q-ANALOG SINGULAR HOMOLOGY OF CONVEX SPACES

M. ANGEL AND G. PADILLA

Dedicated to Professor A. Reyes, in the occasion of his 76th birthday.

Abstract. In this article we study some interesting properties of the q-Analog singular homology, which is a generalization of the usual singular homology, suitably adapted to the context of N-complex and amplitude homology [7]. We calculate the q-Analog singular homology of a convex space. Although it is a local matter; this is an important step in order to understand the presheaf of q-chains and its algebraic properties. Our result is consistent with those of Dubois-Violette & Henneaux [4]. Some of these results were presented for the XVIII Congreso Colombiano de Matemáticas in Bucaramanga, 2011.

Introduction

The fact that singular homology satisfies the homotopy axiom is a well known result of topological algebra. It can be understood in several ways. From the topological scope it asserts that any topological space that is homotopic to a single point, must have no topological holes. More than this, homotopic spaces have the same singular homology and homotopic maps induce the same maps between the respective homology groups. A customary proof can be carried out by means of these mathematical facts,

(1) The cone construction [2, p.33].
(2) A Leibnitz rule for the convex product of singular chains [1, p.220].
(3) The double composition of border map ∂ vanishes, i.e. ∂² = 0, which means that singular chains constitute a usual chain complex.

On the other hand, the theory of N-complexes has raised in the last years as a new homology theory with a broad field of applications in quantum physics [4]. Let N ≥ 3 be a prime integer. A N-complex is a graded module whose border map ∂ vanishes in the N-th composition, i.e. ∂^N = 0. The m-amplitude homologies are defined for 1 ≤ m ≤ N − 1; see [3, 6]. For instance, take a complex N-th root of the identity, q ∈ C; i.e. q^N = 1. Then there can be defined q-simplicial chains, as singular chains that are linear combinations of singular simplexes where the constants are taken on the ring Z[q] and the border map is adequately adapted. Several examples will be treated here below.

The main result in this article is that any convex Euclidean space has the same q-Analog singular homology of a singleton. This is a consequence of the algebraic structure induced by the border map and the combinatorial properties of q-numbers. In order to prove this,

(1) We use the fact that ∂^N = 0, i.e. q-Analog singular chains are a graded N-differential module.
(2) We extend the cone construction to a convex product for the q-Analog singular homology.
(3) We obtain a q-Leibnitz rule for the convex product and a formula for the Newton’s polynomials.
(4) We construct a geometric N-homotopy operator by means of the convex product.

An open question we hope to answer in the future is to demonstrate that q-Analog singular chains satisfy the Mayer-Vietoris property.

The article has been organized as follows. In the sections §1, §2 we summarize some usual facts of q-numbers and N-complexes. Section §3 is devoted to q-singular chains and more examples. In section §4 we define the
convex product and show the Leibnitz rule. The last section is devoted to prove the homotopy axiom for q-Analog singular homology, which is our main result.

1. q-NUMBERS

Recall the definition of q-numbers and some of their properties [3].

1.1. q-numbers. Let $q \in \mathbb{C}$ be a complex non trivial N-th root of the identity i.e. $q^N = 1$ and $q \neq 1$. In the classical literature N is assumed to be a prime integer and $q = \exp(2\pi i/N)$, see [4]. The basic q-numbers are

$$[k]_q = \frac{1 - q^k}{1 - q} = 1 + q + \cdots + q^{k-1} \quad \forall k \in \mathbb{N}$$

Notice that $[N]_q = 0$. The q-factorial numbers are

$$[k]_q! = [1]_q \cdot [2]_q \cdots [k]_q \quad 0 \leq k \leq N - 1$$

Finally, the q-combinatorial numbers are

$$\binom{k}{l}_q = \frac{[k]_q!}{[l]_q! \cdot [(k-l)]_q!} \quad \forall 0 \leq l \leq k \leq N - 1$$

Since $N \geq 2$ the polynomial $q^N - 1 = 0$ is irreducible in \mathbb{R}, so $\mathbb{R}[q] = \mathbb{C}$ is the field of complex numbers. In particular, q-numbers $[k]_q \neq 0$ have multiplicative inverse in $\mathbb{R}[q]$. The following properties follow from the definition of q-numbers, we leave the details to the reader.

Lemma 1.1.1. Let $1 \leq k \leq n, m \leq N - 1$. Then,

1. $[m + n]_q = [m]_q + q^m [n]_q$.
2. If m is prime relative to N, then $[m]_q$ is a unit in $\mathbb{Z}[q]$; and its multiplicative inverse is $[a]_q^{-1}$ where $an + bn = 1$ for some integers a, b.
3. $\binom{n}{k}_q + q^k \binom{n}{k+1}_q = \binom{n+1}{k+1}_q + q^{n-k} \binom{n}{k}_q$.
4. $[n]_q! = \sum_{\sigma \in S_n} q^{a_{\sigma(n)}}$ where S_n is the nth symmetric group and σ runs over all permutations of n elements.

2. N-COMPLEXES

Let us fix a positive integer $N \geq 2$ and a principal ideal domain $(R, +, \cdot, 1)$ as the underlying ring of constants (usually we will take $R = \mathbb{Z}[q]$). A N-complex is a generalization of usual chain complexes, and presents a similar behavior taking into account the integer N, which is called the amplitude of the complex [3] [4].

2.1. N-complexes. A N-complex is a pair (M, ∂) such that M is a module and $\partial : M \rightarrow M$ is a linear endomorphism such that the N-th composition $\partial^N = 0$ vanishes. We call ∂ the border map. For any integer $1 \leq m \leq N - 1$, we consider the submodules

$$M \xrightarrow{\partial^{m(N-m)}} M \xrightarrow{\partial^m} M \quad \text{and} \quad B_m(M) = \text{Im} \left(\partial^{N-m} \right) \subset \ker \left(\partial^m \right) = Z_m(M)$$

An element of $Z_m(M)$ (resp. $B_m(M)$) is a m-amplitude cycle (resp. border). The homology of M with amplitude m is the quotient module

$$H_m(M) = \frac{Z_m(M)}{B_m(M)}$$

The total homology of M is the graded module

$$H(M) = \{ H_m(M) : 1 \leq m \leq N - 1 \}$$
A morphism of N-complexes $\xymatrix{ (M, \partial) \ar[r]^f & (M', \partial') }$ is a linear morphism f such that $f \partial = \partial' f$. The induced arrow is well defined on each amplitude homology $H_m (M) \xymatrix{ \ar[r]^f & H_m (M') }$, and passes to the total homology $H (M) \xymatrix{ \ar[r]^f & H (M') }$.

