Ni-Carbon Mineral Sorbent - Catalyst of Sulfur Dioxide Sorption

R.M. Mansurova1*, A.K. Umbetkaliev2, N.K. Zhylybaeva1, N. Erezhep1,

K. Dosumov2, Z.A. Mansurov1

1Department of Chemical Physics, Al-Farabi Kazakh State National University,
95 Karasai Batyr Str., Almaty 480012, Kazakhstan
2D. V. Sokolsky Institute of Organic Catalysis and Electrochemistry,
142 Kunaev St., 480100 Almaty, Kazakhstan

Abstract

The morphology and structure of Ni-carbon mineral sorbent-catalysts on the basis of local mineral raw material were studied by methods of thermoprogrammed desorption and electron microscopy. The specific surface, filamentary carbon diameter sizes and sorption characteristics of sulfur dioxide adsorption were determined.

It was shown that the adsorption capacity of carbon-containing sorbents is influenced by: nature of metals of varying valence, specific surface and density of patterns. Physical and chemical sorption of sulfur dioxide was shown experimentally.

Introduction

At present the environment protection, particularly environmental air pollution prevention, is still one of the most urgent ecological problems. It is well known that the waste gases of many industrial productions and refinery plants contain such sulfur component emissions as H2S, SO2, SO3 etc., affecting not only the animals and plants, but also inducing corrosion of metal constructions and oil pipelines.

In the process of catalytic purification of sulfur oxide-containing waste gases the catalysts are poisoned by sulfur oxides [1], that results in catalyst deactivation [2-3]. The regeneration of poisoned catalysts requires extra power consumption that increases the catalyst costs. Moreover, insufficient availability and expensive costs of catalysts based on noble metals (Pt, Pd), as well as substantial costs of technology for manufacture both of carriers and catalysts prevent their large-scale applications, particularly in processes of exhaust gas purification.

The synthesized carbon-mineral sorbents, i.e., carbonized clays may be used to purify waste gas emissions of sulfur oxides, being the cheapest material that requires no substantial expenses relative to clay mining and catalyst manufacture technology costs [4-6].

The X-ray phase analysis (RPA) results prove that the natural clays contain oxides of metals showing variable valence, which being activated by carbonization, improve adsorption and catalytic process features.

The data obtained by electron microscopy and other physico-chemical investigation methods [6-7] showed that the tubular-filamentary nanosctructure carbon formed in certain carbonization conditions is promoting extension of specific surfaces and structure porosity.

This paper deals with the results of investigations of SO2 adsorption on the carbonized clay from Narinkol region of the Republic of Kazakhstan.

Experimental

The chemical analysis of Narinkol clay gave its composition by weight percentage as follows: Na2O (0.55), MgO (4.61), Al2O3 (11.51), SiO2 (47.28), P2O5 (0.11), K2O (3.16), CaO (15.14), TiO2 (0.45), MnO (0.11), Fe2O3 (4.01) and other substances (13.52).

The catalysts were prepared by clay impregnation with nickel acetate solution. The samples pre-molded in cylinders of d = 1-2 mm and d = 5-6 mm were dried at ambient temperature (12 hours) and then were
calcinated at 423 K (2 hours) and 623 K (3 hours).

The thermo-catalytic synthesis of carbon-mineral catalysts and sorbent was carried out by propane-butane mixture pyrolysis at 80 cm³/min. flow rate within 673-1073 K temperature range during 10-30 minutes. After the process was completed, the argon is fed into the reactor and cooled down to ambient temperature.

The SO₂ adsorption based on the carbonized sample was studied in the flow reactor by thermoprogrammed desorption (TPD) method within 298-773 K temperature range at 17 K/min. rate and further chromatographic analysis of desorption products. The analysis of O₂, CO₂ and SO₂ was proceeded using «Gasochrome-3101» and «LCM-8 MD» gas chromatographs.

The interactions between SO₂ and carbonized samples (0.5 g) pre-treated under vacuum at 3 × 10⁻⁵ Pa and then exposed at 673 K temperature during 2 hours, were proceeded at 423 K in He (40 cm³/min) flow 0.08-0.1 vol. % SO₂.

The electron microscopy investigations were carried out using the 120000× microscope «EM-125 K».

**Results and discussion**

The mechanism of catalytic formation of carbon deposits on pure oxides was thoroughly studied by R.Ya.Buyanov et al. [7-9]. The obtained results show that carbon is formed in fine-dispersion graphite structures having morphological patterns differing from each other in their carbide mechanism. Under certain experimental conditions the morphological structure changes and carbon deposits in the form of tubular filaments.

The obtained experimental results are summarized in Table 1. As is seen from the table, the specific surface of the clay increases from 5.21 m²/g to 9.23 m²/g with carbonization temperature (Tcarbon, K) rise from 673 K to 823 K. The further Tcarbon increase results in specific surface decrease.

The microscopy images (Fig. 1) evidence that the carbonization of clays is followed by the formation of filamentary nanostructure carbon and its diameter depends on the carbonization temperature. The diameters increase with temperature (Table 1).

