Hamiltonian effective field theory in elongated or moving finite volume

Yan Li, Jia-Jun Wu, Derek B. Leinweber, and Anthony W. Thomas

1School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
2Special Research Centre for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
3ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP), Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

We extend previous work concerning rest-frame partial-wave mixing in Hamiltonian effective field theory to both elongated and moving systems, where two particles are in a periodic elongated cube or have nonzero total momentum, respectively. We also consider the combination of the two systems when directions of the elongation and the moving momentum are aligned. This extension should also be applicable in any Hamiltonian formalism. As a demonstration, we analyze lattice QCD results for the spectrum of an isospin-2 $\pi\pi$ scattering system and determine the $s$, $d$, and $g$ partial-wave scattering information. The inclusion of lattice simulation results from moving frames significantly improves the uncertainty in the scattering information.
I. INTRODUCTION

Lattice simulations of relativistic quantum-field theories are performed in a Euclidean four-dimensional finite volume. Scattering states are contained in the finite box with discretized energy levels. Understanding the relationship between these finite-volume energy levels and experimental scattering observables such as the phase shift and inelasticity is of significance. For the case of elastic two-body scattering in the rest frame, Lüscher [1–3] found a model-independent formula which is now known as Lüscher’s formula.

An equivalent approach is provided in Hamiltonian effective field theory (HEFT) [4–12], a Hamiltonian extension of chiral effective field theory. In the standard approach, a Hamiltonian which respects the constraints of chiral effective field theory is fit to the finite-volume energy spectrum of lattice field theory and the infinite-volume scattering observables are obtained from the constrained Hamiltonian. The approach bridges finite-volume lattice field theory and experimental observables while providing insight into the composition of the scattering states in terms of noninteracting multiparticle basis states.

Different partial waves are mixed in the finite volume as a result of broken spherical symmetry. This mixing complicates the construction of the Hamiltonian matrix. For example, its incorporation significantly increases the dimension of the matrix. A recent work [12] established a formalism for disentangling partial-wave mixing and maximally reducing the dimension of the Hamiltonian matrix in the finite volume via an optimal set of rest-frame basis states. In this work, we will generalize this formalism to both elongated and moving systems with nontrivial total momentum. We will also consider the combination of these two systems when the direction of elongation and that of the moving momentum are aligned.

The Lüscher formula has already been extended and applied to the case of rectangular cuboid boxes [13–23]. This work will first consider a more general case where the box is allowed to be a general parallelepiped, as illustrated in Fig. 1. We then focus on a special class of the parallelepiped termed an elongated cube.

The Lüscher formula has also been extended to moving systems [24–29]. To realize the extension in a Hamiltonian formalism, one needs a Hamiltonian making contact with both the infinite-volume scattering observables parametrized in the rest frame and the finite-volume spectrum in the moving frame. This can be achieved within the formalism proposed in Refs. [30, 31]. In that formalism, different forms of the moving-frame Lüscher formula are unified as different momentum transformations. Furthermore it leads to a new momentum transformation which is not only useful in the Hamiltonian formalism, but can also be used in the finite-volume three-particle quantization condition [32].

The symmetry in a moving frame is quite compatible with a cube elongated in the same direction as the nonzero total momentum. This case will be termed the elongated moving system, and disentangling partial-wave mixing in the elongated moving system is the main concern of this work. We will also demonstrate how the formalism works by analyzing lattice QCD results from Ref. [33] for the spectrum of an isospin-2 $\pi\pi$ scattering system. As also noted in Ref. [12], the discussion in this work should apply not only in HEFT, but also in any Hamiltonian formalism, e.g., the harmonic oscillator basis effective theory [34–36].

There are also many other extensions of the Lüscher formula, including the multichannel case [37–42], nonzero spins [43–46], twisted-boundary conditions [47–50] and the multibody case [32, 51–70]. With the exception of the many-body case, these extensions should be easily realized in the Hamiltonian formalism using the results of Ref. [12] and this paper. In addition, there have also been studies concerning finite-spacing effects in the Hamiltonian
formalism, e.g., Ref. [71].

This paper is organized as follows. In Sec. II, the finite-volume Hamiltonian in the elongated moving system is established. Sec. III accommodates partial-wave mixing in the elongated moving system using the formalism developed in Ref. [12]. Sec. IV demonstrates how this formalism works by analyzing lattice QCD results for isospin-2 $\pi\pi$ scattering [33]. Finally, the results are summarized in Sec. V.

II. HAMILTONIAN IN ELONGATED MOVING FINITE VOLUME

A. Parallelepiped and elongated cube

Normally, the system under consideration in lattice field theory simulations is a periodic cube. However, there are good reasons to also consider asymmetric boxes, where longer dimensions provide access to smaller nontrivial momenta [72]. For example, Ref. [13] studied a rectangular cuboid (including the square cuboid as a special case). In general, the box can be a parallelepiped as shown in Fig. 1.

If we choose one of the vertices of the parallelepiped as the origin, the parallelepiped can be specified by the three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ corresponding to the edges connected to the origin. The three vectors specify a matrix

$$M = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix},$$

which sends the three unit vectors of the coordinate axes to $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively, where the subscripts denote the coordinate components of the vectors. To restrict the range of $\mathbf{x}^*$ within the parallelepiped, one can define $\mathbf{x}^*$ via $x_i^* = \sum_j M_{ij} x_j$ and constrain $\mathbf{x}$ within the unit cube. Correspondingly, when imposing the periodic boundary condition, the momentum $\mathbf{k}^*$ should be discretized as

$$k_i^* = \sum_j M_{ij}^{-1} \frac{2\pi}{L} n_j, \quad n_j \in \mathbb{Z},$$

where we replace the unit cube with a cube of edge length $L$, as is standard in lattice field theory.

Here, we do not consider all the cases in Fig. 1 since in most cases the symmetries are broken too much. When we study moving frames in the following sections, we will find that the symmetry of a cube elongated in the same direction as the moving momentum is quite compatible with the moving effects. So in this paper, we define the elongated cube as a cube elongated in a specific direction $\hat{d}_\eta$ with a magnitude $\eta$, and we consider three $\hat{d}_\eta$ as follows:

(a) $\hat{d}_\eta = (0, 0, 1), M = \begin{bmatrix} 1 \\ 1 \\ \eta \end{bmatrix}$, corresponding to the square cuboid (already covered in Ref. [13]), labelled as (a) in Fig. 1.

(b) $\hat{d}_\eta = (0, 1, 1), M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{n+1}{2} & \frac{n-1}{2} \\ 0 & \frac{n-1}{2} & \frac{n+1}{2} \end{bmatrix}$, corresponding to the right rhombic prism, labelled as (b) in Fig. 1. We note that not all right rhombic prisms are included in this
FIG. 1. Special cases of the parallelepiped (taken from Ref. [73] with slight modifications). The elongated cubes discussed in this work are labelled with the elongated vector $d_{\eta}$. 
scenario, since \( \frac{b}{a} = \sqrt{\frac{\eta^2 + 1}{2}} \) and \( \cos \gamma = \frac{1-\eta^2}{\eta^2 + 1} \) are both determined by \( \eta \). The general right rhombic prism corresponds to \( M = \begin{pmatrix} \eta_x & 0 & 0 \\ 0 & \frac{\eta + 1}{2} & \frac{\eta - 1}{2} \\ 0 & \frac{\eta - 1}{2} & \frac{\eta + 1}{2} \end{pmatrix} \), which is an elongated cube only when \( \eta_x = 1 \).

(c) \( d_\eta = (1, 1, 1) \), \( M = \begin{pmatrix} \eta + 2 \frac{\eta - 1}{3} & \frac{\eta - 1}{3} & \frac{\eta - 1}{3} \\ \frac{\eta - 1}{3} & \eta + 2 \frac{\eta - 1}{3} & \frac{\eta - 1}{3} \\ \frac{\eta - 1}{3} & \frac{\eta - 1}{3} & \eta + 2 \frac{\eta - 1}{3} \end{pmatrix} \), corresponding to the trigonal trapezohedron, labelled as (c) in Fig. 1.

We note that the overall factors of \( d_\eta \) are not important, and are taken as presented for further convenience. In the elongated cube, the momentum is discretized as
\[
k^* = \frac{2\pi}{L} \left( n_\perp + \frac{1}{\eta} n_\parallel \right), \quad n \in \mathbb{Z}^3,
\]
(3)
where the \( \perp \) and \( \parallel \) components of a vector are defined through
\[
n_\parallel := \frac{n \cdot d_\eta}{|d_\eta|^2} d_\eta, \quad n_\perp := n - n_\parallel.
\]
(4)

To be more concrete, for an infinite-volume Hamiltonian
\[
H = \int \frac{d^3k^*}{(2\pi)^3} h(k^*) \langle k^* \rangle \langle k^* \rangle + \int \frac{d^3k'^*}{(2\pi)^3} \frac{d^3k^*}{(2\pi)^3} V(k'^*, k^*) \langle k'^* \rangle \langle k^* \rangle,
\]
(5)
where \( h \) and \( V \) denote the kinetic and potential energy respectively, and the state \( \langle k^* \rangle \) is normalized as
\[
\langle k'^* | k^* \rangle = (2\pi)^3 \delta^3(k'^* - k^*),
\]
(6)
to put it in an elongated cube, we need the discretization
\[
\int \frac{d^3k^*}{(2\pi)^3} \rightarrow \eta^{-1} L^{-3} \sum_{k^* = \frac{2\pi}{L}(n_\perp + \frac{1}{\eta} n_\parallel), n \in \mathbb{Z}^3} \langle k^* \rangle \langle k^* \rangle,
\]
(7)
and
\[
\langle k^* \rangle \rightarrow \eta^\frac{1}{2} L^\frac{3}{2} |n\rangle
\]
(8)
so that the basis \( |n\rangle \) is orthonormal
\[
\langle n' | n \rangle = \delta_{n' n}.
\]
(9)

Finally, the Hamiltonian in a finite elongated cube is
\[
H_L = \sum_n h(k^*(n)) \langle n \rangle \langle n \rangle + \sum_{n', n} \eta^{-1} L^{-3} V(k^*(n'), k^*(n)) \langle n' \rangle \langle n \rangle.
\]
(10)
We note the Hamiltonian Eq. (10) applies to any elongated cubes, including those of the three scenarios (a), (b) and (c) introduced above Eq. (3).

We also note, that the box studied in Ref. [13] corresponds to

\[ M = \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix}, \]

(11)

where an overall factor can be absorbed into \( L \). This box corresponds to the rectangular cuboid, which is not completely equivalent to the elongated cube, since it needs elongation in more than one direction. However in some cases, \( \eta_1 = \eta_2 = 1 \) for instance, the box is an elongated cube with \( d_\eta = (0, 0, 1) \).

