Human Cancer Biology

Analysis of the Oxidative Damage Repair Genes NUDT1, OGG1, and MUTYH in Patients from Mismatch Repair Proficient HNPCC Families (MSS-HNPCC)

Pilar Garre1, Verónica Briceno1, Rosa M. Nicola3, Brian J. Doyle3, Miguel de la Hoya1, Julián Sanz3, Patricia Llovet1, Paula Pescador1, Javier Puente1, Eduardo Díaz-Rubio1, Xavier Llor3, and Trinidad Caldés1

Abstract

Purpose: Several studies have described molecular differences between microsatellite stable hereditary nonpolyposis colorectal cancer (MSS-HNPCC) and microsatellite unstable Lynch syndrome tumors (MSI-HNPCC). These differences highlight the possibility that other instability forms could explain cancer susceptibility in this group of families.

The base excision repair (BER) pathway is the major DNA repair pathway for oxidative DNA damage. A defect in this pathway can result in DNA transversion mutations and a subsequent increased cancer risk. Mutations in MUTYH have been associated with increased colorectal cancer (CRC) risk while no association has been described for OGG1 or NUDT1.

Experimental Design: We performed mutational screening of the three genes involved in defense against oxidative DNA damage in a set of 42 MSS-HNPCC families.

Results: Eight rare variants and 5 frequent variants were found in MSS-HNPCC patients. All variants were previously described by other authors except variant c.285C>T in OGG1. Segregation studies were done and in silico programs were used to estimate the level of amino acid conservation, protein damage prediction, and possible splicing alterations. Variants OGG1 c.137G>A; MUTYH c.1187G>A were detected in Amsterdam I families and cosegregate with cancer. Analysis of OGG1 c.137G>A transcripts showed an inactivation of the splicing donor of exon 1.

Conclusions: Two rare variants (OGG1 c.137G>A; MUTYH c.1187G>A) and one common polymorphism (NUDT1 c.426C>T) were associated with CRC risk. We show that the BER pathway can play a significant role in a number of MSS-HNPCC colorectal cancers. More studies could be of interest in order to gain further understanding of yet unexplained CRC susceptibility cases. *Clin Cancer Res; 17(7); 1701–12. ©2011 AACR.*

Introduction

Hereditary nonpolyposis colorectal cancer (HNPPC) has been defined as a familial syndrome with an increased incidence of colorectal cancer and/or other extracolonic tumors (1, 2). Amsterdam I (3) and II (4) criteria were initially developed to describe common clinical features of HNPPC families. Approximately half of HNPPC cases are caused by defects in the DNA mismatch repair pathway (MMR; 5, 6). Germline mutations in mismatch repair genes (MLH1, MSH2, MSH6, and PMS2) are responsible for these cases and they are commonly referred to as Lynch syndrome. The other half of the Amsterdam families do not have any evidence of MMR deficiency and therefore their tumors are microsatellite stable (MSS). These MSS-HNPPC cases represent over 50% of all families fulfilling Amsterdam criteria representing a sizable number of cases presenting to the genetic counseling units. Three studies published almost simultaneously established this group as distinct from Lynch syndrome with a lower risk of colorectal cancer (CRC) and an older average age at diagnosis, though still much younger than sporadic cases (7–9). Lindor and colleagues (7) even proposed the term “familial colorectal cancer type X” (CRC-X), which is generally felt to be nondescript or potentially misleading (i.e., it implies that a genetic cause is located on the X chromosome). For this reason we think it is better to call them as MSS-HNPPC families.

The carcinogenic pathways involved in the development of CRC in MSS-HNPPC families are poorly understood. Several molecular features have been studied in...
The base excision repair (BER) pathway is the major pathway for oxidative DNA damage repair (13). In cancer, the most important damage caused by reactive oxygen species (ROS) is the oxidation of guanine, adenine, and thymine. The most stable product is 8-hydroxyguanine (8-OH-G) generated by the oxidation of guanine (14). 8-OH-G is highly mutagenic because it mispairs with cytosine and adenine with an almost equal efficiency during DNA replication. This leads to an increased frequency of G:C to T:A transversions that in oncogenes or tumor suppressor genes can lead to carcinogenesis (14, 15). The BER pathway identifies and repairs 8-OH-G incorporated into nascent DNA and it removes modified nucleosides from the pool. The main BER components are 8-oxoguanine DNA glycosylase (OGG1 [MIM 601982]) and mutY homolog (Escherichia coli; MUTYH [MIM 604933]). OGG1 is involved in the direct repair of 8-oxoguanine DNA glycosylase (16) and MUTYH is involved in the repair of A:8-OH-G mismatches due to its adenine glycosylase activity (17). The nucleoside diphosphate linked moiety X-type motif 1 (NUDT1 [MIM 600312]) also known as MTH1 acts indirectly on the BER pathway and hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP (18; Supplementary Fig. S1).

A deficiency in the BER pathway facilitates transversion mutations and therefore cancer risk. In fact, OGG1 has been mapped to the 3p26.2 region which has been seen to show loss of heterozygosity (LOH) in many cancers (19) and a high rate of transversions and 8-OH-G levels have been described in MSS and chromosome stable cell lines (20, 21). However, by far, the most striking finding so far has been the identification of bi-allelic mutations in the MUTYH gene as causing a significant number of attenuated familial adenomatous polyposis (AFAP) cases (19).

