Fortification of Preservation Solution With Nitroprusside Does Not Alter Lung Allograft Survival in Clinical Human Lung Transplantation

Joshua A. Boys, MD,1 Michael E. Bowdish, MD,2,3 Ram Kumar Subramanyan, MD, PhD,2 Kimberly A. Shemanski, MD,2 Gundeep S. Dhillon, MD, MPH,4 Koichi Toda, MD,5 Johanna Perrillo, RN,6 Leonardo Seoane, MD,7,8 Michael J. Bates, MD,5,8 P. Eugene Parrino, MD,6 Hannah Kooperkamp, MD,6 Vincent G. Valentine, MD,9 W. Brooks Emory, MD,10 John L. Ochsner, MD,6,8 P. Michael McFadden, MD2

1 Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, San Diego, CA 2 Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 3 Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 4 Heart-Lung Transplant Program, Stanford University School of Medicine, Stanford, CA 5 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan 6 Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Ochsner Clinic Foundation, New Orleans, LA 7 Division of Pulmonary Medicine and Lung Transplantation, Department of Medicine, Ochsner Clinic Foundation, New Orleans, LA 8 The University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 9 Division of Pulmonary, Allergy, and Critical Care Medicine, The Kirklin Clinic, University of Alabama School of Medicine, Birmingham, AL 10 Division of Pulmonary Medicine, Department of Medicine, Ochsner Clinic Foundation, New Orleans LA

Background: Nitric oxide improves gas exchange following primary lung allograft dysfunction. Nitroprusside, a potent nitric oxide donor, has reduced reperfusion injury and improved oxygenation in experimental lung transplantation.

Methods: We sought to study the effect on lung allograft outcomes of fortifying the preservation solution with nitroprusside. We conducted a single-center clinical study of 46 consecutive lung recipients between 1998 and 2000: 24 patients received donor organs preserved in modified Euro-Collins solution with prostaglandin E1 (PGE1) (control group), and 22 patients received organs preserved in modified Euro-Collins with PGE1 and nitroprusside (NP group). The primary endpoint was overall survival.

Results: Baseline characteristics were similar between the groups except for a significantly longer graft ischemic time in the NP group vs the control group (253.3 ± 52 vs 225.3 ± 41 minutes, respectively, P = 0.04). No significant differences were found in partial pressure arterial oxygen to fraction inspired oxygen ratio at ≤48 hours, primary graft dysfunction, or bronchiolitis obliterans–free days. Overall survival at 1, 3, and 5 years was 89%, 73%, and 63% in the control group and 76%, 38%, and 23% in the NP group. Log-rank survival analysis showed that the NP group had a significantly increased risk of mortality (P = 0.034) compared to the control group.

Conclusion: The addition of nitroprusside to the lung transplant perfusate in this clinical trial did not improve survival; however, a large randomized trial would likely reduce confounding ischemia times and increase the power of the study.

Keywords: Graft survival, lung transplantation, nitroprusside, primary graft dysfunction

INTRODUCTION

Lung transplantation is a viable therapeutic option in the setting of pulmonary parenchymal or vascular disorders that are refractory to medical therapy. As the outcomes of lung transplantation and immunosuppression have improved, the number of lung transplants and the demand for organ allocation have increased without any growth in the donor pool. Only approximately 10% to 20% of donor lungs are appropriate for transplantation.1 Because of the limited availability of donors, marginal donor lungs are increasingly being used. The primary challenge of the transplant team is to optimize all efforts to prevent injury to the allograft.