B. Moving system

Since the infinite-volume potential and scattering observables are most easily parametrized in the rest frame, we need a Hamiltonian that can produce the moving-frame spectrum while still written in terms of the rest-frame potential.

As suggested in Refs. [30, 31], one can introduce a momentum transformation \( k^* \rightarrow k \) to the infinite-volume Hamiltonian

\[
H = \int \frac{d^3k^*}{(2\pi)^3} h(k^*) \, |k^*\rangle \langle k^*| + \int \frac{d^3k^*}{(2\pi)^3} \frac{d^3k^*}{(2\pi)^3} V(k^*, k^*) \, |k^*\rangle \langle k^*| \\
= \int \frac{d^3k}{(2\pi)^3} J(k) \, h(k) \, |k^*(k)\rangle \langle k^*(k)| \\
+ \int \frac{d^3k'}{(2\pi)^3} J(k') \, \frac{d^3k}{(2\pi)^3} J(k) \, V(k^*(k'), k^*(k)) \, |k^*(k')\rangle \langle k^*(k)| ,
\]

(12)

where \( J \) denotes the Jacobian of the transformation. Then one can define

\[ |k\rangle := J^{\frac{1}{2}}(k) \, |k^*(k)\rangle , \]

(13)

such that

\[ \langle k'|k\rangle = J(k)(2\pi)^3 \delta^3(k'^* - k^*) = (2\pi)^3 \delta^3(k' - k) , \]

(14)

and the infinite-volume Hamiltonian will be

\[
H = \int \frac{d^3k}{(2\pi)^3} h(k) \, |k\rangle \langle k| + \int \frac{d^3k'}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \left[ J^{\frac{1}{2}}(k') \, V(k'^*(k'), k^*(k)) \, J^{\frac{1}{2}}(k) \right] \, |k'\rangle \langle k| .
\]

(15)

Now if one discretizes \( k \) instead of \( k^* \), one gets a different finite-volume Hamiltonian

\[
H_L = \sum_n h(k^*(n)) \, |n\rangle \langle n| + \sum_{n',n} L^{-3} \tilde{V}(k(n'), k(n)) \, |n'\rangle \langle n| \\
\tilde{V}(k', k) = \left[ J^{\frac{1}{2}}(k') \, V(k'^*(k'), k^*(k)) \, J^{\frac{1}{2}}(k) \right] , \quad k = \frac{2\pi}{L} n .
\]

(16)
Ref. [30] proposed a number of general momentum transformations for the moving system, and proved that those transformations can keep the relationship between the infinite-volume phase shifts and finite-volume spectrum up to exponentially suppressed corrections. That paper also studied three typical transformations. While two of the three have been used in many previous works [24–26], they introduce additional energy dependence. The third one (labelled as scheme C in Ref. [30]) does not have such problems and hence is suitable here. It reads

\[ k^* = k_\perp + \gamma \left( k_\parallel - \frac{\omega_1(k)}{\omega_1(k) + \omega_2(P - k)} P \right), \]

\[ \gamma = \frac{\omega_1(k) + \omega_2(P - k)}{\sqrt{\omega_1(k) + \omega_2(P - k))^2 - P^2}}, \]  

(17)

where \( \omega_i(k) = \sqrt{k^2 + m_i^2} \) and \( P \) is the total momentum of the moving system, and the corresponding Jacobian is

\[ J(k) = \frac{\omega_1(k) + \omega_2(P - k)}{\omega_1(k) \omega_2(P - k)} \frac{\omega_1(k^*) + \omega_2(k^*)}{\omega_1(k^*) \omega_2(k^*)}. \]  

(18)

In the finite cube, the total momentum can only take discrete values as \( P = \frac{2\pi}{L} \eta \mathbf{d}_\gamma \) with \( \mathbf{d}_\gamma \) an integer vector.

C. Elongated moving system

Both the elongated and moving systems have smaller finite-volume symmetry groups than the rest-frame cube, and combining them will normally give a much smaller one. However, if the elongated direction and the moving direction are the same, their combination will not see a large reduction in symmetry. We will call this combination the elongated moving system. The corresponding finite-volume Hamiltonian is obtained by combining Eqs. (10) and (16), which reads

\[ H_L = \sum_n h(k^*(n)) |n\rangle \langle n| + \sum_{n'n} \eta^{-1} L^{-3} \tilde{V}(k(n'), k(n)) |n'\rangle \langle n| \]

\[ \tilde{V}(k', k) = \mathcal{J}^{\frac{1}{2}}(k') V(k'', k^*) \mathcal{J}^{\frac{1}{2}}(k), \quad k = \frac{2\pi}{L} \left( n_\perp + \frac{1}{\eta} n_\parallel \right), \]  

(19)

where the momentum transformation \( k^* \rightarrow k \) and the corresponding Jacobian is the same as Eqs. (17) and (18) for the moving system, except that the total momentum \( P \) should now be

\[ P = \frac{1}{\eta} \frac{2\pi}{L} \mathbf{d}_\gamma, \]  

(20)

noting either \( \mathbf{d}_\eta = \mathbf{d}_\gamma \) or \( \eta = 1 \) for \( P \neq 0 \) in this “elongated moving system”.

Now Eqs. (17–20) are all the ingredients needed to write down the elongated moving Hamiltonian. The eigenvalues of this Hamiltonian are rest-frame energies \( E^*_n \) related to moving-frame energies \( E_n \) via

\[ E_n = \sqrt{E^*_n^2 + \tilde{P}^2}. \]  

(21)
we also have
\[ n \times d \]
dcases for certain values of \( e \)
describing the energies of the noninteracting states. Note, there can be several values for \( e \)
related to vectors \( n, d \)
and rest-frame system.

Thus our discussion for the degenerate shells splits into four cases as listed in Table I. There
we introduce an elongated moving vector \( d \neq 0 \), since either we can set \( d_\eta = d_\gamma \)
or choose one of the two vectors to vanish. In Table I, case A refers to the standard unelongated
and rest-frame system. \( e_n \) can be simply chosen as \( n^2 \). Case B refers to the elongated or
unelongated moving-frame system with two particles of different mass. As suggested by
Eq. (17), \( h(k^*) \) now depends on \( n^2, (d - n)^2 \), \( n^2 \parallel \), and \( n^2 \perp \). Because both \( n^2 \parallel \) and \( n^2 \perp \) can be reexpressed in terms of \( n^2 \) and \( (d - n)^2 \), \( e_n \) can be chosen as \( (n^2, (d - n)^2) \), or \( (n^2, n \cdot d) \)
equivalently. Case C1 refers to the elongated rest-frame system. \( h(k^*) \) now depends on \( n^2, n^2 \parallel \propto |n \cdot d|^2 \), and \( n^2 \perp = n^2 - n^2 \parallel \). Thus \( e_n \) can be chosen as \( (n^2, n \cdot d) \). Case C2 refers to the elongated or unelongated moving-frame system with two particles of the same mass.

In contrast to case B, \( n \) and \( d - n \) are on the same shell as indicated by Eq. (23). As \((n^2, (d - n)^2)\) and \((d - n)^2, n^2\) denote the same shell, \( e_n \) can be chosen as an unordered
pair \( \{n^2, (d - n)^2\} \).

### III. PARTIAL-WAVE MIXING IN AN ELONGATED MOVING SYSTEM

Spherical symmetry allows the following partial-wave expansion
\[ V(k^*, k^*) = \sum_l v_l(k^*, k^*) \sum_m Y_{lm}(\hat{k}^*) Y_{lm}^*(\hat{k}^*) , \]
| Case          | A         | B         | C1 or C2 |
|--------------|-----------|-----------|----------|
| \(G_{\infty}\) | \(O(3)\) | \(O(2)\) | \(O(2)\times C_2\) |
| \((\Gamma_{\infty}, \alpha_{\infty})\) | \((l^P, m)\) | \((|m|, S_m)\) | \((|m|^P, S_m)\) |
| \(\tilde{v}_{\Gamma_{\infty}}\) | \(v_l\) | \(J^{\frac{1}{2}}(k') J^{\frac{1}{2}}(k) \sum_l v_l \frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}\) | \(J^{\frac{1}{2}}(k') J^{\frac{1}{2}}(k) \sum_l v_l \frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}\) |
| \(u_{\Gamma_{\infty}, \alpha_{\infty}}\) | \(Y_{lm}\) | \(e^{im\phi^*}\) | \(S^P(m, \theta^*) e^{im\phi^*}\) |

where \(Y_{lm}(\hat{k}^*)\) are the usual spherical harmonics, as shown in Eq. (B1), and its variables are the direction angles \((\theta^*, \phi^*)\) of the vector \(k^*\). Different partial waves are decoupled under this potential in the infinite volume. In the finite volume, partial wave numbers \((l, m)\) are no longer good quantum numbers, and the partial wave potentials \(v_l\) with different \(l\) are coupled together in the determination of finite-volume spectra. This phenomena, called partial-wave mixing, complicates the structure of the Hamiltonian Eq. (19). In the standard case (case A in Table I), Ref. [12] proposed a method that provides an optimal set of basis states maximally reducing the dimension of the Hamiltonian. In this section, we will generalize that method to more general cases.

The spherical symmetry group \(SO(3)\) is broken into one of its subgroups \(G\) in the finite volume. In the standard case A, \(G\) is the octahedral group O. In other cases in Table I, \(G\) is smaller, and turns out to be also a subgroup of a two-dimensional rotation group \(O(2)\) (or \(O(2)\times C_2\) in case C), where the rotation axis of this \(O(2)\) should be the same as the elongated moving vector \(\mathbf{d}\). This prefers the partial wave expansion Eq. (24) expanded in a coordinate system different from that of the discretized momentum. Appendix A discusses how the coordinate system is chosen (results are summarized in Table XIV).

