Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Contributes High Risk for Chronic Kidney Disease in Asian Male with Hypertension–A Meta-Regression Analysis of 98 Observational Studies

Chin Lin1, Hsin-Yi Yang2, Chia-Chao Wu3, Herng-Sheng Lee4, Yuh-Feng Lin3,5, Kuo-Cheng Lu6, Chi-Ming Chu2, Fu-Huang Lin2, Sen-Yeong Kao2, Sui-Lung Su2*

1 Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC, 2 School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC, 3 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC, 4 Division of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC, 5 Division of Nephrology, Department of Medicine, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, Taipei Medical University, New Taipei City, Taiwan, ROC, 6 Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC

Abstract

Background: Associations between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphisms and chronic kidney disease (CKD) have been extensively studied, with most studies reporting that individuals with the D allele have a higher risk. Although some factors, such as ethnicity, may moderate the association between ACE I/D polymorphisms and CKD risk, gender-dependent effects on the CKD risk remain controversial.

Objectives: This study investigated the gender-dependent effects of ACE I/D polymorphisms on CKD risk.

Data sources: PubMed, the Cochrane library, and EMBASE were searched for studies published before January 2013.

Study eligibility criteria, participants, and interventions: Cross-sectional surveys and case–control studies analyzing ACE I/D polymorphisms and CKD were included. They were required to match the following criteria: age >18 years, absence of rare diseases, and Asian or Caucasian ethnicity.

Study appraisal and synthesis methods: The effect of carrying the D allele on CKD risk was assessed by meta-analysis and meta-regression using random-effects models.

Results: Ethnicity [odds ratio (OR): 1.24; 95% confidence interval (CI): 1.08–1.42] and hypertension (OR: 1.55; 95% CI: 1.04–2.32) had significant moderate effects on the association between ACE I/D polymorphisms and CKD risk, but they were not significant in the diabetic nephropathy subgroup. Males had higher OR for the association between ACE I/D polymorphisms and CKD risk than females in Asians but not Caucasians, regardless of adjustment for hypertension (p<0.05). In subgroup analyses, this result was significant in the nondiabetic nephropathy group. Compared with the I allele, the D allele had the highest risk (OR: 3.75; 95% CI: 1.84–7.65) for CKD in hypertensive Asian males.

Conclusions and implications of key findings: The ACE I/D polymorphisms may incur the highest risk for increasing CKD in hypertensive Asian males.

Citation: Lin C, Yang H-Y, Wu C-C, Lee H-S, Lin Y-F, et al. (2014) Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Contributes High Risk for Chronic Kidney Disease in Asian Male with Hypertension–A Meta-Regression Analysis of 98 Observational Studies. PLoS ONE 9(1): e87604. doi:10.1371/journal.pone.0087604

Editor: Michael Bader, Max-Delbrück Center for Molecular Medicine (MDC), Germany

Received October 29, 2013; Accepted December 24, 2013; Published January 31, 2014

Copyright: © 2014 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: a131419@gmail.com

Introduction

The prevalence of chronic kidney disease (CKD) is approximately 10% in several countries [1–3]. CKD patients have high risk for cardiovascular disease and death [4]. Genetic factors, including ethnicity [5] and family history of disease [6,7], play a key role in CKD pathogenesis. Thus, it is desirable to identify candidate genes and evaluate their effects.

The renin-angiotensin system (RAS) regulates blood pressure and electrolyte balance [8]. Owing to the key role of angiotensin-converting enzyme (ACE) in RAS, ACE polymorphisms have frequently been investigated. One of the most important ACE polymorphisms is a 207-bp insertion/deletion in intron 16 (ACE
ACE I/D and CKD in Asian Male with Hypertension

I/D, and a previous study revealed a significant effect of this polymorphism on ACE gene expression [9]. Most studies have found that carriers of the D allele had a higher risk of CKD or end-stage renal disease (ESRD) than those of the I allele [10–12].

Because previous studies have found that gender and the DD genotype had an additive effect on blood ACE levels [13], we hypothesized that gender differences affect the relative risk of ACE I/D polymorphisms for CKD. Numerous studies of CKD or ESRD have reported appreciable, but not significant, gender-dependent effects of ACE I/D polymorphisms [14–19], but the populations used in these studies were of different ethnicities. Studies of Caucasian subjects have indicated additive effects of the D allele in females [14–16], but studies of Asian subjects have shown different results [17–19]. Although many previous meta-analysis studies investigating ACE I/D polymorphisms and CKD have been reported, but no studies have considered moderate effects of gender in our knowledge [10–12,20–22]. This study focused on general population without genetic abnormality or rare disorder, and we wanted to compare the risk of CKD in people with major allele (I allele) or minor allele (D allele) on ACE I/D. In addition, gender-dependent effects of ACE I/D polymorphisms on CKD risk was investigated.

Methods

Search Methods and Criteria for Considering Studies

The PRISMA 2009 Checklist was reported in Table S1. This study focused on the general population without genetic predisposing factors, and aimed to compare CKD risk between individuals carrying the major (I) and minor (D) alleles of ACE I/D. To identify relevant studies, English-language articles in MEDLINE, Cochrane Library and EMBASE were searched using relevant text words and medical subject headings that included all spellings of ACE I/D and CKD (the detailed search strategy is shown in Table S2). All articles published from the dates of inception of these medical databases to January 2013 were included. We manually scanned the reference lists of identified...
Table 1. Characteristics of published studies included in this meta-analysis.

First author & year	Ethnicity	Study design	CKD type	Kidney function of case	Definition of case
Shaikh, 2012 [27]	Caucasian	CC	DN	non-ESRD	UAE >300 mg/day
Rahimi, 2012 [28]	Caucasian	CS	DN	non-ESRD	ACR >30 mg/g
El-Baz, 2012 [29]	Caucasian	CS	DN	non-ESRD	ACR >30 mg/g
Zsom(1), 2011 [30]	Caucasian	CC	non-DN	non-ESRD	biopsy, ultrasound diagnosed & eGFR <60 ml/min/1.73 m²
Zsom(2), 2011 [30]	Caucasian	CC	DN	non-ESRD	proteinuria & eGFR <60 ml/min/1.73 m²
Al-Harbi, 2011 [31]	Caucasian	CC	DN	non-ESRD	no description
Jung, 2011 [32]	Asian	CC	GN	non-ESRD	biopsy diagnosed
Ali, 2011 [33]	Asian	CC	Comb	ESRD	doctor diagnosed
Huang, 2010 [34]	Asian	CC	GN	ESRD	biopsy diagnosed
Jayapalan, 2010 [35]	Asian	CS	DN	non-ESRD	ACR >30 mg/g or RRT
Mansoor, 2010 [14]	Caucasian	CS	DN	non-ESRD	albuminuria or RRT
Naresh, 2009 [36]	Asian	CC	DN	non-ESRD	no description
Ezzidi, 2009 [37]	Caucasian	CS	DN	non-ESRD	ACR >30 mg/g or eGFR <90 ml/min/1.73 m²
Nikzamir, 2009 [38]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Anbazhagah, 2009 [39]	Asian	CC	Comb	ESRD	RRT
Ahluwalia, 2009 [40]	Asian	CC	DN	non-ESRD	UAE >200 μg/min, ACR >300 mg/g or RRT
Palomo-Piñón, 2009 [16]	Caucasian	CS	DN	non-ESRD	ACR >30 mg/g
Möllsten, 2008 [41]	Caucasian	CS	DN	non-ESRD	ACR >20 mg/g
Ergolu, 2008 [42]	Caucasian	CC	DN	non-ESRD	30 mg/day < UAE < 300 mg/day
Afra, 2008 [43]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Tripathi, 2008 [44]	Asian	CC	non-DN	ESRD	Ccr < 15 mL/min/1.73 m² & ultrasound diagnosedor CT
Movva, 2007 [45]	Asian	CC	DN	ESRD	SCR >1.5 mg/dL and UAE >30 mg/day
Uddin, 2007 [46]	Asian	CC	DN	ESRD	proteinuria
Buraczynska, 2006 [47]	Caucasian	CC	Comb	ESRD	RRT
So, 2006 [48]	Asian	CS	DN	non-ESRD	ACR >30 mg/g
Shestakova, 2006 [49]	Caucasian	CC	DN	non-ESRD	ACR >300 mg/g
Ng, 2006 [50]	Caucasian	CS	DN	non-ESRD	urinalyses positive, ACR >250 mg/g (men) or >355 mg/g (women)
Prasad, 2006 [51]	Asian	CC	DN	non-ESRD	SCR >3 mg/dl & ACR >200 mg/g
Degirmenci, 2005 [52]	Caucasian	CS	DN	ESRD	UAE >30 mg/day
van der Sman-de Beer, 2005 [53]	Caucasian	CC	Comb	non-ESRD	RRT
Park, 2005 [18]	Asian	CC	DN	ESRD	RRT
Canani, 2005 [54]	Caucasian	CS	DN	non-ESRD	UAE >20 μg/min
Fabris, 2005 [55]	Caucasian	CC	HN	non-ESRD	SCR >1.5 mg/dL
Lau, 2004 [56]	Asian	CC	GN	ESRD	biopsy diagnosed
Suzuki, 2004 [57]	Asian	CC	GN	non-ESRD	biopsy diagnosed
Stratta, 2004 [58]	Caucasian	CC	GN	non-ESRD	biopsy diagnosed
Lochynska, 2003 [59]	Caucasian	CC	GN	non-ESRD	biopsy diagnosed
Papp, 2003 [60]	Caucasian	CC	GN	ESRD	RRT
Aucella, 2003 [61]	Caucasian	CC	Comb	non-ESRD	RRT
Okuno, 2003 [62]	Asian	CS	DN	non-ESRD	UAE >10 μg/min
Ortiz, 2003 [63]	Caucasian	CC	non-DN	non-ESRD	Ccr < 50 mL/min/1.73 m²
Hadjadj, 2003 [15]	Caucasian	CC	DN	non-ESRD	urinary albumin concentration >20 mg/L
Wang, 2003 [64]	Asian	CC	Comb	ESRD	RRT
Dixit, 2002 [65]	Caucasian	CC	GN	ESRD	biopsy diagnosed
Lee(1), 2002 [26]	Asian	CS	non-DN	non-ESRD	UAE >20 μg/min or ACR >20 mg/g
Lee(2), 2002 [26]	Asian	CS	DN	non-ESRD	UAE >20 μg/min or ACR >20 mg/g
Table 1. Cont.

