Lower bound on the radius of analyticity of solution for fifth order KdV–BBM equation

Birilew Belayneh, Emawayish Tegegn and Achenef Tesfahun

Abstract. We show that the uniform radius of spatial analyticity \(\sigma(t) \) of solution at time \(t \) for the fifth order KdV–BBM equation cannot decay faster than \(1/t \) for large \(t > 0 \), given initial data that is analytic with fixed radius \(\sigma_0 \). This significantly improves a recent result by Carvajal and Panthee (On the radius of analyticity for the solution of the fifth order KdV–BBM model, 2020. arXiv:2009.09328), where they established an exponential decay of \(\sigma(t) \) for large \(t \).

Mathematics Subject Classification. 35A01, 35Q53.

Keywords. KdV–BBM equation, Global well-posedness lower bound, Radius of analyticity, Gevrey spaces.

1. Introduction

We consider the fifth order KdV–BBM type equation of the form

\[
\partial_t \eta + \partial_x \eta - \gamma_1 \partial_t \partial_x^2 \eta + \gamma_2 \partial_x^3 \eta + \delta_1 \partial_t \partial_x^4 \eta + \delta_2 \partial_x^5 \eta = -\frac{3}{4} \partial_x (\eta^2) - \gamma \partial_x^3 (\eta^2) + \frac{7}{48} \partial_x (\eta_x^2) + \frac{1}{8} \partial_x (\eta^3),
\]

where the unknown function is

\[\eta : \mathbb{R}^{1+1} \to \mathbb{R}.\]

The parameters \(\gamma_1, \gamma_2, \delta_1, \delta_2, \gamma \) are constants that satisfy certain constraints; see [1,7] for more details.

The fifth-order PDE (1) describes the unidirectional propagation of water waves, and this was recently introduced by Bona et al. [1] by using the second order approximation in the two-way model, the so-called \(abcd\text{-system} \) derived in [2,3].

We complement (1) with initial data

\[
\eta(x, 0) = \eta_0(x).
\]
In the case $\gamma = 7/48$, the energy

$$E[\eta(t)] = \frac{1}{2} \int_{\mathbb{R}} (\eta^2 + \gamma \eta_x^2 + \delta_1 \eta_{xx}^2) \, dx$$

is conserved by the flow of (1), i.e.,

$$E[\eta(t)] = E[\eta_0] \quad \text{for all } t.$$ \hfill (3)

In the case $\gamma \neq 7/48$, the corresponding energy has no positive sign, and therefore not useful to prove global well-posedness of (1)–(2).

Local well-posedness of the Cauchy problem (1)–(2) with data in the Sobolev spaces $H^s(\mathbb{R})$ for $s \geq 1$ was established by Bona et al in [1]. When $\gamma_1, \delta_1 > 0$ and $\gamma = 7/48$, the authors [1] used the energy conservation (3) to prove global well-posedness of (1)–(2) for data in $H^s(\mathbb{R}), s \geq 2$. Furthermore, the authors used the method of high-low frequency splitting to obtain global well-posedness for data with Sobolev regularity $3/2 \leq s < 2$. This global well-posedness result was further improved in [6] for initial data with Sobolev regularity $s \geq 1$.

Recently, Carvajal and Panthee [7] studied the property of spatial analyticity of the solution $\eta(x,t)$ to (1)–(2), given that the initial data $\eta_0(x)$ is real-analytic with uniform radius of analyticity σ_0, so there is a holomorphic extension to a complex strip

$$S_{\sigma_0} = \{x + iy \in \mathbb{C} : |y| < \sigma_0\}.$$

The authors proved that, for short times, the radius of analyticity $\sigma(t)$ of the solution $\eta(x,t)$ remains at least as large as the initial radius, i.e. one can take $\sigma(t) = \sigma_0$. On the other hand, for large times, they proved that $\sigma(t)$ decays exponentially in t. In the present paper, we use the idea introduced in [19] (see also [20,22]) to improve this result significantly showing $\sigma(t)$ cannot decay faster than $1/t$ for large t.

