A New Exponential Approach for Reducing the Mean Squared Errors of the Estimators of Population Mean Using Conventional and Non-Conventional Location Parameters

Housila P. Singh
Vikram University, Ujjain, India, hpsujn@gmail.com

Anita Yadav
Vikram University, Ujjain, India, yadavd.anita@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons

Recommended Citation
Singh, Housila P. and Yadav, Anita (2020) "A New Exponential Approach for Reducing the Mean Squared Errors of the Estimators of Population Mean Using Conventional and Non-Conventional Location Parameters," *Journal of Modern Applied Statistical Methods*: Vol. 18 : Iss. 1 , Article 26.
DOI: 10.22237/jmasm/1568246400
Available at: https://digitalcommons.wayne.edu/jmasm/vol18/iss1/26
A New Exponential Approach for Reducing the Mean Squared Errors of the Estimators of Population Mean Using Conventional and Non-Conventional Location Parameters

Housila P. Singh
Vikram University
Ujjain, India

Anita Yadav
Vikram University
Ujjain, India

Classes of ratio-type estimators t (say) and ratio-type exponential estimators t_e (say) of the population mean are proposed, and their biases and mean squared errors under large sample approximation are presented. It is the class of ratio-type exponential estimators t_e provides estimators more efficient than the ratio-type estimators.

Keywords: study variable, auxiliary variable, bias, mean squared error.

Introduction

The use of auxiliary information at the estimation stage of a survey improves the precision of the estimate(s) of the parameter(s) under investigation. The problem of estimating the population mean or total using population mean of an auxiliary variable has been extensively discussed. Out of many ratio, product and regression methods of estimation are good examples in this context. The ratio method of estimation is most effective for estimating population mean of the study variable when there is a linear relationship between study variable and auxiliary variable and they have the positive (high) correlation. However, if the correlation between study variable and auxiliary variable is negative (high) the product method of estimation can be employed.

Let $U = (U_1, U_2, \ldots, U_N)$ be the finite population of size N and the variables under study and auxiliary be denoted by y and x respectively. Let $\left(\bar{Y}, \bar{X}\right)$ be the population means of (y, x) respectively. It is desired to estimate the population mean \bar{Y}...
using information on population parameters such as mean (\bar{X}), coefficient of variation (C_x), coefficient of skewness ($\beta_1(x)$), kurtosis ($\beta_2(x)$), deciles, quartiles, median, midrange (MR), Walsh average (i.e. Hodges-Lehman estimator) (HL) (and tri mean (TM) etc, associated with auxiliary variable x and the correlation coefficient ρ between y and x. In this context, the reader is referred to Searls (1964), Das and Tripathi (1980), Sisodia and Dwivedi (1981), Upadhyaya and Singh (1999), Singh and Tailor (2003), Singh et al (2004), Kadilar and Cingi (2004, 2006), Yan and Tian (2010), Subramani and Kumarapandian (2012a, 2012b, 2012c), Jeelani et al (2013), Ekpenyoung and Enang (2015), Subramani et al (2015) and Abid et al (2016a,b,c).

Define:

N : Population size.

n : Sample size.

$f = \frac{n}{N}$: Sampling fraction.

$\theta = \frac{1 - f}{n}$.

$S_y^2 = (N - 1)^{-1} \sum_{i=1}^{N} (y_i - \bar{Y})^2$: Population Variance of the study variable y.

$S_x^2 = (N - 1)^{-1} \sum_{i=1}^{N} (x_i - \bar{X})^2$: Population variance of the auxiliary variable x.

$C_y = S_y / \bar{Y}$: Coefficient of variation of the study variable y.

$C_x = S_x / \bar{X}$: Coefficient of variation of the auxiliary variable x.

$S_{xy} = (N - 1)^{-1} \sum_{i=1}^{N} (x_i - \bar{X})(y_i - \bar{Y})$: Covariance between y and x.

$\rho = S_{xy} / (S_x S_y)$: Correlation coefficient between x and y.

$C = \rho C_y / C_x$,

M_d: Population median of x.

Q_i: i^{th} population quartile (i=1,2,3).

$T_m = \frac{(Q_1 + Q_2 + Q_3)}{2}$: Tri mean.
REDDING THE MSE OF POPULATION ESTIMATORS

\[H_i = \text{median}(X_j + X_k) / 2, 1 \leq j \leq k \leq N \] Hodges-Lehmann estimator.

\[X_{(i)}: \text{Lowest order statistic in a population of size } N, \]
\[X_{(N)}: \text{Highest order statistic in a population of size } N, \]
\[M_r = \frac{X_{(i)} + X_{(N)}}{2}: \text{Mid range,} \]
\[Q_r = (Q_3 - Q_1): \text{Inter-quartile range,} \]
\[Q_d = \frac{Q_3 - Q_1}{2}: \text{Semi-quartile range,} \]
\[\beta_1(x) = \frac{N \sum_{i=1}^{N} (x_i - \bar{X})^3}{(N-1)(N-2)S_x^3}: \text{Coefficient of skewness of the auxiliary variable } x, \]
\[\beta_2(x) = \left[\frac{N(N+1) \sum_{i=1}^{N} (x_i - \bar{X})^4}{(N-1)(N-2)(N-3)S_x^4} - \frac{3(N-1)^2}{(N-2)(N-3)} \right]: \text{Coefficient of kurtosis of } x, \]
\[\Delta = \left[\beta_2(x) - \beta_1^2(x) + \frac{2(N-1)^2}{(N-2)(N-3)} \right], \]
\[Q_{da} = \frac{Q_3 + Q_1}{2}: \text{Quartile average,} \]
\[R = \frac{Y}{X}: \text{Population ratio of means,} \]
\[G = \frac{4}{N-1} \sum_{i=1}^{N} \frac{(2i - N - 1)}{2N} X_{(i)}: \text{Gini’s Mean Difference,} \]
\[D = \frac{2\sqrt{\pi}}{N(N-1)} \sum_{i=1}^{N} \frac{i - N + 1}{2} X_{(i)}: \text{Downton’s method,} \]
\[S_{pw} = \frac{\sqrt{\pi}}{N^2} \sum_{i=1}^{N} (2i - N - 1) X_{(i)}: \text{Probability Weighted Moments,} \]
\[\mu_r(x) = \left(\frac{1}{N} \right) \sum_{i=1}^{N} (x_i - \bar{X})^r: \text{r being non-negative integer.} \]
We are interested in estimating the population mean \bar{Y} of the study variable y (taking value y_i for $i=1, 2, \ldots, N$) from a simple random sample size n drawn without replacement from the population U. We use the notation \bar{y} and \bar{x} for the sample means, which are unbiased estimators of the population mean \bar{Y} and \bar{X}, respectively. We also denote:

$$s_{yx} = (n-1)^{-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$: Sample covariance between y and x.

$$s_x^2 = (n-1)^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$: Sample variance of x.

$$\hat{\beta} = \frac{s_{yx}}{s_x^2}$$: Sample regression coefficient estimate of the population regression coefficient $\beta = \frac{s_{yx}}{s_x^2}$ of y on x.

$$\hat{R} = \frac{\bar{y}}{\bar{x}}$$: Ratio of sample means.

$$\hat{Y} = [\bar{Y} + \hat{\beta}(\bar{X} - \bar{x})]$$: Regression estimator of the population mean \bar{Y}.

Existing Modified Ratio Estimators and The Suggested Class of Ratio Estimators

The usual unbiased estimator for population mean \bar{Y} is defined by

$$t_0 = \bar{y}.$$ (1)

whose MSE is given by

$$MSE(\bar{y}) = \frac{(1-f)}{n} S_x^2.$$ (2)

The classical ratio estimator for the population mean \bar{Y} in presence of known population mean \bar{X} of the auxiliary variable x is defined by

$$\bar{y}_R = \frac{\bar{y}}{\bar{x}} \bar{x} \neq 0.$$ (3)

To the first degree of approximation, the bias and MSE of the ratio estimator \bar{y}_R are respectively given by

$$B(\bar{y}_R) = \frac{(1-f)}{n} \cdot \frac{1}{\bar{X}} \left(RS_x^2 - \rho S_x S_y \right)$$ (4)
REDUCING THE MSE OF POPULATION ESTIMATORS

and

\[\text{MSE}(\bar{y}_r) = \frac{(1-f)}{n} \left(S_y^2 + R^2 S_x^2 - 2 R \rho S_y S_x \right). \] \hspace{1cm} (5)

In Table 1, the modified versions of the ratio estimator reported by Kadilar and Cingi (2004) are given, Kadilar and Cingi (2006) – type estimator, Yan and Tian (2010), Subramani and Kumarapandiyan (2012a, 2012b, 2012c, 2012d), Jeelani et al. (2013) and Abid et al. (2016) along with their biases and mean squared errors (MSEs) to the first degree of approximation, as reported in Abid et al. (2016).

Note the estimators \(t_j \) (\(j = 1 \) to 65) members of the following class of estimators of the population mean \(\bar{Y} \) defined by

\[t = \hat{\beta} \left(\frac{a \bar{X} + b}{a \bar{x} + b} \right) = \left(\frac{\hat{\beta}}{\bar{X} - \bar{x}} \right) \left(\frac{a \bar{X} + b}{a \bar{x} + b} \right), \] \hspace{1cm} (6)

where \(\hat{\beta} \) is the sample estimate of the population regression coefficient \(\beta \) of \(y \) on \(x \), \(a(\neq 0) \) and \(b \) are real numbers (constants) or the functions of population parameters such as population total \(X(= N\bar{X}) \), population standard deviation \(\sigma_x \), variance \(\sigma^2_x \), coefficient of variation \(c_x \),

Coefficient of skewness \(\beta_1(x) \) and kurtosis \(\beta_2(x) \), correlation coefficient \(\rho \), \(\Delta \), quartiles, deciles, median, mode, midrange, Trimean and Hodgs-Lehmann (HL) estimator etc.

Some unknown members of the suggested class of ratio-type estimators \(t \) are given in Table 2

To obtain the bias and mean squared error of the proposed class of estimators ‘t’ we write

\[\bar{y} = \bar{Y} (1 + e_0), \bar{x} = \bar{X} (1 + e_1), s_{xy} = S_{xy} (1 + e_2), s_x^2 = S_x^2 (1 + e_3) \]

such that

\[E(e_i) = 0 \text{ for all } i = 1, 2, 3; \]

and

\[E(e_0^2) = \frac{(1-f)}{n} C_y^2, \quad E(e_1^2) = \frac{(1-f)}{n} C_x^2, \quad E(e_0 e_1) = \frac{(1-f)}{n} C C_x, \]

\[E(e_0 e_2) = \frac{N(N-n)}{(N-1)(N-2)} \frac{\mu_{21}}{n} \frac{1}{\bar{X} S_{xy}} = \frac{(N-n)}{n(N-2)} \frac{\mu_{21}}{\bar{X} \mu_{11}}, \]

