Combined Risk Assessment of Food-derived Coumarin with in Silico Approaches

Takashi Yamada1, Naruo Katsutani1, Taeko Maruyama1, Tomoko Kawamura1, Hiroshi Yamazaki2, Norie Murayama2, Weida Tong3, Yasushi Yamazoe1,4, and Akihiko Hirose1

1Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
2Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
3National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States of America
4Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan

Hepatotoxicity associated with food-derived coumarin occurs occasionally in humans. We have, herein, assessed the data of existing clinical and nonclinical studies as well as those of in silico models for humans in order to shed more light on this association. The average intakes of food-derived coumarin are estimated to be 1−3 mg/day, while a ten-times higher level is expected in the worst-case scenarios. These levels are close to or above the tolerable daily intake suggested by a chronic study in dogs. The human internal exposure levels were estimated by a physiologically-based pharmacokinetic model with the use of virtual doses of coumarin in the amounts expected to derive from foods. Our results suggest that: (i) coumarin can be cleared rapidly via 7-hydroxylation in humans, and (ii) the plasma levels of coumarin and of its metabolite, o-hydroxyphenylacetic acid associated with hepatotoxicity, are considerably lower than those yielding hepatotoxicity in rats. Pharmacokinetic data suggest a low or negligible concern regarding a coumarin-induced hepatotoxicity in humans exposed to an average intake from foods. Detoxification of coumarin through the 7-hydroxylation, however, might vary among individuals due to genetic polymorphisms in CYP2A6 enzyme. In addition, the CYP1A2- and CYP2E1-mediated activation of coumarin can fluctuate as a result of induction caused by environmental factors. Furthermore, the daily consumption of food-contained coumarin was implicated in the potential risk of hepatotoxicity by the drug-induced liver injury score model developed by the US Food and Drug Administration. These results support the idea of the existence of human subpopulations that are highly sensitive to coumarin; therefore, a more precise risk assessment is needed. The present study also highlights the usefulness of in silico approaches of pharmacokinetics with the liver injury score model as battery components of a risk assessment.

Key words: coumarin, drug-induced liver injury score model, hepatotoxicity, physiologically based pharmacokinetics, individual susceptibilities
1. Introduction

Coumarin is a naturally occurring organic chemical that is often ingested as part of cinnamon-containing foods. Although the intake of coumarin from foods is generally considered to be safe, coumarin-induced hepatotoxicity has been reported to occasionally occur in humans\(^1,2\). Other than through the food intake, a clinical trial of coumarin has been performed on lymphedema patients, but the occurrence of hepatic disorders led to its withdrawal\(^3-5\). The US Food and Drug Administration (FDA) has banned the use of coumarin as a food additive due to hepatotoxicity concerns.

The occurrence of hepatotoxicity has been observed in experimental animals such as dogs and rats after the administration of coumarin. The coumarin-induced hepatotoxicity is believed to be associated with the metabolism in the body. Coumarin is metabolized to \(\alpha\)-hydroxyphenylacetic acid (\(\alpha\)-HPA) through the reactive metabolite coumarin 3,4-epoxide\(^6,7\), while the biological 7-hydroxylation is considered to be a process of detoxification. Species differences clearly exist between humans and rats in terms of the coumarin 7-hydroxylation. In fact, the detoxification rates are rapid in humans and slow in rats\(^8-11\). Only CYP2A6 catalyzes coumarin 7-hydroxylation among the major cytochrome P450 enzymes in the human liver. This major detoxification pathway mediated by CYP2A6 is susceptible to genetic polymorphisms, but the influence of such genetic polymorphisms on the hepatotoxicity of coumarin still remains unclarified in \(\text{vivo}\) humans\(^12\). Moreover, multiple CYP enzymes participate in the 3,4-epoxidation, and the hepatic levels of these enzymes are known to vary among individuals. Therefore, an understanding of inter- and intra-individual differences in terms of their coumarin intake amounts and of their metabolic capacities is necessary in order to evaluate the risk of food-derived coumarin in humans.

