A comparison of the impact of current smoking on 2-year major clinical outcomes of first- and second-generation drug-eluting stents in acute myocardial infarction

Data from the Korea Acute Myocardial Infarction Registry

Yong Hoon Kim, MD, PhD

Abstract

There are limited studies comparing the effect of current smoking on first-generation (1G)-drug-eluting stents (DES) and second-generation (2G)-DES in acute myocardial infarction (AMI) patients after successful percutaneous coronary intervention (PCI). We investigated the clinical impact of current smoking on 2-year clinical outcomes between the 1G-DES and the 2G-DES in AMI patients after PCI.

A total of 11,812 AMI patients with a history of current smoking who underwent successful PCI with 1G-DES (n = 4622) or 2G-DES (n = 7190) were enrolled. The primary endpoint was the occurrence of major adverse cardiac events (MACE) defined as all-cause death, recurrent AMI (re-MI) or any revascularization (target lesion revascularization [TLR], target vessel revascularization [TVR], and non-TVR). The secondary endpoint was the incidence of definite or probable stent thrombosis (ST).

Two propensity score-matched (PSM) groups (3900 pairs, n = 7800, C-statistic = .708) were generated. After PSM analysis, the 2-year cumulative incidence of MACE was significantly higher in the 1G-DES group compared with the 2G-DES (9.4% vs 7.4%, Log-rank P = .002; hazard ratio, 1.281; 95% confidence interval, 1.097–1.495; P = .002) and this increased incidence of MACE was associated with the increased incidence of any revascularization including TLR, TVR, and non-TVR. However, the incidences of ST, all-cause death, re-MI were not significantly different during 2-year follow-up period.

2G-DES was the preferred treatment strategy for AMI patients with a history of current smoking to reduce MACE especially, any revascularization rate rather than 1G-DES in this study.

Abbreviations:

1G = first generation, 2G = second generation, AMI = acute myocardial infarction, BMS = bare-metal stents, CABG = coronary artery bypass graft, CAG = coronary angiography, DES = drug-eluting stents, EES = everolimus-eluting stents, KAMIR = Korea Acute Myocardial Infarction Registry, NSTEMI = non-ST-segment elevation myocardial infarction, MACE = major adverse cardiac events, PCI = percutaneous coronary intervention, PES = paclitaxel-eluting stents, PSM = propensity score-matched analysis, SES = sirolimus-eluting stent, STEMI = ST-segment elevation myocardial infarction, TIMI = thrombolysis in myocardial infarction, TLR = target lesion revascularization, TVR = target vessel revascularization, ZES = zotarolimus-eluting stents.

Keywords: drug-eluting stent, myocardial infarction, smoking
1. Introduction

Cigarette smoking is one of the important correctable risk factors of coronary artery disease and various other cardiovascular diseases. In addition, smoking is a major causative factor of restenosis, stent thrombosis, and death after percutaneous coronary intervention (PCI). In general, even if the patients have stopped smoking during hospitalization, the complete cessation of cigarette smoking after PCI is a very difficult challenge and current smoking triggers severe adverse clinical events. Reported rates of successful smoking cessation after PCI are approximately 40% to 80%. Inversely, about 20% to 60% of the patients who underwent PCI may continue to be smokers after discharge from the hospital. At present, second-generation (2G)-drug-eluting stents (DES) have nearly replaced first-generation (1G)-DES during PCI in routine daily clinical practice. However, not all operators of catheterization laboratories always use the 2G-DES worldwide, so 1G-DES are also inevitably available in some areas of the world for various reasons. DES have reduced target lesion revascularization (TLR) by inhibition of neointimal hyperplasia with bare-metal stents (BMS) but increased risk of fatal stent thrombosis (ST) is one a major concern. Although the 2G-DES has a more advanced form of polymer (biocompatible polymer) than 1G-DES, the 2G-DES did not show superior clinical outcomes when compared with 1G-DES. Furthermore, the comparison between 2 different types of 2G-DES also showed comparable results.

The main contributable mechanisms of cigarette smoking on increased mortality and morbidity of cardiovascular disease are related to oxidative stress, increased thrombin generation, platelet aggregation, inflammation, and endothelial dysfunction. Persistent long-term cigarette smoking may cause luminal narrowing of the coronary arteries, arterioles, and microvasculature. Although the acute myocardial infarction (AMI) milieu tends to facilitate thrombogenic conditions, DES implantation during primary PCI or staged PCI were commonly done from the 1G-DES era up to the 2G-DES era. Despite this, there are limited data comparing the effects of current smoking on 1G-DES and 2G-DES in patients with AMI.

The aim of this study was to investigate and compare the clinical impact of current cigarette smoking on 2G-DES during PCI in routine daily clinical practice.

