Article title: The R2R3 MYB transcription factor *PavMYB10.1* involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (*Prunus avium* L.)

Authors: Jin, Wanmei; Wang, Hua; Li, Maofu; Wang, Jing; Yang, Yuan; Zhang, Xiaoming; Yan, Guohua; Zhang, Hong; Liu, Jiashen; Zhang, Kaichun

The following Supporting Information is available for this article:

Figure S1. Ripe fruit skin and flesh colour of ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.
(a) Ripe fruit skin colour of ‘Big Dragon’. (b) Ripe fruit skin colour of ‘Rainier’. (c) Ripe fruit skin colour of ‘Lapins’. (d) Ripe fruit flesh colour of ‘Big Dragon’ (e) Ripe fruit flesh colour of ‘Rainier’. (f) Ripe fruit flesh colour of ‘Lapins’.

Figure S2. Southern blot of *PavMYB10.1* in three varieties ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

Figure S3. Genomic DNA sequence alignment of *PavMYB10.1a* and *PavMYB10.1b* gene between the dark red variety ‘Lapins’ and the blush ‘Rainier’. Introns shown in italics; black triangle indicates position of deletion, asterisk indicates stop codon.

Figure S4. Genomic DNA sequence alignment of *PavMYB10.2a* and *PavMYB10.2b* genes. Introns shown in italics and asterisk indicates stop codon.

Figure S5. Protein sequence alignment of PavMYB10.1, PavMYB10.2, and other genes from different species. Black arrows indicate Key amino acid residue difference. Double-sided arrow indicates R2 and R3 domains.
Figure S6. Alignment cDNA of *PavMYB10.1* transcript levels in sweet cherry ‘Lapins’ and ‘Rainier’. Coding sequence alignment of *PavMYB10.1a* and *PavMYB10.1b* between dark-red variety ‘Lapins’ and blush variety ‘Rainier’. Upwards arrow indicates position of deletion, asterisk marks stop codon.

Figure S7. Alignment cDNA of *PavMYB10.2a* and *PavMYB10.2b* gene. Coding sequence alignment of *PavMYB10.2a* and *PavMYB10.2b* between dark-red variety ‘Lapins’ and blush variety ‘Rainier’. asterisk marks stop codon.

Figure S8. Cellular localization of *PavMYB10.1* in onion epidermal cells. Onion bulb cells were bombarded with gold particles coated with plasmids. (a) The combination of cell morphology in dark field for green fluorescence and bright light for pEZS-NL-GFP. (b) Cell morphology in dark field for green fluorescence for pEZS-NL-GFP. (c) Cell morphology in bright light for pEZS-NL-GFP. (d) The combination of cell morphology in dark field for green fluorescence and bright light for pEZS-NL-PavMYB10.1-GFP. (e) Cell morphology in dark field for green fluorescence for pEZS-NL-PavMYB10.1-GFP. (f) Cell morphology in bright light for pEZS-NL-PavMYB10.1-GFP.

Figure S9 Interaction of *PavMYB10.1* with PavbHLH and PavWD40. (a) Schematics of *PavMYB10.1a* and *PavMYB10.1b* constructs used in yeast two-hybrid assays. Solid circle marks stop codon. (b) Yeast two-hybrid assays of *PavMYB10.1a* and *PavMYB10.1b* with PavbHLH and PavWD40. Indicated combinations of bait (BD fusion) and prey (AD fusion) constructs were introduced into yeast reporter strain AH109. Transformants were streaked on selective medium (SD/-Leu-Trp) and then
the single clone on medium (SD/-Leu-Trp) were inoculated on selective medium (SD/-Ade-His-Leu-Trp). Empty vectors pGBK7 and pGADT7 were negative controls. Plates were photographed after incubation at 30°C for 7 days.

Table S1 Correlations between anthocyanin content and relative expressions of *PavMYB10.1* and structural genes in ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

Table S2 Correlations between relative expressions of *PavMYB10.1* and relative expressions of structural genes in ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

Table S3 Sequences of oligonucleotide primers used in this work (F, forward; R, reverse).
Figure S1 Ripe fruit skin and flesh colours of ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

(a) Ripe fruit skin colour of ‘Big Dragon’. (b) Ripe fruit skin colour of ‘Rainier’. (c) Ripe fruit skin colour of ‘Lapins’. (d) Ripe fruit flesh colour of ‘Big Dragon’. (e) Ripe fruit flesh colour of ‘Rainier’. (f) Ripe fruit flesh colour of ‘Lapins’.
Figure S2 Southern blot of *PavMYB10.1* in three varieties ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.
Figure S3 Genomic DNA sequence alignment of *PavMYB10.1a* and *PavMYB10.1b* between the dark red variety ‘Lapins’ and the blush ‘Rainier’. Intron shows in italics; black triangle indicates position of deletion and asterisk indicates stop codon.
Figure S4 Genomic DNA sequence alignment of *PavMYB10.2a* and *PavMYB10.2b.*

