Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course

An Coosemans, Judit Decoene, Thaïs Baert, Annouschka Laenen, Ahmad Kasran, Tina Verschuere, Sven Seys, and Ignace Vergote

Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium; Biostatistics and Statistical Bioinformatics Center of Leuven, KU Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium; Department of Neuroscience, Laboratory of Experimental Neurosurgery, KU Leuven, Leuven, Belgium

ABSTRACT

Neoplastic cells can escape immune control leading to cancer growth. Regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) are crucial in immune escape. TAM are divided based on their immune profile, M1 are immunostimulatory while M2 are immunosuppressive. Research so far has mainly focused on the intratumoral behavior of these cells. This study, on the other hand, explored the systemic changes of the key metabolites [IL-4 (interleukin), IL-13, arginase, IL-10, VEGF-A (vascular endothelial growth factor), CCL-2 (chemokine (C-C) motif ligand 2) and TGF-β (transforming growth factor)] linked to Treg, MDSC and TAM during the course of the disease in ovarian and fallopian tube cancer patients. Serum samples were therefore analyzed at diagnosis, after (interval)-debulking surgery and after chemotherapy (paclitaxel–carboplatin). We also determined galectin-1 (gal-1), involved in angiogenesis and tumor-mediated immune evasion. We found significantly lower levels of IL-10, VEGF-A, TGF-β and arginase and higher levels of gal-1 after chemotherapy compared to diagnosis. After debulking surgery, a decrease in IL-10 was significant. Gal-1 and CCL-2 appeared independent prognostic factors for progression-free and overall survival (OS) (multivariate analysis). These results will help us in the decision making of future therapies in order to further modulate the immune system in a positive way.

Abbreviations: CBA, Cytometric Bead Array; CCL-2, chemokine (C-C) motif ligand 2; CD, cluster of differentiation; DAMPs, damage-associated molecular patterns; ELISA, Enzyme-Linked Immuno Sorbent Assay; FIGO, International Federation of Gynecology and Obstetrics; Gal-1, galectin-1; IDO, indoleamine 2,3 dioxygenase; IL, interleukin; iNOS, inducible nitric oxide synthase; MDSC, myeloid-derived suppressor cells; MHC, major histocompatibility complex; OS, overall survival; PFS, progression-free survival; STIC, serous tubal intraepithelial carcinomas; TAA, tumor associated antigens; TAM, tumor-associated macrophages; TGF-β, transforming growth factor β; Treg, regulatory T cells; VEGF, vascular endothelial growth factor

Introduction

Ovarian cancer is the second most frequent pelvic gynecological cancer and the most common cause of gynecological cancer-associated death among women. In most women, the disease is diagnosed in an advanced stage, which correlates with a poor prognosis and a high recurrence risk. The standard of care remains debulking surgery in combination with platinum-based chemotherapy. This consists of either primary debulking surgery and adjuvant chemotherapy or neoadjuvant chemotherapy followed by interval debulking surgery, depending on FIGO stage and predictive factors concerning residual macroscopic disease after surgery. Tubal cancer on the other hand, is very rare with an incidence of 0.41 cases per 100,000 women in the US. Since the discovery of the serous tubal intraepithelial carcinomas (STIC) and a recent review discovering only few differences between primary fallopian tube cancer and primary ovarian cancer, tubal cancer was and still is treated like ovarian cancer (For a review see refs 3–4).

Current evolutions in anticancer research have confirmed that the immune system can control cancer. If cells transform into (pre-) cancerous cells the host responds to the expressed tumor antigens and damage-associated molecular patterns (DAMPs) with an innate and adaptive immune response. This often leads to elimination of the neoplastic cells or to equilibrium. In this situation, tumor cells are not eliminated by the immune system, but reside in a dormant state. Due to the continuous immune pressure, more immune-resistant tumor cells will arise. A myriad of events will occur: (1) tumor associated antigens (TAA) and major histocompatibility complex (MHC) molecules are lost; (2) chronic inflammation at the tumor site leads to continuous activation of peripheral T cells and induces the development of Treg. In the tumor system, but reside in a dormant state.
microenvironment, certain chemokines such as CCL-2 and CCL-22 lead to the trafficking of Treg, MDSC and monocytes into the tumor. Further expansion of the Treg population is enhanced (5) through the presence of several immunosuppressive factors such as indoleamine 2,3 dioxygenase (IDO) and transforming growth factor β (TGF-β). (3) MDSC accumulate in the tumor microenvironment through the presence of VEGF, CCL-2, TGF-β and other chemokines7,28 (4) monocytes infiltrate into the tumor and differentiate into TAM. Initially, they will present an M1 phenotype (CD86+, MHCII+), leading to antitumor immunity by initiating the adaptive immune response. Once hypoxia and immunosuppression take the upper hand, there is a switch to the M2 phenotype (CD163+, CD206+). Although this creates new points of action for immunotherapy, this switch will lead to further immunosuppression and promotion of tumor growth, through the production of several immunosuppressive cytokines, such as interleukin (IL)-4, IL-10, IL-13, VEGF, CCL-2 and TGF-β.10 In the end, this combination will result in a strong immune suppressive environment, leading to immune escape. Tumor cells can proliferate and the tumor becomes clinically apparent.

