Summer 7-21-2021

Face-to-Face Nursing Promotion of Cardiac Rehabilitation

Marika Whitaker
University of St. Augustine for Health Sciences, m.whitaker@usa.edu

DOI: https://doi.org/10.46409/sr.JAIJ7944

This work is licensed under a Creative Commons Attribution 4.0 License.

Follow this and additional works at: https://soar.usa.edu/scholprojects

Part of the Cardiology Commons, Cardiovascular Diseases Commons, and the Nursing Commons

Recommended Citation
Whitaker, M. (2021). Face-to-Face Nursing Promotion of Cardiac Rehabilitation. [Doctoral project, University of St Augustine for Health Sciences]. SOAR @ USA: Student Scholarly Projects Collection. https://doi.org/10.46409/sr.JAIJ7944

This Scholarly Project is brought to you for free and open access by the Student Research at SOAR @ USA. It has been accepted for inclusion in Student Scholarly Projects by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu, erobinson@usa.edu.
Summer 7-21-2021

Face-to-Face Nursing Promotion of Cardiac Rehabilitation

Marika Whitaker

Follow this and additional works at: https://soar.usa.edu/scholprojects

Part of the [Cardiovascular Diseases Commons](https://soar.usa.edu/scholprojects), and the [Nursing Commons](https://soar.usa.edu/scholprojects)
Face-to-Face Nursing Promotion of Cardiac Rehabilitation

Marika Whitaker MSN, MHA, RN

School of Nursing, University of St. Augustine for Health Sciences

This Manuscript Partially Fulfills the Requirements for the
Doctor of Nursing Practice Program and is Approved by:

Camille Payne, Ph.D., RN

Cathy Stankiewicz, DNP, RN, CPHQ

Approved: July 27, 2021
Abstract

Practice Problem: The burden of cardiovascular disease is rising at global and national levels, and cardiac rehabilitation is recognized as one of the most beneficial and cost-effective strategies to manage it. One significant problem globally, nationally, and locally is the low numbers of eligible patients who enroll in cardiac rehabilitation.

PICOT: In patients with isolated coronary artery bypass graft (CABG) (P), how does face-to-face nursing promotion of cardiac rehabilitation (I) compared to the patients who do not have face-to-face nursing promotion (C), affect the percentage of patients enrolling in cardiac rehabilitation after discharge (O) within 8 weeks (T)?

Evidence: The evidence used to guide this project included the need for a healthcare organization to have a systematic process for cardiac rehabilitation enrollment, face-to-face nursing promotion, improvement of the healthcare team’s knowledge about cardiac rehabilitation, and identification of patient barriers that hinder cardiac rehabilitation enrollment.

Intervention: A systematic approach for cardiac rehabilitation was developed using the interprofessional team. After the healthcare team received standardized education, nurses in various roles provided face-to-face promotion, the ARNPs endorsed cardiac rehabilitation, and the care managers addressed barriers.

Outcome: The cardiac rehabilitation enrollment rate increased by 16% among all patients admitted with an isolated CABG on the pilot unit.

Conclusion: Implementation of face-to-face nursing promotion, ARNP endorsement, and reducing barriers were clinically significant in increasing the cardiac rehabilitation enrollment rate.
Face-to-Face Nursing Promotion of Cardiac Rehabilitation

Cardiovascular disease (CVD), also known as heart disease, is a global and national epidemic. Heart disease remains the leading cause of death globally and in the United States (American Heart Association, 2019). In 2016, global deaths from heart disease reached 17.6 million, and it is estimated by 2030, the death rate will reach 23.6 million (American Heart Association, 2019). In the United States, as of November 2017, it was estimated 121.5 million adults, approximately 48%, have some form of cardiovascular disease (Benjamin et al., 2019).

The burden of cardiovascular disease is rising at global and national levels, and cardiac rehabilitation (CR) is recognized as one of the most beneficial and cost-effective strategies to manage it (Supervia et al., 2019). The benefits of cardiac rehabilitation are broad and compelling. One significant problem globally and nationally is the low numbers of eligible patients who enroll in cardiac rehabilitation (Ades et al., 2017; Gardiner et al., 2018; McIntosh et al., 2017; Pio et al., 2019). When patients are advocated for and given education, support, encouragement, motivation, a strong endorsement, and the option to enroll in cardiac rehabilitation, their health can improve dramatically. By choosing to enroll, resulting in the possibility to participate in cardiac rehabilitation, patients may decrease their mortality rate from a cardiac event and improve their quality of life. Individuals improving their health outcomes positively correlate with improving the overall public health status, and healthier people reduce healthcare costs.

Significance of the Practice Problem

Cardiac rehabilitation is an interprofessional approach to improving the patient’s health, emphasizing exercise, stress management, and nutritional education (Mayo Clinic, 2018). This program is a grade 1A recommendation for patients admitted to the hospital with cardiac-related
ICD-10 diagnoses. The American College of Cardiology, American Heart Association, The Agency for Healthcare Research and Quality, and the Centers for Disease Control and Prevention recommend that all patients hospitalized with a cardiac rehabilitation eligible diagnosis should be referred to a cardiac rehabilitation program before hospital discharge (Thomas et al., 2018).

Only 54% of countries offer cardiac rehabilitation services to their community (Supervia et al., 2019). The staggering CVD statistics force national, regional, and local healthcare organizations to improve the current rate of 12% to 30% of patients enrolling in cardiac rehabilitation (Ades et al., 2017). The national benchmark for cardiac rehabilitation participation is 70%, and improving the enrollment rate is one of the first steps to increasing cardiac rehabilitation participation (Ades et al., 2017). The healthcare organization’s cardiac rehabilitation enrollment rate before the evidence-based intervention was approximately 13%.

Impact on the Patient

Cardiac rehabilitation reduced cardiovascular death from 10.4% to 7.6% at the 3-year follow-up (Anderson et al., 2017). Thus, more patients participating in cardiac rehabilitation will decrease cardiac-related fatalities and improve the quality of life (Gardiner et al., 2017; Gardiner et al., 2018). In addition, there is a positive correlation between cardiac rehabilitation and improved patients’ biometric results (Gardiner et al., 2017; Graham et al., 2019; Sumner et al., 2017).

Impact on the Healthcare System and Healthcare Cost

The hospital may reduce the CVD health burden and economic strain by increasing patients attending cardiac rehabilitation. For example, if hospitals can increase cardiac rehabilitation participation from 20% to 70%, the consequence will be an estimated reduction in
hospitalizations by 180,000 patients annually (Ades et al., 2017). In 2016, the United States healthcare system spent $555 billion on CVD, and by 2035, the cost is expected to skyrocket to $1.1 trillion (CDC, 2015).

Premier benchmark data for CVD outcomes are monitored by the Centers for Medicare and Medicaid Services, which means hospital reimbursement directly correlates with patient outcomes and readmission rates. Cardiac rehabilitation effectively improves the patients’ health through guided lifestyle changes reducing the readmission rates for CVD by 4%, which equates to a significant amount of money (Anderson et al., 2016). Currently, the healthcare organization’s premier benchmark readmission rates and outcome measurements are no different or worse than the national average (Medicare.gov, 2020). Therefore, the healthcare organization will benefit from increasing the number of patients who enroll and participate in cardiac rehabilitation.

Impact on the Community

CVD is a priority for community health because it remains the leading cause of death (Xu et al., 2018). Enrolling 70% of the eligible patients in cardiac rehabilitation will drastically improve community health (Mayo Clinic, 2018). Patients participating in cardiac rehabilitation will improve individual health resulting in a healthier community (Pio et al., 2019).

PICOT Question

In patients with isolated coronary artery bypass graft (CABG) (P), how does face-to-face nursing promotion of cardiac rehabilitation (I) compared to the patients who do not have face-to-face nursing promotion (C), affect the percentage of patients enrolling in cardiac rehabilitation after discharge (O) within 8 weeks (T)?
To align with a healthcare organization’s priority project scope, the population was patients admitted with an isolated coronary artery bypass graft (CABG), which referred to using arterial or venous grafts only during surgical intervention (D’Agostino et al., 2019). The population included patients 18 years and older. The healthcare organization performs approximately 50 isolated CABG surgeries per month.

The intervention was implementing face-to-face nursing promotion of cardiac rehabilitation. The intervention did not focus on patient education; the main objective was to provide strong promotion for the patients to enroll in cardiac rehabilitation. Patient education only occurred during the initial scripted session. Nurses promoted cardiac rehabilitation as the next step in treatment, provided support by addressing concerns, motivated the patients to enroll, advocated by obtaining orders, and guided the patients during the enrollment process. The nurses collaborated with the care managers to reduce identified barriers.

The intervention was compared to the current standard treatment of the healthcare organization, which depended solely on the cardiologist. Retrospective data was collected before the project to determine the percentage of patients enrolled in cardiac rehabilitation compared to the percentage of patients who enrolled after receiving face-to-face nursing promotion.

The goal of face-to-face nursing promotion was to increase the enrollment percentage by 27% within 8 weeks. The change was expected to be seen quickly since cardiac rehabilitation is started 2-6 weeks after a CABG (Mendes, 2016).

Evidence-Based Practice Framework & Change Theory

Johns Hopkins Nursing Evidence-Based Practice Model

Johns Hopkins Nursing Evidence-Based Practice Model (JHNEBP) guided the evidence-based project. Consistently the literature supports cardiac rehabilitation as an effective treatment
for CVD (Anderson et al., 2017). The initial evidence-based practice question was how a healthcare organization increases the percentage of patients enrolling in cardiac rehabilitation.

Practice Question

JHNEBP Question Development Tool guided the interprofessional leadership project team consisting of executive nursing leadership and the project manager to analyze the problem (Dang & Dearholt, 2017). The team defined the problem as the low number of patients who enroll in cardiac rehabilitation after having an isolated CABG. The evidence-based question was refined to ask what nursing can implement to improve enrollment percentages. The interprofessional team identified stakeholders for the project and individual responsibility using the JHNEBP Stakeholder Analysis Tool (Dang & Dearholt, 2017).

Evidence

The interprofessional leadership team collected internal data, and an evidence search strategy included searching various databases to obtain current literature for evidence that improves the practice problem. The literature was appraised using the JHNEBP Evidence Level and Quality Guide (Dang & Dearholt, 2017). The findings were summarized and synthesized to develop a recommendation to improve the practice problem (Appendix A and B).

Translation

The healthcare organization is actively trying to increase enrollment rates making the planned evidence-based project appropriate and feasible. The action plan was guided by the JHNEBP Action Planning Tool (Dang & Dearholt, 2017). The initial plan used nurses from various specialties to educate, support, advocate, promote, motivate, and endorse clients to enroll in cardiac rehabilitation. The healthcare organization was assessed for strengths, weaknesses, barriers, and costs using assessment tools. The evidence-based practice team captured
dichotomous data if the patient attended the first scheduled cardiac rehabilitation session, obtained a cardiac rehabilitation order, or was active in the enrollment process. Weekly updates were emailed to the stakeholders with relevant information. The project manager monitored the project and made changes as needed. JHNEBP Dissemination Tool guided the sharing of key findings with the stakeholders and professionals interested in the project outcomes.

