Abstract. Temozolomide (TMZ) is an alkylating chemotherapeutic agent widely used in anti-glioma treatment. However, acquired TMZ resistance represents a major clinical challenge that leads to tumor relapse or progress. This study investigated the genomic profiles including long non-coding RNA (lncRNA) and mRNA expression associated with acquired TMZ resistance in glioblastoma (GBM) cells in vitro. The TMZ-resistant (TR) of GBM sub-cell lines were established through repetitive exposure to increasing TMZ concentrations in vitro. The differentially expressed IncRNAs and mRNAs between the parental U87 and U87TR cells were detected by human lncRNA microarray method. In this study, we identified 2,692 distinct lncRNAs demonstrating >2-fold differential expression with 1,383 lncRNAs upregulated and 1,309 lncRNAs downregulated. Moreover, 4,886 differential mRNAs displayed 2,933 mRNAs upregulated and 1,953 mRNAs downregulated. Further lncRNA classification and subgroup analysis revealed the potential functions of the lncRNA-mRNA relationship associated with the acquired TMZ resistance. Gene ontology and pathway analysis on mRNAs showed significant biological regulatory genes and pathways involved in acquired TMZ resistance. Moreover, we found the ECM-receptor interaction pathway was significantly downregulated and ECM related collagen I, fibronectin, laminin and CD44 were closely associated with the TR phenotype in vitro. Our findings indicate that the dysregulated IncRNAs and mRNAs identified in this work may provide novel targets for overcoming acquired TMZ resistance in GBM chemotherapy.

Introduction

Glioblastoma (GBM) is one of the most devastating malignant neoplasms in the central nervous system with increasing risk and incidence (1). Despite recent therapeutic advances, the prognosis of patients afflicted by GBM remains poor, even with multimodal therapy including maximal surgical resection followed by concurrent radiation and chemotherapy with alkylating drugs (2). Temozolomide (TMZ), an oral alkylating agent used as the first-line therapy for GBM treatment, is frequently limited in durability of treatment response because of acquired drug resistance (3). Thus, identifying novel mechanisms underlying acquired TMZ resistance may allow for a more durable benefit from the anti-glioma properties of TMZ (4).

Long non-coding RNAs (lncRNAs), longer than 200 bp in length and lacking significant protein coding open reading frames, transcribed from intergenic and intronic regions in human genome and participating in various biological or pathological processes including cancers (5,6). In the past few years, deregulated IncRNA has been widely reported to be involved in cancer occurrence, progression and metastasis (7-9). Evidence linking IncRNAs to tumor drug resistance have also emerged (10-12). For instance, IncRNA UCA1 enhanced cisplatin resistance in bladder cancer by CREB activation (13), and IncRNA GAS5 downregulation causes trastuzumab resistance in breast cancer (14). However, few studies have focused on the occurrence and development of TMZ resistance in GBM related to IncRNAs.

In this study, we profiled the expression of IncRNAs and mRNAs in U87 TMZ-resistant (U87TR) cells compared to the parental cells by microarray method. We showed various differentially expressed IncRNAs and mRNAs and found multiple dysregulated signal pathways that associated with...
TMZ resistance. These findings may provide us novel insights and potential targets for overcoming acquired TMZ resistance in GBM chemotherapy.

Materials and methods

Cell culture and TR cell establishment. The human GBM cell line U87 was obtained from the American Type Culture Collection (ATCC, USA) and U251 was purchased from the CLS Cell Lines Service GmbH (Eppelheim, Germany). The TR cells were generated by repetitive pulse exposure of U87 and U251 GBM cells to TMZ (48 h every 2 weeks) and with increasing TMZ concentrations for 6 months. For TR phenotype maintenance, U87TR and U251TR cells were alternately treated with TMZ (500 µM) for 48 h. The corresponding methods were mainly based on the previous study of Monoz et al (15-17) and with minor adjustment in this study. The parental and TR cells were maintained in DMEM (Hyclone, USA) with 10% (v/v) FBS (Hyclone) and 1% (v/v) penicillin/ streptomycin (Gibco, USA) at 37˚C in 5% CO2 humidified air incubator (Thermo Scientific, USA).

Cell survival assay. The parental and TR cells were plated in 96-well plate and treated with TMZ in different concentrations, respectively. After 48-h incubation, cells were replaced with fresh medium with CCK-8 solution (v/v 10%; Dojindo, Japan) and incubated at 37˚C for 2 h. Then the absorbance was measured at 450 nm (reference, 620 nm) using Multiscan GO microplate reader (Thermo Fisher Scientific, Finland). Cells without TMZ treatment were set as the control and the result was shown as cell viability ratio towards the control group.

