Formulation Of Eel (Monopterus albus) Extract Gels For Accelerated The Wound Healing

Febriyenti¹ *, Almahdy, A.¹ , Dwi Mulyani²
¹Faculty of Pharmacy, Kampus Limau Manis, Universitas Andalas, Padang, Sumatera Barat, Indonesia 25163
*email: febriyenti@phar.unand.ac.id; febriyenti74@yahoo.com
²Akademi Farmasi Imam Bonjol, Bukittinggi, Sumatera Barat, Indonesia 26121

ABSTRACT

Eel contains a lot of amino acids and fatty acids that play an important role in wound healing processes. This study aims to formulate the eel extract gel to accelerate burn wounds healing. Polyvinyl alcohol (PVA) 146,000 and hydroxypropylmethyl cellulose (HPMC) 60SH-50 were used as gelling agents. Each gelling agent was used in three different concentrations i.e. PVA with concentration 8% (FA1), 10% (FA2) and 12% (FA3); HPMC with konsentrasi 4% (FB1), 5% (FB2) and 6% (FB3). Propylene glycol was used as a humectant. Methylparaben and propylparaben were used as preservatives. Vitamin E was used as an antioxidant. Evaluations included general appearance, homogeneity, pH, washed test, and viscosity. The best formula is then tested for its effect on the healing of burn wounds. The results showed that formula that used PVA as a gelling agent produced transparent gel, while the formula that used HPMC produced opaque gel. Increasing the gelling agent concentration, increasing the viscosity of the gel produced. According to the physical appearance of the gel produced a formula that used PVA 10% (FA2) as the gelling agent was the best formula among the other formulas. From the results of tests on burns healing, gel formulas containing eel extract heal wounds faster than base gel and positive control.

Keywords : Eel (Monopterus albus) extract, gel, wound healing, burn wound
INTRODUCTION

Wounds are tissue damage to the anatomy of the skin caused by various factors. Wounds can be grouped into two, i.e., closed wounds and open wounds. Examples of closed wounds are bruises and hematomas, while examples of open wounds are incisions wounds, gunshot wounds, and burns (Sezer, et al., 2007).

The ideal characteristics of wound treatments are retaining the moisture (like gel) and absorbent (like hydrocolloid) (Boateng, et al., 2008). Gel has several advantages, including non-sticky, easy to dry and form a thin layer of a membrane, which can also be a wound dressing (Akita, et al., 2006; Bowen, 2006). The active ingredient can be added to the gel to accelerate wound healing.

Some of the active ingredients that often used are silver sulfadiazine, metronidazole, and povidone-iodine. Amino acids, fatty acids, collagen, and amylase, can also be given to provide nutrients to the injured skin (Calder, 2005; Corsetti, et al., 2010). Some essential amino acids in wound healing include glutamine, arginine, cysteine, glycine, and proline. These amino acids are crucial for skin formation, constituents of collagen, stimulation of surface antigen expression, and as precursors of antioxidants (Williams, 2003; Witte, 2002). Fatty acids play a role in repairing damaged tissue, wound healing agents, and antithrombotic. In wound healing, fatty acids and proteins work together in the formation of keratinocytes and fibroblasts (Calder, 2005; Storey, 2005). These compounds widely found in fish species such as eels (Monopterus albus) (Razak, et al., 2001). A previous study also reported the amino acids and fatty acids contents on eels (Febriyenti(b), et al., 2019). From the description above, in this study, gels containing eel extract to accelerate the wound healing were formulated.

MATERIALS AND METHODS

Materials

Eels were purchased from Bukittinggi, West Sumatera, Indonesia. Eel extract was prepared according to Febriyenti et al. (Febriyenti(b), et al., 2019). PVA 146,000 was bought from VWR International, Belgium. HPMC 60SH-50 and vitamin E were supplied by Sigma Chemical Co., USA. Propylene glycol, methylparaben, and propylparaben were acquired from R&M Chemicals, UK. Pentobarbitone sodium was purchased from CEVA (Barcelona, Spain). Normal saline 0.9% was purchased from Thai Otsuka Pharmaceutical Co, Ltd. Distilled water was bought from Bratachem, Indonesia. Commercial burn gel was used as the positive control. All chemicals were used without further purification.

