Application of Biomarkers in Cancer Risk Management: Evaluation from Stochastic Clonal Evolutionary and Dynamic System Optimization Points of View

Xiaohong Li1*, Patricia L. Blount1,2, Thomas L. Vaughan1,3, Brian J. Reid1,2,4,5

1 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, United States of America, 2 Department of Medicine, University of Washington, Seattle, Washington, United States of America, 3 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America, 4 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 5 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America

Abstract: Aside from primary prevention, early detection remains the most effective way to decrease mortality associated with the majority of solid cancers. Previous cancer screening models are largely based on classification of at-risk populations into three conceptually defined groups (normal, cancer without symptoms, and cancer with symptoms). Unfortunately, this approach has achieved limited successes in reducing cancer mortality. With advances in molecular biology and genomic technologies, many candidate somatic genetic and epigenetic “biomarkers” have been identified as potential predictors of cancer risk. However, none have yet been validated as robust predictors of progression to cancer or shown to reduce cancer mortality. In this Perspective, we first define the necessary and sufficient conditions for precise prediction of future cancer development and early cancer detection within a simple physical model framework. We then evaluate cancer risk prediction and early detection from a dynamic clonal evolution point of view, examining the implications of dynamic clonal evolution of biomarkers and the application of clonal evolution for cancer risk management in clinical practice. Finally, we propose a framework to guide future collaborative research between mathematical modelers and biomarker researchers to design studies to investigate and model dynamic clonal evolution. This approach will allow optimization of available resources for cancer control and intervention timing based on molecular biomarkers in predicting cancer among various risk subsets that dynamically evolve over time.

Introduction

Detection of cancer at an early stage could significantly reduce cancer mortality and the overall burden of cancer [1–4]. The most common cancer risk model is based on the classification of the population into three groups: (1) normal without cancer, (2) asymptomatic cancer (detectable and potentially curable), and (3) symptomatic cancer, [5,6]. This model has provided a foundation for clinical approaches to cancer screening and early detection that have largely been based on tissue morphological features observed microscopically or via imaging. Recent advances in cancer biology and molecular technology now provide new opportunities to further refine cancer risk models for use in the clinic.

Inherited susceptibility and environmental exposures, including infectious agents, can modulate cancer risk in an individual over time, but dynamic interactions between these factors and evolving somatic genetic abnormalities that lead to cancer are poorly understood. With progress in molecular biology and genetics, it is widely believed that a panel of biomarkers assessing DNA, RNA, proteins, and/or metabolic processes can eliminate the shortcomings of morphologic diagnosis for early detection and cancer risk prediction. In fact, advances in technology have identified many molecular abnormalities that develop during neoplastic progression, some of which are highly associated with cancer [7–10]. Currently, there is a quest to find the perfect cancer biomarker(s) that could be used to separate “cancer” from “non-cancer”. Yet, thus far, no molecular biomarkers that significantly reduce cancer mortality with satisfactory sensitivity and specificity have become widely used in the clinic for early diagnosis or cancer risk prediction in the general population, although some genetic tests have been adopted for individuals with inherited susceptibilities to cancer [11]. The limited success in identifying robust biomarkers has been attributed to inadequate study designs or complexity of biospecimens [12,13], biased biospecimens [14], and technological [13,15] and computational limitations [16–18]. Although all of these reasons contribute to the limited success of cancer biomarker development to some degree, a fundamental challenge to be considered for biomarker development is the dynamic, stochastic nature of clonal evolution.

In this paper, we first define cancer “risk prediction” and “early cancer detection” using two very simple physical systems. We then introduce the dynamic, clonal evolutionary concept as it relates to biomarkers in cancer development and review the challenges associated with the
use of molecular markers in a clinical model. Finally, we present a general theoretical framework for using imperfect biomarkers for cancer risk stratification in the clinic, using a dynamic systems approach. The goal of this Perspective is to inspire an integrated approach to theoretical modeling and biomarker research in cancer risk management by incorporating a clonal dynamic point of view.

