Objective: To identify the effects of exercise programs during hospitalization on children and adolescents with cancer.

Data source: This is a systematic review, carried out in PubMed/Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and Caribbean Health Sciences Literature (LILACS), Scientific Electronic Library Online (SciELO), Latin American and Caribbean Center on Health Sciences Information (BIREME), and Physiotherapy Evidence Database (PEDro). We selected studies that included children and adolescents diagnosed with cancer (solid or hematologic) and submitted to exercise protocols during hospitalization. Studies involving patients with other pathologies or with a medical contraindication for exercise were excluded. We used the following search strategy: Neoplasm OR Leukemia OR Cancer OR Tumor OR Medical Oncology AND Hospitalization OR Inpatient Care Units OR Intrahospital AND Exercise.

The methodological quality of the studies was analyzed by the PEDro scale.

Data synthesis: Among the 626 articles found, only 9 fulfilled the inclusion criteria, obtaining a regular methodological quality. The samples had 172 participants, aged 4 to 18 years. Only 6 studies presented both intervention group and control group. The intervention group received strength, aerobic, and muscle stretching exercises, and games, among others. The control group received the standard treatment. The studies varied regarding time, frequency, intensity, and type of exercise. Most studies showed an increase in muscle strength (4/5), followed by an improvement in physical fitness (2/3) and functional capacity (2/4). No adverse events were reported during the interventions. The methodological quality was considered regular.

Conclusions: The findings suggest that, during hospitalization of children and adolescents with cancer, exercise improves muscle strength, physical fitness, and functionality.

Keywords: Cancer; Exercise; Hospitalization; Neoplasms; Pediatrics.
INTRODUÇÃO

O câncer é uma doença degenerativa, resultante do acúmulo de lesões no material genético das células, que pode acometer qualquer parte do organismo. É caracterizado por ser uma doença de proporção grave, que coloca em risco a vida do indivíduo, sem predisposição de idade ou sexo. Clinicamente, acarreta problemas como dor, perda de peso, redução de energia, crescimento de nódulos, entre outros.

Estimativas da International Agency for Research on Cancer (IARC) demonstram que a ocorrência mundial de câncer infantil aumentou nas últimas décadas. Em todo o mundo, cerca de 215 mil tipos de câncer são diagnosticados anualmente em menores de 15 anos e aproximadamente 85 mil tipos de câncer em indivíduos com idade entre 15 e 19 anos. Essas projeções baseiam-se em dados coletados por mais de 100 registros populacionais de incidência de câncer em 68 países, entre os anos de 2001 a 2010. No Brasil, para cada ano do biênio 2018–2019, estimavam-se 12.500 novos casos de câncer em crianças e adolescentes, e na Região Sul, 1.300.

O câncer infantojuvenil possui apresentação clínica e histológica diferente do dos adultos e suas causas ainda não são bem definidas. Entre os sinais e sintomas, podem-se listar os nódulos tópicos, a palidez, a fraqueza generalizada, a dor progressiva, a febre, a alteração de visão e a perda de apetite. Os tipos de câncer mais comuns nessa faixa etária são as leucemias, que representam o maior percentual de incidência (26%), seguidas dos linfomas (14%) e tumores do sistema nervoso central (13%). A leucemia linfoblástica aguda (LLA) é a forma mais comum de malignidade na infância, representando cerca de 30% dos casos de câncer em crianças com menos de 15 anos de idade. A taxa de mortalidade depende do desenvolvimento da doença, da idade da criança e da resposta inicial ao tratamento.

A evolução das técnicas de tratamento, como a combinação de quimioterapia e radioterapia, contribui para a alta taxa de sobrevivência (~70%) de crianças durante a terapêutica, entretanto houve aumento de efeitos adversos em curto, médio e longo prazo associado ao tratamento e ao câncer em si. Em curto prazo, os efeitos colaterais são muito similares aos dos adultos, com surgimento de náuseas, vômitos e predisposição a outras infecções. Já em médio e longo prazo, influenciam no desenvolvimento motor, no crescimento ponderoesquelético, no desempenho musculoesquelético/funcional e na qualidade de vida (QV).

O tratamento da doença requer repetidas e prolongadas hospitalizações, que incluem vários tipos de estressores relacionados à internação, principalmente procedimentos invasivos e restrição ao leito. Essas limitações, causadas pela doença e pelo tratamento, afetam diretamente os níveis de atividade física dos pacientes, fazendo com que esse repouso excessivo resulte em descondicionamento físico. Em contraste a isso, o exercício dirigido realizado durante poucas semanas de tratamento está associado com melhora dos aspectos psicológicos, fisiológicos e físicos, ressaltando o potencial efeito desse tipo de intervenção. Alguns estudos demonstram que o exercício físico hospitalar/domiciliar proporciona benefícios sobre a força muscular, a aptidão física e a funcionalidade.

