Analysis of students’ attitudes towards implementation of geogebra-assisted missouri mathematics project

Abdul Rosyid¹, Uba Umbara¹²

¹Department of Mathematics Education, STKIP Muhammadiyah Kuningan, Kuningan, Indonesia
²School of Postgraduate Studies, Universitas Pendidikan Indonesia, Bandung, Indonesia

Corresponding author: adromath_dosen@upmk.ac.id

Abstract. This article aims to examine in depth the students’ attitudes towards the implementation of Geogebra-assisted Missouri Mathematics Project. This research was conducted at junior high school 4 Kuningan. This study uses a survey method. In this study, the survey was conducted on 31 students who obtained the GeoGebra-assisted Missouri Mathematics Project (MMP) learning model using a Likert scale questionnaire consisting of 20 statement items. Furthermore, students’ attitude questionnaire data was analyzed in quantitative descriptive and a priori calculations for use in interpreting the research data later. The results of the students’ attitudes data analysis showed the average percentage of respondents’ answers as a whole was 66.59%. It means that most students have a positive attitude towards learning from the GeoGebra-assisted Missouri Mathematics Project. The results of the attitude data analysis also showed that the average students’ attitude was 3.12 greater than the neutral attitude of 2.5. It means that students have a positive attitude towards GeoGebra-assisted Missouri Mathematics Project. From the various analyzes, the results of the study showed that students have a positive attitude towards the implementation of GeoGebra-assisted Missouri Mathematics Project.

1. Introduction

The implementation of the GeoGebra-assisted Missouri Mathematics Project is one of the innovations in mathematics learning in the classroom that combines technology in the form of learning software with learning models. Integration of ICT by mathematics teachers has been demonstrated to significantly impact student progress [1]. The existence of software can help teachers to convey abstract mathematical material that is easier to understand because software can visualize it [2].

The Missouri Mathematics Project (MMP) learning model can improve teacher skills in classroom management, motivation, and using time [3]. The MMP learning model is a structured learning model which includes review, development, controlled practice, seatwork (self-employment), and assignment (Homework). Good and Grouws (1979), Good, Grouws, and Ebmeier (1983) studies, and further Confrey (1986), found that teachers who plan and implement the five steps of mathematical learning will be more successful than those who use traditional learning [4]. Furthermore GeoGebra is a very effective tool for learning mathematics in the school. GeoGebra was developed as a learning and teaching facility for mathematics and science from elementary school to university level [5]. GeoGebra
is an effective tool for teaching and learning geometry in middle school [6]. In learning, this software can be used for demonstrations, visualizations, or even geometry construction tools.

The implementation of the GeoGebra-assisted Missouri Mathematics Project learning model as something new in the class certainly raises various responses and diverse responses from students in the form of their attitudes. Attitude is the tendency of feelings towards an object, situation, concept, other person or himself, due to the results of the learning process or experience in the field that expresses feeling of liking / support (positive attitude) or dislike / not support (negative attitude) [7]. Furthermore Mensah, Okyere, and Kuranchie (2013) explain that attitude is a psychological orientation developed as a result of one’s experiences, which influences how a person views situations, objects or people, and how she appropriately responds to them. The response may be positive or negative; favourable or unfavourable; neutral or ambivalent [8]. A total of 20 items of attitude statements consisting of positive and negative responses were developed from several indicators of student attitudes in a Likert scale questionnaire.

The indicators include 1) students' interest in math subjects material space geometry, 2) students’ responses to the mathematics learning process material space geometry in class, 3) students’ motivation towards mathematics subjects material space geometry, 4) students' preference for mathematics lessons material space geometry using the GeoGebra-assisted Missouri Mathematics Project learning model, 5) students' responses to mathematics learning using the GeoGebra-assisted Missouri Mathematics Project learning model on space geometry material, 6) students’ responses to mastery of mathematical concepts and knowledge of mathematical communication through the GeoGebra-assisted Missouri Mathematics Project learning model on space geometry material, 7) students' responses to the role of teachers in the GeoGebra-assisted Missouri Mathematics Project learning on space geometry material. Furthermore, these items are presented in the following table:

Number	Statement
1	I am lazy to learn mathematics for space geometry material
2	I like math lessons on space geometry material
3	Mathematical material space geometry less useful for my future
4	If the math lesson on the matter of space geometry will begin, my feelings are very tense
5	The mathematics lesson on the matter of space geometry is very boring
6	The mathematics lesson in space geometry is useful for me and useful in learning other sciences
7	If the math lesson on the matter of space geometry will begin my feeling is very calm
8	I was motivated to learn mathematics in the matter of space geometry
9	The mathematical learning of space geometry with learning from the GeoGebra-assisted Missouri Mathematics Project was very interesting for me
10	Learning mathematics in space geometry using learning from the GeoGebra-assisted Missouri Mathematics Project motivated me to learn mathematics
11	After following the mathematics learning, the material on space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project, my motivation to learn mathematics was normal
12	The mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project made me tired of learning mathematics
13	I feel lazy to ask the teacher if there is material in space geometry that is not yet understood
14	I find it difficult to understand mathematical material in space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project
15	With this learning I can share knowledge about mathematical communication and get knowledge about mathematical communication that is more than other friends
I like the math lesson in space geometry using the GeoGebra-assisted Missouri Mathematics Project because I can provide knowledge about mathematical communication in the material.

The mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project does not contribute to my mathematical communication knowledge.

I want this learning model to be applied to other mathematical material besides space geometry.

I do not like learning mathematics in the material of space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project.

I dare ask the teacher if there is mathematical material to space geometry that I have not understood.

The questionnaire was then used to examine students’ attitudes towards the implementation of the GeoGebra-assisted Missouri Mathematics Project learning model. Basically, attitudes evaluate how individuals attach value towards a person, language, an institution or an object. Attitudes, as well, propel behavior to a certain direction. They can shape inner feelings of an individual towards various objects [9]. Therefore this paper aims to examine in depth the students’ attitudes towards the application of the GeoGebra-assisted Missouri Mathematics Project learning model.

2. Research Methods

This research is a type of research using survey methods. The survey method is a technique of gathering information carried out by compiling a list of questions that are submitted to respondents [7]. In this study, researchers examined the characteristics or causal relationships between variables without the intervention of researchers. This research was conducted at junior high school 4 Kuningan. In this study, the survey was conducted on 31 students who obtained the GeoGebra-assisted Missouri Mathematics Project learning model using a Likert scale questionnaire consisting of 20 items.

Students’ attitude questionnaire data were analyzed descriptively quantitatively. The data obtained were analyzed by determining the percentage of respondents’ answers for each item in the questionnaire [7]. The percentage obtained on each item is then interpreted based on the following criteria:

Criteria	Interpretation
P = 0%	Nobody
0% < P < 25%	A Small part
25% ≤ P < 50%	Almost half
P = 50%	Half of
50% < P < 75%	Most of the
75% ≤ P < 100%	Almost all of them
P = 100%	All of them

Furthermore, the calculation of the attitude scale is also carried out in a priori manner, so that the value of each item in the attitude scale is different. For statements that are positive, the Strongly Agree (SS) category is given a score of 4, Agree (S) is given a score of 3, Disagree (TS) is given a score of 2, and Strongly Disagree (STS) is given a score of 1. As for negative statements, the Strongly Agree (SS) category is given a score of 1, Agree (S) is given a score of 2, Disagree (TS) is given a score of 3, and Strongly Disagree (STS) is given a score of 4. Furthermore, the average score of the students’ attitude scale is compared with the neutral score. Neutral score is scores for students' neutral attitudes which are a midst attitude between positive and negative attitudes. The neutral score for this questionnaire is 2.5. If the average score of the student's attitude scale is more than the neutral score, then the student's attitude...
is positive. But if the average score of the student's attitude scale is less than the neutral score, then the student's attitude is negative. Data analysis and processing is done using Microsoft Office Excel 2010.

