Terpenes as bacterial efflux pump inhibitors: A systematic review

Kaio Jefté Santos De Oliveira Dias¹, Gustavo Marinho Miranda¹, Jonatas Reis Bessa², Ana Carolina Justino De Araújo³, Priscilla Ramos Freitas³, Ray Silva De Almeida³, Cícera Laura Roque Paulo³, José Bezerra De Araújo Neto³, Henrique D. M. Coutinho³ and Jaime Ribeiro-Filho¹,4*

¹Laboratory of Genetics and Translational Hematology, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil, 2Institute of Psychology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil, 3Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil, 4Fiocruz Ceará, Oswaldo Cruz Foundation (FIOCRUZ), Eusébio, Ceará, Brazil

OPEN ACCESS

Managing antibiotic resistance is a significant challenge in modern pharmacotherapy. While molecular analyses have identified efflux pump expression as an essential mechanism underlying multidrug resistance, the targeted drug development has occurred slower. Thus, considering the verification that terpenes can enhance the activity of antibiotics against resistant bacteria, the present study gathered evidence pointing to these natural compounds as bacterial efflux pump inhibitors. A systematic search for manuscripts published between January 2007 and January 2022 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Terpene” AND “Efﬂux pump” AND “Bacteria.” From a total of 101 articles found in the initial search, 41 were included in this review. Seventy-five different terpenes, 63 bacterial strains, and 22 different efflux pumps were reported, with carvacrol, Staphylococcus aureus SA-1199B, and NorA appearing most frequently mentioned terpene, bacterial strain, and efflux pump (EP), respectively. The Chi-Squared analysis indicated that terpenes are significantly effective EP inhibitors in Gram-positive and Gram-negative strains, with the inhibitory frequency significantly higher in Gram-positive strains. The results of the present review suggest that terpenes are significant efflux pump inhibitors and, as such, can be used in drug development targeting the combat of antibacterial resistance.

KEYWORDS
terpenes, efflux pumps, antibiotic resistance, natural products, systematic review
Introduction

The introduction of antibiotics in the medical scenario in the 1940s dramatically reduced mortality rates due to bacterial infections. It revolutionized the treatment of diseases requiring surgical procedures, significantly improving life expectancy worldwide (Habboush and Guzman, 2022). On the other hand, the increased access without proper sanitary control has resulted in irrational antibiotic use, significantly contributing to the development of antibiotic resistance (Laxminarayan et al., 2016). Epidemiological studies have revealed that the number of deaths yearly from antibiotic resistance worldwide is approximately 700,000. Additionally, it is estimated that this number could rise to 10 million by 2050 if significant improvements in antibiotic drug development are not achieved (Willyard, 2017). Consequently, the management of antimicrobial resistance, as well as the reduction in the associated morbidity and mortality rates, currently represent a significant challenge in public health care (Reygaert, 2018; Sharma et al., 2020).

Antibiotic resistance can be defined as the process by which bacteria evolve, causing antibiotics to become less effective against infections they were developed to treat (Murray et al., 2022). As a significantly complex phenomenon, antibiotic resistance can arise from and be affected by various factors, among which bacteria-antibiotic interaction, mutation, and transmission rates in the population, are highlighted (Holmes et al., 2016). Accordingly, bacterial resistance may be due to Intrinsic Resistance, Acquired Resistance, Genetic Change, or DNA Transfer (Habboush and Guzman, 2022).

Despite the increasing variety of molecular mechanisms allowing bacteria to overcome the action of an antibiotic, the expression of efflux proteins stands out for its widespread occurrence among resistant pathogens (Munita and Arias, 2016; Chatterjee et al., 2018). The antibacterial resistance mediated by efflux pumps (EPs) consists of the lack of effectiveness of antibiotics due to their inability to reach the molecular target at an inhibitory concentration (Tortora, 2012; Blanco et al., 2016). While some efflux pumps are substrate-specific, others can mediate the active transport of several compounds, contributing to the development of multidrug resistance (Van Bambeke et al., 2000; Piddock, 2006). These proteins are classified according to their composition, energy source, and the number of transmembrane regions (Sun et al., 2014) and can be grouped into five major families: ATP binding cassette (ABC), small multidrug resistance (SMR), multidrug and toxin extrusion (MATE), major facilitator superfamily (MFS), and resistance nodulation cell division (RND). Except for RND, which is found only in Gram-negative bacteria, all others are present in Gram-positive and Gram-negative bacteria (Pathania et al., 2019).

Cell wall biosynthesis inhibitors (CBIs), such as β-lactams and glycopeptide antibiotics, and cell membrane inhibitors, such as polymyxins and daptomycin, stand out as the most extensively used antibiotic classes (Epand et al., 2016; Sarkar et al., 2017). However, an increasing number of bacterial strains have developed resistance against these drugs (Schwarz et al., 2017; Singh et al., 2017). Therefore, drug research and development targeting resistance mechanisms are highly prioritized (Shrivastava et al., 2018). In this context, consistent evidence has demonstrated that natural products represent promising sources of new bioactive compounds (Huang et al., 2021), among which terpenes stand out for their promising antibacterial properties (Swamy et al., 2016; Mahizan et al., 2019).

A large body of research conducted by scientists all over the world, among which our group is included, has demonstrated that terpenes such as safrole, α-pinene, thymol, carvacrol, limonene, and eugenol are intensely active against Multiple Drug Resistance (MDR) strains (Barbieri et al., 2017; Limaverde et al., 2017; Oliveira-Tintino et al., 2018; de Figueirêdo et al., 2019; Almeida et al., 2020; Araújo et al., 2020; Freitas et al., 2020; Muniz et al., 2021). In addition, it has been demonstrated that these compounds can enhance the activity of antibiotics, which is partially due to their ability to inhibit the activity of efflux pumps in resistant bacteria (Barbosa et al., 2021).

Therefore, the present systematic review gathered evidence of terpenes as bacterial efflux pump inhibitors, discussing their potential impact on antibiotic resistance-targeted drug development.

Methods

The present review was conducted from a systematic search of manuscripts in four scientific databases (Pubmed, Medline, Scopus, and EMBASE) using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol (Page et al., 2021) and the following search terms: “Terpene”; and “Efflux pump”; and “Bacteria.”

This work included original articles published between January 2007 and January 2022 addressing the potential of fully characterized terpenes as potential bacterial efflux pump inhibitors through in vivo, in vitro, and in silico research. Articles randomly found during the theoretical reference search which met the inclusion criteria were also included. The exclusion criteria were the following: 1) studies demonstrating the effects of terpenes as components of essential oils, extracts, or other complex formulations; 2) articles investigating the participation of efflux pumps in the mechanism of resistance to terpenes.