2. Methods

2.1. Study population

The Korea Acute Myocardial Infarction Registry (KAMIR) is a nationwide, prospective, observational on-line registry in South Korea established in November 2005 to evaluate current epidemiology and short-term and long-term clinical outcomes of patients with AMI. Fifty-three high-volume University and community hospitals with facilities for primary PCI and onsite cardiac surgery participated in this study. These data were collected by a trained study coordinator using a standardized web-based case report form at each site in South Korea. Details of the registry can be found at the KAMIR website (http://www.kamir.or.kr). This study was a nonrandomized, multicenter, observational, retrospective study. A total of 53,281 AMI patients between January 2005 and June 2015 in the KAMIR registry were evaluated. Patients with the following conditions were excluded:

1. fibrinolysis was done (n = 1982, 3.7%),
2. failed PCI (n = 548, 1.0%),
3. suboptimal results (n = 652, 1.2%),
4. PCI was not done (n = 1756, 3.3%),
5. BMS deployment (n = 2324, 4.4%),
6. CABG was done (n = 146, 0.3%),
7. follow-up loss or did not participate (n = 2822, 5.3%),
8. incomplete laboratory results (n = 2970, 5.6%),
9. uncertainty of diagnosis (n = 384, 0.7%),
10. nonsmokers (n = 18668, 35.0%),
11. exsmokers (n = 6746, 12.7%),
12. other kinds of DES except for SES, PES, ZES, and EES (n = 3375, 6.3%).

Finally, a total of 11,812 AMI patients who underwent successful PCI with 1G-DES (n = 4622, 39.1%) or 2G-DES (n = 7190, 60.9%) were enrolled (Fig. 1). The study protocol was approved by the ethics committee on research on humans at each participating center and was conducted according to the ethical guidelines of the 1975 Declaration of Helsinki. All patients provided written informed consent before enrollment. In this study, all 11,812 patients completed a 2-year clinical follow-up by face-to-face interviews, phone calls, or chart review.

2.2. PCI and medical treatments

A diagnostic coronary angiography and PCI were done through either the femoral or the radial artery after an administration of unfractionated heparin (50–100 IU/kg). Patients’ activated clotting time was as maintained at >250 seconds during the procedure. All patients were given loading doses of 200 to 300 mg aspirin and 300 to 600 mg clopidogrel before PCI. Revascularization was considered clinically indicated when the patient had typical angina and/or signs of ischemia and ≥50% diameter restenosis or ≥70% diameter stenosis in a coronary artery by visual estimation. A successful PCI was defined as the achievement of angiographic residual stenosis was less than 30% and the final thrombolysis in myocardial infarction (TIMI) blood flow grade 3. During the in-hospital stay and after discharge, all patients’ medical treatments included aspirin, clopidogrel, beta-blockers (BB), angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), and lipid-lowering agents.

After discharge, the patients were recommended to stay on the same medications that they had received during hospitalization. Especially, the total duration of dual antiplatelet therapy (DAPT), the combination of aspirin [100 mg/d] and clopidogrel [75 mg/d] was recommended for more than 12 months to patients who had undergone PCI. Triple antiplatelet therapy (TAT) (100 mg cilostazol [Pleta, Ostuska Pharmaceutical Co, Tokyo, Japan] twice a day) added on to DAPT was left to the discretion of the individual operators.

2.3. Study definitions and endpoints

AMI was defined as the presence of clinical symptoms, electrocardiographic changes, or abnormal imaging findings of MI, combined with an increase in the creatine kinase myocardial
band fraction above the upper normal limits or an increase in troponin-T/troponin-I to greater than the 99th percentile of the upper normal limit.[14,15] The smoking status was assessed on the basis of information obtained from hospital medical records at the time of first medical examination and current smoking was defined as cigarette smoking within 1 year before the index PCI and currently smoking. The primary endpoint was the occurrence of major adverse cardiac events (MACE) defined as all-cause, recurrent myocardial infarction (re-MI), any coronary revascularization (TLR, target vessel revascularization [TVR], non-TVR) during the 2-year follow-up period. The secondary endpoint was the occurrence of definite or probable ST.[16] All-cause deaths were classified as cardiac (CD) or non-CD. Re-MI was defined as the recurrence of AMI. Any coronary revascularization was defined as revascularization of the target vessel or nontarget vessels. TLR was defined as revascularization of the target lesion due to restenosis or reoclusion within the stent or within 5 mm of the distal or proximal segment. TVR was defined as revascularization of the target vessel or any segment of the coronary artery containing the target lesion. Non-TVR was defined as a revascularization of any segment of the nontarget coronary artery. ST was classified as acute (0–24 hours), subacute (24 hours – 30 days), late (30 days – 1 year) and very late (>1 year) according to the onset time of ST.[16] In addition, the modified American College of Cardiology/American Heart Association (ACC/AHA) criteria was used to classify coronary lesion morphology.[17] The TIMI score was used to determine the degree of coronary flow before and after the procedure.[15]

2.4. Statistical analysis
All statistical analyses were performed using SPSS software, version 20 (IBM; Armonk, NY). For continuous variables, differences between the 2 groups were evaluated with the unpaired t test or Mann–Whitney rank test. Data expressed as mean ± standard deviations. For discrete variables, differences were expressed as counts and percentages and were analyzed with either the χ² or Fisher exact test, between the groups as appropriate. To adjust for any potential confounders, propensity score-matched (PSM) analysis was performed using the logistic regression model. We tested all available variables that could be of potential relevance: age, gender (men), left ventricular ejection fraction (LVEF), body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), ST-segment elevation MI (STEMI), non-ST-segment elevation MI (NSTEMI), primary PCI, hypertension, diabetes mellitus (DM), dyslipidemia, previous MI, previous PCI, creatine kinase myocardial band, high-sensitivity C-reactive protein, total cholesterol, triglyceride, high-density lipoprotein (HDL)-cholesterol, aspirin, clopidogrel, ticagrelor, prasugrel, cilostazole, CCB, BR, ACEI, ARB, lipid lowering agent, infarct-related artery (IRA, left anterior descending [LAD], left circumflex [LCx], right coronary artery [RCA], left main

