Cholesteatoma of Maxillary Sinus Simulating Neoplasia: A Rare Case Report

Abstract
The term cholesteatoma refers to “chole”: cholesterol, “steat”: fat and “oma”：“tumor”. This tumor has been reported to be the most common in the middle ear. The occurrence of such a tumor in the maxillary sinus is deemed to be very rare and hardly 4 cases were reported in India and 26 cases described worldwide. This case report intends to discuss the uniqueness and indolent nature of this lesion in terms of histopathology and radiography.

Keywords: Epithelium, keratin, maxillary, sinus, squamous

Introduction
Cholesteatoma is a condition where respiratory mucosa is either partially or totally replaced by hyperkeratotic squamous epithelium, which leads to the formation of a lamellar sheet of keratin.[1] It was first described by Cruveilhier (1829) as a pearly tumor by its highly refractive and nodular surface. The term cholesteatoma was given by Muller (1838) to describe the presence of cholesterol crystal in a cavity lined by squamous epithelium and filled with layers of dense, squamous keratin.[1] Haeggstrom (1916) reported the first case of cholesteatoma in the frontal sinus. The first case of maxillary sinus cholesteatoma was reported by Hutcheon (1941).[2]

Importance
Only four cases of cholesteatoma of maxillary sinus have been reported to date, the last reported case was in 2014. In this case report, we intend to discuss the various differential diagnosis associated with cholesteatoma which could be easily misdiagnosed. Due to its expansile and space-occupying nature, a provisional diagnosis of ameloblastoma of the maxillary sinus was given. The histopathology satisfied Vickers and Gorlin’s criteria in the epithelium, and dense keratin, a tentative diagnosis of keratoameloblastoma, was bestowed. The deeper section exhibited a lack of ameloblastic tumor islands and dense keratin in the connective tissue which is a characteristic of keratoameloblastoma. Therefore, a further evaluation was done, which revealed a gradual and marked a transition from pseudostratified ciliated columnar respiratory epithelium to the stratified squamous epithelium and dense flakes of acellular keratin supraepithelially suggestive of cholesteatoma.

Case Report
A 36-year-old male reported with a complaint of pain and swelling at the upper right back tooth region for 45 days. On extraoral examination, there was an infected tract opening arising from the maxillary sinus [Figure 1a] with a discharge on the right side of the face near the nasolabial fold. The patient gave a history of mild pain and pus discharge for a month. The patient also gave a history of extraction of 17 three months back. On intraoral examination, there was swelling at the right upper back tooth region obliterating the vestibule in relation to 14–17 region. On radiographic examination, computed tomography revealed the presence of an osteolytic lesion which was hypodense, with well-defined borders and deviation of the nasal septum [Figure 1b]. A relevant consent was taken from the patient for any further procedure to be performed on him.

On surgical exposure, both palatal and facial cortices were found to be eroded by a solid, creamish-white mass. On gross examination, an incisional biopsy was taken...
from 14 to 17 regions. Grossly, the specimen was creamish white in color [Figure 1c] with membranous plaques and soft in consistency. A provisional diagnosis of central jaw lesion is given. The tissue was processed and stained with hematoxylin and eosin. Histopathologically, it revealed a marked transition from pseudostratified ciliated columnar respiratory epithelium to stratified squamous epithelium with lamellar sheets of keratin supraepithelially [Figure 1d and e]. It also exhibited alternating sheets and flakes of loose and dense eosinophilic, acellular, and anucleated areas resembling orthokeratin supraepithelially [Figure 1f] and varying degrees of squamous cell metaplasia [Figure 1g]. The connective tissue also exhibits multinucleated giant cell, few cholesterol clefts [Figure 1h and i], areas of hemorrhage, inflammatory cells, and blood capillaries interspersed with fibrocollagenous stroma. Therefore, correlating all the clinical and histopathological features, it was suggestive of “cholesteatoma of maxillary sinus.” The patient was referred to the oral and maxillofacial surgery department for further treatment.

