Monash Time Series Forecasting Archive

Rakshitha Godahewaa*, Christoph Bergmeira, Geoffrey I. Webba, Rob J. Hyndmanb, Pablo Montero-Mansoc

aDepartment of Data Science and Artificial Intelligence, Monash University, Melbourne, Australia
bDepartment of Econometrics & Business Statistics, Monash University, Melbourne, Australia
cUniversity of Sydney, Australia

Abstract

Many businesses and industries nowadays rely on large quantities of time series data making time series forecasting an important research area. Global forecasting models that are trained across sets of time series have shown a huge potential in providing accurate forecasts compared with the traditional univariate forecasting models that work on isolated series. However, there are currently no comprehensive time series archives for forecasting that contain datasets of time series from similar sources available for the research community to evaluate the performance of new global forecasting algorithms over a wide variety of datasets. In this paper, we present such a comprehensive time series forecasting archive containing 20 publicly available time series datasets from varied domains, with different characteristics in terms of frequency, series lengths, and inclusion of missing values. We also characterise the datasets, and identify similarities and differences among them, by conducting a feature analysis. Furthermore, we present the performance of a set of standard baseline forecasting methods over all datasets across eight error metrics, for the benefit of researchers using the archive to benchmark their forecasting algorithms.

Keywords: global time series forecasting, benchmark datasets, feature analysis, baseline evaluation

1. Introduction

Accurate time series forecasting is important for many businesses and industries to make decisions, and consequently, time series forecasting is a popular research area, lately in particular in machine learning. A good benchmarking archive is essential for the growth of machine learning research (Tan et al., 2020). Researchers gain the opportunity to perform a rigorous evaluation of their newly proposed machine learning algorithms over a large number of datasets when there is a proper benchmarking archive available. The University of California Irvine (UCI) repository (Dua and Graff, 2017) is the most common and well-known benchmarking archive used in general machine learning, and it has supported the
development of many state-of-the-art algorithms. The UCI repository currently contains 507 datasets from various domains.

In time series classification, there exist two well-known publicly available dataset archives: University of California Riverside (UCR) repository (Dau et al., 2019) and University of East Anglia (UEA) repository (Bagnall et al., 2018). The UCR repository was first released in 2002 with 16 datasets and at present, the number of datasets is 128, containing datasets of non-normalised time series, of varying lengths, and time series with missing values (Dau et al., 2019). The UCR repository contains only univariate time series datasets. Therefore, recently a group of researchers from UEA released the first multivariate time series classification archive which is known as UEA repository (Bagnall et al., 2018). Currently, it contains 30 datasets containing equal length multivariate time series without any missing values. Furthermore, Tan et al. (2020) recently released the first time series extrinsic regression archive containing 19 multi-dimensional time series datasets.

On the other hand, there are many time series forecasting competitions which have advanced the field. The most popular forecasting competition series is the M-competition series (Makridakis et al., 1982; Makridakis and Hibon, 2000; Makridakis et al., 2018, 2020a). The latest competition of this series was the M5 competition (Makridakis et al., 2020b) which is the fifth iteration of the series, and finished in July 2020. Other well-known forecasting competitions include the NN3 and NN5 Neural Network competitions (Ben Taieb et al., 2012), the CIF 2016 competition (Štěpnička and Burda, 2017), and Kaggle competitions such as the Wikipedia web traffic (Google, 2017) and Rossmann sales forecasting (Kaggle, 2015) competitions. The winning approaches of many of these competitions such as the winning method of the M4 forecasting by Smyl (2020) and the winning method of the M5 forecasting competition based on gradient boosted trees, consist of global forecasting models (Januschowski et al., 2020) which train a single model across all series that need to be forecast. Compared with local models, global forecasting models have the ability to learn cross-series information during model training and can control model complexity and overfitting on a global level (Montero-Manso and Hyndman, 2020). By now, many works have shown the superior performance of global models over per-series models in many situations (Bandara et al., 2020; Hewamalage et al., 2020; Montero-Manso and Hyndman, 2020; Flunkert et al., 2017; Trápero et al., 2015; Godahewa et al., 2020b,a,c).

This can be seen as a paradigm shift in forecasting. Over decades, single time series were seen as a dataset that should be studied and modelled in isolation. Nowadays, we are oftentimes interested in global models built on sets of series from similar sources, such as series which are all product sales from a particular store, or series which are all smart meter readings in a particular city or state. Here, time series are seen as an instance in a dataset of many time series, to be studied and modelled together.

Though in the time series forecasting space there are a number of benchmarking archives, they follow the paradigm of single series as datasets, and consequently contain mostly unrelated single time series such as the Time Series Data Library (Hyndman and Yang, 2018), ForeDeCk (Forecasting & Strategy Unit, 2019), the datasets of the M3 and M4 forecasting competitions, and others. These archives are of limited use to evaluate the performance of global forecasting models that typically are designed for, and perform better on, sets of series.
from similar sources (a notable exception from the rule being here ES-RNN by Smyl (2020),
the winning method of the M4 competition). There are currently no comprehensive time
series forecasting benchmarking archives, to the best of our knowledge, that focus on such
datasets of related time series to evaluate the performance of such global forecasting algo-
rithms. Our aim is to address this limitation by introducing such an archive. In particular,
our paper has the following main contributions.

• We introduce the first comprehensive time series forecasting archive containing datasets
 of related time series, available at https://forecastingdata.org/.
 This archive contains 20 publicly available time series datasets, with both equal and variable
 lengths time series. Many datasets have different versions based on the frequency and the
 inclusion of missing values, making the total number of dataset variations to 50. Further-
 more, it includes both real-world and competition time series datasets covering
 varied domains.

• We introduce a new format to store time series data, based on the Weka ARFF file
 format (Paynter et al., 2008) and overcoming some of the shortcomings we observe
 in the .ts format used in the sktime time series repository (Löning et al., 2019). We
 use a .tsf extension for this new format. This format stores the meta-information
 about a particular time series dataset such as dataset name, frequency and inclusion
 of missing values as well as the series specific information such as starting timestamps,
 in a non-redundant way. The format is very flexible and capable of including any other
 attributes related to time series as preferred by the users.

• We analyse the characteristics of different series to identify the similarities and differ-
 ences among them. For that, we conduct a feature analysis using tsfeatures (Hyndman
 et al., 2020) and catch22 features (Lubba et al., 2019) extracted from all series of all
 datasets. The extracted features are publicly available for further research use.

• We evaluate the performance of a set of baseline forecasting models including both tra-
 ditional univariate forecasting models and global forecasting models over all datasets
 across eight error metrics. The forecasts and evaluation results of the baseline meth-
 ods are publicly available for the benefits of researchers that use the repository to
 benchmark their forecasting algorithms.

• Finally, all implementations related to the forecasting archive including code for load-
 ing the datasets into the R and Python environments and code for feature calcula-
 tions and evaluation of baseline forecasting models are publicly available at: [https://
 github.com/rakshitha123/TSForecasting](https://github.com/rakshitha123/TSForecasting).

We also encourage other researchers to contribute time series datasets to our repository
either by directly uploading them into the archive and/or by contacting the authors via email.
The remainder of this paper is organised as follows: Section 2 explains the datasets in the
archive. Section 3 explains the details of the feature analysis. Section 4 presents results of
the baseline forecasting models over the datasets across eight error metrics. Finally, Section
5 concludes the paper.
2. Datasets

This section details the datasets in our time series forecasting archive. The current archive contains 20 time series datasets. Furthermore, the archive contains in addition 6 single very long time series. As a large amount of data oftentimes renders machine learning methods feasible compared with traditional statistical modelling, and we are not aware of good and systematic benchmark data in this space either, these series are included in our repository as well. A summary of all primary datasets included in the repository is shown in Table 1.

A total of 50 datasets have been derived from these 26 primary datasets. Nine datasets contain time series belonging to different frequencies and the archive contains a separate dataset per each frequency. Seven of the datasets have series with missing values. The archive contains 2 versions of each of these, one with and one without missing values. In the latter case, the missing values have been replaced by using an appropriate imputation technique.

Dataset	Domain	No: of Series	Min. Length	Max. Length	No: of Freq.	Missing	Competition
M1	Multiple	1001	15	150	3	No	Yes
M3	Multiple	3003	20	144	4	No	Yes
M4	Multiple	100000	19	9933	6	No	Yes
Tourism	Tourism	1311	11	333	3	No	Yes
NN5	Banking	111	791	791	2	Yes	Yes
CIF 2016	Banking	72	34	120	1	No	Yes
Web Traffic	Web	145063	803	803	2	Yes	Yes
Solar	Energy	137	52560	52560	2	No	No
Electricity	Energy	321	26304	26304	2	No	No
London Smart Meters	Energy	5560	288	39648	1	Yes	No
Wind Farms	Energy	339	6345	527040	1	Yes	No
Car Parts	Sales	2674	51	51	1	Yes	No
Dominick	Sales	115704	28	393	1	No	No
FRED-MD	Economic	107	728	728	1	No	No
San Francisco Traffic	Transport	862	17544	17544	2	No	No
Pedestrian Counts	Transport	66	576	96424	1	No	No
Hospital	Health	767	84	84	1	No	No
COVID Deaths	Nature	266	212	212	1	No	No
KDD Cup	Nature	270	9504	10920	1	Yes	Yes
Weather	Nature	3010	1332	65981	1	No	No
Sunspot	Nature	1	73931	73931	1	Yes	No
Saugeen River Flow	Nature	1	23741	23741	1	No	No
US Births	Nature	1	7305	7305	1	No	No
Electricity Demand	Energy	1	17520	17520	1	No	No
Solar Power	Energy	1	7397222	7397222	1	No	No
Wind Power	Energy	1	7397147	7397147	1	No	No

Table 1: Datasets in the Current Time Series Forecasting Archive

Out of the 26 datasets, 8 originate from competition platforms, 3 from Lai et al. (2017),
6 are taken from R packages, 1 is from the Kaggle platform (Kaggle, 2019), and 1 is taken from a Johns Hopkins repository (CSSEGISandData, 2020). The other datasets have been extracted from corresponding domain specific platforms. The datasets mainly belong to 9 different domains: tourism, banking, web, energy, sales, economics, transportation, health, and nature. Three datasets, the M1 (Makridakis et al., 1982), M3 (Makridakis and Hibon, 2000), and M4 (Makridakis et al., 2018, 2020a) datasets, contain series belonging to multiple domains.

