The Genus *Haplophyllum* Juss.: Phytochemistry and Bioactivities—A Review

Majid Mohammadhosseini 1,*, Alessandro Venditti 2, Claudio Frezza 3,*, Mauro Serafini 3, Armandodoriano Bianco 2 and Behnam Mahdavi 4

1 Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
2 Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; alessandro.venditti@gmail.com (A.V.); armandodoriano.bianco@fondazione.uniroma1.it (A.B.)
3 Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; mauro.serafini@uniroma1.it
4 Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran; behnammahdavi@yahoo.com

* Correspondence: majidmohammadhosseini@gmail.com (M.M.); claudio.frezza@uniroma1.it (C.F.)

Abstract: Herein, a comprehensive review is given focusing on the chemical profiles of the essential oils (EOs), non-volatile compounds, ethnobotany, and biological activities of different *Haplophyllum* (Rutaceae family) species. To gather the relevant data, all the scientific databases, including Scopus, ISI-WOS (Institute of Scientific Information-Web of Science), and PubMed and highly esteemed publishers such as Elsevier, Springer, Taylor and Francis, etc., were systematically retrieved and reviewed. A wide array of valuable groups of natural compounds, e.g., terpenoids, coumarins, alkaloids, lignans, flavonoids, and organic acids have been isolated and subsequently characterized in different organic extracts of a number of *Haplophyllum* species. In addition, some remarkable antimicrobial, antifungal, anti-inflammatory, anticancer, cytotoxic, antileishmanial, and antialgal effects as well as promising remedial therapeutic properties have been well-documented for some species of the genus *Haplophyllum*.

Keywords: *Haplophyllum* Juss. genus; Rutaceae; phytochemistry; chemotaxonomy; ethnobotany; bioactivities

1. Introduction

It is evident that herbal and medicinal plants play a vital role on the life of human beings and have unique compartment in their lifestyles. Over the past few decades, a large number of scientific investigations have been carried out on a wide spectrum of herbal plants and these attempts have led to the isolation of a large number of valuable natural compounds in different plant species [1,2]. In reality, medicinal plants are used in different scientific disciplines, from food industries to the fragrance and cosmetics domain, to different medicinal and pharmaceutical approaches [3,4].

Haplophyllum Juss. is a genus of plant species belonging to the Rutaceae family and comprises 160 species of which only two are accepted, i.e., *Haplophyllum dauricum* (L.) G. Don and *Haplophyllum suaveolens* Ledeb., whereas fifty species are considered to be synonyms and one hundred and eight are unresolved names [5].

The etymology of the name derives from the union of two Greek words, ἀπλός (haplous), meaning simple, and φύλλον (phyllon), meaning leaf in the sense of a simple leaf. These terms refer to the fact that the species belonging to this genus are characterized by non-composite leaves.
From a botanical standpoint, these species appear mainly as perennial herbs even if low shrubs also exist. They present cymose and bracteate inflorescences, with petals being variably colored from light white to bright yellow. They have ten stamens and have free filaments which are widely expanded below and are pubescent on the inner surface (Figure 1) [6].

![Figure 1. The photographs of *Haplophyllum suaveolens* Ledeb.](image)

The distribution area of this genus is quite wide, ranging from Morocco and Spain to China and passing through Romania, Somalia, Turkey, Iran, and Central Asia [6]. Additionally, many relevant species are endemic and some even occur in small, unlinked populations. In particular, the latter characteristics concern the Iranian and Central Asian species, and, for this reason, the genus is locally and partially considered to be very susceptible to extinction [7].

In the present review article, we aimed to cover and discuss the available phytochemical knowledge involving the composition of the chemical profiles of *Haplophyllum*’s essential oils (EOs) as well as the characterized non-volatile compounds and their relevant biological activities. This work represents an updating, an extension, as well as a partial modification of the work by Prieto et al. [8] on the phytochemistry and bioactivities of the same genus. To collect the corresponding data, Scopus (date of access: 20 January 2021 and revisited on 06 June 2021), PubMed (date of access: 10 January 2021 and revisited on 05 June 2021), ISI-WOS (date of access: 21 January 2021 and revisited on 05 June 2021), and a number of published reports dealing with different aforementioned aspects were carefully studied. The keywords used for this research were *Haplophyllum*, phytochemistry, ethnobotany, ethnopharmacology, pharmacology, and biological activities, in combination between *Haplophyllum* and the rest of the mentioned keywords, one by one. The systematic research was also conducted considering all the accepted or unresolved names of *Haplophyllum* species, as reported in www.theplantlist.org (accessed date 24 June 2021) [5], alone or in combination with the previous terms, one by one. All the *Haplophyllum* species, now taxonomically considered to be synonyms of other species, as reported in www.theplantlist.org [5], were not taken into consideration for this review. In any case, all the existing works, abiding by these rules, were inserted in spite of the years or types of publications.

2. Phytochemistry

The *Haplophyllum* species have been studied for their phytochemical constituents that regard both the EOs and the polar fraction metabolites.

2.1. Essential oils of *Haplophyllum* species

EOs could be defined as hydrophobic liquid mixtures usually having a lower density of water and comprising versatile natural compounds that are separated using different approaches, e.g., expression, cold press, water-distilled extraction, steam distillation, and numerous microwave-based techniques [9–11]. Within the past few decades, EOs have gained much attention due to their widespread uses in a variety of phytochemical, biological, medicinal, pharmaceutical, and food disciplines as well as in the flavour and
Molecules 2021, 26, 4664 3 of 40

fragrance industry [12,13]. In fact, a large number of reports could be found in the literature highlighting the remarkable potential use of EOs for a wide spectrum of applications [14,15]. Similar to many other herbal genera, Haplophyllum species are considered as valuable sources of secondary metabolites such as EO components. According to the literature, a large number of reports have argued the chemical profiles of the EOs obtained from different organs of Haplophyllum species. Table 1 displays the main compounds identified in the EOs of different Haplophyllum species.

Table 1. Main volatile constituents from different species of Haplophyllum genus worldwide.

Plant species	Main components (%)	Identified compounds	Dominant group	Extraction method	Analysis method	Studied organs	Country	Reference
H. acutifolium (DC.) G. Don	α-Cadinene (25.1%), β-cedrene (19.1%), sabine (8.1%), terpinen-4-ol (5.7%), and 8,14-cedranoxide (5.5%)	0.1 92 97.7	SH b CHD c GC, GC-MS	Aerial parts	Iran [16]			
H. buhsei Boiss.	β-Caryophyllene (12.9%), limonene (9.7%), δ-pinene (7.9%), linalool (7.4%), α-pinene (6.4%), and 1,8-cineole (5.5%)	0.35 36 92.2	MH d CHD GC, GC-MS FAP e	Iran [17]				
H. furfuraceum Bunge	Elemol (11.7%), β-eudesmol (10.1%), 1,8-cineole (9.3%), α-pinene (8.5%), δ-pinene (7.7%), carvophyllene oxide (5.9%), and p-cymene (5.2%)	0.35 33 98.1	MH-OS g CHD GC, GC-MS	Aerial parts	Iran [18]			
H. glaberrimum Bunge	Myrcene (52.9%), elemol (10.6), and β-caryophyllene (8.9%)	0.08 10 93.9	MH CHD GC, GC-MS	Leaves	Iran [19]			
H. laeviusculum C. C. Towns.	β-Pinene (20.1%), α-phellandrene (11.7%), β-caryophyllene (7.6%), myrcene (6.8%), linalool (6.1%), and limonene (5.6%)	NA h 36 95.7	MH CHD GC, GC-MS FAP	Iran [20]				
H. lissonotum C.C. Towns.	Caryophyllene oxide (26.9%), β-caryophyllene (12.2%), humulene epoxide II (8.3%), α-caryophyllene (7.2%), and carvophylla-4(14),8(15)-dien-5β-ol (7.1%)	0.23 50 88.5	OS CHD GC, GC-MS	Aerial parts	Iran [21]			
H. megalanthum Bornm.	Palmito-γ-lactone (45.8%), octadecatrienoic acid (10.7%), linoleic acid	0.1 58 91.7	NH CHD GC, GC-MS FAP	Turkey [22]				
Plant	Molecules	Composition						
-------	-----------	-------------						
H. myrtifolium Boiss.	**PEE**:	(6.5%), octadecatetraenoic acid (6.3%), and nonacosane (4.8%)						
	CEAE:	β-Caryophyllene (14.6%), decane (11.4%), and β-phellandrene (7.0%)						
	SPME:	Havibetol (21.9%), eugenol (19.1%), methyl-eugenol (10.8%), *trans*-linalool oxide (7.1%), and *β*-cyclocitral (6.0%)						
	Linalool:	*Linalool* (12.8%), β-caryophyllene (10.3%), and methyl-eugenol (5.9%)						
H. perforatum Kar. & Kir.	**Aerial parts**:	Sabinene (52.7%), β-caryophyllene (10.8%), *trans*-farnesyl acetone (10.3%), hexadecanoic acid (5.1%), β-pinene (5.0%), and *cis*-sabinene hydrate (4.9%)						
	Flowers:	Sabinene (24.7%), β-caryophyllene (35.6%), elemol (17.4%), α-caryophyllene (4.6%), α-pinene (4.5%), and 1,8-cineole (4.3%)						
	Leaves:	Sabinene (26.2%), β-caryophyllene (8.8%), camphor (7.4%), limonene (6.3%), elemol (5.0%), β-phellandrene (4.9%), and α-pinene (4.6%)						
H. robustum Bunge	**Aerial parts**:	Sabinene (30.5%), β-pinene (18.2%), and limonene (12.1%)						
	Whole plant:	1,8-Cineole (38.1%), myrcene (10.7%), α-pinene (8.5%), terpinen-4-ol (7.0%), and sabinene (6.1%)						
	Leaves:	*cis*-Sabinene hydrate (23.2%), 1,8-cineole (19.1%), γ-terpinene (10.3%), limonene (7.3%), and β-pinene (6.1%)						
	Stems:	1,8-Cineole (27.7%), γ-terpinene (12.2%), *cis*-sabinene hydrate (11.5%),...						
Molecules 2021, 26, 4664								

Flowers								
Limonene (11.1%), and β-pinene (7.7%)								
1,8-Cineole (45.1%), limonene (12.3%), cis-sabinene hydrate (12.0%), γ-terpinene (6.7%), and β-pinene (6.1%)								
1.1 11 89.2								
Fruits								
Limonene (12.3%), cis-sabinene hydrate (12.2%), γ-terpinene (10.1%), and β-pinene (8.7%)								
2.1 12 83.4								
α-Phellandrene (10.7-32.9%), β-caryophyllene (6.3-12.8%), β-pinene (7.6-8.0%), limonene (4.0-9.6%), and δ-3-carene (5.5-6.0%)								
0.5 30 99.2 OM CHD GC, GC-MS Aerial parts Iran [29]								
Linalool (15.0%), linalyl acetate (10.6%), β-caryophyllene (9.7%), and α-terpineol (6.7%)								
0.04 28 77.4 OM CHD Aerial parts Iran [30]								
H. tuberculatum Juss								
Linalool (15.5%), α-pinene (21.9%)								
0.02 40 98.1 CHD								
Linalool (15.5%), α-pinene (7.9%), and limonene (5.3%)								
0.02 40 98.1								
trans-p-Menth-2-en-1-ol (19.2%), cis-p-menth-2-en-1-ol (13.2%), myrcene (10.1%), δ-3-carene (8.8%), β-phellandrene (6.9%), limonene (6.6%), cis-piperitol (6.4%), piperitone (4.1%), and trans-piperitol (4.0%)								
NR 37 96.4 OM CHD GC, GC-MS Aerial parts Iran [33]								
Hexadecanoic acid (40.2%) and oleic acid (26.8%)								
1.54 18 93.5 NH Shoots Tunisia [35]								
Compound	Percentage	Aerial parts	Country	Reference				
----------	------------	--------------	---------	-----------				
2,4-Bis(1,1-dimethylethyl)-phenol	28.3%		Algeria	[36]				
Piperitone	17.8%							
Terpinen-4-ol	3.2%							
Hexadec-1-ene	3.2%							
β-Phellandrene	3.0%							
P-cymene-8-ol	2.9%							
(1E,4E)-Germacrene B	2.1%							
Octadec-1-ene	2.1%							
α-Phellandrene	2.1%							

