Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy

Weiguo Zhang1,2, Jian-Hua Mao1, Wei Zhu3, Anshu K. Jain4,5, Ke Liu6,7, James B. Brown6,7,8 & Gary H. Karpen1,2

Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies.
Genomic instability is characteristic of most human cancers and is believed to promote other cancer hallmarks. The major type of genomic instability is chromosomal instability (CIN), which is observed in both pre-cancerous lesions and malignant growths. CIN is characterized by an increased frequency of chromosome abnormalities, including gain/loss of whole chromosomes or large segments (aneuploidy), structural rearrangements and focal aberrations (for example, amplifications and deletions). These changes can interfere with normal genome structure and function, increase mutation frequencies and epigenetically modify gene activity.

CIN can allow the rapid accumulation of changes that promote cancer progression, growth and heterogeneity, and contribute to intrinsic and acquired drug resistance. Moreover, chromosomal translocations can generate oncogenes that encode fused or misregulated signalling molecules. Paradoxically, extreme CIN can also hinder cell growth or sensitize cancer cells to therapeutic agents, presumably due to excess genotoxicity and proteotoxicity.

The exact causes of CIN in most sporadic cancers remain unclear. Proposed mechanisms include oncogene-induced replication stress, breakage–fusion–bridge cycles induced by telomere dysfunction or translocations, and aberrant mitosis. Another possible mechanism involves centromeres and their associated kinetochores. These structures are required for proper spindle attachment, chromosome congression, mitotic checkpoint activity and separation of sister chromatids during mitosis. Consequently, their misregulation results in chromosome abnormalities and DNA damage through various pathways, and thus may be an important potential cause of CIN in human cancers.

Centromeres and kinetochores consist of centromeric chromatin, as well as inner and outer kinetochore structures. A key epigenetic mark that determines centromere identity is CENP-A, a histone H3 variant enriched only at active centromeres. CENP-A chromatin and the outer kinetochore are connected by the Constitutive Centromere Associated Network (CCAN) that contains several subcomplexes. These include the CENP-T/-W/-S/-X complex, which resides within the H3 domain interspersed between blocks of CENP-A nucleosomes. CENP-C and CENP-N/-L/-M regulate the localization of CENP-H/-I/-K, which in turn is required for CENP-O/-P/-Q/-R/-U recruitment. The CCAN recruits the KMN network (KNL1 complex, MIS12 complex and NDC80 complex) to the outer kinetochore, where NDC80 and other components interact with spindle microtubules to ensure proper chromosome segregation. All these centromere and kinetochore proteins ultimately require CENP-A for their localization.

Maintaining centromere identity requires CENP-A nucleosome assembly at centromeres in each cell cycle. CENP-A assembly relies on the HJURP chaperone and assembly factor that is recruited to the centromere by the MIS18 complex, composed of MIS18A, MIS18B and M18BP1 subunits. This assembly also requires several CCAN components such as CENP-C, and the CENP-H/-I/-K and CENP-N/-L/-M complexes. Defects in CENP-A deposition cause centromere propagation failures, ultimately producing chromosome segregation errors and aneuploidy.

The levels of centromere and kinetochore proteins are tightly regulated, and both deletion and overexpression of these proteins can result in chromosome abnormalities and cell death. Reduced levels cause missegregation and chromosome gains and losses. Conversely, overexpression or ectopic tethering of CENP-A or HJURP results in their mislocalization to non-centromeric chromatin, generating neo-centromeres, dicentric behaviour and chromosome bridges that drive aneuploidy, genome rearrangements and micronuclei formation.

Interestingly, co-overexpression of CENP-A and HJURP produces more severe chromosome missegregation and micronuclei phenotypes than single overexpression, suggesting synergistic effects among individual centromere and kinetochore protein genes (hereafter CEN/KT genes). Importantly, individual overexpression of several centromeric proteins, including CENP-A, HJURP and others correlates with poor prognosis for several cancers, suggesting roles for these proteins in cancer aetiology.

Here we test the hypothesis that misregulation of CEN/KT genes causes chromosomal abnormalities that contribute to tumourogenesis, and can be used as a biomarker for predicting patient prognosis and response to therapy. We show that overexpression of 14 CEN/KT genes is observed consistently in a wide spectrum of cancer types, and correlates with the level of genomic instability in diverse tumours and with adverse tumour properties in a cancer-type-specific manner. The Centromere and kinetochore gene Expression Score (CES) signature based on the expression levels of the 14 CEN/KT genes not only prognosticates cancer patient survival independently from established clinicopathological factors, especially for patients with early-stage lesions, but also predicts patient outcome after adjuvant chemotherapy or radiotherapy. Importantly, these results suggest that although a high CES value is correlated with reduced cancer cell tolerance to specific genotoxic therapies, it does not confer a growth or survival disadvantage for untreated tumours.

We conclude that the CES signature is an effective prognostic and predictive biomarker, and could be used in clinical applications to choose effective therapeutic regimens. In addition, these results demonstrate the importance of applying knowledge of basic biological functions to cancer research, and suggest that further investigations into centromere misregulation will reveal new mechanisms involved in cancer progression.

Results

A subset of CEN/KT genes is misregulated in human cancers. Motivated by the potential relevance of centromere and kinetochore function to genome stability and cancer aetiology, we manually compiled a list of 31 centromere and kinetochore (CEN/KT) protein genes (Fig. 1b) to investigate their potential roles in cancer prognosis using the research strategy illustrated in Fig. 1c. This list was restricted to proteins known to have an impact on centromere or kinetochore structure and function, including CENP-A, downstream CCAN and KMN components, and factors required for CENP-A nucleosome assembly and centromere propagation (for example, HJURP and MIS18).

Using Gene Expression Omnibus (GEO) databases, we analysed CEN/KT gene expression levels in 13 data sets from 12 different types of human cancers, including breast, lung, liver and prostate (Supplementary Table 1). Each data set contains both normal and tumour samples. Compared with the corresponding normal tissues, diverse cancer types displayed misregulation of many CEN/KT genes (Supplementary Fig. 1). Breast, prostate and liver cancers displayed progressively increasing CEN/KT expression during disease progression (Supplementary Fig. 1B,H,I). Notably, misregulation was not present in mitotically active liver dysplasia and many breast cancers.