First author & year	Ethnicity	Study design	CKD type	Kidney function of case	Definition of case
Losito, 2002 [66]	Caucasian	CC	Comb	ESRD	RRT
Yoon, 2002 [67]	Asian	CC	GN	non-ESRD	biopsy diagnosed
Fradin, 2002 [68]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Drouet, 2002 [69]	Caucasian	CC	GN	non-ESRD	biopsy diagnosed
Nicrod, 2002 [70]	Caucasian	CC	Comb	non-ESRD	RRT
Araz, 2001 [71]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Azar, 2001 [72]	Caucasian	CC	DN	non-ESRD	UAE >30 mg/day
Lovati, 2001 [73]	Caucasian	CC	Comb	ESRD	RRT
Wang, 2001 [74]	Caucasian	CS	Comb	non-ESRD	UAE >30 mg/day
Taniwaki, 2001 [75]	Asian	CC	DN	non-ESRD	proteinuria >500 mg/dL
Hadijdi, 2001 [77]	Caucasian	CS	DN	non-ESRD	urinary albumin concentration >20 mg/L
Wu, 2000 [78]	Asian	CC	DN	non-ESRD	no description
Hsieh, 2000 [79]	Asian	CC	DN	non-ESRD	proteinuria >500 mg/dL
van Ittersum, 2000 [80]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Tomino, 1999 [19]	Asian	CS	DN	non-ESRD	UAE >20 µg/min or ACR >30 mg/g
Solini, 1999 [81]	Caucasian	CS	DN	non-ESRD	Albuminuria
De Cosmo, 1999 [82]	Caucasian	CC	DN	non-ESRD	UAE >30 mg/day
Miura, 1999 [83]	Asian	CS	DN	non-ESRD	UAE >10 µg/min
Kuramoto, 1999 [84]	Asian	CS	DN	non-ESRD	UAE >15 µg/min
Huang, 1998 [85]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Walder, 1998 [86]	Caucasian	CC	DN	non-ESRD	UAE >30 mg/day
Freire, 1998 [87]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Grzeszczak, 1998 [88]	Caucasian	CS	DN	non-ESRD	ACR >1.9 mg/mol (men) or >2.8 mg/mol (women)
Young, 1998 [89]	Asian	CS	DN	non-ESRD	UAE >30 mg/day
Pirno, 1998 [90]	Caucasian	CS	DN	non-ESRD	UAE >20 µg/min
Fernández-Llama, 1998 [91]	Caucasian	CS	HN	non-ESRD	UAE >20 µg/min
Frost, 1998 [92]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Pei, 1997 [93]	Caucasian	CS	GN	non-ESRD	biopsy diagnosed
Manre, 1997 [94]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Barnas, 1997 [95]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Ringel, 1997 [96]	Caucasian	CC	DN	non-ESRD	UAE >30 mg/day
Schmidt, 1997 [97]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Kawada, 1997 [98]	Asian	CC	Comb	ESRD	RRT
Karia, 1997 [99]	Asian	CS	DN	non-ESRD	UAE >15 µg/min
Nakajima, 1996 [17]	Asian	CS	DN	non-ESRD	ACR >30 mg/g
Chowdhury, 1996 [100]	Caucasian	CS	DN	non-ESRD	Albuminuria
McLaughlin, 1996 [101]	Caucasian	CC	Comb	non-ESRD	RRT or doctor diagnosed
Oh, 1996 [102]	Asian	CS	DN	non-ESRD	UAE >20 µg/min
Schmidt, 1996 [103]	Caucasian	CC	Comb	ESRD	RRT
Doi, 1996 [104]	Asian	CS	DN	non-ESRD	ACR >30 mg/g
Ohno, 1996 [105]	Asian	CS	DN	non-ESRD	ACR >10 mg/g
Mizuiri, 1995 [106]	Asian	CN	DN	non-ESRD	UAE >20 µg/min or RRT
Yoriko, 1995 [107]	Asian	CN	GN	non-ESRD	biopsy diagnosed
Fujisawa, 1995 [108]	Asian	CS	DN	non-ESRD	Albuminuria or RRT
Panagiotopoulo, 1995 [109]	Caucasian	CS	DN	non-ESRD	UAE >20 µg/min
Tarnow, 1995 [110]	Caucasian	CC	DN	non-ESRD	UAE >300 mg/day or biopsy diagnosed
trials and review articles to avoid missing any other relevant studies [10–12,20–22].

All related studies assessing the association between ACE I/D polymorphisms and CKD risk were considered for inclusion. The criteria for inclusion of a study were as follows: (1) cross-sectional surveys or case–control studies; (2) CKD defined according to the criteria for inclusion of a study were as follows: (1) cross-sectional surveys or case–control studies; (2) CKD defined according to the population age >18 years; (3) control group with normal kidney function; (4) study population >18 years; (5) Asian or Caucasian ethnicity of the populations, and (6) articles providing detailed distribution of ACE genotypes. Studies investigating the relationships between genetic polymorphisms and other kidney diseases (lupus nephritis, polycystic kidney disease, endemic nephropathy, or reflux nephropathy) were excluded.

Data Extraction and Quality Assessment

Two reviewers (Chin Lin and Sui-Lung Su) independently extracted the data and assessed risk of bias. We recorded the first author’s name, year of publication, ethnicity of the study population, kidney function of the cases, definition of the case group and its population characteristics (mean age, proportion of male subjects, body mass index, diabetes mellitus prevalence, hypertension prevalence, and ACE I/D genotype distribution). Ethnicity of the study population was categorized by study area. Subjects in the Arabian peninsula were classified as Caucasian because Arabs were the main race, and subjects in other regions of Asia (excluding Russia) were classified as Asian. Diabetes mellitus and hypertension were defined as plasma glucose level of >126 mg/dL and systolic blood pressure of >140 mmHg. If the article did not report the prevalence of diabetes mellitus and hypertension or the definition did not match, we assumed a normal distribution of plasma glucose level and systolic blood pressure for calculation.

