Japanese Journal of Infectious Diseases

Novel Quinolone Nonsusceptible *Streptococcus canis* Strains with Point Mutations in Quinolone Resistance-determining Regions and Their Related Factors

Yasuto Fukushima, Yuzo Tsuyuki, Mieko Goto, Haruno Yoshida, and Takashi Takahashi

Received: October 1, 2019. Accepted: December 27, 2019
Published online: January 31, 2020
DOI:10.7883/yoken.JJID.2019.392

Advance Publication articles have been accepted by JJID but have not been copyedited or formatted for publication.
Original Article

Novel Quinolone Nonsusceptible *Streptococcus canis* Strains with Point Mutations in Quinolone Resistance-determining Regions and Their Related Factors

Yasuto Fukushima¹, Yuzo Tsuyuki¹,², Mieko Goto¹, Haruno Yoshida¹, and Takashi Takahashi¹*

¹Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan;

²Division of Clinical Laboratory, Sanritsu Zelkova Veterinary Laboratory, 2-5-8 Kuji, Takatsu-ku, Kawasaki, Kanagawa 213-0032, Japan

Running Title: Report of *S. canis* Nonsusceptible to Quinolones

Keywords: *Streptococcus canis*, nonsusceptibility, quinolones, M-like protein, sequence type

*Corresponding author: Prof. Takashi Takahashi

Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Kitasato Institute for Life Sciences, Kitasato University,
5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
Tel: +81-3-5791-6428, Fax: +81-3-5791-6441, E-mail: taka2si@lisci.kitasato-u.ac.jp
福島康仁、後藤美江子、吉田春乃、高橋 孝．
北里大学 北里生命科学研究所 感染症学研究室
〒108-8641 東京都港区白金 5-9-1

露木勇三．
サンリツセルコバ検査センター 臨床検査部
〒213-0032 神奈川県川崎市高津区久地 2-5-8
SUMMARY: This study investigated quinolone nonsusceptible *Streptococcus canis* with point mutations in quinolone resistance-determining regions (QRDRs). After selecting targets from 185 isolates, we conducted antimicrobial susceptibility testing using levofloxacin, ciprofloxacin, norfloxacin, and moxifloxacin. We also determined amino acid sequences of QRDRs in *gyrA/gyrB/parC/parE* genes and their point mutations. Finally, we performed *S. canis*-derived M-like protein (SCM) allele typing, multilocus sequence typing, and antimicrobial resistance genotyping. Correlations between nonsusceptible strains and their related factors were examined. We found 13 (7.0%) nonsusceptible isolates consisting of two classes, high-level minimum inhibitory concentrations (MICs) ($n = 7, 3.8\%$), and low-level MICs ($n = 6, 3.2\%$). The mutations Ser81Phe/Ser81Tyr/Glu85Lys in *gyrA*, Ser67Phe/Ser67Tyr/Asp71Tyr in *parC*, Asp438Asn in *parE*, and Gly408Asp in *gyrB* were observed in these nonsusceptible strains. The common mutations were Ser81 and Ser67/Asp71, whereas we found one strain each with Glu85, Asp438 and Gly408 mutations. There was a significant correlation between the nonsusceptible isolates and presence of SCM allele type 2, sequence type 46, tetracycline-resistance genes, and macrolide/lincosamide-resistance genes. These results could be used in the future by veterinarians while treating companion animals with clinical symptoms of streptococcal infections.
INTRODUCTION

Streptococcus canis, first reported in 1986 (1), forms large gray/white-colored smooth colonies with β-hemolysis on sheep blood agar plates. Lancefield grouping classifies *S. canis* as group G streptococci based on the composition of carbohydrate antigens in the cell wall. In healthy dogs, *S. canis* is a part of the resident microflora of the oropharynx, skin, genitourinary tract, and anus (2). This microorganism is an emerging zoonotic pathogen and can cause self-limiting dermatitis. In some cases, it leads to severe diseases, including arthritis, streptococcal toxic shock syndrome, necrotizing fasciitis, septicemia, and pneumonia in companion animals (3,4). *S. canis* can also infect humans who have been in close contact with animals and cause either local or systemic diseases (5,6). Clinicians should be aware of the possibility that *S. canis*-related invasive zoonotic infections might be underdiagnosed, as species-level identification is not commonly performed.

Fluoroquinolones, in particular levofloxacin (LVX), have now become the first/second-line treatment modality for many infectious diseases (respiratory and urinary tract infections) in patients with definite or suspected penicillin allergy. Several quinolones target the bacterial DNA gyrase subunits A and B, encoded by *gyrA* and *gyrB*, which are responsible for ATP-dependent DNA supercoiling (7) and therefore inhibit DNA synthesis, triggering bacterial death (8). Previous research on *E. coli* identified the quinolone resistance amino acid (AA) substitutions in regions of *gyrA/gyrB*, which were termed quinolone resistance-determining regions (QRDRs). Additionally, during development of high-level resistance, *gyrA/gyrB* point mutations follow those observed in the associated enzyme DNA topoisomerase IV. It has two subunits A/B encoded by *parC/parE*, which are essential for chromosome partitioning (9). Since the mid 1990s, there have been reports describing strains of *S. pneumoniae* (10), *S. pyogenes* (11), and *S. agalactiae* (12) that were resistant to quinolones, with shared point mutations in the QRDRs of *gyrA/parC*. Surprisingly, the
quinolone resistance conferred by the mutations in gyrB/parE was rarely observed (13).

