The Influence of Prenatal Exercise on Offspring
Health: A Review

Carmen Moyer¹, Olga Roldan Reoyo² and Linda May³

¹Visiting Assistant Professor, Health and Human Sciences, Bridgewater College, Bridgewater, VA, USA. ²Health and Physical Activity, Technical University, Madrid, Spain. ³Assistant Professor, Foundational Sciences and Research, East Carolina University, Greenville, NC, USA.

ABSTRACT: Research has continued to demonstrate that exercise during pregnancy is safe. Growing evidence supports that exercise during pregnancy is beneficial for mother and fetus during gestation, with benefits persisting for the child into adulthood. Regardless of income or socioeconomic status, exercise during pregnancy is associated with increased incidence of full-term delivery. Additionally, normalization of birth measures, such as birth weight, occurs when women perform regular exercise throughout gestation. Measures of growth and development further indicate that exercise during pregnancy does not harm and may stimulate healthy growth throughout childhood. Measures of cognition and intelligence demonstrate that exercise during pregnancy causes no harm and may be beneficial. Overall, the benefits of exercise during pregnancy decrease the risk of chronic disease for both mother and child.

KEYWORDS: pregnancy, childhood, physical activity/exercise, health outcomes

Introduction

In 2014, 41 million children were reported to be overweight or obese.¹ Being overweight or obese increases the risk of developing type 2 diabetes mellitus and cardiovascular disease (CVD).²³⁻⁴ In part, the increased prevalence of obesity, overweight, and diabetes is due to negative lifestyle habits (ie, physical inactivity, diet lacking fruits and vegetables).³⁴ Therefore, positive lifestyle habits (ie, physical activity) may act as a nonpharmaceutical therapy for obesity and overweight, thus delaying or preventing the onset of type 2 diabetes and CVD. Numerous physical activity interventions are being done to treat and prevent these conditions in children; however, the earliest intervention to treat these conditions is during pregnancy.

Reports state that over half of pregnant women in the US and Norway and 85% in Canada participate in physical activity during pregnancy.⁵⁻⁷ Women who exercise throughout gestation show significantly decreased risk of preeclampsia, hypertension, gestational diabetes mellitus (GDM), weight gain, rate of spontaneous abortion, congenital abnormalities, and incidence of preterm labor, and offspring have normal growth and development.⁹⁻¹¹ The developmental origins hypothesis states that the in utero environment influences, or programs, fetal organ development, which has implications for the infants after birth into adulthood.¹⁷ Since there is a growing body of evidence supporting the safety and efficacy of maternal exercise for the offspring, this article provides a review of human studies related to physical health of offspring exposed to maternal exercise throughout gestation and the risk of developing diseases later, such as GDM.

Gestational Age at Birth

Some research suggests that women who exercise may be more likely to deliver closer to the estimated due date.¹⁴⁻¹⁸⁻²⁰ Although there are many studies that have compared gestational age between groups of women who exercise or not during pregnancy, most exercise was below the current recommended guidelines. The current guidelines of many nations suggest that pregnant women participate in at least 150 minutes per week of moderate-intensity aerobic activity.²¹⁻²⁶ Three intervention studies have met the current guidelines for the frequency, intensity, and duration of exercise throughout pregnancy, two of which found no differences in gestational age between exercise and control groups.²⁷⁻²⁸ Furthermore, one study utilized aerobic activity only²⁷ and two studies used aerobic with resistance²⁷⁻²⁹ exercise to meet the guidelines. One of these studies found no difference in gestational age between women participating in varying intensity levels.
research interest, such that small infants have an increased risk of developing CVD, type 2 diabetes, metabolic syndrome, and hypertension, while heavier infants are at an increased risk of developing obesity and type 2 diabetes. Finally, the one article that reports no difference in birth weight, regardless of exercise during pregnancy or not, is the only randomized control trial that had an exercise intervention throughout pregnancy at the recommended level of exercise, while all other articles utilized self-reported exercise. Altogether, these findings suggest that birth weight may be normalized by exercise during pregnancy; however, there are many other confounding factors of this crude measure of fetal growth.

