Shugoshin prevents cohesin cleavage by PP2A(Cdc55)-dependent inhibition of separase

Citation for published version:
Clift, D, Bizzari, F & Marston, AL 2009, 'Shugoshin prevents cohesin cleavage by PP2A(Cdc55)-dependent inhibition of separase' Genes & Development, vol 23, no. 6, pp. 766-780. DOI: 10.1101/gad.507509

Digital Object Identifier (DOI):
10.1101/gad.507509

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genes & Development

Publisher Rights Statement:
Open Access Article

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Shugoshin prevents cohesin cleavage by PP2ACdc55-dependent inhibition of separase

Dean Clift, Farid Bizzari, and Adele L. Marston1

The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom

Chromosome segregation is triggered by separase, an enzyme that cleaves cohesin, the protein complex that holds sister chromatids together. Separase activation requires the destruction of its inhibitor, securin, which occurs only upon the correct attachment of chromosomes to the spindle. However, other mechanisms restrict separase activity to the appropriate window in the cell cycle because cohesin is cleaved in a timely manner in securin-deficient cells. We investigated the mechanism by which the protector protein Shugoshin counteracts cohesin cleavage in budding yeast. We show that Shugoshin can prevent separase activation independently of securin. Instead, PP2ACdc55 is essential for Shugoshin-mediated inhibition of separase. Loss of both securin and Cdc55 leads to premature sister chromatid separation, resulting in aneuploidy. We propose that Cdc55 is a separase inhibitor that acts downstream from Shugoshin under conditions where sister chromatids are not under tension.

Keywords: PP2A; Shugoshin; separase; cohesion; mitosis; meiosis

Supplemental material is available at http://www.genesdev.org.

Received September 23, 2008; revised version accepted February 2, 2009.

The separation of chromosomes during cell division is an irreversible event that must be tightly controlled to safeguard against aneuploidy. Sister kinetochores attach to microtubules from opposite spindle pole bodies at metaphase in preparation for their segregation during anaphase of mitosis. The cohesin complex facilitates this process by linking sister chromatids, thereby resisting opposing microtubule forces to generate tension at kinetochores. Once all sister chromatids have made proper bipolar attachments, cohesin is abruptly destroyed, due to cleavage of its Scc1/Mcd1/Rad21 subunit by a protease known as separase, thereby triggering chromosome segregation (Nasmyth 2002).

Separase must be exquisitely controlled. An inhibitory chaperone, known as securin, plays a key role in preventing separase activation (Ciosk et al. 1998; Uhlmann et al. 1999; Hornig et al. 2002; Waizenegger et al. 2002). Securin is destroyed at the onset of anaphase owing to its ubiquitination by the anaphase-promoting complex (APC), coupled to its activator, Cdc20 (Cohen-Fix et al. 1999; Funabiki et al. 1999b; Peters 2006), thereby liberating separase. The spindle assembly checkpoint (SAC) prevents securin ubiquitination in response to defective kinetochore–microtubule attachments by inhibiting APCCdc20 (May and Hardwick 2006).

Despite the importance of securin in preventing separase activation, it is clear that other mechanisms exist to restrict cohesin cleavage to the appropriate window in the cell cycle. Although fission yeast and Drosophila securins are essential for viability (Funabiki et al. 1996a; Stratmann and Lehner 1996), budding yeast cells lacking securin are viable and initiate anaphase in a timely manner (Alexandru et al. 1999). Similarly, securin-deficient mice appear normal and mammalian cells exhibit only mild or transient phenotypes in the absence of securin (Jallepalli et al. 2001; Mei et al. 2001; Wang et al. 2001; Pfleghaar et al. 2005). An additional level of separase regulation is indeed achieved in vertebrate cells by the inhibitory phosphorylation-dependent binding of Cdk1/cyclin B1 (Stemmann et al. 2001; Gorr et al. 2005).

In addition to this temporal control, cohesin cleavage is additionally subject to spatial regulation during meiosis (Marston and Amon 2004). Separase-dependent cleavage of the meiosis-specific Scc1 homolog, Rec8, occurs on chromosome arms during meiosis I but is prevented in the vicinity of centromeres until meiosis II owing to the Shugoshin/Mei-S332 family of protector proteins (Kerrebrock et al. 1995; Katis et al. 2004; Kitajima et al. 2004; Marston et al. 2004; Rabitsch et al. 2004). Shugoshin (Sgo1) achieves this, at least in part, through recruitment of the protein phosphatase 2A, coupled to...
Overproduced Sgo1 inhibits anaphase onset

To address the mechanism of Sgo1 function we developed an assay based on its overproduction. Wild-type cells and cells carrying multiple copies of SGO1 under control of the galactose-inducible promoter (pGAL) were released from a G1 block synchronously into the cell cycle in the presence of galactose to induce SGO1 overexpression. Wild-type cells progressed synchronously through metaphase and entered anaphase, as judged by spindle morphology [Fig. 1A] and timely degradation of the anaphase inhibitor securin [Pds1 in budding yeast] [Fig. 1B]. In contrast, cells overexpressing SGO1 exhibited a pronounced metaphase delay [Fig. 1A,B]. For ease of interpretation of spindle morphology data in this and subsequent experiments we calculated the overall ratio of metaphase: anaphase spindles throughout the time course. Note that this value is close to 1 for the wild type, but increased in the SGO1-overexpressing cells, indicating a metaphase delay [Fig. 1A, boxes].

During metaphase, endogenous Sgo1 associates with an ~50-kb cohesin-enriched region surrounding centromeres (the pericentromere) [Kiburz et al. 2005]. Chromatin immunoprecipitation (ChIP) revealed that overproduced Sgo1 localized not only to this region but also along the length of chromosomes [Supplemental Fig. S1A–C]. Association of endogenous Sgo1 with the pericentromere depends on the kinetochore protein, Bub1 [Kiburz et al. 2005; Riedel et al. 2006; Fernius and Hardwick 2007] and we found that bub1Δ also reduced the amount of overproduced Sgo1 on chromosomes [Supplemental Fig. S1B,C], but not its overall levels [Supplemental Fig. S2]. The failure of overproduced Sgo1 to accumulate on chromatin correlated with an inability to block anaphase onset. In bub1Δ pGAL-SGO1 cells, Pds1 destruction and the appearance of anaphase spindles occurred with a timing similar to that seen in bub1Δ cells [Supplemental Fig. S1D,E]. Therefore, BUB1 is required for the metaphase delay caused by SGO1 overexpression, perhaps due to a requirement for Sgo1 to be associated with chromatin.

SGO1 overexpression causes a metaphase delay independently of spindle checkpoint components, Aurora kinase, and securin

In addition to its role in localizing Sgo1, Bub1 is a component of the SAC. However, the metaphase delay induced by SGO1 overexpression does not require another SAC component, MAD1 [Supplemental Fig. S1F,G]. Similarly, a functional Aurora kinase [IPL1], which destabilizes inappropriate microtubule–kinetochore attachments, is not required for the metaphase delay induced by SGO1 overexpression [Supplemental Fig. S3]. These findings raised the possibility that securin might also be dispensable for the delay in anaphase onset in pGAL-SGO1 cells and, indeed, we found this to be the case [Fig. 1C,D]. Taken together, these results indicate that SGO1 prevents anaphase onset through a mechanism that is independent of securin and the canonical SAC.

