Pressure-Induced Phase Transition and Band Gap Decrease in Semiconducting β-Cu$_2$V$_2$O$_7$

Robin Turnbull,* Javier González-Platas, Fernando Rodríguez, Akun Liang, Catalin Popescu, Zhangzhen He, David Santamaría-Pérez, Plácida Rodríguez-Hernández, Alfonso Muñoz, and Daniel Errandonea

ABSTRACT: The understanding of the interplay between crystal structure and electronic structure in semiconductor materials is of great importance due to their potential technological applications. Pressure is an ideal external control parameter to tune the crystal structures of semiconductor materials in order to investigate their emergent piezo-electrical and optical properties. Accordingly, we investigate here the high-pressure behavior of the semiconducting antiferromagnetic material β-Cu$_2$V$_2$O$_7$, finding it undergoes a pressure-induced phase transition to γ-Cu$_2$V$_2$O$_7$ below 4000 atm. The pressure-induced structural and electronic evolutions are investigated by single-crystal X-ray diffraction, absorption spectroscopy and ab initio density functional theory calculations. β-Cu$_2$V$_2$O$_7$ has previously been suggested as a promising photocatalyst for water splitting. Now, these new results suggest that β-Cu$_2$V$_2$O$_7$ could also be of interest with regards to barocaloric effects, due to the low phase-transition pressure, in particular because it is a multiferroic material. Moreover, the phase transition involves an electronic band gap decrease of approximately 0.2 eV (from 1.93 to 1.75 eV) and a large structural volume collapse of approximately 7%.

1. INTRODUCTION

1.1. Introduction. Copper vanadate materials constitute an important class of semiconductor inorganic compounds which exhibit a wide variety of chemical compositions: CuV$_2$O$_6$, Cu$_3$V$_2$O$_7$, Cu$_4$V$_2$O$_9$ and Cu$_5$V$_2$O$_{10}$. Of these, copper(II) pyrovanadate, Cu$_3$V$_2$O$_7$, has been highlighted as a favorable material for the photocatalytic splitting of water into hydrogen and oxygen due to its band gap energy. Therefore, copper vanadate materials may play an essential role in the global shift toward renewable energy sources. Cu$_2$V$_2$O$_7$ exhibits three known polymorphs, known as α, β, and γ, all of which are formed at elevated temperatures, either naturally occurring (α and β) or synthesized in the laboratory (γ), and all of which are (meta)stable at ambient conditions.

The present work investigates β-Cu$_2$V$_2$O$_7$ under high-pressure conditions at ambient temperature to explore the effect of pressure on the crystal and electronic structures. β-Cu$_2$V$_2$O$_7$ has a number of interesting and useful properties; for example, β-Cu$_2$V$_2$O$_7$ is a semiconducting antiferromagnetic material which has an (indirect) electronic band gap energy of \sim2 eV, which is optimal for absorbing energy within the solar range. β-Cu$_2$V$_2$O$_7$ also exhibits interesting magnetic properties, due to its spin-1/2 honeycomb lattice of Cu$^{2+}$ [3d9] ions, including quasi-1D antiferromagnetism. Finally, β-Cu$_2$V$_2$O$_7$ is also known to exhibit a negative thermal expansion at ambient pressure. None of the Cu$_2$V$_2$O$_7$ phases has previously been studied at high pressure; therefore, an additional motivation for this high-pressure investigation is to study mechanical similarities between the negative thermal expansion and pressure-induced volume decrease.

Herein, we report an experimental high-pressure single-crystal synchrotron X-ray diffraction (XRD) study of β-Cu$_2$V$_2$O$_7$ under compression up to 4 GPa at ambient temperature. We present unambiguous evidence of a pressure-induced first-order phase transition from the monoclinic β-phase to the triclinic γ-phase between 0.14 and 0.40 GPa. We also investigate the electronic structure via absorption spectroscopy and ab initio density functional theory calculations, in particular the optical band gap and sub-band d\rightarrowd transitions associated with Cu$^{2+}$ coordination complexes, finding the phase transition to be characterized by a 0.2 eV band gap decrease and a decrease in the average crystal field strength. We also report a detailed study of the pressure evolution of both of the crystal structures, associated...
crystallographic parameters and physical properties, including the bulk moduli (via a pressure-volume equation of state (EoS)) and isothermal compressibility tensors of both \(\beta \)- and \(\gamma \)-phases.

2. METHODS

2.1. Sample Preparation. Single crystals of \(\beta \)-Cu\(_2\)V\(_2\)O\(_7\) were grown by a flux method using SrV\(_2\)O\(_4\) as a flux according to ref 16. A mixture of high-purity CuO, V\(_2\)O\(_5\), and SrCO\(_3\) was ground fully and evenly with ethanol (99%) in an agate mortar. The mixture was packed into a platinum crucible (40 \(\times \) 40 \(\times \) 45 mm\(^3\)) which was then placed in a homemade electric furnace. The furnace was heated up to 950 °C and kept at this peak temperature for 20 h. The furnace was then cooled slowly to 750 °C at a rate of 0.5 °C/h. The furnace was finally cooled down to room temperature at a rate of 100 °C/h. With the above growth procedure, single crystals of \(\beta \)-Cu\(_2\)V\(_2\)O\(_7\) with a size of 3 \(\times \) 3 \(\times \) 5 mm\(^3\) were obtained by mechanical separation from the crucible. Alternative synthesis methods for \(\beta \)-Cu\(_2\)V\(_2\)O\(_7\) also exist.2,17

2.2. Measurements. Angle-dispersive single-crystal XRD data were acquired in two ways. First, data were acquired at ALBA Synchrotron18 (Barcelona, Spain) on the BL04 - MSPD beamline using a monochromatic beam \(\lambda = 0.4246 \) Å focused to a spot size of 20 \(\times \) 20 μm\(^2\). A SX165 Rayonix Mar CCD detector was used to record the data. Second, single-crystal XRD data were collected in-house at the University of La Laguna. CrysAlisPro19 was used to record the data. Synchrotron18 (Barcelona, Spain) on the BL04 - MSPD beamline was chosen with the SeeK-path tool.38 The band structure analysis was carried out with the sumo package.39

2.3. Ab Initio Density Functional Theory Calculations. The \(\text{ab initio} \) simulations were carried out within the framework of density functional theory, DFT,28 with the Vienna \(\text{ab initio} \) Simulation Package, VASP.29,30 The projector augmented-wave, PAW, and pseudopotentials31,32 were employed and the plane-wave kinetic cutoff was extended up to 540 eV to ensure highly converged results. The integrations over the Brillouin zone, BZ, were carried out with k-points special samplings (4 \(\times \) 4 \(\times \) 3 and 5 \(\times \) 4 \(\times \) 3 grids, for the low and high-pressure phases, respectively). The exchange-correlation energy was described by means of the generalized gradient approximation, GGA, with the Armiento and Mattsson, AM05, prescription.33,34 To treat the strongly correlated states properly, the DFT+U method of Duradev et al.35 was employed. This method utilizes a single parameter, \(U_{\text{eff}} \), for each atom, \(U_{\text{eff}} = U - J \), where \(U \) and \(J \) are the effective on-site Coulomb and exchange parameters, respectively. The value used for \(U_{\text{eff}} \) was 6.5 eV for the Cu atoms.36,37 In the present study, the antiferromagnetic configuration was found to be the lower one in energy.

