Do Weight Loss and Adherence Cluster within Behavioral Treatment Groups?

Rena R. Wing¹, Tricia Leahey¹, Robert Jeffery², Karen C. Johnson³, James O. Hill⁴, Mace Coday³, Mark A. Espeland⁵ and The Look AHEAD Research Group

Objective: Weight loss programs are often conducted in a group format, but it is unclear whether weight losses or adherence cluster within treatment group and whether characteristics of the group (e.g., size or homogeneity) affect outcomes. We examined these questions within Look AHEAD, a multicenter study of the effects of an intensive lifestyle intervention (ILI) in overweight/obese individuals with type 2 diabetes.

Methods: Weight losses and adherence (attendance, use of meal replacement products, and minutes of activity) were examined over one year of intervention in 2329 ILI participants in 209 treatment groups, which all received the same weight loss program.

Results: Weight losses did not cluster among members of a treatment group (intra-class correlation [ICC] of 0.007), whereas measures of adherence had small/moderate clustering (ICC of 0.05-0.11). The 209 groups varied in weight losses, with a mean of 8.64% (SD = 2.35%, interquartile range = 6.82%, 10.32%), but neither size nor baseline homogeneity of members affected the outcome.

Conclusions: Although these findings suggest that it may not be necessary to control for clustering in behavioral weight loss studies, they also indicate that merely treating individuals in groups is not sufficient to harness social influences on weight loss.

Introduction

Increasingly it is recognized that social factors play a role in the development of health problems and their resolution. For example, the incidence of obesity has been shown to occur in clusters, with the development of obesity in one person increasing the odds that obesity will develop in their close friends (1). These social processes have been harnessed as a means to improve outcomes in several approaches to behavioral weight loss. For example, Wing and Jeffery [2] recruited participants with several of their friends and/or family members and treated these participants as a team, with group activities utilized to stress intra-group cohesion and inter-group competition. This social intervention improved overall weight loss outcomes.

Moreover, as would be expected with a social intervention, the study by Wing and Jeffery found that there was a clustering in the weight loss outcomes among the team members; weight losses of one member of the team were found to be strongly related to that of the other members (2). Similarly, when patients’ friends or family members are included within the treatment program, the weight losses achieved by the patient and their social contacts are correlated with one another (3). Such social contagion appears to extend even...
outside the program; the untreated spouses of patients in a behav-
ioral weight loss program have been shown to achieve weight losses
similar to the patients actually participating in the program (4). Lea-
hey et al. (5) recently reported that individual weight losses in a
team-based weight loss program were influenced by the weight
losses of others on the team, i.e., there was a clustering of outcomes;
characteristics of the team at baseline influenced the results subse-
quently achieved (5).

It is less clear whether the characteristics of the other members
of the group influence the weight losses achieved by the individual par-
cipants in standard group-based behavioral weight loss programs
and whether these weight losses tend to cluster within the group.
Typically, behavioral weight loss tested in research studies are con-
ducted in a group format. Approximately 10–15 patients who do not
know each other are treated together, with weekly meetings for 6
months, followed by less frequent meetings for extended periods
of time (6). These programs present a structured series of behavioral
weight loss lessons and do not include emphasis on group cohesion
or efforts to encourage group members to interact with each other
outside of the group setting. Similarly, many other types of weight
loss programs, such as Weight Watchers, Take Off Pounds Sensibly
(TOPS), and lifestyle interventions to prevent diabetes that are
offered through hospitals and YMCAs, utilize group approaches for
the delivery of the program (7). Weight losses achieved in group
programs appear to surpass those seen with individual contact (8),
and are clearly less costly to administer. However, to date, there has
been little research examining the group effects inherent in these
programs.

A large number of studies have examined individual baseline char-
acteristics that might predict treatment outcome (9) but few have
examined whether the baseline characteristics of the group affect the
outcome in behavioral weight loss studies. Studies of group perform-
ance suggest that characteristics such as the size of the group and
the similarity of group members to each other might influence treat-
ment outcomes (10,11). In the only study examining this within
behavioral weight control interventions, Jeffery et al. (12) found no
differences in the weight losses achieved by participants who were
randomly assigned to groups that were homogeneous or heterogene-
ous with respect to gender and degree of overweight.

In addition, the extent to which performance (in terms of adherence
or weight loss) clusters within groups has rarely been studied. Simon
et al. (13) analyzed the results of 13 different weight loss groups
and observed that attendance during the 26 session program clus-
tered within group (ICC = 0.14), but weight loss did not
(ICC = 0.00). However, the relatively small number of weight loss
groups and the fact that the mean weight losses in this trial were
quite low (mean of 4.24 kg at 12 months) may have limited the abil-
ity to see clustering.