Separase is inhibited upon SGO1 overexpression

Since SGO1 overexpression causes a metaphase delay in the absence of securin, we reasoned that either separase is inhibited independently of securin, or that its substrate, the cohesin protein Scc1, is made resistant to separase-dependent proteolysis. Both these possibilities predict that cleavage of Scc1 is inhibited upon SGO1 overexpression and indeed we found this to be the case. In wild-type and pds1Δ cells, the levels of full-length Scc1 decreased simultaneously with the appearance of anaphase spindles and a shorter Scc1 cleavage fragment [Fig. 1C,D]. In cells overexpressing SGO1, however, this decline in full-length Scc1 and appearance of cleavage product was greatly retarded, even in the absence of PDS1 [Fig. 1C,D]. To test whether separase was inhibited we examined the cleavage of its other known substrate, the kinetochore protein, Slk19 [Fig. 1E,F, Sullivan et al. 2001]. Slk19 exists in multiple forms, the two faster migrating bands of which correspond to phosphorylated and unphosphorylated cleavage product and are relatively stable [Fig. 1E,F]. The slower migrating species is full-length Slk19 that, in wild-type cells and pds1Δ cells, is maximally phosphorylated at metaphase before declining at anaphase onset [Fig. 1E,F]. In cells overexpressing SGO1, however, full-length Slk19 remains stabilized,
Figure 1. SGO1 overexpression inhibits separase activity in a PDS1-independent manner. Overexpression of SGO1 causes a metaphase delay. Cells were arrested in G1 in raffinose medium (YEPR) using α-factor, preinduced with galactose for 30 min, and released into medium containing both raffinose and galactose (YEPRG). α-Factor was added again after release to limit our analysis to a single cell cycle. Samples were taken at the indicated time points for immunoblot analysis and to determine percentages of cells with short (metaphase) and long (anaphase) spindles after tubulin immunofluorescence (at least 200 cells per time point). The numbers in boxes correspond to the overall ratio of metaphase to anaphase cells throughout the time course for each strain. Pgk1 and Kar2 are shown as loading controls. [A,B] Pds1 is stabilized upon SGO1 overexpression. Spindle morphology [top] and Pds1-3HA protein levels [bottom] of wild-type (AM1290) and pGAL-SGO1 (AM3917) cells carrying PDS1-3HA. [C,D] SGO1 overexpression inhibits cleavage of Scc1. [C,D] Spindle morphology [top panels] and anti-HA immunoblot [bottom panels] of wild-type (AM1145), pGAL-SGO1 (AM1126), pds1Δ (AM1127), and pds1Δ pGAL-SGO1 (AM1128) cells all carrying SCC1-6HA. [E,F] Slk19 cleavage is inhibited by SGO1 overexpression. Spindle morphology [top panels] and anti-Myc immunoblot [bottom panels] of wild-type (AM2753), pGAL-SGO1 (AM1066), pds1Δ (AM3298), and pds1Δ pGAL-SGO1 (AM1604) cells all carrying SLK19-13MYC.
even in the absence of *PDS1* [Fig. 1E,F]. Therefore, *SGO1* overexpression inhibits cleavage of both known separase substrates in a securin-independent manner.

Cohesin cleavage is sufficient to allow spindle elongation in *SGO1*-overexpressing cells

We reasoned that, if prevention of cohesin cleavage due to separase inhibition is responsible for the metaphase delay in *SGO1*-overexpressing cells, forced cleavage of cohesin should trigger anaphase onset. We used a version of Scc1 with one of its two separase cleavage sites exchanged for the recognition sequence for TEV protease [*SCC1-TEV*], the ectopic cleavage of which can be induced by expression of the gene encoding TEV protease [*pGAL-TEV*] [Uhlmann et al. 2000]. Supplemental Fig. S4 shows that artificial cleavage of cohesin abolished the metaphase delay caused by *SGO1* overexpression. Anaphase spindles tended to be shorter in these cells (data not shown), consistent with a failure to activate separase [Higuchi and Uhlmann 2005; see also below]. We conclude that cohesin cleavage is sufficient to allow anaphase onset in *SGO1*-overexpressing cells.

Sgo1 can inhibit the nonproteolytic function of separase

In addition to its role as a protease, a nonproteolytic function of separase initiates mitotic exit as part of the Cdc14 early anaphase release (*FEAR*) network, which promotes release of the phosphatase Cdc14 from the nucleolus during early anaphase [Fig. 2A; for review, see Stegmeier and Amon 2004]. To test whether this nonproteolytic role of separase was also inhibited upon *SGO1* overexpression, we analyzed the timing of Cdc14 release from the nucleolus and compared it with spindle length in cells lacking *PDS1* to rule out possible inhibition of separase due to securin stabilization. In *pds1Δ* cells, as expected, Cdc14 was released from the nucleolus into the nucleus and cytoplasm only as spindles became longer than 2 μm [Fig. 2B–D]. In contrast, Cdc14 release from the nucleolus was inhibited in *pds1Δ* cells overexpressing *SGO1* [Fig. 2B]. Since Cdc14 is not normally released from the nucleolus in cells with a short spindle, the predominant class in *SGO1*-overexpressing cells, we further examined Cdc14 localization in cells lacking cohesin, which allows spindle elongation even if separase is inhibited [Supplemental Fig. S4]. Depletion of *SCC1* by its placement under the control of the methionine-repressible *pMET3* promoter caused an increase in spindle length in *SGO1*-overexpressing cells [Fig. 2D, cf. *pds1Δ pMET-SCC1 pGAL-SGO1* and *pds1Δ pGAL-SGO1*], although Cdc14 release was still inhibited [Fig. 2B]. These results indicate that *SGO1* overexpression impedes Cdc14 release from the nucleolus in a Pds1-independent manner. Again, elongated spindles tended to be shorter in cohesin-depleted cells where *SGO1* was overexpressed [Fig. 2D, cf. *pds1Δ pMET-SCC1* and *pds1Δ pMET-SCC1 pGAL-SGO1*]. Because separase-dependent Cdc14 activation is required for full spindle elongation [Higuchi and Uhlmann 2005], this further suggests that separase is inhibited upon *SGO1* overexpression. In support of this interpretation, *ESP1* overexpression can overcome the metaphase delay caused by high levels of Sgo1 [Fig. 2E].

PP2A^{Cdc55} is required for inhibition of anaphase onset upon *SGO1* overexpression

Our results indicate that *SGO1* overexpression causes separase inhibition and a metaphase arrest independently of securin. How might this separase inhibition occur? A candidate downstream effector of Sgo1 in separase inhibition is the protein phosphatase 2A [*PP2A*], a tripartite complex of scaffold [*A*], regulatory [*B*], and catalytic [*C*] subunits. In budding yeast, there are two regulatory subunits, Cdc55 [*B*] and Rts1 [*B*]. During meiosis, Sgo1 recruits PP2A coupled to its B regulatory subunit (*Rts1* in budding yeast) to centromeric regions and cohesin is protected locally likely as a result of its dephosphorylation by PP2A^{Rts1}, which makes it a poor substrate for cleavage by separase [Lee and Amon 2003; Brar et al. 2006; Kitajima et al. 2006; Riedel et al. 2006]. PP2A coupled to the B type regulatory subunit, Cdc55, is an inhibitor of mitotic exit and, notably, forms a complex with separase [Minshull et al. 1996; Queralt et al. 2006; Wang and Ng 2006; Yellman and Burke 2006]. We therefore tested the requirement for *RTS1* and *CDC55* in the block to anaphase onset caused by *SGO1* overexpression. Deletion of *RTS1* only slightly advanced the onset of anaphase in *SGO1*-overexpressing cells [Fig. 3A,B]. However, strikingly, deletion of *CDC55* almost completely rescued the metaphase delay of *SGO1*-overexpressing cells [Fig. 3A,C]. The slight delay in anaphase onset in *cdc55Δ pGAL-SGO1* cells as compared with *cdc55Δ* cells [Fig. 3C], together with the modest advance of anaphase in *SGO1*-overexpressing cells lacking *RTS1* [Fig. 3B], could represent a minor role for PP2A^{Rts1} in Scc1 dephosphorylation, as reported for Rec8 in meiosis [Kitajima et al. 2006; Riedel et al. 2006]. However, we were not able to test whether deletion of both *RTS1* and *CDC55* completely abolished the metaphase delay of *SGO1*-overexpressing cells due to the severely impaired growth of the *rtslΔ cdc55Δ* double mutant (data not shown).