Preparation of Gel

Gelling agents were dissolved in distilled water. PVA was prepared by the hot mechanical method. HPMC was prepared by cold mechanical method (Febriyenti, et al., 2014; Shivhare, et al., 2009; USP, 2007). Eel extract, methylparaben, propylparaben, and vitamin E were dispersed in propylene glycol and then mixed with the gelling agent using Ultra turrax at 10,000 rpm for 15 min (Febriyenti, et al, 2014; Febriyenti, et al., 2011; Febriyenti, et al., 2008). The compositions could be seen in Table 1.

Table 1. Formulas of Eel (Monopterus albus) Extract Gel

Ingredients	Formula (%)					
	FA 1	FA 2	FA 3	FB 1	FB 2	FB 3
Eel extract	10	10	10	10	10	10
PVA	8	10	12	-	-	-
HPMC	-	-	-	4	5	6
Propylene glycol	10	10	10	10	10	10
Methylparaben	0.1	0.1	0.1	0.1	0.1	0.1
Propylparaben	0.02	0.02	0.02	0.02	0.02	0.02
Vitamin E	0.01	0.01	0.01	0.01	0.01	0.01
Distilled water up to	100	100	100	100	100	100

Gel Evaluations

The general appearance of the prepared gels, consistency, and transparency was observed visually (USP, 2007; Misal, et al., 2012). Homogeneity of all gel formulas was tested by visual inspection for their appearance and presence of any aggregates.
The pH of all gel formulas was determined by using a digital pH-meter (Shivhare, et al., 2009; Martin, et al., 2001). A washed test was conducted using one gram of gel that applied to the hand and then washed with a certain amount of water. Accounted for much of the water volume was used (Febriyenti, et al., 2014; Jellinek, 1970). Viscosities of all formulas were determined using Brookfield LV viscometer (Martin, et al., 2001).

Animal

The animal studies were conducted using the facility of Pharmacology laboratory, Akademi Farmasi Imam Bonjol, Bukittinggi. Adult, healthy, male Spraque-Dawley (SD) rats, weight ranging between 200 and 300 g were selected in this study. The rats were housed in standard environmental conditions under a 12-h light–dark cycle lighting in solid bottom cage with top-ventilated stainless steel cover. All animals were allowed to move freely and were provided access to food and water. Animal’s welfare guidelines were adopted from Guide to the Care and Use of Experimental Animals (Olfert, et al., 1993). The handling of rats followed the protocol described by Deacon (2006). The method’s procedures included for the animals have been approved by Animal Ethic Committee Universitas Andalas with Ref. No. 012/KEP/FK/2015.

Burn wound model

The gels were assessed for burn wound model using the test method of Laila, et al. (2011) and Febriyenti(a) et al. (2019). The rats were anaesthetized with pentobarbitone sodium (50 mg/kg body weight) that was administered intraperitoneally. Dorsal part of the animal was clipped with electric clippers followed by scrubbing the skin with 70% ethanol and normal saline. Burn wounds were created using a metal rod (1.5 cm diameter) heated to 95 ± 2°C in water and exposed for 10 seconds. Positive control rats were treated using commercial burn gel, while experimental rats were treated with formula FA (without active ingredient), and formula FA2. The gels were placed in such a way that the wounds could be completely covered. Animals were randomly divided into three groups with six rats for each group. Experiment was conducted for 24 days to see the wound contraction. The wound size was determined using the tracing method (Goldman, 2002; Nayak, et al., 2008). Wound closure was calculated as the percentage of wound area contraction using the formula:

\[
\text{Percentage of wound closure} = \frac{\text{Area (0 day)} - \text{Area (x day)}}{\text{Area (0 day)}} \times 100\%.
\]

Statistical analysis

Results of the wound contraction were represented as mean ± SD. One-way ANOVA followed by Duncan post hoc test was used to identify differences between groups. It showed a statistical difference if \(P < 0.05 \) was obtained.