Until now, ovarian cancer research has primarily focused on tumor tissue, with a large focus on genetic changes. Moreover, immunological changes so far have only been studied in tumor tissue. Nevertheless, since ovarian cancer is a widespread metastatic disease, one can appreciate that the analysis of the systemic immune changes is crucial. One way to look at the changes in the immune suppressive milieu is by looking at the metabolites produced by tumor cells and immune suppressive cells. Table 1 gives an overview on what is currently known about a selection of them. Additionally, we analyzed gal-1, a glycan-binding protein. It has a natural immunosuppressive

Table 1. Overview on immunologic metabolites that can be detected in serum.

Metabolite	Origin and function	Evidence in ovarian cancer
IL-4	Th2 immune response, leading to M2 type macrophages33	No literature data for ovarian cancer
IL-10	Production: almost all immune cells, including Treg and TAM Antitumoral effects by downregulating proinflammatory cytokine expression and by inducing NK-mediated tumor cell lysis Pretumoral effects by immunosuppressive effect on DC and macrophages34	Higher serum levels in advanced disease stages
IL-13	Th2 immune response, leading to M2 type macrophages35	Decreased after debulking surgery16,17
IL-17	Pro-inflammatory cytokine Produced mainly by activated T cells and macrophages Induces secretion of other cytokines and chemokines, causing accumulation of neutrophils and monocytes	High levels of pro-inflammatory cytokines are believed to correlate with tumor progression and a negative prognosis16,37
IFNγ	Th1 immune response, leading to M1-type macrophages, that stimulate the cell-mediated immunity	IL-17 is elevated in ovarian tumor tissue and higher levels are described to correlate with improved PFS in advanced disease stage36
Arginase-1	MDSC are a heterogeneous group of cells that act immune suppressive and tumor promoting through secretion of inflammatory mediators, such as ROS and NO, IDO and arginase. Arginase-1 causes depletion of L-arginine, which results in T cell anergy49	Increased plasma arginase has been observed in EOC patients18
TGF-β	Can convert tumor infiltrating leucocytes into Treg. Acts immune suppressive, increases proteolytic activity of cells, adhesion and directly stimulates angiogenesis48 Inhibits the function of CD8 cytotoxic T cells and Th1 cells Inhibits the development of M1 macrophages from monocytes and plays an indispensable role in tumor development and progression45	TGFβ1 mRNA expression is an indicator of tumor sensitivity to standard therapy that it can identify biologically aggressive and highly malignant tumors and can predict the prognosis of patients with ovarian cancer46 Chemotherapy (paclitaxel–carboplatin) can upregulate CCL-2 expression50 Elevated CCL-2 expression by ovarian cancer cells is reported to be associated both with a better chemotherapy (paclitaxel–cisplatin) responses51 as with chemotherapy resistance51 CCL-2 levels in serum of ovarian cancer patients compared to healthy controls are both described to be lower58,59 as higher60,61 Higher levels are associated with advanced disease60,61
CCL-2 /MCP-1	One of the key chemokines that regulate migration and infiltration of monocytes, memory T cells, NKC and DC to sites of inflammation Has both tumor growth-promoting as growth-inhibiting influences46,49	Elevated VEGF in serum of ovarian cancer patients is correlated with a poor prognosis20,23
VEGF	Cytokine expressed by macrophages in the hypoxic tumor microenvironment and by fibroblasts in tumor stroma. Stimulates vasculogenesis and angiogenesis in response to HIF-1α. VEGF-A shows chemotactic properties for macrophages, granulocytes, Treg, MDSC53 Overexpression of VEGF in the tumor microenvironment will lead to dilated leaky vessels, which are inefficient in the transport of oxygen, immune cells and chemotherapy into the tumor14 VEGF concentrations in serum increase after surgery9	

Legend: IL (interleukin); CCL-2 (chemokine (C-C) ligand-2); gal-1 (galectin-1); TGF-β (tumor growth factor β); VEGF (vascular endothelial growth factor); IFNγ (interferon gamma); DC (dendritic cells); PFS (progression-free survival); MDSC (myeloid derived suppressor cell); ROS (reactive oxygen species); NO (nitric oxide); IDO (indoleamine 2,3-dioxygenase); EOC (epithelial ovarian cancer); Treg (regulatory T cell); mRNA (mRNA); NKC (natural killer cells); HIF (hypoxia inducible factor).
function and a pivotal role in the maintenance of self-tolerance and T cell homeostasis. Via interaction with β-galactoside expressing glycoproteins on the T cell surface, gal-1 can negatively regulate T cell survival, antagonize T cell signaling and block pro-inflammatory cytokine secretion. Furthermore, gal-1 blunts T cell responses via promoting accumulation and expansion of Tregs. It is overexpressed by numerous malignant cell types, including ovarian cancer, by activated vascular endothelial cells, by normal activated T cells and by Treg. In anti-VEGF refractory tumors, gal-1 has been documented to bind VEGF receptor 2 and to maintain angiogenesis. The role of gal-1 has been studied in ovarian cancer and is associated with a poor prognosis and it accelerates the proliferation and invasive capacity of the tumor cells.