Stages of Change Theory

The Stages of Change Theory has become one of the most common theoretical frameworks for medical conditions requiring behavioral changes (Raihan & Cogburn, 2020). The leading cardiac rehabilitation authority, The American Association of Cardiovascular and Pulmonary Rehabilitation, recommends this theory to guide cardiac rehabilitation (Rohrbach et al., 2017). Cardiac rehabilitation aligns with this theory by supporting patients to make slow changes to their behaviors to improve their health.

The theoretical framework allows the healthcare team to support the patients as they move through six stages. After cardiac surgery, the patients will likely be in the contemplation stage, which means they recognize their choices and behaviors are problematic (Waight et al., 2015). The nurses will encourage and provide a strong endorsement of cardiac rehabilitation by emphasizing the benefits and allow the patients to ask questions and express concerns (York University, n.d.).

If the patients plan to enroll in cardiac rehabilitation, they have progressed to the preparation stage. The patients believe that their behavior and actions will improve their health outcomes (Krebs et al., 2020). During this phase, the healthcare team will provide motivation, positive reinforcement, and support (York University, n.d.).
Evidence Search Strategy

An electronic search of the EBSCO digital database was conducted using the University of St. Augustine’s (USA) library. The multiple database search included 34 research articles from Cumulative Index to Nursing and Allied Health Literature (CINAHL), one research article from Cochrane Library of Systematic Reviews, 59 research articles from Gale Academic OneFile, 30 research articles from Medline, eight research articles from Academic Search Index, and five research articles from SPORTDiscus, which resulted in 137 research articles. The keywords using Boolean operators for the evidence search included cardiac rehab* (select a field: in the title) AND nurs* AND enrollment or utilization or utilisation. The search was narrowed by adding exclusion criteria NOT outpatient clinics or ambulatory care or outpatient services or outpatient care and NOT pediatrics. The initial search used keywords cardiac rehab* AND nurs* AND enrollment, which yielded 10 research articles requiring the search to be widened. Other unsuccessful searches included keywords face-to-face promotion and nurs* interventions. The British spelling of utilisation was included since many research articles are international. The search was not limited to CABG patients since this niche population was requested by hospital administration to fit a current project scope. The advance search options were limited to timeframe: 2015-2021, language: English, report type: full-text, peer-reviewed, and academic journals. The USA database search engine removed duplicate research articles.

Evidence Search Results

Even though the articles followed the search criteria, many of the research articles identified did not apply to the PICOT. Titles and abstracts of 137 articles were reviewed for PICOT relevance, which focused on increasing cardiac rehabilitation enrollment rates utilizing face-to-face nursing promotion. Eighty-eight articles were excluded for various reasons.
Exclusion criteria included a research goal to solve patient barriers to enrollment, interventions to improve the referral and implementation of cardiac rehabilitation, and interventions to increase patient adherence and participation. The research articles that focused on increasing enrollment numbers into cardiac rehabilitation were excluded if the articles concentrated on patient-provider interaction, patient’s perception about enrollment, clinical practice guidelines, interventions included mobile apps or telemedicine, and enrollment was for cardiac rehabilitation phase I. A full-text survey of the remaining 49 articles was conducted to locate the best research articles supporting increasing cardiac rehabilitation enrollment using face-to-face nursing promotion. The full-text survey resulted in a final number of seven primary research studies and one systematic review with meta-analysis summarized using a PRISMA figure located in Figure 1.

Each of the seven articles was appraised for its strength using the evidence level and quality grading based on the JHNEBP guide (Dang & Dearholt, 2017). The seven articles ranged in evidence levels from level I through level III. Four of the articles were experimental randomized control trials (RCT), resulting in an evidence level I (Ali-Faisal et al., 2016; Cossette et al., 2012; Grossman, 2015; Scott et al., 2013). The systematic review with meta-analysis (Pio et al., 2019) and a mixed-method study resulting in standardized online provider education specific to cardiac rehabilitation enrollment (Santiago de Araújo Pio et al., 2020b) are categorized as evidence level II. Ades et al. (2017) meta-synthesis was a significant catalyst for the healthcare system to focus on improving enrollment rates into cardiac rehabilitation is classified as level III. Table 1 provides a summary of the JHNEBP criteria for each evidence level.
All seven of the quantitative research articles are rated high quality based on the JHNEBP quality rating. Each quantitative article demonstrated consistent results, adequate sample size, appropriate controls, and conclusions consistent with other research studies of similar focus (Dang & Dearholt, 2017). A separate table was created for the primary research articles’ evidence search results and systematic review located in Appendices A and B.

Themes with Practice Recommendations

The themes were determined after a thorough investigation and synthesis of each article listed in the evidence table (Appendices A and B). The research article’s participants all had a cardiac rehabilitation eligible diagnosis, but the admitting diagnoses varied among the studies but did not impact the conclusions about increasing cardiac rehabilitation enrollment. The type of medical unit the patients received care on did impact the enrollment rate into cardiac rehabilitation (Ali-Faisal et al., 2016). High-quality research was conducted in numerous countries, which did not impact the interventions that increase enrollment rates.

Themes

The themes synthesized from the articles include developing a systematic approach for cardiac rehabilitation enrollment (Ades et al., 2017; Santiago de Araujo Pio et al., 2020b), face-to-face promotion (Ades et al., 2017, Cossette et al., 2012; Grossman, 2015; Santiago de Araujo Pio et al., 2020b; Scott et al., 2013; Pio et al., 2019), lack of education among the healthcare team (Ali-Faisal et al., 2016; Santiago de Araujo Pio et al., 2020b; Pio et al., 2019), and patient barriers that impede enrollment (Cossette et al., 2012; Scott et al., 2013).

Healthcare Organization Systematic Process

The literature strongly advocates for healthcare organizations to start with a systematic approach for cardiac rehabilitation enrollment to streamline communication, reduce ambiguity,
and coordinate roles among the healthcare team (Ades et al., 2017). The enrollment strategy should include standardized staff and patient education using a script to improve the accuracy of the patients’ message (Ades et al., 2017; Santiago de Araujo Pio et al., 2020b).

Face-to-Face Cardiac Rehabilitation Promotion

Strong evidence supports that patients who receive cardiac rehabilitation promotion via face-to-face communication correlates with increased enrollment rates. A discrepancy noticed among the literature is which member of the healthcare team should complete face-to-face promotion. A physician endorsement has the most significant impact on enrollment (Ades et al., 2017); however, the nurse’s endorsement is meaningful and impactful (Cosette et al., 2012; Grossman et al., 2015; Pio et al., 2019). Nursing face-to-face promotion is supported by substantial evidence as the ideal intervention to increase enrollment rates by an average of 27% (Cosette et al., 2012; Grossman, 2015, Pio et al., 2019). Face-to-face promotion was also successful with using an allied health member functioning in a patient navigator’s role to promote, encourage, educate, advocate, motivate, and guide the patient through the enrollment process (Ades et al., 2017; Scott et al., 2013). Cardiac rehabilitation promotion includes education, a strong endorsement, support, motivation, and encouragement, and provides an opportunity to ask questions, advocate, initiate the enrollment process, and disseminate printed patient informational handouts (Ades et al., 2017; Santiago de Araujo Pio et al., 2020b).

Lack of Healthcare Provider Cardiac Rehabilitation Knowledge

According to Schopher et al. (2016), 72% of healthcare providers lack knowledge about cardiac rehabilitation. The healthcare team’s lack of knowledge leads to inaccurate and insufficient patient education, advocacy, promotion, encouragement, and support resulting in a failure to enroll in cardiac rehabilitation (Ades et al., 2017; Ali-Faisal et al., 2016).
healthcare providers receive education, they report a positive attitude about cardiac rehabilitation and are more likely to promote it to their patients (Santiago de Araujo Pio et al., 2020b). The healthcare team should use available educational tools endorsed by cardiac rehabilitation experts to improve their knowledge about benefits, promotion techniques, resources, and outcomes (Pio et al., 2019; Santiago de Araujo Pio et al., 2020b).

Address Patient Barriers to Enrollment

Patients face barriers to participating in cardiac rehabilitation that decreases enrollment rates, which will logically increase if the barriers are addressed. Common barriers identified in the literature include the distance to the location of the cardiac rehabilitation center (Ali-Faisal et al., 2016; Cossette et al., 2012), transportation (Cossette et al., 2012), cost (Scott et al., 2013), and lack of education (Ades et al., 2017; Santiago de Araujo Pio et al., 2020b). The enrollment strategy will need to include the care management team members to address and attempt to solve the patients’ barriers that hinder enrollment. Face-to-face nursing promotion will improve the lack of knowledge.

Recommendation

The evidence was obtained from seven high-quality, evidence level I-III primary research articles with consistent outcomes. The recommendation is based on the thorough and rigorous review of the synthesized information and summarized in Figure 2. The first step was the healthcare organization developing a systematic approach focusing on the cardiac rehabilitation enrollment strategy. Face-to-face promotion consistently remains the best practice to increase enrollment rates; thus, the recommendation was to have the nurses implementing face-to-face promotion. Nurses are interacting with clients frequently, so face-to-face promotion was easily embedded into their current workflow. Instead of engaging the physicians, which is difficult, the
recommendation was to include cardiac rehabilitation face-to-face promotion from the nurse practitioners (ARNP). The recommendation included the care managers to communicate with the patients about barriers and find possible solutions. Before the nursing face-to-face promotion begins, the recommendation was the nurses receive standardized education about cardiac rehabilitation and promotion.

Setting, Stakeholders, and Systems Change

The healthcare organization is a 2,247-bed Christian-based, non-profit hospital providing comprehensive medical services to Central Florida patients. The mission is to extend Christ’s healing ministry through whole-person care addressing the mind, body, and spirit. The hospital provides cardiovascular care to 72,000 patients each year treated by a team of more than 1,000 specially trained healthcare providers. The pilot unit will be Ginsberg Tower (GT) 8, cardiovascular surgery progressive care unit.

In January 2020, the executive leadership team focused on cardiac rehabilitation low enrollment rates, making it an organizational project scope for 2020-2025. Face-to-face nursing promotion of cardiac rehabilitation perfectly aligned with the project scope. The PICOT and recommendations were strongly supported by the chief nursing officer, executive director of cardiovascular services, nursing director of cardiovascular services, and cardiac rehabilitation nurse manager. These key stakeholders strongly advocated for participation from other stakeholders, including GT8 nurse manager, nursing education, clinical data analyst, institutional outcome and value analyst, executive director of clinical outcomes, registered nurses, cardiovascular surgical ARNPs, cardiac rehabilitation care coordinators, care managers, and a patient representative.
The interprofessional collaboration occurred between the GT8 registered nurses, cardiovascular surgical ARNPs, care managers, cardiac rehabilitation care coordinators, discharge nurses, data abstractors, and data analysts. The project remained net-neutral; thus, the interventions were embedded in the caregivers’ current workflows to maintain sustainability.

The SWOT analysis was discussed with key stakeholders regarding the organization’s ability to implement the project (Figure 3). The strengths included considerable resources and leadership support to implement and sustain change. The weaknesses included resistance to change, staff fatigue, and burnout due to COVID-19. The opportunity was improved outcomes and increased reimbursement. The threats included increase workload, RN turnover, and changes in payors.

The micro-level system changes included purposeful interactions and patient empowerment, which were currently undervalued. The change consisted of the daily clinical practice of providing isolated CABG patients with endorsement, education, encouragement, motivation, support, advocacy, and tools to enroll in cardiac rehabilitation. The project provided purposeful, meaningful, and high-quality interactions during face-to-face promotion, which allowed the patients to ask questions in a supportive environment empowering the patients to make informed decisions about their health.