To investigate whether the *CDC55*-dependent block to anaphase onset was mediated through PP2A, we examined the ability of *SGO1* overexpression to induce a metaphase delay in cells where the PP2A catalytic subunits are mutated [*ppb21*-*L369Δ* *ppb22Δ*] such that Cdc55 association with the PP2A holoenzyme is prevented [Evans and Hemmings 2000]. Figure 3D shows that *SGO1* overexpression did not induce a metaphase delay in *ppb21*-*L369Δ* *ppb22Δ* cells. We also found that neither the amount of overproduced Sgo1 [Supplemental Fig. S2] nor its association with chromosomes [Fig. 3E,F] were affected by deletion of *CDC55*. We conclude that PP2A^{Cdc55} acts downstream from *SGO1* overexpression in preventing cell cycle progression.

CDC55 deletion allows separase activation in *SGO1*-overexpressing cells

We tested whether *CDC55* was required for the stabilization of Pds1 caused by *SGO1* overexpression. Deletion
of CDC55 reduced, but did not abolish, the delay in Pds1 degradation in SGO1-overexpressing cells [Fig. 3G,H]. We next monitored the cohesin, Scc1, by Western blotting to determine whether its separase-dependent cleavage was coupled to anaphase onset in SGO1-overexpressing cells lacking CDC55. For ease of detection, we examined cohesin cleavage in ubr1Δ cells, in which the Scc1 cleavage fragment is stabilized [Rao et al. 2001]. As before, cleaved Scc1 accumulated in wild-type cells concomitant with the disappearance of full-length Scc1 and appearance of anaphase spindles [Fig. 4A,B] but in cells overexpressing SGO1, both Scc1 cleavage and the appearance of anaphase spindles [Fig. 4A,C] were delayed. Both the decline in full-length Scc1 and the appearance of its cleavage fragment were also modestly delayed in ubr1Δ cdc55Δ cells, consistent with the slower entry into anaphase of these cells [Fig. 4D,E]. Surprisingly, Scc1 levels declined slowly in ubr1Δ cdc55Δ pGAL-SGO1 cells, although a Scc1 cleavage product accumulated around the time at which anaphase spindles appeared [75 min] [Fig. 4D,F] and with a timing similar to that of ubr1Δ cdc55Δ cells [Fig. 4D,E]. These findings suggested that cdc55Δ advances anaphase in pGAL-SGO1 cells without complete Pds1 degradation and while allowing only a small subset of Scc1 to be cleaved.

To ask if the uncleaved Scc1 in SGO1-overexpressing cells lacking CDC55 was associated with chromatin during anaphase, we examined Scc1 localization on chromosome spreads. Figure 4, G–K, shows that Scc1 dissociated from chromosomes concomitant with the onset of anaphase spindles in wild-type and cdc55Δ cells whether SGO1 was overexpressed or not. Therefore, the persistent full-length Scc1 in SGO1-overexpressing cells lacking CDC55 cannot hold sister chromatids together. Consistent with these results, deletion of CDC55 in SGO1-overexpressing cells allows for a normal anaphase with sister chromatids segregating to opposite poles [Supplemental Fig. S5].

To test directly whether cohesin cleavage is required for anaphase onset in SGO1-overexpressing cells lacking CDC55, we used a version of Scc1 that has had its recognition sites for separase mutated and cannot be
Figure 3. **PP2A_{Cdc55}** is required to prevent spindle elongation and securin degradation in SGO1-overexpressing cells. (A–D) SGO1 overexpression causes a metaphase delay in otherwise wild-type (A) or rts1Δ (B) cells, but not cdc55Δ (C) and pph21-L369Δ pph22Δ (D) cells. Wild-type [AM1176, pGAL-SGO1 [AM870], rts1Δ [AM3209], rts1Δ pGAL-SGO1 [AM3306], cdc55Δ [AM3164], cdc55Δ pGAL-SGO1 [AM3239], pph21-L369Δ pph22Δ (AM5271), pph21-L369Δ pph22Δ pGAL-SGO1 [AM5269]] strains were treated and analyzed as described in Figure 1 except that they were grown at 30°C and not retreated with α-factor. (E,F) Deletion of **CDC55** does not impair the association of overproduced SGO1 with chromatin. Binding ratios (E) determined after PCR analysis (F) of ChIP samples using primers to sites at the centromere (CEN3), pericentromere (CARC2, CARC1, R3, c130), or arms (c64, c138, c191, c194, c233, c281) of chromosome III (see Supplemental Fig. S1A). Strains carrying pGAL-SGO1-MYC and otherwise wild type [AM1392] or cdc55Δ (AM4843) compared with a no-tag control (AM870) were grown at 30°C and analyzed as described in Supplemental Figure S1. (G,H) Deletion of **CDC55** advances securin degradation in SGO1-overexpressing cells. Wild-type [AM1290, pGAL-SGO1 [AM3917], cdc55Δ (AM4432), and pGAL-SGO1 cdc55Δ (AM4431)] cells were grown at 30°C but otherwise as described in Supplemental Figure S1.
cleaved (Uhlmann et al. 1999). Expression of this non-cleavable form of cohesin from the pGAL promoter (pGAL-SCC1-NC) in otherwise wild-type, pGAL-SGO1, or cdc55Δ cells caused a strong metaphase delay (Fig. 4L–N). Similarly, Scc1-NC inhibited spindle elongation in SGO1-overexpressing cells lacking CDC55 (Fig. 4O). Additionally, we found that a functional separase is essential for spindle elongation in cdc55Δ pGAL-SGO1 cells [Supplemental Fig. S6]. Taken together, these findings demonstrate that CDC55 deletion bypasses the metaphase delay caused by SGO1 overexpression by allowing at least a subset of cohesin to be cleaved by separase.

CDC55 acts downstream from SGO1 in separase inhibition

Our findings suggested that CDC55 may act downstream from SGO1 in the inhibition of separase. Interestingly, Chiroli et al. [2007] found that overexpression of CDC55 causes a delay in metaphase that is independent of securin. We confirmed these results and in addition found...
that overexpression of \textit{CDC55} gives a phenotype that is strikingly similar to that seen when overexpressing \textit{SGO1}. That is, securin is stabilized in \textit{CDC55}-overexpressing cells and the cleavage of securase substrates Sec1 and Slk19 is inhibited even in the absence of \textit{PDS1} (Supplemental Fig. S7A–D). We found that \textit{SGO1} is also not required for the metaphase delay caused by \textit{CDC55} overexpression (Supplemental Fig. S7E,F). These results support the notion that Cdc55 acts downstream from Sgo1 to inhibit securase.