For any short exact sequence of N-complexes

\[
0 \xymatrix{ \ar[r] & M \ar[r]^\alpha & M' \ar[r]^\beta & M'' \ar[r] & 0 }
\]

there is a version of the snake lemma, and a connecting morphism $H_m (M) \xymatrix{ \ar[r]^\alpha & H_{N-m} (M) }$ from which arises an exact hexagon,

\[
\begin{array}{ccc}
H_m (M) & \xymatrix{ \ar[r]^\beta & H_m (M') } & \xymatrix{ \ar[l]_\alpha & H_{N-m} (M) } \\
\xymatrix{ \ar[u]_\partial & H_m (M'') } & & \xymatrix{ \ar[l]_\beta & H_{N-m} (M'') } \xymatrix{ \ar[u]_\alpha & } \\
& \xymatrix{ \ar[r]_\partial & H_{N-m} (M''') } & \xymatrix{ \ar[l]^\beta & H_{N-m} (M''') } \xymatrix{ \ar[u]_\alpha & } \end{array}
\]

2.2. Graded N-complexes. A graded N-differential module is a pair (M_\ast, ∂) such that $M_\ast = \{ M_k : k \in \mathbb{Z} \}$ is a graded module and ∂ is a (-1)-graded linear endomorphism $M_k \xymatrix{ \ar[r]^\partial & M_{k-1} }$ such that $\partial^N = 0$. The properties of N-complexes can be extended to the graded case. The amplitude homology is now a bigraded module $H (M) = \{ H_{m,k} (M) : 1 \leq m \leq N - 1, k \in \mathbb{Z} \}$ depending on the amplitude m and the degree k. The inclusion i and the border map ∂ induce, respectively, well defined maps in the bigraded homology.

2.3. Examples.

(1) Any finite sequence of modules and morphisms

\[
0 \xymatrix{ \ar[r] & M_1 \ar[r]^\partial_1 & M_2 \ar[r]^\partial_2 & \cdots \ar[r]^\partial_{N-2} & M_{N-1} \ar[r]^\partial_{N-1} & M_N \ar[r] & 0 }
\]

is a graded N-complex.

(2) With a little abuse of notation let us write

\[
\mathbb{Z}[q] \xymatrix{ \ar[r]^q & \mathbb{Z}[q] }
\]

for the linear function that maps any element $\alpha \in \mathbb{Z}[q]$ to $[n]_q \cdot \alpha$. According to (1.1.1) (2), since N is prime, $[n]_q \neq 0$ has a multiplicative inverse in $\mathbb{Z}[q]$ for $1 \leq n \leq N - 1$. The above map is a module isomorphism between free $\mathbb{Z}[q]$-modules.

\[
0 \xymatrix{ \ar[r] & \mathbb{Z}[q] \ar[r]^q & \mathbb{Z}[q] \ar[r]^q & \cdots \ar[r]^q & \mathbb{Z}[q] \ar[r]^q & 0 \ar[r] & 0 \ar[r] & \cdots }
\]

is a N-complex; we use to denote it by $\left(\mathbb{Z}[q], \left[* \right]_q \right)$. A straightforward calculation shows that

\[
H_{m,n} \left(\mathbb{Z}[q], \left[* \right]_q \right) = \begin{cases}
\mathbb{Z}[q] & 1 \leq n = m \leq N - 2 \\
0 & \text{else}
\end{cases}
\]
One can construct N-differential modules with smooth differential forms on \mathbb{R}^n; see [3, 6]. There are also N-complexes with geometric singular chains on any topological space. For more details see the next sections.

2.4. Homotopy of N-complexes. Given any two morphisms of N-differential modules $M \xrightarrow{f,g} M'$, we say that they are homotopic and write $f \sim g$ iff there is a sequence of morphisms of modules $M \xrightarrow{K_m} M'$, for $0 \leq m \leq N - 1$, satisfying

$$\sum_{m=0}^{N-1} \left(\partial'\right)^m K_m \partial^{N-m-1} = (f - g)$$

The sequence of morphisms $K = \{K_m\}_m$ is a homotopy from g to f. The existence of homotopies is an equivalence relation between morphisms of N-complexes; homotopic morphisms induce the same maps in the amplitude homologies. An alternative way to see that this is suitable definition of homotopy between morphisms of differential N-modules is to follow [7][p.4-5]. Consider, for any pair of N-differential graded modules (M, ∂) and (N, δ), the graded module $\text{Hom}(M, N)$ with the N-differential operator given by

$$D(f) = \sum_{i=0}^{N-1} q^{\deg(f) + 1} \delta f \partial^{N-i-1}$$

A morphism $M \xrightarrow{f} N$ is compatible with the differentials iff it is a D-cycle, and then it induces a well defined morphism on the k-amplitude homologies $H_k(M) \xrightarrow{f} H_k(N)$ for $1 \leq k \leq N - 1$. Then, two differential morphisms f, g (with $\deg(f) = \deg(g) = 0$ as above) are homotopic iff their difference $f - g$ is a D-border in $\text{Hom}(M, N)$. This happens iff there exists a morphism $M \xrightarrow{K} N$ such that $\deg(K) = (N - 1)$ and $(f - g) = D(k)$. Notice that the morphism K has degree $\deg(K) = N - 1$.

3. q-Chains

3.1. The N-complex of q-chains on a simplicial set. Recall the construction of simplicial q-chains [3, 6]. A simplicial set is a family of non-empty sets and maps

$$X_{n+1} \xrightarrow{\partial_i} X_n \quad 0 \leq i \leq n, \ n \in \mathbb{N}$$

such that their compositions (1) satisfy

$$\partial_i \partial_j = \partial_j \partial_{i+1} \quad \forall j \leq i$$

An element of X_n is a basic chain of dimension n. Let N and q be as in [11,1]. Take the polynomial extension $\mathbb{Z}[q]$ as the ring of constants. The (N, q)-complex generated by X is the graded free $\mathbb{Z}[q]$-module that on each degree n is spanned by X_n as a linear basis.

$$qC_n(X) = \mathbb{Z}[q] \langle X_n \rangle = \bigoplus_{x \in X_n} \mathbb{Z}[q] \cdot x \quad n \in \mathbb{N}$$

As usual we assume the convention $qC_n(X) = 0$ for $n < 0$. The border map is the graded linear morphism

$$qC_n(X) \xrightarrow{\partial} qC_{n-1}(X) \quad \partial = \sum_{i=0}^{n} q^i \partial_i$$

We must check that our definition makes sense.

1We write fg for the composition $f(g(x))$ on each x where it makes sense.
Lemma 3.1.1. [Iteration rule for the border map] The following equality holds

\[\partial^k = [k]_q ! \cdot \sum_{i_1 \leq \cdots \leq i_k} q^{i_1+\cdots+i_k} \partial_{i_k} \cdots \partial_{i_1}; \quad 0 \leq k \leq N \]

Therefore, \((\mathcal{C}_q(X), \partial)\) is a graded \(N\)-complex.

