Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate

Wilfried M. Guiblet, Marzia A. Cremona, Monika Cechova, Robert S. Harris, Iva Kejnovská, Eduard Kejnovsky, Kristin Eckert, Francesca Chiaromonte, and Kateryna D. Makova

1 Biometrics and Genomics Graduate Program, Penn State University, University Park, Pennsylvania 16802, USA; 2 Department of Statistics, Penn State University, University Park, Pennsylvania 16802, USA; 3 Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA; 4 Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; 5 Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; 6 Department of Pathology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, USA; 7 Sant’Anna School of Advanced Studies, 56127 Pisa, Italy

DNA conformation may deviate from the classical B-form in ~13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here, we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule Real-Time (SMRT) technology. We show that polymerization speed differs between non-B and B-DNA: It decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates), and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.

[Supplemental material is available for this article.]

The three-dimensional conformation of DNA at certain sequence motifs may deviate from the canonical double-stranded B-DNA (the right-handed helix with 10 nt per turn) (Watson and Crick 1953) in helix orientation and strand number (Bacolla and Wells 2004; Mirkin 2008; Zhao et al. 2010). Approximately 13.2% of the human genome (394.2 Mb) has the potential to form non-B DNA structures (Supplemental Table S1), which are implicated in a myriad of cellular processes, and are associated with cancer and neurological diseases (Bacolla and Wells 2004; Mirkin 2007; Wang and Vasquez 2007; Zhao et al. 2010; Maizels 2015). For instance, adjacent runs of guanines can form G-quadruplex (G4) structures (Fig. 1A; Sen and Gilbert 1988) that participate in telomere maintenance (Parkinson et al. 2002), replication initiation (Huppert and Balasubramanian 2005; Besnard et al. 2012), and transcriptional regulation (Siddiqui-Jain et al. 2002). Consequently, G4 structures have emerged as attractive anti-cancer therapeutic targets (Balasubramanian et al. 2011). Additional non-B DNA structures associated with transcriptional regulation include left-handed Z-DNA duplexes formed within alternating purine-pyrimidine sequences (Wittig et al. 1991), A-phased repeats with helix bending formed within A-rich tracts (Jansen et al. 2012), and H-DNA triplexes formed within poly purine/poly pyrimidine tracts and mirror repeats (Fig. 1A; Mirkin et al. 1987; Belotserkovskii et al. 2010). Finally, Short Tandem Repeats (STRs), which also affect gene expression (Sawaya et al. 2013), can adopt slipped-strand (Sinden et al. 2007) and other non-B DNA conformations (Mirkin and Mirkin 2007). Expansions of STRs are associated with numerous neurological and muscular degenerative diseases (Castel et al. 2010). Notably, expansions of the hexanucleotide STR forming a G4 structure within the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) (Renton et al. 2011). Moreover, STRs are enriched in cancer-related genes and participate in their functions (Haberman et al. 2008). Thus, growing evidence indicates that non-B DNA plays a pivotal role in several cellular pathways impacting health and disease.

Whereas the transient ability of non-B DNA motifs to form noncanonical structures regulates many cellular processes (Zhao et al. 2010), these structures can also affect DNA synthesis and lead to genome instability, and thus can be viewed as both a blessing and a curse (Valton and Prioleau 2016). In vitro and ex vivo studies of individual loci showed that non-B DNA formation inhibits prokaryotic and eukaryotic DNA polymerases, causing their pausing and stalling of a replication fork (Kang et al. 1995; Samadashwily et al. 1997; Krasilnikova and Mirkin 2004; Maizels et al. 2015). In addition, non-B DNA may affect error rates depending on the sequence motif. Cells harboring G4-rich sequences have been shown to have higher rates of spontaneous mutations (Balasubramanian 2005). The accuracy of replication is also affected by non-B DNA: for example, sequences rich in G4 may lead to increased numbers of insertions and deletions (Sinden et al. 2007). Here, we seek to understand whether non-B DNA formation affects DNA polymerization speed and accuracy genome-wide.