For all datasets, we introduce their key characteristics as well as the citations of the prior work where they have been used in the literature. Further details of these datasets are explained in the next sections, after describing the data format in which the series are stored.

2.1. Data Format

We also introduce a new format to store time series data, based on the Weka ARFF file format (Paynter et al., 2008). We use the file extension .tsf and it is comparable with the .ts format used in the sktime time series repository (Löning et al., 2019), but we deem it more streamlined and more flexible. The basic idea of the file format is that each data file can contain 1) attributes that are constant throughout the whole dataset (e.g., the forecasting horizon, whether the dataset contains missing values or not), 2) attributes that are constant throughout a time series (e.g., its name, its position in a hierarchy, product information for product sales time series), and 3) attributes that are particular to each data point (the value of the series, or timestamps for non-equally spaced series). An example of series in this format is shown in Figure 1.

The original Weka ARFF file format already deals well with the first two types of such attributes. Using this file format, in our format, each time series file contains tags describing the meta-information of the corresponding dataset such as @frequency (seasonality), @horizon (expected forecast horizon), @missing (whether the series contain missing values) and @equal_length (whether the series have equal lengths). We note that these attributes can be freely defined by the user and the file format does not need any of these values to be defined in a certain way, though the file readers reading the files may rely on existence of attributes with certain names and assume certain meanings. Next, there are attributes in each dataset which describe series-wise properties, where the tag @attribute is followed by the name and type. Examples are series_name (the unique identifier of a given series) and start_timestamp (the start timestamp of a given series). Again, the format has the flexibility to include any additional series-wise attributes as preferred by users.

Following the ARFF file format, the data are then listed under the @data tag after defining attributes and meta-headers, and attribute values are separated by colons. The only extension that our format has compared with the original ARFF file format, is that the time series then are appended to their attribute vector as a comma-separated variable-length vector. As this vector can have a different length for each instance, this cannot be represented in the original ARFF file format. In particular, a time series with \(m \) number of attributes and \(n \) number of values can be shown as:
The missing values in the series are indicated using the “?” symbol. Code to load datasets in this format into R and Python is available in our github repository.\(^1\)

2.2. Time Series Datasets

This section describes the benchmark datasets that have a sufficient number of series from a particular frequency. The datasets may contain different categories in terms of domain and frequency.

2.2.1. M1 Dataset

The M1 competition dataset (Makridakis et al., 1982) contains 1001 time series with 3 different frequencies: yearly, quarterly, and monthly as shown in Table 2. The series belong to 7 different domains: macro 1, macro 2, micro 1, micro 2, micro 3, industry, and demographic.

Research work which uses this dataset includes:

\(^1\)https://github.com/rakshithal23/TSForecasting
Frequency	No: of Series	Min. Length	Max. Length	Forecast Horizon
Yearly	181	15	58	6
Quarterly	203	18	114	8
Monthly	617	48	150	18
Total	1001			

Table 2: Summary of M1 Dataset

- Forecasting with artificial neural networks: the state of the art (Zhang et al., 1998)
- Time series forecasting using a hybrid ARIMA and neural network model (Zhang, 2003)
- Automatic time series forecasting: the forecast package for R (Hyndman and Khan-dakar, 2008)
- Exponential Smoothing: the state of the art (Gardner, 1985)
- Neural network forecasting for seasonal and trend time series (Zhang and Qi, 2005)

2.2.2. M3 Dataset

The M3 competition dataset (Makridakis and Hibon, 2000) contains 3003 time series of various frequencies including yearly, quarterly, and monthly, as shown in Table 3. The series belong to 6 different domains: demographic, micro, macro, industry, finance, and other.

Frequency	No: of Series	Min. Length	Max. Length	Forecast Horizon
Yearly	645	20	47	6
Quarterly	756	24	72	8
Monthly	1428	66	144	18
Other	174	71	104	8
Total	3003			

Table 3: Summary of M3 Dataset

Research work which uses this dataset includes:

- The theta model: a decomposition approach to forecasting (Assimakopoulos and Nikolopoulos, 2000)
- Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)
- Out-of-sample tests of forecasting accuracy: an analysis and review (Tashman, 2000)
- Metrics for evaluating performance of prognostic techniques (Saxena et al., 2008)
• Temporal link prediction using matrix and tensor factorizations (Dunlavy et al., 2011)
• Forecasting time series with complex seasonal patterns using exponential smoothing (Livera et al., 2011)
• Evaluating forecasting methods (Armstrong, 2001)
• Exponential smoothing with a damped multiplicative trend (Taylor, 2003)

2.2.3. M4 Dataset
The M4 competition dataset (Makridakis et al., 2018, 2020a) contains 100,000 time series with 6 different frequencies: yearly, quarterly, monthly, weekly, daily, and hourly, as shown in Table 4. The series belong to 6 different domains: demographic, micro, macro, industry, finance, and other, similar to the M3 forecasting competition. This dataset contains a subset of series available at ForeDeCk (Forecasting & Strategy Unit, 2019).

Frequency	No: of Series	Min. Length	Max. Length	Forecast Horizon
Yearly	23000	19	841	6
Quarterly	24000	24	874	8
Monthly	48000	60	2812	18
Weekly	359	93	2610	13
Daily	4227	107	9933	14
Hourly	414	748	1008	48
Total	100000			

Table 4: Summary of M4 Dataset

Research work which uses this dataset includes:

• A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting (Smyl, 2020)
• FFORMA: Feature-based Forecast Model Averaging (Montero-Manso et al., 2020)
• Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)
• LSTM-MSNet: leveraging forecasts on sets of related time series with multiple seasonal patterns (Bandara et al., 2019)
• Are forecasting competitions data representative of the reality? (Spiliotis et al., 2020)
• Averaging probability forecasts: back to the future (Winkler et al., 2018)
• A strong baseline for weekly time series forecasting (Godahewa et al., 2020b)
2.2.4. Tourism Dataset

This dataset originates from a Kaggle competition (Athanasopoulos et al., 2011; Ellis, 2018) and contains 1311 tourism related time series with 3 different frequencies: yearly, quarterly, and monthly as shown in Table 5.

Frequency	No: of Series	Min. Length	Max. Length	Forecast Horizon
Yearly	518	11	47	4
Quarterly	427	30	130	8
Monthly	366	91	333	24
Total	1311			

Table 5: Summary of Tourism Dataset

Research work which uses this dataset includes:

- Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)
- A meta-analysis of international tourism demand forecasting and implications for practice (Peng et al., 2014)
- Improving forecasting by estimating time series structural components across multiple frequencies (Kourentzes et al., 2014)
- Forecasting tourist arrivals using time-varying parameter structural time series models (Song et al., 2011)
- Forecasting monthly and quarterly time series using STL decomposition (Theodosiou, 2011)
- A novel approach to model selection in tourism demand modeling (Akın, 2015)

2.2.5. NN5 Dataset

This dataset contains 111 time series of daily cash withdrawals from Automated Teller Machines (ATM) in the UK, and was used in the NN5 forecasting competition (Ben Taieb et al., 2012). The forecast horizon considered in the competition was 56. The original dataset contains missing values. Our repository contains two versions of the dataset: the original version with missing values and a modified version where the missing values have been replaced using a median substitution where a missing value on a particular day is replaced by the median across all the same days of the week along the whole series as in Hewamalage et al. (2020). Furthermore, Godahewa et al. (2020b) use the weekly aggregated version of this dataset for their experiments related to proposing a baseline model for weekly forecasting. The aggregated weekly version of this dataset is also available in our repository. Research work which uses this dataset includes:
• Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)

• A strong baseline for weekly time series forecasting (Godahewa et al., 2020b)

• Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach (Bandara et al., 2020)

• Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition (Andrawis et al., 2011)

• Forecasting the NN5 time series with hybrid models (Wichard, 2011)

• Multiple-output modeling for multi-step-ahead time series forecasting (Ben Taieb et al., 2010)

• Recursive multi-step time series forecasting by perturbing data (Ben Taieb and Bon- tempi, 2011)

• Benchmarking of classical and machine-learning algorithms (with special emphasis on bagging and boosting approaches) for time series forecasting (Pritzsche, 2015)

2.2.6. CIF 2016 Dataset

The dataset from the Computational Intelligence in Forecasting (CIF) 2016 forecasting competition contains 72 monthly time series. Out of those, 24 series originate from the banking sector, and the remaining 48 series are artificially generated. There are 2 forecast horizons considered in the competition where 57 series have a forecasting horizon of 12 and the remaining 15 series consider the forecast horizon as 6 (Štěpnička and Burda, 2017).

