YIL counteracts ghrelin-inhibited insulin release in pancreatic islets of Langerhans

RS Rita¹,²*, K Dezaki², T Yada²

¹Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
²Division of Integrative Physiology, Department of Physiology, Jichi Medical University, School of Medicine, Tochigi, Japan

Email: rauzasukmarita@med.unand.ac.id

Abstract. Ghrelin is a peptide hormone that is produced mainly from the stomach. Ghrelin is reported to have many biological functions, such as modulating feeding behavior, energy balance, and glucose homeostasis. This study aimed to examine whether YIL, a ghrelin receptor antagonist, could counteract the effect of ghrelin-inhibited insulin release in the pancreatic islet of Langerhans. This study is experimental research using wild-type C57BL/6J mice [8-10 weeks old]. Islet of Langerhans was isolated by collagenase digestion and the insulin release [ng/islet/h] from the islet is examined by the ELISA method. Data represent means ± SEM and is analyzed by one-way ANOVA. The result showed that 8.3 mM glucose concentration increase insulin release compared to 2.8 mM glucose, respectively [0.393 ± 0.025 vs 0.219 ± 0.022 ng/islet/h]. In the presence of 8.3 mM glucose, ghrelin 1 nM showed a decrease in insulin release significantly compared to 8.3 mM glucose only [0.283 ± 0.001 vs 0.393 ± 0.025, p < 0.01]. In contrast, in the presence of 8.3 mM glucose and ghrelin 1 nM, YIL 1 µM induced insulin secretion [0.386 ± 0.012 vs 0.283 ± 0.001, p < 0.01]. In conclusion, YIL is significantly counteracted ghrelin-inhibited insulin release in pancreatic islets of Langerhans. Furthermore, YIL is one of the candidates for the treatment of type 2 diabetes.

Keywords: YIL, ghrelin-inhibited insulin release, pancreatic islets

1. Introduction

Ghrelin is a 28 amino acid peptide and endogenous ligand of growth hormone secretagogue receptor type 1a [GHSR1a] which is produced predominantly from the gastric.[1],[2] There are two types of circulating ghrelin in our body, des acyl ghrelin [90 %] and acyl ghrelin [10 %]. Desacyl ghrelin does not bind the GHSR1a, while acyl ghrelin binds the receptor and shows central and peripheral effects.[2] It has been reported that ghrelin has a wide range of biological functions, such as promoting food intake and appetite, regulating energy balance, increasing gastric acid secretion, and regulating glucose homeostasis [4],[5],[6].

It has been reported that both central and peripheral administration of ghrelin to rats induced food intake stimulation. In human, administration of ghrelin intravenously and subcutaneously enhance food intake.[7],[8] Fasting ghrelin levels in obese subjects lower than normal body weight and enhance in weight loss [3],[9],[10].

Ghrelin contributed to energy balance in the long term and influence the status of nutrition. Systemic ghrelin is adversely connected with body adiposity. Therefore, when ghrelin level increases,
prevention of ghrelin secretion may have therapeutic potential to enhancing further bodyweight loss.[4],[8] Ghrelin level is decreased by overfeeding, administration of glucocorticoid, and increasing body weight induced by a high-fat diet.[4],[11],[12] Furthermore, ghrelin levels enhanced by exercise, weight loss induced by a low-calorie diet, anorexia nervosa, or cachexia due to organ damage.[13],[14] Other studies reported that long-term ghrelin effects in rodents caused prolonged hyperphagia, increase body weight, activation of adipogenesis, inhibition of apoptosis, inhibit sympathetic nervous system activity, and decrease energy expenditure [4],[15],[16],[17].

Ghrelin expression in pancreatic islets of Langerhans has attracted researchers to examine the role of ghrelin in glucose homeostasis. Our group found that glucose-induced insulin release in isolated islets was attenuated by ghrelin at 10 nM, but basal insulin release at 2.8 mM glucose either in isolated islets or perfused pancreas was not affected by ghrelin administration.[18] This result indicated that ghrelin possibly plays an important role in regulating insulin release in pancreatic islets. A previous study in ob/ob mice with GHS-R1a deficiency showed an increase in insulin secretion and improving glucose tolerance. Furthermore, GHS-R antagonists may have an important role in the treatment of type 2 diabetes mice.[19] This study aims to examine the effect of YIL, a ghrelin receptor antagonist, on ghrelin-inhibited insulin release in islets of Langerhans.

