Evaluation of kinetic stability and anti-staphylococcal activity of recombinant LasA protein produced in Escherichia coli

Behnaz Rahmani 1,2, Akram Astani 1,3, Hossein Zarei Jaliani 2*, Mohammad Hassan Kheirandish 2, Ahmad Mosaddegh 1

1 Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Keywords:
Antibiotic
LasA protease
MRSA
Stability
Staphyloolysin

Introduction

Although Staphylococcus aureus is considered a part of the normal flora in the human body, it causes numerous bacterial infections in humans including pneumonia, bacteremia, osteomyelitis, toxic shock syndrome, and endocarditis. Generally, S. aureus is the agent of hospital-associated (HA) and community-associated (CA) bacterial infections in humans (1). Antibiotic resistance in S. aureus has occurred through horizontal gene transfer for the acquisition of mobile genetic elements (2, 3) and somatic mutations to alter drug binding sites in the bacteria (4). After observation of resistance to penicillin in S. aureus species, methicillin as a semisynthetic penicillin derivative was designed to fight resistance (5). The problem still exists and is increasing, since methicillin-resistant S. aureus (MRSA) strain and inhibit the examined strain at the amount of 4 µg. Furthermore, the catalytic domain of LasA protein can tolerate higher temperatures as well.

Conclusion: With regard to the failure of conventional antibiotics in treatment of MDR strains, novel agents to combat multidrug-resistant strains are needed. The present study shows that LasA protein can eradicate MRSA strains, so it can be promising for the treatment of antibiotic-resistant staphylococcal infection. The kinetic stability of LasA has also confirmed the possibility of industrial-scale manufacturing for the subsequent use of the enzyme clinically.

Results: Our results revealed that LasA protein can completely prevent the growth of Methicillin-resistant S. aureus (MRSA) strain and inhibit the examined strain at the amount of 4 µg. Furthermore, the catalytic domain of LasA protein can tolerate higher temperatures as well.

Materials and Methods: The catalytic domain of the Codon-optimized LasA gene was sub-cloned into pET28a vector, and BL21 DE3 cells were used for protein expression. Recombinant LasA protein was affinity purified by Ni-NTA column and staphyloolysin activity of the LasA protein against methicillin-resistant strains was evaluated by disk diffusion and MIC test. The kinetic stability was evaluated in different temperatures during 48 hr.

Please cite this article as:
Rahmani B, Astani A, Zarei Jaliani H, Kheirandish MH, Mosaddegh A. Evaluation of kinetic stability and anti-staphylococcal activity of recombinant LasA protein produced in Escherichia coli. Inn J Basic Med Sci 2021; 24:851-855. doi: 10.22038/ijbms.2021.54563.12250
in the cell wall of \textit{S. aureus} (12). In the present study, the catalytic domain of the LasA protein was expressed separately as a recombinant protein in \textit{E. coli} and its staphyloytic activity against MRSA and kinetic stability in different temperatures during 48 hr has been explored.

Materials and Methods

Molecular cloning

The gene fragment encoding the catalytic domain of LasA protein after codon optimization was ordered to be chemically synthesized by Pishgaman Gene Transfer Company. The gene delivered in pUC57 plasmid was transformed into \textit{E. coli} DH5α competent cells. The construct was extracted using the QiAprep spin miniprep kit from transformants. This construct was digested using Ncol and XhoI restriction enzymes, and the LasA gene was introduced into pET28a(+) bacterial expression vector.

LasA-pET28a expression construct was transformed into DH5α competent cells and colony-PCR was performed with universal primers T7 promoter and T7 terminator as follows; T7P sequence: GAAAATTACGACTCACTATAG, and T7T sequence: GCTAGTTATTGGCTCAGCGG. PCR program steps were as follows; an initial step of 95 °C for 5 min, (95 °C for 30 sec, 56°C for 30 sec, and 72°C for 40 sec) for 30 cycles, and a final extension of 72 °C for 10 min.

Positive clones were confirmed by DNA sequencing. LasA-pET28a construct was extracted from DH5α transformants and was transformed into competent BL21 (DE3) bacteria.

