Numerical Modeling and Simulation on Fuel Cell Thermal Cooling with Water Based TiO\textsubscript{2}, AlN and CuO Nanofluids

N. K. Kund

Abstract: Computer codes are developed and applied on water based TiO\textsubscript{2}, AlN and CuO nanofluids. The situation visualizes on fuel cell heat management. It evaluates thermal field/contour besides fuel cell temperature. Ultimately, for all the quoted nanofluids, the fuel cells temperatures remain quite below the critical breakdown value of 356 K. Furthermore, for all the quoted nanofluids, the thermal fields/contours range between fuel cells edges and ambient values. Despite the resemblances in thermal fields/contours, the dissimilarities are in consequence of the deviances in thermophysical properties of enumerated nanomaterials. Besides, fuel cell temperatures of 353 K, 320 K and 340 K are observed with water based TiO\textsubscript{2}, AlN and CuO nanofluids, respectively. In addition, the water based AlN nanofluid extracts optimum fuel cell heat management. Because, the water based AlN nanofluid also corresponds to the lowest stimulating fuel cell temperature of 320 K.

Index Terms: Computer Codes, Heat Management, Fuel Cell, TiO\textsubscript{2}, AlN and CuO, Nanofluids.

I. INTRODUCTION

Definitely, the fuel cells are having widespread industrial/domestic applications. However, the fuel cell heat management still remains the toughest ever challenge. A typical fuel cell is demonstrated in figure 1. The natural/atmospheric heat management remains inapt for tremendously high heat generation circumstances. Nevertheless, in the last few decades the abnormal method of heat management or heat removal has compelled the investigators for further exploration in fuel cell heat management.

Nonetheless, the nanofluid heat management remains unparalleled. It is because the natural/atmospheric heat management is feeble to support the target. Also, the experimental and CFD researches on solidification remain demonstrated in literature [1-7]. Numerical assessments on heat management over rectangular field also remain exist in texts [8-25].

It is comprehended that the nanofluid heat management (as opposed to the natural/atmospheric heat management) evades the problems of high heat generations and thereafter, the nanofluid cooling stands as the momentous get-up-and-go of the present assessment. Here, the fuel cell heat management with water based TiO\textsubscript{2}, AlN and CuO nanofluids are researched numerically.

II. DESCRIPTION OF PHYSICAL PROBLEM

Figure 2 establishes the computational domain of fuel cell where top and bottom faces represent heat evolution. Remaining faces represent the ambient conditions. Here, the fuel cell heat management with water based TiO\textsubscript{2}, AlN and CuO nanofluids are researched numerically.

Additionally, the thermophysical properties of TiO\textsubscript{2}, AlN and CuO nanoparticles and model data of the computational domain are presented in Table 1.
Table 1. Thermophysical properties and model data.

Nanoparticle Properties	TiO₂	AlN	CuO
Density, ρ (Kg/m³)	4176	3261	6316
Specific heat, Cᵥ (J.Kg⁻¹.K⁻¹)	693	741	532
Thermal conductivity, k (W/m-K)	9	286	34

Model Data Values

- Enclosure height (H): 25 mm
- Fuel cell length (Lc): 51 mm
- Thickness of fuel cell (tc): 5 mm
- Fuel cell width (Wc): 51 mm
- Enclosure width (W): 51 mm
- Atmospheric temperature: 300 K
- Fuel cell heat flux: 10 W/cm²
- Coolant velocity: 8 m/s

III. NUMERICAL METHODS

Equations of mass, momentum and energy remain presented with equalities 1-4. Linearized form of discretized equations are computed by running computer codes. Usual steps like meshing and initialization stand chosen for running the computer codes. It is intended for getting thermal fields/countours within computational domain presented previously in figure 2.

Continuity:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}
\]

X-momentum:

\[
\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \rho g \tag{2}
\]

Y-momentum:

\[
\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \rho g \tag{3}
\]

Energy:

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \tag{4}
\]

Here, computer codes are developed and exercised with water based TiO₂, AlN and CuO nanofluids. The situation visualizes on fuel cell heat management. Equations of mass, momentum and energy remain computed for the same. Time step chosen in the present computation is 0.0001 s.

