A BRET-based assay reveals collagen–Hsp47 interaction dynamics in the endoplasmic reticulum and small-molecule inhibition of this interaction

Shinya Ito¹, Masazumi Saito², Masahito Yoshida², §, Koh Takeuchi³, Takayuki Doi², and Kazuhiro Nagata¹,4,5,*

¹Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
²Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
³National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
§Current address: Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
⁴Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
⁵CREST, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan

Running title: Collagen–Hsp47 interaction dynamics in the ER

*To whom correspondence should be addressed: Kazuhiro Nagata: Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; nagata@cc.kyoto-su.ac.jp; Tel.: +81-75-705-3134; Fax: +81-75-705-3121

Keywords: molecular chaperone, collagen, heat shock protein 47 (Hsp47), fibrosis, protein-protein interaction, PPI inhibitor, bioluminescence resonance energy transfer (BRET), serpin, extracellular matrix, SERPINH1

ABSTRACT
Molecular chaperones perform pivotal roles in proteostasis by engaging in protein–protein interactions (PPIs). The collagen-specific molecular chaperone heat shock protein 47 (Hsp47) interacts with procollagen in the endoplasmic reticulum (ER) and plays crucial roles in collagen synthesis. PPIs between Hsp47 and collagen could offer a therapeutic target for fibrosis, which is characterized by abnormal collagen accumulation in the extracellular matrix of fibrotic organs. Herein, we established a bioluminescence resonance energy transfer (BRET) system for assessing Hsp47–collagen interaction dynamics within the ER. After optimization and validation of the method, we could demonstrate inhibition of the interaction between Hsp47 and collagen by a small molecule (Col003) in the ER. Using the BRET system, we also found that Hsp47
interacts not only with the Gly–Pro–Arg motif, but also weakly with Gly–Pro–Hyp motifs of triple helical collagen in cells. Moreover, we found that the serpin loop of Hsp47 (SerpH1) contributes to its binding to collagen. We propose that the method developed here can provide valuable information on PPIs between Hsp47 and collagen and on the effects of PPI inhibitors important for the management of fibrotic disorders.

Introduction

Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone that localizes in the endoplasmic reticulum (ER) and plays a crucial role in collagen synthesis in vertebrates (1). Procollagen is co-translationally inserted into the ER and folded into a triple helical structure. Hsp47 binds to and stabilizes the triple helical portion of procollagen, stimulating triple helix formation by preventing unfolding, aggregation and bundle formation. After Hsp47 dissociates from procollagen in the cis-Golgi in a pH-dependent manner, Hsp47 returns to the ER via the KDEL receptor. Knockout (KO) of hsp47 causes embryonic lethality in mice due to lack of a basement membrane composed of type IV collagen (2). Procollagen secretion was delayed and collagen accumulation in the extracellular matrix (ECM) was decreased in mouse embryonic fibroblasts (MEFs) from hsp47 KO mice (3). While overexpression of wild-type (WT) Hsp47 recovered collagen accumulation in hsp47 KO MEFs, Y365A mutant Hsp47 lacking the ability to bind collagen cannot recover collagen production (4), suggesting that protein-protein interactions (PPIs) between Hsp47 and collagen are indispensable for collagen synthesis.

Fibrotic disease, characterized by abnormal collagen accumulation, impairs normal function in various organs including liver, lung, and kidney. An efficient treatment for the large number of patients suffering from fibrotic disease worldwide is not yet available. Inhibition of collagen synthesis is considered a potential therapeutic strategy for fibrotic disease (5). Although many drug candidates for fibrosis target signal transduction related to transcription of the collagen gene, collagen protein synthesis could also be targeted in fibrosis treatment. Knockdown of Hsp47 expression by short hairpin RNA (shRNA) or small interfering RNA (siRNA) can suppress the correct folding and accumulation of collagen, resulting in inhibition of liver fibrosis progression (6,7). Thus, Hsp47 is considered a promising molecular target for fibrosis, and knockdown of hsp47 is under phase II clinical trials for idiopathic pulmonary fibrosis. Previous studies revealed that PPIs between Hsp47 and collagen are indispensable for collagen synthesis (4). Thus, exploring small molecule compounds that inhibit Hsp47-collagen interactions could offer a beneficial therapeutic strategy for fibrosis treatment.

From comprehensive screening of small molecule compounds that inhibit the interaction of Hsp47 with collagen, we obtained compound Col003 that causes delayed procollagen secretion and inhibits collagen accumulation in the ECM (4). Col003 directly binds Hsp47 but not collagen, and inhibits the Hsp47-collagen interaction in vitro. Based on nuclear magnetic resonance (NMR) experiments, we found that Col003 competitively inhibits binding of Hsp47 to collagen because the binding sites for Col003 and collagen on Hsp47 are quite close and may overlap. Although secretion of collagen into the medium was inhibited in
the presence of Col003, it remains unclear whether Col003 inhibits PPIs between Hsp47 and collagen in the ER.

Detection of PPIs between Hsp47 and collagen in the ER has been reported using a split green fluorescent protein (GFP) system and immunoprecipitation (IP) with a crosslinking agent (8,9). Due to the irreversibility of these PPI detection methods, the inhibitory effects of small molecules cannot be correctly evaluated in cells. The bioluminescence resonance energy transfer (BRET) system could prove effective for evaluating PPIs within the cells. When the distance between Nano-luciferase (NLuc) as energy donor and Halotag fluorescent ligand as energy acceptor is small, and the relative orientation of the two dipole moments is suitable, fluorescence emission from the acceptor can be observed. Since the Halotag ligand and substrate of NLuc are membrane-permeable, PPIs can be detected in living cells. BRET systems have been used to investigate interactions between mouse double minute 2 (MDM2) and tumor suppressor p53 in the cytosol, and between G protein-coupled receptor (GPCR) proteins on the plasma membrane (10). However, PPIs within the ER have not been explored using this approach.

In the present study, we established a BRET-based detection system for Hsp47-collagen PPIs in the ER. We optimized the combinations and constructs, and verified whether Col003 inhibits the interaction between collagen and Hsp47 within the ER.

