Development of a Rapid Agglutination Latex Test for Diagnosis of Enteropathogenic and Enterohemorrhagic Escherichia coli Infection in Developing World: Defining the Biomarker, Antibody and Method

Leticia B. Rocha, Anna R. R. Santos, Danielle D. Munhoz, Lucas T. A. Cardoso, Daniela E. Luz, Fernanda B. Andrade, Denise S. P. Q. Horton, Waldir P. Elias, Roxane M. F. Piazza

Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil

Abstract

**Background:** Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC/EHEC) are human intestinal pathogens responsible for diarrhea in both developing and industrialized countries. In research laboratories, EPEC and EHEC are defined on the basis of their pathogenic features; nevertheless, their identification in routine laboratories is expensive and laborious. Therefore, the aim of the present work was to develop a rapid and simple assay for EPEC/EHEC detection. Accordingly, the EPEC/EHEC-secreted proteins EspA and EspB were chosen as target antigens.

**Methodology:** First, we investigated the ideal conditions for EspA/EspB production/secretion by ELISA in a collection of EPEC/EHEC strains after cultivating bacterial isolates in Dulbecco’s modified Eagle’s medium (DMEM) or DMEM containing 1% tryptone or HEp-2 cells-preconditioned DMEM, employing either anti-EspA/anti-EspB polyclonal or monoclonal antibodies developed and characterized herein. Subsequently, a rapid agglutination latex test (RALT) was developed and tested with the same collection of bacterial isolates.

**Principal findings:** EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis; the production of EspB was better in DMEM medium. RALT assay has the sensitivity and specificity required for high-impact diagnosis of neglected diseases in the developing world.

**Conclusion:** RALT assay described herein can be considered an alternative assay for diarrhea diagnosis in low-income countries since it achieved 97% sensitivity, 98% specificity and 97% efficiency.

Introduction

Annually, nearly five million cases of diarrhea are reported around the world leading to 800 thousand deaths per year in under-fives [1,2], and *Escherichia coli* is the etiological agent responsible for most of them [3]. The *E. coli* isolates associated with diarrhea are classified into pathotypes on the basis of specific virulence factors, pathogenesis or clinical manifestation [4]. Among them, enteropathogenic *E. coli* (EPEC) and enterohemorrhagic *E. coli* (EHEC) continue to represent a threat to human health worldwide [5].

Both pathotypes can induce the attaching and effacing (A/E) lesion on the intestinal mucosa, characterized by intimate bacterial adhesion, destruction of microvilli, and accumulation of polymerized actin in pedestals beneath intimately attached bacteria [6]. The A/E lesion formation is caused by effector proteins that are secreted into the enterocytes by the type III secretion system [4]. All genes necessary for the A/E lesion formation are located in a pathogenicity island called locus of enterocyte effacement (LEE). After the establishment of initial contact via EspA containing filaments, two further effector proteins, EspB and EspD, are translocated into the host cell membrane where they form a pore structure [7,8], which allows the translocation of effector proteins. The delivery of the translocated intimin receptor (Tir) into the host cell membrane is followed by dissolution of EspA filaments and...
A rapid and low-cost diagnosis for EPEC/EHEC infections is extremely required considering their global prevalence, the severity of the diseases associated with them, and the fact that the use of antibiotics to treat EHEC infections can be harmful. For EHEC, the detection of Stx toxins has already been developed, but for EPEC, an internationally recognized standard diagnostic test is lacking. Thus, the approach for their rapid detection in this study was the use of the secreted proteins EspA and/or EspB, since they are the major secreted proteins in both pathogens. EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis using a latex agglutination assay, which can be employed in less equipped laboratories in developing countries.

EspB-Latex Agglutination Test for EPEC/EHEC Diagnosis

**Author Summary**

A rapid and low-cost diagnosis for EPEC/EHEC infections is extremely required considering their global prevalence, the severity of the diseases associated with them, and the fact that the use of antibiotics to treat EHEC infections can be harmful. For EHEC, the detection of Stx toxins has already been developed, but for EPEC, an internationally recognized standard diagnostic test is lacking. Thus, the approach for their rapid detection in this study was the use of the secreted proteins EspA and/or EspB, since they are the major secreted proteins in both pathogens. EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis using a latex agglutination assay, which can be employed in less equipped laboratories in developing countries.

