Influence of interleukin polymorphisms on development of gastric cancer and peptic ulcer

Mitsushige Sugimoto, Yoshio Yamaoka, Takahisa Furuta

Abstract

Pro-inflammatory cytokines are produced in the gastric mucosa by inflammatory cells activated by chronic Helicobacter pylori (H. pylori) infection. Polymorphisms of these cytokine genes are associated with individual differences in gastric mucosal cytokine mRNA level, which result in differences in gastric mucosal inflammation, acid inhibition and gastroduodenal disease risk in response to H. pylori infection. Although polymorphisms of interleukin (IL)-1B, IL-1RN and TNF-A have been reported to relate well with gastric cancer and peptic ulcer risk, those of IL-2, IL-4, IL-6 and IL-8 genes are unclear. In combined analyses using data from previous studies, we found that the risk of gastric non-cardia cancer development was significantly associated with IL-4-168 C allele (OR: 0.81, 95% CI: 0.69-1.00) and IL-4-450 T allele carrier status (0.61, 0.53-0.73), and IL-6-174 G/G genotype (2.02, 1.31-3.10). In peptic ulcer development, IL-2-330 G and IL-4-590 T allele carriers had a significantly decreased risk (0.37, 0.27-0.50 and 0.58, 0.34-0.99, respectively). Moreover, IL-2, IL-4, IL-6 and IL-8 gene genotypes prevalence differs among populations. The inflammatory cytokine gene polymorphisms (e.g. IL-4-590 and IL-6-572 for gastric cancer, and IL-4-590, IL-6-572 and IL-8-251 for peptic ulcer) have a more potent influence on development of gastroduodenal diseases in Western than East Asian populations. These cytokine gene polymorphisms, as well as those of IL-1B, IL-1RN and TNF-A, may be used to identify groups at higher risk of gastric cancer and peptic ulcer, and those suitable for their prevention by H. pylori eradication therapy in Western populations.

© 2010 Baishideng. All rights reserved.

Key words: Helicobacter pylori; Cytokines; Genetic polymorphism; Stomach neoplasms; Peptic ulcer

INTRODUCTION

Helicobacter pylori (H. pylori) infects > 50% of the world’s population, and is particularly prevalent in developing countries (> 90%). Chronic H. pylori infection relates not only to the development of upper gastrointestinal diseases, such as peptic ulcer diseases, gastric adenoma, gastric cancer, and gastric mucosa-associated lymphoid tissue lymphoma, but also with some extra-gastrointestinal disorders, such as idiopathic thrombocytopenic purpura, chronic idiopathic urticaria and iron-deficiency anemia. Prevention and treatment of H. pylori-related disease has therefore relied on eradication therapy as first-line treatment.
The key pathophysiological event in *H. pylori* infection of gastric mucosa is the induction of a gastric mucosal inflammatory response. Following infection, neutrophils and mononuclear cells activated by *H. pylori* and their products infiltrate *H. pylori*-infected gastric mucosa and stimulate the transcription and synthesis of several pro-inflammatory cytokines e.g. interleukin (IL)-1β, IL-2, IL-6, IL-8 and tumor necrosis factor (TNF)-α and anti-inflammatory cytokines e.g. IL-4 and IL-10[13]. The increased production of inflammatory cytokines in response to *H. pylori* infection results in enhanced gastric mucosal inflammation, through binding to specific receptors on target cells.

Most of these inflammatory cytokine genes have genetic variations that influence cytokine levels in the gastric mucosa. Levels of mucosal IL-1β, for example, the most studied inflammatory cytokine, differ significantly among the different genotypes in three polymorphisms, IL-1B-511, -31 and IL-1RN[14]. Carriers of the IL-1B-511 T, -31 C and IL-1RN *2* alleles have significantly higher IL-1β levels than those of the other allele[13]. Consistent with this difference, carriers of the IL-1B-511 T, IL-1B-31 C alleles and IL-1RN *2/*2 (2 repeats of 86 bp) genotype show enhanced suppression of gastric acid secretion, which results in more rapid development of gastric atrophy, and a consequently greater risk of developing gastric cancer than in those with the IL-1B-511 C, IL-1B-31 T and IL-1RN*1* alleles[13-18]. However, although IL-2, IL-4, IL-6 and IL-8 levels in gastric mucosa are reported to increase in patients with *H. pylori* infection[19,20], it remains unknown whether these inflammatory cytokine polymorphisms are associated with gastroduodenal disease development in a similar way as those with IL-1B and TNF-α. Previously reported associations with disease risk and cytokine gene polymorphisms of IL-2, IL-4, IL-6 and IL-8 are controversial, however, owing to either or both type 2 error and geographical differences (Tables 1-4).

Here, we review differences in the risk of development of peptic ulcer and gastric cancer by different inflammatory cytokine gene polymorphisms of IL-2, IL-4, IL-6 and IL-8.

ILI-2 POLYMORPHISM AND GASTRODUODENAL DISEASES

IL-2, a 15-kDa α-helical cytokine of the Th1 type produced exclusively by activated T cells, promotes the proliferation of lymphocytes, macrophages and NK cells[21]. IL-2 potently regulates the immune response, and plays important roles in the differentiation of CD41-positive T cells into Th1 and Th2 effector subsets, while inhibiting T-helper 17 differentiation[22,23]. In T cells, IL-2 binding to the IL-2 receptor activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, as well as mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling, which results in the transcription of pro-inflammatory cytokine genes. Through these pathways, IL-2 upregulates the expression of CD25 and IL-2Rβ, modulates genes involved in cell cycle regulation, and promotes T-cell survival and differentiation into effector and memory cells[24,25]. IL-2 contributes to the induction and transmission of inflammatory immune responses, including *H. pylori*-induced gastric inflammation.

Two kinds of single nucleotide polymorphism (SNP) occur in IL-2-330 and -384 (4q26-q27) of the promoter region, which affect IL-2 production[22,27]. IL-2 expression level with deletion of the IL-2-289 to -361 region was significantly decreased compared with that with the normal gene. IL-2-330 polymorphism located in this region is therefore considered to have particular influence on IL-2 levels[26,27]. In fact, IL-2 production in the IL-2-330 G/G genotype is about threefold greater than that of the IL-2-330 T/G or T/T genotypes in healthy subjects[28]. Consistent with this difference, an association between the IL-2-330 polymorphism and susceptibility to some inflammatory and immune diseases, such as rheumatoid arthritis, psoriasis and multiple sclerosis, has been reported[29-31]. IL-2 is therefore also thought to induce *H. pylori*-associated gastroduodenal diseases by regulating Th1 immune responses[32] and inhibiting gastric acid secretion[13].

Four studies have investigated the associations with IL-2-330 (three studies), +114 (one study) and +384 (one study) polymorphisms and development of atrophic gastritis (one study), peptic ulcer (one study) or gastric cancer (three studies) (Table 1)[34-37]. With regard to IL-2-330 polymorphism, Wu et al[37] have reported that subjects carrying the T allele, a low producer allele, have a significantly reduced risk of gastric cardia cancer (OR: 0.68, 95% CI: 0.46-0.99) compared with those with the G/G genotype. IL-2-330 polymorphisms may contribute to the etiology of gastric cardia cancer in Chinese populations[37]. However, Shin et al[31] failed to demonstrate a significant association with IL-2-330 polymorphism and gastric cancer development in the Chinese, while Togawa et al[34] conversely have reported that the IL-2-330 T/T genotype increased the risk of gastric cancer-related gastric atrophy (OR: 2.78, 95% CI: 1.26-6.17) in the Japanese. The results for IL-2-330 polymorphism are thus controversial. Moreover, no significant association was seen for IL-2-384 and +114 polymorphisms and gastric cancer development[36].

