Spectral CT in evaluating the therapeutic effect of transarterial chemoembolization for hepatocellular carcinoma

A retrospective study

Jun Wang, MM, Jia Lin Shen, MD

Abstract
This study aimed to investigate the value of computed tomographic (CT) spectral imaging in evaluating the effect of transarterial chemoembolization (TACE).

The records of 67 patients with hepatocellular carcinoma (HCC) who had undergone dynamic spectral CT before treatment were selected for the study. Iodine concentrations pretreatment in liver parenchyma, the HCC lesion(s), portal vein, and aorta were measured from the decomposition images. The normalized iodine concentrations (NIC) were calculated. All of them underwent plain scan or contrast-enhanced CT post-treatment (approximately 4–6 weeks after TACE).

The values of arterial phase normalized iodine concentrations (AP NIC) before TACE correlated with the grades of lipiodol deposition in tumors (r = 0.76, P < .001). However, there was no relationship between normalized iodine concentrations in the portal venous phase (PVP NIC) before TACE and the grade of lipiodol deposition (r = 0.17, P = .17). Values of AP NIC in residual tumors pre-TACE were significantly lower than those in partial lesions with deposition of iodized oil. The threshold AP NIC of 0.18 yielded an AUC of 0.895, 83.33% sensitivity, 81.03% specificity, 83.33% positive predictive value (PPV), and 82.76% negative predictive value, respectively. The survival probability in patients with AP NIC values pre-TACE ≥ 0.18 was higher than those whose AP NIC values pre-TACE were < 0.18 (P = .028).

Spectral CT with quantitative analysis of AP NIC may help to evaluate the utility and predict the therapeutic effect of TACE. Values of AP NIC had high sensitivity and specificity for differentiating partial tumors with lipiodol deposition from those without lipiodol deposition.

Abbreviations: AP = arterial phase, AP NIC = normalized iodine concentrations in the arterial phase, AUC = area under the curve, CT = computed tomographic, DESCT = dual energy spectral computed tomography, HCC = hepatocellular carcinoma, NIC = normalized iodine concentrations, NPV = negative predictive value, PPV = positive predictive value, PVP = portal venous phase, PVP NIC = normalized iodine concentrations in the portal venous phase, ROC = receiver operating characteristic, ROIs = regions of interest, TACE = transarterial chemoembolization.

Keywords: carcinoma, hepatocellular, multidetector computed tomography/mt, therapeutic chemoembolization

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. As most patients are at an advanced stage at the time of diagnosis, they are often unable to undergo surgical resection or transplantation. Transcatheter arterial chemoembolization (TACE) is an important therapeutic alternative for unresectable HCC[1,2] which induces tumor necrosis, precluding tumor growth.[3] However, application of TACE is often complicated by tumor recurrence.[4] Accurate identification of patients who will benefit from TACE, as well as precise assessment of its efficacy, are of great importance.

It has been found that tumor response evaluated by alterations in vascular perfusion instead of by measurement of tumor size may be optimal.[5] Dual energy spectral CT (DESCT) based on the rapid switching between high- and low-energy datasets was introduced to provide both material decomposition images and monochromatic spectral images.[6] This allows generation of iodine maps and monochromatic images that can examine lesion hemodynamics.[7]

This method has been applied in many areas, such as differentiation of hepatic lesions and diagnosis of pulmonary embolism.[6,8,9] We sought to investigate the value of spectral CT in selecting candidates for TACE and evaluating its efficacy.

2. Methods

2.1. Patients

This retrospective study was conducted with the approval of the Institutional Review Board of Renji Hospital affiliated to Shanghai Jiao Tong University and carried out after informed consent was obtained from the patients. From March 2013 to
CT scanning parameters were as follows: collimation 40 mm, rotation speed 0.6 seconds, and helical pitch 1.375:1. The CT images were reconstructed using projection-based material-decomposition software and a standard reconstruction kernel. The reconstruction thickness was 1.25 mm at an interval of 1.25 mm and a 36-cm display field-of-view. The adaptive statistical iterative reconstruction algorithm was applied to suppress image noise for the decomposition images. The estimated CT dose index was 25.8 mGy for a single phase which was similar to contrast-enhanced liver imaging in a normalized patient at our hospital. Material-decomposition images using iodine and water as the basic material pairs were reconstructed, for analytical purposes, from the single spectral CT acquisition.

