RESEARCH ARTICLE

Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE₂ Mediated JAK2/STAT3 Signaling Pathway

Xuan Liu¹, Qing Ji¹, Naijing Ye¹, Hua Sui¹, Lihong Zhou¹, Huirong Zhu¹, Zhongze Fan², Jianfeng Cai³, Qi Li¹*

¹ Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ² Interventional Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ³ Department of Chemistry, University of South Florida, Tampa, Florida, United States of America

☯ These authors contributed equally to this work.

* Lzwf@hotmail.com

Abstract

Berberin, extracted from Chinese herbal medicine Coptis chinensis, has been found to have anti-tumor activities. However, the underlying mechanisms have not been fully elucidated. Our current study demonstrated that berberin inhibited the in vitro and in vivo growth, migration/invasion of CRC cells, via attenuating the expression levels of COX-2/PGE₂, following by reducing the phosphorylation of JAK2 and STAT3, as well as the MMP-2/-9 expression. We further clarified that an increase of COX-2/PGE₂ expression offset the repressive activity of Berberin on JAK2/STAT3 signaling, and a JAK2 inhibitor AZD1480 blocked the effect of COX-2/PGE₂ on MMP-2/-9 expression. In summary, Berberin inhibited CRC invasion and metastasis via down-regulation of COX-2/PGE₂- JAK2/STAT3 signaling pathway.

Introduction

Colorectal cancer (CRC) is one of the most common human malignancies, ranking the third for cancer incidence in the world [1]. At present, surgery is the top choice for the treatment of CRC, but the post-surgical tumor metastasis rate remains high, a result of invasion and migration of CRC cells to the tumor surrounding tissues and distal organs [2–3]. Hence, to block CRC cell from metastasis is a crucial strategy of cancer therapy.

Berberin, an alkaloid isolated from traditional Chinese medicine Coptischinensis, has anti-inflammatory, anti-infectious effects and has been used to treat diabetes and hypertension [4–6]. Most recently, berberin was found to have anti-tumor activity, through affecting MMP-2/-9 expression [7–8], but the underlying molecular mechanism remains elusive.

Previous studies have found that, over-expression of COX-2 correlates with CRC tumorigenesis, not only did it promote tumor cell proliferation and inhibit apoptosis, but also enhance tumor angiogenesis, tumor cell attachment as well as migration/invasion [9]. Prostaglandin E2
(PGE$_2$), the main catalyzed product of COX-2 from arachidonic acid, plays a key role in the CRC tumorigenesis [10]. JAK2/STAT3 signaling pathway is persistently activated in CRC, up-regulating the expression levels of downstream genes such as MMP-2/-9 resulting in increased cancer cell migration/invasion and tumor metastasis [11–12]. Although the evidence collected in prostate, lung cancers and cholangiocarcinoma attested a close association between activated COX-2/PGE$_2$ and JAK2/STAT3 signaling pathways [13–15], such correlation and its importance in CRC still need to be elucidated. Our current study investigated the mechanism of the inhibitory effect of berberin on CRC invasion and metastasis, and revealed a significant role of JAK2/STAT3 and COX-2/PGE$_2$ signaling in these processes.

Materials and Methods

Cell culture and reagents

The human colorectal cancer SW620 and LoVo cells were purchased from ATCC (Manassas, VA, USA). SW620 cells were cultured in L-15 medium and LoVo cells in F12K medium supplemented with 10% fetal bovine serum, 100 g/ml streptomycin, 100 U/ml penicillin, at 37°C, 5% CO$_2$, and high humidity. Berberine was purchased from Aldrich-Sigma (St. Louis, MO, USA), ADZ1480, a JAK2 inhibitor, from Selleck (Houston, TX, USA). For in vitro studies, Berberine was dissolved in Dimethyl Sulphoxide (DMSO) and frozen in aliquots at -80°C. For in vivo experiments, Berberine was suspended in water supplemented with 0.5% carboxymethyl-cellulose sodium (CMC-Na) and stored at 4°C. In addition, DMSO and CMC-Na were used as the vehicle control in our whole study. The antibodies against COX-2, p-JAK2, JAK2, p-STAT3, STAT3, MMP-2, MMP-9, β-actin, and the HRP-goat anti-rabbit IgG, HRP-goat anti-mouse IgG were purchased from Cell Signaling (Beverly, MA, USA).

