Spread of SARS-CoV-2 Genomes on Genomic Index Maps of Hierarchy

Jeffrey Zheng, Yang Zhou, Minghan Zhu, Mu Qiao, Zhigang Zhang

Abstract Using visual technologies, COVID-19 patients worldwide are conveniently described by position information to collect samples, and modern GIS maps are useful to show influenced flows and numbers of patients on various regions of a pandemic. From an analysis viewpoint, it is more interesting to organize genomic information into a phylogenetic tree with multiple branches and leaves in representations. Clusters of genomes are organized as phylogenetic trees to represent intrinsic information of genomes. However, there are structural difficulties in projecting phylogenetic information into 2D distributions as GIS maps naturally.

In this paper, a novel projection is proposed to arrange SARS-CoV-2 genomes by genomic indexes to make a structural organization as 2D GIS maps. For any genome, there is a unique invariant under certain conditions to provide an absolute position on a specific region. In this hierarchical framework, it is possible to use a visual tool to represent any selected region for clustering genomes on refined effects. Complementary visual effects are provided with phylogenetic tree technology. Sample regions and various projections show spread effects of five thousand SARS-CoV-2 genomes in 72 countries, and four special countries are selected on genomic index maps.

Keywords genomic index, visual maps, phylogeny, projection, information entropy, global invariant, hierarchical projection

Jeffrey Zheng1,2
1 Key Laboratory of Quantum Information of Yunnan
2 Key Laboratory of Software Engineering of Yunnan
Yunnan University, Kunming, e-mail: conjugatelogic@yahoo.com

Yang Zhou, Minghan Zhu, Mu Qiao
Yunnan University

Zhigan Zhang
School of Life Sciences & Technology, Yunnan University

This work was supported by the Key Project on Electric Information and Next Generation IT Technology of Yunnan (2018ZI002).
Introduction

The outbreak of SARS-CoV-2 caused COVID-19 to start in Dec. 2019 and is now pandemic. To the date of 25 May 2020, there are more than 5.33 million confirmed cases and 0.34 million deaths worldwide. An understanding of the prevalence and contagiousness of the disease and of whether the strategies used to contain it to date have been successful is important for understanding future containment strategies.

One excellent strategy for containment of SARS-CoV-2 is to collect sample genomes globally into the GISAID genetic database [1] for infected viruses. Based on this effective activity, Nextstrain provides Phylogenetic tree [2] to organize sample datasets from different places to categorize them as clusters under the maximal likelihood relationship to view intrinsic variations among SARS-CoV-2 genomes. Based on phylogenetic information, a dynamic simulation system provides flexible illustrations on selected branches [3] to support medical doctors, virological experts, biomedical specialists and psychologic doctors for detailed treatments on COVID-19 patients.

Weakness of Phylogenetic Tree

The phylogenetic tree of Nextstrain is based on the maximal likelihood relationship to organize genomic datasets as hierarchical clusters under differential information. After a sample genome of SARS-CoV-2 compared with root node and following branch nodes recursively, it is possible to push it into the most likelihood node that contains the most similar genomes to be a target group. Since a genome contains a long sequence, there are multiple relationships among various clusters in the phylogenetic tree shown in Fig. 1. Using GIS maps, it is useful to see various genomes distributed worldwide.

Fig. 1 The phylogenetic tree of real cases over global on Nextstrain
Further arrangement may not be a direct approach. Regular Zoom operators in GIS could be simulated along deeper or upper movement along branching nodes in a phylogenetic tree. Since phylogenetic trees correspond to neither 1D nor 2D structures, it is difficult to rearrange various subtrees [4] as visual objects.

In other words, effective projections for a subset of phylogenetic trees provide a natural projection, and other forms of visual representations could not be directly generated.

Combination, Matrix and Thermodynamics

In modern mathematics and physics, there are many theoretical constructions to handle invariant and variation problems for entropy issues [5]-[35] such as combinatorial mathematics, combinatorial theory, combinatorics, multiple variable complex theory, statistical physics, thermodynamics, thermostatistics, statistical mechanics et al.

Variant Construction

In this direction, vectors, matrices and invariant measurements are described relevant to wider applications [37]-[40] on variant construction [41]-[44].

The genomic index provides unique identification for each genome to be an invariant under given conditions. Based on these types of global quantitative characteristics, it is convenient for large numbers of genomes to be located in a certain geometric region to be collected as clusters.