In this study, human-relevant data on coumarin were collected, including data regarding its intakes from food, absorption, distribution, metabolism, and excretion (ADME), toxicity, and clinical information in an attempt to refine its risk assessment. Furthermore, two \textit{in silico} models were introduced in order to provide additional human-relevant information: a physiologically-based pharmacokinetic (PBPK) model\(^11,13\), and a drug-induced liver injury (DILI) severity-predicting model developed by the FDA (hereafter referred to as the FDA DILI score model)\(^14\).

2. Materials and Methods

2.1 Intake, ADME and Toxicity Data Collection

Data on coumarin (including intake from food, experimen-
per week, and the intakes of the heaviest consumers (six subjects) exceeded 35 mg/week. In Japan, a consumption of 2.45 g of cinnamon corresponding to the ingestion of 2.73 mg of coumarin from daily foods has been reported. The total amount of coumarin consumed can reach 5.18 mg/day if daily supplements that contain cinnamon are also consumed. In the worst-case scenarios, a food-mediated coumarin consumption of around 60 mg/day (based on a body weight of 50 kg) has been reported, and an additional exposure of 18 mg/day coumarin was calculated to occur from food supplements in Germany. These results suggest an average intake of approximately 1−3 mg of coumarin per day, as well as a level equal to ten-times higher the average intake in the worst-case scenario.

3.2 Collected data of Absorption, Distribution, Metabolism, and Excretion of Coumarin

In an *in vitro* intestinal epithelial cell monolayer system, a fraction-absorbed value of >0.9 was estimated for coumarin based on its apparent permeability. Coumarin is rapidly absorbed after an oral intake of 0.857 mg/kg, but its availability to the systemic circulation is reported to be less than 4%. The rest of the intake appeared in the form of 7-hydroxycoumarin and the glucuronide in the systemic-circulation, thereby suggesting an extensive first-pass effect. In a study employing an oral administration of 200 mg of coumarin in seven different subjects, 63.4% of the dose was recovered in the 24-h urine in the form of total 7-hydroxycoumarin. Coumarin can also be absorbed fairly efficiently after a dermal application, and the absorption rates ranged from 54.7% to 66.1% in humans. The *in vivo* metabolic profiles of coumarin are similar among experimental animals and humans. Metabolites deriving from the oxidation of both the phenyl ring (7-hydroxylation) and the lactone ring (3,4-oxidation) can be detected mostly in the urine of mice, rats, dogs, and human volunteers; however, certain extents of a fecal excretion have also been observed in rats exposed to high doses.
7-Hydroxycoumarin and its glucuronic acid conjugate were the major metabolites detected in the urine of most individuals, while the lactone-ring opening metabolite, o-HPA, was slightly detected in urine; interestingly, the amount of o-HPA was more than that of 7-hydroxycoumarin in the 8-h urine of some individuals after a 2-mg coumarin intake. o-Hydroxyphenylacetaldehyde can be formed in vitro by microsomes from all four human liver samples as the major metabolite of coumarin at a coumarin concentration of 1 mM; however, 7-hydroxycoumarin was the major metabolite detected after an exposure to coumarin concentrations below 50 μM. These results suggest that both the coumarin concentration and the genetic background can affect coumarin metabolism in humans.

Studies of the toxicity mechanism of coumarin have consistently indicated a role for the reactive intermediate in coumarin-induced hepatotoxicity. The microsomal formation of metabolites bound covalently to hepatic proteins, the identification of o-hydroxyphenylacetaldehyde as a major metabolite of coumarin in the rat hepatic microsomes, the much lower toxicities of 3- or 4-methylcoumarin and of 3,4-dimethylcoumarin than coumarin, as well as the reactivity of o-hydroxyphenylacetaldehyde; all support the production of a reactive, 3,4-oxide for the facilitation of the coumarin-mediated hepatotoxicity.

In human recombinant CYP systems, CYP1A1, CYP1A2 and CYP2E1 mediate the formation of o-hydroxyphenylacetaldehyde, and CYP3A4 may also support this reaction. The 7-hydroxycoumarin formation is supported only by CYP2A6, and no activities are detected with CYP1A1, CYP1A2, CYP2E1, and CYP3A4. CYP2A13 catalyzes both the 3,4-oxide formation and 7-hydroxylation of coumarin. The low levels of CYP2A13 are expressed selectively in extra-hepatic tissues, while the enzyme's levels in the liver are negligible. Population studies suggest that 6% of the UK population is homozygous for the mutant CYP2A6 alleles, whereas the mutant CYP2A6 allele frequency may be as high as 48% in Japanese subjects.

