On Calculating Square Roots in $GF(p)$

David S. Knight
davids.knight@yahoo.com

Abstract

This article presents a new method for calculating square roots in $GF(p)$ by exponentiating in $GF(p^3)$ or equivalently modulo irreducible cubic polynomials. This algorithm is in some ways similar to the Cipolla-Lehmer algorithm which is based on exponentiating in $GF(p^2)$. Another less well known square root algorithm based on quadratic sums is also given. In addition to this, several conjectures about the output of this $GF(p^3)$ square root algorithm are mentioned.

Keywords: square root, modular square root, $GF(p^3)$ square root algorithm, Cipolla-Lehmer, quadratic sums, quadratic Gauss sums, Diffie-Hellman problem

1. Introduction

The two most well-known algorithms for calculating square roots in $GF(p)$ are the Cipolla-Lehmer and the Tonelli-Shanks algorithms, both of which are described in [9]. Some variations of the Tonelli-Shanks algorithm are described in [6]. The Cipolla-Lehmer algorithm is asymptotically the fastest and runs in $O(M(p) \log p)$ time where $M(p)$ is the amount of time it takes to calculate one multiplication modulo p. The Tonelli-Shanks is slower and runs in $O(M(p) v \log p)$ time where v is the greatest integer such that 2^v divides $p - 1$. However, if v is small, the Tonelli-Shanks algorithm is generally faster since it is based on exponentiation in $GF(p)$ whereas the Cipolla-Lehmer exponentiates in $GF(p^2)$ which is less efficient.

Most of the other algorithms for calculating square roots in $GF(p)$ are in some way based on one of these two algorithms. A few algorithms, however are not in any way related to either of these two algorithms. Two examples are the algorithms of Schoof [10] or of Sze [11], both of which use elliptic curves in different ways to calculate square roots in $GF(p)$. Another example is the algorithm of Bach and Huber [1] which uses quadratic sums in $GF(p)$ in order to calculate square roots in certain cases.

A new algorithm presented in this paper uses exponentiation in $GF(p^3)$ in order to calculate square roots in $GF(p)$. While this algorithm is significantly different from previously known methods, it is more closely related to
the Cipolla-Lehmer than it is to the Tonelli-Shanks method. Part of this algorithm depends on calculating cube roots. A standard method for calculating cube roots based on Tonelli-Shanks results in an $O(M(p)(t+1)\log p)$ algorithm where t is the greatest integer such that 3^t divides $p-1$. However more efficient methods for calculating cube roots exist, for example see [2] or [9]. This means that this $GF(p^3)$ square root algorithm can actually be implemented to run in $O(M(p)\log p)$ time. This square root algorithm for the case $p \equiv 5 \pmod{6}$ is presented in Section 4 as Algorithm 2.

In this paper two previously known methods for calculating square roots in $GF(p)$ will be mentioned. First in Section 2 the quadratic sum method is given. Then in Section 3 the Cipolla-Lehmer algorithm is mentioned. In Section 4, a new algorithm based on exponentiation in $GF(p^3)$ is presented and in Section 5, some conjectures that are related to this algorithm are given.

2. The Quadratic Sum Method

In [1] Bach and Huber describe a method for calculating square roots in $GF(p)$ in certain cases based on quadratic sums, which can be considered to be a generalization of quadratic Gauss sums. Quadratic Gauss sums are based on primitive nth roots of unity. The famous formula of Gauss for these sums is the following:

$$G_n = \sum_{k=1}^{n} \exp(2\pi ik^2/n)$$

if $n \equiv 0 \pmod{4}$ then $G_n = (1+i)\sqrt{n}$

if $n \equiv 1 \pmod{4}$ then $G_n = \sqrt{n}$

if $n \equiv 2 \pmod{4}$ then $G_n = 0$

if $n \equiv 3 \pmod{4}$ then $G_n = i\sqrt{n}$

However, these sums can be generalized to any finite field. As is shown in [1], in the case of $GF(p)$ we can define an analogous version of these sums which we refer to as quadratic sums in $GF(p)$. Then the following theorem is true for any prime p and integer g with $\gcd(g,p) = 1$.