[Proof] Apply the definition of the border map \(\partial\) and property [1.1.1](4). See [6]. \(\square\)

In particular, since \([N]_q = 0\) we get \(\partial^N = 0\), so \(\mathcal{C}_q(X)\) is a \(N\)-complex.

3.2. Singular \(q\)-chains. A geometric realization is given by the \(N\)-complex of Singular \(q\)-chains. For each integer \(n \in \mathbb{N}\) we write \(\Delta^n \) for the standard \(n\)-simplex, i.e. the convex hull generated on \(\mathbb{R}^{n+1}\) with the standard basis \(\{e_0, \ldots, e_n\}\). A linear map \(\Delta^n \xymatrix{\ar[r]^L & \Delta^m}\) is determined by its values on \(e_0, \ldots, e_n\); we write \(L = \langle x_0, \ldots, x_n \rangle\) to mean that \(x_i = L(e_i)\) for \(i = 0, \ldots, n\). Take

\[\Delta^n \xymatrix{\ar[r]^\lambda_j & \Delta^{n+1}} \]

\[\lambda_j = \{e_0, \ldots, e_j, \ldots, e_{n+1}\} \quad j = 0, \ldots, n \]

where \(\hat{e}_j\) means to omit the element \(e_j\). Given a topological space \(X \neq \emptyset\) we define \(X_n\) as the set of all continuous maps \(\Delta^n \xymatrix{\ar[r]^\sigma & X}\). An element of \(X_n\) is a simplex on \(X\). For each \(0 \leq j \leq n\) the \(j\)th-face map \(X_n \xymatrix{\ar[r]^\partial_j & X_{n-1}}\) is given by the composition \(\partial_j(\sigma) = \sigma \lambda_j\). This family is a simplicial set in our previous sense. The \(N\)-complex of singular \(q\)-chains on a topological space \(X\)

\[q\mathcal{C}_n(X) = \mathcal{C}_n \left(\left\{ X_n : n \in \mathbb{N} \right\} \cup \left\{ \partial_j : X_n \xymatrix{\ar[r] & X_{n-1} : 0 \leq j \leq n, n \in \mathbb{N} \right\} \right) \]

is the \((N,q)\)-complex generated by the singular \(q\)-simplexes and face maps. An element \(\xi \in q\mathcal{C}_n(X)\) is a singular \(q\)-chain of dimension \(n\); it can be written a linear combination \(\xi = a_1 \sigma_1 + \cdots + a_r \sigma_r\) where each \(a \in \mathbb{Z}[q]\) is a polynomial and each \(\sigma \in X_n\) is a simplex of dimension \(n\) on \(X\). We also write \(n = \dim(\xi)\). The standard singular \((N,q)\)-homology of \(X\) is the homology of this \(N\)-complex

\[qH_{m,n}(X) = qH_m \left(q\mathcal{C}_n(X) \right) \quad 1 \leq m \leq n - 1, n \in \mathbb{N} \]

3.3. Example: \(q\)-homology of a point. If \(P = \{p\}\) is a single point; then \(P_n = \{\sigma_n\}\) where \(\Delta^n \xymatrix{\ar[r]^\sigma & P}\) is the constant map. The module

\[q\mathcal{C}_n(P) = \mathbb{Z}[q] \cdot \sigma_n \cong \mathbb{Z}[q] \]

is isomorphic to the ring of constants \(\mathbb{Z}[q]\) through the change of basis \(\sigma_n \mapsto 1\). All face maps \(\partial_0 = \cdots = \partial_n\) coincide. The border operator \(\partial q\mathcal{C}_n(P) \xymatrix{\ar[r]^\partial & q\mathcal{C}_{n-1}(P)}\) is the zero map for \(n = 0\). For \(n \geq 1\)

\[\partial(a\sigma_n) = \left(\partial_0 + q \partial_1 + q^2 \partial_2 + \cdots + q^n \partial_n \right) (a\sigma_n) = \left(1 + \cdots + q^n \right) \partial_0 (a\sigma_n) = [n+1]_q a\sigma_{n-1} \]

can be seen as the multiplication by the element \([n+1]_q a\);
It vanishes when \(n + 1 \) a positive multiple of \(N \). In any other case \([n + 1]_q \neq 0\) is a unit in \(\mathbb{Z}[q] \); see \([1.1.1](2)\), so \(\partial \) is a module isomorphism (though not a ring isomorphism). Therefore,

\[
qH_{m,n}(P) = \begin{cases}
\mathbb{Z}[q] & 0 \leq n = m - 1 \leq N - 2 \\
0 & \text{else}
\end{cases}
\]

coincides with the amplitude homology of the \(N \)-complex given in the first examples \([2.3](2)\).

3.4. Exact sequence of a pair.

Given a topological space \(X \) and a subspace \(A \subset X \); we consider as usual the short exact sequence

\[
\begin{array}{cccccccc}
0 & \rightarrow & qSC_n(A) & \rightarrow & qSC_n(X) & \rightarrow & qSC_n(X, A) & \rightarrow & 0
\end{array}
\]

The exact hexagon of \([2.1](6)\) splits to a long exact sequence

\[
\begin{array}{cccccccccccccccc}
\ldots & \rightarrow & qH_{m,n}(A) & \rightarrow & \cdots & \rightarrow & qH_{m,n}(X) & \rightarrow & qH_{m,n}(X, A) & \rightarrow & qH_{N-m,n-m}(A) & \rightarrow & \cdots
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
\frac{\partial}{\mapsto} & \rightarrow & qH_{N-m,n-m}(X, A) & \rightarrow & \cdots & \rightarrow & \cdots & \rightarrow & 0
\end{array}
\]

In the sequel, given an exact sequence from a splitted hexagon as above we will just write

\[
\begin{array}{cccccccccccccccc}
\ldots & \rightarrow & qH_{m,n}(A) & \rightarrow & qH_{m,n}(X) & \rightarrow & qH_{m,n}(X, A) & \rightarrow & qH_{N-m,n-m}(A) & \rightarrow & \cdots
\end{array}
\]

for short. In particular, this one is the \((N,q)\)-homology sequence of the pair \((X,A)\). There is also a \((N,q)\)-homology sequence of a triple \((X,A,B)\)

\[
\begin{array}{cccccccccccccccc}
\ldots & \rightarrow & qH_{m,n}(A,B) & \rightarrow & qH_{m,n}(X,B) & \rightarrow & qH_{m,n}(X, A) & \rightarrow & qH_{N-m,n-m}(A,B) & \rightarrow & \cdots
\end{array}
\]

As usual, the connecting morphism is obtained by chasing in the diagram.