© 2018 Guiblet et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
Figure 1. Non-B DNA motifs and Inter-Pulse Duration (IPD) analysis pipeline. (A) Non-B DNA motif types: patterns, putative structures, and counts of nonoverlapping 100-bp windows containing one (and only one) motif with IPD measurements on the reference or reverse-complement strand. (B) During SMRT sequencing, IPDs are recorded for each nucleotide in each subread (each pass on the circular DNA template). Subreads are aligned against the genome, and an IPD value is computed averaging ≥3 subread IPDs for each genome coordinate. We form 100-bp windows around annotated non-B motifs, extract their IPD values, and pool windows containing motifs of the same type to produce a distribution of IPD curves over the motif and its flanks (represented via 5th, 25th, 50th, 75th, and 95th quantiles along the 100 window positions). We also form a set of nonoverlapping 100-bp windows free from any known non-B motif and pool them to produce a “motif-free” distribution of IPD curves. Each motif type is then compared to motif-free windows through Interval-Wise Testing (IWT). (G4) G-quadruplexes; (G4+/G4−) G4 annotated on the reference/reverse-complement strand; (DR) direct repeats.
Voineagu et al. 2008; Eddy et al. 2015). These processes have been postulated to underlie non-B DNA-induced genome instability, that is, increase in chromosomal rearrangements, including those observed in cancer (Bacolla et al. 2004; Wang et al. 2008). Moreover, the increased occurrence of point mutations at non-B DNA was demonstrated at individual loci in plasmid constructs (for review, see Zhao et al. 2010; Bacolla et al. 2011; Inagaki et al. 2013), at disease-associated genes (Kamat et al. 2016), and among genetic variants from the 1000 Genomes Project (Du et al. 2014). Because the effect of non-B DNA on mutagenesis is driven by both the inherent DNA sequence and polymerase fidelity (Ananda et al. 2014), we hypothesize that these structures can impact the efficiency and accuracy of DNA synthesis. Despite the critical importance of non-B DNA structures, ours is the first genome-wide study of their joint impact on polymerization speed and errors.

To evaluate whether DNA polymerization speed (i.e., polymerization kinetics) and polymerase errors are affected by non-B DNA, we utilized data from Single-Molecule Real-Time (SMRT) sequencing. In addition to determining the primary nucleotide sequence, this technology, which uses an engineered bacteriophage phi29 polymerase (Eid et al. 2009), records Inter-Pulse Durations (IPDs) (Fig. 1B), that is, the times between two fluorescent pulses corresponding to the incorporation of two consecutive nucleotides (Flusberg et al. 2010). We used IPDs as a measure of polymerization kinetics. SMRT sequencing allows a direct, simultaneous investigation of the genome-wide effects of several non-B DNA motif types on polymerization kinetics and errors. We also contrasted SMRT polymerization kinetics and sequencing error rates in highly mutable versus invariant non-B DNA motifs, finding a potential link between polymerization in sequencing instruments and in living cells.

Results

Non-B DNA motifs influence polymerization kinetics

We considered 92 different motif types potentially forming non-B DNA (Fig. 1A; Supplemental Tables S1–S3; Zhao et al. 2010), including predicted motifs from the non-B DNA DataBase (Cer et al. 2012) and annotated STRs (Fungtammasan et al. 2015). We constructed motif-containing genomic windows taking ±50 bp from the center of each motif (most were shorter than 100 bp) (Supplemental Fig. S1) and excluded overlapping windows (Supplemental Tables S2, S3). For controls, we constructed 100-bp motif-free windows to represent genomic background, that is, putative B-DNA. We populated each motif-containing and motif-free window with 100 single-nucleotide resolution IPDs (Fig. 1B) from a human genome previously sequenced with SMRT at 69× (Zook et al. 2016). This was performed separately for the reference and reverse-complement strands, because each strand is used separately as a template in SMRT sequencing (Fig. 1B). For each motif type, we aligned the centers of all motifs and aggregated IPD curves across windows, producing a distribution of IPD curves per strand (Fig. 1B).