Results

Patient characteristics

An overview of the patient characteristics and outcome is given in Table 2 and Fig. 1. The majority (90%) was diagnosed with serous ovarian carcinoma at an advanced stage (FIGO stage IIIC and IV) and 79% of patients had one or more relapses. The median follow up time was 47 months. The median PFS was 16 months, the median OS was 50 months (Fig. 1). We can therefore conclude that our study population was a representative group.

Table 2. Overview on patient characteristics (n = 80).

Characteristics	Results
Age (mean, range) (years)	61.9 (27–87)
FIGO (%)⁵	
I	7.5
II	2.5
III	
IIIB	6
IIIC	50
IV	34
Histology (%)	
Clear cell carcinoma	1
Carcinosarcoma	2
Endometrioid	3
Mucinous	3
Serous	90
Serous + endometrioid	1
Tumor grade (%)	
Well differentiated/low grade	9
Moderately differentiated	1
Poorly differentiated/high grade	90
Remaining tumor after radical surgery (%)	
Yes	21
No	78
Unknown	1
Number of recurrences (%)⁶	
0	21
1	27.5
2	17.5
3	20
≥ 4	14
Platin-free interval (months)⁷	
Median, range	10 (0–49.5)
Mean, range	15.62(0–49.5)
Outcome (%)	
No evidence of disease	27.5
Alive with evidence of disease	25
Death of disease	47.5

⁵during the total follow-up time.

⁶three patients did not receive platin-based chemotherapy.

Immunosuppression at diagnosis of ovarian cancer patients versus healthy controls

First, we compared the metabolite values between naïve samples (diagnosis of ovarian cancer without invasive procedure, most commonly by diagnosis at ultrasound (n = 32) and samples taken after diagnostic laparoscopy (n = 23). There were no significant differences in the values between these two time points (Table 3). Therefore, we will combine the two groups in further analyses and we will refer to them as one group “at diagnosis.” In case we had patients with measurements at both occasions, the average value was used (this was the case in five patients). Two metabolites (TGF-β and arginase) could not be measured in two samples (naïve and laparoscopy) because of the small sample volume.

Serum samples from 50 patients “at diagnosis” were compared with serum samples from 10 healthy donors. IL-10 (p < 0.001) and TGF-β (p = 0.021) were significantly higher in patients compared to controls. We could not observe a decrease change of gal-1 with increasing age of healthy controls (p = 0.135).

Immunosuppression in ovarian cancer patients at diagnosis vs. after three chemotherapy cycles

A total of 37 patients received three cycles of paclitaxel–carboplatin and three patients received three cycles of carboplatin in monotherapy. We found significant lower levels of IL-10 (p < 0.001), VEGF (p = 0.040), TGF-β (p < 0.001) and arginase (p < 0.001) and higher levels of gal-1 (p = 0.016) after chemotherapy compared to diagnosis (Table 3). After exclusion of the seven patients who received AMG 386 or placebo together with carboplatin–paclitaxel in study (BGOG-ov7), statistical results did not change (data not shown). After exclusion of patients treated with carboplatin only (since this is not the standard of care in ovarian cancer treatment), IL-10, TGF-β, arginase and gal-1 kept their statistical significance.

Longitudinal evolutions in metabolite values

Of 40 patients, we gathered more than one sample during their disease course, enabling us to measure longitudinal evolutions in metabolite values. The composition of the groups is presented in Table 4. We can discriminate three groups: group 1/17 samples from patients at diagnosis and after three cycles of paclitaxel–carboplatin. Here, we found significant lower levels of IL-10 (p = 0.0005), VEGF (p = 0.0079), TGF-β (p = 0.0092), arginase (p = 0.0093) and CCL-2 (p = 0.0093). There was a trend for increasing gal-1 levels (p = 0.0797); group 2/11 and seven samples from patients at diagnosis and respectively after primary debulking surgery and interval debulking surgery.
Comparable to the whole group of samples, IL-10 showed decreased levels ($p = 0.0049$ and $p = 0.0781$); group 3/from four patients we gathered measurements taken after treatment (one patient after primary debulking and adjuvant chemotherapy, one patient after three cycles of neoadjuvant chemotherapy, after interval debulking and after three cycles of adjuvant chemotherapy and two patients after adjuvant chemotherapy) and at recurrence. No systematic differences in metabolite values were found between these two groups.