In general cases, we expect the finite-volume potential in Eq. (19) can be put in a similar form as Eq. (24) as follows:

\[
\tilde{V}(\mathbf{k'}, \mathbf{k}) = \sum_{\Gamma_{\infty}} \sum_{\alpha_{\infty}} u_{\Gamma_{\infty}, \alpha_{\infty}}(\mathbf{n'}) u_{\Gamma_{\infty}, \alpha_{\infty}}^*(\mathbf{n}) \tilde{v}_{\Gamma_{\infty}}(\mathbf{n'}, \mathbf{n}) \sum_{\alpha_{\infty}} u_{\Gamma_{\infty}, \alpha_{\infty}}(\mathbf{n'}) u_{\Gamma_{\infty}, \alpha_{\infty}}^*(\mathbf{n}),
\]

(25)

where \(\alpha_{\infty}\) denotes the index of the vector of the irreducible representation \(\Gamma_{\infty}\) of the group \(G_{\infty}\), and the definitions for \(u_{\Gamma_{\infty}, \alpha_{\infty}}\) and \(\tilde{v}_{\Gamma_{\infty}}\) are summarized in Table II. In the table, we also have

\[
S_m = \begin{cases} 
+ & m \geq 0 \\
- & m < 0 
\end{cases}, \quad \sum_{\mathcal{P}} = \begin{cases} 
\text{sum over evens} & \mathcal{P} = + \\
\text{sum over odds} & \mathcal{P} = - 
\end{cases},
\]

(26)

and \(S^\mathcal{P}(m, \theta^*)\) is defined via

\[
P_{lm}(\cos \theta^*) = \begin{cases} 
S^+(m, \theta^*) P_{lm}(|\cos \theta^*|) & l \text{ is even} \\
S^-(m, \theta^*) P_{lm}(|\cos \theta^*|) & l \text{ is odd} 
\end{cases},
\]

(27)
which gives
\[
S^+(m, \theta^*) = \begin{cases} +1 & \cos \theta^* \geq 0, \\ (-1)^m & \cos \theta^* < 0, \end{cases} \quad S^-(m, \theta^*) = \begin{cases} +1 & \cos \theta^* \geq 0, \\ (-1)^{m+1} & \cos \theta^* < 0. \end{cases} \tag{28}
\]

In the standard case, Eq. (25) becomes the same as Eq. (24). In case B, we now take $O(2)$ as $G_\infty$, and the $\alpha_\infty$-independence of $\tilde{v}_{\Gamma, \infty}$ comes from the invariance of
\[
\frac{(l - m)!}{(l + m)!} P_{lm}(\cos \theta^*) \tag{29}
\]
under $m \to -m$. In case C, $G_\infty$ is now $O(2) \times C_2$, where the $C_2$ symmetry comes from $\mathbf{k} \to \mathbf{P} - \mathbf{k}$, i.e., exchanging the momenta of the two equal-mass particles, and is different from the parity symmetry in the usual sense. In the latter case, one is concerned with $\mathbf{k} \to -\mathbf{k}$ and $\mathbf{P} \to -\mathbf{P}$. It is now $|\cos \theta^*|$ instead of $\cos \theta^*$ independent of $\mathbf{e}_n$.

In what follows, we will show how to construct the optimal set of basis states maximally reducing the dimension of the finite-volume Hamiltonian in general cases. The formalism is basically the same as that in Ref. [12], except with a different language introduced above.

Now one can introduce
\[
|e_n; \Gamma_\infty, \alpha_\infty\rangle = \sum_{e_n} u_{\Gamma_\infty, \alpha_\infty}(n) |n\rangle \tag{30}
\]
to write $V_L$ as
\[
V_L = \eta^{-1} L^{-3} \sum_{e_n, e_{n'}, \Gamma_\infty} \tilde{v}_{\Gamma_\infty}(e_{n'}, e_n) \sum_{\alpha_\infty} |e_{n'}; \Gamma_\infty, \alpha_\infty\rangle \langle e_n; \Gamma_\infty, \alpha_\infty| \tag{31}
\]
and construct the states $|e_n, \Gamma_\infty; \Gamma, f, \alpha\rangle$ via linear combinations of $|e_n; \Gamma_\infty, \alpha_\infty\rangle$ as follows:
\[
|e_n, \Gamma_\infty; \Gamma, f, \alpha\rangle = \sum_{\alpha_\infty} [C_{\Gamma_\infty, \alpha_\infty}^{\alpha, f, \alpha}] |e_n; \Gamma_\infty, \alpha_\infty\rangle \tag{32}
\]
where $\Gamma$, $f$ and $\alpha$ denote the $\alpha$-th vector of the $f$-th occurrence of the irreducible representation $\Gamma$ reduced from the $\Gamma_\infty$, and the coefficients derived from group theory can be found in Appendix A.

One can then define the inner product matrices for these states as
\[
[P_{e_n}]_{\Gamma_\infty, \alpha_\infty; \Gamma_\infty, \alpha_\infty} : = \langle e_n; \Gamma_\infty', \alpha_\infty'| e_n; \Gamma_\infty, \alpha_\infty\rangle, \tag{33}
\]
and
\[
[P_{e_n, \Gamma, \alpha}]_{\Gamma_\infty, f'; \Gamma_\infty, f} : = \langle e_n, \Gamma_\infty'; \Gamma, f', \alpha| e_n, \Gamma_\infty; \Gamma, f, \alpha\rangle \]
\[
= \sum_{\alpha_\infty'} [C_{\Gamma_\infty, \alpha_\infty}^{\alpha, f', \alpha}][P_{e_n}]_{\Gamma_\infty', \alpha_\infty; \Gamma_\infty, \alpha_\infty}[C_{\Gamma_\infty, \alpha_\infty}^{\alpha, f, \alpha}]. \tag{34}
\]

Using these inner product matrices, one can orthonormalize $|e_n, \Gamma_\infty; \Gamma, f, \alpha\rangle$ to our final basis $|e_n; \Gamma, F, \alpha\rangle$. The Wigner-Eckart theorem only permits the following general form for the $V_L$:
\[
V_L = \eta^{-1} L^{-3} \sum_{e_n, e_{n'}, F'} \tilde{v}_{\Gamma, F', \Gamma}(e_{n'}, e_n) \sum_{\alpha} |e_{n'}; \Gamma, F', \alpha\rangle \langle e_n; \Gamma, F, \alpha| \tag{35}
\]
which, combined with Eq. (31), leads to

$$\tilde{v}_{\Gamma,F',F}(e'_n, e_n) = \sum_{\Gamma} \tilde{v}_{\Gamma,\infty}(e'_n, e_n) \left[ G_{\Gamma,\infty,\Gamma} \right]_{e'_n, e_n, F},$$

$$\left[ G_{\Gamma,\infty,\Gamma} \right]_{e'_n, e_n, F} = \sum_{f} \left[ M_{\Gamma,\Gamma,\alpha} \right]_{f, e'_n, F} \left[ M_{\Gamma,\Gamma,\alpha} \right]_{f, e_n, F}, \quad \forall \alpha,$$

$$\left[ M_{\Gamma,\Gamma,\alpha} \right]_{f, e_n, F} = \langle e_n, \Gamma, f, \alpha | e_n, \Gamma, F, \alpha \rangle.$$  \hspace{1cm} (36)

There are different methods to orthonormalize $|e_n, \Gamma, \alpha \rangle$. We present the result of the eigenmode-based method discussed in Ref. [12] as follows:

$$\left[ M_{\Gamma,\Gamma,\alpha} \right]_{f, e_n, F} = \sqrt{\lambda^F} X^F_{\Gamma,\infty, f},$$  \hspace{1cm} (37)

where $\lambda^F$ and $X^F_{\Gamma,\infty, f}$ are the $F$-th eigenvalue and the $(\Gamma, f)$-component of the $F$-th eigenvector of the matrix $P_{e_n; \Gamma, \alpha}$ respectively.

IV. EXAMPLE OF ISOSPIN-2 $\pi\pi$ SCATTERING

In this section, following a similar discussion in Sec. IV of Ref. [12], we apply the formalism developed herein to analyze lattice QCD results for the isospin-2 $\pi\pi$ scattering system. This time, the moving-frame data is included in the analysis.

As in Ref. [12], the lattice QCD results are from Ref. [33] where an anisotropic action is used. They quote the anisotropy $\xi = a_s/a_t = 3.444(6)$ and the pion mass in lattice units $a_t m_\pi = 0.06906(13)$. The $\pi\pi$-channel is also studied in their other recent works [74–76]. Drawing on the scale setting provided in Ref. [76], $a_t^{-1} = 5.662$ GeV, $m_\pi$ is approximately 391 MeV.

In the analysis performed in Ref. [33], lattice results above the $4\pi$ threshold were not included. Since our formalism does not include the four-body contributions, the same cut is employed.

A. The procedures

As in Ref. [12], we work with dimensionless lattice units. The kinetic energy $h$ is taken as

$$a_t h(k) = 2\sqrt{(a_t m_\pi)^2 + (a_t k)^2},$$  \hspace{1cm} (38)

and when going to the finite-volume system, we have

$$a_t k \rightarrow a_t k_N = \frac{2\pi \sqrt{N}}{\xi L/a_s},$$  \hspace{1cm} (39)

where $N = n^2$. Because the isospin is two, only $s$, $d$, and $g$ waves need to be taken into account, as in Ref. [33]. With the partial-wave expansion of Eq. (24), the partial-wave potentials are taken to be of a simple separable form

$$a_t^{-2} v_l(p, k) = \frac{G_l}{(a_t m_\pi)^2} f_l(p) f_l(k),$$  \hspace{1cm} (40)

11
TABLE III. The dimensions of the finite-volume Hamiltonian matrices for each of the irreducible representations $\Gamma$, for $N_{cut} = 100$ and 600.

| Case: d | $\Gamma$ | $N_{cut} = 100$ | $N_{cut} = 600$ |
|---------|----------|----------------|----------------|
| A: (0, 0, 0) | $(A_1^+, A_2^+, E^+, T_1^+, T_2^+)$ | $(129, 0, 145, 75, 144)$ | $(923, 0, 965, 488, 963)$ |
| C1: (0, 0, 1) | $(A_1^+, A_2^+, B_1^+, B_2^+, E^+)$ | $(357, 202, 271, 249, 448)$ | $(4357, 3004, 3354, 3254, 6222)$ |
| C1: (0, 1, 1) | $(A_1^+, A_2^+, B_1^+, B_2^+)$ | $(624, 467, 465, 487)$ | $(8122, 6806, 6802, 6923)$ |
| C1: (1, 1, 1) | $(A_1^+, A_2^+, E^+)$ | $(409, 239, 652)$ | $(5320, 3504, 8879)$ |
| C2: (0, 0, 1) | $(A_1^+, A_2^+, B_1^+, B_2^+, E^+)$ | $(308, 173, 234, 214, 448)$ | $(4102, 2826, 3158, 3064, 6222)$ |
| C2: (0, 1, 1) | $(A_1^+, A_2^+, B_1^+, B_2^+)$ | $(558, 420, 417, 433)$ | $(7772, 6516, 6518, 6625)$ |
| C2: (1, 1, 1) | $(A_1^+, A_2^+, E^+)$ | $(354, 215, 564)$ | $(5035, 3360, 8381)$ |

with

$$f_l(k) = \frac{(d_l a_t k)^l}{(1 + (d_l a_t k)^2)^{l/2+2}}, \quad (41)$$

with parameters $G_l$ and $d_l$ dimensionless.