Different entropy quantities were discussed in separate papers: Visualization of SARS-CoV-2 Genomes on Genomic Index Maps [45], Visualizations of Topological Entropy on SARS-CoV-2 Genomes in Multiple Regions [46], Cluster Analysis of Visual Differences on Pairs of SARS-CoV-2 Genomes [47], Visualizations of Combinatorial Entropy Index on Whole SARS-CoV-2 Genomes [48].

Considering this is an extremely important research direction, it is necessary to handle this topic from a foundation level to provide additional information to explore hidden structures among this type of multiple levels of hierarchical constructions from a visual representation viewpoint.
Materials and Methods

Input on Four Meta Symbols

For genomes, each element of input sequences is composed of four meta symbols: \{A,C,G,T\}.

The First Order of Combinations

From a combinatorial viewpoint, the first order of combinations from the four symbols is composed of sixteen states as a lattice of hierarchy, as shown in Fig. 2.

![Fig. 2 Sixteen combinations of four meta-symbols in a hierarchy of a lattice](image)

The sixteen states \(SS = \{\emptyset, A, C, G, T, AC, AG, AT, CG, CT, GT, CGT, AG, ACT, ACG, ACGT\} \) can be mapped into the sixteen numbers \(SI = \{0, 1, 2, \cdots, 15\} \) to represent a 1D linear structure with 16 distinct positions. For a segment of a genome with \(m \) elements, there are four meta measures: \(\{m_A, m_C, m_G, m_T\} = \{m_1, m_2, m_3, m_4\} \) and sixteen combinatorial measures: \(\{m_i\}, 0 \leq i \leq 15 \) to correspond a meta measuring vector with four elements and a combinatorial measuring vector with sixteen elements, respectively.

Multiple Probability Measures

When a genome contains \(m \) elements, the numbers of four Meta symbols can be counted. Let \(m_s, s \in SS \) be a number of symbols \(s \) and \(p_s \) be a probability measure. We have the following equations for multiple probability measures.
\[m = m_A + m_C + m_G + m_T \]

\[p_s = \frac{m_s}{m}, s \in SS \]

\[1 = p_A + p_C + p_G + p_T \]

Under multiple probability conditions, there are sixteen distinct probability measures \(\{p_i\}_{i=0}^{15}, 0 \leq p_i \leq 1, i \in SI \) respectively.

Two Workflows from Input to Output

Two workflows (1) and (2) can be identified by the type of output.

1. Vector of Genome \(\rightarrow \) Probability \(\rightarrow \) Sixteen Probability Vectors
 \(\rightarrow \) Entropy \(\rightarrow \) Sixteen Indexes
 \(\rightarrow \) Selection \(\rightarrow \) An Index

2. \{Pair of Indexes\} \(\rightarrow \) Mapping \(\rightarrow \) A Genomic Index Map

Genomic Index Projection and Genomic Index Map

Three workflows are described in three parts as input, output and process.

In Step (1), one index of 16 Combinatorial Entropies can be generated.

\[Input : \ N \ elements \ in \ a \ genome, \ N = m \times M \]

\[Output : \ 1 \ (an \ index \ in [0, \log_2(m+1)]) \]

\[Process : \ N \ \text{Segment} \rightarrow m \times M \ \text{Meta-Measure} \rightarrow 4 \times M \ \text{Combination} \rightarrow 16 \times (m+1) \]

\(\text{Entropy} \rightarrow 16 \ \text{Selection} \rightarrow 1 \)

\[CF : 16 \ (Total \ number \ of \ selections) \]

In Step (2), a genomic index map can be generated from multiple sets of sixteen indexes.

\[Input : \ \forall(x,y) \in \text{Multiple \ sets \ of \ sixteen \ indexes, \ } x, y \in [0, \log_2(m+1)] \]

\[Output : \ An \ Index \ Map \ on \ [0, \log_2(m+1)] \times [0, \log_2(m+1)] \ \text{Region} \]

\[Process : \ \forall(x,y) \ \overset{\text{Projection}}{\rightarrow} [0, \log_2(m+1)] \times [0, \log_2(m+1)] \]

\[CF : 256 \ (Total \ number \ of \ selections) \]
Combinatorial Entropy Measurement