\[E(e_1 e_3) = \frac{N(N-n)}{(N-1)(N-2)} \frac{\mu_{21}}{n} \frac{1}{\bar{X} S_{xy}} = \frac{(N-n)}{n(N-2)} \frac{\mu_{21}}{\bar{X} \mu_{11}}, \]
S.No.	Estimator	MSE of ()	Population Ratio
1.	$\hat{Y} = \frac{\hat{Y}}{\hat{X}} \cdot \bar{X}$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y}}{\bar{X}} = R$
			Kadilar and Cingi (2004)
2.	$\hat{Y} = \frac{\hat{Y}}{(X + C_1)} \cdot (\bar{X} + C_1)$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y}}{(X + C_1)}$
			Kadilar and Cingi (2004)
3.	$\hat{Y} = \frac{\hat{Y}}{(X + \beta_1(x))} \cdot (\bar{X} + \beta_1(x))$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y}}{(X + \beta_1(x))}$
			Kadilar and Cingi (2004)
4.	$\hat{Y} = \frac{\hat{Y}}{(X \beta_1(x) + C_1)} \cdot (\bar{X} \beta_1(x) + C_1)$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \beta_1(x)}{(X \beta_1(x) + C_1)}$
			Kadilar and Cingi (2004)
5.	$\hat{Y} = \frac{\hat{Y}}{(\bar{X} \bar{C}_r + \beta_1(x))} \cdot (\bar{X} \bar{C}_r + \beta_1(x))$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \beta_1(x)}{(\bar{X} \beta_1(x) + \bar{C}_r)}$
			Kadilar and Cingi (2004)
6.	$\hat{Y} = \frac{\hat{Y}}{(X + \rho)} \cdot (\bar{X} + \rho)$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y}}{(X + \rho)}$
			Kadilar and Cingi (2006) –type
7.	$\hat{Y} = \frac{\hat{Y}}{(\bar{X} \beta_1(x) + \rho)} \cdot (\bar{X} \beta_1(x) + \rho)$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \beta_1(x)}{(\bar{X} \beta_1(x) + \rho)}$
			Kadilar and Cingi (2006) –type
8.	$\hat{Y} = \frac{\hat{Y}}{(X \beta_1(x) + \rho)} \cdot (\bar{X} \beta_1(x) + \rho)$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \beta_1(x)}{(\bar{X} \beta_1(x) + \rho)}$
			Kadilar and Cingi (2006) –type
9.	$\hat{Y} = \frac{\hat{Y}}{(X \rho + \beta_1(x))} \cdot (\bar{X} \rho + \beta_1(x))$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \rho}{(\bar{X} \rho + \beta_1(x))}$
			Kadilar and Cingi (2006) –type
10.	$\hat{Y} = \frac{\hat{Y}}{(X \rho + \beta_1(x))} \cdot (\bar{X} \rho + \beta_1(x))$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y} \rho}{(\bar{X} \rho + \beta_1(x))}$
			Kadilar and Cingi (2006) –type
11.	$\hat{Y} = \frac{\hat{Y}}{(X + \beta_1(x))} \cdot (\bar{X} + \beta_1(x))$	$\theta \left[R_x^2 S_r^2 + S_r^2 (1 - \rho^2) \right]$	$R_i = \frac{\bar{Y}}{(X + \beta_1(x))}$
			Yan and Tian (2010)
S.No.	Estimator	MSE of (\(\sigma^2\)) Population Ratio	
-------	-----------	-----------------------------------	
12.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{M})} \)	\(R_{12} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{M})}\) Yan and Tian (2010)	
13.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{M} + \hat{M})} \)	\(R_{13} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{M})}\) Subramani and Kumarapandian (2012a)	
14.	\(\hat{Y} = \frac{\hat{\beta}_1}{(C\bar{X} + \hat{M})} \)	\(R_{14} = \frac{\bar{Y} \beta_1}{(C\bar{X} + \hat{M})}\) Subramani and Kumarapandian (2012a)	
15.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{M})} \)	\(R_{15} = \frac{\bar{Y} \beta_1}{(\bar{M} + \hat{M})}\) Subramani and Kumarapandian (2012b)	
16.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{M})} \)	\(R_{16} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{M})}\) Subramani and Kumarapandian (2012c)	
17.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{17} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
18.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{18} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
19.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{19} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
20.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{20} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
21.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{21} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
22.	\(\hat{Y} = \frac{\hat{\beta}_1}{(\bar{X} + \hat{D})} \)	\(R_{22} = \frac{\bar{Y} \beta_1}{(\bar{X} + \hat{D})}\) Subramani and Kumarapandian (2012d)	
Table 1. continued

S.No.	Estimator	MSE of (.)	Population Ratio
23.	\(t_{23} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{23}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{23} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Subramani and Kumarapandiyan (2012d)
24.	\(t_{24} = \frac{\hat{Y}_t}{(\hat{X} + D_0) \hat{Y}_t} \) \(\theta \left[R_{24}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{24} = \frac{\theta}{(\hat{X} + D_0) \hat{Y}_t} \)	Subramani and Kumarapandiyan (2012d)
25.	\(t_{25} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{25}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{25} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Subramani and Kumarapandiyan (2012d)
26.	\(t_{26} = \frac{\hat{Y}_t}{(\hat{X} + D_0) \hat{Y}_t} \) \(\theta \left[R_{26}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{26} = \frac{\theta}{(\hat{X} + D_0) \hat{Y}_t} \)	Subramani and Kumarapandiyan (2012d)
27.	\(t_{27} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{27}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{27} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Jeelani et al (2013)
28.	\(t_{28} = \frac{\hat{Y}_t}{(\hat{X} + D_0) \hat{Y}_t} \) \(\theta \left[R_{28}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{28} = \frac{\theta}{(\hat{X} + D_0) \hat{Y}_t} \)	Subramani and Kumarapandiyan (2014)
29.	\(t_{29} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{29}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{29} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Subramani et al (2014)
30.	\(t_{30} = \frac{\hat{Y}_t}{(\hat{X} + D_0) \hat{Y}_t} \) \(\theta \left[R_{30}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{30} = \frac{\theta}{(\hat{X} + D_0) \hat{Y}_t} \)	Subramani et al (2014)
31.	\(t_{31} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{31}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{31} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Subramani et al (2014)
32.	\(t_{32} = \frac{\hat{Y}_t}{(\hat{X} + D_0) \hat{Y}_t} \) \(\theta \left[R_{32}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{32} = \frac{\theta}{(\hat{X} + D_0) \hat{Y}_t} \)	Subramani et al (2014)
33.	\(t_{33} = \frac{\hat{Y}_t}{(\hat{X} + D) \hat{Y}_t} \) \(\theta \left[R_{33}^2 S_i^2 + S_i^2 (1 - \rho^2) \right] \)	\(R_{33} = \frac{\theta}{(\hat{X} + D) \hat{Y}_t} \)	Subramani et al (2014)
Table 1. continued

S.No.	Estimator	MSE of (\(\cdot\))	Population Ratio
34.	\(t_{34} = \frac{\hat{Y}}{(\pi \beta (x) + Q)}(X \beta (x) + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{34} = \frac{\beta(x)F}{(\beta(x)X + Q)}\)
	Subramani et al (2014)		
35.	\(t_{35} = \frac{\hat{Y}}{(\pi \beta (x) + Q)}(X \beta (x) + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{35} = \frac{\beta(x)F}{(\beta(x)X + Q)}\)
	Subramani et al (2014)		
36.	\(t_{36} = \frac{\hat{Y}}{(\pi \beta (x) + Q)}(X \beta (x) + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{36} = \frac{\beta(x)F}{(\beta(x)X + Q)}\)
	Subramani et al (2014)		
37.	\(t_{37} = \frac{\hat{Y}}{(\pi \beta (x) + Q)}(X \beta (x) + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{37} = \frac{\beta(x)F}{(\beta(x)X + Q)}\)
	Subramani et al (2014)		
38.	\(t_{38} = \frac{\hat{Y}}{(\rho \pi + Q)}(\rho X + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{38} = \frac{\rho F}{(\rho X + Q)}\)
	Subramani et al (2014)		
39.	\(t_{39} = \frac{\hat{Y}}{(\rho \pi + Q)}(\rho X + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{39} = \frac{\rho F}{(\rho X + Q)}\)
	Subramani et al (2014)		
40.	\(t_{40} = \frac{\hat{Y}}{(\rho \pi + Q)}(\rho X + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{40} = \frac{\rho F}{(\rho X + Q)}\)
	Subramani et al (2014)		
41.	\(t_{41} = \frac{\hat{Y}}{(\rho \pi + Q)}(\rho X + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{41} = \frac{\rho F}{(\rho X + Q)}\)
	Subramani et al (2014)		
42.	\(t_{42} = \frac{\hat{Y}}{(\rho \pi + Q)}(\rho X + Q)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{42} = \frac{\rho F}{(\rho X + Q)}\)
	Subramani et al (2014)		
43.	\(t_{43} = \frac{\hat{Y}}{(\pi + T_a)}(X + T_a)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{43} = \frac{F}{(X + T_a)}\)
	Abid et al (2016a)		
44.	\(t_{44} = \frac{\hat{Y}}{(\pi C_a + T_a)}(XC_a + T_a)\)	\(\theta \left[R_C S^2 + S^2 (1 - \rho^2) \right] \)	\(R_{44} = \frac{FC_a}{(XC_a + T_a)}\)
	Abid et al (2016a)		

...continued
Table 1. continued

S.No.	Estimator	MSE of (.)	Population Ratio
45.	$\hat{t}_{45} = \frac{\hat{y}}{(X + T_n)}(X + T_n)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{45} = \frac{\hat{Y} \rho}{(X + T_n)}$
	Abid et al (2016a)		
46.	$\hat{t}_{46} = \frac{\hat{y}}{(X + M_r)}(X + M_r)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{46} = \frac{\hat{Y}}{X + M_r}$
	Abid et al (2016a)		
47.	$\hat{t}_{47} = \frac{\hat{y}}{(X + C_h + M_r)}(X + C_h + M_r)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{47} = \frac{\hat{Y} C_h}{X + M_r}$
	Abid et al (2016a)		
48.	$\hat{t}_{48} = \frac{\hat{y}}{(X + C_h + M_r)}(X + M_r)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{48} = \frac{\hat{Y}}{X + M_r}$
	Abid et al (2016a)		
49.	$\hat{t}_{49} = \frac{\hat{y}}{(X + H_i)}(X + H_i)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{49} = \frac{\hat{Y}}{X + H_i}$
	Abid et al (2016a)		
50.	$\hat{t}_{50} = \frac{\hat{y}}{(X + C_h + H_i)}(X + C_h + H_i)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{50} = \frac{\hat{Y} C_h}{X + H_i}$
	Abid et al (2016a)		
51.	$\hat{t}_{51} = \frac{\hat{y}}{(X + H_i)}(X + H_i)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{51} = \frac{\hat{Y} \rho}{X + H_i}$
	Abid et al (2016a)		
52.	$\hat{t}_{52} = \frac{\hat{y}}{(X + G)}(X + G)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{52} = \frac{\hat{Y}}{X + G}$
	Abid et al (2016b)		
53.	$\hat{t}_{53} = \frac{\hat{y}}{(X + G)}(X + G)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{53} = \frac{\hat{Y} \rho}{X + G}$
	Abid et al (2016b)		
54.	$\hat{t}_{54} = \frac{\hat{y}}{(X C_h + G)}(X C_h + G)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{54} = \frac{\hat{Y} C_h}{X C_h + G}$
	Abid et al (2016b)		
55.	$\hat{t}_{55} = \frac{\hat{y}}{(X + D)}(X + D)$	$\theta[R^2_S + S^2_f(1 - \rho^2)]$	$R_{55} = \frac{\hat{Y}}{X + D}$
	Abid et al (2016b)		
Table 1. continued

S.No.	Estimator	MSE of ()	Population Ratio
56.	$t_{s6} = \hat{Y} \left(\frac{X \rho + D}{(X \rho + D)} \right)$	$\theta \left[R_{s6} S_i S_j (1 - \rho^2) \right]$	$R_{s6} = \frac{\bar{Y} \rho}{(X \rho + D)}$
	Abid et al (2016b)		
57.	$t_{s7} = \hat{Y} \left(\frac{X C_i + D}{(X C_i + D)} \right)$	$\theta \left[R_{s7} S_i S_j (1 - \rho^2) \right]$	$R_{s7} = \frac{\bar{Y} C_i}{(X C_i + D)}$
	Abid et al (2016b)		
58.	$t_{s8} = \hat{Y} \left(X + S_{sw} \right)$	$\theta \left[R_{s8} S_i S_j (1 - \rho^2) \right]$	$R_{s8} = \frac{\bar{Y} \rho}{(X + S_{sw})}$
	Abid et al (2016b)		
59.	$t_{s9} = \hat{Y} \left(\frac{X \rho + S_{sw}}{X \rho + S_{sw}} \right)$	$\theta \left[R_{s9} S_i S_j (1 - \rho^2) \right]$	$R_{s9} = \frac{\bar{Y} \rho}{(X \rho + S_{sw})}$
	Abid et al (2016b)		
60.	$t_{s0} = \hat{Y} \left(\frac{X C_i + S_{sw}}{X C_i + S_{sw}} \right)$	$\theta \left[R_{s0} S_i S_j (1 - \rho^2) \right]$	$R_{s0} = \frac{\bar{Y} C_i}{(X C_i + S_{sw})}$
	Abid et al (2016b)		
61.	$t_{s1} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s1} S_i S_j (1 - \rho^2) \right]$	$R_{s1} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
62.	$t_{s2} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s2} S_i S_j (1 - \rho^2) \right]$	$R_{s2} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
63.	$t_{s3} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s3} S_i S_j (1 - \rho^2) \right]$	$R_{s3} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
64.	$t_{s4} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s4} S_i S_j (1 - \rho^2) \right]$	$R_{s4} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
65.	$t_{s5} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s5} S_i S_j (1 - \rho^2) \right]$	$R_{s5} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
66.	$t_{s6} = \hat{Y} \left(\frac{X \rho + D_i}{X \rho + D_i} \right)$	$\theta \left[R_{s6} S_i S_j (1 - \rho^2) \right]$	$R_{s6} = \frac{\bar{Y} \rho}{(X \rho + D_i)}$
	Abid et al (2016c)		
Table 1. continued