Immunosuppressive metabolites and tumor grade

Metabolite values at diagnosis did not differ significantly between high grade and low grade ovarian cancers.

Progression free and overall survival

The association between metabolite values and PFS and OS was studied in a multivariable (including FIGO stage and residual disease after cytoreductive surgery as prognostic variables) analysis. Gal-1 and CCL-2 appeared to be independent prognostic factors for both PFS and OS. In detail, higher values of gal-1 were associated with an increased risk of progression ($p = 0.0293$) and death ($p = 0.0096$). For CCL-2, a quadratic effect appeared, implying that both lowest and highest values of CCL-2 were associated with increased risk of progression ($p = 0.0294$) and death ($p = 0.0377$) (Fig. 2).

Discussion

The role of the immune system in the development and recurrence of cancer is crucial. In ovarian cancer, studies so far have investigated the intratumoral presence of immune suppressive cells. This study is the first one to suggest an important systemic role for Treg, MDSC and TAM, based on the presence of their metabolites in serum allowing us to gain insight in overall immunosuppression. Moreover, we could demonstrate that conventional standard therapies (radical debulking surgery and paclitaxel–carboplatin based chemotherapy) significantly reduce these metabolite levels and that gal-1 and CCL-2 independently worsened the PFS and OS.

As demonstrated in Table 1, the existing immunological studies in ovarian cancer are scarce, do not cover the total immune suppressive repertoire and are limited in sample size (mean 61.5, range 16–130 patients). However, our results certainly confirm previous findings: decrease of IL-10 after cytoreduction and an increase of IL-10, TGF-β and arginase in ovarian cancer patients at diagnosis. In contrast to reported findings on VEGF, we could not correlate the presence of VEGF to prognosis nor did we see an increase after surgery.

We found that gal-1 serum levels increased after three cycles of paclitaxel–carboplatin. Similar finding have already been described for glioblastoma, where gal-1 expression increased in endothelial and glioma cells after radiotherapy and after treatment with temozolomide. This seems contradictory, however, in lung and ovarian cancer, gal-1 overexpression appears to promote chemotherapy resistance and downregulation of gal-1 expression can sensitize tumor cells to platin-based chemotherapy. In ovarian cancer, gal-1 could possibly mediate these effects through activation of the H-Ras/Raf-1/ERK pathway. The group of Le Mercier et al. suggested that increased gal-1 levels therefore seem to be representative of defense mechanisms against cytotoxic drugs, such as chemotherapy, and that gal-1 could consequently be of major importance in chemotherapy resistance. Both our results in gal-1 (increase after chemotherapy and being an independent prognostic factor) support this theory.

Literature provides mixed data about CCL-2 levels in the serum of ovarian cancer patients. Compared to healthy controls, both lower levels as higher levels of CCL-2 are reported. Some studies claim that higher levels are associated with advanced disease. In our study population, we showed that both the lowest as well as the highest serum levels of CCL-2 were independently associated with a poor prognosis. A possible explanation might lay in the findings that CCL-2 can act...
Table 3. Overview on the presence of metabolites in serum of patients with ovarian cancer at different time points during the course of the disease (comparison of cohorts of patient samples, n=135).

Metabolites	IFN-γ (pg/ml)	IL-4 (pg/ml)	IL-10 (pg/ml)	IL-13 (pg/ml)	IL-17 (pg/ml)	CCL-2 (pg/ml)	VEGF (pg/ml)	TGF-β (pg/ml x10pg/ml)	Arginase (U/L)	Gal-1 (pg/ml)
Sample occasions	**Mean** (range), p-value									
Diagnosis										
Naive	32 (11-14)	1.4 (0.7-2.9)	3.7 (0.1-5.5)	0.154 (0.01-0.58)	15.0 (0.8-35.8)	0.5 (0.0-1.3)	137 (0.05-9.25)	46.08 (0.17-6.34)	0.174 (0.012)	447.8 (0.253)
After diagnostic laparoscopy	23 (10-12)	2.3 (0.3-6.4)	3.4 (0.3-6.4)	0.091 (0.01-0.39)	13.6 (0.04-6.2)	0.4 (0.01-0.7)	152 (0.05-1.04)	5.03 (0.12-6.24)	0.174 (0.012)	508.8 (0.194)
Diagnosis = naive + after diagnostic laparoscopy	50 (11-14)	1.6 (0.3-5.6)	3.4 (0.3-6.4)	0.2 (0.01-0.39)	12.2 (0.04-6.2)	0.4 (0.01-0.7)	136 (0.05-1.04)	47.43 (0.124)	0.174 (0.012)	474.6 (0.246)
At diagnosis vs Healthy controls										
Healthy controls	10 (1.9-3.3)	0.317 (0.01-0.7)	0.5 (0.01-0.7)	<0.001	0.2 (0.01-0.7)	0.788 (0.01-0.7)	14.8 (0.01-0.7)	30.01 (0.01-0.7)	0.21 (0.01-0.7)	3686 (0.238)
Surgery debulking	15 (3.0-3.0)	0.7 (0.01-0.7)	1.3 (0.01-0.7)	<0.001	0.2 (0.01-0.7)	0.646 (0.01-0.7)	10.5 (0.01-0.7)	132 (0.05-9.5)	0.174 (0.012)	540.9 (0.174)
Surgery debulking	19 (3.0-3.0)	0.6 (0.1-1.0)	0.9 (0.01-0.7)	<0.001	0.1 (0.01-0.7)	0.414 (0.01-0.7)	9.4 (0.01-0.7)	153 (0.05-9.5)	0.143 (0.012)	572.2 (0.166)