Discussion

It is a relatively common lesion in the middle ear and mastoid cavity.² Cholesteatoma of the maxillary sinus is a rare condition with 12 cases reported to date, since 1965. It presents as a painless swelling with nasal obstruction and discharge. The mean age was 37.1 years. These are biologically nonneoplastic³ but can erode bone and expand into adjacent areas.

Pathogenesis: Some fundamental theories were proposed:³⁴⁻⁵

- Remark and Bucy (1854) stated that they arise from misplaced epithelial rests during the embryonic stage
- Wendt (1873) proposed that in response to infection, nonkeratinizing squamous epithelium lining the cavity undergoes metaplastic change and produces keratin
- Habermann (1888) theorized that migration of keratinizing squamous epithelium in an area where it is not usually found
- Lange (1925), Reudi (1978) proposed that papillations, pseudopods, or microcysts filled with keratin formed in the basal cell layer of the pars flaccida
epithelium, invade the subepithelium of Prussack’s space

- Ewing (1928) stated that during previous trauma and after nasal or sinus surgery, it arises secondary to the direct entry of epithelium
- Wittmack (1933) stated poor aeration of epitympanic space and the structures around it are drawn medially by retraction forming a retraction pocket. It causes negative pressure that restricts the normal migratory pattern of the tympanic membrane, thereby losing its ability of self-cleaning and enhancing keratin accumulation
 - The most recent theory proposed by Jackler et al. (2015) described the mucosal migration onto the inner surface of the tympanic membrane and the interaction between the mucociliary movement of middle ear mucosa leads to the formation of the epithelial pouch which leads to form cholesteatoma.

Recent investigations on bony erosions highlighted the role of cytokines like TNFα. They act directly on the bone and indirectly by stimulating the release of proteolytic enzymes. Overexpression of epidermal growth factor receptor and transforming growth factor-α has also been detected, indicating that the dysregulation of these genes is associated with the initiation and progression of cholesteatomas.

Compilation of various cases of Cholesteatoma of Maxillary sinus was in detail in Figure 2. Theories of etiology of cholesteatoma till now were explained in Figure 3.

Radiologically, it is circumscribed with smooth marginal sclerosis. On panoramic imaging, it is large, hypodense, non-enhancing, expansive, homogeneous lesion.

Histopathologically, it is partly lined by respiratory epithelium and partly by keratinized stratified squamous

S.No	AUTHOR	COUNTRY	AGE/GENDER	SITE	RADIOGRAPHIC FEATURES	TREATMENT
1.	Pogrel et al(1985)	United states	46years/Male	Left Maxillary sinus	Bone defect, diffuse haziness of left orbit	Myringoplasty
2.	S.K.Das (1977)	Ludhiana, India	55years/Female	Right Maxillary sinus	Opacity of right antrum, widening of cavity and thinning of wall	Caldwell-Luc, Approach, Scopelit
3.	Sadeghi et al.(1999)	United states	55years/Female	Left Maxillary sinus	Expansion of the left antrum, with thinning and erosion of maxillary sinus and bony septum	Excision
4.	Steeper J.S.et al.(1992)	United states	32years/Male	Left Maxillary sinus	Enlarged mass, causing destruction of inferior, medial, and lateral walls. Mass extends into nasal vestibule	Caldwell-Luc antrostomy
5.	Vishwanath et al.(2007)	Bangalore, Karnataka, India	45years/Female	Left Maxillary sinus	Large, hypodense, expansive lesion, usual fossa obturata for nasal septum.	Wide inferior nasal antrostomy
6.	Malhar H Chavhan,et al(2011)	Chandigarh, India	47years/Female	Right Maxillary sinus	Well circumscribed, expansive bony destruction	Endoscopic excision
7.	Pethurajath JG, et al(2014)	Bangalore, Karnataka, India	25years/Female	Left Maxillary sinus	Destruction of the medial and lateral wall of the sinus and destruction of medial wall of the left maxillary sinus	Excision
8.	Srawsky J.et al.(2015)	United states	72years/Male	Right maxillary sinus	Erosion of the right medial maxillary wall	Endoscopic sinus surgery
9.	J. M. Lee et al(2015)	Korea	18years/Female	Left Maxillary sinus	Radiopaque lesion, no expansion, except bone defect	Endoscopic excision
10.	Mii et al(2016)	Korea	44years/Female	Left Maxillary sinus	Cystic lesion with thin sclerotic rim, homogenous, expansive lesion	Excision with Caldwell-Luc approach
11.	Baveja S.W.et al(2017)	Thailand	46years/Female	Right Maxillary sinus	Novel cavity destroying the nasal septum, bony destruction	Maxillectomy
12.	Bo-han Lim et al(2018)	Korea	45years/male	Left maxillary sinus	Non-homogeneous soft tissue density in the left maxillary sinus without bony remodeling	Endoscopic excision
epithelium with supraepithelial acellular keratin flakes. The fibrous stroma exhibits cholesterol clefts with some surrounding foamy histiocytes and multinucleated giant cells with chronic inflammation were also observed.[1]