Given that weight loss programs are often offered in group format,
these issues have important clinical and methodological implica-
tions. Information about whether the size of the group or the charac-
teristics of the group members, in terms of their diversity in age,
gender, and BMI, affects the outcome could improve the results
achieved in future programs. Evidence of significant clustering of
outcomes within behavioral weight loss groups would have impor-
tant methodological implications. Such clustering would need to be
accounted for in estimating sample size and in data analysis (14).

Although clustering is often considered in sample size estimates for
school-based and physician-based interventions, it is not typically
considered in most clinical studies of weight loss interventions.

In this article, we examine these questions using the Look AHEAD
trial. Look AHEAD is a multicenter clinical trial comparing the
effects of intensive lifestyle intervention (ILI) versus control on car-
diovascular morbidity and mortality in over 5000 overweight/obese
individuals with type 2 diabetes (15). The fact that there were over
200 different ILI weight loss groups in this trial provides a unique
opportunity to address two important questions: (1) Is there a clus-
tering of outcomes within groups for adherence to treatment compo-
nents and/or for the weight losses achieved?; (2) Do group charac-
teristics (including size of the group and its composition) affect
weight losses achieved? We focus primarily on weight losses at one
year, because groups were meeting most frequently during this time.

Methods
Participants
As reported previously, to be included in Look AHEAD, participants
had to have type 2 diabetes, be 45–76 years of age, have a BMI of
>25kg/m² (>27 if taking insulin), with A1c <11%, systolic blood
pressure <160 mmHg, diastolic blood pressure <100 mmHg, and
triglycerides <600 mg/dl (15). They were also required to complete
a maximal fitness test. Look AHEAD recruited 5145 participants,
with 59% females, and 37% from minority populations (16). This
analysis focused only on those individuals who were randomly
assigned to the Intensive Lifestyle Intervention in the Look AHEAD
trial.

Design/Procedures
Look AHEAD was conducted at 16 clinical sites within the United
States. Participants were randomly assigned within clinical site to
either the Intensive Lifestyle Intervention group (ILI) or to Diabetes
Support and Education (DSE), the control group for this trial (15).
Participants in the ILI received a lifestyle intervention that has been
described in detail (17). This program was offered in a group for-
mat, with nutritionists, exercise physiologists, and behavioral psy-
chologists serving as group leaders. Groups were formed according
to participant availability. Our analyses focus primarily on clustering
seen for outcomes achieved during the first year because the group
contact was greatest during this time and participants typically
remained in their assigned group throughout this period. During
the first 6 months of the ILI program, participants attended one individ-
ual and three group meetings each month and during months 7–12
they attended one individual and two group meetings per month.
Subsequently participants attended only one group meeting and had
one individual contact per month. The goals of the intervention
were to produce a mean weight loss of at least 7% of initial body
weight (with participants each asked to try to lose 10% of their
body weight) and to increase moderate intensity physical activity to
175 min per week. Participants were given a calorie and fat gram
goal and were provided with liquid shakes and meal bars to help
them adhere to this dietary regimen. The program focused on behav-
ioral strategies, and emphasized self-monitoring, goal setting, and
problem solving. Self-monitoring records were kept daily throughout
the program and were reviewed each week by the lifestyle
interventionists.
Measure Demographic information was collected at baseline. Weight was assessed at baseline and annual assessments by clinic staff, who were masked to treatment assignment. Adherence metrics included attendance at treatment sessions (recorded by intervention staff), meal replacement use, and minutes of moderate intensity physical activity (both obtained from participants’ weekly self-monitoring records).

Statistical methods

Look AHEAD assigned 2570 participants to ILI at baseline. For inclusion in analyses, participants must have returned for their Year 1 weight to be measured: this eliminated 95 participants (3.7%). Those who gained more than 20% or lost more than 30% were dropped from the analyses to reduce the effect of atypical cases: this eliminated 15 more participants. Finally, we restricted analyses to intervention groups with at least six participants to provide reasonably stable group means and variances for group characteristics and excluded clinical sites that conducted fewer than six groups, which excluded 131 additional participants, for a final database of 2329 (90.6%) of the enrolled ILI participants. General linear models, with intervention groups as random effects nested within clinical sites, were used to estimate intraclass correlations (ICCs) with varying levels of covariate adjustment. The ICC is the ratio of the between group variance compared to the sum of the between and within group variance. These were estimated using Proc Mixed in SAS (SAS Institute. SAS/STAT, V.9.3., 2008) using a random effects model, i.e., group was considered to be a random effect. Given that our goal was descriptive, no significance tests were conducted. Linear models and correlation coefficients were used to describe associations between group characteristics (including baseline BMI, gender, insulin use, and age) and group weight change. Since race/ethnicity tended to cluster within clinic site, it was not included as a separate variable among the group characteristics we considered.