Changes to the system at the meso-level improved the nurses’ lack of cardiac rehabilitation knowledge, which resulted in inconsistent patient education, endorsement, encouragement, support, and reduced enrollment in cardiac rehabilitation. The system change involved educating the nurses about cardiac rehabilitation, tools, techniques, and the new systematic process to increase enrollment rates.
The macro-level system change focused on the intersectoral links that are overlooked. Numerous team members attempted to improve low enrollment rates; however, they worked in silos. There was no feedback loop and communication among the team resulting in gaps and inconsistent information given to the patients. The system change developed an integrated process of coordination of roles to reduce duplication, provide consistent information, and improve interprofessional communication.

Implementation Plan with Timeline and Budget

The project team utilized the JHNEBP model to determine the project question and an evidence-based solution. There was sufficient internal data to support the need to increase the current cardiac rehabilitation enrollment rate, and high-quality literature supported nursing face-to-face cardiac rehabilitation promotion would be beneficial. The activities’ schedule is listed in a Gantt chart that provides detailed steps with the timing of the intervention and evaluation process (Appendix C).

The objective that determined the project’s impact was the cardiac rehabilitation enrollment rate of patients with isolated CABG admitted to the pilot unit would increase by 27% 8 weeks after implementing face-to-face nursing promotion. Due to time constraints, enrollment was measured by the patients who obtained an order for cardiac rehabilitation from their provider, active in the enrollment process, or attended their first scheduled cardiac rehabilitation session. The objective was met through system change by empowering the patients through purposeful and meaningful face-to-face nursing promotion, educating the nurses to become cardiac rehabilitation experts to promote enrollment, and creating a systematic collaboration process among the interprofessional team.
A systematic process was developed and implemented to improve coordination among the intersectoral links, improve interprofessional team communication, and designate clear roles. After completing a SWOT analysis and key stakeholder assessments, a process was developed. The systematic approach is described in Figure 4.

The nurses and care managers worked together to address a different aspect of cardiac rehabilitation promotion. They shared the patient status specific to their focus during the daily interprofessional collaboration (IPC) rounds on the pilot unit to improve communication, continuity of care, and collaboration. The interprofessional team collaboration checklist facilitated communication and held team members accountable for compliance using face validity (Appendix D).

The healthcare organization meso-level system change addressed the evidence theme that healthcare providers lack education about cardiac rehabilitation. The objective was 90% of the nurses will demonstrate an understanding of cardiac rehabilitation, benefits, the enrollment process, and face-to-face promotion with patients who have an isolated CABG within 2 weeks after receiving standardized education. The objective was met by providing nurses with standardized education based on the International Council of Cardiovascular Prevention and Rehabilitation (ICCPR) (York University, n.d.). After educating the nurses, they took a post-test and needed to score a minimum of 90% to be considered successful.

An objective focused on standardized face-to-face nursing promotion among the CR champions. Within 8 weeks of implementing the project, 90% of the CR champion’s initial face-to-face nursing promotion sessions followed the defined process. The initial face-to-face promotion included the CR champions using a script (Appendix E), providing an iPad for the patient to watch an informational video about cardiac rehabilitation called Cardiac
rehabilitation: Your journey back to heart health (CardioSmart, 2016), and delivering the cardiac rehabilitation promotion packet (Appendix F). This process supported the patients in the Stages of Change Theory’s contemplation stage by providing the benefits of cardiac rehabilitation, answering questions, and addressing concerns. The objective was met because the CR champions received education and the tools required.

The patients admitted with an isolated CABG received face-to-face nursing promotion by nurses in various specialty roles. Of the patients who had an isolated CABG on GT8, 90% would receive face-to-face cardiac rehabilitation nursing promotion from the CR champions, staff nurses, cardiovascular surgical ARNPs, and discharge nurses, including having barriers addressed by the care managers 8 weeks after implementation of the project. This objective was met because of the systematic process in place, cardiac rehabilitation education, interprofessional team collaboration, and nurses did have the required tools to promote cardiac rehabilitation. The role of each team member is described in Figure 4.

The healthcare organization did not provide a project budget forcing the project to remain net-neutral (Table 2). Embedding the intervention into the current workflows helped keep the project net-neutral and increased sustainability. The project manager received a grant to cover the cost of patient educational material and a statistician.

The project manager supported the interprofessional team, collected data, provided weekly communication with the stakeholders, adjusted the project as needed based on limitations and ethical concerns, and monitored compliance with surveillance and electronic health record documentation review. Leadership qualities and skills included promoting a positive work environment, empowering the team, demonstrating openness for new ideas, incorporating opinions for changes, and fostering a sense of team.
After a thorough risk assessment, the key stakeholders and project manager determined a low risk for patient harm in correlation with the evidence-based project. Cardiac rehabilitation has inherent risks, but these risks did not apply to face-to-face nursing promotion and enrollment. Other areas of risk included staff noncompliance, obtaining timely data, and budget. The strategy to address noncompliance and budget risks was mitigation. The elimination strategy was used to manage the risk with delayed data dissemination. The healthcare organization owns the cardiac rehabilitation center, and an increase in participation will increase revenue, which was a conflict of interest.

Evaluation Results

After approval from the University of St. Augustine's EBP Project Review Council (EPRC) and the executive leadership team at the healthcare organization, the implementation and evaluation process began. The participants included patients on GT8, status post isolated CABG. Appendix G explained the type of data collected, who collected it, which statistical tools were used per data measurement, the frequency of data collection, where the data was accessed, categorical measures, and benchmarks.

The interprofessional team member's roles (Figure 4), interprofessional collaboration, data collection tool (Appendix H), and interprofessional team collaboration checklist (Appendix D) maintained the integrity of the data collection process. The data collection resources were valid and reliable since the data came from project manager surveillance, interprofessional team member documentation in the electronic health record, and information from the health information management system. Listwise deletion was used to deal with missing data so that only data with all observations were used for every analysis. The project team set a limit of 5% missing data was acceptable before corrective action. The data collected that contained personal
health information was stored on the healthcare organization's encrypted, HIPAA compliant share-drive.

A statistician used descriptive and inferential statistics to determine the impact of face-to-face nursing promotion of cardiac rehabilitation on cardiac rehabilitation enrollment. Descriptive statistics measured different variables such as enrollment rate, impact enrollment rate into cardiac rehabilitation, barriers resolved, face-to-face promotion, nurse cardiac rehabilitation education, and nursing face-to-face promotion compliance. Inferential statistics assessed the associations among variables. The chi-square tests were used to test the associations among categorical dependent and categorical independent variables. Independent sample t-tests were used to assess whether statistically significant associations exist between continuous dependent and categorical independent variables. Variations were considered statistically significant at $p < 0.05$.

There were $N = 73$ patients in the sample whose age ranged from 38 to 88 years ($M = 64.35, SD = 10.57$) and included 53 (72.6%) males and 20 (27.4%) females and most patients had Medicare, 42 (57.5%) (Table 3). There were 67 (91.8%) patients that received face-to-face nursing promotion by the cardiac rehabilitation champion and six (8.2%) did not receive it (Table 4). There were 21 (28.8%) patients that enrolled in cardiac rehabilitation, 28 (38.4%) did not, and 24 (32.9%) were not candidates (Table 5). A cross-tabulation of cardiac rehabilitation enrollment of face-to-face nursing promotion was conducted. Out of 45 cardiac rehabilitation eligible patients that received face-to-face nursing promotion, 19 (42.2%) enrolled in cardiac rehabilitation, whereas 26 (57.8%) did not enroll (Table 6). These results were not statistically significant, $\chi^2(1) = 0.091, p = .763$ (Table 7). However, this data is clinically significant because,
among cardiac rehabilitation eligible clients, face-to-face promotion increased the enrollment rate by 29%.

Results of the project did not show a statistically significant association between face-to-face nursing promotion and cardiac rehabilitation enrollment. A factor that may have influenced the results was that of sample size. The sample size required to achieve 80% statistical power was at least 88, based on a G*Power sample size calculations (Figure 5). This reduced sample size in this project resulted in lower statistical power, which may have affected the results.

However, there was an overall increase of 16% in cardiac rehabilitation enrollment (21 clients enrolled out of 73) after the project compared to the 13% initial enrollment rate, which is clinically significant. Clinical significance was determined using descriptive data to assess the impact on the current processes and outcomes. Supplementary analysis was conducted to determine if there were significant associations between cardiac rehabilitation enrollment with ARNP endorsement, GT8 RN support, discharge nurse endorsement, and care manager assistance with overcoming barriers. Chi-square tests were conducted to test these associations.

Regarding ARNP endorsement, there was no statistically significant association with enrollment, $\chi^2(1) = 2.457, p = .117$. Within those enrolled, there were 13 (61.9%) with ARNP endorsement versus those with non-ARNP endorsement, (eight, 38.1%) (Tables 8 and 9). There was more enrollment with ARNP endorsement, which is clinically significant. Regarding the association between cardiac rehabilitation enrollment and GT8 registered nurse support, results of the chi-square test revealed no statistically significant association, $\chi^2(1) = 0.791, p = .374$ (Tables 10 and 11); however, the low GT8 RN compliance rate of 22% was clinically significant. Regarding the association between cardiac rehabilitation enrollment and discharge nurse endorsement, results of the chi-square test revealed no significant results, $\chi^2(1) = 0.244, p =$
The proportion of discharge nurse endorsement in both cardiac rehabilitation enrollment and non-enrollment was similar (Tables 12 and 13). Regarding the association between enrollment and patient barriers, there was a statistically significant association, $\chi^2(6) = 12.519$, $p = .021$ (Table 14). One noticeable feature is that, within non-enrollment, the location was the most frequent barrier. In the cardiac rehabilitation enrollment group, most clients denied having any barriers to cardiac rehabilitation enrollment. Removing barriers may increase cardiac rehabilitation enrollment, which is clinically significant.

Impact

The evidence-based project provided a systematic process that addressed gaps within the healthcare organization by implementing change at various system levels. The evidence-based project improved the gap of general knowledge about cardiac rehabilitation among most healthcare providers. The project incorporated the interprofessional team to work in tandem with clear roles and enhanced communication, increasing cardiac rehabilitation enrollment rates among isolated CABG patients by 16%. The interprofessional team members are now providing consistent cardiac rehabilitation promotion that has reduced the gaps in information and education the clients receive.

Future implications of the project involve providing face-to-face nursing promotion to all patients admitted with eligible cardiac rehabilitation ICD-10 diagnoses. The healthcare organization will need to budget for an increase in the number of nurses who will function in the cardiac rehabilitation champions' role to provide a strong, scripted initial face-to-face promotion. The healthcare organization can anticipate reducing cardiac-related readmissions and a reduced cost in treating cardiovascular disease as the percentage of cardiac rehabilitation enrollment continues to increase.
To improve practice in the future will require continuous education of the healthcare team about cardiac rehabilitation, the benefits, and the healthcare organization's cardiac rehabilitation enrollment process. The cardiac rehabilitation care coordinators will need to dedicate a minimum of one patient encounter specific for cardiac rehabilitation to provide a purposeful, client empowering session that remains scripted. The nurse practitioners will need to continue to endorse cardiac rehabilitation during rounds. Finally, the healthcare organization will need to dedicate resources to reducing barriers to enrolling in cardiac rehabilitation.

