Learning a SAT Solver from Single-Bit Supervision

Daniel Selsam 1 Matthew Lamm 2 Benedikt Bünz 1 Percy Liang 1 Leonardo de Moura 3 David L. Dill 1

Abstract
We present NeuroSAT, a message passing neural network that learns to solve SAT problems after only being trained as a classifier to predict satisfiability. Although it is not competitive with state-of-the-art SAT solvers, NeuroSAT can solve problems that are substantially larger and more difficult than it ever saw during training by simply running for more iterations. Moreover, NeuroSAT generalizes to novel distributions; after training only on random SAT problems, at test time it can solve SAT problems encoding graph coloring, clique detection, dominating set, and vertex cover problems, all on a range of distributions over small random graphs.

1. Introduction
The propositional satisfiability problem (SAT) is one of the most fundamental problems of computer science. Cook (1971) showed that the problem is \(\text{NP} \)-complete, which means that searching for any kind of efficiently-checkable certificate in any context can be reduced to finding a satisfying assignment of a propositional formula. In practice, search problems arising from a wide range of domains such as hardware and software verification, test pattern generation, planning, scheduling, and combinatorics are all routinely solved by constructing an appropriate SAT problem and then calling a SAT solver (Gomes et al., 2008). Modern SAT solvers based on backtracking search are extremely well-engineered and have been able to solve problems of practical interest with millions of variables (Biere et al., 2009).

We consider the question: can a neural network learn to solve SAT problems? To answer, we develop a novel message passing neural network (Scarselli et al., 2009; Gilmer et al., 2017), NeuroSAT, and train it as a classifier to predict satisfiability on a dataset of random SAT problems. We provide NeuroSAT with only a single bit of supervision for each SAT problem that indicates whether or not the problem is satisfiable. When making a prediction about a new SAT problem, we find that NeuroSAT guesses unsatisfiable with low confidence until it finds a solution, at which point it converges and guesses satisfiable with very high confidence. The solution itself can almost always be automatically decoded from the network’s activations, making NeuroSAT an end-to-end SAT solver. See Figure 1 for an illustration of the train and test regimes.

Although it is not competitive with state-of-the-art SAT solvers, NeuroSAT can solve SAT problems that are substantially larger and more difficult than it ever saw during training by simply performing more iterations of message passing. Despite only running for a few dozen iterations during training, at test time NeuroSAT continues to find solutions to harder problems after hundreds and even thousands of iterations. The learning process has yielded not a traditional classifier but rather a procedure that can be run indefinitely to search for solutions to problems of varying difficulty.

Moreover, NeuroSAT generalizes to entirely new domains. Since NeuroSAT operates on SAT problems and since SAT is \(\text{NP} \)-complete, NeuroSAT can be queried on SAT prob-
problems encoding any kind of search problem for which certificates can be checked in polynomial time. Although we train it using only problems from a single random problem generator, at test time it can solve SAT problems encoding graph coloring, clique detection, dominating set, and vertex cover problems, all on a range of distributions over small random graphs.

The same neural network architecture can also be used to help find proofs for unsatisfiable problems. When we train it on a different dataset in which every unsatisfiable problem contains a small contradiction (call this trained model NeuroUNSAT), it learns to detect these contradictions instead of searching for satisfying assignments. Just as we can extract solutions from NeuroSAT’s activations, we can extract the variables involved in the contradiction from NeuroUNSAT’s activations. These variables can be used to construct a proof of unsatisfiability efficiently.

2. Problem Setup

Background. A formula of propositional logic is a boolean expression built using the constants true (1) and false (0), variables, negations, conjunctions, and disjunctions. A formula is satisfiable provided there exists an assignment of boolean values to its variables such that the formula evaluates to 1. For example, the formula \((x_1 \lor x_2) \land \lnot(x_1 \land x_2)\) is satisfiable because it will evaluate to 1 under every assignment that does not map \(x_1, x_2\) to the same value. For every formula, there exists an equivalent satisfiable formula in conjunctive normal form (CNF), expressed as a conjunction of disjunctions of (possibly negated) variables. Each conjunct of a formula in CNF is called a clause, and each (possibly negated) variable within a clause is called a literal. The formula above is equivalent to the CNF formula \((x_1 \lor x_2) \land \lnot(x_1 \land x_2)\) which we can represent more concisely as \(\{1 \mid 2\} \cap \{\overline{1} \mid 3\}\). A formula in CNF has a satisfying assignment if and only if it has an assignment such that every clause has at least one literal mapped to 1. A SAT problem is a formula in CNF, where the goal is to determine if the formula is satisfiable, and if so, to produce a satisfying assignment of truth values to variables.

