Dispersion of Alpha-Nuclides during Animal Experiments

Kazuko KANEDA-NAKASHIMA1),2)*, Zijian ZHANG2),3), Kojiro NAGATA2),4), Kenji SHIRASAKI5), Hidetoshi KIKUNAGA6), Tomoo YAMAMURA5),7), Kazuhiro OOE8), Tadashi WATABE8), Atsushi TOYOSHIMA1),2), Takashi YOSHIMURA2),4),9), and Atsushi SHINOHARA1),2),3)

1) Division of Science, Institute for Radiation Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
2) Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
3) Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
4) Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita, Osaka 565-0871, Japan
5) Laboratory of Alpha-Ray Emitters, Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
6) Research Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan
7) Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
8) Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
9) Division of Safety Management, Institute for Radiation Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received May 19, 2021; accepted Sep. 21, 2021

The dispersions of short-lived radionuclides emitting α-particles, such as 223Ra, 211At, and 225Ac, during animal experiments were measured for radiation safety management. These three radionuclides dispersed from mice were trapped using charcoal-impregnated filters, and those in feces were collected directly, and those in urine were recovered with bedding in a breeding cage. For all the radionuclides, uptakes by tissues were also further examined after dissection. The radioactivity of each radionuclide was evaluated with a γ-ray scintillation counter using daughter nuclide. In tumor bearing mice, 211At and 223Ra accumulated in tumor tissues with high affinity and less accumulated in other tissues. It was noted that all the three radionuclides were not exhausted or evaporated from the breeding cages and the peak of excretions of the radionuclides in the animal experiments was observed within twenty-four hours.

Key Words: animal experiment, Radium-223, Astatine-211, Actinium-225, dispersions

[doi:10.12950/rsm.210519]

1. Introduction

In Japan, 50% of individuals will experience cancer in their lifetimes3). The development of a more effective anti-tumor drug is, therefore, an urgent task. In recent years, the application of short-lived radionuclides emitting α-particles to nuclear medicine has garnered increasing attention. At present, the β-particle emitters such as 131I and 90Y have been already used as nuclear medicine for the treatment of thyroid cancer and CD20 positive lymphoma, respectively. Because of the nature of an α-particle as short range and high linear-energy-transfer, cytotoxic and anti-tumor effects are highly promising and damage on normal cells surrounding tumor cells is expected to be reduced. For the clinical use of short-lived α-emitters such as 211At and 225Ac in the near future, data on their dispersion are of great importance for the radiation protection and safety management. To our knowledge, the dispersion of short-lived α-emitters in an animal experiment has been rarely reported.

223Ra with a half-life ($t_{1/2}$) of 11.4 days is the first α-emitter approved for the nuclear medicine treatment in the form of an...
aqueous solution of radium chloride (Xofigo™)²–⁴). In the decay series of ^{223}Ra, this finally disintegrates into stable ^{207}Pb by α- and β-particle emissions as illustrated in Fig. 1a. ^{211}At ($T_{1/2} = 7.2$ hours) which is producible with an accelerator is one of the most practicable candidates for the targeted α-therapy in Japan. The radionuclide decays via the α-emission (42%) and the electron capture (58%) as depicted in Fig. 1b. The descendent nuclide ^{211}Po ($T_{1/2} = 0.5$ sec) formed from ^{211}At by electron capture immediately disintegrates by 100% α-decay. For ^{225}Ac ($T_{1/2} = 10.0$ days), many clinical studies have been so far carried out and the remarkable anti-tumor effects have been reported in the treatment of castration-refractory metastatic prostate cancer with ^{225}Ac-PSMA⁵–⁷. In the decay series of ^{225}Ac, this disintegrates into ^{209}Bi by α- and β-particle emissions as shown in Fig. 1c.

