New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice

Shuichi Sakamoto, Hiroyuki Inoue, Shunichi Ohba, Yasuko Kohda, Ihomi Usami, Tohru Masuda, Manabu Kawada and Akio Nomoto

Institute of Microbial Chemistry, Numazu, Japan

Key words
Hepatocyte growth factor, MET, metastasis, orthotopic transplantation, small-cell lung cancer

Correspondence
Manabu Kawada, Institute of Microbial Chemistry, Numazu, 18-24 Miyamato, Numazu, Shizuoka 410-0301, Japan.
Tel: +81-55-924-0601; Fax: +81-55-922-6888;
E-mail: kawadam@bikaken.or.jp

Funding information
Japan Society for the Promotion of Science (23790452).

Accepted October 7, 2014; Revised January 18, 2015;
Accepted January 26, 2015

Cancer Sci 106 (2015) 367–374
doi: 10.1111/cas.12624

Small-cell lung cancer (SCLC) is an aggressive cancer with high metastatic ability and novel strategies against the metastasis are urgently needed to improve SCLC treatment. However, the mechanism of metastasis of SCLC remains largely to be elucidated. For further studies of SCLC metastasis, we developed a new orthotopic transplantation model in mice. We established a GFP-labeled subline from the human SCLC cell line DMS273 and transplanted them orthotopically into the lung of nude mice with Matrigel. The GFP-labeled cells showed significant metastatic activity and formed metastatic foci in distant tissues such as bone, kidney, and brain, as observed in SCLC patients. From a bone metastasis focus of the mouse, we isolated another subline, termed G3H, with enhanced metastatic potential and higher hepatocyte growth factor (HGF) expression than the parent line. Further studies indicated that the HGF/MET signaling pathway was involved in in vitro motility and invasion activities of the G3H cells and treatments with MET inhibitors decreased formation of distant metastases in our orthotopic model using G3H cells. These data indicated that our model mimics the clinical aspect of SCLC such as metastatic tropism and autocrine of HGF/MET signaling. Compared with other orthotopic SCLC models, our model has a superior ability to form distant metastases. Therefore, our model will provide a valuable tool for the study of SCLC metastasis.

Materials and Methods

Animal experiments. Female BALB/c nude mice, 5 weeks old, were obtained from Charles River Japan (Kanagawa, Japan). Mice aged 8 weeks were used for the in vivo metastasis assay. A total of 1.33 × 10⁶ GFP-labelled DMS273 cells (DMS273-GFP or G3H cells) were suspended in 0.8 mL BD Matrigel Growth Factor Reduced (Becton, Dickinson & Company, Tokyo, Japan):DMEM (5:3) solution. Before injection, mice were anesthetized with pentobarbital and a 1.5-cm-long incision was made in the skin on their left side. A total of 20 μL suspension (containing 1 × 10⁶...
Table 1. Orthotopic tumor growth and metastasis of DMS273-GFP and G3H cells in nude mice

Cells	Orthotopic tumor formation, n (%)	Tumor volume, mm³	Metastasis incidence, n (%)	Location of metastasis	Survival, days
DMS273-GFP					
Exp. 1 (n = 11)	11 (100)	375 ± 199	5 (45)	Bone 2, Brain 2, Lymph node 2, Kidney 2, Adrenal gland 1, Liver 1	41.5 ± 11
Exp. 2 (n = 9)	9 (100)	446 ± 180	4 (44)	Bone 2, Brain 2, Lymph node 2, Kidney 2, Adrenal gland 1, Liver 1	33.6 ± 4.1
G3H					
Exp. 1 (n = 11)	10 (91)	357 ± 254	7 (64)	Bone 3, Brain 3, Lymph node 2, Kidney 2, Adrenal gland 1, Liver 0	39.9 ± 9.6
Exp. 2 (n = 11)	11 (100)	269 ± 111	7 (64)	Bone 3, Brain 5, Lymph node 0, Kidney 1, Adrenal gland 0, Liver 0	32.8 ± 3.9

Cells (1 × 10⁶) were injected into the left lung of nude mice. Mice were killed when they became moribund, and orthotopic and metastatic tumor formations were assessed by GFP fluorescence. Exp., experiment.