To evaluate whether non-B motifs present polymerization kinetics patterns different from B-DNA, we used Interval-Wise Testing (IWT) (Cremona et al. 2018), a novel Functional Data Analysis (FDA) approach, and identified genomic bases or intervals at which IPD curve distributions significantly differ between motif-containing and motif-free 100-bp windows (Fig. 2A–E; two-sided test, see Methods). We indeed found altered polymerization kinetics in and/or around several non-B DNA motifs. Below, we describe results for the reference strand (a total of 2,916,328 motif-containing and 2,524,489 motif-free windows) (Fig. 2A–D), upper panels; Fig. 2E; Supplemental Figs. S2–S10, S11A,C,E); results for the reverse complement serve as a biological replicate (Fig. 2A–D, lower panels; Supplemental Fig. S11B,D,F).

Two lines of evidence are consistent with G4 motifs hindering polymerase progression. First, they decreased polymerization speed. Compared to motif-free windows, G4-containing windows had significantly higher IPDs near their centers, that is, near the motifs (up to 1.7-fold IPD increase at the 95th quantile) (Fig. 2A). All G4 motif types exhibited this elevation, although the IPD curve shapes differed depending on the motif sequence (Supplemental Fig. S3). Furthermore, the shape of the IPD distribution encompassing all G4 motif types remained the same (Supplemental Fig. S4) when we limited our analysis to motifs forming the most stable G4 quadruplexes, as identified by in vitro ion concentration manipulations (Chambers et al. 2015). Second, sequencing depth was lower at G4 motifs than at motif-free windows (86% of motif-free depth) (Fig. 2A), suggesting that the former hindered polymerization, resulting in fewer reads covering the motif (lower depth could in part be attributed to lower sequencing quality, but not to read terminations, within G4 motifs) (Supplemental Note S1). Polymerization slowdown and decreased sequencing depth were evident on the reference strand where G4s were annotated (“G4+”; Fig. 2A, upper panel), consistent with G-quadruplex structures forming only on the guanine-rich strand (Maizels 2015). Elevated IPDs were observed in all sequencing passes through the same G4+ containing circular template (Fig. 1B; Supplemental Fig. S5), suggesting that the structure is not resolved during sequencing. In contrast, the corresponding opposite strand (Fig. 2A, lower panel), as well as the reference strand where G4s were annotated on the reverse-complement strand (Fig. 2E, “G4−”)—both cytosine-rich—showed a significant overall polymerization acceleration and displayed a smaller decrease in sequencing depth (92% of motif-free depth).

We observed that several other non-B DNA motifs, for example, A-phased repeats, inverted repeats, mirror repeats, and Z-DNA, had significantly altered polymerization kinetics—both slower (higher IPD) and faster (lower IPD) (Fig. 2E; Supplemental Fig. S6). In contrast to the G4 motifs, the effects on polymerization kinetics were similar on the two sequenced strands (Fig. 2E; Supplemental Fig. S11B) suggesting that, for these motifs, non-B DNA can be formed with similar probability on each strand during the sequencing reaction (Fig. 1B).

