RELATIVE ENERGY GAP FOR HARMONIC MAPS OF RIEMANN SURFACES INTO REAL ANALYTIC RIEMANNIAN MANIFOLDS

PAUL M. N. FEEHAN

ABSTRACT. We extend the well-known Sacks–Uhlenbeck energy gap result [34, Theorem 3.3] for harmonic maps from closed Riemann surfaces into closed Riemannian manifolds from the case of maps with small energy (thus near a constant map), to the case of harmonic maps with high absolute energy but small energy relative to a reference harmonic map.

Contents

1. Introduction 1
1.1. Outline of the article 3
1.2. Acknowledgments 3
2. Lojasiewicz–Simon gradient inequality for the harmonic map energy function 7
3. A priori estimate for the difference of two harmonic maps 11
References 13

1. Introduction

Let (M, g) and (N, h) be a pair of smooth Riemannian manifolds, with M orientable. One defines the harmonic map energy function by

\[E_{g,h}(f) := \frac{1}{2} \int_M |\text{d}f|_{g,h}^2 \, d\text{vol}_g, \]

for smooth maps, $f : M \to N$, where $\text{d}f : TM \to TN$ is the differential map. A map $f \in C^\infty(M; N)$ is (weakly) harmonic if it is a critical point of $E_{g,h}$, so $E'_{g,h}(f)(u) = 0$ for all $u \in C^\infty(M; f^*TN)$, where

\[E_{g,h}'(f)(u) = \int_M \langle \text{d}f, u \rangle_{g,h} \, d\text{vol}_g. \]

The purpose of this article is to prove

Theorem 1 (Relative energy gap for harmonic maps of Riemann surfaces into real analytic Riemannian manifolds). Let (M, g) be a closed Riemann surface and (N, h) a closed, real analytic Riemannian manifold equipped with a real analytic isometric embedding into a Euclidean space,
If \(f_\infty \in C^\infty(M; N) \) is a harmonic map, then there is a constant \(\varepsilon = \varepsilon(f_\infty, g, h) \in (0, 1] \) with the following significance. If \(f \in C^\infty(M; N) \) is a harmonic map obeying

\[\| d(f - f_\infty) \|_{L^2(M; \mathbb{R}^n)} + \| f - f_\infty \|_{L^2(M; \mathbb{R}^n)} < \varepsilon, \]

then \(\mathcal{E}_{g,h}(f) = \mathcal{E}_{g,h}(f_\infty) \).

Remark 1.1 (Generalizations to the case of harmonic maps with potentials). In physics, harmonic maps arise in the context of non-linear sigma models and with such applications in mind, Theorem 1 should admit generalizations to allow, for example, the addition to \(\mathcal{E}_{g,h} \) of a real analytic potential function, \(V : C^\infty(M; N) \to \mathbb{R} \), in the definition (1.1) of the energy, as explored by Branding [6].

Naturally, Theorem 1 continues to hold if the condition (1.2) is replaced by the stronger (and conformally invariant) hypothesis,

\[\| d(f - f_\infty) \|_{L^2(M; \mathbb{R}^n)} + \| f - f_\infty \|_{L^\infty(M; \mathbb{R}^n)} < \varepsilon. \]

Thus, if \(\varphi \) is any conformal diffeomorphism of \((M, g)\), then the preceding condition on \(f, f_\infty \) holds if and only if the harmonic maps \(f \circ \varphi, f_\infty \circ \varphi \) obey

\[\| d(f \circ \varphi - f_\infty \circ \varphi) \|_{L^2(M; \mathbb{R}^n)} + \| f \circ \varphi - f_\infty \circ \varphi \|_{L^\infty(M; \mathbb{R}^n)} < \varepsilon. \]

Hence, the constants, \(Z, \sigma, \theta \) in Theorem 1 are in this sense independent of the action of the conformal group of \((M, g)\) on harmonic maps from \(M \) to \(N \).

Theorem 1 may be viewed, in part, as a generalization of the following energy gap result due to Sacks and Uhlenbeck and who do not require that the target manifold be real analytic.

Theorem 1.2 (Energy gap near the constant map). [34, Theorem 3.3] Let \((M, g)\) be a closed Riemann surface and \((N, h)\) be a closed, smooth Riemannian manifold. Then there is a constant, \(\varepsilon > 0 \), such that if \(f \in C^\infty(M; N) \) is harmonic and \(\mathcal{E}_{g,h}(f) < \varepsilon \), then \(f \) is a constant map and \(\mathcal{E}_{g,h}(f) = 0 \).

The Sacks–Uhlenbeck Energy Gap Theorem 1.2 has been generalized by Branding [5, Lemma 4.9] and by Jost and his collaborators [9, Proposition 4.2], [25, Proposition 5.2] to the case of Dirac-harmonic pairs. Theorem 1.2 ensures positivity of the constant \(h \) in the

Definition 1.3 (Dirac–Planck constant). Let \((N, h)\) be a closed, smooth Riemannian manifold. Then \(h \) denotes the least energy of a non-constant \(C^\infty \) map from \((S^2, g_{\text{round}})\) into \((N, h)\), where \(g_{\text{round}} \) is the standard round metric of radius one on \(S^2 \).

The energy gap near the ‘ground state’ characterized by the constant maps from \((S^2, g_{\text{round}})\) to \((N, h)\) appears to be unusual in the light of the following counter-example due to Li and Wang [27] when \((N, h)\) is only \(C^\infty \) rather than real analytic.

