Research Article

Passivity Analysis of Coupled Stochastic Neural Networks with Multiweights

Min Cao,1 Xun-Wu Yin,2 Wen-He Song,3 Xue-Mei Sun,1 Cheng-Dong Yang,4 and Shun-Yan Ren5

1Tianjin Key Laboratory of Autonomous Intelligences Technology and System, School of Computer Science and Technology, Tianjung University, Tianjin 300387, China
2School of Mathematical Sciences, Tianjung University, Tianjin 300387, China
3Academy of Science and Technology, Tianjung University, Tianjin 300387, China
4School of Information Science and Technology, Linyi University, Linyi 276005, China
5School of Mechanical Engineering, Tianjung University, Tianjin 300387, China

Correspondence should be addressed to Cheng-Dong Yang; yangchengdong@lyu.edu.cn and Shun-Yan Ren; renshunyan@163.com

Received 19 May 2021; Revised 3 July 2021; Accepted 12 July 2021; Published 3 August 2021

Academic Editor: Ya Jia

Copyright © 2021 Min Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we devote to the investigation of passivity in two types of coupled stochastic neural networks (CSNNs) with multiweights and incompatible input and output dimensions. First, some new definitions of passivity are proposed for stochastic systems that may have incompatible input and output dimensions. By utilizing stochastic analysis techniques and Lyapunov functional method, several sufficient conditions are respectively developed for ensuring that CSNNs without and with multiple delay couplings can realize passivity. Besides, the synchronization criteria for CSNNs with multiweights are established by employing the results of output-strictly passivity. Finally, two simulation examples are given to illustrate the validity of the theoretical results.

1. Introduction

In recent decades, neural networks (NNs) have potential applications in the image encryption, pseudorandom number generators, optimization, and other areas [1–3], which depend on the dynamical behaviors of NNs including stability and passivity. Therefore, the stability [4–8] and passivity [9–14] for various NNs have received special attention in recent years. Mou et al. [4] considered the asymptotic stability problem for Hopfield NNs with time delay via combining the Lyapunov functional and delay fractioning approach. Yang et al. [6] discussed the stability for a kind of NNs with time-varying delays and gave several delay-dependent stability conditions by taking advantage of integral inequality. In [9], a class of NNs with time-varying delays and parameter uncertainties was took into account, and some exponential passivity criteria were established by exploiting weighted integral inequalities. Xiao et al. [11] studied the passivity for a type of memristive NNs with inertial term, obtained some criteria of asymptotic stability by utilizing the passivity, and discussed the case that parameters are uncertain but bounded.

As it is known to all, stochastic perturbations are unavoidable in the implementation of NNs and may cause undesirable dynamical behaviors in NNs [15, 16]. Therefore, the dynamical behaviors including the stability [17–21] and passivity [22–27] have been widely investigated by numerous researchers for NNs with stochastic perturbations in recent years. In [18], several sufficient conditions on mean square stability for stochastic neural networks (SNNs) with local impulses were derived by using the mathematical induction method. Yang and Li [20] coped with the stability problem for switched SNNs with parameter uncertainties, and derived several conditions to guarantee the robust
stability by utilizing the state-dependent switching method. In [24], the authors took into account one type of uncertain SNNs with distributed and discrete time-varying delays and gave some passivity criteria with the help of integral inequality technique. Nagamani et al. [25], respectively, discussed the passivity and dissipativity for Markovian jump stochastic NNs with two types of time-varying delays and obtained several delay-dependent passivity and dissipativity criteria by taking a suitable Lyapunov functional.

Coupled neural networks (CNNs) comprised of a number of NNs have tremendous potential applications in many areas of engineering [28–30]. Hence, the dynamical behaviors of CNNs have attracted much attention; especially, the passivity [31–35] and synchronization [36–40] for many types of CNNs have been deeply discussed. In [34], the authors not only obtained several passivity criteria for the directed CNNs based on the developed adaptive control strategies but also discussed the case that topologies are undirected. Qi et al. [37] derived exponential synchronization conditions for the proposed CNNs with incompatible dimensions of output and input. Considering the diversity of influencing factors, some researchers discussed the dynamical behavior of coupled SNNs (CSNNs) in recent years [41–45]. Chen et al. [44] utilized the adaptive feedback controller to deal with the exponential synchronization for CSNNs. In [45], the authors respectively employed time-triggered and event-triggered impulsive control methods to investigate the synchronization of discrete time CSNNs with multidelays. Unfortunately, the passivity of CSNNs has not yet been investigated.

It should be pointed out that the results in [31–45] only focused on CNNs with single weight. Considering the diversity of influencing factors, some researchers discussed the synchronization and passivity for multiweighted CNNs (MWCNNs) [46–48]. In [46], the authors proposed MWCNNs without and with coupling delays and dealt with the passivity and synchronization for these network models by employing the impulsive control method. Wang and Zhao [48] not only discussed the passivity for MWCNNs by utilizing the designed proportional-integral and proportional-derivative controllers but also derived several synchronization criteria by virtue of output-strict passivity. However, the passivity and synchronization for multiweighted CSNNs (MWCSNNs) have not been investigated.

In this paper, the passivity for two types of MWCSNNs with incompatible input and output dimensions is investigated. The main contributions have three aspects. First, we present several new definitions of passivity for stochastic systems with incompatible dimensions of output and input. Second, some sufficient conditions to ensure the passivity of MWCSNNs are obtained by taking advantage of the Lyapunov functional method and stochastic analysis techniques, and a synchronization criterion is also developed by utilizing the result of output-strictly passivity. Third, we further address the passivity and synchronization for CSNNs with multiple delay couplings (CSNNMDCs).

2. Preliminaries

2.1. Notations. \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}^\mathcal{P})\) is a complete probability space with the natural filtration \(\{\mathcal{F}_t\}_{t \geq 0}^\mathcal{P}\) satisfying the usual conditions. \(C^{1,2}_{\mathcal{P}}(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{R}^n)\) represents the family of all nonnegative functions \(V(t, \kappa(t))\) on \(\mathbb{R}^n \times \mathbb{R}^n\), which are once differentiable in \(t\) and twice continuously differentiable in \(\kappa(t)\). \(\mathcal{P}\) stands for the trace of a matrix. \(P \geq 0\) is used to denote a symmetric semipositive definite matrix. \(\lambda_M(\cdot)\) and \(\lambda_m(\cdot)\), respectively, denote the maximum and minimum eigenvalue of a real symmetric matrix.

2.2. Lemmas

Lemma 1 (Löwner formula, see [49]). A stochastic system can be described by

\[
d\kappa(t) = f(t, \kappa(t))dt + g(t, \kappa(t))d\omega(t),
\]

in which \(\kappa(t) \in \mathbb{R}^n\) represents the state of system, \(f(\cdot) : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n\) is continuous nonlinear function, \(g(\cdot) : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^{n \times p}\) is noise intensity function, and \(\omega(t)\) is an \(n\)-dimensional Brownian motion (Wiener process) defined on \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}^\mathcal{P})\).

For any \(V(t, \kappa(t)) \in C^{1,2}_{\mathcal{P}}(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{R}^+); \exists t_0 \geq 0\), define the operator \(\mathcal{L}V\) for system (1) as follows:

\[
\mathcal{L}V(t, \kappa(t)) = V_t(t, \kappa(t)) + V_x(t, \kappa(t))f(t, \kappa(t)) + \frac{1}{2} \text{Tr}(g(t, \kappa(t))V_{xx}(t, \kappa(t))g(t, \kappa(t))),
\]

where \(V_t(t, \kappa(t)) = (\partial V(t, \kappa(t))/\partial t), V_x(t, \kappa(t)) = ((\partial V(t, \kappa(t))/\partial \kappa_1), (\partial V(t, \kappa(t))/\partial \kappa_2), \ldots, (\partial V(t, \kappa(t))/\partial \kappa_n))\), \(V_{xx}(t, \kappa(t)) = ((\partial^2 V(t, \kappa(t))/\partial \kappa_j \partial \kappa_l))_{j,l=1,n}\).