The unit cell parameters and the atomic positions were fully optimized to obtain, at selected volumes, the relaxed structure. The criteria imposed for the optimization were that the forces on the atoms were less than 0.003 eV/Å, and the deviations of the stress tensors from a diagonal hydrostatic form were lower than 0.1 GPa. In this way, the simulations provide a data set of volumes, energies, and pressures (from the stress tensor) that are fitted with a Birch–Murnaghan equation of state26 to obtain the theoretical equilibrium volume, the Bulk modulus, and the pressure derivatives.

The \(k \)-path for the electronic band structure calculations was chosen with the SeeK-path tool.38 The band structure analysis was carried out with the sumo package.39

3. RESULTS AND DISCUSSION

3.1. Visual Observations. The pressure-induced \(\beta \rightarrow \gamma \) phase transition is unambiguously confirmed by single-crystal XRD and \(\text{ab initio} \) density functional theory calculations (see the next section). Here, we begin by presenting two visual observations of the \(\beta \rightarrow \gamma \) phase transition in the sample. First, the \(\sim 2 \) eV band gap, which transmits light in the lower energy part of the visible spectrum (red/orange), is sensitive to pressure. In Figure 1 it is clear that the color of the Cu\(_2\)V\(_2\)O\(_7\) crystal becomes darker across the \(\beta \rightarrow \gamma \) phase transition, which is associated with a band gap closure of \(\sim 0.2 \) eV (see "Electronic Structure" section for further details). Second, as indicated by the arrow in Figure 1b, crystal fractures were

![Figure 1. Micrographs of a Cu\(_2\)V\(_2\)O\(_7\) crystal (orange) in the sample chamber of a DAC. (a) \(\beta \)-Cu\(_2\)V\(_2\)O\(_7\) crystal at 0.11 GPa. (b) \(\gamma \)-Cu\(_2\)V\(_2\)O\(_7\) crystal at 0.43 GPa.](image-url)
observed on transition to the γ-phase. Neither crystal fracture nor color change necessarily indicates the existence of a phase transition; however, at such low pressures (<0.5 GPa), the fractures can indicate a large volume collapse associated with a first-order phase transitions. The transition is irreversible on sample decompression.

3.2. Structural Analysis and Phase Transition.

The crystal structures of β- and γ-Cu₂V₂O₇ are shown in Figure 2, and basic crystallographic information is presented in Table 1. Comprehensive crystallographic information is provided in Tables S1–S3. The crystal structures have previously been described elsewhere, determined from ambient pressure XRD measurements, however, for the sake of discussion, the structures of β- and γ-Cu₂V₂O₇, as determined in the current work, are briefly described here.

The structure of β-Cu₂V₂O₇ is shown in Figures 2a,c. In β-Cu₂V₂O₇, all of the Cu²⁺ cations are crystallographically equivalent, and all of them are penta-coordinated by oxygen atoms, thereby forming CuO₅ coordination complexes with a square-based-pyramidal configuration. (For clarity, the CuO₅ units are shown in blue and orange in Figure 2a,c.) All CuO₅ units share edges to form continuous 1D chains which point along the ab-plane diagonals. The chains are also organized into layers, which follow the stacking sequence (ABAB...), where chains in layer A point in the [1,1,0] direction (orange), while chains in layer B point in the [1,—1,0] direction (blue). These A and B layers are interconnected by layers of V₂O₇ dimers, which are each formed by two corner-sharing VO₄ tetrahedra. The V—V vectors, defined by the vanadium atoms in the V₂O₇ units, are all mutually parallel and point along the a-axis (i.e., in the [1,0,0] direction).

The structure of the γ-Cu₂V₂O₇ phase is shown in Figure 2b,d. The γ-Cu₂V₂O₇ structure has two symmetrically independent Cu²⁺ cations. Half of the Cu²⁺ cations are crystallographically equivalent, and all of them are penta-coordinated by oxygen atoms, thereby forming CuO₅ coordination complexes with a square-based-pyramidal configuration. (For clarity, the CuO₅ units are shown in blue and orange in Figure 2a,c.) All CuO₅ units share edges to form continuous 1D chains which point along the ab-plane diagonals. The chains are also organized into layers, which follow the stacking sequence (ABAB...), where chains in layer A point in the [1,1,0] direction (orange), while chains in layer B point in the [1,—1,0] direction (blue).

Table 1. Basic Crystal Data for β- and γ-Cu₂V₂O₇

phase	β-Cu₂V₂O₇	γ-Cu₂V₂O₇		
	experiment	DFT	experiment	DFT
pressure (GPa)	0.02	0.00	0.40	0.00
crystal system	monoclinic	monoclinic	triclinic	triclinic
space group	C2/c	C2/c	P1	P1
a (Å)	7.6858(11)	7.7660	5.080(5)	5.0540
b (Å)	8.0341(9)	7.9205	5.8098(16)	5.8041
c (Å)	10.121(3)	10.0631	9.380(4)	9.4689
α (deg)	90	90	100.00(3)	99.80
β (deg)	110.39(2)	109.36	97.20(6)	97.25
γ (deg)	90	90	97.18(5)	97.15
V (Å³)	585.8(2)	584.0	267.4(3)	268.0
Z	4	4	2	2

Comprehensive experimental crystallographic information is provided in Tables S1–S3.

Figure 2. Crystal structures of β- and γ-Cu₂V₂O₇. (a) and (b) β- and γ-Cu₂V₂O₇ structures, respectively, projected along their c-axes, oriented so that the V—V vectors (red lines) of both structures are mutually parallel on the page. (c) and (d) β- and γ-Cu₂V₂O₇ structures, respectively, projected along their ab-planes. Blue (and orange) polyhedra correspond to penta-coordinated CuO₅ units. Green polyhedra correspond to hexa-coordinated CuO₆ units. Red spheres represent vanadium atoms. For the sake of clarity, the VO₄ tetrahedra and the oxygen atoms, which correspond to the vertices of all coordination complexes, are not shown. Blue, orange, and green vectors show the crystallographic direction of the chains. The black axes represent the principal compression axes (discussed in the compressibility section). The crystal structures were rendered in Vesta. Supplementary crystallographic data for both β- and γ-Cu₂V₂O₇ structures can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2123194–2123205.
follow the stacking sequence (ABAB...), where chains in layer A contain only CuO$_5$ units (blue), while chains in layer B contain only CuO$_6$ units (green). These A and B layers are again interconnected by layers of V$_2$O$_7$ dimers. The V−V vectors are all mutually parallel and point along the ab-plane diagonal (i.e., in the [1,1,0] direction).