Regarding the potential role of variants of the BER genes as risk modifiers, some studies have described a possible role in different types of cancer (22–32). The results concerning risk of CRC or adenoma (CRA) have not always coincided (33–38).

In view of these results, we hypothesized that some MSS-HNPCC cases could be explained by some variants of the BER genes and an alteration of the BER pathway could underlie the carcinogenic process in some of these families.

Subjects and Methods

Study population

The study included colorectal cancer patients from 42 families. Thirty-six families were recruited from the Familial Cancer Clinic at the Hospital Clínico San Carlos (Madrid, Spain), and 6 from the Familial Gastrointestinal Cancer Unit of the University of Illinois at Chicago. All these families had patients with MSS tumors, normal expression of MMR proteins, and fulfilled the following criteria: (i) Amsterdam I/II (3, 4): 30 families; (ii) high-risk criteria (HRC): 12 families. We considered HRC families fulfilling all Amsterdam I/II criteria except for: (i) the earliest age of diagnosis was allowed to be up to 55 years, (ii) gastric cancer is included in HNPCC, or (iii) families with CRC under 50 in two or three generations but no first degree relatives affected. Affected family members with the earliest age at diagnosis were selected as probands. The main age of diagnosis in probands was 50 and the 54.5% were females.

This study was approved by the Institutional Review Boards of the Hospital Clínico San Carlos and the University of Illinois at Chicago. Informed consent was obtained from each participant (cases and controls). Personal and cancer family history was obtained from the proband and participating relatives. Cancer diagnoses and deaths were confirmed by reviewing medical records, pathology reports, or death certificates.

Control population

Controls were recruited from Hospital Clínico San Carlos and included 248 cancer-free persons with no family history. Ethnic backgrounds were comparable to the cases and all were from Spain. The mean age of controls was 51 and 58% were females.

DNA and RNA extraction

Peripheral-blood genomic DNA (gDNA) extraction was performed according to the salting out procedure (39) or with MagnaPure Compact extractor (Roche) according to the manufacturer’s recommended protocol.
Tumor gDNA was obtained from paraffin embedded tissues with a tumor content of more than 80% as determined by an experienced pathologist from hematoxylin/eosin-stained sections. Extractions were performed after digestion with proteinase K and purification with phenol/chloroform as previously described.

Peripheral-blood RNA extraction was performed with MagnaPure Compact extractor (Roche) according to the manufacturer's recommended protocol. SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen) was used to synthesize cDNA using random hexamers according to the manufacturer instructions. DNA and RNA quantity and quality were assessed with Nanodrop (ND1000).

Microsatellite instability status

Microsatellite instability (MSI) analysis was performed testing the Bethesda panel of five microsatellite markers (BAT25, BAT26, D2S123, D5S346, and D17S250; 41) or the mononucleotide panel (41, 42) in paired tumor-normal DNA samples. Amplification and visualization of microsatellites were achieved as described previously (41, 42). Tumors were classified as MSS if all markers were stable.

Immunohistochemistry of Mlh1, Msh2, and Msh6

Immunohistochemistry (IHC) analysis of Mlh1, Msh2, and Msh6 proteins was done as described previously (41, 42). The percentage of positive nuclei was evaluated by two pathologists. Cases with >10% of nuclei staining were considered as positive protein expression.

Mutational screening of MLH1, MSH2, and MSH6

Mutation screening included the analysis of all coding sequences and intron/exon boundaries of MLH1, MSH2, and MSH6 by denaturing gradient gel electrophoresis as previously reported (43–45). In addition, the presence of genomic rearrangements at the MLH1, MSH2, MSH6, and PMS2 loci was tested by multiplex ligation-dependent probe amplification with P003 and P008 MRC-Kit, according to the supplier's instructions (MRC-Holland).

Mutational screening of OGG1, NUDT1, and MUTYH

Coding sequences and intron/exon boundaries of OGG1, NUDT1, and MUTYH genes were amplified and screened for mutations by direct sequencing. Primers for PCR amplification and sequencing were designed based on the sequences (Supplementary Table S1) and using the free online Primer3 v.0.4.0 program.

PCR reactions were performed in a total volume of 25 μL, comprising 50 ng of genomic DNA, 1 × PCR buffer (Ecogen SRL), 0.2 μM of each primer, 100 μM of each deoxynucleotide (Promega), MgCl2 at 1.5 mmol/L, 0.5 U Eco Taq DNA polymerase (Ecogen SRL). Reactions were performed in a thermal cycler under the following conditions: initial denaturation at 94°C for 4 minutes; amplification by 5 initial cycles of denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds and extension at 72°C for 30 seconds; and a final step of extension at 72°C for 7 minutes.

Amplified products were visualized in 2% agarose gels and nucleotide sequence was determined using Dye Terminator v1.1 Cycle Sequencing kit and ABI PRISM 310 Genetic Analyzer (Applied Biosystems). The same oligonucleotides were used for both amplification and sequencing.

Segregation studies

In order to establish an association between the presence of the variant and the presence of disease, variants were screened in every available family member by direct sequencing. Primer pairs used in the mutational screening were also used for segregation studies.

In silico studies

The ClustalW2 alignment tool was used to check the level of conservation of the affected aminoacid in every missense variant. Polyphen and SIFT tools were used to predict the possible impact of every aminoacid substitution on the structure and function of the protein.

