Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside

Janneke Wit, Briana C. Rodriguez, Erik C. Andersen

Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA

ARTICLE INFO

Keywords:
Emodepside
Natural variation
Caenorhabditis elegans
Anthelmintics
Horneric effect

Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic drug effective against gastrointestinal and filarial nematodes. Nematodes that are resistant to other anthelmintic drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and genetic selection and in vitro experiments implicated slo-1, a large K⁺ conductance (BK) channel gene, in emodepside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some of the observed variation in C. elegans emodepside responses correlates with amino acid substitutions in slo-1, but genetic mechanisms other than slo-1 coding variants likely underlie emodepside resistance in wild C. elegans strains. Additionally, the assayed strains have higher offspring production in low concentrations of emodepside (a hormetic effect). We find that natural variation affects emodepside sensitivity, supporting the suitability of C. elegans as a model system to study emodepside responses across natural nematode populations.

1. Introduction

Helminth infections are a major threat to animal and human health, and control measures depend heavily on a small arsenal of anthelmintic drugs. Resistance against most anthelmintic drug classes is widespread and documented for several species (McKellar and Jackson, 2004; Kotze and Prichard, 2016). New anthelmintics with a distinct mode of action can be used to treat populations resistant to multiple anthelmintics, but the introduction of new compounds is rare (Epe and Kaminsky, 2013). One of the newest anthelmintics, the cyclooctadepsipeptide emodepside, has been commercially available since 2007 (Epe and Kaminsky, 2013). It is a semisynthetic derivative of a natural metabolite from the fungus Mycelia sterilia (Harder and von Samson-Himmelstjerna, 2001). As a broad spectrum anthelmintic, emodepside is efficacious against gastrointestinal nematodes and filarial nematodes (Zahner et al., 2001; Prichard et al., 2005) and is currently approved for treatment of helminth infections of cats and dogs in combination with praziquantel (Altreuther et al., 2003). Another promising lead was the identification of a putative non-pharyngeal neuron receptor in the secretin receptor family and a Ca²⁺-independent receptor of alpha-latrotoxin (WeIz et al., 2005). Responses to cyclooctadepsipeptides have been studied in both parasitic nematodes and the free-living nematode Caenorhabditis elegans. Initial in vitro studies using Ascaris suum suggested that the cyclooctadepsipeptide PF1022A, the parent compound in emodepside synthesis (Jeschke et al., 2005), displaces GABAergic ligands from somatic muscle preparations (reviewed in Harder et al., 2005). However, later work comparing the effect of GABA and emodepside on the rate of relaxation of contracted A. suum muscle showed that emodepside does not act directly on the GABAergic pathway (Willson et al., 2001; Willson et al., 2003). Another promising lead was the identification of a putative target protein, HCI110-R, from a H. contortus cDNA library (Saeger et al., 2001). Alignment revealed HCI110-R had 48% identity and 76% similarity to the C. elegans latrophilin receptor LAT-1. Although predicted to be a heptahelical transmembrane protein, the exact function of HCI110-R is unknown (Mühlfeld et al., 2009). Latrophilin is a G protein-coupled receptor in the secretin receptor family and a Ca²⁺-independent receptor of alpha-latrotoxin (Welz et al., 2005). C. elegans larvae express lat-1 in pharyngeal muscle, and adults express it in both pharyngeal and non-pharyngeal neurons (Willson et al., 2004; Guest et al., 2007). In the laboratory strain N2, emodepside inhibits pharyngeal pumping.

* Corresponding author. Department of Molecular Biosciences, Northwestern University, 4619 Silverman, Hall 2205 Tech Drive, Evanston, IL, 60208, USA. E-mail address: erik.andersen@northwestern.edu (E.C. Andersen).

https://doi.org/10.1016/j.ijpddr.2021.04.001
Received 18 January 2021; Received in revised form 1 April 2021; Accepted 6 April 2021
Available online 17 April 2021
2211-3207/© 2021 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
egg-laying, as well as locomotion (Bull et al., 2007). Putative null mutations in lat-1 are less sensitive to emodepside-induced inhibition of pharyngeal pumping, but locomotor activity is inhibited (Wilson et al., 2004). This inhibition of locomotion suggests that emodepside affects additional pathways independent of lat-1.