The production of o-HPA was correlated with the CYP1A2 content of human hepatocytes. The production of o-HPA in the human liver microsomal system as well as in vivo, in the humanized-liver mice, was clearly inhibited in the presence of a selective inhibitor of CYP1A2, furafylline. These results suggest, at least partly, the involvement of CYP1A2 in the metabolic activation of coumarin in the human liver. CYP2E1 has also been expected to mediate the 3,4-epoxidation of coumarin in humans.

3.3 Collected data of Toxicity of Coumarin

Toxicity data of coumarin have been evaluated and published in the form of review articles and risk assessment reports. These data consistently indicate the liver as the most sensitive target of coumarin in experimental animals. Hepatotoxicity in rats includes hepatic histopathological lesions along with increased liver enzymes at doses ≥50 mg/kg/day in a 2-year-long carcinogenicity study. Slight jaundice, marked histopathologic hepatic changes, and distended gall bladder were observed in a 1-year chronic study in dogs. In baboons, hepatic changes were limited to an increased liver weight and an hepatocyte endoplasmic reticulum hypertrophy observed at the highest coumarin dose (67.5 mg/kg/day) in a 2-year-long chronic toxicity study. The EFSA determined the tolerable daily intake (TDI) of coumarin to be 0.1 mg/kg/day, based on the no-observed-adverse-effect level (NOAEL) of 10 mg/kg/day found in a chronic toxicity study of coumarin in dogs, with an uncertainty factor of 100.

Hepatic disorder, characterized as an elevation of the liver enzyme levels, is the most common coumarin-associated adverse finding reported in humans. In one case, a 23-year-old woman was hospitalized with hepatitis after consuming 1–2 g of cinnamon (equivalent to 3.3–6.6 mg of coumarin) daily, for two months. According to the expert report on the assessment of coumarin in medicinal products, liver damage cannot be ruled out at a daily dose of 25 mg coumarin for a part of the population. In order to extrapolate from this effect level to a human NOAEL, a factor of 5 is considered as justified in the case of a severe effect at the lowest observed adverse effect level. Thus, an exposure to 5 mg of coumarin per day is expected to cause no adverse effects in sensitive subjects. Moreover, a TDI of 0.1 mg/kg body weight was derived. This value agreed well with the EFSA value based on animal data.

The incidence of coumarin-induced hepatotoxicity was estimated to be 0.37% by a clinical trial. In the National Institutes of Health LiverTox Database, the idiosyncratic, clinically apparent liver injury associated with coumarin was estimated to occur in 2 out of 1,000 patient-years of use.

3.4 Estimation of the Internal Exposure to Coumarin in Humans Using the PBPK Model

Pharmacokinetic data of coumarin in humans are necessary in order to assess the body exposure in vivo and the subsequent hepatotoxicity. However, the available data that are relevant to the assessment of possible toxic dose levels are limited. Therefore, the plasma concentrations of coumarin, 7-hydroxycoumarin, and o-HPA (generated via a coumarin 3,4-epoxidation) were estimated by using human PBPK models that have been previously developed and validated. Virtual oral doses of 2.5 mg and 25 mg were applied in the
The possible hepatotoxicity of coumarin was evaluated by using a FDA DILI score model based on the daily dose of the substance, lipophilicity, and reactive metabolite formation\(^1\). The applicability of coumarin to the FDA DILI score model was assessed by plotting the logP and the MW of coumarin and the set molecules (Fig. 3). The estimated logP value of coumarin (1.39) was in the range of most of the set molecules (from −4 to 8), and the inclusion of the MW of coumarin (146.14) was also confirmed. Coumarin consisted of a total of 13 chemotypes (including benzopyrone), all of which were included in a set of chemotypes of the set molecules (Table 1 and Supplementary Data Table S1). The chemical structure profiling that was undertaken by using the OECD QSAR Toolbox yielded similar results (Supplementary Data Table S2).