Human splicing finder (HSF) was used to study the potential effect of every variant on splicing.

Splicing studies

Transcript amplification. Pairs of primers located in different regions of OGG1 (Supplementary Table S2) were used to amplify cDNA as follows: PCR reactions were performed in a total volume of 20 μL, including 1 μL of cDNA product, 0.2 μM of each primer, dNTPs at 0.2 mmol/L each, MgCl2 at 2.5 mmol/L, 0.8 U AmpliTaq Gold DNA polymerase and 1× reaction buffer provided by the supplier (Applied Biosystems). Reactions were performed in a thermal cycler under the following conditions: initial denaturation at 95°C for 10 minutes; amplification with 35 cycles with denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds and extension at 72°C for 2 minutes (1 minute in the case of primer pair 1); and a final step of extension at 72°C for 7 minutes.

Amplified products were visualized in 2% agarose gels first and then in an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems), using GeneScan-500 LIZ (Applied Biosystems) as the size standard, according to the manufacturer's instructions. Nucleotide sequence was determined using Dye Terminator v1.1 Cycle Sequencing kit and model ABI PRISM 310 Genetic Analyzer (Applied Biosystems) according to the manufacturer's instructions. The same oligonucleotides were used for both amplification and sequencing.

Transcripts restriction analysis

PCR products of transcript amplification were digested with 5 U BsaWI, 1× Bsa (bovine serum albumin) and 1× NEBuffer 4 (New England BioLabs) at 60°C overnight and visualized using GeneScan-500 LIZ (Applied Biosystems) as size standard in an ABI PRISM 3130 Genetic Analyzer.
(Applied Biosystems) according to the manufacturer's instructions.

Statistical analysis

Distribution of genotypes in controls was tested for a departure from Hardy–Weinberg equilibrium by means of the χ² test. A P value of 0.05 was considered statistically significant.

χ² or Fisher's exact test was used to assess differences in allelic and genotype distribution between cases and controls. Specific risks were estimated by means of the OR with associated 95% CI by unconditional logistic regression. A test χ for trend (P^{trend}) was used to evaluate difference in the risk by having more than one putative high-risk allele in those variants showing statistically significant differences in case–control study. Kaplan–Meier curves and Cox proportional hazard were used to analyze the disease free survival curves in the different genotypes of those variants showing statistically significant differences in case–control study. All tests were performed with the statistical software SPSS 13.0. Statistical power was estimated with EpInfo v.6.

Results

Screening for variants in **OGG1**, **MUTYH**, and **NUDT1**

Sequencing results of the 3 main BER genes in probands of MSS-HNPCC families is shown in Table 1. Only two probands showed a wild type (WT) genotype in all studied genes and both were from Amsterdam I families. The rest showed **OGG1**, **NUDT1**, and/or **MUTYH** alterations in different combinations. Variant descriptions and frequencies are summarized in Table 2. Eight rare variants and 5 frequent variants were found in MSS-HNPCC patients. All variants were previously described by other authors except variant c.285C>T (A95A) in **OGG1**.

Analysis of rare variants

Those variants showing a frequency lower than 5% were considered as "rare variants". We found 8 rare variants in a total of 8 probands out of 42. Segregation studies were done and in silico programs were used to estimate the level of amino acid conservation, protein damage prediction from amino acid substitutions, and possible splicing alterations (Table 2). Three variants: c.137G>A (R46Q) and c.923G>A (G308E) in **OGG1**, and the known variant c.1187T>A (known as G382D) in **MUTYH**, result in an amino acid substitution in highly conserved positions, and both prediction tools (Polyphen and SIFT) estimate a high damage in the functionality and/or structure of the protein. R46Q variant (24) was located in a highly conserved amino acid in the last nucleotide of **OGG1** exon 1 and causes the substitution of a basic amino acid for an acidic amino acid. This mutation was detected in family CC-298 (Supplementary Fig. S2). This was a family classified as HRC: four affected members' DNA.

G382D variant (19) was located in a highly conserved amino acid in **MUTYH** exon 13 and causes the substitution of an amino acid with an aliphatic group for one with an acidic group. This variant was detected in family CC-19 (Supplementary Fig. S2). The family fulfilled Amsterdam I criteria, and the variant was found in the three studied affected members. G308E variant (23) was located in a highly conserved amino acid in **OGG1** exon 6 and causes the substitution of an amino acid with an aliphatic group for one with an acidic amino acid. It was detected in family CC-CH6 (Supplementary Fig. S2). This was a family fulfilling Amsterdam I criteria. However, segregation studies were not possible because of unavailability of family members’ DNA.

Finally, c.285C>T (A95A) on **OGG1** had not been previously described. This new variant is a silent mutation, it does not cosegregate with cancer in the family, and it does not affect the splicing by in silico studies.

Analysis of **OGG1-R46Q** transcripts

Only **OGG1-R46Q** showed a possible splicing alteration by the HSF prediction program. Previous studies have confirmed this prediction in lung and kidney tumor DNA that was homozygous for the mutation (24, 25). Both studies describe the inactivation of the c.137 splicing donor giving rise to transcripts containing the full length of exon 1 (1^{ox}L1). Therefore, we decided to check this splicing alteration in germline DNA of our carrier patients. cDNA from the blood of a carrier was synthesized and two amplifications with different primer pairs (Supplementary Table S2) were carried out. Primer pair 1 (forward primer Ex1 located in exon 1 and reverse primer Ex3 located in exon 3) were designed to allow the amplification of 1^{ox}WT transcript Ex1–Ex3 (Supplementary Fig. S3a) while primer pair 2 (forward primer Ex1 located in exon 1 and reverse primer In1a located in intron 1) were designed to selectively amplify 1^{ox}L1 transcripts (Supplementary Fig. S3b). When primer pair 1 was used, 1^{ox}WT transcripts were detected in carrier and control samples but no 1^{ox}L1 transcripts were detected in any one.