RNA extraction and qPCR analysis. Total RNA was extracted by TRIzol reagent (Invitrogen, USA) and the absorbance was measured with OD260/280 ratio higher than 1.8. For qPCR analysis, 1 µg total RNA was subjected to the synthesis of cDNA by using RevertAid First Strand cDNA Synthesis kit (Thermo Scientific, Germany). Reactions were initiated by incubation at 65˚C for 5 min, followed by 60 min at 42˚C and terminated the reaction by heating at 70˚C for 5 min. The cDNA performed to PCR by using the Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific, Germany). Total reaction volume (25 µl) included 12.5 µl mix (2X), 1.5 µl (10 mM) primers (Table I) synthesized by Sangon Biological Engineering Technology and Services Co., Ltd. (Shanghai, China), 8.5 µl nuclease-free water and 0.8 µg/1 µl cDNA. PCR reaction was run in Step-one Plus Real-Time PCR system (Applied Biosystems, Germany) and analyzed using Step-one software. The qPCR protocol contained initial denaturation at 95˚C 10 min, then 40 cycles including 95˚C for 5–sec denaturation, 60˚C for 30 sec annealing and 72˚C for 30–sec extension. qPCR assays were carried out in triplicate, and the specificity of the PCR products was verified with melting curve analysis. The amount of each respective amplification product was determined relative to the gene β-actin. The fold change in gene expression relative to control was calculated by 2^−∆∆CT (18).

Microarray profiling and data analysis. For microarray, Arraystar Human LncRNA Microarray V3.0 covering ~30,586 lncRNAs and 26,109 coding transcripts was designed to detect the profile of human lncRNAs and protein-coding transcripts. Sample labeling and array hybridization were performed according to the Agilent One-Color Microarray-Based Gene Expression Analysis protocol (Agilent Technology). The array images were further analyzed by Agilent Feature Extraction software (version 11.0.1.1). Quantile normalization and subsequent data processing were applied with GeneSpring GX v11.5.1 software (Agilent Technologies). Distinct lncRNAs and mRNAs between U87 and U87TR were presented by hierarchical clustering and volcano plot filtering. The gene ontology (GO) analysis and pathway analysis were performed in the standard enrichment computation method according to the latest KEGG database (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg).

Western blot analysis. Total protein of cells was extracted by Cell Lysis and Protein Extraction kit (Keygen Biotech Co., China) and concentration was measured by a BCA Protein Detection kit (Keygen Biotech). Total protein (40 µg) was subjected to 10% SDS-polyacrylamide gel electrophoresis and transferred to PVDF membrane (Millipore Corp., USA). The blots were blocked for 1 h at RT with 5% non-fat milk (Bio-Rad, USA) in Tris-buffered saline containing 0.1% Tween-20 (TBST) and probed with following primary antibodies: MDR1/ABCB1(E1Y7B) (142 kDa), MRP1/ABCC1(D708N) (173 kDa), ABCG (66 kDa) (Cell Signaling Technology, USA), MGMT (25 kDa), collagen I (139 kDa), fibronectin (262 kDa), laminin (198 kDa) (Abcam, USA), CD44 (82 kDa) (Abnova, USA) in 5% non-fat milk in TBST overnight at 4˚C. Anti-GAPDH antibody (37 kDa) (Cell Signaling Technology) was used as a loading control. Subsequently, the blots were washed in TBST and incubated with goat anti-rabbit or mouse IgG (H+L) horseradish peroxidase-conjugated secondary antibody (Fdbio, China) for 1 h at RT. Then the blots were washed with TBST and visualized using Immobilon Western HRP Substrate (Millipore).

Enzyme-linked immunosorbat assay (ELISA). During 3-day TMZ treatment, the culture supernatants of U87 and U87TR cells were collected respectively and the level of total collagen I was measured with Collagen I ELISA kit (R&D Systems, USA). The assay was carried out as recommended by the kit protocol.

Immunofluorescence staining. For immunofluorescence analysis, GBM cells were seeded on glass coverslips (0.17 mm thickness, 14 mm diameter) in 6-well plate overnight and then treated with TMZ for 3 days, respectively. After treatments, cells were performed by PBS washing, 4% paraformaldehyde fixation (30 min), 0.1% Triton X-100 permeating (5 min) and 2% bovine serum albumin (BSA) blocking (30 min). Then the cells were incubated with anti-collagen I antibody (1:2,000) and anti-CD44 antibody (1:1,000) diluted in 2% BSA at 4˚C overnight. After 3 times PBS rinsing, appropriate fluorescent secondary antibodies were added to cell samples and incubated at 37˚C in the dark for 1 h. Coverslips were mounted on slides using mounting medium (Santa Cruz, USA) containing DAPI DNA counterstain. Images were captured by a fluorescence microscopy (IX-70, Olympus, Japan).
Statistical analysis. Results are presented as mean ± standard deviation (SD) for three separate experiments and analyzed by SPSS 13.0 software with two-sample t-test assuming unequal variances. p<0.05 was considered as statistically significant.