It is clear from Figure 2 that the crystal structures of β- and γ-Cu$_2$V$_2$O$_7$ are closely related. Both structures are characterized by alternating layers of chains of CuO$_x$ units, whereby the layers are interconnected by mutually parallel V$_2$O$_7$ units. The V−V vectors are all mutually parallel and point along the ab-plane diagonal (i.e., in the [1,1,0] direction).

It is clear from Figure 2 that the crystal structures of β- and γ-Cu$_2$V$_2$O$_7$ are closely related. Both structures are characterized by alternating layers of chains of CuO$_x$ units, whereby the layers are interconnected by mutually parallel V$_2$O$_7$ units. The V−V vectors are all mutually parallel and point along the ab-plane diagonal (i.e., in the [1,1,0] direction).

The band gap energies of β- and γ-Cu$_2$V$_2$O$_7$ were experimentally determined to be 1.91 and 1.73 eV respectively. Dashed lines correspond to Gaussian fits determining the d-d transition energy. Inset: the experimental band gap as a function of pressure. The individual fitted spectra are shown in Figure S2. (b) Schematic energy level diagrams of the elongated octahedral CuO$_6$ (nearly D$_{4h}$) and elongated pyramidal CuO$_5$ (nearly C$_{4v}$) complexes.

3.3. Electronic Structure. The optical properties, and thus the piezo- and thermochromic properties, exhibited by β- and γ-Cu$_2$V$_2$O$_7$ can be explained by the optical transmission window defined by the interband charge transfer transitions (optical band gaps) and the sub-band absorption of Cu$^{2+}$ d-levels (see Figure 3). The relative variations in transition pressure. Bearing in mind that β-Cu$_2$V$_2$O$_7$ has been found to occur naturally in fumarolic areas and that the low pressure required to induce the $β → γ$ phase transition (<0.4 GPa) occurs naturally in the earth’s crust, the present work shows that γ-Cu$_2$V$_2$O$_7$ may also occur naturally although it has not yet been discovered. The $β → γ$ phase transition has previously been observed to be induced by high temperatures (∼700 °C) at ambient pressures. Therefore, the $β → γ$ phase boundary must have a steep negative slope in pressure−temperature space because it can be crossed by increasing either temperature (∼700 °C) or pressure (<0.4 GPa) from ambient conditions. Ab initio density functional theory (DFT) calculations of enthalpy, for the beta and gamma phases, found that the triclinic phase becomes the more stable phase at 0.1 GPa and 0 K (see Figure S1).
energies and oscillator strength (absorption coefficient) with temperature and/or pressure determine these properties. Therefore, understanding these properties requires a precise knowledge of how structural variations (determined via XRD) affect the electronic structure.

The electronic structures of β- and γ-Cu$_2$V$_2$O$_7$ were investigated via absorption spectroscopy measurements and *ab initio* simulations. There are two regions of interest in the adsorption spectra in Figure 3: first, on the right-hand side (above 1.8 eV), the optical band gap edges; second, on the left-hand side (below 1.8 eV), the absorption associated with d–d electronic transitions of Cu$^{2+}$.

3.3.1. Band Structure

We first discuss the optical band gap energies. The band gap energies of β- and γ-Cu$_2$V$_2$O$_7$ were experimentally determined to be 1.91 and 1.73 eV, respectively, thereby corresponding to a band gap collapse of 0.18 eV (~9%) across the β → γ phase transition (as shown by arrow 1 in Figure 3). The β-phase band gap energy of 1.91 eV is in good agreement with the previously reported experimental values of 1.78 eV (ref 37), 1.91 eV (ref 3), and 2.21 eV (ref 41) and the theoretically calculated value of 2.00 eV. The band gap of γ-Cu$_2$V$_2$O$_7$ has not previously been reported. Density functional calculations were also carried out to obtain the full electronic band structures, as indicated in Figure 4, revealing both band gaps to be indirect. The calculated (experimental) band gap energies of β- and γ-Cu$_2$V$_2$O$_7$ are 1.93 eV (1.91 eV) and 1.76 eV (1.73 eV) respectively, thereby showing excellent agreement between experiment and theory. The pressure evolution of the calculated band gaps up to 10 GPa is shown in Figure S3. The experimental band gaps as a function of pressure up to 2.4 GPa are shown in the inset in Figure 3. Additionally, the DOS (total density of states) and the projected density of states (Figure S4) are very similar for both phases.

The upper level of the valence band is contributed to mainly by Cu-3d and O-2p states, while the O 2s states are located in the lower part of the valence band. As for the conduction band, the major contribution comes from the V 3d states.

3.3.2. Sub-Band Absorption

We now discuss the sub-band absorption (below 1.8 eV) associated with d–d electronic transitions of Cu$^{2+}$. The broad Gaussian-shaped absorbing transitions of Cu$^{2+}$ local symmetry of the CuO$_6$ or CuO$_5$ coordination complexes. The maxima, bandwidth, and oscillator strength of these bands strongly depend on the Cu$^{2+}$ local symmetry of the CuO$_6$ or CuO$_5$ coordination complexes. Figure 3b shows schematic energy level diagrams of the elongated octahedral CuO$_6$ (nearly D$_{3h}$) and elongated pyramidal CuO$_5$ (nearly C$_{3v}$) complexes, and the corresponding energies as a function of the σ and π bonding AOM parameters e$_σ$ and e$_π$ for the equatorial (eq) and axial (ax) ligands. The crystal-field strength scales with the bond distance in oxides as a power of $5:10Dq(R) = C/(R^4)$, where R is the bond length. This R-dependence is found from basic CF theory, and it has also been observed experimentally in several high-pressure experiments in transition metal oxides and fluorides involving Cr$^{3+}$ (ref 47), Fe$^{3+}$ (refs 48–50), or Co$^{3+}$ (ref 51) within an experimental accuracy of 5.0 ± 0.5. Therefore, the ratio of the transition energies in the β- and γ-phases is given by

$$
\frac{E(\epsilon \rightarrow b_1)}{E(\epsilon \rightarrow b_1)} = \left(\frac{R_{\epsilon\beta}}{R_{\epsilon\gamma}}\right)^5
$$

(1)

The derivation of eq 1 is provided in the Supporting Information. Taking the average $R_{\epsilon\beta} = 1.95$ Å and $R_{\epsilon\gamma} = 2.01$ Å from the experimental XRD data, the reduction in $E(\epsilon \rightarrow b_1)$ along the β → γ phase transition should be 0.86 eV according to the model. The experimental energy ratio between 1.41 eV (β) and 1.18 (γ) gives a ratio of 0.84 in excellent agreement with the model.

