Metal–organic chemical vapor deposition of 2D van der Waals materials—The challenges and the extensive future opportunities

Cite as: APL Mater. 8, 030901 (2020); https://doi.org/10.1063/1.5142601
Submitted: 15 December 2019 . Accepted: 13 February 2020 . Published Online: 02 March 2020

Do Hee Lee, Yeoseon Sim, Jaewon Wang, and Soon-Yong Kwon

ARTICLES YOU MAY BE INTERESTED IN

Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition
APL Materials 7, 081113 (2019); https://doi.org/10.1063/1.5095451

Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics
Applied Physics Reviews 4, 021306 (2017); https://doi.org/10.1063/1.4983646

Passivating the sulfur vacancy in monolayer MoS2
APL Materials 6, 066104 (2018); https://doi.org/10.1063/1.5030737
Metal–organic chemical vapor deposition of 2D van der Waals materials—The challenges and the extensive future opportunities

Cite as: APL Mater. 8, 030901 (2020); doi: 10.1063/1.5142601
Submitted: 15 December 2019 • Accepted: 13 February 2020 •
Published Online: 2 March 2020

Do Hee Lee, Yeoseon Sim, Jaewon Wang, and Soon-Yong Kwon

AFFILIATIONS
School of Materials Science and Engineering and Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea

Author to whom correspondence should be addressed: sykwon@unist.ac.kr

ABSTRACT
The last decade has witnessed significant progress in two-dimensional van der Waals (2D vdW) materials research; however, a number of challenges remain for their practical applications. The most significant challenge for 2D vdW materials is the control of the early stages of nucleation and growth of the material on preferred surfaces to eventually create large grains with digital thickness controllability, which will enable their incorporation into high-performance electronic and optoelectronic devices. This Perspective discusses the technical challenges to be overcome in the metal–organic chemical vapor deposition (MOCVD) growth of 2D group 6 transition metal dichalcogenide (TMD) atomic crystals and their heterostructures, as well as future research aspects in vdW epitaxy for 2D TMDs via MOCVD. In addition, we encourage the traditional MOCVD community to apply their expertise in the field of “2D vdW materials,” which will continue to grow at an exponential rate.

INTRODUCTION
Electronic and optoelectronic devices based on layered two-dimensional transition metal dichalcogenides (2D TMDs) feature unique properties that yield outstanding figures of merit. Diverse TMDs (e.g., MoS$_2$, WSe$_2$, WTe$_2$, SnS$_2$, and ReS$_2$) can be obtained through the deliberate selection of both the TM and chalcogen atoms, and their versatile and tunable properties permit a wide degree of control for on-demand heterojunction device design. Pioneering research has already demonstrated related proof-of-concept transistors and memory cells for ultra-low power electronics, in addition to photodetectors, photodiodes, light-emitting diodes (LEDs), and solar cells as high-quantum-efficiency optoelectronics using 2D group 6 TMDs such as (Mo, W) (S, Se, Te)$_2$, as shown in Table I.

Radisavljevic et al. first fabricated the top-gated MoS$_2$-monolayer-based transistor with a room-temperature (RT) mobility of $>$200 cm2 V$^{-1}$ s$^{-1}$, high on–off ratio of \sim109, and a subthreshold swing of \sim74 mV/decade. The top-gated geometry and the high-κ dielectric HfO$_2$ can enhance the performance of MoS$_2$ transistors. Furthermore, because the stacked structure based on 2D materials having semiconducting, insulating, and metallic properties facilitates control of carrier doping concentration and polarity in TMDs, the TMD-based stacked structures have been utilized in memory devices such as floating gate transistors and ferroelectric-gate field effect transistors (FETs). Vu et al. demonstrated a two-terminal floating-gate memory, which is composed of a monolayer MoS$_2$/h-BN/monolayer graphene vertical stack. Control of the insulating layer thickness (<10 nm) facilitates charge tunneling to the floating layer. The memory device exhibited an ultralow off-state current of \sim10$^{-14}$ A and an ultrahigh on/off ratio of $>10^9$. Due to the absence of a rigid dielectric layer, the device can stretch up to a strain of \sim19% without electrical performance degradation.
Industry	Device requirement	Application	Material	Structure	Performance	Material attribution	References
Electronics	Low power consumption	Transistor	MoS$_2$	Au/Cr(top gate)/HfO$_2$(dielectric layer)/Au(electrodes)/1L MoS$_2$ (exfoliated)/SiO$_2$/Si	200 cm2 V$^{-1}$ s$^{-1}$ at RT, high on–off ratio (106), and ultralow standby power dissipation (25 fA cm$^{-2}$)	Transparent semiconducting material (MoS$_2$: 6.5 Å, WSe$_2$: 7.0 Å)	8
			MoS$_2$	Au/Ti(top gate)/HfO$_2$(dielectric layer)/Au/Ti(electrodes)/1L WSe$_2$ (exfoliated)/HF$_2$(dielectric layer)/p + Si(back gate)	250 cm2 V$^{-1}$ s$^{-1}$ at RT, high on–off ratio (106), and ultralow standby power dissipation (~60 mV dec for a bias V_{th} = 500 mV, I_{off} ≈ 11 fA cm$^{-2}$)	Large intrinsic direct bandgap (MoS$_2$:1.8 eV, WSe$_2$:1.62 eV)	9
		Memory	MoS$_2$	Au/Cr(electrodes)/1L MoS$_2$(exfoliated)/h-BN/Graphene(CVD)/PET	Ultimately low off-state current of 10$^{-14}$, ultrahigh on/off ratio over 105, and high stretchability (>19%)	High thermal stability	10
			WSe$_2$	Au/Cr(electrodes)/WSe$_2$(exfoliated)/MoS$_2$(exfoliated)/h-BN(exfoliated)/HF$_2$/Al$_2$O$_3$/Si	Quasi-non-volatile RAM technology, ultrahigh-speed writing operation (approximately 15 ns) approximately 105 times faster than other memories based on 2D materials, and long refresh time to 10 s	Absence of dangling bonds	11
		Photodetector	MoS$_2$	Au(electrodes)/1L MoS$_2$(exfoliated)/SiO$_2$/Si	Photoresponsivity of 880 A W$^{-1}$ at 561 nm and photoresponse in the 400–680 nm range		12
			WSe$_2$	Au/Pd(electrodes)/1L WSe$_2$(CVD)/SiO$_2$/Si	Photoresponsivity of ~1.8 × 104 A W$^{-1}$		13
			MoS$_2$	Ti(electrode)/50 nm MoS$_2$(exfoliated)/Graphene(CVD) (electrode)/Al$_2$O$_3$(dielectric layer)/ITO(back gate)/Glass	External quantum efficiency (EQE) of 55% and internal quantum efficiency (IQE) up to 85%		14
Industry	Device requirement	Application	Material	Structure	Performance	Material attribution	References
----------	-------------------	-------------	----------	-----------	-------------	---------------------	------------
Optoelectronics	Highly efficient photocurrent generation	Photodiode	WSe₂	Au(or Au/Pd, electrodes)/1L WSe₂(exfoliated)/HfO₂/Au(or AuPd, two local gates)/SiO₂/Si	Photodetector, photoresponsivity of 210 mA W^{−1}, solar cell, external quantum efficiency (EQE) of 0.2%, at 522 nm LED, and electroluminescence peak at 752 nm	Near-infrared to visible bandgap	15
Optoelectronics	Efficient electron-hole pair generation		Graphene/MoS₂/WSe₂/Graphene	[all Graphene(Gr), MoS₂, and WSe₂ are prepared by mechanical exfoliation.]	Zero-bias responsivity of ~10 mA/W and high EQE of ~10%–30%	Strong exciton binding energy (MoS₂: ~0.55 eV, WSe₂: ~0.45 eV)	16
Optoelectronics	High photoresponsivity		MoS₂/WSe₂	hBN/Gr/hBN/MoS₂/hBN/MoS₂/Gr/hBN/SiO₂/Si	Multiple quantum wall(MQW) devices. Quantum efficiency (QE) of MoS₂: ~8.4% (for the device with quadruple QW)	Mainly based on photovoltaic effect	17
LED		LED	Au/V(electrodes)/1L WSe₂(exfoliated)/hBN/Pd(two local gates)/SiO₂/Si	Lateral p–n junction and bright electroluminescence with 1000 times smaller injection current and 10 times smaller electroluminescence linewidth than in MoS₂	Low dark current	18	
Solar cell		Solar cell	MoS₂/WSe₂	Pd/Au(electrodes)/1L MoS₂(exfoliated)/1L WSe₂(exfoliated)/Si/SiO₂(back gate)	EQE of 1.5%, fill factor(FF) of 0.5, and power conversion efficiency (PCE) of ~0.2%		19
The direct bandgaps of TMDs from the near-infrared region to the visible region also make them effective in optoelectronic applications. Moreover, based on theoretical calculations, diverse monolayer TMDs have considerably high exciton binding energies (≈0.5–1 eV).20,22 The 2D TMD-based devices are expected to be utilized in RT optoelectronic devices. In the case of photodetectors, because of the sizable energy gap, TMD-based photodetectors can have lower dark current and higher responsivity than zero-bandgap graphene-based photodetectors. However, extremely strong excitonic effects hinder effective exciton dissociation by electric fields, demanding a large bias electric field. To overcome the intrinsic problem and improve the performance of MoS\textsubscript{2}-based photodetectors, Lopez-Sanchez\textit{ et al.} achieved improvement in semiconductor–metal contacts and mobility of MoS\textsubscript{2}.11 The proposed device exhibited a high photoreponsivity of 880 A/W at 561 nm and a broad photoreponse over the 400–680 nm range. For more controllable and efficient photodetectors, in-plane and out-of-plane junctions have been demonstrated. Baugher\textit{ et al.} fabricated a monolayer–WSe\textsubscript{2}–based photodetector with an in-plane \textit{p–n} junction, which is controlled by electrostatic gates.13 The device exhibited a photodetection responsivity of ≈1 and ≈210 mA/W under zero bias and large forward bias, respectively. However, the external quantum efficiency (EQE) was very low (≈0.2%) because of the limitation of the in-plane junction in a wide depletion region. For an out-of-plane \textit{p–n} junction, Lee\textit{ et al.} demonstrated a MoS\textsubscript{2}/WSe\textsubscript{2} vertical heterostructure.14 Owing to the large-area depletion region, the device exhibited a high zero-bias responsivity of ≈10 mA/W and a higher EQE of ≈10%–30%. In the case of excitonic LEDs, Ross\textit{ et al.} reported a monolayer WSe\textsubscript{2} in-plane \textit{p–n} diode and demonstrated that the electroluminescence among the regimes of impurity-bound, charged, and neutral excitons is tunable with the change in the injection bias.15 In the case of thin-film solar cells, Furchi\textit{ et al.} demonstrated the photovoltaic effect of a MoS\textsubscript{2}/WSe\textsubscript{2} vertical vdW heterojunction.16 Through the electrical tuning of WSe\textsubscript{2} from \textit{n}-type to \textit{p}-type, the MoS\textsubscript{2}/WSe\textsubscript{2} heterostructure can obtain the \textit{p–n} junction, resulting in a EQE of ≈1.5%, a fill factor of ≈0.5, and a power conversion efficiency of ≈0.2%.

