s-Compressible and s-Prime Modules

Asaad M. A. Alhossaini
Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Iraq

Received: 31/3/2021 Accepted: 17/5/2021

Abstract
Let R be a ring with identity and A a left R-module. In this article, we introduce new generalizations of compressible and prime modules, namely s-compressible module and s-prime module. An R-module A is s-compressible if for any nonzero submodule B of A there exists a small f in $\text{Hom}_R(A, B)$. An R-module A is s-prime if for any submodule B of A, ann$_R(B)A$ is small in A. These concepts and related concepts are studied in as well as many results consist properties and characterizations are obtained.

Keywords: critically s-compressible module, retractable module s-compressible module, s-prime module, small submodule.

1. Introduction
Compressible module was introduced by Zelmanowitz [1] simultaneous with introducing the concept of weakly primitive ring in the way of generalizing the Jacobson density theorem. He also introduced critically compressible module. In[2], the author studied those concepts in details. A left R-module is compressible if it can be embedded in any of its nonzero submodule[1]. A compressible module A is critically compressible if it cannot be embedding in any factor A/B, where B is a nonzero submodule of A. In[1], Zelmanowitz defined a ring to be weakly primitive if it possesses a faithful critically compressible module. In[3]–[6], authors have been extensively studied compressible, critically compressible and prime modules. By using small submodules one direction of generalizations of compressible and prime modules e appeared in [7]–[9]. A small compressible module is defined as a module that can be embedded in its small submodules, as well as small prime module is defined as a
module A in which $\text{ann}_RB=\text{ann}_RA$ for each small submodule B of A. Note that a module A is prime, if $\text{ann}_RB=\text{ann}_RA$ for each nonzero submodule B of A [7].

Throughout this work, we use the notion of small submodule. Different generalizations are given. We recall that, an R-homomorphism in $\text{Hom}(A, B)$ is said to be small if its kernel is small in A[10]. In the new generalization the zero kernel will be replaced by small kernel. An R-module A is said to be s-compressible if for each nonzero submodule B of A there exists a small element f in $\text{Hom}(A, B)$, that is $\text{ker}f$ is small in A. Note that this definition is also appeared in [11] with different abbreviation, sk-compressible.

An s-compressible module A is critically s-compressible if $\text{Hom}(A, A/ B)$ has no small element for any non-small submodule B of A. A module A is s-prime if $(\text{ann}_RB) A$ is small in A for any nonzero submodule B of A. These concepts are studied, and their relationships among them and with other related concepts are discussed. Some properties and characterizations are obtained. Firstly, it is shown that s-compressible with small compressible modules are independent, as well as the s-prime and small prime modules are also independent. The class of compressible modules contains both classes of s-compressible and small compressible modules. As well as the class of prime modules contains both classes of s-prime and small prime modules.

Throughout this article some definitions and notations are given. A module is a left unitary module over a ring R with identity. A submodule B of a module A will be abbreviated by $B \leq A$. A submodule B of a module A is said to be small in A (abbreviated by $B \ll A$) if it is proper and its sum with any other proper submodule of A is again proper, "in other word if $B + C = A$, where $C \leq A$, then $C = A$ [10]. A is said to be hollow if all its proper submodules are small. $\text{Hom}(D, E)$ denotes the set of all R-homomorphisms from D into E. If $f \in \text{Hom}(D, E)$, then $\text{ker}f = \{d \in D | f(d) = 0\}$, f is a monomorphism if $\text{ker}f = 0$ and it is small if $\text{ker}f \ll D$[10].

If $B \leq A$, then $\text{ann}_RB = \{r \in R | rb = 0\}$ for all $b \in B$ which is called the annihilator of B in R and it is a left ideal of R if $b \in B$, then $\text{ann}_RB = \text{ann}_R\{b\}$. If $B \leq A$, then $[B: R A] = \{ r \in R | rA \subseteq B \}$ is a left ideal of R. An R-module A is multiplication if for any submodule B of A there exists an ideal I of R such that $B = IA$, in this case $I = [B: RA]$[12]. An R-module A is retractable if $\text{Hom}_R(A, B) \neq 0$ for any nonzero submodule B of A [13].

