DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS

ARNAUD BODIN

Abstract. We state a kind of Euclidian division theorem: given a polynomial $P(x)$ and a divisor d of the degree of P, there exist polynomials $h(x), Q(x), R(x)$ such that $P(x) = h \circ Q(x) + R(x)$, with $\deg h = d$. Under some conditions h, Q, R are unique, and Q is the approximate d-root of P. Moreover we give an algorithm to compute such a decomposition. We apply these results to decide whether a polynomial in one or several variables is decomposable or not.

1. Introduction

Let A be an integral domain (i.e. a unitary commutative ring without zero divisors). Our main result is:

Theorem 1. Let $P \in A[x]$ be a monic polynomial. Let $d \geq 2$ such that d is a divisor of $\deg P$ and d is invertible in A. There exist $h, Q, R \in A[x]$ such that

$$P(x) = h \circ Q(x) + R(x)$$

with the conditions that

(i) h, Q are monic;
(ii) $\deg h = d, \text{coeff}(h, x^{d-1}) = 0, \deg R < \deg P - \frac{\deg P}{d};$
(iii) $R(x) = \sum_i r_i x^i$ with $(\deg Q | i \Rightarrow r_i = 0)$.

Moreover such h, Q, R are unique.

The previous theorem has a formulation similar to the Euclidian division; but here Q is not given (only its degree is fixed); there is a natural Q (that we will compute, see Corollary 2) associated to P and d. Notice also that the decomposition $P(x) = h \circ Q(x) + R(x)$ is not the Q-adic decomposition, since the coefficients before the powers $Q^i(x)$ belong to A and not to $A[x]$.

2000 Mathematics Subject Classification. 13B25.

Key words and phrases. Decomposable and indecomposable polynomials in one or several variables.
Example. Let \(P(x) = x^6 + 6x^5 + 6x + 1 \in \mathbb{Q}[x] \). If \(d = 6 \) we find the following decomposition \(P(x) = h \circ Q(x) + R(x) \) with \(h(x) = x^6 - 15x^4 + 40x^3 - 45x^2 + 30x - 10 \), \(Q(x) = x + 1 \) and \(R(x) = 0 \). If \(d = 3 \) we have \(h(x) = x^3 + 65 \), \(Q(x) = x^2 + 2x - 4 \) and \(R(x) = 40x^3 - 90x \). If \(d = 2 \) we get \(h(x) = x^2 - \frac{775}{4} \), \(Q(x) = x^3 + 3x^2 - \frac{9}{2}x + \frac{27}{2} \) and \(R(x) = -\frac{405}{4}x^2 + \frac{255}{2}x \).

Theorem 1 will be of special interest when then ring \(A \) is itself a polynomial ring. For instance at the end of the paper we give an example of a decomposition of a polynomial in two variables \(P(x, y) \in A[x] \) for \(A = K[y] \).

The polynomial \(Q \) that appears in the decomposition has already been introduced in a rather different context. We denote by \(\sqrt[d]{P} \) the approximate \(d \)-root of \(P \). It is the polynomial such that \((\sqrt[d]{P})^d \) approximate \(P \) in a best way, that is to say \(P - (\sqrt[d]{P})^d \) has smallest possible degree. The precise definition will be given in section 2, but we already notice the following:

Corollary 2.

\[
Q = \sqrt[d]{P}
\]

We apply these results to another situation. Let \(A = K \) be a field and \(d \geq 2 \). \(P \in K[x] \) is said to be \(d \)-decomposable in \(K[x] \) if there exist \(h, Q \in K[x] \), with \(\deg h = d \) such that

\[
P(x) = h \circ Q(x).
\]

Corollary 3. Let \(A = K \) be a field. Suppose that char \(K \) does not divide \(d \). \(P \) is \(d \)-decomposable in \(K[x] \) if and only if \(R = 0 \) in the decomposition of Theorem 1.

In particular, if \(P \) is \(d \)-decomposable, then \(P = h \circ Q \) with \(Q = \sqrt[d]{P} \).

