Adaptive ensemble Kalman filtering of nonlinear systems

Tyrus Berry
George Mason University

June 12, 2013
We consider a system of the form:

\[x_{k+1} = f(x_k) + \omega_{k+1} \quad \text{with} \quad \omega \approx \mathcal{N}(0, Q) \]

\[y_{k+1} = h(x_{k+1}) + \nu_{k+1} \quad \text{with} \quad \nu \approx \mathcal{N}(0, R) \]

We initially assume Gaussian system and observation noise.

Our goal is to estimate the covariance matrices \(Q \) and \(R \) as part of the filter procedure.

Later we consider \(Q \) to be an additive inflation which attempts to compensate for model error.
Nonlinear Kalman-type Filter: Influence of Q and R

- Simple example with full observation and diagonal noise covariances
- Red indicates RMSE of unfiltered observations
- Black is RMSE of ‘optimal’ filter (true covariances known)
Nonlinear Kalman-type Filter: Influence of Q and R

Standard Kalman Update:

$$
\begin{align*}
P^f_k &= F_{k-1} P^a_{k-1} F_{k-1}^T + Q_{k-1} \\
P^y_k &= H_k P^f_k H_k^T + R_{k-1} \\
K_k &= P^f_k H_k^T (P^y_k)^{-1} \\
P^a_k &= (I - K_k H_k) P^f_k \\
\epsilon_k &= y_k - y^f_k = y_k - H_k x^f_k \\
x^a_k &= x^f_k + K_k \epsilon_k
\end{align*}
$$
Nonlinear Kalman-type Filter: Influence of Q and R

- Covariances Q and R effect filter performance
- Seems better to underestimate observation noise
- Seems better to overestimate ‘model error’
- Can we estimate these parameters from the data?
Adaptive Filter: Estimating Q and R

- Innovations contain information about Q and R
 \[\epsilon_k = y_k - y_k^f \]
 \[= h(x_k) + \nu_k - h(x_k^f) \]
 \[= h(f(x_{k-1}) + \omega_k) - h(f(x_{k-1}^a)) + \nu_k \]
 \[\approx H_k F_{k-1}(x_{k-1} - x_{k-1}^a) + H_k \omega_k + \nu_k \]

- IDEA: Use innovations to produce samples of Q and R:
 \[\mathbb{E}[\epsilon_k \epsilon_k^T] \approx H P^f H^T + R \]
 \[\mathbb{E}[\epsilon_{k+1} \epsilon_k^T] \approx H F P^e H^T - H F K \mathbb{E}[\epsilon_k \epsilon_k^T] \]
 \[P^e \approx F P^a F^T + Q \]

- In the linear case this is rigorous and was first solved by Mehra in 1970
Adaptive Filter: Estimating Q and R

- To find Q and R we estimate H_k and F_{k-1} from the ensemble and invert the equations:

$$
\mathbb{E}[\epsilon_k \epsilon_k^T] \approx H P_f H^T + R
$$
$$
\mathbb{E}[\epsilon_{k+1} \epsilon_k^T] \approx H F P_e H^T - H F K \mathbb{E}[\epsilon_k \epsilon_k^T]
$$

- This gives the following empirical estimates of Q_k and R_k:

$$
P_k^e = (H_{k+1} F_k)^{-1} (\epsilon_{k+1} \epsilon_k^T + H_{k+1} F_k K_k \epsilon_k \epsilon_k^T) H_k^{-T}
$$
$$
Q_k^e = P_k^e - F_{k-1} P_{k-1}^a F_{k-1}^T
$$
$$
R_k^e = \epsilon_k \epsilon_k^T - H_k P_k^f H_k^T
$$

- Note: P_k^e is an empirical estimate of the background covariance
An Adaptive Kalman-Type Filter for Nonlinear Problems

We combine the estimates of Q and R with a moving average

Original Kalman Eqs.