In Section 2 s-compressible and critically s-compressible modules are introduced and investigated. The notion s-compressible is appeared in [11]. It is abbreviated by sk-compressible. In this work this notion is studied in details and more results are given. Section 3 devotes to introduce s-prime module and study the relationships between the present notions and old related notions.

2. s-Compressible and Critically s-Compressible Modules

Definition (2.1): A nonzero R-module A is called s-compressible if for any nonzero submodule B of A there exists a small R-homomorphism from A into B.

Remark (2.2): Any compressible module is s-compressible, however the converse is not true.

Remark (2.3): Any simple module is s-compressible.

Example (2.4): Consider the \mathbb{Z}-module \mathbb{Z}_n, if $n = mp^k$ where p is a prime which is not dividing m, thus if $s\mathbb{Z}_n$ is a small submodule of \mathbb{Z}_n, then $s = pt$ for some t.

Note that, in a R-module A, the submodule Ra is small in A if and only if a belongs to all maximal submodules of A [10].

Now, if $f: \mathbb{Z}_n \rightarrow p^k \mathbb{Z}_n$ is a \mathbb{Z}-homomorphism such that $\ker f = s \mathbb{Z}_n$ small in \mathbb{Z}_n, then $|\ker f| = n/s$, so that $|\mathbb{Z}_n/\ker f| = s = pt$, while $|p^k \mathbb{Z}_n| = m$, this gives a contradiction with the fact that $\mathbb{Z}_n/\ker f$ is isomorphic to a submodule of $p^k \mathbb{Z}_n$. Therefore, there is no small \mathbb{Z}-homomorphism from \mathbb{Z}_n into $p^k \mathbb{Z}_n$, that is, \mathbb{Z}_n is not s-compressible if $n = mp^k$ and p is a prime which is not dividing m.
On the other hand \(n=p^k \), the \(\mathbb{Z} \)-module \(\mathbb{Z}_n \) is hollow, all its proper submodules are small. It is easy to see that it is s-compressible. Therefore the \(\mathbb{Z} \)-module \(\mathbb{Z}_n \) is s-compressible if and only if \(n=p^k \) where \(p \) is prime.

We note that the two notions small compressible and s-compressible are independent. For example \(\mathbb{Z}_6 \) is small compressible \(\mathbb{Z} \)-module which is not s-compressible, while \(\mathbb{Z}_4 \) is s-compressible that is not small compressible \(\mathbb{Z} \)-module[8]. Both of two \(\mathbb{Z} \)-modules are not compressible. The two classes of small and s-compressible modules contain the class of compressible modules.

Remark 2.5: It is clear that any s-compressible module is retractable. However the converse is not true to see that \(\mathbb{Z}_6 \) as a \(\mathbb{Z} \)-module is retractable but not s-compressible.

Next proposition gives However, a condition can be added to a retractable module to get s-compressible module, see the following.

Proposition 2.6: Any hollow retractable module is s-compressible.

Proof: Assume that \(A \) is a hollow retractable module, and \(B \) is a nonzero submodule of \(A \), then there exists \(0 \neq f \in \text{Hom}(A, B) \) such that \(\ker f \) is a proper submodule of \(A \), hence small in \(A \). Therefore \(A \) is s-compressible.

This proposition can be applied to example 2.4 so that \(\mathbb{Z}_{p^k} \) is s-compressible.

We note that the \(\mathbb{Z} \)-module \(\mathbb{Z} \) is s-compressible but not hollow, and this proves that the converse of proposition 2.6 is not true.

Proposition 2.7: If \(B \) is a submodule of an s-compressible module \(A \) such that \(J(B)=J(A) \), then \(B \) is s-compressible.