Streptococcus canis-derived M-like protein (SCM), one of the virulence factors, can bind to plasminogen and immunoglobulin G and facilitate anti-phagocytic activity (14,15). Timoney et al. (16) documented four SCM alleles in *S. canis* isolated from diseased and healthy cats and argued that the type 1 allele was predominant in diseased cats. Multilocus sequence typing (MLST) was performed to evaluate the clonal spread of isolates with genetic similarities. It determines the sequence type (ST) based on sequence variations and the allelic combination of seven housekeeping genes (gki–gtr–murI–mutS–recP–xpt–yqiZ) according to the pubMLST website (https://pubmlst.org/scanis/). Pinho et al. (17) have also proposed the use of novel primers (gki_Sc_fwd/gki_Sc_rev, gtr_Sc_fwd/gtr_Sc_rev, murI_Sc_fwd/murI_Sc_rev, recP_Sc_rev, and yqiZ_Sc_rev), since designing the primer sequences were optimized on the basis of the genome sequences to improve the polymerase chain reaction (PCR) amplification and sequencing for some of the loci. Furthermore, considering that significant correlation between tetracycline (TET)-resistance genotypes and open pus/skin-derived β-hemolytic streptococci (mainly *S. canis*) from diseased companion animals has been previously found (18), in this study TET-resistance was also investigated.

The purpose of this study was to investigate *S. canis* isolates resistant/nonsusceptible to quinolone and to define the relationship between the resistant/nonsusceptible isolates and their related factors (SCM allele type, ST and mobile resistance genotype).

MATERIALS AND METHODS

Selection of *S. canis* strains: During previous studies (18,19), we collected 68 and 117 *S. canis* isolates in 2015 and 2017, respectively, from diseased companion animals along, with the animal information. We identified the *S. canis* strains at the species level based on 16S rRNA sequencing data (18,19). We also validated the accuracy of the identification through
PCR amplification of a \textit{S. canis} \textit{cfg} gene(20,21). All \textit{S. canis} strains (one isolate per companion animal) were stored at –70 °C to –80 °C for further analyses.

Minimum inhibitory concentrations (MICs, μg/mL) of LVX were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for β-hemolytic streptococci(22). We selected all isolates with LVX MICs ≥ 1, since there was a possibility that point mutations are inserted into QRDRs at the low MICs. The isolates with the MIC ≤ 0.25 were randomly chosen as control strains. We also included National Collection of Type Cultures (NCTC) 12191(T) strain of \textit{S. canis} as a control and two isolates (TA4 and OT1) from human cases of bacteremia with and without a dog bite(21,23). All three strains were subjected to whole genome sequencing analysis.

Antimicrobial susceptibility testing of quinolones using Etest: We conducted antimicrobial susceptibility testing (AST) by Etest (SYSMEX bioMérieux Inc.) of four quinolones including LVX, ciprofloxacin (CIP), norfloxacin (NOR), and moxifloxacin (MXF) according to manufacturer’s instructions, to confirm the nonsusceptibility to these quinolones(12). Since the low-level MICs (e.g., LVX 2–3) as well as the high-level MICs (LVX > 32) by the Etest, with mutations in \textit{gyrA} and \textit{parC}, were documented in six resistant isolates of \textit{S. pyogenes} in Spain(24), these four quinolones were selected. The MICs of the four antimicrobials by Etest were measured independently by two investigators.

The thresholds for nonsusceptibility to quinolones using Etest were defined as LVX MIC > 1 μg/mL and CIP MIC ≥ 2 μg/mL, similar to values reported by Lin et al.(25) used to define the quinolone nonsusceptible \textit{S. pyogenes} isolates.

Amplifying and sequencing of QRDRs to confirm their point mutations: To amplify and sequence the QRDRs of \textit{gyrA}, \textit{gyrB}, \textit{parC}, and \textit{parE} from the isolates, we used the primer sets (\textbf{Table 1}) originally used to detect the QRDRs of \textit{S. pyogenes}-specific \textit{gyrA}, \textit{parC},(26) and \textit{parE}(27), since there was a maximum of 2 nucleotide mismatches between the specific primer sequences and the corresponding genomic sequences in the \textit{S. canis} type strain. We
found a maximum of 4 nucleotide mismatches between the specific primer sequences for
gyrB in *S. pyogenes* (27) and the corresponding genomic sequences in the type strain, and thus, synthesized a new primer set (Table 1) to detect the QRDR of *S. canis*-specific *gyrB*.

The three strains (FU1/FU97/FU129) exhibiting the high and low capabilities of biofilm formations and cell invasion abilities were subjected to the whole genome sequencing by MiSeq (Illumina Inc.), to find the specific sequences leading to the characteristic phenotypes. The targeted sequences of the four QRDRs were extracted from the draft whole genome sequences (WGSs), instead of PCR amplification.

To confirm the determined AA positions in the QRDRs of *gyrA/*gyrB/*parC/*parE*, we performed multiple alignments using the AA sequences of the QRDRs from our strains and other species including susceptible-*S. pneumoniae* (strain R6), nonsusceptible-*S. pyogenes* (NIH-R01-GAS), and nonsusceptible-*S. agalactiae* (GTC 1966). The alignments were generated using ClustalW implemented in MEGA X (version 10.0.5) (28).