Estimating moderate effects is difficult in meta-analysis using case–control studies. Researchers prefer that studies provide stratified data or matching data, but previous studies have seldom reported these. Fortunately, the characteristics of case groups may be used to estimate moderate effects under the following two conditions: (1) outcomes were rare events, (2) the major independent variable and moderators were independent events.

For example, when the major independent variable is exposure, with values “yes” or “no,” and the moderator is gender, with values “male” or “female,” the variables $p_1, p_2, p_3,$ and p_4 are the outcome prevalence of women without exposure, men without exposure, women with exposure, and men with exposure. The variable p_5 is the proportion of individuals with exposure in the whole population; p_6 is the proportion of men in the population without exposure; and p_7 is the proportion of men in the population with exposure.

When researchers wish to conduct a case–control study, they must survey the exposure proportion in the case and control groups to estimate the odds ratio (OR). The exposure proportions using a stratified view and ORs are as follows:

Table 1. Cont.

First author & year	Ethnicity	Study design	CKD type	Kidney function of case	Definition of case
Schmidt, 1995 [111]	Caucasian	CC	GN	non-ESRD	biopsy diagnosed
Yoshida, 1995 [112]	Asian	CC	GN	non-ESRD	biopsy diagnosed
Dudley, 1995 [113]	Caucasian	CC	DN	non-ESRD	patients with urine in top tertile of the median UAE
Harden, 1995 [114]	Caucasian	CC	GN	non-ESRD	biopsy diagnosed
Doria, 1995 [115]	Caucasian	CC	DN	non-ESRD	UAE >30 μg/min
Marre, 1994 [116]	Caucasian	CS	DN	non-ESRD	UAE >30 mg/day
Powrie, 1994 [117]	Caucasian	CS	DN	non-ESRD	ACR >3 mg/mmol

CC: case control study; CS: cross-sectional survey; DN: diabetic nephropathy; non-DN: non diabetic nephropathy; GN: glomerulonephritis; HN: hypertensive nephropathy; Comb: combined; ESRD: end stage renal disease; non-ESRD: not only ESRD patients; UAE: urinary albumin excretion rate; ACR: Albumin creatinine ratio; eGFR: estimated glomerular filtration rate; CCr: creatinine clearance; RRT: renal replacement therapy; CT: computed tomography; SCR: serum creatinine.

doi:10.1371/journal.pone.0087604.t001

$$E_1 = \frac{p_3 p_5 (1-p_7)}{p_1 (1-p_3)(1-p_6) + p_3 p_5 (1-p_7)}$$

$$E_2 = \frac{p_4 p_5 p_7}{p_2 (1-p_3)p_6 + p_4 p_5 p_7}$$

$$E_3 = \frac{(1-p_3)p_5 (1-p_7)}{(1-p_1)(1-p_3)(1-p_6) + (1-p_3)p_5 (1-p_7)}$$

$$E_4 = \frac{(1-p_4)p_5 p_7}{(1-p_2)(1-p_3)p_6 + (1-p_4)p_5 p_7}$$

OR in women: $OR_{women} = \frac{E_3 (1-E_1)}{E_1 (1-E_3)}$

OR in men: $OR_{men} = \frac{E_2 (1-E_4)}{E_4 (1-E_2)}$

Crude OR (simple combined):

$$OR_{crude} = \frac{((1-k_1)E_1 + k_1 E_2)((1-k_2)(1-E_3) + k_2(1-E_4))}{((1-k_1)E_3 + k_1 E_4)((1-k_2)(1-E_1) + k_1(1-E_2))}$$

k_1 = proportion of males in the case group.

k_2 = proportion of males in the control group.

Two factors (k_1 and k_2) may affect the crude OR. However, when $p_1, p_2, p_3,$ and p_4 are very rare and there is no association between the major independent variable and the moderator ($p_6 = p_7$),

$$E_3 = \lim_{p_1 \to 0} \lim_{p_3 \to 0} \frac{(1-p_3)p_5 (1-p_7)}{(1-p_1)(1-p_3)(1-p_6) + (1-p_3)p_5 (1-p_7)} = p_5$$

$$E_4 = \lim_{p_2 \to 0} \lim_{p_4 \to 0} \frac{(1-p_2)p_4 p_7}{(1-p_2)(1-p_3)p_6 + (1-p_4)p_5 p_7} = p_5$$
Table 2. Quality score and description of studies’ population in included studies.

