Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)

WARARAT CHIANGJONG¹, SOMCHAI CHUTIPONGTANATE¹,² and SURADEJ HONGENG³

¹Pediatric Translational Research Unit, Department of Pediatrics; ²Department of Clinical Epidemiology and Biostatistics; ³Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Received February 7, 2020; Accepted June 26, 2020

DOI: 10.3892/ijo.2020.5099

Abstract. Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.

Contents
1. Introduction
2. Classification of ACPs
3. Development of therapeutic ACPs
4. Anticancer peptides in clinical trials
5. Future direction
6. Conclusions

1. Introduction

Cancer drug therapy was developed from chemotherapy and radiotherapy to molecular targeting therapy combined with a ‘guiding missile’, for cancer-targeted delivery to avoid healthy tissue damage (1). For example, in genome targeted therapy, DNAs and RNAs can interfere with the normal host genome, and genetic modification is difficult as the modified genes may mutate the original genome or the off-target (2). Furthermore, immunotherapy with antibodies against cancer cell surface antigens can provide specific delivery, but some healthy cells can express the same targeted antigens, resulting in limited effectiveness (3). Small molecules can also exert antitumor effects on cancer cells, such as C188-9, a STAT3 inhibitor, in head and neck squamous cell carcinoma, and GNS561, a lysosomotropic molecule, in intrahepatic cholangiocarcinoma (4,5). Moreover, these small molecules can be used in drug delivery systems (6); however, they are difficult to synthesize. Therefore, peptides against cancer cells are an alternative therapeutic method inanticancer drug development.

Anticancer peptides (ACPs): What and why? ACPs, as small peptides containing amino acid sequences, are selective and toxic to cancer cells (7). ACPs are a superior choice of therapeutics compared with antibodies and small molecules due to their high selectivity, high penetration and easy modifications (8-10). Ideally, anticancer therapy should destroy a range of cancer types, but not all healthy cells.
A different property between cancerous and healthy cells is the cell membrane. Numerous anticancer peptides destroy cancer cells via apoptosis and necrosis by membrane lysis or pore formation (11−13). The eukaryotic cell membrane contains cholesterol to protect lytic action by modifying membrane fluidity (14). Moreover, a high level of membrane cholesterol can inhibit lytic activity. It has been shown that membrane fluidity of cancer cells is higher compared with healthy cells (15). Cancer cells also contain more abundant microvilli compared with healthy cells, which increases the cell surface area (16). Furthermore, healthy cells have electrical neutrality, whereas cancer cells contain a negatively charge component on their surface (17), leading to membrane destabilization, cytotoxicity and cancer cell lysis when interacting with small molecules, such as ACPs (18,19). In addition, the primary driving force for the interactions between peptides and the healthy cell membrane is the hydrophobic interactions, while that between peptides and the cancer cell membrane is the electrostatic interactions (20).

Anticancer medicines contain molecularly targeted drugs with or without 'guiding missiles' to interact with specific molecular targets on cancer cells (21). Besides molecularly targeted drugs, drug-delivery to the cancer cell surface was developed using the most important properties, including high specificity, high selectivity and the binding capability to various targeted drugs, as well as being easy to synthesize and produce (21). Peptide properties can be used both in molecularly targeted drugs and 'guiding missiles' to inhibit cell proliferation or eradicate cancer cells completely, depending on the amino acid residue composition, sequence length, isoelectric point, molecular weight, net charge, hydrophobicity, amphiphilicity, secondary structure and structural orientation (22).

These ideal anticancer peptide characteristics are summarized in Fig. 1. Membrane characteristics promote or inhibit drug penetration, drug conformation and/or location within the membrane and sequentially affect therapeutic targets (23). Healthy cell membranes have zwitterion phosphatidylcholine and sphingomyelin in an outer leaflet and anionic phosphatidylserine in the inner leaflet with the asymmetric distribution (24). The inner leaflet with the asymmetric distribution is primarily maintained by flipases (phosphatidylserine and phosphatidylethanolamine in the outer leaflet) and scramblases (facilitated the flip-flop of lipids) (24,25). In contrast, the cancer cell membrane loses this asymmetric distribution and alterations in membrane fluidity, resulting in exposure of negative charge of phosphatidylserine on the surface of the membrane, as well as the locating of phosphatidylethanolamine on the outer leaflet (26-28). Furthermore, sphingomyelin is decreased in the cancer cell membrane and is associated with tumorigenesis (29). Different lipid composition affects membrane fluidity, influencing drug penetration and biological action (30,31). Extracellular acidity with or without exosome release affects the pH, changing from 7.4 to 6.5 (typical pH of cancer), forming the malignant tumor phenotype (32). The surrounding environment in the acidic extracellular pH (pHe) can promote cancer invasiveness (33). Specific interaction between anticancer peptides and cell membrane components are mostly bound by electrostatic interactions (34).

Anticancer peptides act as either molecularly targeted peptides, which can penetrate and directly bind to the specific cancer cell or organelle membranes, or binding peptides linking to the anticancer drugs (35−37). In cancer cells, anticancer peptides, as molecular targeting peptides, particularly in the α-helical form, penetrate the plasma membrane, the nuclear membrane and/or the mitochondrial membrane exerting pharmacological activity via different mechanisms (such as the inhibition of DNA synthesis or cell division), thus promoting cancer cell apoptosis (38−41). However, binding peptides, also referred to as cancer-targeting peptides or cell-penetrating peptides, that have no anticancer property, can recognize and penetrate the cancer cell membrane (42). Binding peptides can also be used for drug delivery by binding to the anticancer drugs, such as those that are non-penetrable (43).

Amino acid composition and derivatives in peptides also convey anticancer properties. Amino acid residues containing peptides can drive cell permeability (44−46). The amino acid residues that are predominant in peptides with anticancer abilities include glycine, lysine and leucine (47). For example, hydrophobic positively charged lysine- and arginine-rich peptides act as cationic peptides that can interact with membranes via a snorkeling mechanism, including selecting anionic membranes on cancer cells, disrupting cell membrane integrity, penetrating into the membrane and potentially serving a role in cancer cell toxicity (48). Moreover, protonation of histidine under acidic pH conditions means that histidine-containing peptides can induce cancer cytotoxicity via membrane permeability under acidic conditions (49,50). Glutamic and aspartic acid residues present potential anti-proliferative activity on the tumor cells (51). Cysteine residues in ACPs do not serve a role in the selectivity and toxicity for cancer cells, but cysteine-rich domains on a number of cell surface receptors can stabilize and maintain extracellular motif or domain structures (52).

Internal prolines in peptides are crucial for membrane interaction and conformational flexibility, which is the same as glycine residues (53). It has been reported that serine and glycine-free diets can slow tumor growth and enhance antiproliferative effects (54). Methionine, a moderately hydrophobic amino acid, does not serve a major role in ACPs, but its elevated levels can be consumed by cancer cells. Furthermore, a methionine-deficient diet causes a metabolic defect in cancer cells by arresting cancer cell proliferation (55). Phenylalanine, a strongly hydrophobic residue, is highly present in primary tumors and acts as a protective amino acid (56). Phenylalanine-containing peptides can also enhance the affinity for targeting the cancer cell membrane (57). Tyrosine and tryptophan are weakly hydrophobic amino acids; tyrosine does not serve a role in toxicity of ACPs, whereas tryptophan may exert a role in the toxicity of some ACPs against cancer cells such as indolicidin and trans-activator of transportation (TAT)-Ras GTPase-activating protein-326 peptides (19,58,59). However, synthesized peptides containing tryptophan and histidine may decrease cytotoxicity, while those containing tyrosine, phenylalanine or proline may be able to increase cytotoxic activity (60). The tryptophan position on the cell-penetrating peptides serves an important role in entering cancer cells, which subsequently involves an
endocytic pathway and binding at the major groove of nuclear DNA (61). The role of amino acid residues on ACPs and on cancer cells is summarized in Table I. Collectively, these findings suggested ACPs should contain cationic and hydrophobic amino acid residues to further form secondary structures that affect cancer cells.

