A new species of the genus *Sarsamphiascus* Huys, 2009 (Copepoda: Harpacticoida: Miraciidae) from a sublittoral zone of Hawaii

Jisu Yeom¹, Wonchoel Lee Corresponding Author

¹ Department of Life Science, Hanyang University, Seoul, South Korea
Email address: wlee@hanyang.ac.kr

A new species of *Sarsamphiascus* Huys, 2009 was collected from sandy sediments of Hawaii at 12 – 18 m depth. While the new species, *Sarsamphiascus hawaiiensis* sp. nov., is morphologically most closely related to *S. kawamurai* (Ueda & Nagai, 2005), the two species can be distinguished by the combination of the following morphological characteristics: elongated segments of the antennule in the new species, type of outer setae of the P5 exopod (bare in *S. kawamurai*), position of the inner seta of the P5 exopod in both sexes (more proximal in *S. kawamurai*), length and type of the setae of female P6 (shorter and bare in *S. kawamurai*). This is the first species of *Sarsamphiascus* from Hawaii to be discovered. Molecular analyses of mitochondrial cytochrome c oxidase subunit I (mtCOI) and nuclear 18S ribosomal RNA (18S rRNA) genes confirmed that *S. hawaiiensis* and *S. kawamurai* are distinct species.
A new species of the genus *Sarsamphiascus* Huys, 2009 (Copepoda: Harpacticoida: Miraciidae) from a sublittoral zone of Hawaii

Jisu Yeom, Wonchoel Lee
Department of Life Science, Hanyang University, Seoul, 04763, South Korea

Corresponding Author:
Wonchoel Lee
222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea

Email address: wlee@hanyang.ac.kr
Abstract

A new species of Sarsamphiascus Huys, 2009 was collected from sandy sediments of Hawaii at 12–18 m depth. While the new species, Sarsamphiascus hawaiiensis sp. nov., is morphologically most closely related to S. kawamurai (Ueda & Nagai, 2005), the two species can be distinguished by the combination of the following morphological characteristics:

- Elongated segments of the antennule in the new species, type of outer setae of the P5 exopod (bare in S. kawamurai), position of the inner seta of the P5 exopod in both sexes (more proximal in S. kawamurai), length and type of the setae of female P6 (shorter and bare in S. kawamurai).

This is the first species of Sarsamphiascus from Hawaii to be discovered. Molecular analyses of mitochondrial cytochrome c oxidase subunit I (mtCOI) and nuclear 18S ribosomal RNA (18S rRNA) genes confirmed that S. hawaiiensis and S. kawamurai are distinct species.

Introduction

Miraciidae Dana, 1846 is a large family of benthic copepods in the order Harpacticoida (Boxshall & Halsey 2004). It includes 50 valid genera and 426 species (Song et al. 2007; Wells 2007; Huys & Mu 2008; Chullarson et al. 2011; Karanovic & Cooper 2012; Sönmez et al. 2014), most of which were transferred from the former family Diosaccidae by Willen (2002). The members of Miraciidae mostly inhabit the marine environment, although a few species occur in fresh water (Boxshall & Halsey 2004). In Hawaii, two miraciid species, Schizopera hawaiiensis Kunz, 1995 and Macrostella gracilis (Dana, 1847), have been recorded (Kunz 1995; Eberl & Carpenter 2007).

The genus Sarsamphiascus was established by Huys (2009), with Dactylopus minutus Claus, 1863 designated the type species. Amphiascus Sars, 1905 is a senior objective synonym of Paramphiascopsis Lang, 1944 and must be restricted to the species currently included in the latter. Therefore, the new genus Sarsamphiascus was proposed to receive all remaining “orphaned” species included in Amphiascus (Huys 2009).

Amphiascus is a challenging genus in the sense that it is difficult to distinguish among species in this genus due to extreme inter- and intraspecific variation (Lang 1965). Lang (1948) erected four groups (minutus, varians, pacificus, and amblyops) in Amphiascus based on the swimming legs and A2 exopod setation patterns (Hicks 1989). Species in the pacificus-group are characterized by having inner seta on P3 enp-2, no inner seta on P1 exp-2, and seta on A2 exp-1 (Lang 1948). This group contains seven species: S. parvus (Sars G.O., 1906) from Europe, Asia and America; S. kawamurai (Ueda & Nagai, 2005) from East Asia and Turkey; S. undosus (Lang, 1965) from America; S. pacificus (Sars G.O., 1905) from Europe and New Zealand; S. sinuatus (Sars G.O., 1906) from Europe and America; and S. humphriesi (Roe, 1960) from Ireland. Each habitat and the distinguishing features of the pacificus-group and type species of the genus are shown in Table 1. We focused on the characteristics of female A1, A2, P5 and caudal terminal setae in this table. In the pacificus-group, the taxonomic validity of S. humphriesi (Roe, 1960) is uncertain because of the absence of inner seta on P2–P3 exp-1.
Today, there are 31 valid species and two inquirendum species in the genus worldwide (Wells 2007; Huys 2009). A new species of Sarsamphiascus was collected from SCUBA diving in Hawaii, U.S.A. Present study aims to describe the new species and to present an updated identification key to species of Sarsamphiascus.

Materials & Methods

Specimens. — Specimens of the new species were collected from the Horseshoe Reef site of Oahu Island, Hawaii at 12–18 m depth on 6 August 2015 and 28 September 2018. Samples were collected by Wonchoel Lee. Sediment samples were collected by SCUBA diving, sieved through a 38 μm sieve, and fixed with 99% ethanol. Harpacticoids were sorted under a dissecting microscope and stored in 99% ethanol. Harpacticoids were identified following Huys et al. (1996) and Wells (2007) using a compound microscope and 400–1,000x magnification. All drawings were prepared using a drawing tube on an Olympus BX51 differential interference contrast microscope.

Scanning electron microscopy (SEM). — In total, seven specimens were prepared for SEM. Materials were photographed using a Hitachi S-4700 scanning electron microscope at Eulji University and COXEM EM-30 at Hanyang University. Digital photographs were processed and combined into plates using Adobe Photoshop CS6. To prepare specimens for SEM, they were transferred into pure isoamyl-acetate, critical-point dried, mounted on stubs, coated in gold, and observed under SEM on the in-lens detector at an accelerating voltage of 10.0 Kv and 15.0 Kv and working distance between 7.0 to 13.4 mm.