A subsequent mutagenesis screen using C. elegans identified mutations in the Ca"2+ -activated large K+ conductance (BK) channel gene slo-1 in nine emodepside resistant mutants (Guest et al., 2007). These mutants were identified as highly resistant to inhibition of both pharyngeal pumping and locomotor activity by emodepside. Gain-of-function mutations in slo-1 show decreased locomotion and pharyngeal pumping similar to emodepside-treated nematodes (Davies et al., 2003), suggesting that emodepside activates SLO-1 signaling. Additionally, a putative slo-1 null allele, slo-1(js379), responded to emodepside treatment like mutants from the screen (Guest et al., 2007). Tissue-specific rescue experiments in the putative slo-1 null background showed that emodepside inhibited locomotion by slo-1 expressed in both neurons and body wall muscles (Guest et al., 2007). However, feeding was inhibited by emodepside effects on pharyngeal-specific neurons alone and not through muscle. Subsequently, emodepside was shown to open SLO-1 channels expressed in Xenopus laevis oocytes (Kulke et al., 2014). Taken together, these results suggest that emodepside acts mainly through a slo-1 dependent pathway, and that the drug opens SLO-1 channels to inhibit locomotion and pharyngeal pumping in C. elegans.

The above studies on emodepside mode of action and resistance in C. elegans focused on the N2 laboratory strain and mutants in that genetic background. Although C. elegans is a great model organism for parasitic nematodes (Bürglin et al., 1998; Dilks et al., 2020; Hahnel et al., 2018, 2020; Wit et al., 2020), studies that use only a single strain can be biased by rare variation or genetic modifiers specific to a single genetic background (Sterken et al., 2015). The observation that emodepside affects multiple nematode species suggests that its mode of action is conserved throughout the phylum. It is unlikely that one C. elegans strain represents all possible genes and variants that contribute to emodepside sensitivity. The use of multiple strains in drug response studies increases the likelihood of elucidating mechanisms of resistance and drug mode of action shared by multiple strains and species (Hahnel et al., 2020; Wit et al., 2020). Natural variation across the C. elegans species is archived in the C. elegans Natural Diversity Resource (CeNDR) (Cook et al., 2017) and offers a powerful approach to look for genetic variation that underlies the different responses to emodepside, as has been done for other drugs (Zdraljevic et al., 2017, 2019; Hahnel et al., 2018; Zamanian et al., 2018; Brady et al., 2019; Evans and Andersen, 2020).

Here, we measured emodepside responses in a set of C. elegans wild strains to demonstrate that the effect of this anthelmintic on development and brood size depends on the genetic background. Across a set of nine wild strains and the laboratory strain N2, we show that natural coding variation in slo-1 is correlated with differences in response to emodepside, but that additional variation impacts emodepside responses. This result illustrates the need for broader comparisons of anthelmintic resistance within a species, as variation in genes other than slo-1 might affect emodepside susceptibility. Additionally, it highlights the power of using C. elegans natural variation for studies of emodepside mode of action and resistance because this variation might recapitulate diversity present in parasite populations.

2. Materials and methods

2.1. Strains

Animals were maintained at 20 °C on modified nematode growth medium (NGMA) containing 1% agar and 0.7% agarose seeded with the E. coli strain OP50 (Andersen et al., 2014). The laboratory strain N2 and a set of nine wild strains from the C. elegans Natural Diversity Resource (CeNDR) were used to study the response to multiple doses of emodepside and to determine the EC₅₀. These ten strains were selected based on absence (N2, JU751, WN2001, DL238, CB4932, and JU2586) or presence (NIC258, NIC265, NIC271, and JU7782) of four predicted variations in SLO-1 (Arg134Trp, Leu327Phe, Cys328Leu, and Arg678Leu) that cause deleterious amino acid substitutions in the gene. Additionally, two slo-1 putative loss-of-function mutant strains, BZ142 and NM1968, were obtained from the Caenorhabditis Genetics Center (CGC). The slo-1 mutant strains were not backcrossed with N2.

2.2. High-throughput fitness assays

The high-throughput fitness assays (HTAs) were performed using the COPAS BIOSORT (Union Biometrica, Holliston MA) as described previously (Hahnel et al., 2018; Zdraljevic et al., 2017). In summary, the strains were grown in uncrowded conditions to avoid the induction of dauer for four generations on NMGA plates at 20 °C prior to each assay. Gravid adults from the fifth generation were bleach-synchronized, and embryos were titrated at one embryo per microliter of K medium (Boyd et al., 2012) into 96-well microtiter plates and incubated overnight. Hatched L1 larvae were fed with 5 mg/mL HB101 lysate (Pennsylvania State University Shared Fermentation Facility, State College, PA (García-González et al., 2017)) and cultured for 48 h at 20 °C with constant shaking. Three L4 larvae were then sorted into new microtiter plates containing K medium, 10 mg/mL HB101 lysate, 50 μM kanamycin, and either 1% DMSO or emodepside dissolved in 1% DMSO.