Despite refinements in perioperative management and surgical techniques, primary graft dysfunction (PGD) remains a significant complication within the first 72 hours of lung transplantation. PGD is a subjective measure and is estimated to affect 30% of lung transplant recipients.2-5 Donor-acquired and recipient-related risk factors have been
Nitroprusside and Lung Allograft Survival

extensively studied in an attempt to understand and to have
an impact on PGD, as any level of PGD has been shown
to influence long-term outcomes of increased bronchioli-
tis obliterans and mortality. Significant attention has been
directed toward improving lung preservation techniques as
well. To this end, several refinements have been made to the
type of lung preservation solution; the volume, pressure, and
temperature of the flush solution; the use of retrograde flush
methodology; allograft storage and transport; and the use of
prostaglandin and nitric oxide therapy. Both animal and
human studies have shown that endogenous nitric oxide is
reduced in allografts with clinical PGD. Nitric oxide pre-
vents neutrophil adhesion to endothelial cells and reduces
vascular tone; therefore, it is thought to be a key player in
PGD. Thus, efforts have been directed to compensate for
the depressed endogenous nitric oxide levels in PGD. Several
studies have looked at the effect of inhaled nitric oxide in
preventing PGD. Although inhaled nitric oxide has been
shown to improve gas exchange following PGD, it has not
shown definitive evidence of reducing PGD. Furthermore,
King et al reported that immediate graft dysfunction
secondary to ischemia-reperfusion injury was associated
with donor allograft pulmonary hypertension. This finding
provides a physiologic mechanism for how nitroprusside, a
vasodilator, could influence PGD. We sought to determine
the effect of nitroprusside on overall survival after clinical
lung transplantation.

METHODS

Patients
All adult patients with nonmalignant, end-stage lung dis-
eease who underwent a deceased donor single lung trans-
plantation or bilateral sequential lung transplantation at the
Ochsner Clinic between January 1998 and June 2000 were
included in this cohort. This study was undertaken in accor-
dance with good clinical practices and was approved by the
Ochsner Institutional Review Board. Informed consent was
obtained from recipients prior to transplantation.

Donor and Recipient Lung Transplantation
Surgery
Donor selection was based on the widely accepted guide-
lines of adequate gas exchange and thoracoscopic eval-
uation to exclude purulent secretions. At the time of
lung recovery, standard organ procurement techniques were
utilized for lung transplantation. Cold Euro-Collins (Baxter
Healthcare Corporation) preservation solution was infused
via the pulmonary artery in an antegrade fashion, with the
lungs inflated to two-thirds of their tidal volume. For the ini-
tial 24 recipient patients (control group), 4 liters of modified
Euro-Collins solution followed by 500 μg of prostaglandin
E1 (PGE1) at 4°C in situ was flushed into the donor pul-
monary arterial circulation to effect pulmonary vasodilation
and promote uniform distribution of the lung preservation
solution, and then the donor lungs were cooled topically with
sterile iced saline slush. The lungs for the next 22 recipient
patients (NP group) underwent the same protocol except for
the addition of 10 mg of nitroprusside following the modified
Euro-Collins and PGE1 infusion. Retrograde flushing of the
lungs was then performed either in situ or at the back table
with 1 L of cold Euro-Collins solution in each of the 4
pulmonary veins. Following administration of the preserva-
tive, the tracheobronchial tree was stapled and secured in
iced preservative and transported to our recipient transplant
center. Single lung transplantation was performed through
a posterolateral thoracotomy. Bilateral lung transplantation
was performed through bilateral anterolateral transsternal
thoracotomy (clamshell incision). Cardiopulmonary bypass
requirement was based on the pulmonary artery hemody-
amic profile, intolerance of contralateral single lung ventila-
tion, and hemodynamic instability.

Immunosuppression was achieved preoperatively with
intravenous methylprednisolone and azathioprine without
the use of induction therapy. Postoperative immunosup-
pression consisted of corticosteroids, azathioprine, and
tacrolimus. Transesophageal echocardiography was per-
formed only in select cases to detect pulmonary artery or
vein obstruction. Microbiological alveolar sampling was per-
formed prior to extubation. Clinical data were obtained by
chart review during follow-up.

