Determining optimum eco paving block compositions by using factorial design method

A T Purwandari¹,², A Ratnamirah¹,³, N Parwati¹,⁴, and W N Tanjung¹,⁵

¹Industrial Engineering Department, Faculty of Science and Technology, Universitas Al Azhar Indonesia, Jakarta, Indonesia
²aprilia@uai.ac.id, ³alikaaratnamirah@gmail.com, ⁴niken.parwati@uai.ac.id, ⁵widya@uai.ac.id

Abstract. Some plastic waste processing into economically valuable recycle products has been done. By using a plastic waste processing machine, a variety of products made from plastic waste can be made, one of which is a paving block that is commonly used as building material. This paving block is called as eco paving block to show the ecology side by using plastic waste as raw material. It has been produced with various compositions and type of plastics, but the optimal composition is not yet known to produce good quality. So, this experiments were carried out using the factorial design as one of the Design of Experiment (DOE) methods to determine the effect of type of plastics and compositions ratio to the eco paving block compressive strength and also it can be obtained optimal composition of the eco paving block. The result showed that the ratio of composition is 2:3 of sand and plastic can produce optimum eco paving block based on compressive strength. This paving block has an average compressive strength 9.91 MPa. It can be classified into D quality classification that can be used for yards, parks, and others.

Keywords: factorial design method, eco paving block, plastic, compressive strength

1. Introduction
The amount of plastic waste that is not managed properly can potentially damage the ecosystem. Based on World Economic Forum (WEF) data, only 5% of plastic are effectively recycled, while the other 40% ends up in landfills, and the rest ends in ecosystems such as the ocean. Indonesia got second ranks as the largest contributor of plastic waste in the world with 5.4 million tons per year [1]. The principles of waste management are reduction in using of plastic products such as plastic bag, plastic packaging, etc., optimizing the use of plastic can be reused, producing or processing plastic into a product that is useful and has economic value, replace or avoid the use of disposables with items that can be used repeatedly, and respect to build a sense of caring and loving the environment so that, can get used to and wise before choosing or using a product.

Therefore, from the many methods, technologies, and ways to recycle plastic waste into a new product, the use of plastic waste processing machine is one of the technologies that is very effective and efficient in producing recycle products from plastic waste. The product that can be made from processing plastic waste is paving block. Basically, paving block made of cement and sand. Some communities or companies have produced eco paving block with various quality. Based on SNI 03-
0691-1996, the classification for paving block is measured based on the compressive strength as shown in Table 1.

Quality	Utility	Compressive Strength (MPa)	
		Average	Minimum
A	Road Hardener	40	35
B	Parking Lot	20	17
C	Pedestrian	15	12.5
D	City Park	10	8.5

Actually, some experiments to determine best composition of paving block by using plastic mixture has conducted with various material, parameters, and methods. Previous research used variation of plastic type ratio as parameter. The result showed that the best comparison of ratio is 1 of body of plastic bottle, 1 of plastic bag, 4 of cap of plastic bottle [3]. Other research found that optimum compressive strength occured in the addition of 0.5% polietilena terefatlat fiber and it increased of 42.23% when compared to normal paving block [4]. While, the other study proved that the value of paving block compressive strength can be increased by using Polypropylene (PP) plastic waste as an aggregate substitution in the manufacture of paving block [5]. The paver block with the addition of PP fiber at 0.15% showed better strength performance compared to conventional pavement [6]. Meanwhile in other research showed the utilization of High Density Polyethylene (HDPE) for making paving block. At normal temperatures, it can be very hard and suitable for making paving block [7]. Eco paving block made from HDPE wastes and sand composite generates higher performance relative to the conventional one [8].

Based on this idea, this experiment will be conducted to investigate the effect of composition ratio and type of plastic to the quality of eco paving block and also it can be obtained optimum composition of eco paving block by using experimental method of Design of Experiment (DOE) based on factorial design. Good quality eco paving block are paving block that have high compressive strength value (MPa) and low absorption value (percentage of water absorption).

2. Methods

2.1. Experimental Design

Design of Experiment (DOE) is a research conducted to study or discover something about existing processes or compare the effects of several conditions on a phenomenon [9]. Generally, DOE is used in designing an experiment to be able to find out the response and characteristics of a factor and element to a test variable [10]. Factorial design is a kind of DOE method usually that used to produce more objective experiments. In factorial design method, every possible combination of all factors and levels in the experiment to determine the effect of interactions between factors in factorial experiments could be investigated.

Factors and levels in this study obtained by interviewing the experts and did literature review from previous research. In this experiment, it is used 2 factors consist of types of plastic at 2 levels (PP and HDPE) and ratio of sand and plastic at 3 levels (250:250; 200:300; 300:200). There are 3 replications for each of the 6 (2 x 3) level factor combinations. So, this study has 18 (6 x 3) of total treatments. Then the data tested by using factorial design to determine influence each factor to the response variable. Hypothesis formulation for each factor to be analyzed is as follows:

- \(H_{01} \): The types of plastic has no effect significantly on the compressive strength
- \(H_{11} \): The types of plastic has effect significantly on the compressive strength
- \(H_{02} \): The composition ratios has no effect significantly on the compressive strength
- \(H_{12} \): The composition ratios has effect significantly on the compressive strength
H₀₃ : The interaction between type of plastic and composition ratio has no effect significantly on the compressive strength

H₁₃ : The interaction between type of plastic and composition ratio has effects significantly on the compressive strength

In order to increase accuracy in experiments, usually it is conducted randomization. Randomization is the design technique used to guard against such a nuisance factor [11]. By using Minitab Statistical Software, experimental design of this study can be seen in Table 2.