Classification task. For a SAT problem \(P\), we define \(\phi(P)\) to be true if and only if \(P\) is satisfiable. Our first goal is to learn a classifier that approximates \(\phi\). Given a distribution \(\Psi\) over SAT problems, we can construct datasets \(D_{\text{train}}\) and \(D_{\text{test}}\) with examples of the form \((P, \phi(P))\) by sampling problems \(P \sim \Psi\) and computing \(\phi(P)\) using an existing SAT solver. At test time, we get only the problem \(P\) and the goal is to predict \(\phi(P)\), i.e., to determine if \(P\) is satisfiable. Ultimately we care about the solving task, which also includes finding solutions to satisfiable problems.

3. Model

A SAT problem has a simple syntactic structure and therefore could be encoded into a vector space using standard methods such as an RNN. However, the semantics of propositional logic induce rich invariances that such a syntactic method would ignore, such as permutation invariance and negation invariance. Specifically, the satisfiability of a formula is not affected by permuting the variables (e.g. swapping \(x_1\) and \(x_2\) throughout the formula), by permuting the clauses (e.g. swapping the first clause with the second clause), or by permuting the literals within a clause (e.g. replacing the clause \(1 \mid 2\) with \(\overline{2} \mid 1\)). The satisfiability of a formula is also not affected by negating every literal corresponding to a given variable (e.g. negating all occurrences of \(x_1\) in \(\{1 \mid 2\} \cap \{\overline{1} \mid 3\}\) to yield \(\{\overline{1} \mid 2\} \cap \{\overline{1} \mid 3\}\)).

We now describe our neural network architecture, NeuroSAT, that enforces both permutation invariance and negation invariance. We encode a SAT problem as an undirected graph with one node for every literal, one node for every clause, an edge between every literal and every clause it appears in, and a different type of edge between each pair of complementary literals (e.g. between \(x_i\) and \(\overline{x_i}\)). NeuroSAT iteratively refines a vector space embedding for each node by passing “messages” back and forth along the edges of the graph as described in Gilmer et al. (2017). At every time step, we have an embedding for every literal and every clause. An iteration consists of two stages. First, each clause receives messages from its neighboring literals and updates its embedding accordingly. Next, each literal receives messages from its neighboring clauses as well as from its complement, then updates its embedding accordingly. Figure 2 provides a high-level illustration of the architecture.

More formally, our model is parameterized by two vectors \((\mathbf{L}_{\text{init}}, \mathbf{C}_{\text{init}})\), three multilayer perceptrons \((\mathbf{L}_{\text{msg}}, \mathbf{C}_{\text{msg}}, \mathbf{L}_{\text{vote}})\) and two layer-norm LSTMs (Ba et al., 2016; Hochreiter & Schmidhuber, 1997) \((\mathbf{L}_u, \mathbf{C}_u)\). At every time step \(t\), we have a matrix \(L(t) \in \mathbb{R}^{2n \times d}\) whose \(i\)th row contains the embedding for the literal \(\ell_i\) and a matrix \(C(t) \in \mathbb{R}^{m \times d}\) whose \(j\)th row contains the embedding for the clause \(c_j\), which we initialize by tiling \(\mathbf{L}_{\text{init}}\) and \(\mathbf{C}_{\text{init}}\) respectively. We also have hidden states \(L_h(t) \in \mathbb{R}^{2n \times d}\) and \(C_h(t) \in \mathbb{R}^{m \times d}\) for \(L_u\) and \(C_u\) respectively, both initialized to zero matrices. Let \(M\) be the (bipartite) adjacency matrix defined by \(M(i, j) = 1\) if \(\ell_i \in c_j\) and let \(F\) be the operator that takes a matrix \(L\) and swaps each row of \(L\) with the row corresponding to the literal’s negation. A single iteration consists of

1This transformation can be done in linear time such that the size of the resulting formula has only grown linearly with respect to the original formula (Tseitin, 1968).
Figure 2. High-level illustration of NeuroSAT operating on the graph representation of \(\{1|2, \overline{T}\} \). On the left of both figures are nodes for each of the four literals, and on the right are nodes for each of the two clauses. At every time step \(t \), we have an embedding for every literal and every clause. An iteration contains two stages. First, each clause receives messages from its neighboring literals and updates its embedding accordingly (Figure 2a). Next, each literal receives messages from its neighboring clause as well as from its complement, and updates its embedding accordingly (Figure 2b).

