ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II λ2800 EMISSION LINE

Jian-Guo Wang1,2,3,4, Xiao-Bo Dong2,5, Ting-Gui Wang2,5, Luis C. Ho6, Weimin Yuan1, Huiyuan Wang2,5, Kai Zhang2,5, Shaohua Zhang2, and Hongyan Zhou2,5

1 National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011, China; wangjg@ynao.ac.cn, wmy@ynao.ac.cn
2 Key Laboratory for Research in Galaxies and Cosmology, The University of Sciences and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China; xbdong@ustc.edu.cn, twang@ustc.edu.cn
3 Department of Physics, Yunnan University, Kunming, Yunnan 650031, China
4 Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, P.O. Box 3908, Beijing 100039, China
5 Center for Astrophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
6 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA; lho@obs.carnegiescience.edu

Received 2009 July 13; accepted 2009 October 30; published 2009 December 4

ABSTRACT

We investigate the relationship between the linewidths of broad Mg II λ2800 and Hβ in active galactic nuclei (AGNs) to refine them as tools to estimate black hole (BH) masses. We perform a detailed spectral analysis of a large sample of AGNs at intermediate redshifts selected from the Sloan Digital Sky Survey, along with a smaller sample of archival ultraviolet spectra for nearby sources monitored with reverberation mapping (RM). Careful attention is devoted to accurate spectral decomposition, especially in the treatment of narrow-line blending and Fe ii contamination. We show that, contrary to popular belief, the velocity width of Mg II tends to be smaller than that of Hβ, suggesting that the two species are not cospatial in the broad-line region. Using these findings and recently updated BH mass measurements from RM, we present a new calibration of the empirical prescriptions for estimating virial BH masses for AGNs using the broad Mg II and Hβ lines. We show that the BH masses derived from our new formalisms show subtle but important differences compared to some of the mass estimators currently used in the literature.

Key words: black hole physics – galaxies: active – quasars: emission lines – quasars: general

Online-only material: color figures

1. INTRODUCTION

It is generally accepted that active galactic nuclei (AGNs) are powered by the release of gravitational energy from material accreted onto supermassive black holes (BHs). The determination of BH mass (MBH) is crucial for understanding the AGN phenomena, the cosmological evolution of BHs, and even the co-evolution of AGNs and their host galaxies. Yet, for such distant objects, it is currently impossible to obtain direct measurement of MBH using spatially resolved stellar or gas kinematics. Fortunately, significant advances have been made in recent years from reverberation mapping (RM) studies of nearby Seyfert galaxies and quasi-stellar objects (QSOs; e.g., Wandel et al. 1999; Kaspi et al. 2000; Peterson et al. 2004). First, the anti-correlation between the radius of the broad-line region (BLR) and the velocity width of broad emission lines for single objects supports the idea that the BLR gas is virialized and that its velocity field is dominated by the gravity of the BH (Peterson & Wandel 1999, 2000; Onken & Peterson 2002). Second, the size of the BLR scales with the continuum luminosity (Kaspi et al. 2000, 2005), approximately as R ∝ L0.5 (Bentz et al. 2006, 2009); the R–L relation offers a highly efficient procedure for estimating the BLR size without carrying out time-consuming RM observations. And third, the BH masses estimated by RM are roughly consistent (Gebhardt et al. 2000b; Ferrarese et al. 2001; Nelson et al. 2004; Onken et al. 2004) with the predictions from the tight correlation between MBH and bulge stellar velocity dispersion established for inactive galaxies (the MBH−σ relation; Gebhardt et al. 2000a; Ferrarese & Merritt 2000). These developments imply that we can estimate the BH mass in type 1 (broad-line, unobscured) AGNs by simple application of the virial theorem, MBH = f Rv2 / G, where f is a geometric factor of order unity that depends on the geometry and kinematics of the line-emitting region, R is the radius of the BLR derived from the AGN luminosity, and v is some measure of the virial velocity of the gas measured from single-epoch spectra. The feasibility of obtaining R and v from single-epoch spectra enables MBH to be estimated very efficiently for large samples of AGNs, especially for luminous quasars at higher redshift that typically exhibit only slow and small-amplitude variability (e.g., Kaspi et al. 2007), with the assumption that the virial relation is independent of redshift and can be extrapolated to higher luminosities and masses. In practice, for those AGNs that have measurements of σ*, f is determined empirically by scaling the virial masses to the MBH−σ relation of inactive galaxies (e.g., Onken et al. 2004). Implicit in this practice is the assumption—one open to debate (Greene & Ho 2006; Ho et al. 2008; Kim et al. 2008)—that active and inactive BHs should follow the same MBH−σ relation. The most widely used estimator for v is the full width at half-maximum (FWHM) of the line. Now, a large number of formalisms to estimate MBH from single-epoch spectra have been proposed in the recent literature, using different broad emission lines optimized for different redshift regimes probed by (widely available) optical spectroscopy. At low redshifts, the lines of choice are Hβ (Kaspi et al. 2000; Collin et al. 2006; Vestergaard & Peterson 2006) or Hα (Greene & Ho 2005). At intermediate redshifts, Mg II λ2800 is used (McLure & Jarvis 2002), while at high redshifts, one has to resort to C IV λ1549 (Vestergaard 2002; Vestergaard & Peterson 2006). These formalisms are ultimately calibrated against RM masses based on the Hβ BLR radius and linewidth measured from the variable (rms) spectra (Peterson et al. 2004). Because
the Hβ linewidth is typically smaller in the rms spectra than in the single-epoch or mean spectra (Vestergaard 2002; Collin et al. 2006; Sulentic et al. 2006), some authors have proposed that the FWHM used in the Hβ-based formalisms should be further corrected to obtain unbiased M_{BH} estimates (Collin et al. 2006; Sulentic et al. 2006).

As for the Mg β-based formalisms, because there are very few RM experiments of the Mg β line, they are either based on the RM data for Hβ (e.g., McLure & Jarvis 2002; McLure & Dunlop 2004) or calibrated against the Hβ formalisms themselves (e.g., Kollmeier et al. 2006; Salvianter et al. 2007). A strong, underlying assumption is that Mg β and Hβ are emitted from the same location in the BLR and have the same linewidth (see also Onken & Kollmeier 2008). In support of this assumption, some authors find that Mg β and Hβ indeed have very similar linewidths (e.g., McLure & Jarvis 2002; McLure & Dunlop 2004; Shen et al. 2008; also cf. Salvianter et al. 2007). However, there are conflicting results in the literature: Corbett et al. (2003) claimed that Mg β is generally broader than Hβ, whereas Dietrich & Hamann (2004) came to an opposite conclusion. Certainly, the most direct way to settle this issue is through direct RM of the Mg β line. So far there are only two objects that have successful Mg β RM, NGC 5548 (Clavel et al. 1991; Dietrich & Kollatschny 1995) and NGC 4151 (Metzroth et al. 2006). These studies tentatively suggest that Mg β responds more slowly to continuum variations than Hβ, implying that the Mg β-emitting region is larger than that radiating Hβ.

Thus, there are still some important open questions regarding the robustness of M_{BH} measurements based on Mg β. What is the relation between the linewidths of Hβ and Mg β? Are estimates of M_{BH} based on Mg β consistent with those based on Hβ? These basic questions are critical for understanding the systematic uncertainties in studies of the cosmological evolution of BHs (cf. Shen et al. 2008; McGill et al. 2008; Denney et al. 2009a). To address the above questions, we perform a detailed comparison of the widths of the Mg β and Hβ lines using single-epoch spectra for a large, homogeneous sample of Seyfert 1 nuclei and QSOs at intermediate redshifts culled from the Sloan Digital Sky Survey (SDSS; York et al. 2000). We further compare single-epoch Mg β linewidths with Hβ linewidths measured from the rms spectra of AGNs with RM observations, finding systematic deviations between the two. We present a recalibration of the Mg β virial mass estimator and compare our formalism with others in the literature.

This paper adopts the following set of cosmological parameters: $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$.