Clinical cases

Human colorectal carcinoma samples and the matched non-tumors colon tissue samples were collected at the time of surgical resection at Shuguang Hospital, Shanghai University of Traditional Chinese Medicine. All research involving human participants have been approved by the Ethics Committee of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, and all clinical investigations have been conducted according to the principles expressed in the Declaration of Helsinki. All patients provided "written informed consent" to participate in this study.

Cell viability assays

Human CRC cells (5×103) were seeded onto 96-well plate in 100 μL culture media, after attachment, were treated with berberin at dosages of 0, 5, 10, 20, 40 and 80 μM. At 24, 48, 72 hrs post-treatment, the cell viability was measured using CCK-8 kit (Kumamoto, Japan) according to manufacturer’s instruction. Briefly, CCK-8 reagent was added onto cells and incubated for 4 hours, absorbance (OD) was quantified by 490 nm with a reference wavelength of 630 nm. Cell viability = (ODn-OD0)/(ODc-OD0)×100%, OD0: blank, ODc, untreated control, ODn, berberin treated.

Xenograft mouse model

Male BALB/C nude mice, age 4–6 months, weighed 18 ± 2g, were purchased from SLAC Lab Animal Co., Ltd (Shanghai, China, license no. SCXK 2012–0002), and maintained under pathogen-free conditions for the studies. All animal work have been conducted according to the Institutional Animal Use and Care Committee of Shanghai University of Traditional Chinese Medicine.
Medicine, and all the research were approved by Shanghai Medical Experimental Animal Care Commission and in accordance with the Provision and General Recommendation of Chinese Experimental Animals Administration Legislation. As described previously [16], CRC cells (1×10^6, in 0.2 ml PBS) were subcutaneously injected into the flanks of the nude mice to initiate tumor growth. When tumors reach an average size of 100 mm^3, the mice were randomized into 5 groups (6 mice per group): group 1 mice: control (CMC-Na); groups 2, 3, 4: oral gavaged berberin, at 50, 100, 200 mg/kg/d, respectively; group 5: intraperitoneally injected 5-FU, at 50 mg/kg/2d. The body weight of the animals and the two perpendicular diameters (a and b) were recorded every 2 days and the tumor volume (TV) was estimated as: TV = ab^2/2. The mice were sacrificed after 4 weeks of treatment and the tumors were excised and weighed. The tumor inhibition rate was calculated as: (1-average tumor weight of treated mice/average tumor weight of control mice) x 100%. Meanwhile, blood was collected for analysis of alanine transaminase (ALT), aspartate transaminase (AST), creatinine (CT), urea nitrogen (UN) using ELISA kit (Bogoo, Shanghai, China) according to manufacturer’s instruction.

CRC lung metastasis mouse model
Experimental lung metastases of CRC were induced by injections of a single-cell suspension of CRC cells (1×10^6 in 0.2 ml PBS) into the lateral tail vein of nude mice, which were randomized into 5 treatment groups as described in the xenograft studies [17]. The mice were sacrificed after 4 weeks of treatment, the organs of lung were excised, fixed by formalin and paraffin embedded for further analysis.

Histology and immunohistochemistry (IHC)
The organs and tumor were removed, fixed with formalin, embedded with paraffin and sectioned [18]. IHC of COX-2 and p-STAT3 was performed on the 5-μm sections using antibodies from Cell Signaling Technology (Beverly, MA, USA). Images were analyzed and quantified for the total value of optical density (IOD) for the IHC positivity by Image pro-plus 6.0 Software.

Cell migration and invasion assays
A 24-well transwell plate (8-mm pore size, Corning, NY, USA) was used to measure each cell line’s migratory and invasive ability, as we previously described [19]. The CRC cells were treated by berberin for 48 hrs before being trypsinized and seeded into the upper transwell chamber (2.5×10^4) in 1% FBS culture media, with the lower chamber containing 600 μl media with 15% FBS and 10μg/ml fibronectin. Twenty-four hrs later, the migrated cells were fixed by 95% alcohol, stained by crystal violet staining, analyzed by microscope (Ti-E, Nikon, Tokyo, Japan). For invasion assay, 100 μl diluted matrigel (100μg/ml, BD, Franklin Lakes, NJ, USA) was firstly added unto the bottom of the transwell chamber, the following procedure was the same as migration analysis, except for the invasive cells being analyzed after 48 hrs.

