Podoplanin: Emerging Functions in Development, the Immune System, and Cancer

Citation
Astarita, Jillian L., Sophie E. Acton, and Shannon J. Turley. 2012. Podoplanin: emerging functions in development, the immune system, and cancer. Frontiers in Immunology 3:283.

Published Version
doi:10.3389/fimmu.2012.00283

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10536036

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Podoplanin: emerging functions in development, the immune system, and cancer

Jillian L. Astarita1,2, Sophie E. Acton1,3 and Shannon J. Turley1,4*

1 Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
2 Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
3 Department of Cell and Developmental Biology, University College London, London, UK
4 Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA

Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer.

Keywords: podoplanin, CLEC-2, lymph node stromal cells, lymphatic endothelial cells, platelets, cancer-associated fibroblasts

INTRODUCTION

Podoplanin (PDPN) is a 36- to 43-kDa mucin-type transmembrane protein. It has homologies in humans, mice, rats, dogs, and hamsters and is relatively well conserved between species. PDPN has a wide variety of functions including regulation of organ development, cell motility, and tumorigenesis and metastasis (Wicki and Christofori, 2007; Suzuki-Inoue et al., 2011). PDPN has been identified and studied in many different contexts; thus, it has been given several names. PDPN was first described on lymphatic endothelial cells (LEC) as the E11 antigen (Wetterwald et al., 1996) and on fibroblastic reticular cells (FRCs) of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer.

Keywords: podoplanin, CLEC-2, lymph node stromal cells, lymphatic endothelial cells, platelets, cancer-associated fibroblasts

Podoplanin is first expressed in the developing mouse embryo on day 18 in the foregut, proepicardial organ, and central nervous system (CNS; Williams et al., 1996; Mahtab et al., 2009; Table 1). Throughout development, it is also expressed in the fetal rat kidney, choroid plexus, intestine, and esophagus (Williams et al., 1996; Table 1). Over time, PDPN expression is increasingly restricted such that in an adult animal, PDPN is predominantly...
Table 1 | Podoplanin expression and function in organs and immune cells.

Organ	Time of expression	PDPN function	Reference
Central nervous system	Beginning day E9, becomes restricted to choroid plexus in adult mouse	No specific function reported during development; high PDPN expression in brain tumors	Williams et al. (1996), Kaji et al. (2012), Peterziel et al. (2012)
Heart	Expressed in entire organ on day E9; continued expression in adult heart	Required for normal heart development, specifically for EMT in epicardium-derived cells	Martin-Vilas et al. (2005), Mattah et al. (2008, 2009), Douglas et al. (2009)
Lungs	Appears in foregut on day E9 before lung buds; subsequently restricted to alveolar type 1 epithelial cells	Required for lung development; specifically the effective maturation of alveolar type I epithelial cells	Ramirez et al. (2003)
Intestine	Expressed on day E9 in foregut; continued expression in lamina propria	No specific function determined	Fair et al. (1992a), Williams et al. (1996)
Lymphoid organs	Present in spleen 4 days postnatally; in adult, expression by FRCs, LECs, and FDCs in lymph node and spleen, and thymic medullary epithelial cells	Required for proper formation and organization of lymph nodes and spleen; necessary for efficient DC migration to and within lymph nodes; highly expressed by stroma and some T cells in ectopic lymphoid tissue	Fair et al. (1992a), Belkans et al. (2007), Roche et al. (2010), Peters et al. (2011), Action et al. (2012), Yu et al. (2007)

Immune cell	Expression pattern	Function	Reference
T cell	Expressed only on Tc17 cells, not other subsets	Plays a role in Tc17-driven development of ectopic germinal centers in EAE	Petals et al. (2011)
Macrophages	Expressed by inflammatory macrophages, such as thioglycollate-elicited peritoneal macrophages	Possibly plays a role in response to fungal infections; can activate platelet aggregation	Hou et al. (2010), Karrigan et al. (2012)

expressed in alveolar type I cells, mature osteoblasts, LECs, and FRCs in the T cell zone of lymphoid organs (Wetterwald et al., 1996; Williams et al., 1996; Schacht et al., 2003; Table 1). PDPN is critical for normal development of some of these organs and has been well studied in PDPN-deficient animals. Pdpn−/− mice develop normally until around day E10, which coincides with the appearance of PDPN protein. From days E10–16, approximately 40% of Pdpn−/− embryos die; the ones that survive to birth die within a few days (Mahtab et al., 2008). However, interestingly, when the mice are crossed onto a C57Bl/6 background, many more embryos survive to birth, and although 50% die in the first week, approximately 20% of the mice do survive to adulthood (Uhrin et al., 2010). The reason why the genetic background affects the severity of the defects suffered by the Pdpn−/− mice is intriguing and warrants further study. Furthermore, it would be of great use to the field to have a conditional knockout of PDPN to avoid these survival defects.

The defect in blood-lymphatic vascular separation is the phenotype most extensively studied in PDPN-deficient mice. On day E11.5, PDPN first appears in the developing circulatory system on Prox-1+ lymphatic cells (Schacht et al., 2003). It was first reported by Schacht et al. (2003) that Pdpn−/− mice have abnormal lymphatic vessels that cannot properly regulate lymph flow and that this defect did not appear in blood vessels. These findings were further supported by Fu et al. (2009), who reported that endothelial cell expression of PDPN was responsible for a blood-lymphatic misconnection. Furthermore, continued expression of PDPN into adulthood was required to maintain proper vascular architecture, as an inducible deletion of T-synthase, a major glycosyltransferase required for O-glycan synthesis and normal levels of PDPN expression, showed similar blood-lymph mixing (Fu et al., 2009).