Até o presente momento, não foi localizada nenhuma revisão crítica e sistemática que tenha se proposto a investigar exclusivamente os efeitos do exercício físico durante a hospitalização de crianças e adolescentes com câncer, justificando o desenvolvimento deste estudo. Descobrir os reais efeitos do exercício e refletir sobre as características semelhantes nos protocolos podem auxiliar os profissionais envolvidos no atendimento dessas crianças, além de aumentar a adesão desse tipo de intervenção nos serviços de internação hospitalar. Assim, o objetivo deste estudo foi identificar os efeitos de programas de exercício físico durante a hospitalização de crianças e adolescentes com câncer.

MÉTODO

A revisão sistemática foi realizada de acordo com as recomendações da Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Fontes de dados

Trata-se de uma revisão sistemática, realizada por meio das bases de dados PubMed via Sistema Online de Busca e Análise de Literatura Médica (MEDLINE), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Biblioteca Eletrônica Científica Online (SciELO), Biblioteca Regional de Medicina (BIREME) e Physiotherapy Evidence Database (PEDro).

Seleção dos estudos

Foram selecionados estudos de intervenção (ensaio clínico e/ou quase experimental) nos idiomas inglês, português e espanhol, sem filtro quanto à idade e ao ano de publicação dos artigos. A seleção dos estudos ocorreu em outubro de 2019, sendo baseada em nove palavras-chave, associada com operadores booleanos. Além disso, investigaram-se manualmente possíveis artigos para compor o presente trabalho por meio das referências de cada pesquisa.

Estratégia de busca

Utilizou-se a seguinte estratégia de busca: “Neoplasm OR Leukemia OR Cancer OR Tumor OR Medical Oncology”
AND Hospitalization OR Inpatient Care Units OR Intrahospital AND Exercise” . Todos os termos são descritos como controlados, cadastrados nos Descritores em Ciências da Saúde (DeCS), com exceção da palavra “Intrahospital”. Optou-se por mantê-la, pelo fato de muitos estudos utilizar esse termo nos resumos (abstracts). Todos os descritores deveriam constar, pelo menos, do título, do resumo ou das palavras-chave.

Critérios de inclusão e exclusão

Foram incluídos estudos com crianças e adolescentes (4 a 18 anos) portadores de algum tipo de câncer (sódio ou hematológico) e submetidos a protocolos de exercício físico (de acordo com cada autor) durante a hospitalização. Em contrapartida, excluíram-se resumos, dissertações, teses, guidelines, cartas editoriais, artigos de revisão, relatos de caso, opiniões de especialistas e aquelas pesquisas que incluíram pacientes com outras patologias (asma, fibrose cística, entre outros). Além disso, estudos com sujeitos pós-transplante de órgão, pós-sessão de radioterapia/quimioterapia, além de contraindicação médica para a prática de exercícios físicos, também foram excluídos.

Extração de dados

Após identificar os descritores no título, no resumo e/ou nas palavras-chave, os artigos selecionados passaram por leitura dos resumos (abstracts), para avaliar a adequação quanto aos critérios de elegibilidade (detalhados no item anterior). Os estudos que apresentaram os critérios predeterminados tiveram o texto completo adquirido para análise e extração dos dados. A busca e a análise dos artigos foram conduzidas de forma independente, por dois avaliadores, sendo as divergências resolvidas com um terceiro pesquisador, por consenso.

Registraram-se as seguintes características dos estudos: nome do primeiro autor, ano de publicação do estudo, país da coleta de dados, faixa etária, tamanho amostral, tipo de câncer, risco de mortalidade, tempo de início do tratamento da doença, grupos estudados, avaliações propostas, desfechos avaliados (força muscular, qualidade de vida, funcionalidade, aptidão física, posição corporal, nível de atividade física, equilíbrio, fadiga, amplitude de movimento e função cardíaca), características dos protocolos de exercício físico, frequência, tempo de duração e os principais resultados encontrados.

Avaliação da qualidade metodológica

A qualidade metodológica foi analisada por dois avaliadores, sendo qualquer divergência resolvida por consenso. Utilizou-se a escala de PEDro, baseada no método Delphi, que tem por objetivo auxiliar os usuários quanto à qualidade metodológica dos estudos de intervenção (critérios 2 a 11). Sua qualificação é dada pelo número de critérios cumpridos, e o item 1 não foi calculado na pontuação, por se tratar de um item que avalia o critério relativo à elegibilidade dos participantes, com menção à validade externa do estudo. Portanto, a pontuação oscila entre 0 e 10.23

RESULTADOS

Do total de 626 artigos, 609 foram encontrados no PubMed, 16 no PEDro, um na BIREME e nenhum no SciELO e LILACS. Desses artigos achados, 210 foram excluídos, por estarem repetidos nas bases de dados, restando 416 documentos. Posteriormente, 409 foram descartados, pelo fato de não preencherem os critérios de elegibilidade, permanecendo apenas sete pesquisas. Em adição, mais dois artigos foram selecionados por meio da busca manual nas referências dos estudos. A presente revisão, então, foi composta de nove artigos (Figura 1).