If \(V(t, \kappa(t)) \in C^{1,2}_{\mathcal{P}}(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{R}^+), \exists t_0 \geq 0\), one has

\[
\mathbb{E}V(t, \kappa(t)) = \mathbb{E}V(t_0, \kappa(t_0)) + \mathbb{E}\int_{t_0}^t \mathcal{L}V(t, \kappa(t))dt,
\]

for all \(t > t_0 \geq 0\).

Lemma 2 (see [50]). For any matrices \(M \in \mathbb{R}^{m \times n}\) and \(0 \leq P \in \mathbb{R}^{m \times m}\), one obtains

\[
\mathbb{E} \lambda(M^T P M) \leq \lambda_M(P) \mathbb{E} \lambda(M^T M).
\]

2.3. Definitions

Definition 1. A stochastic system with input \(\beta(t) \in \mathbb{R}^p\) and output \(\eta(t) \in \mathbb{R}^q\) is passive if

\[
\mathbb{E}\left[\int_{\theta_p}^{\theta_p + \varphi_p} \eta(s)^T F \eta(s)ds\right] \geq \mathbb{E}[S(\theta_p)] - \mathbb{E}[S(\theta_0)],
\]

for any \(\theta_p, \theta_0 \in \mathbb{R}^p + \varphi_0 \geq \theta_0\), in which \(F \in \mathbb{R}^{p \times p}\) and \(S\) is a nonnegative function.
Definition 2. A stochastic system with input $\beta(t) \in \mathbb{R}^p$ and output $\eta(t) \in \mathbb{R}^q$ is input-strictly passive if

$$E\left(\int_{\theta_0}^{\theta_f} \eta^T(s) F \beta(s) ds\right) \geq E\{S(\theta_0)\} + E\left(\int_{\theta_0}^{\theta_f} \beta^T(s) A_1 \beta(s) ds\right),$$

for any $\theta_0, \theta_f \in \mathbb{R}^+$ and $\theta_f \geq \theta_0$, in which $F \in \mathbb{R}^{pq}, 0 < A_1 \in \mathbb{R}^{pq}$, and S is a nonnegative function.

Definition 3. A stochastic system input $\beta(t) \in \mathbb{R}^p$ and output $\eta(t) \in \mathbb{R}^q$ is output-strictly passive if

$$E\left(\int_{\theta_0}^{\theta_f} \eta^T(s) F \beta(s) ds\right) \geq E\{S(\theta_0)\} + E\left(\int_{\theta_0}^{\theta_f} \eta^T(s) A_2 \eta(s) ds\right),$$

for any $\theta_0, \theta_f \in \mathbb{R}^+$ and $\theta_f \geq \theta_0$, in which $F \in \mathbb{R}^{pq}, 0 < A_2 \in \mathbb{R}^{pq}$, and S is a nonnegative function.

3. Passivity for MWCSNNs

3.1. Network Model. The MWCSNNs in this paper is considered as follows:

$$d\kappa_z(t) = \left(-D\kappa_z(t) + Gf(\kappa_z(t)) + B + \sum_{m=1}^{M} \sum_{h=1}^{\ell} b_{ih} C_{zh}^m \kappa_h(t) + H\beta_z(t)\right) dt$$

$$+ \sigma(\kappa_z(t)) dw(t), \quad z = 1, 2, \ldots, M,$$

where $n = 1, 2, \ldots, s$, $G = (G_{ij})_{sN \times sN}, G_{ij} \in \mathbb{R}$, represents the strength of the jth neuron on the zth neuron, $H \in \mathbb{R}^{ms \times p}$ is the known matrix, $\kappa_z(t) = (\kappa_{z1}(t), \kappa_{z2}(t), \ldots, \kappa_{zm}(t))^T \in \mathbb{R}^m$ is the state vector of the zth node, $\beta_z(t) \in \mathbb{R}^p$ represents the external input, $0 < D = \text{diag}(d_1, d_2, \ldots, d_m) \in \mathbb{R}^{m \times m}$, $0 < d_m \in \mathbb{R}$, represents the rate with which the zth node will reset its potential to the resting state when disconnected from the network and external input, $B = (B_1, B_2, \ldots, B_m)^T \in \mathbb{R}^{m \times m}, f(\kappa_z(t)) = (f_1(\kappa_{z1}(t)), f_2(\kappa_{z2}(t)), \ldots, f_m(\kappa_{zm}(t)))^T \in \mathbb{R}^m$, $0 < b_{ih} \in \mathbb{R}$, denotes coupling strength, and $C^n = (C^n_{zh})_{M \times M}$, $C^n_{zh} \in \mathbb{R}^{M \times M}$ represents the outer coupling matrix, where C^n_{zh} satisfies the following conditions: if there exists a connection between nodes z and h, then $R \ni C^n_{zh} = C^n_{hz} > 0 (z \neq h)$, otherwise, $\mathbb{R} \ni C^n_{zz} = C^n_{zz} = 0$, and $C^n_{zz} = -\sum_{h=1}^{M} C^n_{zh}$, $z = 1, 2, \ldots, M$; $0 < \Gamma^n = \text{diag}(\Gamma^n_1, \Gamma^n_2, \ldots, \Gamma^n_m) \in \mathbb{R}^{m \times m}$ denotes the inner coupling matrix; $\omega(t) = (\omega_1(t), \omega_2(t), \ldots, \omega_m(t))^T \in \mathbb{R}^m$ is an m-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$; $\sigma(\kappa_z(t)) = \text{diag}(\sigma(\kappa_{z1}(t)), \sigma(\kappa_{z2}(t)), \ldots, \sigma(\kappa_{zm}(t))) \in \mathbb{R}^{m \times m}$ is the noise intensity matrix.

In this paper, the following assumptions are made.

Assumption 1. $f_i(\cdot)(i = 1, 2, \ldots, m)$ satisfies

$$|f_i(j_1) - f_i(j_2)| \leq \xi_i|j_1 - j_2|,$$

for any $j_1, j_2 \in \mathbb{R}$, where $\xi_i > 0$. Let $\xi = \text{diag}(\xi_1, \xi_2, \ldots, \xi_m) \in \mathbb{R}^{m \times m}$.

Assumption 2. There exists a positive constant μ such that $\sigma(\cdot)$ satisfies the following inequality:

$$\text{Tr}[\left((\sigma(k_1) - \sigma(k_2))^T (\sigma(k_1) - \sigma(k_2))\right) \leq \mu^2 \|k_1 - k_2\|^2,$$

for any $k_1, k_2 \in \mathbb{R}^n$.

Remark 1. On the one hand, the passivity for various CNNs has been investigated and some meaningful results have been obtained [31–35]. However, the passivity of CSNNs has not yet been discussed. On the other hand, some researchers have dealt with the synchronization problem for CSNNs [41–45]. Given that passivity has been developed as a powerful tool to solve the synchronization problem of CNNs, the investigation on synchronization for CSNNs based on the passivity is apparently very valuable. Regrettably, the result about this topic has not yet been reported.

