SOME IRREDUCIBLE REPRESENTATIONS OF THE BRAID GROUP \mathbb{B}_n OF DIMENSION GREATER THAN n

CLAUDIA MARÍA EGEA, ESTHER GALINA

Abstract. For any $n \geq 3$, we construct a family of finite dimensional irreducible representations of the braid group \mathbb{B}_n. Moreover, we give necessary conditions for a member of this family to be irreducible. In particular we give a explicitly irreducible subfamily (ϕ_m, V_m), $1 \leq m < n$, where $\dim V_m = \left(\begin{array}{c} n \\ m \end{array} \right)$. The representation obtained in the case $m = 1$ is equivalent to the standard representation.

1. Introduction

The braid group of n strings \mathbb{B}_n, is defined by generators and relations as follows

$$\mathbb{B}_n = \langle \tau_1, \ldots, \tau_{n-1} \rangle/\sim$$

$$\sim = \{ \tau_k \tau_j = \tau_j \tau_k, \text{ if } |k - j| > 1; \tau_k \tau_{k+1} \tau_k = \tau_{k+1} \tau_k \tau_{k+1} \ 1 \leq k \leq n - 2 \}$$

We will consider finite dimensional complex representations of \mathbb{B}_n; that is pairs (ϕ, V) where

$$\phi : \mathbb{B}_n \to \text{Aut}(V)$$

is a morphism of groups and V is a complex vector space of finite dimension.

In this paper, we will construct a family of finite dimensional complex representations of \mathbb{B}_n that contains the standard representations. Moreover, we will give necessary conditions for a member of this family to be irreducible. In this way, we can find explicit families of irreducible representations. In particular, we will define a subfamily of irreducible representations (ϕ_m, V_m), $1 \leq m < n$, where $\dim V_m = \left(\begin{array}{c} n \\ m \end{array} \right)$ and the corank of ϕ_m is equal to $2(n-2)! / [m-1] [(n-m-1)]!$.

This family of representations can be useful in the progress of classification of the irreducible representations of \mathbb{B}_n. As long as we known, there are only few contributions in this sense, some known results are the following ones. Formanek classified all the irreducible representations of \mathbb{B}_n of dimension lower than n [2]. Sysoeva did it for dimension equal to n [5]. Larsen and Rowell gave some results for unitary representation of \mathbb{B}_n of dimension multiples of n. In particular, they prove there are not irreducible representations of dimension $n+1$. Levaillant proved when the Lawrence-Krammer representation is irreducible and when it is reducible [4].

1991 Mathematics Subject Classification. 20C99, 20F36.

Key words and phrases. Braid Group; Irreducible Representations.

This work was partially supported by CONICET, SECYT-UNC, FONCYT.
2. Construction and Principal Theorems

In this section, we will construct a family of representations of \mathbb{B}_n that we believe to be new, and we will obtain a subfamily of irreducible representations. We choose n non negative integers z_1, z_2, \ldots, z_n, not necessarily different. Let X be the set of all the possible n-tuples obtained by permutation of the coordinates of the fixed n-tuple (z_1, z_2, \ldots, z_n). For example, if the z_i are all different, then the cardinality of X is $n!$. Explicitly, if $n = 3$,

$$X = \{(z_1, z_2, z_3), (z_1, z_3, z_2), (z_2, z_1, z_3), (z_2, z_3, z_1), (z_3, z_1, z_2), (z_3, z_2, z_1)\}$$

Or if $z_1 = z_2 = 1$ and $z_i = 0$ for all $i = 3, \ldots, n$, then the cardinality of X is $\binom{n}{2} = \frac{n(n-1)}{2}$. Explicitly, for $n = 3$

$$X = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$$

Let V be a complex vector space with orthonormal basis $\beta = \{v_x : x \in X\}$. Then the dimension of V is the cardinality of X.