This non-separation phenotype is also observed in mice where hematopoietic cells lack Syk, SLP-76, PCLcy2, and CLEC-2 (Abatian et al., 2003; Sebda et al., 2006; Suizuki-Inoue et al., 2010). While platelets and neutrophils both express CLEC-2, it was initially believed that platelets could not be involved in this phenotype because mice lacking nearly all platelets had normal lymphatic vasculature (Shioda et al., 1995). However, elegant recent studies have proven that CLEC-2 expression and downstream signaling through SLP-76 are required specifically in platelets (Bertozzi et al., 2010; Osada et al., 2012). The interaction of platelet CLEC-2 and PDPN on LECs induces platelet aggregation and prevents blood from flowing into new lymphatic vessels budding from the cardinal vein. Furthermore, injecting a PDPN-blocking antibody or otherwise inhibiting platelet aggregation is sufficient to disrupt lymphatic development (Uhrin et al., 2010). Overall, the model that has emerged indicates that during the budding of the
Podoplanin is also necessary for proper development of the heart (Table 1). PDPN is first expressed in the proepicardial organ on day E9.5 and by day E12.5, it is expressed in most of the heart. Without PDPN expression, the hearts of developing mice exhibit hypoplasia in the pulmonary vein, left atrium dorsal wall, and the atrial septum (Douglas et al., 2009). In this setting, the lack of PDPN leads to a dysregulation of epithelial-mesenchymal transition (EMT), a process that involves the transition of sessile epithelial cells into more motile mesenchymal cells through the downregulation of epithelial markers, such as adhesion molecules like E-cadherin (Thiery, 2002). In PDPN-deficient mice, the epicardium-derived cells responsible for cardiac development exhibit increased level of E-cadherin and decreased levels of RhoA compared with their WT counterparts, which is indicative of impaired EMT (Maltié et al., 2008, 2009). While PDPN has been shown to play a role in regulating EMT (Martin-Villar et al., 2006), these studies are the first evidence that PDPN may play a role in physiological instances of EMT in non-transformed cells.

Overall, PDPN is crucial for the development of multiple organs, including the lymphatic system, lungs, and heart. Interestingly, PDPN serves diverse functions in these organs. In some instances it is required for CLEC-2-dependent platelet aggregation, but in others it seems to have an intrinsic effect on proliferation or differentiation in a specific cell type. This raises the question of whether PDPN function could to some degree be tissue specific. The range of physiological effects downstream of PDPN expression may be due to different protein interactions and binding partners in diverse cell types.

MOLECULAR INTERACTIONS AND SIGNALING OF PDPN

Podoplanin contains a single transmembrane domain, a short, nine amino acid cytoplasmic tail, and a heavily glycosylated extraacellular domain (Martin-Villar et al., 2005). While there are no obvious conserved protein domains in PDPN, several studies have identified specific residues on PDPN that mediate interactions with other proteins (Figure 1). The first hints at the cellular function of PDPN came from Scholl et al. (1999), who discovered that PDPN was upregulated in keratinocytes from induced epidermal carcinogenesis and was localized to membrane protrusions such as filopodia and lamellipodia. PDPN co-localized with ezrin, radixin, and moesin (ERM) family proteins, and was later found to directly bind ezrin and moesin. This interaction requires a conserved motif of three basic residues in the cytoplasmic tail (see Figure 1) and overexpression of PDPN resulted in increased phosphorylation of ERM proteins (Martin-Villar et al., 2006; Wicki et al., 2006). The ERM proteins function as connectors between integral membrane proteins and the actin cytoskeleton. Phosphorylation causes a conformational change that exposes binding sites for actin and other proteins (Fehon et al., 2010). Thus, this interaction likely underlies many of the effects that PDPN has on cytoskeleton. A closer examination of the effects of PDPN upregulation revealed that overexpression of PDPN in epithelial cell lines caused them to become more mesenchymal in appearance, with decreased stress fibers and increased filopodia (Martin-Villar et al., 2006; Wicki et al., 2006). These changes, in addition to a downregulation of E-cadherin and other epithelial markers, are indicative of cells undergoing EMT, which is indeed what Martin-Villar et al. (2006) observed. However, Wicki et al. (2006) demonstrated that while PDPN overexpression resulted in increased motility, it did not result in an E-cadherin switch or EMT. Discrepancies were also found when the involvement of Rho family small G proteins was examined. Martin-Villar et al. (2006) reported that PDPN overexpression resulted in an increase in RhoA and no change in Rac-1 or Cdc42, while Wicki et al. (2006) found a downregulation in RhoA, Rac-1, and Cdc42. In addition, Navarro et al. (2010) found that knocking down PDPN in LECs resulted in decreased levels of activated RhoA and increased levels in Cdc42. While it is clear that the expression of PDPN has an effect on the activity levels of these proteins, more work must be done to fully elucidate the mechanism. As described above, it is possible that PDPN exerts different effects and utilizes distinct signaling cascades in various cell types, which could partially explain the observed discrepancies.

Recently, it was discovered that PDPN resides in lipid rafts in the plasma membrane. Barth et al. (2010) found that PDPN resides in detergent-insoluble fractions of alveolar type I epithelial cells, but its function within these rafts remains unknown. It was subsequently reported that human PDPN expressed in Madin–Darby Canine Kidney (MDCK) type II cells is localized to lipid rafts.
PDPN interacts with a variety of intracellular and transmembrane proteins to mediate effects on cell migration and adhesion. The binding of PDPN to CD44 or ERM results in increased cell migration and rearrangement of the actin cytoskeleton to generate actin-rich protrusions of the membrane. The three amino acids colored in pink (K, K, R) are the basic residues required for ERM protein binding. Interactions between PDPN and CD9 affect metastasis and platelet aggregation. The engagement of PDPN by CLEC-2 causes increased motility in DCs and aggregation and activation of platelets. PDPN binds with high affinity to the chemokine CCL21 and while the consequences of this effect have not been examined, it may play a role in facilitating leukocyte migration. Finally, PDPN binding to galectin-8 may modulate adhesion of LECs.

