RANDOM URINE PROTEIN/CREATININE RATIO READILY PREDICTS PROTEINURIA IN PREECLAMPSIA

Jung-Hwa Park, Dawn Chung, Hee-Young Cho, Young-Han Kim, Ga-Hyun Son, Yong-Won Park, Ja-Young Kwon
Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea

Objective
To assess the diagnostic accuracy of random urine protein-creatinine (P/C) ratio for prediction of significant proteinuria in preeclampsia as an alternative to the time-consuming 24-hour urine protein collection.

Methods
Retrospective record analysis was performed on 140 pregnant women who were admitted with suspicion for preeclampsia from January 2006 to June 2011. Random urine protein and/or 24-hour urine protein levels were assessed and their correlation to random urine P/C ratio and 24-hour urine protein excretion was evaluated.

Results
Out of 140 patients, random urine P/C ratio or/and 24-hour urine protein was performed in 79 patients to evaluate significant proteinuria. Of 79 patients, 46 (58%) underwent both tests whereas in 33 women (42%) 24-hour urine collection was not available due to urgent delivery. In 39 cases (85%), significant proteinuria (≥300 mg/24 hr) was detected with 6 cases (13%) having values over 5,000 mg/24 hr, corresponding to the diagnosis of severe preeclampsia. Random urine P/C ratio highly correlated with 24-hour urine protein excretion ($r=0.823$, $P<0.01$). The optimal random urine P/C ratio cutoff points were 0.63 and 4.68 for 300 mg/24 hr and 5,000 mg/24 hr of protein excretion, respectively, with each sensitivity, specificity, and positive and negative predictive values of 87.1%, 100%, 100%, and 58.3%; and 100%, 85%, 50%, and 100%, for significant and severe preeclampsia, respectively.

Conclusion
Random urine P/C ratio is a reliable indicator of significant proteinuria in preeclampsia and may be better at providing earlier diagnostic information than the 24-hour urine protein excretion with more accuracy than the urinary dipstick test.

Keywords: Preeclampsia; 24-hour urine protein; Protein-creatinine ratio

Introduction

The criteria of preeclampsia have remained unchanged for the past several years. This includes: a proteinuria reading of ≥30 mg (≥1+ on dipstick) in two random urine samples collected at least 4 to 6 hours apart or 24-hour urine protein excretion ≥300 mg/day with onset at ≥20 weeks of gestational age, a systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg measured twice. All of these findings should normalize within the 6th postpartum week [1].

The 24-hour urine protein excretion measurement has been the gold standard for quantifying urinary protein, but it is an inconve-
nient and time-consuming test. In comparison, the urinary dipstick test may be a quicker and simpler method but its drawbacks are its inconsistency and poor correlation with 24-hour urine protein excretion level [2], because of its susceptibility to patients’ hydration status. In this respect, an alternative method that is as simple and rapid as the dipstick test but with better accuracy in predicting the amount of secreted urinary protein would be valuable.

The measurement of a random urine protein-creatinine (P/C) ratio has been tested as a substitute for the 24-hour urine protein excretion test for quantifying protein excretion in patients with renal diseases, such as diabetic nephropathy, lupus nephritis, and transplanted kidneys, with good correlation between the two methods [3-7]. The method relies on calculating the ratio of spot urine protein excretion to creatinine excretion and can normalize the protein excretion to the glomerular filtration rate. Therefore, a random urine P/C ratio is not influenced by variations in hydration status [8]. However, because of the variety of the cutoff values among past studies [9-11], there is no uniform standard so the clinical usefulness of this test is still controversial.

The aim of the present study was to evaluate the ability of the random urine P/C ratio to predict significant proteinuria, as well as to introduce a diagnostic test for preeclampsia that would avoid the inconvenience and time consumption of 24-hour urine protein collection.

Materials and Methods

1. Patients

We enrolled 140 pregnant women who were admitted to Yonsei University Severance Hospital Obstetrics Department with a suspicion of preeclampsia between January 2006 and June 2011. Women with symptoms of preeclampsia and more than one clinical finding, such as hypertension, edema accompanied by rapid weight gain with or without headache, and new-onset proteinuria on a urinary dipstick test, were included. The only exclusion criterion was a concurrent preexisting renal disease such as immunoglobulin (Ig) A nephropathy.

