EFFECT OF SOME SALINITY AND FERTILIZATION TREATMENTS ON BERMUDA: A. VEGETATIVE GROWTH

M.A.H. Abdou; M.K.A. Aly and H.A.E.I. Ammar
Hort. Dept., Fac. Agric., Minia Univ., Egypt

ABSTRACT: This study was undertaken at the private Farm, Bani Mazar District, Minia governorate, during the two seasons of 2020 and 2021 to investigate the effect of irrigation water salinity, mineral and biofertilization [effective microorganisms (EM) and Azotobacter chroococcum bacteria (AC)] treatments, and, their interactions on the vegetative growth of bermudagrass (Cynodon dactylon, L.), grown in sandy soil. Our results indicated that the vegetative growth traits (covering density, plant height, as well as, fresh and dry weights of clipping) were increased with the low level of salinity (3000 and 6000 ppm), while, they were decreased with the high level of salinity (9000 ppm) comparing with control treatment, with significant differences in some cases, in the three cuts during both seasons. The mineral and biofertilization treatments significantly increased the previous parameters compared with the control treatment, except some treatments (EM or AC) in 2nd and 3rd cuts with the highest values which were obtained due to 100% mineral NPK followed by biofertilizer (EM + AC), without significant differences in some cases, in the three cuts during both seasons. The interaction treatments were significant for all vegetative growth traits in the three cuts during both seasons. The best interaction treatments that mitigate the adverse effects of salinity (9000 ppm) were 100% mineral NPK followed by biofertilizer (EM + AC).

Keywords: Cynodon dactylon, L., salinity, mineral fertilization, biofertilization, vegetative growth.

INTRODUCTION

Bermudagrass (Cynodon dactylon (L.) belongs to Family Poaceae that act as a ground cover (Uddin and Juraimi, 2013), it is considered the main element of landscape. Also, it is a foundation part to play or rest, Bermudagrass is used very often on the fairways and tees of golf courses (Santos et al., 2008 and Wu and Anderson, 2011).

Soil salinity is one of the major factors that reduce plant growth including turfgrass as clarified by Devitt (1989), Marcum and Murdoch (1990), Ahmed et al. (1993), Adavi et al. (2006), Hameed and Ashraf (2008) Bauer et al. (2009), Nadeem et al. (2012), Badawy et al. (2018) and Sharifiasl et al. (2020).

Mineral NPK fertilization has the greatest effect on the growth of bermudagrass as reported by Doernoden et al. (1991), Overman and Evers (1992), El-Tantawy et al. (1993), Trenholm et al. (1998), Rodriguez et al. (2002), Premazzi et al. (2003), Snyder and Cisar (2005) AbdelKader and Alhumaid (2012) and Ihtisham et al. (2020). Also, biofertilizers have many mechanisms to enhance growth and alleviate adverse effects of salinity (Król, 2006; Yuojen, 2015; Ali et al., 2018 and De Luca et al., 2020).

Therefore, the aim of this research was to evaluate the effect of irrigation water salinity, mineral and biofertilization
treatments and their interactions on the vegetative growth of bermudagrass.

MATERIALS AND METHODS

This study was undertaken at the private Farm, Bani Mazar District, Minia governorate. during the two seasons of 2020 and 2021 to investigate the effect of irrigation water salinity and mineral and/or biofertilization treatments, as well as, their interaction on the vegetative growth traits of bermudagrass (*Cynodon dactylon*, L.), grown in sandy soil.

The seeds of bermudagrass were obtained from Hamza Co., El-Giza, Egypt. The experiment was arranged in a complete randomized block design in a split-plot design with three replicates.

The main plots (A) included four levels of salinity i.e. 0.0, 3000, 6000 and 9000 ppm, of NaCl:CaCl₂ at a rate of 1:1 w/w. While eight treatments of mineral NPK and/or biofertilizers, included control, mineral NPK at 100%, mineral NPK at 75%, effective microorganisms (EM), *Azotobacter chroococcum* bacteria (AC), mineral NPK at 75% + EM, mineral NPK at 75% + AC, and EM + AC occupied the subplots (B).

Therefore, the interaction treatments (A × B) performed 32 treatments. Each replicate area was 10 × 10 m, such area was dug out to 30 cm depth and separated into the experimental unit (plot) 1.5 × 1.0 m, to prevent seepage, a 1.0 m between the main plot and 0.25 m between sub-plots, using layers of wood, then refilled with sandy soil plus compost at 10 ton/fed for all treatments (3.6 kg/unit area). Seeds of bermudagrass were sown by broadcasting method on April, 28th for both growing seasons at the rate of 60 g/1.5 m².

The physical and chemical analysis of the used soil is determined according to Jackson (1973) and is shown in Table (a).

The full dose of mineral NPK (100%) was 300 kg/fed of ammonia nitrate (33.5% N) + 200 kg/fed calcium super phosphate (15.5% P₂O₅) + 100 kg/fed potassium sulphate (48% K₂O), therefore, the NPK 100% = 112.5 + 75 + 37.5 g/1.5 m² while 75% NPK = 84.4 + 56.3 + 28.1 g/1.5 m².

All assigned calcium superphosphate fertilizer was applied to the sandy soil during soil preparation for bermuda cultivation, while the amounts of N and K fertilizers were divided into three equal doses and were applied in monthly intervals pattern, starting on the second day of June then 2nd July and 2nd August in both seasons.