In order to check if 1^{ox}L1 transcript was actually expressed in our carrier samples we performed an amplification with primer pair 2. As shown in Figure 1B, cDNA of carrier samples expressed 1^{ox}L1 transcripts whereas cDNA of control samples did not (data not shown).

The 46Q carriers have c.137G and c.137A alleles. c.137G WT sequence has a restriction target for BsaWI enzyme that is lost in the c.137A allele. Therefore, we can use BsaWI to distinguish between c.137G and c.137A alleles. The transcripts 1^{ox}WT Ex1–Ex3 and 1^{ox}L1 Ex1–In1 from both carrier and control samples were subjected to restriction analysis with BsaWI to check for allele origin (c.137G or c.137A).

1^{ox}WT transcripts from noncarrier and carrier are shown in Figure 1A: c.137A allele was not detected in carrier cDNA so all 1^{ox}WT transcripts come from the c.137G allele. 1^{ox}L1 transcripts of carrier subject came exclusively from c.137A allele as it was expected (Fig. 1B). All transcripts were

Garre et al.
Table 1. Screening of OGG1, NUDT1, and MUTYH genes in probands of HNPCC-MSS families

ID	CRITERIA	MMR status	Dx. age	HIC	MSI	IHC	Mutation	Ber genes screening
275	42 AMS I	NO(m)	53	NO	NO	POS	WT	WT
334	49 AMS I	NO(m)	68	NO	NO	POS	WT	WT
377	80 AMS II	NO(m)	68	NO	NO	POS	WT	WT
337	80 AMS II	NO(m)	68	NO	NO	POS	WT	WT
492	53 AMS I	NO(m)	53	NO	NO	POS	WT	WT
498	47 AMS I	NO(m)	53	NO	NO	POS	WT	WT
510	48 AMS I	NO(m)	48	NO	NO	POS	WT	WT
519	48 AMS I	NO(m)	48	NO	NO	POS	WT	WT
692	47 AMS I	NO(m)	47	NO	NO	POS	WT	WT
973	47 AMS I	NO(m)	47	NO	NO	POS	WT	WT
1218	42 AMS I	NO(m)	42	NO	NO	POS	WT	WT
1222	52 AMS I	NO(m)	52	NO	NO	POS	WT	WT
1225	54 AMS I	NO(m)	54	NO	NO	POS	WT	WT

(Continued on the following page)
ID	CRITERIA	Dx	age	MSI	IHC	Mutation	OGG1	NUDT1	MUTYH
1860	AMS I	57	NO	WT		c.137G>A (p.Arg46Gln)	WT		c.504+35G>A
1921	AMS I	46	NO	WT		c.74815>C/G.c.977G>G	WT		c.1014G>C (p.Gln338His)
1901	AMS II	45	NO	WT		WT	c.426C>T(p.Asp142Asp)		c.504+35G>A
2042	AMS I	47	NO	WT		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		c.690+21C>A
2174	AMS I	24	NO	WT		c.74815>C/G.c.977G>G	WT		
2235	AMS I	54	NO	POS		c.74815>C/G.c.977G>G	WT		c.1014G>C (p.Gln338His)'
2346	AMS I	72	NO	POS		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		c.1014G>C (p.Gln338His)
2310	HR	51	NO	WT		c.74815>C/G.c.977G>G	WT		c.1014G>C (p.Gln338His)
2347	AMS I	42	NO	POS		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
2496	AMS I	40	NO	POS		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
2695	HR	51	NO	POS		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
1252	HR	49	NO	WT		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		c.504+35G>A
1524	AMS I	40	NO	WT		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
1639	AMS I	43	NO	WT		c.74815>C/G.c.977G>G	5.36C>T(p.Asp122Asp)/		WT
5653	AMS I	54	NO	WT		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
7097	AMS II	43	NO	WT		c.74815>C/G.c.977G>G	c.426C>T(p.Asp142Asp)		WT
11074	AMS I	67	NO	WT		c.923G>A (p.Try308Glu)	c.426C>T(p.Asp142Asp)		c.1014G>C (p.Gln338His)

CRITERIA: Family criteria.
AMS I: Amsterdam I criteria; AMS II: Amsterdam II criteria; HR: families fulfilling all Amsterdam I/II criteria with some exceptions (i) the earliest age of diagnosis up to 55 years, (ii) gastric cancer is included in HNPCC, and (iii) families with a high number of CRC affected subjects under 50 in two or three generations but no first degree relatives affected. POS: positive.
Table 2. OGG1, NUDT1, and MUTYH variants found in the MSS-HNPCC population