**Methods**

**Bacterial isolates**

We analyzed in this study a collection of 71 aEPEC [17], 31 tEPEC [18,32] and 23 EHEC [44], belonging to different serotypes characterized as LEE-positive isolates. We also included for ELISA cut-off definition and specificity of the RALT, 20 LEE-negative diarrheagenic E. coli (DEC/LEE−), 20 fecal E. coli negative for DEC virulence factors (NVF E. coli) isolates and 20 Enterobacteriaceae isolates (Aeromonas hydrophila, Edwardsiella tarda, Enterobacter cloaceae, Enterococcus faecalis, Klebsiella pneumoniae, Morganella morganii, Pseudomonas aeruginosa, Proteus mirabilis, Providencia spp., Salmonella spp., Serratia marcescens, Shigella boydii and Shigella flexneri) from our laboratory collection. The prototype tEPEC E2348/69 [45] was included in the assays as a positive control for EspA/EspB-producing strain.

**Ethics statement**

These experiments were conducted in agreement with the Ethical Principles in Animal Research, adopted by the Brazilian College of Animal Experimentation, and they were approved by the Ethical Committee for Animal Research of Butantan Institute (Protocol 469/08).

EspA and EspB antibodies: development and characterization

EspA and EspB recombinant proteins were obtained from E. coli BL21 clones containing the pET28a-EspA or pET28a-EspB plasmid. Protein induction, production and purification were done as described elsewhere [7]. These proteins were employed for raising the rabbit polyclonal (PAb) [31] and the monoclonal (MAb) antibodies [44,46].

**Detection of secreted proteins EspA and EspB**

Bacterial isolates were cultivated in Luria Bertani (LB) broth at 37°C for 18 h. Each culture was then inoculated at a 1:50 dilution at 37°C for 6 h (250 rpm) into Dulbecco’s modified Eagle’s medium (DMEM), DMEM containing 1% tryptone (DMEM-T) or preconditioned DMEM (DMEM-PC), which was prepared by incubation of DMEM without antibiotics or fetal bovine serum with monolayers of HEp-2 for 24–48 h. The supernatant referred to as “preconditioned medium” was collected, adjusted to pH 7.4, and filtered through a 0.2 mm membrane [47].

After growth of the bacteria, the cultures were centrifuged at 13,000 x g for 10 min and the supernatants were stored at 4°C for 16–18 h. A 100-µL aliquot of supernatants was used to coat the microplates in indirect ELISA assays. The microplates (Maxisorp microplates, Nunc, Rochester, NY, USA) were then kept at 37°C for 2 h. After blocking with 1% bovine serum albumin (BSA) at 37°C for 30 min, the microplates were incubated with anti-EspA MAb (5 µg/mL) or MAb anti-EspB (10 µg/mL) or with 30 µg/mL anti-EspA PAb or anti-EspB PAb at 37°C for 1 h. Antigen-antibody binding was detected by the addition of either peroxidase-conjugated goat anti-mouse IgG (1:5,000) or peroxidase-conjugated goat anti-rabbit IgG (1:5,000) and OPD (0.5 mg/mL) and H₂O₂ as enzyme substrates. The peroxidase reaction was stopped by the addition of 1 N HCl. The absorbance was measured at 492 nm in a Multiskan EX ELISA reader (Labsystems, Millford, MA, USA). The absorbance values from duplicates of three independent experiments from LEE-positive and LEE-negative isolates after reaction with anti-EspA and anti-EspB antibodies were analyzed by GraphPrism 3.01, using considered an alternative assay for diarrhea diagnosis in developing countries.

