How universal is the Wigner distribution?*

Mthokozisi Masuku and João P Rodrigues

National Institute for Theoretical Physics, School of Physics and Centre for Theoretical Physics,
University of the Witwatersrand, Johannesburg, Wits 2050, Republic of South Africa

E-mail: joao.rodrigues@wits.ac.za

Received 31 August 2011, in final form 9 December 2011
Published 8 February 2012
Online at stacks.iop.org/JPhysA/45/085201

Abstract

We consider Gaussian ensembles of \(m \) complex \(N \times N \) matrices. We identify
an enhanced symmetry in the system and the resultant closed subsector, which
is naturally associated with the radial sector of the theory. The density of radial
eigenvalues is obtained in the large \(N \) limit. It is of the Wigner form only for
\(m = 1 \). For \(m \geq 2 \), a new form of the density is obtained.

PACS numbers: 11.15.Pg, 11.25.Tq, 05.20.Gg, 05.30.Ch

1. Introduction

The Wigner semicircle distribution [1]

\[
 f(x) = \frac{2}{\pi R^2} \sqrt{R^2 - x^2}, \quad -R < x < R, \quad f(x) = 0, \quad |x| > R,
\]

describes the density of eigenvalues of a Gaussian ensemble of single large Hermitian,
symmetric or quaternionic matrices [2] and finds applications in the description of systems in
many areas of physics, from nuclear physics to condensed matter physics.

The Gaussian ensemble of a single complex matrix, or equivalently, of two Hermitian
matrices, is also described by a Wigner-type distribution of eigenvalues of a ‘radial’ variable
[3, 4], the definition of which will be made precise in the following sections.

It is of great interest and importance to investigate if this continues to be a general property
of Gaussian ensembles of more matrices, and in general, to study the properties of systems
with a finite number of matrices, particularly in their large \(N \) limit [5].

The reason for this importance includes, for instance, the fact that—as has already been
established some time ago [6–8]—QCD can be reduced to a finite number of matrices with
quenched momenta.

Of more recent interest, the matrix description of \(D \) branes [9] has, for instance, led to the
proposal that the large \(N \) limit of the quantum mechanics of the multi-matrix description
of D0 branes provides a definition of M theory [10]. In the context of the AdS/CFT duality [11–13], due to supersymmetry and conformal invariance, correlators of supergravity and 1/2 BPS states reduce to the calculation of free matrix model overlaps [14, 15] or consideration of related matrix Hamiltonians [16]. For stringy states, in the context of the BMN limit [17] and $\mathcal{N} = 4$ SYM, similar considerations apply [18–20]. A plane-wave matrix theory [21] is related to the $\mathcal{N} = 4$ SYM dilatation operator [22].

In this paper, we will consider m complex $N \times N$ matrices

$$Z_A \quad A = 1, \ldots , m,$$

or equivalently, an even number $2m$ of $N \times N$ Hermitian matrices and a Gaussian ensemble of such matrices,

$$p[Z_A, \ M_A] = \frac{e^{-\frac{1}{2} \text{Tr} \sum_{i=1}^{m} \ Z_i^2 Z_{A_i}}}{Z}, \quad Z = \int [dZ_A \ dM_A] e^{-\frac{1}{2} \text{Tr} \sum_{i=1}^{m} \ Z_i^2 Z_{A_i}}. \quad (1)$$

We will obtain the large N description of the system in terms of the density of eigenvalues of the matrix

$$\sum_{A=1}^{m} Z_A^2 Z_A. \quad (2)$$

This matrix has a very natural interpretation as a matrix-valued radial coordinate.

We will establish that for $m = 1$ the density of eigenvalues of the radial matrix is still described by a Wigner distribution, but that this is no longer the case for $m \geq 2$ and obtain the form of the new eigenvalue distribution.