Compound	Percentage	Aerial parts	Country	Reference
α-Terpinene	26.4%			
β-Terpinene	17.1%			
β-Phellandrene	10.4%			
γ-Terpinene	9.1%			
3,7-Dimethyl-cyclooctadiene	6.0%			
Myrcene	5.7%			

Compound	Percentage	Aerial parts	Country	Reference
cis-p-Menth-2-en-1-ol	16.8%			
trans-p-Menth-2-en-1-ol	16.2%			
trans-piperitol	12.1%			
Limonene	8.1%			
Piperitone	6.7%			
1-Octyl acetate	5.4%			
cis-piperitol	4.9%			

Compound	Percentage	Aerial parts	Country	Reference
Isobornyl acetate	13.8%			
cis-p-Menth-2-en-1-ol	12.4%			
trans-p-Menth-2-en-1-ol	11.2%			
trans-piperitol	9.1%			
Piperitone	8.5%			
1-Octyl acetate	7.4%			
α-Pinene	4.6%			
cis-piperitol	4.0%			

Compound	Percentage	Aerial parts	Country	Reference
Piperitone	9.1%			
1-Octyl acetate	8.8%			
cis-p-Menth-2-en-1-ol	8.7%			
trans-p-Menth-2-en-1-ol	8.2%			
Isobornyl acetate	7.8%			
trans-piperitol	5.5%			
Limonene	5.2%			
Cryptone	4.5%			
α-Pipene	3.9%			

Compound	Percentage	Aerial parts	Country	Reference
2-Nonanone	28.4%			
2-Undecanone	21.5%			
1,8-Cineole	9.5%			
Caryophyllene oxide	6.8%			
Linalool	5.1%			

H. virgatum Spach.

Compound	Percentage	Aerial parts	Country	Reference
2-Nonanone	28.4%			
2-Undecanone	21.5%			
1,8-Cineole	9.5%			

Note: GC-FID, GC-MS, MH, CHD, GG-MS are analytical techniques used for the detection and quantification of these compounds.
Valencene (14.6%), β-pinenone (13.1%), limonene (8.8%), δ-3-carene (8.2%), aromadendrene (8.1%), and piperitone (6.8%).

Table 2 shows the distribution of the main volatile phytochemicals in the *Haplophyllum* spp. essential oils.

Phytochemical class	Phytochemical compound	*Haplophyllum* spp.	References
Monoterpene hydrocarbons	α-Phellandrene	*H. laevisculum* *H. tuberculatum*	[20,31,32,36]
	α-Pinene	*H. buhsei* *H. furfuraceum* *H. perforatum* *H. robustum* *H. tuberculatum*	[17,18,25,27–30,33,38]
	α-Terpinene	*H. robustum* *H. tuberculatum*	[29,37]
	α-Thujene	*H. glaberrimum*	[19]
	β-Ocimene	*H. tuberculatum*	[32]
	β-Phellandrene	*H. myrtifolium* *H. perforatum* *H. tuberculatum*	[23,25,32,34,36,37]
	β-Pinene	*H. buhsei* *H. furfuraceum* *H. laevisculum*	[17,18,20,25,26,28,31,39]
	β-Terpinene	*H. tuberculatum*	[37]
	γ-Terpinene	*H. robustum* *H. tuberculatum*	[28,29,37]
	δ-3-Carene	*H. tuberculatum* *H. virgatum*	[31,34,39]
	p-Cymene	*H. furfuraceum*	[18]
	Cis-sabinene hydrate	*H. perforatum* *H. robustum*	[25,28]
	Isobornyl acetate	*H. tuberculatum*	[38]
	Limonene	*H. buhsei* *H. laevisculum*	[17,20,25,26,28–34,38,39]
Chemical	Species	References	
--------------------------	----------------------------------	---------------------	
Myrcene	H. perforatum, H. robustum, H. tuberculatum, H. virgatum	[19,20,27,32,34,37]	
Sabinene	H. acutifolium, H. perforatum, H. robustum	[16,25–27,29]	
Trans-β-ocimene	H. glaberrimum	[19]	
1-Octyl acetate	H. tuberculatum	[38]	
2,4-Bis(1,1-dimethylethyl)-phenol	H. tuberculatum	[36]	
3,7-Dimethyl-cyclooctadiene	H. tuberculatum	[37]	
(2E,6E)-Farnesyl acetone	H. perforatum	[25]	
2-Nonanone	H. virgatum	[18]	
2-Undecanone	H. virgatum	[18]	
β-Cyclocitral	H. myrtifolium	[23]	
Decane	H. myrtifolium	[23]	
Eugenol	H. myrtifolium	[23]	
Havibetol	H. myrtifolium	[23]	
Hexadec-1-ene	H. tuberculatum	[36]	
Hexadecanoic acid	H. perforatum, H. tuberculatum	[25,35]	
Linoleic acid	H. megalanthum	[22]	
Methyl-eugenol	H. myrtifolium	[23,24]	
Methyl-geranate	H. robustum	[29]	
Nonacosane	H. megalanthum	[22]	
Octadec-1-ene	H. tuberculatum	[36]	
Octadecatrienoic acid	H. megalanthum	[22]	
Octadecatetraenoic acid	H. megalanthum	[22]	
Oleic acid	H. tuberculatum	[35]	
Palmito-γ-lactone	H. megalanthum	[22]	
1,8-Cineole	H. buhsei, H. furfuraceum, H. perforatum, H. robustum, H. virgatum	[17,18,25,27–29,39]	
α-Terpineol	H. tuberculatum	[31]	
p-Cymene-8-ol	H. tuberculatum	[36]	
Camphor	H. perforatum	[25]	
Cis-p-menth-2-en-1-ol	H. tuberculatum	[34,38]	
Cis-piperitol	H. tuberculatum	[34,38]	
Cryptone	H. tuberculatum	[38]	
Linalool	H. buhsei, H. laevisculeum, H. myrtifolium, H. tuberculatum, H. virgatum	[17,18,20,24,31,33]	
Molecule	Species	References	
----------------------------------	----------------------------------	--------------------	
Linalyl acetate	*H. tuberculatum*	[31]	
Piperitone	*H. tuberculatum*	[34,36,38,39]	
	H. virgatum		
Terpinen-4-ol	*H. acutifolium*	[16,27,29,36]	
	H. robustum		
	H. tuberculatum		
Trans-p-menth-2-en-1-ol	*H. tuberculatum*	[34,38]	
Trans-linalool oxide	*H. myrtifolium*	[23]	
Trans-piperitol	*H. tuberculatum*	[34,38]	
8,14-Cedranoxide	*H. acutifolium*	[16]	
	H. furfuraceum	[18]	
	H. furfuraceum		
	H. lissonotum	[18]	
	H. virgatum		
Caryophyllene oxide	*H. acutifolium*		
	H. furfuraceum		
	H. lissonotum	[21]	
	H. virgatum		
Caryophylla-4(14),8(15)-dien-5β-ol	*H. lissonotum*	[21]	
	H. furfuraceum		
	H. glaberrimum	[18,19,25]	
	H. perforatum		
	H. lissonotum		
	H. perforatum		
	H. virgatum		
	H. acutifolium		
	H. furfuraceum		
	H. lissonotum		
	H. virgatum		
	H. lissonotum	[21]	
	H. perforatum	[21,25]	
	H. virgatum	[21]	
	H. acutifolium	[16]	
	H. buhsei		
	H. glaberrimum	[17,19–21,23–25,31,32]	
	H. laevisculum		
	H. lissonotum		
	H. myrtifolium		
	H. perforatum		
	H. tuberculatum		
	H. buhsei		
	H. glaberrimum		
	H. laevisculum		
	H. lissonotum		
	H. myrtifolium		
	H. perforatum		
	H. tuberculatum		

As it can be seen from Tables 2 and 3, the literature data concerning the chemical profiles of the EOs of this valuable medicinal genus are abundant, in particular about its most important species, *H. tuberculatum* (Forssk.) A. Juss. From a general survey of these data, it could be clearly observed that the characterized chemical profiles of this species differ widely from one another. Yet, these profiles were mainly seen to be characterized by the presence of monoterpene hydrocarbons (MH), oxygenated monoterpenes (OM), and non-terpene hydrocarbons (NH). Other reported classes are also sesquiterpene hydrocarbons (SH) and oxygenated sesquiterpenes (OM), even if with minor frequency. This same pattern was also reported in several other species such as two *Hyptis* species (Lamiaceae family) [40], several *Hypericum* species (Hypericaceae family) [41] and *Helichrysum* species (Asteraceae family) [42]. Not all the compounds were reported in all the species. Nevertheless, the most reported compounds were β-caryophyllene and β-pinene [17–21,23,25,26,28,31,32,39], whereas several compounds were identified only in single species.

For what concerns the phytochemical profiles of *H. tuberculatum*, in some reports, the major compounds were limonene, α-pinene, β-pinene, α-phellandrene, β-phellandrene, myrcene, δ-3-carene, β-ocimene, α-terpinene [37], and β- and γ-terpinene [30–33,37],
whereas, in others, the major components were linalool, linalyl acetate, 1,8-cineole, 4-terpineol [37], trans-p-menth-2-en-1-ol, cis- and trans-p-menth-2-en-1-ol, piperitone, and cis- and trans-piperitol [29,31,34,36–38]. As shown in Table 1, for what concerns the volatile fractions and oils from H. myrtifolium specimens, monoterpenes hydrocarbons [23] or non-terpene hydrocarbons were the prevailing groups of natural compounds [23,24]. Monoterpenes hydrocarbons and oxygenated monoterpenes were the main class of constituting compounds of H. robustum Bunge [26–28]. On the other hand, some sporadic reports dealt with the isolation and identification of the volatile essences of other species of the genus Haplophyllum. In accordance with these reports, monoterpenes hydrocarbons were the most abundant compounds in H. glaberrimum, H. virgatum, H. laccivisculum, and H. buhsei [17,19,39], whereas, for H. virgatum, H. buxbaumii, and H. megalanthum, non-terpene hydrocarbons were found in the highest quantities [18,21,22]. H. acutifolium oil consisted mainly of sesquiterpene hydrocarbons [16]. It is also interesting to note that the total amounts of monoterpenes hydrocarbons and oxygenated sesquiterpenes in the H. furfuraceum oil were approximately the same [18]. Lastly, by using the headspace solid phase microextraction (HS-SPME) approach, volatile fractions from the flowers and stems of H. perforatum Kär & Kir. were observed to be mainly composed of monoterpenes hydrocarbons, whereas that of the leaves contained higher quantities of sesquiterpene hydrocarbons [25].

2.2. Polar fraction metabolites of Haplophyllum species

Regarding the non-volatile fraction metabolites, Haplophyllum species biosynthesize compounds belonging to the class of terpenoids, saponins, alkaloids, coumarins, lignans, flavonoids, and organic acids (Table 3 and Figures 2–14).

Table 3. Non-volatile compounds evidenced in Haplophyllum spp.