The cardiac rehabilitation department will need to provide surveillance to ensure compliance of the cardiac rehabilitation champions and nurse practitioners. The health information management team will continue to collect data about cardiac rehabilitation enrollment rates to determine if the project remains effective. Identified barriers that impacted the project's outcomes that will need to be addressed include the continual use of float nurses with limited education about cardiac rehabilitation, minimal support by physicians, and lack of authority to hold the ARNPs accountable.

Dissemination Plan

Dissemination of the project results will be presented to the project stakeholders, allowing the nurses and case managers to see their impact and provide a feedback loop. There will be another presentation for the healthcare organization’s executive board during their monthly meeting, sharing the project’s clinical significance and the impact on the organization’s project scope to increase enrollment rates into cardiac rehabilitation. Due to the COVID-19 pandemic, the presentations will be conducted virtually by sharing the information via a PowerPoint presentation. The presentation will be recorded and shared with healthcare professionals interested in the clinical significance of the project and its impact on the problem.
A poster presentation will be given at the annual Chi Upsilon Chapter of Sigma research day (November 2021) and the American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR) annual conference (October 2021). A manuscript of the evidenced-based project and outcomes will be submitted to the *Journal of Cardiopulmonary Rehabilitation and Prevention (JCPR)*. *JCPR* is chosen because it is a peer-reviewed professional journal dedicated to improving multidisciplinary clinical practice and expanding research evidence specific to cardiac rehabilitation. *JCPR* is the official journal of the AACVPR, which remains the leading expert on cardiac rehabilitation. Before submitting an abstract, manuscripts, and poster presentations, the information will be peer-reviewed for accuracy, validity, strengths, weaknesses, and quality. The peer reviewers will be scholarly experts in the field of cardiac rehabilitation. The evidence-based project manuscript will be published in SOAR@USA.

Conclusion

Based on a thorough investigation and synthesis of high-quality research articles, the evidence-based project utilized an interprofessional approach of nursing face-to-face promotion of cardiac rehabilitation for patients admitted with an isolated CABG to increase cardiac rehabilitation enrollment rates by 27%. The project resulted in a 16% cardiac rehabilitation enrollment increase. Face-to-face promotion, ARNP endorsement, and reducing barriers were clinically significant in increasing the enrollment rate.

The evidence-based project was guided by the John Hopkins Nursing Evidence-Based Model, the Stages of Change Theory, and the healthcare organization’s needs, resulting in system changes occurring at various levels. Themes synthesized from the research articles include developing a systematic approach for cardiac rehabilitation enrollment, educating the nurses about cardiac rehabilitation, reducing patient barriers to enrollment, and providing face-
to-face nursing promotion of cardiac rehabilitation, which the project incorporated. Each interprofessional team member had a role-specific to their current workload to promote face-to-face nursing promotion of cardiac rehabilitation and reduce barriers with collaboration that addressed each patient’s individualized needs to promote cardiac rehabilitation enrollment.
References

Ades, P., Keteyian, S., Wright, J., Hamm, L., Lui, K., & Newlin, L. (2017). Increasing cardiac rehabilitation participation from 20% to 70%: A road map from the million hearts cardiac rehabilitation collaborative. *Mayo Clinic Proceedings, 92*(2). 234-245.
http://dx.doi.org/10.1016/j.mayocp.2014.10.014

Ali-Faisal, S. F., Benz Scott, L., Johnston, L., & Grace, S. L. (2016). Cardiac rehabilitation referral and enrolment across an academic health sciences centre with e-referral and peer navigation: A randomized controlled pilot trial. *BMJ Open, 6*(3), e010214.
https://doi.org/10.1136/bmjopen-2015-010214

American Heart Association. (2019). Heart disease and stroke statistics-2019 at-a-glance.
Retrieved from https://healthmetrics.heart.org/wp-content/uploads/2019/02/At-A-Glance-Heart-Disease-and-Stroke-Statistics-%E2%80%93-2019.pdf

American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR). (n.d.). Resources for patients. Retrieved from https://www.aacvpr.org/Portals/0/Docs/Practice/AACVPR_CR_Fact_Sheet.pdf

Anderson, L., Oldridge, N., Thompson, D., Zwisler, A., Rees, K., Martin, N., & Taylor, R. (2016). Exercised-based cardiac rehabilitation for coronary heart disease: Cochran Systematic Review and meta-analysis. *Journal of the American College of Cardiology, 67*(1), 1-12.
http://dx.doi.org/10.1016/j.jacc.015.10.044

Benjamin, E., Munter, P., Alonso, A., Bittencourt, M., & Virani, S. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. *Circulation, 139*(10), 23-56.
http://dx.doi.org/10.1161/CIR.0000000000000659
CardioSmart. (2016, May 13). *Cardiac rehabilitation: Your journey back to heart health* [Video]. YouTube. https://www.youtube.com/watch?v=ckOHA4zSHr0

Centers for Disease Control and Prevention. (2020). Advocacy. Retrieved from https://www.heart.org/idc/groups/ahaecc-public/@wcm/@adv/documents/downloadable/ucm_473083.pdf

Cossette, S., Frasure-Smith, N., Dupuis, J., Juneau, M., & Guertin, M. (2012). Randomized controlled trial of tailored nursing interventions to improve cardiac rehabilitation enrollment. *Nursing Research, 61*(2), 111–120. https://doi.org/10.1097/nnr.0b013e318240dc6b

D’Agostino, R., Jacobs, J., Badhwar, V., Fernandez, F. G., Paone, G., Wormuth, D., & Shahian, D. (2019). The Society of Thoracic Surgeons adult cardiac surgery database: 2019 update on outcomes and quality. *The Annals of Thoracic Surgery, 107*(1), 24–32. https://doi.org/10.1016/j.athoracsur.2018.10.004

Dang, D., & Dearholt, S. (2017). *Johns Hopkins nursing evidence-based practice: model and guidelines*. 3rd ed. Indianapolis, IN: Sigma Theta Tau International

Gardiner, F., Nwose, E., Ragan, E., Park, B., Bwititi, P., Crockett, J., & Wang, L. (2018). Outpatient cardiac rehabilitation: Patient perceived benefits and reasons for non-attendance. *Collegian, 25*, 479–485. https://doi.org/10.1016/j.colegn.2018.01.001

Gardiner, F., Regan, E., Nwose, E., Bwititi, P., Crockett, J., & Wang, L. (2017). Outpatient cardiac rehabilitation: Effects on patient improvement outcomes. *Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 11*, 1025-1030. http://dx.doi.org/10.1016/j.dsx.2017.07.034
Graham, H., Lac, A., Lee, H., & Benton, M. (2019). Predicting long-term mortality, morbidity, and survival outcomes following a cardiac event: A cardiac rehabilitation study. *Rehabilitation Process and Outcomes, 8*, 1-8.
http://dx.doi.org/10/1177/1179572719827610

Grossman, J. (2015). Cardiac rehabilitation enrollment and the impact of systematic nursing interventions for postmyocardial infarction and stent patients. *Clinical Nursing Research, 25*(4), 378–390. https://doi.org/10.1177/1054773815620777

Krebs, P., Norcross, J. C., Nicholson, J., & Prochaska, J. (2018). Stages of change and psychotherapy outcomes: A review and meta-analysis. *Journal of Clinical Psychology, 74*(11), 1964–1979. https://doi.org/10.1002/jclp.22683

Mayo Clinic. (2018). Heart disease: Diagnosis and treatment. Retrieved from https://www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-20353124

Medicare.gov (2020). Hospital compare. Retrieved from https://www.medicare.gov/hospitalcompare/profile.html#profTab=4&ID=100007&cmpID=100007&dist=25&loc=32803&lat=28.5542151&lng=-81.3454417&cmprDist=2.6&Distn=2.6

Mendes, M. (2016). Is there a role for cardiac rehabilitation after coronary artery bypass grafting? *Circulation, 133*(24), 2538–2543.
https://doi.org/10.1161/circulationaha.115.017800

McIntosh, N., Charns, M., Fix, G., McDonald, S., Kelly, A., Forman, D., & Manning, K. (2017). A qualitative study of participation in cardiac rehabilitation programs in an integrated
health care system. *Military Medicine, 182*(9), 1757-1763.

http://dx.doi.org/10.7205/MILMED-D-17-00053

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.: The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. *PLoS Med 6*(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097

Pio, C., Chaves, G., Davies, P., Taylor, R., & Grace, S. (2019). Interventions to promote patient utilization of cardiac rehabilitation: Cochrane systematic review and meta-analysis. *Journal of Clinical Medicine, 8*(2), 189-208. https://doi.org/10.3390/jcm8020189

Raihan, N. & Cogburn, M. (2020). Stages of Change Theory. StatPearls [Internet]. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK556005/

Rohrbach, G., Schopfer, D., Krishnamurthi, N., Pabst, M., Bettencourt, M., Loomis, J., & Whooley, M. (2017). The design and implementation of a home-based cardiac rehabilitation program. *Federal Practitioner, 34*(5), 34–39. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370433/

Santiago de Araújo Pio, C., Beckie, T. M., Varnfield, M., Sarrafzadegan, N., Babu, A. S., Baidya, S., Buckley, J., Chen, S.-Y., Gagliardi, A., Heine, M., Khiong, J., Mola, A., Radi, B., Supervia, M., Trani, M. R., Abreu, A., Sawdon, J. A., Moffatt, P. D., & Grace, S. L. (2020a). Promoting patient utilization of outpatient cardiac rehabilitation: A joint international council and Canadian association of cardiovascular prevention and rehabilitation position statement. *International Journal of Cardiology, 298*, 1–7. https://doi.org/10.1016/j.ijcard.2019.06.064

Santiago de Araújo Pio, C., Gagliardi, A., Suskin, N., Ahmad, F., & Grace, S. (2020b). Implementing recommendations for inpatient healthcare provider encouragement of
cardiac rehabilitation participation: Development and evaluation of an online course.

BMC Health Services Research, 20(1), 1-13. https://doi.org/10.1186/s12913-020-05619-2

Schopfer, D., Priano, S., Allsup, K., Helfrich, C., Ho, P., Rumsfeld, J., Forman, D., & Whooley, M. (2016). Factors associated with utilization of cardiac rehabilitation among patients with ischemic heart disease in the veterans’ health administration. *Journal of Cardiopulmonary Rehabilitation and Prevention*, 36(3), 167–173. https://doi.org/10.1097/hcr.0000000000000166

Scott, L., Gravely, S., Sexton, T., Brzostek, S., & Brown, D. (2013). Examining the effect of a patient navigation intervention on outpatient cardiac rehabilitation awareness and enrollment. *Journal of Cardiopulmonary Rehabilitation and Prevention*, 33(5), 281–291. https://doi.org/10.1097/hcr.0b013e3182972dd6

Sumner, J., Harrison, A., & Daugherty, P. (2017). The effectiveness of modern cardiac rehabilitation: A systematic review of recent observational studies in non-attenders versus attenders. *PLoSOne*, 12(5), 1-4. http://dx.doi.org/10.1371/journal.pone.0177658

Supervia, M., Turk-Adawi, K., Lopez, F., Pesah, E., Ding, R., & Britto, R. (2019). Nature of cardiac rehabilitation around the globe. *EClinicalMedicine*, 13, 46-56. http://dx.doi.org/10.1016/j.eclinm.2019.06.006

The Centers for Disease Control and Prevention (CDC). (2015). Heart disease and stroke cost America nearly $1 billion a day in medical costs and lost productivity. Retrieved from https://www.cdcfoundation.org/pr/2015/heart-disease-and-stroke-cost-america-nearly-1-billion-day-medical-costs-lost-productivity

Thomas, R., Balady, G., Banka, G., Beckie, T., Chiu, J., Gokak, S., Ho, P., Keteyian, S., King, M., Lui, K., Pack, Q., Sanderson, B., & Wang, T. (2018). 2018 ACC/AHA clinical
performance and quality measures for cardiac rehabilitation: A report of the American College of Cardiology/American Heart Association task force on performance measures.

