Distributed Control of Descriptor Networks: A Convex Procedure for Augmented Sparsity

Andrei Sperilă, Cristian Oară, Bogdan D. Ciubotaru, and Şerban Sabău

Abstract—For networks of systems, with possibly improper transfer function matrices, we present a design framework that enables \mathcal{H}_∞ control, while imposing sparsity constraints on the coprime factors of the controller. We propose a convex and iterative optimization procedure with guaranteed convergence to obtain sparse representations of our control laws that may not be directly supported by the nominal model of the network.

Index Terms—Convex optimization, distributed processes, descriptor systems, sparse \mathcal{H}_∞ control.

I. INTRODUCTION

A. Motivation

When faced with a distributed control problem, one notices an acute lack of dedicated numerical tools, if compared with the classical centralized design context. Several computational methods, such as those proposed in [1], [2], [3], and [4], aim to exploit specialized techniques, in order to mitigate the numerical complexities inherent to distributed control.

Notably, previous efforts [5] have sought to enforce sparsity constraints directly upon a finite impulse response (FIR) approximation of the Youla parameter, under certain restrictive assumptions, such as quadratic invariance and strong stabilizability (see [6]). However, the technique proposed in [5] cannot cope with enforcing sparsity patterns upon nonsparse affine expressions of the Youla parameter. These issues were tackled in [7], with the introduction of the framework dubbed system-level synthesis (SLS). Yet the focus on discrete-time systems meant that other architectures, such as the network realization function (NRF) representations discussed in [8] and [9], have been overshadowed by the FIR approximation methods from the SLS framework.

B. Article Structure and Contributions

In this article, we propose tractable techniques and numerical procedures for the NRF-based framework formalized in [9], which offers distributed control laws in both continuous time and discrete time, without needing to communicate any internal states, i.e., plant or controller states (see [9, Sec. IV] for a comparison with the SLS framework), thus promoting scalable control laws for large-scale networks. In Section II, we cover a set of preliminary notions, with our paper’s problem statement forming Section III-A. Our contributions are structured via the subsequent sections and are listed as follows.

1) In Section III-B, we show how to impose sparsity in the NRF formalism and how it reduces to a model-matching problem that is solved via reliable procedures [10], [11], [12].

2) In Section III-C, we extend the robust stabilization approach from [13] to the distributed NRF-based setting.

3) In Section IV, we show how to particularize the convex and iterative procedure (with guaranteed convergence) from [14] to obtain robust NRF-based implementations.

4) In Section V, we consider a generalization of the network in [8], and we also show1 how to employ our robustness-oriented approach, in order to retrieve the same sparse control architecture as in [8] for a more general case.

Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Nomenclature and Definitions

Let \mathbb{C}, \mathbb{C}^-, $\mathbb{J}_\mathbb{R}$, and \mathbb{B} denote the complex plane, the open left-half plane, the imaginary axis, and the set $(0,1)$, respectively. Let $M(p\times m)$ stand for the set of all $p \times m$ matrices having entries in a set denoted M. We also denote by $P > 0$ the fact that $P \in \mathbb{R}^{n \times n}$ is positive definite and by $\Sigma(Z)$ the maximum singular value of $Z \in \mathbb{C}^{p \times n}$. For any $M \in M(p \times m)$, M^+ is its transpose. Let $\text{Ker}(M)$ denote the null space of $M \in M(p \times m)$, and let $\|Z\|_2$ denote the sum of the singular values belonging to $Z \in \mathbb{C}^{p \times m}$, which is termed the nuclear norm. The operator \otimes denotes the Kronecker product between any two matrices. We define the vectorization of $M \in M(p \times m)$ as $\text{vec}(M) := v \in M(p \times m)$, where $v_{i+j} = \text{vec}(M)$, for $i \in 1:pm$, and $v_i = 0 \forall i \neq j$.

For $M_i \in M(p_i \times m_i)$, with $i \in 1:\ell$, and a natural number g, we define the block-diagonal concatenation operator by $D(M_1, \ldots, M_\ell) := \begin{bmatrix} M_1 & \cdots & M_\ell \end{bmatrix} \in M(p_1 \times \Sigma_{j=1}^\ell m_j)$ and the block-diagonal repetition of M_i by $D_g(M_i) := \begin{bmatrix} M_i & \cdots & M_i \end{bmatrix} \in M(p_i \times g \times m_i)$. For any $R \in \mathbb{R}^{q \times q}$, we denote its symmetric part by $\text{sym}(R) := \frac{1}{2}(R + R^\top) = \text{sym}(R^\top)$ and its diagonal part by $R_{\text{diag}} := \begin{cases} R_{ii}, & i = j, \\ 0, & i \neq j, \end{cases}$. The matrix polynomial $A-sE$ is called a pencil, with square ones that have det$(A-sE) \neq 0$ being termed regular. A regular

1All the implementations being compared in this article are available at the following link: https://github.com/AndreiSperila/CONPRAS

0018-9286 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
pencil without finite generalized eigenvalues in $\mathbb{C}\setminus\mathbb{C}^-$ and without infinite generalized eigenvalues with partial multiplicities greater than 1 (see [15]) is called admissible. Let $\Lambda (A - sE)$ be the collection of parameterized matrices of this pencil $A - sE$.

In this article, we will focus on systems described in the frequency domain by transfer function matrices (TFMs) of type $(G(s))_{ij} = \frac{a_{ij}(s)}{b_{ij}(s)}$, with $a_{ij}(s)$ and $b_{ij}(s)$ polynomials with coefficients in \mathbb{R}, $i \in 1: p$, $j \in 1: m$. We denote the set of all such TFMs with m inputs and p outputs by $\mathbb{R}^{p \times m}$, with $\mathbb{R}^{m \times p}$ being the subset of proper TFMs (deg $a_{ij} \leq$ deg b_{ij}, $\forall i \in 1: p$, $j \in 1: m$). Let $B \in \mathbb{R}^{p \times m}$, which we use to express $S_B := \{G \in \mathbb{R}^{p \times m}|B_{ij} = 0 \Rightarrow G_{ij} \equiv 0, \forall i \in 1: p, \forall j \in 1: m\}$. Note that $G \in S_B \iff (I - \text{diag}(B))\text{vec}(G) \equiv 0$. We also define the restriction of S_B to proper TFMs $\overline{S}_B := S_B \cap \mathbb{R}^{p \times m}$.