Plant species	Compounds	Extraction solvent	Analysis method	Studied organs	Country	Reference
H. acutifolium	Haplacutine A,	Ethyl acetate	HPLC-PDA-MS, SPE-NMR, UV and IR	Aerial parts	Iran	[43]
(DC.) G. Don	haplacutine B,					
	haplacutine C,					
	haplacutine D,					
	acutine, haplamine,					
	haplactine E,					
	haplacutine F,					
	2-nonyl-quinolin-4-(1H)-one					
H. acutifolium	Acutine, skimmianine,	Chloroform	CC, UV, TLC, NMR and MS	Epigeal parts	Turkmenistan	[44]
(DC.) G. Don	and acetamide					
Skimmianine and evoxine					Tajikistan	[45]
β-Sitosterol,	Methanol	CC, UV, NMR and MS	Whole plant	Pakistan		[46,47]
cholesterol, oleic acid,						
haplophytin-A,						
haplophytin-B,						
haplotin, flindersine,						
and kusunokinin						
Eudesmin	Ethereal eluates	CC, IR, UV, NMR, and MS	Epigeal parts	Uzbekistan		[46,48]
H. albertiregelii Korovin	Diphyllin	Methanol	CC, IR, UV, NMR, and MS	Epigeal parts	Tajikistan	[49]
H. boissierianum	ECNP	Methanol and ethanol	Phytochemical screening	Aerial parts	Serbia	[50]
----------------	------	----------------------	------------------------	-------------	--------	------
Diphyllin			CC, IR, UV, NMR, and MS	Epigeal parts	Tajikistan	[49]
β-Sitosterol, stigmasterol, campesterol, cholesterol, skimmianine, bucharaine, and 3-dimethylallyl-4-dimethylallyloxy-2-quinoline						
H. bucharicum Litv.	Methanol		MP, CC, and NMR	Uzbekistan (different districts)	[51]	
Diphyllin, 4-acetyl-diphyllin, bucharaine, skimmianine, bucharaminol, bucharidine, 4-hydroxyquinol-2-one, 4-methoxyquinol-2-one and justicidin B						
Skimmianine, dictamnine, γ-fagarine, robustine, haplopine, flindersine, and haplamine						
H. bungei Trautv.	Methanol		HPLC-UV	Leaves Uzbekistan	[53]	
Skimmianine, haplopine, haplamine, γ-fagarine and POCS						
Dictamnine, skimmianine, folimine, robustinine, 4-methoxyquinol-2-one, and haplobungine						
Osthol, 7-(3',3'-dimethylallyloxy)-6-methoxyxoumarin, and 5-hydroxy-7-methoxyxoumarin	Chloroform		MP, IR, and NMR	Epigeal parts Turkmenistan	[55]	
Scopoletin, isoscopoletin, and bungeidiol	N.D.		CC, MP, IR, and NMR	Azerbaizan	[56]	
Species	Compounds	Solvent	Methods	Plant Part	Location	
----------------------------	---	-------------	---------------------------------------	-------------	------------	
H. canaliculatum Boiss.	7-Isopentenyloxy-γ-fagarine, atanine, skimmianine, flindersine, and perfamine	Methanol	CC, HPLC-UV, and NMR	Aerial parts	Iran	[57]
	Isodaurinol, daurinol, justicidin A, justicidin B, diphyllin, matairesinol, dictamine, robustine, haplopine, skimmianine, scopoletin, and seselin		CC, NMR, UV, and MS		Turkey	[58]
H. cappadocicum Spach	(−)-Cappadoside, (−)-cappodicin, and (−)-haplodoside	Ethanol	IR, NMR, MS, and UV	Whole plant	Turkey	[59]
	(−)-haplomyrtoside, (−)-majidine, (−)-lβ-polygamain, and vanillic acid		CC, UV, IR, NMR, and MS		Iran	[60]
	Malatymamine		CC, IR, NMR, and MS		Turkey	[61]
H. dauricum (L.) G. Don	Justicidin B, daurinol, umbelliferone, umbelliferone 7-O-β-D-glucoside, 5,7-dihydroxy-coumarin, and daurosides D	Ripartition in chloroform, CC, IR, UV, NMR, and MS	Epigeal parts	Mongolia	[62]	
	Dauroside A and dauroside B	N.D.	CC, IR, NMR, and MS	Whole plant	N.D.	[63,64]
	Robustine, dictamine, γ-fagarine, haplopine, skimmianine, 4-methoxy-N-methyl-2-quinolone, folimine, robustinin, and daurine	Methanol	CC, UV, IR, NMR, and MS	Roots	Mongolia	[65]
H. dshungaricum Rubtzov	Seselin and xanthyletin	Ethanol	CC, TLC, MP, IR, and NMR	Whole plant	Kazakhstan	[67]
H. dubium Korovin	Scoopoletin, scopolin, haploside B, and haploside D		CC, MP, UV, NMR, and MS	Epigeal parts	Tajikistan	[68]
H. foliosum Vved.	Foliosidine, haplodimerine, skimmianine, N-methyl-2-phenyl-4-	Chloroform	CC, IR, UV, NMR, and MS	Epigeal parts	N.D.	[46]
Molecules	2021, 26, 4644	13 of 40				
-----------	----------------	----------				

| Quinolone, foliosine, and folimine | Methanol | CC, IR, UV, NMR, and MS | Tajikistan [69,70] |
| Isorhamnetin, haploside C, and limocitrin-7-O-β-D-(6′′-O acetyl)-glucoside | Ethanol | CC, UV, NMR, and MS | Kyrgyzstan [71] |

| H. glaberrimum Bunge | ECNP | N.D. | Phytochemical screening | Uzbekistan [72] |
| Skimmianine, dictamnine, dubinine, dubinidine, gerphytine, dubamine, and N-methylhaplofoline | CC, IR, UV, NMR, MS, and X-ray | Whole plant | Uzbekistan [73,74] |

| H. griffithianum Boiss. | Methanol | Skimmianine, dubamine, dubinidine, dictamnine, skimmianine, N-methylhaplofoline, gerphytine, and griffithine | Aerial parts | Uzbekistan [75] |

| H. kowalenskyi Stschegl. | Skimmianine and γ-fagarine | CC and TLC | Epigeal parts | Azerbaijan [77] |

| H. latifolium Kar. & Kir. | Skimmianine, evoxine haplopline, glycopeline, 7-isopentenyloxy-γ-fagarine, haplamine, haplamidine, and haplatine | HPLC-UV | Leaves | Uzbekistan [53] |

| Isorhamnetin and haploside D | CC, MP, UV, NMR, and MS | Tajikistan [68] |
| β-Sitosterol, γ-fagarine, skimmianine, N-methyl-2-phenyl-4-quinolone, and leptomerine | Ethanol | MP, CC, UV, and NMR | Aerial parts | Tajikistan [80] |

| H. leptomerum Lincz. & Vved. | Skimmianine, γ-fagarine, N-methyl-2-phenyl-4-quinolone, acutine, leptomerine, 2- | Methanol | CC, TLC, and NMR | Aerial parts | Tajikistan [81] |
Species	Compounds	Methods	Location	Reference		
H. multicaule	γ-Fagarine and dictamnine	CC, TLC, and NMR	Roots	Tajikistan	[81]	
	β-Sitosterol, seselin and xanthyletin	CC, TLC, IR, NMR, and MP	Whole plant	Kazakhstan	[67]	
H. myrtifolium	Dictamnine, robustine, γ-fagarine, skimmianine, 7-β-polygamain, 7-O-(3-methyl-2-butenyl)-isodaurinol, and chrysosplenetin	Ethanol	Aerial parts	Turkey	[82]	
Haplomyrtin and (−)-haplomeryfolin	CC, TLC, UV, NMR, and MS	Whole plant	Turkey	[83]		
H. pedicellatum	Scopoletin, 6-methoxymarmin, 7-geranyloxy-6-methoxycoumarin, and pedicellone	N.D.	TLC, CC, αD, IR, UV, and NMR	N.D.	N.D.	[84]
	γ-Fagarine, skimmianine, haplopine, haplamine, and POCs	Methanol	HPLC-UV	Leaves	Uzbekistan	[53]
	Skimmianine, γ-fagarine, haplopine, and robustine	CC, IR, UV, and NMR	Epigeal parts	Uzbekistan	[52]	
Haploside A, haploside B, and haploside C	Ethanol	CC, UV, NMR, and MS	Ground parts	Turkmenistan	[71]	
	ECNP	N.D.	TFC methods	Aerial parts	Iran	[72]
H. perforatum	Evoxine, haplopine, haplamine, skimmianine, and haplosamine	CC, IR, UV, NMR, and MS	Epigeal parts	Kazakhstan	[85]	
	Perforine, skimmianine, haplamine, haplopine, bucharaine, haplphyllidine, flindersine, and γ-fagarine	HPLC-UV	Leaves	Uzbekistan	[53]	
	Evoxine, skimmianine, haplphyllidine, anhydroperlorine, flindersine, haplamine, and acetyl-haplphyllidine	CC, IR, UV, NMR, and MS	Aerial parts	Uzbekistan	[86]	
	skimmianine, evoxine, 7-isopentenyloxy-γ-fagarine, perfamine	CC, UV, MP, NMR, and MS	Epigeal parts	Uzbekistan	[87]	
Molecules	Date	Flavonoids	HPLC-UV	Location	Literature	
-----------	------	------------	---------	----------	------------	
flindersine, haplamine, and eudesmin						
Haplosinine, glycopine, glucohaplopine, skimmianine, evoxine, haplamine, and 7-isopentenyloxy-[gamma]-fagarine	CC, MP, NMR, and MS	Romania	[88,89]			
7-Isopentenyloxy-[gamma]-fagarine, skimmianine, evoxine, methylevoxine, glycopine, haplamine, and flindersine	CC, UV, IR, NMR, and MS	Seeds and roots	Tajikistan	[90]		
Diphyllin	CC, IR, UV, NMR, and MS	Tajikistan	[49]			
Scopoletin, scolepetin 7-O-[beta]-D-glucopyranoside, and haploperoside A	Ethanol	CC, UV, alpha, IR, NMR, and MS	Kazakhstan	[91]		
Haploperoside B	Butanol	CC, UV, alpha, IR, NMR, and MS	Epigeal parts	Kazakhstan	[91]	
Haploside A, haploside C, and haploside D	Ethanol	CC, alpha, UV, IR, NMR, and MS	Kazakhstan	[92,93]		
Haploside E, haplogenin, and limocitrin-7-O-[beta]-D-(6''-O-acetyl)-glucoside	Ethanol	CC, alpha, UV, IR, NMR, and MS	Kazakhstan	[94]		
H. ptilosyllum	CC, alpha, UV, NMR, and MS	Aerial parts	Turkey	[95–97]		
Spach	Methanol					
Justicin B, isodaurinol, matairesinol, arctigenin, (-)1-beta-polygaman, 4-[6''''-dihydroxygeranoyl]-matairesinol, 4-isopentylhaploymyrfolin A, 4-isopentylhaploymyrfolin B, picropolygaman, ptilostin, ptilostol, and ptlin						
H. ramosissimum						
(Paulsen) Vved.						
Skimmianine, haplopine, Haplamine, and gamma-fagarine	HPLC-UV	Leaves	Uzbekistan	[53]		
Skimmianine, dictaminine, evoxine,	CC, MP, IR, UV, NMR, and MS	Epigeal parts	Kazakhstan	[98]		
Species	Location	Isolation	Extraction	Phytochemical Analysis	Country	References
-------------------------------	-----------------	------------------------------	-------------	------------------------	-------------	------------
H. robustum Bunge	Iran	ECNP and N.D.	Preliminary qualitative methods	Aerial parts	Iran [72]	
H. schelkovnikovii Grossh.	Azerbaijan	β-Sitosterol, obtusifol, and POCS	Chloroform and methanol	TLC, NMR, and IR	Azerbaijan [99]	
H. sieversii Fisch.	Azerbaijan	Skimmianine and γ-fagarine	Methanol	CC and TLC	Azerbaijan [77]	
H. suaveolens Ledebr.	Turkey	Flindersine, haplamine, anhydroevoxine, and eudesmin	Petroleum ether	CC, TLC, HPLC-UV, NMR, and MS	Aerial parts	Kazakhstan [100]
H. tenue Boiss.	Azerbaijan	Flindersine, γ-fagarine, kokusaginine, and haplomyrtidine	Chloroform and benzene	CC, IR, UV, NMR, and MS	Whole plant	Turkey [95]
H. telephioides Boiss.	Turkey	Flindersine, kokusaginine, skimmianine, pteleine, nkolbisine, haplopline, haplosine, thesiolen, seselin, scoparone, and angustifolin	Chloroform	CC, IR, UV, NMR, and MS	Aerial parts	Turkey [96]
H. thesioides (Fisch. ex DC.) G.Don	Turkey	γ-Fagarine, skimmianine, and evoxine	Hot ethanol	CC, TLC, IR, UV, NMR, and MS	Aerial parts	Turkey [97]
H. tuberculatum Juss.	Saudi Arabia	Flindersine and 3-dimethylallyl-4-dimethylallyloxy-2-quinolone	Dichloromethane	CC, TLC, UV, IR, NMR, and MS	Aerial parts	Saudi Arabia [103]
	Lybia	Tuberine	Petroleum ether and chloroform	CC, IR, UV, NMR, and MS	Lybia [104,105]	
Molecules	2021, 26, 4664					
-----------	----------------					
17 of 40						

As it can be seen from Table 3, not all the *Haplophyllum* species were studied for their non-volatile components. Surely, alkaloids, coumarins, and lignans represent the most represented classes of natural compounds in this genus, having been reported in most of the studies.
them, often together, even if some exceptions are present (i.e., *H. canaliculatum*, *H. kowalenskyi* and *H. tenue*, where only alkaloids were identified [57,77] and *H. dshungaricum*, where only coumarins were identified) [67]. In addition, only for the species *H. alberti-regelii*, one compound was identified [49], whilst for all the others, at least two compounds were identified, even if they belonged to the same phytochemical class. For some species and/or exemplars, the exact compounds were not specified since only a phytochemical screening was performed such as for *H. boissierianum*, *H. glaberrimum*, *H. pedicellatum*, and *H. tuberculatum* from Iran and *H. robustum* and *H. suaveolens* from Serbia [50,72]. The extraction solvents are well-known as well as the analysis methods. Of course, their choice depends on the kind of compounds that need to be extracted from the *Haplophyllum* species. Ethanol proved to be a very effective solvent to extract different classes of compounds, both polar and non-polar, whilst dichloromethane, methanol, *n*-hexane, petroleum ether, chloroform, and ethyl acetate were perfect for extracting compounds such as alkaloids, lignans, and coumarins. For what concerns the studied organs, these are quite general, too, with a prevalence of aboveground organs. Indeed, for what concerns the collection areas of the studied species, the general knowledge of the *Haplophyllum* genus geographical distribution is respected since the majority of them were collected in Asia.