After sorting, animals were cultured and allowed to reproduce for 96 h at 20 °C with constant shaking. For accurate nematode length measurements, the samples were treated with sodium azide (50 mM in M9) to straighten their bodies before analysis using the COPAS BIOSORT. The COPAS BIOSORT is a large particle flow measurement device (Fig. 1), which measures time-of-flight (TOF), extinction (EXT), and fluorescence of objects passing through the flow cell using laser beams. Animal length and optical density measure nematode development because animals get longer and more dense as they progress through development. If animals are negatively affected by emodepside, they are expected to be smaller, less optically dense, and have smaller brood sizes. Animal optical density is corrected for animal length (median, norm.EXT) for each animal in each well. Object counts are used to calculate brood size (norm.n), which is the number of objects passing the laser corrected for the number of parent animals sorted into the well.

To determine concentrations to measure differences in emodepside responses across wild strains, a dose response assay was performed using three genetically divergent C. elegans strains (N2, CB4856, and DL238)
and four increasing concentrations of emodepside (19.6, 39.1, 78.1, and 156.3 nM). A second dose response with 9.8, 19.6, 39.1, 78.1, 156.3, and 312.5 nM emodepside was performed using nine wild strains (JU751, WN2001, NIC258, NICT65, NIC271, JU782, DL238, CB4932, and JU2586), two putative slo-1 null mutants (BZ142 and NM1968), and the N2 strain. These 12 strains were assayed in six separate assays with four replicates in each assay. Raw phenotypic data were processed for outliers and analyzed using the R package easyShifter (Shimko and Andersen, 2014) as described previously (Hahnel et al., 2018). For each strain, all phenotypic values were normalized by deducting the average trait value after 96 h show that emodepside had a detrimental effect on development. In addition to development, we also measured brood size as the average number of progeny produced within the 96-h window. Although ultimate brood size and demography of the population influence statistical summaries of nematode development as measured by size (mean.TOF) or optical density (median.norm.EXT), a smaller brood size shows emodepside sensitivity (Supplementary Figure 2).

To confirm that our HTA could be used to quantitatively measure C. elegans emodepside resistance, we measured animal development and brood size for two putative slo-1 null mutant strains, BZ142 and NM1968, and the laboratory strain, N2, across a range of concentrations. The slo-1 mutant strain NM1968 was shown previously to be resistant to emodepside based on locomotion and pharyngeal pumping assays (Guest et al., 2007), and the N2 strain is known to be sensitive to emodepside. Brood size and development were both inhibited in the N2 strain (Kruskal-Wallis, brood size: \(p = 1.49 \times 10^{-42} \), animal length: \(p = 4.32 \times 10^{-37} \), optical density: \(p = 1.25 \times 10^{-39} \)), suggesting that the N2 strain is indeed sensitive to emodepside in the HTA. Although development was not affected by emodepside for either mutant strain (Kruskal-Wallis, BZ142 animal length: \(p = 0.27 \) and optical density: \(p = 0.15 \), and NM1968 animal length: \(p = 0.60 \) and optical density: \(p = 0.12 \), Fig. 2, Supplementary File 1), the mutant strains both had higher brood sizes than the N2 strain in emodepside (Kruskal-Wallis, BZ142: \(p = 4.87 \times 10^{-11} \) and NM1968: \(p = 6.97 \times 10^{-5} \)). Brood sizes of these putative null mutant strains were not affected even at high concentrations of emodepside (Kruskal-Wallis, brood size in increasing concentrations of emodepside: BZ142, \(p = 0.30 \) and NM1968, \(p = 0.26 \)). This result confirms that the mutant strains are indeed resistant to emodepside. By contrast, both BZ142 and NM1968 had lower brood sizes than the N2 strain in control conditions, indicating that slo-1 affects reproduction (Supplementary Figure 3, Supplementary File 1). Both deletion strains also had smaller average animal lengths and lower optical densities than the N2 strain in control (DMSO) conditions (Supplementary Figure 3, Supplementary File 1), which again demonstrates that the putative slo-1 null mutants are less fit than the N2 strain in control conditions. These results recapitulate previous studies and illustrate the applicability of the HTA to study emodepside responses in C. elegans.

