Total Colorings of Some Classes of Four Regular Circulant Graphs

R. Navaneeth¹, J. Geetha¹, K. Somasundaram¹, and Hung-Lin Fu²

¹Department of Mathematics, Amrita School of Engineering-Coimbatore, Amrita Vishwa Vidyapeetham, India.
²Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Abstract

The total chromatic number, $\chi''(G)$ is the minimum number of colors which need to be assigned to obtain a total coloring of the graph G. The Total Coloring Conjecture (TCC) made independently by Behzad and Vizing that for any graph, $\chi''(G) \leq \Delta(G) + 2$, where $\Delta(G)$ represents the maximum degree of G. In this paper we obtained the total chromatic number for some classes of four regular circulant graphs.

Keywords: Total coloring; Circulant graphs. MSC Classification: 05C15 (Primary), 05B15 (Secondary)

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The total coloring of a graph G is an assignment of colors to vertices and edges such that no two adjacent vertices or edges or edges incident to a vertex receives a same color. The total chromatic number of a graph G, denoted by $\chi''(G)$, is the minimum number of colors required for its total coloring. It is clear that $\chi''(G) \geq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

Behzad [1] and Vizing [9] have independently proposed the Total Coloring Conjecture (TCC) which states that any simple graph G, $\chi''(G) \leq \Delta(G) + 2$. The graphs that can be totally colored by at-least $\Delta(G) + 1$ colors are said to be Type I graphs whereas the graphs which can be colored by $\Delta(G) + 2$ colors are said to be Type II graphs. The decidability algorithm for total coloring is NP-complete even for cubic bipartite graph [8]. Good survey of techniques and other results on total coloring can be found in Yap [10], Borodin [2] and Geetha et al. [4]. In this paper, we obtain the total chromatic number of some four regular circulant graphs are Type I.
2 Four Regular Circulant Graphs

For a sequence of positive integers $1 \leq d_1 < d_2 < \ldots < d_l \leq \lfloor \frac{n}{2} \rfloor$, the circulant graph $G = C_n(d_1, d_2, \ldots, d_l)$ has vertex set $V(G) = \{0, 1, 2, \ldots, n - 1\}$ and two vertices x and y are adjacent if $x \equiv (y + d_i) \mod n$ for some i where $1 \leq i \leq l$. A power of cycles graph C_n^k is a graph with vertex set $V(G) = \{0, 1, 2, \ldots, n - 1\}$ and two vertices x and y are adjacent if and only if $|x - y| \leq k$. It is easy to see that the four regular circulant graph $C_n(1, 2) \cong C_n^2$. Campos and de Mello [3] proved that $C_n^2, n \neq 7$, are Type I and C_5^2 is Type II. We know that $K_{4,4}$ is a four regular circulant graph and it is Type II [10]. A Unitary Cayley graph is a circulant graph with vertex set $V(G) = \{0, 1, 2, \ldots, n - 1\}$ and two vertices x and y are adjacent if and only if $gcd((x - y), n) = 1$. Prajnanaswaroop et al. [7], proved that all most all Unitary Cayley graphs of even order are Type I and odd order satisfies TCC. In this paper, we considered the four regular circulant graphs of the form $C_n(a, b), 1 \leq a < b \leq \lfloor \frac{n-1}{2} \rfloor$.

Mauro and Diana [5] proved that the graphs $C_n(2k, 3)$ are Type I for $n = (8\mu + 6\lambda)k$, with $k \geq 1$ and non-negative integers μ and λ. Riadh Khennoufa and Olivier Togni [6] studied total colorings of circulant graphs and proved that every 4-regular circulant graphs $C_{6p}(1, k), p \geq 3$ and $k < 3p$ with $k \equiv 1 \mod 3$ or $k \equiv 2 \mod 3$, are Type I. Other cases are still open.

Also they proved that the total chromatic number of $C_{5p}(1, k)$, with $k < \frac{5p}{2}, k \equiv 2 \mod 5, k \equiv 3 \mod 5$ is 5. In the following theorem, we prove that the graphs $C_{5p}(1, k)$ are Type I for the remaining cases $k \equiv 1 \mod 5$ and $k \equiv 4 \mod 5$.