Amplifying and sequencing scm nucleotide sequences and SCM allele typing: We amplified and sequenced full-length *scm* nucleotide sequences as previously reported (17,29). Based on the variations in AA sequences, the SCM allele typing was performed (17,29).

In the 3 strains where the WGSs were obtained, the full-length *scm* nucleotide sequences were extracted from the contig data.

MLST analysis: We performed MLST analysis on all isolates enrolled in this study according to protocols reported by Pinho et al. (17). To amplify the *xpt* gene, *xpt*-fwd-M13F including the M13F universal sequencing primer and *xpt*-rev-M13R-pUC including the M13R universal sequencing primer were used, since the sequences of the previous primer set (*Xptgc-up/Xptgc-dn*) were too close to the *xpt* allele-determining sequences. STs were grouped into clonal complexes (CCs), whereby related STs were classified as single locus variants differing in only one housekeeping gene.

In the 3 strains with WGS data, MLST analysis was performed using a web-based
application of MLST (https://cge.cbs.dtu.dk/services/MLST/, Center for Genomic Epidemiology) on which the contig data were processed.

Characterization of antimicrobial resistance genes: The presence of antimicrobial resistance (AMR) genes, including macrolide/lincosamide (ML)-class resistance genes, \(ern(A)\), \(ern(B)\), and \(mef(A)\), in addition to TET-class resistance genes, \(tet(M)\), \(tet(O)\), \(tet(K)\), \(tet(L)\), and \(tet(S)\) in all \(\beta\)-hemolytic streptococcal isolates, was determined by PCR (18).

In the 3 strains that were subjected to the whole genome sequencing, the presence of antimicrobial resistance genes was determined using web-based application ResFinder3.0 (https://cge.cbs.dtu.dk/services/ResFinder/, Center for Genomic Epidemiology) on which the contig data were processed.

Animal ethics statement: The Ethics Committee of the Sanritsu Zelkova Veterinary Laboratory approved the study design (approval number SZ20190723) to maintain privacy of the affected animals.

Statistical analysis: We used Fisher's exact probability test (two-sided) to analyze significant relationships between the nonsusceptible isolates with mutations and their related factors. A \(p\) value of \(< 0.05\) indicated statistical significance.

RESULTS

S. canis strains enrolled in the study: Backgrounds of the strains enrolled are shown in Table 2. Sixteen isolates with LVX MICs \(\geq 1\) and the eight isolates with MIC \(\leq 0.25\) were chosen. Of the sixteen, seven were resistant to LVX, and one showed intermediate susceptibility according to the CLSI criteria. The controls [NCTC 12191(T), TA4, and OT1] showed an MIC value of 0.5.

The eight isolates resistant/intermediate-susceptible to LVX were recovered from five prefectures of Tokyo \((n = 3)\), Chiba \((n = 2)\), and Aichi/Kanagawa/Nara \((n = 1)\). Five were
isolated in 2017 and three in 2015. All the isolates were obtained from non-sterile sites (open pus, ear discharge, and urine) of dogs. The dogs’ demographics were as follows: mean age, 10.0 years; age range, 4–14 years; sex, 6 males and 2 females.

MICs of four quinolones by Etest: MIC values of the four drugs by Etest are shown in Table 3. In addition to the eight isolates resistant/intermediate-susceptible to LVX using broth microdilution, the other strains ($n = 5$) were shown to be nonsusceptible according to the Etest definitions of LVX/CIP. The strains indicated the LVX MIC of 2 measured by broth microdilution. These isolates were recovered from the prefectures of Chiba, Ishikawa, Fukui, Tokyo, and Okinawa. Three were isolated in 2017 and two in 2015. All the isolates were obtained from non-sterile sites (open pus, ear discharge, and urine) of dogs ($n = 4$) and a cat. The companion animal demographics were as follows: mean age, 9.0 years; age range, 7–13 years; sex, 3 males and 2 females.

On the other hand, the three that had the MIC value of 1 by broth microdilution and all the controls (clinical isolates and the type strain) revealed susceptibility based on the Etest definitions.

Determination of AA sequences of the QRDRs and their point mutations: AA sequences of the QRDRs and substitutions different from those in NCTC 12191(T) are shown in Table 3. Multiple alignments of AA sequences in the QRDRs revealed substitutions at positions 81/85 in gyrA, 57/67/71/95 in parC, 438 in parE, and 408 in gyrB. Based on Etest data from our isolates, the mutations Ser81Phe/Ser81Tyr/Glu85Lys in gyrA, Ser67Phe/Ser67Tyr/Asp71Tyr in parC, Asp438Asn in parE, and Gly408Asp in gyrB were observed in the nonsusceptible strains.

SCM allele typing based on variations in the AA sequences: Distribution and prevalence of the SCM allele types are shown in Table 3. We observed type 1 ($n = 3$, 23.1%), type 2 ($n = 7$, 53.8%), type 4 ($n = 2$, 15.4%), and type 10 ($n = 1$, 7.7%) in the 13 nonsusceptible isolates with mutations. However, type 1 ($n = 7$, 50.0%), type 2 ($n = 1$, 7.1%),
type 4 \((n = 2, 14.3\%)\), type 10 \((n = 3, 21.4\%)\), and type 11 \((n = 1, 7.1\%)\) was found in the 14 susceptible isolates without mutations.