A TFM without poles (see [16, Sec. 6.5.3]) located in $[\mathbb{C}\setminus\mathbb{C}^-] \cup \{\infty\}$ is called stable. Let \mathcal{H}_∞ denote the set of real-rational and stable TFMs, with the \mathcal{H}_∞ norm of any $G \in \mathcal{H}_\infty$ being given by $\|G\|_{\mathcal{H}_\infty} := \sup_{s \in \mathbb{R}}|\sigma|$. The systems considered in this article are usually represented in the time domain by differential and algebraic equations

$$
E \frac{dx}{dt} + Bu(t) = Ay(t) + Du(t),
$$

which contains the realization’s vectorizer $\text{vec}(G(s))$. The systems considered in this article are usually represented in the time domain by differential and algebraic equations

Let S_{∞} span $\text{Ker}E$. A pair $(A - sE, B)$ or a realization (2) for which $[A - sE]B$ has full row rank $\forall s \in \mathbb{C}\setminus\mathbb{C}^-$ and $[E, A, B, C]$ full row full rank is called strongly stabilizable. By [18, Th. 1.1], strong stabilizability is equivalent to the existence of a matrix F, called an admissible feedback, such that the pencil $A + BF - sE$ is admissible. By duality, a pair $(C, A - sE)$ or realization (2) is deemed strongly detectable if $[A^T - sE]^T(C^T)$ is strongly detectable. Let both E_r and D_r be invertible and consider $E_r^T A_{r}, A_r^T E_r + C_r^T C_r - (E_r^T B_r + C_r^T D_r) \times (D_r^T D_r)^{-1}(B_r^T E_r, X_r, E_r + D_r^T C_r) = 0$ (3)

A generalization of the continuous-time algebraic Riccati equation (GCARE) (see [19]). A symmetric solution X_r of the CARE is called stabilizing if $P_r := [(D_r^T D_r)^{-1}(B_r^T E_r, X_r, E_r + D_r^T C_r)$ is a stabilizing feedback, i.e., $\Lambda(A_r + B_r F - sE_r) \subset \mathbb{C}^-$. \hfill (4)

B. Parameterization of All Stabilizing Controlers

To obtain a tractable parameterization for NRF-based control laws, we employ the class of all stabilizers, which stabilize a network whose TFM $G^n \in \mathbb{R}^{(p_u + p_l) \times (m_u + m_l)}$ is given by

$$
G^n = \begin{bmatrix}
G_{11}^n & G_{12}^n \\
G_{21}^n & G_{22}^n
\end{bmatrix} = \begin{bmatrix}
A & B_1 & B_2 \\
C_1 & D_{11} & D_{12} \\
C_2 & D_{21} & D_{22}
\end{bmatrix}
$$

where $A \in \mathbb{R}^{n \times n}$, $D_{11} \in \mathbb{R}^{p \times m}$, $D_{22} \in \mathbb{R}^{m \times p}$, and all other constant matrices have appropriate dimensions. Under certain assumptions of strong stabilizability and detectability, the aforementioned class coincides with that of the controllers, which render the closed-loop configuration from Fig. 1 well posed, i.e., $\text{det}(I - G_{22}^n K) \neq 0$, and internally stable, i.e., all the TFMs from u_1 and u_2 to y_1, y_2, y_1, and y_2 are stable. We now state an extension of the Youla parameterization, for a class of systems having possibly improper TFMs, by combining the notions from [20, Secs. 4.1 and 4.2].

Theorem 2.1. Let $G^n \in \mathbb{R}^{(p_u + p_l) \times (m_u + m_l)}$ be given as in (4), with $(A - sE, B_2)$ strongly stabilizable and $(C_2, A - sE)$ strongly detectable. Let (N, N, M, M, X, Y, Y, Y) be a doubly coprime factorization (DCF) of $G^n_{22} = NM^{-1} = M^{-1}N$ over \mathcal{H}_∞, with all eight TFMs being stable and satisfying

$$
\begin{bmatrix}
\tilde{Y} & \tilde{X} \\
\tilde{N} & \tilde{M}
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
$$

Then, we have the following.

a) A DCF over \mathcal{H}_∞ can be obtained, via (4), by

$$
\begin{bmatrix}
\tilde{Y} & \tilde{X} \\
\tilde{N} & \tilde{M}
\end{bmatrix} = \begin{bmatrix}
A_H - sE & -B_2 & -HD_{22} & H \\
F & I & 0 & 0
\end{bmatrix} = \begin{bmatrix}
A_F - sE & B_2 & H \\
F & I & 0 & D_{22}
\end{bmatrix}
$$

b) The class of all stabilizing controllers is given by

$$
K = (X + MQ)(Y + NQ)^{-1} = (\tilde{Y} + \tilde{QN})^{-1}(\tilde{X} + \tilde{Q})
$$

for all $Q \in \mathcal{H}_\infty^\infty$. For further details, see [19].

c) For a stabilizing K given by a DCF over \mathcal{H}_∞ of G^n_{22},

$$
G_{CL} = \mathcal{F}_i(G^n_{11} + G^n_{12}K(I - G^n_{22}K)^{-1}G^n_{21})
$$

is expressed affinely in terms of Q from (7) by the identity

$$
T_1 := G_{11}^n + G_{12}^n X M G_{21}^n
$$

where

$$
T_2 := G_{12}^n M = \begin{bmatrix}
A_F - sE & B_2 \\
C_1 + D_{12}F & D_{12}
\end{bmatrix}
$$

$T_3 := G_{21}^n = \begin{bmatrix}
A_H - sE & B_1 \\
C_2 & D_{21}
\end{bmatrix}$.

Remark 2.1: The two admissible feedback F and H can always be chosen via the two-step stabilization algorithm from [18]. Since $A_H - sE$ and $A_F - sE$ are admissible, the TFMs from (6a), (6b), and (8a)–(8c) are all stable and, thus, proper. State-space realizations for these TFMs can be obtained via the residualization procedure mentioned in [21, Sec. 3].
III. Theoretical Results

A. Problem Statement

The results presented in this article tackle the problem of obtaining sparse and robustly stabilizing control laws of type

$$u_i = \sum_{j=1}^{m} \Phi_{ij} u_j + \sum_{k=1}^{p} \Gamma_{ik} y_k, \quad \Phi_{ij} \equiv 0 \quad \forall i \in 1 : m \quad (9)$$
discussed in [9]. More specifically, we aim to impose $\Gamma \in \hat{S}_N$ and $\Phi \in \hat{S}_r$ for some binary matrices $X \in \mathbb{R}^{m \times p}$ and $Y \in \mathbb{R}^{n \times m}$ with $\gamma_{\text{diag}} = 0$, and to have the control laws from (9) stabilize all the network models $G_\Delta \in c_{\text{eq}}$, where the class c_{eq} is of the type discussed in [22], due to its generality.

In the following, we show that this problem reduces to

$$\left\| \hat{T}_1 + \sum_{i=1}^{q} x_i \hat{T}_{2i} \right\|_\infty < 1, \quad x_i \in \mathbb{R}^{H_{\infty \times 1}}, \quad i \in 1 : q \quad (10)$$

with $\hat{T}_1, \hat{T}_{2i} \in \mathbb{R}^{H_{\infty \times 1}} \forall i \in 1 : q$, being expressed in terms of (2) and (6a) and (6b). Finally, we particularize convex relaxation-based procedures [14] available in the literature to solve (10), and we compose (Φ, Γ) from the obtained $x_i \in \mathbb{R}^{H_{\infty \times 1}}, \quad i \in 1 : q$.