The descriptive terminology of Huys et al. (1996) was adopted. Abbreviations used in the text are as follows: A1, antennule; A2, antenna; ae, aesthetasc; exp, exopod; enp, endopod; P1-P6, first to sixth thoracopod; exp (enp)-1 (2, 3) to denote the proximal (middle, distal) segment of a three-segmented ramus. Specimens were deposited in the National Marine Biodiversity Institute of Korea (MABIK). Scale bars in figures are in μm.

We received S. kawamurai specimens from the MABIK marine zooplankton resource bank (REP000000000911) for comparative purposes. These specimens were collected from the West sea (Shin-An, SA / MRS002000107530) and the East sea (Go-Seong, GS / MRS002000107525; Yeong-Deok, YD / MRS002000107507; Gi-Jang, GJ / MRS002000107528) of South Korea and cultured by the Marine Zooplankton Resources Deposit Registration Preservation agency. Three of these specimens were randomly used to measure lengths of morphological features.

DNA extraction and amplification. — For DNA extraction and amplification, specimens were transferred into ultrapure water for two hours to remove ethanol. Specimens were then prepared for non-destructive DNA extraction in worm lysis buffer (Williams et al. 1992). Specimens were placed in tubes containing 25 μl lysis buffer and placed in a Takara thermocycler (Takara, Otsu, Shiga, Japan) with the following settings: 65°C for 15 min, 95°C for 20 min and 15°C for 2 min. After this, specimens were kept for morphological identification and describing them after genetically confirming. Unpurified total genomic DNA was kept at -20°C for long-term storage.
Fragments from two genes, the nuclear 18S ribosomal RNA (18S rRNA) and mitochondrial cytochrome oxidase subunit I (mtCOI) genes, were amplified using PCR premix (BiONEER Co.) and 3 µl of genomic DNA as template. PCR primers 18S-F1, 18S-F3, 18S-R7, and 18S-R9 (Yamaguchi & Endo 2003) were used to amplify 18S ribosomal RNA. MtCOI was amplified with Cop-COI-2189 and LCO1490 primers (Bucklin et al. 2010). For 18S, the amplification protocol consisted of an initial denaturation at 94°C for 5 min followed by 33 cycles of denaturation at 94°C for 30 sec, annealing at 47°C for 30 sec, and extension at 72°C for 1 min; this was followed by a final extension step at 72°C for 10 min. For mtCOI, the amplification protocol consisted of an initial denaturation at 94°C for 5 min followed by 40 cycles of denaturation at 94°C for 1 min, annealing at 45°C for 2 min, and extension at 72°C for 3 min; this was followed by a final extension step at 72°C for 10 min (Bucklin et al. 2010). Successful amplification was confirmed by electrophoresis on a 1% agarose gel.

PCR products were sent to Macrogen (Seoul, Korea) for purification and DNA sequencing. DNA was sequenced on an ABI automatic capillary sequencer using the same sets of primers as used for amplification. All obtained sequences were visualized using Finch TV version 1.4.0 (https://digitalworldbiology.com/FinchTV; Geospiza Inc., USA). The quality of each sequence was evaluated and low resolution peaks were checked by comparing forward and reverse strands. BLAST searches revealed that the obtained sequences were copepod in origin and not contaminants. Sequence information from this study was deposited in the NCBI database (18S - MN496455, MN496456; MN541391–MN541394 and mtCOI - MN507530; MN542379, MN542380).

Phylogenetic analyses. — An additional 43 sequences were downloaded from GenBank and included in our analyses (Table 2). Obtained sequences were checked manually and aligned by the ClustalW algorithm (Thompson et al. 1994) in MEGA version 7.0 (Kumar et al. 2016). Phylogenetic analyses were performed using Neighbor-Joining (NJ), Maximum Likelihood (ML) and Bayesian Inference (BI) approaches. NJ analysis used the Kimura two-parameter model (K2P) (Kimura 1980; Nei & Kumar 2000) with uniform rates. ML analysis used the K2+G+I model based on the model test result in MEGA. One thousand bootstrap replicates were performed to obtain a relative measure of node support for the resulting trees. A BI tree was constructed with MrBayes v3.2.6 x64 (Ronquist et al., 2012) based on the following model parameters obtained using jModelTest 2.1.10 (Darriba et al., 2012): nst = 6, rates = gamma, and ncat = 4. Markov Chain Monte Carlo (MCMC) was run with the following parameters: nchains = 4, ngen = 1,000,000, samplefreq = 100, and printfreq = 1000. ML and BI trees were visualized using FigTree v1.4.2. Average pairwise distances were also computed in MEGA version 7.0 using the K2P model. All trees were rooted with thalestrid sequences.

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The
ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: [urn:lsid:zoobank.org:pub:B93346F0-3942-4CC9-A6ED-D437D899239F]. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central, and CLOCKSS.

Results

Order Harpacticoida Sars G.O., 1903
Family Miraciidae Dana, 1846
Genus Sarsamphiascus Huys, 2009
Sarsamphiascus hawaiiensis sp. nov. (Figs. 1-6)

Type locality. — Horseshoe Reef site, Oahu Island, Hawaii, U.S.A., 21°28’35.93” N, 158°13’30.57” W (depth: 14 m; sandy sediment; water temperature: 26 – 30 °C).

Material examined. — Holotype 1♀ (MABIKCR00246491) Allotype 1♂ (MABIKCR00246492). Paratype 2♀♂ 1♂ dissected on three slides (MABIKCR00246493–MABIKCR00246495), 2♀ dissected on 14 slides (MABIKCR00246496, MABIKCR00246497), and 2♂ dissected on six slides (MABIKCR00246498, MABIKCR00246499). 3♀♂ 4♂♀ and 1♂ on two SEM stubs, respectively (MABIKCR00246500, MABIKCR00246501). Sampled by SCUBA diving on 6 Aug 2015 and 30 Sep 2018.

Description of female. — Total body length 544.3 μm (n=3) (Figs. 1A, B); body slender, cylindrical, slightly tapering behind. Cephalosome bell-shaped. Rostrum (Figs. 1A, 2C). Large, tapering distally, about 2.8 times longer than broad, defined at base, reaching to distal margin of second antennulary segment; with two small sensilla. Anal somite (Fig 1A) with row of spinules along distal margin; anal operculum well developed, semicircular, with fine setulae along its posterior margin.