RESULTS AND DISCUSSION

Gelling agent polymer for wound dressing should produce transparent gel (Heng, et al., 1996; Febriyenti(a), et al., 2019), so then it also could be a transparent membrane. Wounds easily observed through transparent membranes (Balakrishnan, et al., 2005). The results of the gel evaluations showed in Table 2. Formulas that used PVA as a gelling agent produced transparent gel while HPMC produced opaque gel. All gel formulas have good homogeneity. It means that the method used to prepare the gel was appropriate to mix all the ingredients. Gels that contained HPMC as a gelling agent had pH value slightly higher than gels that contained PVA. Nevertheless, the results are still within the normal skin pH range 4.2-6.5 (Febriyenti, et al., 2014; Gennaro, A. R., 1990) or 5-6.5 (Balsam, 1992). Washed tests carried out to determine the easiness of cleaning up the gel from the surface of the skin. The washed test is conducted by determining the amount of water needed to wash up the gel smeared on the skin. Polymer type and viscosity of the gel affect the amount of water needed. Usually, the dilute gels required less water to wash it up. Viscosities of the gels were determined using Brookfield LV viscometer. Gel viscosity increases with increasing the concentration of the gelling
agent used. Ideal gel viscosity value is 2000 – 4000 cPs (Garg, et al., 2002). Based on the results in Table 2, FA2 and FB3 have the ideal viscosity value. But if general apparent of FA2 is compared with FB3, FA2 is better than FB3 because it is transparent.

Table 2. Results of Gel Evaluations

Formula	General appearance	Homogeneity	pH	Washed test	Viscosity test
FA1	Transparent, dilute gel	Good	6.16	15 ml	110 cPs
FA2	Transparent, thick gel	Good	6.18	20 ml	2850 cPs
FA3	Transparent, thick gel	Good	6.15	27 ml	4235 cPs
FB1	Opaque, dilute gel	Good	6.82	15 ml	108 cPs
FB2	Opaque, thick gel	Good	6.81	18 ml	990 cPs
FB3	Opaque, thick gel	Good	6.82	24 ml	3512 cPs

Furthermore, the best formula (FA2) and gel base (FA) were used for the burns healing test (Table 3). For the comparison, the commercial burn gel was used as positive control. Results of the burns healing test presented in Table 4. The test was conducted 24 days. Group of animal that treated with FA2 have the wound closure more than 80% at day-12 while the other two groups were more than 18 days. It means that FA2 that containing eel extract could accelerated the burn wound healing. The result is similar with previous study using Haruan extract (Laila, 2011). Eel extract and Haruan extract were rich with essential amino acids and fatty acids that play important rule on healing process (Febriyenti(b), 2019; Febriyenti, 2012).

Table 3. Formulas of Gel Base (FA) and Eel (*Monopterus albus*) Extract Gel (FA2)

Ingredients	Formula (%)	FA	FA2
Eel extract	10		
PVA	10		
Propylene glycol	10		
Methylparaben	0.1		
Propylparaben	0.02		
Vitamin E	0.01		
Distilled water up to	100		

Table 4. Percentage of Wound Closure for Each Groups in Different Days. Positive Control, PC; gel base, FA; Formula Gel With Eel Extract, FA2; Data Presented as Mean ± SD, N = 6.