In order to obtain these densities, we will first need to establish a new result, the measure for the probability density (1) in terms of the eigenvalues $\rho_i = \rho_i^2$, $i = 1, \ldots , N$ of (2):

$$\prod_A [dZ_A \ dM_A] = C_m \prod_i d\rho_i \rho_i^{m-1} \prod_{i>j} \rho_i^{m-1} \rho_j^{m-1} (\rho_i - \rho_j)^2$$

$$= D_m \prod_i dr_i r_i^{2m-1} \prod_{i>j} r_i^{2m-2} r_j^{2m-2} (r_i^2 - r_j^2)^2$$

$$= C_m \prod_i dr_i \rho_i^{m-1} \Delta_{VDM}(\rho_i) = D_m \prod_i dr_i r_i^{2m-1} \Delta_{VDM}(r_i^2), \quad (3)$$

where the antisymmetric product

$$\Delta_{VDM}(\rho_i) \equiv \prod_{i>j}^{m} \left(\rho_i^2 - \rho_j^2 \right)$$

generalizes the well-known Van der Monde determinant $\Delta = \prod_{i>j} (\rho_i - \rho_j)$, and C_m and D_m are numerical constants.

This paper is organized as follows. In section 2, we restate the problem, identify the enlarged symmetries of the Gaussian ensemble and identify a complete subset of operators invariant under this enlarged symmetry. In section 3, based on the remarkable fact that this subset of invariant operators closes under Schwinger–Dyson equations, the Jacobian of the transformation to these invariant states and to the eigenvalues of (2) is obtained. In section 4, the large N density of states on the positive real line is obtained for $m \geq 2$. In this case, the effective potential contains a new logarithmic term which keeps the support of the density of eigenvalues strictly positive, i.e. $0 < \rho_- \leq \rho \leq \rho_+$. In section 5, the density is appropriately extended to the whole real line, allowing for a common description of both $m = 1$ and $m \geq 2$ cases. For $m = 1$, a (restricted) Wigner distribution emerges, whereas for $m \geq 2$ the required two cut solution is shown to agree with that of the previous section, when suitably restricted to the positive real line. In section 6, these densities are related to the density of zeros of certain polynomials. Section 7 is left for a summary and brief discussion.
2. Gaussian ensemble and symmetries

As stated in the introduction, we consider a Gaussian ensemble of \(m \) complex \(N \times N \) matrices
\[
(Z_A)_{ij}, \quad A = 1, \ldots, m.
\]

The Gaussian potential
\[
S_g = \frac{w^2}{2} \text{Tr} \left(\sum_A Z_A^\dagger Z_A \right),
\]
is invariant under the \(U(N)^{m+1} \) symmetry
\[
Z_A \rightarrow V_A Z_A V^\dagger, \quad A = 1, \ldots, m,
\]
with \(V_A, A = 1, \ldots, m \) and \(V \) being unitary matrices. The potential depends only on the eigenvalues of the positive definite, Hermitian matrix
\[
\sum_A Z_A^\dagger Z_A,
\]
which are denoted as
\[
\rho_i = r_i^2, \quad i = 1, \ldots, N, \quad \rho_i \geq 0.
\]

In the context of a physical framework where the \(m \) complex matrices are naturally associated with \(2m \) Hermitian matrix-valued coordinates, as appropriate, for instance, in the description of the dynamics of branes, these eigenvalues have a natural interpretation as the eigenvalues of a matrix-valued radial coordinate.

The purpose of this paper is to obtain the large \(N \) distribution of these eigenvalues for the Gaussian partition function
\[
Z = \int \prod_A \prod_{ij} dZ_A^\dagger_{ij} dZ_{Aij} \, e^{-S_g}.
\]

We will do so by ‘integrating out’ the ‘angular matrix-valued degrees of freedom’ or equivalently, by obtaining the Jacobian \(\mathcal{J}(\rho_i) \) of the change of variables to the ‘radial’ eigenvalues:
\[
Z = \int \prod_i d\rho_i \mathcal{J}(\rho_i) \, e^{-S_g(\rho_i)}.
\]

In order to do so, we will consider correlators of operators that are invariant under the symmetry (4), i.e. in the subsector of the theory with this enlarged symmetry. Such invariant operators can be built as the trace (single traces) of powers of the matrix (5), and hence they depend again on the eigenvalues of this matrix only.