Fig. 1. Green fluorescent protein-labelled metastatic sublines of human small-cell lung carcinoma (SCLC) cell line DMS273 and effect of cisplatin treatment. (a) Establishment of GFP-labelled metastatic sublines of DMS273. (b) Cell morphology of DMS273-GFP and G3H cells. Bar = 50 μm. (c) In vitro growth rate of the DMS273 sublines as determined by MTT assay. The growth rate was calculated as the ratio of the absorbance from cultured cells compared with that of day 0. Values are expressed as means of triplicate experiments ± SD. (d) In vitro sensitivity of the DMS273 sublines and MKN45 cell line against cisplatin. Cells were treated in triplicate with the indicated concentrations of cisplatin for 72 h. The growth rate was calculated as the ratio of MTT absorbance from cisplatin-treated cells compared with that of untreated cells. Results are expressed as means ± SD from three independent experiments. (e, f) Effect of cisplatin treatment on orthotopic and metastatic tumor formation in our model using G3H cells. The mice were killed and assessed on day 25 or 26. (e) Orthotopic tumor formation. Results are expressed as means ± SD (n = 5–6). (f) Distant metastatic tumor formation. The dotted lines show the means of the number of metastasis-positive organs of each group. Percentages show distant metastases incidence. *P < 0.05, Fisher’s exact test.
Development of a new orthotopic SCLC metastasis model. We previously implanted a GFP-labelled subline of the human variant SCLC cell line DMS273 (DMS273-GFP cells) orthotopically into the left lung of nude mice and found that the cells showed significant metastatic activity (data not shown). This finding led us to develop a new orthotopic SCLC metastasis model using these cells. After preliminary examinations under various conditions, we found that after inoculation of 1×10^6 cells of DMS273-GFP suspended with Matrigel, over 90% of the inoculated animals developed tumors at the injected site and over 40% showed metastases after 20–40 days of injection (Table 1). The metastatic organs of the cells were similar to SCLC patients, and included bone, brain, and lymph node (Table 1). To obtain highly metastatic variants, we recovered the tumor cells from a bone metastasis of our model, cultured the cells in vitro and cloned several sublines (Fig. 1a). One of the sublines, termed G3H, showed enhanced metastatic activity (>60% of inoculated animals had metastases) with nearly the same metastatic tropism of the parental line (Fig. 2a–j, Table 1). Using immunohistological analysis, we confirmed that the cells in the formed tumor at the orthotopic transplantation site and the distant metastatic sites were GFP-positive (Fig. 2k–v), and that a large part of the cells in the orthotopic site and the bone metastatic site were Ki67-positive (Fig. S1a, b).

Fig. 2. Orthotopic and metastatic tumor formation of G3H, a GFP-labelled subline of human small-cell lung carcinoma cell line DMS273, in nude mice. Intrapulmonary injected cells formed tumor at the injected site of lung and metastatic colonies in various distant organs. (a–j) Representative GFP fluorescent images of orthotopic and metastatic tumor formation of G3H cells in lung (a, b), femur (c), vertebra (d), brain (e, f), liver (g), mesentery lymph node (h), adrenal gland (i), and kidney (j). (k–v) Representative histological appearance of orthotopic tumors (k, l) and metastatic (Meta) tumors in bone (m, n), brain (o, p), adrenal gland (q, r), kidney (s, t), and a blood vessel of mesentery (u, v). (k, m, o, q, s, u) H&E staining; (l, n, p, r, t, v) GFP immunostaining. Magnification, $\times40$ (k, l), $\times100$ (m–r), $\times200$ (s–v).
b). We also detected expression of the neuroendocrine marker secretogranin II, which is often observed in SCLC, in the orthotopic tumor (Fig. S1c,d). In addition, we analyzed the differences in angiogenesis (CD31), lymphangiogenesis (LYVE1), and stromal reaction (αSMA) between the orthotopic tumors of DMS273-GFP and G3H cells, but we did not observed any significant differences (Fig. S2). These findings showed that the GFP-labelled subline of DMS273 exhibited the potential to form both orthotopic primary tumor and metastasis to distant organs in nude mice.