Std Order	Run Order	Replications	Types of Plastic	Composition Ratio	Std Order	Run Order	Replications	Types of Plastic	Composition Ratios
9	1	2	HDPE	3	3	10	1	HDPE	3
8	2	2	HDPE	2	5	11	1	PP	2
11	3	2	PP	2	6	12	1	PP	3
7	4	2	HDPE	1	17	13	3	PP	2
12	5	2	PP	3	13	14	3	HDPE	1
10	6	2	PP	1	15	15	3	HDPE	3
1	7	1	HDPE	1	16	16	3	PP	1
2	8	1	HDPE	2	14	17	3	HDPE	2
4	9	1	PP	1	18	18	3	PP	3

2.2. Performing the Experiment

This experiment is focused on paving block made by plastic waste and sand. The choice of material is an effort to reduce the amount of plastic waste in the environment that is processed by using a plastic waste machine. The size of paving block for this experiment has length is 13 cm, width is 13 cm, and height is 6 cm with a modified cube base shape, as the shape of the paving block mold design shown in Figure 1.

Figure 1. Paving block mould design

In conducting experiments, 18 of paving block samples were taken. The making of plastic paving block uses the help of plastic waste processing machine, as shown in Figure 2 and 3.
Based on Figure 4 and 5, there are two types of plastic waste processing machine used in making eco paving block with different uses and functions. Shredder is used to destroy and refine plastic waste, while extrusion machine is used to melt the results of chopping and as a medium used in the process of mixing between plastic seeds with fine aggregate (sand). Figure 4 showed the eco paving block that produced by using the machines.

The variable response of this research is compressive strength of the eco paving block. The process compressive strength testing of eco paving block was carried out in the Concrete Laboratory, using CTM (Compression Testing Machine) as in Figure 5.

2.3. Statistical data analysis
Analysis of variance is important analysis techniques to the factorial design method. Analysis of variance is a technique used as a tool to analyze the average difference between groups in an experiment or research by conducting a hypothesis test to test the interaction between one factor of the
sample taken in an experiment to know the interaction between variables and their effect on a treatment. In this research has been used statistical software to compute p-value. The α-value has been selected is 0.05. If p-value is below α-value, there are factors or factor interactions are significantly affects the response variable. To be able to conduct the analysis of variance, the data must be normally distributed and homogeneous [12].

2.3.1. Model Adequacy Checking
In the analysis of variance, the uses of normal probability plot of the residuals to check the assumption of normality is usually more effective and straight forward [10]. If the underlying error distribution is normal, this plot will resemble a stright line. The other plot that used for model adequacy checking is plot of residuals versus fitted, plot of residuals versus, and histogram.

3. Result and Discussion

3.1. Compressive strength result
The results of compressive strength by using the compression testing machine to all eco paving block with all variation of treatment can be seen on Table 3.

Treatments	Types of Plastic	Composition Ratio	CompressiveStrength (MPa)
1	HDPE	3	7.29
2	HDPE	2	9.99
3	PP	2	9.65
4	HDPE	1	8.42
5	PP	3	7.24
6	PP	1	8.4
7	HDPE	1	8.86
8	HDPE	2	9.87
9	PP	1	8.25
10	HDPE	3	7.51
11	PP	2	9.20
12	PP	3	7.52
13	PP	2	9.99
14	HDPE	1	8.25
15	HDPE	3	7.41
16	PP	1	8.08
17	HDPE	2	9.87
18	PP	3	7.52

From Table 3 can be seen that the highest value of compressive strength is 9.99 MPa. It is obtained from treatment number 2 and 13. Both of treatments used the same compositions, these are 200 gram of sand and 300 gram of plastic. Therefore, the types of plastic are different.

3.2. Statistical analysis
To conduct ANOVA tests, the data must be normally distributed and homogeneous in nature. The normality assumption has conducted by using residual plots as shown in Figure 6. Based on residual plot, the residual value is obtained that follows a linear line, so the residual data can be assumed to be normally distributed and the requirements for the ANOVA test can be fulfilled. For the histogram, a pattern that follows a normal curve is obtained, so that it can be said that the data is normally distributed. Versus fits graph is used to see whether residuals have a constant value or not. The pattern produced on the garfik versus fits does not form a particular pattern and tends to be constant and
identical to either the top or bottom of the zero line. As for versus order, it is used to describe whether the residuals are free from one another. The graph versus the order obtained shows a random pattern at the center of the line or the zero line on the y axis or does not have a certain pattern, so it can be said that the residual data are mutually independent. From all the graphs on the residual plot, it is obtained that the residual data meet the normal distribution assumption.