Caudal ramus (Figs. 1A, D, 6E, F). About 0.7–0.8 times as long as greatest width, armed with spinules inner distally and with short setules on distal margin (arrowed in Fig. 6F); each ramus armed with seven setae; seta I and seta II developed, located near distal corner of lateral margin; seta I spiniform; seta III bare, longer than seta II, located near distal corner of ventral surface; seta IV well developed, bipinnate, seta IV longer than half of seta V, seta V as long as urosome; both terminal caudal setae with fracture plane; seta VI bare, 1.5 times as long as seta II, slightly curved inward at its base; seta VII short, bare, located on dorsal surface of caudal ramus.

Antennule (Fig. 2C). Eight-segmented, slender; segment-1 with two spinules on inner edge; segment-2 about twice as long as broad, about 1.4 times as long as segment-1, and about 1.8 times as long as segment-3; segment-4 1.5 times as long as segment-3. Armature formula: 1-[1}
Aesthetasc on segment-4 fused basally with adjacent seta and about 2.3 times as long as distal four segments combined.

Antenna (Figs. 2D, 6B). Endopod two-segmented, enp-1 bearing pinnate seta, enp-2 with two spiniform setae and bare seta posteriorly, seven setae terminally, four geniculate setae, two bare setae and slightly unipinnate seta; exopod three-segmented, exp-1 about three times longer than broad, bearing pinnate seta distally, exp-2 very short without seta, exp-3 about 2.5 times longer than broad with seta proximally and three setae distally.

Mandible (Fig. 2E). Gnathobase bearing chitinous projection on ventral surface; palp with three setae and setule rows; exopod two-segmented, exp-1 with pinnate seta and bare seta, exp-2 with two bare setae and pinnate seta; endopod one-segmented with two proximal and six distal setae.

Maxillule (Fig. 2F). Praecoxal arthrite bearing seven elements distally with two pinnate setae and two bare setae on anterior surface; coxa with two setae; basis with six setae; endopod bearing four setae; exopod bearing two pinnate setae.

Maxilla (Fig. 2G). Three endites of syncoxa with four, two, two setae, respectively; basis with two thick setae and thin seta; endopod with six setae.

Maxilliped (Fig. 2H). Subchelate; syncoxa with two long setae, relatively short seta and several rows of spinules; basis pectinate with several long spinules on the medial surface, twice as long as broad, bearing two bare setae; endopod elongate, with strong claw, bare seta, and unipinnate seta.

In P1 – P4, all rami three-segmented and coxa ornamented with several rows of spinules. Setal formula of the new species is shown in Table 3.

P1 (Fig. 3A). Basis inner margin with setules and armed with bipinnate spine distally. Exp-1 inner margin bare, exp-1 and exp-2 with bipinnate outer spine and ornamented with spinules along outer margin, exp-2 and exp-3 inner margin with setules without inner seta, exp-3 with three outer spines and long geniculate seta and relatively short, geniculate and unipinnate setae distally. Enp-1 longer than exopod, about six times longer than wide with inner seta distally, inner and outer margin ornamented with setules; enp-2 small, ornamented with spinules along distal margin, without inner seta; enp-3 longer than enp-2, outer margin ornamented with spinules, bearing slender seta at inner distal corner, unipinnate claw-like spine and relatively short geniculate seta apically.

P2 (Fig. 3B). Basis with bipinnate outer spine. Exp-1 with seta at distal inner margin, setules on inner distal margin, exp-2 with inner seta at distal, inner margin ornamented with setules, both exp-1 and exp-2 with bipinnate outer spine and outer margin ornamented with spinules, exp-3 with plumose inner seta, long plumose seta at inner terminal, long seta with plumose inner side and pinnate outer side at outer terminal and three outer spines, proximal inner margin ornamented with setules, proximal outer margin ornamented with spinules. Endopod about as long as exopod, enp-1 with plumose inner seta, outer margin ornamented with setules; enp-2...
with two inner setae; enp-3 with plumose inner seta, two setae distally and spine at outer distal
corner, both enp-2 and enp-3 outer margin ornamented with spinules.

P3 (Fig. 4A). Basis with bare outer seta. Exp-1 with plumose inner seta, proximal inner
margin ornamented with setules, exp-2 with plumose inner seta at distal margin, both exp-1 and
exp-2 setules on inner distal margin and outer margin ornamented with spinules; exp-3 with
plumose inner seta, long plumose seta at inner terminal, long seta with plumose inner side and
pinnate outer side at outer terminal and three outer pinnate spines, proximal outer margin
ornamented with spinules. Endopod about as long as exopod, both enp-1 and enp-2 with plumose
inner seta and setules on inner distal margin, enp-3 with two plumose and unipinnate seta on
inner side, two setae distally and spine at outer distal corner, outer margin of endopod segments
ornamented with spinules.

P4 (Fig. 4B). Basis with bare outer seta. Both exp-1 and exp-2 with plumose inner seta, inner
margin ornamented with setules, setules on inner distal margin and outer margin ornamented
with spinules; exp-3 with three plumose inner setae, the second seta of three inner setae thicker
than others, long plumose seta at inner terminal, long seta with plumose inner side and pinnate
outer side at outer terminal and three outer spines, proximal outer margin ornamented with
spinules. Endopod longer than exp-1 and exp-2 combined, both exp-1 and exp-2 with plumose
inner seta and setules on inner distal margin, enp-3 with two plumose inner setae, two setae
distally and spine at outer distal corner, outer margin of endopod segments ornamented with
spinules.

P5 (Figs. 5A, 6A). Benp and exopod distinct, benp with long, slender and bare outer basal
seta; endopodal lobe bearing three inner bipinnate spines and two bipinnate distal setae. Exopod
oval, elongated, 1.7 times longer than wide, with spinules along both inner and outer margins.
Exopod bearing bipinnate inner seta, two apical bare setae, three bipinnate outer setae and short
bare seta.

Genital area as in Fig. 5B. P6 with long bipinnate seta, unipinnate seta, and short spiniform
seta; kidney-shaped seminal receptacle (arrowed in Fig. 5B). Genital double-somite (Fig. 6A)
with rows of spinules on ventrolateral surface.