Results

Establishment of the BRET system for detection of the Hsp47-collagen interaction in the ER

BRET systems are used to detect PPIs in cells, particularly in the cytosol (10). Herein, to explore the interaction dynamics between Hsp47 and collagen in the ER, we employed a BRET system to investigate PPIs between Hsp47 and a collagen model peptide fused with the bacteriophage T4 fibrin foldon (FD) domain, which spontaneously forms a trimer and therefore stabilizes the triple helical structure of collagen (11). The collagen model peptide consists of nine Pro-Pro-Gly collagen repeats containing the Thr-Gly-Pro-Arg sequence, the arginine of which reportedly enables the recognition of the collagen repeat by Hsp47 in vitro (12). Hsp47 also recognizes the amino acid in the Yaa⁻³ position in the sequence Yaa⁻³-Gly-Xaa-Arg (13). Specifically, Hsp47 most favors Thr and Pro at Yaa⁻³, followed by Ser, Hyp, Val, and Ala, but does not recognize Lys, Gln, or Glu (14). As shown in the schematic diagram in Fig. 1A, a BRET signal is presumably observed when Hsp47 harboring a Halotag fluorescent ligand is in close proximity to a collagen model peptide possessing an NLuc moiety.

We tested several combinations to establish a BRET system with the best energy transfer. Either NLuc (NL) or Halotag (HT) was added to the N-terminus or C-terminus of Hsp47 and collagen (col) FD, respectively. A signal sequence for ER localization was added to the N-terminus of each construct. As shown in Fig. S1A, Hsp47-NLuc and NLuc-Hsp47 expression resulted in partially cleaved proteins and insoluble products in HEK293 cells. While Hsp47-HT was detected at the expected molecular size, the expression product of HT-Hsp47 was detected as a partially truncated protein (Fig. S1A). Thus, we selected pairs of Hsp47-HT and NL-col FD or col FD-NL (Fig. 1B). Since these constructs do not have ER retention sequences such as KDEL, they should be secreted into...
the culture medium. To detect PPIs between Hsp47-HT and colFDNL within the ER, we washed cells with fresh medium and added NLuc substrate, a membrane-permeable reagent for measuring BRET. The BRET ratio (mBU) was calculated as the acceptor signal at 618 nm per donor signal (luminescence) at 460 nm (10). In the case of the Hsp47-HT and col FD-NL pair, a BRET signal was observed upon addition of HT ligand. The BRET signal of the Hsp47 Y365A mutant lacking the ability to bind collagen was lower than that of WT Hsp47, suggesting that this BRET signal is dependent on the interaction between Hsp47 and collagen (Fig. 1B). On the other hand, the BRET signal for the Hsp47-HT and NL-col FD pair was much smaller than that of the Hsp47-HT and col FD-NL pair, and not different between WT and Y365A Hsp47 and almost the same as the background level in the ER. Based on these results, the Hsp47-HT and col FD-NL pair was adopted for further analysis of BRET.

The so-called donor saturation assay (DSA) was next performed to estimate the specificity of BRET. When the amount of donor (col FD-NL) DNA used for transfection was held constant and the amount of acceptor (Hsp47-HT) DNA was gradually increased, a specific BRET signal increased in a hyperbolic manner and reached a plateau representing complete saturation of all donors with acceptor molecules (Fig. 1C, D). By contrast, a BRET signal from nonspecific interactions resulting simply from close localization of two proteins should increase almost linearly with increasing amounts of acceptor. The Hsp47-HT KDEL and col FD-NL BRET pair yielded a much stronger signal than did the Hsp47-HT KDEL and Δcol FD-NL (collagen deletion mutant of col FD-NL) pair at all ratios (Fig. 1C). The BRET pair consisting of Hsp47-HT without a KDEL retention signal and col FD-NL yielded a much stronger signal than the Hsp47-HT and Δcol FD-NL pair, and it also exhibited donor saturation (Fig. 1D), indicating that the BRET signal between Hsp47-HT and col FD-NL was specific. The BRET signal for the ssHT and col FD-NL pair was only ~20% by comparison, indicating nonspecific BRET interactions in the ER (Fig. 1D).

The localization of Hsp47-HT and col FD-NL within the ER generating a BRET signal was confirmed by immunofluorescence staining. Both Hsp47-HT and col FD-NL (containing a FLAG tag) co-localized and merged with each other, along with protein disulfide isomerase (PDI), an ER resident protein (Fig. 1E). The signal from the membrane-permeable HT fluorescent ligand was captured by HT in the ER (Fig. 1E), suggesting that the BRET signal from Hsp47-HT and col FD-NL was indeed from the ER.

Optimization of the BRET system for the Hsp47-collagen interaction in the ER

To optimize BRET efficiency, the influence of the donor and acceptor ratio, the amount of HT ligand, and the position of the arginine residue were investigated. In HEK293 cells, the BRET signal was strongest at ~40 mBU when the ratio of donor (col FD-NL) to acceptor (Hsp47-HT) was 1:50 (Fig. 2A). On the other hand, it was only ~25 mBU at a ratio of 1:100 in HeLa cells (Fig. 2B). These differences between cell lines may reflect differences in the amount of endogenous Hsp47 and collagen in these cells (Fig. S1B). Regarding the amount of HT ligand, 20 nM HT ligand was sufficient for this BRET system with both cell lines (Fig. 2C).

Since Hsp47 specifically recognizes and strongly binds
to the arginine residue in the collagen triple helix, the position of arginine was altered from position 1R to 7R and BRET analysis was performed. When the distance from the NLuc side was increased (1R), the BRET signal decreased (Fig. 2D), with a peak around the 3R to 4R position. While the signal of the 7R construct was high, the position of arginine residue was too close to the foldon domain to analyze the correct interaction between Hsp47 and collagen triple helix. Thus, the 4R construct was used for the analysis.

