Properties and usage of *Liquidambar orientalis*

Ayten Gizem Özbek and Seda Ersus Bilek*
Food Engineering Department, Ege University, Turkey

Abstract

Liquidambar orientalis, as an endemic species, has been serving many crucial benefits to human. Especially medicine and cosmetic industry have been taking advantage of this advantageous tree. However, lack of knowledge and researches about this plant causes us to miss a valuable molecules and composition for health and nutritional products. Therefore, in this article, our aim is to give a brief information about *Liquidambar orientalis* and its usage.

Introduction

Phenolic compounds

Antioxidants are described as the compounds that can create a defense mechanism against free radicals, though their concentrations are low [1]. Antioxidants have the ability to capture reactive oxygen species (ROS) [2]. Antioxidants are found in plant materials and supplies from plant materials [3] and most of the antioxidant resources rely on plant phenolics [4]. Plant phenolics are synthesized during normal growth of plants as secondary metabolites [5].

Phenolics have antioxidant, anticarcinogenic, antimutagenic and antimicrobial effects through their chemical structure [6]. This feature opens a wide range of usage area to the plants with high phenolic compound levels. There are a lot of researches that a diet with rich antioxidant content may provide various of chronic diseases feature opens a wide range of usage area to the plants with high phenolic compound levels. There are a lot of researches that a diet with rich antioxidant content may provide various of chronic diseases [7]. Oxidative damage of DNA, proteins and lipids can trigger cardiovascular diseases, cancer and many other problems [8]. Therefore, it is considered that dietary antioxidants may provide protection against oxidative diseases [9].

Phenolic extraction

A various number of plant species has been used for ages with a great number of purposes. In a wide range of plant parts as leaves, flowers, heartwood and balsam that shows high phenolic content were used for phenolic extraction through the years. The diversity of total phenolic compound studies obtains a huge variety of plant species: Dandelion (*Taraxacum officinale*), English Lavender (*Lavandula angustifolia*), Mexican orageno (*Polionminta longiflora*), society garlic (*Tulbaghia violacea*) [3], berries [10], quince (*Cydonia vulgaris*) [11], carrot (*Daucus carota L.*) [12]. One of this precious plant is *Liquidambar orientalis* (*L. orientalis*), in another name, Anatolian Sweet Gum tree. *L. orientalis* trees can be mostly distributed in the United States of America, Turkey and China.

Features of liquidambar orientalis

Distribution of Liquidambar species

Phenolic-rich plant *L. orientalis* is usually known as Sığla, günlük or amber ağacı (amber tree) in Turkey and it belongs to order of Hamamelidales, family Hamamelidaceae. Name of *L. orientalis* comes from Latin and Arabic origin. It is a compose of liquidius (in Latin) and amber (in Arabic) which refers to “odoriferous liquid” [13].

Length of *L. orientalis* trees can be classified as medium to tall. The tallest Liquidambar tree was recorded in Sütçüler, Turkey, with 35 m. *L. orientalis* is monoecious [14]. Fruit does not always leave the tree. It can stay for one year from its production [15].

Liquidambar species are distributed only in North America, Southern West part of Turkey and East Asia [16]. The endemic *L. orientalis* species are only found in the southern west of Turkey, in Marmaris, Köyceğiz, Çine, Bucak and Antalya [17]. *L. orientalis* and philogenetically close other species *Liquidambar styraciflua* (North America) and *Liquidambar formosana* (East China and Formosa Island) which have enormous economic and ecologic impact [18]. Only four Liquidambar species could survive and show distribution today worldwide: *Liquidambar orientalis* (*L. orientalis*), *Liquidambar formosana* (*L. formosana*), *Liquidambar styraciflua* (*L. styraciflua*), and *Liquidambar acalyrina* (*L. acalyrina*) [19].

Origin and history of Liquidambar orientalis

Ancestors of *Liquidambar* species has been identified by paleonthology and distribution of this species on earlier geological times (including Cretaceous, Eocene, Oligocene, Miocene, Pliocene and Pleistocene) were in North America and Euroasia. After a Glacial period, distribution showed similar properties with today [14].

Patients with other pituitary hormone deficiency were treated accordingly with hormone replacement to attain normal hormone levels before starting rGH.

L. orientalis has always been there for human health. This plant has been used for the treatment of skin diseases like fungi, scabies; gastric problems; asthma and bronchitis. Local people have understood the importance of this tree dating back to the sixth and seventh centuries.

Correspondence to: Seda Ersus Bilek, Food Engineering Department, Ege University, Turkey, E-mail: seda.ersus@ege.edu.tr

Key words: Liquidambar orientalis, plant phenolics, novel food ingredient

Received: October 22, 2018; **Accepted:** November 12, 2018; **Published:** November 19, 2018
It is claimed that Greek physicians used liquid storax just as Arabian physicians [20] before it has been used as medicine and cosmetic industry [21]. Moreover, "Ala'im-i Cerrahi" (the book of medicine from early 16th century) claims that oil of Liquidambar species can be used as medicine. Dermatological problems, lung diseases, stomachache and so on are tried to be healed by using cultural therapy systems by using Liquidambar oil for many years in Anatolia [22].