It must be noted that although $R_{\epsilon\beta}$ and $R_{\epsilon\gamma}$ are derived as an average of the four short Cu–O distances obtained from XRD for CuO$_6$, the standard deviation of such distances is below $\sigma = 0.012$ Å in the β-phase and 0.07 Å in the γ-phase. In fact, the slight double-humped band observed in both phases (Figure 3a) may be due to low-symmetry local distortion of CuO$_6$, beyond C$_{3v}$. This symmetry lowering would additionally split the doubly degenerate ϵ levels into two singlets (xz, yz) yielding additional broadened bands.

In Figure 3, both sub-band absorption spectra are completely determined by the CuO$_6$ polyhedra because d–d transitions are, in the first approximation, parity-forbidden in centrosymmetric compounds like CuO$_6$ (Laporte rule), although they can occur via electron–phonon coupling, thereby contributing only weakly to the observed spectrum. An additional simplification is that the $\epsilon(d_{xy}^2)$ → $b_1(d_{2z})$ electric-dipole transition, which is allowed in CuO$_5$, has an oscillator strength which is an order of magnitude higher than any of the other d–d transitions in CuO$_6$ (involving the $b_1(d_{2z})$ and $a_1(d_{3z^2-})$ levels), or in the nearly D_{4h} elongated CuO$_5$ (eq ϵ, ax a_1 levels). Therefore, only one transition is needed to explain the sub-band absorption peaks.

The sub-band absorption maxima are found at 1.41 and 1.18 eV for β- and γ-Cu$_2$V$_2$O$_7$, respectively, thereby corresponding to a decrease in the transition energy of approximately 0.23 eV across the phase transition (as indicated by arrow 2 in Figure 3). The transition energy (or d-level splitting) in CuO$_6$ is determined by the strength of the crystal field, which is in turn determined by the Cu–O bond lengths. The decrease in transition energy across the phase transition implies a decrease in crystal field strength and therefore an increase in Cu–O bond length. This is consistent with the Cu–O bond lengths determined from our XRD data (see Figure S5). For example, the average CuO$_6$ equatorial (axial) Cu–O distance increases from 1.95 (2.25) Å to 2.01 (2.33) Å across the phase transition. For comparison, these values are in agreement with those found in α-CuMoO$_4$, wherein the ϵ → b_1 absorption energy is identified as 1.49 eV in CuO$_6$ units which have an average equatorial Cu–O distance of 1.93 Å (ref 52). A similar energy of 1.7 eV was also reported in YBa$_2$Cu$_3$O$_6$ in ref S3.

The observed oscillator strength (absorption coefficient) largely depends on the orientation of the transition dipole, which in this case is in the basal plane of the CuO$_6$ polyhedra, and the electric field vector of the incident light used in the experiment. Because the γ-phase has exactly half the number of CuO$_6$ polyhedra of the β-phase, a drop in oscillator strength would be expected across the phase transition, however the opposite is observed (as shown by arrow 3 in Figure 3). This can be attributed to the spatial orientation of the single crystal sample relative to the incident light. It is not possible to comment on the crystallographic orientation in the absorption
spectra because the XRD measurements were carried out independently on different single crystal samples.

3.4. Bulk Modulus. The $\beta \rightarrow \gamma$ phase transition is unambiguously categorized as first-order according to the plot of the normalized unit cell volume (V/Z) as a function of pressure, as shown in Figure 5a. A volume collapse of approximately 7% is observed across the phase transition in both experimental and calculated data. The normalized ambient pressure volumes, V_0, and bulk moduli, B_0, were determined by fitting Birch−Murnaghan (BM) equations of state (EoS) truncated to second-order in energy ($B_0' = 4$) to the data. Due to the low phase transition pressure, only four experimental data points were obtained for β-Cu$_2$V$_2$O$_7$. Therefore, the theoretical data (black dashed line in Figure 5a) are used for the discussion. The excellent reliability of the calculated data is clearly shown in Figure 5 (dashed lines) by the close agreement with the experimentally determined lattice parameters.

The normalized volume at ambient pressure, V_0, and bulk modulus, B_0, for both β- and γ-Cu$_2$V$_2$O$_7$ (summarized in Figure 5a) are as follows: For the low-pressure phase, β-Cu$_2$V$_2$O$_7$, the DFT data are fitted with $V_{0,DFT} = 146.3 \text{ Å}^3$ and $B_{0,DFT} = 64.7 \text{ GPa}$. For the high-pressure phase, γ-Cu$_2$V$_2$O$_7$, the parameters are $V_{0,DFT} = 134.2(9) \text{ Å}^3$ and $B_{0,DFT} = 67.8 \text{ GPa}$, which are in excellent agreement with those determined from the experimental data: $V_{0,exp} = 134.7(9) \text{ Å}^3$ and $B_{0,exp} = 67(8) \text{ GPa}$. Numbers in parentheses are the estimated standard error in the least significant digit. These bulk moduli are comparable to some of the lowest observed in other vanadate materials, for example Cu$_3$V$_2$O$_8$ and Zn$_2$V$_2$O$_7$, at 52(2) and 58(9) GPa, respectively.

Figure 5b shows the normalized stress, F_E, as a function of Eulerian strain, f_E. The F_E versus f_E plot provides assessment of the quality of the fitted EoS, whereby a zero-gradient fit to the data indicates that a second-order truncation of the BM EOS is suitable (see ref 27 for more details). as is the case for γ-Cu$_2$V$_2$O$_7$ (see Figure 5b).

3.5. Isothermal Compressibility. The isothermal compressibility tensor describes the principal axes of compression which, for any crystal system, constitute a unique set of orthogonal axes along which compressibility is described by a linear function of pressure. The magnitudes (compressibilit-
The principal axes of compression of β-Cu$_2$V$_2$O$_7$ reveal a pronounced anisotropic compressibility (see Figures 2 and 6) which is herein rationalized in terms of the underlying crystal structure. The principal axis of minimal compression, in this case X_2, points in the [0,1,0] direction and has a compressibility of 5.2×10^{-3} GPa$^{-1}$. Therefore, the least compressible direction in β-Cu$_2$V$_2$O$_7$ exactly corresponds to the crystallographic b-axis and points exactly between the layers of chains of edge-sharing CuO$_5$ units (which lie in the ab-plane). Additionally, X_2 dissects the smallest angle between the two different types of chains (see Figure 2a) thereby pinpointing the direction of maximum strength.

