Consensus on the Treatment and Follow-Up for Metastatic Castration-Resistant Prostate Cancer: A Report From the First Global Prostate Cancer Consensus Conference for Developing Countries (PCCCDC)

Fernando Cotait Maluf, MD1,2,3; Felipe Moraes Toledo Pereira, MD; Adriano Gonçalves Silva, MD3,2; Aldo Lourenço Abbade Dettino, MD; Ana Paula Garcia Cardoso, MD; Andre Seeke Sasse, MD3,2; Andrey Soares, MD1,3,4; Ariel Galapo Kann, MD; Daniel Herchenhorn, MD2,3,10,11; Denis Leonardo Fonseca Jardim, MD; Diego Emilio Lopera Cortés, MD; Fábio Roberto Kater, MD2,3; Igor A Protzner Morbeck, MD3,14,15; João Francisco Navarro Reolon, MD; José Augusto Rinck Jr, MD3,2; Juan José Zarbá, MD16; Juan Pablo Sade, MD3,17; Karine Martins da Trindade, MD; Leonardo Atem G A. Costa, MD1,2,3; Lucas V. dos Santos, MD2; Manuel Caijtão Maia, MD3,19; Mariana Bruno Siqueira, MD3,10; and Silke Gillessen, MD20,21

PURPOSE To present a summary of the recommendations for the treatment and follow-up for metastatic castration-resistant prostate cancer (mCRPC) as acquired through a questionnaire administered to 99 physicians working in the field of prostate cancer in developing countries who attended the Prostate Cancer Consensus Conference for Developing Countries.

METHODS A total of 106 questions out of more than 300 questions addressed the use of imaging in staging mCRPC, treatment recommendations across availability and response to prior drug treatments, appropriate drug treatments, and follow-up, and those same scenarios when limited resources needed to be considered. Responses were compiled and the percentages were presented by clinicians to support each response. Most questions had five to seven relevant options for response including abstain and/or unqualified to answer, or in the case of yes or no questions, the option to abstain was offered.

RESULTS Most of the recommendations from this panel were in line with prior consensus, including the preference of a new antiandrogen for first-line therapy of mCRPC. Important aspects highlighted in the scenario of limited resources included the option of docetaxel as treatment preference as first-line treatment in several scenarios, docetaxel retreatment, consideration for reduced doses of abiraterone, and alternative schedules of an osteoclast-targeted therapy.

CONCLUSION There was wide-ranging consensus in the treatment for men with mCRPC in both optimal and limited resource settings.

INTRODUCTION Prostate cancer (PCa) is the second most common cancer in men,1 with 15% of men worldwide being diagnosed with it at some point during their life. Of those diagnosed, 80% will have a localized form and have a nearly 100% 5-year survival rate. The 20% patients remaining will have an advanced or metastatic form of the disease with only 26%-30% of them surviving 5 years.2 The initial management of PCAs has for decades been based on androgen deprivation therapy (ADT) as its cancer cells are sensitive to the manipulation of testosterone and its metabolites.3,4 Reducing circulating testosterone to castrate levels (< 50 ng/dL) deprive the cells of their primary stimulus for growth and can induce PCa cell death.6 Unfortunately, PCa cells eventually become resistant to ADT because of different resistance mechanisms thereby becoming castration-resistant PCa. This form of the disease typically progresses rapidly, with patients dying within 2-4 years.7,8 Castration-resistant prostate cancer (CRPC) is defined by disease progression despite castrate levels of testosterone, and may present as either a continuous rise in serum prostate-specific antigen (PSA) levels, the progression of pre-existing disease, and/or the appearance of new metastases.9 In patients with CRPC who fail the initial therapy with curative intent (ie, radical prostatectomy, external
beam radiotherapy, and brachytherapy), treatment options were once limited. Since 2004, chemotherapy is often used in patients with metastatic CRPC. Some landmark trials demonstrated an overall survival advantage of docetaxel compared with mitoxantrone, despite the marginal clinical benefit (2.4 months in TAX 327 and 1.9 months in SWOG 99-16; add P value).10,11 Currently, in the castration-resistant setting, since 2010, several key randomized controlled trials have demonstrated survival benefit with new therapies before and after docetaxel chemotherapy. Multiple new agents were approved by the US Food and Drug Administration (FDA) for the management of mCRPC, which all have varying mechanisms of action, namely sipuleucel-T,12 abiraterone acetate,13,14 enzalutamide,15,16 cabazitaxel,17 and radium-223.18 All these agents increased overall survival by some months, compared with the control group. New hormonal agents (abiraterone and enzalutamide) prolonged median survival by up to 3.9 and 4.8 months, respectively,15 chemotherapy treatment with docetaxel and cabazitaxel, often associated with significant side effects, prolonged overall survival by a few months,11,15,20 and treatment for diffused or painful bone metastases with radium-223 improved median overall survival by 3.6 months.21 Sipuleucel-T was only approved by the FDA and is not available elsewhere. Currently, FDA approved in 2020 olaparib and rucaparib, two poly ADP ribose polymerase inhibitors for adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer (mCRPC), which have progressed following prior treatment.22,23

With the incidence of PCa and burden of disease steadily increasing globally, healthcare systems, especially in regions of limited resources, will struggle with its management when balancing the cost-effectiveness of all innovative technologies for the overall healthcare system.24 The following manuscript will summarize the recommendations of a large panel of physicians from developing countries, specializing in PCa, regarding the treatment and follow-up of patients presenting with mCRPC both with and without contemplating the restrictions of limited resources in the decision-making process, with the objective of providing guidance in clinical practice and policy development and modification. The complete methodology of Prostate Cancer Consensus Conference for Developing Countries including the elaboration process of the questionnaires to guide the panelists, the design of voting sessions, and consensus criteria were presented in the editorial and are valid for all the manuscripts.