Moreover, amplification of the epidermal growth factor receptor locus contributes to an acquired resistance to epidermal growth factor receptor inhibitors in glioblastoma cells. Paradoxically, extreme CIN can also hinder cell growth or sensitize cancer cells to therapeutic agents, presumably due to excess genotoxicity and proteotoxicity.

The exact causes of CIN in most sporadic cancers remain unclear. Proposed mechanisms include oncogene-induced replication stress, breakage–fusion–bridge cycles induced by telomere dysfunction or translocations, and aberrant mitosis. Another possible mechanism involves centromeres and their associated kinetochores. These structures are required for proper spindle attachment, chromosome congression, mitotic checkpoint activity and separation of sister chromatids during mitosis. Consequently, their misregulation results in chromosome abnormalities and DNA damage through various pathways, and thus may be an important potential cause of CIN in human cancers.

Centromeres and kinetochores consist of centromeric chromatin, as well as inner and outer kinetochore structures. A key epigenetic mark that determines centromere identity is CENP-A, a histone H3 variant enriched only at active centromeres. CENP-A chromatin and the outer kinetochore are connected by the Constitutive Centromere Associated Network (CCAN) that contains several subcomplexes. These include the CENP-T/-W/-S/-X complex, which resides within the H3 domain interspersed between blocks of CENP-A nucleosomes. CENP-C and CENP-N/-L/-M regulate the localization of CENP-H/-I/-K, which in turn is required for CENP-O/-P/-Q/-R/-U recruitment. The CCAN recruits the KMN network (KNL1 complex, MIS12 complex and NDC80 complex) to the outer kinetochore, where NDC80 and other components interact with spindle microtubules to ensure proper chromosome segregation. All these centromere and kinetochore proteins ultimately require CENP-A for their localization.

Maintaining centromere identity requires CENP-A nucleosome assembly at centromeres in each cell cycle. CENP-A assembly relies on the HJURP chaperone and assembly factor that is recruited to the centromere by the MIS18 complex, composed of MIS18A, MIS18B and M18BP1 subunits. This assembly also requires several CCAN components such as CENP-C, and the CENP-H/-I/-K and CENP-N/-L/-M complexes. Defects in CENP-A deposition cause centromere propagation failures, ultimately producing chromosome segregation errors and aneuploidy.

The levels of centromere and kinetochore proteins are tightly regulated, and both deletion and overexpression of these proteins can result in chromosome abnormalities and cell death. Reduced levels cause missegregation and chromosome gains and losses. Conversely, overexpression or ectopic tethering of CENP-A or HJURP results in their mislocalization to non-centromeric chromatin, generating neo-centromeres, dicentric behaviour and chromosome bridges that drive aneuploidy, genome rearrangements and micronuclei formation.

Interestingly, co-overexpression of CENP-A and HJURP produces more severe chromosome missegregation and micronuclei phenotypes than single overexpression, suggesting synergistic effects among individual centromere and kinetochore protein genes (hereafter CEN/KT genes). Importantly, individual overexpression of several centromeric proteins, including CENP-A, HJURP and others correlates with poor prognosis for several cancers, suggesting roles for these proteins in cancer aetiology.

Here we test the hypothesis that misregulation of CEN/KT genes causes chromosomal abnormalities that contribute to tumourogenesis, and can be used as a biomarker for predicting patient prognosis and response to therapy. We show that overexpression of 14 CEN/KT genes is observed consistently in a wide spectrum of cancer types, and correlates with the level of genomic instability in diverse tumours and with adverse tumour properties in a cancer-type-specific manner. The Centromere and kinetochore gene Expression Score (CES) signature based on the expression levels of the 14 CEN/KT genes not only prognosticates cancer patient survival independently from established clinicopathological factors, especially for patients with early-stage lesions, but also predicts patient outcome after adjuvant chemotherapy or radiotherapy. Importantly, these results suggest that although a high CES value is correlated with reduced cancer cell tolerance to specific genotoxic therapies, it does not confer a growth or survival disadvantage for untreated tumours.

We conclude that the CES signature is an effective prognostic and predictive biomarker, and could be used in clinical applications to choose effective therapeutic regimens. In addition, these results demonstrate the importance of applying knowledge of basic biological functions to cancer research, and suggest that further investigations into centromere misregulation will reveal new mechanisms involved in cancer progression.

Results

A subset of CEN/KT genes is misregulated in human cancers. Motivated by the potential relevance of centromere and kinetochore function to genome stability and cancer aetiology, we manually compiled a list of 31 centromere and kinetochore (CEN/KT) protein genes (Fig. 1b) to investigate their potential roles in cancer prognosis using the research strategy illustrated in Fig. 1c. This list was restricted to proteins known to have an impact on centromere or kinetochore structure and function, including CENP-A, downstream CCAN and KMN components, and factors required for CENP-A nucleosome assembly and centromere propagation (for example, HJURP and MIS18).

Using Gene Expression Omnibus (GEO) databases, we analysed CEN/KT gene expression levels in 13 data sets from 12 different types of human cancers, including breast, lung, liver and prostate (Supplementary Table 1). Each data set contains both normal and tumour samples. Compared with the corresponding normal tissues, diverse cancer types displayed misregulation of many CEN/KT genes (Supplementary Fig. 1). Breast, prostate and liver cancers displayed progressively increasing CEN/KT expression during disease progression (Supplementary Fig. 1B,H,I). Notably, misregulation was not present in mitotically active liver dysplasia and many breast cancers.
ductal carcinoma in situ (DCIS) (Supplementary Fig. 1B,I), suggesting that defective CEN/KT gene expression is not simply a result of over-proliferation. Furthermore, we performed expression correlation network analysis using large TCGA data sets and found that CEN/KT gene expression levels across cancer types, and among individuals within the same type, can differ significantly (Supplementary Fig. 2; Supplementary Note 1).