Next we investigated the in vitro characteristics of the DMS273-GFP parental line and highly metastatic subline G3H. Phase-contrast microscopy revealed that G3H cells had similar morphology to the parental DMS273-GFP cells (Fig. 1b). No significant differences were observed in in vitro cell growth rates between G3H and parental DMS273-GFP cells (Fig. 1c) or in in vitro motility and invasion assays using Transwell chambers (data not shown).

Effect of cisplatin treatment in orthotopic model of SCLC metastasis. We next tested the antitumor effect of cisplatin, which is used as first-line treatment for SCLC.(1) In vitro cytotoxic assays showed that both G3H and parental DMS273-GFP cells had cisplatin sensitivity similar to the human gastric cancer cell line MKN45, and their IC_{50} values were approximately 0.5 μg/mL in 72-h treatment experiments (Fig. 1d). This result is consistent with previous data showing that both DMS273 and MKN45 exhibited an average sensitivity to cisplatin in the JFCR39 cancer cell line panel.(16)

We next carried out in vivo orthotopic experiments and treated mice with cisplatin at doses of 1.25 or 5 mg/kg once a week. Compared with the vehicle-treated group, mice treated with 1.25 or 5 mg/kg cisplatin had 35% and 45% reduction in orthotopic tumor formation, respectively (not statistically significant) (Fig. 1e). Interestingly, distant metastatic formation in our model was significantly decreased with cisplatin treatment at both doses (P < 0.05) (Fig. 1f). These results suggest that our model was useful for the assessment of antimetastatic efficacy of antitumor compounds.

Higher expression of HGF in metastatic subline G3H. Tumor cells secrete cytokines that affect tumor growth and metastasis. Thus, we carried out an analysis of the CM of DMS273-GFP and G3H cells using a human cytokine antibody array. Both cell lines produced interleukin-8, monocyte chemotactic protein-1, granulocyte/macrophage colony-stimulating fac-
tor, insulin-like growth factor-binding protein-2, and HGF (Fig. 3a). Interestingly, real-time RT-PCR analysis and ELISA revealed that G3H showed higher expressions of both HGF mRNA and protein than DMS273-GFP cells (Fig. 3b,c), indicating that the bone metastasis-derived G3H cells have an increased HGF expression level compared with the parental line.

Hepatocyte growth factor/MET signal in metastatic subline G3H. As the HGF/MET signal is involved in cellular motility and invasion in various cancers including SCLC, (6,12) we further evaluated the HGF/MET signal in G3H cells. MET protein, a natural receptor for HGF, was detected in both DMS273-GFP and G3H cells by immunoblot analysis (Fig. 3d). MET protein levels in DMS273-GFP and G3H cells were significantly lower than that in prostate cancer PC-3 cells. MET is activated by binding with its ligand HGF at the cell surface, upon which MET is autophosphorylated on its intracellular domain. In normal culture conditions (DMEM containing 10% FBS), a certain basal MET phosphorylation (at the autophosphorylation sites Tyr1234/1235) was observed in G3H cells (Fig. 3e). Treatment of G3H cells with recombinant human HGF in 10% FBS medium significantly induced autophosphorylation of MET (Fig. 3e). Both basal level and recombinant HGF-induced MET phosphorylation disappeared after treatment with anti-HGF neutralizing antibody (Fig. 3e). These results indicated that MET is functional in G3H cells, and that cells are sensitive to HGF.

Next, we determined whether HGF secreted from G3H cells was functional. Treatment with CM of G3H cells induced slightly higher levels of MET phosphorylation in G3H cells compared with 10% FBS, and this induction was cancelled by treatment with anti-HGF neutralizing antibody (Fig. 3e). We also found that the MET protein level was higher (Fig. 3d) and HGF was remarkably lower in human prostate cancer PC-3 cells compared with G3H cells (Fig. 3b,c). In PC-3 cells, basal MET phosphorylation in medium containing 10% FBS was very low, and both recombinant human HGF and CM of G3H cells strikingly induced MET phosphorylation (Fig. 3f). These inductions of MET phosphorylation in PC-3 cells were cancelled by treatment with anti-HGF neutralizing antibody as in G3H cells (Fig. 3f). These results indicated that G3H cells express functionally active HGF and MET, and suggested the existence of an autocrine activation of the HGF/MET signal in G3H cells.