2. SAMPLE AND DATA ANALYSIS

2.1. The Samples

The sample of best-studied Hβ emission lines is the one compiled by Peterson et al. (2004) for RM studies of 35 low-redshift AGNs. To compare Hβ and Mg β for this sample, we located usable ultraviolet (UV) spectra for 29 sources, 16 from the Hubble Space Telescope (HST) and 13 from the International Ultraviolet Explorer (IUE) data archives. This sample will be used to study the relationship between single-epoch Mg β linewidths and Hβ linewidths measured from rms spectra, and to fit a new M_{BH} formalism based on single-epoch Mg β.

We also selected Seyfert 1 galaxies and QSOs in the redshift range 0.45 $< z <$ 0.75 from the Fifth Data Release (DR5) of the SDSS spectroscopic database (Adelman-McCarthy et al. 2007). Within this redshift range, both Hβ and Mg β lie within the SDSS spectral coverage. To ensure accurate measurement of both lines, we only select objects with a mean signal-to-noise ratio (S/N) ≥ 20 per pixel in both the Hβ (4600–5100 Å) and the Mg β (2700–2900 Å) regions. We discarded 26 spectra that have either broad absorption lines or too many narrow absorption lines, or for which the Hβ or the Mg β regions were corrupted by bad pixels. The remaining 495 objects have spectra that can be well fitted, as confirmed by visual inspection. This sample will be used to investigate the FWHM relation between Mg β and Hβ in single-epoch spectra and to compare our Mg β formalism with others in the literature.

2.2. Spectral Fitting

The spectra are first corrected for Galactic extinction using the extinction map of Schlegel et al. (1998) and the reddening curve of Fitzpatrick (1999). Then the spectra are fitted using an Interactive Data Language (IDL) code based on MPFIT (Markwardt 2009), which performs χ^2-minimization using the Levenberg–Marquardt technique. Bad data are masked during the fitting.

To measure the Hβ line, we perform continuum subtraction and emission-line fitting following the method described in detail in Dong et al. (2008). We first fit simultaneously the featureless nonstellar continuum (assumed to be a power law), the Fe β multiplet emission, and other emission lines in the wavelength range 4200–5600 Å, giving emphasis on the proper determination of the local pseudocontinuum (continuum + Fe β emission). For spectra with fits having a reduced $\chi^2 > 1.1$ around Hβ (4750–5050 Å), a refined fit of the emission-line profiles is performed to the pseudocontinuum-subtracted spectra using the code described in Dong et al. (2005). Each line of the [O III] $\lambda\lambda$4959, 5007 doublet is modeled with two Gaussians, one accounting for the line core and the other for a possible blue wing as seen in many objects. The doublet lines are assumed to have the same redshifts and profiles, and the flux ratio λ5007/λ4959 is fixed to the theoretical value of 3. The narrow component of Hβ is fitted with one Gaussian, assumed to have the same width as the line core of [O III] λ5007. The broad component of Hβ is fitted with as many Gaussians as statistically justified (see Dong et al. 2008 for details).

To measure the Mg β line, we adopt the following procedure. We first obtain an initial estimate of the nonstellar featureless continuum by fitting a simple power law,

$$f_{PL}(\lambda; a, \beta) = a \left(\frac{\lambda}{2200 \text{ Å}}\right)^\beta,$$

(1)
to the data in several continuum windows near 2200, 3000, 4000, and 4200 Å that suffer little from emission-line contamination, if available. Then, the power-law local continuum, a Balmer continuum, and an Fe β emission template, which together constitute the so-called pseudocontinuum, are fitted simultaneously. The fitting is performed in the restframe wavelength range 2200–3500 Å, if available, with the small region contaminated by bad pixels. The fitting range is set by the wavelength coverage of the UV Fe β template, $f^{B94}(\lambda)$, which was generated by Tsuzaki et al. (2006) based on their measurements of I Zw 1. In the wavelength region covered by Mg β emission, they employed a semi-empirical iteration procedure to build the template. They first generated a theoretical Fe β model spectrum with the photoionization code CLOUDY (Ferland et al. 1998) and subtracted it from the observed I Zw 1 spectrum around Mg β. Then the Mg β doublet was fit assuming
As in Dietrich et al. (2002), the Balmer continuum is assumed as follows:

\[f_{\text{Fe}^\text{II}}(\lambda; c, v_{\text{shift}}, \sigma_g) = c \cdot f_{\text{PL}}(\lambda, v_{\text{shift}}) \otimes G(\lambda, \sigma_g). \]

As in Dietrich et al. (2002), the Balmer continuum is assumed to be produced in partially optically thick clouds with a uniform temperature,\(^7\)

\[f_{\text{BaC}}(\lambda; d, T_e, \tau_{\text{ini}}) = d B_0(\lambda, T_e) (1 - e^{-\tau_{\text{ini}}}) \quad \lambda \leq \lambda_{\text{BE}} \]

where \(\lambda_{\text{BE}} = 3646 \text{ Å} (3.4 \text{ eV}) \), \(\tau_{\text{ini}} \) is the optical depth at \(\lambda_{\text{BE}} \), and \(B_0(\lambda, T_e) \) is the Planck blackbody spectrum at the electron temperature \(T_e \).

To sum up, the full model for the pseudocontinuum is as follows:

\[f(\lambda) = f_{\text{PL}}(\lambda; a, \beta) + f_{\text{Fe}^\text{II}}(\lambda; c, v_{\text{shift}}, \sigma_g) + f_{\text{BaC}}(\lambda; d, T_e, \tau_{\text{ini}}). \]

The fitting is performed in logarithmic wavelength space. During the fitting, the normalization \(a \) and slope \(\beta \) of the power-law continuum, the normalization \(c \) and velocity shift \(v_{\text{shift}} \) and broadening velocity \(\sigma_g \) of the Fe \(\text{II} \) emission, and the parameters \(d, T_e \), and \(\tau_{\text{ini}} \), of the Balmer continuum are set to be free parameters.

We note that in the fitting range of 2200–3500 Å the Balmer continuum is hard to be constrained and separated from the power-law continuum and Fe \(\text{II} \) emission (cf. Figure 8 of Tsuchuki et al. 2006). In this work, we are not concerned with the properties of the Balmer continuum, but with the proper separation of the power-law continuum, Fe \(\text{II} \), and Mg \(\text{II} \). To minimize the effect of the possible poor fitting of Balmer continuum on the determination of the power-law continuum, Fe \(\text{II} \), and Mg \(\text{II} \), we constrain the power-law continuum parameters in such a way that they vary only around the best-fit values obtained from the first step, by a factor of \(<10\%\) for the normalization \(a \) and \(<20\%\) for the slope \(\beta \). During this step, we assign additionally larger weights to the regions 2400–2650 Å and 2920–2990 Å in order to improve the fit for the Fe \(\beta \) emission surrounding Mg \(\text{II} \) (cf. Section 2.3 of Dong et al. 2008).

Once the pseudocontinuum is fitted and subtracted, the Mg \(\text{II} \) emission line is fitted in the range of 2700–2900 Å, if available. For the SDSS sample, there are a few cases where a small number of narrow absorption lines are present around the Mg \(\text{II} \) emission line. To further eliminate the absorption lines in these objects, we first fit the Mg \(\text{II} \) emission line with one Gaussian, and then mask those pixels of absorption features deviating strongly from the model. The Mg \(\text{II} \) line is fitted in the following way. Each of the two Mg \(\text{II} \) λλ2796, 2803 doublet lines is modeled with two components, one broad and the other narrow. The broad component is a truncated five-parameter Gauss–Hermite series (van der Marel & Franx 1993; see also Salviander et al. 2007); the narrow component is a single Gaussian. The broad components of the doublet lines are set to have the same profile, with the flux ratio λ2796/λ2803 set to be between 2:1 and 1:1 (Laor et al. 1997), and the doublet separation set to the laboratory value. The same prescription is applied to the narrow components, with the following additional constraints: FWHM \(<900 \text{ km s}^{-1} \) and flux \(<10\%\) of the total Mg \(\text{II} \) flux (Wills et al. 1993; see also McLure & Dunlop 2004). The fitting results for all the 495 objects are reasonable according to our visual inspection finally. The FW HM value is measured from the Gauss–Hermite model of Mg \(\text{II} \) λ2796. The monochromatic flux of the continuum is measured from the fitted power law.

