On semi θ-` axioms

Ali. Alkazragy1, Faik. Mayah2 and Ali Kalaf. H. Al-Hachami3

1 Department of Mathematics, College of Education for Pure Sciences, Wasit University, Wasit. Iraq.
2 Department of Mathematics, College of Science, Wasit University, Wasit.Iraq.
3 Department of Mathematics, College of Education for Pure Sciences, Wasit. University, Wasit. Iraq.

Email:
1 amohy@uowasit.edu.iq
2 faik.mayah@gmail.com
3 alhachamia@uowasit.edu.iq

Abstract. The aim of this paper is to introduce some new separation axioms based on the idea of defining new kinds of open sets, namely semi-θ-open sets. We study there basic properties and also the implications of these new separation axioms among themselves and with the known axioms T_2, T_1 and T_0 are obtained.

Keywords: semi-θ-space, semi-θ-T_0-space, semi-θ-T_1-space, semi-θ-T_2-space.

1. Introduction
Assume that $\langle X, \tau_\theta \rangle$ is a topological space and let $A \subseteq X$. The closure and interior of A are denoted by the letters φ and A^θ, respectively. A set A is called semi-open(s-open) $[1]$ in a topological space $\langle X, \tau_\theta \rangle$ if there exist open set U with $U \subset A \subset U$. Alternatively, if $A \subset A^\theta$, Semi-closed(s-closed)$[2]$ set is the complement of a semi-open set. The letter A^θ denotes the semi-closure$[2]$ of A, which is the intersection of all semi-closed sets containing A. $SO(X, \tau_\theta)$ (resp. $SC(X, \tau_\theta)$, $O(X, \tau_\theta)$, $C(X, \tau_\theta)$) denotes the family of all semi-open (resp. semi-closed, open, closed) sets in X. A point $x \in X$ is said to be θ-adherent $[3]$ of a subset A of X if $A \cap U = \emptyset$ for every $U \in O(X, x)$. The θ-closure $[3]$ of A is the set of all θ-adherent points of A and is denoted by A^θ. if $A = A^\theta$ then a set A of X is called θ-closed $[3]$. The θ-open $[3]$ set is the complement of a θ-closed set $\theta O(X, x)(\text{resp. } \theta C(X, x))$ will denotes the class of all θ-open (resp. θ-closed) sets in X. We set $\theta O(X, \tau_\theta) = \{ U : x \in U \in \theta O(X, \tau_\theta) \}$ and $\theta C(X, \tau_\theta) = \{ U : x \in U \in \theta C(X, \tau_\theta) \}$. If A is semi-open and semi-closed at the same time, it is called semi-regular (s-regular)$[4]$.

The family of all s-regular sets of $\langle X, \tau_\theta \rangle$ is denoted by $SR(X, \tau_\theta)$. The semi-θ-closure(s-θ-closure) $[4]$ of A denoted by A^θ is defined to be $\it{The set of all x \in X such that U^\theta \cap A \neq \emptyset}$; for every $U \in SO(X, \tau_\theta)$ with $x \in A$. A subset A is called semi-θ-closed(s-θ-closed) $[5]$ if $A = A^\theta$. semi-θ-open(s-θ-open) is the complement of a semi-θ-closed set. $S\theta C(X, \tau_\theta)$ (resp. $S\theta O(X, \tau_\theta)$) will denotes the class of all semi-θ-closed (semi-θ-open) sets in X. We set $S\theta C(X, x) = \{ U : x \in U \in S\theta C(X, x) \}$ and $S\theta O(X, x) = \{ U : x \in U \in S\theta O(X, x) \}$.
2. Preliminaries

Definition 2.1 [6]
A mapping \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) is said to be \(s-\theta \)-irresolute (or quasi-irresolute) if for each \(x \in X \) and each \(U \in S\theta O(Y, f(x)) \), there exists \(V \in S\theta O(X, x) \) such that \(f(U) \subseteq V \), equivalent if each \(A \in S\theta O(y, \tau_y) \) implies \(f^{-1}(A) \in S\theta O(X, \tau_x) \).

Definition 2.2 [3]
A subset \(A \) is said to be \(\theta \)-open set if for each \(x \in A \) there exists an open set \(U \) such that \(x \in U \subseteq U \subseteq A \).

Theorem 2.3
If \(B \in \theta O(X, \tau_X) \) and \(A \in S\theta O(X, \tau_X) \) implies \(A \cap B \) is \(s-\theta \)-open in \(B \).

Theorem 2.4
Assume that \(X_1 \) and \(X_2 \) be topological spaces and \(X = X_1 \times X_2 \) be the topological product. Let \(A_1 \in S\theta O(X_1) \) and \(A_2 \in S\theta O(X_2) \). Then \((A_1 \times A_2) \in S\theta O(X_1 \times X_2) \).

