Concurrent cerebral arterial and venous sinus thrombosis revealing celiac disease - A case report and literature review

Dalia Alhosain (daliaalhosain4494@gmail.com)
Department of Gastroenterology, Damascus University Hospitals, Damascus, Syria
https://orcid.org/0000-0001-9260-3287

Lamia Kouba
Department of Gastroenterology, Damascus University Hospitals, Damascus, Syria
https://orcid.org/0000-0002-8650-2305

Case Report

Keywords: Celiac disease, stroke, venous sinus thrombosis, arterial thrombosis, case report

DOI: https://doi.org/10.21203/rs.3.rs-68939/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Celiac disease is an autoimmune condition characterized by an inappropriate immune reaction against gluten. It classically presents as chronic diarrhea, bloating, and nausea in addition to malabsorption symptoms such as weight loss and micronutrient deficiency. We report the first case of coinciding cerebral infarction and venous sinus thrombosis unveiling the diagnosis of celiac disease.

Case Presentation: A 40-year old female patient with a four-day history of severe diarrhea presented with right hemiplegia and altered mental status. Imaging revealed left middle cerebral artery occlusion and left transverse and sigmoid venous sinus thrombosis, along with left jugular vein thrombosis. Her laboratory evaluation was notable for profound iron deficiency anemia, thrombocytosis, and hyperhomocysteinemia. Her positive anti-tissue transglutaminase IgA antibodies and ensuing duodenal biopsy confirmed the diagnosis of celiac disease.

Conclusions: Celiac disease has a wide range of intestinal and extra-intestinal manifestations and can present with thrombotic events in young patients with iron deficiency and hyperhomocysteinemia.

Background

Celiac disease (CD) is an autoimmune disease triggered by the exposure to gliadin; a protein component of gluten, in genetically susceptible individuals. The dysregulated immune response damages the intestinal mucosa in the duodenum and jejunum, leading to malabsorption.

The most sensitive diagnostic modality for celiac disease is the assessment of anti-tissue transglutaminase IgA (IgA-TG2) antibodies [1]. Immunoglobulin A (IgA) antibody levels should be measured simultaneously because 2–3% of patients with CD suffer from selective IgA deficiency [1]. In those individuals, IgG-based serological testing should be adopted.

Additionally, antibodies against gliadin (IgA-AGA) or its deamidated peptides (IgA and IgG DGP) can be helpful in the diagnosis of celiac disease despite being less sensitive than anti-tissue transglutaminase antibodies [1].

The diagnosis is usually confirmed with a duodenal biopsy. Microscopically, mucosal damage in celiac disease is exhibited via villous atrophy, lymphocytic infiltrate within the lamina propria, and cryptic hyperplasia. These histological findings are classified according to the Marsh–Oberhuber classification system into six stages depending on the severity of mucosal damage.

The clinical presentation of CD comprises gastrointestinal symptoms and characteristic symptoms of nutrient malabsorption. However, the disease is commonly asymptomatic or may present with mild symptoms only in children and adults [2].

In children, CD typically presents as failure to thrive and poor growth, while in adults, the disease manifests tenuously with recurrent diarrhea, weight loss, abdominal bloating, and nausea or vomiting [2].
Additionally, celiac disease is associated with dermatitis herpetiformis, psychoneurological symptoms, endocrinological disturbances, arthritis, and several autoimmune conditions [3].

Nutrient malabsorption may result from mucosal damage and the reduction of the absorptive surface leading to a wide range of extra-intestinal symptoms, such as anemia, osteoporosis, and vitamin deficiency.

However, CD rarely manifests with thrombotic complications and when it does, the hepatic vessels are the most commonly involved [4]. In this report, we describe the first case of simultaneous arterial and venous thrombosis presenting as the initial manifestations of celiac disease.

Case Presentation

A 40-year-old woman presented to our emergency department with deteriorating mental status and right hemiparesis preceded by an acute headache. She had a 4-day history of profuse greasy diarrhea. Her medication history is notable for combined oral contraceptives for nine years and short-acting beta agonists for asthma. Collateral history from family revealed few episodes of loose stools along with a poor appetite and weight loss of 15 kg over the last five years. The patient does not use tobacco, alcohol, or illicit drugs. Her family history is unremarkable and concerning manifestations of atherosclerotic vascular disease was noncontributory.

