1⊥}^2)] \right) \right] \times H^{⊥(q\rightarrow\pi)}(\eta_2, p_{2⊥}^2) . \tag{III.40}
\]

\(^\dagger\) Because the isoscalar and isovector integral equations have completely the same form (see \((III.33)\)), we will omit the isospin index \((\alpha)\) in some of the following equations for simplicity.

\[
\begin{align*}
H^{⊥(q\rightarrow\pi)}(z, p_{1⊥}^2) + 2 \int D^2\eta \int D^4p_\perp \delta(z - \eta_1\eta_2) \delta^{(2)}(p_\perp - p_{2⊥} - \eta_2p_{1⊥}) \\
\times \left[\frac{1}{Mm_\pi z} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2) \times [\hat{T} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2)] \right] \times (p_{1⊥} \times s_T) \times (p_{1⊥} \times p_{2⊥})^3 \times H^{⊥(q\rightarrow\pi)}(\eta_2, p_{2⊥}^2) . \tag{III.41}
\end{align*}
\]

At this stage, it is easy to confirm our previous comment about the vanishing contribution from the last term \((\times s_L)\) in the elementary version of \((III.19)\) for the \(q \rightarrow Q\) case: Although this term contributes to \((III.38)\) and \((III.39)\), it vanishes in the integral equation \((III.41)\). Therefore only the transverse quark polarization contributes to inclusive pion production.

In order to obtain the integral equation for the function \(H^{⊥(q\rightarrow\pi)}\) from \((III.11)\), it is necessary to use the delta function to integrate over \(p_{2⊥}\). Using simple identities which follow from rotational invariance in the transverse plane, we obtain

\[
H^{⊥(q\rightarrow\pi)}(z, p_{1⊥}^2) = \hat{h}^{⊥(q\rightarrow\pi)}(z, p_{1⊥}^2) + 2 \int D^2\eta \int D^4p_\perp \delta(z - \eta_1\eta_2) \times \left[\frac{1}{M\eta_1} \left(\frac{1}{2} \times [\hat{T} \hat{Q}(q\rightarrow Q)(\eta_1, p_{1⊥}^2) + s_T \hat{T}(q\rightarrow Q)(\eta_1, p_{1⊥}^2)] \right) \right] \times H^{⊥(q\rightarrow\pi)}(\eta_2, p_{2⊥}^2) . \tag{III.42}
\]

where we denoted \(X \equiv \frac{p_{1⊥} \cdot s_T}{p_{2⊥}^2} \), and \(p_{2⊥}^2 \equiv (p_{2⊥} - \eta_2 p_{1⊥})^2 \). The two coupled integral equations \((III.40)\) and \((III.42)\) constitute important results of our investigation.

We now wish to show that the momentum and isospin sum rules \((III.22), (III.24)\) are valid in this TMD jet model. In the subsequent discussions, we will use the following notation for the \(n\)th moment of any TMD function \(A(z, p_{1⊥}^2)\) \(^\dagger\):

\[
A[n](z) = \int d^2p_\perp \left(p_{1⊥}^2 \right)^n A(z, p_{1⊥}^2) . \tag{III.43}
\]

\(^\dagger\) We only need the cases \(n = 0, 1\), where \(A[0](z) = A(z)\) is the integrated function, and \(n = 1\). Note that, with this naive definition, the dimension of the \(n = 1\) moment is different from the \(n = 0\) case.
and adopt the notations
\[A(z) = \int_0^1 dz \, A(z), \]
\[(A(\eta_1)) \otimes (B(\eta_2))(z) = \int D^2 \eta \, \delta(z - \eta_1 \eta_2) A(\eta_1) B(\eta_2). \] (III.44)

First, the well known LM and the isospin sum rules follow immediately from (III.40): Integrating over \(p_\perp \), the second term in \([\ldots]\) vanishes, which leaves us with the usual one-dimensional convolution integral for the spin independent FF\(^{32}\). For the isoscalar case we obtain the usual one-dimensional convolution integral for the second term in \([\ldots]\)

\[\int_0^1 \frac{dz}{2z m_\pi} H^{[1]}_{(0)} (z) = C \int_0^1 \frac{dz}{2z m_\pi} H^{[1]}_{(0)} (z), \] (III.51)

where we defined the function
\[\hat{h}^{(q\to Q)}(\eta) = \hat{h}^{[1]}_{(q\to Q)}(\eta) + \frac{1}{2M^2 \eta^2} \hat{h}^{[1]}_{(q\to Q)}(\eta). \] (III.50)

For the sum rule (III.28) we need to divide by \(2z m_\pi \), which gives
\[\frac{1}{2z m_\pi} H^{[1]}_{(0)} (q\to Q)(z) = \frac{1}{2z m_\pi} \hat{h}^{[1]}_{(q\to Q)}(z) \]
\[+ \left(\frac{1}{M \eta_1} \hat{h}^{[1]}_{(q\to Q)}(\eta_1) \otimes \eta_2 D^{(q\to Q)}(\eta_2) \right) \]
\[+ 2 \left(\hat{h}^{(q\to Q)}(\eta_1) \otimes \frac{1}{2\eta_2 m_\pi} H^{[1]}_{(0)}(q\to Q)(\eta_2). \] (III.51)

If we integrate Eq. (III.51) for the isoscalar parts over \(z \) and use the LM sum rule (III.46) and the relation (III.36) for the elementary splitting functions, we see that the first two terms on the r.h.s. of (III.51) cancel each other in the integral. What remains is the following relation:
\[\int_0^1 \frac{dz}{2z m_\pi} H^{[1]}_{(0)}(q\to Q)(z) = C \int_0^1 \frac{dz}{2z m_\pi} H^{[1]}_{(0)}(q\to Q)(z), \] (III.52)

where we defined the constant
\[C = 2 \int_0^1 dz \hat{h}^{(q\to Q)}(z) \]
\[= \left(\int_0^1 dz \, \hat{h}^{(q\to Q)}(z) \right) \cdot \left(\int_0^1 dz \, \hat{d}^{(q\to Q)}(z) \right)^{-1}, \] (III.53)

in agreement with (II.22).

