ORBITS IN SYMMETRIC SPACES

F. Sukochev and D. Zanin

Abstract. We characterize those elements in a fully symmetric spaces on the interval \((0,1)\) or on the semi-axis \((0, \infty)\) whose orbits are the norm-closed convex hull of their extreme points.

1. Introduction

The following semigroups of bounded linear operators play a fundamental role in the interpolation theory of linear operators for the couple \((L_1, L_\infty)\) of Lebesgue measurable functions on intervals \((0,1)\) and \((0, \infty)\). The semigroup of absolute contractions, or admissible operators (see e.g. \[10, \text{II.3.4}\])

\[\Sigma := \{T : L_1 + L_\infty \to L_1 + L_\infty : \max(\|T\|_{L_1 \to L_1}, \|T\|_{L_\infty \to L_\infty}) \leq 1,\]

the semigroup of substochastic operators (see e.g. \[2, \text{p.107}\])

\[\Sigma_+ := \{0 \leq T \in \Sigma\}\]

and, in the case of the interval \((0,1)\), the semigroup of doubly stochastic operators

\[\Sigma' := \{0 \leq T \in \Sigma_+ : \int_0^1 (Tx)(s)ds = \int_0^1 x(s)ds, \ \forall x \geq 0, \ T1 = 1\}\]

(see e.g. \[14\]). If \(x \in L_1 + L_\infty\) (respectively, \(0 \leq x \in L_1 + L_\infty\) or \(0 \leq x \leq L_1(0,1)\)) we denote by \(\Omega(x)\) (respectively \(\Omega_+(x)\) and \(\Omega'(x)\)) the orbit of \(x\) with respect to the semigroups \(\Sigma\) (respectively, \(\Sigma_+\), and \(\Sigma'\)). A Banach function space \(E\) on \((0,1)\) or \((0, \infty)\), see \[2, \text{pp.2-3}\]) is called an exact interpolation space if every \(T \in \Sigma\) maps \(E\) into itself and \(\|T\|_{E \to E} \leq 1\), or alternatively, if \(\Omega(x) \subset E\) and \(\|y\|_E \leq \|x\|_E\) for every \(x \in E\) and every \(y \in \Omega(x)\). The class of exact interpolation spaces admits an equivalent description in terms of (sub)majorization in the sense of Hardy, Littlewood and Polya. Recall, that if \(x, y \in L_1 + L_\infty\), then \(y\) is said to be a 

submajorized by \(x\) in the sense of Hardy, Littlewood and Polya, written \(y \ll x\)

if and only if

\[\int_0^t y^*(s)ds \leq \int_0^t x^*(s)ds, \ t \geq 0.\]

Here, \(x^*\) denotes the non-increasing right-continuous rearrangement of \(x\) given by

\[x^*(t) = \inf\{s \geq 0 : m(\{|x| \geq s\}) \leq t\}\]

and \(m\) is Lebesgue measure. If \(0 \leq x, y \in L_1\), then we say that \(y\) is majorized by \(x\) (written \(y \prec x\)) if and only if \(y \ll x\) and \(\|y\|_1 = \|x\|_1\). A Banach function space \(E\) is said to be fully symmetric if and only if \(x \in E\), \(y \in L_1 + L_\infty\) \(y \ll x\) \(\Rightarrow y \in E\) and \(\|y\|_E \leq \|x\|_E\). The classical Calderon-Mityagin theorem (see \[3, 10, 2\]) gives an alternative description of the sets \(\Omega(x), x \in L_1 + L_\infty\) and \(\Omega_+(x), 0 \leq x \leq L_1 + L_\infty\) as follows

\[\Omega(x) = \{y \in L_1 + L_\infty : y \ll x\}, \ \Omega_+(x) = \{0 \leq y \in L_1 + L_\infty : y \ll x\}\]
and (in the case of the interval $(0, 1)$ and $0 \leq x \in L_1(0, 1)$)

$$\Omega'(x) = \{0 \leq y \in L_1 : y \prec x\},$$

which shows, in particular, that the classes of exact interpolation spaces and fully symmetric spaces coincide.

Let fully symmetric Banach function space $E$ be fixed. The principal aim of the paper is to give conditions for a given $0 \leq x \in E$ which are necessary and sufficient for each of the sets $\Omega_+(x)$, $\Omega'(x)$ to be the norm closure of the convex hull of their extreme points.

If $E = L_1(0, 1)$, then it has been shown by Ryff (see [14]) that if $0 \leq x \in E$, then the orbit $\Omega'(x)$ is weakly compact and so, due to the Krein-Milman theorem, the orbit $\Omega'(x)$ is the weak (and hence norm)-closed convex hull of its extreme points. It follows from the results of [7] that the set $\Omega'(x)$ is weakly compact in any separable symmetric space $E$. Hence, $\Omega'(x)$ is the weak (and hence norm)-closed convex hull of its extreme points in any separable symmetric space $E$.

If a fully symmetric space $E$ is not separable, then it is not the case in general that orbits are weakly compact. A trivial example yields the orbit $\Omega(\chi_{[0,1]})$ in fully symmetric non-separable space $L_\infty(0,1)$. Indeed, it is obvious that this orbit coincides with the unit ball of $L_\infty(0,1)$ and the latter is not weakly compact since the space $L_\infty(0,1)$ is non-reflexive. Nonetheless, it is an interesting question to give necessary and sufficient conditions that the orbit of a given element should be the norm-closed convex hull of its extreme points. This question was considered by Braverman and Mekler (see [3]) in the case of the interval $(0, 1)$ and orbits $\Omega(x)$. They showed that for every fully symmetric space $E$ on $(0,1)$ satisfying the condition

$$\varphi(x) := \lim_{\tau \to \infty} \frac{1}{\tau} ||\sigma_\tau(x^*)||_E = 0$$

that $\Omega(x)$ is indeed the norm-closed convex hull of the set of its extreme points, for every $x \in E$ (see [3, Theorem 3.1]). Here $\sigma_\tau$ denotes the usual dilation operator (see the following section for definition and properties). They showed as well that the converse assertion is valid in case that $E$ is a Marcinkiewicz space on $(0, 1)$. As explained below, this converse assertion, however, fails for arbitrary fully symmetric spaces.

We show (Theorem 22) that if $E$ is a fully symmetric space on $(0,1)$ and if $0 \leq x \in E$, then $\Omega'(x)$ is the norm-closed convex hull of its extreme points if and only if

$$\varphi(x) := \lim_{\tau \to \infty} \frac{1}{\tau} ||\sigma_\tau(x^*)||_E = 0.$$  

As shown in Corollary 28, this implies the result of Braverman and Mekler. In the Appendix, we demonstrate that the conditions 11 and 12 are distinct in the class of Orlicz spaces. If $E$ is an Orlicz space, then it is the case that 12 holds, and so by Theorems 22 and 23 for every $0 \leq x \in E$, the sets $\Omega'(x)$, $\Omega_+(x)$ and $\Omega(x)$ are the norm-closed convex hulls of its extreme points. However, there are non-separable Orlicz spaces $E$ which fail condition 11.

In the Appendix, we also introduce the notion of symmetric and fully symmetric functionals. The latter are a “commutative” counterpart of Dixmier traces appeared in non-commutative geometry (see e.g. [5]). Symmetric and fully symmetric functionals are extensively studied in [8], [9] (see also [5] and references therein).
Note, however, that our terminology differs from that used in just cited articles. A subclass of Marcinkiewicz spaces admitting symmetric functionals which fail to be fully symmetric is described in [9]. It follows from our results that any symmetric functional on a fully symmetric space satisfying (2) is automatically fully symmetric. In particular, this implies that an Orlicz space does not possess any singular symmetric functionals (see Proposition 36). This latter result strengthens the result of [8, Theorem 3.1] that an Orlicz space does not possess any singular fully symmetric functionals.

Results similar to Theorems 22 and 23 hold also for fully symmetric spaces $E$ on the semi-axis (see Theorems 24, 25, 26, 27).

The main results of this article are contained in Section 4. In the following section we present some definitions from the theory of symmetric spaces, as some of our results hold in a slightly more general setting than that of fully symmetric spaces. For more details on the latter theory we refer to [10, 11, 2]. Section 3 treats various results hold in a slightly more general setting than that of fully symmetric spaces.

Acknowledgements. We would like to thank Peter Dodds for many helpful comments on the content of this paper and lengthy discussions of earlier drafts. We also thank Sergei Astashkin for his interest.

2. Preliminaries

Let $L_0$ be a space of Lebesgue measurable functions either on $(0, 1)$ or on $(0, \infty)$ finite almost everywhere (with identification $m$-a.e.). Here $m$ is Lebesgue measure. Define $S_0$ as the subset of $L_0$ which consists of all functions $x$ such that $m(\{|x| > s\})$ is finite for some $s$.

Let $E$ be a Banach space of real-valued Lebesgue measurable functions either on $(0, 1)$ or $(0, \infty)$ (with identification $m$-a.e.). $E$ is said to be ideal lattice if $x \in E$ and $|y| \leq |x|$ implies that $y \in E$ and $\|y\|_E \leq \|x\|_E$.

The ideal lattice $E \subseteq S_0$ is said to be symmetric space if for every $x \in E$ and every $y$ the assumption $y^* = x^*$ implies that $y \in E$ and $\|y\|_E = \|x\|_E$.

If $E = E(0, 1)$ is a symmetric space on $(0, 1)$, then

$$L_\infty \subseteq E \subseteq L_1.$$ 

If $E = E(0, \infty)$ is a symmetric space on $(0, \infty)$, then

$$L_1 \cap L_\infty \subseteq E \subseteq L_1 + L_\infty.$$
Symmetric space $E$ is said to be fully symmetric if and only if $x \in E$, $y \in L_1 + L_\infty$, $y \prec x \Rightarrow y \in E$ and $\|y\|_E \leq \|x\|_E$. We now gather some additional terminology from the theory of symmetric spaces that will be needed in the sequel.

Suppose $E$ is a symmetric space. Following [3], $E$ will be called strictly symmetric if and only if whenever $x, y \in E$ and $y \prec x$ then $\|y\|_E \leq \|x\|_E$.

It is clear that if $E$ is fully symmetric then $E$ is strictly symmetric, but the converse assertion is not valid.

The norm $\|\cdot\|_E$ is called Fatou norm if, for every sequence $x_n \uparrow x$ in $E$, it follows that $\|x_n\|_E \uparrow \|x\|_E$. This is equivalent to the assertion that the unit ball of $E$ is closed with respect to almost everywhere convergence.

It is well known that if the norm on $E$ is a Fatou norm then $E$ is strictly symmetric.