Western blot analysis
Cell lysis, protein extraction and Western blotting analyses were performed as previously described [20]. Protein samples (20 μg) were subjected to 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to a polyvinylidenedifluoride membrane. The membranes were blocked in 5% non-fat powdered milk buffer (10 mmol/l Tris, pH 7.5, 100 mmol/l NaCl, 0.1% Tween 20), before being incubated with primary and later, secondary antibodies, and auto photographed. Data obtained from the Western blot experiments were analyzed by Bio-Rad Quantity One 1D Analysis software (Bio-Rad, Hercules, CA, USA).
Luciferase Reporter Assay

Using our established protocol [21], pGL3-Basic-COX-2 promoter and a control vector pRL-SV40 were transfected into CRC cells. Twenty-four hrs post-transfection, various doses of berberin were added onto the cells for an additional 48 hrs. Then, the measurements of firefly and Renilla luciferase activities in cell lysates were carried out using the Dual-Luciferase Reporter Assay System (Promega, Madison, USA). Data were presented as the ratio of firefly luciferase activity to Renilla luciferase activity in each sample performed in triplicate ± SD.

ELISA

After being treated with various concentrations of berberin for 48 hrs, the CRC cells were re-seeded onto 24-well plates (5×10^4 in 0.5 ml of culture media). Forty-eight hrs later, the conditioned media were collected, centrifuged (3000 rpm for 10 min), and measured for PGE2 concentration using an ELISA kit (Bogoo, Shanghai, China) according to manufacturer’s instruction.

Over-expression and knockdown of COX-2 gene

CRC cells were transfected with the pIRES2-COX-2 or the control vector pIRES2 using Lipofectamine 2000 reagent (Invitrogen, Grand Island, NY, USA) following the manufacturer’s instruction, and the stably overexpressing COX-2 or control vector cells was selected with neomycin (G418, 1mg/ml). For shRNA mediated gene knockdown, CRC cells were Lipofectamine 2000 transfected by the pFU-GW-RNAi plasmids containing COX-2-specific siRNA sequences: 1: 5-GCTGAATTTAACCCTCTAT-3, 2: 5-GCAGATGAAATACCAGTCTTT-3, or the scramble sequence: 5-TTCTCCGAACGTGTCACGT-3, and the transfected cells were selected with neomycin. The efficiency of gene knockdown was determined by quantitative real-time PCR and western blot.

RNA extraction and real-time quantitative analysis

Total RNA was extracted using Trizol (TaKaRa Bio Inc, Dalian, China) according to manufacturer’s instructions. Reverse transcription was performed using PrimeScriptTM RT-PCR Kit (TaKaRa Bio Inc, Dalian, China). The following primers sequences were used for PCR amplification: human COX-2 forward: 5’-GAACTATTCACCCAGGCAAATTG-3’, and reverse: 5’-TCTGTACTGCGGTGGGAAACA-3’; the TaqMan probe: 5’-FAM-TGGCAGGGTGCTGGTGAGTAG GA-3’-TAMRA-3’ (Shine Gene, Shanghai, China); GAPDH forward: 5’-CCACTTCTCCACCTTTGA C-3’, and reverse: 5’-ACCCCTGTTGCTGTAGCACA-3’; TaqMan probe: 5’-FAM-TTGCCCTCAACGACCACACTTTGTC-3’ (Shine Gene, Shanghai, China). Real time PCR was performed in the Applied Biosystems 7300 System using Premix Ex Taq (TaKaRa Bio Inc, Dalian, China).

Statistical analysis

All statistical analyses were completed with SPSS (Version 18) software, the data were presented as means with standard deviation (SD), and the statistic comparison was performed using the Student’s t-test, one-way ANOVA analysis, Mann-Whitney test, or Kruskal-Wallis test. P<0.05 was considered statistically significant.
Result

1. Berberin inhibited the cell growth and migration/invasion of CRC in vitro and in vivo

We first tested the inhibitory effect of berberin on established xenograft tumors of human CRC cell lines SW260 and LoVo in mice. As shown in Fig 1A and 1B, berberin induced a tumor inhibition rate of 25.83% and 30.66% in SW620 and LoVo tumors, respectively. In addition, mice treated berberin did not have altered body weight and liver and kidney functions remained normal (S1 Fig and S1 Table), suggesting no toxicity of the compound at the tested concentration. We next demonstrated that berberin repressed \textit{in vitro} cell growth of these two CRC cell lines, with an IC50 of 54.41 \(\mu\)M for SW620 and 78.66 \(\mu\)M for LoVo, at 48 h post-treatment (Fig 1C). We further indicated that berberin decreased the lung metastasis of CRC cells in a tail vein injection induced mouse model, in a drug dosage-dependent manner (Fig 1D). \textit{In vitro} transwell studies confirmed that berberin, at drug concentrations of 10, 20 and 40 \(\mu\)M, can effectively compromised the ability of CRC cells to migrate and invade (Fig 1E).

