MitomiRs: their roles in mitochondria and importance in cancer cell metabolism

Andrej Rencelj1,2, Nada Gvozdenovic1, Maja Čemazar1,3

1 Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
2 Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
3 Faculty of Health Sciences, University of Primorska, Izola, Slovenia

Background. MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3' untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production.

Conclusions. In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of miRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.

Key words: microRNAs; mitomiR; mitochondria; cancer; cancer cell metabolism

Introduction

MicroRNAs (miRNAs) are short non-coding RNAs (ncRNAs) of ~18-25 nucleotides that are present in all eukaryotic cells and play important roles in almost all biological signaling pathways.1-4 Since the discovery of the first miRNA (lin-4) in C. elegans5, approximately 2000 miRNAs have been annotated in the human genome.6 Data from genomic studies show that most miRNAs are highly conserved, making them very interesting targets for studying various disease states.7 They regulate post-transcriptional gene expression by binding to the 3'UTR of messenger RNAs.8-14 A single miRNA
can regulate many mRNA targets, and conversely, a single mRNA target can be regulated by many miRNAs.15–17 Therefore, by regulating these fundamental target genes, miRNAs have been implicated in signaling pathways to modulate a large set of important biological processes such as cell proliferation2, metastasis19, apoptosis19, senescence21, differentiation25, autophagy21, and immune response22. Moreover, miRNAs have been found to be dysregulated in many pathological conditions, such as neurodegenerative diseases23, cardiovascular diseases24, and cancer.25–28

More recently, miRNAs have been found to be specifically present in mitochondria. These mitochondrial miRNAs were named “mitomiR”7,29–32 Most of them have a nuclear origin, but some mitomiRs originate from mRNA molecules derived from the mitochondrion genome. The association of mitomiRs with mitochondria is species- and cell type-specific.7,33 They have been found in mitochondria in various tissues and cells and are thought to have different thermodynamic properties than miRNAs.7,24 Mitochondria have a discrete and unique pool of mitomiRs, which has been demonstrated with various experiments.29

For the first time, in 2011, Barrey and co-workers demonstrated the presence of pre-miRNAs (precursor-miRNAs) in mitochondria and postulated that some pre-miRNA sequences could be processed into mature miRNAs that could immediately become active on mitochondrial transcripts or exported to the cytosol to disrupt genomic mRNA.35 Barrey’s group screened for 742 miRNAs using qRT-PCR and showed that 243 miRNAs had significant expression in mitochondrial RNA samples isolated from human myotubes by \textit{in situ} hybridization. This study was the first to provide evidence that pre-miRNAs can be localized in mitochondria. Subsequently, a number of studies have identified “signatures” of miRNAs localized to mitochondria through various experimental approaches. Mercer \textit{et al.}35 examined the human mitochondrial transcriptome and demonstrated that 3 miRNAs (miR-146a, miR-103, and miR-16) have quite high expression in the intermembrane region compared to the matrix. Latronico and Condorelli36 found 15 nuclear-encoded miRNAs in mitochondria isolated from rat liver, 20 miRNAs from mouse liver mitochondria, and 13 miRNAs from HeLa cells (isolated from human cervical cancer) by microarray. Some other groups identified novel mitomiRs from HEK293 cells (isolated from human embryonic kidneys)37, 143B cells (isolated from human bone marrow)38, mouse heart39 and HeLa cells.37,40

MitomiRs have been shown to be important regulators of mitochondrial function.35,38,41 The regulation of mitochondria by mitomiRs influences the development of many diseases caused by mitochondrial dysfunction, which is responsible for the pathophysiology of numerous diseases, such as cardiovascular and neurodegenerative diseases, diabetes, obesity, and cancer.42

In the first part of this review article, we describe the biosynthesis of mitomiRs and the transport mechanisms from mitomiRs to mitochondria. The next part is dedicated to the role of these small molecules in mitochondria and the presentation of some important mitomiRs, their target genes and functions. In the last part of the review, we discuss the functions of mitomiRs in cancer cell metabolism and introduced mitomiRs in the context of cancer.

\section*{Biosynthesis of miRNA/mitomiRs}

Most miRNAs/mitomiRs are produced via the canonical biosynthetic pathway, which involves transcription by RNA polymerase II (Pol II) to produce a primary transcript (pri-miRNA/mitomiR). The primary transcript is first cleaved in the nucleus by the nuclear heterodimer Drosha/DGCR8 (DiGeorge syndrome chromosomal region 8), which cleaves the pri-miRNA/mitomiR and produces a pre-miRNA/mitomiR with a hairpin structure that is much more stable than the pri-miRNA/ mitomiR due to its characteristic hairpin loop structure.43 Exportin 5 (EXP5) and GTP-binding nuclear protein (RANGTP) then form a transport machinery to export the pre-miRNA from the nucleus to the cytoplasm. After export to the cytoplasm, the pre-miRNA/mitomiR is further cleaved by the enzyme Dicer to form a double-stranded RNA (dsRNA) duplex (Figure 1). Only a single strand of the dsRNA duplex forms the mature miRNA/mitomiR and is incorporated into the RNA-induced silencing complex (RISC), which directs the binding of Argonaute (AGO) proteins in the RISC to the 3'UTR of the target mRNA to either repress protein translation or promote mRNA degradation.43–45 After incorporation into RISC, mature miRNA/mitomiRs are transported into mitochondria, back to the nucleus by importin 8 (IPO-8) or extracellular environment (Figure 1).36,47

In addition to the canonical miRNAs/mitomiRs biosynthesis pathway, there are also non-canonical, Drosha/DGCR8-independent and Dicer-independent biosynthesis pathways. Prominent
classes of Drosha/DGCR8-independent miRNAs/mitomiRs are the “mirtrons” derived from introns that, once spliced, function as pre-miRNAs and thus do not require cleavage by Drosha/DGCR8 and can be immediately exported to the cytoplasm for processing by Dicer. MiRNAs/mitomiRs can also be processed from hairpins generated directly by Pol II at specific transcription start sites. These pre-miRNAs are capped and exported via the exportin 1 (EXP1) pathway. The Dicer-independent miRNAs/mitomiRs biosynthesis pathway involves the unusually short hairpin of miR-451, which is directly cleaved by argonaute 2 (AGO2).