Variant	HGVS	Reference	Allele frequency	Segregation	In silico tests	CLUSTALW2	POLYPHEN² (PSIC)	SIFT	HSF³ (CV)
OGG1	c.137G>A	Kohno 1998	1.19	Yes	HIGH	PD	0.2327	DEL	No
	c.285C>T	(p.Arg46Gln)	1.19	No	No	na	na	na	DEL
NUDT1	V106M	Wu 1995	1.19	No	VERT	B(1.43)	DEL	No	
MUTYH	G386D (G382D)	Al-Tassan 2002	1.25	Yes	HIGH	PD	0.242	DEL	No
	IVS4/C0 15	Kohno 1998	22.62	No	No	na	na	na	No
	G308E	Blons 1999	1.19	No	No	na	na	na	No
	S326C	Kohno 1998	21.43	No	No	na	na	na	No
	T122D	Wu 1995	34.52	No	No	na	na	na	No
	IVS8/C0 21	Isidro 2004	1.25	No	No	na	na	na	No
	IVS12/C0 27	Peterlongo 2006	1.25	No	No	na	na	na	No
	S338H (S324H)	Slupska 1996	21.25	No	No	B(1.409)	TOL	No	
	G396D (G382D)	Al-Tassan 2002	1.25	Yes	HIGH	PD	0.2142	DEL	No

- **Alignment program CLUSTALW2**: HIGH: conserved from vertebrates to bacteria; LOW: not conserved even in vertebrates; VERT: conserved only in vertebrates.
- **Protein damage prediction program POLYPHEN²**: PD: probably damaging; B: benign.
- **Protein damage prediction program SIFT**: DEL: deleterious effect; TOL: tolerant.
- **Splicing alteration prediction program HSF**: CV: consensus values.
- **ni**: not informative.
- **na**: not applicable.

www.aacjrournals.org

Clin Cancer Res; 17(7) April 1, 2011 1707

Published OnlineFirst February 25, 2011; DOI: 10.1158/1078-0432.CCR-10-2491

Downloaded from clincancerres.aacjrournals.org on May 16, 2021. © 2011 American Association for Cancer Research.
confirmed by sequencing and the insertion of intron 1 (521bp) could be detected in mutant transcripts but not in controls as expected because 1αL1 transcript could not be amplified in controls (data not shown).

Association studies with frequent variants

Variants showing a frequency higher than 10% were considered as “frequent variants” (Table 2). In order to determine a potential association between each variant and colorectal cancer risk, association case–control studies were made. One randomly selected affected member of each family was included in the case group and it was compared with the control population. Case–control studies were performed in all frequent variants but not in c.748C>C015G (IVS4>C0115) in OGG1 because it showed a strong linkage with c.977C>G (S326C) in OGG1 variant (see Table 1). As shown in Table 3, only c.426C>T (D142D) variant in NUDT1 showed a strong association with our population (OR = 2.23; 95% CI = 1.35–3.66; ρ = 0.003). Distribution of alleles of all frequent variants in both cases and controls were in Hardy–Weinberg equilibrium (data not shown).

NUDT1-D142D analysis

In order to inquire about the effect of this variant on the study population, we conducted genotype frequency comparisons between cases and controls to check for allelic dose effect. Kaplan–Meier curves and Cox proportional hazard were used for disease-free survival analysis. As shown on Table 4, the OR increased significantly with one allelic dose (OR = 2.61; ρ = 0.009) and subjects with two allelic doses showed an even higher OR (OR = 3.66; ρ = 0.035). Chi for trend test showed a significant value (ρ = 0.007) for the increase of the CRC risk according to the allelic dose (Table 4). Figure 2 shows disease-free survival curves for the different genotypes of the NUDT1-D142D variant. As shown, homozygous subjects for the mutant allele show a decrease in the age of onset of HNPCC tumors (HR = 2.55; 95% CI= 1.06–6.13; ρ = 0.036) whereas

Table 3. Comparison of allelic frequencies between cases and controls in OGG1, NUDT1, and MUTYH variants

Variant	M allele cases (%)	M allele controls (%)	OR (CI = 95%)	ρ
OGG1				
IVS4−15	14/84 (16.7)	104/516 (20.2)		
OGG1	S326C			
30/84 (35.7)	99/496 (19.9)	2.23 (1.35–3.66)	0.003	
NUDT1	D142D			
IVS6−35	12/76 (15.8)	23/164 (14)		
MUTYH	Q338H (Q324H)			
15/78 (19.2)	31/168 (18.4)	ns*		

*ns: not significant.

On May 16, 2021, © 2011 American Association for Cancer Research.
heterozygous have no different age of onset from the WT group. The mean age of onset was 60 years in WT and heterozygous whereas it was 51 years in homozygous.

Discussion

We have screened for variants in the three main genes of BER pathway OGG1, MUTYH, and NUDT1 in 42 MSS HNPCC probands, and we have found variants in some of these genes in 40 probands (95%).

Rare variants

Among these variants, only OGG1-A95A had not been previously described and, according to our findings, it does not increase CRC risk. Three missense variants (MUTYH-G382D, OGG1-G308E, and OGG1-R46Q) affected highly conserved amino acids (from mammals to bacteria) and a highly damaging effect was predicted. The MUTYH-G382D variant was present in all tested affected members in the corresponding family. This variant when homozygosis or in combination with another MUTYH mutation is known to be responsible for some familial attenuated polyposis cases (19, 46, 47). Some studies have also shown an increased risk of CRC in patients with monoallelic MUTYH mutations (35, 37, 48). Moreover, it has been suggested that some MSS-HNPCC families are enriched with monoallelic MUTYH mutations (11). Therefore, we cannot rule out the possible role of this variant as CRC risk modifier in the described family.