To understand the potential role of CEN/KT genes in cancer progression, we analysed 13 Affymetrix gene expression microarray data sets from nine cancer types (Supplementary Data 1). Comparing the expression levels in tumours with those in corresponding normal tissues, and in late- versus early-stage tumours, revealed that 15 out of 31 CEN/KT genes were significantly misregulated (all upregulated; false discovery rate (FDR)-adjusted P<0.05, at least twofold difference, and in at least 50% (as empirical prevalence cutoff) data sets examined; Fig. 1b; Supplementary Data 1). Their significant overexpression in individual data sets was further confirmed by a permutation test, where we computed the probability of getting CEN/KT gene overexpression that is higher than the observed fold changes after data randomization (Supplementary Table 2). These results indicate that defective CEN/KT gene regulation is present among corresponding normal tissues, and in late- versus early-stage tumours, revealed that 15 out of 31 CEN/KT genes were significantly misregulated (all upregulated; false discovery rate (FDR)-adjusted P<0.05, at least twofold difference, and in at least 50% (as empirical prevalence cutoff) data sets examined; Fig. 1b; Supplementary Data 1). Their significant overexpression in individual data sets was further confirmed by a permutation test, where we computed the probability of getting CEN/KT gene overexpression that is higher than the observed fold changes after data randomization (Supplementary Table 2). These results indicate that defective CEN/KT gene regulation is present among
a wide array of cancers, and thus may play an important role in aetiology and disease progression.

A subset of CEN/KT genes are prognostic for patient survival.

Next, we identified a subset of CEN/KT genes whose misregulation offers prognostic value for cancer patients by performing meta-analysis for multiple cancer types using multiple databases. The analyses included over 3,000 human breast cancer clinical samples (using Breast Cancer Gene-Expression Miner v3.0 (BC-GenExMiner 3.0)) and hundreds to thousands of breast, lung, ovarian and gastric cancer patients (using the Kaplan–Meier (K–M) Plotter database) (Supplementary Tables 3–7; Supplementary Note 2). Combined with the list of 15 CEN/KT genes upregulated in multiple cancers, these results identified 14 out of 15 CEN/KT genes whose expression levels were significantly associated with poor patient survival and higher risk of disease progression (Fig. 2; Supplementary Table 8). CENP-W, -L, -K, SPC24 and NUF2 were included in the final core CEN/KT gene list because they were identified by both differentially expressed gene analysis across cancer types and BC-GenExMiner analysis, even though the Affymetrix HG-U133A platform used by K–M Plotter is lack of probes to evaluate these five genes (also see Methods). Altogether, the list of 14 core genes contains seven genes involved in CENP-A assembly (CENP-A, -N, -M, -K, -L, HJURP and MIS18B), implying an important role for this biological process in cancer progression. It also includes four NDC80 subunits and several other CCAN and KMN network components, but no MIS12 complex members. These 14 genes are infrequently mutated in cancer patients, as would be expected for essential genes. The mutation frequencies for all 14 genes combined range from 0 to <14% for different cancer types (Supplementary Table 9). We find no evidence for recurrent cancer mutations using the COSMIC database (http://cancer.sanger.ac.uk/cosmic), and none of these 14 CEN/KT genes have been identified as putative cancer mutation driver genes in recent comprehensive analyses using TCGA and other data sets. We conclude that expression levels of many but not all CEN/KT genes are effective prognostic factors for multiple cancers, and different CEN/KT genes may have distinct roles in cancer aetiology.

CES correlates with genomic instability in human cancers. To facilitate further analysis of the impact of CEN/KT misexpression on cancer progression and outcomes, we summarized the extent of overall pathway misregulation in samples using the CES, calculated as the sum of the log_{2}(mRNA expression level) for each of the 14 CEN/KT genes (Fig. 2). Since defects in centromere and kinetochore function lead to CIN in experimental systems, we analysed TCGA data sets for 18 different cancer types to determine if CEN/KT gene misregulation (represented by the CES value) correlates with the extent of genome instability (genome fraction with copy-number alterations (CNA) and mutation frequency). This expansive data set includes high-quality gene expression and genomic data for many patients. We detected a significant positive correlation (Spearman correlation, FDR-adjusted P<0.05) between CES values and both CNA fractions and mutation frequencies for seven cancer types (39%), including breast, lung and stomach adenocarcinomas (ADC) and low-grade brain gliomas (Table 1). We found that CES values significantly correlate with either CNA fraction or mutation frequency for six cancers (33%), including adrenocortical, head and neck, and kidney renal clear cell carcinomas. Five of the analysed cancer data sets showed no correlation (28%), including cervical squamous cell carcinomas (SCCs), glioblastomas and thyroid carcinomas. Moreover, within breast ADCs, CES values correlate with the level of genomic instability for both invasive ductal carcinoma and invasive lobular carcinoma (Supplementary Table 10). Overall, we conclude that across diverse cancer types, the CES signature significantly correlates with the level of genome instability, consistent with the important role of centromeres in genome maintenance across tissues and cell types.

CES correlates with specific adverse tumour features. We next explored the clinical information in TCGA and other microarray data sets and found that CES is significantly associated with several unfavourable tumour characteristics in a cancer-type-specific manner (Table 2). We also confirmed the associations in single data sets by box plots. For example, in breast cancer, high CES tumours are enriched for high-grade (P<0.0001, Kruskal–Wallis test; Supplementary Fig. 3; Table 2), ER− and PR− status (P<0.0001, Wilcoxon rank-sum test; Supplementary Fig. 4; Table 2), and more aggressive molecular subtypes (basal like, HER2+ versus luminal; P<0.0001, Kruskal–Wallis test; Supplementary Fig. 5; Table 2). Moreover, breast invasive lobular carcinomas are predominantly luminal A subtype tumours and show significantly lower CES than invasive ductal carcinomas as expected (Supplementary Fig. 6). More details on breast cancer analysis are provided in Supplementary Note 3. In non-small cell lung cancer (NSCLC), high CES tumours are enriched for SCC
We also observed a significant association between high CES and lymph node invasion by box plots in TCGA lung SCCs (P = 0.003, Wilcoxon rank-sum test) but not in breast cancer data set (Table 2; Supplementary Fig. 10). Breast cancer data set GSE3494 was excluded from the analysis due to significant enrichment of high grade in samples with positive lymph nodes (P < 0.001, Fisher’s exact test). Overall, these findings suggest that the genomic instability associated with high CES may contribute to a number of important tumour properties.

