THE REGULARITY OF QUOTIENT PARATOPOLOGICAL GROUPS

TARAS BANAKH AND SASHA RAVSKY

Abstract. Let H be a closed subgroup of a regular abelian paratopological group G. The group reflexion $G^\#$ of G is the group G endowed with the strongest group topology, weaker that the original topology of G. We show that the quotient G/H is Hausdorff (and regular) if H is closed (and locally compact) in $G^\#$. On the other hand, we construct an example of a regular abelian paratopological group G containing a closed discrete subgroup H such that the quotient G/H is Hausdorff but not regular.

In this paper we study the properties of the quotients of paratopological groups by their normal subgroups.

By a paratopological group G we understand a group G endowed with a topology τ making the group operation continuous, see [ST]. If, in addition, the operation of taking inverse is continuous, then the paratopological group (G, τ) is a topological group. A standard example of a paratopological group failing to be a topological group is the Sorgefrey line L, that is the real line \mathbb{R} endowed with the Sorgefrey topology (generated by the base consisting of half-intervals $[a, b)$, $a < b$).

Let (G, τ) be a paratopological group and $H \subset G$ be a closed normal subgroup of G. Then the quotient group G/H endowed with the quotient topology is a paratopological group, see [Ra]. Like in the case of topological groups, the quotient homomorphism $\pi : G \to G/H$ is open. If the subgroup $H \subset G$ is compact, then the quotient G/H is Hausdorff (and regular) provided so is the group G, see [Ra]. The compactness of H in this result cannot be replaced by the local compactness as the following simple example shows.

Example 1. The subgroup $H = \{(-x, x) : x \in \mathbb{Q}\}$ is closed and discrete in the square $G = \mathbb{L}^2$ of the Sorgenfrey line \mathbb{L}. Nonetheless, the quotient group G/H fails to be Hausdorff: for any irrational x the coset $(-x, x) + H$ cannot be separated from zero $(0, 0) + H$.

A necessary and sufficient condition for the quotient G/H to be Hausdorff is the closedness of H in the topology of group reflexion $G^\#$ of G.

By the group reflexion $G^\# = (G, \tau^\#$) of a paratopological group (G, τ) we understand the group G endowed with the strongest topology $\tau^\# \subset \tau$ turning G into a topological group. This topology admits a categorial description: $\tau^\#$ is a unique topology on G such that

- $(G, \tau^\#)$ is a topological group;
- the identity homomorphism $id : (G, \tau) \to (G, \tau^\#)$ is continuous;

1991 Mathematics Subject Classification. 22A15, 54H10, 54H11.

Key words and phrases. paratopological group, quotient paratopological group, group reflexion, regularity.
for each continuous group homomorphism \(h : G \to H \) into a topological group \(H \) the homomorphism \(h \circ \text{id}^{-1} : G^\flat \to H \) is continuous.

Observe that the group reflexion of the Sorgenfrey line \(L \) is the usual real line \(\mathbb{R} \).

For so-called 2-oscillating paratopological groups \((G, \tau)\) the topology \(\tau^\flat \) admits a very simple description: its base at the origin \(e \) of \(G \) consists of the sets \(UU^{-1} \), where \(U \) runs over open neighborhoods of \(e \) in \(G \). Following [BR] we define a paratopological group \(G \) to be 2-oscillating if for each neighborhood \(U \subset G \) of the origin \(e \) there is another neighborhood \(V \subset G \) of \(e \) such that \(V^{-1}V \subset UU^{-1} \). The class of 2-oscillating paratopological groups is quite wide: it contains all abelian (more generally all nilpotent) as well as saturated paratopological groups. Following I. Guran we call a paratopological group saturated if for each neighborhood \(U \) of the origin in \(G \) its inverse \(U^{-1} \) has non-empty interior in \(G \).

Given a subset \(A \) of a paratopological group \((G, \tau)\) we can talk of its properties in the topology \(\tau^\flat \). In particular, we shall say that a subset \(A \subset G \) is \(\flat \)-closed in \(G \) if it is closed in the topology \(\tau^\flat \). Also with help of the group reflexion many helpful properties of paratopological groups can be defined.

A paratopological group \(G \) is called

- \(\flat \)-separated if the topology \(\tau^\flat \) is Hausdorff;
- \(\flat \)-regular if it has a neighborhood base at the origin, consisting of \(\flat \)-closed sets;
- \(\flat \)-compact if \(G^\flat \) is compact.