3.2. Passivity Analysis. Suppose that $s(t) = (s_1(t), s_2(t), \ldots, s_m(t))^T \in \mathbb{R}^m$ is an arbitrary desired solution of the isolated node of system (8), then it satisfies
Theorem 1. Network (15) is passive if there exist\(F \in \mathbb{R}^{M \times p} \), and \(0 < \bar{P} \in \mathbb{R}^{M \times M} \) satisfying
\[
\begin{pmatrix}
W_1 & E_1 \\
E_1^T & M_1
\end{pmatrix} \leq 0,
\]
(16)

Proof. For convenience, we denote
\[
y(t) = -\bar{D}\alpha(t) + \bar{G}(f(\kappa(t)) - f(s(t))) + \bar{H}\beta(t) + \sum_{i=1}^{s} b_n(C^n \otimes I^n)\alpha(t),
\]
(17)

then network (15) can be rewritten as
\[
d\alpha(t) = y(t)dt + \bar{\sigma}(t)d\bar{\omega}(t).
\]
(18)

Choose the following Lyapunov functional for network (15):
\[
V^i(t) = \alpha^T(t)\bar{P}\alpha(t).
\]
(19)
In light of Lemma 1, we can obtain

\[\mathcal{L}V^1(t) = V^1_1(t) + V^1_2(t)y(t) + \frac{1}{2} \text{Tr}(\tilde{\sigma}^T(t)V^1_2(t)\tilde{\sigma}(t))\]

\[\quad = 2\alpha^T(t)\tilde{P} \left(-D\alpha(t) + \tilde{G} (f(\kappa(t)) - f(s(t))) + \tilde{H}\beta(t) + \sum_{n=1}^{s} b_n(C^n \otimes 1^n) \alpha(t) \right) + \text{Tr}(\tilde{\sigma}^T(t)\tilde{P}\tilde{\sigma}(t)).\]

(20)

Obviously,

\[2\alpha^T(t)\tilde{P}\tilde{G} (f(\kappa(t)) - f(s(t))) \leq \alpha^T(t) \left(\tilde{P}\tilde{G}\tilde{G}^T \tilde{P} + \tilde{\xi} \right) \alpha(t).\]

(21)

From Lemma 2 and Assumption 2, we have

\[\text{Tr}(\tilde{\sigma}^T(t)\tilde{P}\tilde{\sigma}(t))\]

\[\leq q \sum_{z=1}^{M} \text{Tr}((\sigma(\kappa_z(t)) - \sigma(s(t)))^T (\sigma(\kappa_z(t)) - \sigma(s(t))))\]

\[\leq q \sum_{z=1}^{M} \sigma^2 \|\kappa_z(t) - s(t)\|^2\]

\[= q\mu^2 \|\alpha(t)\|^2.\]

(22)

\[\mathcal{L}V^1(t) \leq \alpha^T(t) \left(-\tilde{P}\tilde{D} - \tilde{D}\tilde{P} + \tilde{P}\tilde{G}\tilde{G}^T \tilde{P} + \tilde{\xi} + q\mu^2 I_{Mm} + \sum_{n=1}^{s} b_n\tilde{P}(C^n \otimes 1^n) + \sum_{n=1}^{s} b_n(C^n \otimes 1^n) \tilde{P}\right) \alpha(t) + 2\alpha^T(t)\tilde{P}\tilde{H}\beta(t).\]

(24)

From (24), we have

\[\mathcal{L}V^1(t) - \eta^T(t)F\beta(t) \leq \alpha^T(t) \left(-\tilde{P}\tilde{D} - \tilde{D}\tilde{P} + \tilde{P}\tilde{G}\tilde{G}^T \tilde{P} + \tilde{\xi} + q\mu^2 I_{Mm} + \sum_{n=1}^{s} b_n\tilde{P}(C^n \otimes 1^n) + \sum_{n=1}^{s} b_n(C^n \otimes 1^n) \tilde{P}\right) \alpha(t) - \left(\alpha^T(t)\tilde{Z}_1 + \beta^T(t)\tilde{Z}_2 \right) F\beta(t) = \zeta^T(t) \left(\begin{array}{c} W_1 \\ E_1 \\ M_1 \end{array} \right) \zeta(t),\]

where \(\zeta(t) = (\alpha^T(t), \beta(t))^T\).

By (16), one obtains

\[\eta^T(t)F\beta(t) \geq \mathcal{L}V^1(t).\]

(26)

From (26), we obtain

\[\eta^T(t)F\beta(t) \geq \mathcal{L}V^1(t).\]

(27)

According to (27) and Lemma 1, we can acquire

\[\mathbb{E}\left[\int_{t_0}^{t_f} \eta^T(t)F\beta(t)dt\right] \geq \mathbb{E}\left[\mathcal{L}V^1(t_f)\right] - \mathbb{E}\left[\mathcal{V}^1(t_0)\right].\]

(28) □
Theorem 2. Network (15) is input-strictly passive if there exist matrices $F \in \mathbb{R}^{M_2 \times M_2}$, $0 < A_1 \in \mathbb{R}^{M_2 \times M_2}$, and $0 < P \in \mathbb{R}^{M_1 \times M_1}$ satisfying

$$
\begin{pmatrix} W_1 & E_1 \\ E_1^T & M_2 \end{pmatrix} \leq 0,
$$

(29)

where W_1 and E_1 have the same meanings as those in Theorem 1 and $M_2 = M_1 + A_1$.

Proof. Construct the same $V^1(t)$ as (19) for network (15), and we can easily obtain

$$
\mathcal{L}V^1(t) - \eta^T(t)F\beta(t) + \beta^T(t)A_1\beta(t)
$$

$$
\leq \alpha^T(t) \left(-\hat{P}D - D\hat{P} + \hat{P}G\hat{G}^T\hat{P} + \hat{\xi} + q\mu^2I_{M_2} + \sum_{n=1}^{s} b_n\hat{P}(C^n \otimes I^n) + \sum_{n=1}^{s} b_n(C^n \otimes I^n)\hat{P} \right)
$$

$$
\alpha(t) + 2\alpha^T(t)\hat{P}\hat{H}\beta(t) + \beta^T(t)A_1\beta(t) - \left(\alpha^T(t)\hat{Z}_1^T + \beta^T(t)\hat{Z}_2^T \right)F\beta(t)
$$

$$
= \zeta^T(t) \begin{pmatrix} W_1 & E_1 \\ E_1^T & M_2 \end{pmatrix} \zeta(t).
$$

From (29), we have

$$
\eta^T(t)F\beta(t) \geq \mathcal{L}V^1(t) + \beta^T(t)A_1\beta(t).
$$

(31)

Similarly, we can derive

$$
E\left\{ \int_{t_0}^{t_p} \eta^T(t)F\beta(t)dt \right\} \geq E\left\{ V^1(t_p) \right\} - E\left\{ V^1(t_0) \right\} + E\left\{ \int_{t_2}^{t_1} \beta^T(t)A_1\beta(t)dt \right\}.
$$

(32)

Theorem 3. Network (15) is output-strictly passive if there exist matrices $F \in \mathbb{R}^{M_2 \times M_2}$, $0 < A_2 \in \mathbb{R}^{M_2 \times M_2}$, and $0 < P \in \mathbb{R}^{M_1 \times M_1}$ satisfying

$$
\begin{pmatrix} W_2 & E_2 \\ E_2^T & M_3 \end{pmatrix} \leq 0,
$$

(33)

where $W_2 = W_1 + \hat{Z}_1^T A_2 \hat{Z}_1$, $E_2 = E_1 + \hat{Z}_1^T A_2 \hat{Z}_2$, and $M_3 = M_1 + \hat{Z}_2^T A_2 \hat{Z}_2$.