Research work which uses this dataset includes:

• Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)

• Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach (Bandara et al., 2020)

• Improving time series forecasting: an approach combining bootstrap aggregation, clusters and exponential smoothing (Dantas and Oliveira, 2018)

• Time series clustering using numerical and fuzzy representations (Afanasieva et al., 2017)

• An automatic calibration framework applied on a metaheuristic fuzzy model for the CIF competition (Coelho et al., 2016)
2.2.7. Kaggle Web Traffic Dataset

This dataset contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 01/07/2015 to 10/09/2017 used by the Kaggle web traffic forecasting competition (Google, 2017). The forecast horizon considered in the competition was 59. As the original dataset contains missing values, we include both the original dataset in our repository and an imputed version. This dataset is intermittent and hence, we impute missing values with zeros. Furthermore, Godahewa et al. (2020b) use the weekly aggregated version of this dataset containing the first 1000 series. Our repository also contains this aggregated weekly version of the dataset for all series. The missing values of the original dataset were imputed before the aggregation. Research work which uses this dataset includes:

- Recurrent neural networks for time series forecasting: current status and future directions (Hewamalage et al., 2020)
- A strong baseline for weekly time series forecasting (Godahewa et al., 2020b)
- Web traffic prediction of Wikipedia pages (Petluri and Al-Masri, 2018)
- Improving time series forecasting using mathematical and deep learning models (Gupta et al., 2018)
- Foundations of sequence-to-sequence modeling for time series (Mariet and Kuznetsov, 2019)

2.2.8. Solar Dataset

This dataset contains 137 time series representing the solar power production recorded every 10 minutes in the state of Alabama in 2006. It was used by Lai et al. (2017), and originally extracted from Solar (2020). Furthermore, Godahewa et al. (2020b) use an aggregated version of this dataset containing weekly solar power production records. The aggregated weekly version of this dataset is also available in our repository.

2.2.9. Electricity Dataset

This dataset represents the hourly electricity consumption of 321 clients from 2012 to 2014 in kilowatt (kW). It was used by Lai et al. (2017), and originally extracted from UCI (2020). Our repository also contains an aggregated version of this dataset representing the weekly electricity consumption values.

2.2.10. London Smart Meters Dataset

This dataset contains 5560 half-hourly time series that represent the energy consumption readings of London households in kWh from November 2011 to February 2014 (Jean-Michel, 2019). The series are categorized into 112 blocks in the original dataset. The series in our repository are in the same order (from block 0 to block 111) as they are in the original dataset. The original dataset contains missing values and we impute them using the last observation carried forward (LOCF) method. Our repository contains both versions: the
original version with missing values and the modified version where the missing values have been replaced. Research work which uses this dataset includes:

- Predicting electricity consumption using deep Recurrent Neural Networks (Nugaliyadde et al., 2019)
- A single scalable LSTM model for short-term forecasting of disaggregated electricity loads (Alonso et al., 2019)
- Deep learning based short-term load forecasting for urban areas (Maksut et al., 2019)
- Smart grid energy management using RNN-LSTM: a deep learning-based approach (Kaur et al., 2019)

2.2.11. Wind Farms Dataset

This dataset contains very long minutely time series representing the wind power production of 339 wind farms in Australia. It was extracted from the Australian Energy Market Operator (AEMO) online platform (AEMO, 2020). The series in this dataset range from 01/08/2019 to 31/07/2020. The original dataset contains missing values where some series contain missing data for more than seven consecutive days. Our repository contains both the original version of the dataset and a version where the missing values have been replaced by zeros.

2.2.12. Car Parts Dataset

This dataset contains 2674 intermittent monthly time series showing car parts sales from January 1998 to March 2002. It was extracted from the R package expsmooth (Hyndman, 2015). The package contains this dataset as “carparts”. As the original dataset contains missing values, we include the original version of the dataset in the repository as well as a version where the missing values have been replaced with zeros, as the series are intermittent. Research work which uses this dataset includes:

- Principles and algorithms for forecasting groups of time series: locality and globality (Montero-Manso and Hyndman, 2020)

2.2.13. Dominick Dataset

This dataset contains 115704 weekly time series representing the profit of individual stock keeping units (SKU) from a retailer.

It was extracted from the Kilts Center, University of Chicago Booth School of Business online platform (James M. Kilts Center, 2020). This platform also contains daily store-level sales data on more than 3500 products collected from Dominick’s Finer Foods, a large American retail chain in the Chicago area, for approximately 9 years. The data are provided in different categories such as customer counts, store-specific demographics and sales products. Research work which uses this dataset includes:

- Principles and algorithms for forecasting groups of time series: locality and globality (Montero-Manso and Hyndman, 2020)
• The value of competitive information in forecasting FMCG retail product sales and the variable selection problem (Huang et al., 2014)

• Beer snobs do exist: estimation of beer demand by type (Toro-González et al., 2014)

• Downsizing and supersizing: how changes in product attributes influence consumer preferences (Jami and Mishra, 2014)

• Reference prices, costs, and nominal rigidities (Eichenbaum et al., 2011)

• Sales and monetary policy (Guimaraes and Sheedy, 2011)

2.2.14. FRED-MD Dataset

This dataset contains 107 monthly time series showing a set of macro-economic indicators from the Federal Reserve Bank (McCracken and Ng, 2016) starting from 01/01/1959. It was extracted from the FRED-MD database. The series are differenced and log-transformed as suggested in the literature. Research work which uses this dataset includes:

• Principles and algorithms for forecasting groups of time series: locality and globality (Montero-Manso and Hyndman, 2020)

2.2.15. San Francisco Traffic Dataset

This dataset contains 862 hourly time series showing the road occupancy rates on San Francisco Bay area freeways from 2015 to 2016. It was used by Lai et al. (2017), and originally extracted from (Caltrans, 2020). Godahewa et al. (2020b) use a weekly aggregated version of this dataset, which is also available in our repository.

2.2.16. Melbourne Pedestrian Counts Dataset

This dataset contains hourly pedestrian counts captured from 66 sensors in Melbourne city starting from May 2009 (City of Melbourne, 2017). The original data are updated on a monthly basis when the new observations become available. The dataset in our repository contains pedestrian counts up to 30/04/2020. Research work which uses this dataset includes:

• Enhancing pedestrian mobility in smart cities using big data (Carter et al., 2020)

• Visualising Melbourne pedestrian count (Obie et al., 2017)

• PedaViz: visualising hour-level pedestrian activity (Obie et al., 2018)

2.2.17. Hospital Dataset

This dataset contains 767 monthly time series showing the patient counts related to medical products from January 2000 to December 2006. It was extracted from the R package expsmooth (Hyndman, 2015). The package contains this dataset as “hospital”. Research work which uses this dataset includes:

• Principles and algorithms for forecasting groups of time series: locality and globality (Montero-Manso and Hyndman, 2020)
2.2.18. COVID Deaths Dataset

This dataset contains 266 daily time series that represent the total COVID-19 deaths in a set of countries and states from 22/01/2020 to 20/08/2020. It was extracted from the Johns Hopkins repository (CSSEGISandData, 2020; Dong et al., 2020). The original data are updated on a daily basis when the new observations become available.

2.2.19. KDD Cup 2018 Dataset

This competition dataset contains long hourly time series representing the air quality levels in 59 stations in 2 cities, Beijing (35 stations) and London (24 stations) from 01/01/2017 to 31/03/2018 (KDD2018, 2018). The dataset represents the air quality in multiple measurements such as \(PM_{2.5}, PM_{10}, NO_2, CO, O_3 \) and \(SO_2 \) levels.

Our repository dataset contains 270 hourly time series which have been categorized using city, station name, and air quality measurement.

As the original dataset contains missing values, we include both the original dataset and an imputed version in our repository. We impute leading missing values with zeros and the remaining missing values using the LOCF method. Research work which uses this dataset includes:

- AccuAir: winning solution to air quality prediction for KDD cup 2018 (Luo et al., 2019)

2.2.20. Weather Dataset

This dataset contains 3010 daily time series representing the variations of four weather variables: rain, minimum temperature, maximum temperature and solar radiation, measured at weather stations in Australia. The series were extracted from the R package bomrang (Sparks et al., 2020). Research work which uses this dataset includes:

- Principles and algorithms for forecasting groups of time series: locality and globality (Montero-Manso and Hyndman, 2020)

2.3. Single Long Time Series Datasets

This section describes the benchmark datasets which have single time series with a large amount of data points.

2.3.1. Sunspot Dataset

The original data source contains a single very long daily time series of sunspot numbers from 01/01/1818 until the present (Sunspot, 2015). Furthermore, it also contains monthly mean total sunspot numbers (starting from 1749), 13-month smoothed monthly total sunspot numbers (starting from 1749), yearly mean total sunspot numbers (starting from 1700), daily hemispheric sunspot numbers (starting from 1992), monthly mean hemispheric sunspot numbers (starting from 1992), 13-month smoothed monthly hemispheric sunspot numbers (starting from 1992), and yearly mean total sunspot numbers (starting from 1610). The original datasets are updated as new observations become available.
Our repository contains the single daily time series representing the sunspot numbers from 08/01/1818 to 31/05/2020. As the dataset contains missing values, we include an LOCF-imputed version besides it in the repository. Research work which uses this dataset includes:

- Re-evaluation of predictive models in light of new data: sunspot number version 2.0 (Gkana and Zachilas, 2016)
- Correlation between sunspot number and ca II K emission index (Bertello et al., 2016)
- Dynamics of sunspot series on time scales from days to years: correlation of sunspot births, variable lifetimes, and evolution of the high-frequency spectral component (Shapoval et al., 2017)
- Long term sunspot cycle phase coherence with periodic phase disruptions (Pease and Glenn, 2016)

2.3.2. Saugeen River Flow Dataset
This dataset contains a single very long time series representing the daily mean flow of the Saugeen River at Walkerton in cubic meters per second from 01/01/1915 to 31/12/1979. The length of this time series is 23,741. It was extracted from the R package, *deseasonalize* (McLeod and Gweon, 2013). The package contains this dataset as “SaugeenDay”.