The dispersal rate of ^{222}Rn from aqueous ^{222}Ra solution has been already reported⁸. In human, it is reported that the amount of ^{223}Ra in the exhaled breath is relatively small after injection⁹. Although the dispersal rate of ^{222}Ac has been also reported¹⁰, there is no report about animal experiments. In this study, we investigated the dispersions of ^{223}Ra, ^{211}At, and ^{225}Ac out of mice in a mouse cage during the breeding after the administration of these nuclides. Normal and tumor-bearing mice were provided to examine the influence of the accumulation of ^{223}Ra and ^{211}At in a tumor. ^{225}Ac is always used as 225Ac-labeling compounds or antibodies. It is because no cancer types that ^{225}Ac particularly accumulates in have been reported unlike ^{222}Ra or ^{211}At. Because of this, tumor-bearing mice were not used for ^{225}Ac. In addition, the washing-out yields of the radionuclides from the breeding cage used were investigated because cage cleaning is indispensable for raising animals.

Compounds labeled with α-ray emitting nuclides may be metabolized in the body and the α-ray emitting nuclides may be released from those compounds. In order to investigate the
excretion of labeled compounds from the body, it is important to first investigate the properties of the alpha-ray emitting nuclides themselves in excretion.

2. Materials and Methods

2-1. Materials

Aqueous solutions containing 223Ra was provided by Bayer HealthCare Pharmaceuticals Inc. We diluted the RaCl$_2$ solution with saline for injection to mice. The radioactivity of 223Ra was determined using a germanium (Ge) detector (BE2020, Canberra) calibrated with 133Ba and 152Eu standard radiation sources.

211At was produced in the 209Bi(α, $2n$)211At reaction using the K140 AVF cyclotron at Research Center of Nuclear Physics, Osaka University. 211At was separated from the 209Bi target by dry distillation according to the literature procedures11,12. The aqueous solution containing 211At was obtained by dissolution of 211At in distilled water. The radioactivity of 211At was determined as same as 223Ra.

225Ac was obtained by the literature method which is milking from its grandmother nuclide 229Th10,13,14. After 225Ac solution was evaporated to dryness, the residue was dissolved in saline. The radioactivity of 225Ac was determined using the Ge detector.

We also measured control sample of all nuclides by a Curie meter (IGC-7, HITACHI) and a γ-counter (2480 Wizard2, PerkinElmer) for calculating the amount of each radionuclide.

2-2. Animals

Animals were purchased from SLC Japan (Shizuoka, Japan). We prepared ddY mice (5 weeks old, male) and ICR mice (5 weeks old, male or female) as normal mice. Mice were housed three or five to a cage and maintained in rooms under a regular twelve hours light-dark cycle. After one week of habituation, these animals were used for the experiments. We also prepared tumor-bearing mouse models, particularly Balb/c$^{-}$nu/nu mice (5 weeks old, male). Tumor transplantation was performed after one week of habituation. The protocol was approved by the Animal Care and Use Committee of the Osaka University Graduate School of Science.

2-3. Cells

Cancer cells were obtained from the RIKEN cell bank. A prostate cancer cell line, PC-3, was maintained in RPMI 1640 culture medium. Medium were purchased from Sigma Aldrich Japan and supplemented with 10% heat-inactivated fetal bovine serum (GIBCO) and a 1% antibiotic solution (Fujifilm Wako). K1-NIS, human thyroid cancer K1 cells with overexpression of
the sodium/iodide symporter (NIS, SLC5A5)15) were maintained in culture medium which was already reported.

2-4. Preparation of tumor-bearing mice

Transplantations were performed after the habituation of the animals used for experiments. A cranial metastasis model for 223Ra was established by subcutaneously transplanting \(1 \times 10^6\) PC-3 cells to the parietal region16). A subcutaneous tumor model for 211At was established by transplanting \(1 \times 10^7\) K1-NIS cells. K1-NIS cells were mixed respectively with Matrigel (Corning) as a basement membrane matrix, and then transplanted. The engrafted animals were used for the subsequent experiments. Mice were maintained for two weeks and used for the subsequent experiments.

2-5. Dispersion measurements from mice

To evaluate the dispersions of 223Ra, 211At, and 225Ac during the experiments using mice, all the excretions were collected, and the air which may contain the exhalation and aerosols such as a urine vapor in a cage.