When combined, the results of previous studies of IL-2-330 polymorphism[34,35,37] surprisingly have shown that the risk of peptic ulcer development is 0.57 (95% CI: 0.33-0.98) for the G/G genotype and 0.37 (0.27-0.50) for G allele carriers compared with the T/T genotype (Table 5). However, no association with IL-2-330 polymorphism was seen for the risk of gastric non-cardia cancer. This finding is inconsistent with the first hypothesis, which states that patients with the IL-2 high producer genotype have an increased risk of gastric cancer and gastric ulcer development. Togawa et al[34] have speculated that one possible reason is that a higher IL-2 level is thought to enhance the immune response to eradicate *H. pylori*, and thereby decrease gastric mucosal inflammation. Moreover, an IL-2 promoter construct in a cell line shows higher levels of gene expression with
the IL-2-330 G allele, whereas the transcriptional effect of this polymorphism in lymphocytes shows that the IL-2-330 G allele is associated with a lower expression of IL-2\(^{[30]}\). In fact, many studies have shown that the IL-2-330 T/T genotype increases the risk of a number of diseases, such as Takayasu’s disease\(^{[38]}\), subacute sclerosing panencephalitis\(^{[39]}\) and schizophrenia\(^{[40]}\).

All studies that have investigated the relationship of IL-2-330 polymorphism and disease development to date were in Asian populations\(^{[34,35,37]}\). Further studies, including those in Western populations, will be necessary to solve this discrepancy and establish this relationship.

IL-4 POLYMORPHISM AND GASTRODUODENAL DISEASES

IL-4 is an anti-inflammatory cytokine, which inhibits gastric mucosal *H. pylori*-induced inflammation and atrophy by decreasing interferon γ (IFN-γ), which plays an important role in Th1 immune responses. IL-4 also plays a central role in the maturation of T-helper cells to the Th2 phenotype. With a shift from a Th1 to a Th2 cell pattern, IL-4 can enhance the production of anti-inflammatory cytokines (e.g. IL-10 and IL-13), including that of IL-4\(^{[41,42]}\), and suppress the production of monocyte-derived pro-

Table 1 Association of IL-2 polymorphism and gastroduodenal diseases

Position	Disease	Authors	Year	n	T/T	T/G	G/G
-330 T/G	GC	Wu et al\(^{[37]}\)	2009	1026	491	441	94
	NUD	1083	516	480	87		
	GC	Shin et al\(^{[41]}\)	2008	122	79	35	8
	NUD	100	72	16	12		
	PU	Shin et al\(^{[41]}\)	2008	220	159	45	16
	NUD	100	72	16	12		
	Atrophy	Togawa et al\(^{[46]}\)	2005	352	80	63	9
	NUD	443	202	196	45		
-384 G/T	GCC	Savage et al\(^{[44]}\)	2004	87	16	47	20
	NUD	379	96	174	109		
+114 G/T	GCC	Savage et al\(^{[44]}\)	2004	82	33	35	14
	NUD	377	149	148	80		

GC: Gastric cancer; GCC: Gastric cardia cancer; PU: Peptic ulcer; IL: Interleukin; NUD: Non-ulcer dyspepsia; NS: Not significant.

Table 2 Association of IL-4 polymorphism and gastroduodenal diseases

Position	Disease	Authors	Year	n	T/T	T/C	C/C
-168 T/C	GC	Wu et al\(^{[37]}\)	2009	1042	744	271	27
	NUD	1099	743	332	24		
-590 C/T	GC	Zambon et al\(^{[47]}\)	2008	40	32	7	1
	NUD	171	124	43	4		
GC	García-González et al\(^{[34]}\)	2007	404	283	107	14	
	NUD	404	267	123	14		
GC	Lai et al\(^{[44]}\)	2005	123	83	38	2	
	NUD	162	105	50	7		
GC	El-Omar et al\(^{[41]}\)	2003	122	78	37	7	
	NUD	209	153	46	10		
GC	Wu et al\(^{[46]}\)	2003	220	146	69	5	
	NUD	230	163	55	12		
GC	Zambon et al\(^{[47]}\)	2008	171	124	43	4	
	NUD	107	79	26	2		
Atrophy	Kato et al\(^{[46]}\)	2006	788	398	308	82	
	Dys	115	51	48	16		
	NUD	1020	506	414	100		
-33 C/T	Atrophy	Togawa et al\(^{[46]}\)	2005	157	10	70	77
	NUD	452	183	227	7		
	984, 2983		100	52	29	7	
	93	40	27	17			

Although Seno et al\(^{[55]}\) investigated nine SNPs (IL-4-590, -33, 3437, 3557, 4047, 4144, 4271, 4367 and 8427), data concerning the exclusion of IL-4+984 and 2983 were unclear. Dys: Dysplasia; DU: Duodenal ulcer.
inflammatory cytokines (e.g. IL-1β, IL-6 and IL-8)\(^{42}\).

IL-4 is overproduced in *H. pylori*-infected gastric mucosa. However, gastric mucosal inflammation has been shown to significantly reduce IL-4 administration\(^{43,44}\), and IL-4-deficient mice infected with *H. pylori* show severe gastric inflammation compared with wild-type mice\(^{45-47}\). A balance between Th1 and Th2 cytokines by IL-4 therefore crucially influences the outcome of *H. pylori* infection. Moreover, IL-4 is reportedly associated with cancer development via its suppression of inflammation, and directly inhibits the growth of human melanoma, renal cell carcinoma and gastric cancer cells\(^{48}\).

The family of the IL-4 gene, which encodes IL-4, is located on chromosome 5q31-33, which contains the IL-3, IL-4, IL-5, IL-9, IL-13, IL-15 genes as well as the interferon-regulatory factor and granulocyte-macrophage colony-stimulating factor (GM-CSF)\(^{49}\). There are two common polymorphisms in the IL-4 gene, -590 C/T and a 70-bp sequence variant tandem repeat at intron 3; and many minor polymorphisms, such as -168, -33, 3437, 3557, 4047, 4144, 4271, 4367, 8427\(^{50,51}\). The IL-4-590 polymorphism is located upstream of all known control elements of IL-4, such as the negative regulatory element, the NF-κB recognition sequence, and the TATA box\(^{49}\). Individuals with the IL-4-590 T/T genotype can produce IL-4 at higher levels than those with the C/C genotype\(^{48}\). IL-4 polymorphism is reportedly associated with the risk of cancer development (e.g. colorectal cancer\(^{49}\)), and the Th2 T-cell response represented by IL-4 is expected to play a protective role in the development of cancer.

Seven studies have investigated the association of IL-4-590 polymorphism and atrophic gastritis (one study\(^{52}\)), gastric cancer (five studies\(^{53-56}\)), and duodenal ulcer development (one study\(^{57}\) (Table 2). In 2003, Wu et al\(^{58}\) first reported that a higher prevalence of diffuse-type gastric cancer (OR: 1.64, 95% CI: 1.01-2.67), particularly in gastric cardia cancer (2.44, 1.13-5.27), is observed in IL-4-590 C allele carriers, a low producer allele, compared with the IL-4-590 T/T genotype, which suggests that low production of IL-4 is responsible for the development of gastric cancer. However, other studies have failed to demonstrate any significant association of IL-4 polymorphisms with disease risk\(^{59-61}\). In a combined-analysis of IL-4-590 C/T polymorphism\(^{52-56}\), however, the risk of gastric non-cardia cancer development was 0.68 (95% CI: 0.57-0.80) for the C/T genotype, 0.36 (0.24-0.53) for the T/T genotype and 0.61 (0.53-0.73) for T allele carriers (Table 6). Moreover, the risk of peptic ulcer development in T allele carriers (0.58, 0.34-0.99) was significantly lower (Table 6). This protective effect of IL-4-590 polymorphism is therefore

\(\text{Table 3 Association of IL-4 polymorphism and gastroduodenal diseases}\)