Table 1 | Correlation between tumour CES values and CNA and mutation frequencies in TCGA data sets.

Cancer Types	Mutation frequency	Copy-number alteration						
	r_s	P value	FDR P value	N	r_s	P value	FDR P value	N
Adenocortical carcinoma	0.468	3.3E-06	1.2E-05	72	0.046	0.703	0.703	72
Bladder urothelial carcinoma	0.240	0.006	0.011	129	0.244	3.4E-08	8.7E-08	353
Lower-grade glioma	0.323	4.8E-08	2.2E-07	273	0.483	1.5E-30	9.0E-30	499
Breast adenocarcinoma	0.443	3.7E-48	6.7E-47	975	0.539	3.4E-82	6.1E-81	1,076
Cervical SCC and endocervical adenocarcinoma	0.095	0.191	0.264	191	0.091	0.155	0.186	244
Colorectal carcinoma	0.145	0.050	0.075	182	0.031	0.674	0.703	182
Glioblastoma	0.090	0.280	0.336	147	0.128	0.120	0.166	148
Head and neck SCC	0.124	0.031	0.051	304	0.208	3.2E-06	7.2E-06	494
Kidney RCC	0.036	0.466	0.493	410	0.179	4.7E-05	9.4E-05	513
Kidney RPC	0.049	0.542	0.542	121	0.182	0.002	0.004	276
Lung ADC	0.338	6.3E-06	1.9E-05	171	0.290	7.5E-11	2.7E-10	485
Lung SCC	0.236	0.002	0.003	178	0.509	3.6E-34	3.2E-33	498
High-grade ovarian serous cystadenocarcinoma	0.071	0.368	0.414	161	0.133	0.031	0.051	262
Prostate adenocarcinoma	0.349	1.6E-08	1.2E-07	248	0.487	1.4E-29	6.3E-29	474
Skin cutaneous melanoma	0.196	2.7E-04	6.9E-04	339	0.066	0.152	0.186	468
Stomach adenocarcinoma	0.386	2.0E-08	1.2E-07	198	0.377	2.8E-10	8.4E-10	262
Thyroid carcinoma	0.056	0.273	0.336	391	0.036	0.427	0.480	489
Uterine carcinosarcoma	0.432	9.0E-04	0.002	56	0.263	0.050	0.075	56

ADC, adenocarcinoma; CNA, copy-number alteration; RCC, renal cell carcinoma; RPC, renal papillary cell carcinoma; SCC, squamous cell carcinoma.

Significant two-tailed P values and FDR-adjusted P values for Spearman’s correlation coefficient (r_s) are bolded (P < 0.05).

Table 2 | Distribution of specific tumour characteristics among CES tertiles.

Clinical factors	CES tertile	\(\chi^2\)-test (P value)		
	Low (%)	Intermediate (%)	High (%)	
Breast cancer	12	23	65	5E-36
Grade 3*	8	19	73	3E-23
ER negative\†	34	35	31	6E-02
Positive lymph node\‡	33	35	32	8E-09
High stage (III+IV)\‡	24	40	36	0.047
NSCLC (ADC and SCC)	26	37	37	0.161
Positive lymph node\‡	9	31	60	1E-14
High stage (III+IV)\‡	9	31	60	1E-14
SCC versus ADC\‡	24	40	36	0.047

ADC, adenocarcinoma; CES, Centromere and kinetochore gene Expression Score; NSCLC, non-small cell lung cancer; SCC, squamous cell carcinoma.

*Five data sets with grade information listed in Supplementary Table 12 were pooled (GSE6532, GSE1456, GSE3494, NKI and Gray data set).

\†TCGA breast adenocarcinoma data set with 0.3 tumour purity cutoff. Tumour purity cutoff at 0.7 results in similar conclusions but not shown.

\‡TCGA lung ADC and SCC data sets were pooled. Only lung SCC data set contains lymph node invasion information.

3Three NSCLC data sets containing histological subtype information listed in Supplementary Table 13 were pooled (GSE4184, GSE42127 and GSE37745).
worse prognoses. We confirmed the significance of the CES signature by meta-analysis across cancer types using K–M Plotter database, using automatically computed best CES thresholds to detect the most significant difference between high and low CES groups (Supplementary Fig. 11). Stratifying patient cohorts according to CES tertiles in K–M Plotter produced similar results. Notably, the CES signature effectively prognosticates patient survival for early-stage (stage I and II combined) NSCLC and ovarian cancer (Figs 3 and 4; Supplementary Fig. 11).

To evaluate whether CES has prognostic values independent from established clinicopathological factors, we carried out multivariate Cox regression using breast cancer and lung cancer data that contain gene expression and clinical information (Supplementary Tables 12–25). Individual data sets and meta-data showed that the prognostic value of the CES remained significant after adjusting for other factors, including tumour stage and individual staging factors, tumour grade, breast cancer ER status, HER2 status, and NSCLC histological subtype (Figs 3g...
Figure 4 | CES signature is prognostic for cancer patient risk of relapse and metastasis. (a–g) Kaplan–Meier survival estimations for individual breast cancer and lung cancer data sets for distant metastasis-free survival (DMFS), relapse-free survival (RFS)/disease-free survival (DFS) and relapse/recurrence. Each cohort was divided into CES high (red), intermediate (blue) and low (green) tertiles. Sample sizes and log-rank P values are indicated. (h) Forest plot summarizing prognostic impact of CES on DMFS, RFS/DFS and relapse/recurrence by multivariate Cox regression using individual data sets. Squares and error bars in the plots denote log2 scales of hazard ratio (HR) and 95% confidence interval (CI), respectively. See details of multivariate Cox regression analysis for each data set in Supplementary Tables 15–25. Breast cancer NKI and lung ADC GSE31210 data sets contain only stage I and II samples.