2. Laboratory tests

Firstly, urine was collected via catheterization for the random urine P/C ratio and the urinary dipstick test. Then, a 24-hour urine was collected via a clean catch. Random urine P/C ratio was determined by a Hitachi 7180 Autoanalyzer (Hitachi, Tokyo, Japan).

3. Statistical analyses

Statistical analysis was performed with the SPSS ver. 18.0 (SPSS Inc., Chicago, IL, USA) and SAS ver. 9.2 (SAS Inc., Cary, NC, USA).

We defined significant proteinuria as 24-hour urine protein excretion ≥300 mg/24 hr. If urine protein excretion was ≥5,000 mg/24 hr, this was considered severe proteinuria, per the guidelines of the International Society for the Study of Hypertension in Pregnancy and the American College of Obstetrics and Gynecology [12,13].

The 24-hour urine protein excretion results were used as a gold standard in determining the cutoff points for the significant and severe proteinuria. Sensitivity, specificity, and positive and negative predictive values of random urine P/C ratio were also calculated against this standard. The correlation between random urine P/C ratio and 24-hour urine protein excretion level was analyzed.

Table 1. The causes of incomplete and/or inadequate 24-hour urine collection

Time of delivery	Delivery method	n (%)	Cause	n (%)
Delivery within 24 hours of admission	Emergency Cesarean section	18 (55)	High BP	8 (24)
			HELLP SD	3 (9)
			Fetal distress	2 (6)
			Ominous sign	3 (9)
	Vaginal delivery	1 (3)	Preterm labor	1 (3)
Delivery over 24 hours after admission	Emergency Cesarean section	11 (33)	High BP	2 (6)
			HELLP SD	1 (3)
			Fetal distress	4 (12)
			Ominous sign	3 (9)
	Vaginal delivery	3 (9)	Preterm labor	3 (9)

BP, blood pressure; HELLP SD, hemolytic anemia elevated liver enzyme low platelet syndrome.
by regression. Receiver operator characteristic (ROC) curves were evaluated to determine the optimal random urine P/C ratio cutoff value that maximized sensitivity and specificity in the detection of significant and severe proteinuria with 24-hour urine protein excretion.

Results

1. **Study population**

A total of 140 pregnant women were admitted for the evaluation and management of preeclampsia. Among them, 79 were assigned to random urine P/C ratio or 24-hour urine protein excretion. Of these, 71 (89%) were diagnosed with preeclampsia. In 33 of the 79 (42%), either indicated or spontaneous delivery occurred prior to the completion of a 24-hour urine collection; these patients were excluded from the analysis (Table 1). Both the 24-hour urine and random urine samples were available in 46 (58%) patients and their characteristics were as demonstrated in Table 2. The mean maternal and gestational ages were 33.2±4.8 years and 33.3±3.4 weeks, respectively. The mean systolic and diastolic blood pressure was 157.8±20.7 mm Hg and 97.5±9.5 mm Hg, respectively. None of the patients had a history of chronic hypertension or renal disease. Three patients (7%) had a prior history of preeclampsia. Of the 46 patients, 1 (2%) was diagnosed with mild preeclampsia, 35 (76%) with severe preeclampsia, 8 (17%) with gestational hypertension, and 2 (4%), with superimposed preeclampsia, respectively.

Urinary protein excretion was 300 to 5,000 mg per 24 hours in 38 patients (83%) and ≥5,000 mg per 24 hours in 6 patients (13%) (Table 3). Among the enrolled patients, 2 urine samples (4%) measured <300 mg in 24-hours, which did not fulfill for the criteria for proteinuria in preeclamptic pregnancy. The mean collected 24-hour urine volume was 1,448.5±868.9 mL and the mean protein excretion in those sample was 2,713.0±2,930.2 mg/dL. The mean random urine P/C ratio was 4.2±3.7 (Table 4).

2. **Correlation statistic**

The correlation coefficient for random urine P/C ratio to 24-hour urine protein excretion was 0.82 ($P<0.01$), indicating strong agreement between the two tests.

