PBW FILTRATION: FEIGNIN-FOURIER-LITTELMAN Modules Via HASSE Diagrams

TEODOR BACKHAUS AND CHRISTIAN DESCZYK

Abstract. We study the PBW filtration on the irreducible highest weight representations of simple complex finite-dimensional Lie algebras. This filtration is induced by the standard degree filtration on the universal enveloping algebra. For certain rectangular weights we provide a new description of the associated graded module in terms of generators and relations. We also construct a basis parametrized by the integer points of a normal polytope. The main tool we use is the Hasse diagram defined via the standard partial order on the positive roots. As an application we conclude that all representations considered in this paper are Feigin-Fourier-Littelmann modules.

Introduction

We recall briefly the construction of the PBW filtration. We consider a simple complex finite-dimensional Lie algebra g and a triangular decomposition $g = n^+ \oplus \mathfrak{h} \oplus n^-$. We denote by $V(\lambda)$ the irreducible finite-dimensional module of highest weight λ and by v_λ a highest weight vector, then we have $V(\lambda) = U(n^-)v_\lambda$.

The degree filtration $U(n^-)_s$ on the universal enveloping algebra $U(n^-)$ over n^- is defined by:

$$U(n^-)_s = \text{span}\{x_1 \cdots x_l \mid x_i \in n^-, \ l \leq s\}.$$

This filtration induces the PBW filtration on $V(\lambda)$, where the s-th filtration component is given by $V(\lambda)_s = U(n^-)_sv_\lambda$. The associated graded space $V(\lambda)^a$, with respect to the PBW filtration, is an $S(n^-)$-module generated by v_λ, where $S(n^-)$ is the symmetric algebra over n^-. Then we have for $I(\lambda) \subseteq S(n^-)$ the annihilator of the generating element:

$$V(\lambda)^a = S(n^-)v_\lambda \cong S(n^-)/I(\lambda).$$

There are some natural questions (see also [FFoL11a]):

- Is it possible to describe $V(\lambda)^a$ explicitly as an $S(n^-)$-module, i.e. is it possible to describe the generators of the ideal $I(\lambda)$?
- Is it possible to find an explicit combinatorial description of a monomial basis of $V(\lambda)^a$?

We will call such a basis a Feigin-Fourier-Littelmann or just FFL basis and $V(\lambda)^a$ an FFL module, if the bases of $V(m\lambda)^a$, $m \in \mathbb{Z}_{\geq 0}$ are parametrized by the integer points of a normal polytope $P(m)$.

For both questions there is a positive answer in the cases of \mathfrak{sl}_n and \mathfrak{sp}_{2n} for arbitrary dominant integral weights (see [FFoL11a] and [FFoL11b]). Further the second question is positively answered for G_2 (see [Gor11]). In this paper we focus on certain rectangular weights and prove the following theorem:
Main Theorem. Let \mathfrak{g} be a simple complex finite-dimensional Lie algebra and $\lambda = m\omega_i$, $m \in \mathbb{Z}_{\geq 0}$ be a rectangular weight, where \mathfrak{g} and ω_i appear in the same row of Table 1. Further let $V(\lambda)^a \cong S(n^-)/I(\lambda)$. Then there is a positive answer for both questions above, in particular:

- $I(\lambda) = S(n^-) \left(U(n^+) \circ \text{span} \{ f_{\beta}^{(\lambda, \rho^+)} + 1 \mid \beta \in \Delta_+ \} \right)$.
- $V(\lambda)^a$ is a FFL module.

Here we denote with Δ_+ the set of positive roots of \mathfrak{g}.

Type of \mathfrak{g}	weight ω	Type of \mathfrak{g}	weight ω
A_n	ω_k, $1 \leq k \leq n$	E_6	ω_1, ω_6
B_n	ω_1, ω_n	E_7	ω_7
C_n	ω_1	F_4	ω_4
D_n	ω_1, ω_{n-1}, ω_n	G_2	ω_1

Table 1. Solved cases

Remark 1. The m-th Minkowski sum of the polytope corresponding to $V(\omega_i)$ provides a basis of $V(m\omega_i)$. In general this is not true for different fundamental weights. For example in the case of $\mathfrak{g} = \mathfrak{sl}_5$ the Minkowski sum of the polytopes corresponding to ω_i, $i = 1, 2, 3, 4$ does not provide a basis of $V(\omega_1 + \omega_2 + \omega_3 + \omega_4)$.

Remark 2. The bases obtained in [FFoL11a] and [FFoL11b] are different from our bases. This is due to a different choice of the total order on the monomials in $S(n^-)$. As a consequence the induced normal polytopes are also different. Nevertheless in the cases (A_n, ω_k) the corresponding projective toric varieties are isomorphic. In contrast, these are in general not isomorphic to the toric varieties corresponding to Gelfand-Tsetlin polytopes investigated in [GL97] and [KM05].

We explain briefly the methods used in our paper. Our main tool is the Hasse diagram of \mathfrak{g} given by the standard partial order on the positive roots of \mathfrak{g}. We associate to this directed graph a normal polytope $P(\lambda) = P(m\omega_i) \subset \mathbb{R}_{\geq 0}^N$ via the directed paths. If the Hasse diagram satisfies certain properties, the set of integer points $S(\lambda) = P(\lambda) \cap \mathbb{Z}_{\geq 0}^N$ parametrizes a FFL basis of $V(\lambda)^a$. So we reduce the questions above to the combinatorics of the Hasse diagram and provide a general procedure which uses the structure of the Hasse diagram. As an important application we show that the modules $V(m\omega_i), m \in \mathbb{Z}_{\geq 0}$ are FFL modules, where ω_i appears in Table 1.

Except for the cases listed in Table 1 it is much more involved to obtain a polytope which parametrizes a FFL basis. Even in the cases (B_n, ω_1), (F_4, ω_4) and (G_2, ω_1) we have to change the Hasse diagram slightly, to be able to apply our procedure.

The property of being an FFL module implies some nice consequences. For example the corresponding degenerate flag varieties are normal and Cohen-Macaulay. Further there is an explicit representation theoretical description of the corresponding homogeneous coordinate rings. Another important property is the interpretation of the describing polytopes as Newton-Okounkov bodies (see [FFoL13] and for more details on Newton-Okounkov bodies see [KK12] and [HK13]).

In the recent years it turned out that the PBW theory has a lot of connections to many areas of representation theory. For example to areas of geometric
representation theory as Schubert varieties ([CIL14]) and degenerate flag varieties ([FFiL11], [Fei12], [Fei11] and [Hag13]). Further there are connections to combinatorial representation theory for example to Schur functions ([Fou14]), combinatorics of crystal basis ([Kus13b], [Kus13a]) and MacDonald polynomials ([CF13]). A purely combinatorial research on the FFL polytopes can be found in [ABS11].

Our paper is organized as follows:
In Section 1 we introduce the constructions and tools we use. Furthermore we state our Main Theorems and provide the connection to FFL modules. In Section 2 we prove that all polytopes considered in this paper are normal. The Sections 3, 4 and 5 are devoted to the proof of our Main Theorems. In Section 4 we calculate explicitly FFL bases of $V(\omega)$ for all cases listed in Table 1. Finally in the Appendix we give some explicit examples of Hasse diagrams and normal polytopes.

1. PBW Filtration

1.1. Definitions. Let \mathfrak{g} be a simple complex finite-dimensional Lie algebra and let $\mathfrak{g} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ be a triangular decomposition.

For a dominant integral weight λ we denote by $V(\lambda)$ the irreducible \mathfrak{g}-module with highest weight λ. We fix a highest weight vector $v_{\lambda} \in V(\lambda)$. Then by the PBW-Theorem we have: $V(\lambda) = U(n^-)v_{\lambda}$. The degree filtration $U(n^-)_s$ on $U(n^-)$ is defined by:

$$U(n^-)_s = \text{span}\{x_1 \cdots x_l \mid x_i \in \mathfrak{n}^-, \ l \leq s\}.$$ \hfill (1.1)

In particular, $U(n^-)_0 = \mathbb{C}1$. So we have an increasing chain of subspaces:

$U(n^-)_0 \subseteq U(n^-)_1 \subseteq U(n^-)_2 \subseteq \ldots$. The filtration (1.1) induces a filtration on $V(\lambda)$: $V(\lambda)_s = U(n^-)_sv_{\lambda}$, the PBW filtration.

We consider the associated graded space $V(\lambda)^{a}$ of $V(\lambda)$ defined by:

$$V(\lambda)^{a} = \bigoplus_{s \in \mathbb{Z}_{\geq 0}} V(\lambda)_s/V(\lambda)_{s-1}, \ V(\lambda)_{-1} = \{0\}.$$ \hfill (1.2)

Let $\Delta_+ \subset \mathfrak{h}^*$ be the set of positive roots of \mathfrak{g} and $\Phi_+ = \{\alpha_1, \ldots, \alpha_n\} \subset \Delta_+$ the subset of simple roots, where $n \in \mathbb{N}$ is the rank of the Lie algebra \mathfrak{g}. Further we denote by $f_\beta \in \mathfrak{n}^-$ the root vector corresponding to $\beta \in \Delta_+$.

Throughout this paper we focus on certain rectangular weights $\lambda = m\omega_i, m \in \mathbb{Z}_{\geq 0}$ (see Table 1). Let $\beta = \sum_{j=1}^{n} n_j \alpha_j, \ n_j \in \mathbb{Z}_{\geq 0}$ be a positive root with $n_j \geq 1$. Then we have for the coroot $\beta^\vee = \frac{2\beta}{(\beta,\beta)} = \sum_{j=1}^{n} n_j^\vee \alpha_j^\vee: n_j^\vee \geq 1$. Note that (\cdot,\cdot) is the Killing form. Conversely starting with a coroot β^\vee, with $n_j^\vee \geq 1$ we have for the corresponding positive root β: $n_i \geq 1$. We define

$$n^\lambda_\beta := \text{span}\{f_\beta \mid \langle \omega_i,\beta^\vee \rangle \geq 1\} \subset \mathfrak{n}^-,$$

where $\langle \omega_i,\beta^\vee \rangle = \frac{2(\omega_i,\beta)}{(\beta,\beta)}$. Hence $n^\lambda_\omega = n^-_\lambda \subset \mathfrak{n}^-$ is the Lie subalgebra spanned by root vectors f_β, such that α_i is a summand of β.

From the PBW-Theorem we get $U(n^\lambda)^{a} = S(n^\lambda) = \mathbb{C}[f_\beta \mid \langle \omega,\beta^\vee \rangle \geq 1]$, where $S(n^\lambda)$ is the symmetric algebra over n^λ.
Remark 1.1.1. (i) We have $V(\lambda) = U(n^-)v_\lambda$. The action of $U(n^-)$ on $V(\lambda)$ induces the structure of a $S(n^-)$-module on $V(\lambda)^a$ and

\[
V(\lambda)^a = S(n^-)v_\lambda = S(n^-)v_\lambda.
\]

(ii) The action of $U(n^+)$ on $V(\lambda)$ induces the structure of a $U(n^+)$-module on $V(\lambda)^a$. Note for $e_\alpha \in n^+ \hookrightarrow U(n^+), f_\beta \in n^-_\lambda \hookrightarrow S(n^-_\lambda), [e_\alpha, f_\beta]$ is not in general an element of $S(n^-_\lambda)$, but for $f_\nu \in S(n^-) \setminus S(n^-_\lambda)$ we have $f_\nu v_\lambda = 0$. That follows from the well known description (see [Hum72]) of $V(\lambda)$:

\[
V(\lambda) = U(n^-)/(f_\beta^{(\lambda,\beta^\vee)}+1 \mid \beta \in \Delta^+).
\]

The equation (1.3) shows that $V(\lambda)^a$ is a cyclic $S(n^-)$-module and hence there is an ideal $I_{\lambda} \subseteq S(n^-_\lambda)$ such that $V(\lambda)^a \simeq S(n^-_\lambda)/I_{\lambda}$, where I_{λ} is the annihilating ideal of v_λ. We have therefore the following projections:

\[
S(n^-) \to S(n^-)/\langle f_\beta \mid \langle \lambda, \beta^\vee \rangle = 0 \rangle = S(n^-_\lambda) \rightarrow S(n^-_\lambda)/I_{\lambda}.
\]

Hence, although we work with n^-_λ, we actually consider n^--modules. So our aims in this paper are

- To describe $V(\lambda)^a$ as an $S(n^-_\lambda)$-module, i. e. describe explicitly generators of the ideal I_{λ}.
- To find a basis of $V(\lambda)^a$ parametrized by integer points of a normal polytope $P(\lambda)$ (see (1.10)).

To achieve these goals we have to introduce further terminology. We denote the set of positive roots associated to n^-_λ by

\[
\Delta^+_\lambda = \{ \beta \in \Delta_+ \mid \langle \omega_i, \beta^\vee \rangle \geq 1 \} = \{ \beta_1, \ldots, \beta_N \} \subseteq \Delta_+, \ |\Delta^+_\lambda| = N \in \mathbb{Z}_{\geq 0}.
\]

Example 1.1.2. We write (s_1, s_2, \ldots, s_n) for the sum: $\sum_{k=1}^n s_k \alpha_k$. Let g be of type A_4 and $\lambda = \omega_3$, the third fundamental weight. Then we have:

\[
\Delta^+_\lambda = \{ \beta_1 = (1, 1, 1, 1), \beta_2 = (0, 1, 1, 1), \beta_3 = (1, 1, 1, 0), \beta_4 = (0, 0, 1, 1), \beta_5 = (0, 1, 1, 0), \beta_6 = (0, 0, 1, 0) \} \subset \Delta_+.
\]

We choose a total order \prec on Δ^+_λ:

\[
\beta_1 \prec \beta_2 \prec \cdots \prec \beta_{N-1} \prec \beta_N.
\]

We assume that this order satisfies the following conditions:

(i) Let \geq be the standard partial order on the positive roots, then $\beta_i \geq \beta_j \Rightarrow \beta_i \prec \beta_j$.

(ii) Let $\beta_i = (s_1, \ldots, s_n), \beta_j = (t_1, \ldots, t_n)$ and we define the height as the sum over these entries: $ht(\beta_i) = \sum_{i=1}^n s_i, ht(\beta_j) = \sum_{i=1}^n t_i$. Then $ht(\beta_i) > ht(\beta_j) \Rightarrow \beta_i \prec \beta_j$.

(iii) If β_i and β_j are not comparable in the sense of (i) and (ii), then $\beta_i \prec \beta_j \Leftrightarrow \beta_i$ is greater than β_j lexicographically, i.e. there exists an $1 \leq k \leq n$, such that $s_k > t_k$ and $s_i = t_i$ for $1 \leq i < k$.

Remark 1.1.3. The explicit order of the roots depends on the Lie algebra and the chosen weight, see Section 4. But in all cases considered in this paper we have $\beta_1 = \theta$, the highest root of g and β_N is the simple root α_i. In (iii) it is allowed to reorder the simple roots, but the ordering is fixed.
In order to make our equations more readable we write for $1 \leq i \leq N$: $f_i = f_{\beta_i}$ and $s_i = s_{\beta_i}$. We associate to the multi-exponent $s = (s_i)_{i=1}^{N} \in \mathbb{Z}_{\geq 0}^N$ the element

$$f^s = \prod_{i=1}^{N} f_i^{s_i} \in S(n_{\lambda}),$$

and define the degree of $f^s v_\lambda \neq 0$ in $V(\lambda)^a$ by $\deg(f^s v_\lambda) = \deg(f^s) = \sum_{i=1}^{N} s_i$, or $\deg(f^s v_\lambda) = 0$ if $f^s v_\lambda = 0$. We extend $<$ to the homogeneous lexicographical total order on the monomials of $S(n_{\lambda})$ (resp. multi-exponents).

Let $s, t \in \mathbb{Z}_{\geq 0}^N$ two multi-exponents. We say $f^s > f^t$ or $s > t$ if

- $\deg(f^s) > \deg(f^t)$ or
- $\deg(f^s) = \deg(f^t)$ and $\exists 1 \leq k \leq N : (s_k > t_k) \wedge \forall k < j \leq N : (s_j = t_j)$.

For example: $f_1^2 f_2 f_3^0 < f_1^2 f_2^0 f_3 < f_1^0 f_2^0 f_3^2$.

Remark 1.1.4. Because the action of n^+ on $V(\lambda)$ is induced by the adjoint action, we know that $V(\lambda)_s, s \in \mathbb{Z}_{\geq 0}$ is stable under the action of n^+: for $e \in n^+$ and $x_1 \cdots x_s v_\lambda \in V(\lambda)_s$ we have

$$e.x_1 \cdots x_s v_\lambda = \sum_{i=1}^{s} x_1 \cdots x_{i-1}[e, x_i]x_{i+1} \cdots x_s v_\lambda \in V(\lambda)_s.$$

Hence $V(\lambda)_s$ is an $U(n^+)$-module. So the degree $\deg(f^t v_\lambda)$ of an element $f^t v_\lambda$ in $V(\lambda)^a = \bigoplus_{s \geq 0} V(\lambda)_s / V(\lambda)_{s-1}$ is stable under the action of $U(n^+)$ or send to zero.

The next Lemma is devoted to give a better understanding of the module $V(\lambda)^a$, but we will not need it to prove our main statements.

Lemma 1.1.5. Let $f^m \in S(n^-)$ with $f^m v_\lambda \neq 0$ in $V(\lambda)^a$ and weight $\text{wt}(f^m) = \lambda - w_0(\lambda)$, where w_0 is the longest element in the Weyl group of \mathfrak{g} and $w_0(\lambda)$ is the lowest weight of $V(\lambda)$. Then

$$\deg(f^m) \leq \deg(f^m), \quad \forall f^m v_\lambda
eq 0 \in V(\lambda)^a.$$

Proof. Let $v_{w_0(\lambda)}$ be a lowest weight vector such that:

$$V(\lambda) = U(n^+) v_{w_0(\lambda)}.$$

Hence we can interpret $V(\lambda)$ as a lowest weight module. The lowest weight $\omega_0(\lambda)$ is in the Weyl group orbit of λ, thus $\dim V(\lambda)_{w_0(\lambda)} = 1 = \dim V(\lambda)_\lambda$. So there is a minimal $s \in \mathbb{Z}_{\geq 0}$ such that: $V(\lambda)_{w_0(\lambda)} \subseteq V(\lambda)_s$. Further there exists a scalar $c \in \mathbb{C}$ with $f^m v_\lambda = cv_{w_0(\lambda)}$.

For an arbitrary element $f^m v_\lambda \neq 0 \in V(\lambda)^a$ we fix the order of the factors to obtain $f^m v_\lambda \in V(\lambda)$. Then there exists an element $x \in U(n^+)$ such that: $f^m v_\lambda = x(f^m v_\lambda)$. This implies with Remark 1.1.4: $\deg(f^m) \leq \deg(f^m)$.

Associated to the set Δ^+_Λ we define a directed graph $H(\mathfrak{g}, \lambda) := (\Delta^+_\Lambda, E)$. The set of vertices is given by Δ^+_Λ and the set of edges E is constructed as follows:

$$\forall 1 \leq i, j \leq N : (\beta_i \rightarrow \beta_j) \in E \iff \exists \alpha_k \in \Phi_+ : \beta_i - \beta_j = \alpha_k.$$

We call this directed graph Hasse diagram of \mathfrak{g} associated to λ. For our further considerations $H(\mathfrak{g}, \lambda)$ is the most important tool.