CRES predicts sensitivity to Topo I inhibitors in cell lines. Since high CES cancer cells experience more severe genotoxic stress (Table 1), they may be more sensitive to additional DNA damage than low CES cancer cells. Thus, we mined the Cancer Cell Line Encyclopedia (CCLE) data to investigate the relationship between cancer cell line CES values and half maximal inhibitory concentrations (IC50s) for the Topo I inhibitors irinotecan and topotecan, which are camptothecin analogues and damage DNA. Since DNA50. After binning CCLE cell lines into quartiles according to their CES values, we detected extremely significant differences in drug IC50s of cancer cell lines were inversely and significantly correlated (Spearman’s rho, r = -0.384, P < 0.001 for irinotecan; and r = -0.339, P < 0.001 for topotecan; Table 3). This strong
negative correlation was also found across several subgroups of CCLE cell lines derived from specific tissues, including breast, lung and ovarian cancer cell lines (Table 3). The inverse correlation was further confirmed by analysing the Sanger Institute cancer cell line camptothecin data set (Fig. 6c). We conclude that high CES cancer cell lines are more sensitive than low CES cell lines to Topo I inhibitors, which cause genotoxicity and reduce cell survival—consistent with the hypothesis that high CES scores correlate with reduced tolerance to genotoxic stress.

CES predicts patient outcome after adjuvant chemotherapy. From the results above, we conjectured that patients with high CES tumours are more likely to respond positively to adjuvant genotoxic therapies, such as chemotherapy or radiotherapy. We first explored this hypothesis by determining whether adjuvant chemotherapy is more effective for early-stage NSCLC patients with high CES tumours, using the JBR.10 early-stage lung cancer clinical trial data set (GSE14814)\(^1\). This clinical trial utilized a prospective, randomized design, thus avoiding many drawbacks associated with retrospective studies. Post-surgery stage I and II NSCLC patients were randomly assigned to no adjuvant treatment (OBS) or to adjuvant chemotherapy (ACT) including cisplatin, which causes DNA damage and promotes apoptosis, and vinorelbine, a microtubule inhibitor\(^1\). We divided patients into CES high (top tertile) and low (lower two tertiles) groups, and vinorelbine, a microtubule inhibitor\(^1\). We divided patients into CES high (top tertile) and low (lower two tertiles) groups, and observed that high CES predicted poor overall survival for patients without adjuvant treatment (hazard ratio (HR) = 2.728, P = 0.017), validating the prognostic power of the CES system (Supplementary Fig. 25A). Importantly, adjuvant chemotherapy effectively negated the adverse outcome associated with high CES (HR = 0.710, P = 0.402), suggesting that the CES system also has predictive power (Supplementary Fig. 25B). Indeed, adjuvant therapy significantly improved overall survival for high CES

Figure 5 | CES signature is prognostic after patient stratification by common clinicopathological factors. CES threshold for high and low were automatically computed using K-M Plotter database. Squares and error bars in the plots denote log2 scales of hazard ratio (HR) and 95% confidence interval (CI), respectively. (a) Breast cancer molecular subtypes (see Supplementary Fig. 12 for individual Kaplan–Meier plots). (b) Breast cancer grades (Supplementary Fig. 14). (c) NSCLC histological subtypes (Supplementary Fig. 16). (d) NSCLC stages (Supplementary Fig. 17). (e) NSCLC grades (Supplementary Fig. 18). (f) Ovarian cancer stages (Supplementary Fig. 21). (g) Ovarian cancer grades (Supplementary Fig. 22). After stratification by common clinicopathological factors, we observed that CES predicts patient outcome after adjuvant chemotherapy.
Topoisomerase I inhibitors in cancer cell lines. Box plots of IC50 for Topo I inhibitors in cancer cell lines grouped by CES quartiles. Cell lines in the top CES quartile (75–100th) are significantly more sensitive to Topo I inhibitors than those in the bottom CES quartile (0–25th) determined by Wilcoxon rank-sum tests. Significant *P* values are indicated in red. (a) Irinotecan in CCLE data set. (b) Topotecan in CCLE data set. (c) Camptothecin in Wellcome Trust Sanger Institute CGP data set.
for high CES tumours (Fig. 5c,d; Supplementary Figs 16 and 17). Moreover, the improved overall survival associated with high CES in lymph node-positive breast cancer patients is probably because there was significant enrichment for high grade ($P = 0.003$ for GSE3494 and $P<0.001$ for GSE20711 (ref. 53), respectively, Fisher’s exact test) or ER+ (GSE16446 (ref. 54) only studied ER- tumours) in lymph node-positive tumours in the 3 data sets used by the K–M Plotter database, and because all patients in the lymph node-positive cohort were subjected to adjuvant therapies (Supplementary Fig. 15B). Importantly, we found no evidence that high CES is associated with significantly better survival without therapy. Altogether, our results suggest that the correlation between extreme genomic instability and improved survival likely results from the greater impact of genotoxic therapy on high CES tumours, and not from high levels of CIN per se.

We also studied the CES in ovarian cancer, where most patients had higher-grade (grade 2 and 3) and late-stage (III and IV) tumours, and were treated with chemotherapy including platinum agents. Here high CES appeared to have either: (1) no effect, or (2) was associated with better outcomes, for cohorts including all late-stage patients or platinum-treated late-stage patients (Figs 5f,g and 7h; Supplementary Figs. 21–22 and 33). In addition, high CES was associated with even better overall survival among patients treated with topotecan (HR = 0.63, $P = 0.029$; Fig. 7h; Supplementary Fig. 33B). Notably, in CCLE ovarian cancer cell lines, high CES values were significantly correlated with increased topotecan sensitivity (Spearman’s rho, $r_s = 0.469$, $P = 0.018$; Table 3). Overall, our results demonstrate that the CES system effectively predicts clinical response to adjuvant chemotherapies for lung, breast and ovarian cancer patients.

Table 3 | Correlation between cancer cell line CES values and IC50s for irinotecan and topotecan in CCLE cancer cell lines.