2. Berberin down-regulated the expression levels of COX-2 and PGE2 in CRC cells

We next investigated the underlying mechanisms for the inhibition of CRC cell migration/invasion by berberin. We started by finding that in SW620 and LoVo cells, the expression levels of COX-2 and PGE2 were attenuated by berberin in a drug dose-dependent manner (Fig 2A, 2B and 2D). This data was corroborated by a COX-2 promoter luciferase reporter assay, indicating that the activity of COX-2 promoter was repressed by berberin (Fig 2C). To support our hypothesis, we conducted COX-2 over-expression and knockout experiments, showing that increased levels of COX-2 protein up-ticked the migratory/invasive ability of the CRC cells while the COX-2 gene knockout by shRNA construct attained the opposite effect (Fig 2E). Furthermore, the addition of PGE2, the downstream catalyzed product of COX-2, also heightened the degrees of migration and invasion in CRC cells (Fig 2F).

3. Berberin inhibited JAK/STAT3 signaling in CRC cells

In order to delineate the mechanism of its inhibitory effect on CRC cell migration/invasion, we interrogated the influence of berberin on cell signaling pathways. We found berberin significantly decreased the phosphorylation levels of the JAK and STAT3 proteins (pJAK2 and pSTAT3) in CRC cells (Fig 3A). In comparison, using a JAK2 inhibitor (AZD1480), we similarly abrogated the pJAK2 and pSTAT3, resulting in the dampened cellular migration/invasion levels of CRC cells (Fig 3B and 3C).

4. Elevated expression levels of COX-2 and pSTAT3 correlated with tumor invasion and metastasis in primary human CRC

Immunohistochemical (IHC) analysis of primary CRC samples illustrated that the expression levels of COX-2 and pSTAT3 were significantly higher in CRC tissues compared with the adjacent normal tissues (Fig 4A and Table 1). As can be seen in Tables 2 and 3, there was a strong correlation between the presence of COX-2 or pSTAT3 with the degree of differentiation, extent of invasion and metastasis, and Duke’s staging. COX-2 and pSTAT3 positivity on IHC did not correlate with patient age, sex and tumor size. The survival was significantly longer in COX-2-low expressing patients versus COX-2-high ones, but no association between pSTAT3 levels and patient survival time (Fig 4B).
5. COX-2/PGE2 regulated JAK2/STAT3 signaling in CRC cells

We next over-expressed COX-2 protein in CRC SW620 and LoVo cells by transfection, and found increased levels of pJAK2 and pSTAT3, and decreased expression levels of MMP-2, MMP-9, which are transcriptionally regulated downstream of JAK2/STAT3 signaling; on the other hand, the shRNA construct mediated COX-2 gene knockdown had the opposite effect (Fig 5A and 5B). The addition of PGE2 ligand to the CRC cells significantly activated the JAK2/STAT3 signaling and the expression of MMP-2/-9 (Fig 5C and 5D). Based on these data, we hypothesized that activated COX-2/PGE2 axis enhanced JAK2/STAT3 signaling pathway, up-regulated the expression levels of MMP-2/-9, leading to increased metastatic potential of CRC cells.

6. Berberin inhibited CRC cell invasion and metastasis via repressing the COX-2/PGE2/JAK2/STAT3 signaling axis

With our data showing berberin inhibiting COX-2/PGE2 expression and JAK2/STAT3 signaling, as well as COX-2/PGE2 regulating JAK2/STAT3 pathway, we hypothesized that the mechanism of berberin’s inhibitory effect on CRC invasiveness and metastatic potential was its negative influence on the signaling axis of COX-2/PGE2-JAK2/STAT3. To test this theory of ours, we treated the CRC cells using JAK2 inhibitor AZD1480, and found the expression of MMP-2/-9 was “uncoupled” from COX-2 and PGE2, i.e. neither overexpression of COX-2 nor addition of ligand PGE2 could increase the protein levels of MMP-2/-9 (Fig 6A and 6C). Conversely, with AZD1480 blocking JAK2/STAT3 signaling, berberin had no effect on MMP-2/-9 expression levels (Fig 6B and 6D).

