Dirac brackets and reduction of invariant bi-Poisson structures

Ihor V. Mykytyuk
Andriy Panasyuk

September 24, 2018

Abstract

Let X be a manifold with a bi-Poisson structure $\{\eta^t\}$ generated by a pair of G-invariant symplectic structures ω_1 and ω_2, where the Lie group G acts properly on X. Let H be some isotropy subgroup for this action representing the principle orbit type and X^r_H be the submanifold of X consisting of the points in X with the stabilizer algebra equal to the Lie algebra h of H and with the stabilizer group conjugated to H in G. We prove that the pair of symplectic structures $\omega_1|_{X^r_H}$ and $\omega_2|_{X^r_H}$ generates an $N(H^0)/H^0$-invariant bi-Poisson structure on X^r_H, where $N(H^0)$ is the normalizer in G of the identity component H^0 of H. The action of $\tilde{G} = N(H^0)/H^0$ on X^r_H is locally free and proper and, moreover, the spaces A^G of G-invariant functions on X and $A^{\tilde{G}}$ of \tilde{G}-invariant functions on X^r_H can be canonically identified and therefore the bi-Poisson structure $\{(\eta^t)'\}$ induced on $A^G \cong A^{\tilde{G}}$ can be treated as the reduction with respect to a locally free action of a Lie group which essentially simplifies the study of $\{(\eta^t)'\}$.

1 Introduction

Two Poisson structures η_1 and η_2 are said to be compatible if the sum $\eta_1 + \eta_2$, or, equivalently, any linear combination $\eta^t = t_1 \eta_1 + t_2 \eta_2$ is a Poisson structure. The family $\{\eta^t\}$ is called a bi-Poisson structure. In this paper we consider the problem of reduction of a bi-Poisson structure $\{\eta^t\}$, which is generated by two symplectic structures, G-invariant with respect to a proper action of a Lie group G on a connected manifold X to a bi-Poisson structure $\{\tilde{\eta}^t\}$ being \tilde{G}-invariant with respect to a proper locally free action of some Lie group \tilde{G} on some submanifold $\tilde{X} \subset X$ (Theorem 2.4). We consider a particular case when the spaces A^G of G-invariant functions on X and $A^{\tilde{G}}$ of \tilde{G}-invariant functions on \tilde{X} can be canonically identified and therefore the bi-Poisson structure $\{(\eta^t)'\}$ induced on $A^G \cong A^{\tilde{G}}$ can be treated as the reduction with respect to a locally free action of a Lie group which essentially simplifies the study of $\{(\eta^t)'\}$.
Note that, given a symplectic form ω on a manifold X and a symplectic submanifold $A \subset X$, the Poisson bracket related to the Poisson structure $\tilde{\eta} = (\omega|_X)^{-1}$ is an example of the so-called Dirac bracket \cite[Sect. 8.5]{6}. In general, if two Poisson structures ω_1^{-1} and ω_2^{-1} are compatible, the Dirac brackets $(\omega_1|_X)^{-1}, (\omega_2|_X)^{-1}$ need not be so (here \tilde{X} is a symplectic submanifold with respect to both ω_1, ω_2). In this paper we deal with a very special situation, when $(\omega_1|_X)^{-1}, (\omega_2|_X)^{-1}$ are compatible, which is a consequence of the G-invariance and the special choice of the submanifold \tilde{X}. In more detail this situation can be described as follows.

Given a proper action of a connected Lie group G on a connected manifold X and an isotropy subgroup $H \subset G$ representing the principle orbit type, consider the subset $X_{(H)}$ of X consisting of the points in X with the stabilizer conjugated to H in G. Since the manifold X is connected the subset $X_{(H)}$ is connected, open, and dense in X \cite{2}. We show that the subset X^*_h of $X_{(H)}$ consisting of the points in $X_{(H)}$ with the stabilizer algebra precisely equal to h, the Lie algebra of H, is a smooth embedded submanifold of X. The subgroup $N(H^0) \subset G$, the normalizer group in G of the identity component H^0 of H, acts on X^*_h and the action of the quotient group $N(H^0)/H^0$ on X^*_h is locally free and proper.

Let ω_1 and ω_2 be two G-invariant symplectic structures on X determining a bi-Poisson structure $\{\eta^i\}$ on X. We show that X^*_h is a symplectic submanifold for arbitrary G-invariant symplectic structure on X, in particular, the forms $\omega_1|_{X^*_h}$ and $\omega_2|_{X^*_h}$ are nondegenerate. Then we prove that the pair of symplectic structures $\omega_1|_{X^*_h}$ and $\omega_2|_{X^*_h}$ generates a $N(H^0)/H^0$-invariant bi-Poisson structure $\{\tilde{\eta}^i\}$ on X^*_h (Theorem \ref{thm:2.4}). Due to the isomorphism $X_{(H)}/G = X^*_h/(N(H^0)/H^0)$, the second quotient space is a smooth manifold. As a result the sets A^G of G-invariant functions on $X_{(H)}$ and $A^\tilde{G}$ of \tilde{G}-invariant functions on X^*_h, where $\tilde{G} = N(H^0)/H^0$, can be canonically identified. The bi-Poisson structures $\{\eta^i\}$ and $\{\tilde{\eta}^i\}$ restricted to the space $A^G \simeq A^\tilde{G}$ determine the same bi-Poisson structure (Theorem \ref{thm:2.4}).

Since the proper action of the group $N(H^0)/H^0$ on the manifold X^*_h is locally free, for investigation of the algebraic properties of the bi-Poisson algebra $A^G \simeq A^\tilde{G}$ we can use methods developed in the paper \cite{11} for locally free actions. Roughly, such an investigation consists of two parts: first is based on hamiltonicity of the action of the corresponding Lie group with respect to a generic Poisson structure of the pencil; second is the study of certain exceptional representatives of the pencil. On the first stage, once the hamiltonicity is established one can use the so-called inertia lemma from the theory of hamiltonian actions \cite[Lemma 2.1]{3} (relating the image of the moment map to the stabilizer of the action) for calculating the rank of the reduction of the generic Poisson structure at a generic point. Under the assumption that the action of the corresponding group is locally free this lemma says that the corank of the reduction of the generic Poisson structure is independent on the parameter of the pencil and equal to the index of the Lie algebra of G. Without this assumption the situation is much more complicated. This is the reason why our
passage from non locally free to locally free actions is crucial.

We illustrate the theory by a class of examples of reductions of bi-Poisson structures on cotangent bundles to coadjoint orbits (homogeneous spaces) G/K, where a compact Lie group G acts on G/K and then on the cotangent bundle $T^*(G/K)$ by the lifted action, see Section 3. Here ω_1 is the canonical symplectic form Ω on the cotangent bundle and ω_2 is equal to the sum of Ω and the pull-back of the Kirillov–Kostant–Souriau form. In particular, we describe the submanifolds $X_{(H)}$ and X^r_H and the reduced bi-Poisson structure $\{\tilde{\eta}\}$ on X^r_H (see Proposition 3.2 and its proof).

These examples first appeared in our paper [7] (note that the proofs of the results of Section 3 are new and independent of that from [7]), where they served as a tool in the proof of the complete integrability for geodesic flows of some metrics. The present paper arose from our attempt of understanding the general principle standing behind the examples mentioned. The results of this paper are also intended as a tool which can be effectively applied to the study of complete integrability of similar systems, however, such a study lies beyond of the scope of this paper since we hope that the results of the present paper are of interest on their own.

The paper is organized as follows. It is divided to three sections and Appendix among which Section 2 is the principal one. The main result of the paper, Theorem 2.4, is contained in Subsection 2.3, while Subsections 2.1–2.2 are intended as introductory ones. They contain definitions and general results needed for the formulation and proof of our main result (its crucial ingredients are Lemmas 2.2 and 2.3). Section 3 contains the above mentioned examples. In Appendix we formulate and prove one statement (Lemma 4.1) from the general theory of Lie groups which is used in the introductory considerations of Subsection 2.2.

2 Proper actions of Lie groups and reductions of invariant bi-Poisson structures

Let G be a connected Lie group acting properly on a smooth connected manifold X. For any point $x \in X$ denote by G_x its isotropy group. Remark that the group G_x is compact because the action of G on X is proper.

Fix some isotropy subgroup $H \subset G$ determining the principal orbit type. In this case the subset

$$X_{(H)} = \{x \in X : G_x = gHg^{-1} \text{ for some } g \in G\}$$

(1)

of X, consisting of all orbits $G \cdot x$ in X isomorphic to G/H, is an open and dense subset of X (see [2], §2.8 and Th. 2.8.5]). The open submanifold $X_{(H)} \subset X$ is G-invariant by definition. It is well known that the orbit space $X_{(H)}/G$ is a smooth manifold. Mainly to fix the notation we shall prove this fact below.