(Fernández-Muñoz et al., 2011). In these cells, the transmembrane and cytoplasmic domains of PDPN were necessary for association with lipid rafts. Furthermore, manipulation of this localization by substituting the transmembrane domain with that of other proteins inhibited PDPN-mediated increases in EMT, migration, and phosphorylation of ERM (Fernández-Muñoz et al., 2011). Interestingly, cytoskeletal interactions are not required for PDPN to get into lipid rafts (Barth et al., 2010); however, the cytosolic domain is necessary (Fernández-Muñoz et al., 2011) and one way this might be explained is via interactions with ERM, given that ezrin is also raft-associated.

Given that the cytoplasmic tail of PDPN is extremely short, it is difficult to imagine that there is much direct signaling downstream of PDPN other than through the ERM proteins, simply due to spatial restrictions. Interestingly, however, PDPN also interacts with two integral membrane proteins that could help to further explain how it affects cell motility and metastasis. CD44, which is widely expressed, affects many cellular functions such as migration and adhesion, and the expression of some isoforms is linked to more invasive cancers. Martin-Villar et al. (2010) noted that CD44 and PDPN were coordinately upregulated in aggressive cancer cell lines and subsequently found that they directly bind to one another. This interaction is dependent on correct glycosylation of the extracellular domain of PDPN, and CD44 expression is required for PDPN-induced cell migration (Martin-Villar et al., 2010). Additionally, Nakazawa et al. (2008) found that PDPN directly interacts with the tetraspanin CD9 through transmembrane domains 1 and 2 of CD9. CD9 acts as a tumor suppressor in many cancers (Zöller, 2009), and co-expression of CD9 and PDPN resulted in a CD9-mediated decrease of PDPN-induced metastasis. CD9 also inhibited PDPN-mediated platelet aggregation without directly interfering with CLEC-2 binding of PDPN.
(Nakazawa et al., 2008). This finding indicates that CD9 potentially disrupts CLEC-2 multimerization, which is required for downstream signaling. These interactions provide some insight into how PDPN can exert striking effects on actin cytoskeleton rearrangement, cell motility, and metastasis. Still however, much remains to be elucidated such as the downstream signaling changes that occur upon PDPN binding to CD9 or CD44, how PDPN overexpression results in an increase of ERM phosphorylation, and how that in turn modulates the activity of the Rho family small G-proteins.

The only known receptor for PDPN is CLEC-2, a C-type lectin that is expressed by platelets, neutrophils, and dendritic cells (DCs) (Colonna et al., 2000). Glycosylation of T34 on PDPN is required for CLEC-2 binding of PDPN. This amino acid resides in the platelet-aggregation stimulating (PLAG) domain, which is highly conserved between PDPN homologues (Kuroki et al., 2006). The effect of CLEC-2 engagement by PDPN has been extensively studied in platelets; however, the effect of this interaction in PDPN-expressing cells has not been addressed. This is an area that warrants further exploration, given that in vivo, many PDPN+ cells will be exposed to CLEC-2 signals, whether they are tumor cells interacting with CLEC-2+ platelets or FRCs interacting with CLEC-2+ DCs.

Lympathic endothelial cells and FRCs, the two major subsets of lymphoid stromal cells, express high levels of PDPN (Malhotra et al., 2012; Table 1), but only a few studies have examined the molecular function of PDPN in these cells. PDPN interacts with galectin-8 on LECs, and this interaction is also dependent on PDPN glycosylation (Gaemi and Dethar, 2009). Galectin-8 can have varying effects on adhesion depending on whether it is secreted or membrane-bound (Zick et al., 2004), it seems that PDPN binding to galectin-8 may affect LEC adhesion, but additional studies are needed to fully elucidate the consequences of this interaction. PDPN also binds CCL21 with high affinity, and this interaction is also dependent on glycosylation of PDPN (Kerjaschki et al., 2004). This interaction has interesting implications for lymphocyte trafficking, as both LECs and FRCs express CCL21 to direct lymphocyte and DC trafficking to the T zone of LNs (Luther et al., 2000; Bajcsy et al., 2006; Turley et al., 2010).

It has yet to be examined whether the above binding partners of PDPN are cell-type specific or how interaction with one protein affects the binding of PDPN to another interacting molecule. With the exception of the ERMs and CD44, it remains unclear whether PDPN can bind to several of these proteins at one time or whether such interactions might be mutually exclusive. A more global understanding of these various interactions is critical to our overall understanding of PDPN’s molecular functions and downstream signaling.

TRANSCRIPTIONAL CONTROL OF PDPN EXPRESSION

Information about the transcriptional control of PDPN first came from the early studies of the role of PDPN in the development of the lymphatic system. The fact that PDPN was specifically expressed on differentiating LECs but not nearby BECs led to the discovery that Prox-1, the major regulator of LEC differentiation, controlled the induction of PDPN (Hong et al., 2002).

In fact, forced expression of Prox-1 was sufficient to induce a LEC-like phenotype in differentiated BECs, including the upregulation of PDPN (Hong et al., 2002). Furthermore, it was later found that IL-3, which is involved controlling the differentiation of a variety of hematopoietic cells and is produced by LECs but not BECs, was capable of upregulating Prox-1 and PDPN (Görg et al., 2004). However, Prox-1 is not expressed in FRCs or in many of the other cells types expressing PDPN. Therefore alternative pathways must be involved in PDPN expression in tissues other than lymphatics. This may be another reason why the physiological functions of PDPN are so varied between different systems.

In skin cancers, osteosarcomas, and gliomas, PDPN is regulated by the AP-1 transcription factor (Durckewald et al., 2006). The effect of CLEC-2 engagement by PDPN has been extensively studied in platelets; however, the effect of this interaction in PDPN-expressing cells has not been addressed. This is an area that warrants further exploration, given that in vivo, many PDPN+ cells will be exposed to CLEC-2 signals, whether they are tumor cells interacting with CLEC-2+ platelets or FRCs interacting with CLEC-2+ DCs.

