Identifying future protection gaps in Amazon floodplains: a dual-season forecasted distribution of the world’s largest scaled freshwater fish

Nicolas Dubos1*, Maxime Lenormand1, Leandro Castello2, Thierry Oberdorff3, Antoine Guisan4, Sandra Luque1

1TETIS, Univ Montpellier, AgroParisTech, Cirad, CNRS, INRAE, Montpellier, France

2Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

3UMR EDB (Laboratoire Évolution et Diversité Biologique), CNRS 5174, IRD 253, UPS, 118 route de Narbonne, F-31062 Toulouse, France

4Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

* Corresponding author: Nicolas Dubos, dubos.research@gmail.com
Abstract

The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. While the efficiency of the protected area network of the Amazon basin may be jeopardised by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses. We modelled the current and future (2070) distribution of the giant bony-tongue fish *Arapaima* sp. accounting for climate and habitat requirements, with consideration of dam presence (already existing and planned constructions) and hydroperiod (high- and low-water stages). We further quantified the amount of suitable environment which falls inside and outside the current network of protected areas to identify spatial conservation gaps. We predict climate change to cause the decline of environmental suitability by 16.6% during the high-water stage, and by 19.4% during the low-water stage. We found that about 70% of the suitable environments of *Arapaima* sp. remain currently unprotected, which is likely to increase by 5% with future climate change effects. Both current and projected dam constructions may hamper population flows between the central and the Bolivian and Peruvian parts of the basin. We highlight protection gaps mostly in the southwestern part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus Rivers and their tributaries. This study showed the importance of taking into account hydroperiods and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains to the protected area networks.

Keywords: Arapaima, Climate change, Hydroperiod, Species Distribution Models, Water colour, Dams
Introduction

The Amazon basin is the world’s largest basin and hosts the highest freshwater fish species richness on Earth (Oberdorff et al., 2019; Jézéquel et al., 2020a). Its ichthyologic fauna is currently under multiple threats such as habitat fragmentation by dams, deforestation, urban/agricultural pollutants and overexploitation (Reid et al., 2019; Duponchelle et al., 2021). Climate change may exacerbate these threats by increasing water temperatures and changing precipitation patterns, leading to increasing precipitations in the western part of the basin and to more severe and longer droughts in its eastern portion (Sorribas et al., 2016; Marengo et al., 2018) potentially affecting the Amazon’s fauna (Tedesco et al., 2013).

During The IUCN WC (Marseille, France 05.09.2021), indigenous groups urged the world leaders to take actions in order to protect 80% of the Amazon basin by 2025, stating that bold action is needed to halt the deforestation that is pushing the world's largest rainforest beyond the point of no return. The current network of protected areas (including indigenous lands) of the Amazon basin was mainly designed for terrestrial species, which has downplayed the importance of aquatic ecosystems (Dagosta et al., 2020). Protected areas and indigenous lands cover 52% of the basin surface (Jézéquel et al., 2020b), a surface sufficient to encompass the current distribution of a majority of large-range fish species (Frederico et al., 2021). However, the network’s capacity to protect freshwater biodiversity remains limited (Azevedo-Santos et al., 2019; Jézéquel et al., 2020b). In addition, following future climate change projections, the proportion of species with a sufficient area under protection status will significantly decrease by 2050 as a result of species distribution shifts (Frederico et al., 2021). The highest protection gaps are located in large rivers and their floodplains, which calls the need to focus conservation efforts in these habitats and identify areas where species are predicted to shift (Frederico et al., 2021). Fish species represent a substantial part of the Amazonian diversity (>2200 species described; Jézéquel et al., 2020a) and play major roles in Amazo-
nian ecosystems. The omission of aquatic areas, especially floodplains, from protected area networks may severely increase the basin’s vulnerability to ongoing changes.

The giant bony-tongue fish *Arapaima* sp., also known as *pirarucú* in Brazil or *paiche* in Peru and Bolivia, is an obligate air-breathing species complex (but see Torati et al., 2019) omnivorous with piscivorous tendencies (Carvalho et al., 2018). *Arapaima* sp. represents the world’s largest scaled freshwater taxon and one of the most charismatic fish of the Amazon. The species migrates laterally for feeding and reproduction between river channels and floodplain habitats following hydrodynamics (Castello, 2008). Lateral migrant species are considered as vulnerable to climate change because floodplain lakes are highly exposed to temperature changes (Duponchelle et al., 2021). *Arapaima* sp. is therefore a good model species to better understand the effects of climate change on lowland Amazonian fish species. It is also a key fishing resource eliciting a high economic value in the region (Castello et al., 2009; Macnaughton et al., 2015). Hence, the protecting their range would enable to encompass an important component of biodiversity (e.g. floodplain-dwelling species) and food resource for local communities (Petersen et al., 2016).

After decades of harvesting pressure, the species complex was considered overexploited (Castello et al., 2011; Isaac et al., 1993). Conservation measures were then undertaken in various regions, consisting in banning fishing activities in selected oxbow lakes (Mcgrath et al., 1993). These measures were proven effective (Petersen et al., 2016) but the fishing pressure persisted (Castello et al., 2015; Cavole et al., 2015). Conservation recommendations for management usually account for the species habitat requirements (Arantes et al., 2013, 2010). However, conservation areas may be appropriate under current conditions, but not in the future (Frederico et al., 2021; Leroy et al., 2014). Therefore, there is a need to assess the representativeness of protected areas for *Arapaima* sp. in regard to potential distribution shifts driven by future climate change. To date, only two studies have examined the potential effects of future climate change on *Arapaima* sp. distribution (Oberdorff et al., 2015; Oliveira et al., 2020). However, the first one used a reduced set of species occur-
rence points and only one climatic variable (Oberdorff et al. 2015) while the other was mainly fo-
cused on historical demography and genomic diversity (Oliveira et al., 2020). Hence, there is a need
to develop forecasting models that are dedicated to the design of conservation actions for *Arapaima*
sp and floodplain-dwelling species.