Fresh and active biofertilizer, Effective microorganisms containing lactic acid bacteria, photosynthetic bacteria and yeasts (EM) and *A. chroococcum* (AC) strain were obtained from Microbiology Department, Faculty of Agriculture, Mansoura University were sprayed by hand sprayer at the rate of 500 cm³/1.5 m² (each 1.0 ml containing 10⁷ cells of bacteria) and (50 ml/1.5 m²), respectively.

The first dose for EM and AC was applied on 9th June, the second dose on 9th

Table a. Physical and chemical properties of the used soil before planting of bermudagrass during 2020 and 2021 seasons.

Soil character	2020 Values	2021 Values	Soil character	2020 Values	2021 Values
Physical properties					
Sand (%)	90.00	91.00	Total N (%)	0.01	0.01
Silt (%)	7.30	6.40	Available P (%)	2.81	2.96
Clay (%)	2.70	2.60	Na⁺ (mg/100 g soil)	2.34	2.45
Soil type	Sandy	Sandy	K⁺ (mg/100 g soil)	0.78	0.83
Chemical properties					
pH (1:2.5)	8.15	8.22	Fe (ppm)	1.04	1.10
E.C. (dS/m)	1.11	1.13	Cu (ppm)	0.33	0.39
O.M.	0.03	0.04	Zn (ppm)	0.34	0.31
CaCO₃	13.70	13.85	Mn (ppm)	0.56	0.67
DTPA-extractable nutrients					

202
July and the last spray was on 9th August (after one week of the dose of mineral fertilizer), and then the plants were irrigated immediately.

Data recorded:

Covering density (%), plant height (cm), and fresh and dry weights of clipping (g) during the three cuts in both seasons.

The obtained results were tabulated and statistically analyzed according to MSTAT–C (1986), and LSD test at 5\% was followed to compare the means of treatments.

RESULTS AND DISCUSSION

Vegetative growth traits:

Covering density (%):

Data presented in Table (1), regardless of the treatments, showed that covering density (%) in the third cut was higher than either the first or the second cuts.

The treatments of 3000 and 6000 ppm irrigation water salinity significantly increased covering density (%) compared with the control treatment, while the high level of salinity (9000 ppm) decreased covering density (%) compared with the control treatment during the three cuts in both seasons.

These results were in agreement with those obtained by Badawy et al. (2018), Karimi et al. (2018) and Sharifiasl et al. (2020) on bermudagrass.

All used seven treatments of mineral and/or biofertilizers significantly increased covering density (%) compared with the control during the three cuts, except in the 3rd cut in both seasons. Among these treatments, mineral NPK 100\%, followed by EM + AC, were the best without significant differences between them.

The superiority of mineral fertilization in increasing the covering density of bermudagrass was investigated by Manoly et al. (2008), Guertal and Hicks (2009), AbdelKader and Alhumaid (2012), Ammar (2018), Jena and Mohanty (2020) and Ihtisham et al. (2020).

At the same time, the role of biofertilization in enhancing covering density was emphasized by Yuojen (2015) and Ali et al. (2018) on Cynodon dactylon, L., Dwivedi et al. (2016) on Paspalum scrobiculatum and Shaheen et al. (2017), on spinach plant.

The interaction treatments were significant for covering density during the three cuts in both seasons. The best interaction treatments that alleviated the harmful effects of the highest level of saline water (9000 ppm) were mineral NPK 100\%, followed by EM + AC, then mineral NPK 75\% + EM without significant differences between such three interaction treatments in the first and third cuts.

Plant height (cm):

Regardless of the treatments either in the main or sub-plots, the tallest plant was recorded in the first and second seasons during the third cut as shown in Table (2).

There was a significant reduction in plant height in the first and second seasons during the three cuts when Cynodon dactylon was irrigated with salinity stress at 6000 and 9000 ppm compared with the low level (3000 ppm). The reduction was pronounced with the highest level of irrigation water salinity (9000 ppm) which produced the shortest plants during the three cuts in both seasons.

The negative impacts of irrigation water salinity on plant height were stated by many authors such as Adavi et al. (2006), Hameed and Ashraf (2008) Nadeem et al. (2012), Badawy et al. (2018) and Sharifiasl et al. (2020) on bermudagrass.