ACP and the structure-activity relationship (SAR). The association between ACPs and SAR has been investigated and analyzed using machine learning, and it has been demonstrated that the majority of ACPs contained 21-30 amino acids and were predominately composed of glycine, lysine and leucine (47). In addition, amino acid residues on a peptide influences its anticancer activity depending on the cationic, hydrophobic and amphiphilic properties associated with forming helical structure (62-64). Anticancer activity is primarily determined by the IC\(_{50}\) value associated with cancer cell membrane disruption (62). It has been reported that peptides with a higher hydrophobicity can penetrate into the hydrophobic core of the cancer cell membrane, resulting in cancer cell disruption via necrosis (62). Several studies have aimed to substitute low hydrophobic and neutral or acidic amino acid residues with positively charged amino acid residues, such as lysine and leucine, on the polar and non-polar faces of \(\alpha\)-helical peptides (63,65). As a result, high cationic peptides with moderate hydrophobicity can enhance the cytotoxicity of cancer cells (63). Peptides in free-form do not fold in solution, but arrange in an \(\alpha\)-helix or \(\beta\)-sheet via electrostatic interaction on the membrane surface of the cells (11).

As well as the physicochemical properties, the secondary structure of the peptides is important in cell surface interaction, such as peptide structural orientation (57). The orientation of peptides can enhance the surface-activity for targeted interaction with the cancer cell membrane (66). The angle of the interaction leads to destabilized lipid packing on the cancer cell membrane, thus resulting in membrane penetration (67). Furthermore, modifying peptides by adding chemical groups, including methylation, acetylation or phosphorylation (particularly phosphorylation at tyrosine), can inhibit STAT3 phosphorylation, leading to cancer cell death (68). The potential modification of natural peptides is presented in Fig. 2. Therefore, the results indicated that the secondary structure of ACPs serves a crucial role in peptide-cancer cell membrane interaction, leading to cancer cell disruption and cell death.

2. Classification of ACPs

Anticancer peptide creation should consider the peptide structure, mode of action, selectivity and efficacy to specific cancer cells (69,70). In the present review, active peptides were classified into three types depending on their actions, including: i) Molecularly targeted peptides, which directly act on cancer cells via cytotoxic, anti-proliferative and apoptotic activities; ii) ‘guiding missile’ peptides or binding peptides, which are drug binding peptides used for transporting drugs...
into the cancer cell targets; and iii) cell-stimulating peptides that indirectly effect other stimulating cells to kill cancer cells, such as via immunomodulatory activities and hormone receptors (71-73).

Molecularly targeted peptides. Molecularly targeted peptides, which are specific to the cancer cell targets, can penetrate, bind and then inhibit or kill cancer cells that are in an important stage of carcinogenesis or proliferation (74). The peptides concerning target cells can be classified into two major groups, including:

- Peptides against only cancer cells, and not against healthy cells (75,76)
- Peptides against both cancerous and healthy cells (77)

The majority of ACPs are collected using the CancerPPD resource for predicting peptide structure and identifying the best ACP for further study (7). In addition, ACPs are identified via computational methods that consider amino acid composition, binary profiles and sequence-based methods (78-80).
Membranolytic ACPs are generated de novo using automated designs based on α-helical cationic amphipathic peptide sequences against the cancer cells (81). Anionic molecules in the malignant cells conferring a net negative charge are different from the normal mammalian cell membrane, which have a neutral net charge (17). High cholesterol contents in healthy cells can obstruct the cationic peptide entry via cell fluidity; healthy cells are less fluid compared with cancer cells (15,82). Furthermore, peptides can permeate into the cells, causing mitochondrial swelling with cytochrome c release, followed by apoptosis (83). For example, Mastoparan I, a peptide with a α-helical structure, can act on the negative charge of prostate and liver cancer cell surfaces causing cell injury, cell swelling, cell bursting and then necrosis (84). Moreover, SVS-1 (KVKVKVKV₂P TKVKVKV-NH₂), as a β-sheet structure, disrupts cell membranes via pore formation in lung-, epidermal- and breast-cancer cells (85,86). Peptides extracted from marine organisms, such as sponges, mollusks, tunicates, bryozoans, algae, fish, soft corals and sea slugs, can act against human cancer cells via, for example, anti-proliferative, cytotoxicity and anti-tubulin activities, as well as suppressing microtubule depolymerization (87).

Amino acid composition of the peptides can act directly against various cancer cell types. For example, highly cationic peptides can enhance cancer cell specificity, while an increase in hydrophobic peptides can decrease the degree of specificity (63). Moreover, polycationic peptides have selectivity against human acute T-cell leukemia via a higher membrane potential compared with healthy cells (88). Lysine and arginine-rich peptides with an intact amphipathic helical interface can also enhance cell lysis via membrane lysis mechanisms by penetrating and inducing caspase-3-dependent apoptotic cell death (89). The methods of peptide designing, such as cyclization, hybridization, fragmentation and modification, have potential advantages in increasing drug half-life time in plasma, enhancing stability and activity and decreasing toxicity of ACPs, for improving their therapeutic efficacy (90).

Therapeutic peptides are classified into three classes based on the mechanism of peptide entry into cancer cells, including: i) Pore-forming peptides, which bind to negatively charged molecules on the cancer cell membrane for inducing apoptosis or necrosis; ii) cell-penetrating peptides, which translocate across the plasma membrane and transporting small molecules to oligonucleotides or proteins, known as internalization; and iii) tumor-targeting peptides, which bind to receptors on the cancer cell surface for cell internalization (91). Based on the mechanism of entry, therapeutic peptides are also classified into three groups based on their biological targets, including: i) Signal transduction pathways; ii) cell cycle regulation; and iii) cell death pathways (92,93). For instance, a tumor-penetrating peptide, KLA, exerts pro-apoptotic activity, which disrupts the mitochondrial membrane, leading to programmed cell death in tumors (40). In a tumor suppressor mechanism, kisspeptin-1 metastasis suppressor, a precursor for several shorter peptides, which regularly exhibits decreased expression in metastatic tumors, can suppress colonization of disseminated cancer cells in distant organs and is involved in mechanisms of tumor angiogenesis, autophagy and apoptosis regulation in breast cancer (94). Furthermore, the tubulysin analogue KEMTUB10 can inhibit tubulin polymerization during mammalian cancer cell proliferation, block the G_M phase of the cell cycle and stimulate apoptosis or cell death via p53, Bcl-2-interacting mediator of cell death and Bcl-2 (95). Although ACPs can induce cancer cell death and specify an expressed molecule to cellular targets, such as a cationic anticancer peptide, temporin-ICEa and melanoma cell surface-expressed phosphatidylserine (96), ACPs have limitations, including drug binding peptide delivery to cancer cell targets (97). Thus, ACPs could be developed for their high penetration into the tumor tissue and tumor cells, as well as high antitumor activity (40). While ACPs can progress from binding to killing cancer cells, in terms of molecular targeting peptides, ACPs cannot be specific or penetrated all cancer cell types, leading to the need for an addition of a binding cancer cell target, such as ‘guiding missile’ peptides or binding peptides.

‘Guiding missile’ peptides or binding peptides. Optimizing anticancer drug delivery requires the safety of healthy cells, as well as cancer cell elimination (98). ‘Guiding missile’ peptides or binding peptides, used as delivery carriers, should hold the poorly stable, non-soluble drugs and control drug-release inside the tumor environments (99). Furthermore, these peptides require specificity, affinity and dose effectiveness (98). Anticancer drug concentration is continually diluted during transport until reaching the target areas. However, drug binding adjuvant and nanoparticles can retain drug concentration during transport to target areas and induce the slow-release of the drug at these target areas (100,101).

Drug concentration and cell and tissue barriers are an obstacle for therapeutic efficacy. Medical application for drug delivery requires biologically active conjugates (cargoes) and/or binding peptides (‘guiding missile’) to reach specific intracellular targets (102-104). Minimal amino acid sequences of various cell-penetrating peptides, typically comprising 5-30 amino acid residues, especially cationic residues, can pass through tissue and cell membranes using energy-dependent or -independent mechanisms without the interaction of specific receptors (36). Binding peptides can bind to the cargoes with either covalent (mainly disulfide and thioester bonds) or non-covalent bonds (electrostatic and/or hydrophobic interactions between negatively charged cargoes and positively charged peptides) to protect the cargoes from enzymatic degradation (105).

