Supporting Information

Development of anthraquinone derivatives with selectivity for ectonucleoside triphosphate diphosphohydrolases (NTPDases) 2 and 3

Younis Baqi1*, Mahmoud Rashed2,#, Laura Schäkel2, Enas M. Malik2, Julie Pelletier3, Jean Sévigny3,4, Amelie Fiene2, and Christa E. Müller2*

1Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman, 2PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, 3Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada, 4Centre de Recherche du CHU de Québec, Québec, QC, Canada

Keywords: Anthraquinone; CD39; inhibitor; metalloenzymes; neuroinflammation;
NTPDase2; NTPDase3; synthesis

* Corresponding Authors: baqi@squ.edu.om; christa.mueller@uni-bonn.de

On leave from the Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
Table of Contents

Contents	Pages
Table S1. Calculated LogD of all anthraquinone derivatives (5, 6& 11–58) using Instant JChem version 5.3.4	S2–S9
Figure S1–S14. 1H and 13C-NMR spectra of compounds 23, 27–30, 34, 35, 37, 41, 45, 47, 48, 53, and 57	S10–S23
Figure S15–S28. LC-MS spectrum of compounds 23, 27–30, 34, 35, 37, 41, 45, 47, 48, 53, and 57	S24–S37
Table S1. Calculated LogD of all anthraquinone derivatives (5, 6& 11–58) using Instant JChem version 5.3.4

Compound	Structure	ClogD at pH 7.4
5	![Structure 5](image)	-1.12
6	![Structure 6](image)	2.80
11	![Structure 11](image)	0.55
12	![Structure 12](image)	1.39
13	![Structure 13](image)	1.68
14	![Structure 14](image)	2.28
	Chemical Structure	Value
---	--------------------	-------
15	![Structure 15](image)	3.27
16	![Structure 16](image)	3.79
17	![Structure 17](image)	0.08
18	![Structure 18](image)	3.27
19	![Structure 19](image)	-0.23
20	![Structure 20](image)	4.26
No.	Image	Value
-----	-------	-------
21	![Image](Image1.png)	2.43
22	![Image](Image2.png)	3.05
23	![Image](Image3.png)	3.21
24	![Image](Image4.png)	2.22
25	![Image](Image5.png)	1.45
26	![Image](Image6.png)	-0.66
27	![Image](Image7.png)	1.52
	Structure	
---	-------------	---
28	![Structure 28](image)	
29	![Structure 29](image)	
30	![Structure 30](image)	
31	![Structure 31](image)	
32	![Structure 32](image)	
33	![Structure 33](image)	
34	![Structure 34](image)	

	Chemical Structure	Value
35	![Chemical Structure](image1.png)	-1.44
36	![Chemical Structure](image2.png)	-0.98
37	![Chemical Structure](image3.png)	2.10
38	![Chemical Structure](image4.png)	3.40
39	![Chemical Structure](image5.png)	4.38
40	![Chemical Structure](image6.png)	3.78
41	![Chemical Structure](image7.png)	4.47
	Chemical Structure	Value
-----	-------------------	---------
42	![Chemical 42](image)	0.77
43	![Chemical 43](image)	4.38
44	![Chemical 44](image)	4.47
45	![Chemical 45](image)	5.08
46	![Chemical 46](image)	4.55
47	![Chemical 47](image)	4.32
	Chemical Structure	pKa
---	--------------------	-------
48	![Chemical Structure](image1)	5.08
49	![Chemical Structure](image2)	5.50
50	![Chemical Structure](image3)	5.50
51	![Chemical Structure](image4)	5.50
52	![Chemical Structure](image5)	3.31
53	![Chemical Structure](image6)	7.21
54	![Chemical Structure](image7)	6.14
55	![Chemical Structure](image)	5.84
----	----------------------------	------
56	![Chemical Structure](image)	6.95
57	![Chemical Structure](image)	2.61
58	![Chemical Structure](image)	-1.72
Figure S1. 1H (500 MHz) and 13C (126 MHz) spectra of sodium 1-amino-4-(3-iodophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (23) in DMSO-d_6
Figure S2. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(2-(hydroxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (27) in DMSO-d_6
Figure S3. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(3-(hydroxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28) in DMSO-d_6
Figure S4. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(4-(hydroxymethylphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (29) in DMSO-d_6.
Figure S5. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(3-(carboxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (30) in DMSO-d_6
Figure S6. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(2,3-dichlorophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (34) in DMSO-d_6
Figure S7. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(2-carboxy-3-fluorophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (35) in DMSO-d_6
Figure S8. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(2-fluoro-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (37) in DMSO-d_6
Figure S9. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(3-phenylsulfanylphenylamino)-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonate (41) in DMSO-d_6.
Figure S10. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-Amino-4-[4-(4-chlorophenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (45) in DMSO-d_6.
Figure S11. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-[4-(4-methoxyphenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (47) in DMSO-d_6.
Figure S12. 1H (500 MHz) and 13C (126 MHz) spectra sodium 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonate (48) in DMSO-d_6
Figure S13. 1H (500 MHz) and 13C (126 MHz) spectra of 1-amo}1-bromo-4-(3-ethylphenylamino)anthracene-9,10-dione (53) in DMSO-d_6
Figure S14. 1H (500 MHz) and 13C (126 MHz) spectra of 4-(3-Fluorophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid (57) in DMSO-d_6.
Figure S15. LC-MS spectrum of compound 23*

* The purity of compound 23 is 100% (retention time: 18.97 belongs to the desired compound 23).
Figure S16. LC-MS spectrum of compound 27*

* The purity of compound 27 is 100% (retention time: 20.83 belongs to the desired compound 27).
Figure S17. LC-MS spectrum of compound 28*

* The purity of compound 28 is 100% (retention time: 21.60 belongs to the desired compound 28).
Figure S18. LC-MS spectrum of compound 29*

* The purity of compound 29 is 98% (retention time: 21.60 belongs to the desired compound 29).
Figure S19. LC-MS spectrum of compound 30*

* The purity of compound 30 is 100% (retention time: 10.60 belongs to the desired compound 30).
Figure S20. LC-MS spectrum of compound 34*

* The purity of compound 34 is 100% (retention time: 17.29 belongs to the desired compound 34).
Figure S21. LC-MS spectrum of compound 35*

* The purity of compound 35 is 98% (retention time: 14.44 belongs to the desired compound 35).
Figure S22. LC-MS spectrum of compound 37*

* The purity of compound 37 is 97% (retention time: 18.06 belongs to the desired compound 37).
Figure S23. LC-MS spectrum of compound 41*

* The purity of compound 41 is 99.4% (retention time: 11.59 belongs to the desired compound 41).
Figure S24. LC-MS spectrum of compound 45*

*The purity of compound 45 is 99% (retention time: 12.02 belongs to the desired compound 45).
Figure S25. LC-MS spectrum of compound 47*

* The purity of compound 47 is 98.9% (retention time: 11.74 belongs to the desired compound 47).
Figure S26. LC-MS spectrum of compound 48*

* The purity of compound 48 is 97.7% (retention time: 12.06 belongs to the desired compound 48).
The purity of compound 53 is 95% (retention time: 14.83 belongs to the desired compound 53).
Figure S28. LC-MS spectrum of compound 57*

* The purity of compound 57 is 99% (retention time: 10.36 belongs to the desired compound 57).