As shown in the examples above, combined experimental and theoretical studies on these vdW materials have increased rapidly in recent years. The appeal of 2D materials lies in their layered vdW nature with no covalent bonding between a grown vdW material and the substrate.22–29 This bonding nature of the 2D materials allows the choice of materials systems based primarily on “bandgap engineering” (i.e., artificial modification of band-edge profiles using heterostructures by epitaxial growth) without any epitaxial matching requirements. This provides great flexibility for fabricating on-demand heterostructures with desired properties. However, despite the tremendous potential for novel applications, the controllable synthesis of continuous and homogeneous 2D TMDs at the wafer-scale remains quite challenging. Specifically, it should be noted that most of the observed novel electrical and optoelectronic properties have been demonstrated in exfoliated TMD flakes.8–11 The chemical vapor deposition (CVD) may be used to perform the large-scale synthesis of high-quality 2D TMDs26–30 and their heterostructures.31–33 Nonetheless, the commonly used powder vaporization routes (e.g., MoS\textsubscript{2} from MoO\textsubscript{3} and S powders) require high growth temperatures and are limited in terms of continuous and constant supply of precursors during growth,7,26–30 making them unsuitable for integration into existing electronic manufacturing processes. The development of a reliable large-scale synthesis process would unleash the potential of 2D TMDs in electronic and optoelectronic applications and may trigger the development of novel and unexpected uses, where their unique properties could produce significant enhancements. From this perspective, metal–organic CVD (MOCVD) that can address these scalability and process control issues during the vapor-phase growth of 2D TMD atomic crystals will be investigated in this paper (Fig. 1). The focus is to (i) summarize the key technologies used for the MOCVD growth of 2D TMDs, (ii) highlight the potential of the MOCVD process while discussing its drawbacks, (iii) discuss many challenges that remain to be overcome for realizing practical applications of 2D TMD by MOCVD, and (iv) encourage the traditional MOCVD community to apply their expertise in the field of “2D vdW materials,” which will continue to grow at an exponential rate.

MOCVD FOR 2D TMD EPITAXY

An excellent review of MOCVD processing technology and its history can be found in Refs.34 and 35, but a short summary of 2D
vdW materials, focusing on 2D group 6 semiconducting 2H-TMDs, such as (Mo, W) (S, Se, Te) is included herein (Fig. 2). Based on its early commercial use in III–V (or II–VI) compound semiconductor technologies, MOCVD is an emerging technique for the production of wafer-scale and high-quality electronic and optoelectronic materials and their related heterostructures. Interest has recently been developed in extending this technique to the growth of 2D vdW materials for various electronic and optoelectronic applications.47–50

MOCVD is because it is readily transportable and is composed high purity organometallic (MO) compounds that can be prepared for most of elements that are of interest for the deposition of 2D TMD materials.47–49 Furthermore, the large driving force for the pyrolysis of the source chemicals (i.e., large free energy change) indicates that a wide variety of 2D TMD materials can be grown using this technique that cannot be grown using other techniques. In principle, the large free energy change allows the growth of single-crystal-like 2D TMD materials free of grain boundaries (GBs) on various substrates.

Meanwhile, the importance of extreme precision, control, uniformity, and purity required for the efficient operation of optoelectronic devices (e.g., detectors and advanced photonic array devices) has resulted in the continued importance of molecular beam epitaxy (MBE) (over MOCVD) because of the remaining limitations of MOCVD in terms of its relatively high impurity and defect levels. MBE has several advantages including high purity, slow growth rate, and in situ characterization techniques available. The temperature at which the precursors contact and the ambient gas. Decomposition is also affected by the residence time of the chemical species around the hot substrate/susceptor surface, indicating a flow rate and reactor geometry dependence of thermal decomposition.59,60

ALD routes generally do not produce crystalline TMD materials and remain in their infancy.59,60

Source precursors

MOCVD is a nonequilibrium growth technique that relies on the vapor transport of precursors and subsequent chemical reactions in a heated zone. Currently, the sources used for major vdW film constituents in MOCVD include various combinations of hydrides and other compounds. The 2D TMD compounds or alloys are usually grown using TM hexacarbonyls or chlorides [e.g., molybdenum hexacarbonyl (Mo(CO)_6) or molybdenum chloride (MoCl_5)] as the TM source. By strict definition, these materials are not MOs because an MO indicates the presence of a metal directly bonded to an organic fragment. The non-metal source is a hydride (H_2S and H_2Se) or an MO such as dimethyl sulfide [DMS (CH_3)_2S] or diethyl sulfide [DES (C_2H_5)_2S].