In light of the fact that newborn birth weights have increased across generations, other factors related to health disparities of women may influence fetal growth as evidenced by birth weight. Two large population-based cohort studies suggest that birth weight is determined mainly by non-exercise variables, such as maternal body composition, diet, uteroplacental blood flow, placental transfer of nutrients, and fetal genetics, with the influence of maternal exercise being minimal. These findings are supported by studies examining the influence of racial/ethnic group and physical activity on birth weight. One study examining the relationship of exercise activity in urban, low-income AA women found no association with exercise participation and low birth weight. Another study found that urban AA women have a positive association between exercise and birth weight. Other research found that physical activity did not influence birth weight, but when controlling for maternal age, nationality, SES, substance use, and prenatal care, AAs were two times more likely to have low birth weight infants relative to whites. However, when controlling for confounding variables, neither physical activity nor race/ethnicity influenced macrosomia, but maternal body mass index (BMI) was the main factor. Despite attempts to decrease macrosomia in some populations, its occurrence is often due to cultural shifts. Overall, these findings suggest that maternal exercise does not adversely influence birth weight.

Body morphometry (ie, circumferences) at birth can also be utilized as an indicator of fetal growth during gestation. In general, studies report similar morphometric parameters for newborns of both active and nonactive pregnant women. No differences are found in birth length of babies exposed or not exposed to gestational exercise. Three of these studies met the current guidelines for exercise level, and utilized self-reported exercise. One study found no differences in measurements of neonatal head circumference, abdominal circumference, and ponderal index, regardless of maternal exercise exposure, but also utilized self-reported exercise level. A large Danish cohort study, using self-reported exercise level, found no differences in neonatal measures related to maternal exercise; however, they reported trends of decreasing birth length with increasing maternal exercise when controlling for confounding variables such as maternal BMI, age, and smoking (more common in lower income individuals). The third study utilized an

Birth Measures
Numerous studies have found that exercise during pregnancy, whether acute or chronic, is not harmful to the fetus and may benefit development in utero and after birth. The primary measures to assess proper growth at birth are weight, length, and circumference measures.

Birth weight, in general, may show increase, decrease, or no change in response to exercise during pregnancy. To control for some variables, we focused on those studies that used exercise throughout pregnancy at the current recommended level, which left six studies to be reviewed on this topic. Of these six studies, two found increased, three found decreased, and one found no differences in birth weight associated with maternal exercise. One of the studies reporting an increased birth weight, within normal weight ranges, also reports increased lean body mass and decreased fat mass in exercise–exposed infants relative to infants of nonexercisers. The two studies that reported increased birth weight, within normal weight ranges, found a dose response, such that higher levels of intensity in the final weeks of pregnancy are associated with lower birth weights, while lower levels of intensity are associated with higher birth weights. Additionally, one study observed that higher levels of physical activity (above the recommended guidelines of 30 or more minutes, most, if not all, days of the week) protected against both large and small for gestational age infants. This parabolic relationship between infant birth weight and chronic disease morbidity later in life is of current

(38)
exercise intervention in physically active women, and despite lower energy intakes than recommended (ie, iron, dairy), birth measures were within normal ranges.65 Overall, data suggest that maternal exercise does not adversely influence offspring growth measures.

Postnatal Measures
Although birth data are the most available and easiest to acquire, it does not provide a complete picture of changes that influence development after birth.64 Studies are currently underway regarding the continued growth and development of children exposed to exercise in utero. At one year of age, there are no differences in growth measures (ie, height, weight, head circumference, chest circumference, abdominal circumference) between children exposed or not exposed to exercise in utero.15,16 Similarly, there are no differences in height and circumferences (arm, head, chest, abdominal) at five years of age, regardless of exercise exposure in utero.67 A follow-up of children at five years of age found no differences in some measures of growth (ie, head and chest circumference); however, children exposed to exercise in utero weight less and had less fat mass relative to children who did not exercise while pregnant.52 Current research is analyzing associations between body weight and fat in prepubertal children and associated factors in an effort to determine intrauterine programming toward or away from disease risk. One study finds, after adjusting for the child’s BMI, age, sex, current physical activity level, and SES, that birth weight is a better predictor of percent body fat and height during childhood and adolescence compared to parental morphometrics.58 These findings support the idea that prepubertal body morphometric measures are programmed in utero.