3. Results and Discussion

Data on students’ attitudes towards the GeoGebra-assisted Missouri Mathematics Project learning are outlined below:

Table 3. Data Description of Students’ Attitudes on Indicators 1

Item Number	Type	SS	S	TS	STS	Average of each item	
2	Positive	4	27	0	0	12.90% 87.10% 0.00%	77.52%
5	Negative	0	0	27	4	0.00% 0.00% 87.10%	77.52%

According to table 3, based on the students' answers to item statement number 2, the results showed that almost all of them answered in agreement (87.10%) and a small part answered strongly agree (12.90%) to statement that I like math lessons on space geometry material. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 2 was 77.52%. It shows that almost all students like math lessons on space geometry material.

According to table 3, based on the students' answers on item statement number 5, the results were obtained that almost all of them answered disagree (87.10%) and a small part answered strongly disagree (12.90%) on the statement of the mathematics lesson on the matter of space geometry is very boring. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 5 was 77.52%. It shows that almost all students do not consider the mathematics lesson on the matter of space geometry is very boring.

Table 4. Data Description of Students’ Attitudes on Indicators 2

Item Number	Type	SS	S	TS	STS	Average of each item		
4	Negative	2	11	13	5	6.45% 35.48% 41.94%	16.13%	33.19%
7	Positive	5	20	6	0	16.13% 64.52% 19.35%	0.00%	47.97%

According to table 4, based on the students' answers on item statement number 4, the results showed that almost half answered disagree (41.94%) and a fraction of them answered strongly disagree (16.13%) to the statement If the math lesson on the matter of space geometry will begin, my feelings are very tense. Meanwhile, almost half answered agreed (35.48%), and a small part answered strongly agree (6.45%) to the statement. The average percentage of respondents' answers to item number 4 was 33.19%. It shows that almost half of the students do not assume that if the math lesson on the matter of space geometry will begin, my feelings are very tense.

According to table 4, based on the students' answers on item statement number 7, the results showed that most of the respondents agreed (64.52%) and a small part answered strongly agree (16.13%) to the statement if the math lesson on the matter of space geometry will begin my feeling is very calm.
Meanwhile, a small part answered disagree (19.35%) and no one answered strongly disagree (0.00%) to the statement. The average percentage of respondents' answers to item number 7 was 47.97%. It shows that almost half of the students assume that if the math lesson on the matter of space geometry will begin my feeling is very calm.

Table 5. Data Description of Students’ Attitudes on Indicators 3

Item Number	Type	SS	S	TS	STS	Average of each item
1	Negative	0,00%	0,00%	83.87%	16.13%	72.94%
3	Negative	0,00%	0,00%	80.65%	19.35%	68.78%
6	Positive	25.81%	74.19%	0,00%	0,00%	61.71%
8	Positive	16.13%	83.87%	0,00%	0,00%	72.94%

According to table 5, based on the students' answers on item statement number 1, the results showed that almost all of them answered disagree (83.87%) and a small part answered strongly disagree (16.13%) to statement that I am lazy to learn mathematics for space geometry material. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 1 was 72.94%. It shows that almost all students are not lazy to learn mathematics for space geometry material.

According to table 5, based on the students' answers to item statement number 3, the results showed that almost all of them answered disagree (80.65%) and a small part answered strongly disagree (19.35%) to the statement of mathematical material space geometry less useful for my future. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 3 was 68.70%. It shows that most students do not consider Mathematical material space geometry less useful for their future.

According to table 5, based on the students' answers on item statement number 6, the results showed that most of the respondents agreed (74.19%) and almost half answered strongly agree (25.81%) to the statement of the mathematics lesson in space geometry is useful for me and useful in learning other sciences. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 6 was 61.70%. It shows that most students consider the mathematics lesson in space geometry is useful for me and useful in learning other sciences.