Based on the co-crystal structure of Hsp47 and collagen model peptide, residues of Hsp47 responsible for interactions with collagen were assessed previously (13). Leu363, Tyr365, and Asp367 of Hsp47 are reportedly important for hydrophobic and hydrophilic interactions with collagen, respectively. Hsp47 mutants, in which these residues are altered, bind poorly to collagen in pull-down assays (13). These mutants displayed almost background level BRET signals (Fig. 2E), as shown for ssHT and Δcol FD-NL in Fig. 1D, indicating the validity of this BRET system for probing the dynamic interactions of Hsp47 with collagen in the ER of living cells for the first time.

Inhibition of the Hsp47-collagen interaction by a small molecule

Inhibition of PPIs between Hsp47 and collagen is a therapeutic target for fibrosis treatment because Hsp47 mutants lacking the ability to bind to collagen cannot rescue the reduced accumulation of collagen in Hsp47 KO cells (4). We reported previously a small molecule (Col003) that binds Hsp47 and inhibits the PPI between Hsp47 and collagen in vitro. Using our BRET system, the in vivo inhibitory effects of Col003 on the Hsp47-collagen PPI in the ER were evaluated. Col003 reduced the BRET signal in a dose-dependent manner (Fig. 3A). By contrast, the BRET ratio (%) of the control p53-MDM2 PPI pair did not change in the presence of Col003 (Fig. 3B), suggesting that Col003 is a specific PPI inhibitor for Hsp47 in cells. To obtain more specific PPI inhibitors of Hsp47, we performed structure-activity relationship (SAR) analysis of Col003 derivatives Col049, Col050, and Col051 (Fig. 3C). These derivatives have a linker between the two aromatic rings differing in length from that in Col003. Interestingly, a longer linker in Col003 derivatives resulted in a more efficient inhibitory effect, which was again specific for the Hsp47-collagen PPI, but not for p53-MDM2 PPI (Fig. 3D, E). This SAR information provides information that can help reduce fibrosis by identifying compounds that inhibit Hsp47-collagen interactions.

Role of the arginine residue in the Hsp47-collagen interaction in the ER

Using this BRET system, we examined the interaction of Hsp47 with various molecules containing collagen-like sequences in the ER (Fig. 4A). The Gly-Pro repeat sequence, which does not form a triple helical structure, gave the same BRET signal as that of a collagen domain-deleted construct, Δcol (Fig. 4B). When the proportion of triple helical collagen to total collagen was decreased by deletion of the foldon domain (ΔFD), the BRET signal (and hence the Hsp47-collagen interaction) was decreased significantly. These results are consistent with those of in vitro studies using collagen model peptides and purified recombinant Hsp47 (rHsp47); rHsp47 binds only triple helical collagen (12).

In the previous in vitro study, rHsp47 was shown
to prefer arginine residues in the third position of \((\text{Gly-Xaa-Yaa})\) of collagen repeats \((\text{Gly-Pro-Arg})\) in the triple helix, but not hydroxyproline at the same position \((\text{Gly-Pro-Hyp})\) (12). Almost all prolines at the Yaa position are hydroxylated in the ER by prolyl hydroxylase in the monomeric form, and Hsp47 is thought to bind only to arginine localization sites on triple helical procollagen in the ER. Meanwhile, GPP, an arginine-null collagen construct (Fig. 4A), reduced the BRET signal significantly, but interestingly, Hsp47 interacts with GPP more strongly than with GPGP and the \(\Delta\)col construct (Fig. 4B), implying that Hsp47 may interact weakly with the \((\text{Gly-Pro-Hyp})\) motif of collagen in the ER. Prolyl 4-hydroxylase (P4H) requires ascorbic acid and ferrous ions for hydroxylation activity (15). Treatment with \(\alpha,\alpha\)-dipyridyl, a ferrous ion chelator, affects the binding of Hsp47 to the GPP construct but not to 4R or GPGP constructs (Fig. 4C), consistent with the \textit{in vitro} results; Hsp47 binds (Gly-Pro-Pro) more strongly than (Gly-Pro-Hyp). Hydroxylation of collagen peptides was confirmed by immunoblotting of these constructs with or without treatment with \(\alpha,\alpha\)-dipyridyl (Fig. 4D).

Using our BRET system, we found that Hsp47 binds weakly to arginine-null collagen, representing a novel finding for PPIs between Hsp47 and collagen in the ER. Based on the results of \textit{in vivo} binding studies using the BRET system, we propose a model for binding between Hsp47 and procollagen in the ER (Fig. 4E). Hsp47 binds strongly to the Arg residue in the collagen triple helical structure, but also weakly to other Gly-Pro-Pro sites in the collagen triple helix. This ‘coating’ of Hsp47 on procollagens may contribute to preventing unfavorable bundle formation or local unfolding of procollagens in the ER, revealing a possible function for Hsp47 as a collagen-specific molecular chaperone.

Role of the serpin loop of Hsp47 on the Hsp47-collagen interaction in the ER

Hsp47 (SerpinH1) belongs to the serine protease inhibitor (serpin) superfamily (16), which possesses its distinctive loop region in a typical serpin structure. Some serpin family proteins inhibit proteases via a unique mechanism termed the suicide system, which involves a unique conformational change (17). When the target protease cleaves the reactive center loop (serpin loop) of a serpin protein acting as a protease substrate, an acyl bond is formed between the Ser in the loop and the protease. Then, the loop is inserted into the serpin structure as a new beta-sheet, which traps and inactivates the protease. Hsp47 is reported not to have this protease inhibitor function, suggesting that the serpin loop of Hsp47 has another function other than that of protease inhibition. Among the four crystal structures of Hsp47 deposited in Protein Data Bank (PDB), the serpin loop of Hsp47 has not been solved in three PDB files (4AU2, 4AU3, and 4AU4). However, the loop region of Hsp47 is reported to have a helix like structure in one PDB file (3ZHA), and this helix is located close to the collagen peptide (Fig 5A). Loop region sequences are highly conserved among vertebrates, especially in mammals (Fig 5B). Based on the Hsp47 structure, the tyrosine residue (Y353) in the loop region appears to engage in a hydrophobic interaction with collagen peptides (Fig 5A).

