Mutations within the Quinolone Resistance Determining Region in Fluoroquinolone-Resistant Staphylococcus epidermidis Recovered from Different Ocular Isolates

Amrita Talukdar*, Kulandai Lily Therese and H. Nelofer Ali

L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu-600006, India

*Corresponding author

A B S T R A C T

Staphylococcus epidermidis (S. epidermidis) is a common pathogen in ocular infection. Mutations contribute to drug resistance. We intended to identify mutations in genes within the quinolone resistance determining region (QRDR) of fluoroquinolone-resistant S. epidermidis ocular isolates and to study their phenotypic and genotypic correlation. A total of 50 phenotypically fluoroquinolones-resistant S. epidermidis isolates were studied. Fluoroquinolones susceptibility was evaluated by Kirby-Bauer disk diffusion method. Polymerase chain reaction (PCR) was optimized and applied followed by DNA sequencing to detect mutations in gyrA, gyrB, parC and parE in the QRDR region among the fluoroquinolone-resistant S. epidermidis isolates recovered from ocular specimens. The majority of the samples (74%) were from conjunctival swabs (n = 37). gyrA, gyrB, parC, and parE genes were detected in 47 samples (94%), gyrA gene (n = 47) was the most common, followed by parE (n = 35), gyrB (n = 30) and parC (n = 28). In 25 isolates, all four mutated genes were present. In 25(50%) S. epidermidis isolates mutations were observed in all four genes of QRDR region of S. epidermidis genome. This is the first study in a tertiary eye care hospital in India to characterise ocular S. epidermidis for fluoroquinolone resistance which showed mutations were predominant in gyrA gene in the QRDR region compared to 3 other genes.

Keywords
Staphylococcus epidermidis (S. epidermidis), Fluoroquinolone-resistant

Introduction

Staphylococcus epidermidis (S. epidermidis) is a most common cause of keratitis and endophthalmitis (O’Brien et al., 1995; Graves et al., 2001).

Fluoroquinolones are the drugs of choice based on their good safety profile, excellent penetration into aqueous and vitreous humor, long duration of tear concentration, and broad spectrum antimicrobial activity (Neu, 1991; Leibowitz, 1991). However, continued use in the population has contributed to emergence of drug resistance (Chalita et al., 2004; Goldstein, 1999). The incidence of resistance has been steadily increasing. Resistance mechanisms include mutations of DNA gyrase and topoisomerase, decreased outer membrane permeability, or the development of changes in the mechanism of efflux pumps.
The primary targets are the two essential enzymes, DNA gyrase and topoisomerase IV (Dubin et al., 1999; Li et al., 1998). In S. epidermidis, DNA gyrase is composed of the GyrA and GyrB subunits encoded by the gyrA and gyrB genes, respectively.

Topoisomerase IV is composed of ParC and ParE subunits encoded by parC and parE genes, respectively. Mutated gyrA, gyrB, parC and parE genes within the quinolone resistance determining region (QRDR) are known to be responsible for clinically evident resistance of bacteria to fluoroquinolones.

Although there are numerous studies which have elucidated this phenomenon in case of Staphylococcus aureus, only a few studies have done the same with respect to Staphylococcus epidermidis, the bacterium of interest in this study.

Materials and Methods

The study was carried out using the S. epidermidis strains isolated from ocular specimens in the L&T Microbiology Research centre (SNSC) Chennai from December 2017 to July 2018. S. epidermidis isolates were obtained from various ocular samples like conjunctival swab, corneal scraping, lacrimal pus, bondage contact lens (BCL) & intraocular specimens. S. epidermidis was identified using standard microbiological procedures.

The Kirby-Bauer Disk Diffusion method (KBBD) was carried out for antimicrobial susceptibility testing as per CLSI guidelines 2014 for ciprofloxacin, moxifloxacin, gatifloxacin, norfloxacin and gatifloxacin.