\textit{Sensitivity of cdc55Δ, sgo1Δ, and mad1Δ mutants to microtubule-depolymerizing drugs}

Both \textit{CDC55} and \textit{SGO1} play poorly defined roles in the SAC and show reduced growth on the microtubule-depolymerizing drug, benomyl [Minshull et al. 1996; Wang and Burke 1997; Indjeian et al. 2005; Yellman and Burke 2006]. We found that the \textit{cdc55Δ} mutant is slightly more benomyl-sensitive than the \textit{sgo1Δ} mutant but is not significantly further compromised in combination with it (Supplemental Fig. S8A). Both \textit{cdc55Δ} and \textit{sgo1Δ} mutants grow more poorly on benomyl than, and show additive effects with, the canonical SAC mutant, \textit{mad1Δ}. However, \textit{rts1Δ} does not display benomyl sensitivity. These results lend support to the idea that Sgo1 and Cdc55 function in a common checkpoint pathway that is distinct from the canonical SAC. We note, however, that Sgo1 and Cdc55 must also have distinct cellular roles, since the \textit{cdc55Δ sgo1Δ} double mutant exhibits a more severe growth defect than either single mutant alone in the absence of microtubule-depolymerizing drugs (Supplemental Fig. S8A; D. Clift and A.L. Marston, unpubl.).

\textit{Negative regulation of mitotic exit by Sgo1 and Cdc55}

The role of Cdc55 in the SAC has been attributed to its function in the inhibition of mitotic exit by ensuring the sequestration of Cdc14 in the nucleolus [Yellman and Burke 2006]. A group of genes known as the FEAR network initiate Cdc14 release from the nucleolus and this is maintained by the mitotic exit network (MEN) [Stegmeier and Amon 2004]. Cells lacking both the FEAR activator, \textit{SPO12}, and the MEN activator, \textit{LTE1}, are inviable [Stegmeier et al. 2002] but can be rescued by deletion of \textit{CDC55}, indicating that Cdc55 negatively regulates mitotic exit [Yellman and Burke 2006]. We found that \textit{sgo1Δ spo12Δ lte1Δ} cells are also viable (Supplemental Fig. S8B), providing evidence that Sgo1 also inhibits mitotic exit and functions in a common pathway to Cdc55.

\textit{Cdc55 and Sgo1 respond to a lack of tension between sister kinetochores}

We asked if the checkpoint defects of the \textit{sgo1Δ} mutant are shared with \textit{cdc55Δ}. Sgo1 is required to arrest the cell cycle in response to a lack of tension between sister kinetochores [Indjeian et al. 2005]. To examine the requirement for \textit{CDC55} in response to a lack of tension we depleted cohesin [using the \textit{MET-SCC1} construct] and examined the stability of securin, Pds1, and the mitotic cyclin, Clb2, as well as the release of Cdc14 from the nucleolus. The absence of linkages between sister chromatids causes the stabilization of Pds1 and Clb2 and the sequestration of Cdc14 in the nucleolus in wild-type cells [Fig. 5A–C]. However, the SAC mutant \textit{mad1Δ} failed to arrest the cell cycle as evidenced by the destruction of both Pds1 and Clb2 and release of Cdc14 from the nucleolus. The \textit{sgo1Δ} and \textit{cdc55Δ} mutants also failed in cell cycle arrest but behaved in a manner that was distinct from the \textit{mad1Δ} mutant: Cdc14 was released from the nucleolus, but both Pds1 and Clb2 appeared relatively stable on Western blots [Fig. 5A–C]. Analysis of single cells, however, revealed that the disappearance of Pds1 was accelerated in a fraction of \textit{sgo1Δ} and \textit{cdc55Δ} cells [Fig. 5A]. Therefore, the response of \textit{sgo1Δ} and \textit{cdc55Δ} mutants to a lack of tension between sister kinetochores is similar and characterized by inappropriate Cdc14 release from the nucleolus and partial degradation of Pds1.

\textit{Cdc55 prevents precocious securase activation during meiosis}

Does Cdc55-dependent securase inhibition contribute to the centromeric cohesin protection function of Sgo1 during meiosis? Sgo1 achieves this, in part, through the recruitment of PP2A\textsubscript{Rts1} to centromeres. PP2A\textsubscript{Rts1} is thought to counteract the Polo kinase-dependent

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Tension-sensing defects in \textit{sgo1Δ} and \textit{cdc55Δ} mutants. [A–C] \textit{SGO1} and \textit{CDC55} are required for cell cycle arrest in response to a lack of tension. Strains carrying \textit{pMET-SCC1}, and having \textit{PDS1-18MYC} and \textit{3HA-CDC14} fusions that were otherwise wild type (AM4772), \textit{mad1Δ} (AM4856), \textit{sgo1Δ} (AM4773), and \textit{cdc55Δ} (AM4859), were grown as described in Figure 2 to deplete \textit{SCC1} except the medium contained glucose rather than raffinose. [A,B] Percentages of cells at the indicated times after G1 release with (A) Pds1 staining or (B) Cdc14 released from the nucleolus on immunofluorescence samples. [C] Immunoblot analysis of Pds1-18Myc and Clb2 levels. Pgk1 is shown as a loading control.}
\end{figure}
phosphorylation of Rec8, thereby maintaining Rec8 in the unphosphorylated state and a poor substrate for separase-dependent cleavage. However, the inhibition of Rec8 phosphorylation either by depletion of Polo kinase [CDC5 in budding yeast] or by using a Rec8 phosphorylation site mutant (REC8-17A) prevents cohesin cleavage only in the presence of Sgo1 [Brar et al. 2006]. Therefore, Sgo1 prevents Rec8 cleavage through a mechanism other than reversing Cdc5-dependent phosphorylation. To ask if Cdc5 could be part of this mechanism, we examined Rec8 cleavage in cells carrying CDC5 under control of the mitosis-specific CLB2 promoter, resulting in its repression during meiosis (pCLB2-CDC5) [Lee and Amon 2003]. In wild-type cells, the appearance of the Rec8 cleavage product coincided with a decrease in mononucleate cells [Fig. 6A,C]. As described previously, Rec8 was underphosphorylated in pCLB2-CDC5 cells, its cleavage was precluded [Fig. 6D, cf. wild type and pCLB2-CDC5], and nuclear division did not occur [Fig. 6B]. Depletion of SGO1 (using a pCLB2-SGO1 allele) allows increased cohesin cleavage in pCLB2-CDC5 cells and mononucleate cells declined in lieu of cells with bilobed, stretched, or divided nuclei [Fig. 6E,F; Brar et al. 2006]. Note that cohesin cleavage is not expected to allow complete nuclear division in pCLB2-CDC5 cells, owing to the persistence of unresolved Holliday junctions [Clyne et al. 2003]. To investigate the importance of CDC55 in averting the cleavage of underphosphorylated Rec8, we first induced cdc55Δ mutants to undergo meiosis; however, they were severely impaired in meiotic progression [data not shown]. We therefore generated a conditional allele by placing CDC55 under the control of the CLB2 promoter [pCLB2-CDC55], which led to at least a partial depletion of CDC55 during meiosis [Fig. 6G,H]. pCLB2-CDC55 mutants are impaired in meiotic progression and undergo a single nuclear division, suggesting that CDC55 performs multiple functions during meiosis that are beyond the scope of the present study [data not shown]. Nevertheless, Figure 6, B and H, shows that depletion of CDC55 allows similar levels of Rec8 cleavage and a comparable reduction of mononucleate cells in pCLB2-CDC5 cells as does SGO1 depletion. Therefore, both SGO1 and CDC55 are required to shield underphosphorylated Rec8 from separase-dependent cleavage, indicating that Sgo1 and Cdc55 have overlapping functions in separase regulation in meiosis as well as mitosis.

