Photosensitization of TiO$_2$ nanofibers by Ag$_2$S with the synergistic effect of excess surface Ti$^{3+}$ states for enhanced photocatalytic activity under simulated sunlight

Samina Ghafoor1,2, Sadia Ata2, Nasir Mahmood3 & Salman Noshear Arshad1

TiO$_2$ nanofibers, with mean diameter ~200 nm, were fabricated by electrospinning and successfully photosensitized with low bandgap Ag$_2$S nanoparticles of 11, 17, 23 and 40 nm mean sizes, with corresponding loading of 4, 10, 18 and 29 wt.% Ag$_2$S, respectively. 17 nm Ag$_2$S@TiO$_2$ nanofibers exhibited optimal activity in the photodegradation of methylene blue under simulated sunlight with pseudo-first order rate constant of 0.019 min$^{-1}$ compared to 0.009 min$^{-1}$ for pure TiO$_2$ nanofibers. In spite of greater visible-light absorption and reduced bandgap, larger than 17 nm Ag$_2$S nanoparticles exhibited sluggish photodegradation kinetics probably due to less photo-induced carriers generation in TiO$_2$ and reduced electron injection rates from the larger sized Ag$_2$S into TiO$_2$. Furthermore, a UV-O$_3$ surface treatment induced excess Ti$^{3+}$ surface states and oxygen vacancies which synergistically enhanced the photodegradation rate constant to 0.030 min$^{-1}$ for 17 nm Ag$_2$S@TiO$_2$ sample which is ~70% better than the previously reported for Ag$_2$S/TiO$_2$ hierarchical spheres. This was attributed to the efficient charge separation and transfer driven by increased visible-light absorption, bandgap narrowing and reduced electron-hole recombination rates. The present study demonstrate the potential utilization of Ag$_2$S@TiO$_2$ nanofibers in filtration membranes for removal of organic pollutants from wastewater.

Hazardous wastewater pollution is becoming a serious threat to human health1 which necessitates the development of green and efficient water remediation technologies. Visible-light driven photocatalysis using suitable bandgap oxide-based nanomaterials is an effective technique to chemically transform the organic pollutants into non-hazardous compounds2. Titanium dioxide (TiO$_2$) is widely used as a photocatalyst because it is non-toxic, chemically and thermally stable and inexpensive with a strong oxidizing ability35. However, its practical use is limited by very low visible-light activity and high recombination rates of photo-induced electron-hole pairs6. The Anatase phase of TiO$_2$ has a bandgap (E_g) of 3.2 eV which covers only 3–5% of the solar spectrum. Moreover, TiO$_2$ is commonly used as nanoparticles (NPs) which exhibits low photodegradation rates for many organic pollutants due to agglomeration and low active area loading. Electrospinning is a relatively easy and low cost technique for synthesis of ultra-long TiO$_2$ nanofibers (NFs) and permeable membranes7 which can facilitate the charge transportation and separation, thus, reducing the recombination rate of electron-hole pairs89. In fact, Choi et al. has shown that TiO$_2$ NFs exhibit superior photocurrent generation (factor of ~3) and hydrogen production (factor of ~7) compared to TiO$_2$ NPs due to well-ordered and interconnected architecture and inherent meso-porosity which aids in adsorption and desorption of the reactants and products, respectively10. Similarly,

1Department of Chemistry, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan. 2Institute of Chemistry, University of the Punjab, P.O. Box 54590, Lahore, Pakistan. 3Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, 2500, Australia. Correspondence and requests for materials should be addressed to S.N.A. (email: salman.arshad@lums.edu.pk)
enhanced photocatalytic activity of electrospun mesoporous TiO$_2$ nanofibers was demonstrated by CO$_2$ reduction to renewable hydrocarbon fuels13.

Many attempts have been made to enhance the photocatalytic activity of TiO$_2$ under illumination conditions similar to solar light12,13. These include doping transition metal ions such as Fe$^{3+}$14,15, Ni$^{2+}$16, Ti$^{3+}$-doped TiO$_2$17,18, or nonmetal atoms such as N, F and S19-21, dye-sensitization22-24, and coupling with a photosensitizer such as g-C$_3$N$_4$25, MF$_6$O$_{24}$26, α-Fe$_2$O$_3$, Au, Pt and Au/Pt co-catalysts27-29, CdS30,31, MoS$_2$@zeolite32, Ag$_3$ and Ag$_2$PO$_4$33,34,35. The purpose of coupling with a photosensitizer is to enhance the visible-light harvesting and promote charge separation by effective interface charge transfer between the photosensitizer and TiO$_2$ for which the relative position of the energy band levels are critical. Recently, Ag$_2$S has gained considerable attention as a photosensitizer for TiO$_2$36-41. Ag$_2$S is a direct low bandgap semiconductor material (E$_g$\textapprox{}1.0 eV) which responds well in the whole solar energy spectrum. The conduction (CB) and valence (VB) bands of Ag$_2$S are $-$0.3 eV and $+$0.7 eV, respectively, which is very desirable for photosensitization of TiO$_2$ with corresponding CB and VB of sensitized by \sim17 nm Ag$_2$S NPs37. Shan et al. demonstrated hollow Ag-Ag$_2$S/TiO$_2$ composite spheres with superior photocatalytic activity in reduction of Cr (VI) under both UV and visible-light38. Gholami et al. reported 15 fold enhancement of photocurrent for free standing TiO$_2$ nanotube array, each of 125 nm diameter and 4.1 μm length, sensitized by \sim17 nm Ag$_2$S NPs39. Shan et al. demonstrated core-shell Ag/Ag$_2$S NPs on TiO$_2$ nanowires as a model photo-electrochemical electrode system39. Ong et al. used sequential ionic deposition to fabricate Ag$_2$S NPs on TiO$_2$ microspheres. Enhanced simulated solar light driven photocatalytic performance was demonstrated by water splitting with hydrogen production at 708 μmol h$^{-1}$ g$^{-1}$ and photo degradation of methyl orange with pseudo-first order rate constant of 0.018 min$^{-1}$39.