MitomiRs transport to mitochondria

The discovery of mitomiRs raised the question of elucidating the underlying molecular mechanisms of their transport into mitochondria. Due to their size and charged nature, mitomiRs are unlikely to cross membranes under their own power. The molecular mechanisms of mitomiR transport into mitochondria may vary between species and are not well understood. Some proposals have been published on AGO2 as a potential mitomiR import protein. Due to its RNA-binding ability and dual localization in the cytosol and mitochondria, AGO2 might be involved in the trafficking of mitomiRs. Shepherd et al. showed that the exoribonuclease polyribonucleotide nucleotidyltransferase (PNPT1/ PNPase) has a major role in the import of mitomiRs. Therefore, PNPase could be part of an alternative, AGO2-independent, uptake pathway of mitochondrial miRNA. Furthermore, a possible mechanism could involve the voltage-dependent anion-selective channel protein (VDAC). Several studies have suggested that the instability of RISC in the

![Diagram of canonical biosynthesis of miRNAs/mitomiRs](image-url)
cytoplasm promotes miRNA translocation to mitochondria, but the molecular components that facilitate this translocation process are not fully understood. Furthermore, the concept that mammalian mitochondria can import cytosolic ncRNAs may facilitate research in another exciting area, long ncRNAs. Clearly, these translocation mechanisms and the identification of pathway components for mitochondrial targeting require further studies.7

Roles of mitomiRs in mitochondria

Mitochondria are semi-autonomous cell organelles with their own DNA (mtDNA) encoding 22 tRNAs, 2 rRNAs, and 13 polypeptides. These polypeptides and those encoded by nuclear genes, form 4 protein complexes of the electron transport chain (ETC). Mitochondria are constantly dividing and fusing, and the balance between mitochondrial fission and fusion influences mitochondrial morphology, whose dynamics and turnover are critical for cellular homeostasis and differentiation.50 Several proteins are involved in the regulation of mitochondrial dynamics. Deregulation of mitochondrial dynamics is not only associated with deregulation of mitochondrial function, but is also closely related to several biological processes such as proliferation, cell death, apoptosis and production of reactive oxygen species (ROS), since mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids and ATP production.1,51–53

It’s also worth noting that the mitochondrial matrix has its own set of environmental variables. Because of its thioester bond, acetyl-coenzyme A (acetyl-CoA) is a very abundant metabolite in mitochondria and functions as a powerful acetylation reagent. Protein lysine acetylation and succinylation are caused by acetyl-CoA and mitochondrial matrix pH concentrations. Non-enzymatic acetylation occurs often in mitochondria.54 The most of mitochondrial proteins have acetyl groups, which is consistent with this hypothesis. Non-enzymatic acetylation of RNA molecules, including miRNAs, is a logical possibility for mitochondrial modification. An acetyl group covalently attached to a miRNA might change its mRNA recognition behavior. If it happens at the 2 OH group of ribose needed for the cleavage process, it could inhibit spontaneous bond cleavage and therefore increase the half-life of mRNA. Furthermore, post-transcriptional alterations can result in structural changes as well as changed interactions with other RNA molecules or proteins.56

As stated, mitomiRs are regulators of mitochondrial function, as shown in the following examples. In silico analysis identified miR-378, miR-24, and miR-23b in liver mitochondria (Table 1) and these mitomiRs have been shown to regulate systemic energy homeostasis, oxidative capacity, ROS, and mitochondrial lipid metabolism.35,57–62 Several reports have indicated that miRNAs such as miR-1291, miR-138, miR-150, miR-199a, and miR-532-5p can alter the expression of some important glycolytic enzymes (Table 1).44–47 miR-29a, miR-29b and miR-124 (Table 1) regulate the expression of monocarboxylate transporter 1 (SLC16A1) in pancreatic beta cells.71 miR-33a/b has been shown to regulate lipid metabolism by targeting the cholesterol transporter ATP-binding cassette transporter (ABCA1).72 miR-143 and miR-24 have also been shown to regulate mitochondrial lipid metabolism (Table 1).73,74 On the other hand, miR-204 accelerates fatty acid oxidation by inhibiting acetyl-coenzyme A carboxylase (ACC).75 Ahmad et al. (2011) showed that miR-200 is associated with the regulation of phosphoglucone isomerase (PGI), which is an important factor in glycolysis and glucogenesis. Overexpression of miR-338 leads to downregulation of the protein level of cytochrome c oxidase IV and reduces mitochondrial oxygen consumption and ATP production.77,78 Similarly, overexpression of miR-181c decreases mt-COX1 protein and causes remodeling of the complex IV (in vitro) and a dysfunctional complex IV (in vivo), along with increased production of ROS. It has also been reported that miR-210 modulates the function of the complex IV by targeting the nuclear-encoded mRNA, COX10.80,81 It has also been reported that miR-15b, miR-16, miR-195 and miR-338 (Table 1) regulate ATP production by targeting several nuclear genes that play important roles in ETC.77,83 miR-101-3p regulates the expression of ATP synthase subunit beta (ATP5B) in ETC (Table 1).84 In addition, miR-210-5p reduces the expression of iron-sulfur cluster assembly enzyme (ISCU) under hypoxic conditions, which affects the proteins containing iron-sulfur clusters (Fe-S).85 It has also been reported that miR-29a-3p is involved in β-oxidation of lipids (Table 1) and that miR-19b negatively regulates mitochondrial fusion by downregulating mitofusin 1 (MFN1).87