There was a significant correlation between the nonsusceptible isolates and the type 2 SCM allele \((p < 0.05)\).

MLST analysis: STs (allele profile) obtained by MLST are shown in Table 3. We mainly found the ST46 \((n = 6, 46.2\%)\) and ST2 \((n = 2, 15.4\%)\), that were grouped into CC46, in the nonsusceptible isolates with the mutations. On the other hand, mainly ST9 \((n = 5, 35.7\%)\) and ST3 \((n = 2, 14.3\%)\), that were grouped into CC9, were present in the susceptible isolates without the mutations.

There was a significant correlation between the nonsusceptible strains and the ST46 \((p < 0.01)\) and CC46 \((p < 0.01)\).

Detection of AMR genotypes: Distribution and prevalence of the AMR genotypes are shown in Table 3. Our study included mixed TET+ML resistance genotypes \((n = 7, 53.8\%)\) and only TET resistance genotypes \((n = 3, 23.1\%)\) in the nonsusceptible isolates with mutations. The mixed resistance genes were \(erm(B)+tet(O)\) \((n = 5)\), \(erm(B)+tet(M)+tet(O)\) \((n = 1)\), and \(erm(B)+mef(A)+tet(O)\) \((n = 1)\), whereas the only TET resistance genes were \(tet(M)/tet(O)/tet(S)\) \((n =1)\). On the other hand, there were mixed TET+ML resistance genotypes \((n = 1, 7.1\%)\) including \(erm(B)+tet(O)\), only TET resistance genotypes \((n = 2, 14.3\%)\) including \(tet(O)\), and only ML resistance genotypes \((n = 1, 7.1\%)\) including \(erm(B)\), in the susceptible isolates without mutations.

There was a significant correlation between the nonsusceptible isolates and the TET resistance genes \((p < 0.01)\) and the ML resistance genes \((p < 0.05)\).

DISCUSSION

In agreement with previous findings (24), we observed a concordance of variations from...
low MICs to the high MICs, for four drugs, in the thirteen nonsusceptible isolates (Table 3).

Our 13 nonsusceptible isolates were from non-sterile sites (open pus, ear discharge, and urine). However, we should pay special attention to the emergence of nonsusceptible isolates from sterile sites (blood, cerebrospinal fluid, joint fluid, pleural effusion, ascites, and deep-sided closed pus). The prevalence of nonsusceptible isolates in 2015 and 2017 was 7.4% (5/68) and 6.8% (8/117), respectively. Therefore, nonsusceptible strains should be monitored throughout the country systematically and additional nonsusceptible isolates need to be characterized in the future.

We confirmed the mutations of Ser81/Glu85 in gyrA, Ser67/Asp71 (corresponding to the positions 79/83 in \textit{S. pneumoniae} R6) in parC, Asp438 (corresponding to the position 435 in \textit{S. pneumoniae} R6) in parE, and Gly408 (corresponding to the position 406 in \textit{S. pneumoniae} R6) in gyrB in our nonsusceptible strains. The common mutations were Ser81 and Ser67/Asp71 (26). However, we found Glu85, Asp438, and Gly408 in only one strain each, although the substitutions Glu85 and Asp438 have already been reported in resistant \textit{S. pyogenes} (30) and \textit{S. pneumoniae} (31). To elucidate whether these three mutations might contribute to nonsusceptibility, we need to perform an \textit{in vitro} induction of nonsusceptibility using our \textit{S. canis} strains, as previously reported (26,32) and establish these nonsusceptible mutants in the future.

The acquired mutations at Ser67/Asp71 in parC and/or Ser81 in gyrA, along with the increasing MICs of 4 quinolones by Etest are indicated in Table 3. Of the nonsusceptible isolates, some strains harboring the low MICs showed the Ser67/Asp71 in parC alone, whereas with the elevation of MICs, some strains indicated the Ser81 in gyrA, except for the MICs using SA15. These observations suggest the acquired mutations might contribute to the increase in MICs among the novel-generation drug (MXF) as well as old-generation one (NOR).

There was a significant correlation between the nonsusceptible isolates and the SCM type
2/TET resistance genes/ML resistance genes, suggesting a clonal spread of the isolates in Japan. Other investigators (25,32) have also found the nonsusceptible strains of S. pyogenes to be associated with particular emm types 12/6. Additionally, 80% of the nonsusceptible S. pyogenes clones harboring the emm 12/6/11/1 (n = 30) revealed resistance to both ML due to \textit{erm}(B) and TET due to \textit{tet}(M) (33). Petrelli et al. (34) reported that most of the nonsusceptible S. pyogenes strains belong to emm type 6, even if the other types were present (emm75/89/2), indicating possibility of other types spreading. Therefore, in the future, we should monitor the multiple clonal spreads of the nonsusceptible S. canis isolates in companion animals.

Enrofloxacin and orbifloxacin are used to treat diseased companion animals in Japan (35). According to a recent report from National Veterinary Assay Laboratory, quinolone class antibiotics constituted 7.0% of overall antimicrobials (converted weight in kilograms to bulk powder) used for companion animals in 2016 (36). The limitation of this study was that the detailed therapeutic approaches (especially doses of quinolones administered) were unclear, although we received the animal information. Therefore, the quinolone usage data should be collected from veterinarians in the future investigations.

