Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China

Yan Wu¹ ² • Yihui Zhou³ • Yanling Qiu¹ ⋆ • Da Chen⁴ • Zhiliang Zhu¹ • Jianfu Zhao³ • Åke Bergman² ³ ⁵

Abstract The present study measured concentrations of Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb in surface sediments and two benthic invertebrate species (Anodonta woodiana and Bellamya aeruginosa) collected from Dianshan Lake, located in the Yangtze River Delta. The Dianshan Lake acts as one of the most important drinking water sources to Shanghai, the biggest city in China. Concentrations of trace metals and metalloids ranged from 0.04 mg/kg for Cd to 288.0 mg/kg for Zn. Substantial bioaccumulation in invertebrates was observed for Zn and Cu based on the biota-sediment accumulation factor (BSAF) measurements. The results revealed that concentrations of metals and metalloids in sediments from Dianshan Lake were at the lower end of the range of levels found in other regions of China. The assessment of three significantly inter-related evaluation indices, including the geo-accumulation Index (Igeo), potential ecological risk factor (Er), and mean probable effect concentration quotients (QmPEC), suggested that sediment-associated trace elements exhibited no considerable ecological risks in the studied watershed. However, the target hazard quotient and hazard index analysis suggested that selected elements (particularly As) accumulation in edible tissues of benthic invertebrates could pose potential health risks to local populations, especially fishermen. Given that wild aquatic organisms (e.g., fish and bivalves) constitute the diet of local populations as popular food/protein choices, further investigations are needed to better elucidate human health risks from metal and metalloid exposure via edible freshwater organisms.

Keywords Dianshan Lake • Yangtze River Delta • Trace metal and metalloid • Bioaccumulation • Risk assessment

Introduction

As a result of rapid urbanization and industrial development, elevated concentrations of trace metals and metalloids in freshwater systems have drawn mounting public concerns and been considered as a major threat to the world’s water resources (Hou et al. 2013; Duzgoren-Aydin 2007; Mwanamoki et al. 2015). Various biogeochemical processes through water-sediment exchange could result in remobilizations of trace elements into surrounding environment, and consequently elevate their concentrations to a toxic level for aquatic biota (Vukosav et al. 2014; Schaller et al. 2011), and generally metals or metalloids in their reducible forms are more likely to pose potential risk to ecosystem (Babula et al. 2008). Sediments usually act as both sinks and...
potential secondary sources of contaminants to water columns or organisms in aquatic environments (Guo et al. 2006; Yang et al. 2014a). Measurement of trace element concentrations in sediments efficiently reflects the extent of contemporary or long-term anthropogenic effects on aquatic ecosystems (Fu et al. 2014). Mussels have been considered a good sentinel organism to indicate the pollution status in freshwater or estuarine ecosystem due to their sedentary nature, abundance globally, and potency to accumulate contaminants via filtrations of ambient water as well as suspended particulate matter (Birch and Apostolatos 2013; Besada et al. 2011; Tsangaris et al. 2013; Baudrimont et al. 2005). Contaminant burdens in benthic invertebrates (e.g., mussels and snails) reflect time-integrated exposure scenarios in water and benthic environments, thus ideal for monitoring anthropogenic pollution in aquatic systems (Kong et al. 2016). These organisms have also been extensively used to interpret potential impact of contamination on other aquatic biota, given their fundamental trophic status in the food webs (Bian et al. 2008; Joksimovic et al. 2011; Ma et al. 2010). Additionally, bivalves are popular food sources in a number of regions worldwide, and hence their edible soft tissues may represent a potential exposure route of contaminants to humans (Storelli 2008; Usero et al. 2004; Llorente et al. 2003).

Previous studies suggested that the ecological risks from heavy metals (Cr, Cu, Ni, Pb, Zn, and Cd) contamination in soil from the Yangtze River Delta (YRD) and sediments from Taihu Lake were moderate (Hang et al. 2009; Zhou et al. 2016; Fu et al. 2013). However, sediments collected from the Yangtze River near Nanjing city and Changshu city were severely polluted by heavy metals (Fu et al. 2013). A report on metal contamination in sediments from Shanghai indicated that the concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) were elevated and strongly associated with the density of road network (Yang et al. 2014b). Arsenic (As, mean: 13.2 μg/L), and Cd (mean: 4.7 μg/L) in surface water from the Nanjing section of the Yangtze River exhibited elevated carcinogenic risk and may cause adverse effect on local residents (Wu et al. 2009). Additionally, potentially harmful health effects on the YRD residents via consumption of freshwater fish, benthic organisms, and rice should not be overlooked according to previous studies (Hang et al. 2009; Fu et al. 2013; Chi et al. 2007; Tao et al. 2012; Kong et al. 2016).

The important aquatic systems in the YRD region, such as the Tai Lake and Chao Lake, have been extensively studied for trace metal contamination in sediments and organisms at various trophic levels (Li et al. 2013; Fu et al. 2013; Zeng et al. 2012; Tao et al. 2012; Chi et al. 2007; Kong et al. 2016). However, the Dianshan Lake received little investigations, and therefore we selected eight commonly studied metals and metalloids to elucidate the contamination levels of trace elements in the benthic environment of Dianshan Lake.