Cdc55 is essential for separase inhibition in the absence of securin

If Cdc55 is important for separase inhibition in a normal cell cycle, it would become essential in the absence of securin, a well-established separase inhibitor. Indeed, cells lacking both CDC55 and PDS1 are inviable [Tang and Wang 2006; Chirol et al. 2007; data not shown]. To examine the terminal phenotype of these cells, we constructed a conditional allele of PDS1 by placing it under the methionine-repressible promoter, pMET3. As expected, a cdc55Δ pMET-PDS1 strain failed to grow in the presence, but not the absence, of methionine [Supplemental Fig. S9]. We examined the consequences of loss of both Cdc55 and Pds1 over a single cell cycle. Wild-type,
cdc55Δ, pMET-PDS1, and cdc55Δ pMET-PDS1 cells, all carrying an Scc1-6HA fusion, were released from a G1 arrest in the presence of methonine, and cleavage of Scc1 was monitored as a marker for separase activity [Fig. 7A–D]. In wild-type and PDS1-depleted cells, full-length Scc1 declined and a shorter cleavage fragment appeared simultaneously with spindle elongation [60 min] [Fig. 7A,B]. Similarly, an Scc1 cleavage fragment appeared

Figure 7. Loss of both CDC55 and PDS1 leads to premature cohesin cleavage, centromere separation, and aneuploidy. (A–F) Cohesin cleavage (bottom panels) and spindle morphology (top panels) in cells lacking CDC55 or SGO1 and depleted for PDS1. Strains of wild type [AM1145], pMET-PDS1 [AM4429], cdc55Δ [AM4342], pMET-PDS1 cdc55Δ [AM4675], sgo1Δ [AM1474], and pMET-PDS1 sgo1Δ [AM4422] all carrying an SCC1-6HA fusion were grown in SC/-Met containing 2% glucose (SC/-Met/D) and arrested in G1 using α-factor. Cells were released into YEPD + 8 mM methonine and samples collected for anti-tubulin immunofluorescence and anti-HA Western blotting. A short and a long exposure of the same immunoblot are shown to allow both the decline in full-length Scc1 and the appearance of the unstable Scc1 cleavage product to be visualized. Pgk1 is shown as a loading control. (G–L) Sister centromeres separate prematurely leading to nondisjunction in cells lacking CDC55 and depleted for PDS1. Strains of wild type [AM2812], pMET-PDS1 [AM3665], cdc55Δ [AM4330], pMET-PDS1 cdc55Δ [AM4676], sgo1Δ [AM962], and pMET-PDS1 sgo1Δ [AM3865] all carrying CENIV-GFP were grown as described in A–F. The percentages of cells with metaphase or anaphase spindle morphology or with two separated GFP foci were scored. The percentage of large budded cells with divided nuclei in which two GFP dots were observed in the same nucleus is shown above the graph in each case.

PP2A and Shugoshin inhibit separase
after 60 min in cdc55Δ cells, although the decline in full-length Scc1 was less efficient. Interestingly, the decline in full-length cohesin was advanced in cdc55Δ cells that were also depleted for PDS1 [Fig. 7D] and a low level of cleaved Scc1 was detected after only 30 min. These findings suggested the possibility that a subset of separase could be prematurely active in cells lacking both Cdc55 and Pds1. We also examined the consequences of loss of both SGO1 and PDS1 for cohesin cleavage. Although sgo1Δ pds1Δ double mutants are viable, they exhibit a synthetic growth defect that precludes reliable analysis of cell cycle progression; therefore, we again made use of the pMET-PDS1 allele. Appearance of the Scc1 cleavage fragment was delayed to 75 min in sgo1Δ cells [Fig. 7E], however, a low level of cleaved Scc1 appeared after 45 min in sgo1Δ pMET-PDS1 cells, although the decline of full-length Scc1 was not advanced [Fig. 7F]. Therefore, Sgo1 may also play a minor role in the prevention of cohesin cleavage in cells lacking Pds1.

These findings prompted us to examine the functional consequences of depletion of PDS1 in combination with cdc55Δ or sgo1Δ on chromosome segregation. For this purpose, we released cells with CEN4-GFP from a G1 block into methionine-containing medium and compared the timing of sister centromere separation to spindle morphology [Fig. 7G–L]. Wild-type, pMET-PDS1, cdc55Δ, and sgo1Δ cells all separated sister CEN4-GFP signals simultaneously with the appearance of anaphase spindles, as expected. Separation of sister centromeres was also not significantly advanced in sgo1Δ pMET-PDS1 cells, despite the premature appearance of cleaved Scc1 in these cells [Fig. 7F]. Strikingly, however, CEN4-GFP signals split prior to the appearance of anaphase spindles in cdc55Δ pMET-PDS1 cells, indicating premature loss of cohesion at CEN4 [Fig. 7J]. The outcome of this premature separation for the progeny was revealed by scoring the percentages of large budded cells with divided nuclei, in which both copies of CEN4 had been partitioned to the same nucleus [Fig. 7G–L, percentages above graphs]. A substantial degree (10%) of nondisjunction of CEN4-GFP was observed in cdc55Δ pMET-PDS1 cells compared with the other strains tested [Fig. 7J]. Misseggregation of the other 15 chromosomes at a similar frequency would result in a level of aneuploidy that could account for the inviability of cdc55Δ pMET-PDS1 cells.

We also tested the segregation of a chromosomal site just outside the centromere of chromosome V [URA3-GFP, ~35 kb away from the centromere] [Supplemental Fig. S10]. cdc55Δ pMET-PDS1 cells exhibited a less pronounced, precocious separation of URA3-GFP sequences, although this led to a similar degree of nondisjunction (8.8%) of chromosome V as for chromosome IV. These results suggest the interesting possibility that the precocious loss of sister chromatid cohesion in cells lacking both Pds1 and Cdc55 could be initiated at centromeres. Moreover, the finding that Pds1 and Cdc55 act redundantly to inhibit loss of sister chromatid cohesion suggests that Cdc55 and Pds1 work together to restrain separase activity.

Discussion

Cdc55 is a separase inhibitor

Separase is universally required to trigger chromosome segregation through its role in cohesin cleavage [Uhlmann et al. 2000; Wirth et al. 2006]. Due to the irreversible and vital nature of this event, cells have evolved redundant modes of regulation. Securin, an inhibitory chaperone for separase, is a key player, although it is not essential for cell growth in several systems, including humans [Alexandru et al. 1999; Jallepalli et al. 2001; Mei et al. 2001]. Prevention of cohesin subunit phosphorylation, although strongly inhibitory for cleavage of meiotic cohesins, plays a lesser role in mitosis and causes only a modest delay in cohesin cleavage [Alexandru et al. 2001; Clyne et al. 2003; Lee and Amon 2003]. Our analysis of Sgo1 function in mitotic cells has uncovered an additional level of regulation: separase inhibition by PP2A estará. Several lines of evidence support our conclusion that Cdc55 is a separase inhibitor: First, overexpression of CDC55 prevents the cleavage of separase substrates in a securin-independent manner. Second, deletion of CDC55 allows separase activation in SGO1-overexpressing cells. Third, cohesin is ectopically cleaved in CDC55-depleted meiotic cells where cohesin phosphorylation is prevented. Finally, we showed that Cdc55 and Pds1 play redundant roles in inhibiting precocious cohesin cleavage and sister chromatid separation.