Results

Analyses included data from 2329 participants, who were members of 209 intervention groups, across 15 clinics. Table 1 provides information on characteristics of the 209 groups. Group size averaged 11 members (range 6–21) and 58.9% of the group members were female (range 11.1–100%). The average group had 36.7% percent of its members (range 6–21) and 58.9% of the group members were female (range 6–21). The average group had 36.7% percent of its members (range 6–21), 33.2% with BMI of 30–34 kg/m², 18.4% with BMI of 35–39 kg/m², and 11.7% with BMI of 40 kg/m² or more. The average (standard deviation; interquartile range) percent loss of body weight across the 209 groups was 8.64% (2.35; 6.82–10.32%). Very similar results were seen using weight loss in kilograms: mean weight loss of 8.78 kg (2.48; 7.10–10.63 kg).

Clustering of weight loss outcomes and adherence within groups

Controlling for any systematic differences among clinics (i.e., including a marker for site as a covariate) with treatment groups nested within clinics, the overall ICC for change in percent body weight at one year was 0.008. As a comparison, the ICC for age and baseline BMI were 0.192 and 0.026, respectively. With additional adjustment for four baseline factors known to influence weight loss (gender, initial BMI, age, and insulin use), the overall ICC was 0.007 (Table 2). Table 2 also provides the adjusted ICCs for each clinic site. These were uniformly small, except for one site (“F”), for which the unadjusted and adjusted ICCs were 0.083 and 0.121, respectively. We also examined the ICC by year of enrollment in the trial, and found no consistent difference over time. The ICC for percent weight change at Year 4 was 0.000.

Three process measures were used to monitor intervention adherence: attendance at treatment sessions, use of meal replacements, and self-reported minutes of physical activity. The overall means (standard deviations) for these measures over the first year of intervention were 35.2 (7.7) visits, 7.3 (4.1) meal replacements per week, and 143 (109) min of exercise per week. Each of these adherence measures was significantly correlated with one year weight loss (r = 0.38, 0.34, and 0.41, respectively, all P < 0.001). However, in Table 2, these adherence measures, adjusted for clinic and baseline characteristics, each had much stronger within group ICCs than weight loss, and were substantial (e.g., >0.10) for several clinic sites.

Between group effects for weight loss

As shown in Figure 1, there was a fair amount of variability in the outcomes that were achieved across the 209 groups. While 46.4% of the groups had average weight losses between 8 and 11%, 14.8% had a weight loss of <6%, and 8% had weight losses of >12%.

We examined whether the average weight losses across the 209 intervention groups were associated with baseline group characteristics. In analyses controlling for differences among clinic sites, group size was not associated with mean weight loss (r = −0.04, P = 0.57). However, the percentage of women in the group (r = −0.16; P = 0.02); the average age of the group (r = 0.18; P = 0.01); and the average baseline BMI (r = −0.49; P < 0.001) were all associated with the group’s average weight loss. Adjusting

| TABLE 1 Characteristics of the 209 Look AHEAD intervention groups included in analyses at enrollment |
Characteristic of Group	Mean [Range]
Group Size	11.1 [6, 21]
Mean age, year	58.8 [50.7, 67.1]
Percent female	58.9 [11.1, 100.0]
Percent > HS education	80.3 [0.0, 100.0]
Percent race/ethnic groups	
African-American	16.6 [0.0, 90.9]
Hispanic	14.7 [0.0, 100.0]
Non-Hispanic white	64.8 [0.0, 100.0]
Other/Multiple	3.8 [0.0, 30.0]
Percent insulin use	17.9 [0.0, 62.5]
Percent hypertensive	84.6 [25.0, 100.0]
Percent prior CVD	14.7 [0.0, 50.0]
Mean HbA1c (%)	7.24 [6.17, 8.42]
BMI distribution	
% <30 kg/m²	36.7 [0.0, 85.7]
% 30–34 kg/m²	33.2 [0.0, 82.4]
% 35–39 kg/m²	18.4 [0.0, 66.7]
% >40 kg/m²	11.7 [0.0, 50.0]
for clinic reduced the standard deviation among the intervention groups from 2.35% to 2.09% and further adjustment for covariates (age, sex, insulin use, and BMI) reduced it to 1.83%. Thus, less than 25% of the variance among intervention between groups was explained by these variables.

We also examined the relationship of weight loss with measures of group heterogeneity. For this, we looked at the gender distribution (absolute difference from 50% female) and the intra-group standard deviation of age and initial BMI. These measures had mean (interquartile range) of 15.9 (0.0, 22.7), 5.8 years (4.6, 7.0), and 5.5 kg/m² (4.4, 6.7), respectively. Variability in age and gender were not related to the groups’ weight loss outcomes. Group mean weight losses tended to be lower among groups with greater heterogeneity in baseline BMI ($r = -0.21, P = 0.003$), but this effect was removed after controlling for the group mean BMI ($partial \ r = -0.08, P = 0.27$).