A generating function for such operators is given by
\[
\Phi_k = \text{Tr} e^{ik \sum_i Z_i^\dagger Z_i} = \sum_i e^{ik\rho_i} = \sum_i e^{ikr_i^2},
\]
or its Fourier transform, the density of eigenvalues:
\[
\Phi(\rho) = \int \frac{dk}{2\pi} e^{-ik\rho} \Phi_k = \sum_i \delta(\rho - \rho_i) = \sum_i \delta(\rho - r_i^2).
\]

It turns out that these correlators are close in this subsector, as will be shown in the following by using Schwinger–Dyson equations.
Schwinger–Dyson equations can be obtained from the identity
\[
\int \prod_A \prod_{ij} dZ_{A}^{ij} \ dZ_{ij} \ \partial \left(\frac{\partial F[\Phi]}{\partial(Z_{ij})} \right) \left(\frac{\partial F[\Phi]}{\partial(Z_{ij})} \right) = 0,
\]
where \(F[\Phi]\) is an arbitrary product of invariant operators. This yields,
\[
\left\langle \frac{\partial^2 F_k}{\partial(Z_{ij})^2} \right\rangle - \left\langle \frac{\partial F_k}{\partial(Z_{ij})} \right\rangle \left(\frac{\partial F_k}{\partial(Z_{ij})} \right) = 0.
\]
We denoted in the above:
\[
\left\langle G[\Phi] \right\rangle = \int \prod_A \prod_{ij} dZ_{A}^{ij} dZ_{ij} G[\Phi] e^{-S_\rho} = \int [d\Phi] J(\Phi) G[\Phi] e^{-S_\rho},
\]
Following [23], we now consider the identity
\[
\int [d\Phi] \int dp \ \frac{\partial}{\partial \Phi} \left(\left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle J(\Phi) F[\Phi] e^{-S_\rho} \right) = 0.
\]
Then,
\[
\int dp \ \frac{\partial}{\partial \Phi} \left(\left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle F[\Phi] \right) + \int dp \ \left\langle \left[\frac{\partial \Phi_k}{\partial(Z_{ij})} \right] F[\Phi] \right\rangle \left(\frac{\partial \ln J(\Phi)}{\partial \Phi} \right) = 0
\]
where in the last two terms we used the chain rule.
Comparing (7) with (8), which are equivalent for arbitrary \(F[\Phi]\), it follows that
\[
\int dp \ \frac{\partial}{\partial \Phi} \left(\left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle \right) \left(\frac{\partial \ln J(\Phi)}{\partial \Phi} \right) + \int dp \ \frac{\partial}{\partial \Phi} \left(\left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle \right) \frac{\partial \ln J(\Phi)}{\partial \Phi} = \frac{\partial^2 \Phi_k}{\partial(Z_{ij})^2}.
\]
Fourier transforming, and defining
\[
\Omega_{\rho \rho'} = \int \frac{dp}{2\pi} \int \frac{dp'}{2\pi} e^{-i\rho \cdot p} e^{-i\rho' \cdot p'} \left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle \left\langle \frac{\partial \Phi_k}{\partial(Z_{ij})} \right\rangle,
\]
\[
w_\rho = \int \frac{dp}{2\pi} e^{-i\rho \cdot p} \frac{\partial^2 \Phi_k}{\partial(Z_{ij})^2},
\]
the differential equation for the Jacobian then takes the form
\[
\int \frac{d\rho \cdot \Omega_{\rho \rho'}}{\partial \Phi(\rho')} \frac{\partial \ln J(\Phi)}{\partial \Phi(\rho')} + \int \frac{d\rho \cdot \Omega_{\rho \rho'}}{\partial \Phi(\rho')} = w_\rho.
\]
\(\Omega_{\rho \rho'}\) and \(w_\rho\) have been obtained in [4] as
\[
\Omega_{\rho \rho'} = \partial_\rho \partial_\rho' \left[\rho \Phi(\rho) \delta(\rho - \rho') \right],
\]
\[
w_\rho = - \partial_\rho \left[\rho \Phi(\rho) \left(2 \int \frac{d\rho' \Phi(\rho')}{\rho - \rho'} + \frac{N(m - 1)}{\rho} \right) \right].
\]
As a result, the second term in (11) vanishes and the Jacobian satisfies
\[
\partial_\rho \frac{\partial \ln J}{\partial \Phi(\rho)} = 2 \int \frac{d\rho' \Phi(\rho')}{\rho - \rho'} + \frac{N(m - 1)}{\rho}.
\]
This equation was previously obtained in [4], using collective field theory methods [24].