Immobilization of Ag$_2$S NPs on TiO$_2$ nanofibers (NF) is expected to give higher number of active sites. Multiple factors contribute to the photosensitization effect of Ag$_2$S on TiO$_2$ nanofibers such as (a) Effect of Ag$_2$S mean size and loading amount on the injection rate of photo-induced electrons into TiO$_2$ as well as photo-induced carriers generation rate in TiO$_2$, (b) Effect of Ag$_2$S mean size, loading and coverage on the light harvesting capability, (c) Effect of chemical interaction between Ag$_2$S and TiO$_2$ on possible lowering of the energy bandgap and the recombination rate, and (d) Effect of changing the surface chemical states and defects on TiO$_2$, (e.g. Ti$^{3+}$ and oxygen vacancies) on the carrier separation and transport. Li et al.40 deposited different amounts of Ag$_2$S NPs on TiO$_2$ nanorod arrays by varying the number of cycles in successive ionic layer absorption and reaction (SILAR) method. They reported an optimum 25 cycle deposition for maximum photocatalytic degradation rates of methylene orange (MO) under visible-light. However, other factors as noted above were not investigated in detail.

In this report, the combined effect of all these factors for photosensitization of TiO$_2$ nanofibers has been experimentally investigated and optimized. We demonstrate optimal simulated solar light driven photocatalytic activity for TiO$_2$ NFs sensitized by \sim17 nm Ag$_2$S NPs, loaded at 10 wt.%, with the synergistic effect of enhanced Ti$^{4+}$ chemical states and oxygen vacancies induced by a facile UV-O$_3$ surface treatment. Moreover, these composite nanofibers were stable over multiple cycles of photodegradation and demonstrate their potential use for water remediation.

Results and Discussion

Morphology, structure and chemical composition. The morphology with mean sizes and distribution of Ag$_2$S@TiO$_2$ NFs are shown in Fig. 1. The uncoated TiO$_2$ NFs (Fig. 1(a) inset) have a mean diameter of 195 nm and interstices of \sim1 μm size, formed by the interpenetrating nanofibers network. The color of the TiO$_2$ NFs changed instantaneously as they were dipped in the Tollens reagent with addition of 0.05 M dextrose solution indicating the formation of Ag NPs followed by washing with distilled water and ethanol. The mean size of the Ag NPs was controlled by varying the dipping time in the solution from 0.5–4 min. Figure 1(a–d) shows the successful deposition of Ag$_2$S NPs by nucleation and growth of Ag followed by sulfurization without any structural damage to TiO$_2$ NFs. The phase and chemical composition of the Ag$_2$S NPs was confirmed by XPS and XRD as discussed later. The sizes of Ag$_2$S NPs showed characteristic log-normal distribution with mean number-averaged size of 11, 17, 23 and 40 nm for dipping times of 0.5, 1, 2 and 4 min, respectively. The number-averaged sizes were statistically measured by tracing at least 100 particles, computing their areas, A, and calculating the corresponding area-equivalent diameters, D, assuming spherical shape ($D = \sqrt{4A/\pi}$). The particles remain distinct and approximately spherical for dipping times up to 2 min but most of them coalesce into bigger and mostly irregular particles after 4 min dipping. In this study, the samples will be labelled as x nm Ag$_2$S@TiO$_2$, where ‘x’ is the mean size of the Ag$_2$S NPs. The weight percent loading of Ag$_2$S in the composite nanofibers was determined by inductively coupled plasma optical emission spectroscopy. A standard AgNO$_3$ salt solution of 1–10 ppm was used to calibrate the emission intensity of Ag which fitted linearly with R2 value of 0.999. The weight fraction of 11, 17, 23 and 40 nm Ag$_2$S@TiO$_2$ composite nanofibers was found to be 4, 10, 18 and 29%, respectively, assuming that all the Ag converted to Ag$_2$S.