During MOCVD, the sources are introduced as vapor phase constituents into a growth chamber at approximately RT and thermally decomposed at elevated temperatures using a hot substrate/susceptor to form the vdW film. The above-mentioned metal precursors are often pyrophoric and exhibit relatively high vapor pressures from ~0.1 Torr to 100 Torr at approximately RT. Therefore, the materials can be easily transported to the growth chamber as vapor phase species by bubbling with a suitable carrier (e.g., H_2 or N_2). The temperature at which the precursors begin to decompose is a function of the contact surface with the precursor contact and the ambient gas. Decomposition is also affected by the residence time of the chemical species around the hot substrate/susceptor surface, indicating a flow rate and reactor geometry dependence of thermal decomposition.59,60

The reported decomposition temperatures ranged less than ~400 °C for most metal precursors, which is beneficial for the future CMOS-compatible semiconductor industry considering the incorporation of TMDs with the reduced growth temperatures for vdW epitaxy to ≤450 °C.
Apart from the vapor pressure and decomposition temperature, other considerations for the choice of precursors include toxicity and the unintentional impurity content including carbon and oxygen incorporated in the vdW films (i.e., potential sources of defects and dopants).47–50 During the growth of 2D TMD compounds, hydrides are often used as sources because they are relatively inexpensive and available as dilute vapor phase mixtures at various concentrations. In addition, these precursors eliminate some of the concerns regarding carbon incorporation. However, all hydrides are extremely toxic, and safety costs may exceed material cost savings. Generally, the high toxicity of commonly used hydrides (e.g., \(\text{H}_2\text{S} \) or \(\text{H}_2\text{Se} \)) leads to the substitution of MO compounds (e.g., DMS or DMSe) for hydrides. Besides the toxicity, considering the growth of TMD alloys containing S and Se at temperatures of \(\leq 450 \) °C, the difference in decomposition temperatures of \(\text{H}_2\text{S} \) and \(\text{H}_2\text{Se} \) complicates the compositional control at low substrate temperatures, driving the movement to MO precursors from S and Se.22 In addition, the use of DMSe instead of \(\text{H}_2\text{Se} \) for Se-based compounds allowed the minimization of the parasitic gas phase reaction between the Lewis acid and base sources.

vdW epitaxial growth

In traditional 3D Si and III–V (or II–VI) semiconductor systems, an important parameter governing the epitaxial growth is lattice mismatch as it results in strain and defects that restrict the viable material combinations during the formation of on-demand heterostructures.51 The lattice mismatch originates from the dangling bonds at the surface of the 3D crystalline substrates. In contrast with conventional 3D epitaxy, vdW epitaxy leverages the epilayer and/or the substrate with a vdW surface containing no dangling bonds, as in the epitaxial growth of Se on cleaved bulk Te crystals22 (lattice mismatch \(\sim \) 20%) as well as F-terminated 3D CaF\(_2\), upon which an ultrathin MoS\(_2\) was grown66 (lattice mismatch \(\sim \) 17%). Because of the lack of surface dangling bonds, no covalent and/or ionic bonding occurs between the epilayer and substrate. Therefore, when the epitaxial layer is formed on a lattice-mismatched substrate, it grows unstrained with its natural lattice constant, resulting in strain-free growth of the epilayer with atomically abrupt interfaces. Because no strain exists in these hetero-systems, the misfit dislocations will not form, resulting in device quality interfaces despite large lattice mismatch. For atomically thin MoS\(_2\) grown on graphene by CVD, Raman spectra, synchrotron X-ray scattering, and atomic-resolution scanning tunneling microscopy (STM) showed no evidence of strain in the hetero-system, despite the lattice mismatch of \(\sim \) 28%.67 However, the nucleation and growth process on the substrate with a pristine vdW surface (i.e., containing no dangling bonds) is very difficult due to the weak vdW energy.68–69

Growth modes

The classical theory of thin film growth was originally developed to describe the epitaxial growth of 3D materials (i.e., non-vdW materials) containing actual chemical bonds between the growing film and substrate; this is where strain is more influential.70 All three classical 3D growth modes can be understood from the perspective of the critical radius and free energy barrier for nucleation and growth of the cap-shaped meniscus. However, the treatment of all three modes at once (differentiated by various surface tension inequalities) ignores the actual morphology of the TMD films. This morphology is never cap-shaped, adopting either a single layer or multiple layers without strong bonding between the layers. Therefore, a more constructive approach involves the analysis of the Gibbs free energy change upon formation of nuclei in a manner that explicitly recognizes the layer structure of TMDs (no wetting angle theta) and lateral growth that can increase/widen the first layer or vertical growth that can add a stacked layer.

A revised theory that is specifically tailored for the case of layered vdW atomic crystals grown using vdW substrates was recently proposed by our group (Fig. 3(a)). Regarding nucleation at the early stages of deposition, it is worthwhile to note that the energy barrier (\(\Delta G^* \)) is always positive (i.e., TMD growth always encounters a barrier to nucleation), and it is an increasing function of \(n \) for an \(n \)-layer nucleus, implying that all the TMD nuclei formed at the beginning of the growth are monolayer domains, not multilayer ones. Furthermore, an energetic comparison between the lateral and vertical growth modes of TMDs was carried out, and the thermodynamically favored configuration (lateral or vertical) is written as \(\Delta G_{\text{vert}} - \Delta G_{\text{ref}} = a_2 \Delta \varepsilon \left(\varepsilon_{12} - \varepsilon_{21} \right) - \left(\lambda_1 + \lambda_2 - \lambda_3 \right) l \), where \(\varepsilon \) is the binding energy per unit area, \(l \) is a length at the 1D interface between nuclei, and \(\lambda \) is an edge formation energy. The numeric subscripts denote the substrate (0) and TMD layers (1 is first, and \(n \) is farthest from the substrate). For lateral (vertical) growth to be preferred, the above equation has to be negative (positive). This result indicates a size-dependent thermodynamic criterion for the lateral (or vertical) growth to occur, which opens up several different avenues for growth.

Although some of the highest quality TMD monolayers were synthesized via MOCVD,76–80,84 the common observation of triangular-shaped TMD islands in vdW epitaxy implies inversion symmetry breakage associated with the equilibrium crystal structure.82–87 This incorrect symmetry possibly indicates different types of defect-mediated growth, suggesting that a narrow growth window is available to achieve layer-by-layer growth of TMDs with adjustable thickness.82–84 While experimental reports continue to be published rapidly, theoretical modeling has been behind and has not provided significant \textit{a priori} guidance for optimizing the CVD or MOCVD processes. For example, instead of the growth of (Mo, W) (S, Se)\(_2\) in the equilibrium 2H crystal structure, it appears to grow in stacked multiple 1H-structured layers. When TMD growth is performed under TM-rich conditions (i.e., chalcogen-poor conditions), TM-rich nuclei form in 3D clusters and multiple layers of TMDs grow laterally, resulting in stacked 1H-structured layers and preventing accurate thickness control [Fig. 3(b)].82 Under very chalcogen-rich growth environments (i.e., very TM-poor conditions), two chalcogen-terminated edges in close proximity to each other can appear as a line of metal vacancies, which can initiate screw dislocation.3,84 Screw dislocations can break the symmetry of the crystal structure and promote spiral TMD island formation with various stacking behaviors [Fig. 3(c)]. The growth from these chalcogen-terminated edges generates multiple layers of triangular TMD islands that lack inversion symmetry. In layered crystals, different edge geometries, such as armchair and zigzag, can exhibit different reactivities and growth rates, forming islands of concentric triangles in equilibrium instead of hexagonal grains.85–87 Therefore,
the chalcogen (X) to TM (X/TM) ratio must be maintained within a narrow optimum window to enable the layer-by-layer growth of layered TMDs.

Growth conditions and materials purity

The basic growth parameters that are varied during MOCVD include the growth temperature and pressure, mass flow rates, precursor ratios, and substrate tilt/rotation. For the MOCVD growth of TMDs, temperatures ranging from \(\sim 550^\circ C\) to \(\sim 1000^\circ C\) have been used, with the relatively low melting temperature materials, including MoS\(_2\), generally grown at the lower end of that range and high melting temperature materials, such as WSe\(_2\), grown at the higher end of that range.\(^{36-46,70-77}\) Recently, MOCVD systems have been operated at reduced pressures for TMD growth in the range of \(\sim 5\) Torr to 200 Torr because low-pressure operation facilitates the simultaneous achievement of good uniformity over large areas and abrupt interfaces in the growing films. Almost all of TMD growth is performed using X/TM ratios between 100 and 10 000 with MoS\(_2\) and WSe\(_2\) as representative examples. This is because the addition of high vapor pressure group 6 species in excess of the stoichiometric concentration is rejected back into the vapor during growth. Large areas of TMD were also grown by Eichfeld et al., showing that the growth temperature and pressure, mass flow rates, and precursor ratios affect the quality of the layers grown.\(^{77}\) A major breakthrough for TMD materials is the establishment of robust \(n\) and \(p\) dopants as TMDs present challenges in terms of growth conditions and source chemistry.