3. Results

3.1. Putative slo-1 null mutants are resistant to emodepside in the high-throughput reproduction and development assays

We assayed emodepside resistance as a function of nematode reproduction and development. These traits were measured for thousands of animals using a previously developed high-throughput assay (HTA) (see Methods, Fig. 1, Supplementary Figure 1) (Andersen et al., 2015; Zdraljevic et al., 2017, 2019; Hahnel et al., 2018; Zamanian et al., 2018; Brady et al., 2019; Evans et al., 2018, 2020; Evans and Andersen, 2020). In this assay, three L4 larvae were sorted into each well of a 96-well plate and allowed to grow and reproduce for 96 h in the presence of DMSO or emodepside dissolved in DMSO. Each well contained these three parents and their offspring. After 96 h, animal length and optical density, which are both proxies for nematode developmental stage (Andersen et al., 2015), were measured for all progeny in the well. Animals grow longer and more dense over time, and anthelmintics slow this development. Therefore, shorter and less optically dense animals among strains and minimized within replicates of the same strain as shown by broad-sense heritabilities of 88% for brood size, 61% for animal length, and 60% for optical density (Supplementary Figure 4, Supplementary File 2). At this concentration, N2 animals were both shorter and less optically dense in the presence of emodepside compared to animals grown in control (DMSO) conditions, showing that development was delayed (Fig. 3A, Supplementary File 3). The CB4856 and DL238 strains were less affected by this emodepside concentration (Fig. 3B, Supplementary File 3). These differential responses across the
strains and the high heritabilities suggest that genetic factors underlie natural variation in emodepside responses.

3.3. Emodepside affects brood size and development in a dose-dependent manner

To describe the effects of genetic background on development and brood size in response to emodepside in more detail, we selected nine genetically diverse wild strains (some of which harbored slo-1 variation) and the N2 strain for a second dose response assay to more highly replicate natural differences across the species. We detected significant variation in the dose-dependent responses to emodepside among strains (broad-sense heritabilities at 78.1 nM: 59.5% (45.0%–67.1%) for brood size, 70.8% (61.7%–75.6%) for animal length, and 70.8% (60.6%–75.6%) for optical density). Narrow-sense heritability was 37.2% (25.4%–44.2%) for brood size, 62.9% (50.4%–68.9%) for animal length, and 59.0% (45.5%–65.6%) for optical density. The laboratory strain N2 falls in the middle of this range, demonstrating that some wild strains are more susceptible to emodepside than the N2 strain and other strains are more resistant (Fig. 4, Supplementary File 4). At the highest concentration of 312.5 nM emodepside, development and brood size were reduced for all strains. Although high concentrations of emodepside were shown to have detrimental effects on brood size and development, low concentrations of emodepside actually produced larger brood sizes compared to control conditions (Fig. 5, Supplementary Figure 5, Supplementary File 4). This positive effect on fitness at low concentrations of the drug is called a hormetic effect (Bukowski and Lewis, 2000). For developmental traits the identification of a potential hormetic response is confounded by increased reproduction, because strains that develop further in low concentrations of emodepside start producing a second generation. This second generation increases the observed brood size, but also decreases the average length and optical density of the population because the next generation of early larval stage animals are short and not optically dense (Supplementary Figure 2). As a result of the potential second generation offspring, the hormetic effect on brood size can be either the result of more offspring per animal or faster development of first-generation offspring that produce offspring of their own. Regardless, the increased brood size at low doses of emodepside is indicative of a hormetic effect.

We next calculated the concentration with half of the maximal drug effect (EC₅₀) for each of the strains and all three traits (Fig. 4 D-F,
For all traits, the EC$_{50}$ was significantly affected by genetic diversity across the strains that were assayed (Kruskal-Wallis, brood size: $p = 0.0422$, animal length: $p = 4.56 \times 10^{-7}$, optical density: $p = 1.21 \times 10^{-6}$). Overall, these results demonstrate that natural variation in *C. elegans* affects the emodepside response, indicating that this model provides an excellent system to study the genetics of emodepside mode of action and resistance.

3.4. Natural variation in candidate gene slo-1 correlates with resistance in reproduction but not development in wild *C. elegans* strains

Emodepside has been shown to directly interact with and open the *C. elegans* SLO-1 channel (Kulke et al., 2014), and putative slo-1 null mutants are resistant to emodepside treatment (Fig. 2, Supplementary File 1 (Guest et al., 2007)). Because of these results, we expected that genetic variation in slo-1 with a predicted moderate or high deleterious effect on gene function would correlate with emodepside resistance. Of nine wild strains assayed here, four (NIC258, NIC265, NIC271, and JU782) have the same four predicted variations in SLO-1 (Arg134Trp, Leu327Phe, Cys328Leu, and Arg678Leu) that causes deleterious amino acid substitutions with a summed BLOSUM score of -6 (Henikoff and Henikoff, 1992). This variation correlated with higher EC$_{50}$ values for brood size but lower EC$_{50}$ values for development (Kruskal-Wallis, brood size: $p = 0.0221$, animal length: $p = 0.263$, optical density: $p = 3.35 \times 10^{-5}$).

We also investigated natural variation in another candidate gene for emodepside resistance, *lat-1* (Saeger et al., 2001; Willson et al., 2004). All nine wild strains in the dose response assay harbor natural variants in *lat-1*. To investigate if that variation is predicted to affect *lat-1* function, we summed BLOSUM scores for each of the wild strains. Only the DL238 strain had a negative BLOSUM score (-1), and this score was not correlated with resistance across all strains (Kruskal-Wallis, brood size: $p = 0.223$, animal length: $p = 0.223$, and optical density: $p = 0.117$). In this set of ten strains, variation in *lat-1* does not underlie differences in emodepside responses. Because strains vary in emodepside responses, our results indicate that amino acid variation in slo-1 or *lat-1* does not explain all differences in emodepside responses, suggesting that additional genetic mechanisms affect the response to emodepside.

