Darcy-Brinkman Ferro convection with temperature dependent viscosity

Soya Mathew1 and S Maruthamanikandan2
1Department of Mathematics, KristuJayanti College, Kothanur,Bangalore 560077, India
2Department of Mathematics, School of Engineering, Presidency University,Itgalpur, Yelahanka, Bangalore 560064, India
* Corresponding author (soyamathew@kristujayanti.com)

Abstract. The method of small perturbation is used to examine the variable viscosity effect on Darcy-Brinkman ferroconvection. Taking the viscosity to be temperature dependent and assuming the fluid and solid matrix to be in local thermal equilibrium, the eigenvalues of the stationary instability are computed using the higher order Galerkin method. The study reveals that viscosity variation effect is to hasten the threshold of porous medium ferroconvection and its destabilizing effect is enhanced when the magnetic mechanism is effective. Further the convection cell size at the onset of ferroconvection is significantly affected by the variable viscosity effect. The impact of porous and magnetic parameters on the stability is also discussed.

1. Introduction

The Rayleigh-Bénard instability with variable viscosity has been paid ample attention thanks to its connection in engineering applications of heat transfer (Platten and Legros [1], Gebhart et al [2]). The variable viscosity effect on convection, making use of exponential forms and truncated series expansions, has been dealt with by several researchers. Palm [3] pointed out the formation of steady hexagonal cells at the convection onset when the variable viscosity effect was taken into account.

Torrance and Turcotte [4] analyzed the influence of large viscosity variations on convective instability of Rayleigh-Bénard type. Horne and Sullivan [5] examined the variable viscosity effect on natural convection of water with permeable formations. They perceived that the convective motion becomes unstable at values of Rayleigh number that are apparently moderate. White [6] studied convective instability with temperature-dependent viscosity and made clear that stable hexagonal and square patterns appear with an increase in viscosity ratio. Chakraborty and Borkakati [7] analyzed consequences of viscosity variation in an electrically conducting fluid. Based on energy inequalities and assuming a linear relation for the viscosity variation, Saravananand Brindha [8] derived sufficient conditions applicable to convective motion driven by applied pressure gradient and volumetric heat sources.

Ferrofluids are essentially colloidal suspensions comprising surfactant-coated submicron sized magnetic particles in a liquid medium. They exhibit a variety of unusual properties and can be controlled by magnetic field gradients. Motivated by the fact that the existence of magnetic forces change the critical values associated with the natural convection, several researchers investigated the problem of magnetic fluid convective instability of Rayleigh-Bénard type (Finlayson...
Ramanathan and Muchikel [15] analyzed the problem of porous medium ferroconvection with viscosity varying with temperature. It is clarified that oscillatory instability is ruled out and only stationary mode of instability is possible. They further showed that variable viscosity effect boosts the onset of porous medium ferroconvection. Assuming a viscosity varying exponentially with temperature, Nanjundappa et al [16] studied the Marangoni-Bénardferroconvective instability problem. They made it clear that the variable viscosity plays a larger role on the stability characteristics. Very recently Prakash [17] examined the effects of both MFD viscosity and non-uniformity in the basic temperature profiles on thermomagnetic convection in ferrofluids.

While the effect of viscosity variation with respect to temperature fluctuations on the threshold of convective instability has been studied by means of exponential and reduced Taylor series forms, we have not come across any investigation concerning ferromagnetic porous medium instability with an inverse linear relation for viscosity variation. In this paper we therefore study the problem of ferroconvective porous medium instability taking into account an inverse linear relation for the viscosity varying with temperature. Considering more realistic boundary conditions, the Galerkin technique is used to figure out the critical values of porous medium thermomagnetic instability.

Figure 1. Schematic of the problem.

2. **Mathematical Formulation**

A horizontal porous layer of ferromagnetic fluid of thickness d with the lower and upper boundaries having uniform temperatures is considered. The temperatures of the lower and upper boundaries are T_1 and T_o (with $T_1 > T_o$) respectively. A uniform magnetic field \vec{H}_o is applied in the direction of the z-axis (see figure 1).