The physical and chemical properties of binding peptides can be categorized into three main classes: Cationic, amphipathic and hydrophobic peptides (42). Firstly, cationic peptides contain highly positive net charges comprising lysines and arginines. Arginine contains a guanidine head group, which is used to form bidentate hydrogen bonds with the negatively charged carboxylic, sulfate and phosphate groups on the cell membrane, resulting in binding peptide internalization into the cells; however, lysine does not contain the guanidine head group, leading to lower penetration into the cell membrane (106). Secondly, amphipathic peptides, which contain both hydrophilic and hydrophobic amino acids, are classified into primary (covalent binding hydrophobic domain targeting to cell membrane and nuclear localization signal), secondary (α-helical structure with hydrophilic and hydrophobic residues on different sides of the helix or β-sheet for cellular internalization) and proline-rich (pyrolidine ring without hydrogen bonds on α-amino group able to allow
Moreover, the 5-mer peptide, A-P-D-T-R, is a potential target for immunotherapy against breast cancer due to its highly immunogenic property that exists within the variable number of tandem repeats found in all mucins, particularly mucin1, which is increased by 10-fold in adenocarcinomas (123). Some peptide vaccines have been studied in phase I/II clinical trials (124-126). For instance, an adjuvant multi-peptide vaccine (UroRCC) was administered in patients with metastatic renal cell carcinoma following metastasectomy (127). Furthermore, a multipetide vaccine (IMA950) containing 11 tumor-associated peptides, which targets IMA950 antigens, has been used as a tumor-targeting vaccine involving the T-cell response in grade II and III glioma (128). In metastatic hormone-naïve prostate cancer, the novel human telomerase reverse transcriptase (hTERT) peptide vaccine UV1 can induce an immune response, affecting the prostate-specific antigen level (129).

A vaccine containing peptides can also be an adjuvant for activating the immune system. For instance, Hp91 peptide has formed the adjuvant for a protein vaccine against human papillomavirus to control cervical cancer (130). Therefore, immune system stimulating peptides are an alternative cancer therapy to control metastasis and eradicate cancer cells by activating host immunity with the specific tumor antigens.

Hormone stimulating peptides. The therapeutic peptides can inhibit cancer cell proliferation by controlling hormone release via their receptors (131). Cancer cells can produce hormones, such as growth hormone-releasing hormone (GHRH), to stimulate the pituitary gland and then the release of growth hormone (132,133). In a previous study, a GHRH antagonist was synthesized to inhibit proliferation in AML cell lines, including K562, THP-1 and KG-1a cells (134). Follicle stimulating hormone (FSH), for which the circulating level is increased by leptin, serves an important role in the initiation and the proliferation of the ovarian cancer cells (135). Moreover, the obese OB3 peptide, a derivative of leptin, may prevent leptin-induced ovarian cancer cells by disrupting leptin-induced ovarian cancer cell proliferation signal via stimulation of STAT3 phosphorylation and estrogen receptor α-activation (135). Furthermore, nanoparticle drug vehicles containing 21-amino acid peptides [YTRDLVYGDPRPGQGTGTG (D-FP21)] conjugated to polyethyleneimine and methoxy polyethylene glycol target the FSH receptor, leading to anti-proliferative effects on ovarian cancer (136). For chemotherapeutic improvement of metastatic hormone-refractory prostate cancer, it was found that the AlkB homolog 2 proliferating cell nuclear antigen (PCNA) interacting motif peptide targeting PCNA, an essential scaffold protein, in combination with docetaxel could decrease prostate volume and inhibit cancer cell regrowth in vivo (137).

3. **Development of therapeutic ACPs**

The issues with conventional therapeutic agents associated with the majority of cancer drugs, include poor water solubility, lack of target specificity and capability, non-specific distribution, system cytotoxicity and low therapeutic index, can be solved by creating a water-soluble form, targeting the delivery of ACPs, non-systemic side effects and specific treatment efficacy (138). Numerous natural peptides derived from natural products, such as bioactive peptides, are applied in cancer therapy (139).
Although naturally bioactive peptides exhibited beneficial biocompatibility and low cytotoxicity, a number of bioactive peptides cannot provide the active targeting, cell uptake, cancer cell cytotoxicity and targeted delivery (140). The natural active peptides can be modified to novel peptides with special properties, including specificity, higher cell penetration, cancer cell cytotoxicity and therapeutic efficacy with no side effect. The present review focused on the therapeutic peptide development from natural peptides to modified peptides and targeting peptides for increasing the specific cancer cell targets.

Natural peptides. Anticancer peptides have been discovered and modified from antimicrobial peptides, and these resources produce natural peptides from various organisms, such as marine, plant, yeast, fungi, bacteria and bovine (141,142). Antimicrobial and anticancer peptides, especially cationic peptides, can kill both bacteria and cancer cells due to the similar negative net charge on their membranes (143). Proteins from nutrients can release bioactive peptides via enzymatic hydrolysis, gastrointestinal digestion or during fermentation (144). Bioactive peptides discovered from natural peptides have an electrostatic interaction between the peptides and cell membrane, leading to cancer cell or mitochondrial membrane disruption and then necrosis or apoptosis (145). For example, bioactive milk-derived peptides released during digestion have a vital role in cancer prevention (146). Moreover, germinated soybean protein-derived peptides from enzymatic hydrolysis exert antiproliferative activity against human colorectal cancer cells (147). It has also been shown that the extracted peptides from *Lentinus squarrosulus* mushrooms can mediate human lung cancer cells via apoptosis (148). Cyclic peptides isolated from marine cyanobacteria, such as *Urumamide*, exhibited low proliferative inhibitory activity on human cancer cells (149). Additional examples of natural peptides that have anticancer properties are presented in Table II and Fig. 3A. The majority of natural peptides that exert effects against cancer cell survival are α-helical folding peptides that have cationic properties (150,151). However, a minority of peptides, including other folding with neutral or anionic peptides, are able to disrupt cancer cell survival (152). Recently, a number of anionic antimicrobial peptides that originate from amphibians, including frogs, toads, newts and salamanders across Africa, South America and China, demonstrated anticancer activity (153). Thus, natural ACPs can exhibit both cationic and anionic or neutral properties; also, the majority of cationic peptides are found to have a significant cytotoxic effect against cancer cells compared with anionic or neutral peptides. In the future, these natural ACPs can be modified to further ACP development.

Modified peptides. Highly cationic and amphipathic peptide properties can be synthesized and designed via *in silico* creations. For example, some chemical groups, such as acetylation or amidation, are added into the natural peptides to increase the cationic properties and target cell specificity (162). Replacement of D-amino acids in an amphipathic peptide, KLALKLALKALKAKLA-NH₂, and a hydrophobic interaction can increase the membrane-disrupting effect on high negative surface charge bilayers, which then promotes peptide penetration into the inner membrane regions (163). Moreover, the folding and formation of peptides, such as the α-helix or cyclization, results in an increase in anticancer properties and stability (164,165). It has also been revealed that fewer helical peptides can decrease the bilayer disruption activity (163), and that cyclic peptides can act on cell permeability (45). Furthermore, substitution, deletion or addition of positively charged or polar and non-polar amino acids on natural peptides could modify their properties to improve therapeutic application (164,165). Some modified peptides are displayed in Table III and Fig. 3B.

Besides the aforementioned modifications, ACPs have been constructed via genetic engineering, including anticancer fusion peptides; for example, the structure of bovine lactoferrin and hexapeptide derived from bovine milk protein for ovarian cancer treatment (166). NT4 peptides bound to GAG chains of heparan sulfate proteoglycans have a modulatory effect on the cancer cell migration and invasion ability (167). A recombinant protein consisting of iRGD (CRGDKGPDC)-conjugated KLA peptide (KLAKLAKLKLAKLKLAK) exerts a pro-apoptotic activity and high penetration to tumor tissue and cells for gastric cancer treatment (40). Collectively, modified peptides can be developed to improve anticancer properties and the effect on the cancer targets directly.

Targeting peptides. The discovery of cancer cell targets can promote cell target specificity to avoid healthy cell damage (172). Targeting peptides on various cancer cell types should bind to cancer cell targets and eliminate cancer cells at the same time (173). Molecular targets in cancer cells are important for clinical therapy, including vascular endothelial growth factor, RAS/mitogen-activated protein kinase pathway inhibitors, aurora kinase inhibitors or endothelin receptor antagonists (174,175). Some molecular targets can induce an immune response, such as cytokines, while others directly bind to specific cancer cell biomarkers (175,176). Upregulation of specific cancer proteins or peptides has been used as cancer targets (139). For instance, high expression levels of MDM2 proto-oncogene (MDM2) and MDM4 regulator of p53 (MDMX), as negative regulators of tumor suppressor protein p53, and upregulated expression of the cell surface receptor CD33 have been targeted for AML therapy (177). Lanthanide oxyfluoride nanoparticle (LONP) bound dual-specific peptide antagonists of MDM2 and MDMX (PMI) and antiCD33-LONP-PMI can activate the p53 pathway, thus inducing AML cell apoptosis (177). Furthermore, upregulated urokinase plasminogen activator receptors (uPAR) on cancer cells are targeted to uptake a specific peptide, 68Ga-labeled AE105 peptide, as uPAR PET-probes, into U87MG tumor cells (178). Examples of the targeting peptides are presented in Table IV and Fig. 3C. Besides disturbing cancer cell survival, targeting peptides for cancer cell labeling was an advantage for cancer cell detection and diagnosis. For example, 99mTc-(tricine)-HYNIC-Lys-FROP peptides were taken up by breast cancer cells for tumor targeting and molecular imaging (179). Therefore, targeting peptides can specifically and directly bind and destroy cancer cells, but not healthy cells. However, their targets are difficult to discover and develop for specific cancer cell therapy.