There are several other emission lines in the fitting region, identified from the composite SDSS QSO spectrum (see Table 2 of Vanden Berk et al. 2001); yet, because of their weakness, we simply masked them out in the fit. Because of the limited wavelength coverage of the RM sample, we cannot separate the Balmer continuum from the power-law continuum. Thus, the Balmer continuum was not included in the fits for this sample. Additionally, there are deep narrow absorption features around Mg \(\text{II} \) in the spectra of NGC 3227, NGC 3516, NGC 3783, and NGC 4151 in the RM sample. Each of the absorption features is fitted simultaneously with a Gaussian when fitting the Fe \(\text{II} \) emission line.

We estimate the measurement uncertainties of the parameters using the bootstrap method\(^8\) described in Dong et al. (2008, Section 2.5). The estimated 1\(\sigma \) errors for the broad-line fluxes are typically 10\% for Mg \(\text{II} \) and 8\% for H\(\beta \), while the errors on the broad-line FW HM are \(~20\%\) for Mg \(\text{II} \) and \(~15\%\) for H\(\beta \). The power-law continua have uncertainties of 8\% for the slope and 5\% for the normalization. The above discussion does not account for possible systematic errors resulting from the subtraction of the continuum or our treatment of the Fe \(\text{II} \) and narrow lines.

Figure 1 shows two examples of the fits. The continuum and emission-line parameters for the RM and SDSS samples are listed in Tables 1 and 2, respectively. The data and fitting parameters are available online for the decomposed spectral components (continuum, Fe \(\text{II} \), and other emission lines).

2.3. Regression Methods

In the next section, we will fit the linewidth relations and BH mass estimators using several regression methods. The purpose of using these different methods is for ease of comparison with results in the literature, and to investigate possible differences in the fitting results caused by the different methods. Here we briefly summarize the regression methods used.

1. Ordinary least-squares (OLS), which is a least-squares regression method without considering measurement errors.

2. Weighted least-squares (WLS), which takes into account only measurement uncertainties in the dependent variable.

\(^7\) We do not account for the velocity broadening of the Balmer continuum, because the Balmer continuum in our fitting range is insensitive to this effect.

\(^8\) To estimate the errors on the fitted parameters, we generate 500 spectra by randomly combining the scaled model emission lines of one object (denoted as “A”) to the emission-line subtracted spectrum of another object (denoted as “B”). The emission-line model of object “A” is scaled in such a way that it has the same broad Mg \(\text{II} \) flux as object “B.” In order to minimize changes in S/N within the emission-line spectral regions in the simulated spectra. Then, we fit the simulated spectra following the same procedure as described in Section 2.2. For each parameter, we consider the error typical of our sample to be the standard deviation of the relative difference between the input and the recovered parameter values. These relative differences turn out to be normally distributed for each of the parameters concerned.

\(^9\) Available at http://staff.nsc.edu.tw/~nbdong/Data_Release/MgII_Hbeta/, together with auxiliary code to explain the parameters and to demonstrate the fitting.
3. FITexy (Press et al. 1992), which numerically solves for the minimum orthogonal χ^2 using an interactive root-finding algorithm. It accounts for measurement uncertainties in both coordinates, but does not account for intrinsic scatter.

4. FITexy_T02, the version of FITexy modified by Tremaine et al. (2002), accounts for possible intrinsic scatter in the dependent variable by adding in quadrature a constant to the error value so as to obtain a reduced χ^2 of 1.

5. Gaussfit (McArthur et al. 1994), which implements generalized least-squares using the robust Householder Orthogonal Transformations (Jefferys 1980, 1981). It can handle errors in both coordinates, but does not account for intrinsic scatter.

6. The bivariate correlated errors and intrinsic scatter (BCES) regression method (Akritas & Bershady 1996), which accounts for measurement errors on both coordinates in the fit using bivariate correlated errors, and possible intrinsic scatter (but does not output any quantification of this scatter). The results of the two symmetrical versions, bisector and orthogonal, are used in this paper.

7. LINMIX_ERR (Kelly 2007), which accounts for measurement errors, nondetections, and intrinsic scatter by adopting a Bayesian approach to compute the posterior probability distribution of parameters, given observed data. We also consider the multivariate extension, MLINMIX_ERR.

As we find below, most of the above regression methods give consistent results. For the linewidth–linewidth relationships, since there is no prior knowledge about which variable is independent and which is dependent, we adopt the results given by the BCES orthogonal method, which treats both variables symmetrically. For the BH mass scaling relations, we adopt formally the results given by the LINMIX_ERR method, since it is argued to be among the most robust regression methods with the possibility of reliable estimation of intrinsic dispersion (Kelly 2007).

For some of the regression methods listed above no intrinsic scatter (σ_{int}) can be inferred. We can give a rough yet simple estimate of σ_{int}^2 by deducting the contribution of the measurement errors from the variance in the regression residuals (σ_{tot}^2), by using an approximate relation $\sigma_{\text{int}}^2 = \langle \sigma^2 \rangle - \langle \sigma_m \rangle^2$, where $\langle \sigma_m \rangle$ is the median of the total measurement errors computed from $\sigma_m = \sigma_x + \text{slope} \cdot \sigma_z$. If σ_{int} is smaller than $\langle \sigma_m \rangle$, σ_{int} was set to be 0. As a check, this rough estimate can be compared with the intrinsic scatter given by some of the regression methods that provide such a measure.

3. RESULTS

The main motivation of this work is to investigate whether reliable BH masses can be estimated using the Mg II line as a virial velocity indicator. Linewidths are commonly parameterized as FWHM, or sometimes as σ_{line}—the line dispersion or second moment of the line profile (Peterson et al. 2004). Both quantities have intrinsic strengths and weaknesses (see Section 3 of Peterson et al. 2004). Collin et al. (2006), in particular, argued that the use of FWHM rather than σ_{line} introduces systematic bias in M_{BH} estimates. Although σ_{line} is a better tracer of virial velocity than FWHM in rms spectra (Peterson et al. 2004), the line dispersion is very sensitive to measurement errors in the line wings, making it especially susceptible to inaccuracies caused by deblending and subtraction of Fe II and other emission lines, effects that are particularly significant in mean and single-epoch spectra. By contrast, the FWHM is less prone to these effects; it is more sensitive to corrections for the narrow-line component, which, fortunately, is quite weak for Mg II (see Section 4.1). In this work, we opt to use the FWHM to parameterize the linewidth.