2-5-1. Equipment for collecting nuclide from mice

A disposable inner-cage (Natsume Seisakusho Co., Ltd., KN-800-601) was set in an outer cage (Natsume Seisakusho, KN-600-T) to prevent cross-contamination on the inner surface of the outer cage. A charcoal-impregnated filter (ESKO, EA929F-2, charcoal: 150.0 g/m2, thickness: 1.8 mm) was cut and fixed on a grid-like upper lids of the cage with adhesive tape to collect the dispersed radionuclides. Breeding tools for sample collection were set up like in Fig. 2(a). During experiments, any alpha count was not detected using an \(\alpha\)-survey meter on outside of the charcoal-impregnated filter, while alpha counts were detected on inner mice side. This indicates that the radionuclide cannot pass through the charcoal-impregnated filter and are kept inside of the cage. Weighed bedding (Enviro-dri®, Shepherd Specialty Papers) of 100.0 g to soak urine was spread over the bottom of the cage. Drinking water for a mouse was supplied via the transport agar (Oriental Yeast Co., Ltd.) to keep the lid closed during collection of the dispersed radionuclides. For each mouse, approximately 5.0 g of the irradiated CRF-1 (Oriental Yeast Co., Ltd.) was supplied in a day. A 0.1 mL of the 223Ra, 221At, or 225Ac aqueous solution was intravenously administered from a tail vein with a 27-G syringe (FN, TERUMO). The administrated radioactivity of 223Ra was \(9.90 \pm 0.10\) kBq/mouse and 225Ac was \(9.87 \pm 0.04\) kBq/mouse, and 211At was \(1.06 \pm 0.04\) MBq/mouse.

2-5-2. Collecting nuclide from mice and their procedures of measure

After the administration, the bedding was mixed to uniform distribution of the radionuclides excreted as urine, and then a part of the bedding was taken and weighed. The amount of radionuclide in urine was measured using the bedding sample taken out from the cage, and the total amount of radionuclide was quantified. In addition, the amount of urine was evaluated from the amount of increase in the bedding. To evaluate the remaining amounts of nuclides in the bodies, the mice were dissected. The soft tissues of cerebrum, thyroid, salivary gland, heart, lung, thymus (normal animals only), liver, stomach, small intestine, large intestine, cecum, kidney, adrenal gland, pancreas, spleen, bladder, testis (males only), and ovary (females only), and the hard tissues of sternum, cervical spinal cord, thoracic spinal cord, ribs, femur, skull, and coccyx were measured. In addition to the urine absorbed in the bedding, urine was also collected from the bladder at the time of dissection. Subcutaneous tumor, and organs which were found metastasis tissues were classified as tumor tissues. Blood was collected via cardiac puncture. All residue adhering to the dissection tools or wiping material, whether blood or pieces of muscle, was also collected. These organ samples separately sealed in plastic bags were then subjected to the \(\gamma\)-counter. The samples of 223Ra and 225Ac were stored more than 12 hours after the collection of the samples to establish the radioactive equilibria.

2-5-3. Washing out of the cages

After removing the mice, feces, and bedding from the inner cages, the cages used were wiped with paper towels three times (Kim-towel, Kimberly Clark Corp). After wiping up, 20 mL of distilled water was added to each cage. After put into 20 mL of purified water into the cage and shook 10 times, the water used was collected. This procedure was repeated 5 times (Fig. 2(b)). The paper towels wiped and wash water were also separately measured by \(\gamma\)-counter.

2-6. Measure of radionuclides

For 223Ra, the region of interest was set to be 220–440 keV to detect \(\gamma\)-rays of 223Ra (269 keV) and its descendants (210Rn: 271 keV, 402 keV, 208Pb: 405, 427 keV, 211Bi: 351 keV). Each
sample of 223Ra was measured for two minutes. For 211At, the region of interest was set at 15–150 keV which simply covers 79 keV characteristic X-ray peak of 210Po attributed to the electron-capture decay of 211At. Each Sample of 211At was measured for 1 minute. For 225Ac, the descendant nuclide 213Bi (440 keV) was counted with the γ-counter when equilibrium was reached and decay-corrected as a representative measurement of 225Ac in the sample. Each sample was counted for three minutes, with energy windows of 170–270 keV for 211Fr (218 keV) and 380–520 keV for 213Bi. γ-rays of the samples of the charcoal-impregnated filters, beddings, feces, and organs were measured in an automatic γ-counter automatically. The obtained counts were used with those of control samples for calculation of amounts.