2. Material and Methods

Animals
Wild-type C57BL/6J mice [male, 10-12 weeks old] were maintained following Jichi Medical University and the Japanese Physiological Society’s guidelines.

2.1. Islet Isolation Preparation
Collagenase digestion methods were used for islet isolation. Before isolation, pentobarbital at a dosage of 80 mg/kg was injected intraperitoneally into mice. Collagenase from Sigma-Aldrich [1.05 mg/ml] was dissolved in 5 mmol/l Ca2+ containing HEPES-added Krebs-Ringer bicarbonate buffer [HKRB] solution and then injected into the common bile duct. The HKRB solution consist of 129 mmol NaCl, 5 mmol/l NaHCO3, 4.7 mmol/l KCl, 1.2 mmol/l KH2PO4, 2 mmol/l CaCl2, 1.2 mmol/l MgSO4, and 10 mmol/l HEPES, at pH 7.4 with NaOH. HKRB was added with 0.1% BSA. The pancreas was dissected out and continue by incubation at 37°C for 16 minutes. Islets of Langerhans were collected and prepared for measurement of insulin release.

2.2. Measurements of insulin release in mouse islets
Groups of 10 islets were incubated for 1 hour at 37°C in HKRB with 2.8 mM glucose for stabilization, followed by test incubation for 1 hour in HKRB with 2.8 mM or 8.3 mM glucose. Ghrelin [Peptide Institute, Osaka, Japan] and YIL [Sigma-Aldrich] with ghrelin were present throughout the incubation. Insulin release in islets was determined by an ELISA kit [Morinaga Institute of Biological Science, Japan].

2.3. Statistical analysis
Data represent the means ± SEM. Statistical analyses were performed using one-way ANOVA and followed by Bonferroni multiple comparison tests, and p values below 0.05 were considered statistically significant.
3. Results

YIL counteracts ghrelin-inhibited insulin release in isolated pancreatic islets

![Figure 1](image)

Fig. 1. YIL counteracts ghrelin-inhibited insulin release in isolated islets of Langerhans. 8.3 mM glucose-induced insulin release in isolated islets. Ghrelin [1 nM]-inhibited insulin release at 8.3 mM glucose. YIL [1 µM] counteracts ghrelin-inhibited insulin release. \(n = 8-11 \) tubes. Ten islets in one tube were used for insulin measurement. **\(p < 0.01 \).**

4. Discussion

The present study demonstrated that YIL, a ghrelin receptor antagonist, blocked ghrelin-inhibited insulin release in islets of Langerhans. This result was similar to the previous study by the Esler group.[19] In this study, we used ghrelin 1 nM and showed a decrease in insulin release significantly. This concentration is lower than in the previous study [18].

In β-cells pancreas, ghrelin binds and activates growth hormone secretagogue receptor [GHS-R] that is coupled with pertussis toxin [PTX]-sensitive heterotrimeric G-protein Ga\(\alpha \)2 and then decreases cAMP production. This condition activates voltage-dependent Kv channels [Kv2.1 subtype] and decreases membrane excitability, and causing suppresses Ca\(^{2+} \) influx and insulin release.[6]

Administration of ghrelin in mice, rats, and human-caused a decrease in insulin concentration after overnight fasting.[18],[20],[21] These results suggested that ghrelin plays an important role in regulating glucose homeostasis.

We found that YIL, a small molecule of ghrelin receptor antagonist, blocked ghrelin function in pancreatic islets of Langerhans. Blockade of ghrelin function in β-cells of pancreas consequently increases insulin release.

5. Conclusion

YIL counteracted ghrelin-restricted insulin release in isolated islets of Langerhans. In the future, it is important to examine the role of YIL in isolated islets of type 2 diabetic model mice.

Disclosure Summary: There was nothing to disclose.
Acknowledgment
Thank you for the technical assistance from S. Ookuma, M. Warashina, and C. Sakamoto [Jichi Medical University]. This study was supported by a Grant-in-Aid for Scientific Research [B] [to T.Y.] from the Japan Society for Promotion of Science; Ministry of Education, Culture, Sports, Science, and Technology of Japan-Supported Programs for the Strategic Research Foundation at private universities in 2011-2015 and 2013-2017 [to T.Y.]; by grants-in-aid for Scientific Research from JSPS, the Pharmacological Research Foundation and Takeda Science Foundation [to K.D.]; Jichi Medical University Research Award 2013-2014 [to R.S.R.].

