Search for unusual objects in the WISE Survey

Aleksandra Solarz¹, Maciej Bilicki²⁻¹⁻³ and Agnieszka Polło¹⁻⁴

1. Narodowe Centrum Badań Jądrowych
 ul. Andrzeja Soltana 7, 05-400 Otwock, Poland
2. Leiden Observatory, Leiden University, the Netherlands
3. Janusz Gil Institute of Astronomy, University of Zielona Góra, Poland
4. Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego

Automatic source detection and classification tools based on machine learning (ML) algorithms are growing in popularity due to their efficiency when dealing with large amounts of data simultaneously and their ability to work in multidimensional parameter spaces. In this work, we present a new, automated method of outlier selection based on support vector machine (SVM) algorithm called one-class SVM (OCSVM), which uses the training data as one class to construct a model of 'normality' in order to recognize novel points. We test the performance of OCSVM algorithm on Wide-field Infrared Survey Explorer (WISE) data trained on the Sloan Digital Sky Survey (SDSS) sources. Among others, we find ∼ 40,000 sources with abnormal patterns which can be associated with obscured and unobscured active galactic nuclei (AGN) source candidates. We present the preliminary estimation of the clustering properties of these objects and find that the unobscured AGN candidates are preferentially found in less massive dark matter haloes \((M_{DMH} \sim 10^{12.4})\) than the obscured candidates \((M_{DMH} \sim 10^{13.2})\). This result contradicts the unification theory of AGN sources and indicates that the obscured and unobscured phases of AGN activity take place in different evolutionary paths defined by different environments.

1 Introduction

The increasing amount of data that is collected from large digital sky surveys, now reaching several peta-bytes including hundreds of million of celestial objects and thousands of parameters measured for each of the observed sources, forces astronomy into finding new ways of efficient detection, segregation and classification of the collected information.

An additional role that they will play is allowing the astronomers to search for some rare or even new astrophysical objects which were otherwise missed within the surveys. This aspect can be studied by exploring previously uncharted parts of the parameter spaces, like the classical color-color (CC) diagrams, where the distribution of already known sources can point to rare outliers. However, more often than not, new sources can hide their existence by mimicking the appearance of the regular sources. With the new, automated methods offered by Machine Learning algorithms it is now possible to work in high-dimensional parameter spaces not only to efficiently create samples of regular sources in large amounts of data but also
to search for undersampled or even new celestial objects. The presented work is aimed at detecting anomalies within the Wide-field Infrared Survey Explorer (WISE, \cite{Wright2010}) data set based on a pure training sample of galaxies, stars and quasars selected from the cross-match between WISE and Sloan Digital Sky Survey (SDSS, \cite{York2000}) catalogs. To find novel sources we use domain-based novelty detection method, which is designed to create a boundary based on the structure of the training data set SVM. More commonly, in terms of the usage of SVM for novelty detection, it is known as one-class SVM (OCSVM).

2 The Data

The WISE telescope, launched by NASA in December 2009, scanned the whole sky in four passbands (W1—W4) covering near- and mid-IR wavelengths centred at 3.4, 4.6, 12 and 23 μm, respectively. Exploration of the publicly available AllWISE catalog \cite{Cutri2013}, which contains over 747 million sources with photometric information, allows us to test the power of basic artificial intelligence algorithms for anomaly detection in order to obtain information about special objects contained within the dataset. To create the training set, which is the basis of any supervised machine learning problem, we need to manually classify a representative subset of the data. For that purpose we performed a 1" radius cross-match between AllWISE dataset with the SDSS DR13 \cite{SDSSCollaboration2016}. This procedure resulted in 2.6 million common sources out of which galaxies comprise 74%, quasars 13% and stars 13% of the sample. The second step of data preparation for a machine learning procedure is to create a feature vector for each training example, which contains discriminating properties for an object. To that aim we decided to use the $W1$ magnitude measurement, $W1 - W2$ color and a concentration parameter $w1mag13$ defined as the difference between flux measurements in two circular apertures in the $W1$ passband in radii equal to 5.5" and 11.0" centered on a source (previously used by, e.g., \cite{Kurcz2016}).

3 Method

One of the most popular schemes used for source classification is the Support Vector Machine (SVM, \cite{Vapnik1995}). The basic idea behind SVM is that the algorithm is supposed to learn to recognize two (or more) types of objects based on the training examples provided by the supervisor. It uses kernel functions to map the input parameter space into a higher dimensional feature space, where it will search for the best separation hyperplane between the examples of the training points from each category with the biggest margin possible. Then the remaining sources, whose nature is unknown, will have their class assigned based on their relative position to that boundary. It is possible to modify the SVM algorithm as a detection tool for unrecognizable patterns within the data: instead of using multiple training classes of sources the user has to specify only one class, composed of all the known sources. Then, instead of creating a separation plane, the algorithm will create an enclosedhypershape containing all the known points within the feature space. When the user will apply the remaining unknown sources, all points falling outside of that hypershape will be considered as anomalies. This modification is referred to as One-Class SVM (OCSVM) and is perfectly suited for purposes of searching for unusual or
unknown sources within large astronomical datasets. For details we refer the reader to Solarz et al. (2017) and references therein.