$$Q(g,p) = \sum_{k=1}^{n} g^{k^2} \pmod{p}$$
where n is the minimum positive integer such that
\[g^n \equiv 1 \pmod{p} \]

if $n \equiv 0 \pmod{4}$ then $Q(g, p) \equiv (\sqrt{n} + \sqrt{-n}) \pmod{p}$

if $n \equiv 1 \pmod{4}$ then $Q(g, p) \equiv \sqrt{n} \pmod{p}$

if $n \equiv 2 \pmod{4}$ then $Q(g, p) \equiv 0 \pmod{p}$

if $n \equiv 3 \pmod{4}$ then $Q(g, p) \equiv \sqrt{-n} \pmod{p}$

Using the formula for quadratic sums in $GF(p)$ one can calculate square roots of certain integers modulo p in certain cases. For example, if n is a divisor of $p - 1$ and if $n \equiv 1 \pmod{4}$ then if given a primitive nth root of unity for the multiplicative group of $GF(p)$ one can calculate the square root of n modulo p. The following is an example of this.

Example 1

Suppose that one wishes to calculate the square root of 5 modulo 41. In this case, 18 generates a subgroup of order 5 modulo 41. Thus using the previously mentioned formula, we have the following result:

\[Q(18, 41) \equiv 18^1 + 18^4 + 18^9 + 18^{16} + 18^{25} \pmod{41} \]
\[\equiv 18 + 16 + 16 + 18 + 1 \equiv 28 \pmod{41} \]

And thus 28 is a square root of 5 modulo 41.

The problem with this method is that adding up the n terms of the quadratic sum one by one is inefficient and should actually be considered an exponential time algorithm. In this previous example, it was practical because $n = 5$ was a reasonably small integer. However for most values of n this method would be totally impractical, unless there is a more efficient algorithm for computing quadratic sums in $GF(p)$.

This brings up an interesting question: Is there a polynomial time algorithm for calculating these types of sums? If so, it would have implications for the security of cryptosystems based on the Diffie-Hellman problem in finite fields. The following section gives a generalization of the function $Q(g, p)$ and shows how it is closely related to the Diffie-Hellman problem.
2.1 Quadratic Sums and Diffie-Hellman

One generalization of the function $Q(g, p)$ is the following which we also refer to as a quadratic sum in $GF(p)$:

$$Q(g, h, p) = \sum_{k=1}^{p-1} g^{k^2} h^k \pmod{p}$$

One of the most important unsolved problems in number theory or cryptography is to find an efficient algorithm, i.e. a polynomial time algorithm, for calculating the function $Q(g, h, p)$. The most obvious way to calculate $Q(g, h, p)$ would be to calculate each of the $p - 1$ terms separately and then add them together. This would result in an $O(p \log^3 p)$ algorithm which is an exponential time algorithm and very inefficient. By polynomial time, we would mean as a polynomial function of $\log p$.

While there is currently no known algorithm for calculating the function $Q(g, h, p)$ in polynomial time, a related case has been solved by Hiary, that of calculating truncated theta functions.

$$F_d(a, b, n) = \sum_{k=0}^{d} \exp(2\pi i (ak^2 + bk)/n)$$

In [4] and [5] Hiary gives a polynomial time algorithm for calculating the theta function $F_d(a, b, n)$ as this is useful for calculating the Riemann zeta function in certain cases. In [7] Kuznetzov simplifies Hiary’s algorithm using the Mordell integral. The function $F_d(a, b, n)$ is quite similar to the function $Q(g, h, p)$. The main difference is that the first is based on exponentiation involving primitive nth roots of unity and the second is based on exponentiation in $GF(p)$.

The function $Q(g, h, p)$ has applications for calculating square roots via the algorithm described in [1]. But more importantly it has potential applications concerning the integer factorization problem and the discrete logarithm problem in $GF(p)$. However the most obvious application is to the Diffie-Hellman problem in $GF(p)$ which has been conjectured to be equivalent to the discrete logarithm problem. The following explains how the function $Q(g, h, p)$ can be used to solve the Diffie-Hellman problem in $GF(p)$.

