FUZZY LOGIC BASED DIGITAL HYDRAULICS CONTROL OF BLADE PITCH ANGLE IN WIND TURBINES

V. Lakshmi Narayanan1, R. Ramakrishnan2
1, 2 Department of Design and Automation, Vellore Institute of Technology, Vellore, India,
1 lakshmi.narayan2017@vitstudent.ac.in, 2 ramakrishnan.rc@vit.ac.in

Abstract. Pitch control system is generally employed in wind turbine to mitigate load and maintain uniform power generation at above-rated wind speed regions. Hydraulic system has more power to weight ratio and so it is incorporated in the pitch system of large scale wind turbines. Some of the issues related to the usage of conventional valves in Hydraulic Pitch System (HPS) are: internal leakage, throttling losses, high power loss, less fault-tolerant, requires high manufacturing tolerance and more sensitive to contamination. In order to overcome these issues, digital hydraulics technology should be introduced as Digital Hydraulics Pitch System (DHPS). Commercially, Proportional Integral Derivative (PID) controller is used as pitch controller but these controller performance doesn’t hold good when excessive disturbance or change in operating point occurs in the system. So, heuristic-based Fuzzy Logic Controller (FLC) is preferred which has the ability to surpass the PID problems. In this paper, heuristic FLC based control strategy is proposed for a novel DHPS configuration to control the pitching action. Simulation model of DHPS is developed and system simulations are conducted. The comparative study on the effectiveness of FLC for DHPS and conventional valve controlled HPS is conducted. Keywords: Wind turbine, Pitch control, Fuzzy logic controller, Digital hydraulics

1. INTRODUCTION
The need for renewable energy has started to exponentially increase due to the harmful effects created by the non-renewable energy sources (fossil fuel and coal) over the environment. Among the renewable energy sources, wind energy is the most promising source of electric energy [1, 2, 3]. Since, Wind Turbine (WT) is given more priority than conventional power plant by many countries, the technology related to WT has started to increase. In order to generate optimal power and also to safe guard the WT during high wind speeds, Pitch Control System (PCS) and yaw control system are mostly preferred [4, 5, 6]. Generally, PCS is employed at above rated wind speed condition to maintain uniform power generation and to mitigate erratic blade loads [7,8]. Basically the two types of PCS used in WT are: electro-mechanical and Hydraulic Pitch System (HPS). Electric motors are used as pitch actuator in case of electro-mechanical pitch system where as hydraulic cylinder/motor are used in case of HPS. Since HPS are more robust to disturbance and has more power to weight ratio than its counterpart, HPS is mostly preferred in large scale WT [9, 10]. The advantage of using hydraulic motor as the end actuator in HPS over hydraulic cylinder is that the final pitch angle is directly proportional to displacement of the hydraulic motor [11, 12]. Conventionally, pump control and valve control technique are preferred in HPS [13]. The reason for considering valve controlled HPS to be better because, it has higher bandwidth than the pump control HPS [14]. Conventional valve controlled HPS uses proportional or servo valves to control flow rate and also uses directional valve to control the direction of the fluid as shown in

![Figure 1. Conventional valve controlled hydraulic pitch system [15]](image-url)
These valves have few drawbacks like internal leakage, throttling losses, high power loss, less fault tolerant, requires high manufacturing tolerance, high cost and more sensitive to contaminations [16,17,18]. The drawback of the conventional valve controlled HPS can be overcome by implementing Digital Hydraulics (DH) technology in HPS. DH uses 2/2 hydraulic valve arranged in parallel combination along with various sizes of orifice known as Digital Flow Control Unit (DFCU) as shown in (2). Based on positioning the DFCU in the hydraulic system, DH can be categorised into few types such as: digital displacement motor and pump, switching control and parallel valve technology [19, 20]. Here digital motor concept is implemented. While designing the DFCU, sizing of orifice play a vital role. The different methods utilized for sizing the orifice are to attain the varying flow rates are discussed in [19, 21].