applying the following updates:

\[
(C^{(t+1)}, C_{h}^{(t+1)}) \leftarrow C_{u}([C_{h}^{(t)}, M^{T}L_{\text{msg}}(L^{(t)})])
\]

\[
(L^{(t+1)}, L_{h}^{(t+1)}) \leftarrow L_{u}([L_{h}^{(t)}, F(L^{(t)}), MC_{\text{msg}}(C^{(t+1)})])
\]

After \(T \) iterations, we compute

\[
L_{s}^{(T)} \leftarrow L_{\text{vote}}(L^{(T)})
\]

\[
y^{(T)} \leftarrow \text{mean}(L_{s}^{(T)})
\]

\(L_{s}^{(T)} \in \mathbb{R}^{2n} \) contains a single scalar for each literal, which we call the literal’s \textit{vote}, and \(y^{(T)} \in \mathbb{R} \) is the average of the literal votes. We train the network to minimize the sigmoid cross-entropy loss between the logit \(y^{(T)} \) and the true label \(\phi(P) \).

Our architecture enforces permutation invariance by operating on nodes and edges according to the topology of the graph without any additional ordering over nodes or edges. Likewise, it enforces negation invariance by treating all literals the same no matter whether they originated as a positive or negative occurrence of a variable. However, there are some invariances afforded by the semantics of satisfiability that our architecture not only fails to enforce but makes impossible to learn. For example, since our model does not allow any communication between disconnected components, and since we reduce the votes with mean at the end instead of \(\min \) (which we do only because \(\min \) is harder to train), our model has no way to learn that a single disconnected component that is \textit{unsat} must necessarily override all other votes for \textit{sat}. However, disconnected components can be easily preprocessed away in linear time. It is also impossible for our architecture to learn in full generality that duplicating literals, duplicating clauses, and adding clauses with complementary literals (\textit{e.g.} 1|T) all have no effect.\(^2\)

4. Training data

We want our neural network to be able to classify (and ultimately solve) SAT problems from a variety of domains that it never trained on. One can easily construct distributions over SAT problems for which it would be possible to predict satisfiability with perfect accuracy based only on crude statistics; however, a neural network trained on such a distribution would be unlikely to generalize to problems from other domains. To force our network to learn something substantive, we create a distribution \(\text{SR}(n) \) over pairs of random SAT problems on \(n \) variables with the following property: one element of the pair is satisfiable, the other is unsatisfiable, and the two differ by negating only a single literal occurrence in a single clause. To generate a random clause on \(n \) variables, \(\text{SR}(n) \) first samples a small integer \(k \) (with mean 5) \(^3\) then samples \(k \) variables uniformly at random without replacement, and finally negates each one with independent probability 50%. It continues to generate clauses \(c_{i} \) in this fashion until the clause \(c_{m} \) makes the problem unsatisfiable. Since \(\{c_{1}, \ldots, c_{m-1}\} \) had a satisfying assignment, negating a single literal in \(c_{m} \) must yield a satisfiable problem \(\{c_{1}, \ldots, c_{m-1}, c_{m}'\} \). The pair \(\{(c_{1}, \ldots, c_{m-1}, c_{m}), (c_{1}, \ldots, c_{m-1}, c_{m}')\} \) are a sample from \(\text{SR}(n) \).

5. Predicting satisfiability

Although our ultimate goal is to solve SAT problems arising from a variety of domains, we begin by training NeuroSAT as a classifier to predict satisfiability on \(\text{SR}(40) \). Problems in \(\text{SR}(40) \) are small enough to be solved efficiently by modern SAT solvers—a fact we rely on to generate the problems—but the classification problem is highly non-trivial from a machine learning perspective.\(^4\) Each problem has 40 variables and over 200 clauses on average, and the positive and negative examples differ by negating only a single literal occurrence out of a thousand. Even the

\(^2\)Duplicate literals and clauses would be ignored if we reduced both the votes and the messages with \(\min \) or \(\max \). We see no easy way to ensure that clauses with complementary literals are ignored, though removing such clauses is a common (linear-time) preprocessing step in many SAT solvers.