Present study aimed to: (1) measure concentrations of eight trace elements including five obligatory toxic elements (As, Cd, Pb, Sb, and Ni) and three essential elements (Cu, Zn, and Cr) in sediments, mussels (Anodonta woodiana), and pond snails (Bellamya aeruginosa); (2) analyze geographical distributions and ecological risks of the trace metals and metalloids in the sediments; and (3) evaluate bioaccumulation of the selected elements in benthic organisms and the associated impact on human health.

Study materials and methods

Study site description

Dianshan Lake is located at the boundary between Shanghai and Jiangsu Province in the Yangtze River Delta (YRD) of China. It is one of the most important drinking water and aquatic product (e.g., carps, catfish, eels, mussels, and snails) sources to the metropolitan area of Shanghai, the biggest metropolis in China. It is approximately 60 km west from downtown Shanghai and covers an area of 62 km². Along with an increasing economic prosperity in Shanghai, its surrounding aquatic systems have been subjected to substantial impacts by human activities, receiving a large variety of organic chemicals and metals from various sources, such as wastewater discharges, urban runoff, and air deposition (Pan and Wang 2012).

Sampling

Sediment samples were collected from nine sites in Dianshan Lake (Fig. 1) in August 2012. Sites 2 Dazhushe (DZS), 3 Jishuiangjiao (JSGQ), and 4 Baishi (BSJ) were located in the inflow waterways. Site 5 Xizha (XZ) and 6 Dianfeng (DF) were located in the outflow waterways. Site 9 Hudongbei (HDB) was at a water park where a number of recreation facilities made of stainless steel were located. Site 1 Qianzhangang (QDG) was located in northern part of the Dianshan Lake and functioned as an aquaculture area. Sites 7 Zhaotianhu (ZTH) and 8 Sihaozhang (SHHB) were located in the middle of the lake. Surface sediments, approximately 10 cm in depth from the surface, were sampled with a core sampler (XDB0209, Jiupu Aobo (Beijing) environmental protection engineering equipment Co., Ltd.) and kept in sampling bags. Four sub-samples, approximately 50 cm away from each other, were sampled at each site and mixed to make one homogenate. In addition, 2–5 individual mussels (Anodonta woodiana) and 30–120 individual pond snails (Bellamya aeruginosa) were collected at each sediment sampling site. The body sizes (with shell) of mussels and pond snails were 110–230 and 9–24 mm, respectively. These two benthic species are abundantly present in the Dianshan Lake...
as fundamental components of aquatic food webs, as well as popular food items consumed by residents in the YRD region. All samples were stored at −80 °C prior to analysis.

Sample treatment and instrumental analysis

The collected mussels and snails were subject to depuration in Milli-Q water for 24 h, and then their soft tissues were removed from the shells using pre-cleaned Teflon scoop. Two shell-free mussels and 20 snails from each site were pooled to make a composite per species. Sediment and tissue composites were homogenized and freeze-dried for 48 h. The freeze-dried sediment samples were milled, sieved through a nylon mesh with a diameter of 0.150 mm. Total organic carbon (TOC) of sieved sediments was determined using a TOC analyzer (Shimadzu TOC-VCNP). The analytical procedure of trace metals and metalloids in sediments and tissues was built based on the methodologies previously reported with slight modifications (Birch and Apostolatos 2013; Mwanamoki et al. 2015). Dried tissue composites were ground into powders. Approximately 1 g of pretreated sediment or 0.3 g of tissue was digested by 15 mL of a mixture of hydrochloric acid (HCl), nitric acid (HNO3), and hydrofluoric acid (HF) (1:3:1, v:v:v) using a microwave digester (Shanghai Xintuo Analytical Instruments Co., LTD, China). At a constant microwave power of 2400 kW, the oven was programmed as follows: starting at ambient temperature for 1 min, ramped at 65 °C/min to 150 °C, and held for 150 s; ramped at 15 °C/min to 180 °C and held for 150 s; ramped at 10 °C/min to 200 °C and held for 150 s; and finally ramped at 10 °C/min to 220 °C, held for 15 min (31.5 min in total). After digestion, the solution in vessel was concentrated at 110 °C till approximately 1–2 mL, and then spiked with 3 mL of concentrated nitric acid. The resulting mixture was evaporated at 110 °C again to completely remove remaining hydrofluoric acid. The concentrated solution was filtrated through quantitative filter paper, transferred into a 25 mL volumetric flask, and then diluted with 4% nitric acid solution. The treated samples were then preserved in clean polypropylene tubes prior to instrumental analysis. Further dilution might be needed if element concentrations were beyond the range of the concentrations of calibration standards.