Coumarin and the related drugs sharing a substructure with coumarin were applied to the FDA DILI score model (Table 2). The epoxidation of coumarin and of methoxsalen were assumed to lead to the formation of reactive intermediates\(^15,16\). The DILI scores of coumarin were calculated to be 3.71 and 5.11 for the daily consumption levels of 2.5 and 25 mg/day, respectively, and the risk was judged to be moderate (score of 3–6). Warfarin (10 mg/day) was judged to be of low risk based on a DILI score of 1.95, whereas methoxsalen (3 mg/day) was considered to be of medium risk based on a DILI score of 3.92.

4. Discussion

In this study, the hepatotoxicity of food-derived coumarin in humans was comprehensively reevaluated by the use of the data of existing clinical and animal studies as well as those of generated by us through in silico approaches for humans.

According to several studies, the average intake of food-derived coumarin is about 1–3 mg/day, and in the worst-case scenarios, the intake is expected to be about ten-times higher than that of the average amount. The levels were found to
be almost equal to or above the TDI (0.1 mg/kg/day) that derived from animal studies \(^\text{15}\).

It has been shown that the majority of coumarin is rapidly converted to 7-hydroxycoumarin, along with low levels of \(o\)-HPA which is associated with the metabolic activation (Fig. 2A). At a virtual intake of 25 mg of coumarin (that is approximately ten-times more than the average intake), the maximum plasma concentrations of coumarin and \(o\)-HPA were expected to be 20 nM and 2 nM, respectively, at 0.7 h (Fig. 2A). Based on the plasma-to-liver distribution ratios of coumarin and \(o\)-HPA of 0.875 and 0.504 \(^\text{11}\), the coumarin and \(o\)-HPA concentrations in the liver at the same timepoint were estimated to be 17 nM and 1.1 nM, respectively.

The maximum blood concentrations of coumarin and \(o\)-HPA were estimated to be approximately 200 μM and 80 μM, respectively, at 0.5 h after the administration of a toxic dose of 200 mg/kg \(^\text{44}\). Therefore, clear differences were observed with regard to both the coumarin and the \(o\)-HPA levels between the simulated data (at 25 mg/kg) in humans and measured data (at 200 mg/kg) in rats. Based on the pharmacokinetics data, an intake of 25 mg/kg of coumarin in humans may be considered to be of low or subtle concern for the development of hepatotoxicity, as far as the human population maintains average levels of capacity for coumarin metabolism. It should be noted, however, that this PBPK model is based on data deriving from a small number of healthy individuals. The report by Abraham et al. in 2010 \(^\text{2}\) claims that hepatotoxicity concerns cannot be ruled out in humans after the ingestion of 25 mg or more of coumarin. These results suggest the existence of a subpopulation that is highly susceptible to coumarin-induced hepatotoxicity. Further investigation of such individual differences in terms of the susceptibility to coumarin is warranted.

The detoxification of coumarin in humans is mainly mediated by CYP2A6 \(^\text{32,35,45}\), which may imply variations in the susceptibility to coumarin toxicity as a result of genetic
The polymorphism of CYP2A6 is rather prevalent in the Japanese population, and the non-wild (poor metabolizer) types were reportedly present in nearly half of the population. In addition, both CYP1A2 and CYP2E1 mediate the production of \(\alpha \)-hydroxyphenylacetaldehyde, which is probably associated with liver toxicity. There is a need to consider the metabolic capacity of these enzymes when designing drugs and assessing their potential for DILI (drug-induced liver injury).

Table 1. Chemotype of coumarin and duplication in the set of 354 molecules for constructing the FDA DILI score model

Chemotype contained in coumarin	No. of duplications in the set molecules
bond:C(=O)O_carboxylicEster_alkenyl	9
bond:C=O_carbonyl_generic	228
chain:alkeneCyclic_ene_C_(connect_noZ)	37
chain:alkeneCyclic_ene_generic	67
chain:aromaticAlkane_Ph-C1_cyclic	83
chain:aromaticAlkene_Ph-C2_cyclic	11
ring:aromatic_benzene	264
ring:hetero[6]O_pyran_generic	15
ring:hetero[6]Z_1-	100
ring:hetero[6]Z_generic	152
ring:hetero[6,6]O_benzopyran	3
ring:hetero[6,6]O_benzopyrone(1_2-)	1
ring:hetero[6,6]Z_generic	52

