CONCLUSION:

HRM pressures tend to be higher than SARM. Although there is high consensus regarding diagnosis of dyssynergia, there is low correlation regarding pattern types. New diagnostic pressure criteria should be adopted in centers converting to HRM.

© 2014 ACT. All rights reserved.

Key words: Solid State Manometry; High resolution Manometry; Dyssynergia; Chronic Constipation

Soubra M, Go J, Valestin J, Schey R. A comparison of Standard Anorectal Manometry and High Resolution Manometry patterns in Dyssynergic Patients. Journal of Gastroenterology and Hepatology Research 2014; 3(9): 1244-1247 Available from: URL: http://www.ghrnet.org/index.php/joghr/article/view/856

INTRODUCTION

The prevalence of Dyssynergic defecation (DD) in patients with chronic constipation approaches 50%.[1-3] Thus far, most referral centers had been using the Konigsberg standard solid-state anorectal manometry (SARM) catheter for anorectal motility testing. It represents a key diagnostic modality in the assessment of patients with suspected dyssynergic defecation, Hirschsprung disease, and fecal incontinence[4]. Although the evidence favoring the use of SARM as diagnostic test and therapeutic tool (through biofeedback therapy) is good, lack of standardization among institutions represents a noteworthy limitation[5-7].

The new high resolution manometry (HRM) (Sierra Scientific Instruments, Los Angeles, CA) system allows interpolation of manometric recordings from 12 circumferential pressure sensors into an elaborate topographical plot. This system provides higher resolution of the intraluminal pressure changes with anatomical details that are more pronounced by SARM. As this novel system is currently being applied in more centers, normative data in healthy subjects is still limited, including diagnosis, classification and treatment of DD[8].

It has been suggested that HRM may better characterize dyssynergia and provide further insight into a complex disorder[7]. Currently, data...
comparing the anorectal manometric parameters provided by SARM and HRM during attempted defection in patients with dyssynergia is scarce.

Our aim was to evaluate the correlation and compare accuracy of these 2 modalities in patients with dyssynergic defection.

METHODS

Patients with chronic constipation that were evaluated and diagnosed with dyssynergia by SARM were recruited to the study while on the waiting list for biofeedback therapy. All patients filled a stool diary for a week, followed by an HRM. Only patients that maintained the same stool patterns and frequency were included in the study. Patients were excluded from the study if they were found to have rectal prolapse or anal fissure on physical examination, underwent pelvic or recto-anal surgery or received pelvic radiation. Pregnant women were also excluded. Four patterns of dyssynergia have been described, and their identification helps tailor biofeedback therapy.

Type I is characterized by a paradoxical increase in the residual anal pressure in the presence of adequate propulsive pressure, that is, increase in intrarectal pressure (45 mm Hg) **Type II** is characterized by an inability to generate adequate expansive forces, ie, no increase in intrarectal pressure, together with a paradoxical increase in residual intraanalar pressure. **Type III** is characterized by generation of adequate expansive forces, but absent or incomplete (<20%) reduction in intraanalar pressure and **Type IV** is characterized by an inability to generate adequate expansive forces, that is, no increase in intrarectal pressure and absence of incomplete reduction in residual intraanalar pressure.**

The University of Iowa Institutional Review Board approved the study protocol.

Manometry protocol

Patients followed the same study protocol for both ARM and HRM. They were initially placed in the left lateral supine position. Baseline resting anorectal parameters were recorded for 5 minutes. While in the supine position, patients were then asked to contract their anal sphincter for 30 seconds. After 1 minute of rest they were asked to contract their anal sphincter for another 30 seconds. Patients were then asked to bear down for 30 seconds, rested for 1 minute and asked to bear down again for another 30 seconds. Patient then transitioned to the commode where they repeated the same maneuvers performed while in the supine position. All manometric data was analyzed by 2 physicians (RS, JAD) who were unaware of the others diagnosis.

Statistics

The maximal anal sphincter resting and squeezing pressure and anorectal pressures while straining on the bed and commode were analyzed and compared between the two modalities. Mean values for resting and squeeze pressures were compared using non-parametric statistics.