In contrast, the intermediate and major principal compression axes (X_1 and X_3) in β-Cu$_2$V$_2$O$_7$ are approximately 6 times more compressible than X_2, with mutually comparable compressibilities of 31.8×10^{-3} and 32.1×10^{-3} GPa$^{-1}$ respectively. Both X_1 and X_3 lie in the ac-plane, and as per the definition of the principal axes of compression, they are related by a rotation of 90° since their directions are [4,0,3] and [4,0,−3], respectively. It is important that both of X_1 and X_3 lie in the ac-plane because they share this description with all of the CuO$_5$ lone electron pairs (LEPs) (see Figure 6a,c). Specifically, each penta-coordinated CuO$_5$ unit possesses an axial LEP, opposite the axial oxygen atom, which points toward the location where a sixth oxygen would make a complete octahedron. The directions of the LEPs are indicted by blue arrows in Figure 6. The LEPs are exactly perpendicular to the principal axis of minimal compression, X_2 (equivalently, the b-axis); therefore, it is clear that the LEPs are responsible for the highly anisotropic compressibility of β-Cu$_2$V$_2$O$_7$. A similar phenomenon has also been observed in iodates.58

The principal axes of compression of γ-Cu$_2$V$_2$O$_7$ reveal a much less pronounced anisotropic compressibility in contrast to that of β-Cu$_2$V$_2$O$_7$. Where the principal axes of major and minor compression in the β-phase respectively had compressibilities of 31.8×10^{-3} and 32.1×10^{-3} GPa$^{-1}$, the corresponding axes in the γ-phase show more comparable compressibilities of 5.75×10^{-3} and 2.28×10^{-3} GPa$^{-1}$ respectively. As indicated in Figure 6b,d, the γ-Cu$_2$V$_2$O$_7$ LEPs are almost perpendicular to X_2, suggesting that the LEPs are responsible for the anisotropic compressibility of γ-Cu$_2$V$_2$O$_7$. However, the γ-Cu$_2$V$_2$O$_7$ LEPs are not as perpendicular to X_2 as in the β-phase, indicating a reduced contribution from the LEPs to the anisotropic compressibility of γ-Cu$_2$V$_2$O$_7$. A similar phenomenon has also been observed in iodates.58

The principal compression axes (X_1, X_2, and X_3) are represented by black arrows in Figures 2 and 6. The data in the table were calculated using the lattice parameters from the single crystal XRD analysis (Tables S1–S3) and the PASCaI principal axis strain calculator.56

Table 2. Compressibility Data for β- and γ-Cu$_2$V$_2$O$_7$

	β-Cu$_2$V$_2$O$_7$	γ-Cu$_2$V$_2$O$_7$	
axis	compressibility, K (GPa$^{-1}$)	direction $[u, v, w]$	approx. direction $[x, y, z]$
X_1	31.8×10^{-3}	0.8031, 0.0000, 0.5959	4, 0, 3
X_2	5.2×10^{-3}	0.0000, 1.0000, 0.0000	0, 1, 0
X_3	32.1×10^{-3}	0.7818, 0.0000, −0.6236	4, 0, −3
	5.75×10^{-3}	−0.6089, 0.3500, 0.7118	−12, 7, 14
X_2	4.59×10^{-3}	−0.0136, 0.9924, −0.1222	0, 1, 0
X_3	2.28×10^{-3}	0.9262, 0.2496, 0.2826	4, 1, 1

aThe principal compression axes (X_1, X_2, and X_3) are represented by black arrows in Figures 2 and 6. The data in the table were calculated using the lattice parameters from the single crystal XRD analysis (Tables S1–S3) and the PASCaI principal axis strain calculator.56

Figure 6. Crystal structures of β- and γ-Cu$_2$V$_2$O$_7$ showing the lone electron pair (LEP) vectors. (a, c) β-Cu$_2$V$_2$O$_7$ and (b, d) γ-Cu$_2$V$_2$O$_7$. Blue arrows show the direction of the LEP on each CuO$_5$ unit (blue polyhedra). Black arrows represent the compressibility axes. The arrow length shown in the figure is proportional to the magnitude of compressibility for the corresponding axis.
The β-Cu$_2$V$_2$O$_7$ structure exhibits negative thermal expansion (NTE) at ambient pressures. The primary mechanism for the NTE is believed to relate primarily to a transverse vibrational mode associated with the oxygen atom which bridges the VO$_4$ tetrahedra in the V$_2$O$_7$ units (O$_3$V\cdotsO\cdotsVO$_3$). The V$_2$O$_7$ units interlink the chains of edge-sharing CuO$_x$ units; therefore, a vibrational mode perpendicular to the V\cdotsO\cdotsV bridge causes a reduction in the time-averaged distance between the vanadium atoms, thereby pulling the layers closer together and reducing the unit volume.14,15 Since the layers lie in the ab-plane, a reduction in the lattice constant c corresponds to a decrease in the interlayer distance. As shown in Figure 5c, all lattice constants for both phases decrease monotonically with increasing pressure. In the present work, the interlayer spacing abruptly decreases from 4.7429 to 4.5294 Å across the $\beta \rightarrow \gamma$ phase transition, thereby corresponding to a change in interlayer spacing of $-0.2135 \AA$. Because only the time-averaged atomic positions can be observed in XRD measurements, the vibrational modes cannot be observed directly. However, the time-averaged V$_2$O$_7$ unit provides insight regarding the pressure-induced structural behavior. For example, Figure 7a shows the intervanadium (V\cdotsV) distance as a function of pressure. The V\cdotsV distance decreases with pressure in both phases; however, it jumps by $+0.1 \AA$ across the $\beta \rightarrow \gamma$ phase transition. The normalized unit cell volume decreases across the transition, therefore the V\cdotsV distance is clearly not the dominating factor in the volume decrease. Additionally, as shown in Figure 7b, the V\cdotsO\cdotsV angle, formed by the bridging oxygen atom, appears to remain constant in the β-phase, whereas it decreases with pressure in the γ-phase and exhibits no clear jump across the phase transition. Therefore, the V\cdotsO\cdotsV angle is also not responsible for the large volume collapse. The Cu\cdotsO bond distances also remain roughly constant over the full pressure range (see Figure S5), and in fact, the volume of the CuO$_x$ coordination complexes appears to increase (see Figure S6). The key to the volume collapse of $\Delta V \approx 7\%$ therefore likely lies with the mutual rotation of the VO$_4$ units. According to the XRD data, when viewed along the V\cdotsV direction (as shown in Figure 7c) the O$_3$V\cdotsO\cdotsVO$_3$ configuration goes from staggered in the β-phase to slightly eclipsed in the γ-phase. In a perfectly staggered configuration all of the O\cdotsV\cdots(O)\cdotsV\cdotsO dihedral angles, θ, would be equal to 60°. All V$_2$O$_7$ dihedral angles are

Figure 7. Pressure evolution of the V$_2$O$_7$ dimers in β- and γ-Cu$_2$V$_2$O$_7$. (a) Interatomic distance between vanadium atoms. (b) Angle between the V\cdotsO bonds, forming the V\cdotsO\cdotsV angle. (c) V$_2$O$_7$ molecules viewed along the axis defined by the vanadium atoms before (top) and after (bottom) the phase transition. (d) Pressure evolution of the O\cdotsV\cdots(O)\cdotsV\cdotsO dihedral angles, θ.

