Fitting ideals
and the Gorenstein property

Burcu Baran
Department of Mathematics,
Stanford University,
Stanford, CA 94305, USA.

Abstract: Let p be a prime number and G be a finite commutative group such that p^2 does not divide the order of G. In this note we prove that for every finite module M over the group ring $\mathbb{Z}_p[G]$, the inequality $\# M \leq \# \mathbb{Z}_p[G]/\text{Fit}_{\mathbb{Z}_p[G]}(M)$ holds. Here, $\text{Fit}_{\mathbb{Z}_p[G]}(M)$ is the $\mathbb{Z}_p[G]$-Fitting ideal of M.

1. Introduction

Let R be a commutative ring with identity. For a finitely generated R-module M, we denote the R-Fitting ideal of M by $\text{Fit}_R(M)$. When R is a discrete valuation ring, it is well known that

$$\text{length } M = \text{length } R/\text{Fit}_R(M).$$

for every finite-length R-module M. (In fact, this is known for one-dimensional local Cohen-Macaulay rings and M of finite length and finite projective dimension; see [2, Lemma 21.10.17.3] and [4, Thm. 19.1]). The equality does not hold when R is not a DVR. Indeed, suppose R is a local ring with maximal ideal m and residue field k such that R is not a DVR. Let $M = k \times k$, so the length of M is 2. The Fitting ideal $\text{Fit}_R(M)$ is m^2, so the length of $R/\text{Fit}_R(M)$ is $1 + \dim_k m/m^2$, which is greater than 2. Hence, we have a strict inequality

$$\text{length } M < \text{length } R/\text{Fit}_R(M).$$

Thus, we ask if for certain rings R it is at least true that for every finite-length R-module M we have the inequality $\text{length } M \leq \text{length } R/\text{Fit}_R(M)$. Let p be a prime number. We consider this question for $R = A[C]$ where C is a group of prime order p and A is the ring of integers of an unramified finite extension of \mathbb{Q}_p. The following is the main result of this paper. It gives an affirmative answer to our question.

Theorem 1.1. Let M be a finite $A[C]$-module where C is a group of prime order p and A is the ring of integers of an unramified finite extension of \mathbb{Q}_p. We have the following inequality

$$\# M \leq \# A[C]/\text{Fit}_{A[C]}(M).$$
If the ideal $\text{Fit}_{A[C]}(M)$ is a principal ideal then we have an equality.

For any finite abelian group G of order not divisible by p^2, the group ring $\mathbb{Z}_p[G]$ is a product of rings of the form $A[C]$ as in Theorem 1.1. If Theorem 1.1 is true for rings S and S' then it is also true for their direct product $S \times S'$. Hence, the following is a corollary of Theorem 1.1.

Corollary 1.2. Let p be a prime and let G be a finite commutative group for which $p^2 \nmid \# G$. Then for every finite $\mathbb{Z}_p[G]$-module M we have the following inequality

$$\# M \leq \# \mathbb{Z}_p[G]/\text{Fit}_{\mathbb{Z}_p[G]}(M).$$

If the ideal $\text{Fit}_{\mathbb{Z}_p[G]}(M)$ is a principal ideal then we have an equality.

The local ring $A[C]$ is a Gorenstein ring. This plays a very important role in the proof of Theorem 1.1. In Section 3, we prove Proposition 3.6 relating ideals in $A[C]$ and in its normalization; this is the key proposition. It is an application of a result (Proposition 3.5) proved in [1]. In the rest of the paper, we use Proposition 3.6 to exploit the Gorenstein property of $A[C]$. In Section 4, we fix a short exact sequence $0 \rightarrow K \rightarrow A[C]^t \rightarrow M \rightarrow 0$ for a finite $A[C]$-module M. Let F_q be the residue field of A. We prove that $K/\mathfrak{m}K$ is an F_q-vector space of dimension t if and only if $\text{Fit}_{A[C]}(M)$ is a principal ideal. By using that, in Section 5 we prove the main result (Theorem 1.1).

I would like to thank René Schoof for his continuous guidance and support.

2. The definition of a Fitting ideal

Let R be a commutative ring with identity and M be a finitely generated R-module. Choose a surjective R-morphism $f : R^t \rightarrow M$. The R-ideal generated by $\det(v_1, v_2, \ldots, v_t)$, where $v_1, v_2, \ldots, v_t \in \ker f$, does not depend on f [see 3, p.741]. It only depends on the R-module M.