Figure 1. Flow chart. ∗Non-smoker was defined as who did not regularly smoke at any time. †Ex-smoker was defined as who had stopped smoking for more than 1 year before the index PCI. AMI = acute myocardial infarction, BES = biolimus-eluting stents, BMS = bare-metal stent, CABG = coronary artery bypass graft, DES = drug-eluting stents, EES = everolimus-eluting stents, KAMIR = Korea Acute Myocardial Infarction Registry, PCI = percutaneous coronary intervention, ZES = zotarolimus-eluting stents.
3. Results

3.1. Baseline clinical, angiographic, and procedural characteristics

Baseline clinical and laboratory characteristics of this study population are summarized in Table 1. In the entire patient population, the mean age of the participants was higher in the 1G-DES group compared with 2G-DES group (58.1 ± 11.8 years vs 57.4 ± 11.4 years, \(P = .002\)). In both groups, the proportion of men was above 90% and higher in the 2G-DES group (92.4% vs 93.6%, \(P = .012\)). The mean value of LVEF was similar between the 2 groups and nearly within the normal range (52.4 ± 11.0% vs 52.6 ± 10.6%, \(P = .274\)). Also, the numbers of hypertension and DM patients were similar between the 2 groups. The mean value of BMI, SBP, and DBP and the number of NSTEMI and dyslipidemia patients were significantly higher in the 2G-DES group. By contrast, the numbers of STEMI patients were higher in the 1G-DES group. The mean value of serum cholesterol and LDL cholesterol were as similar between the 2 groups; triglyceride was higher in the 2G-DES, and HDL was higher in the 1G-DES group. In the 2G-DES group, even though the prescription rate of clopidogrel (84.9%) was lower, ticagrelor and prasugrel were more frequently prescribed as discharge medications than the 1G-DES group. Regarding angiographic and procedural characteristics, LAD was more frequent IRA in the 1G-DES group compared with 2G-DES group (49.1% vs 47.1%, \(P = .031\)). The ACC/AHA type B1 lesion, 2-vessel disease, and ≥3-vessel disease were more frequent in the 1G-DES group. ACC/AHA type B2 lesion and 1-vessel disease were more frequent in the 1G-DES group. The diameter (3.20 ± 0.44 mm vs 3.16 ± 0.38, \(P < .001\)) and length (26.5 ± 10.5 mm vs 25.9 ± 6.7 mm, \(P < .001\)) of deployed stents were larger and longer in the 2G-DES group compared with the 1G-DES group. However, the number of deployed stents (1.49 ± 0.81 vs 1.44 ± 0.75) was higher in the 1G-DES group. In addition, these different variables were well-balanced after PSM analysis.

3.2. Clinical outcomes

The cumulative incidences of major clinical outcomes at 2 years are listed in Table 2. In the entire patient population, the primary endpoint, the cumulative incidence of MACE was significantly higher in the 1G-DES group compared with the 2G-DES group (9.3% vs 7.5%, Log-rank \(P < .001\); HR, 1.255; 95% CI, 1.042–1.427; \(P = .001\)). The majority of this increased incidence in the 1G-DES group was associated with a significantly increased incidence of any revascularization rate including TLR, TVR, and non-TVr. Incidences of all-cause death, CD, and Re-MI were not significantly different between the 2 groups. The secondary endpoint, the incidence of ST was similar between the 2 groups (0.9% vs 0.7%, Log-rank \(P = .169\); HR, 1.334; 95% CI, 0.884–2.015; \(P = .170\)). After PSM analysis, the incidence of MACE was also higher in the 1G-DES group (9.4% vs 7.4%, Log-rank \(P = .002\); HR, 1.281; 95% CI, 1.097–1.495; \(P = .002\), Fig. 2A) than the 2G-DES group. However, the incidence of ST was also similar between the 2 groups (1.0% vs 0.96%, Log-rank \(P = .637\); HR, 1.118; 95% CI, 0.704–1.775; \(P = .638\), Fig. 2B). In addition, the incidence of all-cause death, CD, and Re-MI was not significantly different (Fig. 3). Fig. 4 shows the results of subgroup analysis for MACE at 2 years. In cases of age <65 years, men, STMI, BMI ≥24kg/m², primary PCI, LAD (treated vessel), ACC/AHA type B2/C lesion, 1-vessel disease, post-PCI TIMI 3 flow, short stent length (<28 mm), and large diameter (≥3.0 mm), 2G-DES was preferred treatment strategy for the AMI patient with current smoking to reduce MACE than 1G-DES in this study.

4. Discussion

In this study, we investigated the impact of current smoking on 2-year clinical outcomes between 1G-DES and 2G-DES in AMI patients after successful PCI. The main findings of this study are as follows:

(1) The cumulative incidence of MACE was significantly higher in the 1G-DES group compared with the 2G-DES group during the 2-year follow-up period. The main cause of this increased incidence of MACE was associated with the increased incidence of any revascularization including TLR, TVR, and non-TVr which were higher in the 1G-DES compared with the 2G-DES.

(2) The cumulative incidence of ST was not significantly different between the 2 groups, and

(3) The cumulative incidence of all-cause death, CD, and re-MI was similar between the 2 groups.