Following these eligibility criteria, the search was conducted by KJSOD and ACJA. Further, JRF and JRC analyzed and filtered the eligible studies based on their abstracts. This procedure was
executed using the Rayyan—Intelligent Systematic Review tool (Ouzzani et al., 2016).

The initial search found 101 articles, among which 24 were duplicated. Following the title and abstract analysis, 60 articles were considered eligible for the study. These manuscripts were then double-checked by full-text reading, and 41 articles were included in the final version of this review (Figure 1). The primary data of each study was organized into a table describing the reference, terpene, bacterial strain, efflux pump, and main findings (Table 1).

Additionally, IBM SPSS Statistics for Windows, Version 24.0 (IBM Corp. Released, 2016), and Jeffrey Amazing Statistic Program—JASP Team. (2022) were used to carry out a descriptive analysis and its plots of the frequency of the following variables: Year of publication, type of terpene, bacterial strain, and type of efflux pump. Finally, a binary logistic regression was computed in which the effect of the efflux pumps inhibition was the dependent variable, and the Gram classification, i.e., Gram-negative and Gram-positive was the independent variable.

Results and discussion

Several proteins have been targeted in studies evaluating the activity of new antibacterial compounds, among which the following are highlighted: 1) In the SMR family, the Smr/ QacC and EmrE proteins, identified in *Staphylococcus aureus* and *Escherichia coli*, respectively; 2) In the MFS family, the NorA and TetK proteins, expressed by *Staphylococcus aureus*; 3) In the RND family, the AcrB protein, found in *Escherichia coli*; 4) In the MATE family, the NorM protein, expressed by *Neisseria meningitidis*, and 5) In the ABC family, the MacB and MsbA efflux proteins, both identified in *Escherichia coli* (Borges-Walmsley et al., 2003).

The search for efflux pump inhibitors has identified a variety of natural products with the potential to be used in antibacterial drug development, among which terpenes, flavonoids, tannins, and alkaloids stand out for their notable pharmacological activity. However, the clinical development of many of these compounds is limited mainly due to their significant toxicity (Stavri et al., 2007; Prasch and Bucar, 2015). Nevertheless, studies conducted by ours and other groups have highlighted the therapeutic potential of terpenes in the context of antibiotic resistance, emphasizing their role as efflux pump inhibitors (Stavri et al., 2007). Additionally, studies have proven that monoterpenes can affect the structure and function of the bacterial membrane by interacting with membrane components, including polysaccharides, fatty acids, phospholipids, and proteins, facilitating the intracellular action of antibiotics (Sikkema et al., 1994).

In order to guide future research targeting antibacterial drug development, the present review systematically analyzed the inhibitory effects of terpenes against bacterial efflux pumps, reporting the frequency of terpenes, bacterial strains, and efflux pumps (Figure 2). In addition, the results obtained by these studies are described in Table 1. Considering the 41 articles selected for the present review, carvacrol (11.7%), thymol (7.8%), and estragole (5.2%) were the most frequently studied compounds (Figure 2A, Figure 3), demonstrating a prevalence of monoterpenes in the search for natural products as efflux pump inhibitors (the complete analysis of these results is expressed in Supplementary Materials). *Staphylococcus aureus* was the most frequently examined bacterial species in studies of the EPI activities of terpenes (Figure 2B), with emphasis on the following strains: *Staphylococcus aureus* SA-1199B (13.1%), *Staphylococcus aureus* RN-4220 (7.1%), and *Staphylococcus aureus* IS-58 (7.1%) (Supplementary Material).

Concerning the bacterial efflux pumps, the most frequently reported proteins were NorA (24.2%), TetK (12.9%), and MepA (9.7%), corroborating the above-described data on the frequency of bacterial strains. However, it is noteworthy that many studies did not report the type of efflux pump expressed by the tested bacterial strains, which impaired the establishment of a more precise analysis. Most of these studies were published in the last 3 years (Supplementary Material), demonstrating an increasing interest in this topic. It is worth mentioning that a significant number of studies reported the MsrA protein as a target for terpenes. However, strong evidence shows that as a member of the ABC-F family, MsrA proteins are not EP. Instead, they mediate resistance to ribosome targeting antibiotics via ribosomal protection (Sharkey et al., 2016; Su et al., 2018; Murina et al., 2019; Wilson et al., 2020). Therefore, although we have maintained these articles in the review, we emphasize the importance of critically interpreting their conclusions.
TABLE 1 Summary of the selected studies and their main findings.