Data presented in Table (2) mentioned that mineral and/or biofertilization treatments gave a significant increase in bermuda plant height during the three cuts in both growing seasons, except the treatments of EM and AC in the 2nd and 3rd cuts during the first season, and the treatment of AC in
Table 1. Effect of salinity concentration, mineral and biofertilization on covering density (%) of bermudagrass during three cuts in the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	The 1st season (2020)	The 2nd season (2021)							
	0.0	3000	6000	9000	Mean	0.0	3000	6000	9000	Mean
	(B)				(B)					(B)
Control										
Mineral NPK 100%	67.83	88.18	81.40	66.47	75.97	71.22	96.15	91.16	69.80	82.08
Mineral NPK 75%	55.93	72.71	67.12	54.81	62.64	58.73	79.28	75.17	57.55	67.68
EM (500 cm³/1.5 m²)	54.74	71.16	65.69	53.65	61.31	57.48	77.59	73.57	56.33	66.24
AC (50 ml/1.5 m²)	54.15	70.40	64.98	53.07	60.65	56.86	76.76	72.78	55.72	65.53
NPK 75% + EM	64.44	83.77	77.33	63.15	72.17	67.66	91.34	86.61	66.31	77.98
NPK 75% + AC	61.05	79.37	73.26	59.83	68.38	64.10	86.54	82.05	62.82	73.88
Mean (A)	60.02	66.32	61.22	49.99	53.57	72.31	68.56	52.49		
L.S.D. at 5 %	A: 3.10	B: 2.00	AB: 4.00	A: 3.65	B: 2.16	AB: 4.32				
Second Cut										
Control	44.72	53.66	51.43	43.38	48.30	46.96	55.90	49.64	43.83	49.08
Mineral NPK 100%	70.40	84.48	80.96	68.29	76.03	73.92	88.00	78.14	68.99	77.26
Mineral NPK 75%	59.06	70.87	67.92	57.29	63.78	62.01	73.83	65.56	57.88	64.82
EM (500 cm³/1.5 m²)	58.30	69.96	67.05	56.55	62.96	61.22	72.88	64.71	57.13	63.98
AC (50 ml/1.5 m²)	57.90	69.48	66.59	56.16	62.53	60.80	72.38	64.27	56.74	63.55
NPK 75% + EM	61.60	73.92	70.84	59.75	66.53	64.68	77.00	68.38	60.37	67.61
NPK 75% + AC	59.00	70.80	67.85	57.23	63.72	61.95	73.75	65.49	57.82	64.75
Mean (A)	59.99	71.99	68.99	58.19	62.99	74.98	66.59	58.79		
L.S.D. at 5 %	A: 3.00	B: 1.70	AB: 3.40	A: 3.58	B: 1.81	AB: 3.62				
Third Cut										
Control	59.06	69.69	65.56	58.47	63.19	62.60	73.83	69.10	60.83	66.59
Mineral NPK 100%	75.85	89.50	84.19	75.09	81.16	80.40	94.81	88.74	78.13	85.52
Mineral NPK 75%	64.89	76.57	72.03	64.24	69.43	68.78	81.11	75.92	66.84	73.16
EM (500 cm³/1.5 m²)	60.98	71.96	67.69	60.37	65.25	64.64	76.23	71.35	62.81	68.75
AC (50 ml/1.5 m³)	59.71	70.46	66.28	59.11	63.89	63.29	74.64	69.86	61.50	67.32
NPK 75% + EM	70.95	83.72	78.75	70.24	75.92	75.21	88.69	83.01	73.08	80.00
NPK 75% + AC	64.71	76.36	71.83	64.06	69.24	68.59	80.89	75.71	66.65	72.96
Mean (A)	73.05	86.20	81.09	72.32	78.16	77.43	91.31	85.47	75.24	82.36
L.S.D. at 5 %	66.15	78.06	73.43	65.49	70.12	82.69	77.40	68.13		
	A: 4.02	B: 3.13	AB: 6.60	A: 4.18	B: 3.17	AB: 6.34				

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
Table 2. Effect of salinity concentration, mineral and biofertilization on plant height (cm) of bermudagrass during three cuts in the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	The 1st season (2020)	The 2nd season (2021)	
	0.0 3000 6000 9000 Mean (B) 0.0 3000 6000 9000 Mean (B)	First cut	Second Cut	Third cut
Control	8.40 12.60 10.08 8.06 9.79 8.82 13.67 11.29 8.64 10.61	8.13 11.53 11.22 7.66 9.64 8.90 10.90 10.38 7.63 9.45	10.13 14.30 10.33 8.33 10.77 10.66 14.83 11.03 8.20 11.18	
Mineral NPK 100%	11.4 17.10 13.68 10.94 13.28 11.97 18.55 15.32 11.73 14.39	12.53 20.00 16.76 11.87 15.29 12.75 20.73 15.39 14.80 15.92	13.76 20.76 17.82 13.07 16.36 13.93 22.33 19.00 13.16 17.11	
Mineral NPK 75%	9.40 14.10 11.28 9.02 10.95 9.87 15.30 12.63 9.67 11.87	10.80 13.80 11.04 8.83 10.72 9.66 14.97 12.36 9.47 11.62	11.13 18.06 11.50 9.06 12.44 11.40 18.20 11.90 9.73 12.81	
EM (500 cm³/1.5 m²)	9.20 13.80 11.04 8.83 10.72 9.66 14.97 12.36 9.47 11.62	10.60 12.63 11.63 8.00 10.72 9.86 11.76 10.77 8.06 10.11	10.46 15.93 11.25 9.23 11.72 11.53 16.93 11.70 9.50 12.42	
AC (50 ml/1.5 m²)	9.10 13.65 10.92 8.74 10.60 9.56 14.81 12.23 9.36 11.49	10.26 15.39 12.31 9.85 11.95 10.77 16.70 13.79 10.93 12.95	10.10 16.65 13.32 10.66 12.93 11.66 18.07 14.92 11.42 14.02	
NPK 75% + EM	10.83 16.25 13.00 10.40 12.62 11.37 17.83 14.56 11.14 13.67	11.00 16.65 13.32 10.66 12.93 11.66 18.07 14.92 11.42 14.02	11.20 15.00 11.66 9.63 11.87 11.76 14.70 12.67 11.26 12.60	
NPK 75% + AC	10.26 15.39 12.31 9.85 11.95 10.77 16.70 13.79 10.93 12.95	11.00 16.65 13.32 10.66 12.93 11.66 18.07 14.92 11.42 14.02	11.10 14.10 12.26 8.50 11.49 11.03 13.03 12.01 9.66 11.43	
EM + AC	11.10 16.65 13.32 10.66 12.93 11.66 18.07 14.92 11.42 14.02	11.10 16.65 13.32 10.66 12.93 11.66 18.07 14.92 11.42 14.02	12.17 18.78 15.29 11.27 14.38 12.86 19.13 15.80 11.66 14.86	
Mean (A)	8.57 12.86 10.29 8.23 9.00 13.95 11.52 8.82	10.95 14.48 12.56 9.10 10.83 14.29 12.19 10.07	10.13 14.30 10.33 8.33 10.77 10.66 14.83 11.03 8.20 11.18	
L.S.D. at 5 %	A: 1.11 B: 0.55 AB: 1.10 A: 1.19 B: 0.40 AB: 0.80			