Example 1.1.6. The Hasse diagram $H(\mathfrak{sl}_5, \omega_3)$ is given by:
We define an ordered sequence of roots in Δ^λ_+: $(\beta_1, \ldots, \beta_r)$ with $\beta_i \prec \beta_{i+1}$ to be a directed path from β_i to β_{i+1}. Further we define the support of a directed path $(\beta_1, \ldots, \beta_r)$ as follows:

$$\text{supp}(\beta_1, \ldots, \beta_r) = \{ \beta \in \Delta^\lambda_+ \mid \exists 1 \leq j \leq r : \beta = \beta_j \}.$$

Remark 1.1.7. For our purposes we want to allow the trivial path (\emptyset) and any ordered subset of a directed path to be a directed path again. So in 1.1.6 for example $(\beta_1, \beta_2, \beta_4, \beta_6)$ and $(\beta_1, \beta_2, \beta_6)$ are directed paths.

In general it is possible that two edges in $H(g, \lambda)$, one ending in a root β and one starting in β, have the same label:

$$\gamma \xrightarrow{k} \beta \xrightarrow{k} \delta.$$

We call this construction an k-chain (of length 2).

Associated to $H(g, \lambda)$ we construct two subsets $D_\lambda, \overline{D}_\lambda \subset P(\Delta^\lambda_+)$ of the power set of Δ^λ_+. For $p \in P(\Delta^\lambda_+)$ we define

$$(1.8) \quad p \in D_\lambda : \iff p = \text{supp}(\beta_1, \ldots, \beta_r),$$

for a directed path $(\beta_1, \ldots, \beta_r)$ in $H(g, \lambda)$. So from now on by (1.8) we interpret $p \in D_\lambda$ as a directed path in $H(g, \lambda)$.

Remark 1.1.8. Let $\beta_i, \beta_j \in \Delta^\lambda_+$ be arbitrary. Then there exist an $p \in D_\lambda$ with $\beta_i, \beta_j \in p$ if and only if $\beta_i - \beta_j$ or $\beta_j - \beta_i$ is a non-negative linear combination of simple roots. We call D_λ the set of Dyck paths. We will provide a more general definition of Dyck paths in Section 2.

Further we define the set of co-chains by

$$(1.9) \quad \overline{D}_\lambda := \{ p \in P(\Delta^\lambda_+) \mid |p \cap p| \leq 1, \forall p \in D_\lambda \}.$$

If necessary we use an additional index $D^\text{type of } g_\lambda$, to distinguish which type of g we consider. We want to consider the integral points of a polytope which is connected to D_λ in a very natural way. Let

$$(1.10) \quad P(\lambda) = P(m\omega_i) = \{ \mathbf{x} \in \mathbb{R}_{\geq 0}^N \mid \sum_{\beta_j \in p} x_j \leq m, \forall p \in D_\lambda \},$$

be the associated polytope to D_λ. Denote by $S(\lambda)$ the integer points in $P(\lambda)$: $S(\lambda) = P(\lambda) \cap \mathbb{Z}_{\geq 0}^N$. We define the map

$$\text{supp}_1 : S(\omega_i) \to P(\Delta^\lambda_+), \text{supp}_1(s) = \{ \beta_j \mid s_j > 0 \}.$$

For $s \in S(\omega_i)$ we have with (1.9) immediately $\text{supp}_1(s) \in \overline{D}_\lambda$. Conversely every $\overline{p} \in \overline{D}_\lambda$ has a nonempty pre-image. With $s \in \{0, 1\}_N^N$ we conclude that supp_1 is injective and that we have the immediate proposition:
Proposition 1.1.9. The map \(\text{supp}_I : S(\omega) \to \overline{\mathcal{D}}_\lambda \) is a bijection. \(\square \)

Hence in Section 4 it is sufficient to determine the co-chains in \(H(\mathfrak{g}, \lambda) \) to find the elements in \(S(\omega_i) \). Now we are able to formulate our main statements.

1.2. Main statements. Let \(\mathfrak{g} \) be a simple complex finite-dimensional Lie algebra and \(\lambda = m\omega_i \) be a rectangular weight, with \(\langle \omega_i, \theta^\vee \rangle = 1 \) and \(m \in \mathbb{Z}_{\geq 0} \), where \(\theta \) is the highest root of \(\mathfrak{g} \). Further we assume that \(H(\mathfrak{g}, \lambda) \) has no \(k \)-chains of length 2. In the following table we list up all cases where these assumptions are satisfied. Additionally in the cases \((\mathfrak{b}_n, \omega_1), (\mathfrak{f}_4, \omega_4) \) and \((\mathfrak{g}_2, \omega_1) \), we can rewrite \(H(\mathfrak{g}, \lambda) \) in a diagram without \(k \)-chains of length 2:

Type of \(\mathfrak{g} \)	weight \(\omega_i \)	Type of \(\mathfrak{g} \)	weight \(\omega_i \)
\(\mathfrak{a}_n \)	\(\omega_k, 1 \leq k \leq n \)	\(\mathfrak{e}_6 \)	\(\omega_1, \omega_6 \)
\(\mathfrak{b}_n \)	\(\omega_1, \omega_n \)	\(\mathfrak{e}_7 \)	\(\omega_7 \)
\(\mathfrak{c}_n \)	\(\omega_1 \)	\(\mathfrak{f}_4 \)	\(\omega_4 \)
\(\mathfrak{d}_n \)	\(\omega_1, \omega_{n-1}, \omega_n \)	\(\mathfrak{g}_2 \)	\(\omega_1 \)

Table 2. Solved cases

Let \(I(\lambda) \subset S(n^-) \) be the ideal such that \(V(\lambda)^a = S(n^-)/I(\lambda) \).

Theorem A.

\[
I(\lambda) = S(n^-) \left(U(n^+) \circ \text{span}\{f^{(\lambda, \beta^\vee)+1}_\beta | \beta \in \Delta_+\} \right).
\]

Proof. This statement follows by Theorem 5.1.4. \(\square \)

Theorem B. \(\mathbb{B}_\lambda = \{ f^s v_\lambda | s \in S(\lambda) \} \) is a FFL basis of \(V(\lambda)^a \).

Proof. In Section 2 we show that the polytope \(P(\lambda) \) is normal. By Theorem 3.1.4 we conclude that \(\mathbb{B}_\lambda \) is a spanning set for \(V(\lambda)^a \). After fixing the order of the factors, with Theorem 5.1.2 we have a FFL basis of \(V(\lambda) \). Because this basis is monomial and \(V(\lambda) \cong V(\lambda)^a \) as vector spaces, we conclude that \(\mathbb{B}_\lambda \) is a FFL basis of \(V(\lambda)^a \). \(\square \)

1.3. Applications. To state an important consequence of Theorem A and Theorem B we give the definitions of essential monomials and Feigin-Fourier-Littelmann (FFL) modules due to [FFoL13]. Let \(\lambda \) be a dominant integral weight. Recall that we have a homogeneous lexicographical total order \(\prec \) on the set of multi-exponents induced by the order on \(\Delta_\lambda^+ \):

\[
\beta_1 \prec \beta_2 \prec \cdots \prec \beta_N.
\]

In the following we fix a ordering on the factors in a vector

\[
(1.11) \quad f^p v_\lambda = f_{N}^p f_{N-1}^{p-1} \cdots f_{1}^{p-1} v_\lambda.
\]

Definition 1.3.1. (i) We call a multi-exponent \(p \in \mathbb{Z}_{\geq 0}^N \) essential if

\[
f^p v_\lambda \notin \text{span}\{ f^q v_\lambda | q \prec p \}.
\]

(ii) Define \(\text{es}(V(\lambda)) \subset \mathbb{Z}_{\geq 0}^N \) to be the set of essential multi-exponents.

By [FFoL13, Section 1] \(\{ f^p v_\lambda | p \in \text{es}(V(\lambda)) \} \) is a basis of \(V(\lambda)^a \) and of \(V(\lambda) \).

Let \(M = U(n^-)v_M \) and \(M' = U(n^-)v_{M'} \) be two cyclic modules. Then we denote with \(M \otimes M' := U(n^-)(v_M \otimes v_{M'}) \subset M \otimes M' \) the Cartan component and we write \(M \otimes^n := M \otimes \cdots \otimes M \) (n-times).
Definition 1.3.2. We call a cyclic module M an FFL module if:

(i) There exists a normal polytope $P(M)$ such that $es(M) = S(M)$, where
$S(M)$ is the set of lattice points in $P(M)$.

(ii) $\forall n \in \mathbb{N} : \dim M^{\otimes n} = |nS(M)|$, where $nS(M)$ is the n-fold Minkowski sum of $S(M)$.

Corollary 1.3.3. For the cases of Table 2 $V(\lambda)$ is an FFL module.

Proof. Proposition 2.3.1 shows that $P(\lambda)$ is a normal polytope. By Theorem B a basis of $V(\lambda)$ is given by \mathbb{B}_λ, hence with 5.1.1 we have $S(\lambda) = es(V(\lambda))$.

Let $n \in \mathbb{N}$ be arbitrary, then $\dim V(\lambda)^{\otimes n} = \dim V(n\lambda)$. Again by Theorem B we have $\dim V(n\lambda) = |S(n\lambda)|$. Because $P(n\lambda)$ is a normal polytope and therefore satisfies the Minkowski sum property, we conclude $|S(n\lambda)| = |nS(\lambda)|$. □

Remark 1.3.4. We note that in [FFoL13] the FFL modules are called favourable modules.

2. Normal Polytopes

In this section we provide sufficient conditions on polytopes $P(m) \subset \mathbb{R}^K, K \in \mathbb{Z}_{\geq 0}$ arbitrary but fixed, parametrized by $m \in \mathbb{Z}_{\geq 0}$, to be bounded and given by the convex hull of finitely many integer points in $\mathbb{Z}_{\geq 0}^K$.

Define $S(m) := P(m) \cap \mathbb{Z}_{\geq 0}^K$ to be the integer points in $P(m)$. Further we give a sufficient condition on such a polytope to satisfy the Minkowski sum property:

\[(2.1) \quad S(m) = S(m-1) + S(1), \quad m \geq 1.\]

Here $+$ is the Minkowski sum. In [FFoL13, Lemma 8.7] it is shown, that a bounded polytope defined by inequalities with integer coefficients and satisfying the property (2.1), is a normal polytope.

A polytope $P(m), m \in \mathbb{Z}_{\geq 0}$ is called normal, if the set of integer points in the dilation $mP(1)$ is the m-fold Minkowski sum of the integer points in $P(1)$. So the property (2.1) is what we are aiming for.

2.1. General setting. Let $\Delta = \{z_1, z_2, \ldots, z_K\}$ be a finite, non-empty set with a total order: $z_1 \succ z_2 \succ \cdots \succ z_K$. We extend \succ to the (non-homogeneous) lexicographical order on $\mathcal{P}(\Delta)$, the power set of Δ. Let $D = \{p_1, \ldots, p_r\} \subset \mathcal{P}(\Delta)$ be an arbitrary subset.

Remark 2.1.1. (i) To explain this non-homogeneous lexicographical order we give for $K \geq 3$ an example:

\[
\{z_1, z_2\} \succ \{z_1\} \succ \{z_2, z_3\}
\]

(ii) Let $p = \{z_{i_1}, \ldots, z_{i_r}\} \in \mathcal{P}(\Delta)$ be an arbitrary set. The total order \succ allows us to assume always without loss of generality (wlog): $z_{i_1} \succ \cdots \succ z_{i_r}$.

We can associate a polytope to D in a natural way:

\[(2.2) \quad P(m) = \{x \in \mathbb{R}_{\geq 0}^K \mid \sum_{z_j \in p} x_j \leq m, \quad \forall p \in D\}, \quad m \in \mathbb{Z}_{\geq 0}.\]

To work with this polytope, in particular with the elements in D, we define the following.

Definition 2.1.2.

(1) For $p \in \mathcal{P}(\Delta)$ define $p_{\min} = \min_{\succ} \{z \in p\}$ and p_{\max} analogously.
(2) Let \(p, q \in \mathcal{P}(\Delta) \), \(p = \{z_i, \ldots, z_r\} \), \(q = \{z_j, \ldots, z_s\} \) with \(p_{\min} = q_{\max} \). Then we define the concatenation of \(p \) and \(q \) by

\[
p \cup q = \{z_i, z_{i+1}, \ldots, z_r, z_j, \ldots, z_s\} \in \mathcal{P}(\Delta).
\]

2.2. Normality condition.

Definition 2.2.1. Assume \(D \subset \mathcal{P}(\Delta) \) has the following properties:

1. Subsets of elements in \(D \) are again in \(D \):
 \[
 \forall A \subset p \in D : A \in D.
 \]

2. Every \(z \in \Delta \) lies in at least one element of \(D \):
 \[
 \bigcup_{p \in D} p = \Delta
 \]

3. The concatenation of two elements in \(D \), if possible, lies again in \(D \):
 \[
 \forall p, q \in D \text{ with } p_{\min} = q_{\max} : p \cup q \in D.
 \]

Then we call \(D \subset \mathcal{P}(\Delta) \) a set of Dyck paths.

Proposition 2.2.2. Let \(D \subset \mathcal{P}(\Delta) \) be a set of Dyck paths, then we have for the integer points \(S(m) \) of the polytope \(P(m) \) associated to \(D \):

\[
S(m-1) + S(1) = S(m), \quad \forall m \in \mathbb{Z}_{\geq 1},
\]

where the left-hand side (lhs) of (2.3) is the Minkowski sum of \(S(m-1) \) and \(S(1) \).

Proof. Let \(m \geq 1 \). From the definition of \(P(m) \) and of the Minkowski sum follows \(S(m-1) + S(1) \subset S(m) \). So it is sufficient to show, that

\[
S(m-1) + S(1) \supset S(m)
\]

holds. For that let \(s = (s_z)_{z \in \Delta} \in S(m) \setminus S(m-1) \) arbitrary but fixed. We show that there exists an integer point \(t^1 \in S(1) \setminus \{0\} \) such that: \(s - t^1 \in S(m-1) \).

To achieve that we consider the map \(\text{supp}_1 : S(1) \to \mathcal{P}(\Delta) \) defined by

\[
t \mapsto \text{supp}_1(t) = \{ z \in \Delta \mid t_z > 0 \}.
\]

By the definition of \(P(m) \) (see (2.2)) and the second property of \(D \), which guarantees that each \(z \in \Delta \) lies in at least one Dyck path, we have \(t_z \in \{0,1\}, \forall z \in \Delta \). Hence \(\text{supp}_1 \) is an injective map and we get an induced (non-homogeneous) total order on \(S(1) \).

Now we want to give a characterization of the image of \(\text{supp}_1 \). We claim:

\[
\text{supp}_1(S(1)) = \{ A \in \mathcal{P}(\Delta) \mid |A \cap p| \leq 1, \forall p \in D \} =: \Gamma.
\]

"\(\subseteq \): Assume there is an element \(t \in S(1) \) with \(\text{supp}_1(t) = A \in \mathcal{P}(\Delta) \) and \(|A \cap p| > 1 \) for some \(p \in D \). Then we have \(\sum_{z \in A \cap p} t_z > 1 \), since \(t_z > 0, \forall z \in A \).

And so we have: \(\sum_{z \in p} t_z > 1 \). But this is a contradiction to the assumption \(t \in S(1) \).

"\(\supseteq \): Let \(B \in \Gamma \) be arbitrary. Associated to \(B \) we define \(q^B \in \mathbb{Z}_{\geq 0}^K \) by \(q^B_z = 1 \) if \(z \in B \) and \(q^B_z = 0 \) else. By the definition of \(\Gamma \) we have for every Dyck path \(p \in D \):

\[
\sum_{z \in p} q^B_z \leq 1.
\]

Hence \(q^B \in S(1) \) with \(\text{supp}_1(q^B) = B \).

We define a second map \(\text{supp}_m : S(m) \to \mathcal{P}(\Delta), \text{supp}_m(t) = \{ z \in \Delta \mid t_z > 0 \} \).

Remark 2.2.3. The map \(\text{supp}_m \) is in general not injective. Furthermore we have \(\text{supp}_1(S(1)) \subseteq \text{supp}_m(S(m)) \), because of \(S(1) \subseteq S(m) \) and \(\text{supp}_m|_{S(1)} = \text{supp}_1 \).
Consider \(\text{supp}_m(s) \in \mathcal{P} (\Delta) \), we have \(\mathcal{P}(\text{supp}_m(s)) \subseteq \mathcal{P}(\Delta) \). Let
\[
(2.6) \quad \nabla = (\text{supp}_1(S(1)) \cap \mathcal{P}(\text{supp}_m(s)) \subseteq \mathcal{P}(\Delta).
\]
Note that \(\nabla \) is a total ordered set. So there is a unique maximal (with respect to \(\succ \)) element, denoted by \(M_s \in \nabla \). Now we are able to define
\[
(2.7) \quad t^1 := \text{supp}_1^{-1}(M_s) \in S(1) \setminus \{0\}.
\]
This element is unique because of the injectivity of \(\text{supp}_1 \). Now we consider the integer point \(s - t^1 \). We know that there are no negative entries, because \(s_z = 0 \) implies for all \(A \in \nabla : z \notin A \) and so \(t^1_z = 0 \). Hence \(s - t^1 \in S(m) \) and so the second step is to show that \(s - t^1 \) lies already in \(S(m - 1) \). To achieve that we assume contrary that there is a Dyck path \(p \in D \) such that: \(\sum_{z \in p} (s_z - t^1_z) = m \).

Since \(s \in S(m) \) we have:
\[
(2.8) \quad m = \sum_{z \in p} (s_z - t^1_z) = \sum_{z \in p} s_z - \sum_{z \in p} t^1_z \Rightarrow \sum_{z \in p} s_z = m \quad \text{and} \quad \sum_{z \in p} t^1_z = 0.
\]

We want to construct another Dyck path \(\overline{p} \in D \) such that \(\sum_{z \in \overline{p}} s_z > m \).

Let \(\beta \in \Delta \) be maximal with the property \(\beta \in p \land s_{\beta} > 0 \). In particular, since \(\sum_{z \in p} (s_z - t^1_z) = m \) we have \(p \cap M_s = \emptyset \) and so \(\beta \notin M_s \). We define
\[
p' = p \setminus \{ \gamma \in p \mid \gamma \succ \beta \},
\]
which is an element of \(D \) since subsets of Dyck paths are again Dyck paths. By construction we have
\[
\sum_{z \in p'} s_z = m = \sum_{z \in p} s_z.
\]

To construct an \(\overline{p} \) as above we need a further Dyck path \(p'' \in D \) such that:
\[
(2.9) \quad p'' \cap M_s \neq \emptyset \quad \text{and} \quad (i) \quad p''_{\min} = \beta \quad \text{or} \quad (ii) \quad p''_{\max} = p_{\min}.
\]

The following Lemma, which we will prove later, tells us that (ii) can not occur.

Lemma 2.2.4. Let \(t_{\mu}^1 \neq 0 \), i.e. \(\mu \in M_s \) then we have \(s_{\nu} = 0 \) for all \(\nu \in \Delta \) such that \((\nu \succ \mu \land \exists q \in D : \nu, \mu \in q) \).