The microRNAs listed in Table 1 significantly affect mitochondrial regulation and function, which is why they are classified in the group of mitomiRs, which are crucial regulatory molecules.
TABLE 1. Summary of microRNAs and their roles in mitochondria

miR	accession number	Target genes	Gene accession number	Function	Functional pathway	Location	Species	References
miR-378	MI0000795	Crat	ENSMUSG00000026553	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in liver cells	Mouse	Carre et al., 2012⁶⁹
miR-24	MI0000080	H2ax	ENSMUSG000000049932	Downregulation	Insulin signaling pathway	Mitochondria in liver cells	Human	Jeong et al., 2017⁶⁸
miR-23b	MI0000439	GLS	ENSG00000115419	Downregulation	Glutamine metabolism	LMitochondria in liver cells	Human	Gao et al., 2009⁶⁷
miR-129	MI00006333	SLCA2A, CPT1C, ESRRA, ASS1, GLUT1	ENSG00000117394, ENSG00000169169, ENSG00000173153, ENSG00000130707, ENSG0000017594	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in liver cells	Human	Yamasaki et al., 2013; Chen et al., 2020; Yu et al., 2020⁶⁵,⁶⁶
miR-138	MI0000455	PDK1	ENSG00000152556	Downregulation	Glucose metabolism	Mitochondria in liver cells	Human	Zhu et al., 2017⁷⁴
miR-150	MI0000920	Slc2a4	ENSRNQG0000017226	Downregulation	Metabolism	Mitochondria in liver cells	Human	Hu et al., 2009⁷²
miR-199a	MI0000941	Slc2a4, Hk2	ENSRNQG0000017226, ENSRNNQRG00000611156	Upregulation	Expression of glucose transporters	Mitochondria in muscle cells	Rat	Esteses et al., 2018; Yan et al., 2014; Guo et al., 2015⁶⁷,⁷⁰
miR-532-3p	MI0006154	Slc2a4, Hk2	ENSRNQG0000017226, ENSRNNQRG00000611156	Upregulation	Expression of glucose transporters	Mitochondria in muscle cells	Rat	Esteses et al., 2018⁷⁰
miR-29a	MI0000576	Slc16a1	ENSMUSG00000032902	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in pancreatic beta-cells	Mouse	Pullen et al., 2011⁷¹
miR-29b	MI0000143	Slc16a1	ENSMUSG00000032902	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in pancreatic beta-cells	Mouse	Pullen et al., 2011⁷¹
miR-124	MI0000716	Slc16a1	ENSMUSG00000032902	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in pancreatic beta-cells	Mouse	Pullen et al., 2011⁷¹
miR-33a/b	MI00002684, a-MI00007603	CROT, CPT1A, HADHB, PRKAA1, ABCA1, SREBF1, FASN, ALCY, ACACA	ENSANAG00000028065, ENSANAG00000017354, ENSANAG00000027802, ENSANAG00000032687, ENSANAG00000033387, ENSANAG00000017354, ENSANAG00000032687, ENSANAG00000033387, ENSANAG00000032555, ENSANAG00000036009, ENSANAG00000032523	Downregulation	Lipid metabolism	Mitochondria in liver cells	Monkey	Rayner et al., 2011⁷⁵
miR-143	MI0000916	Map3k5	ENSRNQG00000007926	Downregulation	Adipogenesis	Mitochondria in adipose cells	Rat	Chen et al., 2014⁷³
miR-204	MI0000284	ACACB	ENSG00000075655	Downregulation	Lipid metabolism	Mitochondria in adipose cells	Human	Civelek et al., 2013⁷⁵
miR-200	MI0000737	ZEB1, ZEB2	ENSG00000148516, ENSG00000169554	Upregulation	Lipid metabolism	Mitochondria in breast cells	Human	Ahmad et al., 2011⁷⁶
miR-338	MI0000618	COXIV	ENSRNQG00000007827	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in neural cells	Rat	Aschrafi et al., 2008⁷⁷
miR-181c	MI0000924	COX1	ENSRNQG000000034234	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in cardiac cells	Rat	Das et al., 2012⁷⁸
miR-210	MI0000268	BCUC	ENSG00000136003	Downregulation	Mitochondrial oxidative metabolism	Mitochondria in placenta	Human	Colleoni et al., 2013; Qiao et al., 2013⁷¹,⁷²
miR-15b	MI0000845	At2, Bc2	ENSRQG00000021010, ENSRNNQG00000022791	Downregulation	ATP production	Mitochondria in cardiac cells	Rat	Nishi et al., 2010⁶⁸
miR-16	MI0000844	Bc1, At2	ENSRQG00000021010, ENSRQG00000021010	Downregulation	ATP production	Mitochondria in cardiac cells	Rat	Nishi et al., 2010⁶⁸
miR-195	MI0000939	At2	ENSRQG00000021010	Downregulation	ATP production	Mitochondria in liver cells	Mouse	Kurtz et al., 2014⁷⁴
miR-29a-3p	MI0000576	Foxa2	ENSMUSG00000037025	Upregulation	Lipid metabolism	Mitochondria in liver cells	Mouse	Kurtz et al., 2014⁷⁴
miR-19b	MI0000074	MPP1	ENSG00000171109	Downregulation	Apoptosis	Mitochondria in bone cells	Human	Li et al., 2014⁷⁴
miR-101-3p	MI0000103	ATP5B	ENSG00000110955	Silencing	Mitochondrial oxidative metabolism	Mitochondria in HeLa cells	Human	Zheng et al., 2011⁷⁵
of mitochondrial function and regulation of metabolism. In the figures (Figure 2 and Figure 3), we have shown how these mitomiRs are linked to their target genes in primates (Figure 2) and rodents (Figure 3).