The OGG1-G308E variant was previously described in oral (23) and renal (25) cancer. Unfortunately, we could not perform segregation analysis but this is an unlikely pathogenic variant (23). Variant OGG1-R46Q was described as homozygous in a lung tumor cell line (24) and a renal tumor (25), and as heterozygous in the germ-line of a lung cancer patient (49). This is potentially deleterious for the protein’s functionality and therefore it may increase CRC risk. Thus, assays have shown a lower

| Table 4. Allele dose effect of NUDT1-D142D variant on the CRC risk in MSS-HNPCC |
|-----------------------------|------------------|------------------|------------------|------------------|
| Genotype frequency comparisons to assess dose effect on OR |
Dose allele	Carriers in cases	Carriers in controls	OR (CI = 95%)	p	
CT/TT vs. CC	Any	25/42	86/248	2.77 (1.42–5.41)	0.003
CT vs. CC	Single	20/37	73/235	2.61 (1.29–5.27)	0.009
TT vs. CC	Double	May-22	13/175	3.66 (1.16–11.53)	0.035
Chi for trend to assess significance of the difference on dose effect					
Genotype	Carriers in cases	Carriers in controls	p		
---	---	---	---	---	
CC	17/42	20/42	May-42	0.007	
CTRLs	162/248	73/248	13/248		

CTRLs: controls.

Figure 2. Analysis of disease-free survival according to NUDT1-D142D genotypes. A, three possible genotypes are compared. CC: wild type genotype. Mean onset age: CC = 60.1 ± 3.7; CT = 60.6 ± 4; TT = 51.3 ± 5.3. B, WT genotypes plus heterozygous are compared together against recessive genotype TT. Mean onset age: CC/CT = 60.5 ± 2.7; TT = 51.3 ± 5.3. The curves suggest that NUDT1-D142D variant acts as a recessive risk modifier decreasing the cancer’s age of onset in homozygous subjects from MSS-HNPCC families.
activity of the variant protein in comparison with the WT protein (24, 25, 50, 51). Moreover, the point mutation is located in the last nucleotide of exon 1 corresponding to a splicing region. Previous studies confirmed the inactivation of the splicing donor giving rise to transcripts containing the full length of intron 1 and leading to a premature stop codon just after exon 1 (24, 25). Both studies analyzed the transcript analysis in homozygous tumor samples and they detected both, WT and mutant (II) transcripts. Audebert and colleagues explained the presence of the WT transcript as DNA contamination (25). We confirmed the mutant transcript in the germline DNA of our heterozygous carrier patients. However, we could only detect the presence of II transcript with the use of specific primers, which made us think that either the expression of II transcript is very low, in comparison with WT transcript, or II transcript is partially degraded. Moreover, through restriction analysis we saw that all WT transcripts detected came from the WT allele. So we hypothesize that c.137A mutant allele has heavily inactivated the splicing donor of exon 1 and the II transcript tends to degrade. Therefore, in heterozygous condition probably the only functional transcript comes from the c.137G allele and the contribution of the c.137A allele is negligible. Probably decreased levels of WT transcript are affecting the correct OGG1 functionality. Segregation analysis showed that the variant was present in all affected family members. We could not confirm LOH as no tumor DNA was available.

Frequent variants

Five frequent variants were found, IVS-15 and S326C in OGG1, D142D in NUDT1, and 2 in c.504+35G>A (IVS6+35) and c.1014G>C (Q324H) MUTYH. Case–control studies were performed for all except IVS-15 because this was closely linked to the variant S326C and linkage had been previously observed (24).

Only variant D142D in NUDT1 showed a significant association with CRC risk in MSS-HNPCC patients when mutant allelic frequency was compared between cases and controls (OR = 2.23; 95% CI = 1.35–3.66; p = 0.003), and also when genotypes were compared (OR = 2.77; 95% CI = 1.42–5.41; p = 0.003). In order to figure out if the effect of this variant was dominant or recessive, we assessed the effect of allele dosage by comparing the different NUDT1-D142D genotypes in cases and controls. We observed an incremental risk according to the increase in allele dose (p = 0.009). Then, we studied the effect of this variant in the age of onset of cancer. Homozygous showed a decrease of 9 years in the mean age of onset (HR = 2.55; 95% CI = 1.06–6.13; p = 0.036), while no effect was seen in heterozygous. Therefore, variant NUDT1-D142D acts as a risk modifier in our MSS-HNPCC patients and it increases CRC risk according to allele dose. As this variant is silent, and no prediction of splicing alteration was found by the HSF program, it is reasonable to think that NUDT1-D142D is probably linked to a real low penetrance allele and it does not cause the increased CRC risk by itself.

The NUDT1-D142D has been described for the first time in germline of patients with HNPPC by Wu and colleagues (52). In the other hand, Görgens and colleagues (31) analyzed this variant in 29 squamous cell carcinomas of the head and neck (SCCHN) cases and 30 controls and they did not find an association between NUDT1-D142D and SCCHN. It is interesting to remark that the minor allele frequency (MAF) in our control group was similar to Görgens and colleagues (31) control group (19.9% vs. 16.7%). Therefore, our work is the first evidence of association between this silent variant of NUDT1 and CRC risk. Further studies in larger populations should be done to confirm the role of NUDT1-D142D in cancer risk.