Concentrations of As, Cd, Cr, Cu, Ni, Pb, Sb and Zn in samples, blanks, certified reference material (CRM), and external standards were measured by inductively coupled plasma interfaced with mass spectrometry (Agilent ICP-MS7700, Agilent Technologies, USA). Injections were performed in the splitless mode. The speed of peristaltic pump and temperature in the pre-mixer were set to 0.1 rps (round per second) and 2 °C, respectively. High-purity argon functioned as both carrier and make-up gas at a constant flow of 0.7–0.75 and 0.2–0.3 L/min, respectively. High-purity helium acted as reaction gas at 0.08 L/min. A Full Quant analyzing model was applied to the detection of all elements studied. The integral time was 3 s for As, Cd and Sb, and 1 s for Pb, Cu, Zn, Ni, and Cr. Quantification was carried out via external standard method.

QA/QC

Accuracy of the analytical method was validated using the stream sediment CRM (GBW07303a) purchased from the National Research Center for CRMs (Beijing, China). The recoveries of selected metals and metalloids in the sediment CRM were acceptable with all values greater than 75% (Table S1). The recovery of chromium could be improved by digesting with sulfuric acid (H2SO4) or phosphoric acid.
(HClO₄). However, neither of them was added due to safety concerns during microwave digestion.

A blank and a CRM sample were analyzed along with every batch (n = 7) of sediments or tissues. Each authentic sample was treated in triplicates to check for the analytical precision, and the relative standard deviations of triplicate samples were less than 20%. The limit of quantifications (LOQs, ng/mL), defined as a concentration three times the limit of detection (LOD) computed by the ICP-MS, were 8.87, 1.33, 3.56, 22.71, 0.16, 0.026, 0.0015, and 1.65 for Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb, respectively.

Risk assessment approaches

Contamination levels and potential ecological risks of trace elements in sediments were assessed using the geo-accumulation Index (Igeo), potential ecological risk factor (Er), and mean probable effect concentration quotients (Qm-PEC) (Muller 1969; Hakanson 1980; MacDonald et al. 2000). Potential human health risks via edible tissues of mussels and pond snails were assessed using the target hazard quotient (THQ) and hazard index (HI) (USEPA 1989). These approaches are introduced in detail in Supplementary data.

In order to estimate metal and metalloid accumulation potential in benthic organisms, biota-sediment accumulation factors (BSAFs) were determined according to the following formula (Szefer et al. 1999):

$$\text{BSAF} = \frac{C_b}{C_s}$$ \hspace{1cm} (1)

where Cb and Cs are the mean concentrations in benthic organisms and sediments, respectively.

All data were statistically analyzed using OriginPro 9.0 (OriginLab Corporation). A significance level α = 0.05 was applied. The calculations and evaluation criteria for Igeo, Er, Qm-PEC, THQ and HI were described in Supplementary Data.

Results and discussion

Trace metal and metalloid concentrations in sediments

Concentrations of trace elements in sediments from Dianshan Lake are summarized in Table 1, with ranges of 41.4–75.3, 23.3–54.3, 16.7–94.7, 51.7–304.4, 5.8–17.2, 0.03–0.11, 0.65–2.7, 15.8–28.3 μg/kg dw for Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb, respectively. In general, site 1 appeared to be the most contaminated site with the highest concentrations of Ni, Cu, Zn, Cd, Sb, and Pb found across the Lake, while site 5 contained the lowest concentrations of Cr, Ni, Cu, As, Sb, and Pb in the sediment. The highest concentrations of Cr and As were found at sites 9 and 6, respectively. Compared to global data on freshwater sediments, concentrations of Cd and Pb in Dianshan Lake sediments were lower than 25th percentile of the gathered sediment data summarized by Fu et al. (2014) and Ma et al. (2013). Concentrations of Cr, Cu, As, and Zn were lower than the medium level (25–50%), but Ni concentration was higher than the median. He et al. (2012) has reviewed Sb pollution in China and reported that the Sb concentration in sediments throughout the Yangtze River watershed ranged from 0.50 to 2.7 mg/kg dw. Sediments in Dianshan Lake contained a geometric mean Sb concentration of 1.12 mg/kg, lower than the majority of lakes in Southern China, but higher than the Songhua River in Northern China which had Sb concentrations between 0.18 and 0.57 mg/kg. Studies of Sb contamination outside China usually focused on extreme cases where high Sb concentrations were found in sediments near antimony mines. Thus, the data were not comparable to our findings.

The principal component analysis (PCA) was further employed to determine the data structure and facilitate data interpretation. Two factors were extracted and accounted for 89.4% of the total variance in the dataset (Fig. S1). According to the biplot, some sites (i.e., sites 1, 5, and 9) differed from the others in the contamination of individual element. The relatively higher concentration of Cr at site 9 (located in a water park) compared to other sites may be due to a number of recreational facilities located near the site. These facilities were generally made of stainless steel (chromium as main alloy element). Elevated concentrations of Sb, Cu, Zn, and Cd at site 1 were probably because it was located in a semi-closed aquaculture area, where Zn has been used as an additive to fish food and copper sulfate (CuSO₄) as a disinfector to control disease and cyanobacteria. Low metal and metalloid concentrations at site 5 may be due to dilution effect as the site was located in the outflow waterway of the lake. By contrast, site 6 was located at another outflow point, but its sediments contained high concentrations of As (peak value), Ni, and Pb. Given that an expressway is adjacent to site 6, vehicle exhausts may contribute metals to this particular site. Previous studies suggested that fossil fuel consumption in automobile engine was one of the major anthropogenic sources of As, Pb, and Ni in urban areas (Talebi and Abedi 2005; Thomaidis et al. 2003; Lagerwerff and Specht 1970).