If $\tau > 0$, the dilation operator $\sigma_\tau$ is defined by setting $(\sigma_\tau(x))(s) = x(s/\tau)$, $s > 0$ in the case of the semi-axis. In the case of the interval $(0, 1)$ the operator $\sigma_\tau$ is defined by

$$
(\sigma_\tau x)(s) = \begin{cases} x(s/\tau), & s \leq \min\{1, \tau\} \\ 0, & \tau < s \leq 1. \end{cases}
$$

The operators $\sigma_\tau$ ($\tau \geq 1$) satisfy semi-group property $\sigma_\tau \sigma_\tau_2 = \sigma_{\tau_1 \tau_2}$. If $E$ is a symmetric space and if $\tau > 0$, then the dilation operator $\sigma_\tau$ is a bounded operator on $E$ and

$$
\|\sigma_\tau\|_{E \to E} \leq \max\{1, \tau\}.
$$

We will need also the notion of a partial averaging operator (see [3]).

Let $\mathcal{A} = \{A_k\}$ be a (finite or infinite) sequence of disjoint sets of finite measure and denote by $\mathfrak{A}$ the collection of all such sequences. Denote by $A_\infty$ the complement of $\bigcup_k A_k$. The partial averaging operator is defined by

$$
P(x|\mathcal{A}) = \sum_k \frac{1}{m(A_k)}(\int_{A_k} x)\chi_{A_k} + x\chi_{A_\infty}.
$$

Note, that we do not require $A_\infty$ to have a finite measure.

Every partial averaging operator is a contraction both in $L_1$ and $L_\infty$. Hence, $P(\cdot|\mathcal{A})$ is also contraction in $E$. In case of the interval $(0, 1)$, $P(\cdot|\mathcal{A})$ is a doubly stochastic operator in the sense of [14].

Since $P(\cdot|\mathcal{A}) \in \Sigma$, then $P(x|\mathcal{A}) \in \Omega(x)$ (respectively, $P(x|\mathcal{A}) \in \Omega'(x)$ if $x \in L_1$) for every $\mathcal{A} \in \mathfrak{A}$. As will be seen, elements of the form $P(x|\mathcal{A})$ play a central role.

The following properties of rearrangements can be found in [10]. If $x, y \in L_1 + L_\infty$, then

1. $(x + y)^* \prec\prec x^* + y^*$
2. $(x^* - y^*) \prec\prec (x - y)^*$.

Let us recall some classical examples of fully symmetric spaces.

Let $\psi$ be a concave increasing continuous function. The Marcinkiewicz space $M_\psi$ is the linear space of those functions $x \in S_0$, for which

$$
\|x\|_{M_\psi} = \sup_t \frac{1}{\psi(t)} \int_0^t x^*(s)ds < \infty
$$

Equipped with the norm $\|x\|_{M_\psi}$, $M_\psi$ is a fully symmetric space with Fatou norm.
Let \( M(t) \) be a convex function on \([0, \infty)\) such that \( M(t) > 0 \) for all \( t > 0 \) and such that
\[
0 = M(0) = \lim_{t \to 0} \frac{M(t)}{t} = \lim_{t \to \infty} \frac{t}{M(t)}.
\]
Denote by \( L_M \) the Orlicz space on \([0, \infty)\) (see e.g. [11, 10]) endowed with the norm
\[
\|x\|_{L_M} = \inf\{\lambda : \lambda > 0, \int_0^\infty M(|x(t)|/\lambda)dt \leq 1\}.
\]
Equipped with the norm \( \|x\|_{L_M} \), \( L_M \) is a fully symmetric space with Fatou norm.

For further properties of Marcinkiewicz and Orlicz spaces, we refer to [10, 11] and [12].

For \( 0 \leq x \in L_1 + L_\infty \), we set
\[
Q_+(x) = \overline{\text{Conv}\{\text{extr}(\Omega_+(x))\}}.
\]
For \( 0 \leq x \in L_1 \), we set
\[
Q'(x) = \overline{\text{Conv}\{\text{extr}(\Omega'(x))\}}.
\]
For \( 0 \leq x \in L_1 + L_\infty \), we set
\[
Q'(x) = \overline{\text{Conv}\{y^* = x^*, y\chi_{\{y < y^*(\infty)\}} = 0\}}.
\]
Here, \( \overline{\text{Conv}} \) means the norm-closed convex hull. See Appendix for the precise description of the extreme points.

### 3. The dilation functional and its properties

The following assertion is widely used in literature. However, no direct reference is available.

**Lemma 1.** If \( 0 \leq x, y \in L_1 + L_\infty \), then
\[
(x^* + y^*) \prec \prec 2\sigma_\frac{1}{2}(x + y)^*.
\]

**Proof.** Fix \( \varepsilon > 0 \). It follows from [10, II.2.1],
\[
\int_0^t x^*(s)ds \leq \varepsilon + \int_{e_1} x(s)ds, \quad \int_0^t y^*(s)ds \leq \varepsilon + \int_{e_2} y(s)ds
\]
for some \( e_1 \) and \( e_2 \) with \( m(e_i) = t \). However,
\[
\int_{e_1} x(s)ds + \int_{e_2} y(s)ds \leq \int_{e_1 \cup e_2} (x + y)(s)ds \leq \\
\leq \sup_{m(e) = 2t} \int_{e} (x + y)(s)ds = \int_0^{2t} (x + y)^*(s)ds.
\]
Note, that \( \int_0^{2t} u(s)ds = \int_0^t (2\sigma_\frac{1}{2}u)(s)ds \).

**Lemma 2.** If \( x, y \in L_1 + L_\infty \) and \( y \prec \prec x \), then,
\[
(\sigma_\tau(y))^* \leq \sigma_\tau(y^*) \prec \prec \sigma_\tau(x^*).
\]
We prove that the function also satisfies
\[ (iv) \]
while \( \phi \). If, in addition, \( E \), it follows that
\[ (7) \]
\[ (8) \]
\[ (9) \]

The next lemma introduces the dilation functional \( \varphi \) on \( E \), which is a priori non-linear. The behavior of the functional \( \varphi \) on the positive part \( E^+ \) of \( E \) provides the key to our main question.

**Lemma 3.** For every \( x \in E \) the following limit exists and is finite.

\[ (7) \quad \varphi(x) = \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(x^*)||_E, \ x \in E. \]

If, in addition, \( E = E(0, \infty) \), then the following limits exist and are finite.

\[ (8) \quad \varphi_{fin}(x) = \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(x^*)\chi_{[0,1]}||_E, \ x \in E, \]

\[ (9) \quad \varphi_{cut}(x) = \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(x^*)\chi_{[0,s]}||_E, \ x \in E. \]

The following properties hold.

i) If \( E \) symmetric, then \( \varphi(y) \leq \varphi(x) \) provided that \( x, y \in E \) satisfy \( y^* \leq x^* \).

ii) If \( E \) symmetric, then \( \varphi(x) \leq ||x||_E \) for every \( x \in E \).

iii) If \( E \) strictly symmetric, then \( \varphi(y) \leq \varphi(x) \) provided that \( x, y \in E \) satisfy \( y \prec x \).

iv) If \( E \) is symmetric, then \( \varphi(\sigma_\tau(x^*)) = \tau \varphi(x), \tau > 0. \)

v) If \( E \) is strictly symmetric, then \( \varphi \) is norm-continuous.

vi) If \( E \) is strictly symmetric, then \( \varphi \) is convex.

If, in addition, \( E = E(0, \infty) \), then \( \varphi_{fin} \) also satisfies \( (i), (ii), (iii), (v), \) and \( (vi) \), while \( \varphi_{cut} \) satisfies \( (i), (ii), (iii), (v), \) and \( (vi) \). If, in addition, \( E \subseteq L_1 \), then \( \varphi_{cut} \) also satisfies \( (iv) \).

**Proof.** We prove that the function \( s \to \frac{1}{s} ||\sigma_s(x^*)||_E \) is decreasing. Let \( s_2 > s_1 \). We have \( s_2 = s_3 s_1 \) and \( s_3 > 1 \). Therefore,

\[ \frac{1}{s_2} ||\sigma_{s_2}(\sigma_{s_1}(x^*))||_E \leq \frac{||\sigma_{s_2}||_{E \to E}}{s_2} ||\sigma_{s_1}(x^*)||_E \leq \frac{1}{s_1} ||\sigma_{s_1}(x^*)||_E, \]

since \( ||\sigma_{s_3}||_{E \to E} \leq s_3 \). It follows immediately that the limit in (7) exists.

(1) Trivial.

(2) This follows from the fact that \( ||\sigma_s(x^*)||_E \leq s ||x||_E \).

Since \( y \prec x \), it follows that \( \sigma_s(y^*) \prec \sigma_s(x^*) \). Since \( E \) is strictly symmetric, it follows that \( ||\sigma_s(y^*)||_E \leq ||\sigma_s(x^*)||_E \). Therefore,

\[ \varphi(y) = \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(y^*)||_E \leq \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(x^*)||_E = \varphi(x). \]

(4) Applying the semigroup property of the dilation operators \( \sigma_\tau \),

\[ \lim_{s \to \infty} \frac{1}{s} ||\sigma_s(\sigma_\tau(x^*))||_E = \tau \lim_{s \to \infty} \frac{1}{s\tau} ||\sigma_{s\tau}(x^*)||_E = \tau \varphi(x). \]
By triangle inequality,
\[ ||\sigma_s(x^*)||_E - ||\sigma_s(y^*)||_E \leq ||\sigma_s(x^* - y^*)||_E. \]
Using (4) and Lemma 2 one can obtain \( \sigma_s(x^* - y^*) \prec \prec \sigma_s((x - y)^*) \). Since \( E \) is strictly symmetric,
\[ ||\sigma_s(x^*)||_E - ||\sigma_s(y^*)||_E \leq ||\sigma_s((x - y)^*)||_E. \]
Now, one can divide by \( s \) and let \( s \to \infty \). Therefore,
\[ |\varphi(x) - \varphi(y)| \leq \varphi(x - y) \leq ||x - y||_E. \]

It follows from (3) and Lemma 2 that \( \varphi((x + y)^*) \prec \prec \sigma_s(x^*) + \sigma_s(y^*) \). Therefore,
\[ \varphi(x+y) = \lim_{s \to \infty} \frac{1}{s} ||\sigma_s((x+y)^*)||_E \leq \lim_{s \to \infty} \frac{1}{s} (||\sigma_s(x^*)||_E + ||\sigma_s(y^*)||_E) = \varphi(x) + \varphi(y). \]

Existence and properties (i)-(vi) of \( \varphi_\text{fin} \) can be proved in a similar way. Existence and properties (i), (iii), (iv), (v), (vi) of \( \varphi_\text{cut} \) can be proved in a similar way. Let us prove (iv) for \( \varphi_\text{cut} \).

