Garibaldi, Skip
Outer automorphisms of algebraic groups and determining groups by their maximal tori.
(English) [Zbl 1277.20057]
Mich. Math. J. 61, No. 2, 227-237 (2012).

The main goal of this paper is to fill in an important missing case of a structural result about linear algebraic groups which goes back to G. Prasad and A. S. Rapinchuk [Publ. Math., Inst. Hautes Étud. Sci. 109, 113-184 (2009; Zbl 1176.22011)]. Essentially, this result allows one to recognise a simple algebraic group over a number field \(K \) knowing just the \(K \)-isomorphism classes of its maximal \(K \)-tori. The original proof [in loc. cit.] omitted the case of groups of type \(D_{2n} \) for \(2n \geq 4 \), although the case of \(2n \geq 6 \) was later filled in by the same authors. In this paper the author presents a new proof of the \(2n \geq 6 \) case and also settles the case of \(2n = 4 \).

Reviewer: Michael Bate (York)

MSC:
- 20G07 Structure theory for linear algebraic groups
- 20G25 Linear algebraic groups over local fields and their integers
- 20G30 Linear algebraic groups over global fields and their integers

Keywords:
linear algebraic groups; outer automorphisms; maximal tori; Tits algebra; global fields; local fields

Full Text: DOI [arXiv](https://arxiv.org) [Euclid](https://projecteuclid.org)

References:
1. B. N. Allison, Lie algebras of type \(\text{(D}_4 \text{)} \) over number fields, Pacific J. Math. 156 (1992), 209-250. · Zbl 0785.17006 · doi:10.2140/pjm.1992.156.209
2. N. Bourbaki, Lie groups and Lie algebras, Elem. Math. (Berlin), chaps 4-6, Springer-Verlag, Berlin, 2002. · Zbl 0983.17001
3. T. Chinburg, E. Hamilton, D. D. Long, and A. W. Reid, Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J. 145 (2008), 25-44. · Zbl 1169.53030 · doi:10.1215/00127094-2008-045
4. M. Demazure and A. Grothendieck, Schémas en groupes III: Structure des schemas en groupes reductifs, Lecture Notes in Math., 153, Springer-Verlag, Berlin, 1970. · Zbl 0212.52810
5. N. Jacobson, Exceptional Lie algebras, Lecture Notes in Pure and Appl. Math., 1, Dekker, New York, 1971. · Zbl 0215.38701
6. M.-A. Knus, A. S. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0955.16001
7. V. P. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., 139, Academic Press, Boston, MA, 1994. · Zbl 0841.20046
8. G. Prasad and A. S. Rapinchuk, Weakly commensurable arithmetic groups and isosepectrally locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. 109 (2009), 113-184. · Zbl 1176.22011 · doi:10.1007/s10240-009-0019-6
9. —, Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv. 85 (2010), 583-645. · Zbl 1223.11047 · doi:10.4171/CMH/206
10. A. W. Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3- manifolds, Duke Math. J. 65 (1992), 215-228. · Zbl 0776.58040 · doi:10.1215/S0012-7094-92-06508-2
11. W. Scharlau, Quadratic and hermitian forms, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985. · Zbl 0584.10010
12. T. A. Springer, Jordan algebras and algebraic groups, Ergeb. Math. Grenzgeb. (3), 75, Springer-Verlag, New York, 1973. · Zbl 0259.17003
13. —, Linear algebraic groups, 2nd ed., Progr. Math., 9, Birkhäuser, Boston, 1998. · Zbl 0927.20002
14. T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer-Verlag, Berlin, 2000. · Zbl 1087.17001
15. R. Steinberg, Lectures on Chevalley groups, Yale Univ. Press, New Haven, CT, 1968. · Zbl 1196.20001
16. J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220. · Zbl 0227.20015 · doi:10.1515/crll.1971.247.196