Remark 2.5
(i) for all \(A \subseteq O(X, \tau_X) \) implies \(A \subseteq SO(X, \tau_X) \).
(ii) for all \(A \subseteq S\theta O(X, \tau_X) \) implies \(A \subseteq SO(X, \tau_X) \).

Proposition 2.6 [7]
The following are equivalent for a topological space \((X, \tau_X) \):
1) any set that is closed is also \(s-\theta \)-closed.
2) \((X, \tau_X) \) is \(s \)-regular.
3) any set that is open is also \(s-\theta \)-open.
4) each closed set is the intersection of \(s \)-regular sets.

Proposition 2.7 [4, 9]
(i) for all \(A \subseteq SO(X, \tau_X) \), implies \(A^s = A^s\theta \).
(ii) for all \(A \subseteq SR(X, \tau_X) \), implies \(A \) is \(s-\theta \)-closed and \(s-\theta \)-open.

Remark 2.8
Assume that \((X, \tau_X) \) be a topological space and \(A, B \subseteq X \), then
1) \(A \subseteq A^s\theta \).
2) If \(A \subseteq B \) then \(A^s\theta \subseteq B^s\theta \).
3) If \(A \) \(s-\theta \)-closed then \(A = A^s\theta \) [5].

3. Semi-\(\theta -T_0 \), semi-\(\theta -T_1 \) and semi-\(\theta -T_2 \) spaces

Definition 3.1
Assume that \((X, \tau_X) \) is a topological space. If for each \(a, b \in X \) such that \(a \neq b \) there is a \(s-\theta \)-open (resp. \(s \)-open) set \(W \) of \(X \) containing a but not \(b \), we say \(X \) is semi-\(\theta -T_0 \) (resp. semi-\(T_0 \))[10]).

Remark 3.2
(i) Every \(T_0 \)-space is semi-\(\theta -T_0 \)-space.
Assume that \(X \) be a \(T_0 \)-space and let \(a, b \in X \) with \(a \neq b \). Then there exist \(U \in SO(X, \tau_X) \) [Remark 2.5] such that \(a \in U \) and \(a \notin U^s \) but \(b \notin U^s \) [Proposition 2.6]. Since \(U^s \) is \(s \)-regular, this \(U \) \(s-\theta \)-open. Hence \(X \) is semi-\(\theta -T_0 \).
(ii) As the following example shows, the converse of (i) is not always true.
Example 3.3
Assume that \((X, \tau_X)\) is a topological space such that \(X = \{a, b, c, d\}, \tau_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\). Then there is the semi-open set family.
\[
S\theta O(X) = \{\emptyset, X, \{b, c, d\}, \{a, c, d\}, \{a, d\}, \{b, c\}, \{a, \{b, c\}, \{a, b\}\}\}
\]
Observe that \(X\) is semi-\(\theta\)-\(T_0\) but not \(T_0\)-space.

Theorem 3.4
Assume that \((X, \tau_X)\) is a topological space. We say \(X\) is semi-\(\theta\)-\(T_0\) iff for every \(x, y \in X\) with \(x \neq y\).

Implies \(\{x\}^{s\theta} \neq \{y\}^{s\theta}\).

Proof.
Let \(x, y \in X\) with \(x \neq y\) and \(X\) is semi-\(\theta\)-\(T_0\) space. We shall show that \(\{x\}^{s\theta} \neq \{y\}^{s\theta}\). Since \(X\) is semi-\(\theta\)-\(T_0\), there exists a \(s\)-\(\theta\)-open set \(G\) such that \(x \in G\) but \(y \notin G\). Also \(x \notin X - G\) and \(y \in X - G\) where \(X - G\) is \(s\)-\(\theta\)-closed set in \(X\). Now by definition \(\{y\}^{s\theta}\) is the intersection of all \(s\)-\(\theta\)-closed sets which contain \(y\). Hence, \(y \notin \{y\}^{s\theta}\) but \(x \notin \{y\}^{s\theta}\) as \(x \notin X - G\). Therefore, \(\{x\}^{s\theta} \neq \{y\}^{s\theta}\).

Conversely, for any \(x, y \in X, x \neq y\). And \(\{x\}^{s\theta} \neq \{y\}^{s\theta}\). Then there exists at least one point \(z \in X\) such that \(z \in \{x\}^{s\theta}\) but \(z \notin \{y\}^{s\theta}\). We claim that \(x \notin \{y\}^{s\theta}\). If \(x \in \{y\}^{s\theta}\) then \(x \subseteq \{y\}^{s\theta}\) implies \(\{x\}^{s\theta} \subseteq \{y\}^{s\theta}\). So, \(z \in \{y\}^{s\theta}\), which is a contradiction. Hence, \(x \notin \{y\}^{s\theta}\). Now, \(x \notin \{y\}^{s\theta}\) implies \(x \in X - \{y\}^{s\theta}\) and \(x \notin \{y\}^{s\theta}\) is \(S\theta O(X, \tau_X)\) but \(y \notin X - \{y\}^{s\theta}\).