For earlier studies concerning properties of spatial analyticity of solutions for a large class of nonlinear partial differential equations, see for instance [4,5,8–14,16–23].

A class of analytic function spaces suitable to study analyticity of solution is the Gevrey class, denoted $G^{\sigma,s}(\mathbb{R})$, which are defined by the norm

$$\|f\|_{G^{\sigma,s}} = \|e^{\sigma|D_x|/\langle D_x \rangle^s}f\|_{L^2_x},$$

where $D_x = -i\partial_x$ and $\langle \cdot \rangle = \sqrt{1 + |\cdot|^2}$.

The reason for considering initial data in the space $G^{\sigma,s}$ is due to the analyticity properties of Gevrey functions, which are detailed in the following theorem:

Paley–Wiener Theorem Let $\sigma > 0$ and $s \in \mathbb{R}$. Then the following are equivalent:

(a) $f \in G^{\sigma,s}(\mathbb{R})$,
(b) f is the restriction to \mathbb{R} of a function F which is holomorphic in the strip $S_{\sigma} = \{x + iy \in \mathbb{C} : |y| < \sigma\}$.
Moreover, the function F satisfies the estimates
\[
\sup_{|y| < \sigma} \|F(\cdot + iy)\|_{H^s} < \infty.
\]
A proof can be found in [15] in the case $s = 0$; the general case follows from a simple modification. The quantity σ is known as the radius of analyticity.

We remark that Gevrey spaces satisfy the embeddings
\[
\|f\|_{G^{\sigma,s}} \leq C \|f\|_{G^{\sigma',s'}}
\]
for any $s, s' \in \mathbb{R}, \sigma < \sigma'$ and some constant $C > 0$. This implies
\[
\|f\|_{H^s} \leq C \|f\|_{G^{\sigma',s'}}
\]
for all $s, s' \in \mathbb{R}, \sigma' > 0$.

As a consequence of property (5) and the existing well-posedness theory in $H^s(\mathbb{R})$ (see [1]), we conclude that the Cauchy problem (1)–(2) (with $\gamma_1, \delta_1 > 0$ and $\gamma = 7/48$) has a unique, smooth solution for all time, given initial data $\eta_0 \in G^{\sigma_0, s}$ for all $\sigma_0 > 0$ and $s \in \mathbb{R}$.

Our main result is as follows:

Theorem 1. Assume $\gamma_1, \delta_1 > 0$ and $\gamma = 7/48$. Suppose that η is the global solution of (1)–(2) with $\eta_0 \in G^{\sigma_0,2}$ for $\sigma_0 > 0$. Then
\[
\eta(t) \in G^{\sigma(t),2} \quad \text{for all} \quad t > 0,
\]
with the radius of analyticity $\sigma(t)$ satisfying the asymptotic lower bound
\[
\sigma(t) \geq \frac{c}{t} \quad \text{as} \quad t \to +\infty,
\]
where $c > 0$ is a constant depending on the initial data norm $\|\eta_0\|_{G^{\sigma_0,2}}$.

Thus, the solution at any time t, $\eta(t)$, is analytic in the strip $S_{\sigma(t)}$.

Notation For any positive numbers a and b, the notation $a \lesssim b$ stands for $a \leq cb$, where c is a positive constant that may change from line to line. Moreover, we denote $a \sim b$ when $a \lesssim b$ and $b \lesssim a$.

2. Local well-posedness in $G^{\sigma_0,s}$

We outline the argument in [7] that enables the authors to obtain the local well-posedness result for (1)–(2) in $G^{\sigma_0, s}$ with $s \geq 1, \sigma_0 > 0$.

