INTRODUCTION

Genomic DNA hypomethylation has been observed in the peripheral blood mononuclear cells of leukemia patients and in tumor cells of patients with B-cell lymphoproliferative diseases (1). DNA methylation may affect karyotypic stability, may influence euchromatin-heterochromatin interactions, and has been correlated with disease progression (2). On the other hand, promoters of some tumor suppressive genes are often hypermethylated (3-6). For example, some patients with lymphomas do not express tumor suppressor genes because the promoters of these genes are methylated.

Leukemia is a hematological cancer of the bone marrow and lymphatic system. In leukemia, bone marrow produces a large number of abnormal white blood cells, which overwhelm the other types of blood cells, including red blood cells and platelets, thus impairing the production of normal white blood cells. In clinical classification, leukemia can be classified as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML is a serious and lethal disease that affects adults. CML is a clonal disease of stem cell origin that is characterized by the presence of the Philadelphia chromosome (Ph+), which has been named t(9;22)(q34;q11). Its fusion gene product, Bcr-Abl, is a constitutively active tyrosine kinase. These facts suggest that somewhat different mechanisms may be involved in AML and CML. Nevertheless, the differential factors through which they produce a different type of leukemia are not yet completely understood.

In hematopoietic malignancies, hypermethylation of several genes including E-cadherin, DAP kinase, estrogen receptor (ER) alpha, and p15INK4B are associated with gene inactivation (7-10). Genes, such as DAB2IP, DLC-1, H-cadherin, Integrin α4, RUNX3, SFRP1, and SHP1, has been identified as being implicated in aberrant DNA methylation during development of human malignancy (11-18). In order to gain insight into the differential epigenetic alterations in leukemia, we investigated the methylation statuses at selected locus of these genes in AML and CML patients using a methylation-specific polymerase chain reaction (MSP).

MATERIALS AND METHODS

Sample collection

Diagnostic bone marrow samples were obtained from 23
patients with AML and 21 patients with CML. The samples were gathered by the Division of Hematology/Oncology (Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea) and analyzed by pathologist. Institutional review board approval and informed consent were obtained (KUMC-IRB-2006011-P-1, KUMC-IRB-2006012-P-2). Of the AML patients, 17 males and 6 females were included, with ages ranging from 26 to 78 yr, at a median age of 45.61 (SD, 15.56) yr. Of the CML patients, 11 males and 10 females were included, with ages ranging from 18 to 75 yr (mean ± SD, 49.91 ± 16.53). As controls, 22 normal peripheral bloods were obtained from healthy volunteers (11 males and 10 females) ranging from 20 to 78 yr of age (mean ± SD, 45.36 ± 20.64).

Sodium bisulfite treatment and MSP

Chemical modification was performed as described previously, with minor modifications (19). In brief, 1 μg of genomic DNA was denatured by incubation with 0.2 M NaOH for 10 min at 37 °C, followed by the addition of 550 μL of 3 M sodium bisulfite (pH 5.0) (Sigma, St. Louis, MO, U.S.A.) and 10 mM hydroquinone (Sigma), which was brought to a final volume of 600 μL. The mixtures were incubated at 55 °C for 16 hr, and the modified DNA was then desalted with the Wizard Clean-Up system (Promega Corp., Madison, WI, U.S.A.). We performed polymerase chain reaction (PCR) using specific PCR primers capable of distinguishing between methylated and unmethylated DNA sequences. The primers for the unmethylated and methylated DNA sequences, PCR product size, and annealing temperature are shown in Table 1. The MSP primer sets were selected at the 5′-CpG island regions of genes using the MethPrimer software (www.urogene.org). The PCR conditions were as follows: initial denaturation and hot start at 95°C for 5 min, and cycles consisting of 30 sec at 95°C, 30 sec at the annealing temperature, and 30 sec at