First author & year	Quality score	Age (years)	Male (%)	BMI (kg/m²)	DM (%)	HT (%)	Case group	Control group				
Shaikh, 2012 [27]	7	58	54	27	100	86	18	98				
Rahimi, 2012 [28]	7	56	40	27	100	63	19	66				
El-Baz, 2012 [29]	6	59	53	39	100	4	39	88				
Zsom(1), 2011 [30]	4	64	55	39	100	45	19	40				
Zsom(2), 2011 [30]	4	70	61	20	100	60	20	60				
Al-Harbi, 2011 [31]	4	58	48	30	100	86	12	39				
Jung, 2011 [32]	7	34	57	61	100	22	14	40				
Ali, 2011 [33]	5	55	55	25	16	41	47	125				
Huang, 2010 [34]	3	40	50	54	10	10	9	88				
Jayapalan, 2010 [35]	7	60	38	20	100	20	27	45				
Mansoor, 2010 [14]	6	53	31	27	100	29	27	45				
Naresh, 2009 [36]	5	54	33	29	100	45	11	11				
Ezzidi, 2009 [37]	7	60	46	28	100	50	88	260				
Nikzamir, 2009 [38]	5	59	56	26	100	54	31	84				
Anbazhagan, 2009 [39]	7	49	73	20	100	27	33	58				
Ahluwalia, 2009 [40]	7	58	66	24	100	44	11	74				
Palomo-Piñón, 2009 [16]	7	60	48	27	100	26	87	105				
Möllsten, 2008 [41]	7	47	49	25	100	52	25	69				
Ergulu, 2008 [42]	7	58	41	29	100	38	13	17				
Afra, 2008 [43]	7	62	43	29	100	68	9	41				
Tripathi, 2008 [44]	6	36	88	0	100	69	53	72				
Movva, 2007 [45]	6	57	70	100	100	47	89	39				
Uddin, 2007 [46]	4	51	54	100	100	78	12	22				
Buraczynska, 2006 [47]	8	51	56	19	100	78	174	228				
So, 2006 [48]	6	100					407	364				
Shestakova, 2006 [49]	6	26	48	23	100	26	15	35				
Ng, 2006 [50]	7	61	61	32	100	48	47	148				
Prasad, 2006 [51]	7	57	33	100	100	63	67	74				
Degirmenci, 2005 [52]	4	5	54	100	100	4	25	12				
van der Sman-de Beer, 2005 [53]	6	59	61	26	17	65	110	227	116	112	235	125
Park, 2005 [18]	5	60	58	23	100	83	27	49				
Canani, 2005 [54]	6	100					407	364				
Fabris, 2005 [55]	7	60	78	26	100	100	13	32				
Lau, 2004 [56]	5	43	48	53	100	48	17	47				
Suzuki, 2004 [57]	5	36	56	42	100	56	21	111				
Stratta, 2004 [58]	5	50	67	39	100	50	44	29				
Lochynska, 2003 [59]	5	42	74	0	100	100	13	32				
Papp, 2003 [60]	4	49	46	65	100	65	11	25				
Aucella, 2003 [61]	5	62	54	16	100	58	57	201				
Okuno, 2003 [62]	7	78	50	20	100	31	1	8				
Ortiz, 2003 [63]	6	56	59	22	100	100	9	71				
Hadjadj, 2003 [15]	9	66	73	29	100	72	552	1468				
Wang, 2003 [64]	5	55	51	23	100	66	106	104				
Dixit, 2002 [65]	7	24	55	0	100	12	26	9				
Lee(1), 2002 [26]	8	0					20	45				
Lee(2), 2002 [26]	8	0					20	45				
Losito, 2002 [66]	6	67	61	25	100	50	27	81				
Yoon, 2002 [67]	5	35	56	0	100	35	44	116				
First author & year	Quality score	Age (years)	Male (%)	BMI (kg/m²)	DM (%)	HT (%)	Case group	Control group				
---------------------	---------------	-------------	----------	-------------	--------	--------	------------	---------------				
Fradin, 2002 [68]	7	57	53	32	100	33	II	ID DD				
Drouet, 2002 [69]	6	44	77				II	ID DD				
Nicod, 2002 [70]	5	54	57	25			II	ID DD				
Araz, 2001 [71]	7	56	41	28	100	63	II	ID DD				
Azar, 2001 [72]	6	23	46				II	ID DD				
Lovati, 2001 [73]	7	54	57	25	12	51	II	ID DD				
Wang, 2001 [74]	8						II	ID DD				
Taniwaki, 2001 [75]	7	61	59	23	100	54	II	ID DD				
Viswanathan, 2001 [76]	7	57	66	26	100	64	II	ID DD				
Hadjadi, 2001 [77]	7	40	59	23	100	53	II	ID DD				
Wu, 2000 [78]	3	60	55				II	ID DD				
Hsieh, 2000 [79]	5	61	49	23	100	60	II	ID DD				
van Ittersum, 2000 [80]	6	55	59		100	80	II	ID DD				
Tomino, 1999 [19]	7	61	63		100	312	II	ID DD				
Solini, 1999 [81]	8	60	58	30	100	61	II	ID DD				
De Cosmo, 1999 [82]	7	43	61		100	42	II	ID DD				
Miura, 1999 [83]	7	36	34		100	21	II	ID DD				
Kuramoto, 1999 [84]	7	58	61	23	100	56	II	ID DD				
Huang, 1998 [85]	6				100	4	II	ID DD				
Walder, 1998 [86]	7	42	71		100	86	II	ID DD				
Freire, 1998 [87]	6	28	48		100	17	II	ID DD				
Grzeszczak, 1998 [88]	7	62	29		100	68	II	ID DD				
Young, 1998 [89]	7	56	34	25	100	73	II	ID DD				
Penno, 1998 [90]	5				100	15	II	ID DD				
Fernández-Llama, 1998 [91]	5	0	100	1	6	7	II	ID DD				
Frost, 1998 [92]	5				100	10	II	ID DD				
Pei, 1997 [93]	6	49	68				II	ID DD				
Marre, 1997 [94]	8	43	57	24	100	57	II	ID DD				
Barnas, 1997 [95]	6	47	70		100	48	II	ID DD				
Ringel, 1997 [96]	8	51	54	26	100	43	II	ID DD				
Schmidt, 1997 [97]	7	65	51	29	100	74	II	ID DD				
Kawada, 1997 [98]	5	59	62		100	22	II	ID DD				
Kario, 1997 [99]	6	72	41	25	0	100	II	ID DD				
Nakajima, 1996 [17]	6	56	64		100	37	II	ID DD				
Chowdhury, 1996 [100]	6	39	55		100	97	II	ID DD				
McLaughlin, 1996 [101]	4	42	57		100	22	II	ID DD				
Oh, 1996 [102]	6	35	42	19	100	62	II	ID DD				
Schmidt, 1996 [103]	5	55	58		100	63	II	ID DD				
Doi, 1996 [104]	7	62	51	22	100	55	II	ID DD				
Ohno, 1996 [105]	7	61	53	23	100	56	II	ID DD				
Mizuiri, 1995 [106]	6	54			100	90	II	ID DD				
Yoroika, 1995 [107]	5	33	44		100	90	II	ID DD				
Fujisawa, 1995 [108]	4				100	24	II	ID DD				
Panagiotopoulos, 1995 [109]	5	62	66		100	16	II	ID DD				
Tarnow, 1995 [110]	8	41	61	24	100	68	II	ID DD				
Schmidt, 1995 [111]	6	45	75		100	59	II	ID DD				
Yoshida, 1995 [112]	7	39	64		100	15	II	ID DD				
Dudley, 1995 [113]	7	53	67	29	100	58	II	ID DD				
gender-dependent effects, we investigated the interaction between moderate effects [10–12]. To assess the effect of ethnicity on ethnicity because most previous studies have found significant tested by meta-regression. In multivariable analyses, we adjusted factors: (1) selection of study population, (2) comparability between the case and control groups, and (3) the exposure assessed. Each study received a score between 0 and 9. We investigated the relationship between the quality of studies and the estimation of risk. This report displays results from the allele type model, unless calculate the association between genetic polymorphism and CKD risk for each study by odds ratios (ORs) with 95% confidence intervals (CIs).

Statistical Analysis

Variables are presented as means, proportions, or numbers as appropriate. Our meta-analysis examined the association between ACE I/D polymorphisms and CKD risk for each study by odds ratios (ORs) with 95% confidence intervals (CIs).

The χ^2 statistic estimated by the DerSimonian–Laird method was used for the assessment of heterogeneity, and a random-effects model based on the Mantel–Haenszel method was applied. Allele type, genotype, and dominant/recessive models were used to calculate the association between genetic polymorphism and CKD risk. This report displays results from the allele type model, unless estimates using a different model were obviously different. Egger’s regression was used to test symmetry of pooled results. Prespecified subgroup analyses included the causes of CKD.

A moderate effect was defined as ratio between ORs in a stratified analysis. For example, if OR for the association between ACE I/D polymorphisms and CKD risk is 6 in the Asian group and 5 in the Caucasian group, the moderate effect of ethnicity will be $6/5 = 2$. Possible moderators (ethnicity, age, gender, body mass index, diabetes mellitus, and hypertension) and study characteristic (quality score, study design, and kidney functions of cases) were tested by meta-regression. In multivariable analyses, we adjusted ethnicity because most previous studies have found significant moderate effects [10–12]. To assess the effect of ethnicity on gender-dependent effects, we investigated the interaction between gender and ethnicity. The interaction between other moderators and gender were also tested.

This study considered a p-value of <0.05 as significant for all analyses. Statistical analyses were carried out with R, version 2.15.0, using the “metafor” [24] and “meta” [25] packages.

Results

Screening Process

Our search strategy returned 501 papers (the identification process is shown in Figure 1). We excluded 249 papers after a preliminary search of titles and abstracts. An additional 129 papers were excluded after full-text articles were assessed, leaving 123 articles that matched our criteria. Of these, 15 used duplicate databases, 9 lacked detailed data, and 1 likely reported wrong data. In 98 of the studies finally included [14–19,26–117], 2 (Zsom et al. [30] and Lee et al. [26]) reported results of stratification, but studies by Zsom et al. [30] used a single control group. Accordingly, 99 populations were included in this meta-analysis, and their detailed data are shown in Tables 1 and 2.

Preliminary Pooled Analyses

Our meta-analysis showed that a significantly increased CKD risk was associated with the D allele compared with the I allele in each subgroup. Figure 2 shows that D allele carriers had an OR of 1.21 for risk of all-cause CKD compared with I allele carriers, and that these ORs were dissimilar in different ethnicities ($p=0.002$). OR for CKD in Asian individuals carrying the D allele compared with those carrying the I allele was 1.40 (95% CI: 1.23–1.59), and in Caucasian individuals was 1.12 (95% CI: 1.04–1.21). A summary of the other results is shown in Table 3 and are very similar to those in Figure 2. In the allele type, genotype, and dominant/recessive models, individuals carrying the D allele showed higher CKD risk, and ORs were higher in Asians than in Caucasians. The heterogeneities were higher in Asian populations than in Caucasian populations in each subgroup.