\(^3\)We use \(2 \cdot \text{Bernoulli}(0.3) + \text{Geo}(0.4) \) so that we generate clauses of varying size but with only a small number of clauses of length 2, since too many random clauses of length 2 make the problems too easy on average.

\(^4\)We were unable to train an LSTM on a many-hot encoding of clauses (specialized to problems with 40 variables) to predict with \(>50\% \) accuracy on its training set.
We regularized by the ADAM optimizer (Kingma & Ba, 2014) with a learning rate of 2×10^{-5}, clipping the gradients by global norm with clipping ratio 0.65 (Pascanu et al., 2012). We batched multiple problems together, with each batch containing up to 12,000 nodes (i.e. literals plus clauses). To accelerate the learning, we sampled the number of variables n uniformly from between 10 and 40 during training (i.e. we trained on SR(U(10, 40))), though we only evaluate on SR(40).

After training, NeuroSAT is able to classify the test set correctly with 85% accuracy. In the next section, we examine how NeuroSAT manages to do so and show how we can decode solutions to satisfiable problems from its activations. Note: for the entire rest of the paper, NeuroSAT refers to the specific trained model that has only been trained on SR(U(10, 40)).

6. Decoding satisfying assignments

Let us try to understand what NeuroSAT is computing. A $2n$-dimensional vector of literal votes $L_s^{(t)} \leftarrow L_{\text{vote}}(L^{(t)})$ can be computed at every iteration t. Figure 3 illustrates the sequence of literal votes $L_s^{(1)}$ to $L_s^{(24)}$ as NeuroSAT runs on a satisfiable problem from SR(20). For clarity, we reshape each $L_s^{(t)}$ to be an $\mathbb{R}^{n \times 2}$ matrix so that each literal is paired with its complement; specifically, the ith row contains the scalar votes for x_i and \overline{x}_i. Here white represents zero, blue negative and red positive. For several iterations, almost every literal is voting unsat with low confidence (i.e. light blue). Then a few scattered literals start voting sat for the next few iterations, but not enough to affect the mean vote. Suddenly there is a phase transition and all the literals (and hence the network as a whole) start to vote sat with very high confidence. After the phase transition, the vote for each literal converges and the network stops evolving.

![Figure 3](image)

Figure 3. The sequence of literal votes $L_s^{(1)}$ to $L_s^{(24)}$ as NeuroSAT runs on a satisfiable problem from SR(20). For clarity, we reshape each $L_s^{(t)}$ to be an $\mathbb{R}^{n \times 2}$ matrix so that each literal is paired with its complement; specifically, the ith row contains the scalar votes for x_i and \overline{x}_i. Here white represents zero, blue negative and red positive. For several iterations, almost every literal is voting unsat with low confidence (i.e. light blue). Then a few scattered literals start voting sat for the next few iterations, but not enough to affect the mean vote. Suddenly there is a phase transition and all the literals (and hence the network as a whole) start to vote sat with very high confidence. After the phase transition, the vote for each literal converges and the network stops evolving.

*Note: for the entire rest of the paper, NeuroSAT refers to the specific trained model that has only been trained on SR(U(10, 40)).

4. i.e. backtrack multiple steps at a time

canonical SAT solver MiniSAT (Sorensson & Een, 2005) needs to backtrack almost ten times on average, and needs to perform over a hundred primitive logical inferences (i.e. unit propagations) to solve each problem.

We instantiated the NeuroSAT architecture described in §3 with $d = 128$ dimensions for the literal embeddings, the clause embeddings, and all the hidden units; 3 hidden layers and a linear output layer for each of the MLPs L_{msg}, C_{msg}, and L_{vote}; and rectified linear units for all non-linearities. We regularized by the ℓ_2 norm of the parameters scaled by 10^{-10}, and performed $T = 26$ iterations of message passing on every problem. We trained our model using the ADAM optimizer (Kingma & Ba, 2014) with a learning rate of 2×10^{-5}, clipping the gradients by global norm with clipping ratio 0.65 (Pascanu et al., 2012). We batched multiple problems together, with each batch containing up to 12,000 nodes (i.e. literals plus clauses). To accelerate the learning, we sampled the number of variables n uniformly from between 10 and 40 during training (i.e. we trained on SR(U(10, 40))), though we only evaluate on SR(40).

