Association Between Methylenetetrahydrofolate Reductase Gene Polymorphisms and Risk of Vitiligo: A Systematic Review and Meta-Analysis

Hua-Ching CHANG1,2, Ming-Hsiu LIN1,3 and Hsiou-Hsin TSAI1,3
1Department of Dermatology, Taipei Medical University Hospital, 252, Wuxing St, Xinyi District, Taipei City, 110, 2Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, and 3Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. *E-mail: tsaihh2000@yahoo.com.tw
Accepted Feb 25, 2020; Epub ahead of print Mar 12, 2020

Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme that converts 5,10-methylenetetrahydrofolate into 5-methylenetetrahydrofolate, which provides the methyl group to convert homocysteine to methionine. Two common MTHFR gene polymorphisms, C677T (rs1801133) and A1298C (rs1801131), are associated with decreased MTHFR enzyme activity, and several studies have demonstrated the involvement of these polymorphisms in susceptibility to diseases, including autoimmune diseases (1). Vitiligo is a common cutaneous hypopigmentation disease resulting from the loss of functional melanocytes due to autoreactive CD8+ T cells or oxidative stress in genetically predisposed individuals (2). Available studies have reported inconsistent results regarding the relationship between MTHFR polymorphisms and vitiligo; therefore this study investigated this topic in a systematic review and meta-analysis.

METHODS AND RESULTS

A systematic search was performed of PubMed, Embase, Cochrane Library, and Web of Science for case-control studies published before 9 December 2019 that compared the expression of MTHFR polymorphisms in patients with vitiligo and healthy controls. The keywords were “methylenetetrahydrofolate reductase” or “MTHFR” combined with “vitiligo.” Study quality was assessed using the Newcastle-Ottawa Scale. A random effects model was employed for pooled analysis. Heterogeneity across studies was assessed using the I² statistic, and the risk of publication bias was assessed using Egger’s test. Odds ratios (ORs) and 95% confidence intervals (CIs) were utilized as summary statistics and were calculated using Comprehensive Meta-Analysis Version 3 (Biostat, Inc., Englewood, NJ, USA). A p-value <0.05 was considered statistically significant.

Table I. Basic characteristics of included studies for meta-analysis

Studies	Country	Groups	Age, years Mean ± SD/ range	C677T (n)	A1298C (n)	Significant results from original study	Quality of study*	
Yasar et al., 2012	Turkey	Case	27.77 ± 13.44	25	13	2	AC of A1298C with higher susceptibility	7
Chen et al., 2018	China	Control	25.42 ± 4.48	20	15	5	TT of C677T with lower susceptibility	8
Jadeja et al., 2018	India	Case	5–60	377	131	12	CC of A1298C with higher susceptibility	8
Benincasa et al., 2019	Italy	Case	NA	9	29	5	CT/TT of C677T with higher susceptibility	5
El Tahalwi et al., 2020	Egypt	Control	34.96 ± 13.84	71	20	9	CT/TT of C677T with higher susceptibility	8

*Newcastle-Ottawa Scale, total score: 9. SD: standard deviation; NA: not available.
C: cytosine; T: thymine; A: adenine; CC/AA: wild type homozygosity; CT/AC: heterozygosity; TT/CC: mutant homozygosity.
models (8). Pooled analysis of 5 included studies revealed no difference in the prevalence of MTHFR C677T gene polymorphisms in patients with vitiligo compared to controls, and meta-analyses of the prevalence of MTHFR A1298C gene polymorphisms also showed no significant difference between patients with vitiligo and controls. High heterogeneity across the studies was found for all analyses. No publication bias was detected in any measurement.

DISCUSSION

The interaction between genetic susceptibility and environmental factors contributes to the central pathophysiology of vitiligo. Decreased MTHFR enzyme activity in the heterozygous and homozygous MTHFR variants of C677T and A1298C is associated with hyper-homocysteinaemia and folate deficiency (1). A previous meta-analysis found significantly higher homocysteine levels, but the same serum folate levels, in patients with vitiligo compared with controls (9). Elevated homocysteine levels may trigger several events related to the pathophysiology of vitiligo, including the production of inflammatory cytokines, oxidative stress, endoplasmic reticulum stress, and neo-self-antigen formation (5). All the included studies drew different conclusions regarding the association between the MTHFR gene polymorphisms and the risk of vitiligo in the original study (Table I), and pooled analysis found no significant association between MTHFR C677T or A1298C gene polymorphisms and vitiligo susceptibility. Consistently, previous reports by genome-wide association study of vitiligo had also not identified MTHFR gene as one of the susceptible genes (10, 11). In addition to the MTHFR gene, several non-immune-related genes have been identified as risk factors for vitiligo. These genes are responsible for the development and function of melanocytes, cell growth and survival, and defence against oxidative stress. Although genetic risk is not the only determining factor for vitiligo, these candidate genes increase vitiligo susceptibility by coordinating biological networks involved in immune-mediated melanocyte destruction (12).