Example 1.4 (Non-discreteness of the energy spectrum for harmonic maps from \(S^2 \) into a smooth Riemannian manifold with boundary). (See [27, Section 4].) There exists a smooth Riemannian metric \(h \) on \(N = S^2 \times (-1, 1) \) such that the energies of harmonic maps from \((S^2, g_{\text{round}})\) to \((N, h)\) have an accumulation point at the energy level \(4\pi \), where, \(g_{\text{round}} \) denotes the standard round metric of radius one.

Thus we would not expect Theorem 1 to hold when the hypothesis that \((N, h)\) is real analytic is omitted, except for the case where \(f_\infty \) is a constant map. On the other hand, when \((N, h)\) is real analytic, one has the following conjecture due to Lin [28].
Conjecture 1.5 (Discreteness for energies of harmonic maps from closed Riemann surfaces into analytic closed Riemannian manifolds). (Lin [28, Conjecture 5.7].) Assume the hypotheses of Theorem 1 and that \((M, g)\) is the two-sphere, \(S^2\), with its standard, round metric. Then the subset of critical values of the energy function, \(\mathcal{E}_{g,h} : C^\infty(S^2; N) \to [0, \infty)\), is closed and discrete.

One may therefore view Theorem 1 as supporting evidence of the validity of Conjecture 1.5.

In the special case that \(N\) is the Lie group \(U(n)\) with \(n \geq 2\) and its standard Riemannian metric, Valli [48, Corollary 8] has shown (using ideas of Uhlenbeck [46]) that the energies of harmonic maps from \((S^2, g_{\text{round}})\) into \(U(n)\) are integral multiples of \(8\pi\). If \((N, h)\) has non-positive sectional curvature, then Adachi and Sunada [1, Theorem 1] have shown that Conjecture 1.5 holds when \((M, g)\) is any closed Riemann surface.

1.1. Outline of the article. In Section 2, we review the Lojasiewicz–Simon gradient inequality for the harmonic map energy function based on results of the author and Maridakis [12] and Simon [38, 39]. In Section 3, we prove certain \textit{a priori} estimates for the difference of two harmonic maps and, with the aid of the Lojasiewicz–Simon gradient inequality, complete the proof of Theorem 1.

1.2. Acknowledgments. I am very grateful to the Institute for Advanced Study, Princeton, for their support during the preparation of this article. I thank Sagun Chanillo, Fernando Codá Marques, Joel Hass, Tobias Lamm, Paul Larain, Fang-Hua Lin, Thomas Parker, Tristan Rivière, Michael Taylor, Peter Topping, Karen Uhlenbeck, and especially Manousos Maridakis for helpful questions and comments that influenced the development of this article.

2. Lojasiewicz–Simon gradient inequality for the harmonic map energy function

In this section, we closely follow our treatment of the Lojasiewicz–Simon gradient inequality for abstract and harmonic map energy functions provided by the author and Maridakis in [12, Sections 1.1, 1.2, and 1.4]. Useful references for harmonic maps include Eells and Lemaire [10, 11], Hamilton [16], Hélein [17], Hélein and Wood [18], Jost [21, 20, 22, 23, 24], Moser [30], Parker [33], Sacks and Uhlenbeck [34, 35], Schoen [36], Simon [30], Struwe [42], Urakawa [47], Xin [49], and citations contained therein.

When clear from the context, we omit explicit mention of the Riemannian metrics \(g\) on \(M\) and \(h\) on \(N\) and write \(\mathcal{E} = \mathcal{E}_{g,h}\). Although initially defined for smooth maps, the energy function \(\mathcal{E}\) in (1.1), extends to the case of Sobolev maps of class \(W^{1,2}\). To define the gradient, \(\mathcal{M} = \mathcal{M}_{g,h}\), of the energy function \(\mathcal{E}\) in (1.1) with respect to the \(L^2\) metric on \(C^\infty(M; N)\), we first choose an isometric embedding, \((N, h) \subset \mathbb{R}^n\) for a sufficiently large \(n\) (courtesy of the isometric embedding theorem due to Nash [31]), and recall that\(^1\) by [40] Equations (2.2)(i) and (ii)

\[
(u, \mathcal{M}(f))_{L^2(M,g)} := \mathcal{E}'(f)(u) = \left. \frac{d}{dt} \mathcal{E}(\pi(f + tu)) \right|_{t=0} = (u, \Delta_g f)_{L^2(M,g)} = (u, d\pi_h(f) \Delta_g f)_{L^2(M,g)};
\]

for all \(u \in C^\infty(M; f^*TN)\), where \(\pi_h\) is the nearest point projection onto \(N\) from a normal tubular neighborhood and \(d\pi_h(y) : \mathbb{R}^n \to T_yN\) is orthogonal projection, for all \(y \in N\). By [17, Lemma 1.2.4], we have

\[
(2.1) \quad \mathcal{M}(f) = d\pi_h(f) \Delta_g f = \Delta_g f - A_h(f)(df, df);
\]

\(^1\)Compare [24] Equations (8.1.10) and (8.1.13), where Jost uses variations of \(f\) of the form \(\exp_j(tu)\).
as in [40] Equations (2.2)(iii) and (iv)]. Here, \(A_h \) denotes the second fundamental form of the isometric embedding, \((N, h) \subset \mathbb{R}^n\), and

\[
\Delta_g := -\operatorname{div}_g \operatorname{grad}_g = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left(\frac{\sqrt{\det g} \partial f}{\partial x^i} \right)
\]
denotes the Laplace-Beltrami operator for \((M, g)\) (with the opposite sign convention to that of [5]). The {\(x^a \)} denote local coordinates on \(M \). As usual, the gradient vector field, \(\operatorname{grad}_g f^i \subset C^\infty(TM) \), is defined by \(\langle \operatorname{grad}_g f^i, \xi \rangle_g := df^i(\xi) \) for all \(\xi \in C^\infty(TM) \) and \(1 \leq i \leq n \) and the divergence function, \(\operatorname{div}_g \xi \in C^\infty(M; \mathbb{R}) \), by the pointwise trace, \(\operatorname{div}_g \xi := \operatorname{tr}(\eta \mapsto \nabla^g_\xi \eta) \), for all \(\eta \in C^\infty(TM) \).