The governing equations describing flow in an incompressible, non-conducting magnetic fluid saturated porous layer are (Finlayson [9] and Maruthamanikandan [18])

$$\nabla \cdot \vec{q} = 0, \quad (1)$$

$$\rho_o \left[\frac{1}{e} \frac{\partial \vec{q}}{\partial t} + \frac{1}{e^2} (\vec{q} \cdot \nabla) \vec{q} \right] = -\nabla p + \rho \vec{g} - \frac{\mu_t}{k} \vec{q} + \nabla \cdot (\vec{H} \vec{B}) + \nabla \cdot \left[\vec{\mu} \left(\nabla \vec{q} + \nabla \vec{q}^T \right) \right], \quad (2)$$
\begin{equation}
\varepsilon \left[\rho_o C_{v,H} - \mu_q \vec{H} \cdot \left(\frac{\partial \vec{M}}{\partial t} \right)_{v,H} \right] \left[\frac{\partial T}{\partial t} + (\vec{q} \cdot \nabla)T \right] \cdot \left[\frac{\partial H}{\partial t} + (\vec{q} \cdot \nabla)\vec{H} \right] = k_1 \nabla^2 T, \tag{3}
\end{equation}

\begin{equation}
\rho = \rho_o \left[1 - \alpha (T - T_a) \right], \tag{4}
\end{equation}

\begin{equation}
\vec{M} = \frac{\vec{H}}{H} M(H,T), \tag{5}
\end{equation}

\begin{equation}
M = M_o + \chi (H - H_o) - K(T - T_a), \tag{6}
\end{equation}

where \(\vec{q} = (u,v,w) \) is the fluid velocity, \(\rho_o \) is a reference density, \(\varepsilon \) is the porosity, \(t \) is the time, \(p \) is the pressure, \(\ddot{g} \) is the acceleration due to gravity, \(\rho \) is the fluid density, \(\mu_t \) is the dynamic viscosity, \(\bar{\mu}_t \) is the effective viscosity, \(\kappa \) is the permeability of the porous medium, \(\vec{H} \) is the magnetic field, \(\vec{B} \) is the magnetic induction, \(T \) is the temperature, \(\mu_o \) is the magnetic permeability, \(\vec{M} \) is the magnetization, \(k_1 \) is the thermal conductivity, \(\alpha \) is the thermal expansion coefficient, \(T_a \) is the arithmetic mean of temperatures at the boundaries, \(\nabla \) is the vector differential operator, \(C_{v,H} \) is the specific heat at constant volume and magnetic field, \(M_o \) is the reference magnetization, \(\chi \) is the magnetic susceptibility, \(K \) is the pyromagnetic coefficient and \(Tr \) denotes the transpose.

The relevant Maxwell equations are

\begin{equation}
\nabla \cdot \vec{B} = 0, \quad \nabla \times \vec{H} = \vec{0}, \quad \vec{B} = \mu_o \left(\vec{H} + \vec{M} \right). \tag{7}
\end{equation}

The fluid viscosity is taken to be temperature-dependent in the following forms

\begin{equation}
\mu_t (T) = \frac{\mu_1}{1 + \delta(T - T_a)}, \quad \bar{\mu}_t (T) = \frac{\mu_2}{1 + \delta(T - T_a)}, \tag{8}
\end{equation}

where \(\mu_1 \) and \(\mu_2 \) are values of \(\mu_t \) and \(\bar{\mu}_t \) at \(T = T_a \) and \(0 < \delta < 1 \). Equations characterising the basic state are introduced in the form (with subscript \(b \) representing the basic state quantities)

\begin{equation}
\vec{q} = \vec{q}_b = (0,0,0), \quad \rho = \rho_b(z), \quad T = T_b(z), \quad p = p_b(z), \quad \mu_f = \mu_{fb}(z), \quad \vec{H} = \vec{H}_b = (0,0,H_b(z)), \quad \vec{M} = \vec{M}_b = (0,0,M_b(z)). \tag{9}
\end{equation}

The solution pertaining to the basic state reads

\begin{equation}
\rho_b = \rho_o \left[1 - \alpha \beta z \right], \quad \vec{H}_b = \left[H_o - \frac{K \beta z}{1 + \chi} \right] \hat{k}, \quad \vec{M}_b = \left[M_o + \frac{K \beta z}{1 + \chi} \right] \hat{k}, \quad \vec{B}_b = \mu_o \left(\vec{H}_o + \vec{M}_o \right) \hat{k}, \quad \mu_{fb}(T) = \frac{\mu_1}{1 - \delta \beta z}, \quad \bar{\mu}_{fb}(T) = \frac{\mu_2}{1 - \delta \beta z}, \tag{10}
\end{equation}

where \(\beta = \frac{T_1 - T_0}{d} \). The perturbed state equations involving infinitesimally small perturbations are
\[\bar{q} = \bar{q}_b + \bar{q}' = (u', v', w'), \quad p = p_b + p', \quad \rho = \rho_b + \rho', \quad T = T_b + T', \quad \mu_f = \mu_{f_b} + \mu_{f_b}', \quad \bar{m} = M + M', \quad \phi = \phi_b + \phi', \quad H = H_b + H'. \]

