Five-parton amplitudes with two-quark and two-photon at Next-to-leading Order

YOSHIKAZU YASUI

KEK
Oho 1-1, Tsukuba,Ibaraki 305-0801, Japan

Abstract

We discuss one-loop five-parton amplitudes with two-quark two-photon or three-photon external legs. The amplitudes are required to evaluate the NLO corrections for the $\gamma\gamma$jet production process at hadron colliders. The results have been already discussed by several groups in terms of QCD amplitudes. Here, we present more straightforward version of one-loop calculations without using the QCD amplitudes.

1 Introduction

The search for the Higgs boson will be one of the most important issue of the LHC experiment. However, if the mass of the Higgs boson is light ($M_H \leq 140$ GeV), the Higgs boson search at the LHC is not so easy. In this range, the rare decay mode into two photons ($H \rightarrow \gamma\gamma$) is expected to give rather clear signals[1]. There have been many calculations for this process including the radiative corrections [2, 3]. They found that the next-to-leading order (NLO) corrections to the Higgs production are very large[2]. The next-to-next-to-leading order (NNLO) corrections have been evaluated in the large top mass limit[3]. The NNLO corrections show a good convergence in the perturbative expansion. Now, the uncertainty of the higher order corrections for the Higgs production signal is less serious. On the other hand, the QCD background still has large uncertainties. The NLO corrections of the QCD background ($q\bar{q} \rightarrow \gamma\gamma$) are also very large. To make matters worse, NNLO corrections of gluon-gluon initiated processes, such as the Box type correction $gg \rightarrow \gamma\gamma$, may very large due to the large gluon distribution[4, 5]. Actually, the size of a NNLO correction $gg \rightarrow \gamma\gamma$ comparable to the LO contribution $q\bar{q} \rightarrow \gamma\gamma$. Thus, at least, full NNLO analysis is required to obtain the significant evaluation. However, the NNLO analysis of the QCD backgrounds is still on the way[6, 7].
It has been pointed out that the signal-to-background ratio can be improved by considering the associated production of the Higgs with a high transverse energy jet \((pp \rightarrow H \text{ jet} \rightarrow \gamma \gamma \text{ jet}) \). The existence of a high \(P_T \) jet in the final state allows to choose suitable cuts to suppress the QCD background. In addition, for this process, the ambiguity of the higher order corrections is less serious. The subprocess with two gluon initial states \(gg \rightarrow g\gamma\gamma \) again contributes first in the NNLO, which is believed to dominate the NNLO contributions. However, the LO correction, which is dominated by the subprocess \(qg \rightarrow q\gamma\gamma \), is enough larger than the NNLO contributions because of the large gluon distribution. Thus, it is expected that the NLO analysis is fairly accurate to understand the QCD background.

To evaluate the NLO corrections of the QCD background, we need the tree-level QCD amplitudes for six partons \((q\bar{q}\gamma\gamma gg, q\bar{q}Q\bar{Q}\gamma\gamma)\) and one-loop amplitudes for the five partons \((q\bar{q}\gamma\gamma g)\). In ref.\[10\], the compact expressions for the six-parton tree-level amplitudes are presented. The one-loop amplitudes are also discussed in ref.\[10\],\[10\]. They provided the systematic procedure to express the one-loop five-parton amplitudes with using the known results of the \(q\bar{q}gg\) amplitudes or "primitive amplitudes" \[11\]. However, the QCD amplitudes include a lot of unnecessary terms which disappear in the explicit expression of photons amplitudes. Thus, their one-loop expressions are still rather complicated. In this paper, we carry out the direct calculations of the one-loop five-parton amplitudes, which are involving two massless quarks, two or three external photons. Our final goal of this paper is to obtain the explicit expressions for the one-loop \(q\bar{q}gg\gamma\) amplitudes without using QCD amplitudes.

The paper is organized as follows. It is now popular that QCD matrix elements of multi-partons are expressed in terms of the color ordered helicity amplitudes. In section 2, we explain some technical prescriptions of these methods. We also explain known general forms of tree-level amplitudes with external gluons and/or photons. In Section 3, we present one-loop helicity amplitudes for five-parton processes including two or three external photons. In Section 4, we give some concluding remarks.

2 Tree-level Amplitudes

The color decomposition\[12\] and helicity basis method\[13\] are now standard techniques to express the multi-parton amplitudes. The color decomposition method is the procedure which constructs color ordered gauge invariant partial amplitudes in the QCD. At the tree level, amplitudes \(A_n\) involving two quarks and \(n - 2\) gluons can be decomposed into the partial amplitudes \(M\)'s which are characterized by the single string of the group matrices\[14\],

\[
A_n = g^{n-2} \sum_{a_i \in S_{n-2}} (T^{a_3} \cdots T^{a_n}) A_n(q^{i_1}, q^{i_2}, g^{i_3} \cdots, g^{i_n}),
\]
where \(i_j \) are parton helicities. \(T^a \) \((a = 1, 2, \ldots, N^2 - 1)\) are the matrices of the gauge group in the fundamental representation. \(S_n \) denotes the set of noncyclic permutations over 1, \(\cdots, n. \)

We also introduce the spinor helicity basis method\([13]\). We use the popular notations for the helicity basis of a massless spinor field \(\psi \)[14],

\[
\langle q^\pm \rangle \equiv \frac{1}{2}\psi(q)(1 \mp \gamma_5), \quad |q^\pm \rangle \equiv \frac{1}{2}(1 \pm \gamma_5)\psi(q).
\]

In this paper, all external momenta are taken to be outgoing. All color ordered helicity amplitudes are expressed in terms of following spinor products,

\[
\langle pq \rangle \equiv \langle p^- | q^+ \rangle, \quad [pq] \equiv \langle p^+ | q^- \rangle, \quad [pq]\langle qp \rangle = s_{pq} \equiv 2p \cdot q.
\]