Authors	Terpenes	Strain	Efflux Pumps	Results
Almeida et al. (2020)	Safrole	Staphylococcus aureus SA-1199B	NorA	Sub-inhibitory concentrations of safrole significantly reduced the MIC of E. coli norfl Roxacin and ciprofloxacin against the S. aureus strain.
		Staphylococcus aureus K2068	MepA	The results showed that both carvacrol and thymol caused a significant reduction in the MIC of Norfl Roxacin and E. coli in S. aureus strains carrying the NorA efflux pump and docking analysis suggested that these terpenes act as competitive NorA inhibitors.
Barbosa et al. (2021)	Carvacrol	Staphylococcus aureus SA-1199B	NorA	The results showed that both carvacrol and thymol caused a significant reduction in the MIC of Norfl Roxacin and E. coli in S. aureus strains carrying the NorA efflux pump and docking analysis suggested that these terpenes act as competitive NorA inhibitors.
	Thymol	Staphylococcus aureus SA-1199B	NorA	The results showed that both carvacrol and thymol caused a significant reduction in the MIC of Norfl Roxacin and E. coli in S. aureus strains carrying the NorA efflux pump and docking analysis suggested that these terpenes act as competitive NorA inhibitors.
Bezerra et al. (2020)	Estragol	Staphylococcus aureus RN-4220	MsrA	The association between estragole and E. coli resulted in antagonism, suggesting that the terpene does not act as an EP inhibitor.
Cirino et al. (2014)	Carvacrol	Staphylococcus aureus SA-1199B	NorA	Both terpenes increased the inhibitory effects of tetracycline against S. aureus strains overexpressing the TetK, NorA, and MsrA proteins, suggesting that they may act as EPI.
	Thymol	Staphylococcus aureus IS-58	TetK	The expression of the norA gene, which encodes proteins of the RND family, was unregulated following the treatment with terpinen-4-ol, providing a potential mechanism of EP-mediated resistance to terpenes by S. aureus strain SH 1000.
Coelho et al. (2016)	Nerol	Staphylococcus aureus SA-1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
	3,7-Dimethyl-octanol Estragole	Staphylococcus aureus SA-1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
Cruz et al. (2020)	α-Bisabolol	Staphylococcus aureus SA-1199B	NorA	α-Bisabolol reduced the MIC of tetracycline and norfl Roxacin to clinically relevant values in S. aureus strains that overexpressed the NorA and TetK EP. The inclusion complex α-bisabolol β-CD showed lower modulating activity.
		Staphylococcus aureus IS-58	TetK	The expression of the norA gene, which encodes proteins of the RND family, was unregulated following the treatment with terpinen-4-ol, providing a potential mechanism of EP-mediated resistance to terpenes by S. aureus strain SH 1000.
Cuaron et al. (2013)	Terpinen-4-ol	Staphylococcus aureus SH1000	RND	The association between estragole and E. coli resulted in synergism against S. aureus 1199B and S. aureus K2068, suggesting this terpene could inhibit the NorA and MepA proteins in these strains.
Da Costa et al. (2021)	Estragole	Staphylococcus aureus SA-1199B	NorA	The association between estragole and E. coli resulted in synergism against S. aureus 1199B and S. aureus K2068, suggesting this terpene could inhibit the NorA and MepA proteins in these strains.
		Staphylococcus aureus K2068	MepA	The association between estragole and E. coli resulted in synergism against S. aureus 1199B and S. aureus K2068, suggesting this terpene could inhibit the NorA and MepA proteins in these strains.
Dwivedi et al. (2015)	3-O-acetyl-urs-12- en-28-isopropyl ester (UA4)	E. coli KG4	AcrAB- ToIC	The MIC of tetracycline and E. coli overexpressed the NorA and TetK EP. The inclusion complex α-bisabolol β-CD showed lower modulating activity.
	3-O-acetylurs-12- en-28-n-butyl ester (UA-5)	Staphylococcus aureus SA-1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
Espinoza et al. (2019)	Epicubenol	Staphylococcus aureus K2378	NorA	Among the testing compounds, only 15-copaenol and epicubenol inhibited E. coli efflux by the K2378 strain of S. aureus.
	15-Copaenol (60X)	Staphylococcus aureus SA-1199B	NorA	The association between estragole and E. coli resulted in synergism against S. aureus 1199B and S. aureus K2068, suggesting this terpene could inhibit the NorA and MepA proteins in these strains.
	15-Copaenyl acetate (6AC)	Staphylococcus aureus SA-1199B	NorA	The association between estragole and E. coli resulted in synergism against S. aureus 1199B and S. aureus K2068, suggesting this terpene could inhibit the NorA and MepA proteins in these strains.
Fadli et al. (2014)	Carvacrol	Staphylococcus aureus SA-1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
	Thymol	Staphylococcus aureus SA-1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
de Figueiredo et al. (2019)	(4R,14S)-4a,14a-dihydroxydolast-1 (15)-8-diene	Staphylococcus aureus 1199B	NorA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
	(4R,7R,14S)-4a,7a-diacontoxy-14aa-Hydroxydolast-1 (15)-8-diene	Staphylococcus aureus RN-4220	MsrA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
	(4S,9R,14S)-4a-acroxyl-9β,14aa-Dihydroxydolast-1 (15)-7-diene	Staphylococcus aureus IS-58	TetK	The expression of the norA gene, which encodes proteins of the RND family, was unregulated following the treatment with terpinen-4-ol, providing a potential mechanism of EP-mediated resistance to terpenes by S. aureus strain SH 1000.
Freitas et al. (2020)	α-Pinene	Staphylococcus aureus RN-4220	MsrA	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.
		Staphylococcus aureus IS-58	TetK	All these bioactive terpenes, especially nerol, enhanced the activity of norfl Roxacin against the S. aureus strain 1199B (NorA overexpression), which was interpreted as a result of EP inhibition.

(Continued on following page)
TABLE 1 (Continued) Summary of the selected studies and their main findings.

Authors	Terpenes	Strain	Efflux Pumps	Results
Freitas et al. (2021)	Limonene	Staphylococcus aureus K2068	MepA	Limonene association decreased the MIC of EtBr and ciprofloxacin in addition to showing favorable interaction with the active site of MepA in silico. The inhibitory activity was confirmed through analysis of EtBr fluorescence emission intensity
Gupta et al. (2016)	16a-hydroxycleroda-3,13- Z-dien-15,16-olide	Staphylococcus aureus MRSA-ST2071	NotA, NorB, NorC, MdeA, and MepA genes	This diterpene significantly inhibited EtBr efflux and extended the antibiotic effect of fluoroquinolones in addition to inhibiting the expression of NorA, NorB, NorC, MdeA, and MepA genes
Gupta et al. (2017)	Citral	Staphylococcus aureus MRSA-ST2071	Not reported	Citral showed a potential EP inhibitory capacity, as indicated by the decreased fluorescence due to reduced EtBr extrusion
Jang and Eom. (2019)	a-humulene	Bacteroides fragilis WT-ETBF	RND	a-humulene induced transcriptional changes in the Bacteroides fragilis, resulting in a reduced expression of the bmeB1 and bmeB2 genes, which indicates inhibition of the RND EP expression in B. fragilis strains
Jin et al. (2010)	Farnesol	Mycobacterium smegmatis mc2 155 ATCC 700084	Not reported	Farnesol decreased the MIC of EtBr and rifampicin and increased the accumulation of EtBr in M. smegmatis
Kim et al. (2018)	Celastrol	Stenotrophomonas maltophilia ATCC 13637	RND	Celastrol significantly inhibited the expression of the smegmatis gene in both strains of S. maltophilia. Such an effect was associated with the attenuation of biofilm formation, swimming motility, and protease secretion
Kim et al. (2019)	Zerumbone	Bacteroides fragilis WT-ETBF	RND	In the WT-ETBF and etETBF strains, zerumbone reduced the bmeB12 gene expression levels. However, in the WT-NTBF, no significant modulation of gene expression was observed
Li et al. (2011)	Artesunate	Escherichia coli ATCC 35218	AcrAB-ToC	The terpenoid did not show an antibacterial action but reduced the antibiotic MICs when associated with penicillin, cephramide, and ampicillin/sulbactam
Limaverde et al. (2017)	a-terpinene	Staphylococcus aureus IS-S8	TetK	The terpene geraniol increased the effectiveness of β-lactam and quinolone antibiotics, decreasing the MICs of ampicillin, penicillin, and norfloxacin against E. aerogenes strain overexpressing the AcrAB-Tolc efflux pump
Lorentz et al. (2009)	Geraniol	Enterobacter aerogenes EAEP289	AcrAB-ToC	The terpene geraniol increased the effectiveness of β-lactam and quinolone antibiotics, decreasing the MICs of ampicillin, penicillin, and norfloxacin against E. aerogenes strain overexpressing the AcrAB-Tolc efflux pump
Mahmoudi et al. (2020)	Menthol	Acinetobacter baumannii	AdeABC	Menthol decreased the antibiotic resistance observed against imipenem and ciprofloxacin in A. baumannii isolates overexpressing genes adeA, adeB, and adeC, which encode efflux pumps
Martins et al. (2011)	Uvaol	Staphylococcus aureus MRSA CO11A	Not reported	These terpenes significantly increased the amount of fluorescence of EtBr accumulated in the evaluated strains, in addition to decreasing the antibiotic MIC. Among the compounds, uvaol presented the most potent inhibitory activity
Müller et al. (2017)	β-Amyrin, oleanolic acid	Enteroococcus faecalis AG100fET8		
Miladi et al. (2017)	Carvacrol, Eugenol, p-cymene, Thymol, γ-terpinene	Staphylococcus aureus ATCC 25923	Not reported	All these compounds increased the accumulation of EtBr in bacterial cells, indicating efflux pump inhibition. In addition, these compounds increased the effectiveness of antibiotics and reduced the accumulation of biofilm, which confirms their antibacterial activity

