Closing the material loop in additive manufacturing: A literature review on waste recycling

Yiran Yang1,*, Fu Zhao2,3

1Department of Industrial, Manufacturing, & Systems Engineering, University of Texas at Arlington, Arlington, TX, 76019 USA
2School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907 USA
3Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907 USA
*Corresponding author. Email: yiran.yang@uta.edu

Abstract. Additive manufacturing (also referred to as 3D printing) technologies have found applications in a wide range of industries such as aerospace and automobile, due to their superior manufacturing capability and design freedom enabled by the layer-wise fabrication method. Over the past decade, the adoption of additive manufacturing has evolved from rapid prototyping and tooling to rapid manufacturing of end-use products, which, on the other hand, introduced new challenges for reducing the environmental impacts and enhancing resource sustainability of additive manufacturing from a lifecycle perspective. In current literature, some research efforts have been conducted on waste recycling aiming to close to material loop and relieve the environmental consequences caused by both pre- and post-consumer wastes generated from additive manufacturing. This article provides an overview of the state-of-the-art on additive manufacturing waste recycling and identifies critical gaps for future research in this field.

Keywords: Additive manufacturing; Recycling; Closed-loop material flow; Environmental impact; Resource sustainability.

1. Introduction
Additive manufacturing (AM), or 3-dimensional (3D) printing, refers to processes that fabricate products from 3D model usually layer-by-layer, and it is fundamentally different from traditional formative and subtractive manufacturing. Based on different processes, AM can be categorized into seven groups [6], i.e., binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and vat photopolymerization. In recent years, owing to technological advancements in AM processes and materials, the global AM market has been rapidly increasing. According to surveys conducted by the Wohlers Associates, in 2017, the AM industry consisting of all AM products and services worldwide, grew 21% from 2016 and reached to USD 7.34 billion [55]. The global AM market is expected to grow to USD 36.61 billion by 2027 from USD 8.44 billion in 2018, at a compound annual growth rate (CAGR) of 17.7% [32].

Compared to traditional manufacturing, AM can provide shortened product development cycle, additional design freedom, and increased manufacturing complexity. Additionally, enhanced environmental sustainability has been touted as one of the main advantages of AM with respect to high material efficiency, low scrap rate, and reduced or even eliminated need for tooling, cutting fluids and lubricants. Furthermore, AM can revolutionize the current supply chain structures by offering localized
and/or regional strategies for production, transportation, as well as end-of-life (EOL) options. An example of AM supply chain is illustrated in Figure 1. In current literature, most research efforts are focused on developing new AM feedstock materials [26][33][46], improving printing technologies [28][30], and evaluating production performance and quality [11][13][29][57].

![Figure 1. An example of additive manufacturing supply chain.](image)

Comprehensive reviews exist for the state-of-the-art of AM in terms of design and modelling methodologies [9][56], production processes [8][23][45][58], feedstock materials [17][27][34][54], different applications [53][59], and environmental sustainability [1][2][35][39]. In this article, we aim to provide an overview on AM waste recycling and identify critical knowledge gaps in facilitating the closed-loop material flows in AM. The current literature on AM waste recycling is reviewed based on different feedstock materials, i.e., metal powder recycling as shown in Section 2 and plastic wastes recycling as shown in Section 3. In addition, conclusions and future research topics are discussed in Section 4 aiming to provide useful insights on AM waste recycling and facilitate multidisciplinary collaboration in the field.

2. The state-of-the-art on AM metal powder recycling

The current literature on waste recycling of metal powders used in AM is summarized in Table 1. Most studies reviewed in this section are focused on evaluating the performance of recycled powders (micro-level performance in terms of porosity, particle size distribution, etc.) and printed parts using recycled powders (macro-level performance in terms of mechanical properties and surface quality). Meanwhile, the lifecycle environmental sustainability of recycling metal powders is also investigated. In addition to the literature shown in Table 1, research efforts have also been dedicated to improving the performance of recycled powders. As an example, thermal post-processing is adopted to enhance the recyclability of AlSi10Mg powders in SLM [31].