Assume \( E \not\subset L_1 \). By Lemma 4 below, \( \varphi(x^* \chi_{[r-1,1)}) = \varphi_\text{cut}(x^* \chi_{[r-1,1)}) = 0 \).
Hence,
\[ \varphi(x^* \chi_{[0,r-1)}) \leq \varphi(x^* \chi_{[0,1]}) \leq \varphi(x^* \chi_{[0,r-1)}) + \varphi(x^* \chi_{[r-1,1)}) = \varphi(x^* \chi_{[0,r-1)}). \]

Therefore,
\[ \varphi_\text{cut}(\sigma_s(x^*)) = \varphi(\sigma_s(x^* \chi_{[0,r-1]})) = \tau\varphi(x^* \chi_{[0,r-1]}). \]

\[ \square \]

**Lemma 4.** If \( E = E(0,1) \) be a symmetric space on \( (0,1) \) and \( x \in L_\infty \cap E \), then \( \varphi(x) = 0 \). If \( E = E(0,\infty) \) be a symmetric space on \( (0,\infty) \) and \( x \in L_\infty \cap E \), then \( \varphi_\text{fin}(x) = 0 \). If \( E = E(0,\infty) \not\subset L_1 \) and \( x \in E \cap L_\infty \), then \( \varphi_\text{cut}(x) = 0 \).

**Proof.** Clearly, \( \varphi(x) = \varphi(x^* \chi_{[0,1]}) \leq ||x||_\infty \varphi(\chi_{[0,1]}) \) in the first case. Similarly, \( \varphi_\text{fin}(x) \leq ||x||_\infty \varphi_\text{fin}(\chi_{[0,1]}) \) \( \varphi_\text{cut}(x) \leq ||x||_\infty \varphi_\text{cut}(\chi_{[0,1]}) \) in the second (third) case. It is clear that \( \varphi(\chi_{[0,1]}) = 0 \) \( \varphi_\text{fin}(\chi_{[0,1]}) = 0 \) in the first (second) case. Also, \( E \not\subset L_1 \) implies that \( ||\chi_{[0,n]}||_E = o(n) \) and, therefore, \( \varphi_\text{cut}(\chi_{[0,1]}) = 0 \). The assertion follows immediately. \[ \square \]

**Remark 5.** If \( E \) is a separable symmetric space, then \( E \cap L_\infty \) is a dense subset in \( E \) (see [10]). It follows now from the Lemmas 4 and 5 that functional \( \varphi \) vanishes on every separable space \( E \).

**Lemma 6.** Let \( E \) be a strictly symmetric space. For functions \( 0 \leq x_1, \ldots, x_k \in E \) and numbers \( \lambda_1, \ldots, \lambda_k \geq 0 \)
\[ \varphi(\sum_{i=1}^k \lambda_i x_i) = \varphi(\sum_{i=1}^k \lambda_i x_i^*). \]
If \( E = E(0,\infty) \), then the same is valid for \( \varphi_\text{fin} \). If, in addition, \( E \not\subset L_1 \), then the same is valid for \( \varphi_\text{cut} \).
Proposition 7. Let $Q$ be a symmetric space equipped with a Fatou norm. If $x \geq 0 \in E$, then in each of the following cases there exists a decomposition $x = y + z$, such that $y, z \geq 0$ and such that the following assertions hold.

i) If $E = E(0, 1)$, then $\varphi(x) = \varphi(y) = \varphi(z)$.

ii) If $E = E(0, \infty)$ and $\varphi_{\text{cut}}(x) = 0$, then $\varphi(x) = \varphi(y) = \varphi(z)$.

iii) If $E = E(0, \infty)$, then $\varphi_{\text{fin}}(x) = \varphi_{\text{fin}}(y) = \varphi_{\text{fin}}(z)$.

iv) If $E = E(0, \infty)$, then $\varphi_{\text{cut}}(x) = \varphi_{\text{cut}}(y) = \varphi_{\text{cut}}(z)$.

Proof. We will prove only the first assertion. The proofs of the third and fourth assertions are exactly the same. The proof of the second assertion requires replacement of the interval $[\frac{1}{m} \frac{-1}{m}]$ with the interval $[n, m]$.

We may assume that $x = x^\ast$. Fix $n \in N$. The sequence $\sigma_n(x\chi_{[\frac{1}{m} \frac{-1}{m}]}$ converges to $\sigma_n(x\chi_{[0, \frac{1}{m}]}$ almost everywhere when $m \to \infty$.

By the definition of Fatou norm,

$$||\sigma_n(x\chi_{[\frac{1}{m} \frac{-1}{m}]}||_E \to_m ||\sigma_n(x\chi_{[0, \frac{1}{m}]}||_E.$$  

For each $n \in N$, one can select $f(n) > n$, such that

$$||\sigma_n(x\chi_{[\frac{1}{m} \frac{-1}{m}]}||_E \geq (1 - \frac{1}{n})||\sigma_n(x\chi_{[0, \frac{1}{m}]}||_E.$$  

Fix some $n_0$ and set $n_k = f^k(n_0), k \in N$. Here, $f^k = f \circ \cdots \circ f$ ($k$ times). Define

$$y = \sum_{k=0}^{\infty} x\chi_{[\frac{1}{m} \frac{-1}{m}]}^{k \frac{1}{n_{2k+1}} \frac{1}{n_{2k}}},$$

$$z = \sum_{k=1}^{\infty} x\chi_{[\frac{1}{m} \frac{-1}{m}]}^{k \frac{1}{n_{2k+1}} \frac{1}{n_{2k}}},$$

It is clear, that

$$\frac{1}{n_{2k}}||\sigma_{n_{2k}}(y^\ast)||_E \geq \frac{1}{n_{2k}}||\sigma_{n_{2k}}(y)||_E \geq \frac{1}{n_{2k}}||\sigma_{n_{2k}}(x\chi_{[\frac{1}{n_{2k+1}} \frac{1}{n_{2k}}]}||_E.$$  

By definition of $n_k$,

$$\frac{1}{n_{2k}}||\sigma_{n_{2k}}(x\chi_{[\frac{1}{n_{2k+1}} \frac{1}{n_{2k}}]}||_E \geq \frac{1}{n_{2k}}(1 - \frac{1}{n_{2k}})||\sigma_{n_{2k}}(x\chi_{[0, \frac{1}{n_{2k}}]}||_E.$$  

Note, that $y$ and $z$ in the Proposition below are arbitrary, that is $y, z$ do not necessary belong to $Q_+(x)$.

Proposition 7. Let $E$ be a symmetric space equipped with a Fatou norm. If $x \geq 0 \in E$, then in each of the following cases there exists a decomposition $x = y + z$, such that $y, z \geq 0$ and such that the following assertions hold.

i) If $E = E(0, 1)$, then $\varphi(x) = \varphi(y) = \varphi(z)$.

ii) If $E = E(0, \infty)$ and $\varphi_{\text{cut}}(x) = 0$, then $\varphi(x) = \varphi(y) = \varphi(z)$.

iii) If $E = E(0, \infty)$, then $\varphi_{\text{fin}}(x) = \varphi_{\text{fin}}(y) = \varphi_{\text{fin}}(z)$.

iv) If $E = E(0, \infty)$, then $\varphi_{\text{cut}}(x) = \varphi_{\text{cut}}(y) = \varphi_{\text{cut}}(z)$.
It follows from (10) and (11) that
\begin{equation}
\left(12\right) \frac{1}{n_{2k}} ||\sigma_{n_{2k}}(y^{*})||_E \geq (1 - \frac{1}{n_{2k}}) \frac{1}{n_{2k}} ||\sigma_{n_{2k}}(x\chi_{[0, 1/n_{2k}]})||_E \geq (1 - \frac{1}{n_{2k}})\varphi(x\chi_{[0, 1/n_{2k}]}).
\end{equation}

By Lemma 4, \(\varphi(x\chi_{[0, 1/n_{2k}]})) = 0\). Since \(\varphi\) is convex, then
\begin{equation}
\left(13\right) \varphi(x\chi_{[0, 1/n_{2k}]})) \leq \varphi(x) \leq \varphi(x\chi_{[0, 1/n_{2k}]})) + \varphi(x\chi_{[1/n_{2k}, 1]})) = \varphi(x\chi_{[0, 1/n_{2k}]})).
\end{equation}

It follows from (12) and (13) that
\begin{equation}
\frac{1}{n_{2k}} ||\sigma_{n_{2k}}(y^{*})||_E \geq (1 - \frac{1}{n_{2k}})\varphi(x).
\end{equation}

Passing to the limit, we obtain \(\varphi(y) \geq \varphi(x)\). The converse inequality is obvious.

Hence, \(\varphi(y) = \varphi(x) = \varphi(z)\), and this completes proof of the Proposition. \(\square\)

**Lemma 8.** If space \(E\) is strictly symmetric, then \(\varphi(y) = \varphi(x)\) for every \(y \in Q'(x)\). If, in addition, \(E = E(0, \infty)\), then \(\varphi_{fin}(y) = \varphi_{fin}(x)\) for every \(y \in Q'(x)\). If \(E \not\subseteq L_1\), then \(\varphi_{cut}(y) = \varphi_{cut}(x)\) for every \(y \in Q'(x)\).

**Proof.** Let
\[ z = \sum_{i=1}^{s} \lambda_i x_i, \]
where \(\lambda_i \geq 0\), \(\sum_{i=1}^{s} \lambda_i = 1\), \(x_i \geq 0\) and \(x_i^* = x\). By Lemma 3, we obtain \(\varphi(z) = \varphi(x)\). However, \(y \in Q'(x)\) can be approximated by such \(z\). Since \(\varphi\) is continuous in strictly symmetric spaces, the lemma follows readily.

The proofs are the same in cases of \(\varphi_{fin}\) and \(\varphi_{cut}\). \(\square\)

**Proposition 9.** Let \(E\) be a strictly symmetric space and \(x \in E\). Then the following assertions hold.

i) If \(E = E(0, 1)\), then \(\varphi\) is midpoint additive on \(Q_+(x)\).

ii) If \(E = E(0, \infty)\), then \(\varphi_{fin}\) is midpoint additive on \(Q_+(x)\).

iii) If \(E \not\subseteq L_1\), then \(\varphi_{cut}\) is midpoint additive on \(Q_+(x)\).

**Proof.** We will only prove the first assertion. The proofs of the other two assertions are exactly the same.

Let \(y \in \text{Conv}(\text{extr}(\Omega_+(x)))\), so that
\[ y = \sum_{i=1}^{m} \lambda_i x_i, \]
where \(\lambda_i \geq 0\), \(\sum_{i=1}^{m} \lambda_i = 1\), \(x_i \geq 0\) and \(x_i^* = x^*\chi_{[0, \beta_i]}\). Denote \(z = \sum_{i=1}^{m} \lambda_i x_i^*\chi_{[0, \beta_i]}\) and \(u = \sum_{\beta_i > 0} \lambda_i x_i^*\chi_{[0, 1]}\). By Lemma 3, \(\varphi(y) = \varphi(z)\).