We can also describe external gauge fields by using the spinor helicity basis. The polarization vectors can be written in terms of massless spinors \(|p^\pm \rangle \) and \(|k^\pm \rangle \),

\[
\varepsilon^\pm (p, k) = \pm \frac{\langle p^\pm | \gamma_\mu | k^\pm \rangle}{\sqrt{2} \langle k^\mp | p^\pm \rangle}, \tag{1}
\]

where \(p \) is the gauge boson momentum, \(k \) is the arbitrary momentum which satisfies \(k^2 = 0 \). We call this momentum \(k \) as the reference momentum. Physical quantities do not depend on the reference momentum because a change in the reference momentum is equivalent to a gauge transformation:

\[
\varepsilon^+ (p, k)_\mu \rightarrow \varepsilon^+ (p, k')_\mu - \sqrt{2}\frac{\langle k'k \rangle}{\langle kp \rangle \langle k'p \rangle} p_\mu.
\]

This means that we can choose an appropriate reference momentum for any gauge invariant subset of the full amplitude. For example, in this formula, we obtain the following identities,

\[
\varphi^\pm (p, k)|k^\pm \rangle = 0, \quad \langle k^\mp | \varphi^\pm (p, k) = 0. \tag{2}
\]

Using this identities, we can easily show that the amplitudes in which all gluons have the same helicity vanish\([14]\),

\[
A^{tree}_n(q, q, g_3^+, g_4^+, \cdots, g_n^+) = 0. \tag{3}
\]

From the above formula, we also obtain the simple expression of the amplitudes in which one gluon has negative helicity and all other gluons have positive helicity\([10]\),

\[
A^{tree}_n(q_1^+, q_2^-, g_3^+, \cdots, g_j^-, \cdots, g_n^+) = i\frac{(1j)(2j)^3}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}, \tag{4}
\]

where the \(j \)-th gluon has the negative helicity. Here, we followed the notations and conventions given in ref.\([14]\)(In section 3, we use different normalization condition of group factor \(T^a \)).
The amplitudes involving external photons are obtained by summing over permutations of gluon matrix elements \([14]\). The amplitudes containing gluons and photons with maximally-helicity-violating (MHV) configuration \((-,-,+,\cdots,+\)) are \([10]\),

\[
A^\text{tree}_n(q_1\bar{q}_2^{-}, g_3, \cdots, g_{r+2}, \gamma_{r+3}, \cdots, \gamma_{r+m+2}) = i \frac{(1i) (2i)^3}{\langle 12 \rangle \langle 23 \rangle \cdots \langle (r + 2)1 \rangle} \prod_{j=r+3}^{r+m+2} \left[\frac{\langle 21 \rangle \langle 2j \rangle \langle j1 \rangle}{\langle 2j \rangle \langle j1 \rangle} \right],
\]

where the i-th gluon or photon has the negative helicity. To obtain the one-loop level photons amplitudes, similar procedure have been applied to the one-loop amplitudes \([9, 10]\).

The amplitudes with other configuration of helicities are obtained by Parity inversion and charge conjugation \([11]\). Parity inversion reverses the sign of all helicities of external legs. This conversion is achieved by taking the complex conjugation. In terms of the helicity basis method, this operation is same as the replacement of spinor products \(\langle ij \rangle \leftrightarrow [ji]\), but with no substitution of \(i \rightarrow -i\). In addition, a factor \(-1\) is required for each quark anti-quark pair. Charge conjugation replaces quarks and anti-quarks without changing helicities. From these relations, we can reduce the number of independent partial amplitudes. For the case of \(q\bar{q}g\gamma\gamma\) amplitude, we only need to calculate the amplitudes with following three types of helicity configurations; \((q^- , q^+, g^+, \gamma^+, \gamma^+)\) and \((\bar{q}^-, q^+, g^+, \gamma^+, \gamma^+)\).

3 One-loop results

The one-loop \(q\bar{q}\gamma\gamma g\) amplitudes can be written by the three types gauge independent partial amplitude \(M^i_5(i = 1, 2, 3)\),

\[
A^{1-\text{loop}}_5(q\bar{q}\gamma\gamma g) = -\frac{e_q^2 g^3 T^a}{2} \left\{ \frac{1}{N_c} M^1_5(q\bar{q}\gamma\gamma g) + N_c M^2_5(q\bar{q}\gamma\gamma g) \right\} - \sum_{i=1}^{n_f} \frac{e_q^2 g^2 T^a}{2} M^3_5(q\bar{q}\gamma\gamma g).
\]

\(M^1_5\) and \(M^2_5\) have different dependence on the color factor \(N_c(=3\text{ for QCD})\) and \(M^3_5\) is the fermion loop contribution. \(e_q\) is the charge of the external quarks. \(e_{q_i}\) are the charges of loop fermions and \(n_f\) is flavor. To explain the one-loop results, we change normalization condition of the group generators as \(Tr(T^a T^b) = \delta^{ab}/2\).

To carry out the one-loop calculations, we need the information on the Feynman integrals. We follow the technology of the Feynman integral calculation which discussed in ref. \([15, 16]\). We use dimensionally regulated one-loop integrals in \(4-2\epsilon\) dimensions. In the conventional dimensional regularization(CDR) scheme, both momentum components and helicity states are dealt with in \(D(=4-2\epsilon)\) dimensions\([17]\). Thus, all gluons and photons have \(2-2\epsilon\) helicity states. On the other hand, the spinor helicity basis is defined in four dimensions. To apply the
helicity basis method to the one-loop calculations, we need some modification in the regularization scheme. The ’t Hooft and Veltman scheme is one of the solutions in which all polarization of observed particles are dealt with in four dimensions (then observed gluons and photons have 2 helicity state). The four-dimensional helicity (FDH) scheme is a more efficient approach when using the spinor helicity method. In this scheme momentum components of unobserved particles are dealt with $4 - 2\epsilon$ dimensions, but all helicities are treated in four dimensions. Thus, both observed and unobserved gauge bosons have 2 helicity states.