Figure 2. Structure of the terpenoids identified in *Haplophyllum* species.
Figure 3. Structure of the coumarins identified in *Haplophyllum* species—part 1.

Figure 4. Structure of the coumarins identified in *Haplophyllum* species—part 2.
Figure 5. Structure of the alkaloids identified in *Haplophyllum* species—part 1.
Figure 6. Structure of the alkaloids identified in *Haplophyllum* species – part 2.

Figure 7. Structure of the alkaloids identified in *Haplophyllum* species—part 3.
Figure 8. Structure of the alkaloids identified in *Haplophyllum* species—part 4.

Figure 9. Structure of the alkaloids identified in *Haplophyllum* species—part 5.
R₁ = R₃ = H, R₂ = R₄ = Me: eudesmin
R₁ = R₃ = OMe, R₂ = R₄ = H: syringaresinol
R₁ = H, R₂ = R₄ = Me: (-)-cappadoside
R₁ = H, R₂ = R₄ = H: (-)-haplodoside
R₁ = O, R₂ = H: 4-isopentylhaplomyrfolin A
R₁ = H, R₂ = O: 4-isopentylhaplomyrfolin B
R₁ = H: matairesinol
R₁ = Me: arctigenin
R₁ = β-D-Glc, R₂ = Me: (-)-1β-polygamain
R₁ = O, R₂ = H: 1-hydroxy-3-(hydroxymethyl)-6,7-dimethoxy-4-(3,4-methylenedioxyphenyl)-2-naphthoic acid γ-lactone
R₁ = MeO, R₂ = OH: haplomyrfolol

Figure 10. Structure of the lignans identified in *Haplophyllum* species—part 1.

R₁ = β-D-Glc, R₂ = Me: (-)-cappadocin
R₁ = H, R₂ = H: (-)-haplomyrfolin
R₁ = β-D-Glc, R₂ = Me: (-)-haplomyrfolin
R₁ = O, R₂ = H: 4-isopentylhaplomyrfolin A
R₁ = H, R₂ = O: 4-isopentylhaplomyrfolin B
R₁ = H: matairesinol
R₁ = Me: arctigenin

Figure 11. Structure of the lignans identified in *Haplophyllum* species—part 2.
Figure 12. Structure of the lignans identified in *Haplophyllum* species—part 3.

Figure 13. Structure of the flavonoids identified in *Haplophyllum* species.
Table 4 displays the distribution of the phytochemical compounds within the *Haplophyllum* genus.

Table 4. Distribution of the non-volatile phytochemicals in the *Haplophyllum* genus.

Phytochemical class	Phytochemical compound	*Haplophyllum* spp.	References
Alkaloids	2-Heptylquinolin-4-one	*H. leptomerum*	[81]
	2-Nonyl-quinolin-4(1H)-one	*H. acutifolium*	[43]
	3-Dimethylallyl-4-dimethylallyloxy-2-quinoline	*H. bucharicum*	[49,102,103]
	4-Hydroxyquinolin-2-one	*H. bucharicum*	[51]
	4-Methoxyquinolin-2-one	*H. bucharicum*	[51,54]
	4-Methoxy-N-methyl-2-quinolone	*H. dauricum*	[66]
	7-Hydroxy-9-methoxy-flindersine	*H. telephioides*	[96]
	7-Hydroxy-8-(3-methyl-2-butenyl)-4-methoxyfuro2,3b-quinoline	*H. tuberculatum*	[103]
Alkaloids	7-Isopentenylxylo-γ-fagarine	*H. canaliculatum*	[57,78,87,89,90]
	γ-Fagarine	*H. bucharicum*	[51–53,66,77,80–82,95,101,108,111]
		H. bungei	
		H. dauricum	
		H. kowalenskyi	
		H. leptomerum	
		H. myrtifolium	
		H. pedicellatum	
		H. perforatum	
		H. ramosissimum	
		H. schelkovnikovii	
		H. suaveolens	
		H. tenue	
		H. tuberculatum	
Molecules	**N-methyl-2-phenyl-4-quinolone**	**H. vulcanicum**	
-----------	----------------------------------	------------------	
	N-methylhaplofoline	**H. foliosum**	
		H. leptomerum	
	(+)-Dihydroperfamine	**H. griffithianum**	
	Acutine	**H. acutifolium**	
		H. leptomerum	
	Anhydroevoxine	**H. sieversii**	
	Anhydroperlorine	**H. perforatum**	
		H. sieversii	
	Acetyl-haplophyllidine	**H. perforatum**	
	Atanine	**H. canaliculatum**	
	Bucharaine	**H. bucharicum**	
		H. perforatum	
	Bucharaminol	**H. bucharicum**	
	Bucharidine	**H. bucharicum**	
	Daurine	**H. dauricum**	
	Dictamnine	**H. bucharicum**	
		H. dauricum	
		H. cappadocicum	
		H. griffithianum	
		H. leptomerum	
		H. myrtifolium	
		H. ramosissimum	
		H. vulcanicum	
	Dubamine	**H. griffithianum**	
	Dubininene	**H. griffithianum**	
	Dubinidine	**H. foliosum**	
		H. griffithianum	
	Edulinine	**H. foliosum**	
	Evoxine	**H. acutifolium**	
		H. griffithianum	
		H. latifolium	
		H. perforatum	
		H. ramosissimum	
		H. tuberculatum	
	Flindersine	**H. acutifolium**	
		H. bucharicum	
		H. canaliculatum	
		H. griffithianum	
		H. perforatum	
		H. sieversii	
		H. suaveolens	
		H. thesioides	
		H. tuberculatum	
	Folidine	**H. foliosum**	
	Folifine	**H. bucharicum**	
	Folimine	**H. bucharicum**	

[43, 80, 81, 70, 73, 75, 76, 82, 96, 97, 100, 102]
Compound	Species	References
Foliosidine	*H. foliosum*	[46,69]
Foliosine	*H. foliosum*	[46,70]
Gerphytine	*H. griffithianum*	[74,75]
Glucohaplopine	*H. perforatum*	[89,90]
Glycoperine	*H. perforatum*	[89]
Griffithine	*H. griffithianum*	[75]
Haplaglutine A	*H. acutifolium*	[43,44]
Haplaglutine B	*H. acutifolium*	[43]
Haplaglutine C	*H. acutifolium*	[43]
Haplaglutine D	*H. acutifolium*	[43]
Haplaglutine E	*H. acutifolium*	[43]
Haplaglutine F	*H. acutifolium*	[43]
Haplamide	*H. latifolium*	[78]
Haplamilidine	*H. latifolium*	[78]
Haplamine	*H. acutifolium*; *H. bucharicum*; *H. bungei*; *H. latifolium*; *H. pedicellatum*; *H. perforatum*; *H. ramosissimum*; *H. sieversii*	[43,51,53,78,85-87,89,90,100]
Haplatine	*H. latifolium*	[79]
Haplobungine	*H. bungei*	[54]
Haplodimerine	*H. foliosum*	[46]
Haplophyllidine	*H. perforatum*; *H. suaveolens*	[53,86,95]
Haplophytin-A	*H. bucharicum*; *H. bucharicum*; *H. cappadocicum*; *H. dauricum*; *H. latifolium*; *H. pedicellatum*; *H. perforatum*; *H. ramosissimum*; *H. thesioides*; *H. vulcanicum*	[51–53,58,66,78,85,97,111]
Haplosamine	*H. perforatum*	[85]
Haplosinine	*H. perforatum*; *H. thesioides*	[88,97]
Haplotin	*H. acutifolium*	[46]
Haplotubine	*H. tuberculatum*	[107]
Haplotubinone	*H. tuberculatum*	[107]
Haplophytin-A	*H. acutifolium*	[47]
Haplophytin-B	*H. acutifolium*	[47]
Kokusaginine	*H. suaveolens*; *H. thesioides*	[95,97]
Leptomerine	*H. leptomerum*	[80,81]
Molecules 2021, 26, 4664		

Malatyamine	H. cappadocicum [61]	
Methylevoxine	H. perforatum [90]	
Nigdenine	H. vulcanicum [111]	
Nkolbisine	H. thesioides [97]	
Perfamine	H. canaliculatum H. perforatum [57,87]	
Perforine	H. perforatum [53]	
Pteleine	H. thesioides [97]	
Robustine	H. bucharicum H. cappadocicum H. dauricum H. myrtifolium H. pedicellatum H. vulcanicum [51,52,58,66,82,111]	
Robustinine	H. bungei H. dauricum [54,62]	
Skimmianine	H. acutifolium H. bucharicum H. bungei H. canaliculatum H. cappadocicum H. dauricum H. foliosum H. griffithianum H. kowalenskyi H. latifolium H. leptomerum H. myrtifolium H. pedicellatum H. perforatum H. ramosissimum H. schelkunovii H. tenue H. thesioides H. tuberculatum H. vulcanicum [44-46,49,51-54,57,58,66,73,74,77,78,80-82,85-87,89,90,97,98,101,106,108,111]	
Tubacetine	H. tuberculatum [103]	
Tubasenecine	H. tuberculatum [103]	
Tuberine	H. tuberculatum [104,105]	
Vulcainine	H. vulcanicum [112]	

Coumarins

5,7-Dihydroxy-coumarin	H. dauricum [62]
5-Hydroxy-7-methoxycoumarin	H. bungei [55]
6-Methoxyarmin	H. pedicellatum [84]
7-(3',3'-Dimethylallyloxy)-6-methoxycoumarin	H. bungei [55]
7-Geranyloxy-6-methoxycoumarin	H. pedicellatum [84]
Ammoidin	H. tuberculatum [108]
Angustifolin	H. thesioides [97]
Bungeidiol	H. bungei [56]
Daurosode A	H. dauricum [63,64]
Daurosode B	H. dauricum [63,64]
Molecules	2021, 26, 4664	29 of 40
Dauroside C	*H. dauricum*	[65]
Dauroside D	*H. dauricum*	[60]
Haploperoside A	*H. perforatum*	[91]
Haploperoside B	*H. perforatum*	[91]
Isoscopoletin	*H. bungel*	[56]
Obtusifol	*H. schelkovikovi*	[99]
Osthole	*H. bungel*	[55]
Pedicellone	*H. pedicellatum*	[84]
Ptilin	*H. ptilosyllum*	[96,97]
Ptilostin	*H. ptilosyllum*	[96,97]
Ptilostol	*H. ptilosyllum*	[96,97]
Scoparone	*H. ramosissimum* *H. thesioides*	[97,98]

Scopoletin

Scopoletin 7-O-β-D-glucopyranoside	*H. perforatum*	[91]
Scopolin	*H. dubium*	[68]
Seselin	*H. cappadocicum* *H. dauricum* *H. dubium* *H. pedicellatum* *H. perforatum*	
Yhesiolen	*H. thesioides*	[97]
Umbelliferone	*H. dauricum* *H. vulcanicum*	
Umbelliferone 7-O-β-D-glucoside	*H. dauricum*	[62]
Xanthyletin	*H. dshungaricum* *H. multicaule*	[67]

