Extremal decomposition problems in the Euclidean space

K.A. Gulyaeva1, S.I. Kalmykov2, E.G. Prilepkina3

Abstract

Composition principles for reduced moduli are extended to the case of domains in the n-dimensional Euclidean space, $n > 2$. As a consequence analogues of extremal decomposition theorems of Kufarev, Dubinin and Kirillova in the planer case are obtained.

Subject Classification: 31B99

Keywords: reduced modulus, Robin function, Neumann function, nonoverlapping domain, extremal decomposition problem.

1 Introduction and notations

Extremal decomposition problems have a rich history and go back to M.A. Lavrentiev’s inequality for the product of conformal radii of nonoverlapping domains. There exist two methods of their study: the extremal-metric method and the capacitive method. The first one has been systematically developed in papers by G.V. Kuz’mina, E.G. Emel’yanov, A.Yu. Solynin, A. Vasil’ev, and Ch. Pommerenke \cite{9 14 6 11}. The second approach is developed mainly in works of V.N. Dubinin and his students \cite{4 5 2 3}. In particular, a series of well-known results about extremal decomposition follows one way from composition principles for generalized reduced moduli (see \cite{1} p. 56 and \cite{12}). In the present paper we extend the mentioned composition principles to the case of spatial domains. As a consequence we get theorem about extremal decomposition for the harmonic radius \cite{7} obtained earlier in \cite{5}.

Throughout the paper, \mathbb{R}^n denotes the n-dimensional Euclidean space consisting of points $x = (x_1, \ldots, x_n)$, $n \geq 3$, and $|x| = \sqrt{x_1^2 + \cdots + x_n^2}$ is the length of a vector $x \in \mathbb{R}^n$. We introduce the following notations:

\begin{align*}
B(a, r) & = \{x \in \mathbb{R}^n : |a - x| < r\}, \\
S(a, r) & = \{x \in \mathbb{R}^n : |a - x| = r\}, \quad a \in \mathbb{R}^n;
\end{align*}

1Far Eastern Federal University, Vladivostok, Russia, kgulyayeva@gmail.com
2Far Eastern Federal University, Vladivostok, Russia, Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, sergeykalmykov@inbox.ru
3Far Eastern Federal University, Vladivostok, Russia, Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, prilelena@yandex.ru
\[\omega_{n-1} = 2\pi^{n/2}/\Gamma(n/2) \] is the area of the unit sphere \(S(0, 1) \);
\[\lambda_n = ((n-2)\omega_{n-1})^{-1}. \]

\(D \) is a bounded domain in \(\mathbb{R}^n \), \(\Gamma \) is a closed subset of \(\partial D \). The pair \((D, \Gamma)\) is admissible if there exists the Robin function, \(g_\Gamma(z, z_0, D) \) harmonic in \(D \setminus \{z_0\} \), continuous in \(\overline{D} \setminus \{z_0\} \) and

\[
\frac{\partial g_\Gamma}{\partial n} = 0 \text{ on } (\partial D) \setminus \Gamma, \tag{1}
\]
\[
g_\Gamma = 0 \text{ on } \Gamma, \tag{2}
\]

and in a neighborhood of \(z_0 \) there is an expansion

\[
g_\Gamma(z, z_0, D) = \lambda_n \left(|z - z_0|^{2-n} - r(D, z_0, \Gamma)^{2-n} + o(1) \right), \quad z \to z_0, \tag{3}
\]

where \(\partial/\partial n \) means the inward normal derivative on the boundary. In what follows all such pairs are assumed to be admissible.

In the case \(\Gamma = \emptyset \) we change the condition (1) by the condition

\[
\frac{\partial g_\Gamma}{\partial n} = \frac{1}{\mu_{n-1}(\partial D)} \text{ on } \partial D,
\]

where \(\mu_{n-1}(\partial D) \) is the area of boundary.

By analogy with the definition of the Robin radius for plain domains from the paper [3] we will call the constant \(r(D, z_0, \Gamma) \) the Robin radius of the domain \(D \) and the set \(\Gamma \). Note that in the case of \(\Gamma = \partial D \) we get the harmonic radius [7, 10, 5].