Research work which uses this dataset includes:

- Telescope: an automatic feature extraction and transformation approach for time series forecasting on a level-playing field (Bauer et al., 2020)

2.3.3. US Births Dataset
This dataset contains a single very long daily time series representing the number of births in the US from 01/01/1969 to 31/12/1988. The length of this time series is 7,305. It was extracted from the R package, *mosaicData* (Pruim et al., 2020). The package contains this dataset as “Births”.

Research work which uses this dataset includes:

- Telescope: an automatic feature extraction and transformation approach for time series forecasting on a level-playing field (Bauer et al., 2020)

2.3.4. Electricity Demand Dataset
This dataset contains a single very long time series representing the half hourly electricity demand for Victoria, Australia in 2014. The length of this time series is 17,520. It was extracted from the R package, *fpp2* (Hyndman, 2018). The package contains this dataset as “elecdemand”. The temperatures corresponding with each demand value are also available in the original dataset. Research work which uses this dataset includes:

- Telescope: an automatic feature extraction and transformation approach for time series forecasting on a level-playing field (Bauer et al., 2020)
2.3.5. **Solar Power Dataset**

This dataset contains a single very long time series representing the solar power production of an Australian wind farm recorded per each 4 seconds starting from 01/08/2019. It was extracted from the AEMO online platform (AEMO, 2020). The length of this time series is 7,397,222.

2.3.6. **Wind Power Dataset**

This dataset contains a single very long time series representing the wind power production of an Australian wind farm recorded per each 4 seconds starting from 01/08/2019. It was extracted from the AEMO online platform (AEMO, 2020). The length of this time series is 7,397,147.

3. **Feature Analysis**

We characterise the datasets in our archive to analyse the similarities and differences between them, to gain a better understanding on where gaps in the repository may be and what type of data are prevalent in real-world applications. This may also help to select suitable forecasting methods for different types of datasets. We analyse the characteristics of the datasets using the tsfeatures (Hyndman et al., 2020) and catch22 (Lubba et al., 2019) feature extraction methods. All extracted features are publicly available for further research use\(^2\). Due to their large size, we have not been able to extract features from the London smart meters, wind farms, solar power, and wind power datasets, which is why we exclude them from this analysis.

We extract 42 features using the `tsfeatures` function in the R package `tsfeatures` (Hyndman et al., 2020) including mean, variance, autocorrelation features, seasonal features, entropy, crossing points, flat spots, lumpiness, non-linearity, stability, Holt-parameters, and features related to the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Baum, 2018) and the Phillips–Perron (PP) test (Phillips and Perron, 1986). For all series that have a frequencies greater than daily, we consider multi-seasonal frequencies when computing features. Therefore, the amount of features extracted is higher for multi-seasonal datasets as the seasonal features are individually calculated for each season presented in the series. Furthermore, if a series is short and does not contain two full seasonal cycles, we calculate the features assuming a non-seasonal series (i.e., setting its frequency to “one” for the feature extraction). We use the `catch22_all` function in the R package `catch22` (Lubba, 2018) to extract the catch22 features from a given time series. The features are a subset of 22 features from the `hctsa` package (Fulcher and Jones, 2017) which includes the implementations of over 7000 time series features. The computational cost of the catch22 features is low compared with all features implemented in the hctsa package.

In the following feature analysis, we consider 5 features, as suggested by Bojer and Meldgaard (2020): first order autocorrelation (ACF1), trend, entropy, seasonal strength, and the Box-Cox transformation parameter, lambda. The `BoxCox.lambda` function in the

\(^2\)https://drive.google.com/drive/folders/1S-OLL-GQknu0jibX5bQQB0XbICjU0NZ?usp=sharing
R package *forecast* (Hyndman and Khandakar, 2008) is used to extract the Box-Cox transformation parameter from each series, with default parameters. The other 4 features are extracted using *tsfeatures*. Since this feature space contains 5 dimensions, to compare and visualise the features across multiple datasets, we reduce the feature dimensionality to 2 using Principal Component Analysis (PCA, Jolliffe, 2011).

![PCA components](image)

Figure 2: The directions of the 5 feature components: ACF1, trend, entropy, seasonal strength, and lambda, for the two-dimensional feature space generated by the first two principal components (PC1, PC2) extracted with PCA.

The numbers of series in each dataset are significantly different, e.g., the CIF 2016 monthly dataset and M4 monthly dataset contain 72 and 48,000 series, respectively. Hence, if all series were considered to calculate the PCA components, those components would be dominated by datasets that have large amounts of series. Therefore, for datasets that contain more than 300 series, we randomly take a sample of 300 series, before constructing the PCA components across all datasets. Once the components are calculated, we map all series of all datasets into the resulting PCA feature space. We note that we use PCA for dimensionality reduction over other advanced dimensionality reduction algorithms such as t-Distributed Stochastic Neighbor Embedding (t-SNE, van der Maaten and Hinton, 2008) due to this capability of constructing the basis of the feature space with a reduced sample of series with the possibility to then map all series into the space afterwards. The directions of the 5 corresponding feature components generated by PCA are shown in Figure 2.

Figure 3 accordingly shows hexbin plots of the normalised density values for 20 datasets.
Figure 3: Hexbin plots showing the normalised density values of the low-dimensional feature space generated by PCA across ACF1, trend, entropy, seasonal strength and lambda for 20 datasets. The dark and light hexbins denote the high and low density areas, respectively.
The figure highlights the characteristics among different datasets. For the M competition datasets, the feature space is highly populated on the left-hand side and hence, denoting high trend and ACF1 levels in the series. The tourism yearly dataset also shows high trend and ACF1 levels. In contrast, the car parts, hospital, and Kaggle web traffic datasets show high density levels towards the right-hand side, indicating a higher degree of entropy. The presence of intermittent series can be considered the major reason for the higher degree of entropy in the Kaggle web traffic and car parts datasets. The plots confirm the claim by Bojer and Meldgaard (2020) and Fry and Brundage (2020) that the M competition datasets are significantly different from the Kaggle web traffic dataset.

The monthly datasets generally show high seasonal strengths compared with datasets of other frequencies. Quarterly datasets also demonstrate high seasonal strengths except for the M4 quarterly dataset. In contrast, the datasets with high frequencies such as weekly, daily, and hourly show low seasonal strengths except for the NN5 weekly and NN5 daily datasets.

Related to the shapes of the feature space, the 3 yearly datasets: M3, M4, and tourism show very similar shapes and density populations indicating they have similar characteristics. The M4 quarterly dataset also shows a similar shape as the yearly datasets, even though it has a different frequency. The other 2 quarterly datasets M3 and tourism are different, but similar to each other. The M3 and M4 monthly datasets are similar to each other in terms of both shape and density population. Furthermore, the electricity hourly and traffic hourly datasets have similar shapes and density populations, whereas the M4 hourly dataset has a slightly different shape compared with them. The daily datasets show different shapes and density populations, where the NN5 daily dataset is considerably different from the other 2 daily datasets: M4 and Kaggle web traffic, in terms of shape and all 3 daily datasets are considerably different from each other in terms of density population. The weekly datasets also show different shapes and density populations compared with each other.

PCA plots showing the normalized density values of all datasets corresponding with both tsfeatures and catch22 features are available in the Online Appendix.

4. Baseline Forecasting Models

In this section, we evaluate the performance of different baseline forecasting models including 6 traditional univariate forecasting models and a global forecasting model over the datasets in our repository using a fixed origin evaluation scheme, so that researchers that use the data in our repository can directly benchmark their forecasting algorithms against these baselines. The following 7 baseline forecasting methods are considered for the experiments:

- Exponential Smoothing (ETS, Hyndman, 2008)
- Auto-Regressive Integrated Moving Average (ARIMA, Box and Jenkins, 1990)
- Simple Exponential Smoothing (SES)

3https://drive.google.com/file/d/1qS6r-RV-Dac3Rj3Fv248o5hjnpZyEAIk/view?usp=sharing
• Theta (Assimakopoulos and Nikolopoulos, 2000)
• Trigonometric Box-Cox ARMA Trend Seasonal (TBATS, Livera et al., 2011)
• Dynamic Harmonic Regression ARIMA (DHR-ARIMA, Hyndman, 2018)
• A globally trained Pooled Regression model (PR, Trapero et al., 2015)

Again, we do not consider the London smart meters, wind farms, solar power and wind power datasets for both univariate and PR model evaluations, and the Kaggle web traffic daily dataset for the PR model evaluation, as the computational cost of running these models was not feasible in our experimental environment.

