Supplemental Materials

GENETIC AND NON-GENETIC MECHANISMS OF RESISTANCE TO BCR SIGNALING INHIBITORS IN B CELL MALIGNANCIES

Laura Ondrisova,1,2 Marek Mraz1,2∗

1 Molecular Medicine, CEITEC Masaryk University, Brno, Czech Republic
2 Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.

∗corresponding author

Correspondence:
Marek Mraz, M.D., Ph.D.
Associate Professor of Oncology
Central European Institute of Technology, Masaryk University
Kamenice 5, 625 00 Brno, Czech Republic
E-mail: marek.mraz@email.cz
Tel.: +420 549498143

Supplemental Tables: 2
Kinase	Acalabrutinib (ACP-32765) (1)	Irreversible, covalent BTK inhibitors (Ref.)	Reversible, non-covalent BTK inhibitors (Ref.)
BTK	0.55 19.2 19.5 7.9 0.22 98%	1.5 2.3 3.15 3 0.85 98%	2.5 100%
BLK	0.495 >1000 >1000 >1000 - 99%	110 >1000 4100 23 9.7 98%	2.5 100%
BMX	1.83 425 34.6 7.53 - 98%	138 351 1155 224 5.2 101%	46 92%
BRK	16.5 >1000 >1000 >1000 - 99%	>1000 >1000 54.3 - 2.5 100%	- 96%
CSK	39.5 >1000 >1000 >1000 - 66%	353 >1000 - - 46 92%	- 96%
EGFR	23.2 >1000 >1000 >1000 606* 86%	>1000 >1000 >1000 6464 - 80%	- 36%
EPHA1	>1000 >1000 >1000 >1000 - 5.5%	588 >1000 - - - 36%	- 7%
EPHA7	>1000 >1000 >1000 >1000 - -4%	>1000 >1000 - - - 10%	- 9%
EPHB1	>1000 >1000 >1000 >1000 - 2.7%	>1000 >1000 - - - 10%	- 9%
ERBB2	32.7 >1000 >1000 >1000 661 40%	>1000 >1000 - - - -	- 36%
ERBB4	2.7 78.2 >1000 >1000 - 96%	>1000 >1000 13.3 317 - 96%	- 10%
FGR	2.63 >1000 >1000 >1000 - 76%	105 387 - - 26 94%	- 10%
FLT3	264 >1000 >1000 >1000 - 61%	>1000 >1000 - - - 1%	- 36%
FLT4	- - - - - - -	- - - - - -	- 99%
Fms	- - - - - - -	- - - - - -	- 95%
FRK	44.1 >1000 >1000 >1000 - 71%	>1000 >1000 - - 48 93%	- 36%
FYN	- - - - - - -	- - - - - -	- 32 95%
HCK	27.6 >1000 >1000 >1000 - 65%	525 >1000 - 276 18 98%	- 36%
IGF1R	>1000 >1000 >1000 >1000 - 29%	756 >1000 - - - 1%	- 39%
ITK	218 >1000 >1000 >1000 30 76%	>1000 >1000 >5000 14 >10000 19%	- 1%
JAK1	- - - - - - -	- - >30000 - -	- 0%
JAK2	- - - - - - -	- - - - - -	- 16%
JAK3	240 >1000 >1000 50.1 200 36%	>1000 >1000 ND - - - 1%	- 0%
LC1	3.64 >1000 >1000 >1000 - 73%	149 >1000 - 8 3.9 94%	- 1%
LYN	15.8 >1000 >1000 >1000 - 35%	>1000 >1000 - - 19 100%	- 1%
MEK1	- - - - - - -	- - 147 - 599 55%	- 1%
MEK2	- - - - - - -	- - 86% - 82.7 -	- 1%
MuSK	>1000 >1000 >1000 >1000 - 2.8%	362 >1000 - - - 1%	- 1%
NEK11	- - - - - - -	- - 19% - 90 - 8%	- 1%
NLK	- - - - - - -	- - 29% - - - 3%	- 1%
RAF1	- - - - - - -	- - - - - -	- 77%
Ret	254 >1000 >1000 >1000 - 20%	682 >1000 - - - 9%	- 98%
RIPK2	16 898 >1000 >1000 - 8.7%	>1000 >1000 - - - 12%	- 1%
Ros	>1000 >1000 >1000 >1000 - 0.7%	>1000 >1000 - - - - 8%	- 1%
SRC	26.1 >1000 >1000 >1000 - 29%	183 302 >5000 84 - 96%	- 1%
Smr	5.78 >1000 >1000 >1000 - 31%	>1000 >1000 - -	- 1%
STK16	>1000 >1000 >1000 53.5 - 5.1%	>1000 >1000 - -	- 1%
TEC	10.2 >1000 240 9.51 1.9 79%	32.4 >1000 1234 14 5.8 90%	- 1%
Tie2	- - - - - - -	- - 3.3% - - - 9%	- 96%
TNK2	167 >1000 >1000 >1000 - 42%	>1000 >1000 - - - 1%	- 9%
TrkA	>1000 >1000 >1000 >1000 - 3.2%	155 >1000 - 13 95%	- 1%
TrkB	>1000 >1000 >1000 >1000 - 5.6%	429 >1000 - - 12 99%	- 1%
TrkC	- - - - - - -	- - 3% - - - 1%	- 9%
TXK	2.52 >1000 >1000 39.1 - 96%	147 >1000 209 474 36 93%	- 1%
YES	4.37 >1000 >1000 >1000 - 51%	340 >1000 157 - 4.2 100%	- 1%