The parameters in these potentials were fit to minimize the $\chi^2$ defined by

$$\chi^2 = [E_{Sep} - E_{Lattice}]^T [C]^{-1} [E_{Sep} - E_{Lattice}], \quad (42)$$

where $E_{Sep} - E_{Lattice}$ denotes the vector of the differences between the spectrum obtained in the separable potential model and the lattice simulation. The covariance matrix $C$ denotes the covariances in the lattice spectrum of Ref. [33].

The spectrum was calculated using the method discussed in Sec. III. While a momentum cutoff $N_{cut} = 600$ was used in Ref. [12], we found that $N_{cut} = 100$ is already enough for the analysis. Consider a specific level (we choose the highest one of $A_1^+$ in Fig. 2) for example, while the lattice level is 0.263773(424), the level solved from the Hamiltonian (using the parameters taken from the rest-frame fit in Ref. [12]) only shifts around 0.000001 when $N_{cut}$ reduces from 600 to 100. Actually, for the lattice size $L \sim 3$ fm used here, $2\pi L \sqrt{N_{cut}}$ are roughly 10 and 4 GeV when $N_{cut} = 600$ and 100 respectively. So $N_{cut} = 100$ is totally enough here. For studies with larger $L$, however, one needs larger $N_{cut}$. What’s more, we found $|\chi^2_{N_{cut}=100} - \chi^2_{N_{cut}=600}| < 0.1$ in the range of parameters of interest. On the other hand, the values $a_t m_{\pi} = 0.06906(13)$ and $\xi = a_s/a_t = 3.444(6)$ may bring appreciable uncertainties to our analysis. Here we do not consider them, because the analysis based on the Lüscher method implemented in Ref. [33] suggests that they only have a small effect. The dimensions of the finite-volume Hamiltonian matrices for $N_{cut} = 100$ and 600 are listed in Table III for each of the irreducible representations considered. Case B is not included, as we have $m_1 = m_2$ in the current $\pi\pi\pi$ system. It is notable that the analysis of the moving-frame lattice data corresponds to the C2 case with $\eta = 1$. 

12
TABLE IV. Parameters minimizing Eq. (42) with rest-frame data only and both rest- and moving-frame data. Both data are from Ref. [33] and the fitting results of rest-frame data are taken from Ref. [12]. Covariances for parameters are described by the Hessians listed in Eqs. (44) and (45).

| Data used     | $\chi^2/N_{dof}$ | $G_0$     | $d_0$     | $G_2$     | $d_2$     | $G_4$     | $d_4$     |
|---------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Rest only     | 10.5/(11-4)       | 67.8(3.4) | 4.57(0.28)| 90.6(28.3)| $d_B$     | 340.(307.)| $d_B$     |
| Rest & Moving | 115.9/(49-4)      | 67.2(2.3) | 4.59(0.18)| 68.1(16.4)| $d_B$     | 257.(173.)| $d_B$     |

B. The results

As in Ref. [12] we set $d_2 = d_4 = d_B = 4.78$ in the fitting. The results of the fit are shown in Table IV, where results of Ref. [12] are also included for comparison. Using those parameters, we predict the $L$-dependent spectrum for both rest and moving frames in Figs. 2 and 3.

Our covariance for parameters $\lambda_i$ is defined as $[\mathcal{H}/2]^{-1}$, where $\mathcal{H}$ is the Hessian of $\chi^2$, the matrix of second-order partial derivatives over parameters

$$[\mathcal{H}]_{i,j} = \frac{\partial^2 \chi^2}{\partial \lambda_i \partial \lambda_j}. \quad (43)$$

As two $d_l$ are fixed, we only have four parameters and the final covariance returned by MINUIT 2 (ordered as $G_0$, $d_0$, $G_2$, $G_4$) is

$$[\mathcal{H}/2]^{-1} = \begin{bmatrix} 5.28 & 0.321 & 21.1 & 47.3 \\ 0.321 & 0.0323 & 0.839 & 3.78 \\ 21.1 & 0.839 & 269. & 716. \\ 47.3 & 3.78 & 716. & 2.99 \times 10^4 \end{bmatrix}. \quad (44)$$

For comparison, we also list the covariance obtained in Ref. [12] for the fitting of rest-frame data:

$$[\mathcal{H}_{\text{Rest}}/2]^{-1} = \begin{bmatrix} 11.4 & 0.674 & 58.4 & -197. \\ 0.674 & 0.0773 & 1.53 & -9.61 \\ 58.4 & 1.53 & 802. & -1.28 \times 10^3 \\ -197. & -9.61 & -1.28 \times 10^3 & 9.45 \times 10^4 \end{bmatrix}. \quad (45)$$

As the different values of $l$ are decoupling in solving for the phase shifts, the values underlined in Eqs. (44) and (45) are used in calculating the errors in the phase shifts.

In Table IV, one may be concerned with the increase of $\chi^2/N_{dof}$ after including the moving frame data. However, the fitting based on the Lüscher method implemented in Ref. [33] gives $\chi^2/N_{dof} = 116/(49-3)$ (they did not include the $g$-wave), quite close to ours. As shown in Fig. 4, the inclusion of moving frame lattice QCD results induces small variations in the phase shifts within the $1\sigma$ uncertainties of the predictions from the rest-frame data alone. However, the use of moving-frame data reduces the uncertainties in the HEFT phase shifts.
FIG. 2. Rest-frame finite-volume spectrum fit of the separable potential model to the lattice QCD results of Ref. [33] for isospin-2 $\pi\pi$ scattering. Red dashed (Rest-only fit) and blue solid (Rest-&-Moving fit) curves illustrate the energies resolved in the separable potential model as the fit parameters of Table IV are optimized to fit the lattice QCD results (red points in this figure and blue points in Fig. 3). Results of the Rest-only and Rest-&-Moving fits are almost indistinguishable. Green dotted curves illustrate the noninteracting pion-pair energies.

significantly. Moreover, the constraints provided by several lattice QCD energy levels on a small number of parameters characterising the spectrum lead to results that are relatively precise in comparison to the Lüscher method. Still the results from the two approaches are generally consistent with only one outlier arising from the Lüscher method.

We also examine the differences in the finite-volume spectra associated with the elongation
FIG. 3. As in Fig. 2 for moving-frame finite-volume spectrum.
of the lattice volume versus the nonzero total momentum of the two-particle system. Our consideration aims to understand how elongation and nonzero total momentum differ in the spectrum. One may find for the pure elongated and the pure moving systems that $\frac{1}{\eta}$ and $\gamma$ play a similar role. Noting that $\gamma$ depends on the momentum $k$ and the total momentum $P$, to make a comparison we set $\eta = \frac{1}{\gamma} \approx 0.868$ with $\gamma$ taking the value on $k = 0$, $d = (0, 0, 1)$ and $L/a_s = 20$. We predict the $L$-dependent spectrum for the corresponding elongated,
FIG. 5. As in Fig. 2 for elongated, moving and elongated moving systems with $\eta \approx 0.868$ and $d = (0, 0, 1)$. 
moving and elongated moving systems in Fig. 5. These three systems provide quite different spectra. Thus the consideration of elongated, moving, and elongated-moving systems are useful for generating more data within a certain range of lattice sizes.

V. SUMMARY

In this work, we have extended HEFT to accommodate both an elongated finite volume and systems with nonzero total momentum. We also consider their combination when the directions of the elongation and the total momentum are aligned. To calculate the finite-volume energy levels, we first constructed the elongated-moving Hamiltonian Eqs. (17–20) via the potential parametrized in the rest frame. The spectrum solved from the Hamiltonian can approximate the real spectrum of the elongated moving system up to exponentially-suppressed corrections. The elongation was handled in the usual way, and the moving effects were realized via a momentum transformation proposed in Ref. [30].

We then applied the formalism proposed in Ref. [12] to disentangle the partial-wave mixing in the elongated moving Hamiltonian. This formalism maximally reduces the dimension of the Hamiltonian matrix. Different from the rest frame, the elongated moving system has an additional characteristic direction, which prefers the partial-wave expansion expanded in a specific coordinate system.

Next, an example of isospin-2 $\pi\pi$ scattering was used to demonstrate how this formalism works. The use of moving-frame data induced small corrections in the phase shifts within the $1\sigma$ bounds of the rest-frame predictions. However the consideration of moving-frame lattice results significantly reduced the uncertainty in the phase-shift predictions. The consistency between analyses from the rest-frame Hamiltonian formalism implemented in Ref. [12] and the Lüscher method implemented in Ref. [33] is maintained by the moving-frame Hamiltonian formalism implemented here.

Finally, we examined differences between the effects of elongation and nonzero total momentum. The spectra obtained from the elongated, moving and elongated moving systems are quite different, and provide additional avenues for generating more Lattice QCD results within a certain range of lattice size. On the current status of lattice simulations, $L$ is roughly in the range 2-6 fm.

This work has largely accomplished the outlook of Ref. [12] for the generalization of the Hamiltonian formalism. More applications to two-body channels with data from elongated and moving systems are planned. Furthermore, as mentioned in Ref. [12], the moving-frame formalism developed here is necessary for a three-body formalism, since two of the three particles can have a nonvanishing total momentum. In the three-body case, a direct Hamiltonian fit should be formally simpler than the three-body Lüscher formalism. Of course, one of the remaining challenges is the significant increase in the dimension of the resultant Hamiltonian matrix.

ACKNOWLEDGEMENTS

The finite-volume energy levels and their covariances from Ref. [33] were provided by the Hadron Spectrum Collaboration – no endorsement on their part of the analysis presented in the current paper should be assumed. We thank Frank X. Lee, Ross D. Young and James M. Zanotti for comments and discussions. This work is also supported by the
Fundamental Research Funds for the Central Universities. This research was supported by the Australian Research Council through ARC Discovery Project Grants Nos. DP150103101 and DP180100497 (A.W.T.) and DP150103164, DP190102215 and DP210103706 (D.B.L.).
Appendix A: Symmetry groups relevant to finite volume

In the infinite volume, with the symmetry group $G_\infty$ and its irreducible representations (irreps) $\Gamma_\infty$, one can label the quantum state vectors as $|\Gamma_\infty, \alpha_\infty\rangle$, where $\alpha_\infty$ is the index for the vectors in the irrep $\Gamma_\infty$. For example, if we consider $G_\infty = SO(3)$, then $|\Gamma_\infty, \alpha_\infty\rangle$ will be $|l, m\rangle$. In the finite volume, the symmetry group $G_\infty$ reduces into one of its subgroups $G$, and the vectors for an irrep $\Gamma$ are now labelled as $|\Gamma, \alpha\rangle$.