We use the R packages `forecast` (Hyndman et al., 2015) and `glmnet` (Friedman et al., 2010) to implement the 6 traditional univariate forecasting methods and the globally trained PR method, respectively.

The Theta, SES, and PR methods are evaluated for all datasets. ETS and ARIMA are evaluated for yearly, quarterly, monthly, and daily datasets. We consider the datasets with small frequencies, namely, 10 minutely, half hourly, and hourly as multi-seasonal and hence, TBATS and DHR-ARIMA are evaluated for those datasets instead of ETS and ARIMA due to their capability of dealing with multiple seasonalities (Bandara et al., 2019). TBATS and DHR-ARIMA are also evaluated for weekly datasets due to their capability of dealing with long non-integer seasonal cycles present in weekly data (Godahewa et al., 2020b).

Forecast horizons are chosen for each dataset to evaluate the model performance. For all competition datasets, we use the forecast horizons originally employed in the competitions. For the remaining datasets, 12 months ahead forecasts are obtained for monthly datasets, 8 weeks ahead forecasts are obtained for weekly datasets, except the solar weekly dataset, and 30 days ahead forecasts are obtained for daily datasets. For the solar weekly dataset, we use a horizon of 5 as the series in this dataset are relatively short compared with other weekly datasets. For half-hourly, hourly and other low frequency datasets, we set the forecasting horizon to one week, e.g., 168 is used as the horizon for hourly datasets.

The number of lagged values used in the PR models are determined similar to the heuristic suggested by Hewamalage et al. (2020). Generally, the number of lagged values is chosen as the seasonality multiplied with 1.25. If the datasets contain short series and it is impossible to use the above defined number of lags, for example in the Dominick and solar weekly datasets, then the number of lagged values is chosen as the forecast horizon multiplied with 1.25, assuming that the horizon is not arbitrarily chosen and reveals certain characteristics of the time series structure. When defining the number of lagged values for multi-seasonal datasets, we consider the corresponding weekly seasonality value, e.g., 168 for hourly datasets. If it is impossible to use the number of lagged values obtained with the weekly seasonality due to high memory and computational requirements, for example with the traffic hourly and electricity hourly datasets, then we use the corresponding daily seasonality value to define the number of lags, e.g., 24 for hourly datasets. In particular, due to high memory and computational requirements, the number of lagged values is chosen
as 50 for the solar 10 minutely dataset which is less than the above mentioned heuristics based on seasonality and forecasting horizon suggest.

We use four error metrics common for evaluation in forecasting, namely the Mean Absolute Scaled Error (MASE, Hyndman and Koehler, 2006), symmetric Mean Absolute Percentage Error (sMAPE), Mean Absolute Error (MAE, Sammut and Webb, 2010), and Root Mean Squared Error (RMSE). For datasets containing zeros, calculating the sMAPE error measure may lead to divisions by zero. Hence, we also consider the variant of the sMAPE proposed by Suilin (2017) which overcomes the problems with small values and divisions by zero of the original sMAPE. We report the original sMAPE only for datasets where divisions by zero do not occur. Equations 2, 3, 4, 5, and 6, respectively, show the formulas of MASE, sMAPE, modified sMAPE, MAE, and RMSE, where \(M \) is the number of data points in the training series, \(S \) is the seasonality of the dataset, \(h \) is the forecast horizon, \(F_k \) are the generated forecasts and \(Y_k \) are the actual values. We set the parameter \(\epsilon \) in Equation 4 to its proposed default of 0.1.

\[
MASE = \frac{\sum_{k=M+1}^{M+h} |F_k - Y_k|}{h} \sum_{k=S+1}^{M} |Y_k - Y_{k-S}|
\]

\[
sMAPE = \frac{100\%}{h} \frac{\sum_{k=1}^{h} |F_k - Y_k|}{(|Y_k| + |F_k|)/2}
\]

\[
msMAPE = \frac{100\%}{h} \frac{\sum_{k=1}^{h} |F_k - Y_k|}{\max(|Y_k| + |F_k| + \epsilon, 0.5 + \epsilon)/2}
\]

\[
MAE = \frac{\sum_{k=1}^{h} |F_k - Y_k|}{h}
\]

\[
RMSE = \sqrt{\frac{\sum_{k=1}^{h} |F_k - Y_k|^2}{h}}
\]

The MASE measures the performance of a model compared with the in-sample average performance of a one-step-ahead naïve or snaïve benchmark. For multi-seasonal datasets, we use the lowest frequency to calculate the MASE. For the datasets where all series contain at least one full seasonal cycle of data points, we consider the series to be seasonal and calculate MASE values using the snaïve benchmark. Otherwise, we calculate the MASE using the naïve benchmark, effectively treating the series as non-seasonal.

The error metrics are defined for each series individually. We further calculate the mean and median values of the error metrics over the datasets to evaluate the model performance and hence, each model is evaluated using 10 error metrics for a particular dataset: mean MASE, median MASE, mean sMAPE, median sMAPE, mean MAE, median MAE, mean RMSE and median RMSE. Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 show the mean MASE, median MASE, mean sMAPE, median sMAPE, mean MAE, median MAE, mean RMSE, and median RMSE.
results, respectively, of the SES, Theta, ETS, ARIMA, TBATS, DHR-ARIMA, and PR models on the same 20 datasets we considered for the feature analysis. The results of all baselines across all datasets are available in the Online Appendix.

Overall, SES shows the worst performance and Theta shows the second-worst performance across all error metrics. ETS and ARIMA show a mixed performance on the yearly, monthly, quarterly, and daily datasets but both outperform SES and Theta. TBATS generally shows a better performance than DHR-ARIMA on the high frequency datasets. For our experiments, we always set the maximum order of Fourier terms used with DHR-ARIMA to \(k = 1 \). Based on the characteristics of the datasets, \(k \) can be tuned as a hyperparameter and it may lead to better results compared with our results. Compared with SES and Theta, both TBATS and DHR-ARIMA show superior performance.

The globally trained PR models show a mixed performance compared with the traditional univariate forecasting models. The performance of the PR models is considerably affected by the number of past lags used during model training, performing better as the number of lags is increased. The number of lags we use during model training is quite high with the high-frequency datasets such as hourly, compared with the other datasets and hence, PR models generally show a better performance than the traditional univariate forecasting models on all error metrics across those datasets. But on the other hand, the memory and computational requirements are also increased when training PR models with large numbers of lags. Furthermore, the PR models show a better performance across intermittent datasets such as car parts, compared with the traditional univariate forecasting models.

We note that the MASE values of the baselines are generally high on multi-seasonal

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	1.521	0.885	0.865	1.013	-	-	1.263
NN5 Weekly	0.903	0.885	-	-	0.872	0.887	0.854
CIF 2016	1.291	0.997	0.841	0.929	-	-	1.019
Kaggle Daily	3.253	3.015	3.395	3.775	-	-	3.516
Tourism Yearly	3.210	1.661	1.592	1.782	-	-	1.643
Tourism Monthly	3.306	1.649	1.526	1.589	-	-	1.678
Traffic Hourly	1.922	1.922	-	-	2.482	2.535	1.281
Electric Hourly	4.544	4.545	-	-	3.690	4.602	2.912
M3 Yearly	3.167	2.774	2.860	3.417	-	-	3.223
M3 Quarterly	1.417	1.117	1.170	1.240	-	-	1.248
M3 Monthly	1.091	0.864	0.865	0.873	-	-	1.010
M4 Yearly	3.981	3.375	3.444	3.876	-	-	3.625
M4 Quarterly	1.417	1.231	1.161	1.228	-	-	1.316
M4 Monthly	1.150	0.970	0.948	0.962	-	-	1.080
M4 Weekly	0.587	0.546	-	-	0.504	0.550	0.481
M4 Daily	1.154	1.153	1.239	1.179	-	-	1.162
M4 Hourly	11.607	11.524	-	-	2.663	13.557	1.662
Carparts	0.897	0.914	0.925	0.926	-	-	0.755
Hospital	0.813	0.761	0.765	0.787	-	-	0.782

Table 6: Mean MASE Results
Table 7: Median MASE Results

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	1.482	0.838	0.809	0.926	-	-	1.224
NN5 Weekly	0.781	0.805	-	0.827	0.769	-	0.781
CIF 2016	0.862	0.662	0.532	0.559	-	-	0.746
Kaggle Daily	0.539	0.548	0.667	0.528	-	-	-
Tourism Yearly	2.442	2.360	2.373	2.719	-	-	2.356
Tourism Quarterly	2.309	1.348	1.275	1.388	-	-	1.361
Tourism Monthly	2.336	1.382	1.276	1.337	-	-	1.484
Traffic Hourly	1.817	1.817	-	-	1.380	2.365	1.228
Electricity Hourly	4.766	4.766	-	-	2.300	4.630	2.878
M3 Yearly	2.261	1.985	1.907	2.003	-	-	2.267
M3 Quarterly	1.073	0.831	0.855	0.917	-	-	0.902
M3 Monthly	0.861	0.721	0.712	0.704	-	-	0.825
M4 Yearly	2.940	2.312	2.329	2.753	-	-	2.568
M4 Quarterly	1.142	0.973	0.886	0.925	-	-	1.038
M4 Monthly	0.867	0.763	0.736	0.727	-	-	0.844
M4 Weekly	0.441	0.416	-	-	0.365	0.382	0.392
M4 Daily	0.862	0.861	0.859	0.867	-	-	0.868
M4 Hourly	3.685	3.688	-	-	1.873	3.507	1.010
Carparts	0.562	0.482	0.562	0.600	-	-	0.375
Hospital	0.745	0.723	0.731	0.733	-	-	0.740