5,7,4’-Trihydroxy-6-methoxy-3-O-glucosyl flavone

5,7,4’-Trihydroxy-6-methoxy-3-O-glucosyl flavone	*H. tuberculatum*	[106]
Chrysospleninetin	*H. myrtifolium*	[82]
Haplogenin	*H. perforatum*	[94]
Haploside A	*H. pedicellatum* *H. perforatum*	[71,102]
Haploside B	*H. dauricum* *H. dubium* *H. pedicellatum*	[65,68,71]
Haploside C	*H. foliosum* *H. pedicellatum* *H. perforatum*	[71,93]
Haploside D	*H. dauricum* *H. dubium* *H. leptomerum* *H. perforatum*	[65,68,93]
Haploside E	*H. perforatum*	[94]
Isorhamnetin	*H. foliosum*	[68,71]

Flavonoids
Compound	Species
Limocitrin-7-O-β-D-(6‴-O acetyl)-glucoside	*H. leptomerum*
1-Hydroxy-3-(hydroxymethyl)-6,7-dimethoxy-4-(3,4-methylenedioxyphenyl)-2-naphthoic acid γ-lactone	*H. perforatum*
4-[6‴,7‴-Dihydroxygeranoyl]-matairesinol	*H. tuberculatum*
4-Acetyl-diphyllin	*H. bucharicum*
	H. telephioides
4-Isopentylhaplomyrfolin A	*H. ptilosyllum*
4-Isopentylhaplomyrfolin B	*H. ptilosyllum*
7-O-(3-Methyl-2-butenyl)-isodaurinol	*H. myrtifolium*
(-)-lβ-Polygamain	*H. cappadocicum*
	H. myrtifolium
	H. ptilosyllum
(-)-Cappodicin	*H. cappadocicum*
(-)-Cappadoside	*H. cappadocicum*
(-)-Haplodoside	*H. cappadocicum*
(-)-Haplomyrfolin	*H. myrtifolium*
	H. vulcanicum
(-)-Haplorytidosine	*H. cappadocicum*
(-)-Majidine	*H. cappadocicum*
(-)-Secoisolariciresinol	*H. tuberculatum*
Acetyl-tuberculatin	*H. tuberculatum*
	[110]
Arctigenin	*H. ptilosyllum*
	[95,96]
Daurinol	*H. cappadocicum*
	H. dauricum
Lignans	
Eudesmin	*H. acutifolium*
	H. perforatum
	H. sieversii
	[46,48,87,100]
Haplomyrtin	*H. myrtifolium*
	H. telephioides
	[82,96]
Haplomyrfolol	*H. vulcanicum*
	[111]
Isodaurinol	*H. cappadocicum*
	H. ptilosyllum
	[58,95,96]
Justicidin A	*H. cappadocicum*
	H. tuberculatum
	[58,103,106,110]
Justicidin B	*H. bucharicum*
	H. cappadocicum
	H. dauricum
	H. ptilosyllum
	H. tuberculatum
	[51,58,62,95,96,103,110]
Konyanin	*H. vulcanicum*
	[112]
As it can be seen from Table 3, the distribution of the compounds is not equable in all the *Haplophyllum* species. Alkaloids have been reported as the most representative compounds in the genus, and they are also of the utmost importance from a chemosystematic standpoint [114]. Skimmianine is the most reported compound of this class in the genus, followed by γ-fagarine [44–46,49,51–54,57,58,66,73,75,77,78,80–82,85–87,89,90,95,97,98,101,106,108,111]. Coumarins were also quite present in the *Haplophyllum* genus, in particular scopoletin [56,58,62,68,84,91,98,111]. Coumarins also present chemosystematic relevance in the Rutaceae family [115]. Our results fully confirm this aspect.

Flavonoids are widespread secondary metabolites in the plant kingdom with specific functions and in less cases, they have chemotaxonomic relevance. Some of these are rare derivatives with peculiar functionalizations such as that observed for the 8-hydroxyflavone acetylated glycosides that own a restricted distribution among some genera of the Lamioideae subfamily of Lamiales, e.g., *Pogostemon*, *Sideritis*, *Stachys*, and *Galeopsis* [116–121]. In these genera, isoscutellarein and hypolaetin glycosides have been recognized with glucose and allose as saccharidic moieties. Similarly, it seems that the presence of acetylated 8-hydroxyflavone derivatives related to haplogenin might have a chemotaxonomic relevance given that they represent quite common compounds in the *Haplophyllum* genus. The functionalizations in these 8-hydroxyflavone derivatives involved the presence of glucose and rhamnose as saccharidic units like in haplosides A, B, C, D and limocitrin-7-0-β-D-(6′′-O acetyl)-glucoside [65,68,71,93,94]. In fact, haplosides B and D have been observed in *H. dauricum*, which is one of the few accepted species in the genus, but compounds related to haploside have also been recognized in other *Haplophyllum* species which are of unresolved classifications [65,68,71,93]. Further studies on the phytochemistry of other *Haplophyllum* spp. with a problematic classification are desirable in the future since the distribution of these flavonoids might be of help for their correct classification. The other classes of natural compounds observed in the *Haplophyllum* genus were triterpenoids with β-sitosterol as the major compound [47,49,67,80,99] and lignans with diphyllin as the major compound [49,51,58,65,96,106,111] together with some phenolic acid derivatives. These classes have little chemotaxonomic

	H. acutifolium	*H. bucharicum*	*H. leptomerum*	*H. multicaule*	*H. schelkovnikovii*
Kusunokinin	**H. vulcanicum**	[47,111]			
Matairesinol	*H. cappadocicum*	[58,95,96]			
Picropolygamain	*H. ptilosyllum*	[95,96]			
Syringarasinol	*H. vulcanicum*	[111]			
Tuberculatin	*H. tuberculatum*	[110]			
N-(2-Phenylethyl)-benzamide	*H. tuberculatum*	[107]			
Others	**Acetamide**	*H. acutifolium*	[44]		
Benzamide	*H. bucharicum*	[52]			
Ferulic acid	*H. foliosum*	[70]			
Vanillic acid	*H. cappadocicum*	[60]			
Terpenoids	**β-Sitosterol**	*H. acutifolium*	[47,49,67,80,99]	*H. bucharicum*	*H. leptomerum*
Campesterol	*H. bucharicum*	[49]			
Cholesterol	*H. acutifolium*	[47,49]			
Oleanolic acid	*H. acutifolium*	[47]			
Stigmasterol	*H. bucharicum*	[49]			
relevance since they can be biosynthesized by many other plant genera and species such as those belonging to the Araucariaceae [4], Lamiaceae [122], and Orobanchaceae [123] families. Yet, the presence of ferulic acid from H. foliosum [69] should be underlined since it is the biogenetic precursor of coumarins. In addition, it is noteworthy that several lignans have been described for the first time in Haplophyllum, and these compounds might have a chemotaxonomic relevance. However, further studies are still necessary to confirm this hypothesis.

3. Ethnobotany and biological activities

The use of many Haplophyllum species in traditional medicine has a long history in several countries of the world due to their significant pharmacological activities. In the subsections, the specific ethnobotanical uses and pharmacological properties of Haplophyllum species are presented and discussed as well as the pharmacological studies carried out on its components.

3.1. H. acutifolium

The paste derived from its whole plant is used in the Iranian northern region of Turkmen Sahra to treat dermal wounds and inflammations [124]. Its ethanolic extract has been reported to be highly and moderately active as cytotoxic agent against RAMOS, MCF-7, and U937 cancer cell lines with IC50 values equal to 23.7, 83.5, and 55.9 µg/mL, respectively. This effect is most probably due to the high presence of alkaloids in this plant [125]. In addition, two of its constituents, the alkaloids acutine and haplacutine E, isolated by preparative-scale HPLC, exhibited moderate antiplasmodial activities with IC50 values equal to 2.17 µM and 3.79 µM, respectively [43]. Eudesmin isolated from this species also showed good germicidal activity against Candida albicans, Aspergillus flavus, Salmonella typhi, Klebsiella pneumonia, and Fusarium oxysporum, with growth inhibition percentages well above 50% [46]. Indeed, haplotyn-A, one of its other constituents, showed medium germicidal activity against Candida albicans, Salmonella typhi, and Klebsiella pneumonia, with growth inhibition percentages between 30 and 40%, except for K. pneumonia, where the value was found to be 51% [46].

3.2. H. canalicatum

The methanolic extract of H. canalicatum from Iran exhibited moderate cytotoxic activities against several cancer cell lines, e.g., HepG-2, MCF-7, MDBK, WEHI, and A-549, with IC50 values higher than 50 µg/mL [126]. This effect has been observed to be mainly due to the quinolinone alkaloids reported in this species. In fact, 7-isopentenyloxy-γ-fagarine, atanine, skimmianine, flindersine, and perfamine were singularly tested for their cytotoxic properties against several cancer cell lines, i.e., HepG-2, MCF, KG-1a, RAJI, and JURKAT, and showed good results. In this context, 7-isopentenyloxy-γ-fagarine was found to be the most active, with IC50 values against JURKAT, RAJI, and MCF-7 of 3.6, 1.5, and 15.5 µg/mL, respectively. These values are below the positive control of doxorubicin. In addition, the other compounds have proved to be active even if with a moderate effect. Atanine was found to be more powerful than doxorubicin only against JURKAT (IC50 = 9.3 µg/mL). Instead, skimmianine, flindersine, and perfamine were always less potent than doxorubicin against each tested cancer cell line [125]. In addition to this, two other alkaloids isolated from this species, namely acutine and haplacutine E, showed moderate in vitro antiplasmodial activity against chloroquine-sensitive PfC (3D7 strain), with IC50 values of 2.17 and 3.79 µM, respectively [43].

3.3. H. myrtifolium

H. myrtifolium is used to treat warts, herpes, lichens, erysipelas, diarrhea, and some types of tumors such as testicular cancer [125]. Moreover, its ethanolic extract was found to be a potent antileishmanial agent against the species Leishmania tropica, with an IC50...
value of 10.9 µg/mL [127]. The same effect was also observed for two of its alkaloid constituents, i.e., skimmianine and γ-fagarine, which showed IC₅₀ values equal to 25.7 and 8.7 µg/mL, respectively [127]. Moreover, the aerial parts of this species extracted using several solvents proved to possess strong α-glucosidase and α-amylase activities as well as strong anti-acetyl cholinesterase and antidiabetic properties [128].

3.4. *H. perforatum*

H. perforatum Kar & Kir. displayed good antimicrobial activities against *Bacillus subtilis*, *Klebsiella pneumoniae*, *Morganella morganti*, and *Staphylococcus aureus* [129]. Moreover, a paste prepared from the aerial parts of *H. perforatum* Kar & Kir. is used by the local people in the Southern regions of Shiraz, Iran, to relieve severe toothaches [130]. It is also noteworthy that the methanolic extract of the leaves of *H. perforatum* Kar & Kir. has potent antifungal activity against *Botrytis cinerea* and *Alternaria solani*. The percentages of growth inhibition were found to be 76.32 and 55.44%, respectively [131]. Indeed, the alkaloids perforine and khaplamine isolated from this species grown in Azerbaijan have been reported to have sedative action [132].

3.5. *H. sieversii*

Two different crude extracts of the aerial parts of *H. sieversii* (petroleum ether and water) were found to have antifungal activity against *Colletotrichum acutatum* Simmonds, *C. fragariae* Brooks, and *C. gloeosporioides* (Penz.) Penz. and Sacc., with inhibition zone diameters below 10 mm [100]. Flindersine and haplamine showed antialgal activity against *Oscillatoria perornata* Skuja with IC₅₀ values, after 24 h, equal to 15.9 and 1.8 µM, respectively. These two compounds were found to be also active against *Selenastrum capricornutum* even if with lower IC₅₀ values (17.8 and 15.9 µM, respectively). Haplamine was also found to be active against *Pseudanabaena LW397* having an IC₅₀ value of 2.0 µM after 24 h [100].