EM: Effective microorganisms and AC: Azotobacter chroococcum bacteria
the 3rd cut in the second season as well as the treatments of mineral NPK 75%, EM and AC in the 2nd cut during the second season. It is noticed that mineral NPK 100% and/or EM + AC recorded the tallest plants in both seasons. Such two superior treatments came in the first order, while NPK 75% + EM and mineral NPK 75% + AC came in the second order, mineral NPK 75%, EM and AC treatments came in the third order, and the control gave the shortest plants.

The role of NPK fertilization in improving plant height was also mentioned by Ammar (2018), Ihtisham et al. (2018), Jena and Mohanty (2020) and Ihtisham et al. (2020) on Cynodon dactylon, L.

Meanwhile, the increase in plant height due to biofertilizer deduced by Yuojen (2015) and Ali et al. (2018) on Cynodon dactylon L.

The interaction was significant for plant height. The interaction treatment of 9000 ppm with mineral NPK 100%, followed by EM + AC, then mineral NPK 75% + EM mitigated the stress of salinity.

Clipping fresh and dry weights (kg):

No matter what the treatments either in main or sub-plots, the heaviest clipping fresh and dry weights came from the 3rd cut in both seasons as shown in Tables (3 and 4).

Data presented in Tables (3 and 4) stated that clipping fresh and dry weights were gradually decreased with the increase in salinity concentration during the three cuts in both seasons facing the low level (3000 ppm). Significant differences were detected between each two salinity water irrigation. At the same time the irrigation water salinity at 3000, followed by 6000 ppm increased the clipping fresh and dry weights than the control, while, 9000 ppm reduced the clipping fresh and dry weights facing the control.

The above-mentioned findings were in harmony with those reported by Al-Khalifah (2004), Alshammary et al. (2004), Berndt (2007), Karimi et al. (2018), Mohammed et al. (2019) and Sharifiasl et al. (2020) on bermudagrass.

Concerning the effect of mineral and/or biofertilization treatments on clipping fresh and dry weights, with respect to mineral NPK 100% produced the maximum clipping fresh and dry weights in both seasons, followed by using biofertilization (EM + AC). The control treatments gave the lightest clipping fresh and dry weights in both seasons for the 1st, 2nd and 3rd cuts. The other treatments gave intermediate values.

Concerning the impact of mineral NPK fertilization, our findings are in agreement with those indicated by Trenholm et al. (2000), Rodriguez et al. (2002), Snyder and Cisar (2005), Alderman et al. (2011), Bald et al. (2013) and Ihtisham et al. (2020) on Cynodon dactylon, L.

Regarding the effect of biofertilizers, many researchers stated that biofertilizers enhanced plant fresh weight such as Yuojen (2015) and Ali et al. (2018) on Cynodon dactylon L.

The interaction treatments were significant for clipping fresh and dry weights during the three cuts in both seasons. Generally, in both seasons during the three cuts, the heaviest weights (fresh or dry) were produced from mineral NPK 100% or EM + AC under 3000 ppm salinity. In addition, the best treatments that alleviated the harmful effects of the highest level of saline water (9000 ppm) were mineral NPK 100%, followed by EM + AC, then mineral NPK 75% + EM, without significant difference between such superior interaction treatments in the first cut for fresh weight.