Discussion

Invasiveness and metastasis, characteristics of malignant tumors, are the main reasons why cancer therapies against CRC fail. Therefore, finding novel metastasis-targeting anti-tumor drugs appears to be plausible to increase the survival rate of CRC patients. Being used more and more in the clinic, traditional Chinese medicine (TCM) has been proven to be an important alternative therapeutic option for CRC, besides surgery and chemotherapy [22]. With accumulating evidence demonstrating that TCM is very effective treating cancers, it is increasingly important and necessary to study the mechanisms underlying the anti-tumor activities of TCM and their components. Berberin, an alkaloid isolated from TCM herb Coptis chinensis, has been shown to have anti-tumor efficacy in treating CRC, liver, breast, prostate and lung cancers [23–27]. In our current study, we presented in vitro and in vivo data.
delineating berberin induced inhibition of CRC cell growth, migration/invasion and metastasis, furthermore, we explored the underlying mechanism.

Previous studies have shown that COX-2, the rate-limiting enzyme catalyzing the conversion of arachidonic acid to PGE2, over-expresses in the tumor tissues of multiple malignancies, including CRC. As the downstream effector of COX-2, PGE2 promotes tumor angiogenesis, cell growth, migration/invasion, and immune evasion. Therefore, PGE2 remains a key factor of tumorigenesis. Epidemiological evidence has suggested that long-term, routine taking of COX-2 inhibitor such as NSAIDs (Nonsteroidal anti-inflammatory drugs) could decrease 50% of CRC incidence [28–29]. Our results revealed that berberin inhibited the expression levels of COX-2 and PGE2 in CRC cells, in accordance with the data Singh et al found in the melanoma cells treated with berberin [30]. Thus, will berberin be as effective as the NSAIDs to reduce CRC incidence? This will be a very interesting topic for the future studies, especially on the mechanism by which berberin works in CRC cells.

JAK2/STAT3 signaling pathway is persistently activated in lung, breast cancers and in CRC [31–32]. Under normal physiological condition, JAK2/STAT3 signaling pathway is transiently activated. Growth factors and cytokines bind to their receptors on the cell surface to activate JAK2, which in turn phosphorylates the tyrosine residue 705 (Tyr705) of STAT3 protein to activate it (pSTAT3). pSTAT3 forms homodimers or heterodimers, translocates into the nucleus, transactivates the expression levels of Cyclin D1, VEGF and MMP-2/-9 genes [33–36], whose protein products are involved in the regulation of tumor cell growth, apoptosis, angiogenesis and metastasis. It was already shown by the studies in nasopharyngeal cancer and diabetic disease that berberin blocked JAK2/STAT3 signaling [37–38], and our current data has added another piece of evidence asserting the inhibitory effect of berberin on JAK2/STAT3 activation as well as the expression of its downstream target genes MMP-2/-9 in CRC—this probably is part of the biological mechanism of berberin’s anti-tumor effect.

Since our data proposed that berberin impacted both COX-2/PGE2 and JAK2/STAT3 signaling pathways, we further investigated the protein levels of COX-2 and pSTAT3 in primary CRC samples, and interrogated any association and regulatory linkage between these 2 important players. Consistent with other researchers’ observation of a close association between activated COX-2/PGE2 and JAK2/STAT3 signaling pathways in prostate, lung cancers and cholangiocarcinoma [13–15], we discovered, in human CRC tissues, higher amount of COX-2 and pSTAT3, which significantly correlated with each other, and overall both were associated with higher degree of tumor invasiveness and metastasis. Next our in vitro studies uncovered that COX-2/PGE2 regulated CRC cell migration/invasion process through JAK2/STAT3 signaling, and overexpression of COX-2 and PGE2 reversed the inhibitory action of berberin on JAK2/STAT3 activation and cancer cell mobility. Moreover, we revealed that AZD1480, a JAK2 inhibitor/STAT3 activation blocker [39–40], disengaged COX-2/PGE2 and berberin from affecting the expression levels of MMP-2/-9. These findings of us illuminated the COX-2/PGE2-JAK2/STAT3 signaling
Fig 3. Berberin blocks JAK2/STAT3 signaling in CRC cells. A. Extracts from SW620 and LoVo cells treated with berberin at indicated concentrations for 48 h were analyzed for pJAK2, JAK2, pSTAT3, STAT3 and beta-actin (as loading control). B. JAK inhibitor AZD1480 blocks JAK2/STAT3 signaling. Extracts from SW620 and LoVo cells treated with AZD1480 (5 μM) were analyzed for the expression of pJAK2, JAK2, pSTAT3, STAT3 and beta-actin. C. AZD1480 inhibits migration and invasion of CRC cells. The results shown are representative of three independent experiments. The bars and error bars represent the means ± SE, and the P-value was calculated using an independent t-test. **P<0.01, migration control vs treated; ##P<0.01, invasion control vs treated.