After the first version of this paper, M. Ayad and G. Chèze communicated us some references so that we can picture a part of history of the subject. Approximate roots appeared (for \(d = 2 \)) in some work of E.D. Rainville [9] to find polynomial solutions of some Riccati type differential equations. An approximate root was seen as the polynomial part of the expansion of \(P(x)^\frac{d}{d} \) into decreasing powers of \(x \). The use of approximate roots culminated with S.S. Abhyankar and T.T. Moh who proved the so-called Abhyankar-Moh-Suzuki theorem in [1] and [2]. For the latest subject we refer the reader to an excellent expository article of P. Popescu-Pampu [8]. On the other hand Ritt's decomposition theorems (see [10] for example) have led to several practical algorithms to
decompose polynomials in one variable into the form $P(x) = h \circ Q(x)$; for example D. Kozen and S. Landau in [6] give an algorithm (refined in [5]) that computes a decomposition in polynomial time. Unification of both subjects starts with P.R. Lazov and A.F. Beardon ([7], [3]) for polynomials in one variable over complex numbers: they notice that the polynomial Q is in fact the approximate d-root of P.

We define approximate roots in section 2 and prove uniqueness of the decomposition of Theorem 1. Then in section 3 we prove the existence of such decomposition and give an algorithm to compute it. Finally in section 4 we apply these results to decomposable polynomials in one variable and in section 5 to decomposable polynomials in several variables.

2. Approximate roots and proof of the uniqueness

The approximate roots of a polynomial are defined by the following property, [1], [8, Proposition 3.1].

Proposition 4. Let $P \in A[x]$ a monic polynomial and $d \geq 2$ such that d is a divisor of $\deg P$ and d is invertible in A. There exists a unique monic polynomial $Q \in A[x]$ such that:

$$\deg(P - Q^d) < \deg P - \frac{\deg P}{d}.$$

We call Q the approximate d-root of P and denote it by $\sqrt[d]{P}$.

Let us recall the proof from [8].

Proof. Write $P(x) = x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_n$ and we search an equation for $Q(x) = x^{\frac{d}{d}} + b_1x^{\frac{n}{d}-1} + b_2x^{\frac{n}{d}-2} + \ldots + b_n$. We want $\deg(P - Q^d) < \deg P - \frac{\deg P}{d}$, that is to say, the coefficients of $x^n, x^{n-1}, \ldots, x^{n-\frac{d}{d}}$ in $P - Q^d$ equal zero. By expanding Q^d we get the following system of equations:

$$\begin{cases}
a_1 = db_1 \\
a_2 = db_2 + \left(\frac{d}{2}\right)b_1^2 \\
\vdots \\
a_k = db_k + \sum_{i_1+2i_2+\ldots+(k-1)i_{k-1}=k} c_{i_1\ldots i_{k-1}} b_i^{i_1} \cdots b_{i_{k-1}}^{i_{k-1}}, & 1 \leq k \leq \frac{n}{d}
\end{cases}
$$

where the coefficients $c_{i_1\ldots i_{k-1}}$ are the multinomial coefficients defined by the following formula:

$$c_{i_1\ldots i_{k-1}} = \binom{d}{i_1, \ldots, i_{k-1}} = \frac{d!}{i_1! \cdots i_{k-1}!(d - i_1 - \cdots - i_{k-1})!}. $$
The system \((S)\) being a triangular system, we can inductively compute the \(b_i\) for \(i = 1, 2, \ldots, \frac{n}{d}\): \(b_1 = \frac{a_1}{d}, b_2 = \frac{a_2 - (\frac{d}{2})b_1^2}{d}, \ldots\) Hence the system \((S)\) admits one and only one solution \(b_1, b_2, \ldots, b_{\frac{n}{d}}\).