S.No.	Estimator	MSE of ()	Population Ratio	
67.	$t_{67} = \hat{Y}_t \left(\frac{X \rho + D_t}{X \rho + D_t} \right)$	$\theta \left[R_{67}^2 S_{67}^2 + S_{67}^2 (1 - \rho^2) \right]$	$R_{67} = \frac{\hat{Y}_t}{X \rho + D_t}$	
				Abid et al (2016c)
68.	$t_{68} = \hat{Y}_t \left(\frac{X \rho + D_t}{X \rho + D_t} \right)$	$\theta \left[R_{68}^2 S_{68}^2 + S_{68}^2 (1 - \rho^2) \right]$	$R_{68} = \frac{\hat{Y}_t}{X \rho + D_t}$	
				Abid et al (2016c)
69.	$t_{69} = \hat{Y}_t \left(\frac{X \rho + D_t}{X \rho + D_t} \right)$	$\theta \left[R_{69}^2 S_{69}^2 + S_{69}^2 (1 - \rho^2) \right]$	$R_{69} = \frac{\hat{Y}_t}{X \rho + D_t}$	
				Abid et al (2016c)
70.	$t_{70} = \hat{Y}_t \left(\frac{X \rho + D_{t0}}{X \rho + D_{t0}} \right)$	$\theta \left[R_{70}^2 S_{70}^2 + S_{70}^2 (1 - \rho^2) \right]$	$R_{70} = \frac{\hat{Y}_t}{X \rho + D_{t0}}$	
				Abid et al (2016c)
71.	$t_{71} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{71}^2 S_{71}^2 + S_{71}^2 (1 - \rho^2) \right]$	$R_{71} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
72.	$t_{72} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{72}^2 S_{72}^2 + S_{72}^2 (1 - \rho^2) \right]$	$R_{72} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
73.	$t_{73} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{73}^2 S_{73}^2 + S_{73}^2 (1 - \rho^2) \right]$	$R_{73} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
74.	$t_{74} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{74}^2 S_{74}^2 + S_{74}^2 (1 - \rho^2) \right]$	$R_{74} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
75.	$t_{75} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{75}^2 S_{75}^2 + S_{75}^2 (1 - \rho^2) \right]$	$R_{75} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
76.	$t_{76} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{76}^2 S_{76}^2 + S_{76}^2 (1 - \rho^2) \right]$	$R_{76} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
77.	$t_{77} = \hat{Y}_t \left(\frac{X C + D_t}{X C + D_t} \right)$	$\theta \left[R_{77}^2 S_{77}^2 + S_{77}^2 (1 - \rho^2) \right]$	$R_{77} = \frac{\hat{Y}_t}{X C + D_t}$	
				Abid et al (2016c)
Table 1. continued

S.No.	Estimator	MSE of ()	Population Ratio
78.	\(\hat{t}_{78} = \frac{\hat{Y}}{(\bar{X}C + D)} (\bar{X}C + D) \)	\(\theta \left[\frac{R_{i}^{2}S_{i}^{2} + S_{i}^{2}(1 - \rho^{2})}{\bar{X}C + D} \right] \)	\(R_{78} = \frac{\bar{Y}}{(\bar{X}C + D)} \)
	Abid et al (2016)		
79.	\(\hat{t}_{79} = \frac{\hat{Y}}{(\bar{X}C + D)} (\bar{X}C + D) \)	\(\theta \left[\frac{R_{i}^{2}S_{i}^{2} + S_{i}^{2}(1 - \rho^{2})}{\bar{X}C + D} \right] \)	\(R_{79} = \frac{\bar{Y}}{(\bar{X}C + D)} \)
	Abid et al (2016c)		
80.	\(\hat{t}_{80} = \frac{\hat{Y}}{(\bar{X}C + D)} (\bar{X}C + D) \)	\(\theta \left[\frac{R_{i}^{2}S_{i}^{2} + S_{i}^{2}(1 - \rho^{2})}{\bar{X}C + D} \right] \)	\(R_{80} = \frac{\bar{Y}}{(\bar{X}C + D)} \)
	Abid et al (2016c)		

\[
E(e_1e_3) = \frac{N(N-n)}{(N-1)(N-2)} \frac{\mu_{30}}{n} \frac{1}{\bar{X}S_{x}^{2}} = \frac{(N-n)}{n(N-2)} \frac{\mu_{30}}{\bar{X} \mu_{20}},
\]

where \(\mu_{30} = E\left[(x_i - \bar{X}) (y_i - \bar{Y})^{3} \right] \), \(C_y = \rho_{yx} \frac{C_y}{C_x}, \) \(C_y = \frac{S_y}{\bar{Y}}, \) \(C_x = \frac{S_x}{\bar{X}} \) and \(\rho_{yx} = \frac{S_{xy}}{(S_{x}S_{y})} \). \((r,s) \) being non-negative integers.

Expressing ‘t’ defined by (6) in terms of e’s

\[
t = \bar{Y} \left[1 + e_0 - \left(\frac{\beta \bar{X}}{\bar{Y}} \right) e_1 (1 + e_2) (1 + e_3)^{-1} \right] (1 + \tau e_1)^{-1}.
\]

where \(\tau = \frac{(a \bar{X})}{(a \bar{X} + b)} \).

Assume \(|e_1| < 1 \) and \(|e_3| < 1 \) so that we \((1 + e_3)^{-1} \) and \((1 + \tau e_1)^{-1} \) are expandable. Expanding the right hand side of (7), multiplying and neglecting terms of e’s having power greater than two we have

\[
t = \bar{Y} \left[1 + e_0 - \tau e_1 + \tau^2 e_3 - \tau e_0 e_1 - c \left(e_1 + e_1 e_2 - e_1 e_3 - \tau e_1 \right) \right]
\]
Table 2. Some unknown members of the class of ratio type estimators t.

S.No.	Estimator	Values of constants
1	$t'_1 = \hat{f} \left(\frac{\hat{\beta}(x) \bar{X} + \rho}{\hat{\beta}(x) \bar{x} + \rho} \right)$	$\hat{\beta}(x)$
2	$t'_2 = \hat{f} \left(\frac{\beta(x) \bar{X} + C_s}{\beta(x) \bar{x} + C_s} \right)$	$\beta(x)$, C_s
3	$t'_3 = \hat{f} \left(\frac{\bar{X} \beta_1(x) + C_s}{\bar{x} \beta_1(x)} \right)$	C_s, $\beta_1(x)$
4	$t'_4 = \hat{f} \left(\frac{\bar{X} \beta_1(x) + \beta(x)}{\bar{x} \beta_1(x) + \beta(x)} \right)$	$\beta_1(x)$, $\beta(x)$
5	$t'_5 = \hat{f} \left(\frac{\bar{X} \rho + \beta(x)}{\bar{x} \rho + \beta(x)} \right)$	ρ, $\beta(x)$
6	$t'_6 = \hat{f} \left(\frac{M_x \bar{X} + C_s}{M_x \bar{x} + C_s} \right)$	M_x, C_s
7	$t'_7 = \hat{f} \left(\frac{M_x \bar{X} + \beta(x)}{M_x \bar{x} + \beta(x)} \right)$	M_x, $\beta(x)$
8	$t'_8 = \hat{f} \left(\frac{M_x \bar{X} + \beta(x)}{M_x \bar{x} + \beta(x)} \right)$	M_x, $\beta(x)$
9	$t'_9 = \hat{f} \left(\frac{\bar{X} \beta_1(x) + \beta(x)}{\bar{x} \beta_1(x) + \beta(x)} \right)$	$\beta_1(x)$, $\beta(x)$
10	$t'_{10} = \hat{f} \left(\frac{M_x \bar{X} + \rho}{M_x \bar{x} + \rho} \right)$	M_x, ρ
11	$t'_{11} = \hat{f} \left(\frac{\bar{X} + Q_d}{\bar{x} + Q_d} \right)$	1, Q_d
12	$t'_{12} = \hat{f} \left(\frac{\bar{X} C_s + Q_d}{\bar{x} C_s + Q_d} \right)$	C_s, Q_d
13	$t'_{13} = \hat{f} \left(\frac{\bar{X} M_x + Q_d}{\bar{x} M_x + Q_d} \right)$	M_x, Q_d
14	$t'_{14} = \hat{f} \left(\frac{\bar{X} M_x + Q_d}{\bar{x} M_x + Q_d} \right)$	M_x, Q_d
15	$t'_{15} = \hat{f} \left(\frac{Q_d \bar{X} + C_s}{Q_d \bar{x} + C_s} \right)$	Q_d, C_s
16	$t'_{16} = \hat{f} \left(\frac{Q_d \bar{X} + \beta_1(x)}{Q_d \bar{x} + \beta_1(x)} \right)$	Q_d, $\beta_1(x)$

continued
REDUCING THE MSE OF POPULATION ESTIMATORS

Table 2. continued

S.No.	Estimator	Values of constants		
17.	\(t_{17} = \hat{\gamma} \left(\frac{Q_d \bar{X} + \beta_1(x)}{Q_d \bar{X} + \beta_1(x)} \right) \)	\(Q_d \) \(\beta_1(x) \)		
18.	\(t_{18} = \hat{\gamma} \left(\frac{Q_d \bar{X} + \rho}{Q_d \bar{X} + \rho} \right) \)	\(Q_d \) \(\rho \)		
19.	\(t_{19} = \hat{\gamma} \left(\frac{Q_d \bar{X} + M_d}{Q_d \bar{X} + M_d} \right) \)	\(Q_d \) \(M_d \)		
20.	\(t_{20} = \hat{\gamma} \left(\frac{\beta_1(x) \bar{X} + Q_d}{\beta_1(x) \bar{X} + Q_d} \right) \)	\(\beta_1(x) \) \(Q_d \)		
		Kumarapandiyan and Subramani (2016)-type		
21.	\(t_{21} = \hat{\gamma} \left(\frac{\bar{X} \beta_2(x) + T_n}{\bar{X} \beta_2(x) + T_n} \right) \)	\(\beta_2(x) \) \(T_n \)		
22.	\(t_{22} = \hat{\gamma} \left(\frac{\bar{X} \beta_2(x) + T_n}{\bar{X} \beta_2(x) + T_n} \right) \)	\(\beta_2(x) \) \(T_n \)		
23.	\(t_{23} = \hat{\gamma} \left(\frac{\bar{X} M_d + T_n}{\bar{X} M_d + T_n} \right) \)	\(M_d \) \(T_n \)		
24.	\(t_{24} = \hat{\gamma} \left(\frac{XQ_d + T_n}{XQ_d + T_n} \right) \)	\(Q_d \) \(T_n \)		
25.	\(t_{25} = \hat{\gamma} \left(\frac{XT_n + C_s}{XT_n + C_s} \right) \)	\(T_n \) \(C_s \)		
26.	\(t_{26} = \hat{\gamma} \left(\frac{X T_n + \beta_2(x)}{X T_n + \beta_2(x)} \right) \)	\(T_n \) \(\beta_2(x) \)		
27.	\(t_{27} = \hat{\gamma} \left(\frac{\bar{X} T_n + \rho}{\bar{X} T_n + \rho} \right) \)	\(T_n \) \(\rho \)		
28.	\(t_{28} = \hat{\gamma} \left(\frac{\bar{X} T_n + \beta_1(x)}{\bar{X} T_n + \beta_1(x)} \right) \)	\(T_n \) \(\beta_1(x) \)		
29.	\(t_{29} = \hat{\gamma} \left(\frac{\bar{X} T_n + M_d}{\bar{X} T_n + M_d} \right) \)	\(T_n \) \(M_d \)		
S.No.	Estimator	Values of constants	a	b
-------	---	---------------------	---	---
30.	$t_{30} = \hat{y}\left(\frac{XT_n + Q_d}{nT_n + Q_d}\right)$		T_n	Q_d
31.	$t_{31} = \hat{y}\left(\frac{X\beta_1(x) + M_r}{\bar{X}\beta_1(x) + M_r}\right)$	$\beta_1(x)$	M_r	
32.	$t_{32} = \hat{y}\left(\frac{X\beta_1(x) + M_r}{\bar{X}\beta_1(x) + M_r}\right)$	$\beta_1(x)$	M_r	
33.	$t_{33} = \hat{y}\left(\frac{\bar{X}M_d + M_r}{\bar{X}M_d + M_r}\right)$		M_d	M_r
34.	$t_{34} = \hat{y}\left(\frac{\bar{X}Q_d + M_r}{\bar{X}Q_d + M_r}\right)$		Q_d	M_r
35.	$t_{35} = \hat{y}\left(\frac{\bar{X}M_r + C_x}{\bar{X}M_r + C_x}\right)$		M_r	C_x
36.	$t_{36} = \hat{y}\left(\frac{\bar{X}M_r + \beta_1(x)}{\bar{X}M_r + \beta_1(x)}\right)$	M_r	$\beta_1(x)$	
37.	$t_{37} = \hat{y}\left(\frac{\bar{X}M_r + \rho}{\bar{X}M_r + \rho}\right)$		M_r	ρ
38.	$t_{38} = \hat{y}\left(\frac{\bar{X}M_r + \beta_1(x)}{\bar{X}M_r + \beta_1(x)}\right)$	M_r	$\beta_1(x)$	
39.	$t_{39} = \hat{y}\left(\frac{\bar{X}M_r + M_d}{\bar{X}M_r + M_d}\right)$		M_r	M_d
40.	$t_{40} = \hat{y}\left(\frac{\bar{X}M_r + Q_d}{\bar{X}M_r + Q_d}\right)$		M_r	Q_d
41.	$t_{41} = \hat{y}\left(\frac{XT_n + M_r}{nT_n + M_r}\right)$		T_n	M_r
42.	$t_{42} = \hat{y}\left(\frac{\bar{X}M_r + X_n}{\bar{X}M_r + X_n}\right)$		M_r	T_n
43.	$t_{43} = \hat{y}\left(\frac{\bar{X}\beta_1(x) + H_j}{\bar{X}\beta_1(x) + H_j}\right)$	$\beta_1(x)$	H_j	
Table 2. continued