4. Discussion

Emodepside is a broad range anthelmintic with a distinct mode of action compared to other anthelmintics (Epe and Kaminsky, 2013). Previous studies of emodepside sensitivity and phenotypic effects in *C. elegans* have focussed on the laboratory strain N2 (Willson et al., 2004; Bull et al., 2007; Guest et al., 2007). In this strain, emodepside...
of egg laying was measured. Using the HTA, brood size is assayed as the presence of emodepside was measured for the N2 strain and a set of wild strains included in our study suggests that emodepside might also cause a hormetic effect in parasitic nematodes. This study shows the power of high-throughput assay (HTA) (Fig. 1). Resistance to emodepside caused by the putative loss-of-function slo-1 mutants was confirmed using the HTA. Additionally, the effects of emodepside on brood size and development varied across the wild strains (Figs. 3 and 4, Supplementary Files 3 and 4) and was correlated with protein-coding variation in the resistance candidate gene slo-1. Importantly, we found that low doses of emodepside have a hormetic effect on brood size in C. elegans. Hormesis was observed in the N2 laboratory strain and seven out of nine wild strains, regardless of their susceptibility to emodepside (Fig. 4, Supplementary File 4). The consistent hormetic effect across the wild C. elegans strains included in our study suggests that emodepside might also cause a hormetic effect in parasitic nematodes. This study shows the power of using natural variation in C. elegans to study emodepside responses.

4.1. High-throughput assays across wild strains show the effects of emodepside on development and reproduction

In the present study, sensitivity to emodepside was measured across wild C. elegans strains, the N2 strain, and two putative slo-1 null mutants (BZ142 and NM1966) using a large-particle flow cytometer high-throughput assay (HTA) (Fig. 1). Resistance to emodepside caused by the putative loss-of-function slo-1 mutants was confirmed using the HTA. The drug bryos at higher drug concentrations (20 nM and up) affected pharyngeal pumping in the N2 strain (Ardelli et al., 2009; Laing et al., 2012). The HTA measures animal length and optical density of a population established by three L4 larvae over a 96-h period. The two lowest concentrations of emodepside, 9.8 nM and 19.8 nM, have either no effect on development or a hormetic effect. Higher concentrations (39.1 nM–312.5 nM), which overlap with the effective concentrations from the agar-based development phenotypes, negatively affect animal length and optical density (Fig. 4). The results from both the agar-based and HTA methods indicate that emodepside inhibits reproduction at lower concentrations than development. Emodepside inhibited reproduction from approximately 20 nM and up, compared to approximately 40 nM and up for development. The agar-based study did not find a hormetic effect, but our results suggest that such an effect is likely to be present at concentrations below the range tested on agar plates. Our results show that the HTA provides a platform to screen hundreds of strains efficiently and that the different measures of reproduction and development are similarly affected across assay platforms.

4.2. Natural variation affects development and brood size in the presence of emodepside

The response of C. elegans to emodepside is affected by natural genetic variation (Fig. 4, Supplementary File 4). Our results showed that all strains are affected by emodepside, and that higher doses inhibit development, as measured by animal length and optical density, and reproduction, as measured by brood size (Fig. 4, Supplementary File 4). For brood size, strain-specific differences were correlated with variation in slo-1 where strains with predicted deleterious variation were more resistant to emodepside treatments. However, strains with higher brood sizes at lower concentrations do not have variation in slo-1, suggesting that the hormetic effect is not mediated by slo-1. It will be informative to introduce slo-1 variation in the wild strains with higher fitness using CRISPR-Cas9 genome editing to test if slo-1 variation reduces brood size in a more resistant background. Our results show that reproduction and development are inhibited by higher concentrations of emodepside, and that natural variation affects the extent of this response. Future measurements of emodepside responses across additional wild strains will improve the power to detect candidate resistance genes across the species using genome-wide association studies.