Intron shows in italics; asterisk indicates stop codon.
Figure S5 Protein sequence alignment of *PavMYB10.1*, *PavMYB10.2*, and other genes from different species. Black arrow indicates key amino acid residue difference. Double-sided arrow indicates R2 and R3 domains.
Figure S6 Alignment cDNA of *PavMYB10.1* in sweet cherry ‘Lapins’ and ‘Rainier’.

Coding sequence alignment of *PavMYB10.1a* and *PavMYB10.1b* between dark-red variety ‘Lapins’ and blush variety ‘Rainier’. Upwards arrow indicates position of deletion, asterisk marks stop codon.
Figure S7 Alignment cDNA of PavMYB10.2a and PavMYB10.2b. Coding sequence alignment of PavMYB10.2a and PavMYB10.2b between dark-red variety ‘Lapins’ and blush variety ‘Rainier’. asterisk marks stop codon.
Figure S8 Cellular localization of *PavMYB10.1* in onion epidermal cells. Onion bulb cells were bombarded with gold particles coated with plasmids. (a) The combination of cell morphology in dark field for green fluorescence and bright light for

pEZS-NL-GFP. (b) Cell morphology in dark field for green fluorescence for

pEZS-NL-GFP. (c) Cell morphology in bright light for pEZS-NL-GFP. (d) The combination of cell morphology in dark field for green fluorescence and bright light

for pEZS-NL-PavMYB10.1-GFP. (e) Cell morphology in dark field for green fluorescence for pEZS-NL-PavMYB10.1-GFP. (f) Cell morphology in bright light for

pEZS-NL-PavMYB10.1-GFP.
Figure S9 Interaction of PavMYB10.1 with PavbHLH and PavWD40. (a) Schematics of *PavMYB10.1a* and *PavMYB10.1b* were used in yeast two-hybrid assays. Solid circle marks stop codon. (b) Yeast two-hybrid assays of PavMYB10.1a and PavMYB10.1b with PavbHLH and PavWD40. Indicated combinations of bait (BD fusion) and prey (AD fusion) constructs were introduced into yeast reporter strain AH109. Transformants were streaked on selective medium (SD/-Leu-Trp) and then the single clone on medium (SD/-Leu-Trp) were inoculated on selective medium (SD/-Ade-His-Leu-Trp). Empty vectors pGBK7 and pGADT7 were negative controls. Plates were photographed after incubation at 30°C for 7 days.
Table S1: Correlations between anthocyanin content and relative expressions of *PavMYB10.1* and structural genes in ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

Gene name	Big Dragon Correlation	p value	Rainier Correlation	p value	Lapins Correlation	p value
PavMYB10.1	–	–	0.913**	0.002	0.854*	0.014
PavPAL	–	–	-0.416	0.306	0.288	0.488
PavC4H	–	–	-0.401	0.325	0.272	0.515
Pav4CL	–	–	-0.398	0.329	0.133	0.754
PavCHS	–	–	-0.446	0.269	0.596	0.119
PavCHI	–	–	-0.495	0.212	0.845**	0.008
PavF3H	–	–	-0.46	0.252	-0.057	0.894
PavF3’H	–	–	-0.564	0.145	0.717*	0.045
PavANS	–	–	-0.122	0.773	0.845**	0.008
PavUFGT	–	–	0.780*	0.022	0.857**	0.007
PavLAR	–	–	-0.348	0.398	-0.394	0.334
PavANR	–	–	-0.447	0.267	-0.332	0.422
PavFLS	–	–	-0.34	0.41	-0.13	0.758

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
Table S2 Correlations between relative expression of PavMYB10.1 and that of structural genes in ‘Big Dragon’, ‘Rainier’, and ‘Lapins’.

Genes	Big Dragon	Rainier	Lapins			
	Correlation	p value	Correlation	p value	Correlation	p value
PavPAL	–	–	-0.364	0.376	0.785*	0.021
PavC4H	–	–	-0.311	0.454	0.241	0.565
Pav4CL	–	–	-0.298	0.473	0.023	0.957
PavCHS	–	–	-0.35	0.396	0.271	0.517
PavCHI	–	–	-0.413	0.31	0.458	0.254
PavF3H	–	–	-0.366	0.373	-0.185	0.661
PavF3'H	–	–	-0.494	0.214	0.574	0.136
PavDFR	–	–	-0.316	0.445	0.29	0.486
PavANS	–	–	-0.087	0.838	0.902**	0.002
PavUFGT	–	–	0.956**	0	0.861**	0.006
PavLAR	–	–	-0.232	0.58	-0.038	0.928
PavANR	–	–	-0.35	0.395	-0.547	0.161
PavFLS	–	–	-0.226	0.591	0.446	0.269

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
Table S3

Sequences of oligonucleotide primers were used in this work (F, forward; R, reverse).