doi:10.1371/journal.pone.0123478.g003
cascade as the drug target for berberin to mediate its effect on CRC invasiveness and metastasis. In summary, berberin reduces COX-2/PGE2 levels, in turn dampens JAK2/STAT3 activation, leading to decreased expression of downstream target genes MMP-2/-9, resulting in less

doi:10.1371/journal.pone.0123478.g004

Table 1. Immunohistochemistry of COX-2 and p-STAT3 in human CRC tissues and adjacent normal tissues.

Parameters	Tissues	Case	Staining intensity	P value				
			-	+	+	+++		
COX-2	tumors*	120	9	16	33	37	25	0.000
	adjacent normal	120	59	43	14	4	0	
p-STAT3	tumors*	120	7	19	45	28	21	0.000
	adjacent normal	120	56	47	16	1	0	

*: P<0.01 vs. adjacent normal tissues

doi:10.1371/journal.pone.0123478.t001
Table 2. Clinicopathologic correlation of COX-2 in human CRCs.

Parameters	Cases	COX-2 expression	P value	
		negative	positive	
Gender				
Male	52	10	42	0.189
Female	68	15	53	
Age				
<60	64	14	50	0.234
≥60	56	11	45	
Tumor size (d/cm)				
$D<6$	76	16	60	0.328
$d≥6$	44	9	35	
Degree of differentiation				
Poorly	48	6	42	0.035*
Moderately and well	72	18	54	
Extent of invasion and metastasis				
Yes	86	11	75	0.016*
No	34	14	20	
Duke’s stage				
A-B	72	18	54	0.035*
C-D	48	6	42	

*: $P<0.05$ vs. no invasion and metastasis group

doi:10.1371/journal.pone.0123478.t002

Table 3. Clinicopathologic correlation of p-STAT3 in human CRCs.

Parameters	Cases	COX-2 expression	P value	
		negative	positive	
Gender				
Male	52	11	41	0.207
Female	68	14	54	
Age				
<60	64	15	49	0.138
≥60	56	10	46	
Tumor size (d/cm)				
$D<6$	76	14	62	0.126
$d≥6$	44	11	33	
Degree of differentiation				
Poorly	48	5	43	0.030*
Moderately and well	72	19	53	
Extent of invasion and metastasis				
Yes	86	13	73	0.026*
No	34	12	22	
Duke’s stage				
A-B	72	19	53	0.030*
C-D	48	5	43	

*: $P<0.05$ vs. no invasion and metastasis group

doi:10.1371/journal.pone.0123478.t003
Fig 5. COX-2/PGE2 regulates JAK2/STAT3 signaling in CRC cells. A. and B. Extracts from SW620 and LoVo cells transfected with COX-2 over-expression or shRNA construct were analyzed for pJAK2, JAK2, pSTAT3, STAT3, MMP-2, MMP-9 and beta-actin. C. and D. Extracts from SW620 and LoVo cells treated with PGE2 for indicated durations were analyzed for pJAK2, JAK2, pSTAT3, STAT3, MMP-2, MMP-9 and beta-actin.

doi:10.1371/journal.pone.0123478.g005
Fig 6. **Berberin inhibits CRC cell migration and invasion through COX-2/PGE₂-JAK2/STAT3 mediated signaling pathway.** A. and B. Extracts from SW620 cells treated with AZD1480 for 2 h, transfected with COX-2 over-expression construct for 24 h, treated with berberin (40 μM) for 48 h, were analyzed for pJAK2, JAK2, pSTAT3, STAT3, MMP-2, MMP-9 and beta-actin. C. and D. Extracts from SW620 cells treated with AZD1480 for 2 h, treated with berberin (40 μM) or PGE₂ (5 μM) for 48 h, were analyzed for pJAK2, JAK2, pSTAT3, STAT3, MMP-2, MMP-9 and beta-actin.