Observe that \(X\) is a semi-\(\theta\)-\(T_0\) space.

Theorem 3.5
Each \(\theta\)-open subspace of a semi-\(\theta\)-\(T_0\) space is semi-\(\theta\)-\(T_0\)-space.

Proof.
Assume that \(Y\) is a \(\theta\)-open subspace of a semi-\(\theta\)-\(T_0\) space \(X\) and let \(x, y \in Y\) with \(x \neq y\). Then there exists a \(s\)-\(\theta\)-open set \(A\) in \(X\) containing \(x\) or \(y\), say, \(x\) but not \(y\). Now by \[\text{Theorem 2.3} \], \(A \cap Y\) is \(s\)-\(\theta\)-open set in \(Y\) containing \(x\) but not \(y\). Observe that \(Y\) is semi-\(\theta\)-\(T_0\).

Definition 3.6
Assume that \((X, \tau_X)\) is a topological space. Then \(X\) is semi-\(\theta\)-\(T_1\) (resp. semi-\(T_1\)[10]) if for each \(a, b \in X\) such that \(a \neq b\) there exists a \(s\)-\(\theta\)-open (resp. \(s\)-open) set \(W\) of \(X\) containing \(a\) but not \(b\) and a \(s\)-\(\theta\)-open set \(U\) of \(X\) containing \(b\) but not \(a\).

Remark 3.7
i) Every \(T_1\)-space is semi-\(\theta\)-\(T_1\)-space.
ii) As the following example shows, the converse of (i) is not always true.

Example 3.8
Assume that \((X, \tau_X)\) is a topological space with \(X = \{a, b, c\}, \tau_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, X\}\). Then there is the family of semi-open sets. \(S\theta O(X) = \{\emptyset, X, \{b\}, \{a\}, \{a, c\}, \{b, c\}\}\).

Hence \(X\) is semi-\(\theta\)-\(T_1\) but not \(T_1\)-space.
Theorem 3.9

X is semi-θ-T_1 if and only if for all $x \in X$ implies $\{x\}$ is s-θ-closed.

Proof.
Assume that $x, y \in X$ with $x \neq y$. So that $\{x\}$ and $\{y\}$ are s-θ-closed sets and as such $\{x\}^C$ and $\{y\}^C$ are s-θ-open sets. Thus $y \in \{x\}^C$ but $x \notin \{x\}^C$ and $x \in \{y\}^C$ but $y \notin \{y\}^C$. Hence, X is a semi-θ-T_1 space.

Conversely, let X be a semi-θ-T_1-space and x be any arbitrary point of X. If $y \in \{x\}^C$ then $y \neq x$.

Now the space being semi-θ-T_1 space and y is a point different from x so that there must exists a s-θ-open set G such that $y \in G$ but $x \notin G$. Thus corresponding to each $y \in \{x\}^C$ there exists $G \in S\theta O(X, \tau_X)$ with $y \in G \subseteq \{x\}^C$. Therefore $\cup \{y; y \neq x\} \subseteq \cup \{G; y \neq x\} \subseteq \{x\}^C$ implies $\{x\}^C \subseteq \cup \{G; y \neq x\} \subseteq \{x\}^C$. Therefore $\{x\}^C = \cup \{G; y \neq x\}$. Since G is s-θ-open and the union of s-θ-open sets, therefor $\{x\}^C \in S\theta O(X, \tau_X)$ that is $\{x\} \in S\theta C(X, \tau_X)$. Since x is arbitrary, it follows that every singleton subset $\{x\}$ of X is s-θ-closed set.

Theorem 3.10

Each θ-open subspace of a semi-θ-T_1 space is semi-θ-T_1.

Proof.
Assume that A be an θ-open subspace of a semi-θ-T_1 space X. Let $x \in A$ since X is semi-θ-T_1, then there exists $X - \{x\} \in S\theta O(X, \tau_X)$ A being θ-open $A \cap (X - \{x\}) = A - \{x\}$ is s-θ-open in A by [Theorem 2.3]. Consequently, $\{x\}$ is s-θ-closed in A. Hence by [Theorem 3.9], A is semi-θ-T_1.

Theorem 3.11

If $f: (X, \tau_X) \rightarrow (Y, \tau_Y)$ is bijective and s-θ-irresolute mapping from a topological space X into Y. If Y is semi-θ-T_1, then X is semi-θ-T_1 space.