4. Anticancer peptides in clinical trials

Several synthetic peptide-based drugs and vaccines are currently undergoing clinical trials. The National Library
Table II. Examples of natural peptides against cancer cells.

Source	Name	Net charge^a	Structure^b	Against cancer cell types	Biological mechanism (Refs.)		
Buthus Occitanus tunetanus	RK1 IDCSKVNLTAECSS	-1	α-helix	IGR39, U87 cells	Reduce cell proliferation and migration (154)		
Cancer stem-like cells	EpCAM peptide-CTLs						
	VVAGIVVVLV	0	Extend	EpCAM-expressing HepG2 cells	Inhibit tumor growth and induce specific immune response (155)		
	GLKAGVIAV	+1	Coil				
	VLAFGLLLA	0	α-helix				
	RTYWIIEEL	0	Extend				
	SMCWCVTNTA	0	Extend/coil				
	SMQGLKAGV	+1	α-helix/coil				
	ILYENNVIT	-1	Coil				
	LLLAAATAT	0	α-helix				
Cancer stem-like cells	CD44 peptide-specific CTLs						
	YIFYTFSTV	0	Extend	CD44 positive MCF-7 tumor cells	Kill tumor cells (155)		
	LILAVCIAV	0	α-helix				
	SLALLALIL	0	α-helix				
	ILASLLAL	0	α-helix				
	WLILASLL	0	α-helix				
	VLLQTTRTM	+1	Coil/extend				
	GLVEDLDRT	-2	α-helix/coil				
	TVGDSNSNV	-1	Coil				
Tyrosine-protein kinase Lck	Lck-486 peptide	TFDYLRHSV	0	α-helix	Some metastatic tumor cells and T-cells at the tumor site	Inhibit tumor cell growth and T-cell recognition (156)	
Bombina orientalis	Bombinin-H-BO1	IGPVLGLVGKALGGLL	+1	α-helix/coil	Human hepatoma cell lines (Hep G2, SK-HEP-1 and Huh7)	Anti-proliferative effects (157)	
	Bombinin-BO1	GIGSAALSAGKSIKGLAKGLAEHF	+2	α-helix/coil	Human hepatoma cell lines (Hep G2, SK-HEP-1 and Huh7)	Anti-proliferative effects (157)	
Ichthyophthirius multifiliis (strain G5) (White spot disease agent) (Ich)	BP100 KKLFKKILKYL	+5	α-helix	K562 cells	Promote LDH release (41)		
A specific Eps8/EGFR inhibitor (sea anemone)	Peptide 327 EFLDCFQKF	-1	α-helix	HT-29 cells			
Anthopleura anjunae	Anthopleura anjunae anti-tumor peptide (AAP-H)	YVPGP	0	Coil	Prostate cancer DU-145 cells		

^aPredicted using PepDraw (http://www.tulane.edu/~biochem/WW/PepDraw/index.html).^bPredicted using PEP-FOLD 3.5 (144,145). BO, *Bombina orientalis*; CTLs, Cytotoxic T lymphocytes; EpCAM, Epithelial cellular adhesion molecule.
Figure 3. Conformation of anticancer peptides predicted using PEP-FOLD 3.5 (https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD3).

(A) Natural, (B) modified and (C) targeting peptides corresponding to Tables II-IV, respectively, performed in three conformations including extend (black alphabet amino acid sequences), coiled (blue alphabet amino acid sequences) and α-helix (red alphabet amino acid sequences).
of Medicine (NIH) at the National Institutes of Health (NIH) provides and updates clinical trial information on the ClinicalTrials.gov website. A total of 792 studies between 1995-2019 were identified and searched for 'cancer', 'peptide', 'drug' or 'biological' key words, excluding non-anti-cancer peptide interventions such as behavior and surgery. The search result is presented in Fig. 4.

For example, CIGB-300, an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide via a β-alanine spacer, inhibits CK-2-mediated phosphorylation leading to cancer cell apoptosis in patients with cervical and non-small cell lung cancer (185-187). Wilms' tumor 1 (WT1) peptide-based vaccination combined with the adjuvant drug OK-432 administered to pediatric patients with a solid tumor has been demonstrated to be safe for these children (188). Furthermore, WT1-pulsed dendritic cell vaccine has been used to treat patients with surgically resected pancreatic cancer under a phase I study (189). A modified 9-mer WT1 peptide vaccine was also used in patients with gynecological cancer for inducing myeloid dendritic cells, and was demonstrated to be associated with cytotoxic T-cell activation (190). Subsequently, WT1 peptide vaccine therapy was evaluated in patients with gynecological cancer in a phase II clinical trial (191). A target of esophageal squamous cell carcinoma and lung cancer types is lymphocyte antigen 6 complex locus K (LY6K), which is expressed in gastric cancer (192). LY6K-177 peptide vaccine emulsified with Montanide ISA 51 was evaluated in patients with gastric cancer as a phase I clinical trial, and was found to be tolerated by patients with advanced gastric cancer (50% of patients with gastric cancer had stable disease and 16% patients had a tumor contraction effect) (192).

B-cell lymphocytic leukemia and pancreatic cancer have demonstrated a high level of telomerase activity (193). GV1001, a peptide based-cancer vaccine derived from the hTERT (hTERT 616-626; EARPALLTSRLRFIPK), was administrated in patients with non-resectable pancreatic cancer undergoing a dose-escalating phase I/II study (194); GV1001 was capable of inducing CD4+ and CD8+ T-cells, interacting with professional antigen-presenting cells and then engulfing dead tumor tissue or cells (194). Moreover, GV1001 may be a candidate vaccine in patients with B-cell chronic lymphocytic leukemia that exhibit telomerase-specific leukemic cells (195). A combination of the ACPs and other drugs have also been evaluated in phase I trials, such as cyclodepsipeptide plitidepsin and bevacizumab in refractory solid tumors (196). For the binding peptide strategy, a carrier peptide, as a luteinizing hormone-releasing hormone (LHRH) agonist, is linked to the cytotoxic analogs of LHRH for cancer expressing receptors undergoing a dose-escalating phase I/II study (194); GV1001 was capable of inducing CD4+ and CD8+ T-cells, interacting with professional antigen-presenting cells and then engulfing dead tumor tissue or cells (194). Moreover, GV1001 may be a candidate vaccine in patients with B-cell chronic lymphocytic leukemia that exhibit telomerase-specific leukemic cells (195).
response and toxicity (198). Similarly, 19 mixed peptides were selected from 31 PPVs according to the anti-tumor immunological effect, and the safety profiles for patients with metastatic breast cancer were also assessed in a phase II clinical trial (199). While some peptides, such as gp100:209-217 (210M)/Montanide™ ISA-51/Imiquimod for high risk melanoma and E39 peptide/GM-CSF vaccine plus E39 booster for ovarian cancer, have been approved by the Food and Drug Administration (FDA), these have been improved in clinical therapy, such as peptide boronate bortezomib (200‑202). The peptide boronate bortezomib is a reversible 26S proteasome inhibitor, degenerating several intracellular proteins, with antitumor and antiproliferative activities and can be used in multiple myeloma therapy (202). Due to adverse effects, such as hematotoxicity and peripheral neuropathy, poor penetration into solid tumors and low clinical stability and bioavailability, bortezomib was developed for delivery using nanoparticles, and treatment for bortezomib resistant multiple myeloma was firstly studied in a phase I clinical trial (175). For example, dTCApFs, a natural hormone peptide for the treatment of advanced or metastatic solid tumors, enters the cells via the Toll/interleukin-1 receptor superfamily, suppresses angiogenic factors and induces anticancer cytokine production and ER stress, leading to cancer cell apoptosis (208). dTCApFs anticancer activity in humans was firstly studied in a phase I clinical trial by investigating the safety and efficacy with regards to both pharmacokinetics and pharmacodynamics, with intravenous dTCApFs (6‑96 mg/m²; 3 times/week; in consecutive 28-day cycles) (209). The intravenous dTCApFs is decreased at lower limit of detection in serum after 24-h administration and its concentration in serum is present in dose-dependent manner (209). Furthermore, ACPs have been combined with immunogens for clinical therapeutic improvement (210). Upregulation of molecular cancer targets, such as Ras protein that has been discovered in various cancer cell types (lung, colon and pancreatic), could also be direct targets for ACP development (211). The aim of ACP therapy should promote cancer cell death and intermit tumor regression, without contributing to tumorigenesis and resistance in cancer cell treatment (212). The first ACP approved by the FDA was the peptide boronate bortezomib (Velcade®) for multiple myeloma treatment in 2003 and mantle cell lymphoma in 2006 (213). In the near future, combination therapy with a drug or vaccine containing i) the specific targeting peptides, ii) the ACPs and iii) the ACPs and conjugation to improve interaction with a target, thus overcoming limitations via designing peptide modifications and conjugation to improve affinity, stability and selectivity (205,206). Table IV. Examples of targeting peptides bind to specific cancer cells.

