The dark side of ambition: side-effects of China's climate policy

Hongzhang Xu1,2,3, Aaron Tang1,3 and Jamie Pittock1,3

1 Fenner School of Environment and Society, Building 141, 48 Linnaeus Way, The Australian National University, Acton, ACT, 2600, Australia
2 Australian Centre on China in the World, Building 188, Fellows Lane, The Australian National University, Canberra, ACT, 2600, Australia
3 ANU Institute for Climate, Energy & Disaster Solutions, Fenner School of Society & Environment, Building 141, Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia

Keywords: China, climate change, COVID-19, energy, intersectional analysis, just transition, net zero emissions

Abstract

China’s latest commitments to the Paris Agreement have attracted great attention. Scholars have questioned the feasibility of China’s pledges to peak emissions before 2030 and achieve carbon neutrality by 2060. To achieve these goals, China has resorted to extreme emissions reduction actions. However, side-effects of China’s climate ambition have been largely overlooked. An intersectional and just transitions perspective is critical to examine limits and trade-offs for broad societal goals. This paper outlines five policy approaches that can help limit adverse side-effects and unlock broader social benefits.

1. China’s climate contradiction

China’s climate change policy leadership ambition is growing. In 2015, under its first nationally determined contribution (NDC), China committed to peak CO₂ emissions by 2030. After committing to achieve carbon neutrality by 2060, China has strengthened existing climate targets and announced new climate targets at the 2020 Climate Ambition Summit, namely by 2030 to: (a) lower by more than 65% CO₂ emissions per unit of gross domestic production, (b) increase the share of non-fossil fuels in primary energy consumption to 25%, and (c) expand forest stock by 6 billion cubic meters compared to 2005.[1, 2]. China has stated that its installed capacity of solar and wind power will be over 12 billion kilowatts by 2030.[1,2] Chinese renewable energy generation, capacity, and investment have increased. Because of ongoing emissions-intensive activity, China has resorted to extreme emissions reduction policies to meet ambitious climate targets.

However, China’s carbon-intensive activities contradict its climate change mitigation ambition.[5, 6] China is still heavily reliant on fossil fuels, accounting for 88% of total energy consumption in 2014.[7] and 84.7% of primary energy consumption in 2019.[8] China’s coal consumption contributed to 52% of global CO₂ emissions from coal combustion in 2015.[9]. Moreover, China’s response to COVID-19 has increased investment in emissions-intensive industries, not less.[10, 11] Another 100 GW of coal-fired plants are currently under construction.[5]. Because of ongoing emissions-intensive activity, China has resorted to extreme emissions reduction policies to meet ambitious climate targets.
2. Side-effects of China’s climate governance

However, many of China’s extreme climate actions come with side-effects—they are actively detrimental to other environmental and social goals (table 1) despite being effective instruments of emissions reduction. These actions have already threatened many species and will put more pressure on fragile ecosystems in many regions. Many actions also bring high social costs. These risks are especially worrisome without careful holistic planning and policy. For example, some actions may trigger power outages and restrictions [12], increase unemployment (e.g. employment in coal industries can decline by 75% [13]), compromise the interests of extractive communities [14], and negatively impact regional development, especially northeastern China [12].

China’s low-carbon transition needs to be assessed from a just transition lens to examine its benefits, limits, and potential conflicts [15]. Just transitions are not just a matter of ensuring justice for those embedded in fossil-based industries of the past. Justice for actors within the transition, for example, those related to new renewable industries, are just as important [16], but have been overlooked.

3. Achieving just transition needs with intersectional climate policy

Creating and assessing climate policy with single overriding metrics, such as emissions-intensive investment or renewable energy industries, overlooks critical social outcomes and compromises just transitions. Focus on single overriding metrics may misrepresent China’s policy process [58]. For
Forced resettlement that reduces quality of life, with Carbon sequestration and capture need to offset the

Involuntary resettlement of diverse and dispersed Noise and flicker generated by turbines (particularly Large wind farms can affect local weather and climate

Most resettlers endure land loss, unemployment, Rare earth mining, high water usage, dust emissions Some local residents say they are negatively impacted, Solar expansion has resulted in land loss via illegal occu-

Loss of aquatic biodiversity, fragmentation of habit-

Excessive hydropower construction that leads to oversupply and curtailment [17, 18]. (a) Excessive hydropower construction that leads to oversupply and curtailment [17, 18].