Event Detection and Prediction in Deterministic and Stochastic Systems

In order to better illustrate the problems associated with event prediction and early detection, we will introduce two simple physical systems as shown in Figures 1 and 2. For the purposes of this illustration, we are interested in determining (1) when the light bulb will turn on (event prediction) or (2) whether the light bulb is already on (event detection).

Event Prediction and Event Detection in a Deterministic System

We first investigate the question of event prediction in the deterministic system (for any given time point or initial state, the system will always produce the same outcome) as illustrated in Figure 1. In this system, all of the switches (S1, S2, S3, and S3') have been precisely identified and characterized and the timers in the system (A, B, and U) are 100% accurate and clearly observable. In this deterministic model, the status of the light bulb can always be predicted perfectly by simply observing timers A, B, and U (see Figure 1 legend for details). Therefore, the necessary and sufficient conditions for 100% successful event prediction in this system are (1) all of the switches in the system are identified and characterized, and (2) the timers reflect the exact time (sufficient conditions) that has elapsed since any two switches have connected and are observable.

The question of whether the event has already occurred (light bulb is on) and the time elapsed after occurrence (event detection) can be answered in Figure 1 by simply observing cumulative timer C. Alternatively, it could be determined by observing the status of switch(es) S3, (S3'). Thus, the necessary and sufficient conditions for event detection can be determined by simply observing the status of the final switches or cumulative timer C.

Event Prediction and Event Detection in a Stochastic System

A stochastic system that may not always result in the same outcome for any given time point or initial state is shown in Figure 2. In this system, one cannot make a prediction with 100% accuracy as to when the light bulb will turn on due to the stochastic nature of switches S2 and S3 (or S3') and timers A, B, and U. In order to make a reasonably good prediction as to when the light bulb will turn on, one will need to periodically recheck the status of the switches.

The “switches” in Figures 1 and 2 may be viewed as similar to the abnormalities (e.g., DNA mutations/LOH/ chromosome copy gain/loss) that develop during neoplastic progression, and the timers as the time that has elapsed between the genomic alterations. The event of turning on the light bulb may be intuitively analogous to the development of cancer. However, neither of these models addresses the complexity of neoplastic progression.

Biological Complexity of Molecular Markers for Early Detection of Cancer and Cancer Risk Prediction

Environmental factors, inherited genetic susceptibility, and dynamic gene–gene and gene–environmental interactions can generate new somatic genetic or epigenetic alterations in human cells. Some altered cells continue to divide with a low rate of genetic or epigenetic alterations, largely maintaining genomic integrity, whereas others continue to develop new alterations, generating new variants on which selection can act. Several investigators have used genetic and genomic data to develop models of neoplastic progression. Nowell proposed that a single cell gains a selective genetic advantage over neighboring normal cells, rendering it “neoplastic” [19]. Genomic instability and stepwise selection of genetic variants lead to clonal expansions of viable...
sequences of transition from non-cancer to cancer and sojourn time. The approach of using three conceptual stages for classification of populations for modeling screening is reasonable. However, these models can not be easily related to, or characterized by, the complexity of clonal evolution as reported by recent genomic studies using high throughput sequencing or high density arrays.

One obvious approach is to use molecular or genomic biomarkers to stratify populations into various risk groups where each group has its own cancer risk distribution rather than treating overall cancer risk as a single distribution pattern in a population. However, molecular biomarkers are likely to be imperfect and have stochastic characteristics (Figure 3), and thus far, none of them meet the conditions required for perfect cancer risk prediction. In practice, one will be using imperfect biomarkers for both risk prediction and early detection. As shown in Figure 4, biomarkers could be used to stratify populations into different risk groups [38–43]. Each risk group could then be individually managed, with the goal of reducing the overall cancer risk over time, given a set of fixed resources or time constraints.

Our framework for cancer risk management considers the situation in which members in lower risk groups could progress to higher risk groups over time or, alternatively, members in higher risk groups could regress to a lower risk status.