3.6. Pressure-Induced Structural Evolution/Relation to Nonlinear Thermal Expansion. The β-Cu$_2$V$_2$O$_7$ structure exhibits negative thermal expansion (NTE) at ambient pressures. The primary mechanism for the NTE is believed to relate primarily to a transverse vibrational mode associated with the oxygen atom which bridges the VO$_4$ tetrahedra in the V$_2$O$_7$ units (O$_3$V\cdotsO\cdotsVO$_3$). The V$_2$O$_7$ units interlink the chains of edge-sharing CuO$_x$ units; therefore, a vibrational mode perpendicular to the V\cdotsO\cdotsV bridge causes a reduction in the time-averaged distance between the vanadium atoms, thereby pulling the layers closer together and reducing the unit volume.14,15

Since the layers lie in the ab-plane, a reduction in the lattice constant c corresponds to a decrease in the interlayer distance. As shown in Figure 5c, all lattice constants for both phases decrease monotonically with increasing pressure. In the present work, the interlayer spacing abruptly decreases from 4.7429 to 4.5294 Å across the $\beta \rightarrow \gamma$ phase transition, thereby corresponding to a change in interlayer spacing of $-0.2135 \AA$. Because only the time-averaged atomic positions can be observed in XRD measurements, the vibrational modes cannot be observed directly. However, the time-averaged V$_2$O$_7$ unit provides insight regarding the pressure-induced structural behavior. For example, Figure 7a shows the intervanadium (V\cdotsV) distance as a function of pressure. The V\cdotsV distance decreases with pressure in both phases; however, it jumps by $+0.1 \AA$ across the $\beta \rightarrow \gamma$ phase transition. The normalized unit cell volume decreases across the transition, therefore the V\cdotsV distance is clearly not the dominating factor in the volume decrease. Additionally, as shown in Figure 7b, the V\cdotsO\cdotsV angle, formed by the bridging oxygen atom, appears to remain constant in the β-phase, whereas it decreases with pressure in the γ-phase and exhibits no clear jump across the phase transition. Therefore, the V\cdotsO\cdotsV angle is also not responsible for the large volume collapse. The Cu\cdotsO bond distances also remain roughly constant over the full pressure range (see Figure S5), and in fact, the volume of the CuO$_x$ coordination complexes appears to increase (see Figure S6). The key to the volume collapse of $\Delta V \approx 7\%$ therefore likely lies with the mutual rotation of the VO$_4$ units. According to the XRD data, when viewed along the V\cdotsV direction (as shown in Figure 7c) the O$_3$V\cdotsO\cdotsVO$_3$ configuration goes from staggered in the β-phase to slightly eclipsed in the γ-phase. In a perfectly staggered configuration all of the O\cdotsV\cdots(O)\cdotsV\cdotsO dihedral angles, θ, would be equal to 60°. All V$_2$O$_7$ dihedral angles are
plotted as a function of pressure in Figure 7d, whereby it is clear that the dihedral angles in the γ-phase exhibit a larger deviation from 60° than those in the β-phase. This is important because it suggests that the relative rotation of the VO₄ units (which comprise the V₆O₃₆ dimers) is an important characteristic of the volume collapse. This supports previous ambient pressure investigations which suggest that mutual rotation of the VO₄ molecular units, suggested by vibrational spectroscopy measurements, underpin the negative thermal expansion mechanism. ⁴⁴,⁴⁵

4. CONCLUSIONS

We report an experimental high-pressure single-crystal synchrotron XRD study of Cu₂V₂O₇ under compression to 4 GPa at ambient temperature. The results unambiguously reveal a previously unknown first-order pressure-induced phase transition from monoclinic β-Cu₂V₂O₇ to triclinic γ-Cu₂V₂O₇ below 0.40 GPa. The β → γ phase transition is associated with a volume collapse of approximately 7%, an increase in oxygen coordination (from 5 → 6) of half of the Cu²⁺ coordination complexes, and a reorientation of 1-dimensional chains composed of edge sharing CuO₅ units. The phase transition is also characterized by an indirect → indirect electronic band gap decrease of approximately 0.2 eV as measured by absorption spectroscopy (1.93 → 1.75 eV) and calculated via density functional calculations (1.93 → 1.76 eV). The band gap of γ-Cu₂V₂O₇ has been measured here for the first time, indicating that γ-Cu₂V₂O₇ has better potential as a photocatalyst for water splitting than does β-Cu₂V₂O₇ due to its lower band gap and therefore greater absorption of visible light. The pressure evolution of the crystal lattice parameters and isothermal compressibility tensor are also reported here for the first time. The compressibility of β-Cu₂V₂O₇ is found to be highly anisotropic, with the axis of minimal compression being approximately six times less compressible than the other two axes. The anisotropic compressibility is rationalized in terms of the underlying crystal structures and the presence and spatial orientation of lone-electron pairs on the constituent CuO₅ units. Due to the low transition pressure at ambient temperature, large volume collapse, and the fact that Cu₂V₂O₇ is a multifunctional material, this combined experimental and theoretical investigation into the high-pressure structural and electronic evolution of Cu₂V₂O₇ suggests that in addition to the previously suggested uses in photocatalytic water splitting, Cu₂V₂O₇ could also be a very relevant material for exploring solid state barocaloric effects, such as solid-state refrigeration technologies based on crystals which are environmentally friendly. For a material to be promising in terms of barocaloric effects it needs to exhibit, among other qualities, a first-order like phase transition involving large structural changes (e.g., volume change) near room temperature induced by small pressure shifts (i.e., of the order of 0.1 GPa). As shown in the current work, Cu₂V₂O₇ appears to meet these specifications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03878.

