Recent advances in understanding context-dependent mechanisms controlling neurotrophin signaling and function

Mark Bothwell
Department of Physiology & Biophysics, University of Washington Medical Center, Seattle, WA, 98195-7290, USA

Abstract
Complex mechanisms control the signaling of neurotrophins through p75NTR and Trk receptors, allowing cellular responses that are highly context dependent, particularly in the nervous system and particularly with regard to the neurotrophin brain-derived neurotrophic factor (BDNF). Recent reports describe a variety of sophisticated regulatory mechanisms that contribute to such functional flexibility. Mechanisms described include regulation of trafficking of alternative BDNF transcripts, regulation of post-translational processing and secretion of BDNF, engagement of co-receptors that influence localization and signaling of p75NTR and Trk receptors, and control of trafficking of receptors in the endocytic pathway and during anterograde and retrograde axonal transport.

Keywords
Brain derived neurotrophic factor, neurotrophin, BDNF, TrkB, p75NTR, synaptic plasticity, depressive disorders, memory, sortilin, SorCS2

Open Peer Review
Invited Reviewers
1
2
3
version 1
19 Sep 2019

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Freddy Jeanneteau, Institute of Functional Genomics, Montpellier, France
2. Eero Castren, University of Helsinki, Helsinki, Finland
3. Francisca C. Bronfman, Pontificia Universidad Católica de Chile, Santiago, Chile

Any comments on the article can be found at the end of the article.
Introduction

Neurotrophins are a small orthologous family of growth factors, consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) in mammals. Neurotrophins have a remarkably wide range of critically important functions in both neural and non-neural tissues, and this diversity of function is achieved by signaling mechanisms that are highly context dependent. This review will explore recent advances in understanding how such context-dependent signaling is achieved, focusing on two of the most extensively studied functions of neurotrophins: regulation of neuronal survival and axon and dendritic growth in the developing peripheral nervous system and regulation of synaptic function in the context of learning and memory in the adult central nervous system (CNS). However, the principles and mechanisms discussed will be relevant for understanding other neurotrophin functions as diverse as mediation of the effects of anti-depressant drugs1,2, regulation of cardiac development3, hypothalamic control of energy balance4 and oxytocin-dependent maternal behavior5, control of pancreatic glucose-induced insulin secretion6, and control of insulin-dependent glucose uptake7.

Two classes of receptors mediate neurotrophin effects. The 75 kDa neurotrophin receptor (p75NTR) binds all four neurotrophins, whereas orthologous members of the Trk gene family—TrkA, TrkB, and TrkC—are more selective. NGF and NT3 activate TrkA, BDNF and NT4 activate TrkB, and NT3 activates TrkC. Trk receptors are canonical receptor tyrosine kinases. p75NTR is a member (and indeed was the first-discovered member) of the tumor necrosis factor (TNF) receptor superfamily and the subclass of those receptors known as death receptors because they contain a cytoplasmic death domain that mediates key signaling effects8.

Further complexity in neurotrophin signaling results from the differential signaling capacity of mature neurotrophins and the longer precursor proteins (proneurotrophins) from which mature neurotrophins are released proteolytically. Proteolytic processing of proneurotrophins by prohormone convertases in the secretory pathway is not always complete, so proneurotrophins are sometimes secreted, and secreted neurotrophins may be variably released from proneurotrophins following secretion by membrane metalloproteinases. Both proneurotrophins and mature neurotrophins bind and activate p75NTR, whereas only mature neurotrophins can bind and activate Trk receptors9. Consequently, the extent of proteolytic processing of proneurotrophins, either in the secretory pathway or following secretion, determines the balance of p75NTR versus Trk signaling, a phenomenon that has received particular attention for BDNF/pro-BDNF signaling through p75NTR and TrkB at CNS synapses10. Remarkably, the cleaved pro-domain peptide of pro-BDNF has substantial stability and is stored in vesicles and co-secreted with BDNF11. This feature and the technical issue that antibodies against BDNF do not discriminate between pro-BDNF and mature BDNF, while antibodies against the pro-domain do not discriminate between pro-BDNF and its cleaved pro-domain peptide, have contributed to uncertainty and controversy concerning the forms in which BDNF is secreted. Remarkably, the pro-domain peptide itself may engage in p75NTR-dependent signaling12-14, although the physiological relevance of this phenomenon remains to be fully explored.