Theorem 1

let n be the minimum positive integer such that

$$g^n \equiv 1 \pmod{p}$$

if $n \not\equiv 2 \pmod{4}$ and

if $h \equiv g^n \pmod{p}$ then

$$g^{n^2} \equiv Q(g, 1, p)(Q(g, h^2, p))^{-1} \pmod{p}$$

The Diffie-Hellman problem or the Computational Diffie-Hellman problem in $GF(p)$ is to calculate the value of $g^{ab} \pmod{p}$ if given the following three values: $(g, g^a \pmod{p}, g^b \pmod{p})$. The following formula explains how given that one can calculate the value of $g^{a^2} \pmod{p}$ that this can be used to calculate the value of $g^{2ab} \pmod{p}$.

$$g^{2ab} \equiv (g^{(a+b)^2})(g^{a^2})^{-1}(g^{b^2})^{-1} \pmod{p}$$

The solution to the Diffie-Hellman problem $g^{ab} \pmod{p}$ can be determined by calculating the two square roots of $g^{2ab} \pmod{p}$ and then determining which square root represents the correct solution. What this means is that if one could calculate the quadratic sum $Q(g, h, p)$ in polynomial time given any values g, h, and p then one could also solve the Diffie-Hellman problem in $GF(p)$ in polynomial time.

3. The Cipolla-Lehmer Square Root Algorithm

The following explains the algorithm for calculating the function $CL(c, b, p)$. This definition differs slightly from the algorithm in [9] in that this algorithm returns a square root of a quadratic residue c in $GF(p)$ or it returns 0 if the quadratic polynomial selected by the algorithm is not irreducible. The algorithm in [9] keeps selecting a random quadratic polynomial until an irreducible one is found.

Algorithm 1

The Cipolla-Lehmer square root algorithm

Input: a prime p where $p > 2$, a quadratic residue c in $GF(p)$ and an integer b where $0 < b < p$

Output: y where $CL(c, b, p) = y$. The output y will be 0 or a square root of c in $GF(p)$.

1. $h := (b^2 - 4c)^{(p-1)/2} \pmod{p}$
2. if $h \equiv 1 \pmod{p}$ or $h \equiv 0 \pmod{p}$ then $s := 0$
3. if $h \equiv -1 \pmod{p}$ then $s := 1$
4. $q(x) := x^{(p+1)/2} \mod (x^2 - bx + c)$ where $q(x) = c_1x + c_0$ for integers c_0, c_1
5. $y := sc_0$
6. Return y as the output
Example 2

The following is an example of using Algorithm 1 to calculate $CL(20, 2, 31)$

(1) $h = (2^2 - (4)(20))^{15} \equiv 17^{15} \equiv -1 \pmod{31}$
(2) Not applicable since $h \equiv -1 \pmod{31}$
(3) $s := 1$
(4) $q(x) := x^{16} \pmod{x^2 + 29x + 20} \equiv 0x + 19 \pmod{x^2 + 29x + 20}$
(5) $y := (1)(19)$
(6) Return 19 as the output

Thus $CL(20, 2, 31) = 19$ which means that 19 is a square root of 20 mod 31.

4. The New Square Root Algorithm

This new algorithm calculates a function $S(d, b, p)$ which calculates the square root of a quadratic residue d in $GF(p)$ based on a random parameter b or it returns the value of 0. Given a fixed quadratic residue d and a fixed prime p where $p \equiv 5 \pmod{6}$ consider the following set of $p - 1$ values for $0 < k < p$:

$y_k = S(d, k, p)$. For approximately 1/3 of these values this algorithm will return 0. About 1/3 of the time it will return c and about 1/3 of the time it will return $-c \pmod{p}$ where c is the minimum positive integer such that $c^2 \equiv d \pmod{p}$.

As an example of this, consider the output of $S(5, k, 11)$ for $0 < k < 11$ which calculates a square root of 5 in $GF(11)$ or returns a value of 0 based on the parameter k. If $k = 1$ or if $k = 10$ then $S(5, k, 11) = 0$. If $k = 2, 4, 5, or 8$ then $S(5, k, 11) = 7$. If $k = 3, 6, 7, or 9$ then $S(5, k, 11) = 4$.

The algorithm is based on exponentiating modulo a cubic polynomial $f(x)$ in $GF(p^3)$ where $f(x) = x^3 + ax + b$ and where the integer values d, b and p are given: p is any prime greater than or equal to 5, d is any nonzero quadratic residue modulo p, and b is any integer. Then the integer a is selected such that $d \equiv -(4a^3 + 27b^2) \pmod{p}$. The variable d thus refers to the discriminant of the cubic polynomial $f(x)$.