Category	Citation	Material	AM	Main findings
Recycling performance evaluation	(Strondl, Lyckfeldt, Brodin, & Ackelid, 2015)	Ti-6Al-4V, Ni alloy	EBM, SLM	Differences in particle size and flow ability
	(Slotwinski et al., 2014)	Stainless steel & cobalt-chrome	DMLS	Increased powder size distribution
	(Asgari, Baxter, Hosseinkhani, & Mohammadi, 2017)	AlSi10Mg_200C	DMLS	Comparable powder characteristics, microstructure and mechanical behaviour
	(Ardila et al., 2014)	IN718	SLM	No significant change in powder and test part properties
	(Popov, Katz-Demyanetz, Garkun, & Bamberger, 2018)	Ti-6Al-4V	EBM	Recycling causes various defects
The following observations can be made from the current literature.

- Sieving is used as the sole recycling method in most metal powder recycling studies. New methods are required in order to further improve the quality of recycled powders.

- The comparison results on micro-level powder characteristics between virgin powders and recycled powders are not consistent for different materials and/or AM processes. As an example, no significant changes are observed in powders for IN718 in [4] while increased porosity is detected in [40].

- The macro-level properties of parts fabricated using recycled materials need to be further expanded to include the profiles and roughness of printed surfaces.

- Most existing studies indicate no significant change in mechanical properties within a certain range of recycling cycles.

- Almost all studies adopt empirical approaches, and therefore their results are only applicable to certain experimental conditions.

3. The state-of-the-art on AM plastic waste recycling

The current literature on waste recycling of plastic feedstock used in AM is summarized in Table 2. Two types of plastics are usually used in AM and investigated by the literature, i.e., thermosetting resin and thermoplastic polymers like ABS, HDPE and PLA. The current literature on recycling plastic wastes in AM is mainly focused on three aspects, 1) proposing recyclable materials to be used in AM; 2) recycling performance evaluation; and 3) sustainability evaluation, as categorized in Table 2.

Table 2. A summary of current literature on plastic recycling in AM.

Category	Citation	Material	AM	Recycling	Main findings
Proposing recyclable material	(Plummer, Vasquez, Majewski, & Hopkinson, 2012)	Thermoplastic PUR powder	LS	Sieving	No significant degradation in properties
	(Shi et al., 2017)	Thermosetting epoxy ink	DIW	Chemical dissolution	Good printability
	(Boparai, Singh, Fabbrocino, & Fraternali, 2016; Stoo & Pickering, 2017, 2018; Tian et al., 2017)	Composites	FDM	Fiber treatment	Enhanced mechanical properties & thermal stability
Recycling performance evaluation	(Baechler, DeVuono, & Pearce, 2013)	PLA	FDM	Mechanical (RecycleBot)	Technical evaluation (quality, time & energy consumption)
The following observations can be made from the current literature.

- Most studies on thermoplastic polymer recycling are focused on PLA. Acrylonitrile butadiene styrene (ABS) needs to be studied as well.
- Almost all studies adopt empirical approaches, and therefore their results are only applicable to certain experimental conditions.
- The material properties of recycled plastics have not yet been comprehensively characterized, which is the root cause for potential decrease in print quality and mechanical properties.
- The sustainability of recycling needs to be further evaluated from both process-level and lifecycle perspective. For example, the cost-effectiveness of recycling wasted materials is currently unknown, and whether incorporating recycling into the AM lifecycle is environmentally sustainable has not yet been assessed.

4. Conclusions and Future Research Directions

In this article, the state-of-the-art on AM waste recycling is reviewed for both metal and plastic feedstock materials. To further advance the understandings of the recycling process, some future research directions are identified as follows.

- The relationships between waste material properties (for both metal powders or plastic scraps), recycling process design and planning, and achieved print performance using recycled materials, need to be characterized. This interrelation will enable a prior prediction on recycling performance and greatly aid the better control and optimization on the recycling process.
- The energy and material flow in the recycling process needs to be characterized and incorporated into a comprehensive life cycle assessment as inventory data, to evaluate the environmental sustainability of AM waste recycling.
- Different supply chain designs considering AM waste recycling need to be compared and evaluated jointly considering cost and carbon footprint.