This review will explore recent findings concerning four themes that figure prominently in neurotrophin studies. The first two themes are explored below as separate topics, whereas the remaining two themes cut across all topics. Theme 1: in cells that express both p75NTR and Trk receptors, function of the two receptor systems is linked, but the two receptor systems often function oppositely. Theme 2: in the nervous system, neurotrophins may signal in an anterograde manner (from axon terminals to innervated targets), in a retrograde manner (from innervated target to innervating neuron), or in an autocrine manner and, in some systems, may use all three modes of action simultaneously. Theme 3: neurotrophin function is dependent on exquisitely controlled intracellular trafficking of neurotrophins and neurotrophin receptors. Theme 4: the nature of the signaling functions of p75NTR and Trk receptors in neurons differs in different cellular contexts. The modes of signaling may differ in different types of neurons, at different stages of development of a neuron, and in somatic, dendritic, and axonal cell compartments of neurons.

Opposing actions of p75NTR and Trks

That p75NTR and Trk receptors often function oppositely has been referred to as the yin and yang of neurotrophin action15. Developing sympathetic neurons, for example, express both TrkA and p75NTR. For these neurons, activation of TrkA by NT3 promotes axon growth, and activation of TrkA by NGF promotes axon growth and neuronal survival16. On the other hand, activation of p75NTR by BDNF/pro-BDNF promotes axonal pruning and cell death17,18. In the adult CNS, BDNF-dependent activation of TrkB strengthens synaptic function and promotes long-term potentiation whereas BDNF-dependent activation of p75NTR weakens synaptic function and promotes long-term depression19. However, seemingly, nothing is ever simple in neurotrophin biology, as, under some circumstances, p75NTR signaling can promote neuronal survival20,21 and Trk signaling can promote neuronal cell death22 (discussed more fully below).

Functions of p75NTR and TrkB are influenced by two co-receptors—sortilin and SorCS2—membrane proteins that are members of the VPS10p-domain protein family. The preferential interaction of proneurotrophins with p75NTR is dependent on association of p75NTR with sortilin or SorCS223, which make binding contacts with the neurotrophin pro-domains24. Such interactions also mediate sortilin-dependent intracellular sorting of pro-BDNF into the regulated secretory pathway25 and mediate p75NTR-dependent disassembly of hippocampal dendritic spines elicited by secreted cleaved BDNF pro-domain26. In sensory neurons of the peripheral nervous system, association of sortilin with TrkA, TrkB, or TrkC promotes anterograde transport of these receptors to their axon terminal sites of action27. In dendrites of hippocampal neurons, BDNF-dependent activation of TrkB required for dendritic spine formation and induction of synaptic long-term potentiation requires association of TrkB with SorCS2 whereas SorCS2 association with p75NTR is required for pro-BDNF-dependent induction of synaptic long-term depression28. Evidence suggests that sortilin or SorCS2 forms
ternary complexes with neurotrophins or proneurotrophins and p75NTR or Trk receptors\(^\text{[2,23,27]}\). Figure 1 illustrates a speculative model for the nature of such ternary complexes.

Anterograde, retrograde, and autocrine action

The first function ascribed to neurotrophins historically, regulation of neuronal survival by factors released by innervated targets, requires that neurotrophin receptors be localized to the axon terminus and, where the innervated targets are neurons, implies that neurotrophins are released from dendritic sites. On the other hand, for more recently characterized systems in which neurotrophins regulate synaptic function rather than neuronal survival, it is often initially unclear whether neurotrophins are released from dendrites to activate axonal receptors or whether neurotrophins are released from axons to activate dendritic receptors. Remarkably, not only do all of these scenarios come into play but a third scenario involving autocrine release and receptor activation in the same cell compartment plays an important role, as discussed below. Exquisitely complex mechanisms create ordered behavior from a potentially chaotic system by controlling neurotrophin release and receptor localization. I will summarize recent studies shedding light on these processes.