Consider the subset

$$X_H = \{x \in X : G_x = H\}$$

(2)
of X consisting of the points in X with stabilizer precisely equal to H. It is clear that $X_H \subset X_{(H)}$. The set X_H is a smooth embedded submanifold of X \cite{10} Prop. 2.4.7. Let $N(H)$ be the normalizer group of H in G. It is easy to see that the subgroup $N(H)$ acts on X_H and that every G-orbit in $X_{(H)}$ intersects X_H on an $N(H)$ orbit. Furthermore, the quotient group $N(H)/H$ acts freely on X_H and generates the same orbit space. This action of $N(H)/H$ is proper because the subgroup $N(H) \subset G$ is closed. Therefore $X_H / (N(H)/H)$ is a smooth manifold \cite{1} Ch. 3, §1.5, Prop. 10 and, consequently, due to orbit isomorphism
\[X_{(H)} / G \simeq X_H / (N(H)/H) \quad (3) \]
$X_{(H)} / G$ is also a smooth manifold.

2.1 The submanifold X^r_H of the single orbit type submanifold $X_{(H)}$

Let \mathfrak{g} be the Lie algebra of the Lie group G. Let \mathfrak{h} and $\mathfrak{n}(H)$ be the Lie algebras of the Lie groups H and $N(H)$ respectively. The algebra $\mathfrak{n}(H)$ is a subalgebra of the normalizer $\mathfrak{n}(\mathfrak{h})$ of the algebra \mathfrak{h} in \mathfrak{g} and coincides with $\mathfrak{n}(\mathfrak{h})$ if the Lie group H is connected. In general $\mathfrak{n}(H) \neq \mathfrak{n}(\mathfrak{h})$. Since the Lie subgroup $\text{Ad}(H)$ of $\text{Ad}(G)$ is compact, there is an $\text{Ad}(H)$-invariant scalar product $\langle \cdot, \cdot \rangle^H$ on the Lie algebra \mathfrak{g}. Denote by \mathfrak{p} the orthogonal complement to $\mathfrak{n}(\mathfrak{h})$ in \mathfrak{g} with respect to $\langle \cdot, \cdot \rangle^H$. Due to the connectedness of the group H^0 with the Lie algebra \mathfrak{h} we have
\[\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{n}(\mathfrak{h}), \quad \text{Ad}(H^0)(\mathfrak{n}(\mathfrak{h})) = \mathfrak{n}(\mathfrak{h}), \quad \text{Ad}(H^0)(\mathfrak{p}) = \mathfrak{p}. \quad (4) \]

As we remarked above in general $\mathfrak{n}(H) \neq \mathfrak{n}(\mathfrak{h})$. Therefore it is more useful from the point of view of calculations (see example in Section 3) to consider also the subset of X
\[X_\mathfrak{h} = \{ x \in X : \mathfrak{g}_x = \mathfrak{h} \} = \{ x \in X : G^0_x = H^0 \}, \quad (5) \]
where \mathfrak{g}_x stands for the Lie algebra of the isotropy group G_x and A^0 for the connected component of the identity element (the identity component for short) of a Lie group $A \subset G$. In general, $X_\mathfrak{h} \not\subset X_{(H)}$. Therefore we will consider the subset
\[X^r_\mathfrak{h} = X_\mathfrak{h} \cap X_{(H)} \quad (6) \]
of $X_{(H)}$ (of “regular” points).

Clearly, $X^r_\mathfrak{h}$ contains X_H. We will prove below that $X^r_\mathfrak{h}$ is an embedded submanifold of $X_{(H)}$ and $\dim X^r_\mathfrak{h} = \dim X_H = \dim \mathfrak{n}(\mathfrak{h}) - \dim \mathfrak{n}(H)$.

The normalizer $N(H^0)$ of H^0 in G coincides with the normalizer
\[N(\mathfrak{h}) = \{ g \in G : \text{Ad}(g)(\mathfrak{h}) = \mathfrak{h} \} \]
of \mathfrak{h} in G. The Lie algebra $\mathfrak{n}(\mathfrak{h})$ is the Lie algebra of $N(H^0) = N(\mathfrak{h})$.

4
Lemma 2.1. The set X^r_h is embedded submanifold of the manifold $X_{(H)}$ and for any $x \in X^r_h$ the tangent space $T_xX^r_h$ is given by

$$T_xX^r_h = \{ v \in T_xX_{(H)} : h_\ast(x)(v) = v, \forall h \in H^0 \}. \quad (7)$$

The quotient group $N(H^0)/H^0$ acts locally freely on the set X^r_h and

$$X^r_h/(N(H^0)/H^0) \simeq X_{(H)}/G \quad (8)$$

is a smooth manifold.

Proof. To prove the lemma we will use the method from [10] Ch.2.§2.3.§2.4. Due to the fact that $X_{(H)}$ is a single orbit type manifold the local description of the G-action on this connected manifold is very simple. For the point $x \in X_{(H)}$ there is a G-invariant open neighborhood $O(x)$ in $X_{(H)}$ and a G-equivariant diffeomorphism $\phi : G/G_x \times W \to O(x)$, where G acts naturally on G/G_x and trivially on W [10] Th.2.3.28. Here the cross-section W is an open ball around 0 in some real linear space \mathbb{R}^k (of dimension $k = \dim X - \dim(G/G_x)$) and $\phi(o,0) = x$, where $o = G_x \in G/G_x$.

Since $x \in X^r_h \subset X_{(H)}$ we have $G^0_x = H^0$. Under the above mentioned ϕ-identification of the open neighborhood $O(x)$, $x \in X^r_h$, with $G/G_x \times W$ the subset $O_h(x) = O(x) \cap X^r_h$ is ϕ-isomorphic to $N(H^0)/G_x \times W \subset G/G_x \times W$, where $N(H^0)/G_x$ is considered as a closed embedded submanifold of G/G_x [10] Prop.2.4.6. From this local description it follows that X^r_h is a (locally closed) embedded submanifold of $X_{(H)}$. The submanifold $O_h(x)$ is $N(H^0)$-invariant.

Let us prove relation (7). The group H^0 acts on W trivially and the tangent action of H^0 on the tangent space $g/h = T_o(G/G_x)$ is induced by the $\text{Ad}(H^0)$-action on g. Let $\xi \in g$. By formula (20) from Appendix $\text{Ad}(h)(\xi + h) = \xi + h$ for all $h \in H^0$ if and only if $\xi \in n(h)$. Taking into account that $n(h)/h = T_o(N(H^0)/G_x)$, we obtain that

$$T_{(o,0)}(N(H^0)/G_x \times W) = \{ v \in T_{(o,0)}(G/G_x \times W) : h_\ast(o,0)(v) = v, \forall h \in H^0 \}.\quad \text{Since the diffeomorphism } \phi \text{ is } G\text{–equivariant, we get (7).}

\text{Since for each } x \in X^r_h \subset X_{(H)} \text{ its isotropy group } G_x \text{ is conjugated to } H \text{ in } G, \text{ it is easy to check that}

1) \text{ the subgroup } N(H^0) \text{ acts on } X^r_h \text{ and } H^0 \subset N(H^0) \text{ acts trivially on } X^r_h;

2) \text{ every } G\text{-orbit in } X_{(H)} \text{ intersects } X^r_h \text{ by an } N(H^0)\text{-orbit;}

3) \text{ } N(H^0) \cdot X_{H} = X^r_h \text{ (if } G^0_x = H^0 \text{ and } gG_xg^{-1} = H, \text{ then } g \in N(H^0)).

The quotient group $N(H^0)/H^0$ acts locally freely on X^r_h (with finite isotropy group $G_x/H^0 \simeq H/H_0$ at $x \in X^r_h$) and generates the same orbit space as G on $X_{(H)}$. This action of $N(H^0)/H^0$ is proper because the subgroup $N(H^0) \subset G$ is closed. Since by relation (8) $X_{(H)}/G$ is a smooth manifold, the quotient space $X^r_h/(N(H^0)/H^0) \simeq X_{(H)}/G$ is also a smooth manifold. \qed \qed
2.2 The local structure of the single orbit type submanifold $X_{(H)}$ near X_{h}^r

The action of G defines a linear map $\xi \mapsto \xi_X$, where ξ_X denotes the vector field on X generated by one-parameter subgroup $\exp t\xi \subset G$. For any subspace $a \subset \mathfrak{g}$ and point $x \in X$ put $a(x) \overset{\text{def}}{=} \{\xi_X(x) : \xi \in a\}$.

In this subsection we describe a canonical complementary subbundle \mathcal{P} to TX^r_{h} in $TX_{(H)}|_{X^r_{h}}$ for which the splitting $TX_{(H)}|_{X^r_{h}} = P \oplus TX^r_{h}$ is orthogonal with respect to arbitrary G-invariant nondegenerate form on X. The existence of such canonical subbundle \mathcal{P} determines a local structure of $X_{(H)}$ near X^r_{h}.