Climate change effects are commonly predicted using Species Distribution Models (SDMs; also
called ecological niche or habitat suitability models; (Guisan et al., 2017). This approach has often
proven effective in conservation planning (e.g. providing recommendations for translocation, habi-
tat restoration or the design of protected areas; Leroy et al., 2014; Dubos et al., 2021b). Species dis-
brution models can be misleading in regard to decision-making depending on the data input and
methodological choices (Araújo et al., 2019; Guisan et al., 2013; Sillero et al., 2021; Sofaer et al.,
2019)). However, in a context of urgent decision-making, ideal conditions for reliable modelling
may hardly be reached (Guisan et al. 2013). Here we aim to provide guidelines for the design of
protected areas on the basis of acceptable methodological considerations for decision-making, using
all the most recently available data, careful environmental variables choice, sample bias treatments,
consideration of hydroperiod and dispersal barriers, integration of a range of algorithms and dealing
with model complexity. So far, floodplains were omitted from species distribution models, which
prevents from quantifying the suitable area available during both water-stage seasons. We apply a
combination of recently developed methods to provide projection maps at high resolution (30 arc
seconds) for both water-stage seasons and identify conservation gaps in Amazon floodplains. We
further assess whether conservation gaps are likely to increase in the future (2070). We eventually
provide guidelines for the design protected areas integrating floodplains and accounting for climate
change.
Methods

Study species and area

The giant bony-tongue fish *Arapaima* sp. is naturally distributed in the sub-basins of the Amazon, Tocantins-Araguaia and Essequibo Rivers, which cover Brazil, Ecuador, Colombia, Guyana and Peru (Castello & Stewart, 2010). Within the Amazon River Basin and according to available data (Jézéquel et al., 2020a), *Arapaima* sp. is naturally evenly distributed in highly productive Amazonian floodplain nutrient-rich whitewaters (Fernandes, Podos & Lundberg, 2004), at the notable exception of the upstream section of the Madeira River (Bolivian Amazon), where a series of rapids probably historically acted as barriers to colonisation (Miranda-Chumacero et al., 2012). However, *Arapaima* sp. colonised Bolivian waters (where it is now considered an invasive species) following an unintentional introduction around the late seventies via the Peruvian side of the Madre de Dios River (Miranda-Chumacero et al., 2012).

Occurrence data

We retrieved 172 occurrence records available from a recent fish occurrence database gathering all information available in published articles, books, gray literature, online databases, foreign and national museums, and universities (Jézéquel et al., 2020a). To reduce spatial autocorrelation, we selected one occurrence per pixel of the environmental variables (30 arc sec), resulting in 162 presence points (i.e. data thinning; Steen et al., 2021; Vollering et al., 2019).

Climate data

We used the 11 bioclimatic variables of temperature at 30 arc sec resolution (approximately 900 m) of the current climate data and the 2070 projections from CHELSA (Karger et al., 2017). We only took temperature variables because (1) freshwater fishes are particularly sensitive to temperature because of direct effects on their metabolism, development and reproduction (Buisson et al., 2008), and because precipitation data tend to be less accurate in riverine systems. We used three Global
Circulation Models (GCMs – i.e. BCC-CSM1-1, MIROC5 and HadGEM2-AO) and two greenhouse gas emission scenarios (Shared Socio-economic Pathways, SPP; also called Representative Concentration Pathways, RCP), the most optimistic RCP2.6 and the most pessimistic RCP8.5. In the case of aquatic species, climate variables can be used as satisfactory surrogates for unavailable instream variables (i.e. water temperature and hydrology) to model their distributions because water and air temperatures are correlated (Frederico et al., 2014; McGarvey et al., 2018).

Distribution modelling

We modelled and projected species distributions with the Biomod2 R package (Thuiller et al., 2009), using 10 modelling techniques: generalised linear and generalised additive models (GLM and GAM; Guisan, Edwards, & Hastie, 2002), classification tree analysis (CTA; Prasad, Iverson, & Liaw, 2006), artificial neural network (ANN; Manel, Dias, & Ormerod, 1999), surface range envelop (SRE, also known as BIOCLIM; Booth et al., 2014), flexible discriminant analysis (FDA; Manel, Dias, & Ormerod, 1999) and random forest (RF; Prasad, Iverson, & Liaw, 2006), Multiple Adaptive Regression Splines (MARS; Leathwick et al., 2005), Generalised Boosting Model (GBM; J. Elith, Leathwick, & Hastie, 2008) and Maximum Entropy (MaxEnt; Phillips, D., & Schapire, 2006). We generated five different sets of randomly-selected pseudo-absences (Wisz and Guisan, 2009). For each individual baseline climate data, we selected one variable per group of inter-correlated variables to avoid collinearity (Pearson’s r > 0.7, Dormann et al., 2013) using the removeCollinearity function of the virtualspecies R package (Leroy et al., 2016) and assessed the relative importance of each variable kept with 10 permutations per modelling technique and pseudo-absence sets (see below; total = 500 permutations). The variables included in the final models were those with a relative importance > 0.2 across at least 50% of model runs. We predicted species distributions with an ensemble of small models approach (ESM; Lomba et al., 2010; Breiner et al., 2015). We ran sets of bivariate models, i.e. including all pairwise combinations of the selected
variables, and produced an ensemble model with the mean predictions across all models weighted by their respective Boyce index (see below). This method is advocated for data-poor species and enables to reduce model complexity without reducing the explanatory power. We took the Amazon Basin as a background, defined as basin boundaries of the major tributaries to the Amazon main stem excluding the Rio Tocantins (Mayorga et al., 2005). Ideally, the background extent should represent the area within which the species is able to disperse, i.e. wetlands. However, we chose to take the whole Amazon Basin as a background and not only the wetlands because this would require either (1) to downscale the climatic data at the resolution of wetland variables, inducing interpolations which are not recommended in most cases (Sillero and Barbosa, 2020) or (2) to aggregate wetland data, which would represent a significant loss of information (i.e. most tributaries would be removed because they cover the minority of the pixels’ surface). Therefore, we accounted for aquatic habitat by post-filtering our projections to remove strickly terrestrial areas (see Habitat data section below). We randomly generated five sets of 10000 pseudo-absences from the background, down-weighted to equal presence data (setting prevalence to 0.5).