So we have to focus on the case (i). Let us assume contrary there is not such a Dyck path \(p'' \):
\[
(2.10) \quad \forall q \in D \text{ with } q_{\min} = \beta : q \cap M_s = \emptyset.
\]

Under this assumption and by using Lemma 2.2.4 we will show:
\[
(2.10) \quad \forall q \in D \text{ with } \beta \in q : q \cap M_s = \emptyset.
\]

Assume again contrary there is some \(\beta \neq \tau \in q \cap M_s \) for \(q \in D \) with \(\beta \in q \).

Then we have two cases.

Let \(\tau \succ \beta \), then \(\tau \) and \(\beta \) lie in \(q \). Now the path from \(\tau \) to \(\beta \) is a Dyck path, because of (1). But this is a contradiction to Assumption (2.9).

Let \(\beta \succ \tau \), by \(\tau \in q \cap M_s \) we have \(t_{\tau}^1 \neq 0 \). Then Lemma 2.2.4 says \(s_{\beta} = 0 \), which is a contradiction to the choice of \(\beta \).

Therefore (2.10) holds. Recall the properties of \(M_s \). We have
\[
M_s = \text{supp}_1(t^1) \in \mathcal{P} (\Delta) \text{ with } |M_s \cap q| \leq 1, \forall q \in D.
\]

Now consider \(M'_s := M_s \cup \{ \beta \} \in \mathcal{P}(\text{supp}_m(s)) \). We will show that \(M'_s \in \text{supp}_1(S(1)) \).

For \(q \in D \) with \(\beta \in q \) we have \(|M'_s \cap q| = 1 \) by (2.10).
For \(q \in D \) with \(\beta \notin q \) we have \(|M'_q \cap q| \leq 1 \) by \(|M_s \cap q| \leq 1 \).
We conclude \(M'_s \in \text{supp}_1(S(1)) \) and so
\[
M'_s \in \nabla = \text{supp}_1(S(1)) \cap \mathcal{P}(\text{supp}_m(s)).
\]
But with \(M'_s > M_s \) we get a contradiction to the maximality of \(M_s \).
So Assumption (2.9) was wrong and
\[
\exists p'' \in D \text{ with } p'' \ni M_s = p'' \cap M_s \neq \emptyset.
\]
We recall that \(\beta \notin M_s \) and therefore \(p \neq \{\beta\} \). Define the concatenation of \(p'' \) and \(p' \) in \(\beta \) as \(\overline{p} := p'' \cup p' \in D \) which is indeed defined because \(p''_{\text{min}} = \beta = p'_{\text{max}} \).
From (3) we know, that \(\overline{p} \) is a Dyck path. Now by construction we conclude
\[
\sum_{z \in \overline{p}} s_z = \sum_{z \in p''} s_z + \sum_{z \in p'} s_z > m.
\]
But this is a contradiction to the choice of \(s \in S(m) \) and the assumption
\[
\sum_{z \in p}(s_z - t^1_z) = m \text{ was wrong.}
\]
We conclude \(s - t^1 \in S(m - 1) \) and with \(t^1 \in S(1) \) we have \(s \in S(m - 1) + S(1) \). Finally we get \(S(m) \subset S(m - 1) + S(1) \). \(\square \)

It remains to prove Lemma 2.2.4.

Proof of Lemma 2.2.4. We assume the contrary. That means there exists \(\nu \in \Delta \) with \(\nu \succ \mu, s_\nu \neq 0 \) and a Dyck path \(p \in D \) such that \(\nu, \mu \in p \). Define
\[
V := \{ \tau \in M_s \mid \exists q \in D : \nu, \tau \in q, \nu \succ \tau \} \subset M_s
\]
and \(M'_s := (\{\nu\} \cup M_s) \setminus V \). By assumption it is \(\mu \in V \) and so \(|V| \geq 1 \). Further we have \(M'_s \in \mathcal{P}(\text{supp}_m(s)) \) and we want to show that \(M'_s \in \text{supp}_1(S(1)) \).
We assume that this is not the case, that means there exists some \(b \in D \) such that \(|M'_s \cap b| > 1 \). By the definition of \(V \) this can only happen, if there exists an \(\alpha \in M_s \) with \(\alpha \succ \nu \) and \(\alpha, \nu \in b \). The following picture is intended to give a better understanding of the foregoing situation.

\[
\begin{array}{c}
\alpha \\
\downarrow \\
\nu \rightarrow \beta \rightarrow \mu, \tau_1, \tau_2 \in V.
\end{array}
\]

We can assume wlog that \(b_{\text{min}} = \nu \) and \(p_{\text{max}} = \nu \), because of (1). So the concatenation \(b \cup p \in D \) is defined and we have \(\alpha, \nu \in b \cup p \). But then, because of \(\alpha, \nu \in M_s \): \(|M_s \cap b| > 1 \), which is a contradiction to \(M_s \in \text{supp}_1(S(1)) \).
So for all \(q \in D \) we have \(|M'_s \cap q| \leq 1 \). By that and with \(M'_s \in \mathcal{P}(\Delta) \) we conclude \(M'_s \in \text{supp}_1(S(1)) \). Therefore \(M'_s \not\in \nabla \) and by construction, because \(\succ \) is a lexicographic order, \(M'_s \succ M_s \), which is a contradiction to the maximality of \(M_s \). So the assumption on the existence of \(\nu \) was wrong, which proves the Lemma. \(\square \)
2.3. Consequences. We recall the construction of the Hasse diagram and the Dyck paths from Section 1 and show that we can apply Proposition 2.2.2 to this setup. Let \(\lambda = m\omega_i \) as before and we set \(\Delta = \Delta_+^\lambda, D = D_\lambda \). Then we have for the associated polytopes:

\[
P(m) = P(m\omega_i) = P(\lambda).
\]

For \(\Delta_+^\lambda = \{ \beta_1, \ldots, \beta_N \} \) we chose in Section 1 the order \(\beta_1 \prec \cdots \prec \beta_N \). To apply 2.2.2 we can use the same order on the positive roots and extend this order to the (non-homogeneous) lexicographical order on \(P(\Delta_+^\lambda) \) as before. We want to show that the Dyck paths defined in Section 1 are Dyck paths in the sense of 2.2.1.

(1) Every \(p' \subset p \in D_\lambda \) is again a Dyck path: We saw, that any ordered subset of a directed path in \(H(\mathfrak{g}, \lambda) \) is again a Dyck path.

(2) For each \(\beta \in \Delta_+^\lambda \) there is at least one \(p \in D_\lambda \) such that \(\beta \in p \): The set of vertices in \(H(\mathfrak{g}, \lambda) \) is exactly \(\Delta_+^\lambda \). By construction we allow paths of cardinality one, so for example the path \((\beta) \) contains \(\beta \).

(3) Let \(p, p' \in D_\lambda \) two Dyck paths, such that \(P_{\min} = P'_{\max} \). Then there are directed paths \(W, W' \) in \(H(\mathfrak{g}, \lambda) \) realizing \(p \) and \(p' \) such that the end point of \(W \) is equal to the starting point of \(W' \). We consider the directed path, which we obtain by the concatenation of the directed paths \(W \) and \(W' \). This directed path realizes \(p \cup p' \). Hence \(p \cup p' \) lies in \(D_\lambda \).

With Proposition 2.2.2 we get immediately for \(S(m\omega_i) = P(m\omega_i) \cap \mathbb{Z}_{\geq 0}^N, m \in \mathbb{Z}_{\geq 1}^N \):

Proposition 2.3.1. \(S(m\omega_i) = S((m - 1)\omega_i + \omega_i), m \in \mathbb{Z}_{\geq 1} \). \(\square \)

Finally we conclude that the polytopes constructed in (1.10) are normal convex lattice polytopes.

3. Spanning Property

Let \(\mathfrak{g} \) be a simple complex finite-dimensional Lie algebra, \(\lambda = m\omega \) be a rectangular dominant integral weight such that \(\langle \omega, \theta^\vee \rangle = 1 \), where \(\theta \) is the highest root in \(\Delta_+ \) and \(m \in \mathbb{Z}_{\geq 0} \). In this section we show that \(\mathcal{B}_\lambda = \{ f^s v_\lambda \mid s \in S(\lambda) \} \) is a spanning set for \(V(\lambda)^a \). Recall that we have

\[
V(\lambda)^a \cong S(n^-_\lambda)/I_\lambda
\]

where \(I_\lambda \) is the annihilating ideal of \(v_\lambda \). We know that \(f_\alpha^{(\lambda, \alpha^\vee) + 1} v_\lambda \) is zero in \(V(\lambda) \) (see (1.4)). Hence \(f_\alpha^{(\lambda, \alpha^\vee) + 1} v_\lambda = 0 \) in \(V(\lambda)^a \). By the action of \(U(\mathfrak{n}^+) \) on \(V(\lambda)^a \) we obtain further relations. We will see, that these relations are enough to rewrite every element as a linear combination of \(f^s v_\lambda, s \in S(\lambda) \).

In our proof it is essential to have a Hasse diagram \(H(\mathfrak{g}, \lambda) \) without \(k \)-chains. A Dyck path is defined as before to be the support of a directed path in \(H(\mathfrak{g}, \lambda) \). Let \(\circ \) be the action of \(U(\mathfrak{n}^+) \) on \(S(\mathfrak{g}) \) induced by the adjoint action of \(\mathfrak{n}^+ \) on \(\mathfrak{g} \). Via the isomorphism \(S(n^-) \cong S(\mathfrak{g})/S(\mathfrak{g})(S_+(\mathfrak{n}^+ \oplus \mathfrak{h})) \) we obtain an action on \(S(n^-) \), where \(S_+(\mathfrak{n}^+ \oplus \mathfrak{h}) \subset S(\mathfrak{n}^+ \oplus \mathfrak{h}) \) is the augmentation ideal. By

\[
S(n^-_\lambda) \cong S(n^-)/S(n^-)(\text{span}\{ f_\beta \mid \beta \in \Delta_+ \setminus \Delta_+^\lambda \})
\]

we get an action on \(S(n^-_\lambda) \). We denote this action again by \(\circ \). Since the action of \(U(\mathfrak{n}^+) \) on \(V(\lambda)^a \) is induced by the action of \(U(\mathfrak{n}^+) \) on \(V(\lambda) \) (which is again induced by the adjoint action), we obtain that for all \(e \in U(\mathfrak{n}^+), f \in S(n^-_\lambda) \)

\[
e (f v_\lambda) = (e \circ f) v_\lambda,
\]

(3.1)
holds. Therefore we can restrict our further discussion on the $U(n^+)$-module $S(n^-)$. Equation (3.1) and $U(n^+)(f_{v_k}) = U(n^+)(0) = \{0\}$ for all $f \in I_\lambda$ imply that I_λ is stable under \circ. Furthermore, by 1.1.4 the total degree of a monomial in $S(n^-)/I_\lambda$ is invariant under \circ, or it is send to zero. We denote as before $\Delta^\lambda = \{\beta_1, \ldots, \beta_N\}$ and use the same total order \prec on the multi-exponents (resp. monomials) as defined in Section 1, which is induced by $\beta_1 \prec \beta_2 \prec \cdots \prec \beta_N$.

Proposition 3.1.1. Assume $H(g, \lambda)$ has no k-chains and let $p \in D_\lambda$ be a Dyck path, $s \in \mathbb{Z}_{\geq 0}^N$ be a multi-exponent supported on p, i.e. $s_\alpha = 0$ for $\alpha \notin p$. Suppose further $\langle \lambda, \theta \rangle = m$ and $\sum_{\alpha \in p} s_\alpha > m$. Then there exist constants $c_t \in \mathbb{C}$, $t \in \mathbb{Z}_{\geq 0}$ such that:

$$f^s + \sum_{t < s} c_t f^t \in I_\lambda.$$

We follow an idea of [FFoL11a, FFoL11b] who showed a similar statement in the cases sl_n and sp_n for arbitrary dominant integral weights.

Proof. Let $p = \{\tau_0, \tau_1, \ldots, \tau_r\} \in D_\lambda$ be an arbitrary Dyck path. By construction we have for $1 \leq i \leq r$: $\tau_i - 1 < \tau_i$. Assume $\sum_{i=0}^r s_{r_i} > m$, and $s_\alpha = 0$ if $\alpha \notin p$ for some $s \in \mathbb{Z}_{\geq 0}^N$. Then

$$f_{s_{\tau_0}} + \cdots + f_{s_{\tau_r}} \in I_\lambda.$$

We define differential operators for $\alpha, \beta \in \Delta_+$ let

$$\partial_\alpha f_\beta := \begin{cases} f_{\beta - \alpha}, & \text{if } \beta - \alpha \in \Delta_+^\lambda \\ 0, & \text{else.} \end{cases}$$

The operators satisfy

$$\partial_\alpha f_\beta = c_{\alpha, \beta} [e_\alpha, f_\beta],$$

for constants $c_{\alpha, \beta} \in \mathbb{C}$. So instead of using \circ we can work with these differential operators. We point out that we need the differential operators for arbitrary roots in Δ_+.

By the construction of the Hasse diagram there is a Dyck path $p' \in D_\lambda$ with $p \subset p'$, such that there is no path p'' with $p' \subset p''$. Hence we can assume wlog

$$p = \{\tau_0 = \theta, \tau_1, \ldots, \tau_{r-1}, \tau_r = \beta_N\}.$$

Let $\nu_1, \ldots, \nu_r \in \Delta_+$, with $\nu_i \neq \nu_{i+1}$ be the labels at the edges regarding p.

Remark 3.1.2. Here we want to illustrate the problem which occurs if we allow k-chains in our Hasse diagram. Let $\gamma \prec \beta \prec \delta$ the roots of an k-chain $\gamma \rightarrow k \beta \rightarrow k \delta$ and consider for $l \geq 2$:

$$\partial_\beta f_\gamma f^l = \partial_k f_\beta f^l = \sum_{l' = 0}^{l-1} c_{0} f_\gamma f^l - \sum_{l' = 0}^{l-2} c_{l} f_\gamma f^l, \quad c_i \in \mathbb{C}.$$

So it is more involved to find a relation which contains β and δ.

We consider $f_{s_{\tau_0}} + \cdots + f_{s_{\tau_r}} \in I_\lambda$. Because I_λ is stable under \circ, we have for arbitrary $x_1, \ldots, x_l \in \Delta_+$ and $f^t \in I_\lambda$:

$$\partial_{x_1} \cdots \partial_{x_l} f^t \in I_\lambda.$$

We define

$$A := \partial_{s_{\tau_r}} \cdots \partial_{s_{\tau_2}} \partial_{s_{\tau_1}} f_{s_{\tau_0}} + \cdots + f_{s_{\tau_r}} \in I_\lambda.$$

Claim: There exist constants $c_s \neq 0, c_t \in \mathbb{C}, t \in \mathbb{Z}_N^\mathbb{Z}$ with $t < s$, such that:

\begin{equation}
A = c_s f^s + \sum_{t < s} c_t f^t \in I_\lambda
\end{equation}

If the claim holds the Proposition is proven.

Proof of the claim. Now we need the explicit description of the Dyck paths given by the Hasse diagram. Above we defined ν_1 to be the label at the edge $\theta \rightarrow \tau_1$ in $H(\mathfrak{g}, \lambda)$. Because we assumed that $H(\mathfrak{g}, \lambda)$ has no ν_1-chains of length 2, there is no edge labeled by ν_1 starting in the vertex $\theta - \nu_1 = \tau_1$. That means $\partial_{\nu_1} f_{\theta - \nu_1} = 0$. Therefore we obtain

$$\partial_{\nu_1}^{s_{\tau_1}} \cdots + s_{\tau_r} f_{\theta}^{s_{\tau_0}} + \cdots + s_{\tau_r} = a_0 f_{\theta}^{s_{\tau_0}} f_{\theta - \nu_1}^{s_{\tau_1}} + \cdots + s_{\tau_r} \in I(\lambda)$$

for some constant $a_0 \in \mathbb{C} \setminus \{0\}$. Now ν_2 is the label at the edge between the vertices τ_1 and τ_2. Again there is no ν_2-chain in $H(\mathfrak{g}, \lambda)$, so $\partial_{\nu_2} f_{\theta - \nu_2} = 0$ and $\partial_{\nu_2} f_{\theta - \nu_2} = 0$, so we have for $k = \min \{s_{\tau_0}, s_{\tau_2} + \cdots + s_{\tau_r}\}$,

$$\partial_{\nu_2}^{s_{\tau_2}} + \cdots + s_{\tau_r} f_{\theta}^{s_{\tau_0}} f_{\theta - \nu_1 - \nu_2}^{s_{\tau_1}} + \cdots + s_{\tau_r} = b_0 f_{\theta}^{s_{\tau_0}} f_{\theta - \nu_1 - \nu_2}^{s_{\tau_1} + \cdots + s_{\tau_r}}$$

For our purposes, we do not need to pay attention to the scalars unless they are zero. We also notice that the terms of the sum are only nonzero, if $\theta - \nu_2 \in \Delta^\lambda$. We want to show that the monomial $f_{\theta}^{s_{\tau_0}} f_{\theta - \nu_1 - \nu_2}^{s_{\tau_1} + \cdots + s_{\tau_r}}$ is the largest (with respect to \prec) in (3.6). We will show this by using the following Lemma, which describes the action of the differential operators more precisely.

Lemma 3.1.3. (i) Let $\{\beta_1, \ldots, \beta_i\} \subset \{\beta_1, \ldots, \beta_N\}$ with $\beta_1 < \cdots < \beta_i$ and $\nu \in \Delta^\lambda$. Further let $\beta_{i+k}, k \leq r$ be maximal such that $\partial_{\nu} f_{\beta_{i+k}} \neq 0$. Then the maximal monomial in $\partial_{\nu}^{\beta_i} f_{\theta}^{s_{\beta_1}} \cdots f_{\theta}^{s_{\beta_r}}$, $l \leq s_k$, is given by

$$f_{\theta}^{s_{\beta_1}} \cdots f_{\theta}^{s_{\beta_{i+k-1}}} (f_{\theta}^{s_{\beta_{i+k}}} - f_{\theta}^{s_{\beta_{i+k-1}}}) f_{\theta}^{s_{\beta_{i+k+1}}} \cdots f_{\theta}^{s_{\beta_r}}$$

(ii) Let $c_s \in \mathbb{C} \setminus \{0\}$, $\sum_{s \in \mathbb{Z}_N^N} c_s f^s \in S(n^-)$ be a finite sum and $\nu \in \Delta^\lambda$. Let $t = \max \{s : \partial_{\nu} f^s \neq 0\}$. Further let $\beta_k = \max \{\beta : f^\beta \text{ is a factor of } f^s, \partial_{\nu} f^\beta \neq 0\}$ and assume $t_{\beta_k} > 0$. Then for $l \leq t_{\beta_k}$ the maximal monomial in

$$\partial_{\nu}^l \sum_{s \in \mathbb{Z}_N^N} c_s f^s = \sum_{s \in \mathbb{Z}_N^N} c_s \partial_{\nu}^l f^s$$

appears in $\partial_{\nu}^l f^t$.

The proof of this Lemma will be given after the proof of this Proposition. The first part of 3.1.3 tells us exactly that the monomial $f_{\theta}^{s_{\tau_0}} f_{\theta - \nu_1 - \nu_2}^{s_{\tau_1} + \cdots + s_{\tau_r}}$ is the largest in (3.6), because $\theta < \theta - \nu_1 < \theta - \nu_1 - \nu_2$.