\[\ln J = \int d\rho_1 \Phi_1(\rho) \int d\rho' \Phi(\rho') \ln |\rho - \rho'| + N(m - 1) \int d\rho_1 \Phi_1(\rho) \ln \rho. \]

In terms of the eigenvalues,

\[J = \prod_i \rho_i^{m-1} \prod_{i \neq j} \rho_i \rho_j^{-1} \prod_{i \neq j} |\rho_i - \rho_j| = \prod_i \rho_i^{m-1} \prod_{i > j} \rho_i^{m-1} \rho_j^{m-1} (\rho_i - \rho_j)^2. \]

Since, up to a constant, \(\int [d\Phi] \sim \int \prod_i d\rho_i \), we have obtained the result that we sought to establish,

\[\int \prod_i \prod_j dZ_{ij} \prod_i d\rho_i \Phi(\rho) e^{-S} = \int \prod_i d\rho_i \Phi(\rho) e^{-S(\rho_i)} = \int \prod_i d\rho_i \Phi(\rho) e^{-S(\rho_i)} = C_m \int \prod_i d\rho_i \rho_i^{m-1} \left[\prod_{i > j} \rho_i^{m-1} \rho_j^{m-1} (\rho_i - \rho_j)^2 \right] e^{-S(\rho_i)}, \]

for potentials invariant under (4).

A couple of comments are in order. When \(m = 1 \), the above result reduces to the result first obtained in [4], where an explicit parametrization of the 2N degrees of freedom of two Hermitian matrices was obtained, in terms of radial and angular matrix-valued coordinates.

There is a classic result [25, 2] parametrizing a single complex matrix in terms of its complex eigenvalues and upper diagonal matrix. This parametrization of degrees of freedom, useful for holomorphic projections, is different from the one considered in this paper. For \(m = 1 \), the existence of a closed Hermitian subsector has also been identified in [26].

Gaussian ensembles of rectangular \(M \times N \) matrices have also been discussed some time ago in [27–29]. If one sets \(M = mN \), they can be related to the ensembles discussed in this paper and one recovers the above result. In this context, the approach followed is equivalent to using the symmetries of the system to set \(m - 1 \) of the \(N \times N \) matrices to zero. This corresponds to a ‘gauge-fixed’ treatment, as opposed to the gauge invariant approach described in this paper, for which the eigenvalues \(r_i \) have a natural physical identification as a radial coordinate.

4. Large N density of the eigenvalues

Writing

\[Z = \int \prod_i d\rho_i \Phi(\rho_i) e^{-S_\Phi(\rho_i)} = \int \prod_i d\rho_i e^{-S_\Phi(\rho_i)}, \]

we have

\[S_{\text{eff}} = \frac{w^2}{2} \int d\rho_1 \Phi(\rho) \rho \]

\[- \int d\rho_1 \Phi(\rho) - \int d\rho' \Phi(\rho') \ln |\rho - \rho'| - N(m - 1) \int d\rho_1 \Phi(\rho) \ln \rho, \]

\[\int d\rho \Phi(\rho) = N. \]
In order to exhibit explicitly the N dependence, we rescale $\rho \rightarrow N\rho$ and $\Phi \rightarrow \Phi$, so that
\[
S_{eff} = N^2 \left[\frac{w^2}{2} \int d\rho \Phi(\rho) \rho - \int d\rho \Phi(\rho) \int d\rho' \Phi(\rho') \ln |\rho - \rho'| - (m - 1) \int d\rho \Phi(\rho) \ln \rho \right].
\]
\[
\int d\rho \Phi(\chi) = 1. \tag{15}
\]