Because we established a BRET system for monitoring the PPI between Hsp47 and collagen in the cell, we decided to use it to examine whether the serpin loop of Hsp47 is involved in binding to collagen. After
introducing several mutations into the loop region of Hsp47-HT by alanine scanning (see red line in Fig. 5B), we examined the expression levels of these mutants in HEK293 cells by western blotting, which confirmed that they were expressed at similar levels to the WT (Fig. S2A). The BRET efficiencies of I352A and Y353A mutants were reduced slightly but significantly (Fig. 5C), suggesting that these two residues are involved in the interaction with collagen. Next, we changed these two amino acids to Phe, Arg, Glu, or Leu to characterize further their role in the interaction. BRET results showed that Ile352 could be replaced by Phe and Leu while Tyr353 could only be replaced by Phe (Fig 5D, E). This result suggested that a hydrophobic residue and an aromatic ring at positions Ile352 and Tyr353, are important for the interaction, respectively. To verify the role of these two residues more precisely, we purified recombinant Hsp47 I352A and Y353A mutants and determined their affinities for collagen using surface plasmon resonance (SPR). Compared with WT (Kd, 1.5 μM), I352A and Y353A mutants had lower affinities (I352A, Kd 3.3 μM; Y353A, Kd 3.6 μM) (Fig 5F and Fig. S2C). The dissociation rates of these two mutants were faster than that of the WT (Fig. S2C).

Finally, we confirmed the importance of Ile352 in the serpin loop for the interaction with collagen by performing NMR spectra analysis in the presence and absence of a collagen model peptide (CLP), (GPP)10. Ile residues were isotopically labeled with NMR-active 13C nuclei in their δ1 methyl positions. 13C labeling allows selective detection of Hsp47 Ile resonances in the 1H-13C HMQC spectra (Fig. 5G). Compared with the WT spectrum, the I352 V mutant spectrum revealed the absence of one signal, suggesting that this signal originated from Ile352. When CLP was titrated with Hsp47, the NMR signal of Ile352 clearly shifted from its original position (Fig. 5H), indicating that Ile352 is involved in the interaction with collagen. Combined the above results including BRET, SPR and NMR, we concluded that the serpin loop of Hsp47 is involved in the interaction with collagen via its Ile352 and Tyr353 residues.

Discussion

PPIs play a crucial role in the regulation of various cellular functions including proteostasis, and therefore provide a therapeutic target for many diseases (18). Indeed, PPI inhibitors are under study by numerous pharmaceutical companies (19). For example, tirofiban (Aggrastat), a small molecule inhibiting PPIs between fibrinogen and platelet integrin receptor glycoprotein IIb/IIIa (20), prevents platelet aggregation and has been approved for the prevention of blood clotting. Idasanutlin, an inhibitor of the interaction between MDM2 and p53, is under phase III clinical trials for acute myeloid leukemia (21). Many PPI inhibitors have been developed, but relatively few have reached the market.

In general, high-throughput screening of PPI inhibitors is performed using a combination of biophysical methods, including time-resolved fluorescence resonance energy transfer (FRET) and α-screening, and hit compounds are further evaluated by surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and other methods before cellular responses are examined. One of the difficulties in developing PPI inhibitors is that there are gaps in PPIs in vitro and PPIs in vivo because they tend to be
relatively large molecules, which reduces their cell membrane permeability (22). Considering these difficulties, PPI detection in cells could provide a way to relate the results of in vitro drug screening with cellular responses to these drugs.

To this end, we herein established a BRET system for detecting Hsp47-collagen interactions in the ER. Mutation of several residues on the collagen interaction surface of Hsp47 reduced the BRET signal. A small molecule compound, Col003, inhibits Hsp47-collagen interactions within the ER. In our previous study, we succeeded in detecting interactions between procollagen and Hsp47 by adopting a split GFP system (9). However, this system could not detect the dissociation of Hsp47 from procollagen because fragments of GFP cannot dissociate once they associate to form mature GFP. Herein, for the first time we succeeded in detecting the in vivo binding of Hsp47 to a collagen peptide within the ER using this BRET system. This technique is thought to be useful for evaluating compounds that inhibit PPIs in the ER, where many therapeutic PPI targets such as secretory proteins and membrane proteins are synthesized (23).

Molecular chaperones including Hsp70, Hsp90, and Hsp60 play essential roles in proteostasis via protein folding, preventing protein aggregation and degradation. Their roles depend on PPIs between chaperones and their substrates. PPI inhibitors of molecular chaperones are also therapeutic targets because they may regulate the synthesis of substrate proteins and modulate proteostasis (24). Hsp47, a collagen-specific molecular chaperone, is essential for collagen folding in the ER. PPIs between Hsp47 and collagen are required for collagen synthesis, representing a therapeutic target for fibrosis caused by abnormal collagen accumulation. Arginine residues in collagen are known to be important for binding to Hsp47, but we found that Hsp47 also binds weakly to arginine-null collagen in the ER using our BRET system (Fig. 4C), suggesting that Hsp47 may have more binding sites on triple helical collagen. This could indicate another important role for Hsp47 as a chaperone; Hsp47 may more widely cover the entire portion of procollagen in the ER to prevent the inappropriate bundling among collagen triple helices due to the high surface hydrophobicity of procollagen triple helices. In Hsp47 KO cells, procollagen forms aggregates or bundles in the ER (25), suggesting the importance of this ‘weak coating’ of procollagen by Hsp47 in the prevention of aggregation.

