Effect of Valsartan on Sarcoplasmic Reticulum Ca\(^{2+}\)-ATPase Pump of the Left Ventricular Myocardium in Rats with Heart Failure with Preserved Ejection Fraction

Xiao Ying\(^a\) Long Weiqing\(^b\) Lu Guihua\(^c\) Zhang Juhong\(^c\) Zhibin Huang\(^c\)

Departments of \(^a\)Anesthesiology, \(^b\)Clinical Laboratory and \(^c\)Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

Objectives: The aim was to investigate the effects of valsartan on the sarcoplasmic reticulum Ca\(^{2+}\)-ATPase pump (SERCA) and L-type Ca\(^{2+}\) channel current (I\(_{\text{CaL}}\)) of the left ventricular myocardium in rats with heart failure with preserved ejection fraction. Methods: The 30-week-old male spontaneously hypertensive rats (SHRs) are randomly divided into the non-Valsartan and Valsartan groups, and the 30-week-old male Wistar-Kyoto rats served as control rats. The expression of SERCA is measured by Western blot. The I\(_{\text{CaL}}\) is measured by whole-cell patch clamp. The left ventricular end-diastolic pressure and left ventricular relaxation time constant quantity are measured at the same time. Results: The left ventricular end-diastolic pressure...
is much higher in SHRs compared with that in control rats (p < 0.01). The left ventricular relaxation time constant quantity is markedly extended in SHRs compared with control rats (p < 0.01). Valsartan cannot increase the expression of SERCA nor decrease the density of \(I_{CaL} \) compared with the non-Valsartan group (p > 0.05). Conclusions: Valsartan has no effect on SERCA and \(I_{CaL} \) of the left ventricular myocardium in rats with heart failure with preserved ejection fraction.

Introduction

The incidence of heart failure with preserved ejection fraction (HFPEF) had rapidly increased during the past decades and is becoming the dominant form of heart failure [1]. Chronic hypertension is the most common cause besides age, and it is suggested that up to 60% of patients with HFPEF are hypertensive [2, 3]. In HFPEF, left ventricular (LV) cavity dimensions are small, especially in the presence of LV hypertrophy [4]. Treatment of hypertension remains one of the most important factors in the management of diastolic dysfunction [5, 6]. The angiotensin type 1 receptor antagonist (ARB) is one of the major treatments of hypertension; at the same time, inhibition of the renin-angiotensin system with ARB induces regression of LV hypertrophy [7]. Studies of hypertensive subjects indicate that diastolic dysfunction improves with LV hypertrophy regression [8]. Although the association of renin-angiotensin system with many of the underlying processes behind HFPEF is well known, various studies involving ARB use in HFPEF did not demonstrate significant benefits [9]. What are the underlying mechanisms?

Within the cardiomyocyte, \(Ca^{2+} \) is the main mediator of contraction and relaxation after electric activation. Contraction is initiated by \(Ca^{2+} \) release from the sarcoplasmic reticulum (SR), triggered by \(Ca^{2+} \) influx through the sarcolemmal L-type \(Ca^{2+} \) channel. Simultaneous \(Ca^{2+} \)-dependent activation of the myofilaments induces cell shortening. \(Ca^{2+} \) is then removed from the cytosol, mainly by the ATP-dependent SR \(Ca^{2+} \) pump (SERCA), to allow cell relaxation. Intracellular dyssynchrony of \(Ca^{2+} \) decay is increased in animal LV hypertrophy models and in human heart failure. Dyssynchronous diastolic \(Ca^{2+} \) decay within individual cardiomyocytes contributes to dyssynchronous intracellular sarcomere relengthening. It is conceivable that the subcellular synchrony of cytosolic \(Ca^{2+} \) decay and sarcomere relengthening determine the efficacy of cardiomyocyte relaxation [10]. The SERCA is the main mediator of \(Ca^{2+} \) decay. The activity and expression of SERCA decreases in HFPEF, which represents a potential new mechanism underlying diastolic dysfunction [11].

We have previously demonstrated that the angiotensin type 1 receptor antagonist valsartan decreases the density of L-type \(Ca^{2+} \) channel current (\(I_{CaL} \)) of the LV hypertrophy in adult spontaneously hypertensive rats (SHRs) that is mediated in part by regression of LV hypertrophy [12]. In the present study, we aim to determine the effect of Valsartan on the \(I_{CaL} \) and SERCA of LV myocardium in HFPEF rats.

