A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing

Citation for published version:
Hu, X, Zhang, B, Liu, W, Paciga, S, He, W, Lanz, TA, Kleiman, R, Dougherty, B, Hall, SK, McIntosh, AM, Lawrie, SM, Power, A, John, SL, Blackwood, D, St Clair, D & Brandon, NJ 2014, 'A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing' Molecular Psychiatry, vol 19, no. 8, pp. 857-8. DOI: 10.1038/mp.2013.131

Digital Object Identifier (DOI):
10.1038/mp.2013.131

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular Psychiatry

Publisher Rights Statement:
This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing

Molecular Psychiatry (2014) 19, 857–858; doi:10.1038/mp.2013.131; published online 15 October 2013

The genetic architecture of schizophrenia is likely contributed by both common and rare variants. Recent genome-wide studies have revealed that common variants in the major histocompatibility complex (MHC) region, TCF4 and other genes are associated with schizophrenia. In addition, rare copy-number variation (CNV) regions in broad regions like 1q21.1, 15q13.3, 15q11.2, 22q11.1 as well as individual genes such as Neurexin-2,3 have been identified. Unbiased exome or whole genome scanning procedures have the potential to identify novel loci while likely requiring large sample sets to reach a genome-wide significance level. It is possible that the previously identified genes/regions from high-throughput single-nucleotide polymorphisms (SNP) chip genome-wide scanning techniques, in contrast to some ‘classical’ candidate genes,4 may harbor rare coding variants that have a role in disease risk. We selected a total of 101 genes from within the 1q21.1, 15q13.3, 22q11.2 regions and a number of other candidate genes, with either a priori knowledge for association with schizophrenia, for example, TCF4/CCDC68, NRXN1, or interesting for drug-discovery efforts, for example, cyclic nucleotide phosphodiesterase genes, and surveyed rare variants in their coding regions through deep sequencing. Our sample set included cases who met DSM-IV criteria for schizophrenia. All subjects provided informed consent that was approved by the ethics committees at the specific sites. Our discovery set included 525 schizophrenia cases (68% male cases, 69 cases were diagnosed with schizophrenia before 18 years of age) and 619 controls (62% male cases) without any neurological disorders and were primarily collected during clinical trials. The replication set includes 455 schizophrenia subjects (71% male subjects) and 336 controls (73.5% male subjects), collected at the Universities of Edinburgh and Aberdeen. Only Caucasian subjects were included in our study to reduce the sample heterogeneity.

Coding sequences in our target regions were enriched using the Nimblegen capture array, followed by Illumina HiSeq paired-end sequencing at the Beijing Genome Institute (BGI Inc.). We pooled 48 bar-coded samples together before the sequencing run. In total, we obtained 149 Mb of sequencing data in which over 98.5% of reads mapped to our regions of interest. The mean read depth was 96 x, which is much higher than the estimated average depth (33 x) required for highly accurate downstream heterozygous variant detection. After removing genes with low coverage that failed the capture design, over 95.3% of the bases in our targeted regions were covered with genotype data at least 30 x to ensure variant detection sensitivity. The variants have a greater than 99.6% concordance rate with available genome-wide genotyping data.

A total of 7072 and 5170 novel variants were identified in the discovery and replication sets, respectively (we excluded all Indel calls, which may have a higher false-positive rate). Approximately, 70% of the variants are not common in the population (minor allele frequency number no greater than 1%). In both data sets, we found a variety of SNPs including intronic, missense, synonymous and UTR variants as well as splice variants and nonsense SNPs (Table 1). We observed approximately two fold rare (minor allele frequency number greater than 0.5%) nonsense alleles in cases compared with the nonsense alleles in controls (one-sided P-value = 0.056, odd ratio (OR) = 1.96). In contrast, we observed about equal frequencies of rare synonymous variants in cases and controls in the identical genomic regions for the same cohorts (one-sided P > 0.1, OR = 1.08), suggesting that it is unlikely that the result is due to sampling bias. Furthermore, the proportion of ultra-rare ‘deleterious’ variants in the CNV regions is significantly higher in early-onset schizophrenia cases (age of onset less than 18 years) versus that in the controls in the study (nonsense plus splicing one-sided P-value = 0.09, OR = 3.41; including conserved