Based on the classical Grove’s model,\(^{7,50}\) it is expected that the TMD growth rate would be largely independent of the substrate temperature, proportional to the inlet TM molar flow rate, and independent of the inlet group 6 molar flow rate over a wide temperature range. This is consistent with a growth regime wherein the growth rate is limited by the gas phase diffusion of TM species through the boundary layer above the substrate. As described in the section titled Growth modes, the input X/TM ratio must be maintained within a narrow window to achieve layer-by-layer 2D growth in the layered TMD crystals.
Unintentional carbon and oxygen incorporation should be prevented during the preparation of MOCVD-grown films. Carbon generally originates from the MO sources, but the purity of the most widely used MO compounds is consistently good. Oxygen is generally incorporated from atmospheric contamination, but can be minimized by careful attention to the integrity of the MOCVD reactor and using gettering techniques. Both carbon and oxygen contamination can be further reduced by using alternative source chemistries from suppliers. Regarding hydride sources, the major impurity is often the relatively large and highly variable amounts of H$_2$O (several tens of ppm). In terms of electrically active species formation, most efforts dedicated toward improving purity have focused on reducing metallic impurities in the source materials.

CURRENT STATUS AND CHALLENGES

MOCVD has the potential to realize the wafer-scale growth of single-crystal-like 2D TMD materials on various semiconducting or insulating substrates in a reproducible manner; however, a number of long-standing processing and technological issues impede its practical use. For the sake of simplicity, we will focus our attention on MoS$_2$ and WSe$_2$ in the discussions below.

Limited grain sizes

A prerequisite for the deployment of 2D TMD materials in electronic and optoelectronic applications is the ability to mass-produce them while ensuring satisfactory crystal quality and performance. The current challenge with growing MoS$_2$ and WSe$_2$ under typical growth conditions is that it results in many small grains (generally sized less than 1 μm), which can limit the performances of devices fabricated from these films. Figures 4(a) and 4(b) shows average grain sizes and lateral growth rates based on the growth temperature for previously reported MoS$_2$ and WSe$_2$ grown by MOCVD, respectively. In general, a higher growth temperature generates a larger grain size in the MoS$_2$ film because of reduced nucleation density. However, chalcogen adatoms desorb at much higher rates than do TM adatoms at a given temperature, and this phenomenon is even more severe at the elevated growth temperatures, forcing the introduction of very chalcogen-rich growth environments. Moreover, a high growth temperature process usually causes the retarded growth rates, leading to a low yield. For example, the MOCVD growth of wafer-scale MoS$_2$ generally took several hours or even a whole day. In addition to the growth temperature, substrate pre-treatment is another factor that increases the grain size. Andrzejewsk et al. expect that pre-annealing under H$_2$ could decrease nucleation density and improve surface roughness. MoS$_2$ grown using pre-annealed sapphire under H$_2$ produces a grain that is twice the size as that of other samples, as shown in Fig. 5(a). Similar to the mechanism proposed by Simonson et al., they confirmed that the grain size of MoS$_2$ grown on Gorilla glass (GG) increases with the increase in growth temperature from 400 °C to 600 °C and the power of the plasma treatment (0–40 W) using N$_2$. As a result, they achieved a domain size of MoS$_2$ (∼32 nm) on plasma-treated GG at 600 °C, which was greater than that on sapphire (∼18 nm). However, these factors slightly affect the larger grain size of MoS$_2$, which is still quite small at less than 1 μm. Kim et al. showed that the effect of the S/Mo ratio on the grain size is very low.

FIG. 4. (a) Grain size and (b) growth rate of MOCVD-grown MoS$_2$ and WSe$_2$ as a function of growth temperature. (c) Grain size and (d) growth rate of MOCVD-grown MoS$_2$ and WSe$_2$ as a function of flux ratio of chalcogen (X) to transition metal (TM) precursors.
Recently, to increase the grain size to more than hundreds of micrometers, Kang et al. employed alkali metal halides such as KI and NaCl to reduce the concentration of water and suppress the nucleation in the MOCVD system. Their role was demonstrated by Kim et al. in which the growth processes were compared in the absence of KI and NaCl, resulting in an increased growth rate. The researchers performed a pre-exposure of the sapphire substrate to Mo(CO)$_6$ with a very tiny amount of KI prior to the growth stage. They achieved a boosted domain size of MoS$_2$ (>10 μm) of more than two orders of magnitude as compared to the one-growth-step approach. As another example, Zhang et al. confirmed that NaCl-assisted growth induced the substrate surface saturated with Na–O bonds, as shown in Fig. 5(b). Thus, MoS$_2$ nucleates and grows on top of the Na–O layer, which enhances Mo and S adatom mobilities. As a result, NaCl-assisted MoS$_2$ has a domain size of at least 1 μm as compared to the grown MoS$_2$ without NaCl (=50 nm). Although the carrier mobility can be significantly improved by increasing the grain size in polycrystalline MoS$_2$ samples due to defect scattering, the NaCl-assisted grown MoS$_2$ film degrades the device performance because the Na–O interface that forms during the growth suppresses the charge transfer from the substrate.

Like MoS$_2$, a higher growth temperature usually leads to a larger grain size in WSe$_2$ growth. Eichfeld et al. initially succeeded in generating uniform WSe$_2$ thin film growth on sapphire through MOCVD using tungsten hydrocarbonyl and dimethylselenium. However, the MOCVD-grown WSe$_2$ samples were nanocrystalline. In their follow-up research, scalable WSe$_2$ flakes of up to ~8 μm were successfully grown using the MOCVD method as the growth temperature increased from 600 to 900 °C. Moreover, as shown in the TEM image of Fig. 5(c), at constant total pressure and growth temperature, a low Se:W ratio (~100) induced the formation of 3D nuclei clusters, which occur under TM-rich conditions. As the Se:W flux ratio increased to 20 000, the domain size of the WSe$_2$ flakes also increased due to the reduction in the nucleation density and the number of Se vacancies [Figs. 4(c) and 4(d)]. Above a Se:W flux ratio of 20 000, however, the domain size begins to decrease again due to Se vapor saturation. In addition to the growth temperature and Se:W flux ratio, Zhang et al. confirmed large-area coalesced WSe$_2$ monolayer epitaxial growth on sapphire through a multistep diffusion-mediated process consisting of nucleation, ripening, and lateral growth steps. After the nucleation steps, the supply of tungsten hydrocarbonyl, which is a W precursor, was stopped, resulting in an increase in domain size and a decrease in cluster density. This was followed by the ripening step. Then, during the lateral growth step, low tungsten hydrocarbonyl flow increased only the lateral domain size, leading to a fully coalesced WSe$_2$ monolayer. In addition, to prevent the formation of amorphous carbon layers and improve the crystal quality, the Se precursor source of dimethylselenium was changed to hydrogen selenide. Furthermore, Zhang et al. confirmed that nucleation and orientation of WSe$_2$ flakes on h-BN could be controlled by controlling h-BN defects in Fig. 5(d). They controlled the h-BN defect sites through annealing in NH$_3$ at 1100 °C for 30 min. As a result, the WSe$_2$ triangular domains grew epitaxially on the h-BN surface with only two orientations in the majority of the domains (~84%).