According to the PubMLST isolate database (https://pubmlst.org/bigsdb?db=pubmlst_scanis_isolates) of S. canis strains (209 total isolates), no isolate was resistant to either LVX or enrofloxacin (as of August 5th, 2019). The novel ST46 observed in the nonsusceptible isolates has recently been registered in the PubMLST database. To the best of our knowledge, this is the first report of S. canis isolates that were resistant/nonsusceptible to quinolones with point mutations in the QRDRs. We also described the relationships between the resistant/nonsusceptible isolates and their related factors. This information could be of use to Japanese veterinary practitioners while treating dogs and cats with clinical symptoms of streptococcal infections.
Acknowledgment This study was supported in part by JSPS KAKENHI (Grant no. 18K08447).

Conflict of interest None to declare.
REFERENCES

1. Devriese LA, Hommez J, Kilpper-Balz R, et al. *Streptococcus canis* sp. nov.: a species of group G streptococci from animals. Int J Syst Bacteriol. 1986;36:422-5.

2. Devriese LA, Cruz Colque JI, De Herdt P, et al. 1992. Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats. J Appl Bacteriol. 1992;73:421-5.

3. DeWinter LM, Prescott JF. Relatedness of *Streptococcus canis* from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Can J Vet Res. 1999;63:90-95.

4. Lamm CG, Ferguson AC, Lehenbauer TW, et al. Streptococcal infection in dogs: a retrospective study of 393 cases. Vet Pathol. 2010;47:387-95.

5. Galpérine T, Cazorla C, Blanchard E, et al. *Streptococcus canis* infections in humans: retrospective study of 54 patients. J Infect. 2007;55:23-6.

6. Amsallem M, Iung B, Bouleti C, et al. First reported human case of native mitral infective endocarditis caused by *Streptococcus canis*. Can J Cardiol. 2014;30:1462.e1-2.

7. Gellert M, Mizuuchi K, O'Dea MH, et al. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA. 1976;73:3872-6.

8. Fisher LM, Mizuuchi K, O'Dea MH, et al. Site-specific interaction of DNA gyrase with DNA. Proc Natl Acad Sci USA. 1981;78:4165-9.

9. Kato J, Nishimura Y, Imamura R, et al. New topoisomerase essential for chromosome segregation in *E. coli*. Cell. 1990;63:393-404.

10. Janoir C, Zeller V, Kitzis MD, et al. High-level fluoroquinolone resistance in *Streptococcus pneumoniae* requires mutations in *parC* and *gyrA*. Antimicrob Agents Chemother. 1996;40:2760-4.

11. Yan SS, Fox ML, Holland SM, et al. Resistance to multiple fluoroquinolones in a clinical isolate of *Streptococcus pyogenes*: identification of *gyrA* and *parC* and specification of
point mutations associated with resistance. Antimicrob Agents Chemother. 2000;44:3196-8.

12. Kawamura Y, Fujiwara H, Mishima N, et al. First *Streptococcus agalactiae* isolates highly resistant to quinolones, with point mutations in *gyrA* and *parC*. Antimicrob Agents Chemother. 2003;47:3605-9.

13. Malhotra-Kumar S, Lammens C, Chapelle S, et al. Clonal spread of fluoroquinolone non-susceptible *Streptococcus pyogenes*. J Antimicrob Chemother. 2005;55:320-5.

14. Fulde M, Rohde M, Hitzmann A, et al. SCM, a novel M-like protein from *Streptococcus canis*, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration. Biochem J. 2011;434:523-35.

15. Bergmann S, Eichhorn I, Kohler TP, et al. SCM, the M protein of *Streptococcus canis* binds immunoglobulin G. Front Cell Infect Microbiol. 2017;7:80.

16. Timoney JF, Velineni S, Ulrich B, et al. Biotypes and ScM types of isolates of *Streptococcus canis* from diseased and healthy cats. Vet Rec. 2017;180:358.

17. Pinho MD, Foster G, Pomba C, et al. *Streptococcus canis* are a single population infecting multiple animal hosts despite the diversity of the universally present M-like protein SCM. Front Microbiol. 2019;10:631.

18. Fukushima Y, Tsuyuki Y, Goto M, et al. Species identification of β-hemolytic streptococci from diseased companion animals and their antimicrobial resistance data in Japan (2017). Jpn J Infect Dis. 2019;72:94-8.

19. Tsuyuki Y, Kurita G, Murata Y, et al. Identification of group G streptococcal isolates from companion animals in Japan and their antimicrobial resistance patterns. Jpn J Infect Dis. 2017;70:394-8.

20. Hassan AA, Khan IU, Abdulmawjood A, et al. Development of PCR assays for detection of *Streptococcus canis*. FEMS Microbiol Lett. 2003;219:209-14.

21. Taniyama D, Abe Y, Sakai T, et al. Human case of bacteremia caused by *Streptococcus*...
canis sequence type 9 harboring the scm gene. IDCases. 2017;7:48-52.

22. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 22nd informational supplement. CLSI document M100-S22. Wayne, PA: CLSI; 2012.