Table 8: Mean sMAPE Results

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	35.50	22.01	21.57	26.01	-	-	30.30
NN5 Weekly	12.24	11.96	-	-	11.63	11.84	11.45
CIF 2016	14.95	13.05	12.18	11.70	-	-	12.33
Kaggle Daily	-	-	-	-	-	-	-
Tourism Yearly	34.14	31.96	36.56	33.44	-	-	46.94
Tourism Quarterly	27.41	15.37	15.07	16.58	-	-	15.86
Tourism Monthly	36.39	19.90	19.02	19.73	-	-	21.11
Traffic Hourly	-	82.44	-	-	70.59	92.58	-
Electricity Hourly	-	-	-	-	40.47	-	-
M3 Yearly	17.76	16.76	17.00	18.84	-	-	17.13
M3 Quarterly	10.90	9.20	9.68	10.24	-	-	9.77
M3 Monthly	16.22	13.86	14.14	14.24	-	-	15.17
M4 Yearly	16.40	14.56	15.36	16.03	-	-	14.53
M4 Quarterly	11.08	10.31	10.29	10.52	-	-	10.84
M4 Monthly	14.38	13.01	13.53	13.08	-	-	13.74
M4 Weekly	9.01	7.83	-	-	7.30	7.94	7.43
M4 Daily	3.05	3.07	3.13	3.01	-	-	3.06
M4 Hourly	42.95	42.98	-	-	28.12	35.99	11.68
Carparts	-	-	-	-	-	-	-
Hospital	17.98	17.31	17.50	17.83	-	-	17.60

23
Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	34.68	20.56	20.35	22.80	-	-	28.81
NN5 Weekly	10.95	10.96	-	-	10.97	11.08	10.50
CIF 2016	11.40	7.95	6.58	7.69	-	-	8.43
Kaggle Daily	-	-	-	-	-	-	-
Tourism Yearly	18.81	16.83	19.20	22.66	-	-	16.88
Tourism Quarterly	22.48	13.17	12.89	13.13	-	-	13.33
Tourism Monthly	30.24	17.40	17.16	18.01	-	-	18.47
Traffic Hourly	-	74.21	-	-	55.69	86.56	-
Electricity Hourly	-	-	-	-	23.23	-	-
M3 Yearly	12.44	11.54	11.52	12.37	-	-	12.92
M3 Quarterly	6.74	5.23	5.53	6.36	-	-	5.73
M3 Monthly	10.71	9.25	9.13	9.01	-	-	10.40
M4 Yearly	11.41	9.23	8.97	10.20	-	-	9.49
M4 Quarterly	6.94	6.06	5.61	5.80	-	-	6.34
M4 Monthly	8.38	7.24	7.00	7.13	-	-	8.20
M4 Weekly	5.17	5.19	-	-	4.81	5.10	4.99
M4 Daily	1.99	2.01	1.99	2.01	-	-	2.00
M4 Hourly	19.88	19.79	-	-	6.55	32.18	5.80
Carparts	-	-	-	-	-	-	-
Hospital	16.58	15.91	16.13	16.77	-	-	16.14

Table 9: Median sMAPE Results

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	35.38	21.93	21.49	25.91	-	-	30.20
NN5 Weekly	12.24	11.96	-	-	11.62	11.83	11.45
CIF 2016	14.94	13.04	12.18	11.69	-	-	12.32
Kaggle Daily	45.87	47.98	57.94	44.39	-	-	-
Tourism Yearly	34.10	31.93	36.52	33.39	-	-	46.92
Tourism Quarterly	27.41	15.37	15.07	16.58	-	-	15.86
Tourism Monthly	36.39	19.89	19.02	19.73	-	-	21.11
Traffic Hourly	8.73	8.73	-	-	12.58	11.72	5.97
Electricity Hourly	44.39	44.94	-	-	40.15	43.78	30.00
M3 Yearly	17.76	16.76	17.00	18.84	-	-	17.13
M3 Quarterly	10.90	9.20	9.68	10.24	-	-	9.77
M3 Monthly	16.22	13.86	14.14	14.24	-	-	15.17
M4 Yearly	16.40	14.56	15.36	16.03	-	-	14.53
M4 Quarterly	11.08	10.31	10.29	10.52	-	-	10.83
M4 Monthly	14.38	13.01	13.52	13.08	-	-	13.73
M4 Weekly	9.01	7.83	-	-	7.30	7.94	7.43
M4 Daily	3.04	3.07	3.13	3.01	-	-	3.06
M4 Hourly	42.92	42.94	-	-	28.10	35.94	11.67
Carparts	64.88	59.27	65.76	65.61	-	-	43.23
Hospital	17.94	17.27	17.46	17.79	-	-	17.56

Table 10: Mean msMAPE Results
Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	34.57	20.51	20.31	22.72	-	-	28.70
NN5 Weekly	10.94	10.96	-	-	10.97	11.08	10.50
CIF 2016	11.40	7.95	6.58	7.69	-	-	8.43
Kaggle Daily	37.02	37.69	46.19	35.16	-	-	-
Tourism Yearly	18.77	16.83	19.04	22.57	-	-	16.88
Tourism Quarterly	22.48	13.17	12.89	13.13	-	-	13.33
Tourism Monthly	30.24	17.40	17.16	18.00	-	-	18.47
Traffic Hourly	8.26	8.26	-	-	7.58	10.66	5.43
Electricity Hourly	42.08	42.20	-	-	23.22	38.30	24.78
M3 Yearly	12.44	11.54	11.52	12.37	-	-	12.92
M3 Quarter	6.74	5.23	5.53	6.36	-	-	5.73
M3 Monthly	10.71	9.25	9.13	9.01	-	-	10.39
M4 Yearly	11.41	9.23	8.97	10.20	-	-	9.49
M4 Quarter	6.94	6.06	5.61	5.80	-	-	6.34
M4 Monthly	8.38	7.24	7.00	7.13	-	-	8.20
M4 Weekly	5.17	5.19	-	-	4.81	5.10	4.99
M4 Daily	1.99	2.01	1.99	2.01	-	-	2.00
M4 Hourly	19.86	19.75	-	-	6.55	32.08	5.80
Carparts	45.45	45.45	46.18	46.18	-	-	30.30
Hospital	16.57	15.90	16.11	16.75	-	-	16.12

Table 11: Median msMAPE Results

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	6.63	3.80	3.72	4.41	-	-	5.47
NN5 Weekly	15.66	11.54	11.52	12.37	-	-	14.94
CIF 2016	581875.97	714818.58	642421.42	469059.49	-	-	563205.57
Kaggle Daily	363.43	358.73	403.23	340.36	-	-	-
Tourism Yearly	95579.23	90653.60	94818.89	95033.24	-	-	82682.97
Tourism Quarterly	15014.19	7656.49	8925.52	10475.47	-	-	9092.58
Tourism Monthly	5302.10	2069.96	2004.51	2536.77	-	-	2187.28
Traffic Hourly	0.03	0.03	-	-	0.04	0.04	0.02
Electricity Hourly	845.97	846.03	-	-	574.30	868.20	537.38
M3 Yearly	1022.27	957.40	1031.40	1416.31	-	-	1018.48
M3 Quarter	571.96	486.31	513.06	559.40	-	-	519.30
M3 Monthly	743.41	623.71	626.46	654.80	-	-	692.97
M4 Yearly	1009.06	890.51	920.66	1067.16	-	-	875.76
M4 Quarter	622.57	574.34	573.19	604.51	-	-	610.51
M4 Monthly	625.24	563.58	582.60	575.36	-	-	596.19
M4 Weekly	336.82	333.32	-	-	296.15	321.61	293.21
M4 Daily	178.27	178.86	193.26	179.67	-	-	181.92
M4 Hourly	1218.06	1220.97	-	-	386.27	1310.85	257.39
Carparts	0.55	0.53	0.56	0.56	-	-	0.41
Hospital	21.76	18.54	17.97	19.60	-	-	19.24

Table 12: Mean MAE Results
Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	5.94	3.55	3.48	3.85	-	-	5.06
NN5 Weekly	14.18	13.90	-	13.73	14.82	12.84	
CIF 2016	107.09	103.39	70.43	80.66	-	-	95.13
Kaggle Daily	51.05	51.64	69.27	46.27	-	-	-
Tourism Yearly	4312.77	4085.98	4271.06	4623.59	-	4340.90	
Tourism Quarterly	1921.00	1114.30	1003.24	1047.01	1447.50	992.12	
Tourism Monthly	967.57	478.45	457.04	462.53	-	474.72	
Traffic Hourly	0.02	0.02	-	0.02	0.03	0.02	
Electricity Hourly	210.20	210.20	-	127.05	215.60	137.88	
M3 Yearly	703.33	660.49	641.07	701.32	-	-	711.86
M3 Quarterly	371.95	294.16	304.53	333.74	-	-	325.44
M3 Monthly	517.09	420.80	408.92	412.47	-	-	479.18
M4 Yearly	529.96	428.94	427.24	493.19	-	-	456.65
M4 Quarterly	318.93	274.24	259.82	262.40	-	-	295.64
M4 Monthly	291.89	249.73	244.21	243.12	-	-	280.83
M4 Weekly	219.63	210.47	-	163.68	188.39	176.01	
M4 Daily	92.14	91.85	92.18	92.18	-	-	92.28
M4 Hourly	49.20	49.21	-	33.77	30.75	14.21	
Carparts	0.33	0.25	0.33	0.33	-	-	0.25
Hospital	6.67	6.67	6.67	6.83	-	-	6.67