Second, in order to confirm also the validity of the TM sum rule, we first derive the integral equation for the \(n = 1 \) moment \(H^{[1]}_{(0)}(q\to Q)(z) \). For this, we multiply (III.42) by \(p_\perp^2 \), integrate and perform the shift \(p_\perp \to p_\perp + \eta_1 p_\perp \). Using simple identities which follow from rotational invariance in the transverse plane, and expressing \(z = \eta_1 \eta_2 \) everywhere, we obtain the following simple one-dimensional integral equation:
\[H^{[1]}_{(0)}(q\to Q)(z) = \hat{h}^{[1]}_{(q\to Q)}(z) \]
\[+ 2 \frac{m_\pi}{M} \left(\hat{h}^{[1]}_{(q\to Q)}(\eta_1) \otimes \eta_2^2 D^{(q\to Q)}(\eta_2) \right) \]
\[+ 2 \left(\eta_1 \hat{h}^{(q\to Q)}(\eta_1) \otimes \left(H^{[1]}_{(0)}(q\to Q)(\eta_2) \right) \right), \] (III.49)

where we defined the function
\[\hat{h}^{(q\to Q)}(\eta) = \hat{h}^{[1]}_{(q\to Q)}(\eta) + \frac{1}{2M^2 \eta^2} \hat{h}^{[1]}_{(q\to Q)}(\eta). \] (III.50)

\[\text{writing} \ h^{(q\to Q)} = f_1 - f_2 \text{ and } d^{(q\to Q)} = f_1 + f_2 \text{ with semi-positive definite functions } f_1 \text{ and } f_2, \text{ the boundary value } C = 1 \text{ would mean that } f_1 = 0, \text{ i.e. the probability distribution of quarks with transversity opposite to the parent quark would have to vanish identically for all values of } z \text{ and } p_\perp^2. \]
result for C obtained for both ps and pv quark-pion coupling shows that $-1 < C < 0$ (see Appendix C).

Finally in this Section, we add the following three comments:

- In our present TMD jet model, the constant C of (III.53) gives the ratio of the mean polarizations of the outgoing and incoming quarks (including a sum over the outgoing quark flavors) for one elementary fragmentation step, i.e., a measure for the quark depolarization. Taking the first step as an example, this follows from the form given by (III.25):

\[
\int_0^1 d\eta \int d^2p_\perp \sum_{\tau Q} \hat{f}(q \to Q)(\eta, p_\perp; s) = C s_T.
\]

(III.55)

- The finite constituent quark mass M causes mixing of operators with opposite chirality in the integral equation (III.40): We remind that the Dirac matrices γ^τ and $\gamma^\tau\gamma_5$ of (II.5) and (II.7) are chiral even (anticommute with γ_5), while $i\sigma^{\tau\nu}\gamma_5$ of (II.6) is chiral odd (commutes with γ_5). If there were no mass term in the quark propagator, operators with opposite chirality could not couple in the integral equation. Therefore the term $\propto d_{\perp Q}^\tau(q \to Q) M_s^{\perp Q \to \pi}$ in the integral equation (III.40) arises entirely from the finite constituent quark mass term in the propagators. (Explicit model examples to illustrate this point are discussed in Appendix C for both ps and pv pion-quark coupling.)

- The integral equations derived in this Section and the associated sum rules hold in any effective quark theory which does not involve explicit gluon and gauge link degrees of freedom, and which satisfies the following 3 points which were used in the verification of the TM sum rule in the steps from Eq. (III.49) to (III.54): (i) the LM sum rule (III.46), (ii) the TM conservation in each fragmentation step expressed by (III.36), and (iii) the quark depolarization factor C of (II.53) is not equal to unity, i.e., the transversity distribution function and the unpolarized distribution function of a quark inside a parent quark are not identical to each other.

IV. SUMMARY

The analysis of TMD quark distribution and fragmentation functions is a very active field of present experimental and theoretical research. For the description of quark TMD distribution functions, one can follow the methods based on relativistic bound state vertex functions for hadrons, which have been applied successfully to form factors and the longitudinal quark momentum distributions. For the description of quark FFs, however, one has to consider multi-fragmentation processes, where the quark produces a cascade of mesons. One purpose of this paper was therefore to formulate the TMD jet model, which is suitable for numerical calculations in effective quark theories. Limiting ourselves to the case of inclusive pion production for simplicity and clarity, we used a product ansatz for the TMD FF, similar to that used by Field and Feynman for the description of longitudinal quark jets [1]. From this product ansatz we derived the integral equations for the spin independent and quark - spin dependent FFs. The proper treatment of the spin of the quarks in the intermediate states requires the use of several elementary TMD splitting functions in the integral equations. We found that these integral equations are coupled to each other, that is, the spin independent and quark - spin dependent FFs are mutually interrelated. We showed that in this TMD jet model all momentum and isospin sum rules are satisfied. This is possible because after many hadron emissions the final quark remainder has zero longitudinal momentum and, on average, also zero transverse momentum and zero z-component of isospin.

The numerical solutions of the integral equations derived in this paper, using model input splitting functions, will allow to obtain the relevant FFs in future work. An important task thereby will be to extend the framework to additional hadron production channels, such as kaons, vector mesons and their strong decays, as well as baryons. The Monte-Carlo method will be naturally suited for this purpose, which can also allow to study various correlations between FFs describing single - and multi-hadron inclusive production. In order to make contact to experiment, it is also important to take into account the Q^2 evolution of the calculated TMD FFs [53]. Together with the model TMD PDFs, they can be used to calculate observables like cross sections and asymmetries for various SIDIS processes. Finally, in view of recent experimental analyses [54], it is of great interest to explore quark FFs in the nuclear medium.

ACKNOWLEDGMENTS

This work was supported by the Grant in Aid (Kakenhi) of the Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 25400270; the Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale (CE110001104); and an ARC Australian Laureate Fellowship FL0992247 and Discovery Project DP151103101.

Appendix A: Transverse Lorentz transformations

A transverse Lorentz transformation is defined so as to leave the component $a^\tau = a_-$ of any 4-vector $a_\mu = (a_+, a_-, a_1, a_2)$ unchanged. It involves the parameters b_-
and b_T, and the Lorentz matrix is expressed by

$$
\Lambda_{\mu \nu} = \begin{pmatrix}
\frac{k_+^2}{2z^2} & k_+^2 & -k_+^2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -\frac{k_+}{b_\perp} & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$

(A.1)

The quark and hadron momenta are transformed as $k_\mu' = \Lambda_{\mu \nu} k_\nu$, $p_\mu' = \Lambda_{\mu \nu} p_\nu$. If we start from a system S, where in general both p_T and k_T are nonzero, we consider the following two cases: (1) By using $b_\perp = k_\perp$, $b_T = k_T$ in (A.1), we arrive at a system S' where $k_T' = 0$. The relation between the transverse momenta in this case becomes $p_T' = p_T - z k_T$. (2) By using $b_\perp = p_\perp$, $b_T = p_T$ in (A.1), we arrive at a system S' where $p_T' = 0$. The relation between the transverse momenta in this case becomes $k_T' = k_T - \frac{p_T^2}{b_\perp}$.

We note that one can express the above transformations also in usual Minkowski coordinates. For example, for the transformation (1) discussed above we get

$$
p_0' = p_0 + \frac{1}{2\sqrt{2}p_-} (k_+^2 z^2 - 2z k_T \cdot p_T),
$$

(A.2)

$$
p_3' = p_3 + \frac{1}{2\sqrt{2}p_-} (k_+^2 z^2 - 2z k_T \cdot p_T),
$$

(A.3)

and one can confirm that $p_0' - p_3' = p_T' = p_0^2 - p_3^2 - p_T^2$. Therefore, at leading order (leading power of p_\perp), the direction \vec{p} is always in the 3- direction, and the corrections to this are of subleading order.