How does PP2A Cdc55 inhibit separase? Cdc55 and separase are known to form a complex in vivo, and PP2A Cdc55 phosphatase activity is maximal in metaphase but declines as cells enter anaphase (Queralt et al. 2006). Human separase has also been shown to interact with B and B′ regulatory subunits of PP2A [Gil-Bernabe et al. 2006; Holland et al. 2007]. Therefore, PP2A Cdc55 could inhibit separase activity by direct dephosphorylation. However, the regulatory interactions between Cdc55 and separase are likely to be complex since a reciprocal inhibition of cohesin subunit phosphorylation, although strongly inhibitory for cleavage of meiotic cohesins, plays a lesser role in mitosis and causes only a modest delay in cohesin cleavage [Alexandru et al. 2001; Clyne et al. 2003; Lee and Amon 2003]. Our analysis of Sgo1 function in mitotic cells has uncovered an additional level of regulation: separase inhibition by PP2A Cdc55. Several lines of evidence support our conclusion that Cdc55 is a separase inhibitor: First, overexpression of CDC55 prevents the cleavage of separase substrates in a securin-independent manner. Second, deletion of CDC55 allows separase activation in SGO1-overexpressing cells. Third, cohesin is ectopically cleaved in CDC55-depleted meiotic cells where cohesin phosphorylation is prevented. Finally, we showed that Cdc55 and Pds1 play redundant roles in inhibiting precocious cohesin cleavage and sister chromatid separation.

Anaphase onset upon cleavage of a minor pool of cohesin

Although deletion of CDC55 largely abrogates the metaphase delay in SGO1-overexpressing cells, separase does not appear to be completely active in these cells because securin degradation is retarded and cohesin cleavage is inefficient. One possible explanation is that overexpressed Sgo1 targets PP2A Rts1 to cohesin and prevents its phosphorylation, making it a poor substrate for cleavage [Brar et al.
This uncleaved cohesin is not, however, localized to chromosomes, explaining why it is unable to hold chromosomes together. Therefore, *CDC55* is required to prevent cleavage of a minor pool of cohesin, which appears to be the most functionally relevant in generating intersister linkages. Interestingly, the findings of Tang and Wang (2006) have suggested that *CDC55* is required to prevent sister centromere separation even under conditions where *PDS1* is stable. Furthermore, the premature loss of cohesion in cells lacking both *PDS1* and *CDC55* is initiated at the centromere. Perhaps *CDC55* is especially important for preventing the cleavage of cohesins in this region that, due to their proximity to the site of microtubule attachment, could be the most critical in holding chromosomes together.

Cdc55 carries out the cellular functions of Sgo1

Previous studies showed that Sgo1 both senses a lack of tension between sister kinetochores in mitosis and protects centromeric cohesion during meiosis, but the underlying mechanisms were unresolved. We provided evidence that PP2A^{Cdc55}-dependent separase inhibition is at least partially responsible for both of these activities of Sgo1. This pathway contributes to the prevention of cohesin cleavage during meiosis I and operates alongside the predominant pathway of cohesin dephosphorylation through PP2A^{Rts1} recruitment. Therefore, Sgo1 acts on both the substrate (cohesin) and enzyme (separase), through two different PP2A regulatory subunits, thereby ensuring the inhibition of cohesin cleavage at centromeres during meiosis I. Our data also support the notion that PP2A^{Cdc55} carries out the functions of Sgo1 in tension-sensing. Previous studies in fission yeast suggested that Sgo2 promotes sister kinetochore biorientation through localization of the Aurora kinase, which is known to destabilize inappropriate kinetochore-microtubule attachments [Kawashima et al. 2007; Vanooesthuyse et al. 2007]. This leads to activation of the canonical SAC, resulting in checkpoint arrest due to securin stabilization [Pinsky et al. 2006]. However, budding yeast Sgo1 does not obviously regulate Aurora kinase [Ipl] localization (Kiburz et al. 2008) and, moreover, Sgo1 can prevent anaphase onset independently of securin or Aurora kinase instead. Our data support a model whereby Sgo1 and Cdc55 work in a common checkpoint pathway that senses and responds to a lack of tension between sister kinetochores in a manner distinct from the canonical SAC. We speculate that a failure to inhibit separase activity in *cdc55Δ* and *sgo1Δ* mutants in response to a lack of tension causes cleavage of its substrates and the observed release of Cdc14 from the nucleolus. How then does Sgo1 instruct PP2A^{Cdc55} to inhibit separase in response to a lack of tension? One possibility is that PP2A^{Cdc55}, like PP2A^{Rts1} [Riedel et al. 2006], directly interacts with Sgo1. However, we did not detect an interaction between Sgo1 and Cdc55, nor did we find Cdc55 associated with the pericentromere [data not shown]. We therefore postulate the existence of intermediary proteins that function in the separase regulatory network.

Surveillance mechanisms converge on Cdc55

Our securin depletion experiments suggest that, in contrast to Cdc55, Sgo1 plays only a minor role in restricting separase activation in a normal cell cycle. We suggest that Cdc55 is a master cell cycle regulator that integrates signals from different cellular cues, one of which is a lack of tension through Sgo1. In support of this idea, *CDC55* is required to prevent anaphase onset upon activation of the morphogenesiss checkpoint [Chirol et al. 2007] or over-expression of the DNA replication factor and mitotic regulator, *CDC6* [Boronat and Campbell 2007]. Therefore, multiple surveillance mechanisms could converge on Cdc55, thereby ensuring the strict order of events in the cell cycle.

In summary, we uncovered an additional mode of cohesin regulation and identified Cdc55 as a separase inhibitor. Our findings demonstrate that Sgo1 performs its functions in monitoring sister kinetochore biorientation and in the protection of cohesin during meiosis, at least partially through Cdc55. Intriguingly, both of these situations in which Sgo1 performs its essential functions are characterized by a lack of tension across sister kinetochores. The exertion of tension at sister kinetochores has been proposed to inactivate Sgo1’s cohesin protection function [Gomez et al. 2007; Lee et al. 2008]. Perhaps the absence of tension is the universal stimulus to which Sgo1 responds by locally eliciting the PP2A^{Cdc55}-dependent inhibition of separase. An important challenge for the future will be to understand how PP2A^{Cdc55}-dependent separase inhibition is integrated with other checkpoint mechanisms that regulate anaphase onset.

Materials and methods

Strains, plasmids, and growth conditions

The strains used in this study are described in Supplemental Table S1 and are all derivatives of W303, except for the experiments shown in Figure 6 where SK1 was used. The pGAL-SGO1 and pGAL-CDC55 strains were generated by integration of plasmids AMp37 and AMp649, in which *SGO1* and *CDC55* are cloned downstream from the pGAL1-10 promoter, into the *URA3* and *TRP1* loci, respectively. A pGAL-SGO1-MYC plasmid [AMp41] was similarly constructed following amplification of *SGO1*-9MYC from strain AM905. The *cdc55Δ*, *rtts1Δ*, *pph22Δ* and *pph21-L369Δ* alleles were generated by one-step PCR using pFA6a-kanMX6 [Longtine et al. 1998]. The pCLB2-3HA-CDC55 allele was generated by the PCR-based method described in Longtine et al. (1998), using a template described previously [Lee and Amon 2003]. The pMET3-PDS1 construct was generated similarly, using a template [B. Lee and A. Amon, unpublished] in which the pMET3 promoter is inserted downstream from the KanMX cassette in pFA6akanMX6 [Longtine et al. 1998]. Growth conditions for individual experiments are given in the figure legends. All mitotic time courses were performed at room temperature unless otherwise stated. Glucose, raffinose, and galactose were all used at 2%. To depolymerize microtubules,
a mixture of nocodazole (15 μg/mL) and benomyl (30 μg/mL) was used. For depletion of genes under the methionine-repressible promoter pMET3, cells were grown overnight in minimal medium lacking methionine (S−met) and pMET3 was subsequently repressed by growth in rich medium containing 8 mM methionine. Methionine was added again to 4 mM every hour. Meiotic time courses were performed at 30°C as described in Marston et al. (2003).