Table 1. Variants identified in the two independent cohorts

Variant type	Discovery (case = 525, control = 619)	Replication (case = 456, control = 336)
	Novel dbsNP MAF ⩽ 1%^b	Case only Control only Case and control
Downstream	72 57 92 27 39 63	69 56 80 32 27 66
Intergenic	64 49 89 39 30 44	54 29 63 30 17 36
Intron	4001 3143 4967 1706 2066 3372	2953 2846 3512 1540 1130 3129
ncRNA	303 258 350 129 129 303	236 228 264 111 75 278
Nonsynonymous	812 241 918 323 412 318	596 193 642 304 203 281
Splicing	31 11 33 12 18 12	18 8 17 10 4 12
Stop codon	16 3 15 9 5 5	11 3 10 7 1 6
Synonymous	600 305 733 246 320 339	381 247 452 215 131 282
Upstream	67 46 77 25 35 53	74 51 82 36 32 57
UTR3	925 425 1067 370 415 565	649 360 719 320 228 461
UTR5	181 59 203 47 97 96	130 56 145 67 37 82

Abbreviations: dbsNP, single-nucleotide polymorphism database; MAF, minor allele frequency. *Transcripts from ENSEMBL V63 were used to annotate these variants. **MAF less than or equal to 1% in each of the cohorts. © 2014 Macmillan Publishers Limited Molecular Psychiatry (2014), 854 – 861
damaging missense variants: one-sided \(P = 0.02 \), OR \(= 1.88 \),
supporting the finding that rare variants may contribute to
schizophrenia etiology. None of the rare nonsense variants
identified in this study were listed in dbSNP (version 132).
Intriguingly, different stop codons in \(\text{NRXN1} \) were observed in two
individuals with schizophrenia from two independent cohorts but
were not observed in any of the controls, suggesting that rare
loss-of-function events in \(\text{NRXN1} \), either through deletion or
through nonsense mutation, could be important in the etiology of
schizophrenia (Supplementary Table S1).

Most of the rare variants only occur once or twice in our cohort,
which limits the statistical power to detect the association in
individual variants. We therefore conducted aggregate analysis
across all functional variants within each gene by comparing
carrier frequencies between cases and controls to understand
whether the gene as a whole has a consistent effect across the
discovery and replication data sets. We focused on functional
variants with a minor allele frequency no higher than 1% in
controls in our analysis.

Among the 84 genes with at least one rare functional variant
tested in both sample sets, 48 genes showed a consistent pattern
of frequency distribution (Supplementary Table S2) although none of these associations passed the multiple test
correction. Among these 48 genes, a majority of genes (30)
showed an elevated frequency of rare variants in cases compared
with controls, including the \(\text{TCF4} \) gene. Common SNPs in
\(\text{TCF4} \) have emerged from the schizophrenia genome-wide
association study (GWAS) consortia and confirmed to be
associated, at genome-wide levels of significance, with the
disease risk.\(^1,5\) Furthermore, one of the SNPs (rs9960767) has
been linked to deficits in sensorimotor gating,\(^6\) and the expression
levels of \(\text{TCF4} \) were shown to be increased in patients
with psychosis\(^7\) and be under the regulation of the
schizophrenia-linked \(\text{miRNA-137} \).\(^8\) Rare mutations in \(\text{TCF4} \)
have been previously identified in autosomal dominant forms of the
Pitt–Hopkins syndrome, a disorder characterized by severe motor
and mental retardation and susceptibility to childhood-onset
seizures.\(^9\) A total of seven distinct rare functional variants in
\(\text{TCF4} \) were identified in our two cohorts; intriguingly, they
do not overlap with the known Pitt–Hopkins-associated
variants (Supplementary Table S3). Three different variants
were identified in the discovery cohort, with one variant
(chr18:52928743:G>A) carried by three sporadic schizophrenia
cases. Five variants occurred in the replication cohort and they
all appeared in cases. The variant chr18:52928743:G>A is
observed in a total of five schizophrenia cases and one control
across the two cohorts. The same variant has a consist-
tently rare frequency in the large general population (9/6494
from the Exome Variant server; 1/947 in our controls) and
is lower than what we observed in the schizophrenia s
subjects (5/922). \(\text{TCF4} \) is a complex gene with multiple transcripts
with variation in their N-termini.\(^10\) The C terminus is shared
between variants with a conserved basic helix-loop-helix domain, which is critical for dimerization (homo- hetero-), DNA
binding at E-box, sequences, and transcriptional activation. Intriguingly, Pitt–Hopkins mutations congre-
gate in these C-terminal domains and have been shown to
differentially impact these functions. The mutations we have
identified are principally in the N-terminal domains, and
depending on the different exons spliced into a specific transcript
these may have impact on processes such as sub-
cellular localization as well as protein–protein and protein–DNA
interactions. Although beyond the scope of this work, it will
be important to understand the functional impact of these
identified variants in the context of transcripts expressed in the
schizophrenic brain.