2.4. Quantitative analysis

Two radiologists, each with > 3 years of experience in abdominal CT, reviewed the spectral CT images and measured iodine concentration on the pre- and post-TACE examinations. Regions of interest (ROIs) were placed within the lesions. The size, position, and shape of the ROIs were similar between AP and PVP with a constant number of pixels. The iodine content was calculated from iodine map images in the AP and VP. The following rules were applied when placing the ROI: (a) the ROI should not include obviously necrotic tissue defined on conventional CT images, and (b) the ROI should not include vessels.

When measuring iodine concentration pretreatment of partial lesions with deposition of iodized oil, lesions with deposition of iodized oil less than 10% were excluded. ROIs were placed on the part of lesions with deposition of iodized oil on pre-TACE images comparing to maps after TACE. Measurements of partial lesions without deposition of iodized oil were similar except for cases with deposition of iodized oil more than 90%.

NIC was calculated to minimize variations caused by the scanning times and patient’s status. AP NIC was defined as value dividing the iodine concentration in the ROI by that in the aorta during the AP phase. PVP NIC was defined as value dividing the iodine concentration in the ROI by that in the portal vein during the PVP phase.

2.5. Statistical analysis

When assessing the therapeutic effect of TACE, we divided treated tumors into 3 groups according to the grade of ethiodol uptake: grade I, < 20% of the tumor; grade II, 20%–60%; grade III > 60%

The relationship between the parameters before TACE and the post-TACE grades of lipiodol deposition in tumors was analyzed with Spearman’s correlation. Group-sample t-test or nonparametric test was performed to compare the quantitative parameters between partial lesions with and without deposition of iodized oil. A receiver operating characteristic (ROC) analysis was used to assess the diagnostic performance of AP NIC values in distinguishing partial lesions with deposition of iodized oil from those without lipiodol deposition. Survival curves were calculated by the Kaplan–Meier method. The statistical significance of the differences in the curves was analyzed with the log-rank test. Statistical significance was set at \(P < .05 \).
3. Results

A total of 16, 32, and 19 tumors were assigned to grade I, grade II, and grade III groups, respectively. The values of AP NIC before TACE were proved to be closely correlated with the grades of post-TACE lipiodol deposition in tumors ($r = 0.76$, $P < 0.001$) (Fig. 2), whereas the values of PVP NIC before TACE showed no relationship with the grades of post-TACE lipiodol deposition ($r = 0.17$, $P = 0.17$, Table 2).

When assessing parameters pretreatment of partial lesions with and without deposition of iodized oil, 54 and 58 partial tumors were assigned to group A (partial tumors with lipiodol deposition) and group B (partial tumors without lipiodol deposition). AP NIC values in group A were obviously higher than those in group B ($P < 0.001$, Table 3) (Fig. 2). No significant difference was found between PVP NIC values in 2 groups ($P=0.10$).

The ROC curves of AP NIC for differentiating partial tumors in group A from those in group B are shown in Figure 3, with an area under the curve (AUC) of 0.895. A threshold AP NIC of 0.18 would yield a sensitivity of 83.33%, specificity of 81.03%, positive predictive value (PPV) of 83.33%, and negative predictive value (NPV) of 82.76%, respectively.

Forty-five patients with follow-up period more than 2 years were divided into 2 groups: those whose AP NIC values pre-TACE were <0.18 (group C) and those with AP NIC values pre-TACE ≥ 0.18 (group D). The survival probability was significantly increased ($P = 0.028$) in patients with AP NIC values

Table 2

Parameters	AP NIC	PVP NIC
Grade I	0.11±0.03	0.43±0.06
Grade II	0.16±0.05	0.48±0.07
Grade III	0.24±0.05	0.47±0.07
r	0.76	0.17
P	$<.001$	0.17

$AP\text{ NIC}=the\ normalized\ iodine\ concentration\ during\ arterial\ phase,$ $CT=computed\ tomographic,$ $NIC=the\ normalized\ iodine\ concentration\ during\ portal\ venous\ phase,$ $PVP=portal\ venous\ phase.$

Table 3

Parameters	N	AP NIC	PVP NIC
Group A	54	0.23±0.01	0.50±0.01
Group B	58	0.14±0.01	0.47±0.02
P	$<.001$.10	

$AP\text{ NIC}=the\ normalized\ iodine\ concentration\ during\ arterial\ phase,$ $NIC=the\ normalized\ iodine\ concentration\ during\ portal\ venous\ phase,$ $PVP=portal\ venous\ phase.$
This study was focused on investigating the relationship between the grade of capillary vessel surface measured from perfusion CT, which both play an important role in assessing the effect of transarterial chemoembolization. It has been found that the values of AP NIC and PVP NIC of hepatic tumors had close relationships with hepatic blood flow and permeability, as well as to maximize the success of the treatment.