Choose some point $x \in X^r_{h} \subset X_{(H)}$. Due to the compactness of the Lie subgroup $\text{Ad}(G_x)$ of $\text{Ad}(G)$ there exists an $\text{Ad}(G_x)$-invariant scalar product $\langle \cdot,\cdot \rangle^{G_x}$ on the Lie algebra \mathfrak{g}. Denote by \mathfrak{p}^x the orthogonal complement to $\mathfrak{n}(h)$ in \mathfrak{g} with respect to $\langle \cdot,\cdot \rangle^{G_x}$. Since $H^0 = G^0_x$, we have

$$
\mathfrak{g} = \mathfrak{p}^x \oplus \mathfrak{n}(h), \quad \text{Ad}(H^0)(\mathfrak{n}(h)) = \mathfrak{n}(h), \quad \text{Ad}(H^0)(\mathfrak{p}^x) = \mathfrak{p}^x.
$$

Identifying the tangent space to the homogeneous space G/G_x at $o = G_x \in G/G_x$ with the orthogonal complement $\mathfrak{h}^{\perp x} \subset \mathfrak{g}$ to \mathfrak{h} in \mathfrak{g} with respect to $\langle \cdot,\cdot \rangle^{G_x}$, we obtain that $\mathfrak{p}^x \subset \mathfrak{h}^{\perp x}$ is a complementary subspace to the tangent space $T_o(N(H^0)/G_x)$ in $T_o(G/G_x)$. Using our G-equivariant identification $\phi : G/G_x \times W \to O(x)$, $\phi(o,0) = x$, we conclude that the space $\mathfrak{p}^x(x) \overset{\text{def}}{=} \{\xi_X(x), \xi \in \mathfrak{p}^x\}$ is a complementary subspace to $T_x X^r_{h}$ in $T_x X_{(H)}$.

The $\text{Ad}(G_x)$-invariant scalar product $\langle \cdot,\cdot \rangle^{G_x}$ on $T_o(G/G_x) = \mathfrak{h}^{\perp x}$ and any scalar product on $T_O W$ determine an G_x-invariant scalar product on the tangent space $T_o(G/G_x) \oplus T_O W$. Now using the G-equivariant diffeomorphism ϕ we get the G_x-invariant scalar product $\langle \cdot,\cdot \rangle_x$ on the space $T_x X_{(H)}$ at $x = \phi(o,0)$ such that $\langle \mathfrak{p}^x(x), T_x X^r_{h}\rangle_x = 0$. In general, $\mathfrak{p}^x \neq \mathfrak{p}$ (the subspace \mathfrak{p} was defined in Subsection 2.1) but

$$
\mathfrak{p}^x \oplus \mathfrak{h} = \mathfrak{p} \oplus \mathfrak{h}.
$$

The proof of this identity is given in Appendix (see Lemma 4.1). Now, taking into account that \mathfrak{h} is the isotropy algebra of the point $x \in X^r_{h}$, i.e. $\mathfrak{h}(x) = 0$, we obtain that $\mathfrak{p}^x(x) = \mathfrak{p}(x)$. Thus the space

$$
P(x) \overset{\text{def}}{=} \mathfrak{p}(x) = \{\xi_X(x), \xi \in \mathfrak{p}\}, \quad x \in X^r_{h},
$$

is the orthogonal complement to the tangent space $T_x X^r_{h}$ in $T_x X_{(H)}$:

$$
T_x X_{(H)} = P(x) \oplus T_x X^r_{h}, \quad \langle P(x), T_x X^r_{h}\rangle_x = 0, \quad x \in X^r_{h}.
$$

We will show below that the space $P(x)$ is independent of the choice of the G_x-invariant scalar products $\langle \cdot,\cdot \rangle^{G_x}$ on \mathfrak{g} and $\langle \cdot,\cdot \rangle_x$ on $T_x X_{(H)}$.

Since $h_*(\xi_X) = (\text{Ad}(h)(\xi))_x$ for any vector $\xi \in \mathfrak{g}$ and $\text{Ad}(H^0)(\mathfrak{p}) = \mathfrak{p}$, the space $P(x), x \in X^r_{h}$ is H^0-invariant. It is evident that the union $\mathcal{P} = \bigcup_{x \in X^r_{h}} P(x)$ is a trivial vector bundle over X^r_{h} and $TX_{(H)}|_{X^r_{h}} = \mathcal{P} \oplus TX^r_{h}$. The vector fields $\xi_X|_{X^r_{h}}, \xi \in \mathfrak{p}$, are global sections of \mathcal{P}.

Lemma 2.2. Let \(\alpha(x) \) be an \(G_z \)-invariant nondegenerate bi-linear form on the space \(T_x X^r(H) \), \(x \in X^r_b \). Then \(\alpha(x)(\mathcal{P}(x), T_x X^r_b) = 0 \), i.e. \(\mathcal{P}(x) \) is the orthogonal complement to the space \(T_x X^r_b \) in \(T_x X(H) \) with respect to the form \(\alpha(x) \) and the restrictions \(\alpha(x)|_{\mathcal{P}(x)} \), \(\alpha(x)|_{T_x X^r_b} \) are nondegenerate.

Proof. To prove that \(\alpha(x)(\mathcal{P}(x), T_x X^r_b) = 0 \) we will use the method of the proof of Lemma 2.3. We have shown that there exists a \(G_z \)-invariant scalar product \(\langle \cdot, \cdot \rangle_x \) on the space \(T_x X(H) = \mathcal{P}(x) \oplus T_x X^r_b \) such that formula (12) holds. The form \(\alpha(x) \) is \(G_z \)-invariant with respect to the tangent action \(h_*(x) : T_x X(H) \to T_x X(H) \) of the group \(G_z \). Thus there exists a unique nondegenerate linear map \(J : T_x X(H) \to T_x X(H) \) such that \(\alpha(x)(u, v) = \langle u, Jv \rangle_x \) for all \(u, v \in T_x X(H) \) and \(J \cdot h_*(x) = h_*(x) \cdot J \) for all \(h \in G_z \supset H^0 \). By (7) the subspace \(T_x X^r_b \subset T_x X(H) \) is the set of all \(H^0 \)-fixed vectors in \(T_x X(H) \). Now we get the inclusion \(J(T_x X^r_b) \subset T_x X^r_b \) due to the fact that \(J \) commutes with the \(H^0 \)-action on \(T_x X(H) \). Thus \(\alpha(x)(\mathcal{P}(x), T_x X^r_b) = \langle \mathcal{P}(x), JT_x X^r_b \rangle_x = 0 \) by (12). Since \(T_x X(H) = \mathcal{P}(x) \oplus T_x X^r_b \) and the form \(\alpha(x) \) is nondegenerate, we obtain the last assertion of the lemma.

The following lemma asserts the existence of local coordinate systems in \(X(H) \), near the submanifold \(X^r_b \) consistent with any \(G \)-invariant nondegenerate bi-linear form on \(X \).

Lemma 2.3. For each point \(x \in X^r_b \) there exists an open subset \(U(x) \subset X(H) \) and a coordinate system \((U(x), y_1, \ldots, y_p, y_{p+1}, \ldots, y_m)\) in \(X(H) \) around the point \(x \) such that

1. all coordinates of the point \(x \) vanish: \(y_1(x) = \ldots = y_m(x) = 0 \);
2. the subset \(U_b(x) = U(x) \cap X^r_b \) of \(U(x) \) is the set \(\{ z \in U(x) : y_1(z) = \ldots = y_p(z) = 0 \} \);
3. the vectors \(\partial/\partial y_i, i = 1, \ldots, p \), and the vectors \(\partial/\partial y_j, j = p+1, \ldots, m \), at a point \(z \in U_b(x) \) span the spaces \(\mathcal{P}(z) \) and \(T_z X^r_b \) respectively.
4. any \(G \)-invariant nondegenerate bi-linear form \(\alpha \) on \(X \) at a point \(z \in U(x) \) in the corresponding basis \(\{ \partial/\partial y_1, \ldots, \partial/\partial y_m \} \), has the matrix

\[
\begin{pmatrix}
A(y(z)) & B(y(z)) \\
C(y(z)) & D(y(z))
\end{pmatrix}
\]

such that \(B(y(z)) = C(y(z)) = 0 \) and the matrices \(A(y(z)), D(y(z)) \) are nondegenerate for \(z \in U_b(x) \).

Proof. Recall that the group \(N(H^0) \) is a closed subgroup of \(G \) because \(H^0 \), as the identity component of the closed subgroup \(H \subset G \), is also closed in \(G \). Also we have the \(\text{Ad}(H^0) \)-invariant splitting \(\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{n}(h) \) of \(\mathfrak{g} \) (see formula (4)). Therefore for some open \(\text{Ad}(H^0) \)-invariant ball \(Y \) around 0 in \(\mathfrak{p} \) the map

\[
Y \times N(H^0) \to G, \quad (y, n) \mapsto \exp y \cdot n,
\]

is an \(H^0 \)-equivariant diffeomorphism onto some open neighborhood of the identity element in \(G \). This map intertwines the action \(h \cdot (y, n) = (\text{Ad}(h)(y), hn) \) of \(H^0 \) on \(Y \times N(H^0) \) and the left action of \(H^0 \) on \(G \). Thus the map

\[
Y \times N(H^0)/G_x \to G/G_x, \quad (y, nG_x) \mapsto (\exp y \cdot n)G_x
\]

is the desired coordinate system.
is an H^0-equivariant diffeomorphism onto open neighborhood of the point $o = G_x$ in G/G_x and, consequently, the map
\[Y \times N(H^0)/G_x \times W \to \phi(G/G_x \times W) = O(x), \quad (y, nG_x, w) \mapsto \phi(exp \cdot nG_x, w) \]
is an H^0-equivariant diffeomorphism onto some open H^0-invariant neighborhood $O_1(x) \subset O(x)$ in $X_{(H)}$ containing a neighborhood $O_0(x) = \phi(N(H^0)/G_x \times W)$ of x in X^r_η. Here the action of H^0 on $Y \times N(H^0)/G_x \times W$ is induced by the action of H^0 on $Y \times N(H^0)$, i.e. $h \cdot (y, nG_x, w) = (Ad(h)(y), hnG_x, w)$ for $h \in H^0$. By the G-equivariance of ϕ, the map
\[\psi : Y \times O_0(x) \to O_1(x), \quad (y, z) \mapsto (exp y) \cdot z \]
is also a diffeomorphism such that $\psi(0, z) = z$ for all $z \in O_0(x)$. Moreover, $\psi_{(y, z)}(T_0Y, 0) = \mathcal{P}(z)$ for $z \in O_0(x)$ because by $\mathcal{P}(z) = \{\xi_X(x), \xi \in \mathfrak{p}\}$ and $Y \subseteq \mathfrak{p}$. This diffeomorphism ψ is H^0-equivariant with respect to the action $h \cdot (y, z) = (Ad(h)(y), h \cdot z)$ of H^0 on $Y \times O_0(x)$ and the H^0-action on $O_1(x) \subset X_{(H)}$.