S. epidermidis isolates were also classified as methicillin-susceptible or methicillin-resistant based on oxacillin susceptibility, using clinical and laboratory standard institute-defined break points. The fluoroquinolone resistance group was defined as S. epidermidis showing resistance to any one of following tested fluoroquinolones: ciprofloxacin, moxifloxacin, norfloxacin, ofloxacin and gatifloxacin.

A total of 50 fluoroquinolone-resistant Staphylococcus epidermidis isolates from various ocular specimens (37 from conjunctival swabs, 6 from corneal scrapings, 5 from canalicular pus, 2 from bondage contact lens) were included in the study.

Optimization of PCR targeting the genes of QRDR region

DNA extraction method

The boiling method was used to extract DNA from the bacteria. (Ali A Dashti et al., 2009). Two to three morphologically identical colonies were picked up by just touching the colonies with a sterile loop from a pure culture of S. epidermidis and suspended in 50 μl of sterile water and heated at 100°C. for 15 minutes. After centrifugation in a micro centrifuge (6, 000 × g for 3 min), the supernatant containing the DNA, was stored at -20°C for further use.

Sensitivity and specificity and optimization of PCR

Primers were designed for detection of gyrA, gyrB, parC and parE gene targeting the QRDR region. PCR was optimised using these primers. Sensitivity and specificity were carried out using the primers mentioned below. PCR was found to be sensitive to detect DNA concentration of 120 pico gram for gyrA, gyrB and parC gene and 120 femto gram for parE gene.

Details of Primers used for detection of gyrA, gyr B, parC and parE gene targeting the QRDR region by PCR with the amplicon size in (Table 1).
DNA amplification and sequencing of QRDR

The PCR conditions for *Staphylococcus epidermidis* were as follows: initial denaturation at 95°C for 10 min, 40 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 60 s, followed by an elongation step at 72°C for 5 min. The PCR products of *gyrA* gene (284 bp), *gyrB* gene (251 bp), *parC* (197 bp) and *parE* (324 bp) were visualized by agarose gel electrophoresis, using ethidium bromide incorporated in the agarose gel.

PCR based DNA sequencing

PCR products were purified using ExoSAP according to the manufacturer’s instructions (Fermentas LIFE SCIENCES). PCR-amplified product was sequenced by the dye terminator method (AB applied biosystems) in both the forward and reverse directions. Sample sequences were compared with a reference sequence and mutations were detected. The strain *S. epidermidis* ATCC 35984 (RP62A) was used as a reference. Sequences were edited using the software SeqMan (Lasergene Software package) and then aligned against the reference *S. epidermidis* RP62A sequence from GenBank using the “blastx program” with automatically adjusted parameters.

Results and Discussion

In this study, out of the 50 fluoroquinolone-resistant *Staphylococcus epidermidis* were included, 37 were isolated from conjunctival swab (74%), followed by 6 from corneal scraping, 5 from canalicular pus and 2 from Bandage contact lens (BCL). Thirty isolates were Methicillin resistant and 20 were Methicillin sensitive (Table 2).

gyrA, *gyrB*, *parC* and *parE* genes in the QRDR region was detected in 47 isolates (94%). Mutations in *gyrA* gene (*n* = 47) was present in all the resistant isolates, followed by *parE* (*n* = 35), *gyrB* (*n* = 30) and *parC* (*n* = 28) mutations. In 25 isolates, all four genes were present. In this study, 30 (60%) of fluoroquinolone resistant strains were MRSE which also is a useful information (Fig. 1–12).

To determine the contribution of mutation in QRDR which attributes FQ resistance, sequencing of *gyrA, gyrB, parC* and *parE* patterns were done. When the DNA sequence of the *gyrA, gyrB, parC* and *parE* patterns were compared with the sequence of *S. epidermidis* RP62A, it revealed nucleotide differences at many positions.

The genes that were studied (*gyrA, gyrB, parC* and *parE*), when mutated give rise to resistance in isolates of *S. epidermidis*. The present study included fluoroquinolone resistant isolates of *S. epidermidis* recovered from the ocular samples.