Grain-size-dependent-mobilities

As summarized in Fig. 6, a higher field effect mobility (μ_{FE}) above 10 cm2 V$^{-1}$ s$^{-1}$ at RT could be observed in the devices with...
et al. proved that the improved hole film exhibited MOCVD growth, the mobility of the MOCVD-grown bilayer WSe\textsubscript{2} to be one of the major reasons. Kumar reported literature results, indicating that thicker MoS\textsubscript{2} exhibits higher mobilities. 9,91 Although the grain size (∼Grain Sizes, although the grain size (in FET characteristics. As mentioned in the section titled Limited dielectric layer, and roughness at the interface play a major role obtained, indicating poor crystallinity. MoS\textsubscript{2} films with on–off ratios of 7.1 cm2 V-1 s-1, which is comparable to the high-quality CVD-grown WSe\textsubscript{2} samples. The extracted FWHM of the PL peak with different grain sizes of MoS\textsubscript{2} and WSe\textsubscript{2} as a function of grain size.

FIG. 6. Mobility and PL FWHM of MoS\textsubscript{2} and WSe\textsubscript{2} extracted from the device fabricated using WSe\textsubscript{2} epitaxially grown on h-BN was higher than the electron \(\mu_{\text{BE}}\) of WSe\textsubscript{2} grown on sapphire (∼0.3 cm2 V-1 s-1).44 It is consistent with previously reported results that h-BN improves mobility and reduces the interface states. Therefore, the large-scale synthesis of TMD films with low concentration of defects and byproducts by controlling the growth on the desired substrate through MOCVD remains a challenge for practical application.

Defect engineering

2D TMD materials are, by definition, entirely surface materials; hence, their electronic and optoelectronic properties are fatally affected by material disorder. During the MOCVD growth of TMDs, structural defects are inevitably introduced, and immense effort has to be expended to achieve the required levels of high quality. Structural defects, including vacancies, interstitials, and GBs, can modify the electrical and optical properties of TMDs for targeted applications. While the electronic and optoelectronic performance of TMD-based devices can be improved with the reduction of external disorder arising from the environment, the issue of intrinsic material quality should be addressed to achieve significant progress in the field.

Based on theoretical calculations in both the monolayer and bulk of MoS\textsubscript{2} (see Table II),94–101 a mono-sulfur (S) vacancy (V\textsubscript{S}) and a single S interstitial (S\textsubscript{i}) are found to have low formation energy under Mo-rich and S-rich conditions, respectively. These results are consistent with experimental results, indicating that V\textsubscript{S} is frequently observed in mechanical exfoliated102 and grown samples93,95 using STM [Fig. 7(a)]. Most MoS\textsubscript{2} with V\textsubscript{S} exhibit n-type behavior, whereas a mono-molybdenum (Mo) vacancy (V\textsubscript{Mo}) induces p-type characteristics.40 In addition, V\textsubscript{S} sites strongly trigger the adsorption of molecules such as CO\textsubscript{2}, N\textsubscript{2}, and H\textsubscript{2}O because of a low adsorption energy when the defective MoS\textsubscript{2} with V\textsubscript{S} is exposed to ambient air,105,106 as shown in Table III. Nan et al. reported that the passivation of V\textsubscript{S} in MoS\textsubscript{2} exhibited the p-type behavior induced by oxygen chemical adsorption in V\textsubscript{S}.107 Although the origin of n-type behavior is unclear, electrical behavior is determined based on the concentration of unintentionally doped vacancies (i.e., V\textsubscript{S}, V\textsubscript{S\textsubscript{i}}, and V\textsubscript{Mo\textsubscript{S\textsubscript{2}}}) in MoS\textsubscript{2}. More importantly, in the synthesized polycrystalline MoS\textsubscript{2}, the S vacancy concentration relies on more than just the defect formation energy (\(E_{\text{f}}\)), as (4|6) defect complexes (V\textsubscript{2S} and Mo\textsubscript{S\textsubscript{2}}) are induced by the (5|7) defects at S-polar GBs during growth at relatively high temperatures, as shown in Figs. 7(b) and 7(c).99 These defect complexes are easily formed when polycrystalline MoS\textsubscript{2} is synthesized at a higher temperature or with a smaller grain size and in a high-angle grain boundary (GB), indicating that control of S vacancy concentration can be achieved by growth parameters, including growth temperature, growth time, and ratio of molecular gases.

Based on theoretical calculations, in the monolayer of WSe\textsubscript{2} (Table II),97,108–113 the selenium vacancy (V\textsubscript{Se}) is energetically favorable under S-rich conditions and creates deep acceptor states that result in efficient electron traps and deteriorates the carrier mobility. These results are consistent with experimental results, indicating that V\textsubscript{Se} is frequently observed in CVD-grown WSe\textsubscript{2} samples while tungsten vacancy (V\textsubscript{W}) is not present, and when using STM.98 Like MoS\textsubscript{2}, V\textsubscript{Se} in WSe\textsubscript{2} act as donor sites, resulting in

In addition, various factors including the device structure, dielectric layer, and roughness at the interface play a major role in FET characteristics. As mentioned in the section titled Limited Grain Sizes, although the grain size (∼2 μm) of a grown monolayer MoS\textsubscript{2} flake (MoS\textsubscript{2(2\textsubscript{μm})}) via NaCl-assisted growth is approximately two orders of magnitude larger than that of the grown monolayer MoS\textsubscript{2} flake without NaCl, \(E_{\text{f}}\) of MoS\textsubscript{2(2μm)} is degraded by >30% compared to that of MoS\textsubscript{2} due to the formation of a byproduct (Na–O) at the interface between the substrate and channel.47 Zhang et al. proved that the improved hole \(\mu_{\text{BE}}\) of ∼4.2 cm2 V-1 s-1
Material	Condition	Thickness	Environment	Defect	Formation energy		
					S-rich	Mo-rich	References
MoS₂	Bulk	Vacuum	V	4.7	7.24	94	
			V	4.88	7.67	95	
			V₃S	2.9	1.66	94	
			V₃S	2.89	1.33	95	
			V₂Mo	5.9	2.89	95	
			V₂Mo	3.42	3.41	94	
			V₂Mo	3.48	7.26	94	
	Monolayer	Vacuum	V₂Mo	6	3.73	94	
	Monolayer	Vacuum	S	2.79	4.61	94	
V₂S	Monolayer	Vacuum	V₂S	4.85	7.27	94	
	Monolayer	Vacuum	V₂S	4.38	7.04	94 and 97	
	Monolayer	Vacuum	V₂S	4.61	7.24	98 and 99	
V₂Mo in GB	Monolayer	Vacuum	V₂Mo in GB	0.6	3.16	10	
V₂Mo in GB	Monolayer	Vacuum	V₂Mo in GB	2.85	1.56	94	
	Monolayer	Vacuum	V₂Mo in GB	2.52	1.5	96 and 99	
	Monolayer	Vacuum	V₂Mo in GB	2.66	1.33	97, 98, and 100	
	Monolayer	Vacuum	V₂Mo in GB	2.35	0.95	101	
V₂Mo in GB	Monolayer	Vacuum	V₂Mo in GB	0.27	–1	99	
V₂S in GB	Monolayer	Vacuum	V₂S in GB	5.28	2.63	97 and 98	
	Monolayer	Vacuum	V₂S in GB	5.37	2.61	99	
MoS₂	Monolayer	Vacuum	MoS	4.17	4.2	94	
	Monolayer	Vacuum	MoS	7.7	4.61	98	
S₂Mo	Monolayer	Vacuum	S₂Mo	4.85	8.03	94	
	Monolayer	Vacuum	S₂Mo	4.53	8	98	
MoI	Monolayer	Vacuum	MoI	6	3.58	94	
	Monolayer	Vacuum	MoI	7.2	4.3	96	
	Monolayer	Vacuum	MoI	6.52	4.32	99	
MoI in GB	Monolayer	Vacuum	MoI in GB	0.68	–1.82	99	
S₂I	Monolayer	Vacuum	S₂I	0.9	2.14	94 and 96	
	Monolayer	Vacuum	S₂I	1.14	2.5	99	
S₂I in GB	Monolayer	Vacuum	S₂I in GB	0.86	1.12	99	
V₂Se	Monolayer	Vacuum	V₂Se	3.35	6.48	97	
	Monolayer	Vacuum	V₂Se	3.51	…	108	
	Monolayer	Vacuum	V₂Se	3.85	5.07	109	
	Monolayer	Vacuum	V₂Se	3.95	…	110	
V₂Se	Monolayer	Vacuum	V₂Se	2.68	…	108	
	Monolayer	Vacuum	V₂Se	2.69	…	100	
V₂Se	Monolayer	Vacuum	V₂Se	2.71	1.58	97 and 110	
	Monolayer	Vacuum	V₂Se	2.8	2.2	109	
	Monolayer	Vacuum	V₂Se	2.81	…	111	
TABLE II (Continued.)

