Recovery of Humerus Fracture by Kinetic Means on Land and in Water

Vizitiu Elena ¹
Benedek Florian ²*

¹,² University „Ștefan cel Mare” of Suceava Str. Universității 13, 720229, România

DOI: 10.29081/gsjesh.2020.21.1s.10

Keywords: recovery, humerus fracture, kinetic means

Abstract
In this paper we will address the topic "Recovering the fracture of humerus by kinetic means on land and in water". This theme reveals, the main cause of fractures such as traffic and domestic accidents, which, during the last period, are given more and more frequent fractures for all ages. The young age of the patient we worked with was a mobilizer factor on recovery in this case. From the desire to help him recover as quickly as possible, we have informed ourselves by studying the literature, designing and applying a complex recovery program both on land and in water. Our research describes the upper extremity of the humerus as less powerful areas where the fractures of the anatomical corner, the humeral head and the surgical corner occur.; On muscle inserts occurs the junction between humerus and Tuberosities.

1. Introduction

The incidence of fractures of the upper extremity of the humerus is continuously increasing. These fractures constitute almost 50% of the cases of upper limb fractures. From the number of fractures, approximately 5% are fractures of the proximal humerus and of these, with a higher incidence on women than men. Usually, these fractures occur in people past 50-60 years, due to the occurrence after the middle age of osteoporosis. Young, active persons are affected by approximately 10-15% of fractures with significant displacement and 85% of those without significant displacement. The most common causes are road accidents, falls from high (work or domestic accidents), sports accidents, aggression, crushing of different causes, etc. In most situations where individuals are presented to the doctor with strong pain in the shoulder and the inability to move or use it. (Benedek, 2009; Mârza Dănilea, 2012; Sbenghe, 2005).

* E-mail: florianb@usv.ro
In this regard, we will use Kinetotherapy, which is one of the areas that has evolved greatly over the past decades, being considered an paramedical discipline that promotes movement as a therapeutic essential means, which is why it is also called Motion Therapy. Kinetotherapy has the field of study of joint and neuromuscular mechanisms based on physical exercise. This motion therapy aims to seek medical recovery from a somatic and functional standpoint, using a number of specific methods and techniques, seeks to restore incomplete functions or increase functional levels in various sufferings, Helping people to carry out normal driving activities (Balint, Diaconu, & Moise, 2007; Tomoiaia, 2004).

“Primum non nocere, The basic principle of any medical treatment, old as medical science, is also applicable in physical therapy and refers to not applying a treatment than with the safety of improving the patient's health and never, under the motivation of doing harm” (Nicolescu, Raveica, & Ojoga, 2008).

Neither the physiotherapist, nor the physical therapist, nor the ergotherapist can be won't be in the conductions of all physical means. Their recommendation remains the competence of the doctor but, the most correct attitude is the collaboration between the execution factors and the directive. Kinetotherapy in the Orthopedico-traumatic diseases of the musculoskeletal apparatus is a complex process, driven according to the type of affection, the individual morpho-functional characteristics, the degree of tissue damage. Shoulder fractures are characterized, from the point of view of the Recuperator, by the speed of bone consolidation and the possibility of early establishment of functional recovery physiotherapy programs (Mârza Dănilă, 2012; Raveica, 2009; Tomoiaia, 2004).

The general objectives of kinetotherapeutic recovery in the case of fracture of humerus are:

1. Prevent the installation of articular and and its correction as early as possible when it has already started to install.
2. Joint stability and muscular strength
3. Reducing to the disappearance of pain is a constant concern of the physiotherapist because the local pain and inflammation are constantly present elements in all phases of the evolution of the shoulder trauma. The principle that physical therapeutic treatment sessions should not cause pain (neither during application nor afterwards) is more valid than ever, but it should not be taken adliteram, because at various times of recovery, Carrying out maneuvers up to the painful and slightly over limit, is a prerequisite for efficiency.

In the classical way, recovery by physical therapeutic means of the PTSD shoulder is carried out after the scheme of Ruelle and Sohier.

2. Material and methods

Purpose of the paper It consists in selecting and applying the most effective methods and kinetic means in recovering the patient with the humerus fracture, thus verifying the hypothesis of the work.

The hypothesis of the thesis assumes that the methods used in the treatment of kinetic both on land and in water coincide with the recovery of the humerus
fracture and whether the kinetic means used lead to shortening the recovery period and can provide the patient Optimizing the quality of life.

Presentation of the case

Anamnesis: Subject, A.G., age: 24 years, Sex: Male, Occupation: truck driver Remarks: In August 2018, following a domestic accident (fell off a ladder) suffered a fractured humerus of the right upper limb.

Clinical diagnosis: Fracture of humerus M.S. right.