Dos nove estudos incluídos, sete (77,7%) foram conduzidos no continente europeu, um na América do Sul (11,1%) e o outro na Oceania (11,1%). No total, foram selecionados 172 participantes, com o tamanho amostral oscilando de sete a 68 sujeitos. A idade dos indivíduos variou de 4 a 18 anos. Foram incluídos pacientes com diferentes tipos de câncer, com maioria de origem hematológica e predomínio de LLA. O tempo de início do tratamento da doença foi de seis a 24 meses (Tabela 1).

Em relação às avaliações realizadas, a força muscular de membros superiores (MMSS) e membros inferiores (MMII) foi avaliada em cinco (55,5%) estudos, sendo investigada em grande parte pelos testes de cinco, seis e/ou 10 repetições máximas. A QV também foi avaliada em cinco deles (55,5%), e três (3/5) aplicaram o questionário de QV pediátrica. A funcionalidade foi observada em quatro (44,4%) pesquisas, sendo três (3/4) pelo Timed Up and Go (TUG) e uma (1/4) pelo teste de caminhada de seis minutos (TC6). Além disso, a aptidão física foi mensurada em três artigos (33,3%) mediante o teste de exercício cardiopulmonar. Apenas seis pesquisas (66,6%) utilizaram grupo controle (Tabela 2).

Em relação aos protocolos de intervenção, é importante destacar que quase todos os estudos utilizaram a combinação de treinamento de força e aeróbico, além de atividades de equilíbrio, alongamento muscular e jogos, em alguns deles. A duração das sessões foi de 10 a 120 minutos, com frequência de atendimento entre duas e cinco sessões/semana. A duração do programa de tratamento variou de três a 22 semanas. Grande maioria dos artigos (4/5) evidenciou aumento na força muscular, seguido de incrementos (2/3) na aptidão física e melhora (2/4) na

Santos SS et al.

Rev Paul Pediatr. 2021;39:e2019313

3
funcionalidade. Apenas um estudo (1/5) evidenciou melhora na QV. Além disso, duas pesquisas demonstraram que a força muscular, a aptidão física, a funcionalidade (2/2), entre outros se mantiveram mesmo após um período de tempo (20 semanas) do término da pesquisa. Não houve relatos de eventos adversos durante as intervenções (Tabela 3).

O escore médio da qualidade metodológica dos artigos foi de 5,6 pontos, com variação de 4 a 9. Os principais fatores que baixaram a pontuação da qualidade foram relativos aos itens referentes a alocação oculta e aleatória, participantes, terapeutas/avaliadores cegos e comparação entre grupos (Tabela 4).

Figura 1 Sistematização dos estudos selecionados na revisão.
Tabela 1 Identificação e características dos estudos incluídos.

Autores	País	Faixa etária (anos)	Amostra	Tipo de câncer	Risco de mortalidade	Tempo de início do tratamento (meses)
Morales et al.18	Espanha	4–18	68	Tumores sólidos e leucemia	-	-
Fiuza-Luces et al.20	Espanha	4–18	9	Tumor sólido extracraniano	-	-
Fiuza-Luces et al.21	Espanha	4–16	24	Tumor sólido extracraniano	-	-
Bogg et al.17	Austrália	6–17	14	LLA, AA, LAGS, LMA, DPM	-	-
Perondi et al.6	Brasil	5–16	6	LLA	Baixo ou alto	> 6
Speyer et al.9	França	9–18	30	Malignidade hematológica, tumores sólidos, indeterminado	-	-
Ruiz et al.15	Espanha	5–16	7	LLA, LMA, rabdomiossarcoma, neuroblastoma	Alto	-
Chamorro-Viña et al.	Espanha	4–7	7	LLA	Médio	18–24
San Juan et al.7	Espanha	4–7	7	LLA	Médio	18–24

LLA: leucemia linfoblástica aguda; AA: anemia aplástica; LAGS: línfoma agudo de grandes células; LMA: leucemia mieloide aguda; DPM: distúrbio mieloproliferativo; -: não informado.

Tabela 2 Características dos desfechos estudados e dos testes avaliados nessa revisão.