3.1 $\mathcal{M}_5^{1}(\bar{q}qg\gamma\gamma)$

The Feynman diagrams which contribute to the partial amplitudes \mathcal{M}_5^{1} are given in figure. Here, one of the external gauge boson legs is a gluon and others are photons. We notice that the amplitudes \mathcal{M}_5^{1} are obtained from the two-quark three-photon amplitudes $\mathcal{A}(\bar{q}q\gamma\gamma\gamma)$ by converting one of the photons into a gluon.

$$\mathcal{M}_5^{1}(q, \bar{q}, g, \gamma, \gamma) = m_5(q, \bar{q}, \gamma \rightarrow g, \gamma, \gamma),$$

$$\mathcal{A}^{1-\text{loop}}(q, \bar{q}, \gamma, \gamma, \gamma) = e_q g^2 N_c^2 - 1 \frac{2N_c}{2N_c} m_5(q, \bar{q}, \gamma, \gamma).$$

Therefore, we present the $q\bar{q}\gamma\gamma\gamma$ amplitudes at first.

From the analogy of eq.(2) and eq.(3), the tree level amplitudes in which all of photons have same helicity vanish,

$$m_n^{\text{tree}}(\bar{q}, q, \gamma_3^+, \gamma_4^+, \cdots, \gamma_n^+) = 0.$$

This result ensure that the corresponding amplitudes at one-loop level must be infrared and ultraviolet finite. The explicit form of the one-loop amplitude for the helicity $(q_1^+, q_2^-, \gamma_3^+, \gamma_4^+, \gamma_5^+)$ is,

$$m_5(q_1^+, q_2^-, \gamma_3^+, \gamma_4^+, \gamma_5^+) = \frac{i}{(4\pi)^2} \sqrt{2} \frac{[24|\langle 14\rangle\langle 35\rangle\langle 45\rangle\langle 34\rangle]}{s_{24}s_{51}},$$

$$\times \left[[51|23\langle 13\rangle\langle 25\rangle + (34\langle 12\rangle\langle 24\rangle\langle 13\rangle] s_{13}(s_{12} + s_{25}) \right].$$
An independent non-vanishing tree-level partial amplitude m^tree_5 is given by the helicity configuration $(q^-,\bar{q}^+,\gamma^-\gamma^+\gamma^+)$,

$$m^\text{tree}_5(q^+\bar{q}^-\gamma^+\gamma^-\gamma^+) = \frac{i2\sqrt{2}\langle 12 \rangle \langle 24 \rangle^2}{\langle 25 \rangle \langle 23 \rangle \langle 51 \rangle \langle 13 \rangle}.$$ \hspace{1cm} (7)

Here, we define the partial amplitudes m_5's as,

$$A^\text{tree}_5(q\bar{q}\gamma\gamma\gamma) \equiv e^3 m^\text{tree}_5(q\bar{q}\gamma\gamma\gamma)$$

The difference between eq.(5) and eq.(7) in the factor $2\sqrt{2}$ comes from the different normalization of group factor T^a. The corresponding one-loop level partial amplitude possesses ultraviolet and infrared divergences. It is well known that the singular part of one-loop n-point amplitudes have the universal structure\cite{18, 19},

$$m^{1\text{-loop}}_n|_{\text{singular}} = c^\Gamma m^\text{tree}_n \left[-\frac{1}{\epsilon^2} \sum_{j=1}^{n} \mathcal{S}^{[n]}_j \left(\frac{\mu^2}{-s_{j,j+1}}\right)^\epsilon + \mathcal{C}^{[n]}_j \frac{1}{\epsilon}\right],$$ \hspace{1cm} (8)

where

$$c^\Gamma = \frac{(4\pi)^\epsilon}{16\pi^2} \frac{\Gamma(1+\epsilon)\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}.$$

with $D = 4 - 2\epsilon$ and μ is the renormalization scale. m^{tree}_n is the tree-level partial amplitude. $\mathcal{S}^{[n]}_j$ are the coefficients of the soft singularities and $\mathcal{C}^{[n]}_j$ are the sum of the coefficients of the collinear and ultraviolet singularities which depend on the particle contents of amplitudes. For the massless QCD, accurate values of the coefficients $\mathcal{S}^{[n]}_j$ and $\mathcal{C}^{[n]}_j$ are well known\cite{11, 19}. Because of this fact, it is easy to check the singular part of one-loop level amplitudes. We will mention this matter in the end of this section. Here, we present the amplitudes in which ultraviolet divergences are unsubtracted.

We also introduce following functions to explain the non-singular parts,

\[L(s, t, u) \equiv Li_2 \left(1 - \frac{s}{u}\right) + Li_2 \left(1 - \frac{t}{u}\right) + \ln \frac{s}{u} \ln \frac{t}{u} - \frac{\pi^2}{6} \]

\[\text{Rln}^n \left(\frac{s}{t}\right) \equiv \frac{\ln \left(\frac{s}{t}\right)}{(s - t)^n}, \]

where \(Li_2(Z) \) is the dilogarithm function \([20] \):

\[Li_2(Z) \equiv - \int_0^Z dx x \log(1 - x). \]

The explicit form of the one-loop partial amplitude for the helicity configuration \((q^-, q^+, \gamma^-, \gamma^+, \gamma^+)\) is,

\[m_5(q_1^+ q_2^- \gamma_3^+ \gamma_4^- \gamma_5^+) = c_{14} m_{\text{tree}} \left\{ -\frac{2}{\epsilon^2} \left(\frac{\mu^2}{-s_{12}}\right)^\epsilon - \frac{3}{\epsilon(1 - 2\epsilon)} \left(\frac{\mu^2}{-s_{12}}\right)^\epsilon - 3 - \delta_D \right\} \]

\[+ \frac{i}{(4\pi)^2} \frac{\sqrt{2}}{[24]^2 (35)^2 (12)^2} \left[f_1 \ln \left(\frac{s_{44}}{s_{12}}\right) + f_2 \ln \left(\frac{s_{44}}{s_{45}}\right) + f_3 \text{Rln}^1 \left(\frac{s_{43}}{s_{45}}\right) + f_4 \text{Rln}^2 \left(\frac{s_{44}}{s_{23}}\right) \right. \]

\[-4 \langle 35 | 24 | s_{24} | (12)^2 s_{12} | [-13] | 34 \rangle [51 | 45 \rangle \left(\tilde{L}(s_{23}, s_{12}, s_{45}) \right), \]