According to the dendrogram of Hierarchical Cluster Analysis (Fig. 2), Cu, Zn, and Cd are closely associated with each other and form a cluster along with Sb. Ni and Pb form another cluster together with Cr, while a great distance exists between As and other elements. Variables contributing alike information are grouped together, indicating that they may be correlated and may potentially originate from similar pollution sources (Fu et al. 2014; Liu et al. 2016; Nam et al. 2008; Liu et al. 2003). Zhang et al. (2009) reported that Pb and Ni were closely
associated with each other in sediments from the Yangtze River intertidal zone. Sources of Cd, Zn, Cu, and Pb in sediments from a catchment of Tai Lake were similar and were demonstrated to be mainly from anthropogenic origins (Bing et al. 2011). Additionally, a close relationship between Cd and TOC observed from the present work is consistent with the findings by Lin et al. (2002) which investigated sediments from the East China Sea continental shelf. A short distance between Cd-TOC and Cu-Zn groups indicates that organic content in sediment may influence concentrations of Cd, Cu, and Zn in our studied waterbody. A weak correlation between As and other elements as shown in the present study was also observed in sediments from the middle and lower reaches of Yangtze River basin (Yi et al. 2011).

Concentrations and BSAFs of trace metals and metalloids in benthic invertebrates

Concentrations (mean ± standard deviation, mg/kg dw) in mussels collected from Dianshan Lake were 18.4 ± 2.18 (Cr), 10.27 ± 0.68 (Ni), 16.37 ± 1.33 (Cu), 684.9 ± 52.9 (Zn), 3.0 ± 0.2 (As), 1.5 ± 0.06 (Cd), 0.85 ± 0.007 (Sb), and 1.2 ± 0.2 (Pb), while in the pond snails were 25.7 ± 1.33 (Cr), 14.47 ± 0.73 (Ni), 90.03 ± 7.76 (Cu), 157.8 ± 17.3 (Zn), 1.95 ± 0.22 (As), 0.135 ± 0.023 (Cd), 0.117 ± 0.181 (Sb), and 1.18 ± 0.15 (Pb) (Table 1). Contaminants with a BSAF greater than one are prone to migrate from abiotic environment to organisms and might biomagnify along food chains (Szefer et al. 1999; Liu et al. 2010). The BSAF of Cd (2.60) and Zn (8.30) in mussels, as well as that of Cd (2.37), Zn (1.91), and Cu (2.97) in pond snails, indicated the potential of these element species to bioaccumulate in benthic organisms, whereas other elements generally possessed a BSAF value less than one. Unlike Cr, Cd, Ni, Pb, and As which were generally classified as toxic elements, Cu and Zn were essential elements for functions in a number of bivalves including synthesis of hemocyanin and maintenance of catalytic activities, and hence were subject to in vivo regulations by many benthonic organisms (Wang et al. 2013; Rzymski et al. 2014). The High levels of these two elements may be attributed to either high metabolic demand on essential elements or elevated Cu and Zn concentrations in the ambient environment (Rzymski et al. 2014). However, when their concentrations in bivalves reached toxic levels, negative effects from excessive accumulations of Cu and Zn could not be neglected. When compared the BSAF values in the present study to the others, large variations in BSAF value were observed among elements or organisms, suggesting species-, or system-specific bioaccumulation (Table 2).

Table 1 Trace metal concentrations (± standard deviation; mg/kg dry weight) in sediments and benthic invertebrates from Dianshan Lake

Location	Site	Cr	Ni	Cu	Zn	As	Cd	Sb	Pb
QDG	1	64.79 ± 2.54	51.00 ± 2.91	88.96 ± 4.98	288.0 ± 15.6	13.26 ± 0.48	0.105 ± 0.005	2.30 ± 0.37	27.72 ± 0.74
DZS	2	64.02 ± 4.60	38.41 ± 2.51	24.72 ± 1.89	75.04 ± 5.45	10.12 ± 0.40	0.056 ± 0.012	0.95 ± 0.05	20.53 ± 1.12
JSGQ	3	55.95 ± 5.65	34.32 ± 3.40	28.18 ± 2.72	72.22 ± 6.64	12.01 ± 1.08	0.055 ± 0.004	1.19 ± 0.10	20.64 ± 1.45
BSJ	4	57.51 ± 3.14	33.11 ± 2.19	22.85 ± 1.35	58.97 ± 2.87	10.48 ± 0.05	0.040 ± 0.012	1.31 ± 0.42	19.98 ± 0.35
XZ	5	48.61 ± 7.46	27.99 ± 4.56	19.61 ± 2.87	61.98 ± 10.3	6.561 ± 0.76	0.053 ± 0.010	0.83 ± 0.24	17.14 ± 1.37
DF	6	60.86 ± 7.17	38.57 ± 4.29	24.42 ± 2.59	59.67 ± 7.04	15.58 ± 1.58	0.049 ± 0.002	1.00 ± 0.10	21.45 ± 1.64
ZTH	7	61.42 ± 4.55	38.18 ± 2.87	40.89 ± 2.98	77.01 ± 4.84	10.72 ± 0.81	0.067 ± 0.002	1.30 ± 0.07	23.84 ± 1.06
SHHB	8	61.67 ± 5.31	35.61 ± 3.31	23.96 ± 2.34	74.87 ± 7.02	6.973 ± 0.55	0.053 ± 0.003	0.90 ± 0.14	21.11 ± 0.52
HDB	9	70.68 ± 4.03	44.27 ± 2.64	32.70 ± 2.04	94.82 ± 7.87	12.31 ± 0.41	0.055 ± 0.006	0.86 ± 0.04	24.96 ± 0.97