Methods

Experimental Animals

All animal experiments were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals published by the US National Institutes of Health, and conformed to the Animal Regulations of Guangdong Province. All experiments were performed
with the approval of the President of Sun Yat-sen University of Medical Sciences. SHRs and Wistar-Kyoto male rats were purchased from Vital River Experimental Animal Technology (Beijing, China). The 30-week-old male SHRs were randomly divided into the non-Valsartan group and the Valsartan group. The 30-week-old male Wistar-Kyoto rats served as the control group. The Valsartan group received Valsartan (gift from Beijing Novis Pharmaceutical Co., Ltd.) 20 mg/kg/day orally for 4 weeks. The control and non-Valsartan groups received saline (0.9%) orally for 4 weeks. Rats were fed at the Sun Yat-sen University of Medical Sciences Animal Center.

Hemodynamic Measurements
Rats were anesthetized with urethane (120 mg/100 g body weight) via intraperitoneal injection. The 4- to 5-cm incision was made along the midline between the neck and the upper sternal border. The right common carotid artery was found by separating subcutaneous tissue. A Millar catheter was inserted in the right common carotid artery and connected to a 16-channel physiological recorder. LV systolic pressure, maximal rising rate of ventricular pressure (+dp/dt max), LV end-diastolic pressure, maximal falling rate of ventricular pressure (–dp/dt max), and LV relaxation time constant quantity (T) were measured.

Measurement of Blood Pressure
The tail artery systolic pressure was measured using an RBP-1 rat tail blood pressure meter (obtained from the China-Japan Friendship Hospital) during awake and quiet conditions. Measurements were repeated three times, and the mean of three measurements was recorded.

Measurement of LV Mass Index
The rats were killed and their hearts removed. Total heart mass and LV mass were recorded. The ratio of LV mass to body mass was used to calculate the LV mass index (LVMI; in mg·kg⁻¹).

Isolation of Ventricular Myocytes
Each heart was quickly excised and mounted on a Langendorff apparatus; LV myocytes were isolated according to the method described by Isenberg and Klöckner [13]. The aorta was retrogradely cannulated and perfused with nominally Ca²⁺-free modified Tyrode’s solution at 37°C for 5 min. Perfusion pressure was 75 mm Hg, and all solutions were equilibrated with 100% oxygen. Perfusion was continued for another 15 min with 20 ml of the same solution plus collagenase (type CLS II, 200 U/ml; Biochrom KG, Berlin, Germany) and protease (type XIV, 0.7 U/ml; Sigma, USA), and the solution was recirculated. Finally, the heart was perfused with modified Tyrode’s solution containing 100 μM Ca²⁺ for another 5 min.

After perfusion, the LV free wall was separated from the rest of the heart. Epicardial tissue pieces were carefully dissected from the LV free wall with fine forceps, and the pieces were placed in cups. To further disaggregate the tissue pieces, they were gently shaken at 37°C, filtered through cotton mesh, and allowed to settle for 30 min. Cells were stored at room temperature in modified Tyrode’s solution containing 100 μM Ca²⁺. Only single rod-shaped cells with clear cross-striations and no spontaneous contraction were used for experiments.

Electrophysiological Recordings
Whole-cell currents were recorded using an Axopatch 200A amplifier (Axon Instruments, Foster City, Calif., USA). Cell capacitance (Cm, pF) was calculated by integrating the area under an uncompensated capacity transient elicited by a 10-mV depolarizing pulse from a holding potential of 80 mV. Whole-cell currents were low-pass filtered at 1 kHz and digitized.
at 5 kHz via a Digidata 1200 A/D converter (Axon Instruments) interface for off-line analysis. Data were analyzed using custom-written software.