\[-4 \langle 45 | 24 | s_{45} | (12)^3 s_{13} | 35 \rangle (\tilde{L}(s_{14}, s_{45}, s_{23}) + \frac{s_{43}^2}{s_{13}^2} \tilde{L}(s_{23}, s_{12}, s_{45})) \]

\[-4 \langle 12 | 35 | s_{24} | (51 | 23 \rangle (L(s_{12}, s_{51}, s_{34}) + L(s_{34}, s_{24}, s_{51}) \rangle \]

\[+ \left\{ \frac{1}{35} \left([14] | 51 \rangle | 34 \rangle + (23) | 24 \rangle | 45 \rangle \right) (s_{34} + s_{45}) - 2 \frac{s_{34}^2}{s_{51}} \left(-s_{12} + s_{34} - 2 s_{51}\right) \]

\[-2 \frac{23}{s_{23} s_{51}} \left([51] | 12 \rangle | 35 \rangle - (34) | 45 \rangle | 25 \rangle \right) (s_{51} - s_{34})^2 \right\} . \]

The scheme dependence is controlled by the parameter \(\delta_D \). We obtain \(\delta_D = 0 \) in the FDH scheme and \(\delta_D = 1 \) in the ’t Hooft-Veltman scheme. Here, we also used the following definitions,

\[\tilde{L}(s_{23}, s_{12}, s_{45}) \equiv L(s_{23}, s_{12}, s_{45}) - s_{13} \text{Rln}^1 \left(\frac{s_{23}}{s_{45}}\right) \]

\[\tilde{L}(s_{14}, s_{45}, s_{23}) \equiv L(s_{14}, s_{45}, s_{23}) - s_{51} \text{Rln}^1 \left(\frac{s_{23}}{s_{45}}\right) - s_{51} \text{Rln}^1 \left(\frac{s_{14}}{s_{23}}\right) \]
f_i ($i = 1, \ldots, 4$) and R_0 are given by,

\[
f_1 = -\frac{[23](-13\langle 25\rangle[51] + [24][45]\langle 35\rangle)}{s_{23}} (s_{25} + 3s_{13} - 3s_{45}) \\
+ \frac{2[51]([45]\langle 12\rangle[24] - \langle 13\rangle[23][25])}{s_{51}} s_{24} - 3\frac{([45]\langle 14\rangle[13]\langle 35\rangle + [45]\langle 14\rangle[12][25])}{s_{25}s_{13}} s_{45}^2 \\
- 2\frac{(\langle 51\rangle[25][23]\langle 13\rangle + [45][51]\langle 12\rangle[24] - s_{51}s_{45})}{s_{25}} (s_{45} + s_{23}) \\
+ \frac{((45)[14]\langle 12\rangle[25] - \langle 51\rangle[12][23]\langle 35\rangle)}{s_{25}} s_{45} - s_{45} (s_{45} + s_{23}) (s_{51} - 2s_{12}) + s_{45}^2 (2s_{51} + 3s_{45}) \\
- \frac{[13][45]\langle 14\rangle\langle 35\rangle - \langle 51\rangle[25][23])}{s_{13}} (s_{25} + 4s_{45}) + 3\frac{s_{45}^2 (s_{23} - s_{45})}{s_{13}} \\
- 5\langle 51\rangle[12][23]\langle 35\rangle + 5\langle 51\rangle[25][23]\langle 13\rangle + 2s_{51}^2 + s_{34}^2 - 3s_{34}s_{51} - 2s_{23}s_{45} - 2s_{12}^2 \\
- 3s_{51}s_{12} + 3s_{34}s_{45} + 4s_{34}s_{23} + s_{51}s_{45} - s_{12}s_{34} + s_{12}s_{45} + 7s_{45}^2 + 4s_{23}^2
\]

\[
f_2 = -4\frac{[25][-12\langle 14\rangle[45] + (51)[23]\langle 13\rangle]}{s_{25}} (s_{23} + 3s_{12}) \\
+ 8\frac{[23][51]\langle 12\rangle\langle 35\rangle - (25)[45]\langle 34\rangle)}{s_{23}} s_{12} \\
- 4s_{45}s_{12} + 4s_{23}^2 + 8s_{12}^2 - 4s_{34}^2 + 16s_{12}s_{23} - 8s_{34}s_{45}
\]

\[
f_3 = \frac{[23][12][51]\langle 35\rangle - (34)[45]\langle 25\rangle)}{s_{51}s_{23}} s_{34}^2 (-3s_{45} + 2s_{12}) \\
- \frac{[51][12][23]\langle 35\rangle + [34][45][51]\langle 13\rangle + s_{34}^2 - s_{34}s_{12}}{s_{51}} (s_{23}s_{12} + s_{23}s_{13} + s_{34}s_{12} + 3s_{34}s_{13}) \\
- \frac{[34][45][51]\langle 13\rangle - [23][34][45]\langle 25\rangle)}{s_{51}} s_{34} (s_{45} - 3s_{34} - s_{23}) \\
+ \frac{[23][-51][12]\langle 35\rangle + (25)[45]\langle 34\rangle)}{s_{23}} (2s_{51}s_{12} - 4s_{34}s_{12} + 5s_{34}s_{45} - 2s_{45}s_{51}) \\
- 3\frac{[34][45][51]\langle 13\rangle - [23][34][45][25] + s_{45}s_{13} + s_{34}s_{12} + s_{45}s_{23}}{s_{34}} s_{34} \\
- 2\frac{[34]([12][23]\langle 14\rangle - [45][51]\langle 13\rangle)}{s_{23}} (-s_{45} + s_{12}) - 2s_{45} (-s_{34}^2 + s_{51}s_{12} - s_{23}s_{34}) \\
+ 2(s_{51} - s_{34}) s_{12}^2 - 5s_{34}s_{45} (s_{45} - s_{34} + s_{51}) + 5s_{34}s_{23} (s_{12} + s_{45}) \\
- 2s_{34}^2 (s_{23} - s_{45}) + 3s_{45} (s_{51}s_{12} + s_{45}s_{23})
\]

\[
f_4 = \frac{[23][51][12]\langle 35\rangle - (25)[45]\langle 34\rangle)}{s_{51}s_{23}} s_{34} (s_{34} - s_{51}) (s_{51}^2 - s_{45}^2) + \frac{s_{34}^2s_{45}^2 (s_{12} - s_{34})}{s_{51}} \\
- \frac{[51][35][23][12] + [34][45][13]}{s_{51}} (s_{12} - s_{34}) (s_{12}s_{23} - s_{23}s_{34} + 2s_{34}s_{45})
\]