Results

TMZ-resistant phenotype in U87TR and U251TR cells. U87 and U251 GBM cells were repetitively pulse-exposed to increasing TMZ concentrations for 6 months until a stable resistant phenotype was obtained. Through light microscopy, we observed that the cellular morphology of U87TR and U251TR cells differed from its parental cells with larger, irregular morphology and long protrusions (Fig. 1A-D), especially in U87TR cells. To examine the chemoresistant properties, CCK-8 assay was used to characterize chemosensitivity of parental and TR cells to TMZ. After 48-h incubation, CCK-8 assay was applied to analyze the chemosensitivity of parental and TR cells to TMZ (E). qPCR analysis of multidrug-resistant phenotype (ABCB1, ABCC1 and BCRP) and MGMT gene expression in U87TR and U251TR cells compared to the parental cells (F and G), *p<0.05 vs. U87 or U251 parental cells. Western blot analysis of MDR phenotype and MGMT expression in GBM parental and TR cells (H).

Table I. Primers used to perform qPCR analysis.

mRNA name	Forward primer (5′-3′)	Reverse primer (5′-3′)
ABCB1	GCCCATCATGCTAATGAGGG	TGTTCAACTTCGTCCTGTA
ABCC	AGTCACGTGGAATACCAAGC	GAAGACTGAACCTCTTCTTCT
BCRP	ACCGGTTGCGACTTGTTACTT	GGAGCTTATTTGTCAGACC
MGMT	ACCAGGGAGAAGGACAGG	CTACCAGACCCACATCG
DNMT1	ACCAGGGAGAAGGACAGG	CTACCAGACCCACATCG
TP53	GGTGTTGTTGCCCCTATAGG	GTAGCCGTOCCAGTATTA
HIF-1A	CATCTCCATCTTTCAACCAACA	CTTTTTCTGCCTGTGGTG
CA9	GCTGCTCTCTGCTGCTGCT	GGAGCCCTCTTCTCCTGATTA
Bcl2L1	TGGAACTCTATGGGAACATTG	TGGAGCCACAGAACCAC
VEGFA	TTGCTTTTGTGCTTACACC	ATGTCCACAGGGGTCTCG
GAPDH	GACCTGACCTGGCTCTA	AGGAGTGGGTGCTGCTT

Figure 1. TMZ-resistant phenotype in U87TR and U251TR cells. The cellular morphology of U87, U87TR cells (A and B) and U251, U251TR cells (C and D), scale bar, 250 µM. The parental and TR cells were plated in 96-well plate and treated with TMZ in different concentrations. After 48-h incubation, CCK-8 assay was applied to analyze the chemosensitivity of parental and TR cells to TMZ (E). qPCR analysis of multidrug-resistant phenotype (ABCB1, ABCC1 and BCRP) and MGMT gene expression in U87TR and U251TR cells compared to the parental cells (F and G), *p<0.05 vs. U87 or U251 parental cells. Western blot analysis of MDR phenotype and MGMT expression in GBM parental and TR cells (H).
Differential expression of lncRNAs and mRNAs in U87TR compared to U87 cells. Arraystar probe dataset was applied to screen differentially expressed lncRNAs and mRNAs in U87 and U87TR cells. After normalization and data filtering (Fig. 2A-C and E-G), we found that 2,692 distinct lncRNAs demonstrated >2-fold differential expression with 1,383 lncRNAs upregulated and 1,309 lncRNAs downregulated (Fig. 2D), whereas, 4,886 differential mRNAs displayed 2,933 mRNAs upregulated and 1,953 mRNAs downregulated which was shown by the hierarchical clustering (fold change ≥2.0 and p-value ≤0.05) (Fig. 2H). The top 10 significantly and dominant dysregulated lncRNAs and mRNAs are listed (Tables II and III). Among the distinct lncRNAs, there were 1,410 intergenic, 284 intronic antisense, 409 natural antisense, 173 bidirectional, 238 exon sense and 173 intron sense-overlapping (Fig. 2I). Additionally, the chromosomal imbalances associated with drug resistance was analyzed and aberrantly expressed lncRNA and mRNA profiles on human chromosomes.