4. Convex product

Now we extend the usual cone construction \([2\text{ p. 38}]\) to a convex product, this will be the operation between \(q\)-chains in order to have a geometric \(N\)-homotopy. Our goal is to construct a homotopy operator \(K\) as in \([2.4]\) from the index map to the identity map in \(\mathbb{R}^{N-1}\). Since the cone constructions increases the dimension in 1, a first attempt should be to iterate the conification from \(N-2\) different affinely independent chosen points. An easier way is to take a convex combination between any two different singular simplexes, we develop this idea.

4.1. Convex product.

Suppose that \(X \subset \mathbb{R}^d\) is a convex subspace. Given two simplexes \(\Delta^m \rightarrow X \rightarrow \Delta^n\) and a point

\[
(\alpha; \beta) = (\alpha_0, \ldots, \alpha_m; \beta_0, \ldots, \beta_n) \in \Delta^{m+n+1}
\]
write $|\alpha| = \alpha_0 + \cdots + \alpha_m$ and $|\beta| = \beta_0 + \cdots + \beta_n$; so $|\alpha| + |\beta| = 1$. Consider

$$\tau \ast \sigma : \Delta^{m+n+1} \longrightarrow X$$

$$\tau \ast \sigma(\alpha; \beta) = \begin{cases} \tau(\alpha) & |\beta| = 0 \\ \sigma(\beta) & |\alpha| = 0 \\ |\alpha| \cdot \tau\left(\frac{\alpha}{|\alpha|}\right) + |\beta| \cdot \sigma\left(\frac{\beta}{|\beta|}\right) & \text{else} \end{cases}$$

The simplex $\tau \ast \sigma$ above is unique for each pair (τ, σ) so the map can be extended to a bilinear operation

$$\varphi(\text{SC}_m(X) \times \varphi(\text{SC}_n(X)) \longrightarrow \varphi(\text{SC}_{m+n}(X))$$

For $m = 0$, $\tau(\mathbf{e}_n) = P$ is a single point and $\tau \ast \sigma = P(\sigma)$ is the conification of σ to the vertex P. In general, $\tau \ast \sigma$ can be thought as a convex combination of τ and σ. The convex product satisfies nice properties with respect to the border map.

Lemma 4.1.1. [Leibnitz rule] Let $\tau \in \varphi(\text{SC}_m(X)$ and $\sigma \in \varphi(\text{SC}_n(X)$. If $mn > 0$ then

$$\partial(\tau \ast \sigma) = \partial(\tau) \ast \sigma + q^{m+1} \tau \ast \partial(\sigma)$$

Proof By the bilinearity of the border map we can suppose that τ, σ are singular simplexes. Apply the definition of the border map, see [3,1]. The face maps behave as follows,

$$\partial_i(\tau \ast \sigma) = \begin{cases} (\partial_i \tau) \ast \sigma & 0 \leq i \leq m \\ \tau \ast (\partial_{i-m-1} \sigma) & m + 1 \leq i \end{cases}$$

\[\square\]

4.2. **Newton’s terms.** Our main goal on this § is to prove a general formula for $\partial^k (\tau \ast \sigma)$. If τ, σ are 0-dimensional singular simplexes then, by definition of the border map; the border of the 1-simplex $\tau \ast \sigma = [\tau(\mathbf{e}_n), \sigma(\mathbf{e}_n)]$ is

$$\partial(\tau \ast \sigma) = \sigma(\mathbf{e}_n) + q\tau(\mathbf{e}_n) = \sigma + q\tau$$

This is the simplest counter-example of the Leibnitz rule since, at [4,1.1] the right side of the equation vanishes. Also, if $m = \dim(\tau) = 0$ and $n = \dim(\sigma) > 0$, applying the definition of the border map we get

$$\partial(\tau \ast \sigma) = \sigma + q\tau \ast \partial(\sigma)$$

This is exactly what happens in the usual case for $N = 2$ and $q = -1$, see [2] p.35 eq.(4.9)]; we will use this in the sequel. Broadly speaking, since $\dim(\tau \ast \sigma) = m + n + 1$, for $k \geq m + n + 2$ all terms in a Newton’s polynomial should vanish. One can conjecture that, for $\min\{m, n\} \leq k \leq m + n + 1$ some of the terms vanish and others perhaps not. Given a singular simplex $\Delta^m \longrightarrow X$, the Newton’s terms of τ is

$$\mathcal{N}^i(\tau) = \begin{cases} \partial^i(\tau) & 0 \leq i \leq m \\ [m + 1]_q! & i = m + 1 \\ 0 & i \geq m + 2 \end{cases}$$

We will show the following statement,

Proposition 4.2.1. [Newton’s polynomial] Let $\tau \in \varphi(\text{SC}_m(X)$ and $\sigma \in \varphi(\text{SC}_n(X)$. Then

$$\partial^k (\tau \ast \sigma) = \sum_{i=0}^{k} q^{(m+1-k-i)} \cdot \left[\begin{array}{c} k \\ i \end{array}\right] \mathcal{N}^{k-i}(\tau) \ast \mathcal{N}^i(\sigma) \quad \forall \ k \geq 0$$

In order to do so, our plan is to check the stationary behavior which begins as soon as $k > \min\{m, n\}$; this will be listed in a sort of lemmas called the tail formulae. We now carry out the plan.
Lemma 4.2.2. [Tail formula #1] Given a simplex $\Delta^m \xrightarrow{\tau} X$ let $T_j = \tau(e_j)$ for $j = 0, \ldots, m$. Then

$$\partial^m(\tau) = [m]_q! \cdot \sum_{j=0}^{m} q^j T_{m-j}$$

[Proof] Let us apply twice the iteration rule of the border map [3.1.1] and reorder the indexes. We get

$$\partial^2(\tau) = \sum_{i=0}^{m-1} \sum_{j=0}^{m} q^{i+j} \partial_i \partial_j(\tau) = (1 + q) \sum_{0 \leq i \leq j \leq m-1} q^{i+j} \partial_i \partial_j(\tau)$$

Notice that the indexes i, j run over $0 \leq i \leq j \leq m - 1$. For $\partial^i(\tau)$ the indexes i_1, \ldots, i_k run over $0 \leq i_1 \leq \cdots \leq i_k \leq m - k + 1$. Finally, for $\partial^m(\tau)$ the indexes i_1, \ldots, i_m run over $0 \leq i_1 \leq \cdots \leq i_m = m - m + 1 = 1$. Therefore,

$$\partial^m(\tau) = [m]_q! \cdot \sum_{0 \leq i_1 \leq \cdots \leq i_m \leq 1} q^{i_1 + \cdots + i_m} \partial_{i_1} \cdots \partial_{i_m}(\tau)$$

$$= [m]_q! \left(\frac{q}{0^+ + 0 + m} \partial_0(\tau) + q \frac{q}{0^+ + 0 + 1} \partial_1 \partial_0(\tau) + \cdots + q \frac{q}{0^+ + \cdots + m} \partial_m(\tau) \right)$$

$$= [m]_q! \left(q \partial_0(\tau) + q \partial_1 \partial_0(\tau) + \cdots + q \partial_m(\tau) \right)$$

$$= [m]_q! \cdot \sum_{j=0}^{m} q^j T_{m-j}$$

□

Lemma 4.2.3. [Tail formula #2] Given two chains $\tau \in _SC_m(X)$ and $\sigma \in _SC_n(X)$,

$$\partial^m(\tau) \ast \partial^n(\sigma) = [m + 1]_q! \partial^m(\tau) \ast q [n + 1]_q! \partial^n(\sigma)$$