Notice that we need \(d\) to be invertible in \(A\) to compute \(b_i\). Moreover \(b_i\) depends only on the first coefficients \(a_1, a_2, \ldots, a_{\frac{d}{2}}\) of \(P\). \(\square\)

Proposition 4 enables us to prove Corollary 2: by condition (ii) of Theorem 1 we know that \(\deg(P - Q^d) < \deg P - \deg \frac{d}{4}\) so that \(Q\) is the approximate \(d\)-root of \(P\). Another way to compute \(\sqrt[d]{P}\) is to use iterations of Tschirnhausen transformation, see [1] or [8, Proposition 6.3]. We end this section by proving uniqueness of the decomposition of Theorem 1.

Proof. \(Q\) is the approximate \(d\)-root of \(P\) so is unique (see Proposition 4 above). In order to prove the uniqueness of \(h\) and \(R\), we argue by contradiction. Suppose \(h \circ Q + R = h' \circ Q + R'\) with \(R \neq R'\); set \(r_i x^i\) to be the highest monomial of \(R(x) - R'(x)\). From one hand \(x^i\) is a monomial of \(R\) or \(R'\), hence \(\deg Q \parallel i\) by condition (iii) of Theorem 1. From the equality \((h' - h) \circ Q = R - R'\) we deduce that \(i = \deg(R - R')\) is a multiple of \(\deg Q\); that yields a contradiction. Therefore \(R = R'\), hence \(h = h'\). \(\square\)

3. **Algorithm and proof of the existence**

Here is an algorithm to compute the decomposition of Theorem 1.

Algorithm 5.

- **Input.** \(P \in A[x], d \mid \deg P\).
- **Output.** \(h, Q, R \in A[x]\) such that \(P = h \circ Q + R\).
- **1st step.** Compute \(Q = \sqrt[d]{P}\) by solving the triangular system \((S)\) of Proposition 4. Set \(h_1(x) = x^d, R_1(x) = 0\).
- **2nd step.** Compute \(P_2 = P - Q^d = P - h_1(Q) - R_1\). Look for its highest monomial \(a_i x^i\). If \(\deg Q \parallel i\) then set \(h_2(x) = h_1(x) + a_i x^i, R_2 = R_1\). If \(\deg Q \parallel i\) then \(R_2(x) = R_1(x) + a_i x^i, h_2 = h_1\).
- **3thd step.** Set \(P_3 = P - h_2(Q) - R_2\), look for its highest monomial \(a_i x^i, \ldots\)
- \(\ldots\)
- **Final step.** \(P_n = P - h_{n-1}(Q) - R_{n-1} = 0\) yields the decomposition \(P = h \circ Q + R\) with \(h = h_{n-1}\) and \(R = R_{n-1}\).

The algorithm terminates because the degree of the \(P_i\) decreases at each step. It yields a decomposition \(P = h \circ Q + R\) that verifies all
the conditions of Theorem 1: in the second step of the algorithm, and
due to Proposition 4 we know that \(i < \deg P - \frac{\deg P}{d} \). That implies\(\coeff(h_2, x^{d-1}) = 0 \) and \(\deg R_2 < \deg P - \frac{\deg P}{d} \). Therefore at the end\(\coeff(h, x^{d-1}) = 0 \). Of course the algorithm proves the existence of the
decomposition in Theorem 1.

4. Decomposable polynomials in one variable

Let \(K \) be a field and \(d \geq 2 \). \(P \in K[x] \) is said to be \(d \)-decomposable
in \(K[x] \) if there exist \(h, Q \in K[x] \), with \(\deg h = d \) such that
\[P(x) = h \circ Q(x). \]

We refer to [4] for references and recent results on decomposable polynomials in one and several variables.

Proposition 6. Let \(A = K \) be a field whose characteristic does not divide \(d \). A monic polynomial \(P \) is \(d \)-decomposable in \(K[x] \) if and only if \(R = 0 \) in the decomposition \(P = h \circ Q + R \).

In view of Algorithm 5 we also get an algorithm to decide whether a polynomial is decomposable or not and in the positive case give its decomposition.