Control of anterograde and retrograde receptor trafficking

In circumstances where neurotrophins secreted by the innervated target control neuronal survival, how does activation of receptors at the axon terminus influence required changes in nuclear gene expression when the somatic compartment containing the nucleus may be many centimeters distant from the axon terminus? An abundance of evidence indicates that a major mechanism mediating this effect is neurotrophin-dependent endocytic internalization of neurotrophin/Trk complexes at the axon terminus, followed by retrograde axonal transport of activated receptors in the vesicular complex\(^\text{[8-31]}\). This critically important transport of Trk receptors from axon terminus to soma must be balanced by a similar rate of transport of receptors translated in the soma to the axon terminus. For TrkA, one remarkable mechanism achieving this balance directly links arrival in the soma of retrogradely transported vesicles containing activated TrkA to anterograde transport of nascent TrkA. Nascent TrkA receptors are inserted into somatodendritic membranes and then endocytically internalized before anterograde axonal transport to the axon terminus, a process known as transcytosis. Endocytosis of nascent TrkA from somatodendritic membranes to initiate anterograde transport is triggered by tyrosine phosphorylation of TrkA by activated TrkA arriving through retrograde axonal transport\(^\text{[32]}\). It is worth noting, however, that retrograde axonal transport is not the only mechanism that can deliver activated Trk receptors to the somatodendritic compartment. It is noteworthy that a transactivation mechanism causes activity of several G-protein-coupled receptors (GPCRs), including PACAP (pituitary adenylate cyclase-activating peptide) and adenosine receptors, to activate Trk receptors in the somatodendritic compartment\(^\text{[33]}\). Therefore, it is interesting to speculate that GPCR signaling might enhance the accumulation of Trk receptors at axonal termini, rendering the capacity for retrograde signaling dependent on the cellular context.

Although retrograde axonal transport links activation of Trk receptors at the axon terminus to neuronal survival, activated Trk receptors acting locally can contribute to the regulation of growth and arborization of the axon terminus, and mechanisms exist to segregate local and retrograde signaling modalities. For example, during sympathetic neuronal development, NT3 released along the path of axon growth sustains axonal elongation by activation of TrkA in a manner that does not require retrograde signaling to the soma, but NT3 is insufficient to sustain neuronal survival. Instead, activation of TrkA by NGF encountered when the axon reaches its final target sustains neuronal survival by retrograde signaling to the soma. How do NT3 and NGF engaging the same TrkA receptor signal locally in one case and at a distance in the other? One elegantly simple mechanism results from the stability of NGF/TrkA binding at the acidic pH of endosomes. Unlike NGF, NT3 dissociates from TrkA at acidic pH and cannot maintain the sustained activation of internalized TrkA required to convey signals to the cell soma\(^\text{[34]}\). Additionally, a molecular switch mechanism causes NGF activation of TrkA to suppress subsequent activation of TrkA by NT3. This mechanism involves NGF/TrkA retrograde signaling, which transcriptionally upregulates Coronin-1. Coronin-1 suppresses the ability of NT3/TrkA complexes to release calcium ion from intracellular stores in the axonal compartment. In the absence of Coronin-1, sympathetic axons overshoot their targets\(^\text{[35]}\).
In sympathetic neurons, association with TrkA with an axonally enriched non-translated transcript, Tp53inp2, is required for the NGF-dependent TrkA endocytosis event necessary to initiate retrograde axonal signaling supporting axon growth and cell survival\(^5\). Whether similar mechanisms exist for TrkB and TrkC remains unknown. Sympathetic neurons express p75\(^{NTR}\) as well as TrkA, and, like TrkA, p75\(^{NTR}\) mediates both local functions at the axon terminus and functions in the cell soma requiring retrograde axonal signaling. Several mechanisms link functions of p75\(^{NTR}\) and TrkA. p75\(^{NTR}\) exhibits two distinct modes of signaling. Association of neurotrophins with p75\(^{NTR}\) dimers at the cell surface causes a conformation change of the receptors’ intracellular domains oppositely modulating signaling adapter proteins linking p75\(^{NTR}\) to regulation of the RhoA pathway and nuclear factor kappa B (NF-kB) and c-Jun N-terminal kinase (JNK) pathways\(^3\). However, in sympathetic neurons, an alternative mode of p75\(^{NTR}\) signaling, leading to nuclear accumulation of NRIF (nuclear receptor-interacting factor) and cell death, involves γ-secretase-mediated cytoplasmic release of the intracellular domain (ICD) of p75\(^{NTR}\), which is promoted by neurotrophin-dependent activation of Trk receptors but is not directly promoted by neurotrophin binding p75\(^{NTR}\)Trk\(^{A-C}\). p75\(^{NTR}\) signaling alternatively can activate cell survival-promoting pathways, such as the NF-kB pathway, or cell death-inducing pathways, such as the JNK pathway, and mechanisms determining these alternative responses are poorly understood. Modulation of γ-secretase-mediated release of the p75\(^{NTR}\) ICD fragment is one mechanism that may govern these responses, as pharmacologically blocking cytoplasmic release of the ICD fragment abolishes NF-kB activation and allows JNK-dependent induction of cell death in cerebellar granule cell neurons\(^4\).