The large $N \rightarrow \infty$ configuration is then determined by the stationary condition
\[
\frac{\partial S_{eff}}{\partial \Phi(\rho)} = 0,
\]
or
\[
\int \frac{d\rho'}{\rho - \rho'} \Phi(\rho') = \frac{w^2}{4} - \frac{(m - 1)}{2\rho}. \tag{16}
\]

We note a major difference between the cases of one complex matrix ($m = 1$) and more than one complex matrix: for more than one complex matrix, an additional logarithmic potential is present, in addition to the standard Van der Monde repulsion amongst the eigenvalues. As a result, the eigenvalues are 'pushed away' from $\rho = 0$.

The $m = 1$ solution will be described in the following section, where the range of the density of eigenvalues is extended to the full real line. In this section, we obtain the density of eigenvalues for $m \geq 2$.

The solution to the integral equation (16), generalizing that associated with Penner potentials [30], is obtained using standard methods [31], together with a careful treatment of the $\rho \rightarrow 0$ behaviour, following Tan [32]. One introduces the function $G(z)$ in the complex plane
\[
G(z) = \int_{\rho_-}^{\rho_+} \frac{d\rho' \Phi(\rho')}{z - \rho'},
\]
where $\Phi(\rho)$ has support only in the interval $[\rho_- , \rho_+]$, $\rho_+ > \rho_- > 0$. For large $|z|$, $G(z) \sim \frac{1}{z}$, and as z approaches the support of $\Phi(\rho)$,
\[
G(\rho \pm i\eta) = \int_{\rho_-}^{\rho_+} \frac{d\rho' \Phi(\rho')}{\rho - \rho'} \mp i\pi \Phi(\rho) = \frac{w^2}{4} - \frac{(m - 1)}{2\rho} \mp i\pi \Phi(\rho).
\]
Therefore, this suggests the single cut ansatz
\[
G(z) = \frac{w^2}{4} - \frac{(m - 1)}{2z} - \frac{w^2}{4z} \sqrt{(z - \rho_-)(z - \rho_+)}.
\]
One also requires [32] that $G(z)$ has no pole as $z \rightarrow 0$. These conditions fix
\[
\rho_{\pm} = \frac{1}{2} \frac{w^2 (m + 1)}{4 \rho^2 \sqrt{m}}. \tag{17}
\]
It follows that the density of eigenvalues is given by
\[
\Phi(\rho) = \frac{w^2}{4\pi \rho} \sqrt{(\rho_+ - \rho)(\rho - \rho_-)} \quad \rho_- \leq \rho \leq \rho_+
\]
\[
= \frac{w^2}{4\pi} \sqrt{\frac{\rho_+}{\rho} - 1} \left(1 - \frac{\rho_-}{\rho} \right)
\]
\[
= \frac{1}{\pi \rho} \sqrt{1 - \frac{w^4}{16} \left(\rho - \frac{2}{w^2 (m + 1)} \right)^2}. \tag{18}
\]
no longer of the Wigner form.
5. Symmetric solutions

In this section, we extend the domain of the definition of the density of eigenvalues, allowing us to provide a unified description of the single complex matrix case \((m = 1)\) and that of more than two complex matrices \((m \geq 2)\).