Pharmacological evaluation of the role of HGF/MET inhibitor signal in the model. The above data prompted us to examine the effect of a highly specific MET inhibitor PHA665752 (11,17) in our model. *In vitro* exposure of 0.2 μM PHA665752 completely inhibited both basal and HGF-induced MET phosphorylation in G3H cells (Fig. 4a), indicating that PHA665752 is a potent inhibitor of MET in the cells. Both G3H and DMS273-GFP cells showed similar sensitivities to PHA665752 and their IC50 values were approximately 2 μM in 72-h treatment experiments (Fig. 4b). In contrast, the gastric cancer cell line MKN45, which harbors MET gene amplification and is MET-addicted, (18) showed a severe sensitivity to PHA665752 with IC50 values of approximately 50 nM (Fig. 4b). As expected, the immunoblot experiments showed that MKN45 had extremely higher expression levels of phosphorylated MET (pY1234/Y1235) and total MET protein than DMS273-GFP.

Fig. 4. *In vitro* effect of PHA665752, a small molecule inhibitor of MET, on DMS273 small-cell lung cancer sublines. (a) Effect of PHA665752 on MET phosphorylation. G3H cells were starved in DMEM containing 0.5% FBS overnight, and then pre-incubated with PHA665752 (0.2 μM) for 2 h. Cells were then incubated with recombinant hepatocyte growth factor (HGF; 50 ng/mL) for 15 min. Cells were lysed immediately and whole cell lysate (20 μg) was analyzed by Western blotting. (b) *In vitro* sensitivity of the DMS273 sublines and MKN45 cell line against PHA665752. Cells were treated with the indicated concentrations of PHA665752 for 72 h. Assays were carried out in triplicate. The growth rate was calculated as the ratio of the MTT absorbance of PHA665752-treated cells compared with that of untreated cells. Results are expressed as means of three independent experiments ± SD. (c) Effect of PHA665752 and anti-HGF neutralizing antibodies on *in vitro* motility and invasion activities of G3H cells. *In vitro* motility and invasion assays using conditioned media of G3H as chemoattractant were carried out. Relative migrated or invaded cells were calculated as the ratio of numbers of migrated or invaded cells of the treated groups compared with the untreated group. Results are expressed as means of three independent experiments ± SD. *P < 0.01, **P < 0.005, Student’s t-test, compared with untreated cells.
G3H, and PC-3 cells (Fig. 3d). These results suggest that DMS273-GFP and G3H cells were not MET-addicted, and that the HGF/MET signal was not essential for in vitro growth of these cells.

We then examined the effect of PHA665752 on in vitro motility and invasion activities in G3H cells. PHA665752 at 0.2 μM significantly suppressed both the motility and invasion activities of G3H cells when the CM of G3H cells, containing functional HGF (Fig. 3), was used as a chemoattractant (Fig. 4c). The magnitude of this suppression was the same using the anti-HGF neutralizing antibody as the HGF/MET signal blocker (Fig. 4c). These results indicated that HGF/MET is one of the important signal pathways for the in vitro motility and invasion activities of G3H cells and that PHA665752 has the ability to effectively inhibit these activities in G3H cells.

Based on our in vitro observations, we examined whether activation of the HGF/MET signal could be detected in tumors of our in vivo metastatic model. Immunohistological analysis showed that orthotopic tumors of G3H cells expressed HGF and MET and were positive for MET phosphorylation (pY1230/Y1234/Y1235) (Fig. 5a–e). These results support the notion of an autocrine HGF/MET signal in our model as observed in SCLC patients.

