On the metric dimension of corona product graphs

I. G. Yero1, D. Kuziak2 and J. A. Rodríguez-Velázquez1

1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain. ismael.gonzalez@urv.cat, juanalberto.rodriguez@urv.cat
2Faculty of Applied Physics and Mathematics Gdansk University of Technology, ul. Narutowicza 11/12 80-233 Gdansk, Poland dkuziak@mif.pg.gda.pl

October 8, 2010

Abstract

Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph G, the metric representation of a vertex v of G with respect to S is the vector $r(v|S) = (d(v, v_1), d(v, v_2), ..., d(v, v_k))$, where $d(v, v_i)$, $i \in \{1, ..., k\}$ denotes the distance between v and v_i. S is a resolving set for G if for every pair of vertices u, v of G, $r(u|S) \neq r(v|S)$. The metric dimension of G, $\text{dim}(G)$, is the minimum cardinality of any resolving set for G. Let G and H be two graphs of order n_1 and n_2, respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_1 copies of H and joining by an edge each vertex from the i^{th}-copy of H with the i^{th}-vertex of G. For any integer $k \geq 2$, we define the graph $G \odot^k H$ recursively from $G \odot H$ as $G \odot^k H = (G \odot^{k-1} H) \odot H$. We give several results on the metric dimension of $G \odot^k H$. For instance, we show that given two connected graphs G and H of order $n_1 \geq 2$ and $n_2 \geq 2$, respectively, if the diameter of H is at most two, then $\text{dim}(G \odot^k H) = n_1(n_2 + 1)^{k-1}\text{dim}(H)$. Moreover, if $n_2 \geq 7$ and
the diameter of H is greater than five or H is a cycle graph, then
\[\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}\dim(K_1 \odot H). \]

Keywords: Resolving sets, metric dimension, corona graph.

AMS Subject Classification Numbers: 05C12; 05C76; 05C90; 92E10.

1 Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [10] and Slater [19], to define the same structure in a graph. After these papers were published several authors developed diverse theoretical works about this topic [3, 4, 5, 6, 7, 16, 18, 20]. Slater described the usefulness of these ideas into long range aids to navigation [19]. Also, these concepts have some applications in chemistry for representing chemical compounds [14, 15] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [17]. Other applications of this concept to navigation of robots in networks and other areas appear in [6, 12, 16]. Some variations on resolvability or location have been appearing in the literature, like those about conditional resolvability [18], locating domination [11], resolving domination [1] and resolving partitions [5, 8, 9, 21]. In this article we study the metric dimension of corona product graphs.

We begin by giving some basic concepts and notations. Let $G = (V, E)$ be a simple graph of order $n = |V|$. Let $u, v \in V$ be two different vertices in G, the distance $d_G(u, v)$ between two vertices u and v of G is the length of a shortest path between u and v. If there is no ambiguity, we will use the notation $d(u, v)$ instead of $d_G(u, v)$. The diameter of G is defined as
\[D(G) = \max_{u, v \in V}\{d(u, v)\}. \]
Given $u, v \in V$, $u \sim v$ means that u and v are adjacent vertices. Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph G, the **metric representation** of a vertex $v \in V$ with respect to S is the vector $r(v|S) = (d(v, v_1), d(v, v_2), ..., d(v, v_k))$. We say that S is a **resolving set** for G if for every pair of distinct vertices $u, v \in V$, $r(u|S) \neq r(v|S)$. The **metric dimension** of G is the minimum cardinality of any resolving set for G, and it is denoted by $\dim(G)$.

Let G and H be two graphs of order n_1 and n_2, respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_1 copies of H and joining by an edge each vertex from the
i^{th}-copy of H with the i^{th}-vertex of G. We will denote by $V = \{v_1, v_2, ..., v_n\}$ the set of vertices of G and by $H_i = (V_i, E_i)$ the copy of H such that $v_i \sim v$ for every $v \in V_i$. Notice that the corona graph $K_1 \odot H$ is isomorphic to the join graph $K_1 + H$. For any integer $k \geq 2$, we define the graph $G \odot^k H$ recursively from $G \odot H$ as $G \odot^k H = (G \odot^{k-1} H) \odot H$. We also note that the order of $G \odot^k H$ is $n_1(n_2 + 1)^k$.