Benthic invertebrates

Species	Cr	Ni	Cu	Zn	As	Cd	Sb	Pb
Pooled mussels	18.49 ± 2.18	10.27 ± 0.63	16.72 ± 1.33	684.9 ± 52.9	3.02 ± 0.17	0.148 ± 0.055	0.085 ± 0.007	1.18 ± 0.15
Pooled pond snails	25.70 ± 1.33	14.47 ± 0.73	90.03 ± 7.76	157.8 ± 17.3	1.95 ± 0.22	0.135 ± 0.023	0.090 ± 0.012	2.40 ± 0.30

Fig. 2 Dendrogram of hierarchical cluster analysis for trace metals in sediments
Location	Species	Metal concentration	Reference
Dianshan Lake, China	*Anodonta woodiana*	18.5 (0.31)	This study
	Bellamya aeruginosa	25.7 (0.43)	
Tai Lake, China	*Anodonta woodiana*	n.d.	Liu et al. (2010)
Maltański Reservoir, Poland	*Anodonta anatina*	0.33 (0.04)	Rzymski et al. (2014)
	Anodonta cygnea	0.64 (0.08)	
	Unio tumidus	1.1 (0.14)	
North-western Mediterranean, Europe	*Mytilus galloprovincialis*	1.30 (0.0055)	Lafabrie et al. (2007)
Galician Rias, Atlantic coast, Europe	*Unio pictorum*	1.85 (0.11)	Beiras et al. (2003)
Lake Balaton, Europe	*Mya arenaria*	0.82 (0.027)	Nguyen et al. (2005)
Baltic Sea, Europe	*Astarte borealis*	1.56 (0.052)	Pempkowiak et al. (1999)
Sg. Sarawak Kanan, Malaysia	*Brotia costula*	n.d.	Lau et al. (1998)
	Melanoides tuberculata	n.d.	
Tai Lake, China	*Bellamya sp.*	8.62 (0.11)	Tao et al. (2012)
Turkish Coast, Black Sea, Europe	*Rapana venosa*	0.730 (0.012)	Topcuoğlu et al. (2002)
Mazatlan Bay, Mexico	*Crassostrea iridescens*	0.990 (0.054)	Soto-Jiménez (2001)
Gulf of Oman, Asia	*Pinctada radiata*	2.36 (0.13)	de Mora et al. (2004)
Amurskiy and Ussuriyskiy Bays, Sea of Japan	*Crassostrea gigas*	n.d.	Shulkin et al. (2003)

n.d. not detected

* Quantifiable in sediments but not in organisms
example, the BSAF of Cu, Zn, and Cd reported in various studies ranged from 0.14 to 75, 0.43–57, and 0.41–136, respectively (Table 2). Nevertheless, some general patterns can be inferred from the comparison. Cd and Cu are generally bioavailable to benthic organisms regardless of species and locations, whereas Cr, Ni, and Pb tend to absorb on sediments and have limited bioavailability in organisms.

Risk assessment of trace metals and metalloids in sediments

Three risk assessment indices (I$_{geo}$, E$_{ri}$ and Q$_{m-PEC}$) were significantly correlated with each other for each trace metal and metalloid studied (except for Ni and Sb due to lack of preindustrial reference levels), with correlation coefficients greater than 0.98 ($n = 9$, $p < 0.001$). The I$_{geo}$ and E$_{ri}$ values for As are greater than those for other elements (Fig. 3 and S2). The I$_{geo}$ values of all elements were generally below zero, except for Cu, Zn, and Sb from site 1 (treated as outliers by box plots). The maximum value of E$_{ri}$ is 10.4, corresponding to a high As concentration at site 6. Therefore, according to the interpretation of the geoaccumulation indexes and potential ecological risk factors (Muller 1969; Hakanson 1980), the Dianshan Lake sediments were subject to relatively low trace metal and metalloid contamination, leading to no considerable ecological risk.