Her initial Glasgow Coma Scale (GCS) score was nine. On physical examination, she appeared cachectic (BMI 17 kg/m²) and dehydrated. Marked weakness in the right upper and lower limbs was observed. The pupils were equal in size and response. A computerized tomography (CT) scan of the brain showed parenchymal hypodensity in the left parietal lobe. Magnetic resonance imaging (Figure 1) and magnetic resonance angiogram MRA (Figure 2) showed a large hyperintense area in the left cerebral hemisphere corresponding with left middle cerebral artery infarction. The magnetic resonance venogram (MRV) revealed left transverse and sigmoid sinuses thrombosis in addition to a thrombotic left jugular vein (Figure 3). Duplex scanning of the neck vessels showed total occlusion of the left internal carotid artery and atherosclerotic right internal carotid artery with noncritical stenosis.

Laboratory evaluation revealed iron deficiency anemia with hyperhomocysteinemia and folate deficiency; Hemoglobin 80 g/L, Mean Corpuscular Volume 66 fL (80–95 fL), Ferritin <1 µg/L (11–307 µg/L), Transferrin saturation 8% (20%–50%), serum folate 2 nmol/L (4.5–45.3 nmol/L), homocysteine 15 μmol/L (5–12 μmol/L).

Coagulation profile showed: INR 2, aPTT 28 seconds (30s–40s) and thrombocytosis with platelet count of 641 x 10⁹/L. Serum levels of protein S and C were normal. Lupus anticoagulant screening was negative and anti-cardiolipin antibody test was also negative.

To investigate the etiology of the patient's iron deficiency anemia, anti-tissue transglutaminase (tTG) IgA and IgG antibodies were assessed and found to be strongly positive: anti-tTG IgA 215 U/mL (positive:
>10.0 U/mL) and anti-tTG IgG 20 U/mL (positive: >10.0 U/mL) and the total serum IgA level was within the reference range. Consequently, a duodenal biopsy was performed and showed marked villous atrophy, crypt hyperplasia, and lymphocytic infiltration within the lamina propria consistent with celiac sprue (Marsh III b). The above findings were compatible with the diagnosis of celiac disease complicated with secondary folic acid and iron deficiency, hyperhomocysteinemia, and thrombocytosis.

The patient was promptly started on a high-caloric gluten-free diet via nasogastric tube and the diarrhea ceased within two days. Additionally, low molecular weight heparin for cerebral venous thrombosis was administered along with aspirin and a lipid-lowering agent for further arterial stroke prevention. Nutritional deficiencies were corrected timely.

The patient gradually regained consciousness during the first two weeks, she was able to follow commands and open her eyes spontaneously but she had expressive aphasia and right hemiplegia. She was discharged 20 days after admission, her GCS score was 11. She received nursing care at home in addition to physical and speech therapy.

Discussion And Conclusions

Celiac disease or gluten-sensitive enteropathy is an autoimmune reaction against gliadin, a protein component of gluten in genetically susceptible individuals. It is strongly associated with HLA-DQ2 and HLA-DQ8. Celiac disease is widespread globally for a prevalence of 1% of the world population. However, its prevalence varies widely according to the geographical location, age, and sex [5].

Celiac disease was defined by a set of classic standards for diagnosis. Nevertheless, the integration of serologic, genetic, and histologic data has led to the recognition of other varieties of celiac disease: the asymptomatic, latent, and atypical disease.

The classic definition of CD includes the presence of gastrointestinal manifestations such as bulky diarrhea or foul-smelling floating stools, often accompanied by malabsorption symptoms such as growth failure in children, weight loss, severe anemia, neurological symptoms, and osteopenia in adults. Additionally, the detection of duodenal villous atrophy on histology and the resolution of both the mucosal lesions and physical symptoms upon withdrawal of gluten-containing foods are characteristic features of the classic CD [6].

Asymptomatic (silent) celiac disease is usually discovered incidentally through screening tests for antibodies against tissue transglutaminase in asymptomatic people [7].

On the other hand, latent celiac disease describes CD patients who recovered completely with a gluten-free diet and remained asymptomatic even once a normal diet was resumed [8].

Patients with the atypical celiac disease lack classic symptoms of malabsorption but may exhibit minor gastrointestinal complaints. They usually have extraintestinal manifestations of celiac disease including anemia, osteoporosis, arthritis, chronically elevated transaminases, neurological symptoms, infertility,
and several associated autoimmune diseases [9]. These patients usually have villous atrophy in duodenal biopsies and display positive celiac antibodies.