Description of male. — Body (Fig. 1C). About 484.8 µm (n=3) in length, smaller and
slinder than female. First and second abdominal somites each with spinule row near
distoventral margins. Sexual dimorphism seen in A1, P1, P2, P5, and P6.

Antennule (Figs. 2A, B). Subchirocer, 10-segmented; armature formula: 1-[1 bare], 2-[8 bare
+ 2 pinnate], 3-[1 bare], 4-[5 bare], 5-[6 bare + ae], 6-[1 bare], 7-[1 bare], 8-[1 bare], 9-[3 bare],
10-[7 bare + ae].

P1 basis (Fig. 3C). With inner spiniform projection.

P2 endopod (Fig. 3D). Two-segmented; enp-1 with inner pinnate seta; enp-2 modified, bearing
three inner setae, unipinnate seta distally, and two spiniform setae at mid-length of outer margin.

P5 (Figs. 5C, 6C, 6D). Benp and exopod distinct; endopodal lobe ornamented with spinules at
inner and outer margin, armatured with two bipinnate spines. Inner spine twice as long as outer
one. Exopod with five setae in total, including two inner setae, bare long distal seta and two pinnate outer setae, outer margin ornamented with rows of three spines.

P6 (Fig. 5C). Represented by pinnate inner seta and two bare setae on outer distal corner of genital operculum.

Etymology. — The species name refers the type locality of the new species, namely Hawaii.

Molecular results. — DNA was extracted and the 18S and mtCOI fragments were successfully PCR-amplified from two specimens and one specimen of the new species, respectively (18S; 1647 bp, 1692 bp, mtCOI: 678 bp). In addition, 18S and mtCOI fragments were PCR-amplified from four specimens and two specimens of S. kawamurai, respectively. BLAST analyses of GenBank revealed that the obtained sequences were harpacticoid in origin and not contaminants. All analyses were run with all additional seven miraciid 18S sequences and 34 mtCOI sequences downloaded from GenBank (Table 2).

For the 18S analysis, sequences from species in eight different genera were obtained from the NCBI database: Amonardia Lang, 1944, Amphiascoides Nicholls, 1941, Diosaccus Boeck, 1873, Miracia Dana, 1846, Paramphiascella Lang, 1944, Stenhelia Boeck, 1865, Typhlamphiascus Lang, 1944, and Sarsamphiascus. Two thalestrid-morpha species, Thalestridae sp., Dactylopusia pauciarticulata, were selected as outgroups for 18S analysis. Average pairwise distance between the 13 miraciid sequences was 0.054. The pairwise distance between Sarsamphiascus and Paramphiascella 18S sequences was 0.022. This was the lowest value among the mean distances between Sarsamphiascus and the other seven genera (Table S1). Mean distance within Sarsamphiascus was 0.002. While the neighbor joining tree (Fig. S1) and maximum likelihood tree (Fig. 7A) had the same topology, the Bayesian inference tree (Fig. 7B) topology was different within Amonardia and Stenhelia.

In the mtCOI analysis, within Sarsamphiascus, the pairwise distance between the new species and S. undosus was 23.9%, and between the new species and S. kawamurai (two specimens) was 24.1% and 25.8%, respectively (Table S2). These divergence values are within the range of mean distances within other miraciid genera (5.5 – 34%; overall mean distance: 31.5%) (Table 4).

Discussion

The new species described here clearly belongs to the genus Sarsamphiascus based on the presence of several diagnostic characters for the genus including P1 enp-1 longer than exp, P1 exp-3 with five setae, every exp-1, 2 with inner seta, P2 exp-2 with two inner setae, P3 enp-3 with three inner setae, and P4 enp shorter than exp. Within this genus, the pacificus-group has the following common characters: A2 exp-1 with seta and P1 exp-2 without inner seta.

The type species of this genus is S. minutus (Claus, 1863), originally reported as Dactylopus minutus from Helgoland, Germany. Conspicuous morphological differences between the type species and S. hawaiiensis sp. nov. are the presence of seta on A2 exp-2 and P1 exp-2, the length of P1 exp-2 and enp-3 segments, and the number of seta on P3 enp-2. A comparison of other morphological features is provided in Table 1.
Based on previous descriptions and keys to harpacticoid species (Lang 1948; Wells 2007), *S. hawaiiensis* is superficially similar to *Sarsamphiascus kawamurai* (Ueda & Nagai, 2005). This latter species was reported from outdoor laver cultivation tanks on the shore of Ariake Bay, Kyushu, Japan by Ueda and Nagai (2005); tidal pool and salt marshes in the East Sea, Korea by Chang (2009); and sublittoral rocks in the Aegean Sea and Mediterranean Sea of Turkey by Sönmez et al. (2014). According to the descriptions in the three reports mentioned above, the distinguishable characters of *S. kawamurai* are the absence of a ventral row of spinules on the genital double-somite, bare caudal terminal setae, pinnate seta on the first segment of A1, and short outer seta of the male P5 baseoendopod. *S. hawaiiensis* and *S. kawamurai* share the characters of setal formula, elongated P5 exp, and presence of an inner margin with spinules on the P5 exp. However, the new species and *S. kawamurai* can be distinguished by the combination of the following morphological characteristics: (1) elongated segments of the antennule in the new species, especially the second and third segments of the antennule (twice as long as broad) (1.4 and 1.3 times in *S. kawamurai*, respectively); (2) type of outer setae of the P5 exopod (bare in *S. kawamurai*); (3) position of the inner seta of the P5 exopod in both sexes (more proximal in *S. kawamurai*); (4) length and type of the setae of female P6 (shorter and bare in *S. kawamurai*).

This new species is the first report of the genus *Sarsamphiascus* in the Hawaiian Islands.

The new species and *S. undosus* share the characters of setal formula, short innermost seta of female P5 benp, and caudal rami terminal setae with ornamentation. However, the new species and *S. undosus* can be distinguished from each other by the combination of the following morphological characteristics: (1) ratio of length and width of female P5 exp (round in *S. undosus*); (2) length of outer setae of female P5 exp (longer in *S. undosus*); (3) type of two inner setae on P6 (bare in *S. undosus*); (4) seta type of the A1 second segment (bare in *S. undosus*); (5) type of inner edge of caudal terminal seta (undulate in the proximal part in *S. undosus*).

