MULTIPlicITIES UNDER BASEchange: FINITE FIELD CASE

DIPENDRA PRASAD

September 5, 2019

CONTENTS

1. Introduction .. 1
2. Multiplicity under basechange 2
3. Linear periods for Principal series 3
4. Application of basechange to linear periods 6
References .. 9

1. INTRODUCTION

Let G and H be two connected algebraic groups over a finite field \mathbb{F} of order q with $H \subset G$. Let π_1 be an irreducible representation of $G(\mathbb{F})$ and π_2 of $H(\mathbb{F})$. Assume that both the representations π_1, π_2 have a basechange, denoted as π_E^1, π_E^2, to E, where all through the paper, E is the unique quadratic extension of \mathbb{F}, with π_E^1 an irreducible representation of $G(E)$ which is invariant under $\langle \sigma \rangle = \text{Gal}(E/\mathbb{F})$, and π_E^2 an irreducible representation of $H(E)$ which is invariant under $\langle \sigma \rangle = \text{Gal}(E/\mathbb{F})$. In our paper, we will tacitly assume that G, H are reductive algebraic groups over \mathbb{F}, and that π_1, π_2 are uniform representations, i.e., a virtual sum of Deligne-Lusztig representations $R(T, \theta)$ (for varying maximal tori $T \subset G$ and characters $\theta : T(\mathbb{F}) \to \mathbb{C}^\times$). As an example, note that all irreducible representations of $\text{GL}_n(\mathbb{F})$ and $\text{U}_n(\mathbb{F})$ are uniform representations. For such uniform representations, existence of basechange is a well-known theorem due to Digne-Michel [DM].

Our usage of the basechange depends mostly with the Shintani character identity relating twisted character of π_E at $g \in G(E)$ with the ordinary character of π at the norm of the element g which is a well-defined conjugacy class in $G(\mathbb{F})$, denoted $\text{Nm}(g)$.

The aim of this paper is to relate the multiplicity,

$$m(\pi_1, \pi_2) = \dim \text{Hom}_{H(\mathbb{F})}(\pi_1, \pi_2),$$

with the multiplicity of the basechanged representations:

$$m(\pi_E^1, \pi_E^2) = \dim \text{Hom}_{H(E)}(\pi_E^1, \pi_E^2).$$

It is well-known that basechange allows one to simplify representations, and therefore allows one, in some cases, to calculate $m(\pi_1, \pi_2)$ from the simpler information $m(\pi_E^1, \pi_E^2)$.

This paper itself is inspired by one such application where $G = \text{GL}_{2n}(\mathbb{F})$, and $H = \text{GL}_n(E)$ sitting naturally inside G, the representation π_1 being a cuspidal representation.

1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E55.
of $G = \text{GL}_{2n}(\mathbb{F})$, and $\pi_2 = \chi$, a one-dimensional representation of $H = \text{GL}_n(\mathbb{E})$ arising from a character $\chi : \mathbb{E}^\times \to \mathbb{C}^\times$ through the determinant map $\det : \text{GL}_n(\mathbb{E}) \to \mathbb{E}^\times$. (We use the same notation χ to denote a character of \mathbb{E}^\times as well as the associated character of $\text{GL}_n(\mathbb{E})$.) The question that we wish to understand is the multiplicity $m(\pi_1, \chi)$.

Observe that over \mathbb{E}, $H(\mathbb{E}) \subset G(\mathbb{E})$ is $\text{GL}_n(\mathbb{E}) \times \text{GL}_n(\mathbb{E}) \subset \text{GL}_{2n}(\mathbb{E})$, and the representation π_1^E of $\text{GL}_{2n}(\mathbb{E})$ becomes a principal series representation $\pi \times \pi'$ induced from the (n, n) parabolic of $\text{GL}_{2n}(\mathbb{E})$ with Levi subgroup $\text{GL}_n(\mathbb{E}) \times \text{GL}_n(\mathbb{E})$, where π is the cuspidal representation of $\text{GL}_n(\mathbb{E})$ associated to the same character $\theta : \mathbb{F}^\times_{q^{2n}} \to \mathbb{C}^\times$ which is used to define the cuspidal representation π_1 of $G = \text{GL}_{2n}(\mathbb{F})$.