Position	Disease	Authors	Year	n	C/C	C/G	G/G	
-174 C/G	GC	Gatti et al\(^{49}\)	2007	GC	56	1	13	42
	NUD	112	11	53	48			
GCC	Deans et al\(^{50}\)	2007	GC	197	43	83	71	NS
	NUD	224	44	101	79			
GC	Kamangar et al\(^{51}\)	2006	GC	102	27	54	21	GC: 2.2 (1.2-4.0) vs G/G
	NUD	152	43	58	51			
GC	El-Omar et al\(^{52}\)	2003	GC	123	16	52	55	NS
	NUD	209	28	98	83			
GC	Hwang et al\(^{53}\)	2003	GC	60	2	9	49	-
PU	Chakravorty et al\(^{54}\)	2008	GU	91	1	18	72	NS
	NUD	62	1	7	54			
DU	Hwang et al\(^{55}\)	2003	DU	60	0	0	30	-
					C/C	C/G	G/G	
GC	Kang et al\(^{56}\)	2009	GC	284	154	113	17	NS
	NUD	278	140	123	15			
GC	Hwang et al\(^{57}\)	2003	GC	60	19	29	12	-
PU	Kang et al\(^{58}\)	2009	PU	434	249	167	20	DU: GG 0.3 (0.1-0.9)
	NUD	278	140	123	15			
PU	Chakravorty et al\(^{54}\)	2008	PU	91	57	27	7	NS
	NUD	62	37	20	5			
DU	Hwang et al\(^{59}\)	2003	DU	60	21	20	19	-
GC	Kamangar et al\(^{60}\)	2006	GC	110	25	59	26	NS
	NUD	203	61	86	56			
GC	Hwang et al\(^{61}\)	2003	GC	60	50	8	2	-
PU	Chakravorty et al\(^{62}\)	2008	PU	91	53	29	10	NS
	NUD	62	41	16	5			
DU	Hwang et al\(^{63}\)	2003	GC	60	52	8	0	-
GC	Liao et al\(^{64}\)	2008	GC	155	96	55	4	NS
	NUD	211	118	84	9			

Although Kang et al and Savage et al investigated the association with IL-6-174 C/G polymorphism and gastric cancer, data were not described in detail (>99% of patients were of the IL-6-174 C/G genotype).

WJG | www.wjgnet.com 1191 March 14, 2010 | Volume 16 | Issue 10 | Sugimoto M et al. Cytokine polymorphisms and gastric disease
significant for gastric non-cardia cancer and peptic ulcer patients with a higher producer genotype.

The prevalence of IL-4-590 C/C, C/T and T/T genotypes differs between Western and Asian populations (Table 7). The prevalence of C/C, C/T and T/T genotypes in a Western population with gastric cancer was 69.8% (362/518), 26.1% (135/) and 4.1% (21/), respectively, whereas in those with non-ulcer dyspepsia (NUD) was 55.9% (1448/2592), 36.0% (934/) and 8.1% (210/). In a Western population, the risks for gastric non-cardia cancer and peptic ulcer development were 0.55 (95% CI: 0.46-0.67) and 0.35 (0.32-0.94) for T allele carriers, respectively (Table 8). In an Asian population, in contrast, no significant difference was seen between subjects with gastric cancer and NUD. This difference in the influence of IL-4-590 polymorphism on disease development

Table 4 Association of IL-4 polymorphism and gastroduodenal diseases

Disease	Authors	Year	n	T/T	T/A	A/A		
-251 A/T	Kang et al[89]	2009	GC	284	106	136	43	AA: 2.0 (1.2-3.6)
	NUD		275	125	125	25		
	Canedo et al[89]	2008	GC	333	111	169	53	NS
	NUD		880	265	445	170		
	Garza-Gonzalez et al[90]	2007	GC	78	15	47	16	A carrier: 2.1 (1.1-4.2)
	NUD		230	76	107	47		
	Kamali-Sarvestani et al[90]	2006	GC	19	4	6	9	AT: 4.5 (1.5-12.9)
	NUD		153	57	174	22		
	Shirai et al[90]	2006	GC	181	83	78	20	MSL (+): TT 5.2 (1.5-18.0)
	NUD		268	211	208	49		
	Savage et al[90]	2006	GC	287	71	140	76	NS
	NUD		426	106	205	117		
	Kamangar et al[90]	2006	GC	112	42	56	14	NS
	NUD		207	72	111	24		
	Taguchi et al[91]	2005	GC	396	161	191	44	AA: 2.2 (1.1-4.6)
	NUD		252	125	105	22		
	Lee et al[91]	2005	GC	470	198	213	59	TT: 1.9 (1.3-3.0)
	NUD		308	108	138	62		
	Ohyauchi et al[91]	2005	GC	212	93	106	13	A carrier: 1.8 (1.1-2.8)
	NUD		195	106	74	15		
	Savage et al[92]	2004	GC	88	26	39	23	AA: 2.0 (1.0-3.8)
	NUD		429	147	207	75		
	Lu et al[92]	2005	GC	250	94	102	54	AA: 1.9 (1.2-3.2)
	NUD		300	119	144	37		
	Kang et al[93]	2009	PU	447	160	223	64	GU: AA: 2.7 (1.5-4.8)
	NUD		275	125	125	25		
	Garza-Gonzalez et al[91]	2007	PU	29	11	14	4	NS
	NUD		230	76	107	47		
	Kamali-Sarvestani et al[91]	2006	GU	61	19	28	14	NS
	NUD		153	57	74	22		
	Ohyaauchi et al[91]	2005	PU	283	134	127	22	GU:A carrier: 1.8 (1.1-3.0)
	NUD		195	106	74	15		
	Chakravorty et al[94]	2008	PU	91	20	46	25	NS
	NUD		62	18	28	16		
	Hofner et al[101]	2007	DU	85	15	49	21	AA: 2.3 (1.5-6.4)
	NUD		211	61	106	44		
	Gylai et al[102]	2004	DU	69	11	45	13	A carrier: 4.4 (1.9-10.5)
	NUD		47	21	17	9		
	Leung et al[103]	2006	IM	123	23	56	44	NS
	NUD		179	36	92	51		
	Taguchi et al[104]	2005	Atrophy	215	90	99	26	AA: 2.4 (1.1-4.9)
	NUD		252	125	105	22		
	Hamajima et al[105]	2003	GC	111	42	55	14	NS
	NUD		208	72	112	24		
	Kamangar et al[90]	2006	GC	86	29	33	24	GG: 2.1 (1.1-3.9)
	NUD		402	152	181	69		
	Savage et al[106]	2004	GC	111	47	52	12	NS
	NUD		208	81	105	22		
	Kamangar et al[90]	2006	GC	85	28	41	16	NS
	NUD		406	167	177	62		

Although Seno et al[95] investigated six SNPs (IL-4-352, 289, 294, 680, 2217 and 2670), data were not described in detail. IM: Intestinal metaplasia.

March 14, 2010 | Volume 16 | Issue 10 |
may have a geographic basis, and the effect appears to be stronger in Western populations (Table 8).

With regard to minor polymorphisms of IL-4, IL-4-168, -33, 984/2983 SNPs have been reported by one study each \cite{34,37,55}. Compared with the IL-4-168 C/C high producer genotype \cite{37}, the IL-4-168 T allele carrier was associated with a significantly decreased gastric cancer risk (OR: 0.83, 95% CI: 0.69-1.00). Further, this significant protective effect was also seen for gastric cardia cancer patients (0.73, 0.56-0.95) \cite{37}.

Thus, a significant protective effect against gastric non-cardia cancer was seen with the higher producer genotype IL-4-590 and -168 polymorphisms, particularly in Western populations.