Functional Diagnostics: General appreciation of functional capacity according to daily routine table and personal life.

The place of development and basic material conditions

The recovery activity was carried out based on doctor's indications and paraclinic manifestations. We worked at the "Stefan cel Mare" University of Suceava, a new modern center with an exceptional endowment. The material base comprises the following materials: goniometer, rubber balls, cane, bobath ball, dumbbells and other weights, pulleys, elastic band, electrostimulation apparatus and the swimming pool platform.

Duration and stages of work

The working time for the person's recovery was about 6 months, 2 meetings per land and one meeting in the water/week.

Complex patient recovery

The appearance of the callus announces the healing process, which frequently is a lasting one. The new bone tissue will be designed to converge the bone ends, adapting itself to the structural function of the humerus. The rest period will be observed, the one where there is a fracture outbreak, but also during this time will try to keep the usual activities in the House as normal as possible.

In the weeks when the patient wore the immobilized arm, various muscle toning exercises were worked, exercises to relax the muscles of the region in question, exercises for keeping in good limits the segments that did not present trauma. After this period you can start the easy, gradual resumption of the effort. If the patient notes pain, they will calm down by the drugs of the drug, but also by the effects of the miorelaxant massage (pectoral, subscapular muscles). (Balint, Diaconu, & Moise, 2007; Rață, 2007; Sbenghe, 1981).

Table 1. Patient recovery program with humerus

Recovery Program on land and in water	Objectives: Reducing posttraumatic pain, muscular relaxation of the Scapulo-humeral centripetal and restoring stability of the control of movements and various abilities.
Means	**Dose**
Stage I	**2 days**
From Orthostatism, flexy head movement, extension, left/right side movements, inclinations	From Orthostatism lifting movement-descent of shoulders, anteduction and retroduction, circumductions with flexed arms
Circumductions of the head both ways	From the lying ventral runs the abduction of the upper limb as

x 10
Stage	Duration	Exercises
II	18 days	- From sitting: It runs the closure and opening of the fist, i.e. flexion and finger extension in series 8 — 10 repetings, with the observation that the flexing force represents up to 50% of the maximum capacity; flexion and hand extension on low amplitude forearms 2x4 - Circumductions of the fist, with flexy fingers of 3-4 times in every sense, with the observation that the duration of the hearing is 15 — 20 min 2x3
III	18 days	- From Orthostatism, with a bobath ball on a working table, running hands on the ball 2x4 - From Orthostatism, with a small ball in hand, conveying the ball from one hand to another with abduction movements, adduction, flexia, extension 2x4 - From Orthostatism: anteduction and alternative retroduction of the upper limbs 2x4 - From the sun, the active abduction of the upper limb with assistance 2x4 - From sitting with the lateral arms down, the circumductions with reduced amplitude of the upper limbs both ways 2x4 - From sitting with his hands on the hips, lateral bending of the head 2x4
IV	45 days	- Repeat the previous stage exercises 3x4 - From sitting, abducting the upper limbs, with resistance 3x4 - Upper limb adduction with resistance 3x4 - Upper limb retroconduction with resistance 3x4 - flexion and forearm extension with weights of 500gr 2x4 - Pronation and supination weighing 500 gr and balance 2x4 - flexion and forearm extension, alternated with pronation and supination 2x4
V	30 days	- From Orthostatism anteduction and alternative retroduction of the upper limbs 3x4 - Cross-adduction and abduction of upper limbs with balance 3x4 - The anteduction and simultaneous retroduction of the upper limbs 3x4 - Flexion and the simultaneous extension of the foreareas; Flexion with supination, pronation extension 3x4 - flexion and forearm extension, flexy and pronation, supination extension 3x4 - From the dorsal decubitis with a cane in the hands, the flexia/extension of the forearm before and upfrom sitting, Flexion of the upper limb injured, with resistance 3x4 - Extension of the upper limb injured, with resistance 3x4 - The pronation and sigination of the upper limb, with resistance 3x4 - With the gym ball runs the flexes and extensions of the upper limbs. 3x4
VI-	67 days	- From Orthostatism, water feather in the chest, circumductions of the head both ways 3x4 - From Orthostatism, water feather in the chest, lateral bending of the head and lateral twisting, with slight archings 3x4 - From Orthostatism, water feather in the chest, shoulder projection 3x4

- The dorsal decubitus runs the forearm flexy on the right/left arm
- Passive movements such as: Extensia of the forearm with the easy abduction of the right upper limb and flexy of the forearm on the arm are executed from the seat.
of muscles-increased mobility