Legend: N (number), IL (interleukin), CCL-2 (chemokine (C-C) ligand-2), Gal-1 (galectin-1), TGF-β (tumor growth factor β), VEGF (vascular endothelial growth factor), IFN-γ (interferon gamma). 1 n=31; 2 n=22; 3 n=48; 4 n=17; 5 n=18. Bold (significant values).
Table 4. Overview on the presence of metabolites in serum of patients with ovarian cancer at different time points during the course of the disease (comparison of consecutive samples taken from the same patient).

Sample occasions	N	Mean (range)	p-value												
Diagnosis															
Naïve	5	0.48 (0.96)	0.0125	3.98 (0.1297)	1.0000	5.38 (2.47)	0.8750	0.55 (0.274)	1.0000	46.36 (10.36)	0.6250	199 (10.199)	0.1250	115 (0.115)	1.0875
After laparoscopy		0.66 (1.12)	2.64	0.66 (1.12)	0.0005	0.10 (0.01)	0.3750	0.10 (0.01)	0.3750	10.23 (0.1023)	0.0794	135 (0.135)	0.0093	78 (0.078)	0.0079
vs Chemotherapy	17	0.61 (1.23)	0.4263	1.01 (0.314)	0.0005	0.10 (0.01)	0.3750	0.10 (0.01)	0.3750	10.23 (0.1023)	0.0794	135 (0.135)	0.0093	78 (0.078)	0.0079
Chemo-therapy		0.34 (1.08)	1.78	0.68 (0.17)	0.05	0.05 (0.05)	0.05	12.60 (0.126)	0.05	0.05 (0.05)	0.05	12.60 (0.126)	0.05	0.05 (0.05)	0.05
vs Primary debulking surgery	11	2.43 (0.11)	0.5771	4.32 (0.2622)	0.0004	0.35 (0.28)	1.0000	20.38 (0.2038)	0.2324	14.2 (0.142)	0.9658	87 (0.087)	0.0413	4889 (0.0488)	0.0461
Primary debulking surgery		0.81 (0.70)	1.46	0.63 (0.335)	0.21	0.21 (0.21)	0.21	13.65 (0.1365)	0.7169	14.1 (0.141)	0.7169	14.1 (0.141)	0.7169	14.1 (0.141)	0.7169
vs Interval debulking surgery	7	0.36 (0.18)	0.8750	1.52 (0.314)	0.0006	0.10 (0.01)	1.0000	17.68 (0.1768)	0.2188	115 (0.115)	0.5781	64 (0.164)	0.9375	4314 (0.4314)	0.5625
Interval debulking surgery		0.89 (0.89)	1.71	0.49 (0.125)	0.17	0.17 (0.17)	0.17	13.87 (0.1387)	0.2646	112 (0.112)	0.3257	62 (0.362)	14.13	3072 (0.3072)	5.62
After treatment vs Recurrence	4	0.81 (0.15)	2.3000	1.89 (0.378)	0.005	0.28 (0.092)	0.9000	12.57 (0.1257)	0.1250	139 (0.139)	0.3265	58 (0.158)	0.6250	3304 (0.3304)	0.6250
Recurrence		0.06 (0.02)	0.12	0.76 (0.127)	0.00	0 (0.0)	2.72	125 (0.125)	0.9010	79 (0.079)	0.1910	3269 (0.3269)	0.1910	6064 (0.6064)	0.1910

Legend: N (number); IL (interleukin); CCL-2 (chemokine (C-C) ligand-2); Gal-1 (galectin-1); TGF-β (tumor growth factor β); VEGF (vascular endothelial growth factor); IFN-γ (interferon gamma); Bold (significant values). Chemotherapy (3 cycles neoadjuvant paclitaxel-carboplatin). Diagnosis (naïve + after diagnostic laparoscopy). Treatment (cf. text longitudinal evolutions).
dichotomously. In a mammary carcinoma model for example, Li et al. found that CCL-2 seemed to stimulate immunosurveillance of developing malignancies and metastatic cells. However, after a long-term inhibition of CCL-2 they observed an increase of metastatic burden. On the other hand, CCL-2 also appeared to enhance the progression of primary lesions that had already reached a “critical mass”. This finding might explain the measurements of CCL-2 in our study, however, it also implies cautiousness when it should be used in a diagnostic or therapeutic setting.