Let a vector Z with $(m+1)$ elements, $Z = (Z_0, Z_1, \cdots, Z_m), 0 \leq Z_j \leq M$ and $M = \sum_{j=0}^{m} Z_j$. Under this condition, let $P_j = \frac{Z_j}{M}$ be the j-th probability measurement, and a relevant information entropy eZ can be determined and restricted in a $[0, \log_2(m+1)]$ region.

$$eZ = -\sum_{j=0}^{m} P_j \log_2(P_j), \; eZ \in [0, \log_2(m+1)] \tag{1}$$

$$1 = \sum_{j=0}^{m} P_j, \; 0 \leq j \leq m \tag{2}$$

For sixteen combinations of the first order, sixteen entropy measurements of eZ correspond to $\{eZ_i\}, 0 \leq i \leq 15$.

2D Combinatorial Entropies

Extending this construction to higher orders, the second order of combinations are composed of 2D 16×16 pairs of states or a 2D square with 256 positions.

Under this condition for a segment with m elements on a genome Z with $N = m \times M$ elements, sixteen entropies $\{eZ_i\}, 0 \leq i \leq 15, ZE_i \in [0, \log_2(m+1)]$ are determined.

$$(eZ_{i,j}) = \begin{pmatrix} eZ_{0,0} & \cdots & eZ_{i,0} & \cdots & eZ_{15,0} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ eZ_{0,j} & \cdots & eZ_{i,j} & \cdots & eZ_{15,j} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ eZ_{0,15} & \cdots & eZ_{i,15} & \cdots & eZ_{15,15} \end{pmatrix} \; i, j \in SI$$

A pair of indexes corresponds to : $eZ_{i,j} = (eZ_i, eZ_j), 0 \leq i, j \leq 15$. There are a total of 256 pairs of 2D positions determined by the genome Z in the square on the $[0, \log_2(m+1)] \times [0, \log_2(m+1)]$ region.

Multiple Genomes

For multiple genomes $\{Z_t\}, 1 \leq t \leq T$ on maximal T members of each (i, j) projection, a total number of T positions can be collected on 2D square of $\forall (eZ_{i,t}, eZ_j^t), 1 \leq t \leq T$. This provides a special distribution for whole genomes of T members on (i, j) projection based on combinatorial entropy measurements.
\[
EZ_{i,j} = \sum_{t=1}^{T} eZ_{i,j}^t
\]

\[
= \sum_{t=1}^{T} (eZ_{i,j}^t, eZ_{j,i}^t), 0 \leq i, j \leq 15
\]

Each \(EZ_{i,j}\) represents an index map corresponding to a \([0, \log_2(m + 1)] \times [0, \log_2(m + 1)]\) region.

Genomic Index Maps

Different from a genome, it has a relative position in a phylogenetic tree on the maximal likelihood relationship. A genomic index is an absolute invariant to correspond a genome into a quantitative measurement under information entropy based on variant construction. Visual representations of multiple projections are illustrated.

Datasets

From a collection of more than 30K genomes from the GISAID genetic database, more than 5K genomes were selected without any uncertain element of ‘N’ in whole sequences. Approximately 25K genomes contain at least one ‘N’. There are 72 countries involved that contain more than one genome.

Visual Tool - Plotly

Plotly is a visual tool [36] of open-source visualization libraries for R, Python and JavaScript. In this project, we use this visual tool to illustrate hierarchical distributions for multiple genomes on selected regions of \(EZ_{i,j}\) maps.

Clustering on Genomic Index Maps

Since all genomic indexes are associated with absolute invariants, this makes it possible to apply 1D or 2D distributions to represent complicated clusters for multiple genomes in hierarchical structures.

Two distinct schemes are shown in Fig 3 for both the phylogenetic tree of Nextstrain and a global genomic index map on five thousand genomes in 72 countries. Different colors are applied to distinguish relevant countries. Various clusters
Fig. 3 The phylogenetic tree of real cases over global on Nextstrain and Global Genomic Index Map

of genomes are clearly visualized by distinct color points for relevant countries on the genomic index map. Refined maps are shown in the next section.

Results

Relevant results are included in a separated file: Human-16-A-G.html that can be visualized by an HTML browser in the newest version for Plotly libraries.

For five thousand genomes, a global genomic index map and various projection maps for four countries: Australia, China, Netherlands, USA were selected to show relevant projections of results in Fig 4 (a)-(b) and Fig 5(a)-(f) respectively.