Basechange thus allows one to reduce a question on cuspidal representations to one on principal series representations which can be treated by ‘geometric’ methods, as we show in this paper in one illustrative case.

2. Multiplicity under basechange

We keep the notation introduced in the introduction, thus $H \subset G$ are connected algebraic groups over a finite field \mathbb{F}, π_1 an irreducible representation of $G(\mathbb{F})$ and π_2 of $H(\mathbb{F})$. We assume that both the representations π_1, π_2 have a basechange, denoted as $\tilde{\pi}_1^E, \tilde{\pi}_2^E$, to \mathbb{E}, with $\tilde{\pi}_1^E$ an irreducible representation of $G(\mathbb{E})$ which is invariant under $\langle \sigma \rangle = \text{Gal}(\mathbb{E}/\mathbb{F})$, and $\tilde{\pi}_2^E$ an irreducible representation of $H(\mathbb{E})$ which is invariant under $\langle \sigma \rangle = \text{Gal}(\mathbb{E}/\mathbb{F})$. We will fix an extension $\tilde{\pi}_1^E$ of the irreducible representation π_1^E of $G(\mathbb{E})$ to $G(\mathbb{E}) \rtimes \langle \sigma \rangle$; similarly, fix an extension $\tilde{\pi}_2^E$ of the irreducible representation π_2^E of $H(\mathbb{E})$ to $H(\mathbb{E}) \rtimes \langle \sigma \rangle$. (In fact, the Shintani character identity fixes a unique extension of π_1^E and π_2^E to the representation $\tilde{\pi}_1^E$ of $G(\mathbb{E}) \rtimes \langle \sigma \rangle$ and to the representation $\tilde{\pi}_2^E$ of $H(\mathbb{E}) \rtimes \langle \sigma \rangle$.)

The following proposition, much more general than Theorem 1 in [Pr], has the same proof as there.

Proposition 2.1. With the notation as above, we have:

$$2m(\tilde{\pi}_1^E, \tilde{\pi}_2^E) = m(\pi_1^E, \pi_2^E) + m(\pi_1, \pi_2).$$

Proof. Recall that by the Schur orthogonality theorem, if V is a representation of a finite group \mathcal{H} with character Θ, then

$$\dim V^\mathcal{H} = \frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \Theta(h).$$

We will apply the Schur orthogonality theorem to the representation V of $\mathcal{H} = H(\mathbb{E}) \rtimes \langle \sigma \rangle$ which is the restriction of the representation $(\tilde{\pi}_1^E)^\vee \otimes \tilde{\pi}_2^E$ of the group $[G(\mathbb{E}) \times H(\mathbb{E})] \rtimes \langle \sigma \rangle$ to the diagonally embedded subgroup $\mathcal{H} = H(\mathbb{E}) \rtimes \langle \sigma \rangle$.

Note that $\mathcal{H} = H(\mathbb{E}) \rtimes \langle \sigma \rangle = H(\mathbb{E}) \cup H(\mathbb{E}) \cdot \sigma$, hence the sum of characters on \mathcal{H} decomposes as a sum over $H(\mathbb{E})$ and another sum over $H(\mathbb{E}) \cdot \sigma$. By the Shintani character identity which involves the norm mapping

$$\text{Nm} : G(\mathbb{E}) \times H(\mathbb{E}) \to G(\mathbb{F}) \times H(\mathbb{F}),$$

the character of $(\tilde{\pi}_1^E)^\vee \otimes \tilde{\pi}_2^E$ at $(g, h) \cdot \sigma \in [G(\mathbb{E}) \times H(\mathbb{E})] \cdot \sigma$ is the character of the representation $(\pi_1)^\vee \otimes \pi_2$ at the element $(\text{Nm}g, \text{Nm}h) \in G(\mathbb{F}) \times H(\mathbb{F})$. The mapping $\text{Nm} : G(\mathbb{E}) \times H(\mathbb{E}) \to G(\mathbb{F}) \times H(\mathbb{F})$ has the well-known property that the cardinality
of σ-centralizer of an element $(g, h) \in G(E) \times H(E)$ is the same as the cardinality of the centralizer of $(Nm g, Nm h)$ in $G(F) \times H(F)$ (cf. Lemma 2 in [Pr]), allowing one to conclude the proposition.