According to the restricted representation, the infinite-volume vectors $|\Gamma_\infty, \alpha_\infty\rangle$ also behave as the vectors belonging to the representations of $G$, hence, they can be combined to obtain the vectors belonging to the irrep $\Gamma$ as follows:

$$|\Gamma, f, \alpha\rangle = \sum_{\alpha_\infty} [C_{\Gamma_\infty}]_{\alpha_\infty; \Gamma, f, \alpha} |\Gamma_\infty, \alpha_\infty\rangle,$$  \hspace{1cm} (A1)

where $f$ is introduced since a specific $\Gamma$ can be obtained more than once from the reduction of a single $\Gamma_\infty$. $C_{\Gamma_\infty}$ is the unitary coefficient matrix. The purpose of this section is to provide some frequently used $C_{\Gamma_\infty}$. The results are summarized in Tables VI to XIII.

Roughly speaking, bosons and fermions can be classified by the single-valued and double-valued irreps of the group $O(3)$ respectively. The group $O(3)$ is isomorphic to $SO(3) \times C_2$ where the $C_2$ is generated by the parity inversion. The relation can be formally written as

$$\begin{bmatrix} O(3) \\ 1 \end{bmatrix} = \begin{bmatrix} SO(3) \\ 1 \end{bmatrix} \times \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$  \hspace{1cm} (A2)

In the elongated moving system, one also cares about the group $O(2) \times C_2$. It can be formally written as

$$\begin{bmatrix} O(2) \\ 1 \end{bmatrix} \times \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$  \hspace{1cm} (A3)

The group $O(2)$ is isomorphic to the semidirect product $SO(2) \rtimes C_2$ formally written as

$$\begin{bmatrix} O(2) \\ 1 \end{bmatrix} = \begin{bmatrix} SO(2) \\ 1 \end{bmatrix} \rtimes \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\},$$  \hspace{1cm} (A4)

where the $C_2$ is generated by the reflection rather than the parity inversion.

Since the irreps of direct-product groups can be constructed as the tensor products of the irreps of the two original groups, we will focus on the groups without the parity inversion in the following discussions, that are, $SO(3)$ and $O(2)$. Although the irreps of $SO(3)$ and $O(2)$ are both labelled as integers and half-integers, they have different dimensions. For $SO(3)$, $\alpha_\infty$ takes $-\Gamma_\infty, -\Gamma_\infty + 1, \ldots, \Gamma_\infty$, so the dimension will be $2\Gamma_\infty + 1$. For $O(2)$, $\alpha_\infty$ can only take $+\Gamma_\infty = 0$, and can take both $+$ and $-$ in other cases.

In the finite volume, $SO(3)$ will reduce into the octahedral group $O$, and $O(2)$ will reduce into dihedral groups whose orders will depend on the direction of the elongated moving vector $d$. Groups and their irreps are summarized in Table V, where $A, B$ and $K$ are labels.
TABLE V. Groups and irreps.

| $G_{\infty}$  | $\Gamma_{\infty}$ (Boson) | $\Gamma_{\infty}$ (Fermion) | $d$ | $G$       | $\Gamma$ (Boson) | $\Gamma$ (Fermion) |
|----------------|---------------------------|-----------------------------|-----|-----------|------------------|------------------|
| SO(3)          | 0, 1, 2, \ldots          | $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ | $(0,0,0)$ | O | $A_1, A_2, E, T_1, T_2$ | $G_1, G_2, H$ |
| O(2)           | 0, 1, 2, \ldots          | $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ | $(0,0,1)$ | Dih$_4$ | $A_1, A_2, B_1, B_2, E$ | $G_1, G_2$ |
|                |                           |                             | $(0,1,1)$ | Dih$_2$ | $A_1, A_2, B_1, B_2$ | $G$             |
|                |                           |                             | $(1,1,1)$ | Dih$_3$ | $A_1, A_2, E$   | $K_1, K_2, G$   |

for one-dimensional irreps, $E$ and $G$ for two-dimensional, $T$ for three-dimensional, and $H$ for four-dimensional.

For SO(3), those $C_{\Gamma_{\infty}}$ are provided in many papers, e.g., Table A.2 (for bosons) and Table A.4 (for fermions) of Ref. [77]. Here we cite their results in Tables VI and VII.

For O(2), we take the case $d = (0,0,1)$ for example. The rotations of angles $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$ in the SO(2) and the reflection in $C_2$ will survive, then the resulting group Dih$_4$ can be formally written as $C_4 \rtimes C_2$. So Dih$_4$ can be generated by the $\frac{\pi}{2}$ rotation element $R_{\frac{\pi}{2}}$ and the reflection element $R$, whose representation matrices can be chosen to be

$$R_{\Gamma_{\infty}=0}^{\frac{\pi}{2}} = \begin{bmatrix} 1 \end{bmatrix}, \quad R_{\Gamma_{\infty} \neq 0}^{\frac{\pi}{2}} = \begin{bmatrix} e^{i\frac{\pi}{2}} & 0 \\ 0 & e^{-i\frac{\pi}{2}} \end{bmatrix},$$

$$R_{\Gamma_{\infty}=0} = \begin{bmatrix} 1 \end{bmatrix}, \quad R_{\Gamma_{\infty} \neq 0} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

where we represent $|\Gamma_{\infty} \neq 0, \pm \rangle$ as follows:

$$|\Gamma_{\infty} \neq 0, - \rangle \sim \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |\Gamma_{\infty} \neq 0, + \rangle \sim \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$  \hspace{1cm} (A5)

Note when $\Gamma_{\infty} \neq 0$, since $\Gamma_{\infty}$ and $\Gamma_{\infty} + 4$ share the same representation matrices as indicated in Eq. (A5), one will have $C_{\Gamma_{\infty}} = C_{\Gamma_{\infty} + 4}$. In fact, for $d = (0,1,1)$, it will be $C_{\Gamma_{\infty}} = C_{\Gamma_{\infty} + 2}$, and for $d = (1,1,1)$, it will be $C_{\Gamma_{\infty}} = C_{\Gamma_{\infty} + 3}$. Because those irreps are only one- or two-dimensional, it is easy to find out those $C_{\Gamma_{\infty}}$. We also note that since there is still the freedom to choose the representation matrices of the finite-volume irreps, those $C_{\Gamma_{\infty}}$ are not unique. The results for our choice are summarized in Tables VIII to XIII.

1. States in elongated moving system

In the elongated moving system, one will deal with the states

$$|e_n; \Gamma_{\infty}, \alpha_{\infty} \rangle := \sum_{\vec{e}_n} e^{im\phi} |\vec{n} \rangle,$$  \hspace{1cm} (A7)

where $e_n$ denotes $(\vec{n}^2, \vec{n} \cdot \vec{d} )$, and $\sum_{\vec{e}_n}$ means summing over all the states with the same $e_n$, and $(\Gamma_{\infty}, \alpha_{\infty})$ will be $(|m|, \text{sign}(m))$ (we define sign(0) = +), and the angle $\phi$ depends on the choice of the axes labelled as $(\vec{x}, \vec{y}, \vec{z})$, which can differ from the finite-volume box’s
| $\Gamma_{\infty}$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}}|C_{\Gamma_{\infty}}|_{\alpha_{\infty};\Gamma,\Gamma}\alpha_{\infty}\Gamma_{\infty}$ |
|-----------|-------|-----|-------------------------------|
| 0         | $A_1$ | 1   | 0, 0 (|0, 0)                   |
| 1         | $T_1$ | 1   | $\frac{1}{\sqrt{2}}(|1, -1) - |1, 1\rangle$ |
|           |       | 2   | $\frac{1}{\sqrt{2}}(|1, -1) + |1, 1\rangle$ |
|           |       | 3   | |1, 0\rangle                 |
| 2         | $E$   | 1   | 2, 0 (|2, 0\rangle           |
|           |       | 2   | $\frac{1}{\sqrt{2}}(|2, -2) + |2, 2\rangle$ |
|           | $T_2$ | 1   | $-\frac{1}{\sqrt{2}}(|2, -1) + |2, 1\rangle$ |
|           |       | 2   | $\frac{1}{\sqrt{2}}(|2, -1) - |2, 1\rangle$ |
|           |       | 3   | $-\frac{1}{\sqrt{2}}(|2, -2) - |2, 2\rangle$ |
| 3         | $A_2$ | 1   | $\frac{1}{\sqrt{2}}(|3, -2) - |3, 2\rangle$ |
|           | $T_1$ | 1   | $\frac{\sqrt{3}}{4}(|3, -3) - |3, 3\rangle - \frac{\sqrt{3}}{4}(|3, -1) - |3, 1\rangle$ |
|           |       | 2   | $-\frac{i\sqrt{3}}{4}(|3, -3) + |3, 3\rangle - \frac{3\sqrt{3}}{4}(|3, -1) + |3, 1\rangle$ |
|           |       | 3   | |3, 0\rangle                |
|           | $T_2$ | 1   | $-\frac{\sqrt{3}}{4}(|3, -3) - |3, 3\rangle - \frac{\sqrt{3}}{4}(|3, -1) - |3, 1\rangle$ |
|           |       | 2   | $-\frac{i\sqrt{3}}{4}(|3, -3) + |3, 3\rangle + \frac{3\sqrt{3}}{4}(|3, -1) + |3, 1\rangle$ |
|           |       | 3   | $\frac{1}{\sqrt{2}}(|3, -2) + |3, 2\rangle$ |
| 4         | $A_1$ | 1   | $\frac{\sqrt{30}}{12}(|4, -4) + |4, 4\rangle + \frac{\sqrt{15}}{6} |4, 0\rangle$ |
|           | $E$   | 1   | $-\frac{\sqrt{30}}{12}(|4, -4) + |4, 4\rangle + \frac{\sqrt{15}}{6} |4, 0\rangle$ |
|           |       | 2   | $-\frac{1}{\sqrt{2}}(|4, -2) + |4, 2\rangle$ |
|           | $T_1$ | 1   | $-\frac{1}{4}(|4, -3) + |4, 3\rangle - \frac{\sqrt{7}}{4}(|4, -1) + |4, 1\rangle$ |
|           |       | 2   | $\frac{1}{4}(|4, -3) - |4, 3\rangle - \frac{\sqrt{7}}{4}(|4, -1) - |4, 1\rangle$ |
|           |       | 3   | $\frac{1}{\sqrt{2}}(|4, -4) - |4, 4\rangle$ |
|           | $T_2$ | 1   | $\frac{\sqrt{7}}{4}(|4, -3) + |4, 3\rangle - \frac{1}{4}(|4, -1) + |4, 1\rangle$ |
|           |       | 2   | $\frac{i\sqrt{7}}{4}(|4, -3) - |4, 3\rangle + \frac{1}{4}(|4, -1) - |4, 1\rangle$ |
|           |       | 3   | $\frac{1}{\sqrt{2}}(|4, -2) - |4, 2\rangle$ |
TABLE VII. $C_{\Gamma_\infty}$ for fermionic irreps of SO(3) taken from Table A.4 of Ref. [77].

