A Combinatorial Proof of a generalization of a Theorem of Frobenius

Supravat Sarkar

Abstract
In this article, we shall generalize a theorem due to Frobenius in group theory, which asserts that if \(p \) is a prime and \(p^r \) divides the order of a finite group, then the number of subgroups of order \(p^r \) is \(\equiv 1 \pmod{p} \). Interestingly, our proof is purely combinatorial and does not use much group theory.

Keywords: Group, subgroup, prime, count.

MSC number: 20D15

1. Introduction
Although Sylow’s theorems are taught in almost all undergraduate courses in abstract algebra, a generalization due to Frobenius does not seem to be as well known as it ought to be. Frobenius’ generalization states that if \(p \) is a prime and \(p^r \) divides the order \(N \) of a finite group \(G \), the number of subgroups of \(G \) of order \(p^r \) is \(\equiv 1 \pmod{p} \). The special case when \(p^r \) is the largest power of \(p \) dividing \(N \) is part of Sylow’s third theorem. Many of the standard texts do not mention this theorem. One source is Ian Macdonald’s ‘Theory of Groups’ [1]. In fact, a further generalization due to Snapper [2] asserts that for any subgroup \(K \) of order \(p^r \) and for any \(s \geq r \) where \(p^s \) divides the order of \(G \), the number of subgroups of order \(p^s \) containing \(K \) is also \(\equiv 1 \pmod{p} \). In this article, we give a new proof of a further extension of Snapper’s result that is purely combinatorial and does not use much group theory. Thus, we have a new combinatorial proof of Frobenius’s theorem as well.

2. Main results

We initially started by giving a combinatorial proof of Frobenius’s result and, interestingly, our method of proof yields as a corollary an extension of Snapper’s Theorem. Our proof builds on the famous combinatorial proof of Cauchy’s theorem which asserts that if a prime divides the order of a group, there is an element of that prime order.
Theorem 1 Let G be a finite group of order N, and let p be a prime. Let $b_0 < b_1 < \cdots < b_r$ be nonnegative integers such that p^{b_i} divides N and P_{b_i} be a subgroup of G of order p^{b_i}. Then the number of ordered tuples $(P_{b_1}, P_{b_2}, \ldots, P_{b_r})$ such that each P_{b_i} is subgroup of G of order p^{b_i} and

$$P_{b_0} \subset P_{b_1} \subset \cdots \subset P_{b_r}$$

is $1 \pmod{p}$.

The case $r = 1$ is a Theorem due to Snapper [2] which is itself an extension of Frobenius’s Theorem that corresponds to the case $r = 1, b_0 = 0$ in our Theorem. Let us recall here the simple results in finite group theory that we will need.

1. If H is a subgroup of a finite group G of order N, and the index $[G : H]$ is the smallest prime divisor of N, then H is normal in G.
2. (Sylow’s first theorem) If G is a finite group of order N, p a prime, $i \geq 0$ is an integer, $p^{i+1}|N$ and P is a subgroup of G of order p^i, then there is a subgroup Q of G containing P of order p^{i+1}.

We shall also use the following notations throughout.

1. For a finite set S, $|S|$ denotes the number of elements (cardinality) of S.
2. If G, H are finite groups, $H \leq G$ means H is a subgroup of G.
3. If G, H are finite groups, $H \leq G$, $[G : H]$ denotes the index of H in G.
4. If G is a finite group, the order of G is the number of elements of G.
5. If H is a subgroup of a group G, $N_G(H)$ denotes the normalizer of H in G.
6. For positive integers a, b, we write $a|b$ to mean a divides b.

Proof of Theorem.

For ease of understanding, we divide the proof into three steps.

Step 1: We tackle the case $r = 1, b_0 = 0, b_1 = 1$ first, which just says that if p divides the order of G, then the number of subgroups of G of order p is $1 \pmod{p}$.

Let $T = \{(a_1, a_2, ..., a_p) | a_i \in G \forall i, a_1a_2...a_p = 1\}$.

Observe that $|T| = N^{p-1} \equiv 0 \pmod{p}$, as any choice of $a_1, ..., a_{p-1}$ uniquely determines a_p. Also, if not all a_i’s are equal, then $(a_1, a_2, ..., a_p) \in T$ implies $(a_i, a_{i+1}, ..., a_{i+p-1})$ for $i = 1, 2, ..., p$ (indices are modulo p) are p distinct elements of T. The reason is as follows:

If $(a_i, a_{i+1}, ..., a_{i+p-1}) = (a_j, a_{j+1}, ..., a_{j+p-1})$ for some $i \neq j$, then $a_k = a_{k+j-i} \forall k$.