Lympathic endothelial cells and FRCs, the two major subsets of lymphoid stromal cells, express high levels of PDPN (Malhotra et al., 2012; Table 1), but only a few studies have examined the molecular function of PDPN in these cells. PDPN interacts with galectin-8 on LECs, and this interaction is also dependent on PDPN glycosylation (Gaemi and Dethar, 2009). Galectin-8 can have varying effects on adhesion depending on whether it is secreted or membrane-bound (Zick et al., 2004), it seems that PDPN binding to galectin-8 may affect LEC adhesion, but additional studies are needed to fully elucidate the consequences of this interaction. PDPN also binds CCL21 with high affinity, and this interaction is also dependent on glycosylation of PDPN (Kerjaschki et al., 2004). This interaction has interesting implications for lymphocyte trafficking, as both LECs and FRCs express CCL21 to direct lymphocyte and DC trafficking to the T zone of LNs (Luther et al., 2000; Bajcsy et al., 2006; Turley et al., 2010).

It has yet to be examined whether the above binding partners of PDPN are cell-type specific or how interaction with one protein affects the binding of PDPN to another interacting molecule. With the exception of the ERMs and CD44, it remains unclear whether PDPN can bind to several of these proteins at one time or whether such interactions might be mutually exclusive. A more global understanding of these various interactions is critical to our overall understanding of PDPN’s molecular functions and downstream signaling.

TRANSCRIPTIONAL CONTROL OF PDPN EXPRESSION

Information about the transcriptional control of PDPN first came from the early studies of the role of PDPN in the development of the lymphatic system. The fact that PDPN was specifically expressed on differentiating LECs but not nearby BECs led to the discovery that Prox-1, the major regulator of LEC differentiation, controlled the induction of PDPN (Hong et al., 2002).
FIGURE 2 | Transcriptional regulation of PDPN expression. PDPN expression can be upregulated by a number of pro-inflammatory cytokines, including IL-22, IL-6, IFN-γ, TGF-β, IL-1β, and TNF-α, but the signaling pathways involved are largely unknown. PDPN upregulation induced by TGF-β requires Smad2/3 and 4 activity, while upregulation induced by IFN-γ depends on STAT1 and STAT3 and that of IL-6 and IL-22 depends on STAT3. The PI3K-AKT-AP-1 pathway can also induce PDPN expression in brain tumors that have lost the negative regulation normally provided by PTEN, a transcription factor comprised of Fox and Jun proteins, binds to the tetradecanoylphorbol acetate-responsive element (TRE) in the promoter of PDPN, which is heavily methylated.

PDPN FUNCTIONS IN THE IMMUNE SYSTEM
While PDPN is a well-established marker for LECs (Wetterwald et al., 1996), FRCs (Farr et al., 1992b), and follicular dendritic cells (FDCs) (Yu et al., 2007) of lymphoid organs, until very recently, no particular function had been ascribed to PDPN in these immune cell populations. Recently, a PDPN-cre mouse was generated, which will be a useful tool in targeting PDPN-expressing stromal cells (Onder et al., 2011). Our lab recently demonstrated that PDPN on FRCs and LECs interacts with CLEC-2 on DCs to promote DC motility from peripheral sites to LNs and within the T cell zone (Acton et al., 2012). We found that murine DCs expressed CLEC-2 and that their migration to draining LNs was impaired when CLEC-2 was deleted. Conversely, siRNA knock down or genetic deletion of PDPN also resulted in impaired DC migration in vivo and impeded motility along the FRC network in vitro. Furthermore, the interaction between PDPN and CLEC-2 was sufficient to induce protrusion formation in a 3D tissue engineered model. Therefore, both CLEC-2 on DCs and PDPN on stromal cells are necessary for migratory DCs to efficiently reach LNs and initiate immune responses (Acton et al., 2012).

Podoplanin signaling has intrinsic effects on the proliferation, migration, and tube formation of LECs. Navarro et al. (2008, 2010) demonstrated that knocking down PDPN expression in vitro inhibited the ability of LECs to properly polarize toward a wound and migrate to close the wound. Reduced PDPN levels also decreased capillary formation when the cells were plated in a deformable 3D matrix (Navarro et al., 2008). These effects were mediated by decreased RhoA activity and increased Cdc42 activity in cells lacking PDPN (Navarro et al., 2010). The mechanism underlying this effect was further investigated by Osada et al. (2012), who found that when LECs were incubated with WT but not CLEC-2−/− platelets, the migration, proliferation, and in vitro tube formation of LECs was inhibited. This inhibition was mediated at least in part by BMP9 released in granules...
from the platelets upon contact with the LECs (Obada et al., 2012). In contrast, Bertozzi et al. (2010) found that co-culture of platelets with LECs did not affect their viability or proliferation. More work is necessary to determine whether CLEC-2 signals from platelets or other cells provide important signals to LECs in vivo.

In addition to its high expression on stromal cells, several recent reports have described PDPN expression on hematopoietic cells, including subsets of T cells and macrophages (Hou et al., 2010; Peters et al., 2011; Kerrigan et al., 2012). Interestingly, in these cases, as in those from cancer studies, PDPN expression is usually correlated with inflammatory or disease settings. In experimental autoimmune encephalomyelitis (EAE), ectopic germinal centers form in the CNS and are believed to accelerate inflammation and disease progression (Weyand et al., 2001). T$_\text{H}17$ cells are particularly important for the formation of these ectopic germinal centers and EAE progression (Süper et al., 2009). PDPN expression has been reported in ectopic lymphoid tissues in instances of chronic inflammation and cancer (Peduto et al., 2005; Schacht et al., 2005; Wicki et al., 2006), malignant mesothelioma (Breiteneder-Geleff et al., 1997; Ji, 2006; Swartz and Lund, 2012). These studies showed that expression of PDPN by hematopoietic cells has not been fully elucidated, interesting implications abound given what is known about PDPN function in cancer and autoimmunity.