S.No.	Estimator	Values of constants	a	b
44.	\(t_{a} = \hat{Y} \left(\frac{X \beta(x) + H}{\bar{X} \beta(x) + H} \right) \)	\(\beta(x) \)	\(H \)	\(\)
45.	\(t_{b} = \hat{Y} \left(\frac{XM_{a} + H}{\bar{X}M_{a} + H} \right) \)	\(M_{a} \)	\(H \)	\(\)
46.	\(t_{c} = \hat{Y} \left(\frac{XQ_{a} + H}{\bar{X}Q_{a} + H} \right) \)	\(Q_{a} \)	\(H \)	\(\)
47.	\(t_{d} = \hat{Y} \left(\frac{XH + C}{\bar{X}H + C} \right) \)	\(H \)	\(C \)	\(\)
48.	\(t_{e} = \hat{Y} \left(\frac{XH + \beta(x)}{\bar{X}H + \beta(x)} \right) \)	\(H \)	\(\beta(x) \)	\(\)
49.	\(t_{f} = \hat{Y} \left(\frac{XH + \rho}{\bar{X}H + \rho} \right) \)	\(H \)	\(\rho \)	\(\)
50.	\(t_{g} = \hat{Y} \left(\frac{XH + \beta(x)}{\bar{X}H + \beta(x)} \right) \)	\(H \)	\(\beta(x) \)	\(\)
51.	\(t_{h} = \hat{Y} \left(\frac{XH + M_{a}}{\bar{X}H + M_{a}} \right) \)	\(H \)	\(M_{a} \)	\(\)
52.	\(t_{i} = \hat{Y} \left(\frac{XH + Q_{a}}{\bar{X}H + Q_{a}} \right) \)	\(H \)	\(Q_{a} \)	\(\)
53.	\(t_{j} = \hat{Y} \left(\frac{XH + M_{a}}{\bar{X}H + M_{a}} \right) \)	\(H \)	\(M_{a} \)	\(\)
54.	\(t_{k} = \hat{Y} \left(\frac{XT_{a} + H}{\bar{X}T_{a} + H} \right) \)	\(T_{a} \)	\(H \)	\(\)
55.	\(t_{l} = \hat{Y} \left(\frac{XH + T_{a}}{\bar{X}H + T_{a}} \right) \)	\(H \)	\(T_{a} \)	\(\)
56.	\(t_{m} = \hat{Y} \left(\frac{XM_{a} + H}{\bar{X}M_{a} + H} \right) \)	\(M_{a} \)	\(H \)	\(\)
57.	\(t_{n} = \hat{Y} \left(\frac{X + Q_{a}}{\bar{X} + Q_{a}} \right) \)	\(1 \)	\(Q_{a} \)	\(\)
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
58.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XC + Q}{Xc + Qc} \right)$	C_c	Q_c
62.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XM + Q}{Xm + Qm} \right)$	M_m	Q_m
63.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + Q}{XQ + Q} \right)$	Q_a	Q_a
64.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + C}{XQ + C} \right)$	Q_a	C_a
65.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + \beta(x)}{XQ + \beta(x)} \right)$	Q_a	$\beta(x)$
66.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{Q X + \rho}{Q X + \rho} \right)$	Q_a	ρ
67.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{Q X + \beta(x)}{Q X + \beta(x)} \right)$	Q_a	$\beta(x)$
68.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{Q X + M_d}{Q X + M_d} \right)$	Q_a	M_d
69.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + Q}{XQ + Q} \right)$	Q_a	Q_a
70.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{RT + Q}{RT + Q} \right)$	T_n	Q_a
71.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + T_n}{XQ + T_n} \right)$	Q_a	T_n
72.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XQ + M}{XQ + M} \right)$	Q_a	M_a
73.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XM + Q}{XM + Q} \right)$	M_r	Q_a
74.	$\hat{t}_{\alpha} = \hat{y}\left(\frac{XH + Q}{XH + Q} \right)$	H_l	Q_a

continued
Table 2. continued

S.No.	Estimator	Values of constants	
		a	**b**
75.	\(\hat{t}_3 = \frac{XQ_i + Q_j}{XQ_i + H_j} \)	\(Q_x \)	\(H_j \)
76.	\(\hat{t}_6 = \frac{XQ_i + Q_j}{XQ_i + Q_k} \)	\(Q_x \)	\(Q_y \)
77.	\(\hat{t}_7 = \frac{XQ_i + Q_j}{XQ_i + Q_k} \)	\(Q_x \)	\(Q_y \)
78.	\(\hat{t}_9 = \frac{X + S_x}{X + S_y} \)	1	\(S_x \)
	Singh (2003)-type		
79.	\(\hat{t}_9 = \frac{X + S_x}{X + S_y} \)	\(C_x \)	\(S_x \)
80.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(\beta_j(x) \)	\(S_x \)
	Singh (2003)-type		
81.	\(\hat{t}_{11} = \frac{X + S_x}{X + S_y} \)	\(\beta_j(x) \)	\(S_x \)
	Singh (2003)-type		
82.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(\rho \)	\(S_x \)
83.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(M_d \)	\(S_x \)
84.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(Q_d \)	\(Q_x \)
85.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(S_x \)	\(C_x \)
86.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(S_x \)	\(\beta_j(x) \)
87.	\(\hat{t}_{10} = \frac{X + S_x}{X + S_y} \)	\(S_x \)	\(\rho \)
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
88.	\(t_{ia} = \hat{y} \left(\frac{X_S + \beta(x)}{\bar{x}_S + \beta(x)} \right) \)	\(S \),	\(\beta(x) \)
89.	\(t_{ia} = \hat{y} \left(\frac{X_S + M_d}{\bar{x}_S + M_d} \right) \)	\(S \),	\(M_d \)
90.	\(t_{ia} = \hat{y} \left(\frac{X_S + Q_d}{\bar{x}_S + Q_d} \right) \)	\(S \),	\(Q_d \)
91.	\(t_{ia} = \hat{y} \left(\frac{\bar{x}_S + S}{\bar{x}_S + T_n} \right) \)	\(T_n \),	\(S \)
92.	\(t_{ia} = \hat{y} \left(\frac{X_S + T_n}{\bar{x}_S + T_n} \right) \)	\(S \),	\(T_n \)
93.	\(t_{ia} = \hat{y} \left(\frac{X_S + M_r}{\bar{x}_S + M_r} \right) \)	\(S \),	\(M_r \)
94.	\(t_{ia} = \hat{y} \left(\frac{X_M + S_s}{\bar{x}_M + S_s} \right) \)	\(M_r \),	\(S_s \)
95.	\(t_{ia} = \hat{y} \left(\frac{X_H + S_s}{\bar{x}_H + S_s} \right) \)	\(H_j \),	\(S_s \)
96.	\(t_{ia} = \hat{y} \left(\frac{X_S + H_j}{\bar{x}_S + H_j} \right) \)	\(S_s \),	\(H_j \)
97.	\(t_{ia} = \hat{y} \left(\frac{X_Q + S_s}{\bar{x}_Q + S_s} \right) \)	\(Q_r \),	\(S_s \)
98.	\(t_{ia} = \hat{y} \left(\frac{X_S + Q_r}{\bar{x}_S + Q_r} \right) \)	\(S_s \),	\(Q_r \)
99.	\(t_{ia} = \hat{y} \left(\frac{X_Q + S_s}{\bar{x}_Q + S_s} \right) \)	\(Q_r \),	\(S_s \)
100.	\(t_{ia} = \hat{y} \left(\frac{X_S + Q_s}{\bar{x}_S + Q_s} \right) \)	\(S_s \),	\(Q_s \)
101.	\(t_{ia} = \hat{y} \left(\frac{X + X}{\bar{x} + X} \right) \)	1,	\(X (= Nx) \)

continued
Reducing the MSE of Population Estimators

S.No.	Estimator	Values of constants	a	b
102.	\(t_{100} = \hat{Y} \left(\frac{X_C^* + X}{X_C^*} \right) \)	\(C_s \)	\(X = N\bar{X} \)	
103.	\(t_{100} = \hat{Y} \left(\frac{X\beta_i (x) + X}{\bar{X}\beta_i (x) + X} \right) \)	\(\beta_i (x) \)	\(X = N\bar{X} \)	
104.	\(t_{100} = \hat{Y} \left(\frac{X\beta_j (x) + X}{\bar{X}\beta_j (x) + X} \right) \)	\(\beta_j (x) \)	\(X = N\bar{X} \)	
105.	\(t_{100} = \hat{Y} \left(\frac{X\rho + X}{\bar{X}\rho + X} \right) \)	\(\rho \)	\(X = N\bar{X} \)	
102.	\(t_{100} = \hat{Y} \left(\frac{X_C^* + X}{X_C^*} \right) \)	\(C_s \)	\(X = N\bar{X} \)	
103.	\(t_{100} = \hat{Y} \left(\frac{X\beta_i (x) + X}{\bar{X}\beta_i (x) + X} \right) \)	\(\beta_i (x) \)	\(X = N\bar{X} \)	
104.	\(t_{100} = \hat{Y} \left(\frac{X\beta_j (x) + X}{\bar{X}\beta_j (x) + X} \right) \)	\(\beta_j (x) \)	\(X = N\bar{X} \)	
105.	\(t_{100} = \hat{Y} \left(\frac{X\rho + X}{\bar{X}\rho + X} \right) \)	\(\rho \)	\(X = N\bar{X} \)	
106.	\(t_{100} = \hat{Y} \left(\frac{XM_d + X}{\bar{X}M_d + X} \right) \)	\(M_d \)	\(X = N\bar{X} \)	
107.	\(t_{100} = \hat{Y} \left(\frac{XQ_d + X}{\bar{X}Q_d + X} \right) \)	\(Q_d \)	\(X = N\bar{X} \)	
108.	\(t_{100} = \hat{Y} \left(\frac{XS + C_s}{\bar{X}S + C_s} \right) \)	\(X = N\bar{X} \)	\(C_s \)	
109.	\(t_{100} = \hat{Y} \left(\frac{XS + \beta_i (x)}{\bar{X}S + \beta_i (x)} \right) \)	\(X = N\bar{X} \)	\(\beta_i (x) \)	
10.	\(t_{100} = \hat{Y} \left(\frac{XS + \rho}{\bar{X}S + \rho} \right) \)	\(X = N\bar{X} \)	\(\rho \)	
111.	\(t_{111} = \hat{Y} \left(\frac{XS + \beta_i (x)}{\bar{X}S + \beta_i (x)} \right) \)	\(X = N\bar{X} \)	\(\beta_i (x) \)	
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
112.	$t_{112} = \hat{F} \left(\frac{\sum X + M_d}{\sum X + M_d} \right)$	$X(=N \bar{X})$	M_d
113.	$t_{113} = \hat{F} \left(\frac{\sum X + Q_d}{\sum X + Q_d} \right)$	$X(=N \bar{X})$	Q_d
114.	$t_{114} = \hat{F} \left(\frac{\sum T_m + X}{\sum T_m + X} \right)$	T_m	$X(=N \bar{X})$
115.	$t_{115} = \hat{F} \left(\frac{\sum X + T_m}{\sum X + T_m} \right)$	$X(=N \bar{X})$	T_m
116.	$t_{116} = \hat{F} \left(\frac{\sum X + M_r}{\sum X + M_r} \right)$	$X(=N \bar{X})$	M_r
117.	$t_{117} = \hat{F} \left(\frac{\sum M_r + X}{\sum M_r + X} \right)$	M_r	$X(=N \bar{X})$
118.	$t_{118} = \hat{F} \left(\frac{\sum H_i + X}{\sum H_i + X} \right)$	H_i	$X(=N \bar{X})$
119.	$t_{119} = \hat{F} \left(\frac{\sum X + H_i}{\sum X + H_i} \right)$	$X(=N \bar{X})$	H_i
120.	$t_{120} = \hat{F} \left(\frac{\sum Q_r + X}{\sum Q_r + X} \right)$	Q_r	$X(=N \bar{X})$
121.	$t_{121} = \hat{F} \left(\frac{\sum X + Q_r}{\sum X + Q_r} \right)$	$X(=N \bar{X})$	Q_r
122.	$t_{122} = \hat{F} \left(\frac{\sum X + S_s}{\sum X + S_s} \right)$	$X(=N \bar{X})$	S_s
123.	$t_{123} = \hat{F} \left(\frac{\sum S_s + X}{\sum S_s + X} \right)$	S_s	$X(=N \bar{X})$
124.	$t_{124} = \hat{F} \left(\frac{\sum Q_s + X}{\sum Q_s + X} \right)$	Q_s	$X(=N \bar{X})$
125.	$t_{125} = \hat{F} \left(\frac{\sum X + Q_s}{\sum X + Q_s} \right)$	$X(=N \bar{X})$	Q_s