3.1. Single-epoch Mg II FWHM versus Hβ FWHM

We first investigate the relation between the FWHM of Mg II and Hβ, using single-epoch data from our SDSS sample. The relation is illustrated in Figure 2. A strong correlation is present, but apparently deviates from one-to-one. This trend has been noticed in the literature, but it was less prominent because of the narrower dynamical range in velocity covered in previous studies (e.g., Salviander et al. 2007; Hu et al. 2008). With our high-quality data, we can now fit a strict relation. We perform a linear regression in log–log space using the methods described in Section 2.3; the results are listed in Table 3. As can be seen, most of the methods give mutually consistent results. For our subsequent analysis, we adopt the BCES (orthogonal) method because it treats both variables symmetrically (Section 2.3). We find

$$\log \left[\frac{\text{FWHM(Mg II)}}{1000 \text{ km s}^{-1}} \right] = (0.81 \pm 0.02) \log \left[\frac{\text{FWHM(Hβ)}}{1000 \text{ km s}^{-1}} \right] + (0.05 \pm 0.01).$$

This means that the line-emitting locations of Hβ and Mg II in the BLR are not identical. If they were, we would expect a linear relation between the two, with no offset. The intrinsic scatter of this relation, as given by the regression methods listed above, is extremely small and negligible compared to the measurement errors. The latter is actually comparable to the total scatter (σ_{tot}) of the relationship, which is found to be 0.08 dex.
Table 1

Name	DataID	log L_{3000} (erg s$^{-1}$)	FWHM(Mg ii) (km s$^{-1}$)	log L_{5100} (erg s$^{-1}$)	FWHM(Hβ, mean) (km s$^{-1}$)	σ_{line}(Hβ, rms) (km s$^{-1}$)	log $M_{\text{BH(RM)}}$ (106M$_{\odot}$)
3C 120	lwpo4153	44.46 ± 0.04	2780				
	lwpo4500	44.37 ± 0.03	3837				
	lwpo5610	44.35 ± 0.02	2568				
	lwpo9048	44.41 ± 0.03	2638				
	lwpo9461	44.20 ± 0.02	3411				
	lwpo9850	44.22 ± 0.02	3399				
	lwpo1407	44.29 ± 0.04	4083				
	lwpo1524	44.28 ± 0.03	2828				
	lwpo1946	44.27 ± 0.03	2786				
	lwpo2536	44.36 ± 0.03	2412				
	lwro1317	43.86 ± 0.08	2874				
	lwro2983	43.73 ± 0.02	2759				
	lwro6849	44.12 ± 0.03	3997				
	lwro9102	44.34 ± 0.03	2875				
	lwro9778	43.93 ± 0.02	2735				
	lwro3786	44.30 ± 0.02	2758				
	lwro5618	44.25 ± 0.03	3040				
	lwro6909	44.17 ± 0.04	3053				
	lwro6874	44.39 ± 0.06	4431				
Mrk 79	lwro0132	43.81 ± 0.02	5057				
	lwro6141	43.60 ± 0.02	4179				
Mrk 110	lwpo12760	43.64 ± 0.08	2216				
	lwpo12761	43.82 ± 0.07	2504				
Mrk 279	lwpo2522	44.03 ± 0.03	4812				
	lwpo10116	43.77 ± 0.02	3314				
	lwpo15450	43.03 ± 0.04	5330				
	lwpo15687	43.75 ± 0.02	3275				
	lwpo19173	43.98 ± 0.04	3555				
	lwpo2220	44.02 ± 0.03	3987				
	lwpo19598	44.28 ± 0.05	3699				
	lwpo19937	44.20 ± 0.04	4204				
	lwpo20271	44.26 ± 0.05	4305				
	lwpo20725	44.18 ± 0.03	5057				
	lwro3073	43.03 ± 0.10	3710				
	lwro10816	43.98 ± 0.04	8201				
	lwro11623	43.94 ± 0.02	6934				
	lwro15803	43.96 ± 0.03	4121				
Mrk 335	y2e0205	44.12 ± 0.04	1977				
	y2e0206	44.13 ± 0.05	1783				
Mrk 509	yoya0305	44.55 ± 0.05	3357				
Mrk 590	lwro11936	44.07 ± 0.03	3597				
Mrk 817	lwro13704	44.03 ± 0.04	4565				
NGC 3227	o5kp01010	41.76 ± 0.04	3688				
NGC 3516	y3lr0105	43.05 ± 0.02	3919				
	y3lr0206	43.23 ± 0.02	3775				
	y3lr0306	43.19 ± 0.02	3796				
	y3lr0406	42.73 ± 0.02	3499				
	y3lr0506	43.08 ± 0.02	3527				
NGC 3783	o5lb01010	43.39 ± 0.06	2524				
NGC 4051	lwpo1100	41.76 ± 0.02	1574				
	lwpo1292	41.70 ± 0.02	1387				
	lwpo12092	41.68 ± 0.02	1503				

±...
Name	DataID	log \(L_{3000} \) (erg s\(^{-1}\))	FWHM(Mg\(\text{II}\)) (km s\(^{-1}\))	log \(L_{3000} \) (erg s\(^{-1}\))	FWHM(H\(\beta\), mean) (km s\(^{-1}\))	\(\sigma_{\text{line}} \) (H\(\beta\), rms) (km s\(^{-1}\))	\(\log M_{\text{BH}} \) (RM) (10\(^6\)\(M_\odot\))
NGC 4151	o59701040	42.20 ± 0.02	3228	42.20 ± 0.02	2822	1929	45.09 ± 0.7
NGC 4593	lwp02731	42.82 ± 0.02	4123	42.82 ± 0.02	3022	2094	45.04 ± 0.7
NGC 5548	y0ga0205t	43.01 ± 0.03	4756	43.01 ± 0.03	6107 ± 23	2063 ± 32	50.4 ± 2.6
NGC 7469	y3b60108t	43.67 ± 0.03	3061	43.67 ± 0.03	1722 ± 30	1456 ± 207	12.2 ± 1.4
PG 0026 + 129	y2k0108t	45.18 ± 0.04	1104	45.18 ± 0.04	2544 ± 56	1774 ± 285	393 ± 96
PG 0052 + 251	lwp06266	42.64 ± 0.02	3237	42.64 ± 0.02	5008 ± 73	1783 ± 86	369 ± 76
PG 0804 + 761	lwp13645	45.14 ± 0.02	5175	45.14 ± 0.02	5008 ± 73	1783 ± 86	369 ± 76
PG 0844 + 349	yOp80105t	44.53 ± 0.04	3045	44.53 ± 0.04	2694 ± 58	1448 ± 79	92.4 ± 38.1
PG 0953 + 414	y0ka0403t	44.81 ± 0.03	1610	44.81 ± 0.03	3071 ± 27	1306 ± 144	276 ± 59
PG 1211 + 143	y0ka0404t	44.82 ± 0.03	1642	44.82 ± 0.03	3071 ± 27	1306 ± 144	276 ± 59
PG 1226 + 023	y0g4020ct	46.08 ± 0.06	3420	46.08 ± 0.06	3105	1802 ± 122	440 ± 123
PG 1229 + 204	lwp13136	44.41 ± 0.07	3054	44.41 ± 0.07	3071 ± 27	1306 ± 144	276 ± 59
PG 1307 + 085	lwp14071	44.44 ± 0.04	3884	44.44 ± 0.04	3828 ± 54	1385 ± 111	73.2 ± 35.2
PG 1411 + 442	o65617010	44.81 ± 0.03	2452	44.81 ± 0.03	2801 ± 43	1607 ± 168	443 ± 146
PG 1426 + 015	lwp05440	45.14 ± 0.03	6957	45.14 ± 0.03	6957	4575	443 ± 146
PG 1613 + 658	lwp19393	45.09 ± 0.03	7518	45.09 ± 0.03	7518	7996	279 ± 129
PG 1617 + 175	lwp07592	44.81 ± 0.06	5951	44.81 ± 0.06	5951	4375	594 ± 138
PG 1700 + 518	lwp25629	44.73 ± 0.04	4575	44.73 ± 0.04	4575	4375	594 ± 138
PG 2130 + 099	lwp02520	44.60 ± 0.05	3042	44.60 ± 0.05	3042	3042	594 ± 138
3.2. Single-epoch Mg ii FWHM versus rms Hβ σ_{line}

Since the assumption that Mg ii FWHM is identical to Hβ FWHM does not hold, we explore the relation between Mg ii FWHM and rms Hβ σ_{line}, which has been argued to be a good tracer of the virial velocity of the BLR clouds emitting (variable) Hβ (see references in Section 1). We use data for the 29 objects in the RM sample that have UV spectra to perform this exploration. Mg ii FWHM is measured from the single-epoch HST/IEEE spectra, as listed in Table 1. The data for rms Hβ σ_{line} are mainly taken from Peterson et al. (2004). In addition, we use updated RM data for NGC 4051 (Denney et al. 2009b), NGC 4151 (Metzroth et al. 2006), NGC 4593 (Denney et al. 2006), NGC 5548 (Bentz et al. 2007), and PG 2130+099 (Grier et al. 2008). For objects with multiple measurements, the geometric mean (i.e., the mean in the log scale) was used. We find that the slope of the relation between Mg ii FWHM and rms Hβ σ_{line} deviates from unity, with a best fit of

$$\log \left[\sigma_{\text{line}}(\text{H}\beta, \text{rms}) \right]_{1000 \text{ km s}^{-1}} = (0.85 \pm 0.21) \log \left[\text{FWHM} \right]_{1000 \text{ km s}^{-1}} - (0.21 \pm 0.12).$$