Discussion

Behavioral weight loss programs are typically offered in group formats (6). Although these groups meet together over extended periods of time, the present data suggest that there is very little clustering of weight loss outcomes within standard behavioral weight loss groups. Thus, the outcome of the other group members appears to have little or no influence on the weight loss success of any one member. This finding, which replicates results reported by Simon et al. (13) across 13 therapy groups, has important methodological implications, as it suggests that weight loss studies need not account for clustering of outcomes in the power analyses or statistical approaches to the data analysis.

These findings also suggest that weight loss programs that seek to use social influence processes to improve outcome will need to provide more focused strategies, such as developing within-group activities or between group competitions, to accomplish this goal or alternatively, use existing relationships such as between friends or family members (3). A recent study of weight loss in a team-based community intervention showed that individuals who reported greater social influence from their team achieved better weight losses (5). Such social influence might be enhanced through group activities to develop shared norms or by increased social modeling of weight-

TABLE 2

Estimated intra-class correlations for percentage change in weight and adherence to lifestyle intervention at one year

Clinic (N)	Number of ILI Groups	% Weight Loss	Session Attendance	Use of Meal Replacements	Minutes of Physical Activity
A (153)	14	0.002	0.267	0.167	0.167
B (165)	13	0.034	0.133	0.081	0.011
C (151)	14	0.026	0.230	0.125	0.009
D (143)	14	0.000	0.150	0.096	0.000
E (166)	13	0.000	0.399	0.056	0.032
F (157)	14	0.121	0.000	0.061	0.149
G (147)	14	0.046	0.132	0.000	0.112
H (150)	14	0.000	0.146	0.109	0.021
I (151)	12	0.020	0.010	0.117	0.010
J (138)	13	0.016	0.079	0.121	0.017
K (152)	17	0.011	0.209	0.314	0.168
L (166)	12	0.000	0.028	0.079	0.000
M (158)	12	0.000	0.017	0.081	0.054
N (160)	17	0.000	0.000	0.056	0.057
O (167)	16	0.016	0.000	0.134	0.048
Total (2342)	209	0.007	0.118	0.116	0.054

Intraclass correlation coefficient for intervention group after adjusting for clinical site, gender, baseline insulin use, age group, and baseline BMI
related behaviors. In addition, individuals who are less successful at a task have been shown to perform better when doing a task with others, especially an interdependent task where every member of the group must succeed in order for the group to succeed (18). This effect, referred to as the Kohler effect (19), has been shown to motivate higher levels of physical activity (20-22) and likely plays a role in the success of group-based contingencies in behavioral weight loss programs. Incorporating social influence strategies such as these may help improve weight loss outcomes. In contrast to the weight loss outcomes, adherence measures were more clustered within treatment group. Attendance, use of meal replacement products, and minutes of physical activity all showed greater clustering within treatment group than did weight loss. Clustering of adherence outcomes may be stronger than clustering of weight loss due to the fact that weight loss is under more physiological control than behavioral outcomes. Alternatively, clustering may be seen more in self-report measures than in objective measures, because participants may bias the information they report to make them more similar to others in the group. Clustering of behavioral measures may also reflect group norms for adherence, social modeling of adherence behaviors, and/or diffusion of weight loss information among group members. For example, when some members of the group fail to attend treatment meetings, it may provide information, norms, and modeling of behavior, which then allows others to behave similarly, whereas success at weight loss remains more private. Another important finding is the heterogeneity in the outcomes seen across treatment groups, even after adjusting for participant characteristics expected to influence weight loss (such as gender and age). The mean weight loss across the 209 groups was 8.6%, exceeding the minimum study goal of 7%. Although participants in all groups were given the same weight and activity goals, and all groups had the same schedule and content of treatment lessons, there was a fair amount of variability in the outcomes achieved. This variability is of concern for smaller treatment development studies where the outcome observed in a limited number of groups is used to make decisions about the clinical efficacy of new treatment strategies. Some of this variability reflected the composition of the group and the same individual level variables (e.g., gender and age) that have been shown to influence initial weight loss (19). However, much of the variability between groups was unaccounted for and may be largely a random phenomenon, consistent with the low intra-class correlations. Previous studies have documented marked variability among participants in the weight losses achieved (23), but this is the first study to show that group averages are also variable.

This study also suggests that the composition of the group has little effect on the outcomes achieved. Studies of group performance suggest that the homogeneity of the group, i.e., similarity among members of a group, may lead to greater cohesion and better outcomes (24,25). However, we found no evidence that the characteristics of the weight loss group, in terms of heterogeneity in age, weight, or gender distribution, affected the outcome, perhaps due to the restricted eligibility ranges used in this trial. Leahy likewise reported that group homogeneity did not affect weight loss outcomes (5). Of particular interest was the finding that the size of the group did not affect the mean weight losses achieved; thus participants in smaller groups, who might be expected to receive more individual attention, did not achieve large weight losses. This is an interesting finding for clinicians who might want to consider the cost-effectiveness of delivering behavioral weight loss programs to groups of approximately 15-20 members.