The bermudagrass can tolerate moderate concentrations of salinity, however, the high concentrations reduce vegetative and root growth. Where, the high level of salinity resulted in osmotic stress (Berndt, 2007), reduced photosynthetic capacity, damage to photosynthetic systems by excessive energy, structural disorganization, or reduction in photochemical quenching (Flowers et al., 1985 and Lee et al., 2004) and proline
Table 3. Effect of salinity concentration, mineral and biofertilization on clipping fresh weight/unit (kg) of bermudagrass during three cuts in the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	0.0	3000	6000	9000	Mean (B)	0.0	3000	6000	9000	Mean (B)
	The 1st season (2020)										
Control	First cut	1.999	2.599	2.399	1.959	2.239	2.099	2.834	2.687	2.057	2.419
Mineral NPK 100%		2.713	3.527	3.256	2.659	3.039	2.849	3.846	3.647	2.792	3.283
Mineral NPK 75%		2.237	2.908	2.685	2.192	2.506	2.349	3.171	3.007	2.302	2.707
EM (500 cm³/1.5 m²)		2.190	2.846	2.628	2.146	2.452	2.299	3.104	2.943	2.253	2.650
AC (50 ml/1.5 m³)		2.166	2.816	2.599	2.123	2.426	2.274	3.070	2.911	2.229	2.621
NPK 75% + EM		2.578	3.351	3.093	2.526	2.887	2.706	3.654	3.464	2.652	3.119
NPK 75% + AC		2.442	3.175	2.930	2.393	2.735	2.564	3.462	3.282	2.513	2.955
Mean (A)		2.041	2.653	2.449	2.000	2.143	2.893	2.743	2.100		
L.S.D. at 5 %		A: 0.101	B: 0.080	AB: 0.160	A: 0.121	B: 0.087	AB: 0.134				
	The 2nd season (2021)										
Control	Second Cut	1.789	2.147	2.057	1.735	1.932	1.878	2.236	1.986	1.753	1.963
Mineral NPK 100%		2.816	3.379	3.238	2.732	3.041	2.957	3.520	3.126	2.760	3.091
Mineral NPK 75%		2.360	2.832	2.714	2.289	2.549	2.478	2.950	2.620	2.313	2.590
EM (500 cm³/1.5 m²)		2.332	2.798	2.682	2.262	2.519	2.449	2.915	2.589	2.285	2.559
AC (50 ml/1.5 m³)		2.316	2.779	2.663	2.247	2.501	2.432	2.895	2.571	2.270	2.542
NPK 75% + EM		2.464	2.957	2.834	2.390	2.661	2.587	3.080	2.735	2.415	2.704
NPK 75% + AC		2.362	2.835	2.717	2.292	2.551	2.481	2.953	2.622	2.315	2.593
Mean (A)		2.400	2.879	2.759	2.328	2.519	2.999	2.663	2.352		
L.S.D. at 5 %		A: 0.105	B: 0.064	AB: 0.128	A: 0.141	B: 0.066	AB: 0.132				
	Third cut	2.362	2.788	2.622	2.339	2.528	2.504	2.953	2.764	2.433	2.664
Control		3.097	3.653	3.419	3.010	3.295	3.216	3.793	3.550	3.125	3.421
Mineral NPK 100%		2.588	3.054	2.873	2.563	2.770	2.744	3.236	3.028	2.666	2.918
Mineral NPK 75%		2.439	2.878	2.708	2.415	2.610	2.586	3.049	2.854	2.512	2.750
EM (500 cm³/1.5 m³)		2.388	2.818	2.651	2.365	2.556	2.532	2.986	2.794	2.460	2.693
AC (50 ml/1.5 m³)		2.838	3.349	3.150	2.810	3.037	3.008	3.548	3.320	2.923	3.200
NPK 75% + EM		2.596	3.063	2.881	2.570	2.777	2.751	3.245	3.037	2.673	2.927
NPK 75% + AC		2.922	3.448	3.243	2.893	3.127	3.034	3.671	3.368	3.004	3.246
Mean (A)		2.646	3.122	2.937	2.620	2.805	3.308	3.096	2.725		
L.S.D. at 5 %		A: 0.118	B: 0.190	AB: 0.340	A: 0.161	B: 0.176	AB: 0.352				