CCLE cell lines	I rinotecan	Topotecan				
	Spearman’s rho	P value	n	Spearman’s rho	P value	n
Breast	−0.644	0.007*	16	−0.247	0.281	21
Lung	−0.419	0.005*	44	−0.425	0.0001*	77
Ovary	−0.623	0.003*	20	−0.469	0.018*	25
Haematopoietic and lymphoid	−0.344	0.017*	48	−0.092	0.468	65
Skin	0.200	0.327	26	−0.163	0.364	33
CNS	−0.203	0.436	17	−0.126	0.568	23
Pancreas	−0.439	0.078	17	−0.143	0.536	21
Pooled	−0.384	<0.000001*	277	−0.339	<0.000001*	412

CCLE, Cancer Cell Line Encyclopedia; CES, Centromere and kinetochore gene Expression Score; IC50, half maximal inhibitory concentration. Significant two-tailed P values for Spearman’s correlation coefficient r are indicated by asterisks ($P<0.05$).

Discussion

In this study, we used a hypothesis-driven approach to interrogate the prognostic and predictive value of centromere and kinetochore protein gene misexpression in human cancers. Analyses of numerous cancer databases demonstrate that 14 CEN/KT genes are consistently overexpressed in a wide spectrum of human cancer types and prognosticate patient survival. Many of these 14 CEN/KT genes are involved in the process of CENP-A nucleosome assembly, supporting its potential importance in cancer progression. To summarize the extent of CEN/KT gene overexpression, we developed a CES (for Centromere and kinetochore gene Expression Score) signature. We show that high human tumour CES values are associated with several adverse tumour properties, and predict poor patient outcomes, including locoregional recurrence, metastatic spread and overall survival, independently from established clinicopathological factors. High CES values significantly correlate with increased levels of genomic instability (fraction of genome with CNAs and mutation frequencies) in many different cancer types. Thus, we hypothesized that tumours with very high CES are more sensitive to further DNA damage, which is supported by the observation that high CES cancer cell lines demonstrate increased sensitivity and cytotoxicity to topoisomerase I inhibitors. We further show that the CES signature effectively predicts outcomes in breast and lung cancer patients receiving adjuvant chemotherapy or radiotherapy. Thus, we conclude that the CES signature is an effective prognostic and predictive biomarker.

We propose that clinical implementation of the CES signature could contribute to ‘precision medicine’ by allowing more effective therapeutic regimens to be chosen, which would limit patient exposure to less effective therapies55. For example, many early-stage lung cancer patients who receive adjuvant chemotherapy after resection experience severe side effects without significant benefit56. Consequently, the CES signature may hold clinical value by separating responders from non-responders to first-line adjuvant therapies that include platinum agents. Such separation could help spare non-responders from...
Figure 7 | CES predicts cancer patient outcome after adjuvant chemotherapy or radiotherapy. (a) Kaplan–Meier plots showing that high CES predicts better patient outcome after adjuvant chemotherapy (ACT) for early-stage NSCLC patients in JBR.10 trial. ACT significantly improved overall survival compared to no ACT (OBS) specifically for the high CES group (top tertile), but not for the low CES group (lower two tertiles). (b) Kaplan–Meier plots showing that high CES predicts better patient outcome after adjuvant radiotherapy (RT) for (left) overall survival (OS) and (right) disease-free survival (DFS) for breast cancer patients using the Gray data set (E-TABM-158). Patient cohort was divided into CES tertiles. There is no significant survival benefit from RT for patients with intermediate (middle) and low (bottom) CES. (c–h) Forest plots summarizing treatment-specific hazard ratios of high CES in cancer patient cohorts using K–M Plotter. Squares and error bars in the plots denote log2 scales of hazard ratio (HR) and 95% confidence interval (CI), respectively. (c) NSCLC patient overall survival (OS) with or without chemotherapy or radiotherapy (see Supplementary Fig. 27 for Kaplan–Meier plots). (d) NSCLC patient first progression (FP) (Supplementary Fig. 29). (e) ER+ breast cancer patient relapse-free survival (RFS) with or without tamoxifen or chemotherapy (Supplementary Fig. 30). (f) Grade 3 breast cancer patient relapse-free survival with or without chemotherapy (Supplementary Fig. 31). (g) ER+ breast cancer patient survival (Supplementary Fig. 32). (h) Stage 3 and 4 combined ovarian cancer patient overall survival and progression-free survival (PFS) with topotecan or platinum treatments (Supplementary Fig. 33).
the toxicity of unfavourable therapy, and, importantly, would promote exploration of other potentially more effective therapeutic regimens for this population. CES may offer similar clinical value in breast DCIS. The CES marker may help identify patients at risk for recurrence, especially invasive recurrences, as only a subset of breast DCIS display high CEN/KT gene expression. This would allow potential de-escalation of adjuvant therapy in low-risk patients who are unlikely to receive significant benefit. Validating the CES marker’s utility in identification of high-risk DCIS will require analysing a larger number of patients in prospective data sets. Importantly, since centromeres are universally required for genome stability, the CES signature can potentially be useful for cancer types other than those examined in this study.

Our results may help elucidate the role of centromere misregulation in cancer progression and genome instability. Half the 14 CES genes are involved in the assembly of CENP-A nucleosomes, which is the structural foundation for centromere propagation and function. Therefore, misregulation of centromere replenishment may be a key mechanism that drives genomic instability in cancer. This idea is supported by the observation that perturbing CENP-A nucleosome assembly in model organisms and human cultured cells produces severe mitotic defects. Overexpression or mislocalization of key centromere proteins generates dicentric or lagging chromosomes and other segregation errors. These mitotic errors also increase levels of DNA damage due to spindle-mediated fragmentation of dicentric chromosomes, ‘cutting’ of lagging chromosomes in cytokinesis or defective DNA repair associated with micronuclei in the following cell cycle. Consistently, high tumour CES values were associated with several adverse tumour characteristics and with increased risk of relapse and metastasis in patients, suggesting a role for genomic instability associated with high CES in cancer progression.

