CASE REPORT

More than meets the eye: Pulmonary embolism in an HIV patient with COVID-19 infection

Nonyelum Obiechina, Ancy Fernandez, Adnan Agha, Angela Nandi

ABSTRACT

Introduction: Since the emergence of the novel coronavirus 2019 (COVID-19) pandemic, the understanding of its pathophysiology and clinical features has continued to unfold. COVID-19 causes acute respiratory distress syndrome (ARDS) along with other coronaviruses. In contrast to other coronaviruses, COVID-19 has been found to be associated with deep vein thrombosis, pulmonary embolism, and arterial thrombosis. Although COVID-19 is thought to have worse outcomes in immunocompromised patients, its relationship with human immunodeficiency virus (HIV) remains interesting. This is because COVID-19 has been shown to be similar in frequency of occurrence in HIV patients on anti-retroviral (ART) and in whom the viral load is low as in non-HIV patients. However, its incidence is higher in non-compliant HIV patients, similar to other immunosuppressed patients. In addition, both COVID-19 and HIV increase the risk of thrombo-embolic events.

Case Report: We present the case of a gentleman with HIV who developed COVID-19 and pulmonary embolism. We explore the proposed mechanisms by which pulmonary embolism occurs in both conditions as well as their management.

Conclusion: Both HIV and COVID-19 increase the risk of thrombo-embolic events. Sudden deterioration in these patients or increase in their oxygen requirement should alert clinicians to the possibility of concomitant pulmonary embolism.

Keywords: COVID-19, Coronaviruses, HIV, Pulmonary embolism

INTRODUCTION

COVID-19 has led to an unprecedented pandemic leading to an urgent worldwide collaboration in identifying its pathophysiology and exploring its treatment options. Although it is known that immunosuppression results in an increased risk of severe COVID-19, the literature suggests that the incidence of COVID-19 in well-controlled HIV is surprisingly similar to that of non-HIV patients [1, 2]. Non-compliant HIV patients are thought to share a similar risk to other immunocompromised patients. Both HIV and COVID-19 are, each, associated with increased risk of thrombo-embolism. It stands to reason that the combination of both conditions may increase the thrombo-embolic risk even more. It is, therefore, important to identify thrombo-embolism in this group of patients as it has adverse effects on outcomes [3, 4]. The challenge lies in the fact that the symptoms of COVID-19 and opportunistic infections in HIV may mask pulmonary embolism [3, 4].
CASE REPORT

A 72-year-old gentleman was brought in by the ambulance with central chest pain, shortness of breath, and sore throat. His symptoms had gradually worsened over the course of one week prior to admission. He described the chest pain as retrosternal, and across his chest and radiating to his neck and left shoulder. The pain lasted for approximately half an hour and was associated with nausea, light-headedness, and diaphoresis. He described himself as normally fit and well. He was known to have HIV infection which was well controlled on his highly active antiretroviral therapy (HAART) consisting of darunavir, lamivudine, and ritonavir. He had been compliant with his treatment. His past medical history included hypothyroidism treated with levothyroxine and hypercholesterolemia treated with rosuvastatin. On clinical examination, he had tachypnea and required 3 liters of oxygen delivered through a nasal cannula to maintain oxygen saturation above 92%. He also had tachycardia with a heart rate of 128 beats per minute. He was apyrexial and the rest of his examination was unremarkable.

Investigations

The lung fields appeared clear on chest X-ray (see Figure 1). Electrocardiogram (ECG) showed deep T wave inversion in leads III, V1 to V5 (see Figure 2). The first troponin was very elevated at 103.20 ng/L (normal reference range 0–13.9 ng/L) and the second troponin T taken after 4.5 hours was 119.20 ng/L. His C-reactive protein (CRP) was modestly elevated at 49 mg/L (normal reference range <5). His D-dimer was very elevated at 3499 ug/L (normal reference range <230 ug/L). A diagnosis of probable Non-ST Segment Elevation Myocardial Infarction (NSTEMI) with attendant acute pulmonary embolism (APE) was made.