B. Parameterization of NRF-Based Control Laws

Here, we show how the problem of obtaining the sparse and stabilizing distributed control laws of type (9) can be reduced to a readily solvable model-matching problem. As discussed in [9, Sec. III], this is primarily done by factorizing a stabilizing controller from the class expressed in Theorem 2.1 as $K = (I - \Phi)^{-1} \Gamma$, where $(\hat{Y} + Q \hat{N})_{\text{diag}}$ and $(\hat{Y} + Q \hat{N}_i)$ have proper inverses and the NRF pair (Φ, Γ) is obtained as

$$\Phi := I - (\hat{Y} + Q \hat{N})_{\text{diag}}^{-1} (\hat{Y} + Q \hat{N}) \in \mathbb{R}_{p \times p}^m \quad (11a)$$

$$\Gamma := (\hat{Y} + Q \hat{N})_{\text{diag}}^{-1} (\hat{X} + Q \hat{M}) \in \mathbb{R}_{p \times m}^r \quad (11b)$$

Remark 3.1: When the realization of $G_{p,2} \in \mathbb{R}^{p \times m}$ (not necessarily proper) from (4) is strongly stabilizable and detectable, the guarantees of closed-loop internal stability and of scalability showcased in [9, Sec. III] for control laws of type (9) will also hold. Thus, since all the closed-loop transfers are stable and are analogous to the closed-loop. Thus, since all the closed-loop transfers are stable and are analogous to the closed-loop.

With the stability guarantees of (9) clarified in Remark 3.1, we now focus on imposing sparsity patterns on the (Φ, Γ) pair. The following result offers a characterization of the stable Youla parameters, which, for a given DCF over $\mathbb{R}^{H_{\infty}}$, produce the desired sparsity structure for the NRF pair in (11a) and (11b).

Proposition 3.1: Let $G \in \mathbb{R}^{p \times m}$ be given by a DCF over $\mathbb{R}^{H_{\infty}}$ (6a) and (6b); let $X \in \mathbb{R}^{m \times p}$ and $Y \in \mathbb{R}^{n \times m}$, with $Y_{\text{diag}} = 0$. Let $F_Y := I - \text{diag}(X)$ and $F_X := I - \text{diag}(Y)$. If there exist $Q_0 \in \mathbb{R}^{H_{\infty \times m}}$ and $\hat{Q} \in \mathbb{R}^{H_{\infty \times m}}$ satisfying

$$\begin{bmatrix} F_X (\hat{M} \oplus I) \\ F_Y (\hat{N} \oplus I) \end{bmatrix} \text{vec}(Q_0) + \begin{bmatrix} F_X \text{vec}(\hat{X}) \\ F_Y \text{vec}(\hat{Y}) \end{bmatrix} \equiv 0 \quad (12a)$$

$$\text{vec}(\hat{Q}) \in \text{Ker} \begin{bmatrix} F_X (\hat{M} \oplus I) \\ F_Y (\hat{N} \oplus I) \end{bmatrix} \quad (12b)$$

$$\text{det} (\hat{Y} + (Q_0 + \hat{Q} \hat{N})(\infty)) \neq 0 \quad (12c)$$

$$\text{det} ((\hat{Y} + (Q_0 + \hat{Q} \hat{N})_{\text{diag}}(\infty)) \neq 0 \quad (12d)$$

then the controller in (7), formed via the employed DCF over $\mathbb{R}^{H_{\infty}}$, of type (6a) and (6b) and via $Q := Q_0 + \hat{Q}$, admits an NRF implementation of (11a) and (11b) with $\Gamma \in \hat{S}_N$ and $\Phi \in \hat{S}_r$. See the Appendix. Remark 3.2: Equation (12a) can be solved for a stable vec(Q_0), as shown in [10]. Moreover, a least order solution can be obtained by employing the generalized minimum cover algorithm from [12]. A benefit of this approach is that it computes a (stable) basis for $\text{Ker} \begin{bmatrix} F_X (\hat{M} \oplus I) \\ F_Y (\hat{N} \oplus I) \end{bmatrix}$. Alternatively, a stable basis of least degree can be obtained as in [11].

Remark 3.3: Selecting a Q, which ensures that $\text{det} (\hat{Y} + Q \hat{N})(\infty) \neq 0$, thus guaranteeing that the TFM of the controller is well posed, can be done numerically by using the fact that

$$\begin{align*}
\text{det} (\hat{Y} + Q \hat{N})(\infty) &\neq 0 \iff \\
\left(\hat{Y} + Q \hat{N} \right)_{\text{diag}}^{-1} (\hat{Y} + Q \hat{N}) &> 0. \quad (13)
\end{align*}$$

To ensure that $\text{det} ((\hat{Y} + Q \hat{N})_{\text{diag}}(\infty)) \neq 0$, we first denote by e_i the ith vector of the canonical basis of $\mathbb{R}^{m \times 1}$ and impose

$$e_i^{\top} (\hat{Y} + Q \hat{N})(\infty) e_i > 0 \quad \forall i \in 1 : m. \quad (14)$$

The bilinear matrix inequalities in (13) and (14) will be convexified and solved iteratively via the procedure given in Section IV.

C. Robust Stabilization and Augmented Sparsity

In this subsection, we show how to obtain a controller of type (7) whose NRF implementation (9) stabilizes all the network models G_Δ in a class c_{eq} and how this technique can be used to obtain a sparse control architecture. However, before this, we begin by defining the aforementioned class of TFMs.

The class c_{eq}, introduced in Section III-A, is expressed in terms of a stable right coprime factorization (RCF) of $G = \hat{N} \hat{M}^{-1} \in \mathbb{R}^{p \times m}$, i.e., $\hat{N}, \hat{M} \in \mathbb{R}^{H_{\infty}}$, and $\hat{X}, \hat{Y} \in \mathbb{R}^{H_{\infty}}$ so that $\hat{Y} \hat{M} = \hat{X} \hat{M}$ is, which is additionally normalized, i.e., $\hat{N} (-\hat{s}) \hat{N}(s) + \hat{M} (-\hat{s}) \hat{M}(s) = I$. With any (see [22]) such stable normalized right coprime factorization (NRCF) and $\epsilon \in (0, 1]$, we define

$$c_{\text{eq}} := \left\{ \left(\hat{N} + \Delta_N \right) \left(\hat{M} + \Delta_M \right)^{-1}, \Delta_N, \Delta_M \in \mathbb{R}^{H_{\infty}} \right\}, \quad \text{det} (\hat{M} + \Delta_M) \neq 0, \quad \left\| \begin{bmatrix} \Delta_N^- \Delta_N^+ \end{bmatrix} \right\|_\infty < \epsilon. \quad (15)$$

Clearly, in order to manipulate c_{eq}, we must first obtain a stable NRF of G. While (6b) readily provides a stable RCF of G, a stable NRF can be obtained via the following result.

Lemma 3.1: Let E_r be an invertible matrix, and let also $\Lambda(A_r - sE_r) \subset C^-$. Let the TFM

$$\begin{bmatrix} N^\top & M^\top \end{bmatrix}^\top = \begin{bmatrix} A_r - sE_r & B_r \\ C_r & D_r \end{bmatrix} \in \mathbb{R}^{(p + m) \times m} \quad (16)$$

designate a stable RCF of $G = \hat{N} \hat{M}^{-1} \in \mathbb{R}^{p \times m}$, and let $H_r \in \mathbb{R}^{m \times m}$ be invertible and satisfy $H_r H_r = D_r D_r$, then, we have the following:

a) The GCARE from (3) has a symmetric stabilizing solution, X_r, along with a stabilizing feedback, F_r.

b) For $G_0 := \begin{bmatrix} A_r - sE_r & B_r \\ C_r & D_r \end{bmatrix}$, we get that $[\hat{N}^\top & \hat{M}^\top]^\top \quad \text{G}_0^{-1}$ designates a stable NRF of G.