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
Table 4. Effect of salinity concentration, mineral and biofertilization on clipping dry weight/unit (kg) of bermudagrass during three cuts in the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	Mean (B)	Mean (B)							
	0.0	3000	6000	9000	Mean (B)	0.0	3000	6000	9000	Mean (B)
The 1st season (2020)										
Control	0.180	0.234	0.216	0.176	0.202	0.180	0.234	0.216	0.176	0.202
Mineral NPK 100%	0.326	0.423	0.391	0.319	0.273	0.326	0.423	0.391	0.319	0.273
Mineral NPK 75%	0.324	0.291	0.269	0.219	0.225	0.224	0.291	0.269	0.219	0.225
EM (500 cm³/1.5 m²)	0.219	0.285	0.263	0.215	0.221	0.219	0.285	0.263	0.215	0.221
AC (50 ml/1.5 m³)	0.217	0.282	0.260	0.212	0.218	0.217	0.282	0.260	0.212	0.218
NPK 75% + EM	0.284	0.369	0.340	0.278	0.260	0.284	0.369	0.340	0.278	0.260
NPK 75% + AC	0.269	0.349	0.322	0.263	0.269	0.269	0.349	0.322	0.263	0.269
EM + AC	0.317	0.412	0.380	0.311	0.266	0.317	0.412	0.380	0.311	0.266
Mean (A)	0.254	0.331	0.305	0.249	0.254	0.331	0.305	0.249	0.254	0.331
L.S.D. at 5 %		A: 0.010	B: 0.008	AB: 0.016	A: 0.015	B: 0.011	AB: 0.022			
The 2nd season (2021)										
Control	0.179	0.215	0.206	0.174	0.193	0.188	0.224	0.199	0.175	0.196
Mineral NPK 100%	0.394	0.473	0.453	0.382	0.426	0.414	0.493	0.438	0.386	0.433
Mineral NPK 75%	0.356	0.322	0.322	0.252	0.280	0.273	0.325	0.288	0.254	0.285
EM (500 cm³/1.5 m²)	0.257	0.308	0.295	0.249	0.277	0.269	0.321	0.285	0.251	0.282
AC (50 ml/1.5 m³)	0.255	0.306	0.293	0.247	0.275	0.268	0.318	0.283	0.250	0.280
NPK 75% + EM	0.296	0.355	0.340	0.287	0.319	0.310	0.370	0.328	0.290	0.325
NPK 75% + AC	0.283	0.340	0.326	0.263	0.269	0.269	0.349	0.322	0.263	0.269
EM + AC	0.345	0.414	0.397	0.335	0.373	0.362	0.431	0.383	0.338	0.379
Mean (A)	0.240	0.288	0.276	0.233	0.252	0.230	0.267	0.236	0.252	0.236
L.S.D. at 5 %		A: 0.012	B: 0.030	AB: 0.060	A: 0.033	B: 0.031	AB: 0.062			
Third cut										
Control	0.239	0.282	0.265	0.236	0.247	0.253	0.298	0.279	0.246	0.254
Mineral NPK 100%	0.437	0.515	0.482	0.424	0.333	0.453	0.535	0.501	0.441	0.346
Mineral NPK 75%	0.313	0.370	0.348	0.310	0.280	0.332	0.392	0.366	0.323	0.295
EM (500 cm³/1.5 m²)	0.295	0.348	0.328	0.292	0.292	0.313	0.369	0.345	0.304	0.278
AC (50 ml/1.5 m³)	0.289	0.341	0.321	0.286	0.258	0.306	0.361	0.338	0.298	0.272
NPK 75% + EM	0.372	0.439	0.413	0.368	0.307	0.394	0.465	0.435	0.383	0.323
NPK 75% + AC	0.340	0.401	0.377	0.337	0.281	0.360	0.425	0.398	0.350	0.296
EM + AC	0.412	0.486	0.457	0.408	0.316	0.428	0.505	0.475	0.424	0.328
Mean (A)	0.337	0.398	0.374	0.333	0.253	0.298	0.279	0.246		
L.S.D. at 5 %		A: 0.011	B: 0.016	AB: 0.032	A: 0.018	B: 0.018	AB: 0.036			

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
accumulation could add to the salinity tolerance through osmoregulation or by acting as carbon and nitrogen sink for stress recovery (Shahba et al., 2012).

The positive effect of NPK fertilization on alleviating the harmful effects of salinity was: moderate N has improved tolerance and hastened recovery from injury (Trenholm et al., 2001).

Potassium aids in the uptake and movement of different nutrients within the plants, maintains osmotic pressure and is important in the metabolism and formation of carbohydrates and proteins (Bidwell, 1974). Potassium may enhance wear tolerance through the regulation of turgor potential (Trenholm et al., 2001). Potassium is important in improving the stress tolerance of turfgrasses and is essential to plant growth (Snyder and Cisar, 2000).

Biofertilizers also, increase plant growth and help to super pass the harmful effects of salinity stress. Azotobacter spp. fixing nitrogen (Jnawali et al., 2015), synthesizing auxins, cytokinins, and GA–like substances, and these growth materials are the primary substance controlling the enhanced growth of plants. In addition, there are various other facets of Azotobacter spp. prominent characteristics that enhance the tolerance index of the plant in a hostile environment (Ruzzi and Aroca, 2015). Using isolated salt-tolerant bacteria from different sources of saline could promote seedling growth under salinity stress (Siddique et al., 1997).

EM has several beneficial effective microorganisms that work together to produce N, and plant hormones and enhances plant physiological processes which are reflected to tolerate salinity stress (Cóndor_Golec et al., 2007). Also, EM produces substances that play the role of antioxidants (Mayer et al., 2010).

REFERENCES
AbdelKader, H.H. and Alhumaid, A.I. (2012). Effect of inorganic NPK fertilizer and bioorganic compost on growth and quality of numex sahara bermudagrass (Cynodon dactylon, L. Pers.) grown in a sandy soil. Journal of Plant Production, 3 (11): 2761-2780.
Adavi, Z.; Razmjoo, K. and Mobli, M. (2006). Salinity tolerance of bermudagrass (Cynodon spp. L. C. Rich) cultivars and shoot Na, K and Cl contents under a high saline environment, The Journal of Horticultural Science and Biotechnology, 81(6):1074-1078, https://10.1080/14620316.2006.11512174
Ahmed, I.; Qasim, M.; Quershi, R.M. and Khan, M.M. (1993). Study on salt tolerance of turf grasses. Pak. J. Agri. Sci., 30(2):181-184.
Alderman, P.D.; Boote, K.J. and Sollenberger, L.E. (2011). Regrowth dynamics of ‘Tifton 85’ bermudagrass as affected by nitrogen fertilization. Crop Science, 51(4):1716-1726. http://10.2135/cropsci2010.09.0515
Ali, A.F.; Abdou, M.A.H.; Amer, E.H. and Ammar, H.A.E.I. (2018). Influence of compost, mineral and effective microorganisms application on sandy soil-grown Bermuda turfgrass. Scientific Journal of Flowers and Ornamental Plants, 5(2):127-140. http://10.21608/sjfop.2018.18124
Al-Khalifah, N.S. (2004). Response of some turfgrasses to salinity and environmental conditions of Saudi Arabia. Emirates Journal of Food and Agriculture, 16(2):9-17. https://doi.org/10.9755/ejfa.v12i2.5015
Alshammary, S.F.; Qian, Y.L. and Wallner, S.J. (2004). Growth response of four turfgrass species to salinity. Agricultural Water Management, 66(2):97-111.
Ammar, H.A.E.I. (2018). Physiological Studies on Bermuda Plants. M.Sc. Thesis, Fac. Agric., Al-Azhar Univ. (Assiut branch), Egypt, 113 P.
Badawy, E.M.; El-Khateeb, M.A. and Salem, M.A.M. (2018). Physiological parameters and quality of bermuda grass (Cynodon
et al.} grown in different types of soil in response to salinity of irrigation water. Middle East J., 7(3):683-696.