RESULTS

A total of 25 Dyssynergic patients (M/F=4/21, mean age: 41 years, mean BMI: 24.6) underwent both SARM and HRM testing (Table 1). The mean interval between exams was 12 months. All but one patient were found to have dyssynergia on HRM (96%). Twelve patients (48%) had similar patterns on at least one position, and five patients (20%) had similar patterns in both positions (Table 2). When comparing between HRM and SARM, the maximum resting pressure (70 vs 55.6 mmHg, p<0.01), anal straining on bed (73 vs 46.4 mmHg, p<0.01), rectal straining on commode (107.4 vs 71.8 mmHg, p<0.01) and anal straining pressures on commode (76.3 vs 48.9 mmHg, p<0.01) significantly deferred between the exams respectively. (Table 3)

DISCUSSION

Our study is the first to compare SARM with HRM in patients with DD. Thus far only one study compared SARM and determined normal values for HRM in healthy women.**

Table 1 Patient demographics.

Variable	Mean SARM	Mean HRM	p value
Total number	25		
Gender (Male/Female)	4/21		
Age range	21-65 years		
Mean BMI	24.5 (± 4.7)	21.5 (± 11.7)	
Interval between exams	12 month (± 11.7)		

1 Similar pattern on at least one position (48%); 2 Similar pattern on both positions (20%).
We found significantly higher maximum resting pressure, straining rectal and anal residual pressures on the commode on HRM compared with SARM. Similarly, Jones et al noted higher values with respect to resting and squeeze pressure measurement. However, they compared HRM with water perfusion manometry. Although the comparison of solid state HRAM with water-perfused manometry indicates a good correlation in pressure data between the two techniques, it has been noted that patients with DD are less likely to be detected by the water-perfused technique due to its poor anatomical resolution.

Unsurprisingly, HRM reconfirmed dyssynergia in all but one patient. This result was largely predictable since patients did not receive any therapeutic intervention (i.e. biofeedback therapy) prior to undergoing HRM testing. We observed a low correlation regarding dyssynergic defecation patterns between the two testing modalities. Most patients were reclassified into a different subtype using HRM (76% of patient on the commode and 52% in supine position). This discrepancy could be explained by the increased details provided by HRM possibly leading to a more accurate representation of the defecation process and thus resulting in a different dyssynergia subtype (Figure 1 and 2).

Figure 1 Patient with different dyssynergic patterns on 2D and HRM.

Figure 2 Patient with same Dyssynergic patterns on 2D and HRM.

Jones et al corroborate this notion. Their report showed that patients with obstructive defecation due to poor relaxation or paradoxical contraction of the puborectalis muscle are not reliably identified with water perfusion manometry due to lower physiologic and anatomic resolution. Moreover, whether patterns recorded using SARM and HRM are entirely comparable remains unknown.

Currently, dyssynergic defecation classification using SARM relies on an expert-based pattern-recognition process proposed by Rao et al. Recently, Ratuapli et al set out to determine whether HRM could identify DD phenotypes using principal components logistical modeling (PC) in patients with chronic constipation. Their results revealed three PC scores associated with abnormal BET. Only two PC scores; high anal phenotype and hybrid phenotype (inadequate rectal pressure and less anal relaxation) corresponded to dyssynergic subtypes 1 and 2 respectively as described by Rao et al. None of the phenotypes identified using PC analysis corresponded to the type 3 pattern described by Rao. In our study, all patients with type 3 DD on SARM were reclassified as type 1 by HRM. This finding appears to corroborate the results of Ratuapli et al. However, neither phenotype pattern classification based PC analysis nor dyssynergic subtypes classifications developed by Rao et al have been known to predict response to biofeedback training. Furthermore, current biofeedback training protocols do not depend on the dyssynergia subtype.

We hypothesize that these higher pressures reflect increased sensitivity provided by the greater number and close spacing of pressure sensors found in the HRM probe. In the absence of established normative values, and large comparative studies, the pathophysiologic relevance of higher pressures is unclear. One study used HRM to determine normal anorectal parameters in healthy women. The investigators showed that anal resting pressure was lower in elderly patients. Anal squeeze pressure and duration and rectal sensory threshold did not vary with age. We could not verify these findings as we enrolled patients with dyssynergia.

To the best of our knowledge, there have been no reports directly comparing DD patterns using both SARM and HRM. Lee et al recently concluded that 3-D high definition anorectal manometry(HDAM) and HRAM are not just new gadgets but constitute a significant and novel diagnostic advance. However, more prospective studies are needed to better define anorectal disorders with these techniques and to confirm their superiority.