Let \(\Delta = \{\delta_k\}_k^m \) be a collection of real numbers and \(Z = \{z_k\}_k^m \) be points of the domain \(D \). For \(\Gamma = \emptyset \) we additionally require

\[
\sum_{k=1}^m \delta_k = 0.
\]

Define the potential function for the domain \(D \), the set \(\Gamma \), the collection of points \(Z \), and numbers \(\Delta \):

\[
u(z) = u(z; Z, D, \Gamma, \Delta) = \sum_{k=1}^m \delta_k g_\Gamma(z, z_k, D).
\]

Note that for \(\Gamma = \emptyset \) the function \(g_\Gamma(z, z_k, D) \) is defined up to an additive constant. Nevertheless, the function \(u(z) \) is defined uniquely and characterized by the condition

\[
\frac{\partial u}{\partial n} = 0 \text{ on } \partial D.
\]
Extremal decomposition problems in the Euclidean space

It is clear from the definition of the potential function that in a neighborhood of z_k we have

$$u(z) = \delta_k \lambda_n |z - z_k|^{2-n} + a_k + o(1), \ k = 1, \ldots, m,$$

where

$$a_k = -\delta_k \lambda_n r(D, z_k, \Gamma)^{2-n} + \sum_{l \neq k} \delta_l g_\Gamma(z_l, z_k, D).$$

Now if we introduce the following notation

$$g_\Gamma(z_k, z, D) = -\lambda_n r(D, z_k, \Gamma)^{2-n},$$

then the constant in the expansion of the potential function in a neighborhood of z_k is

$$a_k = \sum_{l = 1}^{m} \delta_l g_\Gamma(z_l, z_k, D). \ (4)$$

A function $v(z)$ is admissible for $D, Z, \Delta, \text{and} \Gamma$ if $v(z) \in \text{Lip}$ in a neighborhood of each point of D except maybe finitely many such points, continuous in $D \setminus \bigcup_{k=1}^{m} \{z_k\}$, $v(z) = 0$ on Γ, and in neighborhood of z_k there is an expansion

$$v(z) = \delta_k \lambda_n |z - z_k|^{2-n} + b_k + o(1), \ z \to z_k. \ (5)$$

The Dirichlet integral is the following

$$I(f, D) = \int_D |\nabla f|^2 \, d\mu,$$

where $d\mu = dx_1 \ldots dx_n$.

2 Main results

Lemma 2.1 The asymptotic formula

$$I(u, D_r) = \left(\sum_{k=1}^{m} \delta_k^2 \right) \lambda_n r^{2-n} + \sum_{k=1}^{m} \delta_k a_k + o(1), \ r \to 0,$$

is true, where u is the potential function and $a_k, \ k = 1, \ldots, m$ are defined in H and $D_r = D \setminus \bigcup_{k=1}^{m} B(z_k, r)$.

Proof. The Green’s identity

$$\int_V |\nabla u|^2 \, d\mu = -\int_{\partial V} u \frac{\partial u}{\partial n} \, ds.$$
gives
\[I(u, D_r) = -\int_{\partial D_r} u \frac{\partial u}{\partial n} ds = -\sum_{k=1}^{m} \int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds. \] \tag{6}

The second equality in (6) holds because \(u \frac{\partial u}{\partial n} = 0 \) on \(\partial D \). Note that
\[u = \delta_k \lambda_n r^{2-n} + a_k + o(1), \quad z \to z_k \]
in a neighbourhood of \(z_k \).

We calculate the integral \(\int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds \). Let \(u(z) = h(z) + g(z) \), where \(h(z) = \lambda_n \delta_k |z - z_k|^{2-n} \) and \(g(z) \) is a harmonic function. Note that \(g(z_k) = a_k \).

For \(|z - z_k| = r \) we have the following correlations
\[r^{n-1} u \frac{\partial u}{\partial n} = r^{n-1} \left(h \frac{\partial h}{\partial n} + h \frac{\partial g}{\partial n} + g \frac{\partial h}{\partial n} + g \frac{\partial g}{\partial n} \right) \]
\[= (2 - n) \lambda_n \delta_k r^{2-n} + r \lambda_n \delta_k \frac{\partial g}{\partial n} + (2 - n) g \lambda_n \delta_k + g \frac{\partial g}{\partial n} r^{n-1} \]
\[= -\frac{\lambda_n \delta_k^2}{\omega_{n-1}} r^{2-n} - g(z_k) \delta_k r^{n-1} + o(1), r \to 0. \]