PDPN Functions in Cancer

The setting in which PDPN has been most extensively studied is cancer. Given that it is a specific marker of lymphatic vessels, and that increased lymphangiogenesis is often correlated with poor prognosis in cancer patients, the numbers of PDPN$^+$ vessels in a tumor is often used as a diagnostic marker (Breiteneder-Geleff et al., 1997; Ji, 2006; Swartz and Lund, 2012). Additionally, PDPN is upregulated on tumor cells themselves in several cancer types, including squamous cell carcinoma of the lung, head, and neck (Kato et al., 2005; Martin-Villar et al., 2005; Schacht et al., 2005; Wicki et al., 2006), and brain tumors (Mishima et al., 2006; Shibahara et al., 2006). PDPN is often expressed at the leading invasive edge of tumors and appears to play a role in EMT, invasion, and metastasis (Martin-Villar et al., 2006; Wicki et al., 2006). Interactions between CLEC-2 and PDPN in tumors also likely play a role in tumor progression and metastasis due to platelets interacting with tumor cells (Low et al., 2012). However, the exact mechanism of PDPN action in tumor cells is still unclear; in some cases, PDPN expression mediates the downregulation of E-cadherin and promotes EMT (Martin-Villar et al., 2006), while in others, PDPN expression enhances tumorigenesis and metastasis in the absence of EMT (Wicki et al., 2006). In vitro studies have provided compelling evidence that forced expression of PDPN in cells that normally lack this protein results in a more mesenchymal phenotype, actin-rich filopodia, and increased migration and invasion, as discussed above (Martin-Villar et al., 2005, 2006; Wicki et al., 2006).

Interestingly, PDPN is also upregulated by cancer-associated fibroblasts (CAFs) in the stroma surrounding various tumors, including adenocarcinomas and colorectal cancers (Kimano et al., 2010). There is a wealth of data on the tumor-promoting effects of CAFs, which has been reviewed elsewhere (Kalluri and Zeisberg, 2006; Gaggioli et al., 2007), but only recently have specific functions for PDPN on CAFs been examined. Generally, the expression of PDPN on CAFs is associated with poor prognosis: for example, one study found that invasive adenocarcinomas in the lung had PDPN$^+$ fibroblasts, while non-invasive cases were all negative for PDPN staining (Kawase et al., 2008). Further studies from this group have examined the mechanism by which PDPN enhances the tumor-promoting effects of CAFs. They found that fibroblasts isolated from the vascular adventitia (VAFs) were better at promoting tumor growth than fibroblasts isolated from human lungs. One of the most differentially expressed genes in these cells was PDPN, and knockdown of PDPN in the VAFs abrogated their tumor-promoting effects (Hoshino et al., 2011). Further studies indicated that this activity may be due in part to increased RhoA activity in the PDPN$^+$ fibroblasts (Ito et al., 2012).

While these studies illustrate that PDPN expression in CAFs is linked to poor prognosis for patients, it is important to keep in mind that the effect of PDPN$^+$ CAFs likely depends on the type of tumor cells and the tissue from which the CAFs originate. In fact, one study of colorectal CAFs found that PDPN expression was correlated with a better prognosis (Yamanashi et al., 2009). Knockdown of PDPN in CAFs resulted in enhanced cancer cell migration in a transwell assay. Furthermore, PDPN expression was seen in stroma surrounding the tumors in many areas except at the invasive front (Yamanashi et al., 2009). Thus, it was postulated that PDPN expressing stroma could act as a physical barrier to tumor cell invasion into surrounding tissues. In fact, this theory has been presented elsewhere and for other macins (Zimmer et al., 1999). The negative charge of the many sialic acids on these proteins acts to repel other molecules such as complement (Michalet et al., 1998; Mert and Panigrahi, 1998) and can affect cell adhesion (Taylor and Drickamer, 2007). Whether these properties play a role in PDPN function has not been definitively examined but it is an attractive hypothesis, given that PDPN is expressed on the apical surface of many cells that have contact with proteinase-rich fluids (i.e., lymph).
while it is clear that PDPN plays an important role in tumor progression and metastasis, more mechanistic studies are needed to fully elucidate the function of this molecule. Furthermore, a genetic dissection of PDPN function in malignant cells versus cancer cells. This interaction has been almost exclusively studied with respect to signaling downstream of CLEC-2. However, in nearly every instance where PDPN is expressed, whether by FRCs or cancer cells, there will be CLEC-2+ cells in the nearby environment, including DCs or platelets. Given that overexpression of PDPN has striking intrinsic effects on various cells, it stands to reason that there could be some effect on PDPN signaling when it is bound by CLEC-2. (3) What are the consequences of deleting PDPN from cells that endogenously express it? This question has been partially answered by studies of the developing heart, lungs, and lymphatic system, but research has been limited by the lack of a conditional PDPN knockout mouse. Once this tool is generated, we will be able to more closely examine the effects of PDPN in adult animals and in specific tissues or cells. These studies will provide critical insight into whether PDPN is necessary only during embryonic development or for adult development and maintenance of organs. Furthermore, we can study how the deletion of PDPN in macrophages or T cells affects disease progression. A better understanding of these open questions will lead to great insights in the diverse fields of development, cellular interactions in the immune system, and cancer progression and metastasis.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grants R01 DK074500 and P50 AI047757 (to Shannon J. Turley), a National Science Foundation Graduate Research Fellowship (to Jillian L. Astarita), and a Wellcome Trust Henry Wellcome Postdoctoral Fellowship (to Sophie E. Acton).

REFERENCES

Abraham, F., Guarnerio, A., Sehba, E., Lee, A., Myers, E. E., Huang, B., Jackson, D. G., Saravi, V. A., Yaksic-Yates, N., Lowdell, C. A., Lopez, J. J., Keeney, A., and Kahn, M. L. (2003). Regulation of myocardial proliferation and maturation. Proceedings of the national academy of sciences of the United States of America 100, 5999–6004.

Barth, K., Blanche, R., and Kasper, M. (2010). Thalialitho/podoplanin shows reticuloendothelial distribution in mouse lung, blood, and lymphatic vascular segregation by signaling proteins. Nature communications 1, 201–212.