4. Discussion

The recent introduction of spectral CT affords the ability to eliminate beam hardening caused by preferential absorption and analyze hemodynamic changes quantitatively. It has been found that the values of AP NIC and PVP NIC of hepatic tumors had close relationships with hepatic blood flow and permeability of capillary vessel surface measured from perfusion CT, which both play an important role in assessing the effect of TACE. This study was focused on investigating the potential of spectral imaging in evaluating the effect of transarterial chemoembolization.

It is usually acknowledged that the antitumor effect of TACE is associated with the grade of iodized lipiodol deposition in the lesions. In this study, the value of normalized iodine concentration was used to minimize variations caused by the scanning medium injection were considered in this study. Moreover, spectral CT may have the potential to predict the situation of lipiodol deposition after TACE.

Moreover, obvious washout in PVP underestimates the blood flow of tumor distinctly, which may have been the reason for the poor correlation between PVP NIC and grades of lipiodol deposition.

Our results also showed that AP NIC values in group A were obviously higher than those in group B. This reflected that partial tumors with lipiodol deposition had more abundant arterial supply pretreatment than those without lipiodol deposition. Previous study had found that the presence of heterogeneity in tumor differentiation is common within 1 tumor especially in tumors >5 cm. This accounted for the heterogeneity of arterial supply and lipiodol deposition in an identical tumor. ROC curves in this study indicated that the values of AP NIC had high sensitivity and specificity for differentiating partial tumors with lipiodol deposition from those without lipiodol deposition. The threshold AP NIC of 0.18 yielded a sensitivity of 83.33%, specificity of 81.03%, PPV of 83.33%, and NPV of 82.76%, respectively. Therefore, spectral CT may have the potential to predict the situation of lipiodol deposition after TACE.

Furthermore, the survival probability was significantly increased (P = 0.028) in patients with AP NIC values pre-TACE ≥ 0.18 versus those whose AP NIC values pre-TACE were < 0.18. The survival rates for the patients with higher AP NIC at 12 and 24 months were 94.44% and 61.11%, respectively. For patients with relatively lower AP NIC, the survival rates at 12 and 24 months were 61.54% and 34.61%, respectively.

The measurement of iodine concentrations may be influenced by some factors. Timing of arterial and portal venous phase was thought to be a vital factor to guarantee the precision of the measurement. The results could be affected if the HAP initiate too early or too late. According to previous study, optimal initial time of HAP should range from 19 to 21 s after the trigger attenuation threshold (100 HU) reached at the level of the supraceliac abdominal aorta based on pharmacokinetic and clinical analysis. Another 30 s delay after HAP was thought to be appropriate for PVP. These regulations of contrast medium injection were considered in this study. Moreover, NIC was used to minimize variations caused by the scanning times and patient’s status.

Figure 3. ROC curves for AP NIC in differentiating group A from group B. AP NIC = normalized iodine concentrations in the arterial phase, ROC = receiver operating characteristic.

Figure 4. Kaplan–Meier estimates of survival in both groups. Patients whose AP NIC values pre-TACE ≥ 0.18 (group D) survived significantly longer than those with AP NIC values pre-TACE < 0.18 (group C) (P = 0.028). AP NIC = normalized iodine concentrations in the arterial phase, TACE = transarterial chemoembolization.
5. Limitations
There were several limitations of our study. The parameters analyzed were based on a relatively small number of patients. Thus, the accuracy of values needs to be confirmed by larger samples in further studies. Second, according to previous studies, types of accumulation are classified into four grades. HCCs in the present study were not classified rigorously by acknowledged criteria because of the limited number of cases.

6. Conclusions
In conclusion, quantitative analysis of iodine concentration measured from CT spectral imaging may be helpful to select candidates for treatment with TACE and for evaluating the effectiveness of treatment.