References

[1] Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. *International Journal of Precision Engineering and Manufacturing-Green Technology*, 3(4), 381–395. https://doi.org/10.1007/s40684-016-0048-9

[2] Al-Meslemi, Y., Anwer, N., & Mathieu, L. (2018). Environmental Performance and Key Characteristics in Additive Manufacturing: A Literature Review. *Procedia CIRP*.
[3] Anderson, I. (2017). Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. *3D Printing and Additive Manufacturing*. https://doi.org/10.1088/3dp.2016.0054

[4] Ardila, L. C., García-Díaz, J. B., Álvarez, P., Echeverría, A., Pérez, M. M., … Ochoa, J. (2014). Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting. *Physics Procedia*. https://doi.org/10.1016/j.phpro.2014.08.152

[5] Asgari, H., Baxter, C., Hosseinkhani, K., & Mohammadi, M. (2017). On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. *Materials Science and Engineering A*. https://doi.org/10.1016/j.msea.2017.09.041

[6] ASTM International. (2013). F2792-12a - Standard Terminology for Additive Manufacturing Technologies. In *Rapid Manufacturing Association*. https://doi.org/10.1520/F2792-12a.2

[7] Baechler, C., DeVuono, M., & Pearce, J. M. (2013). Distributed recycling of waste polymer into RepRap feedstock. *Rapid Prototyping Journal*, 19(2), 118–125. https://doi.org/10.1108/13552541311302978

[8] Bhavar, V., Kattire, P., Pawar, P., Khot, S., Gujar, K., & Singh, R. (2014). A Review on Powder Bed Fusion Technology of Additive Manufacturing. *Processes, Applications, and Performance of Materials in Additive Manufacturing*, 4(11), 991–995.

[9] Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive manufacturing methods and modelling approaches: a critical review. *The International Journal of Advanced Manufacturing Technology*, 83(1), 389–405. https://doi.org/10.1007/s00170-015-7576-2

[10] Boparai, K. S., Singh, R., Fabbrocino, F., & Fraternali, F. (2016). Thermal characterization of recycled polymer for additive manufacturing applications. *Composites Part B: Engineering*.

[11] Brandl, E., Leyens, C., & Palm, F. (2011). Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes. *IOP Conference Series: Materials Science and Engineering*. https://doi.org/10.1088/1757-899X/12/1/01204

[12] Carroll, P. A., Pinkerton, A. J., Allen, J., Syed, W. U. H., Sezer, H. K., Brown, P., … Li, L. (2006). The effect of powder recycling in direct metal laser deposition on powder and manufactured part characteristics. *Proceedings of AVT-139 Specialists Meeting on Cost Effective Manufacture via Net Shape Processing*. NATO Research and Technology Organisation.

[13] Christiyan, K. G. J., Chandrasekhar, U., & Venkateswarlu, K. (2016). A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. *IOP Conference Series: Materials Science and Engineering*. https://doi.org/10.1088/1757-899X/114/1/012109

[14] Cooke, A., & Slotwinski, J. (2015). Properties of metal powders for additive manufacturing: A review of the state of the art of metal powder property testing. In *Additive Manufacturing Materials: Standards, Testing and Applicability*. https://doi.org/10.6028/NIST.IR.75873

[15] Cruz Sanchez, Fabio A., Boudaoud, H., Hoppe, S., & Camargo, M. (2017). Polymer recycling in an open-source additive manufacturing context: Mechanical issues. *Additive Manufacturing*.

[16] Cruz Sanchez, Fabio Alberto, Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. (2015). Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. *Proceedings of Solid Freeform Fabrication Symposium*.

[17] Frketic J, Dickens, T., & Ramakrishnan, S. (2017). Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing. *Additive Manufacturing*, Vol. 14, pp. 69–86. https://doi.org/10.1016/j.addma.2017.01.003

[18] Giannatsis J, & Dedoussis, V. (2009). Additive fabrication technologies applied to medicine and health care: A review. *International Journal of Advanced Manufacturing Technology*, 40(1–2), 116–127.

[19] Gorji, N. E., O’Connor, R., Mussatto, A., Nielson, M., González, P. G. M., & Brabazon, D.
(2019). Recyclability of stainless steel (316 L) powder within the additive manufacturing process. *Materialia*.