The operation used in the definition of the quark decay matrix (see Eq. [1.11])

$$
\frac{1}{2z} \int \frac{dk_+ \, dk_-}{(2\pi)^4} \delta \left(\frac{1}{z} - \frac{k_-}{p_-} \right)
$$

is invariant under the transverse Lorentz transformations, because the transformation of k_\perp can be eliminated by a shift of the integration variable. We also note that the vectors s and S in the parametrization of all FFs used in this paper (see Eq. [1.10]) are not subject to any Lorentz transformation, because by definition they denote generic (constant) vectors in space; i.e., parameters which specify the spin 4-vector (see for example Eq. [1.5]). Quantities like S_L, S_T, for example, are defined by $S_L = (S \cdot \hat{p})$ and $S_T = S - \hat{p} (S \cdot \hat{p})$, and for the leading produced particle (leading twist) the direction \hat{p} is not changed under the transverse Lorentz transformation as discussed above. We therefore arrive at the following simple rule for the transverse Lorentz transformation of any FF:

$$
F(z, p_T, k_T; S, s) = F(z, p_T - z k_T; S, s | k_\perp = 0).
$$

(A.5)

Here the notation on the r.h.s. refers to a frame where the transverse momentum of the fragmenting quark vanishes, and in this case the parametrization given by Eq. [1.10] holds. Namely, in a general system, we simply have to replace the momentum p_\perp in Eq. [1.10] according to $p_\perp \rightarrow p_T - z k_T$.

Appendix B: Light front spinors and Melosh rotation

The positive energy spinor in the usual Dirac representation is given by

$$
u_\lambda(p) = \sqrt{E + m} \left(\frac{\sigma \cdot \rho}{E + m} \hat{\chi}_\lambda \right),
$$

(B.1)

where $\hat{\chi}_\lambda$ is a 2-component Pauli spinor. In this Appendix we denote the mass by m, the energy E_p by E, and the normalization is $\bar{\rho} \gamma^\mu \rho = 2m$. The “good component” of the spinor is obtained from (B.1) by applying the projection operator Eq. [II.11]:

$$
\nu_\lambda(p) = \Lambda(+) \nu_\lambda(p) = \frac{1}{2} \sqrt{E + m} \left(1 + \frac{\sigma \cdot \rho}{E + m} \right) \hat{\chi}_\lambda
$$

$$
= \sqrt{E + p^2} \left(\frac{U_m^\dagger \chi_\lambda}{\sigma_3 U_m^\dagger} \right) \hat{\chi}_\lambda = \sqrt{E + p^2} \left(\frac{1}{\sigma_3} \right) \chi_\lambda.
$$

(B.2)

Here the Pauli spinor χ_λ is defined by $\hat{\chi}_\lambda = U_m \chi_\lambda$, and U_m is the so called “Melosh rotation” [58]. (The explicit form of the spinor rotation U_m can easily be obtained from the above relations.)

Using the form of the spinor $u_{\lambda +}(p)$ given in (B.3), the relation [II.15] of Sect. II can easily be shown as follows:

$$
\pi_\lambda(p) \Gamma^\mu u_{\lambda +}(p) = \sqrt{2} u_{\lambda +}(p) \tilde{\Gamma}^\mu u_{\lambda +}(p)
$$

$$
= \sqrt{2} \frac{E + p^2}{2} \chi_\lambda \sigma_\mu (1 + \sigma_3) \Gamma^\mu \left(\frac{1}{\sigma_3} \right) \chi_\lambda
$$

$$
= \sqrt{2} (E + p^2) \chi_\lambda \sigma_\mu \chi_\lambda = 2p_\perp (\sigma^\mu)_{\lambda \lambda},
$$

(B.4)

where we used the definitions of Γ^μ, Eq. [II.8], and $\Gamma^\mu = \gamma^\mu \tilde{\Gamma}^\mu$. Eq. [B.4] is the same as [II.15] of Sect. II.

The quantity (B.3) represents a Hermitian 2×2 matrix in the spin indices (λ', λ), and contraction with $s_{\mu} = (1, \mathbf{s})$ leads to $\rho_{\lambda \lambda}(s) = \frac{1}{2} (1 + \mathbf{s} \cdot \sigma) \delta_{\lambda \lambda}$ of (II.16) in the main text. Denoting by \mathbf{s} the magnitude of the polarization vector ($0 \leq s \leq 1$) and by \hat{s} its direction, the operator $\rho(s) = \frac{1}{2} (1 + \mathbf{s} \cdot \sigma)$ can be written in the form

$$
\rho(s) = w_+ \frac{1}{2} (1 + \hat{s} \cdot \sigma) + w_- \frac{1}{2} (1 - \hat{s} \cdot \sigma),
$$

(B.5)

where $w_{\pm} = \frac{1}{2} (1 \pm s)$. Therefore, for a fully polarized quark ($s = 1$), $\rho(s)$ becomes a projector onto the direction \hat{s}, while for a partially polarized quark ($s < 1$), $\rho(s)$ is a linear combination of the projectors onto the directions \hat{s} and $-\hat{s}$ with coefficients w_+ and w_-, respectively. Therefore $\rho(s)$ can be identified with the usual spin density matrix.

For easier interpretation of some of the relations in the main text, we finally give the form of the spin density matrix in the basis which diagonalizes $\mathbf{s} \cdot \sigma$:

$$
\rho_{\lambda \lambda}(s) = \delta_{\lambda \lambda} \frac{1}{2} (1 + s \lambda),
$$

(B.6)
where $\lambda = \pm 1$. In this basis, the spin average of any quantity A takes the form

$$\text{Tr} (\rho(s) A) = w_+ A_{11} + w_- A_{-1-1}.$$

(B.7)

Appendix C: Explicit forms of elementary fragmentation functions

In this Appendix we list model results for the elementary $q \rightarrow \pi$ and $q \rightarrow Q$ splitting functions, parametrized as in Eq. (III.19), and their sum rules. We will mainly refer to the case of ps coupling of constituent quarks (mass M) to pions, but also discuss the results for pv coupling in those cases which serve to illustrate the model independence of the points discussed in Sect. III of the main text.

The non-fragmentation term $\propto Z_Q$ of Eq. (III.11) is easily obtained from the operator definitions (III.1) and (III.2) as the contribution of the hadronic vacuum state $|0\rangle$ to the sum \sum_n in (III.2). All 4 operators (III.8) contribute to this term, and by using (III.15) for the spinor matrix elements one easily derives the spin dependence as expressed in (III.1). Another way to see this is to use the formal analogue of Eq. (III.23) for the "0th step": $f_0(S, \sigma) = \text{Tr} \left(\hat{f}_0(s) \rho(S) \right) = \frac{1}{2} (1 + S \cdot s)$, where $\hat{f}_0(s) = \rho(s)$ follows from setting $N = 0$ in Eq. (III.9). We do not list the non-fragmentation terms in the formulas of this Appendix, because eventually they can be absorbed into the renormalized FFs, as explained in Appendix D.