As the patient met the criteria for COVID-19, a nasopharyngeal swab was taken and a reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2 was positive. Computed tomography (CT) pulmonary angiogram (CTPA) showed significant bilateral pulmonary emboli with peripheral right-sided ground glass opacification suspicious for either COVID-19 or related to the pulmonary infarction (Figure 3). It was decided that the rise in troponin levels and ECG changes were likely to be secondary to APE rather than NSTEMI. Moreover, the right heart strain on CTPA made this more likely (Figure 4).

Treatment

He received therapeutic enoxaparin (1.5 mg/kg, once daily) for the treatment of APE. Hematology advice was requested regarding long-term anticoagulant therapy in the view of possible adverse interactions between darunavir and ritonavir and direct oral anticoagulants (DOACs). The suggested plan was to continue treatment with the same dose of enoxaparin for at least 3 months.

Outcome and follow-up

His condition improved and he was discharged after four days of admission. A CT scan of his neck, thorax, abdomen, and pelvis had excluded underlying...
malignancy. Arrangements were made for the patient to be followed up in clinic.

DISCUSSION

COVID-19 is one of several Severe Acute Respiratory Syndrome (SARS) caused by the beta group of coronaviruses. Two other coronaviruses in these subspecies have caused serious pandemics in the past and include the SARS-CoV and the Middle Eastern Respiratory Syndrome (MERS) but nothing on the scale of the COVID-19 pandemic [5]. Initially thought to be a primary lung disease whose most severe presentation is due to acute respiratory distress syndrome (ARDS), recent reports have shown that a lot of patients with COVID-19 develop micro-thrombi and thrombo-embolic complications [6]. These events appear to occur much more frequently than has been reported with other coronavirus pandemics and in other severe infections [6].

COVID-19 is known to occur more frequently and present more severely in immunosuppressed patients, but this effect has not been observed with HIV patients on anti-retroviral treatment (ART) and who have low viral loads and CD4 cell counts of 400 per mm³ or more [3]. HIV patients not on ARTs and whose viral loads are high and/or have CD4 counts less than 200 cells/mm³ are thought to be at increased risk of developing severe COVID-19 infection particularly if they are older and have co-morbidities, such as heart disease, chronic lung disease, and Diabetes mellitus [3]. HIV infection itself has been shown to be associated with an increased risk of thrombo-embolic events due to increased hypercoagulability [4].

Epidemiology

The exact incidence of pulmonary embolism in COVID-19 patients is unclear but appears to range from 17.6% to 48% depending on the cohorts studied [7–9]. In some cohorts, the incidence of pulmonary embolism was found to be 6.2 times more in COVID-19 patients than in patients without the disease [10]. What is clear is that extensive thrombi have been observed in the pulmonary vasculature of most COVID-19 autopsy specimens in some limited pathological studies [11, 12]. It is thought that these thrombi and thrombo-embolic complications are among the explanations for sudden deterioration in COVID-19 patients [9]. Obviously, more data are required to clarify these findings. Factors that make venous thrombo-embolism (VTE) more likely in COVID-19 patients include a high body mass index (BMI), being treated in the intensive care unit (ICU), prolonged immobility, and an underlying chronic lung or heart disease [9].

Venous thrombo-embolism and arterial thrombosis are also known to be increased in HIV patients [4, 13–15]. Systematic studies show an increased incidence ranging from less than 1% to as high as 20% depending on the groups and sample sizes [13]. A recent cohort study showed a 48% increase in risk of VTE in HIV patients compared to matched controls [4]. These findings were seen even after controlling for intravenous drug use [4]. Similar values have been reported by other investigators [14, 15]. Risk factors for VTE in HIV patients include anti-retroviral treatment (ART), chronic low grade inflammation, and opportunistic infections [4].