The rest of the variants did not show any difference between cases and controls. Variant OGG1-S326C has been associated with a decreased ability to suppress mutagenesis. Furthermore, some studies have suggested an association of this variant with different cancer types such as lung (27), mouth (26), kidney (32), and prostate (28). Results have been inconsistent for an association with colorectal cancer (34, 36, 38, 53) and two studies found an association only in smokers (33–37). No significant association was found with our series of MSS-HNPCC patients. Finally, no association was found with MUTYH variants Q324H and IVS6-35.

An important limitation of our study is that we were only able to detect OR of 2.2 with a power of 80% and a CI of 95% due to sample size. Therefore, we cannot rule out the possibility of a lower effect of any of these variants, which could not be detected with our sample size. The analysis in larger cohorts of MSS-HNPCC families could help clarify this issue.

In spite of this limitation, we show that the two rare variants (OGG1 c.137G>A; MUTYH c.1187G>A) and one common polymorphism (NUDT1 c.426C>T) were associated with CRC risk in a limited number of MSS-HNPCC families.

Supplemental data

Supplemental data include three figures describing ROS effect on DNA sequence and action points of the main BER pathway genes, pedigrees of families carrying rare BER variants, and splicing analysis of OGG1-R46Q variant and two tables showing the oligonucleotide sequences used in this work.

Web resources

The following online computer programmes were used in this work:

Primer3 v.0.4.0: http://fokker.wi.mit.edu/primer3/input.htm
ClustalW2: http://www.ebi.ac.uk/Tools/clustalw2/index.html
Polyphen: http://genetics.bwh.harvard.edu/pph/index.html
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Dr. Pedro Pérez-Segura for their clinical assistance with the families and Alicia Tosar for her technical work.