Expression, induction, and purification

The colonies of BL21 with LasA-pET28a construct were tested in terms of expression and the best colonies were selected for protein purification. Briefly, one colony was cultured for inoculation of a 100-mL LB medium. The culture was incubated at 120 rpm under shaking, and when the OD$_{600}$ reached 0.6, an inducer (0.2 mM IPTG) was added to the culture.

After overnight induction, bacteria were harvested by centrifugation at 5,000 rpm for 3 min. The bacterial pellet was resuspended with lysis buffer (25 mM HEPES, pH 7.0, 600 mM NaCl, 10 mM 2ME, 10% glycerol). The bacteria were lysed with bead-beating (15 sec periods for 10 min). Ni-NTA agarose column (Qiagen Inc) was prepared for purification and the soluble fraction of lysed bacteria was loaded on a column. All buffers of the purification steps were the same as the lysis buffer except for the 300 mM of imidazole in the elution buffer. Fractions were analyzed by 15% SDS-PAGE. A protein size marker (Sinaclon cat no. PR911641) was used. The fractions containing the desired protein band were dialyzed against the storage buffer (50 mM NaCl, 25 mM HEPES buffer, and 20% glycerol).

Disk diffusion

A bacterial suspension of MRSA was prepared based on the 0.5 McFarland standard. The surface of the Muller-Hinton agar plate was perfectly impregnated with \textit{S. aureus} suspension and the disks containing the purified catalytic domain of LasA protein and storage buffer (as a negative control) were placed on the plate. After overnight incubation, sensitivity to recombinant LasA protein was determined, and the appearance of the halo of lack of bacterial growth was assessed.

MIC test

0.5 McFarland MRSA was cultured in Muller-Hinton broth in a 96-well plate. Serial dilutions of recombinant LasA protein were added to the bacteria. The plate also included positive control (bacteria without the LasA protein) and negative control (medium only). After overnight incubation at 37 °C, OD of wells was read and MIC concentration was determined (13).

MBC test

After completing the MIC test, the lowest concentration at which LasA protein would kill MRSA was determined. A sample from the dilution representing MIC and at least two of the more concentrated LasA protein dilutions were cultured on Muller-Hinton agar Medium. After 24 hr of incubation, the lowest concentration at which the bacteria would not grow was considered as MBC concentration (14).

Enzyme kinetic stability assay

For assessment of irreversible thermal inactivation of LasA protein, a sample of the purified LasA protein was treated at different temperatures (37, 52, and 75 °C), and the residual staphyloytic activity was measured at defined time intervals. MRSA in accordance with McFarland standards was prepared to be cultured with aliquots of the treated LasA protein at different time intervals. The culture was incubated overnight, and measured ODs were compared with control (un-treated LasA protein sample). The time required for the activity of the treated LasA protein to reach half of the initial level is defined as T$_{1/2}$ (15).

Results

Cloning, expression induction, and purification

The gene fragment encoding catalytic domain of LasA protein was inserted into pET28a expression vector and recombinant construct pET28a-LasA was verified using colony-PCR (Figure 1) and sequencing. After transformation of pET28a-LasA construct into BL21 (DE3) cell, expression of recombinant LasA protein was induced by IPTG. The recombinant protein was...
expressed and the size of the protein was confirmed to be about 21 kDa by SDS-PAGE analysis. C-terminal his-tagged recombinant LasA protein was affinity-purified by using a mini-column filled with Ni-NTA agarose resin. The purity of the recombinant LasA protein was calculated to be about 59% (calculated by ImageJ software) as demonstrated in Figure 2 as a band on SDS-PAGE.

Disk diffusion
In the disk diffusion method, the halo of lack of bacterial growth around the disk contained the LasA protein; Muller-Hinton agar plate impregnated with MRSA, showed that C-terminal his-tagged recombinant LasA protein inhibited the growth of MRSA bacteria (Figure 3).

MIC test
LasA recombinant protein at concentrations ranging from 1-258 µg/ml was evaluated for MIC testing and the MIC concentration for LasA protein was determined to be equivalent to 4 µg/ml (Figure 4).

