Thermal Rejuvenation in Metallic Glasses

by

Junji SAIDA*, Rui YAMADA* and Masato WAKEDA**

It is found that metallic glasses can be rejuvenated by a thermal process using experimental and simulation methods. We have reported that an increase in the potential energy, decrease in the density, and change in the local structure as well as mechanical softening were observed after the thermal rejuvenation. We proposed two parameters in the annealing condition of T_a/T_g and V_c/V_i to evaluate the rejuvenation behavior. A rejuvenation map was actually constructed using these two parameters. It is important to satisfy the condition of $T_a/T_g \geq 1.2$ during annealing because of the resetting the thermal history of metallic glasses over 1.2T_g for rejuvenation. The glassy structure changes into a more disordered state by rejuvenation, resulting in the disappearance of icosahedral short-range order (SRO). We also investigated that the rejuvenation occurs partially in a Zr55Al10Ni5Cu30 bulk metallic glass (BMG) when it is annealed at $T_a/T_g \sim 1.07$ followed by rapid cooling. This phenomenon probably originates from disordering in the weakly bonded (loosely packed) region in the heterogeneous local structure model. Such the thermal rejuvenation provides a novel approach for improving the mechanical properties of metallic glasses by controlling their intrinsic glassy structure.

Key words: Metallic glass, Rejuvenation, Relaxation, Local structure, Thermal annealing, Mechanical properties

1 緒 言

アモルファス、金属ガラスといった金属系ランダム原子配列をもつ材料は、これまで人類が長い間用いてきた規則原子配列をもつ結晶構造材料にない、高い硬度、高強度および低ヤング率を兼ね備え、高耐食性や軟磁気特性等、優れた特性を有することが知られている1)。これまで、上記のランダム原子配列材料は、結晶のような規則原子配列の定義ができないため、一括りで「ランダム配列」という表現でしかとらえられてこなかった。しかし、Fig.1に示す模式図のように、速い冷却速度と遅い冷却速度で作製したガラス（ランダム原子配列）材料ではその原子配列の乱雑さに違いがある。前者はより乱雑（大きな体積をもった未緩和）な状態にあり、後者は比較的規則化が進んだ（緩和した）状態にある。理論的には、図の低温（室温）側の線を高温側（図の右側）に外挿して、液体の体積変化直線との交点に対応する温度を仮想温度（Fictive Temperature, T_f）と呼び、その温度が高くなるほど高温の液体状態を凍結した、より不規則な構造を持つっているとされている。Fig.1では、大きな冷却速度の仮想温度（$T_{f, fast}$）が小さな冷却速度のそれ（$T_{f, slow}$）よりも高い仮想温度を示す。しかし、実験的にこの仮想温度を測定（決定）することはきわめて困難である。

一方著者らは、固体状態の金属ガラスでは、緩和状態によって例えば熱処理で生成するナノ組織形成2)や室温での機械的特性3)に大きな違いを生じることを報告している。従って、緩和状態を考えることはランダム原子配列材料を研究、そして工業的に応用するのにあたって非常に重要である。逆に考えれば、ランダム原子配列構造を“制御”することによって、特異なナノ組織の形成や種々の新規物性を発現できる可能性があることを示している。
現在この改善が大きな研究課題になっている。未緩和なガラス状態では自由体積という原子間の空隙がより多く存在し、それがせん断断の起点となって互いにその進行を促進することによって、大きな変形能が発現すると考えられている。実際に、未緩和ガラス合金の方が室温での破壊変形に耐えることも明らかとなっている。これまで本分野においては、緩和状態は制御不能なものであり、一旦金属ガラスが緩和してしまうと、再度溶解した後、急冷することは不可能であると言われていた。しかしながら、近年本解説にある復熱処理、液体窒素温度への繰り返し冷却等によって、比較的簡便に緩和状態を未緩和状態に移動させることができると報告がなされてきた。このような、一旦緩和状態にあるアモルファス・金属ガラスを未緩和状態に戻することは構造若返り（Rejuvenation）および、最近の本分野の大きなトピックスとなっている。