Of the 50 resistant isolates, it was inferred that 94% of them were due to mutated genes (any one or more of the above) while the remainder were purportedly due to mechanisms like decreased outer membrane permeability, or the development of efflux pumps, as have been mentioned previously (Iihara *et al.*, 2006; Noguchi *et al.*, 2005).

The primary targets of fluoroquinolones are two essential enzymes of bacterial cells, DNA gyrase and topoisomerase IV.

In most bacterial species the mutations in the genes that lead to fluoroquinolone resistance are limited to a few point mutations at restricted positions of the genes called QRDR.

The present study revealed that approximately 97% of *S. epidermidis* isolates in the human conjunctival flora have mutation(s) in the QRDR area of *gyrA, gyrB, parC* and *parE* genes (Table 3 and Fig. 13–19).
Table 1 Primers for *Staphylococcus epidermidis*

Target gene	Primer sequence (5’ to 3’)	Product size (bp)
gyrA	ATGCGTGATCATTTACTGACTATGC GAGCCCAAGTTACCTTGACC	284
gyrB	CAGCATTAGACGTTTCAAG CCAATACCGTACCAAATGC	251
parC	TCGCAATGTATTCAAGTGGA ATCGTTATCGATGACTACCATT	197
parE	AAGCTCAACAAGCGACGGAAGCTG TCAAAGTCATACCAAACACCACACAC	324

Table 2 Clinical specimens showing isolation rates from different clinical samples

Types of samples	Isolates of *Staphylococcus epidermidis*	Methicillin resistant isolates (n = 30)
Conjunctival swabs	37	24
Corneal scrapings	6	3
Canalicular pus specimens	5	2
Bandage contact lens (BCL)	2	1
Total	50	30

Table 3 Sensitivity, specificity and detection of gyrA, gyrB, parC, parE of *S.epidermidis*

PCR targeting QRDR region	Sensitivity	Specificity
gyrA	120 pico gram	All four sets of primers were specific to amplify only *S. epidermidis* DNA.
gyrB	120 pico gram	
parC	120 pico gram	
parE	120 femto gram	

Fig.1 Agarose gel electrophoretogram showing sensitivity of the gyrA primer (*S. epidermidis*)

Detection of gyrA gene (*S. epidermidis*) (284 bp) by Polymerase Chain Reaction. Schematic representation of agarose gel (1%) showing the (284 bp) amplified products by conventional polymerase chain reaction.

NC: Negative control
Lane 1: Neat DNA
Lanes 2-11: 10 fold serial dilutions of *Staphylococcus epidermidis* DNA bp band found till 10^4 (120 pico gram)
Mwt: Molecular weight marker (100 bp ladder)
Fig. 2 Agarose gel electrophoretogram showing sensitivity of the *gyrB* primer (*S. epidermidis*)

![Agarose gel electrophoretogram showing sensitivity of the *gyrB* primer (*S. epidermidis*)](image)

Detection of *gyrB* gene (*S. epidermidis*) (251 bp) by Polymerase Chain Reaction. Schematic representation of agarose gel (1%) showing the (251 bp) amplified products by conventional polymerase chain reaction.

NC: Negative control

Lane 1: Neat DNA

Lanes 2-11: 10 fold serial dilutions of *Staphylococcus epidermidis* DNA bp band found till 10^4 (120 pico gram)

Mwt: Molecular weight marker (100 bp ladder)

Fig. 3 Agarose gel electrophoretogram showing sensitivity of the *parC* primer (*S. epidermidis*)

![Agarose gel electrophoretogram showing sensitivity of the *parC* primer (*S. epidermidis*)](image)

Detection of *parC* gene (*S. epidermidis*) (197 bp) by Polymerase Chain Reaction. Schematic representation of agarose gel (1%) showing the (197 bp) amplified products by conventional polymerase chain reaction.