Definition 2.1. The R-ideal generated by all $\det(v_1, v_2, \ldots, v_t)$, where $v_1, v_2, \ldots, v_t \in \ker f$, is called the R-Fitting ideal of M. It is denoted by $\text{Fit}_R(M)$.

We have the following proposition.

Proposition 2.2. For a finitely generated R-module M, the following hold.

1. If $M = R/I$ for an ideal I of R, then $\text{Fit}_R(M) = I$.

2. If N is another finitely generated R-module, then $\text{Fit}_R(M \times N) = \text{Fit}_R(M)\text{Fit}_R(N)$.

3. For any R-algebra B, we have $\text{Fit}_B(M \otimes_R B) = \text{Fit}_R(M)B$.

Proof: These follow immediately from the definition of a Fitting ideal and properties of the tensor product.

Example 2.3. Suppose L is a finitely generated module over a principal ideal domain D. Then we have

$$L \cong \bigoplus_{i=1}^t D/a_i D,$$
for certain elements \(a_i\) in \(D\). There exists a natural surjective \(D\)-morphism

\[f : D^i \longrightarrow L \]

whose kernel is generated by the vectors \((a_1, 0, \ldots, 0), (0, a_2, \ldots, 0), \ldots, (0, 0, \ldots, a_t)\). Therefore, the \(D\)-ideal \(\text{Fit}_D(L)\) is generated by the product \(a_1 a_2 \cdots a_t\). With this example we see that if \(L\) were to be a finite \(D\)-module then we would have \(\#L = \#D/\text{Fit}_D(L)\).

3. The Gorenstein group ring \(A[C]\)

In the rest of the paper, we assume that \(R = A[C]\) where \(C\) is a cyclic group of prime order \(p\) and \(A\) is the ring of integers of an unramified finite extension of \(\mathbb{Q}_p\). Let \(\mathbb{F}_q\) be the residue field of \(A\), so \(q\) is a power of \(p\). Suppose \(c\) is a generator of \(C\). We have the isomorphism

\[\phi : R \longrightarrow A[T]/((1 + T)^p - 1) \]

given by \(\phi(c) = 1 + T\). The ring \(A[T]/((1 + T)^p - 1)\) is a local ring with maximal ideal \((p, T)\) and residue field \(\mathbb{F}_q\). As the depth and the Krull dimension of \(R\) are both equal to 1, the local ring \(R\) is a Cohen-Macaulay ring. The element \(p\) in the maximal ideal of \(R\) is an \(R\)-regular sequence which generates an irreducible ideal in \(R\). Therefore, \(R\) is a Gorenstein ring. In other words, it has finite injective dimension. In fact, its injective dimension is equal to its Krull dimension which is 1.

Notation 3.1. We denote the unique maximal ideal of \(R\) by \(m\).

Remark 3.2. The normalization \(\tilde{R}\) of \(R\) in its total quotient ring is \(A \times A[\zeta_p]\). Here \(\zeta_p\) is a primitive \(p\)-th root of unity. The ring \(\tilde{R}\) is isomorphic to the product \(A[T]/(T) \times A[T]/(N)\) where \(N = \frac{(1+T)^p-1}{T}\). The ring \(\tilde{R}\) is a principal ideal ring. We have the short exact sequence

\[0 \longrightarrow R \longrightarrow \tilde{R} \longrightarrow R/m \longrightarrow 0, \]

where the map \(\eta\) is given by \(\eta(r) = (r \mod T, r \mod N)\) for every \(r \in R\), and the map \(\vartheta\) is given by \(\vartheta(r_1, r_2) = r_1 - r_2 \mod m\) for every \((r_1, r_2) \in \tilde{R}\). Thus, the \(A\)-module \(\tilde{R}/R\) is isomorphic to the residue field \(\mathbb{F}_q\) of \(R\), and so the quotient \(A\)-module \(\tilde{R}/R\) has length 1.

Notation 3.3. For any \(R\)-module \(M\), we denote the tensor product \(M \otimes_R \tilde{R}\) by \(\tilde{M}\).

For an \(R\)-module \(M\), there is always the natural \(R\)-morphism \(\psi\) from \(M\) to \(\tilde{M}\) given by \(\psi(m) = m \otimes 1\). We have the following proposition.