Some studies using yeast, human cancer cell lines or mouse tumour models have shown that genomic instability or aneuploidy results in poor viability and reduced growth of normal cells, or tumour cells not subjected to therapeutic intervention. These studies using experimental models differ from our analyses using human clinical data and patient survival as the end point readout. Importantly, we do not find clinical evidence that extreme genomic instability benefits patient survival without genotoxic therapy. Our results on cell line drug sensitivity and patient outcome on adjuvant therapies indicate that the elevated levels of genomic instability sensitize cancer cells to be susceptible to genotoxic agents. A simple explanation for these findings is that therapy elevates genomic perturbations to a level that cannot be effectively repaired, resulting in cancer cell death. This provides an explanation for the unusual correlation between extremely high CES values and improved patient survival observed in patient cohorts enriched for high CES tumours that undergo adjuvant therapies. Our data may also help interpret the results from a recent prospective breast cancer clinical trial (TACT) where high levels of CIN (measured by fluorescence in situ hybridization) were associated with improved patient survival for ER− breast cancer. Importantly, in that study all ER− patients were subjected to adjuvant therapies, and in our study we found no evidence that high CES is associated with significantly better patient survival without therapy. Thus, extreme genomic instability in tumour cells may associate with improved survival only for patients treated with adjuvant genotoxic therapies, a hypothesis that merits further investigation. However, this predictive power of the CES signature appears to also partially temper its prognostic value for certain tumour types such as high-grade, ER− or basal-like and HER2+ breast cancers.

In addition to this ‘CIN threshold’ model, the involvement of some CES genes in DNA repair could provide another explanation for the sensitivity of high CES cancers to further DNA damage. The CENP-A chaperone and assembly factor HJURP (for ‘Hollday Junction Recognition Protein’) was shown to regulate DNA repair and cell viability in cancer cell lines after radiation. The role of CENP-A in DNA repair has also been reported but may depend on genetic and cellular contexts. Other CES proteins also may regulate DNA repair. For example, CENP-W is a CES gene and member of the CENP-T/-W/-S/-X complex. CENP-S/CENP-X is also known as the MHF complex and stimulates replication fork remodelling by FANCM in DNA repair. It is thus conceivable that overexpression of CENP-W favors formation of the CENP-T/-W/-S/-X complex and depletes the pool of CENP-S/CENP-X available for DNA repair or replication. If CES gene overexpression enhances genome instability through centromere misregulation, and simultaneously suppresses effective DNA repair, the CES signature could potentially identify patients who are extremely sensitive to further DNA damage. In future research, it will be interesting to determine whether the CES genes act synergistically with other genes involved in genome maintenance, such as BRCA1 and BRCA2 (refs 71,72), to promote cancer progression.

Finally, one proposed strategy for cancer therapy involves specifically killing cells that contain chromosome aberrations. Here we have identified a group of centromere and kinetochore protein genes whose levels of expression strongly correlate with cancer patient outcome and sensitivity to therapies. These chromosomal functions are distinct from many existing drug targets involved in signal transduction and in regulation of oncogenic or tumour suppression pathways. Thus, these CEN/KT proteins could provide novel drug targets that help overcome the drug resistance caused by CIN, and may increase the effectiveness of cancer cell responses when combined with therapies that target signal transduction or other known oncogenic or tumour suppression pathways.

Methods
Data sets used in this study. For identifying differentially expressed CEN/KT genes, 13 microarray data sets containing both normal and tumour samples were downloaded from the GEO website and clinical characteristics were summarized in Supplementary Table 1 for the data sets used for comparison between normal and tumour tissues by gene expression heat maps, differentially expressed gene analysis and permutation test.

Individual breast cancer and lung cancer data sets containing gene expression, clinical information, treatment information and survival data are summarized in Supplementary Tables 12 and 13 for Kaplan–Meier survival estimations, correlation study and multivariate Cox regression analysis after removing samples of missing information. The Affymetrix probes for the 14 CES genes are listed in Supplementary Table 30. For correlations between CES and breast cancer ER and PR status, and molecular subtype, GSE47561 data set was used, which is a third party re-analysis of the meta-data set containing GSE2034, GSE11121, GSE20194, GSE1456, GSE6203, GSE6532, GSE20437, GSE1561, GSE7390 and GSE8487. Normalized UT SPORE NSCLC data set GSE42127 was generously provided by Drs Yang Xie and Hao Tang. Data sets used for Kaplan–Meier meta-analysis (using K-M plotter) of breast (N = 4,141), lung (N = 2,438), ovarian (N = 1,638) and gastric (N = 751) cancers are listed in Supplementary Table 14.

For TCGA data sets, mRNA expression, fraction of CNA, frequency of non-synonymous gene mutations in cancer exomes and patient clinical information for the set of samples were downloaded from cBioPortal. For the analyses of the TCGA breast ADC data set for correlation between CES and tumour features, we removed samples falling into any of the following categories before analysis: low tumour purity (defined by <0.3 unless otherwise specified), patients marked for having had neo-adjuvant therapy, samples of missing clinical data, samples from metastatic tumours and male samples. For the TCGA lung ADC data set, samples were removed for patients with pretreatment or unknown pretreatment history, and patients with missing survival information.
Gene expression heat maps and co-expression network.

For heat maps, sample clustering was performed on the CEN/KT gene expression profiles using hierarchical clustering in Cluster 3.0 and Java Treeview 1.1.6 to group samples by centroid. Gene co-expression correlation networks were constructed for each cancer type using TCGA data sets downloaded from the cbioPortal18. A network of CEN/KT genes was constructed using Cytoscape 2.8.0 (www.cytoscape.org) with the ExpressionCorrelation plugin (http://baderlab.org/Software/ExpressionCorrelation)19. Correlation coefficients exceeding a threshold (R > 0.4) were displayed as edges between genes represented by nodes. Nodes with fewer edges were arranged to the left of the network and those with more edges to the right.

Kaplan–Meier plots and multivariate Cox regression analysis.

Fewer edges were arranged to the left of the network and those with more edges to the right of the network. Nodes with fewer edges were displayed as edges between genes represented by nodes. Nodes with fewer edges were arranged to the left of the network and those with more edges to the right.

Statistical analysis.