The relationship between smoking and MI is well known. Even though the AMI milieu is prone to be thrombotic compared to stable coronary artery disease; previous studies showed that 1G-DES was associated with a reduced incidence of repeat intervention and MACE compared with BMS. Regarding safety and efficacy, there is some debate on the relative superiority between 1G-DES and 2G-DES. Hofma et al demonstrated EES had superiority for MACE over SES in AMI patients during the 1-year follow-up period in the XAMI (XienceV Stent vs Cypher Stent in Primary PCI for AMI) randomized controlled trial (RCT). However, the cumulative incidences of 1-year CD (1.5% vs 2.7%, \(P = .36\)) and definite and/or probable ST (1.2% vs 2.7%, \(P = .21\)) were similar between the 2 groups. Lee et al reported similar efficacy and safety of ZES, SES, PES in patients with AMI during the 1-year follow-up period in the ZEST-AMI (the comparison of the efficacy and safety of ZES vs SES vs PES for AMI patients) RCT trial. Kufner et al reported that the incidence of TLR (12.3% vs 15.9%, \(P = .10\)) was not statistically significant but numerically higher in the SES group as compared to EES during the 5-year follow-up period. Even though, there is some debate, Huang et al demonstrated that persistent smoking increased the size of the neointimal hyperplasia area (1.04 ± 0.72 mm² vs 0.96 ± 0.68 mm²; \(P = .04\)) and malapposed struts (3.2% vs 1.6%; \(P = .004\))
Table 1
Baseline clinical, laboratory, angiographic, and procedural characteristics.

Variables	Entire patients	Propensity score-matched patients	P-value
Age, yr	58.1 ± 11.8	57.4 ± 11.4	.002
Min, n (%)	4273 (92.4)	6733 (93.6)	.012
LVEF (%)	52.4 ± 11.0	52.6 ± 10.6	.274
Height, m	162.9 ± 6.9	156.0 ± 6.9	<.001
Weight, kg	67.6 ± 10.8	68.9 ± 11.3	<.001
BMI, kg/m²	24.1 ± 3.0	24.3 ± 3.1	<.001
SBP, mm Hg	129.5 ± 26.9	130.4 ± 27.5	<.001
DBP, mm Hg	79.3 ± 16.3	80.2 ± 16.8	<.001
ST-EMI, n (%)	3036 (85.7)	4454 (61.9)	<.001
NSTEMI, n (%)	1596 (40.2)	2736 (49.3)	<.001
Primary PCI, n (%)	2029 (58.8)	4319 (67.9)	<.001
Hypertension, n (%)	1754 (37.9)	2735 (38.0)	.922
Diabetes mellitus, n (%)	1057 (22.9)	1619 (22.5)	.656
Dyslipidemia, n (%)	481 (10.4)	849 (11.8)	.019
Previous MI, n (%)	1137 (31.1)	219 (3.0)	<.001
Previous PCI, n (%)	164 (3.5)	335 (4.7)	.004
Previous CABG, n (%)	13 (0.3)	17 (0.2)	.637
Previous CIA, n (%)	196 (4.2)	379 (3.8)	<.001
Previous HFr, n (%)	42 (0.9)	38 (0.5)	.014
CK-MB, mg/dL	164.9 ± 283.1	149.2 ± 258.5	.002
NT-ProBNP, pg/mL	1354.2 ± 2077.7	1190.6 ± 2908.9	<.001
hs-CRP, mg/dL	10.8 ± 37.6	8.7 ± 38.6	.007
Serum creatinine, mg/dL	1.1 ± 1.4	1.1 ± 1.2	.035
Total cholesterol, mg/dL	186.6 ± 42.7	184.6 ± 43.5	.057
Triglyceride, mg/dL	141.1 ± 112.5	154.5 ± 129.4	<.001
HDL cholesterol, mg/dL	44.3 ± 24.0	42.3 ± 13.3	<.001
LDL cholesterol, mg/dL	120.1 ± 39.4	119.4 ± 36.4	.434
Discharge medications			
Aspirin, n (%)	4393 (95.0)	6813 (94.8)	.556
Clopidogrel, n (%)	4523 (97.9)	6105 (84.9)	.0071
Ticagrelor, n (%)	402 (0.7)	540 (7.5)	<.001
Propzapril, n (%)	10 (0.2)	30 (4.8)	<.001
Clostridale, n (%)	1612 (34.9)	1353 (28.8)	<.001
CCB, n (%)	347 (7.5)	358 (5.0)	<.001
BB, n (%)	3416 (73.9)	5835 (61.2)	<.001
ARBS, n (%)	2029 (58.4)	4319 (67.9)	<.001
ARB, n (%)	699 (15.1)	1606 (22.3)	<.001
Lipid lowering agents	3412 (73.8)	5972 (83.1)	<.001
Angiographic and procedural characteristics			
Heart-related artery			
Left anterior descending, n (%)	2271 (49.1)	3387 (47.1)	.031
Left circumflexial, n (%)	778 (16.8)	1215 (16.9)	.926
Right coronary artery, n (%)	1496 (32.4)	2031 (33.9)	.085
Left main, n (%)	66 (1.4)	137 (1.9)	.051
Treated vessel			
Left anterior descending, n (%)	2590 (58.0)	3974 (55.3)	.414
Left circumflexial, n (%)	1159 (25.0)	1753 (24.4)	.454
Right coronary artery, n (%)	1787 (38.7)	2866 (39.3)	<.001
Left main, n (%)	98 (2.1)	186 (2.8)	.106
ACC/AHA lesion type			
Type B1, n (%)	758 (16.4)	1032 (14.4)	.093
Type B2, n (%)	1168 (25.3)	2185 (30.5)	<.001
Type C, n (%)	2067 (44.7)	3240 (45.1)	.716
Extent of coronary artery disease			
1-vessel, n (%)	2088 (45.4)	3693 (51.4)	<.001
2-vessel, n (%)	1491 (32.3)	2147 (29.9)	.006
3+ vessel, n (%)	977 (21.1)	1310 (18.2)	<.001
Pre-PCI TIMI 0, n (%)	2156 (46.6)	3623 (50.4)	<.001
Post-PCI TIMI 0, n (%)	154 (3.3)	220 (3.1)	.410
Pre-PCI TIMI 3, n (%)	4210 (91.9)	6573 (91.4)	.332
NUS	322 (7.0)	1492 (20.8)	<.001
Stent diameter, mm	3.16 ± 0.38	3.20 ± 0.44	<.001
Stent length, mm	25.9 ± 6.7	26.5 ± 10.5	<.001
Number of stent	1.49 ± 0.81	1.44 ± 0.75	<.001