By induction, $a_k = a_{k+\alpha(j-i)}$ for any integer α. But $i \neq j$ implies $gcd(j-i, p) =$
1, as $0 < |i - j| < p$ and p is a prime. So, $j - i$ is invertible modulo p. So any $1 \leq l \leq p$ satisfies $l \equiv 1 + \alpha(j - i) \pmod{p}$ for some integer α. So, $a_l = a_{1 + \alpha(j - i)} = a_1$ for any $1 \leq l \leq p$. So, a_l's are all equal, which leads to a contradiction.

So, if d is the number of elements of G of order p, then $0 \equiv |T| \equiv (1 + d) \pmod{p}$. So, $d \equiv -1 \pmod{p}$ (as there are exactly $1 + d$ elements of T with all a_l's equal.) In each subgroup of order p, there are $p - 1$ elements of order p, different subgroups of order p intersect at the identity. So,

$$-1 \equiv d = (p - 1)(\text{number of subgroups of order } p) \equiv -(\text{number of subgroups of order } p) \pmod{p}.$$

So, number of subgroups of order p is $\equiv 1 \pmod{p}$, which finishes the proof for the case $r = 1, b_0 = 0, b_1 = 1$.

Step 2: Now come to a general case. First, we fix a notation. Let H be any group of order M, $p^n|M, p^{n+1} \nmid M$, $0 \leq r \leq n$. Let P_r be a subgroup of order p^r in H. Define

$$S(P_r, H) = \{(P_{r+1}, P_{r+2}, \ldots, P_n)| P_i \leq H, |P_i| = p^i \forall i, P_r \leq P_{r+1} \leq \cdots \leq P_n \leq H\}.$$

So, $S(P_r, H)$ is a singleton set, by convention.

For $r \leq i < n$ and a subgroup P_i of H of order p^i, there is a subgroup P_i^{r+1} of H of order p^{i+r} containing P_i, by Sylow’s theorems. $|P_i^{r+1} : P_i| = p$, which is the smallest prime divisor of $|P_i^{r+1}|$, so P_i is normal in P_i^{r+1}. Hence $P_i^{r+1} \leq N_G(P_i)$. So, P_i^{r+1} is a subgroup of order p in $N_G(P_i)$. By the same reasoning, any subgroup P_{i+1} of H of order p^{i+1} containing P_i must be a subgroup of $N_G(P_i)$, and so P_{i+1} is a subgroup of order p in $N_G(P_i)$. Conversely, any subgroup of order p in $N_G(P_i)$ gives rise via pullback to a subgroup P_{i+1} of $N_G(P_i)$ (hence of H) of order p^{i+1} containing P_i. So, there is a one-to-one correspondence between such P_{i+1} (subgroups of G of order p^{i+1} containing P_i) and the subgroups of order p of the quotient group $\frac{N_G(P_i)}{P_i}$.

So, the number of such P_{i+1} is the number of subgroups of order p in $\frac{N_G(P_i)}{P_i}$, which is $\equiv 1 \pmod{p}$, in view of Step 1. So, in mod p, we can choose P_{r+1} in 1 way, after each such choice we can choose P_{r+2} in 1 way, and so on. So, $|S(P_r, H)| \equiv 1 \pmod{p}$.

Step 3: Now come to the setup of our theorem. We have $|S(P_b, G)| \equiv 1 \pmod{p}$, by Step 2. Let us count $|S(P_b, G)|$ in another way. Let x be the number of ordered tuples as in the statement of our theorem. After choosing any of such x ordered tuples, we can choose $(P_{b_i+1}, \ldots, P_{b_i+1})$ in $|S(P_{b_i}, P_{b_i+1})| \equiv 1 \pmod{p}$ ways, for each $0 \leq i \leq r - 1$, and we can choose (P_{b_i+1}, \ldots, P_n) in $|S(P_{b_i}, G)| \equiv 1 \pmod{p}$ ways.

Now, p^n is the largest power of p dividing N, each P_i is a subgroup of G of order p^i and $P_r \leq P_{r+1}$ for all $b_0 \leq i < n$. So, we obtain $|S(P_b, G)| \equiv x \pmod{p}$. Hence finally we get $x \equiv 1 \pmod{p}$ which completes the proof.
Remarks
The case \(r = 1 \) is Snapper’s result and the further special case \(r = 1, b_0 = 0 \) corresponds to Frobenius’ theorem.

References

[1] Macdonald, Ian. Theory of Groups, Oxford University Press, 1968.

[2] Snapper, Ernst. Counting \(p \)-subgroups, Proc. Amer. Math. Society, Vol. 39 (1973), pp.81-82.