2-7. Calculation of dispersion amounts

For evaluation of dispersion, we calculated the amounts of nuclides using formula (i).

$$A_{\text{sample}} = A_{\text{measure}} \left(\frac{1}{2} \right)^{T/t}$$

ith represents the radioactivity calculated using the count of each samples measured by the γ-counter. T represents half-time of each nuclide ($T_{1/2}$) and t represent the elapsed time since measuring the control. A_{inj} was calculated using formula (ii).

$$A_{\text{inj}} = S_{\text{pre}} - S_{\text{post}}$$

s_{pre} represents value of syringe pre-injection and s_{post} represents value of syringe post-injection with a correction for radioactive decay. It is needed to consider the percentage of injected dose (% ID) for evaluation of distribution from animal experiments. The % ID can be calculated by the following formula:

$$\% \text{ID} = \frac{A_{\text{sample}}}{A_{\text{inj}}} \times 100$$

3. Results and Discussion

3-1. Distribution of nuclides

The mean distribution of excreted and internal 223Ra for the normal mice and the cranial metastasis model mice are summarized in Table 1. The values for both the normal and tumor model mice were calculated from five mice. It was confirmed that 223Ra had been accumulated in normal bone and tumor tissue. The radioactivity percentages detected in the
approximately 50% ID of injected 223Ra were excreted as the daughter 219Rn is a radionuclide of a volatile noble-gas, its bedding in both the normal and tumor model mice. Although by the breath and was hard to disperse as aerosols from descendent radionuclides in the vein injection were less exhaled for the normal mice. However, 223Ra clearly excreted rate of 223Ra from experimental mice was almost the same as that reported from Bayer AG’s.

The excreted fractions as a sum of the urine and the feces at twenty-four hours after the administration were probably simply due to metabolism. The excreted percentages of 223Ra for the tumor-bearing mice were similar to those for the normal mice. However, 223Ra clearly accumulated in tumor and tumor metastasis tissues and was decreased in normal tissues comparing with the result on the normal mice. The excretion of 223Ra as feces has already been reported from Bayer AG’s chemical data. We confirmed the excreted rate of 223Ra from experimental mice was almost the same as that reported from Bayer AG’s.

Table 1: Evaluated %ID (percentage of observed radioactivity) of 211At in normal and tumor-bearing mice at 24 and 48 hrs after the administration. ddY mice was used for normal (N=5), and Balb/c-nu/nu with PC-3 cells was used for tumor bearing (N=5). Injection dose was 9.90 ± 0.10 kBq/mouse. hrs: hours, ―: no data, Data was shown Mean ± S.E.

Collect time	Normal	Tumor bearing
Soft tissues	24 hrs	16.13 ± 1.55
	48 hrs	12.63 ± 1.24
Bones	24 hrs	39.49 ± 3.79
	48 hrs	37.42 ± 1.39
Tumor	24 hrs	16.13 ± 1.55
	48 hrs	11.08 ± 0.62
Feces	24 hrs	16.25 ± 3.05
	48 hrs	19.08 ± 0.70
Bedding	24 hrs	28.14 ± 0.53
	48 hrs	30.88 ± 0.63
Charcoal filter	24 hrs	0.0030 ± 0.00010
	48 hrs	0.0050 ± 0.0010

Table 2 lists the amounts of the excreted and internal 211At for the normal and tumor-bearing mice during twenty-four hours after the injection. For both the types of the mice, the percentages of 211At detected in the filter were very low even at twenty-four hours after the administration despite of high volatility of At. Most of 211At was excreted as the urine in the beddings and its small parts were in the feces. The externally discharged percentage of 211At as a sum of the feces, urine, and exhalation for the normal mice was higher than that for the tumor-bearing mice. In the tumor bearing mice, it seems that 211At was accumulated in tumor tissues with giving anti-tumor effects. Clearance of 211At in the normal mice was faster than that of the tumor bearing mice. Once nuclides accumulated in the tumor tissues, there is a time lag in the excretion of nuclides as compared with normal animals without tumor. The difference was clearly seen when imaging was actually performed in the cancer-bearing model. From these results, 211At is expected to accumulate more in a targeted tumor, leading to less accumulation in normal tissues in a realistic use of 211At-labelled pharmaceuticals.