Furthermore, to demonstrate the utility of this BRET system, we used the BRET assay to elucidate the mechanism of the interaction between Hsp47 and collagen. Hsp47 belongs to the serpin family, in which the serpin loop plays a crucial role in serpin function. However, the function of the serpin loop of Hsp47 has not been previously reported. Using the BRET method, we found that the loop region of Hsp47 contributes to its binding to collagen (Fig. 5). It is worth noting that when the collagen peptide Ac-PPGPPPGPRGPPGPPG-NH2 was used for co-crystallization, the serpin loop could not be solved (4AU3), but when the collagen peptide Ac-PPGPPGPTGPRGPPGPPG-NH2 was used, the loop was shown to adopt a helix structure (3ZHA), while the effect of the TGPR sequence in the latter collagen peptide on the stability of the loop region was unclear. The collagen sequence used in BRET was \((\text{PPG})_4\text{PTGPRG}(\text{PPG})_3\), in which the proline residues in the Y position of GXY repeats are hydroxylated.
Collagen–Hsp47 interaction dynamics in the ER

(Fig. 4). It should be noted that amino acid sequence in the XY position of (Gly-Xaa-Yaa) show considerable diversity among endogenous procollagens; thus, the contribution of the Ile and Tyr resides in the loop region to the interaction with collagen might differ depending on which amino acids are present in XY position of collagen. For example, the phenolic hydroxy group of tyrosine may form a hydrogen bond with a side chain of an amino acid at the XY position. While the involvement of the serpin loop in the interaction with collagen was established for the first time in this report, the importance of the serpin loop on binding to collagen needs further investigation.

Information on the compound binding site on Hsp47 could be obtained from SAR analysis of Col003 derivatives. Derivative Col051 possessing a longer linker between the two aromatic groups more effectively inhibited Hsp47-collagen interactions in the ER than Col003. Interestingly, the longer the linker (shorter to longer in Col049, Col050, and Col051), the more effective the inhibitory effect. There are various explanations for these SAR observations: the phenyl group may acquire the ability to more strongly interact with Hsp47, the alkyl linker between the two aromatic rings may engage in hydrophobic interactions with Hsp47, and the phenyl group may overlap the binding site for collagen more effectively, increasing competitive inhibition. A co-crystal structure of Hsp47 and Col003 derivatives and/or NMR experiments could provide more information on binding.

There are several technical complications when using BRET systems in the ER. Firstly, if one or both members of the BRET pair are secreted, the donor-acceptor ratio will change during the secretion process, making it necessary to measure BRET after thorough washing of secreted proteins into the medium. Secondly, BRET in the ER suffers from a high background compared with that in the cytosol (10), probably because the protein concentration within the ER is higher than in the cytosol (26), causing nonspecific interactions among proteins. Despite these technical difficulties, BRET could prove indispensable for evaluating PPIs in the cells, particularly in the ER. Using this tool, we probed the Hsp47-collagen interaction dynamics within the ER for the first time, and demonstrated that Col003 works as a PPI inhibitor of Hsp47-collagen in vivo. We have therefore developed a method to assess PPIs in vivo, and laid the basis for performing SAR analysis of Col003 derivatives, which could prove useful for screening small molecules as potential therapeutic treatments for fibrotic diseases.

Experimental procedures

Compound synthesis

The Col003 compound was synthesized as previously reported (4). The synthesis of Col049, Col050, and Col051 is described in the study (27), where Col049, Col050, and Col051 refers to 5eE, 5eF, and 5eG, respectively.

Plasmids and antibodies

The collagen foldon (colFD) was synthesized artificially with NheI/EcoRI sites, the DNA sequence GCTAGCATTGCCACCATGCGCTCACTGCTGCTCCTGTCCGCTTCTGCTCTTGGAGGCTGGCGCTGCTGCCTCCAGGACCACCTGGCCCTCCCGGACCTACAGGCCAGAGGGCCACCGGGACCTCCAGGTCCTCCAGG...
CGGCTCTGGCTACATTCGGCAAAGCACCAGGG
ATGGGCAGGCTATGTCCCGAAAGATGGCAG
TGGGTGCTGAGACCTTCTGTACGACTA
CAAGGACGATGACGACAAGAGTTGTAATTCC
and the amino acid sequence
MRSLLLSAFCLLEAALAEAMGSPPGPQPGGPP
GPTGPRPGPPGPPGPGSGYIPEAPRDGQAYVRKD
GEVVLSTFLIDYKKDDKKKEEFEF. The colFD
sequence was inserted into the pNLF1-N, pNLF1-C,
pHTN-HaloTag (HT), and pHTC-HT (Promega, WI,
USA) vectors. Where needed, a signal sequence was
added to the N-terminus and the reading frame was
adjusted accordingly. Other variants of colFD
constructs were created as described above, for which
amino acid sequences are shown in Figures. The mouse
Hsp47 gene was inserted into the EcoRI site of the
pNLF1-N, pNLF1-C, pHTN-HT, and pHTC-HT vectors, and signal sequences and/or reading frames
were adjusted accordingly. Hsp47 mutants including
Leu363Arg, Tyr365Ala, Tyr365Arg, and Asp367Asn
were generated using primers and PrimeSTAR Max
DNA polymerase (#R045A, Takara Bio, Shiga, Japan).
All sequences were confirmed using a Genetic
Analyzer 3130 (Applied Biosystems, MA, USA). The
PPI control pair (MDM2-NanoLuc and p53-HaloTag)
was purchased from Promega.

Hsp47 inhibitory compound Col003 and its
derivatives were synthesized and verified in terms of
chemical structure as described in a previous study (4).
The following antibodies were used for
immunoblotting. Monoclonal anti-FLAG M2 antibody
(#F3608, Sigma Aldrich, MO, USA), monoclonal mouse
anti-Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH) (#SG4-6C5, HyTest, Turku,
Finland), monoclonal anti-Hsp47 antibody (M16. 10A1,
Enzo Life Sciences, Inc., USA), polyclonal anti-
HaloTag antibody (#G928A, Promega, USA) and
monoclonal anti-collagen type I antibody
(#SAB1402151, clone 3G3, Sigma Aldrich, USA).