Primers	5′→3′	Annealing temp. (°C)	PCR cycles	Product size (bp)	Reference/Gene bank accession no.
DAB2IP	UF GGT GTT GTT AAG GTA ATA GT	52	37	181	NT 008470
	UR CCT TAG TAA ACA ACC ACA CA				
	MF GCC GTC GTT AAG GTA ATA GC	64	32	176	
	MR CTA AAC GAC CGC GCG ACC GA				
DLC-1	UF AAA CCC AAC AAA AAA ACC CAA CTA ACA	55	37	172	(12)
	UR TTT TTT AAA GAT TGA AAT GAG GGA GTG				
	MF CCC AAC GAA AAA ACC CGA CTA ACG	55	37	172	
	MR TTT AAA GAT CGA AAC GAG GGA GCG				
H-Cadherin	UF GTG GGG TTT GTT TTT GGT GAG	56	38	260	NT 01498
	UR CCA ACT AAA AAC ACC CAA CAA CA				
	MF GCC GGG TTC TTT CGC QAG	64	38	260	
	MR CCG ACT AAA AAC GCC CGA CGA				
ID4	UF GAG GTA AAG GQA GTA GAG TTG GTT	62	35	155	NT 007592
	UR CAA CCC AAC ACC TTA CAA CCC				
	MF GAG GTA AAG GQA GCG GAG TGG GTC	65	32	155	
	MR CAA CCC GAC GAC TTA CGA CCC				
Integrin α4	UF GTT TAG AGT TGT TTT GTT TGT G	59	39	193	(15)
	UR AAA ACT TCA AAT ACT ACT CAC ACT				
	MF TAG AGT TGT TTC CGC TTG TGC G	59	37	186	
	MR CTT CGA ATA CTC CGC CTA CTT				
RUNX3	UF GTG GGT GTG TGT TGG GTT AGT GAG	59	37	130	NT 004610
	UR CAC TCT CTC ACC AAT TCA CAC TAC				
	MF GTC GGG TTA CGG AGG TTT CGT	59	37	130	
	MR CGA CCG ACA CGA CCT CCT C				
SHP1	UF GGG TTT GTG TGT AGT TTG GTA TA	62	35	171	(17)
	UR CTC ACG TTA CTA TCA AAA ACA ACA CAA				
	MF TGT AGT TGT CGG AGT TAG TGT CGC GC	68	35	126	
	MR CCT AGC ATC GAA ACG GAC CGG AAC G				
SFRP1	UF GTG TTT GTG ATT CAG TAG GAT GTA TTA TTT G	59	37	193	NT 007599
	UR CAA ACC CAA AAT CTA CCA CAA C				
	MF GCC TGG GTT ATT TAG TAG GAT TTA TTC G	59	37	130	
	MR CGA ACC CAA CAG ATC CCA CGA				

PCR, polymerase chain reaction; temp., temperature; UF, unmethylated forward-sequence; UR, unmethylated reverse-sequence; MF, methylated forward-sequence; MR, methylated reverse-sequence.
72°C. In addition, SCK, a human cholangiocarcinoma cell line, was used as positive control for Integrin α4 gene (20).

Statistical analysis

MSP results were analyzed as a dichotomous variable based on the presence or absence of gene methylation. The MSP results of tumor and normal samples were compared and analyzed with the Pearson chi-square test (Version 12; SPSS Inc., Chicago, IL, U.S.A.). Statistical significance was defined as a P value of <0.05.

RESULTS

The multiple genes were found to be methylated in bone marrow from patients with AML or CML. Specifically, the frequencies of promoter hypermethylation at selected locus in the 23 AML samples were: 78.3% (18/23) for SHP1, 65.2% (15/23) for ID4 and SFRP1, 26.1% (6/23) for H-cadherin, 8.7% (2/23) for DLC-1, and 4.3% (1/23) for DAB2IP and RUNX3. The frequencies of DNA hypermethylation at selected locus in the 21 CML samples were: 28.6% (6/21) for SHP1, 19.0% (4/21) for H-cadherin, 14.3% (3/21) for ID4, 9.5% for (2/21)

Fig. 1. PCR product images of the DAB2IP, DLC-1, H-Cadherin, ID4, Integrin α4, RUNX3, SFRP1, and SHP1 genes in normal peripheral bloods, acute myeloid leukemias, and chronic myeloid leukemias. N, normal peripheral blood; A, acute myeloid leukemia; C, chronic myeloid leukemias; U, amplified products used as primers for the unmethylated sequence in normal peripheral blood; M, amplified products used as primers for the methylated sequence.
Table 2. Methylation frequencies in normal peripheral bloods, acute myeloid leukemias, and chronic myeloid leukemias

	DAB2IP	DLC-1	H-cadherin	ID4	Integrin alpha 4	Runx3	SFRP1	SHP1
N	0/22(0%)	0/22(0%)	5/22(22.7%)	3/22(13.6%)	0/22(0%)	0/22(0%)	0/22(0%)	0/22(0%)
A	1/23 (4.3%)	2/23 (8.7%)	6/23 (26.1%)	15/23 (65.2%)	0/23 (0%)	1/23 (4.3%)	15/23 (65.2%)	18/23 (78.3%)
C	0/21(0%)	0/21(0%)	4/21 (19.0%)	3/21 (14.3%)	0/21 (0%)	0/21 (0%)	2/21 (9.5%)	6/21 (28.6%)

*P<0.05.
N, normal peripheral bloods; A, acute myeloid leukemia; C, chronic myeloid leukemia.

for SFRP1, and 0% (0/21) for DAB2IP, DLC-1, Integrin α4, and RUNX3 (Fig. 1). However, promoter hypermethylation of the 22 normal peripheral bloods was observed less frequently (Table 2).