Proof: Assume that \(B \) is a submodule of an s-compressible module \(A \) and \(J(B)=J(A) \). If \(K \leq B \), then \(K \leq A \), hence there exists \(f \in \text{Hom}(A, K) \) with \(\ker f \ll A \). Now if \(g=\frac{f}{p} \) then \(g \in \text{Hom}(B, K) \), and \(\ker g \cap \ker f \subseteq B \cap J(A) = B \cap J(B) \leq J(B) \), so that \(\ker g \ll B \). Therefore \(B \) is s-compressible. \(\square \)

Example 2.8:

(i) Consider \(A = \mathbb{Q} \oplus \mathbb{Z}_p \), where \(p \) is prime, as a \(\mathbb{Z} \)-module and \(B = \mathbb{Q} \oplus 0 \), then \(B \leq A \) and \(J(B)=J(A)=\mathbb{Q} \oplus 0 \).

(ii) Let \(A = \mathbb{Z} \), as a \(\mathbb{Z} \)-module and \(B = n \mathbb{Z} \), then \(J(B)=J(A)=0 \).

Corollary 2.9: If \(J(A)=0 \) and \(A \) is an s-compressible module, then any submodule of \(A \) is s-compressible.

Proposition 2.10: If \(A \) is an s-compressible module and \(B \) is a nonzero submodule of \(A \), then \(\text{ann} B \ll A \).

Proof: Since \(A \) is an s-compressible, then there exists \(f \in \text{Hom}(A, B) \) with \(\ker f \ll A \). Let \(r \in \text{ann} B \), so that for each \(m \in A \), \(f(mr)=rf(m)=0 \), then \(rm \notin \ker f \ll A \), this implies that \(\text{ann} B \) \(A \subseteq \ker f \ll A \). Therefore \(\text{ann} B \ll A \). \(\square \)

The converse of Proposition 2.10 is not true, for example if \(A \) is a torsion free \(R \)-module, then \(\text{ann} B =0 \) for any non zero submodule \(B \) of \(A \), hence \(\text{ann} B \ll A \ll A \). While there are many torsion free modules not s-compressible, e.g. the \(\mathbb{Z} \)-module \(\mathbb{Q} \).

Proposition 2.11: If \(A \) is an \(R \)-module with \(J(A)=0 \), then \(A \) is s-compressible if and only if it is compressible.

Proof: The sufficiency is clear. Conversely, \(J(A)=0 \) implies that \(A \) has no nonzero small submodule, so, if \(A \) is s-compressible, there exists \(f \in \text{Hom}(A, B) \) with \(\ker f \) small in \(A \) which implies \(\ker f=0 \) and \(f \) is a monomorphism. \(\square \)

It is well known that a nonzero submodule of a compressible module is compressible. In the following this property will be discussed under certain condition for s-compressibility.

Recall that, an \(R \)-module \(A \) is said to be fully stable, if for each submodule \(B \) of \(A \) and for each \(f \in \text{Hom}(B, A) \), it follows \(f(B) \subseteq B \) [12]. In fact \(A \) is fully stable if and only if \(\text{Hom}(B, A)=\text{End}(B) \) for each submodule \(B \) of \(A \) and more details about fully stable modules can be found in [12]. For completeness a proof will be given.
Lemma 2.12: If A is a fully stable module, $B = B_1 \oplus B_2$ and K are submodules of A, then $K \cap B = (K \cap B_1) \oplus (K \cap B_2)$.

Proof: The natural projections of B onto B_1 and B_2, respectively π_1, π_2 are elements of $\text{Hom}(B, B) = \text{End}(B)$, in fact, $\pi_1 \in \text{Hom}(B, B_1)$ and $\pi_2 \in \text{Hom}(B, B_2)$. On the other hand $\pi_1 + \pi_2 = 1_B$, so, $K \cap B = \pi_1(K \cap B) + \pi_2(K \cap B)$. Since A is fully stable, $\pi_i(K \cap B_i) \subseteq K \cap B_i$, $\; (i = 1, 2)$ but $\pi_i(K \cap B) \subseteq B_i$ so $\pi_i(K \cap B) \subseteq K \cap B_i$. Hence $K \cap B \subseteq (K \cap B_1) \oplus (K \cap B_2) \subseteq K \cap B$. □

It is known that any small submodule of a module is contained in its Jacobson radical, while a submodule that contained in the Jacobson radical of the module is small if it is finitely generated [10].