Bald, A.; Lenzi, A.; Nannicini, M.; Pardini, A. and Tesi, R. (2013). Growth and nutrient content of hybrid bermudagrass grown for nursery purposes at different nitrogen, phosphorus and potassium rates. Hort. Technology J., 23(3):347-355.

Bauer, B.K.; Poulter, R.E.; Troughton, A.D. and Loch, D.S. (2009). Salinity tolerance of twelve hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy] genotypes. International Turfgrass Society, 11:313-326.

Berndt, W.L. (2007). Salinity affects quality parameters of ‘Sea Dwarf’ seashore paspalum. HortScience, 42(2):417-420.

Bidwell, E.G.S. (1974). Plant Physiology. Macmillan Publishing Co., Inc., New York, USA., 644 p.

Cóndor_Golec, A.F.; Pérez, P.G. and Lokare, C. (2007). Effective microorganisms: myth or reality?. Revista Peruana de Biología, 14(2):315-319. https://www.researchgate.net/publication/28213606

De Luca, V.; de Barreda, D.G.; Lidón, A. and Lull, C. (2020). Effect of nitrogen-fixing microorganisms and amino acid-based biostimulants on perennial ryegrass. HortTechnology, 30(2):280-291.

Devitt, D.A. (1989). Bermudagrass response to leaching fractions, irrigation salinity, and soil types. Agronomy Journal, 81(6):893-901.

Doernoden, P.H.; Crahay, J.N. and Davis, D.B. (1991). Spring dead spot bermudagrass quality as influenced by nitrogen source and potassium. Crop Science, 31:1674-1680.

Dwivedi, B.S.; Rawat, A.K.; Dixit, B.K. and Thakur, R.K. (2016). Effect of inputs integration on yield, uptake and economics of Kodo Millet (Paspalum scrobiculatum, L.). New Delhi Publishers J., 61(3):519-524.

El-Tantawy, A.; Hanafy, M.S and Hossny, Y.A. (1993). Effect of different growing media and sowing dates on growth of bermuda grass (Cynodon dactylon, L.). Minia J. Agric. Res. & Dev. (Special Issue), 15:1079-1098.

Flowers, T.; Duque, E.; Hajibagheri, M.A.; McGonigle, T.P. and Yeo. A.R. (1985). The effect of salinity on leaf ultrastructure and net photosynthesis of two varieties of rice: further evidence for a cellular component of salt-resistance. New Phytol., 100:37-43. http://10.1111/j.1469-8137.1985.tb02755.x

Guertal, E.A. and Hicks, C.A. (2009). Nitrogen source and rate effects on the establishment of ‘Tifsport’ and ‘Tifway’ hybrid bermuda grass. Crop science, 49(2):690-695. http://10.2135/cropsci2008.07.0436

Hameed, M. and Ashraf, M. (2008). Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(8):683-694. www.http//:doi:10.1016/j.flora.2007.11.005

Ihtisham, M.; Fahad, S.; Luo, T.; Larkin, R.M.; Yin, S. and Chen, L. (2018). Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Front. Plant Sci., 9:1-14. https://doi.org/10.3389/fpls.2018.00487

Ihtisham, M.; Liu, S.; Shahid, M.O.; Khan, N.; Lv, B.; Sarraf, M.; Ali, S.; Chen, L.; Liu, Y. and Chen, Q. (2020). The optimized N, P, and K fertilization for bermudagrass integrated turf performance during the establishment and its importance for the sustainable management of urban green
spaces. Sustainability, 12(24):1-16. http://doi:10.3390/su122410294

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice – Hall of India, Private Limited; New Delhi, India, 498 p.

Jena, K. and Mohanty, C.R. (2020). Effect of nitrogen and phosphorus on growth and quality of bermuda lawn grass (Cynodon dactylon) cv. Selection-1. The Pharma Innovation Journal, 9(3):56-60.

Jnawali, A.D.; Ojha, R.B. and Marahatta, S. (2015). Role of azotobacter in soil fertility and sustainability, A Review. Adv. Plants Agric. Res., 2(6):1-5.

Karimi, I.Y.M.; Kurup, S.S.; Salem, M.A.M.A.; Cheruth, A.J.; Purayil, F.T.; Subramaniam, S. and Pessarakli, M. (2018). Evaluation of bermuda and paspalum grass types for urban landscapes under saline water irrigation. Journal of Plant Nutrition, 41(7):888-902. https://doi.org/10.1080/01904167.2018.1431669

Król, E. (2006). Fungi inhabiting decaying grapevine (Vitis spp.) cuttings. Journal of Plant Protection Research, 46(4):353-358.