\(I_{\text{CaL}} \) was measured at 21°C in an extracellular solution containing (in mmol/l): TEA-Cl 50.0, MgCl\(_2\) 6.0, H\(_2\)O 0.5, CaCl\(_2\) 1.8, 4AP 3.0, HEPES 5.0, pH 7.4. The intracellular solution contained (in mmol/l): CsCl 100.0, TEA-Cl 20.0, Na\(_2\)-ATP 5.0, HEPES 10.0, EGTA 10.0, pH 7.2. \(I_{\text{CaL}} \) was elicited from a holding potential of –80 mV by voltage steps of 300 ms from –80 to 50 in 10-mV increments at 0.2 Hz.

Western Blot

Protein extracts were obtained by disrupting the tissue in lysis buffer. Supernatants containing cytoplasmic proteins were collected and the protein concentration determined by the BCA method (Protein Assay Kit, Keygen Biotec). For each sample, 50 μg total protein was subjected to SDS-PAGE on an 8% polyacrylamide gel. Separated proteins were electrophoto- retically transferred onto polyvinylidene difluoride membranes for immunodetection. After a blocking step with 5% non-fat milk in 0.02 M Tris, 0.05% Tween 20, membranes were incubated with primary antibodies (diluted in blocking buffer) followed by horseradish peroxidase-conjugated appropriated secondary antibodies. Antigens were visualized by ECL. The bands on the film were quantified and normalized to α-tubulin. Antibody to SERCA was purchased from Beijing Solarbio Science & Technology Co., Ltd.

Statistics

Results are expressed as mean ± SD. Statistical analyses were performed using SPSS 10.0 (SPSS, Chicago, Ill., USA). Differences between the mean values of multiple subgroups were evaluated by ANOVA, and intergroup comparisons were performed using t tests with ANOVA (Bonferroni method). Statistical significance was accepted at p < 0.05.

Results

Comparison of LVMI and Hemodynamic Characteristics

The LV end-diastolic pressure, maximal falling rate of ventricular pressure and LV relaxation time constant quantity are significantly higher in SHRs than in control rats, which indicates that a model of HFPEF has been established. The systolic blood pressure is significantly higher in the non-Valsartan and Valsartan groups compared with the control group (p < 0.01). The systolic blood pressure is significantly lower in the Valsartan group compared with the non-Valsartan group (p < 0.05). The LVMI is significantly higher in the non-Valsartan and Valsartan groups compared with the control group (p < 0.01). The LV end-diastolic pressure, maximal falling rate of ventricular pressure and LV relaxation time constant quantity are significantly higher in the non-Valsartan and Valsartan groups compared with the control group (p < 0.01). The LVMI, LV end-diastolic pressure, maximal falling rate of ventricular pressure and LV relaxation time constant quantity of the Valsartan group are similar to those of the non-Valsartan group (p > 0.05) (table 1).

Ionic Channels in the LV Myocardium

The membrane capacitance of the non-Valsartan and Valsartan groups is significantly larger compared with that of the control group (p < 0.01). In addition, the membrane capacitance of the Valsartan group is close to that of the non-Valsartan group (p > 0.05). The density of \(I_{\text{CaL}} \) in the non-Valsartan and Valsartan groups is higher compared with that in the control group (p < 0.05). The density of \(I_{\text{CaL}} \) in the Valsartan group is similar to that in the control group (p > 0.05) (table 2; fig. 1).
Comparison of SERCA Expression in the LV Myocardium

The SERCA expression of the non-Valsartan and Valsartan groups is significantly lower compared with that of the control group (p < 0.01). The SERCA expression of the Valsartan group is close to that of the non-Valsartan group (p > 0.05) (fig. 2).

Discussion

The main findings of this study include the following: (1) valsartan cannot increase the expression of SERCA, which is significantly lower compared with that in the control group; (2) valsartan has no effect on the density of I CaL, which is significantly higher compared with that in the control group, and (3) valsartan treatment has no effect on the regression of LV hypertrophy by decreasing systolic blood pressure.