TEM images of 11 nm- and 23 nm-Ag$_2$S@TiO$_2$ NFs in Fig. 2(a and b) also show uniform deposition of Ag$_2$S NPs on the NF surfaces. Their sizes are comparable to those measured from the SEM images. The insets show HR-TEM images of Ag$_2$S NPs near the NF edges. The lattices identified in 11 nm-Ag$_2$S@TiO$_2$ correspond to (031) and (112) crystallographic planes with d-spacing of 0.212 and 0.178, respectively, whereas the lattice in 23 nm-Ag$_2$S@TiO$_2$ correspond to (121) crystallographic plane with d-spacing of 0.196 nm. These were also confirmed by the powder XRD scans of Ag$_2$S@TiO$_2$ NF samples shown in the Fig. 3(a), where (112), (121) and (031) signals were easily detected (ICPDS # 14-0072, Ag$_2$S, monoclinic). The most intense peak at 20 = 25.3$^\circ$ corresponds to the (101) crystallographic plane and confirms the formation of pure Anatase TiO$_2$ phase in all the samples42. The chemical composition was verified by the full scan XPS of TiO$_2$, 17 nm-Ag$_2$S@TiO$_2$, and 17 nm-Ag$_2$S@TiO$_2$ + UV-O$_3$ samples as shown in the Fig. 3(b) which confirms the presence of Ti and O in the un-coated samples and additionally, Ag and S, in the coated samples. All the samples showed C 1s signal which is typical of the
adsorbed surface contaminations. The detailed XPS analysis, discussed next, confirmed the presence of Ag$_2$S on the NF surfaces.

Adsorption-desorption isotherm of pure TiO$_2$ NFs and 17 nm-Ag$_2$S@TiO$_2$ composite NFs in Fig. 4(a) closely resembles a type-II isotherm which is typical for non-porous materials due to multilayer formation. The specific surface area of pure TiO$_2$ NFs and 17 nm-Ag$_2$S@TiO$_2$ composite NFs was 7.1 and 6.6 m2/g, respectively, which is consistent with the reported value of 13.3 m2/g for control TiO$_2$ nanofibers46. The pore size distribution in Fig. 4(b) was calculated by NLDFT method. Absence of hysteresis on desorption branch rules out the presence of mesopores, however, high intake of nitrogen at P/P$_0$ > 0.8 could be attributed to the presence of macropores. Contribution of micropores to the total surface area as calculated by the t-plot method was found to be almost zero.

Figure 1. High resolution SEM images of Ag$_2$S@TiO$_2$ NFs with mean Ag$_2$S size of (a) 11 nm, (b) 17 nm, (c) 23 nm and (d) 40 nm. The Ag$_2$S size distribution is shown in the insets. A low magnification SEM image of the TiO$_2$ NFs is also shown as inset in (a).

Figure 2. TEM images of (a) 11 nm-Ag$_2$S@TiO$_2$ and (b) 23 nm-Ag$_2$S@TiO$_2$ NFs. Insets are HR-TEM images near the nanofiber edges showing the lattice fringes of the Ag$_2$S NPs.
Surface chemical states of Ag\textsubscript{2}S@TiO\textsubscript{2} nanofibers. The effect of photosensitization by Ag\textsubscript{2}S NPs and UV-O\textsubscript{3} treatment on the surface chemical states were determined by XPS. Ti 2p signal of pure TiO\textsubscript{2} NFs had two peaks at 464.1 and 458.4 eV which corresponds to Ti 2p\textsubscript{1/2} and Ti 2p\textsubscript{3/2} spin-orbit splitting, respectively, as shown in the Fig. 5(a). According to the Handbook of X-ray Photoelectron Spectroscopy47, the binding energies of Ti 2p\textsubscript{1/2} and Ti 2p\textsubscript{3/2} in TiO\textsubscript{2} are 464.3 and 458.8 eV, respectively. The area ratio of these two peaks is ~0.5 (33.67/66.32 = 0.507) with a binding energy difference of ~5.7 eV (464.15–458.46 = 5.69 eV) which is in good agreement with the literature48. Ti 2p signal was deconvoluted into four peaks which showed 94.3% Ti4+ and 5.7% Ti3+ oxidation state on the TiO\textsubscript{2} NFs surface. The Ti3+ oxidation state increased to 6.7% after coating with 17 nm Ag\textsubscript{2}S NPs which confirms the lower electron density of Ti atoms in Ag\textsubscript{2}S@TiO\textsubscript{2} NFs. Additionally, the Ti 2p peak positions shifted to higher binding energy indicating the withdrawal of valence electron charge (i.e. oxidation) owing to the strong interaction between Ag\textsubscript{2}S and TiO\textsubscript{2} NFs49. The UV-O\textsubscript{3} treatment further shifted the Ti 2p peaks towards higher binding energies with increase in Ti3+ surface state to 8.2% which indicates the removal of the lattice oxygen. This increase in surface Ti3+ had a significant effect on the photocatalytic activity as discussed later.