本解説では、主にガラス合金を対象に、ガラス再生成度付近の比較的低温での熱処理および冷却による構造若返現象を解説し、「原子レベルでの不規則構造の評価・制御による新材料・新機能創成」という新規則を提案することを目的とする。

2 緩和状態の決定因子と熱的構造若返りの考え方

金属ガラスにおける緩和状態の解説は、本材料が発見されて以来、精力的に行われてきた。その結果、(1)作製まま（すなわち急冷まま）の材料には多数の自由体積が含まれており、原子配列がより乱雑になっている。これらの加熱することで、自由体積の消滅（密度上昇）、原子配列の局所的な規則化が進展し、構造緩和と呼ばれる不可逆的な微小発熱反応を生じる。さらに加熱することによりガラス変態現象を発現し、過冷却液体状態が自由体積の再導入（原子配列の不規則化）を進展することができる。Fig.1に示したように、緩和状態は、融体から冷却された時における温度によって決定されることがわかっているが、実際の金属ガラスでは、その時点の冷却速度が緩和状態を決定するのか、わかっていない。著者らは、金属ガラス作製に用いる鋼錠型鍛造法において、雰囲気を変えることでガラス変態温度（T_g)の1.2-1.3倍の低圧状態の過冷却液体の冷却速度を変えることで成功した。こうして作製された金属ガラスを鍛造してみると、上記の温度域での冷却速度と緩和状態に強い相関があることが見つかった。一方、溶体下の冷却速度との相関は認められなかった。このことから、金属ガラスの緩和状態は、過冷却液体状態の比較的低温域の冷却速度によって決定されることが示唆された。

このような知見に基づけば、室温での緩和状態は上記の温度域まで加熱することで、完全にリセットされることが期待される。そしてそこから室温まで冷却される際の速度に応じて、新たなガラス構造（緩和状態）が導入されることが期待される。つまり、室温で緩和したガラス構造であっても、一旦ガラス変態温度直上まで加熱後、急冷することで未緩和な状態に戻せることを意味しており、上述した構造若返りが可能であることを示唆するものである。

3 熱的構造若返り現象

上記のような考察をもとに、実際の金属ガラス材料において構造若返りが可能かどうかを検討してみることとする。その前提として、緩和状態を評価する方法について述べる。既述のように、緩和状態に対する原子配列の乱雑さを示す尺度として仮想温度があげられるが、これは多くの場合、理論的解釈が導くものである。実際のガラス合金について実験的に決定することは難しい。このため、実験では、求めようとするガラス合金の比熱曲線とそのガラス合金が完全緩和した状態（通常ガラス変態温度まで昇温して徐冷した状態）の比熱曲線の差を積分したエントロピー量を構造緩和量（Enthalpy of relaxation, ΔH_{rel})と呼び、この数値によって緩和状態を評価する。すなわち、構造緩和量は以下の式に示すように、室温（RT）からガラス変態温度（T_g)まで2回の比熱を測定し、1回目（C_{p,i})と2回目（C_{p,f})の差の積分で与えられ、その値が大きいほど未緩和なガラスと評価される。

\[ΔH_{rel} = ΔC_p (C_{p,f} - C_{p,i})dT \]

鋼錠型鍛造法を用いて作製した直径3 mm、長さ50 mmのZr67Al16Ni15Cu13の円柱状金属ガラス試料を、厚さ0.5 mmに切り出してディスクを用意した。円柱状金属ガラス試料では、切り出す部位によって冷却速度が異なるため、これらのディスク試料は種々の緩和状態を有している。これらの試料を一旦ガラス変態温度（685 K）まで加熱し、120 s保持して、完全緩和に近い状態を達成させ、試料間の構造状態を統一する。なお、この緩和処理（Relaxation annealing）の温度、および昇温速度は0.17 K/sとした。

![Annealing condition of thermal rejuvenation](image)