Circulation: Cardiovascular Quality and Outcomes, 11(4), 1814–1837.

https://doi.org/10.1161/hcq.0000000000000037

Waight, C. A., Strodl, E., Sheridan, J., & Tesar, P. (2015). Posttraumatic growth in post-surgical coronary artery bypass graft patients. _Health Psychology Open, 2_(1), 1-9.

https://doi.org/10.1177/2055102915571370

Xu, J., Murphey, S., Kochanek, K., Bastian, B., & Arias, E. (2018). Deaths: Final data. _National Vital Statistics Report, 67_(5). Retrieved from https://www.cdc.gov/nchs/data/nvsr67/nvsr67_05.pdf

York University. (n.d.) Tools to promote cardiac rehabilitation utilization. Retrieved from https://sgrace.info.yorku.ca/tools-to-promote-cardiac-rehabilitation-utilization/
Table 1.

John Hopkins Nursing Evidence-Based Practice Evidence Level

Evidence Level	Description
Level I	Experimental study, randomized controlled trial (RCT)
 Systematic review of RCTs, with or without meta-analysis |
| **Level II** | Quasi-experimental study
 Systematic review of a combination of RCTs and quasi-experimental
 Quasi-experimental studies, with or without meta-analysis |
| **Level III** | Non-experimental study
 Systematic review of a combination of RCTs, quasi-experimental, non-experimental, non-experimental studies only, with or without meta-analysis
 Qualitative study or systematic review, with or without meta-analysis |
| **Level IV** | Opinion of respected authorities, nationally recognized expert committees, consensus panels based on scientific evidence |
| **Level V** | Based on experiential and non-research evidence |

(Dang & Dearholt, 2017)

Note. Johns Hopkins Nursing Evidence-Based Practice evidence level guide
Table 2.

Budget

EXPENSES	REVENUE
Direct	Billing
Salary and benefits (embedded into current workflows)	$0 Grants
Supplies (print patient information material)	$275 Institutional budget support
Services	$0 Cardiovascular discharge plan budget
Statistician	$2200
Indirect	$0
Overhead (net-neutral intervention)	$0
Total Expenses	$2475
Net Balance	$25
Table 3.

Patient Demographics

Variable	M	SD	n	%
Age	64.35	10.57	72.6	27.4
Gender				
Males	53			
Females	20			
Insurance				
Medicare	42			57.5
Private	25			34.2
Medicaid	2			2.7
Government	2			2.7
Not insured	2			2.7
Table 4.

Face-to-Face Nursing Promotion Compliance

Variable	Frequency	Percent
no	6	8.2
yes	67	91.8
Total	73	100.0
Table 5.

Cardiac Rehabilitation Enrollment Rate (All Isolated CABG patients)

Variable	Frequency	Percent
no	28	38.4
yes	21	28.8
Non-eligible	24	32.9
Total	73	100.0
Table 6.

Face-to-Face Promotion of Cardiac Rehabilitation Enrollment of Cardiac Rehabilitation Eligible Patients Crosstabulation

Variable	CR Enrollment		Total
	no	yes	
Face-to-Face Promotion	2	26	4
	2	19	45
Total	28	21	49
Table 7.

Chi-Square Test: Cardiac Rehabilitation Rates Among Cardiac Rehabilitation Eligible Clients

Test Type	χ^2	df	p
Pearson Chi-Square	.091*	1	.763
Linear-by-Linear Association	.089	1	.766
Table 8.

ARNP Endorsement of Cardiac Rehabilitation Enrollment Impact

Variable	ARNP Endorsement	Total	
	no	yes	
CR Enrollment	Count		28
no	17	11	
% within CR	60.7%	39.3%	100.0%
Enrollment			
yes	8	13	21
% within CR	38.1%	61.9%	100.0%
Enrollment			
Total	25	24	49
% within CR	51.0%	49.0%	100.0%
Table 9.

Chi-Square Tests: ARNP Endorsement of Cardiac Rehabilitation Enrollment Impact

	χ^2	df	p
Pearson Chi-Square	2.457a	1	.117
Table 10.

GT8 RN Support of Cardiac Rehabilitation Enrollment Impact

Variable	GT8 RN Support no	GT8 RN Support yes	Total
CR Enrollment	Count	% within CR Enrollment	Count
no	23	82.1%	15
yes	5	17.9%	6
Total	28	100.0%	21
% within CR Enrollment	71.4%	28.6%	100.0%

Count	% within CR Enrollment	Total
38	77.6%	100.0%
Table 11.

Chi-Square Test: GT8 RN Support of Cardiac Rehabilitation Enrollment Impact

	χ^2	df	p
Pearson Chi-Square	.791a	1	.374
Table 12.

Discharge Nurse Endorsement of Cardiac Rehabilitation Enrollment Impact

Variable	Discharge RN Endorsement	Total					
	no	yes	no	yes			
CR Enrollment	Count		Count		% within CR Enrollment	% within CR Enrollment	
no	7	21	25.0%	75.0%	100.0%		
yes	4	17	19.0%	81.0%	100.0%		
Total	11	38	22.4%	77.6%	100.0%		
Table 13.

Chi-Square Tests: Discharge Nurse Endorsement of Cardiac Rehabilitation Enrollment Impact

	χ^2	df	p
Pearson Chi-Square	.244a	1	.621
Table 14.

Chi-Square Test: Patient Barriers and Cardiac Rehabilitation Enrollment

	χ^2	df	p
Pearson Chi-Square	12.519a	6	.021
Figure 1.

PRISMA Statement

Records identified through database searching (n = 137)

Records after duplicates removed (n = 137) (search engine removed duplicates)

Records screened (n = 137)

Records excluded (n = 88)

Full-text articles excluded, with reasons (n = 42)

Full-text articles assessed for eligibility (n = 49)

Studies included in qualitative synthesis (n = 0)

Studies included in quantitative synthesis (n = 6)

Systematic review with meta-analysis (n = 1)

CINAHL (n = 34)

Cochrane Systematic Reviews (n = 1)

Gale Academic (n = 59)

Medline (n = 30)

Academic search Index (n = 8)

SPORTSDiscus (n = 5)

Note. Summary of full-text survey results from the evidence search

(Moher et al., 2009)
Figure 2.

Recommendation to Answer the PICOT Question

- Create a systematic process focusing on increasing enrollment rates into cardiac rehabilitation utilizing an interprofessional team.
- Train the healthcare team (RN, ARNP, RN care managers, cardiac care coordinators, discharge nurses) using standardized cardiac rehabilitation education about how to increase enrollment rates.
- Cardiac rehabilitation (CR) champions (cardiac care coordinators) to provide face-to-face nursing promotion of cardiac rehabilitation supported by the staff RN and discharge nurses.
- Cardiology ARNPs to provide a strong endorsement of cardiac rehabilitation during patient rounds.
- RN care managers address patient's barriers to enrolling into cardiac rehabilitation and solve if possible.

Note. This is a visual depiction of the recommendations from synthesizing the primary articles to increase enrollment rates into cardiac rehabilitation.
Healthcare Organization SWOT Analysis

Strength	Weakness
High quality outcomes	Resistance to change
Leadership focus on EBP changes	RN fatigue and burnout
Cardiac rehab in house	No leverage strength
Required healthcare professional	Cannot resource to a specific person
Vast resources	
High levels of staff competency	

Opportunities	Threats
Create a policy/process	New initiative
Improved health outcomes	Current workloads
Increased reimbursement	High RN turnover
	CMS policy changes
	Change in payor
Figure 4.

Face-to-Face Nursing Cardiac Rehabilitation Promotion Systemic Process
Figure 5.

*G*Power Sample Size Calculation Required for Chi-Square Test
Appendix A

Summary of Primary Research Evidence

Citation	Design, Level, Quality Grade	Sample	Intervention (Definitions should include any specific research tools used along with reliability & validity)	Theoretical Foundation	Outcome Definition	Usefulness Results	Key Findings
Ades, P., Keteyian, S., Wright, J., Hamm, L., Lui, K., & Newlin, L. (2017). Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clinic Proceedings, 92(2), 45–53. https://doi.org/10.1016/j.mayocp.2014.10.014	Meta-synthesis, Level III, Grade: High (National initiative by CDC and CMS)	International research, 30 organizations and agencies as well as CR graduates and family members	EB guide for interventions to improve CR enrollment, referral, and adherence. Derived benefits from systematic review of RCT Comparison of current US CR participation rates	Not present	Referral: Official communication between HCP, CR program, and Patient Enrollment: attending the first scheduled CR session Adherence: proportion of	Results & key findings: Increase CR participation to 70% will reduce mortality by 13% & readmissions 31%	Referral rates with systematic approach will
of 20-30% with the goal to increase to 70%

CR session completed	triple enrollment rates
Automatic referral with CR liaison increases referral by 54%	Liaison will improve enrollment by 29%
Hospital adopts enrollment strategy will exceed 70% enrollment	

Usefulness:
Hospitals need a CR EB intervention in place for referral, enrollment, adherence, and completion to increase CR participation

Increase enrollment strategies include HCP to help educate and refer patients to CR

Use a quality of care indicator to
Ali-Faisal, S. F., Benz Scott, L., Johnston, L., & Grace, S. L. (2016). Cardiac rehabilitation referral and enrolment across an academic health sciences centre with e-referral and peer navigation: A randomised controlled pilot trial. BMJ Open, 6(3), e010214. https://doi.org/10.1136/bmjopen-2015-010214

2 parallel-arm, randomized, single-blinded trial with allocation concealment	**3 cardiac units in a tertiary center in Canada**	**Cardiac inpatient eligible for CR (n=92)**	**Not present**	**Results & key findings:**
Cardiac unit CR referral 78% compared to general cardiology unit 61%, & interventional unit 33%				
Location of CR center greatest impact to enroll (77% close vs 23% far, p=0.04)				
PN arm group 11% increase in enrollment but not significant (p=0.24)				
eRefferal decreased common bias.				
Usefulness: The type of unit has an impact on CR enrollment and referral				
Need to provide education to HCP about CR benefits, and clinical practice guidelines				
Level I Quality: High	**Intervention along with e-referral:**			
- PN visiting Patient at bedside to educate and endorse CR
- Mail card to Patient’s home about CR enrollment
- Call participants 2 weeks after discharge to encourage CR
Comparison to usual treatment (no PN engagement, only e-referral)
PN trained to provide CR focused education and support.
All PN contact was documented for establish consistency and fidelity.
Dichotomous data collection if enrolled into CR.
T-test or Fisher’s exact test to compare clinical | **eReferral:** automatic populated referral for the doctor to select
Referral: CR program receipt of documentation from doctor to refer the Patient
Enrollment: Patient attendance at a scheduled intake appointment | |
| | | | | |
Cossette, S., Frasure-Smith, N., Dupuis, J., Juneau, M., & Guertin, M.-C. (2012). Randomized controlled trial of tailored nursing interventions to improve cardiac rehabilitation enrollment. Nursing Research, 61(2), 111–120. https://doi.org/10.1097/nnr.0b013e318240dc6b