Deconvolution of O 1 s spectra of TiO\textsubscript{2} NFs gave three peaks at 529.7, 531.8 and 533.6 eV, as shown in the Fig. 5(b), which are associated with O2− species in the lattice (TiO\textsubscript{2}), oxygen vacancies or defects (Ti3+ or Ti\textsubscript{3}O\textsubscript{2}) and chemisorbed or adsorbed oxygen species, respectively50. Similar to Ti 2p, the peaks shifted to higher binding energies after coating with Ag\textsubscript{2}S NPs and UV-O\textsubscript{3} treatment. The Ti\textsubscript{2}O\textsubscript{3} content increased from 27.4 to 30.2% after
coating with 17 nm Ag$_2$S NPs and further to 47.7% after the UV-O$_3$ treatment. These results suggest that oxygen vacancies and excess electrons in Ti are generated by this process which results in the reaction Ti$^{4+}$→Ti$^{3+}$ near the surface.

In the Ag 3d XPS spectra, shown in Fig. 5(c), two peaks were observed at 368.0 eV and 374.0 eV representing 3d$^{5/2}$ and 3d$^{3/2}$ spin-orbit pair, respectively. These peaks were shifted to 368.4 eV and 374.4 eV after UV-O$_3$ surface treatment and indicated the presence of Ag in Ag$^+$ form39,51. The S 2p XPS spectra in Fig. 5(d) showed peaks at 161.09 eV and 162.19 eV representing 2p$_{3/2}$ and 2p$_{1/2}$ of S2 in the metal sulfides, thus, confirming the successful formation of Ag$_2$S. Another smaller peak at 163.3 eV is assigned to the -S-S- bonding52 probably due to chemisorption and presence of excess elemental sulfur. These results are in good agreement with the oxidation state of Ag$_2$S in the literature53. Again, these peaks are slightly shifted after UV-O$_3$ surface treatment with emergence of another peak at 169.12 eV due to SO$_4^{2-}$ formation by the surface oxidation of sulfur.

Photocatalytic performance and mechanism. The Ag$_2$S mean size, coverage of TiO$_2$, and UV-O$_3$ surface treatment had a profound effect on the photocatalytic performance. The photocatalytic activity of Ag$_2$S@TiO$_2$ NFs were evaluated by monitoring the photodegradation of MB. In a typical experiment, 5 mg of the composite NFs was dispersed in 10 ml of 10 ppm MB solution and kept in dark for 30 min under continuous stirring to attain a complete adsorption-desorption equilibrium54. The suspension was then illuminated by a 100 W Xenon arc lamp and photodegradation monitored by the UV-Vis spectrophotometer by measuring the absorbance of MB solution at regular time intervals. The C/Co as a function of the irradiated time, where Co is the initial MB solution concentration after the adsorption-desorption equilibrium has been attained, is shown in the Fig. 6(a). All samples showed pseudo-first order photodegradation kinetics with a rate constant of 0.011 min$^{-1}$ for pure TiO$_2$ NFs which increases to 0.015 min$^{-1}$ and 0.019 min$^{-1}$ after photosensitization by 11 nm and 17 nm Ag$_2$S NPs, respectively. Remarkably, the rate constant significantly increases to 0.030 min$^{-1}$ after a 2 hr UV-O$_3$ surface treatment on 17 nm-Ag$_2$S@TiO$_2$ sample which is ~70% better than 0.018 min$^{-1}$ reported for Ag$_2$S NPs on TiO$_2$ hierarchical
spheres. This was attributed to the generation of excess Ti$^{3+}$ surface states and oxygen vacancies, as shown by the XPS results, which facilitated the charge separation process and reduced the electron-hole recombination. We previously reported enhanced photocatalytic activity under UV irradiation for TiO$_2$ NPs (P25 Degussa) loaded polyacrylonitrile NFs due to excess Ti$^{3+}$ surface defects and enhanced hydrophilicity induced by a UV-O$_3$ surface treatment. These NFs showed stable performance when tested over 5 cycles of photodegradation as shown in Fig. 6(b). Please note that the slight decrease in performance is attributed to ~10% material weight loss during the repeated separation and re-use over 5 cycles. The stability of the samples after photodegradation was investigated by SEM and XRD. The phase, size and loading remained stable with no signs of leaching as shown in the Supplementary Information Fig. 1s.

The radical trapping experiments were carried out to identify the main active oxidation species for photodegradation of MB. As shown in Fig. 6(c), the photocatalytic efficiencies of the composite nanofibers significantly decreased from 97% to 54%, 62%, 65%, and 73% after the addition of ascorbic acid (as O$_2$• scavenger), sodium sulfate (as e$^-$ scavenger), sodium oxalate (as h$^+$ scavenger), and isopropanol (as •OH scavenger), respectively. This indicates that the photoinduced electrons react with dissolved O$_2$ molecules to yield O$_2$• radicals, while the positively charged holes (h$^+$) react with OH$^-$ derived from H$_2$O to form •OH radicals. Thus, all these play a significant role in the photodegradation of MB.