In addition to the Trk-dependent release of the p75\(^{NTR}\) ICD, several other mechanisms link Trk and p75\(^{NTR}\) signaling. Association of p75\(^{NTR}\) with TrkA increases the affinity of TrkA for NGF and blunts activation of TrkA by NT3\(^41\)\(^-\)\(^42\). In sympathetic neurons, NGF-dependent activation of TrkA leading to Arf6 activation promotes trafficking of p75\(^{NTR}\) from intracellular vesicular stores to the cell surface. In contrast, NT3 activation of TrkA does not promote Arf6 activation and p75\(^{NTR}\) trafficking. Thus, NGF/TrkA signaling suppresses NT3/TrkA signaling, sharpening the developmental switch from NT3- to NGF-dependent functions\(^43\). p75\(^{NTR}\) signaling at the axon terminus can locally regulate axonal growth cone collapse. However, p75\(^{NTR}\) also can signal retrogradely from the axon terminus to the soma to induce neuronal cell death. Although Trk activation promotes release of the p75\(^{NTR}\) ICD, loss of NGF-dependent TrkA activation in sympathetic neurons causes enhanced production of the ICD fragment and HDAC1-dependent retrograde trafficking of this fragment mediates retrograde axonal conveyance of the p75\(^{NTR}\) cell death signal\(^44\). Similarly, enhanced release of the p75\(^{NTR}\) ICD fragment has been implicated as a mechanism responsible for neuronal cell death promoted by unliganded TrkA and TrkC in the developing peripheral nervous system\(^45\).

Synaptic functions of p75\(^{NTR}\) and Trks
Although all the neurotrophins and neurotrophin receptors function in the CNS, the most broadly important neurotrophin in the brain is BDNF, which influences many types of neural plasticity in diverse neuronal populations, including cortical and hippocampal neurons, through TrkB and p75\(^{NTR}\) receptors. BDNF function in the hippocampus, and particularly at the synapses of CA3 Schaffer collaterals on CA1 dendrites, has been extensively studied because BDNF interactions with TrkB and p75\(^{NTR}\) at hippocampal synapses are critical for long-term potentiation\(^46\)\(^-\)\(^48\), an experimental synaptic model for learning and memory. Unraveling these mechanisms is far from straightforward, as BDNF can be released by both pre-synaptic axon termini and post-synaptic dendrites, and the receptors are present both pre-synaptically and post-synaptically\(^49\). Furthermore, perisynaptic microglia, astrocytes, and oligodendroglia are all physiologically relevant sources of BDNF release at CNS synapses\(^48\)\(^-\)\(^50\). Although both pre-synaptic and post-synaptic action of BDNF has been described, a particularly thorough report from 2016 describes an autocrine mode of BDNF/TrkB signaling in CA1 dendritic spines involving NMDA receptor-dependent activation of CaMKII-dependent BDNF release\(^51\).

Studies in Aplysia, an important model organism for the study of mechanisms of learning and memory, have revealed an important role for pre-synaptic autocrine neurotrophin action. Aplysia has a single neurotrophin gene (ApNT) and a single Trk receptor gene (ApTrk)\(^52\). ApNT promotes 5HT-mediated consolidation of learning-related facilitation of a sensory neuron/motor neuron synapse. 5HT-dependent production of cAMP pre-synaptically promotes pre-synaptic release of ApNT, which activates pre-synaptic ApTrk driving phospholipase C-dependent calcium ion release, resulting in further elevation of cAMP by a calcium-dependent adenylyl cyclase. This constitutes a positive feedback loop driving ApNT release and neurotransmitter (glutamate) release\(^53\). Pre-synaptically released ApNT acting on post-synaptic ApTrk promotes post-synaptic ApNT release, which acts pre-synaptically. Thus, two neurotrophin feed-forward systems provide signal amplification for 5HT’s effects on synaptic function\(^54\).