Taking the spatial Fourier transform of (1) we obtain
\[
i\partial_t \hat{\eta} - \phi(\xi) \hat{\eta} = \pi(\xi) \hat{\eta}^2 - \frac{1}{8} \psi(\xi) \hat{\eta}^3 - \frac{7}{48} \psi(\xi) \hat{\eta}_x^2,
\]
where
\[
\phi(\xi) = \frac{\xi (1 - \gamma_2 \xi^2 + \delta_2 \xi^4)}{\varphi(\xi)}, \quad \psi(\xi) = \frac{\xi}{\varphi(\xi)}, \quad \tau(\xi) = \frac{\xi (3 - 4\gamma \xi^2)}{4 \varphi(\xi)}
\]
with
\[
\varphi(\xi) = 1 + \gamma_1 \xi^2 + \delta_1 \xi^4.
\]
Defining the Fourier multipliers
\[\phi(D_x)f = \mathcal{F}^{-1}[\varphi(\xi)f], \quad \psi(D_x)f = \mathcal{F}^{-1}[\psi(\xi)f], \quad \tau(D_x)f = \mathcal{F}^{-1}[\tau(\xi)f], \]
we can rewrite (6) in an operator form as
\[i\partial_t \eta - \phi(D_x)\eta = F(\eta), \quad (7) \]
where
\[F(\eta) = \tau(D_x)\eta^2 - \frac{1}{8}\psi(D_x)\eta^3 - \frac{7}{48}\psi(D_x)\eta_x^2. \]

Then the integral equation for (7)–(8) with initial data (2) is given by
\[\eta(t) = e^{-it\phi(D_x)}\eta_0 - i\int_0^t e^{-i(t-t')\phi(D_x)}F(\eta)(t')\,dt'. \quad (9) \]

Combining the estimates in [7, Lemma 2.2–2.4], we obtain the following nonlinear estimate.

Lemma 1. [7, Lemma 2.2–2.4] Let \(F(\eta) \) be defined as in (8). Then for \(s \geq 1, \sigma > 0 \), we have
\[\|F(\eta)\|_{G^{\sigma,s}} \lesssim [1 + \|\eta\|_{G^{\sigma,s}}]\|\eta\|^2_{G^{\sigma,s}} \quad (10) \]
for all \(\eta \in G^{\sigma,s} \).

Now applying the contraction mapping argument to the integral equation (9) and using Lemma 1 yields the following local result.

Theorem 2. [7] Let \(s \geq 1, \sigma_0 > 0 \) and \(\eta_0 \in G^{\sigma_0,s} \). Then there exists a unique solution
\[\eta \in C([0, T]; G^{\sigma_0,s}(\mathbb{R})) \]
of the Cauchy problem (1)–(2), where the existence time is
\[T \sim (1 + \|\eta_0\|)^{-2}_{G^{\sigma_0,s}}. \quad (11) \]
Moreover,
\[\|\eta\|_{L^\infty_t G^{\sigma_0,s}} \lesssim \|\eta_0\|_{G^{\sigma_0,s}}. \quad (12) \]

Here we use the notation
\[L^\infty_t G^{\sigma_0,s} = L^\infty_t G^{\sigma_0,s}([0, T] \times \mathbb{R}). \]

3. Almost conservation law and proof of Theorem 1

We fix \(\gamma_1, \delta_1 > 0 \) and \(\gamma = 7/48 \). Let
\[v(x, t) := \Lambda_{\sigma}\eta(x, t), \quad \text{where} \quad \Lambda_{\sigma} = e^{\sigma|D_x|}. \]
Then \(\eta = \Lambda_{-\sigma}v \). Note also that \(v_0 := v(x, 0) = \Lambda_{\sigma}\eta_0 \).

Now define the modified energy
\[\mathcal{E}_{\sigma}[v(t)] = \frac{1}{2} \int_{\mathbb{R}} \left(v^2 + \gamma_1 v_x^2 + \delta_1 v_{xx}^2 \right) \, dx. \]
Observe that for $\sigma = 0$, we have $v = \eta$, and therefore the energy conserved, i.e., $E_0[v(t)] = E_0[v_0]$ for all t. However, this fails to hold for $\sigma > 0$. In what follows we will nevertheless prove the approximate conservation
\[
\sup_{0 \leq t \leq T} E_\sigma[v(t)] = E_\sigma[v_0] + \sigma \cdot \mathcal{O} \left(\left[1 + (E_\sigma[v_0])^{\frac{1}{2}} \right] (E_\sigma[v_0])^{\frac{3}{2}} \right)
\]
for T as in Theorem 2. Thus, in the limit as $\sigma \to 0$, we recover the conservation $E_0[v(t)] = E_0[v_0]$.