Proof. We select the same $V^1(t)$ as (19) for network (15), and we can easily obtain

$$
\mathcal{L}V^1(t) - \eta^T(t)F\beta(t) + \eta^T(t)A_2\eta(t)
$$

$$
\leq \alpha^T(t) \left(-\hat{P}D - D\hat{P} + \hat{P}G\hat{G}^T\hat{P} + \hat{\xi} + q\mu^2I_{M_2} + \sum_{n=1}^{s} b_n\hat{P}(C^n \otimes I^n) + \sum_{n=1}^{s} b_n(C^n \otimes I^n)\hat{P} \right)
$$

$$
\alpha(t) + 2\alpha^T(t)\hat{P}\hat{H}\beta(t) + \left(\alpha^T(t)\hat{Z}_1^T + \beta^T(t)\hat{Z}_2^T \right)A_2(\hat{Z}_1\alpha(t) + \hat{Z}_2\beta(t)\beta(t))
$$

$$
= \zeta^T(t) \begin{pmatrix} W_2 & E_2 \\ E_2^T & M_3 \end{pmatrix} \zeta(t).
$$

From (47), one has

$$
\eta^T(t)F\beta(t) \geq \mathcal{L}V^1(t) + \eta^T(t)A_2\eta(t).
$$

(35)

Similarly, we can derive
By (41) and (44), we have

\[\lim_{t \to +\infty} \mathbb{E} \left[\int_t^{t+\delta} \eta^T(s)F \beta(s)ds \right] < \lim_{t \to +\infty} \mathbb{E} \left[\int_t^{t+\delta} \eta^T(s)A_2 \eta(s)ds \right]. \]

(36)

Theorem 4. If network (15) is output-strictly passive with regard to storage function \(K(t) = V^1(t)/2 \) and \(z_1 \in \mathbb{R}^{m \times m} \) is nonsingular, then MWCSNNs (8) can achieve synchronization.

Proof. If network (15) is output-strictly passive with respect to storage function \(K(t) \), then there exist matrices \(\mathbb{R}^{m \times m} \geq A_2 > 0 \) and \(F \in \mathbb{R}^{m \times m} \) such that

\[\mathbb{E}\left[-K(t') \right] \leq \mathbb{E}\left[K(+\infty) - K(t') \right] \]

\[= \int_{t'}^{+\infty} \mathbb{E}\left[\dot{K} (t) \right] dt \]

\[< - \int_{t'}^{+\infty} \lambda_m (Z_1^T Z_1) \lambda_m (A_2) \theta \]

\[\leq -\infty, \]

which results in a contradiction.

Hence, \(\lim_{t \to +\infty} \mathbb{E}[\|\alpha(t)\|] = 0 \). That is, network (8) realizes synchronization.

The following conclusion can be obtained from Theorems 3 and 4. \(\square \)

Corollary 1. Network (8) achieves synchronization if there exist matrices \(F \in \mathbb{R}^{m \times m}, 0 < A_2 \in \mathbb{R}^{m \times m}, \) and \(0 < P \in \mathbb{R}^{m \times m} \) satisfying

\[\left(\begin{array}{cc} W_2 & E_2 \\ E_2^T & M_3 \end{array} \right) \leq 0, \]

(47)

where \(W_2 = -\tilde{P} \tilde{D} - \tilde{D} \tilde{P} + \tilde{P} \tilde{G} \tilde{G}^T \tilde{P} + \tilde{\xi} + q \lambda_2^1 I_{m \times m} + \sum_{n=1}^{s} b_n \tilde{P} (C_n \otimes I_m) + \sum_{n=1}^{s} b_n \tilde{P} (C_n \otimes I_m) \tilde{P} + Z_1^T A_2 Z_1, \)

\(\tilde{E}_2 = \tilde{P} \tilde{H} - (Z_1^T F)/2 + Z_1^T A_2 Z_2, \)

\(M_3 = -(Z_2^T F + F^T Z_2)/2 + Z_2^T A_2 Z_2, \) and

\(q = \lambda_2^1 (\tilde{P}). \)
4. Passivity for CSNNMDCs

4.1. Network Model. The CSNNMDCs in this paper is considered as follows:

\[
d\kappa_\ell(t) = \left(-D\kappa_\ell(t) + Gf(\kappa_\ell(t)) + B + \sum_{n=1}^{s} b_n C_{2n}^{\ell} \Gamma_n^{\ell}(t-t_n) + H\beta_\ell(t)\right)dt + \sigma(\kappa_\ell(t))d\omega(t), \quad \ell = 1, 2, \ldots, M,
\]

where \(\tau_n(n = 1, 2, \ldots, s)\) are coupling delays and \(\kappa_\ell(t), \beta_\ell(t), f(\kappa_\ell(t)), D, G, B, H, b_n C_{2n}^{\ell}, \text{and } \Gamma_n^{\ell}\) have the same meanings as those in Section 3.

Suppose that \(s(t) = (s_1(t), s_2(t), \ldots, s_m(t))^T \in \mathbb{R}^m\) is an arbitrary desired solution of the isolated node of system (48), then it satisfies

\[
d\alpha_\ell(t) = \left(-D\alpha_\ell(t) + Gf(\kappa_\ell(t)) - Gf(s(t)) + \sum_{n=1}^{s} b_n C_{2n}^{\ell} \Gamma_n^{\ell}(t-t_n) + H\beta_\ell(t)\right)dt + (\sigma(\kappa_\ell(t)) - \sigma(s(t)))d\omega(t).
\]

The output vector \(\eta_\ell(t) \in \mathbb{R}^q\) of network (48) is defined as follows:

\[
\eta_\ell(t) = Z_1 \alpha_\ell(t) + Z_2 \beta_\ell(t),
\]

(51)

\[
d\alpha(t) = \left(-D\alpha(t) + \tilde{G}(f(\kappa(t)) - f(s(t))) + \tilde{H}\beta(t) + \sum_{n=1}^{s} b_n(C^n \otimes \Gamma^n)\alpha(t-t_n)\right)dt + \tilde{\sigma}(t)d\tilde{\omega}(t),
\]

\[
\eta(t) = \tilde{Z}_1 \alpha(t) + \tilde{Z}_2 \beta(t),
\]

where \(\tilde{\sigma}(t) = I_M \otimes (\sigma(\kappa(t)) - \sigma(s(t)))\).

Theorem 5. Network (51) is passive if there exist \(F \in \mathbb{R}^{dpqM}, 0 < \tilde{P} \in \mathbb{R}^{MmxMm}, \text{and } \tilde{N}_n = \text{diag}(N_n^1, N_n^2, \ldots, N_n^M) \in \mathbb{R}^{MmxMm}, n = 1, 2, \ldots, s\), satisfying

\[
\begin{pmatrix}
W_3 \\
E_3 \\
E_3^T \\
M_4
\end{pmatrix} \leq 0,
\]

(53)

then network (51) can be rewritten as

\[
y(t) = -D\alpha(t) + \tilde{G}(f(\kappa(t)) - f(s(t))) + \tilde{H}\beta(t) + \sum_{n=1}^{s} b_n(C^n \otimes \Gamma^n)\alpha(t-t_n),
\]

\[
da(t) = y(t)dt + \tilde{\sigma}(t)d\tilde{\omega}(t).
\]

Proof. For convenience, we denote

\[
\eta(t) = Z_1 \alpha(t) + Z_2 \beta(t),
\]

where \(Z_1 \in \mathbb{R}^{q\times m}\) and \(Z_2 \in \mathbb{R}^{q\times p}\).