We define $\phi : \mathbb{B}_n \to \text{Aut}(V)$, such that

$$\phi(\tau_k)(v_x) = q_{x_k,x_{k+1}} v_{\sigma_k(x)}$$

where $q_{x_k,x_{k+1}}$ is a non-zero complex number that depends on $x = (x_1, \ldots, x_n)$, but, it only depends on the places k and $k+1$ of x; and

$$\sigma_k(x_1, \ldots, x_n) = (x_1, \ldots, x_{k-1}, x_{k+1}, x_k, x_{k+2}, \ldots, x_n)$$

With this notations, we have the following theorem,

Theorem 2.1. (ϕ, V) is a representation of the braid group \mathbb{B}_n.

Proof. We need to check that $\phi(\tau_k)$ satisfy the relations of the braid group. We have for $j \neq k, k, k+1$ that

$$\phi(\tau_k)\phi(\tau_j)(v_x) = \phi(\tau_k)(q_{x_j,x_{j+1}} v_{\sigma_j(x)}) = q_{x_j,x_{j+1}} q_{x_k,x_{k+1}} v_{\sigma_k \sigma_j(x)}$$

On the other hand

$$\phi(\tau_j)\phi(\tau_k)(v_x) = \phi(\tau_j)(q_{x_k,x_{k+1}} v_{\sigma_k(x)}) = q_{x_k,x_{k+1}} q_{x_j,x_{j+1}} v_{\sigma_j \sigma_k(x)}$$

As $\sigma_k \sigma_j(x) = \sigma_j \sigma_k(x)$, if $|j - k| > 1$, then $\phi(\tau_k)\phi(\tau_j) = \phi(\tau_k)\phi(\tau_j)$ if $|j - k| > 1$.

In the same way, we have

$$\phi(\tau_k)\phi(\tau_{k+1})\phi(\tau_k)(v_x) = \phi(\tau_k)\phi(\tau_{k+1}) (q_{x_k,x_{k+1}} v_{\sigma_k(x)})$$

$$= \phi(\tau_k) (q_{x_k,x_{k+1},x_{k+2}} v_{\sigma_{k+1} \sigma_k(x)})$$

$$= q_{x_k,x_{k+1},x_{k+2}} q_{x_k,x_{k+1}} v_{\sigma_{k+1} \sigma_k(x)}$$

Similarly,

$$\phi(\tau_{k+1})\phi(\tau_k)\phi(\tau_{k+1})(v_x) = \phi(\tau_{k+1})\phi(\tau_k) (q_{x_{k+1},x_{k+2}} v_{\sigma_{k+1} \sigma_k(x)})$$

$$= \phi(\tau_{k+1}) (q_{x_{k+1},x_{k+2},x_{k+3}} v_{\sigma_{k+2} \sigma_{k+1} \sigma_k(x)})$$

$$= q_{x_{k+1},x_{k+2},x_{k+3}} q_{x_{k+1},x_{k+2}} q_{x_k,x_{k+1}} v_{\sigma_{k+2} \sigma_{k+1} \sigma_k(x)}$$

As $\sigma_k \sigma_{k+1} \sigma_k(x) = \sigma_{k+1} \sigma_k \sigma_{k+1}(x)$, for all k and $x \in X$, then $\phi(\tau_k)\phi(\tau_{k+1})\phi(\tau_k) = \phi(\tau_{k+1})\phi(\tau_k)\phi(\tau_{k+1})$ for all k. □
As β is an orthonormal basis, we have that,

$$\langle \phi(\tau_k)v_y, v_x \rangle = \langle q_{y_k, y_{k+1}} v_{\sigma_k(y)}, v_x \rangle = \langle v_y, \overline{q_{x_{k+1}, x_k}} v_{\sigma_k(x)} \rangle$$

then,

$$(\phi(\tau_k))^*(v_x) = \overline{q_{x_{k+1}, x_k}} v_{\sigma_k(x)}$$

therefore, $\phi(\tau_k)$ is self-adjoint if and only if $q_{x_{k+1}, x_k} = \overline{q_{y_{k+1}, y_k}}$ for all $x \in X$. In particular, if $x_k = x_{k+1}$ then $q_{x_k, x_{k+1}}$ is a real number. In the same way, $\phi(\tau_k)$ is unitary if and only if $|q_{x_k, x_{k+1}}|^2 = 1$ for all $x \in X$.

Now, we will give a subfamily of irreducible representations.