BRET assay

The BRET assay was performed using reagents
from Promega (#N1661) as described previously (10).
In brief, HEK293 or HeLa cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; high
glucose) with 10% fetal bovine serum (FBS) and
penicillin/streptomycin (Nacalai Tesque, Kyoto, Japan).
Cells were transiently transfected with BRET
constructs Hsp47-HT and col FD-NL using
Lipofectamine 2000 (#11668027, Thermo Fisher, MO,
USA) according to the manufacturer’s instructions.
After 5 h, cells were re-plated into a white 96-well
Poly-D-Lysine-coated culture plate (#152028, Thermo
Fisher) at 3.6×10⁴ cells/well (HEK293 cells) or
2.25×10⁴ cells/well (HeLa cells) in 90 μL Opti-MEM
medium containing 4% FBS and 200 μM L-ascorbic
acid phosphate magnesium salt n-hydrate (#013-19641,
FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan). Transfected cells were labeled using the 20–100
nM HT ligand 618 (#G9801, Promega). After
incubation for 19–21 h at 37°C, the growth medium
was replaced by 50 μL of medium consisting of Opti-
MEM with 4% FBS and NanoBRET substrate
furimazine (#N1571, Promega; 1/2,000 dilution). After
incubation for 19–21 h at 37°C, the BRET signal was
measured at 37°C using a Varioskan LUX plate reader
(Thermo Fisher) using a 460 nm HBW80 filter for the
donor signal and a 610 nm long-pass filter for the
acceptor signal. For evaluating Hsp47 inhibitors, after
incubation for 19–21 h following re-plating,
transfected cells were treated with compounds at the indicated concentrations for 2 h. After washing three times with Opti-MEM, the medium was replaced with 50 μL of Opti-MEM with 4% FBS and BRET substrate, and the BRET signal was detected as described above.

Immunofluorescence experiments

HEK293 cells were transfected with 300 ng of col FD-NL, 300 ng of Hsp47-HT, or 400 ng of empty vector, incubated with HT ligand for the same time as in the BRET assays, and fixed with 4% (wt/vol) paraformaldehyde for 15 min. After washing three times with phosphate-buffered saline (PBS), fixed cells were permeabilized using 0.1% Triton X-100 in PBS for 5 min and blocked with PBS containing 2% goat serum and 10% glycerol for 50 min at room temperature (RT). Rabbit polyclonal antibodies recognizing Halotag (#G9281, Promega; 1/500 dilution), monoclonal anti-FLAG M2 antibody (#F1804, Sigma Aldrich; 1/400 dilution), and monoclonal anti-PDI antibody (#ADI-SPA-891, Enzo Life Sciences, NY, USA; 1/400 dilution) were reacted as primary antibodies for 1 h at RT. After washing three times with PBS, Alexa Fluor 488-conjugated anti-rabbit IgG (#A11034, Thermo Fisher; 1/400 dilution) and Alexa Fluor 555-conjugated anti-mouse IgG (#A21424, Thermo Fisher; 1/500 dilution) were reacted as secondary antibodies for 1 h at RT. After mounting with ProLong Gold antifade mountant (Thermo Fisher #P10144), fluorescent signals were analyzed using an LSM 700 confocal fluorescence microscope (Carl Zeiss, Oberkochen, Germany) with an appropriate setup of lasers, beam splitters, and filters for Alexa Fluor 488, Alexa Fluor 555, and HT ligand 618.

Surface plasmon resonance (SPR)

SPR (Biacore T200; GE Healthcare) was used to determine the affinity of recombinant mouse Hsp47 (rmHsp47) for collagen. Collagen (pig’s skin type I-C (Nitta Gelatin Inc.)) was covalently immobilized on flow cell 2 in a Biacore CM5 sensor chip via the standard amine coupling reaction. The final response was approximately 2,000 response units (RUs), where 1 RU corresponds to 1 pg of protein per mm². Flow cell 1 was coated with ethanolamine and used as reference spots. RmHsp47 was purified as described previously (28). The running buffer was HBS-P+ running buffer (10 mM HEPES, 0.15 M NaCl, and 0.05% surfactant P20 (pH 7.4)) and the flow cell temperature was maintained at 25°C. RmHsp47 was injected separately into flow cell 1 and 2 with a contact time of 90 s and a dissociation time of 120 s at a flow rate of 10 µl/min. 10 mM HCl was injected for 60 s to remove bound rmHsp47 from collagen on the sensor chips. Data analysis for calculating the affinity was performed using the k_{obs} linearization method with Anabel software (29)

NMR spectroscopy

The recombinant chicken Hsp47 was purified as described previously (4). All experiments were performed on Bruker Avance 800 MHz spectrometers equipped with cryogenic probes. All spectra were collected using a buffer containing 20 mM Heps-NaOH (pH 7.4), 100 mM NaCl, 5% (v/v) deuterated glycerol and 100% D2O at 298 K. The concentration of [U-2H, 1H13C-methyl Ile δ1] Hsp47 was set to 20 μM. Collagen peptide (ColP) ((Pro-Pro-Gly)$_{10}$·xH$_2$O, Peptide Institute Inc.) was suspended in the same buffer at a trimeric concentration of 1 mM and directly added
to the recombinant chicken Hsp47 solution at a trimeric concentration of 30 μM. Spectra were processed using TOPSPIN (Bruker Biospin) and analyzed with Sparky

Acknowledgments: This work was supported by a Grant-in-Aid for Scientific Research (S; 24227009) from the Japan Society for the Promotion of Science (JSPS) to K.N., JSPS KAKENHI Grant Number JP18H04002 (to K.N.), the Takeda Science Foundation (to K.N.), and JSPS KAKENHI Grant Number JP18K14393 (to S.I.). This work was partially supported by the Acceleration of Transformative Research for Medical Innovation Setup (ACT-MS) and ACT-M from the Japan Agency for Medical Research and Development, AMED. SPR analysis in this study was technically supported by the Kyoto Integrated Science & Technology Bio-Analysis Center (KIST-BIC).

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: SI designed and SI and KT performed the experiments. MS, MY, and TD synthesized and evaluated compounds. SI, KT, TD, and KN wrote the manuscript.