Study Details	Study Design	Inpatient Characteristics	Intervention	Leventhal’s Self-Regulation Theory	Results & Key Findings
Experimental RCT-randomized & blinded	Inpatients suspected of ACS in a cardiac hospital (n=242) Power of .80 & two-sided alpha of .05	Interventions: One face-to-face nurse-patient visit before d/c with CR specific information with 2 more contacts over 10 days after d/c (either phone or in person)	Leventhal’s Self-Regulation Theory	Enrollment: Attend at least one CR session within 6 weeks of d/c	
Level I Grade: High	Comparison: usual care nurses provide during hospital stay, 1 phone call by research assistant, and 2nd call by staff blinded by assignment to encourage enrollment in CR	Chi-square test for primary outcomes	Logistic regression to assess models adjusting baseline variables	Consider other variable with enrollment: accessibility, distance, employment, education, prior CVD (all p <0.01)	
		Logistic regression model for secondary outcomes		Time of enrollment did	

Results & key findings: Results in line with numerous RCT evaluating CR enrollment after liaison type intervention. Meeting times for 3 encounters lasted 30-240 minutes. Intervention group had higher enrollment rates (45%) compared to control group (24%) (p<.001) unadjusted odds ratio associated with intervention 2.56, 95% CI. Consider other variable with enrollment: accessibility, distance, employment, education, prior CVD (all p <0.01)
Enrollment data was collected in computerized database also independent data entry	Illness perception: 38-item IPQ-R (alpha coefficient .79-.89) Test reliability good stability & correlations .63-.88.	Family support perception: 14-item Family Care Climate Questionnaire Patient version (Cronbach’s alpha of .89)
Medication adherence: 4-item Self-Reported Medication-Taking Survey (lack variability)	not differ between groups	Usefulness: Nurses are frontline of providing care-scientific knowledge, combined with clinical expertise to improve patient outcomes
Face-to-face CR nurse/patient visit increase enrollment rates	Variable illness perception only secondary outcomes difference between groups	Face-to-face CR nurse/patient visit increase enrollment rates

Grossman, J. (2015). Cardiac rehabilitation enrollment and the impact of systematic nursing interventions for postmyocardial infarction and stent patients. Clinical Nursing Research, 25(4), 378–390. https://doi.org/10.1177/1054773815620777
FACE-TO-FACE NURSING PROMOTION OF CARDIAC REHABILITATION

Prior patient entrance requirements compared to those with indirect intervention:

Intervention	Admission (n=82)	Statistically significant predictors
Initial patient entrance interview	88% enrolled	\(x^2(3)=32.84, p < 0.001 \)
Group 1: basic standard of care & interview	81% enrolled	\(x^2(3)=1005.56, p < 0.001 \)
Group 2: basic standard of care & physician letter	18% did not enroll	\(x^2(3)=284, p < 0.001 \)
Group 3: basic standard of care & phone call & CR		
Group 4: patients discharged early		

Patients received endorsement letter from: physician to home, CR manager and PI.

Group 1: basic standard of care and entrance interview

- **Comparison:**
 - Group 1: basic standard of care and entrance interview
 - Group 2: basic standard of care plus letter from physician
 - Group 3: basic standard of care with phone call and CR letter
 - Group 4: patients discharged early, prior to having bedside consultation & treatment by CR

Outcome:

- **Statistical confidence of \(p < 0.05 \) was determined to be n=82.**

Usefulness:

- **Personalized time and attention by CR RN provided opportunity for follow-up care, concerns were discussed, patient support was encouraged.**
Santiago de Araújo Pio, C., Gagliardi, A., Suskin, N., Ahmad, F., & Grace, S. L. (2020b). Implementing recommendations for inpatient healthcare provider encouragement of cardiac rehabilitation participation: Development and evaluation of an online course. BMC Health Services Research, 20(1). https://doi.org/10.1186/s12913-020-05619-2

Multimethod with stepwise approach	Sample: HCP from academic hospitals in Toronto	CR educational needs: -what is CR -benefits of CR -Importance with endorsement -questions by patients -Barrier discussion
Level II	Needs assessment: n=7 Tool pilot test: n=5 Formative tool evaluation: n=24	Kirkpatrick’s Model of Training
Quality: High	Describe the development and evaluation of a guidance CR implementation tools	CR RN creating seamless continuum for patients to OCR results in enhancing CR enrollment
	Interventions: Needs assessment:	Patients who received face-to-face nursing intervention were more likely to enroll compared to those with indirect intervention

RN, received CR manager letter at home
SPSS for statistical analysis, descriptive stats and frequency distribution for population characteristics
2-way chi-square to determine relationship between intervention & CR enrollment (Confidence level 95% & confidence interval of 5)
Direct logistical regression to assess effect on factors regarding patient enrollment.
| - Literature review of patient-HCP discussions
| - Structured observation during HCP-patient CR discussion.
| SPSS version 24 for data analysis.
| Implementation tool type and development with expert input, best practice, and observation results
| Tool pilot test: Online learning module for HCP education with Level 1 Kirkpatrick’s model. Used TAP with semi-structured interviews with triangulation until saturated
| Formative tool evaluation: Survey based on Kirkpatrick’s model of training. HCPs surveyed 3 times-1 time before using the tool
| - Implementation tool result: online course developed for HCP CR education
| Tool pilot test result: HCP satisfied with education & length but they did not remember key points, and CR conversation with patients now averaging 22 minutes.
| Formative tool evaluation results: Increase HCP CR knowledge. Improved patient communication, & improved positive attitude among HCP about CR
| Key findings: Without standardized CR education, HCP
developed tool, after using the tool, and one month later. SPSS version 24 to compare pre and post-test with t-test and Chi-square.

Usefulness: Use standardized HCP CR educational material endorsed by 23 medical societies and 39 ICCPR societies.

Majority of HCP require additional education about CR.

HCPs should use educational tools provided and endorsed by CR experts.

Scott, L., Gravely, S., Sexton, T. R., Brzostek, S., & Brown, D. L. (2013). Examining the effect of a patient navigation intervention on outpatient cardiac rehabilitation awareness and enrollment. Journal of Cardiopulmonary Rehabilitation and Prevention, 33(5), 281–291. https://doi.org/10.1097/hcr.0b013e3182972dd6

Experimental RCT
Level: 1
Quality: High

CR eligible patients > 21 yo on a cardiology or thoracic medical unit (n=181)

Measures:
Data extracted from medical records and self-reported from

2 PN trained to provide basic CR education, support, and encourage enrollment.
-1 visit at the Patient’s bedside
-1 phone call 1 week after d/c
-1 CR endorsement letter mailed

Not present

Enrollment: attend at least 1 CR session

Results:
PN arm 6 times more likely to have more awareness of OCR (OR=5.99, p=0.001)

Patients who report increased awareness of OCR were 9
patients during phone calls. Interviews used psychometrically validated scales and asked identical questions using CATI system. Univariate test of demographics, clinical, and health system variables: 2-tail Fisher exact test and independent sample t-test as appropriate Backwards stepwise logistic regression analysis to determine contributing factors of CR awareness and enrollment and PN and CR awareness.	Comparison: Patients received standard d/c instructions provided to all patients (no CR specific education, follow-up call, or mail)	times more likely to enroll (OR=9.27, p=0.034) Key finding: HCP have the potential to improve awareness of CR services, which can increase CR enrollment Usefulfulness: PN can increase enrollment by education, endorsement, awareness, and support Determine if CR center can support increased enrollment Barriers impede CR enrollment

Legend: ACS: Acute coronary syndrome, AHRQ: Agency for Healthcare Research and Quality, CACPR: Canadian Association of Cardiovascular Prevention and Rehabilitation, CATI: Computer-assisted telephone interviewing, CDC: Centers for Disease Control and Prevention, CI: Confidence interval, CMS: Center for Medicare and Medicaid, CR/OCR: cardiac rehabilitation (United States)/Outpatient cardiac rehabilitation, D/C: Discharge, EB: Evidence-based, HCP: Healthcare provider (i.e. Doctor, extender (ARNP, PA), nurse, allied health), ICCPR: International Council of Cardiovascular Prevention and Rehabilitation, IPQ-R: Illness Perception Questionnaire, MI: Myocardial infarction, MD: Medical doctor (physician), PN: Patient navigator, RATS: Relevance of study questions, Appropriateness of method, Transparency of procedures, Soundness of
interpretative approach, RCT: Randomized controlled trial, RN: Registered nurse, PT: Physical therapy, SMD: standard mean difference, TAP: think-aloud protocol, WHO: World Health Organization
Summary of Systematic Reviews (SR)

Citation	Quality Grade	Question	Search Strategy	Inclusion/Exclusion Criteria	Data Extraction and Analysis	Key Findings	Usefulness/Recommendation/Implications
Pio, C., Chaves, G., Davies, P., Taylor, R., & Grace, S. (2019a). Interventions to promote patient utilization of cardiac rehabilitation: Cochrane systematic review and meta-analysis. Journal of Clinical Medicine, 8(2), 189.	Level II High Meta-analysis	Evaluating interventions that promote utilization of CR and identify effective interventions to increase CR enrollment	Designed in accordance with Cochrane Heart Group methods Cochrane and MEDLINE with various other databases with hand-search systematic reviews and meta-analysis resulting in 26 RCT and n=5299 Clarified missing, unreported, and ongoing trials with authors and experts.	Inclusion: Randomized, quasi-randomized controlled trials (individualized or cluster level) with parallel groups or cross-over designs Study participants: Adults who are eligible for CR Study interventions: Increasing CR adherence or completion Any intervention with aim to increase CR utilization Independently verified by 2 authors if met inclusion criteria Exclusion: Wrong interventions Outcome not of interest Not comprehensive Wrong study design	Data extraction based on 2 templates and protocols. Authors independently extracted data Dichotomous outcomes expressed as risk ratio with 95% CI	Intervention deliverer (nurse or allied health provider, p=0.02) and delivery format (face-to-face, p=0.01) increased CR enrollment Remotely offered CR improved adherence (SMD=0.56, 95% CI=0.36-0.76)	Nurse’s deliver standardized face-to-face promotion of CR at the bedside Online courses available to educate healthcare providers how to discuss CR with patients at bedside

Interventions to increase CR completion were effective (RR=1.13, 95% CI=1.02-1.25) Intervention effectiveness identified under-represented groups (minorities, low income, comorbidities)
Citation	Quality Grade	Question	Search Strategy	Inclusion/ Exclusion Criteria	Data Extraction and Analysis	Key Findings	Usefulness/Recommendation/Implications
https://doi.org/10.3390/icm8020189					comparisons were included)	13 subgroups were explored for significant heterogeneity	
Project Schedule

Planning Phase

Activity	NUR7801	NUR7802	NUR7803
Meet with research mentors			
Meet with preceptor			
Complete literature review to support PICOT			
Complete literature review for current knowledge			
Review and determine which internally approved standards and process and educational material to utilize			
Finalize a specific aim with clear outcomes			
Finalize key stakeholders with the preceptor and review current data			