STAGING
The majority (55.42%) of experts recommended using a combination of thoracic computed tomography (CT) or chest X-ray, abdominal and pelvic CT (or pelvic MRI), and a bone scan to stage patients with mCRPC. Findings are summarized in Figure 1. As seen, in areas of limited resources, that number rises to more than 80% of experts recommending the use of multiple imaging, therefore reaching a consensus. By contrast, in best practices, 43% of experts recommended the use of positron emission tomography (PET)-CT with prostate-specific membrane antigen (PSMA) or PET-MRI. It is important to point out that PET-CT PSMA or PET-MRI is far more expensive than conventional imaging. Also, a recent study has not shown any treatment changes using next-generation image compared with conventional images in 35 patients with metastatic disease.25

TREATMENT RECOMMENDATIONS
Table 1 summarizes physician responses for treatment recommendations and different scenarios when management options are limited because of resources. The best practice option is bolded, a dash (—) indicates that the treatment option was not offered as a response, a blank cell in the column had the treatment option offered though had zero physician respondents choosing that treatment, and the abbreviated NA-LR (not available because of limited resources).
resources) is an option eliminated to explore scenarios of limited resources.

In cases when chemotherapy is not recommended, 86.6% of the panelists would recommend a first-generation AR antagonist—although not presented in Table 1, all questions are provided in the Data Supplement.

The preferred treatment option for patients who have never received docetaxel or abiraterone, or who had already received docetaxel, was abiraterone 1,000 mg/daily or enzalutamide 160 mg/daily. In cases when full doses were not available because of limited resources, reduced doses of abiraterone 250 mg/daily accompanied by a diet of fatty foods was a viable option for a substantial portion of physicians in all limited resource scenarios.

Many guidelines such as EAU-ESTRO-SIOG20 support the use of one of the following agents for the treatment of mCRPC (level 1 of evidence): abiraterone acetate plus prednisone, enzalutamide, radium-223, docetaxel at 75 mg/m² every 3 weeks, and sipuleucel-T. By contrast, cabazitaxel, abiraterone acetate plus prednisone, enzalutamide, and radium are approved for second-line treatment of CRPC following docetaxel. A possible explanation for the lack of consensus in recommending abiraterone or enzalutamide as first systemic treatment for mCRPC for asymptomatic or minimally symptomatic men who did and did not receive docetaxel or abiraterone in the castration-sensitive or castration-naive setting may have to do with physicians’ perception that both agents have a more favorable toxicity profile. By contrast, 55.8% of the panelists voted for docetaxel (no prior docetaxel exposure) in the same scenario if full doses of abiraterone and enzalutamide are not available. This can be explained by the fact that docetaxel is significantly less expensive than new hormonal therapy agents.26,27

The experts were asked to classify appropriate drugs for healthcare settings with limited resources that were on the WHO essential medicines list and/or could be sourced at an affordable price from a generic manufacturer. Overall, there was an agreement by the group, as Table 2 shows, with 10 of 12 drugs reaching a consensus, one with a near consensus, and the other with a 64% majority.

A consensus was reached favoring low-dose abiraterone with fatty diet if full doses of abiraterone and enzalutamide as well as radium-223 and cabazitaxel were not available. The most robust data in this regard come from initial studies showing that in patients with mCRPC, abiraterone AUC was ~2-fold higher with a high-fat meal and similar with a low-fat meal versus modified fasting state.27 These data were followed by a randomized phase II study including 72 patients with progressive CRPC, which compared low-dose abiraterone (250 mg qd) given with a low-fat meal versus standard-dose abiraterone (1,000 mg qd) under fasting conditions. Both arms received prednisone 5 mg twice daily. At 12 weeks, there was a greater effect on PSA in the low abiraterone arm (mean log change, −1.59) compared with standard dose (−1.19), and noninferiority of low abiraterone was established according to predefined criteria. The PSA response rate was 58% in low abiraterone and 50% in standard abiraterone arm, and the median progression-free survival was around 9 months in both groups.28,29

Bicalutamide or flutamide was preferred by 86.59% of the panelists as the second-line endocrine manipulation in conditions where neither abiraterone nor enzalutamide was available, and the patient is not a candidate for chemotherapy. This consensus may be explained by the popularity of these agents for many years associated with their low cost and side effects.30

In a different context, the panelists recommended as a consensus docetaxel retreatment for the majority of