(Continued on following page)
Authors	Terpenes	Strain	Efflux Pumps	Results
Montagu et al. (2016)	Carvacrol	*Acinetobacter baumannii*	Not reported	Both carvacrol and its lipid nanocapsule formulation presented a synergistic effect with the efflux inhibitor CCCP, indicating interference with the efflux mechanisms of *A. baumannii*
Mouwakeh et al. (2019)	Carvacrol, p-cymene, Thymoquinone	*Staphylococcus aureus* ATCC 25923, *Staphylococcus aureus* MRSA 272123	MepA	Carvacrol induced the accumulation of EtBr in both strains of *S. aureus*. Thymoquinone and p-cymene down-regulated and upregulated, respectively, the expression of MepA in the ATCC strain, whereas in the MRSA strain, the expression of these genes was down-regulated by p-cymene alone
Muniz et al. (2021)	Eugenol, Allylbenzene, Estragole, Isoeugenol, 4-allyl-2,6-dimethoxyphenol	*Staphylococcus aureus* 1,199B, *Staphylococcus aureus* 1199B	NorA	Eugenol, as well as its natural and synthetic derivatives, enhanced the effectiveness of norfloxacain and reduced the MIC of EtBr against NorA expressing *S. aureus* 1199B strain, which corroborated the favorable interaction between 4-allyl-2,6-dimethoxyphenol and NorA demonstrated in *s in vitro*
Oyeda-Sana et al. (2012)	Carnosic acid	*Enterococcus faecalis* ATCC 29212, *Staphylococcus* aureus ATCC 25923	Not reported	Carnosic acid inhibited the uptake/efflux of EtBr, which correlated with the induction of change in the membrane potential gradient in *S. aureus* and *E. faecalis*
Oliveira et al. (2021)	α, β-amyrin, Carnosic acid	*Staphylococcus aureus* 1199B, *Staphylococcus aureus* K2068	NorA, MepA	α, β-amyrin showed synergistic effects with CCCP against *S. aureus* strains. Also, in *s in vitro* testing demonstrated that this compound has a higher affinity to the MepA and NorA binding sites than standard antibiotics such as ciprofloxacin and norfloxacain
Ramalhete et al. (2011)	Balsaminol A, Balsaminol F, Balsaminogenin A, Balsaminogenin B, Balsaminoside A, Karavlagenin C	*Staphylococcus aureus* COA, *Enterococcus faecalis* ATCC 29212, *Salmonella enterica* Typhimurium 5408, *Salmonella enterica* Typhimurium 5408CIP, *Escherichia coli* AG100, *Escherichia coli* AG100CIP	NorA, AcrAB-ToIC	None of the tested compounds presented a significant inhibitory activity against the efflux system of the *S. typhimurium* and *E. coli* strains. However, they all promoted the accumulation of EtBr in MRSA Coloxa and *E. faecalis*, indicating that these terpenes, especially balsaminogenin B, act as EPI in Gram-positive strains
Scherf et al. (2020)	Terpinolene	*Staphylococcus aureus* K4100	QacC	The association of terpinolene with EtBr promoted a reduction in the MIC of the EPI, pointing to a potentiating activity by oxacillin, which suggests EP inhibition–mediated synergism
Silveira et al. (2020)	Carvacrol, Thymol	*Staphylococcus aureus* IS-58	TetK	No evidence of EP inhibition in the IS-58 strain of *S. aureus* was observed following the association of thymol or carvacrol with EtBr
Smith et al. (2007a)	Ferruginol, 5-epipsiferol	*Staphylococcus aureus* XU212, *Staphylococcus aureus* RN4220	Tetk and MecA, NorA	Ferruginol and 5-epipsiferol potentiated the activity of standard antibiotics against these efflux system–expressing strains of *S. aureus*. Moreover, ferruginol inhibited EtBr efflux in the 1199B strain, which may involve inhibition of the NorA efflux pump
Smith et al. (2007b)	Totarol	*Staphylococcus aureus* XU212, *Staphylococcus aureus* RN4220, *Staphylococcus aureus* 1199B, *Staphylococcus aureus* K3092	TetK, NorA, MsrA	Totarol potentiated the activity of standard antibiotics against these efflux system–expressing strains of *S. aureus*, in addition to inhibiting the efflux of EtBr in the K3902 strain, possibly due to the inhibition of the NorA efflux pump

(Continued on following page)
TABLE 1 (Continued) Summary of the selected studies and their main findings.