The existence of the diffeomorphism ψ means in particular that there exists a coordinate system $(U(x), y_1, \ldots, y_p, y_{p+1}, \ldots, y_m)$ in $X_{(H)}$ around the point $x \in X^r_\eta$ with properties (1) - (3).

Let us prove property 4) for this coordinate system. Since $h \cdot x = x$ for all $h \in G_x$, the nondegenerate form $\alpha(x)$ is G_x-invariant with respect to the tangent action $h \cdot (x) : T_x X \to T_x X$ of the group G_x. Then $\alpha(x)(\mathcal{P}(x), T_x X^r_\eta) = 0$ and the restrictions $\alpha(x)|\mathcal{T}(x)$, $\alpha(x)|T_x X^r_\eta$ are nondegenerate in view of Lemma 2.2. Therefore by property 3) of the coordinate system under consideration around the point x the matrices $B(y(z))$, $C(y(z))$ vanish and the matrices $A(y(z))$, $D(y(z))$ are nondegenerate for any $z \in U_\h(x)$. □ □

2.3 The principal orbit type submanifold $X_{(H)}$ and reduced bi-Poisson structures on X^r_η

Here as before $X_{(H)}$ is a principal orbit type submanifold of X. We will use the notation introduced in the previous subsections. Denote by $\mathcal{E}(M)$ the space of smooth functions on a manifold M.

Let η be an G-invariant Poisson structure on the manifold X. Put $A^G \subset \mathcal{E}(X_{(H)})$ for the set of all G-invariant functions on the open submanifold $X_{(H)} \subset X$. By the G-invariance of η, the space A^G is a Poisson subalgebra of $(\mathcal{E}(X_{(H)}), \eta)$. The structure η determines a Poisson structure on the smooth manifold (see [3])
\[X = X_{(H)}/G \simeq X^r_\eta/(N(H^0)/H^0) \]
and $A^G \simeq \mathcal{E}(X)$. Put $\tilde{G} = N(H^0)/H^0$. Denoting by $\pi_{(H)} : X_{(H)} \to X$ and $\pi_\h : X^r_\eta \to X$ the natural submersions, we obtain two isomorphic Poisson algebras, $A^G = \pi^*_{(H)}(\mathcal{E}(X))$ of G-invariant functions on $X_{(H)}$ and $\tilde{A}^\h = \pi^*_\h(\mathcal{E}(X))$ of \tilde{G}-invariant functions on X^r_η, where the second structure is induced by the natural
identification \(A^G \simeq A^\tilde{G} \). On the first algebra \(A^G \) its bracket is induced by the Poisson structure \(\eta \) defined on the whole space \(X_H \). A question arises: is there some Poisson structure on the manifold \(X^r_h \) which induces the above mentioned bracket on \(A^\tilde{G} \). We will prove that such a Poisson structure exists if the Poisson structure \(\eta \) on \(X \) is nondegenerate, i.e. \(\eta = \omega^{-1} \), where \(\omega \) is some \(G \)-invariant symplectic structure on \(X \).

As it follows from Lemma 2.2 in this case the pair \((X^r_h, \tilde{\omega}) \), where, \(\tilde{\omega} = i^*\omega \) and \(i : X^r_h \to X \) is the natural embedding, is a symplectic manifold (the restriction \(\omega(x)|_{T_xX^r_h} \) is nondegenerate for all \(x \in X^r_h \)). For any function \(f \in A^G \) its Hamiltonian vector field \(H_f \) is tangent to the submanifold \(X^r_h \) at each point \(x \in X^r_h \). This easily follows from the fact that \(df(\xi) = 0 \) for all \(\xi \in \mathfrak{g} \) and, in particular, for all \(\xi \in \mathfrak{p} \), i.e. \(\omega(x)(H_f(x), \mathcal{P}(x)) := df(x)(\mathcal{P}(x)) = 0. \) As \(T_xX^r_h \) is a skew-orthogonal complement to \(\mathcal{P}(x) \) by Lemma 2.2 we conclude that \(H_f(x) \in T_xX^r_h \). Therefore, for any \(x \in X^r_h \) and any vector field \(Y \) tangent to \(X^r_h \) we have

\[
-d(i^*f)(x)(Y(x)) = -df(Y(x)) = \omega(x)(H_f(x), Y(x)) = \tilde{\omega}(x)(H_f(x), Y(x)),
\]

i.e. the vector field \(H_f|_{X^r_h} \) is the Hamiltonian vector field of the function \(i^*f \) with respect to the form \(\tilde{\omega} \). Moreover, for any functions \(f_1, f_2 \in A^G \) at \(x \in X^r_h \) we get the equality

\[
\eta(x)(df_1(x), df_2(x)) \overset{\text{def}}{=} \omega(x)(H_{f_2}(x), H_{f_1}(x)) = \tilde{\omega}(x)(H_{i^*f_2}(x), H_{i^*f_1}(x)) = \tilde{\eta}(x)(d(i^*f_1)(x), d(i^*f_2)(x)),
\]

(13)

where \(\tilde{\eta} \) is the Poisson structure \(\tilde{\omega}^{-1} \) on \(X^r_h \).

A pair \((\eta_1, \eta_2) \) of linearly independent bi-vector fields (bi-vectors for short) on a manifold \(X \) is called Poisson if \(\eta^i = t_1^i \eta_1 + t_2^i \eta_2 \) is a Poisson bi-vector for any \(t = (t_1, t_2) \in \mathbb{R}^2 \), i.e. each bi-vector \(\eta^i \) determines on \(X \) a Poisson structure with the Poisson bracket \(\{,\}^i : (f_1, f_2) \mapsto \eta^i(df_1, df_2) \); the whole family of Poisson bi-vectors \(\{\eta^i\}_{i \in \mathbb{R}^2} \) is called a bi-Poisson structure. Remark here that a pair \((\eta_1, \eta_2) \) of linearly independent Poisson structures is Poisson if and only if \(t_1^1 \eta_1 + t_2^2 \eta_2 \) is a Poisson bi-vector for some \((t_1, t_2) \in \mathbb{R}^2 \) nonproportional to \((1, 0), (0, 1) \). Indeed, the bi-vector \(\eta^i \) is Poisson if and only if \(\{\eta^i, \eta^j\}_S = 0 \), where \([\cdot, \cdot]_S \) is the so-called Schouten bracket [8, §10.6]. The last equation is quadratic with respect to \(t_1 \) : \(t_2 \).

A bi-Poisson structure \(\{\eta^i\} \) (we shall often skip the parameter space) can be viewed as a two-dimensional vector space of Poisson bi-vectors, the Poisson pair \((\eta_1, \eta_2) \) as a basis in this space. Obviously, if the Poisson structures \(\eta_1 \) and \(\eta_2 \) are \(G \)-invariant, then these structures induce a bi-Poisson structure on the manifold \(X = X_H/\tilde{G} \simeq X^r_h/(N(H^0)/H^0) \) and, consequently, linear families of brackets on the spaces \(\mathcal{E}(X), A^G, \) and \(A^\tilde{G} \). The theorem below asserts that in a particular case the linear family of brackets on the space \(A^\tilde{G} \) is induced by some canonically defined bi-Poisson structure on the manifold \(X^r_h \). Note that the action of the group \(\tilde{G} = N(H^0)/H^0 \) on \(X^r_h \) is locally free.
Theorem 2.4. Let \(\eta_1 = \omega_1^{-1} \) and \(\eta_2 = \omega_2^{-1} \), where \(\omega_1, \omega_2 \) are some \(G \)-invariant symplectic forms on \(X \). Assume that the Poisson structures \(\eta_1 \) and \(\eta_2 \) determine a bi-Poisson structure on \(X \). If the forms \(\tilde{\omega}_1 = i^* \omega_1 \) and \(\tilde{\omega}_2 = i^* \omega_2 \) are linearly independent on \(X'_b \) (here \(i : X'_b \to X \) is the natural embedding), then the Poisson structures \(\tilde{\eta}_1 = \tilde{\omega}_1^{-1} \) and \(\tilde{\eta}_2 = \tilde{\omega}_2^{-1} \) determine a \(\tilde{G} \)-invariant bi-Poisson structure on \(X'_b \). This bi-Poisson structure induces on the space \(A^{\tilde{G}} = A^G \) the same linear family of brackets as the bi-Poisson structure induced by the pair \((\tilde{\eta}_1, \tilde{\eta}_2)\) on the space \(A^G \). The action of the group \(G = N(H^0)/H^0 \) on \(X'_b \) is locally free.