FIG 1. Recommendations for imaging for patients with metastatic castration-resistant prostate cancer (without and with limited resources). CT, computed tomography; PET-PSMA, positron emission tomography-prostate-specific membrane antigen.
No. voters	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
First-line									
mCRPC, never received docetaxel or abiraterone									
N	Asymptomatic or min. symptomatic								
81	**96.30**		3.70						
77	NA-LR	33.77	55.84	3.90	5.19				1.3
77	NA-LR	45.45	45.45	NA-LR	3.90	NA-LR			3.90
Symptomatic									
83	**71.08**		26.51	1.2	1.2				
79	NA-LR	10.13	86.08	2.54					
76	NA-LR	7.89	92.11	NA-LR					
73	NA-LR	NA-LR	100	NA-LR					
Received docetaxel									
Asymptomatic or min. symptomatic									
80	**97.50**		1.25		1.25				
66	NA-LR	60.61	16.67	9.09					12.12
80	NA-LR	70.00	18.75	NA-LR					11.25
80	NA-LR	75.00	22.50	NA-LR	1.25				1.25
79	NA-LR	NA-LR	91.14	NA-LR	1.27	6.33	1.27		NA-LR
Symptomatic									
77	**90.91**		6.49	2.6					
82	NA-LR	42.68	19.51	13.41					23.17
81	NA-LR	50.62	23.46	NA-LR					25.93
81	NA-LR	59.26	39.51	NA-LR					1.23
77	NA-LR	NA-LR	98.70	NA-LR	1.30				NA-LR
Received abiraterone									
Asymptomatic or min. symptomatic									
Enzalutamide									
78	**30.77**		—						2.56
79	NA-LR	NA-LR	93.67	5.06					1.27
81	NA-LR	NA-LR	98.77	NA-LR					1.23
Symptomatic									
80	**10.00**		81.25	8.75					
82	NA-LR	NA-LR	90.24	8.54					1.22
76	NA-LR	NA-LR	98.68	NA-LR					1.32
First-line = abiraterone or enzalutamide									
Second-line—best response									
N	Asymptomatic or min. symptomatic								
One not used									1.33
75	**12.00**		82.67	1.33	2.67				
78	NA-LR	5.13	93.59	1.28					
71	NA-LR	2.82	97.18	NA-LR					

(Continued on following page)
No. voters	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
74	NA-LR	NA-LR	98.65	NA-LR	1.35				
77	3.90	NA-LR	92.21	3.90					
75	NA-LR	1.33	96.00	2.67					
72	NA-LR	2.78	97.22	NA-LR					

Second-line—secondary (acquired) resistance (initial response followed by progression)

No. voters	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
70	8.57	NA-LR	90.00	1.43					
77	NA-LR	94.81	3.90	1.30					
77	NA-LR	98.70	NA-LR	1.30					
72	NA-LR	NA-LR	98.61	NA-LR	1.39				

First-line = enzalutamide

Second-line—best response

n	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
74	NA-LR	98.65	1.35						
80	NA-LR	98.75	NA-LR	1.25					

First-line = docetaxel (no prior use of abiraterone or enzalutamide)

Second-line—best response

n	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
78	97.44	2.56	2.6	1.33	5.33				
79	NA-LR	69.62	16.46	5.06	8.86				
76	NA-LR	64.47	21.05	NA-LR	1.32	11.84	1.32		
78	NA-LR	70.51	25.64	NA-LR	1.28	1.28	NA-LR	1.28	
76	NA-LR	NA-LR	92.11	NA-LR	5.26				

Second-line—progress during or in < 3 months of last docetaxel cycle

n	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
76	89.47	5.33	1.33	28.00					
75	NA-LR	65.33	5.33	1.33	28.00				
76	NA-LR	71.05	NA-LR	1.32	26.32	1.32			
78	NA-LR	88.46	NA-LR	5.13	5.13				
79	NA-LR	NA-LR	8.86	NA-LR	18.99	10.13	54.43		

(Continued on following page)
asymptomatic or minimally symptomatic men who did receive docetaxel in the castration-sensitive or castration-naïve setting if abiraterone and enzalutamide as well as radium-223 and cabazitaxel are not available. Similarly, a consensus was reached in favor of docetaxel retreatment in either asymptomatic or minimally symptomatic or symptomatic patients who did receive abiraterone in the castration-sensitive or castration-naïve setting in an area of limited resources if enzalutamide is unavailable. In a retrospective analysis from a trial that compared castration with or without docetaxel in the castration-sensitive setting showed that docetaxel retreatment was associated with limited activity with no predictive factors of response. In this retrospective analysis including 245 patients, the response rate to docetaxel retreatment in the CRPC scenario was only 20%. The median biochemical progression-free survival was only 4.1 months. Consequently, the panelists favored low-dose abiraterone (42.68%) over docetaxel retreatment (19.51%) in symptomatic patients when available. For most symptomatic patients with mCRPC who did not receive docetaxel or abiraterone in the castration-sensitive or castration-naïve setting, 71.08% of the panelists recommended abiraterone or enzalutamide. It is important to mention that both COU-AA-302 and Prevail did not include truly symptomatic patients because the control arm was a placebo. However, there is no reason aside from trial design that would preclude the activity of both agents in this setting. By contrast, in limited resource areas where full doses of abiraterone and enzalutamide are not available, the panelists reached consensus in recommending docetaxel. When evaluating different drugs for the management of PCa that have no level 1 evidence regarding an overall survival benefit, the panelists reached a consensus favoring mitoxantrone or prednisone.

TABLE 1. Summary of Treatment Recommendations for mCRPC Either as the Gold Standard and in Low Resources Areas (Continued)

No. voters	Abiraterone 1,000 mg or Enzalutamide 160 mg/d	Abiraterone 250 mg With Fatty Foods	Docetaxel	Radium-223 If Only Bone Metastases	Mitoxantrone	DES	Ketoconazole or Prednisone or Corticosteroids	Cabazitaxel	Abstain
73	84.93	2.74	12.33	NA-LR	33.68				
75	NA-LR	60.00	9.33	1.33	29.33				
82	NA-LR	59.76	1.22	NA-LR	2.44				
77	NA-LR	81.82	NA-LR	2.60	1.30	11.69			
76	NA-LR	NA-LR	1.32	NA-LR	19.74	5.26	68.42/1.32		