MBC test
The MBC test was performed at MIC concentration and six concentrations below MIC. MBC concentration for the recombinant catalytic domain of LasA protein was evaluated and calculated to be 258 µg/ml.

Kinetic stability
The times required for the residual staphylolytic activity to be 50% ($T_{1/2}$) for the catalytic domain of LasA protein at 37 °C, 52 °C, and 75 °C were 20, 22.41, and 9.46, respectively. This domain retained more than 80% of their original activity at 37 and 52 °C after 10 hr of incubation and after 5 hr of incubation at 75 °C (Figure 5).
Discussion

Emergence of bacterial resistance is quickly occurring around the world. Bacterial infection has become a global problem though decades have passed since the discovery of the first antibiotic.

Excessive and inappropriate consumption of antibiotics is the main cause of the antibiotic resistance crisis. Nowadays, about 70 % of bacterial infection agents in hospitals have become resistant to at least one antibiotic and some bacteria are resistant to all antibiotics and the only way to treat them is to use potentially toxic drugs (16, 17).

In the era of ineffectiveness of antibiotics, using enzybiotics with new and different strategies against bacteria is in progress (7).

The LasA protein has staphylolytic activity and is secreted from P. aeruginosa. The gene for the LasA protein was sequenced in 1988(18). This protein which is also called staphyloysisin, belongs to the b-lytic endopeptidase family of proteases and hydrolyzes the glycine peptide bonds in the S. aureus cell wall (19). It has been shown that LasA can enhance elastolytic activity by cleaving the Gly-Gly bond in elastin. It is worth mentioning that LasA itself does not have considerable elastolytic activity and just helps with other elastase enzymes to enhance their activity (17, 20).

LasA protein has shown positive results in two animal model studies in which its staphylolytic activity was examined against keratitis in the rabbit model (21) and endophthalmitis in the rat model (22). It has shown to be more efficient even than vancomycin in animal models (21), and in neither study, were there any adverse effects in the animal models.

In previous studies, LasA protein has been extracted from P. aeruginosa culture supernatants and purified with ion-exchange chromatography. In the present study the recombinant mature form of LasA was produced in E. coli and in addition to anti-staphyloccocal activity, the kinetic stability of this mature form of LasA was examined for the first time. Codon-optimized gene of LasA was cloned into pET28a(+), and after protein expression and purification with Ni-NTA column, anti-staphyloccocal activity and the remaining activity after incubation in different temperatures was assessed on the protein. Despite the weak binding of the C-terminal his-tagged LasA protein, the yield of the LasA protein in this study was enough to complete the analysis of the staphylolytic activity and other assays (23).

In the disk diffusion test, LasA has a significant growth inhibitory effect on MRSA. The MIC concentration of LasA was determined to be 4 µg ml⁻¹, and the minimal bactericidal concentration (MBC) was 256 µg ml⁻¹.

Kinetic stability analysis of the LasA protein showed that this protein can be stable and active in relatively high temperatures. A mature form of LasA protein was able to withstand even 75 °C temperature for 23 hr, and it still had anti-staphyloccocal activity. Thermal inactivation of the recombinant catalytic domain of LasA protein revealed that this fragment of LasA protein can tolerate higher temperatures and has reasonable kinetic stability for use in pharmaceutical formulation and industrial applications.

LasA and other enzybiotics with relatively good kinetic stability and effectiveness could be a substitute for routine antibiotics and in the future must be used more to save humanity from the crisis of antibiotic resistance.

Conclusion

Enzybiotics with acceptable antibacterial properties could be an alternative for routine antibiotics that have low efficiency against new resistant strains. As the results of the present study showed, LasA has suitable antimicrobial activity and might be an efficient candidate for clinical use. On the other hand, we found it stable in high temperatures for subsequent industrial manipulations. However, future studies on the pharmacokinetic and pharmacodynamic profiles of these enzybiotics, in vivo, are required in order to establish clinical usage.