Autores	Grupos avaliados	Avaliações propostas	Desfechos testados
Morales et al.18	G1, G2	Ecocardiograma	Função cardíaca
Fiuza-Luces et al.20	G1, G2	Coleta de sangue, Acelerômetro triaxial	Sistema imunológico, Nível de atividade física
Fiuza-Luces et al.21	G1, G2	5RM - supino, remada lateral e legpress, Questionário de qualidade de vida pediátrica (PedsQL)	FM de MMSS e MMII, QV
		TUG -3 m e TUDS, TECP, IMC e massa magra, Acelerômetro triaxial	Funçionalidade, Equilíbrio
Bogg et al.17	GI	Dinamômetro, Questionário de qualidade de vida pediátrica (PedsQL), TC6' — adaptado	FM de MMSS e MMII, QV
		Equilíbrio unipodal em superfície plana, Questionário de qualidade de vida pediátrica (módulo fadiga) (PedsQL)	Funçionalidade
Perondi et al.6	GI	10RM — supino, puxada vertical lateral, extensão de pernas e legpress, Questionário de qualidade de vida pediátrica (PedsQL)	FM de MMSS e MMII, QV
Speyer et al.9	GI, GC	Questionário de saúde infantil (CHQ)	QV
Ruiz et al.15	GI, GC	6RM — supino, remada lateral e legpress, TUG - 3 e 10 m e TUDS, TECP	FM de MMSS e MMII, QV, Funçionalidade
Chamorro-Viña et al.	GI, GC	Peso, IMC, gordura corporal e massa magra	Composição corporal
San Juan et al.7	GI	6RM — supino, remada lateral e legpress, Perfil de saúde e doença da criança (CHIP-CE/CRF), TUG - 3 e 10 m e TUDS, TECP, Goniometria	FM de MMSS e MMII, QV, Funçionalidade

GI: grupo intervenção; GC: grupo controle; 5RM: teste de cinco repetições máximas; 10RM: teste de 10 repetições máximas; 6RM: teste de seis repetições máximas; FM: força muscular; TC6’: teste de caminhada de seis minutos; QV: qualidade de vida; RM: repetições máximas; MMSS: membros superiores; MMII: membros inferiores; IMC: índice de massa corporal; TECP: teste de exercício cardiopulmonar; ADM: amplitude de movimento; PedsQL: Pediatric Quality Of Life; CHQ: Child Health Questionnaire; TUG: Timed Up and Go; TUDS: Timed Up and Down Stairs; CHIP-CE/CRF: Child’s Health and Illness Profile — Child Edition/Parent Report Form.
Tabela 3 Principais resultados dos estudos incluídos nessa revisão.

Autores	Programa de exercícios	Descrição do programa	Frequência, tempo e duração	Principais resultados
Morales et al. 18	Treinamento aeróbico e força	Cicloergômetro, esteira e manivela de braço 1–3 séries de 6–15 repetições — MMSS, MMII e tronco	2/3x/semana / 60 a 70' / 22 semanas	↑ Função cardíaca
Fiuza-Luces et al. 20	Treinamento aeróbico e força	Cicloergômetro, esteira 2/3 séries de 8–15 repetições — MMSS, MMII e tronco	3x/semana / 60 a 70' / 17 semanas	↔ Sistema imunológico ↔ Nível de atividade física
Fiuza-Luces et al. 21	Treinamento aeróbico e força	Cicloergômetro, esteira 2/3 séries de 8–15 repetições — MMSS, MMII e tronco	3x/semana / 60 a 70' / 19 semanas	↑ FM de MMSS e MMII ↔ QV ↔ Aptidão física ↔ Composição corporal ↔ Nível de atividade física
Bogg et al. 17	Treinamento aeróbico e força	Caminhada, cicloergômetro, videogame interativo etc. Agachamento, abdominal, panturrilha, ponte etc. Equilíbrio unipodal e twister Alongamento de grandes grupos musculares	5x/semana / 10 a 60' / 7 semanas	↔ FM de MMSS e MMII ↔ QV ↓ Funcionalidade ↓ Equilíbrio ↔ Fadiga
Perondi et al. 6	Aquecimento e Treinamento aeróbico Desaquecimento	Esteira – 10’ 4 séries de 6–10 repetições — MMSS e MMII Esteira – 20’ Alargamento de grandes grupos musculares	2x/semana / 60’ / 12 semanas	↑ FM de MMSS e MMII ↑ QV
Speyer et al. 9	Atividades físicas adaptadas	Jogos, musculação, dança, videogame interativo, entre outros	3x/semana / 30’ / -	↔ QV
Ruiz et al. 15	Aquecimento e Treinamento aeróbico Desaquecimento	Cicloergômetro – 15’ e alongamentos musculares 1 série de 8–15 repetições — MMSS, MMII e tronco Cicloergômetro — 10 a 30’; corrida, caminhada e jogos Cicloergômetro e alongamento de grandes grupos musculares	3x/semana / 90 a 120’ / 16 semanas	↑ FM de MMSS e MMII ↑ Funcionalidade ↑ Aptidão física
Chamorro-Viña et al. 16	Aquecimento e Treinamento aeróbico Desaquecimento	Movimentos de MMSS e MMII e alongamentos musculares Cicloergômetro — 10 a 40’ 1 série de 12–15 repetições — MMSS, MMII e tronco	5x/semana / 50’ / ~3 semanas	↑ IMC ↑ Peso ↑ Gordura corporal ↑ Massa magra
San Juan et al. 7	Aquecimento e Treinamento aeróbico Desaquecimento	Cicloergômetro — 15’ e alongamentos musculares 1 série de 8–15 repetições — MMSS, MMII e tronco Cicloergômetro — 10 a 30’; corrida, caminhada e jogos	3x/semana / 90 a 120’ / 16 semanas	↑ FM de MMSS e MMII ↔ QV ↑ Funcionalidade ↑ Aptidão física ↔ ADM de tornozelo