Table 5 ORs for gastric non-cardia cancer and peptic ulcer development in IL-2-330 polymorphism

Genotype	T/T	T/G	G/G	OR	95% CI	P value	T/T	T/G	G/G	OR	95% CI	P value	
IL-2-330	755	209	77	0.77	0.52-1.14	0.20	16	0.57	0.33-0.98	0.04	159	0.74-1.11	0.33

1NUD includes gastritis without gastric cancer and peptic ulcer, and atrophic gastritis patients. Because we deleted a number of gastric cardia cancer patients, a number of cancer patients shown in this Table do not match that in Table 1.

Table 6 ORs for gastric non-cardia cancer and peptic ulcer development with IL-4-168 and -590 polymorphisms

Genotype	T/T	T/C	C/C	OR	95% CI	P value	T/T	T/C	C/C	OR	95% CI	P value
IL-4-168	743	744	0.81	0.67-0.98	0.03	743	744	0.81	0.67-0.98	0.03		
IL-4-590	1716	591	0.68	0.57-0.80	<0.01	46	46	0.68	0.57-0.80	<0.01		

1NUD includes patients with gastritis without gastric cancer and peptic ulcer, and atrophic gastritis. Because we deleted a number of gastric cardia cancer patients, the number of cancer patients in this Table does not match that in Table 2.

Table 7 Prevalence of inflammatory cytokine gene genotypes in East Asian and Western populations

Gene	Population	NUD T/T	T/G	G/G	GC T/T	T/G	G/G	PU T/T	T/G	G/G	
IL-2-330	Asian	870	755	153	258	209	35	159	45	16	
IL-2-330	Western	870	755	153	258	209	35	159	45	16	
IL-4-590	Asian	268	105	19	229	107	7	229	107	7	
IL-4-590	Western	1448	934	210	362	135	21	362	135	21	
IL-6-174	Asian	126	310	261	34	82	112	1	26	94	
IL-6-174	Western	126	310	261	34	82	112	1	26	94	
IL-6-572	Asian	37	20	5	3	16	11	2	6	5	
IL-6-572	Western	37	20	5	3	16	11	2	6	5	
IL-6-597	Asian	102	102	61	45	67	28	75	37	10	
IL-6-597	Western	102	102	61	45	67	28	75	37	10	
IL-6-818	Asian	152	181	69	30	0	0	30	0	0	
IL-6-818	Western	152	181	69	30	0	0	30	0	0	
IL-6+396	Asian	1324	1425	443	735	826	233	394	86	394	86
IL-6+396	Western	1324	1425	443	735	826	233	394	86	394	86
IL-6+781	Asian	72	112	24	27	43	12	27	43	12	
IL-6+781	Western	72	112	24	27	43	12	27	43	12	
IL-8-251	Asian	167	177	62	29	41	11	29	41	11	
IL-8-251	Western	167	177	62	29	41	11	29	41	11	

Thus, a significant protective effect against gastric non-cardia cancer was seen with the higher producer genotype IL-4-590 and -168 polymorphisms, particularly in Western populations.

IL-6 POLYMORPHISM AND GASTRODUODENAL DISEASES

IL-6, a multifunctional cytokine produced by immune and...
many non-immune cells including monocytes, lymphocytes, macrophages, and endothelial and intestinal epithelial cells, functions as both an inflammatory mediator and endocrine regulator\(^{59}\). IL-6 plays an important role in host defense mechanisms as a messenger between innate and adaptive systems, by stimulating IFN-γ production in T cells and promoting immunoglobulin secretion in activated B cells\(^{59}\).

High serum levels of IL-6 family cytokines have been reported in various gastrointestinal cancer cells\(^{60}\). IL-6 and IL-11 belong to the IL-6 cytokine family, which includes ciliary neurotrophic factor, cardiotrophin-1, cardiotrophin-like cytokine, leukemia inhibitory factor, oncostatin M, and IL-27. These act as ligands for the signaling receptor subunit gp130\(^{61}\). IL-6 requires specific α receptor subunits and gp130 homodimers of signal transducing receptor\(^{62}\). Recently, mice with a mutation in gp130 (gp130 757/757 mouse) have been established to enhance chronic gastric inflammation and develop gastric neoplasms without H. pylori infection, via an imbalance between STAT3 and Y-759/SHP-2 signaling\(^{63}\). The presence of the Y757F mutation in the gp130 receptor promotes the failure of SHP-2 phosphorylation and subsequent activation of the pro-apoptotic Ras/Erk and PI3K/AKT pathways, which results in massive STAT3 activation. STAT3 hyperactivity suppresses the cytostatic effect of the stroma on cell proliferation\(^{64}\). Moreover, STAT3 also induces epithelial cell expression of IL-11\(^{65}\). These signaling events promote an oncogenic program in which the expression of anti-apoptotic, pro-angiogenic, and pro-proliferative genes results in inflammation-associated gastric tumorigenesis\(^{66}\). The IL-6 family signaling system is therefore an attractive research target in gastric cancer pathogenesis.

Mucosal IL-6 levels increase in H. pylori-associated gastritis\(^{66,67}\) and dramatically decrease after eradication of infection\(^{68}\). IL-6 mRNA levels in gastric mucosa correlate with the level of gastric mucosal inflammation\(^{67,69}\). Serum levels of IL-6 are higher in patients with gastric cancer than gastritis\(^{70}\). IL-6 plays an important role as a prognostic factor in advanced gastric cancer and lymph node metastasis\(^{71}\), and a serum IL-6 level > 13 pg/mL correlates with tumor progression and poor survival after resection\(^{72}\).

The IL-6 gene is located on chromosome 7p21 and the SNPs at the 5’ flanking region of the IL-6 promoter have been identified as IL-6-174, -572 and -597\(^{73}\). IL-6-174 G allele carriers produce higher levels of IL-6 than those with the C/C genotype\(^{74}\), and have a higher prevalence of systemic juvenile-onset chronic arthritis, lipid abnormalities\(^{75}\) and insulin resistance\(^{76}\). IL-6-174 G and -597 G allele carriers are closely linked regardless of ethnic group or disease status\(^{77}\). The IL-6-572 G allele is also associated with a higher serum IL-6 level than IL-6-572 C/C allele\(^{78}\), and is a risk factor for diabetic nephropathy and lung cancer with asthma/atopy\(^{79,80}\).

Six studies of the IL-6-174 polymorphism\(^{53,77,81-84}\), three of IL-6-572\(^{77,84}\), three of IL-6-597\(^{77,83,84}\) and one of IL-6-634\(^{77}\) in relation to the development of gastric cancer and peptic ulcer have appeared (Table 3). Gatti et al\(^{81}\) have reported that the IL-6-174 G allele carriers account for a significantly higher incidence of gastric cancer than NUD patients (98.2%, 55/56 and 90.2%, 101/112, respectively). However, Kamangar et al\(^{80}\) have demonstrated that, compared with G/G genotype IL-6, the low producer genotype IL-6-174G/C has an increased risk of gastric cancer, while other studies have shown no significant relationship of IL-6-174 polymorphism with gastric diseases. The association of this polymorphism with these conditions thus remains unclear. In contrast, frequencies of the IL-6-572 G/G genotype (OR: 0.3, 95% CI: 0.1-0.9) and of G allele carriers (0.5, 0.4-0.8) are lower in H. pylori-positive patients with duodenal ulcer than in those with NUD\(^{80}\).