The tree level cut diagrams of Fig. 2 contribute to the six T-even splitting functions of Eq. (III.19), and in order to obtain non-zero results for the T-odd functions d_T^\pm and h_T^\pm one has to consider the loop diagrams shown in Figs. 3 and 4. In order to facilitate comparison with previous works [28, 30], we give the expressions for the case where a neutral pion is produced (for $q \rightarrow \pi$ case) or on the cut (for $q \rightarrow Q$ case), which we refer to as the "neutral functions". The flavor dependence is then expressed in terms of those neutral functions by

$$f(q \rightarrow \pi) = f_{\text{neutral}}(1 + \tau_q \tau_\pi),$$

(C.1)

$$f(q \rightarrow Q) = f_{\text{neutral}} \left(\frac{3}{2} - \tau_q \tau_Q \right).$$

(C.2)

Because of the definitions (III.31) and (III.32) of the main text, the isoscalar and isovector functions can be obtained from the neutral ones by

$$f(q \rightarrow \pi) = 3 f_{\text{neutral}}(0),$$

(C.3)

$$f(q \rightarrow Q) = - f_{\text{neutral}}(1).$$

(C.4)

Consider first the tree diagrams of Fig. 2 for ps coupling. For the $q \rightarrow \pi$ fragmentation they give the well known form [30]:

$$d_{\text{neutral}}(z, p^2_\perp) = \frac{z}{2 (2\pi)^2} p^2_\perp + M^2 z^2 + (1 - z) m^2_\pi^2,$$

(C.5)

while for the $q \rightarrow Q$ fragmentation they give the following six T-even functions [30]:

$$d_{\text{neutral}}(z, p^2_\perp) = \frac{1}{4} \frac{z}{(2\pi)^2} \frac{p^2_\perp + M^2 (1 - z)^2}{p^2_\perp + M^2 (1 - z)^2 + z m^2_\pi^2},$$

(C.6)

$$h_{T,\text{neutral}}(z, p^2_\perp) = - d_{\text{neutral}}(z, p^2_\perp),$$

(C.7)

$$h_{L,\text{neutral}}(z, p^2_\perp) = \frac{1}{2} \frac{z}{(2\pi)^2} \frac{M^2 z^2}{p^2_\perp + M^2 (1 - z)^2 + z m^2_\pi^2},$$

(C.8)

$$g_{L,\text{neutral}}(z, p^2_\perp) = \frac{1}{2} \frac{z}{(2\pi)^2} \frac{M^2 z (1 - z)}{p^2_\perp + M^2 (1 - z)^2 + z m^2_\pi^2},$$

(C.9)

$$g_{T,\text{neutral}}(z, p^2_\perp) = \frac{1}{4} \frac{z}{(2\pi)^2} \frac{p^2_\perp + M^2 (1 - z)^2}{p^2_\perp + M^2 (1 - z)^2 + z m^2_\pi^2},$$

(C.10)

$$g_{T,\text{neutral}}(z, p^2_\perp) = h_{L,\text{neutral}}(z, p^2_\perp).$$

(C.11)

The pion loop diagrams of Fig. 3 give the following results for the elementary T-odd $q \rightarrow \pi$ FF for the case of ps coupling [28, 29]:

$$h_{\text{neutral}}(z, p^2_\perp) = \frac{z}{2 (1 - z)} \left(\frac{\text{Im} \hat{\Sigma}(k^2)}{k^2 - M^2} + \frac{\text{Im} \hat{\Gamma}_\pi(k^2)}{k^2 - M^2} \right),$$

where the whole expression should be taken at

$$k^2 = \frac{1}{z (1 - z)} \left(p^2_\perp + M^2 z + m^2_\pi (1 - z) \right).$$

14 The corresponding argument for pure spin states is to use the relation $|S| |S| = \frac{1}{2} (1 + S \cdot \sigma)$, which implies $\langle S | S \rangle = \frac{1}{2} (1 + S \cdot s)$.

15 As as shown in Ref. [28], the other one-loop diagrams do not contribute to the T-odd functions considered here.
In (C.12) we have $\tilde{\Sigma} = A + B$ and $\tilde{\Gamma}_\pi = D + E + M F$, where the various functions are defined by the representation of the quark self energy Σ and the $q\bar{q}\pi$ vertex correction Γ_π in terms of Dirac matrices as $\Sigma = A\gamma + B M$ and $\Gamma_\pi(k, p) = C + D \gamma + E k + F \gamma + k$. The analytic forms of $\text{Im}\tilde{\Sigma}$ and $\text{Im}\tilde{\Gamma}_\pi$ are given by

$$\text{Im}\tilde{\Sigma}(k^2) = \frac{3g_\pi^2}{16\pi^2} \left(1 - \frac{M^2 - m_\pi^2}{k^2}\right) I_1,$$

$$\text{Im}\tilde{\Gamma}_\pi(k^2) = \frac{g_\pi^2}{8\pi^2} \frac{k^2 - M^2 + m_\pi^2}{\lambda} \left(I_1 + (k^2 - M^2 - 2m_\pi^2) I_2\right),$$

where the integrals I_1 and I_2 are given by

$$I_1 = \int d^4\ell \delta(\ell^2 - m_\pi^2) \delta \left[(k - \ell)^2 - M^2\right]$$

$$= \frac{\pi}{2k^2} \sqrt{\lambda} \Theta(k^2 - (M + m_\pi)^2),$$

$$I_2 = \int d^4\ell \delta(\ell^2 - m_\pi^2) \delta \left[(k - \ell)^2 - M^2\right]$$

$$= -\frac{\pi}{2\sqrt{\lambda}} \log \left(1 + \frac{k^2 M^2 - (M^2 - m_\pi^2)^2}{k^2 M^2 - (M^2 - m_\pi^2)^2}\right)$$

$$\times \Theta(k^2 - (M + m_\pi)^2),$$

and the function λ is given by

$$\lambda(k^2) = (k^2 - (M + m_\pi)^2) (k^2 - (M - m_\pi)^2).$$

For the elementary T-odd $q \rightarrow Q$ FFs, the pion loop diagrams of Fig. 4 give the following results for ps coupling:

$$h^{\perp(q\rightarrow Q)}(z, p_{\perp}^2) =$$

$$= \frac{1}{2(2\pi)3} \frac{g_\pi^2 M^2}{1 - z} \left(\text{Im}\tilde{\Sigma}(k^2) + \text{Im}\tilde{\Gamma}_q(k^2)\right),$$

$$d_T^{\perp(q\rightarrow Q)}(z, p_{\perp}^2) = -h^{\perp(q\rightarrow Q)}(z, p_{\perp}^2),$$

where the expressions should be taken at

$$k^2 = \frac{1}{z(1 - z)} \left(p_{\perp}^2 + (1 - z)M^2 + m_\pi^2\right).$$

For some fixed value of k^2 one has $\text{Im}\tilde{\Gamma}_q(k^2) = \text{Im}\tilde{\Sigma}(k^2)$.