Proof: For point (a), see the Appendix. Point (b) is precisely [21, Proposition 1].

Having now the ability to express the TFMs that make up (15), we turn our attention to characterizing stabilizing controllers whose NRF
implementations of type (9) stabilize all the TFMs in C_G, for a given $\epsilon \in (0,1]$. The following result is central to this section and offers the means to do just so.

Theorem 3.1 Let $G \in \mathbb{R}^{p \times m}$ be given by a strongly stabilizable and detectable realization (2), and let F ensure that $A + BF - sE$ is admissible. Let also $G = NM^{-1}$ be the stable RCF induced by F as in (6b), and for which a realization as in (16) is obtained (recall Remark 2.1), having E, invertible and $\Lambda(A_r - sE_r) \subset C$. Let F_r be the stabilizing feedback of the GCAE from (3), and let $\epsilon \in [0,1]$ along with $H_r \in \mathbb{R}^{m \times m}$ invertible, such that $H_r^T H_r = D_r^T D_r$. Then, we have the following:

a) There exists a class of stabilizing controllers $K \in \mathbb{R}^{m \times p}$, based upon a DCF over \mathcal{H}_∞ of T_{22}, for the system

$$
T'_2 := T_{12}M' = \begin{bmatrix}
A_r - sE_r & B_r \\
-\epsilon H_r F_r & \epsilon H_r
\end{bmatrix}
$$

(19b)

b) Let K belong to the class from (a). If $\|F_r(T'_2 K)|\|_{\infty} \leq 1$ and K admits an NRF implementation as in (11a) and (11b), then the control laws from (9) stabilize all $G_{\Delta} \in C_G$.

Proof: See the Appendix.

Remark 3.4: The key to bypassing the feasibility of the model-matching problem tackled in Proposition 3.1 lies with judiciously employing Theorem 3.1. Let our network’s TF be $\overline{G} \in \mathbb{R}^{p \times m}$ and assume that the chosen NRF architecture is either infeasible or difficult to satisfy for the available DCFs over \mathcal{H}_∞ of \overline{G}. Then, we may resort to an approximation of \overline{G}, denoted $G \in \mathbb{R}^{p \times m}$, which satisfies $\overline{G} \in C_G$ and which is described by a DCF over \mathcal{H}_∞ that supports the desired NRF architecture. By obtaining control laws of type (9) with the desired sparsity structure and which stabilize all $G_{\Delta} \in C_G$, these sparse control laws will also stabilize \overline{G}. A concrete example of this design procedure will be shown in Section V.

Although we now possess the means to characterize robustly stabilizing NRF-based implementations of the controller, note that these are obtained by employing a DCF over \mathcal{H}_∞ whose realization is of the same order as that in (17). The next result shows how to obtain descriptor representations for the DCF over \mathcal{H}_∞ with the same order as that of the network’s model.

Proposition 3.2: Let the same framework, hypotheses, and notation hold as in the statement of Theorem 3.1, and let T_i' be defined as in (17). Then, we have the following:

a) For any H so that the pencil $A + HC - sE$ is admissible, a DCF over \mathcal{H}_∞ of T_{22} is given by

$$
\begin{bmatrix}
\tilde{Y} & -\tilde{X} \\
-N & \tilde{M}
\end{bmatrix} = \begin{bmatrix}
A + HC - sE & -B - HD & H \\
F & C + DF & I \\
0 & 0 & I
\end{bmatrix}.
$$

(18a)

(18b)

b) For any stabilizing controller obtained using (18a) and (18b) and an arbitrary $Q \in \mathcal{H}_\infty^{m \times p}$, we may express $F_i(T'_2 K) = T'_1 + T'_2 Q T'_3$, where we have

$$
\begin{bmatrix}
\hat{T}_1' & T_{12}X & \hat{M}' T_{21}
\end{bmatrix} = \begin{bmatrix}
A_r - sE_r & -B_r F_r & 0 & -B_r \\
-\epsilon H_r F_r & A + HC - sE_r & H & -B - HD \\
0 & 0 & I & -\epsilon H_r
\end{bmatrix}.
$$

(19a)

- **IV. CONVEX PROCEDURE FOR AUGMENTED SPARSITY**

- **A. Procedure Setup and Norm Condition Reformulation**

Recall that, in order to obtain sparse control laws of type (9), we aim to express controllers of type (7) for $Q \in \mathcal{H}_\infty^{m \times p}$ satisfying (12a) and (12d). For robust stability, point (b) of Theorem 3.1 argues that we need only satisfy $\|T'_1 + T'_2 Q T'_3\|_{\infty} \leq 1$, where T'_1, T'_2, and T'_3 are expressed as in (19a) and (19b).

The beginning of this section is dedicated to showing how this norm condition can be converted into (10). Owing to this being the setup of the iterative algorithm given in the following, this conversion will be given in an ordered sequence of steps.

Step 1: Solve (12a) for $Q_{01} \in \mathcal{H}_\infty^{m \times p}$, and obtain a basis $B \in \mathcal{H}_\infty^{m \times q}$ for $Q_{01} = \mathcal{H}_\infty^{m \times q}$ (recall Remark 3.2).

Step 2: Partition B via its columns, as follows:

$$
B := \begin{bmatrix} B_1 & \cdots & B_i & \cdots & B_q \end{bmatrix},
$$

and $B_i \in \mathcal{H}_\infty^{m \times 1}$ to obtain minimal realizations $B_i := \begin{bmatrix} A_{B_i} & B_{B_i} \end{bmatrix}$, $\forall i = 1 : q$.

Step 3: Using these realizations, write via (6b) a stable RCF of each $B_i = N_{B_i} M_{B_i}$, which are given explicitly by

$$
\begin{bmatrix} M_{B_i} \\
N_{B_i} \end{bmatrix} := \begin{bmatrix} A_{B_i}^T + B_{B_i}^T F_{B_i} & B_{B_i}^T \\
C_{B_i} D_{B_i} & D_{B_i} \end{bmatrix} \in \mathcal{H}_\infty^{(m+p)\times1}
$$

with F_{B_i} ensuring $A_{B_i}^T + B_{B_i}^T F_{B_i} - sI \subset C$ to form

$$
\hat{B} := \begin{bmatrix} N_{B_1} & \cdots & N_{B_i} & \cdots & N_{B_q} \end{bmatrix} \in \mathcal{H}_\infty^{m \times q},
$$

Step 4: Partition $\hat{B} := \begin{bmatrix} \hat{B}_1^T & \cdots & \hat{B}_i^T & \cdots & \hat{B}_q^T \end{bmatrix}$, noting that $\hat{B}_i \in \mathcal{H}_\infty^{m \times q}$, in order to finally define

$$
\begin{bmatrix} B_1 & \cdots & B_q \end{bmatrix} := \begin{bmatrix} A_{\hat{B}} & B_{\hat{B}} \end{bmatrix} \in \mathcal{H}_\infty^{m \times q}.
$$

Remark 4.1: Since B_i are the columns of stable basis of the null space in (12b), then so are $N_{B_i} = B_i M_{B_i}$, having realizations of the same order as those of B_i. Thus, \hat{B} is a stable basis for the same null space and may also be used to form vec(Q) = $B x$, $\forall x \in \mathcal{H}_\infty^{m \times q}$, as in Proposition 3.1.