Proof.
Assume that $x, y \in X$ such that $x \neq y$. Since f is an injective implies $f(x) \neq f(y)$ with $f(x), f(y) \in Y$. Since Y is semi-θ-T_1-space, there exists $G, H \in S\theta O(Y, \tau_Y)$ such that $f(x) \in G, f(y) \notin G$ and $f(x) \notin H, f(y) \in H$. A gain since f is s-θ-irresolute, $f^{-1}(G)$ and $f^{-1}(H)$ are s-θ-open sets in X such that $x \in f^{-1}(G), y \notin f^{-1}(G)$ and $x \notin f^{-1}(H), y \in f^{-1}(H)$. Hence X is semi-θ-T_1 space.

Definition 3.12

Assume that (X, τ_X) is a topological space. Then X is semi-θ-T_2 (resp. semi-θ-T_2 [10]) if for every $a, b \in X$ with $a \neq b$. There exist $U, W \in S\theta O(X, \tau_X)$ (resp. $U, W \in S\theta O(X, \tau_X)$) such that $a \in W$ and $b \in U$ with $W \cap U = \emptyset$.

Remark 3.13
(i) Every T_2-space is semi-θ-T_2.

Assume that X be a T_2-space and let $a, b \in X$ with $a \neq b$. Then there is U and V, which are s-open sets. [Remark 2.5] with $a \in U, b \in V$ and $U^s \cap V^s = \emptyset$ [Proposition 2.6]. Since $U^s, V^s \in S\theta O(X, \tau_X)$, then $U^s, V^s \in S\theta O(X, \tau_X)$. Observe that X is semi-θ-T_2

(ii) As the following example shows, the converse of (i) is not always true.

Example 3.14

Assume that (X, τ_X) be a topological space with $X = \{1, 2, 3\}$, $\tau_X = \{\emptyset, X, \{2\}, \{1, 3\}, \{2\}\}$. Then there is the semi-open set family $S\theta O(X) = \{\emptyset, X, \{2, 3\}, \{1, 3\}, \{1, 2\}, \{3\}, \{2\}\}$.

4
Observe that X is semi-θ-T_2 but not T_2-space.

Remark 3.15

1) per semi-θ-T_0-space is also a semi-T_0-space.
2) per semi-θ-T_1-space is also a semi-T_1-space.
3) per semi-θ-T_2-space is also a semi-T_2-space.

Theorem 3.16

If X is semi-θ-T_2 then the diagonal Δ in $X \times X$ is s-θ-closed.

Proof.

Assume that X is semi-θ-T_2, to proof Δ is s-θ-closed i.e to proof $(X \times X) - \Delta$ is s-θ-open. $(x, y) \in (X \times X) - \Delta$. As $(x, y) \notin \Delta$, $x \neq y$. Since X is semi-θ-T_2 there exist $G, H \in S\theta O (X, \tau_x)$ with $x \in G$, $y \in H$ and $G \cap H = \emptyset$, $\Delta \cap G = \emptyset$. implies that $(G \times H) \cap \Delta = \emptyset$. And so $G \times H \subset (X \times X) - \Delta$. Further $(x, y) \in G \times H$ and $G \times H$ is a s-θ-open set in $X \times X$ [by Theorem 2.4]. Consequently, $(X \times X) - \Delta$ is s-θ-open Set in $X \times X$. Observe that Δ is s-θ-closed.

Theorem 3.17

If $f: (X, \tau_x) \rightarrow (Y, \tau_y)$ is bijective, s-θ-irresolute mapping. If Y is semi-θ-T_2, implies X is semi-θ-T_2 space.

Proof.

Let $x, y \in X$ with $x \neq y$. Since f is an injective, implies $f(x), f(y) \in Y$ with $f(x) \neq f(y)$. Since Y is semi-θ-T_2-space, there exists $G, H \in S\theta O(Y, \tau_y)$ with $f(x) \in G, f(y) \in H$ and $f(x) \notin H, f(y) \in H$, $H \cap G = \emptyset$. A gain since f is s-θ-irresolute, $f^{-1}(G), f^{-1}(H) \in S\theta O(X, \tau_x)$ such that $x \in f^{-1}(G), y \notin f^{-1}(G)$ and $x \notin f^{-1}(H), y \in f^{-1}(H), f^{-1}(H) \cap f^{-1}(G) = \emptyset$. Hence X is semi-θ-T_2 space.

Theorem 3.18

Let (X, τ_x) and (Y, τ_y) be two topological spaces. Then the product space $X \times Y$ is a semi-θ-T_2-space if and only if for every X and Y are semi-θ-T_2-space.

Proof.

Assume that X and Y is semi-θ-T_2-spaces and let $x, y \in X \times Y, x \neq y$. Let $x = (a, b)$ and $y = (c, d)$. Without any loss of generality, suppose that $a \neq c$ and $b \neq d$. Since $a, c \in X$ with $a \neq c$, and X is semi-θ-T_2 there exist $U, V \in S\theta O(X, \tau_x)$ such that $U \cap V = \emptyset$ with $a \in U, c \in V$. Likewise let $G, H \in S\theta O(Y, \tau_y)$ such that $G \cap H = \emptyset$ with $b \in G, \quad d \in H$. Then $U \times G$ and $V \times H$ are s-θ-open sets [Theorem 2.4] in $X \times Y$ containing x and y respectively. Also, $(U \times G) \cap (V \times H) = (U \cap V) \times (G \cap H) = \emptyset$. Hence $X \times Y$ is semi-θ-T_2.