Identifying Moderators of the Association between ACE I/ D Polymorphisms and CKD Risk

Table 4 shows the assessment results of moderate effect on all-cause CKD using the allele type model. Compared with I allele carriers, D allele carriers had a higher OR for CKD risk in Asians than in Caucasians (OR of moderate effect: 1.24; 95% CI: 1.08–1.42). Hypertension also was a moderator (OR of moderate effect: 1.55; 95% CI: 1.04–2.32) and still had a significant moderate effect after adjusting ethnicity (OR of moderate effect: 1.57; 95% CI: 1.07–2.31). No additional moderators were significant after adjustment for ethnicity and hypertension (data not shown). In

First author & year	Quality score	Age (years)	Male (%)	BMI (kg/m²)	DM (%)	HT (%)	Case group	Control group
Harden, 1995 [114]	5	35					II 19	ID 41
Donre, 1994 [115]	5	29					DD 10	II 35
Marre, 1994 [116]	6	39	60	23	100		DD 24	II 35
Powrie, 1994 [117]	6	35	50	20	100		DD 24	II 37

Quality score: result of quality assessed in each study (detailed data were shown in supplementary file); Age: mean age; Male: probability of male; BMI: mean body mass index; DM: prevalence of diabetes mellitus; HT: prevalence of hypertension; II: number of II genotype carries; ID: number of ID genotype carries; DD: number of DD genotype carries.

doip:10.1371/journal.pone.0087604.t002

$$OR_{crude} = \frac{((1-k_1)E_1+k_1E_2)(1-p_s)}{p_s((1-k_1)(1-E_1)+k_1(1-E_2))}$$

If moderate effects are present ($OR_{women} \neq OR_{men}$), the proportion of males in the case group (k_1) is the only factor that can affect the crude OR. In addition, the relationship between k_1 and log of odds ratio approximate the first order polynomial when above assumption were proper. We may accordingly use the characteristics of the case group to estimate the moderate effects in this study under the above assumptions.

Risk of bias was assessed by the following procedures suggested by the Newcastle–Ottawa Quality Assessment Scale [23] (shown in Table S3). This tool assesses studies with a focus on the following factors: (1) selection of study population, (2) comparability between the case and control groups, and (3) the exposure assessed. Each study received a score between 0 and 9. We investigated the relationship between the quality of studies and the estimation of risk.
In subgroup analyses of diabetic nephropathy, study design (OR for moderate effect: 1.21; 95% CI: 1.02–1.42) and body mass index (OR of moderate effect: 0.84; 95% CI: 0.70–1.00) had significant moderate effects on ACE I/D polymorphisms and diabetic nephropathy. After adjustment for ethnicity, the moderate effects of study design (OR of moderate effect: 1.19; 95% CI: 1.01–1.41) was still significant but that of body mass index (OR for moderate effect: 0.91; 95% CI: 0.73–1.13) was not (data not shown). The results of the nondiabetic nephropathy subgroup were similar to those for all-cause CKD, with ethnicity (OR of moderate effect: 1.69; 95% CI: 1.07–2.68) and hypertension (OR of moderate effect: 2.42; 95% CI: 1.19–4.93) the only two significant moderators in multivariable analyses (data not shown).

Estimated Gender-dependent Effects

Table 5 shows the interaction of ethnicity and gender. We found no significant interactions between the other variables and gender. Coefficients of interaction were significant for hypertension (p before adjustment for hypertension = 0.015; p after adjustment for hypertension = 0.003). No other moderators were significant when added to the final model. A proportion of 32.8% of heterogeneity (crude $\tau^2 = 0.100$; after adjustment, $\tau^2 = 0.068$) was caused by different ethnicity, gender probability, and prevalence of hypertension in the study population, and p of Egger’s regression test was not significant (p = 0.217). Figure 3 shows OR of ACE I/D polymorphisms and CKD risk in different combination of ethnicity, gender, and hypertension status based on Model 2 in Table 5. A gender-dependent effect analysis showed the strongest association between the ACE I/D polymorphisms and CKD risk in Asian males with hypertension (OR: 3.75; 95% CI: 1.84–7.65) or without (OR: 2.42; 95% CI: 1.19–4.93). Interaction of ethnicity and gender was borderline significant (p = 0.056) in the diabetic nephropathy subgroup, but was significant (p = 0.030) in the nondiabetic nephropathy subgroup. Although the result of symmetry assessment was significant in nondiabetic nephropathy subgroup (p of Egger’s regression test = 0.032), it was noteworthy that 78.3% of heterogeneity (crude $\tau^2=0.166$; after adjustment, $\tau^2=0.036$) were caused by ethnicity, gender, and hypertension.

The symmetry of final models was shown in Figure 4. Funnel plots presented the association between residual and standard error based on results of Table 5, and each point represents a study. Egger’s regression test indicated no evidence of publication bias among studies included into the final model this meta-analysis and diabetic nephropathy subgroup. The model in nondiabetic nephropathy subgroup was asymmetric, and it might be due to the study reported by Jung et al. [32]. We did sensitivity analyses leaving the article out (data not shown). The result of symmetry assessment was not significant (p of Egger’s regression test = 0.245), and the coefficients in this model were still significant (p of interaction effect of ethnicity and gender = 0.002; p of moderate effect of hypertension <0.001). In addition, the τ^2 was 0 in this sensitivity model.
Discussion

This study showed that CKD risk was higher in D allele carriers than in I allele carriers, and there was no strong evidence that analyses using different model assumptions might produce dissimilar results. Heterogeneity was higher in the Asian population than in the Caucasian population. Interaction between ACE I/D polymorphisms and hypertension exerted an additive effect on CKD risk. A gender-dependent effect of ACE I/D polymorphisms on CKD risk was clearly apparent in Asians but not in Caucasians.

The DD genotype showed higher gene expression and serum ACE levels than the ID genotype, followed by the II genotype [9,118]. High blood ACE levels may increase blood angiotensin II levels [8], and individuals with higher angiotensin II levels may have a higher CKD risk [119,120]. Previous studies showed that the association between ACE I/D polymorphisms and CKD risk might not be dominant or recessive [8,9,118]. Previous meta-analysis studies showed the supported results, they reported that DD genotype had higher risk of CKD than ID genotype, followed by the II genotype. We also observed the apparent linear association between numbers of D allele and odds ratios compared

Table 3. Odds ratio of ACE I/D and all-cause CKD, diabetic nephropathy, non-diabetic nephropathy using assumption of allele type, genotype, dominant and recessive model.

Model	Ethnicity	All-cause CKD	Diabetic nephropathy	Non-diabetic nephropathy									
		n	OR	95% CI	χ^2	n	OR	95% CI	χ^2	n	OR	95% CI	χ^2
Allele type (D vs. I)	All studies	99	1.21 (1.13, 1.29)	0.076	65	1.23 (1.14, 1.33)	0.063	22	1.29 (1.06, 1.56)	0.166			
	Asian	38	1.40 (1.23, 1.59)	0.118	24	1.36 (1.18, 1.56)	0.070	10	1.59 (1.17, 2.17)	0.212			
	Caucasian	61	1.12 (1.04, 1.21)	0.053	41	1.17 (1.06, 1.29)	0.064	12	1.08 (0.91, 1.29)	0.054			
Genotype-1 (DD vs. II)	All studies	99	1.44 (1.26, 1.64)	0.277	65	1.48 (1.26, 1.74)	0.249	22	1.67 (1.16, 2.41)	0.556			
	Asian	38	1.87 (1.46, 2.38)	0.377	24	1.66 (1.27, 2.18)	0.230	10	2.77 (1.62, 4.75)	0.567			
	Caucasian	61	1.25 (1.07, 1.46)	0.224	41	1.39 (1.14, 1.71)	0.275	12	1.11 (0.77, 1.60)	0.211			
Genotype-2 (ID vs. II)	All studies	99	1.20 (1.10, 1.32)	0.098	65	1.26 (1.13, 1.40)	0.082	22	1.17 (0.92, 1.49)	0.206			
	Asian	38	1.34 (1.14, 1.57)	0.152	24	1.31 (1.09, 1.57)	0.088	10	1.43 (0.99, 2.05)	0.259			
	Caucasian	61	1.13 (1.02, 1.25)	0.062	41	1.23 (1.07, 1.42)	0.084	12	0.91 (0.74, 1.13)	0.570			
Dominant (DD+ID vs. II)	All studies	99	1.28 (1.16, 1.41)	0.132	65	1.33 (1.19, 1.50)	0.110	22	1.30 (1.00, 1.69)	0.271			
	Asian	38	1.48 (1.25, 1.74)	0.180	24	1.42 (1.19, 1.70)	0.095	10	1.66 (1.12, 2.45)	0.317			
	Caucasian	61	1.17 (1.05, 1.31)	0.100	41	1.28 (1.10, 1.49)	0.130	12	1.01 (0.80, 1.27)	0.031			
Recessive (DD vs. ID+II)	All studies	99	1.27 (1.15, 1.39)	0.090	65	1.26 (1.13, 1.42)	0.112	22	1.53 (1.18, 1.99)	0.262			
	Asian	38	1.56 (1.28, 1.90)	0.227	24	1.42 (1.12, 1.79)	0.169	10	2.22 (1.42, 3.48)	0.369			
	Caucasian	61	1.16 (1.04, 1.28)	0.090	41	1.21 (1.06, 1.37)	0.097	12	1.20 (0.92, 1.57)	0.118			

Table 4. Moderator effects of allele type model (D vs. I) on all-cause CKD.