In a combined analysis of IL-6-174 C/G polymorphism\(^{13,53,81,84}\), the risk of gastric non-cardia cancer was 2.02 (1.31-3.10) for the G/G compared with C/C genotype (Table 9). Moreover, the risk of gastric ulcer...
IL-8 POLYMORPHISM AND GASTRODUODENAL DISEASES

IL-8, a member of the CXC chemokine family, which was originally identified as a potent chemoattractant for neutrophils and lymphocytes, induces not only cell proliferation and migration, but also angiogenesis. IL-8 is produced by gastric epithelial cells during H. pylori infection, particularly in the cag-pathogenicity-island-positive strain of H. pylori, one of the major virulence factors. In addition, IL-8 protein levels are 10-fold higher in gastric cancer than in normal gastric tissue, and directly correlate with the vascularity of the tumors. The transfection of gastric cancer cells with the IL-8 gene enhances their tumorigenesis and angiogenesis in the gastric wall of nude mice. Increased IL-8 levels may amplify the inflammatory response to H. pylori by recruiting neutrophils and monocytes, thereby resulting in an advanced degree of gastritis, which ultimately predisposes to the development of gastric cancer.

There are three common polymorphisms in the IL-8 gene, -251 A/T, 396 T/G and 781 C/T polymorphisms. Among these, IL-8-251 A allele carrier status is associated with increased IL-8 production. Consistent with these differences, IL-8-251 polymorphism influences cancer risk, including that of lung, colorectal, bladder, and prostate cancer.

Seventeen studies of IL-8-251 polymorphism, two of IL-6+396, and two of IL-6+781 in relation to the development of gastric cancer and peptic ulcer have appeared. Of these, six studies have shown a significantly increased risk of gastric cancer for the IL-8-251 A/A high producer genotype or A allele carriers, while four have shown an increase for peptic ulcer and one for gastric mucosal atrophy. The IL-8-251 A/A genotype is more common in Asians than Caucasians, the difference in the prevalence between Asian and Western countries.

On combined analysis, IL-6-174, IL-6-597 and IL-6+643 polymorphisms have shown no significant relationship with gastric disease. When patients are divided into Asian and Western populations, however, a clear difference in the prevalence of IL-6-572 genotypes is seen. The risk of gastric non-cardia cancer and peptic ulcer development in Western populations was 21.13 (95% CI: 5.56-131.98) and 2.98 (1.05-8.47) for the C/G and G/G genotypes, respectively (Table 8). In contrast, no significant differences have been seen between Asian and gastric cancer or NUD.

This influence of the IL-6-174 and IL-6-572 polymorphisms on disease development may have been due to geographic differences. Furthermore, the influence of IL-4-590 polymorphism on gastroduodenal diseases is particularly strong in Western populations.

Table 9 ORs for the development of gastric non-cardia cancer with the IL-6-174, +572, +597 and +634 polymorphisms

Genotype	1NUD (n)	Cancer (n)	OR	95% CI	P value	Ulcer (n)	OR	95% CI	P value
IL-6-174									
C/C	126	34				1			
C/G	310	82	0.98	0.63-1.54	0.93	26	10.57	1.42-78.73	0.02
G/G	261	142	2.02	1.31-3.10	<0.01	124	59.86	8.27-433.4	<0.01
G carrier	571	224	1.45	0.97-2.19	0.06	150	33.10	4.59-238.8	<0.01
IL-6+572									
C/C	177	173				1			
C/G	143	143	1.02	0.75-1.40	0.89	214	0.81	0.61-1.07	0.15
G/G	20	29	1.48	0.81-2.72	0.20	44	1.19	0.68-2.08	0.54
G carrier	163	172	1.08	0.80-1.46	0.61	258	0.86	0.66-1.12	0.26
IL-6+597									
G/G	102	75				-			
G/A	102	67	0.89	0.58-1.37	0.61	-			
A/A	61	28	0.62	0.37-1.07	0.09	-			
A carrier	163	95	0.79	0.54-1.17	0.24	-			
IL-6+634									
C/C	118	96				-			
C/T	84	55	0.81	0.52-1.24	0.33	-			
T/T	9	4	0.45	0.16-1.83	0.32	-			
T carrier	93	59	0.79	0.51-1.12	0.25	-			

1NUD includes patients with gastritis without gastric cancer and peptic ulcer, and atrophic gastritis. Because we deleted a number of gastric cardia cancer patients, the number of cancer patients shown in this Table does not match that in Table 3.
Table 10 ORs for the development of gastric non-cardia cancer with IL-8-251, +396 and +781 polymorphisms

Genotype	NUD (n)	Cancer (n)	OR	95% CI	P value	Ulcer (n)	OR	95% CI	P value
IL-8-251									
T/T	2000	978	-			370			
T/A	2518	1244	1.01	0.91-1.12	0.38	532	1.14	0.99-1.32	0.07
A/A	892	401	0.92	0.80-1.06	0.24	163	0.99	0.81-1.21	0.90
A carrier	3410	1645	0.99	0.90-1.09	0.18	695	1.10	0.96-1.26	0.17
IL-8+396									
T/T	224	27	-			-			
T/G	293	43	1.22	0.73-2.03	0.44	-	-		
G/G	93	12	1.07	0.52-2.20	0.85	-	-		
G carrier	385	55	1.18	0.73-1.93	0.50	-	-		
IL-8+781									
C/C	248	29	-			-			
C/T	282	41	1.24	0.75-2.06	0.39	-	-		
T/T	84	11	1.12	0.54-2.34	0.76	-	-		
T carrier	366	52	1.22	0.75-1.97	0.43	-	-		

NUD includes patients with gastritis without gastric cancer and peptic ulcer, and atrophic gastritis. Because we deleted a number of gastric cardia cancer patients, the number of cancer patients shown in this Table does not match that in Table 4.

Figure 1 Scheme of the association of inflammatory cytokine polymorphisms and gastroduodenal disease development.

Summary of association between H. pylori-related diseases and cytokine polymorphisms

In general, gastric mucosal inflammation in *H. pylori* infection of gastric mucosa is exacerbated in patients with high producer alleles of pro-inflammatory cytokines and low producer alleles of anti-inflammatory cytokines, which results in a higher risk for the development of gastric cancer and gastric ulcer (Figure 1). In contrast, low producer allele carriers of pro-inflammatory cytokines and high producer allele carriers of anti-inflammatory cytokines have mild gastric mucosal inflammation (Figure 1). A summary of the association between *H. pylori*-related diseases and cytokine polymorphisms is shown in Table 11. As important points, the prevalence of cytokine gene genotypes differs between Western and Asian populations. Although Asian populations have been reported to be associated with more severe neutrophil infiltration in non-cancerous gastric mucosa adjacent to cancer. These results may be due to the tumorigenic and angiogenic functions of IL-8 modulating the growth and invasive behavior of malignant tumors by autocrine and paracrine mechanisms, and suggest that genetic variants of IL-8 potentially affect the prognosis of gastric cancer. Nevertheless, several contrary studies have also appeared. Lee et al.[96,100-102] have reported that the prevalence of *H. pylori*-related diseases and cytokine polymorphisms has no significant relationship with the incidence of gastric disease (Table 10). However, the prevalence of *IL-8*-251 polymorphisms differs between Western and Asian populations (Table 7), and the risk for peptic ulcer in Western populations is higher [1.53 (1.09-2.14) for the *IL-8*-251 A/A genotype and 1.49 (1.14-1.96) for A allele carriers] (Table 8). The *IL-8*-251 polymorphism more potentially influences the development of peptic ulcer in Western than East Asian populations.

In combined analysis, the *IL-8*+396 and *IL-8*+781 polymorphisms have no significant relationship with the risk of gastric cancer development (Table 10). However, Savage et al.[98,100] have reported that the *IL-8*-251/ +396/+781 AGT/AGC haplotype is associated with a fourfold increased risk of gastric cancer. This haplotypic analysis will help identify groups with a higher risk of disease and should be investigated in a larger study.

Figure 1 Scheme of the association of inflammatory cytokine polymorphisms and gastroduodenal disease development.