By construction $\partial_{\nu_{i+1}} f_{\theta - \nu_1 - \nu_2 - \cdots - \nu_i} \neq 0$, because $\theta - \nu_1 - \nu_2 - \cdots - \nu_i - \nu_{i+1}$ is an element of Δ^λ, for $i < r$. So the second statement of 3.1.3 implies, that the
largest element is obtained by acting in each step on the largest root vector. To be more precise, we consider the following equations:

\[
\begin{align*}
\partial_{\nu r}^{s_{\nu r}} \cdots \partial_{\nu v_2}^{s_{\nu v_2}} + \cdots + s_{\nu r} \partial_{\nu 1}^{s_{\nu 1}} + \cdots + s_{\nu r} f_{\theta}^{s_{\theta 0}} + \cdots + s_{\nu r} &= \\
&= a_0 \partial_{\nu r}^{s_{\nu r}} \cdots \partial_{\nu v_2}^{s_{\nu v_2}} + \cdots + s_{\nu r} f_{\theta}^{s_{\theta 0}} + \cdots + s_{\nu r} \partial_{\theta-v_1}^{s_{\theta v_1}} = \\
b_0 \partial_{\nu r}^{s_{\nu r}} \cdots \partial_{\nu v_3}^{s_{\nu v_3}} + \cdots + s_{\nu r} f_{\theta}^{s_{\theta 0}} f_{\theta-v_1}^{s_{\theta v_1}} f_{\theta-v_1-v_2}^{s_{\theta v_1-v_2}} + \cdots + \sum \text{smaller monomials} = \\
&= b_0 f_{\theta}^{s_{\theta 0}} f_{\theta-v_1}^{s_{\theta v_1}} f_{\theta-v_1-v_2}^{s_{\theta v_1-v_2}} \cdots f_{\theta-v_{r-1}}^{s_{\theta v_{r-1}}} + \sum \text{smaller monomials} \in I_\lambda.
\end{align*}
\]

for some \(b_0' \in \mathbb{C} \setminus \{0\} \). But the last term is exactly what we wanted to obtain, so for constants \(c_t \in \mathbb{C} \) and \(c_s \in \mathbb{C} \setminus \{0\} \) we have:

\[
\partial_{\nu r}^{s_{\nu r}} \cdots \partial_{\nu v_2}^{s_{\nu v_2}} + \cdots + s_{\nu r} \partial_{\nu 1}^{s_{\nu 1}} + \cdots + s_{\nu r} f_{\theta}^{s_{\theta 0}} + \cdots + s_{\nu r} = \\
c_s f_{\theta}^{s_{\theta 0}} f_{\tau_1}^{s_{\tau 1}} f_{\tau_2}^{s_{\tau 2}} \cdots f_{\tau_r}^{s_{\tau r}} + \sum_{t < s} c_t f^t = \\
c_s f^s + \sum_{t < s} c_t f^t \in I_\lambda.
\]

\[\square\]

Proof of Lemma 3.1.3. (i) Assume we have two roots \(\beta_i, \beta_j \in \Delta^A_+ \) with \(\beta_i < \beta_j \) and \(\beta_i - \nu \) and \(\beta_j - \nu \) are again roots in \(\Delta^A_+ \). For \(\beta_i - \nu \notin \Delta^A_+ \) we have \(\partial_{\nu} f_{\beta_i} = 0 \), so we do not need to consider such roots \(\beta_i \in \Delta^A_+ \). So in order to prove (i), because our monomial order is lexicographic, it is sufficient to show that

\[(3.7) \quad \beta_i < \beta_j \Rightarrow \beta_i - \nu < \beta_j - \nu.
\]

First we check, if the roots are comparable by the standard partial order. So if \(\beta_i > \beta_j \) then we have \(\beta_i - \nu > \beta_j - \nu \) and therefore \(\beta_i - \nu < \beta_j - \nu \), by the choice of the total order (1.6) on \(\Delta^A_+ \).

If the roots are not comparable by the standard partial order, the second step is to compare the heights of the roots. So if \(\text{ht}(\beta_i) > \text{ht}(\beta_j) \) then \(\text{ht}(\beta_i - \nu) > \text{ht}(\beta_j - \nu) \) and again \(\beta_i - \nu < \beta_j - \nu \).

If \(\text{ht}(\beta_i) = \text{ht}(\beta_j) \), we have to consider \(\beta_i = (s_1, \ldots, s_n) \) and \(\beta_j = (t_1, \ldots, t_n) \) in terms of the fixed basis of the simple roots (see Remark 1.1.3). Then there is a \(1 \leq k \leq n \), such that \(s_k > t_k \) and \(s_l = t_l \) for all \(1 \leq l < k \). Let \(\nu = (u_1, \ldots, u_n) \), then \(\beta_k - \nu = (s_1 - u_1, \ldots, s_n - u_n) \) is lexicographically greater than \(\beta_j - \nu = (t_1 - u_1, \ldots, t_n - u_n) \). Thus \(\beta_i - \nu < \beta_j - \nu \) and (3.7) holds.

(ii) We only have to consider the multi-exponents \(s \in \mathbb{Z}_{\geq 0}^N \) such that \(\partial_{\nu} f^s \neq 0 \). Now let \(t \) be the maximal multi-exponent with this property and let \(l \leq t_{\beta_k} \). Then we have \(\partial_{\nu} f^t \neq 0 \) and by (i) the maximal monomial appearing in \(\partial_{\nu} f^t \) is

\[(3.8) \quad f_{\beta_j - \nu} f_{\beta_j}^{t_{\beta_j} - l} \prod_{\beta \in \Delta^A_+ \setminus \beta \neq \beta_k, \beta \neq \beta_k - \nu} f_{\beta}^{s_{\beta}}.
\]

The observation (3.7) tells us, that \(f_{\beta_k - \nu} = \max\{f_{\beta - \nu} \mid \partial_{\nu} f_{\beta} \neq 0, s_{\beta} > 0\} \). So by the choice of \(t \) and because our order is lexicographic, the element (3.8) is the maximal monomial in \(\sum_{s \in \mathbb{Z}_{\geq 0}^N} c_s \partial_{\nu} f^s \). \[\square\]
Theorem 3.1.4. The set \(\{ f^s v_\lambda \mid s \in S(\lambda) \} \) spans the module \(V(\lambda)^a \).

Proof. Let \(m \in \mathbb{Z}_{\geq 0} \) and \(t \in \mathbb{Z}_{\geq 0}^N \) with \(t \notin S(\lambda) \). That means there exists a Dyck path \(p \in D_\lambda \) such that \(\sum_{\beta \in p} t_\beta > m \). Define a new multi-exponent \(t' \) by

\[
t'_\beta := \begin{cases} t_\beta, & \text{if } \beta \in p, \\ 0, & \text{else.} \end{cases}
\]

Because of \(\sum_{\beta \in p} t'_\beta = \sum_{\beta \in p} t_\beta > m \) we can apply Proposition 3.1.1 to \(t' \) and get

\[
f^{t'} = \sum_{s' \prec t'} c_{s'} f^{s'} \in S(n^-_\lambda) / I_\lambda,
\]

for some \(c_{s'} \in \mathbb{C} \). Because the order of the factors of \(f^t \in S(n^-_\lambda) \) is arbitrary and since we have a monomial order, we get

\[
f^t = f^{t'} \prod_{\beta \notin p} f^{t'_\beta} = \sum_{s < t} c_s f^s \in S(n^-_\lambda) / I_\lambda,
\]

where \(c_s = c_{s'} \) and \(f^s = f^{s'} \prod_{\beta \notin p} f^{s'_\beta} \). The equation (3.9) shows, that we can express an arbitrary multi-exponent as a sum of strictly smaller multi-exponents. We repeat this procedure until all multi-exponents in the sum lie in \(S(\lambda) \). There are only finitely many multi-exponents of a fixed degree and the degree is invariant under \(\circ \) (or send to zero). So after a finite number of steps, we can express \(t \) in terms of \(r \in S(\lambda) \) for some \(c_r \in \mathbb{C} \):

\[
f^t = \sum_{r \in S(\lambda)} c_r f^r \in S(n^-_\lambda) / I_\lambda.
\]

\(\square \)

Corollary 3.1.5. Fix for every \(s \in S(\lambda) \) an arbitrary ordering of the factors \(f_\beta \) in the product \(\prod_{\beta \geq 0} f^{s_\beta}_\beta \in S(n^-_\lambda) \). Let \(f^s = \prod_{\beta \geq 0} f^{s_\beta}_\beta \in U(n^-) \) be the ordered product. Then the elements \(f^s v_\omega, s \in S(\lambda) \) span the module \(V(\lambda) \).

Proof. Let \(f^t v_\lambda \in V(\lambda) \) with \(t \in \mathbb{Z}_{\geq 0}^N \) arbitrary. We consider \(f^t v_\lambda \) as an element in \(V(\lambda)^a \). By Theorem (3.1.4) we get

\[
f^t v_\lambda = \sum_{s \in S(\lambda)} c_s f^s v_\lambda \in V(\lambda)^a.
\]

The ordering of the factors in a product in \(S(n^-_\lambda) \) is irrelevant, so we can adjust the ordering of the factors to the fixed ordering and get an induced linear combination:

\[
f^t v_\lambda = \sum_{s \in S(\lambda)} c_s f^s v_\lambda \in V(\lambda).
\]

\(\square \)

4. FFL Basis of \(V(\omega) \)

Throughout this section we refer to the definitions in Subsection 1.1. In this section we calculate explicit FFL bases of the highest weight modules \(V(\omega) \), where \(\omega \) occurs in Table 2. We will do this by giving characterizations of the co-chains \(\overline{p} \in \overline{D}_\omega \) (see (1.9)) and using the one-to-one correspondence between \(\overline{D}_\omega \) and \(S(\omega) \) (see Proposition 1.1.9).
The results of this section, i.e. $\mathcal{B}_\omega = \{ f^s \nu_\omega \mid s \in S(\omega) \}$ is a FFL basis of $V(\omega)$, provide the start of an inductive procedure in the proof of Theorem 5.1.2. With Proposition 2.2.2 we will be able to give an explicit basis of $V(m\omega)$, $m \in \mathbb{Z}_{\geq 0}$, parametrized by the m-th Minkowski sum of $S(\omega)$.

4.1. **Type A_n.** Let \mathfrak{g} be a simple Lie algebra of type A_n with $n \geq 1$ and the associated Dynkin diagram

$$A_n \begin{array}{ccccccc} 1 & 2 & 3 & 4 & \cdots & n \end{array}$$

The highest root is of the form $\theta = \sum_{i=1}^n \alpha_i$. Since a Lie algebra \mathfrak{g} of type A_n is simply laced we have $\theta' = \sum_{i=1}^n \alpha_i'$ and so $\langle \omega, \theta' \rangle = 1 \Leftrightarrow \omega \in \{ \omega_k \mid 1 \leq k \leq n \}$. The positive roots of \mathfrak{g} are described by: $\Delta^+ = \{ \alpha_{i,j} = \sum_{i=1}^j \alpha_i \mid 1 \leq i \leq j \leq n \}$. So for the roots corresponding to ω_k we have:

$$(4.1) \quad \Delta^+_{\omega_k} = \{ \alpha_{i,j} \in \Delta^+ \mid 1 \leq i \leq k \leq j \leq n \} \subset \Delta^+.$$

Before we define the total order on $\Delta^+_{\omega_k}$, we define a total order on Δ^+:

$$\beta_1 = \alpha_{1,n}, \quad \beta_2 = \alpha_{2,n}, \quad \beta_3 = \alpha_{1,n-1}, \quad \beta_4 = \alpha_{3,n}, \quad \beta_5 = \alpha_{2,n-1}, \quad \beta_6 = \alpha_{1,n-2}, \quad \ldots,$$

$$\beta_{n(n-1)/2+1} = \alpha_n, \quad \beta_{n(n-1)/2+2} = \alpha_{n-1}, \ldots, \quad \beta_{n(n+1)/2} = \alpha_1.$$

Now we delete every root $\beta_i \in \Delta^+ \setminus \Delta^+_{\omega_k}$ and relabel the remaining roots. For a visualization of this procedure see in the Appendix Figure 2 and Example 1.1.6.

In the following it is more convenient to use the description $\alpha_{i,j}$ instead of β_k.

First we give a characterization of the co-chains $\mathbf{p} \in \mathcal{D}_{\omega_k} \subset \mathcal{P}(\Delta^+_{\omega_k})$.

Proposition 4.1.1. Let be $\mathbf{p} = \{ \alpha_{i_1,j_1}, \ldots, \alpha_{i_s,j_s} \} \in \mathcal{P}(\Delta^+_{\omega_k})$ arbitrary, then:

$$(4.2) \quad \mathbf{p} \in \mathcal{D}_{\omega_k} \iff \forall \alpha_{i_l,j_l}, \alpha_{i_m,j_m} \in \mathbf{p}, \ i_l \leq i_m : i_l < i_m < j_l < j_m.$$

Further we have: $\mathbf{p} \in \mathcal{D}_{\omega_k} \Rightarrow s \leq \min\{k, n+1-k\}$.

Proof. “\Leftarrow”: Let $\mathbf{p} = \{ \alpha_{i_1,j_1}, \ldots, \alpha_{i_s,j_s} \} \in \mathcal{P}(\Delta^+_{\omega_k})$ be an element with the properties of the right-hand side (rhs) of (4.2). Let $\alpha_{i_l,j_l}, \alpha_{i_m,j_m} \in \mathbf{p}$, with $i_l < i_m$. Consider now:

$$\alpha_{i_l,j_l} - \alpha_{i_m,j_m} = \sum_{r=i_l}^{j_l} \alpha_r - \sum_{r=i_m}^{j_m} \alpha_r = \sum_{r=i_l}^{i_m-1} \alpha_r - \sum_{r=j_l+1}^{j_m} \alpha_r.$$

Since $j_l < j_m$ holds, Remark 1.1.8 implies that there is no Dyck path $\mathbf{q} \in D_{\omega_k}$ such that α_{i_m,j_m} and α_{i_l,j_l} are contained in \mathbf{q}.

“\Rightarrow”: Let be $\mathbf{p} \in \mathcal{D}_{\omega_k}$ and $\alpha_{i_l,j_l}, \alpha_{i_m,j_m} \in \mathbf{p}$ with $\alpha_{i_l,j_l} \neq \alpha_{i_m,j_m}$. Further we have $i_l \leq j_l, i_m \leq j_m$. Assume wlog $i_m = j_m$, then $\alpha_{i_m,j_m} = \alpha_k$. Hence

$$\alpha_{i_l,j_l} - \alpha_k = \sum_{r=i_l}^{k-1} \alpha_r + \sum_{r=k+1}^{j_l} \alpha_r,$$

which is a contradiction to $\mathbf{p} \in \mathcal{D}_{\omega_k}$ by Remark 1.1.8. So $i_l < j_l, i_m < j_m$ and we assume wlog $i_l \leq i_m$.

1. Step: \(i_t = i_m =: y \). Set \(x = \min\{j_l, j_m\} \) and \(\overline{x} = \max\{j_l, j_m\} \):

\[
\alpha_y, \overline{x} - \alpha_{y, x} = \sum_{r=y}^{\overline{x}} \alpha_r - \sum_{r=y}^{x} \alpha_r = \sum_{r=x+1}^{\overline{x}} \alpha_r.
\]

Again this contradicts to \(\overline{p} \in \overline{D}_{\omega_k} \). Hence we have: \(i_t < i_m \).

2. Step: \((i_t < i_m) \land (j_l = j_m =: x)\):

\[
\alpha_{i_t, x} - \alpha_{i_m, x} = \sum_{r=i_t}^{x} \alpha_r - \sum_{r=i_m}^{x} \alpha_r = \sum_{r=i_t}^{i_m-1} \alpha_r.
\]

We conclude: \(j_l \neq j_m \).

3. Step: \((i_t < i_m < j_m) \land (i_t < j_l)\). So there are three possible cases:

 (a) \(i_t < j_l < i_m < j_m \), (b) \(i_t < i_m < j_l < j_m \) and (c) \(i_t < i_m < j_m < j_l \).

The case (a) can not occur because \(k \leq j_l < i_m \leq k \) is a contradiction. So let us assume \(\alpha_{i_t, j_l}, \alpha_{i_m, j_m} \) satisfy the case (c), then we have:

\[
\alpha_{i_t, j_l} - \alpha_{i_m, j_m} = \sum_{r=i_t}^{j_l} \alpha_r - \sum_{r=i_m}^{j_l} \alpha_r = \sum_{r=i_t}^{i_m-1} \alpha_r + \sum_{r=j_l}^{j_m} \alpha_r.
\]

Finally we conclude that for two arbitrary roots \(\alpha_{i_t, j_l}, \alpha_{i_m, j_m} \in \overline{p} \in \overline{D}_{\omega_k} \) with \(i_t \leq i_m \) we have: \(i_t < i_m < j_l < j_m \).

It remains to show that the cardinality \(s \) of \(\overline{p} \) is bounded by \(\min\{k, n+1-k\} \):

1. Case: \(\min\{k, n+1-k\} = k \). Let \(\alpha_{i_r, j_r} \in \overline{p} \) be an arbitrary root in \(\overline{p} \). Then we know from (4.1) \(1 \leq i_r \leq k \). But we also know, that for any two roots \(\alpha_{i_t, j_l}, \alpha_{i_m, j_m} \in \overline{p} \) we have \(i_t \neq i_m \). So there are at most \(k \) different roots in \(\overline{p} \).

2. Case: \(\min\{k, n+1-k\} = n+1-k \). Analogue for two roots \(\alpha_{i_t, j_l}, \alpha_{i_m, j_m} \in \overline{p} \) we have \(j_l \neq j_m \) and \(k \leq j_l, j_m \leq n \). So the number of different roots in \(\overline{p} \) is bounded by \(n+1-k \).

Finally we conclude: \(|\overline{p}| = s \leq \min\{k, n+1-k\} \). \(\square \)

Remark 4.1.2. We can also describe the set \(\Delta_{+}^{\omega_k} \) in terms of: \(\varepsilon_{i, j} = \varepsilon_i - \varepsilon_j \), with \(1 \leq i < j \leq n+1 \):

\[
\Delta_{+}^{\omega_k} = \{ \varepsilon_{i, j} \in \Delta_+ \mid 1 \leq i < j \leq n+1 \} \subset \Delta_+.
\]

Because of the Corollary 3.1.5 we know that the elements \(\{ f^s_{\omega_k} \mid s \in S(\omega_k) \} \) span \(V(\omega_k) \) and by 1.1.9 there is a bijection between \(S(\omega_k) \) and \(\overline{D}_{\omega_k} \). We want to show, that these elements are linear independent. To achieve that, we will show that \(|\overline{D}_{\omega_k}| = \dim(V(\omega_k)) = \binom{n+1}{k} \).

Proposition 4.1.3. For all \(1 \leq k \leq n \) we have: \(|\overline{D}_{\omega_k}| = \dim(V(\omega_k)) = \binom{n+1}{k} \).