Internal Data Collection

Obtain data about CR enrollment numbers			
Obtain data about CVD statistics reported to the STS database			
Obtain data about CMS CVD premier benchmark outcomes			
Activity	**NUR7801**	**NUR7802**	**NUR7803**
---	---	---	---
Meet with key stakeholders			
Complete an organizational assessment	Week 3		
Discuss budget with CNO	Week 5		
Write a project scope and share with the CNO	Week 7	Week 11	
Write a project charter and share with key stakeholders	Week 9	Week 13	
Intervention Planning			
Create a systematic process supported by evidence involving the IPC team with the objective to increase the number of CABG patients who enroll in CR	Week 1	Week 3	Week 5
Plan a data deployment strategy to obtain isolated CABG transfer information to the pilot unit	Week 7	Week 9	Week 11
Plan face-to-face nursing promotion intervention: process, education, and documentation	Week 13		
Plan the intervention for care management rounding to address barriers for CR enrollment			
Set guidelines for IPC rounds to include CR enrollment status			
Activity	NUR7801	NUR7802	NUR7803
---	---	---	---
Plan an intervention for ARNPs to endorse CR during rounds	Week 1	Week 3	Week 5
Create a checklist for the process for compliance	week 1	week 3	week 5
Measure and Analysis			
For each measure, determine the outcome measurements, operational definitions, and validity/reliability	week 1	week 3	week 5
For each measure, plan ongoing assessment factors	week 1	week 3	week 5
Determine how each intervention will be monitored for fidelity and completion	week 1	week 3	week 5
Determine quantitative methods for each intervention	week 1	week 3	week 5
Determine methods to comprehend variation within the data	week 1	week 3	week 5
Consider potential ethical concerns and how to address	week 1	week 3	week 5
Project Approval			
Preceptor approval of the project	week 1	week 3	week 5
Stakeholder meeting for approval	week 1	week 3	week 5
USA ERCP approval	week 1	week 3	week 5
Activity	NUR7801	NUR7802	NUR7803
---	---------	---------	---------
Education and Training			
CR champion education via ICCPR CBL and complete post-test			
GT8 nurses CR education via ICCPR CBL and complete post-test			
CR education via ICCPR CBL and complete post-test			
Care management education via ICCPR CBL complete post-test, and potential barriers with solutions			
Determine completion and success rates of education			
Project Implementation			
Implement face-to-face nursing promotion of CR admitted with isolated CABG			
Weekly surveillance of the face-to-face nursing process			
Implement care manager rounds with the focus to address and attempt to solve barriers expressed by the patients			
Weekly surveillance of care management rounding on			
Activity	NUR7801	NUR7802	NUR7803
--	---------	---------	---------
patients to address barriers			
Implement ARNP CR promotion with rounds			
Weekly surveillance for ARNP promotion with rounds			
Implement IPC rounds to discuss CR status			
Weekly surveillance of IPC rounds to ensure compliance			
CR enrollments process surveillance via weekly review of the checklist			
Discharge team provides patients with enrollment information and final strong promotion			
Weekly surveillance of discharge team providing CR promotion			
Data			
Daily (M-F) report of patients admitted to GT8 with isolated CABG with demographics from HIM			
Monthly data report of current CR enrollment numbers of isolated CABG patients from CR HIM			
Weekly data collection of patient barriers and resolution via EHR			
FACE-TO-FACE NURSING PROMOTION OF CARDIAC REHABILITATION

Activity	NUR7801	NUR7802	NUR7803
documentation review			
Daily (M-F) data collection of patients who received face-to-face promotion via review of checklist and surveillance			
Weekly data of patients who receive ARNP promotion via the checklist and surveillance			

Evaluation Phase

Results

- Provide details of process measures and outcomes
- Discuss contextual elements that interacted with interventions
- Observe relationships between outcomes, interventions, and context elements
- Discuss unintentional consequences
- Provide a summary of missing data

Summary

- Summary of key findings, relevance, and the aim
- Discussion of strengths of the project
| Activity | NUR7801 | NUR7802 | NUR7803 |
|---|---------|---------|---------|
| Interpretation of interventions and the number of patients enrolled in CR | | | blue |
| Complete data collection of the number of patients enrolled in CR | | | |
| Face-to-face nursing promotion | | | |
| IPC rounds | | | |
| ARNP promotion | | | |
| Care manager barrier resolution | | | |
| Discharge nurse CR promotion | | | |
| Compliance of CR enrollment systematic process | | | |
| Compare the project findings with other literature | | | |
| Obtain data on readmission rates with isolated CABG | | | |
| Obtain data on the cost of CVD | | | |
| Obtain the number of isolated CABG organizational-wide | | | |
| Compare the impact of the projects on the cost of CVD | | | |
| Compare the impact of the project on the numbers of CABG patients in CR | | | |
| Discuss any difference between the anticipated and | | | |
Observed Outcomes

Discuss the cost and strategic trade-off as well as opportunity cost.

Limitations

Discuss the limitations of the project and efforts made to reduce and adjust limitations.

Discuss factors that might have limited validity.

Discuss efforts of the project manager to adjust for limitations.

Conclusion

Discuss the usefulness of the intervention in promoting CR enrollment.

Discuss the sustainability of the intervention.

Discuss the potential for spread to other context.

Discuss implications for further study and suggest new topics for study.

Discuss funding sources and role in the project.

Write the abstract.

Dissemination

Present to the stakeholders via virtual meetings.
Activity	NUR7801	NUR7802	NUR7803
Present to the nursing education counsel			
Make a video presentation of the project to share			
Think about the process to publish the project results			
Prepare a poster to share at scholarly events			
Celebrate!			

Legend: ARNP: Advanced registered nurse practitioner, CABG: Coronary artery bypass graft, CNO: Chief nursing officer, CMS: Centers for Medicare and Medicaid, CR: cardiac rehabilitation, CVD: Cardiovascular diseases, ICCPR: International Council of Cardiovascular Prevention and Rehabilitation, IPC: Interprofessional collaboration, HIM: Health information management, STS: Society of Thoracic Surgeons
Appendix D

Interprofessional Team Collaboration Checklist

Cardiac Rehabilitation Champion (Cardiac care coordinators)
(document each session in the EHR patient education section)

- Meet with the patient within 48-72 hours after transfer from ICU to GT8
 - Transfer date: ______________________
 - Date and time met with patient: ______________________
- Read the CR promotion enrollment script
- The patient watched the informational video
- Provided the patient the CR promotion packet
- Faxed the cardiology office an order request for CR (if the patient is interested)
- Cardiologist, fax number, date and time:
 __

Comments about the session: __

The date of the daily visit and comments for the IPC team. Daily report to the RN, discharge
nurse, care managers, and ARNP to provide promotion of CR (date and comments)

- __
- __
- __
- __
- __

ARNP daily CR endorsement (document in the provider daily progress notes)

- __
- __
- __
- __
- __

GT8 RN supports the patient with answering questions, promoting CR, and addressing concerns
(document in the EHR and write a summary for the IPC team, include the date of intervention)

☐ __

☐ __

☐ __

☐ __

[72x602]Care Managers (document in EHR in the case manager progress)

☐ Meet with the patient to address barriers after the initial face-to-face promotion session by the CR champions and 72-96 hours after transfer to GT8
 ◦ Date and time met with patient: ________________________________

☐ Barriers included: __
 __
 __

☐ Resolution of the barriers (if applicable): __________________________
 __

[90x371]Discharge Nurse (document in the EHR in the patient education section)

☐ Reviewed checklist for compliance

☐ Provided CR enrollment process information during discharge

☐ Provided a strong promotion of CR enrollment after discharge

Comments of the d/c process: __
 __
Appendix E

CR Champion Promotion Script

Materials needed:

- Device to show a video (online)
- CR enrollment promotion packet: motivational letter, AACVPR patient education, frequently asked questions, CR locations, and the enrollment process

Hello my name is ________. I am the cardiac rehabilitation champion at the hospital. I am here to talk to you about what happens after leaving the hospital to help you regain your cardiac health. Do you feel like talking to me for a few minutes?

 Yes→ take a few minutes to build a rapport with the patient

 No→ Ok, I understand. I will come back tomorrow.

Cardiac rehabilitation is the next step after you are discharged from the hospital. Cardiac rehabilitation is a program to help people with heart disease, like yourself, to recover after a CABG. Cardiac rehabilitation will improve overall physical and mental health as well as social functioning. It helps you get back to being you!

Cardiac rehabilitation will:

- Help you feel better, reduce the risk of future heart problems, including premature death from heart disease, start healthy habits, quit smoking if you smoke, help manage stress, exercise safely being monitored by a healthcare team. This program will help you return to usual activities and live a longer, fuller life. Who would not want that!

- Cardiac rehabilitation programs help you become active in a safe environment. This program will help improve your fitness, improve your cholesterol and blood pressure,
educate you about improvements to your diet to focus on heart health, and improve overall well-being.

To give you a better understanding of cardiac rehabilitation and what you can expect, I would like to show you a short video. Would you like to watch it?

Yes → https://www.youtube.com/watch?v=ckOHA4zSHr0

No → I understand, I will come back tomorrow to see if you are interested.

Do you have any questions or concerns right now? (answer to the best of your ability, write down questions you do not know, and follow-up with an answer)

I am also leaving you with some written information about cardiac rehabilitation that you can take home with you. Provide the CR enrollment promotion packet

During your stay, you can expect the nurses to answer your questions about cardiac rehabilitation, the nurse practitioners will speak with you about the importance and benefits, the care management team will come to address any barriers you have to attending cardiac rehabilitation, a cardiac rehabilitation champion will follow up every day with you, and the discharge nurse will provide you with information about the enrollment process to follow after you leave the hospital.

Cardiac rehabilitation is a class I A recommendation after a CABG, which means research from multiple studies provide strong evidence that this treatment is very beneficial, useful, and effective. A class I A recommendation is the highest recommendation a therapy can receive. You must talk to your doctor about cardiac rehabilitation.

Here are some statistics from the CDC about people who participate in cardiac rehabilitation:
• A 25% reduction in all-cause mortality rates
• Reduction in 10-year all-cause mortality following CABG
• Reduced symptoms, such as less chest pain, shortness of breath, and fatigue
• Improved adherence with medication
• Increased exercise performance
• Increased knowledge about cardiac disease and its management
• Enhanced ability to perform daily living activities
• Improved health-related quality of life
• Improved psychological symptoms, for example, a decrease in depression
• Reduced hospitalizations
• Increased ability to return to work or engage in leisure activities (CDC, 2020)

We have an excellent program located right here in the hospital if this location is close to your home; otherwise, we can help find a location closer to your home. Once the doctor order has been received, our cardiac rehabilitation team will call you to arrange for your first visit after discharge.

Thank you for allowing me to talk to you about the critical next step you need to take to get your life back. Cardiovascular disease progression is preventable with behavioral changes such as exercise, stress reduction, and eating a heart-healthy diet, which cardiac rehab will help you achieve. Do you have any questions before I leave? Have a great day and we will be back to check on you tomorrow. (script based on ICCPR recommendation: York, n.d.)
Appendix F

Cardiac Rehabilitation Promotion Packet: Motivational letter from leadership, AACVPR patient educational flyer, frequently asked questions, locations of the cardiac rehab centers, and the enrollment process

Motivational letter:

Dear Patient,

As part of your post-operative recovery, we would like to enroll you in our Cardiac Rehabilitation Program. The American Heart Association and the Centers for Disease Control and Prevention advise that all heart patients participate in cardiac rehabilitation to maximize their recovery.