Proposition 3.4. Let \(M\) be an \(R\)-module and \(m\) be the maximal ideal of \(R\). Consider the natural \(R\)-morphism \(\psi : M \longrightarrow \tilde{M}\). The cokernel of \(\psi\) is isomorphic to \(M/mM\) through the map \(\tau\) given by \(\tau(m \otimes (\lambda, \mu)) = (\lambda - \mu)m \mod mM\), for every \(m \otimes (\lambda, \mu) \in \tilde{M}\). The kernel of \(\psi\) is killed by \(m\), so if \(M\) is \(\mathbb{Z}_p\)-torsion free then the map \(\psi\) is injective.

Proof: While proving this proposition, to make the computations easy, we identify the ring \(R\) with \(A[T]/((1 + T)^p - 1)\) via the isomorphism \(\phi\) above. Thus, the maximal ideal \(m\) of \(R\) is \((p, T)\) and \(\tilde{R}\) is equal to \(A[T]/(T) \times A[T]/(N)\) where \(N = \frac{(1+T)^p-1}{T}\). Consider the
short exact sequence in Remark 3.2. Tensoring this short exact sequence over A with the R-module M, we obtain the exact sequence

$$0 \longrightarrow K \longrightarrow M \xrightarrow{\psi} \tilde{M} \xrightarrow{\tau} M/\mathfrak{m}M \longrightarrow 0.$$

Since we identified \tilde{R} with $A[T]/(T) \times A[T]/(N)$, we also identify \tilde{M} with $M/\mathfrak{T}M \times M/\mathfrak{N}M$. In this exact sequence, the map ψ is given by $\psi(m) = (m \mod T, m \mod N)$ for every $m \in M$, and the map τ is given by $\tau(m_1, m_2) = m_1 - m_2 \mod \mathfrak{m}M$ for every $(m_1, m_2) \in \tilde{M}$. The map τ that we defined here coincides with the map τ that we defined in the proposition by the identification of \tilde{M} with $M/\mathfrak{T}M \times M/\mathfrak{N}M$. With this exact sequence it is clear that the cokernel of ψ is isomorphic to $M/\mathfrak{m}M$ through the map τ. Now consider the kernel K of ψ in the above exact sequence. The R-module K is equal to $\mathfrak{T}M \cap \mathfrak{N}M$, so it is killed by the ideal $(\mathfrak{N}, \mathfrak{T})$. Since $p \in (\mathfrak{N}, \mathfrak{T})$ and the ideal (p, \mathfrak{T}) is the maximal ideal, we have $(\mathfrak{N}, \mathfrak{T}) = (p, \mathfrak{T})$. It follows that K is killed by the maximal ideal \mathfrak{m} of R, and in particular by p. Thus, if M is a \mathbb{Z}_p-torsion free R-module then $K = 0$. Hence, we proved the proposition.

Consider the following proposition concerning general Gorenstein orders over principal ideal domains.

Proposition 3.5. Let \mathcal{O} be an order over a principal ideal domain. Then the following properties are equivalent:

- \mathcal{O} is Gorenstein,
- for any fractional \mathcal{O}-ideal a, we have $(a : a) := \{ r \in \tilde{\mathcal{O}} : ra \subset a \}$ is equal to \mathcal{O} if and only if a is invertible. Here, $\tilde{\mathcal{O}}$ is the normalization of \mathcal{O} in its total quotient ring.

Proof: This is Proposition 2.7 in [1].

Let J be any ideal of R, then $(J : J) := \{ r \in \tilde{R} : rJ \subset J \}$ is a ring and we have

$$R \subset (J : J) \subset \tilde{R}.$$

Since the quotient A-module \tilde{R}/R has length 1 (see Remark 3.2), the ring $(J : J)$ is equal to either R or \tilde{R}. In the sequel, to prove the main theorem in Section 5, we will use the following proposition very often to exploit the fact that R is a Gorenstein ring.

Proposition 3.6. If the ideal J of R is not a principal ideal, then it is also an \tilde{R}-ideal.