Various measures have been used to determine offspring heart and nervous system health and development. For example, heart rate (HR) and HR variability, beat-to-beat fluctuation demonstrating cardiac autonomic nervous system maturation, are used during and after pregnancy to determine appropriate development of the fetus. Similar to an adult who is exercised trained, May et al69,70 found that exercise throughout gestation is associated with lower fetal HR and increased fetal HR variability that persists after birth. Further analysis demonstrated a dose–response relationship between maternal exercise intensity, or time, and offspring cardiac autonomic adaptation.71,72 It is important to note that the upper limit of maternal exercise was not tested in these studies; all participants trained in the moderate to vigorous range as recommended by the American Congress of Obstetricians of Gynecologists.21 The differences in cardiac autonomic regulation are attributed to exercise exposure in utero since no other variables (ie, maternal age, maternal BMI, maternal education, etc.) are significantly associated with these findings.69,70 In addition, children exposed to exercise in utero exhibited no evidence of CVD into adulthood.73 The persistence of healthy heart measures of offspring through childhood into adulthood supports the premise of prenatal programming.17,24

Other studies have used measures of neuromotor, cognition, and intelligence to determine if neurodevelopment is improved in offspring due to maternal exercise exposure. Overall, findings have been positive (Table 1) with most measurement tools: Brazelton scale, a measure of neonatal behavioral responses and neurodevelopment;75 neurophysiological brain potentials;76 intelligence quotient (IQ);77 and Wechsler test scales.67 Two studies showed equivalent cognition between exercise-exposed and nonexercise-exposed children, and both utilized the Bayley Scales of Infant Development, which assesses neonatal cognitive, motor, and behavioral development.16,78 Cognition, however, has been found to be associated with SES, mediated by environmental factors.79 Furthermore, research shows that more education and higher SES are associated with positive psychomotor and language developmental outcomes at 8 and 12 months of age,87 2 years of age,36 and 3 years of age36 and have faster reaction times and attention during a task than children of similar age. Altogether, these findings support that exercise while pregnant may be beneficial to cardiac and neuromotor development of offspring.

Table 1. Neurodevelopmental measures in exercise-exposed offspring relative to nonexposed offspring.

REFERENCES	INFANT AGE	OUTCOME MEASURE	SUMMARY
Clapp et al 1999	5-day olds	Brazelton scores	=/+
LeMoyne et al 2012	8–12 day olds	Neurophysiology brain potentials (EEG)	+
Clapp et al 1998	1-year olds	Bayley scores	=
Hellenes et al 2015	1.5 year olds	Bayley scores	=
Dominguez et al 2014	1, 2, and 4 year olds	IQ scores	+
Clapp 1996	5 year olds	Wechsler scores (and language scores)	+
Pivarnik et al 2005	8–12 years old	Academic, coordination, balance, strength, speed and endurance	+
Pivarnik et al 2006	17–20 years old	Academic and sports performance	+

Abbreviations: EEG, electroencephalography; +, statistically significant increase; =, no statistical differences.
Gestational Diabetes

Being overweight or obese can lead to development of type 2 diabetes.3,4,90 Baeten et al91 observed that one-third of women of reproductive age are overweight. This condition during pregnancy is similar to the nonpregnant state10 and increases the risk of developing GDM. GDM is defined as the onset or first recognition of diabetes during pregnancy and is related to adverse maternal and neonatal health outcomes.92,93 Women with GDM and borderline GDM have increased risk of negative long-term effects on maternal and neonatal health.10,94 Gestational diabetic women and borderline GDM93 have an increased risk of perinatal complications such as preeclampsia,93 C-section, and induced delivery.68

A recent study of primiparous women observed that GDM diagnoses were greater among women in lower SES levels.95 They also found that the incidence of GDM was increased in women older than 35 years of age, with a greater incidence in those falling in lower SES levels. However, younger women had similar GDM incidence rates across all SES levels. Furthermore, the incidence of GDM was greatest in women of Asian background who were older and fell within the lowest levels of SES.95 GDM also increases the risk of maternal development of type 2 diabetes, with 40% of GDM pregnancies diagnosed with type 2 diabetes postpartum.93 Diabetes, or borderline diabetes, during gestation affects the intrauterine environment. At delivery, there are complications, such as macrosomia, shoulder dystocia, neonatal hypoglycemia, and hyperbiliurinemia.68,93 It has been suggested that GDM could affect the intrauterine environment, increasing the genetic risk of developing childhood obesity and/or type 2 diabetes in adulthood.93