Lesions that should be differentiated from this are nonneoplastic lesions such as mucocele, mucus retention cyst, and pseudocyst. Benign neoplastic lesions include papilloma, mucin impaction tumor, meningioma, schwannoma, hemangioma, juvenile nasal angiofibroma, and malignant lesions like squamous cell carcinoma of the maxillary sinus, ameloblastoma.[7]

As per literature, in India, the first case in maxillary sinus was reported by S.K.Das et.al. (1971) followed by Sadoff RS et.al.(1989) in United states.

The appropriate treatment is Caldwell-Luc surgery. The wall of the cholesteatoma should be removed entirely to stop further erosion of the surrounding structures.[3,10] The presence of residual epithelium is the usual cause of recurrence.

Conclusion

Based on our case report, cholesteatoma should be also considered for any slow-growing, expansile lesion in the maxillary sinus. While it often appears as a high-grade malignancy on radiographic imaging, it can be very easily misdiagnosed as a malignant lesion. Hence, a proper histopathological evaluation and screening of all the sections are required and suggested.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Chouhan M, Yadav J, Bakshi J, Saikia U. Cholesteatoma of maxillary sinus: Mimicking as sinus tumor. Clin Rhinol An Int J 2011;4:119-21.
2. Bourchom W, Jaruchinda P. Cholesteatoma of the maxillary sinus. Ann Clin Case Rep 2017;2:1417.
3. Viswanatha B, Nayak LK, Karthik S. Cholesteatoma of the maxillary sinus. Ear Nose Throat J 2007;86:351-3.
4. Hamed MA, Nakata S, Sayed RH, Ueda H, Badawy BS, Nishimura Y, et al. Pathogenesis and bone resorption in acquired cholesteatoma: Current knowledge and future prospectives. Clin Exp Otorhinolaryngol 2016;9:298-308.
5. Castle JT. Cholesteatoma pearls: Practical points and update. Head Neck Pathol 2018;12:419-29.
6. Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int 2015;2015:854024.
7. Sozansky J, Josephson JS. Cholesteatoma of the maxillary sinus: A case report and review of the literature. Am J Otolaryngol 2015;36:290-1.
8. Das SK. Cholesteatoma of maxillary sinus. J Laryngol Otol 1971;85:397-400.
9. Sadoff RS, Pliskin A. Cholesteatoma (keratoma) of the maxillary sinus: Report of a case. J oral Maxillofac Surg 1989;47:873-6.
10. Puttamaiah GM, Vijayashree MS, Borlingegowda V, Kaur J. Cholesteatoma of maxillary sinus mimicking malignancy. Res Otolaryngol 2014;3:57-9.