According to (50), we have

\[
d\alpha(t) = (-Ds(t) + Gf(s(t)) + B)dt + \sigma(s(t))d\omega(t).
\]

(49)

Letting \(\alpha_\ell(t) = (\alpha_{1\ell}(t), \alpha_{2\ell}(t), \ldots, \alpha_{s\ell}(t))^T = \kappa_\ell(t) - s(t)\), we can obtain from (48) and (49) that

\[
d\alpha(t) = y(t)dt + \tilde{\sigma}(t)d\tilde{\omega}(t).
\]

(55)
Choose the following Lyapunov functional for network (51):
\[
V^2(t) = a^T(t)\hat{P}\alpha(t) + \sum_{n=1}^{s} b_n \int_{t-\tau_n}^{t} a^T(h)\hat{N}_n\alpha(h)dh. \quad (56)
\]

In light of Lemma 1, we can obtain
\[
\mathcal{L}V^2(t) = V^2_t(t) + V^2_\alpha(t)\gamma(t) + \frac{1}{2}\text{Tr}\left(\hat{P}^T(t)V^2_{\alpha\alpha}(t)\hat{P}(t)\right)
\]
\[
= \sum_{n=1}^{s} b_n a^T(t)\hat{N}_n\alpha(t) + 2a^T(t)\hat{P}\left(-D\alpha(t) + \hat{H}\beta(t) + \hat{G}(f(\kappa(t)) - f(s(t))) + \sum_{n=1}^{s} b_n(C^n \otimes I^n)\alpha(t - \tau_n)\right)
\]
\[
- \sum_{n=1}^{s} b_n a^T(t - \tau_n)\hat{N}_n\alpha(t - \tau_n) + \text{Tr}\left(\hat{P}^T(t)\hat{P}\hat{\sigma}(t)\right).
\]

Moreover,
\[
2a^T(t)\hat{P}\left(\sum_{n=1}^{s} b_n(C^n \otimes I^n)\alpha(t - \tau_n)\right) \leq \sum_{n=1}^{s} b_n a^T(t)\left(\hat{P}(C^n \otimes I^n)\hat{N}_n^{-1}((C^n \otimes I^n)\hat{P})\right)\alpha(t)
\]
\[
+ \sum_{n=1}^{s} b_n a^T(t - \tau_n)\hat{N}_n\alpha(t - \tau_n).
\]

From (57) and (58), we have
\[
\mathcal{L}V^2(t) \leq a^T(t)
\]
\[
\left(-\hat{P}D - \hat{D}\hat{P} + \hat{P}\hat{G}\hat{G}^T\hat{P} + \hat{\xi} + \mu^2 q I_{M_m} + \sum_{n=1}^{s} b_n(\hat{P}(C^n \otimes I^n))\hat{N}_n^{-1}((C^n \otimes I^n)\hat{P}) + \sum_{n=1}^{s} b_n\hat{N}_n\right)\alpha(t)
\]
\[
+ 2a^T(t)\hat{P}\hat{H}\beta(t).
\]

From (59), we have
\[
\mathcal{L}V^2(t) \leq \eta^T(t)\hat{F}\beta(t) \leq a^T(t)
\]
\[
\left(-\hat{P}D - \hat{D}\hat{P} + \hat{P}\hat{G}\hat{G}^T\hat{P} + \hat{\xi} + \mu^2 q I_{M_m} + \sum_{n=1}^{s} b_n(\hat{P}(C^n \otimes I^n))\hat{N}_n^{-1}((C^n \otimes I^n)\hat{P}) + \sum_{n=1}^{s} b_n\hat{N}_n\right)\alpha(t)
\]
\[
+ 2\alpha^T(t)\hat{P}\hat{H}\beta(t) - \left(\alpha^T(t)\hat{Z}_1 + \beta^T(t)\hat{Z}_2^T\right)\hat{F}\beta(t)
\]
\[
= \hat{z}^T(t)
\]
\[
\left(W_3 E_3 E_3^T M_4\right)\hat{z}(t).
\]
By (53), we can acquire
\[E\left(\int_{t_0}^{t_f} \eta^T(t) F \beta(t) \,dt\right) \geq E\left[V^2(t_f)\right] - E\left[V^2(t_0)\right]. \] (61)

By employing similar proof methods in Theorem 5, we can get the following conclusions. \(\square \)

Theorem 6. Network (51) is input-strictly passive if there exist matrices \(F \in \mathbb{R}^{M_p \times M_p}, 0 < A_1 \in \mathbb{R}^{M_p \times M_p}, 0 < \tilde{P} \in \mathbb{R}^{M_m \times M_m}, \) and \(\tilde{N}_n = \text{diag}(N^1_n, N^2_n, \ldots, N^M_n) \in \mathbb{R}^{M_m \times M_m}, n = 1, 2, \ldots, s, \) satisfying
\[
\begin{pmatrix}
W_3 & E_3 \\
E_3^T & M_5
\end{pmatrix} \leq 0,
\] (62)
where \(W_3 \) and \(E_3 \) have the same meanings as those in Theorem 5 and \(M_5 = A_1 + M_4. \)

Theorem 7. Network (51) is output-strictly passive if there exist matrices \(F \in \mathbb{R}^{M_p \times M_p}, 0 < A_2 \in \mathbb{R}^{M_p \times M_q}, 0 < \tilde{P} \in \mathbb{R}^{M_m \times M_m}, \) and \(\tilde{N}_n = \text{diag}(N^1_n, N^2_n, \ldots, N^M_n) \in \mathbb{R}^{M_m \times M_m}, n = 1, 2, \ldots, s, \) satisfying
\[
\begin{pmatrix}
W_4 & E_4 \\
E_4^T & M_6
\end{pmatrix} \leq 0,
\] (63)
where \(W_4 = W_3 + \tilde{Z}_1^T A_2 \tilde{Z}_1, E_4 = E_3 + \tilde{Z}_1^T A_2 \tilde{Z}_2, \) and \(M_6 = M_4 + \tilde{Z}_2^T A_2 \tilde{Z}_2. \)

4.2. Synchronization in Passive CSNNMDCs

Theorem 8. The CSNNMDCs (48) can achieve synchronization if network (51) is output-strictly passive with regard to storage function \(K(t) = V^2(t)/2, \) and \(Z_1 \in \mathbb{R}^{M_m \times m} \) is nonsingular.

Proof. The results can be easily obtained by employing similar proof method in Theorems 7 and 8. \(\square \)

Corollary 2. Network (48) achieves synchronization if there exist matrices \(F \in \mathbb{R}^{M_m \times M_m}, 0 < A_2 \in \mathbb{R}^{M_m \times M_m}, 0 < \tilde{P} \in \mathbb{R}^{M_m \times M_m}, \) and \(\tilde{N}_n = \text{diag}(N^1_n, N^2_n, \ldots, N^M_n) \in \mathbb{R}^{M_m \times M_m}, n = 1, 2, \ldots, s, \) satisfying
\[
\begin{pmatrix}
W_4 & E_4 \\
E_4^T & M_6
\end{pmatrix} \leq 0,
\] (64)
where \(W_4 = -\tilde{P} \tilde{D} - \tilde{D} \tilde{P} + \tilde{P} \tilde{G} \tilde{G}^T \tilde{P} + \tilde{\eta}^T + \mu \tilde{I} + \sum_{n=1}^s b_n (\tilde{P} (C^n \otimes I^n)) \tilde{N}_n^{-1} ((C^n \otimes I^n) \tilde{P}) + \sum_{n=1}^s b_n \tilde{N}_n + \tilde{Z}_1^T A_2 \tilde{Z}_2, E_4 = \tilde{P} \tilde{H} - (\tilde{Z}_1^T F + \tilde{Z}_2^T A_2 \tilde{Z}_2)/2 + \tilde{Z}_1^T A_2 \tilde{Z}_2, \) and \(q = \lambda_M(\tilde{P}). \)

Remark 2. In this paper, two types of network models are proposed (see (8) and (48)), some sufficient conditions for ensuring the passivity of networks (8) and (48) are acquired by employing the stochastic analysis techniques and Lyapunov functional method (see Theorems 1–3 and Theorems 5–7), and several synchronization criteria for networks (8) and (48) are established in view of the output-strictly passivity (see Corollaries 1 and 2).