これらの試料を735 Kまで再び加熱し、同じく120 s保持した後、3.0-4.4 K/sの冷却速度（ガラス変態温度付近での速度で測定）で室温まで冷却した。この過程を回復処理（Recovery annealing）と呼ぶ。これにより、緩和処理（Relaxation annealing）によって変化した温度制御が正確な人力補償型示差走査熱分析装置（Perkin-Elmer Pyris Diamond）を用いて行った。この熱処理過程をFig.2にまとめて示す。ここで重要なパラメータとして、回復処理時の温度（T<sub<f</sub>)をガラス変態温度で規格化した
温度（\(T_g/T_0\)）と、回復熱処理と緩和熱処理時の冷却速度の比（\(V_f/V_i\)）を設定した。

Fig.3は鋼棒型鍛造法で作製した試料（as-cast）を緩和（685 K（=75 K）, 120 s, Cooling rate=0.17 K/s))させ（Relaxed）、それをさらに735 K（=75 K）, 120 sの熱処理後, \(V_f/V_i=10\)および25.9で冷却した試料（Recovered）の比熱曲線を示している。緩和した試料の比熱曲線は、完全緩和され
れた２回目の測定(\(C_p,g\))の曲線とはほぼ一致し、構造緩和量は非常に小さい。しかしながら、この緩和材を熱処理した試料（Recovered）の比熱曲線は、緩和材よりも下方に位置しており、明らかに大きな構造緩和量を示す。このこ
とは、回復熱処理によって未緩和状態に回復したことの示すものである。また、\(V_f/V_i\)が大きいほど、比熱曲線は下方に位置してい、より構造若返りが進んでいることを示している。

4 熱的構造若返りにともなう特性変化

第3章で示したような緩和状態変化は、同時に種々の特性の変化となって現れる。もっとも予測できる特性として、密度変化を考えられる。緩和現象は、自由体積の消減と原子の局所的配列の規則化であることを考慮すれば、緩和一構造若返りは直接材料の密度の変化となって現れるはずである。Fig.5は、as-cast、Relaxedおよび回
復熱処理（\(V_f/V_i=25.9\)）試料（Recovered）の密度変化を示している。as-cast試料は大きな冷却速度に起因した乱雑なガラス構造のため、多数の自由体積を有し、低い密度になっている。Relaxed試料では、このような過剰な自由体積が消減し、密度の増大が認められる。一方、Recovered試料では、再度密度が低下し、新たな自由体積が導入されたことを示している。このような変化は機械的性質にも表れている。Fig.6はナノインデンテーション法によって測定したヤング率と回復熱処理後の冷却速度（\(V_f/V_i\)）をプロットしたものである。参考として、as-cast材のデータも示している。Relaxed材では原子間の空隙が少なく、変形がより困難になった結果、ヤング率の増大が認められる。しかしながら、回復熱処理材においては、冷却速度の増大によって、より未緩和状態に若返ることで自由体積が再導入され、変形に対する抵抗が小さくなっ
てヤング率が低下する。このような傾向はビッカース硬度13,14や圧縮試験15においても発現している。
5 シミュレーションによる熱的構造若返りの検証

以上示したように、構造若返り現象は熱力学的評価だけでなく、力学特性においても大きな変化をもたらすことが明らかとなった。このような現象をより理解するためにシミュレーションが有効なツールとなる。Lenard-Jonesポテンシャルモデルを用いてCusZr20を元多金属ガラスの構造若返り過程を分子動力学シミュレーションによってモデル化した。この際、モデル原子数は30,000、時間ステップは1 fsとした。シミュレーションでは、冷却速度でモデル化した。この際、モデル原子数は30,000、冷却速度で1012 K/s、0.1 ppm保持した後、1012 K/sまで加熱して2000 ps保持した後、Fv(102-103 K/s)の冷却速度で冷却して構造若返り熱処理を行った。その後のガラス固体のエネルギー変化を示したものである。横軸は回復熱処理後の試料のポテンシャルエネルギーで規格化している。