23. Ohtaki H, Ohkusu K, Ohta H, et al. A case of sepsis caused by Streptococcus canis in a dog owner: a first case report of sepsis without dog bite in Japan. J Infect Chemother. 2013;19:1206-9.

24. Rivera A, Rebollo M, Sánchez F, et al. Characterisation of fluoroquinolone-resistant clinical isolates of *Streptococcus pyogenes* in Barcelona, Spain. Clin Microbiol Infect. 2005;11:759-61.

25. Lin JN, Chang LL, Lai CH, et al. High prevalence of fluoroquinolone-nonsusceptible *Streptococcus pyogenes emm*12 in Taiwan. Diagn Microbiol Infect Dis. 2015;83:187-92.

26. Billal DS, Fedorko DP, Yan SS, et al. *In vitro* induction and selection of fluoroquinolone-resistant mutants of *Streptococcus pyogenes* strains with multiple emm types. J Antimicrob Chemother. 2007;59:28-34.

27. Jones HE, Brenwald NP, Owen KA, et al. A multidrug efflux phenotype mutant of *Streptococcus pyogenes*. J Antimicrob Chemother. 2003;51:707-10.

28. Kumar S, Stecher, G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9.

29. Fukushima Y, Yoshida H, Goto M, et al. Prevalence and diversity of M-like protein (SCM) gene in *Streptococcus canis* isolates from diseased companion animals in Japan: implication of SCM allele. Vet Microbiol. 2018;225: 120-4.

30. Arai K, Hirakata Y, Yano H, et al. Emergence of fluoroquinolone-resistant *Streptococcus pyogenes* in Japan by a point mutation leading to a new amino acid substitution. J Antimicrob Chemother. 2011;66:494-8.

31. Yokota S, Sato K, Yoshida S, et al. Molecular epidemiology of fluoroquinolone-resistant
32. Malhotra-Kumar S, Van Heirstraeten L, Lammens C, et al. Emergence of high-level fluoroquinolone resistance in emm6 Streptococcus pyogenes and in vitro resistance selection with ciprofloxacin, levofloxacin and moxifloxacin. J Antimicrob Chemother. 2009;63:886-94.

33. Shen Y, Cai J, Davies MR, et al. Identification and characterization of fluoroquinolone non-susceptible Streptococcus pyogenes clones harboring tetracycline and macrolide resistance in Shanghai, China. Front Microbiol. 2018;9:542.

34. Petrelli D, Di Luca MC, Prenna M, et al. Characterization of levofloxacin non-susceptible clinical Streptococcus pyogenes isolated in the central part of Italy. Eur J Clin Microbiol Infect Dis. 2014;33:241-4.

35. Tsuyuki Y, Takahashi T. Isolated bacteria and their antimicrobial susceptibility through urine culture obtained from companion animals in Japan. Kansenshogaku Zasshi. 2017;91:392-8. (in Japanese)

36. Ministry of Agriculture, Forestry and Fisheries. Investigation data concerning total amounts of antibiotics as human antimicrobials that were sold to veterinary institutes for pet animals in 2016. Available at <http://www.maff.go.jp/nval/yakuzai/pdf/20190819cyousa_2.pdf#search>. Accessed September 12, 2019. Japanese.
| Target (gene) | Primer name | Direction | Sequence (5’→3’) | Annealing temperature (°C) | Reference |
|-------------------------------|----------------|-----------|---|----------------------------|-----------|
| DNA gyrase subunit A (gyrA) | gyrA-F | Forward | GCAAGATCGAAATTAAATTGACGTC | 61 - 36 [55\(^1\)] | (26) |
| | gyrA-R | Reverse | ACTCTCTTGTGTTGTACGTTG | | |
| DNA gyrase subunit B (gyrB) | canis_gyrB_F | Forward | TGGCAATTCAAGAGTAGTTAA | 47 - 42 [42\(^1\)] | This study|
| | canis_gyrB_R | Reverse | TGCTTCTAAAGACTGGTCTCA | | |
| DNA topoisomerase IV subunit A (parC) | parC-F | Forward | ATGTCAACATTCAAGACATGTCC | 61 - 36 [58\(^1\)] | (26) |
| | parC-R | Reverse | AGCCTCGGAAATCCGAGAAG | | |
| DNA topoisomerase IV subunit B (parE) | parE-F | Forward | GCTCAGATTATCGAGAAGGA | 42 | (27) |
| | parE-R | Reverse | CAGCATTGGTCATGATAATA | | |

\(^1\) The most frequently applied annealing temperature.
Table 2. Backgrounds of *Streptococcus canis* strains enrolled into this study