(11)

where the perturbed quantities are indicated by the primes. The linearized equations governing small perturbations therefore take the form

\[\rho_0 \frac{\partial}{\partial t} \left(\nabla^2 w' \right) = \alpha \rho_0 \sigma \nabla^2 T' - \frac{\mu_k}{k} \nabla^2 w' + \frac{\mu_k}{1 + \chi} \nabla^2 T' - \frac{\mu_k}{1 + \chi} \sigma \nabla^2 \phi' \]

\[- \frac{\partial^2 \mu_k}{\partial \zeta^2} \left[\nabla^2 w' - \frac{\partial^2 w'}{\partial \zeta^2} \right] + 2 \frac{\partial \mu_k}{\partial \zeta} \nabla^2 w' + \bar{m} \nabla^4 w', \]

(12)

\[\left(\rho_0 C \right)_1 \frac{\partial T'}{\partial t} - \mu_k KT_0 \nabla^2 (\nabla^2 w') = k_1 \nabla^2 T' + \left[\left(\rho_0 C \right)_2 - \frac{\mu_k^2 T_a}{1 + \chi} \right] \beta w', \]

(13)

\[\left(1 + \frac{M_0}{H_0} \right) \nabla^2 \phi' + (1 + \chi) \frac{\partial^2 \phi'}{\partial \zeta^2} - K \frac{\partial^2 \phi'}{\partial \zeta^2} = 0, \]

(14)

where

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \quad \left(\rho_0 C \right)_1 = \epsilon \rho_0 C_{V,H} + \epsilon \mu_0 K H_0 + (1 - \epsilon)(\rho_0 C)_s, \quad \left(\rho_0 C \right)_2 = \epsilon \rho_0 C_{V,H} + \epsilon \mu_0 K H_0. \]

The normal mode solution is adopted and the same has the form

\[\begin{bmatrix} w' \\ T' \\ \phi' \end{bmatrix} = \begin{bmatrix} \Theta(z) \\ \phi(z) \end{bmatrix} \exp \left[i(lx + my) + \sigma t \right], \]

(15)

where \(l \) and \(m \) are respectively the wavenumbers in \(x \) and \(y \) directions and \(\sigma \) is the growth rate. Substitution of equation (15) into equations (12) – (14) leads to

\[\rho_0 \sigma \left(D^2 - k_h^2 \right) W = - \alpha \rho_0 \sigma \nabla^2 \Theta - \frac{\mu_k}{k(1 - \delta \beta \zeta)} \left(D^2 - k_h^2 \right) W - \frac{\mu_k}{1 + \chi} \nabla^2 \Theta + \mu_0 K \beta k^2_D \Phi \]

\[+ \frac{2\mu_0 \delta^2 \beta^2}{(1 - \delta \beta \zeta)} \left(D^2 + k^2_h \right) W + \frac{2\mu_0 \delta \beta}{(1 - \delta \beta \zeta)} \left(D^2 - k^2_h \right) DW + \frac{\mu_2}{(1 - \delta \beta \zeta)} \left(D^2 - k^2_h \right) W, \]

(16)

\[\left(\rho_0 C \right)_1 \sigma \Theta - \mu_0 KT_0 \sigma \Phi = k_h \left(D^2 - k_h^2 \right) \Theta + \left[\left(\rho_0 C \right)_2 - \frac{\mu_k^2 T_a}{1 + \chi} \right] \beta W, \]

(17)

\[\left(1 + \chi \right) D^2 \Phi - \left(1 + \frac{M_0}{H_0} \right) k^2_h \Phi - KD \Theta = 0, \]

(18)

where \(D = \frac{d}{dz} \) and \(k^2_h = l^2 + m^2 \) is the overall horizontal wavenumber. Non-dimensionalizing equations (16) – (18) using the scaling
\[
W^* = \frac{W_d}{\kappa}, \quad \Phi^* = \frac{\Phi(1+\chi)}{K\beta d^2}, \quad \sigma^* = \frac{\sigma d^2}{\kappa}, \quad \Theta^* = \frac{\Theta}{\beta d}, \quad z^* = \frac{z}{d}, \quad a = k_d d, \quad \{19\}
\]