従って、正のエネルギー変化を示す場合、よりエネルギー的に非平衡状態となって構造若返りが起きていることを示している。本図では熱処理温度を変えており、ガラス遷移温度で規格化(1012 K/s)により冷却してガラスを構造若返り処理後のガラス中に含まれる二十面体局所原子配列（Icosahedral short-range order (SRO)）の数を、数学的な多面体解析によって調べたものである。ここで二十面体は、ガラス構造を評価する際に、その構造安定性と密接に関連する多面体として知られるものである。図では、いずれの回復処理においても、ガラス遷移温度での加熱においては、ほぼ単調に二十面体局所構造の数は増大していえる。この一連の過程は構造緩和によるもので、既述したように、自由体積の減少とともに起こる原子の局所的規則化によってもたらされた結果である。一方、ガラス遷移温度以上で加熱した場合、図ではFv=0.1-10の範囲で冷却速度を変えて示しているが、構造若返りが顕著に起きている材料（例えばFv=10, Tg/TG=1.5）では、二十面体の数が大きく減少していることがわかる。逆に、冷却速度の小さな条件では、構造緩和によって増大した二十面体局所構造がほぼ維持されていることを示している。これらのことから、構造若返りはガラスの局所構造の変化とも密接に相関する現象であって、規則化（緩和）によって生成した高密度局所構造の消滅をもたらすことが明らかとなった。

Fig.7 Change in the number of icosahedral-like SRO in CusZr20 metallic glass by thermal rejuvenation

6 熱的構造若返りを起こす条件

構造若返り現象においては、回復熱処理における冷却速度比（Fv/F0）と熱処理温度の比（Tg/TG）が重要であることを考慮した。Fig.9は、様々な合金系における構造若返りを起こす条件について、上記の2つのパラメータを用いて整理した構造若返りマップ(Rejuvenation map)を示したものである。なお、本図は実験およびシミュレーションの結果を合わせて図示している。図の右上部分が構造若返りを起こす領域である（逆に左下部分が緩和としている領域）。この図から、緩和と構造若返りがどのような条件で進行するのかが明らかである。大きな冷却速度と高い熱処理温度が若返りに適しているが、例えば、Fv=0.1, Tg/TG=1.2が両者の現象を分ける一つの目安である。ただ分子動力学シミュレーションでは、ある種理論的な高速加熱冷却なので、ガラス構造が大きく崩れることはないが、本解説では詳しくは述べないが、実際の試料では熱処理温度を高くすることで結晶化が進行するという問題もある。これによって緩和や結晶化速度の遅い温度帯での回復熱処理が実現できるという問題もある。そのため、シミュレーション結果よりも低い温度域での回復熱処理が必要になる。実際、既報の実験では1.07Tg付近での熱処理によって構造若返りを起こしている。また加えて、このような構造若返り条件は合金系によって違い、成分系が関与していると考えられる。
あるのだろうか、今後検討していく必要がある。特に金属ガラスのメラクリティには構造不均一性と大きく関わり合っている、次節で述べるような若返り機能と密接に関連していると考えられる。

7 熱的構造若返りの機構

構造若返りは、ガラス中に均一に起こるのか、また局所的に起こるのかというメカニズムの解明は、本研究にとって非常に重要な観点である。このような緩和、若返り（回復）現象を考察するため、動的粘弾性測定装置を用いて、損失減衰率の温度変化を調べた。Fig.10は作製まま（as-quenched）、緩和（Relaxed）および若返り（Rejuvenated）試料の結果である。なお測定は1Hzの周波数を用い、緩和と回復実験には高温域からβ-relaxation、β-relaxation...といういくつかのモードがある。緩和、若返り試料のいずれも684K近辺のα-relaxationの値がas-quenched試料の値と変化しなかったことに対して、600K付近のβ-relaxationでは値が顕著に変化を示している。すなわち、as-quenched試料から緩和によってシグナル強度が低下した状態が、若返りによってas-quenched試料側へ復活している。このことから、粘弾性にも回復熱処理によって構造が若返っていることが示され、その挙動が主にβ-relaxation周辺で見られていることがわかる。β-relaxationは低温で観られる緩和で、ガラスの不均一性と相関する。単原子の小規模ジャンプが主たる現象であると言われている。

Fig.9 Thermal rejuvenation map of metallic glasses

Fig.10 Internal losses in as-quenched, relaxed and rejuvenated Zr50Al25Ni25Cu25 metallic glass ribbon samples