For an enlarged region, regional genomic index map and various projection maps for four countries: Australia, China, the Netherlands, and the USA, were selected to show the relevant projections of the results in Fig. 6 (a)-(b) and Fig. 7(a)-(f) respectively.

Since there are more functions included in the package, it is interesting to control this program to show specific country’s distribution double (single) click the entry extracted (removed) from the 72 countries or to draw a box on the region to investigate a special genome on its clustering neighborhood. When the console is pointed to a genome index position, there is a display box to show regular No. of the genome and the values of two entropy indexes.

Under this package, many complicated explorations could be carried out.

Discussion

Since there is an autoscale function in the Plotly package, visual regions for selected datasets may not be a fixed one with slight differences for each selected region.
Fig. 4 Five thousands of genomes on genomic index maps (a) Global (b) Four countries: Australia + China + Netherland + USA

Global Projections for Four Countries

In Fig. 4 and Fig. 5, six genomic index maps are represented for all genomes of 72 countries and selected four countries: Australia, China, the Netherlands and the USA.
In Fig. 4(a) and Fig. 5(a), all genomic indexes of 72 countries are restricted to a region of $[2.93, 3.02] \times [2.62, 2.71]$ and more than sixteen clusters could be identified.
Spread of SARS-CoV-2 Genomes on Genomic Index Maps of Hierarchy

Fig. 6 An enlarged region (a) Global (b) Four countries: Australia + China + Netherland + USA

by visual clustering technologies. The centers of two larger clusters are located on (2.963,2.669) and (2.973,2.642).

In Fig. 4(b) and Fig. 5(b), all genomic indexes of four countries: Australia, China, the Netherlands, and the USA are selected in a region of [2.93,3.01] × [2.62,2.70]
and a similar number of clusters could be identified as same as in Fig. 4(a). The centers of two larger clusters are located on (2.963, 2.669) and (2.973, 2.643).
In Fig. 5(c), all genomic indexes of the USA in blue are selected from a region of
\([2.93, 3.01] \times [2.62, 2.70]\) with the similar number of clusters identified in Fig. 4(a). The centers of two larger clusters are located on (2.963, 2.669) and (2.973, 2.643).

In Fig. 5(d), all genomic indexes of China in red are selected from a region of
\([2.93, 3.01] \times [2.63, 2.70]\) with lighter clusters identified in Fig. 4(a) or Fig. 4(b). The centers of two larger clusters are located on (2.963, 2.670) and (2.994, 2.643).

In Fig. 5(e), all genomic indexes of Australia in light blue are selected from a region of
\([2.94, 3.01] \times [2.62, 2.70]\) with much lighter clusters identified in Fig. 5(a) or Fig. 5(b). The centers of two larger clusters are located on (2.963, 2.668) and (2.972, 2.664).

In Fig. 5(f), all genomic indexes of the Netherlands in yellow color are selected from a region of
\([2.955, 2.995] \times [2.635, 2.675]\) with many fewer clusters identified in Fig. 5(a) or Fig. 5(b). The centers of two larger clusters are located on (2.963, 2.668) and (2.972, 2.667).

From this group of comparisons, the centers of the larger clusters have significant differences in the four selected countries. Four countries, Australia, the Netherlands, the USA and China, are shared with the cluster on (2.963, 2.668), (2.963, 2.669), (2.963, 2.669) and (2.963, 2.670) with slightly different centers. The second larger clusters are completely different for the four countries. This could be the intrinsic facts to indicate basic genomic differences on various countries in medical treatments for COVID-19 patients.

Enlarged Region of Global Projections for Four Countries

In Fig. 6 and Fig. 7, six genomic index maps are represented on enlarged regions for all genomes of 72 countries and selected four countries: Australia, China, the Netherlands and the USA.

In Fig. 6(a) and Fig. 7(a), all genomic indexes of 72 countries are restricted to a region of
\([2.959, 2.968] \times [2.664, 2.673]\), and more than sixteen clusters could be identified by visual clustering technologies. The center of the larger cluster is located on (2.962, 2.669).

In Fig. 6(b) and Fig. 7(b), all genomic indexes of four countries, Australia, China, the Netherlands, and the USA, are selected in a region of
\([2.957, 2.971] \times [2.662, 2.674]\). The center of the larger cluster is located on (2.963, 2.669).