References

1. Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 1993;71:677–85.
2. Lynch HT, Smyrk T, Lynch JF. Overview of natural history, pathology, molecular genetics and management of HNPCC (Lynch syndrome). Int J Cancer 1996;69:38–43.
3. Vassen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on hereditary nonpolyposis colorectal cancer (ICG-HNPCC). Dis Col Rectum 1991;34:424–5.
4. Vassen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999;116:1453–6.
5. Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 1999;36:801–18.
6. Peitomäki P, Vassen H. Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSIGHT mutation database. Dis Markers 2004;20:269–76.
7. Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 2005;293:1979–85.
8. Lior X, Pons E, Xicole RM, Castells A, Alenda C, Piñol V, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the Mutator Pathway. Clin Cancer Res 2005;11:7304–10.
9. Aaltolen L, Johans L, Järvinen H, Mecklin JP, Houlston R. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 2007;13:356–61.
10. Abdel-Rahman WM, Ollikainen M, Kariola R, Järvinen HJ, Mecklin JP, Nystrom-Lahti M, et al. Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene 2005;24:1542–61.
11. Peterlongo P, Mitra N, Sánchez de Abajo A, Bassi C, Bertario L, Radice P, et al. Increased frequency of disease-causing MYH mutations in colon families. Carcinogenesis 2006;27:2243–9.
12. Sánchez de Abajo A, de la Hoya M, van Puijlenbroek M, Tosar A, Lopez-Asejo JA, Diaz-Rubio E, et al. Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggest novel carcinogenic pathways. Clin Cancer Res 2007;13:5729–35.
13. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993;362:709–15.
14. Kasai H, Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 2007;35:2137–45.
15. Shibutani S, Takezawa M, Grollman A. Insertion of specific bases during DNA synthesis past the oxidatio-damaged base 8-oxodG. Nature 1991;349:131–434.
16. Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 1999;81:59–67.
17. Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH. Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 1999;181:6210–3.
18. Nakabeppu Y. Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res 2001;477:59–70.
19. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 2002;30:227–32.
20. Araki K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, et al. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 1997;14:2857–61.
21. Eshleman JR, Donover PS, Littman SJ, Swinler SE, Li GM, Lutterbaugh JD, et al. Increased transversions in a novel mutator colon cancer cell line. Oncogene 1998;16:1125–30.
22. Parker AR, O'Meally RN, Oliver DH, Hua L, Nelson WG, DeWeese TL, et al. 8-hydroxyguanosine repair is defective in some microsatellite stable colorectal cancer cells. Cancer Res 2002;62:7230–3.
23. Blons H, Radicella JP, Laccourreye O, Brusno D, Beaune P, Boiteux S, et al. Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glycosylase 1 gene in head and neck cancer. Mol Carcinog 1999;26:254–60.
24. Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damage DNA. Oncogene 1998;16:3219–25.
25. Audebert M, Chevillard S, Levalois C, Gyapay G, Vieillefond A, Kljanjenko J, et al. Alternations of the DNA repair gene OGG1 in human clear cell carcinomas of the kidney. Cancer Res 2000;60:4740–4.
26. Xing DY, Tan W, Song N, Lin DX. Ser326Cys polymorphism in hOGG1 gene and risk of esophageal cancer in a Chinese population. Int J Cancer 2001;95:140–3.
27. Le Marchand L, Donlon T, Lum-Jones A, Selfried A, Wiltens LR. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11:409–12.
28. Xu J, Zheng SW, Turner A, Isaacs SD, Weyke KE, Hawkins GA, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 2002;62:2253–7.
29. Al-Tassan N, Eisen T, Maynard J, Briddle H, Shah B, Fleischmann C, et al. Inherited variants in MYH are unlikely to contribute to the risk of lung carcinoma. Hum Genet 2002;114:207–10.
30. Kohno T, Sakiyama T, Kunitoh H, Goto K, Nishikawa Y, Saito D, et al. Association of polymorphisms in the MTH1 gene with small cell lung carcinoma risk. Carcinogenesis 2006;27:2448–54.
31. Gorgens H, Muller A, Kruger S, Kuhlisch E, Korin RJ, Ziegler A, et al. Analysis of the base excision repair genes MTH1, OGG1 and MUTYH in patients with squamous oral carcinomas. Oral Oncol 2006;42:791–5.
32. Habib SL, Danial E, Nath S, Schneider J, Jenkinson CP, Duggirala R, et al. Genetic polymorphisms in OGG1 and their association with angiomylipoma, a benign kidney tumor in patients with tuberous sclerosis. Cancer Biol Ther 2008;7:23–7.
33. Kim JI, Park YJ, Kim KH, Kim JL, Song BJ, Lee MS, et al. hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gastroenterol 2003;9:956–59.
34. Hansen R, Sæbø M, Skjelbred CF, Nexø BA, Hagen PC, Bock G, et al. GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. Cancer Lett 2005;229:85–91.
35. Farrington SM, Tenesa A, Barretson R, Wiltshire A, Prendergast J, Porteous M, et al. Germ line susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 2005;77:112–9.
36. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, et al. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 2006;12:2101–8.
37. Pardini B, Naccarati A, Novotnyc J, Smerhovsky Z, Vodickova L, Polakova V, et al. DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res 2008;638:146–53.
38. Siwiński T, Krupa R, Wisniewska-Jarosinska M, Pawłowska E, Lech J, Chojnacki J, et al. Common polymorphisms in the XPD and hOGG1 genes are not associated with the risk of colorectal cancer in a Polish population. Tohoku J Exp Med 2009;218:185–91.
39. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1998;16:1215.
40. De la Hoya M, Diaz-Rubio E, Caldes T. Denaturing gradient gel electrophoresis-based analysis of loss of heterozygosity distinguishes nonobvious, deleterious BRCA1 variants from nonpathogenic polymorphisms. Clin Chem 1998;45:2028–30.
41. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248–57.
42. Nicola RM, Llor X, Pons E, Castells A, Alenda C, Piñol V, et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 2007;99:544–52.
43. Caldes T, Godino J, Sanchez A, Corbacho C, De la Hoya M, Lopez Aserjo J, et al. Immunohistochemistry and microsatellite instability testing for selecting MLH1, MSH2 and MSH6 mutation carriers in hereditary non-polyposis colorectal cancer. Oncol Rep 2004;12:621–9.
44. Caldes T, Godino J, de la Hoya M, Garcia Carbonero I, Perez Segura P, Eng C, et al. Prevalence of germline mutations of MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer families from Spain. Int J Cancer 2002;98:774–9.
45. Sanchez de Abajo A, de la Hoya M, Tosar A, Tosar A, Godino J, Fernández JM, et al. Low prevalence of germline hMSH6 mutations in colorectal cancer families from Spain. World J Gastroenterol 2005;11:5770–6.
46. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G–C→A T mutations. Hum Mol Genet 2002;11:2961–7.
47. Sampson JR, Delivani S, Jones S, Eccles D, Ellis A, Evans DG, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 2003;362:39–41.
48. Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R, et al. Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology 2005;136:1251–60.
49. Wikman H, Risch A, Klinef K, Schmezer P, Spiegelhalder B, Dienemann H, et al. hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population. Int J Cancer 2000;88:932–7.
50. Audebert M, Radicella JP, Dizdaroglu M. Effect of single mutations in the Ogg1 protein. Nucleic Acids Res 2000;28:2672–8.
51. Kim SR, Matsui K, Yamada M, Kohno T, Kashi H, Yokota J, et al. Suppression of chemically induced and spontaneously occurring oxidative mutagenesis by three alleles of human OGG1 gene encoding 8-hydroxyguanine DNA glycosylase. Mutat Res 2004:554:365–74.
52. Wu C, Nagasaki H, Manuyama K, Nakabeppu Y, Sekiguchi M, Yuasa Y. MutY Polymorphisms and probable lack of mutation in a human mutT homolog, hMTH1, in hereditary nonpolyposis colorectal cancer. Biochem Biophys Res Commun 2004;214:1239–45.
53. Middeldorp A, Jagmohan-Changur SC, Van Der Klift HM, van Puijlenbroek M, Houwing-Duistermaat JJ, Webb E, et al. Comprehensive genetic analysis of seven large families with mismatch repair proficient colorectal cancer. Genes Chromosomes Cancer 2010;49:539–48.
Clinical Cancer Research

Analysis of the Oxidative Damage Repair Genes NUDT1, OGG1, and MUTYH in Patients from Mismatch Repair Proficient HNPCC Families (MSS-HNPCC)

Pilar Garre, Verónica Briceño, Rosa M. Xicola, et al.

Clin Cancer Res 2011;17:1701-1712. Published OnlineFirst February 25, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-2491

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/03/30/1078-0432.CCR-10-2491.DC1

Cited articles
This article cites 53 articles, 12 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/7/1701.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/17/7/1701.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/17/7/1701.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.