[Proof] By the bilinearity of the convex product and the linearity of the border map, we can assume that $\Delta^m \xrightarrow{\tau} X \leftarrow \Delta^n$ are two simplexes. By lemma [4.2.2] let us write

$$\partial^m(\tau) = [m]_q! \sum_{j=0}^{m} q^j T_{m-j} \hspace{1cm} \partial^n(\sigma) = [n]_q! \sum_{i=0}^{n} q^i S_{n-i}$$

in a suitable form. Then

$$\partial \left(\partial^m(\tau) \ast \partial^n(\sigma) \right) = \partial \left([m]_q! \sum_{j=0}^{m} q^j T_{m-j} \ast [n]_q! \sum_{i=0}^{n} q^i S_{n-i} \right)$$

$$= [m]_q! [n]_q! \sum_{j=0}^{m} \sum_{i=0}^{n} q^j q^i \partial (T_{m-j} \ast S_{n-i})$$

$$= [m]_q! [n]_q! \sum_{j=0}^{m} \sum_{i=0}^{n} q^j q^i (S_{n-i} + q \cdot T_{m-j})$$

$$= [m]_q! \left(\sum_{j=0}^{m} q^j \right) \left([n]_q! \sum_{i=0}^{n} q^i S_{n-i} \right) + q [n]_q! \left(\sum_{i=0}^{n} q^i \right) \left([m]_q! \sum_{j=0}^{m} q^j T_{m-j} \right)$$

$$= [m + 1]_q! \partial^m(\tau) + q [n + 1]_q! \partial^n(\sigma)$$

as desired. □
Lemma 4.2.4. [Tail formulæ #3] Let $\tau \in qSC_m(X)$ and $\sigma \in qSC_n(X)$. If $mn > 0$ then

\[
\partial^k (\partial^m(\tau) \ast \sigma) = \begin{cases}
[m+1]_q \cdot \left(\sum_{j=0}^{m} q^j T_{m-j} \right) \ast \sigma & 1 \leq k \leq n \\
[m+1]_q \cdot \left(\sum_{j=0}^{m} q^j \partial (T_{m-j} \ast \sigma) \right) & k = n + 1 \\
0 & \text{else}
\end{cases}
\]

[Proof] By the bilinearity of the convex product and linearity of the border map, it is enough to show it on the generators. Assume that σ, τ are simplexes. Let $T_j = \tau(e_j)$ for $j = 0, \ldots, m$. By (4.2.2) on $\partial^m(\tau)$, equation (11) at (4.2.1) on $T_j \ast \sigma$ for each j, the linearity of ∂ and the bilinearity of the cone-product;

\[
\partial (\partial^m(\tau) \ast \sigma) = \partial \left([m]_q \cdot \left(\sum_{j=0}^{m} q^j T_{m-j} \right) \ast \sigma \right) = [m]_q \cdot \sum_{j=0}^{m} q^j \partial (T_{m-j} \ast \sigma) = [m]_q \cdot \sum_{j=0}^{m} q^j (\sigma + q T_{m-j}) = [m]_q \cdot \sum_{j=0}^{m} q^j \partial (\tau) \ast \sigma = [m+1]_q \cdot \sigma + q \cdot \partial^m(\tau) \ast \partial (\sigma)
\]

This proves the equality for $k = 1$; for $2 \leq k \leq n$ apply this rule and use induction on k. For $k = n + 1$, by direct calculations

\[
\partial^{n+1} (\partial^m(\tau) \ast \sigma) = \partial \left(\partial^m(\tau) \ast \sigma \right) = \partial \left([m+1]_q \cdot \left(\sum_{j=0}^{m} q^j T_{m-j} \right) \ast \sigma \right) = [m+1]_q \cdot \left(\sum_{j=0}^{m} q^j \partial (T_{m-j} \ast \sigma) \right) = [m+1]_q \cdot \left(\sum_{j=0}^{m} q^j \partial (\tau) \ast \sigma + q \cdot \partial^{n+1} (\tau) \ast \partial (\sigma) \right)
\]

For the last term we now apply lemma (4.2.3). Then,

\[
\partial^{n+1} (\partial^m(\tau) \ast \sigma) = [m+1]_q \cdot \left(\sum_{j=0}^{m} q^j \partial (\tau) \ast \sigma + q \cdot \partial^{n+1} (\tau) \ast \partial (\sigma) \right)
\]

as desired. \qed

A similar expression can be obtained for $\partial^k (\tau \ast \partial^n (\sigma))$, though we will not need it here.

4.3 Proof of Proposition (4.2.1) We will proceed by double induction on $n + m$ and k. For $n + m = 0$ we have $n = m = 0$. Consider the following cases: $k = 0$ which is trivial, $k = 1$ which gives equation (10) at (4.2.1) for $k \geq 2$ we get $\partial^k (\tau \ast \sigma) = 0$ by a dimension argument. This proves (4.2.1) for $n + m = 0$ and $k \geq 0$. For $m + n > 0$ fix some simplexes τ, σ with respective dimensions m, n. Let us assume the inductive hypotheses, i.e. that (4.2.3) holds for any pair of simplexes τ', σ' with respective dimensions m', n' such that $m' + n' < m + n$. For $k = 0$ there is nothing to prove. For $k \geq \dim (\tau \ast \sigma) + 1 = m + n + 2$, by a dimension argument, the left side of the Newton’s polynomial at (4.2.1) vanishes. Also, all the terms $N^{k-1}(\tau) \ast N^n(\sigma)$ in the right side vanish since, for any $i \leq k$, we have $i \leq n \Rightarrow k - i > m$ and $k - i \leq m \Rightarrow i > n$, so the statement holds. Hence we only have to check (4.2.1) for $1 \leq k \leq m + n + 1$.