Proof. It is sufficient to perform local reasoning. Fix some point \(x \in X'_b \) and consider in \(X \) the coordinate system \((U(x), y_1, \ldots, y_p, y_{p+1}, \ldots, y_m)\) around the point \(x \) as in Lemma 2.3. Then in these coordinates the symplectic forms \(\omega_a \), \(a = 1, 2 \) are described by the skew-symmetric matrices

\[
W_a(y(z)) = \begin{pmatrix}
A_a(y(z)) & B_a(y(z)) \\
C_a(y(z)) & D_a(y(z))
\end{pmatrix}, \quad \text{for } z \in U(x),
\]

such that

\[
W_a(y(z)) = \begin{pmatrix}
A_a(y(z)) & 0 \\
0 & D_a(y(z))
\end{pmatrix}, \quad \text{for } z \in U_b(x) \subset U(x).
\]

(14)

Recall that \(U_b(x) = U(x) \cap X'_b \) and \(y_1(z) = \ldots = y_p(z) = 0 \) if \(z \in U_b(x) \).

By the definition, the Poisson structure \(\eta^t = t_1 \eta_1 + t_2 \eta_2 \) is determined by the \(m \times m \)-matrix \(t_1 W_1^{-1}(y) + t_2 W_2^{-1}(y) \):

\[
\eta^t(y) = \sum_{1 \leq i < j \leq m} (t_1 W_1^{-1}(y) + t_2 W_2^{-1}(y))_{ij}(y) \frac{\partial}{\partial y_i} \wedge \frac{\partial}{\partial y_j}.
\]

Since the Poisson structures \(\eta_1, \eta_2 \) are nondegenerate, then for some \(t = (t_1, t_2) \in \mathbb{R}^2 \setminus \{(0, 0) \} \cup \{(0, 0) \} \) Poisson structure \(\eta^t \) is nondegenerate in each point of some open neighborhood of the point \(x \), which we assume, without loss of generality, to be the original open neighborhood \(U(x) \). Then the skew-symmetric matrix \((t_1 W_1^{-1}(y) + t_2 W_2^{-1}(y))^{-1}\) is a matrix of some symplectic form \(\omega^t \) on \(U(x) \), i.e. the form

\[
\sum_{1 \leq i < j \leq m} \left((t_1 W_1^{-1} + t_2 W_2^{-1})^{-1} \right)_{ij}(y) dy_i \wedge dy_j
\]

is closed. Thus the form \(i^* \omega^t \), where \(i|_{U_b(x)} : U_b(x) \to U(x) \) is the embedding \((y_{p+1}, \ldots, y_m) \mapsto (0, \ldots, 0, y_{p+1}, \ldots, y_m)\) is also closed. By (14) for points \(z \in U_b(x) \) with coordinates \(y = (0, \ldots, 0, y_{p+1}, \ldots, y_m) \) we have

\[
(t_1 W_1^{-1} + t_2 W_2^{-1})^{-1}(y) = \begin{pmatrix}
(t_1 A_1^{-1} + t_2 A_2^{-1})^{-1}(y) \\
0 \\
(t_1 D_1^{-1} + t_2 D_2^{-1})^{-1}(y)
\end{pmatrix}.
\]

10
Taking into account that $y_1(z) = \ldots = y_p(z) = 0$ on the set $U_h(x)$ we obtain that the form

$$(i^*\omega^t)(y) = \sum_{p+1 \leq i < j \leq m} \left((t_1D_1^{-1} + t_2D_2^{-1})^{-1} \right)_{ij}(y) dy_i \wedge dy_j,$$

where $y = (0, \ldots, 0, y_{p+1}, \ldots, y_m)$, is closed. This means that the tensor $\tilde{\eta}^t = t_1\tilde{\eta}_1 + t_2\tilde{\eta}_2$, where $\tilde{\eta}_1 = \tilde{\omega}_1^{-1}$ and $\tilde{\eta}_2 = \tilde{\omega}_2^{-1}$, determines nondegenerate Poisson structure in the open subset $U_h(x) \subset X_h$. Since $(t_1, t_2) \not\in (R \times \{0\}) \cup (\{0\} \times R)$, the Poisson structures $\tilde{\eta}_1$ and $\tilde{\eta}_2$ determine a \tilde{G}-invariant bi-Poisson structure on X_h.

By (13) the bracket on the space A_G at the point x induced by the Poisson structure $\eta_\alpha(x)$, $\alpha = 1, 2$, coincides with the bracket induced by the Poisson structure $\tilde{\eta}_\alpha(x)$. By linearity the brackets on the space A_G at the point x induced by Poisson structures $\eta^t(x)$ and $\tilde{\eta}^t(x)$ coincide for each $t \in \mathbb{R}^2$.

3 Reduction of a bi-Poisson structure on the cotangent bundle of the adjoint orbit of a compact Lie group

Here we calculate the reduced bi-Poisson structure on the manifold X_h in the case when X is the cotangent bundle of the adjoint orbit of a compact Lie group G with an invariant bi-Poisson structure constructed in our paper [7].

Let G be a compact connected Lie group with the Lie algebra g. Denote by $\langle \cdot, \cdot \rangle$ an $\text{Ad}(G)$-invariant scalar product on g. Let $\mathcal{O} \subset g$ be the $\text{Ad}(G)$-orbit through some element $a \in g$ of the Lie algebra g. Then $\mathcal{O} = G/K$, where

$$K = \{ g \in G : \text{Ad}(g)(a) = a \}$$

is the isotropy group of a (a connected closed subgroup of G [5, Lemma 5]). Denote by Ω the canonical symplectic form on the cotangent bundle $T^*\mathcal{O}$. The scalar product $\langle \cdot, \cdot \rangle$ defines a G-invariant metric on G/K. This metric identifies the cotangent bundle $T^*\mathcal{O}$ and the tangent bundle $T\mathcal{O}$. Thus we can also talk about the canonical 2-form Ω on $T\mathcal{O}$. The symplectic form Ω is G-invariant with respect to the natural action of G on $T\mathcal{O}$ (extension of the action of G on \mathcal{O}).

Let $\pi : T\mathcal{O} \to \mathcal{O}$ be the canonical projection. The orbit $\mathcal{O} \subset g$ is a symplectic manifold with the Kirillov-Kostant-Souriau form ω (here we identified the reductive Lie algebra g with its dual space g^* using the invariant scalar product $\langle \cdot, \cdot \rangle$ on g). So we can consider the closed G-invariant 2-form $\Omega + \pi^*\omega$ on $T\mathcal{O}$. This is a symplectic form on the manifold $X = T\mathcal{O}$ [7, Prop. 1.6]. Put $\omega_1 = \Omega$ and $\omega_2 = \Omega + \pi^*\omega$. Write $\eta_1 = \omega_1^{-1}$, $\eta_2 = \omega_2^{-1}$ for the inverse Poisson bi-vectors. The pair of Poisson structures (η_1, η_2) determines an G-invariant
bi-Poisson structure \(\{ \eta^t = t_1 \eta_1 + t_1 \eta_1 \}, (t_1, t_2) \in \mathbb{R}^2 \), on \(X \) and the Poisson structure \(\eta^t \) is degenerate if and only if \(t_1 + t_2 = 0 \) [7, Prop. 1.6].

Let \(G \) be any connected closed Lie subgroup of \(G \) with the Lie algebra \(\hat{\mathfrak{g}} \subset \mathfrak{g} \) containing the element \(a \). Let \(\hat{\mathcal{O}} \) be the adjoint orbit through the element \(a \in \hat{\mathfrak{g}} \) in the Lie algebra \(\hat{\mathfrak{g}} \). This orbit is a suborbit of \(\mathcal{O} \), i.e. \(\hat{\mathcal{O}} = \text{Ad}(\hat{G})(a) \subset \mathcal{O} \). Therefore \(\hat{\mathcal{O}} = \hat{G}/K \), where \(K = K \cap \hat{G} \). Denote by \(j : T\hat{\mathcal{O}} \to T\mathcal{O} \) the natural embedding.

Lemma 3.1. Let \(\hat{\mathcal{O}} \) be any connected closed Lie subgroup of \(G \) with the Lie algebra \(\hat{\mathfrak{g}} \subset \mathfrak{g} \) containing the element \(a \). The restrictions \(\hat{\omega}_1 = \omega_1|_{T\hat{\mathcal{O}}} = \pi^* \omega_1 \) and \(\hat{\omega}_2 = \omega_2|_{T\hat{\mathcal{O}}} = \pi^* \omega_2 \) are symplectic forms on the tangent bundle \(T\hat{\mathcal{O}} \subset T\mathcal{O} \).