First-line = abiraterone or enzalutamide and second-line = docetaxel

Third-line

n	Asymptomatic or min. symptomatic	Alternate	Symptomatic (progression)		
59	52.54	5.08	16.95	1.69	23.73
60	NA-LR	21.67	1.67	18.33	58.33
57	NA-LR	10.53	7.02	NA-LR	1.75
58	NA-LR	53.45	20.69	NA-LR	13.79
65	NA-LR	55.38	NA-LR	20.00	7.69
67	16.42	8.96	13.43	61.19	
65	NA-LR	3.08	4.62	16.92	75.38
69	NA-LR	1.45	1.45	NA-LR	1.45
71	NA-LR	15.49	57.75	NA-LR	12.68
71	NA-LR	76.06	NA-LR	14.08	4.23

Abbreviations: DES, diethylstilbestrol; mCRPC, metastatic castration-resistant prostate cancer; min., minimum; NA-LR, not available because of limited resources; re-tx, retreatment.

*Docetaxel retreatment.
*Corticosteroids only.
*Cyclophosphamide.
*Corticosteroids or DES.
*Platinum-based chemotherapy.
*Best supportive care.
Similarly, low-dose abiraterone with fatty diet was determined by consensus to be an adequate option to be used in this limited resource setting and is supported by the phase II randomized data.\(^{29}\)

Other forms of hormonal therapy that reached consensus for their use in circumstances of limited resources were diethylstilbestrol, high-dose bicalutamide, ketoconazole, and corticosteroids alone. A phase II trial evaluated the activity of bicalutamide in doses ranging from 50 to 150 mg/d in 61 patients treated with combined androgen blockade. High-dose bicalutamide was associated with a PSA decline by 50% or more in 22% of patients. The median duration of response was 3.7 months and toxicity was mild.\(^{34}\)

A recent review of the role of ketoconazole for the treatment of mCRPC showed that this agent is associated with low cost, a relatively favorable toxicity profile compared with chemotherapy, and its improved efficacy, both before and after chemotherapy, despite not showing a survival benefit.\(^{35}\)

A total of 71% of the panelists recommended platinum compounds as appropriate treatment options in the setting of limited healthcare resources and in men with mCRPC who progressed on or after docetaxel. A systematic search on electronic databases evaluated the role of platinum compounds for mCRPC and suggested a statistically significant increase in both clinical as well biochemical response when adding platinum compounds to chemotherapy.\(^{38}\) Similarly, oral cyclophosphamide was favored by 64.47% of the panelists. A comprehensive literature search was performed and concluded that it is active in the treatment for CRPC even among patients previously treated with chemotherapy, including docetaxel, yielding symptomatic and objective responses.\(^{39}\)

As second-line treatment, after prior docetaxel exposure, a near consensus (74.07%) was reached favoring the use of cabazitaxel at the dose of 20 mg/m\(^2\) intravenous every 3 weeks, with dose reductions in subsequent cycles as indicated in areas of limited resources. This recommendation is supported by a phase III study that assessed the noninferiority of cabazitaxel 20 mg/m\(^2\) versus 25 mg/m\(^2\). This trial showed that cabazitaxel 20 mg/m\(^2\) every 3 weeks was not inferior to higher dose in terms of overall survival. Health-related quality of life did not differ between cohorts.\(^{40}\)

TABLE 2. Considered Appropriate in Healthcare Settings With Limited Resources for Men With mCRPC Who Are Progressing on or After Docetaxel

Systemic treatments	Yes	No	Abstain
Abiraterone 250 mg with fatty foods	93.98	6.02	0
Corticosteroids	88.16	10.53	1.32
Ketoconazole or corticosteroids	85.71	12.99	1.30
Mitoxantrone	85.00	12.50	2.50
Bicalutamide 150 mg	84.81	13.92	1.27
DES	78.48	21.52	0
Platinum (carboplatin or cisplatin)	71.79	24.36	3.85
Cyclophosphamide	31.58	64.47	3.95
Paclitaxel	10.96	82.19	6.85
Vinorelbine	7.89	88.16	3.95
FU or capecitabine	2.56	96.15	1.28
Doxorubicin	1.27	94.94	3.80

Abbreviations: DES, diethylstilbestrol; FU, fluorouracil; mCRPC, metastatic castration-resistant prostate cancer.

TABLE 3. Cabazitaxel Usage and Recommendations of Expert Panelists

When you use cabazitaxel for men with mCRPC at any point in the treatment sequence, which dose would you recommend in the majority of men?	Cabazitaxel 25 mg/m\(^2\), with dose reductions in subsequent cycles as indicated	Cabazitaxel 20 mg/m\(^2\), with dose reductions in subsequent cycles as indicated	Start with 20 mg/m\(^2\) and escalate to 25 mg/m\(^2\) in the absence of relevant side effects	I do not use Cabazitaxel	Abstain
Best practice	10.13	74.42	10.13	2.53	3.80
In limited resources	1.30	74.03	10.39	12.99	1.3
Do you recommend prophylactic WBC growth factors from start of therapy in men with mCRPC treated with:					
Cabazitaxel 25 mg/m\(^2\)	Yes, in the majority of patients	In a minority of selected patients	Not from start of therapy, only for marrow toxicity occurring after the start of therapy	No	Abstain
In limited resources					
Cabazitaxel 20 mg/m\(^2\)					
In limited resources					