The mean PEC quotient of 0.5 is a threshold to classify sediments as either toxic or nontoxic (MacDonald et al. 2000). The Q$_{m-PEC}$ values in the present study are no greater than 0.5 for all sampling sites, indicating the Dianshan Lake sediments were not toxic to benthic organisms (Table 3). This is consistent with the findings based on the I$_{geo}$ and E$_{ri}$ assessments. The individual PEC quotient reveals that the risks posed by Ni and Cr in sediments were the greatest, followed by As, Cu, Zn, Pb, and Cd in sequence. Regarding the two metals with the highest individual PEC quotient, bioavailability of Ni and Cr as well as their mobilizations between sediments and overlying water were influenced by several environmental factors, including temperature, benthic oxygen demand, sediment-water flux, and presence of acid-volatile sulfide (Berry et al. 2004; Shine et al. 1998). The mean Q$_{m-PEC}$ of inflow points (sites 2, 3, and 4; mean = 0.296) is similar to those of center points (sites 7 and 8; mean = 0.308) and outflow points (sites 5 and 6; mean = 0.279), but significantly lower than that of the sites intensively affected by human activities (sites 1 and 9; mean = 0.432; $p = 0.011$).

Assessment of human health risks via edible benthic organisms

Two groups of human populations (i.e., general population and fishermen) were assessed for the risk to metal and metalloid exposure via ingestion of benthic organisms. The THQs and HIs for adults and children were calculated for each group (Table S4 and Fig. 4). Due to the difficulty in accounting for pre-existing body burdens of Pb and the lack of threshold levels for health risk evaluations, it is inappropriate to develop reference values for Pb (USEPA 2004). Thus, Pb was not included in the THQ and HI.

Site abbreviation	Site number	Cr	Ni	Cu	Zn	As	Cd	Pb	Q$_{m-PEC}$
QDG	1	0.584	1.049	0.597	0.627	0.402	0.021	0.217	0.500
DZS	2	0.577	0.790	0.166	0.163	0.307	0.011	0.160	0.311
JSGQ	3	0.504	0.706	0.189	0.157	0.364	0.011	0.161	0.299
BSJ	4	0.518	0.681	0.153	0.122	0.318	0.008	0.156	0.279
XZ	5	0.438	0.576	0.132	0.135	0.199	0.011	0.134	0.232
DF	6	0.548	0.794	0.164	0.130	0.472	0.010	0.168	0.326
ZTH	7	0.553	0.786	0.274	0.168	0.325	0.013	0.186	0.329
SHHB	8	0.556	0.733	0.161	0.163	0.211	0.011	0.165	0.286
HDB	9	0.637	0.911	0.219	0.207	0.373	0.011	0.195	0.365
determination. All other elements revealed THQ less than one, except for As which had the THQs of 1.123–1.216 for fishermen. This indicates that fishermen living in the Dianshan Lake basin might be subject to a considerable non-cancer health risk posed by As. It was noteworthy that the bioavailability and physiological toxicity of arsenic depends its chemical forms (Mandal 2002). Arsenic in trivalent state (both inorganic and organic) holds more potency to exert adverse effects on human beings (Paul et al. 2013). Unlike human exposure to As through drinking water which might be subject to rapid elimination via urination, As intake by human via diet could be absorbed by gastrointestinal tract and distributed into body to impair the normal functions (Alamdar et al. 2017).

The hazard indexes for the exposure of general population to mussels were generally less than one, whereas all other HI values exceeded unity (Fig. 4). A HI value greater than 1.0 does not necessarily suggest a likelihood of adverse effects, especially when only one to two substances are responsible for elevating HI values (USEPA 2005, 1989). However, the potential health effects via the consumption of benthic organisms by local people, particularly by fishermen, are worth noticing. Fishermen (both adults and children) living in the Dianshan Lake basin may be subject to a potential health risk through the ingestion of selected benthic organisms. Potential health effects may be more significant for children than adults. Therefore, although the risk assessment indices indicated no considerable ecological risks posed by sediment-associated metals and metalloids, potential adverse health effects on humans (particularly fishermen) via the consumption of contaminated benthic invertebrates should not be neglected. This is mainly due to a relatively high rate of intake of various bivalves as human food in the YRD basin.

Conclusions

In the present study, the occurrence of eight trace elements in sediments and their bioaccumulation in benthic invertebrates in the Dianshan Lake were investigated. Zn and Cu exhibited substantial bioaccumulation in invertebrates according to the BSAF measurement. The evaluation of different risk assessment indices, including the geo-accumulation index, potential ecological risk factor, and mean probable effect concentration quotients, suggested that sediment-associated metals or metalloids produced no considerable ecological risks in the studied watershed. However, the target hazard quotient and hazard index analysis suggested that metal and metalloid (As in particular) accumulation in bivalves could pose potential health risks to local populations, especially fishermen. Arsenic is the priority pollutant among the selected elements in both sediments and invertebrates, leading to the highest potential ecological risk factor, geoaccumulation index, and target hazard index. Given that wild aquatic organisms (e.g., fish and bivalves) constitute the diet of local populations in the YRD basin as popular food/protein choices, further investigations are needed to better elucidate human health risks via contaminated freshwater organisms in the studied region.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

References

Alamdar A, Eqani SA, Hanif N, Ali SM, Fasola M, Bokhari H et al (2017) Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 405:1004–1012

Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213

Baudrimont M, Schafer J, Marie V, Maury-Brachet R, Bossy C, Boudou (2008) Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Rudiptapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France). Sci Total Environ 337(1–3):265–280