Optical properties of Ag$_2$S@TiO$_2$ nanofibers. To investigate the optical response, the absorption spectra of the Ag$_2$S@TiO$_2$ NFs and their corresponding Kulbelka-Munk transformation of the reflectance spectra are shown in Fig. 7(a and b), respectively. Pure TiO$_2$ showed the expected bandgap of 3.2 eV and very weak visible-light absorption. However, the visible-light absorption increased and the bandgap decreased, monotonically, by coating with Ag$_2$S NPs of increasing size due to the enhanced interfacial chemical interaction and coverage of TiO$_2$ by the smaller bandgap (E$_g$~1 eV) Ag$_2$S generating new midgap energy levels. However, the increased size of Ag$_2$S will have a negative impact on the photo-induced carriers generation rate in TiO$_2$ and injection rate of electrons from the conduction band of Ag$_2$S into TiO$_2$, thus, increasing their recombination probability. This was shown by the 23 nm- and 40 nm-Ag$_2$S@TiO$_2$ samples which, despite having a lower bandgap (E$_g$~2.75 eV),
showed even less photocatalytic activity than pure TiO$_2$ NFs with rate constants of 0.014 and 0.009 min$^{-1}$, respectively, as shown in Fig. 8(a). To investigate the promoted charge separation, the samples were excited by 325 nm laser which generates electron-hole pairs. The recombination of these photoexcited carriers gives photoluminescence (PL) signal with an intensity directly proportional to the electron-hole recombination process. Thus, a lower PL is desirable as it indicates a lower charge recombination which will result in a higher photocatalytic activity. As shown in Fig. 7(c), the pure TiO$_2$ NF showed a high PL intensity around 425 nm which significantly diminished for Ag$_2$S photosensitized TiO$_2$ NFs. Similar PL results are reported for Ag/TiO$_2$ and Ag$_2$O/TiO$_2$ systems.

The synergistic effect of photosensitization and surface Ti$^{3+}$ states. The enhanced photocatalytic performance of 17 nm Ag$_2$S@TiO$_2$+UV-O$_3$ sample is attributed to the synergistic effect of photosensitization by Ag$_2$S NPs and excess surface Ti$^{3+}$ states and oxygen vacancies. The proposed effective charge transfer process between Ag$_2$S and TiO$_2$ due to the preferred conduction band (CB) and valence band (VB) positions of Ag$_2$S, which are lower than corresponding bands in TiO$_2$, is schematically depicted in Fig. 8(b). This facilitated the generated electrons transfer from CB of Ag$_2$S to the CB of TiO$_2$ to effectively inhibit the electron-hole recombination. This photosensitization effect is further supplemented by the high TiO$_2$ (Ti$^{3+}$ state and oxygen vacancies) near the surface which leads to enhanced absorption of incident solar light below the bandgap of TiO$_2$ (Ti$^{4+}$ state) as shown in Fig. 8(b) and reported in ref. 58. The midgap state is close to the CB which facilitates the injection of photogenerated electrons into TiO$_2$ under simulated solar light. Moreover, the Ti$^{3+}$ defects and oxygen vacancies slows down the electron-hole recombination kinetics by acting as hole traps, thus, prolonging the lifetime of the charges.

In summary, photosensitization of electrospun TiO$_2$ nanofibers was done by Ag$_2$S nanoparticles with mean sizes of 11–40 nm range for enhanced simulated solar light driven photocatalytic performance. Detailed morphological and structural characterization by SEM, HR-TEM & XRD and chemical states identification by XPS confirmed the growth of Ag$_2$S nanoparticles. The key characteristics and parameters of all the samples are shown in Table 1. The size and coverage of Ag$_2$S had significant effect on the photocatalytic activity with 17 nm Ag$_2$S@TiO$_2$ giving the optimal activity. This was further enhanced by a surface UV-O$_3$ treatment which introduced excess Ti$^{3+}$ surface defects and oxygen vacancies and reduced the bandgap. This synergistic effect of Ag$_2$S sensitization and UV-O$_3$ treatment is attributed to the reduced recombination effect due to efficient charge transfer. The prepared composite NFs were stable in performance when tested over 5 cycles with a maximum photodegradation rate constant of 0.03 min$^{-1}$ for the UV-O$_3$ treated 17 nm Ag$_2$S@TiO$_2$ nanofibers which is ~70% better than the previously reported value for Ag$_2$S@TiO$_2$ hierarchical spheres. These results demonstrate the potential of using these composite nanofibers for water remediation under sunlight.