Remark 3.19

semi-θ-T_2 \Rightarrow semi-θ-T_1 \Rightarrow semi-θ-T_0.

Theorem 3.20 [8]

The following are equivalent for a topological space (X, τ_x):

1) (X, τ_x) is semi-θ-T_2;
2) (X, τ_x) is semi-θ-T_1;
3) (X, τ_x) is semi-θ-T_0;

Proof.

It is enough to prove (3) \Rightarrow (1): For any points $a \neq b$, let $V \in S\theta O(X, \tau_x)$ with $a \in V, \quad b \notin V$. After that, there is $U \in S\theta O(X, \tau_x)$ such that $a \in U \subset U^s \subset V$. By [Proposition 2.7] $U^s \in S\theta O(X, \tau_x)$ then $U^s \in S\theta O(X, \tau_x), a \in U^s$ and also $X - U^s \in S\theta O(X, \tau_x), b \in X - U^s$. Therefore, X is semi-θ-T_2.
4. Semi-θ-R spaces and semi-θ-N spaces

Definition 4.1
Assume that (X, τ_X) be a topological space, we call X is s-θ-regular iff for each $F \in S\theta C(X, \tau_X)$ with $x \notin F$, then there is $W_1, W_2 \subseteq S\theta O(X, \tau_X)$ such that $x \in W_1$, $F \subseteq W_2$ and $W_1 \cap W_2 = \emptyset$.

Example 4.2
let $X = \{1,2,3\}$, $\tau_X = \{ \emptyset, X, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{3\} \}$. And $C(X, \tau_X) = \tau_X$
$S\theta O(X, \tau_X) = \{ \emptyset, X, \{1,2\}, \{2,3\}, \{1,3\} \}$, $S\theta C(X, \tau_X) = \{ \emptyset, X, \{1,2\}, \{1,3\} \}$.
Observe that X is semi-θ-R-space.

Remark 4.3
In previous example notes that X is not semi-θ-T_0, not semi-θ-T_1, and not semi-θ-T_2, so the semi-θ-R is not necessarily semi-θ-T_0 or semi-θ-T_1 or semi-θ-T_2.

i.e. (semi-θ-R \neq semi-θ-$T_0 \land$ semi-θ-R \neq semi-θ-$T_1 \land$ semi-θ-R \neq semi-θ-T_2).

Theorem 4.4
Let (X, τ_X) and (Y, τ_Y) be two topological spaces. Then the product space $X \times Y$ is a semi-θ-R-space if and only if each X and Y are semi-θ-R-space.
Proof
assume that X and Y are semi-θ-R-space, we will two show that $X \times Y$ is semi-θ-R-space
Let $(x, y) \in X \times Y$ and A semi-θ-closed set in $X \times Y$; $(x, y) \notin A$
After that, there is F_1 semi-θ-closed set in X and F_2 semi-θ-closed in Y; $F_1 \times F_2 \subseteq A$ and $(x, y) \notin F_1 \times F_2$.
$\Rightarrow x \notin F_1$ or $y \notin F_2$.

$\therefore X$ is a semi-θ-R-space, then there exists U_1, V_1 are semi-θ-open set in X, $U_1 \cap V_1 = \emptyset$, ($x \in U_1$ and $F_1 \subseteq V_1$).
$\therefore Y$ is a semi-θ-R-space, then there exists U_2, V_2 are semi-θ-open set in Y, $U_2 \cap V_2 = \emptyset$.

$(y \in U_2$ and $F_2 \subseteq V_2)$. Then $U_1 \times Y, V_1 \times Y$ are semi-θ-open set in $X \times Y$;
$(U_1 \times Y) \cap (V_1 \times Y) = (U_1 \cap V_1) \times Y = \emptyset \times Y = \emptyset$. ($x \in U_1 \times Y$ and $F_1 \times F_2 \subseteq V_1 \times Y$).

Or
$X \times U_2, X \times V_2$ are semi-θ-open set in $X \times Y$;
$(X \times U_2) \cap (X \times V_2) = X \times (U_2 \cap V_2) = X \times \emptyset = \emptyset$. ($x \in X \times U_2$ and $F_1 \times F_2 \subseteq X \times V_2$).

In both cases we have $X \times Y$ is semi-θ-R-space.