Table 13: Median MAE Results

Dataset	SES	Theta	ETS	ARIMA	TBATS	DHR-ARIMA	PR
NN5 Daily	8.23	5.28	5.22	6.05	-	-	7.26
NN5 Weekly	18.82	18.65	-	-	18.53	18.55	18.62
CIF 2016	657112.42	804654.19	72397.37	526395.02	-	-	648890.31
Kaggle Daily	590.11	583.32	650.43	595.43	-	-	-
Tourism Yearly	106665.20	99914.21	104700.51	106082.60	-	-	89645.61
Tourism Quarterly	17270.57	9254.63	10812.34	12564.77	-	-	11746.85
Tourism Monthly	7039.35	2701.96	2542.96	3132.40	-	-	2739.43
Traffic Hourly	0.04	0.04	-	0.05	0.04	0.03	-
Electricity Hourly	1026.29	1026.36	-	-	743.35	1082.44	689.85
M3 Yearly	1172.85	1106.05	1189.21	1662.17	-	-	1181.81
M3 Quarterly	670.56	567.70	598.73	650.76	-	-	605.50
M3 Monthly	893.88	753.99	755.26	790.76	-	-	830.04
M4 Yearly	1154.49	1020.48	1052.12	1230.35	-	-	1000.18
M4 Quarterly	732.92	673.15	674.27	709.99	-	-	711.93
M4 Monthly	755.45	683.72	705.70	702.06	-	-	720.46
M4 Weekly	412.60	405.17	-	356.74	386.30	350.29	
M4 Daily	209.75	210.37	229.97	212.64	-	-	213.01
M4 Hourly	1476.81	1483.70	-	469.87	1563.05	312.98	
Carparts	0.78	0.78	0.80	0.81	-	-	0.73
Hospital	26.55	22.59	22.02	23.68	-	-	23.48

Table 14: Mean RMSE Results
datasets. For multi-seasonal datasets, we consider longer forecasting horizons corresponding to one week unless they are competition datasets. As benchmark in the MASE calculations, we use a seasonal naïve forecast for the daily seasonality. As therewith the MASE compares the forecasts of longer horizons (up to one week) with the in-sample naïve forecasts obtained with shorter horizons (one day), the MASE values of multi-seasonal datasets are considerably greater than one across all baselines. Furthermore, the error measures are not directly comparable across datasets as we consider different forecasting horizons with different datasets.

5. Conclusion

Many businesses and industries nowadays rely on large quantities of time series from similar sources. Recently, global forecasting models have shown huge potential in providing accurate forecasts for such collections of time series compared with the traditional univariate benchmarks. However, there are currently no comprehensive time series forecasting benchmark data archives available that contain datasets to facilitate the evaluation of the new global forecasting algorithms. In this paper, we have presented the details of an archive that contains 20 publicly available time series datasets with different frequencies from varied domains. In addition to the datasets that are sets of series, which is the main focus of the archive, we furthermore include 6 datasets that contain single but very long series.

We have also characterised the datasets and have identified the similarities and differences among them by conducting a feature analysis exercise using tsfeatures and catch22 features.
extracted from each series. Finally, we have evaluated the performance of seven baseline forecasting models including six traditional univariate forecasting models: SES, Theta, ETS, ARIMA, TBATS, DHR-ARIMA, and a global forecasting model, PR, over all datasets across eight error metrics to enable other researchers to benchmark their own forecasting algorithms directly against those.

References

AEMO, 2020. Market data nemweb. http://www.nemweb.com.au/.

Afanasieva, T., Yarushkina, N., Sibirev, I., 2017. Time series clustering using numerical and fuzzy representations. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). pp. 1–7.

Akın, M., 2015. A novel approach to model selection in tourism demand modeling. Tourism Management 48, 64 – 72.

Alonso, A. M., Nogales, F. J., Ruiz, C., 2019. A single scalable lstm model for short-term forecasting of disaggregated electricity loads. ArXiv abs/1910.06640.

Andrawis, R. R., Atiya, A. F., El-Shishiny, H., 2011. Forecast combinations of computational intelligence and linear models for the n5 time series forecasting competition. International Journal of Forecasting 27 (3), 672 – 688, special Section 1: Forecasting with Artificial Neural Networks and Computational Intelligence Special Section 2: Tourism Forecasting.

Armstrong, J. S., 2001. Evaluating Forecasting Methods. Springer US, Boston, MA, pp. 443–472.

Assimakopoulou, V., Nikolopoulos, K., 2000. The theta model: a decomposition approach to forecasting. International Journal of Forecasting 16 (4), 521–530, the M3- Competition.

Athanasopoulos, G., Hyndman, R. J., Song, H., Wu, D. C., 2011. The tourism forecasting competition. International Journal of Forecasting 27 (3), 822–844.

Bandara, K., Bergmeir, C., Hewamalage, H., 2019. Lstm-msnet: Leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE transactions on neural networks and learning systems.

Bandara, K., Bergmeir, C., Smyl, S., 2020. Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Syst. Appl. 140, 112896.

Bauer, A., Zülfle, M., Herbst, N., Koundev, S., Curtef, V., 2020. Telescope: An automatic feature extraction and transformation approach for time series forecasting on a level-playing field. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE). pp. 1902–1905.

Baum, C., 2018. Kpss: Stata module to compute kwiatkowski-phillips-shin-shin test for stationarity. URL https://EconPapers.repec.org/RePEc:boc:bocode:s410401

Ben Taieb, S., Bontempi, G., 2011. Recursive multi-step time series forecasting by perturbing data. In: 2011 IEEE 11th International Conference on Data Mining, pp. 695–704.

Ben Taieb, S., Bontempi, G., Atiya, A. F., Sorjamaa, A., 2012. A review and comparison of strategies for multi-step ahead time series forecasting based on the n5 forecasting competition. Expert Systems with Applications 39 (8), 7067 – 7083.

Ben Taieb, S., Sorjamaa, A., Bontempi, G., 2010. Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 73 (10), 1950 – 1957, subspace Learning / Selected papers from the European Symposium on Time Series Prediction.

Bertello, L., Pevtsov, A., Tlatov, A., Singh, J., 06 2016. Correlation between sunspot number and ca ii k emission index. Solar Physics 291.

Bojer, C. S., Meldgaard, J. P., 2020. Kaggle forecasting competitions: An overlooked learning opportunity. International Journal of Forecasting.

Box, G., Jenkins, G., 1990. Time Series Analysis, Forecasting and Control. HoldenDay Inc.
Caltrans, 2020. Caltrans performance measurement system, california department of transportation. Accessed: 2020-04-30. URL http://pems.dot.ca.gov

Carter, E., Adam, P., Tsakis, D., Shaw, S., Watson, R., Ryan, P., 2020. Enhancing pedestrian mobility in smart cities using big data. Journal of Management Analytics 7 (2), 173–188.

City of Melbourne, 2017. Pedestrian counting system – 2009 to present (counts per hour). URL https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-2009-to-Present-counts-b2ak-trbp

Coelho, V. N., Coelho, I. M., Meneghini, I. R., Souza, M. J. F., Guimarães, F. G., 2016. An automatic calibration framework applied on a metaheuristic fuzzy model for the cif competition. In: 2016 International Joint Conference on Neural Networks (IJCNN). pp. 1507–1514.

CSSEGISandData, 2020. Covid-19 data repository by the center for systems science and engineering (csse) at johns hopkins university. https://github.com/CSSEGISandData/COVID-19.

Dantas, T. M., Oliveira], F. L. C., 2018. Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing. International Journal of Forecasting 34 (4), 748 – 761.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratnamahatana, C. A., Keogh, E., 2019. The ucr time series archive. IEEE/CAA Journal of Automatica Sinica 6 (6), 1293–1305.

Dong, E., Du., H., Gardner, L., 2020. An interactive web-based dashboard to track covid-19 in real time. Lancet Inf Dis. 20 (5), 533–534.

Dua, D., Graff, C., 2017. Uci machine learning repository. https://archive.ics.uci.edu/.

Dunlavy, D. M., Kolda, T. G., Acar, E., Feb. 2011. Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5 (2).

Eichenbaum, M., Jaimovich, N., Rebelo, S., February 2011. Reference prices, costs, and nominal rigidities. American Economic Review 101 (1), 234–262.

Ellis, P., 2018. Tcomp: Data from the 2010 tourism forecasting competition. https://cran.r-project.org/web/packages/Tcomp.

Flunkert, V., Salinas, D., Gasthaus, J., 2017. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. http://arxiv.org/abs/1704.04110.

Forecasting & Strategy Unit, 2019. Foredeek. http://fsudataset.com/.

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33 (1), 1–22.

URL http://www.jstatsoft.org/v33/i01/

Fry, C., Brundage, M., 2020. The m4 forecasting competition - a practitioner’s view. International Journal of Forecasting 36 (1), 156 – 160, m4 Competition.

Fulcher, B. D., Jones, N. S., 2017. hctsa: A computational framework for automated time-series phenotyping using massive feature extraction. Cell Sys. 5, 527.

Gardner, E. S., 1985. Exponential smoothing: The state of the art. Journal of forecasting 4 (1), 1–28.