Methods

Fabrication of TiO$_2$ nanofibers. To fabricate TiO$_2$ NFs by electrospinning, 1.5 g polyvinylpyrrolidone (PVP, $M_w = 1,300,000$ g/mol) was mixed in 10 g ethanol and 4 g acetic acid under vigorous stirring for 1 hr. Then 4 g Titanium(IV) n-butoxide (TNBT, 97%) was added in the solution and further stirred for 1 hr to generate a homogeneous electrosprinning solution. This precursor solution was electrospun at 18 kV electrical potential with tip to collector distance of 18 cm with pumping rate of 0.8 mL/hr. The non-woven NF mat was left on the aluminum wire collector overnight for complete hydrolysis and annealed in air at 500 °C for 2 hr with a heating rate of 5 °C/min to obtain pure Anatase TiO$_2$ NFs.
Fabrication of Ag\textsubscript{2}S@TiO\textsubscript{2} nanofibers. Ag\textsubscript{2}S NPs of different size distribution were grown on TiO\textsubscript{2} NFs by a two-step process: reduction of Ag+ to Ag followed by sulfurization of Ag to Ag\textsubscript{2}S. Typically, 0.1 M NaOH was added drop-wise in 10 mL of 0.01 M AgNO\textsubscript{3} solution until appearance of brown precipitates. Then 1.0 M ammonia solution is added drop-wise until dissolution of all brown precipitates which indicates the formation of silver-ammonia complex [Ag(NH\textsubscript{3})\textsubscript{2}]	extsuperscript{+}, commonly known as the Tollens reagent. 10 mL of 0.05 M dextrose solution and 20 mg TiO\textsubscript{2} NFs were added into this freshly prepared solution under magnetic stirring, resulting in the formation of Ag NPs. These Ag NPs were then sulfurized to Ag\textsubscript{2}S40 by dipping in 25 mL of 0.01 M sulfur/acetonitrile solution at 60 °C for 10 min. The Ag@TiO\textsubscript{2} NFs were then washed with acetonitrile and distilled water and then dried at 60 °C in oven. The selected Ag\textsubscript{2}S@TiO\textsubscript{2} NFs were also exposed to UV-O\textsubscript{3} for 2 hr in a UV-Ozone plasma cleaner chamber.

Characterization. The size and morphology of Ag\textsubscript{2}S NPs and TiO\textsubscript{2} NFs was characterized by field emission scanning electron microscopy (FE-SEM, FEI 450 Nova NanoSEM) and high resolution transmission electron microscopy (HR-TEM, Jeol JEM-2100F operating at 200 kV). The weight fraction of Ag\textsubscript{2}S in the composite nanofibers was determined by inductively coupled plasma – optical emission spectroscopy (ICP-OES, Perkin Elmer Optima 2100 DV). 3 mg of the sample was digested in 5 mL conc. HNO\textsubscript{3} and then diluted up to 50 ml with deionized water. The surface chemical composition and oxidation states of Ti, O, Ag and S were quantified by X-ray photoelectron spectroscopy (XPS, PHI-1600) equipped with Al K\textsubscript{α} radiation. The peak positions were calibrated to C 1 s (284.8 eV) and plotted using the CasaXPS software. The photoluminescence spectra of the composite nanofibers were recorded by exciting the samples by 325 nm wavelength laser. The crystalline phases were determined by powder X-ray diffraction (XRD, Bruker D2 Phaser). Diffuse reflectance spectra (DRS) in 200–800 nm range were taken by UV-vis-NIR spectrophotometer (Jasco, V-770) to study the light harvesting capabilities of the samples and estimate their bandgaps using Kubelka-Munk function. The specific surface area was measured using Quantachrome (NOVA 2200 e) surface area and pore size analyzer. Silica kernel with cylindrical pore morphology and NLDFT (equilibrium mode) were used for the calculation of pore volume and pore size. Surface area was measured from nitrogen adsorption-desorption isotherm by applying B.E.T. plot in relative pressure range of 0.05–0.30 P/P\textsubscript{0}.

Photocatalytic performance. The photocatalytic performance of the Ag\textsubscript{2}S@TiO\textsubscript{2} NFs were evaluated by photodegradation of methylene blue (MB) solution in water. In a typical experiment, 5 mg of the sample was dispersed in a 10 mL solution of 10 ppm MB and kept in dark for 30 min under continuous stirring to attain a complete adsorption-desorption equilibrium on the surface of the composite NFs. Photocatalytic degradation was carried out by illuminating the suspension with simulated solar light using a commercial 100 W Xenon lamp. The analytical sample from the photocatalytic reaction was collected at regular time intervals and centrifuged. The resulting solution was analyzed by recording the absorbance of the residual MB solution with UV-vis spectroscopy.

Table 1. Material characteristics and photodegradation rate constants for all the samples.

Samples	Ag\textsubscript{2}S mean size (nm)	Ag\textsubscript{2}S wt.%	Ti1+ (Ti 2p)	Ti3+ (O 1s)	Bandgap (eV)	Rate Constant (min-1)
TiO\textsubscript{2}	—	—	5.7	27.4	3.2	0.011
Ag\textsubscript{2}S@TiO\textsubscript{2}, (t\text{dip} = 0.5 min)	10.6 ± 2.3	4	—	2.7	0.015	
Ag\textsubscript{2}S@TiO\textsubscript{2}, (t\text{dip} = 1.0 min)	16.7 ± 3.1	10	6.7	30.2	2.85	0.019
Ag\textsubscript{2}S@TiO\textsubscript{2}, (t\text{dip} = 1.0 min) + UV-O\textsubscript{3} treated	8.2	10	47.7	2.60	0.030	
Ag\textsubscript{2}S@TiO\textsubscript{2}, (t\text{dip} = 2.0 min)	23.2 ± 8.7	18	—	2.75	0.014	
Ag\textsubscript{2}S@TiO\textsubscript{2}, (t\text{dip} = 4.0 min)	39.9 ± 12.5	29	—	—	0.009	