When these three species with similar morphologies were compared within the *pacificus*-group, ratios of the length to width of the rostrum, A1 segments, P5 exp, and caudal rami of the new species were found to be higher than those of the other two congeners: the ratio of rostrum length to width is 2.8 (vs. 2 in *S. kawamurai* and *S. undosus*); the ratio of the length to width of the second and third antennular segment is 2 (1.3–1.4 in *S. kawamurai* and *S. undosus*); the ratio of the length to width of the female P5 exp is 1.7 (1.65 in *S. kawamurai* and 1.3 in *S. undosus*); and the ratio of the length to width of the caudal rami is 0.75 (0.6 in *S. kawamurai* and 0.64 in *S. undosus*).

In addition, ornamentations of setae vary between these species. The new species has more ornamented setae on the second antennular segment, maxilliped, and P6. The new species also has ornamented setae on the second antennular segment and distal part of maxilliped. The two setae of P6 are pinnate (all bare in *S. kawamurai* and *S. undosus*).

All these characters suggest that the new species might have diverged early in the evolution of the *pacificus*-group compared with the congener species (*S. kawamurai* and *S. undosus*).

Comparison of the four species groups within *Sarsamphiascus* revealed that there are two inner setae on P3 enp-2 in the *minutus*-group versus seta in the other groups. The *minutus*-group and
varians-group have inner seta on P1 exp-2 (absent in pacificus-group and amblyops-group).

Sarsamphiascus amblyops (Sars G.O., 1911) in the amblyops-group exceptively has two setae on A2 exp-1 (seta in other groups). These reductions in swimming leg setation and A2 exp suggest that the minitus-group is the most primitive group within the genus followed by the varians-group. The pacificus-group is the most advanced group based on these characters. To evaluate if these morphological characters are homologous, more molecular data for the four species groups within this genus are required.

Analysis of 18S and mtCOI sequences revealed that the genera most closely related to Sarsamphiascus are Paramphiascella (0.022; Table S1) and Eoschizopera (0.257; Table S3).

Since the types of molecular marker registered in NCBI differ by species, more DNA barcodes studies are necessary to establish a database for accurate comparison.

Since the genus Amphiascus has undergone many systematic changes, there are still several lineages that need to be studied using molecular data. The sequence information generated in this study is likely to be useful in future studies.

Three different methods were used to obtain phylogenetic trees based on the 18S data. While the neighbor-joining tree (Fig. S1) and maximum likelihood tree (Fig. 7A) had the same topology, the Bayesian inference tree (Fig. 7B) was different. In the Bayesian inference tree, Amonardia was more closely related to Stenhelia sp. than in the other trees. It is difficult to determine which result is more reasonable because bootstrap values for the clade containing Amonardia did not exceed 0.6 in any of the trees. However, support for the grouping of Amonardia with Miracia and Diosaccus was slightly higher as the NJ tree and ML tree. Nevertheless, common findings in all three trees were that all Sarsamphiascus species formed a monophyletic group and that Sarsamphiascus formed a clade with other Diosaccinae species with high probability. Furthermore, Diosaccus and Amonardia formed a clade with Miracia and Stenhelia, separated from subfamily Diosaccinae. The systematic positions of the three subfamilies relative to each other need to be redefined through analyses that include more miraciid sequences.

Pairwise distance results for the mtCOI gene support the distinctness of S. hawaiensis sp. nov. from S. undosus and S. kawamurai and support that these species belong to the same genus based on the range of pairwise distance values seen in other genera within the family Miraciidae (Table 4).

Key to species of the genus Sarsamphiascus (modified from Lang 1948 and Wells 2007)

We developed an updated key based on selected characteristics from the original description that identify species within the genus Sarsamphiascus.

1. P3 enp-2 with inner seta … 2
 - P3 enp-2 with two inner setae … 4 <Minutus Group>
2. P1 exp-2 with inner seta … 15 <Varians Group>
- P1 exp-2 without inner seta … 3
3. A2 exp-1 with seta … 26 <Pacificus Group>
- A2 exp-1 with two setae … S. amblyops (Sars G.O., 1911) <Amblyops Group>
4. P2 exp-3 with two outer spines … S. demersus (Nicholls, 1939)
- P2 exp-3 with three outer spines … 5
5. Exp-3 of P3-P4 with eight setae; A2 exp-2 with seta … 6
- These characters not combined. … 7
6. Ratio of the length of P1 enp-3 to enp-2 is 3 … S. longiarticulatus (Marcus, 1974)
- Ratio of length of P1 enp-3 to enp-2 is 1.5 … S. paracaudaespinosus (Roe, 1958)
7. P3 enp-2 with two inner setae; A2 exp-2 without seta or A2 exp two-segmented … 8
- These characters not combined. … 9
8. A2 exp two or three-segmented; P3 exp-3 with seven setae; P4 exp-3 with eight setae; rostrum triangular and apex extremely finely pointed; P1 enp-3 length at least twice as long as enp-2
- A2 exp two or three-segmented; P3 exp-3 with seven setae; P4 exp-3 with eight setae; female, caudal rami longer than breadth with a dorsal ridge/ male, caudal rami much broader than length; P5 exp with five setae; length of P1 enp-2 and enp-3 approximately equal … S. discrepans (Mielke, 1989)
- A2 exp three-segmented; P3 exp-3 with eight setae (if seven setae, caudal rami approximately as broad as long and length of P1 enp-2 and enp-3 approximately equal) … S. caudaespinosus (Brian, 1927)
- These characters not combined. … 9
9. P1 exp-2 normal, not extended … 10
- P1 exp-2 extended … 13
10. P5 exp of female with seven setae … S. brevis (Sars G.O., 1909)
- P5 exp of female with seven setae … 11
11. Ratio of P1 enp-1 length to breadth is 5; P5 benp, outer distal corner round in both sexes; P5 exp of male with six setae … S. congener (Sars G.O., 1909)
- Ratio of P1 enp-1 length to breadth is 6 or more … 12
12. Female, outer distal corner of P5 benp round / male, outer distal corner of P5 benp square … S. graciloides (Klie, 1950)
- Outer distal corner of P5 benp square in both sexes … S. tenuiremis (Brady, 1880)
13. P5 benp of female with four well-developed setae and short seta. … 14
- P5 benp of female with five well-developed setae … S. minitus (Claus, 1863)
14. P5 exp of female with tapering distal edge … S. hirtus (Gurney, 1927)
- P5 exp of female round … S. gracilis (Lang, 1936)
15. P4 exp-3 with seven setae … S. ampullifer (Humes, 1953)
- P4 exp-3 with eight setae … 16
16. P5 exp of female with five setae … S. varians (Norman & Scott T., 1905)
- P5 exp of female with six setae … 17
17. P5 benp of female, seta I and II widely apart … 18
18. First segment of A1 with spur … S. dentiformis (Coul, 1971)
19. P5 benp of female does not extend beyond half the length of the P5 exp … 20
20. P5 benp of female does not reach half the length of the P5 exp … S. angustipes (Gurney, 1927)
21. P5 exp of female at least twice as long as broad … S. propinquus (Sars G.O., 1906)
22. P5 benp of female reaches to the end of the P5 exp … S. elongatus (Itō, 1972)
23. P1 enp-3 outer margin with spinules … 24
24. P5 benp of male with three setae and outer distal corner of benp with an obvious spiniform seta … S. tenellus (Sars G.O., 1906)
25. P1 enp-2 and enp-3 with bare seta … S. tainui (Hicks, 1989)
26. P2-P3 exp-1 with inner seta … 27
27. A2 exp-2 with seta; P5 benp without hyaline fields … 28
28. A2 exp-3 with inner seta; P2-P4 enp extending to at least the end of the exp; P5 exp of female oval … S. sinuatus (Sars G.O., 1906)
29. P5 exp of female round; inner terminal seta of caudal rami undulating in proximal part of inner edge … S. undosus (Lang, 1965)
30. P5 exp of female, both third and fourth setae from inside long and extend well beyond exp … 31
31. A1 with pinnate seta on first segment; male P5 benp outer seta shorter than half the length of the inner seta … S. kawamurai (Ueda & Nagai, 2005)
32. - P5 exp of female, third seta from inside extend well beyond exp; fourth seta extends only to about the end of exp … S. hawaiiensis sp. nov.
Conclusions