\Rightarrow Suppose that $X \times Y$ is semi-θ-R-space, to prove X and Y are semi-θ-R-space.
Let $x \in X$ and F_1 semi-θ-closed; $x \notin F_1$ and $y \in Y$ and F_2 semi-θ-closed; $y \notin F_2$.

$\Rightarrow (x, y) \in X \times Y$ and $F_1 \times F_2$ are semi-θ-closed; $(x, y) \notin F_1 \times F_2$.
$\therefore X \times Y$ is a semi-θ-R-space, then there exists $U_1 \times V_1, U_2 \times V_2$ semi-θ-open, $(U_1 \times V_1) \cap (U_2 \times V_2) = \emptyset$. ($(x, y) \in (U_1 \times V_1) \cap (U_2 \times V_2) \subseteq F_1 \times F_2$).
Then there exists U_1, U_2 semi-θ-open, $U_1 \cap U_2 = \emptyset$. ($x \in U_1$ and $F_1 \subseteq U_2$). Then X is semi-θ-R-space.

And there exists V_1, V_2 semi-θ-open, $V_1 \cap V_2 = \emptyset$. ($y \in V_1$ and $F_2 \subseteq V_2$). Then Y is semi-θ-R-space.

Theorem 4.5
Assume that (X, τ_X) be a topological space, The space X is semi-θ-R if and only if for each $x \in X$ and each $W \subseteq S\theta O(X, \tau_X)$, there exists $U \subseteq S\theta O(X, \tau_X)$ such that $x \in U \subseteq U_{\subseteq}^{\subseteq} \subseteq W'$.

Proof
Suppose that X is semi-θ-regular. Let $x \in X$, W is semi-θ-open; $x \in W$ Then $x \notin X - W$ and $X - W$ is semi-θ-closed.

$\therefore X$ is semi-θ-R. Then there is the semi-θ-open U, V set ; $U \cap V = \emptyset$, $(x \in U$ and $X - W \subseteq V)$

$\therefore U \cap V = \emptyset \Rightarrow U \subseteq X - V$ We have , $U \subseteq X - V$ and $X - V \subseteq W$

$\Rightarrow U^{s\theta} \subseteq X - V^{s\theta}$ \hspace{1cm} \text{[Remark 2.8 (ii)]}

$\Rightarrow U^{s\theta} \subseteq X - V$ \hspace{1cm} \text{[Remark 2.8 (iii)]}

$\Rightarrow U^{s\theta} \subseteq X - V$ and $X - V \subseteq W$. \hspace{1cm} \text{[Remark 2.8 (i)]}

$\iff \supseteq$ suppose the condition of theorem satisfy, to proof X is semi-θ-R-space.

Let $x \in X$ and F semi-θ-closed set in X, $x \notin F$

$\Rightarrow x \in X - F$, $X - F$ semi-θ-open since $(F$ is semi-θ-closed) \therefore there exists U is semi-θ-open ; $x \in U \subseteq U^{s\theta} \subseteq X - F$ \hspace{1cm} (by hypothesis) $\Rightarrow U^{s\theta} \subseteq X - F \Rightarrow F \subseteq X - U^{s\theta}$ \hspace{1cm} (since $A \subseteq B \iff B^c \subseteq A^c$)

But, $X - U^{s\theta}$ semi-θ-open since $U^{s\theta}$ semi-θ-closed , say $X - U^{s\theta} = V$

$\Rightarrow x \in U \text{ and } U \subseteq V \text{ and } U \cap V = \emptyset$, since $(U \subseteq U^{s\theta}$ and $U^{s\theta} \cap X - U^{s\theta} = \emptyset \Rightarrow U \cap V = \emptyset)$

Then X is semi-θ-R-space.

Definition 4.6

Assume that (X, τ_X) be a topological space, we call X is semi-θ-normal (semi-θ-N) iff every $F_1, F_2 \in S\theta C(X, \tau_X)$ with $F_1 \cap F_2 = \emptyset$, there exist $W_1, W_2 \in S\theta O(X, \tau_X)$ with $W_1 \cap W_2 = \emptyset$ such that $F_1 \subseteq W_1$, $F_2 \subseteq W_2$.

Example 4.7

Assume that $X = \{1, 2, 3\}$, $\tau_x = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$. Such that $S\theta O(X) = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{1\}, \{2\}, \{1\}, \{2\}, \{1\}\}$.

Observe that X is semi-θ-N but not semi-θ-R.

Remark 4.8

In preview example notes that (X, τ_X) is not semi-θ-R and its semi-θ-N So that: (semi-θ-$N \Rightarrow$ semi-θ-R)

also (semi-θ-$N \Rightarrow$ semi-θ-T_1) and (semi-θ-$N \Rightarrow$ semi-θ-T_2)

Furthermore,

(semi-θ-$R \Rightarrow$ semi-θ-N) and (semi-θ-$T_1 \Rightarrow$ semi-θ-N) and (semi-θ-$T_2 \Rightarrow$ semi-θ-N) and (semi-θ-$T_0 \Rightarrow$ semi-θ-N).