NC: Negative control

Lane 1: Neat DNA

Lanes 2-11: 10 fold serial dilutions of *Staphylococcus epidermidis* DNA bp band found till 10^3 (120 pico gram)

Mwt: Molecular weight marker (100 bp ladder)

Fig. 4 Agarose gel electrophoretogram showing sensitivity of the *parE* primer (*S. epidermidis*)

![Agarose gel electrophoretogram showing sensitivity of the *parE* primer (*S. epidermidis*)](image)

Detection of *parE* gene (*S. epidermidis*) (324 bp) by Polymerase Chain Reaction. Schematic representation of agarose gel (1%) showing the (324 bp) amplified products by conventional polymerase chain reaction.

NC: Negative control

Lane 1: Neat DNA

Lanes 2-11: 10 fold serial dilutions of *Staphylococcus epidermidis* DNA bp band found till 10^7 (120 femto gram)

Mwt: Molecular weight marker (100 bp ladder)
Fig. 5 Agarose gel electrophoretogram showing specificity of the \textit{gyrA} PCR primers (\textit{S. epidermidis})

NC: Negative control, Lane 1: \textit{S. aureus} ATCC 25923, Lane 2: \textit{Bacillus subtilis} lab isolate, Lane 3: \textit{Escherichia coli} ATCC 25922, Lane 4: \textit{P. aeruginosa} ATCC27853, Lane 5: \textit{Streptococcus viridans} lab isolate, Lane 6: \textit{Streptococcus pneumoniae} lab isolate, Lane 7: \textit{Enterococcus faecalis} lab isolate, Lane 8: \textit{Streptococcus pyogenes} ATCC 12384, Lane 9: \textit{Nocardia} spp. lab isolate, Lane 10: Human DNA, PC: Positive Control DNA, Mwt: 100 bp molecular weight marker

Fig. 6 Agarose gel electrophoretogram showing specificity of the \textit{gyrB} PCR primer (\textit{S. epidermidis})

NC: Negative control, Lane 1: \textit{S. aureus} ATCC 25923, Lane 2: \textit{Bacillus subtilis} lab isolate, Lane 3: \textit{Escherichia coli} ATCC, Lane 4: \textit{P. aeruginosa} ATCC, Lane 5: \textit{Streptococcus viridans} lab isolate, Lane 6: \textit{Streptococcus pneumoniae} lab isolate, Lane 7: \textit{Enterococcus faecalis} lab isolate, Lane 8: \textit{Streptococcus pyogenes} ATCC 12384, Lane 9: \textit{Nocardia} spp. lab isolate, Lane 10: Human DNA, PC: Positive Control DNA, Mwt: 100 bp molecular weight marker

Fig. 7 Agarose gel electrophoretogram showing specificity of the \textit{parC} primer (\textit{S. epidermidis})

NC: Negative control, Lane 1: \textit{S. aureus} ATCC 25923, Lane 2: \textit{Bacillus subtilis} lab isolate, Lane 3: \textit{Escherichia coli} ATCC 25922, Lane 4: \textit{P. aeruginosa} ATCC 27853, Lane 5: \textit{Streptococcus viridans} lab isolate, Lane 6: \textit{Streptococcus pneumoniae} lab isolate, Lane 7: \textit{Enterococcus faecalis} lab isolate, Lane 8: \textit{Streptococcus pyogenes} ATCC 12384, Lane 9: \textit{Nocardia} spp. lab isolate, Lane 10: Human DNA, PC: Positive Control DNA, Mwt: 100 bp molecular weight marker
Fig. 8 Agarose gel electrophoretogram showing specificity of the parE primer (*S. epidermidis*)

NC: Negative control, Lane 1: *S. aureus* ATCC 25923, Lane 2: *Bacillus subtilis* lab isolate, Lane 3: *Escherichia coli* ATCC 25922, Lane 4: *Pseudomonas aeruginosa* ATCC 27853, Lane 5: *Streptococcus viridans* lab isolate, Lane 6: *Streptococcus pneumoniae* lab isolate, Lane 7: *Enterococcus faecalis* lab isolate, Lane 8: *Streptococcus pyogenes* ATCC 12384, Lane 9: *Nocardia* spp. lab isolate, Mwt: 100 bp molecular weight marker