Pathophysiology of Thrombo-embolic events COVID-19 and HIV

The mechanisms that cause thrombo-embolic and thrombotic events in COVID-19 are incompletely understood. However, emerging evidence from autopsy results and imaging of patients with severe COVID-19, has revealed, not only evidence of ARDS, but also microvascular thrombosis in pulmonary capillary beds and interseptal pulmonary vessels [12, 16]. These microangiopathic thrombi have also been observed in other organs, such as the kidneys, skin, and heart [16]. This suggests, increasingly, that COVID-19 is not just a severe, destructive inflammatory condition of the lungs but a widespread thrombo-inflammatory condition involving multiple organs [16]. Indeed, in a recent reported case series of severe COVID-19 patients, pathology investigations showed less evidence of inflammatory changes in the lung tissue than have been observed in previous SARS virus patients [11]. Some of the patients also demonstrated extensive proximal pulmonary artery dilatation and thrombi in addition to their microangiopathic changes [11].

Proposed mechanisms by which these occur include downregulation of Angiotensin Converting Enzyme (ACE) 2 following the attachment of the glycoprotein...
spike of the COVID-19 virus to the ACE 2 receptors on the surface of the lungs and endothelium [17, 18]. The COVID-19 glycoprotein spike-ACE 2 complex is taken into the cell resulting in reduced numbers of available ACE 2 receptors on the cell surface [17, 18]. Downregulation of the ACE 2 receptors means that the ACE 2 enzyme is not available in sufficient quantities to covert Angiotensin 2 to Angiotensin (1–7), a molecule that helps to reduce damage to the endothelium [19, 20]. The result is that Angiotensin 2 (ANG-2) accumulates causing endothelial damage by inflammation and increased radical oxygen species (ROS) damage [19, 20]. Mediators of inflammation such as neutrophils and monocytes are attracted to the site and secrete chemokines and pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) [20].

Under normal conditions, the endothelium acts as a mechanical barrier to minimize interaction between immune cells and pro-coagulation molecules. In addition, it secretes anticoagulant molecules such as thrombomodulin and prostacyclin [21]. When the endothelium is damaged it expresses cell adhesion molecules (CAMs) on its surface which enables neutrophils and platelets to adhere to its surface [21]. Breaching the endothelial surface exposes the Von Willebrand Factor (VWF) which assists platelet adhesion and, as it combines with factor VIII in the blood stream, helps in platelet aggregation and activation [21]. This changes the endothelial surface from an anticoagulant to a pro-coagulant state [21]. The endothelium also increases expression of tissue factor which initiates the extrinsic coagulation pathway leading to thrombogenesis [21].

Some investigators have suggested that the endothelial damage may also be perpetuated by complement activation immune response to the COVID-19 virus, leading to a catastrophic microvascular injury syndrome [22–24]. The terminal complements C5a and C5b-9 or membrane attack complex (MAC) have been observed in some pathological studies of COVID-19 patients [22]. C5a attracts neutrophils and monocytes as well as mast cells. The MAC causes damage to the membranes of the endothelium and lung tissue [22]. They contribute to increased capillary permeability with movement of fluids and neutrophils and monocytes into the extracellular space [21, 22].

They also add to the increased expression of tissue factor on the endothelial surface [21, 22]. Excessive cytokine infiltration “cytokine storm” leading to severe inflammation has been proposed as the main underlying mechanism for immuno-thrombogenesis in COVID-19 [23]. It is thought that the excessive infiltration of the endothelium and lung tissue increases endothelial damage, propagates the coagulation cascade, and re-forces the thrombotic process [23]. Trials with monoclonal bodies against IL-6, of which Tocilizumab is one, are currently underway to address this excessive inflammatory process [23–26]. Tocilizumab is already used to treat rheumatological conditions such as rheumatoid arthritis [24, 25]. Although some anecdotal evidence and some case series are showing promising signs, the multicentre trial currently in progress may further clarify the findings [23–27].