3.6. *H. tuberculatum*

H. tuberculatum has been used in Saudi Arabia for the cure of rheumatoid arthritis, malaria, headaches, and some gynecological problems, as well as to remove warts and freckles from the skin and to treat skin discoloration, infections, and parasitic diseases [133,134]. It is also used in Sudan and Mongolia for the treatment of diarrhea and as an antipyretic agent [135]. In Sudan, the herb is also employed as an anti spasmodic, to treat allergic rhinitis, gynecological disorders, asthma, and breathing difficulties [136]. In Algeria, it has been used as an antiseptic, calming, vermifuge, and hypnotic neurological and against injuries, ulcers, infertility, diabetes, bloating, fever, liver diseases, otitis, rheumatism, obesity, constipation, colon, diarrhea, gases, hypertension, menstrual pains, cardiac diseases, scorpion stings, flu, vomiting, throat inflammation, tonsillitis, cough, and loss of appetite [137]. In the northern regions of Oman, the juice made with the leaves has been used to treat headaches and arthritis for many years [138]. In Egypt, the flowering parts are used as a drink to treat fever, abdominal upset, anemia, gastric pains, intestinal worms, malaria, and as an aphrodisiac, while its decoction is used for rheumatic pains [139]. Moreover, its ethanolic extract was observed to have high cytotoxic activities against RAMOS, U937, MCF-7, LNCap-FGC-10, 5637, and RPMI-8866 cancer cell lines. The relative IC₅₀ values were 25.3, 29.3, 57.2, below 7.81, 23.3, and 31.8 µg/mL, respectively. This effect is mainly due to its alkaloid content [125]. The same extract is also able to exhibit strong antimicrobial, anti-inflammatory and antifungal effects [136]. A strong effect was also observed for the essential oil derived from the aerial parts against *Aedes aegypti*. In particular, as reported, this oil could kill 100 % of its larvae at 250 and 125 ppm [34]. In addition, a medium germicidal effect was observed for the same essential oil against several *Candida* spp., *Alternaria alternata*, *Curvularia lunata*, *Fusarium oxysporium*,
Stemphylium solani, and Aspergillus flavus with MIC values below 1 mg/mL [32]. Indeed, against Escherichia coli, Staphylococcus aureus, Salmonella choleraesuis, and Bacillus subtilis, the inhibition zone diameters were 17.6, 6.7, 17.3, and 12.3 mm, respectively. The n-hexane extract of this species also showed medium antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, with inhibition zone diameters of 12, 10, and 16 mm, respectively. The chloroform and methanol extracts were active, in this sense, only against Pseudomonas aeruginosa, with inhibition zone diameters of 11 and 17 mm, respectively [35]. The main responsible compounds for this seem to be the alkaloids and the lignans. The essential oil is also able to exhibit good antioxidant activities against lung carcinoma H1299 cell lines, with an IC50 value equal to 4.7 µg/mL [37]. The aqueous extract of the leaves has also antispasmodic effects [140]. Additionally, one of its constituents, the alkaloid tuberine, has shown high anti-microbial activity against Bacillus subtilis and Saccharomyces cerevisiae at the concentration of 1 µg/mL [141]. Another alkaloid constituent, dihydroperfamine, was found to have strong anxiolytic effects [103]. Indeed, one of its lignans, 1-hydroxy-3-(hydroxymethyl)-6,7-dimethoxy-4-(3,4-methylenedioxyphenyl)-2-naphthoic acid γ-lactone, has shown good selective antitumor effects against the human lung cancer cell lines H-125M, with inhibition zone units equal to 700 [109]. Lastly, its lignans justicidin A, justicidin B, tuberculatin, and acetyl-tuberculatin possess strong cytotoxic effects against A375 cancer cell lines with GI50 values equal to 25, 17, 3, and 3 µM, respectively [110]. Unfortunately, it is quite important to highlight that the species is severely threatened and is at the verge of extinction in some countries [142].

3.7. Other species

The lignan diphyllin, isolated from H. bucharicum, exhibited strong antileishmanial activity, especially against intracellular amastigote forms (IC50 = 0.2 µM), while it did not show remarkable activity against the promastigote forms (IC50 = 14.4 µM). Moreover, it possesses moderate antiproliferative effects on human monocytes, with an IC50 value of 35.2 µM [143].

H. dauricum is employed mainly in Mongolia as an antitumor agent [144], especially because of its coumarin content [145]. In addition, one of its lignan components, daurinol, has shown remarkable cytotoxic properties (IC50 below 20 µM), being a potential catalytic inhibitor of topoisomerase IIα and acting at the S phase, thus not causing DNA or RNA damages [146,147].

H. leptomerum is used in Uzbekistan for its cytotoxic activities [148], mainly due to one of its constituents, the alkaloid dictamine, which is able to exhibit strong cytotoxic effects against the human cancer cell lines, e.g., HeLa and HCT-116, with IC50 values equal to 65.0 and 85.0 µM, respectively [81].

H. pedicellatum has shown to possess antimicrobial activity against Pseudomonas aeruginosa [129].

The lignan 1β-polygamain from H. ptilosyllum showed strong cytotoxic activity (IC50 = 111.7 pg/mL) against HIV-1 [95].

The infusion of H. robustum whole plant is frequently used in the Iranian northern region of Maraveh Tappeh against dermal wounds as a beverage, thus acting from the inside [149].

The ethanolic extract of H. stapfianum Hand.-Mazz. displayed high cytotoxic properties against RAMOS, U937, and LNCap-FGC-10 cancer cell lines (IC50 values are equal to 12.3, 15.6, and 28.3 µg/mL, respectively), as well as a moderate activity against the 5637 and MCF-7 cancer cell lines (IC50 values are equal to 23.3 and 92.6 µg/mL, respectively). These effects are thought to be due to its alkaloid content, but no precise phytochemical analysis has been conducted on this species up to present [125].

H. telephioideis is used in some areas of Turkey to treat flu [150].

H. tenue ethanolic extract and EO showed high radical scavenging activity, with IC50 values equal to 103.88 and 101.98 pg/mL, respectively. In addition, the ethanolic extract
showed strong antimicrobial activity against Clostridium perfringens (IC₅₀ = 16 pg/mL) [151].

Lastly, the ethanolic extract of H. viridulum Soják from Iran displayed moderate cytotoxic activities against RAMOS and U937 cancer cell lines, with IC₅₀ values of 48.3 and 79.0 µg/mL, respectively) [125].

4. Conclusions

In the current review paper, the literature data have been systematically reviewed and different aspects relating to the numerous Haplophyllum species have been discussed. From a phytochemical point of view, a large number of bioactive natural compounds, both volatile and non-volatile, have been characterized. In addition, as discussed earlier, the ethnobotanical knowledge of Haplophyllum species is valuable, and these species are widely prescribed in the traditional medicine of many countries, in particular in the Middle East. The other aspect of Haplophyllum which deserves more attention is the growing interest to study the potential biological activities of its species. In this sense, Haplophyllum species, as well as their bioactive compounds, are able to exhibit many pharmacological activities, among which the cytotoxic, antiviral, antifungal and antimicrobial are the most important. However, it should be underlined that further investigations are still required to confirm the real therapeutic potentials of these species and to represent their remarkable phytochemical and biological potency. Summarizing, the tabulated and argued data in the current review paper can attract the attention of the scientific community towards the Haplophyllum species and prompt researchers in phytochemical, pharmaceutical, and related areas to design and develop more attempts on these valuable herbal plants.

Author Contributions: Conceptualization: M.M.; data collection: M.M., A.V., and C.F.; writing: M.M., A.V., C.F., M.S., A.B., and B.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mohammadhosseini, M. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crop Prod. 2017, 105, 164–192.
2. Mohammadhosseini, M.; Venditti, A.; Sarker, S.D.; Nahar, L.; Akbarzadeh, A. The genus Ferula: Ethnobotany, phytochemistry and bioactivities – A review. Ind. Crop Prod. 2019, 129, 350–394.
3. Mohammadhosseini, M.; Frezza, C.; Venditti, A.; Akbarzadeh, A. Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 2019, 23, 1828–1842.
4. Frezza, C.; Venditti, A.; De Vita, D.; Toniole, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M.; Bianco, A.; Serafini, M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family – a review. Plants 2020, 9(888), 1-73.
5. The Plant List. Available online: www.theplantlist.org. (accessed on 24 June 2021).
6. Townsend, C. Taxonomic Revision of the Genus Haplophyllum (Rutaceae), Hooker’s Icones Plantarum. Bentham-Moxon Trust, Kent, U.K. 1986.
7. Salvo, G.; Manafzadeh, S.; Gahremaninejad, F.; Tojibaev, K.; Zeltner, L.; Conti, E. Phylogeny, morphology, and biogeography of Haplophyllum (Rutaceae), a species-rich genus of the Irano-Turanian floristic region. Taxon 2011, 60, 513–527.
8. Prieto, J.M.; Haplophyllum, A. Juss, a rich source of bioactive natural principles. In: Bitterlich, A., Fischl, S., editors. Bioactive Compounds: Types, Biological Activities and Health Effects [Internet]. New York: Nova Science Publishers; 2012, pp. 341–380.
9. Nekoei, M.; Mohammadhosseini, M. Application of HS-SPME, SDME and cold-press coupled to GC/MS to analysis the essential oils of Citrus sinensis CV. Thomson Navel and QSRR study for prediction of retention indices by stepwise and genetic algorithm–multiple linear regression approaches. Anal. Chem. Lett. 2014, 4, 93–103.
10. Hashemi-Moghaddam, H.; Mohammadhosseini, M.; Azizi, Z. Impact of amine- and phenyl-functionalized magnetic nanoparticles impacts on microwave-assisted extraction of essential oils from root of Berberis integerrima Bunge. J. Appl. Res. Med. Aromat. Pl. 2018, 10, 1–8.

11. Hashemi-Moghaddam, H.; Mohammadhosseini, M.; Salar, M. Chemical composition of the essential oils from the hulls of Pistacia vera L. by using magnetic nanoparticle-assisted microwave (MW) distillation: Comparison with routine MW and conventional hydrodistillation. Anal. Methods 2014, 6, 2572–2579.

12. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idamoar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46(2), 446–475.

13. Shaaban, H.A.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24(2), 203–212.

14. Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Use of essential oils in bioactive edible coatings: A review. Food Engng. Res. 2011, 3, 1-16.

15. Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Alqubaisy, M.; Al Ali, M.; Molouki, A.; Xiong, D.; Li, K.-S.; Lim, S.E. An overview of the potential therapeutic applications of essential oils. Molecules 2021, 26(628), 1-27.

16. Asli, J.; Fard, M.R.; Ahl, A.; Emami, S.A. Chemical composition of the essential oil from aerial parts of Haplophyllum acutifolium (DC.) G. Don from Iran. J. Essent. Oil-Bear. Pl. 2011, 14, 201–207.

17. Azadi, B.; Khaef, S. Volatile constituents of Haplophyllum buchsi Boiss. flowering aerial parts. Bull. Chem. Soc. Ethiopia 2015, 29, 327–330.

18. Bamonieri, A.; Safaei-Ghomi, J.; Asadi, H.; Batooli, H.; Masoudi, S.; Rustaiyan, A. Essential oils from leaves, stems, flowers and roots of Haplophyllum glabrum Bge ex Boiss from central Iran by nano scale injection. Dig. J. Nanomater. Biostruct. 2010, 5, 169–172.

19. Azadi, B.; Khaef, S. The essential oil composition of Haplophyllum laeviscolum C. C. Towns. aerial parts. J. Chem. Pharm. Res. 2014, 6, 1002–1005.

20. Javidnia, K.; Miri, R.; Soltani, M.; Varamini, P. Volatile constituents of two species of Haplophyllum a. Juss. from Iran [H. lissometum C. Town. and H. luehmanni (Poir.) G. Don. Subsp. Mesopotamicum (Boiss.) C. Town.] J. Essent. Oil Res. 2009, 21, 48–51.

21. Unver-Somer, N.; Kaya, G.I.; Sarikaya, B.; Oncu, M.A.; Ozdemir, C.; Demirci, S., Sup, B., Baser, K.H.C. Composition of the essential oil of endemic Haplophyllum melaglanthus Bornm. from Turkey. Rec. Nat. Prod. 2012, 6, 80–83.

22. Saglam, H.; Gozler, T.; Kivcak, B.; Demirci, B.; Baser, K.H.C. Volatile compounds from Haplophyllum myrtifolium. Chem. Nat. Compd. 2001, 37, 442–444.

23. Saglam, H.; Gozler, T.; Kivcak, B.; Demirci, B.; Baser, K.H.C. Composition of the essential oil of Haplophyllum myrtifolium. Chem. Nat. Compd. 2001, 37, 439–441.

24. Mohammadhosseini, M.; Nekoei, M.; Hashayekhi, H.A.; Aboli, J. Chemical composition of the essential oil from flowers, leaves and stems of Haplophyllum perforatum by using head space solid phase microextraction. J. Essent. Oil-Bear. Pl. 2012, 15, 506–515.