Diastolic dysfunction is characterized by slow or incomplete relaxation of the ventricles during diastole, which is a key pathogenic feature of HFPEF [14]. Calcium mishandling is a hallmark of HFPEF [11]. During a cardiac action potential, Ca 2+ is released from the SR, contributing approximately 70% to the cytosolic Ca 2+ transient. The SR Ca 2+ release is triggered by Ca 2+ influx through the L-type Ca 2+ channel, which contributes the remaining 10–30% to the Ca 2+ transient. During diastole, Ca 2+ is taken back up into the SR by the SR Ca 2+
Fig. 1. Effect of valsartan treatment on I_{CaL}. Typical recordings of I_{CaL} in cells from the control (a), non-valsartan (b) and valsartan (c) groups. d The voltage clamp protocol. e Average I-V relationships of I_{CaL} density (in pA/pF) as a function of step potential (in mV), obtained in the control (■), non-valsartan (▲) and valsartan (○) groups.
ATPase to allow cell relaxation [15]. Defects in any of these mechanisms driving the Ca\(^{2+}\) flux can lead to profound cardiac dysfunction. In chronic heart failure, the underlying primary defect is decreased activity and expression of SR Ca\(^{2+}\) ATPase, which decrease the rate of cytosolic Ca\(^{2+}\) removal [10]. The cytosolic Ca\(^{2+}\) removal is the initiating step for relaxation, and the rate of cytosolic Ca\(^{2+}\) removal does influence relaxation kinetics in isolated cells [16], multicellular preparations [17, 18] as well as in vivo [19]. Reduced Ca\(^{2+}\) reuptake into the SR is a hallmark of the failing heart and an important contributor to Ca\(^{2+}\) mishandling and slow relaxation in diastolic dysfunction. Therefore, SERCA is an attractive therapeutic target [20]. In this regard, one approach could be restoring SR Ca\(^{2+}\) ATPase expression. Our study indicates that the expression of SERCA significantly decreases in HFPEF rats, which is similar to the result of other researches [20, 21]. Four-week treatment with valsartan cannot increase the expression of SERCA, which may be one of the underlying mechanisms to understand the lack of efficacy of ARB in the treatment of HFPEF [22, 23].

In diastolic dysfunction, there may be an increase in sarcomere Ca\(^{2+}\) sensitivity and a decrease in the rate of Ca\(^{2+}\) reuptake via SERCA, all leading to a state of Ca\(^{2+}\) overload [24]. The Ca\(^{2+}\)/calmodulin-dependent phosphatase calcineurin is initiated by Ca\(^{2+}\) overload and induces the hypertrophy of the myocardium [25]. Chronically, increased diastolic Ca\(^{2+}\) also activates cell death pathways and alters the metabolic profile, which leads to a decrease in
ATP production and an increase in the reactive oxygen species [26]. SERCA is sensitive to mitochondrial ATP production, and the organization of mitochondria and SR may directly influence the rate of SR Ca\(^{2+}\) reuptake, so the activity of SERCA decreases in a state of Ca\(^{2+}\) overload, which reduces the rate of cytosolic Ca\(^{2+}\) removal and deteriorates the state of Ca\(^{2+}\) overload [27, 28]. The reactive oxygen species promote the myocardial hypertrophy by the signal transduction pathway of Ca\(^{2+}\)/calmodulin-dependent phosphatase calcineurin. Taken together, a vicious cycle is established among Ca\(^{2+}\) overload, insufficient energy and oxidative stress in heart failure. The hypertrophic growth of the myocardium is typically initiated by signal transduction pathways in response to increased mechanical load on the heart or through the action of neurohumoral mediators. Numerous signaling pathways coordinate the cardiac hypertrophic response. Among them, the Ca\(^{2+}\)/calmodulin-dependent phosphatase calcineurin is considered as a central prohypertrophic signaling effector in the myocardium [25]. Valsartan has no effect on the expression of SERCA and the density of I\(_{\text{Ca,L}}\) in HFPEF rats, which indicates that valsartan has no effect on the state of Ca\(^{2+}\) overload; thus, it is easy to understand the lack of efficacy of valsartan in the regression of myocardial hypertrophy.

In conclusion, we do not find evidence that valsartan improves the expression of SERCA, the regression of myocardial hypertrophy and the density of I\(_{\text{Ca,L}}\) in HFPEF rats. This finding is consistent with the lack of efficacy of renin-angiotensin system inhibitors in the treatment of HFPEF [22, 23].

Acknowledgments

This study was supported by the Guangdong Province Science and Technology Project Plan and Social Development of China (No. 2010B031600060).

Disclosure Statement

The authors have no conflicts of interest to disclose.