![2/2 hydraulic valve and Orifice](image)

Figure 2 Digital Flow Control Unit

Though there are many advantages in DH, the controllability of DH is still a tedious task [16, 23]. The different valve actuation methods that are implemented in DH system are: Pulse Width Modulation (PWM), Pulse Number Modulation (PNM), Pulse Frequency Control (PFC), Modified Pulse Width Modulation (MPWM) and Pulse Code Modulation (PCM) [19, 21, 24]. P + PID controllers were incorporated in [24] to analyse the robust stability of DH under unknown load mass and the results indicated that the controller has better tracking performance. In [25] a novel fine positioning method was developed where four DFCU were used which resulted in the accurate positioning of the hydraulic system. Zero-Flowrate-Switching (ZFS) control method makes the valve to turn off when the flowrate through the valve is zero [26]. The output of ZFS were found to be effective. Though different control techniques were opted in DH, still DH control has a large scope to improve the controllability due to extreme non-linearity of 2/2 valves. In order to improve the controllability by overcoming the nonlinearities, heuristic based Fuzzy Logic Controller (FLC) is implemented in this paper.

The contribution of this paper involves the development of a novel DHPS for wind turbine and also FLC. The output of FLC is DFCU pair valve state selection which results in varying the flow rate and also controlling the direction of the hydraulic fluid by using DFCU so that the required pitching action takes place at the pitch actuator to achieve the appropriate pitch angle.

This paper is structured as follows: section 2 presents the description of Digital Hydraulic Pitch Control System (DHPCS). Section 4 describes the modelling of DHPCS. Section 5 gives the simulation results and discussion. Finally, conclusion are discussed in section 6.

2. System Description

The Figure 2 illustrate the proposed novel DHPCS which consist of FLC and DHPS. The DHPS consist of fixed displacement pump driven by an electric motor. As discussed earlier the DFCU consist of 2/2 valves and orifice which is attached at the end of each valves. The sizing of orifice were carried out using the binary series method $[2^0, 2^1, 2^2, 2^3, ... 2^n]$. Since five valves are used in each DFCU, the DFCU is called 5 bit DFCU and it is possible to achieve 2^n-1 states. In this proposed configuration $2^5-1=31$ states with different flowrates for each states can be achieved as shown in table 1. DFCU AT and PA are connected at A port of the hydraulic motor and the DFCU PB and BT are connected at the B port of the hydraulic motor. Based on the required direction of rotation of hydraulic motor either DFCU PA and BT pair or DFCU PB and AT pair is triggered so that clockwise/anticlockwise rotation are achieved. The pitch angle generated at the hydraulic motor sensed by an angular sensor and the data’s are fed to the FLC.

V1	V2	V3	V4	V5	States	Flow
0	0	0	0	1	1	Q_1
0	0	0	1	0	2	Q_2
0	0	0	0	1	3	Q_3
0	0	1	0	0	4	Q_4
					5	Q_5
					6	Q_6
					7	Q_7
1	1	1	1	1	31	Q_31
3. SYSTEM MODELLING

In this section, the blade load model and FLC are modeled for the proposed DHPCS. The closed loop control strategy of DHPCS is shown in (4). FLC was chosen for the proposed configuration due to its advantage over the Proportional Integral (PI) and Proportional Integral Derivative (PID) [27]. The inputs to the FLC are blade load P_l and pitch angle error β_e where β_e is obtained from

\begin{equation}
\beta_e = \beta_{\text{ref}} - \beta_g
\end{equation}

Here β_{ref} is pitch angle reference and β_g is pitch angle generated. The output of the FLC is states...
The load that is developed over the blades of the wind turbine due to varying wind speed play an important role in the pitch system since the DHPS should overcome the blade load P_l and has to achieve the required pitch angle. The P_l is arrived from [28] as shown in (2).

$$P_l = 390 + 170.9 \beta_e + 92.96 \beta_g + 0.39 \beta_g^2 - 0.24 \beta_e - 3.73 \beta_e^2$$

The different blade loads for varying wind speed and pitch angle are shown in the table 2 which is obtained by substituting the wind speed and pitch angle values in (2). Blade load model is developed by using (2) in Matlab/SIMULINK and the developed model will generate the loads which the DHPS should overcome.