3.1. Almost conservation law

Applying the operator Λ_σ to equation (1) we obtain
\[
\partial_t v + \partial_x v - \gamma_1 \partial_t \partial_x^2 v + \gamma_2 \partial_x^3 v + \delta_1 \partial_t \partial_x^4 v + \delta_2 \partial_x^5 v = -\left(\frac{3}{4} + \gamma \partial_x^2 \right) \partial_x (v^2) + \gamma \partial_x (v_x^2) + \frac{1}{8} \partial_x (v^3) + N(v),
\]
where
\[
N(v) = \left(\frac{3}{4} + \gamma \partial_x^2 \right) \partial_x N_1(v) - \gamma \partial_x N_2(v) - \frac{1}{8} \partial_x N_3(v)
\]
with
\[
N_1(v) = v^2 - \Lambda_\sigma \left[(\Lambda_{-\sigma} v)^2 \right], \\
N_2(v) = v_x^2 - \Lambda_\sigma \left[(\Lambda_{-\sigma} v_x)^2 \right], \\
N_3(v) = v^3 - \Lambda_\sigma \left[(\Lambda_{-\sigma} v)^3 \right].
\]

Using integration by parts\footnote{Assuming that the solution is sufficiently regular.} and (13)–(15) we compute
\[
\frac{d}{dt} E_\sigma[v(t)] = \int_\mathbb{R} (vv_t + \gamma_1 vv_x v_{xt} + \delta_1 vv_x v_{xxt}) \, dx \\
= \int_\mathbb{R} v \left(\partial_t v - \gamma_1 \partial_t \partial_x^2 v + \delta_1 \partial_t \partial_x^4 v \right) \, dx \\
= -\int_\mathbb{R} v \left(\partial_x v + \gamma_2 \partial_x^3 v + \delta_2 \partial_x^5 v + \frac{3}{4} \partial_x (v^2) + \gamma \partial_x^3 (v^2) \\
-\gamma \partial_x (v_x^2) - \frac{1}{8} \partial_x (v^3) \right) \, dx \\
+ \int_\mathbb{R} v N(v) \, dx.
\]
The integral on the third line is zero due to the identities
\[
v \partial_x v = \frac{1}{2} (v^2)_x, \quad v \partial_x^3 v = (vv_{xx})_x - \frac{1}{2} (v_x^2)_x, \\
v \partial_x^2 v = (v \partial_x^4 v)_x - (\partial_x v \partial_x^3 v)_x + \frac{1}{2} (v_{xx}^2)_x.
\]
\[
\begin{align*}
\v v \partial_x (v^2) &= \frac{2}{3} (v^2)_x, \\
\v v \partial_x (v^3) &= \frac{3}{4} (v^4)_x, \\
\v v \partial^3_x (v^2) &= 2 (v^2 v_{xx})_x + v (v_x^2)_x.
\end{align*}
\]

Therefore,
\[
\frac{d}{dt} \mathcal{E}_\sigma[v(t)] = \int_\mathbb{R} v \mathcal{N}(v) \, dx.
\]

Consequently,
\[
\begin{align*}
\mathcal{E}_\sigma[v(t)] &= \mathcal{E}_\sigma[v(0)] + \int_0^t \frac{d}{ds} \mathcal{E}_\sigma[v(s)] \, ds \\
&= \mathcal{E}_\sigma[v_0] + \int_0^t \int_\mathbb{R} v(x, s) \mathcal{N}(v(x, s)) \, dx ds.
\end{align*}
\]

Now we state a key estimate that will be proved in the last section.

Lemma 2. We have
\[
\left| \int_\mathbb{R} v \mathcal{N}(v) \, dx \right| \leq C_\sigma \left[1 + \|v\|_{H^2} \right] \|v\|^3_{H^2} \tag{17}
\]
for all \(v \in H^2 \).