| $\Gamma_{\infty}$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}} [C_{\Gamma_{\infty}}]_{\alpha_{\infty};\Gamma_{\infty},\Gamma_0,\Gamma} | C_{\Gamma_{\infty},\alpha_{\infty}}$ |
|-------------------|----------|---------|---------------------------------------------------------------|
| $\frac{1}{2}$     | $G_1$    | 1       | $|\frac{1}{2},\frac{1}{2}\rangle$                           |
|                   |          | 2       | $|\frac{1}{2},-\frac{1}{2}\rangle$                           |
|                   | $H$      | 1       | $|\frac{3}{2},\frac{3}{2}\rangle$                           |
|                   |          | 2       | $|\frac{3}{2},\frac{1}{2}\rangle$                           |
|                   |          | 3       | $|\frac{3}{2},-\frac{1}{2}\rangle$                           |
|                   |          | 4       | $|\frac{3}{2},-\frac{3}{2}\rangle$                           |
| $\frac{3}{2}$     | $G_2$    | 1       | $\frac{\sqrt{18}}{6}|\frac{5}{2},-\frac{3}{2}\rangle - \frac{\sqrt{6}}{6}|\frac{5}{2},\frac{5}{2}\rangle$ |
|                   |          | 2       | $-\frac{\sqrt{6}}{6}|\frac{5}{2},\frac{5}{2}\rangle + \frac{\sqrt{18}}{6}|\frac{5}{2},-\frac{3}{2}\rangle$ |
|                   | $H$      | 1       | $-\frac{\sqrt{30}}{6}|\frac{5}{2},-\frac{5}{2}\rangle - \frac{\sqrt{6}}{6}|\frac{5}{2},\frac{3}{2}\rangle$ |
|                   |          | 2       | $|\frac{5}{2},\frac{1}{2}\rangle$                           |
|                   |          | 3       | $-|\frac{5}{2},-\frac{1}{2}\rangle$                         |
|                   |          | 4       | $\frac{\sqrt{6}}{6}|\frac{5}{2},-\frac{3}{2}\rangle + \frac{\sqrt{18}}{6}|\frac{5}{2},\frac{5}{2}\rangle$ |
| $\frac{7}{2}$     | $G_1$    | 1       | $\frac{\sqrt{16}}{6}|\frac{7}{2},-\frac{7}{2}\rangle - \frac{\sqrt{21}}{6}|\frac{7}{2},\frac{1}{2}\rangle$ |
|                   |          | 2       | $-\frac{\sqrt{21}}{6}|\frac{7}{2},\frac{1}{2}\rangle - \frac{\sqrt{16}}{6}|\frac{7}{2},-\frac{7}{2}\rangle$ |
|                   | $G_2$    | 1       | $-\frac{1}{2}|\frac{7}{2},-\frac{3}{2}\rangle + \frac{\sqrt{3}}{2}|\frac{7}{2},\frac{5}{2}\rangle$ |
|                   |          | 2       | $-\frac{\sqrt{3}}{2}|\frac{7}{2},\frac{5}{2}\rangle + \frac{1}{2}|\frac{7}{2},\frac{3}{2}\rangle$ |
|                   | $H$      | 1       | $\frac{1}{2}|\frac{7}{2},-\frac{5}{2}\rangle + \frac{\sqrt{2}}{2}|\frac{7}{2},\frac{3}{2}\rangle$ |
|                   |          | 2       | $\frac{\sqrt{21}}{6}|\frac{7}{2},-\frac{7}{2}\rangle - \frac{\sqrt{16}}{6}|\frac{7}{2},\frac{1}{2}\rangle$ |
|                   |          | 3       | $-\frac{\sqrt{16}}{6}|\frac{7}{2},-\frac{7}{2}\rangle + \frac{\sqrt{21}}{6}|\frac{7}{2},\frac{1}{2}\rangle$ |
|                   |          | 4       | $\frac{\sqrt{2}}{2}|\frac{7}{2},-\frac{3}{2}\rangle + \frac{1}{2}|\frac{7}{2},\frac{5}{2}\rangle$ |

axes $(x, y, z)$. The purpose of this section is to find out some suitable choices for $(\tilde{x}, \tilde{y}, \tilde{z})$ so that the representation matrices of the symmetry group are consistent with Eq. (A5) (and its counterparts for other $d$) and hence the $C_{\Gamma_\infty}$ provided before can be used. The results are summarized in Table XIV.

We take the case $d = (0, 0, 1)$ for example as before. One can first choose $\tilde{z}$ to be the normalized elongated moving vector $d/|d|$, and also chooses the rotation axis of $R_{\phi_0}$ in the SO(2) to be $\tilde{z}$, then only rotations of angles $0, \frac{\pi}{2}, \pi$ and $\frac{3\pi}{2}$ will always send an integer vector to another integer vector as expected. So one has

$$R_{\phi_0} |e_n; \Gamma_\infty, \alpha_\infty\rangle = e^{-im\phi_0} |e_n; \Gamma_\infty, \alpha_\infty\rangle$$

(A8)

for $\phi_0$ to be $0, \frac{\pi}{2}, \pi$ or $\frac{3\pi}{2}$, which is consistent with Eq. (A5). One then chooses the reversion
TABLE VIII. \( C_{r_\infty} \) for bosonic irreps of \( O(2) \) when \( d = (0, 0, 1) \), and \( C_{r_\infty} = C_{r_\infty+4} \) for \( r_\infty \neq 0 \).

| \( r_\infty \) | \( r \) | \( \alpha \) | \( \sum_{\alpha} [C_{r_\infty}]_{\alpha_\infty; r_{\hat{r}}; \Gamma_{\infty}, \alpha_\infty} \) |
|--------|--------|--------|--------------------------------------------------|
| 0      | 1      | 1      | \( |0, \pm\rangle \)                             |
| 1      | 2      | 1      | \( |1, \pm\rangle \)                             |
| 2      | 1      | 1      | \( \frac{1}{\sqrt{2}} (|2, -\rangle + |2, +\rangle) \) |
|        | 2      | 1      | \( \frac{1}{\sqrt{2}} (|2, -\rangle - |2, +\rangle) \) |
| 3      | 1      | 2      | \( |3, \pm\rangle \)                             |
| 4      | 1      | 1      | \( \frac{1}{\sqrt{2}} (|4, -\rangle + |4, +\rangle) \) |
|        | 2      | 1      | \( \frac{1}{\sqrt{2}} (|4, -\rangle - |4, +\rangle) \) |

TABLE IX. \( C_{r_\infty} \) for fermionic irreps of \( O(2) \) when \( d = (0, 0, 1) \), and \( C_{r_\infty} = C_{r_\infty+4} \) for \( r_\infty \neq 0 \).

| \( r_\infty \) | \( r \) | \( \alpha \) | \( \sum_{\alpha} [C_{r_\infty}]_{\alpha_\infty; r_{\hat{r}}; \Gamma_{\infty}, \alpha_\infty} \) |
|--------|--------|--------|--------------------------------------------------|
| \( \frac{1}{2} \) | 1      | 1      | \( |\frac{1}{2}, \pm\rangle \)                     |
| \( \frac{3}{2} \) | 1      | 2      | \( |\frac{3}{2}, \pm\rangle \)                     |
| \( \frac{5}{2} \) | 2      | 1      | \( |\frac{5}{2}, \pm\rangle \)                     |
| \( \frac{7}{2} \) | 1      | 2      | \( |\frac{7}{2}, \pm\rangle \)                     |

axis of \( R \) in the \( C_2 \) to be \( \mathbf{x} \), so \( R \) will send \( \mathbf{n} \) to \( \mathbf{n} - 2 (\mathbf{n} \cdot \mathbf{y}) \mathbf{y} \). If \( \mathbf{y} \) is chosen to make \( 2 (\mathbf{n} \cdot \mathbf{y}) \mathbf{y} \) an integer vector for any integer vector \( \mathbf{n} \), one will have (for \( r_\infty \neq 0 \))

\[
R |e_{n; \Gamma_{\infty}, \alpha_\infty} \rangle = |e_{n; \Gamma_{\infty}, -\alpha_\infty} \rangle ,
\]

which is consistent with Eq. (A5). Our choices for \( (\mathbf{x}, \mathbf{y}, \mathbf{z}) \) are summarized in Table XIV.
TABLE X. $C_{\Gamma\infty}$ for bosonic irreps of $O(2)$ when $d = (0, 1, 1)$, and $C_{\Gamma\infty} = C_{\Gamma\infty+2}$ for $\Gamma\infty \neq 0$.

| $\Gamma\infty$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}} [C_{\Gamma\infty}]_{\alpha_{\infty};\Gamma, f \equiv 1, \alpha} |\Gamma\infty, \alpha_{\infty}\rangle$ |
|----------------|-----------|-----------|--------------------------------------------------|
| 0              | $A_1$     | 1         | $|0, +\rangle$                                   |
| 1              | $B_1$     | 1         | $\frac{1}{\sqrt{2}} (|1, -\rangle + |1, +\rangle)$ |
|                | $B_2$     | 1         | $\frac{1}{\sqrt{2}} (|1, -\rangle - |1, +\rangle)$ |
| 2              | $A_1$     | 1         | $\frac{1}{\sqrt{2}} (|2, -\rangle + |2, +\rangle)$ |
|                | $A_2$     | 1         | $\frac{1}{\sqrt{2}} (|2, -\rangle - |2, +\rangle)$ |

TABLE XI. $C_{\Gamma\infty}$ for fermionic irreps of $O(2)$ when $d = (0, 1, 1)$, and $C_{\Gamma\infty} = C_{\Gamma\infty+2}$ for $\Gamma\infty \neq 0$.

| $\Gamma\infty$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}} [C_{\Gamma\infty}]_{\alpha_{\infty};\Gamma, f \equiv 1, \alpha} |\Gamma\infty, \alpha_{\infty}\rangle$ |
|----------------|-----------|-----------|--------------------------------------------------|
| $\frac{1}{2}$ | $G$       | 1         | $|\frac{1}{2}, -\rangle$                          |
|                |           | 2         | $|\frac{1}{2}, +\rangle$                          |
| $\frac{3}{2}$ | $G$       | 1         | $|\frac{3}{2}, +\rangle$                          |
|                |           | 2         | $|\frac{3}{2}, -\rangle$                          |

