ON THE INSTABILITY OF EIGENVALUES

SYLVAIN GOL´ENIA

Abstract. This is the proceeding of a talk given in Workshop on Differential Geometry and its applications at Alexandru Ioan Cuza University Ia¸ si, Romania, September 2–4, 2009. I explain how positive commutator estimates help in the analysis of embedded eigenvalues in a geometrical setting. Then, I will discuss the disappearance of eigenvalues in the perturbation theory and its relation with the Fermi golden rule.

1. Introduction

Let $\mathbb{H} := \{(x, y) \in \mathbb{R}^2, y > 0\}$ be the Poincaré half-plane and we endow it with the metric $g := y^{-2}(dx^2 + dy^2)$. Consider the group $\Gamma := \text{PSL}_2(\mathbb{Z})$. It acts faithfully on \mathbb{H} by homographies, from the left. The interior of a fundamental domain of the quotient \mathbb{H}/Γ is given by $X := \{(x, y) \in \mathbb{H}, |x| < 1, x^2 + y^2 > 1\}$. Let $\mathcal{H} := L^2(X, y)$ be the set of L^2 integrable function acting on X, with respect to the volume element $dx dy/y^2$. Let $C_\infty^b(X)$ be the restriction to X of the smooth bounded functions acting on \mathbb{H} which are C_∞-valued and invariant under Γ. The (non-negative) Laplace operator is defined as the closure of $\Delta := -y^2(\partial_x^2 + \partial_y^2)$, on $C_\infty^b(X)$.

It is a (unbounded) self-adjoint operator on $L^2(X)$. Using Eisenstein series, for instance, one sees that its essential spectrum is given by $[1/4, \infty)$ and that it has no singularly continuous spectrum, with respect to the Lebesgue measure. It is well-known that Δ has infinitely many eigenvalues accumulating at $+\infty$ and that every eigenspace is of finite dimension. We refer to [5] for an introduction to the subject.

We consider the Schrödinger operator $H_\lambda := \Delta + \lambda V$, where V is the multiplication by a bounded, real-valued function and $\lambda \in \mathbb{R}$. We focus on an eigenvalue $k > 1/4$ of Δ and assume that the following hypothesis of Fermi golden rule holds true. Namely, there is $c_0 > 0$ so that:

\[
\lim_{\varepsilon \to 0^+} PV \overline{P} \text{Im}(H_0 - k + i\varepsilon)^{-1} \overline{P} VP \geq c_0 P,
\]

in the form sense and where $P := P_k$, the projection on the eigenspace of k, and $\overline{P} := 1 - P$. As P is of finite dimension, the limit can be taken in the weak or in the strong sense. At least formally, $\overline{P} \text{Im}(H_0 - k + i\varepsilon)^{-1} \overline{P}$ tends to the Dirac mass $\pi \delta_k(\overline{P}H_0)$. Therefore, the potential V couples the eigenspace of k and $\overline{P}H_0$ over k in a non-trivial way. This is a key assumption in the second-order perturbation theory of embedded eigenvalues, e.g., [13], and all the art is to prove that it implies there is $\lambda_0 > 0$ that H_λ has no eigenvalue in a neighborhood of k for $\lambda \in (0, |\lambda_0|)$.
In [4], one shows that generically the eigenvalues disappear under the perturbation of a potential (or of the metric) on a compact set. In this note, we are interested about the optimal decay at infinity of the perturbation given by a potential. Using the general result obtained in [3] and under a hypothesis of Fermi golden rule, one is only able to cover the assumption $VL^3 = o(1)$, as $y \to +\infty$, where L denotes the operator of multiplication by $L: (x,y) \mapsto 1 + \ln(y)$. We give the main result:

Theorem 1.1. Let $k > 1/4$ be an L^2-eigenvalue of Δ. Suppose that $VL = o(1)$, as $y \to +\infty$ and that the Fermi golden rule (1.1) holds true, then there is $\lambda_0 > 0$, so that H_λ has no eigenvalue in a neighborhood of k, for all $\lambda \in (0, |\lambda_0|)$. Moreover, if $VL^{1+\varepsilon} = o(1)$, as $y \to +\infty$ for some $\varepsilon > 0$, then H_λ has no singularly continuous spectrum.

We believe that the hypothesis $VL = o(1)$ is optimal in the scale of L. In our approach, we use the Mourre theory, see [1, 12] and establish a positive commutator estimate.