In our case, our patient had a history of weight loss, multiple episodes of loose stools, along with a poor appetite over the last five years. Her rapid mental status deterioration and one-sided weakness were the main symptoms that prompted her to seek medical treatment and eventually led to the diagnosis of celiac disease.

There are three main possible hypotheses concerning the pathogenesis of thrombosis in CD. First, malabsorption-induced vitamin deficiency; the low levels of vitamin K result in proteins C and S deficiency, and the inadequate levels of vitamins B12 and B9 contribute to hyperhomocysteinemia.

Hyperhomocysteinemia has toxic effects on endothelial cells. Homocysteine enhances platelet aggregation, promotes endothelial factor V activation, and interferes with protein C activation and thrombomodulin expression [10]. Hence, hyperhomocysteinemia is recognized as an independent risk factor for vascular thrombotic disorders.

The deficiency of protein S or protein C results in the over activity of coagulation factors V and VIII [10], thus increasing the risk for thrombotic events.

There are eleven published cases of such association in the literature. In three cases [11–13], hyperhomocysteinemia prompted an ischemic stroke before a diagnosis of CD was made, whereas in one case, hyperhomocysteinemia provoked cerebral venous thrombosis in a patient with untreated CD [14].

The first reported case describing protein S and C deficiency-induced thrombosis in CD was published by Ghannouchi et al. [15], where a patient had intracardiac thrombosis presenting with an ischemic stroke. Protein S deficiency is associated with other unusual locations of thrombosis, such as cerebral venous thrombosis [16, 14], the hepatic veins, deep veins of the lower extremities, and the superior mesenteric artery [17–19].

The second possible contributor to thrombotic events in CD is iron deficiency anemia (IDA) with or without concomitant thrombocytosis. However, its mechanism of action is still unknown. The reactive thrombocytosis secondary to iron deficiency is generally considered benign. However, it was shown that reactive thrombocytosis can cause prothrombotic states that may lead to severe and even fatal complications.

A rare case of simultaneous thrombosis of a cerebral artery and cerebral venous sinus was reported by Ho et al. in a young female patient with iron deficiency anemia [20].

Hartfield et al. reported a series of six children with ischemic strokes and venous thrombosis in whom iron deficiency anemia (6 of 6) and thrombocytosis (4 of 6) were the only positive laboratory findings in common [21].
Two cases of multiple peripheral and pulmonary thromboembolisms and cerebrovascular thrombosis were described in the literature, both cases were attributed to reactive thrombocytosis secondary to iron deficiency anemia [22]. A review of the published literature on thrombosis and thrombocytosis associated with iron deficiency anemia was conducted by Yi-Kong et al., 26 cases of cerebral venous thrombosis and ischemic infarcts (12 pediatric and 14 adult cases) were identified [22].

The third incriminated factor contributing to a hypercoagulable state in CD is the presence of serum autoantibodies and central nervous system vasculitis in CD patients. Lerner and his colleagues conducted a study to investigate the thrombophilic complex of serum autoantibodies in celiac disease. They studied the two thrombogenic antibodies: antiphosphatidylserine/prothrombin (aPS/PT) and antiprothrombin. An increased incidence of antiphosphatidylserine/prothrombin aPS/PT IgG was detected in the CD group compared to the control group. Moreover, patients with CD were found to have higher activity rates for aPS/PT IgM and prothrombin IgG autoantibodies compared to the control group [23]. Therefore, thrombophilic serum autoantibodies are operative in CD and are a significant contributor to the hypercoagulability tendency of the disease.

In terms of autoimmune cerebral vasculitis, tissue transglutaminase is the main autoantigen responsible for maintaining the integrity of the endothelium. Therefore, the disruption of cerebrovascular transglutaminase could interfere with the integrity of the blood-brain barrier leading to the activation of autoimmune reactions within the central nervous system.

Pratesi and his colleagues demonstrated in vitro that anti-endomysial antibodies within the cerebral vasculature are present uniquely in CD patients on a gluten-containing diet [24].

The key finding of Korponay-Szabó et al. that anti-endomysial and anti-tissue transglutaminase antibodies are identical implies that the immunofluorescence observed by Pratesi et al. was the cerebrovascular transglutaminase [25].

The autoimmune reaction against transglutaminase in cerebral vascular endothelium can, therefore, be postulated as a cause for cerebrovascular accidents in patients with CD. To further support this hypothesis, Rush et al. reported biopsy-proven central nervous system vasculitis-induced stroke in association with celiac disease [26]. Furthermore, radiologic evidence of central nervous system vasculitis in a patient with recurrent stroke and celiac disease was also reported [27].