In primates, there is no regulation of the same genes by different mitomiRs from Table 1 (Figure 2). Moreover, most mitomiRs target one gene and only a few mitomiRs target a larger number of genes and in most cases mitomiRs downregulate genes.

In contrast to primates, in rodents, some genes are regulated by different mitomiRs (Figure 3). The mitomiRs miR-15b and miR-16 both regulate the Arl2 gene, which is a nucleotide-binding gene, and the Bcl2 gene, which regulates apoptosis. In addition, the mitomiRs miR-199a and miR-532-5p both regulate the Hk2 gene, which has an important function in regulating glucose metabolism, and the Slc2a4 gene, which is a glucose transmembrane transporter. It can be concluded that there is a greater overlap of mitomiRs in rodents than in primates. In most cases, mitomiRs downregulate genes.

From the figures (Figure 2 and Figure 3), we can summarize that some mitomiRs and their target genes are related in primates and rodents. MitomiR miR-199a regulates the same gene in both primates and rodents (Figure 3), the gene Hk2, which has an important function in regulating glucose metabolism. MiR-143 regulates the same gene MAP2K5 (Figure 3), which has an important

FIGURE 2. The network of the mitomiRs and their target genes (grey rectangle) in primates (data from Table 1). Blue arrows present downregulation, green arrows present upregulation and black T-line present silencing. Purple octagon shape presents monkey miRNA and cyan hexagon presents human miRNAs (figure constructed with Cytoscape Network Data Integration, Analysis, and Visualization in a Box V3.8.2).
function in signal cascade involved in growth factor stimulated cell proliferation and muscle cell differentiation.

MitomiRs in cancer

Traditional cancer traits include ten biological capabilities gained during the multistage development of human tumors. These ten traditional cancer traits include resistance to cell death, induction of angiogenesis, maintenance of proliferative signaling, evasion of growth suppressors, activation of invasion and metastasis, facilitation of replicative immortality, altered metabolism, evasion of destruction by the immune system, tumor-promoting inflammation, and genome instability (Figure 4).

An important feature of cancer is the presence of the Warburg effect. Under aerobic conditions, normal cells generate ATP primarily in the mitochondrial oxidative phosphorylation process (OXPHOS), which utilizes the products of glycolysis and the Krebs cycle. Under anaerobic conditions, relatively little pyruvate, the end product of glycolysis, is added to the Krebs cycle and is instead converted to lactate. However, this metabolic conversion of glucose appears to be energetically detrimental. In tumor cells, ATP deficiency can be compensated to some extent by upregulation of glycolysis. Interestingly, it has been observed that many cancer cells prefer glycolysis over OXPHOS even in the presence of an adequate amount of oxygen. This abnormal energy metabolism is known as the Warburg effect. Reduced OXPHOS and enhanced aerobic glycolysis are the main manifestations of reprogramming of glucose metabolism in tumor cells. Albeit the specific causes and utilitarian outcomes of this metabolic switch are as yet unclear, there is a developing agreement that the impact of Warburg effect is certifiably not an inconsequential result of carcinogenesis, yet is imperative for cancer cells to keep up with their proliferative potential and is driven by a few elements.

It has been confirmed that abnormal expression of mitomiRs in mitochondria is related to the occurrence of cancer features. Moreover, mitomiRs play an essential role in the control of cancer cell metabolism by regulating mRNA expression. They regulate several oncogenic signaling pathways and...
MitomiRs, mitochondria and cancer metabolism

target key transporters or enzymes in cellular metabolism. In addition, they may have a function as tumor suppressors that inhibit tumor cell proliferation or as oncogenes that induce tumorigenesis. MitomiRs can be isolated from any tissue or body fluid of any organism to study the level of expression in the organism in a diseased state, and thus can function as novel prognostic and predictive biomarkers.

The first evidence of miRNA involvement in human cancers was provided in a study of chronic lymphocytic leukemia (CLL). MiR-15a and miR-16-1 localized to 13q14 were reported to be frequently deleted and/or reduced in patients with B-cell chronic lymphocytic leukemia. This finding provided the first evidence that miRNAs may be involved in the pathogenesis of human cancers, as deletion of chromosome 13q14 resulted in the loss of these two miRNAs. MiR-15a induces apoptosis by regulating mitochondrial function and affecting the activity of Bcl-2 and Mcl-1 in human (Table 2). In addition, miR-15a causes mitochondrial dysfunction, leading to the release of cytochrome c into the cytoplasm and depletion of mitochondrial membrane potential. MiR-15a and miR-16a have been shown to be ATP modulators correlated with

FIGURE 4. Traditional cancer traits.