Moreover, one can see from the images (Fig. 2), that the metal atoms are mainly located on the nanotube ends. This phenomenon is the most evident on the carbonized clay with deposed nickel (Fig. 3, 4), where quite numerous nanotubes with nickel deposed on their ends are observed. In case of samples with deposed cobalt and copper, the filamentary fibril carbon was not found on the electron microscopy images, evidencing the selectivity of fibril carbon formation on various metals.

| Tcarbon, K | Dcarbon, nm | Sspecific, m²/g |
|-----------|-------------|-----------------|
| Clay (non-carbonized) | - | 4.60 |
| 673 | 5-7 | 5.21 |
| 723 | 14 | 6.35 |
| 773 | 16-25 | 8.01 |
| 873 | 26-50 | 9.23 |
| 973 | 60-70 | 8.38 |
| 1073 | 80-100 | 4.00 |

**Table 1**

Effects of carbonization temperature on the specific surface of clays and filamentary carbon

Fig. 1. Clay carbonized at 873 K, d = 700 Å

Fig. 2. Clay carbonized at 873 K, d = 400 Å
According to the authors [5], the filamentary fibril carbon is a catalytic active center and, moreover, it has a particular property to remove metal from the volume up to the surface.

The electron microscopy images (Fig. 5) were obtained after SO\(_2\) adsorption at 423 K and further SO\(_2\) desorption proceeded at 298-773 K from the carbonized samples having nickel deposits (1 % weight). It is seen from these image that sulfur dioxide (loose form) is adsorbed both on the fibril carbon and on the metals bounded with fibril carbon. After thermo-desorption the surface of sorbent-catalysts samples became uneven with etched sites (Fig. 6).

According to the thermo-desorption data (Fig. 7), after SO\(_2\) adsorption proceeded at 423 K, SO\(_2\) is released in the form of two peaks from the nickel-deposited (1-5 % weight) samples carbonized at different temperatures and from non-modified clay.

The comparative analysis of TPD spectra of SO\(_2\) (Fig. 8, Table 2), after its adsorption at 423 K, from non-carbonized clay and from the clay carbonized at 723 K, showed that SO\(_2\) adsorbs more effectively (3.73 cm\(^3\)/g) on the carbonized clay than on non-carbonized (0.35 cm\(^3\)/g) one. In case of nickel-containing catalysts the SO\(_2\) adsorbs still more effec-
tively and adsorption depends on nickel content in the clay (% weight). The adsorption of sulfur dioxide increases with the increase of nickel content in the clay. The maximal amount (13.52 cm³/g) of adsorbed SO₂ falls at the clay containing 5% nickel and minimal amount (5.01 cm³/g) of adsorbed SO₂ falls at the clay containing 0.1% nickel. The similar dependence of SO₂ adsorption is observed for carbonization temperature and the higher is the carbonization temperature, the more SO₂ is adsorbed. However, at temperatures over 723 K the decreasing in total fraction of adsorbed SO₂ to 6.93 cm³/g (T_{carbon.} = 873 K) and 1.0 cm³/g (T_{carbon.} = 1073 K) is observed.

The average values of desorption activation energy were calculated and they reached 44.8 kJ/mol, i.e., physically adsorbed (low-temperature, within 298-573 K temperature range of desorption), and 84.8 kJ/mol, i.e., chemo-sorbed (high-temperature, within 573-773 K temperature range of desorption), forms of SO₂.

The filamentary carbon that we have found is a catalytic active center showing selective interactions both with deposed metals and with metals present in natural sorbents, besides it is the center of SO₂ adsorption. Moreover, the active carbon has a particular property to remove metals from the volume onto the sorbent surface being a main factor to direct involving of metals in adsorption and catalytic processes.

As appears from TPD data the substantial increase of SO₂ adsorption capacity by carbonized sorbing clay

![Fig. 8. Thermo-desorption spectra of SO₂ after its adsorption at 423 K from the catalysts carbonized at 723 K: 1 - Clay (non-carbonized); 2 - clay (carbonized); 3 - 2.5 % Co/clay; 4 - 2.5 % Cu/clay; 5 - 2.5 % Ni/clay](image)