LncRNAs classification and subgroup analysis. For further investigation of potential-function of lncRNAs, lncRNAs classification and subgroup analysis were conducted. According to the Gencode annotation, lncRNAs were divided into enhancer-like lncRNAs, large intergenic non-coding RNAs (lincRNAs) and HOX lncRNAs. In enhancer lncRNA profiling, we found 108 distinct enhancer lncRNAs with 266 nearby coding genes transcription (distance <300 kb) and among these lncRNA-mRNA relationships, up-up direction (87 pairs), up-down direction (67 pairs), down-up direction (56 pairs), down-down direction (56 pairs) (Table IV). However, in lincRNA profiling, there were 809 distinct lincRNAs with 1,918 differentially expressed nearby coding genes (distance <300 kb) including up-up direction (814 pairs), up-down direction (272 pairs), down-up direction (394 pairs) and down-down direction (438 pairs) of lncRNA-mRNA relationship (Table V). The data also showed 125 HOX cluster transcribed regions in the four human HOX loci of both lncRNAs and coding transcripts including 48 coding transcripts and 77 non-coding transcripts (Table VI).

GO and pathway analysis of differentially expressed mRNAs. Previous studies have revealed that the coding and non-coding RNA can interact with each other in gene expression and dictate final protein output (19,20). To better understand the
function of distinct lncRNAs, we first performed GO function analysis associating differentially expressed mRNAs with GO categories. The GO categories were generally comprised of 3 structured networks: biological processes, cellular components and molecular function (21). In our study, the differentially expressed mRNAs were mainly enriched for GO terms related to the nucleic acid metabolic process and response to chemical stimulus involved in biological processes, nucleus

Table II. Top 10 up- and downregulated lncRNAs in U87TR cells.

Seqname	Gene symbol	Fold change	Chromosome strand	Relationship	p-value	Up/down
ENST00000443252	AL132709.5	239.63	chr14+	Intergenic	4.79E-08	Up
uc010ahe.1	BC041856	141.54	chr14-	Intergenic	2.58E-05	Up
TCONS_00008977	XLOC_003829	99.74	chr14+	Intergenic	1.76E-05	Up
TCONS_00022632	XLOC_010933	64.73	chr14+	Intergenic	1.27E-06	Up
ENST00000556720	AL132709.5	59.33	chr14+	Intergenic	1.19E-07	Up
ENST00000513211	RP11-734I18.1	48.96	chr4+	Intergenic	1.16E-07	Up
TCONS_00002764	XLOC_013181	47.55	chr19+	Intergenic	9.62E-06	Up
ENST00000570409	RP11-461A8.4	46.57	chr16-	Intergenic	5.7E-06	Up
ENST00000547898	RP11-328C8.5	45.69	chr12-	Intergenic	2.39E-05	Up
ENST00000442197	AL132709.8	44.46	chr14+	Intergenic	4.36E-05	Up
NR_033869	LOC401164	264.52	chr4+	Intergenic	9.29E-05	Down
NR_038848	LOC643401	181.11	chr5+	Intergenic	0.000837	Down
ENST00000565689	RP11-941F15.1	176.55	chr15-	Intergenic	6.18E-05	Down
ENST00000449463	AC018866.1	171.92	chr2-	Intergenic	2.82E-05	Down
uc003jgv.2	LOC643401	137.76	chr5+	Intergenic	7.83E-05	Down
uc003jgx.2	LOC643401	136.05	chr5+	Intergenic	0.000304	Down
ENST00000503458	RP11-219G10.3	120.27	chr4+	Intergenic	2.19E-06	Down
ENST00000421067	RP11-832J1.3	90.59	chr9+	Intronic antisense	6.65E-05	Down
ENST00000421067	RP11-832J1.3	90.59	chr9+	Intronic antisense	6.65E-05	Down
ENST00000578278	RP11-146G7.3	77.20	chr18-	Intergenic	3.3E-06	Down

Table III. Top 10 up- and downregulated mRNAs in U87TR cells.