Our goal through cardiac rehabilitation is to help you:

- improve your health
- prevent further problems related to your cardiovascular disease
- reduce your symptoms—and feel better!

You can expect many healthcare team members to recommend cardiac rehabilitation as your next step during your stay. If we obtain an order from your cardiologist, we can start the sign-up process in the hospital. Otherwise, the rehabilitation team will contact you at home to set up your first appointment.

Your first appointment will be an educational session to help guide you through the process. Our team will create an individualized plan to give you the best results. Remember, the program is more than just exercise. We will help you manage stress, provide health education classes, and offer information about eating a heart-healthy diet.

If you have any cardiac rehabilitation questions, please ask any healthcare team member or call us.

With best wishes for your recovery,
Patient Cardiac Rehabilitation Education (AACVPR, n.d.)
Cardiac Rehabilitation Frequently Asked Questions

Cardiac Rehabilitation Frequently Asked Questions

What are the benefits of cardiac rehabilitation?
- Learn to exercise safely
- Learn to manage stress
- Improve your understanding of medication and your medical conditions
- Reduce the chance of rehospitalization
- Reduce your risk of dying from a cardiac-related event by 50%
- Improve your overall health and feel better!

What do I need to do to get started?
1. Speak to your doctor to receive an order to attend cardiac rehabilitation.

Who will contact me, and when?
2. A cardiac rehabilitation coordinator will contact you to set up your first appointment within two weeks of obtaining a doctor’s order.

When will I start cardiac rehabilitation?
3. Ideally, you should start cardiac rehabilitation 2-4 weeks after your CABG. Remember, you will need your doctor to write an order before you can begin.

How much does cardiac rehabilitation cost?
4. Insurance may pay for cardiac rehabilitation, and the cost will depend on your insurance plan. We will contact your insurance company for you after we receive the doctor’s order.

How long is cardiac rehabilitation and how often do I need to attend?
5. The traditional rehabilitation plan is 36 sessions in total. The program lasts for 12 weeks, with three one-hour sessions each week. However, the schedule can be adjusted to fit your individual needs.

What kind of exercises will I do?
6. Exercise may include the stationary bike, recumbent bike, treadmill, elliptical machine, and free weights. Every session starts and ends with stretching. Your exercise plan is individual and based on your current health status. The cardiac rehabilitation team will closely monitor you, including your heart rate, rhythm, and blood pressure while exercising, to ensure your safety.

What other services are available at cardiac rehabilitation?
7. You will have the option to view educational videos and attend classes about health education, nutrition, and stress management. The cardiac rehabilitation team consists of nurses, exercise physiologists, dietitians, and access to the medical director.
Will I feel better?

8. Yes, yes, yes! Research shows that people who participate in cardiac rehabilitation improve their fitness, quality of life, and report an overall feeling of improvement!
Locations of Local Cardiac Rehabilitation Programs

Cardiac Rehab Centers in Florida

Call the center nearest you or ask your physician about participating in a Cardiac Rehab program. If you have questions or need guidance in your recovery after treatment, call Advent Health Hospital Orlando Cardiac Rehab 407-303-9360.

Location	Phone	Address	Fax
AdventHealth Celebration	407-303-3897	400 Celebration Place Kissimmee, FL	407-303-4293
AdventHealth Daytona	386-231-3690	301 Memorial Medical Pkwy Daytona Beach, FL	386-231-3691
AdventHealth Deland	386-943-4716	701 W Plymouth Ave Deland, FL	386-943-4776
AdventHealth Fish	386-917-7116	1055 Saxon Blvd Orange City, FL	386-626-6261
AdventHealth Heart of Florida	863-419-1811	40101 US-27 Davenport, FL	863-419-2503
AdventHealth New Smyrna Beach	386-424-5091	401 Palmetto St New Smyrna Beach, FL	386-424-5079
AdventHealth Ocala	352-402-5116	1100 SW 1st Ave Ocala, FL	352-401-8844
AdventHealth Ocala TimberRidge	352-873-7074	9521 SW State Rd 200 Located 1st floor TimberRidge ER Ocala, FL	352-873-7076
AdventHealth Ocala	352-674-4102	8550-NE 138th Lane Building 400 Lady Lake, FL	352-401-8844
AdventHealth Orlando	407-303-9360	601 E Rollins St Orlando, FL	407-303-9601
AdventHealth Palm Coast	386-586-4480	60 Memorial Medical Pkwy Palm Coast, FL	386-586-4644
AdventHealth Sebring	863-386-7180	4200 Sun N Lake Blvd Sebring, FL	863-386-7198
AdventHealth Waterman	352-253-3396	1000 Waterman Way Tavares, FL	352-253-3575
Cardiac Rehabilitation Enrollment Process

The minimum follow-up you can expect from the Cardiac Rehabilitation team is:

- 1st call: 24-72 hours after you leave the hospital
- 2nd call: within 7 days after you leave the hospital
- 3rd call: 30 days after you had your CABG surgery

With each phone call, the team will:

- follow-up with how you are doing
- answer any medical questions you have
- review your medication list with you on the initial call and with any medication changes
- strongly encourage you to start cardiac rehabilitation

How to enroll in cardiac rehabilitation:

1. Obtain an order from your cardiologist
 - You can call us, and we will send the order request to your cardiologist
2. The cardiologist’s office will send the order to the cardiac rehabilitation center
3. The cardiac rehabilitation team will gather information and then contact you:
 - The cost of cardiac rehabilitation specific to your health insurance
 - How many one-hour cardiac rehabilitation sessions your insurance will cover
4. Our team will schedule an orientation appointment with you
 - This first appointment is usually two hours
Appendix G

Evaluation Plan

Measure	Category of measures	Source of data	Frequency of data collection	Statistical test	Benchmark	Type of data to be collected	Level of measurement		
Enrollment rates into CR: Number of participants who received CR nursing face-to-face promotion: the participants who enroll in CR (numerator) compared to the total number of participants (denominator).	Outcome	HIM	Monthly: Week 3-week 10	Descriptive statistics	>27%	Yes or no: Did the patient attend the 1st scheduled CR session	Interval		
Impact enrollment rates into CR: The total number of isolated CABG patients enrolling into CR after the project completion (numerator) compared to the total number of isolated CABG patients enrolled in	Outcome	HIM	Week 10	Descriptive statistics	>40%	Retrospective data: Ten weeks before the start of the project, the enrollment rate of isolated CABG patients on the pilot unit	Interval		
		Collect data: CR leadership					Nominal		
		Collect data: CNO					Nominal		
CR before implementation (denominator).	Process Context	EHR Collect data: PM	Weekly: Week 3-week 8	Descriptive statistics	Ratio of barriers resolved by management to total number of barriers.	Chi-square test	>15%	Number and types of barriers expressed by the participants	Interval Nominal
---	---	---	---	---	---	---	---	---	---
Barriers resolved: The number of barriers resolved by care management (numerator) compared to the participant’s total number of documented barriers about enrolling into CR (denominator).	Process Context	EHR Collect data: PM	Weekly: Week 3-week 8	Descriptive statistics	Ratio of barriers resolved by management to total number of barriers.	Chi-square test	>15%	Number and types of barriers expressed by the participants	Interval Nominal
Participants receiving nursing face-to-face promotion: The number of participants who received nursing face-to-face CR promotion (numerator) compared to the total number of participants (denominator).	Process Context	EHR Collect data: PM	Weekly: Week 3-week 8	Descriptive statistics	Ratio of barriers resolved by management to total number of barriers.	Chi-square test	>90%	Yes or no: Did the isolated CABG patients receive face-to-face nursing promotion on the pilot unit	Interval Nominal
IPC CR education: The number of the IPC team members who passed the CR	Process Sustainability	Test Collect data:	Daily: Weeks 1-2	Descriptive statistics	Ratio	>90%	Pre and post-test scores	Interval	
post-test with 100% (numerator) compared to the total number of IPC team members who took the CR education post-test (denominator).

Nursing face-to-face compliance:
The CR champions completing the initial face-to-face CR promotion correctly (numerator) compared to the total number of face-to-face CR promotion sessions (denominator).

IPC Educators	Chi-square test
Weekly: Weeks 3-8	Weekly: Weeks 3-8

IPC rounds compliance:
During daily (M-F) IPC rounds, the number of participants whose CR status was reviewed (numerator) compared to the total number of participants (denominator).

Process	Surveillance	Descriptive statistics	Ratio
PM	PM	Ratio	

ARNP endorsement compliance:
The number of CR endorsements by the cardiovascular surgical ARNP.

EHR	EHR	Yes or no: Did the cardiovascular surgical ARNP provide a strong					
Context	Collect data:	Method	Endorsement for CR once during their patient rounds.				
--------	--------------	--------	---				
ARNP during participant rounding (numerator) compared to the total number of participants seen by the ARNP (denominator).	PM	Chi-square test	>90% Yes or no: Did the d/c RN provide CR promotion and providing the patient’s education about the enrollment process.				
D/C RN compliance: The number of participants who received face-to-face CR promotion and enrollment education at the time of discharge (numerator) compared to the total number of participants discharged.	Process	Surveillance EHR	Week: Week 3-week 8 Descriptive statistics Ratio Chi-square test				
Sustainability Context		Collect data: PM					
Demographics: Collect data about the gender upon admission of the participant.	Context	EHR	Week: Week 3-week 8 Descriptive statistics	n/a Data collection: (0) female (1) male (2) binary (3) no gender			
	Collect data: PM						
Demographics: Collect data about the age upon admission of each participant.	Context	EHR	Week: Week 3-week 8 Descriptive statistics	n/a Range of age: (0) 18 – 30 (1) 31 – 40 (2) 41 – 50 (3) 51 – 60 (4) 61-70 (5) 71-80 (6) 81-90 (7) 91-100			
Demographics: Collect data about the health insurance status at the discharge of the participants.	Context	EHR	Week: Week 3- week 8	Descriptive statistics	n/a	Health insurance: (0) no insurance (1) private insurance (2) Medicare (3) Medicaid	Ordinal
Demographics: Collect the zip code of residence	Context	EHR	Week: Week 3- week 8	Descriptive statistics	n/a	Zip codes will be coded for statistical analysis	Ordinal

Key: ARNP: advanced registered nurse practitioner, CNO: Chief Nursing Officer, CABG: coronary artery bypass graft, CR: cardiac rehab, d/c: discharge, EHR: electronic health record, IPC: interprofessional collaboration, LOS: length of stay, PM: project manager, RN: registered nurse
Appendix H

Participant Data Collection Tool

MRN	Age	Gender	Health insurance	Zip code	Transfer date	D/C date	CR promotion	ARNP promotion	D/C enrollment process	IPC rounds	Expressed barriers	Barrier resolution	Participant questions concerns	CR enrollment	RN support

Legend:

Gender: Data collection: (0) female, (1) male, (2) Binary, (3) no gender

Health insurance: (0) no insurance, (1) private insurance, (2) Medicare, (3) Medicaid

Range of age: (0) 18 – 30, (1) 31 – 40, (2) 41 – 50, (3) 51 – 60, (4) 61-70, (5) 71-80, (6) 81-90, (7) 91-100, (8) >101

Zip code: to be determined based on each participants residence

Barriers: to be determined based on each participants response