The limitations of this analysis include the lack of information for other MTHFR polymorphism variants and insufficient data on different ethnicities or vitiligo subtypes.

In conclusion, this meta-analysis demonstrated no significant association between MTHFR C677T or A1298C gene polymorphisms and the risk of vitiligo.

The authors have no conflicts of interest to declare.

REFERENCES

1. Toffoli G, De Mattia E. Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics 2008; 9: 1195–1206.
2. Bleuel R, Eberlein B. Therapeutic management of vitiligo. J Dtsch Dermatol Ges 2018; 16: 1309–1313.
3. Yasar A, Gunduz K, Onur E, Calkan M. Serum homocysteine, vitamin B12, folic acid levels and methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in vitiligo. Dis Markers 2012; 33: 85–89.
4. Chen JX, Shi Q, Wang XW, Guo S, Dai W, Li K, et al. Genetic polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and risk of vitiligo in Han Chinese populations: a genotype-phenotype correlation study. Br J Dermatol 2014; 170: 1092–1099.
5. Jadeja SD, Mansuri MS, Singh M, Patel H, Marfatia VS, Begum R. Association of elevated homocysteine levels and Methylene-tetrahydrofolate reductase (MTHFR) 1298 A>C polymorphism with Vitiligo susceptibility in Gujarati. J Dermatol Sci 2018; 90: 112–122.
6. Benincasa G, Di Spigna G, Cappelli C, Di Francia R, Ottaliano M, Sansone M, et al. High incidence of MTHFR, CBS, and MTRR polymorphisms in vitiligo patients. Preliminary report in a retrospective study. Eur Rev Med Pharmacol Sci 2019; 23: 471–478.
7. El Tahlawi S, Abdel Halim DM, El Hadidi H, Fawzy MM, Heegazy RA, Ezzat M, et al. Estimation of homocysteine level and methylenetetrahydrofolate reductase (MTHFR) gene and cystathionine B synthase (CBS) gene polymorphisms in vitiligo patients. Skin Pharmacol Physiol 2020; 33: 38–43.
8. Lee YH. Meta-analysis of genetic association studies. Ann Lab Med 2015; 35: 283–287.
9. Tsai TY, Kuo CY, Huang YC. Serum homocysteine, folate, and vitamin B12 levels in patients with vitiligo and their potential roles as disease activity biomarkers: a systematic review and meta-analysis. J Am Acad Dermatol 2019; 80: 646–654.e645.
10. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 2016; 48: 1418–1424.
11. Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, et al. Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front Genet 2016; 7: 3.
12. Rahman R, Hasija Y. Exploring vitiligo susceptibility and management: a brief review. Biomedical Dermatology 2018; 2: 20.

Analysis	Studies	Model	Genotype	OR (95% CI)	p	I² (%)	Decreased vitiligo risk	Increased vitiligo risk
C677T	5	Co-dominant	CT vs CC	0.868 (0.539–1.400)	0.563	82.231		
	5	Homozygous	TT vs CC	0.930 (0.415–2.082)	0.860	61.887		
	5	Dominant	TT+CC vs CC	0.880 (0.573–1.531)	0.558	79.692		
	5	Recessive	TT+CC vs CT	0.866 (0.438–1.712)	0.679	51.025		
	5	Allele	T vs C	0.914 (0.680–1.228)	0.550	71.633		
A1298C	4	Co-dominant	AC vs AA	1.042 (0.708–1.533)	0.835	74.316		
	4	Homozygous	CC vs AA	1.079 (0.598–1.946)	0.801	59.466		
	4	Dominant	CC+AC vs AA	1.029 (0.728–1.454)	0.872	71.082		
	4	Recessive	CC+AA vs AC	0.945 (0.501–1.782)	0.862	67.882		
	4	Allele	C vs A	1.008 (0.784–1.296)	0.951	68.653		