**EspB-Latex Agglutination Test for EPEC/EHEC Diagnosis**
Figure 1. EspA and EspB production in different culture media. Atypical EPEC (aEPEC), typical EPEC (tEPEC) and EHEC isolates were cultivated in DMEM or DMEM-T or DMEM-PC. The supernatants were tested by indirect ELISA for EspA detection using anti-EspA IgG-enriched fraction (30 μg/mL) (A) and anti-EspA MAb (5 μg/mL) (B) and for EspB detection using anti-EspB IgG-enriched fraction (30 μg/mL) (C) and anti-EspB MAb (10 μg/mL) (D). The optical densities obtained for the isolates reacted with anti-EspA or anti-EspB polyclonal or monoclonal antibodies were analyzed by GraphPrism 5.01, using Student’s t test and two-away ANOVA. The differences were considered statistically significant when p < 0.05.

doi:10.1371/journal.pntd.0003150.g001
Students' t-test and two-way ANOVA. The differences were considered statistically significant when \( p \leq 0.05 \). The receiver operating characteristic (ROC) curve was employed for determining the cut-off value using the ELISA data, considering the highest sensitivity and specificity.

Rapid agglutination latex test (RALT)

Prior to testing the isolates by rapid agglutination latex test (RALT), the beads were coupled with anti-EspB MAb. Briefly, beads in a 2.5% aqueous suspension (1 μm diameter – Polyscience, Warrington, PA, USA) were washed three times with PBS and incubated with 8% glutaraldehyde in PBS at room temperature for 4 h. Next, 200 μg anti-EspB MAb was added and the mixture incubated at room temperature for 16–18 h for coupling, followed by further incubation in the presence of 0.2 M ethanolamine and BSA. Both incubations were with gentle mixing at room temperature for 30 min. Between incubations, the coated beads were washed and centrifuged (7,200 g) for 6 min. After the last washing procedure, the pellet was resuspended in the storage buffer (Polyscience, Warrington, PA, USA) and kept at 4 °C for 7 days. For RALT, bacterial lysate was prepared using 20 mg of isolates grown on DMEM-agar at 37 °C for 16-18 h and suspended in 80 μL of lysate buffer [Bacterial Protein Extraction Reagent (B-PER), Thermo Scientific, Rockford, IL, USA], followed by incubation at room temperature for 15 min. The assay was performed on a slide glass with 20 μL of bacterial lysate and 20 μL of latex beads coupled to anti-EspB MAb, and checking for agglutination after 5 min of gentle mixing.

Results

Characteristics of anti-EspA and anti-EspB antibodies

EspA and EspB are noteworthy antigens, demonstrated by the anti-EspA and anti-EspB polyclonal antibodies IgG titers (1:10,240 and 1:40,960; respectively) and detection limit of 78 and 156 ng/mL, respectively. Secretory hybridomas of antibodies against EspA and EspB were obtained and subcloned by limiting dilution. Anti-EspA and anti-EspB MAbs produced by the selected clones (3C12 and 4D9, respectively), were classified as IgG2a and showed a dissociation constant of 1.66×10⁻¹⁰ and 2×10⁻⁹ M, with detection limit of 19 and 17 ng/mL, respectively.

Production of secreted EspA and EspB proteins

The reactivity of all antibodies, as well as the efficiency of different culture media (DMEM, DMEM-T and DMEM-PC) were determined in the collection of tEPEC, aEPEC and EHEC isolates by indirect ELISA. Using either anti-EspA PAb or anti-EspB MAb, the production of EspA by tEPEC and EHEC isolates was the same regardless the culture medium (Figure 1 A and B). Considering either anti-EspB PAb or MAb, production of EspB by EHEC isolates was also medium independent. On the other hand, when LEE-positive isolates were evaluated as a group, the production of EspB was higher in DMEM compared to DMEM-T (\( p \leq 0.0001 \)) or to DMEM-PC (\( p = 0.003 \)), and no difference was observed between DMEM-PC and DMEM-T (\( p = 0.129 \) ) (Figure 2).

Therefore, comparing the production of EspB in 125 LEE-positive and 60 LEE-negative isolates using both anti-EspB antibodies, we observed by ROC curves that regardless the medium employed the sensitivity (Se) and specificity (Sp) were higher with MAb (Se = 90.4%, confidence intervals of 83.8 to 96.4% and Sp = 96.4%, confidence intervals of 87.7 to 99.6%) (Figure 2B) than PAb (Se = 82.4%, confidence intervals of 74.6 to 88.6% and Sp = 92.9%, confidence intervals of 82.7 to 98%) (Figure 2A). And the ELISA cut-off value was lower for MAb than for PAb (0.027 and 0.152, respectively).