The above model expressions illustrate some general features discussed in the main text. First, the validity of the TM sum rule for the elementary FFs is evident from Eqs. (C.12) and (C.15). Second, if we insert the above model expressions into the expression (III.54) for the quark depolarization factor C we obtain

$$C = -\left(\int_0^1 dz \int d^2p_{\perp} \frac{M^2 z^3}{[p_{\perp}^2 + M^2 z^2 + (1 - z)m_\pi^2]^2}\right)$$

$$\times \left(\int_0^1 dz \int d^2p_{\perp} \frac{p_{\perp}^2 + M^2 z^2}{[p_{\perp}^2 + M^2 z^2 + (1 - z)m_\pi^2]^2}\right)^{-1}.$$

From this relation we see that $-1 < C < 0$ and cannot be equal to 1, which verifies the validity of the TM sum rule (12.23) for the case of ps coupling.

The third point concerns the mixing of operators with opposite chirality in the integral equation (11.40) because of the finite constituent quark mass term in the propagator. By noting that the Dirac matrices for massless quark propagators are chiral even, and pion-quark couplings always occur in pairs, we see that for the case of massless quark the chirality of the final product of Dirac matrices is equal to the chirality of the external quark operators $\gamma^+ = \gamma^+ \gamma_5$, $i\sigma^i \gamma_5$. Therefore the term $\propto d_T^{\perp(q\rightarrow Q)} H^{\perp(q\rightarrow \pi)}$ in the integral equation (11.40) must arise from the finite constituent quark mass term in the propagators. The model forms given above actually show that $d_T^{\perp(q\rightarrow Q)} \propto M^2$, and $H^{\perp(q\rightarrow Q)} \propto M^2$. Because also $h^{\perp(q\rightarrow \pi)} \propto M$, the integral equation (11.32) gives $H^{\perp(q\rightarrow \pi)} \propto M$, and therefore the second term in the bracket [...] of (11.40) is $\propto M^2$.

In completely the same manner, one can confirm these points also for the case of pv coupling. First, in order to verify that $-1 < C < 0$ from (11.54), we need the following 3 functions derived from the $q \rightarrow Q$ fragmentation
diagram of Fig. 2:
\[
\tilde{d}^{(q \to Q)}(z, p_\perp^2) = \left(\frac{g_A}{2f_\pi}\right)^2 \frac{1}{4(2\pi)^3} \times \left(1 - \frac{1}{z} - \frac{4M^2m_\pi^2}{(p_\perp^2 + M^2(1 - z)^2 + zm_\pi^2)^2}\right), \quad (C.18)
\]
\[
\tilde{h}_{T,\text{neutral}}^{(q \to Q)}(z, p_\perp^2) = -\tilde{d}^{(q \to Q)}(z, p_\perp^2), \quad (C.19)
\]
\[
\tilde{h}_{T,\text{neutral}}^{(q \to Q)}(z, p_\perp^2) = \frac{1 - z}{2} \left(\frac{g_A}{2f_\pi}\right)^2 \frac{1}{(2\pi)^3} \times \frac{4M^4z^2}{(p_\perp^2 + M^2(1 - z)^2 + zm_\pi^2)^2}, \quad (C.20)
\]
where the tilde above the functions characterizes the pv coupling, \(g_A \) is the weak axial vector coupling constant on the quark level, and \(f_\pi \) is the weak pion decay constant. Comparing to the forms \((C.6)-(C.8)\) for ps coupling, we see that in pv coupling a kind of contact term appears \([28]\), and for a numerical evaluation one needs a scheme which regularizes both the divergences of the \(z \) integrals and the transverse momentum integrals \(16\). Nevertheless, it is straightforward to verify the inequality \(-1 < C < 0\) on the level of integrands by inserting the above model forms into \((H.5)\).

Second, the one-pion loop expression for the elementary T-odd function \(h^{(q \to \pi)}(z, p_\perp^2) \) in pv coupling has been given in \([28]\) and we do not reproduce it here. It has the same prefactor \(M m_\pi \) as in \((C.12)\) of the ps case, and from the operator definition \((H.6)\) it follows that the function \(h^{(q \to \pi)}(z, p_\perp^2) \) in pv coupling involves the same prefactor \(M^2 \) as in the ps case \((C.13)\). Together with the relation \((C.16)\), which holds also in the pv case, the above discussion on the mixing of operators with opposite chiralities due to the finite constituent quark mass term in the propagator holds for pv coupling as well.

Finally in this Appendix, we list the sum rules for the renormalized functions, including the flavor dependence as shown in \((C.1)\) and \((C.2)\):
\[
\sum_{\tau_\pi} \int_0^1 dz \int d^2p_\perp \tilde{f}^{(q \to \pi)}(z, p_\perp^2; s) = 1, \quad (C.21)
\]
\[
\sum_{\tau_\pi} \int_0^1 dz \int d^2p_\perp \tilde{f}^{(q \to \pi)}(z, p_\perp^2) = \frac{2}{3} \tau_q, \quad (C.22)
\]
\[
\sum_{\tau_\pi} \sum_{\pm S} \int_0^1 dz \int d^2p_\perp \tilde{f}^{(q \to Q)}(z, p_\perp^2; s, s) = 1, \quad (C.23)
\]
\[
\sum_{\tau_\pi} \sum_{\pm S} \int_0^1 dz \int d^2p_\perp \tilde{f}^{(q \to Q)}(z, p_\perp^2; s, s) = 1, \quad (C.23)
\]

\[\sum_{\tau_\pi} \sum_{\pm S} \int_0^1 dz \int d^2p_\perp \tilde{f}^{(q \to Q)}(z, p_\perp^2; s, S) = \frac{1}{6} \tau_q. \quad (C.24)\]

\[16\] An example is the invariant mass (or Lepage-Brodsky) regularization scheme \([53, 55]\).

Because these sum rules are based only on the normalization condition \((H.2)\) and the flavor dependence \((C.1)\)
and \((C.2)\), they are model independent.