4.3. Hormetic effects of emodepside might affect treatment efficiency

Eight of ten strains showed a hormetic effect on reproduction when treated with a low level of emodepside (Fig. 4 A-C, Fig. 5, Supplementary File 4). The drug’s effect on movement and/or feeding rate could explain the observed hormetic effect. Low doses of the anthelmintic ivermectin have been shown to increase movement and affect pharyngeal pumping in the N2 strain (Ardelli et al., 2009; Laing et al., 2012). Increased activity at low concentrations of emodepside could cause the observed hormetic effect and warrants further study. The presence of hormetic responses across strains illustrates that hormesis is a common response to low concentrations of emodepside across C. elegans strains. If this response is shared with parasitic nematodes, it might affect EC_{50} estimates. If a hormetic effect is present at low doses that are otherwise assumed to be neutral or slightly detrimental, the EC_{50} estimates could be altered. Underdosing is a known risk factor for the selection of resistance against all anthelmintics (Smith et al., 1999; Silvestre et al., 2001; Sangster et al., 2018). If hormetic doses are administered, either because of an underestimated EC_{50} calculation or as a result of treatment factors like suboptimal drug administration or host factors (Várady et al., 2011; Sangster et al., 2018), the treatment could be ineffective. Our results imply that low doses of emodepside might be beneficial rather than detrimental for nematode growth. Although we know of no
evidence supporting hermetic effects of anthelmintic treatment in parasitic nematodes, our results provide additional evidence that underdosing should be avoided.

4.4. Natural variation in C. elegans can facilitate the study of anthelmintic resistance

The free-living nematode C. elegans is a long-standing model to study anthelmintic mode of action and resistance in parasitic nematodes (Geary and Thompson, 2001; Holden-Dye et al., 2014; Hahnel et al., 2020; Wit et al., 2020). The suitability of C. elegans as a model is the result of a range of attributes, including the phylogenetic relationship of C. elegans with many parasitic nematodes of human and veterinary importance, its short and direct life cycle, a wide range of genome-editing tools, and its high-quality reference genome and gene models. Additionally, larval stages of many parasitic nematodes occupy the same niches as C. elegans (Freazl and Félix, 2015; Crombie et al., 2019). Similar environmental stressors, including naturally occurring precursors of anthelmantics (Alivisatos et al., 1962; Campbell, 2005, 2006, 2009, 2012), can cause similar selective pressures for both species to evolve resistance.

Previous studies on the emodepside resistance candidate gene lat-1, showed that putative lat-1 null mutants were resistant in reproduction and pharyngeal pumping assays, but sensitive in locomotion assays (Guest et al., 2007), and that putative slo-1 null mutants are resistant in all assays. Here, we show that although putative slo-1 null mutants are resistant to emodepside treatment, slo-1 variation is not the only determinant of resistance across wild strains. These results imply that multiple genes likely affect the response to emodepside. To identify these genes, genetic variation across wild strains can be correlated with phenotypic responses to emodepside. Genes identified based on population-wide variation are more likely to translate to other species than genes identified based on one genetic background. After identification of candidate genes, genetic variation in these genes should be tested in a controlled genetic background by introducing specific mutations using CRISPR-Cas9 genome editing (Dilks et al., 2020).

Declaration of competing interest

The authors have no competing financial or personal interests that impacted the work presented in this manuscript.

Acknowledgements

We would like to thank members of the Andersen laboratory for their technical assistance and helpful comments on the manuscript. This work was supported by R01 AI153088 to E.C.A. We would also like to thank Wormbase and the C. elegans Natural Diversity Resource (CeNDR) for data and tools critical for our analyses of natural variation (NSF CSBR 1930382). The slo-1 mutant strains (BZ142 and NM1968) were provided by the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijpddr.2021.04.001.