Our framework for cancer risk management considers the situation in which members in lower risk groups could progress to higher risk groups over time or, alternatively, members in higher risk groups could regress to a lower risk status. Such dynamic risk status requires that times between benign, invasive, and metastatic colon tumors can be estimated by analysis of the mutations they have in common and knowledge of the time it takes for cell division. Although these biological and genetic models provide significant insights for understanding evolution of a normal cell to cancer, all of them have stochastic characteristics (similar to Figure 2), and none of them meet the conditions required for perfect cancer risk prediction. This is because the exact steps and precise time elapsed between each step cannot be predicted with 100% accuracy in contrast to Figure 1. A consequence, in clinical practice, we will likely have imperfect biomarkers to identify high risk persons for targeted prevention strategies (cancer risk prediction) and those with early stage curable cancer for treatment (combination of cancer risk prediction and early detection). We next propose a schematic model that could be used for modeling cancer risk management with consideration of stochastic characteristics in the evolution of cancer (Figure 3) and more accurate risk stratification using current molecular measurements, as illustrated in Figure 4.

Cancer Risk Prediction, Early Detection and Management: A Dynamic Systems Point of View

Modeling the System

Previous models [5,6,36,37] developed for cancer screening and early detection have been based on the definition of three conceptual stages: normal, cancer without symptoms, and cancer with symptoms. The analysis of screening for early detection of cancer was carried out using assumptions about the statistical distributions of transition from non-cancer to cancer and sojourn time. The approach of using three conceptual stages for classification of populations for modeling screening is reasonable. However, these models can not be easily related to, or characterized by, the complexity of clonal evolution as reported by recent genomic studies using high throughput sequencing or high density arrays.

One obvious approach is to use molecular or genomic biomarkers to stratify populations into various risk groups where each group has its own cancer risk distribution rather than treating overall cancer risk as a single distribution pattern in a population. However, molecular biomarkers are likely to be imperfect and have stochastic characteristics (Figure 3), and thus far, none of them meet the conditions required for perfect cancer risk prediction. In practice, one will be using imperfect biomarkers for both risk prediction and early detection. As shown in Figure 4, biomarkers could be used to stratify populations into different risk groups [38–43]. Each risk group could then be individually managed, with the goal of reducing the overall cancer risk over time, given a set of fixed resources or time constraints.

Our framework for cancer risk management considers the situation in which members in lower risk groups could progress to higher risk groups over time or, alternatively, members in higher risk groups could regress to a lower risk status. Such dynamic risk status requires that times between benign, invasive, and metastatic colon tumors can be estimated by analysis of the mutations they have in common and knowledge of the time it takes for cell division. Although these biological and genetic models provide significant insights for understanding evolution of a normal cell to cancer, all of them have stochastic characteristics (similar to Figure 2), and none of them meet the conditions required for perfect cancer risk prediction. This is because the exact steps and precise time elapsed between each step cannot be predicted with 100% accuracy in contrast to Figure 1. A consequence, in clinical practice, we will likely have imperfect biomarkers to identify high risk persons for targeted prevention strategies (cancer risk prediction) and those with early stage curable cancer for treatment (combination of cancer risk prediction and early detection). We next propose a schematic model that could be used for modeling cancer risk management with consideration of stochastic characteristics in the evolution of cancer (Figure 3) and more accurate risk stratification using current molecular measurements, as illustrated in Figure 4.

Cancer Risk Prediction, Early Detection and Management: A Dynamic Systems Point of View

Modeling the System

Previous models [5,6,36,37] developed for cancer screening and early detection have been based on the definition of three conceptual stages: normal, cancer without symptoms, and cancer with symptoms. The analysis of screening for early detection of cancer was carried out using assumptions about the statistical distributions of transition from non-cancer to cancer and sojourn time. The approach of using three conceptual stages for classification of populations for modeling screening is reasonable. However, these models can not be easily related to, or characterized by, the complexity of clonal evolution as reported by recent genomic studies using high throughput sequencing or high density arrays.

One obvious approach is to use molecular or genomic biomarkers to stratify populations into various risk groups where each group has its own cancer risk distribution rather than treating overall cancer risk as a single distribution pattern in a population. However, molecular biomarkers are likely to be imperfect and have stochastic characteristics (Figure 3), and thus far, none of them meet the conditions required for perfect cancer risk prediction. In practice, one will be using imperfect biomarkers for both risk prediction and early detection. As shown in Figure 4, biomarkers could be used to stratify populations into different risk groups [38–43]. Each risk group could then be individually managed, with the goal of reducing the overall cancer risk over time, given a set of fixed resources or time constraints.