Values are mean ± SD or n (%). The P-values for continuous data were obtained from the analysis of the unpaired t-test. The P-values for categorical data were obtained from the chi-square test.

1G = first-generation, 2G = second generation, ACC/AHA = American College of Cardiology/American Heart Association, BMI = body mass index, CABG = coronary artery bypass graft, CCB = calcium channel blockers, CK-MB = creatine kinase myocardial band, CCA = carotid-endarterectomy-accidents, DBP = diastolic blood pressure, DES = drug-eluting stents, HCl = high-density lipoprotein, HF = heart failure, hs-CRP = high-sensitivity-C-reactive protein, IVUS = intravascular ultrasound, LDL = low-density lipoprotein, LVEF = left ventricular ejection fraction, MI = myocardial infarction, NSTEMI = non-ST-segment elevation myocardial infarction, NT-ProBNP = N-terminal brain natriuretic peptide, PCI = percutaneous coronary intervention, SBP = systolic blood pressure, STEM = ST-segment elevation myocardial infarction, TIMI = thrombolysis in myocardial infarction.
Table 2

Clinical outcomes by Kaplan–Meier analysis and Cox-proportional hazard ratio analysis at 2-yr.

Outcomes	1G-DES	2G-DES	Log-rank	Hazard ratio (95% CI)	P-value
Cumulative events at 2 yr (%)					
Entire patients					
Primary endpoint					
MACE	430 (9.3)	514 (7.5)	<.001	1.255 (1.104–1.427)	.001
All-cause death	150 (2.2)	255 (3.6)	.288	0.897 (0.733–1.097)	.289
Cardiac death	129 (1.8)	210 (3.0)	.606	0.944 (0.758–1.175)	.607
Re-MI	62 (1.4)	91 (1.4)	.848	1.003 (0.726–1.386)	.984
Any revascularization	233 (3.2)	200 (3.1)	<.001	1.717 (1.421–2.074)	<.001
TLR	74 (1.7)	47 (0.7)	<.001	2.315 (1.606–3.357)	<.001
TVR	110 (2.5)	101 (1.6)	<.001	1.587 (1.211–2.079)	<.001
Non-TVR	125 (2.8)	101 (1.6)	<.001	1.818 (1.399–2.364)	<.001
Secondary endpoint					
Stent thrombosis (probable or definite)	42 (0.9)	49 (0.7)	.169	1.334 (0.884–2.015)	.170
Acute	3 (0.1)	6 (0.1)	.722	0.778 (0.196–3.110)	.722
Subacute	13 (3.3)	16 (0.2)	.529	1.264 (0.608–2.628)	.530
Late	18 (0.4)	22 (0.3)	.445	1.274 (0.683–2.375)	.446
Very late	8 (0.2)	5 (0.1)	.097	2.494 (0.816–7.625)	.109
Propensity score matched patients					
Primary endpoint					
MACE	367 (0.4)	284 (7.4)	.002	1.281 (1.097–1.495)	.002
All-cause death	134 (3.4)	147 (3.8)	.404	0.905 (0.716–1.144)	.405
Cardiac death	114 (2.9)	124 (3.2)	.486	0.916 (0.710–1.181)	.499
Re-MI	56 (1.5)	45 (1.2)	.322	1.219 (0.823–1.806)	.323
Any revascularization	189 (0.5)	107 (2.9)	<.001	1.740 (1.373–2.205)	<.001
TLR	61 (1.6)	23 (0.6)	<.001	2.602 (1.610–4.203)	<.001
TVR	94 (2.5)	52 (1.4)	.001	1.768 (1.260–2.480)	.001
Non-TVR	97 (2.6)	55 (1.5)	.001	1.762 (1.240–2.403)	.001
Secondary endpoint					
Stent thrombosis (probable or definite)	38 (1.0)	34 (0.9)	.637	1.118 (0.704–1.775)	.638
Acute	3 (0.1)	6 (0.2)	.317	0.500 (0.125–1.999)	.327
Subacute	12 (0.3)	10 (0.3)	.671	1.199 (0.518–2.770)	.671
Late	17 (0.4)	15 (0.4)	.724	1.133 (0.566–2.269)	.724
Very late	6 (0.2)	3 (0.1)	.316	2.002 (0.501–8.006)	.326