Proof: Suppose J is an ideal of R which is not a principal ideal. By the above explanation, $(J : J)$ is either R or \tilde{R}. Suppose it is equal to \tilde{R}. Since R is an order over the principal ideal domain A, we use Proposition 3.5 and we obtain that the R-ideal J is invertible. Since R is a local ring, this occurs only when J is a principal ideal generated by an element which is not a zero-divisor. But this contradicts our assumption that J is not a principal ideal. Thus, we have $(J : J) = R$. Hence, J is also an \tilde{R}-ideal.
4. Finite modules over $A[C]$

In this section, we prove some propositions which we will use in Section 5 in our proof of the main theorem. From now on, we assume that M is a finite R-module. Recall that C has prime order p and A is the ring of integers of an unramified finite extension of \mathbb{Q}_p with residue field \mathbb{F}_q and that $R = A[C]$ is a local ring with unique maximal ideal m and residue field \mathbb{F}_q. We fix a short exact sequence

$$0 \rightarrow K \rightarrow R^t \rightarrow M \rightarrow 0 \quad (4.1)$$

of R-modules.

Proposition 4.1. Consider the R-module K in the short exact sequence (4.1). The quotient K/mK is an \mathbb{F}_q-vector space. We have

$$\dim_{\mathbb{F}_q}(K/mK) \geq t,$$

with equality holding if and only if K is R-free of rank t.

Proof: Since the residue field of the local ring R is \mathbb{F}_q, the quotient K/mK is an \mathbb{F}_q-vector space. Let $d = \dim_{\mathbb{F}_q}(K/mK)$, so K admits d generators as an R-module, by Nakayama’s Lemma. By choosing a surjective map $\varphi : R^d \rightarrow K$, we get an exact sequence

$$R^d \xrightarrow{\varphi'} R^t \rightarrow M \rightarrow 0.$$\

We tensor this exact sequence over A with $A[1/p] = F$. Since M is a finite R-module and R is a free A-module of rank p, we obtain a surjection

$$(F)^{pd} \xrightarrow{\varphi''} (F)^{pt} \rightarrow 0.$$

Hence, this shows that $d \geq t$. Now, suppose $d = t$. Then the surjection φ' is an isomorphism, implying that $\operatorname{Ker} \varphi' \otimes_A F = 0$. Since $\operatorname{Ker} \varphi' \subset R^d$, it does not have nonzero A-torsion. This shows that $\operatorname{Ker} \varphi' = 0$, and so $\operatorname{Ker} \varphi = 0$. Therefore, the map φ is an isomorphism, implying that K is R-free of rank t. Hence, the proposition follows.

Proposition 4.2. Let M be a finite R-module. Consider the short exact sequence (4.1). The R-module K is free if and only if $\operatorname{Fit}_R(M)$ is a principal ideal of R.

Proof: Suppose K is a free R-module. Since M is a finite R-module, the rank of K is equal to t. Then, by definition of the Fitting ideal, the R-ideal $\operatorname{Fit}_R(M)$ is generated by the determinant of the map from K to R^t, implying that $\operatorname{Fit}_R(M)$ is a principal ideal. Now, assume that $\operatorname{Fit}_R(M)$ is a principal ideal of R. Let $\operatorname{Fit}_R(M) = \alpha R$ where $\alpha \in R$. Note that $\alpha \in R[1/p]^\times$ since M is finite. Thus, α is not a zero-divisor in R. We claim that there exist $v_1, v_2, \ldots, v_t \in K$ such that $\det(v_1, v_2, \ldots, v_t) = \alpha u$, where u is a unit in R. If this were not to be the case, then for every $w_1, w_2, \ldots, w_t \in K$ we would have

$$(\det(w_1, w_2, \ldots, w_t)) \subseteq \alpha m$$
where \(m \) is the unique maximal ideal of \(R \). Then we would have \(\text{Fit}_R(M) \subset m \text{Fit}_R(M) \), so Nakayama’s Lemma would imply that \(\text{Fit}_R(M) = 0 \). But this would contradict with the fact that \(M \) is finite.

Let \(r \) be any element of \(K \). We solve the linear system
\[
\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_t v_t = r
\]
with Cramer’s Rule. We get that \(\lambda_i = \delta_i/\alpha \) for some \(\delta_i \in \text{Fit}_R(M) \). Thus, in particular, all \(\lambda_i \)'s are in \(R \). This shows that the vectors \(v_1, v_2, \ldots, v_t \) generate \(K \) over \(R \). Now suppose
\[
\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_t v_t = 0,
\]
for \(\lambda_i \)'s which are not all zero. This implies that \(\det(v_1, v_2, \ldots, v_t) = \alpha u = 0 \), so that \(\alpha = 0 \). This again contradicts with the finiteness of \(M \). Thus, all \(\lambda_i \)'s are zero. As a result, we proved that \(K \) is a free \(R \)-module of rank \(t \). Hence, the proposition follows.