After training, NeuroSAT is able to classify the test set correctly with 85% accuracy. In the next section, we examine how NeuroSAT manages to do so and show how we can decode solutions to satisfiable problems from its activations. Note: for the entire rest of the paper, NeuroSAT refers to the specific trained model that has only been trained on SR(U(10, 40)).
We can gain even more insight into what NeuroSAT is doing well. Thus the votes seem to encode one bit for each variable. According to the satisfying assignment. This visualization indicates literals that are set to 0 and 1 in the satisfying assignment that it eventually finds, respectively. We see that the blue and red dots are mixed up and cannot be linearly separated until the phase transition at the end, at which point they form two distinct clusters according to the satisfying assignment.

Let us look more carefully at the literal votes L_{vote} from Figure 3 after convergence:

The matrix is shown transposed, so the ith column contains the votes for x_i and \bar{x}_i. Note that most of the variables have one literal vote distinctly darker than the other. Moreover, the dark votes are all approximately equal to each other, and the light votes are all approximately equal to each other as well. Thus the votes seem to encode one bit for each variable. It turns out that these bits encode a satisfying assignment in this case, but they do not do so reliably in general. Recall from §3 that NeuroSAT projects the higher dimensional literal embeddings $L^{(T)} \in \mathbb{R}^{2n \times d}$ to the literal votes $L_{\text{vote}}^{(T)}$ using the MLP L_{vote}. During training, NeuroSAT optimizes the weights for L_{vote} to encourage the mean of the votes to be negative for unsatisfiable problems and positive for satisfiable problems. Even if it finds a satisfying assignment to a problem, it is not clear why it would make the true literals vote higher than the false literals since only their mean matters. As we will see shortly, NeuroSAT does almost always find a satisfying assignment when it votes sat, but the literal votes $L_{\text{vote}}^{(T)}$ only encode this assignment by chance; there is structure in the higher-dimensional literal embeddings that is sometimes preserved by the projection L_{vote}.

We can gain even more insight into what NeuroSAT is doing by viewing low-dimensional projections of the literal embeddings $L^{(i)} \in \mathbb{R}^{2n \times d}$. Figure 4 illustrates two-dimensional PCA embeddings for $L^{(16)}$ to $L^{(26)}$ (skipping every other time step) as NeuroSAT runs on a satisfiable problem from SR(40). Blue and red dots indicate literals that are set to 0 and 1 in the satisfying assignment that it eventually finds, respectively. We see that the blue and red dots are mixed up and cannot be linearly separated until the phase transition at the end, at which point they form two distinct clusters according to the satisfying assignment. This visualization suggests a way to decode solutions from NeuroSAT’s internal activations: 2-cluster $L^{(T)}$ to get cluster centers Δ_1 and Δ_2, partition the variables according to the predicate $\|x_i - \Delta_1\|^2 + \|\bar{x}_i - \Delta_2\|^2 < \|x_i - \Delta_2\|^2 + \|\bar{x}_i - \Delta_1\|^2$ and then try both candidate assignments that result from mapping the partitions to truth values.

This decoding procedure successfully decodes a satisfying assignment for over 70% of the satisfiable problems in the SR(40) test set. Table 1 summarizes the results when training on SR(U(10, 40)) and testing on SR(40).

Recall that at training time, NeuroSAT is only given a single bit of supervision for each SAT problem. Moreover, the positive and negative examples in the dataset only differ by the placement of a single edge. NeuroSAT has learned to search for satisfying assignments solely to explain that single bit of supervision.

7. Generalizing to other problem distributions

7.1. Bigger problems

Even though we only train NeuroSAT on SR(U(10, 40)), it is able to solve SAT problems sampled from SR(n) for n much larger than 40 by simply running for more iterations of message passing. Figure 5 shows NeuroSAT’s success rate on SR(n) for a range of n as a function of the number of iterations T. For $n = 200$, there are 2^{160} more possible assignments to the variables than any problem it saw during training, and yet it can solve 25% of the satisfiable problems in SR(200) by running for four times more iterations than it performed during training. On the other hand, when restricted to the number of iterations it was trained with, it solves under 10% of them. Thus we see that its ability to solve bigger and harder problems depends on the fact that the dynamical system it learns encodes generic procedural knowledge that can operate effectively over a wide range of...
Learning a SAT Solver from Single-Bit Supervision

Figure 5. NeuroSAT’s success rate on $\text{SR}(n)$ for a range of n as a function of the number of iterations T. Even though we only train NeuroSAT on $\text{SR}(40)$ and below, it is able to solve SAT problems sampled from $\text{SR}(n)$ for n much larger than 40 by simply running for more iterations.