If $p \equiv 1 \pmod{6}$ then in some cases no such value for the variable a exists, in which case this algorithm will not work. However, approximately 1/3 of the time for randomly selected d, b and p a value of a does exist and so this algorithm will work. If $p \equiv 5 \pmod{6}$ then in all cases a value for a does exist since all integers modulo p are cubic residues. The following is the main theorem upon which the algorithm for calculating $S(d, b, p)$ is based.
Theorem 2

Given two integers \(a\) and \(b\) and a prime \(p \geq 5\) such that \(\gcd(a, p) = 1\) such that the cubic polynomial \(x^3 + ax + b\) is irreducible modulo \(p\)
Then the following congruence is true:

\[
t^2 \equiv -(4a^3 + 27b^2) \pmod{p}
\]

where \(t \equiv (3a)(c_2)^{-1} \pmod{p}\)

where \(c_0, c_1\) and \(c_2\) are defined as any integers
such that \(x^p \equiv c_2x^2 + c_1x + c_0 \pmod{x^3 + ax + b}\)

Example 3

The following is an example of using Theorem 2 to calculate the square root of 23 in \(GF(101)\). Consider the following polynomial:

\[x^3 + 37x + 26\]

This polynomial is irreducible modulo 101, thus its discriminant \(D\) is a quadratic residue. Using Theorem 2 it follows that:

\[
D \equiv t^2 \equiv -((4)(37)^3 + (27)(26)^2) \pmod{101}
\]
\[
\equiv -(6 + 72) \equiv 23 \pmod{101}
\]

by exponentiating in \(GF(101^3)\) it follows that:

\[x^{101} \equiv (68x^2 + 22x + 95) \pmod{x^3 + 37x + 26}\]

thus

\[t \equiv (3a)(c_2)^{-1} \equiv (3)(37)(68)^{-1} \equiv 15 \pmod{101}\]

and thus 15 is a square root of 23 modulo 101.

The following theorem is a generalization of Theorem 2 that applies to any irreducible cubic polynomial.
Theorem 3

Given three integers b, c and d and a prime $p \geq 5$ such that $gcd(b^2 - 3c, p) = 1$ and such that the cubic polynomial $x^3 + bx^2 + cx + d$ is irreducible mod p then the following congruence is true:

$$t^2 \equiv ((18bcd - 4b^3d + b^2c^2) - (4c^3 + 27d^2)) \pmod{p}$$

where $t \equiv (b^2 - 3c)(c_2)^{-1} \pmod{p}$

where c_0, c_1 and c_2 are defined as any integers

such that $x^p \equiv c_2x^2 + c_1x + c_0 \mod \langle x^3 + bx^2 + cx + d \rangle$

Both Theorem 2 and Theorem 3 show that by exponentiating in $GF(p^3)$, that is, exponentiating modulo irreducible cubic polynomials where the coefficients are taken modulo some prime p, that the square root of the discriminant of the cubic polynomial can be determined. Both theorems define a value for t where $t^2 \equiv D \pmod{p}$ and where D is the cubic polynomial’s discriminant. See [8] for more information on the discriminant.

Example 4

The following is an example of using Theorem 3 to calculate the square root of 2 in $GF(47)$. Consider the following polynomial:

$$x^3 + 5x^2 + 7x + 19$$

This polynomial is irreducible modulo 47, thus its discriminant D is a quadratic residue. Using Theorem 3 it follows that:

$$D \equiv t^2 \equiv ((18)(5)(7)(19) - 4(5)^3(19) + (5)^2(7)^2) - ((4)(7)^3 + (27)(19)^2) \pmod{47}$$

$$\equiv ((32 - 6 + 3) - (9 + 18)) \equiv 2 \pmod{47}$$

by exponentiating in $GF(47^3)$ it follows that:

$$x^{47} \equiv (14x^2 + 2x + 13) \mod \langle x^3 + 5x^2 + 7x + 19 \rangle$$

thus

$$t \equiv (b^2 - 3c)(c_2)^{-1} \equiv ((5)^2 - 3(7))(14)^{-1} \equiv (4)(37) \equiv 7 \pmod{47}$$

and thus 7 is a square root of 2 modulo 47.