Pitch Angle (°)	Wind speed (m/s)	0°	5°	10°
11	1428 Nm	867	141	
12	1600 Nm	1020 Nm	280	
13	1765 Nm	1182 Nm	445	
14	1929 Nm	1335 Nm	574	
15	2114 Nm	1500 Nm	730	
16	2266 Nm	1672 Nm	900	
17	2420 Nm	1824 Nm	1035 Nm	
18	2554 Nm	2000 Nm	1206 Nm	
19	2707 Nm	2138 Nm	1355 Nm	
20	2830 Nm	2307 Nm	1547 Nm	

3.2 Fuzzy Logic Controller

FLC is based on the rules which are helpful when the dynamics of the system and also the complete non lineairities of the system are not known. Similar to human beings making decision, FLC applies reasoning and so the controller rules possess expert knowledge of the system. The main advantage of FLC is that mathematical description of the system which is to be controlled is not required. Fuzzy Logic Toolbox™ which is available in Matlab/Simulink. Generally there are three stages in the FLC and they are fuzzification, fuzzy rules and defuzzification. In fuzzification process the inputs are converted into fuzzy sets using linguistic terms and membership functions. Both the inputs and output uses Triangular Membership Functions (TMF) which is shown in (5). TMF are highly sensitive when variables arrives at zero value [29]. Fuzzy rules are assigned as shown in the table 2, where if and then statements are used to coin the rules like $\beta_g < 1 \Rightarrow 1 \Rightarrow \beta_g = 1$ $\Rightarrow 1$. The last process in the FLC is defuzzification where the fuzzy sets are converted into precise action with real values.
Figure 5 Triangular membership function for inputs and output

Table 3. Fuzzy rules

Pitch angle error	NH	NM	NS	ZO	PS	PM	PH
Blade Load							
NH	NH	NH	NM	ZO	PM	PH	PH
NM	NH	NM	NM	ZO	PM	PM	PH
NS	NM	NM	NS	ZO	PS	PM	PM
ZO	NM	NS	NS	ZO	PS	PS	PM
PS	NM	NM	NS	ZO	PS	PM	PM
PM	NH	NM	NM	ZO	PM	PM	PH
PH	NH	NH	NM	ZO	PM	PH	PH

4. SIMULATION RESULTS AND DISCUSSION

The performance of the FLC is tested by implementing it in DHPS. Simulations were conducted from 3 sec to 10 sec (since it took 0-3 sec for the hydraulic system to initiate). Reference pitch angle data’s of a 2MW wind turbine was obtained from [30]. A random wind profile (6a) was given as an input to the reference pitch angle model to generate the required β_{ref} which the DHPS should track.

Figure 6b shows the comparison of β_g to β_{ref}. The β_g follows the same trend as β_{ref}. At the same time, there is a lag in terms of magnitude between β_{ref} and β_g is due to the nonlinearities exist in the DHPS. The magnitude of error is shown in (6d) and the maximum error observed was 1.009° which is indicated in (6d). The minimum error indicates that the FLC has a better tracking ability which was developed for DHPS. Since the wind speed is drastically changing, FLC plays a vital role in tracking the pitch angle at all conditions. Future work involves in reducing the lag so that the tracking performance can be improved and also to reduce the hydraulic system initiation lag.
5. CONCLUSION

Hydraulic pitch system delivers high power to weight ratio to mitigate load and maintain uniform power generation. In this paper, Digital hydraulics technology is implemented in hydraulic pitch system to achieve the same performance of proportional or servo valve controlled system. The output of the fuzzy logic controller selects the DFCU pair and states to achieve the required pitch angle. The results shows that the fuzzy logic controller has better tracking ability and the maximum error percentage that was observed to be 3.89%. The results were tested for various wind pattern and the output was found to be effective. So by implementing proposed DHPCS, cost effective, highly robust, fault tolerant and high response pitch system can be established in wind turbines.

REFERENCES

[1] Connor B, Iyer S N, Leithead W E and Grimble M J 1992 Control of a horizontal axis wind turbine using H infinity control, In Proc. of the First IEEE Conf. on Control Applications pp 117-122.
[2] Sholapurkar R B and Mahajan Y S 2015 Review of wind energy development and policy in India, Energy Technology & Policy Vol 2 Issue 1 pp 122-132
[3] Petersen E L 2017 In search of the wind energy potential. J. of Renewable and Sustainable Energy Vol 9 Issue 5 pp 052301
[4] Yuan Y and Tang J 2017 On advanced control methods toward power capture and load mitigation in wind turbines, Engineering Vol 3(4) pp 494-503.
[5] Tong W 2010 Wind power generation and wind turbine design WIT press.
[6] Njiri, J G and Soeffker D 2016 State-of-the-art in wind turbine control: Trends and challenges, Renewable and Sustainable Energy Reviews Vol 60, pp 377-393.
[7] Fernando D B, Hernán D B and Ricardo J M 2006 Wind turbine control systems: principles, modelling and gain scheduling design
[8] Menezes E J N, Araújo A M and da Silva N S B 2018 A review on wind turbine control and its associated methods, J. of cleaner production 174 pp 945-953.
[9] Tong, W, *Fundamentals of wind energy*, In Wind power generation and wind turbine design, WIT Press pp 25

[10] Yin X X, Lin Y G, Li W, Gu Y J, Lei P F and Liu H W 2015 Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system, *Int. J. of Control* 88(11) pp 2316-2326.