With \(\rho = r^2, r > 0\), define
\[
2r\Phi(r^2) \equiv \phi(r) \equiv \phi(-r).
\]

In this way, for an arbitrary function \(f(r^2)\)
\[
\int_{-\infty}^{+\infty} dr f(r^2) \phi(r) = 2 \int_{0}^{+\infty} d\rho f(\rho) \Phi(\rho).
\] (19)

Returning to (16), we remark that \((\rho = r^2)\)
\[
\int_{0}^{\infty} \frac{d\rho \Phi(\rho)}{\rho - \rho'} = \int_{0}^{\infty} \frac{2r \, d\rho \Phi(r^2)}{r^2 - r'^2} = \frac{1}{2r} \int_{0}^{\infty} dr' \phi(r') \left(\frac{1}{r - r'} + \frac{1}{r + r'} \right)
\]
\[
= \frac{1}{2r} \int_{-\infty}^{+\infty} \frac{dr' \phi(r')}{r - r'}.
\] (20)

As a result, (16) is equivalently written as
\[
-\int_{-\infty}^{+\infty} \frac{dr' \phi(r')}{r - r'} = \frac{w^2}{2} \frac{r - (m - 1)}{r}, \quad \int_{-\infty}^{+\infty} d\phi(r) = 2.
\] (21)

When \(m = 1\), this integral equation has the well-known Wigner distribution as a solution,
\[
\phi(r) = \frac{w^2}{2\pi} \sqrt{8 \frac{w^2}{w^2 - r^2}}, \quad -\frac{\sqrt{8}}{w} \leq r \leq \frac{\sqrt{8}}{w}.
\]

We can now write
\[
\Phi(\rho) = \frac{w^2}{4\pi} \sqrt{\frac{8}{w^2 \rho - 1}}, \quad 0 \leq \rho \leq \frac{8}{w^2}.
\]

The symmetric solution of (21) for \(m > 2\) has been discussed in [32, 33]. It is a two cut solution, with generating function
\[
G(z) = \frac{w^2}{2} z - \frac{(m - 1)}{z} - \frac{w^2}{2z} \sqrt{(z^2 - r_+^2)(z^2 - r_-^2)}.
\]

The cuts are in the intervals \([-r_-, -r_-]\) and \([r_-, r_+],\) with \(r_+ > r_- > 0\). The asymptotic condition and the absence of a pole at \(z \to 0\) fix
\[
r_{\pm}^2 = \frac{2}{w^2} (m + 1) \pm \frac{4}{w^2} \sqrt{m},
\]
in perfect agreement with (17). The density is then [33]
\[
\phi(r) = \frac{w^2}{2\pi |r|} \sqrt{(r_+^2 - r^2)(r^2 - r_-^2)}, \quad r_-^2 \leq r^2 \leq r_+^2.
\]

This agrees with (18), recalling that \(2r\Phi(r^2) \equiv \phi(r) \equiv \phi(-r)\).

6. Density of eigenvalues and zeros of polynomials

It turns out that it is possible to relate the densities obtained in the previous section to the density of zeros of certain Laguerre or Hermite polynomials [33, 34].
We use the results of Calogero’s work [35], based on the classical results of Stieltjes [36]. They show that the zeros of the Laguerre polynomial \(L_N^\alpha(x) \) satisfy
\[
\sum_{j=1, j \neq i}^N \frac{1}{x_i - x_j} = \frac{1}{2} \left(1 - \frac{1 + \alpha}{x_i} \right). \tag{22}
\]

In terms of eigenvalues, equation (16) takes the form
\[
\sum_{j=1, j \neq i}^N \frac{1}{\rho_i - \rho_j} = \frac{w^2}{4} - \frac{(m - 1)}{2\rho_i}. \tag{23}
\]

Comparison of these equations shows that the solutions of (23) are the zeros of \(L_N^{m-2}\left(\frac{w^2}{4} \rho\right) \), \(m \geq 2 \).

It has also been established [35, 36] that the zeros of the Hermite polynomial \(H_{2N}(r) \) satisfy
\[
\sum_{j=1, j \neq i}^N \frac{1}{\rho_i - \rho_j} = r_i. \tag{24}
\]

For simplicity, we have chosen an even polynomial. Comparison of the above equation with (21), considered when \(m = 1 \) and is expressed in terms of eigenvalues, shows that its solutions are the zeros of \(H_{2N}\left(\frac{w^2}{4} r\right) \) [34].