References
1. Ito, S., and Nagata, K. (2017) Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. *Semin Cell Dev Biol* **62**, 142-151
2. Nagai, N., Hosokawa, M., Itohara, S., Adachi, E., Matsushita, T., Hosokawa, N., and Nagata, K. (2000) Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. *J Cell Biol* **150**, 1499-1506
3. Ishida, Y., Kubota, H., Yamamoto, A., Kitamura, A., Bächinger, H. P., and Nagata, K. (2006) Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. *Mol Biol Cell* **17**, 2346-2355
4. Ito, S., Ogawa, K., Takeuchi, K., Takagi, M., Yoshida, M., Hirokawa, T., Hirayama, S., Shin-Ya, K., Shimada, I., Doi, T., Goshima, N., Natsume, T., and Nagata, K. (2017) A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. *J Biol Chem* **292**, 20076-20085
5. Wynn, T. A., and Ramalingam, T. R. (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. *Nat Med* **18**, 1028-1040
6. Sunamoto, M., Kuze, K., Tsuji, H., Ohishi, N., Yagi, K., Nagata, K., Kita, T., and Doi, T. (1998) Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. *Lab Invest* **78**, 967-972
7. Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., Takimoto, R., Takada, K., Miyanishi, K., Matsunaga, T., Takayama, T., and Niitsu, Y. (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26, 431-442
8. Satoh, M., Hirayoshi, K., Yokota, S., Hosokawa, N., and Nagata, K. (1996) Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol 133, 469-483
9. Ono, T., Miyazaki, T., Ishida, Y., Uehata, M., and Nagata, K. (2012) Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J Biol Chem 287, 6810-6818
10. Machleidt, T., Woodroofe, C. C., Schwinn, M. K., Méndez, J., Robers, M. B., Zimmerman, K., Otto, P., Daniels, D. L., Kirkland, T. A., and Wood, K. V. (2015) NanoBRET—A Novel BRET Platform for the Analysis of Protein-Protein Interactions. ACS Chem Biol 10, 1797-1804
11. Frank, S., Kammerer, R. A., Mechling, D., Schulthess, T., Landwehr, R., Bann, J., Guo, Y., Lustig, A., Bächinger, H. P., and Engel, J. (2001) Stabilization of short collagen-like triple helices by protein engineering. J Mol Biol 308, 1081-1089
12. Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J Biol Chem 277, 6178-6182
13. Widmer, C., Gebauer, J. M., Brunstein, E., Rosenbaum, S., Zaucke, F., Drögemüller, C., Leeb, T., and Baumann, U. (2012) Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINF1 and its structure-specific client recognition. Proc Natl Acad Sci U S A 109, 13243-13247
14. Koide, T., Nishikawa, Y., Asada, S., Yamaizaki, C. M., Takahara, Y., Homma, D. L., Otaka, A., Ohtani, K., Wakamiya, N., Nagata, K., and Kitagawa, K. (2006) Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins. J Biol Chem 281, 11177-11185
15. Vasta, J. D., and Raines, R. T. (2018) Collagen Prolyl 4-Hydroxylase as a Therapeutic Target. J Med Chem
16. Forlino, A., Cabral, W. A., Barnes, A. M., and Marini, J. C. (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7, 540-557
17. Gooptu, B., and Lomas, D. A. (2009) Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem 78, 147-176
18. Bosch, J. (2017) PPI inhibitor and stabilizer development in human diseases. Drug Discov Today Technol 24, 3-9
19. Scott, D. E., Bayly, A. R., Abell, C., and Skidmore, J. (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15, 533-550
20. Hartman, G. D., Egbertson, M. S., Halczenko, W., Laswell, W. L., Duggan, M. E., Smith, R. L., Naylor, A. M., Manno, P. D., Lynch, R. J., and Zhang, G. (1992) Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem 35, 4640-4642
21. Ding, Q., Zhang, Z., Liu, J. J., Jiang, N., Zhang, J., Ross, T. M., Chu, X. J., Bartkovitz, D., Podlaski, F.

13
Janson, C., Tovar, C., Filipovic, Z. M., Higgins, B., Glenn, K., Packman, K., Vassilev, L. T., and Graves, B. (2013) Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. *J Med Chem* **56**, 5979-5983

22. Arkin, M. R., Tang, Y., and Wells, J. A. (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. *Chem Biol* **21**, 1102-1114

23. Preissler, S., and Ron, D. (2018) Early Events in the Endoplasmic Reticulum Unfolded Protein Response. *Cold Spring Harb Perspect Biol*

24. Gestwicki, J. E., and Shao, H. (2018) Inhibitors and chemical probes for molecular chaperone networks. *J Biol Chem*

25. Ishida, Y., Yamamoto, A., Kitamura, A., Lamandé, S. R., Yoshimori, T., Bateman, J. F., Kubota, H., and Nagata, K. (2009) Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. *Mol Biol Cell* **20**, 2744-2754

26. Levy, E. D., Kowarzyk, J., and Michnick, S. W. (2014) High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation. *Cell Rep* **7**, 1333-1340

27. Yoshida, M., Saito, M., Ito, S., Ogawa, K., Goshima, N., Nagata, K., and Doi, T. (2019) Structure–Activity Relationship Study on Col-003, a Protein–Protein Interaction Inhibitor between Collagen and Hsp47. *Chem. Pharm. Bull.* *in press*

28. Abdul-Wahab, M. F., Homma, T., Wright, M., Olerenshaw, D., Dafforn, T. R., Nagata, K., and Miller, A. D. (2013) The pH sensitivity of murine heat shock protein 47 (HSP47) binding to collagen is affected by mutations in the breach histidine cluster. *J Biol Chem* **288**, 4452-4461

29. Krämer, S. D., Wöhrle, J., Rath, C., and Roth, G. (2019) Anabel: An Online Tool for the Real-Time Kinetic Analysis of Binding Events. *Bioinform Biol Insights* **13**, 1177932218821383