we obtain
\[
\frac{\sigma}{Pr}(D^2 - a^2)W = -(R + N)a^2\Theta + Na^2D\Phi - Da^{-1}g(z)\left(D^2 - a^2\right)W + 2AV^2g^3(z)\left(D^2 + a^2\right)W
\]
\[
+ 2AVg^2(z)\left(D^2 - a^2\right)DW + Ag(z)\left(D^2 - a^2\right)^2 W,
\]
\[
\lambda \sigma \Theta = \left(D^2 - a^2\right)\Theta + W, \quad \{20\}
\]
\[
D^2\Phi - M_3a^2\Phi - D\Theta = 0, \quad \{21\}
\]
where \(Pr = \frac{\mu_\lambda}{\rho_\sigma \kappa}\) is Prandtl number, \(Da^{-1} = \frac{d^2}{k}\) is inverse Darcy number, \(A = \frac{\mu_\lambda}{\mu_\kappa}\) is Brinkman number, \(R = \frac{\alpha \rho_\sigma g \beta d^4}{\mu_\kappa}\) is the Rayleigh number, \(N = \frac{\mu_\sigma K^2 \beta^2 d^4}{\mu_\kappa (1+\chi) \kappa}\) is magnetic Rayleigh number, \(V = \delta \beta d\) is the variable viscosity parameter and \(g(z) = (1 - Vz)^{-1}\).

The appropriate boundary conditions are (Finlayson [9])
\[
W = DW = \Theta = 0 \quad \text{at} \quad z = \pm 1/2, \quad \{23\}
\]
\[
D\Phi + \frac{a\Phi}{1+\chi} = 0 \quad \text{at} \quad z = 1/2, \quad D\Phi - \frac{a\Phi}{1+\chi} = 0 \quad \text{at} \quad z = -1/2 . \quad \{23\}
\]

Since the occurrence of oscillatory instability is ruled out (Maruthamanikandan [18]), the stability equations for stationary instability (with \(\sigma = 0\)) are thus given by
\[
Ag(z)\left(D^2 - a^2\right)^2 W + 2AVg^2(z)\left(D^2 - a^2\right)DW + 2AV^2g^3(z)\left(D^2 + a^2\right)W
\]
\[
- Da^{-1}g(z)\left(D^2 - a^2\right)W - (R + N)a^2\Theta + Na^2D\Phi = 0, \quad \{24\}
\]
\[
\left(D^2 - a^2\right)\Theta + W = 0, \quad \{25\}
\]
\[
\left[D^2 - M_3a^2\right]\Phi - D\Theta = 0. \quad \{26\}
\]

3. Method of Solution
Since the system comprising equations (24) – (26) has space varying coefficients, an approximate solution of the eigenvalue problem can be obtained by resorting to the Galerkin method (Finlayson [19]). The trial functions \(W_i = \left(z^2 - \frac{1}{4}\right)^{i+1}\), \(\Theta_i = \left(z^2 - \frac{1}{4}\right)^i\) and \(\Phi_i = z^{2i-1}\) are employed in the computations of critical values.
4. Results and Discussion
The variable viscosity effect on Darcy-Brinkman ferroconvection is investigated. Realistic hydrodynamic boundary conditions and general magnetic boundary conditions are considered. An inverse linear relationship is considered for the viscosity variation with temperature. The local thermal equilibrium condition for the fluid and solid matrix is assumed. The critical values associated with stationary instability are computed by the higher order Galerkin method. The results of the study are indicated by means of figures 2 –6 and table 1. The thermal Rayleigh number R turned out to be a function of both magnetic and non-magnetic parameters. The change in critical Rayleigh number R_c with magnetic Rayleigh number N, Brinkman number A, inverse Darcy number Da^{-1}, variable viscosity parameter V, non-buoyancy-magnetization parameter M_3 and magnetic susceptibility χ is exhibited in figures 2 –6.

![Figure 2. R_c variation with N and A.](image1)

![Figure 3. R_c variation with N and Da^{-1}.](image2)

The influence of porous parameters A and Da^{-1} on the stability is portrayed in figures 2 and 3. As can be seen, an increase in both Da^{-1} and A results in postponement of porous medium ferroconvection. This is due to the reduction in the permeability of the porous media following the increase in Da^{-1}. Besides, increasing the porous parameter A boosts the viscous effect, which is responsible for slowing down convective instability. It is remarkable to note that the system is destabilized more slowly by virtue of the magnetic mechanism when both the porous parameters Da^{-1} and A are large enough.
We see from figure 4 that the parameter V designating variable viscosity effect is to advance the threshold of ferromagnetic convection. Further, the destabilizing effect of V is heightened when the magnetic Rayleigh number N is large. In figure 5, the deviation in R_c with respect to N and M_3 is exhibited. The parameter M_3 signifies the shift towards nonlinearity associated with the magnetic equation of state. The critical number R_c decreases monotonically when M_3 is increased thereby favouring porous medium ferroconvective instability.