It is clear that each \(\flat \)-separated (and \(\flat \)-regular) paratopological group is functionally Hausdorff (and regular). Conversely, each Hausdorff (resp. regular) 2-oscillating group is \(\flat \)-separated (resp. \(\flat \)-regular), see [BR]. On the other hand, there are examples of (nonabelian) Hausdorff paratopological groups \(G \) which are not \(\flat \)-separated, see [Ra], [BR]. The simplest example of a \(\flat \)-compact non-compact paratopological group is the Sorgenfrey circle \(\{ z \in \mathbb{C} : |z| = 1 \} \) endowed with the topology generated by the base consisting of “half-intervals” \(\{ e^{i\varphi} : \varphi \in [a, b) \} \), \(a < b \).

Now we are able to state our principal positive result.

Theorem 1. Let \(H \) be a normal subgroup of a \(\flat \)-separated paratopological group \(G \). Then the quotient paratopological group \(G/H \) is

1. \(\flat \)-separated if and only if \(H \) is closed in \(G^\flat \);
2. \(\flat \)-regular if \(G \) is \(\flat \)-regular and the set \(H \) is locally compact in \(G^\flat \).

Proof. Let \(\pi : G \to G/H \) denote the quotient homomorphism.

1. If \(H \) is closed in \(G^\flat \) then \(G^\flat / H \) is Hausdorff as a quotient of a Hausdorff topological group \(G^\flat \). Since the identity homomorphism \(G/H \to G^\flat / H \) is continuous, the paratopological group \(G/H \) is \(\flat \)-separated.

Now assume conversely that the paratopological group \(G/H \) is \(\flat \)-separated. Since the quotient map \(\pi^\flat : G^\flat \to (G/H)^\flat \) is continuous its kernel \(H \) is closed in \(G^\flat \).

2. Assume that \(G \) is \(\flat \)-regular and \(H \) is locally compact in \(G^\flat \). It follows that \(H \) is closed in \(G^\flat \) (this so because the subgroup \(H \subset G^\flat \), being locally compact, is complete). Then there is a closed neighborhood \(W_1 \subset G^\flat \) of the neutral element \(e \) such that the intersection \(W_1 \cap H \) is compact in \(G^\flat \). Take any closed neighborhood \(W_2 \subset G^\flat \) of \(e \) such that \(W_2^{-1}W_2 \subset W_1 \). We claim that \(W_2 \cap gH \) is compact for each \(g \in G \). This is trivial if \(W_2 \cap gH \) is empty. If not, then \(gh = w \) for some \(h \in H \).
and \(w \in W_2 \). Hence \(W_2 \cap gH \subset W_2 \cap w^{-1}H = W_2 \cap wH = w(w^{-1}W_2 \cap H) \subset w(W_2^{-1}W_2 \cap H) \subset w(W_1 \cap H) \) and the closed subset \(W_2 \cap gH \) of \(G \) lies in the compact subset \(w(W_1 \cap H) \) of \(G \). Consequently, \(W_2 \cap gH \) is compact for any \(y \in G \).

Let \(W_3 \subset G^p \) be a neighborhood of \(e \) such that \(W_3^{-1}W_3 \subset W_2 \).

To prove the \(b \)-regularity of the quotient group \(G/H \), given any neighborhood \(U \subset G \) of \(e \) it suffices to find a neighborhood \(V \subset U \) of \(e \) such that \(\pi(V) \) is \(b \)-closed in \(G/H \). By the \(b \)-regularity of \(G \), we can find a \(b \)-closed neighborhood \(V \subset U \cap W_3 \).

We claim that \(\pi(V) \) is \(b \)-closed in \(G/H \). Since the identity map \((G/H)^p \to G^p/H\) is continuous, it suffices to verify that \(\pi(V) \) is closed in the topological group \(G^p/H \).

Take any point \(gH \notin \pi(V) \) of \(G^p/H \). It follows from \(gH \cap V = \emptyset \) and the compactness of the set \(W_2 \cap gH \) that there is an open neighborhood \(W_4 \subset W_2 \) of \(e \) in \(G^p \) such that \(W_4(W_2 \cap gH) \cap V = \emptyset \). We claim that \(W_4z \cap V = \emptyset \) for any \(z \in gH \). Assuming the converse, find a point \(v \in W_4 \cap V \). It follows that \(z \notin W_2 \).

On the other hand, \(z \in W_4^{-1}v \subset W_4^{-1}V \subset W_2 \). This contradiction shows that \(W_4gH \cap V = \emptyset \) and thus \(\pi(W_4g) \) is a neighborhood of \(gH \) in \(G^p/H \), disjoint with \(\pi(V) \).

\[\square \]

Corollary 1. If \(H \) is a \(b \)-compact normal subgroup of a \(b \)-regular paratopological group \(G \), then the quotient paratopological group \(G/H \) is \(b \)-regular.