References
[1] Sacco R, Bertini M, Petruzzi P, et al. Clinical impact of selective transarterial chemoembolization on hepatocellular carcinoma: a cohort study. World J Gastroenterol 2009;15:1843–8.
[2] Ko HK, Ko GY, Yoon HK, et al. Tumor response to transcatheter arterial chemoembolization in recurrent hepatocellular carcinoma after living donor liver transplantation. Korean J Radiol 2007;8:320–7.
[3] Ramsey DE, Geschwind JF. Chemoembolization of hepatocellular carcinoma—what to tell the skeptics: review and meta-analysis. Tech Vasc Interv Radiol 2002;5:122–6.
[4] Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology 2004;127:S179–88.
[5] Sabir A, Schor-Bardach R, Wilcox CJ, et al. Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy. AJR Am J Roentgenol 2008;191:133–9.
[6] Lin XZ, Wu ZY, Tao R, et al. Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 2012;81:2487–94.
[7] Simons D, Kachelriess M, Schlemmer HP. Recent developments of dual-energy CT in oncology. Eur Radiol 2014;24:930–9.
[8] Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology 2011;259:720–9.
[9] Geyer LL, Scherr M, Korner M, et al. Imaging of acute pulmonary embolism using a dual energy CT system with rapid kVp switching: initial results. Eur J Radiol 2012;81:3711–8.
[10] Yang L, Zhang XM, Zhou XP, et al. Correlation between tumor perfusion and lipiodol deposition in hepatocellular carcinoma after transcatheter arterial chemoembolization. J Vasc Interv Radiol 2010;21:1841–6.
[11] Matsuo N, Uchida H, Sakaguchi H, et al. Optimal lipiodol volume in transcatheter arterial chemoembolotherapy for hepatocellular carcinoma: study based on lipiodol accumulation patterns and histopathologic findings. Semin Oncol 1997;24:56–1.
[12] Catalano O, Esposito M, Sandomenico F, et al. Multiphase helical computerized tomography of hepatocarcinoma. Assessment after chemoembolization. Radiol Med 2000;99:456–60.
[13] Yu Y, He N, Sun K, et al. Differentiating hepatocellular carcinoma from angiomylipoma of the liver with CT spectral imaging: a preliminary study. Clin Radiol 2011;66:e491–7.
[14] Choi SH, Chung JW, Kim HC, et al. The role of perfusion CT as a follow-up modality after transcatheter arterial chemoembolization: an experimental study in a rabbit model. Invest Radiol 2010;45:427–36.
[15] Zhang LJ, Wu S, Wang M, et al. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: comparison to perfusion CT measurements and histopathological findings. Eur J Radiol 2012;81:1766–75.
[16] Monsky WL, Kim I, Loh S, et al. Semi-automated segmentation for volumetric analysis of intratumoral ethiodol uptake and subsequent tumor necrosis after chemoembolization. AJR Am J Roentgenol 2010;195:1220–30.
[17] Kim I, Kim MJ. Histologic characteristics of hepatocellular carcinomas showing atypical enhancement patterns on 4-phase MDCT examination. Korean J Radiol 2012;13:586–93.
[18] Lee J, Lee WJ, Lim HK, et al. Early hepatocellular carcinoma: three-phase helical CT features of 16 patients. Korean J Radiol 2008;9:325–32.
[19] Colecchia A, Scaioli E, Montrone L, et al. Pre-operative liver biopsy in cirrhotic patients with early hepatocellular carcinoma represents a safe and accurate diagnostic tool for tumor grading assessment. J Hepatol 2011;54:300–5.
[20] Yamaguchi I, Kidoya E, Suzuki M, et al. Optimizing scan timing of hepatic arterial phase by physiologic pharmacokinetic analysis in bolus-tracking technique by multi-detector row computed tomography. Radiol Phys Technol 2011;4:43–52.
[21] Oto A, Tammi EP, Soklaruk J. Multidetector row CT of the liver. Radiol Clin North Am 2005;43:827–48.
[22] Catalano O, Cusati B, Esposito M, et al. The correlation between Doppler echography with a contrast medium and CT in the study of a hepatocarcinoma submitted to chemoembolization. Radiol Med 1998;95:608–13.