2 Metric dimension of corona product graphs

We begin by presenting the following useful facts.

Lemma 1. Let $G = (V, E)$ be a connected graph of order $n \geq 2$ and let H be a graph of order at least two. Let $H_i = (V_i, E_i)$ be the subgraph of $G \odot H$ corresponding to the i^{th}-copy of H.

(i) If $u, v \in V_i$, then $d_{G \odot H}(u, x) = d_{G \odot H}(v, x)$ for every vertex x of $G \odot H$ not belonging to V_i.

(ii) If S is a resolving set for $G \odot H$, then $V_i \cap S \neq \emptyset$ for every $i \in \{1, ..., n\}$.

(iii) If S is a resolving set for $G \odot H$ of minimum cardinality, then $V \cap S = \emptyset$.

(iv) If H is a connected graph and S is a resolving set for $G \odot H$, then for every $i \in \{1, .., n\}$, $S \cap V_i$ is a resolving set for H_i.

Proof. (i) Let $y = v_i \in V$. The result directly follows from the fact that $d_{G \odot H}(u, x) = d_{G \odot H}(u, y) + d_{G \odot H}(y, x) = d_{G \odot H}(v, x) = d_{G \odot H}(v, x)$.

(ii) We suppose $V_i \cap S = \emptyset$ for some $i \in \{1, ..., n\}$. Let $x, y \in V_i$. By (i) we have $d_{G \odot H}(x, u) = d_{G \odot H}(y, u)$ for every vertex $u \in S$, which is a contradiction.

(iii) We will show that $S' = S - V$ is a resolving set for $G \odot H$. Now let x, y be two different vertices of $G \odot H$. We have the following cases.

Case 1: $x, y \in V_i$. By (i) we conclude that there exist $v \in V_i \cap S'$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$.

Case 2: $x \in V_i$ and $y \in V_j, i \neq j$. Let $v \in V_i \cap S'$. Then we have $d_{G \odot H}(x, v) \leq 2 < 3 \leq d_{G \odot H}(y, v)$.

Case 3: $x, y \in V$. Let $x = v_i$ and let $v \in V_i \cap S'$. Then we have $d_{G \odot H}(x, v) = 1 < 1 + d_{G \odot H}(y, x) = d_{G \odot H}(y, v)$.

3
Case 4: \(x \in V_i \) and \(y \in V \). If \(x \sim y \), then \(y = v_i \). Let \(v_j \in V \), \(j \neq i \), and let \(v \in V_j \cap S' \). Then we have \(d_{G \circ H}(x, v) = 1 + d_{G \circ H}(y, v) > d_{G \circ H}(y, v) \). For \(x \not\sim y = v_i \) we take \(v \in V_i \cap S' \) and we obtain \(d_{G \circ H}(x, v) = d_{G \circ H}(x, y) + d_{G \circ H}(y, v) > d_{G \circ H}(y, v) \).

Therefore, \(S' \) is a resolving set for \(G \circ H \).

(iv) Let \(S_i = S \cap V_i \). For \(x \in S_i \) or \(y \in S_i \) the result is straightforward. We suppose \(x, y \in V_i - S_i \). Since \(S \) is a resolving set for \(G \circ H \), we have \(r(x|S) \neq r(y|S) \). By (i), \(d_{G \circ H}(x, u) = d_{G \circ H}(y, u) \) for every vertex \(u \) of \(G \circ H \) not belonging to \(V_i \). So, there exists \(v \in S_i \) such that \(d_{G \circ H}(x, v) \neq d_{G \circ H}(y, v) \). Thus, either \((v \sim x \text{ and } v \not\sim y) \) or \((v \not\sim x \text{ and } v \sim y) \). In the first case we have \(d_{G \circ H}(x, v) = d_{H_i}(x, v) = 1 \) and \(d_{G \circ H}(y, v) = 2 \leq d_{H_i}(y, v) \). The case \(v \not\sim x \) and \(v \sim y \) is analogous. Therefore, \(S_i \) is a resolving set for \(H_i \).