Deregulating cellular energetics

Sustaining proliferative signaling

Avoiding growth suppressors

Enabling replicative immortality

Resisting cell death

Inducing angiogenesis

Tumor-promoting inflammation

Activating invasion and metastasis

Genome instability
TABLE 2. Summary of mitomiRs with roles in cancer

miR	miR accession number	Target genes	Gene accession number	Function	Functional pathway	Type of cancer	Species	References
miR-210	MIO0000286	HIF-1	ENSG00000258777	Upregulation	Hypoxia	Breast cancer, neck and head cancer, lung cancer	Human	Qin et al., 2014; Gee et al., 2010; Puissegur et al., 2011
		ISCU	ENSG00000136000	Upregulation				
		COX10	ENSG00000006695	Upregulation				
		SDHD	ENSG00000204370	Upregulation				
		NDUFA4	ENSG00000189043	Upregulation				
miR-200a	MIO0000342	TFAM	ENSG00000108034	Downregulation	Mitochondrial biogenesis, cancer metabolism	Breast cancer	Human	Yao et al., 2014
miR-155	MIO0000681	HK2	ENSG00000159999	Upregulation	Glucose phosphorylation	Breast cancer	Human	Fang et al., 2012; Jiang et al., 2012
miR-124	MIO0000443	PKM	ENSG00000067225	Upregulation	Glucose metabolism	Colorectal cancer	Human	Sun et al., 2012
miR-137	MIO0000454	PKM	ENSG00000067225	Upregulation	Glucose metabolism	Colorectal cancer	Human	Sun et al., 2012
miR-340	MIO0000802	PKM	ENSG00000067225	Upregulation	Glucose metabolism	Colorectal cancer	Human	Sun et al., 2012
miR-326	MIO0000808	PKM2	ENSG00000169043	Downregulation	Mitogen-activated protein kinase (MAPK) signaling pathway	Gastric cancer, cervical cancer	Human	Mi et al., 2017; Zhuang et al., 2017
miR-181-5p	MIMAT0000256	RASSF6	ENSG00000169435	Downregulation	Inflammation, angiogenesis	Breast cancer cells	Human	Mogilysynskaya and Rigoutsos, 2013
		INPP5A	ENSG00000068383	Downregulation				
miR-92a-1	MIO000093	BCL2L11	ENSG00000153094	Downregulation	Apoptosis	B-cell chronic lymphocytic leukemia	Human	Gao et al., 2010
miR-126	MIO0000471	PK3R2	ENSG00000105647	Downregulation				
		PLK2	ENSG00000260410	Downregulation				
		EGFL7	ENSG00000172889	Downregulation				
		CRK	ENSG00000167193	Downregulation				
		ADAM9	ENSG00000168615	Downregulation				
miR-15a	MIO000069	HOXA9	ENSG00000078399	Downregulation				
		IR51	ENSG00000169047	Downregulation				
		ZC3H10	ENSG00000242080	Downregulation				
		SLC7A5	ENSG00000103257	Downregulation				
		VEGFA	ENSG00000150630	Downregulation				
		MMP7	ENSG00000137673	Downregulation				
miR-16a	MIO000070	BCL-2	ENSG00000171791	Downregulation				
		MCL-1	ENSG00000143384	Downregulation				
		COX42	ENSG00000131055	Downregulation				
		COX4A2	ENSG00000156885	Downregulation				
		NDUFB7	ENSG00000099795	Downregulation				
		NDUFV1	ENSG00000167792	Downregulation				
		NDUFS4	ENSG00000164258	Downregulation				
miR-16b	MIO000070	COX42	ENSG00000131055	Downregulation				
		COX4A2	ENSG00000156885	Downregulation				
		NDUFB7	ENSG00000099795	Downregulation				
		NDUFV1	ENSG00000167792	Downregulation				
		NDUFS4	ENSG00000164258	Downregulation				
Hypoxia has previously been related to altered mitomiR expression, with hypoxia-regulated mitomiR being found to play a key role in cell survival in oxygen-depleted settings. MiR-210 is one of the mitomiRs that is continuously increased in normal and transformed cells during hypoxia, suggesting that miR-210 plays a role in cells’ adaptive response to hypoxia. MiR-210 expression corresponds with hypoxia gene signatures in tumor tissues such as breast and head and neck cancers, demonstrating a direct connection between miR-210 expression and hypoxia in cancer. MiR-210 has been researched extensively and has a number of functionally significant targets in cell cycle control, cell survival, differentiation, angiogenesis, and metabolism. Cell metabolism switches from mitochondrial OXPHOS to glycolysis under hypoxic environments. HIF-1, a hypoxia-inducible factor that upregulates the expression of most glycolytic enzymes as well as pyruvate dehydrogenase kinase while downregulating mitochondrial respiration, plays a key role in this action. Previous research has looked into how miR-210 regulates mitochondrial metabolism under hypoxia. MiR-210 target iron-sulfur cluster assembly proteins (ISCU1/2) and inhibit the activity of iron-sulfur proteins that govern mitochondrial metabolism, such as complex I and aconitase, resulting in lower OXPHOS. It acts directly on cytochrome c oxidase assembly factor heme A:cytochrome c oxidase II (AcoXII), succinate dehydrogenase complex subunit D (SDHD), and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4) in regulating mitochondrial activity. Another study found an abnormal mitochondrial phenotype in A549 lung cells overexpressing miR-210, and mRNA expression profile analysis connecting miR-210 to mitochondrial dysfunction. Interestingly, HIF is rapidly destroyed upon reoxygenation of hypoxic cells due to miR-210’s high stability, whereas miR-210 stays stable to maintain the glycolytic phenotype. Under normal conditions, this slows mitochondrial respiration and enhances glycolysis in H28 cells, associated with IRS1 modulate ATP-citrate lyase de-regulation. This leads to an increase in ATP and citrate production which is linked with reducing Akt signaling and inhibiting cytosolic sequestration of Forkhead box O1 (FoxO1), which promote the expression of genes involved in gluconeogenesis and oxidative stress defense.