[11] Yin X X, Lin Y G, Li W, Gu Y J, Wang X J and Lei P F 2015 Design, modeling and implementation of a novel pitch angle control system for wind turbine, *Renewable Energy* Vol 81 pp 599-608

[12] Yin X X, Lin Y G, Li W, Liu H W and Gu Y J 2015 Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. *ISA transactions* Vol 58 pp 629-634

[13] Lei X, Ni M, Li D and Ma Y 2011 Study on simulation of digital pump-control cylinder position control system. *Procedia Engineering* Vol 16 pp 729-736.

[14] Turner C W, Babbitt G R, Balton C S, Raimao M A and Giordano D D 2004 Design and control of a two-stage electro-hydraulic valve actuation system, *SAE transactions* pp 833-846.

[15] Yin X X, Lin Y G, Li W and Gu Y J 2014 Integrated pitch control for wind turbine based on a novel pitch control system. *J. of Renewable and Sustainable Energy* Vol 6 Issue 4 pp 043106

[16] Laamanen M S A and Vilenius M 2003 Is it time for digital hydraulics, *In eighth Scandinavian Int. conf. on fluid power*

[17] Scheidl R, Linjama M and Schmidt S 2012 Is the future of fluid power digital?, *Proc. of the Institution of Mechanical Engineers, Part I: J. of Systems and Control Engineering*, 226(6), pp 721-723

[18] Laamanen A, Siivonen L, Linjama, M. and Vilenius M 2004 Digital flow control unit—an alternative for a proportional valve? *In Bath Workshop on Power Transmission and Motion Control, Professional Engineering Publishing* pp 297

[19] Linjama M Digital fluid power State of the art 2011 *In 12th Scandinavian International Conf. on Fluid Power, Tampere, Finland* pp. 18-20.

[20] Merrill K, Holland M, Batdorff M and Lumkes Jr 2010 Comparative study of digital hydraulics and digital electronics *Int. J. of fluid power* Vol 11 Issue 3 pp 45-51

[21] Kalaiaarassan G and Krishnamurthy K 2019 Digital hydraulic single-link trajectory tracking control through flow-based control *Measurement and Control*

[22] Palonitty M and Linjama M High-linear digital hydraulic valve control by an equal coded valve system and novel switching schemes. *Proc. of the Institution of Mechanical Engineers, Part I: J. of Systems and Control Engineering* Vol 232(3) pp 258-269.

[23] Pedersen N H, Johansen P and Andersen T O 2018 Challenges with respect to control of digital displacement hydraulic units

[24] Linjama M, Huova M and Huhtala K 2016 Model-based force and position tracking control of an asymmetric cylinder with a digital hydraulic valve *Int. J. of Fluid Power* 17(3) pp 163-172

[25] Huova M, Linjama M, Siivonen L, Deubel T, Försterling H, and Stamm E 2018 Novel Fine Positioning Method for Hydraulic Drives Utilizing On/Off-Valves. *In BATH/ASME Symp. on Fluid Power and Motion Control* pp 46

[26] Peng S 2017 An Zero-Flowrate-Switching (ZFS) Control Method Applied in a Digital Hydraulic System *In Proc. of 15th Scandinavian Int. Conf. on Fluid Power* pp. 172-177

[27] Eker I and Torun Y 2006 Fuzzy logic control to be conventional method *Energy conversion and management* Vol 47(4) pp 377-394.

[28] Wang C S and Chiang M H, 2016 A novel pitch control system of a large wind turbine using two-degree-of- freedom motion control with feedback linearization control *Energies* Vol 9(10) pp 791

[29] Eltamaly A M and Farh H M 2013 Maximum power extraction from wind energy system based on fuzzy logic control *Electric Power Systems Research* 2013 Vol 97 pp 144-150.
[30] Zhou F and Liu J 2018 Pitch controller design of wind turbine based on nonlinear PI/PD control. *Shock and Vibration*