Authors	Terpenes	Strain	Efflux Pumps	Results
Upadhyay et al. (2014)	Pivaloyl Phytol 3,4,5-trimethoxybenzoyl Phytol 2,3-Dichlorobenzoyl Phytol Cinnamoyl Phytol Aldehyde Phytol	*Escherichia coli CA8000* *Escherichia coli DH5a* *Escherichia coli MDREC-KG4*	ABC	From a total of 15 phytol derivatives, these five compounds promoted EtBr efflux inhibition. The expression pattern of the MDREC-KG4 transcript was inhibited in the presence of tetracycline
Vasconcelos et al. (2018)	Carvacrol	*Mycobacterium tuberculosis* H37Rv (ATCCCR 27294)	Not reported	The carvacrol in vitro treatment resulted in increased EtBr accumulation in *M. Tuberculosis*. Also, the potentiation of the rifampicin activity indicated that the compound has efflux pump inhibitory activity
Wu et al. (2008)	Andrographolide	*Pseudomonas aeruginosa* PAO1 *Pseudomonas aeruginosa* MexAB-OprM	MexAB-OprM	Andrographolide inhibited the expression of the MexB/opl efflux pump gene in both wild-type and MexAB-OprM strains of *P. aeruginosa*
Yuan and Yuk (2019)	Carvacrol	*Escherichia coli O 157:H7* MarA AcrB	Not reported	The exposition to sublethal concentrations of thymol and carvacrol resulted in a decreased expression of the MDR efflux pump genes *MarA* and *AcrB* in *E. coli* O 157:H7. Additionally, an EtBr accumulation assay observed a significant loss of EP activity
Zhang et al. (2014)	Ginsenoside 20(S)-Rh2	*Staphylococcus aureus* 29,213	NorA	Ginsenoside 20(S)-Rh2 promoted the intracellular accumulation of ciprofloxacin. It inhibited the efflux of pyronin Y in the *S. aureus* 29,213 strain indicating EP inhibition, which was confirmed in silico through the interaction between this terpene and the NorA efflux pump

Legends: MIC: minimum inhibitory concentration; EtBr: Ethidium bromide; EP: efflux pump; EPI: efflux pump inhibitory; CD: cyclodextrin; ETBF: bacteroides fragilis; MDR: multidrug resistance; PA β N: Phenylalanine arginine β-naphthylamide; CCCP: Carbonylcyanide-3-chlorophenyl hydrazine; S. aureus = *Staphylococcus aureus*; S. typhimurium: *Salmonella typhimurium*; E. coli: *Escherichia Coli*; P. aeruginosa: *Pseudomonas aeruginosa*; M. tuberculosis: *Mycobacterium tuberculosis*; E. faecalis: *Enterococcus faecalis*.

As reported in the discussion, evidence has indicated that MsrA proteins are not efflux pumps.

FIGURE 2

Pie chart plots of frequency analysis. (A) Strains; (B) terpenes; and (C) efflux pumps. These data were analyzed using the Jeffrey Amazing Statistic Program—JASP Team (2022).
The most common method used to investigate the effectiveness of terpenes as efflux pump inhibitors is the association of the Minimum Inhibitory Concentration (MIC) of EtBr or CCCP with the expression of the efflux pump, respectively. An analysis of the selected articles revealed that overexpressing bacterial strains, mainly expressing the TetK, NorA, and MsrA proteins; Montagu et al., 2016 showed that both carvacrol and its lipid nanocapsule incorporated formulation presented a synergistic effect with the efflux inhibitor CCCP, indicating interference with the efflux mechanisms of A. baumannii. On the other hand, Silva et al. (2020) found no evidence of EP inhibition in the IS-58 strain of S. aureus following the association of thymol or carvacrol with EtBr.

Regarding other frequently tested terpenes, a study by Almeida et al. (2020) showed that safrole significantly reduced the MIC of EtBr norfloxacin and ciprofloxacin against the 1199B and K2068 strains of S. aureus. Nerol was found to enhance the activity of norfloxacin against the S. aureus strain 1199B (Coelho et al., 2016), while α-terpinene showed synergistic effects with tetracycline and EtBr against the strain IS-58 of the same species (Limaverde et al., 2017). Da Costa et al. (2021) showed that the association between estragole and EtBr resulted in synergism against S. aureus strain 1199B and S. aureus K2068. On the other hand, Bezerra et al. (2020) verified that the association between estragole and EtBr resulted in antagonism against the strain RN-4220. Using the same bacterial species, Freitas et al. (2021) observed a decrease in the MIC of EtBr and ciprofloxacin following their combination with limonene, while Muniz et al. (2021) reported that eugenol and its derivatives enhanced the effectiveness of norfloxacin and reduced the MIC of EtBr. Additionally, according to Oliveira et al. (2021), the compound α-β-amirin showed synergistic effects with the efflux inhibitor CCCP against this species. A study by Freitas et al. (2020) demonstrated that α-pinene enhanced the activity of tetracycline against the Staphylococcus aureus IS-58 strain, which mainly expresses the TetK EP, suggesting that this compound could be interacting with this protein.

In silico modeling was applied by many studies to verify their interaction with these proteins, which was mainly investigated through molecular docking to confirm the interference of monoterpenes with the efflux systems. This approach is commonly used to model the interaction between a small molecule and the binding site of target proteins by predicting the ligand conformation and assessing the binding affinity (Meng et al., 2011). In the previously reported study (Freitas et al., 2020), docking analysis indicated favorable interaction of α-pinene with antibiotics and, therefore, is a reliable tool in the evaluation of bacterial resistance, as well as in the identification of potential new therapies (Gunes et al., 2013; Van de Vel et al., 2019; Kowalska-Krochmal and Dudek-Wicher, 2021).

This approach has been adopted to investigate the activity of many compounds reported in this study. Barbosa et al. (2021) investigated the antibacterial activity of thymol and carvacrol against Staphylococcus aureus strains 1199 and 1199B, demonstrating that their association with norfloxacin and EtBr resulted in a decreased MIC. Cirino et al. (2014) demonstrated that the same terpenes presented inhibitory effects in association with tetracycline against S. aureus strains that overexpress the TetK, NorA, and MsrA proteins; Montagu et al., 2016 showed that both carvacrol and its lipid nanocapsule incorporated formulation presented a synergistic effect with the efflux inhibitor CCCP, indicating interference with the efflux mechanisms of A. baumannii. On the other hand, Silva et al. (2020) found no evidence of EP inhibition in the IS-58 strain of S. aureus following the association of thymol or carvacrol with EtBr.

Regarding other frequently tested terpenes, a study by Almeida et al. (2020) showed that safrole significantly reduced the MIC of EtBr norfloxacin and ciprofloxacin against the 1199B and K2068 strains of S. aureus. Nerol was found to enhance the activity of norfloxacin against the S. aureus strain 1199B (Coelho et al., 2016), while α-terpinene showed synergistic effects with tetracycline and EtBr against the strain IS-58 of the same species (Limaverde et al., 2017). Da Costa et al. (2021) showed that the association between estragole and EtBr resulted in synergism against S. aureus strain 1199B and S. aureus K2068. On the other hand, Bezerra et al. (2020) verified that the association between estragole and EtBr resulted in antagonism against the strain RN-4220. Using the same bacterial species, Freitas et al. (2021) observed a decrease in the MIC of EtBr and ciprofloxacin following their combination with limonene, while Muniz et al. (2021) reported that eugenol and its derivatives enhanced the effectiveness of norfloxacin and reduced the MIC of EtBr. Additionally, according to Oliveira et al. (2021), the compound α-β-amirin showed synergistic effects with the efflux inhibitor CCCP against this species. A study by Freitas et al. (2020) demonstrated that α-pinene enhanced the activity of tetracycline against the Staphylococcus aureus IS-58 strain, which mainly expresses the TetK EP, suggesting that this compound could be interacting with this protein.