8
The Feynman diagrams which contribute to the $\mathcal{O}(\alpha_s)$-part are given in figure 2. The amplitude of all helicity positive gluon and photons vanishes again at the tree level. The corresponding amplitude at one-loop level is infrared and ultraviolet
finite as,

\[\mathcal{M}_5^2(g_1^- q_2^- \gamma_3^+ \gamma_4^+ q_5^+) = -i \frac{\sqrt{2}}{(4\pi)^2} \frac{\left[[23](-12)(34)[14] + [45](35)[24] \right] s_{12}s_{14} - \left([23](34)[45][25] + [12](23)[34][14] \right) s_{23}s_{34}}{s_{45}s_{23}} \]

\times \left[(-[45][51][12][24] + [23][34][45][25] + 2[12][23][34][14]) (s_{51} - s_{34}) \right] + \left([45][51][12][24] + [12][23][34][14] - s_{34}s_{12} - 2s_{34}s_{23} \right) \left(s_{12} + s_{51} + s_{34} \right)

\begin{align*}
&+ \langle [45][14][12][25] + [45][14][13][35] - s_{23}^2 - s_{34}s_{23} + s_{45}s_{23} - 4s_{23}(s_{45} + s_{34}) \rangle \\
& + (3 \leftrightarrow 4).
\end{align*}

Tree level amplitudes with the helicity configuration \((q, g, \gamma^+, \gamma^+, g^+)\) are non-vanishing. Corresponding one-loop amplitudes have the ultraviolet and infrared divergences, again.

The amplitude in which a gluon has negative helicity and two photons have positive helicity is,

\[\mathcal{M}_5^2(g_1^- q_2^- \gamma_3^+ \gamma_4^+ q_5^+) = -e_T \mathcal{M}_{\text{tree}} \left\{ -2 \frac{\mu^2}{e^2} \left(\frac{\mu^2}{-s_{12}} \right)^\epsilon - \frac{2}{e^2} \left(\frac{\mu^2}{-s_{51}} \right)^\epsilon - \frac{3}{e(1-2\epsilon)} \left(\frac{\mu^2}{-s_{51}} \right)^\epsilon - \delta_D \right\} \]

\[-i \frac{\sqrt{2}}{(4\pi)^2} \frac{\left[2(14)[12]^2[25]s_{34}(2[45][51][24] + 3[23][34][14]) \right] Rln^2 \left(\frac{s_{51}}{s_{23}} \right)}{(12)^2[34]^2[25]} \]

\[-4 \frac{\langle 34 \rangle^2[25]s_{12}^2}{\langle 23 \rangle \langle 45 \rangle} \left(L(s_{51}, s_{45}, s_{23}) + L(s_{23}, s_{12}, s_{45}) \right) + 4 \frac{\langle 25 \rangle[51][34][12]s_{12}}{\langle 23 \rangle \langle 24 \rangle} L(s_{12}, s_{51}, s_{34}) \]

Figure 2: Feynman diagrams for \(O(N_c)\)
\[-2 \langle 25 \rangle \langle 12 \rangle \langle 45 \rangle \langle 14 \rangle_{s_{51} s_{34}} - \langle 24 \rangle \langle 25 \rangle \langle 51 \rangle_{s_{45}} s_{34} \over s_{51} s_{45} (s_{23} - s_{51}) \right] + (3 \leftrightarrow 4) \right],

where

\[\mathcal{M}_{5}^{\text{tree}} = \frac{2 \sqrt{2} i (12) (25)}{(45) (24) (23) (35)}. \]

The tree level amplitudes are given by,

\[A_{5}^{\text{tree}}(q \bar{q} g g \gamma) = e^{2} g T^{a} \mathcal{M}_{5}^{\text{tree}}(q \bar{q} g g \gamma). \]

The amplitude with the helicity \((q^{-}, q^{+}, \gamma^{+}, \gamma^{-}, g^{+})\) is given by,

\[
\mathcal{M}_{5}^{2}(g_{1}^{+} q_{2}^{-} \gamma_{3}^{-} \gamma_{4}^{+} g_{5}^{+}) = -c_{\Gamma} \mathcal{M}_{5}^{\text{tree}} \left\{ -\frac{2}{e^2} \left(\frac{\mu_{s_{12}}}{-s_{12}} \right) - \frac{2}{e^2} \left(\frac{\mu_{s_{12}}}{-s_{51}} \right) - \frac{3}{\epsilon(1-2\epsilon)} \left(\frac{\mu_{s_{51}}}{-s_{51}} \right) \right. \\
-2L(s_{34}, s_{23}, s_{51}) - 2L(s_{12}, s_{51}, s_{34}) - 2 - \delta_D \left\} \\
- \frac{i}{(4\pi)^2} \frac{\sqrt{2}}{[23]^{2}(14)^{2}(25)} \left[f_{1} R ln^{2} \left(\frac{s_{35}}{s_{12}} \right) + f_{2} R ln^{2} \left(\frac{s_{35}}{s_{24}} \right) + f_{3} R ln^{2} \left(\frac{s_{34}}{s_{12}} \right) \right. \\
+ \left\{ -4 \frac{[45] [51] [12] [24]}{s_{12} s_{45}^{3}} \right\} \\
+ \frac{2}{[45] [12] [51]} - [23] [34] [45] [25] + 2 [23] [34] [45] [25] + s_{12} s_{45} \right\} \\
+ 2 \left[45 \right] \left(-[23] [34] [25] \right) s_{51} s_{24} [25] - 2 \left[23 \right] [34] [51] (12) [35] + [13] [45] [34] \right) (s_{23} + s_{34}) \\
- 2 s_{45} \frac{s_{23}^{2} (s_{23} + s_{45})}{s_{51}} - 2 \frac{[24] [51] [25] (14) - [34] [12] [13] + 2 s_{51}^{2} - 6 s_{45} s_{51} + 2 s_{51} s_{23}}{s_{51} s_{24} s_{51} s_{12} + 2 s_{45} s_{23} + 4 s_{34}^{2} + 2 s_{12} s_{34}} \right\} \left[L(s_{34}, s_{35}, s_{12}) \right. \\
+ 4 \left[14 \right] [25] s_{23}^{2} \left[L(s_{51}, s_{45}, s_{23}) \right. \\
+ \left\{ \frac{[21]}{[12] [45]} \right\} \left[s_{51} s_{24} s_{14} \right. \\
+ 2 \frac{s_{45} [12] [13] [24] - [23] [45] [25] [12] [23] (14) + [45] [51] [13]}{s_{24} s_{14}} \right\} \left. L(s_{24}, s_{12}, s_{35}) + R_{0} \right],
\]
where
\[\mathcal{M}^{\text{tree}} = \frac{i2\sqrt{2}(25)(23)^2}{(12)(45)(24)(51)}. \]