Remark 2.2. Observe that since $m(\pi_1^E, \pi_2^E)$ is the dimension of the space of $H = H(E) \rtimes \langle \sigma \rangle$ invariant linear vectors in the space $\text{Hom}_C(\pi_1^E, \pi_2^E)$, and $m(\pi_1^E, \pi_2^E)$ is the dimension of the space of $H(E)$ invariant linear vectors in the same space,

$$0 \leq m(\pi_1^E, \pi_2^E) \leq m(\pi_1^E, \pi_2^E).$$

Corollary 2.3. With the notation as above,

$$m(\pi_1, \pi_2) \leq m(\pi_1^E, \pi_2^E),$$

and

$$m(\pi_1, \pi_2) \equiv m(\pi_1^E, \pi_2^E) \mod 2.$$

In particular, if $m(\pi_1^E, \pi_2^E) \leq 1$, then $m(\pi_1, \pi_2) \leq 1$, and

$$m(\pi_1^E, \pi_2^E) = m(\pi_1, \pi_2).$$

The following corollary of Proposition 2.1 is Theorem 1 in [Pr].

Corollary 2.4. Let G be a connected reductive group over a finite field F, E/F a quadratic extension, and π an irreducible uniform representation of $G(E)$, i.e., one which can be expressed as a sum of Deligne-Lusztig representations of $G(E)$ induced from tori. Then the representation π has a $G(F)$ fixed vector if and only if $\pi^\sigma \cong \pi^\vee$. If $\pi^\sigma \cong \pi^\vee$, then π has a one dimensional space of fixed vectors under $G(F)$, and the representation $\pi \otimes \pi^\sigma$ which is canonically a representation of $[G(E) \times G(E)] \rtimes \mathbb{Z}/2$ has a $G(E) \rtimes \mathbb{Z}/2$ fixed vector.

Example 2.5. Here is a simple example of the way multiplicities vary under base change as dictated by Proposition 2.1. If $P(\chi) = P(\chi^{-1})$ denotes the principal series representation of $\text{PGL}_2(F)$ associated to a character $\chi : F^\times \to \mathbb{C}^\times$, $\chi \neq 1$, then it is easy to see that for any 3 non-trivial characters $\chi_1, \chi_2, \chi_3 : F^\times \to \mathbb{C}^\times$, $m(P(\chi_1) \otimes P(\chi_2), P(\chi_3)) = 1$ except when $\chi_3 = \chi_1 \chi_2^\pm 1$ (assuming that $\chi_1 \chi_2^\pm 1 \neq 1$), and that in these exceptional cases, $m(P(\chi_1) \otimes P(\chi_2), P(\chi_3)) = 2$. On the other hand, if $D(\chi) = D(\chi^{-1})$ denotes the cuspidal representation of $\text{PGL}_2(F)$ associated to a character $\chi : E^\times/F^\times \to \mathbb{C}^\times$, $\chi \neq 1$, then it is easy to see that for any 3 non-trivial characters $\chi_1, \chi_2, \chi_3 : E^\times/F^\times \to \mathbb{C}^\times$, $m(D(\chi_1) \otimes D(\chi_2), D(\chi_3)) = 1$ except when $\chi_3 = \chi_1 \chi_2^\pm 1$ (assuming that $\chi_1 \chi_2^\pm 1 \neq 1$), and that in these exceptional cases, $m(D(\chi_1) \otimes D(\chi_2), D(\chi_3)) = 0$.

3. **Linear periods for Principal series**

Following is the main proposition of the paper proved by geometric means.

Proposition 3.1. Let π_1, π_2 be two irreducible cuspidal representations of $\text{GL}_n(F)$, $n > 1$ and χ_1, χ_2 be two characters of E^\times. Then the representation $\pi_1 \times \pi_2$ of $\text{GL}_2n(F)$ (parabolically induced from the (n, n)-parabolic) has a nonzero vector on which $\text{GL}_n(F) \times \text{GL}_n(F)$ operates by the character $\chi_1 \times \chi_2$ if and only if one of the two conditions hold:

1. $(\pi_1 \otimes \chi_1^{-1})^\vee \cong \pi_2 \otimes \chi_2^{-1}$.
(2) $n = 2m$ is even, π_1 contains a vector on which $GL_m(\mathbb{F}) \times GL_m(\mathbb{F})$ operates via $\chi_1 \times \chi_2$ and π_2 contains a vector on which $GL_m(\mathbb{F}) \times GL_m(\mathbb{F})$ operates via $\chi_1 \times \chi_2$.