Abbreviation: mCRPC, metastatic castration-resistant prostate cancer.
For second-line therapy, a consensus was reached favoring docetaxel in patients with metastatic asymptomatic or symptomatic CRPC who had progressive disease to first-line abiraterone or enzalutamide either when the resources were available or in areas with limited resources. Although there is no randomized trial comparing docetaxel versus abiraterone or enzalutamide in patients with mCRPC who failed prior enzalutamide or abiraterone, respectively, a recent review suggested a high degree of cross-resistance when abiraterone and enzalutamide are sequentially administered.41

Recently, the investigators of the COU-AA-302 trial described the activity of post-progression therapies in patients treated in the abiraterone experimental arm. The PFS of the patients who were treated with docetaxel as a first post-progression treatment was 7.6 months,42 whereas in those who received enzalutamide as a first post-progression treatment, it was 2.8 months.43 A retrospective report described the outcomes of 546 patients who progressed on first-line treatment with abiraterone or enzalutamide and subsequently received docetaxel or other hormone agents not previously administered as first-line. The authors reported that clinical and PSA response rates at both 3 and 6 months clearly favored docetaxel.44 Also, docetaxel is significantly less expensive than new hormonal therapy agents, which facilitates patient access.45

If low-dose abiraterone, cabazitaxel, and radium-223 were not available, there was a consensus favoring docetaxel retreatment in asymptomatic or minimally symptomatic men, who had response to docetaxel for mCRPC (without prior abiraterone or enzalutamide). It is important to mention that this option must be pursued if there are no randomized studies to support this strategy. A prospective phase II including 45 patients with mCRPC initially responding to docetaxel who then experienced disease progression after a period of biochemical remission of at least 5 months were enrolled and retreated with docetaxel. A total of 24.5% had a PSA response.45

Regarding third-line therapy, there was a consensus favoring cabazitaxel in symptomatic patients with mCRPC who had been treated with first-line abiraterone or enzalutamide and responded to docetaxel followed by progression if full doses of abiraterone and enzalutamide were not available or if full doses of abiraterone and enzalutamide as well as radium-223 were not available. A randomized phase III trial in patients with mCRPC who were previously treated with docetaxel and had progression within 12 months on abiraterone or enzalutamide compared cabazitaxel versus the alternative inhibitor (abiraterone or enzalutamide). The median overall survival was 13.6 months with cabazitaxel and 11.0 months with the androgen-signaling-targeted inhibitor \(P = .008 \).46

By contrast, in limited resource situations, the preferred third-line mCRPC treatment option was docetaxel retreatment (consensus) in symptomatic patients with mCRPC who had been treated with first-line abiraterone or enzalutamide and responded to docetaxel, followed by progression if abiraterone and enzalutamide as well as radium-223 and cabazitaxel were not available. As seen in Table 3, most physicians recommend the use of cabazitaxel after abiraterone or enzalutamide and docetaxel treatments have been exhausted. There was a near consensus with 74% of physicians recommending a 20 versus 25 mg/m² dose.

OSTEOCLAST-TARGETED THERAPY

The last topic of the consensus referred to bone direct therapy to prevent bone-related complications. In areas of limited resources, a consensus was reached for the use of zoledronic acid over denosumab in patients with mCRPC and bone metastases for prevention of skeletal-related events (SRE) or symptomatic skeletal events (SSE), the cost of denosumab overcomes potential benefit.47-51 Table 4 summarizes the physicians’ recommendations on this topic.

There was a consensus favoring the administration of zoledronic acid every 3 months instead of on monthly basis in areas of limited resources. This is supported by a randomized phase III trial including patients with metastatic breast cancer, metastatic PCa, or multiple myeloma who had at least one site of bone involvement. This study compared zoledronic acid administered intravenously every 4 weeks versus every 12 weeks for 2 years. The proportions of SREs did not differ significantly in both cohorts.51

FOLLOW-UP

Regarding follow-up of patients with metastatic CRPC in areas of limited resources, most of the panelists (69.51%) would recommend only PSA every 1-2 months and image studies only in case of PSA elevation and/or symptoms suggesting clinical progression. This differs from the original recommendations as PSA is not a reliable surrogate marker in patients treated with some of the new agents such as abiraterone or enzalutamide.52 One explanation reflects the costs and access to frequent image tests.

In conclusion, the current study illustrates the consensus of physicians in the field of mCRPC treatment. With consensus levels of over 90% in many cases, including limited resource settings, the panelists made determinations that may elucidate treatment decisions and provide solutions for areas that face resource limitations. The use of docetaxel as first-line treatment for mCRPC or as retreatment is one of the most important results of this consensus, given that it entails a less expensive and popular agent. The utility of older agents in areas of resource limitations was underestimated in the consensus and represents an important finding reflecting a trend toward accepting clinical benefit. Equally, prolonging...
TABLE 4. Use of Osteoclast-Targeted Therapy for Men With mCRPC and Bone Metastases for SRE or SSE Prevention

Recommended Osteoclast-Targeted Therapy for Men With mCRPC and Bone Metastases for SRE or SSE Prevention

Resources	Zoledronic Acid	Denosumab	Either Zoledronic Acid or Denosumab	Other	Vitamin D and Calcium Supplement Only	None in This Setting*	Abstain
LR	10.53	35.53	51.32	0	0	2.63	0
LR	77.46	2.82	12.68	0	1.41	5.63	0
LR	98.72	—	—	0	1.28	0	0
LR	—	—	—	28.21	50.00	17.95	3.85

Frequency: Osteoclast-Targeted Therapy^b

Every 12 Months	Every 6 Months	Every 3 Months	Every Month		
1.30	7.79	25.97	63.64	1.30	0