Appendix D: Product ansatz and recursion relations

We first formulate the product ansatz in terms of the unrenormalized elementary \(q \to Q \) FFs and the maximum number of pions \((N) \) which can be produced by the fragmenting quark. Let us denote the first and second terms on the r.h.s. of Eq. \((III.1)\), which correspond to different hadronic spectator states (namely the vacuum and the one-pion state, respectively) by \(f_v^{(q \to Q)} \) and \(f_p^{(q \to Q)} \). We use the notations \((H.6)\) of the main text to denote multi-dimensional momentum integrations, and also define
\[
\left(\sum_{\nu=v,p} \sum_{\nu_0=v,p} \sum_{\nu_1=v,p} \cdots \sum_{\nu_N-1=v,p} \right)^N \sum_{s_0} \sum_{s_1} \cdots \sum_{s_N}
\]
for multiple summations. The basic product ansatz is then as follows:
\[
F^{(q \to \pi)}(z, p_\perp^2; s) = \left(\sum_{\nu=v,p} \sum_{\nu_0=v,p} \sum_{\nu_1=v,p} \cdots \sum_{\nu_N-1=v,p} \right)^N \sum_{s_0} \sum_{s_1} \cdots \sum_{s_N}
\]
\[
\times f_v^{(q \to Q_0)}(\eta_1, p_{1\perp}; S_1, s) \times f_v^{(Q_1 \to Q_2)}(\eta_2, p_{2\perp} - \eta_2 p_{1\perp}; S_2, S_1) \times \cdots \times f_v^{(Q_N-1 \to Q_N)}(\eta_N, p_{N\perp} - \eta_N p_{N-1\perp}; S_N, S_{N-1}) \times \delta(z - z_m) \delta(2) (p_{m\perp} - (p_{m-1\perp} - p_{m\perp})) \delta(\nu_m, 1) \times \delta(\tau, (\tau_{Q_m-1} - \tau_{Q_m})/2).
\]

(D.1)

Here the function \(f_v^{(Q_j \to Q_{j+1})} \) is defined by the jth step of the product \(Q \) FF for the case where the incoming quark \((Q_0) \) has zero TM and polarization \(S_i \) and the outgoing quark \((Q_j) \) has TM \(p_\perp \) and polarization \(S_j \). The quantities \((S_i)_{f_{\nu_j}} \) of the jth step \((j = i + 1) \) denote the average polarization of \(Q_i \) determined by the functions \(f_v^{(Q_{j-1} \to Q_j)} \) of the ith step.

We now insert the form \((H.1)\) for each factor \(f_v \) of \((D.1)\) and sum over the directions of \(S_j \), where \(j = i + 1 \). As a result, the factor \((1 + S \cdot s)/2\) in \(f_v \) of \((H.1)\) is replaced by unity, while the spin sum over \(\tilde{f} \) gives the function \((H.3)\). It is then easy to see that all products with the same number (call it \(k \)) of \(f \) s and \((N - k) \) number of \(Z_{Q_s} \) s make the same contribution to \(\tilde{f}^{(q \to \pi)} \). We therefore can introduce an ordering of the factors in \((D.1)\), so that the first \(k \) \(\eta \) s not equal to one \((\eta_1, \eta_2, \ldots, \eta_k \neq 1) \), and the remaining \(\eta \) s equal to one \((\eta_{k+1}, \eta_{k+2}, \ldots, \eta_N = 1) \),
multiply the combinatoric factor \(\binom{N}{k} \) and perform a sum over \(k \). For some fixed \(k \), only the terms with \(m \leq k \) will contribute to the sum in (D.1), because \(z_m \) in (III.8) must be non-zero. Then Eq. (D.1) becomes

\[
F^{(q \to \pi)}(z, p_{\perp}; s) = \sum_{m=1}^{N} \sum_{k=m}^{N} P(k) \int D^k \eta \int D^2k_{\perp} \sum_{\tau Q_k} \times f^{(Q_1 \to Q_2)}(\eta_1, p_{\perp \perp}; s) \times \cdots \times f^{(Q_{k-1} \to Q_k)}(\eta_k, p_{\perp \perp}; \{S_{k-1}\}) \times \delta(z - \sum_{m=1}^{k} \sqrt{1 - \frac{P(k)}{Z_Q^2}}) / 2 = \sum_{m=1}^{N} F^{(q \to \pi)}(z, p_{\perp}; s). \tag{D.2}
\]

In this way, the function \(F_m^{(q \to \pi)} \) of Eq. (D.2) becomes

\[
F_m^{(q \to \pi)}(z, p_{\perp}; s) = \left(\sum_{k=m}^{N} P(k) \right) \int D^m \eta \int D^{2m} \eta_{\perp} \times f^{(Q_1 \to Q_2)}(\eta_1, p_{\perp \perp}; s) \times \cdots \times f^{(Q_{m-2} \to Q_{m-1})}(\eta_{m-1}, p_{\perp \perp}; \{S_{m-2}\}) \times f^{(Q_{m-1} \to \pi)}(\eta_m, p_{\perp \perp}; \{S_{m-1}\}) \delta(z - \eta_1 \cdots \eta_m). \tag{D.7}
\]

In order to obtain a recursion relation for the functions \(F_m^{(q \to \pi)} \), we carry out the following steps: First, we make shifts of the integration variables \((p_{\perp \perp}; \{S_{m-1}\}) \to (p'_{\perp \perp}, \cdots, p'_{\perp \perp}) \) according to

\[
p'_{\perp \perp} = p_{\perp \perp} - \eta_1 p_{\perp \perp} - \cdots - \eta_m p_{\perp \perp} \quad (\ell = 1, 2, \ldots, m - 1) \tag{D.8}
\]

with \(p_0 = 0 \). Using these relations recursively, the argument of the function \(f^{(Q_{m-1} \to \pi)} \) in (D.7) becomes

\[
p_{\perp \perp} - \eta_m p_{\perp \perp} = p_{\perp \perp} - \eta_1 p'_{\perp \perp} - \cdots - \eta_m p'_{\perp \perp}. \tag{D.9}
\]

In this way, Eq. (D.7) can be written as

\[
F_m^{(q \to \pi)}(z, p_{\perp}; s) = \left(\sum_{k=m}^{N} P(k) \right) \int D^m \eta \int D^{2m} \eta_{\perp} \times f^{(Q_1 \to Q_2)}(\eta_1, p_{\perp \perp}; s) \times \cdots \times f^{(Q_{m-1} \to \pi)}(\eta_m, p_{\perp \perp}; \{S_{m-1}\}) \delta(z - \eta_1 \cdots \eta_m) \times \delta(2)(p_{\perp \perp} - \eta_1 p_{p_{\perp \perp}} - \cdots - \eta_m p_{p_{\perp \perp}}). \tag{D.10}
\]