Bokutova, V., Wirths, D., Glaeserke, S. H., Miconnet, E. M., Pardi, S. M., Kim, M.-Y., Gaspal, F. M. C., Jenkinson, E. M., Sweet, C., Andersen, G., and Lane, J. (2010). Podoplanin is required for B cell segregation in the spleen. Journal of experimental medicine 207, 1141–1152.

Colonna, M., Samardis, J., and Angman, L. (2000). Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704.

Couto, L. P., and Dommas, M. (2008). Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions. Exp. Cell Res. 315, 1715–1723.

Dugulashvili, V. J., Mabath, E. A. F., Jongbloed, M. R. M., Uhrin, P., Zaujec, M., Riehl, A., Lichter, P., Hahn, M., and Frey, E. F. (2003). Podoplanin is a novel target gene in skin carcinogenesis. J. Invest. Dermatol. 120, 30.

Duchkowik, M., Grieser-Vinagre, I., Haag, D., Rudi, A., Lichter, P., Hahn, M., Wagner, E. F., Angl, P., and Hvos, J. (2008). Podoplanin is a novel target gene in skin carcinogenesis. Cancer Res. 68, 6877–6885.

Eisen, R., and Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859–866.

Eisen, A. R., Estler, T., Anderberg, C., Jón, C., Kahlson, N., Brinkert, M., and Bokaretza, M. I. (2011). The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synovocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res. Ther. 13, R40.4

Farr, A., Nelson, A., and House, S. (1992a). Characterization of an antigenic determinant preferentially expressed by type 1 epithelial cells in the mouse thymus. J. Histochem. Cytochem. 40, 653–664.

While it is clear that PDPN plays an important role in tumor progression and metastasis, more mechanistic studies are needed to fully elucidate the function of this molecule. Furthermore, a genetic dissection of PDPN function in malignant cells versus in the surrounding tumor stroma will significantly advance our understanding of this molecule in cancer.

CONCLUSION

Emerging studies of PDPN suggest that this molecule plays diverse roles throughout the body. It is involved in the development of the heart, lung, and lymphatic system as well as driving inflammatory diseases and metastasis. The majority of mechanistic data available on the cellular functions of PDPN come from studies of cancer progression, where it is bound by CLEC-2. However, in nearly every instance where PDPN is expressed, whether by FRCs or cancer cells, there will be CLEC-2+ cells in the nearby environment, including DCs or platelets. Given that overexpression of PDPN has striking intrinsic effects on various cells, it stands to reason that there could be some effect on PDPN signaling when it is bound by CLEC-2. (3) What are the consequences of deleting PDPN from cells that endogenously express it? This question has been partially answered by studies of the developing heart, lungs, and lymphatic system, but research has been limited by the lack of a conditional PDPN knockout mouse. Once this tool is generated, we will be able to more closely examine the effects of PDPN in adult animals and in specific tissues or cells. These studies will provide critical insight into whether PDPN is necessary only during embryonic development or for adult development and maintenance of organs. Furthermore, we can study how the deletion of PDPN in macrophages or T cells affects disease progression. A better understanding of these open questions will lead to great insights in the diverse fields of development, cellular interactions in the immune system, and cancer progression and metastasis.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grants R01 DK074500 and P50 AI047757 (to Shannon J. Turley), a National Science Foundation Graduate Research Fellowship (to Jillian L. Astarita), and a Wellcome Trust Henry Wellcome Postdoctoral Fellowship (to Sophie E. Acton).
Astarita et al. PDPN in development, immune system, and cancer

Fehon, R. G., Mcclatchey, A. I., and Gröger, M., Loewe, R., Holnthoner, Gaggioli, C., Hooper, S., Hidalgo-Fu, J., Gerhardt, H., Mcdaniel, J. M., Embacher, R., Pillinger, M., A., Hermans, K., Silasi-Mansat, R., and Ochiai, A. (2011). Podoplanin-reporter mice reveal a role of Podoplanin in dendritic cell fate. J. Immunol. 187, 4759–4769.

Kawase, A., Ishii, G., Naga, K., Ito, T., Nagano, T., Murata, Y., Hishida, T., Nishimura, M., Yobuko, J., Suzuki, K., and Ochiai, A. (2008). Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Cancer Res. 68, 7455–7463.

Kanjilal, D., Bajpai, H. M., Moseley, J.-P., Nagy-Bejerani, K., Winriching, B., Seidemann, A., Bonte, P., Krieger, S., Herkner, A., Sibor-Butter, G., Laaskinen, P., Pirvetea, T., Lang, B., and Rad, J. (2004). Lymphangiogenesis in human kidney transplants is associated with immunologically active lymphatic infiltrates. J. Am. Soc. Nephrol. 15, 605–612.

Kerrigan, A. M., Dennehy, K. M., Mourão-Sá, D., Faro-Trindade, I., Willment, J. A., Taylor, F. R., Erle, J. A., Rea E, Souza, C., and Brown, G. D. (2009). CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood macrophages. J. Immunol. 182, 4705–4713.

Kerrigan, A. M., Navarro-Nuñez, L., Kuriyama, S.-I., Horii, A., Wilbourn, J. A., Watson, S. P., and Brown, G. D. (2012). Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. J. Immunol. 189, 408–417.

Kimura, N., and Kimura, I. (2005). Podoplanin as a marker for mesothelial lineage. Pathol. Res. Pract. 201, 85–86.

Kuriyama, S.-I., Horii, A., Miyatake, S. M., Hayashi, B., Doki, Y., Otake, Y., Fuijita, T., Takitani, M., Kudo, H., and Fukuoka, J. (2010). Podoplanin expression in cancerous stroma induces lymphangiogenesis and promotes lymphatic spread and patient survival. Arch. Pathol. Lab. Med. 134, 1520–1527.

Kurita, A., Ashida, T., Goto, K., Takahashi, K., Suzuki, T., and Wu, Y.-D. (2009). A novel bone marrow-derived cell population expressing podoplanin is involved in vasculogenesis. Blood 114, 2248–2254.