For $k = 1$ the statement of (4.2.1) is the Leibnitz rule (4.1.1). Notice that $m = \deg(\tau)$ so the power q^{m+1} in the statement of (4.1.1) depends on τ; i.e. $\partial(\tau \ast \sigma) = \partial(\tau) \ast \sigma + q^{\deg(\tau)+1} \tau \ast \partial(\sigma)$. Assume the inductive hypothesis for $k \leq \min\{m,n\} - 1$. Then, by the linearity of the border map,

$$\partial^{k+1}(\tau \ast \sigma) = \partial \left(\partial^k(\tau \ast \sigma) \right) = \partial \left[\sum_{i=0}^k q^{i(m+1-k+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial^{k-i}(\tau) \ast \partial^i(\sigma) \right] = \sum_{i=0}^k q^{i(m+1-k+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial^{k-i}(\tau) \ast \partial^i(\sigma)$$

Since $k \leq \min\{m,n\} - 1$, all the terms $\partial \left(\partial^{k-i}(\tau) \ast \partial^i(\sigma) \right)$ in the last sum satisfy the hypothesis of (4.1.1). Apply the Leibnitz rule to each of them. We get

$$\partial^{k+1}(\tau \ast \sigma) = \partial^{k+1}(\tau) \ast \sigma + \sum_{i=1}^k q^{i(1+i-m-k+i+1)} \cdot \left(\left[\begin{array}{c} k \\ i \end{array} \right] \cdot q^{i+1} \cdot \left[\begin{array}{c} k \\ i+1 \end{array} \right] \right) \partial^{k-i}(\tau) \ast \partial^{i+1}(\sigma) + \tau \ast \partial^{k+1}(\sigma)$$

By property (4.1.1) (3) the sum of q-combinatorial numbers can be arranged, so

$$\partial^{k+1}(\tau \ast \sigma) = \sum_{i=0}^{k+1} q^{i(1+i-m-k+i+1)} \cdot \left(\left[\begin{array}{c} k+1 \\ i+1 \end{array} \right] q^{i+1} \right) \partial^{k-i}(\tau) \ast \partial^{i+1}(\sigma)$$

as desired. We have proved (4.2.1) for $0 \leq k \leq \min\{m,n\}$.

For $\min\{m,n\} + 1 \leq k \leq m + n + 1$ consider the following cases.

- **$m < n$:** We check directly (4.2.1) for $k = m + 1 \leq n$. Notice that

$$\partial^{m+1}(\tau \ast \sigma) = \partial \left(\partial^m(\tau \ast \sigma) \right) = \partial \left(\sum_{i=1}^m q^{i(i+1)} \cdot \left[\begin{array}{c} m \\ i \end{array} \right] \partial^{m-i}(\tau) \ast \partial^i(\sigma) \right)$$

For $k = m$,

$$= \partial \left(\partial^m(\tau) \ast \sigma \right) + \sum_{i=1}^m q^{i(i+1)} \cdot \left[\begin{array}{c} m \\ i \end{array} \right] \partial^{m-i}(\tau) \ast \partial^i(\sigma)$$

linearity of ∂

$$= \left[m+1 \right] q^{1} \ast \sigma + q \partial^m(\tau) \ast \partial(\sigma) + \sum_{i=1}^m q^{i(i+1)} \cdot \sum_{i=1}^m \left[\begin{array}{c} m \\ i \end{array} \right] \partial^{m-i}(\tau) \ast \partial^{i+1}(\sigma) + q^{1} \partial^1(\tau) \ast \partial(\sigma) \ast \partial^1(\sigma)$$

Group similar terms

$$= \left[m+1 \right] q^{1} \ast \sigma + \sum_{i=1}^m q^{i(i+2)} \cdot \left(\left[\begin{array}{c} m \\ i+1 \end{array} \right] + q \cdot \left[\begin{array}{c} m+1 \\ i \end{array} \right] \right) \partial^{m-i}(\tau) \ast \partial^{i+1}(\sigma)$$

This proves (4.2.1) for $k = m + 1$. Let us assume again, by induction on k, that we have proved it for any integer from 0 to some $m + 1 \leq k \leq n$. Then, by linearity of the border map and the inductive hypothesis,

$$\partial^{k+1}(\tau \ast \sigma) = \partial \left(\partial^k(\tau \ast \sigma) \right) = \partial \left(\sum_{i=0}^k q^{i(m+1-k+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] N^{k-i}(\tau) \ast N^i(\sigma) \right) = \sum_{i=0}^k q^{i(m-k+1+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial \left(N^{k-i}(\tau) \ast N^i(\sigma) \right)$$

By definition of the Newton’s terms at (12) $N^{k-i}(\tau)$ vanishes for $k - i \geq m + 2$. Take only take the terms satisfying $0 \leq k - i \leq m + 1$; i.e. $k - m - 1 \leq i \leq k$. We get,

$$\partial^{k+1}(\tau \ast \sigma) = \sum_{i=k-m-1}^k q^{i(m-k+1+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial \left(N^{k-i}(\tau) \ast N^i(\sigma) \right)$$

$$= \left[\begin{array}{c} k \\ k - m - 1 \end{array} \right] q \partial^{m+1}(\tau) \ast \partial^{m-1}(\sigma) + \sum_{i=k-m}^k q^{i(m-k+1+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial \left(\partial^{k-i}(\tau) \ast \partial^i(\sigma) \right)$$

$$= \left[m+1 \right] q \left[\begin{array}{c} k \\ k - m - 1 \end{array} \right] q^{m}(\tau) \ast \partial^{m}(\sigma) + \left[\begin{array}{c} k \\ k - m \end{array} \right] \partial^{m}(\tau) \ast \partial^{m}(\sigma)$$

$$+ \sum_{i=k-m}^k q^{i(m-k+1+i)} \cdot \left[\begin{array}{c} k \\ i \end{array} \right] \partial \left(\partial^{k-i}(\tau) \ast \partial^i(\sigma) \right)$$
In the last expression, apply the tail formula (4.2.3) to the second term, and the Leibniz rule (4.1.7) to the terms in the last sum.

\[
\partial^{k+1} (\tau \ast \sigma) = [m + 1]_q \left[\frac{k + 1}{k - m} \right] q \partial^{m} (\sigma) + \sum_{i=k-m+1}^{k} \left[\frac{k}{i-1} \right] q \partial^{i} (\tau) + \sum_{i=k-m+1}^{k} \left[\frac{k}{i} \right] q \partial^{k+1} (\sigma) \partial^{i} (\tau)
\]

Regroup similar terms. Apply property (4.1.11) (3) on the \(q \)-combinatorial numbers;

\[
\partial^{k+1} (\tau \ast \sigma) = [m + 1]_q \left[\frac{k + 1}{k - m} \right] q \partial^{m} (\sigma) + \sum_{i=k-m+1}^{k} \left[\frac{k}{i-1} \right] q \partial^{i} (\tau) + \sum_{i=k-m+1}^{k} \left[\frac{k}{i} \right] q \partial^{k+1} (\sigma) \partial^{i} (\tau)
\]

Include the vanishing terms of the form \(N^{k-i+1} (\tau) \ast N^{i} (\sigma) \) for \(0 \leq i \leq k - m - 1 \). We obtain

\[
\partial^{k+1} (\tau \ast \sigma) = \sum_{i=0}^{k+1} q^{i(m-k+i)} \left[\frac{k+1}{i} \right] q N^{k-i+1} (\tau) \ast N^{i} (\sigma)
\]

This is the complete expression of the right term in (4.2.4) for \(k+1 \). Thus we have proved the statement for \(0 \leq k \leq n + 1 \). Finally, for \(n + 2 \leq k \leq m + n + 1 \) a similar argumentation can be carried out. The tail formulæ must be used in both extremes of the sum.