continued
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
126.	\(\hat{t}_{126} = \hat{\mu} \left(\frac{X + \Delta}{\bar{X} + \Delta} \right) \)	1	\(\Delta \)
127.	\(\hat{t}_{127} = \hat{\mu} \left(\frac{XC_s + \Delta}{\bar{X}C_s + \Delta} \right) \)	\(C_s \)	\(\Delta \)
128.	\(\hat{t}_{128} = \hat{\mu} \left(\frac{X\beta_1(x) + \Delta}{\bar{X}\beta_1(x) + \Delta} \right) \)	\(\beta_1(x) \)	\(\Delta \)
129.	\(\hat{t}_{129} = \hat{\mu} \left(\frac{X\beta(x) + \Delta}{\bar{X}\beta(x) + \Delta} \right) \)	\(\beta(x) \)	\(\Delta \)
130.	\(\hat{t}_{130} = \hat{\mu} \left(\frac{X\rho + \Delta}{\bar{X}\rho + \Delta} \right) \)	\(\rho \)	\(\Delta \)
131.	\(\hat{t}_{131} = \hat{\mu} \left(\frac{XM_d + \Delta}{\bar{X}M_d + \Delta} \right) \)	\(M_d \)	\(\Delta \)
132.	\(\hat{t}_{132} = \hat{\mu} \left(\frac{XQ_d + \Delta}{\bar{X}Q_d + \Delta} \right) \)	\(Q_d \)	\(\Delta \)
133.	\(\hat{t}_{133} = \hat{\mu} \left(\frac{X\Delta + C_s}{\bar{X}\Delta + C_s} \right) \)	\(\Delta \)	\(C_s \)
134.	\(\hat{t}_{134} = \hat{\mu} \left(\frac{X\Delta + \beta_2(x)}{\bar{X}\Delta + \beta_2(x)} \right) \)	\(\Delta \)	\(\beta_2(x) \)
135.	\(\hat{t}_{135} = \hat{\mu} \left(\frac{X\Delta + \rho}{\bar{X}\Delta + \rho} \right) \)	\(\Delta \)	\(\rho \)
136.	\(\hat{t}_{136} = \hat{\mu} \left(\frac{XQ_s + \Delta}{\bar{X}Q_s + \Delta} \right) \)	\(Q_s \)	\(\Delta \)
137.	\(\hat{t}_{137} = \hat{\mu} \left(\frac{X\Delta + Q_s}{\bar{X}\Delta + Q_s} \right) \)	\(\Delta \)	\(Q_s \)
138.	\(\hat{t}_{138} = \hat{\mu} \left(\frac{X\Delta + S_s}{\bar{X}\Delta + S_s} \right) \)	\(\Delta \)	\(S_s \)
139.	\(\hat{t}_{139} = \hat{\mu} \left(\frac{XS_s + \Delta}{\bar{X}S_s + \Delta} \right) \)	\(S_s \)	\(\Delta \)
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
140.	t_{40}	Δ	$\beta_i(x)$
141.	t_{41}	Δ	M_d
142.	t_{42}	Δ	Q_e
143.	t_{43}	T_n	Δ
144.	t_{44}	Δ	T_n
145.	t_{45}	Δ	M_r
146.	t_{46}	M_r	Δ
147.	t_{47}	H_j	Δ
148.	t_{48}	Δ	H_j
149.	t_{49}	Q_r	Δ
150.	t_{50}	Δ	Q_r
151.	t_{51}	Δ	X ($= N \bar{X}$)
152.	t_{52}	X ($= N \bar{X}$)	Δ
153.	t_{53}	1	Q_i

Al-Omar et al (2009)
Table 2. continued

S.No.	Estimator	Values of constants	
		a	b
154.	$t_{s4} = \hat{\beta} \left(\frac{X + Q}{X + Q} \right)$	1	Q_3
	Al-Omar et al (2009)		
156.	$t_{s6} = \hat{\beta} \left(\frac{X\beta(x) + Q_2}{X\beta(x) + Q_2} \right)$	$\beta(x)$	Q_2
	Kumarapandiyan and Subramani (2016)-type		
159.	$t_{s9} = \hat{\beta} \left(\frac{X\beta(x) + Q_3}{X\beta(x) + Q_3} \right)$	$\beta(x)$	Q_4
	Kumarapandiyan and Subramani (2016)-type		

Or

$$(t - \bar{Y}) = \bar{Y} \left[e_0 - \tau e_1 + \tau^2 e_1^2 - \tau e_0 e_1 - c (e_1 + e_1 e_2 - e_1 e_3 - \tau e_1^2) \right]. \quad (8)$$

Taking expectation of both sides of (2) we get the bias of ‘t’ to the the first degree of approximation as

$$B(t) = \frac{(1-f)}{n} \left[R_j^2 S^2 \bar{Y} - \frac{N}{(N-2)} \beta \left(\frac{\mu_{21}}{\mu_{11}} \right) \left(\frac{\mu_{30}}{\mu_{20}} \right) \right]$$

$$= \frac{(1-f)}{n} (A - B) \quad (9)$$

where

$$R_j = \frac{a\bar{Y}}{a\bar{Y} + b}, \quad A = R_j^2 \left(\frac{S^2}{\bar{Y}} \right) \quad \text{and} \quad B = \frac{N}{(N-2)} \beta \left(\frac{\mu_{21}}{\mu_{11}} \right) \left(\frac{\mu_{30}}{\mu_{20}} \right).$$

The correct biases of the estimators listed in Table 1 and 2 can be obtained from (9) just by putting the suitable values of (a, b). The biases of the estimators belonging to the class of estimators ‘t’ is negligible if the sample size n is sufficiently large (i.e., $n \rightarrow N$). It should be noted that the biases of the estimators t_1 to t_{45} listed in Table 1 reported in Subramani and Kumarapandian (2012a,b,c,d) and Abid et al (2016a,b,c) are not correct.

The correct biases of the estimators listed in Table 1 and 2 can be obtained from (9) just by putting the suitable values of (a, b). The biases of the estimators belonging to the class of estimators ‘t’ is negligible if the sample size n is sufficiently large (i.e., $n \rightarrow N$). It should be noted that the biases of the estimators t_1 to t_{45} listed in Table 1 reported in Subramani and Kumarapandian (2012a,b,c,d) and Abid et al (2016a,b,c) are not correct.
Squaring both sides of (8) and neglecting terms of e’s having power greater than two

\[
(t - \bar{Y}) = \bar{Y}^2 \left[e_0^2 - \tau^2 e_i^2 + C^2 e_i^2 - 2\tau e_i e_i - 2C e_i e + 2\tau C e_i^2 \right] \quad (10)
\]

Taking expectation of both sides of (10), obtain the MSE of ‘t’ to the first degree of approximation as

\[
MSE(t) = \frac{(1-f)}{n} \left[R_j^2 S_x^2 + S_y^2 \left(1 - \rho^2 \right) \right] \quad (11)
\]

The MSE of the estimators belonging to class of estimators ‘t’ can be obtained from (11) just by putting the suitable values of (a, b).

The proposed class of estimators ‘t’ is more efficient than the usual unbiased estimator \(\bar{y} \) if

\[
MSE(t) < MSE(\bar{y})
\]
i.e. if

\[
R_j^2 S_x^2 < \beta^2 \quad . \quad (12)
\]

The members of the proposed class of estimators ‘t’ is better than the usual unbiased estimator \(\bar{y} \) as along as the condition (12) is satisfied. Further from (5) and (11)

\[
MSE(t) < MSE(\bar{y})
\]
i.e. if

\[
R_j^2 < (R - \beta)^2 \quad . \quad (13)
\]

The members of the proposed class of estimators ‘t’ is more efficient than the usual ratio estimator \(\bar{y}_R \) as long as the condition (13) is satisfied.

Suggested Class of Ratio-Type Exponential Estimators

Define a class of ratio-type exponential estimators for the population mean \(\bar{Y} \) as

\[
t_e = \hat{\bar{Y}} \exp \left\{ \frac{a(\bar{X} - \bar{x})}{a(\bar{X} + \bar{x}) + 2b} \right\}
\]
REDUCING THE MSE OF POPULATION ESTIMATORS

\[
\hat{\beta} = \left\{ \bar{y} + \hat{\beta} \left(\bar{x} - \bar{x} \right) \right\} \exp \left\{ \frac{a \left(\bar{x} - \bar{x} \right)}{a \left(\bar{x} + \bar{x} \right) + 2b} \right\},
\]

(14)

where \((a, b)\) are same as defined for the class of estimators \('t'\) at (1). A large number of estimators can be identified from the proposed class of estimators \(t_e\) for suitable values of \((a, b)\). Some members of the proposed class of estimators \(t_e\) corresponding to the members of the class of estimators \(t\) are listed in Table 3.

Expressing \(t_e\) in terms of \(e\)’s we have

\[
t_e = \bar{y} \left[1 + e_0 - Ce_1 \left(1 + e_2 \right) \left(1 + e_3 \right)^{-1} \right] \exp \left\{ -\frac{\tau e_1}{2} \left(1 + \frac{\tau}{2} \right)^{-1} \right\}
\]

(15)

where,

\[
C = \left(\frac{\beta \bar{X}}{\bar{y}} \right) = \rho \frac{C_y}{C_x}.
\]

Expanding the right hand side of (15), multiplying out and neglecting terms of \(e\)’s having power greater than two we have

\[
t_e = \bar{y} \left[1 + e_0 - \frac{\tau e_1}{2} - C \left(e_1 + e_1 e_2 - e_1 e_3 \right) - \frac{\tau e_0 e_1}{2} + \frac{\tau}{8} \left(3 \tau + 4C \right) e_1^2 \right]
\]

or

\[
(t_e - \bar{y}) = \bar{y} \left[e_0 - \frac{\tau e_1}{2} - Ce_1 - C \left(e_1 e_2 - e_1 e_3 \right) - \frac{\tau e_0 e_1}{2} + \frac{\tau}{8} \left(3 \tau + 4C \right) e_1^2 \right].
\]

(16)

Taking expectation of both sides of (16) we get the bias of \('t_e'\) to the first degree of approximation, we have

\[
B(t_e) = \frac{1 - f}{n} \left[3 \frac{R_j^2 S_x^2}{\bar{y}^2} - \frac{N}{(N - 2)} \hat{\beta} \left(\frac{\mu_{21}}{\mu_{11}} - \frac{\mu_{30}}{\mu_{20}} \right) \right],
\]

\[
= \frac{1 - f}{n} \left(\frac{3}{8} A - B \right),
\]

(17)

where

\[
R_j = \frac{a \bar{y}}{(a \bar{X} + b)}, \quad A \text{ and } B \text{ are same as defined earlier.}
\]
Table 3. Some members of the class of estimators t_{e} corresponding to the estimators listed in Table 1.