- muscle toning

- back, with slight extension of the head
- From sitting, the water feather in the chest, the adduction of the shoulders, with the slight flexy of the head
- From Orthostatism, flexion of the torso with the forearm of the upper limbs, alternating with the trunk extension, with the arms around the body, the flexy forearms of 90°, with the remotening of the forearm
- Cross-duduction and abduction of the upper limbs, with balance without palgrated and with Palmar
- The anteduction and simultaneous retroduction of the upper limbs without palmar and palmar
- Flexion and the simultaneous extension of the forearm, supination flexion, the pronation extension without palmar and palmar
- Flexion and forearm extension, flexy and pronation, supination extension without palmar and palmar
- Extension of the upper limb injured, without Palmar and palmar
- From Orthostatism, flexion and forearm extension with small weights
- From Orthostatism, pronation and supination with small weights and balance
- From Orthostatism, flexion and forearm extension, alternated with pronation and supination
- The pronation and suspenation of the injured upper limb, with no palm and palmar resistance
- Breaststroke arms movements at the edge of "Smash wave"
- Headstrokes Breaststroke Cork
- Rear arms movements with the help of physiotherapist and without

3. Results and discussions

Table 2. Evaluation of daily life movements

CRT No.	Average initial testing	Average intermediate testing	Average final testing
1	2.0	1.3	0.4

Table 3. Joint Mobility Assessment

Crt No.	Standard/moving sector values	Evaluation of joint mobility	Initial testing	Intermediate testing	Final testing
1	0-90°; 90-130°; 130-170°	Flexion	70°	90°	140°
2	0-40°; 40-60°; 60-100°	Extension	20°	35°	80°
3	0-45°; 45-90°; 90-180°	Abduction	60°	95°	165°
4	Irrespective of the sector 90°	Internal rotation	30°	40°	75°
5	Irrespective of the sector 90°	External rotation	35°	65°	80°
Table 4. Evaluation-Muscle Testing

CRT No.	Assessment of muscle strength	Initial value	Intermediate values	Final values
1.	Flexion – Deltoid, previous part	2	3	4
2.	Extension – the Great dorsal	2	3	4
3.	Abduction – Deltoid-Middle, Supraspinos	1	2	3
4.	Adduction – The Great pectoral	1	2	3
5.	External rotation – subspinous, small round	2	2	3

Figure 1. Evaluation of daily life movements

Following the assessment of the possibilities for the implementation of movements used in daily life activities, the results have improved significantly: If in initial testing, the average value of 2.0 was that the patient needed help, and at the end of the recovery period, the average value of 0.4 shows that the vast majority of these movements/activities can carry them without difficulty.

Figure 2. Joint mobility Assessment
Flexion: 70° The initial assessment accounted for 41.16% of the maximum possibility, and 140° From the final evaluation accounted for 82.35%. At the same time, the movement increased with 70°, And the progress achieved is 41.19%. Extension: 20° From the initial assessment accounted for 20% of the maximum and 60° From the final evaluation accounted for 60%. At the same time, the movement increased with 40°, and the progress achieved is 40%. Abduction: 60° From the initial assessment accounted for 30% of the maximum, and 1650 from the final evaluation accounted for 92%. At the same time, the movement increased with 105°, and the progress recorded is 62%. Internal rotation: 30°. From the initial assessment accounted for 30% of the maximum, and 75°. From the final evaluation accounted for 83.44%. At the same time, the movement increased with 45°, and the progress recorded is 52.44%. External rotation: 35°. From the initial assessment accounted for 38% of the maximum possibility, and 80°. From the final evaluation accounted for 86%. At the same time, the movement increased with 45°, and the progress recorded is 48%.

Figure 3. Muscle strength assessment

Flexion: Progress is from muscular contraction that could mobilize the segment over the entire amplitude, but only if gravity was suppressed, Until the muscle contraction force that finally could defeat not only gravity, but also a moderate resistance; Extension: The progress made is from muscular contraction that could mobilize the segment over the entire amplitude, but only if gravity was suppressed to the muscle contraction force that finally could defeat not only gravity, But also a moderate resistance; The abduction: The contraction of the muscle was incapable of moving the segment even in simple positions to the initial assessment, because in the end the movement was able to be executed completely, even against gravity; The adduction: Contraction of the muscle was incapable of moving the segment even in simple positions to the initial assessment, because in the end the movement was able to be executed completely, even against gravity; External rotation: The progress made is from muscular contraction that could mobilize the segment over the entire amplitude, but only if the gravity was suppressed until the movement that could be executed completely, even against gravity;
If in the initial assessment predominated values of 1 and 2, following the program of Physiotherapy applied, the final muscular testing revealed a real improvement in muscle strength, almost all movements being performed with values close to normal ones. To evaluate the movements of the joints we measured their amplitude in various directions. At a place with the muscular balance form the analytical assessment, a stage of importance in physical therapy. A kinetic program is not conceived except with the support of initial, intermediate and final evaluations, which are particularly important, with the permanent monitoring and directing roles of recovery. By periodically knowing these results, the kinetic program can reorient itself, adapt to the new conditions and requirements.