\[
\begin{align*}
P^f_k &= F_{k-1} P^a_{k-1} F_{k-1}^T + Q_{k-1} \\
P^y_k &= H_k P^f_k H_k^T + R_{k-1} \\
K_k &= P^f_k H_k^T (P^y_k)^{-1} \\
P^a_k &= (I - K_k H_k) P^f_k
\end{align*}
\]

\[
\begin{align*}
\epsilon_k &= y_k - y^f_k \\
x^a_k &= x^f_k + K_k \epsilon_k
\end{align*}
\]

Our Additional Update

\[
\begin{align*}
P_{k-1}^e &= F_{k-1}^{-1} H_k^{-1} \epsilon_k \epsilon_k^T H_k^{-T} \\
K_{k-1} &= K_{k-1} \epsilon_k \epsilon_k^T H_k^{-T} \\
Q_{k-1}^e &= P_{k-1}^e - F_{k-2} P^a_{k-2} F_{k-2}^T \\
R_{k-1}^e &= \epsilon_k \epsilon_k^T H_k^{-1} P^f_{k-1} H_k^{-T} \\
Q_k &= Q_{k-1} + (Q_{k-1}^e - Q_{k-1})/\tau \\
R_k &= R_{k-1} + (R_{k-1}^e - R_{k-1})/\tau
\end{align*}
\]
How does this compare to inflation?

- We extend Kalman’s equations to estimate Q and R
- Estimates converge for linear models with Gaussian noise
- When applied to nonlinear, non-Gaussian problems
 - We interpret Q as an additive inflation
 - Q can have complex structure, possibly more effective than multiplicative inflation?
 - Downside: many more parameters than multiplicative inflation
- Somewhat less ad hoc than other inflation techniques?
We will apply the adaptive EnKF to the 40-dimensional Lorenz96 model integrated over a time step $\Delta t = 0.05$

$$\frac{dx^i}{dt} = -x^{i-2}x^{i-1} + x^{i-1}x^{i+1} - x^i + F$$

We augment the model with Gaussian white noise

$$x_k = f(x_{k-1}) + \omega_k \quad \omega_k = \mathcal{N}(0, Q)$$
$$y_k = h(x_k) + \nu_k \quad \nu_k = \mathcal{N}(0, R)$$

We will consider full and sparse observations

The Adaptive EnKF uses $F = 8$

We will consider model error where the true $F^i = \mathcal{N}(8, 16)$
Recovering Q and R, Full Observability

RMSE shown for the initial guess covariances (red) the true Q and R (black) and the adaptive filter (blue)
Recovering Q and R, Sparse Observability

Observing 10 sites results in divergence with the true Q and R

\[\begin{array}{cccc}
\text{True Covariance} & \text{Initial Guess} & \text{Final Estimate} & \text{Difference} \\
Q & & & \\
R & & & \\
\end{array} \]

RMSE shown for the initial guess covariances (red) the true Q and R (black) and the adaptive filter (blue)
Compensating for Model Error

The adaptive filter compensates for errors in the forcing F^i

RMSE shown for the initial guess covariances (red) an Oracle EnKF (black) and the adaptive filter (blue)
Integration with the LETKF

Simply find a local Q and R for each region

Site Number	Relative Variance
0	0
10	0.2
20	0.4
30	0.6
40	0.8

Filter Steps	RMSE
0	0
0.5	0.2
1	0.4
1.5	0.6
2	0.8

RMSE shown for the initial guess covariances (red) the true Q and R (black) and the adaptive filter (blue)
This research was partially supported by the National Science Foundation Directorates of Engineering (EFRI-1024713) and Mathematics and Physical Sciences (DMS-1216568).

T. Berry, T. Sauer, Adaptive ensemble Kalman filtering of nonlinear systems. To appear in Tellus A.

R. Mehra, 1970: On the identification of variances and adaptive Kalman filtering.

P. R. Bélanger, 1974: Estimation of noise covariance matrices for a linear time-varying stochastic process.

J. Anderson, 2007: An adaptive covariance inflation error correction algorithm for ensemble filters.

H. Li, E. Kalnay, T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter.

B. Hunt, E. Kostelich, I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter.

E. Ott, et al. 2004: A local ensemble Kalman filter for atmospheric data assimilation.