Detailed crystallographic tables; calculated relative enthalpy; absorption spectra; calculated band gap energies; density of states and projected density of states; derivation of the ratio of sub-band transition energies; pressure evolution of the Cu–O bonds in CuO₅ and CuO₆ polyhedra; and CuO₅ and VO₄ polyhedral volumes as functions of pressure (PDF)

Accession Codes

CCDC 2123194–2123205 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Robin Turnbull – Departamento de Física Aplicada - Instituto de Ciencia de Materiales, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, 46100 Valencia, Spain; orcid.org/0000-0001-7912-0248; Email: robin.turnbull@uv.es

Authors

Javier González-Platas – Departamento de Física - Instituto Universitario de Estudios Avanzados en Física Átómica, Molecular y Fotónica (IUDEA), MALTA Consolider Team, Universidad de La Laguna, Tenerife E-38204, Spain; orcid.org/0000-0003-3339-2998

Fernando Rodríguez – MALTA Consolider Team, Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain; orcid.org/0000-0002-7237-7443

Akun Liang – Departamento de Física Aplicada - Instituto de Ciencia de Materiales, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, 46100 Valencia, Spain; orcid.org/0000-0002-0515-0484

Catalin Popescu – CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola del Vallès, Barcelona, Spain

Zhangben He – State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

David Santamaria-Pérez – Departamento de Física Aplicada - Instituto de Ciencia de Materiales, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, 46100 Valencia, Spain

Placida Rodríguez-Hernández – Departamento de Física, Instituto de Materiales y Nanotecología, MALTA Consolider Team, Universidad de La Laguna, La Laguna E-38204 Tenerife, Spain; orcid.org/0000-0002-4148-6516

Alfonso Muñoz – Departamento de Física, Instituto de Materiales y Nanotecología, MALTA Consolider Team, Universidad de La Laguna, La Laguna E-38204 Tenerife, Spain; orcid.org/0000-0003-3347-6518

Daniel Errandonea – Departamento de Física Aplicada - Instituto de Ciencia de Materiales, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, 46100 Valencia, Spain; orcid.org/0000-0003-0189-4221

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.1c03878
Notes
All relevant data are available from the corresponding author upon reasonable request.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Spanish Research Agency (AEI) and Spanish Ministry of Science and Investigation (MCI) under projects PID2019106383GB-C41/C43/C44 [DOI: 10.13039/501100011033], and projects PGC2018-101464-B-I00 and PGC2018-097520-A-I00 (co-financed by EU FEDER funds). The authors acknowledge financial support from the MALTA Consolider Team network, under project RED2018-102612-T. R.T. acknowledges funding from the Spanish Ministry of Economy and Competitiveness (MINECO) via the Juan de la Cierva Formacion program (FJC2018-036185-I). J.G.P. thanks the Servicios Generales de Apoyo a la Investigación (SEGAI) at the University of La Laguna. A.L. and D.E. would like to thank the Generalitat Valenciana for the Ph.D. fellowship GRISOLIAP/2019/025, and the authors also thank ALBA synchrotron light source for funded excitations in the pyrovanadate (II) divanadate (V).

REFERENCES

(1) Hassan, A.; Iqbal, T.; Tahir, M. B.; Afshin, S. A review on copper vanadate-based nanostructures for photocatalysis energy production. Int. J. Energy Res. 2019, 43, 9–28.
(2) Guo, W.; Chemelweski, W. D.; Mabayoje, O.; Xiao, P.; Zhang, Y.; Mullins, C. B. Synthesis and characterization of CuV2O7 and Cu2V2O7: Two photoanode candidates for photoelectrochemical water oxidation. J. Phys. Chem. C 2015, 119, 27220–27227.
(3) Song, A.; Chemeddine, A.; Ahmet, I. Y.; Bogdanoff, P.; Friedrich, D.; Abdi, F. F.; Berglund, S. P.; van de Krol, R. Evaluation of copper vanadate (β-Cu2V2O7) as a photoanode material for photoelectrochemical water oxidation. Chem. Mater. 2020, 32, 2408–2419.
(4) Mercurio-Lavaud, D.; Frit, B. Structure cristalline de la varie pale temperature du pyrovanadate de cuivre: Cu2V2O7str. Acta Crystallogr. B 1973, 29, 2737–2741.
(5) Calvo, C.; Faggiani, R. α Cupric divanadate. Acta Crystallogr. B 1975, 31, 603–605.
(6) Hughes, J. M.; Birnie, R. W. Ziesite, β-Cu2V2O7, a new copper vanadate and fumarole temperature indicator. Am. Mineral. 1980, 65, 1146–1149.
(7) Clark, G. M.; Garlick, R. Formation and properties of copper (II) divanadate (V). J. Inorg. Nucl. Chem. 1978, 40, 1347–1349.
(8) Rao, N. S.; Palanna, O. G. Phase transition in copper (II) pyrovanadate. Bull. Mater. Sci. 1993, 16, 37–43.
(9) Krivovichev, S. V.; Filatov, S. K.; Cherepansky, P. N.; Armbruster, T.; Panikratova, O. Y. Crystal structure of γ-Cu2V2O7 and its comparison to blossite (α-Cu3V2O7) and ziesite (β-Cu2V2O7). Canad. Mineral. 2005, 43, 671–677.
(10) Yashima, M.; Suzuki, R. O. Electronic structure and magnetic properties of monoclinic β-Cu2V2O7: A GGA+ U study. Phys. Rev. B 2009, 79, 125201.
(11) He, Z.; Ueda, Y. Paramagnetic anisotropy and spin-flip transition in single crystals of the quasi-one-dimensional system β-Cu2V2O7. Phys. Rev. B 2008, 77, 052402.
(12) Banerjee, A.; Sannigrahi, J.; Bhowal, S.; Dasgupta, I.; Majumdar, S.; Walker, H. C.; Bhattacharyya, A.; Adroja, D. T. Spin wave excitations in the pyrovanadate α-Cu3V2O7. Phys. Rev. B 2016, 94, 144426.