(7)

The formal relation is nonlinear although the significance level is only about 1σ. A nonlinear relation between Mg ii FWHM and rms Hβ σ_{line} is not very surprising, in light of a similar situation observed for Hβ FWHM (Collin et al. 2006; also Sulentic et al. 2006, Section 1). For verification, we also fit the relation between Hβ FWHM in the mean spectra and rms Hβ σ_{line} using data for 35 objects in the RM sample; the FWHM data are taken from Collin et al. (2006) and from the updated sources mentioned above. The best-fit relation deviates from unity even more seriously than the case of Mg ii FWHM:

$$\log \left[\sigma_{\text{line}}(\text{H}\beta, \text{rms}) \right]_{1000 \text{ km s}^{-1}} = (0.54 \pm 0.08) \log \left[\text{FWHM}(\text{H}\beta, \text{mean}) \right]_{1000 \text{ km s}^{-1}} - (0.09 \pm 0.05).$$

(8)

These relations between rms Hβ σ_{line} and Mg ii and Hβ FWHM are illustrated in Figure 3. The total 1σ scatter around these relationships is σ_{tot} ≈ 0.12 dex for Equation (7) and 0.09 dex for Equation (8). Given the relatively small measurement errors of the linewidths, there likely exists intrinsic scatter in these relationships. Using the simple method of deducting the measurement errors from the total scatter, as described...
in Section 2.3, we find $\sigma_{\text{line}} \approx 0.09$ dex and ≈ 0.08 dex for the relationships of Equations (7) and (8), respectively. The underlying reason for the nonlinearity of these relationships may be, at least partially, that the σ_{line} of rms spectra traces the velocity of the line-emitting region that responds to continuum variation, while the FWHM of single-epoch spectra may be contributed by various components (see Section 4.2 for a discussion).

3.3. Practical Formalism for New Mg ii-based M_{BH} Estimator

As described above, Mg ii FWHM is not identical to, but rather generally smaller than, Hβ FWHM; for Mg ii FWHM $\gtrsim 6000$ km s$^{-1}$, the difference is $\gtrsim 0.2$ dex. This means that one of the fundamental premises of the previous Mg ii-based formalisms—that Mg ii and Hβ trace similar kinematics—does not hold. Moreover, similar to the behavior of Hβ FWHM, Mg ii FWHM seems not to be linearly proportional to rms Hβ σ_{line}. If rms σ_{line} is more directly linked to the virial velocity, this implies that we cannot build a virial M_{BH} formalism by simply assuming $M_{\text{BH}} \propto \text{FWHM}^2$. Furthermore, the M_{BH} data of the RM AGNs used in McLure & Jarvis (2002) and McLure & Dunlop (2004) have since been recalibrated or updated (Peterson et al. 2004; Denney et al. 2006, 2009b; Metzroth et al. 2006; Bentz et al. 2007; Grier et al. 2008). Thus, it is necessary to reformulate the virial M_{BH} formalism based on single-epoch Mg ii FWHM.

We proceed by assuming that there is a tight relation between the BLR radius of the Mg ii-emitting region and the AGN continuum luminosity, in the form $R_{\text{Mg ii}} \propto L^{\beta}$, and another between the virial velocity of Mg ii and the FWHM of the line, in the form $v_{\text{line}}^{2} \propto \text{FWHM}^{\gamma}$. Then, using the 29 objects with the M_{BH} values based on RM and the Mg ii data measured here (Table 1), we calculate the free parameters by fitting

$$
\log \left(\frac{M_{\text{BH}}(\text{RM})}{10^{6} M_{\odot}} \right) = a + \beta \log \left(\frac{L_{3000}}{10^{44} \text{ erg s}^{-1}} \right) + \gamma \log \left(\frac{\text{FWHM(Mg ii)}}{1000 \text{ km s}^{-1}} \right),
$$

where $L_{3000} \equiv \lambda L_{\lambda}(3000 \text{ Å})$. The RM-based M_{BH} data are mainly taken from Peterson et al. (2004), who calibrated the f-factor by normalizing to the $M_{\text{BH}}-\sigma_{\text{v}}$ relation of Onken et al. (2004); M_{BH} for the updated objects comes from the references given in Section 3.2.

We fit Equation (9) following four schemes, using the (LINMIX_ERR/MLINMIX_ERR) method of Kelly (2007):

1. α, β, and γ are treated as free parameters.
2. α and β are treated as free parameters, but, as in all previous formalisms, we fix $\gamma = 2$.
3. α and β are treated as free parameters, but we set $\gamma = 1.70$, as suggested by Equation (7).
4. α and γ are treated as free parameters, but we fix $\beta = 0.5$, as suggested by the latest $R-L$ relation (Bentz et al. 2006, 2009).

Table 4 lists the best-fit regression for each scheme (Columns 1–4), as well as comparisons between the M_{BH} estimates based on each scheme and the RM-based masses (Column 5). It is apparent that the best-fit values for β for all the schemes are consistent with 0.5 within 1 σ error. Interestingly, γ appears to be marginally smaller than 2, since the standard deviation of the BH mass for Scheme 2 is slightly larger than that for the other three schemes. If we set $\beta = 0.5$ (i.e., adopt Scheme 4), the best-fit Mg ii-based formalism is

$$
\log \left(\frac{M_{\text{BH}}}{10^{6} M_{\odot}} \right) = (1.13 \pm 0.27) + 0.5 \log \left(\frac{L_{3000}}{10^{44} \text{ erg s}^{-1}} \right) + (1.51 \pm 0.49) \log \left(\frac{\text{FWHM(Mg ii)}}{1000 \text{ km s}^{-1}} \right) \quad (10)
$$

Fitting the Hβ FWHM data for the 35 RM objects under the same assumptions ($\beta = 0.5$), the Hβ-based formalism becomes

$$
\log \left(\frac{M_{\text{BH}}}{10^{6} M_{\odot}} \right) = (1.39 \pm 0.14) + 0.5 \log \left(\frac{L_{5100}}{10^{44} \text{ erg s}^{-1}} \right) + (1.09 \pm 0.23) \log \left(\frac{\text{FWHM(H}\beta\text{)}}{1000 \text{ km s}^{-1}} \right) \quad (11)
$$

The best-fitting $\gamma = 1.09 \pm 0.23$ agrees well with the $\sigma_{\text{line}}(H\beta, \text{rms})$–FWHM(H$\beta$) relation derived in Equation (8).

Comparisons between the RM-based masses and the M_{BH} estimates from our new M_{BH} formalisms using Mg ii FWHM (Equation (10)) and Hβ FWHM (Equation (11)) are illustrated in Figure 4. Following Vestergaard & Peterson (2006), we calculate the deviation of the new calibrated single-epoch M_{BH} estimates from the RM-based masses, ΔM_{BH}(RM). The mean of the deviations, $\langle \Delta M_{\text{BH}}(\text{RM}) \rangle$, is only 0.01 dex for our Mg ii estimator, and the 1 σ scatter is 0.4 dex (Column 5 in Table 4). As a comparison, if we use the formalism of McLure & Dunlop
Figure 3. $\sigma_{\text{line}}(H\beta, \text{rms})$ vs. FWHM(Mg ii) of the 29 objects with Mg ii FWHM measured in the paper (left panel) and FWHM(H\beta, mean) of the 35 objects from Collin et al. (2006) and recent updated data (right panel). The solid lines show the best-fitting relations. The error bars are at 1\(\sigma\).