We also used following functions,
\[
\begin{align*}
\tilde{L}(s_{34}, s_{35}, s_{12}) & = L(s_{34}, s_{35}, s_{12}) - s_{45} Rln^1 \left(\frac{s_{35}}{s_{12}} \right) + \frac{1}{2} s_{45}^2 Rln^2 \left(\frac{s_{35}}{s_{12}} \right) - s_{45} Rln^1 \left(\frac{s_{34}}{s_{12}} \right) \\
\tilde{L}(s_{24}, s_{12}, s_{35}) & = L(s_{24}, s_{12}, s_{35}) + \frac{1}{2} s_{14} s_{24} Rln^2 \left(\frac{s_{35}}{s_{12}} \right).
\end{align*}
\]

\(f_i \) (i = 1, 2, 3) and \(R_0 \) are,
\[
\begin{align*}
f_1 & = -[24] ((45)[51](12) + [13][14][23]) s_{23}^2 \left(-\frac{-8 s_{45} s_{24} + 3 s_{23}^2 + 6 s_{45}^2}{s_{51} s_{24}} - \frac{3 s_{51} - 6 s_{23} + 8 s_{45}}{s_{24}} \right) \\
& \quad + \frac{[51] ((13)[45][34] + (12)[23][35]) (s_{23} - s_{45}) (3 s_{23}^2 - 3 s_{34} s_{23} - 5 s_{45} s_{23} + 3 s_{34}^2 + 3 s_{34} s_{45})}{s_{12} s_{51}} \\
& \quad + \left(2 [23][34][45][25] + 2 [23][24][14][13] - 2 [51][25][23][13] - 3 s_{23}^2 \right) s_{23} (2 s_{51} + 4 s_{45} - 5 s_{23}) \\
& \quad - 3 ([34][45][51][13] + [23][24][14][13] - 2 [12][23][34][14] \\
& \quad + 2 s_{34} s_{45} + s_{51} s_{23} - 2 s_{23}^2) (s_{45} + s_{34}) \\
& \quad - s_{23} (s_{23}^3 - 6 s_{34} s_{23}^2 - s_{23}^2 s_{12} - s_{51} s_{23}^2 + 2 s_{23}^2 s_{45} - 2 s_{51} s_{23} s_{12} - 7 s_{23} s_{45}^2 \\
& \quad - 2 s_{23} s_{34} s_{45} + 3 s_{23} s_{34} s_{12} + 6 s_{45}^2 s_{45} - 2 s_{12} s_{45}^2 + 2 s_{45}^3 + 6 s_{34} s_{45}^2).
\end{align*}
\]

\[
\begin{align*}
f_2 & = [51] ((13)[45][34] + (12)[23][35]) s_{14} \\
& \times \left(-\frac{s_{23} (s_{23} - s_{45})}{s_{51}} + 3 \frac{s_{34} (s_{23} - s_{45})}{s_{51}} + 2 \frac{s_{12} (-s_{23} + s_{34})}{s_{51}} \right) \\
& \quad + 3 \left([23][34][45][25] - [51][12][23][35] + s_{23}^2 \right) (s_{12} - s_{45}) s_{14} \\
& \quad + 2 \left([23][34][45][25] - [51][12][23][35] - s_{34} s_{12} \right) (s_{12} + s_{23}) s_{14} \\
& \quad + 2 [14] ((12)[23][34] + [51][25][24]) s_{12} s_{25} - 2 s_{14} s_{23}^2 (-s_{23} + s_{51} + s_{12} + s_{34}) \\
& \quad - s_{14} (-2 s_{51} + 2 s_{34} + 3 s_{23}) s_{12}^2 - s_{14} (3 s_{34} - s_{23}) s_{45}^2 \\
& \quad + s_{14} s_{34} (-4 s_{51} + 2 s_{34} + 5 s_{45}) s_{12} + 2 s_{14} (3 s_{23} s_{34} s_{45} + s_{51} s_{12}).
\end{align*}
\]

\[
\begin{align*}
f_3 & = -[45] ((51)[12][24] - [23][34][25]) s_{23} \frac{s_{34} s_{23} - s_{12} s_{23} - 2 s_{51} s_{12}}{s_{51} s_{12}} \\
& \quad + \frac{([51][25][23][13] + [23][34][45][25]) s_{23} (3 s_{25} s_{25} + 2 (s_{51} - s_{34}) s_{45})}{s_{51} s_{24}}.
\end{align*}
\]
3.3 \(M_3^2(\bar{q}qg\gamma\gamma) \)

In the end of this section, we also give amplitudes which come from the fermion loop contributions. Here, we only consider massless quark loops.