Theorem 2.2. If $\phi(\tau_k)$ is a self-adjoint operator for all k, and for any pair $x, y \in X$, there exists $j, 1 \leq j \leq n - 1$, such that $|q_{x_j, x_{j+1}}|^2 \neq |q_{y_j, y_{j+1}}|^2$, then $\phi(V)$ is an irreducible representation of the braid group \mathbb{B}_n.

Proof. Let $W \subset V$ be a non-zero invariant subspace. It is enough to prove that W contains one of the basis vectors v_x. Indeed, given $y \in X$, there exists a permutation σ of the coordinates of x, that sends x to y. This happens because the elements of X are n-tuples obtained by permutation of the coordinates of the fixed n-tuple (z_1, \ldots, z_n). Suppose that $\sigma = \sigma_1 \ldots \sigma_i$, then $\tau := \tau_1 \ldots \tau_i$ satisfies that $\phi(\tau)(v_x) = \lambda v_y$, for some non-zero complex number λ. Then W contains v_y and therefore, W contains the basis $\beta = \{v_x : x \in X\}$.

As $\phi(\tau_k)$ is a self-adjoint operator, it commutes with P_W, the orthogonal projection over the subspace W. Therefore, $(\phi(\tau_k))^2$ commute with P_W. On the other hand, note that $(\phi(\tau_k))^2(v_x) = |q_{x_{x_{k}, x_{k+1}}}|^2 v_x$, hence, $(\phi(\tau_k))^2$ is diagonal in the basis $\beta = \{v_x : x \in X\}$. Then, the matrix of P_W has at least the same blocks than $(\phi(\tau_k))^2$ for all $k, 1 \leq k \leq n - 1$.

If for some k, the matrix of $(\phi(\tau_k))^2$ has one block of size 1×1, then the matrix of P_W has one block of size 1×1. In other words, there exists $x \in X$ such that v_x is an eigenvector. If the eigenvalue associated to v_x is non-zero, then $v_x \in W$.

It rest to see that the matrix of $(\phi(\tau_k))^2$ has all its blocks of size 1×1. By hypothesis, for each pair of vectors in the basis β, v_x and v_y, there exists $k, 1 \leq k \leq n - 1$, such that $|q_{x_{x_{k}, x_{k+1}}}|^2 \neq |q_{y_{y_{k+1}, y_k}}|^2$. Fix any order in X and let x and y the first and second element of X. Then there exists k such that v_x and v_y are eigenvectors of $(\phi(\tau_k))^2$ of different eigenvalue. Hence $(\phi(\tau_k))^2$ has the first block of size 1×1. As $(\phi(\tau_j))^2$ commute with $(\phi(\tau_k))^2$ for all j, $(\phi(\tau_j))^2$ also has this property.

By induction, suppose that for all j $(\phi(\tau_j))^2$ has its $r - 1$ first blocks of size 1×1. Let x', y' the elements r and $r + 1$ of X, then there exists k' such that $v_{x'}$ and $v_{y'}$ are eigenvectors of $(\phi(\tau_{k'}))^2$ of different eigenvalue. Hence, $(\phi(\tau_{k'}))^2$ has the r block of size 1×1. Therefore $(\phi(\tau_{k}))^2$ too because it commute with $(\phi(\tau_{k'}))^2$, for all j. Then we obtain that all the blocks are of size 1×1.

Note that if the numbers $q_{x_{x_{k}, x_{k+1}}}$ are all equal and $|X| > 1$, then ϕ is not irreducible because the subspace W, generated by the vector $v = \sum_{x \in X} v_x$, is an invariant subspace.

2.1. **Examples.** We are going to compute some explicit examples of this family of representations. We will show that the standard representation (\mathbb{H}, \mathbb{H}) is a member of this family.
2.1.1. Standard Representation. Let $z_1 = 1$ and $z_j = 0$ for all $j = 2, \ldots, n$. Then the cardinality of X is n and $\dim V = n$ too. For each $x \in X$, let $q_{x_k, x_{k+1}} = 1 + (t - 1)x_{k+1}$, where $t \neq 0, 1$ is a complex number. Therefore $\phi : B_n \to \text{Aut}(V)$, given by $\phi(\tau_k)v_x = q_{x_k, x_{k+1}}v_{\sigma_k(x)}$, is equivalent to the standard representation ρ, given by