Our framework for cancer risk management considers the situation in which members in lower risk groups could progress to higher risk groups over time or, alternatively, members in higher risk groups could regress to a lower risk status. Such dynamic risk status requires that times between benign, invasive, and metastatic colon tumors can be estimated by analysis of the mutations they have in common and knowledge of the time it takes for cell division. Although these biological and genetic models provide significant insights for understanding evolution of a normal cell to cancer, all of them have stochastic characteristics (similar to Figure 2), and none of them meet the conditions required for perfect cancer risk prediction. This is because the exact steps and precise time elapsed between each step cannot be predicted with 100% accuracy in contrast to Figure 1. A consequence, in clinical practice, we will likely have imperfect biomarkers to identify high risk persons for targeted prevention strategies (cancer risk prediction) and those with early stage curable cancer for treatment (combination of cancer risk prediction and early detection). We next propose a schematic model that could be used for modeling cancer risk management with consideration of stochastic characteristics in the evolution of cancer (Figure 3) and more accurate risk stratification using current molecular measurements, as illustrated in Figure 4.

Cancer Risk Prediction, Early Detection and Management: A Dynamic Systems Point of View

Modeling the System

Previous models [5,6,36,37] developed for cancer screening and early detection have been based on the definition of three conceptual stages: normal, cancer without symptoms, and cancer with symptoms. The analysis of screening for early detection of cancer was carried out using assumptions about the statistical distributions of transition from non-cancer to cancer and sojourn time. The approach of using three conceptual stages for classification of populations for modeling screening is reasonable. However, these models can not be easily related to, or characterized by, the complexity of clonal evolution as reported by recent genomic studies using high throughput sequencing or high density arrays.

One obvious approach is to use molecular or genomic biomarkers to stratify populations into various risk groups where each group has its own cancer risk distribution rather than treating overall cancer risk as a single distribution pattern in a population. However, molecular biomarkers are likely to be imperfect and have stochastic characteristics (Figure 3), and thus far, none of them meet the conditions required for perfect cancer risk prediction. In practice, one will be using imperfect biomarkers for both risk prediction and early detection. As shown in Figure 4, biomarkers could be used to stratify populations into different risk groups [38–43]. Each risk group could then be individually managed, with the goal of reducing the overall cancer risk over time, given a set of fixed resources or time constraints.

Our framework for cancer risk management considers the situation in which members in lower risk groups could progress to higher risk groups over time or, alternatively, members in higher risk groups could regress to a lower risk status. Such dynamic risk status requires that times between benign, invasive, and metastatic colon tumors can be estimated by analysis of the mutations they have in common and knowledge of the time it takes for cell division. Although these biological and genetic models provide significant insights for understanding evolution of a normal cell to cancer, all of them have stochastic characteristics (similar to Figure 2), and none of them meet the conditions required for perfect cancer risk prediction. This is because the exact steps and precise time elapsed between each step cannot be predicted with 100% accuracy in contrast to Figure 1. A consequence, in clinical practice, we will likely have imperfect biomarkers to identify high risk persons for targeted prevention strategies (cancer risk prediction) and those with early stage curable cancer for treatment (combination of cancer risk prediction and early detection). We next propose a schematic model that could be used for modeling cancer risk management with consideration of stochastic characteristics in the evolution of cancer (Figure 3) and more accurate risk stratification using current molecular measurements, as illustrated in Figure 4.

Cancer Risk Prediction, Early Detection and Management: A Dynamic Systems Point of View

Modeling the System

Previous models [5,6,36,37] developed for cancer screening and early detection have been based on the definition of three conceptual stages: normal, cancer without symptoms, and cancer with symptoms. The analysis of screening for early detection of cancer was carried out using assumptions about the statistical distributions of transition from non-cancer to cancer and sojourn time. The approach of using three conceptual stages for classification of populations for modeling screening is reasonable. However, these models can not be easily related to, or characterized by, the complexity of clonal evolution as reported by recent genomic studies using high throughput sequencing or high density arrays.