Figure 6. Example graph from the Forest-Fire distribution. The graph has a coloring for $k \geq 5$, a clique for $k \leq 3$, a dominating set for $k \geq 3$, and a vertex cover for $k \geq 6$. However, these properties are not perceptually obvious and require deliberate computation to determine.

7.2. Different problems

Every problem in NP can be reduced to SAT in polynomial time, and SAT problems arising from different domains may have radically different structural and statistical properties. Even though NeuroSAT has learned to search for satisfying assignments on problems from $\text{SR}(n)$, we may still find that the dynamical system it has learned only works properly on problems similar to those it was trained on.

To assess NeuroSAT’s ability to generalize to different classes of problems, we generated problems in several other domains and then encoded them all into SAT problems (using standard encodings). In particular, we started by generating one hundred graphs from each of six different random graph distributions (Barabasi, Erdős-Renyi, Forest-Fire, Random-k-Regular, Random-Static-Power-Law, and Random-Geometric).8 We found parameters for the random graph generators such that each graph has ten nodes and seventeen edges on average. For each graph in each collection, we generated graph coloring problems ($3 \leq k \leq 5$), dominating-set problems ($2 \leq k \leq 4$), clique-detection problems ($3 \leq k \leq 5$), and vertex cover problems ($4 \leq k \leq 6$).7 We chose the range of k for each problem to include the threshold for most of the graphs while avoiding trivial problems such as 2-clique. Figure 6 shows an example graph from the distribution. Note that the trained network does not know anything a priori about these tasks; the generated SAT problems need to encode not only the graphs themselves but also formal descriptions of the tasks to be solved.

Table 2 shows the results of running NeuroSAT for 512 iterations on all the generated SAT problems (as always, after training only on $\text{SR}(U(10, 40))$). NeuroSAT performs well on all four tasks, and in total we can decode solutions for 85% of the 4888 satisfiable problems. Moreover, on average the problems contain over two and a half times as many clauses as the problems in $\text{SR}(40)$.

8. Finding unsat cores

NeuroSAT (trained on $\text{SR}(U(10, 40))$) can find satisfying assignments but is not helpful in finding proofs of unsatisfiability. When it runs on an unsatisfiable problem, it keeps searching for a satisfying assignment indefinitely and non-systematically. However, when we train the same architecture on a dataset in which each unsatisfiable problem has a small subset of clauses that are already unsatisfiable (called an unsat core), it learns to detect these unsat cores instead of searching for satisfying assignments. The literals involved in the unsat core can be decoded from its internal activations and can be used to construct a proof of unsatisfiability efficiently.

We generated a new distribution $\text{SRC}(n, u)$ that is similar to $\text{SR}(n)$ except that every unsatisfiable problem contains a small unsat core. Here n is the number of variables as before, and u is an unsat core over x_1, \ldots, x_k ($k < n$) that can be made into a satisfiable set of clauses u' by negating a single literal. We sample a pair from $\text{SRC}(n, u)$ as follows. First, we initialize a problem with u', and then we sample clauses (over x_1 to x_n) just as we did for $\text{SR}(n)$.

8See Newman (2010) for an overview of random graph distributions.

7See (Lewis, 1983) for an overview of these problems as well as the standard encodings.
Learning a SAT Solver from Single-Bit Supervision

Task	μ_{vars}	μ_{clauses}	#sat	%solved
3-color	30	89	350	64%
4-color	40	135	557	69%
5-color	50	191	590	54%
3-clique	30	389	586	88%
4-clique	40	686	241	96%
5-clique	50	1067	43	28%
2-domset	30	264	278	99%
3-domset	40	454	574	95%
4-domset	50	689	600	100%
4-cover	50	696	128	100%
5-cover	60	976	357	100%
6-cover	70	1301	584	96%
all	45	532	4888	85%

Table 2. Results of running NeuroSAT for 512 iterations on the transfer suite, after training only on $\text{SR}(U(10, 40))$. The suite contains SAT problems arising from graph coloring, clique detection, dominating set, and vertex cover problems, all over a range of random graph distributions. NeuroSAT performs well on all four tasks, and in total we can decode solutions for 85% of the 4888 satisfiable problems. Moreover, on average the problems contain over two and a half times as many clauses as the problems in $\text{SR}(40)$.

until the problem becomes unsatisfiable. We can now negate a literal in the final clause to get a satisfiable problem p_s, and then we can swap u' for u in p_s to get p_u, which is unsatisfiable since it contains the unsat core u. We created train and test datasets from $\text{SRC}(40, u)$ with u sampled at random for each problem from a collection of three unsat cores ranging from three clauses to nine clauses: the unsat core R from Knuth (2015), and the two unsat cores resulting from encoding the pigeonhole principles $\text{PP}(2, 1)$ and $\text{PP}(3, 2)$. We trained our architecture on this dataset, and we refer to the trained model as NeuroUNSAT.