Definition of Graft Ischemia Time
Graft ischemia time was defined as the time interval
between the application of the aortic cross-clamp during
procurement and the reperfusion of the allograft in the recip-
ient. In the bilateral lung transplantation cases, the longest
allograft ischemic time was recorded.

Definition of Primary Graft Dysfunction
This study identified patients with PGD based on how the
International Society for Heart and Lung Transplantation cur-
rently defines grade 2 and grade 3 PGD. PGD is categorized
into grade 0 to 3, based on pulmonary edema on chest x-ray
and the partial pressure arterial oxygen to fraction inspired
oxygen (PaO2/FiO2) ratio. Grade 2 PGD is defined by the
presence of radiographic infiltrate development in the allo-
graft within the first 48 hours following lung transplanta-
tion and a PaO2/FiO2 ratio between 200-300 also within the
first 48 hours. Grade 3 PGD is defined by the presence of
radiographic infiltrate development in the allograft within the
first 48 hours following lung transplantation and a PaO2/FiO2
ratio <200 within the first 48 hours. The absence of clinical
evidence of bacterial infection, atelectasis, or rejection was
also an aspect of the PGD criteria used for this study.

Study Endpoints
The primary endpoint was overall survival. Secondary
endpoints included mean 24-hour transfusion requirement;
best PaO2/FiO2 ratio within the first postoperative hour,
within hours 12-24, and within hours 24-48; time to extu-
bation; length of stay; PGD within 24 hours and after
24 hours; forced expiratory volume within 1 second (FEV1)
at 12 months; and number of days free from bronchiolitis
obliterans.

Statistical Analysis
Normally distributed continuous data are reported as
mean values and standard deviations while non-normal
continuous data are reported as medians and interquar-
tile ranges (IQR). Comparison between groups was by
Student t test if continuous variables were normally dis-
tributed; otherwise, the Wilcoxon rank sum test was used.
Table 1. Baseline Characteristics by Treatment Group

Variable	Control Group	Nitroprusside Group	P Value
Sex, male, n (%)	13 (54.2)	11 (50)	1.0
Mean age, years ± SD	42.8 ± 12.3	40.6 ± 18.6	0.64
Bilateral lung transplant, n (%)	19 (79.2)	13 (59)	0.2
Single lung transplant, n (%)	5 (20.8)	9 (40.9)	0.2
Cardiopulmonary bypass, n (%)	4 (16.7)	5 (22.7)	0.61
Mean operative time, minutes ± SD	345.3 ± 95	374.3 ± 141.8	0.43
Mean ischemia time, minutes ± SD	225.3 ± 41	253.3 ± 52	0.04
Inhaled nitric oxide used postoperatively, n (%)	1 (4.2)	5 (22.7)	0.07

Categorical data are expressed as counts and percentages and were compared by either chi-square or Fisher exact test.

Survival analysis was performed by Kaplan-Meier methods. The log-rank test was used to determine equality between treatment cohorts. To examine the effect of nitroprusside use on long-term survival, univariable and multivariable Cox proportional hazard modeling was performed. Given the small sample size, the multivariable model was used to include preoperative and operative variables with a P<0.02 on univariable Cox modeling in the multivariable model of preoperative factors, operative factors, and death. Statistical significance was defined as P<0.05.

RESULTS

Recipients

Forty-six patients were enrolled in this study, with 22 in the NP group. Baseline characteristics were similar across groups except for significantly longer graft ischemic time in the NP group vs the control group (253.3 ± 52 vs 225.3 ± 41 minutes, respectively, P=0.04) (Table 1). We found no difference between the patients in the 2 groups who had a single or a bilateral transplant. Cystic fibrosis and emphysema were the 2 most common causes for transplantation, but no differences were seen between groups based on recipient diagnosis (Table 2).

Donors

The donor causes of death were head trauma (54.3%), stroke (39.1%), central nervous system tumor (2.2%), anoxia (2.2%), and unknown (2.2%). The median donor age was 40 years (IQR 29-56 years). We found no differences in donor characteristics between the control and NP groups.