Langer, B., and Raab, I. (2004). Lymphatic endothelium and metastasis: new insights into lymphatic invasion and metastasis. J. Exp. Med. 198, 1765–1772.

Lanen, A., 西村, M., Jäger, A., Dardalhon, V., Sobel, R. P., Krieger, S., Hovorka, A., Silber-hutner, G., Laaskinen, P., Pirvetea, T., Lang, B., and Rad, J. (2004). Lymphangiogenesis in human kidney transplants is associated with immunologically active lymphatic infiltrates. J. Am. Soc. Nephrol. 15, 605–612.

Lee, S. M., Ito, T., Nagano, T., Murata, Y., Hishida, T., Nishimura, M., Yobuko, J., Suzuki, K., and Ochiai, A. (2008). Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Cancer Res. 68, 7455–7463.

Machala, E. A. F., Vicente-Steijn, R., Halby, N. D., Longhioud, M. M., Wisse, I. J., Derauwe, M. C., Uhir, P., Zaeus, J., Binder, B. R., Schaly, M. J., Podommna, R. E., and Gatenby-De Groot, A. C. (2009). Podoplanin deficient mice show a Blc2a related phenotype of the stroma venous myxocarcinoma including the anastomotic vein. Dev. Dyn. 238, 185–193.

Muller, K., Gruber, A. A., Weidknecht, M. C. E. E., Van Den Akker, N. S., Halby, N. D., Lue-Venema, H., Wisse, I. J., Derauwe, M. C., Uhir, P., Zaeus, J., Binder, B. R., Schaly, M. J., Podommna, R. E., and Gatenby-De Groot, A. C. (2008). Cardiac malformations and myocardial abnormalities in podoplanin knock out mouse embryos: correlation with abnormal atrial overlap development. Dev. Dyn. 237, 847–857.

Mullotra, D., D’Horch, A. L., Asturant, J., Lukač-Korová, V., Tardyla, P., González, S. F., Hjelm, K. G., Chang, H. J., Knecht, E., Hornet, M. E., Brennan, M. M., Carroll, M. C., Monroy, D. J., Tyler, S. J., and Comorant, I. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmark. Nat Immunol. 13, 499–510.

Murti-Villar, E., Fernandez-Marto, M., Barone, M., Suarez, R., Mooney, D., Perez-Gomez, E., Jones, G. E., and Quintanilla, M. (2011). Podoplanin associates with CD204 to promote directional cell migration. Mol. Biol. Cell 22, 4397–4409.

Murti-Villar, E., Mogías, D., Casel, S., Yuerra, M. M., Vázquez, S., and Quintanilla, M. (2006). Podoplanin binds ERK proteins to activate epithelial-mesenchymal transition. J. Cell Sci. 119, 4941–4950.

Murti-Villar, E., Scholl, F. G., Gamallo, C., Soriano, M. M., Martín-Guerra, M., Cinaris, J., and Quintanilla, M. (2005). Characterization of human FcγR2a-bearing antigen (T1alpha, podoplanin), a small membrane macromolecule induced in oral squamous cell carcinomas. Int. J. Cancer 119, 899–910.
Miers, S., and Pangburn, M. K. (1990). Discrimination between actinators and nonactinators of the alternative pathway of complement: regulation via a novel acyl-CoA binding protein site on factor H. Proc. Natl. Acad. Sci. U.S.A. 87, 3982–3986.

Michalek, M. T., Beumer, E. G., and Mold, C. (1998). Effect of phagoc- osis on activation of the alternative pathway of human complement. J. Immunol. 160, 1581–1592.

Millán, G., Sparr, A., Hink, A., Wong, J., Williams, M. C., and Ramirez, M. I. (2006). Alternatives in gene expression in Tα alpha null mice: a model of defective adherent cell develop- ment. BMC Dev. Biol. 6, 15. doi: 10.1186/1471-213X-6-15

Moritsugu, K., Kitajima, K., Nakamura, S., Nakaoka, M., Kiskinis, E., and Kawabe, Y. (1999). Expression of podoplanin in malignant neoplastic tumors as a novel molecular marker of malignant pro- gression. Acta Superinft 111, 485–488.

Nakayama, T., Saito, N., Naito, M., Kato, E., Minoshima, K., Arai, A., Touran, T., and Fujita, N. (2008). Tetraspanin family member CD9 inhibits Aggus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood 112, 1738–1746.

Narumi, A., Perez, R. E., Reina-Salmaso- liga, L., and Llano, I. I. (2008). Podoplanin is essential for capillary morphogenesis in lymphoid endothelial cells. Am J Pathol. 172, 2141–2151.

Narumi, A., Perez, R. E., Reina-Salmaso- liga, L., and Llano, I. I. (2010). Polarized migration of lymphoid endothelial cells. Am. J. Physiol. Cell Physiol. 298, C402–C412.

Nose, K., Saito, H., and Kikuchi, T. (1995). Isolation of a gene sequence targets lymphoid organ stromal cells in vivo. Front. Immunol. 2:30. doi: 10.3389/2011.0000530

Onder, L., Scandella, E., Chai, Q., and Ludewig, B. (2011). A novel role for CLEC-2 in extravasation and immune surveillance in lymphatic endothelial cells. J. Cell. Biochem. 112, 2245–2252.

Peter, A., Pitchen, L. A., Sullivan, J. M., Münchower, M., Action, S. E., Franz, W., Wachterpenny, K., Turke, S., Carroll, M. C., Sobel, B. A., Bertelli, E., and Kuchroo, V. K. (2012). TH17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 988–996.

Peterson, H., Müller, J., Dammer, A., Bar- bus, S., Liu, H. K., Badheimstein, B., Petho, T. C., Fleisch, H., Schütz, G., Han, J., and Angell, P. (2012). Expression of podoplanin in human astro- cytic brain tumors is controlled by the PPAR-α-1 signaling pathway and promoter methylation. Neuroscience 208, 412–420.