A new species, *S. hawaiiensis* sp. nov., was collected from subtidal sandy sediments of Hawaii. The new species can be distinguished from its congeners in the *pacificus*-group by morphological characteristics and molecular analyses of mtCOI genes and 18S rRNA genes. This is the first species of *Sarsamphiascus* to be discovered from Hawaii. In this genus, molecular data for only one of four species groups (the *pacificus*-group) is currently available in NCBI. To evaluate whether genus designations based on morphological characters are correct and to determine phylogenetic relationships among genera, more molecular data for the four groups need to be generated and analyzed. Since the genus *Sarsamphiascus* has undergone many systematic changes, and because morphological differences between species are miniscule, further molecular studies are necessary to distinguish the evolutionary position of the new species within *Sarsamphiascus*.

Acknowledgements

We would like to thank the Marine Zooplankton Resources Bank of Korea for providing specimens of *S. kawamura* and Raehyuk Jeong for reading and revising the manuscript. We express our sincere gratitude to editor Prof. James Reimer, reviewer Prof. Viatcheslav Ivanenko, and two anonymous reviewers for their constructive comments and advice on the earlier version of the manuscript.

References

Boxshall GA, Halsey SH. 2004. An Introduction to Copepod Diversity. The Ray Society, London, 966pp.
Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, Sutton T, Wiebe PH. 2010. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Research Part II: Topical Studies in Oceanography 57(24–26):2234–2247.
Chang CY. 2009. Three miraciid copepods (Harpacticoida, Miraciidae) from South Korea.
Animal Systematics, Evolution and Diversity 25(3):215–225.
Chullasorn S, Anansatiporn W, Kangtia P, Klangsín P, Jullawateelert R. 2011. Review of Naupliar Development among Miraciidae (Copepoda, Harpacticoida) with a Naupliar Description of *Paramphiascella choi* sp. nov. from Thailand. Hydrobiologia 666:21–43.
Eberl R, Carpenter EJ. 2007. Association of the copepod *Macrosetella gracilis* with the cyanobacterium *Trichodesmium* spp. in the North Pacific Gyre. Marine Ecology Progress Series 333:205–212.
Easton EE, Darrow EM, Spears T, Thistle D. 2014. The mitochondrial genomes of *Amphiascoides atopus* and *Schizopera knabeni* (Harpacticoida: Miraciidae) reveal similarities between the copepod orders Harpacticoida and Poecilostomatoida. Gene 538(1):123–137.
Gollner S, Stuckas H, Kihara TC, Laurent S, Kodami S, Arbizu PM. 2016. Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PloS one 11(10):e0163776.

Hicks GRF. 1989. Harpacticoid copepods from biogenic substrata in offshore waters of New Zealand: Partial revisions of Dactylopodella Sars and Amphiascus Sars (varians-group) including new species, and a new record for Harrietella simulans (T. Scott). Records of the National Museum of New Zealand 3:101–117.

Huys R, Mu FH. 2008. Description of a new species of Onychostenhelia Itô (Copepoda, Harpacticoida, Miraciidae) from the Bohai Sea, China. Zootaxa 1706:51–68.

Huys R, Gee JM, Moore CG, Hamond R. 1996. Marine and brackish water harpacticoid copepods part 1- Synopses of the British Fauna (New Series). (Eds R.S.K.Barnes and J.H.Crothers) 51, 352pp.

Huys R. 2009. Unresolved cases of type fixation, synonymy and homonymy in harpacticoid copepod nomenclature (Crustacea: Copepoda). Zootaxa 2183:1–99.

Huys R, Mackenzie-Dodds J, Llewellyn-Hughes J. 2009. Cancrinicolidae (Copepoda, Harpacticoida) associated with land crabs: a semiterrestrial leaf of the ameirid tree. Molecular Phylogenetics and Evolution 51(2):143–156 DOI 10.1016/j.ympev.2008.12.007.

Karanovic T, Cooper SJB. 2012. Explosive Radiation of the Genus Schizopera on A Small Subterranean Island in Western Australia (Copepoda: Harpacticoida): Unravelling the Cases of Cryptic Speciation, Size Differentiation and Multiple Invasions. Invertebrate Systematics 26(2):115–192.