Gene symbol	Fold change	Up/down	p-value	Description
IL18	490.19	Up	5.32535E-07	Interleukin 18 (interferon-γ-inducing factor)
ZNF93	394.98	Up	3.9652E-06	Zinc finger protein 93
MTAP	371.14	Up	9.4726E-07	S-methyl-5'-thioadenosine phosphorylase
ZNF254	182.70	Up	5.17967E-06	Zinc finger protein 254
SOX2	129.30	Up	3.85212E-06	Transcription factor SOX-2
ZNF765	121.16	Up	2.0173E-06	Zinc finger protein 765
ZNF845	120.54	Up	6.692E-06	Zinc finger protein 845
ZNF611	118.25	Up	8.22434E-08	Zinc finger protein 611
GPR160	106.29	Up	5.8696E-06	Probable G-protein coupled receptor 160
ZNF675	99.27	Up	1.49803E-05	Zinc finger protein 675
TFF2	607.04	Down	5.48207E-06	Tissue factor pathway inhibitor 2 precursor
BAALC	471.68	Down	2.4074E-05	Brain and acute leukemia cytoplasmic protein 2
DPP4	330.97	Down	2.21878E-05	Dipeptidyl peptidase 4
AHR	292.93	Down	2.83673E-05	Aryl hydrocarbon receptor precursor
KYNU	255.58	Down	6.99952E-05	Kynureninase isofrm b
BDKR1	206.12	Down	3.58205E-06	B1 bradykinin receptor
FOXD1	168.72	Down	6.46324E-05	Forkhead box protein D1
EREG	165.81	Down	1.73919E-05	Proepiregulin preproprotein
KYNU	161.95	Down	1.72429E-05	Kynureninase isofrm a
DCN	142.10	Down	1.4439E-05	Decorin isofrm b precursor
Table IV. Top 10 distinct enhancer lncRNAs near the coding gene data.

Gene symbol	Fold change	Regulati	Genome	Nearby gene	Fold change	Regulati
RP11-346D6.6	39.582054	Up	Downstream	PRKG1	38.59571	Down
RP11-346D6.6	39.582054	Up	Downstream	PRKG1	10.437759	Down
RP11-346D6.6	39.582054	Up	Downstream	DKK1	2.0498126	Up
RP4-737E23.2	39.0317	Down	Downstream	NXT1	2.1266758	Up
RP4-737E23.2	39.0317	Down	Downstream	GZF1	2.2363193	Up
AX746690	28.182703	Up	Upstream	ADIG	5.036083	Down
RP13-16H11.2	27.392548	Down	Upstream	ABI1	2.0226862	Down
RP13-16H11.2	27.392548	Down	Upstream	ABI1	2.0447593	Down
RP13-16H11.2	27.392548	Down	Upstream	ABI1	2.2119737	Down
RP11-117P22.1	25.868437	Up	Upstream	AKR1C1	5.1898365	Down
RP11-445H22.4	20.70799	Down	Downstream	ADA	2.115311	Down
RP11-445H22.4	20.70799	Down	Downstream	PKIG	2.4809623	Down
RP11-445H22.4	20.70799	Down	Upstream	WISP2	2.2126765	Down
XXyc-YM21GA2.4	20.248714	Down	Upstream	CTSL1	4.7252097	Down
RP11-160A10.2	15.469184	Down	Upstream	CLVS2	8.49382	Down
LOC285758	14.293567	Up	Downstream	MARCKS	2.3576546	Up
LOC285758	14.293567	Up	Upstream	HDAC2	2.666347	Up
RP11-14N7.2	13.172412	Down	Upstream	NBP16	2.5870576	Up

Table V. Top 10 distinct lincRNAs near the coding gene data.

Gene symbol	Fold change	Regulati	Genome	Nearby gene	Fold change mRNAs
RP11-941F15.1	176.5588	Down	Downstream	CD276	3.1752949
RP11-146G7.3	77.20038	Down	Downstream	ARHGAP28	5.5441136
RP11-554A11.4	64.153145	Down	Downstream	CPT1A	3.7187796
RP11-554A11.4	64.153145	Down	Downstream	CPT1A	2.3309202
RP11-554A11.4	64.153145	Down	Upstream	MRGPRF	2.9983652
RP11-113C12.3	52.048756	Down	Upstream	C3AR1	4.6431336
XLOC_013181	47.557842	Up	Downstream	ZNF8	3.150816
XLOC_013181	47.557842	Up	Downstream	TRIM28	2.829188
XLOC_013181	47.557842	Up	Downstream	ZNF324	2.4305477
XLOC_013181	47.557842	Up	Upstream	ZNF544	30.045504
XLOC_013181	47.557842	Up	Upstream	ZNF274	2.003165
XLOC_013181	47.557842	Up	Upstream	ZNF274	4.3925347
PRORS1DP	46.21162	Down	Upstream	RTN4	2.7800567
PRORS1DP	46.21162	Down	Upstream	RTN4	2.2093842
PRORS1DP	46.21162	Down	Upstream	CLHC1	2.0670087
PRORS1DP	46.21162	Down	Upstream	RTN4	3.4394581
AC003092.1	43.996338	Down	Upstream	BET1	2.096403
AC003092.1	43.996338	Down	Upstream	TPI2	607.0495
AK123141	43.92919	Up	Downstream	ZNF680	5.060253
AK123141	43.92919	Up	Downstream	ZNF680	29.15355
AK123141	43.92919	Up	Upstream	ZNF736	11.060797
AK123141	43.92919	Up	Upstream	ZNF679	3.0256562
AK123141	43.92919	Up	Upstream	ZNF727	39.63797
AK123141	43.92919	Up	Upstream	ZNF735	4.4493775
RP11-346D6.6	39.582054	Up	Downstream	PRKG1	38.59571
RP11-346D6.6	39.582054	Up	Downstream	PRKG1	10.437759
RP11-346D6.6	39.582054	Up	Downstream	DKK1	2.0498126
RP4-737E23.2	39.0317	Down	Downstream	NXT1	2.1266758
RP4-737E23.2	39.0317	Down	Downstream	GZF1	2.2363193
and extracellular region part involved in cellular components as well as nucleic acid binding and protein binding involved in molecular function (Figs. 3A-C and 4A-C).