By interpreting the results and analyzing the dynamics of evolution, I can conclude that the kinetic program had the role of functional reeducation of the limb affected by the fracture of humerus.

Discussions

In the work "Combined fractures of the humeral head and the glenoid" the authors (Konigshauser, Mempel, & Rouseh, 2019) decided to use a classification system using treatment methods and their complications. They analyzed the incidence and numerical distribution of glenohumeral fractures. The proposed recovery uses exercises only on land.

Compared to the program proposed by us, with exercises used on land, but also in water recovery is more effective because the presence of water movements are easier to perform and pain is alleviated.

4. Conclusions

1. The interpretation of the results obtained in the final evaluation and the progress achieved showed that the assumptions from which we started were validated: the methods and means used in kinetic treatment coincided with the recovery of humerus fracture, and the exercises used resulted in shortening the recovery period and assured the patient the optimization of the quality of life.

2. By applying the functional reeducation programs, the duration of recovery can be considerably reduced.

3. The main purpose pursued was achieved: kinetic means on land and in water led to the recovery of the humerus fracture and implicitly to shortening the recovery period.

4. Particular importance should be given to the main objective of the treatment resulting from research and may not be other than to maintain the patient in a good state both mentally and somatic, so as to have good performance in carrying out daily activities.

5. Factors: Age, degree of affection, seriousness with which recovery treatment was followed, associated diseases and patient-therapist collaboration, have a very important role in the evolution of treatment.

6. The patient's progress has shown me that we have achieved in a fairly large percentage the objective of the patient to return to morpho-functional clues before the accident (not having the claim of perfection).
7. Finally, the idea is that the physiotherapist must prove the ability to know, select and apply the most appropriate methods in achieving the proposed objectives, in order to exercise the profession he has chosen.

References

1. BALINT T, DIACONU, I & MOISE, A. (2007). Evaluarea aparatului locomotor, Iaşi: Tehnopress;
2. BENEDEK, F. (2009). Biomecanica, Iaşi: PIM;
3. MĂRZA DĂNILĂ, D. (2012). Bazele generale ale kinetoterapiei, Bacău: Alma Mater;
4. NICOLESCU, M., RAVEICA G., & OJOGA, F. (2008). Tratamentul ortopedico-chirurgical și kinetoterapia în afecțiunile aparatului locomotor, Bacău: Alma Mater;
5. RAVEICA, G. (2009). Kinetoterapia în afecțiunile ortopedico-traumatice ale aparatului locomotor, Bacau: Edit. Alma Mater;
6. RAȚĂ, E. (2007). Teoria și practica în sporturi de apă: înot, București: Didactică și Pedagogică;
7. SBENGHE, T. (1981). Recuperarea medicală a sechelelor posttraumatice ale membrelor, București : Medicală;
8. SBENGHE, T. (2005). Kinesiologie, București: Medicală;
9. TOMOAIA, Gh. (2004). Traumatologie osteoarticulară, Cluj-Napoca: Medicală Universitară Iuliu Hațieganu.
10. KONIGSHAUSER, M., MEMPEL, E., ROUSEH, P. GESSMANN, J. SCHILDHAUER, T.A. & SEYBOLD, D. (2019). Combined fractures of the humeral head and the glenoid. Obere Extremität. 14:118–126.

Recuperarea Fracturii de Humerus Prin Mijloace Kinetice pe Uscat și în Apă

Vizitiu Elena1
Benedek Florian2

1,2 Universitatea „Ștefan cel Mare” din Suceava Str. Universității 13, 720229, România

Keywords: recuperare, fractura de humerus, mijloace kinetice

Abstract

În lucrarea de față vom aborda tema “Recuperarea fracturii de humerus prin mijloace kinetice pe uscat și în apă”. Aceasta temă relevă, principală cauza a fracturilor cum ar fi accidentele de circulație și cele casnice, care, în ultima perioadă sunt soldate cu fracturi din ce în ce mai frecvente pentru toate vârstele. Vârsta tânără a pacientului cu care noi am lucrat a fost un factor mobilizator privind recuperarea în acest caz. Din dorința de a-l ajuta să se refacă cât mai repede, ne-am informat studiind literatura de specialitate, concepând și
aplicând un program complex de recuperare atât pe uscat cât şi în apă. Cercetările efectuate de noi, descriu partea superioară a extremităţii humerusului ca zone mai puţin puternice unde au loc fracturile colului anatomic, capului humeral și colului chirurgical; pe inserțiile musculare are loc jocnițiaunea dintre humerus și tuberozități.