It is comprehended from figure 6 that an increase in the magnetic susceptibility χ gives rise to the same trend for R_c implying the constraining nature of χ albeit its stabilizing influence is negligibly small.

N	$V = 0$	$V = 0.5$	$V = 1$
0	3.145	3.116	3.019

Table 1. Dependence of a_c with N and V.

Figure 4. R_c variation with N and V.

Figure 5. R_c variation with N and M_3.

Figure 6. R_c variation with N and χ.
Computations also reveal that the convection cell size is more sensitive to the porous parameters A and Da^{-1}, and the opposite is true for the magnetic parameters M_3 and χ. Further, it is evident from table 1 that the variable viscosity parameter V tends to amplify the convection cell size at the threshold of ferroconvection. Furthermore, in the limit of $N = Da^{-1} = V = 0$ and $A = 1$, one is able to obtain the classical values of the critical numbers $a_c = 3.117$ and $R_c = 1707.76$ (Chandrasekhar [20]).

5. Conclusions
Ferromagnetic porous medium convection with variable viscosity effect when the viscosity varying with temperature and obeying an inverse linear relationship is investigated. The investigation has led to the following conclusions:

- The onset of ferroconvection is advanced due to the presence of variable viscosity.
- The destabilizing nature of variable viscosity becomes more distinct when the magnetic mechanism is more effective.
- The size of convection cell is more vulnerable to the constraints of porous medium and variable viscosity.

References
[1] Platten K J and Legros J C 1984 Convection in liquids (Berlin: Springer).
[2] Gebhart B, Jaluria Y, Mahajan R L and Sammakia B 1988 Buoyancy induced flows and transport (New York: Hemisphere Publishing Corporation)
[3] Palm E 1960 On the tendency towards hexagonal cells in steady convection J. Fluid Mech. 8 pp 183–192
[4] Torrance K E and Turcotte D L 1971 Thermal convection with large viscosity variations J. Fluid Mech. 47 pp 113–125
[5] Horne R N and O’Sullivan M J 1978 Convection in a porous medium heated from below: Effect of temperature dependent viscosity and thermal expansion coefficient Trans. ASME: J. Heat Trans. 100 pp 448–452
[6] White D B 1988 The planforms and onset of convection with a temperature-dependent viscosity J. Fluid Mech. 191 pp 247–286
[7] Chakraborty S and Borkakati A K 2002 Effect of variable viscosity on laminar convection flow of an electrically conducting fluid in uniform magnetic field Theoret. Appl. Mech. 27 pp 49–61.
[8] Saravananan S and Brindha D 2008 A note on the universal stability of convective flow with variable viscosity Math. Meth. Appl. Sci. 31 pp 769–773
[9] Finlayson B A 1970 Convective instability of ferromagnetic fluids J. Fluid Mech. 40 pp 753–767.
[10] Stiles P J and Kagan M 1990 Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field JMMM 85 pp 196–198
[11] Maruthamanikandan S 2003 Effect of radiation on Rayleigh-Bénard convection in ferromagnetic fluids Int. J. Appl. Mech. Engg. 8 pp 449–459
[12] Soya Mathew, Maruthamanikandan S and Smita SN 2013 Gravitational instability in a ferromagnetic fluid saturated porous medium with non-classical heat conduction IOSR J.
[13] Nisha Mary T and Maruthamanikandan S 2013 Effect of gravity modulation on the onset of ferroconvection in a densely packed porous layer IOSR J. Appl. Phys. 3 pp 30–40
[14] Vatani A, Woodfield P L, Nam-Trung N and Dao DV 2018 Onset of thermomagnetic convection around a vertically oriented hot-wire in ferrofluid JMMM 456 pp 300–306
[15] Ramanathan A and Muchikel N 2006 Effect of temperature dependent viscosity on ferroconvection in a porous medium Int. J. Appl. Mech. Eng. 11 pp 93–104
[16] Nanjundappa C E, Shivakumara I S and Arunkumar R 2013 Onset of Marangoni-Bénard ferroconvection with temperature dependent viscosity Microgravity Sci. Tech. 25 pp 103–112
[17] Prakash HN 2018 Thermomagnetic convection in a ferrofluid layer: Effects of non-uniform basic temperature profiles and MFD viscosity Comp. Appl. Math. J. 4 pp 15–26
[18] Maruthamanikandan S 2005 Convective instabilities in Newtonian ferromagnetic, dielectric and other complex liquids (Ph.D. Thesis) Bangalore University Bangalore India
[19] Finlayson B A 1972 The method of weighted residuals and variational principles (New York: Academic Press)
[20] Chandrasekhar S 1961 Hydrodynamic and hydromagnetic stability (Oxford: Oxford University Press)