Name	Sequence	Net charge^a	Structure^b	Targeting cancer cell types	(Refs.)
CSP-GD	GDALFSVPLEVY	-2	Extend/coil	Human cervical cancer derived cells (SiH)	(139)
CSP-TL	TLHQPPSSANWI	0	Coil	Derived cells (C-33A)	(139)
CSP-FT	FTPQGNTYAGQP	0	Coil	Human cervical cancer derived cells (SiH)	(139)
CSP-SI	SIDDQRDVAEFA	-3	Coil/α-helix	Human cervical cancer	(180,181)
CSP-KQ	KQNLAEGR	0	Coil/α-helix	Neuroblastoma and breast cancer cell lines	
p160	VPWMEPAYQRFL	0	Coil/α-helix	Bladder cancer	(182)
Polyarginine (R11)	RRRRRRRRRRR	+11	α-helix	Bladder cancer	(183)
DN-C16orf74	RRRRRRRRRRRR-GGG-KHLD	+11	α-helix-coi-extend	Pancreatic cancer cells	
α-helix HSP70 peptide	ACFAEKFKKEAVKDYFAKFWD-	0	α-helix-coi-extend	Tumor regression on mice	(184)
	GSG-TKDDNLLGRFELSG			B16OVA melanoma models	

^aPredicted using PepDraw (http://www.tulane.edu/~biochem/WW/PepDraw/index.html).^bPredicted using PEP-FOLD 3.5 (160,161).

CSP, cancer-specific targeting peptide; HSP, heat shock protein.

5. Future direction

Although ACPs have a number of disadvantages, such as biological instability, low bioavailability, short half-life, protease sensitivity, poor pharmacokinetics and first-pass metabolism, their most notable advantage is the protein-protein interaction with a target, thus overcoming limitations via designing peptide modifications and conjugation to improve affinity, stability and selectivity (205,206). For example, the peptide BBN_{7,14} (Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH₂) composed of natural amino acids has a higher binding affinity with the CFPAC-1 cell line compared with the modified peptide GB-6 (Gln-5-Htp-β-Ala-Nva-Gln-His-NH₂) that consists of unnatural amino acids (in vitro). However, in vivo, BBN_{7,14} has a reduced tumor-targeting ability compared with GB-6, which is stable against protease-mediate degradation and has a slightly lower uptake and slow metabolism (207). Currently, ACPs have been modified to improve specific cancer cell targets and enhance cancer cell elimination. Some anticancer peptides as drugs and vaccinations have been tested in phase I/II clinical trials (175). For example, dTCApFs, a natural hormone peptide for the treatment of advanced or metastatic solid tumors, enters the cells via the Toll/interleukin-1 receptor superfamily, suppresses angiogenic factors and induces anticancer cytokine production and ER stress, leading to cancer cell apoptosis (208). dTCApFs anticancer activity in humans was firstly studied in a phase I clinical trial by investigating the safety and efficacy with regards to both pharmacokinetics and pharmacodynamics, with intravenous dTCApFs (6‑96 mg/m²; 3 times/week; in consecutive 28-day cycles) (209). The intravenous dTCApFs is decreased at lower limit of detection in serum after 24-h administration and its concentration in serum is present in dose-dependent manner (209). Furthermore, ACPs have been combined with immunogens for clinical therapeutic improvement (210). Upregulation of molecular cancer targets, such as Ras protein that has been discovered in various cancer cell types (lung, colon and pancreatic), could also be direct targets for ACP development (211). The aim of ACP therapy should promote cancer cell death and intermit tumor regression, without contributing to tumorigenesis and resistance in cancer cell treatment (212). The first ACP approved by the FDA was the peptide boronate bortezomib (Velcade®) for multiple myeloma treatment in 2003 and mantle cell lymphoma in 2006 (213). In the near future, combination therapy with a drug or vaccine containing i) the specific targeting peptides, ii) the ACPs and iii) the ACPs and conjugation to improve interaction with a target, thus overcoming limitations via designing peptide modifications and conjugation to improve affinity, stability and selectivity (205,206). Table IV. Examples of targeting peptides bind to specific cancer cells.

Name	Sequence	Net charge^a	Structure^b	Targeting cancer cell types	(Refs.)
CSP-GD	GDALFSVPLEVY	-2	Extend/coil	Human cervical cancer derived cells (SiH)	(139)
CSP-TL	TLHQPPSSANWI	0	Coil	Derived cells (C-33A)	(139)
CSP-FT	FTPQGNTYAGQP	0	Coil	Human cervical cancer derived cells (SiH)	(139)
CSP-SI	SIDDQRDVAEFA	-3	Coil/α-helix	Human cervical cancer	(180,181)
CSP-KQ	KQNLAEGR	0	Coil/α-helix	Neuroblastoma and breast cancer cell lines	
p160	VPWMEPAYQRFL	0	Coil/α-helix	Bladder cancer	(182)
Polyarginine (R11)	RRRRRRRRRRR	+11	α-helix	Bladder cancer	(183)
DN-C16orf74	RRRRRRRRRRRR-GGG-KHLD	+11	α-helix-coi-extend	Pancreatic cancer cells	
α-helix HSP70 peptide	ACFAEKFKKEAVKDYFAKFWD-	0	α-helix-coi-extend	Tumor regression on mice	(184)
	GSG-TKDDNLLGRFELSG			B16OVA melanoma models	

^aPredicted using PepDraw (http://www.tulane.edu/~biochem/WW/PepDraw/index.html).^bPredicted using PEP-FOLD 3.5 (160,161). CSP, cancer-specific targeting peptide; HSP, heat shock protein.
iii) the cell-penetrating peptides and/or the conjugated delivery materials (such as liposome, nanoparticles or adjuvants) may facilitate the development of cancer therapy with cancer cell specificity, stability, safety and efficacy, without healthy cell eradication (214). ACP construction for specific cancer cell targets, and predictive, preventive and personalized medicine may be beneficial to the cancer research field due to the different complexity of the whole-body system in each individual (215).
Besides the aforementioned therapeutic peptides, peptides with specific cancer cell targets are applied to bind the cancer cell targets for cancer detection and therapy (216,217). For example, a sodium pump Na\(^+\)/K\(^+\) ATPase \(\alpha_1\)-targeted peptide...
for positron emission tomography imaging of breast cancer, as peptide-based platform on dual-targeted molecular imaging, is able to more obviously visualize the disease state of a patient, leading to improved informed treatment decisions (218,219).

6. Conclusions

ACP therapy affects molecular targets, binds the anticancer drugs and stimulates biological systems involving cancer and healthy cell environments. Notably, natural and synthetic peptides have been developed as novel strategies against cancer types. Natural anticancer peptides can be modified to enable high penetration, specific cancer cell targets, increase efficacy and reduce side effects. A number of ACPs have been demonstrated to be anti-proliferative, apoptotic and proliferation inhibitors in various cancer cell types, both in vitro and in vivo, leading to clinical trials for the evaluation of cancer treatment. The development of drug or vaccine technology could further ACPs in design, synthesis and delivery to eliminate cancer cells directly or by affecting the anticancer immune responses (220). Collectively, it was suggested ACPs may promote cancer drugs or vaccine development to decrease emerging cases and mortality rates in the future.

Acknowledgements

The authors would like to thank Dr Thitinee Vanichapol, Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University for revising the manuscript and providing kind suggestions.

Funding

This study was financially supported by BRAND’S Health Research Award 2017 (Cerebos Award 2017), Children Cancer Fund under the Patronage of HRH Princess Soamsawali and Faculty Staff Development Program of Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand (grant no. BHR2017).