4 Results

After training the OCSVM algorithm on the AllWISE×SDSS training sample, the full AllWISE data were tested against the created normality model. As a result, we found ~40,000 sources showing novel properties. The distinguishable property of these sources is their extremely red $W1 − W2$ color (as large as ~ 2 in the Vega system), which means that the sources experience a sharp increase of observed flux with the increase of the observational wavelength. Such behavior and large mid-infrared fluxes can be associated with either warm dust emission or polycyclic aromatic hydrocarbon emission lines (characteristic for star-forming galaxies). To confirm the nature of the selected anomalies we performed a positional cross-match with other publicly available data sets (irrespective of the observational wavelength). We found ~ 7,000 counterparts in the photometric part of the SDSS survey, meaning that these sources have optical fluxes measured through the five optical filters, but no spectroscopic redshift information is available. Nevertheless, about ~ 2,700 of these sources have their photometric redshifts estimated by Beck et al. (2016). The optical-infrared color distribution shows clearly bimodal behavior indicating that at least two populations of extragalactic sources are contained within this group (see Fig. 1). Similar properties were reported for obscured and unobscured active galactic nuclei (AGN) sources by Donoso et al. (2014).

Two basic types of AGNs, obscured (type-II), and unobscured (type-I), that are being widely observed, are thought to be the result of the orientation of a dust torus around the central black hole. On the other hand, the obscuration of the AGN may rise from larger dust structures like those predicted for major mergers of galaxies (e.g. Hopkins et al. 2006). Simulations by Hopkins et al. (2008) suggest that the dust obscuration could represent a phase of galaxy evolution when a central black hole cannot produce enough accretion luminosity to eject the surrounding material. One of the tests which can provide an answer to this problem is the measurement of the obscured and unobscured AGN clustering as it allows for measurement of the mass of the parent dark matter halo (DMH). If the unification theory is correct, then the two AGN types should appear in similar environments (i.e. similarly massive DMHs). To test this theory we perform a clustering analysis of the two types of AGN sources found through OCSVM analysis; we divide the sample into obscured and unobscured AGNs based on $r − W1$ ~ 5 criterion (cf. Table 1). To estimate the angular correlation function we used objects appearing in the northern hemisphere only, as the SDSS coverage is much larger there, and therefore the number of sources available for clustering measurements is greater. The OCSVM-selected AGN candidate sample is not based on any spectroscopic data, only photometric information is available – for that reason the sources used in this work have never before been used for measurements in the large scale structure context.

We used the Landy & Szalay (1993) estimator to evaluate the angular 2-point correlation function and used jack-knife resampling of 32 subsamples to evaluate the errors using full covariance matrix modeling. Usually a correlation function follows the power-law $\omega(\theta) = A_\omega \theta^{1-\gamma}$, where A_ω is the measurement of the correlation strength and γ indicates its scale dependence. Using the measurements of...
Table 1: Summary of obtained correlation function parameters.

$r - W1 < 5$	$r - W1 > 5$	
N_{obj}	743	1212
γ	1.79 ± 0.06	1.87 ± 0.08
r_0 [Mpc h^{-1}]	4.57 ± 0.42	6.96 ± 0.55
b	1.13 ± 0.10	1.98 ± 0.13
M_{DMH} [$M_\odot h^{-1}$]	$10^{12.43}$	$10^{13.20}$

the angular clustering, we can infer the 3-dimensional clustering properties based on the known redshift distribution (shown in Fig. 2) via Limber’s equation \cite{Limber1954}. The obtained results are presented in Fig. 3 for obscured and unobscured AGN candidates. Then, to relate the source clustering to dark matter clustering, it is possible to use a bias parameter - a quantity which describes the differences between the clustering of baryonic field and the underlying mass distribution, i.e. $b^2(r, z, M) = \xi_g(r, z, M)/\xi_m(r, z)$, where $\xi_g(r, z, M)$ is the correlation function of the investigated source population and $\xi_m(r, z)$ is the dark matter correlation function. For the details of the calculations we refer the reader to \cite{Peebles1980} and referenced therein. In Fig. 4 we show the linear bias evolution derived from \cite{Sheth1999} formalism for varying minimum DMH mass thresholds.