Proof. If \(R = 0 \) then \(P \) is \(d \)-decomposable. Conversely if \(P \) is \(d \)-decomposable, then there exist \(h, Q \in K[x] \) such that \(P = h(Q) \). As \(P \)
is monic we can suppose \(h, Q \) monic. Moreover, up to a linear change
of coordinates \(x \mapsto x + \alpha \), we can suppose that \(\coeff(h, x^{d-1}) = 0 \).
Therefore \(P = h(Q) \) is a decomposition that verifies the conditions of
Theorem 1. \(\square \)

Remark. Let \(P(x) = x^n + a_1x^{n-1} + \cdots + a_n \), we first consider \(a_1, \ldots, a_n \)
as indeterminates (i.e. \(P \) is seen as an element of \(K(a_1, \ldots, a_n)[x] \)). The
coefficients of \(h(x), Q(x) \) and \(R(x) = r_0x^k + r_1x^{k-1} + \cdots + r_k \) (computed
by Proposition 4, the system \((S) \) and Algorithm 5) are polynomials in
the \(a_i \), in particular \(r_i = r_i(a_1, \ldots, a_n) \in K[a_1, \ldots, a_n], i = 0, \ldots, k \).

Now we consider \(a_1^*, \ldots, a_n^* \in K \) as specializations of \(a_1, \ldots, a_n \) and
denote by \(P^* \) the specialization of \(P \) at \(a_1^*, \ldots, a_n^* \). Then, by Proposition 6, \(P^* \) is \(d \)-decomposable in \(K[x] \) if and only if \(r_i(a_1^*, \ldots, a_n^*) = 0 \)
for all \(i = 0, \ldots, k \). It expresses the set of \(d \)-decomposable monic polynomials of degree \(n \) as an affine algebraic variety. We give explicit
equations in the following example.

Example. Let \(K \) be a field of characteristic different from 2. Let \(P(x) =
x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6 \) be a monic polynomial of degree 6
in \(K[x] \) (the \(a_i \in K \) being indeterminates). Let \(d = 2 \). We first look for
the approximate 2-root of \(P(x) \). \[\sqrt[3]{P(x)} = Q(x) = x^3 + b_1x^2 + b_2x + b_3. \]
In view of the triangular system (S) we get
\[
b_1 = \frac{a_1}{2}, \quad b_2 = \frac{a_2 - b_1^2}{2}, \quad b_3 = \frac{a_3 - 2b_1b_2}{2}.
\]
Once we have computed \(Q \), we get \(h(x) = x^2 + a_6 - b_3^2 \). Therefore
\[
R(x) = (a_4 - 2b_1b_3 - b_3^2)x^2 + (a_5 - 2b_2b_3)x.
\]
Now \(P(x) \) is 2-decomposable in \(K[x] \) if and only if \(R(x) = 0 \) in \(K[x] \)
that is to say if and only if \((a_1, \ldots, a_6) \) satisfies the polynomial system
of equations in \(a_1, \ldots, a_5 \):
\[
\begin{align*}
\{ & a_4 - 2b_1b_3 - b_3^2 = 0, \\
& a_5 - 2b_2b_3 = 0.
\end{align*}
\]

5. Decomposable polynomials in several variables

Again \(K \) is a field and \(d \geq 2 \). Set \(n \geq 2 \). \(P \in K[x_1, \ldots, x_n] \) is said
to be \(d \)-decomposable in \(K[x_1, \ldots, x_n] \) if there exist \(Q \in K[x_1, \ldots, x_n] \),
and \(h \in K[t] \) with \(\deg h = d \), such that
\[
P(x_1, \ldots, x_n) = h \circ Q(x_1, \ldots, x_n).
\]

Proposition 7. Let \(A = K[x_2, \ldots, x_n] \), \(P \in A[x_1] = K[x_1, \ldots, x_n] \)
monic in \(x_1 \). Fix \(d \) that divides \(\deg_{x_1} P \), such that \(\text{char} \, K \) does not
divide \(d \). \(P \) is \(d \)-decomposable in \(K[x_1, \ldots, x_n] \) if and only if the
decomposition \(P = h \circ Q + R \) of Theorem 1 in \(A[x_1] \) verifies \(R = 0 \) and
\(h \in K[t] \) (instead of \(h \in K[t, x_2, \ldots, x_n] \)).