In Table 3, excreted 225Ac for the normal mice at twenty-four and forty-eight hours after the injection were listed. The amount of excreted 225Ac in urine or feces were very small. Most of 225Ac was accumulated in the soft tissues and bones. However, because distributions and excretions of the 225Ac labeled compound actually depend on their biochemical properties, dispersion of 225Ac labeled compounds would be extremely low unless a labelled compound is volatile.

In addition, we tracked distributions of 211At and 225Ac after
forty-eight hours from injection. The ddY is the strain that has been widely used in Japanese pharmacokinetic studies. Since ddY mice were also used for experiments in distribution of radioisotopes so far, we used this strain for comparison of tumor bearing models. However, ICR mice are increasing in use worldwide, thus ICR mice were used for comparison between males and females. The reason for measuring the sex difference was to confirm whether there was a difference in the routes and amounts of nuclide excretion. In Table 4, data of 211At for 4 days are listed. After 4 days, the measurements were not carried out because radioactivity of all the samples decays down to a background level. Interestingly, there was a difference between the sexes in excreted urine. However, comparing excretion amounts of urine between sexes, males had larger than those of females. In other words, the difference in urine excretion was considered to be simply due to the large amount of urine. In Table 5, data of 225Ac for 12 days are listed. At the elapse of 12 days, the measurements were stopped because radioactivity of all the samples were at background level. We also found that the time when large amount of 225Ac was dispersed until twenty-four hours. After more than twenty-four hours, there was no large amount of excretions of nuclides. Amount of excretions were decrease in time.

3-2. Washing out yields of cages

Washing the equipment is essential in animal experiments. Breeding cages should be washed to keep them clean. However, there are no reports of how dirty the cages of nuclide-treated animals are and how they can be removed. In this study, we measured the amount of emissions when washing cages in order to understand the status of decontamination during cage cleaning. In Tables 6–8, variations of the washing-out yields of 223Ra, 211At, and 225Ac, respectively, were shown. In all the radionuclides, the washing-out yields were very low and almost all the radioactivity was stripped by the paper towel, and the remaining is washed out by the first washing. The administered 211At was mainly excreted in the urine and feces. It is better to wipe a cage with a paper towel before washing the cage to remove the remaining radionuclides in animal experiments.

3-3. Dispersion pattern of alpha emitting nuclides

Dispersions of three nuclides from animal experiment, their peak might be within twenty-four hours (Table 1, 4, 5). Especially in 211At itself, the peak of emission was three hours (Data not shown). The kinetics of the radio-labeled compounds in the animals, depend on the nature of the compound itself. In fact, the distribution or dispersion rate of the 225Ac labeled chemicals\(^{17}\) or the 211At labeled chemicals\(^{18}\) are different from

Table 3 Evaluated %ID (percentage of observed radioactivity) of 225Ac in normal mice at 24 and 48 hrs after the administration. ddY mice was used for normal (N = 5). Injection dose was 9.87 ± 0.04 kBq/mouse. hrs: hours. Data was shown in Mean ± S.E.

Collect time	Soft tissues	Bones	Feces	Bedding	Charcoal Filter
24 hrs	64.01 ± 0.87	25.09 ± 0.90	1.08 ± 0.72	9.80 ± 1.22	0.020 ± 0.014
48 hrs	64.01 ± 2.64	24.59 ± 0.88	0.56 ± 0.087	10.83 ± 0.78	0.0080 ± 0.00

Table 4 Evaluated %ID (percentage of observed radioactivity) of excreted 211At from normal mice after the administration. Day 1 (24 hrs), and Day 2 to 4, ICR mice was used for this experiment. Each group was consisted with three mice (N = 3). Injection dose was 1.06 ± 0.04 MBq/mouse. hrs: hours. Data was shown in Mean ± S.E.