Based on Theorem 2, we will next define a function $S(d, b, p)$ that calculates square roots in $GF(p)$ and give an algorithm for calculating it.
Definition 1

Definition of $S(d, b, p)$ for $p \equiv 5 \pmod{6}$

Let p be a prime such that $p \equiv 5 \pmod{6}$ and let a be the unique solution to the following congruence:

$$d \equiv -(4a^3 + 27b^2) \pmod{p}$$

If $x^3 + ax + b$ is not irreducible modulo p then let $S(d, b, p) = 0$. Otherwise, let $S(d, b, p) = t$ where t is defined in Theorem 2.

Definition 2

Definition of $S(d, b, p)$ for $p \equiv 1 \pmod{6}$

Let p be a prime such that $p \equiv 1 \pmod{6}$ and let a be any solution to the following congruence (if a solution exists):

$$d \equiv -(4a^3 + 27b^2) \pmod{p}$$

If no solution a to the above congruence exists or if a solution does exist and $x^3 + ax + b$ is not irreducible modulo p then let $S(d, b, p) = 0$. Otherwise, let $S(d, b, p) = t$ where t is defined in Theorem 2.

It might appear that Definition 2 is ambiguous since $p \equiv 1 \pmod{6}$ if a solution a to the previous congruence exists, there will be three possible values for a and this definition does not specify which of these three values to use. However, regardless of which cubic root is used for a the same value will be computed for $S(d, b, p)$.

Next we will give an algorithm for calculating the function $S(d, b, p)$ for $p \equiv 5 \pmod{6}$ based on Definition 1 and using Theorem 2. The most time consuming parts of this algorithm are steps 2, 3 and 4. Step 2 calculates a cube root in $GF(p)$ and step 3 exponentiates in $GF(p^3)$ and step 4 calculates a multiplicative inverse in $GF(p)$. All three of these steps each take $O(M(p) \log p)$ time to calculate. Thus the whole algorithm runs in $O(M(p) \log p)$ time.

The algorithm could be modified to work in the case that $p \equiv 1 \pmod{6}$ by checking if j from step 1 is a cubic residue. If j is a cubic nonresidue, the algorithm should return 0, otherwise step 2 should be replaced with an algorithm for calculating cube roots in $GF(p)$ for $p \equiv 1 \pmod{6}$ such as the algorithm in [9]. The rest of the algorithm would remain the same.
Algorithm 2

The $GF(p^3)$ square root algorithm for $p \equiv 5 \pmod{6}$

Input: a prime p where $p \equiv 5 \pmod{6}$, a quadratic residue d in $GF(p)$ and an integer b where $0 < b < p$

Output: t where $S(d, b, p) = t$. The output t will be 0 or a square root of d in $GF(p)$.

1. $j := (d + 27b^2)(-4)^{-1} \pmod{p}$
2. $a := j^{(2p-1)/3} \pmod{p}$
3. $q(x) := x^p \mod \langle x^3 + ax + b \rangle$ where $q(x) = c_2x^2 + c_1x + c_0$
 for some integers c_0, c_1 and c_2
4. If $x^3 + ax + b$ is irreducible in $GF(p)$ then $t := (3a)(c_2)^{-1} \pmod{p}$
5. If $x^3 + ax + b$ is not irreducible in $GF(p)$ then $t := 0$
6. Return t as the output

Example 5

The following is a specific example of using Algorithm 2 to calculate $S(21, 10, 41)$

1. $j := ((21 + 27(10)^2)(-4)^{-1} \equiv (21 + 27(18))(10) \equiv 27 \pmod{41}$
2. $a := 27^{27} \equiv 3 \pmod{41}$
3. $q(x) := x^{41} \mod \langle x^3 + 3x + 10 \rangle \equiv 30x^2 + 34x + 19 \mod \langle x^3 + 3x + 10 \rangle$
4. Since $x^3 + 3x + 10$ is irreducible in $GF(41)$
 let $t = (3)(3)(30)^{-1} \equiv 29 \pmod{41}$
5. Not applicable
6. Return 29 as the output

thus $S(21, 10, 41) = 29$ which means that 29 is a square root of 21 mod 41.

5. Conjectures involving the function $S(d,b,p)$

The following are four conjectures concerning the function $S(d,b,p)$. Based on calculations that have been done with an implementation of Algorithm 2 written in C, it seems probable that these conjectures are true in most if not all cases.