Duration: Osteoclast-Targeted Therapy^b

Approximately 1 Year	Approximately 2 Years	Indefinitely	Until the First Bone Metastasis Complication	Until the Second Bone Metastasis Complication
0	18.67	52.00	14.67	13.33
LR	4.11	23.29	38.36	12.33

Schedule for Osteoclast-Targeted Therapy^b in the Absence of Significant Toxicity

Every 4 Weeks	Every 4 Weeks for 2 Years, Then Less Frequency	Every 3 Months	Every 6-12 Months			
46.84	17.72	25.32	0	3.80	6.33	
LR	1.41	9.86	74.65	4.23	5.63	4.23

For patients responding to first-line systemic treatment

| 63.38 | 15.49 | 21.13 | 0 | — | 0 |
| LR | 12.68 | 15.49 | 67.61 | 2.82 | — | 1.41 |

Recommendation for Symptomatic Men With mCRPC and Bone Metastases Without a First SSE or SRE

Continue the Prior Therapy Directed to the Bone^c	Switch to Denosumab if Prior Zoledronic Acid	Switch to Zoledronic Acid if Prior Denosumab	Stop Therapy Directed to the Bone			
78.67	18.67	0	0	2.67		
LR	85.45	1.82	0	5.45	0	7.27

NOTE. — is not an option offered for respondents.

Abbreviations: LR, limited resources; mCRPC, metastatic castration-resistant prostate cancer; SRE, skeletal-related events; SSE, symptomatic skeletal events.

*Including “I do not use osteoclast-targeted therapy in this setting.”

^bEither denosumab or zoledronic acid.
the treatment interval of zoledronic acid was considered another reasonable solution when financial limitations were an issue. This consensus was developed with the aim of assisting developing countries in the treatment of mCRPC.

This consensus concentrated a large group of experts located in South America. It is important to consider the socioeconomic differences of these countries in the incorporation of the results and consensus obtained.

AFFILIATIONS

1Hospital Israelita Albert Einstein, São Paulo, Brazil
2Beneficência Portuguesa de São Paulo, São Paulo, Brazil
3Latin American Oncology Group (LACOG), Porto Alegre, Brazil
4Hospital São Camilo, São Paulo, Brazil
5Oncologia Clínica ICTR, Curitiba, Brazil
6Hospital AC Camargo, São Paulo, Brazil
7Gruppo Sonhe, Campinas, Brazil
8Centro Paulista de Oncologia, Oncoclínicas, São Paulo, Brazil
9Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
10Grupo de oncologia D’Or, Rio de Janeiro, Brazil
11Instituto D’Or de ensino e pesquisa, Rio de Janeiro, Brazil
12Hospital Sírio Libanês, São Paulo, Brazil
13Clínica Oncólogos del Occidente SAS, Manizales, Colombia
14Hospital Sírio Libanês, Brasília, Brazil
15Universidade Católica de Brasília, Brasília, Brazil
16Hospital Zenon Santillán, Nacional University of Tucumán, Tucumán, Argentina
17Instituto Alexander Fleming y de la Universidad Austral, Buenos Aires, Argentina
18IEP—Instituto de Ensino e Pesquisa Oncocentro, Fortaleza, Brazil
19Centro de Oncologia do Paraná, Curitiba, Brazil
20Oncology Institute of Southern Switzerland (IOSI), Bellinzona and Università della Svizzera Italiana, Lugano, Switzerland
21Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom

CORRESPONDING AUTHOR

Fernando Cotait Maluf, MD, Hospital Israelita Albert Einstein, Avenida Albert Einstein 626/627, Jardim Leonor, São Paulo, São Paulo 05652-900, Brazil; e-mail: maluffc@uoil.com.br.

AUTHOR CONTRIBUTIONS

Conception and design: Fernando Cotait Maluf, Felipe Moraes, Andrey Soares, Ariel Galapo Kann, Denis Leonardo Fontes Jardim, Diego Emilio Lopera Cortés, Igor A. Protzner Morbeck, Juan Pablo Sade, Leonardo Atem G. A. Costa, Mariana Bruno Siqueira, Silke Gillessen

Administrative support: Fernando Cotait Maluf, Juan Jose Zarbá, Juan Pablo Sade

Provision of study materials or patients: Adriano Gonçalves Silva, Aldo Lourenço Abbade Dettino, André Secke Sasse, Diego Emilio Lopera Cortés, Juan Pablo Sade

Collection and assembly of data: Fernando Cotait Maluf, Felipe Moraes, Adriano Gonçalves Silva, Aldo Lourenço Abbade Dettino, Ana Paula Garcia Cardoso, André Secke Sasse, Arial Galapo Kann, Denis Leonardo Fontes Jardim, Diego Emilio Lopera Cortés, Fábio Roberto Kater, Igor A. Protzner Morbeck, João Francisco Navarro Reolon, José Augusto Rinck Junior, Juan Jose Zarbá, Karine Martins da Trindade, Leonardo Atem G. A. Costa, Lucas V. dos Santos, Manuel Caiatto Maia, Mariana Bruno Siqueira

Data analysis and interpretation: Fernando Cotait Maluf, Felipe Moraes, Adriano Gonçalves Silva, Aldo Lourenço Abbade Dettino, Ana Paula Garcia Cardoso, André Secke Sasse, Ariel Galapo Kann, Daniel Herchenhorn, Diego Emilio Lopera Cortés, José Augusto Rinck Junior, Lucas V. dos Santos, Manuel Caiatto Maia, Silke Gillessen

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/go/authors/author-center.