In the present paper, we described a novel initial presentation of celiac disease; simultaneous arterial and cerebral venous sinus thrombosis in a young woman with no previous history of gastrointestinal symptoms or atherosclerosis risk factors. Celiac disease could contribute to thrombogenesis through three possible mechanisms: malabsorption-induced vitamin deficiency, autoimmune cerebral vasculitis, and iron-deficiency associated thrombosis with or without thrombocytosis. This report adds to the growing body of literature on the diverse manifestations of celiac disease and extends our knowledge on the extra-intestinal symptoms that could prompt the diagnosis of celiac disease. Early diagnosis and
treatment improve the quality-of-life for celiac disease patients and may spare them various long-term or even fatal complications.

Abbreviations

CD: Celiac disease, IDA: Iron deficiency anemia, CT: Computed tomography, AGA: antigliadin antibodies, DGP: deamidated gliadin peptide, GCS: Glasgow coma scale, BMI: Body mass index, tTG: Tissue transglutaminase, MRV: Magnetic resonance venogram, MRA: Magnetic resonance arteriogram, MRI: Magnetic resonance imaging, aPS/PT: antiphosphatidylserine/prothrombin.

Declarations

Ethics approval and consent to participate

Consent to participate was obtained from the patient’s family.

Consent for publication

Written consent for publication was obtained from the patient’s family.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

DA analyzed and interpreted the patient’s data and took the lead in writing the manuscript. LK contributed to the literature review and aided in interpreting the data. DA and LK wrote the manuscript. Both authors have read and approved the final version of the manuscript.

Acknowledgements
We thank the anonymous reviewers for their valuable comments that greatly helped improve the manuscript.

We also express our deep gratitude to our colleagues at Alassad University Hospital and Damascus University for providing their valuable expertise and insight.

References

1. Al-Toma A, Volta U, Auricchio R, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J. 2019;7(5):583-613. doi:10.1177/2050640619844125

2. Reilly NR, Fasano A, Green PH. Presentation of celiac disease. Gastrointest Endosc Clin N Am. 2012;22(4):613-621. doi:10.1016/j.geic.2012.07.008

3. Barker JM, Liu E. Celiac disease: pathophysiology, clinical manifestations, and associated autoimmune conditions. Adv Pediatr. 2008;55:349-365. doi:10.1016/j.yapd.2008.07.001

4. Ghannouchi Jaafoura N, Atig A, Bouker A, et al. Thrombose intracardiaque au cours d'une maladie cœliaque [Intracardiac thrombosis during celiac disease]. J Mal Vasc. 2014;39(3):203-206. doi:10.1016/j.jmv.2013.12.002

5. Singh P, Arora A, Strand TA, et al. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823-836.e2. doi:10.1016/j.cgh.2017.06.037

6. Ludvigsson JF, Leffler DA, Bai JC, et al. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62(1):43-52. doi:10.1136/gutjnl-2011-301346

7. Hahn M, Hagel AF, Hirschmann S, et al. Modern diagnosis of celiac disease and relevant differential diagnoses in the case of cereal intolerance. Allergo J Int. 2014;23(2):67-77. doi:10.1007/s40629-014-0006-4

8. Troncone R, Greco L, Mayer M, et al. Latent and potential coeliac disease. Acta Paediatr Suppl. 1996;412:10-14. doi:10.1111/j.1651-2227.1996.tb14240.x

9. Holmes GK. Non-malignant complications of coeliac disease. Acta Paediatr Suppl. 1996;412:68-75. doi:10.1111/j.1651-2227.1996.tb14257.x

10. Previtali E, Buccarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011;9(2):120-138. doi:10.2450/2010.0066-10

11. Audia S, Duchêne C, Samson M, et al. Accident vasculaire cérébral ischémique de l'adulte jeune au cours de la maladie coeliaque. A propos de deux observations [Stroke in young adults with celiac disease]. Rev Med Interne. 2008;29(3):228-231. doi:10.1016/j.revmed.2007.08.013

12. Gefel D, Doncheva M, Ben-Valid E, el Wahab-Daraushe A, Lugassy G, Sela BA. Recurrent stroke in a young patient with celiac disease and hyperhomocysteinemia. Isr Med Assoc J. 2002;4(3):222-223.