(b) Loss of aquatic biodiversity, fragmentation of habitats and impacts on downstream floodplains, wetlands, estuarine, adjacent marine ecosystems [17, 19], and fisheries [20–22].

(c) Forced resettlement that reduces quality of life, with one-third of those resettled living in severe poverty [23, 24].

(a) Carbon sequestration and capture need to offset the carbon emitted by fossil fuels constituting 7%–35% of total energy generation by 2050.

(b) Involuntary resettlement of diverse and dispersed rural communities to homogenized living in collective settlements such as apartments [26–28].

(c) Most resettlers endure land loss, unemployment, insecure food systems, higher living costs, and debt [29–33]. These economic conditions drive some local residents to exploit (and damage) land, water, fish, and other natural resources [19, 34–36].

Emission reduction quotas have been distributed unevenly and unfairly to provinces and cities [37]. Many cities, like Beijing, Suzhou, and Guangzhou, have been listed as 'pioneer cities' that aim to peak their carbon emissions by 2020 [38, 39]. All these cities experienced electricity outrages and coal-fired power plants shutdown in December 2020, and more recently in September 2021 [12, 40]. Many people working in office buildings have to use the stairs to reach offices on the 20th floor. Some office managers can only turn on air conditioners and heaters if the room temperature is less than 3 °C [40].

Exacerbation of water scarcity due to reduced river inflows and groundwater recharge [41]. In the Loess Plateau, many introduced trees are not native, transpire more water, and arid areas increased by 1.6 million square kilometers since 1980 [42]. Downstream communities have suffered exacerbated water shortages, as well as increased production costs and risks caused by water shortage [34].

(a) Rare earth mining, high water usage, dust emissions caused by vegetation removal [43], exposure to hazardous chemicals and habitat fragmentation [44].

(b) Solar expansion has resulted in land loss via illegal occupation of farmland [45], increased local corruption due to a lack of independent 30-party oversight, and accelerated land disputes by excluding local communities in decision-making [46–48].

(a) Some local residents say they are negatively impacted, including sleep disturbance and psychological distress, by noise from wind turbines [49] and find the windmills aesthetically displeasing [50].

(b) Noise and flicker generated by turbines (particularly poorly sited turbines) are dangerous to wildlife such as bats and birds from poorly sited turbines. Roughly 234,000 birds are killed annually from wind turbines in the USA alone [51]. Offshore wind plants may also negatively affect marine fauna [49].

(c) Large wind farms can affect local weather and climate [49], including an elevation of the bushfire risks caused by turbine malfunction, such as the operation of the wind farm near Palm Springs in Southern California [51, 52].

(Continued.)

Table 1. China's climate policies, their contribution to Paris Agreement NDC, and side-effects.

Policy	Contribution to Paris Agreement NDC [1, 2]	Perverse outcomes
Hydropower expansion	By 2030, lower than 65% CO₂ emission per unit of gross domestic production (GDP), and increase the share of non-fossil fuels in primary energy consumption to 25%.	(a) Excessive hydropower construction that leads to oversupply and curtailment [17, 18].
(b) Loss of aquatic biodiversity, fragmentation of habitats and impacts on downstream floodplains, wetlands, estuarine, adjacent marine ecosystems [17, 19], and fisheries [20–22].		
(c) Forced resettlement that reduces quality of life, with one-third of those resettled living in severe poverty [23, 24].		
Ecological migration enables carbon sequestration through afforestation	Increase the share of forest stock volume by 6 billion cubic meters, compared to 2005. (b) Involuntary resettlement of diverse and dispersed rural communities to homogenized living in collective settlements such as apartments [26–28].	
Carbon dioxide quotas	By 2030, lower than 65% CO₂ emission per unit of gross domestic production (GDP), and increase the share of non-fossil fuels in primary energy consumption to 25%. (c) Most resettlers endure land loss, unemployment, insecure food systems, higher living costs, and debt [29–33]. These economic conditions drive some local residents to exploit (and damage) land, water, fish, and other natural resources [19, 34–36].	
Desert afforestation	Increase the share of forest stock by 6 billion cubic meters, compared with 2005.	Exacerbation of water scarcity due to reduced river inflows and groundwater recharge [41]. In the Loess Plateau, many introduced trees are not native, transpire more water, and arid areas increased by 1.6 million square kilometers since 1980 [42]. Downstream communities have suffered exacerbated water shortages, as well as increased production costs and risks caused by water shortage [34].
Solar expansion	The installed capacity of solar and wind power will be over 12 billion kilowatts by 2030. (a) Rare earth mining, high water usage, dust emissions caused by vegetation removal [43], exposure to hazardous chemicals and habitat fragmentation [44].	
Wind expansion	The installed capacity of solar and wind power will be over 12 billion kilowatts by 2030. (b) Solar expansion has resulted in land loss via illegal occupation of farmland [45], increased local corruption due to a lack of independent 30-party oversight, and accelerated land disputes by excluding local communities in decision-making [46–48].	
(c) Large wind farms can affect local weather and climate [49], including an elevation of the bushfire risks caused by turbine malfunction, such as the operation of the wind farm near Palm Springs in Southern California [51, 52]. |
example, increased investment in concrete and steel after COVID-19 [10] may not mean China’s low-carbon transition is compromised. This could instead represent acceleration. Concrete and steel can be used in the construction of hydropower dams, wind turbines, solar farms and supporting infrastructure, such as roads and bridges [17].