Day	Percentage of wound closure (%)		
	P	FA	FA2
1	0.99^a±0.03	0.18^b±0.02	7.90^b±1.19
2	9.81^b±0.22	6.27^a±0.48	15.68^a±0.61
3	13.10^a±0.18	8.93^a±0.16	24.13^a±0.64
4	21.42^b±0.91	11.66^a±0.66	33.82^c±1.06
5	29.70^a±0.92	15.65^a±0.86	42.07^a±1.12
6	31.07^a±0.80	18.55^a±0.60	56.38^a±0.69
7	33.16^a±0.25	22.67^a±1.10	59.23^a±0.22
8	42.39^a±1.39	30.81^a±0.99	63.58^a±1.45
9	49.02^a±1.07	34.84^a±0.94	72.35^c±1.06
10	52.90^a±0.12	39.44^a±0.88	75.04^a±0.40
11	55.25^a±1.75	49.39^a±0.72	78.12^a±0.28
12	59.54^a±0.67	54.14^a±0.99	81.11^b±0.68
13	62.16^a±1.27	57.23^a±0.49	82.75^a±0.53
14	68.34^a±0.62	59.02^a±0.11	85.00^b±0.17
15	73.82^a±0.32	61.28^a±0.55	92.79^a±0.91
16	75.52^b±0.53	63.78^a±0.48	99.13^c±1.14
17	77.47^a±0.71	67.18^a±0.29	100.00^a±0.01
18	81.93^a±0.16	70.11^a±0.28	100.00^a±0.00
19	85.23^a±0.60	74.33^a±0.59	100.00^a±0.00
20	87.39^a±0.61	78.96^a±0.08	100.00^a±0.01
Means within a row with a different letter are significantly different (P<0.05)

CONCLUSION

Formula FA2 that contained PVA 10% as a gelling agent had the best physical appearance among the other formulas. The gel was transparent and had proper viscosity as gel preparation. Formula FA2 that containing eel extract could accelerated the burn wound healing compared with base gel and commercial burn gel.

REFERENCES

Akita, S., Akino, K., Imaizumi, T., Tanaka, K., Anraku, K., Yano, H. and Hirano, A. 2006. A polyurethane dressing is beneficial for split-thickness skin-graft donor wound healing. Burns, 32(4), 447-451.

Balakrishnan, B., Mohanty, M., Umashankar, P. R. and Jayakrishnan, A. 2005. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26(32), 6335-6342.

Balsam, M. S., and Sagarin, E. 1992. Cosmetic Science and Technology (2nd ed. Vol. 1). New York: A. Willey Interscience.

Boateng, J. S., Matthews, K. H., Stevens, H. N. E. and Eccleston, G. M. 2008. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 97(8), 2892-2923.

Bowen, J. L. and Heard, C. M. 2006. Film drying and complexation effects in the simultaneous skin permeation of ketoprofen and propylene glycol from simple gel formulations. Int. J. Pharm., 307(2), 251-257.

Calder, P. C. 2005. Polyunsaturated fatty acids and inflammation. Biochem. Soc. T., 33(2), 423-427.

Corsetti, G., D’Antona, G., Dioguardi, F. S. and Rezzani, R. 2010. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats. Acta Histochemica, 112(5), 497–507.

Deacon RMJ. 2006. Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc; 1:936–46.

Febriyenti, Azmin, M. N. and Baie, S. H. 2008. Formulation of Aerosol Concentrates Containing Haruan (Channa striatus) for Wound Dressing. Malay. J. Pharm. Sci., 6(1), 43 - 58.

Febriyenti, Noor, A. M., and Baie, S. b. B. 2011. Physical evaluations of Haruan spray for wound dressing and wound healing. Int. J. Drug Del., 3, 115 - 124.

Febriyenti, Saringat bin Bai @ Baie, Laila, L., 2012. Effects of Aerosol Formulation to Amino Acids and Fatty Acids Contents in Haruan Extract, Pak. J. Pharm. Sci., 25(1), 1-6.

Febriyenti, Fitria, N., Mohtar, N., Umar, S., Noviza, D., Rineldi, S., Yunirwanti, and Bai, S. b. 2014. Honey gel and film for burn wound. International Journal of Drug Delivery, 6(1), 1 - 6.

Febriyenti(a), F., Lucida, H., Almahdy, A., Alfikriyah, I. and Hanif, M. 2019. Wound-healing effect of honey gel and film. Journal of Pharmacy & BioAllied Sciences, 11(2), 176-180.