The usual relationship between Hermite and Laguerre polynomials is obtained, in the discrete, by noting that, with \(x_i > 0 \), and since \(x_i - x_j = -x_j \), the left-hand side of (24) can be rewritten as
\[
\sum_{j=1, j \neq i}^N \frac{1}{\rho_i - \rho_j} = \sum_{j=1}^N \frac{1}{r_i + r_j} + \sum_{j=1, j \neq i}^N \frac{1}{\rho_i - \rho_j} = \frac{1}{2r_i} + \sum_{j=1, j \neq i}^N \frac{2r_i}{r_i^2 - r_j^2}, \tag{25}
\]
and comparing with (22).

7. Summary and discussion

In this paper, we considered Gaussian ensembles of \(m \) complex \(N \times N \) matrices and identified a closed subsector that is naturally associated with the radial sector of the theory. In the large \(N \) limit, the ensemble is described in terms of the density of radial even values, and these have been obtained:
\[
\Phi(\rho) = \begin{cases}
\frac{m=1}{w^2} & w^2 \rho^2 - 1
\end{cases} \quad \Phi(\rho) = \begin{cases}
\frac{m \geq 2}{4\pi} & \left(\frac{\rho_+ - 1}{\rho} \right) \left(1 - \frac{\rho_+}{\rho} \right)
\end{cases} \quad \rho_\pm \leq \rho \leq \rho_+
\rho_\pm = \frac{2}{w^2} (m + 1) \pm \frac{4}{w^2} \sqrt{m}.
\]
Extending to the full line with $\Phi(\rho)\,d\rho = \phi(r)\,dr$, $\rho = r^2$, the densities take the form

\[
\phi(r) = \frac{w^2}{2\pi} \sqrt{\frac{8}{w^2} - r^2}, \quad r^2 \leq r \leq \frac{\sqrt{8}}{w}
\]

for $m = 1$, and

\[
\phi(r) = \frac{w^2}{2\pi |r|} \sqrt{(r^2 - r^2)(r^2 - r^2)}
\]

for $m \geq 2$, with

\[
r^2_+ = \frac{2}{w^2}(m + 1) \pm \frac{4}{w^2} \sqrt{m}.
\]

A (restricted) Wigner distribution is present only for $m = 1$. The existence of this closed sector is related to an enhanced $U(N)^{m+1}$ symmetry, and the measure in this subsector has been obtained, with a result that generalizes the well-known single Hermitian matrix Van der Monde determinant.

There are several further areas of study that arise naturally from the study presented here. Perhaps the most interesting is an investigation of further systems, such as Hamiltonian and/or interacting systems, where this symmetry is present or where the subsector with this symmetry may provide physically relevant truncations. It is also of interest to establish if the results described in this paper extend smoothly to an odd number of matrices.

Acknowledgment

We would like to thank Robert de Mello Koch for interest in this project and for his comments. We thank G Cicuta for pointing out to us references [27–29] after an earlier posting of the manuscript as a preprint.