5. Numerical Examples

Example 1. Take the following MWCSNNs into consideration:

\[
d\kappa_z(t) = \left(-D \kappa_z(t) + G f(\kappa_z(t)) + B + 0.4 \sum_{h=1}^6 C^1_{zh} \Gamma^1 \kappa_h(t) + 0.2 \sum_{h=1}^6 C^2_{zh} \Gamma^2 \kappa_h(t) + 0.1 \sum_{h=1}^6 C^3_{zh} \Gamma^3 \kappa_h(t) + H \beta_z(t) \right) dt
\]

where \(z = 1, 2, \ldots, 6, \ f_j(i) = 0.25(|i + 1| - |i - 1|), \ i = 1, 2, 3, D = \text{diag}(0.5, 0.2, 0.4), B = (0, 0, 0)^T, \Gamma^1 = \text{diag}(0.9, 0.4, 0.3), \Gamma^2 = \text{diag}(0.8, 0.3, 0.4), \Gamma^3 = \text{diag}(0.6, 0.3, 0.8), \sigma(\kappa_z(t)) = \text{diag}(0.2\kappa_{z1}(t), 0.4\kappa_{z2}(t), 0.3\kappa_{z3}(t)). \)
where
\[G = \begin{pmatrix} 0.3 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.2 \\ 0.12 & 0.1 & 0.4 \end{pmatrix}, \]
\[H = \begin{pmatrix} 0.4 & 0.6 \\ 0.8 & 0.3 \\ 0.5 & 0.7 \end{pmatrix}, \]
\[C^1 = \begin{pmatrix} 0.8 & 0.2 & 0 & 0.1 & 0.2 & 0.3 \\ 0.2 & -0.6 & 0.1 & 0.2 & 0.1 & 0 \\ 0 & 0.1 & -0.5 & 0 & 0.3 & 0.1 \end{pmatrix}, \]
\[C^2 = \begin{pmatrix} 0 & 0.1 & 0 & -0.8 & 0 & 0.3 \\ 0.1 & 0.1 & 0 & -0.6 & 0.1 & 0.3 \\ 0.1 & 0.2 & 0.3 & 0.1 & -0.8 & 0.1 \\ 0.1 & 0 & 0.4 & 0.3 & 0.1 & -0.9 \end{pmatrix}, \]
\[C^3 = \begin{pmatrix} -0.9 & 0.4 & 0 & 0.2 & 0.2 & 0.1 \\ 0.4 & -0.8 & 0.2 & 0.1 & 0 & 0 \\ 0 & 0.2 & -0.5 & 0 & 0.1 & 0.2 \\ 0.2 & 0.1 & 0 & -0.8 & 0.4 & 0.1 \\ 0.2 & 0.1 & 0.1 & 0.4 & -0.9 & 0.1 \\ 0 & 0 & 0.2 & 0.1 & 0.1 & -0.5 \end{pmatrix}. \]

Case 1: the following matrices \(F \) and \(\tilde{P} \) can be obtained:
\[
F = I_6 \otimes \begin{pmatrix} -0.4836 & 0.3568 \\ 1.5425 & -0.9371 \end{pmatrix},
\]
\[
\tilde{P} = I_6 \otimes \begin{pmatrix} 0.6443 & -0.0057 & -0.0834 \\ -0.0057 & 0.7983 & -0.2136 \end{pmatrix}.
\]

From Theorem 1, network (65) is passive and Figures 1 and 2 display the simulation results.

Case 2: the following matrices \(F, \tilde{P} \), and \(A_1 \) that satisfy the condition of Theorem 3 can be obtained:

\[
F = I_6 \otimes \begin{pmatrix} 41.6646 & 36.6249 \\ 4.1455 & -8.3129 \end{pmatrix},
\]
\[
\tilde{P} = I_6 \otimes \begin{pmatrix} 1.9525 & 0.3124 & -1.6051 \\ 0.3124 & 3.8069 & -3.2750 \end{pmatrix},
\]
\[
A_2 = I_6 \otimes \begin{pmatrix} -0.5782 & 1.0321 & -0.9658 \\ 20.0009 & -0.5782 & -12.8691 \end{pmatrix}.
\]

From Theorem 4, network (65) is synchronized, Figure 3 demonstrates the effectiveness and correctness of the obtained results.

Example 2. Take the following CSNNMDCs into consideration:

\[
\begin{align*}
d\kappa_z(t) & = \left(-D\kappa_z(t) + Gf(z(t)) + B + 0.2 \sum_{h=1}^{6} C^1_{zh} \Gamma^1_1 \kappa_h(t-0.5) + 0.1 \sum_{h=1}^{6} C^2_{zh} \Gamma^2_1 \kappa_h(t-0.2) + 0.5 \sum_{h=1}^{6} C^3_{zh} \Gamma^3_1 \kappa_h(t-0.3) + H\beta_z(t) \right) dt \\
& \quad + \sigma(z(t))d\omega(t),
\end{align*}
\]

where \(z = 1, 2, \ldots, 6 \), \(f_i(j) = 0.25(j + 1) - |j - 1|, i = 1, 2, 3, \)
\(D = \text{diag}(0.8, 0.9, 0.7), B = (0, 0, 0)^T, \Gamma^1_1 = \text{diag}(0.5, 0.3, 0.2), \Gamma^2_1 = \text{diag}(0.4x_{z1}(t), 0.3x_{z2}(t), 0.5x_{z3}(t)), \)
\(\sigma(z(t)) = \text{diag}(0.2x_{z1}(t), 0.5x_{z2}(t), 0.3x_{z3}(t)), \)
\[Z_1 = \begin{pmatrix} 0.3 & 0.1 & 0.5 \\ 0.8 & 0.5 & 0.4 \\ 0.4 & 0.2 & 0.7 \end{pmatrix}, \]
\[Z_2 = \begin{pmatrix} 0.7 & 0.6 \\ 0.8 & 0.5 \\ 0.2 & 0.3 \end{pmatrix}. \]
Figure 1: $\alpha_{z1}(t)$, $\alpha_{z2}(t)$, and $\alpha_{z3}(t), z = 1, 2, \ldots, 6$.

Figure 2: $\|\eta_z(t)\|, z = 1, 2, \ldots, 6$.
Figure 3: $\alpha_{z1}(t)$, $\alpha_{z2}(t)$, and $\alpha_{z3}(t)$, $z = 1, 2, \ldots, 6$.