$$
\rho(\tau_k) = \begin{pmatrix}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 0 & t \\
& & & 1 & 0 \\
& & & & \ddots \\
& & & & & 1 \\
\end{pmatrix}
$$

where t is in the place $(k, k+1)$. In fact, if $\{\beta_j : j = 1, \ldots, n\}$ is the canonical basis of \mathbb{C}^n, and if x_j is the element of X with 1 in the place j and zero elsewhere, define

$$
\alpha : \mathbb{C}^n \to V \\
\beta_j \mapsto v_{x_j}
$$

Then $\alpha(\rho(\tau_k)(\beta_j)) = \phi(\tau_k)(\alpha(\beta_j))$ for all $j = 1, \ldots, n$. Hence the representations are equivalent.

2.1.2. Example. Let $z_1, \ldots, z_n \in \{0, 1\}$, such that $z_1 = z_2 = \cdots = z_m = 1$ and $z_m+1 = \cdots = z_n = 0$. Then the cardinality of X is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$. If V_m is the vector space with basis $\beta_m = \{v_x : x \in X\}$, then $\dim V_m = \frac{n!}{m!(n-m)!}$.

For each $x := (x_1, \ldots, x_n) \in X$, let

$$
q_{x_k, x_{k+1}} = \begin{cases}
1 & \text{if } x_k = x_{k+1} \\
t & \text{if } x_k \neq x_{k+1}
\end{cases}
$$

where t is a real number, $t \neq 0, 1, -1$.

We define $\phi_m : B_n \to \text{Aut}(V_m)$, given by

$$
\phi_m(\tau_k)v_x = q_{x_k, x_{k+1}}v_{\sigma_k(x)}
$$

For example, fixing the lexicographic order in X, if $n = 5$ and $m = 3$, then $\dim V_m = 10$, the ordered basis is

$$
\beta := \{v((0,0,1,1,1), v(0,1,0,1,1), v(0,1,1,1,0), v(0,1,1,0,1), v(1,0,0,1,1)), \\
v(1,0,1,0,1), v(1,0,1,1,0), v(1,1,0,0,1), v(1,1,0,1,0), v(1,1,1,0,0)\}
$$

and the matrices in this basis are

$$
\phi_3(\tau_1) = \begin{pmatrix}
1 & & & & \\
0 & t & & & \\
0 & 0 & 0 & t & \\
0 & 0 & 0 & 0 & t \\
0 & 0 & 0 & 0 & 0 \\
& t & 0 & 0 & 0 \\
& & t & 0 & 0 \\
& & & 1 & 1 \\
\end{pmatrix}
$$
Theorem 2.3. Let \(x \neq y \in X \), then there exists \(j, 1 \leq j \leq n \), such that \(x_j \neq y_j \). If \(j > 1 \), we may suppose that \(x_{j-1} = y_{j-1} \), then \(q_{x_{j-1},x_j} \neq q_{y_{j-1},y_j} \), therefore \(|q_{x_{j-1},x_j}|^2 \neq |q_{y_{j-1},y_j}|^2 \). If \(j = 1 \), and \(n \neq 2m \), there exists \(l = 2, \ldots, n \) such that \(x_{l-1} \neq y_{l-1} \) and \(x_l = y_l \), then \(|q_{x_{l-1},x_l}|^2 \neq |q_{y_{l-1},y_l}|^2 \). Then, by theorem 2.2, \(\phi_m \) is an irreducible representation.

Proof. We analyze two cases, \(n \neq 2m \) and \(n = 2m \). Suppose that \(n \neq 2m \). Let \(x \neq y \in X \), then there exists \(j, 1 \leq j \leq n \), such that \(x_j \neq y_j \). If \(j > 1 \), we may suppose that \(x_{j-1} = y_{j-1} \), then \(q_{x_{j-1},x_j} \neq q_{y_{j-1},y_j} \), therefore \(|q_{x_{j-1},x_j}|^2 \neq |q_{y_{j-1},y_j}|^2 \). If \(j = 1 \), and \(n \neq 2m \), there exists \(l = 2, \ldots, n \) such that \(x_{l-1} \neq y_{l-1} \) and \(x_l = y_l \), then \(|q_{x_{l-1},x_l}|^2 \neq |q_{y_{l-1},y_l}|^2 \). Then, by theorem 2.2, \(\phi_m \) is an irreducible representation.