H. pylori

- Inflammatory cytokines

 - Pro-inflammatory cytokine: High producer genotype
 - Anti-inflammatory cytokine: Low producer genotype

 - Enhanced inflammation
 - Atrophic gastritis
 - Gastric cancer

 - Suppressed inflammation
 - Antrum predominant gastritis

 - Weak acid inhibition

- Duodenal ulcer

- Increased type

- Inflammation decreased type

- Potent acid inhibition

- Potent acid inhibition

- Disease process will help identify groups with a higher risk of disease and should be investigated in a larger study.
with IL-1B-511, IL-10, TNF-α polymorphisms and development of peptic ulcer and gastric cancer,[3,19] the influence of IL-4, -6 and -8 polymorphisms on the diseases in the current review may be lower. In Western studies, combination analysis of several cytokine gene genotypes is related to development of diseases.[10] As shown in Table 11, because IL-4-590, IL-6-174, IL-6-572 and IL-8-251 polymorphisms in Western populations relate to development of gastroduodenal diseases, combination analysis including these gene polymorphisms with previously reported IL-1 and TNF-α is expected to increase detection of elevated risk of diseases. These findings should be further evaluated in a larger population.

CONCLUSION

Many genetic factors are associated with the development of _H. pylori_-related diseases. Of these, we have reviewed here the important role of inflammatory cytokines (IL-2, IL-4, IL-6 and IL-8) and their polymorphisms in _H. pylori_-related diseases. We recommend intensive endoscopic screening and/or eradication therapy for patients at higher risk of gastric cancer based on genetic inflammatory cytokine polymorphisms, albeit that we are unsure whether all factors should be determined. Further data to refine this recommendation are therefore required.

REFERENCES

1. Perez-Perez GI, Taylor DN, Bodhidatta L, Wongsrichanalai J, Baze WB, Dunn BE, Echeverria PD, Blaser MJ. Seroprevalence of Helicobacter pylori infections in Thailand. _J Infect Dis_ 1990; 161: 1237-1241
2. Rocha GA, Queiroz DM, Mendes EN, Oliveira AM, Moura SB, Barbosa MT, Mendes CC, Lima Junior GF, Oliveira CA. Indirect immunofluorescence determination of the frequency of anti- _H. pylori_ antibodies in Brazilian blood donors. _Braz J Med Biol Res_ 1992; 25: 683-689
3. Souto FJ, Fontes CJ, Rocha GA, de Oliveira AM, Mendes EN, Queiroz DM. Prevalence of Helicobacter pylori infection in a rural area of the state of Mato Grosso, Brazil. _Mem Inst Oswaldo Cruz_ 1998; 93: 171-174
4. Umura N, Okamoto S, Yamamoto S, Matsumura N, Yamauchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. _N Engl J Med_ 2001; 345: 784-789
5. Take S, Mizuno M, Ishiki K, Nagahara Y, Yoshida T, Yokota K, Oguma K, Okada H, Shiratori Y. The effect of eradicating _Helicobacter pylori_ on the development of gastric cancer in patients with peptic ulcer disease. _Am J Gastroenterol_ 2005; 100: 1037-1042
6. Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, Lai KC, Hu WH, Yuen ST, Leung SY, Fong DY, Ho J, Cheung CK, Chen JS. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. _JAMA_ 2004; 291: 187-194
7. Wooterspoon AC, Doglioni C, de Boni M, Spencer J, Isaacson PG. Antibiotic treatment for low-grade gastric MALT lymphoma. _Lancet_ 1994; 343: 1503
8. Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gastric ulcer recurrence: a review. _Gastroenterology_ 1996; 110: 1244-1252
9. Gasbarrini A, Franceschi F, Tartaglione R, Landolfi R, Pola P, Gasbarrini G. Regression of autoimmune thrombocytopenia after eradication of _Helicobacter pylori_. _Lancet_ 1998; 352: 878
10. Tebbe B, Geilen CC, Schulzke JD, Bojarski C, Radenhausen M, Orfanos CE. Helicobacter pylori infection and chronic urticaria. _J Am Acad Dermatol_ 1996; 34: 685-686
11. Annibale B, Marignani M, Monarca B, Antonelli G, Marcheggiano A, Martino G, Mandelli F, Caprilli R, Delle Fave G. Reversal of iron deficiency anemia after Helicobacter pylori eradication in patients with asymptomatic gastritis. _Ann Intern Med_ 1999; 131: 668-672
12. Sugimoto M, Kajimura M, Shirai N, Furuta T, Kanoa S, Ikuma M, Sato Y, Hishida A. Outcome of radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma refractory to Helicobacter pylori eradication therapy. _Intern Med_ 2006; 45: 405-409
13. Hwang JI, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, Yamaoka Y. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in _Helicobacter pylori_ infected mice. _Gastroenterology_ 2002; 123: 1793-1803
14. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr, Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. _Nature_ 2000; 404: 398-402
15. Take S, Mizuno M, Ishiki K, Nagahara Y, Yoshida T, Inaba T, Yamamoto K, Okada H, Yokota K, Oguma K, Shiratori Y. Interleukin-1beta genetic polymorphism influences the effect of cytochrome P 2C19 genotype on the cure rate of 1-week triple therapy for _Helicobacter pylori_ infection. _J Gastroentero_ 2003; 98: 2403-2408
16. Furuta T, Shirai N, Takashima M, Xiao F, Sugimura H. Effect of genotypic differences in interleukin-1 beta on gastric acid secretion in Japanese patients infected with _Helicobacter pylori_. _Am J Med_ 2002; 112: 141-143
17. Machado JC, Pharaoh P, Sousa S, Carvalho R, Oliveira C, Figueiredo C, Amorim A, Seruca R, Caldas C, Carneiro F, Sobrinho-Simões M. Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. _Gastroenterology_ 2001; 121: 823-829
18. Sugimoto M, Furuta T, Shirai N, Nakamura A, Xiao F, Kajimura M, Sugimura H, Hishida A. Different effects of polymorphisms of tumor necrosis factor-alpha and interleukin-1 beta on development of peptic ulcer and gastric cancer. _J Gastroenterol Hepatol_ 2007; 22: 51-59
19. Smythies LE, Waite KR, Lindsey JR, Harris PR, Ghiara P, Smith PD. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4-, but not IFN-gamma, gene-deficient mice. _J Immunol_ 2000; 165: 1022-1029
20. Zavros Y, Rathinevelu S, Kao JY, Todisco A, Del Valle J, Heinstock JV, Low MJ, Merchant JL. Treatment of _Helicobacter gastritis_ with IL-4 requires somatostatin. _Proc Natl Acad Sci USA_ 2003; 100: 12944-12949
21. Walker E, Leemhuis T, Roeder W. Murine B lymphoma cell
lines release functionally active interleukin 2 after stimulation with Staphylococcus aureus. J Immunol 1988; 140: 859-865

22 Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine 2004; 28: 109-123

23 Laurendeau I, Trottier CM, Davidson TS, Kanapin Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Honnighaussen L, Shevach EM, O’Shea JJ. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26: 371-381

24 Miyazaki T, Lui ZJ, Kawaihara M, Yasuda K, Kamali S, Liu ZJ, Kawahara A, Minami Y, Yamada K, Sato CM, Konig H, Riedel M, Dehning S, Douhet A, Spellmann I, Ackenheil M, Möller HJ, Müller N. IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2006; 256: 72-76

25 Vercelli D, Jabara HH, Lauener RP, Geha RS. IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures. J Immunol 1990; 144: 570-573

26 Williams TM, Eisenberg L, Burleim JE, Norris CA, Pancer S, Yao D, Burger S, Kamoun M, Kant JA. Two regions within the human IL-2 gene promoter are important for inducible IL-2 expression. J Immunol 1988; 141: 662-666

27 John S, Turner D, Domn, R, Simpron T, Worthington J, Ollier WE, Hutchinson IV, Haper AJ. Two novel biallelic polymorphisms in the IL-2 gene. Eur J Immunogenet 1998; 25: 419-420