* \(m \geq n \): We leave the details to the reader.

\[\square \]

4.3.1. Zeroth \(q \)-homology group, augmentation

Since \(\Delta^0 = \{e_0\} \) is a singleton, each 0-dimensional simplex \(\sigma \) in \(X \) can be identified to its image point \(x = \sigma(e_0) \in X \). The 0-th module of \(q \) chains is then

\[
qSC_0 (X) = \bigoplus_{\sigma \in X_0} \mathbb{Z} [q] \cdot \sigma \cong \bigoplus_{x \in X} \mathbb{Z} [q] \cdot x
\]

Consider the morphism

\[
qSC_0 (X) \overset{\epsilon}{\longrightarrow} \mathbb{Z} [q] \quad \sum_i \alpha_i x_i \mapsto \sum_i \alpha_i
\]

Given a \(m \)-simplex \(\Delta^m \overset{\tau}{\longrightarrow} X \) the element \(\partial^m (\tau) \) is a 0-dimensional chain. Let us write \(P_j = \tau(e_j) \) for \(j = 0, \ldots, m \). Applying (4.1.2) we get

\[
\epsilon (\partial^m (\tau)) = [m]_q ! \cdot \sum_{j=0}^{m} q^j = [m + 1]_q !
\]
In particular, for $m = N - 1$ we get $\epsilon \left(\partial^{N-1}(\tau) \right) = 0$ and

\[(12) \quad \mathcal{H}_{1,0}(X) \xrightarrow{\gamma} \mathbb{Z}[q] \quad [\tau] \mapsto \epsilon(\tau)\]

is a well defined linear surjective morphism.

The constant map $X \xrightarrow{\text{id}} P$ induces a morphism of N-complexes

\[\varphi SC_n(X) \xrightarrow{\gamma} \varphi SC_n(P)\]

called the **augmentation**. The reduced q-homology

\[\tilde{q}H_{m,n}(X) = \ker \left\{ \varphi H_{m,n}(X) \xrightarrow{\gamma} \varphi H_{m,n}(P) \right\}\]

is the kernel of the corresponding homology morphism. By equation (6) at §3.3,

\[qH_{m,n}(X) = \begin{cases} \mathbb{Z}[q] \oplus \tilde{q}H_{m,n}(X) & 1 \leq n = m \leq N - 2 \\ \tilde{q}H_{m,n}(X) & \text{else} \end{cases}\]

A reduced q-homology sequence of the pair

\[\cdots \xrightarrow{\tilde{q}H_{m,n}(A)} \tilde{q}H_{m,n}(X) \xrightarrow{qH_{m,n}(A)} \varphi H_{m,n}(X, A) \xrightarrow{\partial} \tilde{q}H_{-m,n-m}(A) \xrightarrow{\cdots}\]

can also be deduced.

5. **q-Analog Singular Homology of Convex Spaces**

We arrive to the main result of this article.

5.1. **The index map.** In complete analogy with the usual case ($N = 2, q = -1$), the index map is, in general, the morphism

\[(\varphi SC_*(X), \partial) \xrightarrow{\gamma} (\mathbb{Z}[q], [\ast]_q)\]

that sends each n-simplex to $1 \in \mathbb{Z}[q]$ in the corresponding degree, for $0 \leq n \leq N - 2$; and vanishes for $n \geq N - 1$.

Theorem 5.1.1. Let $X \subset \mathbb{R}^{N-1}$ be a convex space. Then the index map \(\varphi SC_*(X) \xrightarrow{\eta} \mathbb{Z}[q]\) induces an isomorphism in N-homology.

[Proof] We follow essentially the same argumentation of [2, p.38]. We will define a map

\[\mathbb{Z}[q] \xrightarrow{\hat{\rho}} \varphi SC_*(X)\]

The composition $\eta \hat{P} = id$ must be the identity map on the $(N - 1)$-complex $(\mathbb{Z}[q], [\ast])$; so $\hat{P}(1) = \nu_n$ will be a single singular n-simplex for $0 \leq n \leq N - 2$ and it will vanish for $n \geq N - 1$. The other composition $\hat{P}\eta$ will be N-homotopic to the identity map id on $\varphi SC_*(X)$ in the sense of [2, 3]. In order to explain better how we will pick the ν_n’s we will construct a homotopy operator

\[\varphi SC_n(X) \xrightarrow{\kappa} \varphi SC_{n-N+1}(X)\]

and show how it works. We proceed by steps.
• Definition of K: Fix some singular $N - 2$-dimensional simplex $\Delta^{N-2} \rightarrow X$. Since N is a prime integer, $[k]_q$ is a unit in $\mathbb{Z}[q]$ for $1 \leq k \leq N - 1$ and therefore $[N - 1]_q!$ is also a unit; see §1.1.1(2). We define

$$K(\sigma) = \frac{1}{[N - 1]_q!} \cdot (i \ast \sigma)$$

(13)

Up to the correction by the constant, K is essentially the convex product of i and σ; and it can be uniquely extended to $qSC_\ast \left(\mathbb{R}^{N-1} \right)$ by linearity.

• K is a N-homotopy: We verify that K satisfies [2.4] Fix a singular simplex $\sigma \in qSC_n(X)$. By §4.2.1 we have

$$\partial_k K \partial^N_{N-1-k-1}(i) = 1 \cdot \sum_{i=0}^{k} \left(\frac{k}{i} \right)_q \cdot N^{k-1}(i) \ast N^j \left(\partial^N_{N-1-k-1}(\sigma) \right)$$

Although $\partial^j(i)$ is a chain and not a simplex, since $\partial^j \left(\partial^i(\sigma) \right) = \partial^{i+j}(\sigma)$ we will assume the following convention,

$$\mathcal{N}^j \left(\partial^i(\sigma) \right) = \left\{ \begin{array}{ll} \partial^{i+j}(\sigma) & j \leq n - i \\ [n + 1]_q! & j = n - i + 1 \\ 0 & \text{else} \end{array} \right.$$

Therefore

$$\partial_k K \partial^N_{N-k-1}(i) = 1 \cdot \sum_{i=0}^{k} \left(\frac{k}{i} \right)_q \cdot N^{k-1}(i) \ast N^{N-k-1+i}(\sigma)$$