In summary, the study suggests that the current candidate genes
obtained from unbiased GWAS and CNV scanning reports do harbor
rare functional variants in sporadic schizophrenia patients. We observed
an overall enrichment for damaging variants, especially nonsense
variants. In particular, a similar effect was observed in early-onset cases.
Together, this supports our hypothesis that rare coding (for example,
loss of function) variants in deletion/SNP regions from previous
genome-wide scanning reports may also contribute to the genetic
architecture of schizophrenia. The sample sizes in the study limit our
ability to pinpoint specific genes/variants but the identified variants,
especially in \(\text{NRXN1} \) and \(\text{TCF4} \), will be helpful in future functional
genomic investigations of the genes and related biological pathways.

CONFLICT OF INTEREST
XH, BW, WL, SP, WH, TL, RK, BD, SH, AP, SLJ, and NJB are/were employees of Pfizer. The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We would like to thank the participants and patients who enabled this research.

X Hu\(^1,7\), Z Zhang\(^6\), W Liu\(^3\), S Paciga\(^1\), W He\(^5\), TA Lanaz\(^6\),
R Kleinman\(^6,8\), B Dougherty\(^1\), SH Hall\(^1\), AM McIntosh\(^3\),
SM Lawrie\(^3\), A Power\(^1\), SL John\(^1\), D Blackwood\(^2\), D St Clair\(^6\) and
NJ Brandon\(^4,9\)

\(^1\)PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA;
\(^2\)Research CoE, Groton, Pfizer Inc., Groton, CT, USA;
\(^3\)Research Statistics, Neuroscience, Pfizer Inc., Groton, CT, USA;
\(^4\)Neuroscience Research Unit, Pfizer Inc., Groton, CT, USA;
\(^5\)Division of Psychiatry, University of Edinburgh, Edinburgh, UK
\(^6\)Department of applied medicine, University of Aberdeen,
Aberdeen, UK
\(^7\)Current address: Clinical Genetics, ECTR, Bristol Myers Squibb Inc.,
Pennington, NJ 08340, USA.
\(^8\)Current address: Selventa, Cambridge, MA 02140, USA.
\(^9\)Current address: AstraZeneca Neuroscience iMED, Cambridge, MA
02139, USA.

E-mail: Sally.L.John@pfi zer.com

REFERENCES

1 Sullivan PF, Daly MJ, O’Donovan M. Nat Rev Genet 2012; \(\text{13} \): 537.
2 Rujescu D, Ingason A, Cichon S, Pietiläinen OP, Barnes MR, Toulopoulou T et al. Hum Mol Genet 2009; \(\text{18} \): 988.
3 Kiriv G, Rujescu D, Ingason A, Collier DA, O’Donovan MC, Owen MJ. Schizophr Bull 2009; \(\text{35} \): 851.
4 Crawley JJ et al. Mol Psychiatry 2012; \(\text{18} \): 138.
5 Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Nature 2009; \(\text{460} \): 744.
6 Quednow BB, Ettinger U, Mössner R, Rujescu D, Giegling I, Collier DA et al. J Neurosci 2011; \(\text{31} \): 6684.
7 Wirgnes KS, Sønderby IE, Haukvik UK, Mattingsdal M, Tesli M, Athanasiou L et al. Transl Psychiatry 2012; \(\text{2} \): e112.
8 Kwon E, Wang W, Tsai LH. Mol Psychiatry 2011; \(\text{18} \): 11.
9 Blake DJ, Forrest M, Chapman RM, Tinsley CL, O’Donovan MC, Owen MJ. Schizophr Bull 2010; \(\text{36} \): 443.
10 Sepp M, Kannike K, Eesmaa K, Urb M, Timmusk T. PLoS One 2011; \(\text{6} \): e22138.

This work is licensed under a Creative Commons Attribution 3.0
Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by/3.0/

Supplementary information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)