2. Idea of the proof

Standardly, for y large enough and up to some isometry U, see for instance [6, 9, 10] the Laplace operator can be written as

\begin{equation}
\tilde{\Delta} = (-\partial_r^2 + 1/4) \otimes P_0 + \tilde{\Delta}(1 \otimes P_0^+)\end{equation}

on $C_c^\infty((c, \infty), dr) \otimes C^\infty(S^1)$, for some $c > 0$ and where P_0 is the projection on constant functions and $P_0^+ := 1 - P_0$. The Friedrichs extension of the operator $\tilde{\Delta}(1 \otimes P_0^+)$ has compact resolvent.

Then, as in [9, 10], we construct a conjugate operator. One chooses $\Phi \in C_c^\infty(\mathbb{R})$ with $\Phi(x) = x$ on $[-1, 1]$, and sets $\Phi_T(x) := \Upsilon \Phi(x/\Upsilon)$, for $\Upsilon \geq 1$. Let $\tilde{\chi}$ be a smooth cut-off function being 1 for r big enough and 0 for r being close to c. We define on $C_c^\infty((c, \infty) \times S^1)$ a micro-localized version of the generator of dilations:

\begin{equation}
S_{\Upsilon, 0} := \tilde{\chi} \left((\Phi_T(-i\partial_r)r + r\Phi_T(-i\partial_r)) \otimes P_0 \right) \tilde{\chi}.
\end{equation}

The operator $\Phi_T(-i\partial_r)$ is defined on the real line by $\mathcal{F}^{-1}\Phi_T(\cdot)\mathcal{F}$, where \mathcal{F} is the unitary Fourier transform. We also denote its closure by $S_{\Upsilon, 0}$ and it is self-adjoint. In [6] for instance, one does not use a micro-localization and one is not able to deal with really singular perturbation of the metric as in [9, 10].

Now, one obtains

\begin{equation}
[\partial_r^2, \tilde{\chi}(\Phi_T r + r\Phi_T)\tilde{\chi}] = 4\tilde{\chi}\partial_r \Phi_T \tilde{\chi} + \text{remainder}.
\end{equation}

Using a cut-off function $\tilde{\mu}$ being 1 on the cusp and 0 for $y \leq 2$, we set

\begin{equation}
S_\Upsilon := U^{-1}S_{\Upsilon, 0}U \tilde{\mu}
\end{equation}

This is self-adjoint in $L^2(X)$. Now by taking Υ big enough, one can show, as in [9, 10] that given an interval \mathcal{J} around k, there exist $\varepsilon_\Upsilon > 0$ and a compact operator K_Υ such that the inequality

\begin{equation}
E_{\mathcal{J}}(\Delta)[\Delta, iS_\Upsilon]E_{\mathcal{J}}(\Delta) \geq \left(4 \inf(\mathcal{J}) - \varepsilon_\Upsilon \right) E_{\mathcal{J}}(\Delta) + E_{\mathcal{J}}(\Delta) K_\Upsilon E_{\mathcal{J}}(\Delta)
\end{equation}
ON THE INSTABILITY OF EIGENVALUES

holds in the sense of forms, and such that \(\varepsilon \Upsilon \) tends to 0 as \(\Upsilon \) goes to infinity. Here, \(E_J(\cdot) \) denotes the spectral measure above the interval \(J \).

Now, we apply \(\overline{P} \) to the left and right of (2.5). Easily one has \(\overline{P} E_J(\Delta) = \overline{P} E_J(\Delta \overline{P}) \).

We get:

\[
\overline{P} E_J(\Delta) \left[\overline{P} \Delta, i \overline{P} S_\Upsilon \overline{P} \right] E_J(\overline{P} \Delta \overline{P}) \geq (4 \inf_{J} \varepsilon \Upsilon - \varepsilon \Upsilon \Upsilon) \overline{P} E_J(\Delta \overline{P}) \overline{P} + \overline{P} E_J(\Delta) K \Upsilon E_J(\overline{P} \Delta \overline{P}) \overline{P}
\]

One can show that \(\overline{P} S_\Upsilon \overline{P} \) is self-adjoint in \(\overline{P} L^2(X) \) and that \(\left[\overline{P} \Delta, \overline{P} S_\Upsilon \overline{P} \right] \) extends to a bounded operator.