28 Hoffmann SC, Stanley EM, Darrin Cox E, Craighead N, Savage SA. Interleukin-2, -6, and -10 are not associated with gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomarkers Prev 2006; 15: 223-231

29 Dooms H, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 2004; 172: 5973-5979

30 Williams TM, Eisenberg L, Burleim JE, Norris CA, Pancer S, Yao D, Burger S, Kamoun M, Kant JA. Two regions within the human IL-2 gene promoter are important for inducible IL-2 expression. J Immunol 1988; 141: 662-666

31 John S, Turner D, Domn, R, Simpron T, Worthington J, Ollier WE, Hutchinson IV, Haper AJ. Two novel biallelic polymorphisms in the IL-2 gene. Eur J Immunogenet 1998; 25: 419-420

32 Hoffmann SC, Stanley EM, Darrin Cox E, Craighead N, Savage SA. Interleukin-2, -6, and -10 are not associated with gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomarkers Prev 2006; 15: 223-231

33 Matesanz F, Fedetz M, Leyva L, Delgado C, Fernández O, Lahiri A, Demirbilek V, Gürses C, Yentür SP, Uysal S, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 2004; 172: 5973-5979

34 Williams TM, Eisenberg L, Burleim JE, Norris CA, Pancer S, Yao D, Burger S, Kamoun M, Kant JA. Two regions within the human IL-2 gene promoter are important for inducible IL-2 expression. J Immunol 1988; 141: 662-666

35 John S, Turner D, Domn, R, Simpron T, Worthington J, Ollier WE, Hutchinson IV, Haper AJ. Two novel biallelic polymorphisms in the IL-2 gene. Eur J Immunogenet 1998; 25: 419-420

36 Hoffmann SC, Stanley EM, Darrin Cox E, Craighead N, Savage SA. Interleukin-2, -6, and -10 are not associated with gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomarkers Prev 2006; 15: 223-231

37 Matesanz F, Fedetz M, Leyva L, Delgado C, Fernández O, Lahiri A, Demirbilek V, Gürses C, Yentür SP, Uysal S, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 2004; 172: 5973-5979

38 Williams TM, Eisenberg L, Burleim JE, Norris CA, Pancer S, Yao D, Burger S, Kamoun M, Kant JA. Two regions within the human IL-2 gene promoter are important for inducible IL-2 expression. J Immunol 1988; 141: 662-666

39 John S, Turner D, Domn, R, Simpron T, Worthington J, Ollier WE, Hutchinson IV, Haper AJ. Two novel biallelic polymorphisms in the IL-2 gene. Eur J Immunogenet 1998; 25: 419-420
Cytokine polymorphisms and gastric disease

Irin P, Espinel J, Campo R, Manzano M, Geijo F, Pellisé M, González-Huix F, Nieto M, Espinós J, Titó L, Bujanda L, Zabaleta M. Gastric cancer susceptibility is not linked to pro- and anti-inflammatory cytokine gene polymorphisms in whites: a Nationwide Multicenter Study in Spain. *Ann J Gastroenterol* 2007; 102: 1878-1892

Zambon CF, Basso D, Marchet A, Fasolo M, Stranges A, Schiavon S, Navaglia F, Greco E, Fogo P, Falda A, D’Ondorico A, Rugge M, Nitti D, Plebani M. IL-4 -588C>T polymorphism and IL-4 receptor alpha [Ex5+14A>G; Ex1+828A>G] haplotype concur in selecting H. pylori cagA subtype infections. *Clin Chim Acta* 2008; 389: 139-145

Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SL, Flores-Gutiérrez JP, Maldonado-Garza HJ, Perez-Perez GL. Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. *BM Cancer* 2007; 7: 70

Lauta VM. Interleukin-6 and the network of several cytokines in several myeloma: an overview of clinical and experimental data. *Cytokine* 2001; 16: 79-95.

Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources, receptors, effects, and inducers. *Clin Microbiol Rev* 1997; 10: 742-780

Matsuo K, Oka M, Murase K, Soda H, Isomoto H, Takeshima F, Mizuta Y, Murata I, Kohno S. Expression of interleukin 6 and its receptor in human gastric and colorectal cancers. *J Int Med Res* 2003; 31: 69-75

Peters M, Müller AM, Rose-John S. Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. *Blood* 1998; 92: 3495-3504

Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newgen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. *Biochem J* 2003; 374: 1-20

Howlett M, Judd LM, Jenkins B, La Gruta NL, Grail D, Ernst M, Giraud AS. Differential regulation of gastric tumor growth by cytokines that signal exclusively through the co-receptor gp130. *Gastroenterology* 2005; 129: 1005-1018

Jenkins BJ, Grail D, Nheu T, Nájdovska M, Wang B, Waring P, Inglese M, McLoughlin RM, Jones SA, Topley N, Bauermann H, Judd LM, Giraud AS, Boussioutas A, Zhu HJ, Ernst M. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperplasia and desensitizes TGF-beta signalling. *Nat Med* 2005; 11: 845-852

Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malik S, Alderman BM, Grail D, Hollande F, Heath JK, Ernst M. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trofic gene activation in gp130 mutant mice. *Nat Med* 2002; 8: 1089-1097

Harris PR, Smythes LE, Smith PD, Dubois A. Inflammatory cytokine mRNA expression during early and persistent Helicobacter pylori infection in nonhuman primates. *J Infect Dis* 2000; 181: 783-786

Yamaoka Y, Kodama T, Kitai M, Imanishi J, Kashima K, Graham DY. Relation between cytokines and Helicobacter pylori in gastric cancer. *Helicobacter* 2001; 6: 116-124

Yamaoka Y, Kitai M, Kodama T, Sawai N, Imanishi J, Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. *Gastroenterology* 1996; 110: 1744-1752

Crabtree JE, Shallcross TM, Heatley RV, Wyatt JL. Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori-associated gastritis. *Gut* 1991; 32: 1473-1477

Ashizawa T, Okada R, Suzuki Y, Takagi M, Yamazaki T, Sumi T, Aoki T, Ohnuma S, Aoki T. Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. *Gastric Cancer* 2005; 8: 124-131

Liao WC, Lin JT, Wu CY, Huang SP, Lin MT, Wu AS, Huang YJ, Wu MS. Serum interleukin-6 level but not genotype predicts survival after resection in stages II and III gastric carcinoma. *Clin Cancer Res* 2008; 14: 429-434

Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. *J Biol Chem* 2000; 275: 18138-18144

Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS. Humphries S, Woo P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. *J Clin Invest* 1998; 102: 1369-1376

Fernández-Real JM, Broch M, Vendrell J, Richard C, Ricart W. Interleukin-6 gene polymorphism and lipid abnormalities in healthy subjects. *J Clin Endocrinol Metab* 2000; 85: 1334-1339

Fernández-Real JM, Broch M, Vendrell J, Gutiérrez C, Casa-mitjana R, Pugot M, Ricart C, Ricart W. Interleukin-6 gene polymorphism and insulin sensitivity. *Diabetes* 2000; 49: 517-520

Hwang HR, Hsu PJ, Peterson LE, Gürtler M, Kim JG, Graham DY, Yamaoka Y. Interleukin-6 genetic polymorphisms are not related to Helicobacter pylori-associated gastroduodenal diseases. *Helicobacter* 2003; 8: 142-148

Jerrard-Dunne P, Sitzer M, Risley P, Buehler A, von Kegler S, Markus HS. Inflammatory gene load is associated with enhanced inflammation and early carotid atherosclerosis in smokers. *Stroke* 2004; 35: 2438-2443

Kitamura A, Hasegawa G, Obayashi H, Kamichiuchi I, Ishii M, Yano M, Tanaka T, Yamaguchi M, Shigeta H, Ogata M, Nakamura N, Yoshikawa T. Interleukin-6 polymorphism (-634C/G) in the promoter region and the progression of diabetic nephropathy in type 2 diabetes. *Diabet Med* 2002; 19: 1000-1005