Given a smooth map, \(f : M \to N \), an isometric embedding, \((N, h) \subset \mathbb{R}^n\), a non-negative integer \(k \), and constant \(p \in [1, \infty) \), we define the Sobolev norms,

\[
\| f \|_{W^{k,p}(M; \mathbb{R}^n)} := \left(\sum_{i=1}^n \| f^i \|_{W^{k,p}(M; \mathbb{R}^n)}^p \right)^{1/p},
\]

with

\[
\| f^i \|_{W^{k,p}(M; \mathbb{R}^n)} := \left(\sum_{j=0}^k \int_M \| \nabla^g \partial f^i \|_{L^p(M; \mathbb{R}^n)}^p \, d\text{vol}_g \right)^{1/p},
\]

where \(\nabla^g \) denotes the Levi-Civita connection on \(TM \) and all associated bundles (that is, \(T^*M \) and their tensor products), and if \(p = \infty \), we define

\[
\| f \|_{W^{k,\infty}(M; \mathbb{R}^n)} := \sum_{i=1}^n \sum_{j=0}^k \text{ess sup}_M |(\nabla^g \partial f^i)|.
\]

If \(k = 0 \), then we denote \(\| f \|_{W^{0,p}(M; \mathbb{R}^n)} = \| f \|_{L^p(M; \mathbb{R}^n)} \). For \(p \in [1, \infty) \) and nonnegative integers \(k \), we use [2] Theorem 3.12 \(\text{applied to } W^{k,p}(M; \mathbb{R}^n) \) and noting that \(M \) is a closed manifold \(\text{and Banach space duality to define } W^{-k,p'}(M; \mathbb{R}^n) := \left(W^{k,p}(M; \mathbb{R}^n) \right)^* \), where \(p' \in (1, \infty] \) is the dual exponent defined by \(1/p + 1/p' = 1 \). Elements of the continuous Banach dual space, \((W^{k,p}(M; \mathbb{R}^n))^* \), may be characterized via [2] Section 3.10 \(\text{as distributions in the Schwartz space, } \mathcal{D}'(M; \mathbb{R}^n) \) \(\text{[Section 1.57].} \)

Spaces of Hölder continuous maps, \(C^{k,\lambda}(M; N) \) for \(\lambda \in (0, 1) \) and integers \(k \geq 0 \), and norms, \(\| f \|_{C^{k,\lambda}(M; \mathbb{R}^n)} \), may be defined as in [2] Section 1.29.

We note that if \((N, h) \) is real analytic, then the isometric embedding, \((N, h) \subset \mathbb{R}^n\), may also be chosen to be analytic by the analytic isometric embedding theorem due to Nash [32], with a simplified proof due to Greene and Jacobowitz [13].

Definition 2.1 (Harmonic map). \(\text{See [17] Definition 1.4.9.} \) A map \(f \in W^{1,2}(M; N) \) is called weakly harmonic if it is a critical point of the \(L^2 \)-energy functional \(\mathcal{E}^2 \), that is

\[
\mathcal{E}^2(f)(u) = 0, \quad \forall u \in C^\infty(M; f^*TN),
\]

and a map \(f \in W^{2,p}(M; N) \), for \(p \in [1, \infty] \), is called harmonic if

\[
\Delta_g f - A_h(df, df) = 0 \quad \text{a.e. on } M.
\]
A well-known result due to Hélein [17, Theorem 4.1.1] tells us that if \(M \) has dimension \(d = 2 \), then \(f \in C^\infty(M;N) \); for \(d \geq 3 \), regularity results are far more limited — see, for example, [17, Theorem 4.3.1] due to Bethuel. From [12], we recall the

Theorem 2.2 (Lojasiewicz–Simon gradient inequality for the energy function for maps between pairs of Riemannian manifolds). (See [12, Theorem 5].) Let \(d \geq 2 \) and \(k \geq 1 \) be integers and \(p \in (1, \infty) \) be such that \(kp > d \). Let \((M, g)\) and \((N, h)\) be closed, smooth Riemannian manifolds, with \(M \) of dimension \(d \). If \((N, h)\) is real analytic (respectively, \(C^\infty \)) and \(f \in W^{k,p}(M;N) \), then the gradient map \(\mathcal{M} \) in (2.1) for the energy function, \(\mathcal{E} : W^{k,p}(M;N) \to \mathbb{R} \), in (1.1),

\[
W^{k,p}(M;N) \ni f \mapsto \mathcal{M}(f) \in W^{k-2,p}(M; f^*TN) \subset W^{k-2,p}(M;\mathbb{R}^n),
\]

is a real analytic (respectively, \(C^\infty \)) map of Banach spaces. If \((N, h)\) is real analytic and \(f_\infty \in W^{k,p}(M;N) \) is a weakly harmonic map, then there are positive constants \(Z \in (0, \infty) \), and \(\sigma \in (0, 1] \), depending on \(f_\infty \), \(g \), \(h \), \(k \), \(p \), with the following significance. If \(f \in W^{k,p}(M;N) \) obeys

\[
\| f - f_\infty \|_{W^{k,p}(M;\mathbb{R}^n)} < \sigma,
\]

then the gradient \(\mathcal{M} \) in (2.1) of the harmonic map energy function \(\mathcal{E} \) in (1.1) obeys

\[
\| \mathcal{M}(f) \|_{W^{k-2,p}(M; f^*TN)} \geq Z |\mathcal{E}(f) - \mathcal{E}(f_\infty)|^{\theta}.
\]