There are several limitations of this study that need to be considered in interpreting the results. First, all Look AHEAD participants had diabetes, were between ages 45 and 76, and were willing to participate in a randomized clinical trial; these factors limited the heterogeneity of the sample and the generalizability of the findings. In addition, efforts were made to maintain consistency of the intervention across sites and to maximize adherence in all participants; these efforts may have limited the effect of within-group variables. The treatment protocol involved both group and individual meetings, and the individual sessions, which are unusual to include in group-based programs, may have weakened the clustering of outcomes.

In summary, there appears to be little evidence that weight losses cluster among the members of a behavioral weight loss group, although somewhat greater effects were seen for adherence. Moreover, characteristics of the group in terms of size and homogeneity of the members have little effect on outcomes. Although treating participants in groups is clearly cost-effective, efforts to maximize the social aspects of group behavioral weight loss programs to improve treatment outcomes may be most successful if they utilize pre-existing relationships or extend beyond merely treating participants together in the same group and incorporate innovative strategies to affect group norms, group cohesion, and social influence processes.

Acknowledgments

This report is based primarily on data collected during year 1 of the Look AHEAD study. All investigators and staff involved in the baseline and 1-year results of Look AHEAD are listed below.

Clinical sites

The Johns Hopkins Medical Institutions Frederick L. Brancati, MD, MHS1; Jeff Horas, MS2; Lawrence Cheskin, MD3; Jeanne M. Clark, MD, MPH1; Melody Tepper, MHS1; Jeff Honas, MS2; Lawrence Cheskin, MD3; Jeanne M. Clark, MD, MPH1; Melody Tepper, MHS1; Jeffrey Honas, MS2; Donald W. Kohn, PhD3; Amy Bachand; Michelle Begnaud; Betsy Berhard; Elizabeth Caderette; Barbara Cerniauskas; David Credell; Diane Crow; Helen Guay; Nancy Kora; Kelly LaFleur; Kim Landry; Missy Lingle; Jennifer Perault; Manly Shipp, RD; Marisa Smith; Elizabeth Tucker

Pennington Biomedical Research Center George A. Bray, MD1; Kristi Rau2; Allison Strate, RN; Brandi Armand, LPN2; Frank L. Greenway, MD3; Donna H. Ryan, MD, MD3; Donald Williamson, PhD3; Amy Bachand; Michelle Begnaud; Betsy Berhard; Elizabeth Caderette; Barbara Cerniauskas; David Credell; Diane Crow; Helen Guay; Nancy Kora; Kelly LaFleur; Kim Landry; Missy Lingle; Jennifer Perault; Manly Shipp, RD; Marisa Smith; Elizabeth Tucker

The University of Alabama at Birmingham Cora E. Lewis, MD, MSPH1; Sheikilya Thomas MPH1; Kristi Rau2; Allison Strate, RN; Brandi Armand, LPN2; Frank L. Greenway, MD3; Donna H. Ryan, MD, MD3; Donald Williamson, PhD3; Amy Bachand; Michelle Begnaud; Betsy Berhard; Elizabeth Caderette; Barbara Cerniauskas; David Credell; Diane Crow; Helen Guay; Nancy Kora; Kelly LaFleur; Kim Landry; Missy Lingle; Jennifer Perault; Manly Shipp, RD; Marisa Smith; Elizabeth Tucker

Harvard center

Massachusetts General Hospital: David M. Nathan, MD1; Heather Turgeon, RN, BS, CDE2; Kristina Schumann, BA2; Enrico Cagliero, MD3; Linda Delahanty, MS, RD, RD1; Kathyn Hayward, MD1; Ellen Anderson, MS, RD1; Laurie Bissett, MS, RD; Richard Ginsburg, PhD; Valerie Goldman, MS, RD; Virginia Harlan, MSW; Charles Wing et al.
McKitrick, RN, BSN, CDE; Alan McNamara, BS; Theresa Michel, DPT, DSc CCS; Alexi Poulos, BA; Barbara Steiner, EdM; Joelyn Tosch, BA

Joslin Diabetes Center: Edward S. Horton, MD; Sharon D. Jackson, MS, RD, CDE; Osama Hamdy, MD, PhD; A. Enrique Caballero, MD; Sarah Bain, BS;

Elizabeth Bovaird, BSN, RN; Ann Goebel-Fabbri, PhD; Lori Lambert, MS, RD;

Sarah Ledbury, MEd, RD; Maureen Malloy, BS; Kerry Ovaille, MS; RCEP, CDE

Beth Israel Deaconess Medical Center: George Blackburn, MD, PhD; Christos Mantzoros, MD, DSc; Kristinia Day, RD; Ann McNamara, RN

University of Colorado Health Sciences Center James O. Hill, PhD; Marsha Miller, MS, RD; JoAnn Phillip, MS; Robert Schwartz, MD; Brent Van Dorsten, PhD; Judith Regensteiner, PhD; Salma Benchemroun M; Ligia Coelho, BS;