This concludes the setup of our procedure, and we now move on to converting $\|T'_1 + T'_2 Q T'_3\|_{\infty} \leq 1$ into (10), through the explicit use of \hat{B}. Recall that Q can be partitioned additively as $Q = Q_0 + \hat{Q}$, with Q_0 having been obtained in Step 1 of the setup and with vec(Q) formed as in Remark 4.1. Thus, by (22) in Step 4 of the setup, it is straightforward to obtain

$$
Q = \begin{bmatrix} B_1 x & \cdots & B_q x \end{bmatrix} \mathcal{D}_B(p) x \in \mathcal{H}_\infty^{m \times p}.
$$

Defining $x \in \mathcal{H}_\infty^{m \times 1}$ by $x := \begin{bmatrix} A_x & b_x \\
\frac{C_x}{d_x} \end{bmatrix}$, we may express

$$
Q = \begin{bmatrix} A_{\hat{B}} & B_{\hat{B}} \\
D_{\hat{B}}(C_x) & D_{\hat{B}}(d_x) \end{bmatrix} \mathcal{D}_\hat{B}(p) \mathcal{D}_\hat{B}(d_x),
$$

(23)

whose realization is affine in terms of all variable matrices: A_x, b_x, C_x, d_x, and $A_{\hat{B}}$ and $D_{\hat{B}}$, by way of F_{B_i}, for $i \in 1 : q$.

It now becomes clear, in terms of (10), that we have $\hat{T}_1 = T'_1 + T'_2 Q_0 T'_3$ and $T_{21} = T'_1 Q_1 T'_3$, where we have defined

$$
\hat{Q}_i := \begin{bmatrix} \hat{e}_i & \cdots & \hat{e}_{iq+i} \end{bmatrix},
$$

(24)
with \(i = 1 : q, j \in 1 : p – 2 \), and \(\bar{e}_i \) being the \(i \)-th vector in the canonical basis of \(\mathbb{R}^{p 	imes 1} \). Moving on, the next section tackles the numerical details of satisfying the inequality from (10).

Remark 4.2: The free term of the Youla parameterization is now expressed as \(Q = Q_0 + \sum_{i=1}^{q} x_i Q_i \), for some \(x_i \in \mathbb{R}^{H_{i,1}^1} \), \(\forall i \in 1 \div q \). Thus, forming \(B \) from only a subset of the \(q \) columns used in (21) may prove sufficient to solve (10), which has the benefit of cutting down on computational costs.

B. Numerical Formulation and NRF Implementability

In order to formulate a numerical procedure meant to solve (10), we first require a state-space realization of \(T_1^i + T_2^i QT_3^i \). This can be obtained by first defining the following TFM:

\[
T_f^i := \begin{bmatrix} A_f^i & B_f^i & C_f^j & D_f^j \\ C_f^i & D_f^j \\ C_f^j & D_f^j \\ 0 & 0 \end{bmatrix}
\]

and obtaining a minimal state-space realization as in (25), with \(\Lambda(A_f^i - sl) \subset C^\infty \) due to \(T_f^i \in \mathbb{R}^{H_{i,1}^1} \), via one of \(Q_0 \) and via (19a) and (19c), as per Remark 2.1. Notice that \(T_1^i + T_2^i QT_3^i = F_r(T_f^i, Q) \) to get, via (23) along with the formulas in [23, Sec. 10.4], the realization from (26), shown at the bottom of this page. Crucially, notice that all the variable matrices that appear in the realization from (26) do so only via affine terms.

Before stating the numerical problem that will be tackled by our iterative procedure, we must ensure that the obtained controller is well defined and can be implemented as in (9) via its NRCP pair. As indicated in Remark 3.3, this is ensured by satisfying (13) and (14), which can be written generically as

\[
(Z_1^i + Z_2^i Q(\infty) Z_3^i)^{-1}(Z_1^i + Z_2^i Q(\infty) Z_3^i)^{-1} > 0 \quad \forall k \in 1 \div N_Z
\]

where the various matrices \(Z_1^i \in \mathbb{R}^{w \times w} \), \(Z_2^i \in \mathbb{R}^{w \times m} \), and \(Z_3^i \in \mathbb{R}^{p \times w} \) are defined explicitly in (13) and (14). Finally, note that

\[
Q(\infty) = Q(\infty) + \sum_{i=1}^{q} d_i Q_i(\infty), \text{ where we partition } x(\infty) = d_x \in [\hat{d}_1, \ldots, \hat{d}_q], \quad i \in 2 \div q - 1. \text{ Thus, we combine (10) and (27) into our numerical problem}
\]

\[
\left\| F_r(T_1^i, Q) \right\| < 1, \quad \hat{Q} \text{ as in (23)}
\]

\[
(Z_1^i)^{-1} + \sum_{i=1}^{q} d_i (Z_1^i)^{-1} + \sum_{i=1}^{q} d_i (Z_2^i)^{-1} + \sum_{i=1}^{q} d_i (Z_3^i)^{-1} > 0 \quad \forall k \in 1 \div N_Z
\]

\[
Z_1^i := Z_1^i + Z_2^i Q(\infty) Z_3^i, \quad Z_2^i := Z_2^i Q(\infty) Z_3^i \quad \forall i \in 1 \div q
\]

C. Iterative Procedure With Guaranteed Convergence

We now introduce the most general form (recall Remark 4.2) of our convex and iterative procedure for solving (28), based upon the algorithm with guaranteed convergence in [14].

Theorem 4.1: Given the realization from (26) along with two tolerance values \(0 < \eta_1, 0 < \eta_2 \ll 1 \), define the following:

\[
\begin{align*}
A_f & := \begin{bmatrix} A_f^i & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad C_f^j & := \begin{bmatrix} C_f^j & 0 \\ 0 & I \\ 0 & 0 \end{bmatrix}
\end{align*}
\]

\[
T_1^i + T_2^i QT_3^i = \begin{bmatrix} \hat{A} & \hat{B} \\ \hat{C} & \hat{D} \end{bmatrix} = \begin{bmatrix} A_f^i + B_f^i D_f^i P(d_x) C_f^j & B_f^i C_f^j \\ B_f^i D_f^i P(d_x) C_f^j & D_f^i P(d_x) C_f^j \\ C_f^j + D_f^j D_f^j P(d_x) C_f^j & C_f^j D_f^i P(d_x) C_f^j \end{bmatrix}
\]

Algorithm 1: Convex Approach to Solving (28)