We tensor the short exact sequence (4.1) over \(R \) with \(\tilde{R} \) and we obtain the following commutative diagram:
\[
\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & R^t & \rightarrow & M & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
\tilde{K} & \rightarrow & \tilde{R}^t & \rightarrow & \tilde{M} & \rightarrow & 0
\end{array}
\]

Let \(H \) be the image of \(\tilde{K} \) in \(\tilde{R}^t \). We have \(H = \tilde{R}K \) inside \(\tilde{R}^t \), and we also have the commutative diagram of exact sequences.
\[
\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & R^t & \rightarrow & M & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & H & \rightarrow & \tilde{R}^t & \rightarrow & \tilde{M} & \rightarrow & 0
\end{array}
\] \hspace{1cm} (4.2)

Proposition 4.3. Consider the \(R \)-modules \(K \) and \(H \) in the commutative diagram (4.2). The \(R \)-module \(H/K \) is killed by the maximal ideal \(m \) of \(R \).

Proof: Since \(H = \tilde{R}K \), we have \(mH = m\tilde{R}K \). As \(\tilde{R}/R \) is isomorphic to \(R/m \), it follows that \(m\tilde{R} \subset R \), and so \(mH \subset K \). Hence, \(m \) kills the quotient \(H/K \).

Proposition 4.4. Consider the \(\tilde{R} \)-module \(H \) in the commutative diagram (4.2). It is free of rank \(t \), and \(H/mH \) is an \(F_q \)-vector space of dimension \(2t \).

Proof: In the commutative diagram (4.2), we see that \(H \) is a \(\tilde{R} \)-submodule of \(\tilde{R}^t \). Since \(\tilde{R} \) is a product of two discrete valuation rings and the quotient \(\tilde{R}^t/H \) is isomorphic to the finite \(\tilde{R} \)-module \(\tilde{M} \), the \(\tilde{R} \)-module \(H \) is free of rank \(t \). Hence, \(H \) is isomorphic to \(\tilde{R}^t \). Since the residue field of \(R \) is \(F_q \) and the quotient \(\tilde{R}/R \) is \(F_q \), we have \(\tilde{R}/m = F_q \times F_q \). Here we use that the maximal ideal \(m \) of \(R \) is also an \(\tilde{R} \)-ideal (by Proposition 3.6). Therefore, the quotient \(H/mH \) is isomorphic to \(\tilde{R}^t/m\tilde{R}^t \) which is an \(F_q \)-vector space of dimension \(2t \). Hence, we proved the proposition.
5. The main theorem
Recall that M is a finite R-module and we have the short exact sequence (4.1). In this section, our aim is to prove the following theorem.

Theorem 5.1. Let M be a finite R-module. We have

$$\#M \leq \#R/\text{Fit}_R(M),$$

with equality holding when $\dim_{F_q}(K/\mathfrak{m}K) = t$.

Proof: Consider the short exact sequence (4.1). In Proposition 4.1 we proved that $\dim_{F_q}(K/\mathfrak{m}K) \geq t$. Thus, we split the proof of this theorem in two cases.

Case 1: Suppose $\dim_{F_q}(K/\mathfrak{m}K) = t$.

Consider the short exact sequence (4.1) for a finite R-module M. By Proposition 4.1 the R-module K is free of rank t. Tensoring the short exact sequence (4.1) over R with \tilde{R}, we obtain the following commutative diagram:

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & 0 & \longrightarrow & R^t & \overset{\varphi}{\longrightarrow} & R^t & \longrightarrow & M & \longrightarrow & 0 \\
\downarrow & & \\
0 & \longrightarrow & \text{Ker } \tilde{\varphi} & \longrightarrow & \tilde{R}^t & \overset{\tilde{\varphi}}{\longrightarrow} & \tilde{R}^t & \longrightarrow & \tilde{M} & \longrightarrow & 0 \\
\end{array}
$$

Consider the bottom exact sequence. We tensor it over A with $F := A[1/p]$. Since F is A-flat, we obtain an isomorphism

$$0 \longrightarrow F^{pt} \overset{\tilde{\varphi}}{\longrightarrow} F^{pt} \longrightarrow 0.$$