Overall Survival

Survival at 1, 3, and 5 years was 89%, 73%, and 63% in the control group and 76%, 38%, and 23% in the NP group. Log-rank survival analysis showed that the NP group had a significantly increased risk of mortality (P=0.034) compared to the control group (Figure). Univariable predictors of death included a preoperative diagnosis of bronchiolitis obliterans, the use of inhaled nitric oxide, and the use of nitroprusside (Table 3). None of the donor characteristics was associated with increased mortality.

Using a P value <0.02 on univariable Cox modeling, multivariable analysis of the risk of death identified ischemic time and nitroprusside use as risk factors. After adjusting for ischemic time, nitroprusside use was no longer a statistically significant risk factor for death (hazard ratio [HR] 1.83 ± 0.62, 95% confidence interval [CI] 0.93-3.5, P=0.075).

Secondary Outcomes

The NP group showed a trend for lower PaO2/FiO2 ratios at 1 hour, 12-24 hours, and 24-48 hours; however, the differences between the NP and control groups were not significant (Table 4). In addition, we found no differences in the evidence of PGD at 24 hours and after 24 hours between the 2 groups. Further, we found no significant difference between groups in bronchiolitis obliterans-free days.

DISCUSSION

To our knowledge, this is the first clinical study in which nitroprusside was used following PGE1 in donor lungs flushed with modified Euro-Collins solution in patients undergoing lung transplantation. We compared these patients to 24 patients who received lungs that had the standard flush and found no difference in survival after adjusting for ischemic time or in PGD; these findings are different from those of previous studies using nitroprusside.

Yamashita et al investigated single-lung allotransplantation performed on 10 dogs, with one group receiving...
Nitroprusside and Lung Allograft Survival

Figure. Survival curves of Kaplan-Meier estimate. Log-rank survival in months: no nitroprusside (No NTP) vs nitroprusside (NTP); P=0.034.

Nitroprusside in the perfusate vs a control group. At 6 hours postreperfusion, they found increased PaO2 oxygenation with nitroprusside, but we found no difference in our PaO2/FiO2 ratio up to 48 hours from transplantation in our study. Another independent group performed a similar study in rabbits with nitroprusside in the perfusate compared to a control group, and they also found improvements in posttransplant oxygenation at 30 minutes postreperfusion, similar to the Yamashita study. The reason for these differences is likely the short follow-up time in the Yamashita and King studies, which would reflect early physiologic changes posttransplantation and may potentially be lost within the first 48 hours, as suggested by our findings.

The small sample size of our study makes it prone to a type 1 error in that it may be underpowered to detect small but clinically relevant physiologic differences. Additionally, the prolonged ischemia time in the NP group may have confounded the results.

A technical difference in this study from current practice is the use of Euro-Collins solution compared to the current use of Perfadex (Vitrolife) for lung preservation. While the use of Euro-Collins makes it difficult to draw modern parallels, fortifying Perfadex with nitroprusside may yield different results from our current study.

In our control patients, the 1-, 3-, and 5-year survival rates were 89%, 73%, and 63%. The Organ Procurement and Transplantation Network records 1-, 3-, and 5-year survival rates of 86%, 63%, and 53% for similarly aged recipients from 2008-2015. While our study data are 20 years old, the similarity between our study’s control survivorship and current survivorship demonstrates that our study is relevant, as the 1-, 3-, and 5-year survival rates for lung transplantation have not significantly improved. Further investigations into improving lung transplant survival are important and should be reported.