An important feature of BDNF function in mammalian dendrites is that dendritic BDNF is a product of peri-synaptic protein synthesis. BDNF transcription employs nine different promoters which, in concert with alternative splicing of 5’ untranslated regions (5’ UTRs), generate 22 different transcripts all encoding identical proteins\(^55\). In vitro studies reveal that these 5’ UTRs differentially direct different transcripts to different subcellular domains\(^56\). The differential regulation of the different promoters by neural activity, coupled with the different subcellular targeting of the different transcripts, allows complex regulation of neuronal responses. For example, transgenic mouse models reveal that different splice variants differentially control size of spines on apical versus basal CA1 dendrites\(^57\). In concert with BDNF/TrkB action promoting the formation of hippocampal dendritic spines, pro-BDNF/p75\(^{NTR}\) action suppresses the formation of dendritic spines\(^58\). As noted above, SorCS2 acts as a necessary co-receptor for both p75\(^{NTR}\) and TrkB acting oppositely to control the formation of hippocampal dendritic spines. Whether the differential engagement of p75\(^{NTR}\) versus TrkB by SorCS2 is an important point of regulation is a question that deserves investigation.

\(^{5}\) Page 5 of 8

F1000Research 2019, 8(F1000 Faculty Rev):1658 Last updated: 23 JUN 2021
Conclusions

Despite the impressive recent progress in revealing the extraordinary complexity of neurotrophin signaling functions, many unanswered questions remain. The manner by which neurotrophin-deprived Trk receptors promote the release of the proapoptotic p75NTR ICD fragment remains mysterious, and the relative importance of signaling by intact cell-surface p75NTR versus signaling by the cleaved p75NTR ICD fragment in various contexts remains unclear. Indeed, many aspects of p75/Trk functional interactions remain unclear despite decades of study. In many cases, mechanisms governing neurotrophin receptor anterograde and retrograde trafficking have been characterized for a single Trk paralog and in a single neuronal cell type at a particular stage of development. It should be a priority to determine the extent to which such mechanisms apply to other Trk paralogs and in other neuronal cell types or other stages of development.

References

1. Saarilainen T, Mendolin P, Lucas G, et al.: Activation of the TrkB Neurotrophin Receptor Is Induced by Antidepressant Drugs and Is Required for Antidepressant-Induced Behavioral Effects. J Neurosci. 2003; 23(1): 349–57. PubMed Abstract | Publisher Full Text | F1000 Recommendation

2. Casten E, Kojima M: Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis. 2017; 97(5 B): 119–26. PubMed Abstract | Publisher Full Text | F1000 Recommendation

3. Donovan MJ, Hahn R, Tessarollo L, et al.: Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat Genet. 1996; 14(2): 210–3. PubMed Abstract | Publisher Full Text

4. Ozek C, Zimmer DJ, De Jonghe BC, et al.: Abation of intact hypothalamic and/or hindbrain TrkB signaling leads to perturbations in energy balance. Mol Metab. 2015; 4(11): 867–80. PubMed Abstract | Publisher Full Text | Free Full Text

5. Maynard KR, Hobbs JW, Phan BN, et al.: BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife. 2018; 7: pii: e33676. PubMed Abstract | Publisher Full Text | Free Full Text

6. Houtz J, Bonten P, Cease A, et al.: Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion. Dev Cell. 2016; 39(3): 329–45. PubMed Abstract | Publisher Full Text | Free Full Text

7. Raza-Raja B, Li P, Le Moan N, et al.: p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity. Proc Natl Acad Sci U S A. 2012; 109(15): E5839–43. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

8. Bothwell M. Recent advances in understanding neurotrophin signaling [version 1; peer review: 2 approved]. F1000Res. 2016; 5: pii: F1000 Faculty Rev-1885. PubMed Abstract | Publisher Full Text | Free Full Text

9. Teng HK, Teng KK, Lee R, et al.: ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005; 26(22): 5485–63. PubMed Abstract | Publisher Full Text | Free Full Text

10. Greenberg ME, Xu B, Lu B, et al.: New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function. J Neurosci. 2009; 29(41): 12764–7. PubMed Abstract | Publisher Full Text | Free Full Text

11. Dener S, Matsumoto T, Decker M, et al.: BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. 2012; 196(6): 775–88. PubMed Abstract | Publisher Full Text | Free Full Text

12. Giza Ji, Kim J, Meyer HC, et al.: The BDNF Val69Met Prodominant Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron. 2018; 99(1): 163–178.e6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Mizu T, Ishikawa Y, Kumanohó H, et al.: BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci U S A. 2010; 117(23): E3061–E3074. PubMed Abstract | Publisher Full Text | Free Full Text

