Cochlear implantation (CI) has been established worldwide as an effective method of rehabilitation of the profoundly hearing impaired patient at any age.\(^1,2\) CI provides the possibility for the deaf to hear up to normal levels, for adults who had postlingual deafness to regain their speech, and for prelingually deaf children to develop speech and language if implanted at a suitable age and provided with appropriate rehabilitation. The CI program started in the Kingdom of Bahrain in 2001, at Salmaniya Medical Complex (SMC), and was supported by the Ministry of Health. The CI surgeries on the program stopped in years 2003 and 2004 due to financial reasons, and restarted in 2005. This study was designed to evaluate the result in relation to hearing gain and speech development after rehabilitation of CI surgeries performed in Bahrain in the years 2001 and 2002.

PATIENTS AND METHODS

All CI surgeries performed in SMC in 2001 and 2002, were included in this study. Cases referred for CI were evaluated at the Hearing Impaired Children Clinic (HICC) by a team including an ENT consultant CI surgeon, an audiological physician, speech therapists and a pediatric developmental physician. Children had an otolaryngological and audiological assessment, a CT scan of the temporal bone and an MRI of the inner ear and brain. Psychiatric evaluation was requested when needed.

Selection criteria to implant children were (1) prelingual deafness aged ≤5 years of >90 dB hearing loss of average 0.5,1,2 and 4 KHz without speech development, and no benefit from hearing aid, or (2) prelingual deaf children to develop speech and language if implanted at a suitable age and provided with appropriate rehabilitation. The CI program started in the Kingdom of Bahrain in 2001, at Salmaniya Medical Complex (SMC), and was supported by the Ministry of Health. The CI surgeries on the program stopped in years 2003 and 2004 due to financial reasons, and restarted in 2005. This study was designed to evaluate the result in relation to hearing gain and speech development after rehabilitation of CI surgeries performed in Bahrain in the years 2001 and 2002.

RESULTS

CI surgeries were performed on 15 children, including 10 females (67%), and 5 males (33%). Thirteen (87%) had prelingual deafness, including 9 (60%) of age 5 years or less (mean age, 3.6 yrs) and 4 (27%) of 11-15 years (mean age, 14.7 years). The remaining 2 cases (13%), one male and one female, had postlingual deafness and were aged between 6-10 years (mean age, 9.5 years). The overall mean age for the 15 cases was 7.0 years.

Hearing level before implantation according to testing by free field, pure tone audiometry, and acoustic brain reflexes (ABR) showed no responses in 11 cases (73%), and a hearing level of 90-100 dB in 4 cases (27%). The etiological factors were hereditary in 6 cases (40%), all having consanguinity of the parents and a family history of deafness. The causes were anoxia at birth in 2 cases (13 %), meningitis in 1 case (7%) and renal failure in 1 case (7%). The remaining 5 cases (33%) were of unknown etiology. Postimplantation and after acquiring auditory skills of sound detection, all children had hearing responses at levels from 20 dB to 45 dB.
The poorer responses were in the two children who had poor speech development as indicated below.

Thirteen children (87%) had satisfactory to excellent responses on the words and sentences closed set lists. Ten (77%) had excellent responses of 90% to 100%, and 3 (23%) had satisfactory responses between 40% to 70%. All have joined normal nursery or school (Table 1). The remaining 2 cases (13%) failed to respond to acceptable levels without lip reading. These 2 cases were considered failures in speech development. They were re-evaluated and diagnosed as having poor cognitive function.

There were no major surgical complications. In one patient who had thick skin over the receiver, the wound was reopened and the skin was thinned 3 months after surgery. Two patients (13%) had technical failure of the internal device. One had the failure in 2002, one year postimplantation. The other child, who was implanted in 2001, at age 15 years, had failure of the device after 5 years of implantation, in March 2006. In both cases the device was replaced with a new internal device from the same firm.

DISCUSSION

The etiological factors in the implanted deaf children in this study are comparable to other studies on deafness and implantation, such as our study on the etiology of sensorineural hearing loss in children in Bahrain, and other studies indicating that the major factor is genetics, presenting as congenital hereditary deafness in 40% and deafness of unknown etiology in 33%. Both factors are related to the high rate of consanguineous marriage. Our selection criteria for CI in deaf patients were comparable to other studies and to standards of selection of patients in traditional textbooks.

As indicated by Gysin et al., complications of CI include major complications (4%), minor complications (3%) and device failure (2%). Operative and postoperative complications range from cerebral infarct or cardiac infarct and death, meningitis, facial nerve injury, chorda tympani injury, and tympanic membrane injury to iatrogenic cholesteatoma, inappropriate electrode insertion, wound infection and other complications, for an overall rate of 11.8%. In our study, complications were rare except for device failure in two cases for a failure rate of 13.3%. The high percentage of device failure in our study is due to the small number of cases.