1. Introducere

Incidența fracturilor extremității superioare a humerusului este în continuă creștere. Aceste fracturi constituie aproape 50% din cazurile fracturilor membrelor superioare. Din numărul fracturilor, un procent de aproximativ 5% îl constituie fracturile humerusului proximal și dintre acestea, cu o incidență mai mare asupra femeilor decât bărbații. De obicei, aceste fracturi au loc la persoane trecute de 50-60 ani, din cauza apariției după vârsta mijlocie a osteoporozei. Persoanele tinere, active, sunt afectate în proporție de aproximativ 10-15% de fracturi cu deplasare semnificativă și în proporție de 85% de cele fără deplasare semnificativă.

Cauzele cele mai frecvente sunt accidentele rutiere, căderile de la înălțime (accidente de muncă sau casnice), accidentele sportive, heteroagresiunile, zdrobirile de cauze diferite, etc. În cele mai multe situații în care persoanele se prezintă la medic cu durere puternică la nivelul umărului și neputința de a-l mișca sau folosi. (Benedek, 2009; Mărza Dănilă, 2012; Sbenghe, 2005)

În acest sens, vom folosi kinetoterapia, care este unul dintre domeniile care a evoluat foarte mult în ultimii zeci de ani, fiind considerată o disciplină paramedicală care promovează mişcarea ca mijloc esențial terapeutic, motiv pentru care ea mai este denumită și terapie prin mișcare. Kinetoterapia are ca domeniu de studiu mecanismele articulare și neuromusculare având la bază exercițiul fizic. Această terapie prin mișcare are ca obiectiv recuperarea medicală din punct de vedere somatic și funcțional, folosind o serie de metode și tehnici specifice, urmărește refacerea unor funcții incomplete sau creșterea nivelului funcțional în diverse suferințe, ajutând astfel persoanele să desfășoare activitățile motrice normale (Balint, Diaconu, & Moise, 2007; Tomoaia, 2004).

„Primum non nocere, principiul de bază al oricăruia tratament medical, vechi cât știința medicală, este aplicabil și în kinetoterapie și se referă la a nu aplica un tratament decât cu siguranță de a îmbunătăți starea sănătății pacientului și niciodată, sub motivarea de a face rău” (Nicolescu, Raveica, & Ojoga, 2008)

Nici fizioterapeutul, nici kinetoterapeutul, nici ergoterapeutul nu se pot erija în dirijorii tuturor mijloacelor fizice. Recomandarea acestora rămâne de competența medicului dar, cea mai corectă atitudine este aceea de colaborare între factorii de execuție și cei de directivă.

Kinetoterapia în afecțiunile ortopedico-traumatice ale aparatului locomotor este un proces complex, condus în funcție de tipul afecțiunii, caracteristicile morfo-funcționale individuale, gradul de afectare a țesuturilor.

Fracturile umărului se caracterizează, din punctul de vedere al recuperatorului, prin rapiditatea consolidării osoase și posibilitatea instituirii precoce a programelor kinetoterapeutice de recuperare funcțională. (Mărza Dănilă, 2012; Raveica, 2009; Tomoaia, 2004).
Obiectivele generale ale recuperării kinetoterapeutice în cazul fracturii de humerus sunt:

1. Prevenirea instalării redorii articulare și corectarea ei cât mai precoce, atunci când a apucat să se instaleze deja.

2. Stabilitatea articulară și forța musculară

3. Reducerea până la dispariție a durerii este o preocupare constantă a kinetoterapeutului pentru că durerea și inflamația locală sunt elemente prezente constant în toate fazele de evoluție a traumatismului umărului. Principiul conform căruia ședințele de tratament kinetoterapeutic nu trebuie să provoace durere (nici în timpul aplicării și nici după aceea) este mai valabil decât oricând, dar el nu trebuie luat adliteram, pentru că, în diverse momente ale recuperării, efectuarea unor manevre până la limita dureroasă și puțin peste, reprezintă o condiție necesară pentru eficiență.

În mod clasic, recuperarea prin mijloace kinetoterapeutice a umărului posttraumatic se desfășoară etapizat după schema lui Ruelle și Sohier.

2. Material și metode

Scopul lucrării constă în selectarea și aplicarea celor mai eficiente metode și mijloace kinetice în recuperarea pacientului cu fractura de humerus verificând astfel ipoteza lucrării.

Ipotezele lucrării presupun că metodele folosite în tratamentul kinetic atât pe uscat cât și în apă coincid cu recuperarea fracturii de humerus și dacă mijloacele kinetice folosite conduc la scurtarea perioadei de recuperare și pot asigura pacientului optimizarea calității vieții.

Prezentarea cazului

Anamneză: Subiectul, A.G., vâsta: 24 de ani, sex: masculin, ocupația: șofer de tir. Observații: în luna august 2018, în urma unui accident casnic (a căzut de pe o scară) a suferit o fractură de humerus a membrului superior drept.