Theorem 4.9

Assume that (X, τ_x) be a topological space, the space X is semi-θ-N if and only if for each s-θ closed sub set $F \subseteq X$ and s-θ-open set W containing F, there exists an s-θ-open set U such that $F \subseteq U \subseteq A^{s\theta} \subseteq W$.

Proof.

Suppose X is semi-θ-N and $F \subseteq X, F$ is semi-θ-closed.

Let W semi-θ-open; $F \subseteq W \Rightarrow F \cap X - W = \emptyset$ and $X - W$ is semi-θ-closed.

$\therefore X$ is semi-θ-$N \Rightarrow \exists U, V$ are semi-θ-open; $U \cap V = \emptyset$, $(F \subseteq U, X - W \subseteq V)$

$\Rightarrow X - V \subseteq W$

$\Rightarrow U \subseteq X - V$ since $U \cap V = \emptyset$.

$\Rightarrow U^{s\theta} \subseteq X - V^{s\theta} \Rightarrow U^{s\theta} \subseteq X - V$ \hspace{1cm} \text{[by Remark 2.8 (iii)]}

$\Rightarrow U \subseteq U^{s\theta} \subseteq X - V \Rightarrow F \subseteq U$ and $U \subseteq U^{s\theta} \subseteq X - V$ and $X - V \subseteq W$

$\Rightarrow F \subseteq U \subseteq U^{s\theta} \subseteq W$.

Suppose the condition of theorem satisfy, to proof X is semi-θ-N.

Let F, E are semi-θ-closed; $F \cap E = \emptyset \Rightarrow F \subseteq X - E, X - E$ is semi-θ-open.

\Rightarrow there exists U semi-θ-open; $F \subseteq U \subseteq \overline{U^\theta} \subseteq X - E$

$\Rightarrow \overline{U^\theta} \subseteq X - E \Rightarrow U \subseteq X - \overline{U^\theta}$

But, $X - \overline{U^\theta}$ semi-θ-open since U^θ semi-θ-closed, say $X - \overline{U^\theta} = V$

$\Rightarrow E \subseteq V = X - \overline{U^\theta}$ and $F \subseteq U$ and $U \cap V = \emptyset$ (since $U \subseteq \overline{U^\theta}$ and $\overline{U^\theta} \cap X - \overline{U^\theta} = \emptyset$

$\Rightarrow U \cap V = \emptyset$). Hence X is semi-θ-N.

5. Some New Separation Axioms

Definition 5.1

Assume that (X, τ_X) is a topological space. Let $A \subset X$ we say that A is semi-θ-Difference (resp. θ-Difference) set if there are $U, V \in S\theta O(X, \tau_X)$ (resp. $U, V \in \theta O(X, \tau_X)$) such that $U \neq X$ and $A = U - V$.

Remark 5.2

(i) Every semi-θ-open set $G \neq X$ is a semi-θ-D-set since $G = G - \emptyset$.

(ii) Every θ-open set $G \neq X$ is a θ-D-set since $G = G - \emptyset$.

(iii) The class of all semi-θ-D (\θ-D) sets in X will be denoted by $S\theta D(X, \tau_X)$ (resp. $\theta D(X, \tau_X)$).

Definition 5.3

Assume that (X, τ_X) is a topological space, we say X is semi-θ-D_0 (resp. θ-D_0) if there exists $W \in S\theta D(X, a)$ (resp. $W \in \theta D(X, a)$) with $b \notin W$, for all $a, b \in X$ such that $a \neq b$.

Theorem 5.4

Assume that (X, τ_X) be a topological space. That a space X is semi-θ-D_0 iff X is semi-θ-T_0.

Remark 5.5

Any θ-D_0 space is also a semi-θ-D_0-space, but this is not always the case.

Definition 5.6

Assume that (X, τ_X) be a topological space, then X is called semi-θ-D_1 (resp. θ-D_1) if there exists $W, U \in S\theta D(X, \tau_X)$ (resp. $W, U \in \theta D(X, \tau_X)$) with $a \in W$ but $b \notin W, b \in U$ but $a \notin U$ for all $a, b \in X$ such that $a \neq b$.

Theorem 5.7

Let (X, τ_X) be a topological space, then the space X is semi-θ-D_1 if and only if X is semi-θ-T_1.

Definition 5.8

Assume that (X, τ_X) be a topological space, then X is called semi-θ-D_2 (resp. θ-D_2) if there exists $W, U \in S\theta D(X, \tau_X)$ (resp. $W, U \in \theta D(X, \tau_X)$) with $a \in W$ but $b \notin W, b \in U$ but $a \notin U$ such that $W \cap U = \emptyset$, for all $a, b \in X, a \neq b$.