As $\text{Ker } \tilde{\varphi} \subset \tilde{R}^t$, it does not have A-torsion. Hence, we have $\text{Ker } \tilde{\varphi} = 0$. Now, we apply the snake lemma to this commutative diagram. Since \tilde{R}^t/R^t is F_q, we see that $\# \text{Ker } \psi = \# \text{Coker } \psi$. This implies that

$$\# M = \# \tilde{M}.$$

Now consider the short exact sequence

$$0 \longrightarrow R \longrightarrow R \longrightarrow R/(\det \varphi) R \longrightarrow 0$$

where the first map is given by multiplying by $\det \varphi$ and the second map is the natural quotient map. Since $\det \varphi$ is not a zero-divisor, the quotient $R/(\det \varphi) R$ is finite. In the same way, we tensor this short exact sequence over R with \tilde{R}. Then, we obtain a commutative diagram to which we also apply the snake lemma and get

$$\# R/(\det \varphi) R = \# \tilde{R}/(\det \varphi) \tilde{R}.$$

The R-Fitting ideal of M is generated by $\det \varphi$. By Proposition 2.2(3), the \tilde{R}-Fitting ideal of \tilde{M} is also generated by $\det \varphi$. Since \tilde{R} is the product of principal ideal domains,
we have the equality \(\# \widetilde{M} = \# \widetilde{R}/\text{Fit}_R(\widetilde{M}) \) (see Example 2.3). Therefore, the equality \(\# M = \# R/\text{Fit}_R(M) \) follows, as required.

Case 2: Suppose \(\dim_{F_q}(K/m) > t \).

Consider the short exact sequence (4.1). By Proposition 4.1 the \(R \)-module \(K \) is not free. Hence, by Proposition 4.2 the \(R \)-ideal \(\text{Fit}_R(M) \) is not a principal ideal. We have the following equalities.

\[
\# \widetilde{M} = \# \widetilde{R}/\text{Fit}_R(\widetilde{M}) \quad \text{by Example 2.3},
\]
\[
= \# \widetilde{R}/\text{Fit}_R(M) \bar{R} \quad \text{by Proposition 2.2(3)},
\]
\[
= \# \widetilde{R}/\text{Fit}_R(M) \quad \text{by Proposition 3.6},
\]
\[
= \# \widetilde{R}/R \cdot \# R/\text{Fit}_R(M)
\]
\[
= q \cdot \# R/\text{Fit}_R(M).
\]

Thus, to show that \(\# M \leq \# R/\text{Fit}_R(M) \), it is enough to show \(q \cdot \# M \leq \# \widetilde{M} \). Let \(N \) and \(N' \) be the finite \(R \)-modules fitting into an sequence

\[
0 \rightarrow N \rightarrow M \xrightarrow{\psi} \widetilde{M} \rightarrow N' \rightarrow 0
\]

with the natural map \(\psi \). Applying the snake lemma to (4.2) then yields the exact sequence of \(F_q \)-vector spaces (see Proposition 4.3).

\[
0 \rightarrow N \rightarrow H/K \rightarrow F_q^t \rightarrow N' \rightarrow 0.
\]

It follows that

\[
\# \widetilde{M}/\# M \cdot \# H/K = q^t.
\]

Hence, to show that \(q \cdot \# M \leq \# \widetilde{M} \), we only need to show that \(\# H/K < q^t \). By Proposition 4.3, we have

\[
mH \subset K \subset H.
\]

Since \(mH = m\widetilde{R}K \), we have \(mH = mK \) by Proposition 3.6. Thus, we have \([K : mH] = [K : mK] \), which is greater than \(q^t \) by assumption. By Proposition 4.4, the order of \(H/mH \) is equal to \(q^{2t} \). Therefore, the equality

\[
\# H/mH = \# H/K \cdot \# K/mK
\]

implies that \(\# H/K < q^t \). Hence, the theorem follows.

REFERENCES

[1] Buchmann, A. J. and Lenstra, H. W., *Approximating rings of integers in number fields*, Journal de Théorie des Nombres de Bordeaux 6 (1994), 221–260.

[2] Grothendieck, A. and Dieudonné J., *EGA IV4 Etude locale des schémas et des morphismes de schémas*, Publ. Math. IHES 32 (1967).

[3] Lang, S., *Algebra*, Graduate Texts in Mathematics 211 (2002), Springer.

[4] Matsumura, H., *Commutative ring theory*, Cambridge studies in advanced mathematics 8 (1986), Cambridge University Press.