References

[1] Kojima M, Hosoda H, and Kangawa K, 2001. Purification and distribution of ghrelin : the natural endogenous ligand for the growth hormone secretagogue receptor. Hormone Research, Vol.56, Suppl.1, pp. 93-97.
[2] Delporte C, 2012. Recent advances in potential clinical application of ghrelin in obesity. Journal of Obesity, pp. 1-8.
[3] Perry B ,Wang Y. 2012. Appetite regulation and weight control: the role of gut hormones. Nutrition & Diabetes, 2[1]: e26.
[4] Wren AM ,Bloom SR, 2007. Gut hormones and appetite control. Gastroenterology, 132: 2116-30.
[5] Asakawa A, Inui A, Kaga O, Yuzuhira H, Nagata T, Ueno N, Makino S, Fujimiya M, Niiijima A, Fujino MA, Kasuga M, 2001. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology, 120[2], pp. 337-345
[6] Yada T, Damdindorj B, Rita RS, Kurashina T, Ando A, Taguchi M, Koizumi M, Sone H, Nakata M, Kakei M, Dezaki K, 2014. Ghrelin signaling in β-ceells regulates insulin secretion and blood glucose. Diabetes, Obesity and Metabolism, 16 [Suppl.1]: 111-117
[7] Macke C, Prenzler NK, Hom R, Brabant G, Nave H, 2009. Ghrelin treatment increase receptor-bound leptin in healthy and endotoxemic obese Lewis rats. Experimental and Clinical Endocrinology & Diabetes., 117 : 473-479.
[8] Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, Ghatel A, Small C, Bloom SR, 2005. Ghrelin increases food intake in obese as well as lean subjects. International Journal of Obesity [Lond], 29: 1130-1136
[9] Nakazato M, Murakami N, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S, 2001. A role for ghrelin in the central regulation of feeding. Nature, 409: 194-8.
[10] Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP ,Purnell JQ, 2002. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. The New England Journal of Medicine, 346: 1623-30.
[11] Robertson MD, Henderson RA, Vist G E ,Rumsey RD, 2004. Plasma ghrelin response following a period of acute overfeeding in normal weight men. International of Journal of Obesity and Related Metabolic Disorders, 28: 727-33.
[12] Hansen TK, Dall R, Hosoda H, Kojima M, Kangawa K, Christiansen JS Jorgensen J O.,2002. Weight loss increases circulating levels of ghrelin in human obesity. Clinical Endocrinology [Oxf], 56: 203-6.
[13] Tritos NA, Kokkotou EG, 2006. The physiology and potential clinical applications of ghrelin, a novel peptide hormone. Mayo Clinic Proceedings, 81: 653-60.
[14] Otto B, Cuntz U, Fruehauf E, Wawarta R, Folwaczny C, Riepl RL, Heiman ML, Lehner P, Fichter M, Tschop M, 2001. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. European Journal of Endocrinology, 145: 669-73.
[15] Tschop, Wawarta R, Riepl RL, Friedrich S, Bidlingmaier M, Landgraf R,Folwaczny C, 2001. Post-prandial decrease of circulating human ghrelin levels. Journal of Endocrinological Investigation, 24: Rc19-21.
[16] Van Der Lely AJ, Tschop M, Heiman ML ,Ghigo E, 2004. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocrine Reviews, 25: 426-57.
[17] Matsumura K, Tsuchihashi T, Fujii K, Abe I, Iida M. 2002. Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension, 40: 694-9.

[18] Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, Kangawa K, Yada T. 2004. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca$^{2+}$ signaling in β-cells: implication in the glycemic control in rodents. Diabetes, 53: 3142-3151

[19] Esler WP, Rudolph J, Claus TH, Tang W, Barucci N, Brown S, Bullock W, Daly M, De Carr L, Li Y, Milardo L, Molstad D, Zhu J, Gardell SJ, Livingstone JN, Sweet LJ. 2007. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology, 148[11], pp 5175-5185

[20] Gauna C, Van De Zande B, Van Kerkwijk A, Themmen Apn, Van Der Lely AJ, Delhanty PJD, 2007. Unacylated ghrelin is not functional antagonist but a full agonist of the type 1a growth hormone secretagogue receptor [GHS-R]. Molecular and Cellular Endocrinology, 274 [1-2], 30-34

[21] Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, Tschop MH, D’Alessio D. 2010. Ghrelin supressess glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes, 59[9], 2145-2151