The dimension of the space of vector in $\pi_1 \times \pi_2$ on which $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ operates by the character $\chi_1 \times \chi_2$ is the sum of dimensions arising from these two options; the first option clearly gives $\dim \leq 1$, and as we will see in Lemma 4.1, the second option also gives $\dim \leq 1$, therefore the dimension of the space of vectors in $\pi_1 \times \pi_2$ on which $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ operates by the character $\chi_1 \times \chi_2$ is ≤ 2. (It may be observed that both the conditions in (1) and (2) are invariant under independent exchange of χ_1 with χ_2, and of π_1 with π_2, which is certainly a necessary condition!)

Proof. We will calculate the dimension of the space of vector in $\pi_1 \times \pi_2$ on which $H = GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ operates by the character $\chi_1 \times \chi_2$ by a direct application of the Mackey theory. Recall that Mackey theory gives an answer using the double coset decomposition

$$H \backslash GL_{2n}(\mathbb{F}) / P$$

where P is the (n, n) parabolic in $GL_{2n}(\mathbb{F})$.

Suppose $V = V_1 \oplus V_2$ is the decomposition of a $2n$-dimensional vector space over \mathbb{F} as a direct sum of two n-dimensional subspaces, which realizes $H = GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ as $H = GL(V_1) \times GL(V_2)$. Let W be an n-dimensional subspace of V whose stabilizer $P = P(W)$ defines a parabolic subgroup of $GL(V)$.

Clearly, the double cosets in $H \backslash GL(V) / P(W)$ are in bijective correspondence with $GL(V)$-conjugacy classes of triples (V_1, V_2, W) of subspaces of dimension n in V with $V_1 + V_2 = V$. From this it is easy to see that the double cosets in $H \backslash GL(V) / P$ are parametrized by pairs of integers (r, s) with $0 \leq r, s \leq n$ with the only constraint that $r + s \leq n$. The pair (r, s) corresponds to the pair $(\dim(W \cap V_1), \dim(W \cap V_2))$.

To make a detailed calculation, let V_1, V_2, W, W' be subspaces, each of dimension n, of a vector space V of dimension $2n$, with the following basis vectors for the subspaces V_1, V_2, W, W' for integers $r \geq 0, s \geq 0, t \geq 0$ with $r + s + t = n$, and $W \oplus W' = V$:

$$V_1 = \{e_1, e_2, \ldots, e_r; g_1, \ldots, g_t; v_1, \ldots, v_s\},$$
$$V_2 = \{f_1, f_2, \ldots, f_s; h_1, \ldots, h_t; w_1, \ldots, w_r\},$$
$$W = \{e_1, \ldots, e_r; f_1, \ldots, f_s; g_1 + h_1, \ldots, g_t + h_t\},$$
$$W' = \{g_1, \ldots, g_t; v_1, \ldots, v_s; w_1, \ldots, w_r\}.$$

We have,

$$\dim(V_1 \cap W) = r,$$
$$\dim(V_2 \cap W) = s,$$

which, since $V_1 + V_2 = V$, implies that,

$$\dim(V_1 \cap [V_2 + W]) = n - s = r + t,$$
$$\dim(V_2 \cap [V_1 + W]) = n - r = s + t.$$

To apply the Mackey theory, we need to calculate $A = [GL(V_1) \times GL(V_2)] \cap P(W)$, and its projection B to $P(W)/U(W)$ where $U(W)$ is the unipotent radical of $P(W)$, so that this double coset gives the representation,
\[\text{Ind}_{A}^{(\text{GL}(V_1) \times \text{GL}(V_2))} \rho, \]

where \(\rho \) is the representation of the subgroup \(A \) of \(\text{GL}(V_1) \times \text{GL}(V_2) \) operating through the restriction to \(B \) of the representation \(\pi_1 \times \pi_2 \) of \(P(W)/U(W) = \text{GL}(W) \times \text{GL}(W') \).