14. Anastasia A, Deinhardt K, Chao MW, et al.: Val66Met polymorphism of BDNF alters promodain structure to induce neuronal growth cone retraction. Nat Commun. 2013; 4: 2490. PubMed Abstract | Publisher Full Text | Free Full Text

15. Lu B, Pang PT, Woo NH: The yin and yang of neurotrophin action. Nat Rev Neurosci. 2006; 8(8): 603–14. PubMed Abstract | Publisher Full Text

16. Belliveau DJ, Krivok I, Kohn J, et al.: NGF and Neurotrophin-3 Both Activate TrkA on Sympathetic Neurons but Differentially Regulate Survival and Neuritogenesis. J Cell Biol. 1997; 138(2): 375–88. PubMed Abstract | Publisher Full Text | Free Full Text

17. Singh KK, Park KJ, Hong EJ, et al.: Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci. 2008; 11(6): 649–58. PubMed Abstract | Publisher Full Text | F1000 Recommendation

18. Kohn J, Aloyz BS, Toma JG, et al.: Functionally Antagonistic Interactions between the TrkA and p75 Neurotrophin Receptors Regulate Sympathetic Neuron Growth and Target Innervation. J Neurosci. 1999; 19(13): 5393–408. PubMed Abstract | Publisher Full Text | F1000 Recommendation

19. Vicario A, Kisielwa L, Tamm JY, et al.: Neuron-type-specific signaling by the p75NTR death receptor is regulated by differential proteolytic cleavage. J Cell Sci. 2015; 128(8): 1507–17. PubMed Abstract | Publisher Full Text

20. Nikoletopoulou V, Lickert H, Frade JM, et al.: Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010; 467(7311): 59–63. PubMed Abstract | Publisher Full Text | F1000 Recommendation

21. Ménard M, Cootecharayan C, Coelho-Agúirre JM, et al.: The dependence receptor TrkC regulates the number of sensory neurons during DRG development. Dev Biol. 2018; 442(2): 249–61. PubMed Abstract | Publisher Full Text | F1000 Recommendation

22. Nykjaer A, Lee R, Teng KK, et al.: Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004; 427(6977): 843–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

23. Lesup N, Chataginer LJM, Janssen BJC: Structural insights into SorCS2-Nerve Growth Factor complex formation. Nat Commun. 2018; 9(1): 2979. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Chen Z-Y, Iseri A, Teng H, et al.: Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci. 2005; 25(26): 6156–66. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Vaeger CB, Jansen P, Fijnbaak AW, et al.: Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci. 2011; 14(1): 54–61. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Glenup S, Bokhio U, Molgaard S, et al.: SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Mol Psychiatry. 2016; 21(12): 1740–51. PubMed Abstract | Publisher Full Text

27. Feng D, Kim T, Ohanen E, et al.: Molecular and structural insights into proNGF engagement of p75NTR and sortilin. J Mol Biol. 2010; 396(4): 967–84. PubMed Abstract | Publisher Full Text | Free Full Text

28. Howe CL, Mobley WC: Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol. 2005; 15(1): 40–50. PubMed Abstract | Publisher Full Text

29. Barford K, Deppmann C, Winkler B: The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol. 2017; 77(4): 405–18. PubMed Abstract | Publisher Full Text | Free Full Text

30. Yamashita N, Kuruvilla R: Neurotrophin signaling endosomes: Biogenesis, regulation, and functions. Curr Opin Neurobiol. 2016; 39: 139–45. PubMed Abstract | Publisher Full Text | Free Full Text

31. Scott-Soldan E, Kuruvilla R: Mechanisms of neurotrophin trafficking via Trk receptors. Mov Disord. 2018; 91: 25–33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Yamashita N, Joshi R, Zhang S, et al.: Phospho-Regulation of Soma-to-Axon Transcytosis of Neurotrophin Receptors. Dev Cell. 2017; 42(6): 626–639.e5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

33. Rajagopal R, Chen ZY, Lee FS, et al.: Transactivation of Trk neurotrophin
receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 2004; 24(9): 6650–8. PubMed Abstract | Publisher Full Text