NeuroUNSAT is able to predict satisfiability on the test set with 100% accuracy. Upon inspection, it seems to do so by learning to recognize the unsat cores. Figure 7 shows NeuroUNSAT running on a pair of problems from $\text{SRC}(30, \text{PP}(3, 2))$. In both cases, the literals in the first six rows are involved in the unsat core. In Figure 7a, NeuroUNSAT inspects the modified core u' of the satisfiable problem but concludes that it does not match the pattern. In 7b, NeuroUNSAT finds the unsat core u and votes unsat with high confidence.

Figure 8. PCA projections of the high-dimensional literal embeddings $L^{(T)}$ as NeuroUNSAT detects an unsat core on an unsatisfiable problem from $\text{SRC}(100, \text{PP}(3, 2))$. Blue dots indicate literals that are involved in the unsat core and all remaining literals are red. Although only 6% of the literals are involved in the unsat core, they can be easily separated from the other 94%.

The pigeonhole principle and the standard SAT encoding are described in Knuth (2015).
SRC$(100, \text{PP}(3, 2))$. Although only 6% of the literals are involved in the unsat core, they can be easily separated from the other 94%. On the test set, the small number of literals involved in the unsat core end up in their own cluster 98% of the time.

Note that we do not expect NeuroUNSAT to generalize to arbitrary unsat cores: as far as we know it is simply memorizing a collection of specific subgraphs, and there is no evidence it has learned a generic procedure to prove \textit{unsat}.

9. Related work
There have been many attempts over the years to apply statistical learning to various aspects of the SAT problem: restart strategies (Haim & Walsh, 2009), branching heuristics (Liang et al., 2016; Grozea & Popescu, 2014), parameter tuning (Singh et al., 2009), and solver selection (Xu et al., 2008). None of these approaches use neural networks, and instead make use of both generic graph features and features extracted from the runs of SAT solvers. Moreover, these approaches are designed to assist existing solvers and do not aim to solve SAT problems on their own.

Survey Propagation (SP) is a message passing algorithm for SAT that is not used in practice but that is similar to NeuroSAT in that continuous-valued messages are iteratively passed between literals and the clauses they occur in (Braunstein et al., 2005). However, the SP message functions are fixed instead of learned. There are many minor differences as well: the SP messages have a different structure (e.g., a clause sends different messages to each of its literals); the SP algorithm involves division and often fails due to division-by-zero; and SP is designed to approximate marginals, not to find specific satisfying assignments. SP on its own does not converge to a satisfying assignment for any of the problems in our transfer suite.⁹

There have been many recent attempts to apply neural networks to NP-hard combinatorial optimization problems. Vinyals et al. (2015) present an architecture that can learn to find low cost solutions to small instances of several NP-hard problems and show that the learned models can generalize to larger problems at test time; however, it must be trained with full solutions and it has no way to deliberate for longer on harder problems. Bello et al. (2016) apply RL to combinatorial optimization and can find low cost solutions to instances of the Traveling Salesman Problem with 100 nodes; however, they retrain for each problem size they consider and do not demonstrate any extrapolation to larger instances. Palm et al. (2017) train a model to solve Sudoku puzzles reliably and show that performance improves if they run for more iterations at test time than at training time; however, they need to train their model on complete solutions, and like Bello et al. (2016) they do not demonstrate any generalization to larger puzzles. Dai et al. (2017) apply RL to learn heuristics for various optimization problems on graphs and show that their model can find low cost solutions to larger problems than it was trained on; however, they do not demonstrate any transfer between tasks.

10. Discussion
We showed that a neural network can learn a SAT solving algorithm that extrapolates to larger problems and problems from new domains after only training with a single bit of supervision per problem. Yet as an end-to-end SAT solver, the trained NeuroSAT system discussed in this paper is vastly less efficient and less reliable than the state-of-the-art. We see no obvious path to beating or even improving upon existing SAT solvers. One approach might be to continue to train NeuroSAT on increasingly difficult problems and try to use it as an end-to-end solver as we have in this work. However, the gap is daunting for a \textit{de novo} approach.