Fig. 9 Detection of gyrA gene (*S. epidermidis*) (284 bp)

PCR amplification of the QRDRs of the gyrA gene in *S. epidermidis* isolates. Lane 1: Negative Control, Lanes 2–6: PCR products of the corresponding genes; Lane 7: Positive Control, Lane 8: 100 bp plus DNA Ladder

Fig. 10 Detection of gyrB gene (*S. epidermidis*) (251 bp)

PCR amplification of the QRDRs of the gyrB gene in *S. epidermidis* isolates. Lane 1: Negative Control, Lanes 2: Negative sample, Lanes 3–7: Positive PCR products of the corresponding genes; Lanes 8: Positive Control, Lanes 9: 100 bp Plus DNA Ladder
Fig. 11 Detection of parC gene (S. epidermidis) (197 bp)

PCR amplification of the QRDRs of the parC gene in S. epidermidis isolates. Lane 1: Negative Control, Lane 2: Negative sample, Lanes 3-7: Positive PCR products of the corresponding genes; Lane 8: Positive Control, Lane 9: 100 bp Plus DNA Ladder

Fig. 12 Detection of parE gene (S. epidermidis) (324 bp)

PCR amplification of the QRDRs of the parE gene in S. epidermidis isolates. Lane 1: Negative Control, Lane 2: Negative sample, Lanes 3-7: Positive PCR products of the corresponding genes; Lane 8: Positive Control, Lane 9: 100 bp Plus DNA Ladder

Fig. 13 Sequence alignment of the two types of gyrA Forward sequences with the sequence of Staphylococcus epidermidis RP62A, complete genome Sequence ID: CP000029.1 (Length 2616530)
Fig.14 Sequence alignment of the two types of gyrA Reverse sequence with the sequence of *Staphylococcus epidermidis* RP62A, complete genome Sequence ID: CP000029.1 (Length 2616530)

Fig.15 Sequence alignment of the two types of gyrB Forward sequence with the sequence of *Staphylococcus epidermidis* RP62A, complete genome ID: CP000029.1 (Length 2616530)

Fig.16 Sequence alignment of the gyrB Reverse sequence with the sequence of *Staphylococcus epidermidis* RP62A, complete genome Sequence ID: CP000029.1 (Length 2616530)

Fig.17 Sequence alignment of the parC Forward sequence with the sequence of *Staphylococcus epidermidis* RP62A, complete genome Sequence ID: CP000029.1 (Length 2616530)

Fig.18 Sequence alignment of the parC Reverse sequence with the sequence of *Staphylococcus epidermidis* RP62A, complete genome Sequence ID: CP000029.1 (Length 2616530)
In the study by (Yamada, M. et al., 2008) mutated gyrA, gyrB, parC, and parE genes within the QRDR of 138 isolates of *S. epidermidis* recovered from the human conjunctival flora were found to be highly prevalent. The presence of mutations in both gyrA and parC was found to be strongly associated with reduced susceptibility to fluoroquinolones.

Similar results were reported in the study of (Paulo, J. M. et al., 2013) where they stated that mutated gyrA and parC genes were the predominant ones among the four genes as mentioned. Their study was on *Staphylococcus epidermidis* isolates from endophthalmitis specimens whereas the present study is predominantly on conjunctival isolates. However, the finding that the studied mutated genes were frequently found among fluoroquinolone-resistant isolates within the QRDR was strikingly similar among the studies.

Fluoroquinolone resistance has been studied intensively in *S. aureus* (Wang, T., et al., 1998; Hooper, DC., 2002). The genes encoding topoisomerase IV in *S. aureus* are called grlA and grlB, which are analogous to parC and parE in *S. epidermidis*, respectively.