Strain	Animal species	Sex and age (year-old)	Isolation prefecture	Isolation year	Isolation source	Antimicrobial activity of levofloxacin (µg/mL)
FU47	Dog	Male and unknown	Tokyo	2017	Open pus	> 8
FU71	Dog	Male and six	Chiba	2017	Ear discharge	> 8
FU75	Dog	Male and four	Aichi	2017	Open pus	> 8
FU5	Dog	Female and twelve	Kanagawa	2017	Urine	> 8
SA3	Dog	Male and nine	Tokyo	2015	Ear discharge	8
SA15	Dog	Male and fourteen	Tokyo	2015	Ear discharge	8
SA31	Dog	Male and thirteen	Nara	2015	Urine	8
FU95	Dog	Female and twelve	Ciba	2017	Open pus	4
FU3	Dog	Male and unknown	Chiba	2017	Open pus	2
FU32	Dog	Female and unknown	Ishikawa	2017	Ear discharge	2
FU115	Dog	Female and seven	Fukui	2017	Open pus	2
SA35	Dog	Male and thirteen	Tokyo	2015	Open pus	2
SA68	Cat	Male and seven	Okinawa	2015	Urine	2
FU40	Dog	Male and fifteen	Saitama	2017	Subcutaneous fluid aspirated	1
SA16	Dog	Male and seventeen	Aichi	2015	Open pus	1
SA25	Dog	Male and unknown	Chiba	2015	Earwax	1
NCTC 12191(T)	Bovine					0.5
FU1	Cat	Male and unknown	Ciba	2017	Open pus	≤ 0.25
FU74	Dog	Male and five	Tokyo	2017	Open pus	≤ 0.25
FU92	Dog	Male and twelve	Tokyo	2017	Urine	≤ 0.25
FU97	Dog	Male and eleven	Okinawa	2017	Open pus	≤ 0.25
FU129	Dog	Male and nine	Niigata	2017	Open pus	≤ 0.25
SA34	Dog	Male and ten	Osaka	2015	Ear discharge	≤ 0.25
SA61	Dog	Female and unknown	Tokyo	2015	Ear discharge	≤ 0.25
FU128	Dog	Male and unknown	Ciba	2017	Open pus	≤ 0.25
TA4	Human	Male and seventy-one	Tokyo	2016	Blood	0.5
OT1	Human	Female and ninety-one	Gifu	2012	Blood	0.5

1): Antimicrobial activity was determined using broth microdilution method according to the Clinical and Laboratory Standards Institute document M100-S22.
Table 3. Quinolone nonsusceptibility/susceptibility determined and their microbiologically related factors

Strain	MIC (μg/mL) of each drug by Etest	Codon (AA) at: SCM allele type	Sequence type (allele profile)	Macrolide/tetracycline resistance gene			
	LVX > 32 CIP > 32 NOR > 256 MXF	Position 67 in parC¹³	Position 71 in parC¹³	Position 81 in gyrA	Other positions in QRDR		
FU47	32 > 32 > 256 2	TTC (Phe)	TTC (Phe)	No AA substitutions	2	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(A), elo(T)
FU71	32 > 32 > 256 3	TTC (Phe)	TTC (Phe)	No AA substitutions	2	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(T)
FU75	32 > 32 > 256 3	TTC (Ser)	TTC (Ser)	No AA substitutions	2	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(O)
FU5	32 > 32 > 256 3	TTC (Phe)	TTC (Phe)	No AA substitutions	2	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(O)
SA3	32 > 32 > 256 4	TTC (Phe)	TTC (Phe)	No AA substitutions	2	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(O)
SA15	24 4 24 1	TTC (Phe)	TTC (Phe)	AAT (Asp) at position 438 in parC¹³	2	2 (2-2-2-2-1-2-2)	None
SA31	24 > 32 > 256 3	TTC (Phe)	TTC (Phe)	No AA substitutions	1	46 (2-2-2-2-2-2-2-2-2-2-8-2-2-2-2)	tetr(B), tet(M), tetr(O)
FU95	3 4 32 1.5	TTC (Ser)	TTC (Ser)	AAT (Asp) at position 85 in gyrA	4	13 (4-2-4-4-5-3-4)	ter(M)
FU3	3 2 32 0.38	TTC (Ser)	TTC (Ser)	No AA substitutions	4	14 (4-2-4-4-6-3-4)	tetr(B), tetr(O)
FU32	3 4 48 0.32	TTC (Phe)	TTC (Ser)	GAC (Asp) at position 408 in gyrB¹⁴	10	21 (7-4-5-3-4-7-1)	ter(S)
FU115	3 2 16 0.25	TAC (Tyr)	TTC (Ser)	No AA substitutions	1	30 (3-8-3-1-1-2-3)	None
SA35	3 4 96 0.38	TTC (Phe)	TTC (Ser)	No AA substitutions	2	2 (2-2-2-2-1-2-2)	ter(O)
SA68	4 8 96 1	TTC (Phe)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None
FU40	1 2 12 0.25	TTC (Ser)	TTC (Ser)	No AA substitutions	1	3 (3-3-3-1-2-3)	tetr(O)
SA16	0.38 0.5 3 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None
SA25	1 1 4 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	10	21 (7-4-5-3-4-7-1)	None
NCTC 12191(T)	0.5 0.38 2 0.125	TTC (Ser)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None
FU1	0.38 0.38 2 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	11	41 (7-2-3-12-4-7-3)	None
FU74	0.38 0.5 2 0.125	TTC (Ser)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None
FU92	0.38 0.25 1.5 0.125	TTC (Ser)	TTC (Ser)	No AA substitutions	4	11 (2-4-4-4-3-2-2)	None
FU97	1 1 12 0.25	TTC (Ser)	TTC (Ser)	TTC (Phe) at position 95 in parC¹³	4	14 (4-2-4-4-6-3-4)	tetr(B)
FU129	0.5 0.5 2 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	10	21 (7-4-5-3-4-7-1)	tetr(B), tetr(O)
SA34	0.38 0.5 2 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	10	21 (7-4-5-3-4-7-1)	None
SA61	0.5 0.5 3 0.19	TTC (Ser)	TTC (Ser)	GTC (Val) at position 57 in parC¹³	2	45 (2-2-2-13-2-3-2)	None
FU28	0.38 0.38 2 0.125	TTC (Ser)	TTC (Ser)	No AA substitutions	1	3 (3-3-3-1-2-3)	tetr(O)
TA4	0.5 0.5 3 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None
OT1	0.38 0.38 3 0.19	TTC (Ser)	TTC (Ser)	No AA substitutions	1	9 (3-5-3-1-2-3)	None