3. **ROC curves**

The ROC curves for ≥300 mg per 24-hour urine and ≥5,000 mg per 24-hour urine are presented in Fig. 1A, B. The area under the ROC curve of ≥300 mg per 24-hour group was 0.958 (95% confidence interval [CI], 0.903 to 1.000) and for the ≥5,000 mg per 24-hour group was 0.921 (95% CI, 1.074 to 2.002). Analysis of the ROC curve indicated that a random urine P/C ratio of 4.68 was the best cutoff point to detect significant (≥300 mg per 24-hours)
proteinuria and to detect severe (≥5,000 mg per 24-hours) proteinuria. The sensitivity, specificity, and positive and negative predictive values were 87.1%, 100%, 100%, and 58.3% for significant preeclampsia and 100%, 85%, 50%, and 100%; for severe preeclampsia. We also compared the area under the ROC curve of the ≥300 mg per 24-hour to that of the urinary dipstick test in Fig. 1C. Each was 0.958 (95% CI, 0.903 to 1.000) and 0.935 (95% CI, 0.883 to 0.899), respectively, demonstrating no significant difference between the two tests. Interestingly, in 4 patients with a negative urine dipstick test but significant proteinuria by 24-hour urine protein excretion, random urine P/C ratio was positive.

Discussion

Mild preeclampsia is defined as a systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg measured twice at least 6 hours apart, with proteinuria of ≥1+ on urinary dipstick test or urine protein ≥300 mg/24 hr. Severe preeclampsia is defined as systolic blood pressure ≥160 mm Hg or diastolic blood
significant and severe proteinuria, respectively. This indicates that
providing optimal sensitivity and specificity for the detection of
proteinuria. Also, the cutoff points of 0.63 and 4.68 were found
to predict 24-hour urine protein excretion. As
per 24-hours) proteinuria and severe (≥5,000 mg per 24-hours)
cutoff points by analyzing ROC curves for significant (≥300 mg
correlation coefficient, 0.82;
...
off point for significant proteinuria. This is because of the study-to-study variability in laboratory methods for measuring proteinuria, which precludes valid comparison among the studies. Some reports indicate appropriate cutoff points ranging from 0.15 to 0.5 and sensitivities and specificities from 77.5% to 89.7% and from 72.6% to 80%, respectively [27].

The strength of our study comes from the fact that the random urine P/C ratio was determined before 24-hour urine collection was completed, thereby reducing the potential for a falsely elevated random urine P/C ratio after completion of 24-hour urine collection because of the progression of preeclampsia. However, our study is limited due to its small sample size. Further studies can overcome this issue incorporating a larger study population that also includes outpatient clinic patients.

Based on the results of our study, we conclude that random urine P/C ratios can predict 24-hour urine protein excretion with a high accuracy. This test could be used as a reasonable alternative to 24-hour urine protein excretion, especially in emergent situations, and, it could also complement the urinary dipstick test in preeclamptic pregnancy.

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2010-0010727).