Intersectional climate policy analysis, highlighting dimensions of social costs and social justice, is needed to accurately capture the outcomes and impacts of China’s climate actions. The trade-offs, risks and benefits must be considered explicitly, both in external policy analysis and internal policy decisions. In particular, understanding political motives [59] may be needed to judge China’s climate mitigation performance, especially by looking at how its power affects domestic and global communities [60].

4. Motives behind ambition: projecting soft power in global governance

Side-effects of climate mitigation actions have been often downplayed or ignored due to the focus on reducing carbon emissions [61–63]. Even less impactful climate actions have had high social costs, especially on indigenous communities’ livelihoods and culture [61, 62]. Why does China still promote such actions despite past experiences and current problems (table 1) [12, 64]? Cross-scale intersectional climate policy analysis can help to identify some hints on China’s climate choice by connecting China’s climate performance to its larger-scale political ambitions, such as geopolitical influences [65].

China’s climate mitigation choices are primarily a matter of political and industrial strategy, not altruistic climate mitigation [12, 66, 67]. China’s climate leadership is driven by the aspirations of positive international influence as a ‘responsible’ country. International cooperation on climate governance is increasingly important for global governance [68]. China, as the world’s largest emitter of CO₂, aims to project more soft power through its leading commitment to climate change, especially by comparing with some ‘slow’ Western countries, such as Australia [69, 70]. Climate mitigation has been prioritized in its development and diplomacy strategies [71–73], even sometimes given priority over the COVID-19 vaccine [74]. China’s spokesperson Hua Chunying has emphasized that climate cooperation between US and China is a critical political priority [74].

China’s climate ambition is not only affecting domestic citizens’ livelihoods and interests [14, 17, 31], but also communities in other countries [75, 76]. Although 80% of China’s overseas energy investment are in fossil fuels as of 2018, it faces increased global pressure to close fossil fuel facilities, as well as respond to public pressure when locals feel they do not benefit enough or encounter environmental issues triggered by these Chinese investment projects [77, 78]. Consequently, China’s policies increasingly encourage environmentally and socially responsible overseas energy investment [78, 79]. For example, Chinese Belt and Road investments in renewable energy infrastructure in developing countries will be over 1 trillion US dollars (USD) by 2030 [80, 81]. Chinese entities invested over USD 216 billion in overseas power plants from 2000 to 2017. USD 40.5 B is directly invested in renewable electric power, including hydropower (USD 23.1 B), nuclear (USD 6.7 B), solar (USD 5.5 B), and wind (USD 5.2 B) [81]. Moreover, in the first half of 2021, there were no Belt and Road investments into coal for the first time, despite plans to restrict coal investments from 2013 [82].

These overseas investments align with the Paris Agreement but still have high impacts on local communities. For example, China’s hydropower expansion on the upper Mekong River and investment in dams in the lower Mekong basin has negatively impacted downstream ecosystem and community livelihoods [83–85]. Despite committing to no new funding for coal fired power stations in September

Table 1. (Continued.)