Table 2. Application of coumarin and related drugs to the FDA DILI score model

Chemicals	Daily Dose (mg/day)	logP	RM formation	DILI score	DILI risk	Remarks
Coumarin	2.5	1.39	Yes (1)	3.71	M	Daily dose as food with very occasional elevated liver enzymes.
Warfarin	2	2.44	No (0)	0.98	L	Daily dose as medicine (anticoagulant) with rare hepatotoxicity cases.
Methoxsalen	3	1.93	Yes (1)	3.92	M	Daily dose as medicine for psoriasis with occasional elevated liver enzymes (2%–12% of patients).

DILI score based on daily dose, lipophilicity (logP), and presence (1) or absence (0) of reactive metabolite (RM) formation was calculated following the formula: DILI score = 0.608 × log(e(daily dose by mg)) + 0.227 × logP + 2.833 × 1/0. DILI risk was classified according to DILI score as low (L, <3), moderate (M, 3–6), and high (H, >6).
with coumarin toxicity. The hepatic levels of CYP1A2 and CYP2E1 vary under the influence of various environmental factors. Cigarette smoking and alcohol consumption are known to alter the hepatic levels of CYP1A1/2 and CYP2E1 through induction phenomena, respectively. Other dietary components are also known to modulate the activation and the detoxification of coumarin through the processes of inhibition and transport. Therefore, further studies on the impact of individual differences are required in order to refine the evaluation of the coumarin-induced hepatotoxicity in humans.

The FDA continues to compile human hepatotoxicity data of approved or withdrawn drugs, and these data include their daily dose, their lipophilicity, and their reactive metabolite formation. These data are also used for the construction of the QSAR model aiming to predict the severity of clinical liver injury. Available toxicity data of foods and food ingredients are often not sufficient for the rigid evaluation of their toxicities in humans and, thus, the use of this model is expected to be beneficial. The applicability was at first checked by the comparison of the logP, the MW, and the chemical structures of their reactive metabolite. The QSAR model may also be applicable to food ingredients other than coumarin for the preliminary discrimination or evaluation of potential hepatotoxicity in humans.

In summary, the possibility of developing coumarin-induced hepatotoxicity in humans was, herein, reevaluated through a combined approach that integrated the existing data of clinical and animal studies with data deriving from in silico models. At the current average coumarin intake, the humans can be considered to be safe, at least as far as the coumarin-induced hepatotoxicity is concerned. On the other hand, the existence of a human subpopulation that is highly susceptible to the hepatotoxicity of coumarin is suggested. Further studies are required in order to achieve a more precise risk assessment that would take into account the individual differences in coumarin metabolism as defined by genetic and environmental factors. Moreover, the present study highlights the usefulness of in silico approaches of pharmacokinetics and the liver injury score model as battery components of a risk assessment.

Acknowledgments

This study was supported by a grant from the Food Safety Commission, Cabinet Office, Government of Japan (Research program for Risk Assessment Study on Food Safety, No. JPCAF-SC20202006).

Conflict of Interest

The authors have no conflict of interest regarding this publication.

Disclaimer

This manuscript reflects the views of the authors and does not necessarily reflect those of the National Institute of Health Sciences and the US Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.

Supplementary Materials

Supplementary Data Tables S1 and S2 are given separately.

References

1. European Food Safety Authority. Coumarin in flavourings and other food ingredients with flavouring properties - Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J. 2008; 6: 793. Available at https://www.efsa.europa.eu/en/efsajournal/pub/793.

2. Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A. Toxicology and risk assessment of coumarin: Focus on human data. Mol Nutr Food Res. 2010; 54(2): 228–239. PMID:20024932, doi:10.1002/mnfr.200900281

3. Andréjak M, Gersberg M, Sgro C, et al. French pharmacovigilance survey evaluating the hepatic toxicity of coumarin. Pharmacoepidemiol Drug Saf. 1998; 7(S1, Suppl 1): S45–S50. PMID:15073939, doi:10.1002/(SICI)1099-1557(199808)7:1+<S45::AID-PDS353>3.0.CO;2-1

4. Bassett ML and Dahlstrom JE. Liver failure while taking coumarin. Med J Aust. 1995; 163(2): 106. doi:10.5694/j.1326-5377.1995.tb126130.x, PMID:7616886

5. Loprinzi CL, Sloan J, Kugler J. Coumarin-induced hepatotoxicity. J Clin Oncol. 1997; 15(9): 3167–3168. PMID:9294482, doi:10.1200/JCO.1997.15.9.3167

6. Rietjens IMCM, Punt A, Schilter B, Scholz G, Delatour T, van Bladeren PJ. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: Implications for risk assessment. Mol Nutr Food Res. 2010; 54(2): 195–207. PMID:19943261, doi:10.1002/mnfr.200900211
7. Vassallo JD, Morrall SW, Fliter KL, Curry SM, Daston GP, Lehman-McKeeman LD. Liquid chromatographic determination of the glutathione conjugate and ring-opened metabolites formed from coumarin epoxidation. J Chromatogr B Analyt Technol Biomed Life Sci. 2003; 794(2): 257–271. PMID:12954377, doi:10.1016/S1570-0232(03)00473-2

8. Lake BG, Gaudin H, Price RJ, Walters DG. Metabolism of 3-[3'-4'-Cl]coumarin to polar and covalently bound products by hepatic microsomes from the rat, syrian hamster, gerbil and humans. Food Chem Toxicol. 1992; 30(2): 105–115. PMID:1555792, doi:10.1016/0278-6915(92)90145-Q

9. Fentem JH, Fry JR. Species differences in the metabolism and hepatotoxicity of coumarin. Comp Biochem Physiol C Comp Pharmacol. 1993; 104(1): 1–8. PMID:8097443, doi:10.1016/0742-8413(93)90102-Q

10. Lake BG. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol. 1999; 37(4): 423–453. PMID:10418958, doi:10.1016/S0278-6915(99)00101-0

11. Miura T, Kamiya Y, Hina S, et al. Metabolic profiles of coumarin in human plasma extrapolated from a rat data set with a simplified physiologically based pharmacokinetic model. J Toxicol Sci. 2020; 45(11): 695–700. PMID:33132243, doi:10.2131/jts.45.695

12. Farinola N, Piller NB. CYP2A6 polymorphisms: is there a role for pharmacogenomics in preventing coumarin-induced hepatotoxicity in lymphedema patients? Pharmacogenomics. 2007; 8(2): 151–158. PMID:17286538, doi:10.2216/14622416.8.2.151

13. Ritschel WA, Brady ME, Tan HSI, Hoffmann KA, Yiu IM, Grummich KW. Pharmacokinetics of coumarin and its 7-hydroxy metabolites upon intravenous and peroral administration of coumarin in man. Eur J Clin Pharmacol. 1977; 12(6): 457–461. PMID:598421, doi:10.1007/BF00561066

14. Chen M, Borlak J, Tong W. A Model to predict severity of drug-induced liver injury in humans. Hepatology. 2016; 64(3): 931–940. PMID:27302180, doi:10.1002/hep.28678

15. European Food Safety Authority. Opinion of the Scientific Panel on food additives, flavourings, processing aids and food contact materials on the safety of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J Chromatogr, Biomed Appl. 2003; 1009(2): 463–471. doi:10.1016/S0378-4347(03)00418-1

16. Bundesinstitut für Risikobewertung. Consumers, who eat a lot of cinnamon, currently have an overly high exposure to coumarin. In: BFR Health Assessment. ed. Berlin, Germany: Bundesinstitut für Risikobewertung. 2006; No. 043/2006.

17. Therapeutic Goods Administration. Safety review: coumarin for use in topical listed medicines. 2019; Version 1.0. Available at: https://www.tga.gov.au/sites/default/files/safety-review-coumarin-listed-medicines.pdf. Accessed on September 4, 2022.

