Abstract Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and
put constraints on their most peculiar feature: the stellar wind. Medium and high-resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and CHANDRA. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.

Keywords X-rays: stars · Stars: early-type · Stars: late-type

Contents

1 Introduction ... 311

2 X-rays from cool stars .. 313

2.1 Coronal X-ray luminosities and temperatures 313

2.2 The thermal structure of coronae, and the coronal heating problem 314

2.3 Coronal structure from X-ray spectroscopy 319

2.3.1 Summary of low-resolution spectroscopic and non-spectroscopic X-ray studies 320

2.3.2 Coronal structure from spectroscopic line shifts and broadening 321

2.3.3 Inferences from coronal densities 322

2.3.4 Inferences from coronal opacities 327

2.3.5 Summary: trends and limitations 328

2.4 X-ray flares ... 328

2.4.1 Introduction .. 328

2.4.2 An overview of stellar flares 330

2.4.3 Non-thermal hard X-ray flares? 332

2.4.4 Fluorescence and resonance scattering during stellar flares 333

2.4.5 Flare densities: evidence for evaporation 334

2.5 The composition of stellar coronae 336

2.5.1 The FIP and IFIP effects 336

2.5.2 The Ne/O abundance ratio: an indicator of magnetic activity? 340

2.5.3 Abundance changes in flares 341

3 X-rays from young stellar objects and their environments 342

3.1 From protostars to T Tauri stars: coronal properties 342

3.2 X-rays from high-density accretion shocks? 343

3.3 The “X-Ray Soft Excess” of classical T Tauri stars 345

3.4 Abundance anomalies as tracers of the circumstellar environment? 347

3.5 Summary: accretion-induced X-rays in T Tauri stars 349

3.6 X-rays from Herbig stars 350

3.7 Two-absorber X-ray spectra: evidence for X-ray jets 352

3.8 X-rays from eruptive variables: coronae, accretion, and winds 353

3.9 X-rays from circumstellar environments: fluorescence 355

4 X-rays from hot stars ... 357

4.1 Global properties .. 358

4.1.1 Nature of the emission 358

4.1.2 Temperatures 359

4.1.3 L_X/L_{bol} relation 360

4.1.4 A relation with spectral types? 363

4.2 Origin of the X-ray emission: insights from high-resolution spectroscopy 363

4.2.1 Proposed models and a priori predictions 363

4.2.2 Results from high-resolution spectra 367

4.2.3 A new paradigm? 371

4.3 The case of early B-stars 375

4.4 Do Wolf-Rayet stars emit X-rays? 376