Purpose	Accession	Alias*	Sequence (5→3)
qRT-PCR	JF748833	*PavCHS*	F: GCTCGTGTTCTTGGTGTGTCG R: ACTGTCGGGAAAGTGTGTTTTG
	JF740091	*PavCHI*	F: TCCACCGTACTAAACAC R: CCTCAAATCACAGCCAAATC
	JF740092	*PavF3H*	F: CATCGTCGACGAGCATTACAG R: ATCAGCTGTCTGCTATCTCAG
	KF974775	*PavDFR*	F: CATCCATGCAACACGGCTTCC R: AAGTGAACGAACTGGCCCCC
	KF974776	*PavANS*	F: GCCCTTTTTCGATCTTCCCAT R: CTTCCTCCACCCCTTTC
	KF974777	*PavUFGT*	F: ATGTGGGACCTCTTACCC R: GGCAACCACTACCCATTT
	GU990523	*Pav4CL*	F: CCAATGCAAGCTCATACC R: GAGAAATGCAAGCAATTTCCTGG
	GU990522	*PavC4H*	F: GAAGATCTGGCAGAAGGTC R: GTCCCTCAGTATCCTCCC
	GU938688	*PavANR*	F: GACCTGGTTGGCTGATTC R: CGACACTGCAAGCTGGTAAT
	GU938685	*PavFLS*	F: TTATACCCACCATGTCCC R: ATGACCTAACGGTCTACC
	GU938686	*PavLAR*	F: GGCGTACATCAGACAGGCT R: ATCTCGGTCAATATTTG
	AF036948	*PavPAL*	F: CATAGAGTTGGAGAC R: CGAGGCTTCTGGCACCATCTG
	JQ697494	*F3'H*	F: GTGGCTATTGTTGGAAATTG R: GTGGCTATTGTTGGACATT
	KP455680	*PavMYB*	F: GGTGGTCTGCTATTTT R: GTGATGTTGCTGATGCTGTTG
	FJ560908	*PavACTIN*	F: CCAGGGCTGTTTGCTTCTATT R: ATGATCTGGCTGATCCTT
Cloning	KP455680	*PavMYB10.1*	F: ATGGAGGGCTATAACTTG R: TTAGTCCCAGCTAATGGTACA
	ABX71943	*PavMYB10.2*	R: ATGGAGGGCTATAACTTG F: CTATGGCTTCTCTGATATT
Yeast	KP126521	*PavHLH-EcoR1*	F: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC R: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC
two-hybrid	KP143539	*PavWD40-NdeI*	F: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC R: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC
	KP455682	*PavMYB10.1-FL-NdeI*	F: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC R: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC
	KP455683	*PavMYB10.1-N-XhoI*	F: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC R: GAAATTGATTTCTAGTGCTACGGGAAGCAGCAC
Subcellularly localized	KP455680	PavMYB10.1-GFP-Xho I	F:GAAATTCATATGAAAAAGGTGAAAAGATAAACCACAGG
-------------------------	----------	----------------------	--
Chromatin immunoprecipitation	KF974776	Promoter of PavANS	F:TTGATAAAATTGAAAGAAACAT
		PavMYB10.1-GFP-Sac II	R:CAAGCATTGCTAATATTTTCAAA
	KF974777	Promoter of PavUFGT	F:CGATATTGAGAGAGAAACAA
	AF036948	Promoter of PavPAL	F:ATCCACAGATGATACCGTC
SNP marker	Marker1637	F:TCACACTGTAGATGACCTCATACTTTTGTAATTCAGTACTTG	
	Marker3823	F:GCTTGTGAAACTGTACTTTTGCTTGTGTTGTTGTAATGTTG	

SNP marker

Marker1637
F:TCACACTGTAGATGACCTCATACTTTTGTAATTCAGTACTTG
R:CTAATTTCCTAAACTGTTTTTGAATTCAATTGCAATG

Marker3823
F:GCTTGTGAAACTGTACTTTTGCTTGTGTTGTTGTAATGTTG
R:CTGCTGATATCTTTGATGCTAGTTTTCAATCATATTACCATTTT