Proposition 2.13: A finitely generated direct summand of a fully stable s-compressible module is s-compressible.

Proof: Assume that $A = A_1 \oplus A_2$ is an s-compressible module and B is a submodule of A_1, then B is a submodule of A, by assumption there exists $f \in \text{Hom}(A, B)$ with $\ker f \ll A$. Let $g = f|_{A_1}$, then $\ker g = A_1 \cap \ker f$. It is known that $(\text{J}(A) = \text{J}(A_1) \oplus \text{J}(A_2))$ implies $A_1 \cap \ker f \subseteq A_1 \cap (\text{J}(A_1) \oplus \text{J}(A_2) = \text{J}(A_1))$(by full stability) so that $\ker g \subseteq \text{J}(A_1)$ and $\ker f \ll A_1$. Therefore A_1 is s-compressible. □

Remark 2.14: The converse of Proposition 2.13 is not true to see that let $\mathbb{Z}_6 = (\bar{2}) \oplus (\bar{3})$ is fully stable [11] and both $(\bar{2})$ and $(\bar{3})$ are s-compressible, however \mathbb{Z}_6 is not s-compressible, as we have seen in Example 2.4.

Remark 2.15: It is clear that a homomorphic image of an s-compressible module need not be s-compressible. For instance \mathbb{Z} is an s-compressible Z-module, however $\mathbb{Z}/6\mathbb{Z}$ is not.

Proposition 2.16: If A_1 and A_2 are two isomorphic modules, then A_1 is s-compressible if and only if A_2 is s-compressible.

Proof: Assume that $\varphi: A_1 \rightarrow A_2$ is an isomorphism and A_1 is s-compressible. Let B be a nonzero submodule of A_2. Then $\varphi^{-1}(B)$ is a nonzero submodule of A_1, by assumption there exists $\alpha: A_1 \rightarrow \varphi^{-1}(B)$ with $\ker \alpha \ll A_1$. Let $\delta = \alpha \varphi^{-1}$, where $j = \varphi|_{\varphi^{-1}(B)}$, then $\delta \in \text{Hom}(A_2, B)$ and $\ker \delta = \varphi(\ker \alpha) \ll A_2$. Hence A_2 is s-compressible. The proof of the other direction is similar. □

Lemma 1.17: If A is a multiplication module and $A = A_1 \oplus A_2$, then $\text{ann}_A A_i = \{ A_j: A \}$, $i \neq j$, $i, j = 1, 2$.

Proof: Let $r \in \text{ann}_A A_1$, then for each $m = m_1 + m_2$, $r(m_1 + m_2) = r m_2 \in A_2$, so that $r \in \{ A_2: A \}$. Conversely. The $r \in \{ A_2: A \}$ implies that for each $m_1 \in A_1$, if m_2 is any element of A_2, then $m_1 + m_2 \in A$ and $r(m_1 + m_2) \in A_2$, which implies $r m_1 \in A_1 \cap A_2$, hence $r m_1 = 0$ and $r \in \text{ann}_A A_1$. This proves $\text{ann}_A A_1 = \{ A_2: A \}$. By the same manner the other case can be proved.

Proposition 2.18: If A is a multiplication and s-compressible R-module then it is indecomposable.

Proof: Assume that $A = A_1 \oplus A_2$, since A is multiplication, we have $A_1 = \{ A_1: A \}$ and $A_2 = \{ A_2: A \}$. By Lemma 1.17, $A_1 = (\text{ann}_R A_2) A$ and $A_2 = (\text{ann}_R A_1) A$, then $A = (\text{ann}_R A_2) A \oplus (\text{ann}_R A_1) A$. But by Proposition 2.3 ($\text{ann}_R A_1) A$ and $(\text{ann}_R A_2) A$ are both small in A, which is a contradiction. Therefore A is indecomposable. □

An R-module A is said to be duo if any submodule of A is full invariant, that is, for each $f \in \text{End}(A)$ and for each $B \subseteq A$, $f(B) \subseteq B$ [14], and it is said to be torsion free if $rm \neq 0$ whenever $0 \neq r \in R$ and $0 \neq m \in A$, or equivalently $0 \neq m \in A$ and $rm \neq 0$ implies $r \neq 0$.