References

[1] Wigner E P 1955 Ann. Math. 62 548
[2] Mehta M L 2004 Random Matrices (Amsterdam: Elsevier)
[3] Masuku M 2009 Matrix Polar Coordinates MSc Dissertation Faculty of Science, University of the Witwatersrand
[4] Masuku M and Rodrigues J P 2011 J. Math. Phys. 52 032302 (arXiv:0911.2846 [hep-th])
[5] ’t Hooft G 1974 Nucl. Phys. B 72 461
[6] Eguchi T and Kawai H 1982 Phys. Rev. Lett. 48 1063
[7] Bhanot G, Heller U M and Neuberger H 1982 Phys. Lett. B 113 47
[8] Gross D J and Kitaewa Y 1982 Nucl. Phys. B 206 440
[9] Polchinski J 1995 Phys. Rev. Lett. 75 4724 (arXiv:hep-th/9501007)
[10] Banks T, Fischler W, Shenker S H and Susskind L 1997 Phys. Rev. D 55 5112 (arXiv:hep-th/9610043)
[11] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[12] Maldacena J M 1999 Int. J. Theor. Phys. 38 1113 (arXiv:hep-th/9711200)
[13] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105 (arXiv:hep-th/9802109)
[14] Witten E 1998 Adv. Theor. Math. Phys. 2 253 (arXiv:hep-th/9802150)
[15] Lee S, Minwalla S, Rangamani M and Seiberg N 1998 Adv. Theor. Math. Phys. 2 697 (arXiv:hep-th/9806074)
[16] Corley S, Jevicki A and Ramgoolam S 2002 Adv. Theor. Math. Phys. 5 809 (arXiv:hep-th/0111222)
[17] Berenstein D 2004 J. High Energy Phys. JHEP07(2004)018 (arXiv:hep-th/0403110)
[18] Berenstein D E, Maldacena J M and Nastase H S 2002 J. High Energy Phys. JHEP04(2002)013 (arXiv:hep-th/0202021)
[19] Constable N R, Freedman D Z, Headrick M, Minwalla S, Motl L, Postnikov A and Skiba W 2002 J. High Energy Phys. JHEP07(2002)017 (arXiv:hep-th/0205089)
[20] Beisert N, Kristjansen C, Plefka J and Staudacher M 2003 Phys. Lett. B 558 229 (arXiv:hep-th/0212269)
[21] de Mello Koch R, Donos A, Jevicki A and Rodrigues J P 2003 Phys. Rev. D 68 065012 (arXiv:hep-th/0305042)
[22] Fischbacher T, Klose T and Plefka J 2005 J. High Energy Phys. JHEP02(2005)039 (arXiv:hep-th/0412331)
[23] Jevicki A and Rodrigues J P 1994 Nucl. Phys. B 421 278 (arXiv:hep-th/9312118)
de Mello Koch R and Rodrigues J P 1996 Phys. Rev. D 54 7794 (arXiv:hep-th/9605079)
Das S R and Jevicki A 2003 Phys. Rev. D 68 044011 (arXiv:hep-th/0304093)
[24] Jevicki A and Sakita B 1980 Nucl. Phys. B 165 511
Jevicki A and Sakita B 1981 Nucl. Phys. B 185 89
[25] Ginibre J 1965 J. Math. Phys. 6 440
[26] Kimura Y, Ramgoolam S and Turton D 2010 J. High Energy Phys. JHEP05(2010)052 (arXiv:0911.4408 [hep-th])
[27] Cicuta G M, Molinari L, Montaldi E and Riva F 1987 J. Math. Phys. 28 1716
[28] Anderson A, Myers R C and Periwal V 1991 Phys. Lett. B 254 89
Anderson A, Myers R C and Periwal V 1991 Nucl. Phys. B 360 463
Myers R C and Periwal V 1993 Nucl. Phys. B 390 716 (arXiv:hep-th/9210082)
[29] Feinberg J and Zee A 1997 J. Stat. Phys. 87 473 (arXiv:cond-mat/9609190)
[30] Penner R C 1986 Bull. Am. Math. Soc. 15 73
Penner R C 1988 J. Diff. Geom. 27 35
Harer J and Zagier D 1986 Invent. Math. 85 457
[31] Brezin E, Itzykson C, Parisi G and Zuber J B 1977 Commun. Math. Phys. 59 35
[32] Tan C J 1992 Phys. Rev. D 45 2862
[33] de Mello Koch R and Rodrigues J P 1995 Phys. Rev. D 51 5847 (arXiv:hep-th/9410012)
[34] Jevicki A and Levine H 1980 Phys. Rev. Lett. 44 1443
Jevicki A and Levine H 1981 Phys. Rev. Lett. 46 1546 (erratum)
[35] Calogero F 1977 Lett. Nuovo Cimento 19 505
Calogero F 1977 Lett. Nuovo Cimento 20 251
[36] Szego S 1939 Orthogonal Polynomials vol 23 (New York: Colloquium)