FM: força muscular; QV: qualidade de vida; MMSS: membros superiores; MMII: membros inferiores; IMC: índice de massa corporal; ADM: amplitude de movimento; ↑ aumentou; ↔: não alterou; ↓: diminuiu; -: não informado; ~: aproximadamente; twister: jogo de habilidade física.
Na presente revisão, foram selecionados nove estudos, que investigaram os efeitos de programas de exercício físico durante a hospitalização de crianças e adolescentes com algum tipo de câncer. Todos os artigos selecionados encontraram efeitos positivos em curto/médio prazo (três a 22 semanas), nos quais a força muscular, a aptidão física e a funcionalidade foram os desfechos mais beneficiados.

A leucemia é um dos tipos de câncer mais prevalentes nessa população, principalmente a LLA, que foi a malignidade mais frequente nas pesquisas selecionadas que avaliaram os efeitos do exercício físico. Embora a taxa de cura da doença tenha aumentado, ainda existe questionamento quanto à forma mais adequada e segura de realizar o exercício físico. O ambiente hospitalar, apesar de ser idealizado para tratar diversas enfermidades, ainda não é preparado para a realização de exercícios, especialmente tratando-se de crianças.

A força muscular melhorou na maioria dos estudos, sendo avaliada pelos testes de teste de cinco repetições máximas (5RM), teste de seis repetições máximas (6RM), teste de 10 repetições máximas (10RM). O principal objetivo da inclusão do treinamento de força nos protocolos é reduzir a perda de massa muscular, comumente observada em pacientes em repouso prolongado, como no caso do câncer. Extrapolando esses resultados, quando analisamos os resultados de doenças crônicas, os estudos evidenciam que a ênfase do treinamento de força deve ser dada para os grandes grupos musculares (bíceps, tríceps e quadríceps), pela relação com a funcionalidade, realização de atividades diárias e sobrevivência. Na prática hospitalar pediátrica se poderiam trabalhar esses grupos musculares com atividades lúdicas, por exemplo, jogos com

Tabela 4 Avaliação da qualidade metodológica dos selecionados.

Critérios avaliados	Morales et al.18	Fiuza-Luces et al. 20	Fiuza-Luces et al. 21	Bogg et al.17	Perondi et al.6	Speyer et al.9	Ruiz et al.15	Chamorro-viña et al.16	San Juan et al.7
Critérios de elegibilidade*	+	+	+	+	+	+	+	+	+
Alocação aleatória	-	+	+	-	-	+	-	-	-
Alocação oculta	-	+	+	-	-	-	-	-	-
Grupos semelhantes	+	+	+	+	+	+	+	+	+
Participantes cegos	-	+	+	-	-	+	-	-	-
Terapeutas cegos	-	-	-	-	-	-	-	-	-
Avaliadores cegos	-	+	+	-	-	-	-	+	-
Acompanhamento adequado	+	+	+	+	+	+	+	+	+
Análise da intenção de tratar	+	+	+	+	+	+	+	+	+
Comparações entre grupos	+	+	+	-	-	+	-	-	-
Estimativas pontuais e variabilidade	+	+	+	+	+	+	+	+	+
Escore total	5	9	9	4	4	7	4	5	4

*O item dos critérios de elegibilidade não contribui para a pontuação total; +: sim; -: não.
bola, atividades de preensão manual, saltos, como realizado por Speyer et al., em 2010.9

O teste de exercício cardiopulmonar é considerado padrão ouro para investigação da aptidão física, mensurando o consumo máximo de oxigênio.29 Achados anteriores apontam que valores <32 mL/kg/min estão associados com pior função pulmonar, maior risco de hospitalização e menor sobrevida em doenças crônicas.30,31 Ao extrapolarmos nossa interpretação, percebe-se que os resultados (24,3 mL/kg/min) do estudo de San Juan et al.7 ficam abaixo desse ponto de classificação, no entanto a pesquisa de Ruiz et al.15 não apresentou os dados iniciais desse parâmetro, e o estudo de Carmen Fiuza-Luces et al.21 não demonstrou esse resultado corrigido pela massa corpórea. San Juan et al.7 também notaram redução de outro marcador de condicionamento físico (limiar ventilatório), obtendo valores médios de 15,8 mL/kg/min, ou seja, abaixo da normalidade (≥20 mL/kg/min).32 Embora a doença cause comprometimento físico, a maior parte dos estudos constatou efeitos positivos das intervenções sobre esse desfecho, o que aponta a necessidade desse tipo de terapia durante a hospitalização.