Proof. Let \(T_{n+1}^k \) be the set of \((n+1) \)-tuples in \(\{0, 1\}^{n+1} \), where exactly \(k \) entries are equal to 1. We want to show, that for all \(1 \leq k \leq n \) there is an injective map \(\psi_k : \overline{D}_{\omega_k} \to T_{n+1}^k \). For that we define the following sets of integers associated to \(\overline{p} = \{ \varepsilon_{i_1, j_1}, \ldots, \varepsilon_{i_s, j_s} \} \in \overline{D}_{\omega_k} \):

\[
I_{\overline{p}} = \{ i_r \mid 1 \leq r \leq s \} \subset \{ 1, \ldots, k \}, \quad J_{\overline{p}} = \{ 1, \ldots, k \} \setminus I_{\overline{p}}.
\]

\[
I_{\overline{p}} = \{ j_r \mid 1 \leq r \leq s \} \subset \{ k+1, \ldots, n+1 \}, \quad J_{\overline{p}} = \{ k+1, \ldots, n+1 \} \setminus I_{\overline{p}}.
\]
We define \(\vartheta_k : \mathcal{D}_{\omega_k} \rightarrow \mathcal{T}^k_{n+1} \) by \(\mathbf{p} \mapsto \ell_{\mathbf{p}} \in \mathcal{T}^k_{n+1} \). For \(\min\{k, n+1-k\} = k \) and \(1 \leq m \leq n+1 \) we define:

\[
(\ell_{\mathbf{p}})_m = \begin{cases}
1, & \text{if } (m \in J_{\mathbf{p}}) \lor (m \in T_{\mathbf{p}}), \\
0, & \text{otherwise}.
\end{cases}
\]

(4.4)

For \(\min\{k, n+1-k\} = n+1-k \) and \(1 \leq m \leq n+1 \) we define:

\[
(\ell_{\mathbf{p}})_m = \begin{cases}
0, & \text{if } (m \in I_{\mathbf{p}}) \lor (m \in T_{\mathbf{p}}), \\
1, & \text{otherwise}.
\end{cases}
\]

(4.5)

Further (4.2) implies that we have an total order on \(I_{\mathbf{p}} \) and \(J_{\mathbf{p}} \), so after (possibly) reordering the roots of \(\mathbf{p} \) we have the following strictly increasing sequence \(C_{\mathbf{p}} \) of integers:

\[
C_{\mathbf{p}} : i_1 < i_2 < \cdots < i_s < j_1 < \cdots < j_s.
\]

(4.6)

We have to show that \(\vartheta_k \) is a well defined and injective map.

From (4.1) we know that \(|I_{\mathbf{p}}| = |J_{\mathbf{p}}| \) and hence the number of non-zero entries in (4.4) is: \(|I_{\mathbf{p}}| + |J_{\mathbf{p}}| = k \). We conclude with the same argumentation, that for the number of zero entries in (4.4) we have: \(|I_{\mathbf{p}}| + |J_{\mathbf{p}}| = n+1-k \). That implies that the map \(\vartheta_k \) is well defined for \(1 \leq k \leq n \).

Assume there are elements \(\mathbf{p}_1, \mathbf{p}_2 \in \mathcal{D}_{\omega_k} \) with \(\vartheta_k(\mathbf{p}_1) = \vartheta_k(\mathbf{p}_2) \). So \(I_{\mathbf{p}_1} = I_{\mathbf{p}_2} = I \), \(J_{\mathbf{p}_1} = J_{\mathbf{p}_2} = J \) and \(C_{\mathbf{p}_1} = C_{\mathbf{p}_2} = C \). Assume further that \(\mathbf{p}_1 \neq \mathbf{p}_2 \). We reorder the roots of \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \) with respect to \(C \). So there exists (at least one) \(\varepsilon_{g,h} \in \mathbf{p}_2 \) with \(\varepsilon_{g,h} \notin \mathbf{p}_1 \) and \(g = i_y \in I \) and \(h = j_z \in J \). We have wlog \(\mathbf{p}_1 = \{\varepsilon_{i_1,j_1}, \ldots, \varepsilon_{i_s,j_s}\} \). We choose \(\varepsilon_{i_y,j_z} \) minimal with the property: \(y \neq z \).

1. Case: \(y < z \). That implies: \(|\{i_{y+1}, \ldots, i_s\}| > |\{j_{z+1}, \ldots, j_s\}|\), so there must be a root \(\varepsilon_{i_x,j_w} \in \mathbf{p}_2 \), with \(i_x \in \{i_{y+1}, \ldots, i_s\} \) and \(j_w \in \{j_{z+1}, \ldots, j_s\} \), such that \(i_y < i_x < j_w < j_z \). But this contradicts (4.2) and hence \(\mathbf{p}_2 \notin \mathcal{D}_{\omega_k} \).

2. Case: \(y > z \). An analogous argumentation gives us the same contradiction.

So our second assumption is wrong, hence \(\mathbf{p}_1 = \mathbf{p}_2 \). Therefore the map \(\vartheta_k \) is injective for all \(1 \leq k \leq n \). Since \(|\mathcal{T}^k_{n+1}| = \binom{n+1}{k} \) we have \(|\mathcal{D}_{\omega_k}| \leq |\mathcal{T}^k_{n+1}| \) and Corollary 3.1.5 implies \(|\mathcal{D}_{\omega_k}| \geq |\mathcal{T}^k_{n+1}| \). Finally we conclude: \(|\mathcal{D}_{\omega_k}| = |\mathcal{T}^k_{n+1}| = \binom{n+1}{k} \) for \(1 \leq k \leq n \).

\[\square\]

Example 4.1.4. The non redundant inequalities of the polytope \(P(m_\omega) \) in the case \(\mathfrak{g} = \mathfrak{sl}_5 \) are:

\[
P(m_\omega) = \left\{ \mathbf{x} \in \mathbb{R}_{\geq 0}^6 \mid \begin{array}{l}
x_1 + x_2 + x_4 + x_6 \leq m \\
x_1 + x_2 + x_5 + x_6 \leq m \\
x_1 + x_3 + x_5 + x_6 \leq m
\end{array} \right\}.
\]

Example 1.1.6 shows the corresponding Hasse diagram \(H(\mathfrak{sl}_5, \omega) \).

Proposition 4.1.3 implies immediately for \(1 \leq k \leq n \):

Proposition 4.1.5. The vectors \(f^s u_{\omega_k}, s \in S(\omega_k) \) are an FFL basis of \(V(\omega_k) \).

\[\square\]

4.2. Type \(B_n \). Let \(\mathfrak{g} \) be a simple Lie algebra of type \(B_n, n \geq 2 \) with associated Dynkin diagram

\[
B_n \quad \overset{\text{Dynkin diagram}}{\begin{array}{c}
1 \\
2 \\
\vdots \\
n-2 \\
n-1 \\
n
\end{array}}
\]
The highest root for a Lie algebra of type B_n is of the form $\theta = \alpha_1 + 2\sum_{i=2}^n \alpha_i$. So we have $\theta' = \alpha_1' + 2\sum_{i=2}^{n-1} \alpha_i' + \alpha_n'$ and $\langle \omega, \theta' \rangle = 1 \iff \omega \in \{\omega_1, \omega_n\}$.

First we consider the case $\omega = \omega_1$. We want to consider the case B_2, w_1 separately. Because there are not enough roots, this case does not fit in our general description of B_n, w_1. We claim that the following polytope parametrizes a FFL basis of $V(m\omega_1), m \in \mathbb{Z}_{\geq 0}$:

$$P(m\omega_1) = \left\{ x \in \mathbb{R}_{\geq 0}^3 \mid x_2 + x_1 \leq m, \quad x_2 + x_3 \leq m \right\}.$$

We fix $\beta_1 = (2, 1), \beta_2 = (1, 1), \beta_3 = (1, 0)$, and the order $\beta_2 < \beta_1 < \beta_3$. Then with Proposition 3.1.1 it is immediate, that this polytope is normal. The following actions of the differential operators imply the spanning property in the sense of Section 3 Proposition 3.1.1.

$$\partial_{\alpha_2} s_{1} f_{1} + s_{2} = c_0 f_{1} s_{2} + \text{smaller terms} \in I_\lambda$$

$$\partial_{\alpha_1} s_{1} + 2s_{2} f_{1} + s_{3} = c.h_{1} s_{2} + s_{3} + \text{smaller terms} \in I_\lambda, \quad c_i \in \mathbb{C} \setminus \{0\}.$$

We conclude that $\{ f^s \omega_1 \mid s \in S(m\omega_1) \} = \{ v_1, f_1 v_1, f_2 v_1, f_3 v_1, f_1 f_3 v_1 \}$ is a spanning set of $V(\omega_1)$.

Now we consider the case $n \geq 3$. If we construct $H(\mathfrak{g}, \omega_1)$ as in Section 1 we get an n-chain of length 2. Therefore we choose an new order on the roots and change our Hasse diagram slightly to obtain a diagram without k-chains of length 2. We illustrate this procedure for \mathfrak{g} of type B_3. Then the roots $\Delta_{\omega_1}^m$ are given by

$$\beta_1 = (1, 2, 2) \mid \beta_2 = (1, 1, 2) \mid \beta_3 = (1, 1, 1) \mid \beta_4 = (1, 1, 0) \mid \beta_5 = (1, 0, 0)$$

We choose a new order

$$\beta_1 < \beta_2 < \beta_4 < \beta_5 < \beta_3,$$

and change the Hasse diagram

$$\beta_1 \xrightarrow{2} \beta_2 \xrightarrow{3} \beta_3 \xrightarrow{3} \beta_4 \xrightarrow{2} \beta_5 \quad \leadsto \quad \beta_1 \xrightarrow{011} \beta_2 \xrightarrow{012} \beta_3 \xrightarrow{012} \beta_4 \xrightarrow{012} \beta_5.$$

First we check, if the new diagram has no k-chains. The first edge is labeled by $\alpha_2 + \alpha_3 = 011$ and we have $\beta_3 - (\alpha_2 + \alpha_3) = \beta_5$. If we have a monomial $f_1^{k_1} f_3^{k_2} \in S(n_\omega), k_1, k_2 \geq 1$ and we act by $\partial_{\alpha_2 + \alpha_3}$ we get:

$$c_0 f_1^{k_1-1} f_3^{k_2+1} + c_1 f_1^{k_1} f_3^{k_2-1} f_5, \quad c_i \in \mathbb{C}.$$

By the change of order β_3 is larger than β_5 and so $f_1^{k_1-1} f_3^{k_2+1} > f_1^{k_1} f_3^{k_2-1} f_5$. Therefore we can neglect the edge between β_3 and β_5.

Now we consider $\partial_{\alpha_2} f_{1} f_{3}^{k_2}$. Because of $\partial_{\alpha_2} f_{3}, \partial_{\alpha_2} f_{2} = 0$ we get $f_{1}^{k_1-1} f_{3}^{k_2} f_{5}^{k_3}$, for $k_3 \leq k_1$. So instead of drawing an edge directly from β_1 to β_2, we can draw an edge, labeled by 2, from β_3 to β_2. Similar, because of $\beta_1 - \alpha_2 - 2\alpha_3 = \beta_4$, we can draw an edge labeled by 012 from β_3 to β_4. The other edges do not cause any problems.

The second step is to show, that the paths in the new diagram, define the actions
by differential operators and the corresponding maximal elements like in Section 3 Proposition 3.1.1. By the choice of order we get the following equalities:
\[\partial_{\alpha_2+\alpha_3}^{s_2} \partial_{\alpha_2+\alpha_1}^{s_3} f_1^{1+s_3+s_2+s_5} = c_0 f_1^{s_1} f_3^{s_2} f_5^{s_5} + \text{smaller terms} \in I_\lambda, \]
\[\partial_{\alpha_2}^{s_4} \partial_{\alpha_2+2\alpha_3}^{s_3} f_1^{1+s_3+s_4+s_5} = c_1 f_1^{s_1} f_3^{s_4} f_4^{s_5} + \text{smaller terms} \in I_\lambda, \]
with \(c_i \in \mathbb{C} \setminus \{0\} \). In the general case, for arbitrary \(n > 3 \), we have \(N = 2n - 1 \).

Let \(r := \lceil N/2 \rceil \), then \(\Delta_{+}^{\omega} \) is given by:
\[
\begin{pmatrix}
\beta_1 = (1, 2, 2, \ldots, 2) & \beta_2 = (1, 1, 2, \ldots, 2, 2) & \ldots & \beta_{r-1} = (1, 1, \ldots, 1, 2) \\
\beta_r = (1, 1, 1, \ldots, 1) & \beta_{r+1} = (1, 1, 1, \ldots, 1, 0) & \ldots & \beta_N = (1, 0, \ldots, 0, 0)
\end{pmatrix}
\]

Then the only \(n \)-chain has the following form \(\beta_{r-1} \overset{n}{\rightarrow} \beta_r \overset{n}{\rightarrow} \beta_{r+1} \) We change the order from \(\beta_1 < \beta_2 < \cdots < \beta_N \) to
\[(4.7) \quad \beta_1 < \beta_2 < \cdots < \beta_{r-1} < \beta_{r+2} < \cdots < \beta_{N-1} < \beta_{r+1} < \beta_N < \beta_r. \]

The modifications of the diagram are similar to them in the case of \(B_3 \), so the Hasse diagram for a Lie algebra of type \(B_n \) has the following shape
\[
\beta_1 \overset{01100}{\rightarrow} \beta_3 \overset{4}{\rightarrow} \beta_4 \overset{5}{\rightarrow} \cdots \overset{n}{\rightarrow} \beta_r \overset{00112}{\rightarrow} \beta_{r+1} \overset{n^{-1}}{\rightarrow} \beta_{r+2} \overset{n^{-2}}{\rightarrow} \cdots \overset{2}{\rightarrow} \beta_N. \]

Associated to the diagrams we get the following polytope for \(m \in \mathbb{Z}_{\geq 0} \):
\[(4.8) \quad P(m\omega_1) = \left\{ \mathbf{x} \in \mathbb{R}^N_{\geq 0} \mid \begin{array}{c}
x_1 + x_2 + \cdots + x_{N-2} + x_N \leq m \\
x_1 + x_3 + \cdots + x_{N-1} + x_N \leq m
\end{array} \right\}. \]

By Section 3, Corollary 3.1.5 the elements
\[v_{\omega_1}, f_1 v_{\omega_1}, f_2 v_{\omega_1}, \ldots, f_N v_{\omega_1}, f_2 f_N v_{\omega_1} \]
span \(V(\omega) \) and with \([\text{Car05}, \text{p. 276}]\) we have \(\dim V(\omega_1) = 2n + 1 \). From these observations we get immediately:

Proposition 4.2.1. The vectors \(f^s v_{\omega_1}, s \in S(\omega_1) \) are an FFL basis of \(V(\omega_1) \). \(\square \)

Remark 4.2.2. To apply Section 2, in particular to ensure that the paths in the Hasse diagram are Dyck paths in the sense of 2.2.1, we have to choose a different order than the order in (4.7). The new order is given by:
\[\beta_1 < \beta_3 < \beta_4 < \cdots < \beta_{N-2} < \beta_2 < \beta_{N-1} < \beta_N. \]

Using this order we see immediately that \(P(m) \) is a normal polytope.

Now we consider the case \(\omega = \omega_n \). In the following it will be convenient to describe the roots and fundamental weights of \(B_n \) in terms of an orthogonal basis \(\{ \varepsilon_i \mid 1 \leq i \leq n \} \):
\[(4.9) \quad \Delta_{+}^{\omega_n} = \{ \varepsilon_{i,j} = \varepsilon_i + \varepsilon_j \mid 1 \leq i < j \leq n \} \cup \{ \varepsilon_k \mid 1 \leq k \leq n \}. \]

The total order on \(\Delta_{+}^{\omega_n} \) is obtained by considering the Hasse diagram. We begin with \(\beta_1 = \theta \) on the top and then labeling from left to right with increasing label on each level of the Hasse diagram, which correspond to the height of the roots in \(\Delta_{+}^{\omega_n} \). For a concrete example see Figure 3 in the Appendix. The corresponding polytope is defined as usual, see Table 3 for an example. The elements of \(\Delta_{+}^{\omega_n} \) correspond to \(\varepsilon_{i,j} = \sum_{r=i}^{j-1} \alpha_r + 2 \sum_{r=j}^{n} \alpha_r \) and \(\varepsilon_k = \sum_{r=k}^{n} \alpha_r \). The highest
weight of $V(\omega_n)$ has the description $\omega_n = \frac{1}{2} \sum_{r=1}^{n} \varepsilon_r$. Further the lowest weight is $-\omega_n = -\frac{1}{2} \sum_{r=1}^{n} \varepsilon_r$. With this observation, the fact that ω_n is minuscule and (4.9) we see that where

\[
(4.10) \quad \mathbb{B}_{V(\omega_n)} = \left\{ f_\alpha \omega_n \mid \alpha = \frac{1}{2} \sum_{r=1}^{n} l_r \varepsilon_r, l_r \in \{-1, 1\}, \forall 1 \leq r \leq n \right\} \subset V(\omega_n)
\]

is a basis. We note that $|\mathbb{B}_{V(\omega_n)}| = 2^n = \dim V(\omega_n)$.

Remark 4.2.3. For an arbitrary element $\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}}$ we have at most one root of the form $\varepsilon_k \in \mathfrak{p}$. Because if there are $\varepsilon_{k_1}, \varepsilon_{k_2} \in \mathfrak{p}$ (wlog $k_1 < k_2$) we have:

$\varepsilon_{k_1} - \varepsilon_{k_2} = \sum_{r=k_1}^{k_2-1} \alpha_r$. So with Remark 1.1.8 we know that there is a Dyck path $\mathfrak{p} \in D_{\omega_n}$ with $\varepsilon_{k_1}, \varepsilon_{k_2} \in \mathfrak{p}$. This observation implies, that the elements $\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}}$ have two possible forms:

\[
(4.11) \quad (B_1) \quad \mathfrak{p} = \{\varepsilon_{i_1}, \varepsilon_{i_2}, \ldots, \varepsilon_{i_r, j_r}\} \quad \text{or} \quad (B_2) \quad \mathfrak{p} = \{\varepsilon_{i_1, j_1}, \ldots, \varepsilon_{i_r, j_r}\}.
\]

So we can characterize the elements $\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}}$ as follows.

Proposition 4.2.4. Let $\mathfrak{p} \in \mathcal{P}(\Delta_{\omega_n}^{\text{sa}})$ be arbitrary, then:

\[
(4.12) \quad \mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}} \iff \begin{cases} \mathfrak{p} \text{ is of form } (B_1), \text{ with } (a) \text{ and } (b), \\ \mathfrak{p} \text{ is of form } (B_2), \text{ with } (b). \end{cases}
\]

In addition:

\[
\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}} \Rightarrow \begin{cases} s \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad \mathfrak{p} \text{ is of form } (B_1), \\ s \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad \mathfrak{p} \text{ is of form } (B_2), \end{cases}
\]

with $s = |\mathfrak{p}|$. The properties (a) and (b) are defined by

(a) $\forall 1 \leq l \leq s : k < i_l < j_l$,
(b) $\forall \alpha_{i_l, j_l}, \alpha_{i_m, j_m} \in \mathfrak{p}, i_l \leq i_m : i_l < i_m < j_m < j_l$.

Proof. “\Leftarrow” Let $\mathfrak{p} = \{\varepsilon_{k_1}, \varepsilon_{i_2}, \ldots, \varepsilon_{i_r, j_r}\}$ be an element of form (B_1) with the properties (a) and (b). Assume there are two roots $x, y \in \mathfrak{p}$ such that there exists a Dyck path $\mathfrak{q} \in D_{\omega_n}$ containing them.