Next theorems give a characterization of Duo modules, we will start with the following lemma.

Lemma 2.19: "An R-module A is duo if and only if for each $f \in \text{End}(A)$ and for each $m \in A$ there exists $r \in R$ such that $f(m) = rm$" [14].
Theorem 2.20: Let A be a duo torsion free R-module. Then A is compressible if and only if it is retractable.

Proof: (\Rightarrow) It is clear so that it is omitted .

(\Leftarrow) Assume that A is a duo torsion free R-module and retractable, let $0 \neq B \leq A$, then there exists $0 \neq f \in \text{Hom}(A, B)$, it can be considered that $f \in \text{End}(A)$. By Lemma 2.19, for each $m \in A$ there exists $r \in R$ such that $f(m)=rm$. So $\ker f= \{ m \in A \mid rm=0 \text{ for some } r \in R \}$, as A is torsion free and $0 \neq f$, it follows $\ker f=0$, that is A embed in B. Therefore A is compressible. □

A compressible module is said to be critically compressible if it cannot be embedded in any of its proper factors [2]. This notion was generalized in [7] using small submodule this way gives that a small compressible module A is called small critically compressible if A cannot be embedded in any proper quotient module A/B with $0 \neq B \ll A$.

Another generalization will be given by using small submodule.

Definition 2.21: An R-module A is called critically s-compressible if it is s-compressible and for any not small submodule B of A, $\text{Hom}(A, A/B)$ contains no small element.

Remark 1.22: The two classes small critically compressible modules, and critically s-compressible modules are different (see Example 2.23(ii)), and their intersection contains the class of critically compressible modules.

Example 2.23: (i) The \mathbb{Z}-module \mathbb{Z}_n is critically s-compressible if and only if $n=p^k$ where p is a prime.

Proof: In Example 2.4, we proved that \mathbb{Z}_n is s-compressible if and only if $n=p^k$ where p is a prime. Since \mathbb{Z}_{p^k} has no proper submodule which is not small, so it is critically s-compressible.

(ii) \mathbb{Z}_{p^k}, is not small critically compressible module for $k>1$. While \mathbb{Z}_n is small critically compressible \mathbb{Z}-module but not critically s-compressible.

(iii) The \mathbb{Z}-module \mathbb{Z}, also is critically s-compressible.

(iv) Any critically compressible module is critically s-compressible. But the converse is not true.

(v) Any simple module is critically s-compressible.

By partial endomorphism of a module A it means an element of $\text{Hom}(B, A)$ where B is a submodule of A.

Proposition 2.24: If A is a critically s-compressible module, then any nonzero partial endomorphism of A has kernel small in A.

Proof: Assume that A is a critically s-compressible module and $0 \neq f \in \text{Hom}(B, A)$, where $B \leq A$, suppose that $\ker f$ is not small in A. Then $\text{Im} f \neq 0$ and there exists $0 \neq g \in \text{Hom}(A, \text{Im} f)$ such that $kerg \ll A$ since A is s-compressible. On the other hand $\text{Im} f \cong N/\ker f \leq A/\ker f$, let $h: \text{Im} f \rightarrow B/\ker f$ be an isomorphism and $i: B/\ker f \rightarrow \text{ker} f$ be the inclusion map. Then ihg$\in \text{Hom}(A, A/\ker f)$ and $kerg=\ker g \ll A$. This contradicts the assumption that A is critically s-compressible.

To prove the converse of Proposition 2.24, we need a condition this is given in next proposition.