S.No.	Estimators	MSE	Values of Constants	Population Ratio
1.	$t_{e} = \hat{f} \exp \left(\frac{X - \bar{x}}{X + \bar{x}} \right)$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$1 \ 0 \ R_i = \frac{\bar{Y}}{X} = R$	
2.	$t_{e} = \hat{f} \exp \left(\frac{X - \bar{x}}{X + \bar{x} + 2C_{x}} \right)$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$1 \ C_{x} \ R_i = \frac{\bar{Y}}{X + C_{x}}$	
3.	$t_{e} = \hat{f} \exp \left\{ \frac{(\bar{X} - \bar{x})}{\bar{X} + \bar{x} + 2C_{x}} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$1 \ \beta_{2} (x) \ R_i = \frac{\bar{Y}}{X + \beta_{2} (x)}$	
4.	$t_{e} = \hat{f} \exp \left\{ \frac{(\bar{X} - \bar{x})\beta_{2} (x)}{\beta_{2} (x) (X + \bar{x}) + 2C_{x}} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$\beta_{2} (x) \ C_{x} \ R_i = \frac{\bar{Y} \beta_{2} (x)}{(X \beta_{2} (x) + C_{x})}$	
5.	$t_{e} = \hat{f} \exp \left\{ \frac{C_{x} (X - \bar{x})}{C_{x} (X + \bar{x}) + 2\beta_{2} (x)} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$C_{x} \ \beta_{2} (x) \ R_i = \frac{\bar{Y} C_{x}}{(X C_{x} + \beta_{2} (x))}$	
6.	$t_{e} = \hat{f} \exp \left\{ \frac{(\bar{X} - \bar{x})}{\bar{X} + \bar{x} + 2\rho} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$1 \ \rho \ R_i = \frac{\bar{Y}}{X + \rho}$	
7.	$t_{e} = \hat{f} \exp \left\{ \frac{C_{x} (X - \bar{x})}{C_{x} (X + \bar{x}) + 2\rho} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$C_{x} \ \rho \ R_i = \frac{\bar{Y} C_{x}}{(X C_{x} + \rho)}$	
8.	$t_{e} = \hat{f} \exp \left\{ \frac{\rho (X - \bar{x})}{\rho (X + \bar{x}) + 2C_{x}} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$\rho \ C_{x} \ R_i = \frac{\bar{Y} \rho}{(X \rho + C_{x})}$	
9.	$t_{e} = \hat{f} \exp \left\{ \frac{\beta_{2} (x) (X - \bar{x})}{\beta_{2} (x) (X + \bar{x}) + 2\rho} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$\beta_{2} (x) \ \rho \ R_i = \frac{\bar{Y} \beta_{2} (x)}{(X \beta_{2} (x) + \rho)}$	
10.	$t_{e} = \hat{f} \exp \left\{ \frac{\rho (X - \bar{x})}{\rho (X + \bar{x}) + 2\beta_{2} (x)} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$\rho \ \beta_{2} (x) \ R_i = \frac{\bar{Y} \rho}{(X \rho + \beta_{2} (x))}$	
11.	$t_{e} = \hat{f} \exp \left\{ \frac{(X - \bar{x})}{(X + \bar{x}) + 2\beta_{2} (x)} \right\}$	$\theta \left[R_{e} \frac{S_{X}^{2}}{4} + S_{Y}^{2} (1 - \rho^{2}) \right]$	$1 \ \beta_{2} (x) \ R_i = \frac{\bar{Y}}{(X + \beta_{2} (x))}$	
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
12.	$t_{12e} = \hat{\beta} \exp \left(\frac{\beta (x) (\bar{x} - \bar{X})}{\beta (x) (\bar{x} + \bar{X}) + 2 \beta (x)} \right)$	$\theta \left[R_{12}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	$\beta (x) \beta_2 (x) \beta (x)$	$R_{12} = \frac{\bar{Y} \beta (x) (X \beta (x) + \beta (x))}{\bar{X} (X \beta (x) + \beta (x))}$
13.	$t_{13e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 M_d} \right)$	$\theta \left[R_{13}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	$\beta (x) M_d$	$R_{13} = \frac{\bar{Y}}{(X + M_d)}$
14.	$t_{14e} = \hat{\beta} \exp \left(\frac{C_1 (\bar{x} - \bar{X})}{C_1 (\bar{x} + \bar{X}) + 2 M_d} \right)$	$\theta \left[R_{14}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	$C_1 M_d$	$R_{14} = \frac{\bar{Y} C_1 (X \beta (x) + \beta (x))}{\bar{X} C_1 (X + M_d)}$
15.	$t_{15e} = \hat{\beta} \exp \left(\frac{\beta (x) (\bar{x} - \bar{X})}{\beta (x) (\bar{x} + \bar{X}) + 2 M_d} \right)$	$\theta \left[R_{15}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	$\beta (x) M_d$	$R_{15} = \frac{\bar{Y} \beta (x)}{(X \beta (x) + \beta (x))}$
16.	$t_{16e} = \hat{\beta} \exp \left(\frac{\beta_2 (x) (\bar{x} - \bar{X})}{\beta_2 (x) (\bar{x} + \bar{X}) + 2 M_d} \right)$	$\theta \left[R_{16}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	$\beta_2 (x) M_d$	$R_{16} = \frac{\bar{Y} \beta_2 (x) (X \beta (x) + \beta (x))}{(X \beta (x) + \beta (x))}$
17.	$t_{17e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_1} \right)$	$\theta \left[R_{17}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_1	$R_{17} = \frac{\bar{Y}}{(X + D_1)}$
18.	$t_{18e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_2} \right)$	$\theta \left[R_{18}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_2	$R_{18} = \frac{\bar{Y}}{(X + D_2)}$
19.	$t_{19e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_3} \right)$	$\theta \left[R_{19}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_3	$R_{19} = \frac{\bar{Y}}{(X + D_3)}$
20.	$t_{20e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_4} \right)$	$\theta \left[R_{20}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_4	$R_{20} = \frac{\bar{Y}}{(X + D_4)}$
21.	$t_{21e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_5} \right)$	$\theta \left[R_{21}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_5	$R_{21} = \frac{\bar{Y}}{(X + D_5)}$
22.	$t_{22e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_6} \right)$	$\theta \left[R_{22}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_6	$R_{22} = \frac{\bar{Y}}{(X + D_6)}$
23.	$t_{23e} = \hat{\beta} \exp \left(\frac{(\bar{x} - \bar{X})}{(\bar{x} + \bar{X}) + 2 D_7} \right)$	$\theta \left[R_{23}^2 S_2^2 + S_2^2 (1 - \rho^2) \right]$	D_7	$R_{23} = \frac{\bar{Y}}{(X + D_7)}$
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
24.	$t_{24} = \hat{Y} \exp \left(\frac{(\bar{X} - \bar{X})}{(X + \bar{X} + 2D_a) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]$	D_a	$R_{24} = \frac{y}{(X + D_a)}$
25.	$t_{25} = \hat{Y} \exp \left(\frac{(\bar{X} - \bar{X})}{(X + \bar{X} + 2D_a) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]$	D_a	$R_{25} = \frac{y}{(X + D_a)}$
26.	$t_{26} = \hat{Y} \exp \left(\frac{(\bar{X} - \bar{X})}{(X + \bar{X} + 2D_{10}) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]$	D_{10}	$R_{26} = \frac{y}{(X + D_{10})}$
27.	$t_{27} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_a$	$R_{27} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
28.	$t_{28} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \bar{X})}{\rho(X + \bar{X} + 2M_x) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	ρM_a	$R_{28} = \frac{\rho \hat{Y}}{(\rho X + M)}$	
29.	$t_{29} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_1$	$R_{29} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
30.	$t_{30} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_3$	$R_{30} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
31.	$t_{31} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_r$	$R_{31} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
32.	$t_{32} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_a$	$R_{32} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
33.	$t_{33} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_a$	$R_{33} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
34.	$t_{34} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_1$	$R_{34} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	
35.	$t_{35} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \bar{X})}{\beta(x)(X + \bar{X} + 2Q) \theta \left[R^2_{\alpha} \frac{S^2_{\alpha}}{4} + S^2_{\alpha} (1 - \rho^2) \right]} \right)$	$\beta(x) Q_3$	$R_{35} = \frac{\hat{Y} \beta(x)}{(X \beta(x) + Q)}$	

continued
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
36.	\(\bar{y}_{36} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \pi)}{\beta(x)(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{36} = \frac{\bar{Y} \beta(x)}{(\bar{X} \beta(x) + Q)} \)	
37.	\(\bar{y}_{37} = \hat{Y} \exp \left(\frac{\beta(x)(\bar{X} - \pi)}{\beta(x)(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{37} = \frac{\bar{Y} \beta(x)}{(\bar{X} \beta(x) + Q)} \)	
38.	\(\bar{y}_{38} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{38} = \frac{\bar{Y} \rho}{(\rho \bar{X} + Q)} \)	
39.	\(\bar{y}_{39} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{39} = \frac{\bar{Y} \rho}{(\rho \bar{X} + Q)} \)	
40.	\(\bar{y}_{40} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{40} = \frac{\bar{Y} \rho}{(\rho \bar{X} + Q)} \)	
41.	\(\bar{y}_{41} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{41} = \frac{\bar{Y} \rho}{(\rho \bar{X} + Q)} \)	
42.	\(\bar{y}_{42} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2Q} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{42} = \frac{\bar{Y} \rho}{(\rho \bar{X} + Q)} \)	
43.	\(\bar{y}_{43} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2T_m} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{43} = \frac{\bar{Y}}{(\bar{X} + T_m)} \)	
44.	\(\bar{y}_{44} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2T_m} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{44} = \frac{\bar{Y}}{(\bar{X} \rho + T_m)} \)	
45.	\(\bar{y}_{45} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2T_m} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{45} = \frac{\bar{Y}}{(\bar{X} + T_m)} \)	
46.	\(\bar{y}_{46} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2M_r} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{46} = \frac{\bar{Y}}{(\bar{X} + M_r)} \)	
47.	\(\bar{y}_{47} = \hat{Y} \exp \left(\frac{\rho(\bar{X} - \pi)}{\rho(\bar{X} + \pi) + 2M_r} \right) \)	\(\theta \left[R_3 S_3^2 + S_r^2(1 - \rho^2) \right] \)	\(R_{47} = \frac{\bar{Y}}{(\bar{X} + M_r)} \)	
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
48.	$t_{48} = \hat{Y} \exp \left(\frac{\rho(X - \bar{X})}{\rho(X + \bar{X}) + 2M} \right)$	$\theta \left[R_{48}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$\rho \quad M, \quad R_{48} = \frac{\bar{Y}}{X \rho + M}$	
49.	$t_{49} = \hat{Y} \exp \left(\frac{(X - \bar{X})}{(X + \bar{X}) + 2H} \right)$	$\theta \left[R_{49}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$1 \quad H, \quad R_{49} = \frac{\bar{Y}}{X + H}$	
50.	$t_{50} = \hat{Y} \exp \left(\frac{C_c (X - \bar{X})}{C_c (X + \bar{X}) + 2H} \right)$	$\theta \left[R_{50}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$C_c \quad H, \quad R_{50} = \frac{\bar{Y}}{X \rho + H}$	
51.	$t_{51} = \hat{Y} \exp \left(\frac{\rho(X - \bar{X})}{\rho(X + \bar{X}) + 2H} \right)$	$\theta \left[R_{51}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$\rho \quad H, \quad R_{51} = \frac{\bar{Y}}{X + G}$	
52.	$t_{52} = \hat{Y} \exp \left(\frac{(X - \bar{X})}{(X + \bar{X}) + 2G} \right)$	$\theta \left[R_{52}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$1 \quad G, \quad R_{52} = \frac{\bar{Y}}{X + G}$	
53.	$t_{53} = \hat{Y} \exp \left(\frac{\rho(X - \bar{X})}{\rho(X + \bar{X}) + 2G} \right)$	$\theta \left[R_{53}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$\rho \quad G, \quad R_{53} = \frac{\bar{Y}}{X \rho + G}$	
54.	$t_{54} = \hat{Y} \exp \left(\frac{C_c (X - \bar{X})}{C_c (X + \bar{X}) + 2G} \right)$	$\theta \left[R_{54}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$C_c \quad G, \quad R_{54} = \frac{\bar{Y}}{X \rho + G}$	
55.	$t_{55} = \hat{Y} \exp \left(\frac{(X - \bar{X})}{(X + \bar{X}) + 2D} \right)$	$\theta \left[R_{55}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$1 \quad D, \quad R_{55} = \frac{\bar{Y}}{X + D}$	
56.	$t_{56} = \hat{Y} \exp \left(\frac{\rho(X - \bar{X})}{\rho(X + \bar{X}) + 2D} \right)$	$\theta \left[R_{56}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$\rho \quad D, \quad R_{56} = \frac{\bar{Y}}{X \rho + D}$	
57.	$t_{57} = \hat{Y} \exp \left(\frac{C_c (X - \bar{X})}{C_c (X + \bar{X}) + 2D} \right)$	$\theta \left[R_{57}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$C_c \quad D, \quad R_{57} = \frac{\bar{Y}}{X \rho + D}$	
58.	$t_{58} = \hat{Y} \exp \left(\frac{(X - \bar{X})}{(X + \bar{X}) + 2S_{pv}} \right)$	$\theta \left[R_{58}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$1 \quad S_{pv}, \quad R_{58} = \frac{\bar{Y}}{X + S_{pv}}$	
59.	$t_{59} = \hat{Y} \exp \left(\frac{\rho(X - \bar{X})}{\rho(X + \bar{X}) + 2S_{pv}} \right)$	$\theta \left[R_{59}^2 \frac{S^2}{4} + S^2 \left(1 - \rho^2 \right) \right]$	$\rho \quad S_{pv}, \quad R_{59} = \frac{\bar{Y}}{X \rho + S_{pv}}$	

continued
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
60.	$t_{60} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] C_s S_{pw}$	$R_{60} = \frac{\overline{Y}_C}{(X C_s + S_{pw})}$		
61.	$t_{61} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_1$	$R_{61} = \frac{\overline{Y}_\rho}{(X \rho + D_1)}$		
62.	$t_{62} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_2$	$R_{62} = \frac{\overline{Y}_\rho}{(X \rho + D_2)}$		
63.	$t_{63} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_3$	$R_{63} = \frac{\overline{Y}_\rho}{(X \rho + D_3)}$		
64.	$t_{64} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_4$	$R_{64} = \frac{\overline{Y}_\rho}{(X \rho + D_4)}$		
65.	$t_{65} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_5$	$R_{65} = \frac{\overline{Y}_\rho}{(X \rho + D_5)}$		
66.	$t_{66} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_6$	$R_{66} = \frac{\overline{Y}_\rho}{(X \rho + D_6)}$		
67.	$t_{67} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_7$	$R_{67} = \frac{\overline{Y}_\rho}{(X \rho + D_7)}$		
68.	$t_{68} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_8$	$R_{68} = \frac{\overline{Y}_\rho}{(X \rho + D_8)}$		
69.	$t_{69} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_9$	$R_{69} = \frac{\overline{Y}_\rho}{(X \rho + D_9)}$		
70.	$t_{70} = \hat{Y} \exp \left[-\theta \left(R_{s_0} S^2 + S^2_1 (1 - \rho^2) \right) \right] \rho D_{10}$	$R_{70} = \frac{\overline{Y}_\rho}{(X \rho + D_{10})}$		
Table 3. continued