The Poisson structures \(\hat{\eta}_1 = \omega_1^{-1} \hat{\omega}_1 \) and \(\hat{\eta}_2 = \omega_2^{-1} \hat{\omega}_2 \) determine a \(\hat{G} \)-invariant bi-Poisson structure \(\{ \hat{\eta}^t = t_1 \hat{\eta}_1 + t_1 \hat{\eta}_1 \}, (t_1, t_2) \in \mathbb{R}^2 \), on \(T\hat{\mathcal{O}} \).

Proof. The restriction of the scalar product \(\langle \cdot, \cdot \rangle \) to the subalgebra \(\hat{\mathfrak{g}} \) defines a \(\hat{G} \)-invariant metric on \(\hat{G}/K \). This metric identifies the cotangent bundle \(T^*\hat{\mathcal{O}} \) and the tangent bundle \(T\hat{\mathcal{O}} \). Denote by \(\tilde{\Omega} \) the canonical 2-form on \(T\hat{\mathcal{O}} \). By [2] Prop. 4, the canonical form \(\Omega \) coincides with the restriction \(\Omega|_{T\mathcal{O}} \) of the canonical form \(\Omega \), i.e. \(\tilde{\Omega} = \hat{\omega}_1 \).

Identifying the compact Lie algebra \(\hat{\mathfrak{g}} \) with its dual space \(\hat{\mathfrak{g}}^* \) by means of the restriction of the invariant scalar product \(\langle \cdot, \cdot \rangle \) to \(\hat{\mathfrak{g}} \), we can say about the Kirillov-Kostant-Souriau form \(\hat{\omega} \) on the orbit \(\hat{\mathcal{O}} \subset \hat{\mathfrak{g}} \). Let us show that \(\hat{\omega} = \omega|_{\mathcal{O}} \).

Indeed, by definition the form \(\omega \) is \(G \)-invariant and at the point \(a \in \mathcal{O} \) we have

\[
\omega(a)([a, \xi_1], [a, \xi_2]) = -\langle a, [\xi_1, \xi_2] \rangle, \quad \forall \xi_1, \xi_2 \in \mathfrak{g},
\]

where we consider the vectors \([a, \xi_1], [a, \xi_2] \in T_a \mathfrak{g} = \mathfrak{g}\) as tangent vectors to the orbit \(\mathcal{O} \subset \mathfrak{g} \) at the point \(a \in \mathcal{O} \). Since the form \(\hat{\omega} \) is described by the similar relation on the Lie algebra \(\hat{\mathfrak{g}} \) containing the element \(a \), we obtain that \(\omega(a)|_{T\mathcal{O}} = \hat{\omega}(a) \). Thus \(\hat{\omega} = \omega|_{\mathcal{O}} \) by the \(G \)-invariance of the forms \(\omega \) and \(\hat{\omega} \).

Let \(\pi : T\hat{\mathcal{O}} \to \hat{\mathcal{O}} \) be the canonical projection. Consider the closed \(\hat{G} \)-invariant 2-form \(\tilde{\Omega} = \pi^* \hat{\omega} \) on \(T\hat{\mathcal{O}} \). As above, the pair of the \(\hat{G} \)-invariant symplectic forms \(\hat{\omega}_1 = \Omega \) and \(\hat{\omega}_2 = \Omega + \pi^* \hat{\omega} \) on \(T\hat{\mathcal{O}} \) determines an \(\hat{G} \)-invariant bi-Poisson structure by [2], Prop. 1.6. Taking into account that \(\pi^* \hat{\omega} = \pi^* (\omega|_{\mathcal{O}}) = (\pi^* \omega)|_{T\mathcal{O}} \) and, consequently, \(\hat{\omega}_k = \hat{\omega}_k, k = 1, 2 \), we complete the proof. \(\square \)

By the lemma above the \(G \)-invariant bi-Poisson structure \(\{ \eta^t = t_1 \eta_1 + t_1 \eta_1 \}, (t_1, t_2) \in \mathbb{R}^2 \), on \(T\mathcal{O} \) determines the \(G \)-invariant bi-Poisson structure \(\{ \hat{\eta}^t = t_1 \hat{\eta}_1 + t_1 \hat{\eta}_1 \}, (t_1, t_2) \in \mathbb{R}^2 \), on \(T\hat{\mathcal{O}} \). In general the natural embedding \(j : T\hat{\mathcal{O}} \to T\mathcal{O} \) is not a Poisson map w.r.t. the Poisson structures \(\hat{\eta}^t \) and \(\eta^t \), i.e. \(j^* : (E(T\mathcal{O}), \{ \}, \eta^t) \to (E(T\hat{\mathcal{O}}), \{ \}, \hat{\eta}^t) \) is not a Lie algebra homomorphism. Moreover, the restriction \(j^*|_{A^G} : (A^G , \{ \}, \eta^t) \to (E(T\hat{\mathcal{O}}), \{ \}, \hat{\eta}^t) \) to the space \(A^G \) of the \(G \)-invariant functions on \(T\mathcal{O} \) is not a Lie algebra homomorphism too. However, using Theorem 2.3 we are able to describe some subgroup \(G \subset G \) and the corresponding orbit \(\hat{\mathcal{O}} = \hat{G}/K \) for which the map \(j^*|_{A^G} \) is a Lie algebra homomorphism (for any \(t \)), its image lies in the space \(A^G \) of \(G \)-invariant functions on \(T\hat{\mathcal{O}} \) and the action of the group \(G/C(G) \) on \(T\hat{\mathcal{O}} \) is locally free (see
Proposition 3.2 below). Here $C(\hat{G})$ stands for the center of the Lie group \hat{G} (which is the kernel of the adjoint representation of \hat{G}).

Let us describe the corresponding subgroups starting from the subgroup $H \subset G$ determining the principal orbit type submanifold X_H of the G-manifold $X = T(G/K)$. As we remarked above in this case the manifold X_H is a connected open dense subset of X. Denote by \mathfrak{k} the Lie algebra of K and by \mathfrak{m} the orthogonal complement to \mathfrak{k} in \mathfrak{g} with respect to the form $\langle \cdot, \cdot \rangle$. Taking into account that G acts on the base $O \subset \mathfrak{g}$ transitively and identifying the tangent space T_xO at $x = 0 = K$ with the space \mathfrak{m}, we obtain that

$$H = \{ k \in K : \text{Ad}(k)(x_0) = x_0 \} = K_{x_0}$$

for some $x_0 \in \mathfrak{m}$ such that the centralizer $\mathfrak{t}_{x_0} = \{ y \in \mathfrak{t} : [x_0, y] = 0 \}$ has the minimal possible dimension. It is clear that the Lie algebra \mathfrak{h} of H coincide with the Lie algebra \mathfrak{t}_{x_0}. Consider the compact Lie subalgebra

$$\hat{\mathfrak{g}} = \{ y \in \mathfrak{g} : [y, z] = 0, \forall z \in \mathfrak{h} = \mathfrak{t}_{x_0} \}$$

of \mathfrak{g}. Denote by \hat{G} the connected Lie subgroup of G with the Lie algebra $\hat{\mathfrak{g}}$. The Lie group \hat{G} is closed in G because \hat{G} is the identity component of the centralizer of H^0 in G. Moreover, a is an element of $\hat{\mathfrak{g}}$ because by definition $[a, \mathfrak{t}] = 0$ and $\mathfrak{h} \subset \mathfrak{t}$. Thus, as above, we can consider $\text{Ad}(\hat{G})$-suborbit $\hat{O} \subset \hat{\mathfrak{g}}$ of the orbit O through the element a and the natural embedding $j : T\hat{O} \to TO$.

\textbf{Proposition 3.2.} Let \hat{G} be the connected Lie subgroup of G with the Lie algebra $\hat{\mathfrak{g}}$ defined by (16). Then

1. the restrictions $\tilde{\omega}_1 = \omega_1|_{T\hat{O}} = j^*\omega_1$ and $\tilde{\omega}_2 = \omega_2|_{T\hat{O}} = j^*\omega_2$ are symplectic forms on the tangent bundle $T\hat{O} \subset T\hat{O}$;
2. the Poisson structures $\tilde{\eta}_1 = \tilde{\omega}_1^{-1}$ and $\tilde{\eta}_2 = \tilde{\omega}_2^{-1}$ determine a \hat{G}-invariant bi-Poisson structure $\{ \tilde{q}^i = t_1\tilde{\eta}_1 + t_2\tilde{\eta}_2 \}$, $(t_1, t_2) \in \mathbb{R}^2$, on $T\hat{O}$;
3. for any $t \in \mathbb{R}$ the map j^*t is a Poisson map of the $\hat{\mathfrak{g}}$-Poisson algebra A^G of the G-invariant functions on $T\hat{O}$ into the \mathfrak{g}-Poisson algebra A^G of the G-invariant function on $T\hat{O}$;
4. the action of the Lie group $\hat{G}/C(\hat{G})$ on $T\hat{O}$ is locally free ($C(\hat{G})$ is the center of \hat{G});
5. the map $j^* : A^G \to A^G$ is an injection and the image $j^*(A^G)$ functionally generates the space A^G.