Policy	Contribution to Paris Agreement NDC [1, 2]	Perverse outcomes
Nuclear expansion	By 2030, lower more than 65% CO₂ emission per unit of gross domestic production (GDP), and increase the share of non-fossil fuels in primary energy consumption to 25%.	China’s nuclear power generating capacity increased 29 GW (capacity in 2019 is 2.7 times higher than 2010) in the past ten years. China motivated to deploy nuclear power due to increasing electricity demand and environmental concerns [53]. Furthermore, the scalability of solar and wind power, i.e. 34%–73% of total energy generation by 2050, in China depending largely on the expansion of nuclear power [54]. However, severe accidents and waste treatment are large risks [55, 56]. As nuclear technologies are a mixture from many countries, making consistent safety standards is hard to achieve [53]. The possible leak from the Taishan Nuclear Power Plant in Guangdong Province in June 2021 is a good example [57].
2021 [86]. China’s green Belt and Road investments have also been characterized as ‘greenwashing’ [87], especially in lower-income countries and regions. Low-carbon investments were mostly concentrated in higher-income countries and regions while lower-income countries and regions have not benefitted from a shift away from traditional infrastructure projects [87], negative impacts (e.g. pollution and neocolonialism), and risks for local communities [88]. China’s other green investments are also critical instruments of diplomacy and influence on host countries’ local governance [76, 80, 89], representing China’s green mercantilism that aims to build coalition on climate change and sustainable development policies [90], and lead the world to green and zero-carbon futures [91].

In summary, China projects soft power and cultivates an image of a responsible international citizen by actively participating in international climate institutions. However, such participation triggers new impacts on host communities that are mostly overlooked.

5. Policy implications

While China’s climate policies have a number of side-effects, they are not necessarily undesirable. Moreover, China’s ‘forward-looking’ climate actions can provide lessons for others on managing adverse side-effects and trade-offs of climate actions. All climate actions we discussed previously are effective instruments of emissions reduction, and are therefore worthwhile supporting if negative impacts are reduced.

Adverse side-effects do not have to be a consequence of emissions reduction [6]. Policy amendments can reduce adverse outcomes and unlock positive social impacts [92]. Ensuring positive social outcomes can reduce social resistance, aid scalability and long-term policy resilience, and are an opportunity to demonstrate climate leadership [93]. Not doing so risks repeating the mistakes and inequality that has hindered climate policy in the past [61, 62]. To achieve a just transition, we outline five policy approaches that should be integrated into current and future decision-making, especially for countries and regions that take big and rapid steps towards climate change mitigation.

Approach 1: Explore more bottom-up policy, finance, and decision-making approaches, like community microgrids that are reviving some Chinese rural areas [94], that can complement top-down interventions [95]. Strategies and policies should be consistent with local circumstances, meet local development objectives and needs, and adapt to local political priorities [96].

Approach 2: Restrict local malpractice in climate governance by ensuring accountability [97] and invest in engagement and integration of a wide range of community-level stakeholders to identify just and adaptive pathways [98].

Approach 3: Invest in robust and transparent assessment, monitoring and evaluation of environmental and social impacts of proposed emissions reduction policies [12, 98].

Approach 4: Provide retraining or adequate compensation packages and ongoing supports, such as redistributing profits from green projects, for people who are negatively impacted by emissions reduction policy [99].

Approach 5: Involve more international organizations in climate governance [100] and respect host communities’ rights and views on investments [80].

These approaches should not be considered nor implemented in isolation. For example, bottom-up engagement (Approaches 1 and 2) can help inform effective implementation of retraining or compensation for impacted peoples (Approach 4). Similarly, involving international participants (Approach 5) can contribute to better engage local communities (Approach 2) and provide more robust assessment of prospective impacts.

6. Conclusion

Policy driven by a single overriding metric, in this case, emissions reductions, generates adverse side-effects. Policymakers and analysts must look beyond emissions reductions to identify solutions that generate multiple benefits. Understanding, and addressing adverse side-effects of well-intentioned policy is critical to just, low-carbon transitions and sustainable development. Unacceptable social trade-offs plagued the implementation of the Kyoto Protocol [61] and persist today [101]. In order to ensure the success of the Paris Agreement and current climate policy, processes should be adopted to maximize benefits, minimize costs, identify potential conflicts, and understand the trade-offs of climate policies. Actions now can determine whether history will see ‘The Chinese Century’ [73] as an achievement of modern civilization, or a monument to inequality.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We thank the two anonymous reviewers, whose critical and constructive feedback helped to improve and refine this work.
Funding

This work was supported by the Fenner School of Environment and Society at the Australian National University under Grant No. 5998099, as well as China Scholarship Council (CSC) under Grant No. 201808190012.

Conflicts of interest

The authors declare no conflict of interest.