S.No.	Estimators	MSE	Values of Constants	Population Ratio
71.	$t_{70} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{70} = \frac{Y_{C}}{(X_{C} + D_i)}$	
72.	$t_{71} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{71} = \frac{Y_{C}}{(X_{C} + D_i)}$	
73.	$t_{72} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{72} = \frac{Y_{C}}{(X_{C} + D_i)}$	
74.	$t_{73} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{73} = \frac{Y_{C}}{(X_{C} + D_i)}$	
75.	$t_{74} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{74} = \frac{Y_{C}}{(X_{C} + D_i)}$	
76.	$t_{75} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{75} = \frac{Y_{C}}{(X_{C} + D_i)}$	
77.	$t_{76} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{76} = \frac{Y_{C}}{(X_{C} + D_i)}$	
78.	$t_{77} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{77} = \frac{Y_{C}}{(X_{C} + D_i)}$	
79.	$t_{78} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{78} = \frac{Y_{C}}{(X_{C} + D_i)}$	
80.	$t_{79} = \hat{y} \exp \left(\frac{C_s (\bar{x} - \bar{x})}{C_s (\bar{x} + \bar{x}) + 2D_i} \right)$	$\theta \left[R_0^2 \frac{S_i^2}{4} + S_i^2 (1 - \rho^2) \right]$	$C_s \quad D_i \quad R_{79} = \frac{Y_{C}}{(X_{C} + D_i)}$	
The bias of t_e at (17) is negligible if the sample size n is sufficiently large. The bias of the members of the proposed class of estimators can be obtained easily from (17) just by putting suitable values of the scalars (a, b). Squaring both sides of (16) and neglecting terms of e’s having power greater than two

$$
(t_e - \bar{Y})^2 = \bar{Y}^2 \left[e_0^2 + \frac{\tau^2 e_1^2}{4} + C^2 e_1^2 - \tau e_0 e_1 - 2 C e_i e + \tau C e_i^2 \right]
$$

(18)

Taking expectation of both sides of (18) we get the MSE of t_e to the first degree of approximation as

$$
MSE(t_e) = \frac{(1-f)}{n} \left[R_j^2 \left(\frac{S^2}{4} \right) + S_j^2 \left(1 - \rho^2 \right) \right].
$$

(19)

The MSE of the members of the proposed class of estimators t_e can be easily obtained from (19) just by putting the suitable values of (a, b).

Remark 1 Motivated by Swain (2014), define a class of ratio-type estimators for population mean Y as

$$
t_s = \frac{aX + b}{a\bar{x} + b}.
$$

(20)

Thus the form of the estimators t and t_s taking into consideration, we define a class of ratio-cum-product-type estimators for population mean Y as

$$
t_g = \frac{aX + b}{a\bar{x} + b}^g.
$$

(21)

where g is a scalar taking real values. Note for $g(>0)$ the class of estimators t_g generates the ratio-type estimators while for $g(<0)$ it generates product-type estimators.

To the first degree of approximation the bias and MSE of t_e are respectively given by

$$
B(t_g) = \frac{(1-f)}{n} \left[R_j^2 \frac{S^2}{Y} \frac{g(g+1)}{2} - \frac{\beta N}{(N-2)} \left(\frac{\mu_{11} - \mu_{30}}{\mu_{20}} \right) \right]
$$

$$
= \frac{(1-f)}{n} \left[\frac{g(g+1)}{2} A - B \right],
$$

(22)
\[MSE(t_s) = \left(1 - \frac{f}{n}\right) \left[g^2 R_j S_x^2 + S_y^2 (1 - \rho^2)\right], \quad (23) \]

where \(A\) and \(B\) are same as defined earlier. Putting \(g = \frac{1}{2} \) in (22) and (23) we get the bias and MSE of the Swain’s (2014)-type estimator \(t_s \) at (20) respectively as

\[B(t_s) = \left(1 - \frac{f}{n}\right) \left[\frac{3}{8} A - B\right] \quad (24) \]

and

\[MSE(t_s) = \left(1 - \frac{f}{n}\right) \left[\frac{R_j^2 S_x^2}{4} + S_y^2 (1 - \rho^2)\right]. \quad (25) \]

From (17), (19), (24) and (25), note the bias and MSE of the Swain’s (2014) type estimators \(t_s \) and ratio-type exponential estimator \(t_e \) defined in (14) are same up to first order of approximation.

From (11) and (23)

\[MSE(t) - MSE(t_s) = \frac{(1 - f)}{n} R_j^2 S_x^2 + S_y^2 (1 - g^2) \]

which is positive if

\[1 - g^2 > 0 \]

i.e. if

\[g^2 < 1 \]

i.e if

\[-1 < g < 1. \quad (26) \]

The members of the class of ratio-cum-product type estimators \(t_s \) is more efficient than the corresponding members of the proposed class of ratio-type estimators \(t \) as long as the condition (26) is satisfied. From (19) and (23)

\[MSE(t) - MSE(t_s) = \frac{(1 - f)}{n} R_j^2 S_x^2 + \left(\frac{1}{4} - g^2\right) \]

which is positive if

i.e. if

\[\left(\frac{1}{4} - g^2\right) > 0 \quad g^2 > \frac{1}{4} \]

37
i.e. if \(-\frac{1}{2} < g < \frac{1}{2}\). \hspace{1cm} (27)

The proposed class of ratio-cum-product type estimators \(t_g\) would always be more efficient than the corresponding members of the ratio-type exponential estimator \(t_e\) as long as the condition (27) is satisfied.

Remark 2 It follows from (23) that either the estimator is ratio-type (i.e. \(t\) defined by (6)) or product-type defined by

\[
\hat{t}^{**} = \exp\left\{ g \left(\frac{a\bar{X} + b}{a\bar{X} + b} \right) \right\} \\
= \left[\bar{Y} + \hat{\beta} (\bar{X} - \bar{x}) \right] \left(\frac{a\bar{X} + b}{a\bar{X} + b} \right), \hspace{1cm} (28)
\]

the mean squared errors of ratio-type \((t)\) and product-type \((t^{**})\) to the first degree of approximation are turn out to be the same i.e.

\[
MSE(t) = MSE(t^{**}) = \frac{(1-f)}{n} \left[R^2 \left(S_x^r + S_y^2 \left(1 - \rho^2 \right) \right) \right]. \hspace{1cm} (29)
\]

The proposed class of estimators is always better than the ratio-type \((t)\) and product-type \((t^{**})\) estimators as long as the condition:

\[-1 < g < 1\] \hspace{1cm} (30)

is satisfied.

Remark 3 Define a generalized version of the ratio-cum-product-type exponential estimator \(t_e\) for the population mean \(\bar{Y}\) as

\[
t_{ge} = \hat{Y} \exp\left\{ \frac{g (\bar{X} - \bar{x})}{(X + \bar{x})} \right\} \\
= \left[\bar{Y} + \hat{\beta} (\bar{X} - \bar{x}) \right] \exp\left\{ \frac{ga (\bar{X} - \bar{x})}{(\bar{X} + \bar{x}) + 2b} \right\}, \hspace{1cm} (31)
\]
where $\bar{x}^* = (a\bar{x} + b)$ such that $E(\bar{x}^*) = \bar{X}^* = a\bar{X} + b$; and g is a scalar taking real values. For $g(>0) t_{ge}$ generates ratio-type exponential estimator, and for $g(>0)$ it generates product-type exponential estimator.

To the first degree of approximation, the bias and mean squared error of the proposed class of ratio-cum-product-type exponential estimators t_{ge} are respectively given by

$$B(t_{ge}) = \frac{(1-f)}{n} \left[g \left(\frac{g+2}{8} R_j^2 \frac{S_x^2}{\bar{Y}} - \frac{N}{N-2} \beta \left(\frac{\mu_{21}}{\mu_{11}} - \frac{\mu_{10}}{\mu_{20}} \right) \right) \right]$$

$$= \frac{(1-f)}{n} \left[g \left(\frac{g+2}{8} A - B \right) \right] \quad (32)$$

and

$$MSE(t_{ge}) = \frac{(1-f)}{n} \left[\left(\frac{g^2}{4} \right) R_j^2 S_x^2 + S_y^2 (1 - \rho^2) \right]. \quad (33)$$

From (23) and (33)

$$MSE(t_g) - MSE(t_{ge}) = \frac{3}{4} \frac{(1-f)}{n} g^2 R_j^2 S_x^2 \quad (34)$$

which is always positive.

It follows from (34) that the members of the proposed class of ratio-cum-product-type exponential estimators t_{ge} is always better than the corresponding members of the suggested class of ratio-cum-product type estimators t_e.

From (19) and (33) we have

$$MSE(t_e) - MSE(t_{ge}) = \frac{(1-f)}{n} R_j^2 S_x^2 \left(1 - g^2 \right)$$

which is positive if

$$(1 - g^2) > 0$$

i.e. if

$${-1 < g < 1}$$

i.e. if

$$|g| < 1.$$ \quad (35)
The members of the proposed class of ratio-cum product-type exponential estimators is better than the corresponding members of the suggested ratio-type exponential estimator \(\hat{t}_e \) as long as the condition (35) is satisfied. It can be also proved that the members proposed of the proposed class of ratio-cum-product-type estimators \(\hat{t}_{ge} \) is also better than the corresponding members of the product-type exponential estimator defined by

\[
\hat{t}_{e}^{**} = \hat{Y} \exp \left\{ \frac{a(\bar{x} - \bar{X})}{a(\bar{X} + \bar{X}) + 2b} \right\}
\]

\[
= \left\{ \bar{y} + \hat{\beta}(\bar{x} - \bar{X}) \right\} \exp \left\{ \frac{a(\bar{x} - \bar{X})}{a(\bar{X} + \bar{X}) + 2b} \right\}
\]

(36)

as long as the condition: \(|g| < 1\) in (35) is satisfied.

Efficiency Comparison

From (2) and (19)

\[
MSE(\bar{y}) - MSE(\hat{t}_e) = \frac{(1-f)}{n} S^2 \left(\beta^2 - \frac{R_j^2}{4} \right)
\]

which is positive if

\[
\beta^2 - \frac{R_j^2}{4} > 0
\]

i.e. if

\[
\frac{R_j^2}{4} < \beta^2.
\]

(37)

From (5) and (19) e

\[
MSE(\bar{y}_R) - MSE(\hat{t}_e) = \frac{(1-f)}{n} \left[(\beta - R)^2 - \frac{R_j^2}{4} \right]
\]

which is non-negative if

\[
\left[(\beta - R)^2 - \frac{R_j^2}{4} \right] > 0
\]
i.e. if

\[\frac{R_j^2}{4} < (\beta - R)^2 \]

(38)

Further from (11) and (19) we have

\[MSE(t) - MSE(t_e) = \frac{3}{4} \left(1 - \frac{1}{n} \right) R_j^2 S_e^2 \]

(39)

which is always positive.

Thus from (37) – (39) it follows that the members of the proposed class of estimators \(t_e \) is:

(i) more efficient than the usual unbiased estimator \(\bar{y} \) as long as the condition (37) is satisfied.