doi:10.1371/journal.pone.0123478.g006

Fig 7. **A hypothetical illustration for the role of berberin.** PGE₂, the main catalyzed product of COX-2 from arachidonic acid, could bind to the EP receptor on the cell membrane, thereby activating the JAK2, followed by the phosphorylation of STAT3 in the Tyr705 site. The activated p-STAT3 forms the homo- or heterodimers, which translocate into the nucleus, bind to the downstream target gene MMP-2, MMP-9, and accelerate the tumor progression. Inhibiting the COX-2/PGE₂ mediated JAK2/STAT3 signaling pathway, could be one of the mechanisms of the inhibitory effect of berberin on the invasion and metastasis in colorectal cancer.

doi:10.1371/journal.pone.0123478.g007
invasiveness and metastasis in CRC (Fig 7). This report of us has provided an important set of pre-clinical data for the future wide use of berberin in treating CRC.

Supporting Information

S1 Fig. Berberin inhibits CRC cell growth and metastasis. Body weight of mice, control vs berberin group. Treatment with berberin has little effect on mouse body weight. No significant difference between animals treated with berberin at dose of 200 mg/kg per day and the control animals. Data shown as means±SD. B. Representative liver samples from control and berberin mice were processed and staining by HE. The results shown are representative of three independent experiments.

(TIF)

S1 Table. Effect of berberin on liver and kidney functions (means±SD).

(DOC)

Author Contributions

Conceived and designed the experiments: XL QL. Performed the experiments: XL QJ NJY HS LHZ HRZ. Analyzed the data: ZZF JFC. Contributed reagents/materials/analysis tools: XL QL. Wrote the paper: XL QJ QL.

References

1. Benson AB 3rd, Arnoletti JP, Bekaii-Saab T, Chan E, Chen YJ, Choti MA, et al. Colon cancer. J Natl Compr Canc Netw. 2011; 9:1238–1290. PMID:22056656
2. Yamaguchi Y, Hotta K, Imai K, Kakushima N, Ono H. Recurrence after curative surgical resection of T1 rectal cancer: a report of two cases. Dig Endosc. 2013; 25:26–30. doi:10.1111/den.12116 PMID:23617645
3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012; 62:10–29. doi: 10.3322/caac.20138 PMID: 22237781
4. Singh IP, Mahajan S. Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat. 2013; 23:215–231. doi: 10.1517/13543776.2013.746314 PMID: 23231038
5. Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010; 19:1297–1307. doi: 10.1517/13543784.2010.517745 PMID: 20836620
6. Derosa G, Maffioli P. Alkaloids in the nature: pharmacological applications in clinical practice of berberine and mate tea. Curr Top Med Chem. 2014; 14:200–206. PMID:24359201
7. Kuo HP, Chuang TC, Tsai SC, Tseng HH, Hsu SC, Chen YC, et al. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J Agric Food Chem. 2012; 60:9649–9658. PMID:22950834
8. Hamsa TP, Kuttan G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother Res. 2012; 26:568–578. doi: 10.1002/ptr.3586 PMID: 21953764
9. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010; 29:781–788. doi: 10.1038/onc.2009.421 PMID: 19946329
10. Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006; 55:115–122. PMID: 16118353
11. Slattery ML, Lundgreen A, Kaduvar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog. 2013; 52:155–166. doi: 10.1002/mc.21841 PMID: 22121012
12. Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/mTOR and STAT-3 pathways. Neoplasma. 2013; 60:364–372. doi: 10.4149/neop_2013_046 PMID: 23581408
13. Liu XH, Kirchenbaum A, Lu M, Yao S, Klausner A, Preston C, et al. Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun. 2002; 290:249–255. PMID: 11779161
Katiyar SK, Meeran SM, Katiyar N, Akhtar S. p53 Cooperates berberine-induced growth inhibition and metasta-
sis in colorectal cancer cells through binding to SFPQ/PTBP2 complex. Br J Cancer. 2014; 111:736–748. doi: 10.1038/bjc.2014.383 PMID: 25025966

18. Zhang L, Ji Q, Liu X, Chen X, Chen Z, Qiu Y, et al. Norcantharidin inhibits tumor angiogenesis via blocking VEGFR2/MEK/ERK signaling pathways. Cancer Sci. 2013; 104:604–610. doi: 10.1111/cas.12120 PMID: 23363445

19. Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 2013; 8:e78500. doi: 10.1371/journal.pone.0078700 PMID: 24244343

20. Sui H, Zhou S, Wang Y, Ji Q, Li Q, et al. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis. 2011; 32:667–675. doi: 10.1046/j.carc.2016 PMID: 21296766