Figure 4. BH masses estimated from RM plotted against masses obtained from Mg ii (left panel; using the 29 objects with Mg ii data measured in the paper), and from H\beta (right panel; using the 35 objects from Peterson et al. (2004) and recent updated data). The solid line represents a 1:1 relationship. The error bars are at 1\(\sigma\).

Table 4

Scheme	a	β	γ	$\Delta M_{BH}(\text{RM})$	$\Delta M_{BH}(H\beta)$ (Vestergaard+06)	$\Delta M_{BH}(H\beta)$ (Collin+06)	$\Delta M_{BH}(H\beta)$ (Ours)
(1)	1.15	0.46	1.48	0.01	0.15	0.10	0.07
	0.46	0.08	0.48	0.42	0.15	0.14	0.19
(3)	0.5	1.70	0.40	0.10	0.10	0.05	0.12
(4)	1.13	1.59	0.49	0.01	0.40	0.14	0.03

Notes. Fits for the 29 objects with Mg ii data measured in the paper. $\Delta M_{BH} \equiv \log M_{BH} - \log M_{BH}(\text{Mg ii})$ are the differences of the masses obtained from different methods with masses estimated by our Mg ii formalism for each scheme. Column (5) The mean and standard deviation of the deviations between BH masses obtained from RM and our single-epoch Mg ii estimators. The mean and standard deviation of the deviations between masses estimated from our single-epoch Mg ii estimator and masses derived using (Column 6) the H\beta formalism of Vestergaard & Peterson (2006), (Column 7) the H\beta formalism of Collin et al. (2006), and (Column 8) the new H\beta formalism obtained in this work (Equation (11)) for the SDSS sample.

a Scheme 1 is fitted by using the code MLINMIX поп Kelly (2007).
(2004), the deviations from the same RM-based masses have a mean of 0.38 dex and a 1σ scatter of 0.45 dex. For our Hβ estimator, ⟨ΔMBH(RM)⟩ = 0.01 dex and the 1σ scatter is 0.3 dex, compared to ⟨ΔMBH(RM)⟩ = 0.05 dex and σ = 0.4 dex if the formalism of Vestergaard & Peterson (2006) is used.10 It should be noted that these scatters of the scaling relations, which give a measure of the uncertainty in estimating MBH from single-epoch spectroscopic data, is relative to the RM-based masses only. Since, as pointed out by Vestergaard & Peterson (2006), the RM-based masses themselves are uncertain typically by a factor of ∼2.9 (as calibrated against the MBH–σ relation; Onken et al. 2004), the absolute uncertainty of the masses thus estimated is even higher. For the Hβ formalism, we find this absolute uncertainty to be a factor of ∼3.5, to be compared with a factor of ∼4 given in Vestergaard & Peterson (2006); for Mg II, we estimate that the absolute uncertainty is a factor of ∼4.

As shown above, our new formalisms improve somewhat the scatter in the single-epoch MBH estimates compared to previous Hβ and Mg II estimators, by 0.1 dex and 0.05 dex, respectively. Given the same linewidth and luminosity data used in this work and in Vestergaard & Peterson (2006), the reduction in the scatter of the MBH estimates should result from a decrease in the intrinsic dispersion of our improved single-epoch MBH formalisms. Using the LINMIX_ERR method, the intrinsic scatter inherent in our MBH formalism can be inferred to be 0.08 dex (1σ) for the Hβ and 0.14 dex for Mg II.

Figure 5 compares our new Mg II-based formalism (we show only Schemes 2 and 4) with the previous Hβ-based formalisms of Vestergaard & Peterson (2006; panel a) and Collin et al. (2006; panel b), as well as our newly derived version using the SDSS sample of 495 Seyfert 1s and QSOs (Equation (11); panel c). The MBH residuals between our Mg II formalism and the Hβ formalisms are listed in Table 4 (Columns 6–8). While our Mg II-based formalism, especially for Scheme 4 (Equation (10)), agrees well with our Hβ-based formalism (Equation (11)), note that it deviates markedly from the Hβ formalism of Vestergaard & Peterson. This confirms previous suspicions (Collin et al. 2006; Sulentic et al. 2006) that the use of Hβ FWHM from mean and single-epoch spectra with the assumption γ = 2 introduces systematic bias into MBH estimates.

We further compare our new Mg II-based formalism (Equation (10)) with other Mg II formalisms widely used in the
literature. Figure 5 illustrates that the M_{BH} estimates following the formalisms of McLure & Dunlop (2004; panel d), Kollmeier et al. (2006; panel e), and Salviander et al. (2007; panel f) show large systematic deviations, mostly in the sense of being smaller than ours. The deviations stem primarily from the recalibration of the RM masses; other factors are discussed in Section 4.3. We note that a yet-unpublished Mg ii-based formalism by M. Vestergaard et al. (2009, in preparation) used in the recent literature (e.g., Kelly et al. 2009) is almost identical to our Scheme 2 (with γ fixed to 2).

4. DISCUSSION

4.1. Testing the Effect of Narrow-line Subtraction

The narrow component of Mg ii is generally weak in luminous type 1 AGNs (e.g., Wills et al. 1993; Laor et al. 1994), and so its contribution to the total line flux can be safely neglected. However, its presence might have a more pronounced impact on the FWHM measurement of broad Mg ii. In the literature, narrow Mg ii was accounted for in the line fitting by some authors (e.g., McLure & Dunlop 2004), but not by others (e.g., Salviander et al. 2007). As there is usually no clear inflection in the Mg ii profile, separating narrow Mg ii from the broad component is often challenging. Fortunately, for the spectra in our SDSS sample, [O iii] λ5007 is present, and thus we can use [O iii] to try to constrain narrow Mg ii, to test the effect of narrow Mg ii on the FWHM measurement of broad Mg ii, and also to test the reliability of our Mg ii fitting strategy.

In addition to the default fitting strategy described in Section 2.2, in which narrow Mg ii is modeled as a single free Gaussian, we tried two alternative strategies in which narrow Mg ii is (A) not fit at all, and (B) is fit using a single-Gaussian model constrained to that of the line core of [O iii]. Broad Mg ii is modeled as described in Section 2.2. We find that, for the 495 objects in our SDSS sample, the distributions of the reduced χ^2 of the Mg ii emission line fit of the three approaches can be approximated reasonably well with a log-normal function. The peak and standard deviation of the reduced χ^2 are very similar for all three, being (0.97, 0.10 dex) for the default strategy, (1.01, 0.10 dex) for Strategy A, and (0.99, 0.10 dex) for Strategy B. Regarding the FWHM of broad Mg ii, the mean and standard deviation are ($-$0.04, 0.05) for $\log \left[\frac{\text{FWHM}_{\text{A}}}{\text{FWHM}_{\text{default}}} \right]$ and (0.00, 0.05) for $\log \left[\frac{\text{FWHM}_{\text{B}}}{\text{FWHM}_{\text{default}}} \right]$. For Strategy B, the fitted flux of narrow Mg ii is less than 10% of the total line flux for almost all the objects. Our tests show that omitting the subtraction of narrow Mg ii has a negligible effect on the FWHM of broad Mg ii, typically decreasing it only by a tiny factor of 0.04 dex. We further confirm that our default procedure for modeling narrow Mg ii is consistent with that using the [O iii] core as a template.

The above Strategy A is exactly the same as the Mg ii-fitting method adopted by Salviander et al. (2007). We also compared our method with that of McLure & Dunlop (2004). When fitting the spectra in our SDSS sample by the method of McLure & Dunlop (2004), on average the FWHM of broad Mg ii is larger than that of our method by 0.1 dex.