Beiras R, Bellas J, Fernández N, Lorenzo JJ, & Cobelo-García A (2003) Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo–larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar Environ Res 56(4):531–553

Berry WJ, Boothman WS, Serbst JR, Edwards PA (2004) Predicting the toxicity of chromium in sediments. Environ Toxicol Chem 23(12): 2981

Besada V, Manuel Andrade J, Schultze F, José González J (2011) Monitoring of heavy metals in wild mussels (Mytilus galloprovincialis) from the Spanish North-Atlantic coast. Cont Shelf Res 31(5):457–465

Bi X, Lui H, Gan J, Li R, Yang J (2008) HCH and DDT residues in bivalves Anodonta Woodiana from the Taihu Lake, China. Arch Environ Contam Toxicol 56(1):67–76

Bing H, Wu Y, Sun Z, Yao S (2011) Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake catchment, China. J Environ Sci 23(10):1671–1678

Birch GF, Apostolatos C (2013) Use of sedimentary metals to predict heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf 93:135–144

Joksimovic D, Tomic I, Stankovic M, Stankovic S (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127(2):632–637

Kong M, Hang X, Wang L, Yin H, Zhang Y (2016) Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosam and Corbicula fluminea) from Lake Taihu. Water Sci Technol 73(1):203–214

Lafabric C, Pergent G, Kantin R, Pergent-Martini C, & Gonzalez JL (2007) Trace metal assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68(11):2033–2039

Lagerwerff JV, Specht AW (1970) Contamination of roadside soil and vegetation with cadmium, nickel, lead, and zinc. Environmental Science & Technology 4(7):583–586

Lau S, Mohamed M, Tan Chi Yen A, Sut’t S (1998) Accumulation of heavy metals in freshwater molluscs. Sci Total Environ 214(1–3): 113–121

Li G, Liu G, Zhou C, Kang Y, Yuan W, Xie F (2013) Mobility, binding behavior and potential risks of trace metals in the sediments of the fifth largest freshwater lake, China. Water Sci Technol 67(11):2503–2510

Lin S, Hsieh U, Huang K-M, Wang C-H (2002) Influence of the Yangtze Peninsula; metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo–larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar Environ Res 56(4):531–553

Bing H, Wu Y, Sun Z, Yao S (2011) Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake catchment, China. J Environ Sci 23(10):1671–1678

Birch GF, Apostolatos C (2013) Use of sedimentary metals to predict heavy metals (Mytilus galloprovincialis) tissue and risk to human health (Sydney estuary, Australia). Environ Sci Pollut Res Int 20(8):5481–5491

Chi QQ, Zhu GW, Langdon A (2007) Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J Environ Sci 19(12):1500–1504

de Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49(5–6):410–424

Duzgooren-Aydin NS (2007) Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ 385(1–3):182–195

Fu J, Hu X, Tao X, Yu H, Zhang X (2013) Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere 93(9):1887–1895

Fu J, Zhao C, Luo Y, Liu C, Kyzas GZ, Luo Y et al (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109

Guo SH, Wang XL, Li Y, Chen JJ, Yang JC (2006) Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China. J Environ Sci 18(6):1193–1198

Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001

Hang X, Wang H, Zhou J, Mu C, Du C, Chen X (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ Pollut 157(8–9):2542–2549

He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421–422:41–50

Hou D, He J, Lu C, Ren L, Fan Q, Wang J et al (2013) Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf 93:135–144

Joksimovic D, Tomic I, Stankovic M, Stankovic S (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127(2):632–637

Kong M, Hang X, Wang L, Yin H, Zhang Y (2016) Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa and Corbicula fluminea) from Lake Taihu. Water Sci Technol 73(1):203–214

Lafabric C, Pergent G, Kantin R, Pergent-Martini C, & Gonzalez JL (2007) Trace metal assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68(11):2033–2039

Lagerwerff JV, Specht AW (1970) Contamination of roadside soil and vegetation with cadmium, nickel, lead, and zinc. Environmental Science & Technology 4(7):583–586

Lau S, Mohamed M, Tan Chi Yen A, Sut’t S (1998) Accumulation of heavy metals in freshwater molluscs. Sci Total Environ 214(1–3): 113–121

Li G, Liu G, Zhou C, Kang Y, Yuan W, Xie F (2013) Mobility, binding behavior and potential risks of trace metals in the sediments of the fifth largest freshwater lake, China. Water Sci Technol 67(11):2503–2510

Lin S, Hsieh U, Huang K-M, Wang C-H (2002) Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chem Geol 182(4–5):377–394

Liu H, Yang J, Gan J (2010) Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Arch Environ Contam Toxicol 59(4):593–601

Liu L, Venier M, Salamova A, Hites RA (2016) A novel flame retardant in the Great Lakes atmosphere: 3,3′,5,5′-Tetrabromobisphenol a Bis(2,3-dibromopropyl) ether. Environ Technol Lett 3(5):194–199

Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2013) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River estuary. Environ Pollut 121(3):377–388

Llobet JM, Falco G, Casas C, Teixedo A, Domingo JL (2003) Concentrations of arsenic, cadmium, mercury, and lead in common and seniors of Catalonia, Spain. J Agric Food Chem 51(3):838–842