Microscopy

Indirect immunofluorescence was performed as described by Visintin et al. (1999). Chromosome spreading was performed using the methods of Nairz and Klein [1997] and Loidl et al. (1998). Tubulin was visualized using an anti-rat antibody at a dilution of 1:50 and an anti-rat FITC antibody at a dilution of 1:100. For detection of 3HA-Cdc14, a mouse HA antibody was used at a dilution of 1:150 followed by an anti-mouse Cy3 conjugate at a dilution of 1:500. For detection of Pds1-18Myc, a mouse anti-Myc antibody was used at a dilution of 1:150 followed by an anti-mouse Cy3 antibody at a dilution of 1:1000. GFP-labeled chromosomes were visualized as detected by Klein et al. (1999). Samples were analyzed on a Zeiss Axioplan 2 microscope and images were grabbed using a Hamamatsu camera operated through Axiovision software. Spindle measurements were performed using Image Pro software.

Immunoblot analysis

Samples for immunoblot analysis were fixed in 5% TCA and cell pellets were washed once with acetone. Cells were lysed in 50 mM Tris (pH 7.5), 1 mM EDTA, and 50 mM DTT containing protease inhibitors, with glass beads, and boiled in 1× sample buffer. Immunoblot analysis was performed using a mouse anti-Myc 9E10 antibody at a dilution of 1:1000, a mouse HA-11 antibody at a dilution of 1:500. For detection of Pds1-18Myc, a mouse anti-Myc antibody was used at a dilution of 1:150 followed by an anti-mouse Cy3 antibody at a dilution of 1:1000. GFP-labeled chromosomes were visualized as detected by Klein et al. [1999]. Samples were analyzed on a Zeiss Axioplan 2 microscope and images were grabbed using a Hamamatsu camera operated through Axiovision software. Spindle measurements were performed using Image Pro software.

ChIP

ChIP was performed as described by Kiburz et al. (2005). For ChIP of HA-tagged proteins, the 12CA5 antibody was used, and for ChIP of Myc-tagged proteins, the 9E10 antibody was used. Semiquantitative PCR analysis was performed on immunoprecipitates, samples were run on ethidium bromide-stained agarose gels, and the signal was quantified as described in the figure legends using Image J software. Each experiment was repeated at least twice and a representative experiment is shown. Sequences of primers are available on request.

Acknowledgments

We thank Angelika Amon, Josefin Fernius, Kevin Hardwick, and Frank Uhmann for helpful discussions and comments on the manuscript. We are also grateful to Angelika Amon and Brian Lee for sharing reagents. This research was supported by a Wellcome Trust Career Development Fellowship (to A.M.) and a Wellcome Centre studentship (to D.C.)

References

Alexandru, G., Zachariae, W., Schleifer, A., and Nasmyth, K. 1999. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. *EMBO J.* 18: 2707–2721.

Alexandru, G., Uhmann, F., Mechtler, K., Poupart, M.A., and Nasmyth, K. 2001. Phosphorylation of the cohesin subunit Scclby Polo/Cdc5 kinase regulates sister chromatid separation in yeast. *Cell* 105: 459–472.

Boronat, S. and Campbell, J.L. 2007. Mitotic Cdc6 stabilizes anaphase-promoting complex substrates by a partially Cdc28-independent mechanism, and this stabilization is suppressed by deletion of Cdc53. *Mol. Cell. Biol.* 27: 1158–1171.

Brar, G.A., Kiburz, B.M., Zhang, Y., Kim, J.E., White, F., and Amon, A. 2006. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. *Nature* 441: 532–536.

Chirol, E., Rossio, V., Lucchini, G., and Piatti, S. 2007. The budding yeast PP2A Cdc55 protein phosphatase prevents the onset of anaphase in response to morphogenic defects. *J. Cell Biol.* 177: 599–611.

Ciosik, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., and Nasmyth, K. 1998. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. *Cell* 93: 1067–1076.

Clayne, R.K., Katis, V.L., Jessop, L., Benjamin, K.R., Herskowitz, I., Lichten, M., and Nasmyth, K. 2003. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. *Nat. Cell Biol.* 5: 480–485.

Cohen-Fix, O., Peters, J.M., Kirshner, M.W., and Koshland, D. 1996. Anaphase initiation in *Saccharomyces cerevisiae* is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. *Genes & Dev.* 10: 3081–3093.

Evans, D.R. and Hemmings, B.A. 2000. Mutation of the C-terminal leucine residue of PP2Ac inhibits PR55/B subunit binding and confers supersensitivity to microtubule destabilization in *Saccharomyces cerevisiae*. *Mol. Gen. Genet.* 264: 425–432.

Fernius, J. and Hardwick, K.G. 2007. Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. *PLoS Genet.* 3: e213. doi: 10.1371/journal.pgen.0030213.

Funabiki, H., Kumada, K., and Yanagida, M. 1996a. Fission yeast Cutl and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. *EMBO J.* 15: 6617–6628.

Funabiki, H., Yamano, H., Kumada, K., Nagao, K., Hunt, T., and Yanagida, M. 1996b. Cut2 proteolysis is required for sister-chromatid separation in fission yeast. *Nature* 381: 438–441.

Gill-Bernabe, A.M., Romero, F., Limon-Mortes, M.C., and Tortolero, M. 2006. Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. *Mol. Cell. Biol.* 26: 4017–4027.

Gomez, R., Valdeolmillos, A., Parra, M.T., Viera, A., Carreiro, C., Roncal, F., Rufas, J.S., Barbero, J.L., and Suja, J.A. 2007. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. *EMBO Rep.* 8: 173–180.

Gor, I.H., Boos, D., and Stemmann, O. 2005. Mutual inhibition of separase and Cdk1 by two-step complex formation. *Mol. Cell* 19: 135–141.

Higuchi, T. and Uhlmann, F. 2005. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. *Nature* 433: 171–176.

Holland, A.J., Bottger, F., Stemmann, O., and Taylor, S.S. 2007. Protein phosphatase 2A and separase form a complex regulated by separase auto cleavage. *J. Biol. Chem.* 282: 24623–24632.

Homig, N.C., Knowles, P.P., McDonald, N.O., and Uhlmann, F. 2002. The dual mechanism of separase regulation by securin. *Curr. Biol.* 12: 973–982.
Indjejian, V.B. and Murray, A.W. 2007. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. *Curr. Biol.* 17: 1837–1846.

Indjejian, V.B., Stern, B.M., and Murray, A.W. 2005. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. *Science* 307: 130–133.

Jallepalli, P.V., Waizenegger, I.C., Bunz, F., Langer, S., Speicher, M.R., Peters, J.M., Kinzler, K.W., Vogelstein, B., and Lengauer, C. 2001. Securin is required for chromosomal stability in human cells. *Cell* 105: 445–457.

Katis, V.L., Galova, M., Rabitsch, K.P., Gregan, J., and Nasmyth, K. 2004. Maintenance of cohesion at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. *Curr. Biol.* 14: 560–572.

Kawashima, S.A., Tsukahara, T., Langegger, M., Hauf, S., Kitajima, T.S., and Watanabe, Y. 2007. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. *Genes & Dev.* 21: 420–435.

Kerrebrock, A.W., Moore, D.P., Wu, J.S., and Orr-Weaver, T.L. 1995. Mei-S332, a *Drosophila* protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. *Cell* 83: 247–256.

Kiburz, B.M., Reynolds, D.B., Megee, P.C., Marston, A.L., Lee, B.H., Lee, T.I., Levine, S.S., Young, R.A., and Amon, A. 2005. The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. *Genes & Dev.* 19: 3017–3030.

Kiburz, B.M., Amon, A., and Marston, A.L. 2008. Shugoshin promotes sister kinetochore biorientation in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* 19: 1199–1209.