Lee, G.J.; Carrow, R.N. and Duncan, R.R. (2004). Photosynthetic responses to salinity stress in halophytic seashore paspalum genotypes. Plant Sci., 166:1417–1425. http://doi:10.1016/j.plantsci.2003.12.029

Manoly, N.D.; Hassanein, M.M. and Nasr, A.A. (2008). Response of bermuda grass (Cynodon dactylon, L.) to nitrogen fertilization on mowing dates. Minia J. of Agric. Res. & Dev., 28(4):755-765.

Marcum, K.B. and Murdoch, C.L. (1990). Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agronomy Journal, 82(5):892-896.

Mayer, J.; Scheid, S.; Widmer, F.; Fließbach, A. and Oberholzer, H.R. (2010). How effective are “Effective microorganisms® (EM)” results from a field study in temperate climate. Appl. Soil Ecol., 46:230-239.

Mohammed, M.A.; Awad, A.E. and Gendy, A.S. (2019). Growth, root system, salt resistance index and leaf pigments of Paspalum vaginatum as affected by saline irrigation water level and amino acids type. Zagazig Journal of Agricultural Research, 46(6):1863-1875.

MSTAT–C (1986). A microcomputer program for the design management and analysis of Agronomic Research Experiments (version 4.0). Michigan State Univ., U.S.A.

Nadeem, M.; Younis, A.; Riaz, A.; Hameed, M.; Nawaz, T. and Qasim, M. (2012). Growth response of some cultivars of bermudagrass (Cyanodon dactylon L.) to salt stress. Pak. J. Bot., 44(4):1347-1350.

Overman, A.R. and Evers, G.W. (1992). Estimation of yield and nitrogen removal by bermudagrass and bahiagrass. Transactions of the ASEA, 35(1):207-210.

Premazzi, L.M.; Monteiro, F.A. and Corrente, J.E. (2003). Tillering of Tifton 85 bermudagrass in response to nitrogen rates and time of application after cutting. Scientia Agricola, 60(3):565-571.

Rodriguez, I.R.; Miller, G.L. and McCarty, L.B. (2002). Bermudagrass establishment on high sand-content soils using various NPK ratios. HortScience, 37(1):208-209.

Ruzzi, M. and Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196:124-134.

Santos, R.; Correia, P.J. and Beltrao, J. (2008). Combined effects of potassium and wastewater application on the yield and quality of bermudagrass (Cynodon...
M.A.H. Abdou et al.

dactylon) in the Mediterranean regions. WSEAS Transactions on Environment and Development, 4(9):726-735.

Shahba, M.A.; Alshammary, S.F. and Abbas, M.S. (2012). Effects of salinity on seashore paspalum cultivars at different mowing heights. Crop Science, 52(3):1358-1370.

www.http//:10.2135/cropsci2011.06.0337

Shaheen, S.; Khan, M.; Khan, M.J.; Jilani, S.; Bibi, Z.; Munir, M. and Kiran, M. (2017). Effective microorganisms (EM) co-applied with organic wastes and NPK stimulate the growth, yield and quality of spinach (Spinacia oleracea L.). Sarhad J. Agric., 33(1):30-41.

https://www.researchgate.net/publication/314027301

Sharifiasl, R.; Kafi, M.; Saidi, M. and Kalatejari, S. (2020). The effect of humic acid on growth and some physiological responses in bermudagrass subjected to salinity stress. Iranian Journal of Horticultural Science, 51(2):415-425.

Snyder, G.H. and Cisar, J.L. (2000). Nitrogen/potassium fertilization ratios for bermudagrass turf. Crop Sci., 40:1719-1723.

Snyder, G.H. and Cisar, J.L. (2005). Potassium fertilization responses as affected by sodium. Int. Turfgrass Soc. Res. J., 10:428-435.

Trenholm, L.E.; Carrow, R.N. and Duncan, R.R. (2001). Wear tolerance, growth, and quality of seashore paspalum in response to nitrogen and potassium. HortScience, 36(4):780-783.

Trenholm, L.E.; Dudeck, A.E.; Sartain, J.B. and Cisar, J.L. (1998). Bermudagrass growth total nonstructural carbohydrate concentration and quality as influenced by nitrogen and potassium. Crop. Sci., 38:166-174.

Uddin, M.K. and Juraimi, A.S. (2013). Salinity tolerance turfgrass: history and prospects. The Scientific World Journal, 2013:1-6.

http://dx.doi.org/10.1155/2013/409413

Yuojen, K. (2015). Effects of fertilizer type on chlorophyll content and plant biomass in common bermudagrass. African J. Agric. Res., 10(42):3997-4000.
في الحشات الثلاث خلال المواسم، مع عدم وجود فروق معنوية بينهما في بعض الحالات. كانت معاملات التفاعل معنوية لجميع صفات النمو الخضري في الحشات الثلاث خلال المواسم. وكانت أفضل معاملات التفاعل التي خففت من الآثار الضارة للملوحة (٠٠٠ جزء في المليون) هي معاملة ١٠٠% NPK معزلي تليها EM + AC. معاملة التسميد الحيوي