This is—to the best of our knowledge—the first study in serum that explores the different aspects of immune suppression at diagnosis and after standard treatment in ovarian cancer patients. The next step to study the systemic changes in the immune system in ovarian cancer is a prospective inclusion of ovarian cancer patients from the moment of diagnosis until palliation, not only at the serum level but also at the cellular level. This type of study will be able to reveal what type of immune suppressive cells/systemic immune suppression will be most crucial during what point in the disease course. Hopefully, this insight can help us to better optimize and time the best therapy at the best moment in the future.

Materials and methods

Serum samples

After approval of the local ethical committee, a total of 135 serum samples, obtained in 80 patients with the histopathological diagnosis of ovarian/tubal cancer, were analyzed. Samples were collected from 2010–2014, after written informed consent. They were gathered at diagnosis (n = 32), after diagnostic laparoscopy (n = 23), after primary debulking (n = 15) [all without macroscopic tumor post-surgery], after three neoadjuvant cycles of paclitaxel–carboplatin (n = 40), after interval debulking (n = 19) [17] had no macroscopic remaining tumor post-surgery, two had an unresectable metastasis of 1–2cm post-surgery] and at diagnosis of recurrent disease (n = 6). In seven patients, neoadjuvant paclitaxel–carboplatin was given in the BGOG-OV7 study, implying that the chemotherapy was associated with the simultaneous administration of AMG386 (a selective angiopoietin-1/-2 neutralizing peptibody) or placebo. At present, the study has not been unblinded yet. Samples after laparoscopy, chemotherapy, debulking or interval debulking were collected respectively 13, 33, 26.5 and 21 d (median) after surgery/chemotherapy. Of 40 patients, two or more consecutive samples were available. In addition, serum was collected prospectively after approval of the local ethical committee from 10 healthy age-matched controls, without ovarian pathology.

Serum was collected in BD Vacutainer® Serum Tubes containing silica (ref 369032 and 367896, BD) and kept at 4°C until centrifugation. Samples were centrifuged at 2700–3000 rpm during 10 min. This was done in the majority of samples within 48 h after prelevation. However, 12 samples (8%) could only be processed 3–8 d after prelevation (mean 4.5 d). Resulting serum was collected and stored in aliquots at −80°C until further analysis.

Cytometric bead assay (CBA)

All serum samples were analyzed on the presence of IL-4, IL-10, IL-13, IL-17, IFNγ, VEGF-A, TGF-β and CCL-2 by the use of CBA flex sets (ref respectively 558272, 558274, 558450, 562151, 561515, 558336, 560429, 558287—BD), according to the firms’ guidelines in 96-well plates. Samples were acidified prior to the analysis for TGF-β; samples (except for TGF-β)
were used undiluted. Samples were analyzed by the LSR For
tessa flow cytometer (BD). Analysis was performed by FLOWJO software.

Enzyme-linked immunosorbent assay (ELISA)

All serum samples were analyzed for the presence of gal-1 by
ELISA (anti-gal-1 from R&D, ref AF1152 and a biotinylated
antibody (R&D with ref BAF1152). Our protocol was published earlier.19

Arginase-1 activity assay

Arginase-1 was determined to give an impression of MDSC and
TAM activity. L-arginine is a substrate for two enzymes, iNOS
(that generates nitric oxide) and arginase-1 (that converts L-argi
nine in urea and L-ornithine). MDSC show an increased activity of
arginase-1 and iNOS, resulting in a relative depletion of L-arginine
in the micro-environment and a relative increase in NO. This
results in the inhibition of T cell proliferation and function. In all
serum samples, arginase-1 activity was measured, through determi
nation of the urea content using the QuantiChrom™ Arginase
Assay Kit (ref DARG-200—Bioassay Systems) following the manu
facturer’s protocol.

Statistical methodology

Normality was assessed by visual inspection of the histograms of
metabolite values. The Mann–Whitney U test was used to com
pare metabolite values between two groups of patients evaluated
at different measurement occasions. The Wilcoxon signed-rank
test was used to analyze evolutions of metabolites within subsets
of patients with longitudinal measurements. The Cox propor
tional hazard model was used to analyze the association between
metabolite values at diagnosis and progression-free survival
(PFS) and OS. Both linear and quadratic trends were tested.