Therefore
\[\int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds = \int_{S(0, 1)} u \frac{\partial u}{\partial n} r^{n-1} ds \]
\[= -\lambda_n \delta_k^2 r^{2-n} - \delta_k a_k + o(1), \quad r \to 0. \]

Substituting it in (6) we get the lemma. \(\square \)

Lemma 2.2 For an admissible function \(v \) and the potential function \(u \) we have
\[I(v - u, D_r) = I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{m} \delta_k (b_k - a_k) + o(1), \quad r \to 0. \]

Proof. One may observe that
\[
I(v - u, D_r) = \int_{D_r} (|\nabla v|^2 + |\nabla u|^2 - 2\nabla u \cdot \nabla v) \, d\mu \\
= \int_{D_r} (|\nabla v|^2 - |\nabla u|^2) \, d\mu + 2 \int_{\partial D_r} (v - u) \frac{\partial u}{\partial n} \, ds \\
= I(v, D_r) - I(u, D_r) + 2 \sum_{k=1}^{m} \int_{S(z_k, r)} (v - u) \frac{\partial u}{\partial n} \, ds \\
= I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{m} \delta_k (b_k - a_k) + o(1), \quad r \to 0.
\]
Here we calculated the integral \(\int_{S(\mathbf{z}, r)} (v - u) \frac{\partial u}{\partial n} \) a similar way as in the proof of lemma 2.1 and used the Green’s identity
\[
\int_{D_r} (\nabla u \cdot \nabla v) d\mu = - \int_{\partial D_r} v \frac{\partial u}{\partial n} ds,
\]
where \(n \) is the inner normal vector. □

The quantity
\[
\sum_{k=1}^{m} \delta_k a_k = \sum_{k=1}^{m} \sum_{l=1}^{m} \delta_k \delta_l g_{\Gamma}(z_l, z_k, D)
\]
we call the reduced modulus and denote it by \(M(D, \Gamma, Z, \Delta) \). According to lemma 2.1
\[
M(D, \Gamma, Z, \Delta) = \lim_{r \to 0} \left(I(u, D_r) - \left(\sum_{k=1}^{n} \delta_k^2 \right) \lambda_n r^{2-n} \right).
\]

Theorem 2.3 Let sets \(D, \Gamma, \) collections \(Z = \{z_k\}_{k=1}^m, \Delta = \{\delta_k\}_{k=1}^m, \) be as in the definition of the reduced modulus \(M = M(D, \Gamma, Z, \Delta) \), \(u(z) \) be the potential function for \(D, \Gamma, Z, \Delta \), and let \(D_i \subset D \) be pairwise non-overlapping subdomains of \(D, \Gamma_i, Z_i = \{z_{ij}\}_{j=1}^{n_i}, \Delta_i = \{\delta_{ij}\}_{j=1}^{n_i}, \) be from the definition of the reduced moduli \(M_i = M(B_i, \Gamma_i, Z_i, \Delta_i) \), \(u_i(z) \) be the potential function for \(D_i, \Gamma_i, Z_i, \Delta_i, i = 1, ..., p \). Assume that the following conditions are fulfilled:
1) \((D \cap \partial D_i) \subset \Gamma_i, i = 1, ..., p;\)
2) \(\Gamma \subset (\bigcup_{i=1}^{p} \Gamma_i) \bigcup \left[\mathbb{R}^n \setminus \left(\bigcup_{i=1}^{p} \overline{D_i} \right) \right]; \)
3) \(Z = \bigcup_{i=1}^{p} Z_i, \) that is each point \(z_k \in Z \) coincides with some point \(z_{ij} \in Z_i \) for \(k = k(i, j) \) and vice versa;
4) \(\delta_k = \delta_{ij} \) for \(k = k(i, j) \).
Then the inequality
\[
M \geq \sum_{i=1}^{p} M_i + \sum_{i=1}^{p} I(u - u_i, D_i) \geq \sum_{i=1}^{p} M_i
\]
holds.