Conjecture 1

If p is a prime such that $p \equiv 5 \pmod{6}$ and if d_1 is a nonzero quadratic residue modulo p and if

$$d_2 \equiv 729(d_1)^{-1} \pmod{p}$$

then

- (a) if $S(d_1, 1, p) = 0$ then $S(d_2, 1, p) = 0$
- (b) if $S(d_1, 1, p) \neq 0$ then $S(d_1, 1, p)S(d_2, 1, p) \equiv -27 \pmod{p}$
Conjecture 2

If \(p \) is a prime such that \(p \equiv 5 \pmod{6} \) and \(d_2 \equiv b^2d_1 \pmod{p} \) where \(b \) is any integer and \(d_1 \) and \(d_2 \) are nonzero quadratic residues in \(GF(p) \) then

\[
(b)(S(d_1,1,p)) \equiv S(d_2,b,p) \pmod{p}
\]

Conjecture 3

If \(p \) is a prime such that \(p \equiv 5 \pmod{6} \) then

(a) if \(p \equiv 2 \pmod{9} \) then \(S(9,1,p) \equiv -3 \pmod{p} \)
 and \(S(81,1,p) \equiv 9 \pmod{p} \)

(b) if \(p \equiv 5 \pmod{9} \) then \(S(9,1,p) \equiv 3 \pmod{p} \)
 and \(S(81,1,p) \equiv -9 \pmod{p} \)

(c) if \(p \equiv 8 \pmod{9} \) then \(S(9,1,p) = 0 \)
 and \(S(81,1,p) = 0 \)

The following theorem is due to L.E. Dickson [3] (also see [2] and [9]) and gives criteria that can be used to determine whether or not a cubic polynomial of the form \(x^3 + ax + b \) is irreducible in \(GF(p) \).

Theorem 4

If \(p \) is a prime \(\geq 5 \) and if \(f(x) = x^3 + ax + b \) for any integers \(a \) and \(b \) then \(f(x) \) is irreducible in \(GF(p) \) if and only if the following two conditions are true:

(a) \(D \) is a nonzero quadratic residue in \(GF(p) \) where \(D = -(4a^3 + 27b^2) \)

(b) \((d_1x + d_2)(p^2-1)/3 \neq 1 \mod (x^2 + 3)\)
 where \(d_1 \equiv 18^{-1}t \pmod{p} \) and \(t^2 \equiv D \equiv -(4a^3 + 27b^2) \pmod{p} \)
 and \(d_2 \equiv 2^{-1}b \pmod{p} \)

The following conjecture shows how the function \(S(d,b,p) \) can give more specific information about Theorem 4
Conjecture 4

If \(p \) is a prime such that \(p \equiv 5 \pmod{6} \) and if \(f(x) = x^3 + ax + b \) for any integers \(a \) and \(b \) such that \(\gcd(ab, p) = 1 \) then the following two conditions are true:

(a) \(S(-(4a^3 + 27b^2), b, p) = 0 \) if and only if \(f(x) \) is not irreducible in \(GF(p) \)

(b) if \(f(x) \) is irreducible in \(GF(p) \) then

\[
(d_1 x + d_2)(r^{2-1}) \equiv -2^{-1}(x + 1) \pmod{x^2 + 3}
\]

where \(d_1 \equiv 18^{-1}(mod \ p) \) and \(t^2 \equiv D \equiv -(4a^3 + 27b^2) \pmod{p} \)

and \(d_2 \equiv -2^{-1}b \pmod{p} \)

5.1 Two Cubic Residuosity Conjectures

We define the concept of a residuosity theorem as the following: given two primes \(p \) and \(q \), and a function \(f(q, p) \) that is computed modulo \(p \), a residuosity theorem is any theorem that shows a relationship between the output of the function \(f(q, p) \) and the value of \(p^{(q-1)/c} \pmod{q} \) where \(c > 1 \) and \(q \equiv 1 \pmod{c} \). If \(c = 2 \) this would be a quadratic residuosity theorem. If \(c = 3 \), this would be a cubic residuosity theorem.