Acknowledgment

This work was supported by a grant from the Deputy of Research and Technology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. The results presented in this paper were part of a Medical Microbiology MSc student thesis. We thank the personnel and Faculty members of the Clinical Biochemistry Department at Shahid Sadoughi University of Medical Sciences for kindly providing the projects of the Protein Engineering Laboratory with facilities, materials, and guidance.

Conflicts of Interest

There are no conflicts of interest

References

1. Rao Q, Shang W, Hu X, Rao X. Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. J Med Microbiol 2015; 64:1462-1473.
2. Haaber J, Penadés JR, Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 2017; 25:893-905.
3. Alibayov B, Baba-Moussa L, Sina H, Zdeňková K, Demnerová K. Staphylococcus aureus mobile genetic elements. Mol Biol Rep 2014; 41:5005-5018.
4. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33:300-305.
5. Elward AM, McAndrews JM, Young VL. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus: preventing surgical site infections following plastic surgery. Aesthet Surg J 2009; 29:232-244.
6. Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 2007; 45:S165-S170.
7. Hojcikova K, Stano M, Klucar L. phiBIOTICS: catalogue of therapeutic enzybiotics, relevant research studies and practical applications. BMC Microbiol 2013; 13:53-58.
8. Bebell LM, Muiru AN. Antibiotic use and emerging resistance: How can resource-limited countries turn the tide? Glob Heart 2014; 9:347-358.
9. Pai A, Sudhaker G, Kamath V. Enzybiotics-A review. Int J Pharm Res 2013; 3:69-71.
10. Wu H, Lu H, Huang J, Li G, Huang Q. EnzyBase: A novel database for enzybiotics studies. BMC Microbiol 2012; 12:54.
11. Veiga-Crespo P, Sanchez-Perez A, Villa TG. Enzybiotics: The rush toward prevention and control of multiresistant bacteria (MRB). Antimicrobial Compounds: Springer; 2014. p. 215-235.
12. Kessler E, Safrin M, Gustin JK, Ohman DE. Elastase and the
LasA protease of *Pseudomonas aeruginosa* are secreted with their propeptides. J Biol Chem 1998; 273:30225-30231.

13. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48:5-16.

14. Jaśkiewicz M, Neubauer D, Kazor K, Bartoszewska S, Kamyasz W. Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of *Acinetobacter baumannii*. Probiotics Antimicrob Proteins 2019; 11:317-324.

15. Sanchez-Ruiz JM. Protein kinetic stability. Biophys Chem 2010; 148:1-15.

16. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T 2015; 40:277-283.

17. Goldberg JB, Ohman DE. Activation of an elastase precursor by the lasA gene product of *Pseudomonas aeruginosa* J Bacteriol 1987; 169:4532-4539.

18. Schad PA, Iglewski BH. Nucleotide sequence and expression in *Escherichia coli* of the *Pseudomonas aeruginosa* lasA gene. J Bacteriol 1988; 170:2784-2789.

19. Szweda P, Schielmann M, Kołowski R, Gorczyca G, Żalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against *Staphylococcus aureus*. Appl Microbiol Biotechnol 2012; 96:1157-1174.

20. Kessler E, Safrin M, Abrams WR, Rosenbloom J, Ohman DE. Inhibitors and specificity of *Pseudomonas aeruginosa* LasA. J Biol Chem 1997; 272:9884-9889.

21. Barequet IS, Ben Simon GJ, Safrin M, Ohman DE, Kessler E. *Pseudomonas aeruginosa* LasA protease in treatment of experimental staphylococcal keratitis. Antimicrob Agents Chemother 2004; 48:1681-1687.

22. Barequet IS, Habot-Wilner Z, Mann Q, Safrin M, Ohman DE, Kessler E, et al. Evaluation of *Pseudomonas aeruginosa* staphylolysin (LasA protease) in the treatment of methicillin-resistant *Staphylococcus aureus* endophthalmitis in a rat model. Graefes Arch Clin Exp Ophthalmol 2009; 247:913-917.

23. Peters JE, Galloway DR. Purification and characterization of an active fragment of the LasA protein from *Pseudomonas aeruginosa*: Enhancement of elastase activity. J Bacteriol 1990; 172:2236-2240.