Chemical composition of Liquidambar orientalis

One of the properties of Sığla tree gives a rise to a new area as functional food: phenolic components. Protocatechuic acid, (−) -epicatechin and gallic acid were determined as the major phenolics in sigla leaves [23]. Other phenolic compounds and their concentrations that obtained by ethanolic extract can be found in Table 1. By usage of these natural phenolic compounds, it can be effective to produce novel antioxidant food products with an aromatic odour.

Essential oil (Sığla Oil) and eight other species were determined for their antioxidative properties [24]. In that study, they characterized 66 components from Sigla oil. The major components were menthol, 17β-dihydroxy-5b-androstan-3-one and octyl alcohol acetate. Sigla oil had the most valuable results in both screening methods [24].

Sigla oil contains a huge number of cinnamic acid which has a great impact as antimicrobial and antioxidative properties. Thus, antimicrobial properties of this tree can be obtained [19]. In addition to oil, the leaves of the Liquidambar trees have antimicrobial properties. Terpinen-4-ol, α-terpineol, α-pinene, and sabinene from leaf oil have the most important chemicals for providing antibacterial feature [19].

Industrial usage of Liquidambar orientalis

Medical and cosmetic properties of this plant have been known for a long time and it is mostly used in the southern west part of Turkey [23]. Usage of Sigla oil known as a fixative in soaps and perfumery. Medical properties are based on Sigla oil (as known as storax or styrax) and essential oils from an extract of leaves [14].

Swine influenza virus H1N1 is susceptible to the antiviral drug Tamiflu® which has an ingredient "oseltamivir phosphate". Oseltamivir phosphate synthesis from shikimic acid and Chinese star anise plant was the initial source for shikimic acid before Escherichia coli's production. Usage of Liquidambar species, specifically *L. orientalis* has high antibacterial and antioxidant activities [25]. Bayazit has shown the considerable effect of Sigla oil on healing stroke parameters high concentration of Sigla oil's facilitator effect on the breakdown of fibrin blood clots and decreased systolic and diastolic pressure [26]. In addition to these studies, Sigla Oil has a high antibacterial feature on mainly *B. cereus* and the other *bacteria* (*B. subtilis*, *C. xerosis*, *E. aerogenes*, *E. faecalis*, *K. pneumoniae*, *M. luteus*, *M. smegmatis*, *P. vulgaris*, *P. aeruginosa*, *P. fluorescens* and *S. aureus*) [17].

Essential oils from *L. orientalis* resin has also nematicidal activity against *Bursaphelenchus xylophilus* (common pine wood nematode). Major components of this extract were determined as hydrocinnamyl alcohol (41%) and trans-cinnamyl alcohol (45%) by Kim et al. [27].

Prevention from *Aedes aegypti* (A. aegypti) mosquitoes (causes yellow fever disease) is possible with Sigla oil. The LC50 value was calculated to be 194.93 ppm for this environmentally friendly insecticide [28].

Liquidambar orientalis as a food ingredient

Plant species always used for developing human health. Herbal therapies and phytotherapy drugs regain their popularity and consumers demand increases for plant-based drugs. Plant based additives or drugs used for protection from free radical attacks on DNA and diseases caused by this attack. Besides their health promoting effects, another opportunity to use phenolics from plant species can decrease the speed of aging, therefore in cosmetic industry, its usage gains importance [29].

Conclusion

Sigla leaves or sigla oil has not been used as a food additive until now. Of course, before usage possibilities of this compounds in food products, cytotoxicity, impurities, chemical properties when it is added in a specific food, toxicokinetic studies, sub chronic toxicity tests, genotoxicity, chronic toxicity and carcinogenicity tests and so on need to be studied. Due to the experiments, proper dose as a food additive should be determined before it is released. However, the high phenolic concentration of this tree and other medicinal and antibacterial effects of this tree gives us an idea to clear our minds to see new horizons. We believe that the unique features of Liquidambar species are promising for many industrial areas. Hopefully, as long as the number of the studies are increased, novel usage idea for this plant will be discovered.

Acknowledgement

We thank Gülşen Esen, Selinsswqawq2az Gökçe and Nihal Kurban for their precious support and effort.

References

1. Mathew S, Abraham TE (2006) In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. *Food Chem Toxicol* 44: 198-206. [Crossref]

2. Lone AA, Ganai SA, Ahanger RA, Bhat HA, Bhat TA, et al. (2013) Free radicals and antioxidants: Myths, facts and mysteries. *Afr Pure Applied Chem* 5: 2-3
3. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. *J Agric Food Chem* 49: 5165-5170. [Crossref]

4. Atoui AK, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: their antioxidant activity and phenolic profile. *Food Chem* 89: 27-36.

5. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. *Molecules* 15: 7313-7352. [Crossref]

6. Dzialo M, Mierziak J, Korzan U, Preisner M, Szopa J, et al. (2016) The potential of plant phenolics in prevention and therapy of skin disorders. *Int J Mol Sci* 17: 160. [Crossref]

7. Griel AE, Kris-Etherton PM (2006) Tree nuts and the lipid profile: a review of clinical studies. *Br J Nutr* 96: S68-S78. [Crossref]

8. Halliwell B (1996) Antioxidants in human health and disease. *Annu Rev Nutr* 16: 33-50.

9. Suzek H, Celik I, Dogan A, Yildirim S (2016) Protective effect and antioxidant role of sweetgum (*Liquidambar orientalis*) oil against carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats. *Pharm Biol* 54: 451-457. [Crossref]

10. Rodríguez-Mateo A, Heiss C, Borges G, Croyer A (2013) Berry (poly) phenols and cardiovascular health. *J Agric Food Chem* 62: 3842-3851. [Crossref]

11. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Piscopo V, et al. (2008) Isolation and structure elucidation of antioxidant polyphenols from quince (*Cydonia vulgaris*) peels. *J Agric Food Chem* 56: 2660-2667. [Crossref]

12. Zhang D, Hamauzu Y (2001) Antioxidant activity and phenolic compounds in selected foods. *J Agric Food Chem* 49: 5165-5170. [Crossref]

13. Önal S, Özer S (1985) Problems in the Production and Evaluation of Sweet Grain Oil and anticancer properties. *Molecules* 15: 7313-7352. [Crossref]

14. Halliwell B (1996) Antioxidants in human health and disease. *Annu Rev Nutr* 16: 33-50.

15. Hoey M., Parks CR (1991) Isozyme divergence between eastern Asian, north American, and Anatolian species of sweetgum (*Liquidambar orientalis*). *Istamb Univ Orman Fak Derg* 27: 84-114.

16. Heoy M., Parks CR (1991) Isozyme divergence between eastern Asian, north American, and Turkish species of sweetgum (*Hamamelidaeae*). *Am Bota* 78: 938-947.

17. Sağdıç O, Özkanc, G, Özcan M, Özçelik S (2005) A study on inhibitory effects of sigla tree (*Liquidambar orientalis* Mill. var. orientalis) storax against several bacteria. *Phytother Res* 19: 549-551. [Crossref]

18. Gümüş N (1994) Relief and climate relations in the distribution of *Liquidambar orientalis* (Anatolian sweetgum tree) in southwest Anatolia. *Tur Geog* 29.

19. Lingbeck JM, O’Bryan CA, Martin EM, Adams JP, Crandall PG (2015) Sweetgum: An ancient source of beneficial compounds with modern benefits. *Pharmacogn Rev* 9: 1-11. [Crossref]

20. Howes FN (1950) Age-old resins of the Mediterranean region and their uses. *Econ Bot* 4: 307-316.

21. Hafizoglu H (1982) Analytical studies on the balsam of *Liquidambar orientalis* Mill. by gas chromatography and mass spectrometry. *Holzforschung* 36: 311-313.

22. Arslan MB, Şahin HT (2016) A Forgotten Forest Product Source: Anatolian Sweetgum Tree (*Liquidambar orientalis* Miller). *J Bartin Fac Forest* 18: 103-117.

23. Saraç N, Sen B (2014) Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of *Liquidambar orientalis* Mill. var. orientalis. *Ind Cro Prod* 53: 60-64.

24. Topal U., Sasaki M, Goto M, Otel S (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. *Int J Food Sci Nutr* 59: 619-634. [Crossref]

25. Gan RY, Xu XR, Song FL, Kuang L, Li HB (2010) Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. *J Med Plants Res* 4: 2438-2444.

26. Bayazit V (2009) Effects of Sweet Gum (*Liquidambar orientalis*) Mulberry Leaves (Morus alba) and the Larval Ganglion Extracts of Silkworm (*Bombyx mori*) on Stroke Parameters (Hemoglobin, Strokin, Cortexin, Frontalin, Parietalin, Occipitalin, Brain Ventriculin, Hemorrhagic Clot) in Rabbits (Lepus capensis). *J Anim Vet Adv* 8: 2164-2170.

27. Kim J, Seo SM, Lee SG, Shin SC, Park IK (2008) Nematicidal activity of plant essential oils and components from coriander (*Coriandrum sativum*), oriental sweetgum (*Liquidambar orientalis*), and valerian (*Valeriana wallichii*) essential oils against pine wood nematode (*Bursaphelenchus xylophilus*) *J Agric Food Chem* 56:7316–20. [Crossref]

28. Imam H, Riaz Z, Sofi G (2013) Mosquito larvicidal efficacy of storax (*Liquidambar orientalis*) against Aedes aegypti L. larvae. *J Nat Remedies* 13: 104-108.

29. Ghazali AR, Abdullah R, Ramli N, Rajab NF, Ahmad-Kamil MS, et al. (2011) Mutagenic and antimutagenic activities of *Mitragyna speciosa* Korth extract using *Ames* test. *J Med Plants Res* 5: 1345-1348. [Crossref]