Febriyenti(b), Almahdy, A. and Mulyani, D. 2019. Amino acids and fatty acids profiles of Eel (Monopterus albus) water extracts. Rasayan Journal of Chemistry, 12(3), 1591-1594.
Garg, A., Aggarwal, D., Garg, S., and Sigla, A. K. 2002. Spreading of Semisolid Formulation: An Update. *Pharmaceutical Technology*, 84 - 102.

Gennaro, A. R. 1990. *Remington's Pharmaceutical Sciences* (18th ed.). Pennsylvania: Mack Publishing Company,

Goldman RJ, Salcido R. More than one way to measure a wound: an overview of tools and techniques. Adv Skin Wound Care 2002;15:236.

Heng, P. W. S., Wan, L. S. C., and Tan, Y. T. F. 1996. Relationship between aggregation of HPMC coated spheroids and tackiness/viscosity/additives of the coating formulations. *Int. J. Pharm.*, 138(1), 57-66.

Jellineck, J. S. 1970. *Formulation and Function of Cosmetics*. New York: Willey Interscience.

Laila, L., Febriyenti, F., Salhimi, S. M., & Baie, S. 2011. Wound healing effect of Haruan (Channa striatus) spray. *International wound journal*, 8(5), 484-491.

Martin, A., Bustamante, P., and Chun, A. H. C. (Eds.). 2001. *Physical Pharmacy* (Fourth ed.). Baltimore: Lippincott Williams & Wilkins.

Misal, G., Dixit, G. and Gulkari, V. 2012. Formulation and evaluation of herbal gel. *Indian Journal of Natural Products and Resources*, 3(4), 501 - 505.

Nayak BS, Raju SS, Ramsubhag A. 2008. Investigation of wound healing activity of *Lantana camara* L. in SpragueDawley rats using a burnwound model. Int J Appl Res Naturalprod 1:15–9.

Olfert ED, Cross BM, McWilliam AA. Guide to the care and use of experimental animals. In: Olfert ED, Cross BM, McWilliam AA, editors. CCAC, 2nd edn.

Ottawa: Canadian Council on Animal Care, 1993.

Razak, Z. K. A., Basri, M., Dzulkefly, K. and C.N.A. 2001. Extraction and Characterization of Fish Oil from Monopterus Albus. *Malaysian Journal of Analytical Sciences*, 7(1), 217 - 220.

Sezer, A. D., Hatipoglu, F., Cevher, E., Ongur, Z., Bas, A. L., and Akbuga, J. 2007. Chitosan Film Containing Fucoidan as a Wound Dressing for Dermal Burn Healing: Preparation and In Vitro/In Vivo Evaluation. *AAPS Pharm. Sci.Tech.*, 8(2), E1 - E8.

Shivhare, U. D., Jain, K. B., Mathur, V. B., Bhushari, K. P., and Roy, A. A. 2009. Formulation development and evaluation of diclofenac sodium gel using water-soluble polyacrylamide polymer. *Digest Journal of Nanomaterials and Biostructures*, 4(2), 285 - 290.

Storey, A., McAradle, F., Friedmann, P. S., Jackson, M. J. and Rhodes, L. E. 2005. Eicosapentageoic Acid and Docosahexaenoic Acid Reduce UVB- and TNF-α-induced IL-8 Secretion in Keratinocytes and UVB-induced IL-8 in Fibroblasts. *Journal of Investigative Dermatology*, 124, 248 - 255.

USP. 2007. The United States Pharmacopeia XXX - The National Formulary XXV. Rockville: United States Pharmacopeial Convention, Inc.

Williams, J. Z. and Barbul, A. 2003. Nutrition and wound healing. *Surg. Clin. N. Am.*, 83, 571-596.

Witte, M. B., and Barbul, A. 2002. Role of nitric oxide in wound repair. *Am. J. Surg.*, 183(4), 406-412.