Condition	Formation energy					
Material	Thickness	Environment	Defect	S-rich	Mo-rich	References
WSe₂	Monolayer	Vacuum	V₂Se	4.89	. . .	112
				4.93	2.96	97
				5.03	3.8	109
WSe₂	Monolayer	Vacuum	W₂Se	3.65	5.51	109
				3.32	. . .	110
W₁			W₁	4.6	5.8	109
				7.35	5.63	97
Se₁			Se₁	1.38	2.24	97
				3.2	3.8	109

n-type doping, whereas V₅ in WSe₂ induce p-type doping. Tosun et al. found that WSe₂ can induce air-stable n-type doping by H₂ plasma-induced anion vacancy formation. However, WSe₂ is also susceptible to unintended chemical interactions with the environment. Recently, Ma et al. found that an O-doped WSe₂ monolayer through NO chemisorption could completely remove the defect levels from the V₅Se. Defect formation and chemical interactions with gas molecules in TMD layers considerably influence the electrical properties of TMDs. Therefore, defect engineering is a crucial step in the use in suitable applications.

FIG. 7. Intrinsic point defects in MoS₂. (a) Atomic-resolution annular dark field (ADF) images of different types of intrinsic point defects in the CVD-grown MoS₂ monolayer reproduced with permission from Zhou et al., Nano Lett. 13, 2615 (2013). Copyright 2013, American Chemical Society. (b) Formation energies of various point defects at the grain boundary (GB) and grain interior (GI) of the polycrystalline MoS₂ monolayer as a function of sulfur chemical potential (μ₅). (c) Schematic of the formation of (4|6) defect complexes from (5|7) defects at S-polar GBs induced by high growth temperatures reproduced with permission from Yu et al., Nano Lett. 15, 6855 (2015). Copyright 2015 American Chemical Society.
TABLE III. Adsorption energy at S vacancy (V_{S}) and Se vacancy (V_{Se}) in MoS$_2$ and WSe$_2$.

Material	Condition	Thickness	Environment	Adsorption energy in S vacancy (eV)	Formation energy (eV)	References
MoS$_2$	Physisorption	Monolayer	Vacuum	CO	0.17	105
				N$_2$	0.114	105
				H$_2$O	0.234	105
				CO	0.19	106
				NO	0.23	106
				NO$_2$	0.31	106
WSe$_2$	Physisorption	Monolayer	Vacuum	CO	1.163	106
				NO	2.642	105
					2.81	106
				O$_2$	2.092	98
					1.843	100
					1.822	105
				NH$_3$	0.407	105
	Chemisorption			O$_2$	0.24	112
					0.3	113
					0.17	113
				CO	0.23	113
					0.37	113
					0.36	113
					0.24	113
WSe$_2$	Chemisorption			O$_2$	1.6	109
					2.43	100
				N$_2$	-0.08	113
					1.57	113
					3.15	113

Doping engineering

Most advances in 3D semiconductor devices rely on the availability and subsequent doping of high purity materials. The doping of two or more synthesized TMD layers is critical in tuning electrical, optical, and magnetic properties, including conductivity and charge density. Doping engineering, including the charge transfer and atomic substitution. As previously mentioned, the presence of V_S in MoS$_2$ enables the formation of substitutional dopants at the V_S sites. Dolui et al. proved that doping of halogens at V_S produces more stable thermodynamic conditions. Chuang et al. found that Nb doping on MoS$_2$ and WSe$_2$ can reduce the contact resistance to metal electrodes, and introducing a Nb-doped WSe$_2$ layer between as-grown WSe$_2$ and a metal electrode can improve the mobilities of all FETs. More specifically, excellent mobilities of \sim180 cm2/V\cdots$^{-1}$ and \sim220 cm2/V\cdots$^{-1}$ for MoS$_2$- and WSe$_2$-based FETs, respectively, were observed. However, this method can destroy the structure of FETs because dopant atoms are incorporated into the lattice. In the case of surface charge transfer doping, host materials avoid unintended lattice distortion and damage. Choi et al. fabricated a p–n junction using the doping chemical benzyl violagen as an n-type dopant and AuCl$_3$ as a p-type dopant on MoS$_2$ layers. The fabricated device showed a highly efficient photore sponsive and ideal rectifying behavior induced by the formation of a p–n junction. Zhao et al. confirmed that p-type degenerate doping of NO$_2$ gas to WSe$_2$ can enhance carrier concentration by up to \sim1019 cm$^{-3}$ through NO$_2$ surface treatment at 150°C, resulting in NO$_2$ chemisorption on the V_{Se} of WSe$_2$. When the NO$_2$ chemisorption strategy was applied to WSe$_2$ channel edges and contacted with Pd/Au electrodes, the contact resistance between WSe$_2$ and the electrodes were considerably reduced from \sim0.13 GΩ\cdotμm to \sim1.27 kΩ\cdotμm, resulting in a high effective hole mobility of \sim250 cm2/V\cdots$^{-1}$ and a sub-threshold swing of \sim60 mV/dec. This is a field of intense study that should be significantly investigated in the coming years.
Dopant	Type	Doping strategy	Carrier concentration (cm$^{-2}$)	Mobility (cm2 V$^{-1}$ s$^{-1}$)	Application with doped MX$_2$	References	
Benzyl viologen (BV)	n	Charge transfer (wet chemical)	1.2 × 1013	24.7	Top-gate FET	117	
AuCl$_3$	p	Charge transfer (wet chemical)	2.9 × 1013	44	p–n FET (back-gate)	118	
APTES	n	Charge transfer (wet chemical)	2.4 × 108	13	p–n FET (back-gate)	119	
NH$_4^+$ BF$_4^-$	p	Charge transfer (ionic liquids)			Metal–superconductor	121	
MoS$_2$	Nb	Substitutional doping (thermal annealing by CVT)	2.8 × 1014	14	FET	122	
Fe	n	Substitutional doping (thermal annealing by CVT)	1.1 × 1013	49	...	123	
Re	n	Substitutional doping (thermal annealing by CVD)	5.5 × 1012	...	FET	124	
F4-TCNQ	p	Charge transfer (self-assembled monolayer)	FET	90	
H, N	p	DFT simulation (dry nonmetal doped)	125	
Fe, Cl, B, I	n	DFT simulation (dry doping)	121	
NO$_2$	p	Charge transfer (gaseous molecules)	2.2 × 1012	250	FET	9	
OTS	p	Charge transfer (self-assembled monolayer)	4.38 × 1016	168.8	FET and photodetector	120	
K	n	Charge transfer (thermal evaporation)	1.4 × 1011	2.5 × 1012	110	FET	127
WSe$_2$	F4-TCNQ	Charge transfer (self-assembled monolayer)	...	42.6	p–n FET	128	
S	n	Substitutional doping (thermal annealing by CVD)	...	68.2	FET	129	
Nb	p	Substitutional doping (thermal annealing by CVT)	...	220 at RT 2100 at 5 K	...	FET	130
TABLE IV. (Continued.)

Dopant	Type	Doping strategy	Carrier concentration (cm$^{-2}$)	Mobility (cm2V$^{-1}$s$^{-1}$)	Application with doped MX$_2$	References
Nb	p	Substitutional doping (thermal annealing by CVT)	...	150 at RT 300 at 80 K	Photodetector	131
Te	p	Substitutional doping (thermal annealing by CVT)	...	46	FET	132

OUTLOOK

We conclude by noting that research on 2D TMD atomic sheets began only a few years ago, with the first papers on mechanically exfoliated and CVD-grown MoS$_2$ FETs being published in 2011 and 2012, respectively. The critical issues restricting the widespread implementation of these 2D vdW materials into high-performance devices remain to be addressed. GB formation must be significantly mitigated to obtain single-crystal-like 2D TMD films for efficient charge carrier transport.