Accounting for sampling bias

Most occurrence data were obtained from dedicated local studies and may be subject to sample bias. To account for potential sample biases, we produced five additional sets of pseudo-absences generated around the original (unthinned) presence points (Phillips et al., 2009). We used a geographic null model (Hijmans, 2012) and used it as a probability weight for pseudo-absence generation. We spatially partitioned the data for performance evaluation, using 5-folds for block-cross validation (generated with the blockCV R package, Valavi et al., 2019; Fig S1). We quantified the effect of sample bias correction (non-random pseudo-absence generation) using the Relative Overlap Index (ROI; Dubos et al., 2021c). This index informs how sample bias corrections affected spatial predictions (mean Schoener’s D between uncorrected and corrected individual models) relative to inter-model variability (mean overlap between all pairwise combinations of model
replicates). A value of 1 indicates a strong effect of correction across all model replicates (pseudo-absence and block cross-validation runs), while a value below 0 indicates that correction effect is lower than the variability between model replicates. We computed this index independently for each modelling technique and ESM and give the mean value.

Model evaluations – We assessed model performance using the Area Under the Curve of a receiver operating characteristic plot (AUC; Swets, 1988), a maximisation of the True Skill Statistics (maxTSS; (Allouche et al., 2006) and the Boyce index (Hirzel et al., 2006)). For ensemble models, we excluded models for which predictions were worse than random (Breiner et al., 2015; Scherrer et al., 2019), i.e. when the Boyce index was below 0.

We provide clamping masks showing the areas where climates are novel in the future (similar to a MESS analysis; Elith, Kearney & Phillips, 2010) to determine whether models are well informed for predictions on future data.

Habitat data

We accounted for non-climatic habitat requirements of our model species by applying a filter to the projected climate suitability based on land use and land cover data (e.g. Gillard et al., 2017). This enabled to account for habitat without increasing model complexity while remaining biologically realistic and relevant for conservation applications. One challenge in modelling lateral-migrant Amazon fish species is that their distribution is highly variable within the year, as a result of important differences in hydrological regimes and behavioural adaptations. During the high-water period, *Arapaima sp.* colonise the flooded forests before returning to the lakes and the main river channel during the low-water period. Floodplain lakes provide key habitats for *Arapaima sp.* and must be prioritised for conservation (Richard et al., 2018). On the other hand, the habitat types of the main channel (e.g. water colour; Junk, Wittmann, Schöngart, & Piedade, 2015) are also important determinants of fish diversity due to differences in nutrient contents (Oberdorff et al.,
According to the database used the bony-tongue fish seems almost exclusively found in white waters, which are nutrient rich, with high rates of biological production, sustaining large prey fish populations and favourable for omnivore-piscivorous fishes like arapaima. Note that *Arapaima* sp. can be occasionally found in black waters, but in very low densities. We first removed all terrestrial lands and produced a set of projections for the flooded and the dry periods. We retrieved high-resolution data (3 arc-seconds) on wetland areas for the flooded and the dry season from (Hess et al., 2015). We resampled model predictions at the resolution of the wetland data to prevent any information loss. We also used water type data (Venticinque et al., 2016) to remove the black and clear waters from the predictions, to retain only white waters (*Arapaima* is commonly found in nutrient-rich turbid waters). Since data on water colour are linear (vector, i.e. no superficial data), we produced a 0.5° buffer around lines and filtered model predictions falling outside of the buffer.

Accounting for uncertainty

To identify priority areas for conservation, we provide a map for each period (dry and wet seasons, current and future) showing the areas that are the most consistently identified as suitable between model replicates and scenarios. Following (Kujala et al., 2013), we computed the weighted mean predictions discounted with inter-model variability (standard deviation) for current and future predictions separately.

Accounting for dispersal barriers

We considered spatial features that would prevent potential distribution shifts. We used typological data on dams obtained from (Anderson et al., 2018) and ANA Brazil (2018), and waterfall locations from Oberdorff et al. (2019). We projected these features on predictions maps to examine their potential impact.

Conservation gap analysis
We assessed the extent of protected and unprotected suitable environments for the species for both flooded and dry periods, and for current and future conditions (2070). We obtained information on the protection status from the World Database on Protected Areas (UNEP-WCMC, 2019). Protection gap analyses usually involve binary transformations to be able to quantify the area potentially occupied by the species (e.g., Ahmadi et al., 2020; Bosso et al., 2018; D. L. De Carvalho et al., 2017; Hoveka, van der Bank, & Davies, 2020). However, binary transformations are not recommended, since they are strong drivers of uncertainty (Muscatello et al., 2020). Therefore, we rather show the frequency distribution of suitability scores inside and outside protected areas (e.g. Mod et al., 2020). As an indicator of overall suitability, we also provide the proportion of total environmental suitability inside and outside protected areas.

Results

Current distribution modelling

Model reliability varied with the variables included in small model modalities (Fig. S2), with a median Boyce index of 0.30 before, and 0.47 after sample bias correction. We discarded 498 poorly performing models in the uncorrected group and 408 in the corrected group (out of 1500 per group). The effect of sample bias correction was moderate, slightly higher than the variability between model replicates (ROI = 0.06). We selected four uncorrelated variables, all showing potentially high importance (Fig. S3). The selected variables were, for both uncorrected and corrected groups, annual mean temperature (bio1), isothermality (bio3), temperature seasonality (bio4) and temperature annual range (bio7; Fig. S4). The species is found in the warmest places of the Amazon basin, where annual mean temperature $> 21^\circ$C with an optimum near 28°C (i.e., the maximum annual mean temperature of the study area; Fig. S4). Occupied areas are also characterised by high
diurnal variation in temperature, low seasonality and intermediate temperature annual range relative to the Amazon Basin (Fig. S4).

Future climate suitability

Future predictions mostly depended on the emission scenario (RCP26 versus RCP85; Fig. 1). In all cases, we predict an important decline in climate suitability in most parts of the current range of the species. Models suggested a shift in the suitable climate conditions south-east. The most suitable conditions will be met towards the state of Acre, in the south of the state of Amazonas in Brazil and in southern Peruvian Amazon. These areas correspond mostly to the upper part of the Ucayali, Juruà and Purus rivers and their tributaries. Despite the apparent variability between models, predictions penalised by uncertainty were in agreement with unpenalised predictions (Fig. 2). The clamping masks show an important area extrapolated for RCP85, mostly driven by bio1 (Fig. S5).