Raca, M., Kontuly, A., Mocsáry, L., Enicki, S., and Csimbauer, A. M. (2010). Diagnostic and clinical significance of podoplanin expression in the normal human thymus and thymic carcinoma. J. Histochem. Cytochem. 58, 229–234.

Ramirez, M. I., Miller, G., Hinds, A., Conn, Y., Selkin, D. C., and Williams, M. C. (2003). Tα alpha, a lung cell differentiation gene, is required for normal lung alveolization and alveolar formation at birth. Dev. Biol. 256, 61–72.

Rath, B. K., Lee, B-M., Bodek, B. S., Dobbs, L. G., Floros, J., Vander- speck, J., Brody, J. S., and Williams, M. C. (1995). Characterization and cloning of the human NK cell differentiation gene, NKP-1. J. Immunol. 154, 5332–5340.

Rom, E., Peduto, L., Dulauroy, S., Lochner, M., Ekekezie, E., and Kuchroo, V. K. (2011). Tα alpha, a novel myeloid lineage cell surface receptor that regulates blood/lymphatic vessel separation by inhibiting pro- vascularization. Front. Immunol. 2:80. doi: 10.3389/2012.00080

Sebes, D., Sebzda, E., Hibbard, C., Sweeney, S., Abalbaha, F., Beriman, N., Olemes, G., Mähler, J. S., Cheng, L., Liu, F., Tumer, M., Józefowicz, V., Kondrot, G. A., and Kahn, M. L. (2006). Srik and SP6 mutant mice reveal a cell- autonomous hematopoietic cell contribution to vascular development. Dev. Cell 11, 389–401.

Shibahara, J., Kasihara, T., Ikiuchi, Y., Kunito, A., and Fukuyama, M. (2006). Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch. 449, 493–499.

Shields, J. D., Kowta, I. C., Teixe, A. R., Roberts, J. M., and Swartz, M. (2010). Induction of lymphoid-like stroma and immune escape by tumors that express the chemokine CCL21. Science 329, 749–752.

Shvedova, R. A., Rosenblatt, M. F., Zacker-Franklin, D. J., Jackson, C. W., Hutt, P., Saito, C. I., and Orlin, S. H. (1995). Tα alpha deficiency disrupts normal lymphatic vessel development. J. Cell Biol. 126, 1501–1509.

Swartz, M. A., and Lund, A. W. (2012). Lymphatic and vascular flow in the tumor microenvironment: linking mechanotransduction with immunity. Nat. Rev. Cancer 12, 210–219.

Taylor, J. M., and Dijkstra, K. (2007). Parallels for gene-specific receptors in cell adhesion. Curr. Opin. Cell Biol. 19, 572–577.

Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454.

Tieger, S. J., Fleisher, L. A., and Elpid, K. G. (2010). The stromal and haematopoietic antigen-presenting cells that reside in sec- ondary lymphoid organs. Nat. Rev. Immunol. 10, 415–425.

Uhrin, P., Zajac, I., Bures, J. M., Okajima, D., Chomský, P., Stockinger, H., Faust, E., Moson, M., Hahó, P., Elkin, R., Ahlert, K., Binder, R. K., and Makale, D. (2010). Novel function for blood plakoglobin and podoplanin in develop- mental separation of blood and lymphatic circulation. Blood 115, 3967–3975.

Wetterwald, A., Höfler, K., Cav- chim, M. G., Lams, R., Wagner, G., Fleisch, H., and Ahnfeldt, P. M. (1996). Characterization and cloning of the CLEC-2/alpha ligand, a marker expressed on rat ontocytic and mesenchyme. Microvasc. Res. 18, 125–132.

Weyand, C. M., Kurtin, P. J., and Germain, R. N. (1995). Epitope lympho- blastic antigen-presenting cell autoimmunity. Am. J. Pathol. 147, 201–209.

Wick, A., and Christophers, G. (2007). The potential role of podoplanin in tumor invasion. Br. J. Cancer 96, 1–5.

Winter, A., Lohmohren, F., Wick, N., Hartmann, B., Korhutski, D., and Christophers, G. (2008). Tumor invasion in the absence of epithelial-mesenchymal transi- tion, podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 13, 261–272.

Williams, M. C. (2003). Alveolar type 1 cell: molecular phenotypic and...
Astarita et al. PDPN in development, immune system, and cancer

Development. Annu. Rev. Physiol. 65, 669–698.

Williams, M. C., Cao, Y., Hinds, A., Ruhl, A. K., and Wetterwald, A. (1996). T1 alpha protein is developmentally regulated and expressed by absorptive type I cells, choriocapillaris, and ciliary epithelia of adult rats. Am. J. Respir. Cell Mol. Biol. 14, 577–585.

Yamanashi, T., Nakahashi, Y., Fujii, G., Akahira-Fukasawa, Y., Mertza, Y., Kanai, Y., Watanabe, M., and Hirohashi, S. (2009). Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology 77, 53–62.

Yu, H., Gibson, J. A., Pinkas, G. S., and Herrick, J. L. (2007). Podoplanin (D2-40) is a novel marker for follicular dendritic cell tumors. Am. J. Clin. Pathol. 128, 776–782.

Zick, Y., Eismont, M., Green, R. A., Hafidi, T. K., Levy, Y., and Rennert, D. (2004). Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycobiology 14, 517–526.

Zimmer, G., Oeffner, F., Von Misdling, V., Schering, T., Gomans, H. J., Khodr, H. D., and Herrler, G. (1999). Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochem. J. 341(Pt 2), 277–284.

Zoller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9, 40–55.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 June 2012; accepted: 22 August 2012; published online: 12 September 2012.

Citation: Astarita JL, Acton SE and Turley SJ (2012) Podoplanin: emerging functions in development, the immune system, and cancer. Front. Immunol. 3:283. doi: 10.3389/fimmu.2012.00283

This article was submitted to Frontiers in Antigen Presenting Cell Biology, a specialty of Frontiers in Immunology.

Copyright © 2012 Astarita, Acton and Turley. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third party graphics etc.