According to table 5, based on the students' answers on item statement number 8, the results showed that almost all of them answered agree (83.87%) and a small part answered strongly agree (16.13%) to the statement that I was motivated to learn mathematics in the matter of space geometry. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 8 was 72.94%. It shows that almost all students are motivated to learn mathematics in the matter of space geometry.
According to table 6, based on the students' answers to item statement number 9 the results showed that most answered agree (67.74%) and almost half answered strongly agree (32.26%) to the mathematical learning of space geometry with learning from the GeoGebra-assisted Missouri Mathematics Project was very interesting for me. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 9 was 56.30%. It shows that the most of the students consider that the mathematical learning of space geometry with learning from the GeoGebra-assisted Missouri Mathematics Project was very interesting for them.

According to table 6, based on students' answers on item statement number 10, it was obtained results that almost all of them answered in agreement (74.19%) and almost half answered strongly agree (25.81%) towards the statement of learning mathematics in space geometry using learning from the GeoGebra-assisted Missouri Mathematics Project motivated me to learn mathematics. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 10 was 61.71%. It shows that the most of students consider learning mathematics in space geometry using learning from the GeoGebra-assisted Missouri Mathematics Project motivated them to learn mathematics.

According to table 6, based on the students' answers on item statement number 11, the results showed that almost all of the answers disagree (90.32%) and a small part answered strongly disagree (9.68%) on the statement after following the mathematics learning, the material on space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project, my motivation to learn mathematics was normal. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 11 was 82.52%. It shows that almost all students do not consider that after following the mathematics learning, the material on space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project, their motivation to learn mathematics was normal.

According to table 6, based on the students' answers on item statement number 19, the results showed that almost all of them answered disagree (87.10%) and a small part answered strongly disagree (12.90%) to the statement I do not like learning mathematics in the material of space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 19 was 77.52%. It shows that almost all students like the learning mathematics in the material of space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project.

Table 6. Data Description of Students’ Attitudes on Indicators

Item Number	Type	SS	S	TS	STS	Average of each item
9	Positive	10	21	0	0	32.26% 67.74% 0.00% 0.00% 56.30%
10	Positive	8	23	0	0	25.81% 74.19% 0.00% 0.00% 61.71%
11	Negative	0	0	28	3	0.00% 0.00% 90.32% 9.68% 82.52%
19	Negative	0	0	27	4	0.00% 0.00% 87.10% 12.90% 77.52%

According to table 6, based on the students' answers to item statement number 9 the results showed that most answered agree (67.74%) and almost half answered strongly agree (32.26%) to the mathematical learning of space geometry with learning from the GeoGebra-assisted Missouri Mathematics Project was very interesting for me. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 9 was 56.30%. It shows that the most of the students consider that the mathematical learning of space geometry with learning from the GeoGebra-assisted Missouri Mathematics Project was very interesting for them.

According to table 6, based on students' answers on item statement number 10, it was obtained results that almost all of them answered in agreement (74.19%) and almost half answered strongly agree (25.81%) towards the statement of learning mathematics in space geometry using learning from the GeoGebra-assisted Missouri Mathematics Project motivated me to learn mathematics. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 10 was 61.71%. It shows that the most of students consider learning mathematics in space geometry using learning from the GeoGebra-assisted Missouri Mathematics Project motivated them to learn mathematics.

According to table 6, based on the students' answers on item statement number 11, the results showed that almost all of the answers disagree (90.32%) and a small part answered strongly disagree (9.68%) on the statement after following the mathematics learning, the material on space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project, my motivation to learn mathematics was normal. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 11 was 82.52%. It shows that almost all students do not consider that after following the mathematics learning, the material on space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project, their motivation to learn mathematics was normal.

According to table 6, based on the students' answers on item statement number 19, the results showed that almost all of them answered disagree (87.10%) and a small part answered strongly disagree (12.90%) to the statement I do not like learning mathematics in the material of space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 19 was 77.52%. It shows that almost all students like the learning mathematics in the material of space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project.
According to table 7, based on the students' answers on item statement number 12, the results showed that almost all of them answered disagree (87.10%) and a small part answered strongly disagree (12.90%) to the statement of the mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project made me tired of learning mathematics. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 12 was 77.52%. It shows that almost all students do not think that the mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project made them tired of learning mathematics.