Digital thickness control and lateral/vertical growth of TMD heterostructures have yet to be truly demonstrated in a reproducible manner. Defect and doping control is only in its infancy, and continuous improvement in encapsulation and device fabrication techniques needs to be further explored. Therefore, the path to commercialization is not exactly predictable. However, the progress of a technology from its discovery to its realization as a commercial product is generally very slow and meandering. We believe that sustained worldwide effort addressing the major challenges will be inevitable toward realizing the potential of 2D TMD materials in practical high-performance electronic and opto-electronic devices, as already demonstrated with exfoliated flakes from bulk crystals shown in Table I. While devices fabricated from synthesized TMD films by MOCVD (also by MBE) are only in their infancy, the versatile MOCVD technique will provide a new avenue for the growth and integration of different high-quality, multi-dimensional TMD films with different compositions and physical properties on a single substrate, thereby enhancing batch fabrication and further development of atomically thin integrated circuitry. As witnessed by the success of Si and III–V (or II–VI) compound semiconductor technologies, more rigorous device specifications and increased device complexity, coupled with the excellent uniformity, continue to drive the need for improved thickness, composition, and doping uniformity over large areas in this rapidly emerging field.

Parallely, much effort is needed to improve the quality of 2D vdW materials that can be grown by MOCVD while maintaining and improving the inter- and intra-wafer uniformity on increasingly large substrates for real commercialization. This effort will also be aided by notable improvements in MOCVD equipment design and construction, particularly on the part of equipment vendors. Simultaneous achievement of three attributes (i.e., large-scale growth, interfacial abruptness, and uniformity) will be necessary for diverse device applications. Up to date, there has been almost no demonstration of all three attributes in the same apparatus. Likely approaches to improve uniformity include supplying continuous and uniform atomic source species using a run/vent manifold system and modifying the hydrodynamics and thermal geometry of the reactor with rotating disk technology to obtain a uniform boundary layer thickness and thereby uniform incorporation/evaporation rates of species from the surfaces. For economic viability, a greater understanding of hydrodynamics and thermal geometry of the reactor, consensus on the design of MOCVD systems, particularly reaction chambers, and a future market that demands excellence will be highly required.

AUTHOR’S CONTRIBUTIONS

D.H.L. and Y.S. contributed equally to this work.

ACKNOWLEDGMENTS

This work was supported by the Research Fund (Grant No. 1.190093.01) of UNIST, the Basic Science Research Program (Grant Nos. 2017R1E1A1A01075283 and 2019M2D2A1A02059152), and the Nano-Material Technology Development Program (Grant No. 2017M3A7B8065377) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, and Future Planning.

REFERENCES

1. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
2. Y. Liu, P. Stradins, and S.-H. Wei, Sci. Adv. 2, e1600069 (2016).
3. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, Appl. Phys. Rev. 4, 021306 (2017).
4. J. A. Robinson, APL Mater. 6, 058202 (2018).
5. Z. Lin, Y. Lei, S. Subramanian, N. Briggs, Y. Wang, C.-L. Lo, E. Yalon, D. Lloyd, S. Wu, K. Koski, R. Clark, S. Das, R. M. Wallace, T. Kuech, J. S. Bunch, X. Li, Z. Chen, E. Pop, V. H. Crespi, J. A. Robinson, and M. Terrones, APL Mater. 6, 080701 (2018).
6. X. Lin, W. Yang, K. L. Wang, and W. Zhao, Nat. Electron. 2, 274 (2019).
7. S.-Y. Kim, J. Kwak, C.-V. Ciobanu, and S.-Y. Kwon, Adv. Mater. 31, 1804939 (2019).
8. B. Radiaslijevic, A. Radevocic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
9. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
K. S. Novoselov, Nat. Mater. 14, 17 (2015).

M. Chubarov, K. Wang, J. O. Lerach, J. M. Redwing, S. K. Fullerton-Shirey, Nanotechnology 28, 127401 (2017).

A. V. Davydov, R. K. Kanjolia, and J. E. Maslar, Chem. Mater. 30, 4214 (2018).

K. Zhang, B. M. Bersch, F. Zhang, N. C. Briggs, S. Subramanian, K. Xu, M. Chubarov, K. Wang, J. O. Lerach, J. M. Redwing, S. K. Fullerton-Chuary, M. Zhang, and J. A. Robinson, ACS Appl. Mater. Interfaces 10, 40831 (2018).

H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, and A. Kis, Nano Lett. 17, 5056 (2017).

V. K. Kumar, S. Dhar, T. H. Choudhury, S. Shivashankar, and S. Raghavan, Nanoscale 7, 7802 (2015).

S. M. Eichfeld, C. M. Eichfeld, Y.-C. Lin, L. Hossain, and J. A. Robinson, APL Mater. 2, 092508 (2014).

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piatecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Liu, X. Peng, J. Li, A. Azadi, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, ACS Nano 9, 2080 (2015).

X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G.-C. Wang, J. A. Robinson, and J. M. Redwing, Nanotechnology 18, 1048 (2014).

X. Zhang, F. Zhang, Y. Wang, D. S. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V. H. Crespi, M. Terrones, and J. M. Redwing, ACS Nano 13, 3341 (2019).

S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. DiStasio, Jr., and J. Park, Science 359, 1131 (2018).

Y. Kobayashi, S. Yoshida, M. Maruyama, H. Mogi, K. Murase, Y. Maniwa, O. Takeuchi, S. Okada, H. Shigekawa, and Y. Miyata, ACS Nano 13, 7527 (2019).

J. O. Williams, Angew. Chem., Int. Ed. Engl. 28, 1110 (1989).

P. Maury, J. Phys. IV 5, 259 (1995).

A. G. Thompson, Mater. Lett. 30, 255 (1997).

M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, 1992).

E. Xenogniannopoulos, P. Tsipas, A. K. Aretoulis, P. Y. Tsoutsou, S. Giannini, C. Bazzotti, G. Dimitrakopulos, P. Kominou, S. Brems, C. Huyghebaert, I. P. Radu, and A. Dimoulas, Nanoscale 7, 7896 (2015).

D. Fu, X. Zhao, Y.-Z. Zhang, L. Li, H. Xu, A.-R. Jiang, S. I. Yoon, P. Song, S. M. Poh, T. Ren, Z. Ding, W. Fu, T. J. Shin, H. S. Shin, S. T. Pantelides, W. Zhou, and K. P. Loh, J. Am. Chem. Soc. 139, 9392 (2017).

H. Xu, D. Han, Y. Bao, F. Cheng, Z. Ding, S. J. Tan, and K. P. Loh, Nano Lett. 18, 5085 (2018).

A. Kazi, V. Motemparian, T. Nuytten, J. Meerschaut, P. Carolan, L. Landeols, T. Conard, I. Rudu, M. Heyns, and C. Mercelj, J. Appl. Phys. 123, 135702 (2018).

H. J. Liu, L. Jiao, L. Xie, F. Yang, J. L. Chen, W. K. Ho, C. L. Gao, J. F. Jia, X. D. Cui, and H. M. Xie, 2D Mater. 2, 034004 (2015).

M. Nakano, Y. Wang, Y. Kashiwabara, H. Matsouka, and Y. Iwasa, Nano Lett. 17, 5595 (2017).

L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, Nanoscale 6, 10584 (2014).

A. Valdivia, D. J. Tweet, and J. F. Conley, Jr., J. Vac. Sci. Technol. A, 34, 021515 (2016).

K. Park, Y. Kim, J.-G. Song, S. J. Kim, C. W. Lee, G. H. Ryu, Z. Lee, J. Park, and H. Kim, 2D Mater. 3, 014004 (2016).

R. Browning, N. Kuperman, R. Solanki, V. Kanzyuba, and S. Rouvimov, Semicond. Sci. Technol. 31, 095002 (2016).

I. Jurca, M. J. Moody, A. Henning, T. H. Emery, B. Wang, J. M. Tan, L. Lohr, L. J. Lauhon, and T. J. Marks, Angew. Chem., Int. Ed. 56, 4991 (2017).