Using this definition the most well-known residuosity theorem would be the law of quadratic residuosity which given two odd primes \(p \) and \(q \) shows a relationship between the value of \(p^{(q-1)/2} \pmod{q} \) and the value of \(q^{(p-1)/2} \pmod{p} \).

In this case, the function \(f(q, p) \) would be defined as \(f(q, p) = q^{(p-1)/2} \pmod{p} \). In the following section we will present two cubic residuosity conjectures concerning the function \(S(d, b, p) \) for \(b = 1 \) and for \(b = 2 \) that seem to be true based on computational evidence.

Conjecture 5

If \(p \) is a prime such that \(p \equiv 5 \pmod{6} \) and if \(d \equiv 81e^2 \pmod{p} \) for some integer \(e \) such that \(\gcd(e, p) = 1 \) with \(d \neq 9 \pmod{p} \) and \(d \neq 81 \pmod{p} \)

And suppose that the following criteria are met for any positive integers \(x \) and \(y \):

1. \(x \equiv (e - 1)(2)^{-1} \pmod{p} \)
2. \(y \equiv (e + 1)(2)^{-1} \pmod{p} \)
3. \(x \equiv 1 \pmod{3} \)
4. \(y \equiv 2 \pmod{3} \)
5. \(q \) is a prime where \(q = x^2 + xy + y^2 \)
Then the following three statements are true:

(a) $S(d, 1, p) = 0$ if and only if $p^{(q-1)/3} \equiv 1 \pmod{q}$
(b) $S(d, 1, p) \equiv 9e \pmod{p}$ if and only if $p^{(q-1)/3} \equiv xy^{-1} \pmod{q}$
(c) $S(d, 1, p) \equiv -9e \pmod{p}$ if and only if $p^{(q-1)/3} \equiv x^{-1}y \pmod{q}$

Example 6

Suppose that p is a prime $p \equiv 5 \pmod{6}$ and that $d \equiv 729 \pmod{p}$
thus $e^2 \equiv 9 \pmod{p}$

Using criteria (1) - (4) in Conjecture 5 we could choose $x = 1$ and $y = 2$
and thus by (5) $q = 1^2 + (1)(2) + 2^2 = 7$

The output of $S(d, 1, p)$ would depend on the value of $p^{(7-1)/3} \equiv p^2 \pmod{7}$

Thus items a, b and c from Conjecture 5 would imply the following:

(a) $S(d, 1, p) = 0$ if and only if $p \equiv \pm 1 \pmod{7}$
(b) $S(d, 1, p) \equiv 27 \pmod{p}$ if and only if $p \equiv \pm 2 \pmod{7}$
(c) $S(d, 1, p) \equiv -27 \pmod{p}$ if and only if $p \equiv \pm 4 \pmod{7}$

Conjecture 6

If p is a prime such that $p \equiv 5 \pmod{6}$ and if $d \equiv 81c^2 \pmod{p}$ for some
integer e such that $gcd(e, p) = 1$ with $d \not\equiv 9 \pmod{p}$ and $d \not\equiv 81 \pmod{p}$
And suppose that the following criteria are met for any positive integers x and y:

(1) $x \equiv (e - 2) \pmod{p}$
(2) $y \equiv (e + 2) \pmod{p}$
(3) $x \equiv 1 \pmod{3}$
(4) $y \equiv 2 \pmod{3}$
(5) q is a prime where $q = x^2 + xy + y^2$

Then the following three statements are true:

(a) $S(d, 2, p) = 0$ if and only if $p^{(q-1)/3} \equiv 1 \pmod{q}$
(b) $S(d, 2, p) \equiv 9e \pmod{p}$ if and only if $p^{(q-1)/3} \equiv xy^{-1} \pmod{q}$
(c) $S(d, 2, p) \equiv -9e \pmod{p}$ if and only if $p^{(q-1)/3} \equiv x^{-1}y \pmod{q}$
Example 7

Suppose that p is a prime $p \equiv 5 \pmod{6}$ and that $d \equiv 729 \pmod{p}$
thus $e^2 \equiv 9 \pmod{p}$

Using criteria (1) - (4) in Conjecture 6 we could choose $x = 1$ and $y = 5$
and thus by (5) $q = 1^2 + (1)(5) + 5^2 = 31$

The output of $S(d, 2, p)$ would depend on the value of $p^{(31-1)/3} \equiv p^{10} \pmod{31}$