Paulette Cohrs, RN, BSN; Elizabeth Daeninck, MS, RD; Amy Fields, MPH; Susan Green; April Hamilton, BS, CCCR; Jere Hamilton, BA; Eugene Leshchinskiy; Michael McDermott, MD; Lindsey Munkwitz, BS; Loretta Rome, TRS; Kristin Wallace, MPh; Terra Worley, BA

Baylor College of Medicine John P. Foreyt, PhD; Rebecca S. Reeves, DrPH, RD; Henry Pownall, PhD; Ashok Balasubramanyam, MBBS; Peter Jones, MD; Michele Burrington, RD; Chu-Huang Chen, MD, PhD; Allyson Clark, RD; Molly Gee, MEd, RD; Sharon Griggs; Michelle Hamilton; Veronica Holley; Jayne Joseph, RD; Patricia Pace, RD; Julieta Palencia, RN; Olga Satterwhite, RD; Jennifer Schmidt; Devin Volding, LMSW; Carolyn White

University of California at Los Angeles School of Medicine Mohammed F. Saad, MD; Siran Ghazarian Sengardi, MD; Ken C. Chiu, MD; Medhat Botrous; Michelle Chan, BS; Kati Kornersman, MA, RD, CDE; Magpuri Perpetua, RD

The University of Tennessee Health Science Center

University of Tennessee East. Karen C. Johnson, MD, MPH; Carolyn Gresham, RN; Stephanie Connelly, MD, MPH; Amy Brewer, RD, MS; Mace Coday, PhD; Lisa Jones, RN; Lynne Lichtermann, RN, BSN; Shirley Vosburg, RD, MPH; and J. Lee Taylor, MEd, MBA

University of Tennessee Downtown. Abbas E. Kitabchi, PhD, MD; Helen Lambeth, RN, BSN; Debra Clark, LPN; Andrea Crisler, MT; Gracie Cunningham; Donna Green, RN; Debra Force, MS, RD, LDN; Robert Kores, PhD; Renate Rosenthal PhD; Elizabeth Smith, MS, RD, LDN; and Maria Sun, MS, RD, LDN; and Judith Soberman, MD

University of Minnesota Robert W. Jeffery, PhD; Carolyn Thorson, CCRP; John P. Bantle, MD; J. Bruce Redmon, MD; Richard S. Crow, MD; Scott Crow, MD; Susan K Raatz, Ph.D, RD; Kerrin Brejle, MPH, RD; Carolyne Campbell; Jeanne Carls, MEd; Tara Carmean-Mihm, BA; Emily Finch, MA; Anna Fox, MA; Elizabeth Hoelscher, MPH, RD, CHES; La Donna James; Vicki A. Maddy, BS, RD; Therese Ockendall, RN; Birgitta I. Rice, RS, RPh CHES; Tricia Skarphol, BS; Ann D. Tucker, BA; Mary Susan Voeller, BA; Cara Walcheck, BS, RD

St. Luke’s Roosevelt Hospital Center Xavier Pi-Sunyer, MD; Jennifer Patricio, MS; Stanley Heshka, PhD; Carmen Pal, MD; Lynn Allen, MD; Diane Hirsch, RNC, MS, CDE; Mary Anne Holowaty, MS, CN

University of Pennsylvania Thomas A. Wadden, PhD; Barbara J. Maschak-Carey, MSN, CDE; Stanley Schwartz, MD; Gary D. Foster, PhD; Robert I. Berkowitz, MD; Henry Glick, PhD; Shiri K. Kumanyika, PhD, RD, MPH; Johanna Brock; Helen Chometowski; Vicki Clark; Canice Cerrand, PhD; Renee Davenport; Andrea Diamond, MS, RD; Anthony Fabricatore, PhD; Louise Hesson, MSN; Stephanie Krauthamer-Ewing, MPH; Robert Kuehnel, PhD; Patricia Lipschutz, MSN; Monica Mullen, MS, RD; Leslie Womble, PhD, MS; Nayyar Iqbal, MD

University of Pittsburgh David E. Kelley, MD; Jacqueline Wesche-Thobaben, RN, BSN, CDE; Lewis Kuller, MD, DrPH; Andrea Kriska, PhD; Janet Bonk, RN, MPH; Rebecca Danchenko, BS; Daniel Edmundowicz, MD; Mary L. Klem, PhD, MLIS; Monica E. Yamamoto, DrPH, RD, FADA; Barb Elnyczyk, MA; George A. Grove, MS; Pat Harper, MS, RD, LDN; Janet Krulia, RN, BSN, CDE; Juliet Mancino, MS, RD, CDE; Lisa Crompton, MS, RD, LDN; Tracey Y. Murray, BS; Joan R. Ritchea; Jennifer Rush, MPH; Karen Vujevich, RN-BC, MSN, CRNP; Donna Wolf, MS