To identify significant pathways associated with TMZ resistance, pathway analysis was applied for the differentially expressed mRNAs. We found a total of 97 pathways that showed significant differences with 28 upregulated and 69 downregulated pathways. The top 3 upregulated pathways were pyrimidine metabolism, RNA transport and DNA replication signaling while the top 3 downregulated pathways were rheumatoid arthritis, ECM-receptor interaction and leishmaniasis signaling. The predominant pathways are shown in (Figs. 3D and 4D) and it is noteworthy that the validated MMR and NER pathways, which associated with TMZ resistance, were upregulated with the false discovery rate of Pathway ID at 2.298x10^{-5} and 9.769x10^{-4}, respectively (Table VII).

Table VI. HOX cluster profiling (part).

Probe name	Seqname	Gene symbol	Product
ASHG5P021981	NM_014212	HOXC11	Homeobox protein Hox-C11
ASHG5P053003	NM_006735	HOXA2	Homeobox protein Hox-A2
ASHG5P005899	NM_024017	HOXB9	Homeobox protein Hox-B9
ASHG5P032505	NM_024015	HOXB4	Homeobox protein Hox-B4
ASHG5P036264	NM_002148	HOXD10	Homeobox protein Hox-D10
ASHG5P053006	NM_006896	HOXA7	Homeobox protein Hox-A7
ASHG5P036265	NM_014213	HOXD9	Homeobox protein Hox-D9
ASHG5P032508	NM_032391	PRAC	small nuclear protein PRAC
ASHG5P032507	NM_004502	HOXB7	Homeobox protein Hox-B7
ASHG5P036262	NM_021192	HOXD11	Homeobox protein Hox-D11
ASHG5P042956	NM_024014	HOXA6	Homeobox protein Hox-A6
ASHG5P028030	NM_017410	HOXC13	Homeobox protein Hox-C13
ASHG5P001267	NM_018952	HOXB6	Homeobox protein Hox-B6
ASHG5P055442	NM_153693	HOXC6	Homeobox protein Hox-C6 isoform 2
ASHG5P042958	NM_005523	HOXA11	Homeobox protein Hox-A11
ASHG5P006323	NM_030661	HOXA3	Homeobox protein Hox-A3 isoform a

Table VII. Significant pathways associated with TMZ resistance.

Pathway ID	Definition	Fisher p-value	FDR	Enrichment score	Genes
hsa03430	Mismatch repair (MMR)	7E-07	2E-05	6.16	EXO1/LIG1/MLH1/MSH3/PCNA/POLD2/POLD3/RFC2/RFC3/RFC4/RFC5/RPA1/RPA2
hsa03420	Nucleotide excision repair (NER)	3E-05	0.001	4.48	ERCC1/ERCC2/ERCC3/ERCC8/POLD3/POLE/POLE2/RFC2/RFC3/RFC4/RFC5/RPA1/RPA2
hsa04512	ECM-receptor interaction	2E-07	3E-05	6.60	CD44/CD47/COL1A1/COL1A2/COL3A1/COL4A5/COL5A1/COL5A2/COL6A1/COL6A2/COL6A3/FN1/HSPG2/ITGA1/ITGA11/ITGA5/ITGAV/ITGB1/LAMA2/LAMA4/LAMC1/LAMC2/LAMA4