Metade dos estudos indicou melhora na funcionalidade após as intervenções nessas amostras,7,15 sendo avaliadas pelos testes Timed Up and Go (3 e 10 metros) e Timed Up and Down Stairs. Outra pesquisa também avaliou a funcionalidade pelo teste de caminhada de seis minutos adaptado, não encontrando melhora desse desfecho.17 Todas essas investigações tiveram como objetivo avaliar a distância percorrida e/ou o tempo de execução de determinadas tarefas, sendo tais indicadores marcadores de capacidade funcional.7,33 Evidências apontam que valores <10 segundos para o Timed Up and Go33 e de <577,5 metros para o teste de caminhada de seis minutos34 podem ser bons pontos de corte para indicar maior gravidade clínica. Em nossa revisão, os resultados do Timed Up and Go foram de 6,3 segundos no estudo de San Juan et al.7 e abaixo de 10 segundos na pesquisa de Carmen Fiuza-Luces et al.,21 apontando funcionalidade preservada. No entanto, quanto ao teste de caminhada de seis minutos, os autores não relataram os valores médios obtidos.17 Apesar de o câncer infantojuvenil não ser uma enfermidade crônica, em muitas situações o seu tratamento é realizado em longo prazo.14 Além disso, como não existem pontos de corte para classificar pior gravidade clínica nessa amostra, optou-se por exceder a interpretação quanto à funcionalidade.

Apenas o estudo de Perondi et al.6 evidenciou benefícios do programa de exercício físico sobre a QV de pacientes hospitalizados. Esse resultado foi contraditório ao documentado em amostras de adultos,35,36 levando em conta que todas as intervenções, tanto medicamentosas como físicas, parecem melhorar a QV desses pacientes. Tal ponto nos faz refletir que talvez o exercício físico não cause impacto favorável na percepção dos pais e/ou portadores da doença. Marchese et al.13 relataram que tanto as crianças quanto os pais acabam ocultando os problemas quantificados pelos questionários, o que prejudica a avaliação adequada desses dados. Todavia, nenhum dos estudos ressaltou redução dos domínios de QV,7,9,17,21 o que também nos assegura em manter a prática do exercício durante a hospitalização, considerando os outros benefícios terapêuticos.

Até o presente momento, a frequência, a intensidade, o tempo e o tipo de atividade adequada para essa população não podem ser totalmente definidos, por causa da variabilidade dos protocolos testados.6,7,9,15-18,21,22 Enquanto alguns estudos iniciaram suas intervenções com aquecimento (pedalada, caminhada e alongamentos),6,15,16 a maioria deles utilizou o treinamento de força e o treino aeróbico.7,15-18,20,21 Apenas a pesquisa de Speyer et al., em 2010,9 empregou atividades adaptadas, incluindo jogos, dança, videogame interativo, musculação, entre outros. Todavia, mesmo não estratificando seu protocolo em exercícios isolados de força e aeróbico, os autores também utilizaram essas características indiretamente. Isso está de acordo com as recomendações internacionais, considerando que se preconiza a prática diária de exercícios de força e atividades aeróbicas em crianças e adolescentes.37

A presente revisão apresentou algumas limitações. Entre elas, encontram-se os diferentes tipos de câncer (sólidos e hemotológicos) abordados nos estudos, as distintas gravidades clínicas e o pequeno tamanho amostral de cada pesquisa. Além do mais, o fato de serem incluídos apenas estudos nos idiomas inglês, português e espanhol se constitui outra restrição deste trabalho.

Em conclusão, os achados dessa revisão sugerem que o exercício físico melhora a força muscular, a aptidão física e a funcionalidade em curto e médio prazo durante a hospitalização e melhora a QV em crianças e adolescentes com câncer. Além disso, essa prática demonstrou-se segura, desde que sejam respeitados os aspectos clínicos envolvidos na doença. Espera-se que os profissionais envolvidos no tratamento oncológico busquem implementar programas de exercício durante o cuidado hospitalar, baseando seus protocolos pelo menos no treinamento de força e de exercício aeróbico.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.
REFERÊNCIAS

1. Brazil - Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva [homepage on the Internet]. Coordenação de prevenção e vigilância. Estimativa 2014: incidência de câncer no Brasil. Rio de Janeiro: INCA; 2014 [cited 2019 Dec 28]. Available from: https://bcb.inca.gov.br/site/arquivos/sh_60/v01/pdf/11-resenha-estimativa-2014-incidencia-de-cancer-no-brasil.pdf

2. Amorim MA, Siqueira KZ. Relationship between the experience of stressor factors and the emergence of breast cancer. Psicol Argum. 2014;32:143-53.