Harrington AW, St Hillaire C, Zweifel LS, et al.: Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 2011; 146(3): 421–34. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Keefer AB, Suo D, Park J, et al.: Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol Cell Neurosci. 2017; 82: 66–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Cramer H, Scott-Solomon E, Bodkin-Clarke C, et al.: Regulation of NGF Signaling by an Axonal Untranslated mRNA. Neuron. 2019; 102(3): 553–563.e8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Vilar M, Charalampopoulos I, Kenchappa RS, et al.: Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron. 2009; 62(1): 72–83. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Karrning KC, Hudson M, Amieux PS, et al.: Proteolytic Processing of the p75 Neurotrophin Receptor and Two Homologs Generates C-Terminal Fragments with Signaling Capability. J Neurosci. 2003; 23(13): 5425–36. PubMed Abstract | Publisher Full Text

Kenchappa RS, Zampieri N, Chao MV, et al.: Ligand-dependent cleavage of the p75 neurotrophin receptor is necessary for NTF nuclear translocation and apoptosis in sympathetic neurons. Neuron. 2006; 50(2): 219–32. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Urra S, Escudero CA, Ramos P, et al.: TrkA receptor activation by nerve growth factor induces shedding of the p75 neurotrophin receptor followed by endosomal gamma-secretase-mediated release of the p75 intracellular domain. J Biol Chem. 2007; 282(10): 7606–15. PubMed Abstract | Publisher Full Text

Hempesta BL, Martin-Zanca D, Kaplan DR, et al.: High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1993; 360(6393): 678–83. PubMed Abstract | Publisher Full Text

Chan JR, Watkins TA, Cosgaya JM, et al.: NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron. 2004; 43(2): 183–91. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Hickman FE, Stanley EM, Carter BD: Neurotrophin Responsiveness of Sympathetic Neurons is Regulated by Rapid Mobilization of the p75 Receptor to the Cell Surface through TrkA Activation of Arf6. J Neurosci. 2018; 38(24): 5606–19. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Pathak A, Stanley EM, Hickman FE, et al.: Retrograde Degenerative Signaling Mediated by the p75 Neurotrophin Receptor Requires p150

Deacetylation by Axonal HDAC1. Dev Cell. 2018; 46(3): 376–387.e7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Patterson SL, Abell T, Deuel TAS, et al.: Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996; 16(6): 1137–49. PubMed Abstract | Publisher Full Text

Korte M, Griesbeck O, Gravel C, et al.: Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci U S A. 1996; 93(22): 12547–52. PubMed Abstract | Publisher Full Text | Free Full Text

Lu B, Chow A: Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res. 1999; 58(1): 76–87. PubMed Abstract | Publisher Full Text

Perkash CN, Yang G, Ninan I, et al.: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013; 155(7): 1596–609. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Vignoli B, Battistini G, Melani R, et al.: Peri-Synaptic Glia Recycles Brain-Derived Neurotrophic Factor for LTP Stabilization and Memory Retention. Neuron. 2016; 92(4): 873–87. PubMed Abstract | Publisher Full Text

Jang M, Gould E, Xu J, et al.: Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. Elife. 2019; 8: pii: e42156. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Harward SC, Hedrick NG, Hall CE, et al.: Autocrine BDNF-TrkB signaling within a single dendritic spine. Nature. 2016; 538(7623): 99–103. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Kassabov SR, Choi YB, Karl KA, et al.: A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep. 2013; 3(4): 1213–27. PubMed Abstract | Publisher Full Text | Free Full Text

Jin I, Udo H, Nichols R, et al.: Autocrine signaling by an Aplysia neurotrophin forms a presynaptic positive feedback loop. Proc Natl Acad Sci U S A. 2016; 113(47): E11168–E11177. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Jin I, Udo H, Kassabov S, et al.: Anterograde and retrograde signaling by an Aplysia neurotrophin forms a transsynaptic functional unit. Proc Natl Acad Sci U S A. 2018; 115(46): E10951–E10960. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Tongrigi E, Baj G: Functions and mechanisms of BDNF mRNA trafficking. Novartis Found Symp. 2008; 289: 136–47, discussion 147–51, 193–5. PubMed Abstract | Publisher Full Text

Maynard KR, Hobbs JW, Sukumar M, et al.: Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct Funct. 2017; 222(7): 3259–327. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Yang J, Harte-Hargrove LC, Siao CJ, et al.: proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus. Cell Rep. 2014; 7(3): 796–806. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Francisca C. Bronfman
 MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
 Competing Interests: No competing interests were disclosed.

2. Eero Castren
 Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
 Competing Interests: No competing interests were disclosed.

3. Freddy Jeanneteau
 Inserm, U1191, Institute of Functional Genomics, Montpellier, France
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com