Downregulation of ECM-receptor interaction pathway associated with TR phenotype. For microarray profile validation, six mRNAs (DNMT1, TP53, HIF-1A, CA9, Bcl2L1 and VEGFA) were randomly selected and performed for qPCR analysis in U87 and U87TR cells. Results showed that the DNMT1, TP53 and Bcl2L1 were significantly upregulated while the HIF-1A, CA9 and VEGFA were downregulated compared to the parental U87 cells (Fig. 5A). With the distinct cellular morphology (Fig. 1) and downregulation of ECM-related pathway (Fig. 4D) in TR cells, we speculated that the ECM-related cellular morphology alterations may associate with the TR properties. In the downregulated ECM-receptor interaction pathway,
Figure 3. GO and pathway analysis on functional classification of upregulated genes. GO categories cover three domains: biological process (A), cellular component (B) and molecular function (C). Analysis of significantly upregulated pathways (D). The (-log10) p-value indicates the significance of pathway correlated enrichment in the differentially expressed mRNAs.

Figure 4. GO and pathway analysis on functional classification of downregulated genes. GO categories cover three domains: biological process (A), cellular component (B) and molecular function (C). Analysis of significant downregulated pathways (D). The (-log10) p-value indicates the significance of pathway correlated enrichment in the differentially expressed mRNAs.
we found collagen, integrin and laminin expression downregulated with cell-surface glycoprotein CD44 and CD47 (Table VII). Moreover, the ECM-related receptor interaction from the KEGG Pathway Database revealed that collagen, fibronectin and laminin could enhance its downstream CD44 expression (Fig. 5B). To verify this, western blot analysis was applied and the results showed the protein expression of collagen I, fibronectin, laminin and CD44 were significantly decreased in U87TR cells as compared to parental U87 cells (Fig. 5C). To confirm this, ELISA assay was used to analyze the collagen I expression in TMZ treated U87 and U87TR cell supernatants during 3 days. The results showed U87TR cells with significant downregulated collagen I expression when compared to the parental U87 cells during TMZ treatment (Fig. 5D). In addition, the expression of collagen I and CD44 were further confirmed by immunofluorescence staining. Data showed that the U87TR cells presented with relative larger and irregular cytoskeleton (phalloidin in green), decreased secretion of collagen I (Fig. 5E) and weaker CD44 expression (Fig. 5F). Together, these results indicated that the TR
phenotype was associated with the downregulation of ECM signaling and ECM-related collagen or CD44 may act as TR phenotype molecular markers.

Discussion

The emergence of acquired drug resistance in tumor constantly leads to chemotherapy failure or even tumor relapse. Thus, fully understanding its mechanisms is urgent for improving effective chemotherapy and overcoming tumor drug resistance. Here, we sought to explore the mechanisms of acquired resistance to TMZ in GBM through in vitro TMZ-resistant GBM cell lines generated by repetitive exposure to increasing TMZ concentrations. Although this approach may not closely reflect the situation in vivo, it allows us for an assessment of mechanisms triggered by repeated pulse-exposure to TMZ chemotherapy in vitro.

Previous studies have indicated a growing number of molecular mechanisms contributing to TMZ resistance in GBM including genetic and epigenetic, such as MGMT methylation (22), IDH mutations (23), aberrant ABC transporter expression (24,25), p53 mutations and deletions (26), DNA repair deregulation (27,28) and miRNAs (29,30). Furthermore, evidence is now beginning to demonstrate IncRNAs as having important roles in cancer therapy (31,32). However, the relationships between IncRNAs and GBM acquired TMZ resistance are rarely reported. In our study, the TMZ-resistant GBM cell lines were first generated using stepwise selection and then subjected to the Human IncRNA microarray. We found numerous distinctly expressed IncRNAs and mRNAs with up- or downregulation (Tables II and III). To our best knowledge, these results may be the first reporting on expression profile of IncRNAs and mRNAs associated with TMZ resistance in GBM cells in vitro.

For preliminary understanding upon these differential expressed IncRNAs and mRNAs, we further functional analysis was processed. In IncRNA classification, we found IncRNAs were devided into three types, the enhancer-like IncRNAs, lincRNAs and HOX lncRNAs, and each of the function pattern was distinct. For example, lincRNAs regulate the neighboring HOX gene expression via impacting chromatin signature (33) while enhancer-like IncRNAs function by interacting with their nearby coding genes (34). Thus the exact function of IncRNA clusters is not yet clear before every single IncRNA is identified and still need further studies. According to previous studies, we also found some distinct IncRNAs in our study, which are consistent with other researchers, for example, the IncRNA CRNDE (7), UCA1 (6,35), MEG3 (31,36) and HOTAIR (37). These suggest that the data obtained in this study are reliable. Additionally, IncRNAs were also reported to function in tumor drug resistance through coding transcription modulation (38). In our study, some function of molecules in the drug resistance related MMR and NER signaling pathway were upregulated in U87TR cells, e.g., MSH3 in MMR and ERCC1/2 in NER signaling, which were revealed by the pathway analysis on mRNAs and were consistent with previous reports (39,40).