4.2. M_{BH} Estimators with Single-epoch Hβ and Mg ii

As analyzed in detail by Sulentic et al. (2006), the overall profile of the Hβ emission line, as viewed in single-epoch spectra, likely comprises multiple components emitted from different sites. First, as a recombination line, Hβ can arise from BLR gas that is very close to the central engine. Then Hβ can be gravitationally redshifted, as (part of) the component of the “very BLR” (Marziani & Sulentic 1993). Such clouds may be optically thin to the ionizing continuum, such that Hβ is no longer responsive to continuum variation (Shields et al. 1995). Second, like C iv λ1549, Hβ can be produced partly in high-ionization winds, as some observations suggest (see Marziani et al. 2008, and references therein). This wind component would not be virial. Third, Hβ can also be produced on the surface of the accretion disk, both by recombination and collisional excitation (Chen & Halpern 1989; Wang et al. 2005; Wu et al. 2008); this component would be highly anisotropic (cf. Collin et al. 2006). Considering the above factors, it is not surprising that single-epoch FWHM is not linearly proportional to σ_{line} for rms Hβ (Equation (8)).

Mg ii, as a low-ionization, collisionally excited emission line, cannot be produced in clouds very close to the central engine. Furthermore, because Mg ii originates only from optically thick clouds, radiation pressure force cannot act on them very significantly (cf. Marconi et al. 2008, 2009; Dong et al. 2009a, 2009b), and thus Mg ii suffers little from nonviral motion. Hence, compared to Hβ, the FWHM of single-epoch Mg ii should, in principle, deviate less, if at all, from the true virial velocity of the line-emitting clouds. This is suggested by the best-fit value for γ in Equation (10), which indicates $v_{\text{rms}} \propto \text{FWHM(Mg ii)}^{1.51\pm 0.49}$.

Previously, researchers have feared that the substantial contamination of the Mg ii region by Fe ii multiplets might introduce significant uncertainties in its linewidth measurements, such that Mg ii-based M_{BH} estimates may not be as accurate as those based on Hβ. With the recent availability of a more refined UV Fe ii template (Tsuizuki et al. 2006; cf. Vestergaard & Wilkes 2001), we have higher confidence that the linewidth measurements of Mg ii are reasonably robust. Our work suggests that we can measure Mg ii FWHM typically to within an uncertainty of $\pm 20\%$. Nevertheless, it would be highly desirable to attempt to further improve the methodology for Fe ii subtraction, not only in the UV but also at optical wavelengths.

4.3. Comparison with Previous Studies

As shown in Section 3 (see Figure 5), our Mg ii- and Hβ-based M_{BH} formalisms show, in addition to somewhat improved internal scatter, subtle but systematic deviations from some of the commonly used M_{BH} estimators in the literature. In general, the formalism prescribed by our Scheme 4 (Equation (10); $M_{\text{BH}} \propto \text{FWHM}^{1.51\pm 0.49}$) gives progressively higher and lower M_{BH} values toward the low- and high-mass ends, respectively. The only exception is the Hβ-based formalism of Collin et al. (2006), which gives roughly consistent results as ours over a relatively large mass range. The discrepancies between previous mass estimators and ours arise from one, or a combination, of the following factors incorporated into our analysis. (1) We use the most recently recalibrated and updated RM M_{BH} measurements from the literature (Peterson et al. 2004; Denney et al. 2006, 2009b; Metzroth et al. 2006; Bentz et al. 2007; Grier et al. 2008). (2) Our new formalism (Scheme 4, Equation (10)) uses the best-fitting value of γ instead of the canonical value of $\gamma = 2$. (3) For Mg ii, we determine the scaling factor (incorporated into the coefficient a of Equation (9)) and the power-law index (β) of the $R_{\text{Mg ii}} - L$ relation by fitting Equation (9) to the data, instead of simply using the existing $R_{\text{Hg}} - L$ relation as a surrogate. (4) Differences in the line-fitting and determination of the FWHM. We discuss each of these factors in detail below.
Specifically, assuming the canonical value of $\gamma = 2$ in Equation (9) would, compared to our Scheme 4, underestimate \(M_{\text{BH}} \) at the low-end and overestimate \(M_{\text{BH}} \) at the high-end, for both \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \). This accounts for most of the deviations from Vestergaard & Peterson (2006) and Kollmeier et al. (2006), and partially from others in Figure 5. In order to account for systematic biases with respect to RM-based \(M_{\text{BH}} \), Collin et al. (2006) introduced a correction factor, which is dependent on \(\text{H}\beta \) FWHM, into their \(\text{H}\beta \)-based formalism assuming $\gamma = 2$. This correction has a similar effect as fitting γ as a free parameter, as we do here, and thus the rough consistency between our results and theirs is not surprising. Factor (3) is also partially responsible for producing the deviations from some of the previous \(\text{Mg}\,\text{II} \)-based \(M_{\text{BH}} \) estimators, such as those of McLure & Dunlop (2004) and Salviander et al. (2007), who assumed that both \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \) obey the same \(R-L \) relation, and of Kollmeier et al. (2006), who used a very steep relation of \(R_{\text{Mg}\,\text{II}} \propto L^{0.88} \).

There have been previous reports of discrepancies between \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \)-based estimators, which are sometimes claimed to correlate with luminosity or Eddington ratio (e.g., Kollmeier et al. 2006; Onken & Kollmeier 2008). These effects can be traced, at least partially, to the one-to-one relation assumed between FWHM(\(\text{Mg}\,\text{II} \)) and FWHM(\(\text{H}\beta \)), which is contradictory to the nonlinear relation found in this work. In fact, by adopting a nonlinear FWHM(\(\text{Mg}\,\text{II} \))-FWHM(\(\text{H}\beta \)) relation and \(R_{\text{Mg}\,\text{II}} \propto L^{0.5} \), our new \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \)-based estimators yield mutually consistent results for the SDSS sample (Figure 5, panel c). We verified that the previously claimed correlations of the residuals of the \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \)-based estimators with luminosity or Eddington ratio largely vanish; a Spearman rank analysis indicates a chance probability of 0.09 for the former and 0.05 for the latter.

It is generally accepted that the width of the variable part of the line, the line dispersion \(\sigma_{\text{line}} \) measured in the rms spectrum, is by far the best tracer of the virial velocity of the BLR gas responsible for the variable portion of the emission line (e.g., Onken & Peterson 2002), such that \(M_{\text{BH}} \propto \sigma_{\text{line}} \) according to the virial theorem. If the virial velocity is estimated using FWHM (or any other measure of the linewidth) in single-epoch spectra, as long as its relation with \(\sigma_{\text{line}} \) is nonlinear, \(\gamma \) in Equation (9) is expected to deviate from \(\gamma = 2 \). This is exactly what we find in this work for FWHM(\(\text{Mg}\,\text{II} \)) at 1 \(\sigma \) significance level, as well as for FWHM(\(\text{H}\beta \)) at 6 \(\sigma \) significance level. In fact, the fitted value of \(\gamma = 1.51 \pm 0.49 \) for \(\text{Mg}\,\text{II} \) (Equation (10)) and 1.09 \pm 0.23 for \(\text{H}\beta \) (Equation (11)) are almost identical to those derived from the fitted \(\sigma_{\text{line}}-\text{FWHM}(\text{Mg}\,\text{II}) \) and \(\sigma_{\text{line}}-\text{FWHM}(\text{H}\beta) \) relations, which have slopes of 1.70 \pm 0.42 and 1.08 \pm 0.16, respectively. Factor (3) is justified by the compelling evidence presented in this work that the line-emitting locations of \(\text{H}\beta \) and \(\text{Mg}\,\text{II} \) in the BLR are not identical. Possible physical processes underlying factors (2) and (3) are discussed in Section 4.2.

As an additional consideration, we have performed in this work refined and careful line fitting and determination of the FWHM, which may have subtle differences from previous results. These differences may also give rise to, to some extent, the systematic discrepancies between the mass relations in Figure 5 since we use our measured FWHM and luminosity data when producing the figure. For example, Salviander et al. (2007) did not subtract the narrow component of \(\text{Mg}\,\text{II} \), leading to \(\text{Mg}\,\text{II} \) FWHM statistically smaller than ours; so the true deviations in Figure 5 (panel f) would be larger if their FWHM data were used. On the contrary, McLure & Dunlop (2004) over-subtracted the narrow component compared to ours (they considered a possible narrow component as having an upper limit of FWHM = 2000 km s$^{-1}$, much larger than the 900 km s$^{-1}$ used in our work), and their \(\text{Mg}\,\text{II} \) FWHM are statistically larger than ours; thus, the true deviations in Figure 5 (panel e) would be somewhat smaller if their FWHM data were used.

