Computing feasible trajectories for an articulated probe in three dimensions

Ovidiu Daescu and Ka Yaw Teo

Department of Computer Science
University of Texas at Dallas, Richardson, TX
Problem statement

Articulated probe:
Line segments ab and bc, joined at b. ab can be arbitrarily long, and bc has a fixed length r.

Workspace:
Sphere S containing n triangular obstacles and a target point t in free space.

Probe trajectory:
Straight insertion of abc into S, possibly followed by a rotation of bc at b up to $\pi/2$.

Objective:
Find a feasible (obstacle-avoiding) probe trajectory to reach t.
Motivation

Relevance in robotics, particularly in planning for **minimally invasive surgeries**.

- To reach previously unattainable targets by circumventing surrounding critical structures.
- Human body cavity – workspace S.
- Critical organ/tissue – triangular mesh.

Modeled instrument already in **clinical use** (e.g., da Vinci EndoWrist by Intuitive Surgical).

Has never been investigated in **three dimensions** from a **theoretical** viewpoint.

- Important to fully explore its rich combinatorial and geometric properties through exact solution approach.
Prior work – two dimensions

Daescu, Fox, and Teo [2018a]:

Algorithm for finding a feasible trajectory amidst \(n \) line segment obstacles in the plane.

- \(O(n^2 \log n)\)-time, \(O(n \log n)\)-space.
- Compute **extremal** feasible trajectories tangent to one or two obstacle endpoints.
Prior work – two dimensions

Daescu, Fox, and Teo [2018a]:
Algorithm for finding a feasible trajectory amidst n line segment obstacles in the plane.

- $O(n^2 \log n)$-time, $O(n \log n)$-space.
- Compute extremal feasible trajectories tangent to one or two obstacle endpoints.

Daescu, Fox, and Teo [2018b]:
Extended algorithm for finding a feasible trajectory of a given clearance $\delta > 0$ from obstacles.

- $O(n^2 \log n)$ time, $O(n^2)$ space.
- Dilate each obstacle by δ using Minkowski sum, and find a feasible trajectory tangent to one or two (dilated) obstacles.
Prior work – two dimensions

Daescu and Teo [2019]:
Characterization of the feasible solution space using a simple-curve arrangement.

- Complexity = $O(k)$, where $k = O(n^2)$ is the number of vertices in the arrangement.
- Constructed in $O(n \log n + k)$ time using $O(n + k)$ space (topological sweep method).
- An $O(\log n)$-factor improvement in time complexity for finding a feasible trajectory.
Current results – three dimensions

Observations:

• If there exists a feasible probe trajectory, then some extremal feasible trajectories must be present.

• An extremal trajectory is characterized by its tangencies to a combination of obstacle vertices, edges, and/or surfaces.

• These extremal trajectories can be represented by $O(n^4)$ combinatorial events.

Solution approach:

• Find an extremal feasible trajectory by enumerating and verifying these combinatorial events for feasibility in $O(n^{4+\varepsilon})$ time using $O(n^{4+\varepsilon})$ space, for any constant $\varepsilon > 0$.
Unarticulated vs. articulated

Feasible unarticulated trajectory:
Unarticulated probe can be inserted into S to reach t while avoiding obstacles without a rotation of bc.

Feasible articulated trajectory:
Unarticulated probe can be inserted into S and a rotation of bc can be performed to reach t, all while avoiding obstacles.
Support vertex, edge, and surface

Endpoint of edge e_1 is a **support vertex** of line segment ℓ.

Edge e_2 is a **support edge** of line segment ℓ.

Circular sector σ is supported by edge e_3 through its endpoint.

Circular arc γ is supported by edge e_4 through its interior point.

Triangle τ is a **support surface** of circular arc γ.

A probe trajectory is **isolated or extremal** with respect to a set of supports if the trajectory cannot be altered without losing its intersections or tangencies with these supports.
Extremal feasible unarticulated trajectories

Extremal feasible unarticulated trajectory:

Isolated by **one support vertex**.

Isolated by **two support edges**.
Compute the set R of rays:

- Originates at t.
- Isolated with respect to an obstacle vertex or two obstacle edges.
- Does not intersect any triangular obstacle in its interior.

Each ray of R represents an extremal feasible unarticulated trajectory.

Computing R reduces to:

- Computing the visibility polyhedron from t, which takes $O(n^2)$ time and $O(n^2)$ space [McKenna, 1987].
- This yields all feasible unarticulated trajectories.

Can find a feasible unarticulated trajectory in $O(n^2)$ time using $O(n^2)$ space.
Extremal feasible articulated trajectories

Extremal feasible articulated trajectory:
• Isolated by at most four supports (vertices, edges, surfaces, or a combination of three).
• Twenty some distinct cases – for instance:
Extremal articulated trajectories:

- Characterized by $O(n^4)$ combinatorial events.
- Can be enumerated in $O(n^4)$ time using geometric operations or algebraic-geometric approach.