Diagnostic clinic: fractura de humerus M.S. drept.

Diagnostic funcțional: Aprecierea generală a capacității funcționale conform tabelului de rutină zilnică și viață personală.

Locul de desfășurare și condițiile de bază materială

Activitatea de recuperare s-a desfășurat având ca bază indicațiile medicului și manifestările paraclinice. Noi am lucrat la Complexul de Natație și Kinetoterapie din cadrul Universității "Ștefan cel Mare" din Suceava, un centru nou, modern, cu o dotare de excepție.

Baza materială cuprinde următoarele materiale: goniometru, mingi de cauciuc, baston, mingea bobath, gantere și alte greutăți, scripeți, bandă elastică, aparate de electrostimulație cât și platforma din bazinul de înot.

Durata și etapele de lucru. Durata de lucru pentru recuperarea persoanei a fost de aproximativ 6 luni, câte 2 ședințe pe uscat și una ședință în apă / săptămână.

Recuperarea complexă a pacientului

Apariția calusului anunță procesul de vindecare, care în mod frecvent este unul de durată. Țesutul osos nou va avea rolul de a converge capetele osoase, el
însuși adaptându-se funcției structurale a humerusului. Se va respecta perioada de repaus, cea în care există focarul de fractură, dar, tot în acest timp se va încerca păstrarea cât mai normală a activităților obișnuite din casă.

În săptămânile în care pacientul a purtat brațul imobilizat, s-au lucrat diferite exerciții de tonifiere la musculatură, exerciții de relaxare a mușchilor din regiunea respectivă, exerciții pentru păstrarea în limite bine a segmentelor care nu prezenta traume. După această perioadă se poate începe reluarea ușoară, graduală a efortului. În cazul în care pacientul remarcă dureri, acestea se vor calma prin medicamente antialgice, dar și prin efectele masajului miorelaxant (mușchii pectoral, subscapular) (Balint et al., 2007; Rață, 2007; Sbenghe, 1981).

Tabel 1. Programul de recuperare a pacientului cu fractura de humerus

Program de recuperare pe uscat și în apă	Mijloace	Dozare
Obiective: reducerea durerii posttraumatice, relaxarea musculară a centurii scapulo-humerale și refacerea stabilității controlului unor mișcări și a diferitelor abilități.		
Etapa I		
2 zile		
• din ortostatism, mișcarea capului în flexie, extensie, mișcări laterale stânga/dreapta, înclinări		
• circumducții ale capului în ambele sensuri		
• din ortostatism mișcări de ridicare-coborâre ale umerilor, anteducție și retroducție, circumducții cu brațele flexate		
• din culcat ventral se execută abducția membrului superior drept	x10	
• din decubit dorsal se execută flexia antebrațului pe braț partea dreaptă/stângă		
• din șezut se execută mișcări passive precum: extenia antebrațului cu ușoara abducție a membrului superior drept și flexia antebrațului pe braț.		
Etapa a II-a		
18 zile		
• din șezând: se execută închiderea și deschiderea pumnului, adică flexia și extensia degetelor în serii de 8—10 repetări, cu observația că forța de flexie reprezintă până la 50% din capacitatea maximă; flexia și extensia mâinilor pe antebraț cu amplitudine redusă	2x4	
• circumducții ale pumnului, cu degetele în flexie de 3-4 ori în fiecare sens, cu observația că durata ședinței este de 15—20 min	2x3	
• aceeași mișcare cu degetele în extensie		
Etapa a III-a		
18 zile		
• din ortostatism, cu o minge bobath pe o masă de lucru, rularea mâinilor pe minge	2x4	
• din ortostatism, cu o minge mică în mână, transmiterea mingii dintr-o mână în alta cu mișcări de abducție, adducție, flexie, extensie		
• din ortostatism: anteducție și retroducție alternativă a membrului superioar		
• din șezând, abducția activă a membrului superior lezat cu asistență		
• din șezând cu brațele lateral jos,cirrducții cu amplitudine redusă ale membrelor superioare în ambele sensuri		
• din șezând cu mâinile pe șolduri, îndoiire laterale ale capului		
Etapa a		3x4
• se repetă exercițiile din etapa precedentă		
• din șezând, abductia membrilor superioare, cu rezistență		
• adducția membrilor superioare, cu rezistență		
Etapa a V-a	30 zile	
----------------	---------	
IV-a	45 de zile	
- retroducția membrelor superioare, cu rezistență		
- flexia și extensia antebrațelor cu greutăți de 500gr		
- pronăția și supinația cu greutate 500 gr și balans		
- flexia și extensia antebrațelor, alternate cu pronăție și supinație		