Karanovic T, Kim K, Lee W. 2014. Morphological and molecular affinities of two East Asian species of Stenhelia (Crustacea, Copepoda, Harpacticoida). ZooKeys 411:105.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16(2):111–120.

Khodami S, McArthur JV, Blanco-Bercial L, Martinez Arbizu P. 2017. Molecular phylogeny and revision of copepod orders (Crustacea: Copepoda). Scientific Reports 7(1):1–11 DOI 10.1038/s41598-017-06656-4.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33(7):1870–1874.

Kunz H. 1995. Schizopera hawaiensis sp. n. (Copepoda, Harpacticoida) aus einer Lagune auf Oahu, Hawaii-Inseln. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, Hamburg 92:65–72.

Lang K. 1948. Monographie der harpacticiden. Håkan Ohlsson. Lund 2 vols, 1682 pp.

Lang K. 1965. Copepoda Harpacticoida from the Californian Pacific coast. Kunglener svenska Vetenskapsakademiens Handlingar 10(2):1–560.

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. Oxford university press.

Rossel, S., & Arbizu, P. M. (2019). Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding.
Scientific Reports 9(1): 9182.

Song SJ, Rho HS, Kim W. 2007. A New Species of Amonardia (Copepoda: Harpacticoida: Miraciidae) from the Cultivated Brown Alga, Undaria pinnatifida. Integrative Biosciences 11(1):69–77.

Sönmez S, Sak S, Karaytuğ S. 2014. Marine interstitial and phytal Miraciidae Dana, 1846 (Crustacea: Copepoda: Harpacticoida) inhabiting along the mediolittoral zone of Turkish coasts. Journal of Anatolian Natural Sciences 5:52–96.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22(22):4673–4680.

Ueda H, Nagai H. 2005. Amphiascus kawamurai, a new harpacticoid copepod (Crustacea: Harpacticoida: Miraciidae) from nori cultivation tanks in Japan, with a redescription of the closely related A. parvus. Species diversity: an international journal for taxonomy, systematics, speciation, biogeography, and life history research of animals 10(4):249–258.

Wells JBJ. 2007. An Annotated Checklist and Keys to the Species of Copepoda Harpacticoida (Crustacea). Zootaxa 1568:1–872.

Willen E. 2002. Notes on the Systematic Position of the Stenheliinae (Copepoda, Harpacticoida) within the Thalestridimorpha and Description of Two New Species from Motupore Island, Papua New Guinea. Cahiers de Biologie Marine 43:27–42.

Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH. 1992. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131(3):609–624.

Yamaguchi S, Endo K. 2003. Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification. Marine Biology 143(1):23–38.
Figure 1

Sarsamphiascus hawaiensis sp. nov.

(A) Habitus of female, dorsal. (B) Habitus of female, lateral. (C) Habitus of male, dorsal. (D) Caudal ramus of female, ventral. Scale bars: 50 μm (A – C), 20 μm (D).
Figure 2

Sarsamphiascus hawaiensis sp. nov.

A – B, Male: (A) Segments of A1. (B) Antennule and Rostrum. C – H, Female: (C) Antennule and Rostrum. (D) Antenna. (E) Mandible. (F) Maxillule. (G) Maxilla. (H) Maxilliped. Scale bars: 10 μm.
Figure 3

Sarsamphiascus hawaiensis sp. nov.

A – B, Female: (A) P1. (B) P2. C – D, Male: (C) P2 endopod. (D) P1 basis. Scale bar: 20 μ m.
Figure 4

Sarsamphiascus hawaiensis sp. nov.

Female: (A) P3. (B) P4. Scale bar: 20 μm.
Manuscript to be reviewed
Figure 5

Sarsamphiascus hawaiensis sp. nov.

A – B, Female: (A) P5. (B) Genital field. C, Male: (C) P5, P6, and urosome (right), ventral. Scale bar: 20 μm.
Figure 6

Sarsamphiascus hawaiensis sp. nov., SEM photographs.

Female: (A) Genital double-somite and P5, lateral. Male: (B) A2 exp. (C) P5. (D) Rows of 3 spines on outer margin of P5. (E) Anal somite and Caudal rami, dorsal. (F) Caudal ramus, dorsal.
Figure 7

Phylogenetic trees of Miraciidae based on nuclear 18S ribosomal RNA data.

(A) Maximum Likelihood [ML] phylogenetic tree. (B) Bayesian Inference [BI] phylogenetic tree.
Table 1 (on next page)

Comparison of *pacificus*-group and the type species of the genus.

S. minutus (Claus, 1863) is the type species of the genus (*minutus*-group); O: seta(e)/ spinule presence; X: seta(e)/ spinule absence; *mixed:* One seta is longer than exp, another is shorter.
Table 1: Comparison of *pacificus*-group and the type species of the genus.

Species	Habitat	The number of P3 enp-2 inner setae	A2 exp-2 seta	P5 exp shape (length/breadth)	The length of P5 exp setae (3rd,4th from inside)	P5 exp inner margin spinules	The length of P5 benp and inner-most seta	Caudal rami seta V inner margin	Caudal terminal setae type	A1 pinnate setae (location)
S. minutus	algae, net sweeping	2	O	oval (1.43)	<exp O	>benp straight naked	O (seg-2)			
S. pacificus	lagoon with brackish water	1	O	heart shape (1.38)	<exp O	=benp straight naked	O			
S. sinuatus	muddy sand sediment	1	O	oval (1.52)	mixed* O	>benp straight pinnate	X			
S. parvus	coral sand, subtidal zone sand	1	X	oval (1.38)	>exp X	≥benp straight pinnate	X			
S. undosus	algae, fine sand	1	X	round (1.27)	>exp O	<benp undulating pinnate	X			
Species	Environment	Length	Shape	Setae/spinule Presence	Remarks					
-------------------------	----------------------	---------	-------	------------------------	-----------------					
S. kawamurai	tidal pool, salt marshes, supralittoral rocks	1	X	oval (1.65) >exp O	=benp straight naked O (seg-1)					
S. humphriesi	stone washing	1	O	oval (1.5) mixed* O	≥benp straight - X					
S. hawaiiensis (New species)	sandy sediment	1	X	oval (1.7) mixed* O	<benp straight pinnate O (seg-2)					

2 *S. minutus* (Claus, 1863) is the type species of the genus (*minutus*-group); O: seta(e)/ spinule presence; X: seta(e)/ spinule absence;

3 *mixed*: One seta is longer than exp, another is shorter.
Table 2 (on next page)

GenBank numbers of sequences used in phylogenetic analyses in this study.
Table 2. GenBank numbers of sequences used in phylogenetic analyses in this study.