Several studies reported that miR-126 has an important role in different human cancers (Table 2) such as breast, lung, gastric cancers, melanoma cancer and acute leukaemia. Tomasetti et al. reported that miR-126 affects mitochondrial energy metabolism, resulting in malignant mesothelioma tumor suppression. This mitomiR reduce mitochondrial respiration and promote glycolysis in H28 cells, associated with IRS1 modulate ATP-citrate lyase de-regulation. This leads to an increase in ATP and citrate production which is linked with reducing Akt signaling and inhibiting cytosolic sequestration of Forkhead box O1 (FoxO1), which promote the expression of genes involved in gluconeogenesis and oxidative stress defense.
transcription factor activity is required for mtDNA replication and transcription. In addition to its function in replication and transcription, the presence of TFAM is necessary for mtDNA maintenance. It has also been implicated as a primary architectural protein of the mitochondrial genome by packaging mtDNA. In addition, TFAM expression has been reported to be involved in tumor progression, cancer cell growth, and chemoresistance.

Regarding the role of miRNAs in cancer and metabolism, the miR-17/92 cluster is one of the best characterized oncogenic miRNAs. This cluster is also known as oncomiR-1, and there is growing evidence of its oncogenic potential. It has been shown that miR-17/92 suppresses apoptosis and was originally found amplified in B-cell lymphomas, where ectopically overexpressed truncated versions lacking miR-92a-1 were shown to possess oncogenic properties. The MiR-17/92 cluster is deregulated in B-cell lymphomas, T-cell lymphomas, B-cell chronic lymphocytic leukemia, and acute myeloid leukemia. This cluster is particularly overexpressed in several other cancers, including osteosarcoma, neuroblastoma, cervical, pancreatic, breast, lung, colorectal, ovarian, kidney, and liver cancers. Izreig et al. reported that this miRNA cluster is a key factor in metabolic reprogramming of tumors. If oncomiR-1 is absent in Myc+ tumor cells, there is a global decrease in glycolytic and mitochondrial metabolism. If increased oncomiR-1 expression is present, this is sufficient for increased nutrient utilization by tumor cells. Deletion of miR-17/92 promoted changes in gene expression in Myc+ lymphoma which results in global decrease in metabolic pathways including glycolysis, the Krebs cycle, components of the electron transfer chain, amino acid metabolism, the pentose phosphate pathway, serine biosynthesis and nucleotide biosynthesis.

Conclusions

MiRNAs have been found in the mitochondria of many cell types, as shown by an increasing number of studies and they were named mitomiRs. In general, mitomiR populations differ in various tissues and under different pathological circumstances, implying that mitomiR populations are regulated by mechanisms that remain to be discovered. Based on the available information, we can deduce that there are a significant number of miRNAs which are present in mitochondria.

In our review, we have shown that various mitomiRs play a role in the initiation and progression of cancer via the regulation of mitochondria. They are involved in the Warburg effect, which is necessary for cancer cells to maintain their proliferative capacity. MitomiRs also upregulate HK2, a glucose phosphorylation enzyme, in an indirect manner, which may impact energy consumption in breast cancer cells. Expression of one of the mitomiRs (miR-210) corresponds with hypoxia gene signatures in tumor tissues such as breast cancer and head and neck cancers, demonstrating a clear connection between mitomiR expression and hypoxia in cancer. MiRNAs have emerged in the last decade as key regulators in cancer-related processes and are classified as either oncogenic or tumor suppressive miRNAs. The miR-17/92 cluster was first discovered to be amplified in diffuse cell lymphoma and B-cell lymphoma. This mitomiR cluster suppresses apoptosis and may act as an oncogene in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas. It is also overexpressed in numerous other malignancies. This cluster is a key factor in metabolic reprogramming of tumors. Tumor-targeting treatments based on mitomiRs are emerging as a novel diagnostic and therapeutic tool.

Future perspectives

We have shown that mitomiRs are important players in mitochondria of cancer cell that need to be further investigated to develop a new potential therapies for cancer. Numerous studies that have been published in recent years give promising predictions that mitomiRs will receive more attention in the context of their role in cancer as possible biomarkers or targets for treatment.

Acknowledgement

This work was financially supported by the Slovenian Research Agency (ARRS grant # P3-0003).