We now calculate \(A, B \) with

\[A = [\text{GL}(V_1) \times \text{GL}(V_2)] \cap P(W) = \{ g \in \text{GL}(V)|g(V_1) = V_1, g(V_2) = V_2, g(W) = W \}. \]

Note that an element \(g \in A \) leaves \((V_1 \cap W), (V_2 \cap W), (V_1 \cap [V_2+W]), (V_2 \cap [V_1+W]) \) invariant.

To understand the subgroup \(B \), we will write an element \(g \in A \subset \text{GL}(V) \) in the basis of \(V = W \oplus W' \) afforded by concatenation of the basis for \(W, W' \) which we recall has the following basis,

\[
\begin{align*}
W &= \{e_1, \cdots, e_r; f_1, \cdots, f_s; g_1 + h_1, \cdots, g_t + h_t\}, \\
W' &= \{g_1, \cdots, g_t; v_1, \cdots, v_s; w_1, \cdots, w_r\},
\end{align*}
\]

in the form:

\[
g = \begin{pmatrix}
* & 0 & B & B & * & 0 \\
0 & * & * & 0 & 0 & * \\
0 & 0 & A & 0 & 0 & -C \\
0 & 0 & 0 & A & * & C \\
0 & 0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & *
\end{pmatrix} \in \text{GL}(V),
\]

where each entry corresponds to a block matrix, for example, the entry at place \((1,1)\) corresponds to the endomorphism of the subspace \(V_1 \cap W = \{e_1, \cdots, e_r\} \); all the entries denoted by \(A, B, C, * \) are arbitrary matrices of appropriate sizes.

It follows that in \(P(W)/U(W) = \text{GL}(W) \times \text{GL}(W') \), \(g \) looks like,

\[
g = \begin{pmatrix}
* & 0 & B \\
0 & * & * \\
0 & 0 & A \\
A & * & C \\
0 & * & 0 \\
0 & 0 & *
\end{pmatrix} \in \text{GL}(W) \times \text{GL}(W'),
\]

and once again, all the nonzero entries in the matrix are arbitrary (and invertible if necessary).

If \(0 < r + s < n \), the above subgroup of matrices contains the unipotent subgroup of a nontrivial parabolic in \(\text{GL}(W) \times \text{GL}(W') \). Therefore since we are dealing with parabolic induction arising from a cuspidal data, the double cosets represented by \((r, s)\) with \(0 < r + s < n \), do not carry any vector left invariant (up to a character) by the subgroup \(H = \text{GL}_n(F) \times \text{GL}_n(F) \).

If \(r = 0, s = 0 \), then the matrix \(g \) above simplifies to,

\[
g = \begin{pmatrix}
\alpha & 0 \\
0 & \alpha
\end{pmatrix} \in \text{GL}(W) \times \text{GL}(W'),
\]
where α represent an arbitrary matrix in $\text{GL}_n(F)$. In this case, $\text{Ind}_A^{\text{GL}(V_1) \times \text{GL}(V_2)}(\pi_1 \otimes \pi_2)|_A$, has a nonzero vector on which $\text{GL}(V_1) \times \text{GL}(V_2)$ acts by the character $\chi_1 \times \chi_2$ if and only if

$$(\pi_1 \otimes \chi_1^{-1})^\vee \cong \pi_2 \otimes \chi_2^{-1}.$$

If $r + s = n$, the matrix g above simplifies to,

$$g = \begin{pmatrix}
*_{r} & 0 \\
0 & *_{s} \\
*s & 0 \\
0 & *_{r}
\end{pmatrix} \in \text{GL}(W) \times \text{GL}(W'),$$

where $*_{r}$, respectively $*_{s}$, represent an arbitrary matrix in $\text{GL}_r(F)$, respectively in $\text{GL}_s(F)$.

Appealing now to the well-known result that a cuspidal representation π of $\text{GL}_n(F)$ has a nonzero vector on which the Levi subgroup $\text{GL}_r(F) \times \text{GL}_s(F)$ for $r + s = n$ acts by a character only if $r = s$, in particular n must be even, see for example Proposition 6.10 of [Se], the proof of the proposition is completed after having observed that a block diagonal matrix

$$g = \begin{pmatrix}
A & B \\
C & D
\end{pmatrix} \in H = \text{GL}_n(F) \times \text{GL}_n(F),$$

(where each of the matrices A, B, C, D are of size $n/2$), when considered as an element of $\text{GL}(W) \times \text{GL}(W')$, looks like:

$$g = \begin{pmatrix}
A & C \\
B & D
\end{pmatrix}.$$

\[\square\]

4. APPLICATION OF BASECHANGE TO LINEAR PERIODS

In this section we use the method of basechange developed in section 2 to study multiplicity questions in conjunction with the result obtained for principal series in the last section, to derive such a result for cuspidal representations.