Remark 2.3 (On the hypotheses of Theorem 2.2). When \(k = d \) and \(p = 1 \), then \(W^{d,1}(M;\mathbb{R}) \subset C(M;\mathbb{R}) \) is a continuous embedding by [2, Theorem 4.12] and \(W^{d,1}(M;\mathbb{R}) \) is a Banach algebra by [2, Theorem 4.39]. In particular, \(W^{d,1}(M;N) \) is a real analytic Banach manifold by [12, Proposition 3.2] and the harmonic map energy function, \(\mathcal{E} : W^{d,1}(M;N) \to \mathbb{R} \), is real analytic by [12, Proposition 3.5]. However, the operator \(\mathcal{M}'(f_\infty) : W^{d,1}(M; f_\infty^*TN) \to W^{d-2,1}(M; f_\infty^*TN) \) may not be Fredholm.

Theorem 2.2 extends a version of the Lojasiewicz–Simon gradient inequality that is stated by Simon as [39, Equation (4.27)] and can be derived from his more general [38, Theorem 3].

Theorem 2.4 (Lojasiewicz–Simon gradient inequality for the energy function for maps between pairs of Riemannian manifolds). (See [12, Corollary 6], [38, Theorem 3], [39, Equation (4.27)].) Let \(d \geq 2 \) and \(\lambda \in (0, 1) \) be constants, \((M, g)\) a closed, smooth Riemannian manifold of dimension \(d \) and \((N, h)\) is closed, real analytic Riemannian manifold. If \(f_\infty \in C^{2,\lambda}(M;N) \) is a harmonic map, then there are positive constants \(Z \in (0, \infty) \), and \(\sigma \in (0, 1] \), and \(\theta \in [1/2, 1) \), depending on \(f_\infty \), \(g \), \(h \), \(\lambda \), with the following significance. If \(f \in C^{2,\lambda}(M;N) \) obeys

\[
\| f - f_\infty \|_{C^{2,\lambda}(M;\mathbb{R}^n)} < \sigma,
\]

then the gradient \(\mathcal{M} \) in (2.1) of the harmonic map energy function \(\mathcal{E} \) in (1.1) obeys

\[
\| \mathcal{M}(f) \|_{L^2(M; f^*TN)} \geq Z |\mathcal{E}(f) - \mathcal{E}(f_\infty)|^{\theta}.
\]

Remark 2.5 (Other versions of the Lojasiewicz–Simon gradient inequality for the harmonic map energy function). Topping [45, Lemma 1] proved a Lojasiewicz-type gradient inequality for maps, \(f : S^2 \to S^2 \), with small energy, with the latter criterion replacing the usual small \(C^{2,\lambda}(M;\mathbb{R}^n) \) norm criterion of Simon for the difference between a map and a critical point. Topping’s result is generalized by Liu and Yang in [29, Lemma 3.3]. Kwon [26, Theorem 4.2] obtains a Lojasiewicz-type gradient inequality for maps, \(f : S^2 \to N \), that are \(W^{2,p}(S^2;\mathbb{R}^n) \)-close to a harmonic map, with \(1 < p \leq 2 \).
When \(d = 2 \) in the hypotheses of Theorem 2.2, the reader will note that the two cases that are most directly applicable to a proof of Theorem 1 are omitted, namely the cases \(k = 2 \) and \(p = 1 \) or \(k = 1 \) and \(p = 2 \), which are both critical since \(kp = d \). We shall briefly comment on each of these two cases.

When \(d = 2 \), \(k = 1 \), and \(p = 2 \), it appears very difficult to verify the hypotheses of [12, Theorem 2]. The analytical difficulties are very much akin to those confronted by Hélein [17] in his celebrated proof of smoothness of weakly harmonic maps from Riemann surfaces. However, it is unclear that Hélein’s methods could be used to extend Theorem 2.2 to the case \(d = 2 \), \(k = 1 \), and \(p = 2 \).

Similarly, when \(d = 2 \), \(k = 2 \), and \(p = 1 \), it is very difficult to verify the hypotheses of [12, Theorem 2]. One might speculate that a version of Theorem 2.2 could hold if the role of the pair of Sobolev spaces, \(W^{2,1}(M; f^\infty_X\mathcal{N}) \) and \(L^1(M; f^\infty_X\mathcal{N}) \), were replaced by suitably defined local Hardy spaces. We refer the reader to Semmes [37], Stein [41], and Taylor [44] for introductions to Hardy spaces of functions on Euclidean space and to Hélein [17] for their application to the problem of regularity for weakly harmonic maps from Riemann surfaces. Auscher, McIntosh, Morris [3], Carbonaro, McIntosh, and Morris [7] and Taylor [43] provide definitions of local Hardy spaces on Riemannian manifolds. However, the analytical difficulties appear formidable in any such approach.