Next, we investigated the efficacy of pharmacological inhibition of the HGF/MET signal in our in vivo orthotopic metastatic model using G3H cells. Three days of treatment per week with PHA665752 at a dose of 15 mg/kg did not affect orthotopic tumor formation but decreased metastatic formations compared with vehicle treatment (distant metastases incidence, P < 0.05) (Fig. 5f,g). Additionally, we tested the in

Fig. 5. Effect of MET inhibitors on orthotopic and metastatic tumor formation in our model of human small-cell lung cancer using G3H cells. (a–d) Immunostaining of hepatocyte growth factor (HGF)/MET in orthotopic tumors of our model using G3H cells. (a) H&E staining, (b) GFP immunostaining, (c) HGF immunostaining, (d) MET immunostaining, and (e) phosphorylation of MET (pY1230/Y1234/Y1235) immunostaining. (f, g) Effect of PHA665752 (PHA) treatment on orthotopic and metastatic tumor formation in our model using G3H cells. The mice were killed and assessed on day 27 or 28. (f) Orthotopic tumor formation. Results are expressed as means ± SD (n = 8 or 9). (g) Distant metastatic tumor formation. The dotted lines show the means of the number of metastasis-positive tissues of each group. Percentages show distant metastases incidence. *P < 0.05, Fisher’s exact test. (h, i) Effect of ARQ-197 (ARQ) treatment on orthotopic and metastatic tumor formation in our model using G3H cells. The mice were killed and assessed on day 26. (h) Orthotopic tumor formation. Results are expressed as the means ± SD (n = 6). (i) Distant metastatic tumor formation. The dotted lines show the means of the number of metastasis-positive organs of each group. Percentages show distant metastases incidence. *P < 0.05, Fisher’s exact test.
vivo effect of ARQ197, another MET inhibitor with microtubule inhibition activity. (19,20) ARQ197 treatment (120 mg/kg, 5 days) decreased the orthotopic tumor formation but did not affect the orthotopic tumor formation but decreased the metastatic formations more effectively than PHA665752 treatment (distant metastases incidence, P < 0.05) (Fig. 5h,i). Collectively, these data showed that the HGF/MET signal plays an important role in metastatic tumor formations in our model.

Discussion

We developed a new orthotopic model of SCLC metastasis using the GFP-labelled subline of the human SCLC cell line DMS273. In this model, metastases were detected in distant organs such as bone, kidney, and brain, similar to those observed in SCLC patients (Table 1).

Several studies have reported orthotopic SCLC models with metastatic potential. Omura et al. (21) reported an orthotopic model using the SCLC cell line NCI-H69. In this model, metastases to right lung and lymph node were observed. Daniel et al. (22) showed that metastases in mediastinal lymph node were detected in their model using cell lines derived from a primary xenograft model. Isobe et al. (23) developed three orthotopic mouse models and detected micrometastases in major distant organs other than in the brain. Jacoby et al. (24) observed metastases to distant organs, including the brain, in a hypoxia-inducible factor-1α antagonist PX-478-treated group, but not in the drug-free group, in their model using the SCLC cell line NCI-H1157. In our model, we detected macro- and micrometastases in the brain and other distant organs under drug-free conditions (Fig. 2, Table 1). Thus, distant metastases formation ability of our model is superior to that of other orthotopic SCLC models. DMS273 cells were established from cells in the pleural fluid of an SCLC patient and was classified as variant SCLC. (4,25) Variant SCLC cells had a faster growth rate and higher metastatic potential in an experimental metastatic model than classic SCLC cells. (3,26) These variant SCLC characteristics of DMS273 cells might be responsible for the aggressiveness of our model.