\textbf{Proof.} Items (1) and (2) follow immediately from Lemma [5.1]. To prove items (3)–(5) we will describe the submanifolds X_H and X_H^* of $X(H)$ defined by relations (2), (5), (6) and will show that some connected component of X_H^* is open and dense in $T\hat{O}$. To this end we will use some calculation from the paper [7] sect. 2.1, 3.3.

It is clear that $\hat{O} = \hat{G}/\hat{K}$, where $\hat{K} = \hat{G} \cap K$. Since the form $\langle \cdot, \cdot \rangle$ is $\text{Ad}(G)$-invariant, we have $[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ and $\text{ad}(x_0)(\mathfrak{t}) \subset \mathfrak{m}$, where x_0 is that mentioned in formula (15). Let

$$\mathfrak{m}(x_0) = \{ y \in \mathfrak{m} : \langle y, \text{ad}(x_0)(\mathfrak{t}) \rangle = 0 \}.$$
By the $\text{Ad}(G)$-invariance of $\langle \cdot, \cdot \rangle$, we have that $x_0 \in m(x_0)$. The Lie group K is compact, hence by Remark 3.3 below,

$$\text{Ad}(K)(m(x_0)) = m$$

and, consequently, $G \cdot (m(x_0)) = T(G/K)$, \hspace{1cm} (17)

i.e. each G-orbit in $T(G/K)$ intersects the linear subspace $m(x_0) \subset m = T_o(G/K)$.

Remark 3.3. Relations (17) hold if x_0 is replaced by an arbitrary element $x \in m$. This follows easily from the fact that for any $y \in m$ the function $k \mapsto \langle y, \text{Ad}(k)(x) \rangle$ on the compact group K attains its maximum value at some point $k_y \in K$. Differentiating $\langle y, \text{Ad}(k_y \exp(t\xi))(x) \rangle$ with $\xi \in \mathfrak{t}$, we obtain that $\text{Ad}(k_y^{-1})(y) \perp \text{ad}(x)(\mathfrak{t})$.

Consider the $\text{Ad}(K)$-action of the compact Lie group K on m. The space $m(x_0)$ is the orthogonal complement to the tangent space $T_{x_0}(\text{Ad}(K)(x_0)) = \text{ad}(x_0)(\mathfrak{t})$ of the orbit $\text{Ad}(K)(x_0) \subset m$ at x_0 in m [10, Th. 2.3.28]. Hence some open neighborhood of x_0 in the linear space $m(x_0) \ni x_0$ is a slice for $\text{Ad}(K)$-action at x_0. Since the group $H = K_{x_0}$ represents the principal orbit type, the action of H on this open neighborhood of x_0 and, consequently, on the whole linear space $m(x_0)$ is trivial, i.e.

$$\text{Ad}(h)(x) = x \quad \text{for all} \quad h \in H \text{ and } x \in m(x_0),$$

and, consequently,

$$[m(x_0), h] = 0$$

(see [3] Prop. 9) for another proof of identity (17). It is clear that $m(x_0) \cap X_H$ is an open dense subset of $m(x_0)$. Let X^r_H be the submanifold of the connected manifold X_H defined by relations (5) and (6). From (18) and the definitions of the manifolds X_H, X_H and X^r_H it follows easily that

$$m(x_0) \cap X_H = m(x_0) \cap X_H = m(x_0) \cap X^r_H.$$

Let us show that

$$X_H = N(H) \cdot (m(x_0) \cap X_H) \quad \text{and} \quad X^r_H = N(H^0) \cdot (m(x_0) \cap X^r_H),$$

(21)

where $N(H)$ is the normalizer of N in G and $N(H^0)$ is the normalizer of the identity component H^0 of H in G. Indeed, by (17) each point of the manifold X_H has the form $g \cdot x$ for some $g \in G$, $x \in m(x_0)$ and for this point $G_{g \cdot x} = H$. However, $G_{g \cdot x} = gG_xg^{-1}$ and by (18) $H \subset G_x$. Therefore $gHg^{-1} \subset H$. Since gHg^{-1} is an open subgroup of H and the compact group H has a finite number of connected components, $gHg^{-1} = H$, i.e. $g \in N(H)$. Similarly, each point of the manifold X^r_H has the form $g \cdot x$ for some $g \in G$, $x \in m(x_0)$ and for this point $(gG_x) = H^0$. Also $G_{g \cdot x} = gG_xg^{-1}$ and by (18) $H \subset G_x$. Then $H^0 = gG_xg^{-1} \subset G_x$, and, consequently, $H^0 = gG_xg^{-1} = G_x$. Thus $gH^0g^{-1} = H^0$, i.e. $g \in N(H^0)$.

Note that the subgroup $N(H^0)$ of G is closed (compact) and therefore contains only a finite number of connected components, i.e. $|N(H^0)/\langle N(H^0) \rangle| < \infty$. Therefore the set X_H is a finite union of connected components, i.e. $|X_H| < \infty$. Let us show that X_H is a smooth manifold. For each point $g \cdot x \in X_H$ there exists an open neighborhood $U_1 \ni g \cdot x$ and a smooth chart (U_2, φ) on $G \cdot x_0$ such that $\varphi(U_2 \cap g \cdot X_H) = U_1$. Then it follows that $\varphi(U_2 \cap g \cdot X_H)$ is a smooth manifold.

The function φ^{-1} is smooth on U_1 and $\varphi^{-1}(g \cdot x) = g \cdot \varphi(x)$ is smooth on $g \cdot x_0$. Hence X_H is a smooth manifold.
Since by Lemma 2.1, \(X^r_h \) is an embedded submanifold of \(X(H) \) and of \(X = T(G/K) \), its connected component \(X^r_{h,x_0} \) containing \(x_0 \) has the form

\[
X^r_{h,x_0} = (N(H^0))^0 \cdot (m(x_0) \cap X^r_h)
\]

and (see 8)

\[
X = X(H)/G \simeq X^r_h/(N(H^0)/H^0) \simeq X^r_{h,x_0}/((N(H^0))^0/H^0),
\]

where \((N(H^0))^0\) is the normalizer of the component \(X^r_{h,x_0} \) in the group \(N(H^0) \) (containing the connected component \(((N(H^0))^0 \text{ of } N(H^0))\)). Since by definition \(H \subset N(H^0) \), then \(h \cdot (N(H^0))^0 \cdot h^{-1} = (N(H^0))^0 \) for any \(h \in H \). Taking into account that \(\text{Ad}(H)(x) = x \) for each \(x \in m(x_0) \), we obtain that

\[
H \subset (N(H^0))^0.
\]

Now it is clear that the manifold \(X^r_{h,x_0} \) is a single orbit type \((N(H^0))^0/H^0\)-manifold with a discrete isotropy group isomorphic to \(H/H^0 \) (the group \(H^0 \) acts trivially on \(X^r_{h,x_0} \)).

We will show that the connected component \(X^r_{h,x_0} \) of the manifold \(X^r_h \) containing the element \(x_0 \) is an open dense subset of \(T\hat{O} \). To this end consider the subalgebra \(\mathfrak{f} = \mathfrak{t} \cap \mathfrak{g} \) of \(\mathfrak{t} \). Since \(\mathfrak{t} \) is the centralizer of \(a \in \mathfrak{g} \) in \(\mathfrak{g} \), the element \(a \in \mathfrak{f} \) belongs to \(\mathfrak{f} \) \(([a, \mathfrak{t}] = [a, \mathfrak{f}] = 0) \). Denote by \(\mathfrak{m} \) the orthogonal complement to \(\mathfrak{f} \) in \(\mathfrak{g} \) with respect to the form \(\langle \cdot, \cdot \rangle_{\mathfrak{g}} \). By (19) \(m(x_0) \subset \mathfrak{m} \). Moreover, \(m(x_0) \) is the orthogonal complement of the space \(\text{ad}(x_0)(\mathfrak{f}) \) in \(\mathfrak{m} \) Prop. 2.3, i.e. \(m(x_0) = m(x_0) \). Now applying Remark 3.3 to the pair \((\hat{G}, K)\) we get \(\hat{G} \cdot m(x_0) = T\hat{O} \).