The Miriam Hospital/Brown Medical School Reena Bright, MS; Vincent Pera, MD; John Jakicic, PhD; Deborah Tate, PhD; Amy Gorin, PhD; Kara Gallagher, PhD; Amy Bach, PhD; Barbara Bancroft, RN, MS; Anna Bertorelli, MBA, RD; Richard Carey; BS; Tatum Charron; BS; Heather Chenot; MS; Kimberley Chula-Maguire; MS; Pamela Coward, MS, RD; Lisa Cronkite, BS; Julie Currin, MD; Maureen Daly, RN; Caitlin Egan, MS; Erica Ferguson, BS, RD; Linda Foss, MPH; Jennifer Gauvin, BS; Don Kieffer, PhD; Lauren Lessard, BS; Deborah Maier, MS; JP Massaro, BS; Tammy Monk, MS; Rob Nicholson, PhD; Erin Patterson, BS; Suzanne Phelan, PhD; Hollie Raynor, PhD, RD; Douglas Raynor, PhD; Natalie Robinson, MS, RD; Deborah Robles; Jane Tavares, BS

The University of Texas Health Science Center at San Antonio Steven M. Haffner, MD; Maria G. Montez, RN, MSHP, CDE; Carlos Lorenzo, MD

University of Washington/VA Puget Sound Health Care System Steven Kahn MB, ChB; Brenda Montgomery, RN, MS, CDE; Robert Knopp, MD; Edward Lipkin, MD; Matthew L. Maciejewski, PhD; Dace Trence, MD; Terry Barrett, BS; Joli Bartell, BA; Diane Greenberg, PhD; Anne Murillo, BS; Betty Ann Richmond, MEd; April Thomas, MPH, RD

Southwestern American Indian Center, Phoenix, Arizona and Shipprock, New Mexico William C. Knowler, MD, DrPH; Paula Bolin, RN, MC; Tina Killeen, BS; Cathy Manus, LPN; Jonathan Krakoff, MD; Jeffrey M. Curtis, MD, MPH; Justin Glass, MD; Sara Michaels, MD; Peter H. Bennett, MB, FRCP; Tina Morgan;
Shandii Begay, MPH; Bernadita Fallis RN, RHIT, CCS; Jeanette Hermes, MS, RD; Diane F. Hollowbread; Ruby Johnson; Maria Meacham, BSN, RN, CDE; Julie Nelson, RD; Carol Percy, RN; Patricia Poothrnder; Sandra Sangster; Nancy Scurluck, MSN, ANP-C, CDE; Leigh A. Shovestull, RD, CDE; Janelia Smiley; Katie Toledo, MS, LPC; Christina Tomchek, BA; Darryl Tonemah PhD

University of Southern California Anne Peters, MD1; Valerie Rue-las, MSW, LCSW2; Siran Ghazarian Sengardi, MD3; Kathryn Graves, MPH, RD, CDE; Kati Konersman, MA, RD, CDE; Sara Seratin-Dokhan

Coordinating Center
Wake Forest University Mark A. Espeland, PhD1; Judy L. Bahnson, BA2; Lynne Wagenknecht, DrPH1; David Reboussin, PhD2; W. Jack Rejeski, PhD1; Alain Bertoni, MD, MPH3; Wei Lang, PhD2; Gary Miller, PhD3; David LeKowitz, MD2; Patrick S. Reynolds, MD2; Paul Ribisl, PhD2; Mara Vitolins, DrPH2; Michael Booth, MBA3; Kathy M. Dotson, BA2; Amelia Hodges, BS2; Carrie C. Williams, MA2; Jerry M. Barnes, MA; Patricia A. Feeney, MS; Jason Griffin, BS; Lea Harvin, BS; William Herman, MD, MPH; Patricia Hogan, MS; Sarah Harvinillo, MS; Mark King, BS; Kathy Lane, BS; Rebecca Neiberg, MS; Andrea Ruggiero, MS; Christian Speas, BS; Michael P. Walkup, MS; Karen Wall, AAS; Michelle Ward; Delia S. West, PhD; Terri Windham

Central Resources Centers
DXA Reading Center, University of California at San Francisco Michael Nevitt, PhD1; Susan Ewing, MS; Cynthia Hayashi; Jason Maeda, MPH; Lisa Palermo, MS, MA; Michaela Rahorst; Ann Schwartz, PhD; John Shepherd, PhD

Central Laboratory, Northwest Lipid Research Laboratories Santica M. Marcovina, PhD, ScD1; Greg Standlewick, MS

ECG Reading Center, EPICARE, Wake Forest University School of Medicine
Ronald J. Primeas, MD, PhD1; Teresa Alexander; Lisa Billings; Charles Campbell, AAS, BS; Sharon Hall; Susan Hensley; Yabing Li, MD; Zhu-Ming Zhang, MD

Diet Assessment Center, University of South Carolina, Arnold School of Public Health, Center for Research in Nutrition and Health Disparities Elizabeth J Mayer-Davis, PhD1; Robert Moran, PhD

Hall-Foushee Communications, Inc.
Richard Foushee, PhD; Nancy J. Hall, MA
1Principal Investigator
2Program Coordinator
3Co-Investigator

All other Look AHEAD staffs are listed alphabetically by site.