References

1. Franssen C, Chen S, Hamdani N, Paulus WJ: From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart 2015, Epub ahead of print.
2. Lorell BH, Carabello BA: Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 2000;102:470–479.
3. Lakatta EG: Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev 2002;7:29–49.
4. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE; I-PRESERVE Investigators: Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 2011;124:2491–2501.
5. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahloo PS, Silver MA, Stevenson LW, Yancy CW: 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009;119:1977–2016.
Lindholm LH, Isbsen H, Dahlbøf B, Devereux RB, Beever G, de Faire U, Fyhriquist F, Julius S, Kjeldsen SE, Kristiansson K, Lederballe-Pedersen O, Nieminen MS, Ompik V, Oparril S, Wedel H, Aurup P, Edelman J, Snappin S; LIFE Study Group: Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004–1010.

Schulman SP, Weiss JL, Becker LC, Gottlieb SO, Woodruff KM, Weisfeldt ML, Gerstenblith G: The effects of antihypertensive therapy on left ventricular mass in elderly patients. N Engl J Med 1990;322:1350–1356.

Asrar ul Haq M, Wong C, Mutha V, Anavekar N, Lim K, Barlis P, Hare DL: Therapeutic interventions for heart failure with preserved ejection fraction: a summary of current evidence. World J Cardiol 2014;6:67–76.

Hohendanner F, Ljubojević S, MacQuaide N, Sacherer M, Sedej S, Biesmans L, Wakula P, Platzer D, Sokолов S, Herchuelz A, Antoons G, Sipido K, Pieske B, Heinzel FR: Intracellular dysynchrony of diastolic cytosolic [Ca^{2+}] decay in ventricular cardiomyocytes in cardiac remodeling and human heart failure. Circ Res 2013;113:527–538.

Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM: Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Biochim Biophys Acta 2013;1833:895–900.

Zhi-Bin H, Chang F, Mao-Huan L, Gui-Yi Y, Shu-Xian Z, Wei W: Valsartan improves the electrophysiological characteristics of left ventricular hypertrophic myocardium in spontaneously hypertensive rats. Hypertens Res 2014;37:824–829.

Isenberg G, Klöckner U: Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pfugers Arch 1982;395:30–41.

Kohlhaas M, Maack C: Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Trends Cardiovasc Med 2011;21:69–73.

del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenzweig A, Hajjar RJ: Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999;100:2308–2311.

Müller OJ, Lange M, Ratunde H, Lorenzen HP, Müller M, Frey N, Bittner C, Simonides W, Katus HA, Franz WM: Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 2003;59:380–389.

Bluhm WF1, Kranias EG, Hilal-Dandan R, Leyton JG, Meyer M: Phospholamban: a major determinant of the cardiac force-frequency relationship. Am J Physiol Heart Circ Physiol 2000;278:H249–H255.

He H, Giordano FJ, Hila-Dandan R, Choi DJ, Rockman HA, McDougal PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH: Overexpression of the rat sarcoplasmic reticulum Ca^{2+} ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 1997;100:380–389.

Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK: Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 1998;30:1929–1937.

del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, Lewandowski ED, Hajjar RJ: Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca^{2+}-ATPase in a rat model of heart failure. Circulation 2001;104:1424–1429.

Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iversen E, Staiger C, Ptaszynska A; I-PRESERVE Investigators: Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008;359:2456–2467.

Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J; CHARM Investigators and Committees: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003;362:777–781.

Kranias EG, Hajjar RJ: Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 2012;110:1646–1660.

Bisserier M, Berthouze-Duquesnes M, Breckler M, Tortosa F, Fazal L, de Régibus A, Laurent AC, Vairet B, Marck P, Schickel JN, Deloménie C, Cazorla O, Soulas-Sproul P, Crozatier B, Morel E, Heymes C, Lezoualc'h F: Carabin protects against cardiac hypertrophy by blocking calcineurin, Ras, and Ca^{2+}/calmodulin-dependent protein kinase II signaling. Circulation 2015;131:390–400.

Ruiz-Meana M, Fernandez-Sanz C, García-Dorado D: The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 2010;88:30–39.

De Marchi U, Castelbou C, Demaurex N: Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca^{2+}-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 2011;286:32533–32541.

Arnaudeau S, Kelley WL, Walsh JF Jr, Demaurex N: Mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 2001;276:29430–29439.