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions

WC wrote and edited the manuscript and was involved in the creation of the figures and data analysis. All authors were involved in the drafting and revising of the manuscript. All authors read the manuscript and approved the final version.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Wang SH and Yu J: Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 156: 1-15, 2018.
2. Wang X, Zhang L, Ding N, Yang X, Zhang J, He J, Li Z and Sun LQ: Identification and characterization of DNAzyme targeting DNA methyltransferase I for suppressing bladder cancer cell proliferation. Biochim Biophys Res Commun 461: 329-333, 2015.
3. Ingram JR, Blomberg OS, Rashidian M, Ali L, Garforth S, Fedorov E, Fedorov AA, Bonanno JB, Le Gall C, Crowley S, et al: Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proc Natl Acad Sci USA 115: 3912-3917, 2018.
4. Di JX and Zhang HY: C188-9, a small-molecule STAT3 inhibitor, exerts an antitumor effect on head and neck squamous cell carcinoma. Anticancer Drugs 30: 846-853, 2019.
5. Bruns T, Bassi F,殷聪 C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, et al; GNS561, a new lysosomal small molecule, for the treatment of intraperitoneal cholangiocarcinoma. Invest New Drugs 37: 1135-1145, 2019.
6. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K and Webster TJ: A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 14: 1633-1657, 2019.
7. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A and Raghava GP: CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res 43 (Database Issue): D837-D843, 2015.
8. Thundimadathil J: Cancer treatment using peptides: Current therapies and future prospects. J Amino Acids 2012: 967347, 2012.
9. Wliegehe P, Lisowska V, Martinez J and Khrestchatisky M: Synthetic therapeutic peptides: Science and market. Drug Discov Today 15: 40-56, 2010.
10. Ottos L Jr: Peptide-based drug design: Here and now. Methods Mol Biol 494: 1-8, 2008.
11. Hoskin DW and Ramamooorthy A: Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778: 357-375, 2008.
12. Rodrigues EG, Dobroff AS, Taborda CP and Travassos LR: Antifungal and anticancer models of bioactive protective peptides. An Acad Bras Cienc 81: 503-520, 2009.
13. Droin N, Hendra JB, Ducoroy P and Solary E: Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 72: 918-927, 2009.
14. Simons K and Ikonen E: How cells handle cholesterol. Science 290: 1721-1726, 2000.
15. Sok M, Sentjurc M and Schara M: Membrane fluidity characteristics of human lung cancer. Cancer Lett 139: 215-220, 1999.
16. Zwaal RF and Schroij A: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89: 1121-1132, 1997.
17. Schweizer F: Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625: 190-194, 2009.
18. Utsugi T, Schroij AJ, Connor J, Bucaille CD and Fiderle JJ: Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51: 3062-3066, 1991.
19. Harris F, Dennison SR, Singh J and Phoenix DA: On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33: 190-234, 2013.
20. Li G, Huang Y, Feng Q and Chen Y: Tryptophan as a probe to study the anticancer mechanism of action and specificity of alpha-helical anticancer peptides. Molecules 19: 12224-12241, 2014.
21. Marqus S, Pirogova E and Piva TJ: Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24: 21, 2017.
22. Roudi R, Syn NL and Roudbaray M: Antimicrobial peptides as biologic and immunotherapeutic agents against Cancer: A comprehensive overview. Front Immunol 8: 1320, 2017.
23. Alves AC, Ribeiro D, Nunes C and Reis S: Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim Biophys Acta 1858: 2231-2244, 2016.
Amino Acids 49: 1601-1610, 2017.

peptides rich in lysine or arginine to reverse drug resistance by Huang WL and Qian H: Pro-apoptotic cationic host defense helix-constrained peptides drive cell permeability. Org Biomol Chem 15: 506-509, 2017.

Buckton LK and McAlpine SR: Improving the cell permeability Teixido M and Malakoutikhah M: Fine-tuning the physicochemical properties between cell penetrating peptides and membranes. Colloids Surf B Biointerfaces 53: 179-186, 2006.

Zhang L, Feng SS and Go ML: Investigation of molecular interactions between paclitaxel and DPPC by Langmuir film balance and differential scanning calorimetry. J Pharm Sci 93: 86-98, 2004.

Logozzi M, Spugnini E, Mizzoni D, Di Raimo R and Fais S: Extracellular matrix-induced exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 38: 93-109, 2011.

Cardone RA, Casavola V and Reshkin SJ: The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5: 786-795, 2005.

John ML: How important is the importance of electrostatic interactions between cell penetrating peptides and membranes: A pathway toward tumor cell selectivity? Biochimie 107: 154-159, 2014.

Peyrosatte M, Prevel C, Pellerano M and Morris MC: Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers (Basel) 7: 179-237, 2015.

Raucher D and Ryu JS: Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol Med 21: 560-570, 2015.

Li J, Tan S, Chen X, Zhang CY and Zhang Y: Peptide aptamers with biological and therapeutic applications. Curr Med Chem 18: 4215-4222, 2011.

Fuertes MA, Castilla J, Alonso C and Perez JM: Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interactions between apoptotic and necrotic pathways. Curr Med Chem 10: 257-266, 2003.

Horwitz SB: Taxol (paclitaxel): Mechanisms of action. Ann Rev Med 52: 372-376, 2001.

Bhunia D, Mondal P, Das G, Saha A, Sengupta P, Jana J, Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Casper JW, Wang J, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, et al: Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 542: 376-377, 2017.

Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, et al: Targeting mitochondrial with oral recombinant methionine (o-METase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: Implications for chronic cancer therapy and prevention. Cell Cycle 17: 356-361, 2018.

Giovanni G, Anselmi C, Assafa N, Perera P, Lago Vickers S, Paez AV, Cividjian J, Contin MD, Leonardi D, Jaworski F, et al: Game-changing restraint of Ros-damaged phenylalanine, upon tumor metastasis. Cell Death Dis 9: 140, 2018.

Dennison SR, Whittaker M, Harris F and Phoenix DA: Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cells. Curr Protein Pept Sci 7: 487-499, 2006.

Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, Roller P, Kvaratskhelia M and Pommier Y: Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res 34: 5157-5165, 2006.

Barras D, Chevalier N, Zoete V, Dempsey M, Lapouge R, Kolyaioye MA, Michielin O and Widmann C: A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptides. J Biol Chem 289: 23701-23711, 2014.

Ahmadibadi MA, Shavasheen S, Darabi B, Zarghi A and Houshdar Tehrani MH: Design, synthesis, and biological evaluation of new peptide analogues as selective cox-2 inhibitors. Arch Pharm (Weinheim) 350: e1700158, 2017.

Huang Y, Wang X, Wang HY, Liu Y and Chen Y: Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10: 416-426, 2011.

Yang QZ, Wang C, Lang L, Zhou Y, Wang H and Shang DJ: Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Biochem Biophys Res Comm 418: 130-136, 2013.

Dennison SR, Harris F, Bhatt T, Singh J and Phoenix DA: A theoretical evaluation of secondary structural characteristics of anticancer peptides. Mol Cell Biochem 333: 129-135, 2010.

Wu JM, Jan PS, Yu HC, Huang HY, Fang JH, Chang YJ, Chen JW and Chen HM: Structure and function of a custom anticancer peptide, CB1a. Peptides 30: 839-848, 2009.

Lins L and Brasseur R: Tilted peptides: A structural motif involved in protein membrane insertion? J Pept Sci 14: 416-422, 2008.

Lins L, Decaffmeyer M, Thomas A and Brasseur R: Relationships between the orientation and amphiphilic properties of peptides and their membrane interactions. Biochim Biophys Acta 1757: 1537-1544, 2008.

Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kalaarachchi KK, Chen X, Bast RC Jr, Liao WS, et al: Potent and selective phosphodiester mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54: 3549-3563, 2011.
91. Booshaker RJ, Lee MW, Vishubhottla P, Perez JM and Khaled AR: The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19: 3794-3804, 2012.

92. Bidwell GL III and Raucher D: Therapeutic peptides for cancer therapy. Part II-peptide conjugates of signal transduction cascades. Expert Opin Drug Deliv 6: 1033-1047, 2009.

93. Raucher D, Moktan S, Massoudi I and Bidwell GL III: Therapeutic peptides for cancer therapy. Part II-cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opin Drug Deliv 6: 1049-1064, 2009.

94. Ulasov IV, Borovjagin AV, Timashev P, Cristofanilli M and Welch DR: KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev 38: 493-506, 2019.

95. Leite ML, da Cunha NB and Costa FF: Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 183: 160-176, 2018.

96. Sun T, Zhang Y, Sheng XY, Wang Y and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 53: 12320-12364, 2014.

97. Dossa F, Acuna SA, Rickles AS, Berho M, Wexner SD, Queresby FA, Baxter NN and Chadi SA: Association between adventitial chemotaxis and overall survival in patients with rectal cancer and pathological complete response after neoadjuvant chemotherapy and resection. JAMA Oncol 4: 930-937, 2018.