In Fig. 7(c), all genomic indexes of the USA in blue are selected from a region of
\([2.959, 2.968] \times [2.664, 2.674]\). The centers of the larger cluster is located on (2.9625, 2.6691). Most genomic indexes may be located around the left-center of the region.

In Fig. 7(d), all genomic indexes of China in red are selected from a region of
\([2.959, 2.968] \times [2.663, 2.674]\). The center of the larger cluster may be located on (2.962, 2.669). Most genomic indexes are located in the left-top part of the region.

In Fig. 7(e), all genomic indexes of Australia in light blue are selected from a region of
\([2.959, 2.967] \times [2.664, 2.674]\). The center of the larger cluster is located
on (2.963,2.668). Most genomic indexes may be located in the center-bottom part of the region.

In Fig. 7(f), all genomic indexes of the Netherlands in yellow are selected from a region of $[2.959,2.967] \times [2.664,2.674]$. The center of the larger cluster is located on (2.9625,2.670). Most genomic indexes may be located in the center area of the region.

In this region, four countries provide genomic indexes as main clusters with slightly different positions. Compared with four centers: the USA (2.9625,2.6691), China (2.962,2.669), Australia (2.963,2.668) and the Netherlands (2.9625,2.670). There are approximately $(\pm 0.001, \pm 0.0002)$ differences among the four centers.

In principle, the enlarged operations can be repeatedly applied to selected regions to refine detailed locations in the finest value. In the most conditions, two genomic indexes could be separated when a larger fold magnification was applied. This may provide conveniently classified effects for medical doctors to treat COVID-19 patients with similar genomic indexes as one group of genomes.

Conclusion

Using combinatorial entropy as 2D genomic index maps, there are 256 projections to support multiple genomes in representations. Applying five thousand genomes of SARS-CoV-2 on 72 countries and special selections on four countries based on Plotly libraries, two specific sets of six genomic index maps are shown in significant different distributions on each country to illustrate complicated contagiousness patterns among various regions.

Using genomic index maps, further refined classifications and categories of genomes can be visually explored and this visual tool will be useful in further medical treatments for COVID-19 patients worldwide in the coming future.

Conflict Interest

No conflict of interest has been claimed.

Acknowledgements The authors would like to thank NCBI, GISAID, CNGBdb, and Nextstrain for providing invaluable information on the newest dataset collections of SARS-CoV-2 and other coronavirus genomes to support this project working smoothly.