According to table 7, based on the students' answers on item statement number 18, the results showed that most of the respondents agreed (74.19%) and almost half answered strongly agree (25.81%) to the statement I want this learning model to be applied to other mathematical material besides space geometry. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 18 was 61.71%. It shows that most students want this learning model to be applied to other mathematical material besides space geometry.

According to table 8, based on the students' answers to item statement number 14, the results showed that almost all of them answered disagree (80.65%) and a small part answered strongly disagree (19.35%) to statement that I find it difficult to understand mathematical material in space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 14 was 68.78%. It shows that most students do not find it difficult to understand mathematical material in space geometry.
mathematical material in space geometry with the learning of the GeoGebra-assisted Missouri Mathematics Project.

According to table 8, based on the students' answers on item statement number 15, the results showed that almost all of them answered agree (77.42%) and a small part answered strongly agree (22.58%) to the statement of with this learning I can share knowledge about mathematical communication and get knowledge about mathematical communication that is more than other friends. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 15 was 65.04%. It shows that most students consider with this learning they can share knowledge about mathematical communication and get knowledge about mathematical communication that is more than other friends.

According to table 8, based on the students' answers to item statement number 16, the results showed that most of the respondents agreed (58.06%) and almost half answered strongly agree (41.94%) to statement that I like the math lesson in space geometry using the GeoGebra-assisted Missouri Mathematics Project because I can provide knowledge about mathematical communication in the material. Meanwhile, no one answered disagree (0.00%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 16 was 51.30%. It shows that the most of students like maths in space geometry using the GeoGebra-assisted Missouri Mathematics Project because I can provide knowledge about mathematical communication in the material.

According to table 8, based on the students' answers to item statement number 17, the results showed that almost all of them answered disagree (90.32%) and a small part answered strongly disagree (9.68%) on the statement of the mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project does not contribute to my mathematical communication knowledge. Meanwhile, no one answered agreed (0.00%), strongly agreed (0.00%) to the statement. The average percentage of respondents' answers to item number 17 was 82.52%. It shows that almost all students do not consider the mathematical learning of space geometry through learning from the GeoGebra-assisted Missouri Mathematics Project does not contribute to their mathematical communication knowledge.

Table 9. Data Description of Students’ Attitudes on Indicators 7

Item Number	Type	SS	S	TS	STS	Average of each item
13	Negative	3	4	24	0	62.54%
		9.68%	12.90%	77.42%	0.00%	
20	Positive	2	26	3	0	71.70%
		6.45%	83.87%	9.68%	0.00%	

According to table 9, based on the students' answers on item statement number 13, the results showed that almost all of them answered disagree (77.42%) and no one answered strongly disagree (0.00%) to the statement I feel lazy to ask the teacher if there is material in space geometry that is not yet understood. Meanwhile, a small percentage responded agree (12.90%), and strongly agreed (9.68%) to the statement. The average percentage of respondents' answers to item number 13 was 62.54%. It shows that most students do not feel lazy to ask the teacher if there is material in space geometry that is not yet understood.

According to table 9, based on the students' answers to item number 20, the results showed that almost all of them answered agree (83.87%) and a small part answered strongly agree (6.45%) to the statement I dare ask the teacher if there is mathematical material to space geometry that I have not understood. Meanwhile, no one answered disagree (9.68%), strongly disagree (0.00%) against the statement. The average percentage of respondents' answers to item number 20 was 71.70%. It shows
that most students dare to ask the teacher if there is mathematical material to space geometry that they have not understood.