TABLE XII. $C_{\Gamma\infty}$ for bosonic irreps of $O(2)$ when $d = (1, 1, 1)$, and $C_{\Gamma\infty} = C_{\Gamma\infty+3}$ for $\Gamma\infty \neq 0$.

| $\Gamma\infty$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}} [C_{\Gamma\infty}]_{\alpha_{\infty};\Gamma, f \equiv 1, \alpha} |\Gamma\infty, \alpha_{\infty}\rangle$ |
|----------------|-----------|-----------|--------------------------------------------------|
| 0              | $A_1$     | 1         | $|0, +\rangle$                                   |
| 1              | $E$       | 1         | $|1, -\rangle$                                   |
|                |           | 2         | $|1, +\rangle$                                   |
| 2              | $E$       | 1         | $|2, +\rangle$                                   |
|                |           | 2         | $|2, -\rangle$                                   |
| 3              | $A_1$     | 1         | $\frac{1}{\sqrt{2}} (|3, -\rangle + |3, +\rangle)$ |
|                | $A_2$     | 1         | $\frac{1}{\sqrt{2}} (|3, -\rangle - |3, +\rangle)$ |
TABLE XIII. $C_{\Gamma_{\infty}}$ for fermionic irreps of $O(2)$ when $d = (1, 1, 1)$, and $C_{\Gamma_{\infty}} = C_{\Gamma_{\infty}+3}$ for $\Gamma_{\infty} \neq 0$.

| $\Gamma_{\infty}$ | $\Gamma$ | $\alpha$ | $\sum_{\alpha_{\infty}} |C_{\Gamma_{\infty}}|_{\alpha_{\infty};\Gamma_{\infty},f=1,\alpha} |\Gamma_{\infty},\alpha_{\infty}\rangle$ |
|------------------|----------|----------|-------------------------------------------------|
| $\frac{1}{2}$    | $G$      | 1        | $|\frac{1}{2},-\rangle$                           |
|                  |          | 2        | $|\frac{1}{2},+\rangle$                           |
| $\frac{3}{2}$    | $K_1$    | 1        | $\frac{1}{\sqrt{2}} (|\frac{3}{2},-\rangle + |\frac{3}{2},+\rangle)$ |
|                  |          | 1        | $\frac{1}{\sqrt{2}} (|\frac{3}{2},-\rangle - |\frac{3}{2},+\rangle)$ |
| $\frac{5}{2}$    | $G$      | 1        | $|\frac{5}{2},+\rangle$                           |
|                  |          | 2        | $|\frac{5}{2},-\rangle$                           |

TABLE XIV. $(\tilde{x}, \tilde{y}, \tilde{z})$ for different $d$

| $d$            | $\tilde{x}$ | $\tilde{y}$ | $\tilde{z}$ |
|----------------|-------------|-------------|-------------|
| $(0, 0, 1)$    | $(1, 0, 0)$ | $(0, 1, 0)$ | $(0, 0, 1)$ |
| $(0, 1, 1)$    | $(1, 0, 0)$ | $\frac{1}{\sqrt{2}} (0, 1, -1)$ | $\frac{1}{\sqrt{2}} (0, 1, 1)$ |
| $(1, 1, 1)$    | $\frac{1}{\sqrt{6}} (2, -1, -1)$ | $\frac{1}{\sqrt{2}} (0, 1, -1)$ | $\frac{1}{\sqrt{3}} (1, 1, 1)$ |

Appendix B: Solving for the $P$ matrix

1. Rest-frame $P$ matrix

With the usual definition of the spherical harmonics,

$$Y_{lm}(\hat{n}) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{lm}(\cos \theta) e^{im\phi},$$

$$P_{lm}(x) = \frac{(-1)^{m}}{2^{l}l!} (1-x^{2})^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^{2}-1)^{l}$$

and the definition of $P$ matrix given in Ref. [12], the rest-frame $P$ matrix will be

$$[P_{n}^{x} y_{l',m';l,m}] = 4\pi \sum_{\hat{n}} Y_{l'm'}^{\ast}(\hat{n}) Y_{lm}(\hat{n})$$

$$= c_{l',m';l,m} \sum_{n_{x},n_{y}} P_{l'm'}(\cos \theta) P_{lm}(\cos \theta) \sum_{n_{x},n_{y}} e^{-i(m'-m)\phi},$$

where

$$c_{l',m';l,m} = \sqrt{(2l'+1)(l'-m')!} \sqrt{(2l+1)(l-m)!} \frac{1}{(l'+m')!} \frac{1}{(l+m)!}.$$
When \( \mathbf{n} = (0, 0, 0) \), the direction angles are ill-defined, and we can set \( Y_{lm} = \frac{\delta_{lm}}{\sqrt{4\pi}} \).

There are many useful properties of the \( P \) matrix listed as follows:

- \([P_{\mathbf{n}}^2]_{l',m',l,m} = 0\) when \( l' + l \) is odd because of the symmetry under \( \mathbf{n} \rightarrow -\mathbf{n} \).
- \([P_{\mathbf{n}}^2]_{l',m',l,m} = 0\) when \( m' + m \) is odd because of the symmetry under \( \phi \rightarrow \phi + \pi \).
- \([P_{\mathbf{n}}^2]_{l',m',l,m} = 0\) when \( |m' - m| = 2\) because of the symmetry under \( \phi \rightarrow \phi + \frac{\pi}{2} \).

The result of the summation

\[
\sum_{n_x, n_y} e^{-i(m'-m)\phi}
\]

depends on \((n^2, n_z)\). One need not calculate it for all \((n^2, n_z)\) by noting the map \( \mathbf{n} \rightarrow \pm \mathbf{n} + (0, 0, j) \) with any integer \( j \). In fact, the summation Eq. (B4) is related to the \( P \) matrix \( P_{\mathbf{d}}^B \) with \( \mathbf{d} = (0, 0, 1) \) discussed in Appendix B2.

2. \( P \) matrix of the elongated moving system

From Eq. (33), the \( P \) matrix for the case B in Table II is

\[
[P_{\mathbf{d}}^B]_{m',|S_{m'}|m,|S_m|} = \sum_{\mathbf{e}_n} e^{-i(m'-m)\phi^*},
\]

where it does not matter how to redefine the ill-defined \( \phi^* \) when \( n^2 = n^{'2} \), because either \( m = m' = 0 \) then Eq. (B5) is \( \phi^*-\)independent, or one of \( m \) and \( m' \) is nonzero then \( P_{vm'} \) or \( P_{vm} \) in Table II and Eq. (B2) vanishes.

To solve for it, it is worth noting that the map \( \mathbf{n} \rightarrow \mathbf{n} + j \mathbf{d} \) with \( j \mathbf{d} \) any integer vector will tell us

\[
P_{(n^2, n\cdot d)}^B = P_{(n^2 + 2j \mathbf{n} \cdot \mathbf{d} + j^2 \mathbf{d}^2, + \mathbf{n} \cdot \mathbf{d} + j \mathbf{d}^2)}^B,
\]

and the map \( \mathbf{n} \rightarrow -\mathbf{n} + j \mathbf{d} \) will tell us

\[
P_{(n^2, n\cdot d)}^B = (-1)^{m'-m} P_{(n^2 - 2j \mathbf{n} \cdot \mathbf{d} + j^2 \mathbf{d}^2, -\mathbf{n} \cdot \mathbf{d} + j \mathbf{d}^2)}^B.
\]

With the coordinate axes \((\tilde{x}, \tilde{y}, \tilde{z})\) of spherical harmonics taking the values in Table XIV, there are many useful properties of \( P_{(n^2, n\cdot d)}^B \) listed as follows:

- \( P_{(n^2, n\cdot d)}^B \) is real because of the symmetry under \( \phi \rightarrow -\phi \), which holds for all the \( \mathbf{d} \) presented in Table XIV.
- \([P_{(n^2, n\cdot d)}^B]_{m',|S_{m'}|m,|S_m|} = 0\) when \( m' + m \) is odd because of the symmetry under \( \phi \rightarrow \phi + \pi \), which holds for \( \mathbf{d} = (0, 0, 1), (0, 1, 1) \).
- \([P_{(n^2, n\cdot d)}^B]_{m',|S_{m'}|m,|S_m|} = 0\) when \( |m' - m| = 2\) because of the symmetry under \( \phi \rightarrow \phi + \frac{\pi}{2} \), which holds only for \( \mathbf{d} = (0, 0, 1) \).
For the case C (C1 or C2), the map \( \mathbf{n} \to \mathbf{d}_\gamma - \mathbf{n} \) will tell us

\[
[P_{e_n}^C]|_{m'|\pm, S_m'}|m|\pm, S_m = 0 ,
\]  

and

\[
[P_{(n^2, \{n \cdot d, (d_\gamma - n) \cdot d\})}^C]|_{m'|\pm, S_m'}|m|\pm, S_m = \begin{cases} 
2[P^B_{(n^2, n \cdot d)}]|_{m'|, S_m'}|m|, S_m & \mathbf{n} \cdot \mathbf{d} > \frac{d^2}{2} \\
[P^B_{(n^2, n \cdot d)}]|_{m'|, S_m'}|m|, S_m & \mathbf{n} \cdot \mathbf{d} = \frac{d^2}{2} , \\
2(-1)^{m'-m}[P^B_{(n^2, n \cdot d)}]|_{m'|, S_m'}|m|, S_m & \mathbf{n} \cdot \mathbf{d} < \frac{d^2}{2} 
\end{cases},
\]