Figure 1. Current (a) and future 2070 (b) climate suitability for *Arapaima* sp. in the Amazon basin.
Suitability scores were estimated from Ensemble of Small Models for two emission scenarios and three global circulation models and corrected for sample bias. Black points represent occurrence records. Axes represent the coordinates (WGS84).
Figure 2. Current (a) and future 2070 (b) predicted climate suitability for *Arapaima* sp. accounting for uncertainty. Bottom panels are the result of mean predictions discounted with inter-model variability (standard deviation SD, as an indicator of uncertainty related to model settings and climate data).

Accounting for habitat

After removing all non-wetland and keeping only white waters, we found that the total environmental suitability will decrease by 16.6% on average by 2070 during the high water stage, 19.4% during the low water stage (Fig. 3).
Figure 3. Current and future environmental suitability for *Arapaima* sp. projections accounted for hydrological period (high versus low water stage) and water colour (white waters only). Black lines represent the administrative borders.

Gap analysis

Under current conditions, 31.4% of the total suitable environment is included within protected areas during the high water stage, 30.7% during the low water stage. In the future, the proportion of protected suitable areas will decrease by approximately 5%, with 26.3% and 25.9% of suitable environments within protected areas for the high and low water stages, respectively (Fig. 4–7). The frequency distribution of suitability scores shows that the majority of the most suitable areas (score > 300) remains unprotected (see grey area in Fig. 4). The most important gap in regard to future environmental suitability is located between the upper parts of the Ucayali, Juruà and Purus rivers.
Figure 4. Predicted environmental suitability for *Arapaima* sp. for current (top) and future 2070 (bottom) conditions at two stages of water levels, with protected areas (blue). We show the frequency distribution of environmental suitability scores inside (blue) and outside (grey) protected areas.
Figure 5. Projected future environmental suitability for *Arapaima* sp. at two stages of water levels (left: high-stage; right: low-stage), with protected areas (blue) for the upper Ucayali river.
Figure 6. Projected future environmental suitability for *Arapaima* sp. at two stages of water levels (top: high-stage; bottom: low-stage), with protected areas (blue) for the upper Juruà river.
Figure 7. Projected future environmental suitability for *Arapaima* sp. at two stages of water levels (top: high-stage; bottom: low-stage), with protected areas (blue) for the upper Purus river.
Accounting for dispersal barriers

Most dams and dam projects are localised towards the edges of the Amazon Basin, near the Andes Mountains. One dam is located East of the Amazon, potentially preventing movements between central Amazon and Peruvian Amazon (i.e. between the Amazon main stem and the Ucayali and Marañón rivers). Population movements will be mostly hampered in the Madeira river, where five dams or dam projects and waterfalls are located. These may represent dispersal barriers between central and Bolivian Amazon (Fig. 8).

Figure 8. Current environmental suitability for Arapaima sp. with dispersal barriers (blue diamonds: waterfalls; black triangles: dams). Red dots are the occurrence points.
Discussion

We used a robust approach for species with scarce distribution data (ensemble of small models), based on climate as predictors and habitat as filters, accounting for sample bias, hydroperiod and dispersal barriers, and integrating uncertainty by discounting inter-model variability from predictions, and successfully modelled the distribution of *Arapaima* sp. We found that the species complex may face important environmental degradation driven by climate change by 2070, and further identified significant conservation gaps in the coverage of suitable environments, which are likely to worsen with climate change.

Drivers of Arapaima sp. distribution

Arapaima sp. is found in the hottest areas of the Amazon basin, with high daily variation and intermediate variability in annual temperatures overall. Our predictions fit well the known distribution of the species complex, apart from the populations located in the extreme north-west of the Amazon basin (corresponding to the Ecuadorian and Columbian Amazon), where we found climate conditions to be suboptimal. Overall, our models based on temperature identified well the riverine areas (Fig. 1), a sign of good model performance. The minimum annual mean temperature where the species can be found (21°C) is consistent with the findings of (Lawson et al., 2015) who found that *Arapaima gigas* ceased feeding at an average temperature of 20.8°C. The high daily variation may be related to heavy rain episodes which is consistent with the dependence of *Arapaima* sp. on floodplains. The low seasonality corresponds to equatorial regions where the species will not be exposed to low temperatures (detrimental to *Arapaima* sp.) during any period of the year.

We found suitable conditions throughout the Amazon river, but the species is highly restricted to specific habitats (deep and large waters that are connected to other water bodies; Arantes et al., 2013). Those variations could not be perceived at the resolution of our environmental variables (3
arc-seconds, approximately 100 m). Therefore, our predictions must be regarded as regions where the climate is suitable, but local habitat requirements must be considered in future sampling campaigns (e.g. the species is found in deep waters).

The future of Arapaima sp.

We predict a shift in suitable climatic conditions by 2070 in the most optimistic scenario, and a generalised decline of climate suitability in the worst-case scenario. In the optimistic scenario (RCP-SSP 2.6), suitable conditions will be met towards the upper part of the Ucayali, Juruà and Purus rivers and their tributaries, where large floodplains are located. In the most pessimistic scenario (RCP-SSP 8.5), the same region was identified as the most suitable, but conditions will be largely suboptimal. Models also predict a southward shift for the populations from the Amazon main stem, and a northward shift for Bolivian populations. These potential shifts may be hampered by dispersal barriers (waterfalls and dams), for instance between the upper and the lower Madeira river. Our results differ overall from the ones obtained by Oliveira et al. (2020) who found that climate conditions may remain suitable in the western part of the Amazon basin. Note that our predictions are nevertheless in agreement with the potential decline of suitable conditions in central Amazon, and for the shift of suitable conditions at the extreme southwestern part of the Amazon basin (but remaining suboptimal in our case). Differences may have been partly driven by the occurrence data (we used all the recently available data from the AmazonFish database). The input climate data (baseline and GCMs) used can be a strong driver of uncertainty as well (Baker et al., 2016; Dubos et al., 2021a). In their study, Oliveira et al. (2020) used Worldclim baseline data with the CCSM4 GCM while we used CHELSA with three different GCMs. The use of multiple GCMs is highly recommended as it represents an important source of uncertainty in model projections (Buisson et al., 2011; Dubos et al., 2021a). This also applies to our case study, with notable differences throughout the Amazon basin (Fig. 1b, 2b). Our results also differ for the southwestern part of the Amazon basin, where Oliveira et al. (2020) projected a high suitability in the future. In
our case, this region was discarded by the absence of white waters, which is a key habitat feature for Arapaima.