Additionally, we found that STRs altered polymerization kinetics in a length- and sequence-dependent manner (Fig. 2B–E; Supplemental Figs. S7–S10); these variables impact the types and stability of non-B DNA structures that can form in addition to slipped structures (Supplemental Table S4). For STRs with ≥2-nt repeated units, the variation in polymerization kinetics was periodic, with the period (in bases) matching the length of the repeated unit (Supplemental Note S2)—consistent with effects of strand slippage. This pattern was evident for trinucleotide STRs whose expansions at some loci are associated with neurological diseases (Fig. 2B–D), for example, (CAG)n, (CAG)m, and (GAA)n implicated in Fragile X syndrome, Huntington’s disease, and Friedrich’s ataxia, respectively (Castel et al. 2010). Genome-wide, (CAG)n repeats showed a strong periodic decrease in polymerization speed (elevated IPDs) on the annotated strand (up to ninefold IPD increase at the 95th quantile) (Fig. 2C), consistent with their ability to form G4-like structures and hairpins (Nadel et al. 1995). The pattern...
Figure 2. Polymerization kinetics at non-B DNA. (A–D) IPD curve distributions in motif-containing (red) versus motif-free (blue) 100-bp windows, on reference (top) and reverse-complement (bottom) strands. Thick lines designate the medians; dark-shaded areas show the 25th–75th quantiles; light-shaded areas show the 5th–95th quantiles. Red/blue marks (below top and above bottom plots) show positions with IPDs in motif-containing windows higher/lower than in motif-free windows (IWT-corrected P-values ≤ 0.05). Heatmaps (between top and bottom plots) show sequencing depth of motif-containing relative to motif-free windows (in percentages, can be >100%) on reference (Depth ref) and reverse-complement (Depth rev) strands, and percentage of windows with the motif (Motif) at each position. (A) G-quadruplexes; (B–D) STRs with disease-linked repeat number variation; (E) IWT results for IPD curve distributions in motif-containing versus motif-free windows (reference strand). Each row shows significance levels (−log of corrected P-values) along 100 window positions for one motif type. (White) nonsignificant (corrected P-value >0.05); (red/blue) significant with IPDs in motif-containing windows higher/lower than in motif-free windows. STRs are grouped according to putative structure. (F) Comparison between observed mean IPDs in motif-containing windows and predictions from a dinucleotide compositional regression fitted on motif-free windows (reference strand). Bonferroni-corrected t-test P-values for differences: (∗∗∗∗) P ≤ 0.0001; (∗∗∗) P ≤ 0.001; (∗∗) P ≤ 0.01; (∗) P ≤ 0.05. (Black) nonsignificant (corrected P-value >0.05); (red/blue) significant with observed mean IPDs higher/lower than composition-based predictions; (box plot whiskers) 5th and 95th quantiles of the differences.
for (CAG)n repeats, also capable of forming hairpins (Mirkin and Mirkin 2007), was similar (Fig. 2B). Globally, STRs capable of forming hairpins (Supplemental Table S4) presented the most striking polymerization deceleration and periodicity (Fig. 2B,C,E; Supplemental Fig. S7). In contrast, STRs forming H-DNA (Supplemental Table S4), including (GAA)n, accelerated polymerization (Fig. 2D,E; Supplemental Fig. S8). For many STRs, significant deviations from background IPD levels were shifted 5’ to the annotated motif (Fig. 2E; Supplemental Fig. S11), possibly due to polymerase stalling caused by difficulty in accommodating the alternative DNA structure within the polymerase active site.

The alterations in polymerization kinetics at non-B DNA motifs are not readily explained by either base modifications or by nucleotide composition. First, IPD patterns for most non-B DNA motifs were still clearly detectable in amplified DNA (Supplemental Fig. S12), suggesting that they were not due to base modifications in the original template DNA (Plusberg et al. 2010). Second, compositional regressions with either single-nucleotide or dinucleotide composition explained only a relatively small portion of mean IPD variation among motif-free windows—11.5% for single nucleotides and 20.8% for dinucleotides. Moreover, the mean IPDs in most motif-containing windows were significantly different from those predicted by such regressions (Fig. 2F; Supplemental Fig. S13). Thus, nucleotide composition falls far short of explaining IPD variations at non-B DNA motifs (Supplemental Figs. S13, S14). In particular, the mere presence of guanines in G4+ motifs cannot explain the overall substantial deceleration of polymerization observed at these sites.