Theorem 2.1. The circulant graphs $C_{5p}(a, b)$, where $p \geq 1, a, b \not\equiv 0 \mod 5$, are Type I.

Proof. Let $q_1 = gcd(5p, a)$ and $q_2 = gcd(5p, b)$. The circulant graphs $G = C_{5p}(a, b)$ are four regular graphs with q_1 cycles of order $\frac{5p}{q_1}$ and q_2 cycles of order $\frac{5p}{q_2}$.

Let $\phi : V(G) \cup E(G) \to C = \{0, 1, 2, 3, 4\}$ be a mapping of G defined as follows. The vertices v_i of $C_{5p}(a, b)$ can be colored by $\phi(v_i) = i \mod 5, 0 \leq i \leq 5p - 1$.

Since, the all the four graphs $C_{5p}(a, b), C_{5p}(b, a), C_{5p}(n - a, b)$ and $C_{5p}(a, n - b)$ are isomorphic to each other, for the edge colorings, we need to consider the three cases.

Case 1: $a \equiv 1 \mod 5$ and $b \equiv 1 \mod 5$.

The edges of cycles can be colored by setting $\phi(v_i v_{(i+a) \mod 5}) = (i + 2) \mod 5$ and $\phi(v_i v_{(i+b) \mod 5}) = (i + 4) \mod 5$. If $\phi(v_i) = c$ where $c \in C$, then $\phi(v_i v_{(i+a) \mod 5}) = (c + 2) \mod 5, \phi(v_i v_{(i-a) \mod 5} v_i) = (c + 1) \mod 5, \phi(v_i v_{(i+b) \mod 5}) = (c + 4) \mod 5$ and $\phi(v_i v_{(i-b) \mod 5} v_i) = (c + 3) \mod 5$.

Case 2: $a \equiv 2 \mod 5$ and $b \equiv 2 \mod 5$.

The edges of cycles can be colored by setting $\phi(v_i v_{(i+a) \mod 5}) = (i + 3) \mod 5$ and $\phi(v_i v_{(i+b) \mod 5}) = (i + 4) \mod 5$. If $\phi(v_i) = c$ where $c \in C$, then $\phi(v_i v_{(i+a) \mod 5}) = (c + 3) \mod 5, \phi(v_i v_{(i-a) \mod 5} v_i) = (c + 1) \mod 5, \phi(v_i v_{(i+b) \mod 5}) = (c + 4) \mod 5$ and $\phi(v_i v_{(i-b) \mod 5} v_i) = (c + 2) \mod 5$.

Case 3: $a \equiv 1 \mod 5$ and $b \equiv 2 \mod 5$.

The edges of cycles can be colored by setting $\phi(v_i v_{(i+a) \mod 5}) = (i + 3) \mod 5$ and $\phi(v_i v_{(i+b) \mod 5}) = (i + 1) \mod 5$. If $\phi(v_i) = c$ where $c \in C$, then $\phi(v_i v_{(i+a) \mod 5}) = (c + 2) \mod 5$ and $\phi(v_i v_{(i-b) \mod 5} v_i) = (c + 3) \mod 5, \phi(v_i v_{(i-a) \mod 5} v_i) = (c + 1) \mod 5, \phi(v_i v_{(i+b) \mod 5}) = (c + 4) \mod 5$ and $\phi(v_i v_{(i-b) \mod 5} v_i) = (c + 2) \mod 5$.
proved that the total chromatic number of G is 5. Therefore, five colors are used for totally coloring the graph.

In the following theorem, we prove some classes of four regular circulant graphs $C_n(a,b)$ of order $3p$ are Type I.

Theorem 2.2. Let p be an odd integer. Then circulant graphs $C_{3p}(a,b)$ with $gcd(a,b) = 1$ and $\frac{3p}{gcd(3p,b)} = 3s$, $s \in N$ are Type I.