Second, we replace \(m \to m - 1 \) in (D.10) to obtain an expression for \(F_{m-1}^{(q \to \pi)} \). In this expression, rename the integration variables as \(\eta_1 \to \eta_2, \eta_2 \to \eta_3, \ldots, \eta_{m-1} \to \eta_m, \) and similarly for the TM. Also, rename the quark flavors as \(q \to Q_1, Q_1 \to Q_2, \ldots, Q_{m-1} \to Q_m \). Third, in the expression (D.10) for \(F_{m-1}^{(q \to \pi)} \), use the following identities:

\[
\delta(z - \eta_1 \eta_2 \cdots \eta_m) = \int_0^1 d\eta \delta(z - \eta_1 \eta_2 \cdots \eta_m), \tag{D.11}
\]

\[
\delta(2)(p_{\perp \perp} - \eta_1 p_{\perp \perp} - \cdots - \eta_m p_{\perp \perp}) = \int d^2 k_{\perp} \delta(2)(p_{\perp \perp} - k_{\perp} - \eta_1 p_{\perp \perp}) \tag{D.12}
\]

\[17\] The same steps are used in the main text to derive Eq. (III.28), (III.29) from (III.27).
In \([11,12]\) we used \(\eta = \eta_2\eta_3 \cdots \eta_m\) from \([12,11]\).
Following the three steps explained above, we obtain the following recursion relation for \(F_m^{(q \to \pi)}(z, \mathbf{p}_\perp; s)\):

\[
F_m^{(q \to \pi)}(z, \mathbf{p}_\perp; s) = R_m \int D^2 \eta \int D^3 \mathbf{p}_\perp \delta(z - \eta_1 \eta_2) \\
\times \delta(2)(\mathbf{p}_\perp - \mathbf{p}_{2\perp} - \eta_2 \mathbf{p}_{1\perp}) \hat{f}^{(q \to Q)}(\eta_1, \mathbf{p}_{1\perp}; \mathbf{s}) \\
\times F_{m-1}^{(Q \to \pi)}(\eta_2, \mathbf{p}_{2\perp}; \mathbf{S}_1),
\]

(D.13)

while for \(m = 1\) we have

\[
F_1^{(q \to \pi)}(z, \mathbf{p}_\perp; s) = R_1 \hat{f}^{(q \to \pi)}(z, \mathbf{p}_\perp; s). \tag{D.14}
\]

The ratios \(R_n\) for \(n = 1, 2, \ldots, N\) are defined as

\[
R_n = \frac{\sum_{k=n}^{N} P(k)}{\sum_{k=n-1}^{N} P(k)}. \tag{D.15}
\]

The total FF then becomes

\[
F^{(q \to \pi)}(z, \mathbf{p}_\perp; s) = R_1 \hat{f}^{(q \to \pi)}(z, \mathbf{p}_\perp; s) \\
+ \sum_{n=2}^{N} F_n^{(q \to \pi)}(z, \mathbf{p}_\perp; s). \tag{D.16}
\]

It can be seen from this relation that the sum rules are not satisfied if the maximum number of mesons \((N)\) is finite \([32]\). As we explain in the main text, we consider the limit \(N \to \infty\), where the following relation is satisfied:

\[
R_n \xrightarrow{N \to \infty} 1 \quad (n = 1, 2, \ldots). \tag{D.17}
\]

We remind that, according to the Moivre-Laplace theorem, in the limit \(N \to \infty\) the binomial distribution \(P(k)\) of \([13,13]\) becomes a normal (Gauss) distribution with the same mean value (equal to \(N(1 - Z_Q)\)) and variance (equal to \(N Z_Q(1 - Z_Q)\)). It then follows from \([13,13]\) and \([13,13]\) that the FF satisfies the following integral equation in the limit \(N \to \infty\):

\[
F^{(q \to \pi)}(z, \mathbf{p}_\perp; s) = \hat{f}^{(q \to \pi)}(z, \mathbf{p}_\perp; s) \\
+ \int D^2 \eta \int D^4 \mathbf{p}_\perp \delta(z - \eta_1 \eta_2) \\
\times \delta(2)(\mathbf{p}_\perp - \mathbf{p}_{2\perp} - \eta_2 \mathbf{p}_{1\perp}) \hat{f}^{(q \to Q)}(\eta_1, \mathbf{p}_{1\perp}; \mathbf{s}) \\
\times F^{(Q \to \pi)}(\eta_2, \mathbf{p}_{2\perp}; \mathbf{S}_1), \tag{D.18}
\]

which is the same as \([11,30]\) of the main text.

Appendix E: Mean isospin z-component and transverse momentum of quark remainder

In this Appendix we wish to show that, after \(N \to \infty\) fragmentation steps, the mean isospin z-component and the mean TM of the quark remainder are zero. These results are confirmed in the main part (Sect. III.D.), and for clarity we present alternative proofs in this Appendix.

1. Mean isospin z-component of quark remainder

Denote by \(P_N\) the probability that, after \(N\) emission of pions, the isospin z-component of the quark is the same as that of the initial quark. Because in each emission step, the probability that the quark isospin z-component changes is equal to \(2/3\) and that it does not change is equal to \(1/3\), we obtain the recursion relation

\[
P_N = \frac{1}{3} P_{N-1} + \frac{2}{3} (1 - P_{N-1}) = \frac{2}{3} - \frac{1}{3} P_{N-1}. \tag{E.1}
\]

This can be solved with the initial condition \(P_0 = 1\) as

\[
P_N = \frac{1}{2} \left(1 + \left(-\frac{1}{3}\right)^N\right). \tag{E.2}
\]

This shows that in the limit \(N \to \infty\) \(P_N\) becomes \(1/2\), i.e., that quark remainder has equal probabilities for isospin z-component \(\pm 1/2\), and therefore its mean isospin z-component must be zero. More explicitly, if \(\tau_q/2\) is the isospin z-component of the initial quark, then after \(N\) emission steps the quark has average isospin z-component

\[
\frac{\tau_q}{2} P_N - \frac{\tau_q}{2} (1 - P_N) = \frac{\tau_q}{2} (2P_N - 1) = \frac{\tau_q}{2} \left(-\frac{1}{3}\right)^N, \tag{E.3}
\]

which vanishes in the limit \(N \to \infty\).

2. Mean TM of quark remainder

According to our product ansatz (III.6), the probability for a fragmentation chain is given by the products of elementary \(q \to Q\) splitting functions. The delta-functions in (III.6) select a meson which is produced in the \(m\)-th step, and the summation over \(m\) gives the probability for semi-inclusive pion production. Instead of selecting the pions, we now select the final quark by the delta functions. Because we are interested in the isoscalar case, we sum over the flavors of the final quark. This gives for the probability density of \(q \to q_Q\)

\[
P(z, \mathbf{p}_\perp; s) = \lim_{N \to \infty} \int D^N \eta \int D^2 \mathbf{p}_\perp \sum_{\tau_N} \tau_N \times \hat{f}^{(q \to Q)}(\eta_1, \mathbf{p}_{1\perp}; s) \hat{f}^{(Q \to Q')}(\eta_2; \mathbf{p}_{2\perp} - \eta_2 \mathbf{p}_{1\perp}; \mathbf{S}_1) \\
\times \cdots \times \hat{f}^{(Q_{N-1} \to Q_N)}(\eta_N; \mathbf{p}_{N\perp} - \eta_N \mathbf{p}_{N-1\perp}; \mathbf{S}_{N-1}) \\
\times \delta(z - \eta_N) \delta(2)(\mathbf{p}_\perp - \mathbf{p}_{N\perp}). \tag{E.1}
\]