Initialization: Solve the LMI system of (30), given on the next page, along with the equality constraint \(d_x = d_z = 0 \), for

\[
\begin{align*}
A_f^i, \quad b_f^i, \quad c_f^k, \quad d_f^k, \quad d_f^k, \quad \left(p_f^i B_f^i, P_f^i, P_f^i, (p_f^i)^T, (p_f^i)^T \right) \quad \forall k \in 1 \div N_f;
\end{align*}
\]

\[
\text{Using these computed variables, form } T_1^i, T_2^i, T_3^i \text{ as in (29d)-(29f)} \text{ and then set } k = 0 \text{ along with } f_0 \quad \text{along with } f_0 = \left(T_1^i - T_1^i T_2^i T_3^i \right)^* + \|I_{N_f} \|^*;
\]

repeat

\[
\text{if } k \text{ mod } 2 < 1 \text{ then}
\]

\[
\text{Set } k = k + 1 \text{ followed by } \theta^k = T_2^i - T_2^i B_f^i - 1;
\]

else

\[
\text{Set } k = k + 1 \text{ followed by } \theta^k = T_2^i - T_2^i A_f^i - 1;
\]

end

\[
\text{Solve } \mathcal{M} \left((T_2^i - T_2^i B_f^i)^T, \Theta^k \right) \text{ for } \left(A_f^i, b_f^i, c_f^k, d_f^k, d_f^k, \left(p_f^i B_f^i, p_f^i T_f^i, (p_f^i)^T, p_f^i T_f^i, (p_f^i)^T \right) \right)
\]

Compute

\[
f_k := \left(T_1^i - T_1^i T_2^i T_3^i \right)^* + \|I_{N_f} \|^*;
\]

until

\[
f_k - f_k < \eta_1 \text{ or } f_k - \|I_{N_f} \|^* < \eta_2;
\]

\[
T_1^i := \begin{bmatrix} (B_f^i)^T & 0 & 0 \\ 0 & (D_f^i)^T & 0 \end{bmatrix}, \quad T_2^i := \begin{bmatrix} (D_f^i)^T & 0 \end{bmatrix};
\]

\[
A_f := \begin{bmatrix} B_f^i D_f^i P(d_x), B_f^i C_f^j, B_f^i D_f^i P(d_x), D_f^i P(d_x), D_f^i P(d_x), D_f^i P(d_x) \end{bmatrix}
\]

\[
T_3^i := D \left((F_f^i)^T, \ldots, (F_f^i)^T, A_f^i, d_x^T, A_f^i, 0 \right) \in \mathbb{R}^{p \times m_T};
\]

\[
T_4^i := D \left(T_1^i, \ldots, T_1^i, T_f^i, T_f^i, T_3^i, T_3^i, d_x^T - d_z \right) \in \mathbb{R}^{p \times m_T};
\]

Then, we have the following.

a) If the problem from (28) is feasible, then a solution can be found by the iterative procedure with guaranteed convergence given in Algorithm 1, which involves the convex optimization problem from (30), shown at the bottom of the next page.

b) If, at the proposed iteration’s termination, we have that \(\|T_1^i - T_4^i T_3^i \|^* \ll \eta_2 \), then \(A_f^i, b_f^i, c_f^k, d_f^k, d_f^k \) and \((F_f^i)^T \) can be used to form \(Q \) as in (20)–(23).

Proof: For point (a), see the Appendix. Point (b) follows directly from the fact that \(\|T_1^i - T_4^i T_3^i \|^* \ll \eta_2 \ll 1 \) indicates that the bilinear equality constraint belonging to the problem (given in the Appendix)
that is equivalent to (28) has been satisfied for a feasible tuple, which
defines \(\tilde{Q} := \Omega \tilde{Q} \). Note that \((N^*, \tilde{N}^*, M^*, \Omega^{-1}, M^*, X^*, \Omega^*, Y^*, \Omega^*)\) is also a DCF over \(\mathcal{RH}_\infty \) of \(T_{22}^2 = G \), as all eight TFMs are stable, and they satisfy (5), with the added benefit of \(\Omega \mathbb{Y}^*, \tilde{N}^* \in \tilde{S}_{\infty |1|+2} \) and of \(\Omega \mathbb{Y}^*, M^* \in \tilde{S}_{\infty |2|} \).

We will employ this new DCF over \(\mathcal{RH}_\infty \) to form the controller as in (34a) and optimize the \(\mathcal{H}_\infty \) norm of (34b). The control laws in (32) can be obtained from an NRF pair of the controller with \(\Phi = D_i(\tilde{F}_i)(\tilde{R}_i) \in \tilde{S}_{\infty |1|} \) and \(\Gamma = D_i(\Gamma_i) \in \tilde{S}_{\infty |2|} \). By Proposition 3.1, a solution to (12a) is \(Q_0 \), and note that a stable basis for the null-space from (12b) is expressed as in (21) with \(q = \ell \) and \(B_i = N_{B_i} = e_{i+1(\ell+1)}(i), \forall i \in 1 : \ell \), where \(e_i \) is the \(i \)th vector of the canonical basis of \(\mathbb{R}^{\ell+1} \).

We now run Algorithm 1 with MOSEK [27], called through MATLAB via YALMIP [28]. A comparison with other techniques from the literature is given in Table I, located at the top of the next page, and their computational performance will be discussed in the next subsection. Taking \(Q(s) = D_i(5.9844) \) produces, \(\forall i \in 1 : \ell \), the distributed control laws of type (32)

\[
\mathbf{u}_{(i \text{ mod } \ell+1)} = -2\mathbf{u}_{((i-1) \text{ mod } \ell+1)} + \frac{64.11s + 257.4}{s+4} \mathbf{y}_{(i \text{ mod } \ell+1)}.
\]

Remark 5.1: Let \(\tilde{\mathbf{K}} := (I - \tilde{\mathbf{F}})^{-1} \bar{\mathbf{Q}}, \) where \(\tilde{\mathbf{F}} := -\tilde{\mathbf{E}}(2) \) and \(\tilde{\mathbf{F}} := 64 I_{22} \), and notice that \(\tilde{\mathbf{F}}(\tilde{\mathbf{K}}) \) internally stabilizes \(\tilde{\mathbf{G}} \). Then, the distributed implementation (9) of the approximated distributed controller \(\mathbf{K} \) internally stabilizes \(\mathbf{C} \) even in the presence of communication disturbance (see [9] and recall \(b_{(i \text{ mod } \ell+1)} \) from Fig. 2). Moreover, the control laws from (9) implemented with either \(\tilde{\mathbf{F}} \) or \(\tilde{\mathbf{F}} \) stabilize all \(\tilde{\mathbf{C}} \subset C_{\tilde{\mathbf{R}}} \) and \(\delta = 0.8968 \), indicating satisfactory robustness.

B. Computational Performance

We conclude this section by presenting a comparative discussion of the results showcased in Table I. With respect to our proposed procedure, inspired by Doelman and Verhaegen [14], we state the following.

1) [14, Alg. 2] is slightly more computationally demanding, due to optimizing over all decision variables during each iteration. However, this extra degree of freedom comes at the major cost of guaranteed convergence.

2) Although the individual iterations of [25, Alg. 1] are significantly less costly and convergence is initially quite rapid, the latter tapers off on later iterations, similarly to [25, Fig. 2]. Convergence can be sped up by the judicious choice of \(p_1 \) and \(p_2 \) from [25, Eq. (3.4)], yet our approach bypasses this empiric decision via the benefits of optimizing the trace heuristic (see [29]).

3) [26, Alg. 1] is based upon the same trace optimization heuristic proposed in [29] as our procedure, yet it requires an explicit eigenvalue decomposition and orthonormal eigenvector computation at every iteration. For large-scale problems (such as our numerical example), this may prove unreliable, with the accumulation of computational errors noticeably hampering convergence.

\[
\mathcal{F}_{\ell}(\mathbf{Q}_r, \mathbf{K}) = T_1^\top + (T_2^\top \Omega^{-1}) \mathbf{Q}_r T_3^\top
\]

(34b)
Fig. 2. Interconnection between the network’s subsystems and the distributed subcontrollers.

Table I

Comparison Between Algorithms that Solve Convex Relaxations of (28)

Employed procedure	Guaranteed convergence	Runtime	Solution	$\|T_2 - T_A T_B\|_\infty$ at convergence
Alg. 1 (Alg. 1 in [14])	Yes	18.41 s	$Q(s) = D_T(5.9844)$	2.8 x 10^{-12}
Alg. 2 in [14]	No	20.49 s	$Q(s) = D_T(5.9844)$	2.1 x 10^{-9}
Alg. 1 in [25]	Yes	Timeout after 900 s	$Q(s) = D_T(6.0143)$ at timeout	2.3 x 10^{-2} at timeout
Alg. 1 in [26]	Yes	Timeout after 900 s	$Q(s) = D_T(5.7355)$ at timeout	3.2 x 10^{-3} at timeout

VI. CONCLUSION

In this article, we showed that the distributed control of a network (having a possibly improper TFM) can be tackled by imposing constraints upon affine expressions of the Youla parameter. A procedure was given on how to relax this problem, which reduced to solving a structurally constrained H_∞ norm contraction. The latter was approached through a convex and iterative optimization algorithm with guaranteed convergence.

APPENDIX

Proof of Proposition 3.1: Let there exist $Q_0, Q_r \in R^{H_{\infty \times 0}}$ so that $\tilde{X} + Q_0 \tilde{M} \in \tilde{S}_r$ and $\tilde{Y} + Q_r \tilde{N} \in \tilde{S}_r$. They are equivalent to $F_r vec(\tilde{X} + IQ_0 \tilde{M}) \equiv 0$ and $F_r vec(\tilde{Y} + IQ_r \tilde{N}) \equiv 0$. Using the properties of the vectorization operator (see [6], Lemma 1]), we retrieve (12a). Pick any $\tilde{Q} \in R^{H_{\infty \times 0}}$ that satisfies (12b) and note that, when replacing Q_0 with $Q_0 + \tilde{Q}$ in (12a), the identity with 0 from (12a) will hold. In addition, ensuring (12c) is sufficient for the controller T_{r2} to be well posed, while ensuring (12d) is sufficient for $\Gamma_{\hat{r}}$ and Φ to be both well posed and proper. Finally, the sparsity structures of $\tilde{X} + Q_0 \tilde{M}$ and $\tilde{Y} + Q_r N$, respectively, by the way they are defined in (11a) and (11b).

Proof of Lemma 3.1: To prove point (a), define $\hat{A}_r := E_r^{-1} A_r$, $\hat{B}_r := E_r^{-1} B_r$, $\hat{X}_r := E_r X_r E_r$, to rewrite (3) as

$$\hat{X}_r \hat{A}_r + \hat{A}_r^T \hat{X}_r + C_r^T C_r - (\hat{X}_r \hat{B}_r + C_r^T D_r) \times (D_r^T D_r)^{-1}(\hat{B}_r^T \hat{X}_r + D_r^T C_r) = 0$$

which is a standard continuous-time algebraic Riccati equation (see [23, Ch. 13]). Recall now that $\Lambda(\hat{A}_r - s I) \subset C$. Then, both $\Lambda(\hat{A}_r - s I \hat{B}_r)$ and $\Lambda(\hat{A}_r - s I \hat{C}_r)$ have full row rank $\forall s \in C \setminus \{0\}$, or else there cannot exist \hat{X}_r, \hat{Y}_r stable so that $\hat{Y}_r \hat{M} - \hat{X}_r = 0$. Then, by [23, Corollary 13.23, point (a), (35)], \hat{X}_r has a stabilizing solution, \hat{X}_r. Thus, (3) has a stabilizing solution, $\hat{X}_r = (E_r^{-1})^T \hat{X}_r$, and its stabilizing feedback equations that of (35), $\hat{F}_r := -(D_r^T D_r)^{-1}(\hat{B}_r^T \hat{X}_r) = F_r$.

Proof of Theorem 3.1: To prove point (a), define first $T := [T_{11} \ | \ T_{12}] = [T_{21} \ | \ T_{22}] = \begin{bmatrix} 0 & -ME_{21} \ -C_{21}^T & -I \end{bmatrix}$, where $M^{-1} = G_0 M^{-1}$ and G_0 is expressed as in Lemma 3.1. Moreover, we have from (6b) in Theorem 2.1 that $M^{-1} = [A + s E_r B_r]^{-1}$. Expressing $T = G_0 \begin{bmatrix} 0 & 0 \ 0 & I \end{bmatrix}$ and noticing that $T' = [e I \ 0] T$, for an $\epsilon \in [0, 1]$, we obtain the realization given in (17). Since G is given by a strongly stabilizable and detectable realization (2), then it is always possible to find F and H so that $A + BF - s E$ and $A + HC - s E$ are admissible. Thus, defining $F := [0 \ F]$ and $H := [0 \ H]'$, we extract the realization of T_{r2} from (17), $T_{r2} := A_{22} - s E_{22}$ and $A_{22} + HC_{22} - s E_{22}$ are both admissible, since $A(\hat{A}_r - s I) \subset C$. Therefore, F and H can be used, as in Theorem 2.1, in order to express the class of stabilizing controllers via a DCF over $R^{H_{\infty}}$, T_{r2}.

To prove point (b), begin by defining the system

$$T := \begin{bmatrix} A_r - s E_r & -B_r & 0 & -B_r \ 0 & A_r - s E & 0 & B \ \ -H_r & -H_r & 0 & 0 & 0 \ 0 & 0 & I \ 0 & C & I & -D & D \ \end{bmatrix}$$

and by considering the class of TFMs expressed through $F_r(T', \hat{K}) := T_{22} + T_{21} \hat{N}_M (I - T_{11} \hat{N}_M)^{-1} T_{12}$, with \hat{N}_M and \hat{N}_M as in (15). Denoting now the class of TFMs $G_\Delta := N + \hat{N}$, $\hat{M} + \hat{N}_M$, it is straightforward to check that $F_r(T', \hat{K}) := [I \ G_\Delta]'$. Thus, the proof of point (b) boils down to applying the small-gain theorem, as formulated in [30, Ch. 8], to confirm robust stability.