18. Fotland TØ, Paulsen JE, Sanner T, Alexander J, Husoy T. Risk assessment of coumarin using the bench mark dose (BMD) approach: Children in Norway which regularly eat oatmeal porridge with cinnamon may exceed the TDI for coumarin with several folds. Food Chem Toxicol. 2012; 50(3–4): 903–912. PMID:2217860, doi:10.1016/j.fct.2011.12.0054

19. National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of Coumarin (CAS No. 91-64-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser. 1993; 422: 1–340. PMID:12616289

20. Dimitrov SD, Diderich R, Sobanski T, et al. QSAR Toolbox – workflow and major functionalities. SAR QSAR Environ Res. 2016; 27(3): 203–219. PMID:26892806, doi:10.1080/10698255.2015.1136868

21. Iwasaki Y, Tabata S, Iida K, et al. Determination of coumarin in cinnamon foods. Ann Rep Tokyo Metr Inst Publ Health. 2008; 59: 143–148.

22. Moran E, O’Kennedy R, Thornes RD. Analysis of coumarin and its urinary metabolites by high-performance liquid chromatography. J Chromatogr, Biomed Appl. 1987; 416(1): 165–169. PMID:3597634, doi:10.1016/0378-4347(87)80499-1

23. Hadidi H, Irshaid Y, Broberg Vågbø C, et al. Variability of coumarin 7- and 3-hydroxylation in a Jordanian population is suggestive of a functional polymorphism in cytochrome P450 CYP2A6. Eur J Clin Pharmacol. 1998; 54(5): 437–441. PMID:9754990, doi:10.1007/s002280050489

24. Fentem JH, Fry JR. Metabolism of coumarin by rat, gerbil and human liver microsomes. Xenobiota. 1992; 22(3): 357–367. PMID:1496825, doi:10.1080/004982529094046447

25. Fernyhough L, Kell SW, Hammond AH, Thomas NW, Fry JR. Comparison of in vivo and in vitro rat hepatic toxicity of coumarin and methyl analogues, and application of quantitative morphometry to toxicity in vivo. Toxicology. 1994; 88(1-3): 113–125. PMID:8160193, doi:10.1016/0300-483X(94)90114-7

26. Born SL, Hu JK, Lehman-McKeeman LD. o-hydroxyphenylacetdehyde is a hepatotoxic metabolite of coumarin. Drug Metab Dispos. 2000; 28(2): 218–223. PMID:10640521

27. Born SL, Caudill D, Fliter KL, Purdon MP. Identification of the cytochromes P450 that catalyze coumarin 3,4-epoxidation and 3-hydroxylation. Drug Metab Dispos. 2002; 30(5): 483–487. PMID:11950775, doi:10.1124/dmd.30.5.483

28. Zhuo X, Gu J, Zhang QY, Song DC, Kaminsky LS, Ding X. Biotransformation of coumarin by rodent and human cytochromes P-450; metabolic basis of tissue-selective toxicity in olfactory mucosa of rats and mice. J Pharmacol Exp Ther. 1999; 288(2): 463–471. PMID:9918546

29. Von Weymarn LB, Murphy SE. CYP2A13-catalysed coumarin metabolism: comparison with CYP2A5 and CYP2A6. Xenobiota. 2003; 33(1): 73–81. PMID:12519695, doi:10.1080/0049825021000022302

30. Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methyltriazosino)-1-(3-pyridyl)-1-butane. Cancer Res. 2000; 60(18): 5074–5079. PMID:11016631

31. Fernandez-Salgueiro P, Hoffman SM, Cholerton S, et al. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet. 1995; 57(3): 651–660. PMID:7668294

32. Murayama N, Yamazaki H. Metabolic activation and deactivation of dietary-derived coumarin mediated by cytochrome P450 enzymes in rat and human liver preparations. J Toxicol Sci. 2021; 46(8): 371–378. PMID:34334558, doi:10.2131/jts.46.371
33. Yamazaki H, Horiuchi K, Takano R, et al. Human blood concentrations of cotinine, a biomonitoring marker for tobacco smoke, extrapolated from nicotine metabolism in rats and humans and physiologically based pharmacokinetic modeling. *Int J Environ Res Public Health*. 2010; 7(9): 3406–3421. PMID:20948932, doi:10.3390/ijerph7093046

34. Miura T, Uehara S, Shimizu M, Murayama N, Suemizu H, Yamazaki H. Roles of human cytochrome P450 1A2 in coumarin 3,4-epoxidation mediated by untreated hepatocytes and by those metabolically inactivated with furafylline in previously transplanted chimeric mice. *J Toxicol Sci*. 2021; 46(11): 525–530. PMID:34719555, doi:10.2131/jts.46.525