1. **Case:** $x = \varepsilon_k$ and $y = \varepsilon_{i_m, j_m}$, for $1 \leq m \leq s$. Then we have

$$
\varepsilon_{i_m, j_m} - \varepsilon_k = \sum_{r=i_m}^{j_m-1} \alpha_r + 2 \sum_{r=j_m}^{n} \alpha_r - \sum_{r=k}^{n} \alpha_r = - \sum_{r=k}^{n} \alpha_r + \sum_{r=j_m}^{n} \alpha_r.
$$

Hence there is no Dyck path $\mathfrak{q} \in D_{\omega_n}$ such that x and y are contained in \mathfrak{q}. This is a contradiction to the assumption.

2. **Case:** $x = \varepsilon_{i_m, j_m}$ and $y = \varepsilon_{i, j_i}$, wlog $i < i_m$. Then we have

$$
\varepsilon_{i, j_i} - \varepsilon_{i_m, j_m} = \sum_{r=i}^{j_i-1} \alpha_r + 2 \sum_{r=j_i}^{n} \alpha_r - \sum_{r=i_m}^{j_m-1} \alpha_r - \sum_{r=j_m}^{n} \alpha_r = \sum_{r=i}^{i_m-1} \alpha_r - \sum_{r=j_i}^{j_i-1} \alpha_r.
$$

This is a contradiction to our assumption and hence: $\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}}$.

Let \mathfrak{p} be of form (B_2) with property (b), and assume there are two roots $x, y \in \mathfrak{p}$ such that there exists a Dyck path $\mathfrak{q} \in D_{\omega_n}$ containing them. Like in the second case of our previous consideration the assumption is false and therefore: $\mathfrak{p} \in \overline{D}_{\omega_n}^{\text{pa}}$.
Let \(p \in \mathcal{D}_{\omega_n}^{b_0} \). Then we know from (4.2.3) that \(p \) is of the form \((B_1)\) or \((B_2)\). Let \(p = \{\varepsilon_k, \varepsilon_{i_1,j_1}, \ldots, \varepsilon_{i_s,j_s}\} \) be of form \((B_1)\), with \(i_l < j_l \) for all \(1 \leq l \leq s \).

1. **Step:** Assume \(\exists 1 \leq m \leq s : k > i_m \). Then we have:

\[
\varepsilon_{i_m,j_m} - \varepsilon_k = \sum_{r=i_m}^{j_m-1} \alpha_r + 2 \sum_{r=j_m}^{n} \alpha_r - \sum_{r=k}^{n} \alpha_r = \sum_{r=i_m}^{k-1} \alpha_r + \sum_{r=j_m}^{n} \alpha_r.
\]

So by Remark 1.1.8 this contradicts to \(p \in \mathcal{D}_{\omega_n}^{b_0} \). Hence: \(k < i_m \) for all \(1 \leq m \leq s \).

Let \(\varepsilon_{i_l,j_l}, \varepsilon_{i_m,j_m} \in p \) be two roots with \(\varepsilon_{i_l,j_l} \neq \varepsilon_{i_m,j_m} \). We assume wlog \(i_l \leq i_m \).

2. **Step:** Assume \(i_l = i_m =: y \). Set \(x = \min\{j_l, j_m\} \) and \(\bar{x} = \max\{j_l, j_m\} \):

\[
\varepsilon_{y,x} - \varepsilon_{y,\bar{x}} = \sum_{r=y}^{x-1} \alpha_r + 2 \sum_{r=x}^{\bar{x}-1} \alpha_r - \sum_{r=y}^{\bar{x}} \alpha_r = \sum_{r=x}^{\bar{x}} \alpha_r.
\]

Again by Remark 1.1.8 this contradicts to \(p \in \mathcal{D}_{\omega_n}^{b_0} \) and we have: \(i_l < i_m \).

3. **Step:** Let \(i_l < i_m \) and assume \(j_l = j_m =: x \), we consider:

\[
\varepsilon_{i_l,x} - \varepsilon_{i_m,x} = \sum_{r=i_l}^{x} \alpha_r + 2 \sum_{r=x}^{j_m-1} \alpha_r - \sum_{r=i_m}^{x} \alpha_r = \sum_{r=i_l}^{j_m-1} \alpha_r.
\]

This contradicts to \(p \in \mathcal{D}_{\omega_n}^{b_0} \) by Remark 1.1.8, so: \(j_l \neq j_m \).

4. **Step:** \((i_l < i_m < j_m) \land (i_l < j_l)\). So there are three possible cases:

(a) \(i_l < j_l < i_m < j_m \), (b) \(i_l < i_m < j_l < j_m \) and (c) \(i_l < i_m < j_m < j_l \).

Let us assume \(\varepsilon_{i_l,j_l} \) and \(\varepsilon_{i_m,j_m} \) have the property of case (a):

\[
\varepsilon_{i_l,j_l} - \varepsilon_{i_m,j_m} = \sum_{r=i_l}^{j_l-1} \alpha_r + 2 \sum_{r=j_l}^{n} \alpha_r - \sum_{r=i_m}^{j_m-1} \alpha_r - 2 \sum_{r=j_m}^{n} \alpha_r = \sum_{r=i_l}^{j_l-1} \alpha_r + \sum_{r=j_m}^{n} \alpha_r.
\]

This contradicts to \(p \in \mathcal{D}_{\omega_n}^{b_0} \) by Remark 1.1.8. We assume now that \(\varepsilon_{i_l,j_l} \) and \(\varepsilon_{i_m,j_m} \) have the property of case (b):

\[
\varepsilon_{i_l,j_l} - \varepsilon_{i_m,j_m} = \sum_{r=i_l}^{j_l-1} \alpha_r + 2 \sum_{r=j_l}^{n} \alpha_r - \sum_{r=i_m}^{j_m-1} \alpha_r - 2 \sum_{r=j_m}^{n} \alpha_r = \sum_{r=i_l}^{j_l-1} \alpha_r + \sum_{r=j_m}^{n} \alpha_r.
\]

Again by Remark 1.1.8 this contradicts to \(p \in \mathcal{D}_{\omega_n}^{b_0} \). Finally we conclude that two roots \(\varepsilon_{i_l,j_l}, \varepsilon_{i_m,j_m} \in p \), with \(i_l \leq i_l \), satisfy (c): \(i_l < i_m < j_m < j_l \). To prove this statement for an \(p \in \mathcal{D}_{\omega_n}^{b_0} \) of form \((B_2)\) we only have to restrict our consideration to the second, third and fourth step.

It remains to show that the cardinality \(s \) of \(p \) is bounded by \(\lceil \frac{n}{2} \rceil \) respective \(\lceil \frac{s}{2} \rceil \).

Again we consider the two possible cases:

1. **Case:** \(p = \{\varepsilon_k, \varepsilon_{i_2,j_2}, \ldots, \varepsilon_{i_s,j_s}\} \) is of form \((B_1)\) and we assume \(|p| = s > \lceil \frac{n}{2} \rceil \).

Then we know from our previous consideration that after reordering the roots in \(p \) we have a strictly increasing chain of integers:

\[
C_p : k < i_2 < i_3 \cdots < i_s < j_s < j_{s-1} < \cdots < j_3 < j_2.
\]
So there are $2s - 1$ different integers, where each of these correspond to an ε_i for $1 \leq i \leq n$. By assumption we know $2s - 1 \geq 2\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) - 1 \geq n + 1$, but there are only n different elements in $\{\varepsilon_r \mid 1 \leq r \leq n\}$. So this is a contradiction an hence: $|p| = s \leq \left\lceil \frac{n}{2} \right\rceil$.

2. Case: $p = \{\varepsilon_{i_1,j_1}, \ldots, \varepsilon_{i_s,j_s}\}$ is of form (B_2) and we assume $|p| = s > \frac{n}{2}$.

As in the first case we have a strictly increasing chain of integers:

\begin{equation}
C_p: i_1 < i_2 \cdots < i_s < j_s < j_{s-1} < \cdots < j_2 < j_1.
\end{equation}

So we have 2s different integers corresponding to at most n different elements in $\{\varepsilon_r \mid 1 \leq r \leq n\}$, but by assumption we have $2s \geq 2\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) \geq n + 1$. Again we have a contradiction and therefore: $|p| = s \leq \frac{n}{2}$. \hfill \square

Because of the Corollary 3.1.5 we know that the elements $\{f^sv_{\omega_n} \mid s \in S(\omega_n)\}$ span $V(\omega_n)$ and by 1.1.9 there is a bijection between $S(\omega_n)$ and $D^b_{\omega_n}$. We want to show, that these elements are linear independent. To achieve that, we will show that $|D^b_{\omega_n}| = \dim V(\omega_n)$. To be more explicit:

Proposition 4.2.5. $|D^b_{\omega_n}| = \dim V(\omega_n) = 2^n$.

Proof. We know from (4.12) that for an arbitrary element $p \in D^b_{\omega_n}$ the number of roots s in p is bounded by $\left\lceil \frac{n}{2} \right\rceil$ respectively by $\frac{n}{2}$. So the number of integers occurring in C_p (see (4.13) and (4.14)) is also bounded:

\begin{equation}
|C_p| = \begin{cases}
2s - 1 \leq \left\lceil \frac{n}{2} \right\rceil - 1 \leq n, & \text{if p is of form (B_1),} \\
2s \leq \left\lceil \frac{n}{2} \right\rceil \leq n, & \text{if p is of form (B_2)}.
\end{cases}
\end{equation}

In order to simplify our notation, we define $l := |C_p|$, so we have for an arbitrary $p \in D^b_{\omega_n}: 0 \leq l \leq n$. Further we define the subsets $D^b_{\omega_n}(l) \subset D^b_{\omega_n}$:

\begin{equation}
D^b_{\omega_n}(l) := \{p \in D^b_{\omega_n} \mid |C_p| = l\}, \forall 0 \leq l \leq n.
\end{equation}

So the elements in $D^b_{\omega_n}(l)$ are parametrized by l totally ordered integers u_i in $\{r \mid 1 \leq r \leq n\}$, $\forall 1 \leq i \leq l$. Hence we conclude: $|D^b_{\omega_n}(l)| \leq \binom{n}{l}$, $\forall 1 \leq l \leq n$ and so

\begin{equation}
|D^b_{\omega_n}| = \sum_{l=0}^{n} |D^b_{\omega_n}(l)| \leq \sum_{l=0}^{n} \binom{n}{l} = 2^n.
\end{equation}

We also know from Corollary 3.1.5 that we have $|D^b_{\omega_n}| \geq \dim V(\omega_n) = \binom{n}{l} = 2^n$. Finally we conclude: $|D^b_{\omega_n}| = 2^n$. \hfill \square

Example 4.2.6. The polytope $P(m\omega_3)$ in the case $g = so_7$ has the following shape.

\[P(m\omega_3) = \left\{ x \in \mathbb{R}_{\geq 0}^6 \mid \begin{array}{c}
x_1 + x_2 + x_3 + x_5 + x_6 \leq m \\
x_1 + x_2 + x_4 + x_5 + x_6 \leq m
\end{array} \right\}. \]

The Proposition 4.2.5 implies immediately:

Proposition 4.2.7. The vectors $f^sv_{\omega_n}, s \in S(\omega_n)$ are an FFL basis of $V(\omega_n)$. \hfill \square
4.3. Type C_n. Let \mathfrak{g} be a simple Lie algebra of type C_n for $n \geq 2$ with the associated Dynkin diagram

$$C_n \vcenter{\begin{array}{c}
\bullet & \bullet & \bullet & \cdots & \bullet & \bullet & \bullet \\
1 & 2 & \cdots & n-2 & n-1 & n
\end{array}}$$

For all fundamental weights ω_k we have $\langle \omega_k, \theta^\vee \rangle = 1$, where $\theta = (2, 2, \ldots, 2, 1)$ is the highest root and $\theta^\vee = (1, 1, \ldots, 1)$ the corresponding coroot. But only for ω_1 the associated Hasse diagram $H(\mathfrak{g}, \omega_1)$ has no i-chains. In fact for $1 \leq k \leq n$, $H(\mathfrak{g}, \omega_k)$ has $k - 1$ different i-chains, with $1 \leq i \leq k - 1$. The following example explains, why we are not able to rewrite the diagram in these cases, with our approach.

For all ω_k with $k \neq 1$ we have the following 1-chain.

$$\beta_1 \xrightarrow{1} \beta_2 \xrightarrow{1} \beta_3.$$

Here $\beta_1 = 2\alpha_1 + \cdots + 2\alpha_{n-1} + \alpha_n$ is the highest root, $\beta_2 = \alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + \alpha_n$, and $\beta_3 = 2\alpha_2 + \cdots + 2\alpha_{n-1} + \alpha_n$. Note that $\beta_1 - \beta_2 = 2\alpha_1$, which is not a root. Further, because β_1 is the highest root, there are no roots $\gamma \in \Delta_+, \nu \in \Delta_+^k$ with $\partial_1 f_\nu = f_3$, except for $\nu = \beta_2$. Hence it is more involved to rewrite the diagram into a diagram without k-chains, such that there is a path connecting β_1 and β_3.

Nevertheless, in [FolL11b] similar statements to Theorem A and Theorem B were proven for arbitrary dominant integral weights.

Now we consider $\omega = \omega_1$. Then we have $2n - 1 = N$ and Δ_+^ω is given by

$$\begin{array}{llll}
\beta_1 &= (2, 2, \ldots, 2, 1) & \beta_2 &= (1, 2, \ldots, 2, 1) & \cdots & \beta_n &= (1, 1, \ldots, 1, 1) \\
\beta_{n+1} &= (1, 1, \ldots, 1, 0) & \beta_{n+2} &= (1, \ldots, 1, 0, 0) & \cdots & \beta_N &= (1, 0, \ldots, 0, 0)
\end{array}$$

The diagram $H(\mathfrak{g}, \omega)$ has the following form.

$$\begin{array}{l}
\beta_1 \xrightarrow{1} \beta_2 \xrightarrow{2} \beta_3 \xrightarrow{3} \cdots \xrightarrow{n-2} \beta_{n-1} \xrightarrow{n-1} \beta_n \xrightarrow{n} \beta_{n+1} \xrightarrow{n+1} \cdots \xrightarrow{n} \beta_N.
\end{array}$$

There are no k-chains and the associated polytope is given by

$$P(m\omega) = \{x \in \mathbb{R}_{\geq 0}^N \mid x_1 + x_2 + \cdots + x_N \leq m\}.$$

By Corollary 3.1.5 the elements $v_\omega, f_1 v_\omega, f_2 v_\omega, \ldots, f_N v_\omega$ span $V(\omega)$ and with [Car05, p.295] we know $\dim V(\omega) = 2n$. From these observations we get immediately:

Proposition 4.3.1. The set $\mathcal{B}_\omega = \{s^* v_\omega \mid s \in S(\omega)\}$ is a FFL basis of $V(\omega)$. □

4.4. Type D_n. Let \mathfrak{g} be a simple Lie algebra of type D_n with associated Dynkin diagram

$$D_n \vcenter{\begin{array}{c}
\bullet & \bullet & \bullet & \cdots & \bullet & \bullet & \bullet \\
1 & 2 & \cdots & n-2 & n-1 & n
\end{array}}$$

The highest root in type D_n is of the form $\theta = \alpha_1 + 2 \sum_{i=2}^{n-2} \alpha_i + \alpha_{n-1} + \alpha_n$.

Since \mathfrak{g} is simply-laced we have $\theta^\vee = \alpha_1^\vee + 2 \sum_{i=2}^{n-2} \alpha_i^\vee + \alpha_{n-1}^\vee + \alpha_n^\vee$. Hence $\langle \omega, \theta^\vee \rangle = 1 \iff \omega \in \{\omega_1, \omega_{n-1}, \omega_n\}$.

First we consider the case $\omega = \omega_1$. Then we have $2n - 2 = N$ and $\Delta_+^{\omega_1}$ has the following form:

$$\begin{array}{llll}
\beta_1 &= (1, 2, 2, \ldots, 2, 1, 1) & \beta_2 &= (1, 1, 2, \ldots, 2, 1, 1) & \cdots & \beta_{n-2} &= (1, 1, \ldots, 1, 1, 1, 1) \\
\beta_{n-1} &= (1, 1, 1, \ldots, 1, 0, 1) & \beta_n &= (1, 1, 1, \ldots, 1, 1, 0) & \cdots & \beta_N &= (1, 0, 0, \ldots, 0, 0, 0)
\end{array}$$

The Hasse diagram has no k-chain and one element in \overline{D}_{ω_1} with cardinality 2.
Associated to this diagram we get the following polytope for \(m \in \mathbb{Z}_{\geq 0} \):
\[
P(m\omega) = \left\{ x \in \mathbb{R}_{\geq 0}^N \mid x_1 + \cdots + x_{n-2} + x_{n-1} + \cdots + x_n \leq m \right\}.
\]

By Corollary 3.1.5 the elements \(\mathcal{B}_{\omega_1} = \{ v_{\omega_1}, f_1 v_{\omega_1}, f_2 v_{\omega_1}, \ldots, f_N v_{\omega_1}, f_{n-1} f_n v_{\omega_1} \} \) span \(V(\omega_1) \) and with [Car05, p. 280] we have \(\dim V(\omega_1) = 2n \). From these observations we get immediately.

Proposition 4.4.1. The vectors \(f^s v_{\omega_1}, s \in S(\omega_1) \) are an FFL basis of \(V(\omega_1) \). \(\square \)

For most of the proofs of the statements in the case \(\omega = \omega_{n-1}, \omega_n \) we will refer to the proofs of the corresponding statements for type \(\mathbb{B}_n \).

Now we consider the case \(\omega = \omega_{n-1} \). For further considerations it will be convenient to describe the roots and fundamental weights of \(V \) in terms of an orthogonal basis \(\{ \varepsilon_i \mid 1 \leq i \leq n \} \). Then \(\Delta_{\omega_{n-1}} \) is given by
\[
\{ \varepsilon_{i,j} = \varepsilon_i + \varepsilon_j \mid 1 \leq i < j \leq n - 1 \} \cup \{ \varepsilon_{k,\pi} = \varepsilon_k - \varepsilon_n \mid 1 \leq k \leq n - 1 \}.
\]

The total order on \(\Delta_{\omega_{n-1}} \) is defined like in the \(\mathbb{B}_n, \omega_n \)-case (see Figure 3). The elements of \(\Delta_{\omega_{n-1}} \) correspond to \(\varepsilon_{i,j} = \sum_{t=1}^{j-1} \alpha_t + 2 \sum_{r=j}^{n-2} \alpha_r + \alpha_{n-1} + \alpha_n \) and \(\varepsilon_{k,\pi} = \sum_{r=k}^{n-1} \alpha_r \). The highest weight of \(V(\omega_{n-1}) \) has the description \(\omega_{n-1} = -\frac{1}{2} \left(\sum_{r=1}^{n-1} \varepsilon_r - \varepsilon_n \right) \). Further the lowest weight is \(-\omega_{n-1} = -\frac{1}{2} \left(\sum_{r=1}^{n-1} \varepsilon_r - \varepsilon_n \right) \).

With this observation, the fact that \(\omega_{n-1} \) is minuscule and (4.18) we see that
\[
\mathcal{B}_{V(\omega_{n-1})} = \left\{ f_\alpha v_{\omega_{n-1}} \mid \alpha = \frac{1}{2} \sum_{r=1}^{n} l_r \varepsilon_r, l_r = \pm 1, \forall 1 \leq r \leq n, \ 2 \mid \#\{l_r \mid l_r = -1\} \right\}
\]
is a basis of \(V(\omega_{n-1}) \). We note that \(|\mathcal{B}_{V(\omega_{n-1})}| = 2^{n-1} = \dim V(\omega_{n-1}) \).