Time	Day 1 (24 hrs)	Day 2 to 4		
Sex	Male	Female		
Charcoal filter	3.23 ± 0.03	2.63 ± 0.062	0.0019 ± 0.00010	0.0016 ± 0.00013
Feces	6.04 ± 0.35	5.03 ± 0.26	2.59 ± 0.034	2.58 ± 0.07
Bedding	86.03 ± 10.38	67.62 ± 12.02	0.013 ± 0.00087	0.0064 ± 0.00022
this study. The nuclide might be used for the label or it might be used as it is. Safety measures should be based not only on the nuclide but also on the nature of the compound.

4. Conclusion
For all the studied radionuclides, the dispersions evaluated from the charcoal-impregnated filters were negligibly low.
Almost all the radionuclides were easily stripped with paper. These results confirm that 223Ra, 211At and 225Ac are hardly dispersed around by appropriate safety measures.

The results of this study might also help to estimate the kinetics of radionuclides released by labeled compounds. In this study, the dispersion of 211At, 223Ra and 225Ac was investigated in the animal experiments. Almost of all these three kinds of α-emitting nuclides, we could collect with adsorbent, such as charcoal-impregnated filter and bedding. It was not found that remarkable difference of the diffusion in animal experiments between conventional beta-emitting nuclides and alpha-emitting nuclides\(^\text{(19)}\). There was no unexpected dispersion and it was confirmed that conventional equipment was enough for protecting ourselves. In other words, the safety of animal experiments using α-emitting radioisotopes was thought to be guaranteed by taking appropriate anti-scattering measures as in chemical experiments.

Acknowledgements

The authors would like to thank Bayer Health Care Pharmaceuticals Inc. to kindly provide 223Ra dichloride solutions. We also express their gratitude to the crew of the K140 AVF cyclotron of Research Center for Nuclear Physics, Osaka University for their excellent beam operation during the course of the 211At experiments. The 211At was partly supplied through Supply Platform of Short-lived Radioisotopes, supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas, Grant Number 16H06278. 225Ac was provided by a U-233 collaboration between JAEA and the Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University (proposal no. 17K0204). We would like to thank Yoshihide Nakamura, Japan Radioisotope Association for his excellent technical supervision. This study was funded by a radiation safety regulation research strategic promotion project from the Nuclear Regulation Authority, Japan.

References

1) Ministry of Health, Labor and Welfare “Nationwide cancer incidence number 2016 preliminary report”, https://www.mhlw.go.jp/content/10900000/000468976.pdf

2) Xofigo, for intravenous injection (radiopharmaceutical standard radium chloride (223Ra) injection solution) package insert, https://pharma-navi.bayer.jp/omr/online/product_material/XOF_MPI_20180505_1538444913.pdf

3) Henriksen G, Breistøl K, Bruland ØS, Fodstad Ø, Larsen RH: Significant antitumor effect from bone-seeking, alpha-particle-emitting (223Ra) demonstrated in an experimental skeletal metastases model, *Cancer Res.*, 62, 3120-5 (2002).

4) Bruland ØS, Nilsson S, Fisher DR, Larsen RH: High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities?, *Clin Cancer Res.*, 12, 6250s–6257s (2006).

5) Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Motlaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A: 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer., *J Nucl Med.*, 57, 1941–1944 (2016).

6) Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A: Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding, *J Nucl Med.*, 58, 1624–1631 (2017).

7) Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, Morgenstern A: Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control, *J Nucl Med.*, 59, 795–802 (2018).

8) Nagata K, Shirasaki K, Toyoshima A, Ooe K, Yamamura T, Shinohara A, Yoshimura T: Dispersal rate of radon-219 from aqueous radium-223 solution containing sodium chloride/citrate, *Radiation Safety Management*, 19, 1–9 (2020).