References

1. Elliott, J. E. & Elliott, K. H. Tracking marine pollution. Science 340, 556–558 (2013).
2. Jing, L., Zhou, W., Tian, G. & Fu, H. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev 42, 9509–49 (2013).
3. Chen, X. & Selloni, A. Introduction: Titanium Dioxide (TiO\textsubscript{2}) Nanomaterials. Chem. Rev 114, 9281–9282 (2014).
4. Weis, J. et al. Photocatalysis fundamentals and surface modification of TiO\textsubscript{2} nanomaterials. Catthia Xuebao/Chinese J. Catal 36, 2049–2070 (2015).
5. Sajan, C. P., Wageh, S., Al-Ghamdi, A. A., Yu, J. & Cao, S. TiO\textsubscript{2} nanosheets with exposed {001} facets for photocatalytic applications. Nano Res 9, 3–27 (2016).
6. Schneider, J. et al. Understanding TiO\textsubscript{2} Photocatalysis: Mechanisms and Materials. Chem. Rev 114, 9919–9986 (2014).
7. Toor, W. E. & Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89–R106 (2006).
8. Zhang, E. et al. Controllable synthesis of Ag@TiO2 heterostructures with enhanced photocatalytic activities under UV and visible light excitation.

9. Chen, Y. L., Chang, Y. H., Huang, J. L., Chen, I. & Kuo, C. Light scattering and enhanced photoactivities of electropun titania nanofibers. J. Phys. Chem. C 118, 3857–3865 (2012).

10. Choi, S. K., Kim, S., Lim, S. K. & Park, H. Photocatalytic comparison of TiO2 nanoparticles and electropun TiO2 nanofibers: Effects of nanoparticle size and interparticle charge transfer. J. Phys. Chem. C 114, 16475–16480 (2010).

11. Fu, J., Cao, S., Yu, J. Low, J. & Lei, Y. Enhanced photocatalytic CO2-reduction activity of electropun mesoporous TiO2 nanofibers by solvothermal treatment. Dalt. Trans 43, 9158–65 (2014).

12. Li, X. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).

13. Etacheri, V., Di Valentini, C., Schneider, J., Bahnemann, D. & Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev 25, 1–29 (2015).

14. Kahan, H. & Swati, I. K. Fe2+–doped Anatase TiO2 with d-d transition. Oxygen Vacancies and Ti+3 Centers: Synthesis, Characterization, UV–vis Photocatalytic and Mechanistic Studies. Ind. Eng. Chem. Res 55, 6619–6633 (2016).

15. Yu, H. et al. An Efficient Visible-Light-Sensitive Fe (III)-Grafted TiO2 Photocatalyst. J. Phys. Chem. C 114, 16481–16487 (2010).

16. Zhang, H. et al. Ni+2 and Ti+3 co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv 5, 107150–107157 (2015).

17. Ren, R. et al. Controllable Photocatalysis and Tunable Photocatalytic Properties of Ti+4–doped TiO2. Sci. Rep 5, 1–11 (2015).

18. Bharti, B., Kumar, S., Lee, H.-N. & Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep 6, 1–12 (2016).

19. Wang, J. et al. Origin of photocatalytic activity of Nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009).

20. Li, D., Haneda, H., Hishita, S. & Ohashi, N. Visible-Light-Driven N–F–Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chem. Mater 17, 2588–2595 (2005).

21. Zhou, P., Yu, J. & Wang, Y. The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles. Appl. Catal. B Environ 142–143, 45–53 (2015).

22. Zhang, M. et al. Hierarchical Nanostructures of Copper (II) Phthalocyanine on Electropun TiO2 Nanofibers: Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties. ACS Appl. Mater. Interfaces 3, 369–377 (2011).

23. Seddigh, Z. S., Ahmed, S. A., Sardar, S. & Pal, S. K. Heterodimerization at the d-d sensitive TiO2 surface: an efficient strategy toward quick removal of water contaminants. Photochem. Photobiol. Sci 15, 920–927 (2016).

24. Xie, Y. et al. Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. J. Phys. Chem. C 114, 3690–3697 (2010).

25. Liu, C. et al. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic activity under visible light irradiation. Appl. Surf. Sci 349, 279–286 (2015).

26. Zhang, W., Xiao, X., Zheng, L. & Wan, C. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Appl. Surf. Sci 358, 468–475 (2015).

27. Tahir, K. et al. Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method. J. Photochem. Photobiol. B Biol 162, 189–198 (2016).

28. Xie, J. et al. Facile synthesis of hierarchical Ag2O/TiO2 heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci 355, 921–929 (2015).

29. Xu, J.-F., Gao, Z.-D., Han, K., Liu, Y. & Song, Y.-Y. Synthesis of magnetically separable Ag2O/TiO2/FexOy heteroheterostructures with enhanced photocatalytic performance under visible light for photocatalytic degradation of methylene blue by Ag/TiO2. Sci. Rep 6, 30543 (2016).

30. Neves, M. C. et al. Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. J. Photochem. Photobiol. A Chem 204, 168–173 (2009).

31. Ghofami, M., Qorbani, M., Moradlou, O., Naseri, N. & Moshefgh, A. Z. Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting. RSC Adv 4, 7838 (2014).