All statistical tests are two-sided and a 5% signifi
cance level is assumed for all tests. A large number of statistical tests was per
formed. Given the exploratory nature of this study, no correction
for multiple testing was applied. All analyses have been performed
using SAS software, version 9.4 of the SAS System for Windows.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This research was supported by the Olivia Hendricks Research Fund
and the Aamir Leeser Stool of the KU Leuven. An Coosemans and Tina Ver
schuer are supported by the Fund for Scientific Research Flanders
(FWO). Sven Seys is supported by a PDM mandate of the KU Leuven.

References

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014, CA Cancer J Clin
2014; 64:9-26; PMID:24399786; http://dx.doi.org/10.3322/caac.21208
2. Vergote I, Tropet C, Amant F, Kristensen GB, Elen T, Johnson N, Vehejjen RH, van der Burg ME, Lacave AJ, Panici PB et al. Neoadju
vant chemotherapy or primary surgery in stage IIIC or IV ovarian
cancer. N Engl J Med 2010; 363:943-53; PMID:20818904; http://dx.
doi.org/10.1056/NEJMoa0908806
3. Chene G, Dauplat J, Radosavez-Robin N, Cayre A, Penault-Llorca F.
Tu-be or not tu-be: that is the question…about serious ovarian cancer car
cinogenesis. Crit Rev Oncol Hematol 2013; 88:134-43; PMID:23523591; http://dx.doi.org/10.1016/j.critrevonc.2013.03.004
4. Noresteen RD, Schnack TH, Karlsson MA, Hög dell CK. Serous ovar
ian, fallopian tube and primary peritoneal cancers: a common disease or sepa
rate entities – a systematic review. Gynecol Oncol 2015; 136:571-81;
PMID:25615934; http://dx.doi.org/10.1016/j.ygyno.2015.01.534
5. Schreider RD, Old LJ, Smyth MJ. Cancer immunoeediting: integrat
ing immunity’s roles in cancer suppression and promotion. Sci
ence 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/
10.1126/science.1203486
6. Baert T, Timmerman D, Vergote I, Coosemans A. Immunological
parameters as a new lead in the diagnosis of ovarian cancer. Facts
Views Vis Obgyn 2015; 167-72; PMID:25897373
7. Gajewski TF, Schreider H, Fu Y-X. Innate and adaptive immune cells
in the tumor microenvironment. Nat Immunol 2013; 14:1014-22;
PMID:24048123; http://dx.doi.org/10.1038/ni.2703
8. Nogajal S, Gabrilovich DJ. Myeloid-derived suppressor cells in human
cancer. Cancer J 2010; 16:348-53; PMID:20693846; http://dx.doi/
10.1009/pppo.0b013e3181e3358
9. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor
cells. Nat Rev Cancer 2013; 13:739-52; PMID:24060865; http://dx.
doi.org/10.1038/nrc3581
10. Noy R, Pollard JW. Tumor-Associated Macrophages: From Mecha
nisms to Therapy. Immunity 2014; 41:49-61; PMID:25035953; http://
dx.doi.org/10.1016/j.immuni.2014.06.010
11. Rabinovich GA, Ilarregui JM. Conveying glycann information into T cell
homeostatic programs: a challenging role for galectin-1 in inflammat
ory and tumor microenvironments. Immunol Rev 2009; 230:144-59;
PMID:19594634; http://dx.doi.org/10.1111/j.1600065X.2009.00787.x
12. Ito K, Stannard K, Gaburto E, Clark AM, Neo S-Y, Ontsuru S, Blanchard
H, Ralph SJ. Galectin-1 as a potent target for cancer therapy: role in the
tumor microenvironment. Cancer Metastasis Rev 2012; 31:763-78;
PMID:22706847; http://dx.doi.org/10.1007/s10555-012-9388-2
13. Croci DO, Cerliani JP, Dalotto-Moreno T, Méndez-Huergo SP, Mas
canfroni ID, Dergan-Dyson S, Toscano MA, Caramelo JJ, García-Val
lejo JJ, Ouyang J et al. Glycosylation-dependent lectin-receptor
interactions preserve angiogenesis in anti-VEGF refractory tumors.
Cell 2014; 156:744-58; PMID:24529377; http://dx.doi.org/10.1016/j.
cell.2014.01.043
14. Zhang P, Shi B, Zhou M, Jiang H, Zhang H, Pan X, Gao H, Sun H, Li
Z. Galectin-1 overexpression promotes progression and chemoresist
ance to cisplatin in epithelial ovarian cancer. Cell Death Dis 2014; 5:
e991; PMID:24407244; http://dx.doi.org/10.1038/cddis.2014.526
15. Verschuerue T, Van Woensel M, Fiews S, Lefranc F, Mathieu V, Kiss R,
Van Gool SW, De Vleeschoover S. Altered galectin-1 serum levels in
patients diagnosed with high-grade glioma. J Neurooncol 2013; 115:69-77;
PMID:23824536; http://dx.doi.org/10.1007/s11060-013-1201-8
16. Napoletoan C, Bellati F, Landi R, Pauselli S, Marchetti C, Visconti V,
Sale P, Liberati M, Rughetti A, Frati L et al. Ovarian cancer cytoreduc
tion induces changes in T cell population subsets reducing immuno
suppression. J Cell Mol Med 2010; 14:2748-59; PMID:19780872;
http://dx.doi.org/10.1111/j.1582-4934.2009.00911.x
17. Nowak M, Glowacka E, Szpakowski M, Szylo K, Malinowski A, Kulig
A, Tchorzewski H, Wilczynski J. Proin
flammatory and immunosuppressiv
serum, ascites and cyst fluid cytokines in patients with early and
advanced ovarian cancer and benign ovarian tumors. Neuro
Endocrinol Lett 2011; 33:1565-70; PMID:21436444; http://dx.doi.org/
10.1111/j.1582-4934.2009.00911.x
18. Nishio H, Nagataki T, Sugiyama Y, Sumimoto H, Umezawa K, Iwata T,
Susumu N, Fujii T, Kawamura N, Kobayashi A et al. Immunosuppres
tion through constitutively activated NF-κB signalling in human ovarian
cancer and its reversal by an NF-κB inhibitor. Br J Cancer 2014;
110:2965-74; PMID:24867687; http://dx.doi.org/10.1038/bjc.2014.251
19. Svendsen MN, Werther K, Nielsen HJ, Kristjansen PEG. VEGF and
tumour angiogenesis. Impact of surgery, wound healing, in
flamma
tion and blood transfusion. Scand J Gastroenterol 2002; 37:373-9;
PMID:11989825; http://dx.doi.org/10.1080/003655202017315971
28. Falcón-Júnior JO, Teixeira-Carvalho A, Cândido EB, Lages EL, Ferreira Freitas GG, Lamaita RM, Freire Bonfim LP, Borges Salera R, Traiman P P, da Silva-Filho AL. Assessment of chemokine serum levels in epithelial ovarian cancer patients. Tumori 2013; 99:540-4; PMID:24326845; http://dx.doi.org/10.1007/s11051-013-1508-6

29. Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L, Winans MT, Bigbee WL, Herberman RB, Lokshin AE. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:981-7; PMID:15824174; http://dx.doi.org/10.1158/1055-9965.EPI-04-0404

30. Heffer L, Tempfer C, Heine G, Mayerhofer K, Breitenecker G, Leodolter S, Reithaller A, Kainz C. Monocyte chemotactic protein-1 serum levels in ovarian cancer patients. Br J Cancer 1999; 81:855-9; PMID:10555758; http://dx.doi.org/10.1038/sj.bjc.6609776

31. Tsai-Turton M, Santillan A, Lu D, Bristow RE, Chan KC, Shih IM, Yeh TS, Yu SL, Sun KH. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res 2012; 18:4037-47; PMID:22966230; http://dx.doi.org/10.1158/1078-0432.CCR-11-3348

32. Li M, Knight DA, A Snyder L, Smyth MJ, Stewart TJ. A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology 2013; 2:e25474; PMID:24073384; http://dx.doi.org/10.4161/onci.240734

33. Wang HW, Joyce JA. Alternative activation of tumor-associated macrophages by IL-4: Priming for protumoral functions. Cell Cycle 2010; 9:8242-35; PMID:21103030; http://dx.doi.org/10.4161/cc.9.24.14322

34. Landskron G, De La Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014:149185; PMID:24901088; http://dx.doi.org/10.1155/2014/149185.

35. Fuisawa T, Joshi BH, Puri RK. IL-13 regulates cancer invasion and metastasis through IL-13Rα2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int J Cancer 2012; 131:344-56; PMID:21858811; http://dx.doi.org/10.1002/ijc.26366

36. Zhang X, Weng W, Xu W, Wang Y, Yu W, Tang X, Ma L, Pan Q, Wang J, Sun F. Prognostic significance of interleukin 17 in cancer: a meta-analysis. Int J Clin Exp Med 2014; 7:3258-69; PMID:25419357

37. Yao F, Yan S, Wang X, Shi D, Bai J, Li F, Sun B, Qian B. Role of IL-17F T7488C polymorphism in carcinogenesis: a meta-analysis. Tumor Biol 2014; 35:9801-6; PMID:24913709; http://dx.doi.org/10.1007/s13277-014-1717-y
resistance using cDNA array technology: Analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 1999; 5:3445-53; PMID:10589757

53. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer 2013; 13:871-82; PMID:24263190; http://dx.doi.org/10.1038/nrc3627

54. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26:605-22; PMID:25517747; http://dx.doi.org/10.1016/j.ccell.2014.10.006

55. Kandukuri SR, Rao J. FIGO 2013 staging system for ovarian cancer: what is new in comparison to 1988 staging system? Curr Opin Obstet Gynecol 2015; 27:48-52; PMID:25490382; http://dx.doi.org/10.1097/GCO.0000000000000135