References

1. Bienertova-Vasku J, Sana J, Slaby O. The role of microRNAs in mitochondria in cancer. Cancer Lett. 2013; 336: 1-7. doi: 10.1016/j.canlet.2013.05.001
2. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012; 6: 590-610. doi: 10.1016/j.molonc.2012.09.006
3. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011; 39: 6945-53. doi: 10.1093/nar/gkr330
48. Fang J, Ferullo M, Kent OA, Fox-Talbot K, Wang R, Liu D, et al. Nuclear miRNA regulates the mitochondrial gene expression. Circ Res 2012; 110: 1596-603. doi: 10.1161/CIRCRESAHA.112.267732

49. Shepherd DL, Hathaway QC, Pinti MV, Nichols CE, Durr AJ, Sreekumar A, et al. Exploring the repeat protein universe through computational protein design. eLife 2017; 6: e29057. doi: 10.7554/eLife.29057

50. Zhu H, Xue H, Jin QH, Guo J, Chen YD. MiR-138 protects cardiac cells from apoptosis in the setting of myocardial infarction. PloS One 2010; 5: e11320. doi: 10.1371/journal.pone.0011320

51. Chen L, Hou J, Ye L, Chen Y, Cui J, Tian W, et al. MicroRNA-143 regulates apoptogenesis by modulating the MAP2Ks-ERKs signaling. Sci Rep 2015; 5: 18391. doi: 10.1038/srep18391

52. Hudson G, Gomez-Duran A, Wilson IJ, Chinnery PF. Recent mitochondrial disease genes and their proteins. Mitochondrion 2015; 21: 1-12. doi: 10.1016/j.mito.2015.01.004

53. Wagner GR, Payne RM. Widespread and enzyme-independent N-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288: 29306-45. doi: 10.1074/jbc.M113.486753

54. Brunette TJ, Permeggiani F, Huand PS, Bhabha G, Ekiert DC, Tsutakawa SE, et al. Exploring the repeat protein universe through computational protein design. Nature 2015; 528: 580-4. doi: 10.1038/nature16162

55. Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 2013; 38: 204-9. doi: 10.1016/j.tibs.2012.10.006

56. Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, et al. MIR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hoxo2 in liver cancer. Hepatol Cell 2015; 62: 1132-44. doi: 10.1002/hep.27929

57. Everse J, Vamondre CV, Pinto-Junior DC, Gerlinger-Romero F, Enghjø F, Machado UF. Mitochondrial microRNAs 29a-3p, 29c-3p, 199a-5p and 532p expression in muscle: Possible role in GLUT4 and HK2 repression. Front Endocrinol 2018; 9: 1-12. doi: 10.3389/fendo.2018.00536

58. Civelek M, Hapogian R, Pan C, Chen Y, Wang Y, Kaye PS, et al. Polymorphisms of human adipose microRNA expression and its consequences for metabolic traits. Hum Mol Genet 2019; 28: 3023-37. doi: 10.1093/hmg/ddt159

59. Ahmad A, Abouakmee A, Kong D, Wang Z, Sethi S, Chen W, et al. Phosphoglucone isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 2011; 71: 3400-9. doi: 10.1158/0008-5472.CAN-10-0965

60. Aschraft A, Schwechter AD, Mameza MG, Natera-Naranji O, Gioio AE, Kaplan BB. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 2008; 28: 12581-90. doi: 10.1523/JNEUROSCI.3338-08.2008

61. Li P, Rao J, Gao G, Prabhakar BS. Control of mitochondrial activity by miR-223. J Cell Biol 2012; 113: 1104-10. doi: 10.1002/jcb.24004

62. Colleoni F, Padmanabhan N, Wung HW, Watson ED, Cetin I, Tissot van Renen J, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle. J Biol Chem 2010; 285: 14120-9. doi: 10.1074/jbc.M109.082610

63. Kurtz CL, Peck BCE, Fannin EE, Beysen C, Miao J, Landstreet SR, et al. Interlinked processes critical for mitochondrial homeostasis and systemic energy homeostasis through targeting GLUT4 in insulin-resistant cardiomyocytes. Acta Biochim Biophys Sin (Shanghai) 2020; 52: 1111-9. doi: 10.1039/abbu20094a

64. Chen Y, Zhou Y, Han F, Zhao Y, Tu M, Wang V, et al. A novel miR-1291-ERRA-CPT1C axis modulates tumor cell proliferation, metabolism and tumorigenesis. Theranostics 2020; 10: 7193-210. doi: 10.7554/ti.48477

65. Zhao X, Bai J, Zhou H, Li G, Su Q, et al. PDE4DIP controls mitochondrial dynamics in skeletal muscle. Nat Commun 2015; 6: 7451-65. doi: 10.1038/ncomms10325

66. Tatarano S, Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, et al. Mitochondria and cancer metabolism. Acta Biochim Biophys Sin (Shanghai) 2020; 52: 1111-9. doi: 10.1039/abbu20094a

67. Ju J, Xiao D, Shen N, Zhou T, He H, Li X, et al. miR-150 regulates glucose utilization through targeting GLUT4 in insulin-resistant cardiomyocytes. Acta Biochim Biophys Sin (Shanghai) 2020; 52: 1111-9. doi: 10.1039/abbu20094a

68. Guo W, Qiu J, Wang Z, Wang Q, Tan N, Chen T, et al. MIR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hoxo2 in liver cancer. Hepatol Cell 2015; 62: 1132-44. doi: 10.1002/hep.27929

69. Li S, Liu H, Tang SL, Li XJ, Wang XY. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res 2017; 9: 1058-66.

70. Li S, Liu H, Tang SL, Li X, Wang XY. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res 2017; 9: 1058-66.
88. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 2012; 110: 1596-603. doi: 10.1161/CIRCRESAHA.112.267732

89. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-74. doi: 10.1016/j.cell.2011.02.013