\[M_3^2(q_1^+ q_2^- q_3^+ \gamma^+ \gamma^+) \]
\[
M_3^2(q_1^+ q_2^- g_3^+ \gamma_4^- \gamma_5^-) = M_3^2(q_1^+ q_2^- g_3^+ \gamma_4^- \gamma_5^-)
\]
\[
= \frac{16}{i\sqrt{2}(4\pi)^2} \left\{ \left((12)[23][45] - (51)[12][23][45] \right) s_{14} - (51)[12][24]s_{24} - s_{25}s_{24}s_{14} + s_{24}^2s_{51} \right\}
\]
\[
\left(s_{12}[24][41][35](54)(43) \right)
\]
\[
\times \frac{8}{(4\pi)^2 \sqrt{2}[24]^2(35)^2(12)} \left\{ -2s_{24}^2 (-s_{12} - s_{35}) s_{35}Rln^2 \left(\frac{s_{34}}{s_{12}} \right) \right\}
\]
\[
+ \left\{ \frac{1}{2} \left((12)[23][45] - (51)[12][23][45] + s_{12}s_{14} \right) s_{35}
\right\}
\]
\[
+ \left\{ \frac{2}{(12)[23][45] - (51)[12][23][45] - s_{34}s_{23} + s_{24}^2 (-s_{23}^2 + s_{12}s_{51} + s_{23}s_{51})} \right\}
\]
\[
\left((-s_{12} + s_{45}) s_{35} \right)
\]
\[
- \frac{2}{(12)[23][45] - (51)[12][23][45] - s_{34}s_{23} + 2s_{34}s_{51}} \left(s_{12}s_{23} + s_{51} + 2s_{23} \right)
\]
\[
- \frac{2}{(12)[23][45] - (51)[12][23][45] - s_{34}s_{23} + s_{24}^2 (-s_{23}^2 + s_{12}s_{51} + s_{23}s_{51})}
\]
\[
\times \left\{ \ln \left(\frac{s_{34}}{s_{12}} \right) - \frac{(s_{45} - s_{12})^2}{(s_{34} - s_{12})^2} \ln \left(\frac{s_{34}}{s_{12}} \right) \right\}
\]
\[
- \frac{2}{(35)^2[24]^2} \left((34)^2(25)^2 + (23)^2(45)^2 \right) \left\{ \left(\frac{L(s_{34}, s_{45}, s_{12})}{s_{35}^2} - \frac{(2s_{45} - 3s_{12} + 2s_{34})}{s_{35}} \right) Rln^2 \left(\frac{34}{12} \right) \right\}
\]
\[
\left(\frac{(12)[23][45] - (51)[12][23][45]}{s_{12}(s_{34} - s_{12})} \right) s_{34} + (s_{34} + s_{23}) + \frac{2}{s_{12}} \left(s_{23}s_{51}s_{34} \right)
\]
\[
- \frac{(s_{45} - s_{12}) s_{34} - s_{12}}{s_{34} - s_{12}} \right\}
\]
\[
\left((12)[23][45] - (51)[12][23][45] - s_{12}s_{45}(-s_{45} + s_{51}) \right)
\]
\[
+ \left\{ \frac{2}{s_{34} - s_{12}} \right\}
\]
\[
+ \frac{2}{s_{34} - s_{12}} \left(s_{12} \right)
\]
\[
+ \frac{2}{s_{34} - s_{12}} \left(s_{45} + s_{23} + s_{12} \right) \left(s_{45} + s_{34} \right) \left(-s_{45} + s_{51} \right)
\]
\[
+ \frac{(s_{12})}{s_{34} - s_{12}} \left((12)[23][45] - (51)[12][23][45] + s_{45}s_{34} \right) \left(-s_{45} - s_{34} + s_{23} + s_{51} \right)
\]
\[
\left(\frac{1}{s_{12}} \right)
\]
\[
\left. + \frac{s_{34}^2}{s_{12}} + 2s_{34}s_{51} + s_{45}^2 + 4s_{34}s_{23} + s_{51}^2 + s_{23}^2 \right]\).
\]

Now, we give some comments concerning the cross-check of our results. Besides the previous results, we also carried out the direct calculation of the amplitudes with
the helicities \((\bar{q}^{-}, q^{+}, g^{\pm}, \gamma^{\pm}, \gamma^{\pm})\) and \((\bar{q}^{-}, q^{+}, g^{\pm}, \gamma^{\pm}, \gamma^{-})\). These amplitudes are obtained from the previous results by using Parity inversion and charge conjugation. This procedure is basically the same procedure discussed in section 2. Our direct calculations are consistent with this argument.

In addition, we checked the singular parts. Singular parts of one-loop amplitudes have the well known universal structure eq. (8) [18, 19]. Thus, we can easily compute the singular part of the amplitudes from the known results of ref. [11] by using the procedure given in ref. [9, 10]. To evaluate the singular part, we have to keep in mind that the regularization scheme does not affect the universal structure of the \(1/\epsilon^2\) pole parts but the \(1/\epsilon\) pole parts are scheme dependent. We estimated the singular parts in the FDH scheme and our results are consistent with the results of ref. [9, 10].

We also performed a consistency check of the scheme dependence. It is well known that, the FDH scheme at one-loop level is equivalent to the dimensional reduction (DR) scheme [21]. The conversion relation between the DR scheme and ’t Hooft-Veltman scheme for the two-quark (n-2)gluon amplitudes is discussed in ref. [11, 22]. From their argument, the conversion from the DR scheme to the ’t Hooft-Veltman scheme at one-loop level is obtained by shifting the amplitudes as \(A_n \to A_n + \delta_n\) with \(\delta_n = -c_T(1 - \frac{1}{N_c})A_{n_{ree}}\). Now, we can consider the color-less limits \((C_f \to 1\) and \(C_A \to 0\) of our results and the results in ref. [11, 10]. In this limits, both results give the same quantity of shifting parameter \(\delta_5\).

4 Conclusion

In this paper, we presented one-loop five-parton amplitudes involving two massless quarks, two or three photons external legs. The one-loop five parton amplitudes with external photons are required to evaluate the QCD background for the Higgs production in association with a jet. These amplitudes have been discussed in terms of the known QCD amplitude \((q\bar{q}ggg)\) [11]. They give the systematic procedure to replace external gluons into photons. However, their results are still in rather large expression. Here, we computed the one-loop helicity amplitudes for the process \(q\bar{q}g\gamma\gamma\) directly and obtained more compact expression successfully. The amplitudes which we presented here, together with the six parton tree-level amplitudes \((q\bar{q}\gamma\gamma gg, q\bar{q}QQ\gamma\gamma)\) [10], we can estimate the NLO QCD background for the associated Higgs production with a jet.