With the great morphologic changes and downregulated in vitro expression via impacting chromatin signature (33) while enhancer-like IncRNAs function by interacting with their nearby coding genes (34). Thus the exact function of IncRNA clusters is not yet clear before every single IncRNA is identified and still need further studies. Therefore, these data suggest that acquired TMZ resistance might be mirrored by the parallel changes in cellular morphology associated with CD44 expression.

In conclusion, we showed differential IncRNAs and mRNAs expression profiles associated with TMZ resistance in GBM cells in vitro, and these dysregulated IncRNAs and mRNAs identified in this work may represent good candidates for future diagnostic or prognostic biomarkers and provide novel targets for overcoming acquired TMZ resistance in GBM chemotherapy.

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (81672477, 81372691, 81041068 and 30971183) and Guangdong Provincial Clinical Medical Centre for Neurosurgery (no. 2013B020400005). We thank the Department of Anatomy, Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, for generous help.

References

1. Thomas AA, Brennan CW, DeAngelis LM and Omuaro AM: Emerging therapies for glioblastoma. JAMA Neurol 71: 1437-1444, 2014.
2. Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M and Stupp R: Current concepts and management of glioblastoma. Ann Neurol 70: 9-21, 2011.
3. Stavrovskaia AA, Shushanov SS and Rybalkina EY: Problems of glioblastoma multiforme drug resistance. Biochemistry (Moscow) 81: 91-100, 2016.
4. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M and Wick W: Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14: 2900-2908, 2008.
5. Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10: 38, 2011.
22. Fan CH, Liu WL, Cao H, Wen C, Chen L and Jiang G: RNA-RNA interactions in gene regulation.

19. Guil S and Esteller M: RNA-RNA interactions in gene regulation.

16. Munoz JL, Rodriguez-Cruz V, Greco SJ, Nagula V, Scotto KW, Illmer T, Kramer M, et al: Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13: 890-898, 2007.

15. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, et al: Long non-coding RNA UCA1 modulates basal cell carcinoma cell proliferation. J Invest Dermatol 138: 2570-2578, 2014.

14. Munoz JL, Rodriguez-Cruz V, Greco SJ, Nagula V, Scotto KW and Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 4: e876, 2013.

13. Pan J, Shen B, Tan M, Mu X, Qin Y, Zhang F and Liu Y: Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281: 1750-1758, 2014.

12. He DX, Zhang GY, Gu XT, Mao AQ, Lu CX, Jin J, Liu DQ and Ma X: Genome-wide profiling of long non-coding RNA expression patterns in anthracycline-resistant breast cancer cells. Int J Oncol 49: 1695-1703, 2016.

11. Paramasivam MA, Maji S, Matsuda A, Yan IK and Patel T: Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther 161: 67-78, 2016.

10. Sun QL, Zhao CP, Wang TY, Pan X, Zhang P, Lu B, Liu G and Wang Z: The long non-coding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One 10: e014586, 2015.

9. Zhang J, Zhang XQ, Zhuang JT, Chan HL, Li CH and Leung GK: A comprehensive analysis of influence ERCC2 polymorphisms confer on the development of brain tumors. Mol Neurobiol 53: 2705-2714, 2016.

8. Liu J, Wan L, Lu K, Sun M, Pan X, Zhang P, Lu B, Liu G and Wang Z: The long non-coding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One 10: e014586, 2015.

7. Tsang WP, Wong TW, Cheung AH, Co CN and Kwok TT: Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7: 27778-27786, 2016.

6. Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W and Wei Q: Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7: 27778-27786, 2016.

5. Wang J, Chen D, et al: LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. J Cancer Res Clin Oncol 141: 827-838, 2015.

4. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F and Liu Y: Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281: 1750-1758, 2014.

3. Del Basso De Caro M: Immunohistochemical expression of stem cell markers CD44 and nestin in glioblastomas: Evaluation of their prognostic significance. Pathol Res Pract 212: 825-832, 2016.

2. Uppal SO, Li Y, Wendt E, Cayer ML, Barnes J, Conway D, Boudreau N and Heckman CA: Pattern analysis of microtubule-polymerizing and -depolymerizing agent combinations as cancer chemotherapies. Int J Oncol 31: 1261-1291, 2007.

1. Chetty C, Vanamala SK, Grondi CS, Dinh DH, Ghujrat M and Rao JS: Epigenetic regulation of long non-coding RNA MEGB3 in glioblastoma xenografts. Cell Signal 24: 549-559, 2012.