We find that the OCSVM selected samples of obscured and unobscured AGN candidates reside in different environments: while the unobscured AGNs at $\langle z_{phot} \rangle \sim 0.26$ are found in haloes which in the present-day Universe reach $log(M/M_\odot h^{-1}) \sim$...
Search for unusual objects in the WISE Survey

Fig. 3: Resultant angular correlation function for two AGN samples: obscured (marked by red triangles) selected by \(r - W1 > 5 \) [Vega mag] and unobscured sources (marked by blue circles) selected by \(r - W1 < 5 \) [Vega mag] cuts. Dashed and dash-dotted lines represent the power-law fit to the correlation function.

Fig. 4: Linear bias as a function of photometric redshift for obscured (red circle) and unobscured (blue circle) OCSVM-selected AGN candidate samples. Dashed curves represent the theoretical linear halo bias evolution of dark matter halos of minimal masses from \(10^{11.5} \) to \(10^{13.5} \) (bottom to top). As a reference we show results from the literature: diamonds from Donoso et al. (2014), asterisks from Ross et al. (2009).

12.47, the obscured sources at \(\langle z_{\text{phot}} \rangle \sim 0.56 \) inhabit haloes of today’s \(\log(M/M_\odot h^{-1}) \sim 13.20 \). The unobscured AGN halo mass is in excellent agreement with the previous works of Donoso et al. (2014) (for obscured and unobscured AGN found in WISE×COSMOS surveys) and Ross et al. (2009) (for SDSS optical quasars), who report that \(\log(M/M_\odot h^{-1}) \sim 12.3 \). This difference could be a result of the flux-limited nature of the source selection: sources appearing at higher redshifts must be intrinsically brighter to appear within the detection limit of the survey. Objects with higher luminosity are found to have stronger clustering signal than the faint ones (e.g. Zehavi et al. [2011]), which could explain the varying DMH masses between the obscured and unobscured AGN sources. On the other hand, the merger-driven evolutionary scenario assuming that the AGN obscuration is preceding the unobscured phase of the AGN evolution could explain the fact that the obscured AGN are preferentially found in denser environments than unobscured ones. These findings are contradictory to the AGN unification theory which assumes that the difference between the two phenomena is based solely on the orientation of the dusty torus.

Acknowledgements. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. AS has been supported by National Science Centre grant number UMO-2015/16/S/ST9/00438, MB and AP by UMO-2012/07/D/ST9/02785.
References

Beck, R., et al., Photometric redshifts for the SDSS Data Release 12, MNRAS 460, 1371 (2016), 1603.09708

Cutri, R. M., Wright, E. L., Conrow, T., Fowler, J. W. e. a., Explanatory Supplement to the AllWISE Data Release Products, Technical report (2013)

Donoso, E., Yan, L., Stern, D., Assef, R. J., The Angular Clustering of WISE-selected Active Galactic Nuclei: Different Halos for Obscured and Unobscured Active Galactic Nuclei, ApJ 789, 44 (2014), 1309.2277

Hopkins, P. F., Hernquist, L., Cox, T. J., Kereš, D., A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity, ApJS 175, 356-389 (2008), 0706.1243

Hopkins, P. F., et al., A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids, ApJS 163, 1 (2006), astro-ph/0506398

Kurcz, A., et al., Towards automatic classification of all WISE sources, A&A 592, A25 (2016), 1604.04229

Landy, S. D., Szalay, A. S., Bias and variance of angular correlation functions, ApJ 412, 64 (1993)

Limber, D. N., The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II., ApJ 119, 655 (1954)

Peebles, P. J. E., The large-scale structure of the universe (1980)

Ross, N. P., et al., Clustering of Low-redshift ($z <= 2.2$) Quasars from the Sloan Digital Sky Survey, ApJ 697, 1634 (2009), 0903.3230

SDSS Collaboration, The Thirteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey MAppling Nearby Galaxies at Apache Point Observatory, ArXiv e-prints (2016), 1608.02013

Sheth, R. K., Tormen, G., Large-scale bias and the peak background split, MNRAS 308, 119 (1999), astro-ph/9901122

Solarz, A., et al., Automated novelty detection in the WISE survey with one-class support vector machines, A&A 606, A39 (2017), 1706.06389

Vapnik, V. N., The nature of statistical learning theory, Springer-Verlag New York, Inc., New York, NY, USA (1995)

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K. e. a., The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ 140, 1868-1881 (2010), 1008.0031

York, D. G., Adelman, J., Anderson, J. E., Jr., SDSS Collaboration, The Sloan Digital Sky Survey: Technical Summary, AJ 120, 1579 (2000), astro-ph/0006396

Zehavi, I., et al., Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity, ApJ 736, 59 (2011), 1005.2413