Proof. It follows that the identity inclusion \(H^b \to G^p \) is continuous and thus \(H \) is compact in \(G^p \). Applying the preceding theorem, we conclude that the quotient group \(G/H \) is \(b \)-regular.

\[\square \]

Remark 1. It is interesting to compare the latter corollary with a result of [Ra] asserting that the quotient \(G/H \) of a Hausdorff (regular) paratopological group \(G \) by a compact normal subgroup \(H \subset G \) is Hausdorff (regular).

Since for a 2-oscillating paratopological group \(G \) the Hausdorff property (the regularity) of \(G \) is equivalent to the \(b \)-separatedness (the \(b \)-regularity), Theorem [1] implies

Corollary 2. Let \(H \) be a normal subgroup of a Hausdorff 2-oscillating paratopological group \(G \). Then the quotient paratopological group \(G/H \) is

1. Hausdorff if \(H \) is closed in \(G^p \);
2. regular if \(G \) is regular and the set \(H \) is locally compact in \(G^p \).

Example [1] supplies us with a locally compact closed subgroup \(H \) of a \(b \)-regular paratopological group \(G = L^2 \) such that the quotient \(G/H \) is not Hausdorff. Next, we construct a \(b \)-regular abelian paratopological group \(G \) containing a locally compact \(b \)-closed subgroup \(H \) such that the quotient is Hausdorff but not regular. This will show that in Theorem [1] and Corollary [2] the local compactness of \(H \) in \(G^p \) cannot be replaced by the local compactness plus \(b \)-closedness of \(H \) in \(G \).

Our construction is based on the notion of a **cone topology**. Let \(G \) be a topological group and \(S \subset G \) be a closed subsemigroup of \(G \), containing the neutral element \(e \in G \). The **cone topology** \(\tau_S \) on \(G \) consists of sets \(U \subset G \) such that for each \(x \in U \) there is an open neighborhood \(W \subset G \) of \(e \) such that \(x(W \cap S) \subset U \). It is clear that the group \(G \) endowed with the cone topology \(\tau_S \) is a regular paratopological groups and its neighborhood base at \(e \) consists of the sets \(W \cap S \), where \(W \) is a neighborhood of \(e \) in \(G \). Moreover, the paratopological group \((G, \tau_S)\) is saturated.
if \(e \) is a cluster point of the interior of \(S \) in \(G \). In the latter case the paratopological group \((G, T_S)\) is 2-oscillating and thus \(b \)-regular, see [BR, Theorem 3].

In the following example using the cone topology we construct a saturated regular paratopological group \(G \) containing a \(b \)-closed discrete subgroup \(H \) with non-regular quotient \(G/H \).

Example 2. Consider the group \(\mathbb{Q}^3 \) endowed with the usual (Euclidean) topology. A subsemigroup \(S \) of \(\mathbb{Q}^3 \) is called a cone in \(\mathbb{Q}^3 \) if \(q \cdot \vec{x} \in S \) for any non-negative \(q \in \mathbb{Q} \) and any vector \(\vec{x} \in S \).

Fix a sequence \((z_n)\) of rational numbers such that \(0 < \sqrt{2} - z_n < 2^{-n} \) for all \(n \) and let \(S \subset \mathbb{Q}^3 \) be the smallest closed cone containing the vectors \((1, 0, 0)\) and \((\frac{1}{n}, 1, z_n)\) for all \(n \). Let \(\tau_S \) be the cone topology on the group \(\mathbb{Q}^3 \) determined by \(S \). Since the origin of \(\mathbb{Q}^3 \) is a cluster point of the interior of \(S \), the paratopological group \(G = (\mathbb{Q}^3, \tau_S) \) is saturated and \(b \)-regular. Moreover, its group reflexion coincides with \(\mathbb{Q}^3 \).

Now consider the \(b \)-closed subgroup \(H = \{(0, 0, q) : q \in \mathbb{Q}\} \) of the group \(G \). Since \(H \cap S = \{(0, 0, 0)\} \), the subgroup \(H \) is discrete (and thus locally compact) in \(G \). On the other hand \(H \) fails to be locally compact is \(\mathbb{Q}^3 \), the group reflexion of \(G \).

We claim that the quotient group \(G/H \) is not regular. Let \(\pi : G \to G/H \) denote the quotient homomorphism. We can identify \(G/H \) with \(\mathbb{Q}^2 \) endowed with a suitable topology.