Lemma 4.1. Let π be an irreducible cuspidal representation of $\text{GL}_{2n}(F), n > 1$ and χ_1, χ_2 be two characters of F^\times. Then the space of vectors in π on which $\text{GL}_n(F) \times \text{GL}_n(F)$ operates by the character $\chi_1 \times \chi_2$ is of dimension ≤ 1.

Proof. We will prove the lemma separately for n odd and n even.

Case 1: n odd. By Proposition 3.1 applied to the basechanged representation π^E, since case (2) in the assertion of the Proposition 3.1 does not arise, we find that

$$m(\pi^E, \chi_1^E \times \chi_2^E) \leq 1,$$
and therefore by Corollary 2.3,
\[m(\pi, \chi_1 \times \chi_2) \leq 1. \]

Case 2: \(n \) even. In this case, as we will notice in Proposition 4.3 applied to \(\pi^E \), case (1) in the assertion of the Proposition 3.1 does not arise. Hence \(m(\pi^E, \chi_1^E \times \chi_2^E) \) arises only through a contribution coming from case (2) in the assertion of the Proposition 3.1, which we can assume is \(\leq 1 \), by an inductive argument on \(n \), therefore
\[m(\pi^E, \chi_1^E \times \chi_2^E) \leq 1, \]
and therefore by Corollary 2.3,
\[m(\pi, \chi_1 \times \chi_2) \leq 1. \]

The proof of the lemma is therefore completed. \(\square \)

Exactly the same proof gives a proof of the following Lemma.

Lemma 4.2. Let \(\pi \) be an irreducible cuspidal representation of \(\text{GL}_{2n}(\mathbb{F}) \), \(n > 1 \) and \(\chi \) a character of \(\mathbb{E}^\times \). Then the space of vectors in \(\pi \) on which \(\text{GL}_n(\mathbb{E}) \) operates by the character \(\chi \) is of dimension \(\leq 1 \).

The following proposition can be considered as a contribution towards depth-zero case of Conjecture 1 in [PT].

Proposition 4.3. Let \(\pi = \pi(\theta) \) be an irreducible cuspidal representation of \(G = \text{GL}_{2n}(\mathbb{F}) \), \(n > 1 \). Assume that \(\pi \) arises from a character \(\theta : \mathbb{F}_{q^n}^\times \to \mathbb{C}^\times \). Let \(\chi : \mathbb{E}^\times \to \mathbb{C}^\times \), a character, thought of as a character of \(H = \text{GL}_n(\mathbb{E}) \) through the determinant map \(\text{det} : \text{GL}_n(\mathbb{E}) \to \mathbb{C}^\times \). Then the representation \(\pi \) of \(\text{GL}_{2n}(\mathbb{F}) \) has a nonzero vector on which \(\text{GL}_n(\mathbb{E}) \) operates by \(\chi \) if and only if \(\theta \) restricted to \(\mathbb{E}^\times \) arises from \(\chi \) restricted to \(\mathbb{F}^\times \) through the norm mapping \(\mathbb{F}_{q^n}^\times \to \mathbb{F}^\times \). In particular the condition that the character \(\chi \circ \text{det} \) of \(\text{GL}_n(\mathbb{E}) \), for \(\chi : \mathbb{E}^\times \to \mathbb{C}^\times \), appears in \(\pi \) depends only on \(\chi \) restricted to \(\mathbb{F}^\times \).

The dimension of the space of linear forms when nonzero is 1.