The following are three specific examples of what items a, b and c from Conjecture 6 would imply:

(a) $S(d, 2, 23) = 0$ since $23^{10} \equiv 1 \pmod{31}$
(b) $S(d, 2, 59) \equiv 27 \pmod{59}$ since $59^{10} \equiv (1)(5)^{-1} \equiv 25 \pmod{31}$
(c) $S(d, 2, 41) \equiv -27 \pmod{41}$ since $41^{10} \equiv (1)^{-1}(5) \equiv 5 \pmod{31}$

One may notice that both Conjectures 5 and 6 are very similar to each other.
Conjecture 5 pertains to the case $b = 1$ and Conjecture 6 to the case $b = 2$.
This could be extended to the cases of $b = p - 1$ and $b = p - 2$ if one notes the
identity: $S(d, b, p) \equiv -S(d, p - b, p)(\pmod{p})$. One might suspect that it could
be possible to give a generalization for other values of b. However, we know of
no generalization beyond these two cases.

Also one should note that both Examples 6 and 7 considered the simplest
case of $d \equiv 729 \pmod{p}$ which allowed for the smallest possible value of q which
was 7 for Conjecture 5 and 31 for Conjecture 6.

6. Conclusion

We presented two previously known methods for calculating square roots in
$GF(p)$: the quadratic sum method and the Cipolla-Lehmer method. Also we
showed how quadratic sums are related to the Diffie-Hellman problem in $GF(p)$
and how efficient methods for calculating the function $Q(g, h, p)$ might lead to
efficient methods for solving the Diffie-Hellman problem in $GF(p)$.

We also presented a new method for calculating square roots in $GF(p)$ based
on exponentiation in $GF(p^3)$. A function $S(d, b, p)$ was defined and an algorithm
for calculating this function was given. In addition to this, six conjectures re-
lating to the output of the square root function $S(d, b, p)$ were given. This new
$GF(p^3)$ square root algorithm like the Cipolla-Lehmer algorithm was shown to
run in $O(M(p) \log p)$ time where $M(p)$ is the amount of time it takes to calcu-
late one multiplication modulo p.
References

[1] Eric Bach and Klaus Huber. *Note on taking square-roots modulo N*. IEEE Transactions on Information Theory 45(2):807-809, 1999.

[2] Gook Hwa Cho, Namhun Koo, Eunhye Ha, and Soonhak Kwon. *New cube root algorithm based on third order linear recurrence relation in finite field*, preprint, available from http://eprint.iacr.org/2013/024.pdf, 2013.

[3] L.E. Dickson. *Criteria for irreducibility of functions in a finite field*. Bulletin of the American Mathematical Society, Volume 13(1):1-8, 1906.

[4] Ghaith A. Hiary. *Fast methods to compute the Reimann zeta function*. Annals of Mathematics 174(2):891-946, 2011.

[5] Ghaith A. Hiary. *A nearly-optimal method to compute the truncated theta function, its derivatives, and integrals*. Annals of Mathematics 174(2):859-889, 2011.

[6] Namhun Koo, Gook Hwa Cho, and Soonhak Kwon. *Square root algorithm in F_q for $q \equiv 2^s + 1 \pmod{2^{s+1}}$, preprint available from http://eprint.iacr.org/2013/087.pdf, 2013.

[7] A. Kuznetsov. *Computing the truncated theta function via Mordell integral*, preprint available from arXiv:math.NT/1306.4081, June 2013.

[8] Yang Min, Meng Qingshu, Wang Zhangyi, Li Li, Zhang Huanguo. *Some observations to speed the polynomial selection in the number field sieve*, preprint available at http://eprint.iacr.org/2012/599.pdf, 2012.

[9] Nozumu Nishihara, Ryuichi Harasawa, Yataka Sueyoshi, Aichi Kudo. *A remark on the computation of cube roots in finite fields*, preprint available at http://eprint.iacr.org/2009/457.pdf, 2009.

[10] Rene Schoof. *Elliptic curves of finite fields and the computation of square roots mod p*. Mathematics of Computation, 44(170):483-494, April 1985.

[11] Tze-Wo Sze. *On taking square roots without quadratic nonresidues over finite fields*. Mathematics of Computation, 802(275):1797-1811, July 2011.