In silico modeling was applied by many studies to verify their interaction with these proteins, which was mainly investigated through molecular docking to confirm the interference of monoterpenes with the efflux systems. This approach is commonly used to model the interaction between a small molecule and the binding site of target proteins by predicting the ligand conformation and assessing the binding affinity (Meng et al., 2011). In the previously reported study (Freitas et al., 2020), docking analysis indicated favorable interaction of α-pinene with
the active site of the MepA pump. Later, the same group found comparable results when simulating the interaction of limonene and the same protein. Almeida et al. (2020) showed that safrole had favorable interaction with the NorA and MepA efflux pumps, corroborating the in vitro results obtained in experiments with *S. aureus* strains. In silico analysis by Barbosa et al. (2021) suggested that carvacrol and thymol act as competitive NorA inhibitors, as well as the terpene 4-allyl-2,6-dimethoxyphenol, investigated by Muniz et al. (2021).

A considerable number of studies reviewed by this work have suggested that terpenes can inhibit the NorA-mediated efflux of antibiotics based mainly on the decrease in antibiotic MIC and consequent synergism resulting from the association of terpenes and conventional antibacterial drugs. Although many of these works have concluded that terpenes act as inhibitors of specific efflux pumps based on their higher expression by the strains investigated, it is essential to note that most of them did not perform molecular tests capable of confirming such conclusions. Therefore, in our opinion, additional tests are needed to ensure that the inhibition of specific efflux pumps corresponds to the mechanism by which terpenes promote synergism when associated with conventional antibiotics or efflux inhibitors such as EtBr and CCCP.

The interference of terpenes in the gene expression of efflux pump components is an important mechanism, in addition to the interference with the activity (as demonstrated in the EtBr test) and interaction with the active site of these proteins (through in silico analysis), as demonstrated in several studies included in the present systematic review. In this context, Gupta et al. (2016) demonstrated through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) that the diterpene clerodane diterpene downregulated the gene expression of efflux pump components, corroborating the findings of Mahmoudi et al. (2020) and Jang and Eom. (2019). On the other hand, Wu et al. (2008) showed that andrographolide alone or combined with standard drugs induced no change in gene expression. The mechanism of action of the monocyclic thymol (Al-Kandari et al., 2019) was associated with the alteration of the membrane permeability and induction of genetic and morphological changes that lead to inhibition of the expression of AcrAB-ToIC efflux pump in *Escherichia coli*. Accordingly, Lorenzi et al. (2009) showed that the terpene geraniol inhibited chloramphenicol’s efflux, which was mediated by the AcrAB-ToIC system. The inhibition of this efflux system was also observed for ursolic acid against *Escherichia coli* K244. In addition to inhibiting gene expression of the components of this efflux pump, including AcrAB-ToIC, MacB, and Yojl, the terpene was found to reduce the EtBr efflux, as verified through the fluorescence emission intensity method (Dwiwedi et al., 2015). This method is based on the principle that EtBr accumulates in cells with low efflux activity, emitting thus higher fluorescence. Of note, this method was used in many studies to analyze terpenes’ interference on different bacterial efflux systems (Jin et al., 2010; Gupta et al., 2017; Freitas et al., 2021; Ramalhete et al., 2011).

In addition to the evidence that terpenes can act as efflux pump inhibitors, it has been demonstrated that these compounds have intrinsic antibacterial activity. Research by Almeida et al. (2020) showed that safrole has significant antibacterial activity against *Staphylococcus aureus* strains 1199B and K2068, which expresses the NorA and MepA pumps, respectively. Similar findings were obtained by Oliveira-Tintino et al. (2018), who tested the compound α-terpinene against *Staphylococcus aureus* strains 1199 and 1199B. Smith et al. (2007a) and Smith et al. (2007b) analyzed the effectiveness of some terpenes against several strains of *S. aureus* overexpressing different efflux proteins. The authors demonstrated that ferruginol and 5-epispiciferol potentiated the activity of standard antibiotics against these strains, reversing the degree of the observed antibiotic resistance. Moreover, ferruginol inhibited EtBr efflux in the 1199B strain while totarol potentiated the activity of standard antibiotics, in addition to inhibiting the efflux of EtBr in the *Staphylococcus aureus* K3902 strain, which indicates that terpenes may act as inhibitors of different efflux proteins expressed by *S. aureus* strains, such as NorA, MsrA, and TetK. This finding corroborates the work of Cruz et al. (2020). They demonstrated that the antibacterial activity of the sesquiterpene α-bisabolol against the IS-58 strain of *Staphylococcus aureus* is associated with the inhibition of the TetK efflux pump.

Finally, it is essential to emphasize that terpenes can also function as structural models for the obtention of derivatives with improved pharmacological properties, which may significantly contribute to the discovery of new antibacterial drugs (Daouda et al., 2014; Melo-Coutinho et al., 2015).

![FIGURE 4](https://example.com/figure4.png)

Illustration of the inhibition of bacterial efflux pumps by terpenes and its impact on antibiotic resistance.
Conclusion

Terpenes are compounds with significant antibacterial activity against both Gram-positive and Gram-negative strains. While some compounds showed no clinically relevant intrinsic antibacterial effects, their association with conventional antibiotics frequently resulted in synergistic effects, indicating enhanced antibacterial activity.

The investigation of terpenes as efflux pump inhibitors in S. aureus strains is the most analyzed, with NorA and carvacrol being the most investigated terpene and efflux pump, respectively. Importantly, Efflux pumps of Gram-positive bacterial strains are probably more susceptible to some terpenes, which involve either gene expression inhibition or the interaction with the binding site of membrane-associated efflux proteins, although the molecular mechanisms underlying the action of terpenes as EP inhibitors remain to be better elucidated (Figure 4).