Many previous studies showed the importance of the HGF/MET signal in SCLC. (7–12) In this study, we found that the cells used in our model expressed both HGF and MET (Fig. 3), and that treatment with the MET inhibitor PHA665752 or anti-HGF neutralizing antibody significantly suppressed the in vitro migration and invasion activities of G3H cells using CM of G3H as a chemoattractant (Fig. 4). In addition, the more aggressive subline G3H derived from a bone metastasis showed higher HGF expression than the parental line (Fig. 3). We also detected HGF and MET expression in vivo and found that pharmacological inhibition of the HGF/MET signal suppressed distant metastases formation in our model using G3H cells (Fig. 5). These data collectively showed that the HGF/MET signal plays a pivotal role in our model, at least in part through the autocrine regulation as observed in SCLC patients. Hence, in addition to metastatic tropism, our model also mimics the pivotal signal pathway of clinical SCLC and can be used for the validation of HGF/MET target therapies for SCLC.

Obtaining clinical specimens of SCLC is difficult, as SCLC is not usually amenable to surgical management. This is one of the obstructions for identifying molecular mechanisms involved in the tumor progression and metastasis of SCLC. Our model has the same aspects of SCLC patients and the advantage of brain metastatic potential. Therefore, our orthotopic model of SCLC metastasis provides a new effective tool for the study of SCLC biology and development of novel SCLC treatments.

Acknowledgments

The authors thank Dr. Futakuchi (Nagoya City University), Dr. Yano (Kanazawa University), and Dr. Kuniyasu (Nara Medical University) for useful comments. This study was supported by grants from the Japan Society for the Promotion of Science (23790452 and 26460481) to S.S.

Disclosure Statement

The authors have no conflict of interest.

References

1 William WN Jr, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol 2011; 8: 611–9.
2 Nicholson SA, Beasley MB, Brambilla E et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 2002; 26: 1184–97.
3 Carney DN, Gazdar AF, Bepler G et al. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 1985; 45: 293–23.
4 Pedersen N, Mortensen S, Størensen SB et al. Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res 2003; 63: 1943–53.
5 Häm CL, Rudin CM, Fast, hungry and unstable: finding the Achilles’ heel of small-cell lung cancer. Trends Mol Med 2007; 13: 150–5.
6 Ghiso E, Giordano S. Targeting MET: why, where and how? Curr Opin Pharmacol 2013; 13: 511–8.
7 Ma PC, Kijima T, Maulik G et al. MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 2003; 63: 6272–81.
8 Takigawa N, Segawa Y, Maeda Y, Takata I, Fujimoto N. Serum hepatocyte growth factor/scatter factor levels in small cell lung cancer patients. Lung Cancer 1997; 17: 211–8.
9 Bharti A, Ma PC, Maulik G et al. Haptoglobin alpha-subunit and hepatocyte growth factor can potentially serve as serum tumor biomarkers in small cell lung cancer. Anticancer Res 2004; 24: 1031–8.
10 Ma PC, Tretjakova MS, Nallasura V, Jagadeeswaran R, Hussain AN, Salgia R. Downstream signalling and specific inhibition of MET/HGF pathway in small cell lung cancer: implication for tumor invasion. Br J Cancer 2007; 97: 368–77.
11 Arriola E, Cañadas I, Arumi-Uria M et al. MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br J Cancer 2011; 105: 814–23.
12 Maulik G, Kijima T, Ma PC et al. Modulation of the MET/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002; 8: 620–7.
13 Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–92.
14 Price JE, Polyzos A, Zhang RD, Daniels LM. Tumorigenicity and metastasis of small cell lung cancer: implication for tumor invasion. Br J Cancer 2007; 96: 717–21.
15 Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 1999; 17: 343–59.
16 Dan S, Okamura M, Seki M et al. Correlating phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: in silico and biological evaluations. Cancer Res 2010; 70: 4982–94.
17 Christensen JG, Schreck R, Burrows J et al. A selective small molecule inhibitor of MET kinase inhibits MET-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003; 63: 7345–55.
18 Smolen GA, Sordella R, Mair B et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA665752. Proc Natl Acad Sci U S A 2006; 103: 2316–21.

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Supporting Information

Additional supporting information may be found in the online version of this article:

Doc. S1. Materials and methods.

Fig. S1. Immunohistological analysis of orthotopic tumors and bone metastatic tumors of G3H cells.

Fig. S2. Immunohistological analysis of angiogenesis, lymphangiogenesis, and stromal reaction in orthotopic tumors of our orthotopic metastatic model.