This is the first study in India done with ocular isolates of fluoroquinolones resistant *Staphylococcus epidermidis* for detecting mutated genes in the quinolone-resistance determining region. gyrA gene mutations were found to be the most common among the four tested genes.

References

Ali D Dashti, Meshrez M. Jadon, Abdulsamad, M. Abdulsamad. Heat treatment of bacteria—a simple method of DNA extraction for molecular techniques. *Kuwait Medical Journal* 2009; 41(2):117–122

Chalita MG, Hu’flying-Lima AN, Paranhos A, et al., Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during period of 15 years. *Am J Ophthalmol* 2004; 137:43–51.

Dubin DT, Fitzgibbon JE, Nahvi MD, et al., Topoisomerase sequences of coagulase negative staphylococcal isolates resistant to ciprofloxacin or trovafloxacin. *Antimicrob Agents Chemother* 1999; 43:1631–7.

Goldstein MH, Kowalski RP, Gordon YJ. Emerging fluoroquinolone resistance in bacterial keratitis. *Ophthalmology* 1999; 106:1313–8.

Graves A, Henry M, O’Brien TP, et al., In vitro susceptibilities of bacterial ocular isolates to fluoroquinolones. *Cornea* 2001; 20:301–5.

Hooper DC. Fluoroquinolone resistance among Gram-positive cocci. *Lancet Infect Dis* 2002; 2:530–8.

Iihara H, Suzuki T, Kawamura Y, Ohkusu K, Inoue Y, Zhang W, Monir Shah M, Katagiri Y, Ohashi Y, Ezaki T. 2006. Emerging multiple mutations and high-level fluoroquinolone resistance in methicillin-resistant *Staphylococcus aureus* isolated from ocular infections.
Diagn. Microbiol. Infect. Dis. 56:297–303.
Leibowitz HM. Clinical evaluation of ciprofloxacin 0.3% ophthalmic solution for treatment of bacterial keratitis. Am J Ophthalmol 1991; 112(Suppl 4):S34–47.
Li Z, Deguchi T, Yasuda M, et al., Alteration in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV in quinolone-resistant clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother 1998; 42:3293–5.
Neu HC. Microbiologic aspects of fluoroquinolones. Am J Ophthalmol 1991; 112(Suppl 4):S15–24.
Noguchi N, Okihara T, Namiki Y, Kumaki Y, Yamanaka Y, Koyama M, Wakasugi K, Sasatsu M. 2005. Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. Int. J. Antimicrob. Agents 25:374–379.
O’Brien TP. Bacterial keratitis. In: Krachmer JH, Mannis MJ, Holland EJ, eds. Cornea and external disease: clinical diagnosis and management. Volume II. St Louis: Mosby-Year Book, 1997:1139–90.
Paulo J. M. Bispo, Eduardo C. Alfonso, Harry W. Flynn, Darlene Miller. Emerging 8-Methoxyfluoroquinolone Resistance among Methicillin-Susceptible Staphylococcus epidermidis Isolates Recovered from Patients with Endophthalmitis. Journal of Clinical Microbiology September 2013 Volume 51 Number 9 p. 2959 –2963.
Wang T, Tanaka M, Sato K. Detection of grlA and gyrA mutations in 344 Staphylococcus aureus strains. Antimicrob Agents Chemother 1998; 42:23–40.
Yamada M, Yoshida J, Hatou S, Yoshida T, Minagawa Y. 2008. Mutations in the quinolone resistance determining region in Staphylococcus epidermidis recovered from conjunctiva and their association with susceptibility to various fluoroquinolones. Br. J. Ophthalmol. 92:848–851.

How to cite this article:
Amrita Talukdar, Kalandai Lily Therese and Nelofer Ali, H. 2018. Mutations within the Quinolone Resistance Determining Region in Fluoroquinolone-Resistant Staphylococcus epidermidis Recovered from Different Ocular Isolates. Int.J.Curr.Microbiol.App.Sci. 7(09): 1301-1311. doi: https://doi.org/10.20546/ijcmas.2018.709.155