References

1. GISAID: Open access to influenza virus data https://gisaid.org
2. Nextstrain Real time tracking of pathogen evolution https://nextstrain.org
3. HP Yao, XY Lu, …, LJ Li, Patient-driven mutations impact pathogenicity of SARS-CoV-2, DOI: https://doi.org/10.1101/2020.04.14.20060160 https://www.medrxiv.org/10.1101/2020.04.14.20060160v2
4. Li C, Yang Y, Ren L. Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infect Genet Evol. 2020 Mar 10:82:104285. doi: 10.1016/j.meegid.2020.104285. [Epub ahead of print] PMID: 32169673
5. P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
6. J. R. Chen, Combinatorial Mathematics, Harbin Institute of Technology Press, 2012 (in Chinese).
7. H. W. Gould, Some Generalizations of Vandermonde’s Convolution, The American Mathematical Monthly, Vol. 63, No.2 84-91, 1956.
8. H. W. Gould, Combinatorial identities, Morganton, 1972.
9. M. Hall, Combinatorial Theory, 2nd edition, Blaisdell, 1986.
10. L. K. Hua, Loo-Keng Hua Selected Papers, Springer, 1982.
11. L. K. Hua, Selected Work of Hua Loo-Keng on Popular Sciences, Shanghai Education Press, 1984 (in Chinese).
12. D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd edition, Addison-Wesley, 1998.
13. D. E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011.
14. F. Morgan, Geometric Measure Theory, 4th edition, Elsevier 2009.
15. G. Polya, R. Tarjan and D. Woods, Notes on Introductory Combinatorics, Birkhauser, 1983.
16. R. P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd edition, Cambridge University Press, 1997.
17. D. Stanton, R. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, 1986.
18. G.Z. Tu, Combinatorial Enumeration Methods & Applications, Science Press, 1981 (in Chinese).
19. A. Tucker, Applied Combinatorics, John Wiley & Sons, 2007.
20. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd edition, Cambridge University Press, 2001.
21. L. X. Wang, An Elementary Treatise on Combinations, Harbin Institute of Technology Press, 2012 (in Chinese).
22. L. Z. Xu, M. S. Jiang and Z. Q. Zhu, Combinatorial Mathematics of Computation, Shanghai Science & Technology Press, 1983 (in Chinese).
23. L D Landau, E M Lifshitz. Statistical Physics, 3rd edition, Part 1, Pergamon Press 1986.
24. HB Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd Edition. John Wiley & Sons 1985.
25. W Greiner, L Neise, H Stocker. Thermodynamics and Statistical Mechanics. Springer-Verlag 1995.
26. T L Hill, Introduction to Statistical Thermodynamics, Addison-Wesley, Reading Mass. 1960.
27. R Kubo. Thermodynamics. North-Holland Pub. Co. 1968.
28. R P Freyman, Statistical Mechanics, Benjamin Reading Mass. 1972.
29. B Widom, in Foundational Problems in Statistical Mechanics, Vol. III edi. by Cohen, Horth-Holland, 1975 1-45.
30. K G Wilson, Rev., Mod. Phys. 55, 583 1983
31. J Beatte, I Oppenheim. Thermodynamics, Elsevier Scientific 1979.
32. S K Ma, Statistical Mechanics, World Scientific 1985.
33. P W Atkins, The Second Law, Scientific American Books and W H Freeman and Co. 1984.
34. D Chandler. Introduction to Modern Statistical Mechanics, 1st edition. Oxford University Press Inc. 1987.
35. K Huang. Statistical Mechanics, 2nd edition John Wiley & Sons 1987.
36. Plotly: The front-end for ML and data science models. https://plotly.com
37. Z. J. Zheng, A. Maeder, The The conjugate classification of the kernel form of the hexagonal grid, Modern Geometric Computing for Visualization, Springer-Verlag, 73-89, 1992.
38. Z. J. Zheng, Conjugate transformation of regular plan lattices for binary images, PhD Thesis, Monash University, 1994.
39. Jeffrey Z. J. Zheng, Christian H. H. Zheng, A framework to express variant and invariant functional spaces for binary logic, Frontiers of Electrical and Electronic Engineering in China, 5(2):163-172, Higher Educational Press and Springer-Verlag, 2010.
40. Jeffrey Z.J. Zheng, Christian H.H. Zheng and Tosiya L. Kunii. A Framework of Variant Logic Construction for Cellular Automata, Cellular Automata - Innovative Modeling for Science and Engineering, Dr. Alejandro Salcido (Ed.), InTech Press, 2011.
41. Jeffrey Zheng, Variant Construction from Theoretical Foundation to Applications, Springer Nature 2019 https://www.springer.com/in/book/9789811322815
42. Jeffrey Zheng, Variant Construction Theory and Applications, Vol. 1: Theoretical Foundation and Applications, Science Press 2020 (Chinese, Formal Publishing Soon).
43. Jeffrey Zheng, ResearchGate: http://researchgate.net/profile/Jeffrey_Zheng
44. Jeffrey Zheng, Chris Zheng, Biometrics and Knowledge Management Information Systems, Chapter 11: Variant Construction from Theoretical Foundation to Applications, Springer Nature 2019, 193-202 https://link.springer.com/chapter/10.1007/978-981-13-2282-2_11
Selected in Research of COVID-19 for PubMed Central PMC and the World Health Organization WHO by Springer-Nature on Free Access of all scientific researchers worldwide.
45. Jeffrey Zheng, Minghan Zhu, Mu Qiao, Yang Zhou. Visualizations of SARS-CoV-2 Genomes on Genomic Index Maps, Electric Current Neurology, accepted and going to publish in October 2020 special issue.
46. Mu Qiao, Renyang Liu, Zhenhui Wang, Xinmei Li, Jeffrey Zheng. Visualizations of Topologic Entropy on SARS-CoV-2 Genomes in Multiple Regions, Electric Current Neurology, accepted and going to publish in October 2020 special issue.
47. Minghan Zhu, Jeffrey Zheng. Cluster Analysis of Visual Differences on Pairs of SARS-CoV-2 Genomes, Electric Current Neurology, accepted and going to publish in October 2020 special issue.
48. Yang Zhou, Jeffrey Zheng. Visualizations of Combinatorial Entropy Index on Whole SARS-CoV-2 Genomes, Electric Current Neurology, accepted and going to publish in October 2020 special issue.