Gene marker	Species name	Accession no.	Reference
18S	*Amonardia coreana*	KT030261	S. Baek, 2015, unpublished data
	Amphiascoides atopus	KC815328	Gomez, S. et al., 2013, unpublished data
	Diosaccus ezoensis	KR048740	S. Baek, 2015, unpublished data
	Miracia efferata	EU380294	Huys, Mackenzie-Dodds & Llewellyn-Hughes (2009)
	Paramphiascella fulvoferiata	EU380293	Huys, Mackenzie-Dodds & Llewellyn-Hughes (2009)
	Stenheila sp.	EU380291	Huys, Mackenzie-Dodds & Llewellyn-Hughes (2009)
	Typhlamphiascus typhlops	EU380292	Huys, Mackenzie-Dodds & Llewellyn-Hughes (2009)
	Sarsamphiascus hawaiiensis	MN496455	This paper
	Sarsamphiascus hawaiiensis	MN496456	This paper
	Sarsamphiascus kawamura	MN541391	This paper
	Sarsamphiascus kawamura	MN541392	This paper
	Sarsamphiascus kawamura	MN541393	This paper
	Dactylopusia pauciarticulata	KR048735	S. Baek, 2015, unpublished data
	Thaletridae sp.	MF077761	Khodami, S. et al. (2017)
COI	*Amonardia coreana*	KT030279	S. Baek, 2015, unpublished data
	Amonardia normani	MH242652	Leray, M. & Paulay, G., 2018, unpublished data
	Amonardia perturbata	MH242653	Leray, M. & Paulay, G., 2018, unpublished data
	Amphiascoides atopus	KF667526	Easton, E.E. et al. (2014)
	Amphiascoides sp.	MH242654	Leray, M. & Paulay, G., 2018, unpublished data
	Amphiascopsis cinctus	MH670487	Rossel, S. & Martinez Arbizu, P. (2019)
	Amphiascus sp.	KX714910	Gollner, S. et al. (2016)
	Bulbamphiascus imus	MH670542	Rossel, S. & Martinez Arbizu, P. (2019)
	Delaval and palustris	MH976534	Rossel, S. & Martinez Arbizu, P. (2019)
	Delavalia reflexa	MH976545	Rossel, S. & Martinez Arbizu, P. (2019)
Species	Accession	Authors and Year	
-----------------------------	-------------	-----------------------------------	
Diosaccus ezoensis	KR049013	S. Baek, 2015, unpublished data	
Diosaccus spinatus	MH242730	Leray, M. & Paulay, G., 2018, unpublished data	
Eoschizopera sp.	MH976580	Rossel, S. & Martinez Arbizu, P. (2019)	
Haloschizopera pygmaea	MH976598	Rossel, S. & Martinez Arbizu, P. (2019)	
Haloschizopera sp.	MH976605	Rossel, S. & Martinez Arbizu, P. (2019)	
Itostenhelia golikovi	KF524864	Karanovic, T., Kim, K. & Lee, W. (2014)	
Itostenhelia polyhymnia	KF524868	Karanovic, T., Kim, K. & Lee, W. (2014)	
Macrosetella gracilis	MG742365	Santhanam, P. et al., 2017, unpublished data	
Miracia efferata	GU171350	Bucklin, A. et al. (2010)	
Sarsamphiascus hawaiiensis	MN507530	This paper	
Sarsamphiascus kawamurai	MN542379	This paper	
Sarsamphiascus kawamurai	MN542380	This paper	
Sarsamphiascus undosus	MH242965	Leray, M. & Paulay, G., 2018, unpublished data	
Schizopera akation	JQ390560	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera akolos	JQ390584	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera analspinulosa	JQ390588	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera emphysema	JQ390558	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera knabeni	KF667527	Easton, E.E. et al. (2014)	
Schizopera kronosi	JQ390567	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera leptafurca	JQ390590	Karanovic, T. & Cooper, S.J.B. (2012)	
Schizopera uranusi	JQ390561	Karanovic, T. & Cooper, S.J.B. (2012)	
Stenhelia pubescens	KF524870	Karanovic, T., Kim, K. & Lee, W. (2014)	
Stenhelia taiae	KF524885	Karanovic, T., Kim, K. & Lee, W. (2014)	
Wellstenhelia calliope	KF524872	Karanovic, T., Kim, K. & Lee, W. (2014)	
Wellstenhelia clio	KF524873	Karanovic, T., Kim, K. & Lee, W. (2014)	
Species	Accession	Authors	
-------------------------	-------------	--------------------------	
Wellstenhelia qingdaoensis	KF524874	Karanovic, T., Kim, K. & Lee, W. (2014)	
Willenstenhelia thalia	KF524882	Karanovic, T., Kim, K. & Lee, W. (2014)	
Table 3 (on next page)

Setal formula of the new species.
Table 3: Setal formula of the new species.

	Endopod	Exopod
P1	1.0.030	0.0.023
P2	1.2.121	1.1.123
P3	1.1.321	1.1.123
P4	1.1.221	1.1.323
Table 4 (on next page)

Estimates of average evolutionary divergence over sequence pairs within Miraciidae genera based on mitochondrial cytochrome oxidase I (mtCOI) gene data.

This table only includes genera in which more than two species of data exist.
Table 4: Estimates of average evolutionary divergence over sequence pairs within Miraciidae genera based on mitochondrial cytochrome oxidase I (mtCOI) gene data.

Genus	Mean distance within genus	Standard error	Number of species included
Amonardia	0.235	0.017	3
Amphiascoides	0.238	0.022	2
Delavelia	0.340	0.027	2
Diosaccus	0.232	0.021	2
Haloshizopera	0.256	0.020	2
Itostenhelia	0.055	0.010	2
Sarsamphiascus	0.206	0.014	4
Schizopera	0.244	0.013	8
Stenhelia	0.225	0.020	2
Wellstenhelia	0.231	0.018	3

This table only includes genera in which more than two species of data exist.