Proof. Consider the function
\[
v(z) = \begin{cases} u_i(z), & z \in D_i, \\ 0, & z \in D \setminus (\bigcup_{i=1}^{p} D_i). \end{cases}
\]
The condition 1) guarantees that the function \(v(z) \) is continuous in \(\overline{D} \setminus \bigcup_{k=1}^{m} \{z_k\} \). From the conditions 2) and 3) it follows that \(v(z) = 0 \) for \(z \in \Gamma \) and in a neighbourhood of \(z_k, k = 1, ..., m, \) there is the expansion (5). Applying lemma 2.2 we get
\[
I(v - u, D) = I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{p} \delta_k (b_k - a_k) + o(1), \quad r \to 0,
\]
(7)
here a_k and b_k from (4) and (5) respectively. By lemma 2.1

$$I(v, D_r) = \lambda_n r^{2-n} \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij}^2 + \sum_{i=1}^{p} M_i + o(1) = \lambda_n r^{2-n} \sum_{k=1}^{m} \delta_k^2 + \sum_{i=1}^{p} M_i + o(1),$$

$$I(u, D_r) = \lambda_n r^{2-n} \sum_{k=1}^{m} \delta_k^2 + M + o(1), \quad r \to 0,$$

taking into account 3), we have

$$\sum_{k=1}^{m} \delta_k (b_k - a_k) = \sum_{i=1}^{p} M_i - M.$$

Substituting the obtained correlations in (7), we see that the inequality

$$\sum_{i=1}^{p} I(u - u_i, D_i) \leq I(v - u, D) = M - \sum_{i=1}^{p} M_i + o(1), \quad r \to 0,$$

is true. Theorem is proved. □

Theorem 2.4 Let sets D, Γ, collections $Z = \{z_k\}_{k=1}^{m}$, $\Delta = \{\delta_k\}_{k=1}^{m}$, be as in the definition of the reduced modulus $M := M(D, \Gamma, Z, \Delta)$, $u(z)$ be the potential function for D, Γ, Z, Δ, and let $D_i \subset D, i = 1, \ldots, p$, be pairwise non-overlapping domains, $\Gamma_i, Z_i = \{z_{ij}\}_{j=1}^{n_i}, \Delta_i = \{\delta_{ij}\}_{j=1}^{n_i}$, be from the definition of the reduced moduli $M_i = M(D_i, \Gamma_i, Z_i, \Delta_i)$, $u_i(z)$ be the potential function for $D_i, \Gamma_i, Z_i, \Delta_i, i = 1, \ldots, p$. Assume that $\Gamma_i \subset \Gamma, i = 1, \ldots, p$, $Z = \bigcup_{i=1}^{m} Z_i$, (that is each point $z_k \in Z$ coincides with some point $z_{ij} \in Z_i$ for $k = k(i, j)$ and vice versa), $\delta_k = \delta_{ij}$. Then the inequality

$$\sum_{i=1}^{p} M_i \geq M + \sum_{i=1}^{p} I(u - u_i, D_i) \geq M$$

holds.

Proof. The function u is admissible for $D_i, i = 1, \ldots, p$. Let b_k be constants from the expansion of the function u in a neighbourhood of z_k, $b_{ij} = b_k$ if $k = k(i, j)$. Applying lemmata 2.1 and 2.2 with the potential functions u_k
Extremal decomposition problems in the Euclidean space

for \(D_k \) we get

\[
\sum_{i=1}^{p} \sum_{j=1}^{n_i} (\delta_{ij}) r^{2-n} \lambda_n + \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} a_{ij} + o(1) = \sum_{i=1}^{p} I(u_i, (D_i)_r) =
\]

\[
= \sum_{i=1}^{p} \left(I(u, (D_i)_r) - 2 \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij}) - I(u - u_i, (D_i)_r) \right) + o(1)
\]

\[
\leq I(u, D_r) - \sum_{i=1}^{p} I(u - u_i, (D_i)_r) - 2 \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij}) + o(1)
\]

\[
= \sum_{i=1}^{p} \sum_{j=1}^{n_i} (\delta_{ij}) r^{2-n} \lambda_n + \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} b_{ij} - 2 \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij})
\]

\[
- \sum_{i=1}^{p} I(u - u_i, (D_i)_r) + o(1), \ r \to 0.
\]

It implies that

\[
\sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} b_{ij} \leq \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} a_{ij} - \sum_{i=1}^{p} I(u - u_i, D_i)
\]

or equivalently

\[
\sum_{i=1}^{p} I(u - u_i, D_i) + M(D, \Gamma, Z, \Delta) \leq \sum_{i=1}^{p} M(D_i, \Gamma_i, Z_i, \Delta_i).
\]