CONCLUSION

The addition of nitroprusside in the lung transplant perfusate in this clinical trial showed no difference in survival after adjusting for ischemic time; however, given the non-randomized nature of this study, a randomized control trial may better help clarify the potential role of nitroprusside in lung transplantation.
Table 3. Univariable Cox Proportional Hazard Modeling of Risk Factors for Death

Variable	Hazard Ratio	95% Confidence Interval	P Value
Recipient age, years	0.99	0.97-1.0	0.65
Ischemic time, per 10 minutes	1.06	0.99-1.1	0.05
Transfusion, each	0.98	0.92-1.0	0.53
Ventilator time, hours	1.00	0.99-1.0	0.40
Intensive care unit, days	1.00	0.99-1.1	0.10
Length of stay, days	1.00	0.99-1.0	0.26
Height, cm	1.80	0.04-81	0.74
Weight, kg	0.99	0.97-1.0	0.87
Body mass index, kg/m²	0.98	0.09-81	0.66
Recipient sex, male	1.40	0.74-2.7	0.29
Donor cytomegalovirus positive	1.09	0.55-2.1	0.79
Recipient cytomegalovirus positive	1.11	0.58-2.1	0.73
Caucasian	0.61	0.21-1.8	0.38
Bilateral lung transplant	0.75	0.37-1.4	0.42
Cardiopulmonary bypass	2.09	0.89-4.8	0.08
Inhaled nitric oxide	5.50	1.9-15	0.001
Chronic obstructive pulmonary disease	1.90	0.42-9.1	0.39
Eisenmenger syndrome	0.81	0.10-6.4	0.84
Emphysema	1.45	0.62-3.4	0.38
Idiopathic pulmonary fibrosis	1.10	0.42-2.8	0.85
Bronchiolitis obliterans	6.90	1.7-28.0	0.006
Sarcoidosis	1.63	0.2-13.0	0.64
Nitroprusside	2.00	1.0-3.8	0.039
Donor age, years	0.99	0.97-1.0	0.64
Donor sex, male	1.41	0.74-2.6	0.29

Table 4. Outcomes by Treatment Group

Variable	Control Group	Nitroprusside Group	P Value
n=24	n=22		
Transfusion within 24 hours, mean ± SD	4.48 ± 0.9	4.45 ± 6.5	0.9
PaO₂/FiO₂ ratio at <1 hour, mean ± SD	283.7 ± 183.4	228.6 ± 162.3	0.29
PaO₂/FiO₂ ratio at 12-24 hours, mean ± SD	241.8 ± 128.4	228.8 ± 115.3	0.72
PaO₂/FiO₂ ratio at ≥24-48 hours, mean ± SD	288.1 ± 127	260.4 ± 112.3	0.44
Mean ventilator time, hours ± SD	81 ± 142.1	55 ± 83.5	0.45
Mean length of stay, days ± SD	37 ± 83.4	20.3 ± 15.5	0.30
Primary graft dysfunction at <24 hours, n (%)	9 (37.5%)	11 (50%)	0.55
Primary graft dysfunction at ≥24 hours, n (%)	9 (37.5%)	7 (31.8%)	0.76
FEV₁ percentage at 12 months, mean ± SD	75.7 ± 18.8	71.5 ± 18.5	0.57
Bronchiolitis obliterans–free days, mean ± SD	1,220 ± 948.8	879 ± 741.1	0.18

FEV₁, forced expiratory volume in 1 second; PaO₂/FiO₂, partial pressure arterial oxygen to fraction inspired oxygen ratio.
ACKNOWLEDGMENTS
The early results of this study were submitted and accepted as an abstract for a poster presentation at the 13th World Congress of the World Society of Cardiothoracic Surgeons in 2003. The authors have no financial or proprietary interest in the subject matter of this article.

REFERENCES
1. Mulligan MS, Shearon TH, Weill D, Pagani FD, Moore J, Murray S. Heart and lung transplantation in the United States, 1997-2006. Am J Transplant. 2008 Apr;8(4 Pt 2):977-987. doi: 10.1111/j.1600-6143.2008.02175.x.