Finally, the appropriateness of our approach is further justified by the fact that our formalisms give \(M_{\text{BH}} \) values consistent with the RM measurements with the least systematic bias, as well as a reduced (intrinsic) scatter compared to previous formalisms (Section 3.3). Moreover, we find consistent masses between the \(\text{Mg}\,\text{II} \)- and \(\text{H}\beta \)-based estimators. We thus conclude that our \(M_{\text{BH}} \) estimators introduce less systematic bias compared to previous formalisms. Obviously, more RM measurements (for both \(\text{H}\beta \) and \(\text{Mg}\,\text{II} \)) are needed in order to improve the determination of the \(\sigma_{\text{line}}-\text{FWHM} \) relation, the \(R-L \) relation, and the index γ in the \(M_{\text{BH}} \propto \text{FWHM}^\gamma \) relation.

5. SUMMARY AND CONCLUSIONS

We investigate the relation between the velocity widths for the broad \(\text{Mg}\,\text{II} \) and \(\text{H}\beta \) emission lines, derived from FWHM measurements of single-epoch spectra from a homogeneous sample of 495 SDSS Seyfert 1s and QSOs at $0.45 < z < 0.75$. Careful attention is devoted to accurate spectral decomposition, especially in the treatment of narrow-line blending and Fe \(\text{II} \) contamination. We find that \(\text{Mg}\,\text{II} \) FWHM is systematically smaller than \(\text{H}\beta \) FWHM, such that FWHM(\(\text{Mg}\,\text{II} \)) \(\propto \) FWHM(\(\text{H}\beta \))0.45\pm0.02. Using 29 AGNs that have optical RM data and usable archival UV spectra, we then investigate the relation between single-epoch \(\text{Mg}\,\text{II} \) FWHM and rms \(\text{H}\beta \) \(\sigma_{\text{line}} \) (line dispersion), a quantity regarded as a good tracer of the virial velocity of the BLR clouds emitting the variable \(\text{H}\beta \) component. We find that, similar to the situation for the FWHM of single-epoch \(\text{H}\beta \), single-epoch \(\text{Mg}\,\text{II} \) FWHM is unlikely to be linearly proportional to rms \(\text{H}\beta \) \(\sigma_{\text{line}} \). The above two findings suggest that a major assumption of previous \(\text{Mg}\,\text{II} \)-based virial BH mass formalisms—that the \(\text{Mg}\,\text{II} \)-emitting region is identical to that of \(\text{H}\beta \)—is problematic. This finding and the recent updates of the reverberation-mapped BH masses (Peterson et al. 2004; Denney et al. 2006, 2009b; Metzroth et al. 2006; Bentz et al. 2007; Grier et al. 2008) motivated us to recalibrate the \(M_{\text{BH}} \) estimator based on single-epoch \(\text{Mg}\,\text{II} \) spectra.

Starting with the empirically well-motivated BLR radius–luminosity relation and the virial theorem, \(M_{\text{BH}} \propto L^{0.8}\text{FWHM}^\gamma \), we fit the reverberation-mapped objects in a variety of different ways to constrain β and γ. For all the strategies we have considered, β has a well-defined value of ≈-0.5, in excellent agreement with the latest BLR radius–luminosity relation (Bentz et al. 2006, 2009), whereas $\gamma \approx 1.5 \pm 0.5$, which is marginally in conflict with the canonical value of $\gamma = 2$ normally assumed in past studies. Performing a similar exercise for \(\text{H}\beta \) yields \(M_{\text{BH}} \propto L^{0.5}\text{FWHM}(\text{H}\beta)^{1.09\pm0.22} \), which again significantly departs from the functional forms used in the literature. The 1\(\sigma \) uncertainty (scatter) is of the order of 0.3 dex relative to the RM-based masses for the \(\text{H}\beta \) estimator, and ≈0.4 dex for the \(\text{Mg}\,\text{II} \) estimator. Using the same data set, the scatter of our \(\text{H}\beta \) mass scaling relation is reduced by 0.1 dex over that of Vestergaard & Peterson (2006), indicating improvement in the internal scatter.

We use the SDSS database to compare our new \(M_{\text{BH}} \) estimators with various existing formalisms based on single-epoch \(\text{H}\beta \) and \(\text{Mg}\,\text{II} \) spectra. BH masses derived from our \(\text{Mg}\,\text{II} \)-based mass estimator show subtle but important deviations from many of the commonly used \(M_{\text{BH}} \) estimators in the literature. Most of
the differences stem from the recent recalibration of the masses derived from RM. Researchers should exercise caution in selecting the most up-to-date M_{BH} estimators, which are presented here.

We thank the referee, Michael Strauss, for his careful comments and helpful suggestions that improved the paper. This work is supported by Chinese NSF grants NSF-10533050 and NSF-10703006, National Basic Research Program of China (973 Program 2009CB824800) and a CAS Knowledge Innovation Program (grant No. KJCX2-YW-T05). The research of L.C.H. is supported by the Carnegie Institution for Science. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the European Southern Observatory. The SDSS Web Site is http://www.sdss.org/.

REFERENCES

Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, ApJ, 697, 160
Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, ApJ, 644, 133
Bentz, M. C., et al. 2007, ApJ, 662, 205
Chen, K., & Halpern, J. P. 1989, ApJ, 344, 115
Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M. 2006, A&A, 456, 75
Corbett, E. A., et al. 2003, MNRAS, 343, 705
Denney, K. D., Peterson, B. M., Dietrich, M., Vestergaard, M., & Bentz, M. C. 2009a, ApJ, 692, 246
Denney, K. D., et al. 2006, ApJ, 653, 152
Denney, K. D., et al. 2009b, ApJ, 702, 1353
Dietrich, M., Appenzeller, I., Vestergaard, M., & Wagner, S. J. 2002, ApJ, 564, 581
Dietrich, M., & Hamann, F. 2004, ApJ, 611, 761
Dietrich, M., & Kollatschny, W. 1995, A&A, 303, 405
Dong, X.-B., Wang, T.-G., Wang, J.-G., Fan, X., Wang, H., Zhou, H., & Yuan, W. 2009a, ApJ, 703, L1
Dong, X.-B., Wang, J.-G., Wang, T.-G., Wang, H., Fan, X., Zhou, H., & Yuan, W. 2009b, ApJ, submitted (arXiv:0903.5020)
Dong, X.-B., Wang, T.-G., Wang, J.-G., Yuan, W., Zhou, H., Dai, H., & Zhang, K. 2008, MNRAS, 383, 581
Dong, X.-B., Zhou, H.-Y., Wang, T.-G., Wang, J.-X., Li, C., & Zhou, Y.-Y. 2005, ApJ, 620, 629
Felten, G. J., Karorita, K. T., Verter, D. A., Ferguson, J. W., Kingdon, J. B., & Verter, E. M. 1998, PASP, 110, 761
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Ferrarese, L., Pogge, R. W., Peterson, B. M., Merritt, D., Wandel, A., & Joseph, C. L. 2001, ApJ, 555, L79
Fitzpatrick, E. L. 1999, PASP, 111, 63
Gebhardt, K., et al. 2000a, ApJ, 539, L13
Gebhardt, K., et al. 2000b, ApJ, 543, L5
Greene, J. E., & Ho, L. C. 2005, ApJ, 630, 122
Greene, J. E., & Ho, L. C. 2006, ApJ, 641, L21
Grier, C. J., et al. 2008, ApJ, 688, 837
Ho, L. C., Darling, J., & Greene, J. E. 2008, ApJ, 681, 128