8 結 言

これまで金属ガラスにおいて緩和は、ほぼ不可逆の現象と見なされており、その過程を考察することはあっても、導入する構造制御とは未緩和状態に回復させる（構造若返り）ことが検討されたことは無かった。ここでは導入した金属ガラスの構造若返りは、金属ガラスの新たな構造制御手法とし、加工や成形による構造緩和によって失われた塑性変形性の回復という知見をもたらすことから、その重要性は明白である。また基礎物性の観点からも、第7章で述べたように、本現象は金属ガラスの局所構造不均一性を基本的と考えなければならず、その本質に迫る課題をはらんでいると考えられる。実際に、2018年6月に韓国ソウルで開催されたバルク金属ガラス国際会議（BMG XII）において、金属ガラスの構造若返り（Rejuvenation）はホットピックスとして多くの発表と聴衆を集めるに至った。今後、国内外で本現象の研究、考察が進展し、多くの新たな知見が創出されることが期待される。
本研究は、大阪大学大学院基礎工学研究科 尾形成信教授、中村隆也教授、村瀬博明教授等との共同研究の成果です。また本研究の遂行にあたっては、文部科学省科学技術振興調整費研究助成金「基盤研究 A (No.23340027)」および日本学術振興会「基盤研究 C (No.23140001)」の支援を得ました。ここに記して謝意を表します。

参考文献
1) E.g., C. Suryanarayana and A. Inoue, “Bulk metallic glasses”, CRC Press, Boca Raton, (2010).
2) J. Saida, A.D. Setyawan and E. Matsubara, “Effect of relaxation state on nucleation and grain growth of nanoscale quasicrystal in Zr-based bulk metallic glasses prepared under various cooling rates”, Applied Physics Letters, Vol.99, 061903 (2011).
3) J. Saida, A.D. Setyawan, H. Kato, M. Matsushita and A. Inoue, “Plastic deformation by glassy structure control in Zr-Al-Ni-Cu-based BMGs”, Journal of Alloys and Compounds, Vol.504S, pp. S52-55 (2010).
4) S.V. Ketov, Y.H. Sun, Z. Lu, A. Checchi, A.R. Bernalid, H.Y. Bai, W.H. Wang, D.V. Louguine-Luzgin, M.A. Carpenter and A.L. Greer, “Rejuvenation of metallic glasses by non-affine thermal strain”, Nature, Vol. 524, pp.200-203 (2015).
5) W. Guo, R. Yamada and J. Saida, “Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment”, Intermetallics, Vol.93, pp.141-147 (2018).
6) F.O. Méar, B. Lenk, Y. Zhang and A.L. Greer, “Structural relaxation in a heavily cold-worked metallic glass”, Scripta Materialia, Vol.59, pp.1243-1246 (2008).
7) A. Concustell, F.O. Méar, S. Sarinach, M.D. Baro and A.L. Greer, “Structural relaxation and rejuvenation in a metallic glass induced by shot-peening”, Philosophical Magazine Letters, Vol.89, pp.831-840 (2009).
8) F. Meng, K. Tsujiya, S. Li and Y. Yokoyama, “Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass”, Applied Physics Letters, Vol. 101, 129114 (2012).
9) H.S. Chen, “On mechanisms of structural relaxation in a Pd42.5Ni7.5Cu30P20 glass”, Journal of Non-Crystalline Solids, Vol.46, pp.289-305 (1981).
10) O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa and Y. Yokoyama, “Volume and enthalpy relaxation in Zr52Cu38Ni10 bulk metallic glass”, Acta Materialia, Vol.58, pp.1829-1836 (2010).
11) A.D. Setyawan, H. Kato, J. Saida and A. Inoue, “Glass formation dependence on cast-atmosphere pressure in Zr0.5Er0.5Ni50Cu50Pd alloy system: A resultant effect of quasicrystalline phase transformation and cooling mechanism during mold-casting process”, Journal of Applied Physics, Vol.103, pp. S044907 1-8 (2008).
12) J. Saida, A.D. Setyawan, H. Kato and A. Inoue, “Cooling process and cast structure of Zr-Al-Ni-Cu metallic glasses produced by various atmosphere”, Metallurgical and Materials Transactions A, Vol.42A, pp. 1450-1455 (2011).