Fernando Cotait Maluf

Honorary: Janssen Oncology, Astellas Pharma, Bayer Schering Pharma, Merck Sharp & Dohme, Roche/Genentech, BMS Brazil, Ipsen, Sanofi/Aventis, Merck Serono, AstraZeneca

Consulting or Advisory Role: Janssen Oncology, Astellas Pharma, Bayer Schering Pharma, Merck Sharp & Dohme, Roche/Genentech, BMS Brazil, Ipsen, Merck Serono, AstraZeneca

Research Funding: Janssen-Cilag, Merck Sharp & Dohme

Travel, Accommodations, Expenses: Merck Sharp & Dohme, Bayer Schering Pharma

Felipe Moraes

Honorary: Janssen, Zodiac Pharma, MSD, Libbs, Bayer, Amgen

Consulting or Advisory Role: Janssen

Adriano Gonçalves Silva

Honorary: MSD Oncology, Janssen Oncology, Astellas Pharma, Roche, Pfizer/EMD Serono, Bayer, BMS Brazil

Consulting or Advisory Role: Janssen Oncology, Astellas Pharma, Pfizer/EMD Serono, MSD Oncology

Research Funding: MSD Oncology, Janssen Oncology

Travel, Accommodations, Expenses: Janssen Oncology, Astellas Pharma, MSD Oncology, Roche

Aldo Lourenço Abbade Dettino

Honorary: Janssen-Cilag, Bayer, Astellas Pharma, Roche

Consulting or Advisory Role: Novartis

Research Funding: Janssen, Roche

Travel, Accommodations, Expenses: MSD Oncology

Ana Paula Garcia Cardoso

Consulting or Advisory Role: Janssen Oncology, Pfizer, Astellas Pharma

Speakers’ Bureau: Janssen Oncology, Novartis, MSD Oncology, Astellas Pharma, AstraZeneca, Bayer

Travel, Accommodations, Expenses: Ipsen, Janssen Oncology, Bristol-Myers Squibb

André Secke Sasse

Honorary: Roche, Astellas Pharma, Janssen-Cilag, Bristol-Myers Squibb, Merck KGaA, MSD Oncology, Novartis

Consulting or Advisory Role: Astellas Pharma, Janssen-Cilag, Merck KGaA, Novartis, Roche

Research Funding: Bristol-Myers Squibb

Travel, Accommodations, Expenses: MSD Oncology, Janssen-Cilag

Andrey Soares

Honorary: Janssen, Pfizer, Bayer, Novartis, AstraZeneca, Astellas Pharma, Pierre Fabre, Merck Serono, Sanofi, Roche, MSD
REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018

2. Steele CB, Li J, Huang B, et al: Prostate cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer 123:5160-5177, 2017 (suppl 24)

3. Marques RB, Dits NF, Erkens-Schulze S, et al: Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS One 5:e13500, 2010

4. Harris WP, Mostaghel EA, Nelson PS, et al: Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76-85, 2009

5. Ritch C, Cookson M: Recent trends in the management of advanced prostate cancer. F1000Res 7:1513, 2018

6. Huggins C, Hodges CV: Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22:232-240, 1972

7. Patrikidou A, Loriot Y, Eymard JC, et al: Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms. Eur Urol 64:300-306, 2013

8. Omlin A, Pezaro C, Mukherji D, et al: Who dies from prostate cancer? Prostate Cancer Prostatic Dis 17:348-352, 2014

9. Saad F, Chi KN, Finelli A, et al: The 2015 CUA-CUOG guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J 9:90-96, 2015