Physical activity during pregnancy, however, decreases the risk and incidence of GDM, in part by decreasing excessive gestational weight gain and stimulating a better control of glucose metabolism.92 This phenomenon is also true for high-risk groups such as women who are overweight or obese prior to pregnancy, especially those who are inactive. Physical activity starting at the beginning of pregnancy can be used as an early therapy to prevent excessive weight gain and GDM. Women who develop GDM during pregnancy can utilize physical activity as an adjunctive therapy and are able to decrease their insulin therapy and thus have better metabolic control compared to sedentary pregnant women.42

Conclusion

Evidence continues to grow in support of the notion that exercise during pregnancy is beneficial for fetal health and well-being, extending into childhood. Benefits for offspring are observable related to body weight and composition, cardiovascular health, and nervous system development. Exercise during pregnancy may elicit a prenatal programming effect, creating a healthy environment in utero during a critical time of organ development. Women of various SES and BMI can adopt healthy lifestyle behaviors that can positively impact postnatal health and decrease their child’s risk of developing chronic diseases such as obesity, diabetes, and CVD.

Author Contributions

Conceived and designed the experiments: LM, CM. Analyzed the data: LM, CM, ORR. Wrote the first draft of the manuscript: LM, CM. Contributed to the writing of the manuscript: LM, CM, ORR. Agree with manuscript results and conclusions: LM, CM, ORR. Jointly developed the structure and arguments for the paper: LM, CM, ORR. Made critical revisions and approved final version: LM, CM, ORR. All authors reviewed and approved of the final manuscript.