13. Rachid B, Zouhayr S, Chtauou N, Messouak O, Belahsen F. Accident vasculaire cérébral ischémique révélant une maladie coeliaque [Ischemic stroke revealing celiac disease]. Pan Afr Med J. 2010;5:2.
14. Boucelma M, Saadi M, Boukrara H, Bensalah D, Hakem D, Berrah A. Association maladie cœliaque et thrombose veineuse cérébrale. Revue de deux observations [Association of celiac disease and cerebral venous thrombosis: report of two cases]. J Mal Vasc. 2013;38(1):47-51. doi:10.1016/j.jmv.2012.11.003

15. Ghannouchi Jaafoura N, Atig A, Bouker A, et al. Thrombose intracardiaque au cours d'une maladie cœliaque [Intracardiac thrombosis during celiac disease]. J Mal Vasc. 2014;39(3):203-206. doi:10.1016/j.jmv.2013.12.002

16. Bahloul M, Chaari A, Khlaïf-Bouaziz N, et al. Maladie coeliaque, thrombose veineuse cérébrale et déficit en protéine S, une association fortuite? [Celiac disease, cerebral venous thrombosis and protein S deficiency, a fortuitous association?]. J Mal Vasc. 2005;30(4 Pt 1):228-230. doi:10.1016/s0398-0499(05)88207-1

17. Kochhar R, Masoodi I, Dutta U, et al. Celiac disease and Budd Chiari syndrome: report of a case with review of literature. Eur J Gastroenterol Hepatol. 2009;21(9):1092-1094. doi:10.1097/MEG.0b013e32832f47f

18. Kallel L, Matri S, Karoui S, Fekih M, Boubaker J, Filali A. Deep venous thrombosis related to protein S deficiency revealing celiac disease. Am J Gastroenterol. 2009;104(1):256-257. doi:10.1038/ajg.2008.48

19. McNeill A, Duthie F, Galloway DJ. Small bowel infarction in a patient with coeliac disease. J Clin Pathol. 2006;59(2):216-218. doi:10.1136/jcp.2005.027698

20. Ho BL, Huang P, Khor GT, Lin RT. Simultaneous thrombosis of cerebral artery and venous sinus. Acta Neurol Taiwan. 2008;17(2):112-116.

21. Hartfield DS, Lowry NJ, Keene DL, Yager JY. Iron deficiency: a cause of stroke in infants and children. Pediatr Neurol. 1997;16(1):50-53. doi:10.1016/s0887-8994(96)00290-1

22. Keung YK, Owen J. Iron deficiency and thrombosis: literature review. Clin Appl Thromb Hemost. 2004;10(4):387-391. doi:10.1177/107602960401000412

23. Lerner A, Agmon-Levin N, Shapira Y, et al. The thrombophilic network of autoantibodies in celiac disease. BMC Med. 2013;11:89. Published 2013 Apr 4. doi:10.1186/1741-7015-11-89

24. Pratesi R, Gandolfi L, Friedman H, Farage L, de Castro CA, Catassi C. Serum IgA antibodies from patients with celiac disease react strongly with human brain blood-vessel structures. Scand J Gastroenterol. 1998;33(8):817-821. doi:10.1080/00365529850171468

25. Korponay-Szabó IR, Sulkonen S, Halttunen T, et al. Tissue transglutaminase is the target in both rodent and primate tissues for celiac disease-specific autoantibodies. J Pediatr Gastroenterol Nutr. 2000;31(5):520-527. doi:10.1097/00005176-200011000-00013

26. Rush PJ, Inman R, Bernstein M, Carlen P, Resch L. Isolated vasculitis of the central nervous system in a patient with celiac disease. Am J Med. 1986;81(6):1092-1094. doi:10.1016/0002-9343(86)90416-x

27. Özge A, Karakelle A, Kaleağasi H. Celiac disease associated with recurrent stroke: a coincidence or cerebral vasculitis?. Eur J Neurol. 2001;8(4):373-374. doi:10.1046/j.1468-1331.2001.00233.x
Figures

Figure 1

Axial MRI of the patient's brain revealing a large hyper-intense area in the left parietal lobe corresponding to left middle cerebral artery (MCA) distribution (a; T2-weighted sequence, b; T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence).
Figure 2

MRA of the patient’s brain revealing extensive left middle cerebral artery occlusion.
Figure 3

MRV of the patient’s brain depicting the thrombosis of the left transverse and sigmoid sinuses and the left jugular vein