Hypercoagulability states in HIV patients have been suggested as among the reasons for their increased VTE risk. Increased circulating lupus anticoagulant has been seen in 60% of HIV patients [28]. Increased levels of tissue factor and reduced levels of anti-thrombin III, activated protein C and protein S have also been observed, all of which increase hypercoagulability [28].

Diagnosis

Pulmonary embolism is thought to worsen outcomes in patients with COVID-19 pneumonia [29]. It is therefore important to identify and treat it early. However, this can present challenges in patients with pneumonia as the presentation in both conditions can be similar and include shortness of breath and evidence of hypoxemia [29]. Indeed in some cases, pyrexia and radiological changes may confound the diagnosis [29]. A lot of HIV patients with pulmonary embolism may initially present with features of an opportunistic infection [30]. A high index of suspicion is therefore required.

The British Thoracic Society (BTS) guidelines recommend considering pulmonary embolism in COVID-19 patients whose oxygen needs are disproportionately high compared to their symptoms and radiological changes [31]. It should also be considered in sudden worsening of hypoxemia, tachycardia, and hypotension [31]. Although some investigators have observed D-dimers as high as 2000 to 6000 in COVID-19 patients who develop pulmonary embolism compared to much lower levels in COVID-19 patients who do not, the lack of specificity makes it difficult to use as a risk stratification tool in routine clinical practice as the “cut-offs” need further clarification with prospective studies [31, 32]. D-dimers are elevated not only in thrombo-embolic conditions but also in inflammatory conditions, sepsis, malignancies [31]. However, some investigators recommend doing a CTPA in any patient who presents with COVID-19 symptoms and a very raised D-dimer [29, 31–33]. The CTPA remains the gold standard for the diagnosis of pulmonary embolism in these patients [31, 32]. Unfortunately, logistical barriers such as being on a mechanical ventilator may make access to this tool unfeasible [31]. In some cases, a compressible Doppler scan of the leg veins may provide evidence of a thrombo-embolic source, such as a deep vein thrombosis (DVT) [31]. Wherever possible, all attempts should be made to confirm the diagnosis of pulmonary embolism with a CTPA [31]. Patients presenting with shortness of breath, suspected COVID-19, and a very high D-dimer may need a CTPA to exclude concomitant pulmonary embolism.
contacts. Immunosuppressed patients include patients and self-isolation of patients with COVID-19 and their to minimize contact with potentially infected patients there has been a huge drive to shield them workers and to elderly patients. In immunosuppressed being rolled out different hospitals to certain key front line COVID-19 vaccine in phase III clinical trial but is just various countries [24–27]. In the UK, not only is the a vaccine for COVID-19 is already in phase III trials in potential treatments for COVID-19 are still ongoing and antiviral agent [27, 33, 36–38]. Clinical trials on other immunomodulator and remdesivir, a broad spectrum oxygen are dexamethasone, a corticosteroid and recommended treatment of COVID-19 patients requiring intravascular thrombectomy [35].[36]. D-dimer is elevated and radiological findings are disproportionate higher than the symptoms of pulmonary embolism should be suspected, if oxygen requirement is increased risk of VTE should be borne in mind. The pathophysiology of pulmonary embolism and pulmonary micro-thrombi is thought to be different to VTE from other causes. As the understanding of these mechanisms improves, it is hoped that more therapeutic strategies may become available to treat and prevent these complications.

REFERENCES

1. Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis
of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol 2020;92(5):491–4.

2. Fox SE, Akmatbekov A, Harbert JL, Li G, Brown Q, Heide RSV. Pulmonary and cardiac pathology in Covid-19: The first autopsy series from New Orleans. medRxiv 2020.

3. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with HIV: Clinical case series. Lancet HIV 2020;7(5):e314–6.