So in view of (16) and (17), we have the a priori energy estimate
\[
\sup_{0 \leq t \leq T} \mathcal{E}_\sigma[v(t)] = \mathcal{E}_\sigma[v_0] + \sigma T \cdot \mathcal{O} \left(\left[1 + \|v\|_{L_T^\infty H^2} \right] \|v\|^3_{L_T^\infty H^2} \right), \tag{18}
\]
where
\[
L_T^\infty H^2 := L_t^\infty H^2([0, T] \times \mathbb{R}).
\]

We combine this estimate with the local existence theory in Theorem 2 above to obtain an almost conservation law to the modified energy.

Lemma 3. [Almost conservation law] Let \(\eta_0 \in G^{\sigma, 2} \). Suppose that \(\eta \in C \left([0, T]; G^{\sigma, 2}\right) \) is the local-in-time solution to the Cauchy problem (1)–(2) that is constructed in Theorem 2. Then
\[
\sup_{0 \leq t \leq T} \mathcal{E}_\sigma[v(t)] = \mathcal{E}_\sigma[v_0] + \sigma \cdot \mathcal{O} \left(\left[1 + \left(\mathcal{E}_\sigma[v_0] \right)^{\frac{1}{2}} \right] \left(\mathcal{E}_\sigma[v_0] \right)^{\frac{3}{2}} \right). \tag{19}
\]

Proof. By Theorem 2 we have the bound
\[
\|v\|_{L_T^\infty H^2} = \|\eta\|_{L_T^\infty G^{\sigma, 2}} \leq C \|\eta_0\|_{G^{\sigma, 2}} = C \|v_0\|_{H^2}; \tag{20}
\]
where \(T \) is as in (11). On the other hand, for fixed constants \(\gamma_1, \delta_1 > 0 \), we have
\[E_{\sigma_0}[v_0] = \frac{1}{2} \int_{\mathbb{R}} \left(v_0^2 + \gamma_1 (v_0')^2 + \delta_1 (v_0'')^2 \right) \, dx \]
\[\sim \|v_0\|_{H^2}^2. \] (21)

Then combining (20)–(21) with (18) yields the desired estimate (19). \(\square \)

3.2. Proof of Theorem 1

Suppose that \(\eta_0 \in G^{\sigma_0,2} \) for some \(\sigma_0 > 0 \). From the local theory there is a unique solution

\[\eta \in C \left([0,T]; G^{\sigma_0,2}(\mathbb{R}) \right) \]

of (1), (2) constructed in Theorem 2 with existence time \(T \) as in (11).

Note that since \(v_0 = e^{\sigma_0 |D_x|} \eta_0 \in H^2 \)

we have

\[E_{\sigma_0}[v_0] \sim \|v_0\|_{H^2}^2 < \infty. \]

Now following the argument in [20,22] we can construct a solution on \([0,T^*]\) for arbitrarily large time \(T^* \) by applying the approximate conservation law in Lemma 3, (19), so as to repeat the above local result on successive short time intervals of size \(T \) to reach \(T^* \) by adjusting the strip width parameter \(\sigma \) according to the size of \(T^* \). Doing so, we establish the bound

\[\sup_{t \in [0,T^*]} E_{\sigma}[v(t)] \leq 2E_{\sigma_0}[v_0] \] (22)

for \(\sigma \) satisfying

\[\sigma(t) \geq C/T^*. \] (23)

Thus, \(E_{\sigma}(t) < \infty \) for \(t \in [0,T^*] \), which in turn implies

\[\eta(t) \in G^{\sigma(t),2} \quad \text{for all} \quad t \in [0,T^*]. \]

4. Proof of Lemma 2

Estimate (17) reduces to

\[\left| \int_{\mathbb{R}} v N(v) \, dx \right| \leq C \sigma \|v\|_{H^2} \|v\|_{H^2}^3, \] (24)

where \(v \) can be regarded as a function of only \(x \) (since \(t \) is fixed).