2. Diamond JM, Arcasoy S, Kennedy CC, et al. Report of the International Society for Heart and Lung Transplantation Working Group on primary lung graft dysfunction, part II: epidemiology, risk factors, and outcomes—a 2016 consensus group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017 Oct;36(10):1104-1113. doi: 10.1016/j.healun.2017.07.020.

3. Christie JD, Sager JS, Kimmel SE, et al. Impact of primary graft failure on outcomes following lung transplantation. Chest. 2005 Jan;127(1):161-165. doi: 10.1378/chest.127.1.161.

4. Christie JD, Bavaria JE, Palevsky HI, et al. Primary graft failure following lung transplantation. Chest. 1998 Jul;114(1):51-60. doi: 10.1378/chest.114.1.51.

5. Gray WH, McFadden PM. Commentary: evaluation of primary graft dysfunction after lung transplantation—it is time to teach an old dog new tricks! J Thorac Cardiovasc Surg. 2019 Apr 24. pii: S0022-5223(19)30906-7. doi: 10.1016/j.jtcs.2019.04.012.

6. Whitson BA, Nath DS, Johnson AC, et al. Risk factors for primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg. 2006 Jan;131(1):73-80. doi: 10.1016/j.jtcs.2005.08.039.

7. Daud SA, Yusen RD, Meyers BF, et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2007 Mar 1;175(5):507-513. doi: 10.1164/rccm.200608-1079OC.

8. Pinsky DJ, Naka Y, Chowdhury NC, et al. The nitric oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12086-12090.

9. Marczin N, Riedel B, Gal J, Polak J, Yacoub M. Exhaled nitric oxide during lung transplantation. Lancet. 1997 Dec 6;350(9092):1681-1682. doi: 10.1016/S0140-6736(05)64281-X.

10. Le Cras TD, McMurtry IF. Nitric oxide production in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol. 2001 Apr;280(4):L575-L582. doi: 10.1152/ajplung.2001.280.4.L575.

11. Meyer KC, Love RB, Zimmerman JJ. The therapeutic potential of nitric oxide in lung transplantation. Chest. 1998 May;113(5):1360-1371. doi: 10.1378/chest.113.5.1360.

12. Botha P, Jeyakanthan M, Rao JN, et al. Inhaled nitric oxide for modulation of ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant. 2007 Nov;26(11):1199-1205. doi: 10.1016/j.healun.2007.08.008.

13. Pasero D, Martin EL, Davi A, Mascia L, Rinaldi M, Ranieri VM. The effects of inhaled nitric oxide after lung transplantation. Minerva Anestesiol. 2010 May;76(5):353-361.

14. Yamashita M, Schmid RA, Ando K, Cooper JD, Patterson GA. Nitroprusside ameliorates lung allograft reperfusion injury. Ann Thorac Surg. 1996 Sep;62(3):791-796; discussion 796-797. doi: 10.1016/S0003-4975(96)00439-0.

15. King RC, Binns OA, Kanithanan RC, et al. Low-dose sodium nitroprusside reduces pulmonary reperfusion injury. Ann Thorac Surg. 1997 May;63(5):1398-1404. doi: 10.1016/s0003-4975(97)00250-6.

16. Bracken CA, Gurkowski MA, Naples JJ. Lung transplantation: historical perspective, current concepts, and anesthetic considerations. J Cardiothorac Vasc Anesth. 1997 Apr;11(2):220-241.

17. Snell Gl, Yusen RD, Weill D, et al. Report of the ISHLT Working Group on primary lung graft dysfunction, part I: definition and grading—a 2016 consensus group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017 Oct;36(10):1097-1103. doi: 10.1016/j.healun.2017.07.021.

18. Region 3 data for recipient survivorship after lung transplantation based on age. Organ Procurement and Transplantation Network. U.S Department of Health & Human Services. https://optn.transplant.hrsa.gov/data/view-data-reports/regional-data/. Accessed August 13, 2019.