35. Yamazaki H, Mimura M, Sugahara C, Shimada T. Catalytic roles of rat and human cytochrome P450 2A enzymes in testosterone 7α- and coumarin 7-hydroxylations. *Biochem Pharmacol*. 1994; 48(7): 1524–1527. PMID:7945454, doi:10.1016/0006-2952(94)90579-7

36. Yamazoe Y, Murayama N, Yoshinari K. Refined CYP2E1**Template** system to decipher the ligand-interactions. *Drug Metab Pharmacokinet*. 2021; 41: 100413. PMID:34673327, doi:10.1016/j.dmpk.2021.100413

37. Felter SP, Vassallo JD, Carlton BD, Daston GP. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. *Food Chem Toxicol*. 2006; 44(4): 462–475. PMID:16203076, doi:10.1016/j.fct.2005.08.019

38. Api AM, Belmonte F, Belsito D, et al. RIFM fragrance ingredient safety assessment, coumarin, CAS Registry Number 91-64-5. *Food Chem Toxicol*. 2019; 130 (Suppl 1): 110522. PMID:31129255, doi:10.1016/j.fct.2019.05.030

39. Hagan EC, Hansen WH, Fitzhugh OG, et al. Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. *Food Cosmet Toxicol*. 1967; 5(2): 141–157. PMID:6068552, doi:10.1016/S0015-6264(67)82961-4

40. Evans JG, Gaunt IF, Lake BG. Two-year toxicity study on coumarin in the baboon. *Food Cosmet Toxicol*. 1979; 17(3): 187–193. PMID:115770, doi:10.1016/0015-6264(79)90280-3

41. Cox D, O’Kennedy R, Thornes RD. The rarity of liver toxicity in patients treated with coumarin (1,2-benzopyrone). *Hum Toxicol*. 1989; 8(6): 501–506. PMID:2591993, doi:10.1177/096032718900800612

42. Warfarin. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK548837/. Accessed on June 15, 2022.

43. Mielke H, Abraham K, Götz M, et al. Physiologically based toxicokinetic modelling as a tool to assess target organ toxicity in route-to-route extrapolation—The case of coumarin. *Toxicol Lett*. 2011; 202(2): 100–110. PMID:21291965, doi:10.1016/j.toxlet.2011.01.022

44. Tanaka Y, Fujii W, Hori R, Kitagawa Y, Ozaki K. Changes in coumarin kinetics and subcellular localization of CYP2E1 contribute to bile duct damage and reduce hepatocellular damage after repeated administration of coumarin in rats. *Toxicol Lett*. 2017; 280: 99–105. PMID:28803882, doi:10.1016/j.toxlet.2017.08.007

45. Pelkonen O, Rautio A, Raunio H, Pasanen M. CYP2A6: a human coumarin 7-hydroxylase. *Toxicology*. 2000; 144(1-3): 139–147. PMID:10781881, doi:10.1016/S0300-483X(99)00200-0

46. Ujjin P, Satarug S, Vanavanitkun Y, et al. Variation in coumarin 7-hydroxylase activity associated with genetic polymorphism of cytochrome P450 2A6 and the body status of iron stores in adult Thai males and females. *Pharmacogenetics*. 2002; 12(3): 241–249. PMID:11927840, doi:10.1097/00008571-200204000-00009

47. Peamkrasatam S, Srivatanakul K, Kiyotani K, et al. In vivo evaluation of coumarin and nicotine as probe drugs to predict the metabolic capacity of CYP2A6 due to genetic polymorphism in Thais. *Drug Metab Pharmacokinet*. 2006; 21(6): 475–484. PMID:17220563, doi:10.2133/dmpk.21.475

48. Kiyotani K, Yamazaki H, Fujieda M, et al. Decreased coumarin 7-hydroxylase activities and CYP2A6 expression levels in humans caused by genetic polymorphism in CYP2A6 promoter region (CYP2A6*9). *Pharmacogenetics*. 2003; 13(11): 689–695. PMID:14583682, doi:10.1097/00008571-200311000-00005