Gkana, A., Zachilas, L., 08 2016. Re-evaluation of predictive models in light of new data: Sunspot number version 2.0. Solar Physics 291.

Godahewa, R., Bandara, K., Webb, G., Smyl, S., Bergmeir, C., 2020a. Ensembles of localised models for time series forecasting. https://arxiv.org/abs/2012.15059.

Godahewa, R., Bergmeir, C., Webb, G., Montero-Manso, P., 2020b. A strong baseline for weekly time series forecasting. https://arxiv.org/abs/2010.08158.

Godahewa, R., Deng, C., Bergmeir, C., Pronzato, A., 2020c. Simulation and optimisation of air conditioning systems using machine learning. https://arxiv.org/abs/2006.15296.

Google, 2017. Web traffic time series forecasting. URL https://www.kaggle.com/c/web-traffic-time-series-forecasting

Guimaraes, B., Sheedy, K. D., April 2011. Sales and monetary policy. American Economic Review 101 (2), 844–76.

Gupta, M., Asthana, A., Joshi, N., Mehndiratta, P., 2018. Improving time series forecasting using mathematical and deep learning models. In: Mondal, A., Gupta, H., Srivastava, J., Reddy, P. K., Somayajulu,
for machine learning with time series. In: Workshop on Systems for ML at NeurIPS 2019.

Lubba, C. H., 2018. catch22: Subset of hctsa-features. R package version 0.1.

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., Jones, N. S., 2019. catch22: Canonical time-series characteristics. In: Data Min Knowl Disc. p. 1821–1852.

Luo, Z., Huang, J., Hu, K., Li, X., Zhang, P., 2019. Accuair: Winning solution to air quality prediction for kdd cup 2018. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’19. Association for Computing Machinery, New York, NY, USA, p. 1842–1850.

URL https://doi.org/10.1145/3292500.3330787

Makridakis, S., Andersen, A., Carbone, R. F., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., Winkler, R. L., 1982. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting 1 (2), 111–153.

Makridakis, S., Hibon, M., 2000. The m3-competition: results, conclusions and implications. International Journal of Forecasting 16 (4), 451–476.

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2018. The M4 competition: Results, findings, conclusion and way forward. International Journal of Forecasting 34 (4), 802–808.

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2020a. The m4 competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting 36 (1), 54 – 74.

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2020b. The m5 accuracy competition: results, findings and conclusions.

Maksut, M., Karbozov, A., Myrzalyyeva, M., Nunna, H. S. V. S. K., Janwal, P. K., Doolla, S., 2019. Deep learning based short- term load forecasting for urban areas. In: 2019 IEEE Industry Applications Society Annual Meeting. pp. 1–6.

Mariet, Z., Kuznetsov, V., Apr 2019. Foundations of sequence-to-sequence modeling for time series. In: Chaudhuri, K., Sugiyama, M. (Eds.), Proceedings of Machine Learning Research. Vol. 89 of Proceedings of Machine Learning Research. PMLR, pp. 408–417.

McCracken, M. W., Ng, S., 2016. FRED-MD: A monthly database for macroeconomic research. Journal of Business and Economic Statistics 34 (4), 574–589.

McLeod, A. I., Gweon, H., 2013. Optimal deseasonalization for monthly and daily geophysical time series. Journal of Environmental Statistics 4 (11).

URL http://www.jenvstat.org/v04/i11

Montero-Manso, P., Athanasopoulos, G., Hyndman, R., Talagala, T., 2020. Fforma: Feature-based forecast model averaging. International Journal of Forecasting 36 (1), 86–92.

Montero-Manso, P., Hyndman, R. J., 2020. Principles and algorithms for forecasting groups of time series: Locality and globality. https://arxiv.org/abs/2008.00444.

Nugaliyadde, A., Somaratne, U. V., Wong, K. W., 2019. Predicting electricity consumption using deep recurrent neural networks. ArXiv abs/1909.08182.

Obie, H. O., Chua, C., Avazpour, I., Abdelrazek, M., Grundy, J., 2017. Visualising melbourne pedestrian count. In: 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 343–344.

Obie, H. O., Chua, C., Avazpour, I., Abdelrazek, M., Grundy, J., Bednarz, T., 2018. Pedaviz: Visualising hour-level pedestrian activity. In: Proceedings of the 11th International Symposium on Visual Information Communication and Interaction. VINCI ’18. Association for Computing Machinery, New York, NY, USA, p. 9–16.

URL https://doi.org/10.1145/3231622.3231626

Paynter, G., Trigg, L., Frank, E., 2008. Attribute-relation file format (arff). https://www.cs.waikato.ac.nz/ml/weka/arff.html.

Pease, G., Glenn, G., 10 2016. Long term sunspot cycle phase coherence with periodic phase disruptions.

Peng, B., Song, H., Crouch, G. I., 2014. A meta-analysis of international tourism demand forecasting and implications for practice. Tourism Management 45, 181 – 193.

Pethuri, N., Al-Masri, E., 2018. Web traffic prediction of wikipedia pages. In: 2018 IEEE International
Phillips, P., Perron, P., 01 1986. Testing for a unit root in time series regression. Cowles Foundation, Yale University, Cowles Foundation Discussion Papers 75.

Pritzsche, U., 2015. Benchmarking of classical and machine-learning algorithms (with special emphasis on bagging and boosting approaches) for time series forecasting. Ph.D. thesis.

Pruim, R., Kaplan, D., Horton, N., 2020. mosaicData: Project MOSAIC Data Sets. R package version 0.18.0.

URL https://CRAN.R-project.org/package=mosaicData

Sammut, C., Webb, G. I. (Eds.), 2010. Mean Absolute Error. Springer US, Boston, MA, pp. 652–652.

URL https://doi.org/10.1007/978-0-387-30164-8_525

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., Schwabacher, M., 2008. Metrics for evaluating performance of prognostic techniques. In: 2008 International Conference on Prognostics and Health Management. pp. 1–17.

Shapoval, A., Le Mouel, J.-L., Shnirman, M., Courtillot, V., 12 2017. Dynamics of sunspot series on time scales from days to years: Correlation of sunspot births, variable lifetimes, and evolution of the high-frequency spectral component. Journal of Geophysical Research: Space Physics 122.

Smyl, S., 2020. A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting 36 (1), 75–85.

Solar, 2020. Solar power data for integration studies, national renewable energy laboratory. Accessed: 2020-04-30.

URL https://www.nrel.gov/grid/solar-power-data.html

Song, H., Li, G., Witt, S. F., Athanasopoulos, G., 2011. Forecasting tourist arrivals using time-varying parameter structural time series models. International Journal of Forecasting 27 (3), 855 – 869, special Section 1: Forecasting with Artificial Neural Networks and Computational Intelligence Special Section 2: Tourism Forecasting.

Sparks, A. H., Carroll, J., Goldie, J., Marchiori, D., Melloy, P., Padgham, M., Parsonage, H., Pemberton, K., 2020. bomrang: Australian Government Bureau of Meteorology (BOM) Data Client. R package version 0.7.0.

URL https://CRAN.R-project.org/package=bomrang

Spiliotis, E., Kouloumos, A., Assimakopoulos, V., Makridakis, S., 2020. Are forecasting competitions data representative of the reality? International Journal of Forecasting 36 (1), 37 – 53.

Štěpnička, M., Burda, M., 2017. On the results and observations of the time series forecasting competition CIF 2016. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1–6.

Suilin, A., 2017. kaggle-web-traffic. https://github.com/Arturus/kaggle-web-traffic, accessed: 2020-05-15.

Sunspot, 2015. Sunspot number version 2.0: new data and conventions.

URL http://www.sidc.be/silso/newdataset

Tan, C. W., Bergmeir, C., Petitjean, F., Webb, G. I., 2020. Monash university, uea, ucr time series regression archive.

Tashman, L. J., 2000. Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting 16 (4), 437 – 450, the M3- Competition.

Taylor, J. W., 2003. Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting 19 (4), 715–725.

Theodosiou, M., 2011. Forecasting monthly and quarterly time series using stl decomposition. International Journal of Forecasting 27 (4), 1178 – 1195.

Toro-González, D., McCluskey, J. J., Mittelhammer, R., 2014. Beer snobs do exist: Estimation of beer demand by type. Journal of Agricultural and Resource Economics 39 (2), 174–187.

Trapero, J. R., Kourentzes, N., Fildes, R., 2015. On the identification of sales forecasting models in the presence of promotions. Journal of the Operational Research Society 66 (2), 299 – 307.

UCI, 2020. Electricityloaddiagrams20112014 data set, uci machine learning repository. Accessed: 2020-04-30.
van der Maaten, L. J. P., Hinton, G. E., 2008. Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research 9, 2579–2605.

Wichard, J. D., 2011. Forecasting the nn5 time series with hybrid models. International Journal of Forecasting 27 (3), 700 – 707, special Section 1: Forecasting with Artificial Neural Networks and Computational Intelligence Special Section 2: Tourism Forecasting.

Winkler, R. L., Grushka-Cockayne, Y., Lichtendahl, K. C., Jose, V. R. R., 2018. Averaging probability forecasts: Back to the future.

Zhang, G., 2003. Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159 – 175.

Zhang, G., Patuwo, B. E., Hu, M. Y., 1998. Forecasting with artificial neural networks: The state of the art. International journal of forecasting 14 (1), 35–62.

Zhang, G., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160 (2), 501 – 514, decision Support Systems in the Internet Age.

URL https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014