Because each factor has the flavor dependence \([11,32]\), it is easy to see that, after the flavor summations, all elementary functions should be replaced by the isoscalar functions \(\hat{f}^{(q \to Q)}\). The mean TM of the quark remainder is obtained by multiplying \(E.1\) by \(\mathbf{p}_\perp\) and integrating.
over z and p_\perp. This gives
\[
\langle p_\perp \rangle_{\text{rem}} = \lim_{N \to \infty} \int D^N \eta \int D^{2N} p_\perp \\
\times \hat{f}(\eta_1, p_{1\perp}; s) \hat{f}(\eta_2, p_{2\perp} - \eta_2 p_{1\perp}; \langle S_1 \rangle) \\
\times \cdots \hat{f}(\eta_N, p_{N\perp} - \eta_N p_{N-1\perp}; \langle S_{N-1} \rangle) \langle p_{N\perp} \rangle, \quad (E.2)
\]
where now all functions in the product refer to the isoscalar part of the elementary $q \to Q$ splitting function. Next we use the shifts of integration variables \([D.8]\) for all $\ell = 1, 2, \ldots N$. Using these relations recursively, as explained in \([D.9]\), to express $p_{N\perp}$ by the new variables, we obtain
\[
\langle p_\perp \rangle_{\text{rem}} = \lim_{N \to \infty} \int D^N \eta \int D^{2N} p_\perp \hat{f}(\eta_1, p_{1\perp}; s) \\
\times \hat{f}(\eta_2, p_{2\perp}; \langle S_1 \rangle) \times \cdots \hat{f}(\eta_N, p_{N\perp}; \langle S_{N-1} \rangle) \\
\times (p_{N\perp} + \eta N p_{N-1\perp} + \eta N \eta_{N-1} p_{N-2\perp} + \cdots \\
+ \eta N \eta_{N-1} \cdots \eta_2 p_{1\perp}), \quad (E.3)
\]
Remember that the function for the nth step in this product has the form \((E.3)\)
\[
\hat{f}(\eta_n, p_{n\perp}; \langle S_{n-1} \rangle) \\
= 2 \left[\frac{1}{M \eta_n} (p_{n\perp} \times \langle S_{n-1} \rangle) \right]^{3/2} \hat{h}(\eta_n, p_{n\perp}) \right] \quad (E.4)
\]
with $\langle S_0 \rangle \equiv s$. Also, remember that for $\langle S_n \rangle$ in the function for the $(n+1)$ step we have the recursion relation (see Eq. \((III.38)\))
\[
\langle S_n \rangle \cdot \hat{f}(\eta_n, p_{n\perp}; \langle S_{n-1} \rangle) \\
= 2 \left[\frac{1}{M \eta_n} p_{n\perp} \cdot \langle S_{n-1} \rangle \right]^{3/2} \hat{h}(\eta_n, p_{n\perp}) \\
+ \frac{1}{M^2 \eta_n^2} (\langle S_{n-1} \rangle \cdot p_{n\perp}) \hat{h}(\eta_n, p_{n\perp}) \right] \quad (E.5)
\]
where the vector $p_{n\perp}$ is defined by $p_{n\perp} = (-p_{1\perp}, p_{1\perp})$ if $p_{1\perp} = (p_{1\perp}^1, p_{1\perp}^2)$. (We also remind that longitudinal quark polarizations do not contribute to inclusive pion production, and therefore all spin vectors of this Appendix can be replaced by their transverse parts.)

Consider now the integral over $\langle \eta_N, p_{N\perp} \rangle$ in the second term of (\ldots) in \((E.3)\). Here only the spin independent term $\propto \hat{d}$ of the Nth factor in the product $\langle E.3 \rangle$ contributes, which gives the longitudinal momentum fraction left to the quark in one step. We denote this by K, where clearly $K < 1$. For example, using the model forms of Appendix C for the case of ps coupling, we have
\[
K \equiv 2 \int_0^1 \frac{d \eta \eta}{\int d^2 p_{\perp} \hat{d}(\eta, p_{\perp}^2) \\
= \left(\int_0^1 \frac{d \eta \eta (1 - \eta)}{\int d^2 p_{\perp} \left[p_{\perp}^2 + M^2 \eta^2 \right] ^2} \right) \\
\times \left(\int_0^1 \frac{d \eta \eta}{\int d^2 p_{\perp} \left[p_{\perp}^2 + M^2 \eta^2 \right] ^2} \right) ^{-1} \quad (E.6)
\]
For the third term in (\ldots) of (\ldots) we can carry out the integrations over $\langle \eta_N, p_{N\perp} \rangle$ and $\langle \eta_{N-1}, p_{N-1\perp} \rangle$ to get a factor K^2, and so on. Therefore Eq. \((E.3)\) can be written as
\[
\langle p_\perp \rangle_{\text{rem}} = \lim_{N \to \infty} \sum_{n=1}^N I_n K^{N-n}, \quad (E.7)
\]
where we defined the integrals I_n by
\[
I_n = \int D^n \eta \int D^{2n} p_\perp \hat{f}(\eta_1, p_{1\perp}; s) \hat{f}(\eta_2, p_{2\perp}; \langle S_1 \rangle) \\
\times \cdots \hat{f}(\eta_n, p_{n\perp}; \langle S_{n-1} \rangle) \langle p_{n\perp} \rangle. \quad (E.8)
\]
These integrals can be evaluated in closed form by using \([E.4]\) and \([E.5]\). The result is
\[
I_n = - (\epsilon ij s_j) A \cdot c^{n-1}, \quad (E.9)
\]
where we defined the constant A by
\[
A = \int_0^1 \frac{d \eta \eta}{\int d^2 p_{\perp} \frac{p_{\perp}^2}{M \eta^2} \hat{h}(\eta, p_{\perp}^2)}. \quad (E.10)
\]
The constant C was defined already in \((III.53)\), where it was shown that $|C| < 1$, and that C has the physical meaning of the quark depolarization factor for one fragmentation step. The TM of the quark remainder is then finally obtained from \((E.7)\) as
\[
\langle p_{\perp}^2 \rangle_{\text{rem}} = -(\epsilon ij s_j) A \lim_{N \to \infty} \frac{K^N - C^N}{K - C} = 0, \quad (E.11)
\]
where we used $|K| < 1$ and $|C| < 1$. We finally note that for the elementary process the average TM of the final quark is given by $I_1 \propto A$, which is nonzero. It is only after an infinite chain of fragmentation processes that the average TM of the final quark becomes zero. As we noted already in the main text, the magnitude of the fluctuation $\sqrt{\langle p_{\perp}^2 \rangle_{\text{rem}}}$ is nonzero.

[1] R.D. Field and R.P. Feynman, Nucl. Phys. B 136, 1 (1978).
[2] J.C. Collins and D.E. Soper, Nucl. Phys. B 193, 381