25. Masoudi, S.; Rustaiyan, A.; Azar, F.A. Essential oil of Haplophyllum robustum Bge. from Iran. J. Essent. Oil Res. 2004, 16, 548–549.

26. Gholivand, M.B.; Rahimi-Nasrabadiab, M.; Batoolic, H.; Samimid, H. Chemical composition and antioxidant activity of the essential oil and various parts of Haplophyllum robustum Bge. Nat. Prod. Res. 2012, 26, 883–891.

27. Bamonini, A.; Mirjalili, B.F.B.; Mazoochi, A.; Naemini, H.; Golchin, H.; Batooli, H. Study of the bioactive and fragrant constituents extracted from leaves and aerial parts of Haplophyllum glabrum Bge ex Boiss by nano scale injection. Dig. J. Nanomater. Biostruct. 2010, 5, 169–172.

28. Al Yousuf, M.H.; Bashir, A.K.; Veres, K.; Dobos, A.; Nagy, G.; Mathé, I.; Blunden, G.; Vera, J.R. Essential oil of Haplophyllum tuberculatum (Forssk.) A. Juss. from the United Arab Emirates. J. Essent. Oil Res. 2005, 17, 519–521.

29. Al-Burtamani, S.K.S.; Fatope, M.O.; Marwah, R.G.; Onifade, A.K.; Al-Saidi, S.H. Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J. Ethnopharmacol. 2005, 96, 107–112.

30. Javidnia, K.; Miri, R.; Banani, A. Volatile oil constituents of Haplophyllum tuberculatum (Forssk.) A. Juss. (Rutaceae) from Iran. J. Essent. Oil Res. 2006, 18, 355–356.

31. Al-Rehaily, A.J.; Alqasoumi, S.I.; Yusufoglu, H.S.; Al-Yahya, M.A.; Demirci, B.; Tabanca, N.; Wedge, D.E.; Demirci, F.; Bernier, U.R.; Becnel, J.J.; Temel, H.E.; Baser, K.H.C. Chemical composition and biological activity of Haplophyllum tuberculatum Juss. essential oil. J. Essent. Oil-Bear. Pl. 2014, 17, 452–459.

32. Deboub, M.; Khemakhem, B.; Zouari, S.; Meskine, A.; Gouia, H. Chemical and biological activities of Haplophyllum tuberculatum organic extracts and essential oil. J. Essent. Oil-Bear. Pl. 2014, 17, 787–796.

33. Mechehoud, Y.; Chalard, P.; Figuérédo, G.; Marchioni, E.; Benayache, F.; Benayache, S. Chemical composition of the essential oil of Haplophyllum tuberculatum (Forssk.) L.A. Juss. from Algeria. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 1416–1419.

34. Sabry, O.M.M.; Sayed, A.M.E.; Alshalmani, S.K. GC/MS analysis and potential cytotoxic activity of Haplophyllum tuberculatum essential oils against lung and liver cancer cells. Pharmacog. J. 2016, 8, 66–69.
43. Hamdi, A.; Majouli, K.; Vander Heyden, Y.; Flamini, G.; Marzouk, Z. Phytotoxic activities of essential oils and hydroxols of Haplophyllum tuberculatum. *Ind. Crop Prod.* 2017, 97, 440–447.

44. Karimi, F.; Yousefzadi, M.; Mirjalili, M.H.; Rahmani, N.; Zaeifi, M. Chemical composition of the essential oil of Haplophyllum virgatum var. virgatum from Iran. *Chem. Nat. Comps.* 2013, 49, 148–149.

45. Conti, B.; Canale, A.; Cioni, P.L.; Flamini, G.; Rifici, A. *Hyptis suaveolens* and *Hyptis spicigera* (Lamiaceae) essential oils: Qualitative analysis, contact toxicity and repellent activity against *Sitophilus granarius* (L.) (Coleoptera: Dryophthoridae). *J. Pest. Sci.* 2011, 84, 219–228.

46. Rouis, Z.; Laamari, A.; Abid, N.; Elaissi, A.; Cioni, P.L.; Flamini, G.; Aouni, M. Essential oils and volatile emission of eight South African species of *Helichrysum* grown in uniform environmental conditions. *South Afr. J. Bot.* 2019, 124, 178–187.

47. Stäerk, D.; Kesting, J.R.; Sairafianpour, M.; Witt, M.; Asili, J.; Emami, S.A.; Jaroszewski, J.W. Accelerated dereplication of crude extracts using HPLC-PDA-MS-SPE-NMR: Quinolinone alkaloids of *Haplophyllum acutifolium*. *Phytochemistry* 2009, 70, 1055–1061.

48. Razzakova, D.M.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of *Haplophyllum acutifolium*. *Chem. Nat. Comps.* 1975, 9, 199–202.

49. Sadikov, Y.I.; Hojimatov, M. Alkaloids of *Haplophyllum acutifolium* (DC) G. Don. *Fil. Plant Resour.* 1988, 24, 77–81.

50. Ali, M.S.; Fatima, S.; Pervez, M.K. Haplotin: A new furanoquinoiline from *Haplophyllum acutifolium* (Rutaceae). *J. Chem. Soc. Pak.* 2008, 30, 775–779.

51. Ali, M.S.; Pervez, M.K.; Saleem, M.; Tareen, R.B. *Haplophytin-A* and *B*: The alkaloidal constituents of *Haplophyllum acutifolium*. *Phytochemistry* 2001, 57, 1277–1280.

52. Razzakova, D.M.; Bessonova, I.A.; Yunusov, S.Y. Eudesmin – A lignane from *Hypericum* species from Tunisia. *Parasitol. Res.* 2013, 112, 699–705.

53. Najar, B.; Cervelli, C.; Ferri, B.; Cioni, P.L.; Pistelli, L. Essential oils and volatile emission of eight South African species of *Helichrysum* grown in uniform environmental conditions. *South Afr. J. Bot.* 2019, 124, 178–187.

54. Stäerk, D.; Kesting, J.R.; Sairafianpour, M.; Witt, M.; Asili, J.; Emami, S.A.; Jaroszewski, J.W. Accelerated dereplication of crude extracts using HPLC-PDA-MS-SPE-NMR: Quinolinone alkaloids of *Haplophyllum acutifolium*. *Phytochemistry* 2009, 70, 1055–1061.

55. Razzakova, D.M.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of *Haplophyllum acutifolium*. *Chem. Nat. Comps.* 1975, 9, 199–202.

56. Sadikov, Y.I.; Hojimatov, M. Alkaloids of *Haplophyllum acutifolium* (DC) G. Don. *Fil. Plant Resour.* 1988, 24, 77–81.

57. Ali, M.S.; Fatima, S.; Pervez, M.K. Haplotin: A new furanoquinoiline from *Haplophyllum acutifolium* (Rutaceae). *J. Chem. Soc. Pak.* 2008, 30, 775–779.

58. Ali, M.S.; Pervez, M.K.; Saleem, M.; Tareen, R.B. *Haplophytin-A* and *B*: The alkaloidal constituents of *Haplophyllum acutifolium*. *Phytochemistry* 2001, 57, 1277–1280.

59. Razzakova, D.M.; Bessonova, I.A.; Yunusov, S.Y. Eudesmin – A lignane from *Hypericum* species from Tunisia. *Parasitol. Res.* 2013, 112, 699–705.

60. Najar, B.; Cervelli, C.; Ferri, B.; Cioni, P.L.; Pistelli, L. Essential oils and volatile emission of eight South African species of *Helichrysum* grown in uniform environmental conditions. *South Afr. J. Bot.* 2019, 124, 178–187.
73. Kodirova, D.R.; Rasulova, K.A.; Abdullaev, N.D.; Bobakulov, K.M. Alkaloids from the plant Haplophyllum griffithianum. Chem. Nat. Compd. 2011, 47, 856–857.
74. Kodirova, D.R.; Rasulova, K.A.; Turgunov, K.K.; Tashkhodzhaev, B.; Bobakulov, K.M.; Abdullaev, N.D. Gerphytine, a new furanoquinoline alkaloid from Haplophyllum griffithianum. Chem. Nat. Compd. 2011, 47, 773–776.
75. Rasulova, K.A.; Kodirova, D.R.; Bobakulov, K.M.; Abdullaev, N.D. Griffithine, a new furanoquinoline alkaloid from: Haplophyllum griffithianum. Chem. Nat. Compd. 2015, 51, 743–745.
76. Kodirova, D.R.; Rasulova, K.A.; Sagdullaev, S.S.; Aisa, H.A. Haplophyllum griffithianum as a source of quinoline alkaloids. Chem. Nat. Compd. 2018, 54, 213–214.
77. Isayev, Y.I.; Bessenova, I.A. Alkaloids of Haplophyllum schelkovnikovii, H. villosum, H. tenuae and H. kowalenskyi. Chem. Nat. Compd. 1974, 6, 815.
78. Nesmelova, E.F.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of Haplotuberculatum and haplamidine. Chem. Nat. Compd. 1978, 14, 637–639.
79. Nesmelova, E.F.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of Haplophyllum latifolium the structure and synthesis of haplamine and haplamidine. Chem. Nat. Compd. 1978, 14, 645–650.
80. Akhmedzhanova, V.I.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of Haplophyllum leptomerum. I. The structure of leptomerine. Chem. Nat. Compd. 1986, 22, 78–79.
81. Akhmedzhanova, V.I.; Angenot, L.; Shakirov, R.S. Alkaloids from Haplophyllum leptomerum. Chem. Nat. Compd. 2010, 46, 502–503.
82. Sağlam, H.; Gözler, T.; Gözler, B. A new prenylated arylnaphthalene lignan from Haplophyllum myrtifolium. Fitoterapia 2003, 74, 564–569.
83. Evcim, U.; Gozler, B.; Freyer, A.J.; Shamma, M. Haplomyrtin and (-)-haplomyrfolin: Two lignans from Haplophyllum myrtifolium. Phytochemistry 1986, 25, 1949–1951.
84. Kuznetsova, G.A.; Gashimov, N.F. The structure of a new coumarin from Haplophyllum pedicellatum. Chem. Nat. Compd. 1974, 8, 649.
85. Rasulova, K.A.; Bessonova, I.A. Alkaloids of Haplophyllum perforatum. Chem. Nat. Compd. 1995, 31, 487–488.
86. Bessonova, I.A.; Acetylhaplophyllidine, A new alkaloid from Haplophyllum perforatum. Chem. Nat. Compd. 1999, 35, 589–590.
87. Razakova, D.M.; Bessonova, I.A.; Abdullaeva, K.A.; Yunusov, S.Y. Components of Haplophyllum perforatum. Chem. Nat. Compd. 1983, 19, 377–378.
88. Rasulova, K.A.; Bessonova, I.A.; Yagudaev, M.R.; Yunusov, S.Y. Haplosine – A new furanoquinoline glycoalkaloid from Haplophyllum perforatum. Chem. Nat. Compd. 1987, 23, 731–734.
89. Abdullaeva, K.A.; Bessonova, I.A.; Yunusov, S.Y. Alkaloids of Haplophyllum perforatum. II. Chem. Nat. Compd. 1978, 14, 179–182.
90. Rasulova, K.A.; Bessonova, I.A. Alkaloids of Haplophyllum perforatum. Chem. Nat. Compd. 1992, 28, 214–216.
91. Yuldashev, M.P.; Batirov, E.K.; Malikov, V.M. Coumarin glycosides of Haplophyllum perforatum. Chem. Nat. Compd. 1980, 16, 125–128.
92. Batirov, E.K.; Malikov, V.M. Haploside A – A new acetylated flavonol glycoside from Haplophyllum perforatum. Chem. Nat. Compd. 1980, 16, 242–245.
93. Batirov, E.K.; Yuldashev, M.P.; Khushbatkova, Z.A.; Syrov, V.N.; Malikov, V.M. Flavonoids of Haplophyllum perforatum. Structure and hypoglycemic activity of haploside C. Chem. Nat. Compd. 1987, 23, 54–57.
94. Yuldashev, M.P.; Batirov, E.K.; Malikov, V.M. Flavonoids of Haplophyllum perforatum. New glycosides of limocitrin. Chem. Nat. Compd. 1985, 21, 179–182.
95. Ulubelen, A.; Gil, R.R.; Cordell, G.A.; Meričić, A.H.; Meričić, F. Cytotoxic lignans from Haplophyllum species. Pure Appl. Chem. 1994, 66, 2379–2382.
96. Ulubelen, A.; Meričić, A.H.; Meričić, F.; Kaya, Ü. An alkaloid and lignans from Haplophyllum telephoides. Phytochemistry 1994, 35, 1600–1601.
97. Ulubelen, A.; Meričić, A.H.; Meričić, F.; Sonmez, U.; İlarslan, R. Alkaloids and coumarins from Haplophyllum thesioides. Nat. Prod. Lett. 1993, 1, 269–272.
98. Bessonova, I.A.; Kurbanov, D.; Yunusov, S.Y. Components of Haplophyllum ramosissimum. Chem. Nat. Compd. 1989, 25, 39–40.
99. Abyshev, A.Z.; Denisenko, P.P.; Isayev, N.Y.; Kerimov, Y.B. Coumarins of Haplophyllum schelkovnikovii. Chem. Nat. Compd. 1979, 14, 564–565.
100. Cantrell, C.L.; Schrader, K.K.; Mamonov, L.K.; Sitpaeva, G.T.; Kustova, T.S.; Dunbar, C.; Wedge, D.E. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 2005, 53, 7741–7748.
101. Al-Shamma, A.; Al-Douri, N.A.; Phillipson, J.D. Alkaloids of Haplophyllum tuberculatum from Iraq. Phytochemistry 1979, 18, 1417–1419.
102. Lavie, D.; Danieli, N.; Weitman, R.; Glotter, E.J.T. A new quinoline type alkaloid from Haplophyllum tuberculatum (Rutaceae). Tetrahedron 1968, 24, 3011–3018.
103. Al-Yahya, M.A.; El-Domiati, M.M.; Al-Meshal, I.A.; Al-Said, M.S.; El-Feraly, F.S. (+)-Dihydroperamide: An alkaloid from Haplophyllum tuberculatum. Int. J. Pharm. 1991, 29, 268–272.
104. McPhail, A.T.; McPhail, D.R.; Al-Said, M.S.; El-Domiati, M.M.; El-Feraly, F.S. Revision of the stereochemistry of (+)-tuberine, an alkaloid from Haplophyllum tuberculatum. Phytochemistry 1990, 29, 3055–3057.
105. Sheriha, M.G.; Abou Amer, M.K., Lignans of Haplophyllum tuberculatum. Phytochemistry 1984, 23, 151–153.
106. Khalid, S.A.; Waterman, P.G. Alkaloid, lignan and flavonoid constituents of *Haplophyllum tuberculatum* from Sudan. *Planta Med.* 1981, 43, 148–152.