Figure 4: Continued.
\[
G = \begin{pmatrix}
0.1 & 0.3 & 0.1 \\
0.2 & 0.1 & 0.3 \\
0.1 & 0.2 & 0.1
\end{pmatrix}, \\
H = \begin{pmatrix}
0.2 & 0.1 \\
0.5 & 0.3 \\
0.1 & 0.4
\end{pmatrix}, \\
C^1 = \begin{pmatrix}
-0.6 & 0.2 & 0.1 & 0 & 0.2 & 0.1 \\
0.2 & -0.8 & 0.1 & 0.2 & 0.1 & 0.2 \\
0.1 & 0.1 & -0.7 & 0 & 0.3 & 0.2 \\
0 & 0.2 & 0 & -0.5 & 0.2 & 0.1 \\
0 & 0.2 & 0.3 & 0.2 & -0.8 & 0 \\
0.1 & 0.2 & 0.1 & 0 & -0.6
\end{pmatrix}, \\
C^2 = \begin{pmatrix}
-0.4 & 0.2 & 0 & 0.1 & 0 & 0.1 \\
0.2 & -0.5 & 0.1 & 0 & 0.2 & 0 \\
0 & 0.1 & -0.6 & 0 & 0.3 & 0.2 \\
0.1 & 0 & 0 & -0.5 & 0.1 & 0.3 \\
0 & 0.2 & 0.3 & 0.1 & -0.7 & 0.1 \\
0.1 & 0 & 0.2 & 0.3 & 0.1 & -0.7
\end{pmatrix}, \\
C^3 = \begin{pmatrix}
-0.5 & 0.1 & 0.2 & 0.1 & 0 & 0.1 \\
0.1 & -0.7 & 0.2 & 0.1 & 0 & 0.3 \\
0.2 & 0.2 & -0.5 & 0 & 0.1 & 0 \\
0.1 & 0 & 0 & -0.8 & 0.3 & 0.3 \\
0 & 0 & 0.1 & 0.3 & -0.5 & 0.1 \\
0.1 & 0.3 & 0 & 0.3 & 0.1 & -0.8
\end{pmatrix}.
\]

The matrices \hat{N}_1, \hat{N}_2, and \hat{N}_3 are chosen as, respectively,
\[
\hat{N}_1 = I_6 \otimes \text{diag}(0.5, 0.6, 0.3), \\
\hat{N}_2 = I_6 \otimes \text{diag}(0.3, 0.4, 0.2), \\
\hat{N}_3 = I_6 \otimes \text{diag}(0.2, 0.1, 0.4).
\]

Case 1: the following matrices F and \hat{P} can be obtained:
\[
F = I_6 \otimes \begin{pmatrix}
1.7842 & -0.9653 \\
-2.6726 & 3.2707 \\
3.1171 & -0.5937
\end{pmatrix}, \\
\hat{P} = I_6 \otimes \begin{pmatrix}
1.4460 & -0.0495 & -0.0150 \\
-0.0150 & -0.0831 & 1.6143
\end{pmatrix}.
\]

From Theorem 5, network (67) is passive, and Figures 4 and 5 display the simulation results.

Case 2: the following matrices F, \hat{P}, and A_2 that satisfy the condition of Theorem 7 can be obtained:
\[
F = I_6 \otimes \begin{pmatrix}
1.6654 & -7.2114 \\
-5.4735 & 10.4853 \\
12.4571 & 2.6646
\end{pmatrix}, \\
\hat{P} = I_6 \otimes \begin{pmatrix}
1.8950 & -0.2464 & 0.1908 \\
-0.2464 & 2.3726 & -0.2827 \\
-0.1908 & -0.2827 & 1.5491
\end{pmatrix}, \\
A_2 = I_6 \otimes \begin{pmatrix}
1.4514 & -1.7789 & -0.2735 \\
-1.7789 & 2.5172 & -0.2573 \\
-0.2735 & -0.2573 & 1.7342
\end{pmatrix}.
\]

From Theorem 8, network (67) is synchronized, and Figure 6 demonstrates the effectiveness and correctness of the obtained results.
\(\| \eta_z(t) \|, z = 1, 2, \ldots, 6. \)

\(\alpha_{z_1}(t), \alpha_{z_2}(t), \alpha_{z_3}(t), z = 1, 2, \ldots, 6. \)
Remark 3. More recently, some research results on the dynamical behaviors of CSNNs have been obtained, but they all discussed the single weighted network models [41–45]. In this paper, we respectively consider the passivity and synchronization of MWCSNNs (65) and CSNNMDCs (67), which are apparently different from these network models considered in [41–45]. Figures 1 and 2 (Figures 4 and 5) respectively show the change tendencies of $\alpha_1(t), \alpha_2(t), \alpha_3(t)$, $z = 1, 2, \ldots, 6$ and $\|\eta(t)\|, z = 1, 2, \ldots, 6$ for networks (65) and (67). From Figures 3 and 6, we can explicitly see that $\alpha_1(t), \alpha_2(t), \alpha_3(t)$, $z = 1, 2, \ldots, 6$, in networks (65) and (67), respectively, converge to 0 after 12s and 5s, which verify the correctness of the obtained synchronization criteria.

6. Conclusion

Two kinds of MWCSNNs models have been proposed, in which the dimension of output is incompatible with input. On the one hand, we have analyzed the passivity, input-strict passivity, and output-strict passivity for MWCSNNs by employing stochastic analysis techniques. Moreover, two synchronization criteria for MWCSNNs and CSNNMDCs have been derived on the basis of output-strict passivity. Finally, the correctness of the passivity and synchronization criteria has been verified through two numerical examples.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin, China, under Grant 19JCYB18700.

References

[1] S. Wen, Z. Zeng, T. Huang, Q. Meng, and W. Yao, "Lag synchronization of switched neural networks via neural activation function and applications in image encryption," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 26, no. 7, pp. 1493–1502, 2015.
[2] S. Wen, Z. Zeng, T. Huang, and Y. Zhang, "Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators," *IEEE Transactions on Fuzzy Systems*, vol. 22, no. 6, pp. 1704–1713, 2014.
[3] Y. Yang and J. Cao, "A feedback neural network for solving convex constraint optimization problems," *Applied Mathematics and Computation*, vol. 201, no. 1-2, pp. 340–350, 2008.
[4] S. Mou, H. Gao, J. Lam, and W. Qiang, "A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay," *IEEE Transactions on Neural Networks*, vol. 19, no. 3, pp. 532–535, 2008.
[5] H. Zhang, Z. Wang, and D. Liu, "A comprehensive review of stability analysis of continuous-time recurrent neural networks," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 25, no. 7, pp. 1229–1262, 2014.
[6] B. Yang, J. Wang, and J. Wang, "Stability analysis of delayed neural networks via a new integral inequality," *Neural Networks*, vol. 88, pp. 49–57, 2017.
[7] C. Chen, L. Li, H. Peng, Y. Yang, L. Mi, and H. Zhao, "A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks," *Neural Networks*, vol. 123, pp. 412–419, 2020.
[8] G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja, D. Baleanu, and A. Pratap, "Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks," *Neurocomputing*, vol. 417, pp. 290–301, 2020.
[9] S. Saravanan, V. Umesh, M. Syed Ali, and S. Padmanabhan, "Exponential passivity for uncertain neural networks with time-varying delays based on weighted integral inequalities," *Neurocomputing*, vol. 314, pp. 429–436, 2018.
[10] C. Ge, J. H. Park, C. Hua, and C. Shi, "Robust passivity analysis for uncertain neural networks with discrete and distributed time-varying delays," *Neurocomputing*, vol. 364, pp. 330–337, 2019.
[11] Q. Xiao, Z. Huang, and Z. Zeng, "Passivity analysis for memristor-based inertial neural networks with discrete and distributed delays," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 49, no. 2, pp. 375–385, 2019.
[12] Y. Wang, Y. Cao, Z. Guo, and S. Wen, "Passivity and passification of memristive recurrent neural networks with multiproportional delays and impulse," *Applied Mathematics and Computation*, vol. 369, p. 124838, 2020.
[13] G. Rajchakit and R. Sriraman, "Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays," *Neural Processing Letters*, vol. 53, no. 1, pp. 581–606, 2021.
[14] P. Chanthorn, G. Rajchakit, S. Ramalingam, C. P. Lim, and R. Ramachandran, "Robust dissipativity analysis of Hopfield-type complex-valued neural networks with time-varying delays and linear fractional uncertainties," *Mathematics*, vol. 8, no. 4, p. 595, 2020.
[15] J. Zhou, Y. Liu, J. Xia, Z. Wang, and S. Arik, "Resilient fault-tolerant anti-synchronization for stochastic delayed reaction-diffusion neural networks with semi-Markov jump parameters," *Neural Networks*, vol. 125, pp. 194–204, 2020.
[16] Y. Liu, Z. Xuan, Z. Wang, J. Zhou, and Y. Liu, "Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations," *Applied Mathematics and Computation*, vol. 385, p. 125429, 2020.
[17] Q. Zhu and J. Cao, "Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays," *IEEE Transactions on Neural Networks*, vol. 21, no. 8, pp. 1314–1325, 2010.
[18] W. Zhang, Y. Tang, W. K. Wong, and Q. Miao, "Stochastic stability of delayed neural networks with local impulsive effects," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 26, no. 10, pp. 2336–2345, 2015.
[19] R. Sriraman, Y. Cao, and R. Samidurai, "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," *Mathematics and Computers in Simulation*, vol. 171, pp. 103–118, 2020.
[20] D. Yang and X. Li, "Robust stability analysis of stochastic switched neural networks with parameter uncertainties via
state-dependent switching law,” Neurocomputing, vol. 452, pp. 813–819, in press, 2021.