(13) Tsirlin, A. A.; Janson, O.; Rosner, H. β-Cu2V2O7: A spin-1/2 honeycomb lattice system. Phys. Rev. B 2010, 82, 144416.
(14) Zhang, N.; Li, L.; Wu, M.; Li, Y.; Feng, D.; Liu, C.; Mao, Y.; Guo, J.; Chao, M.; Liang, E. Negative thermal expansion and electrical properties of α-Cu3V2O7. J. Eur. Ceram. Soc. 2016, 36, 2761–2766.
(15) Wang, H.; Yang, M.; Chao, M.; Guo, J.; Gao, Q.; Jiao, Y.; Tang, X.; Liang, E. Negative thermal expansion property of β-Cu2V2O7. Solid State Ion. 2019, 343, 115086.
(16) He, Z.; Ueda, Y. Flux growth of β-Cu2V2O7 single crystals in a closed crucible. Cryst. Growth Des. 2008, 8, 2223–2226.
(17) Sato, M.; Warne-Lang, V.; Kadowaki, Y.; Katayama, N.; Okamoto, Y.; Takenaka, K. Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion. AIP Adv. 2020, 10, 075207.
(18) Fauth, P.; Peral, I.; Popescu, C.; Knapp, M. The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360–S370.
(19) CrystAlis PRO; Agilent Technologies: Yarnton, England. 2010.
(20) Rigaku Oxford Diffraction - CrystAlisPro Software system, version 1.171.419a; Rigaku Corporation: Oxford, UK. 2021.
(21) Angel, R.; Gonzalez-Platas, J. Absorp-7 and Adsorb-GUI for single-crystal absorption corrections. J. Appl. Crystallogr. 2013, 46, 252–254.
(22) Klotz, S.; Chervin, J. C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D 2009, 42, 075413.
(23) Shen, G.; Wang, Y.; Dewaele, A.; Wu, C.; Fratanduono, D. E.; Eggert, J.; Klotz, S.; Dziubek, K. F.; Loubye, P.; Fat'yanov, O. V.; et al. Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPSRuby2020). High Press. Res. 2020, 40, 299–314.
(24) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. Struct. Chem. 2015, 71, 3–8.
(25) Gonzalez-Platas, J.; Alvaro, M.; Nesta, F.; Angel, R. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 2016, 49, 1377.
(26) Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824.
(27) Angel, R. J. Equations of state. Rev. Mineral. Geochem. 2000, 41, 35.
(28) Hohenberg, P.; Kohn, W. Inhomogeneous electronic gas. Phys. Rev. B 1964, 136, B864.
(29) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
(30) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
(31) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
(32) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
(33) Armiento, R.; Mattsson, A. E. Functional designed to include surface effects in selfconsistent density functional theory. Phys. Rev. B 2005, 72, 085108.
(34) Mattsson, A. E.; Armiento, R.; Paier, J.; Kresse, G.; Wills, J. M.; Mattsson, T. R. The AM05 density functional applied to solids. J. Chem. Phys. 2008, 128, 084714.
(35) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energoyess spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505.
(36) Anisimov, V. I.; Zaanen, J.; Andersson, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943.
(37) Bhowal, S.; Sannigrahi, J.; Majumdar, S.; Dasgupta, I. A comparative study of electronic, structural, and magnetic properties of α-, β-, and γ-Cu2V2O7. Phys. Rev. B 2017, 95, 075110.
(38) Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. *Comput. Mater. Sci.* 2017, 128, 140–184.

(39) Ganose, A. M.; Jackson, A. J.; Scanlon, D. O. sumo: Command-line tools for plotting and analysis of periodic *ab initio* calculations. *J. Open Source Softw.* 2018, 3, 717.

(40) Momma, K.; Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. *J. Appl. Crystallogr.* 2008, 41, 653–658.

(41) Vali, A.; Sarker, H. P.; Heredia Cervera, B.; Rodríguez-Gutiérrez, I.; Hossain, M. K.; Huda, M. N.; Osyam, G.; Rajeshwar, K. Optical, Electrochemical, and Photoelectrochemical Behavior of Copper Pyrovanadate: A Unified Theoretical and Experimental Study. *J. Phys. Chem.* 2021, 125, 19609–19620.

(42) Schönher, T.; Atanasov, M.; Adamsky, H. Angular overlap model. *Comprehensive Coordination Chemistry II* 2003, 2, 443–455.

(43) Sugano, S. *Multiplets of Transition-Metal Ions in Crystals*; Elsevier, 2012.

(44) Ruiz-Fuertes, J.; Segura, A.; Rodríguez, F.; Errandonea, D.; Sanz-Ortiz, M. N. Anomalous high-pressure Jahn-Teller behavior in CuWO₄. *Phys. Rev. Lett.* 2012, 108, 166402.

(45) Burns, R. G. *Mineralogical Applications of Crystal Field Theory*; Cambridge University Press, 1993.

(46) Lever, A. P. *Inorganic electronic spectroscopy*. In *Studies in Physical and Theoretical Chemistry*; Elsevier, 1984.

(47) Drickamer, H. G.; Frank, C. *Electronic Transitions and the High Pressure Chemistry and Physics of Solids*; Springer Science & Business Media, 2013.

(48) Li, J.; Struzhkin, V. V.; Mao, H. K.; Shu, J.; Hemley, R. J.; Fei, Y.; Mysen, B.; Dera, P.; Prakapenka, V.; Shen, G. Electronic spin state of iron in lower mantle perovskite. *Proc. Natl. Acad. Sci. U. S. A.* 2004, 101, 14027–14030.

(49) Duclos, S. J.; Vohra, Y. K.; Ruoff, A. L. Pressure dependence of the 4T₂ and 4T₁ absorption bands of ruby to 35 GPa. *Phys. Rev. B* 1990, 41, 5372.

(50) Gómez-Salces, S.; Aguado, F.; Rodríguez, F.; Valiente, R.; González, J.; Haumont, R.; Kreisel, J. Effect of pressure on the band gap and the local FeO₆ environment in BiFeO₃. *Phys. Rev. B* 2012, 85, 144109.

(51) Barreda-Argüeso, J. A.; Aguado, F.; Gonzalez, J.; Valiente, R.; Nataf, L.; Sanz-Ortiz, M. N.; Rodríguez, F. Crystal-Field Theory Validity Through Local (and Bulk) Compressibilities in CoF₂ and KCoF₃. *J. Phys. Chem. C* 2016, 120, 18788–18793.

(52) Rodríguez, F.; Hernández, D.; García-Jaca, J.; Ehrenberg, H.; Weitze, H. Optical study of the piezochromic transition in CuMoO₄ by pressure spectroscopy. *Phys. Rev. B* 2000, 61, 16497.

(53) Yamamoto, T.; Shinagawa, K.; Saito, T.; Tsushima, T. A calculation of electronic states in YBa₂Cu₃O₇. *Jpn. J. Appl. Phys.* 1992, 31, L327–L330.

(54) Diaz-Anichtchenko, D.; Turnbull, R.; Bandiello, E.; Anzellini, S.; Achary, S. N.; Errandonea, D. Pressure-induced chemical decomposition of copper orthovanadate (α–Cu₃V₂O₈). *J. Mater. Chem. C* 2021, 9, 13402–13409.

(55) Diaz-Anichtchenko, D.; Santamaría-Perez, D.; Marquêa, T.; Pellicer-Porres, J.; Ruiz-Fuertes, J.; Ribes, R.; Ibáñez, J.; Achary, S. N.; Popescu, C.; Errandonea, D. Comparative study of the high-pressure behavior of ZnV₂O₄, Zn₃V₂O₇, and Zn₄V₁O₈. *J. Alloys Compd.* 2020, 837, 155505.

(56) Cliffe, M. J.; Goodwin, A. L. PASCaL: a principal axis strain calculator for thermal expansion and compressibility determination. *J. Appl. Crystallogr.* 2012, 45, 1321–1329.

(57) Knight, K. S. Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. *Phys. Chem. Miner.* 2010, 37, 529–533.

(58) Liang, A.; Rahman, S.; Saqib, H.; Rodríguez-Hernandez, P.; Muñoz, A.; Nébert, G.; Yousef, I.; Popescu, C.; Errandonea, D. First-