| Catalysts          | T_{carb.} K | T_{max.} K | Desorption range, K | Amounts of desorbed SO₂ | Total amounts of desorbed SO₂, (cm³/g•cat) | E_{ads.}, SO₂, kJ/mol |
|--------------------|-------------|------------|---------------------|-------------------------|-------------------------------------------|----------------------|
| Clay (non-carbonized) | -           | 297~773   | 423                 | 0.36                    | 100                                       | 0.36                 | 54.4              |
| Clay (carbonized)   | 723         | 298~503   | 398                 | 0.60                    | 16.10                                     | 3.73                 | 48.43             |
|                     |             | 503~773   | 773                 | 3.13                    | 83.90                                     | 5.01                 | 90.23             |
| 0.1% Ni/clay        | 723         | 298~593   | 413                 | 1.01                    | 20.16                                     | 46.32                | 88.32             |
|                     |             | 593~773   | 773                 | 4.00                    | 79.84                                     | 57.38                |                   |
| 1% Ni/clay          | 723         | 298~583   | 373                 | 2.35                    | 17.56                                     | 13.38                | 44.69             |
|                     |             | 583~773   | 773                 | 11.03                   | 82.44                                     | 88.07                |                   |
| 2.5% Ni/clay        | 723         | 298~573   | 393                 | 3.10                    | 25.41                                     | 12.20                | 44.14             |
|                     |             | 573~773   | 773                 | 9.10                    | 74.59                                     | 89.75                |                   |
| 5% Ni/clay          | 723         | 298~573   | 403                 | 3.35                    | 24.78                                     | 13.52                | 44.77             |
|                     |             | 573~773   | 773                 | 10.18                   | 75.22                                     | 84.81                |                   |
| 5% Ni/clay          | 873         | 298~5835  | 393                 | 2.06                    | 29.73                                     | 6.93                 | 43.10             |
|                     |             | 83~773    | 773                 | 4.87                    | 70.27                                     | 86.90                |                   |
| 5% Ni/clay          | 1073        | 298~573   | 373                 | 0.34                    | 34.00                                     | 1.00                 | 41.30             |
|                     |             | 573~773   | 773                 | 0.66                    | 66.00                                     | 83.18                |                   |
and modified catalysts on the clay basis, is related to
the formation of active fibril carbon and its interac-
tions with SO₂. The catalysts can be arranged by
amounts of adsorbed SO₂ at T_{adsorp.} = 423 K in the
following series:

C-Ni/clay > C-Cu/clay > C-Co/clay > carbon-
ized clay > non-carbonized clay

Conclusions

Thus, the clay activation by overcarbonization
leads to increase porosity and specific surfaces of
sorbents and contribute to the procedure of physical
and chemical sorption of sulfur dioxide and that was
confirmed by the values of calculated activation
energy of sulfur dioxide sorption process.

References

1. Matyshak, V.A., Bondareva, N.K., Panchishnii,
V.I. Suppression of SO₂ poisoning effects in the
processes of NO₂ reduction and oxidation over
Platinum group support metals. Third Interna-
tional congr. on catalysis and automotive pollu-
tion control. Brussels, Belgium, April, 20-22,
1994, Vol. 2, p.251-258
2. Sultanov, M.Yu., Altshel, I.S., Makhmudova,
Z.Z. Deactivation of oxide catalysts in carbon
oxide oxidation relative to their interactions with
sulfur oxides.// Kinetics and Catalysis, 1987, Vol.
28, issue 1, p.236-239
3. Gazarov, R.A., Safonov, S.A., Plavnik, G.M.,
Moiseev, V.P., Panchishnii, V.I. Investigations of
deactivation processes over Platinum group
catalysts of exhaust gases of internal combustion
ingines // J. Appl. Chemistry, 1984, Vol. 57, №
2, p. 262-266
4. Erezhep, N., Umbetkaliev, A.K., Mansurov, Z.A
Termoprogramme desorption of sulphide dioxide
by overcarbonized Chilik clay II International
seminar. The influence for oil production and
main oil pipe-liners on the environment. Almaty,
Kazakhstan, October 12-15, 1998.
5. Mansurov, Z.A., Mansurova, R.M. Carbon
containing // Compositions Transaction an Elec-
trical Materials 2001, Vol. 2., № 2. p. 5-15.
6. Mansurova, R.M., Akhmetova, Zh.T., Ryabikin,
Yu. A., Zashkvara, O.V., Mansurov, Z.A. Study
carbons of some Fe-containing materials by a
method ESR // Phys. Chem. Journal, 2001, Vol.
75, № 10, p. 1748-1752.
7. Buyanov, R.A., Chesnokov, V.V., Afanasiev,
A.D. On the mechanism of filamentary carbon
growing on the catalysts // Kinetics and Catalysis,
1979, Vol. 20, issue 1, p.207-211
8. Buyanov, R.A., Chesnokov, V.V. Scientific prin-
ciples of preparation of carbon-mineral adsorb-
ents, carriers, catalysts and composite materials.
J. Appl. Chemistry, 1997, Vol. 70, issue 5, p.
976-986
9. Zaikovsky, V.V., Chesnokov, V.V., Buyanov, R.A.
Symmetric spiral patterns of filamentary carbon
formed from butadiene-1,3 on the N—Cu/MgO
catalyst. Regularities and mechanism of grow-
ing. Kinetics and Catalysis, 1999, Vol. 40, № 4,
p.612-616.
10. Mansurova, R.M., Abisheva, A.K., Akhmetova,
Zh.T., Mansurov, Z.A. Carbon sorbent on the
base of vegetable raw-materials // The Interna-
tional Conference on Advanced Sciences and
Technologies. Myongji University, Korea, 1998.
p.85-87.

Received 25 July 2001.