Using (14)–(15), Plancherel and Cauchy–Schwarz, we get

\[\int_{\mathbb{R}} v N(v) \, dx = \int_{\mathbb{R}} v \left(\frac{3}{4} + \gamma \partial_x^2 \right) \partial_x N_1(v) \, dx - \gamma \int_{\mathbb{R}} v \partial_x N_2(v) \, dx \]
\[- \frac{1}{8} \int_{\mathbb{R}} v \partial_x N_3(v) \, dx \]
\[= \int_{\mathbb{R}} \left(\frac{3}{4} + \gamma \partial_x^2 \right) v \partial_x N_1(v) \, dx + \gamma \int_{\mathbb{R}} \partial_x v \cdot N_2(v) \, dx \]
So (24) follows from the following estimates:

\[
\begin{align*}
\|\partial_x N_1(v)\|_{L_x^2} & \lesssim \sigma \|v\|_{H^2}^2 \\
\|N_2(v)\|_{L_x^2} & \lesssim \sigma \|v\|_{H^2}^2 \\
\|N_3(v)\|_{L_x^2} & \lesssim \sigma \|v\|_{H^2}^3.
\end{align*}
\]

4.1. Proof of (25)

By taking the FT, we write

\[
\hat{\partial_x N_1}(\xi) = i \int_{\xi_1 + \xi_2} \xi \left(e^{\sigma(|\xi_1| + |\xi_2|)} - e^{\sigma|\xi|} \right) \hat{\eta}(\xi_1) \hat{\eta}(\xi_2) \, d\xi_1 d\xi_2
\]

where

\[
p_\sigma(\xi_1, \xi_2) = 1 - \exp \left(-\sigma \left(|\xi_1| + |\xi_2| \right) \right).
\]

Since \(1 - e^{-r} \leq r\) for all \(r \geq 0\), we have

\[
|p_\sigma(\xi_1, \xi_2)| \leq \sigma \left(|\xi_1| + |\xi_2| \right) - |\xi_1 + \xi_2|
\]

\[
= \sigma \frac{|\xi_1| + |\xi_2|}{|\xi_1| + |\xi_2|} - \frac{|\xi_1 + \xi_2|^2}{|\xi_1| + |\xi_2|}
\]

\[
\leq 2\sigma \min \left(|\xi_1|, |\xi_2| \right)
\]

By symmetry, we may assume \(|\xi_1| \leq |\xi_2|\). This implies \(|\xi| \leq 2|\xi_2|\). Now let

\[
V = F_{\chi}^{-1}(\hat{v}).
\]

Then by (28)

\[
|\partial_x N_1(v)(\xi)| \leq 4\sigma \int_{\xi_1 + \xi_2} |\xi_1| |\hat{\nu}(\xi_1)| \cdot |\xi_2| |\hat{\nu}(\xi_2)| \, d\xi_1 d\xi_2
\]

\[
= 4\sigma \int_{\xi_1 + \xi_2} |\xi_1| |\hat{V}(\xi_1)| \cdot |\xi_2| |\hat{V}(\xi_2)| \, d\xi_1 d\xi_2
\]

\[
= 4\sigma |D_\chi| V \cdot |D_\chi| V(\xi).
\]

Therefore, using Plancherel, Hölder and Sobolev inequalities we get
By taking the FT, we write
\[
\|\partial_x N_1(U)\|_{L^2_x} \leq 4\sigma\|D_x |V| \|_{L^2_x} \\
\leq 4\sigma\|D_x |V|\|_{L^2_x} \|D_x |V|\|_{L^\infty_x} \\
\lesssim \sigma\|V\|_{H^2}^2 \sim \sigma\|v\|_{H^2}^2
\]
as desired.