9) Ooe K, Watabe T, Kamiya T, Yoshimura T, Hosono M, Shinohara A, Hatazawa J: Quantitative measurement of 219Rn radioactivity in exhaled breath from patients with bone metastasis of castration-resistant prostate cancer treated with 223RaCl$_2$, *EJNMMI Phys.*, 6, 13 (2019).

10) Yamamura T, Shirasaki K, Kikunaga H, Nagata K, Zhang Z.

Table 8 Evaluated %ID (percentage of observed radioactivity) of 225Ac in wash water at 24 and 48 hrs after the administration. ddY mice was used for normal (N = 5). Data was shown in Mean ± S.E. hrs: hours

Wash times	Normal 24 hrs	Normal 48 hrs
	0.033 ± 0.024	0.30 ± 0.22
1	N.D.	N.D.
2	N.D.	N.D.
3	N.D.	N.D.
4	N.D.	N.D.
5	N.D.	N.D.

N.D.: not detected
Dispersion of Alpha-Nuclides during Animal Experiments

Washiyama K, Toyoshima A, Yoshimura T, Shinohara A: Transfer rates of ^{225}Ac to exhaust air, surface, and waste water under chemical operations, *Radiation Safety Management*, 19, 35–48 (2020).

11) Toyoshima A, Shinohara A: Nuclear chemistry of astatine (A1), *Radioisotopes*, 67, 461–469 (2018).

12) Toyoshima A, Nagata K, Ooe K, Zhang Z, Ikeda T, Ichimura S, Obata H, Yoshimura T, Shinohara A: Dispersal rates of astatine-211 from aqueous solutions and chloroform, *Radiation Safety Management*, 18, 16–22 (2019).

13) Apostolidis C, Molinet R, Rasmussen G, Morgenstern A: Production of ^{225}Ac from Th-229 for targeted alpha therapy, *Anal Chem.*, 77, 6288–6291 (2005).

14) Zielinska B, Apostolidis C, Bruchertseifer F, Morgenstern A: An improved method for the production of $^{225}/^{212}\text{Bi}$ from Th-229 for targeted alpha therapy, *Solvent Extr Ion Exc.*, 25, 339–349 (2007).

15) Watabe T, Kaneda K, Liu Y, Shirakami Y, Ooe K, Toyoshima A, Shimosegawa E, Fukuda M, Shinohara A, Hatazawa J: Enhancement of astatine-211 uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted alpha therapy of thyroid cancer, *J Nucl Med.*, 60, 1301–1307 (2019).

16) Lindholm PF, Hwang YS: LPA Increases Tumor Growth and Bone Destruction Through Enhancement of Osteoclastogenic Cytokines, *Anticancer Res.*, 36, 61–70 (2016).

17) Watabe T, Liu Y, Kaneda-Nakashima K, Shirakami Y, Lindner T, Ooe K, Toyoshima A, Nagata K, Shimosegawa E, Haberkorn U, Kratochwil C, Shinohara A, Giesel F, Hatazawa J: Theranostics targeting fibroblast activation protein in the tumor stroma: (64)Cu and (225)Ac labelled FAPI-04 in pancreatic cancer xenograft mouse models, *J Nucl Med.*, 61, 563–569 (2020).

18) Kaneda-Nakashima K, Zhang Z, Manabe Y, Shimoyama A, Kabayama K, Watabe T, Kanai Y, Ooe K, Toyoshima A, Shirakami Y, Yoshimura T, Fukuda M, Hatazawa J, Nakano T, Fukase K, Shinohara A: α-Emitting cancer therapy using ^{211}At-AAMT targeting LAT1, *Cancer Sci.*, 112, 1132–1140 (2021).

19) Totsuka Z, Doi M, Miyazawa E, Kawakami T: Survey of literature on dispersion ratio and collection ratio of radioisotopes in animal study using radioisotopes, *Radioisotopes*, 47, 855–863 (1998).

20) The Japan Radioisotope Association: Radioisotope pocket data book 11th Edition (2011).