Proposition 2.25: Let A be an s-compressible module such that for any $L \leq A$ and $K \ll A$, any element of $\text{Hom}(L, A/K)$ has kernel small in A. Then A is critically s-compressible.

Proof: Assume that A is an s-compressible module satisfying the above condition. Let B be a submodule of A which is not small and $f \in \text{Hom}(A, A/B)$ and $\ker f \ll A$. Then $A/\ker f \cong L/B$, where L is a submodule of A containing B. Let $v: L \rightarrow L/B$ be the natural epimorphism and $q: L/B \rightarrow A/\ker f$ be an isomorphism, then $q \circ v \in \text{Hom}(L, A/\ker f)$ and $\ker q \circ v = B$ which is not small in A, a contradiction with the assumed condition. Therefore, the kernel of any element of $\text{Hom}(A, A/B)$ is not small in A, that is, A is critically s-compressible. □

3. s-Prime Modules

1204
Prime modules are defined and investigated in the literatures see [3][4][15]. An R-module A is said to be prime if for any nonzero submodule B of A, \(\text{ann}_R B = \text{ann}_R A \). This notion is generalized in [7] using the concept of small submodules in this way \(\text{ann}_R B = \text{ann}_R A \) for each non-zero small submodule B of A. We also use small submodules to give a different generalization for prime module, its properties, and characterizations as well as relations with s-compressible is also studied.

Definition 3.1: A nonzero R-module A is called s-prime if for any nonzero submodule B of A, \((\text{ann}_R B) A \ll A \).

Remark 3.2:
(i) The two notions small prime, and s-prime are independent. For example the \(\mathbb{Z} \)-module \(\mathbb{Z}_4 \) is an s-prime but not small prime (can be easily checked), while the \(\mathbb{Z} \)-module \(\mathbb{Z}_{24} \) is small prime , this is also shown in[7]. However it is not s-prime since \((\text{ann}_\mathbb{Z}(\langle 8 \rangle)) \mathbb{Z}_{24}=3\mathbb{Z}(\mathbb{Z}_{24}) = \langle 3 \rangle \) not small in \(\mathbb{Z}_{24} \).
(ii) We have seen that any torsion free R -module is s-prime.
(iii) It is clear that any prime module is s-prime. However the converse is not true, for example the \(\mathbb{Z} \)-module \(\mathbb{Z}_8 \) is not prime since \(\text{ann}_\mathbb{Z}(4 \mathbb{Z}_8)=2\mathbb{Z} \), while \(\text{ann}_\mathbb{Z}(\mathbb{Z}_8)=8 \). But \(\mathbb{Z}_8 \) is s-prime \(\mathbb{Z} \)-module (can be easily checked).

Proposition 3.3: An s-compressible module is s-prime.

Proof: See Proposition 2.10.

It is clear the converse of Proposition 3.3 is not true, the \(\mathbb{Z} \)-module \(\mathbb{Q} \) is s-prime since it is torsionfree (Remark 3.2(ii)) but not s-compressible since \(\text{Hom}(\mathbb{Q}, \mathbb{Z})=0 \).

Proposition 3.4: A nonzero R-module A is s-prime if and only if \((\text{ann}_R Rx) A \ll A \) for each \(0 \neq x \in A \).

Proof: (\(\Rightarrow \)) It is clear.
\((\Leftarrow) \) Assume that \((\text{ann}_R Rx) A \ll A \) for each \(0 \neq x \in A \), and let \(0 \neq B \subseteq A \), then there exists \(0 \neq x \in B \) and \((\text{ann}_R B) \subseteq (\text{ann}_R Rx) \) which implies \((\text{ann}_R B) A \subseteq(\text{ann}_R Rx) A \ll A \), hence \((\text{ann}_R B) A \ll A \). Therefore A is s-prime.

Proposition 3.5: A nonzero R-module A is s-prime if and only if for each \(0 \neq B \subseteq A \) and for each ideal I of R, \(IB=0 \) implies \(IA \ll A \).

Proof: It is clear that \(IB=0 \) means \(I \subseteq (\text{ann}_R B) \).