10. Tannock IF, de Wit R, Berry WR, et al: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502-1512, 2004
11. Petrylk D, Tangen CM, Hussain MH, et al: Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513-1520, 2004
12. Kantoff PW, Higano CS, Shore ND, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411-422, 2010
13. de Bono JS, Logothetis CJ, Molina A, et al: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995-2005, 2011
14. Ryan CJ, Smith MR, Fizazi K, et al: Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16:152-160, 2015
15. Scher HI, Fizazi K, Saad F, et al: Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187-1197, 2012
16. Beer TM, Armstrong AJ, Rathkopf DE, et al: Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424-433, 2014
17. de Bono JS, Oudard S, Ozguroglu M, et al: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 376:1147-1154, 2010
18. Parker C, Nilsson S, Heinrich D, et al: Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213-223, 2013
19. Chi KN, Kheoh T, Ryan CJ, et al: A prognostic index model for predicting overall survival in patients with metastatic castration-resistant prostate cancer treated with abiraterone acetate after docetaxel. Ann Oncol 27:454-460, 2016
20. Cornford P, Bellmunt J, Bolla M, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 71:630-642, 2017
21. Parker C, Sartor O: Radium-223 in prostate cancer. N Engl J Med 369:1659-1660, 2013
22. de Bono J, Mateo J, Fizazi K, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091-2102, 2020
23. Abida W, Campbell D, Patnaik A, et al: Preliminary results from the TRITON2 study of rucaparib in patients (pts) with DNA damage repair (DDR)-deficient metastatic castration-resistant prostate cancer (mCRPC). Updated analyses. Ann Oncol 30:v327-v328, 2019
24. Pishgar F, Ebrahimi H, Saeedi Moghadam S, et al: Global, regional and national burden of prostate cancer, 1990 to 2015: Results from the global burden of disease study 2015. J Urol 199:1224-1232, 2018
25. Davidson T, Amit U, Saad A, et al: Gallium-68 prostate-specific membrane antigen PET-CT and the clinical management of prostate cancer. Nucl Med Comm 40:913-919, 2019
26. Aguiar P, Tan P, Simko S, et al: Cost-effectiveness analysis of abiraterone, docetaxel or placebo plus androgen deprivation therapy for hormone-sensitive advanced prostate cancer. Einstein (Sao Paulo) 17:e654414, 2019
27. Guirgis H: Outcome, costs and dollar value of docetaxel and abiraterone in prostate cancer. J Clin Oncol 37, 2019 (suppl; abstr 155)
28. Chi K, Sprivati J, Kollmannsberger C, et al: Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. J Clin Pharm 55:1406-1414, 2015
29. Szmulewitz R, Peer C, Ibraheem A, et al: Prospective international randomized phase II study of low-dose abiraterone with food versus standard dose abiraterone in castration-resistant prostate cancer. J Clin Oncol 36:1389-1395, 2018
30. Crawford E, Schellhammer P, McLeod D, et al: Androgen receptor targeted treatments of prostate cancer: 35 years of progress with antiandrogens. J Urol 200:956-966, 2018
31. Lavau D, Gravis G, Foulon S, et al: Anticancer activity and tolerance of treatments received beyond progression in men treated upfront with androgen deprivation therapy with or without docetaxel for metastatic castration-naive prostate cancer in the GETUG-AFU 15 phase 3 trial. Eur Urol 73:696-703, 2018
32. Ryan C, Smith M, de Bono J, et al: Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368:138-148, 2013
33. Tannock, I, Osoba, D, Stockler, M, et al: Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: A Canadian randomized trial with palliative end points. J Clin Oncol 14:1756-1764, 1996
34. Klotz L, Drachenberg D, Singh R, et al: An open-label, phase 2 trial of bicalutamide dose escalation from 50 mg to 150 mg in men with CAB and castration resistance. A Canadian Urology Research Consorium Study. Prostate Cancer Prostatic Dis 17:320-324, 2014
35. Patel V, Liw B, Oh W: The role of ketoconazole in current prostate cancer care. J Natl Cancer Inst 107:234-239, 2011
36. De Santis M, Saad F, Practical guidance on the role of corticosteroids in the treatment of metastatic castration-resistant prostate cancer. Urology 96:156-164, 2016
37. Gilleisen S, Attard G, Beer TM, et al: Management of patients with advanced prostate cancer: The report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur Urol 73:178-181, 2018
38. Leaf F, Garcia-Perdomo HA: Effectiveness of platinum-based chemotherapy in patients with advanced prostate cancer: Systematic review and meta-analysis. Clin Genitourin Cancer 17:e627-e644, 2019
39. Nellius T, Rinard K, Filleur S: Oral/metronomic cyclophosphamide-based chemotherapy as option for patients with castration-refractory prostate cancer: Review of the literature. Cancer Treat Rev 37:444-455, 2011
40. Eisenberger M, Hardy-Bessard AC, Kim CS, et al: Phase III study comparing a reduced dose of cabazitaxel (20 mg/m2) and the currently approved dose (25 mg/m2) in postdocetaxel patients with metastatic castration-resistant prostate cancer-PROSELICA. J Clin Oncol 35:2398-3206, 2017
41. Tucci M, Carro O, Buttiglieri C, et al: Therapeutic options for first-line metastatic castration-resistant prostate cancer: Suggestions for clinical practise in the CHAARTED and LATITUDE era. Cancer Treat Rev 74:35-42, 2019
42. De Bono J: Reply to Robert J. van Soest and Ronald de Wit's Letter to the Editor re: Johann S. de Bono, Matthew R. Smith, Fred Saad, et al. Subsequent chemotherapy and treatment patterns after abiraterone acetate in patients with metastatic castration-resistant prostate cancer: Post hoc analysis of COU-AA-302. Eur Urol 71:11-11, 2017
43. Smith MR, Saad F, Rathkopf DE, et al: Clinical outcomes from androgen signaling-directed therapy after treatment with abiraterone acetate and prednisone in patients with metastatic castration-resistant prostate cancer: Post hoc analysis of COU-AA-302. Eur Urol 72:10-13, 2017
44. Oh WK, Miao R, Vekeman F, et al: Real-world characteristics and outcomes of patients with metastatic castration-resistant prostate cancer receiving chemotherapy versus androgen receptor-targeted therapy after failure of first-line androgen receptor-targeted therapy in the community setting. Clin Genitourin Cancer 16:P50-P57, 2018
45. Di Lorenzo G, Buonarba C, Faiella A, et al: Phase II study of docetaxel re-treatment in docetaxel-pretreated castration-resistant prostate cancer. BJU Int 107:234-239, 2011
46. De Wit R, De Bono J, Sternberg CN, et al: Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N Engl J Med 381:2506-2518, 2019
47. Saad F, Gleason DM, Murray R, et al: A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94:1458-1468, 2002
48. Saad F, Gleason DM, Murray R, et al: Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96:879-882, 2004

49. Fizazi K, Carducci M, Smith M, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet 377:813-822, 2011

50. Xie J, Namjoshi M, Wu EQ, et al: Economic evaluation of denosumab compared with zoledronic acid in hormone-refractory prostate cancer patients with bone metastases. J Manag Care Pharm 17:621-643, 2011

51. Himelstein AL, Foster JC, Khatcheressian JL, et al: Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases: A randomized clinical trial. JAMA 317:48-58, 2017

52. Crawford ED, Koo PJ, Shore N, et al: A clinician’s guide to next generation imaging in patients with advanced prostate cancer (RADAR III). J Urol 201:682-692, 2019