21. Li Q, Liu N, Shen B, Zhou L, Wang Y, Wang Y, et al. Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK/ATF-2 signaling pathway in MKN45 cells. Cancer Lett. 2009; 278:97–103. doi: 10.1016/j.canlet.2008.12.032 PMID: 19201083

22. Tan KY, Liu CB, Chen AH, Ding YJ, Jin HY, Seow-Choen F. The role of traditional Chinese medicine in colorectal cancer treatment. Tech Coloproctol. 2008; 12:1–6. doi: 10.1007/s10151-008-0392-z PMID: 18512006

23. Yang X, Huang N. Berberine induces selective apoptosis through the AMPK-mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol Med Rep. 2013; 8:505–510. doi: 10.3892/mmr.2013.1506 PMID: 23732865

24. Wang L, Cao H, Lu N, Liu L, Wang B, Hu T, et al. Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One. 2013; 8(2):e56666. doi: 10.1371/journal.pone.0056666 PMID: 23457600

25. Kim S, Oh SJ, Lee J, Han J, Jeon M, Jung T, et al. Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells. Cell Physiol Biochem. 2013; 32:1541–1550. doi: 10.1158/00355551 PMID: 24335179

26. Hur JM, Kim D. Berberine inhibited radioreistant effects and enhanced anti-tumor effects in the irradiated-human prostate cancer cells. Toxicol Lett. 2010; 195:205–210. doi: 10.1016/j.toxlet.2010.02.010 PMID: 24278513

27. Katiyar SK, Meenan SM, Katiyar N, Akhtar S. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog. 2009; 48:23–37. doi: 10.1002/mc.20453 PMID: 18459128

28. Chan AT, Giovannucci EL, Meyerhardt JA, Schemhammer ES, Wu K, Fuchs CS. Aspirin dose and duration of use and risk of colorectal cancer in men. Gastroenterology. 2008; 134:21–28. PMID: 18005960

29. Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007; 356:2131–2142. PMID: 17522398

30. Singh T, Vaid M, Katiyar N, Sharma S, Katiyar SK. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. Carcinogenesis. 2011; 32:86–92. doi: 10.1093/carcin/bgr215 PMID: 20974666

31. Gao SP, Mark KG, Leslie K, Pao W, Mooti N, Gerald WL, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007; 117:3846–3856. PMID: 18060032

32. Berishaj M, Gao SP, Ahmed S, Leslie K, Ahmedie H, Gerald WL, et al. STAT3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res. 2007; 9.R32. PMID: 17531096

33. Sai K, Wang S, Balasubramaniyan V, Conrad C, Lang FF, Aldape K, et al. Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. Mol Cancer Ther 2007; 6:3155–63. doi: 10.1158/1535-7163.MCT2007-3155 PMID: 18024608
34. Okazaki H, Tokumaru S, Hanakawa Y, Shiraiishi K, Shirakata Y, Dai X, et al. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation. Biochem Biophys Res Commun. 2011; 412:441–445. doi: 10.1016/j.bbrc.2011.07.111 PMID: 21835168

35. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, et al. STAT3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene. 2004; 23:3550–3560. PMID: 15116091

36. Song Y, Qian L, Song S, Chen L, Zhang Y, Yuan G, et al. Fra-1 and STAT3 synergistically regulate activation of human MMP-9 gene. Mol Immunol. 2008; 45:137–143. PMID: 17572495

37. Tsang CM, Cheung YC, Lui VW, Yip YL, Zhang G, Lin VW, Cheung KC, Feng Y1, Tsao SW. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts. BMC Cancer. 2013; 13:619. doi: 10.1186/1471-2407-13-619 PMID: 24380387

38. Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang YQ. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem. 2009; 284:28420–28429. doi: 10.1074/jbc.M109.012674 PMID: 19661066

39. Ioannidis S, Lamb ML, Wang T, Almeida L, Block MH, Davies AM, et al. Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl) pyrimidine-2,4-diamine (AZD1480) as a novel inhibitor of the Jak/Stat pathway. J Med Chem. 2011; 54:262–276. doi: 10.1021/jm1011319 PMID: 21138246

40. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, et al. The JAK2 inhibitor AZD1480 potently blocks STAT3 signaling and oncogenesis in solid tumors. Cancer Cell. 2009; 16:487–497. doi: 10.1016/j.ccr.2009.10.015 PMID: 19962667