Note that if \(n = 2m \), \(x_0 = (1,\ldots,1,0,\ldots,0) \) and \(y_0 = (0,\ldots,0,1,\ldots,1) \) satisfy \(x_0 \neq y_0 \) but \(q_{x_{j-1},x_j} = q_{y_{j-1},y_j} \) for all \(j \). So, we can not use theorem 2.2. But in the proof of the theorem, we really use that \(x \) and \(y \) are consecutive in some order. Considering the lexicographic order, \(x_0 \) and \(y_0 \) are not consecutive. In general, for each \(x \in X \), there exists \(y_x \in X \) such that \(q_{x_j,x_{j+1}} = q_{y_j,y_{j+1}} \) for all \(j = 1, \ldots, n-1 \). We define \(y_x \) changed in \(x \) the zeros by ones and the ones by zeros. For example, if \(x = (1,0,0,1,0,1) \), then \(y_x = (0,1,1,0,1,0) \). However, only \(x = (0,1,\ldots,1,0,\ldots,0) \) satisfies that \(y_x \) is consecutive to \(x \). Therefore \(P_W \), the
Theorem 2.4. Let τ_k be a representation of dimension k, $1 \leq k \leq n$. The number does not depend on τ_k. Therefore, $\dim V_m = \binom{n}{m}$ is the cardinality of X, then

$$\dim V_m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

We compute the corank of ϕ_m. Let $x \in X$ such that $\sigma_k(x) = x$, then $x_k = x_{k+1}$ and $q_{k,k+1} = 1$. Therefore $\phi_m(\tau_k)(v_x) = v_x$. Hence the corank of ϕ_m is equal to the cardinality of $Y = \{x \in X : \sigma_k(x) \neq x\}$. But it is equal to the cardinality of X minus the cardinality of $\{x \in X : x_k = x_{k+1} = 0 \text{ or } x_k = x_{k+1} = 1\}$. Therefore

$$\text{cork}(\phi_m) = rk(\phi_m(\tau_k) - 1) = \frac{n!}{m!(n-m)!} - \frac{(n-2)!}{m!(n-m-2)!} - \frac{(n-2)!}{(m-2)!(n-m)!}$$

$$= \frac{2(n-2)!}{(m-1)!(n-m-1)!}$$

In the example $n = 5$ and $m = 3$, we have that $\text{cork}(\phi_m) = 6$.

Note that if $m = 1$, the dimension of ϕ_m is n and the corank is 2. Therefore ϕ_1 is equivalent to the standard representation, because this is the unique irreducible representations of \mathbb{B}_n of dimension n [5].

Acknowledgment

The authors thank to Aroldo Kaplan for his helpful comments.

References

[1] Chow, W.-L.; “On the algebraical Braid Group”, Annals of math., 49 (1948), 654-658.
[2] Formanek, E.; “Braid Group Representations of Low Degree”, Proc. London Math. Soc., 73 (1996), 279-322.
[3] Jones, V.; “Subfactor and Knots”, CBMS 80, Pub AMS, USA 1991.
[4] Levaillant, C.; “Irreducibility of the BMW algebra of type A_{n-1}”, PhD thesis (2008), California Institute of Technology.
[5] Larsen, M.; Rowell, E.; “Unitary braid representations with finite image”, arXiv: math.GR/0805.4222v1.
[6] Sysoeva, I.; “Dimension n representations of Braid Group on n Strings”, Journal of Algebra 243 (2001), 518-538.
[7] Tong, D.; Yang, S.; Ma, Z.; “A New Class of representations of braid group”, Comm. Theoret. Phys. 26, No 4 (1996), 483-486.
SOME IRREDUCIBLE REPRESENTATIONS OF THE BRAID GROUP \mathbb{B}_n OF DIMENSION GREATER THAN n

Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Córdoba, Argentina

E-mail address: cgea@mate.uncor.edu, galina@mate.uncor.edu