90. Zong Z, Yu J, Vinrup DM, Madan B. Wnts and the hallmarks of cancer. Cancer Metastasis Rev 2020; 39: 625-45. doi: 10.1007/s10555-020-09887-6

91. Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagianis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015; 42: 841-51. doi: 10.1007/s11033-015-3854-4

92. Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol Lett 2012; 4: 1151-7. doi: 10.3892/ol.2012.928

93. Fogg VC, Lanning NJ, MacKeigan JP. Mitochondria in cancer: Radiol Oncol 2021; 55(4): 379-392.

94. Gao S, Chen C, Wu J, Tan Y, Yu K, Xing CY, et al. Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 and arsenic trioxide. Mol Cell Biochem 2013; 351: 157-64. doi: 10.1007/s11010-011-0723-7

95. Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, et al. MicroRNA-143 (miR-143) down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in cancer cell. J Exp Clin Cancer Res 2013; 32: 117. doi: 10.1186/1477-4278-31-117

96. Ren C, Xie Y, Liu J, Ren Z, Li J, et al. MicroRNA-191-3p promotes the progression of gastric cancer via RASSF-mediated MAPK signalling activation. Cancer Lett 2013; 389: 11-22. doi: 10.1016/j.canlet.2016.12.033

97. Buechner J, Tømte E, Haug BH, Henriksen JR, Løkke C, Flægstad T, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351: 287-95. doi: 10.1007/s11010-010-0381-x

98. Zhang L, Liao Y, Tang L. MicroRNA-34 family and microRNA-200a inhibit cell proliferation by directly regulating ADAM9 and MMP7 in melanoma. Clin Exp Med 2013; 13: 287-95. doi: 10.1007/s10228-013-9361-7

99. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Tuasa Y. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. Antioxid Redox Signal 2011; 15: 1363-70. doi: 10.1089/ars.2010.4118

100. Shen WF, Hu Y, Luan X, Liu Y, Hunter MG, Ottersen OA. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biomed Pharmacol Res Commun 2008; 387: 670-7. doi: 10.1016/j.bioparc.2008.06.090

101. Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res 2014; 33: 50. doi: 10.1186/1756-9966-33-50

102. Fogg VC, Lanning NJ, MacKeigan JP. Mitochondria in cancer: Radiol Oncol 2021; 55(4): 379-392.

103. Gao S, Chen C, Wu J, Tan Y, Yu K, Xing CY, et al. Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 and arsenic trioxide. Mol Cell Biochem 2013; 351: 157-64. doi: 10.1007/s11010-011-0723-7

104. Fang R, Xiao T, Fang Z, Sun Y, Li J, Gao Y, et al. MicroRNA-143 (miR-143) down-regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 2012; 287: 23227-23235. doi: 10.1074/jbc.M112.373084

105. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Jiang L, et al. Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524-9. doi: 10.1073/pnas.242607699

106. Gao S, Chen C, Wu J, Tan Y, Yu K, Xing CY, et al. Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 and arsenic trioxide. Biomed Pharmacol Res Commun 2010; 408: 208-3. doi: 10.1016/j.bioparc.2010.10.037

107. Sienglee P, Trakoljul N, Murani E, Schwenir M, Wimmers K, Ponsuksili S. MicroRNA regulates cellular ATP levels by targeting mitochondrial microRNA genes during C2C12 myoblast differentiation. 2015; doi: 10.1371/journal.pone.0127850

108. Feng R, Xiao T, Fang Z, Sun Y, Li J, Gao Y, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 in breast cancer cells. EMBO J 2012; 31: 2089-10. doi: 10.1038/emboj.2012.45

109. Sun Y, Zhao X, Zhou Y, Hu Y, miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep 2012; 28: 1346-52. doi: 10.3892/or.2012.1958

110. Kefas B, Cormeu L, Erdei N, Montgomery E, Armos S, Puruv B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neur Oncol 2010; 12: 1102-12. doi: 10.1093/ neuonc/nop080

111. olive V, jiang H, le m. miR-9672-2, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 2010; 42: 1348-54. doi: 10.1016/j.ijbioc.2010.03.004

112. Xie Y, Chen Y, Wu Z, Xu Q, Chen M, Shao M, et al. Mitochondrial miR-181a-5p promotes glucose metabolism reprogramming in liver cancer by regulating the electron transport chain. Carcinogenesis 2020; 41: 972-83. doi: 10.1093/carcin/bga214

113. Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res 2014; 33: 50. doi: 10.1186/1756-9966-33-50

114. Gao S, Chen C, Wu J, Tan Y, Yu K, Xing CY, et al. Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 and arsenic trioxide. Mol Cell Biochem 2013; 351: 157-64. doi: 10.1007/s11010-011-0723-7

115. Renčelj A, Skrelj M, Čandeč-Potokar M, Dovš P. Tissue-specific splicing of pre-miRNA porcine mitochondrial transcription factor A. Czech J Anim Sci 2018; 63: 43-50. doi: 10.17221/29/2017-CJAS

116. Renčelj A, Skrelj M, Čandeč-Potokar M, Dovš P. Tissue-specific splicing of pre-miRNA porcine mitochondrial transcription factor A. Czech J Anim Sci 2018; 63: 43-50. doi: 10.17221/29/2017-CJAS

117. Han B, izumi H, Yasunawa Y, Akizama Y, Yamaguchi T, Fujimoto N, et al. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth. Biochem Biophys Res Commun 2011; 408: 45-51. doi: 10.1016/j.bbrc.2011.03.114