In conclusion, terpenes are significant efflux pump inhibitors in a wide variety of bacterial strains and can potentially be used in drug development to combat antibiotic resistance.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

Conceptualization—JR-F; search, selection, and analysis—KD, GM, JB, and JR-F; writing of the manuscript, AA, PF, RA, CP, and JN, critical review, JR-F and HC. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The authors would like to thank the Oswaldo Cruz Foundation (Fiocruz), CNPq, and CAPES for the support of this publication.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.953982/full#supplementary-material

References

Al-Kandari, F., Al-Temaimi, R., van Vliet, A., and Woodward, M. (2019). Thymol tolerance in Escherichia coli induces morphological, metabolic and genetic changes. BMC Microbiol. 19, 294. doi:10.1186/s12866-019-1663-8

Almeida, R., Freitas, P., Araújo, A., Alencar Menezes, I., Santos, E., Tintino, S., et al. (2020). GC-MS profile and enhancement of antibacterial activity by the essential oil of Ocotea odorífera and safrole: Inhibition of Staphylococcus aureus multidrug-resistant (MDR) strains. Food Chem. Toxicol. 196, 110123. doi:10.1016/j.fct.2019.110123

Barbieri, R., Coppe, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nahavi, S., et al. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 196, 44–68. doi:10.1016/j.mires.2016.12.003

Barbosa, C., Scherf, J., de Freitas, T., de Menezes, I., Pereira, R., dos Santos, J., et al. (2021). Effect of Carvacrol and Thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J. Bioenerg. Biomembr. 53, 489–498. doi:10.1007/s10865-021-09906-3

Bezerra, A., Bezerra, S., Macêdo, N., de Sousa Silva, Z., dos Santos Barbosa, C., de Freitas, T., et al. (2020). Effect of estragole over the RN4220 Staphylococcus aureus strain and its toxicity in Drosophila melanogaster. Life Sci. 264, 118675. doi:10.1016/j.lfs.2020.118675

Blanco, P., Hernando-Amado, S., Reales-Calderon, J., Corona, F., Lira, F., Alcalde-Rico, M. et al. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 4, 14. doi:10.3390/microorganisms4010014

Borges-Walsme, M. I., McKegan, K. S., and Walsme, A. R. (2003). Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376, 313–338. doi:10.1042/BJ20020957

Chatterjee, A., Modarai, M., Naylor, N., Boyd, S., Atun, R., Barlow, J., et al. (2018). Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis. 18, e368–e378. doi:10.1016/S1473-3099(18)30296-2

Cirino, I., Menezes-Silva, S., Silva, H., de Souza, E., and Siqueira-Júnior, J. (2014). The essential oil from origanum vulgare L. And its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 60, 290–293. doi:10.1159/000381175

Coelho, M., Ferreira, J., Siqueira-Júnior, J., Kaatz, G., Barreto, H., and Cavalcante, A. (2016). Inhibition of the NorA multidrug transporter by oxygenated monoterpenes. Microb. Pathog. 99, 173–177. doi:10.1016/j.micpat.2016.08.026
Kim, H., Rhee, K., and Eom, Y. (2019). Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 57, 99–106. doi:10.1016/j.anaerobe.2019.04.001
Kowalska-Krochmal, B., and Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 10, 165. doi:10.3390/pathogens10020165
Laxminarayana, R., Sridhar, D., Blaser, M., Wang, M., and Woolhouse, M. (2016). Achieving global targets for antimicrobial resistance. Science 353, 874–875. doi:10.1126/science.aaf4286
Li, B., Yao, Q., Fan, X., Wang, N., Zhang, R., Li, J., et al. (2011). Artesunate enhances the bacterial effect of P-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-ToIC. J. Antimicrob. Chemother. 66, 769–777. doi:10.1093/jac/dkar107
Linaverde, P., Campina, F., da Cunha, F., Crispim, F., Figueredo, F., Lima, L., et al. (2017). Inhibition of the TetK efflux pump by the essential oil of Chrysophyllum ampraisioides L. and a-terpineen against Staphylococcus aureus IS-58. Food Chem. Toxicol. 109, 957–961. doi:10.1016/j.fct.2017.02.031
Lorenzi, V., Muselli, A., Bernardini, A., Bertì, L., Pagis, J., Amaral, L., et al. (2009). Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother. 53, 2209–2211. doi:10.1128/AAC.00919-08
Mhalfan, N., Yang, S., Moe, C., Song, A., Chong, C., Chong, C., et al. (2019). Tertiary derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24, 2631. doi:10.3390/molecules24122631
Mahloudi, H., ShokohiKhaled, Z., Zare Fahim, N., Mohamadi Bardbari, A., Moradkhan, S., and Alikhani, M. (2020). Detection of adeABC efflux pump encoding genes and antimicrobial effect of Mentha longifolia and Menthol on MICs of imipenem and ciprofloxacin in clinical isolates of Acinetobacter baumannii. BMC Complement. Med. Ther. 20, 92. doi:10.1186/s12906-020-02867-7
Martins, A., Vasas, A., Vieveiros, M., Molnár, J., Hölmann, J., and Amaral, L. (2011). Antibacterial properties of compounds isolated from Carpodetus edulis. Int. J. Antimicrob. Agents 37, 438–444. doi:10.1016/j.ijantimicag.2011.01.016
Mel-Coutinho, H. D., Freitas, M. A., Gondim, C. N., Albaqueiro, R. S., Ferreira, J. V. A., and Andrade, J. C. (2015). In vitro antibacterial activity of Geraniol and Carriolyphene against Staphylococcus aureus. Rev. Cubana Plantas Med. 20, 98–105.
Meng, X. Y., Zhang, H. X., Mezei, M., and Cui, M. (2011). Molecular docking: A powerful approach for strategy-based drug discovery. Curr. Comput. Aided. Drug Des. 7 (2), 146–157. doi:10.2174/15705134097857602
Miladi, H., Zintant, Z., Koudibi, B., Al Quarsiy, Y., Bakhrouid, H., Chaobouni, Y., et al. (2017). Synergistic effect of eugenol, carvacrol, thymol, p-cymene and y-terpineen on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 112, 156–163. doi:10.1016/j.micpath.2017.09.057
Montagu, A., Jely-Guillou, M., Guillet, C., Bejajou, J., Rossines, E., and Saulnier, P. (2016). Demonstration of the interactions between aromatic compound-loaded liquid nanoparticles and Acinetobacter baumannii bacterial membrane. Int. J. Pharm. 506, 280–288. doi:10.1016/j.ijpharm.2016.03.033
Mouwakae, A., Kincoe, A., Nové, M., Mosolghy, T., Mohaisi-Farkas, K., Kiskó, G., et al. (2019). Ninellia uricata essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother. Res. 33, 1010–1018. doi:10.1002/ptr.6294
Munir, A., and Arias, C. (2016). Mechanisms of antibiotic resistance. Microbiol. Spectr. 4. doi:10.1128/microbiolspec.mmb-0016-2015
Munir, D., dos Santos Barbosa, C., de Menezes, I., de Sousa, E., Pereira, R., Jr., et al. (2021). In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump of Staphylococcus aureus. Food Chem. 337, 127767. doi:10.1016/j.foodchem.2020.127767
Murina, V., Kasari, M., Takada, H., Hinno, M., Saha, C. K., Grimshaw, J. W., et al. (2019). ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: Structural and functional diversification across the tree of life. J. Mol. Biol. 431 (18), 3568–3590. doi:10.1016/j.jmb.2018.12.013
Murray, C., Ikuta, K., Sharaara, F., Swetchnick, L., Robles Aguilar, G., Gray, A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655. doi:10.1016/S0140-6736(21)02724-0
Ojeda-Sana, A., Repetto, V., and Moreno, S. (2013). Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in Enterococci faecalis and Staphylococcus aureus. World J. Microbiol. Biotechnol. 29, 137–144. doi:10.1007/s11293-012-1166-3
Oliveria, R., Bandeira, P., Lemos, T., dos Santos, H., Schert, J., Rocha, J., et al. (2011). In silico and in vitro evaluation of efflux pumps inhibition of α-amyrase. J. Biomed. Struct. Dyn. 2021, 1–15. doi:10.3390/jb高强度分析98112021.19976292
Oliveira-Tintino, C., Tintino, S., Lima-Verde, P., Figuereido, F., Campina, F., da Cunha, F., et al. (2018). Inhibition of the essential oil from Chenopodium ambrosioides and Azadirachta indica on the NorA efflux pump of Staphylococcus aureus. Food Chem. 262, 72–77. doi:10.1016/j.foodchem.2018.04.040