Fortunately, in our proof of Theorem 1 we can apply Theorem 2.2 with non-critical Sobolev exponents, namely \(d = 2 \), \(k = 2 \), and \(p \in (1, \infty) \) by exploiting certain a priori estimates for harmonic maps similar to those used by Sacks and Uhlenbeck [34].

Theorem 2.2 is proved by the author and Maridakis in [12] as a consequence of a more general abstract Lojasiewicz–Simon gradient inequality for analytic functions on a Banach space, namely [12, Theorem 2], while Theorem 2.4 may be deduced as a consequence of [12, Theorem 2].

To state the abstract [12, Theorem 2], we let \(\mathcal{X} \) be a Banach space and let \(\mathcal{X}^* \) denote its continuous dual space. We call a bilinear form, \(b : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \), definite if \(b(x, x) \neq 0 \) for all \(x \in \mathcal{X} \setminus \{0\} \). We say that a continuous embedding of a Banach space into its continuous dual space, \(j : \mathcal{X} \to \mathcal{X}^* \), is definite if the pullback of the canonical pairing, \(\mathcal{X} \times \mathcal{X} \ni (x, y) \mapsto \langle x, j(y) \rangle_{\mathcal{X} \times \mathcal{X}^*} \to \mathbb{R} \), is a definite bilinear form. (This hypothesis on the continuous embedding, \(\mathcal{X} \subset \mathcal{X}^* \), is easily achieved given a continuous embedding of \(\mathcal{X} \) into a Hilbert space \(\mathcal{H} \) but the increased generality is often convenient.)

Definition 2.6 (Gradient map). (See [1, Section 2.5], [19, Definition 2.1.1].) Let \(\mathcal{U} \subset \mathcal{X} \) be an open subset of a Banach space, \(\mathcal{X} \), and let \(\mathcal{X} \to \mathcal{X}^* \) be a Banach space with continuous embedding, \(\mathcal{X} \subset \mathcal{X}^* \). A continuous map, \(\mathcal{M} : \mathcal{U} \to \mathcal{X} \), is called a gradient map if there exists a \(C^1 \) function, \(\mathcal{E} : \mathcal{U} \to \mathbb{R} \), such that

\[
\mathcal{E}'(x)v = \langle v, \mathcal{M}(x) \rangle_{\mathcal{X} \times \mathcal{X}^*}, \quad \forall x \in \mathcal{U}, \quad v \in \mathcal{X},
\]

where \(\langle \cdot, \cdot \rangle_{\mathcal{X} \times \mathcal{X}^*} \) is the canonical bilinear form on \(\mathcal{X} \times \mathcal{X}^* \). The real-valued function, \(\mathcal{E} \), is called a potential for the gradient map, \(\mathcal{M} \).

Theorem 2.7 (Lojasiewicz–Simon gradient inequality for analytic functions on Banach spaces). (See [12, Corollary 3].) Let \(\mathcal{X} \) and \(\mathcal{X}^* \) be Banach spaces with continuous embeddings, \(\mathcal{X} \subset \mathcal{X}^* \subset \mathcal{X}^* \), and such that the embedding, \(\mathcal{X} \subset \mathcal{X}^* \), is definite. Let \(\mathcal{U} \subset \mathcal{X} \) be an open subset, \(\mathcal{E} : \mathcal{U} \to \mathbb{R} \) a \(C^2 \) function with real analytic gradient map, \(\mathcal{M} : \mathcal{U} \to \mathcal{X} \), and \(x_\infty \in \mathcal{U} \) a critical point of \(\mathcal{E} \), that is, \(\mathcal{M}(x_\infty) = 0 \). If \(\mathcal{M}'(x_\infty) : \mathcal{X} \to \mathcal{X}^* \) is a Fredholm operator with index zero, then there are constants, \(Z \in (0, \infty) \), and \(\sigma \in (0, 1] \), and \(\theta \in [1/2, 1) \), with the following
Because 1 and therefore,

$$\|x - x_\infty\|_{\mathcal{X}} < \sigma,$$

then

$$\|\mathcal{M}(x)\|_{\mathcal{X}} \geq Z|\mathcal{E}(x) - \mathcal{E}(x_\infty)|^p.$$

Theorem 2.2 follows from Theorem 2.7 by choosing

$$\mathcal{X} = W^{k,p}(M; f_{\infty}^*TN) \quad \text{and} \quad \mathcal{X} = W^{k-2,p}(M; f_{\infty}^*TN).$$

Theorem 2.4 follows from Theorem 2.2 when one can choose $k \geq 1$ and $p \in (1, \infty)$ with $kp > d$ so that there are continuous Sobolev embeddings, $C^{2,\lambda}(M; f_{\infty}^*TN) \subset W^{k,p}(M; f_{\infty}^*TN)$, and $L^2(M; f_{\infty}^*TN) \subset W^{k-2,p}(M; f_{\infty}^*TN)$. For example, if $d = 2$, then $k = p = 2$ will do. For $d \geq 2$, we may choose $k = 1$ and $d < p < \infty$ provided $L^2(M; \mathbb{R}) \subset W^{-1,p}(M; \mathbb{R})$ is a continuous embedding or, equivalently, $W^{1,p}(M; \mathbb{R}) \subset L^2(M; \mathbb{R})$ is a continuous embedding, where $p' = p/(p-1)$. According to [2] Theorem 4.12 when $1 \leq p' < d$, the latter embedding is continuous if $(p')^* = dp/(d-p) = dp/(d(p-1) - p) \geq 2$. But we must choose $p > d$ when $k = 1$ in Theorem 2.2 and if $p = d$, then $dp/(d(p-1) - p) = d^2/(d(d-1) - d) = d/(d-2) \geq 2$ implies $d \geq 2d - 4$ or $d \leq 4$. Hence, Theorem 2.2 implies Theorem 2.4 when $d = 2, 3$ (the case $d = 4$ is excluded since $p > d$ leads to $d < 4$ in the preceding inequalities). For arbitrary $d \geq 2$, another abstract Lojasiewicz–Simon gradient inequality [19] Theorem 2.4.2 (i) due to Huang implies Theorem 2.4 with the choices