98. Xu J, Khan AR, Fu M, Wang R, Ji J and Zhai G: Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs. J Control Release 309: 106-124, 2019.

99. Duarte D, Fraga AG, Pedrosa J, Martel F and Vale N: Increasing the potential of cell-penetrating peptides for cancer therapy using a new pentagonal scaffold. Eur J Pharmacol 860: 172554, 2019.

100. Godovsky RA, Pugel A, Bilkei G, Gero GJ and Bendo JG: Synthetic membranes. Biochim Biophys Acta 1828: 1047-1056, 2013.

101. Liu X, Cao R, Wang S, Jia J and Fei H: Amphipathicity determines different cytotoxic mechanisms of lysine- or arginine-rich cationic hydropicogenic peptides in cancer cells. J Med Chem 59: 5238-5247, 2016.

102. Hu C, Chen X, Zhao W, Chen Y and Huang Y: Design and modification of anticancer peptides. Drug Des S: 1000138-1000147, 2016.
Benergosi J, Calixto G, Fonseca-Santos B, Aida KL, de Cassia Negri T, Duque C, Gremiaio MP and Chorilli M: Highlights in peptide nanoparticle carriers intended to oral diseases. Curr Top Med Chem 15: 345-355, 2015.

Meng F, Han Lxi and Ye Y: Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opin Drug Deliv 14: 427-446, 2017.

Conbine AH, Schmid A, Kamalov M, Becker CFW and Bello C: Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem 27: 1174-1205, 2017.

Asazadeh Z, Hammodi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shahabi A, Jadidi-Niaragh F, Azizi G and Baradaran B: The paradox of Th17 cell functions in tumor immunity. Cell Immunol 322: 15-25, 2017.

Davila D, Althaus J, Otto R and Paulsson KM: HLA-I antigen presentation and tapasin influence immune responses against malignant brain tumors—considerations for successful immunotherapy. Anticancer Agents Med Chem 14: 1094-1100, 2014.

Li M, Shi HS, Zhang HL, Luo ZC, Yan Y, Lu L, Luo ST and Yang L: bFGF peptide combined with the pVAX-EGCG plasmid as adjuvant is a novel anticancer vaccine inducing effective immune responses against Lewis lung carcinoma. Mol Med Rep 5: 625-630, 2012.

Wang W, Li Y, Wang Y, Ren S, Li Y and Wang B: Polyactin A is a novel and potent immunomodulatory adjuvant for peptide-based cancer vaccine. Int Immunopharmacol 45: 9105-2018, 2018.

Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng JP, et al: Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 11: 8256-8266, 2017.

Kakwere H, Ingham ES, Allen R, Mahakian LM, Tam SM, Zhang H, Silvestrini MT, Lewis JS and Ferrara KW: Toward personalized peptide-based cancer nanovaccines: A facile and versatile synthetic approach. Bioconjug Chem 28: 2756-2771, 2017.

Apostolopoulos V and McKenzie IF: Cellular mucins: Targets for immunotherapy. Crit Rev Immunol 14: 293-309, 1994.

Obara W, Eto M, Mimata H, Kohri K, Mitsuhashi N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al: A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol 28: 798-803, 2017.

Antonilli M, Rahimi H, Visconti V, Napoletono C, Ruscito I, Zizzari IG, Caponnetto S, Barchiesi G, Iadarola R, Pierelli L, et al: Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: Clinical and immunological data of a phase I/I clinical trial. Int J Oncol 48: 1369-1378, 2016.

Asahara T, Takeda K, Yamao K, Machugi H and Yamaue H: Phase I/II clinical trial using HLA-A24-restricted peptide vaccine targeting KIF20A for patients with advanced pancreatic cancer. J Transl Med 11: 291, 2013.

Rausch S, Gouttefangeas C, Hennenlotter J, Laske K, Walter K, Feyerabend S, Chandran PA, Kruck S, Singh-Jasuja H, Rausch S, Gouttefangeas C, Hennenlotter J, Laske K, Walter K, Feyerabend S, Chandran PA, Kruck S, Singh-Jasuja H, Frick A, et al: Results of a Phase I/2 Study in Metastatic Renal Cell Carcinoma Patients Treated with a Patient-specific Adjuvant Multi-peptide Vaccine after Resection of Metastases. Renal Cell Carcinoma Patients Treated with a Patient-specific Adjuvant Multi-peptide Vaccine after Resection of Metastases. Int J Oncol 48: 1369-1378, 2016.

Douti V, Migliorini D, Ranzanici G, Marinari E, Widmer Y, Lobrinius JA, Momjani S, Costello J, Walker PR, Okada H, et al: Antigenic expression and spontaneous immune responses support the use of selected peptide set from the IMAG05 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology 7: e1391972, 2018.

Lilleby W, Gaudernack G, Brunsvig PF, Vlatakovic L, Schulz M, Mills K, Hole KH and Inderberg EM: Phase I/IIa clinical trial of HERT peptide vaccine in men with metastatic hormone-naïve prostate cancer. Cancer Immunol Immunother 66: 891-901, 2017.

Talebi S, Bolhassani A, Azad TM, Arashkia A and Modaresi MH: Immunostimulating peptide derived from HMGB1 is more effective than the N-terminal domain of Gp96 as an endogenous adjuvant for improvement of protein vaccines. Protein Pept Lett 24: 190-196, 2017.

Glover S, Delaney M, Dematte C, Kornberg L, Frasco M, Tran-Son-Tay R and Benya RV: Phosphorylation of focal adhesion kinase tyrosine 397 critically mediates gastrin-releasing peptide's morphogenic properties. J Cell Physiol 199: 77-88, 2004.
154. Khamesi O, Ben Mabrouk H, EI-Fessi-Magouri R and Kharrat R: RK1, the first very short peptide from Bathus occidens tansianus inhibits tumor cell migration, proliferation and angiogenesis. Biochim Biophys Res Commun 399: 1-7, 2018.

155. Choi YJ, Park SJ, Park YS, Park HS, Yang KM and Heo K: EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One 13: e0190638, 2018.

156. Matsuura S, Itob K and Shichijo S: Antitumor activity of an antibody-responsive polypeptide inhibits the growth and metastasis of breast cancer. Qi W, Zhang PP, Fu M, Liang X, Liang AL, Qian HL, Zhang TT, Zhou N, Wang HJ, Men XT, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Nosaka K, Vats K, Sharma R,arma HD, Satpati D and Dash A: "ga-galabeled HBED-CC variant of uPAR targeting peptide AE105 compared with 68Ga-NODAGA-AE105. Anticancer Agents Med Chem 18: 1299-1294, 2018.

157. Ahmadpour S, Noaparast Z, Abedi SM and Hosseiniemehr SJ: 99mTc-(tricine)-HYNIC-Lys-FROP peptide for breast tumor targeting. Anticancer Agents Med Chem 18: 1295-1302, 2018.

158. Zhang J, Spring H and Schwab M: Neuroblastoma tumor cell-binding peptides identified through random peptide phage display, Cancer Lett 171: 153-156, 2001.

159. Sosada R, Elayash H, Balabanov K, Lavanifar A and Kaut K: Breast cancer targeting peptide binds keratin 1: A new molecular marker for targeted drug delivery to breast cancer. Mol Pharm 14: 593-604, 2017.

160. Du Y, Wang L, Wang W, Guo T, Zhang M, Zhang P, Zhang Y, Wu K, Li A, Wang X, et al: Novel application of cell-penetrating R11 peptide for diagnosis of bladder cancer. J Biomed Nanotechnol 14: 161-167, 2018.

161. Sato S, Nakamura T, Katagiri T, Tsuchikawa T, Kushioki T, Hontani K, Takahashi M, Inoko K, Takano H, Abe H, et al: Molecular targeting of cell-permeable peptide inhibits pancreatic ductal adenocarcinoma cell proliferation. Oncotarget 8: 113662-113672, 2017.

162. Kang T, Huang Y, Zhu Q, Cheng H, Pei Y, Feng J, Xu M, Jiang G, Song Q, Jiang T, et al: Necroptotic cancer cells-mimic nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modulation. Biomaterials 164: 80-97, 2018.

163. Garay H, Espinosa LA, Perera Y, Sanchez A, Diago D, Pereira SE, Besada V, Reyes O and Gonzalez LJ: Characterization of low-abundance species in the active pharmaceutical ingredient of CIBG-300: A clinical-grade anticancer synthetic peptide. J Pept Sci 24: e0381, 2018.