Here we used the fact that the function \(u - u_i \) has no singularity in \(D_i \). □

Denote by \(r(D_l, x_l) = r(D_l, x_l, \partial D) \) the harmonic radius. Directly from theorem 2.3 we get theorem 2 of the paper [5]

Corollary 2.5 For any non-overlapping domains \(D_l \subset \mathbb{R}^n, n \geq 3 \), points \(x_l \in D_l \) and real numbers \(\delta_l, l = 1, \ldots, m \) the inequality

\[
- \sum_{l=1}^{m} \delta_l^2 r(D_l, x_l)^{2-n} \leq \sum_{l=1}^{m} \sum_{p=1 \ (p \neq l)}^{m} \delta_l \delta_p |x_l - x_p|^{2-n}
\]

holds true.

Proof. The Green’s function of the ball \(B(0, \rho) \) is

\[
\lambda_n \left(|x - x_0|^{2-n} - \frac{|x_0||x|}{\rho} - \frac{\rho x_0}{|x_0|} \right)^{2-n}.
\]
Denote by $D_l(\rho)$ the intersection $D_l \cap B(0, \rho)$. By theorem 2.3

$$M(\rho) \geq \sum_{l=1}^{m} M_l(\rho),$$

where $M(\rho)$ is the modulus of the ball $B(0, \rho)$, the collections $\{x_l\}_{l=1}^{m}$, $\Delta = \{\delta_l\}_{l=1}^{m}$, and $\Gamma = \partial B$,

$$M_l(\rho) = -\delta_l^2 r(D_l(\rho), x_l)^{2-n} \lambda_n.$$

It is sufficient to take a limit as $\rho \to \infty$. □

Theorems 2.3 and 2.4 imply for $p = 1$ monotonicity of the quadratic form

$$\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D)$$

under extension of a domain. Following [2] we will say that a domain \tilde{D} is obtained by extending a domain D across a part of its boundary $\gamma \subset \partial D$ if $D \subset \tilde{D}$ and $(\partial D) \cap \tilde{D}$ lies in γ.

Corollary 2.6 If \tilde{D} is obtained by extending D across Γ, $\tilde{\Gamma} \subset (\Gamma \cup (\mathbb{R}^n \setminus \overline{D}))$, then for any real numbers δ_l and points $z_l \in D$

$$\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\tilde{\Gamma}}(z_l, z_p, \tilde{D}) \geq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D) + I(u - \tilde{u}, D)$$

$$\geq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D).$$

If \tilde{D} is obtained by extending D across the part of $(\partial D) \setminus \Gamma$, $\tilde{\Gamma} = \Gamma$, then

$$\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\tilde{\Gamma}}(z_l, z_p, \tilde{D}) \leq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D) - I(u - \tilde{u}, D)$$

$$\leq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D),$$

here u and \tilde{u} are the potential functions for D, Γ, $Z = \{z_l\}_{l=1}^{m}$, $\Delta = \{\delta_l\}_{l=1}^{m}$ and \tilde{D}, $\tilde{\Gamma}$, $\tilde{Z} = \{z_l\}_{l=1}^{m}$, $\tilde{\Delta} = \{\delta_l\}_{l=1}^{m}$, respectively.

In [3] the notion of the Robin radius

$$r(D, z_0, \Gamma) = \exp \lim_{z \to z_0} (g_D(z, z_0, \Gamma) + \log |z - z_0|)$$
Extremal decomposition problems in the Euclidean space

was introduced. This quantity generalized the notion of the conformal radius. An analogue of Kufarev’s theorem (see [8]) for non-overlapping domains \(D_1, D_2\) lying in the unit disk \(U\) under the condition \((\partial D_k \cap U) \subset \Gamma_k \subset \partial D_k, a_k \in D_k, k = 1, 2\) is the inequality

\[
 r(D_1, a_1, \Gamma_1) r(D_2, a_2, \Gamma_2) \leq |a_2 - a_1|^2 \left[1 - \frac{|a_2 - a_1|^2}{1 - |a_1 a_2|} \right]^{-1}.
\]

By setting in theorem [2.3] \(p = 2, \Gamma = \emptyset\), we obtain in \(\mathbb{R}^n\) the following inequality.