References

Alivisatos, S.G., Lamantia, L., Matijevich, B.L., 1962. Imidazolytic processes. VI. Enzymic formation of benzimidazole and 5,6-dimethylbenzimidazole containing dimeric esters. Biochem. Biophys. Acts 58, 209–217.
Altreuther, G., Buch, J., Charles, S.D., Davis, W.L., Krieger, K.J., Radeloff, I., 2005. Field evaluation of the efficacy and safety of emodepside/praziquantel spot-on solution against naturally acquired nematode and cestode infections in domestic cats. Parasitol. Res. 97 (Suppl. 1), S56–S64.
Andersen, E.C., Bloom, J.S., Gerke, J.P., Kruglyak, L., 2014. A variant in the neuropeptide receptor gene V in a major determinant of Caenorhabditis elegans growth and morphology. PLoS Genet. 10, e1004156.
Andersen, E.C., Shinko, T.C., Crissman, J.R., Ghosh, R., Bloom, J.S., Seidel, H.S., Gerke, J.P., Kruglyak, L., 2015. A powerful new quantitative genetics platform, combining Caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3 5, 911–920.
Ardelli, B.F., Stitt, L.E., Tompkins, J.B., Prichard, R.K., 2009. A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans. Vet. Parasitol. 165, 96–108.
Bloom, J.S., Ehrenreich, I.M., Lee, W.T., Liew, T.-L.V., Kruglyak, L., 2013. Finding the sources of missing heritability in a yeast cross. Nature 494, 234–237.
Boyd, W.A., Smith, M.V., Freedman, J.H., 2012. Caenorhabditis elegans as a model in developmental toxicology. Methods Mol. Biol. https://doi.org/10.1007/978-1-60327-687-2_5.
Bradyc, T.S., Zdralevic, S., Bisaga, K.W., Tanny, R.E., Cook, D.E., Lee, D., Wang, Y., Andersen, E.C., 2019. A novel gene underlies bleomycin-response variation in Caenorhabditis elegans. Genetics 212, 1453–1468.
Bukowski, J.A., Lewis, R.J., 2000. Hormesis and health: a little of what you fancy may be good for you. South. Med. J. 93, 371–374.
Bull, K., Cook, A., Hopper, N.A., Harder, A., Holden-Dye, L., Walker, R.J., 2007. Effects of the novel anthelmintic emodepside on the locomotion, egg-laying behaviour and development of Caenorhabditis elegans. Int. J. Parasitol. 37, 627–636.
Bürglin, T.R., Lobos, E., Blaxter, M.L., 1998. Caenorhabditis elegans as a model for parasitic nematodes. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(97)00176-4.
Campbell, W.C., 2005. Serendipity and new drugs for infectious disease. ILAR J. 46, 352–356.
Dilks, C.M., Hahnel, S., Sheng, Q., Long, L., McGrath, P.T., Andersen, E.C., 2020. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. Int. J. Parasitol.: Drugs and Drug Resistance 14, 28–36.
Epe, C., Kaminsky, R., 2013. New advancement in anthelmintic drugs in veterinary medicine. Trends Parasit. 29, 129–134.
Evans, K.S., Andersen, E.C., 2020. The Gene Sch-1 Underlies Variation in Caenorhabditis elegans Chemotherapeutic Responses. https://doi.org/10.1534/g3.120.401310. G3. 5, 911–919.
Evans, K.S., Brady, S.C., Bloom, J.S., Tanny, R.E., Cook, D.E., Giuliani, S.E., Hoogenraad, S.W., Zamanian, M., Andersen, E.C., 2018. Shared genomic regions underlie natural variation in diverse toxin responses. Genetics. https://doi.org/10.1534/genetics.118.301311.
Fernandes, K.S., Zdralevic, S., Stevens, L., Collins, K., Tanny, R.E., Andersen, E.C., 2020. Natural variation in the sequoainsuc-related gene, sqt-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet. 16, e1008986.
Freazl, L., Félix, M.-A., 2015. C. elegans outside the Petri dish. Elife 4. https://doi.org/10.7554/eLife.05860.
Garces-Gonzalez, A.P., Ritter, A.D., Shrestha, S., Andersen, E.C., Safak Yilmaz, L., Wallhout, A.J.M., 2017. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell. https://doi.org/10.1016/j.cell.2017.03.046.
Geary, T.G., Thompson, D.P., 2001. Caenorhabditis elegans Chemotherapeutic Responses. https://doi.org/10.1534/g3.120.401310. G3. 5, 911–919.
Hahnel, S.R., Dilks, C.M., Heisler, I., Andersen, E.C., Kulke, D. 2020. Caenorhabditis elegans in anthelmintic research – old model, new perspectives. Int. J. Parasitol.: Drugs and Drug Resistance. https://doi.org/10.1016/j.ijpddr.2020.09.005.
Hahnel, S.R., Zdralevic, S., Rodriguez, B.C., Zhao, Y., McGrath, P.T., Andersen, E.C., 2018. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. Plant Pathol. 14, e1007256.
Harder, A., Holden-Dye, L., Walker, R., Wunderlich, F., 2005. Mechanisms of action of emodepside. Parasitol. Res. 97 (Suppl. 1), S1–S10.
Harder, A., Schmitt-Wrede, H., Krücken, J., Marinovski, P., Wunderlich, F., Willson, J., Hahnel, S.R., Holden-Dye, L., Walker, R., 2005. Cyclo-octadepsipeptides – an anthelmintically active class of compounds exhibiting a novel mode of action. Int. J. Antimicrob. Agents 22, 318–331.
Harder, A., von Samson-Himmelstjerna, G., 2001. Activity of the cyclic depsipeptide emodepside (BAY 44-4400) against larval and adult stages of nematodes in rodents and the influence on worm survival. Parasitol. Res. 87, 924–928.

Henikoff, S., Henikoff, J.G., 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U. S. A. 89, 10915–10919.

Holden-Dye, L., 1bj, S.S., UK, Walker, R.J., 2014. Southampton Neuroscience Group (SoNG), Centre for Biological Sciences, University of Southampton. Anthelmintic drugs and nematocides: studies in Caenorhabditis elegans. WormBook. https://doi.org/10.1895/wormbook.1.143.2.