107. Al-Rehaily, A.J.; Al-Howiriny, T.A.; Ahmad, M.S.; Al-Yahya, M.A.; El-Feraly, F.S.; Hufford, C.D.; McPhail, A.T. Alkaloids from *Haplophyllum tuberculatum*. *Phytochemistry* 2001, 57, 597–602.

108. Ali, A.-S.; Ekbal, A.-K.; Enas, J.; Diar, A. Qualitative and quantitative investigations of furocoumarin derivatives (psoralens) of *Haplophyllum tuberculatum* (Rutaceae). *AIPS* 2005, 2, 24–36.

109. Youssef, D. Lignans from the aerial parts of *Haplophyllum tuberculatum* (Forssk) A. Juss. *Bull. Pharm. Sci., Assiut Univ.* 2005, 28, 261–267.

110. Al-Qathama, A.; Gibbons, S.; Prieto, J.M. Differential modulation of Bax/Bcl-2 ratio and onset of caspase-3/7 activation induced by derivatives of Justicidin B in human melanoma cells A375. *Oncotarget* 2017, 8(56), 95999–96012.

111. Gözler, B.; Rentsch, D.; Gözler, T.; Ünver, N.; Hesse, M. Lignans, alkaloids and coumarins from *Haplophyllum vulcanicum*. *Phytochemistry* 1996, 42, 695–699.

112. Gözler, T.; Gözler, B.; Linden, A.; Hesse, M. Vulcanine, a β-carboline alkaloid from *Haplophyllum vulcanicum*. *Phytochemistry* 1996, 43, 1425–1426.

113. Waterman, P.G. Alkaloids of the rutaceae: Their distribution and systematic significance. *Biochem. Syst. Ecol.* 1975, 3, 149–180.

114. Tomas-Barberan, F.A.; Gil, M.I.; Ferreres, F.; Tomasolorente, F. Flavonoid p-coumaroylglucosides and 8-hydroxyflavone alloxyglycosides in some Labiatae. *Phytochemistry* 1992, 31, 3097–3102.

115. Venditti, A.; Bianco, A.; Frezza, C.; Serafini, M.; Giacomello, G.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Lucarini, D.; Papa, F.; Maggi, F. Secondary metabolites, glandular trichomes and biological activity of *Sideritis montana* L. subsp. *montana* from Central Italy. *Chem. Biodivers.* 2016, 13 1380–1390.

116. Venditti, A.; Bianco, A.; Maggi, F.; Nicoletti, M. Polar constituents composition of endemic *Sideritis italica* (MILL.) GREUTER et BURTER from Central Italy. *Nat. Prod. Res.* 2013, 27, 1408–1412.

117. Venditti, A.; Bianco, A.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Vitali, L.A.; Papa, F.; Vittori, S.; Petrelli, D.; Bini, L.M.; Giuliani, C.; Maggi, F. Characterization of secondary metabolites, biological activity and glandular trichomes of *Stachys lymphaea* Hauskn. from the Monti Sibillini National Park (Central Apennines, Italy). *Chem. Biodivers.* 2014, 11, 245–261.

118. Venditti, A.; Frezza, C.; Maggi, F.; Lupidi, G.; Bramucci, M.; Quassinti, L.; Giuliani, C.; Cianfaglione, K.; Papa, F.; Serafini, M.; Bianco, A. Phytochemistry, micromorphology and bioactivities of *Ajuga chamaepitys* (L.) Schreb. (Lamiaceae, Ajugoidea): Two new harpagide derivatives and an unusual iridoid glycosides pattern. *Fitoterapia* 2016, 113, 35–43.

119. Varamini, P.; Doroudchi, M.; Mosaddegh, M. Polar constituents composition of *Galeopsis augustifolia* Ehrh. ex Hoffm. *Nat. Prod. Res.* 2005, 17, 412–416.

120. Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of *Lamiaceae*. *Stud. Nat. Prod. Chem.* 2019, 62, 125–178.

121. Frezza, C.; Venditti, A.; Toniolo, C.; De Vita, D.; Serafini, I.; Ciccola, A.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Fodda, S.; Guiso, M.; Nicoletti, M.; Bianco, A.; Serafini, M.; *Pedicularis* L. genus: Systematics, botany, phytochemistry, chemotaxonomy, ethnopharmacology, and other. *Plants* 2019, 8(306), 1-62.

122. Ghorbani, A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran:(Part 1): General results. *J. Ethnopharmacol.* 2005, 102, 58–68.

123. Varamini, P.; Doroudchi, M.; Mohagheghzadeh, A.; Soltani, M.; Ghaderi, A. Cytotoxic evaluation of various tumor cell lines. *Pharm. Biol.* 2007, 45, 299–302.

124. Esmaeili, S.; Hamzeloog-Moghadam, M.; Ghaffari, S.; Mosaddegh, M. Cytotoxic activity screening of four *Haplophyllum* species with various tumor cell lines. *Res. J. Pharmacog.* 2014, 1, 19–25.

125. Özcan, I.; Sağlam, H.; Limoncu, M.E.; Ertabaklar, H.; Toz, S.O.; Özbilgin, Y. In vitro and in vivo activities of *Haplophyllum myrtifolium* against *Leishmania tropica*. *New Microbiol.* 2017, 30, 439–445.

126. Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of *Haplophyllum vulcanicum* Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. *Ind. Crop. Prod.* 2014, 53, 244–251.

127. Bazzaz, B.; Harrizadeh, G. Screening of Iranian plants for antimicrobial activity. *Pharm. Biol.* 2003, 41, 573–583.

128. Ahmadiipur, S.; Mohsenzadeh, A.; Ahmadiipur, S.; Eftekhar, Z.; Tajeddini, P. Ethnobotanical identification of medicinal plants effective on toothache in Shiraz, South Iran. *Pharm. Lett.* 2015, 7, 419–426.

129. Bahrameinjad, S.; Amiri, R.; Abbasi, S. Anti-fungal properties of 43 plant species against *Alternaria solani* and *Botrytis cinerea*. *Arch. Phytopathol. Plant. Protect.* 2015, 48, 336–344.

130. Satriddinov, F.; Kurmukov, A. Pharmacology of the vegetable compounds and their uses in medicine, Tashkent, Uzbekistan, 1980.

131. Al-Yahya, M.A.; Al-Rehaily, A.J.; Ahmad, M.S.; Al-Said, M.S.; El-Feraly, F.S.; Hufford, C.D. New alkaloids from *Haplophyllum tuberculatum*. *J. Nat. Prod.* 1992, 55, 899–903.

132. Ulubelen, A.; Öztürk, M. Alkaloids, coumarins and lignans from *Haplophyllum* species. *Rec. Nat. Prod.* 2008, 2(3), 54-69.
135. Ali, M.B.; Mohamed, A.H.; Bashir, A.K.; Salih, A.M. Pharmacological investigation of *Haplophyllum tuberculatum*. *Int. J. Pharm.* 1992, 30, 39–45.

136. Raissi, A.; Arbabi, M.; Roustakhiz, J.; Hosseini, M. *Haplophyllum tuberculatum*: An overview. *J. Herbmed Pharmacol.* 2016, 5, 125–130.

137. Hadjadj, S.; Bayoussif, Z.; El Hadji-Khelil, A.O.; Beggat, H.; Bouhafs, Z.; Boukaka, Y.; Khalidi, I.A.; Mimouni, S.; Sayah, F.; Tey, M. Ethnobotanical study and phytochemical screening of six medicinal plants used in traditional medicine in the Northeastern Sahara of Algeria (area of Ouargla). *J. Med. Pl. Res.* 2015, 9, 1049–1059.

138. Al-Snafi, A.E. Pharmacological importance of *Haplophyllum* species grown in Iraq – a review. *IOSR J. Pharm.* 2018, 8, 54–62.

139. Batanouny, K.; Aboutaleb, E.; Shabana, M.; Soliman, F. Plants of potential medicinal value, wild medicinal plants in Egypt. Academy of Scientific Research Technology, Egypt. The World Conservation Union, Switzerland, Swiss, 1999.

140. Tanira, M.; Ali, B.; Bashir, A.; Wasi, I.; Chandranath, I. Evaluation of the relaxant activity of some United Arab Emirates plants on intestinal smooth muscle. *J. Pharm. Pharmacol.* 1996, 48, 545–550.

141. Tsetlin, A.; Niconov, G.; Shvarev, I.; Pimenov, M. Antitumor activity of natural coumarins. *J. Rastit. Resur.* 1965, 1, 507.

142. Kang, K.; Oh, S.H.; Yun, J.H.; Jho, E.H.; Kang, J.H.; Batsuren, D.; Tunsag, J.; Park, K.H.; Kim, M.; No, C.W. A novel topoisomerase inhibitor, daurinol, suppresses growth of HCT116 cells with low hematological toxicity compared to etoposide. *Neoplasia* 2011, 13, 1043–1057.

143. Egamberdieva, D.; Mamedov, N.; Ovidi, E.; Tiezzi, A.; Craker, L. Phytochemical and pharmacological properties of medicinal plants from Uzbekistan: A review. *J. Med. Active Pl.* 2017, 5, 59–75.

144. Mirdeilami, S.Z.; Barani, H.; Mazandarani, M.; Heshmati, G.A. Ethnopharmacological survey of medicinal plants in Maraveh Tappeh Region, North of Iran. *Iran. J. Plant Physiol.* 2011, 2, 327–338.

145. Tekin, M.; Eruygur, N. The structural studies on the medicinal plant *Haplophyllum telephioides*. *Braz. J. Pharmacogn.* 2016, 26, 544–552.

146. Eskandari, N.; Farjam, M.H.; Joukar, M. Comparative evaluation of antimicrobial and antioxidant activity of essential oil and ethanolic extract of *Haplophyllum tenue* Boiss and *Dalbergia sissoo*. *Adv. Environ. Biol.* 2014, 175-180.