$$\mathcal{X} = C^{2,\lambda}(M; f_{\infty}^*TN), \quad \mathcal{X} = C^\lambda(M; f_{\infty}^*TN), \quad \mathcal{H} = L^2(M; f_{\infty}^*TN),$$

and $\mathcal{H}_{ad} = W^{2,2}(M; f_{\infty}^*TN)$ with $\mathcal{A} = \Delta_q + 1$ in [19] Hypotheses (H1)–(H3), pages 34–35. We refer the reader to [13] for an exposition of Huang’s [19] Theorem 2.4.2 (i).

Alternatively, our [12] Theorem 3 implies Theorem 2.4 as we show in the proof of [12] Corollary 6.

3. A priori estimate for the difference of two harmonic maps

In this section, we give two proofs of Theorem 1 based on Theorems 2.2 and 2.4, respectively. We begin with the

Lemma 3.1 (A priori $W^{2,p}$ estimate for the difference of two harmonic maps). Let (M, g) be a closed Riemann surface, (N, h) a closed, smooth Riemannian manifold, and $p \in (1, 2]$ a constant. Then there is a constant $C = C(g, h, p) \in [1, \infty)$ with the following significance. If $f, f_\infty \in C^\infty(M; N)$ are harmonic maps and $q = 2p/(2-p) \in (2, \infty)$, then

$$\|f - f_\infty\|_{W^{2,p}(M; \mathbb{R}^n)} \leq C \left(\|df\|_{L^p(M; \mathbb{R}^n)} + \|df_\infty\|_{L^p(M; \mathbb{R}^n)} + 1 \right) \|f - f_\infty\|_{W^{1,2}(M; \mathbb{R}^n)}.$$

Proof. Because f and f_∞ are harmonic, equation (2.3) implies that

$$\Delta_g f - A_h(df, df) = 0, \quad \Delta_g f_\infty - A_h(df_\infty, df_\infty) = 0,$$

and therefore,

$$\Delta_g (f - f_\infty) - A_h(df, d(f - f_\infty)) - A_h(d(f - f_\infty), df_\infty) = 0.$$

Because $1/p = 1/2 + 1/q$ by hypothesis, the preceding equality yields the estimate,

$$\|\Delta_g (f - f_\infty)\|_{L^p(M; \mathbb{R}^n)} \leq C \left(\|df\|_{L^p(M; \mathbb{R}^n)} + \|df_\infty\|_{L^p(M; \mathbb{R}^n)} \right) \|d(f - f_\infty)\|_{L^2(M; \mathbb{R}^n)},$$

$$\|d(f - f_\infty)\|_{L^2(M; \mathbb{R}^n)} \leq C \left(\|df\|_{L^p(M; \mathbb{R}^n)} + \|df_\infty\|_{L^p(M; \mathbb{R}^n)} \right) \|f - f_\infty\|_{W^{1,2}(M; \mathbb{R}^n)}.$$
with $C = C(h) \in [1, \infty)$. The standard a priori $W^{2,p}$ estimate for an elliptic, linear, scalar, second-order partial differential operator over a bounded domain in Euclidean space \[14\] Theorem 9.13 yields the bound,

\[\|f - f_\infty\|_{W^{2,p}(M; \mathbb{R}^n)} \leq C \left(\|\Delta g(f - f_\infty)\|_{L^p(M; \mathbb{R}^n)} + \|f - f_\infty\|_{L^p(M; \mathbb{R}^n)} \right),\]

for a constant $C = C(g, p) \in [1, \infty)$. Combining the preceding two inequalities gives

\[\|f - f_\infty\|_{W^{2,p}(M; \mathbb{R}^n)} \leq C \left(\|df\|_{L^q(M; \mathbb{R}^n)} + \|df_\infty\|_{L^q(M; \mathbb{R}^n)} + \|d(f - f_\infty)\|_{L^2(M; \mathbb{R}^n)} + C\|f - f_\infty\|_{L^p(M; \mathbb{R}^n)},\]

for $C = C(g, h, p) \in [1, \infty)$. Since $p \leq 2$, this yields the desired estimate.

\[\square\]