3. World Health Organization. International Agency for Research on Cancer [homepage on the Internet]. International incidence of childhood cancer 3: results-registry-specific tables. Lyon: IARC; 2017 [cited 2019 Sep 05]. Available from: http://iicc.iarc.fr/results/res registry youngsters.php

4. Brazil - Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA [homepage on the Internet]. Incidência, mortalidade e morbidade hospitalar por câncer em crianças, adolescentes e adultos jovens no Brasil: informações dos registros de câncer e do sistema de mortalidade. Rio de Janeiro: INCA; 2016 [cited 2019 Sep 02]. Available from: http://www1.inca.gov.br/wcm/incidencia/2017/

5. Fedorovsky JM, Cuervo LG, Luciani S. Pediatric cancer registries in Latin America: the case of Argentina’s pediatric cancer registry. Rev Panam Salud Publica. 2017;41:e152. https://doi.org/10.26633/RPSP.2017.152

6. Perondi MB, Guzlan B, Artioli GG, Painelli VS, Odone Filho V, Netto G, et al. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia. J Sports Sci Med. 2012;11:387-92.

7. San Juan AF, Fleck SJ, Chamarro-Viña C, Maté-Muñoz JL, Moral S, Pérez M, et al. Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc. 2007;39:13-21. https://doi.org/10.1249/01.mss.0000240326.54147.fc

8. Aznar S, Webster AL, Juan AF, Chamarro-Viña C, Maté-Muñoz JL, Moral S, et al. Physical activity during treatment in children with leukemia: a pilot study. Appl Physiol Nutr Metab. 2006;31:407-13. https://doi.org/10.1139/h06-014

9. Speyer E, Herbinet A, Vuillemin A, Brianc S, Chastagner P. Effect of adapted physical activity sessions in the hospital on health-related quality of life for children with cancer: a cross-over randomized trial. Pediatr Blood Cancer. 2010;55:1160-6. https://doi.org/10.1002/pbc.22698

10. Rolim CL, Góes MC. Children with cancer and the educational service in hospitals and schools. Educ Pesqui. 2009;35:509-23. https://doi.org/10.1590/S0151-97022009000300007

11. Mueller BA, Doody DR, Weiss NS, Chow EJ. Hospitalization and mortality among pediatric cancer survivors: a population-based study. Cancer Causes Control. 2018;29:1047-57. https://doi.org/10.1007/s10552-018-1078-0

12. Nascimento EB, Leite RD, Prestes J. Câncer: benefícios do treinamento de força e aeróbio. Rev Educ Fis UEM. 2011;22:652-8. https://doi.org/10.4025/reveducfis.v22i4.11670

13. Marchese VG, Chiarello LA, Lange BJ. Effects of physical therapy intervention for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42:127-33. https://doi.org/10.1002/pbc.10481

14. San Juan AF, Chamarro-Viña C, Maté-Muñoz JL, Fernández del Valle M, Cardona C, Hernández M, et al. Functional capacity of children with leukemia. Int J Sports Med. 2008;29:163-7. https://doi.org/10.1055/s-2007-964908

15. Ruiz JR, Fleck SJ, Vingren JL, Ramírez M, Madero L, Fragala MS, et al. Preliminary findings of a 4-month intrahospital exercise training intervention on IGFs and IGFBPs in children with leukemia. J Strength Cond Res. 2010;24:1292-7. https://doi.org/10.1519/JSC.0b013e3181b22ac5

16. Chamarro-Viña C, Ruiz JR, Santana-Sosa E, Vicent MG, Madero L, Pérez M, et al. Exercise during hematopoietic stem cell transplant hospitalization in children. Med Sci Sports Exerc. 2010;42:1045-53. https://doi.org/10.1249/01.MSS.0b013e3181c4dac1

17. Bogg TF, Broderick C, Shaw P, Cohn R, Naumann FL. Feasibility of an inpatient exercise intervention for children undergoing hematopoietic stem cell transplant. Pediatr Transplant. 2015;19:925-31. https://doi.org/10.1111/petr.12614

18. Morales JS, Vazquez PL, Rincón-Castanedo C, Takken T, Fiuza-Luces C, Santos-Lozano A, et al. Exercise training in childhood cancer: a systematic review and meta-analysis of randomized controlled trials. Cancer Treat Rev. 2018;70:154-67. https://doi.org/10.1016/j.ctrv.2018.08.012