Rapid agglutination latex test (RALT) using EspB as biomarker

For RALT, bacterial isolates were grown on DMEM-agar and the test was done using latex sensitized with anti-EspB MAb. Figure 3 presents typical negative and semi-quantitative positive reactions. From the total of the positive reactions by RALT, + correspond to 44.8%; ++ to 26.4%; +++ to 11.2% and ++++ to 14.4% of the isolates. By this assay only four LEE-positive isolates (one aEPEC and three tEPEC) did not react with anti-EspB MAb and one false positive occurred (Proteus mirabilis) (Table 1). Considering the LEE-positive and -negative isolates, the test exhibited 97% sensitivity, 98% specificity and 97% efficiency.

Discussion

A fast and inexpensive diagnosis for EPEC/EHEC infections is highly required considering their global prevalence, the severity of
the diseases associated with them, and the fact that the use of antibiotics to treat EHEC infections can be harmful. One appropriate approach for their rapid detection may utilize the secreted proteins EspA and/or EspB, since the espA and espB genes are present in LEE-positive isolates and they are the major secreted proteins by both pathogens [4]. Thus, the aim of the present study was to develop and define sensitivity and specificity of EspA and EspB antibodies, determine the ideal target antigen, and design a simple and rapid test for the diagnosis of both emerging pathogens worldwide.

Production and secretion of virulence factors in pathogenic bacteria are tightly and coordinately regulated. Growth phase and environmental conditions characteristic of the host, including temperature and partial O2 pressure, are the stimuli for virulence factor expression in various gram-negative pathogens [48,49]. Additionally, in our experience, the production of virulence factors is a critical point for diarrheagenic E. coli diagnosis [50–52].

Thus, initially, one group of isolates (including αEPEC, αEPEC and EHEC) was cultivated in different media: LB broth, DMEM, E. coli broth and Minimum medium. Besides, other culture conditions were tested, including pH (7.2 and 5.5), CO2 presence, and growth time period (6, 18 and 24 h). Our results showed that in general DMEM favored the production of secreted proteins after 6-h growth culture, but with individual variation (data not shown). Some reports describe that the use of preconditioned DMEM (DMEM-PC) provides signals from epithelial cells affecting virulence factors expression [47]. Also the secretion of plasmid-encoded toxin (Pet) by enteroaggregative E. coli is dependent on the addition of tryptone to DMEM (DMEM-T) [53]. Considering this, the bacterial isolates from our collection were cultivated in DMEM, DMEM-T and DMEM-PC, but EspB production and secretion was enhanced when bacterial isolates were cultivated in DMEM without enrichment.

Another important point of the present work was the evaluation of the four antibodies raised. We expected that EspA would be a biomarker for diagnosis and anti-EspA antibodies a detecting tool, since this protein is the major component of a transiently expressed surface organelle, which forms a direct link between the bacterium and the host cell [7]. However, our data pointed out EspB as the target antigen, and MAb anti-EspB the best antibody for defining LEE-positive isolates. Nakasone et al. [42,54] also defined EspB as the target antigen for identifying LEE-positive strains. In fact, EspA filaments exhibit antigenic polymorphisms [55].

The indirect ELISA using anti-EspB MAb showed 90.4% and 96.4%, sensitivity and specificity, respectively, indicating its possible use in routine diagnostic laboratories. However, this methodology requires specific laboratory instrumentation, making it difficult to be performed in low-income country settings. Therefore, we standardized here a rapid agglutination test using latex beads coated with anti-EspB MAb (RALT), which has the sensitivity and specificity required for high impact diagnosis of neglected diseases in the developing world [56]. Two other assays have been described for LEE-positive isolates based on EspB detection; the 16–18 h reversed passive latex agglutination test (RPLA) [41] and a 10 min immunochromatographic test (IC) [42]. Although more time consuming, the RPLA test was more sensitive than the IC test [42].