Moderator	Unadjusted	Adjusted					
	n	OR	95% CI		n	OR	95% CI
Ethnicity (Caucasian is ref.)	99	1.24*	(1.08, 1.42)				
Study design (CS is ref.)	99	1.05	(0.92, 1.20)	1.03	(0.90, 1.18)		
Quality score (per 1 score)	99	0.98	(0.93, 1.04)	0.99	(0.94, 1.05)		
Kidney function of case (non-ESRD is ref.)	99	1.03	(0.87, 1.23)	0.97	(0.81, 1.16)		
Age (per 10 years)	88	1.02	(0.95, 1.09)	1.01	(0.95, 1.08)		
Male (per 100%)	84	1.48	(0.72, 3.01)	1.63	(0.81, 3.28)		
BMI (per 5 kg/m²)	45	0.86	(0.73, 1.03)	0.95	(0.78, 1.16)		
DM (per 100%)	81	0.96	(0.78, 1.18)	0.99	(0.81, 1.22)		
Hypertension (per 100%)	68	1.55*	(1.04, 2.32)	1.57*	(1.07, 2.31)		

Depend variable: log odds ratio of ACE I/D and all-cause CKD using allele type model.
n: number of studies; OR: odds ratio for moderate effect; 95% CI: 95% confidence interval.
CS: cross-sectional study; non-ESRD: not only ESRD patients; Age: mean age; Male: probability of male; BMI: mean body mass index; DM: prevalence of diabetes mellitus; Hypertension: prevalence of hypertension.
* p < 0.05.
doi:10.1371/journal.pone.0087604.t004
the II genotype in genotype analyses [10–12,20–22]. The assumption of the allele type model in this association might be more reasonable, and it may thus be true that individuals carrying the D allele have a higher CKD risk.

Hypertension in some patients is due to a dysfunction of RAS such as abnormal secretion of renin, causing increased blood angiotensin I levels [121]. D allele carriers had higher ACE levels than I allele carriers [118], leading to more efficient conversion of angiotensin I to angiotensin II, resulting in CKD [119,120]. The mechanism may be an additive effect of hypertension and the D allele. An additive effect was significant in the nondiabetic group but not in the diabetic nephropathy subgroups. The blood levels of advanced glycation end products (AGE) diabetic patients may be high, possibly causing blood pressure increases [122].

Table 5. Three way interaction of Asian, male and ACE D allele on all-cause CKD, diabetic nephropathy and non-diabetic nephropathy.

	All-cause CKD	Diabetic nephropathy	Non-diabetic nephropathy				
	Model 1	Model 2					
Intercept	0.297	0.275	0.115	0.291	0.369	-0.213	0.746
Race (Caucasian is ref.)	-0.697	0.391	-0.853*	0.402	0.569	-1.080	0.816
Male (per 100%)	-0.312	0.476	-0.470	0.501	0.691	-0.349	1.050
Race × Male	1.662*	0.686	2.094*	0.715	1.082	2.666*	1.231
Hypertension (per 100%)	0.437*	0.192	0.229	0.294	0.857*	0.245	
t²	0.075	0.068	0.081	0.036*			
Egger’s test	p = 0.097	p = 0.217	p = 0.385	p = 0.032			

Dependent variable: log odds ratio of ACE I/D and CKD using allele type model.

β: coefficients in meta-regression; se: standard error of β.

Model 1: Hypertension was not included in independent variables.

Model 2: Hypertension was included in independent variables.

Egger’s test: p-value of Egger’s regression test.

*: p < 0.05.

doi:10.1371/journal.pone.0087604.t005
Accordingly, we hypothesize that the probability of hypertension because of a dysfunction of RAS was higher in the nondiabetic nephropathy subgroup than in the diabetic nephropathy subgroup. Thus, the interaction between ACE I/D polymorphisms and hypertension was significant only in the nondiabetic nephropathy subgroup. This hypothesis may require further studies for confirmation.

We found a significant gender-dependent effect of ACE I/D polymorphisms on CKD risk in Asians. In previous studies in Asians, the ORs of the additive effect on the DD genotype of males were 2.94 and 1.41 in Japanese [17] and Koreans [18], respectively. Another study in Japan also reported a positive additive effect of the DD genotype of males [19]. Studies of Caucasians reported contrary results, with an interaction OR of 0.42 in Pakistan [14]. Another two studies in France [15] and Mexico [16] also showed an additive effect between the DD genotype and female gender but not male gender. Although the interaction tests in these studies were not significant, we could observe dissimilar gender-dependent effect in different ethnicity. Previous studies have also reported a different gender-dependent effect.

Figure 4. Funnel plot of three way interaction model in each subgroup. The model in nondiabetic nephropathy subgroup was asymmetric. The triangle in that plot was study reported by Jung et al. [32], and the p value of the student residual was less 0.05. After excluding this study, the p value of Egger’s regression test was not significant (p = 0.245) and the moderate effect of interaction and hypertension were more significantly (p of interaction: 0.0304→0.0023; p of hypertension: 0.0005→<0.0001).

doi:10.1371/journal.pone.0087604.g004
The effect of ACE I/D polymorphisms on blood ACE levels in Asians and Caucasians. In a study conducted in China [13], differences in blood ACE levels between DD genotype and other genotypes among men were significantly greater than those in women. On the other hand, a study conducted in Germany [123] reported the opposite result. Androgens may play a key role in this additive effect. A study has shown that in intact male rats and ovariectomized female rats that received testosterone for 5 weeks, the androgen may have contributed to the decrease in pressure natriuresis [124]. In an animal study, ACE activity was higher in male mice than in female mice, and this gender difference disappeared after gonadectomy [125]. In previous reports, sensitivity to androgens was stated to be higher in Caucasians than in Asians [126]. Blood androgen levels in Caucasians and Asians showed no significant differences [127,128]. On the basis of previous studies, we hypothesized that the dissimilar gender-dependent effect of ACE I/D polymorphisms on CKD risk in Caucasians and Asians might be accounted for by dissimilar sensitivity to androgens. The gender difference of male sex hormone utilization was higher in Asians than in Caucasians. Therefore, the additive effect of the D allele and male gender was also higher in Asians than in Caucasians.

In subgroup analyses, the above additive effect was borderline significant in the diabetic nephropathy subgroup, but there was no evidence that diabetic mellitus might contribute to this additive effect. Although the additive effect also could explain why two populations with different ethnicities had different heterogeneity before adjustment for any moderators, the calculated risk ratio of ACE I/D polymorphisms on CKD risk may have been affected by the gender-dependent effect in Asians.

Our study had three limitations. First, we relied on tabular data rather than on individual patient data, possibly leading to an inflated standard error in pooled analyses. However, we still observed a significant gender-dependent effect difference in different ethnicities. Second, estimates of diabetes mellitus and hypertension prevalence did not factor in the effects of therapy for them. Some subjects having higher blood glucose and blood pressure may have taken drugs, leading to normal biochemical values in reports. Third, we may have missed unpublished data for the non-diabetic nephropathy subgroup. But the results of this subgroup were similar to the results of previous studies and we still observed a significant result excluding the greatest impact of symmetry study; therefore, there is no evidence to question their reliability.

In conclusion, CKD risk was higher with the D allele than with the I allele. Asian ethnicity and hypertension had positive moderate effects, and their effects were more likely to be higher in patients with non-diabetic nephropathy. A gender-dependent effect of ACE I/D polymorphisms on CKD risk was confirmed in Asians; the D allele showed 3.75-fold greater risk for CKD than the I allele in hypertensive Asian males. These results suggest that Asian males should be offered testing for defects in ACE I/D polymorphisms, especially if they are hypertensive. We suggest that physicians should provide specific protection to D-allele carriers, for example by administering ACE inhibitors to hypertensive patients.