Proof: The proof of the proposition will be based on Proposition 2.1 relating multiplicities under basechange, and the calculation done in Proposition 3.1 regarding the multiplicity for a principal series representation. By Proposition 2.1,
\[
2m(\bar{\pi}^E, \bar{\chi}^E) = m(\pi^E, \chi^E) + m(\pi, \chi)
\]
where \(\chi : \mathbb{E}^\times \to \mathbb{C}^\times \), and \(\chi^E = \chi \times \chi^\sigma : \mathbb{E}^\times \times \mathbb{E}^\times \to \mathbb{C}^\times \), and we know from Lemma 4.1 that \(m(\pi^E, \chi^E) \leq 1 \), thus the only option we have at our disposal is that \(m(\pi^E, \chi^E) = m(\pi, \chi) \). It suffices to calculate when \(m(\pi^E, \chi^E) = 1 \), which is what we do in the rest of the proof.

Suppose that the basechange \(\pi^E \) of \(\pi \) to \(\mathbb{E} \) is \(\pi^E = \pi_1 \times \pi_1^\sigma \) for \(\pi_1 \) a cuspidal representation of \(\text{GL}_n(\mathbb{E}) \), where \(\sigma \) is the Galois action on \(\text{GL}_n(\mathbb{E}) \). If \(\pi \) arises from a character \(\theta : \mathbb{F}_{q^n}^\times \to \mathbb{C}^\times \), then considering the field extension \(\mathbb{F}_{q^n}/\mathbb{E} \), the character \(\theta : \mathbb{F}_{q^n}^\times \to \mathbb{C}^\times \) also gives rise to a cuspidal representation \(\pi_1 = \pi_1(\theta) \) of \(\text{GL}_n(\mathbb{E}) \), defining the representation \(\pi_1 \).

We analyze the condition appearing in Proposition 3.1:
\[
(\pi_1 \otimes \chi^{-1})^\sigma \cong (\pi_1 \otimes \chi^{-1})^\sigma,
\]

(1)
using the fact that cuspidal representations \(\pi_1(\theta_1) \) and \(\pi_2(\theta_2) \) of \(\text{GL}_n(E) \) arising out of characters \(\theta_1, \theta_2 : \mathbb{F}_{q^{2n}}^\times \to \mathbb{C}^\times \) are isomorphic if and only if for some \(\tau \in \text{Gal}(\mathbb{F}_{q^{2n}}/\mathbb{F}) \),
\(\tau(\theta_1) = \theta_2 \). We have been using \(\sigma \) for the nontrivial element of \(\text{Gal}(E/\mathbb{F}) \), but now we will also use \(\sigma \) to denote any element of \(\text{Gal}(\mathbb{F}_{q^{2n}}/\mathbb{F}) \) which projects to this nontrivial element of \(\text{Gal}(E/\mathbb{F}) \). The isomorphism in (1) implies that for some \(\tau \in \text{Gal}(\mathbb{F}_{q^{2n}}/\mathbb{E}) \):

\[
(\theta \cdot \theta^\tau) = (\chi \cdot \chi^\sigma)_{\mathbb{F}_{q^{2n}}},
\]

where \(\chi_{\mathbb{F}_{q^{2n}}} \) denotes the character of \(\mathbb{F}_{q^{2n}}^\times \) arising from the character \(\chi : \mathbb{E}^\times \to \mathbb{C}^\times \) via the norm mapping \(\mathbb{F}_{q^{2n}}^\times \to \mathbb{E}^\times \).

Applying \(\tau \sigma \) to this equality, we have:

\[
(\theta^\tau \cdot \theta^{\tau^2\sigma^2}) = (\chi \cdot \chi^\sigma)_{\mathbb{F}_{q^{2n}}},
\]

therefore these two equations whose right hand sides are the same, give:

\[
\theta = \theta^{\tau^2\sigma^2}.
\]

Since \(\theta \) gives rise to a cuspidal representation of \(\text{GL}_n(E) \), all its Galois conjugate under \(\text{Gal}(\mathbb{F}_{q^{2n}}/\mathbb{E}) \), are distinct, and therefore equation (4) implies that,

\[
(\tau \sigma)^2 = 1,
\]

and therefore, \(n \) must be an odd integer.