IV. RESULTS AND DISCUSSIONS

Computer codes are generated and implemented on water based TiO₂, AlN and CuO nanofluids. The situation visualizes on fuel cell heat management. It evaluates thermal field/countour besides fuel cell temperature.
Here, computer codes are implemented on water based TiO₂ nanofluid. The site visualizes on fuel cell heat management. This evaluates thermal field/contour and fuel cell temperature. Figure 3 demonstrates the thermal field only. The follow-on fuel cell temperature is 353 K. It remains quite below the critical breakdown value of 356 K. The thermal field ranges between 353 K at fuel cell edge and ambient 300 K at remotest field location.

Figure 4 demonstrates only the thermal contour. Here too, thermal field ranges between 353 K at fuel cell edge and ambient 300 K at remotest field location.

Influence of Water-AlN Nanofluid on Fuel Cell Cooling

Here, computer codes are implemented on water based AlN nanofluid. The site visualizes on fuel cell heat management. This evaluates thermal field/contour and fuel cell temperature. Figure 5 demonstrates the thermal field only. The follow-on fuel cell temperature is 320 K. It remains quite below the critical breakdown value of 356 K. The thermal field ranges between 320 K at fuel cell edge and ambient 300 K at remotest field location.

Figure 6 demonstrates only the thermal contour. Here too, thermal field ranges between 320 K at fuel cell edge and ambient 300 K at remotest field location.

Influence of Water-CuO Nanofluid on Fuel Cell Cooling

Figure 7. Temperature field with water-CuO nanofluid
Here, computer codes are implemented on water based CuO nanofluid. The site visualizes on fuel cell heat management. This evaluates thermal field/contour and fuel cell temperature. Figure 7 demonstrates the thermal field only. The follow-on fuel cell temperature is 340 K. It remains quite below the critical breakdown value of 356 K. The thermal field ranges between 340 K at fuel cell edge and ambient 300 K at remotest field location.

Figure 8 demonstrates only the thermal contour. Here too, thermal field ranges between 340 K at fuel cell edge and ambient 300 K at remotest field location.

Figure 9 also presents the histogram of fuel cell temperature alongside nanofluid. Further, the water based AlN nanofluid extracts optimum fuel cell heat management. Because, the water based AlN nanofluid corresponds to the minimum follow-on fuel cell temperature of 320 K as well.

Table 2. Summary of Fuel cell temperatures with nanofluids.

Nanofluid	Fuel Cell Temperature (K)
Water-TiO₂	353
Water-AlN	320
Water-CuO	340

V. CONCLUSION

Computer codes stand built and practiced on water based TiO₂, AlN and CuO nanofluids. The situation visualizes on fuel cell heat management. It evaluates thermal field/contour besides fuel cell temperature. Ultimately, for all the quoted nanofluids, the fuel cells temperatures remain quite below the critical breakdown value of 356 K. Furthermore, for all the quoted nanofluids, the thermal fields/contours range between fuel cells edges and ambient values. Despite the resemblances in thermal fields/contours, the dissimilarities are in consequence of the deviances in thermophysical properties of enumerated nanomaterials. Besides, fuel cell temperatures of 353 K, 320 K and 340 K are observed with water based TiO₂, AlN and CuO nanofluids, respectively. In addition, the water based AlN nanofluid extracts optimum fuel cell heat management. Because, the water based AlN nanofluid also remains with the smallest resulting fuel cell temperature of 320 K.

ACKNOWLEDGMENT

The essential support from VSSUT Burla for realizing this investigation is greatly acknowledged. Indeed, the author is grateful to the reviewers and journal editorial board for their meticulous and insightful reviews to this article.