32. Shan, Z., Clayton, D., Pan, S., Archana, P. S. & Gupta, A. Visible Light Driven Photoelectrochemical Properties of TiF3xTiO2 Nanowire Electrodes Sensitized with Core–Shell Ag@Ag2S Nanoparticles. J. Phys. Chem. B 118, 14037–14046 (2014).

33. Ong, W. L., Lim, Y.-F., Ting Ong, J. L. & Ho, G. W. Room temperature sequential ionic deposition (SID) of Ag2S nanoparticles on TiO2 hierarchical spheres for enhanced catalytic efficiency. J. Mater. Chem. A 3, 6509–6516 (2015).

34. Liu, X., Liu, Z., Lu, J., Wu, X. & Chu, W. Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfuration for photocatalytic hydrogen production. J. Colloid Interface Sci 413, 17–23 (2014).

35. Xie, Y., Heo, S. H., Kim, Y. N., Yoo, S. H. & Cho, S. O. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires. Nanotechnology 21, 15703 (2010).

36. Zhang, D., Xu, G. & Chen, F. Hollow spherical Ag2S/TiO2 composite and its application for photocatalytic reduction of Cr(VI). Appl. Surf. Sci 351, 962–968 (2015).

37. Li, Z., Xiong, S., Wang, G., Xie, Z. & Zhang, Z. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorods. Sci. Rep 6, 1–7 (2015).

38. Blanton, T., Mixture, S., Dontula, N. & Zdziezinski, S. In situ high temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diff 26, 114–118 (2012).

39. Shrike, B. S., Korake, P. V., Hankare, P. P., Ramane, S. R. & Garadkar, K. M. Synthesis and characterization of pure anatase TiO2 nanoparticles. J. Mater. Sci. Mater. Electron 22, 821–824 (2011).

40. Deepa, T. D. et al. Surfactant-assisted synthesis of porous TiO2 nanofibers as an anode material for secondary lithium ion batteries. Sustain. Energy Fuels 238, 37 (2017).

41. Moulder, J. F., Stickle, W. E., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy 261 (1992).

42. Li, B. F., Li, X. Z. & Hou, M. F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control. Appl. Catal. B Environ 48, 185–194 (2004).

43. Yang, D. et al. Synthesis of TiO2/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadsorption. J. Phys. Chem. C 119, 5827–5835 (2015).
50. Park, K.-H. & Dhayal, M. High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO₂ films. *Electrochem. commun.* **11**, 75–79 (2009).

51. Jiang, D., Chen, L., Xie, J. & Chen, M. Ag₃S/g-C₃N₄ composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag₂S formed by simultaneous photodeposition. *Dalit. Trans* **43**, 4878–85 (2014).

52. Chen, R., Nuhfer, N. T., Moussa, L., Morris, H. R. & Whitmore, P. M. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. *Nanotechnology* **19**, 455604 (2008).

53. Fan, W., Jewell, S., She, Y. & Leung, M. K. H. *In situ* deposition of Ag-Ag₂S hybrid nanoparticles onto TiO₂ nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. *Phys. Chem. Chem. Phys* **16**, 676–80 (2014).

54. Xu, C., Rangaiah, G. P. & Zhao, X. S. Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. *Ind. Eng. Chem. Res* **53**, 14641–14649 (2014).

55. Dilpazir, S., Usman, M., Rasul, S. & Arshad, S. N. A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO₂ loaded polymer nanofiber membranes. *RSC Adv* **6**, 14751–14755 (2016).

56. Lim, S. P., Pandikumar, A., Huang, N. M. & Lim, H. N. Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells. *RSC Adv* **4**, 38111–38118 (2014).

57. Wei, N. et al. Ag₂O nanoparticle/TiO₂ nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. *Appl. Catal. B Environ* **198**, 83–90 (2016).

58. Xing, M., Li, X. & Zhang, J. Synergistic effect on the visible light activity of Ti(³⁺) doped TiO₂ nanorods/boron doped graphene composite. *Sci. Rep* **4**, 5493 (2014).

59. Qiu, B. et al. Facile synthesis of the Ti³⁺ self-doped TiO₂-graphene nanosheet composites with enhanced photocatalysis. *Sci. Rep* **5**, 8591 (2015).

Acknowledgements

The authors would like to acknowledge Dr. Muhammad Zaheer, Dr. Murtaza Saleem Mr. Zafar Iqbal and Mr. Zajif Hussain in SBA School of Science and Engineering (LUMS) for assistance in the BET, SEM, XRD, and photoluminescence experiments, respectively.

Author Contributions

S.G. designed the experiments, synthesized all the samples, did photocatalytic experiments, interpreted the results and wrote the initial manuscript with assistance from S.A. N.M. assisted in TEM and XPS studies. S.N.A. supervised the work, prepared all the figures, interpreted the results, reviewed and corrected the manuscript.

Additional Information

Supplementary information accompanies this paper at [doi:10.1038/s41598-017-00366-7](http://10.1038/s41598-017-00366-7)

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017