ORCID iD

Hongzhang Xu https://orcid.org/0000-0001-8904-2976

References

[1] United Nations, United Kingdom, and France 2020 Climate Ambition Summit 2020 (https://www.climateambitionsummit2020.org/index.php) (Accessed 26 March 2021)
[2] National Development Reform Commission 2015 Enhanced actions on climate change: China's intended nationally determined contributions (available at: www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%27s%First%20NDC%20Submission.pdf) (Accessed 29 January 2021)
[3] US Department of State 2021 Leaders Summit on Climate: Day 1 (Washington, DC: US Department of State)
[4] National Bureau of Statistics 2021 National Accounts http://data.stats.gov.cn/easyquery.htm?cn=C01 (Accessed 23 September 2021)
[5] Normile D 2020 China’s bold climate pledge earns praise—but is it feasible! Science 370 17
[6] Zhang H, Zhang X and Yuan J 2020 Transition of China’s power sector consistent with Paris Agreement into 2050: pathways and challenges Renew. Sustain. Energy Rev. 132 110102
[7] The World Bank 2020 IEA Statistics © OECD/IEA 2014 The World Bank (https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS?locations=CN&most_recent_year_desc=false) (Accessed 23 October 2021)
[8] State Council 2020 Non-fossil Fuels Energy Constituting for over 15% of China’s Primary Energy Consumption (Beijing: The State Council of the People’s Republic of China)
[9] Qiao H, Chen S, Dong X and Dong K 2019 Has China’s coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity Energy Econ. 84 104509
[10] Gosens J and Jotzo F 2020 China’s post-COVID-19 stimulus: no green new deal in sight Environ. Innov. Soc. Trans. 36 250–4
[11] O’Callaghan B J and Murdock E 2021 Are We Building Back Better? Evidence from 2020 and Pathways to Inclusive Green Recovery Spending (Geneva: United Nations Environment Programme & University of Oxford) (https://doi.org/https://wedsdocs.unep.net/bitstream/handle/20.500.11822/35281/AWBBB.pdf)
[12] Peng M, Xu H, Qu C, Xu J, Chen L, Duan L and Hao J 2021 Understanding China’s largest sustainability experiment: atmospheric and climate governance in the Yangtze River Economic Belt as a lens J. Clean. Prod. 290 125760
[13] Huang H, Roland-Holst D, Springer C, Lin J, Cai W and Wang C 2019 Emissions trading systems and social equity: a CGE assessment for China Appl. Energy 235 1254–65
[14] Lo K 2020 Ecological civilization, authoritarian environmentalism, and the eco-politics of extractive governance in China Extractive Industr. Soc. 7 1029–35
[15] Eckersley R 2020 Greening states and societies: from transitions to great transformations Environ. Politics 30 245–65
[16] Giplet D and Harrison J J 2020 Transition tensions: mapping conflicts in movements for a just and sustainable transition Environ. Politics 29 435–56
[17] Xu H and Pittock J 2020 Policy changes in dam construction and biodiversity conservation in the yangtze river basin, China Mar. Freshw. Res. 72 228–43
[18] Liu B, Liao S, Cheng C, Chen F and Li W 2018 Hydropower curtailment in Yunnan Province, southwestern China: constraint analysis and suggestions Renew. Energy 121 790–11
[19] Xu H and Pittock J 2019 Limiting the effects of hydropower dams on freshwater biodiversity: options on the Lancang River, China Mar. Freshw. Res. 70 169–94
[20] Yoshida Y, Lee H S, Trung B H, Tran H-D, Lall M K, Kakar K and Yuan T D 2020 Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong Basin Sustainability 12 2408
[21] Zhang H et al 2020 Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management Fish Fish. 21 601–20
[22] Campbell I and Bartow C 2020 Hydropower development and the loss of fisheries in the Mekong River Basin Front. Environ. Sci. 8 566509
[23] Wilsen B and Rogers S 2019 Planned resettlement to avoid climatic hazards: What prospects for just outcomes in China? Asia Pac. Viewp. 60 116–31
[24] Zhang F, Pang M, Bahaj A S, Yang Y and Wang C 2021 Small hydropower development in China: growing challenges and transition strategy Renew. Sustain. Energy Rev. 137 110653
[25] UN Climate Change 2018 China Meets 2020 Carbon Target Three Years Ahead of Schedule (available at: https://unfccc.int/news/china-meets-2020-carbon-target-three-years-ahead-of-schedule) (Accessed 14 July 2020)