One obvious approach is to use molecular or genomic biomarkers to stratify populations into various risk groups where each group has its own cancer risk distribution rather than treating overall cancer risk as a single distribution pattern in a population. However, molecular biomarkers are likely to be imperfect and have stochastic characteristics (Figure 3), and thus far, none of them meet the conditions required for perfect cancer risk prediction. In practice, one will be using imperfect biomarkers for both risk prediction and early detection. As shown in Figure 4, biomarkers could be used to stratify populations into different risk groups [38–43]. Each risk group could then be individually managed, with the goal of reducing the overall cancer risk over time, given a set of fixed resources or time constraints.
Figure 3. Neoplastic evolution, cancer risk prediction, and early cancer detection. (A), (B), and (C) represent evolutionary stages in dynamic clonal progression to cancer. (A) Early stages of clonal evolution have fewer selected genomic alterations, and most individuals do not progress to cancer. (B) A minority of individuals will evolve additional genomic alterations, but the majority of these will not progress to cancer. (C) A small subset of patients will accelerate development of genomic alterations leading to selection of increasing abnormal clones and progression to cancer. These events are stochastic and there are no biomarkers that perfectly distinguish (A), (B), and (C). In this evolutionary process, most clones may evolve in directions that do not lead to cancer (dark gray circles), whereas some others retain great potential for future progression to cancer or development.
vention to prevent cancer, such as chemoprevention, or monitored more closely for early detection. The lower risk groups could be subjected to much less intensive monitoring. Therefore, early detection and cancer risk management would comprehensively consider a dynamic system over a period of time that includes (1) the absolute risk for each risk group (cancer incidence rates), which is characterized by molecular biomarkers and estimated through population studies, (2) a pre-specified level of late stage cancer reduction, (3) resources available for cancer risk reduction or management, (4) the quality of an individual’s life (effects of false positive or false negative diagnosis on quality of life), and (5) competing mortality due to other causes as shown in Figure 4.

There are many potential mathematical approaches to quantify or model such a dynamic system (Figure 4) for cancer risk management. In this Perspective, we suggest one possible method using dynamic system optimization to deal with clonal evolution for cancer risk management using biomarkers (Text S1).

Discussion and Concluding Remarks

The development of cancer is a complex process characterized by stochastic accumulation of mutations and dynamic evolution of clones [10,31,44–46]. To date, most biomarkers are not directly related to evolutionary dynamics, but instead focus on specific pathways. However, extrapolating information from pathways to evolutionary dynamics remains a challenge [47]. Recently, genome-based cell population heterogeneity rather than commonly shared pathways have been linked to tumorigenicity [28]. Whole genome instability measurements are also closely linked to stages of cancer progression [29]. This body of evidence indicates that useful biomarkers can be developed directly using longitudinal measurements of genomic instability.

Development of biomarkers for cancer risk management should consider these stochastic and dynamic properties over time in neoplastic evolution. Using biomarkers for cancer risk management involves multi-level systems from cells to individuals to populations. Better ways of modeling multi-level systems and comprehending innate uncertainties in these systems are areas in which great benefits could be achieved [48]. We propose a dynamic system optimization approach to deal with the practical limitations of earlier three-stage models (Figure 4 and Text S1).

The goal of this Perspective is to link the dynamic, stochastic elements of clonal evolution in neoplastic tissues in patients followed over time. This would be best accomplished by collaborations between mathematical modelers and laboratory researchers in longitudinal experimental design, modeling, and parameter estimation.

Figure 4. Cancer risk stratification and dynamic risk management using molecular biomarkers. Clinical patients or the general population could be stratified objectively using molecular biomarkers. A set of robust and validated biomarkers is expected to stratify the majority of patients into either high or low risk groups, and assign fewer patients to the intermediate risk group. The cancer risks of each group could be managed with consideration of individual risk, risk-benefit assessment, quality of life available resources, and dynamic progression characteristics of each group to achieve overall optimized results.

doi:10.1371/journal.pcbi.1001087.g003
tion oriented to practical application for cancer risk management.