1G = first-generation, 2G = second-generation, CI = confidence interval, DES = drug-eluting stents, MACE = major adverse cardiac events, Non-TVR = non-target vessel revascularization, Re-MI = recurrent myocardial infarction, TLR = target lesion revascularization, TVR = target vessel revascularization.
compared with nonsmokers. In addition, persistent smoking for more than 1-year leads to a high incidence of uncovered struts. However, these results were obtained from the patients who underwent PCI and a 1G-DES (SES) was deployed. Although the majority of 2G-DES showed noninferior clinical outcomes compared with 1G-DES, these durable-polymer based stents have been associated with persistent local inflammatory and toxic reactions, delayed healing, hypersensitivity reactions, endothelial dysfunction, and neoatherosclerosis.\[27,28\] In this study, 2G-DES showed a decreased incidence of MACE compared to 1G-DES after PSM analysis (9.4% vs 7.4%, Log-rank \(P= .002\); HR, 1.281; 95% CI, 1.097–1.495; \(P= .002\)). Furthermore, this result was related with a decreased incidence of any revascularization rate including TLR, TVR, and non-TVR. The increased incidence of non-TVR after PSM analysis (2.6% vs 1.5%, Log-rank \(P= .001\); HR, 1.762; 95% CI, 1.240–2.403; \(P= .001\)) in this study can be explained by Hong et al’s report.\[29\] In their 3-vessel intravascular imaging study of 235 patients, Hong showed that secondary remote plaque ruptures and multiple plaque ruptures and culprit lesion plaque rupture were all more common in patients with MI than in those with stable ischemic heart disease. Stone et al\[30\] also demonstrated MACE occurring during follow-up were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions in patients with acute coronary syndrome who underwent PCI. Compared with 1G-DES, ZES (Resolute Integrity Stent) that utilize the BioLinx-polymer and antiproliferative agent, zotarolimus is equivalent to sirolimus in terms of antiproliferative power but is more lipophilic than sirolimus.\[31,32\] This BioLinx-polymer was able to exhibit delayed zotarolimus release (50% and 85% released at 7 and

![Figure 3. Kaplan–Meier curve analysis for any revascularization (A), TLR (B), TVR (C), and non-TVR (D) at 2-year. 1G = first-generation, 2G = second-generation, CI = confidence interval, DES = drug-eluting stents, HR = hazard ratio, PSM = propensity score-matched analysis, TLR = target lesion revascularization, TVR = target vessel revascularization.](image-url)
60 days), indeed for over approximately 180 days after PCI.[33] In this study, we could not precisely explain the reason for the differences of any revascularization rate between 1G-DES and 2G-DES, the possible mechanisms may be due to the different type of polymer between the 2 stent groups. Although nicotine may play an important role in atherogenesis and be involved in enhanced endothelial cell proliferation and migration, and accelerate intimal hyperplasia in vitro and animal study,[34,35] the operative mechanisms at the level of endothelium are not clearly understood.[34] Current smoking also increases inflam-
tion and oxidative damage to the vascular endothelium and impairs coronary circulatory function. The relationship between stent strut thickness and platform design and long-term safety and efficacy of DES was not well defined. In this study, the occurrence of ST was not different between 1G-DES and 2G-DES (1.0% vs 0.96%, Log-rank \(P = .637 \); HR, 1.118; 95% CI, 0.704–1.775; \(P = .638 \)). According to this study, regarding ST, we cautiously suggest that the presence or absence of a biocompatible polymer in AMI patients were not associated with current smoking.

Smoking cessation decreased by about 36% crude relative risk (RR) of mortality for patients with coronary heart disease compared with continued smoking (RR, 0.64; 95% CI, 0.58–0.71) and this beneficial effect of smoking cessation may be achieved by vascular healing after stent deployment through a decrease in the progression of neointimal hyperplasia and decrease the incidence of stent malposition. As mentioned, the successful smoking cessation rate after PCI was approximately 40% to 80%. Taken together, we can assume that about 20% to 60% of enrolled patients of this study may continue to be current smokers after the index PCI during the 2-year follow-up period at that time. Therefore, in this study, even though the smoking status of the study population was assessed at the time of PCI, the results of this study may provide a meaningful message to the interventional cardiologist during PCI to help select the appropriate DES, especially in AMI patients with a history of current smoking.

The current study has some important limitations. First, the study was nonrandomized study and there may be some underreporting and/or missed data. Second, the smoking status of the study population was assessed at the time of the index PCI and we did not know the precise history of the smoking status during the follow-up period after discharge. This weak point can affect the results of this study. Third, because this registry data did not include the detailed full data concerning the prescription doses, long-term adherence, discontinuation, and drug-related adverse events, we evaluated all clinical outcomes based on discharge medications and this factor may act as an important bias in this study. Fourth, although we did multivariable Cox-proportional regression analysis to overcome the limitations of this retrospective study, the characteristics of this retrospective registry might have influenced the results of this study. Fifth, because the choice of 1G-DES or 2G-DES was dependent on the discretion of the physician, this may be another important bias in this study. Sixth, in this study AMI patients were consisted of STEMI and NSTEMI, therefore this heterogeneity may affect each other and may act as a bias. Seventh, although PSM analysis and subgroup analysis were done, the proportions of each type of stents in both groups were not evenly distributed. Eighth, the strategy of antiplatelet therapy (eg, DAPT or TAPT) was left to the physician’s discretion, which may have influenced the major clinical outcomes.