Proof. Let $q_1 = gcd(3p,a)$ and $q_2 = gcd(3p,b)$. The circulant graphs $G = C_{3p}(a,b)$ are four regular graphs with q_1 cycles of order $\frac{3p}{q_1}$ and q_2 cycles of order $\frac{3p}{q_2}$. Let $\varphi : V(G) \cup E(G) \to \{0, 1, 2, 3, 4\}$ be a mapping obtained by the following process.

Let C_i be the cycles of order $\frac{3p}{q_i}$ with the vertices v_{ia}, $0 \leq i \leq q_2 - 1$. First we consider the cycle C_0. If $q_2 = 1$ then the vertices and edges of C_0 are colored with the colors 0, 3 and 1 cyclically, starting with v_0 receiving the color 0. Otherwise the vertices and edges of C_0 are colored with the colors 1, 0 and 4 cyclically, starting with v_0 receiving the color 1. Now, consider the cycle C_1. The vertices and edges of C_1 are colored with the colors 0, 2 and 1 cyclically, starting with v_{ia} receiving the color 0 and i is odd they are colored with the colors 1, 0 and 2 cyclically, starting with v_{ia} receiving the color.

The edges of cycles of order $\frac{3p}{q_i}$ are colored in the following way: if vertex $v_i \in C_0$ then $\varphi(v_iv_{i+a}) = 2$, if $v_i \in C_i$ where i is odd then $\varphi(v_iv_{i+a}) = 3$ and if $v_i \in C_i$ where i is even then $\varphi(v_iv_{i+a}) = 4$. Therefore, only five colors are used for totally coloring the graph. Hence, φ is a Type I coloring of G.

For the circulant graphs $C_n(a,b)$ where $n = 3p$ and p is odd, which we considered in the above theorem, the value of b is restricted to factors and multiple of p. In the following theorem, we consider few classes of circulant graphs $C_n(1,k)$ where $n = 9p$ are Type I.

Theorem 2.3. For each $k \in \{2, 3, ..., \left[\frac{9p-1}{2}\right]\}$, every circulant graph $C_{9p}(1,k)$ with $\frac{9p}{gcd(9p,k)} = 3s$, $s \in N$ is Type I.

Proof. Let $q = gcd(9p,k)$. The circulant graphs $G = C_{9p}(1,k)$ are four regular graphs with q internal cycles of order $\frac{9p}{q}$, which are disjoint, and one outer cycle of order $9p$. Let $\varphi : V(G) \cup E(G) \to \{0, 1, 2, 3, 4\}$ be a mapping obtained by the following process.

Case 1: p is even.

When p is even, $9p$ will be a multiple of 6. Riadh Khennoufa and Olivier Togni [6] proved that the total chromatic number of $G = C_{6p}(1,k)$, with $k < \frac{5p}{2}$, $k \equiv 1 \mod 3$, $k \equiv 2 \mod 3$ is 5. From this, one can easily see that the circulant graph $C_{9p}(1,k)$, where $p \geq 1$ and $k < \frac{9p}{2}$, $k \equiv 1 \mod 3$, $k \equiv 2 \mod 3$ are Type I.
Now, we consider the remaining case, \(k \equiv 0 \mod 3 \).

The vertices \(v_i \) are colored by \(\varphi(v_i) = (i \mod 3 + \bigl(\lfloor \frac{i}{3} \bigr) \mod 3) \mod 3 \) if \(q = k \), else the vertices \(v_i \) are colored by \(\varphi(v_i) = (2i \mod 3 - \bigl(\lfloor \frac{i}{3} \bigr) \mod 3) \mod 3 \). The edges of the internal cycles can be colored by setting \(\varphi(v_i v_{i+k} \mod 9p) = (2\varphi(v_{i+k} \mod 9p) - \varphi(v_i)) \mod 3 \). In this coloring process, the vertices and the internal edges of \(G \) are colored using only three colors 0, 1 and 2. Now, the edges of the outer cycle can be colored with two colors 3 and 4 as it is of even order. Therefore, five colors are used for total coloring the graph, hence the graph \(C_{9p}(1,k) \) is Type I.

Case 2: \(p \) is odd.

The case when \(q \neq 1 \), follows from Theorem 2.2. Now, we consider the case when \(q = 1 \).

Sub case 2.1: \(k \equiv 1 \mod 9 \)

The vertices \(v_i \) where \(0 \leq i \leq 9p - 1 \) of \(G \) can be colored by \(\varphi(v_i) = i \mod 3 + (\lfloor \frac{i}{3} \rfloor \mod 3) \lfloor \frac{i}{2} \rfloor \mod 3 \). The edges of the internal cycles can be colored by setting if \(i \equiv 1 \mod 3 \) then \(\varphi(v_i v_{i+k} \mod 9p) = \varphi(v_{i+k} \mod 9p) + 1 - 3\lfloor \frac{v_{i+k} \mod 9p v_i \mod 9p} {3} \rfloor \) else by \(\varphi(v_i v_{i+k} \mod 9p) = \varphi(v_{i+k} \mod 9p) \). The colors used for vertex \(v_i \) and edges incident to it is given in the table below as an ordered triplet \((\varphi(v_i), \varphi(v_{i-k} \mod 9p v_i), \varphi(v_i v_{i+k} \mod 9p)) \).

\(x \)	\(x = 0 \)	\(x = 1 \)	\(x = 2 \)	\(x = 3 \)	\(x = 4 \)	\(x = 5 \)	\(x = 6 \)	\(x = 7 \)	\(x = 8 \)
\(x \equiv i \mod 9 \)	(0, 1, 2)	(1, 2, 3)	(2, 3, 1)	(0, 1, 3)	(1, 3, 4)	(2, 3, 1)	(0, 1, 4)	(1, 4, 2)	(2, 4, 1)

The common missing color for vertices \(v_i \) and \(v_{i+1} \) can be used for coloring the edge \(v_i v_{i+1} \).

Therefore, five colors are used for totally coloring the graph, hence \(G = C_{9p}(1,k) \) Type I.

Sub case 2.2: \(k \equiv 4 \mod 9 \)

The vertices \(v_i \) where \(0 \leq i \leq 9p - 1 \) of \(G \) can be colored by \(\varphi(v_i) = i \mod 3 + (\lfloor \frac{i}{3} \rfloor \mod 3) \lfloor \frac{i}{2} \rfloor \mod 3 \). The edges of the internal cycles can be colored by setting if \(i \equiv 1 \mod 3 \) then \(\varphi(v_i v_{i+k} \mod 9p) = \varphi(v_{i+k} \mod 9p + 1) \) else by \(\varphi(v_i v_{i+k} \mod 9p) = \varphi(v_{i+k} \mod 9p) \). The colors used for vertex \(v_i \) and edges incident to it is given in the table below as an ordered triplet \((\varphi(v_i), \varphi(v_{i-k} \mod 9p v_i), \varphi(v_i v_{i+k} \mod 9p)) \).

\(x \)	\(x = 0 \)	\(x = 1 \)	\(x = 2 \)	\(x = 3 \)	\(x = 4 \)	\(x = 5 \)	\(x = 6 \)	\(x = 7 \)	\(x = 8 \)
\(x \equiv i \mod 9 \)	(0, 1, 2)	(1, 4, 2)	(3, 4, 1)	(0, 3, 1)	(1, 2, 3)	(2, 4, 1)	(0, 1, 4)	(1, 3, 4)	(2, 3, 1)

The common missing color for vertices \(v_i \) and \(v_{i+1} \) can be used for coloring the edge \(v_i v_{i+1} \).

Therefore, five colors are used for totally coloring the graph, hence \(G = C_{9p}(1,k) \) Type I.

Sub case 2.3: \(k \equiv 7 \mod 9 \)

The vertices \(v_i \) where \(0 \leq i \leq 9p - 1 \) of \(G \) can be colored by \(\varphi(v_i) = i \mod 3 + (\lfloor \frac{i}{3} \rfloor \mod 3) \lfloor \frac{i}{2} \rfloor \mod 3 \). The edges of the internal cycles can be colored by setting \(\varphi(v_i v_{i+k} \mod 9p) = \varphi(v_{i+k} \mod 9p) \). The colors used for vertex \(v_i \) and edges incident to it is given in the table below as an ordered triplet \((\varphi(v_i), \varphi(v_{i-k} \mod 9p v_i), \varphi(v_i v_{i+k} \mod 9p)) \).