Kitajima, T.S., Kawashima, S.A., and Watanabe, Y. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. *Nature* 427: 510–517.

Kitajima, T.S., Sakuno, T., Ishiguro, K., Iemura, S., Natsume, T., Kawashima, S.A., and Watanabe, Y. 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. *Nature* 441: 46–52.

Klein, F., Mahr, P., Galova, M., Buonomo, S.B., Michaelis, C., Nairz, K., and Nasmyth, K. 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. *Cell* 98: 91–103.

Lee, B.H. and Amon, A. 2003. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. *Science* 300: 482–486.

Lee, J., Kitajima, T.S., Tanno, Y., Yoshida, K., Morita, T., Miyano, T., Miyake, M., and Watanabe, Y. 2008. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. *Nat. Cell Biol.* 10: 42–52.

Loidl, J., Klein, F., and Engebrecht, J. 1998. Genetic and morphological approaches for the analysis of meiotic chromosomes in yeast. *Methods Cell Biol.* 53: 257–285.

Longtine, M.S., McKenzie III, D.J., Shah, N.G., Wach, A., Brachet, A., Philippson, P., and Pringle, J.R. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* 14: 953–961.

Marston, A.L. and Amon, A. 2004. Meiosis: Cell-cycle controls shuffle and deal. *Nat. Rev. Mol. Cell Biol.* 5: 983–997.

Marston, A.L., Lee, B.H., and Amon, A. 2003. The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation. *Dev. Cell* 4: 711–726.

Marston, A.L., Tham, W.H., Shah, H., and Amon, A. 2004. A genome-wide screen identifies genes required for centromeric cohesion. *Science* 303: 1367–1370.

May, K.M. and Hardwick, K.G. 2006. The spindle checkpoint. *J. Cell Sci.* 119: 4139–4142.

Mei, J., Huang, X., and Zhang, P. 2001. Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. *Curr. Biol.* 11: 1197–1201.

Minshull, J., Straight, A., Rudner, A.D., Dernburg, A.F., Belmont, A., and Murray, A.W. 1996. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. *Curr. Biol.* 6: 1609–1620.

Nairz, K. and Klein, F. 1997. mei1S—A yeast mutation that blocks double-strand-break processing and permits nonhomologous synopsis in meiosis. *Genes & Dev.* 11: 2272–2290.

Nasmyth, K. 2002. Segregating sister genomes: The molecular biology of chromosome separation. *Science* 297: 559–565.

Peters, J.M. 2006. The anaphase promoting complex/cyclosome: A machine designed to destroy. *Nat. Rev. Mol. Cell Biol.* 7: 644–656.

Pileighaar, K., Heubes, S., Cox, J., Stemmann, O., and Speicher, M.R. 2003. Securin is not required for chromosomal stability in human cells. *PLoS Biol.* 3: e141. doi: 10.1371/journal.pbio.0030416.

Pinsky, B.A., Kung, C., Shokat, K.M., and Biggins, S. 2006. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. *Nat. Cell Biol.* 8: 78–83.

Queralt, E., Lehane, C., Novak, B., and Uhlmann, F. 2006. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. *Cell* 125: 719–732.

Rabitsch, K.P., Gregan, J., Schleiffer, A., Javerzat, J.P., Eisenhaber, F., and Nasmyth, K. 2004. Two fission yeast homologs of *Drosophila* Mei-S332 are required for chromosome segregation during meiosis I and II. *Curr. Biol.* 14: 287–301.

Rao, H., Uhlmann, F., Nasmyth, K., and Varshavsky, A. 2001. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. *Nature* 410: 955–959.

Riedel, C.G., Katis, V.L., Katou, Y., Mori, S., Itoh, T., Helmhart, W., Galova, M., Petronczki, M., Gregan, J., Ccin, B., et al. 2006. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. *Nature* 441: 53–61.

Rose, M.D., Misra, L.M., and Vogel, J.P. 1989. *KAR2*, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. *Cell* 57: 1211–1221.

Stegegger, F. and Amon, A. 2004. Closing mitosis: The functions of the Cdc14 phosphatase and its regulation. *Annu. Rev. Genet.* 38: 203–232.

Stegegger, F., Visintin, R., and Amon, A. 2002. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. *Cell* 108: 207–220.

Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P., and Kirschner, M.W. 2001. Dual inhibition of sister chromatid separation at metaphase. *Cell* 107: 715–726.

Stratmann, R. and Lehner, C.F. 1996. Separation of sister chromatids in mitosis requires the *Drosophila* pimples product, a protein degraded after the metaphase/anaphase transition. *Cell* 84: 25–35.

Sullivan, M., Lehane, C., and Uhlmann, F. 2001. Orchestrating anaphase and mitotic exit: Separase cleavage and localization of Slk19. *Nat. Cell Biol.* 3: 771–777.

Tang, X. and Wang, Y. 2006. Pds1/Esp1-dependent and -independent sister chromatin separation in mutants defective for protein phosphatase 2A. *Proc. Natl. Acad. Sci.* 103: 16290–16295.

Tang, Z., Shu, H., Qi, W., Mahmood, N.A., Mumby, M.C., and Yu, H. 2006. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. *Dev. Cell* 10: 575–585.

Uhlmann, F., Lottspeich, F., and Nasmyth, K. 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. *Nature* 400: 37–42.
Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V., and
Nasmyth, K. 2000. Cleavage of cohesin by the CD clan
protease separin triggers anaphase in yeast. Cell 103: 375–386.

Vanoosthuyse, V., Prykhozhij, S., and Hardwick, K.G. 2007.
Shugoshin 2 regulates localization of the chromosomal
passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18: 1657–1669.

Visintin, R., Hwang, E.S., and Amon, A. 1999. Ctf1 prevents
premature exit from mitosis by anchoring Cdc14 phospha-
tase in the nucleolus. Nature 398: 818–823.

Waizenegger, I., Gimenez-Abian, J.F., Wernic, D., and Peters,
J.M. 2002. Regulation of human separase by securin binding
and autocleavage. Curr. Biol. 12: 1368–1378.

Wang, Y. and Burke, D.J. 1997. Cdc55p, the B-type regulatory
subunit of protein phosphatase 2A, has multiple functions in
mitosis and is required for the kinetochore/spindle check-
point in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 620–626.

Wang, Y. and Ng, T.Y. 2006. Phosphatase 2A negatively regu-
lates mitotic exit in Saccharomyces cerevisiae. Mol. Biol.
Cell 17: 80–89.

Wang, Z., Yu, R., and Melmed, S. 2001. Mice lacking pituitary
tumor transforming gene show testicular and splenic hypo-
plasia, thymic hyperplasia, thrombocytopenia, aberrant cell
cycle progression, and premature centromere division. Mol.
Endocrinol. 15: 1870–1879.

Wirth, K.G., Wutz, G., Rudo, N.R., Desdouets, C., Zetterberg,
A., Taghybeeglu, S., Seznec, J., Ducos, G.M., Ricci, R.,
Firnberg, N., et al. 2006. Separase: A universal trigger for
sister chromatid disjunction but not chromosome cycle
progression. J. Cell Biol. 172: 847–860.

Yellman, C.M. and Burke, D.J. 2006. The role of Cdc55 in the
spindle checkpoint is through regulation of mitotic exit in
Saccharomyces cerevisiae. Mol. Biol. Cell 17: 658–666.

Zou, H., McGarry, T.J., Bernal, T., and Kirschner, M.W. 1999.
Identification of a vertebrate sister-chromatid separation
inhibitor involved in transformation and tumorigenesis.
Science 285: 418–422.