4.2. Proof of (26)
By taking the FT, we write
\[
\widehat{N}_2(v)(\xi) = \int_{\xi = \xi_1 + \xi_2} \left(e^{\sigma(|\xi_1|+|\xi_2|)} - e^{\sigma|\xi|} \right) \hat{\eta}_x(\xi_1)\hat{\eta}_x(\xi_2) \, d\xi_1 d\xi_2 \\
= -\int_{\xi = \xi_1 + \xi_2} \xi_1 \xi_2 p_\sigma(\xi_1, \xi_2) \hat{v}(\xi_1)\hat{v}(\xi_2) \, d\xi_1 d\xi_2,
\]
where \(p_\sigma(\xi_1, \xi_2)\) as in the preceding subsection.
Assuming \(|\xi_1| \leq |\xi_2|\), by symmetry, we have by (28)
\[
|\xi_1 \xi_2 p_\sigma(\xi_1, \xi_2)| \leq 2\sigma|\xi_1|^2|\xi_2|.
\]
Then
\[
|\widehat{N}_2(v)(\xi)| \leq 2\sigma\int_{\xi = \xi_1 + \xi_2} |\xi_1|^2|\hat{v}(\xi_1)| \cdot |\xi_2|^2|\hat{v}(\xi_2)| \, d\xi_1 d\xi_2 \\
= 2\sigma\int_{\xi = \xi_1 + \xi_2} |\xi_1|^2\hat{V}(\xi_1) \cdot |\xi_2|^2\hat{V}(\xi_2) \, d\xi_1 d\xi_2 \\
= 2\sigma \mathcal{F}_x \|D_x |^2V \cdot |D_x |V\|_2(\xi).
\]
Therefore, by Plancherel, Hölder and Sobolev inequalities we get
\[
\|N_2(U)\|_{L^2_x} \leq 2\sigma\|D_x |^2V \cdot |D_x |V\|_{L^2_x} \\
\leq 2\sigma\|D_x |^2V\|_{L^2_x} \|D_x |V\|_{L^\infty_x} \\
\lesssim \sigma\|V\|_{H^2}^2 \sim 2\sigma\|v\|_{H^2}^2
\]
as desired.

4.3. Proof of (27)
\[
\widehat{N}_3(v)(\xi) = \int_{\xi = \xi_1 + \xi_2 + \xi_3} \left(e^{\sum_{j=1}^3 \sigma_j|\xi_j|} - e^{\sigma|\xi|} \right) \hat{\eta}(\xi_1)\hat{\eta}(\xi_2)\hat{\eta}(\xi_3) \, d\xi_1 d\xi_2 d\xi_3 \\
= \int_{\xi = \xi_1 + \xi_2 + \xi_3} q_\sigma(\xi_1, \xi_2, \xi_3) \hat{v}(\xi_1)\hat{v}(\xi_2)\hat{v}(\xi_3) \, d\xi_1 d\xi_2 d\xi_3,
\]
where
\[
q_\sigma(\xi_1, \xi_2, \xi_3) = 1 - \exp \left(-\sigma \left[\sum_{j=1}^3 \xi_j \right] - \left[\sum_{j=1}^3 \xi_j \right] \right).
\]
We estimate
\[|q_σ(ξ_1, ξ_2, ξ_3)| \leq σ \left[\sum_{j=1}^{3} |ξ_j| - \sum_{j=1}^{3} |ξ_j| \right] \]
\[= \sigma \left(\sum_{j=1}^{3} |ξ_j|^2 - \sum_{j=1}^{3} |ξ_j|^2 \right) \]
\[\leq 12σ \text{med} (|ξ_1|, |ξ_2|, |ξ_3|). \] (29)

By symmetry, we may assume \(|ξ_1| \leq |ξ_2| \leq |ξ_3|\). Then by (29)
\[|\hat{N}_3(v)(ξ)| \leq 12σ \int_{ξ=ξ_1+ξ_2+ξ_3} \hat{V}(ξ_1) \cdot |ξ_2|\hat{V}(ξ_2) \cdot |ξ_3|\hat{V}(ξ_3) \, dξ_1 \, dξ_2 \, dξ_3 \]
\[= 12σ \int_{ξ=ξ_1+ξ_2+ξ_3} \hat{V}(ξ_1) \cdot |ξ_2|\hat{V}(ξ_2) \cdot \hat{V}(ξ_3) \, dξ_1 \, dξ_2 \, dξ_3 \]
\[= 12σ \mathcal{F}_x [V \cdot |D_x|V \cdot V](ξ). \]