MIC, minimum inhibitory concentration; LVX, levofloxacin; CIP, ciprofloxacin; NOR, norfloxacin; MXF, moxifloxacin; AA, amino acid; QRDR, quinolone resistance-determining region; SCM, S. canis M-like protein.

¹ It corresponds to the AA sequence positions 69, 79, 83 and 107 in S. pneumoniae R6 parC.
 ² It corresponds to the AA sequence positions 435 in S. pneumoniae R6 parE.
 ³ It corresponds to the AA sequence positions 406 in S. pneumoniae R6 gyrB.

The nucleotide and AA substitutions observed in nonsusceptible strains are underlined in bold letters.
Supplementary table. Accession numbers of genes encoding QRDR and genes encoding SCM in *S. canis*

The corresponding sequences in the quinolone resistance-determining regions of *gyrA*, *gyrB*, *parC*, and *parE* have been deposited in DDBJ/EMBL/GenBank as follows.

Additionally, the novel nucleotide sequences encoding *S. canis*-derived M-like protein (SCM) have been deposited in DDBJ/EMBL/GenBank as follows.

Accession number	EntryID	Accession number	EntryID	Accession number	EntryID
LC495778	FU47-gyrA	LC495779	FU71-gyrA	LC495780	FU75-gyrA
LC495781	FU5-gyrA	LC495782	SA3-gyrA	LC495783	SA15-gyrA
LC495784	SA31-gyrA	LC495785	FU95-gyrA	LC495786	FU3-gyrA
LC495787	FU32-gyrA	LC495788	FU115-gyrA	LC495789	SA35-gyrA
LC495790	SA68-gyrA	LC495791	FU40-gyrA	LC495792	SA16-gyrA
LC495793	SA25-gyrA	LC495794	FU1-gyrA	LC495795	FU74-gyrA
LC495796	FU92-gyrA	LC495797	FU97-gyrA	LC495798	FU129-gyrA
LC495799	SA34-gyrA	LC495800	SA61-gyrA	LC495801	FU28-gyrA
LC495802	TA4-gyrA	LC495803	OT1-gyrA	LC495804	FU47-gyrB
LC495805	FU71-gyrB	LC495806	FU75-gyrB	LC495807	FU5-gyrB
LC495808	SA3-gyrB	LC495809	SA15-gyrB	LC495810	SA31-gyrB
LC495811	FU95-gyrB	LC495812	FU3-gyrB	LC495813	FU32-gyrB
LC495814	FU115-gyrB	LC495815	SA35-gyrB	LC495816	SA68-gyrB
LC495817	FU40-gyrB	LC495818	SA16-gyrB	LC495819	SA25-gyrB
LC495820	FU1-gyrB	LC495821	FU74-gyrB	LC495822	FU92-gyrB
LC495823	FU97-gyrB	LC495824	FU129-gyrB	LC495825	SA34-gyrB
LC495826	SA61-gyrB	LC495827	FU28-gyrB	LC495828	TA4-gyrB
LC495829	OT1-gyrB	LC495830	FU47-parC	LC495831	FU71-parC
LC495832	FU75-parC	LC495833	FU5-parC	LC495834	SA3-parC
LC495835	SA15-parC	LC495836	SA31-parC	LC495837	FU95-parC
LC495838	FU3-parC	LC495839	FU32-parC	LC495840	FU115-parC
LC495841	SA35-parC	LC495842	SA68-parC	LC495843	FU40-parC
LC495844	SA16-parC	LC495845	SA25-parC	LC495846	FU1-parC
LC495847	FU74-parC	LC495848	FU92-parC	LC495849	FU97-parC
LC495850	FU129-parC	LC495851	SA34-parC	LC495852	SA61-parC
LC495853	FU28-parC	LC495854	TA4-parC	LC495855	OT1-parC
LC495856	FU47-parE	LC495857	FU71-parE	LC495858	FU75-parE
LC495859	FU5-parE	LC495860	SA3-parE	LC495861	SA15-parE
LC495862	SA31-parE	LC495863	FU95-parE	LC495864	FU3-parE
LC495865	FU32-parE	LC495866	FU115-parE	LC495867	SA35-parE
LC495868	SA68-parE	LC495869	FU40-parE	LC495870	SA16-parE
LC495871	SA25-parE	LC495872	FU1-parE	LC495873	FU74-parE
LC495874	FU92-parE	LC495875	FU97-parE	LC495876	FU129-parE
LC495877	SA34-parE	LC495878	SA61-parE	LC495879	FU28-parE
LC495880	TA4-parE	LC495881	OT1-parE	LC500134	FU1_scm
LC500135	FU32_scm	LC500136	FU129_scm	LC500137	SA25_scm
LC500138	SA34_scm				