The certainty of our future projections was limited by novel climate conditions (mostly driven by bio1) for which models were uninformed, inducing extrapolations. Given the shape of the response curve to bio1 (higher suitability in the hottest conditions; Fig. S4), extrapolated predictions may result in an overestimation of climate suitability when bio1 is above current conditions. Hence, in the case where future conditions are beyond the thermal tolerance of Arapaima, the decline in climate conditions may be even worse than expected here. Further studies should assess the upper limit of thermal tolerance for Arapaima sp.

Recommendations for management

The majority of suitable environments of Arapaima sp. remain currently unprotected and the proportion of unprotected suitable areas is likely to increase with climate change. This may apply to the wider freshwater fish community inhabiting floodplains (Frederico et al., 2021). The existing protection gap downplays the importance of freshwater species but also an important terrestrial biodiversity during the terrestrial phase corresponding to the low-water stage (Piedade et al., 2010). The most important gap with regard to future environmental suitability is located between the upper parts of the Ucayali, Juruà and Purus rivers. We recommend the extension of the existing protected areas (e.g. Vale do Javi southward, Kanamari do Rio Juruà, El Sira and the protected area network surrounding the Reserva Extrativista Do Médio Purus) to the floodplains surrounding those rivers and their tributaries.

Concluding remarks

The giant bony-tongue fish is currently threatened by overfishing (Castello et al., 2015), as well as deforestation through indirect effects on trophic chains (Carvalho et al., 2018). Here, we have shown that climate change will bring an additional extinction risk to this species of high economic
value, which may be further worsened with future dam building (e.g. Winemiller et al., 2016). This might be the case for most large fish species from the Amazon river, including species that are highly caught by fishermen. The Amazon region is affected by poverty and limited food security. With more than 30 million people depending on floodplain fish for food (Petersen et al., 2016), conservation actions require integrative approaches to ensure biodiversity conservation to prevent conflict and ensure human well-being (Castello et al., 2013).

Acknowledgements

This study was funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisations French National Research Agency (ANR), São Paulo Research Foundation (FAPESP), National Science Foundation (NSF), the Research Council of Norway and the German Federal Ministry of Education and Research (BMBF).

Author contribution

All authors designed the study, ND, ML and AG designed the methods, ND analysed the data and led the writing of the manuscript, all authors contributed significantly to the interpretation of the results and the writing of the manuscript. All authors gave final approval for publication.
References

Ahmadi, M., Farhadinia, M.S., Cushman, S.A., Hemami, M.R., Nezami Balouchi, B., Jowkar, H., MacDonald, D.W., 2020. Species and space: a combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Anderson, E.P., Jenkins, C.N., Heilpern, S., Maldonado-Ocampo, J.A., Carvajal-Vallejos, F.M., Encalada, A.C., Rivadeneira, J.F., Hidalgo, M., Cañas, C.M., Ortega, H., Salcedo, N., Maldonado, M., Tedesco, P.A., 2018. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, 1–8. https://doi.org/10.1126/sciadv.aao1642

Arantes, C.C., Castello, L., Cetra, M., Schilling, A., 2013. Environmental influences on the distribution of arapaima in Amazon floodplains. Environ. Biol. Fishes 96, 1257–1267. https://doi.org/10.1007/s10641-011-9917-9

Arantes, C.C., Castello, L., Stewart, D.J., Cetra, M., Queiroz, H.L., 2010. Population density, growth and reproduction of arapaima in an Amazonian river-floodplain. Ecol. Freshw. Fish 19, 455–465. https://doi.org/10.1111/j.1600-0633.2010.00431.x

Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E., Rahbek, C., 2019. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 1–12. https://doi.org/10.1126/sciadv.aat4858

Azevedo-Santos, V. M., Frederico, R. G., Fagundes, C. K., Pompeu, P. S., Pelicice, F. M., Padial, A. A., … Henry, R. (2019). Protected areas: A focus on Brazilian freshwater biodiversity. Diversity and Distributions, 25(3), 442–448. doi: 10.1111/ddi.12871

Baker, D.J., Hartley, A.J., Butchart, S.H.M., Willis, S.G., 2016. Choice of baseline climate data impacts projected species’ responses to climate change. Glob. Chang. Biol. 22, 2392–2404. https://doi.org/10.1111/gcb.13273

Booth, T.H., Nix, H.A., Busby, J.R., Hutchinson, M.F., 2014. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144

Bosso, L., Smeraldo, S., Rapuzzi, P., Sama, G., Garonna, A.P., Russo, D., 2018. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203. https://doi.org/10.1111/een.12485

Breiner, F.T., Guisan, A., Bergamiini, A., Nobis, M.P., 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218. https://doi.org/10.1111/2041-210X.12403

Buisson, L., Blanc, L., Grenouillet, G., 2008. Modelling stream fish species distribution in a river network: The relative effects of temperature versus physical factors. Ecol. Freshw. Fish 17, 244–257. https://doi.org/10.1111/j.1600-0633.2007.00276.x
Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16(4), 1145–1157. doi: 10.1111/j.1365-2486.2009.02000.x

Carvalho, F., Power, M., Forsberg, B.R., Castello, L., Martins, E.G., Freitas, C.E.C., 2018. Trophic Ecology of Arapaima sp. in a ria lake—river–floodplain transition zone of the Amazon. Ecol. Freshw. Fish 27, 237–246. https://doi.org/10.1111/eff.12341

Castello, L., 2008. Lateral migration of Arapaima gigas in floodplains of the Amazon. Ecol. Freshw. Fish 17, 38–46. https://doi.org/10.1111/j.1600-0633.2007.00255.x