REFERENCES

1. N. K. Kund, P. Dutta, 2010, Numerical simulation of solidification of liquid aluminium alloy flowing on cooling slope, Trans. Nonferrous Met. Soc. China, Vol. 20, pp. 898–905.
2. N. K. Kund, P. Dutta, 2012, Scaling analysis of solidification of liquid aluminum alloy flowing on cooling slope, Trans. Indian Institute of Metals, Vol. 65, pp. 587-594.
3. N. K. Kund, 2014, Influence of melt pouring temperature and plate inclination on solidification and microstructure of A356 aluminum alloy produced using oblique plate, Trans. Nonferrous Met. Soc. China, Vol. 24, pp. 3463–3476.
4. N. K. Kund, 2015, Influence of plate length and plate cooling rate on solidification and microstructure of A356 alloy produced by oblique plate, Trans. Nonferrous Met. Soc. China, Vol. 25, pp. 61–71.
5. N. K. Kund, P. Dutta, 2015, Numerical study of solidification of A356 aluminum alloy flowing on an oblique plate with experimental validation, J Taiwan Inst. Chem. Ers., Vol. 51, pp. 159–170.
6. N. K. Kund, P. Dutta, 2016, Numerical study of influence of oblique plate length and cooling rate on solidification and macrogenregation of A356 aluminum alloy melt with experimental comparison, J. Alloys Compd., Vol. 678, pp. 343–354.
7. N. K. Kund, 2018, Effect of tilted plate vibration on solidification and microstructural and mechanical properties of semisolid cast and heat-treated A356 Al alloy, Int. J. Adv. Manufacturing Technol., Vol. 97, pp. 1617–1626.
8. N. K. Kund, 2019, EMS route designed for SSM processing, International Journal of Engineering and Advanced Technology, Vol. 8, pp. 382–384.
9. N. K. Kund, 2019, Cooling slope practice for SSF technology, International Journal of Engineering and Advanced Technology, Vol. 8, pp. 410–413.
10. N. K. Kund, 2019, Comparative ways and means for production of nondendritic microstructures, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 534–537.
11. N. K. Kund, 2019, Simulation of electronics cooling deploying water-zinc oxide nanofluid, International Journal of Recent Technology and Engineering, Vol. 7, pp. 1076–1078.
12. N. K. Kund, 2019, Numerical studies on fuel cell cooling introducing water-copper nanofluid, International Journal of Recent Technology and Engineering, Vol. 7, pp. 1079–1081.
13. N. K. Kund, 2019, Computational modeling of fuel cell expending water-zinc oxide nanofluid, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 424–426.
14. N. K. Kund, 2019, Investigations on modeling and simulation of electronics cooling exhausting water-aluminum nanofluid, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 660–663.
15. N. K. Kund, 2019, Numerical study on effect of nozzle size for jet impingement cooling with water-AlO\textsubscript{2} nanofluid, International Journal of Engineering and Advanced Technology, Vol. 8, pp. 736–739.
16. N. K. Kund, 2019, Experimental investigations on impacts of nozzle diameter on heat transfer behaviors with water jet impingement, International Journal of Engineering and Advanced Technology, Vol. 8, pp. 745–748.
17. N. K. Kund, 2019, Comparative CFD studies on jet impingement cooling using water and water-AlO\textsubscript{2} nanofluid as coolants, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 545–548.
18. N. K. Kund, 2019, Experimental studies on effects of jet Reynolds number on thermal performances with striking water jets, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 2195–2198.
19. N. K. Kund, D. Singh, 2019, CFD studies on heat transfer and solidification progress of A356 Al alloy matrix and Al2 O3 nanoparticles melt for engineering usages, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 2043–2046.
20. N. K. Kund, S. Patra, 2019, Simulation of thermal and solidification evolution of molten aluminum alloy and SiC nanoparticles for engineering practices, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 2047–2050.
21. N. K. Kund, 2019, Numerical Modeling on Heat Dissipation from Electronics through Water-Titanium Carbide Nanofluid, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 1772–1775.
22. N. K. Kund, 2019, CFD Modeling on Influence of Impinging Spout Strength for Device Cooling with Water-Al2O3 Nanofluid, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 1776–1779.
23. N. K. Kund, 2019, Computational Modeling on Fuel Cell Cooling with Water Based Copper Oxide Nanofluid, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 1967–1970.
24. N. K. Kund, 2019, Modeling and Simulation on IC Cooling Using Water Centered SiO2, TiC and MgO Nanofluids, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 1971–1975.
25. N. K. Kund, 2019, CFD Simulation on IC Thermal Cooling through Water Involved TiO2, AlN and CuO Nanofluids, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, pp. 1976–1980.

AUTHORS PROFILE

Dr. N. K. Kund has obtained both M.Tech. & Ph.D. in Mechanical Engineering from Indian Institute of Science Bangalore. He has also obtained B.Tech.(Hons) in Mechanical Engineering from IGIT Sarang, Utkal University Bhubaneswar. He has published several research papers in international journals and also guided many research scholars, besides, wide teaching and research experience. He is presently working as Associate Professor in the Department of Production Engineering, VSSUT Burla (A Government Technical University).