19. Baumann FT, Bloch W, Beulertz J. Clinical exercise interventions in pediatric oncology: a systematic review. Pediatr Res. 2013;74:366-74. https://doi.org/10.1038/pr.2013.123

20. Fiuza-Luces C, Padilla JR, Valentín J, Santana-Sosa E, Santos-Lozano A, Sanchez-Gomar F, et al. Effects of exercise on the immune function of pediatric patients with solid tumors: insights from the PACE randomized trial. Am J Phys Med Rehabil. 2017;96:831-7. https://doi.org/10.1097/PHM.0000000000001075

21. Fiuza-Luces C, Padilla JR, Soares-Miranda L, Santana-Sosa E, Quiroga JV, Santos-Lozano A, et al. Exercise intervention in pediatric patients with solid tumors: the physical activity in pediatric cancer trial. Med Sci Sports Exerc. 2017;49:223-30. https://doi.org/10.1249/MSS.0000000000001094

22. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

23. Shiwa SR, Costa LO, Moser AD, Algara IC, Oliveira LV. PEDro: a base de dados de evidencias em fisioterapia. Fisioter Mov. 2011.24:523-33. https://doi.org/10.1590/S0103-62342008000300002

24. Bortolote GS, Brêtas JR. The stimulating environment site/arquivos/n_60/v01/pdf/11-resenha-estimativa-2014-incidencia-de-cancer-no-brasil.pdf
Exercício físico durante a hospitalização no câncer infantil

26. Battaglini CL, Hackney AC, Garcia R, Groff D, Evans E, Shea T. The effects of an exercise program in leukemia patients. Integr Cancer Ther. 2009;8:130-8. https://doi.org/10.1177/153473540934266

27. White J, Flohr JA, Winter SS, Vener J, Feinauer LR, Ransdell LB. Potential benefits of physical activity for children with acute lymphoblastic leukaemia. Pediatr Rehabil. 2005;8:53-8. https://doi.org/10.1080/13638490410001727428

28. Burgess LC, Swain ID, Taylor P, Wainwright TW. Strengthening quadriceps muscles with neuromuscular electrical stimulation following total hip replacement: a review. Curr Phys Med Rehabil Rep. 2019;7:275-83. https://doi.org/10.1007/s40141-019-00225-8

29. Lucia A, Ramírez M, San Juan AF, Fleck SJ, García-Castro J, Madero L. Intrahospital supervised exercise training: a complementary tool in the therapeutic armamentarium against childhood leukemia. Leukemia. 2005;19:1334-7. https://doi.org/10.1038/sj.leu.2403799

30. Pérez M, Groeneveld IF, Santana-Sosa E, Fiouza-Luces C, Gonzalez-Saiz L, Villa-Asensi JR, et al. Aerobic fitness is associated with lower risk of hospitalization in children with cystic fibrosis. Pediatr Pulmonol. 2014;49:641-9. https://doi.org/10.1002/ppul.22878

31. Wolin KY, JR Ruiz JR, Tuchman H, Lucia A. Exercise in adult and pediatric hematological cancer survivors: an intervention review. Leukemia. 2010;24:1113-20. https://doi.org/10.1038/leu.2010.54

32. Pérez AJ, Carletti L. Identifying ventilatory anaerobic threshold in children and adolescents: a literature review. Rev Bras Cineantropom Desempenho Hum. 2012;14:343-52. https://doi.org/10.5007/1980-0037.2012v14n3p343

33. Nicolini-Panisson RD, Donadio MV. Teste Timed “Up & Go” em crianças e adolescentes. Rev Paul Pediatr. 2013;31:377-83. https://doi.org/10.1590/S0103-05822013000300016

34. Donadio MV, Heinzmann-Filho JP, Vendrusculo FM, Frasson PX, Marostica PJ. Six-minute walk test results predict risk of hospitalization for youths with cystic fibrosis: a 5-year follow-up study. J Pediatr. 2017;182:204-9. https://doi.org/10.1016/j.jpeds.2016.11.071

35. Adamsen L, Quist M, Andersen C, Møller T, Herrstedt J, Kronborg D, et al. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomized controlled trial. BMJ. 2009;339:b3410. https://doi.org/10.1136/bmj.b3410

36. De Backer IC, van Breda E, Vreugdenhil A, Nijziel MR, Kester AD, Schep G. High-intensity strength training improves quality of life in cancer survivors. Acta Oncol. 2007;46:1143-51. https://doi.org/10.1080/02841860701418838

37. World Health Organization [homepage on the Internet]. Global recommendations on physical activity for health: 5-17 years old. Switzerland: WHO; 2011 [cited 2019 Aug 06]. Available from: https://www.who.int/dietphysicalactivity/factsheet_young_people/en/