Serotyping-based diagnosis is the only methodology available in limited-resources settings, employing either commercial or in-house antisera [28]. The standardized RALT for detection of EPEC and EHEC will have a remarkable impact in the diagnosis of these pathotypes, demonstrated by 97% sensitivity, 98% specificity and 97% efficiency in EspB detection. Also, no cross-reaction was observed with other DEC pathotypes and E. coli negative for DEC virulence factors. Among the enterobacteria species only one Proteus mirabilis was recognized by MAbs anti-EspB. However, P. mirabilis can be easily differentiated from EPEC/EHEC by biochemical methods employed for species identification [57], a step necessary prior to the performance of our RALT. Thus the established agglutination latex in the present study is a simple, rapid (5 min) and easy to perform test, which can be employed in less equipped laboratories in low-income countries.

### Supporting Information

**Checklist S1** STARD checklist.

(HTML)

**Acknowledgments**

The authors thank Camila B. P. Pereira for technical support. Dr. A. Leyva helped with English editing of the manuscript.

**Author Contributions**

Conceived and designed the experiments: RMFP LBR ARRS DDM DEL. Performed the experiments: LBR ARRS DDM LTAC DEL FBA. Analyzed the data: LBR ARRS DDM LTAC DEL DSPQH WPE RMFP. Contributed reagents/materials/analysis tools: RMFP. Wrote the paper: RMFP LBR ARRS DDM DEL DSPQH WPE.

---

**Table 1. Rapid agglutination latex test reactivity (%) with bacterial isolates.**

| Pathotype or group | No. of bacterial isolates | espB gene | Reactivity (%) | Total |
|--------------------|---------------------------|-----------|----------------|-------|
| αEPEC              | 71                        | +         | 98.6           | 70/71 |
| αEPEC              | 31                        | +         | 90.3           | 28/31 |
| EHEC               | 23                        | +         | 100            | 23/23 |
| DEC/LEE*           | 20                        | -         | 0              | 0/20  |
| NVF E. coli        | 20                        | -         | 0              | 0/20  |
| Enterobacteriaceae (other than E. coli). | 20 | - | 5 | 1°/20 |

*αEPEC (typical enteropathogenic E. coli); αEPEC (atypical enteropathogenic E. coli); EHEC (enterohemorrhagic E. coli); DEC/LEE* (LEE-negative diarrheagenic E. coli); NVF E. coli (focal E. coli negative for DEC virulence factors).