4. Durand M, Sinyavskaya L, Jin YL, Tremblay CL, Ducruet T, Laskine M. Incidence of venous thromboembolism in patients living with HIV: A cohort study. AIDS Patient Care STDS 2019;33(4):145–8.

5. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020;24:91–98.

6. Rotzinger DC, Beigelman-Aubry C, von Garnier C, Qanadli SD. Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography. Thromb Res 2020;190:58–9.

7. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. Journal of Thrombosis and Haemostasis 2020.

8. Klok FA, Kuip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research 2020;191:145–7.

9. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020;18(8):1603–6.

10. Helms J, Taequard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 2020;46(6):1089–8.

11. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, single-center, clinicopathologic case series. Ann Intern Med 2020;73(5):350–61.

12. Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: A Prospective cohort study. J Pathol 2020;251(3):228–48.

13. Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multorgan impact. Kidney Int 2020;98(2):314–22.

14. Cheng H, Wang Y, Wang Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol 2020;92(7):726–30.

15. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endothelitis in COVID-19. J Am Coll Cardiol 2020;75(23):2950–73.

16. Sule AA, Pandit N, Handa P, et al. Risk of venous thromboembolism complicated with COVID-19: What do we know so far? Acta Haematol 2020;143(5):417–24.

17. Robinson R. Everything you need to know about COVID-19 trials. The Pharmaceutical Journal 2020.

18. Sule AA, Pandit N, Handa P, et al. Risk of venous thromboembolism in patients infected with HIV: A cohort study. Int J Angiol 2013;22(2):95–100.

19. Tan S, Speert G, Kornowski R, Perl L. Venous thromboembolism complicated with COVID-19: What do we know so far? Acta Haematol 2020;143(5):417–24.

20. Malek J, Rogers R, Kufera J, Hirshon JM. Venous thromboembolism in the HIV-infected patient. Am J Emerg Med 2011;29(3):278–82.

21. Fultz SL, McGinnis KA, Skanderson M, Ragni MV, Justice AC. Association of venous thromboembolism with human immunodeficiency virus and mortality in veterans. Am J Med 2004;116(6):420–3.

22. Pisacane D, Allegri A, Menaroni F, et al. Pulmonary thromboembolism in patients with chronic arthritis treated with immunosuppressive targeted therapies. Int J Rheum Dis 2020;23(5):667–8.

23. Middeldorp S, van Haaps TF, et al. Recurrent venous thromboembolism in patients with Covid-19 pneumonia. Eur Respir J 2020;56(1):2001365.

24. Obiechina et al. 6

25. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTs): An atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020;22(2):95–7.
35. Moores LK, Tritschies T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: Chest guideline and expert panel report. Chest 2020;158(3):1143–63.
36. RECOVRI Collaborative Group; Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med 2020;NEJMoa2021436.
37. Robinson J. Dexamethasone is ‘first drug’ to be shown to improve survival in COVID-19. The Pharmaceutical Journal 2020;304(7938).
38. Interim Clinical Commissioning Policy: Remdesivir for patients hospitalized with COVID-19 (adults and children 12 years and older) Version 2. Department of Health Social & Care Social Care. 2020. [Available at: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/07/C0860-clinical-commissioning-policy-remdesivir-for-people-hospitalised-with-covid-19-v2-.pdf]

Author Contributions
Nonyelum Obiechina – Conception of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved
Ancy Fernandez – Design of the work, Acquisition of data, Drafting the work, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved
Adnan Agha – Conception of the work, Drafting the work, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved
Angela Nandi – Conception of the work, Drafting the work, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None.

Consent Statement
Written informed consent was obtained from the patient for publication of this article.

Conflict of Interest
Authors declare no conflict of interest.

Data Availability
All relevant data are within the paper and its Supporting Information files.

Copyright
© 2020 Nonyelum Obiechina et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
Submit your manuscripts at
www.edoriumjournals.com