Lemma 3.2 (A priori $W^{1,q}$ estimate for a harmonic map). Let (M, g) be a closed Riemann surface, (N, h) a closed, smooth Riemannian manifold, and $q \in (2, \infty)$ a constant. Then there is a constant $\varepsilon = \varepsilon(g, h, q) \in (0, 1]$ with the following significance. If $f, f_\infty \in C^\infty(M; N)$ are harmonic maps obeying \[1.2\] and choose $\varepsilon \in (0, 1]$ small enough that

\[\varepsilon \leq \varepsilon(f_\infty, g, h) \in (0, 1] \quad \text{in } \[1.2\] \quad \text{small enough that}\]

\[\varepsilon C \left(1 + \|f_\infty\|_{W^{1,q}(M; \mathbb{R}^n)} \right) \leq \sigma,\]

where the constant $\sigma \in (0, 1]$ is as in Theorem \[2.2\]. Consequently,

\[\|f - f_\infty\|_{W^{2,p}(M; \mathbb{R}^n)} < \sigma,\]

and the hypothesis \[2.4\] is satisfied. The Lojasiewicz–Simon gradient inequality \[2.5\] (with $d = k = 2$) in Theorem \[2.2\] therefore yields

\[\|\mathcal{M}(f)\|_{L^p(M; f^*TN)} \geq Z|\mathcal{E}(f) - \mathcal{E}(f_\infty)|^0.\]

But $\mathcal{M}(f) = 0$ since f is harmonic and thus $\mathcal{E}(f) = \mathcal{E}(f_\infty)$.

\[\square\]
It is possible to give an alternative proof of Theorem 1 using Theorem 2.4 with the aid of an elliptic bootstrapping argument to fulfill the stronger hypothesis (2.6). We first observe that Lemma 3.1 can be strengthened to give

Lemma 3.3 (A priori $W^{k,p}$ estimate for the difference of two harmonic maps). Let (M, g) be a closed Riemann surface, (N, h) a closed, smooth Riemannian manifold, $p \in (1, \infty)$ a constant, $k \geq 2$ an integer, and $f, f_\infty \in C^\infty(M; N)$ a harmonic map. Then there are constants $\varepsilon = \varepsilon(f_\infty, g, h, k, p) \in (0, 1]$ and $C = C(f_\infty, g, h, k, p) \in [1, \infty)$ with the following significance. If $f \in C^\infty(M; N)$ is a harmonic map that obeys (1.2), then

\[
\| f - f_\infty \|_{W^{k,p}(M; \mathbb{R}^n)} \leq C \| f - f_\infty \|_{W^{1,2}(M; \mathbb{R}^n)}.
\]

Proof. For $k = 2$ and $p \in (1, 2]$, the conclusion follows by combining (3.1) and (3.3). For $k \geq 3$ and $p \in (1, \infty)$, the conclusion follows by taking derivatives of (3.2) and applying a standard elliptic bootstrapping argument. \[\square\]

We can now give the

Proof of Theorem 1 using Theorem 2.4. For $p \in (1, \infty)$ and $\lambda \in (0, 1)$ and large enough $k = k(g, p, \lambda) \geq 2$, there is a continuous Sobolev embedding, $W^{k,p}(M; \mathbb{R}^n) \subset C^{2,\lambda}(M; \mathbb{R}^n)$, and thus a constant $C = C(g, k, p, \lambda) \in [1, \infty)$ such that

\[
\| f - f_\infty \|_{C^{2,\lambda}(M; \mathbb{R}^n)} \leq C \| f - f_\infty \|_{W^{k,p}(M; \mathbb{R}^n)}.
\]

Combining the preceding inequality with (3.4) yields the bound

\[
\| f - f_\infty \|_{C^{2,\lambda}(M; \mathbb{R}^n)} \leq C \| f - f_\infty \|_{W^{1,2}(M; \mathbb{R}^n)},
\]

for a constant $C = C(f_\infty, g, h, k, p, \lambda) \in [1, \infty)$. We now fix k, p, λ and choose $\varepsilon = \varepsilon(f_\infty, g, h) \in (0, 1]$ in (1.2) small enough that $C\varepsilon \leq \sigma$, where the constant $\sigma \in (0, 1]$ as in Theorem 2.4. Consequently,

\[
\| f - f_\infty \|_{C^{2,\lambda}(M; \mathbb{R}^n)} < \sigma,
\]

and the hypothesis (2.6) is satisfied. The Lojasiewicz–Simon gradient inequality (2.7) in Theorem 2.4 therefore yields

\[
\| \mathcal{M}(f) \|_{L^2(M, f^*TN)} \geq Z |\varepsilon'(f) - \varepsilon'(f_\infty)|^\theta.
\]

Again, $\mathcal{M}(f) = 0$ since f is harmonic and thus $\varepsilon'(f) = \varepsilon'(f_\infty)$. \[\square\]

References

[1] T. Adachi and T. Sunada, *Energy spectrum of certain harmonic mappings*, Compositio Math. 56 (1985), no. 2, 153–170. MR 809864 (87a:58046)

[2] R. A. Adams and J. F. Fournier, *Sobolev spaces*, second ed., Elsevier/Academic Press, Amsterdam, 2003. MR 2420478 (2009e:46025)

[3] P. Auscher, A. McIntosh, and A. J. Morris, *Calderón reproducing formulas and applications to Hardy spaces*, Rev. Mat. Iberoam. 31 (2015), no. 3, 865–900. MR 3420479

[4] M. Berger, *Nonlinearity and functional analysis*, Academic Press, New York, 1977. MR 0488101 (58 #7671)

[5] V. Branding, *Some aspects of Dirac-harmonic maps with curvature term*, Differential Geom. Appl. 40 (2015), 1–13. MR 3330992

[6] __________, *The heat flow for the full bosonic string*, Ann. Global Anal. Geom. 50 (2016), no. 4, 347–365. MR 3573990

[7] A. Carbonaro, A. McIntosh, and A. J. Morris, *Local Hardy spaces of differential forms on Riemannian manifolds*, J. Geom. Anal. 23 (2013), no. 1, 106–169. MR 3010275

[8] I. Chavel, *Eigenvalues in Riemannian geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984, Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk. MR 768584
[9] Q. Chen, J. Jost, J. Li, and G. Wang, Dirac-harmonic maps, Math. Z. 254 (2006), no. 2, 409–432. MR 2262709 (2007k:58021)

[10] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1–68. MR 495450 (82b:58033)

[11] Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385–524. MR 956352 (89j:58027)

[12] P. M. N. Feehan and M. Maridakis, Lojasiewicz–Simon gradient inequalities for analytic and Morse-Bott functionals on Banach spaces and applications to harmonic maps, arXiv:1510.03817v6.