Castello, L., Arantes, C.C., Mcgrath, D.G., Stewart, D.J., De Sousa, F.S., 2015. Understanding fishing-induced extinctions in the Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 447–458. https://doi.org/10.1002/aqc.2491

Castello, L., Mcgrath, D.G., Hess, L.L., Coe, M.T., Lefebvre, P.A., Petry, P., Macedo, M.N., Renó, V.F., Arantes, C.C., 2013. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229. https://doi.org/10.1111/conl.12008

Castello, L., Stewart, D.J., 2010. Assessing CITES non-detriment findings procedures for Arapaima in Brazil. J. Appl. Ichthyol. 26, 49–56. https://doi.org/10.1111/j.1439-0426.2009.01355.x

Castello, L., Stewart, D.J., Arantes, C.C., 2011. Modeling population dynamics and conservation of arapaima in the Amazon. Rev. Fish Biol. Fish. 21, 623–640. https://doi.org/10.1007/s11160-010-9197-z

Castello, L., Viana, J.P., Watkins, G., Pinedo-Vasquez, M., Luzadis, V.A., 2009. Lessons from integrating fishers of arapaima in small-scale fisheries management at the mamirauá reserve, amazon. Environ. Manage. 43, 197–209. https://doi.org/10.1007/s00267-008-9220-5

Cavole, L.M., Arantes, C.C., Castello, L., 2015. How illegal are tropical small-scale fisheries? An estimate for arapaima in the Amazon. Fish. Res. 168, 1–5. https://doi.org/10.1016/j.fishres.2015.03.012

Dagosta, F. C. P., de Pinna, M., Peres, C. A., & Tagliacollo, V. A. (2021). Existing protected areas provide a poor safety-net for threatened Amazonian fish species. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 1167–1189. doi: 10.1002/aqc.3461

De Carvalho, D.L., Sousa-Neves, T., Cerqueira, P.V., Gonsioroski, G., Silva, S.M., Silva, D.P., Santos, M.P.D., 2017. Delimiting priority areas for the conservation of endemic and threatened Neotropical birds using a niche-based gap analysis. PLoS One 12. https://doi.org/10.1371/journal.pone.0171838

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., Mcclean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.). 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dubos, N., Augros, S., Deso, G., Probst, J., Notter, J., Roesch, M., 2021a. Here be dragons: important spatial uncertainty driven by climate data in forecasted distribution of an endangered insular reptile. BioRxiv. DOI: 10.1101/2021.06.14.448338

Dubos, N., Montfort, F., Grinand, C., Nourtier, M., Deso, G., Probst, J.-M., … Crottini, A. (2021b). Are narrow-ranging species doomed to extinction? Projected dramatic decline in future climate suitability
of two highly threatened species. Perspectives in Ecology and Conservation. doi: 10.1016/j.pecon.2021.10.002

Dubos, N., Préau, C., Lenormand, M., Papuga, G., Montsarrat, S., Denelle, P., Louarn, M. Le, Heremans, S., Roel, M., Roche, P., Luque, S., 2021c. Assessing the effect of sample bias correction in species distribution models. arXiv. https://doi.org/arXiv:2103.07107v1

Duponchelle, F., Isaac, V.J., Rodrigues Da Costa Doria, C., Van Damme, P.A., Herrera-R, G.A., Anderson, E.P., Cruz, R.E.A., Hauser, M., Hermann, T.W., Agudelo, E., Bonilla-Castillo, C., Barthem, R., Freitas, C.E.C., García-Dávila, C., García-Vasquez, A., Renno, J.F., Castello, L., 2021. Conservation of migratory fishes in the Amazon basin. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1087–1105. https://doi.org/10.1002/aqc.3550

Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342. https://doi.org/10.1111/j.2041-210x.2010.00036.x

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

Fernandes, C.C., Podos, J., Lundberg, J.G., 2004. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science (80.-). 305, 1960–1962. https://doi.org/10.1126/science.1101240

Frederico, R.G., De Marco, P., Zuanon, J., 2014. Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshw. Biol. 59, 2303–2314. https://doi.org/10.1111/fwb.12432

Frederico, R.G., Dias, M.S., Jézéquel, C., Tedesco, P.A., Hugueny, B., Zuanon, J., Torrente-Vilara, G., Ortiga, H., Hidalgo, M., Martens, K., Maldonado-Ocampo, J., Oberdorff, T., 2021. The representativeness of protected areas for Amazonian fish diversity under climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 1–9. https://doi.org/10.1002/aqc.3528

Gillard, M., Thiébaut, G., Deleu, C., Leroy, B., 2017. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol. Invasions 19, 2159–2170. https://doi.org/10.1007/s10530-017-1428-y

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Modell. 157, 89–100.

Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat suitability and distribution models: with applications in R. Princeton Franklin, Cambridge.

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P., Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189

Hess, L.L., Melack, J.M., Affonso, A.G., Barbosa, C., Gastil-Buhl, M., Novo, E.M.L.M., 2015. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35, 745–756. https://doi.org/10.1007/s13157-015-0666-y
Hijmans, R.J., 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688.

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199, 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017

Hoveka, L.N., van der Bank, M., Davies, T.J., 2020. Evaluating the performance of a protected area network in South Africa and its implications for megadiverse countries. Biol. Conserv. 248, 108577. https://doi.org/10.1016/j.biocon.2020.108577

Isaac, V.J., Rocha, V.L.C., Mota, S., 1993. Considerações sobre a legislação da “piracema” e outras restrições da pesca da região do Médio Amazonas, in: Furtado, L.G., Leitaõ, W., Melo, A.F. de (Eds.), Povos Das Aguas, Realidade e Perspectivas Na Amazônia. Belém, Brazil, pp. 188–211.