Theorem 2. Let \(G \) and \(H \) be two connected graphs of order \(n_1 \geq 2 \) and \(n_2 \geq 2 \), respectively. Then,

\[
\dim(G \circ^k H) \geq n_1(n_2 + 1)^{k-1}\dim(H).
\]

Proof. Let \(S \) be a resolving set of minimum cardinality in \(G \circ H \). From Lemma 1 (iii) we have that \(S \cap V = \emptyset \). Moreover, by Lemma 1 (ii) we have that for every \(i \in \{1, \ldots, n_1\} \) there exist a nonempty set \(S_i \subset V_i \) such that \(S = \bigcup_{i=1}^{n_1} S_i \). Now, by using Lemma 1 (iv) we have that \(S_i \) is a resolving set for \(H_i \). Hence, \(\dim(G \circ H) = |S| = \sum_{i=1}^{n_1} |S_i| \geq \sum_{i=1}^{n_1} \dim(H) = n_1 \dim(H) \). As a result, the lower bound follows. \(\square \)

Theorem 3. Let \(G \) be a connected graph of order \(n_1 \geq 2 \) and let \(H \) be a graph of order \(n_2 \geq 2 \). If \(D(H) \leq 2 \), then

\[
\dim(G \circ^k H) = n_1(n_2 + 1)^{k-1}\dim(H).
\]

Proof. Let \(S_i \subset V_i \) be a resolving set for \(H_i \) and let \(S = \bigcup_{i=1}^{n_1} S_i \). We will show that \(S \) is a resolving set for \(G \circ H \). Let us consider two different vertices \(x, y \) of \(G \circ H \). We have the following cases.

Case 1: \(x, y \in V_i \). Since \(D(H_i) \leq 2 \), we have that \(r(x|S_i) \neq r(y|S_i) \) leads to \(r(x|S) \neq r(y|S) \).

Case 2: \(x \in V_i \) and \(y \in V_j \), \(i \neq j \). Let \(v \in S_i \). Hence we have \(d(x, v) \leq 2 < 3 \leq d(y, v) \).

Case 3: \(x, y \in V \). Let \(x = v_i \). Then for every vertex \(v \in S_i \) we have \(d(x, v) = 1 < d(y, x) + 1 = d(y, v) \).
Case 4: \(x \in V_i \) and \(y \in V \). If \(x \sim y \), then let \(v \in S_j \), for some \(j \neq i \). So we have \(d(x, v) = 1 + d(y, v) > d(y, v) \). Moreover, if \(x \not\sim y = v_j \), for \(v \in S_j \) we have \(d(x, v) = d(x, y) + d(y, v) > d(y, v) \).

Thus, for every different vertices \(x, y \) of \(G \odot H \), we have \(r(x|S) \neq r(y|S) \), as a consequence, \(\text{dim}(G \odot H) \leq n_1 \text{dim}(H) \). Therefore, we have \(\text{dim}(G \odot H) \leq n_1(n_2 + 1)^{k-1}\text{dim}(H) \). By Theorem 2 we conclude the proof. \(\square \)

In order to show a consequence of the above theorem we present the following well known result, where \(K_t \) denotes a complete graph of order \(t \), \(K_{s,t} \) denotes a complete bipartite graph of order \(s + t \) and \(N_t \) denotes an empty graph of order \(t \).

Lemma 4. [6] Let \(G \) be a connected graph of order \(n \geq 4 \). Then \(\text{dim}(G) = n - 2 \) if and only if \(G = K_{s,t}, \ (s, t \geq 1) \), \(G = K_s + N_t, \ (s \geq 1, t \geq 2) \), or \(G = K_s + (K_1 \cup K_t), \ (s, t \geq 1) \).

Corollary 5. Let \(G \) be a connected graph of order \(n_1 \geq 2 \) and let \(H \) be a graph of order \(n_2 \geq 4 \) and diameter \(D(H) \leq 2 \). Then

\[\text{dim}(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 2) \]

if and only if \(H = K_{s,t}, \ (s, t \geq 1) \); \(H = K_s + N_t, \ (s \geq 1, t \geq 2) \), or \(H = K_s + (K_1 \cup K_t), \ (s, t \geq 1) \).

We recall that the wheel graph of order \(n+1 \) is defined as \(W_{1,n} = K_1 \odot C_n \), where \(K_1 \) is the singleton graph and \(C_n \) is the cycle graph of order \(n \). The metric dimension of the wheel \(W_{1,n} \) was obtained by Buczkowski et. al. in [2].