Theorem 3.6: Let A be a multiplication retractable R-module, then A is s-compressible if and only if it is s-prime.

Proof: (\(\Rightarrow \)) See Proposition 3.3.
\((\Leftarrow) \) Assume that A is a multiplication retractable R-module and \(0 \neq B \subseteq A \). Then, there exists \(0 \neq f \in \text{Hom}(A, B) \), since A is retractable, that is \(\text{Im} f \neq 0 \). As A is s-prime, it follows \((\text{ann}_R \text{Im} f) A \ll A \).

Now, \(\text{ann}_R (\text{Im} f)=\{ r \in R \mid rf=0, \ \forall m \in A \} = \{ r \in R \mid rm \in \ker f, \ \forall m \in A \} = \ker f : A \). Hence \((\text{ann}_R \text{Im} f) A = [\ker f : A] A = \ker f \), since A is multiplication. Therefore, we have \(\ker f \ll A \), and A is s-compressible.

In [16] author proved that a faithful multiplication R-module is retractable according to this result Theorem 3.6 can be rewritten as following.

Corollary 3.7: Let A be a faithful multiplication R-module, then A is s-compressible if and only if it is s-prime.

Recall that a ring R is called left duo if any left ideal is two sided ideal [14].

Proposition 3.8: Let R be a left duo ring. A nonzero R-module A is s-prime if and only if for each \(0 \neq x \in A \) and for each ideal I of R, \(Ix=0 \) implies \(IA \ll A \).

Proof: (\(\Rightarrow \)) Assume that \(0 \neq x \in A \) and \(Ix=0 \), then \(IRx=RIx=0 \) where \(0 \neq Rx \ll A \) and by assumption \(IA \ll A \).
(⇐) Let $0 \not= B \leq A$ and $IB=0$, if $0 \not= x \in B$, then $Ix=0$, by assumption $IA \ll A$, therefore A is s-prime.

Remark 3.9: The \mathbb{Z}-module \mathbb{Z}_n is s-prime if and only if $n= p^k$ where p is a prime number.

Proof: If $n= p^k$, then \mathbb{Z}_n is s-compressible (see Example 2.4), and by Proposition 3.3, it is s-prime. If $n= mk$ with $(m, k)=1$, then $ann_\mathbb{Z}(\overline{m}) = k \mathbb{Z}$, $(k \mathbb{Z}) \mathbb{Z}_n=(\overline{k})$ which is not small in \mathbb{Z}_n since $(\overline{m})+(\overline{k})=\mathbb{Z}_n$.

Proposition 3.10: Let B be a finitely generated submodule of an R-module A and $J(B)=J(A)$. If A is s-prime then B is also s-prime.

Proof: Assume that A is s-prime and $K \leq B$, then $K \leq A$ and $(ann_R K) A \ll A$.

Now, $(ann_R K) B \leq (ann_R K) A$ and $(ann_R K) A \ll A$ implies $(ann_R K)A \leq J(A) = J(B)$. Therefore $(ann_R K) B \leq J(B)$, that is, $(ann_R K) B \ll B$. □

It is known that, if R is a commutative ring and $0 \not= x \in A$, where A is an R-module, then $ann_x x$ is an ideal of R and $ann_R R x = ann_R x$. The following lemma is needed to get the next result.

Lemma 3.11: Let R be a commutative ring with identity and A a finitely generated faithful multiplication R-module. If I is any ideal of R, then $I \ll R$ if and only if $IA \ll A$.

Proof: (⇒) Assume that $I \ll R$ and $I A + B = A$ where $B \leq A$. Since A is multiplication, $B=IA$ for some ideal J of R, then $IA + JA = A$, hence $(I+ J) A = A$. This implies $I+ J= R$ (see Theorem 3.1,[16]), then $J= R$ (since $I \ll R$).Therefore, $B=IA$, that is $IA \ll A$.

(⇐) Assume that $IA \ll A$ and $I+ J= R$ for some ideal J of R, then $IA + JA = RA = A$, and so, $JA = A$ since $IA \ll A$. Again, by (Theorem 3.1,[17]) $J= R$, hence $I \ll R$.