* "-" indicates unknown values
* data with "%" (grey columns) indicate percentage of inhibition after 1 uM inhibitor
* indicates values assessed in a cellular assay (other data indicate values from kinome assays with purified proteins)
| Gene | Mutation | Disease | Mechanism of resistance | Reference |
|------|----------|---------|--------------------------|-----------|
| **BTK** | C481S | CLL, MCL, WM, MZL | causes reversible ibrutinib binding | (7–12) |
| | C481R/Y/F | CLL, WM, MCL | disrupts ibrutinib binding | (9,11–13) |
| | T474I/S | CLL | attenuates ibrutinib binding | (13,14) |
| | L528W | CLL | hinders ibrutinib binding | (13,14) |
| | R28S, G164D, R490H, Q516K | CLL | unknown | (15) |
| | T316A | CLL | unknown | (14) |
| **PLCG2** | R665W | CLL, MZL | BTK-independent activation by SYK and LYN | (7,10,11,16,17) |
| | L845F/V | CLL | BTK-independent activation | (7,11,13,17) |
| | S707Y/P/F | CLL | disrupts of an autoinhibitory SH2 domain | (7,11,13,17–19) |
| | P664S | CLL | disrupts of an autoinhibitory SH2 domain | (11) |
| | deletion of S707 and A708 | CLL | disrupts of an autoinhibitory SH2 domain | (11) |
| | D933H/Y | CLL | mutation in catalytic domain | (15,17,19) |
| | Y495H | WM | unknown | (9) |
| | F82S, R694H, S1192G | CLL | unknown | (15) |
| | D334H, R742P, D1140G | CLL | unknown | (13) |
| | L484R | CLL | unknown | (20) |
| | deletion of E1139 | CLL | unknown | (20) |
| | M1141R/K | CLL | unknown | (17,19) |
1. Crawford JJ, Johnson AR, Misner DL, Belmont LD, Castanedo G, Choy R, Coraggio M, Dong L, Eigenbrot C, Erickson R, et al. Discovery of GDC-0853: A Potent, Selective, and Noncovalent Bruton`s Tyrosine Kinase Inhibitor in Early Clinical Development. *J Med Chem* (2018) 61:2227–2245. doi:10.1021/acs.jmedchem.7b01712

2. Tam C, Grigg AP, Opal S, Ku M, Gilbertson M, Anderson MA, Seymour JF, Ritchie DS, Dicorleto C, Dimovski B, et al. The BTK Inhibitor, Bgb-3111, Is Safe, Tolerable, and Highly Active in Patients with Relapsed/Refractory B-Cell Malignancies: Initial Report of a Phase 1 First-in-Human Trial. *Blood* (2015) 126:832–832. doi:10.1182/blood.V126.23.832.832

3. Guo Y, Liu Y, Hu N, Yu D, Zhou C, Shi G, Zhang B, Wei M, Liu J, Luo L, et al. Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton`s Tyrosine Kinase. *J Med Chem* (2019) 62:7923–7940. doi:10.1021/acs.jmedchem.9b00687

4. Brandhuber B, Gomez E, Smith S, Eary T, Spencer S, Rothenberg SM, Andrews S. LOXO-305, A Next Generation Reversible BTK Inhibitor, for Overcoming Acquired Resistance to Irreversible BTK Inhibitors. *Clinical Lymphoma Myeloma and Leukemia* (2018) 18:S216. doi:10.1016/j.clml.2018.07.081