Our study is not without limitations. Applying DD subtype classification developed with SARM to patients studied using HRM inherently limits the potential application of this new technology. We also acknowledge that our small patient number, selection bias constitute limitations.

In summary, our study is the first to prospectively compare DD patterns, and confirms that HRM reliably detects manometric patterns consistent with the currently accepted DD classification model. The higher resolution offered by HRM may provide for an enhanced representation DD leading to a more accurate classification.

Further studies are needed to establish standardized anorectal parameters and reconcile expert pattern recognition with data based statistical analyses. Ultimately, HRM should refine the current classification model and possibly identify predictors of response to biofeedback therapy.

CONFLICT OF INTERESTS

There are no conflicts of interest with regard to the present study.
REFERENCES

1 Videlock, E. J., Lembo, A. and Cremonini, F. Diagnostic testing for dyssynergic defecation in chronic constipation: meta-analysis. Neurogastroenterol Motil 2013 Jun; 25(6): 509-520
2 Rao SSC, Madipalli RS, Stessman M, Zimmerman B. Investigation of the Utility of Colorectal Function Tests and Rome II Criteria in Dyssynergic Defecation (Anismus). Neurogastroenterol Motil 2004 Oct; 16(5): 589-596
3 Brandt, L, Prather C, Quigley E, et al. Systematic review on the management of chronic constipation in North America. Am J Gastroenterol 2005; 100: S5-S21
4 Barnett JL, Hasler WL, Camilleri M. American Gastroenterological Association medical position statement on anorectal testing techniques. American Gastroenterological Association. Gastroenterology 1999; 116: 732-760
5 Koh D, Lim JF, Quah HM, Tang CL Biofeedback is an effective treatment for patients with dyssynergic defaecation. Singapore Med J 2012 Jun; 53(6): 381-384.
6 Rao SSC, Singh S. Clinical Utility of Colonic and Anorectal Manometry in Chronic Constipation. J Clin Gastroenterol 2010; 44: 597-609
7 Rao S. Advances in Diagnostic Assessment of Fecal Incontinence and Dyssynergic Defecation. Clinical Gastroenterology and Hepatology 2010; 8: 910-919
8 Noelting J, Ratuapli SK, Bharucha AE, Harvey DM, Ravi K and Zinsmeister AR. Normal Values for High-Resolution Anorectal Manometry in Healthy Women: Effects of Age and Significance of Rectoanal Gradient. Am J Gastroenterol 2012; 107: 1530-1536
9 Rao SS1, Seaton K, Miller M, Brown K, Nygaard I, Stumbo P, Zimmerman B, Schulze K. Randomized controlled trial of biofeedback, sham feedback, and standard therapy for dyssynergic defecation. Clin Gastroenterol Hepatol 2007 Mar; 5(3): 331-338
10 Jones MP, Post J, Crowell MD. High-resolution manometry in the evaluation of anorectal disorders: a simultaneous comparison with water perfused manometry. Am J Gastroenterol 2007; 102: 850-855
11 Florisson JM, Coolen JC, Bissett IP, Plank LD, Parry BR, Menzi E, Merrie AE. A novel model used to compare water-perfused and solid-state anorectal manometry. Tech Coloproctol 2006 Mar; 10(1): 17-20
12 Ratuapli SK, Bharucha AE, Noelting J, Harvey DM, Zinsmeister AR. Phenotypic Identification and Classification of Functional Defecatory Disorders Using High-Resolution Anorectal Manometry. Gastroenterology 2012 Nov; 7: S0016-5085(12)01608-3
13 Rao SS. Hasler WL Can high-resolution anorectal manometry shed new light on defecatory disorders? Gastroenterology. 2013 Feb; 144(2): 263-265
14 Lee YY, Erdogan A, Rao SS. High resolution and high definition anorectal manometry and pressure topography: diagnostic advance or a new kid on the block? Curr Gastroenterol Rep 2013 Dec; 15(12): 360

Peer reviewers: Gabrio Bassotti, Gastroenterology and Hepatology Section, Department of Clinical & Experimental Medicine, Santa Maria della Misericordia Hospital, Piazzale Menghini, 1, 06156 San Sisto, Perugia, Italy.