Jézéquel, C., Tedesco, P.A., Bigorne, R., Maldonado-Ocampo, J.A., Ortega, H., Hidalgo, M., Martens, K., Torrente-Vilara, G., Zuanon, J., Acosta, A., Agudelo, E., Barrera Maure, S., Bastos, D.A., Bogotá Gregory, J., Cabeceira, F.G., Canto, A.L.C., Carvajal-Vallejos, F.M., Carvalho, L.N., Cella-Ribeiro, A., Covain, R., Donascimento, C., Dória, C.R.C., Duarte, C., Ferreire, E.J.G., Galuch, A.V. V., Giarrizzo, T., Leitão, R.P., Lundberg, J.G., Maldonado, M., Mojica, J.I., Montag, L.F.A., Ohara, W.M., Pires, T.H.S., Pouilly, M., Prada-Pedroso, S., de Queiroz, L.J., Rapp Py-Daniel, L., Ribeiro, F.R.V., Rios Herrera, R., Sarmiento, J., Sousa, L.M., Stegmann, L.F., Valdiviezo-Rivera, J., Villa, F., Yunoki, T., Oberdorff, T., 2020a. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 1–9. https://doi.org/10.1038/s41597-020-0436-4

Jézéquel, C., Tedesco, P.A., Darwall, W., Dias, M.S., Frederico, R.G., Hidalgo, M., Hugueny, B., Maldonado-Ocampo, J., Martens, K., Ortega, H., Torrente-Vilara, G., Zuanon, J., Oberdorff, T., 2020b. Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conserv. Biol. 34, 956–965. https://doi.org/10.1111/cobi.13466

Junk, W.J., Wittmann, F., Schöngart, J., Piedade, M.T.F., 2015. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetl. Ecol. Manag. 23, 677–693. https://doi.org/10.1007/s11273-015-9412-8

Karger, D.N., Conrad, O., Böhner, J., Kowohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20. https://doi.org/10.1038/sdata.2017.122

Kujala, H., Moilanen, A., Araújo, M.B., Cabeza, M., 2013. Conservation Planning with Uncertain Climate Change Projections. PLoS One 8. https://doi.org/10.1371/journal.pone.0053315

Lawson, L.L., Tuckett, Q.M., Lawson, K.M., Watson, C.A., Hill, J.E., 2015. Lower lethal temperature for arapaima arapaima gigas: Potential implications for culture and establishment in Florida. N. Am. J. Aquac. 77, 497–502. https://doi.org/10.1080/15222055.2015.1066471

Leathwick, J.R., Rowe, D., Richardson, J., Elith, J., Hastie, T., 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw. Biol. 50, 2034–2052. https://doi.org/10.1111/j.1365-2427.2005.01448.x

Leroy, B., Bellard, C., Dubos, N., Colliot, A., Vasseur, M., Courtial, C., Bakkenes, M., Canard, A., Ysnel, F., 2014. Forecasted climate and land use changes, and protected areas: the contrasting case of spiders. Divers. Distrib. 20, 686–697. https://doi.org/10.1111/ddi.12191
Leroy, B., Meynard, C.N., Bellard, C., Courchamp, F., 2016. virtualspecies, an R package to generate virtual species distributions. Ecography (Cop.). 39, 599–607. https://doi.org/10.1111/ecog.01388

Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., Guisan, A., 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 143, 2647–2657. https://doi.org/10.1016/j.biocon.2010.07.007

Macnaughton, A.E., Carvajal-Vallejos, F.M., Argote, A., Rainville, T.K., Van Damme, P.A., Carolsfeld, J., 2015. “Paiche reigns!” species introduction and indigenous fisheries in the Bolivian Amazon. Marit. Stud. 14. https://doi.org/10.1186/s40152-015-0030-0

Manel, S., Dias, J.M., Ormerod, S.J., 1999. Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: A case study with a Himalayan river bird. Ecol. Modell. 120, 337–347. https://doi.org/10.1016/S0304-3800(99)00113-1

Marengo, J.A., Souza, C.M., Thonicke, K., Burton, C., Halladay, K., Betts, R.A., Alves, L.M., Soares, W.R., 2018. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 6, 1–21. https://doi.org/10.3389/feart.2018.00228

Mayorga, E., Logsdon, M.G., Ballester, M.V.R., Richey, J.E., 2005. Estimating cell-to-cell land surface drainage paths from digital channel networks, with an application to the Amazon basin. J. Hydrol. 315, 167–182. https://doi.org/10.1016/j.jhydrol.2005.03.023

McGarvey, D.J., Menon, M., Woods, T., Tassone, S., Reese, J., Vergamini, M., Kellogg, E., 2018. On the use of climate covariates in aquatic species distribution models: are we at risk of throwing out the baby with the bath water? Ecography (Cop.). 41, 695–712. https://doi.org/10.1111/ecog.03134

Mecgrath, D.G., Castro, F. De, Futemma, C., 1993. Fisheries and the Evolution of Resource Management on the Lower Amazon Floodplain. Hum. Ecol. 21, 167–195.

Miranda-Chumacero, G., Wallace, R., Calderón, H., Calderón, G., Willink, P., Guerrero, M., Siles, T.M., Lara, K., Chuqui, D., 2012. Distribution of arapaima (Arapaima gigas) (Pisces: Arapaimatidae) in Bolivia: Implications in the control and management of a non-native population. BioInvasions Rec. 1, 129–138. https://doi.org/10.3391/bir.2012.1.2.09

Mod, H.K., Scherrer, D., Di Cola, V., Broennimann, O., Blandenier, Q., Breiner, F.T., Buri, A., Goudet, J., Guex, N., Lara, E., Mitchell, E.A.D., Niculita-Hirzel, H., Pagni, M., Pellissier, L., Pinto-Figueroa, E., Sanders, I.R., Schmidt, B.R., Seppey, C.V.W., Singer, D., Ursenbacher, S., Yashiro, E., van der Meer, J.R., Guisan, A., 2020. Greater topoclimatic control of above- versus below-ground communities. Glob. Chang. Biol. 26, 6715–6728. https://doi.org/10.1111/gcb.15330

Muscatello, A., Elith, J., Kujala, H., 2020. How decisions about fitting species distribution models affect conservation outcomes. Conserv. Biol. https://doi.org/10.1111/cobi.13669

Oberdorff, T., Dias, M.S., Jézéquel, C., Albert, J.S., Arantes, C.C., Bigorne, R., Carvajal-Valleros, F.M., De Wever, A., Frederico, R.G., Hidalgo, M., Hugueny, B., Leprieur, F., Maldonado, M., Maldonado-Ocampo, J., Martens, K., Ortega, H., Sarmiento, J., Tedesco, P.A., Torrente-Vilara, G., Winemiller, K.O., Zuanon, J., 2019. Unexpected fish diversity gradients in the Amazon basin. Sci. Adv. 5, 1–10. https://doi.org/10.1126/sciadv.aav8681