Remark 6. [2] Let \(W_{1,n} \) be a wheel graph. Then

\[
\text{dim}(W_{1,n}) = \begin{cases}
3 & \text{for } n = 3, 6, \\
2 & \text{for } n = 4, 5, \\
\left\lfloor \frac{2n+2}{5} \right\rfloor & \text{otherwise.}
\end{cases}
\]

The fan graph \(F_{n_1,n_2} \) is defined as the graph join \(N_{n_1} + P_{n_2} \), where \(N_{n_1} \) is the empty graph of order \(n_1 \) and \(P_{n_2} \) is the path graph of order \(n_2 \). The case \(n_1 = 1 \) corresponds to the usual fan graphs. Notice that, for the metric dimension of fan graphs, it is possible to find an equivalent result to Remark 6 which was obtained by Caceres et. al. in [4].
Remark 7. [4] Let $F_{1,n}$ be a fan graph. Then

$$\dim(F_{1,n}) = \begin{cases} 1 & \text{for } n = 1, \\ 2 & \text{for } n = 2, 3, \\ 3 & \text{for } n = 6, \\ \left\lceil \frac{2n^2+2}{5} \right\rceil & \text{otherwise.} \end{cases}$$

As a particular case of the Theorem 3 we obtain the following results.

Corollary 8. Let G be a connected graph of order $n_1 \geq 2$. If H is a wheel graph or a fan graph of order $n_2 \geq 8$, then

$$\dim(G \circ^k H) = n_1(n_2 + 1)^{k-1} \left\lfloor \frac{2n_2}{5} \right\rfloor.$$

Theorem 9. Let G be a connected graph of order $n_1 \geq 2$ and let H be a graph of order $n_2 \geq 2$. Let α be the number of connected components of H of order greater than one and let β be the number of isolated vertices of H. Then

$$\dim(G \circ^k H) \leq \begin{cases} n_1(n_2 + 1)^{k-1}(n_2 - \alpha - 1) & \text{for } \alpha \geq 1 \text{ and } \beta \geq 1, \\ n_1(n_2 + 1)^{k-1}(n_2 - \alpha) & \text{for } \alpha \geq 1 \text{ and } \beta = 0, \\ n_1(n_2 + 1)^{k-1}(n_2 - 1) & \text{for } \alpha = 0. \end{cases}$$

Proof. We suppose $\alpha \geq 1$ and $\beta \geq 1$. Let A_i be the set of vertices of $G \circ H$ formed by all but one of the vertices per each of the α connected components of H_i. If $\beta \geq 2$ we define B_i to be the set of vertices of $G \circ H$ formed by all but one of the isolated vertices of H_i. If $\beta = 1$ we assume $B_i = \emptyset$. Let us show that $S = \bigcup_{i=1}^{n_1}(A_j \cup B_j)$ is a resolving set for $G \circ H$. Let x, y be two different vertices of $G \circ H$. We suppose $x, y \notin S$. We have the following cases.

Case 1. $x = v_i \in V$ and $y \in V_i$. For every vertex $u \in V_j \cap S, j \neq i$, we obtain $d(y, u) = d(y, x) + d(x, u) > d(x, u)$.

Case 2. $x = v_i \in V$ and $y \notin V_i$. For every $v \in S \cap V_i$ we have $d(x, v) = 1 < d(y, v)$.

Case 3. $x \in V_i$ and $y \in V_j, j \neq i$. For every $u \in V_i \cap S$ we have $d(x, u) \leq 2 < 3 \leq d(y, u)$.

6
Case 4. $x, y \in V_i$. We consider, without loss of generality, that x is not an isolated vertex in H_i. Then there exists $v \in V_i \cap S$ such that $v \sim x$, so $d(x, v) = 1 < 2 = d(y, v)$.

Thus, for every two different vertices x, y of $G \odot H$, we obtain $r(x|S) \neq r(y|S)$ and, as a consequence, $\dim(G \odot H) \leq n_1(n_2 - \alpha - 1)$.