Supporting Information

Table S1 PRISMA 2009 Checklist. (DOC)

Table S2 Search strategies. Web sites and uniform resource locator: MEDLINE: http://www.ncbi.nlm.nih.gov/pubmed Cochrane Library: http://www.thecochranelibrary.com Embase: https://www.embase.com (DOC)

Table S3 Quality assessment tool in this meta-analysis based on Wells et al. [23]. (DOC)

Author Contributions

Conceived and designed the experiments: CL HYY SLS. Performed the experiments: CL HYY SLS. Analyzed the data: CL Contributed reagents/materials/analysis tools: CL CMC. Wrote the paper: CL HYY SLS. Critical review and comments: CCW HSL YFL KCL FHL SYK. Modify manuscript: CL HYY CGW HSL KCL SLS.

References

1. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, et al. (2007) Prevalence of chronic kidney disease in the United States. JAMA 298: 2038–2047.

2. Imai E, Horio M, Watanabe T, Iseki K, Yamagata K, et al. (2009) Prevalence of chronic kidney disease in the Japanese general population. Clin Exp Nephrol 13: 621–630.

3. Zhang L, Wang F, Wang L, Wang W, Liu B, et al. (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379: 815–822.

4. Go AS, Gheorghiou GM, Fan D, McCalloch CE, Hsu CN (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 1296–1300.

5. Li S, McAlpine DD, Liu J, Li S, Collins AJ (2004) Differences between blacks and whites in the incidence of end-stage renal disease and associated risk factors. Adv Ren Replace Ther 11: 5–13.

6. Tsiac JC, Chen SC, Hoang SJ, Chang JM, Lin MY, et al. (2010) Prevalence and risk factors for CKD in spouses and relatives of hemodialysis patients. Am J Kidney Dis 55: 856–866.

7. McClellan WM, Warnock DG, Judd S, Muntner P, Patzer RE, et al. (2012) Association of family history of ESRD, prevalent albuminuria, and reduced GFR with incident ESRD. Am J Kidney Dis 59: 25–31.

8. Remuzzi G, Perico N, Macia M, Ruggenenti P (2005) The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl: S57–65.

9. Mizuiri S, Hemmi H, Kumanomidou H, Iwamoto M, Miyagi M, et al. (2001) Expression of ACE gene polymorphism as a marker for diabetic albuminuria in Japanese NIDDM patients? Diabetes Care 24: 1987–1991.

10. Wang F, Fang Q, Yu N, Zhao D, Zhang Y, et al. (2012) Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,380 subjects. J Renin Angiotensin Aldosterone Syst 13: 161–174.

11. Zhou TB, Yin SS, Qin YH (2012) Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and end-stage renal disease susceptibility. J Renin Angiotensin Aldosterone Syst [Epub ahead of print].

12. Zhang YF, Cheng Q, Tang XL, Chi T, Tomlinson B, et al. (2013) Gender difference of serum angiotensin-converting enzyme (ACE) activity in DD genotype of ACE insertion/deletion polymorphism in elderly Chinese. J Renin Angiotensin Aldosterone Syst.

13. Mansoor Q, Bilal N, Qureshi S, Qureshi O, Javaid A, et al. (2010) Gender based disparities in ACE I/D polymorphism associated with progression of diabetic nephropathy in Pakistani patients with type 2 diabetes mellitus. International Journal of Diabetes and Metabolism 16: 67–71.

14. Hadjadj S, Gallou Y, Alhenc-Gelas F, Chatellier G, Mazze M, et al. (2003) Angiotensin-I-converting enzyme insertion/deletion polymorphism and high urinary albumin concentration in French Type 2 diabetes patients. Diabet Med 20: 672–682.

15. Palomo-Pinon S, Gutierrez-Rodriguez ME, Diaz-Flores M, Sanchez-Barrera R, Valladares-Salgado A, et al. (2009) DD genotype of angiotensin-converting enzyme in type 2 diabetes mellitus with renal disease in Mexican Mestizos. Nephrolology (Carlton) 14: 235–239.

16. Nakajima S, Baba T, Yajima Y (1996) Is ACE gene polymorphism a useful marker for diabetic albuminuria in Japanese NIDDM patients? Diabetes Care 19: 1420–1422.

17. Park HC, Choi SR, Kim BS, Lee TH, Kang BS, et al. (2005) Polymorphism of the ACE Gene in dialysis patients: overexpression of DD genotype in type 2 diabetic end-stage renal failure patients. Yonsei Med J 46: 779–787.
42. Eroglu Z, Cetinkalp S, Erdogan M, Kosova B, Karadeniz M, et al. (2008) The effect of polymorphisms in the renin-angiotensin-aldosterone system and other related genes in South Indian chronic kidney disease patients. Clin Chim Acta 383: 109–114.

43. Arfa I, Abid A, Nouriya S, Elloumi-Zghal H, Malouche D, et al. (2008) Lack of association between the angiotensin-converting enzyme gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 9: 32–36.

44. Tsigiti G, Sharma RK, Baburaj VP, Sankhwar SN, Jafar T, et al. (2008) Genetic risk factors for renal failure among north Indian ESRD patients. Clin Biochem 41: 525–531.

45. Movva S, Alluri RV, Kamble SR, Vattam K, Eppa K, et al. (2007) Renin-converting enzyme gene polymorphism and diabetic nephropathy associated with Type 2 diabetes mellitus in Asian Indians. J Diabetes Complications 21: 237–241.

46. Uddin M, Azam M, Chowdhury A, Akhteruzzaman S (2007) Angiotensin I-converting enzyme gene polymorphism in type 2 diabetic patients with nephropathy. J Med Sci 1: 601–603.

47. Buraczynska M, Kiaszek P, Drop A, Zahska W, Spasiewicz D, et al. (2006) Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Nephrol Dial Transplant 21: 979–983.

48. Soe-WY, Ma RC, Oaki J, Tong PC, Ng MC, et al. (2006) Angiotensin-converting enzyme (ACE) inhibition in type 2 diabetes: interaction with ACE insertion/deletion polymorphism. Kidney Int 69: 1430–1433.

49. Sheshlava MV, Vikulova OK, Gorashko NM, Voronko OE, Babunova NB, et al. (2006) The relationship between genetic and haemodynamic factors in diabetic nephropathy (DN): Case-control study in type 1 diabetes mellitus (T1DM). Diabetes Res Clin Pract 74: S11–S30.

50. Ng DP, Pichai G, Choo S, Chia KS, Warram JH, et al. (2006) A disease haplotype for advanced nephropathy in type 2 diabetes at the ACE locus. Diabetes 55: 2660–2663.

51. Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, et al. (2006) Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of ACE gene polymorphism. J Renin Angiotensin Aldosterone Syst 13: 472–477.

52. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A (2012) Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles is associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrol. 17: 175–181.

53. El-Baz R, Settia N, Ismael A, Khaleed AA, Abbas T, et al. (2012) MTHFR C677T and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 13: 472–477.

54. Zsom M, Fulop T, Zsom L, Barath A, Maroti Z, et al. (2012) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.

55. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A (2012) Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles is associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrol. 17: 175–181.

56. El-Baz R, Settia N, Ismael A, Khaleed AA, Abbas T, et al. (2012) MTHFR C677T and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 13: 472–477.

57. Zsom M, Fulop T, Zsom L, Barath A, Maroti Z, et al. (2012) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.

58. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A (2012) Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles is associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrol. 17: 175–181.

59. El-Baz R, Settia N, Ismael A, Khaleed AA, Abbas T, et al. (2012) MTHFR C677T and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 13: 472–477.

60. Zsom M, Fulop T, Zsom L, Barath A, Maroti Z, et al. (2012) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.

61. Al-Harbi EM, Farid EM, Gumaa KA, Masuadi EM, Singh J (2011) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.

62. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A (2012) Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles is associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrol. 17: 175–181.

63. El-Baz R, Settia N, Ismael A, Khaleed AA, Abbas T, et al. (2012) MTHFR C677T and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst 13: 472–477.

64. Al-Harbi EM, Farid EM, Gumaa KA, Masuadi EM, Singh J (2011) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.

65. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A (2012) Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles is associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrol. 17: 175–181.

66. Al-Harbi EM, Farid EM, Gumaa KA, Masuadi EM, Singh J (2011) Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet 12: 133–138.
drolase gene polymorphisms on the progression of immunoglobulin A nephropathy. Clin Genet 62: 128–134.