[20] Hadadzadeh, A., Baxter, C., Amirkhiz, B. S., & Mohammadi, M. (2018). Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders. *Additive Manufacturing*. https://doi.org/10.1016/j.addma.2018.07.014

[21] Haghighi, A., Yang, Y., & Li, L. (2017). Dimensional performance of as-built assemblies in polyjet additive manufacturing process. *Proceedings of the ASME 12TH International Manufacturing Science and Engineering Conference - 2017, VOL 2*, (27), 293–304. https://doi.org/10.1115/MSEC2017-2983

[22] Hunt, E. J., Zhang, C., Anzalone, N., & Pearce, J. M. (2015). Polymer recycling codes for distributed manufacturing with 3-D printers. *Resources, Conservation and Recycling*.

[23] Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting - A review. *International Materials Reviews*, Vol. 61, pp. 361–377.

[24] Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. *Journal of Cleaner Production*, 70, 90–96. https://doi.org/10.1016/j.jclepro.2014.02.009

[25] Kulkarni, P., Marsan, A., & Dutta, D. (2000). A review of process planning techniques in layered manufacturing. *Rapid Prototyping Journal*, 6(1), 18–35. https://doi.org/10.1108/13552540010309859

[26] Leung, P. Y. V. (2017). Sugar 3D Printing: Additive Manufacturing with Molten Sugar for Investigating Molten Material Fed Printing. *3D Printing and Additive Manufacturing*, 4(1).

[27] Lewandowski, J. J., & Seifi, M. (2016). Metal Additive Manufacturing: A Review of Mechanical Properties. *Annual Review of Materials Research*, 46(1), 151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

[28] Li, L., Haghighi, A., & Yang, Y. (2018a). A novel 6-axis hybrid additive-subtractive manufacturing process: Design and case studies. *Journal of Manufacturing Processes*, 33, 150–160.

[29] Li, L., Haghighi, A., & Yang, Y. (2018b). Theroretical Modeling and Prediction of Surface Roughness for Hybrid Additive-Subtractive Manufacturing Processes. *IIEE Transactions*, 5(2), 124–135.

[30] Lu, L., Guo, P., & Pan, Y. (2017). Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures. *Journal of Manufacturing Science and Engineering*, 139(7), 071008.

[31] Maamoun, A. H., Elbestawi, M., Dosbaeva, G. K., & Veldhuis, S. C. (2018). Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. *Additive Manufacturing*. https://doi.org/10.1016/j.addma.2018.03.014

[32] Market Study Report, L. (2019). *Additive Manufacturing Market*.

[33] Nordin, N. A. B., Johar, M. A. Bin, Ibrahim, M. H. I. Bin, & Marwah, O. M. F. Bin. (2017). Advances in High Temperature Materials for Additive Manufacturing. *IOP Conference Series: Materials Science and Engineering*, 159(7), 012176

[34] Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. *Composite Structures*, Vol. 182, pp. 36–53. https://doi.org/10.1016/j.compstruct.2017.08.088

[35] Peng, T., Kellens, K., Tang, R., Chen, C., & Chen, G. (2018). Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. *Additive Manufacturing*, Vol. 21, pp. 694–704.

[36] Plummer, K., Vasquez, M., Majewski, C., & Hopkinson, N. (2012). Study into the recyclability of a thermoplastic polyurethane powder for use in laser sintering. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*. https://doi.org/10.1177/0954405412440066

[37] Popov, V. V., Katz-Demyanetz, A., Garkun, A., & Bamberger, M. (2018). The effect of powder
recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4V specimens. Additive Manufacturing. https://doi.org/10.1016/j.addma.2018.06.003

[38] Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, … Tibbits S. (2014). Active printed materials for complex self-evolving deformations. Scientific Reports, 4, 1–8.