Figure 6. Residual plots

Based on homogeneity test, the variance of each data is similar. The \(p\text{-value} \) is 0.168 or greater than the alpha value of 0.05. The data has fulfilled the analysis of variance assumptions. Table 4 shows that there is no significant effect between types of plastic on the compressive strength. Meanwhile, the composition ratio have a significant effect on the compressive strength, because the \(p\text{-value} \) obtained is 0.000 or less than the alpha value, reject \(H_{02} \), which means composition ratio has a significant effect on the compressive strength. But the interactions of factor levels has no effect significantly on the compressive strength. It can be showed through the \(p\text{-value} \) is 0.508. It was greater than an alpha value, reject \(H_{13} \).

Table 4. Analysis of variance result

Term	p-value
Types of Plastic	0.164
Composition Ratio	0.000
Types of Plastic* Composition Ratios	0.508

So, the main effect that can influence the compressive strength of the paving block is composition ratio as shown in Figure 7. It is known that the material composition ratio factor has an influence between each level of composition when compared to the type of plastic factor, with a level 2 material composition that has a very significant effect on the compressive strength of eco paving block when compared to the composition of level 1 and 3. The greater slope, the more significant effect on the response variable.
Interactions between factors are also important to identify because interactions between these factors can influence the response variables, as in Figure 8.

Based on the interaction plot, it is known that to achieve optimal compressive strength on plastic paving block, used plastic with HDPE type with a composition of level 2 materials because the interaction plot for the type of plastic and the material composition ratio is located at the highest value among the other material composition ratios. So, it can be assumed that the optimum eco paving block composition ratio is the eco paving block made by 200 gram of sand and 300 gram of plastic with the optimum average value of compressive strength is 9.91 MPa. It can be determined the eco paving blocks can be categorized into quality D paving blocks based on paving block quality standard as shown in Table 1.

The result of the experiment showed that in the making of eco paving block by using plastic waste mixture, the quantity of plastic must be greater than the sand to produce the better quality of eco paving block. The type of plastic that used in this research only two type of plastic, these are HDPE and PP. It need to be investigated of use the other type of plastic for making eco paving block, especially thermoplastic, such as Polyethylene Terephthalate (PET), Low Density Polyethylene (LDPE), and so on.
4. Conclusion
Based on data processing and analysis that has been done, the conclusions can be obtained as follows:
1. Factor that has an influence significantly on the eco paving block compressive strength is the composition ratio of material, meanwhile the type of plastic has no effect on the compressive strength.
2. The optimum composition for the eco paving block is 2:3 of sand and plastic which can produce an average compressive strength is 9.91 MPa.

Acknowledgment
This work is supported by Greant Research Prime founded by LP2M Universitas Al Azhar Indonesia

5. References
[1] Jambeck J R, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R and Law KL 2015 Plastic waste inputs from land into the ocean. Science 347, 768–771
[2] The Indonesian Standardization Body 1996 Paving block SNI 03-0691-1996 (Jakarta: The Indonesian Standardization Body)
[3] Frasman A S and Tarigan J 2013 Utilization of Plastic Bottle Waste as Eco-friendly Material (Economic Plastic Fiber) Paving Block with an Environmental Friendly Concept with Compressive Strength Test, Shock Test and Water Absorption. Journal of Civil Engineering 2 (North Sumatra: University of North Sumatra)
[4] Burhanuddin B and Darmanijati MRS 2018 Utilization of Plastic Waste for Raw Material in Making Paving Block. Journal of Environmental Engineering 18
[5] Kusuma G A 2019 Utilization of Poly Propylene Plastic Chopped as Aggregate Substitution on Paving Block Available at: https://dspace.uii.ac.id/ (Yogyakarta: Universitas Islam Indonesia)
[6] Ananthi A, Sulthhan M S and Vinitha V 2017 Study on the Effects of Polypropylene Fiber in Concrete Paver Blocks. International Journal of Construction Engineering and Planning 3, 32-38
[7] Sari K I and Nusa A B 2019 Utilization of HDPE (High Density Polyethylene) Plastic Waste as a Materials for Paving Block. Main Technical Bulletin 15
[8] Ingabire D, Ntihemuka F, Mugabo G, Isabane R S and Turatimana T 2018 Recycling High-Density Polyethylene (HDPE) into Construction Materials as a key step in Plastic Waste Reduction: Case of Kigali City. Rwanda Journal of Engineering 1
[9] Coleman D E and Montgomery D C 1993 A Systematic Approach to Planning for a Designed Industrial. Experiment Technometrics 35, 1-12
[10] Coleman D E and Montgomery D C 1997 Design and Analysis of Experiment. 4th Edition (New York: John Wiley&Sons, Inc)
[11] Coleman D E and Montgomery D C 1991 Design and Analysis of Experiment. 4th Edition (New York: John Wiley&Sons, Inc)
[12] Kirk R E 1995 Experimental design: Procedures For The Behavioral Sciences. 3rd Edition (Belmont, CA, US: Thomson Brooks/Cole Publishing Co)