Since \(|z - u| \leq L_\infty\), then \(\varphi(|u - z|) = 0\) by Lemma 3. By the triangle inequality,
\[ \varphi(u) \leq \varphi(z) + \varphi(|u - z|) = \varphi(z) \leq \varphi(u) + \varphi(|u - z|) = \varphi(u). \]

Hence, \(\varphi(y) = \varphi(u) = (\sum_{\beta_i > 0} \lambda_i)\varphi(x)\). It is clear that last expression is midpoint additive on the set \(\text{Conv}(\text{extr}(\Omega_+(x)))\). By Lemma 3, the functional \(\varphi\) is continuous on \(Q_+(x)\). Hence, it is midpoint additive on the set \(Q_+(x)\). \(\square\)
Lemma 11. Thus, for every $\phi \in \Omega_+(x)$, then $\phi$ is midpoint additive on $\Omega_+(x)$.

Proof. It follows from the Proposition 9 that $\phi_{cut}$ is midpoint additive on $Q_+(x)$. By assumption, $\Omega_+(x) = Q_+(x)$. Hence, $\phi_{cut}$ is midpoint additive on $\Omega_+(x)$. It follows now from Proposition 7 (iv) that $\phi_{cut}(x) = 0$. This assertion and Lemma 2 imply that $\phi(x^*\chi_{[0,\beta]}) = 0$ for every finite $\beta$.

Let $y \in \text{Conv}(\text{extr}(\Omega_+(x)))$. Hence,

$$y = \sum_{i=1}^{m} \lambda_i x_i,$$

where $\lambda_i \geq 0$, $\sum_{i=1}^{m} \lambda_i = 1$, $x_i \geq 0$ and $x_i^* = x^*\chi_{[0,\beta_i]}$. By convexity of $\phi$,

$$\phi(y) \leq \phi\left( \sum_{\beta_i \in [0,\infty)} \lambda_i x_i \right) + \phi\left( \sum_{\beta_i = \infty} \lambda_i x_i \right).$$

However,

$$0 \leq \phi\left( \sum_{\beta_i \in [0,\infty)} \lambda_i x_i \right) \leq \sum_{\beta_i \in [0,\infty)} \lambda_i \phi(x^*\chi_{[0,\beta_i]}) = 0.$$

It then follows that

$$\phi(y) \leq \phi\left( \sum_{\beta_i = \infty} \lambda_i x_i \right).$$

The converse inequality is obvious. By Lemma 6,

$$\phi(y) = \phi\left( \sum_{\beta_i = \infty} \lambda_i x_i \right) = \phi\left( \sum_{\beta_i = \infty} \lambda_i x_i^* \right) = \left( \sum_{\beta_i = \infty} \lambda_i \right) \phi(x).$$

Clearly, the last expression is midpoint additive on $\text{Conv}(\text{extr}(\Omega_+(x)))$. Hence, the functional $\phi$ is midpoint additive on $Q_+(x) = \Omega_+(x)$.

Lemma 12. Let $E = E(0, \infty)$ be a symmetric space on semi-axis equipped with a Fatou norm. Suppose that $E \not\subseteq L_1$ and $x \in E$. If $\Omega_+(x) = Q_+(x)$, then $\phi$ is midpoint additive on $\Omega_+(x)$.

Proof. Due to the choice of $E$, we have $1 \in E$. However, $\sigma_+(1) = 1$ implies $\phi(1) = 0$. Thus, for every $z \in E \cap L_\infty$, we have $\phi(z) = 0$. However, for every $x \in E$, we have $\phi(x^*\chi_{[0,1]}) = 0$ due to Lemma 11. Hence,

$$0 \leq \phi(x) = \phi(x^*) \leq \phi(x^*\chi_{[0,1]}) + \phi(x^*\chi_{[1,\infty]}) = 0 + 0 = 0.$$

Lemma 13. Let $E$ and $x$ be as in Lemma 11. If $L_\infty \subseteq E$, then $\phi(x) = 0$.

Proof. Suppose that $x = x^*$. Set $A = \{0,1\}$ and $y = P(x|A) \in E \cap L_\infty$. By assumption, $y \in Q_+(x)$. By Lemma 6 and Lemma 3, $\phi_{cut}(x) = \phi_{cut}(y) = 0$. Hence,

$$\phi(y) = \phi(x) \leq \phi(x^*\chi_{[0,1]}) + \phi(x^*\chi_{[1,\infty]}) = 0 + 0 = 0.$$

Lemma 14. Let $E$ and $x$ be as in Lemma 11. If $y \in E \cap L_\infty$ and if

$$\omega(y) = \limsup_{t \to \infty} \frac{\int_0^t y^*(s)ds}{\int_0^t x^*(s)ds},$$

then $\phi(y) = \omega(y)\phi(x)$.
Proof. Fix \( \varepsilon > 0 \). There exists \( T > 0 \), such that for every \( t > T \),
\[
\int_0^t y^*(s) \leq (\omega(y) + \varepsilon) \int_0^t x^*(s)ds.
\]
It then follows that \( y \prec \prec (\omega(y) + \varepsilon)(x^* + C\chi_{[0,T]}) \) for some constant \( C \). By Lemma 8, \( \varphi(y) \leq (\omega(y) + \varepsilon)\varphi(x^* + C\chi_{[0,T]}) \). By Lemma 4, \( \varphi(C\chi_{[0,T]}) = 0 \) and, therefore, \( \varphi(x^* + C\chi_{[0,T]}) = \varphi(x) \). Hence \( \varphi(y) \leq \omega(y)\varphi(x) \).

Now, fix \( \omega < \omega(y) \). There exists a sequence \( t_k \to \infty \), such that
\[
\int_0^{t_k} y^*(s)ds \geq \omega \int_0^{t_k} x^*(s)ds.
\]
Without loss of generality, \( t_0 = 0 \). Set \( u = P(x^*|A) \), where \( A = \{[t_k, t_{k+1})\} \). It then follows that \( \omega u \prec \prec y \) and \( \omega\varphi(u) \leq \varphi(y) \). However, \( u \in Q'(x) \) and \( \varphi(u) = \varphi(x) \) due to Lemma 8. Hence \( \omega(y)\varphi(x) \leq \varphi(y) \).

**Proposition 14.** Let \( E = E(0, \infty) \) be a symmetric space on the semi-axis and let \( x \in E \). If \( \varphi(x) = 0 \), then, \( x\chi_A \in Q'(x) \) for every Lebesgue measurable subset \( A \subseteq (0, \infty) \).

**Proof.** Let \( [0, \infty) = B \cup C \), where \( B, C \) are disjoint sets such that \( m(B) = m(A) \) and \( m(C) = \infty \). Fix a partition \( C = \bigcup_{i=1}^{n+1} C_i \), where \( m(C_i) = m(R_+ \setminus A) \), \( 1 \leq i \leq n \). Let \( \gamma : B \to A \) and \( \gamma_i : C_i \to R_+ \setminus A \), \( 1 \leq i \leq n \) be measure-preserving transformations. Define functions \( x^n_i, 1 \leq i \leq n \) by the following construction. Set \( x^n_i|_C = x \circ \gamma_i \) and \( x^n_i|_C = 0 \) if \( i \neq j \). Clearly, \( x^n_i \sim x \) and
\[
||x^n_A \circ \gamma - \frac{1}{n} \sum_{i=1}^{n} x^n_i||_E = \frac{1}{n}||\sigma_n(x\chi_{(0,\infty)\setminus A})||_E \leq \frac{1}{n}||\sigma_n(x^*)||_E \to 0.
\]
Hence, \( (x^n_A) \circ \gamma \in Q'(x) \). Thus, \( x^n_A \in Q'(x) \).

**Corollary 15.** Let \( E = E(0, \infty) \) be a symmetric space on semi-axis. If \( \varphi(x) = 0 \), then \( y\chi_A \in Q'(x) \) for every \( y \in Q'(x) \).

**Proof.** It follows from assumption and Lemma 8 that \( \varphi(y) = \varphi(x) = 0 \). Lemma 13 implies that \( y\chi_A \in Q'(y) \). Since \( y\chi_A \in Q'(y) \) and \( y \in Q'(x) \), then Lemma 17 implies \( y\chi_A \in Q'(x) \).

An assertion somewhat similar to the lemma below is contained in Lemma 1.3.

**Lemma 16.** Assume that \( x \in E \) satisfies conditions of Proposition 14. If \( y \in Q'(x) \) and \( 0 \leq z \leq y \), then, \( z \in Q'(x) \).

**Proof.** Define sets \( e^i_n \), \( i = 1, \ldots, n \) by
\[
e^i_n = \{ t : \frac{i-1}{n} y(t) \leq z(t) \leq \frac{i}{n} y(t) \}.
\]
Define functions \( y^k_n, k = 1, \ldots, n \) as \( y^k_n = y \sum_{k<i+n/2} \chi_{e^i_n} \). By Corollary 15, \( y^k_n \in Q'(x) \). Put
\[
s_n = \frac{1}{n} \sum_{k=1}^{n} y^k_n \in Q'(x).
\]
Clearly,
\[
|s_n(t) - (y(t) + z(t))/2| \leq \frac{2y(t)}{n}, \quad \forall t \in e^i_n.
\]
Hence, \( s_n \to (y + z)/2 \) by norm. Therefore, \((y + z)/2 \in Q'(x)\). We can repeat this procedure \( n \) times and obtain \( 2^{-n}((2^n - 1)z + y) \in Q'(x) \). Therefore, \( z \in Q'(x) \). 

The following assertion seems to be known. We include details of proof for lack of a convenient reference.

**Lemma 17.** Let \( E \) be a symmetric space either on \((0, 1)\) or \((0, \infty)\) and \( x \in E \). If \( y \in Q'(z) \) and \( z \in Q'(x) \), then \( y \in Q'(x) \).

**Proof.** Without loss of generality, \( y = y^* \), \( z = z^* \) and \( x = x^* \). Let \( y \in Q'(z) \). Hence, for every \( \varepsilon > 0 \), one can find \( n \in \mathbb{N} \), \( \lambda_i \in \mathbb{R}^+ \) and measurable functions \( z_i \sim z \), \( i = 1, \ldots, n \), such that \( \sum_{i=1}^{n} \lambda_i = 1 \) and

\[
||y - \sum_{i=1}^{n} \lambda_i z_i||_E \leq \varepsilon.
\]

One can find measure-preserving transformations \( \gamma_i \), such that

\[
||z_i - z \circ \gamma_i||_{L_1 \cap L_\infty} \leq \varepsilon.
\]

Hence,

\[
||y - \sum_{i=1}^{n} \lambda_i z \circ \gamma_i||_E \leq 2\varepsilon.
\]

However, \( z \in Q'(x) \). Consequently, arguing in a similar way, one can find \( m \in \mathbb{N} \), \( \mu_j \in \mathbb{R}^+ \) and measure preserving transformations \( \delta_j \), \( 1 \leq j \leq n \) such that \( \sum_{j=1}^{m} \mu_j = 1 \) and

\[
||z - \sum_{j=1}^{m} \mu_j x \circ \delta_j||_E \leq 2\varepsilon.
\]

Therefore,

\[
||y - \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j x \circ \gamma_i \circ \delta_j|| \leq 4\varepsilon
\]

and this suffices to complete the proof. \( \square \)

**Remark 18.** The collection of sets \( \{Q(x), \ x \in E\} \) also satisfies the transitivity property expressed in Lemma 17. We do not know whether this is the case for the collection \( \{Q_+(x), \ x \in E\} \).