Ma T, Gong S, Zhou K, Zhu C, Deng K, Luo Q et al (2010) Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity. J Environ Sci 22(2):304–313

Ma Z, Chen K, Yuan Z, Bi J, Huang L (2013) Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes. J Environ Qual 42(2):341–350

MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31
Mandal B (2002) Arsenic round the world: a review. Talanta 58(1):201–235
Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2(3):108–118
Mwanamoki PM, Devarajan N, Niane B, Ngelinkoto P, Thevenon F, Nlandu JW et al (2015) Trace metal distributions in the sediments from river-reservoir systems: case of the Congo River and Lake Ma Vallee, Kinshasa (Democratic Republic of Congo). Environ Sci Pollut Res Int 22(1):586–597
Nam JJ, Gustafsson O, Kurt-Karakus P, Breivik K, Steiness E, Jones KC (2008) Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: implications for sources and environmental fate. Environ Pollut 156(3):809–817
Nguyen HL, Leermakers M, Osa J, Baeyens W (2005) Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota. Sci Total Environ 340(1–3):213–230
Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16
Paul S, Das N, Bhattacharjee P, Banerjee M, Das JK, Sarma N et al (2013) Arsenic-induced toxicity and carcinogenicity: a two-way cross-sectional study in arsenicosis individuals in West Bengal, India. Journal of Exposure Science and Environmental Epidemiology 23(2):156–162
Pempkowski J, Sikora A, & Biernacka E (1999) Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39(2):313–321
Rzymski P, Niedzielki P, Klimaszyk P, Poniedzielak B (2014) Bioaccumulation of selected metals in bivalves (Unionoidea) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186(5):3199–3212
Schaller J, Brackhage C, Mkandawire M, Dudel EG (2011) Metal/ metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Sci Total Environ 409(23):4891–4898
Shine JP, Ika R, Ford TE (1998) Relationship between oxygen consumption and sediment-water fluxes of heavy metals in coastal marine sediments. Environ Toxicol Chem 17(11):2325–2337
Shulkin VM, Presley BJ, & Kavan VI (2003) Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ Int 29(4):493–502
Soto-Jiménez M, Páez-Osuna F, Monrel-Hernández F (2001) Selected trace metals in oysters (Crassostrea irideornis) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán Bay (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environ Pollut 114(3):357–370
Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–2788
Szejfer P, Ali AA, Ban-Haroon AA, Rajeh AA, Gelden, J., & Nabzryski, M. (1999) Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ Pollut 106(3):299–314
Talebi SM, Abedi M (2005) Determination of arsenic in air particulates and diesel exhaust particulates by spectrophotometry. J Environ Sci 17(1):156–158
Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64
Thomaidis NS, Bakes EB, Siskos PA (2003) Characterization of lead, cadmium, arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere 52(6):959–966
Topcuoğlu S, Kürbassoğu C, & Gündoğ N (2002) Heavy metals in organisms and sediments from Turkish Coast of the Black Sea, 1997–1998. Environ Int 27(7):521–526
Tsangaris C, Kaber H, Catski VA (2013) Metal levels in sediments and transplanted mussels in Pagassitikos Gulf (Aegean Sea, Eastern Mediterranean). Environ Monit Assess 185(7):6077–6087
USEPA (1989) Risk assessment guidance for superfund volume I human health evaluation manual (part A). United States Environmental Protection Agency. Philadelphia, PA, Washington DC
USEPA (2004). Integrated risk information system (IRIS). Lead and compounds (inorganic): CASRN 7439–92–1. United States Environmental Protection Agency. Philadelphia, PA, Washington DC
USEPA (2005) National-Scale air Toxic Assessment. United States Environmental Protection Agency. PA, WashingtonDC, Philadelphia
Usoro J, Izuquierdo C, Morillo J, Gracia I (2004) Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain. Environ Int 29(7):949–956
Vukosav P, Mlakar M, Cukrov K, Kowakal P, Pizeta I, Pavlus N et al (2014) Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environ Sci Pollut Res Int 21(5):3826–3839
Wang Q, Yuan Z, Wu H, Liu F, Zhao J (2013) Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis. Fish & Shellfish Immunology 34(5):1345–1351
Wu B, Zhao DY, Jia HY, Zhang Y, Zhang XX, Cheng SP (2009) Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China. Bull Environ Contam Toxicol 82(4):405–409
Yang J, Chen L, Liu LZ, Shi WL, Meng XZ (2014a) Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol Environ Saf 102:129–135
Yang J, Meng XZ, Duan YP, Liu LZ, Chen L, Cheng H (2014b) Spatial distributions and sources of heavy metals in sediment from public park in Shanghai, the Yangtze River Delta. Appl Geochem 44:54–60
Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585
Zeng J, Yang LY, Chen XF, Chuai XM (2012) Spatial distribution and seasonal variation of heavy metals in water and sediments of Taihu Lake. Pol J Environ Stud 21(5):1489–1496
Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157(5):1533–1543
Zhou J, Feng K, Li Y, Zhou Y (2016) Factorial kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China. Environ Sci Pollut Res Int 23(15):14957–14967