30. Goddard, T. D., and Kneller, D. G. SPARKY 3, University of California, San Francisco.

Footnotes

1Abbreviations used are: BRET, Bioluminescence Resonance Energy Transfer; Hsp47, Heat Shock Protein 47; ER, Endoplasmic reticulum; PPI, Protein–protein interaction; Serpin, Serine protease inhibitor; ECM, extracellular matrix; KO, Knocked out; PDB, Protein Data Bank; RT, Room temperature;
Figure 1. Development of the BRET system for assessing Hsp47-collagen interactions in the endoplasmic reticulum (ER). (A) Schematic view of BRET analysis of the Hsp47-collagen interaction. The signal sequence (S.S.)-collagen peptide (amino acid sequence shown below) fused to the foldon (colFD) possessing Nano-luciferase (NLuc) as an...
energy donor interacts with Hsp47-Halotag (HT)/HT fluorescent ligand 618 as an energy acceptor. The key arginine residue is colored red. (B) Comparison of tag position on BRET efficiency. The Tyr365Ala (Y365A) mutant of Hsp47 displays reduced binding to collagen and was used as a negative control. NLuc (NL) was added to colFD at the N- or C-terminus. The BRET ratio (mBU, milli BRET units) was calculated from the signal at 618/460 nm (×1,000). Results are presented as means ± standard deviation (SD; n = 3, Student’s t-test). NS, not significant. (C) Donor saturation assay of col FD-NL/Hsp47-HT KDEL and Δcol FD-NL/Hsp47-HT KDEL pairs. Results are presented as means ± SD of three independent experiments performed in duplicate. (D) Donor saturation assay of col FD-NL/Hsp47-HT, Δcol FD-NL/Hsp47-HT, and col FD-NL/ssHT pairs. The maximum BRET ratio is shown as 100%, which was calculated by subtracting the value with no HT ligand. Results are presented as means ± SD of three independent experiments performed in duplicate. (E) Immunofluorescence of BRET pairs. The HT ligand can enter the ER. Protein disulfide isomerase (PDI) was used as an ER marker. Scale bar = 20 μm.
Figure 2. Optimization and validation of the BRET system for evaluating Hsp47-collagen interactions in the ER. (A) BRET efficiency with different ratios of col FD-NL/Hsp47-HT pairs in HEK293 cells following transfection, and (B) in HeLa cells. (C) Dependency of HT ligand concentration in HEK293 cells or HeLa cells. Results are presented as means ± SD (n = 3). (D) The position of the key collagen arginine (R) residue affects BRET efficiency. (E) Leu363Arg (L363R), Tyr365Arg (Y365R), and Asp367Asn (D367N) mutants of Hsp47 lack the ability to bind collagen, resulting in reduced BRET efficiency. Student’s t-test (n = 4), *p < 0.05, **p < 0.005.
Figure 3. The Hsp47-collagen interaction inhibitor Col003 reduces the BRET signal in the ER of living cells. (A) The BRET ratio (%) for Hsp47-collagen is dependent on the Col003 concentration. Results are presented as means ± SD (n = 3). (B) The BRET ratio (%) of the control PPI pair p53-MDM2 is not dependent on the Col003 concentration. Results are presented as mean ± SD (n = 3). (C) Structures of Col003 derivatives Col049, Col050, and Col051. Compounds differ in terms of the linker length between the two aromatic rings. (D) BRET ratios (%) of Hsp47-collagen in the presence of Col003 derivatives. The BRET ratio with dimethyl sulfoxide (DMSO) alone is shown as 100% (n = 3, Student’s t-test; *p < 0.05, **p < 0.01). NS, not significant. (E) BRET ratios (%) of p53-MDM2 in the presence of Col003 derivatives. The BRET ratio with DMSO alone is shown as 100% (n = 3, Student’s t-test). NS, not significant.
Figure 4. The triple helical structure of collagen affects the interaction with Hsp47. (A) The sequence used in this study. S.S., signal sequence; 4R, the position of the key collagen Arg from the C-terminus. FD, foldon; NLuc, Nano-luciferase. (B) BRET ratio (mBU) for 4R, GPP, GPGP, Δcol, and ΔFD constructs (n = 3, Student’s t-test; *p < 0.05, **p < 0.01). (C) α,α-dipyridyl treatment only affects the GPP construct. Collagen prolyl hydroxylase requires ascorbic acid and ferrous ions for activity. α,α-dipyridyl is a ferrous ion chelator. (D) Immunoblotting analysis of (C). GAPDH was used as a loading control. Mw, molecular weight. (E) Model of Hsp47 binding to procollagen in the ER. Hsp47 binds strongly to the Arg residue of the collagen triple helical structure, but also binds weakly to other sites on collagen. This ‘coating’ of Hsp47 on procollagens could explain the collagen-specific molecular chaperone function of Hsp47.
Figure 5. The role of the serpin loop in the Hsp47-collagen interaction. (A) (left) Overview of the X-ray structures of Hsp47 (Protein Data Bank ID; 4au2 and 3zha) in complex with collagen peptide (ColP). (right) Detailed view of the key residues in the serpin loop region of Hsp47 (stick model) that may interact with ColP (stick model with yellow, white, and green carbon atoms). The number of each amino acid was designated according to its position in the mouse Hsp47 sequence. (B) Sequence alignments of human, mouse, canine, and chick Hsp47. Clustal Omega software was used to make the alignments. The regions of the loop are surrounded by a red box. Ile352 and Tyr353 are in bold. (C, D, E) The BRET ratio (%) for the interaction of Hsp47 wild type (WT) and mutants with collagen in the ER. Results are presented as means ± SD (n = 4). Student’s t-test compared with WT; *p < 0.05, **p < 0.01. (F) SPR analyses of the binding of recombinant mouse Hsp47 (rmHsp47) wild type (WT), I352A and Y353A to collagen, which was immobilized to the sensor tip. (Table) The values of the dissociation constant (KD) for Hsp47-collagen were determined based on the those of a previous study (29). Data are represented as the mean ± standard deviation of n = 3 replicates. RU, response units (G) Titration of ColP with [U-²H, ¹H¹³C-methyl Ile δ1] chick Hsp47. Comparison of the Ile δ1 methyl regions of the ¹H-¹³C HMQC spectra of the WT Hsp47 (black) and I352V mutant (cyan). The numbering is based on mouse Hsp47. (H) Comparison of the Ile δ1 methyl regions from the ¹H-¹³C HMQC spectra of Hsp47 in the absence (black) and the presence of 30 μM ColP (red).
A BRET-based assay reveals collagen–Hsp47 interaction dynamics in the endoplasmic reticulum and small-molecule inhibition of this interaction
Shinya Ito, Masazumi Saito, Masahito Yoshida, Koh Takeuchi, Takayuki Doi and Kazuhiro Nagata

J. Biol. Chem. published online September 6, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.010567

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts