Evaluating cucumber mosaic virus in *capsicum* germplasm using ELISA

Tanvi, Anil Handa and DK Mehta

DOI: https://doi.org/10.22271/chemi.2020.v8.i6b.10756

Abstract

Surveys conducted in *capsicum* growing localities of Solan district in Himachal Pradesh revealed a high incidence of cucumber mosaic virus. Mottling, mosaic, mid vein distortion, puckering and leaf deformation were the striking symptoms observed on the leaves of *capsicum*. Due to the complexities of symptoms, appearance of visual symptoms alone is not sufficient enough to establish the identity of the causal virus. Leaves from symptomatic plants were collected and serologically detected through ELISA. A total of 70 *capsicum* varieties/breeding lines were evaluated for their reaction to CMV, out of which 14 were found to be resistant based on their optical density values. ELISA was observed to be a quick and reliable method for indexing germplasm on a large scale.

Keywords: *Capsicum*, CMV, ELISA, germplasm screening

Introduction

Capsicum (*Capsicum annuum* L.) is one of the most widely cultivated vegetable crops and has attained a status of high value crop and appreciated worldwide because of its aroma, colour and nutritive value. *Capsicum* is a major source of income for vegetable growers in India which stands fourth in world production with an area and production of 34 thousand ha and 487 thousand MT, respectively (Anonymous 2018) [3]. Major *capsicum* producing states are Andhra Pradesh, Uttarakhand, Himachal Pradesh, Maharashtra, Tamil Nadu and Uttar Pradesh. In Himachal Pradesh, annual production of *capsicum* is 59.52 thousand MT over an area of 2.59 thousand ha (Anonymous 2018) [3]. Bell pepper is infected by a large number of viruses under different agro climatic conditions resulting in huge losses in yield and quality. Pepper fields exhibit complex symptoms of mosaic, mottle, leaf distortion, vein chlorosis and stunting that cause considerable losses in yield and plant vigour. Viruses cannot be simply identified on the basis of symptoms, as these could vary with respect to the virus strain, the host cultivar, environmental conditions and co-infection with other viruses (Soleimani *et al*. 2014) [30]. Precise diagnosis and detection are the key aspects of managing virus disease and the present studies are focussed on ELISA based serological detection of viruses infecting *capsicum* germplasm.

Materials and Methods

Leaf samples exhibiting typical symptoms of viral etiology were drawn from the symptomatic marked plants in the fields and brought to the laboratory in separate polythene bags kept in ice box. Alkaline phosphate (ALP) based Direct Antigen Coating (DAC) following Handa and Bhardwaj (1994) [14] and Double Antibody Sandwich (DAS) form of Enzyme Linked Immunosorbent Assay (ELISA) were performed to detect the causal virus (es) following Clark and Adam (1977) [9].

DAC-ELISA

Infected leaf samples showing symptoms of mottling, mosaic, mid vein distortion, puckering, vein banding and cupping were drawn and brought to the laboratory. Leaves of each sample were crushed in extraction buffer (1:20 w/v) by using mortar pestle and infected sap was used for coating the wells of microtiter ELISA plates. The wells of microtiter plate were filled with 200 µl aliquots of test samples and the coated plates were kept in a humid box and incubated overnight at 4±1°C.
The plates were washed by removing suspension of samples by vigorously shaking out the plate over the wash basin. The wells were filled with 1X PBS-Tween and kept for 2 minutes with gentle shaking and emptied. The washing was repeated 3 times and the wells were filled with 200 µl aliquots of coating antibodies diluted in 1X coating buffer. The plate was incubated in humid box for 4 hours at 30°C. The washing of the plate was done as mentioned before. ALP labelled goat anti-rabbit IgG conjugate (GeNei, Bangalore) were filled in each well with 200 µl aliquots after diluting in 1X conjugate buffer. The plate was incubated in a humid box for 5 hours at 30°C and washed as mentioned previously. The p-nitrophenyl phosphate (pNPP) substrate was dissolved in 1X substrate buffer (5 mg pNPP tablet in 5 ml of substrate buffer) under dark conditions. Each well was filled with 200 µl aliquots of substrate. The plate was kept in humid box in dark at room temperature. The plate was incubated until a yellow colour was visible in the positive controls (usually between 30 and 90 minutes). If desired, the reaction was stopped by adding 50 µl of 3M NaOH to each well. The results were assessed by measurement of the absorbance value of the hydrolysed substrate pNPP at 405 nm wavelength in microtiter plate reader (Micro Scan MS5605A, Electronic Corporation of India Limited).

Screening of germplasm against cucumber mosaic virus through ELISA
Screening was undertaken to identify the sources of resistance in *capsicum* germplasm against CMV disease under insect proof glasshouse conditions in the Department of Plant Pathology, Dr YS Parmar University, Nauni. All experiments were conducted on young and healthy plants of *capsicum*. Varieties/ breeding lines available with the Department of Vegetable Science and those available in the market were raised in pot mixture and seedlings were mechanically inoculated at five to six leaf stage and visually screened for their reaction to the virus isolate under study. The disease incidence was recorded based on the visual symptoms at weekly intervals for the development of symptoms. The results of visual screening were further confirmed with DAS-ELISA assay.

Table 1: Serological detection of CMV and PVMV through DAC-ELISA

Isolate	CMV	O.D. Value Å 405 nm	PVMV
C1	0.987 (+)	0.289(-)	
C2	0.901(+)	0.313(-)	
C3	0.965(+)	0.305(-)	
C4	0.765(+)	0.401(-)	
C5	1.027(+)	0.213(-)	
C6	0.254(-)	0.118(-)	
C7	0.886(+)	0.198(-)	
C8	0.904(+)	0.173(-)	
Sample C_{30} recorded the maximum O.D. values of 1.119 followed by sample C_{3} with O.D. value of 1.027 for CMV whereas in case of PVMV, sample C_{20} recorded maximum O.D. value of 0.513. The results of the present findings are in concurrence with those of Arogundade et al. 2012; Fatogoma et al. 2014 [21, 12]. Besides, a number of other workers have also reported the presence of CMV in mixed infection with Potyviruses on the basis of DAC-ELISA tests (Verma et al. 2004; Ryu et al. 2009; Mascia et al. 2010; Aliyu et al. 2014; Appiah et al. 2014; Ayo-John et al. 2017) [23, 25, 19, 2, 4, 7].

Serological detection through DAS-ELISA
It is evident from the data in Table 2 and Figure 2 that majority of the isolates reacted positive with antibodies against CMV. None of the isolates recorded positive results against PVMV in DAS-ELISA thereby indicating that the causal virus associated with the symptoms was CMV and not PVMV.

Table 2: Serological detection of CMV and PVMV through DAS-ELISA

Isolate	O.D. Value at 405 nm	CMV	PVMV
C_{1}	0.854(+)	0.176(-)	
C_{2}	0.742(+)	0.145(-)	
C_{3}	1.005(+)	0.126(-)	
C_{4}	0.898(+)	0.201(-)	
C_{5}	0.945(+)	0.180(-)	

Fig 1: DAC-ELISA detection of viruses (CMV and PVMV) in capsicum plants

C_i	$O.D. (\text{nm})$	C_M	P_M
C_{10}	0.232(-)	0.287(-)	
C_{11}	0.119(-)	0.442(+)	
C_{12}	0.854(+)	0.158(-)	
C_{13}	0.232(-)	0.328(-)	
C_{14}	0.675(+), 0.306(-)	0.402(+)	
C_{15}	0.983(+)	0.212(-)	
C_{16}	0.745(+)	0.168(-)	
C_{17}	0.298(-)	0.170(-)	
C_{18}	0.873(+)	0.216(-)	
C_{19}	0.895(+)	0.443(+)	
C_{20}	0.604(+)	0.513(+)	
C_{21}	0.855(+)	0.302(-)	
C_{22}	0.284(-)	0.220(-)	
C_{23}	0.984(+)	0.196(-)	
C_{24}	0.243(-)	0.189(-)	
C_{25}	0.612(+)	0.231(-)	
C_{26}	0.541(+)	0.318(-)	
C_{27}	0.629(+)	0.300(-)	
C_{28}	0.750(+)	0.206(-)	
C_{29}	0.845(+)	0.159(-)	
C_{30}	1.119(+)	0.184(-)	
Positive Control	1.241	1.185	
Negative Control	0.203	0.176	
Sample C18 recorded the maximum O.D. value of 1.231 closely followed by sample C7 with O.D. value of 1.211 whereas sample C9 recorded minimum O.D. value of 0.198 for CMV. DAS-ELISA results in the present study are in line with the findings of Eiras et al. 2004; Arli-Sokmen et al. 2005; Bernaik et al. 2009; Tamarzizi et al. 2013; Kapoor et al. 2018 [11, 18, 8, 29, 17] who have also detected CMV. Afouda et al. (2013) [1] reported mixed infection of CMV, PVMV and PVY in pepper grown in Alibori in northern Benin. However, Arogundade et al. (2016) [5] detected CMV and PVMV using DAS-ELISA besides many viruses but CMV and PVMV were not found in mixed infection.

Fig 2: DAS-ELISA detection of CMV in *capsicum* leaves

Sample	Positive Control	Negative Control
C6	0.200(-)	0.195(-)
C7	1.211(+0.098)	0.219(-)
C8	0.874(+0.098)	0.196(-)
C9	0.198(-0.098)	0.154(-)
C10	0.783(+0.098)	0.185(-)
C11	0.216(-0.098)	0.264(-)
C12	0.765(+0.098)	0.208(-)
C13	0.199(-0.098)	0.190(-)
C14	0.967(+0.098)	0.250(-)
C15	0.914(+0.098)	0.216(-)
C16	1.006(+0.098)	0.203(-)
C17	0.228(-0.098)	0.185(-)
C18	1.231(+0.098)	0.162(-)
C19	0.965(+0.098)	0.212(-)
C20	0.690(+0.098)	0.228(-)
C21	0.854(+0.098)	0.199(-)
C22	0.289(-0.098)	0.176(-)
C23	0.973(+0.098)	0.276(-)
C24	0.253(-0.098)	0.209(-)
C25	0.756(+0.098)	0.180(-)
C26	0.669(+0.098)	0.266(-)
C27	0.850(+0.098)	0.218(-)
C28	0.974(+0.098)	0.196(-)
C29	0.821(+0.098)	0.160(-)
C30	0.763(+0.098)	0.246(-)

Screening of germplasm against cucumber mosaic virus through ELISA

After visual screening, the available germplasm of *capsicum* was screened serologically to ascertain the sources of resistance against cucumber mosaic virus. Leaf samples from different cultivars of *capsicum* grown under insect proof glasshouse were collected for ELISA based screening. A total of seventy varieties/breeding lines were screened and O.D. values based on serological detection of the virus isolate are presented in Table 3. The data reveals that out of seventy varieties/breeding lines screened, fifty six tested positive in DAS-ELISA for Cucumber mosaic virus (CMV). *Capsicum* variety Nirmal Karol variety recorded the least O.D. value of 0.074 at A405 nm followed by UHF BP-5 (0.098) and SV 1865-PV (0.101). *Capsicum* variety Dollar was found to be most susceptible variety as it recorded the maximum O.D. value of 0.684 closely followed by variety Meenakshi (0.638) and Solan Bharpoor (0.613). Germplasm screening through DAS-ELISA is often used as an efficient tool for the identification of sources of resistance against *capsicum* viruses (Shifiss and Cohen 1989; Hobbs et al.1996; Zhang et al.1998; Rashid et al. 2007; Yao et al. 2013; Ashfaq et al.2013; Rahman et al.2016) [26, 16, 28, 24, 7, 6, 22]. Grube et al. (2000) [13] and Naresh et al. (2016) [20] also screened accessions of *Capsicum* and identified sources of resistance against cucumber mosaic virus (CMV).
S. No.	Variety/Breeding line	Symptoms	O.D. value (405 nm)
1	Solan Bharpoor	Mottle, mid vein distortion, mosaic	0.613 (+)
2	SB-3	Mosaic and puckering	0.495 (+)
3	Yolo Wonder (S)	Mottling and mosaic	0.512 (+)
4	Yolo Wonder 1	Mosaic and puckering	0.497 (+)
5	SB × YW	Mottling	0.583 (+)
6	California Wonder	Vein banding, cupping and mottling	0.581 (+)
7	California Wonder (SST)	Mottling and leaf puckering	0.531 (+)
8	California Wonder-11	Mosaic and leaf deformation	0.396 (+)
9	Sweet Banana	Mottling and cupping of leaves	0.596 (+)
10	Yellow Purple Macroni	No symptoms	0.121 (-)
11	Capsicum Green	Puckering and leaf deformation	0.513 (+)
12	Red-1	Mosaic and puckering	0.473 (+)
13	White Exotic	Mosaic	0.429 (+)
14	KTC-12	Mottling	0.431 (+)
15	KTC-15	No symptoms	0.198 (-)
16	KTC-31	Mottling	0.422 (+)
17	KTC-181	Mottling and leaf deformation	0.553 (+)
18	KTC-182	Mottling	0.397 (+)
19	KC-10	Mosaic and mottle	0.384 (+)
20	KC-11	Mosaic and vein distortion	0.425 (+)
21	KC-12	Puckering and mottling	0.395 (+)
22	N-1	Mosaic	0.462 (+)
23	N-1-2	Puckering and vein banding	0.537 (+)
24	CK1(AP-3)	No symptoms	0.261 (-)
25	CK2	Mosaic	0.519 (+)
26	K-1	Mottle, mosaic and leaf deformation	0.505 (+)
27	Kdz-1	No symptoms	0.183 (-)
28	UHF-BP-3	Mottling	0.433 (+)
29	UHF-BP-3-2	Mottle and leaf deformation	0.486 (+)
30	UHF-BP-5	No symptoms	0.098 (-)
31	UHF-BP-6	Mottling and leaf deformation	0.438 (+)
32	CW × SB	Mosaic, mottle and mid vein distortion	0.392 (+)
33	Arka Gaurav	Mosaic, puckering and leaf deformation	0.416 (+)
34	Arka Basant	Mottle and mosaic	0.524 (+)
35	Solan Wonder	Mosaic and puckering	0.538 (+)
36	Solan Local	Motting and mid vein distortion	0.468 (+)
37	Dark Green	Vein banding and mosaic	0.431 (+)
38	Solan Selection-1	No symptoms	0.217 (-)
39	ACC-16	No symptoms	0.151(-)
40	Dilman Collection	Mottling	0.424 (+)
41	Kadar	Mosaic	0.388 (+)
42	Nirmal Karol	No symptoms	0.074 (-)
43	Dyaag Selection	Mosaic	0.396 (+)
44	Deoth Selection	Mid vein distortion and mottling	0.443 (+)
45	Selection-9	Mosaic and puckering	0.418 (+)
46	Dollar	Mottling and mid vein distortion	0.684 (+)
47	Paladin	Mottle and mosaic	0.512 (+)
48	Asha	Mosaic and yellowing	0.435 (+)
49	Indra	Chlorotic spots	0.379 (+)
50	Dina-2020	Mottling and mosaic	0.391 (+)
51	Orobelle	Puckering and mottling	0.513 (+)
52	Kaveri	Mid vein distortion and stunting	0.526 (+)
53	Sakata Excel	Mosaic and yellowing	0.419 (+)
54	11367	No symptoms	0.119 (-)
55	Spinx	Chlorotic spots and puckering	0.385 (+)
56	Bomby	Mosaic and mottling	0.413 (+)
57	Indiragot	Mottling	0.382 (+)
58	SV-1865 PV	No symptoms	0.101 (-)
59	Ashwaryaa (BSS89)	Mottling and mosaic	0.398 (+)
60	Solan Hybrid-2	No symptoms	0.129 (-)
61	Swarup	Mosaic and yellowing	0.482 (+)
62	Bharath	Mottle and leaf deformation	0.474 (+)
63	Green Gold	Mosaic and puckering	0.469 (+)
64	ArkaMohini	Mosaic	0.381 (+)
65	Meenakshi	Mid vein distortion, mottling and stunting	0.638 (+)
66	Variety-367	Mottle and puckering	0.582 (+)
The studies emphasize the need for ELISA based screening of *capsicum* germplasm for identifying sources of resistance with the objective of inclusion in future breeding programmes aimed at developing resistance against viruses in *capsicum*.

References

1. Afouda LAC, Kotchofa R, Sare R, Zinsou V, Winter S. Occurrence and distribution of viruses infecting tomato and pepper in Albitori in northern Benin. Phytoparasitica 2013;41:271-76.
2. Aliyu TH. The incidence, severity and occurrence of four viruses infecting pepper (*Capsicum* spp.) in the Southern Guinea Savannah Agro-ecological zones of Nigeria. Agriculturae Conspectus Scientificus 2014;79:233-37.
3. Anonymous. [Source: 3rd Advance estimate of Area and Production of Horticulture Crops (2018-2019): http://www.nhh.org. 14 July 2020.
4. Appiah AS, Quartey EK, Amaotev HM, Nunekpekwa U, Owusu-Ansah M, Ofori S, et al. Response of Nine Cultivars of Pepper (*Capsicum* spp.) to Infection by Four Viruses under Natural Field Conditions in the Coastal Savanna Zone of Ghana. Research Journal of Applied Sciences, Engineering and Technology 2014;7:903-07.
5. Aroonpade O, Balogun OS, Akinyemi SOS, Kumar Lava. Surveys of virus diseases on pepper (*Capsicum* spp.) in South-west Nigeria. African Journal of Biotechnology 2016;14:3198-3205.
6. Ashfaq M, Iqbal S, Mukhtar T, Shah H. Screening for resistance to Cucumber mosaic cuicumovirus in chilli pepper. Journal of Animal and Plant Sciences 2014;24:791-795.
7. Ayo- John EI, Odedara OA. Serological detection of viruses infecting tomato and pepper in Southwest Nigeria and their distribution. Nigerian Journal of Biotechnology 2017;33:78-82.
8. Berniak H, Malinowski T, Kaminska M. Comparison of ELISA and RT-PCR assays for detection and identification of cucumber mosaic virus (CMV) isolates infecting horticultural crops in Poland. Journal of Fruit and Ornamental Plant Research 2009;17:5-20.
9. Clark MF, Adams AN. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 1977;34:475-83.
10. Dijkstra J, Jager CP. Practical plant virology: Protocols and Exercises. Springer verlag, New York 1998, 495p.
11. Eiras M, Boari A, Coloriccio A, Chaves ALR. Characterization of isolates of the *Cucumovirus* Cucumber mosaic virus present in Brazil. Journal of Plant Pathology 2004;86:61-69.
12. Fatogoma S, Dio D, Mamaduo C, Antoine BB, Fernand K, Carine NA, et al. Identification and distribution of some viral diseases of Solanaceous crops in Cote D’Ivoire. International Journal of Science 2014;3:55-62.
13. Grube RC, Zhang Y, Murphy JF, Loaiza F, lackney VK, Provvidenti R, et al. New source of resistance to Cucumber mosaic virus in *Capsicum frutescens*. Plant Disease 2000;84:885-91.
14. Handa A, Bhardwaj SV. Comparative study on the use of alkaline phosphatase and penicillinase based direct antigen coating ELISA for the detection of *Potyvirus* from faba bean. FABIS 1994;(34-35):36-38.
15. Hobbs HA, Eastburn DM, D-Arcy CJ, Kindhart JD, Masiunas JB, Voegtlin DJ, et al. Solanaceous weeds as possible sources of Cucumber mosaic virus in southern Illinois for aphid transmission to pepper. Plant Disease 2000;84:1221-24.
16. Hobbs HA, Valverde RA, Black LL, Dufresne DJ. Resistance in a *Capsicum annuum* L. pepper line to seven geographically diverse cucumber mosaic virus isolates. Revista Mexicana de Fitopatologia 1996;14:132-34.
17. Kapoor S, Sharma A, Handa A. Correlation between Symptoms and ELISA for the Detection of Cucumber Mosaic Virus in Bell Pepper. International Journal of Current Microbiology and Applied Science 2018;7:400-06.
18. Arli-Sokmen M, Mennan H, Sevik MA, Ecevit O. Occurrence of Viruses in Field grown Pepper Crops and SomeofTheirReservoirWeedHostsinSamsun,Turkey.Phytoparasitica 2005;33:347-358.
19. Mascia T, Cillo F, Fanelli V, Finetti- Sialer MM, De Stradis A, Palukaitis P, et al. Characterization of the interactions between Cucumber mosaic virus and Potato virus Y in mixed infections in tomato. Molecular Plant Microbe Interaction 2010;23:1514-24.
20. Naresh P, Reddy MK, Reddy PHC, Reddy KM. Screening chilli (*Capsicum* spp.) germplasm against Cucumber Mosaic virus and Chilli veinal mottle virus and inheritance of resistance. European Journal of Plant Pathology 2016;146:451-64.
21. Aroonpade O, Balogun OS, Kareem KT. Occurrence and distribution of pepper veinal mottle virus and cucumber mosaic virus in pepper in Ibadan, Nigeria. Virology Journal 2012;9:79.
22. Rahman MS, Akanda AM, Mian IH, Bhuiyan MKA, Hossain MM. New Sources of Resistance to Cucumber mosaic virus in *Capsicum annuum*. Journal of Crop Science and Biotechnology 2016a;19:249-58.
23. Verma R, Singh SJ, Singh RK, Satya Prakash. Indexing of viruses of polyhouse grown *capsicum* (*Capsicum annuum* L.) In pune - causing severe symptoms and epiphytosis.Indian Journal of Agricultural Research 2004;38:157-63.
24. Rashid MH, Khalequzzaman KM, Alam MS, Uddin SA, Green SK. Screening of different sweet pepper lines against cucumber mosaic virus and chilli veinal mottle virus. International Journal of Sustainable Crop Production 2007;2:1-4.
25. Ryu JG, Ko SJ, Lee YH, Kim MK, Kim KH, Kim HT, et al. Incidence and distribution of virus diseases on paprika (*Capsicum annuum var. grossum*) in Jeonnam Province of Korea. Plant Pathology Journal 2009;25:95-98.
26. Shifriss C, Cohen S. Test for resistance to cucumber mosaic virus (CMV) in Capsicum annuum L. germplasm. Capsicum-Newsletter 1989;(8-9):52-53.
27. Yao M, Li N, Wang Fand Ye Z. Genetic analysis and identification of QTLs for resistance to Cucumber mosaic virus in chilli pepper (Capsicum annuum L.) Euphytica 2013;193:135-45.
28. Zhang B, Yang G, Guo J, Huang S, Tian R. The performance of individual selection in pepper breeding for viral resistance. Advances in Horticulture 1998;2:491-93.
29. Tamarzizi BH, Montarry J, Girardot G, Fakhfakh H, Tepfer M, Jacquemond M, et al. Cucumber mosaic virus populations in Tunisian pepper crops are mainly composed of virus reassortants with resistance-breaking properties. Plant Pathology 2013;62:1415-1428.
30. Soleimani P, Hosseini S, Hosseini A. Distribution of some viral disease on pepper (Capsicum annuum) plants in Dezful fields from Iran. Bulletin of Environment, Pharmacology and Life Sciences 2014;3:111-14.