As above, if $\beta = 0$ then we take $S = \bigcup_{j=1}^{n_2} A_j$ and we obtain $\dim(G \odot H) \leq n_1(n_2 - \alpha)$ and if $\alpha = 0$, then we take $S = \bigcup_{j=1}^{n_1} B_j$ and we obtain $\dim(G \odot H) \leq n_1(n_2 - 1)$. Note that if $\alpha = 0$, then it is not necessary to consider Case 4. Thus, the result follows.

\[\blacksquare \]

Corollary 10. Let G be a connected graph of order $n_1 \geq 2$ and let H be an unconnected graph of order $n_2 \geq 2$. Then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$$

if and only if $H \cong N_{n_2}$.

Proof. In [13] the authors showed that $\dim(G \odot N_{n_2}) = n_1(n_2 - 1)$. Hence, $\dim(G \odot^k N_{n_2}) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$. Moreover, by the above theorem, if H is unconnected and $H \not\cong N_{n_2}$, then $\dim(G \odot^k H) \leq n_1(n_2 + 1)^{k-1}(n_2 - 2)$.

\[\blacksquare \]

Theorem 11. Let G and H be two connected graphs of order $n_1 \geq 2$ and $n_2 \geq 3$, respectively. Then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$$

if and only if $H \cong K_{n_2}$. Moreover, if $H \not\cong K_{n_2}$, then

$$\dim(G \odot^k H) \leq n_1(n_2 + 1)^{k-1}(n_2 - 2).$$

Proof. Since $\dim(K_{n_2}) = n_2 - 1$, by Theorem 3 we conclude $\dim(G \odot^k K_{n_2}) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$. On the contrary, we suppose $H \not\cong K_{n_2}$. Given a set X of vertices of H and a vertex v of H, $N_X(v)$ denotes the set of neighbors that v has in X: $N_X(v) = \{u \in X : u \sim v\}$. Given two vertices a, b of H, let $X_{a,b}$ be the set formed by all vertices of H different from a and b. Since H is a connected graph and $H \not\cong K_{n_2}$, there exist at least two vertices a, b of H such that $N_{X_{a,b}}(a) \neq N_{X_{a,b}}(b)$. Let a_i, b_i be the vertices corresponding to a, b, respectively, in the i^{th}-copy $H_i = (V_i, E_i)$ of H. Let $S = \bigcup_{i=1}^{n_2}(V_i - \{a_i, b_i\})$. We will show that S is a resolving set for $G \odot H$. Let x, y be two different vertices of $G \odot H$ such that $x, y \notin S$. We have the following cases.
Case 1. $x = a_i$ and $y = b_i$. Since $N_{X_{a,b}}(a) \neq N_{X_{a,b}}(b)$ we have $r(x|S) \neq r(y|S)$.

Case 2. $x = v_i \in V$ and $y \in V_i$. For every $v \in V_j - \{a_j, b_j\}$, $j \neq i$, we have $d(y, v) = d(y, x) + d(x, v) > d(x, v)$. If $x \in V_i$ and $y \in V_j$, $j \neq i$, then for every $v \in V_i - \{a_i, b_i\}$ we have $d(x, v) \leq 2 < 3 \leq d(y, v)$.

Case 3. $x, y \in V$. Say $x = v_i$. Then for every $v \in V_i - \{a_i, b_i\}$ we have $d(x, v) = 1 < d(y, v)$.

Hence, for every two different vertices x, y of $G \circ H$, we obtain $r(x|S) \neq r(y|S)$. Thus, $\dim(G \circ H) \leq n_1(n_2 - 2)$. Therefore, the result follows. □

As we have shown in Corollary 5, the above bound is tight.

Theorem 12. Let G be a connected graph of order $n_1 \geq 2$ and let H be a graph of order $n_2 \geq 2$. Then

$$\dim(G \circ^k H) \leq n_1(n_2 + 1)^{k-1} \dim(K_1 \circ H).$$

Proof. We denote by $K_1 \circ H_i$ the subgraph of $G \circ H$, obtained by joining the vertex $v_i \in V$ with all vertices of H_i. For every $v_i \in V$, let B_i be a resolving set of minimum cardinality of $K_1 \circ H_i$ and let $B = \bigcup_{i=1}^{n_1} B_i$. By Lemma 1 (iii) we have that v_i does not belong to any resolving set of minimum cardinality for $K_1 \circ H_i$. So, B does not contain any vertex from G. We will show that B is a resolving set for $G \circ H$. Let x, y be two different vertices in $G \circ H$. We consider the following cases.