We now shrink the size of the interval \(J \). As \(\overline{P} \Delta \) has no eigenvalue in \(J \), then the operator \(\overline{P} E_J(\Delta) K \Upsilon E_J(\overline{P} \Delta \overline{P}) \overline{P} \) tends to 0 in norm. Therefore, by shrinking enough, one obtains a smaller interval \(J \) containing \(k \) and a constant \(c > 0 \) so that

\[
(2.6) \quad \overline{P} E_J(\Delta) \left[\overline{P} \Delta, i \overline{P} S_\Upsilon \overline{P} \right] E_J(\overline{P} \Delta \overline{P}) \geq c \overline{P} E_J(\Delta \overline{P}) \overline{P}
\]

holds true in the form sense on \(\overline{P} L^2(X) \). At least formally, the positivity on \(\overline{P} L^2(X) \) of the commutator \(\left[H_\lambda, i \overline{P} S_\Upsilon \overline{P} \right] \), up to some spectral measure and to some small \(\lambda \), should be a general fact and should not rely on the Fermi golden rule hypothesis.

We now try to extract some positivity on \(\overline{P} L^2(X) \). First, we set

\[
R_\varepsilon := \left((H_0 - k)^2 + \varepsilon^2 \right)^{-1/2}, \quad R_\varepsilon \overline{P} \text{ and } F_\varepsilon := \overline{R}_\varepsilon^2.
\]

Note that \(\varepsilon R_\varepsilon^2 = \text{Im} (H_0 - k + i\varepsilon)^{-1} \) and that \(R_\varepsilon \) commutes with \(P \). Using (1.1), we get:

\[
(2.7) \quad (c_1/\varepsilon) P \geq \overline{P} V \overline{P} F_\varepsilon \overline{P} V \overline{P} \geq (c_2/\varepsilon) P,
\]

for \(\varepsilon_0 > \varepsilon > 0 \).

We follow an idea of [2], which was successfully used in [8, 11] and set

\[
B_\varepsilon := \text{Im}(\overline{R}_\varepsilon^2 V \overline{P}).
\]

It is a finite rank operator. Observe now that we gain some positivity as soon as \(\lambda \neq 0 \):

\[
(2.8) \quad P[H_\lambda, i \lambda B_\varepsilon] P = \lambda^2 P V F_\varepsilon V P \geq (c_2 \lambda^2/\varepsilon) P.
\]

It is therefore natural to modify the conjugate operator \(S_\Upsilon \) to obtain some positivity on \(\overline{P} L^2(X) \). We set

\[
(2.9) \quad \hat{S}_\Upsilon := \overline{P} S_\Upsilon \overline{P} + \lambda \theta B_\varepsilon.
\]

It is self-adjoint on \(D(S_\Upsilon) \) and is diagonal with respect to the decomposition \(\overline{P} L^2(X) \oplus \overline{P} L^2(X) \).

Here \(\theta > 0 \) is a technical parameter. We choose \(\varepsilon \) and \(\theta \), depending on \(\lambda \), so that \(\lambda = o(\varepsilon) \), \(\varepsilon = o(\theta) \) and \(\theta = o(1) \) as \(\lambda \) tends to 0. We summarize this into:

\[
(2.10) \quad |\lambda| \ll \varepsilon \ll \theta \ll 1, \text{ as } \lambda \text{ tends to 0}.
\]
With respect to the decomposition $\overline{PE}_\mathcal{J}(\Delta) \oplus PE_\mathcal{J}(\Delta)$, as λ goes to 0, we have
\[
E_\mathcal{J}(\Delta) \left[\lambda V, i\mathcal{P}S_\mathcal{T}\mathcal{P} \right] E_\mathcal{J}(\Delta) = \begin{pmatrix} O(\lambda) & O(\lambda) \\ O(\lambda) & 0 \end{pmatrix},
\]
\[
E_\mathcal{J}(\Delta)[\lambda, i\lambda \theta B_x]E_\mathcal{J}(\Delta) = \begin{pmatrix} 0 & O(\lambda \theta_{\varepsilon}^{-1/2}) \\ O(\lambda \theta_{\varepsilon}^{-1/2}) & 0 \end{pmatrix},
\]
and
\[
E_\mathcal{J}(\Delta)[\lambda V, i\lambda \theta B_x]E_\mathcal{J}(\Delta) = \begin{pmatrix} O(\lambda^2 \theta_{\varepsilon}^{-3/2}) & O(\lambda^2 \theta_{\varepsilon}^{-3/2}) \\ O(\lambda^2 \theta_{\varepsilon}^{-3/2}) & \lambda^2 \theta F_{\varepsilon} \end{pmatrix}.
\]

Now comes the delicate point. Under the condition (2.11) and by choosing \mathcal{I}, slightly smaller than \mathcal{J}, we use the previous estimates and a Schur Lemma to deduce:
\[
E_\mathcal{I}(H_\lambda)[H_\lambda, i\hat{S}_\mathcal{T}]E_\mathcal{I}(H_\lambda) \geq \frac{c\lambda^2 \theta}{\varepsilon} E_\mathcal{I}(H_\lambda),
\]
for some positive c and as λ tends to 0.