(ii) more efficient than the usual ratio estimator \(\bar{y}_R \) as long as the condition (38) is satisfied.

(iii) is always better than the corresponding members of the \(t \)-family of estimators.

Bias Comparison the Estimators \(t \) and \(t_e \)

It follows from (9) and (17)

\[|B(t_e)| < |B(t)| \]

if

\[\left| \frac{3}{8} A - B \right| < |A - B| \]

(40)

Since

\[\left| \frac{3}{8} A - B \right| < \frac{3}{8} |A| + |B| \]

(41)

and

\[|A - B| < \sqrt{|A| + |B|} \]

(42)
Therefore, from (40), (41) and (42)

\[|B(t_*)| < |B(t)| \]

if

\[\frac{3}{8}|A| + |B| < |A| + |B| \]

i.e. if \(\frac{3}{8}|A| < |A| \)

\[\frac{5}{8}|A| > 0 \] (43)

which is always true. The members of the proposed \(t_* \) family of estimators are less biased as well as more efficient than the corresponding members of the \(t \) family. Hence, the members of the proposed class of estimators \(t_* \) is more efficient than the corresponding known members due to Kadilar and Cingi (2004), Kadilar and Cingi (2006)- type, Yan and Tian (2010), Subramani and Kumarapandian (2012a, 2012b, 2012c, 2012d), Jeelani et al (2013) and Abid et al (2016a, 2016b, 2016c) of the class of estimators \(t \).

Empirical Study

In support of the theoretical results, MSEs of some known estimators listed in Table 1 were computed, and corresponding estimators listed in Table 3. Natural data sets were those considered by Kadilar and Cingi (2004) and Abid et al (2012b). The findings are shown in Table 4.

Population- Source: Kadilar and Cingi (2004) and Abid et al (2016b, p.361).

\(y \): Apple production

\(x \): Number of apple trees

\(N = 106 \), \(n = 40 \), \(\bar{y} = 2212.59 \), \(\bar{x} = 27421.70 \)

\(\rho = 0.860 \), \(S_y = 11551.53 \), \(C_y = 5.22 \), \(S_x = 57460.61 \),

\(C_x = 2.10 \), \(\beta_2(x) = 34.572 \), \(\beta_1(x) = 2.122 \), \(M_d = 7297.50 \)

\(Q_d = 12156.25 \), \(G = 40201.69 \), \(S_{pr} = 35298.810 \), \(D = 35634.990 \)
Table 4. Mean Squared Errors of some known members of the class of ratio-cum-product estimators \(t\) and the corresponding members of the class of ratio-cum-product-type estimators \(t_e\)

Known Estimators	MSE (\(t\))	Rank	Corresponding members of \(t_e\)	MSE (\(t_e\))	Rank
\(t_1 = \frac{\hat{Y}}{\bar{X}}\)	875480.89	XXVI	\(t_{e_1} = \hat{f} \exp\left(\frac{\bar{X} - \bar{Y}}{\bar{X}}\right)\)	624527.57	XXVI
Kadilar and Cingi (2004)					
\(t_2 = \frac{\hat{Y}}{(\bar{X} + \beta_1)\left(\bar{X} + C_1\right)}\)	875429.64	XXVI	\(t_{e_2} = \hat{f} \exp\left(\frac{\bar{X} - \beta_1}{\bar{X} + C_1}\right)\)	624514.75	XXVI
Kadilar and Cingi (2004)					
\(t_3 = \frac{\hat{Y}}{(\bar{X} + \beta_2)\left(\bar{X} + \beta_1\right)}\)	874638.77	XVI	\(t_{e_3} = \hat{f} \exp\left(\frac{\bar{X} - \beta_2}{\bar{X} + \beta_1}\right)\)	624317.04	XVI
Kadilar and Cingi (2004)					
\(t_4 = \beta_1\)	873468.79	XXIII	\(t_{e_4} = \hat{f} \exp\left(\frac{\bar{X} - \beta_1}{\bar{X} + \beta_1}\right)\)	624527.20	XXIII
Kadilar and Cingi (2004)					
\(t_5 = \beta_2\)	872451.30	XXIX	\(t_{e_5} = \hat{f} \exp\left(\frac{\bar{X} - \beta_2}{\bar{X} + \beta_2}\right)\)	624512.67	XXIX
Kadilar and Cingi (2004)					
\(t_6 = \beta_3\)	871429.11	XX	\(t_{e_6} = \hat{f} \exp\left(\frac{\bar{X} - \beta_3}{\bar{X} + \beta_3}\right)\)	624514.62	XX
Yan and Tian (2010)					

continued
Table 4. continued

Known Estimators	MSE (t)	Rank	Corresponding members of t_i	MSE (t)	Rank
$t_{12} = \hat{\beta} \left(\tilde{X} \hat{\beta}(x) + \beta (x) \right) \left(X + \beta (x) \right)$	875083.64	XVIII	$\hat{\beta} \left(\tilde{X} \hat{\beta}(x) + \beta (x) \right) \left(X + \beta (x) \right)$	624428.25	XVIII
Yan and Tian (2010)					
$t_{13} = \hat{\beta} \left(\tilde{X} + M \right)$	749604.60	X	$\hat{\beta} \left(\tilde{X} + M \right)$	593058.50	X
Subramani and Kumarapandian (2012a)					
$t_{14} = \hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	804446.24	XII	$\hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	606769.00	XII
Subramani and Kumarapandian (2012a)					
$t_{15} = \hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	805062.37	XIII	$\hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	606922.94	XIII
Subramani and Kumarapandian (2012b)					
$t_{16} = \hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	870388.46	XV	$\hat{\beta} \left(\tilde{X} + M \right) \left(X + \beta (x) \right)$	623254.46	XV
Subramani and Kumarapandian (2012b)					
$t_{17} = \hat{\beta} \left(\tilde{X} + \tilde{Q} \right)$	769827.97	XI	$\hat{\beta} \left(\tilde{X} + \tilde{Q} \right)$	598114.34	XI
Jeelani et al (2013)					
$t_{18} = \hat{\beta} \left(\tilde{X} + \tilde{G} \right)$	595897.22	IV	$\hat{\beta} \left(\tilde{X} + \tilde{G} \right)$	554631.65	IV
Abid et al (2016b)					
$t_{19} = \hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	586615.71	I	$\hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	552311.27	I
Abid et al (2016b)					
$t_{20} = \hat{\beta} \left(\tilde{X} + \tilde{C} + \tilde{G} \right)$	656912.92	VII	$\hat{\beta} \left(\tilde{X} + \tilde{C} + \tilde{G} \right)$	569885.57	VII
Abid et al (2016b)					
$t_{21} = \hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	604155.24	V	$\hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	556696.15	V
Abid et al (2016b)					
$t_{22} = \hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	593942.29	II	$\hat{\beta} \left(\tilde{X} + \tilde{D} \right)$	554142.92	II
Abid et al (2016b)					

44
It is observed from Table 4 there is considerable reduction in MSEs of the proposed estimators \((t_{1e} \text{ to } t_{16e}, t_{27e} \text{ to } t_{37e}) \) as compared to the corresponding known estimators \((t_1 \text{ to } t_{13}, t_{27}, t_{37} \text{ to } t_{45}) \). That is the members of the proposed class of ratio-cum-product-type exponential estimators \(t_e \) is more efficient than the corresponding members of the class of ratio-cum-product-type estimators \(t \). The proposed estimators \(t_{38e} \) followed by the estimator \(t_{41e} \) have the smallest MSE among all the estimators considered in Table 4. Thus, the proposed class of ratio-cum-product-type exponential estimators \(t_e \) is justified.

References

Abid, M., Abbas, N. & Riaz, M. (2016a). Enhancing the mean ratio estimators for estimating population mean using non-conventional location parameters, *Revista Colombiana de Estadistica*, 39(1), 63–79. doi: 10.15446/rce.v39n1.55139

Abid, M., Abbas, N. & Riaz, M. (2016b). Improved Modified Ratio Estimators of population mean based on deciles, *Chiang Mai Journal of Science*, 43(1), 1311–1323.

Abid, M., Abbas, N., Sherwani, K. A. R & Nazir, Z. H. (2016c). Improved ratio estimators for the population mean using non-conventional measures of dispersion, *Pakistan Journal of Statistics and Operation Research*, 12(2), 353–367. doi: 10.18187/pjsor.v12i2.1182

Al-Omari, A. I., Jemain, A. A. & Ibrahim, K. (2009). New ratio estimators of the mean using simple random sampling and ranked set sampling methods, *Revista Investigacion Operacional*, 30(2), 97–108.
Das A. K. & Tripathi. T. P. (1980). Sampling strategies for population mean when two coefficient of variation of an auxiliary character is known. *Shankya, C, 42*(12), 78–60.

Ekpenyoung, E. J. & Enang, E. I. (2015). A Modified Class of Ratio and Product Estimators of the Population Mean in Simple Random Sampling using Information on Auxiliary Variable. *Journal of Statistics, 22*, 1–8.

Jeelani, M. I., Maqbool, S. & Mir, S. A. (2013). Modified ratio estimators of population mean using linear combination of coefficient of skewness and quartile deviation. *International Journal of Modern Mathematical Sciences (6)*, 174–183.

Kadilar, C. & Cingi, H. (2004). Ratio estimators in simple random sampling. *Applied Mathematics and Computation, 151*(3), 893–902. doi: 10.1016/s0096-3003(03)00803-8

Kadilar, C. & Cingi, H. (2006). An improvement in estimating the population mean by using the correlation coefficient, *Hacettepe Journal of Mathematics and Statistics, 35*(1), 103–109.

Kumarapandiyan, G. & Subramani, J. (2016). Some modified ratio estimators for estimation of population mean using known parameters of an auxiliary variable, *Statistical Modelling and Analysis Techniques*, 93–101.

Searls, D. T. (1964). The Utilization of a known coefficient of variation in the estimation procedure. *Journal of American Statistical Association.*, *59*(308), 1225–1226. doi: 10.1080/01621459.1964.1048076

Swain, A. K. P. C. (2014). An Improved ratio type estimator of finite population in sample surveys, *Revista Investigacion Operacional, 35*(1), 49-57.

Singh, G. N. (2003). On the improvement of product method of estimation in sample surveys, *Journal of the Indian Society of Agricultural Statistics, 56*(3), 267–275.

Singh, H. P. & Tailor, R. (2003). Use of known correlation coefficient in estimating the finite population means, *Statistics in Transition, 6*(4), 555–560.

Singh, H. P., Tailor, R., Tailor, R. and Kakran, M. S. (2004). An improved estimator of population mean using power transformation. *Journal of the Indian Society of Agricultural Statistics, (58).*, 223–230.

Sisodia, B. V. S. & Dwivedi, V. K. (1981). A modified ratio estimator using coefficient of variation of auxiliary variable. *Journal of the Indian Society of Agricultural Statistics, 33*(1), 13–18.

Subramani, J. & Kumarapandiyan, G. (2012a). Estimation of Population Mean using Co-efficient of variation and Median of an Auxiliary Variable. *International Journal of Probability and Statistics, 1*(4), 111–118.

Subramani, J. & Kumarapandiyan, G. (2012b). Estimation of population mean using known median and Co-efficient of skewness. *American Journal of Mathematics and Statistics, 2*(5), 101–107. doi: 10.5923/j.ajms.20120205.01

Subramani, J. & Kumarapandiyan, G. (2012c). Modified ratio estimators using known median and co-efficient of kurtosis. *American Journal of Mathematics and Statistics, 2*(4), 95–100. doi: 10.5923/j.ajms.20120204.05

Subramani, J. & Kumarapandiyan, G. (2012d). A class of modified ratio estimators using Deciles of an Auxiliary Variable. *International Journal of Statistics and Applications, 2*(6), 101–107. doi: 10.5923/j.statistics.20120206.02
Subramani, J., Kumarapandiyan, G., & Balamurali, S. (2015). A Class of Modified Linear Regression Type Ratio Estimators of Population Mean using Coefficient of Variation and Quartiles of an Auxiliary Variable. *Journal of Statistics, 22*, 284–305.

Upadhyaya, L. N. & Singh, H. P. (1999). Use of transformed auxiliary variable in estimating the finite population mean. *Biometrical Journal, 41*(5), 627–636. doi: 10.1002/(sici)1521-4036(199909)41:5<627::aid-bimj627>3.0.co;2-w

Yan Z., Tian B. (2010). Ratio Method to the Mean Estimation Using Coefficient of Skewness of Auxiliary Variable. In: Zhu R., Zhang Y., Liu B., Liu C. (Eds.). Information Computing and Applications. ICICA 2010. *Communications in Computer and Information Science, vol 106*. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-16339-5_14