4. **Main results**

The implication \((ii) \Rightarrow (i)\) in the following theorem is almost verbatim repetition of the argument given in [3, Lemma 3.1] for the case of finite measure. For convenience of the reader, we present here a proof of the most important case.

**Theorem 19.** (a) Let \( E \) be a fully symmetric space and \( x \in E \). If \( E = E(0, 1) \) or \( E = E(0, \infty) \) and \( E \not\subseteq L_1 \), then the following conditions are equivalent.

i) \( P(x|\mathcal{A}) \in Q'(x) \) for every \( \mathcal{A} \in \mathfrak{A} \).

ii) \( \varphi(x) = 0 \).

(b) If \( E = E(0, \infty) \) and \( E \subseteq L_1 \), then the following conditions are equivalent.

i) \( P(x|\mathcal{A}) \in Q'(x) \) for every \( \mathcal{A} \in \mathfrak{A} \).

ii) \( \varphi_{fin}(x) = 0 \).
Proof. (a) (i) ⇒ (ii) Let $E = E(0, 1)$ and $x = x^*$. Set $A = \{0, 1\}$ and $y = P(x|A)$. By assumption, $y \in Q'(x)$. By Lemma $\S$ and Lemma $[\S]$, $\varphi(x) = \varphi(y) = 0$.

Let $E = E(0, \infty)$ and $L_{\infty} \subseteq E \not\subseteq L_1$. The assertion is proved in Lemma $[\underline{\S}]$.

Let $E = E(0, \infty)$ and $L_{\infty} \not\subseteq E \subseteq L_1$. Suppose that $x = x^*$ and $\varphi(x) > 0$. Set $B = \{0, 1\}$, $\psi' = P(x|B)$ and $\psi(t) = \int_0^t \psi'(s)ds$. By Lemma $\S$, $\varphi'(x) = \varphi(x)$.

Let $y \in E \cap L_{\infty}$. It follows from Lemma $[\S]$ that $\omega(y)\varphi(x) < 0$. Since $\varphi(x) > 0$, then $\omega(y) < 0$. Therefore, $y \in M_{\psi}$. Hence, $E \cap L_{\infty} \subseteq M_{\psi}$. Since $E$ is fully symmetric and $\psi' \in E \cap L_{\infty}$, then $M_{\psi} \in E \cap L_{\infty}$. Therefore, $E \cap L_{\infty} = M_{\psi}$.

If $u = 2\sigma_2 \psi'$, then $\varphi(u) = \varphi(\psi')$ by Lemma $\S[\S\S\S]$. Hence $\omega(u)\varphi(x) = \varphi(x)$ and $\omega(u) = 1$. However,

$$\omega(u) = \limsup_{t \to \infty} \frac{\psi(2t)}{\psi(t)} = \limsup_{t \to \infty} \frac{\psi(2t)}{\psi(t)}.$$ 

Thus,

$$\lim_{t \to \infty} \frac{\psi(2t)}{\psi(t)} = 1.$$ 

Let $G$ be the set defined by

$$G = \{y \in E : \exists C \sup_{t \geq 1} \frac{y^*(t)}{\psi'(t)} < \infty\}.$$ 

Note, that our set $G$ differs from the one introduced in $[\S]$. If $y_1, y_2 \in G$, then $y_1^*(t) \leq C_1 \psi(Ct)$ for $t \geq \frac{1}{2}$. It then follows

$$(y_1 + y_2)^*(t) \leq y_1^*(\frac{t}{2}) + y_2^*(\frac{t}{2}) \leq (C_1 + C_2)\psi\left(\frac{C}{2}t\right).$$

In particular, $G$ is a linear set and $\operatorname{Conv}\{y^* = x^*\} \subseteq G$. If the condition (14) holds, then there exists a sequence $t_k$, such that $t_0 = 0$, $t_1 = 1$ and for every $k$

$$\frac{\psi(t_{k+1}) - \psi(t_k)}{t_{k+1} - t_k} \geq \frac{2\psi\left(\frac{1}{2}t_{k+1}\right)}{3t_{k+1}}.$$ 

Set $A = \{(t_k, t_{k+1})\}$ and $z = P(x|A)$. It follows from the construction given in $[\S]$ that $||(z - y)\chi_{[t_k, t_{k+1}]}||_{M_{\psi}} \geq \frac{1}{4}$ for every $y \in G$ and every sufficiently large $k$. However, $||(z - y)\chi_{[t_k, t_{k+1}]}||_{L_{\infty}} \to 0$. Since $M_{\psi} = E \cap L_{\infty}$, then $||(z - y)\chi_{[t_k, t_{k+1}]}||_E \geq \frac{1}{4}$ for sufficiently large $k$. In particular, $||y - z||_E \geq \frac{1}{4}$. Hence, $\operatorname{dist}_E(z, G) \geq \frac{1}{4}$ and $\operatorname{dist}_E(z, Q'(x)) \geq \frac{1}{4}$. This contradicts the assumption that $P(x|A) \in Q'(x)$.

(a) (ii) ⇒ (i) Let $E = E(0, 1)$ or $E = E(0, \infty) \not\subseteq L_1$. We will prove the assertion for the case, when $A = \{0, 1\}$. The general proof is similar. Without loss of generality, $x$ decreases on $[0, 1]$. Define functions $x_n^i$, $i = 0, \ldots, n - 1$ such that (i) $x_n^i = x$ outside $(0, 1)$ and (ii) $x_n^i(t) = x(t + \frac{i}{n} \operatorname{mod} 1)$ if $t \in (0, 1)$. Set $x_n(t) = x(t - \frac{i}{n})$ if $\frac{i}{n} \leq t \leq \frac{i+1}{n}$, $0 \leq i \leq n - 1$ and $x_n(t) = 0$ if $t \geq 1$. Clearly, $x_n^i \sim x$ and $(x_n^i)^* \leq \sigma_n(x^*)$.

We will show that

$$\int_0^1 x(s)ds - \frac{1}{n} \sum_{i=0}^{n-1} x(t + \frac{i}{n} \operatorname{mod} 1) \leq \int_0^1 x(s)ds$$

and

$$\int_0^1 x(s)ds - \frac{1}{n} \sum_{i=0}^{n-1} x(t + \frac{i}{n} \operatorname{mod} 1) \geq -\frac{1}{n} x_n(t).$$
We will prove only the first inequality. The proof of the second one is identical.

Without loss of generality, $t \in [0, \frac{1}{n}]$. Clearly,

$$\frac{1}{n}x(t + \frac{i}{n}) \geq \int_{\frac{i}{n+1}}^{\frac{i+2}{n+1}} x(s)ds$$

for $i = 0, \ldots, n-2$. Hence,

$$\int_0^1 x(s)ds - \frac{1}{n} \sum_{i=0}^{n-1} x(t + \frac{i}{n}) = \int_0^1 x(s)ds - \frac{1}{n}x(t + \frac{n-1}{n}) - \sum_{i=0}^{n-2} \left(\frac{1}{n}x(t + \frac{i}{n}) - \int_{\frac{i+1}{n+1}}^{\frac{i+2}{n+1}} x(s)ds\right) \leq \int_0^1 x(s)ds.$$

Therefore,

$$|\int_0^1 x(s)ds - \frac{1}{n} \sum_{i=0}^{n-1} x_n(t)| \leq \frac{1}{n}z_n(t), \quad t \in [0, 1],$$

where $z_n = x_n + \left(\int_0^1 x_n(s)ds\right)\chi_{[0,1]}$. Obviously, $z_n \prec 2x_n \leq 2\sigma_n(x^*)$ and, therefore, $\|z_n\|_E \leq 2\|\sigma_n(x^*)\|_E$.

It then follows that

$$\|P(x, A) - \frac{1}{n} \sum_{i=0}^{n-1} x_n^i\|_E \leq \frac{2}{n}\|\sigma_n(x^*)\|_E \to 0.$$

(b) $(i) \Rightarrow (ii)$ Let $E = E(0, \infty)$ and $E \subset L_1$. Set $A = \{s : x(s) \geq 1\}$ and $A = \{A\}$. Set $y = P(x, A) \in E \cap L_\infty$. Lemma 4 implies that $\varphi(y) = 0$. By assumption, $y \in Q'(x)$. By Lemma 4, $\varphi(x) = \varphi(y) = 0$.

(b) $(ii) \Rightarrow (i)$ The assertion follows from Theorem 24.

The following proposition is the core technical result of the article. In case of the interval $(0, 1)$ it may be found in [3, Lemma 3.2]. However, our proof is more general, simpler and shorter.

We consider functions of the form

$$(15) \quad x = \sum_{i \in \mathbb{Z}} x_i \chi_{[a_{i-1}, a_i]}, \quad y = \sum_{i \in \mathbb{Z}} y_i \chi_{[a_{i-1}, a_i]},$$

where $\{a_i\}_{i \in \mathbb{Z}}$ is an increasing sequence (possibly finite or one-sidedly infinite).

**Proposition 20.** Let $y = y^*$ and $x = x^*$ be functions of the form (15) either on $(0, 1)$ or on $(0, \infty)$. If $y \prec x$, then there exists a countable collection $\{\Delta_k\}_{k \in \mathcal{K}}$ of disjoint sets, where $\Delta_k = I_k \cup J_k$ with intervals $I_k$ and $J_k$ of finite measure, such that

i) The functions $x$ and $y$ are constant on the intervals $I_k$ and $J_k$ and the interval $I_k$ lies to the left of $J_k$, $k \in \mathcal{K}$.

ii) $y|_{\Delta_k} \prec x|_{\Delta_k}$, $k \in \mathcal{K}$.

iii) $y(t) \leq x(t)$ if $t \notin \bigcup_{k \in \mathcal{K}} \Delta_k$.