Proof. If \(P \) admits a decomposition as in Theorem 1 with \(R = 0 \) and
\(h \in K[t] \) then \(P = h \circ Q \) is \(d \)-decomposable.

Conversely if \(P \) is \(d \)-decomposable in \(K[x_1, \ldots, x_n] \) then \(P = h \circ Q \)
with \(h \in K[t], Q \in K[x_1, \ldots, x_n] \). As \(P \) is monic in \(x_1 \) we may
suppose that \(h \) is monic and \(Q \) is monic in \(x_1 \). We can also suppose
\(\text{coeff}(h, t^{d-1}) = 0 \). Therefore \(h, Q \) and \(R := 0 \) verify the conditions
of Theorem 1 in \(A[x] \). As such a decomposition is unique, it ends the
proof. \(\square \)

Example. Set \(A = K[y] \) and let \(P(x) = x^6 + a_1x^5 + a_2x^4 + a_3x^3 +
a_4x^2 + a_5x + a_6 \) be a monic polynomial of degree 6 in \(A[x] = K[x, y] \),
with coefficients \(a_i = a_i(y) \in A = K[y] \). In the example of section 4
we have computed the decomposition \(P = h \circ Q + R \) for \(d = 2 \) and set
\[
b_1 = \frac{a_1}{2}, \quad b_2 = \frac{a_2 - b_1^2}{2}, \quad b_3 = \frac{a_3 - 2b_1b_2}{2}.
\]
We found \(h(t) = t^2 + a_6 - b_3^2 \in A[t] \)
and \(R(x) = (a_4 - 2b_1 b_3 - b_2^2) x^2 + (a_5 - 2b_2 b_3) x \in A[x] \). By Proposition 7 above, we get that \(P \) is 2-decomposable in \(K[x, y] \) if and only if
\[
\begin{cases}
 a_6 - b_3^2 \in K, \\
 a_4 - 2b_1 b_3 - b_2^2 = 0 \quad \text{in } K[y], \\
 a_5 - 2b_2 b_3 = 0 \quad \text{in } K[y].
\end{cases}
\]
Each line yields a system of polynomial equations in the coefficients \(a_{ij} \in K \) of \(P(x, y) = \sum a_{ij} x^i y^j \in K[x, y] \). In particular the set of 2-decomposable monic polynomials of degree 6 in \(K[x, y] \) is an affine algebraic variety.

REFERENCES

[1] S.S. Abhyankar, T.T. Moh, *Newton-Puiseux expansion and generalized Tschirnhausen transformation*. J. Reine Angew. Math. 260 (1973), 47–83 and 261 (1973), 29–54.
[2] S.S. Abhyankar, T.T. Moh, *Embeddings of the line in the plane*. J. Reine Angew. Math. 276 (1975), 148–166.
[3] A.F. Beardon, *Composition factors of polynomials*. The Chuang special issue. Complex Variables Theory Appl. 43 (2001), 225–239.
[4] A. Bodin, P. Dèbes, S. Najib, *Indecomposable polynomials and their spectrum*. Acta Arith. 139 (2009), 79–100.
[5] J.v.z. Gathen, *Functional decomposition of polynomials: the tame case*. J. Symb. Comp. 9 (1990), 281–299.
[6] D. Kozen, S. Landau, *Polynomial decomposition algorithms*. J. Symb. Comp. 7 (1989), 445–456.
[7] P.R. Lazov, *A criterion for polynomial decomposition*. Mat. Bilten 45 (1995), 43–52.
[8] P. Popescu-Pampu, *Approximate roots*. Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc. (2003), 285–321.
[9] E.D. Rainville, *Necessary conditions for polynomial solutions of certain Riccati equations*. Amer. Math. Monthly 43 (1936), 473–476.
[10] A. Schinzel, *Polynomials with special regard to reducibility*. Encyclopedia of Mathematics and its Applications, 77. Cambridge University Press, Cambridge, 2000.

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve d’Ascq, France.
E-mail address: Arnaud.Bodin@math.univ-lille1.fr