Note that the realization of T_{r2} (17) is strongly stabilizable and detectable, and so is the one belonging to T_{r2} in (36). Now, if $\Phi - \Gamma$ is an NRF of realization of K as in (11a) and (11b) and K stabilizes G, then $\Phi - \Gamma$ stabilizes T_{r2} (as in [9]). Since the latter’s realization in (36) is strongly stabilizable and detectable, then $\Phi - \Gamma$ stabilizes T (as in Theorem 2.1). Finally, it is straightforward to check that $F_T(T', K) := \|F_T(T', \Phi - \Gamma)\|_\infty \leq 1$, then $\|F_T(T', K)\|_\infty \leq 1$, and by applying [30, Th. 8.1, point (a)], it follows that the closed-loop interconnection between $\Phi - \Gamma$ and $\hat{M} - G_0 M^{-1}$ and $\hat{N} + \hat{N}_M$.
$F_{ca}(\mathbf{T}, \Delta) = [I \ G \Delta]$ will be internally stable and well posed for any $G \in C_{2}$. As shown in the proof of the main result from [9], this ensures that the control laws from [9] will stabilize any $G \in C_{2}$.

\textbf{Proof of Proposition 3.2} Define first $\hat{F} := [0 \ F]$ and $\hat{H} := [0 \ H]$ and employ these two feedbacks to write, via (6a) and (6b), a DCF of T_{22} from (17). This factorization is indeed a DCF over $R H_{\infty}$ due to the fact that $A + BF - sE$ and $A + HC - sE$ are admissible and $L(A_{e} - sE_{e}) \subseteq C_{2}$. The identities from (18a), (18b), and (19a)–(19e) follow by writing the realizations given by (6a) and (6b) and by (8a)–(8c) in Theorem 2.1 and then eliminating all the unobservable modes.

\textbf{Proof of Theorem 4.1} To prove point (a), we first ensure that the realization from (23) is stable by imposing that A_{2}^{+} and $(A_{2}^{+} + B_{2}^{+} F_{2}^{+})$, $\forall t \in [0, q]$, have eigenvalues only in C_{2}, along with A_{2}^{+} via (20)–(22). These conditions are equivalent to $P_{i} > 0$ and $P_{i}B_{i} > 0$, $\forall i \in [0, q]$, such that $-2\text{sym}(A_{i} P_{i}) > 0$ and $-2\text{sym}(A_{i}B_{i} P_{i} - B_{i}A_{i} P_{i} + P_{i}B_{i} F_{i}^{+}) > 0$, $\forall i \in [0, q]$. To remove the bilinearity induced by $P_{i}A_{i}$ and $P_{i}B_{i}$, define $\tilde{P}_{i} := P_{i}A_{i}$ and $\tilde{P}_{i}B_{i} := P_{i}B_{i}$, $\forall i \in [0, q]$, and rewrite the inequalities as $-2\text{sym}(\tilde{P}_{2}) > 0$ and $-2\text{sym}(P_{i}B_{i} A_{i}^{+} + \tilde{P}_{i}B_{i} F_{i}^{+}) > 0$, $\forall i \in [0, q]$. If these new affine inequalities are satisfied, then due to $L(A^{+} - sI) \subseteq C_{2}$ and to $C_{2}^{+}(sI - A^{-1})^{-1} B_{2}^{+} \subseteq 0$, it follows that $L(x)$ from (26) has $L(\mathbf{T}) \subseteq C_{2}$. By the equivalency of [30, Corollary 12.3, points (i) and (vii)], we have that $[T_{1}^{+} + T_{2}^{+} Q T_{2}^{+}] \prec 0$ if and only if $\exists P = P^{+} > 0$ such that $-2\text{sym}(\tilde{P}^{T} \tilde{P}) > 0$ and $-2\text{sym}(\tilde{P}^{T} \tilde{P}) > 0$, which contains bilinear products of P with A and B, thus leading to nonconvex optimization. To obtain an affine expression, define A_{S} as in (29c), in order to introduce $\tilde{P} := P A_{S}$. With this new matrix and the four matrices defined in (29a), notice that $P \tilde{A} = \tilde{A}^{T} + \tilde{P} C^{T}$ and that $P \tilde{P} = P \tilde{P}^{T} + P \tilde{T} D^{T}$. The norm condition is equivalent to $-G > 0$, with G from (29b) being affine in all the variables.

Recall the inequalities from (28) that contain bilinear terms and denote $\tilde{P} D = \tilde{P} D^{+}$, to obtain the N_{2} LMIs from (30), while additionally imposing that $d_{2}^{+} = 0$. Form the matrices from (29c) to (29f) to notice that (28) is equivalent to

\begin{align}
&\left(\tilde{Z}_{2}^{(1)} + \sum_{i=1}^{N_{2}} d_{z_{i}}^{+} \tilde{Z}_{2}^{(i)}\right) + \sum_{i=1}^{N_{2}} d_{z_{i}}^{+} \tilde{Z}_{2}^{(i)} - \tilde{Z}_{1}^{(1)} + \sum_{i=1}^{N_{2}} d_{z_{i}}^{+} \tilde{Z}_{2}^{(i)} + \tilde{T}_{2}^{(1)} + \tilde{T}_{2}^{(2)} + \tilde{T}_{2}^{(3)}
\end{align}

\begin{align}
&+ \sum_{i=1}^{N_{2}} \tilde{T}_{i} D^{+} \tilde{Z}_{2}^{(i)} + \tilde{Z}_{2}^{(i)} > 0 \quad \forall k \in [0, N_{2}], \tilde{P}^{D} = \tilde{P}^{D^{T}}, \notag
\end{align}

\begin{align}
P > 0, \quad -G > 0, \notag
\end{align}

\begin{align}
P_{2} = P_{2}^{T} > 0, \notag
\end{align}

\begin{align}
-2\text{sym}(\tilde{P}^{T} \tilde{P}) > 0, \notag
\end{align}

\begin{align}
-2\text{sym}(P_{2} B_{2}^{+} A_{2}^{+} + \tilde{P}_{2} B_{2}^{+} F_{2}^{+}) > 0, \quad \forall i \in [0, q], T_{A} T_{B} = T_{C}
\end{align}

By selecting an artificial scalar $\gamma > 0$ as the cost function and by applying [14, Th. 1], we get that (37) is equivalent to the problem in which $T_{A} I_{N_{2}} T_{B} = T_{C}$ is replaced by rank

\begin{align}
\text{rank} T_{C} + X Y - T_{A} Y - X T_{0} - T_{0} X = \text{rank} I_{N_{2}}, \quad \text{for any matrices} \quad X \text{ and } Y. \quad \text{Therefore, by applying [14, Th. 2] with a regularization parameter $\lambda > 0$, adapting [14, Alg. 1] for the resulting problem, scaling its cost function by $1/\lambda$, and then taking $\lambda \to \infty$, we obtain Algorithm 1, which solves (30) at each iteration. If the initialization is successful (the LMI system along with $d_{2}^{+} = 0$ must be feasible for the original BMI system to be feasible), we then set $G^{1} = T_{B} - T_{0} Y$, and we employ [14, Th. 3] for our algorithm (with the adapted cost function), which guarantees its convergence.\[
\]