We mention that only the decay of $V L$ is used to establish the last estimate. In fact, one uses that $[V, i\hat{S}_\mathcal{T}](\Delta + 1)^{-1}$ is a compact operator. Now it is a standard use of the Mourre theory to deduce Theorem 1.1 and refer to [1], see [9, 10] for some similar application of the theory. For the absence of eigenvalue, one relies on the fact that given an eigenfunction f of H_λ w.r.t. an eigenvalue $\kappa \in \mathcal{I}$, one has:
\[
\langle f, [H_\lambda - \kappa, i\hat{S}_\mathcal{T}]f \rangle = 0.
\]
Then, one applies f on the right and on the left of (2.12) and infers that $f = 0$ thanks to the fact that the constant $c\lambda^2 \theta$ is non-zero.

In [9, 10], we prove that the C_0-group $(e^{i\hat{S}_\mathcal{T}}t)_{t \in \mathbb{R}}$ stabilizes the domain $\mathcal{D}(H_\lambda) = \mathcal{D}(\Delta)$. By perturbation, we prove that this is also the case for $(e^{i\hat{S}_\mathcal{T}}t)_{t \in \mathbb{R}}$. Thanks to this property, we can expand the commutator of (2.13) in a legal way. This is known as the Virial theorem in the Mourre Theory, see [1, 12].

References

[1] W. Amrein, A. Boutet de Monvel and V. Georgescu, *C₀-Groups, commutator methods and spectral theory of N-body Hamiltonians*, Birkhäuser, Basel-Boston-Berlin, 1996.

[2] V. Bach, J. Fröhlich, I.M. Sigal and A. Soffer: *Positive commutators and Spectrum of Pauli-Fierz Hamiltonian of Atoms and Molecules*, Commun. Math. Phys. 207 (3), 1999, 557–587.

[3] L. Cattaneo, G.M. Graf, and W. Hunziker *A general resonance theory based on Mourre’s inequality* Ann. Henri Poincaré 7, No. 3, 583–601 (2006).

[4] Y. Colin de Verdière, *Pseudo-laplaciens II*, Ann. Inst. Fourier 33, No.2, 87–113 (1983).

[5] J. Fischer, *An approach to the Selberg trace formula via the Selberg zeta-function*, Lecture Notes in Mathematics, 1253. Springer-Verlag, Berlin, 1987.

[6] R. Froese and P. D. Hislop, Spectral analysis of second-order elliptic operators on noncompact manifolds, Duke Math. J. 58 (1989), No. 1, 103-129.

[7] V. Georgescu and S. Golénia, Decay Preserving Operators and stability of the essential spectrum, J. Oper. Theory. 59 (2008), no. 1, 115–155.

[8] S. Golénia: *Positive commutators, Fermi golden rule and the spectrum of the zero temperature Pauli-Fierz hamiltonians*. J. of Funct. Anal., Vol. 256, Issue 8, April 2009, 2587-2620.
[9] S. Golénia and S. Moroianu, *Spectral analysis of magnetic Laplacians on conformally cusp manifolds*, Ann. H. Poincaré 9 (2008), 131–179.

[10] S. Golénia and S. Moroianu, *The spectrum of Schrödinger operators and Hodge Laplacians on conformally cusp manifolds*. To appear in Trans. A.M.S.

[11] M. Merlki, *Positive Commutators in Non-Equilibrium Statistical Mechanics*, Comm. Math. Phys. 223, 327–362 (2001).

[12] E. Mourre, *Absence of singular continuous spectrum for certain self-adjoint operators*, Comm. Math. Phys. 91 (1981) 391–408.

[13] M. Reed and B. Simon, *Methods of modern mathematical physics I-IV: Fourier analysis, self-adjointness*, Academic Press, New York – San Francisco – London, 1975.

 Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351, cours de la Libra- tion, 33405 Talence cedex, France

E-mail address: sylvain.golenia@u-bordeaux1.fr