Theorem 3.12: Let R be a commutative ring with identity and A a finitely generated faithful multiplication R-module. Then, A is s-prime if and only if $(ann_R x) \ll R$ for each $0 \not= x \in A$.

Proof: See Proposition 3.4 and Lemma 3.11.

Corollary 3.13: Let R be a commutative ring with identity and A a finitely generated faithful multiplication R-module, then A is s-compressible.

Proof: Let A be a finitely generated faithful multiplication R-module. By (Lemma 4.1,[17]), faithful multiplication modules are torsion free, then $(ann_R x)=0$, then $(ann_R x) \ll R$ for all $0 \not= x \in A$. By Theorem 3.12, A is s-prime. Then by Corollary 3.7, A is s-compressible.

4. REFERENCES

[1] J. Zelmanowicz, “An Extension of The Jacobson Density Theorem,” Bull. Am. Math. Soc., vol. 82, no. 4, pp. 551–553, 1976, doi: 10.1090/S0002-9904-1976-14093-1.

[2] J. Zelmanowicz, “Weakly Primitive Rings,” Commun. Algebr., vol. 9, no. 1, pp. 23–45, 1981, doi: 10.1080/00927878108822561.

[3] Y. Zhou, “Strongly Compressible Modules and Semiprime Right Goldie Rings,” Commun. Algebr., vol. 21, no. 2, pp. 687–698, 1993, doi: 10.1080/00927879308824590.

[4] C. Lomp and A. J. Pe, “A Note on Prime Modules,” Divulg. Mat., vol. 8, no. 1, pp. 31–42, 2000.

[5] M. Baziar, “Semi-Essentially Compressible Modules and Rings,” Int. J. Algebr., vol. 3, no. 14, pp. 685–692, 2009.

[6] C Çelik, “Completely slightly compressible modules,” Thai J. Math., vol. 10, no. 1, pp. 137–145, 2012.

[7] L. S. Mahmood, “Small Prime Modules and Small Prime Submodules,” J. Al-Nahrain Univ. Sci., vol. 15, no. 4, pp. 191–199, 2012, doi: 10.22401/jnus.15.4.28.

[8] L. S. Mahmood and I. H. Muslem, “Small Compressible Modules and Small Retractable Modules,” Int. J. Appl. Math. Stat. Sci., vol. 5, no. 2, pp. 15–28, 2016, [Online].

Available:
http://www.iaset.us/view_archives.php?year=2016&jtype=2&id=45&details=archives.

[9] M. A. H. Inaam and Hassan K. Marhun, “Small Monoform Modules,” Ibn AL-Haitham J. pure Appl. Sci., vol. 27, no. 2, pp. 229–240, 2014.

[10] F. Kasch, Modules and rings. Inc-London: Academic Press, 1982.

[11] S. N. Al-Aeashi and F. H. Al-Bakaa, “Essentially Compressible Modules Relative to A Submodule,” Asian J. Appl. Sci., vol. 8, no. 5, 2020.

[12] M. S. Abbas, “On Fully Stable Modules,” Thesis, University of Baghdad. Iraq, 1990.

[13] V. S. Rodrigues and A. A. Sant’Ana, “A Note on A Problem Due to Zelmanowitz,” Algebr. Discret. Math., no. 3, pp. 85–93, 2009.

[14] A. Ozcan, A. Harmanci, and P. F. Smith, “Duo Modules,” Glas. Math. J., vol. 48, no. 3, pp. 533–545, 2006, doi: 10.1017/S0017089506003260.

[15] S. Limarenko, “Compressible Modules,” Math. Bull, vol. 60, no. 3, pp. 26–29, 2005.

[16] H. I. Muslem, “Some types of Retractable and Compressible Modules,” University of Baghdad, 2016.

[17] P. P. El-Bast, Zeinab Abd and Smith, “Multiplication modules,” Commun. Algebr., vol. 16, no. 4, pp. 755–779, 1988.