Taking sums in both sides,

$$\sum_{k=0}^{N-1} \partial_k K \partial^N_{N-k-1}(i) = 1 \cdot \sum_{k=0}^{N-1} \sum_{i=0}^{k} \left(\frac{k}{i} \right)_q \cdot N^{k-1}(i) \ast N^{N-k-1+i}(\sigma)$$

Let us reorder and group all similar terms taking $l = k - i$. We arrive to the following expression

$$\sum_{k=0}^{N-1} \partial_k K \partial^N_{N-k-1}(i) = \frac{1}{[N - 1]_q!} \cdot \sum_{i=0}^{N-1} \alpha_i \mathcal{N}^j(i) \ast \mathcal{N}^{N-1-i}(\sigma)$$

(14)
Let us look for instance the following array of the coefficients $\alpha_{k,l}$ for $N = 7$. The vertical sums of the entries in the table correspond to the values of $\alpha_{l,i}$.

![Table of the coefficients $\alpha_{k,l}$ for $N = 7$. Each horizontal row corresponds to some $0 \leq k \leq 6$ and each vertical column corresponds to a fixed $l = (k - i)$. The powers of q have been simplified with the identity $q^7 = 1$.](image)

These coefficients can be simplified by using the properties of q-numbers. A simple inspection suggests that $\alpha_{l} = 0$ for $0 \leq l \leq N - 2$. This is, indeed, the case. Let us write

$$\alpha_l = \sum_{i=k-1}^{l} \alpha_{k,i} = \sum_{i=k-1}^{l} q^{i(N-1-k+i)} \left\{ \begin{array}{c} k \\ i \end{array} \right\}_q$$

$$= \sum_{i=0}^{N-l-1} q^{i(N-1-i)} \left\{ \begin{array}{c} l+i \\ i \end{array} \right\}_q$$

$$= \sum_{i=0}^{s} q^{i} \cdot \left[\begin{array}{c} N-1-s+i \\ i \end{array} \right]_q$$

$$= \sum_{i=0}^{s} q^{i} \cdot \left[\begin{array}{c} N-1-s+i \\ N-1-s \end{array} \right]_q = \beta_s$$

symmetry of combinatorials

We check that $\beta_s = \alpha_{N-1-s} = 0$ for $1 \leq s \leq N - 1$. For $s = 1$,

$$\beta_1 = q^0 + q^1 \left[\begin{array}{c} N-1 \\ N-2 \end{array} \right]_q = 1 + q [N-1]_q = [N]_q = 0 = \alpha_{N-2}$$
Assume that $\beta_s = 0$ for some $s \leq N - 2$. Then,

$$\beta_{s+1} = \sum_{i=0}^{s+1} q^{(s+1)\iota} \left[\begin{array}{c} N - 2 - s + i \\ N - 2 - s \end{array} \right] = \sum_{i=0}^{s+1} q^{i\iota} \left[\begin{array}{c} N - 2 - s + i \\ N - 2 - s \end{array} \right]$$

by definition

$$= 1 + \sum_{i=1}^{s+1} q^{i\iota} \left[\begin{array}{c} N - 1 - s + i \\ N - 1 - s \end{array} \right] - \left[\begin{array}{c} N - 2 - s + i \\ N - 1 - s \end{array} \right]$$

by (11.1) (3)

$$= 1 + \sum_{i=1}^{s+1} q^{i\iota} \left[\begin{array}{c} N - 1 - s + i \\ N - 1 - s \end{array} \right] - \sum_{i=1}^{s+1} q^{i\iota} \left[\begin{array}{c} N - 2 - s + i \\ N - 1 - s \end{array} \right]$$

$$= 1 + \left((-1)^j + \sum_{i=0}^s q^{i\iota} \left[\begin{array}{c} N - 1 - s + i \\ N - 1 - s \end{array} \right] + q^{(s+1)\iota} \left[\begin{array}{c} N \\ N - 1 - s \end{array} \right] \right)$$

$$- \sum_{i=1}^{s+1} q^{i\iota} \left[\begin{array}{c} N - 2 - s + i \\ N - 1 - s \end{array} \right]$$

split the first sum

$$= \sum_{i=0}^s q^{i\iota} \left[\begin{array}{c} N - 1 - s + i \\ N - 1 - s \end{array} \right] - \sum_{i=0}^s q^{(s+1)\iota} \left[\begin{array}{c} N - 1 - s + j \\ N - 1 - s \end{array} \right]$$

$[N]_q = 0, i = j + 1$(2nd sum)

$$= (1 - q^{\iota})\beta_s = 0$$

by definition

By equation (14), the definition of the Newton’s terms and a dimension argument on σ, we deduce that

$$\sum_{k=0}^{N-1} \partial^k K \partial^{N-k-1} (\sigma) = \frac{\alpha_{N-1}}{[N-1]_q} N^{N-1} (i) * X^\sigma (\sigma) = \sigma$$

whenever $n = \dim(\sigma) \geq N - 1$, and the whole sum in the left term vanishes when $n < N - 1$. In other words,

$$\sum_{k=0}^{N-1} \partial^k K \partial^{N-k-1} (\sigma) = \begin{cases} \sigma & \text{dim}(\sigma) \geq N - 1 \\ 0 & \text{else} \end{cases}$$

\[\square\]

Acknowledgments

G. Padilla would like to thank Professors E. Becerra, V. Tapia and B. Uribe for some helpful conversations, so as A. Barbosa and D. Maya for their remarks on a previous draft manuscript. This article was partially supported by the Universidad Nacional de Colombia.

References

[1] BREDON, G. Topology and Geometry. Graduate Texts in Mathematics Vol. 139 Springer-Verlag, New York-Heidelberg- Berlin (1993).

[2] DOLD, A. Lectures on Algebraic Topology. Reprint of the 1972 Ed. Classics in Math. Springer-Verlag (1995).

[3] DUBOIS-VIOLETTE, M. Generalized homologies for $d^N = 0$ and graded q-differential algebras. Secondary calculus and cohomological physics. Contemp. Math. 219, 69-79 (1998).

[4] DUBOIS-VIOLETTE, M. & HENNEAUX, M. Tensor fields of mixed Young symmetry type and N-complexes. Arxiv. Math. q-Alg. 0110088, (2001).

[5] HUEBSCHMANN, J.; RUDOLPH, G. & SCHMIDT, M. A gauge model for quantum mechanics on a stratified space. Arxiv.math

[6] KAPRANOVA, M. On the q-Analog of Homological Algebra. Arxiv Math. AT. 9611005. (1996).

[7] TANRé, D. Homotopie rationnelle: Modèles de Chen, Sullivan. Springer-Verlag. LNM vol. 1025. (1983).