Case 1: $x, y \in V_i$. There exists $u \in B_i$ such that $d_{K_1 \circ H_i}(x, u) \neq d_{K_1 \circ H_i}(y, u)$, which leads to $d_{G \circ H}(x, u) \neq d_{G \circ H}(y, u)$.

Case 2: $x \in V_i$ and $y \in V_j$, $i \neq j$. Let $v \in B_i$. We have $d_{G \circ H}(x, v) \leq 2 < 3 \leq d_{G \circ H}(y, v)$.

Case 3: $x, y \in V$. Suppose now that x is adjacent to the vertices of H_i. Hence, for every vertex $v \in B_i$ we have $d_{G \circ H}(x, v) = 1 < d_{G \circ H}(y, x) + 1 = d_{G \circ H}(y, v)$.

Case 4: $x \in V_i$ and $y \in V$. If $x \sim y$, then for every vertex $v \in B_j$, with $j \neq i$, we have $d_{G \circ H}(x, v) = 1 + d_{G \circ H}(y, v) > d_{G \circ H}(y, v)$. Now, let us assume that $x \not\sim y$. Hence, there exists $v \in B_j$ adjacent to y, with $j \neq i$. So, we have $d_{G \circ H}(x, v) = d_{G \circ H}(x, y) + 1 = d_{G \circ H}(x, y) + d_{G \circ H}(y, v) > d_{G \circ H}(y, v)$.

Thus, for every two different vertices x, y of $G \circ H$, we have $r(x|S) \neq r(y|S)$ and, as a consequence, $\dim(G \circ H) \leq n_1 \dim(K_1 \circ H)$. Therefore, the result follows. □
Theorem 13. Let G be a connected graph of order $n_1 \geq 2$ and let H be a graph of order $n_2 \geq 7$. If $D(H) \geq 6$ or H is a cycle graph, then

$$dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}dim(K_1 \odot H).$$

Proof. Let S be a resolving set of minimum cardinality in $G \odot H$. By Lemma 1 (iii) we have $S \cap V = \emptyset$, as a consequence, $S = \bigcup_{i=1}^{n_1}S_i$, where $S_i \subset V_i$. Notice that, by Lemma 1 (ii), $S_i \neq \emptyset$ for every $i \in \{1, ..., n_1\}$. Now we differentiate two cases in order to show that $r(x|S_i) \neq (1, ..., 1)$ for every $x \in V_i - S_i$.

Case 1. H is a cycle graph of order $n_2 \geq 7$. If $r(a|S_i) = (1, 1)$ for some $a \in V_i - S_i$, then, since $n_2 \geq 7$, there exist two vertices $x, y \in V_i - S_i$ such that $d_{H_i}(x, y) > 1$ and $d_{H_i}(y, v) > 1$, for every $v \in S_i$. Hence, $d_{G \odot H}(x, v) = d_{G \odot H}(y, v) = 2$ for every $v \in S_i$, which is a contradiction because, by Lemma 1 (i), $d_{G \odot H}(x, v) = d_{G \odot H}(y, v)$ for every vertex u of S not belonging to S_i.

Case 2. $D(H) \geq 6$. Let $x, y \in V_i - S_i$. Since S is a resolving set for $G \odot H$, we have $r(x|S) \neq r(y|S)$. As we have noted before, by Lemma 1 (i) we have that $d_{G \odot H}(x, u) = d_{G \odot H}(y, u)$ for every vertex u of $G \odot H$ not belonging to V_i. So, there exists $v \in S_i$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$ and, as a consequence, either ($v \sim x$ and $v \neq y$) or ($v \neq x$ and $v \sim y$). Now we suppose that there exists a vertex $a \in V_i - S_i$ such that $r(a|S_i) = (1, 1, ..., 1)$. If there exists a vertex $b \in V_i - S_i$ such that $d_{H_i}(b, u) > 1$, for every $u \in S_i$, then for every $w \in V_i - (S_i \cup \{a, b\})$, there exists $v \in S_i$ such that $w \sim v$. Then $D(H_i) \leq 5$. Moreover, if for every $b \in V_i - S_i$ there exists $v_b \in S_i$ such that $v_b \sim b$, then $D(H) \leq 4$. Therefore, if $D(H) \geq 6$, then $r(a|S_i) \neq (1, 1, ..., 1)$ for every $a \in V_i - S_i$.