Therefore, using Plancherel, Hölder and Sobolev inequalities we get
\[\|N_3(v)\|_{L^2_x} \leq 12σ \|V \cdot |D_x|V \cdot V\|_{L^2_x} \]
\[\leq 12σ \|V\|_{L^∞_x} \|D_x|V\|_{L^2_x} \|V\|_{L^∞_x} \]
\[\lesssim σ\|V\|_{H^2}^3 \sim σ\|v\|_{H^2}^3 \]
as desired.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Bona, J.L., Carvajal, X., Panthee, M.M.: Scialom higher-order hamiltonian model for unidirectional water waves. J. Nonlinear Sci. 28, 543–577 (2018)

[2] Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

[3] Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: the nonlinear theory. Nonlinearity 17, 925–952 (2004)

[4] Bona, J.L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 783–797 (2005)

[5] Bona, J.L., Grujić, Z., Kalisch, H.: Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip. J. Differ. Equ. 229, 186–203 (2006)
[6] Carvajal, X., Panthee, M.: On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation. Jr. Math. Anal. Appl. 479, 688–702 (2019)

[7] Carvajal, X., Panthee, M.: On the radius of analyticity for the solution of the fifth order KdV-BBM model (2020). arXiv:2009.09328

[8] Ferrari, A.B., Titi, E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Commun. Partial Differ. Equ. 23(1–2), 1–16 (1998)

[9] Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

[10] Gérard, P., Guo, Y., Titi, E.S.: On the radius of analyticity of solutions to the cubic Szegő equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(1), 97–108 (2015)

[11] Hannah, H., Himonas, A.A., Petronilho, G.: Gevrey regularity of the periodic gKdV equation. J. Differ. Equ. 250(5), 2581–2600 (2011)

[12] Himonas, A.A., Petronilho, G.: Analytic well-posedness of periodic gKdV. J. Differ. Equ. 253(11), 3101–3112 (2012)

[13] Himonas, A.A., Henrik, K., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic kdv equation. Nonlinear Anal. Real World Appl. 38, 35–48 (2017)

[14] Kato, T., Masuda, K.: Nonlinear evolution equations and analyticity I. Ann. Inst. H. Poincare Anal. Non Lineaire 3, 455–467 (1986)

[15] Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Publications Inc, New York (1976)

[16] Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

[17] Oliver, M., Titi, E.S.: On the domain of analyticity of solutions of second order analytic nonlinear differential equations. J. Differ. Equ. 174(1), 55–74 (2001)

[18] Panizzi, S.: On the domain of analyticity of solutions to semilinear Klein–Gordon equations. Nonlinear Anal. 75(5), 2841–2850 (2012)

[19] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations. J. Differ. Equ. 259, 4732–4744 (2015)

[20] Selberg, S., da Silva, D.O.: Lower bounds on the radius of spatial analyticity for the KdV equation. Ann. Henri Poincaré (2016). https://doi.org/10.1007/s00023-016-0498-1

[21] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation. Ann. Henri Poincaré 18, 3553–3564 (2017)

[22] Tesfahun, A.: On the radius of spatial analyticity for cubic nonlinear Schrödinger equation. J. Differ. Equ. 263, 7496–7512 (2017)
Birilew Belayneh and Emawayish Tegegn
Department of Mathematics
Bahir Dar University
Bahir Dar
Ethiopia
e-mail: birilewb@yahoo.com

Emawayish Tegegn
e-mail: emaway93tegegn@yahoo.com

Achenef Tesfahun
Department of Mathematics
Nazarbayev University
Qabanbai Batyr Avenue 53
010000 Nur-Sultan
Republic of Kazakhstan
e-mail: achenef@gmail.com

Received: 12 June 2021.
Accepted: 10 November 2021.