68. Fradin S, Goulet-Salmon B, Chantepie M, Grandhomme F, Morello R, et al. (2002) Relationship between polymorphisms in the renin-angiotensin system and diabetic nephropathy in type 2 diabetic patients. Diabetes Metab 28: 27–32.

69. Drouet M, Auperit C, Denizot Y, Bois M, Bridoux F, et al. (2002) Analysis of three genetic markers in IgA nephropathy patients from a single region. Clin Nephrol 57: 253–260.

70. Nicod J, Frey BM, Frey FJ, Ferrari P (2002) Role of the alpha-adducin genotype on renal disease progression. Kidney Int 61: 1270–1277.

71. Arax M, Yilmaz N, Gunogor K, Okan Y, Kepkely C, et al. (2001) Angiotensin-converting enzyme gene polymorphism and microvascular complications in Turkish type 2 diabetic patients. Diabetes Res Clin Pract 54: 95–104.

72. Azar SF, Zalloua PA, Mollet R, Halabi G (2001) The DD genotype of the angiotensin gene polymorphism is associated with diabetic nephropathy in the type 1 diabetic patients. Endocr Res 27: 99–108.

73. Lovati E, Richard A, Frey BM, Frey FJ, Ferrari P (2001) Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease. Kidney Int 60: 46–54.

74. Wang JG, Saesens JA, Tizzoni L, Brand E, Birkenhager WH, et al. (2001) Renal function in relation to three candidate genes. Am J Kidney Dis 38: 1158–1160.

75. Taiwaski H, Ishimura E, Matsumoto N, Enomoto M, Inaba M, et al. (2001) Relationships between ACE gene and eNOS gene polymorphisms and resistive index in type 2 diabetic patients with nephropathy. Diabetes Care 24: 1653–1660.

76. Vasanawatan V, Zhu Y, Bala K, Dunu S, Suchalatha G, et al. (2001) Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. JOP 2: 83–87.

77. Hadjadj S, Belloum R, Bouhanick B, Gallouy V, Guilloteau G, et al. (2001) Prognostic value of angiotensin I-converting enzyme I/D polymorphism for nephropathy in type 1 diabetes mellitus: a prospective study. J Am Soc Nephrol 12: 541–549.

78. Wu S, Xiang K, Zheng T, Sun D, Weng Q, et al. (2000) Relationship between genotypes of angiotensin-converting enzyme gene in Chinese type 2 diabetics and serum renin activity level. Chin Med J (Engl) 113: 437–441.

79. Hsieh MC, Lin SR, Hsieh TJ, Hsu CH, Chen HC, et al. (2000) Increased frequency of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes in Taiwan. Nephrol Dial Transplant 15: 1008–1013.

80. van Itersum FJ, de Man AM, Thijssen N, de Krijff P, Slagboom E, et al. (2000) Genomic polymorphisms of the renin-angiotensin system and complications of insulin-dependent diabetes mellitus. Nephrol Dial Transplant 15: 1000–1007.

81. Solini A, Giacchetti G, Sfriso A, Fioretto P, Sardu C, et al. (1999) Association between angiotensin converting enzyme and angiotensin gene in type 2 diabetic subjects in relation to albumin excretion rate. Am J Kidney Dis 34: 1002–1009.

82. De Cosmo S, Margaglione M, Tasso V, Garrubba M, Thomas S, et al. (1999) ACE, PAI-1, decorin and Werner helicase genes are not associated with the development of renal disease in European patients with type 1 diabetes. Diabetes Metab Res Rev 15: 247–253.

83. Miura J, Uchigata Y, Yokoyama H, Omori Y, Iwamoto Y (1999) Genotypic polymorphism of renin-angiotensin system is not associated with diabetic vascular complications in Japanese subjects with long-term insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 45: 41–49.

84. Kuramoto N, Iizuka T, Ito H, Yagui K, Omura M, et al. (1999) Influence of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes mellitus. J Kidney Dial Transplant 18: 273–276.

85. Huang XH, Rantalaiho V, Wirta O, Pasternack A, Hiltunen TP, et al. (1999) The role of polymorphisms in the renin-angiotensin system: no evidence for an association with nephropathy in IDDM. Diabetes 48: 1585–1595.

86. Barnus U, Schmidt A, Ilievich A, Kiener HP, Rabenstein D, et al. (1997) Evaluation of the deletion of polymorphism of the angiotensin converting enzyme gene for the development of renal complications in insulin-dependent diabetics. Genetica 101: 155–164.

87. Freire MB, van Dijk DJ, Erman A, Boner G, Warram JH, et al. (1998) Angiotensin-converting enzyme gene polymorphism as a risk factor for cardiac artery media-thickening and hypertension in young type 1 diabetic patients. Diabetes Care 21: 836–840.

88. Pei Y, Scholey J, Thai K, Suzuki M, Catrann D (1997) Association of angiotensin gene T235 variant with progression of immunoglobulin A glomerulonephritis. Clin Nephrol 47: 1284–1289.

89. Young RP, Chan JC, Critchley JA, Poon E, Nicholls G, et al. (1998) Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomised Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Diabetes 47: 1307–1311.

90. Fernandez-Llana P, Poch E, Oriola J, Botey A, Coll E, et al. (1998) Angiotensin converting enzyme gene I/D polymorphism in essential hypertension and nephroangiosclerosis. Kidney Int 53: 1743–1747.

91. Frost D, Pohl M, Clemens P, Haring HU, Beischer W (1998) Evaluation of the insertion/deletion ACE gene polymorphism as a risk factor for carotid artery intima-media thickening and hypertension in young type 1 diabetic patients. Diabetes Care 21: 836–840.

92. Frost D, Pohl M, Clemens P, Haring HU, Beischer W (1998) Evaluation of the insertion/deletion ACE gene polymorphism as a risk factor for carotid artery intima-media thickening and hypertension in young type 1 diabetic patients. Diabetes Care 21: 836–840.

93. Pei Y, Scholey J, Thai K, Suzuki M, Catrann D (1997) Association of angiotensin gene T235 variant with progression of immunoglobulin A glomerulonephritis. Clin Nephrol 47: 1284–1289.
114. Harden PN, Geddes C, Rowe PA, McIlroy JH, Boulton-Jones M, et al. (1995) Polymorphisms in angiotensin-converting-enzyme gene and progression of IgA nephropathy. Lancet 345: 1540–1542.

115. Doria A, Warram JH, Krolewski AS (1994) Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I converting enzyme gene. Diabetes 43: 690–695.

116. Marre M, Bernardet P, Gallois Y, Savagner F, Guyene TT, et al. (1994) Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 43: 384–388.

117. Powrie JK, Watts GF, Ingham JN, Taub NA, Talmud PJ, et al. (1994) Role of glycaemic control in development of microalbuminuria in patients with insulin dependent diabetes. BMJ 309: 1608–1612.

118. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, et al. (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86: 1343–1346.

119. Wolf G, Nealon EG (1993) Angiotensin II as a renal growth factor. J Am Soc Nephrol 3: 1531–1540.

120. Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J (2001) Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens 10: 321–329.

121. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59: 251–287.

122. Ahmed N (2005) Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3–21.

123. Biller H, Zissel G, Ruprecht B, Nasch M, Busse Grawitz A, et al. (2006) Genotype-corrected reference values for serum angiotensin-converting enzyme. Eur Respir J 28: 1085–1090.

124. Reckelhoff JF, Zhang H, Granger JP (1998) Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension 31: 435–439.

125. Lim YK, Retnam L, Bhagavath B, Sethi SK, bin Ali A, et al. (2002) Gonadal effects on plasma ACE activity in mice. Atherosclerosis 160: 311–316.

126. Evans JA, Rouse BA (1978) Hirsutism, race and testosterone levels: comparison of East Asians and Euroamericans. Hum Biol 50: 209–215.

127. Setaiwan VW, Haiman CA, Stanczyk FZ, Le Marchand L, Henderson BE (2006) Racial/ethnic differences in postmenopausal endogenous hormones: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 15: 1849–1855.

128. Ellis L, Nyborg H (1992) Racial/ethnic variations in male testosterone levels: a probable contributor to group differences in health. Steroids 57: 72–75.