If, in addition, $x$ and $y$ are functions on $(0, 1)$ and $\int_0^1 y(s)ds = \int_0^1 x(s)ds$, then $y(t) = x(t)$ if $t \notin \bigcup_{k \in \mathcal{K}} \Delta_k$.
Proof. There exists a subsequence \( \{a_{m_i}\}_{i\in I} \) (possibly finite or one-sidedly infinite) such that \( \{x < y\} = \bigcup_{i\in I}[a_{m_i-1}, a_{m_i}] \). Since \( y \prec x \), we have
\[
\int_0^t (x-y)_+(s)ds - \int_0^t (y-x)_+(s)ds = \int_0^t x(s)ds - \int_0^t y(s)ds \geq 0.
\]
For each \( i \in I \), denote by \( b_i \) the minimal \( t > 0 \), such that
\[
\int_0^t (x-y)_+(s)ds = \int_0^{a_{m_i}} (x-y)_+(s)ds.
\]
Clearly, for every \( i \in I \),
\[
\int_0^{a_{m_i}} (x-y)_+(s)ds = \int_0^{b_i} (x-y)_+(s)ds \geq \int_0^{a_{m_i}} (y-x)_+(s)ds.
\]
Hence, \( b_i \leq a_{m_i-1} \). For each \( i \in I \), the set \( [b_{i-1}, b_i] \cap \{x > y\} \) is a finite union of disjoint intervals on which each of \( x \) and \( y \) is finite. By the definition of \( b_i \), we have
\[
\int_{a_{m_i-1}}^{a_{m_i}} (y-x)_+(s)ds = \int_{b_{i-1}}^{b_i} (x-y)_+(s)ds = \sum_{j=1}^{n_i} \int_{I_j^i} (x-y)_+(s)ds.
\]
Set \( K = \{(i,j) : 1 \leq j \leq n_i, i \in I\} \). If \( k = (i,j) \in K \), set \( I_k = I_j^i \) and
\[
J_k = J_j^i = [a_{m_i-1} + (y_{m_i} - x_{m_i})^{-1}c_j^{-1}, a_{m_i-1} + (y_{m_i} - x_{m_i})^{-1}c_j]
\]
where
\[
c_j = \sum_{l=1}^{j} \int_{I_l^i} (x-y)_+(s)ds, \quad i \in I, 0 \leq j \leq n_i.
\]
Using the fact that \( x \) and \( y \) are constant on the interval \([a_{m_i-1}, a_{m_i}]\), we obtain \( J_k \subseteq [a_{m_i-1}, a_{m_i}] \) and \( \bigcup_{j=1}^{n_k} J_j^i = [a_{m_i-1}, a_{m_i}] \).
\[\text{(4)}\] Both \( x \) and \( y \) are constant on \( I_k \) and \( J_k \), \( k \in K \). Since \( b_i \leq a_{m_i-1} \) for each \( i \in I \), then \( I_k \) lies to the left of \( J_k \) for \( k \in K \).

It then follows from \[\text{(4)}\], that
\[
\int_{I_k} (x-y)_+(s)ds = \int_{J_k} (y-x)_+(s)ds, \quad k \in K.
\]
\[\text{(16)}\] Since \( x|_{I_k} \geq y|_{I_k} \) and \( x|_{J_k} \leq y|_{J_k} \) for all \( k \in K \), then the assertion follows directly from \[\text{(4)}\] and \[\text{(16)}\].
\[\text{(3)}\] The set \( \{y > x\} = \bigcup_{i\in I} \bigcup_{j=1}^{n_i} J_j^i \subseteq \bigcup_{k \in K} \Delta_k \).

The last assertion is immediate. \(\square\)

**Corollary 21.** Let \( E \) be a fully symmetric space either on the interval \((0, 1)\) or on the semi-axis. If \( x, y \) and \( \mathcal{B} = \{\Delta_k\}_{k \in \mathcal{K}} \) are as in Proposition 20 and \( y(t) = x(t) \) if \( t \notin \bigcup_k \Delta_k \), then \( y \) can be arbitrary well approximated in the norm of \( E \) by convex combinations of functions of the form \( P(x|A), \ A \in \mathcal{A} \).

**Proof.** Set \( \lambda_k = (y|_{I_k} - y|_{J_k})/(x|_{I_k} - x|_{J_k}) \), \( k \in \mathcal{K} \). Since \( y|_{\Delta_k} < x|_{\Delta_k} \), it is not difficult to verify that \( \lambda_k \in [0, 1], \ k \in \mathcal{K} \). Further, a simple calculation shows that \( y = (1 - \lambda_k) P(x|\mathcal{B}) + \lambda_k x \) on \( \Delta_k, \ k \in \mathcal{K} \).

As well-known, every \([0, 1]\)–valued sequence can be uniformly approximated by convex combinations of \( \{0, 1\}\)–valued sequences.

Fix \( \varepsilon > 0 \). There exists \( \mu \in l_\infty(\mathcal{K}) \) with \( \mu = \sum_{i=1}^{n} \theta_i \chi_D \), for some \( n \in N \), \( 0 \leq \theta_i \in R \) and \( D_i \subseteq \mathcal{K} \) such that \( \sum_{i=1}^{n} \theta_i = 1 \) and \( ||\lambda - \mu||_\infty \leq \varepsilon \). Set \( z = \)
Theorem 24. Let $E = E(0, 1)$ be a fully symmetric space on the interval $(0, 1)$. If $x \in E$, then the following statements are equivalent.

i) $\Omega'(x) = Q'(x)$.

ii) $\varphi(x) = 0$.

Proof. (i) $\Rightarrow$ (ii) Suppose that $Q'(x) = \Omega'(x)$. Set $A = \{[0, 1]\}$ and $y = P(x|A)$. Clearly, $y \in \Omega'(x) = Q'(x)$. Lemma 8 implies that $\varphi(x) = \varphi(y)$. Lemma 4 implies $\varphi(y) = 0$. The assertion is proved.

(ii) $\Rightarrow$ (i) Let $x = x^*$ and $0 \leq y \in \Omega'(x)$. In this case, $y = y^* \circ \gamma$ for some measure-preserving transformation $\gamma$ (see [15] or [2] Theorem 7.5, p.82). Without loss of generality, we may assume that $y = y^*$. Fix $\varepsilon > 0$. Set

$$s_n(\varepsilon) = \inf\{s : y(s) \leq y(1) + n\varepsilon\}, \quad n \in N.$$ 

Let $A_\varepsilon$ be the partition, determined by the points $s_n(\varepsilon)$, $n \in N$. Set $u = P(y|A_\varepsilon)$ and $z = P(x|A_\varepsilon)$. The functions $u$ and $z$ satisfy the condition $u < z$ and are of the form given in [15].

By Lemma 8iii, $\varphi(z) \leq \varphi(x) = 0$. By Theorem 19, $P(z|A) \in Q'(z)$ for every $A \in \mathcal{A}$. It follows now from Corollary 21 that $u \in Q'(z)$. However, $z \in Q'(x)$ by Theorem 19. Therefore, by Lemma 17, $u \in Q'(x)$. However, $||y - u||_{L^\infty} \leq \varepsilon$. Since $\varepsilon$ is arbitrary, $y \in Q'(x)$. \qed

Theorem 23. Let $E = E(0, 1)$ be a fully symmetric space on the interval $(0, 1)$. If $x \in E$ and $\varphi(x) = 0$, then $\Omega_+(x) = Q_+(x)$. If, in addition, the norm on $E$ is a Fatou norm, then converse assertion also holds.

Proof. Suppose that $\varphi(x) = 0$ and let $y \in \Omega_+(x)$. Hence, there exists $s_0 \in [0, 1]$, such that $\int_0^{s_0} x^*(s)ds = \int_1^0 y^*(s)ds$. Set $z = x^*\chi_{[0,s_0]}$. By Theorem 22, $y \in Q'(z)$. Hence, $y \in Q'(z) \subseteq Q_+(x)$.

By Proposition 7 there exist $0 \leq y, z \in E$, such that $x = y + z$ and $\varphi(x) = \varphi(y) = \varphi(z)$. By Proposition 7, $\varphi(x) = \varphi(y) + \varphi(z)$. Consequently, $\varphi(x) = 0$. \qed

Now, consider the case that $E = E(0, \infty)$.

Theorem 24. Let $E = E(0, \infty)$ be a fully symmetric space on semi-axis. If $E \subseteq L_1$ and $x \in E$, then the following assertions are equivalent.

i) $\Omega'(x) = Q'(x)$.

ii) $\varphi_{f,n}(x) = 0$.

Proof. (i) $\Rightarrow$ (ii) Let $x = x^*$ and suppose that $Q'(x) = \Omega'(x)$. Set $A = \{[0, 1]\}$ and $y = P(x|A)$. Clearly, $y \in \Omega'(x) = Q'(x)$. Lemma 8 implies that $\varphi(x) = \varphi(y)$. Lemma 4 implies $\varphi(y) = 0$. The assertion is proved.
Proof. Let us assume first that $(ii) \Rightarrow (i)$ Let $x = x^*$ and $0 \leq y \in \Omega(x)$. It follows from [10] Lemma II.2.1 that for every fixed $\varepsilon > 0$ there exists measure-preserving transformation $\gamma$ such that $||y - y^* \circ \gamma||_E \leq \varepsilon$. Without loss of generality, we may assume that $y = y^*$. For every $S > 0$,
$$ \frac{1}{T} ||(\sigma_T x)\chi_{[0,S]}||_E \leq \frac{S}{T} ||(\sigma_T x)\chi_{[0,1]}||_E \rightarrow 0. $$

(a) Suppose first that $\supp(x) = \supp(y) = (0, \infty)$. Fix $\varepsilon > 0$. There exists $T$, such that
$$ ||x\chi_{[T,\infty)}||_{L_1 \cap L_\infty} \leq \varepsilon, \quad ||y\chi_{[T,\infty)}||_{L_1 \cap L_\infty} \leq \varepsilon. $$

Clearly, $\int_0^T x(s)ds \leq \int_0^T y(s)ds$. Hence, there exists $S \geq T$, such that $\int_0^S y(s)ds = \int_0^T y(s)ds$. By Theorem 24, $y\chi_{[0,S]} \in Q'(x\chi_{[0,T]}).$ Hence, $y \in Q'(x) + y\chi_{(S,\infty)} - Q'(x\chi_{(T,\infty)})$ and, therefore, $\dist(y, Q'(x)) \leq 2\varepsilon$. Since $\varepsilon$ is arbitrary, $y \in Q'(x)$.

(b) Suppose now that $m(\supp(y)) < \infty$ or $m(\supp(y)) = 0$. Fix $z = z^* \in L_1 \cap L_\infty$ with infinite support. It is clear that $(y + \varepsilon z) \in \Omega(x + \varepsilon z), \varepsilon > 0$. By assumption and Lemma 4, $\varphi_{fin}(x + \varepsilon z) = 0$. Hence, using (a) preceding, it follows that $(y + \varepsilon z) \in Q'(x + \varepsilon z) \subseteq Q'(x) + \varepsilon Q'(z)$. Hence, $\dist(y, Q'(x)) \leq \varepsilon$ for every $\varepsilon > 0$ and, therefore, $y \in Q'(x)$. □

Theorem 25. Let $E = E(0, \infty)$ be a fully symmetric space on $(0, \infty)$ such that $E \subseteq L_1$. If $0 \leq x \in E$ and $\varphi_{fin}(x) = 0$, then $\Omega_+(x) = Q_+(x)$. If, in addition, the norm on $E$ is a Fatou norm, then converse assertion also holds.