Now, we denote by $K_1 \odot H_i$ the subgraph of $G \odot H$, obtained by joining the vertex $v_i \in V$ with all vertices of the ith-copy of H. In both the above cases we have $r(v_i|S_i) = (1, 1, ..., 1) \neq r(x|S_i)$ for every $x \in V_i - S_i$, so S_i is a resolving set for $K_1 \odot H_i$. Hence, $dim(K_1 \odot H_i) \leq |S_i|$, for every $i \in \{1, ..., n_1\}$. Thus, $dim(G \odot H) \geq n_1dim(K_1 \odot H_i)$ and, as a consequence, $dim(G \odot^k H) \geq n_1(n_2 + 1)^{k-1}dim(K_1 \odot H)$. We conclude the proof by Theorem 12. \hfill \square

Corollary 14. Let G be a connected graph of order $n_1 \geq 2$.

(i) If $n_2 \geq 7$, then $dim(G \odot^k C_{n_2}) = n_1(n_2 + 1)^{k-1}\left\lfloor \frac{2n_2 + 2}{5} \right\rfloor$.

(ii) If $n_2 \geq 7$, then $dim(G \odot^k P_{n_2}) = n_1(n_2 + 1)^{k-1}\left\lfloor \frac{2n_2 + 2}{5} \right\rfloor$.

9
All our previous results concern to $G \odot H$ for H of order at least two. Now we consider the case $H \cong K_1$. We obtain a general bound for $\dim(G \odot^k K_1)$ and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let G be a simple graph. If v is a vertex of degree greater than one in G, then for every vertex u adjacent to v there exists a vertex $x \neq u, v$ of G, such that $d(v, x) \neq d(u, x) + 1$.

The following lemma obtained in [2] is useful to obtain the next result.

Lemma 16. [2] If G_1 is a graph obtained by adding a pendant edge to a nontrivial connected graph G, then $\dim(G) \leq \dim(G_1) \leq \dim(G) + 1$.

Theorem 17. For every connected graph G of order $n \geq 2$,

$$\dim(G \odot^k K_1) \leq 2^{k-1}n - 1.$$

Proof. If $G \cong K_2$, then $\dim(K_2 \odot K_1) = \dim(P_1) = 1$. So, let us suppose $G \not\cong K_2$. Let us suppose, without loss of generality, that v_n is a vertex of degree greater than one in G and let $S = V - \{v_n\}$. For every $i \in \{1, ..., n\}$, let u_i be the pendant vertex of v_i in $G \odot K_1$. We will show that S is a resolving set for $G \odot K_1$. Let x, y be two different vertices of $G \odot K_1$. If $x = u_i$ and $y = u_j$, $i \neq j$, then we have either $i \neq n$ or $j \neq n$. Let us suppose for instance $i \neq n$. So, we obtain that $d(x, v_i) = 1 \neq d(y, v_i)$. On the other hand, if $x = v_n$ and $y = u_i$, then let us suppose $d(x, v_i) = 1$. Since v_n is a vertex of degree greater than one in G, by Claim 15, there exists a vertex $v_j \in S$ such that $d(x, v_j) \neq d(v_i, v_j) + 1$. So, we have $d(x, v_j) \neq d(v_i, v_j) + 1 = d(v_i, v_j) + d(u_i, v_i) = d(y, v_i) + d(v_i, v_j) = d(y, v_j)$. Therefore, for every different vertices x, y of $G \odot K_1$ we have $r(x|S) \neq r(y|S)$ and, as a consequence, $\dim(G \odot K_1) \leq n-1$. Therefore, $\dim(G \odot^k K_1) \leq 2^{k-1}n - 1$.

By Lemma 16 we have $\dim(K_n \odot K_1) \geq \dim(K_n) = n - 1$. Thus, for $k = 1$ the above bound is achieved for the graph $G = K_n$.