A second approach might be to use a system like NeuroSAT to help guide decisions within a more traditional SAT solver. Unfortunately, the dynamics of NeuroSAT may not be ideal for such a role, since it is not clear that NeuroSAT provides any useful information before it finds a satisfying assignment. However, as we discussed in §8, when we trained our architecture on different data it learned an entirely different procedure. In a separate experiment omitted for space reasons, we also trained our architecture to predict whether there is a satisfying assignment involving each individual literal in the problem and found that it was able to predict these bits with high accuracy as well. Unlike NeuroSAT, it made both type I and type II errors, had no discernable phase transition, and could make reasonable predictions within only a few rounds. We believe that architectures descended from NeuroSAT will be able to learn very different mechanisms and heuristics depending on the data they are trained on and the details of their objective functions. We are cautiously optimistic that some descendant of NeuroSAT will one day lead to improvements to the state-of-the-art.

Acknowledgements
We thank Steve Mussmann, Alexander Ratner, Nathaniel Thomas, Vatsal Sharan and Cristina White for providing valuable feedback on early drafts. We also thank William Hamilton, Geoffrey Irving and Arun Chaganty for helpful discussions. This work was supported by Future of Life Institute grant 2017-158712.

⁹We implemented the version with reinforcement messages described in Knuth (2015), along with the numerical trick explained in Exercise 359.
References

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Bello, Irwan, Pham, Hieu, Le, Quoc V, Norouzi, Mohammad, and Bengio, Samy. Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Biere, Armin, Heule, Marijn, van Maaren, Hans, and Walsh, Toby. Conflict-driven clause learning sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, pp. 131–153, 2009.

Braunstein, Alfredo, Mézard, Marc, and Zecchina, Riccardo. Survey propagation: An algorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

Cook, Stephen A. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, pp. 151–158. ACM, 1971.

Dai, Hanjun, Khalil, Elias B, Zhang, Yuyu, Dilkina, Bistra, and Song, Le. Learning combinatorial optimization algorithms over graphs. arXiv preprint arXiv:1704.01665, 2017.

Gilmer, Justin, Schoenholz, Samuel S, Riley, Patrick F, Vinyals, Oriol, and Dahl, George E. Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Gomes, Carla P, Kautz, Henry, Sabharwal, Ashish, and Selman, Bart. Satisfiability solvers. Foundations of Artificial Intelligence, 3:89–134, 2008.

Grozea, Cristian and Popescu, Marius. Can machine learning learn a decision oracle for np problems? a test on sat. Fundamenta Informaticae, 131(3-4):441–450, 2014.

Haim, Shai and Walsh, Toby. Restart strategy selection using machine learning techniques. CoRR, abs/0907.5032, 2009.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Knuth, Donald E. The art of computer programming, volume 4, fascicle 6: Satisfiability, 2015.

Lewis, Harry R. Computers and intractability. a guide to the theory of np-completeness, 1983.

Liang, Jia Hui, Ganesh, Vijay, Poupart, Pascal, and Czarnecki, Krzysztof. Learning rate based branching heuristic for sat solvers. In International Conference on Theory and Applications of Satisfiability Testing, pp. 123–140. Springer, 2016.

Newman, Mark. Networks: an introduction. Oxford university press, 2010.

Palm, Rasmus Berg, Paquet, Ulrich, and Winther, Ole. Recurrent relational networks for complex relational reasoning. arXiv preprint arXiv:1711.08028, 2017.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. Understanding the exploding gradient problem. CoRR, abs/1211.5063, 2012.

Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuchner, Markus, and Monfardini, Gabriele. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Singh, Rishabh, Near, Joseph P, Ganesh, Vijay, and Rinard, Martin. Avatarsat: An auto-tuning boolean sat solver. 2009.

Sorensen, Niklas and Een, Niklas. Minisat v1. 13-a sat solver with conflict-clause minimization. SAT, 2005(53):1–2, 2005.

Tseitin, G. On the complexity of derivation in propositional calculus. Studies in Constrained Mathematics and Mathematical Logic, 1968.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks. In Advances in Neural Information Processing Systems (NIPS), pp. 2674–2682, 2015.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research (JAIR), 32:565–606, 2008.