5. Allan JN, Wierda WG, Patel K, O’Brien SM, Mato AR, Davids MS, Furman RR, Pagel JM, Fox JA, Ward R, et al. Preliminary Safety, Pharmacokinetic, and Pharmacodynamic Results from a Phase 1b/2 Dose-Escalation and Cohort-Expansion Study of the Noncovalent, Reversible Bruton’s Tyrosine Kinase Inhibitor (BTKi), Vecabrutinib, in B-Lymphoid Malignancies. *Blood* (2018) 132:3141–3141. doi:10.1182/blood-2018-116382

6. Reiff SD, Mantel R, Smith LL, Greene JT, Muhowski EM, Fabian CA, Goettl VM, Tran M, Harrington BK, Rogers KA, et al. The BTK Inhibitor ARQ 531 Targets Ibrutinib-Resistant CLL and Richter Transformation. *Cancer Discov* (2018) 8:1300–1315. doi:10.1158/2159-8290.CD-17-0098

7. Chiron D, Di Liberto M, Martin P, Huang X, Sharman J, Blecua P, Mathew S, Vijay P, Eng K, Ali S, et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. *Cancer Discov* (2014) 4:1022–1035. doi:10.1158/2159-8290.CD-14-0098

8. Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M, Kofides A, Patterson CJ, Meid K, Gustine J, et al. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. *Blood* (2017) 129:2519–2525. doi:10.1182/blood-2017-01-761726

9. Epperla N, Shana’ah AY, Jones D, Christian BA, Ayyappan S, Maddocks K, Woyach JA. Resistance mechanism for ibrutinib in marginal zone lymphoma. *Blood Advances* (2019) 3:500–502. doi:10.1182/bloodadvances.2018029058

10. Ahn IE, Underbayev C, Albitar A, Herman SEM, Tian X, Maric I, Arthur DC, Wake L, Pittaluga S, Yuan CM, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. *Blood* (2017) 129:1469–1479. doi:10.1182/blood-2016-06-719294

11. Jain P, Kanagal-Shamanna R, Zhang S, Ahmed M, Ghorab A, Zhang L, Ok CY, Li S, Hagemeister F, Zeng D, et al. Long-term outcomes and mutation profiling of patients with mantle cell lymphoma (MCL) who discontinued ibrutinib. *Br J Haematol* (2018) 183:578–587. doi:10.1111/bjh.15567

12. Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, Lozanski A, Davis M, Gordon A, Smith LL, et al. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. *JAMA Oncology* (2015) 1:80. doi:10.1001/jamaoncol.2014.218
14. Sharma S, Galanina N, Guo A, Lee J, Kadri S, Van Slambrouck C, Long B, Wang W, Ming M, Furtado LV, et al. Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL. *Oncotarget* (2016) 7:68833–68841. doi:10.18632/oncotarget.11932

15. Gángó A, Alpár D, Galik B, Marosvári D, Kiss R, Fésüs V, Aczél D, Eyüpoglu E, Nagy N, Nagy Á, et al. Dissection of subclonal evolution by temporal mutation profiling in chronic lymphocytic leukemia patients treated with ibrutinib. *International Journal of Cancer* (2020) 146:85–93. doi:10.1002/ijc.32502

16. Liu T-M, Woyach JA, Zhong Y, Lozanski A, Lozanski G, Dong S, Strattan E, Lehman A, Zhang X, Jones JA, et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. *Blood* (2015) 126:61–68. doi:10.1182/blood-2015-02-626846

17. Jones D, Woyach JA, Zhao W, Caruthers S, Tu H, Coleman J, Byrd JC, Johnson AJ, Lozanski G. PLCG2 C2 domain mutations co-occur with BTK and PLCG2 resistance mutations in chronic lymphocytic leukemia undergoing ibrutinib treatment. *Leukemia* (2017) 31:1645–1647. doi:10.1038/leu.2017.110

18. Zhou Q, Lee G-S, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cy2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. *Am J Hum Genet* (2012) 91:713–720. doi:10.1016/j.ajhg.2012.08.006

19. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, Wang L, Stewart C, Fan J, Hoellenriegel J, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. *Nat Commun* (2016) 7:11589. doi:10.1038/ncomms11589

20. Landau DA, Sun C, Rosebrock D, Herman SEM, Fein J, Sivina M, Underbayev C, Liu D, Hoellenriegel J, Ravichandran S, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. *Nat Commun* (2017) 8:2185. doi:10.1038/s41467-017-02329-y