164. Perea SE, Reyes O, Baladron I, Perera Y, Farina H, Gil J, Rodriguez A, Bacard T, Marcelo JL, Cosme K, et al: CIBG-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol Cell Biochem 316: 163-167, 2008.

165. Rodriguez-Ulloa A, Ramos Y, Gil J, Perera Y, Carrión-Espinosa AG, Nájera Y, Cazorla-López DA, Elguero J, Benitez B, Besada V, Gonzalez LJ, Fernandez-de-Cossio J, et al: Proteomic profile regulated by the anticancer peptide CIBG-300 in non-small cell lung cancer (NSCLC) cells. J Proteome Res 9: 5473-5483, 2010.

166. Hirabayashi K, Yanagisawa K, Saito S, Higuchi Y, Koya T, Sano K, Koiko S, Okamoto M, Sugiyama H, Nakazawa Y, et al: Feasibility and immune response of WT1 peptide vaccination in combination with OK-432 for pediatric solid tumors. Anticancer Res 38: 2227-2234, 2018.

167. Yanagisawa R, Koizumi T, Koya T, Sano K, Koiko S, Nagai K, Kobayashi M, Okamoto M, Sugiyama H and Shimodaira S: WT1-based dendritic cell therapy for resected pancreatic cancer in a phase I study. Anticancer Res 38: 2217-2225, 2018.

168. Ohno S, Tanaka F, Ohta Y, Kyo S, Myojo S, Dohi S, Sugiyama H, Ohta T and Inoue M: Frequency of myeloid dendritic cells can predict the efficacy of Wilms' tumor 1 peptide vaccination. Anticancer Res 31: 2447-2452, 2011.

169. Ohno S, Kyo S, Myojo S, Dohi S, Ishizaki J, Miyamoto K, Morita S, Sakamoto J, Enomoto T, Kimura T, et al: Wilms' tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res 39: 3709-3716, 2019.

170. Ishikawa H, Imano M, Shiraishi O, Yasuda A, Peng YF, Shinkai M, Yasuda T, Imamoto H and Shiozaki H: Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer 17: 173-180, 2014.

171. Varay C, Rois JS, Guérégui MB: Telomerase activity in human solid tumors. Diagnostic utility and clinical applications. Am J Clin Pathol 112 (1 Suppl): S68-S75, 1999.
Development of gp100 peptide vaccine and interleukin-2 in 206.

194. Bernhardt SL, Gjertsen MK, Tchushe S, Moller M, Eriksen JA, Meo M, Buanes T and Gaudernack G: Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br J Cancer 95: 1474-1482, 2006.

195. Kokkue P, Palma M, Hansson L, Osterborg A, Mellstedt H and Choudhury A: Telomerase (hTERT 611-626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp Hematol 35: 297-304, 2007.

196. Aspelasgh S, Awada A, Matos-Pita A, Afitmos P, Bahleda R, Varga A and Soria JC: Phase I dose-escalation study of plitidepsin in combination with bevacizumab in patients with refractory solid tumors. Anticancer Drugs 27: 1021-1027, 2016.

197. Engel JB, Tineber H, Rick FG, Berkes E and Schally AV: Targeting of peptide cytotoxins to LHRH receptors for treatment of cancer. Curr Drug Targets 17: 488-494, 2016.

198. Moguchi M, Matsumoto K, Uchmura H, Arai G, Eto M, Naito S, Ohyama C, Nasu Y, Tanaka M, Moriya F, et al.: An open-label, randomized phase II trial of personalized peptide vaccination in patients with bladder cancer that progressed after platinum-based chemotherapy. Clin Cancer Res 22: 54-60, 2016.

199. Toh U, Sakai S, Okabe I, Iwakuma N, Kimitsuki Y, Akashi M, Ogo E, Yamada A, Shichijo S, Itoh K, et al.: Development of peptide vaccines for triple-negative breast cancer treatment. Gan To Kagaku Ryoho 43: 1249-1251, 2016 (In Japanese).

200. Brown TA, Byrd K, Vreeland TJ, Clifton GT, Jackson DO, Hale DF, Herbert GS, Myers JW, Greene JM, Berry JS, et al.: Final analysis of a phase I/IIa trial of the folate-binding protein-derived E39 peptide vaccine to prevent recurrence in ovarian and endometrial cancer patients. Cancer Med 8: 4678-4687, 2019.

201. Schwartzentuber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Galani F, Riley L, Conlon K, Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, et al.: A new era in anticancer peptides and apoptosis imaging probes for cancer therapy. Arch Pharm Res 42: 150-158, 2019.

202. Mikecin AM, Walker LR, Kuna M and Raucher D: Thermally deacetylase and proteasome dual inhibitors for overcoming therapeutic efficacy of bortezomib in cancer therapy using polymeric nanostructures. Curr Pharm Des 25: 4883-4892, 2019.

203. Korani M, Korani S, Zendehdel E, Nikpour AR, Jaafari MR, Orafai HM, Johnston TP and Sahебkar A: Enhancing the therapeutic efficacy of bortezomib in cancer therapy using polymeric nanostructures. Curr Pharm Des 25: 4883-4892, 2019.

204. Zhou Y, Liu X, Xue J, Liu L, Liang T, Li W, Yang X, Hou X and Fang H: Discovery of peptide boronate derivatives as histone deacetylase and proteosome dual inhibitors for overcoming bortezomib resistance of multiple myeloma. J Med Chem 63: 4701-4715, 2020.

205. Garofalo M, Grazioso G, Cavalli A and Sgrignani J: How computational chemistry and drug delivery techniques can support the development of new anticancer drugs. Molecules 25: 1756, 2020.

206. Adlakha S, Sharma A, Vaghaisiya K, Ray E and Verma RK: Inhalation delivery of host defence peptides (HDP) using nano-formulation strategies: A pragmatic approach for therapy of pulmonary ailments. Curr Protein Pept Sci 21: 369-378, 2020.

207. Tu Y, Tao J, Wang F, Liu P, Han Z, Li Z, Ma Y and Gu Y: A novel peptide targeting gastrin releasing peptide receptor for pancreatic neoplasit. Biomater Sci 8: 2682-2693, 2020.

208. Ohana J, Sandler U, Kass G, Stemmer SM and Devary Y: dTCaPs, a derivative of a novel human hormone peptide, induces apoptosis in cancer cells through a mechanism involving loss of Golgi function. Mol Clin Oncol 7: 991-999, 2017.

209. Steemer SM, Benjamino V, Silverman MH, Sandler U, Purini O, Sender N, Meir C, Oren-Apoteker P, Ohana J and Devary Y: A phase I clinical trial of dTCaPs, a derivative of a novel human hormone peptide, for the treatment of advanced/metastatic solid tumors. Mol Clin Oncol 8: 22-29, 2018.

210. Murali R and Kiefer-Emmons T: Cancer immunotherapeutics: Evolution of monoclonal antibodies to peptide immunogens. Monoclon Antib Immunodiagn Immunother 33: 179-182, 2014.

211. Tan Z and Zhang S: Past, present, and future of targeting ras for cancer therapies. Mini Rev Med Chem 16: 345-357, 2016.

212. Li QX, Yu DH, Liu G, Ke N, McKelvy J and Wong-Staal F: Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. Cell Death Differ 15: 1197-1210, 2008.

213. Micale N, Scabraci K, Troiano V, Ettari R, Grasso S and Zappala M: Peptide-based proteosome inhibitors in anticancer drug design. Med Res Rev 34: 1001-1069, 2014.

214. Wang X, Chen X, Yang X, Gao W, He B, Dai W, Zhang H, Wang X, Jiang Z, Zhang X, et al.: A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine 12: 387-397, 2016.

215. Cheng T and Zhan X: Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J 8: 51-60, 2017.

216. Vadevoo SMP, Gurung S, Khan F, Haque ME, Gunasekaran GR, Chi L, Permpoon U and Lee B: Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharm Res 42: 150-158, 2019.

217. Sun X, Li Y, Liu T, Li Z, Zhang X and Chen X: Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 110-111: 38-51, 2017.

218. Ehlerding EB, Sun L, Lan X, Zeng D and Cai W: Dual-targeted molecular imaging of cancer. J Nucl Med 59: 390-395, 2018.

219. Wang Q, Li SB, Zhao YY, Dai DN, Du H, Lin YZ, Ye JC, Zhao J, Xiao W, Mei Y, et al.: Identification of a sodium pump Na(+)/K(+) ATPase alpha1-targeted peptide for PET imaging of breast cancer. J Control Release 261: 178-188, 2018.

220. Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M and Baxevanis CN: A new era in anticancer peptide vaccines. Cancer 116: 2071-2080, 2010.