Since the compact Lie algebra \(\mathfrak{h} \) is reductive, we have that \(\mathfrak{n}(\mathfrak{h}) = \mathfrak{g} + \mathfrak{h} \) for the normalizer \(\mathfrak{n}(\mathfrak{h}) \) of \(\mathfrak{h} \) in \(\mathfrak{g} \). Then \(gh = hg \) for all elements \(g \in \hat{G} \) and \(h \in H^0 \) because \(\hat{G} \) is a connected component of the centralizer of \(H^0 \) in \(G \). It is clear that \(\hat{G} \cdot H^0 \subset G \) is the identity component of the normalizer \(N(H^0) \). However, \(H^0 \cdot m(x_0) = m(x_0) \) by (19), and therefore

\[
T\hat{O} = \hat{G} \cdot m(x_0) = (\hat{G} \cdot H^0) \cdot m(x_0) = (N(H^0))^0 \cdot m(x_0) = (N(H^0))^0 \cdot m(x_0).
\]

Since by (22) \((N(H^0))^0 \cdot (m(x_0) \cap X^r_h)\) is the connected component \(X^r_{h,x_0} \) of the manifold \(X^r_h \), \(X^r_{h,x_0} \) is an open dense subset of \(\hat{X} = T\hat{O} \). This subset is \(\hat{G} \)-invariant because \(\hat{G} \subset (N(H^0))^0 \). But \(X(H) \subset T\hat{O} \) and \(X^r_{h,x_0} \subset T\hat{O} \). Thus by (23) and Theorem 2.1 for any \(t \in \mathbb{R}^2 \) the map \(i^* = (j|_{X^r_{h,x_0}})^* \) is a Poisson map of the \(\eta' \)-Poisson algebra of the \(G \)-invariant function on \(X(H) \) into the \(\eta' \)-Poisson algebra of the \((N(H^0))^0/H^0 \)-invariant function on \(X^r_{h,x_0} \). Now to prove item (3) it is sufficient to remark that \(X(H) \) and \(X^r_{h,x_0} \) are open and dense in \(T\hat{O} \) and \(T\hat{O} \) respectively.
By Lemma 2.1 the actions of the groups \((N(H^0))^{x_0}/H^0 \) and \((N(H^0))^0/H^0\) on \(X^{r_{x_0}}_h\) are locally free. As we remarked above \(X^{r_{x_0}}_h\) is a single orbit type \((N(H^0))^{x_0}/H^0\)-manifold with a discrete isotropy group isomorphic to \(H/H^0\). Therefore by (24) \(X^{r_{x_0}}_h\) is also a single orbit type \(\hat{G}\)-manifold with the isotropy group isomorphic to \(\hat{H} = \hat{G} \cap H\) and \(\hat{H}\) is a Lie group determining the principal orbit type for the \(\hat{G}\)-action on \(T\hat{O}\). Taking into account that \([\hat{g}, \hat{h}] = 0\) by definition, we obtain that the Lie algebra \(\hat{g} \cap \hat{h}\) is a subalgebra of the center of \(\hat{g}\) and, consequently, \(G \cap H^0 \subset C(G)\), where \(C(G)\) is the kernel of the adjoint representation of \(\hat{G}\). Thus \(\hat{G} \cap H^0 \subset C(\hat{G}) \cap H\). Therefore the action of the group \(\hat{G}/C(\hat{G})\) on \(X^{r_{x_0}}_h \subset T\hat{O}\) with a discrete isotropy group isomorphic to some quotient group of \((\hat{G} \cap H)/(\hat{G} \cap H^0)\) is locally free, item (4) is proved.

Since \((N(H^0))^0 = \hat{G} \cdot H^0\) and \(H^0\) acts trivially on \(X^{r_{x_0}}_h\), each connected component of the \((N(H^0))^{x_0}\)-orbit in \(X^{r_{x_0}}_h\) is some \(\hat{G}\)-orbit and, consequently, the natural projection \(X^{r_{x_0}}_h/\hat{G} \to X^{r_{x_0}}_h/(N(H^0))^{x_0}\) is a covering. Taking into account that \(X(H)/G \simeq X^{r_{x_0}}_h/(N(H^0))^{x_0}\) (see (23)) we complete the proof of (5).

4 Appendix

The goal of this section is to provide the reader with a proof of a statement that is well known to experts but does not seem to be readily available in the literature.

Let \(G\) be a connected Lie group and \(H^0\) be its compact connected subgroup. Denote by \(\mathfrak{g}\) and \(\mathfrak{h}\) the Lie algebras of \(G\) and \(H^0\) respectively. Let \(N(H^0)\) be the normalizer group of \(H^0\) in \(G\). The Lie algebra of \(N(H^0)\) is the normalizer \(\mathfrak{n}(\mathfrak{h})\) of the algebra \(\mathfrak{h}\) in \(\mathfrak{g}\).

Lemma 4.1. Let \(\alpha, \beta\) be two \(\text{Ad}(H^0)\)-invariant scalar products on the algebra Lie \(\mathfrak{g}\). Let \(\mathfrak{p}^\alpha\) and \(\mathfrak{p}^\beta\) be the orthogonal complements to \(\mathfrak{n}(\mathfrak{h})\) in \(\mathfrak{g}\) with respect to the forms \(\alpha\) and \(\beta\) respectively. Then \(\mathfrak{p}^\alpha \oplus \mathfrak{h} = \mathfrak{p}^\beta \oplus \mathfrak{h}\).

Proof. The forms \(\alpha, \beta\) determine the \(\text{Ad}(H^0)\)-invariant scalar products on the quotient space \(\mathfrak{g}/\mathfrak{h}\) which we denote by \(\alpha'\) and \(\beta'\) respectively. Let \(\pi : \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}\) be the natural projection. By definition, the spaces \(\pi(\mathfrak{p}^\alpha)\) and \(\pi(\mathfrak{p}^\beta)\) are the orthogonal complements to the space \(\pi(\mathfrak{n}(\mathfrak{h}))\) in \(\mathfrak{g}/\mathfrak{h}\) with respect to the forms \(\alpha'\) and \(\beta'\) respectively. Since the scalar product \(\alpha'\) on \(\mathfrak{g}/\mathfrak{h}\) is \(\text{Ad}(H^0)\)-invariant, there exists a unique nondegenerate linear map \(J : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}/\mathfrak{h}\) such that \(\beta'(u, v) = \alpha'(u, Jv)\) for all \(u, v \in \mathfrak{g}/\mathfrak{h}\) and \(J \cdot \text{Ad}(h) = \text{Ad}(h) \cdot J\) for all \(h \in H^0\).

If \(\xi \in \mathfrak{n}(\mathfrak{h})\) then \(\text{Ad}(h)(\xi) - \xi \in \mathfrak{h}\) for any \(h \in H^0\). This follows from the fact that \(h \exp(t\xi)h^{-1} \exp(-t\xi) \in H^0\) (\(H^0\) is a normal subgroup of \(N(H^0))\). Conversely, if \(\xi \in \mathfrak{g}\) and \(\text{Ad}(h)(\xi) - \xi \in \mathfrak{h}\) for any \(h \in H^0\) then \([\xi, \mathfrak{h}] \subset \mathfrak{h}\), i.e. \(\xi \in \mathfrak{n}(\mathfrak{h})\). In other words,

\[
\mathfrak{n}(\mathfrak{h}) = \{\xi \in \mathfrak{g} : \text{Ad}(h)(\xi) - \xi \in \mathfrak{h}, \forall h \in H^0\} \tag{25}
\]
\(\pi(n(h)) = n(h)/h = \{ v \in g/h : \text{Ad}(h)(v) = v, \forall h \in H^0 \}. \) (26)

Now we get the inclusion \(J(\pi(n(h))) \subset \pi(n(h)) \) due to the fact that \(J \) commutes with the \(\text{Ad}(H^0) \)-action on \(g/h \) and \(\pi(n(h)) \subset g/h \) is the set of all \(\text{Ad}(H^0) \)-fixed vectors in \(g/h \). Therefore

\[
\beta'(\pi(p^\alpha), \pi(n(h))) = \alpha'(\pi(p^\alpha), J(\pi(n(h)))) = \alpha'(\pi(p^\alpha), \pi(n(h))) = 0,
\]

and, consequently, \(\pi(p^\alpha) = \pi(p^\beta) \), i.e. \(p^\alpha \oplus h = p^\beta \oplus h \). \(\square \) \(\square \)

References

[1] N. Bourbaki, *Groupes et algèbres de Lie, I–III*, Éléments de mathématique, Hermann, Paris VI, 1971,1972.

[2] J.J. Duistermaat and J.A.C. Kolk, *Lie groups*, Universitext, Springer-Verlag, 2000.

[3] Guillemin, V. and Sternberg, S., *Convexity properties of the moment map*, Invent. math., 67 (1982), 491–513.

[4] Guillemin, V. and Sternberg, S., *Symplectic Techniques in Physics*, Cambridge University Press, 1984.

[5] B. Kostant, *Lie group representation on polynomial rings*, Amer. J. Math. 85 (1963), no. 3, 327–404.

[6] Marsden J.E., Ratiu T.S., *Introduction to mechanics and symmetry*, Springer, N.Y. Berlin, 1999.

[7] Mykytyuk I.V., Panasyuk A., Bi-Poisson structures and integrability of geodesic flow on homogeneous spaces, Transformation Groups, 9 (2004), no. 3, 289–308.

[8] I. V. Mykytyuk, *Actions of Borel subgroups on homogeneous spaces of reductive complex Lie groups and integrability*, Compositio Math., 127 (2001), no. 1, 55–67.

[9] I. V. Mykytyuk, *Integrability of geodesic flows for metrics on suborbits of the adjoint orbits of compact groups*, Transformation groups, 21 (2016), no. 2, 531–553.

[10] J-P. Ortega and T.S. Ratiu, *Momentum maps and Hamiltonian reduction*, Prog. Math. 222, Birkhäuser Boston, Inc., Boston, MA, pp. xxxiv+497 (2004).

[11] A. Panasyuk, *Projections of Jordan bi-Poisson structures that are Kronecker, diagonal actions, and the classical Gaudin systems*, Journ. Geom. Phys. 47 (2003), 379–397.