Proof. Let $\varphi_{fin}(x) = 0$ and $y \in \Omega_+(x)$. As in Theorem 24, we may assume $y = y^*$. Fix $\varepsilon > 0$. There exists $T > 0$ such that
$$ ||x\chi_{[T,\infty)}||_{L_1 \cap L_\infty} \leq \varepsilon, \quad ||y\chi_{[T,\infty)}||_{L_1 \cap L_\infty} \leq \varepsilon. $$

Select $S \leq T$ such that
$$ \int_0^S x^*(s)ds = \int_0^T y^*(s)ds. $$

Clearly, $y\chi_{[0,T]} \in \Omega'(x^*\chi_{[0,S]}).$ By Theorem 22, $y\chi_{[0,T]} \in Q'(x^*\chi_{[0,S]}) \subseteq Q_+(x)$. Hence, $y \in Q_+(x)$.

By Proposition 7 there exist $0 \leq y, z \in E$, such that $x = y + z$ and $\varphi_{fin}(y) = \varphi_{fin}(z)$. By Proposition 8, $\varphi_{fin}(x) = \varphi_{fin}(y) + \varphi_{fin}(z)$. Consequently, $\varphi_{fin}(x) = 0$. □

4.2. The case that $E \not\subseteq L_1$.

Theorem 26. Let $E = E(0, \infty)$ be a fully symmetric space on the semi-axis and let $x \in E$. If $\varphi(x) = 0$, then $\Omega_+(x) = Q'(x)$.

Proof. Let us assume first that $y = y^* \in \Omega_+(x)$. Fix $\varepsilon > 0$. Set $t_+(\varepsilon) = 1 + n\varepsilon$,
$$ s_+(\varepsilon) = \inf\{s : y(s) \leq y(1) + n\varepsilon\}, $$
$$ s_-(\varepsilon) = \sup\{s : y(s) \geq y(1) - n\varepsilon\}. $$

Let $\mathcal{A}_\varepsilon$ be the partition, determined by the points $s_{\pm n}(\varepsilon), t_+(\varepsilon)$. Set $u = P(y|\mathcal{A}_\varepsilon)$ and $z = P(x|\mathcal{A}_\varepsilon)$. The functions $u$ and $z$ satisfy the conditions $u \ll z$ and (13). Set
$$ v = u \sum_{k \in K} \chi_{\Delta_k} + z\chi_{(0,\infty) \cup \cup_{k \in K} \Delta_k}, $$

where the collection $\{\Delta_k\}_{k \in K}$ is given by Proposition 20.
By Lemma 3, \( \varphi(z) \leq \varphi(x) = 0 \). By Theorem 19, \( P(z|A) \in Q'(z) \) for every \( A \in \mathfrak{A} \). It follows now from Corollary 21 that \( v \in Q'(z) \). Since \( u \leq v \), it follows from Lemma 16 that \( u \in Q'(z) \). Theorem 19 implies that \( z \in Q'(x) \). By Lemma 17 \( u \in Q'(x) \). However,

\[
\text{dist}(y, Q'(x)) \leq ||y - u||_E \leq ||y - P(y|A_x)||_{L_1 \cap L_\infty} \leq \varepsilon(1 + y(1)).
\]

Since \( \varepsilon \) is arbitrary, \( y \in Q'(x) \).

Let now \( y \in \Omega_+(x) \) be arbitrary. By Lemma II.2.1 and Theorem II.2.1, for every fixed \( \varepsilon > 0 \), there exist \( y_1, y_2 \in E \), \( y = y_1 + y_2 \) and measure-preserving transformation \( \gamma \) such that \( 0 \leq y_1 \leq y^* \circ \gamma \) and \( ||y_2||_E \leq \varepsilon \). Since we already proved that \( y^* \in Q'(x) \), the assertion follows immediately.

**Theorem 27.** Let \( E = E(0, \infty) \) be a fully symmetric space on semi-axis. Suppose that \( E \not\subset L_1 \) and \( x \in E \). If \( \varphi(x) = 0 \), then the set \( \Omega_+(x) \) is the norm-closed convex hull of its extreme points. If, in addition, the norm on \( E \) is a Fatou norm, then converse assertion also holds.

**Proof.** The assertion follows immediately from Theorem 20.

By Proposition 14 there exist \( 0 \leq y_1, z_1 \in E \), such that \( x = y_1 + z_1 \) and \( \varphi(x) = \varphi(\text{cut}(y_1)) = \varphi(\text{cut}(z_1)) \). By assumption, \( y_1, z_1 \in Q_+(x) \). By Proposition 9, \( \varphi(x) = \varphi(\text{cut}(y_1)) + \varphi(\text{cut}(z_1)) \). Consequently, \( \varphi(x) = 0 \). By Proposition 7 there exist \( 0 \leq y_2, z_2 \in E \), such that \( x = y_2 + z_2 \) and \( \varphi(x) = \varphi(y_2) = \varphi(z_2) \). By Proposition 10, \( \varphi(x) = \varphi(y_1) + \varphi(z_1) \). Consequently, \( \varphi(x) = 0 \).

5. Appendix

5.1. An application to the case of orbits \( \Omega(x) \). The following consequence of Theorem 23 is essentially due to Braverman and Mekler 3.

**Corollary 28.** If \( \varphi(x) = 0 \), then \( \Omega(x) \) is the norm-closed convex hull of its extreme points.

**Proof.** Let \( x = x^* \) and \( y \in \Omega(x) \). Clearly, \( y = u \cdot |y| \), where \( |u| = 1 \) a.e. and \( |y| \in \Omega_+(x) \). Fix \( \varepsilon > 0 \). By Theorem 24 there exist \( n \in N \), scalars \( \lambda_{n,i}, \beta_{n,i} \in [0, 1] \) and functions \( x_{n,i} \sim x_{\alpha[0, \beta_{n,i}]} \), such that \( \sum_{i=1}^{n} \lambda_{n,i} \leq 1 \) and

\[
||y|| - \sum_{i=1}^{n} \lambda_{n,i} ||x_{n,i}||_E \leq \varepsilon.
\]

There exist measure-preserving transformations \( \gamma_{n,i} \), \( 1 \leq i \leq n \) (see [15]) such that \( x_{n,i} = (x^* \cdot x_{\alpha[0, \beta_{n,i}]}) \circ \gamma_{n,i} \). Set \( x_{n,i} = u \cdot x_{\alpha[0, \beta_{n,i}]} \) and \( x_{n,i}^2 = u \cdot x_{\alpha[0, \beta_{n,i}]}, \gamma_{n,i} \circ x_{\alpha[0, \beta_{n,i}]} \), \( 1 \leq i \leq n \). It is clear that \( x_{n,i} \approx x, 1 \leq i \leq n \), and

\[
||y - \frac{1}{2} \sum_{i=1}^{n} \lambda_{n,i} x_{n,i}^2 - \frac{1}{2} \sum_{i=1}^{n} \lambda_{n,i} x_{n,i}||_E \leq \varepsilon.
\]

5.2. Extreme points of the orbit \( \Omega_+(x) \). The following theorem is due to Ryff (see 13).

**Theorem 29.** If \( 0 \leq x \in L_1(0, 1) \), then \( y \in \text{extr}(\Omega(x)) \) if and only if \( y^* = x^* \).

**Corollary 30.** If \( 0 \leq x \in L_1(0, 1) \), then \( y \in \text{extr}(\Omega_+(x)) \) if and only if \( y^* = x^* \cdot x_{\alpha[0, \beta]} \) for some \( \beta \geq 0 \).
Proof. Indeed, if \( \int_0^\beta x^*(s)ds = \int_0^1 y^*(s)ds \), then \( y \in \Omega'(x^*\chi_{[0,\beta]}) \). Therefore, if \( y \in \text{extr}(\Omega_+(x)) \), then obviously \( y \in \text{extr}(\Omega'(x^*\chi_{[0,\beta]}) \) and the assertion follows immediately from Theorem 29.

If \( y^* = x^*\chi_{[0,\beta]} \) and \( y = \frac{1}{\beta}(u_1 + u_2) \) with \( u_1 \in \Omega_+(x) \), then \( \int_0^\beta x^*(s)ds = \int_0^t x^*(s)ds \) for \( t \in [0,\beta] \) and \( \text{supp}(u_1) = \text{supp}(y) \). Therefore, \( (u_1 + u_2)^* = u_1^* + u_2^* \).

It follows now from [10, (II.2.19)] that \( u_1 = u_2 \).

**Lemma 31.** If \( 0 \leq x \in L_1 + L_\infty \) and \( y \in \text{extr}(\Omega_+(x)) \), then \( y\chi_{\{y \leq y^*(\infty)\}} = 0 \).

**Proof.** Assume, the contrary. Thus, the Lebesgue measure of the set \( A = \{ y \in (0,\lambda y^*(\infty)) \) does not vanish for some \( \lambda \in (0,1) \). Let \( 0 \leq \varepsilon \) be such that \( (1+\varepsilon)\lambda < 1 \). Set \( y_1 = (1+\varepsilon)y\chi_A + y\chi_{(0,\infty)\setminus A} \) and \( y_2 = (1-\varepsilon)y\chi_A + y\chi_{(0,\infty)\setminus A} \). Clearly, \( y_1^* = y^* \) and, therefore, \( y_i \in \Omega_+(x) \), for \( i = 1,2 \). Hence, \( y = \frac{1}{\beta}(y_1 + y_2) \notin \text{extr}(\Omega_+(x)) \).

**Corollary 32.** Let \( 0 \leq x \in L_1 + L_\infty \) and \( y \in \text{extr}(\Omega_+(x)) \). It then follows that

1. If \( x^*(\infty) = 0 \), then \( y^* = x^*\chi_{[\beta]} \) for some \( \beta \in [0,\infty] \).
2. If \( x^*(\infty) > 0 \), then either \( y^* = x^*\chi_{[\beta]} \) for some \( \beta \in [0,\infty] \) or \( y^* = x^* \) and \( y\chi_{\{y < y^*(\infty)\}} = 0 \).

Conversely, functions as above belong to the set \( \text{extr}(\Omega_+(x)) \).