Sound detection and awareness, along with word recognition of different test lists, has been shown to vary among implanted patients with various factors as-

Table 1. Fifteen patients by age, sex and post-implantation hearing and speech results.

Age at Surgery (years)	Sex	Hearing Loss (dB)	Recognition (%)		
		Preoperative	Postoperative	Words	Sentences
15	F	90-100	20-30	100	100
9	M	NR	30-40	100	100
5	F	NR	20-30	100	90
14	F	90-100	20-40	100	100
3	F	90-NR	25-30	100	100
11	F	100-110	25-30	100	100
4	F	NR	25-30	100	100
6	M	NR	30-45	0	0
15	F	90-110	30-40	100	100
14	F	90-100	20-40	50	40
2	M	90-100	20-40	100	100
1	M	NR	20-40	100	100
2	F	NR	35-45	50	40
3	M	NR	30-45	0	0
2	F	90-100	20-40	70	50

NR = No response to hearing tests. Cases listed according to time sequence of CI surgery.
COCHLEAR IMPLANTATION

associated with the outcome. Duration of deafness and to a lesser extent, age at implantation, are the most significant predictors of outcome. The shorter the duration of deafness, the better is speech understanding with the implant. Most recent studies emphasize the importance of implantation at an early age for better performance. In most studies, no clear relationship has been found between etiology and postoperative performance, while patients with meningitis were more frequently in the poorer performing groups of implant users.

Postimplantation results show variable levels of speech perception, including a poor response for the House 3M device and responses from chance (4%) up to excellent (92%) in nucleus device patients. Lenarz et al stated that “on average, auditory performance improved over time up to 18 months after implantation, closed set test increased by 25% to 55% in 18 months, open set score began to show improvement between 6 and 12 months postoperatively” in 18 children using a Clarion 1.2 device. On the other hand, Kiefer et al indicated that all children had a clear benefit from implantation, and that 10 of 21 prelingually deaf or hearing impaired children had reached some degree of open set speech understanding only 15 months postoperatively. In their study they used Med El Combi 40/Combi 40+.

We conclude that the 15 children implanted in 2001 and 2002 as first group of children on the CI program in Bahrain had overall improvement in 13 (87%) in relation to hearing gain and speech perception and development of satisfactory to excellent levels. These children were able to integrate into the normal schools and nurseries. The remaining 2 cases (13%) failed to respond to acceptable levels without lip reading, a failure related to poor cognitive function.

REFERENCES

1. Collins MM, Hawthorn MH, El-Hand K. Cochlear Implantation in a district general hospital: Problems and complications in the first five years. Journal of Laryngology and Otology 1997; 111 (4): 325-333.
2. Cohen NL, Hoffman RA, Strochein M. Medical or surgical complications related to the Nucleus multichannel cochlear implant. Annals of Otolgy, Rhinology and Laryngology 1988; 97: 8-13.
3. Ashoor AA, Prochazka TJr. Saudi Arabic speech audiometry. Audiology 1982; 27: 493-508.
4. Ashoor AA, Prochazka TJr. Saudi Arabic speech audiometry for children. British Journal of Audiology 1985; 19: 229-238.
5. Vaewvichit K, Luangpitakchumpol P. Cochlear implantation in Thailand. Journal of Laryngology and Otology 1999; 113(6): 515-518.
6. Jamal AJ, Tammam NH, Buallai AK. Aetiology of sensorineural hearing loss in children in Bahrain, a 10 year study. Journal of the Bahrain Medical Society 2000; 12 (3): 147-153.
7. Gysin C, Papsin BC, Daya H, Nedzelski J. Surgical outcome after paediatric Cochlear Implantation: Diminution of complications with evolution of new surgical techniques. Journal of Otolaryngology 2000; 29 (5):285-300.
8. Das VK. Aetiology of bilateral sensorineural hearing impairment in children, a 10 year study. Archives of Diseases in Childhood 1996; 74: 8-12.
9. Dauek E. The Cochlear Implant. In: Ballintyne J. and Groves J. Scott-Brown’s Diseases of the Ear, Nose and Throat. 4th Edition. London: Butterworths, 1999:665-978.
10. James AL, Papsin BC. Cochlear implantation surgery at 12 month of age or younger. The Laryngoscope 2004; 114: 2191-2195.
11. Rubenstein JT. Paediatric Cochlear Implantation: Prosthetic hearing and language development. Lancet 2002; 360 (9331): 483-486.
12. Lenarz T, Lesinski-Schiedat A, Vauder Haar-House S, et al. Cochlear implantation in children under the age of two: The MHH experience with Clarion cochlear implant. The Annals of Otology, Rhinology and Laryngology 1999; 108 (4): 44-48.
13. Kiefer J, Von Ilberg C, Reimer B, et al. Results of cochlear implantation in patients with severe to profound hearing loss - implications for patients selection. Audiology1998; 37(6): 382 - 396.