REFERENCES

1. Organization WH. Obesity and overweight. WHO Fact Sheets [webpage] 2016. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed July 7, 2016.
2. Association AD. Overweight. http://www.diabetes.org/arc-you-at-risk/overweight.html?loc=attrisk-slabar. Accessed April 20, 2016.
3. Koo BK, Moon MK. Are we in the same risk of diabetes mellitus? Gender- and age-specific epidemiology of diabetes in 2001 to 2014 in the Korean population. Diabet Med J 2016;40(3):175–181.
4. Society O. Your Weight and Diabetes; 2015. Available at: http://www.obesity.org/content/weight-diabetes. Accessed April 20, 2016.
5. Evenson KR, Savitz DA, Huston SL. Leisure-time physical activity among pregnant women in the US. Paediatr Perinat Epidemiol. 2004;18(6):400–407.
6. Evenson KR, Wen F. Measuring physical activity among pregnant women using a structured one-week recall questionnaire: evidence for validity and reliability. Int J Behav Nutr Phys Act. 2010;7:21.
7. Gaston A, Vamos CA. Leisure-time physical activity patterns and correlates among pregnant women in Ontario, Canada. Matern Child Health J 2013;17(3):477–484.
8. Owse KM, Nystad W, Bo K. Correlates of regular exercise during pregnancy: the Norwegian Mother and Child Cohort Study. Scand J Med Sci Sports. 2009;19(5):637–645.
9. Collings CA, Curer LB, Mullin JP. Maternal and fetal responses to a maternal aerobic exercise program. Am J Obstet Gynecol 1983;145(6):702–707.
10. Dye TD, Knox KL, Artal R, Aubry HB, Wojnowczyk MA. Physical activity, obesity, and diabetes in pregnancy. Am J Epidemiol. 1997;146(1):961–965.
11. Marcoux S, Brisson J, Fabia J. The effect of leisure time physical activity on the risk of pre-eclampsia and gestational hypertension. J Epidemiol Community Health. 1989;43(3):147–152.
12. Mudd LM, Owse KM, Mortola MF, Pivarnik JM. Health benefits of physical activity during pregnancy: an international perspective. Med Sci Sports Exerc. 2013;45(2):268–277.
13. Dempsey JC, Butler CL, Soorenens TK, et al. A case-control study of maternal recreational physical activity and risk of gestational diabetes mellitus. Diabetes Res Clin Pract. 2004;66(2):203–215.
14. Clapp JF III. Exercise during pregnancy. A clinical update. Clin Sports Med 2000; 19(2):273–286.
15. Clapp JF III. Exercise and fetal health. J Dev Physiol. 1991;15(1):9–14.
16. Clapp JF III, Simonian S, Lopez B, Appleby-Wiseberg S, Harcar-Sevcik R. The one-year morphometric and neurodevelopmental outcome of the offspring of women who continued to exercise regularly throughout pregnancy. Am J Obstet Gynecol 1998;178(3):594–599.
17. Barker DJ. Intrauterine programming of coronary heart disease and stroke. Acta Paediatr Suppl. 1997;423:178–182. [discussion 183].
18. Clapp JF III. The effect of continuing regular endurance exercise on the physiologic adaptations to pregnancy and pregnancy outcome. Am J Sports Med. 1996; 24(6 suppl):S28–S29.
19. Clapp JF III, Kim H, Burcic B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–1488.
20. Clapp JF III, Kim H, Burcic B, Schmidt S, Petry K, Lopez B. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–147.
The influence of prenatal exercise on offspring health
78. Hellenes OM, Vik T, Lohaugen GC, et al. Regular moderate exercise during pregnancy does not have an adverse effect on the neurodevelopment of the child. *Acta Paediatr*. 2015;104(3):285–291.
79. Santos DN, Assis AM, Bastos AC, et al. Determinants of cognitive function in childhood: a cohort study in a middle income context. *BMC Public Health*. 2008;8:202.
80. Chasan-Taber L, Schmidt MD, Pekow P, Sternfeld B, Manson J, Markenson G. Correlates of physical activity in pregnancy among Latina women. *Matern Child Health J*. 2007;11(4):353–363.
81. Zhang J, Savitz DA. Exercise during pregnancy among US women. *Am J Epidemiol*. 1996;6(1):53–59.
82. Ning Y, Williams MA, Dempsey JC, Sorensen TK, Frederick IO, Luthy DA. Correlates of recreational physical activity in early pregnancy. *J Matern Fetal Neonatal Med*. 2003;13(6):385–393.
83. Peterson AM, Leet TL, Brownson RC. Correlates of physical activity among pregnant women in the United States. *Med Sci Sports Exerc*. 2005;37(10):1748–1753.
84. Kieffer EC, Willis SK, Arellano N, Guzman R. Perspectives of pregnant and postpartum latino women on diabetes, physical activity, and health. *Health Educ Behav*. 2002;29(5):542–556.
85. Sternfeld B, Ainsworth BE, Quesenberry CP. Physical activity patterns in a diverse population of women. *Prev Med*. 1999;28(3):313–323.
86. Domingues MR, Barros AJ. Leisure-time physical activity during pregnancy in the 2004 Pelotas Birth Cohort Study. *Rev Saude Publica*. 2007;41(2):173–180.
87. Fox NA, Porges SW. The relation between neonatal heart period patterns and developmental outcome. *Child Dev*. 1985;56(1):28–37.
88. Porges SW. Heart rate variability and deceleration as indexes of reaction time. *J Exp Psychol*. 1972;92(1):103–110.
89. Porges SW, Humphrey MM. Cardiac and respiratory responses during visual search in nonretarded children and retarded adolescents. *Am J Ment Defic*. 1977;82(2):162–169.
90. Sakurai M, Nakamura K, Miura K, et al. Dietary carbohydrate intake, presence of obesity and the incident risk of type 2 diabetes in Japanese men. *J Diabetes Invest*. 2016;7(3):343–351.
91. Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. *Am J Public Health*. 2001;91(3):436–440.
92. Cordero L, Ora-Frank R, Landon MB, Nankervis CA. Breastfeeding initiation among macrosomic infants born to obese nondiabetic mothers. *Breastfed Med*. 2015;10(5):239–245.
93. Kaaja R, Ronnemaa T. Gestational diabetes: pathogenesis and consequences to mother and offspring. *Rev Diabet Stud*. 2008;5(4):194–202.
94. Hopkins SA, Artal R. The role of exercise in reducing the risks of gestational diabetes mellitus. *Women Health (Lond Engl)*. 2013;9(6):569–581.
95. Abouzeid M, Versace VL, Janus ED, et al. Socio-cultural disparities in GDM burden differ by maternal age at first delivery. *PLoS One*. 2015;10(2):e0117085.