Acknowledgments

I would like to thank Prof. Bern and Dr. Kilgore for useful discussions and comments, and Prof. Trócsányi for pointing out an error in an earlier version of eq. [8] and typos. I also thank Prof. Okada and Prof. Yazaki.
References

[1] CMS collaboration, Technical Proposal, CERN/LHCC 94-39 (1994)
CMS collaboration, Technical Design Report, CERN/LHCC 97-33 (1997)
ATLAS collaboration, Technical Proposal, report CERN/LHCC/94-43 (1994);
ATLAS collaboration, Detector and Physics Performance Technical Design Report, report CERN/LHCC/99-15 (1999).

[2] S. Dawson, *Nucl. Phys. B* **359** 283 (1991);
A. Djouadi, M. Spira and P. M. Zerwas, *Phys. Lett. B* **264** 440 (1991);
D. Graudenz, M. Spira and P. M. Zerwas, *Phys. Rev. Lett.* **70** 1372 (1993);
A. Djouadi, D. Graudenz, M. Spira and P. M. Zerwas, *Nucl. Phys. B* **453** 17 (1995).

[3] R. V. Harlander, *Phys.Lett. B* **492** 74 (2000);
R. V. Harlander and W. B. Kilgore, *Phys.Rev. D* **64** 013015 (2001).

[4] D. de Florian and Z. Kunszt, *Phys. Lett. B* **460** 184 (1999);

[5] C. Balazs, P. Nadolsky, C. Schmidt and C. P. Tuan, *Phys. Lett. B* **489** 157 (2000).

[6] T. Binoth, J. Ph. Guillet, E. Pilon, M. Werlen, *Eur.Phys.J.C* **16** 311 (2000).

[7] Recently, the last ingredients needed for the NNLO analysis were calculated; namely the two-loop amplitudes. These results enable the complete NNLO analysis. See, for example, Z. Bern, A. De Freitas, L. Dixon, *JHEP* **0109** 037 (2001) for gluon fusion into two photons; C. Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans, *Nucl.Phys. B* **605** 486 (2001) for massless quark-gluon scattering.

[8] S. Abdullin, M. Dubinin, V. Ilyin, D. Kovalenko, V. Savirin and N. Stepanov, *Phys. Lett.B* **431** 41 (1998).

[9] A. Signer, *Phys. Lett.B* **357** 204 (1995).

[10] V. Del Duca, W.B. Kilgore and F. Maltoni, *Nucl. Phys. B* **566** 252 (2000);
Nucl. Phys. B **574** 851 (2000).

[11] Z. Bern, L. Dixon and D. A. Kosower, *Nucl. Phys.B* **437** 259 (1995).

[12] J. E. Paton and H. M. Chan, *Nucl. Phys. B* **10** 516 (1969);
P. Cvitanovic, P. G. Lauwers, and P. N. Scharbach *Nucl. Phys. B* **186** 165 (1981);
F. A. Berends and W. T. Giele, *Nucl. Phys. B* **294** 700 (1987);
D. A. Kosower, B. Lee and V. Nair, *Phys. Lett. B* **201** 85 (1988);
M. Mangano, S. Parke and Z. Xu, *Nucl. Phys. B* **298** 653 (1988);
M. Mangano, *Nucl. Phys. B* **309** 461 (1988);
D. Zeppenfeld, *Int.J.Mod.Phys. A* **3** 2175 (1988);
Z. Bern and D. A. Kosower, *Nucl. Phys. B* **362** 389 (1991).
[13] F. Bernds, R. Kleiss, P. De Causmsecker, R. Gastmans and T. T. Wu, *Phys. Lett.* **103B** 124 (1981);
 P. De Causmsecker, R. Gastmans, W. Troost and T. T. Wu, *Nucl. Phys.* **B206** 53 (1982);
 J. Gunion and Z. Kunszt, *Phys. Lett.* **B161** 333 (1985);
 R. Kleiss and W. J. Stirling, *Nucl. Phys.* **B262** 235 (1985);
 Z. Xu, Da-Hua Zhang and L. Chang, *Nucl. Phys.* **B291** 392 (1987).

[14] M. Mangano and S. Parke, *Phys. Rep.* **200** 301 (1991), and reference therein.

[15] W. van Neerven and J. A. M. Vermaseren, *Phys. Lett.* **B137** 241 (1984).

[16] Z. Bern, L. Dixon and D. A. Kosower, *Phys. Lett.* **B302** 299 (1993); *Nucl. Phys.* **B412** 751 (1994).

[17] Z. Bern and D. A. Kosower, *Nucl. Phys.* **B379** 451 (1992);
 Z. Bern, Lectures presented at TASI 1992, UCLA/93/TEP/5, [hep-ph/9304249](http://arxiv.org/abs/hep-ph/9304249).

[18] Z. Kunszt and D. E. Soper, *Phys. Rev.* **D46** 192 (1992);
 Z. Kunszt, A. Signer and Z. Trócsáni, *Nucl. Phys.* **B420** 550 (1994);
 W.T. Giele and E.W.N. Glover, *Phys. Rev.* **D46** 1980 (1992);
 W.T. Giele, E.W.N. Glover and D.A. Kosower, *Nucl. Phys.* **B367** 637 (1991).

[19] Infrared behavior of one-loop amplitudes are discussed in Z. Bern and G. Chalmers, *Nucl. Phys.* **B447** 465 (1995);
 Z. Bern, V. Del Duca, C. R. Schmidt, *Phys. Lett.* **B445** 168 (1998);
 Z. Bern, V. Del Duca, W. B. Kilgore and C. R. Schmidt, *Phys. Rev.* **D60** 116001 (1999).

[20] L. Lewin, *Polylogarithms and associated functions*, (North Holland, New York, 1981)

[21] W. Siegel, *Phys. Lett.* **94B** (1980) 37.

[22] Z. Kunstz, A. Signer and Z. Trócsáni, *Nucl. Phys.* **B411** 397(1994).