The Statistical Analysis of Microarrays Excel add-on package (http://www-stat.stanford.edu/~tibs/SAM/) was used to identify differences between normal and tumour tissues in expression levels of CEN/KT genes using the following criteria (FDR P < 0.05, fold changes ≥ 2, and in at least 50% of the probes present in Affymetrix HG-U133A array to maximize sample sizes and ensure comparability between data sets for meta-analysis, thus it excluded seven CEN/KT genes that present in Affymetrix HG-U133A array to maximize sample sizes and ensure comparability between data sets for meta-analysis, thus it excluded five of which are also CES genes (CENP-H, -W, -L, -K, -P, SPC24 and NUF2). Therefore, the remaining CES genes were used as a simplified version of the CES signature to maximize sample sizes. Cohorts with small sample sizes (n < 30) were excluded from meta-data analysis using K-M Plotter. K-M Plotter Database was accessed in October 2015.

Data availability.

All TCGA RNA-seq data and associated clinical information are available from cbioPortal (http://www.cbioportal.org/). The CCLE drug sensitivity and gene expression data are available from Broad Institute (http://www.broadinstitute.org/ccle/home), and the Cancer Genome Project drug sensitivity and gene expression data are available from the Sanger Institute (http://www.cancergerm.org/downloads/), respectively20. All other data are contained within the article and the Supplementary Information files, or available from the author on request.

References

1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
2. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosomal instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003).
3. Geigl, J. B., Ozenas, A. C., Schwarzbain, T. & Speicher, M. R. Defining ‘chromosomal instability’. Trends Genet. 24, 64–69 (2008).
4. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).
5. Siegel, J. J. & Amou, A. New insights into the troubles of aneuzyoidy. Annu. Rev. Cell Dev. Biol. 28, 189–214 (2012).
6. Kops, G. J. P. L., Weaver, B. A. A. & Cleveland, D. W. On the road to cancer: aneuzyoidy and the mitotic checkpoint. Nat. Rev. Cancer 5, 773–785 (2005).
7. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).
8. Lee, A. I. X. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).
9. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).
10. Swanton, C. et al. Regulators of mitotic arrest and cancer therapy measurement are deems to sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).
11. Pierotti, M. A., Sozzi, G. & Croce, C. M. Holland-Frei Cancer Medicine 6th edn (BC Decker, 2003).
12. Hiley, C. T. & Swanton, C. Spatial and temporal cancer evolution: causes and consequences of tumour diversity. Clin. Med. 14 (Suppl 6) s33–s47 (2014).
13. Roskosch, A. V. & Kirsch, I. R. Targeting cancer cells by exploiting karyotypic complexity and chromosomal instability. Cell Cycle 4, 679–682 (2005).
14. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).
15. Negrini, S., Gorgodis, V. G. & Halazonetes, T. D. Genomic instability—an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).
16. Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Nat. Rev. Cancer 6, 1043–1048 (2006).
17. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).
18. Earnshaw, W. C., Bernat, R. L., Cooke, C. A. & Rothfield, N. F. Role of the centromere/kinetochore in cell cycle control. Cold Spring Harb. Symp. Quant. Biol. 56, 675–685 (1991).
19. Cleveland, D. W., Ma, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).
20. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).
21. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 451, 179–184 (2015).
22. Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008).
23. Black, B. E., Janssen, L. E., Foltz, D. R. & Cleveland, D. W. Centromere identity, function, and epigenetic propagation across cell divisions. Cold Spring Harb. Symp. Quant. Biol. 75, 403–418 (2010).
24. Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000).
25. Blower, M. D. & Karpen, G. H. The role of Drosophila Cfd in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739 (2001).
26. Earnshaw, W. C. Discovering centromere proteins: from cold white hands to the A. R. C. of CENPs. Nat. Rev. Mol. Cell Biol. 16, 443–449 (2015).
27. Nishino, T. et al. CENP-T-W-S-X forms a unique centromeric structure with a histone-like fold. Cell 148, 487–501 (2012).
32. Dunleavy, E. M.
33. Foltz, D. R.
34. Barnhart, M. C.
35. Moree, B., Meyer, C. B., Fuller, C. J. & Straight, A. F. CENP-C recruits M18BPI to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 229–243 (2011).
36. Fujita, Y.
37. Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 19, 485–497 (2008).
38. Okada, M. et al. The CENP-H-1 complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446–457 (2006).
39. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006).
40. Mendiburo, M. J., Padelen, J., Fulop, S., Schepers, A. & Heun, P. Drosophila CENP/H3 is sufficient for centromere formation. Science 334, 686–690 (2011).
41. Mishra, P. K. et al. Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet. 7, e1002303 (2011).
42. Hu, Z. et al. The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer. Breast Cancer Res. Treat. 123, R72 (2010).
43. Lawrence, M. S. et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Curr. Biol. 19, 58–64 (2009).
44. Monaco, T. et al. DNA methylation profiling reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805–818 (2008).
45. Hayashi, T. et al. Msi16 and Msi18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).
46. Thiru, P. et al. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol. Biol. Cell 25, 1983–1994 (2014).
47. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammary cells. Science 322, 703–709 (2008).
48. Lord, C. J. & Ashworth, A. BRCA1 revisited. Nat. Rev. Cancer 11, 110–120 (2011).
CES and genomic instability, prognostic and predictive value of the CES with significant contributions from W.Zhu., K.L. and J.B.B. performed the permutation test on differentially expressed CEN/KT genes. W.Z. analysed correlations between CES and tumour properties with significant assists from A.K.J., W.Zhu and K.L. W.Zhu and W.Z. performed Cox regression analyses. W.Z. analysed cancer cell line drug sensitivity. J.B.B. provided statistical advice. W.Z. and G.H.K. wrote the manuscript with significant contributions from A.K.J. and W.Zhu. All authors read and commented on the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: W.Z., J.-H.M. and G.H.K. are named as inventors for a pending patent application PCT/US15/31413 entitled ‘Centromere/Kinetochoe protein genes for cancer diagnosis, prognosis and treatment selection’. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Zhang, W. et al. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat. Commun. 7:12619 doi: 10.1038/ncomms12619 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016