In conclusion, the cumulative incidence of MACE and any revascularization was significantly higher in the 1G-DES group compared with the 2G-DES group during the 2-year follow-up period. However, the incidences of ST, all-cause death, CD, re-MI were not significantly different between the 2 groups. Therefore, 2G-DES may be the preferred treatment strategy for the AMI patient with a history of current smoking to reduce the MACE rather than 1G-DES according to the results in this study. However, this result may be more precisely defined by other well-designed, prospective, randomized studies in the future.

Acknowledgments

We would like to acknowledge Dr Malcolm Neill Allison (oallison@msn.com) for editorial assistance.

Korea Acute Myocardial infarction Registry (KAMIR) investigators: Myung Ho Jeong, MD, Youngkeun Ahn, MD, Sung Chul Chae, MD, Jong Hyun Kim, MD, Seung-Ho Hur, MD, Young Jo Kim, MD, In Whan Seong, MD, Dong Hoon Choi, MD, Jei Keon Chae, MD, Taek Jong Hong, MD, Jae Young Rhew, MD, Doo-Ill Kim, MD, In-Ho Chae, MD, Jung Han Yoon, MD, Bon-Kwon Koo, MD, Byung-Ok Kim, MD, Myoung Yong Lee, MD, Kee-Sik Kim, MD, Jin-Yong Hwang, MD, Myeong Chan Cho, MD, Seok Kyu Oh, MD, Nae-Hee Lee, MD, Kyoung Tae Jeong, MD, Seung-Jea Tahk, MD, Jang-Ho Bae, MD, Seung-Woon Rha, MD, Keum-Soo Park, MD, Chong Jin Kim, MD, Kyoo-Rok Han, MD, Tae Hoon Ahn, MD, Moo-Hyun Kim, MD, Ki Bae Seung, MD, Wook Sung Chung, MD, Ju-Young Yang, MD, Chong Yun Rhim, MD, Hyeon-Cheol Gwon, MD, Seong-Wook Park, MD, Young-Youp Koh, MD, Seung Jae Joo, MD, Soo-Joong Kim, MD, Dong Kyu Jin, MD, Jin Man Cho, MD, Byung Ok Kim, MD, Sang-Wook Kim, MD, Jeong Kyung Kim, MD, Tae Ik Kim, MD, Deug Young Nah, MD, Si Hoon Park, MD, Sang Hyun Lee, MD, Seung Uk Lee, MD, Hang-Jae Chung, MD, Jang-Hyun Cho, MD, Seung Won Jin, MD, Myeong-Ki Hong, MD, Yangsoo Jang, MD, Jeong Gwan Cho, MD, Hyo-Soo Kim, MD, and Seung Jung Park, MD.

Author contributions

Conceptualization: Yong Hoon Kim, Ae-Young Her, Myung Ho Jeong, Byeong-Keuk Kim, Jung-Sun Kim, Young-Guk Ko, Donghoon Choi, Myeong-Ki Hong, Yangsoo Jang.

Data curation: Yong Hoon Kim, Ae-Young Her, Byeong-Keuk Kim, Sung-Jin Hong, Chul-Min Ahn, Jung-Sun Kim, Myeong-Ki Hong, Yangsoo Jang.

Formal analysis: Yong Hoon Kim, Ae-Young Her, Sung-Jin Hong, Chul-Min Ahn, Jung-Sun Kim.

Funding acquisition: Myung Ho Jeong.

Investigation: Yong Hoon Kim, Ae-Young Her, Myung Ho Jeong, Byeong-Keuk Kim, Sung-Jin Hong, Jung-Sun Kim, Young-Guk Ko, Donghoon Choi, Myeong-Ki Hong, Yangsoo Jang.

Methodology: Yong Hoon Kim, Ae-Young Her, Jung-Sun Kim, Young-Guk Ko, Myeong-Ki Hong, Yangsoo Jang.

Project administration: Yong Hoon Kim, Ae-Young Her, Myeong-Ki Hong.

Resources: Byeong-Keuk Kim, Jung-Sun Kim, Young-Guk Ko, Donghoon Choi, Myeong-Ki Hong, Yangsoo Jang, Myung Ho Jeong.

Software: Yong Hoon Kim, Ae-Young Her.

Supervision: Myung Ho Jeong, Donghoon Choi, Myeong-Ki Hong, Yangsoo Jang, Myung Ho Jeong.

Validation: Yong Hoon Kim, Ae-Young Her, Myung Ho Jeong, Donghoon Choi, Myeong-Ki Hong, Yangsoo Jang.

Visualization: Yong Hoon Kim, Ae-Young Her.

Writing – original draft: Yong Hoon Kim, Ae-Young Her.

Writing – review and editing: Yong Hoon Kim, Ae-Young Her.

Yong Hoon Kim orcid: 0000-0002-9669-3598.

References

[1] Ng M, Freeman MK, Fleming TD, et al. Smoking prevalence and cigarette consumption in 187 countries, 1980-2012. JAMA 2014;311:183–92.
[2] Robertson JO, Ebrahimi R, Lansky AJ, et al. Impact of cigarette smoking on extent of coronary artery disease and prognosis of patients with non-ST-segment elevation acute coronary syndromes: an analysis from the ACUITY trial (acute catheterization and urgent intervention triage strategy). JACC 2014;67:372–9.

[3] Stone SG, Serrao GW, Mehran R, et al. Incidence, predictors, and implications of reinfarction after primary percutaneous coronary intervention in ST-segment-elevation myocardial infarction: the harmonizing outcomes with revascularization and stents in acute myocardial infarction trial. Circ Cardiovasc Interv 2014;7:543–51.