Remark 4.4.2. Analogue to the argumentation of Remark 4.2.3 we observe, that the elements \(\mathcal{P} \in \mathcal{D}_{\omega_{n-1}} \) have two possible forms:
\[
(D_1) \mathcal{P} = \{ \varepsilon_{k,\pi}, \varepsilon_{i_1, j_2}, \ldots, \varepsilon_{i_r, j_r} \} \text{ or } (D_2) \mathcal{P} = \{ \varepsilon_{i_1, j_1}, \ldots, \varepsilon_{i_t, j_t} \}.
\]

So we can characterize the elements \(\mathcal{P} \in \mathcal{D}_{\omega_{n-1}} \) as follows

Proposition 4.4.3. Let \(\mathcal{P} \in \mathcal{P}(\Delta_{\omega_{n-1}}) \) arbitrary, then we have:
\[
(D_1) \mathcal{P} \in \mathcal{D}_{\omega_{n-1}} \iff \begin{cases}
\mathcal{P} \text{ is of form } (D_1), \text{ with } (a) \text{ and } (b), \\
\mathcal{P} \text{ is of form } (D_2), \text{ with } (b).
\end{cases}
\]

In addition: \(\mathcal{P} \in \mathcal{D}_{\omega_{n-1}} \iff \begin{cases}
s \leq \left\lceil \frac{n}{2} \right\rceil - 1 & \mathcal{P} \text{ is of form } (D_1), \\
s \leq \left\lceil \frac{n}{2} \right\rceil - 1 & \mathcal{P} \text{ is of form } (D_2),
\end{cases}
\]
with \(s = |\mathcal{P}| \). The properties (a) and (b) are defined by
\((a) \ \forall 1 \leq l \leq s : k < i_l < j_l, \)
\((b) \ \forall \alpha_{i_l, j_l}, \alpha_{i_m, j_m} \in \mathcal{P}, i_l \leq i_m : i_l < i_m < j_m < j_l. \)
We denote with \(\mathbf{1}_{2n}(n) \) (respectively \(\mathbf{1}_{2n}(n) \)) the Indicator function for the odd (respectively even) integers.

Proof. To prove this statement we can adapt the idea of Proposition 4.2.4. We use the exact same approach but we consider \(\Delta_+^{\omega_n} \) of type \(D_n \).

To check that the cardinality \(s \) of an arbitrary element \(\mathbf{p} \in \overline{D}_{\omega_n}^b \) is bounded, like we claim on the rhs of (4.20), we use only fundamental combinatorics, again analogue to the idea of the proof of Proposition 4.2.4.

Because of the Corollary 3.1.5 we know that the elements \(\{ f^s v_{\omega_{n-1}} \mid s \in S(\omega_{n-1}) \} \) span \(V(\omega_{n-1}) \) and by 1.1.9 there is a bijection between \(S(\omega_{n-1}) \) and \(\overline{D}_{\omega_n}^b \). We want to show, that these elements are linear independent. To achieve that, we will show that \(|\overline{D}_{\omega_n}^b| = \dim V(\omega_{n-1}) \). To be more explicit:

Proposition 4.4.4. \(|\overline{D}_{\omega_n}^b| = \dim V(\omega_{n-1}) = 2^{n-1}\).

Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.5. \(\square \)

The Proposition 4.4.4 implies immediately

Proposition 4.4.5. \(B_{\omega_{n-1}} = \{ f^s v_{\omega_{n-1}} \mid s \in S(\omega_{n-1}) \} \) is a basis for \(V(\omega_{n-1}) \). \(\square \)

Finally we consider the case \(\omega = \omega_n \). For the proofs of the statements in this case we refer to the proofs of the analogous statements in the previous case \(\omega = \omega_{n-1} \) and the \(B_n, \omega_n \)-case.

The set of roots \(\Delta_+^{\omega_n} \), where \(\alpha_n = \varepsilon_{n-1} + \varepsilon_n \) is a summand, is given by:

\[
\{ \varepsilon_{i,j} = \varepsilon_i + \varepsilon_j \mid 1 \leq i < j \leq n-1 \} \cup \{ \varepsilon_{k,n} = \varepsilon_k + \varepsilon_n \mid 1 \leq k \leq n-1 \}.
\]

Again the total order on \(\Delta_+^{\omega_n} \) is defined like in the \(B_n, \omega_n \)-case (see Figure 3), where the elements of \(\Delta_+^{\omega_n} \) correspond to \(\varepsilon_{i,j} = \sum_{r=1}^{j-1} \alpha_r + 2 \sum_{r=j}^{n-2} \alpha_r + \alpha_{n-1} + \alpha_n \) and \(\varepsilon_{k,n} = \sum_{r=k}^{n-1} \alpha_r \).

The highest weight of \(V(\omega_n) \) has the description \(\omega_n = \frac{1}{2} (\sum_{r=1}^{n-1} \varepsilon_r) \). Further the lowest weight is \(-\omega_n = -\frac{1}{2} (\sum_{r=1}^{n-1} \varepsilon_r) \). As before we see that

\[
B_{V(\omega_n)} = \left\{ f_{\alpha} v_{\omega_n} \mid \alpha = \frac{1}{2} \sum_{r=1}^{n} l_r \varepsilon_r, \{ l_r \mid l_r = -1 \}, \forall 1 \leq r \leq n, 2 \mid \#\{ l_r \mid l_r = -1 \} \right\}
\]

is a basis of \(V(\omega_n) \). We note that \(|B_{\omega_n}| = 2^{n-1} = \dim V(\omega_n) \).

Remark 4.4.6. Analogue to the argumentation of Remark 4.2.3 we observe, that the elements \(\mathbf{p} \in \overline{D}_{\omega_n}^b \) have two possible forms:

\[
(D_1^n) \; \mathbf{p} = \{ \varepsilon_{k,n}, \varepsilon_{i_2,j_2}, \ldots, \varepsilon_{i_s,j_s} \} \quad \text{and} \quad (D_2^n) \; \mathbf{p} = \{ \varepsilon_{i_1,j_1}, \ldots, \varepsilon_{i_s,j_s} \}.
\]

So we can characterize the elements \(\mathbf{p} \in \overline{D}_{\omega_n}^b \) as follows:

Proposition 4.4.7. Let \(\mathbf{p} \in \mathcal{P}(\Delta_+^{\omega_n}) \) arbitrary. Then we have:

\[
(D_{22}) \; \mathbf{p} \in \overline{D}_{\omega_n}^b \iff \left\{ \begin{array}{c} \mathbf{p} \text{ is of form } (D_1^n), \text{ with (a) and (b),} \vspace{1mm} \\
\mathbf{p} \text{ is of form } (D_2^n), \text{ with (b).} \end{array} \right\}
\]

In addition:

\[
\mathbf{p} \in \overline{D}_{\omega_n}^b \implies \left\{ \begin{array}{c} s \leq \lfloor \frac{n}{2} \rfloor - 1, \mathbf{p} \text{ is of form } (D_1^n), \vspace{1mm} \\
\mathbf{p} \text{ is of form } (D_2^n), \end{array} \right\}
\]

with \(s = |\mathbf{p}| \). The properties (a) and (b) are defined by
(a) \(1 \leq l \leq s : \; k < i_l < j_l \),
(b) \(\forall \alpha_{i_l,j_l}, \alpha_{i_m,j_m} \in \overline{p}, i_l \leq i_m : i_l < i_m < j_m < j_l \).

Proof. To prove this statement we refer to the proof of Proposition 4.4.3. \(\square \)

Because of Corollary 3.1.5 we know that the elements of \(\overline{D}_{\omega_n}^{b_0} \) span the highest weight module \(V(\omega_n) \). But we still have to show, that these elements are linear independent. To achieve that we will show:

Proposition 4.4.8. \(\overline{D}_{\omega_n}^{b_0} = \dim V(\omega_n) = 2^{n-1} \).

Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.5. \(\square \)

The Proposition 4.4.8 implies immediately

Proposition 4.4.9. The set \(\mathbb{B}_{\omega_n} = \{ f^s v_{\omega_n} \; | \; s \in S(\omega_n) \} \) is a basis for \(V(\omega_n) \). \(\square \)

The following Lemma gives us a very useful connection between the co-chains of \(g \) of type \(\mathbb{B}_{n-1} \) and \(D_0 \):

Lemma 4.4.10. We have: \(|\overline{D}_{\omega_{n-1}}^{b_0}| = |\overline{D}_{\omega_{n-1}}^{b_0-1}| \) and \(|\overline{D}_{\omega_n}^{b_0}| = |\overline{D}_{\omega_{n-1}}^{b_0-1}| \).

Proof. We only use essential combinatorics to prove this statement. \(\square \)

4.5. **Type \(E_6 \).** Let \(g \) be a simple Lie algebra of type \(E_6 \) with associated Dynkin diagram

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
E_6
\end{array}
\]

We have \(\langle \omega, \theta^\vee \rangle = 1 \iff \omega = \omega_1, \omega_6 \).

Remark 4.5.1. For all \(m \in \mathbb{Z}_{\geq 0} \) we have \(V(m \omega_1) \cong V(m \omega_6) \) as \(U(n^-) \)-modules, so the following statements do not depend on the choice of \(\omega \). Nevertheless, to have an explicit solution, we fix \(\omega \) to be \(\omega_6 \). The \(\omega_1 \)-case follows analogously.

With respect to Remark 4.5.1 the set is \(\Delta_{\omega}^+ \) given as follows:

\(\beta_1 = (1,2,2,3,2,1) \)	\(\beta_9 = (1,1,1,1,1,1) \)
\(\beta_2 = (1,1,2,3,2,1) \)	\(\beta_{10} = (0,1,1,1,1,1) \)
\(\beta_3 = (1,1,2,2,2,1) \)	\(\beta_{11} = (1,0,1,1,1,1) \)
\(\beta_4 = (1,1,1,2,2,1) \)	\(\beta_{12} = (0,0,1,1,1,1) \)
\(\beta_5 = (1,1,2,2,1,1) \)	\(\beta_{13} = (0,1,0,1,1,1) \)
\(\beta_6 = (0,1,1,2,2,1) \)	\(\beta_{14} = (0,0,0,1,1,1) \)
\(\beta_7 = (0,1,1,2,1,1) \)	\(\beta_{15} = (0,0,0,0,1,1) \)
\(\beta_8 = (0,1,1,2,1,1) \)	\(\beta_{16} = (0,0,0,0,0,1) \)

The Hasse diagram \(H(E_6, \omega) \) has no \(k \)-chains and the maximal cardinality of a co-chain of \(H(E_6, \omega) \) is two (see Appendix, Figure 4). The associated polytope is given for \(m \in \mathbb{Z}_{\geq 0} \) by:

\[
P(\lambda) = P(m \omega) = \{ x \in \mathbb{R}_{\geq 0}^{16} \mid \sum_{\beta_j \in p} x_j \leq m, \; \forall p \in D_\lambda \},
\]

in particular see Appendix, Figure 4 for the non-redundant inequalities.

Proposition 4.5.2. The set \(\mathbb{B}_{\omega} = \{ f^s v_{\omega} \; | \; s \in S(\omega) \} \) is a FLL basis of \(V(\omega) \). \(\square \)
Proof. The co-chains of the Hasse diagram give us immediately:

\[\mathbb{B}_\omega = \{ v_\omega, f_1 v_\omega, f_2 v_\omega, \ldots, f_{16} v_\omega, f_4 f_5 v_\omega, f_5 f_6 v_\omega, f_6 f_7 v_\omega, f_6 f_9 v_\omega, f_8 f_9 v_\omega, f_8 f_10 v_\omega, f_8 f_{11} v_\omega, f_{10} f_{11} v_\omega, f_{11} f_{13} v_\omega, f_{12} f_{13} v_\omega \}. \]

Note that there are 27 elements in \(\mathbb{B}_\omega \). By Corollary 3.1.5, we get that \(\mathbb{B}_\omega \) is a spanning set of \(V(\lambda) \). By [Car05, p. 303] we have \(\dim V(\lambda) = 27 \) and therefore the claim holds. \(\square \)

4.6. Type \(E_7 \). Let \(\mathfrak{g} \) be the simple Lie algebra of type \(E_7 \) with associated Dynkin diagram

\[E_7 \]

In this case \(\omega = \omega_7 \) is the only fundamental weight satisfying \(\langle \omega, \theta^\vee \rangle = 1 \).

\[
\begin{array}{cccc}
\beta_1 = (2, 2, 3, 4, 3, 2, 1) & \beta_{10} = (1, 1, 2, 3, 2, 1, 1) & \beta_{19} = (1, 1, 1, 1, 1, 1, 1) \\
\beta_2 = (1, 2, 3, 4, 3, 2, 1) & \beta_{11} = (1, 1, 2, 2, 2, 1, 1) & \beta_{20} = (0, 1, 1, 1, 1, 1, 1) \\
\beta_3 = (1, 2, 2, 4, 3, 2, 1) & \beta_{12} = (1, 1, 2, 2, 1, 1) & \beta_{21} = (1, 0, 1, 1, 1, 1) \\
\beta_4 = (1, 2, 3, 3, 3, 2, 1) & \beta_{13} = (0, 1, 1, 2, 2, 1, 1) & \beta_{22} = (0, 0, 1, 1, 1, 1) \\
\beta_5 = (1, 1, 2, 3, 3, 2, 1) & \beta_{14} = (1, 1, 1, 2, 1, 1) & \beta_{23} = (0, 1, 0, 1, 1, 1) \\
\beta_6 = (1, 2, 2, 3, 2, 2, 1) & \beta_{15} = (1, 1, 2, 1, 1, 1) & \beta_{24} = (0, 0, 0, 1, 1, 1) \\
\beta_7 = (1, 2, 3, 2, 2, 1) & \beta_{16} = (0, 1, 1, 2, 1, 1) & \beta_{25} = (0, 0, 0, 0, 1, 1) \\
\beta_8 = (1, 2, 2, 2, 2, 1) & \beta_{17} = (1, 1, 1, 2, 1, 1) & \beta_{26} = (0, 0, 0, 0, 0, 1) \\
\beta_9 = (1, 1, 2, 2, 2, 2, 1) & \beta_{18} = (0, 1, 1, 2, 1, 1) & \beta_{27} = (0, 0, 0, 0, 0, 0) \\
\end{array}
\]

As in the \(E_8 \)-case the Hasse diagram has no \(k \)-chains. In addition there are only co-chains of cardinality at most 2, except for one with length 3 (see Appendix, Figure 5). As before the polytope is defined by the paths in the Hasse diagram. For \(m \in \mathbb{Z}_{\geq 0} \) we have:

\[P(\lambda) = P(m \omega) = \{ x \in \mathbb{R}_{\geq 0}^{27} | \sum_{\beta_j \in \mathbf{p}} x_j \leq m, \forall \mathbf{p} \in D_\lambda \}. \]

Because the polytope is defined by 77 non-redundant inequalities we will not state it explicitly.

Proposition 4.6.1. The set \(\mathbb{B}_\omega = \{ f^s v_\omega | s \in S(\omega) \} \) is an FFL basis of \(V(\omega) \).

Proof. The co-chains of the Hasse diagram give us immediately:

\[\mathbb{B}_\omega = \{ v_\omega, f_1 v_\omega, f_2 v_\omega, \ldots, f_{27} v_\omega, f_5 f_6 v_\omega, f_5 f_8 v_\omega, f_7 f_8 v_\omega, f_9 f_{10} v_\omega, f_8 f_{11} v_\omega, f_6 f_{11} v_\omega, f_{11} f_{12} v_\omega, f_8 f_{13} v_\omega, f_{10} f_{13} v_\omega, f_{12} f_{13} v_\omega, f_{13} f_{14} v_\omega, f_{11} f_{15} v_\omega, f_{13} f_{15} v_\omega, f_{14} f_{15} v_\omega, f_{15} f_{16} v_\omega, f_{13} f_{17} v_\omega, f_{10} f_{17} v_\omega, f_{13} f_{19} v_\omega, f_{16} f_{19} v_\omega, f_{18} f_{19} v_\omega, f_{13} f_{21} v_\omega, f_{16} f_{21} v_\omega, f_{18} f_{21} v_\omega, f_{20} f_{21} v_\omega, f_{21} f_{23} v_\omega, f_{22} f_{23} v_\omega, f_{13} f_{14} f_{15} v_\omega \}. \]

Note that there are 56 elements in \(\mathbb{B}_\omega \). By Corollary 3.1.5, we get that this is a spanning set of \(V(\lambda) \). By [Car05, p. 303] we have \(\dim V(\lambda) = 56 \) and therefore that \(\mathbb{B}_\omega \) is a basis. \(\square \)
4.7. Type F_4. Let g be the simple Lie algebra of type F_4 with associated Dynkin diagram

![Dynkin diagram for F_4]

The highest root is of the form $\theta = 2\alpha_1 + 3\alpha_2 + 4\alpha_4 + 2\alpha_4$. And we have $\theta^\vee = 2\alpha_1^\vee + 3\alpha_2^\vee + 2\alpha_4^\vee + \alpha_4^\vee$. So $\langle \omega, \theta^\vee \rangle = 1 \leftrightarrow \omega = \omega_4$, so we consider the case $\omega = \omega_4$. If we construct $H(F_4, \omega)$ as in Section 1 we get a 3-chain of length 2, but in this case we are able to solve this problem. Therefore we will change the order of the roots, such that we can draw a new diagram without any k-chains.

As usual we start with the set of roots Δ^+_ω:

$\beta_1 = (2, 3, 4, 2)$	$\beta_6 = (1, 2, 3, 1)$	$\beta_{11} = (0, 1, 2, 1)$
$\beta_2 = (1, 3, 4, 2)$	$\beta_7 = (1, 1, 2, 2)$	$\beta_{12} = (1, 1, 1, 1)$
$\beta_3 = (1, 2, 4, 2)$	$\beta_8 = (1, 2, 2, 1)$	$\beta_{13} = (0, 1, 1, 1)$
$\beta_4 = (1, 2, 3, 2)$	$\beta_9 = (0, 1, 2, 2)$	$\beta_{14} = (0, 0, 1, 1)$
$\beta_5 = (1, 2, 2, 2)$	$\beta_{10} = (1, 1, 2, 1)$	$\beta_{15} = (0, 0, 0, 1)$

Here we have $\beta_i > \beta_j \iff i > j$. But with this order we are not able to find relations, derived from differential operators (see Section 3), which include the rootvector f_4. To visualize this problem consider see (3.3). In order to fix that problem we adjust the order on the roots in this case as follows:

$\beta_1 < \beta_2 < \beta_3 < \beta_5 < \beta_4 < \beta_6 < \beta_7 < \cdots < \beta_{15}$.

So we just switched the positions of β_4 and β_5. Now we consider our Hasse diagram constructed as in Section 1 and the diagram we obtain by changing the order of the roots and by using differential operators corresponding to non-simple roots, see Figure 1.