\(x \)	\(x = 0 \)	\(x = 1 \)	\(x = 2 \)	\(x = 3 \)	\(x = 4 \)	\(x = 5 \)	\(x = 6 \)	\(x = 7 \)	\(x = 8 \)
\(x \equiv i \mod 9 \)	(0, 1, 4)	(1, 2, 0)	(2, 0, 1)	(0, 1, 2)	(1, 3, 0)	(3, 0, 1)	(0, 1, 3)	(1, 4, 0)	(4, 0, 1)
The common missing color for vertices v_i and v_{i+1} can be used for coloring the edge v_iv_{i+1}. Therefore, five colors are used for the total coloring the graph, hence $G = C_{9p}(1, k)$ is Type I.

In Theorem 2.2, we considered few classes of circulant graph $C_n(a, b)$ of order $n = 3p$, where p is an odd integer. Now, in the following theorem, we consider few classes of four regular circulant graphs $C_n(a, b)$ of order $n = 6p$.

Theorem 2.4. Every circulant graph $C_{6p}(a, b)$ where $a, b \not\equiv 0 \mod 3$ is Type I, if p is even. Also, $C_{6p}(a, b)$ where $a, b \not\equiv 0 \mod 3$ is Type I, if p is odd and $\gcd(a, b) = 1$.

Proof. Let $q_1 = \gcd(6p, a)$ and $q_2 = \gcd(6p, b)$. The circulant graphs $G = C_{6p}(a, b)$ are four regular graphs with q_1 cycles of order $\frac{6p}{q_1}$ and q_2 cycles of order $\frac{6p}{q_2}$. The circulant graphs considered in the hypothesis can be colored in a similar manner irrespective of p being odd or even, if $\frac{6p}{q_1}$ is odd we swap the value of a and b, as graph $C_n(a, b)$ is isomorphic to $C_n(b, a)$. Let $\varphi : V(G) \cup E(G) \to \{0, 1, 2, 3, 4\}$ be a mapping. The vertices v_i are colored by $\varphi(v_i) = i \mod 3$ and the edges of cycles of order $\frac{6p}{q_2}$ be colored by setting $\varphi(v_iv_{(i+a)} \mod 6p) = (2\varphi(v_{(i+a)} \mod 3p) - \varphi(v_i)) \mod 3$. Now, the edges of cycle $\frac{6p}{q_1}$ with two colors 3 and 4 as it is a cycle with even order. Therefore, five colors are used for the total coloring φ of the graph, hence graph G is Type I. □

References

[1] M. Behzad, *Graphs and their chromatic numbers*, Doctoral Thesis, Michigan State University, 1965.

[2] O. V. Borodin, *On the total colouring of planar graphs*, J. Reine Angew. Math., 394 (1989), 180–185.

[3] C.N. Campos and C.P. de Mello, Total colouring of C_n^2, *Tendencias em Matematica Aplicada e Computacional*, 4(2), 177-186, 2003.

[4] J. Geetha, N. Narayanan and K. Somasundaram, Total coloring- A Survey, https://arxiv.org/abs/1812.05833.

[5] M. N. A. Junior and D. Sasaki, “A result on total coloring of circulant graphs,” In Anais do V Encontro de Teoria da Computação, pp. 81-84. SBC, 2020.

[6] R. Khennoufa and O. Togni. Total and fractional total colourings of circulant graphs. Discrete Mathematics, 308(24):6316–6329, 2008.

[7] S.Prajnanaswaroopa, J. Geetha and K. Somasundaram, Total Coloring for some classes of Cayley graphs, https://arxiv.org/abs/2006.07677.

[8] A. Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete Mathematics, 78, 315-319, 1989.

[9] V. G. Vizing, *Some unsolved problems in graph theory (in Russian)*, Uspekhi-Mat. Nauk.(23) 117–134; English translation in Russian Math. Surveys, 23 (1968), 125–141.
[10] H. P. Yap, *Total Colourings of Graphs*, Lecture Notes in Mathematics, 1623, Springer, Berlin, 1996.