There was a statistically significant difference between normal peripheral bloods and AML with respect to the frequencies of methylation of ID4, SFRP1, and SHP1 (Pearson chi-square test; P<0.0001, P<0.0001, and P<0.0001, respectively) and between normal peripheral bloods and CML with respect to the frequencies of SHP1 methylation (Pearson chi-square test; P=0.007). Furthermore, there was a statistically significant difference between the DNA methylation frequencies of AML patients and CML patients. The frequencies of DNA methylation of ID4, SFRP1, and SHP1 were higher in AML compared to those in CML (P<0.0001, P<0.0001, and P=0.001, respectively) (Table 2). In contrast, no statistical differences between AML and CML were detected in other genes such as DLC-1, DAB2IP, H-cadherin, Integrin α4, and RUNX3. Promoter methylation results at selected locus of eight genes with MSP method were shown in Fig. 1. These results suggest that there may be differential epigenetic modification between AML and CML.

DISCUSSION

Differential epigenetic alteration is observed in AML and CML patients. The results of the present study demonstrate the substantially increased frequency of promoter hypermethylation in ID4, SFRP1, and SHP1 genes in AML compared to CML.

Leukemia, a heterogeneous group of hematopoietic malignancies that occur worldwide, includes acute and chronic myeloid leukemia. Despite many important advances in understanding the different biological and cytogenetic aspects of acute and chronic leukemia, a number of questions remained unanswered. It is understood that some kinds of leukemia present specific cytogenetic alterations (21). Different types of leukemia usually have specific epigenetic modifications that cause the activation of oncogenes and, in particular, the formation of abnormal fusion genes such as AML1-ETO (22, 23), a fusion protein resulting from t(8;21) translocation that commonly occurs in AML. Another typical example is the fact that Bcr-Abl is a constitutively active, cytoplasmic tyrosine kinase that is generated by t(9;22) translocation in more than 95% of CML (24).

The central role of epigenetic modification of these genes in leukemia development promoted them as reasonable targets for understanding the differential mechanism between acute and chronic leukemia. In the present study, ID4, SFRP1, and SHP1 were hypermethylated in AML compared to CML. These results suggest that the epigenetic modification of these genes may play specific roles in the development of AML rather than CML and, thus, promote them as ideal targets for drug development to treat AML. In the future, it is clearly imperative to understand the patho-physiological differential mechanisms of these genes in AML, and to finally explore novel therapeutic strategies.

In present study, methylation frequencies of SHP1 gene were the high detected in CML as well as AML. SHP1 is a member of the SHP family of proteins, cytoplasmic protein tyrosine phosphatase (PTP), and has been known as a candidate tumor suppressor gene in lymphoma, leukemia and other cancers (25). Also, the hypermethylation of SHP1 gene was frequently detected in several human cancers and the reduced expression of the SHP1 gene in various types of leukemias and lymphomas mainly occurred by promoter methylation (26-28). Therefore, these results indicate that aberrant DNA methylation of SHP1 gene may be related to the tumorigenicity of myeloid leukemia.

The methylation frequencies of the DAB2IP, DLC-1, and RUNX3 genes were detected at different levels in acute and chronic leukemia patients; however, the difference was negligible. In some genes like Integrin α4 gene, the promoter methylation was not observed in most of the cases. However, hypermethylation of these genes was frequent event in esophageal squamous cell carcinomas, lung cancers, and gastric cancers (11, 12, 15, 16). Thus, DNA methylation of these genes may not be related to tumorigenicity of AML/CML in contrast with other cancers.

In summary, we have identified that aberrant DNA methylation of SHP1 is a frequent event in AML and CML. Also, the frequencies of DNA methylation of several methylation-controlled genes, including ID4, SFRP1, and SHP1, were higher in AML patients compared to those in CML patients. Although these results should be confirmed, more comprehensive studies are necessary involving various known risk factors such as smoking and occupational carcinogens, and genetic susceptibilities. Our results suggest that aberrant DNA methylation of SHP1 may be related to the tumorigenicity...
of AML and CML and hypermethylation of \textit{ID4}, \textit{SFRP1}, and \textit{SHP1} genes may contribute to the pathogenesis mechanism of AML specifically.

REFERENCES

1. Wahlflors J, Hiitunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood 1992; 80: 2074-80.

2. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400-13.

3. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijer mans P, Jones PA, Lubbert M. Demethylation of a hypermethylated \textit{P15/INK4B} gene in patients with myelodysplastic syndrome by 5-Aza-2’-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957-64.

4. Fulop Z, Csernus B, Timar B, Szepesi A, Matolcsy A. Microsatellite instability and \textit{hMLH1} promoter hypermethylation in Richter’s transformation of chronic lymphocytic leukemia. Leukemia 2003; 17: 411-5.

5. Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 1997; 272: 22322-9.

6. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005; 97: 1498-506.

7. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of \textit{p15ink4a} and \textit{p16ink4a} characterize the major types of hematological malignancies. Cancer Res 1997; 57: 837-41.

8. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1999; 93: 4347-53.

9. Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood 2000; 95: 3208-13.

10. Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP. Frequent hypermethylation of \textit{p16} and \textit{p15} genes in multiple myeloma. Blood 1997; 89: 2500-13.

11. Yano M, Toyooka S, Tsukada K, Dote H, Ouchi M, Hanabata T, Aoe M, Date H, Gazdar AF, Shimizu N. Aberrant promoter methylation of human \textit{DAB2} interactive protein (hDAB2IP) gene in lung cancers. Int J Cancer 2005; 113: 59-66.

12. Kim TY, Jong HS, Song SH, Dimitchev A, Jeong SJ, Lee JW, Kim NK, Jung M, Bang YJ. Transcriptional silencing of the \textit{DLC1} tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene 2003; 22: 3943-51.

13. Sun D, Zhang Z, Van do N, Huang G, Embreg I, Hu L. Aberrant methylation of \textit{CDH13} gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol 2007; 43: 82-7.

14. Chan AS, Tsui WY, Chen X, Chu KM, Chan TL, Chan AS, Li R, So S, Yuen ST, Leung SY. Downregulation of \textit{ID4} by promoter hypermethylation in gastric adenocarcinoma. Oncogene 2003; 22: 6946-53.

15. Park J, Song SH, Kim TY, Choi MC, Jong HS, Lee JW, Kim NK, Kim WH, Bang YJ. Aberrant methylation of integrin alpha4 gene in human gastric cancer cells. Oncogene 2004; 23: 3474-80.

16. Long C, Yin B, Lu Q, Zhou X, Hu J, Yang Y, Yu F, Yuan Y. Promoter hypermethylation of the \textit{RUNX3} gene in esophageal squamous cell carcinoma. Cancer Invest 2007; 25: 685-90.

17. Takada T, Yagi Y, Maekita T, Imura M, Nakagawa S, Tsao SW, Miyamoto K, Yoshino O, Yasugi T, Taketani Y. Ushijima T. Methylation-associated silencing of the Wnt antagonist \textit{SFRP1} gene in human ovarian cancers. Cancer Sci 2004; 95: 741-4.

18. Khoury JD, Russidakis GZ, Medeiros LJ, Amin HM, Lai R. Methylation of \textit{SHP1} gene and loss of \textit{SHP1} protein expression are frequent in systemic anaplastic large cell lymphoma. Blood 2004; 104: 1580-1.

19. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996; 93: 9821-6.

20. Kim DG, Park SY, You KR, Lee GB, Kim H, Moon WS, Chun YH, Park SH. Establishment and characterization of chromosomal aberrations in human cholangiocarcinoma cell lines by cross-species color banding. Genes Chromosomes Cancer 2001; 30: 48-56.

21. Scandura JM, Bocconi P, Cammenga J, Nimer SD. Transcript factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21: 3422-44.

22. Gao FH, Wang Q, Wu YL, Li X, Zhao KW, Chen GQ. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression. Biochem Biophys Res Commun 2007; 356: 505-11.

23. Li X, Xu YB, Wang Q, Lu Y, Zheng Y, Wang YC, Lubbert M, Zhao KW, Chen GQ. Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML. 1-ETO-induced growth arrest in leukemic cells. J Cell Physiol 2006; 208: 594-601.

24. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640-53.

25. Wu C, Sun M, Liu L, Zhou GW. The function of the protein tyrosine phosphatase \textit{SHP-1} in cancer. Gene 2003; 306: 1-12.

26. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL. SOCS1 and \textit{SHP1} hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 2004; 103: 4630-5.

27. Chim CS, Wong KY, Loong F, Srivastava G. SOCS1 and \textit{SHP1} hypermethylation in mantle cell lymphoma and follicular lymphoma: implications for epigenetic activation of the Jak/STAT pathway. Leukemia 2004; 18: 356-8.

28. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640-53.