[4] Sochor O, Lennon RJ, Rodriguez-Escudero JP, et al. Trends and predictors of smoking cessation after percutaneous coronary intervention (from Olmsted County, Minnesota, 1999 to 2010). Am J Cardiol 2015;115:405–10.

[5] Liu J, Zhi ZY, Gao CY, et al. Long-term effect of persistent smoking on the prognosis of Chinese male patients after percutaneous coronary intervention with drug-eluting stent implantation. J Cardiol 2013;62:283–8.

[6] Kastrati A, Mehili J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med 2007;356:1030–9.

[7] Moore AD, Ghufranami A. Climate change and broadscale livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability. Glob Chang Biol 2013;19:1440–8.

[8] Keidt E, Joesoef KS, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 2010;375:201–9.

[9] Kang WC, Ahn J, Lee K, et al. Comparison of zotarolimus-eluting stents versus sirolimus-eluting stents versus paclitaxel-eluting stents for primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction: results from the Korean Multicentre Endeavor (KOMER) acute myocardial infarction (AMI) trial. EuroIntervention 2011;7:936–43.

[10] Serruys PW, Silber S, Garg S, et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N Engl J Med 2010;363:136–46.

[11] Armami C, Landini L Jr, Leone A. Molecular and biochemical changes of microcirculatory function: a twin study. Atherosclerosis 2011;215:500–7.

[12] Aksory S, Cam N, Gurkan U, et al. Oxidative stress and severity of coronary artery disease in young smokers with acute myocardial infarction. Cardio J 2012;19:381.

[13] Roocks C, Faber T, Votaw J, et al. Effects of smoking on coronary microcirculatory function: a twin study. Atherosclerosis 2012;215:500–6.

[14] O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013;127: e362–425.

[15] Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 2014;64:e139–228.

[16] Bundhun PK, Wu ZJ, Chen MH. Is there any significant difference in stent thrombosis between sirolimus and paclitaxel eluting stents: a systematic review and meta-analysis of randomized controlled trials. Medicine 2016;95:e2651.

[17] Thysgesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Circulation 2012;126:2010–35.

[18] Iversen B, Jacobsen BK, Lochen ML. Active and passive smoking and the risk of myocardial infarction in 24,968 men and women during 11 years of follow-up: the Tromso Study. Eur J Epidemiol 2013;28:659–67.

[19] Teo KK, Quongpu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a case-control study. Lancet 2006;368:647–58.

[20] Lemos PA, Saia P, Hofma SH, et al. Short- and long-term clinical benefit of sirolimus-eluting stents compared to conventional bare stents for patients with acute myocardial infarction. J Am Coll Cardiol 2004;43:704–8.

[21] Dudek D, Mehran R, Dzewiecki A, et al. Impact of advanced age on the safety and effectiveness of paclitaxel-eluting stent implantation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty: the HORIZONS-AMI trial. Catheter Cardiovasc Interv 2013;82:869–77.

[22] Chen KY, Rha SW, Li YJ, et al. Comparisons of everolimus and paclitaxel-eluting stents in patients with acute myocardial infarction. J Interv Cardiol 2015;28:147–56.

[23] Hofma SH, Brouwer J, Velders MA, et al. Second-generation everolimus-eluting stents versus first-generation sirolimus-eluting stents in acute myocardial infarction. 1-year results of the randomized XAMI (XienceV stent vs. cypher stent in primary PCI for acute myocardial infarction) trial. Am J Cardiol 2012;60:381–7.

[24] Lee CW, Park DW, Lee SH, et al. Comparison of the efficacy and safety of zotarolimus-, sirolimus-, and paclitaxel-eluting stents in patients with ST-elevation myocardial infarction. Am J Cardiol 2009;104:1170–9.

[25] Kufer S, Byrne RA, Valeškin M, et al. Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease: final results from the BAR-TEST 4 randomised trial. EuroIntervention 2016;11:1372–9.

[26] Huang X, Wang X, Zou Y, et al. Impact of cigarette smoking and smoking cessation on stent changes as determined by optical coherence tomography after sirolimus stent implantation. Am J Cardiol 2017;120:1279–84.

[27] Joner M, Finn AV, Farh A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48:193–202.

[28] Hassan AK, Berheamu SC, Stiijen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J 2010;31:1172–80.

[29] Hong MK, Minz GS, Lee CW, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation 2004;110:928–33.

[30] Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226–35.

[31] Di Santo P, Simard T, Ramirez FD, et al. Does stent strut design impact clinical outcomes: comparative safety and efficacy of endeavor resolute stent vs. cypher stent in primary PCI for acute myocardial infarction) trial. J Am Coll Cardiol 2014;63:1038–51.

[32] Ulpi K, Melder RJ, Chen M, et al. The next generation endeavor resolute stent: role of the biolinx polymer system. EuroIntervention 2007;3:137–9.

[33] Villablanca AC. Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro. J Appl Physiol (1985) 1998;84:2089–98.

[34] Hamasaki H, Sato J, Masuda H, et al. Effect of nicotine on the intimal hyperplasia after endoheal removal of the rabbit carotid artery. Gen Pharmacol 1997;28:653–9.

[35] Barua RS, Ambrose JA, Srivastava S, et al. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 2003;107:2342–7.

[36] Crichtley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 2003;290:86–97.