The idea of this adjustment is that we split up the 3-chain by using the non-simple differential operators mentioned above. After this we still want to get as many roots as possible on each path. To do so we use three non-simple differential operators: $0120 = \alpha_2 + 2\alpha_3$, $0110 = \alpha_2 + \alpha_3$ and $0011 = \alpha_3 + \alpha_4$, where $(0, 1, 2, 0), (0, 1, 1, 0), (0, 0, 1, 1) \in \Delta_+$. In the adjusted diagram the directed edge labeled by \mathbb{N} from β_4 to β_5 also occurs. We cannot label this edge with a differential operator corresponding to a element of Δ^+_ω because there is no element satisfying this condition. We will use the following observation to explain the existence of this edge, for $a_0, b_0 \in \mathbb{C} \setminus \{0\}$ we have:

\[
\partial_{0120}^{n_3} \partial_3^{n_2} \partial_2^{n_1} f_1^{m+1} = \partial_{0120}^{n_3} (a_0 f_4^{n_2} f_2^{n_1-n_2} f_1^{m+1-n_1} + \text{smaller terms})
= b_0 f_5^{n_3} f_4^{n_2} f_2^{n_1-n_2-n_3} f_1^{m+1-n_1} + \text{smaller terms}.
\]

That means that we can extend the path containing β_1, β_2 and β_4 but not β_3 to a path containing also the root β_5. Furthermore the differential operators $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$ have no influence on β_5. That is the reason for the directed edge labeled by \mathbb{N} from β_5 to β_4. We note that the changed Hasse diagram gives us directly the inequalities of $P(\lambda)$, but in this case it does not describe in general the action of the differential operators.

If we now follow our standard procedure with the adjusted Hasse diagram the next step is to define the polytope associated to the set of Dyck paths D_λ and $m \in \mathbb{Z}_{\geq 0}$:

\[
P(\lambda) = P(m\omega) = \{x \in \mathbb{R}^{15}_{\geq 0} \mid \sum_{\beta_j \in p} x_j \leq m, \forall p \in D_\lambda\}.
\]
More explicitly: \(P(m\omega) \) is the set of all elements \(x \in \mathbb{R}^{15}_{\geq 0} \) such that the 12 inequalities, which can be found in the Appendix, Figure 5, are satisfied.

The set \(B_\omega = \{ f^s v_\omega \mid s \in S(\omega) \} \subset V(\omega) \) is given by:

\[
B_\omega = \{ v_\omega, f_1 v_\omega, f_2 v_\omega, \ldots, f_{15} v_\omega, f_3 f_5 v_\omega, f_4 f_6 v_\omega, f_5 f_6 v_\omega, f_6 f_7 v_\omega, f_7 f_8 v_\omega, f_6 f_9 v_\omega, f_8 f_9 v_\omega, f_9 f_{10} v_\omega, f_9 f_{12} v_\omega, f_{11} f_{12} v_\omega \}.
\]

Proposition 4.7.1. The set \(B_\omega = \{ f^s v_\omega \mid s \in S(\omega) \} \) is an FFL basis of \(V(\omega) \).

Proof. By Corollary 3.1.5 we conclude that \(B_\omega \) spans the vector space \(V(\omega) \). In addition we know by \([\text{Car05}, \text{p. 303}]\), that \(\dim V(\omega) = 26 = |B_\omega| \). Hence the set \(B_\omega \) is a basis. \(\square \)

Figure 1. \(H(F_4, \omega_4) \)

4.8. **Type \(G_2 \).** Let \(g \) be the simple Lie algebra of type \(G_2 \) with associated Dynkin diagram

\[
G_2 = \begin{array}{c}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5 \\
\beta_6 \\
\beta_7 \\
\beta_8 \\
\beta_9 \\
\beta_{10} \\
\beta_{11} \\
\beta_{12} \\
\beta_{13} \\
\beta_{14} \\
\beta_{15}
\end{array}
\]

For the highest root \(\theta = 3\alpha_1 + 2\alpha_2 \) we have \(\theta^\vee = \alpha_1^\vee + 2\alpha_2^\vee \). So we consider \(\omega = \omega_1 \). In this case the Hasse diagram has one 1-chain. We will rewrite \(H(G_2, \omega) \) into a diagram without any \(k \)-chains. Consider the following order on \(\Delta_+^* \):

\[
\beta_1 < \beta_2 < \beta_4 < \beta_5 < \beta_3,
\]

where

\[
\begin{array}{c}
\beta_1 = (3, 2) \\
\beta_2 = (3, 1) \\
\beta_3 = (2, 1) \\
\beta_4 = (1, 1) \\
\beta_5 = (1, 0)
\end{array}
\]

So we obtain the following diagrams:

\[
\begin{array}{c}
\beta_1 \xrightarrow{2} \beta_2 \xrightarrow{1} \beta_3 \xrightarrow{1} \beta_4 \xrightarrow{2} \beta_5 \\
\beta_1 \xrightarrow{11} \beta_3 \xrightarrow{21} \beta_5, \\
\beta_2 \xrightarrow{2} \beta_4 \xrightarrow{21} \beta_5,
\end{array}
\]
Very similar arguments as in the case of B_3, ω_1 show, that we can apply the results of section 3 to the rewritten diagram. We consider the polytope associated to C_{05}^3. We want to prove this statement by induction on $m \in \mathbb{Z}_{\geq 0}$:

$$P(m\omega) = \left\{ x \in \mathbb{R}^N_{\geq 0} \mid x_1 + x_2 + x_3 + x_5 \leq m, x_1 + x_3 + x_4 + x_5 \leq m \right\}.$$

By Section 3 the elements $v_\omega, f_1v_\omega, f_2v_\omega, f_3v_\omega, \ldots$ span $V(\omega)$ and with [Car05, p. 316] we know $\dim V(\omega) = 7$. From these observations we get immediately:

Proposition 4.8.1. The set $B_\omega = \{ f^s v_\omega \mid s \in S(\omega) \}$ is an FFL basis of $V(\omega)$.

Remark 4.8.2. Like in the case of (B_n, ω_1), in particular 4.2.2, we have to choose a different order to apply Section 2. We choose the order $\beta_1 < \beta_3 < \beta_4 < \beta_2 < \beta_5$.

5. Linear Independence

We refer to the notation of Section 1, especially Subsection 1.3. We want to investigate the connection between our polytope $P(\lambda)$ and the essential multi-exponents. Via this connection and assuming the results from Section 3 we want to prove that $\{ f^s v_\lambda \mid s \in S(\lambda) \}$ provides a FFL basis of $V(\lambda)$. Throughout the Section we assume the fixed ordering (1.11) on the vectors $f^p v_\lambda \in V(\lambda)$. Note that one can define essential monomials like in Subsection 1.3 for an arbitrary total order on Δ^v_{λ}. Hence for the following statements it is very important that we kept in 1.3 the total order introduced in Subsection 1.1.

Lemma 5.1.1. If $\{ f^s v_\lambda \mid s \in S(\lambda) \}$ is linear independent in $V(\lambda)$, then $S(\lambda) = \text{es}(V(\lambda))$.

Proof. Let $s \in \text{es}(V(\lambda)) = \{ p \in \mathbb{Z}^N_{\geq 0} \mid f^p v_\lambda \notin \text{span}\{ f^q v_\lambda \mid q < p \} \}$ and assume $s \notin S(\lambda)$. By 3.1.1 we can rewrite f^s such that

$$f^s v_\lambda = \sum_{t < s} c_t f^t v_\lambda, c_t \in \mathbb{C}$$

and we get immediately a contradiction, so $s \in S(\lambda)$. Now let $s \in S(\lambda)$ and $s \notin \text{es}(V(\lambda))$. Then $f^s v_\lambda \in \text{span}\{ f^q v_\lambda \mid q < s \}$ and so

$$f^s v_\lambda = \sum_{q < s} c_q f^q v_\lambda,$$

for some $c_q \in \mathbb{C}$. We rewrite each $f^q v_\lambda$ in terms of basis elements $f^t v_\lambda, t \in S(\lambda)$. Because of the linear independence all prefactors are zero, meaning that $s = 0$. But this is a contradiction to $s \notin \text{es}(V(\lambda))$.

Theorem 5.1.2. The elements $\{ f^s (v_{\lambda-\omega} \otimes v_\omega) \mid s \in S(\lambda) \} \subset V(\lambda - \omega) \otimes V(\omega)$ are linearly independent and $B_\lambda = \{ f^s v_\lambda \mid s \in S(\lambda) \}$ is a FFL basis of $V(\lambda)$.

Proof. We want to prove this statement by induction on $m \in \mathbb{Z}_{\geq 1}$. For $m = 1$ we saw in Section 4 that $B_\omega = \{ f^s v_\omega \mid s \in S(\omega) \}$ is a basis for $V(\omega)$ in each type. So let $m \in \mathbb{Z}_{\geq 2}$ be arbitrary and we assume that the claim holds for all $m' < m$. By induction the set $B_{\lambda-\omega} = \{ f^s v_{\lambda-\omega} \mid s \in S(\lambda-\omega) \}$ is a basis of $V(\lambda - \omega)$. So we have by Lemma 5.1.1

$$\text{es}(V(\lambda - \omega) = S(\lambda - \omega) \text{ and } \text{es}(V(\omega)) = S(\omega).$$
But then with [FFoL13, Prop. 1.11]:
\[\text{es}(V(\lambda - \omega) + \text{es}(V(\omega)) \subset \text{es}(V(\lambda - \omega) \odot V(\omega)) \]
and so we get the linearly independence of
\[\{ f^s(v_{\lambda - \omega} \otimes v_\omega) \mid s \in \text{es}(V(\lambda - \omega) + \text{es}(V(\omega)) \} \subset V(\lambda - \omega) \odot V(\omega) \]
With the equalities in (5.2) and Section 2 where we proved \(S(\lambda - \omega) + S(\omega) = S(\lambda) \),
we conclude that the set
\[\{ f^s(v_{\lambda - \omega} \otimes v_\omega) \mid s \in S(\lambda) \} \subset V(\lambda - \omega) \odot V(\omega) \]
is linearly independent. So we get \(\dim V(\lambda - \omega) \geq |S(\lambda)| \) and with the spanning property (3.1.5) we have \(|S(\lambda)| \geq \dim V(\lambda) \). Finally we get
\[|S(\lambda)| = \dim V(\lambda) \]
and that \(B_\lambda \) is a FFL basis of \(V(\lambda) \) as claimed. □

Remark 5.1.3. The basis \(B_\lambda \) is a monomial basis, so we get an induced FFL basis of \(V(\lambda) \).

Theorem 5.1.4. Let \(V(\lambda)^a \cong S(n^-)/I(\lambda) \). Then the ideal \(I(\lambda) \) is generated by
\[U(n^+) \circ \text{span}\{ f^{(\lambda, \beta') +1}_\beta \mid \beta \in \Delta_+ \} \]
as \(S(n^-) \) ideal.
In particular we have that \(I(\lambda) = S(n^-)(U(n^+) \circ \text{span}\{ f_\beta, f_\theta^{n+1} \mid \beta \in \Delta_+ \Delta_+^\lambda \}) \).

Proof. Let \(I \) be generated by \(U(n^+) \circ \text{span}\{ f^{(\lambda, \beta') +1}_\beta \mid \beta \in \Delta_+ \} \) as \(S(n^-) \) ideal.
By \(I v_\lambda = \{0\} \) we have \(I \subset I(\lambda) \), so there is a canonical projection:
\[\phi : S(n^-)/I \to S(n^-)/I(\lambda) \cong V(\lambda)^a \]
Let \(f^t = 0 \) in \(S(n^-)/I(\lambda) \). Because we have a basis of \(V(\lambda)^a \) we can rewrite \(f^t \) as follows:
\[(5.3) \quad f^t = \sum_{s \in S(\lambda)} c_s f^s \in S(n^-)/I(\lambda) \]
for some \(c_s \in \mathbb{C} \). In the proof of (3.1.4) we already saw that the relations obtained by \(I \) are sufficient to achieve (5.3). So \(0 = f^t = \sum_{s \in S(\lambda)} c_s f^s \in S(n^-)/I \). Therefore \(\phi \) is injective.
In the proof of (3.1.1) we do not need powers \(f_\beta \) for \(\beta \in \Delta_+^\lambda \setminus \{\theta\} \). □
In this section we want to present the Hasse diagrams $H(E_6, \omega_6)$ and $H(E_7, \omega_7)$ for a better understanding of our work. In addition to convey the ordering of the roots for the classical types A_n, B_n and D_n we give in Figure 2 the complete Hasse diagram of sl_4 and in Figure 3 a concrete example of the Hasse diagram in the D_n, ω_n-case, for $n = 5, 6$. We remark that the shape of the Hasse diagram $H(so_{2n}, \omega_{n-1})$ and $H(so_{2n}, \omega_n)$ is equal to the shape of $H(so_{2(n-1)+1}, \omega_{n-1})$. So Figure 3 shows also the shape of the Hasse diagrams $H(so_{10}, \omega_4), H(so_{10}, \omega_5)$ and $H(so_{12}, \omega_5), H(so_{12}, \omega_6)$. Furthermore we state the explicit polytopes for E_6 (Table 4), F_4 (Table 5) and for the special cases: B_4, ω_4 (D_5, ω_4) and D_5 ω_5 (Table 3).

\textbf{Figure 2.} Complete Hasse diagram of $g = sl_5$.

\textbf{Figure 3.} $H(so_9, \omega_4), H(so_{11}, \omega_5)$
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_9 + x_{10} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_8 + x_9 + x_{10} \leq m \]
\[x_1 + x_2 + x_4 + x_5 + x_7 + x_9 + x_{10} \leq m \]
\[x_1 + x_2 + x_4 + x_5 + x_8 + x_9 + x_{10} \leq m \]
\[x_1 + x_2 + x_4 + x_6 + x_8 + x_9 + x_{10} \leq m \]

Table 3. Polytope \(P(m_{\omega_4}) \) corresponding to \(g = \mathfrak{so}_9 \) and \(P(m_{\omega_4}), P(m_{\omega_5}) \) corresponding to \(g = \mathfrak{so}_{10} \).

\[
\begin{array}{c}
\beta_1 \overset{2}{\rightarrow} \beta_2 \overset{4}{\rightarrow} \beta_3 \\
\beta_4 \downarrow \beta_5 \\
\beta_6 \beta_7 \\
\beta_8 \beta_9 \\
\beta_{10} \beta_{11} \\
\beta_{12} \beta_{13} \\
\beta_{14} \beta_{15} \overset{4}{\rightarrow} \beta_{16}
\end{array}
\]

Figure 4. \(H(\mathfrak{E}_6, \omega_6) \)

\[x_1 + x_2 + x_3 + x_4 + x_6 + x_8 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_6 + x_8 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_7 + x_8 + x_{10} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_7 + x_8 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_7 + x_9 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_7 + x_9 + x_{10} + x_{12} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_4 + x_7 + x_9 + x_{11} + x_{12} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_8 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_8 + x_{10} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_9 + x_{10} + x_{13} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_9 + x_{10} + x_{12} + x_{14} + x_{15} + x_{16} \leq m \]
\[x_1 + x_2 + x_3 + x_5 + x_7 + x_9 + x_{11} + x_{12} + x_{14} + x_{15} + x_{16} \leq m \]

Table 4. Polytope \(P(m) \) corresponding to \(\mathfrak{E}_6 \)
Figure 5. $H(E_7, \omega_7)$

\begin{align*}
\beta_1 &\rightarrow \beta_2 \rightarrow \beta_3 \rightarrow \beta_4 \\
&\downarrow 2 \downarrow 5 \\
&\beta_5 \beta_6 \\
&\downarrow 3 \downarrow 8 \\
&\beta_7 \beta_8 \\
&\downarrow 4 \downarrow 12 \\
&\beta_9 \beta_{10} \\
&\downarrow 3 \downarrow 4 \downarrow 4 \\
&\beta_11 \beta_12 \\
&\downarrow 1 \downarrow 3 \downarrow 5 \\
&\beta_{13} \beta_{14} \beta_{15} \\
&\downarrow 6 \downarrow 15 \downarrow 3 \\
&\beta_{16} \beta_{17} \\
&\downarrow 5 \downarrow 4 \\
&\beta_{18} \beta_{19} \\
&\downarrow 4 \downarrow 12 \\
&\beta_{20} \beta_{21} \\
&\downarrow 3 \downarrow 1 \\
&\beta_{23} \beta_{22} \\
&\downarrow 2 \downarrow 3 \\
&\beta_{27} \beta_{26} \beta_{25} \beta_{24}
\end{align*}

Table 5. Polytope $P(m\omega_4)$ corresponding to F_4
ACKNOWLEDGMENTS

We are grateful to Ghislain Fourier, Deniz Kus and Peter Littelmann for very inspiring discussions. For many calculations on our polytopes we used the program LattE. We thank the developers.

The work of T. B. was funded by the DFG Priority Program SPP 1388 ”Representation Theory”, C.D. was partially funded by this program.

REFERENCES

[ABS11] F. Ardila, T. Bliem, and D. Salazar. Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes. Journal of Combinatorial Theory, Series A, 118(8):2454 – 2462, 2011.
[Car05] R. W. Carter. Lie algebras of finite and affine type, volume 96 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2005.
[CF13] M. Cherednik and E. Feigin. Extremal part of the PBW-filtration and E-polynomials. arXiv:1306.3146, 2013.
[CIL14] G. Cerulli Irelli and M. Lanini. Degenerate flag varieties of type A and C are Schubert varieties. arXiv:1403.2889, 2014.
[Fei11] Evgeny Feigin. Degenerate flag varieties and the median Genocchi numbers. Math. Res. Lett., 18(6):1163–1178, 2011.
[Fei12] Evgeny Feigin. G_a^M-degeneration of flag varieties. Selecta Math. (N.S.), 18(3):513–537, 2012.
[FFoL11] E. Feigin, M. Finkelberg, and P. Littelmann. Symplectic degenerate flag varieties. arXiv:1106.1309, 2011.
[FFoL11a] E. Feigin, G. Fourier, and P. Littelmann. PBW filtration and bases for irreducible modules in type A_n. Transform. Groups, 16(1):71–89, 2011.
[FFoL11b] E. Feigin, G. Fourier, and P. Littelmann. PBW filtration and bases for symplectic Lie algebras. Int. Math. Res. Not. IMRN, 1(24):5760–5784, 2011.
[Fou14] Ghislain Fourier. New homogeneous ideals for current algebras: filtrations, fusion products and Pieri rules. arXiv:1403.4758, 2014.
[GL97] N. Gonciulea and V. Lakshmibai. Schubert varieties, toric varieties, and ladder determinantal varieties. Ann. Inst. Fourier (Grenoble), 47(4):1013–1064, 1997.
[Gor11] A. Gorinitsky. Essential signatures and canonical bases in irreducible representations of the group G_2. Diploma thesis, 2011, 2011.
[Hag13] Chuck Hague. Degenerate coordinate rings of flag varieties and Frobenius splitting. arXiv:1307.7634, 2013.
[HK13] M. Harada and K. Kaveh. Integrable systems, toric degenerations and Okounkov bodies. arXiv:1205.5249, 2013.
[Hum72] James E. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, New York, 1972. Graduate Texts in Mathematics, Vol. 9.
[KK12] K. Kaveh and A. G. Khovanskii. Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2), 176(2):925–978, 2012.
[KM05] M. Kogan and E. Miller. Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes. Adv. Math., 193(1):1–17, 2005.
[Kus13a] Deniz Kus. Kirillov-Reshetikhin crystals, energy function and the combinatorial R-matrix. arXiv:1309.6522, 2013.
[Kus13b] Deniz Kus. Realization of affine type A Kirillov-Reshetikhin crystals via polytopes. J. Combin. Theory Ser. A, 120(8):2093–2117, 2013.