Jeschke, R., Enuma, K., Harder, A., Schindler, M., Murakami, T., 2005. Influence of the cyclooctadepsipeptides PF1022A and PF1022E as natural products on the design of semi-synthetic anthelmintics such as emodepside. Parasitol. Res. 97 (Suppl. 1), S11–S16.

Kasambura, A., 2020. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.4.6.

Kotze, A.C., Prichard, R.K., 2016. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv. Parasitol. 93, 397–428.

Kulke, D., von Samson-Himmelstjerna, G., Miltsch, S.M., Wolstenholme, A.J., Jex, A.R., Gasser, R.B., Ballesteros, C., Geyra, T.G., Keiser, J., Townson, S., Harder, A., Krücken, J., 2014. Characterization of the Ca2+-gated and voltage-dependent K+ channel Sto-1 of nematodes and its interaction with emodepside. PLoS Neglected Trop. Dis. 8, e29401.

Laing, S.T., Ivens, A., Butler, V., Ravilkumar, S.P., Laing, R., Woods, D.J., Gilleard, J.S., 2012. The transcriptional response of Caenorhabditis elegans to Ivermectin exposure and visualizing data from COPAS large-particle flow cytometers. PloS One 9, e111090.

Silvestre, A., Cabaret, J., Humbert, J.F., 2001. Effect of benzimidazole under-dosing on the resistant allele frequency in Teladorsagia circumcincta (Nematoda). Parasitology 123, 103–111.

Smith, G., Gerenfl, B.T., Isham, V., Cornell, S., 1999. Anthelmintic resistance revisited: under-dosing, chemoprophylactic strategies, and mating probabilities. Int. J. Parasitol. 29, 77–91 discussion 93–4.

Sterken, M.G., Snoek, L.B., Kammena, J.E., Andersen, E.C., 2015. The laboratory domestication of Caenorhabditis elegans. Trends Genet. 31, 224–231.

Várady, M., Papadopoulos, E., Dolinska, M., Konigová, A., 2011. Anthelmintic resistance in parasites of small ruminants: sheep versus goats. Helminthologia 48, 137–144.

Von Samson-Himmelstjerna, G., Wiegand, H., Wunderlich, F., 2001. Latrophilin-like neuropeptides as putative ligands of the latrophilin-like HC110-R from Haemonchus contortus. Mol. Biochem. Parasitol. 164, 162–164.

Willson, J., Amliwala, K., Harder, A., Holden-Dye, L., Walker, R.J., 2003. The effect of the anthelmintic emodepside at the neuromuscular junction of the parasitic nematode Ascaris suum. Parasitology. https://doi.org/10.1017/S0031182002002639.

Willson, J., Holden-Dye, L., Harder, A., Walker, R.J., 2004. Veterinary anthelmintics: old and new. Trends Parasitol. 20, 456–461.

Willmuth, S., Schmitt-Wrede, H.P., Harder, A., Wunderlich, F., 2009. FMRFamide-like neuropeptides as putative ligands of the latrophilin-like HC110-R from Haemonchus contortus. Mol. Biochem. Parasitol. 164, 162–164.

Willson, J., Amliwala, K., Davis, A., Cook, A., Cottle, M.F., Kriek, N., Hopper, N.A., O’Connor, V., Harder, A., Walker, R.J., Holden-Dye, L., 2004. Latrotoxin receptor signaling engages the UNC-13-Dependent vesicle-priming pathway in C. elegans. Curr. Biol. https://doi.org/10.1016/j.cub.2004.07.056.

Willson, J., Amliwala, K., Harder, A., Holden-Dye, L., Walker, R.J., 2003. The effect of the anthelmintic emodepside at the neuromuscular junction of the parasitic nematode Ascaris suum. Parasitology. https://doi.org/10.1017/S0031182002002639.

Willson, J., Holden-Dye, L., Harder, A., Walker, R.J., 2001. A possible mechanism for the action of the novel anthelmintic emodepside, using Ascaris suum body wall muscle preparations. J. Physiol. 536, 132P–133P.

Wit, J., Dilks, C., Andersen, E., 2020. Complementary approaches to understand anthelmintic resistance using free-living and parasitic nematodes. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.08.013.

Zahner, H., Taubert, A., Harder, A., von Samson-Himmelstjerna, G., 2001. Filaricidal efficacy of anthelmintically active cyclodepsipeptides. Int. J. Parasitol. 31, 1515–1522.

Zamanian, M., Cook, D.E., Zdralejvic, S., Brady, S.C., Lee, D., Lee, J., Andersen, E.C., 2018. Discovery of genomic intervals that underlie nematode responses to benzimidazoles. PLoS Neglected Trop. Dis. 12, e006368.