Seow A, Ng DP, Choo S, Eng P, Poh WT, Ming T, Wang YT. Joint effect of asthma/atopy and an IL-6 gene polymorphism on lung cancer risk among lifetime non-smoking Chinese women. *Carcinogenesis* 2006; 27: 1240-1244

Gatti LL, Burbano RR, Zambaldi-Tunes M, de-Labòi RW, de Assumpção PT, de Arruda Cardoso-Smith M, Marques-Payão SL. Interleukin-6 polymorphisms, Helicobacter pylori infection in adult Brazilian patients with chronic gastritis and gastric adenocarcinoma. *Arch Med Res* 2007; 38: 551-555

Deans C, Rose-Zerilli M, Wigmore S, Ross J, Howell M, Jackson A, Grimble R, Fearon K. Host cytokine genotype is related to adverse prognosis and systemic inflammation in gastro-oesophageal cancer. *Ann Surg Oncol* 2007; 14: 329-339

Kamangar F, Abnet CC, Hutchinson AA, Newschaffer CJ, Hellesuozor K, Shugart YY, Pietinen P, Dawsey SM, Albames D, Virtamo J, Taylor PR. Polymorphisms in inflammation-related genes and risk of gastric cancer (Finland). *Cancer Causes Control* 2006; 17: 117-125

Chakravorty M, Datta De D, Choudhury A, Santra A, Roychoudhury S. Association of specific haplotype of TNFAlpha with Helicobacter pylori-mediated duodenal ulcer in eastern Indian population. *J Genet* 2008; 87: 299-304

Kang JM, Kim N, Lee DH, Park JH, Lee MK, Kim JS, Jung HC, Song JS. The effects of genetic polymorphisms of IL-6, IL-8, and IL-10 on Helicobacter pylori-induced gastroduodenal diseases in Korea. *J Clin Gastroenterol* 2009; 43: 420-428

Yamaoka Y, Kitai M, Kodama T, Sawai N, Tanahashi T, Kashima K, Imanishi J. Chemokines in the gastric mucosa in Helicobacter pylori infection. *Cytokine* 1998; 42: 609-617

Yamaoka Y, Kodama T, Kitai M, Imanishi J, Kashima K, Graham DY. Relation between clinical presentation, Helicobacter pylori density, interleukin 1beta and 8 production, and cagA status. *Gut* 1999; 48: 804-811

Kitagai Y, Takahashi Y, Haruma K, Naka K, Sumii K, Yokozaki H, Yasui W, Mukaida N, Ohmoto Y, Kajiyama G, Fidler IJ, Tahara E. Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. *Br J Cancer* 1999; 81: 647-653

Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. *Thorax* 2000; 55: 1023-1027

Campa D, Zienolddiny S, Maggini V, Skaug Y, Haugen A,
Cytokine polymorphisms and gastric disease

Canzian F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. *Carcinogenesis* 2004; 25: 229-235

91 Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G, Canzian F. Association of common polymorphisms in inflammatory genes interleukin (IL)-6, IL-8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. *Cancer Res* 2003; 63: 3560-3566

92 Leibovici D, Grossman HB, Dinney CP, Millikan RE, Lemer S, Wang Y, Gu J, Dong Q, Wu X. Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. *J Clin Oncol* 2005; 23: 5746-5756

93 McCarron SL, Edwards S, Evans PR, Gibbs R, Dearnaley DP, Dove A, Southgate C, Easton DF, Howell WM. Influence of cytokine gene polymorphisms on the development of prostate cancer. *Cancer Res* 2002; 62: 3369-3372

94 Canedo P, Castanheira-Vale AJ, Lunet N, Pereira F, Figueiredo C, Gioia-Patricola L, Canzian F, Moreira H, Suriano G, Barros H, Carneiro F, Seruca R, Machado JC. The interleukin-8 -251*T/*A polymorphism is not associated with risk for gastric carcinoma development in a Portuguese population. *Eur J Cancer Prev* 2008; 17: 28-32

95 Kamali-Sarvestani E, Bazargani A, Masoudian M, Lankarani K, Taghavi AR, Saberifirooz M. Association of *H pylori* cagA and vacA genotypes and IL-8 gene polymorphisms with clinical outcome of infection in Iranian patients with gastrointestinal diseases. *World J Gastroenterol* 2006; 12: 5205-5210

96 Shirai K, Ohmiya N, Taguchi A, Mabuchi N, Yatsuya H, Itoh A, Hirooka Y, Niwa Y, Mori N, Goto H. Interleukin-8 gene polymorphism associated with susceptibility to non-cardia gastric carcinoma with microsatellite instability. *J Gastroenterol Hepatol* 2006; 21: 1129-1135

97 Savage SA, Hou L, Lissowska J, Chow WH, Zatonski W, Chanock SJ, Yeager M. Interleukin-8 polymorphisms are not associated with gastric cancer risk in a Polish population. *Cancer Epidemiol Biomarkers Prev* 2006; 15: 589-591

98 Taguchi A, Ohmiya N, Shirai K, Mabuchi N, Itoh A, Hirooka Y, Niwa Y, Goto H. Interleukin-8 promoter polymorphism increases the risk of atrophic gastritis and gastric cancer in Japan. *Cancer Epidemiol Biomarkers Prev* 2005; 14: 2487-2493

99 Lee WP, Tai DI, Lan KH, Li AF, Hsu HC, Lin EJ, Lin YP, Sheu ML, Li CP, Chang FY, Chao Y, Yen SH, Lee SD. The -251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. *Clin Cancer Res* 2005; 11: 6431-6441

100 Ohyauch M, Imatani A, Yonechi M, Asano N, Miura A, Lijima K, Koike T, Sekine H, Ohara S, Shimosugawara T. The polymorphism interleukin 8 -251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population. *Gut* 2005; 54: 330-335

101 Savage SA, Abnet CC, Mark SD, Qiao YL, Dong ZW, Dawsey SM, Taylor PR, Chanock SJ. Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. *Cancer Epidemiol Biomarkers Prev* 2004; 13: 2251-2257

102 Lu W, Pan K, Zhang L, Lin D, Miao X, You W. Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor [alpha] and risk of gastric cancer in a Chinese population. *Carcinogenesis* 2005; 26: 631-636

103 Hofner P, Gyulai Z, Kiss ZF, Tiszai A, Tiszlavicz L, Tóth G, Szőke D, Molnár B, Lonovics J, Tulaszy Z, Mándi Y. Genetic polymorphisms of NOD1 and IL-8, but not polymorphisms of TLR4 genes, are associated with Helicobacter pylori-induced duodenal ulcer and gastritis. *Helicobacter* 2007; 12: 124-131

104 Gyulai Z, Klauzus G, Tisza Z, Lénárt Z, Császár IT, Lonovics J, Mándi Y. Genetic polymorphism of interleukin-8 (IL-8) is associated with Helicobacter pylori-induced duodenal ulcer. *Eur J Clin Microbiol Infect Dis* 2005; 24: 155-159

105 Leung WK, Chan MC, To KF, Man EP, Ng EK, Chu ES, Lau JY, Lin SR, Sung JJ. H. pylori genotypes and cytokine gene polymorphisms influence the development of gastric intestinal metaplasia in a Chinese population. *Am J Gastroenterol* 2006; 101: 714-720

106 Hamajima N, Shibata A, Katsuda N, Matsuo K, Ito H, Saito T, Tajima K, Tominaga S. Subjects with TNF-α-857TT and -1031TT genotypes showed the highest Helicobacter pylori seropositive rate compared with those with other genotypes. *Gastric Cancer* 2003; 6: 230-236

S- Editor Tian L, L- Editor Kerr C, E- Editor Lin YP