Federal Sponsors: National Institute of Diabetes and Digestive and Kidney Diseases: Barbara Harrison, MS; Van S. Hubbard, MD PhD; Susan Z. Yanovski, MD. National Heart, Lung, and Blood Institute: Lawton S. Cooper, MD, MPH; Jeffrey Cutler, MD, MPH; Eva Obarzaneck, PhD, MPH, RD. Centers for Disease Control and Prevention: Edward W. Gregg, PhD; David F. Williamson, PhD; Ping Zhang, PhD.

© 2013 The Obesity Society

References
1. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med 2007;357:370-379.
2. Wing RR, Jeffery RW. Benefits of recruiting participants with friends and increasing social support for weight loss and maintenance. J Consult Clin Psychol 1999;67:132-138.
3. Gorin A, et al. Involving support partners in obesity treatment. J Consult Clin Psychol 2005;73:341-343.
4. Gorin AA, et al. Weight loss treatment influences untreated spouses and the home environment: evidence of a ripple effect. Int J Obes (Lond) 2008;32:1678-1684.
5. Leahy TM, et al. Teammates and social influence affect weight loss outcomes in a team-based weight loss competition. Obesity, 2012;20:1413-1418.
6. Wing RR. Behavioral approaches to the treatment of obesity. n Handbook of Obesity Treatment, Bray GA, Bouchard C, Editors.New York: Marcel Dekker; 2008. p 227-248.
7. Heshka S, et al. Weight loss with self-help compared with a structured commercial program: a randomized trial. JAMA 2003;289:1792-1798.
8. Renjilian DA, et al. Individual versus group therapy for obesity: effects of matching participants to their treatment preferences. J Consult Clin Psychol 2001;69:717-721.
9. Fabricatore AN, et al. Predictors of attrition and weight loss success: Results from a randomized controlled trial. Behav Res Ther 2009;47:685-691.
10. Levine J, Moreland R. Small groups. In: The Handbook of Social Psychology, Gilbert D, Fiske S, Lindsey G, Editors. New York, NY: Oxford University Press; 1998. p 415-469.
11. O‘Dell JW. Group size and emotional interaction. J Pers Soc Psychol 1980;4:209-226.
12. Jeffery RW, Snell MK, Forster JL. Group composition in the treatment of obesity: does increasing group homogeneity improve treatment results? Behav Res Ther 1985;23:371-373.
13. Simon GE, et al. Is success in weight loss treatment contagious (Do attendance and outcomes cluster within treatment groups)? Obes Res Clin Pract 2010;4:283-291.
14. Murray D. Design and Analysis of Group-Randomized Trials. New York: Oxford University Press; 1998.
15. Ryan DH, et al. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials 2003;24:610-628.
16. Bray G, et al. Baseline characteristics of the randomised cohort from the Look AHEAD (Action for Health in Diabetes) study. Diab Vasc Dis Res 2006;3:202-215.
17. Wadden TA, et al. The Look AHEAD study: a description of the lifestyle intervention program: a randomized trial. JAMA 2003;289:1792-1798.
18. Hertel G, Kerr NL, Messe LA. Motivation gains in performance groups: paradigmatic and theoretical developments on the Kohler effect. J Pers Soc Psychol 2000;79:580-601.
19. Kohler O. Uber den Gruppenwirkungsgrad der menschlichen K"orperarbeit und die Bedingung optimale Kollektivkraftreaktion [Human physical performance in groups and conditions for optimal collective performance]. Industrielle Psychotechnik 1927:4;209-226.
20. Feltz DL, Kerr NL, Irwin BC, Buddy uh: the Kohler effect applied to health games. J Sport Exerc Psychol 2011;33:506-526.
21. Irwin BC, et al. Aerobic exercise is promoted when individual performance affects the group: a test of the Kohler motivation gain effect. Ann Behav Med 2012;44:151-159.
22. Osborn KA, et al. The Kohler effect: motivation gains and losses in real sports groups. Sport Exerc Perform Psychol 2012;1:242-253.
23. Foreyt JP, Goodrick GK, Gotto AM. Limitations of behavioral treatment of obesity: review and analysis. J Behav Med 1981;4:159-174.
24. Evans CR, Dion KL. Group cohesion and performance: a metaanalysis. Small Group Res 1991;22:175-186.
25. Maznevski M. Understanding our differences: performance in decision-making groups with diverse members. Hum Relat 1994;47:531-552.