To present the next result, we need additional definitions. A vertex of degree at least 3 in a graph G will be called a major vertex of G. Any vertex u of degree one is said to be a terminal vertex of a major vertex v if $d(u, v) < d(u, w)$ for every other major vertex w of G. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v is an exterior major vertex if it has positive terminal degree. Given a graph G, $n_1(G)$ denotes the number of vertices of degree one and $ex(G)$ denotes the number of exterior major vertices of G.
Lemma 18. [6, 10, 19] If T is a tree that is not a path, then $\dim(T) = n_1(T) - \text{ex}(T)$.

Theorem 19. For any tree T of order $n \geq 3$, $\dim(T \odot K_1^k) = \begin{cases} n_1(T) & \text{for } k = 1, \\ 2^{k-2}n & \text{for } k \geq 2. \end{cases}$

Proof. If T is a path of order $n \geq 3$, then we have $\dim(T \odot K_1) = 2 = n_1(T)$. Now, if T is not a path, then by using Lemma 18, since $T \odot K_1$ is a tree, $n_1(T \odot K_1) = n$ and $\text{ex}(T \odot K_1) = n - n_1(T)$, we obtain the result for $k = 1$. Since for every tree T of order n we have $n_1(T \odot K_1) = n$, we obtain the result for $k \geq 2$. \hfill \Box

Acknowledgements

The research was partially done while the first author was at Gdansk University of Technology, Poland, supported by “Fundació Ferran Sunyer i Balaguer”, Catalunya, Spain. This work was partly supported by the Spanish Ministry of Education through projects TSI2007-65406-C03-01 “E-AEGIS” and CONSOLIDER INGENIO 2010 CSD2007-00004 “ARES”.

References

[1] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs, *Mathematica Bohemica* **128** (1) (2003) 25–36.

[2] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, *Periodica Mathematica Hungarica*, **46** (1) (2003), 9–15.

[3] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of Cartesian product of graphs, *SIAM Journal of Discrete Mathematics* **21** (2) (2007) 273–302.

[4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, On the metric dimension of some families of graphs, *Electronic Notes in Discrete Mathematics* **22** (2005) 129–133.
[5] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, *Ars Combinatoria* **88** (2008) 349–366.

[6] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Applied Mathematics* **105** (2000) 99–113.

[7] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, *Computers and Mathematics with Applications* **39** (2000) 19–28.

[8] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, *Aequationes Mathematicae* (1-2) **59** (2000) 45–54.

[9] M. Fehr, S. Gosselin, O. R. Oellermann, The partition dimension of Cayley digraphs *Aequationes Mathematicae* **71** (2006) 1–18.

[10] F. Harary, R. A. Melter, On the metric dimension of a graph, *Ars Combinatoria* **2** (1976) 191–195.

[11] T. W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in trees, *Discrete Applied Mathematics* **154** (2006) 1293–1300.

[12] B. L. Hulme, A. W. Shiver, P. J. Slater, A Boolean algebraic analysis of fire protection, *Algebraic and Combinatorial Methods in Operations Research* **95** (1984) 215–227.

[13] H. Iswadi, E. T. Baskoro, R. Simanjuntak, A. N. M. Salman, The metric dimension of graph with pendant edges, *Journal of Combinatorial Mathematics and Combinatorial Computing*, **65** (2008) 139–145.

[14] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, *Journal of Biopharmaceutical Statistics* **3** (1993) 203–236.

[15] M. A. Johnson, Browsable structure-activity datasets, *Advances in Molecular Similarity* (R. Carbó–Dorca and P. Mezey, eds.) JAI Press Connecticut (1998) 153–170.

[16] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, *Discrete Applied Mathematics* **70** (1996) 217–229.
[17] R. A. Melter, I. Tomescu, Metric bases in digital geometry, *Computer Vision Graphics and Image Processing* **25** (1984) 113–121.

[18] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, *International Journal of Mathematics and Mathematical Sciences* **38** (2004) 1997–2017.

[19] P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, *Congressus Numerantium* **14** (1975) 549–559.

[20] I. Tomescu, Discrepancies between metric and partition dimension of a connected graph, *Discrete Mathematics* **308** (2008) 5026–5031.

[21] I. G. Yero and J. A. Rodríguez-Velázquez. A note on the partition dimension of Cartesian product graphs. *Applied Mathematics and Computation*. In press. Doi: 10.1016/j.amc.2010.08.038