Oberdorff, T., Jézéquel, C., Campero, M., Carvajal-Vallesos, F., Cornu, J.F., Dias, M.S., Duponchelle, F., Maldonado-Ocampo, J.A., Ortega, H., Renno, J.F., Tedesco, P.A., 2015. Opinion Paper: How vulner-
able are Amazonian freshwater fishes to ongoing climate change? J. Appl. Ichthyol. 31, 4–9. https://doi.org/10.1111/jai.12971

Oliveira, E.A., Perez, M., Bretollo, A., Gestich, C., Ráb, P., Ezaz, T., Souza, F., Viana, P., Feldberg, E., Oliveira, EHC, Cioffi, M., 2020. Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography (Cop.). 43, 1291–1304. https://doi.org/10.1111/ecog.04083

Petersen, T.A., Brum, S.M., Rossoni, F., Silveira, G.F.V., Castello, L., 2016. Recovery of Arapaima sp. populations by community-based management in floodplains of the Purus River, Amazon. J. Fish Biol. 89, 241–248. https://doi.org/10.1111/jfb.12968

Piedade, M. T. F., Junk, W., D’Ângelo, S. A., Wittmann, F., Schöngart, J., Barbosa, K. M. do N., & Lopes, A. (2010). Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia, 22(02), 165–178. doi: 10.4322/actalb.02202006

Phillips, S.J., D., M., Schapire, R.E., 2006. A Maximum Entropy Approach to Species Distribution Modeling Steven. Ecol. Modell. 190, 231–259.

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1

Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9, 181–199. https://doi.org/10.1007/s10021-005-0054-1

Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D., Cooke, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480

Richard, J.C., Castello, L., Gurdak, D.J., Peoples, B.K., Angermeier, P.L., 2018. Size-structured habitat selection by arapaima in floodplain lakes of the Lower Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1403–1413. https://doi.org/10.1002/aqc.2969

Scherrer, D., Christie, P., Guisan, A., 2019. Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Divers. Distrib. 25, 770–782. https://doi.org/10.1111/ddi.12893

Sillero, N., Arenas-Castro, S., Enriquez- Urzelai, U., Vale, C.G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., Barbosa, A.M., 2021. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Modell. 456. https://doi.org/10.1016/j.ecolmodel.2021.109671

Sillero, N., Barbosa, A.M., 2020. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 00, 1–14. https://doi.org/10.1080/13658816.2020.1798968

Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards, T.C., Guala, G.F., Howard, T.G., Morisette, J.T., Hamilton, H., 2019. Development and Delivery of Species Distribution Models to Inform Decision-Making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045
Sorribas, M.V., Paiva, R.C.D., Melack, J.M., Bravo, J.M., Jones, C., Carvalho, L., Beighley, E., Forsberg, B., Costa, M.H., 2016. Projections of climate change effects on discharge and inundation in the Amazon basin. Clim. Change 136, 555–570. https://doi.org/10.1007/s10584-016-1640-2

Steen, V.A., Tingley, M.W., Paton, P.W.C., Elphick, C.S., 2021. Spatial thinning and class balancing: Key choices lead to variation in the performance of species distribution models with citizen science data. Methods Ecol. Evol. 12, 216–226. https://doi.org/10.1111/2041-210X.13525

Swets, J.A., 1988. Measuring the Accuracy of Diagnostic Systems. Science (80-.). 240, 1285–1293.

Tedesco, P.A., Oberdorff, T., Corru, J.F., Beauchard, O., Brosse, S., Diür, H.H., Grenouillet, G., Leprieur, F., Tisseuil, C., Zaiss, R., Hugueny, B., 2013. A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. J. Appl. Ecol. 50, 1105–1115. https://doi.org/10.1111/1365-2664.12125

Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD - A platform for ensemble forecasting of species distributions. Ecography (Cop.). 32, 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

Torati, L.S., Taggart, J.B., Varela, E.S., Araripe, J., Wehner, S., Migaud, H., 2019. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. 20, 1–14. https://doi.org/10.1186/s12863-018-0711-y

UNEP-WCMC, 2019. World Database on Protected Areas and world database on other effective area-based conservation measures: 1.6. Cambridge, UK.

Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., 2019. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232. https://doi.org/10.1111/2041-210X.13107

Venticinque, E., Forsberg, B., Barthem, R., Petry, P., Hess, L.L., Mercado, A., Cañas, C., Montoya, M., Durigan, C., Goulding, M., 2016. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth Syst. Sci. Data 8, 651–661. https://doi.org/10.5194/essd-8-651-2016

Vollering, J., Halvorsen, R., Auestad, I., Rydgren, K., 2019. Bunching up the background betters bias in species distribution models. Ecography (Cop.). 42, 1717–1727. https://doi.org/10.1111/ecog.04503

Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., … Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351(6269), 128–129. doi: 10.1126/science.aac7082

Wisz, M.S., Guisan, A., 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol. 9. https://doi.org/10.1186/1472-6785-9-8
Supporting information

Figure S1. Block-cross validation folds for the modelisation of Arapaima sp.
Figure S2. Model reliability (Boyce indices) for each ESM, with (blue) and without (red) sampling bias correction.
Figure S3. Variable importance for the species distribution model of Arapaima sp.
Figure S4. Response curve to bio1 (annual mean temperature), bio3 (isothermality), bio4 (temperature seasonality) and bio7 (temperature annual range) for uncorrected models. Black lines represent predicted values for each individual model. The blue line represents the smoothed response across all models.
Figure S5. Response curves to bio1 (annual mean temperature), bio3 (isothermality), bio4 (temperature seasonality) and bio7 (temperature annual range) for corrected models. Black lines represent predicted values for each individual model. The blue line represents the smoothed response across all models.
Figure S5. Clamping mask for the distribution model of *Arapaima* sp. showing novel climate conditions for 2070. Novel conditions are mainly driven by temperature annual range (bio1).