References

1. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi JM. Pre-eclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manag 2011;7:467-74.
2. Meyer NL, Mercer BM, Friedman SA, Sibai BM. Urinary dipstick protein: a poor predictor of absent or severe proteinuria. Am J Obstet Gynecol 1994;170:137-41.
3. Shahbazian N, Hosseini-Asl F. A comparison of spot urine protein-creatinine ratio with 24-hour urine protein excretion in women with preeclampsia. Iran J Kidney Dis 2008;2:127-31.
4. Christopher-Stine L, Petri M, Astor BC, Fine D. Urine protein-to-creatinine ratio is a reliable measure of proteinuria in lupus nephritis. J Rheumatol 2004;31:1557-9.
5. Chitalia VC, Kothari J, Wells EJ, Livesey JH, Robson RA, Searle M, et al. Cost-benefit analysis and prediction of 24-hour proteinuria from the spot urine protein-creatinine ratio. Clin Nephrol 2001;55:436-47.
6. Xin G, Wang M, Jiao LL, Xu GB, Wang HY. Protein-to-creatinine ratio in spot urine samples as a predictor of quantitation of proteinuria. Clin Chim Acta 2004;350:35-9.
7. Tong S, Rigatto C, Rush DN, Nickerson P, Jeffery JR. The urine protein to creatinine ratio (P/C) as a predictor of 24-hour urine protein excretion in renal transplant patients. Transplantation 2001;72:1453-6.
8. Dwyer BK, Gorman M, Carroll IR, Druzin M. Uroanalysis vs urine protein-creatinine ratio to predict significant proteinuria in pregnancy. J Perinatol 2008;28:461-7.
9. Yamasmit W, Chaithongwongwatthana S, Charoenvidhya D, Uerpairojkit B, Tolosa J. Random urinary protein-to-creatinine ratio for prediction of significant proteinuria in women with preeclampsia. J Matern Fetal Neonatal Med 2004;16:275-9.
10. Zadehmodarres S, Razzaghi MR, Habibi G, Najmi Z, Jam H, Mosaffa N, et al. Random urine protein to creatinine ratio as a diagnostic method of significant proteinuria in pre-eclampsia. Aust N Z J Obstet Gynaecol 2006;46:501-4.
11. Wheeler TL 2nd, Blackhurst DW, Dellinger EH, Ramsey PS. Usage of spot urine protein to creatinine ratios in the evaluation of preeclampsia. Am J Obstet Gynecol 2007;196:465.e1-4.
12. ACOG Committee on Obstetric Practice. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet 2002;77:67-75.
13. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001;20:IX-XIV.
14. Turner JA. Diagnosis and management of pre-eclampsia: an update. Int J Womens Health 2010;2:327-37.
15. Haas DM, Sabi F, McNamara M, Rivera-Alsina M. Comparing ambulatory spot urine protein/creatinine ratios and 24-h urine protein measurements in normal pregnancies. J Matern Fetal Neonatal Med 2003;14:233-6.
16. Saudan PJ, Brown MA, Farrell T, Shaw L. Improved methods of assessing proteinuria in hypertensive pregnancy. Br J Obstet Gynaecol 1997;104:1159-64.
17. Bell SC, Halligan AW, Martin A, Ashmore J, Shennan AH, Lambert PC, et al. The role of observer error in antenatal dipstick proteinuria analysis. Br J Obstet Gynaecol 1999;106:1177-80.
18. Rizk DE, Agarwal MM, Pathan JY, Obineche EN. Predicting pro-
teinuria in hypertensive pregnancies with urinary protein-creatinine or calcium-creatinine ratio. J Perinatol 2007;27:272-7.
19. Roudsari FV, Ayati S, Ayatollahi H, Shakeri MT. Protein/creatinine ratio on random urine samples for prediction of proteinuria in preeclampsia. Hypertens Pregnancy 2012;31:240-2.
20. Sethuram R, Kiran TS, Weerakkody AN. Is the urine spot protein/creatinine ratio a valid diagnostic test for pre-eclampsia? J Obstet Gynaecol 2011;31:128-30.
21. Gai M, Motta D, Giunti S, Fop F, Masini S, Mezza E, et al. Comparison between 24-h proteinuria, urinary protein/creatinine ratio and dipstick test in patients with nephropathy: patterns of proteinuria in dipstick-negative patients. Scand J Clin Lab Invest 2006;66:299-307.
22. Eigbefoh JO, Abebe J, Odike MA, Isabu P. Protein/creatinine ratio in random urine specimens for quantitation of proteinuria in pre-eclampsia. Int J Obstet Gynecol 2007;8:DOI:10.5580/966.
23. Silpraset S, Praloprakarn C, Manussirivithyaya S, Wiriyasirivaj B. A six-hour urinary protein-creatinine ratio for predicting significant proteinuria in preeclampsia. Thai J Obstet Gynecol 2009;17:30-6.
24. Saikul S, Wiriyasirivaj B, Charoenchinont P. First 4-hour urinary protein-creatinine ratio for diagnosis of significant proteinuria in preeclampsia. J Med Assoc Thai 2006;89 Suppl 4:S42-6.
25. Wiwanitkit V. Periodic urinary protein creatinine ratio for predicting significant proteinuria in preeclampsia in different alternatives: time effectiveness analysis. Arch Gynecol Obstet 2010;281:571-3.
26. Leanos-Miranda A, Marquez-Acosta J, Romero-Arauz F, Cardenas-Mondragon GM, Rivera-Leanos R, Isordia-Salas I, et al. Protein:creatinine ratio in random urine samples is a reliable marker of increased 24-hour protein excretion in hospitalized women with hypertensive disorders of pregnancy. Clin Chem 2007;53:1623-8.
27. Eslamian L, Behnam F, Tehrani ZF, Jamal A, Marsoosi V. Random urine protein creatinine ratio as a preadmission test in hypertensive pregnancies with urinary protein creatinine ratio. Acta Med Iran 2011;49:81-4.