[26] Lei Y, Finlayson C, Thwaites R, Shi G and Cai L 2017 Using government resettlement projects as a sustainable adaptation strategy for climate change sustainability 9 1373
[27] Wang Z, Song K and Hu L 2010 China’s largest scale ecological migration in the three-river headwater region Ambio 39 443–6
[28] Wilsen B and Rogers S 2019 Planned resettlement to avoid climatic hazards: what prospects for just outcomes in China? Asia Pac. Viewp. 60 116–31
[29] Rogers S and Xue T 2015 Resettlement and climate change vulnerability; evidence from rural China Glob. Environ. Change 35 62–69
[30] Rogers S, Li J, Li K, Guo H and Li C 2020 China’s rapidly evolving practice of poverty resettlement: moving millions to eliminate poverty Dev. Policy Rev. 38 541–54
[31] Xu H, Peng M, Pittock J and Xu J 2021 Managing rather than avoiding ‘difficulties’ in building landscape resilience Sustainability 13 2629
[32] Hu Y, Zhou W and Yuan T 2018 Environmental impact assessment of ecological migration in China: a survey of immigrant resettlement regions J. Zhejiang Univ.-Sci. A (Applied Physics & Engineering) 19 240–54
[33] Guo S, Liu G, Zhang Q, Zhao F and Ding G 2020 Improvement in the poverty status of ecological migrants under the urban resettlement model: an empirical study in China Sustainability 12 2084
[34] Fan M, Li Y and Li W 2015 Solving one problem by creating a bigger one: the consequences of ecological resettlement for grassland restoration and poverty alleviation in Northwestern China Land Use Policy 42 124–30
[35] Du F 2012 Ecological resettlement of Tibetan herders in the Sanjiangyuan: a case study in Madoi County of Qinghai Nomad. People 16 116–33
[36] Zhang Q 2012 The dilemma of conserving rangeland by means of development: exploring ecological resettlement in a pastoral township of Inner Mongolia Nomad. People 16 88–115
[37] Zhou H, Peng W, Wang Y, Wang Y and Liu K 2021 China's initial allocation of inter-provincial carbon emission rights considering historical carbon transfers: program design and efficiency evaluation Ecol. Indic. 121 106918
[38] NCSC 2017 Report of the Implementation Conditions on Local Greenhouse Gases Control (Beijing: National Center for Climate Change Strategy and International Cooperation (NCSC))
[39] NCSC 2018 Report on Pushing Carbon Peak in Some Regions of China (Beijing: National Center for Climate Change Strategy and International Cooperation (NCSC))
[40] Xinhuante 2020 Limiting Electricity? Insecure Electricity Supply? ed N Chang (Beijing: Xinhua News Agency, State Council of the People's Republic of China)
[41] Wang L and D'Oliord P 2019 Water limitations to large-scale desert agroforestry projects for carbon sequestration Proc. Natl Acad. Sci. 116 24925–6
[42] Zastrow M 2019 China's tree-planting drive could falter in a warming world Nature 573 474–6
[43] Gunerhan H, Hepbasli A and Giresunlu U 2008 Environmental impacts from the solar energy systems Energy Sources A 31 131–8
[44] Turney D and Fihenakis V 2011 Environmental impacts from the installation and operation of large-scale solar power plants Renew. Sustain. Energy Rev. 15 3261–70
[45] Han M, Xiong J, Wang S and Yang Y 2020 Chinese photovoltaic poverty alleviation: geographic distribution, economic benefits and emission mitigation Energy Policy 144 111685
[46] Geall S and Shen W 2017 Solar PV and Poverty Alleviation in China: Rhetoric and Reality (Brighton: STEPS Centre, University of Sussex)
[47] Geall S and Shen W 2018 Solar energy for poverty alleviation in China: state ambitions, bureaucratic interests, and local realities Energy Res. Soc. Sci. 41 238–48
[48] Liao C and Fei D 2019 Poverty reduction through photovoltaic-based development intervention in China: potentials and constraints World Dev. 122 1–10
[49] Tabassum A, Premalatha M, Abbasi T and Abbasi S A 2014 Wind energy: increasing deployment, rising environmental concerns Renew. Sustain. Energy Rev. 31 270–88
[50] Torres Sibille A D C, Cloquell-Ballester V-A, Cloquell-Ballester V-A and Darton R 2009 Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms Renew. Sustain. Energy Rev. 13 40–66
[51] Gasparatos A et al 2017 Renewable energy and biodiversity: implications for transitioning to a Green Economy Renew. Sustain. Energy Rev. 70 161–84