Etapa a VI-a	67 de zile
- din ortostatism, apă pană la nivelul pieptului, circumducții ale capului în ambele sensuri	
- din ortostatism, apa pană la nivelul pieptului, în doi ori laterale ale capului și răsuciri laterale, cu ușoare arcuiri	
- din ortostatism, apa pană la nivelul pieptului, proiecția umerilor înainte, cu ușoară extensie a capului	
- din stând, apa pană la nivelul pieptului, aducția umerilor, cu usoară flexie a capului	
- din ortostatism, flexia trunchiului cu anteducția membrelor superioare, alternând cu extensia trunchiului, cu brațele pe lângă corp, antebrațele în flexie de 90⁰, cu depărtarea antebrațelor	
- adducția încrucișată și abduția membrelor superioare, cu balans fără palmar și palmar	
- anteducția și retroducția simultană a membrelor superioare fără palmar și cu palmar	
- flexia și extensia simultană a antebrațelor, flexia cu supinație, extensia cu pronație fără palmar și cu palmar	
- flexia și extensia antebrațului, flexie și pronație, extensie cu supinație fără palmar și cu palmar	
- extensia antebrațului membrului superior lezat, fără palmar și cu palmar	
- din ortostatism, flexia și extensia antebrațelor cu greutăți mici	
- din ortostatism, pronația și supinația cu greutăți mici și balans	
- din ortostatism, flexia și extensia antebrațelor, alternate cu pronație și supinație	
- pronăția și suspenția membrelui superior lezat, cu rezistență fără palmar și cu palmar	
- mișcări de brațe craul la marginea “sparge val”	
- mișcări de brațe craul cu pluta	
- mișcări de brațe spate cu ajutorul kinetoterapeautului și fără	
4. Rezultate și discuții

Tabel 2. Evaluarea efectuării mișcărilor din viața cotidiană

Nr. crt.	Medie Testare inițială	Medie Testare intermediară	Medie Testare finală
1	2,0	1,3	0,4

Tabel 3. Evaluare mobilitate articulară

Nr. crt.	Valori standard/sector de mișcare	Evaluarea mobilității articulare	Testare inițială	Testare intermediară	Testare finală
1	0-90⁰; 90-130⁰ 130-170⁰	Flexie	70⁰	90⁰	140⁰
2	0-40⁰; 40-60⁰ 60-100⁰	Extensie	20⁰	35⁰	80⁰
3	0-45⁰; 45-90⁰ 90-180⁰	Abducție	60⁰	95⁰	165⁰
4	Indiferent de sector 90⁰	Rotație internă	30⁰	40⁰	75⁰
5	Indiferent de sector 90⁰	Rotație externă	35⁰	65⁰	80⁰

Tabel 4. Evaluare - Testing muscular

Nr.crt.	Evaluarea forței musculare	Val.inițiale	Val.intermediare	Val.finala
1	Flexie – Deltoid, partea anterioară	2	3	4
2	Extensie – Marele dorsal	2	3	4
3	Abducție – Deltoid-parteia mijlocie, Supraspinos	1	2	3
4	Adducție – Marele pectoral	1	2	3
5	Rotație externă – Subspinos, Rotundul mic	2	2	3

Figura 1. Evaluarea efectuării mișcărilor din viața cotidiană
În urma evaluării posibilităților de execuție a mișcărilor folosite în activitățile din viața cotidiană, rezultatele s-au îmbunătățit simțitor: dacă la testarea inițială, valoarea mediei de 2,0 reprezenta faptul că pacientul avea nevoie de ajutor, iar la sfârșitul perioadei de recuperare, valoarea mediei de 0,4 arată că marea majoritate a acestor mișcări/activități le poate desfășura fără dificultate.

Figura 2. Evaluare mobilitate articulară

Flexia: 70° de la evaluarea inițială reprezenta 41,16% din posibilitatea maximă, iar 140° de la evaluarea finală reprezenta 82,35%. În același timp, mișcarea a crescut cu 70°, iar progresul înregistrat este de 41,19%. Extensia: 20° de la evaluarea inițială reprezenta 20% din posibilitatea maximă, iar 60° de la evaluarea finală reprezenta 60%. În același timp, mișcarea a crescut cu 40°, iar progresul înregistrat este de 40%. Abducția: 60° de la evaluarea inițială reprezenta 30% din posibilitatea maximă, iar 165° de la evaluarea finală reprezenta 92%. În același timp, mișcarea a crescut cu 105°, iar progresul înregistrat este de 62%.