Conversely, if \(n \) is odd, we can then take \(\sigma \) to be the unique element of \(\text{Gal}(\mathbb{F}_{q^{2n}}/\mathbb{F}) \) of order 2 (which automatically projects to the nontrivial element of \(\text{Gal}(\mathbb{E}/\mathbb{F}) \)) whose fixed field defines \(\mathbb{F}_{q^n} \). Since \(n \) is odd, \(\tau \) has odd order, and therefore by equation (4), \(\tau = 1 \). In this case, putting \(\tau = 1 \) in the equality in equation (2), we find \((\theta \cdot \theta^\sigma) = (\chi \cdot \chi^\sigma)_{\mathbb{F}_{q^{2n}}} \), which means that \(\theta \) restricted to \(\mathbb{F}_{q^n}^\times \), arises from \(\chi \) restricted to \(\mathbb{F}^\times \) through the norm mapping \(\mathbb{F}^\times_{q^n} \to \mathbb{F}^\times \), allowing us to complete the proof of the proposition for \(n \) odd.

If \(n \) is even, we have just proved that we cannot have an isomorphism:

\[
(\pi_1 \otimes \chi^{-1})^\vee \not\cong (\pi_1 \otimes \chi^{-1})^\sigma,
\]

and therefore by Proposition 3.1, for the representation \(\pi^E = \pi_1 \times \pi_1^\sigma \) to contain a nonzero vector on which \(\text{GL}_n(E) \times \text{GL}_n(E) \) operates by \(\chi \times \chi^\sigma \), the representation \(\pi_1 \) of \(\text{GL}_n(E) \) must contain a nonzero vector on which \(\text{GL}_{n/2}(E) \times \text{GL}_{n/2}(E) \) operates by \(\chi \times \chi^\sigma \).

Let \(E_2 \) be the quadratic extension of \(E \), and \(\pi_1^{E_2} \) the basechange of the cuspidal representation \(\pi_1 \) of \(\text{GL}_n(E) \) to \(\text{GL}_n(E_2) \). By the multiplicity one result in Lemma 4.1, the representation \(\pi_1 \) of \(\text{GL}_n(E) \) has a nonzero vector on which \(\text{GL}_{n/2}(E) \times \text{GL}_{n/2}(E) \) operates by \(\chi \times \chi^\sigma \) if and only if \(\pi_1^{E_2} \), a representation of \(\text{GL}_n(E_2) \) has a nonzero vector on which \(\text{GL}_{n/2}(E_2) \times \text{GL}_{n/2}(E_2) \) operates by \((\chi \times \chi^\sigma)^{E_2} \). We can apply Proposition 3.1 to analyze this. If \(n/2 \) is odd, the proof of the proposition is completed, else we continue, and are done by descending induction.

\textbf{Corollary 4.4.} An irreducible cuspidal representation \(\pi = \pi(\theta) \) of \(\text{GL}_{2n}(\mathbb{F}) \) arising from a character \(\theta : \mathbb{F}_{q^{2n}}^\times \to \mathbb{C}^\times \) is distinguished by \(\text{GL}_n(E) \) (i.e., has a vector fixed by \(\text{GL}_n(E) \)) if and only if one of the equivalent conditions hold:

1. \(\theta \) restricted to \(\mathbb{F}^\times_{q^n} \) is trivial,
2. the representation \(\pi \) of \(G = \text{GL}_{2n}(\mathbb{F}) \) is self-dual.
Further, for a character \(\chi : E^\times \to \mathbb{C}^\times \), an irreducible cuspidal representation \(\pi \) of \(\text{GL}_{2n}(F) \) contains the character \(\chi \circ \det : \text{GL}_n(E) \to \mathbb{C}^\times \) if and only if,

\[
\pi \cong \pi^\vee \otimes \chi|_{E^\times}.
\]

Acknowledgement: The author must thank N. Matringe for pointing out a mistake in an earlier version of Proposition 3.1.

REFERENCES

[DM] F. Digne, J. Michel: *Fonctions L des variétés de Deligne-Lusztig et descente de Shintani*. Mém. Soc. Math. France (N.S.) No. 20 (1985).

[Pr] D. Prasad, *Distinguished representations for quadratic extensions*, Compositio Math., vol. 119(3), 343-354 (1999).

[PT] D. Prasad and R. Takloo-Bighash, *Bessel models for GSp(4)*; Crelle Journal, vol. 655, 189-243 (2011).

[Se] V. Secherre, *Supercuspidal representations of GL_n(F) distinguished by a Galois involution*, to appear in Algebra and Number theory (2019).

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI-400076

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, COLABA, MUMBAI-400005.

E-mail address: prasad.dipendra@gmail.com