An extremal articulated trajectory is **feasible** if and only if none of the obstacles intersects

i) segment ab

 \rightarrow **ray shooting query**

 $O(n^{4+\varepsilon})$ preprocessing time/space,
 $O(\log n)$ query time

 [de Berg et al., 1994; Pellegrini, 1993].

ii) circular sector σ (i.e., area swept by bc)

 \rightarrow **circular sector emptiness query**
A feasible articulated trajectory always lies in a plane Π passing through t.

- Π can be parameterized using two variables I and Ω.
- Let τ be a triangle that intersects Π in a line segment s.
- bc' is the farthest radius from bt before the minor circular sector bounded by bt and bc' intersects s.
- ρ_s is the angle of bc' with respect to bt.

Fix Π and characterize ρ_s as a function of θ.

- Each curve $\rho_s(\theta)$ is partially defined, continuous, and monotone over θ.
- Any two curves $\rho_s(\theta)$ can only intersect at most once.
Circular sector emptiness queries

New data structure for circular sector emptiness queries in **two dimensions**:

- Let V be the **lower envelope** of ρ_s for all given line segments s.
- Only require an implicit representation of V:
 - Vertices of V and segments that induce various pieces of V.
- Complexity of $V = O(n \alpha(n))$, 3rd-order Davenport-Schinzel sequence.
- V is computable in $O(n \log n)$ time.
- Can determine if a query sector σ intersects any segment in $O(\log n)$ time:
 - Retrieve the segment s that induces the curve ρ_s defining V at query θ, and check if bc of σ intersects s.
Circular sector emptiness queries

For each \(\tau \), define a trivariate function \(\rho_\tau(I, \Omega, \theta) \) so that \(\rho_s(\theta) \) is characterized with respect to all planes \(\Pi(I, \Omega) \).

\(\rho_\tau(I, \Omega, \theta) \) is an inverse trigonometric function, based on which we can define an algebraic function \(f_\tau = \sin(\rho_\tau/2) \) of low constant degree.

Data structure for circular sector emptiness queries in three dimensions:

- Let \(V \) be the lower envelope of trivariate piecewise algebraic functions \(f_\tau \)
- Complexity of \(V = O(n^{3+\varepsilon}) \) [Sharir, 1994].
- \(V \) is computable in \(O(n^{4+\varepsilon}) \) time using \(O(n^{4+\varepsilon}) \) space [Koltun, 2004].
- Can determine if a query sector intersects any triangular obstacle in \(O(\log n) \) time.
Extremal feasible articulated trajectories

$O(n^4)$ queries are to be processed in the worst case.

Can determine an **extremal feasible articulated trajectory** in time

\[
O(n^4) + O(n^{4+\varepsilon}) + O(n^4 \log n) + O(n^{4+\varepsilon}) + O(n^4 \log n) = O(n^{4+\varepsilon})
\]

using $O(n^{4+\varepsilon})$ space.
Conclusion

A **feasible probe trajectory** in three dimensions can be determined in $O(n^{4+\varepsilon})$ time using $O(n^{4+\varepsilon})$ space.

An $O(n^5)$-time algorithm with linear space usage is achievable by performing a simple $O(n)$-check on each of the $O(n^4)$ events.

Algorithm is **highly parallel**, considering that each combinatorial event can be generated and verified for feasibility independently of the others.

Addressed a special instance of the **circular sector emptiness** query problem in **three dimensions**.

New \mathbb{R}^2 query data structure simplifies the two-part approach formerly proposed by Daescu, Fox, and Teo [2018a] while maintaining the same time and space complexity.
Open problems (in progress)

• Compute a feasible probe trajectory of a given (or maximum) clearance in three dimensions.

• Assuming there is no unarticulated feasible probe trajectory, find the minimum length $r > 0$ of segment bc such that a feasible articulated probe trajectory exists, and report (at least) one such trajectory.
References

O. Daescu, K. Fox, and K.Y. Teo. Trajectory planning for an articulated probe. In *30th Canadian Conference on Computational Geometry*, pages 296-303, 2018.

O. Daescu, K. Fox, and K.Y. Teo. Computing trajectory with clearance for an articulated probe. In *28th Annual Fall Workshop on Computational Geometry*, 2018.

O. Daescu and K.Y. Teo. Characterization and computation of the feasible space of an articulated probe. In *34th Annual European Workshop on Computational Geometry*, 2019.

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting and hidden surface removal. *Algorithmica*, 12(1), pages 30-53, 1994.

V. Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. *Journal of the ACM*, 51(5), pages 699-730, 2004.
M. McKenna. Worst-case optimal hidden-surface removal. *ACM Transactions on Graphics*, 6(1), pages 19-28, 1987.

M. Pellegrini. Ray shooting on triangles in 3-space. *Algorithmica*, 9(5), pages 471-494, 1993.

M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. *Discrete & Computational Geometry*, 12(3), page 327-345, 1994.
Thank you.