Corollary 2.7 Let \(D_1\) and \(D_2\) be non-overlapping and lie in the ball \(U = B(0, 1)\), \(a_k \in D_k, (\partial D_k \cap U) \subset \Gamma_k \subset \partial D_k, k = 1, 2\). Then

\[
 -\lambda_n r(D_1, a_1, \Gamma_1)^2 - n - \lambda_n r(D_2, a_2, \Gamma_2)^2 - n \leq M(U, \emptyset, \{a_1, a_2\}, \{1, -1\}). (8)
\]

To calculate \(M(U, \emptyset, \{a_1, a_2\}, \{1, -1\})\) we need to know the Neumann function of the unit ball. Note that it is a quite complicated problem in \(\mathbb{R}^n\). In particular, for \(n = 3\) (see [13])

\[
g_{\emptyset}(x, y, U) = \frac{1}{4\pi} \left(\frac{1}{|x - y|} + \frac{|y|}{|x||y|^2 - y|} - \log \left| 1 - (x, y) + \frac{|x||y|^2 - y|}{|y|} \right| \right).
\]

In [13] there is an analytic view of \(g_{\emptyset}(D, x, y)\) for \(n = 4, 5\). So, for \(n = 3\) the inequality (8) has the following form

\[
 - r(D_1, a_1, \Gamma_1)^{-1} - r(D_2, a_2, \Gamma_2)^{-1} \leq -\frac{2}{|a_1 - a_2|} - \frac{2|a_2|}{|a_1|^2|a_2|^2 - a_2} \\
 + 2 \log \left| 1 - (a_1, a_2) + \frac{|a_1|^2 - a_2}{|a_2|} \right| + \frac{1}{1 - |a_1|^2} + \frac{1}{1 - |a_2|^2} - \log(4(1 - |a_1|^2)(1 - |a_2|^2)).
\]

Acknowledgements. This work was supported by the Russian Science Foundation under grant 14-11-00022.

References

[1] V.N. Dubinin, *Condenser capacities and symmetrization in geometric function theory*, Birkhäuser/Springer, Basel, 2014.

[2] V.N. Dubinin and N.V. Eyrikh, Some applications of generalized condensers in the theory of analytic functions, *Journal of Mathematical Sciences*, 133(6) (2006), 1634-1647.
[3] V.N. Dubinin and D.A. Kirillova, On extremal decomposition problems, *Journal of Mathematical Sciences*, **157**(4) (2009), 573-583.

[4] V.N. Dubinin and L.V. Kovalev, The reduced module of the complex sphere, *Journal of Mathematical Sciences*, **105**(4) (2001), 2165-2179.

[5] V.N. Dubinin and E.G. Prilepkina, Extremal decomposition of spatial domains, *Journal of Mathematical Sciences*, **105**(4) (2001), 2180-2189.

[6] E.G. Emel’yanov, On problems on the extremal decomposition, *Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta Imeni V. A. Steklova*, **154** (1986), 76-89.

[7] J. Hersch, Transplantation harmonique, transplantation par modules, et théoremes isoperimetriques, *Commentarii Mathematici Helvetici*, **44** (1969), 354-366.

[8] P.P. Kufarev, On the question of conformal mappings of complementary domains, *Dokl. Akad. Nauk SSSR*, **73** (1950), 881-884.

[9] G.V. Kuz’mina, Methods of geometric function theory. I, II, *St. Petersburg Mathematical Journal*, **9**(3) (1998), 455-507; **9**(5) (1998), 889-930.

[10] B.E. Levitskii, The reduced p-module and the inner p-harmonic radius, *Dokl. Akad. Nauk SSSR*, **316** (1991), 812-815.

[11] Ch. Pommerenke and A. Vasil’ev, Angular derivatives of bounded univalent functions and extremal partitions of the unit disk, *Pacific J. Math.*, **206**(2) (2002), 425-450.

[12] E.G. Prilepkina, On composition principles for reduced moduli, *Siberian Mathematical Journal*, **52**(6) (2011), 1079-1091.

[13] M.A. Sadybekov and B.T. Torebek and B.Kh. Turmetov, Representation of Green’s function of the Neumann problem for a multi-dimensional ball, *Complex Variables and Elliptic Equations*, http://dx.doi.org/10.1080/17476933.2015.1064402

[14] A.Yu. Solynin, Modules and extremal metric problems, *St. Petersburg Mathematical Journal*, **11**(1) (2000), 165.