**Proof.** If \( y \) belongs to \( \text{extr}(\Omega_+(x)) \), then so does \( y^* \) (see [13] and [5]). Fix \( t_1 > 0 \) and find \( t_2 \leq t_1 \) such that \( \int_0^{t_2} x^*(s)ds = \int_0^{t_1} y^*(s)ds \). Clearly, \( y^*\chi_{[0,t_2]} \ll x^*\chi_{[0,t_2]} \) and \( y^*\chi_{[0,\infty]} \ll x^*\chi_{[0,\infty]} \). If \( y^*\chi_{[0,t_1]} = \frac{1}{\beta}(u_1 + u_2) \) with \( u_1, u_2 \in \Omega'(x^*\chi_{[0,t_2]} \), then set \( y_i = u_i\chi_{[0,t_1]} + y^*\chi_{[t_1,\infty]} \). We claim \( y_i \ll x \). Indeed, if \( e \in (0,\infty) \) and \( m(e) < \infty \), then \( e \in e_1 \cup e_2 \) with \( e_1 \subset [0,t_1] \) and \( e_2 \subset [t_1,\infty) \). Therefore,

\[
\int_e^\infty y_i(s)ds = \int_{e_1}^{t_1} u_i(s)ds + \int_{e_2}^{t_1} y^*(s)ds \leq \int_{e_1}^{t_1} u_i^*(s)ds + \int_{t_1}^{t_2+m(e)} y^*(s)ds \leq \int_{0}^{t_2+m(e)} x^*(s)ds + \int_{t_1}^{t_2+m(e)} x^*(s)ds \leq \int_{0}^{t_2+m(e)} x^*(s)ds.
\]

Hence, \( y_i \in \Omega_+(x) \) and \( y = \frac{1}{\beta}(y_1 + y_2) \). Thus, \( y \notin \text{extr}(\Omega_+(x)) \). Therefore, \( y^*\chi_{[0,t_1]} \in \text{extr}(\Omega'(x^*\chi_{[0,t_2]} \). By Theorem 29 \( y^* = x^* \) on \( [0,t_2] \). The assertion follows now from Lemma 31.

The converse assertion is easy.

**Corollary 33.** If \( x \in L_1(0,\infty) \), then \( 0 \leq y \in \text{extr}(\Omega'(x)) \) if and only if \( y^* = x^* \).

The proof is identical to that of Corollary 32.

5.3. **Marcinkiewicz spaces with trivial functional \( \phi \).** It follows from the Lemma 3 and the definition of Marcinkiewicz space, that \( \phi = 0 \) if and only if \( \phi(\psi') = 0 \). It is now easy to derive, that in case of the interval \( (0,1) \) this is equivalent to the condition

\[
\liminf_{t \to 0} \frac{\psi(2t)}{\psi(t)} > 1.
\]

In case of the semi-axis, the condition

\[
\liminf_{t \to \infty} \frac{\psi(2t)}{\psi(t)} > 1
\]

needs to be added.
5.4. A comparison of conditions [1] and [2] in Orlicz spaces. Let $M$ be a convex function satisfying [3] and let $L_M$ be the corresponding Orlicz space on $(0, 1)$. The following proposition shows that $L_M$ always satisfies condition [2].

**Proposition 34.** We have $\varphi(x) = 0$ for every $x \in L_M$.

**Proof.** Using the description of relatively weakly compact subsets in $L_M$ given in [1] (see also [12, p. 144]) we see that for every $0 \leq y \in L_M$

$$n \int_0^{\frac{1}{y}} M\left(\frac{1}{n}y\right) \to 0.$$

We are going to prove that $\frac{1}{n}\|\sigma_n x\|_{L_M} \to 0$ for every $x \in L_M$. Assume the contrary. Let $\|\sigma_n x\|_{L_M} \geq na$ for some $0 \leq x \in L_M$, some $\alpha > 0$ and for arbitrary large $n \geq 1$. By the definition of the norm $\| \cdot \|_{L_M}$, we have

$$\int_0^{1} M\left(\frac{1}{na}\sigma_n x\right) \geq 1.$$

Hence,

$$n \int_0^{\frac{1}{y}} M\left(\frac{1}{n}y\right) \geq 1$$

with $y = \alpha^{-1}x \in L_M$. A contradiction. \hfill \Box

We shall now present an example of an Orlicz space $L_M$ which fails to satisfy condition [1].

For the definition of Boyd indices $1 \leq p_E \leq q_E \leq \infty$ of a fully symmetric space $E$, we refer the reader to [11] 2.b.1 and p. 132. It is clear, that the condition [1] holds for a fully symmetric space $E$ if and only if $p_E > 1$. It is well-known (see e.g. [11]) that Orlicz space $L_M$ is separable if and only if $q_{L_M} < \infty$.

**Example 35.** There exists a non-separable Orlicz space $L_M$ such that $p_{L_M} = 1$.

**Proof.** Let $a_0 = 1$ and $a_n + 1 = e^{a_n}$. Set $M(t) = t^2$ on $(0, 1)$, $M(t) = e^t + M(a_{2n}) - e^{a_{2n}}$ on $[a_{2n}, a_{2n+1}]$ and $M(t) = M(a_{2n-1}) + e^{a_{2n+1}}(t - a_{2n-1})$ on $[a_{2n-1}, a_{2n}]$.

Clearly, $M'(t) = e^t$ on $[a_{2n}, a_{2n+1}]$ and $M'(t) = e^{a_{2n+1}}$ on $[a_{2n-1}, a_{2n}]$. Hence, $M'(t) \leq e^t$ and $M(t) \leq e^t - 1$.

If $q_{L_M} < \infty$, then (see [11] 2.b.5) there exists $q$ such that

$$\sup_{\lambda, t \geq 1} \frac{M(\lambda t)}{M(\lambda)t^q} < \infty.$$

In particular, $M(t) \leq \text{const} \cdot t^q$ for $t \geq 1$. However,

$$M(a_{2n+1}) \geq e^{a_{2n+1}} - e^{a_{2n}} = e^{a_{2n+1}}(1 + o(1)).$$

Therefore, $q_{L_M} = \infty$ and $L_M$ is non-separable.

If $p_{L_M} < 1$, then (see [11] 2.b.5) there exists $p > 1$ such that

$$\inf_{\lambda, t \geq 1} \frac{M(\lambda t)}{M(\lambda)t^p} > 0.$$

Set $\lambda = n$ and $t = \frac{1}{n}a_{2n}$. Hence, $\lambda t = a_{2n}$ and

$$M(\lambda t) = M(a_{2n-1}) + e^{a_{2n+1}}(a_{2n} - a_{2n-1}) = a_{2n}(1 + o(1)) + a_{2n}^2(1 + o(1)).$$
Since \( a_{2n-1} = \frac{1}{n} o(a_{2n}) \), then
\[
M(\lambda) = M(a_{2n-1}) + e^{a_{2n-1}}(1 - a_{2n} - a_{2n-1}) = a_{2n}(1 + o(1)) + \frac{1}{n} a_{2n}^2(1 + o(1)).
\]
Therefore,
\[
\frac{M(\lambda t)}{M(\lambda)^{p}} = (1 + o(1)) \frac{a_{2n}^2}{na_{2n}^2} = (1 + o(1)) n^{-p} = o(1)
\]
and we conclude \( p_{LM} = 1 \). \( \square \)

5.5. An application to symmetric functionals. Let \( E \) be a fully symmetric space. A positive functional \( f \in E^* \) is said to be symmetric (respectively, fully symmetric) if \( f(y) = f(x) \) (respectively, \( f(y) \leq f(x) \)) for all \( 0 \leq x, y \in E \) such that \( y^* = x^* \) (respectively, \( y \ll x \)). We refer to \([8, 5]\) and references therein for the exposition of the theory of singular fully symmetric functionals and their applications. Recently, symmetric functionals which fail to be fully symmetric were constructed in \([9]\) on some Marcinkiewicz spaces. However, for Orlicz spaces situation is different. The following proposition shows that a symmetric functional on an Orlicz space on the interval \((0, 1)\) is necessary fully symmetric.

**Proposition 36.** Any symmetric functional on \( L_M \) is fully symmetric.

**Proof.** Let \( \omega \in E^* \) be symmetric. It is clear, that \( \omega(x^* \chi_{[0,\beta]}) \leq \omega(x) \) for \( x \geq 0 \). Therefore, \( \omega(y) \leq \omega(x) \) for \( y \in \text{Conv}\{y^* = x^* \chi_{[0,\beta]}\} \). Since \( \omega \) is continuous, we have \( \omega(y) \leq \omega(x) \) for \( y \in Q_+(x) \). By Theorem 23 and Proposition 34 we have \( Q_+(x) = \Omega_+(x) \), and so \( \omega \) is a fully symmetric functional on \( L_M \). \( \square \)

**Corollary 37.** Any singular symmetric functional on \( L_M \) vanishes.

**Proof.** Indeed, there are no fully symmetric singular functionals on \( L_M \) (see \([8]\) Theorem 3.1). \( \square \)

We also formulate the following hypothesis: If \( E \) is a fully symmetric space, then functional \( \varphi \) vanishes if and only if there are no singular symmetric functionals on \( E \).

**REFERENCES**

[1] T. Ando, Weakly compact sets in Orlicz spaces, Canad.J.Math 14 (1962), 170-176.
[2] C. Bennett and R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.
[3] M.Sh. Braverman and A.A. Mekler, The Hardy-Littlewood property for symmetric spaces, Siberian Math. J. 18 (1977), 371-385.
[4] A.-P. Calderón, Spaces between \( L^1 \) and \( L^\infty \) and the theorem of Marcinkiewicz, Studia Math., 26 (1966), 273-299.
[5] A. L. Carey and F. A. Sukochev, Dixmier traces and their applications in noncommutative geometry, Russian Math. Surveys 61 (2006), 45–110.
[6] V.I. Chilin, A.V. Krygin and F.A. Sukochev, Extreme points of convex fully symmetric sets of measurable operators, Integral Equations Operator Theory 15 (1992), 186-226.
[7] P.G. Dodds, F.A. Sukochev and G. Schmüdgen, Weak compactness criteria in symmetric spaces of measurable operators, Math.Proc.Camb.Phil.Soc. (2001), 131, 363.
[8] F. G. Dodds, B. de Pagter, E. M. Semenov, and F. A. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), 47-75.
[9] N. Kalton and F. Sukochev, Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals, Canad. Math. Bull. 51 (2008), 67–80.
[10] S.G. Krein S.G, Ju.I. Petunin and E.M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian); English translation in Translations of Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, RI, 1982.
[11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II: Sequence Spaces; Function Spaces, Springer, 1996.
[12] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (Marcel Dekker Inc., New York, 1991).
[13] J.V. Ryff, Extreme points of some convex subsets of $L_1(0,1)$, Proc. Amer. Math. Soc. 18 (1967), 1026-1034.
[14] J.V. Ryff, Orbits of $L_1$–functions under doubly stochastic transformations, Trans. Amer. Math. Soc. 117 (1965), 92-100.
[15] J.V. Ryff, Measure preserving transformations and rearrangements, J. Math. Anal. Appl. 31 (1970), 449-458.

F. Sukochev
School of Mathematics and Statistics
University of New South Wales, Kensington, NSW 2052, Australia
Email Address: f.sukochev@unsw.edu.au

D. Zanin
School of Computer Science, Engineering and Mathematics
Flinders University, Bedford Park, SA 5042, Australia
Email Address: zani0005@csem.flinders.edu.au