Let us show that \((0, 1) \notin \pi(S)\). Assuming the converse we would find \(x \in \mathbb{Q} \) such that \((0, 1, x) \in S\). It follows from the definition of \(S \) that \(x \geq 0 \) and there is a sequence \((\vec{x}_i)\) converging to \((0, 1, x)\) such that

\[
\vec{x}_i = \sum_{n} \lambda_{i,n}(n^{-1}, 1, z_n) + \lambda_i(1, 0, 0)
\]

where all \(\lambda_i, \lambda_{i,n} \geq 0 \) and almost all of them vanish. Taking into account that \(\{\vec{x}_i\} \) converges to \((0, 1, x)\) we conclude that

- \(\lambda_i \to 0 \) as \(i \to \infty \);
- \(\lambda_{i,n} \to 0 \) for every \(n \);
- \(\sum_n \lambda_{i,n} \) tends to 1 as \(i \to \infty \).

Let \(\varepsilon > 0 \). Then

\[
\exists N_1(\forall n > N_1)\{|z_n - \sqrt{2}| < \varepsilon\},
\exists N_2(\forall i > N_2)\{\forall n \leq N_1\}{\lambda_{i,n} < \varepsilon/N_1}\text{ and}
\exists N_3(\forall i > N_3)(|\sum \lambda_{i,n} - 1| < \varepsilon).
\]

Put \(N = \max\{N_2, N_3\} \). Let \(i > N \). Then

\[
|\sqrt{2} - \sum_n \lambda_{i,n} z_n| \leq |\sqrt{2} - \sum_n \lambda_{i,n} \sqrt{2}| + |\sum_{n \leq N_1} \lambda_{i,n} (\sqrt{2} - z_n)| + |\sum_{n > N_1} \lambda_{i,n} (\sqrt{2} - z_n)| \leq
\varepsilon \sqrt{2} + \varepsilon + \sum_{n > N_1} \lambda_{i,n} \varepsilon \leq \varepsilon(\sqrt{2} + 1 + \varepsilon).
\]

So \(x = \sqrt{2} \) which is impossible. This contradiction shows that \((0, 1) \notin \pi(S)\) and thus \((0, \frac{1}{n}) \notin \pi(S)\) for all \(n \in \mathbb{N} \) (since \(S \) is a cone).

It remains to prove that for each neighborhood \(V \subset \mathbb{Q}^3 \) of the origin we get \(\overline{\pi(V \cap S)} \subset \pi(S) \), where the closure is taken in \(G/H \). This will follow as soon as we show that \((0, \frac{1}{m}) \in \overline{\pi(V \cap S)} \) for some \(m \). Since \(V \) is a (usual) neighborhood
of \((0,0,0)\) in \(\mathbb{Q}^3\), there is \(m \in \mathbb{N}\) such that \(\frac{1}{m}(\frac{1}{n}, 1, z_n) \in V\) for all \(n \in \mathbb{N}\). Then \(\frac{1}{m}(\frac{1}{n}, 1) \in \pi(V \cap S)\) for all \(n \in \mathbb{N}\). Observe that the sequence \(\{(\frac{1}{nm}, \frac{1}{m})\}_n\) converges to \((0, \frac{1}{m})\) in \(G/H\) since for each neighborhood \(W \subset \mathbb{Q}^3\) of \((0,0,0)\) the difference \((\frac{1}{nm}, \frac{1}{m}) - (0, \frac{1}{m}) = (\frac{1}{nm}, 0)\) belongs to \(\pi(W \cap S)\) for all sufficiently large \(n\). Therefore \((0, \frac{1}{m}) \in \pi(V \cap S) \subsetneq \pi(S) \neq (0, \frac{1}{m})\), which means that \(G/H\) is not regular.

REFERENCES

[BR] T. Banakh, O. Ravsky. Oscillator topologies on a paratopological group and related number invariants, // Algebraical Structures and their Applications, Kyiv: Inst. Mat. NANU, (2002) 140-153.

[Ra] O. Ravsky, Paratopological groups I, Matematychni Studii, 16:1 (2001), 37-48.

[ST] M. Sanchis, M. Tkachenko, Totally Lindelöf and totally \(\omega\)-narrow paratopological groups, Topology Appl. 155:4 (2008), 322-334.

E-mail address: tbanakh@yahoo.com; oravsky@mail.ru

DEPARTMENT OF MATHEMATICS, IVAN FRANKO LVIV NATIONAL UNIVERSITY, UNIVERSYTETSKA I, LVIV, 79000, UKRAINE