Ouzana, M., Hammady, H., Fedorowicz, Z., and Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 5, 210. doi:10.1186/s13643-016-0384-4

Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372, n71. doi:10.1136/bmj.n71

Pathania, R., Sharma, A., and Gupta, V. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 149, 129–145. doi:10.4103/ijmjr.ijmjr_2079_17

Piddock, L. (2006). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402. doi:10.1128/cmr.19.2.382-402.2006

Prasch, S., and Bucar, F. (2015). Plant derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev. 14, 961–984. doi:10.1007/s11101-015-9436-y

Ramalhete, C., Spengler, G., Martins, A., Martins, M., Vieiras, M., Mulhovo, S., et al. (2011). Inhibition of efflux pumps in meticillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by terpenoids from Momordica balsamina. Int. J. Antimicrob. Agents 37, 70–74. doi:10.1016/j.ijantimicag.2010.09.011

Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4, 482–501. doi:10.3934/microbiol.2018.3.482

Sarkar, P., Yarlagadda, V., Ghosh, C., and Haldar, J. (2017). A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm 8 (3), 516–533. doi:10.1039/c6md00585c

Scherf, J., Santos, C., Freitas, T., Rocha, J., Macêdo, N., Lima, J., et al. (2020). Effect of terpinolene against the resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents 59, 1247–1260. doi:10.1016/j.ijantimicag.2019.10.011

Shrivastava, S., Shrivastava, P., and Ramasamy, J. (2018). World health organization (WHO) 2017 global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 32, 76. doi:10.4103/jms.jms_25_17

Sikkema, J., de Bont, J., and Poolman, B. (1994). Interactions of cyclic nucleotides with bacterial resistance ATP-binding cassette protein. Proc. Natl. Acad. Sci. U. S. A. 91, 8028–8032. doi:10.1073/pnas.91.18.8028

Smith, E., Kaatz, G., Lee, R., Wareham, N., Williamson, E., and Gibbons, S. (2007b). The phenolic diterpene totoral inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 4480–4483. doi:10.1128/aac.00216-07

Smith, E., Williamson, E., Wareham, N., Kaatz, G., and Gibbons, S. (2007a). Antibacterials and modulators of bacterial resistance from the immature cones of Chaenomeles Lawsoniana. Phytochemistry 68, 210–217. doi:10.1016/j.phytochem.2006.10.003

Stavrakis, M., Piddock, L., and Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59, 1247–1260. doi:10.1093/jac/dkl460

Su, W., Kumar, V., Ding, Y., Ero, R., Serra, A., Lee, B. S. T., et al. (2018). Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc. Natl. Acad. Sci. U. S. A. 115 (20), 5157–5162. doi:10.1073/pnas.1803931115

Sun, J., Deng, Z., and Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453, 254–267. doi:10.1016/j.bbrc.2014.05.090

Swamy, M., Akhtar, M., and Sinniah, U. (2016). Antimicrobial properties of plant essential oils against human pathogens and its mode of action: An updated review. Evid. Based. Complement. Altern. Med. 2016, 3012462–3012521. doi:10.1155/2016/3012462

Tortora, G., Case, C., and Funk, B. (2012). “Microbiology,” in Porto alegre. 10th ed. (RS, Brazil: Armed Editora).

Upadhyay, H., Dwivedi, G., Roy, S., Sharma, A., Darokar, M., and Srivastava, S. (2014). Phyto derivatives as drug resistance reversal agents. ChemMedChem 9, 1860–1868. doi:10.1002/cmdc.201402027

Van Bambake, F., Balzi, E., and Tulkens, P. (2000). Antibiotic efflux pumps. Biochem. Pharmacol. 60, 457–470. doi:10.1016/s0006-2902(00)00291-4

Van de Vel, E., Sampers, I., and Raes, K. (2019). A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 59, 357–378. doi:10.1080/10408398.2017.1371112

Vasconcelos, S., Caleffi-Ferracioli, K., Hegado, L., Baldin, V., Nakamura, C., Stefanelli, T., et al. (2018). Carvacrol activity & morphological changes in Mycobacterium tuberculosis. Future Microbiol. 13, 877–888. doi:10.2217/fmb-2017-0232

Willeyn, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15. doi:10.1038/nature.2017.21500

Wilson, D. N., Hauryliuk, V., Atkinson, G. C., and O'Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 18 (11), 637–648. doi:10.1038/s41579-020-0386-2

Wu, C., Cao, J., Zheng, M., Ou, Y., Zhang, L., Zhu, X., et al. (2008). Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J. Int. Med. Res. 36, 178–186. doi:10.1177/030006050803600123

Yuan, W., and Yuk, H. (2019). Effects of subtelothal thymol, carvacrol, and trans-cinnamaldehyde adaptation on virulence properties of Escherichia coli O157:H7. Appl. Environ. Microbiol. 85, 002711–e002711. doi:10.1128/aem.00271-19

Zhang, J., Sun, Y., Wang, Y., Lu, M., He, J., Liu, J., et al. (2014). Non-antibiotic agent ginsenoside Rb2 enhanced the antibacterial effects of ciprofloxacin in vitro and in vivo as a potential NosA inhibitor. Eur. J. Pharmacol. 740, 277–284. doi:10.1016/j.ejphar.2014.07.020