M. L. Shi, L. Chen, T. B. Zhang, J. Xu, H. Zhu, Q. Q. Sun, and D. W. Zhang, Small 13, 1603157 (2017).

A. Sharma, M. A. Verheijen, L. Wu, S. Karwal, V. Vanden, H. C. Knoops, R. S. Sundaram, J. P. Hofmann, W. E. Kessels, and A. A. B. Holm, Nanoscale 10, 8615 (2018).

G. Stringfellow, I. Cryst. Growth 68, 111 (1984).

B. Cockayne and P. J. Wright, I. Cryst. Growth 68, 223 (1984).

A. Koma, K. Saiki, and Y. Sato, Appl. Surf. Sci. 41, 451 (1990).

X. Liu, I. Balla, H. Bergeron, G. P. Campbell, M. J. Bedzyk, and M. C. Hersam, ACS Nano 10, 1067 (2015).

J.-K. Choi, J.-H. Huh, S.-D. Kim, D. Moon, D. Yoon, K. Joo, J. Kwak, J. H. Chu, S. Y. Kim, K. Park, Y.-W. Kim, E. Yoon, H. Cheong, and S.-Y. Kwon, Nanotechnology 23, 435603 (2012).

K. Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin, C. W. Lee, K. Lee, J. Koo, H. Lee, K. J. Kim, T. Lee, J. Park, and H. Kim, ACS Nano 10, 9286 (2016).
M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 47, 73 (2018).

C. Han, H. Heo, J. Kim, S. H. Oh, S.-Y. Choi, H. Park, and M.-H. Jo, Sci. Adv. 5, eaaq3180 (2019).

M. Marx, A. Grundmann, Y.-R. Lin, D. Andrzejewski, T. Kümmler, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 47, 910 (2018).

D. Andrzejewski, M. Marx, A. Grundmann, O. Pfingsten, H. Kalisch, A. Vescan, M. Heuken, T. Kümmler, and G. Bacher, Nanotechnology 29, 295704 (2018).

M. Han, H. Park, J. Park, D. Joung, S.-K. Lee, J. Leem, J.-M. Myoung, J. Park, S.-H. Jeong, W. S. Nam, and S.-W. Kang, ACS Appl. Electron. Mater. 1, 608 (2019).

H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao, T. LaGrange, A. Kis, and A. Radenovic, Nano Res. 12, 2646 (2019).

T. J. Kim, J. Mun, H. Park, D. Joung, M. Diware, C. Won, J. Park, S.-H. Jeong, and S.-W. Kang, Nanotechnology 28, 18LT01 (2017).

Z. Xiang, Z. Y. Al Balushi, F. Zhang, T. H. Choudhury, S. M. Eichfeld, N. Alem, T. N. Jackson, J. A. Robinson, and J. M. Redwing, J. Electron. Mater. 45, 6273 (2016).

Y.-C. Lin, B. Jariwala, B. M. Bersch, K. Xu, Y. Nie, B. Wang, S. M. Eichfeld, X. Zhang, T. H. Choudhury, Y. Pan, R. Addou, C. M. Smyth, J. Li, K. Zhang, M. A. Haque, S. Folsch, R. M. Feenstra, R. M. Wallace, K. Cho, S. K. Fullerton-Shirey, J. M. Redwing, and J. A. Robinson, ACS Nano 12, 965 (2018).

S. C. de la Barrera, Y.-C. Lin, S. M. Eichfeld, J. A. Robinson, Q. Gao, M. Widom, and R. M. Feenstra, J. Vac. Sci. Technol., B 34, 041106 (2016).

W. Wu, K. D. Doss, J. R. Hendrickson, R. D. Montalto, R. E. Fischer, X. Zhang, T. H. Choudhury, J. M. Redwing, Y. Wang, and M. T. Pettes, Appl. Phys. Lett. 114, 213102 (2019).

R. Yue, Y. Nie, L. A. Walsh, R. Addou, C. Liang, N. A. Simonson, J. R. Nasr, S. Subramanian, B. Jariwala, R. Zhao, S. Das, and B. Wang, Z. Islam, K. Zhang, K. Wang, J. Robinson, and A. Haque, Nanotechnology 30, 26466 (2019).

E. J. G. Santos, X. Zhang, Z. Y. Al Balushi, F. Zhang, T. H. Choudhury, Y. Pan, R. Addou, C. M. Smyth, J. Li, K. Zhang, M. A. Haque, S. Folsch, R. M. Feenstra, R. M. Wallace, K. Cho, S. K. Fullerton-Shirey, J. M. Redwing, and J. A. Robinson, ACS Nano 12, 965 (2018).

S. C. de la Barrera, Y.-C. Lin, S. M. Eichfeld, J. A. Robinson, Q. Gao, M. Widom, and R. M. Feenstra, J. Vac. Sci. Technol., B 34, 041106 (2016).

W. Wu, K. D. Doss, J. R. Hendrickson, R. D. Montalto, R. E. Fischer, X. Zhang, T. H. Choudhury, J. M. Redwing, Y. Wang, and M. T. Pettes, Appl. Phys. Lett. 114, 213102 (2019).

R. Yue, Y. Nie, L. A. Walsh, R. Addou, C. Liang, N. A. Simonson, J. R. Nasr, S. Subramanian, B. Jariwala, R. Zhao, S. Das, and B. Wang, Z. Islam, K. Zhang, K. Wang, J. Robinson, and A. Haque, Nanotechnology 30, 26466 (2019).

E. J. G. Santos, X. Zhang, Z. Y. Al Balushi, F. Zhang, T. H. Choudhury, Y. Pan, R. Addou, C. M. Smyth, J. Li, K. Zhang, M. A. Haque, S. Folsch, R. M. Feenstra, R. M. Wallace, K. Cho, S. K. Fullerton-Shirey, J. M. Redwing, and J. A. Robinson, ACS Nano 12, 965 (2018).

S. C. de la Barrera, Y.-C. Lin, S. M. Eichfeld, J. A. Robinson, Q. Gao, M. Widom, and R. M. Feenstra, J. Vac. Sci. Technol., B 34, 041106 (2016).

W. Wu, K. D. Doss, J. R. Hendrickson, R. D. Montalto, R. E. Fischer, X. Zhang, T. H. Choudhury, J. M. Redwing, Y. Wang, and M. T. Pettes, Appl. Phys. Lett. 114, 213102 (2019).

R. Yue, Y. Nie, L. A. Walsh, R. Addou, C. Liang, N. A. Simonson, J. R. Nasr, S. Subramanian, B. Jariwala, R. Zhao, S. Das, and B. Wang, Z. Islam, K. Zhang, K. Wang, J. Robinson, and A. Haque, Nanotechnology 30, 26466 (2019).

E. J. G. Santos, X. Zhang, Z. Y. Al Balushi, F. Zhang, T. H. Choudhury, Y. Pan, R. Addou, C. M. Smyth, J. Li, K. Zhang, M. A. Haque, S. Folsch, R. M. Feenstra, R. M. Wallace, K. Cho, S. K. Fullerton-Shirey, J. M. Redwing, and J. A. Robinson, ACS Nano 12, 965 (2018).

S. C. de la Barrera, Y.-C. Lin, S. M. Eichfeld, J. A. Robinson, Q. Gao, M. Widom, and R. M. Feenstra, J. Vac. Sci. Technol., B 34, 041106 (2016).
129 X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, and X. Duan, Nano Lett. 16, 264 (2016).

130 H.-J. Chuang, B. Chamalagam, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tomanek, and Z. Zhou, Nano Lett. 16, 1896 (2016).

131 T. Wang, K. Andrews, A. Bowman, T. Hong, M. Koehler, J. Yan, D. Mandrus, Z. Zhou, and Y.-Q. Xu, Nano Lett. 18, 2766 (2018).

132 P. Yu, J. Lin, L. Sun, Q. L. Le, X. Yu, G. Gao, C.-H. Hsu, D. Wu, T.-R. Chang, Q. Zeng, F. Liu, Q. J. Wang, H.-T. Jeng, H. Lin, A. Trampert, Z. Shen, K. Suenaga, and Z. Liu, Adv. Mater. 29, 1603991 (2017).

133 Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).