[21] P. Chanthorn, G. Rajchakit, U. Humphries, P. Kaewmesri, R. Sriram, and C. P. Lim, “A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks,” Symmetry, vol. 12, no. 5, p. 683, 2020.

[22] Z.-G. Wu, P. Shi, H. Su, and J. Chu, “Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays,” IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1566–1575, 2011.

[23] R. Samidurai and R. Manivannan, “Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components,” Applied Mathematics and Computation, vol. 268, pp. 743–762, 2015.

[24] R. Samidurai and R. Manivannan, “Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays,” Neurocomputing, vol. 185, pp. 191–201, 2016.

[25] G. Nagamani, T. Radhika, and Q. Zhu, “An improved result on dissipativity and passivity analysis of Markovian jump stochastic neural networks with two delay components,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 12, pp. 3018–3031, 2017.

[26] G. Rajchakit, R. Sriram, and R. Samidurai, “Dissipativity analysis of delayed stochastic generalized neural networks with Markovian jump parameters,” International Journal of Nonlinear Sciences and Numerical Simulation, 2021, in press.

[27] U. Humphries, G. Rajchakit, R. Sriram, et al., “An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters,” Symmetry, vol. 12, no. 6, pp. 1–21, 2020.

[28] C. M. Gray, “Synchronous oscillations in neuronal systems: mechanisms and functions,” Journal of Computational Neuroscience, vol. 1, no. 1–2, pp. 11–38, 1994.

[29] J. Feng, S. Wang, and Z. Wang, “Stochastic synchronization in an array of neural networks with hybrid nonlinear coupling,” Neurocomputing, vol. 74, no. 18, pp. 3808–3815, 2011.

[30] M. Syed Ali, R. Saravanan, C. K. Ahn, and H. R. Karimi, “Stochastic H∞ filtering for neural networks with leakage delay and mixed time-varying delays,” Information Sciences, vol. 388–389, pp. 118–134, 2017.

[31] N. Li and J. Cao, “Passivity and robust synchronisation of switched interval coupled neural networks with time delay,” International Journal of Systems Science, vol. 47, no. 12, pp. 2827–2836, 2015.

[32] C. Huang, W. Wang, J. Cao, and J. Lu, “Synchronization-based passivity of partially coupled neural networks with event-triggered communication,” Neurocomputing, vol. 319, pp. 134–143, 2018.

[33] W. Chen, Y. Huang, and S. Ren, “Passivity of coupled memristive delayed neural networks with fixed and adaptive coupling weights,” Neurocomputing, vol. 313, pp. 346–363, 2018.

[34] S.-Y. Ren, J.-L. Wang, and J. Wu, “Generalized passivity of coupled neural networks with directed and undirected topologies,” Neurocomputing, vol. 314, pp. 371–385, 2018.

[35] Y. Huang, S. Lin, and E. Yang, “Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies,” Communications in Nonlinear Science and Numerical Simulation, vol. 90, p. 105292, 2020.

[36] W. Wu and T. Chen, “Global synchronization criteria of linearly coupled neural network systems with time-varying coupling,” IEEE Transactions on Neural Networks, vol. 19, no. 2, pp. 319–332, 2008.

[37] X. Qi, H. Bao, and J. Cao, “Synchronization criteria for quaternion-valued coupled neural networks with impulses,” Neural Networks, vol. 128, pp. 150–157, 2020.

[38] Y. Wang, J. Lu, X. Li, and J. Liang, “Synchronization of coupled neural networks under mixed impulsive effects: a novel delay inequality approach,” Neural Networks, vol. 127, pp. 38–46, 2020.

[39] S. Chen, H. Jiang, B. Lu, and Z. Yu, “Exponential synchronization for inertial coupled neural networks under directed topology via pinning impulsive control,” Journal of the Franklin Institute, vol. 357, no. 3, pp. 1671–1689, 2020.

[40] Y.-L. Huang, S.-H. Qiu, and S.-Y. Ren, “Finite-time synchronisation and passivity of coupled memristive neural networks,” International Journal of Control, vol. 93, no. 12, pp. 2824–2837, in press, 2020.

[41] X. Yang and J. Cao, “Stochastic synchronization of coupled neural networks with intermittent control,” Physics Letters A, vol. 373, no. 36, pp. 3259–3272, 2009.

[42] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, and E. J. Cha, “Synchronization criteria for coupled stochastic neural networks with time-varying delays and leakage delay,” Journal of the Franklin Institute, vol. 349, no. 5, pp. 1699–1720, 2012.

[43] H. Bao, J. H. Park, and J. Cao, “Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 1, pp. 190–201, 2016.

[44] H. Chen, P. Shi, and C.-C. Lim, “Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 7, pp. 1618–1632, 2017.

[45] H. Li, J.-A. Fang, X. Li, L. Rutkowski, and T. Huang, “Event-triggered impulsive synchronization of discrete-time coupled neural networks with stochastic perturbations and multiple delays,” Neural Networks, vol. 132, pp. 447–460, 2020.

[46] H.-A. Tang, J.-L. Wang, L. Wang, X. Hu, Y. Zhou, and S. Duan, “Impulsive control for passivity and exponential synchronization of coupled neural networks with multiple weights,” Journal of the Franklin Institute, vol. 356, no. 10, pp. 5434–5463, 2019.

[47] Y. Wang, Y. Huang, and E. Yang, “Event-triggered communication for passivity and synchronisation of multi-weighted coupled neural networks with and without parameter uncertainties,” IET Control Theory & Applications, vol. 14, no. 9, pp. 1228–1239, 2020.

[48] J.-L. Wang and L.-H. Zhao, “PD and PI control for passivity and synchronization of coupled neural networks with multi-weights,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 1, pp. 790–802, 2021.

[49] S. Chen, J. Feng, J. Wang, and Y. Zhao, “Almost sure exponential synchronization of drive-response stochastic memristive neural networks,” Applied Mathematics and Computation, vol. 383, p. 125360, 2020.

[50] L. Huang and X. Mao, “SMC design for robust H_{∞} control of uncertain stochastic delay systems,” Automatica, vol. 46, pp. 405–412, 2010.