There are fundamental differences between our concept and the commonly used three-stage (normal, cancer without symptoms, cancer with symptoms) model for cancer screening: (1) we evaluate cancer risk prediction and early detection from a dynamic clonal evolutionary point of view and its implication for cancer risk management in clinical practice; (2) based on stochastic clonal evolution, we propose a framework to guide future biomarker research to more accurately stratify patients into various risk groups, where each risk group has a different cancer risk distribution, thereby permitting an adaptive cancer risk strategy; and (3) we propose that mathematical models be developed for cancer risk management that can be expanded for modeling specific cancer or management aspects, allowing optimization of available resources and intervention timing based on particular biomarker sensitivity and specificity in predicting cancer among various risk groups that dynamically evolve over time (Text S1).

In summary, effective prevention and early diagnosis strategies are critical to reducing the cancer burden. We analyzed the biological basis for using biomarkers for cancer risk prediction and early detection. This analysis shows that if and only if biological pathways for cancer development are fully determined and quantified as in Figure 1, can perfect accuracy for cancer risk prediction and early detection be achieved. With the advances of molecular technology and knowledge, biomarkers could reach a high level of accuracy in cancer risk prediction and early detection and could be used to guide clinical monitoring and interventions but likely will never be perfectly accurate. We propose that evaluation of biomarker effectiveness for cancer risk prediction and early detection be conducted with consideration of cancer evolutionary dynamics and dynamic optimization modeling for risk management.

Supporting Information

Text S1 A dynamic optimization approach for cancer risk management and early detection. In S1, we present a framework of mathematical modeling for cancer risk management using biomarkers with consideration of stochastic clonal evolution in neoplastic progression.

Acknowledgments

We thank David S. Cowan for computer graphic support.

References

1. Wingo PA, Ries LA, Rosenberg HM, Miller DS, Edwards BK (1998) Cancer incidence and mortality, 1973–1995: a report card for the U.S. Cancer 82: 1197–1207.

2. Eckhardt SR, Urban N, Ramsey S, McIntosh M, Schwartz S, et al. (2003) The Case for Early Detection. Nature Reviews Cancer Volume 3: 1–10.

3. Jemal A, Clegg LX, Ward E, Ries LA, Wu X, et al. (2004) Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer 101: 5–27.

4. O’Connell JB, Maggard MA, Ko CY (2004) Stages for the detection of circulating tumour cells. Br Med Bull 94: 49–64.

5. Zelen M (1993) Optimal scheduling of examinations for the early detection of disease. Biometrika 80: 279–293.

6. Prewor PC (1976) The theory of periodic screening I. Lead time and proportion detected. Advances in applied probability 8: 127–143.

7. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358: 502–511.

8. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358: 1148–1159.

9. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

10. Robson ME, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

11. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

12. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

13. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

14. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

15. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

16. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

17. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

18. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

19. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.

20. Robson ME, Storm CD, Weitzel J, Wollins DS, et al. (2004) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 101: 4203–4208.
38. Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, et al. (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356: 11–20.
39. Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, et al. (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for future esophageal adenocarcinoma. PLoS Med 4: e67. doi:10.1371/journal.pmed.0040067.
40. Lee JJ, Hong WK, Hittelman WN, Mao L, Lotan R, et al. (2000) Predicting cancer development in oral leukoplakia: ten years of translational research. Clin Cancer Res 6: 1702–1710.
41. Reid BJ, Li X, Galipeau PC, Vaughan TL. (2010) Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer 10: 87–101.
42. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multisite, blinded validation study. Nat Med 14: 822–827.
43. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–535.
44. Heng HH, Stevens JB, Lawrenson L, Liu G, Ye KJ, et al. (2008) Patterns of genome dynamics and cancer evolution. Cell Oncol 30: 513–514.
45. Siegmunda KD, Marjorama P, Woob Y, Tavare S, Shibata D (2008) Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc Natl Acad Sci U S A 106: 4828–4833.
46. Heng HH (2008) The conflict between complex systems and reductionism. JAMA 300: 1580–1581.
47. Sawyers CL (2008) The cancer biomarker problem. Nature 452: 540–552.
48. Cohen JE (2004) Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol 2: e439. doi:10.1371/journal.pbio.0020439.