Table 10. Average overall students’ attitude

Criteria	Score
Average percentage	66,59%
Average students’ attitudes	3,12

According to table 10, from the results of analysis of student attitudes, the data obtained from the average percentage of respondents' answers as a whole amounted to 66.59%. It shows that the average percentage of students' attitudes towards GeoGebra-assisted Missouri Mathematics Project learning is 66.59%. This means that most the students have a positive attitude towards learning from the GeoGebra-assisted Missouri Mathematics Project. This is possible because students are not accustomed to using computers in learning mathematics, especially GeoGebra, so they are quite difficult at first, but over time they are finally used. The results of the attitude data analysis also showed that the average attitude of students was 3.12. From these results compared to neutral attitudes, 2.5 shows that students have a positive attitude towards learning from the GeoGebra-assisted Missouri Mathematics Project.

The results of the analysis show that students have a positive attitude towards learning from the GeoGebra-assisted Missouri Mathematics Project. These results are in line with the results of the study of Masri et al (2016) which stated that experimental class students showed a positive attitude towards the use of GeoGebra software [10]. For example, to the statement “I want this learning model to be applied to other mathematical material besides space geometry”, that most of the students agreed (74.19%) and almost half strongly agree (25.81%). This is possible because in learning through the GeoGebra-assisted Missouri Mathematics Project learning model, many students are given the opportunity to explore both during the development stage and cooperative work using GeoGebra's help. Another positive factor is that GeoGebra also makes it easy for students to visualize space geometry, which is different from learning without geogebra.

4. Conclusions and Recommendation

The GeoGebra-assisted Missouri Mathematics Project is a combination of technology in the form of learning software with a learning model that makes it easier for students to visualize space geometry and facilitate students to explore during the learning process. Based on the data analysis of the research results it can be concluded that the students showed a positive attitude towards the implementation of GeoGebra-assisted Missouri Mathematics Project. Further research on the GeoGebra-assisted Missouri Mathematics Project should continue to be done as an effort to find solutions to current problems in mathematics learning.

5. References

[1] M. Jackson, “Integration of ICT in the Mathematics Classroom,” *J. Initial Teach. Inq.*, vol. 3, pp. 90–93, 2017.
[2] A. Ekawati, “Penggunaan Software Geogebra dan Microsoft Mathematic dalam Pembelajaran Matematika,” *Math Didact. J. Pendidik. Mat.*, vol. 2, no. 3, pp. 148–153, 2016.
[3] R. E. Slavin and C. Lake, “Effective Programs in Elementary Mathematics: A Best-Evidence Synthesis,” *Rev. Educ. Res.*, vol. 78, no. 3, pp. 427–515, 2008.
[4] Setiawan, “Strategi Pembelajaran Matematika SMA,” *Bahan Ajar Diklat Pengembang Mat. SMA Jenjang Dasar Depdiknas*, 2010.
[5] R. Yuliardi and A. Rosyid, *Easy Maths With GeoGebra*. Cirebon: Nurjati Press, 2017.
[6] K. K. Bhagat and C. Chang, “Incorporating GeoGebra into Geometry learning-A lesson from India,” *Eurasia J. Math. Sci. Technol. Educ.*, vol. 11, no. 1, pp. 77–86, 2015.
[7] K. E. Lestari and M. R. Yudhanegara, *Penelitian Pendidikan Matematika*. Bandung: Refika Aditama, 2015.

[8] J. K. Mensah, M. Okyere, and A. Kuranchie, “Student attitude towards Mathematics and performance: Does the teacher attitude matter?,” *J. Educ. Pract.*, vol. 4, no. 3, pp. 132–139, 2013.

[9] J. M. Kavoi, S. Mohochi, and M. Mukuthuria, “Analysis of Students’ Attitudes towards the Use of Kiswahili in Teaching Communication Skills in Technical Institutes in Kenya,” *Int. J. Humanit. Soc. Sci.*, vol. 8, no. 7, pp. 135–144, 2018.

[10] R. Masri, T. S. Hiong, M. N. Tajudin, and Z. Z. Zamzamin, “The effects of using GeoGebra teaching strategy in Malaysian secondary schools: A case study from Sibu Sarawak,” *Geogr. OnlineTM Malaysian J. Soc. Sp.*, vol. 12, no. 7, pp. 13–25, 2016.