Theorem 5.9

Let (X, τ_X) be a topological space, then X is called semi-θ-D_2 iff X is semi-θ-T_2.

Remark 5.10

1) Every θ-D_2 is θ-D_1.
2) Every semi-θ-D_2 is semi-θ-D_1.
3) Every semi-θ-T_2 is semi-θ-D_2.
4) Every \(\theta-T_2 \) is \(\theta-D_2 \).

Theorem 5.11
If \(f: (X, \tau_x) \to (Y, \tau_y) \) is a surjective function, \(s-\theta \)-irresolute and \(S \) is a semi-\(\theta \)-D-set in \(Y \), then \(f^{-1}(S) \) is a semi-\(\theta \)-D-set in \(X \).

Proof.
Assume that \(S \in SBD(Y, \tau_y) \). Then exists \(U, V \in SBD(Y, \tau_y) \) such that \(S = U \cap V \) and \(U \neq Y \).
Since \(f \) is \(s-\theta \)-irresolute, implies \(f^{-1}(U), f^{-1}(V) \in SBD(X, \tau_x) \). Since \(U \neq Y \), we get \(f^{-1}(U) \neq X \). Clearly \(f^{-1}(S) = f^{-1}(U) \cap f^{-1}(V) \).
Observe that \(f^{-1}(S) \) is a semi-\(\theta \)-D-set in \(X \).

Theorem 5.12
Let \(f: (X, \tau_x) \to (Y, \tau_y) \) bijective, \(s-\theta \)-irresolute. If \(Y \) is semi-\(\theta \)-\(D_1 \), then \(X \) is semi-\(\theta \)-\(D_1 \).

Proof.
Assume that \(Y \) is semi-\(\theta \)-\(D_1 \) space. We will two show that \(X \) is semi-\(\theta \)-\(D_1 \).
Let \(x, y \in X \) such that \(x \neq y \). Since \(Y \) is semi-\(\theta \)-\(D_1 \) and \(f \) is injective, implies \(S_x \) and \(S_y \) are semi-\(\theta \)-D-sets of \(S \) that contain \(f(x) \) and \(f(y) \), respectively, such that \(f(x) \notin S_y \), \(f(y) \notin S_x \), by the [Theorem 5.11], \(f^{-1}(S_x), f^{-1}(S_y) \in SBD(X, \tau_x) \). As a result, \(X \) is a semi-\(\theta \)-\(D_1 \) space.

Remark 5.13
The following diagram shows the relation between \(\theta-T_0 \), \(\theta-T_1 \), \(\theta-T_1 \), semi-\(\theta \)-\(T_0 \), semi-\(\theta \)-\(T_1 \), semi-\(\theta \)-\(T_2 \), semi-\(\theta \)-\(D_0 \), semi-\(\theta \)-\(D_1 \), semi-\(\theta \)-\(D_2 \) spaces:

```
  --  --  --
semi--  semi--  semi--
semi--  semi--  semi--
```

Conclusion
In this paper it was concluded that there is a relationship between the known axioms of separation \(T_0 \)-space, \(T_1 \)-space, \(T_2 \)-space and the axioms of separation of type semi-\(\theta \)-\(T_0 \)-space, semi-\(\theta \)-\(T_1 \)-space, semi-\(\theta \)-\(T_2 \)-space. There is also a relationship between the separation axioms of type semi-\(T_0 \)-space, semi-\(T_1 \)-space, semi-\(T_2 \)-space and the separation axioms of type semi-\(\theta \)-\(T_0 \)-space, semi-\(\theta \)-\(T_1 \)-space, semi-\(\theta \)-\(T_2 \)-space.

References
[1] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), pp. 36-41.
[2] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. **22**(1971), pp. 99-112.
[3] Navalagi G. B., “Definition Bank in General Topology”, 2000.
[4] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. **18**(3)(1987), pp. 226-233.
[5] G. Di Maio, On semi topological operator and semi separation axioms, Rend. Circ. Mat.
Palermo (2) Suppl. Second Topology Conference, 12(1986), pp. 219-230.

[6] M. N. Mukherjee and C. K. Basu, *On semi-θ-closed sets, semi θ-connectedness and some associated mappings*, Bull. Calcutta Math. Soc. 83 (1991), pp. 227-238.

[7] J. Dontchev and T. Noiri, *On properties of spaces defined in terms of semi-regular sets*, Acta Math. Hung. 84 (1999), pp. 245-255.

[8] M. Caldas, S. Jafari and T. Noiri, *On the class of semi-θ-open sets in topological spaces*, East-West J. Math. 4 (2002), pp. 137-147.

[9] G. Di Maio and T. Noiri, *Weak and strong forms of irresolute functions*, Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), pp. 255-273.

[10] Maheshwari, S.N prasad, R., *Some new separation axioms*, Ann. Sci. Bruelles, 89 (1975), 395-402.