[39] Rejeski D, Zhao F, & Huang Y. (2018). Research needs and recommendations on environmental implications of additive manufacturing. Additive Manufacturing. https://doi.org/10.1016/j.addma.2017.10.019

[40] Renderos M, Torregaray A, Gutierrez-Orrantia M E, Lamikiz A, Saintier N, & Girot F. (2017). Microstructure characterization of recycled IN718 powder and resulting laser clad material. Materials Characterization. https://doi.org/10.1016/j.matchar.2017.09.029

[41] Sames W J, List F A, Pannala S, Dehoff R R, & Babu S S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, Vol. 61, pp. 315–360.

[42] Santos A R C, Almeida H A, & Bártolo P J. (2013). Additive manufacturing techniques for scaffold-based cartilage tissue engineering. Virtual and Physical Prototyping, 8(3), 175–186.

[43] Shi Q, Yu K, Kuang X, Mu X, Dunn C K, Dunn M L, … Jerry Qi H. (2017). Recyclable 3D printing of vitrimer epoxy. Materials Horizons. https://doi.org/10.1039/c7mh00043j

[44] Slotwinski J A, Garboczi E J, Stutzman P E, Ferraris C F, Watson S S, & Peltz M A. (2014). Characterization of metal powders used for additive manufacturing. Journal of Research of the National Institute of Standards and Technology, 119, 460.

[45] Song B, Zhao X, Li S, Han C, Wei Q, Wen S, … Shi Y. (2015). Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, Vol. 10, pp. 111–125.

[46] Stoof D, & Pickering K. (2017). 3D Printing of Natural Fibre Reinforced Recycled Polypropylene. Processing and Fabrication of Advanced Materials.

[47] Stoof D, & Pickering K. (2018). Sustainable composite fused deposition moulding filament using recycled pre-consumer polypropylene. Composites Part B: Engineering.

[48] Strondl A, Lyckfeldt O, Brodin H, & Ackelid U. (2015). Characterization and Control of Powder Properties for Additive Manufacturing. JOM. https://doi.org/10.1007/s11837-015-1304-0

[49] Tian X, Liu T, Wang Q, Dilmurat A, Li D, & Ziegmann G. (2017). Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. Journal of Cleaner Production.

[50] Turner B N, (Chemical and Materials Engineering, U. of D., Strong R, Gold S A, N Turner B, Strong R, & A Gold S. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012

[51] Vayre B, Vignat F, & Villeneuve F. (2013). Identification on some design key parameters for additive manufacturing: Application on Electron Beam Melting. Procedia CIRP, 7, 264–269.

[52] Walachowicz F, Bernsford I, Papenfuss U, Zeller C, Graichen A, Navrotsky V, … Kiener C. (2017). Comparative Energy, Resourceand Recycling Lifecycle Analysis of theIndustrial Repair Process of Gas TurbineBurners Using Conventional Machiningand Additive Manufacturing. Journal of Industrial Ecology, 21(S1), S203–S215. https://doi.org/DOI: 10.1111/jiec.12637

[53] Wang Xiaojian, Xu S, Zhou S, Xu W, Leary M, Choong P, … Xie Y M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, Vol. 83, pp. 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

[54] Wang Xin, Jiang M, Zhou Z, Gou J, & Hui D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, Vol. 110, pp. 442–
458.

[55] Wohlers Report 2018. (2018). In Wohlers Associates.

[56] Yang, S., & Zhao, Y. F. (2015). Additive manufacturing-enabled design theory and methodology: a critical review. *International Journal of Advanced Manufacturing Technology*, Vol. 80, pp. 327–342.

[57] Yang, Y., Li, L., & Zhao, J. (2019). Mechanical Property Modeling of Photosensitive Liquid Resin in Stereolithography Additive Manufacturing: Bridging Degree of Cure with Tensile Strength and Hardness. *Materials & Design, 162*(15), 418–428.

[58] Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. *Applied Physics Reviews, Vol. 2.*

[59] Yap, Y. L., & Yeong, W. Y. (2014). Additive manufacture of fashion and jewellery products: a mini review. *Virtual and Physical Prototyping, 9*(3), 195–201. https://doi.org/10.1080/17452759.2014.938993

Acknowledgements

This research is supported by the Research Experience for Undergraduates (REU) program, College of Engineering, University of Texas at Arlington (UTA). This research is also supported by the National Science Foundation under Grant No. 1605472. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.