**Proteus mirabilis.**

doi:10.1371/journal.pntd.0003150.t001
References

1. World Health Organization. (2013) Diarrhoeal disease. Fact sheet 330. http://www.who.int/mediacentre/factsheets/fs330/en/.
2. Kotsiol KL, Natour JP, Blackwell WC, Natour D, Farag TH, et al. (2013) Burden and aetiology of diarrheal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382: 209–222.
3. Hill DR, Butcher NJ. (2010) Travelers' diarrhea.Curr Opin Infect Dis 23: 481–487.
4. Croxen MA, Law RJ, Scholz R, Kerey NM, Wlodarska M, et al. (1997) An outbreak of enteropathogenic Escherichia coli in a health-care setting. J Infect Dis 176: 1625–1633.
5. Trabulsi LR, Keller R, Gomes TAT. (2002) Typical and atypical enteropathogenic E. coli: ecology, pathogenesis, and evolution. Front Cell Infect Microbiol 3: 1–3.
6. Gomes TAT, Souto LR, McNeish AS. (1987) Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55: 69–77.
7. Knutton S, Rosenblatt I, Pallen MJ, Bain C, et al. (1998) A novel EspA-associated surface organelle of enteropathogenic E. coli involved in protein translocation into epithelial cells. The EMBO J 17: 2166–2176.
8. Ide T, Laarmann S, Greune L, Schiller H, Oehme E, et al. (2001) Characterization of translocation domains inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3: 669–679.
9. Kenny B, Devincren R, Stein M, Reinscheid DJ, Frey EA, et al. (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence to mammalian cells. Cell 91: 311–320.
10. Donnenberg MS, Finlay B. (2013) Combating enteropathogenic Escherichia coli. J Infect Dis 152: 550–559.
11. Batchelor M, Knutton S, Caprioli A, Huter V, Zanial M, et al. (1999) Detection and subtyping methods of diarrheagenic Escherichia coli. Rev Med Microbiol 3: 1–3.
12. Betancourt-Sanchez M, Navarro-Garcia F. (2009) Pet secretion, internalization and induction of cell death during infection of epithelial cells by enteroaggregative Escherichia coli. Microbiol 25: 887.
13. Lee CA, Torres AB, Piazza RM, Neto JM, Rocha PB, et al. (2007) Development of a universal intimin antiserum and PCR primers. J Clin Microbiol 45: 357–365.
14. Cos T, Burdel M, Contreras C, Mercado E. (2008) New insights into the epidemiology of enteropathogenic E. coli infection. Trans R Soc Trop Med Hyg 102: 852–856.
15. Haigh R, Baldwin T, Knutton S, Williams PH. (1995) Carbon dioxide regulated factor. J Infect Dis 152: 560–565.
16. Ide T, Faure JL, Murray WJ, Vespignani V, Schoolnik GK. (1993) Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol 7: 565–573.
17. Adu-Bobie J, Trabulsi L, Carneiro-Sampaio MM, Dougan G, Frankel G. (2008) Etiology of childhood diarrhea in the northeast of Brazil: significant association of Vi antigen-like reactivity. J Infect Dis 198: 1481–1489.
18. Dorman CJ, Bhriain NN. (1993) DNA topology and bacterial virulence gene expression. Trends Microbiol 1: 92–99.
19. Alfriend Torres, editor. Pathogenic Escherichia coli in Latin America. Dubai: Bentham Science Publishers. pp. 95–115.
20. Abo-Bobie J, Trabulsi LR, Carneiro-Sampaio MM, Dougan G, Frankel G. (1997) Identification of immunogenic regions within the C-terminal cell binding domain of intimin alpha and intimin beta from enteropathogenic E. coli. Infect Immun 66: 5643–5649.
21. Batchelor M, Knutton S, Caprioli A, Huter V, Zanial M, et al. (1999) Development of a universal intimin immuniser and PCR primers. J Clin Microbiol 37: 3822–3827.
22. Koga PCM, Menezes CA, Lima FA, Nara JM, Magallães CA, et al. (2003) Polyclonal anti-intimin antibody: immunological characterization and its use in EPEC and EHEC diagnosis. Braz J Microbiol 34: 5–7.
23. Menezes MA, Rocha BR, Koga PC, Fernandes I, Nara JM, et al. (2010) Identification of enteropathogenic and enterohemorrhagic Escherichia coli strains by immunosorbent detection of intimin. J Appl Microbiol 108: 878–887.
24. Menezes MA, Aires KA, Ozaki CY, Ruiz RM, Pereira MC, et al. (2011) Cloning approach and functional analysis of anti-intimin single-chain variable fragment (scFv), BMG Res Notes 4: 30.
25. Caraballo A, Teixeiro FB, Moraes CT, Maranhão AQ, et al. (2010) Sensitive and specific detection of enteropathogenic and enterohemorrhagic Escherichia coli using recombinant anti-intimin antibody by immunoﬂuorescence assay. Diagn Microbiol Infect Dis 70: 301–305.
26. Araujo JM, Tabarelli GF, Aranda KR, Fabbricotti SH, Fagundes-Neto U, et al. (2007) Typical enterotoxigenic Escherichia coli O11:B4 in schoolchildren and adults: evidence of plasmid-encoded genes associated with diarrheal disease. J Infect Dis 196: 2131–2137.
27. Bueris V, Sircili MP, Taddei CR, Santos MF, Franzolin MR, et al. (2007) Typical enterotoxigenic Escherichia coli O11:B4 in Salvador, Bahia, Brazil. Mem Inst Oswaldo Cruz 102: 359–363.
28. Piazza RMF, Abe CM, Horton DSPQ, Millevbsky E, Chinen I, et al. (2010) Detection and subtyping methods of diarrheagenic Escherichia coli strains. In: Alfredo Torres, editor. Pathogenic Escherichia coli in Latin America. Dubai: Bentham Science Publishers. pp. 95–115.
55. Neves BC, Shaw RK, Frankel G, Knutton S. (2003) Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71: 2262–2265.

56. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, et al. (2006) Requirements for high impact diagnostics in the developing world. Nature 444: 73–79.

57. Farmer JJ, III (2003) Enterobacteriaceae: introduction and identification. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of Clinical Microbiology. 8th ed. Washington, DC: American Society for Microbiology. pp. 636–653.