[52] Lovich J E and Ennen J R 2013 Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife Appl. Energy 103 52–60
[53] Yu S, Varlagadha B, Siegel J E, Zhou S and Kim S 2020 The role of nuclear in China's energy future: insights from integrated assessment Energy Policy 139 111544
[54] Akhanna N, Zhou N and Price L 2021 Pathways toward Carbon Neutrality: A Review of Recent Studies on Mid-century Emissions Transition Scenarios for China (Berkeley, CA: California-China Climate Institute, University of California Berkeley)
[55] Karim R et al 2018 Nuclear energy development in Bangladesh: a study of opportunities and challenges Energies 11 1672
[56] Wang F, Gu J and Wu J 2020 Perspective taking, energy policy involvement, and public acceptance of nuclear energy: evidence from China Energy Policy 145 111716
[57] Bradsher K 2021 The New York Times (www.nytimes.com/2021/06/14/business/china-nuclear-power-problem.html) (Accessed 23 October 2021)
[58] Sabatier P A and Weible C M 2007 The advocacy coalition framework Theories of the Policy Process ed P A Sabatier (San Diego, CA: Westview) pp 189–220
[59] Callander S 2008 Political motivations Rev. Econ. Stud. 75 671–97
[60] Lasswell H D and Kaplan A 2013 Power and Society: A Framework for Political Inquiry (Piscataway, NJ: Transaction Publishers)
[61] Rohr-Arizza N 2009 First, do no harm: human rights and efforts to combat climate change Ga. J. Int’l & Comp. L. 38 593
[62] Bodansky D 2009 Introduction: climate change and human rights: unpacking the issues Ga. J. Int’l & Comp. L. 38 511
[63] Stevis D and Felli R 2020 Planetary just transition? How inclusive and how just? Earth Syst. Govern. 6 100065
[64] Thieme M L, Khristenko D, Qin S, Golden Kroner R E, Lehner B, Fuss T, Toekner K, Zarfi C, Shahbog N and Mascia M B 2020 Dams and protected areas: quantifying the spatial and temporal extent of global dam construction within protected areas Conserv. Lett. 13 e12719
[65] Li Y and Shapiro J 2020 China Goes Green: Coercive Environmentalism for a Troubled Planet (Cambridge: Polity)
[66] Hansen M H, Li H and Svarverud R 2018 Ecological civilization: interpreting the Chinese past, projecting the global future Glob. Environ. Change 53 195–203
[67] Eckersley R 2020 Rethinking leadership: understanding the roles of the US and China in the negotiation of the Paris Agreement European J. Int. Relat. 26 1178–202
[68] Harris P G 2018 Climate change: science, international cooperation and global environmental politics Global Environmental Politics 2 (Abingdon: Routledge) pp 123–42
[69] Petrone F 2019 BRICS, soft power and climate change: new challenges in global governance? Ethics Glob. Politics 12 19–30
[70] McDonald M 2021 After the fires? Climate change and security in Australia Aust. J. Polit. Sci. 56 1–18
[71] Hilton I and Kerr O 2017 The Paris Agreement: China’s ‘New Normal’ role in international climate negotiations Clim. Policy 17 48–58
[72] Meidan M 2020 China: climate leader and villain The Geopolitics of the Global Energy Transition 1 ed M Hafner and T Sørensen (Cham: Springer International Publishing) pp 75–91
[73] Carril M A 2021 Chinese political nostalgia and Xi Jinping’s dream of great rejuvenation Int. J. Asian Stud. 18 7–25
[74] Ministry of Foreign Affairs 2021 Foreign Ministry Spokesperson Hua Chunying’s Regular Press Conf. on 22 March 2021 (Beijing: Ministry of Foreign Affairs of the People's Republic of China)
[75] Shi X and Yao L 2019 Prospect of China’s energy investment in Southeast Asia under the belt and road initiative: a sense of ownership perspective Energy Strategy Rev. 25 56–64
[76] Han X and Webber M 2020 Extending the China water machine: constructing a dam export industry Geoforum 112 63–73
[77] Bos P and Gupta J 2018 Climate change: the risks of stranded fossil fuel assets and resources to the developing world World Third Q. 39 436–53
[78] Gallagher K S and Qi Q 2021 Chinese overseas investment policy: implications for climate change Glob. Policy 12 260–72
[79] Han X and Webber M 2020 From Chinese dam building in Africa to the belt and road initiative: assembling
infrastructure projects and their linkages Polit. Geogr. 77 102102