[13] Lojasiewicz–Simon gradient inequalities for coupled Yang–Mills energy functionals, Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI, in press, arXiv:1510.03815v4.

[14] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190

[15] R. E. Greene and H. Jacobowitz, Analytic isometric embeddings, Ann. of Math. (2) 93 (1971), 189–204. MR 0283728 (44 #958)

[16] R. S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, vol. 471, Springer, New York, 1975. MR 0482822 (58 #2872)

[17] F. Hélein, Harmonic maps, conservation laws and moving frames, second ed., Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, 2002. MR 1913803 (2003g:58024)

[18] F. Hélein and J. C. Wood, Harmonic maps, Handbook of global analysis, Elsevier, Amsterdam, 2008, pp. 417–491. MR 2389639 (2009c:58019)

[19] S.-Z. Huang, Gradient inequalities, Mathematical Surveys and Monographs, vol. 126, American Mathematical Society, Providence, RI, 2006. MR 222672 (2007b:35033)

[20] J. Jost, Harmonic mappings between Riemannian manifolds, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 4, Australian National University, Centre for Mathematical Analysis, Canberra, 1984. MR 756629 (86b:58030)

[21] Harmonic maps between surfaces, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR 754769 (85j:58046)

[22] Two-dimensional geometric variational problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR 1100926 (92g:58045)

[23] Unstable solutions of two-dimensional geometric variational problems, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 205–244. MR 1216586 (94d:58033)

[24] Riemannian geometry and geometric analysis, sixth ed., Universitext, Springer, Heidelberg, 2011. MR 2829653

[25] J. Jost, L. Liu, and M. Zhu, Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, (2015), Max Planck Institute for Mathematics in the Sciences preprint, www.mis.mpg.de/de/publications/preprints/2015/prepr2015-77.html.

[26] H. Kwon, Asymptotic convergence of harmonic map heat flow, Ph.D. thesis, Stanford University, Palo Alto, CA, 2002. MR 2703296

[27] Y. Li and Y. Wang, A counterexample to the energy identity for sequences of α-harmonic maps, Pacific J. Math. 274 (2015), no. 1, 107–123. MR 3320872

[28] F.-H. Lin, Mapping problems, fundamental groups and defect measures, Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 25–52. MR 1701132 (2000m:58029)

[29] Q. Liu and Y. Yang, Rigididty of the harmonic map heat flow from the sphere to compact Kähler manifolds, Ark. Mat. 48 (2010), 121–130. MR 2594589 (2011a:53066)

[30] R. Moser, Partial regularity for harmonic maps and related problems, World Scientific, Hackensack, NJ, 2005. MR 2155901 (2006d:58016)

[31] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 0075639 (17,82b)

[32] Analyticity of the solutions of implicit function problems with analytic data, Ann. of Math. (2) 84 (1966), 345–355. MR 0205266 (34 #5099)

[33] T. H. Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), 595–633. MR 1431008 (98k:58069)
[34] J. Sacks and K. K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), 1–24. MR 604040 (82f:58035)

[35] J. Sacks and K. K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982), 639–652. MR 654854 (83i:58030)

[36] R. M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358. MR 765241 (86b:58032)

[37] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), no. 1-2, 277–319. MR 1257006

[38] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), 525–571. MR 727703 (85i:58030)

[39] L. Simon, Isolated singularities of extrema of geometric variational problems, Lecture Notes in Math., vol. 1161, Springer, Berlin, 1985. MR 821971 (87d:58045)

[40] L. Simon, Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1996. MR 1399562 (98c:58042)

[41] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 1232192

[42] M. Struwe, Variational methods, fourth ed., Springer, Berlin, 2008. MR 2431434 (2009g:58002)

[43] M. Taylor, Hardy spaces and BMO on manifolds with bounded geometry, J. Geom. Anal. 19 (2009), no. 1, 137–190. MR 2465300

[44] M. E. Taylor, Tools for PDE, Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI, 2000, Pseudodifferential operators, paradifferential operators, and layer potentials. MR 1766415

[45] P. Topping, Rigidity in the harmonic map heat flow, J. Differential Geom. 45 (1997), 593–610. MR 1472890 (99d:58050)

[46] K. K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1–50. MR 1001271 (90g:58028)

[47] H. Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, vol. 132, American Mathematical Society, Providence, RI, 1993. MR 1252178 (95c:58050)

[48] G. Valli, On the energy spectrum of harmonic 2-spheres in unitary groups, Topology 27 (1988), no. 2, 129–136. MR 948176 (90f:58042)

[49] Y. L. Xin, Geometry of harmonic maps, Progress in Nonlinear Differential Equations and their Applications, 23, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1391729 (97h:58052)

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States of America

E-mail address: feehan@math.rutgers.edu