Figura 3. Evaluarea forței musculare
Rotația internă: 30^0 de la evaluarea inițială reprezenta 30% din posibilitatea maximă, iar 75^0 de la evaluarea finală reprezenta 83,44%. În același timp, mișcarea a crescut cu 45^0, iar progresul înregistrat este de 52,44%. Rotația externă: 35^0 de la evaluarea inițială reprezenta 38% din posibilitatea maximă, iar 80^0 de la evaluarea finală reprezenta 86%. În același timp, mișcarea a crescut cu 45^0, iar progresul înregistrat este de 48%.

Flexia: progresul înregistrat este de la contracția musculară care putea mobiliza segmentul pe toată amplitudinea, dar numai dacă gravația a fost suprimată, până la forța de contracție a mușchiului care în final a putut învinge numai gravitația, ci și o rezistență moderată; Extensia: progresul înregistrat este de la contracția musculară care putea mobiliza segmentul pe toată amplitudinea, dar numai dacă gravația a fost suprimată până la forța de contracție a mușchiului care în final a putut învinge numai gravitația, ci și o rezistență moderată; Adducția: contracția mușchiului era incapabilă să miște segmentul chiar în poziții simple la evaluarea inițială, pentru că în final mișcarea a putut să fie executată complet, chiar contra gravației; Adducția: contracția mușchiului era incapabilă să miște segmentul chiar în poziții simple la evaluarea inițială, pentru că în final mișcarea a putut să fie executată complet, chiar contra gravației; Rotația externă: progresul înregistrat este de la contracția musculară care putea mobiliza segmentul pe toată amplitudinea, dar numai dacă gravația a fost suprimată până la mișcarea care a putut să fie executată complet, chiar contra gravației;

Dacă la evaluarea inițială predominau valori de 1 și 2, în urma programului de kinetoterapie aplicat, testingul muscular final a evidențiat o reală îmbunătățire a forței mușchilor, aproape toate mișcările fiind efectuate cu valori apropiate de cele normale.

Pentru evaluarea mișcărilor articulațiilor măsurat amplitudinea acestora, în direcții diverse. La un loc cu bilanțul muscular formează evaluarea analitică, o etapă importantă în kinetoterapie. Nu se concepe un program kinetic decât cu sprijinul evaluărilor inițiale, intermediare și finale, care sunt deosebit de importante, având și rolurile de monitorizare și dirijare permanentă a recuperării. Cunoscând periodic aceste rezultate, programul kinetic se poate reorienta, se poate adapta la noile condiții și cerințe.

Interpretând rezultatele și analizând dinamica evoluției, pot concluziona că programul kinetic a avut rol de reeducare funcțională a membrului afectat de fractura de humerus.

Discuții

În lucrarea „Combined fractures of the humeral head and the glenoid” autorii (Konigshauser, Mempel, & Rouseh, 2019) au decis să folosească un sistem de clasificare folosind metode de tratament și complicațiile acestora. Au analizat incidența și distribuția numeric a fracturilor gleno-humerale. Recuperarea propusă utilizează exerciții doar pe uscat.

Comparativ cu programul propus de noi, cu exercițiile utilizate pe uscat, dar și în apă recuperarea este mai eficientă deoarece prin presiunea apei, mișcările sunt mai ușor de executate și durerile sunt atenuate.
4. Concluzii

1. Interpretarea rezultatelor obţinute la evaluarea finală şi progresul obţinut au demonstrat că ipotezele de la care am pornit a fost validate: metodele şi mijloacele folosite în tratamentul kinetic au coincis cu recuperarea fracturii de humerus, iar exercițiile folosite au condus la scurtarea perioadei de refacere şi au asigurat pacientului optimizarea calităţii vieţii.

2. Prin aplicarea programelor de reeducare funcţională se poate micşora considerabil durata recuperării.

3. Principalul scop urmărit a fost atins: mijloacele kinetice pe uscat cât şi în apă au condus la recuperarea fracturii de humerus şi implicit la scurtarea perioadei de refacere.

4. Importantă deosebită trebuie acordată principalului obiectiv al tratamentului care rezultă din cercetare şi nu poate fi altul decât acela de a menţine bolnavul într-o bună stare atât psihică cât şi somatică, astfel încât să aibă o bună performanţă în efectuarea activităților zilnice.

5. Factorii: vârstă, gradul afecțiunii, seriozitatea cu care s-a urmat tratamentul de recuperare, bolile asociate şi colaborarea pacient-terapeut, au un rol foarte important în evoluţia tratamentului.

6. Progresul înregistrat de pacient mi-a demonstrat că am atins într-un procent destul de mare obiectiv ce urmărea ca pacientul să revină la indicii morfofuncţionali de dinaintea accidentului(neavând pretenţia perfecţionării).

7. În final se impune ideea conform căreia kinetoterapeutul trebuie să dovedească abilitatea de a cunoaşte, a selecta şi aplică cele mai potrivite metode în atingerea obiectivelor propuse, pentru a-şi exercita meseria pe care şi-a ales-o.