[80] Voituriez T, Yao W and Larsen M L 2019 Revising the 'host country standard' principle: a step for China to align its overseas investment with the Paris Agreement Clim. Policy 19 1205–10

[81] Cabré M M, Gallagher K P and Li Z 2018 Renewable energy: the trillion dollar opportunity for Chinese overseas investment China World Econ. 26 27–49

[82] Wang C N 2021 China Belt and Road Initiative (BRI) Investment Report H1 2021 (Beijing: International Institute of Green Finance, Central University of Finance and Economics)

[83] Lu X X and Siew R 2006 Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams Hydrol. Earth Syst. Sci. 10 181–95

[84] Kuenzer C, Campbell I, Roch M, Leinenkugel P, Tuan V Q and Dech S 2013 Understanding the impact of hydropower developments in the context of upstream–downstream relations in the Mekong river basin Sustain. Sci. 8 565–84

[85] Räsänen T A, Someth P, Lauri H, Koponen J, Sarkkula J and Kummu M 2017 Observed river discharge changes due to hydropower operations in the Upper Mekong Basin J. Hydrol. 545 28–41

[86] Watts J 2021 The Guardian (www.theguardian.com/world/2021/sep/22/china-pledge-to-stop-funding-coal-projects-buys-time-for-emissions-target) (Accessed 23 October 2021)

[87] Harlan T 2021 Green development or greenwashing? A political ecology perspective on China's green Belt and Road Eurasian Geogr. Econ. 62 202–26

[88] Lindberg J and Biddulph R 2021 China’s belt and road initiative: the need for livelihood-inclusive stories Geoforum 121 138–41

[89] Kirchherr J, Matthews N, Charles K J and Walton M J 2017 ‘Learning it the hard way’: social safeguards norms in Chinese-led dam projects in Myanmar, Laos and Cambodia Energy Policy 102 529–39

[90] Luo J C 2020 China’s Green Mercantilism and Environmental Governance: A New Belt and Road to the Global South? (Washington, DC: Wilson Center)

[91] Stern N and Xie C 2021 The 14th Five-Year Plan: Peaking in China's Greenhouse Gas Emissions and Paving the Way to Carbon Neutrality (London: The Centre for Climate Change Economics and Policy, Grantham Research Institute on Climate Change and the Environment & London School of Economics and Political Science) 1–5

[92] Liu J 2019 China’s renewable energy law and policy: a critical review Renew. Sustain. Energy Rev. 99 212–9

[93] Wang Y, Zhang D, Li Q and Shi X 2020 Regional renewable energy development in China: a multidimensional assessment Renew. Sustain. Energy Rev. 124 109797

[94] Li Y, Westlund H, Zheng X and Liu Y 2016 Bottom-up initiatives and revival in the face of rural decline: case studies from China and Sweden J. Rural Stud. 47 506–13

[95] Antony F et al 2020 China: bureaucratic and market hurdles to move from a central towards a decentral energy system Decentralised Energy - a Global Game Change (London: Ubiquity Press Ltd.) 2.3

[96] Waisman H et al 2019 A pathway design framework for national low greenhouse gas emission development strategies Nat. Clim. Change 9 261–8

[97] Shen S V 2018 The Political Pollution Cycle Shen, Shiran Victoria. 'The political pollution cycle: an inconvenient truth and how to break it' PhD diss., Stanford University

[98] Xu H, Pittock J and Danniell K 2021 China: a new trajectory prioritizing rural rather than urban development? Land 10 514

[99] Xu J, Shi G, Li B, Fischer T B, Zhang R, Yan D, Jiang J, Yang Q and Sun Z 2020 Skills’ sets and shared benefits: perceptions of resettled people from the Yangtze-Huai River Diversion Project in China Impact Assess. Project Appraisal 1–10

[100] Lo A and Chen K 2020 Climate Governance in China: The Role of International Organisations in the Guangdong Emission Trading Scheme Climate Change Governance in Asia 5 (London: Routledge) pp 294–308

[101] Markkanen S and Anger-Kraavi A 2019 Social impacts of climate change mitigation policies and their implications for inequality Clim. Policy 19 827–44