where we have used that \( \cos \theta^* \) has the same sign with \( \mathbf{n} \cdot \mathbf{d} - \frac{d^2}{2} \) in case C. We also emphasize that \( P^{C_1} \neq P^{C_2} \) since \( \mathbf{d}_\gamma = 0 \) in case C1 while \( \mathbf{d}_\gamma = \mathbf{d} \) in case C2.
[1] M. Lüscher, Commun. Math. Phys. **104**, 177 (1986).
[2] M. Lüscher, Commun. Math. Phys. **105**, 153 (1986).
[3] M. Lüscher, Nuclear Physics B **354**, 531 (1991).
[4] J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Rev. D **87**, 094510 (2013), arXiv:1303.4157 [hep-lat].
[5] J. M. M. Hall, W. Kamleh, D. B. Leinweber, B. J. Menadue, B. J. Owen, A. W. Thomas, and R. D. Young, Phys. Rev. Lett. **114**, 132002 (2015).
[6] J.-J. Wu, T.-S. H. Lee, A. W. Thomas, and R. D. Young, Phys. Rev. C **90**, 055206 (2014), arXiv:1402.4868 [hep-lat].
[7] Z.-W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas, and J.-J. Wu, Phys. Rev. Lett. **116**, 082004 (2016), arXiv:1512.00140 [hep-lat].
[8] Z.-W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas, and J.-J. Wu, Phys. Rev. D **95**, 034034 (2017).
[9] Z.-W. Liu, J. M. M. Hall, D. B. Leinweber, A. W. Thomas, and J.-J. Wu, Phys. Rev. D **95**, 014506 (2017).
[10] J.-J. Wu, H. Kamano, T.-S. H. Lee, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D **95**, 114507 (2017), arXiv:1611.05970 [hep-lat].
[11] J.-J. Wu, D. B. Leinweber, Z.-W. Liu, and A. W. Thomas, Phys. Rev. D **97**, 094509 (2018), arXiv:1703.10715 [nucl-th].
[12] Y. Li, J.-J. Wu, C. D. Abell, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D **101**, 114501 (2020).
[13] X. Feng, X. Li, and C. Liu, Phys. Rev. D **70**, 014505 (2004), arXiv:hep-lat/0404001.
[14] X. Li and C. Liu, Phys. Lett. **B587**, 100 (2004), arXiv:hep-lat/0311035.
[15] X. Li et al. (CLQCD), JHEP **06**, 053 (2007), arXiv:hep-lat/0703015.
[16] F. X. Lee and A. Alexandru, Phys. Rev. D **96**, 054508 (2017), arXiv:1706.00262 [hep-lat].
[17] N. Li, Y.-J. Wu, and Z.-W. Liu, Phys. Rev. D **97**, 014509 (2018).
[18] G.-Z. Meng et al. (CLQCD), Phys. Rev. D **80**, 034503 (2009), arXiv:0905.0752 [hep-lat].
[19] C. Pelissier and A. Alexandru, Phys. Rev. D **87**, 014503 (2013).
[20] D. Guo, A. Alexandru, R. Molina, and M. Döring, Phys. Rev. D **94**, 034501 (2016).
[21] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Döring, Phys. Rev. D **98**, 014507 (2018), arXiv:1803.02897.
[22] C. Culver, M. Mai, A. Alexandru, M. Döring, and F. X. Lee, Phys. Rev. D **100**, 034509 (2019), arXiv:1905.10202 [hep-lat].
[23] C. Culver, M. Mai, R. Brett, A. Alexandru, and M. Döring, Phys. Rev. D **101**, 114507 (2020).
[24] K. Rummukainen and S. Gottlieb, Nuclear Physics B **450**, 397 (1995), arXiv:hep-lat/9503028.
[25] C. Kim, C. Sachrajda, and S. R. Sharpe, Nuclear Physics B **727**, 218 (2005), arXiv:hep-lat/0507006.
[26] M. Göckeler, R. Horsley, M. Lage, U.-G. Meißner, P. E. L. Rakow, A. Rusetsky, G. Schierholz, and J. M. Zanotti, Phys. Rev. D **86**, 094513 (2012), arXiv:1206.4141 [hep-lat].
[27] Z. Davoudi and M. J. Savage, Phys. Rev. **D84**, 114502 (2011), arXiv:1108.5371 [hep-lat].
[28] Z. Fu, Phys. Rev. **D85**, 014506 (2012), arXiv:1110.0319 [hep-lat].
[29] L. Leskovec and S. Prelovsek, Phys. Rev. D **85**, 114507 (2012).
[30] Y. Li, J.-J. Wu, R. D. Young, and T.-S. H. Lee, In preparation (2021).
[31] J.-J. Wu, T. S. H. Lee, D. B. Leinweber, A. W. Thomas, and R. D. Young, JPS Conf. Proc. 10, 062002 (2016), arXiv:1512.02771 [hep-lat].
[32] T. D. Blanton and S. R. Sharpe, Phys. Rev. D 102, 054520 (2020), arXiv:2007.16188.
[33] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 86, 034031 (2012), arXiv:1203.6041 [hep-ph].
[34] K. S. McElvain, Harmonic Oscillator Based Effective Theory, Connecting LQCD to Nuclear Structure, Ph.D. thesis, UC Berkeley (2017).
[35] K. McElvain and W. Haxton, Physics Letters B 797, 134880 (2019).
[36] C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas, and A. Walker-Loud, arXiv:1910.07961 [hep-ex, physics:hep-lat, physics:hep-ph, physics:nucl-ex, physics:nucl-th] (2019), arXiv:1910.07961 [hep-ex, physics:hep-lat, physics:hep-ph, physics:nucl-ex, physics:nucl-th].
[37] V. Bernard, M. Lage, U.-G. Meißner, and A. Rusetsky, J. High Energ. Phys. 2011, 19 (2011), arXiv:1010.6018 [hep-lat].
[38] P. Guo, J. J. Dudek, R. G. Edwards, and A. P. Szczepaniak, Phys. Rev. D 88, 014501 (2013), arXiv:1211.0929 [hep-lat].
[39] S. He, X. Feng, and C. Liu, JHEP 07, 011 (2005), arXiv:hep-lat/0504019.
[40] B. Hu, R. Molina, M. Döring, and A. Alexandru, Phys. Rev. Lett. 117, 122001 (2016), arXiv:1605.04823.
[41] M. Lage, U.-G. Meissner, and A. Rusetsky, Phys. Lett. B681, 439 (2009), arXiv:0905.0069 [hep-lat].
[42] N. Li and C. Liu, Phys. Rev. D 87, 014502 (2013), arXiv:1209.2201 [hep-lat].
[43] S. R. Beane, P. F. Bedaque, A. Parreno, and M. J. Savage, Phys. Lett. B585, 106 (2004), arXiv:hep-lat/0312004.
[44] S. R. Beane, P. F. Bedaque, A. Parreno, and M. J. Savage, Nucl. Phys. A747, 55 (2005), arXiv:nucl-th/0311027.
[45] R. A. Briceño, Z. Davoudi, T. C. Luu, and M. J. Savage, Phys. Rev. D 88, 114507 (2013), arXiv:1309.3556 [hep-lat].
[46] G. Meng, C. Miao, X. Du, and C. Liu, Int. J. Mod. Phys. A 19, 4401 (2004), arXiv:hep-lat/0309048.
[47] P. F. Bedaque and J.-W. Chen, Physics Letters B 616, 208 (2005), arXiv:hep-lat/0412023.
[48] P. F. Bedaque, Physics Letters B 593, 82 (2004), arXiv:nucl-th/0402051.
[49] G. M. de Divitiis, R. Petronzio, and N. Tantalo, Physics Letters B 595, 408 (2004), arXiv:hep-lat/0405002.
[50] C. T. Sachrajda and G. Villadoro, Physics Letters B 609, 73 (2005), arXiv:hep-lat/0411033.
[51] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67 (2012), arXiv:1203.1241 [hep-lat].
[52] R. A. Briceño and Z. Davoudi, Phys. Rev. D 87, 094507 (2013), arXiv:1212.3398 [hep-lat].
[53] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014), arXiv:1408.5933 [hep-lat].
[54] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015), arXiv:1504.04248 [hep-lat].
[55] R. A. Briceño, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D 95, 074510 (2017), arXiv:1701.07465 [hep-lat].
[56] H. W. Hammer, J. Y. Pang, and A. Rusetsky, JHEP 10, 115 (2017), arXiv:1707.02176 [hep-lat].
[57] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, JHEP 09, 109 (2017), arXiv:1706.07700 [hep-lat].
[58] M. T. Hansen, H. B. Meyer, and D. Robaina, Phys. Rev. D 96, 094513 (2017).
[59] M. Mai and M. Döring, *Eur. Phys. J. A* **53**, 240 (2017).
[60] M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, A. Rusetsky, and J. Wu, *Phys. Rev. D* **97**, 114508 (2018).
[61] P. Guo, M. Döring, and A. P. Szczepaniak, *Phys. Rev. D* **98**, 094502 (2018), arXiv:1810.01261 [hep-lat].
[62] M. Mai and M. Döring, *Phys. Rev. Lett.* **122**, 062503 (2019).
[63] Y. Meng, C. Liu, U.-G. Meißner, and A. Rusetsky, *Phys. Rev. D* **98**, 014508 (2018), arXiv:1712.08464 [hep-lat].
[64] J. Bulava and M. T. Hansen, *Phys. Rev. D* **100**, 034521 (2019).
[65] M. T. Hansen and S. R. Sharpe, *Annu. Rev. Nucl. Part. Sci.* **69**, 65 (2019).
[66] A. W. Jackura, S. M. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, S. R. Sharpe, and A. P. Szczepaniak, *Phys. Rev. D* **100**, 034508 (2019).
[67] J.-Y. Pang, J.-J. Wu, H.-W. Hammer, U.-G. Meißner, and A. Rusetsky, *Phys. Rev. D* **99**, 074513 (2019), arXiv:1902.01111 [hep-lat].
[68] F. Romero-López, S. R. Sharpe, T. D. Blanton, R. A. Briceño, and M. T. Hansen, *JHEP* **10**, 007 (2019), arXiv:1908.02411 [hep-lat].
[69] T. D. Blanton, F. Romero-López, and S. R. Sharpe, *Phys. Rev. Lett.* **124**, 032001 (2020), arXiv:1909.02973.
[70] for the Hadron Spectrum Collaboration, M. T. Hansen, R. A. Briceño, R. G. Edwards, C. E. Thomas, and D. J. Wilson, *Phys. Rev. Lett.* **126**, 012001 (2021).
[71] C. Körber, E. Berkowitz, and T. Luu, arXiv:1912.04425 [hep-lat, physics:nucl-th, physics:physics] (2020), arXiv:1912.04425 [hep-lat, physics:nucl-th, physics:physics].
[72] D. B. Leinweber, R. M. Woloshyn, and T. Draper, *Phys. Rev. D* **43**, 1659 (1991).
[73] “Parallelepiped,” *https://en.wikipedia.org/wiki/File:Special_cases_of_parallelepiped.svg* (2019), accessed: December 2019.
[74] for the Hadron Spectrum Collaboration, D. J. Wilson, R. A. Briceño, J. J. Dudek, R. G. Edwards, and C. E. Thomas, *Phys. Rev. D* **92**, 094502 (2015).
[75] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, *Phys. Rev. Lett.* **118**, 022002 (2017), arXiv:1607.05900.
[76] for the Hadron Spectrum Collaboration, R. A. Briceño, J. J. Dudek, R. G. Edwards, and D. J. Wilson, *Phys. Rev. D* **97**, 054513 (2018).
[77] V. Bernard, M. Lage, U.-G. Meißner, and A. Rusetsky, *J. High Energy Phys.* **2008**, 024 (2008), arXiv:0806.4495.