Polymerization kinetics and biophysical characteristics of G-quadruplexes correlate

To experimentally test whether non-B DNA structures can form at predicted motifs, we investigated the relationship between polymerization kinetics and biophysical characteristics of the 10 G4 motifs most common in the human genome (Supplemental Table S5). According to circular dichroism spectroscopy (CD) and native polyacrylamide gel electrophoresis (PAGE) analyses, all 10 motifs quickly formed stable quadruplexes at low potassium concentrations, suggesting that they have a high propensity to form such structures (Kypr et al. 2009), albeit with different molecularity (intra- or intermolecular) and strand orientations (parallel or antiparallel) (Supplemental Table S5). Using regressions for intramolecular G4s, we found a significant positive relationship between mean IPD and delta epsilon ($P < 2 \times 10^{-16}, R^2 = 32.3\%$) (Fig. 3), a measure of structure organization quality obtained by CD, and between mean IPD and melting temperature ($P < 2 \times 10^{-16}, R^2 = 5.7\%$) (Supplemental Fig. S15B, solid line in cyan), a measure of thermostability and structure denaturation obtained by light absorption (Supplemental Table S5; results for intermolecular G4s are shown in Supplemental Fig. S15). Thus, polymerization slowdown and the biophysical characteristics of G4 formation are correlated, strongly suggesting that the motifs indeed form G4 structures during the SMRT sequencing reaction (intramolecular G4 structures are only a few nanometers in diameter) (Neidle and Balasubramanian 2006) and thus can fit within the 60 x 100 nm wells of Pacific Biosciences (PacBio) instruments (Turner et al. 2017).

Our experiments also showed that statistical FDA techniques applied to polymerization kinetics data can enable non-B DNA structure discovery. Although not possessing a canonical G4 motif, the (GGT)n STR has an IPD profile similar to that of G4+ (Table 1). Deletions were increased in both G4+ and G4− (1.49-
and 1.11-fold, respectively) (Table 1). Insertions, the most common error type for SMRT sequencing, were depressed when the templates encoded G4+ and particularly G4− motifs (Table 1). In contrast to G4 motifs, Z-DNA displayed depressed mismatches and deletions, but increased insertions (Table 1). In summary, the rates of all three types of SMRT sequencing errors differed between non-B motifs and motif-free regions, with strong elevations of mismatches and deletions at G4− motifs.

We next tested whether SMRT mismatch error rates could be explained by sequence composition. Only 4.1% of the variability in SMRT error rates in motif-free windows could be explained by single-nucleotide composition (Supplemental Fig. S17A). Among the four nucleotides, the content of guanines was the most correlated to SMRT errors, and its increase led to elevated SMRT error rates (Supplemental Fig. S17A). Dinucleotide compositional regression also explained a rather small proportion of variability in SMRT error rates in motif-free windows ($R^2 = 5.6\%$). Furthermore, SMRT error rates in most types of motifs (in all but A-phased repeats) were significantly different than those predicted by such compositional regressions (Supplemental Fig. S17B). Thus, nucleotide composition does not suffice to explain SMRT error rate variation at both motif-free windows and non-B DNA motifs. In particular, the high concentration of guanines in G4+ motifs cannot explain the increase in SMRT error rates observed at such sites.

Increased SMRT error rates are associated with polymerase slowdown, particularly at non-B DNA

We next studied whether SMRT error rates are associated with polymerization speed. We focused on G4+ and G4− motifs, which had the strongest effect on SMRT error rates among the non-B motif types examined (Table 1), and used motif-free windows for comparison. We fitted a regression expressing SMRT mismatch error rates as a function of mean IPD values corrected for nucleotide composition (residual mean IPDs, i.e., the difference between observed mean IPDs and those predicted using single-nucleotide composition) (Methods). The model also accounted for the three groups of regions — G4+ motifs, G4− motifs, and motif-free windows — and had an overall R^2 of 35.4% (Fig. 4; Supplemental Fig. S18). We found a significantly positive linear relationship between SMRT mismatch rates and residual mean IPDs in motif-free windows (slope = 0.26, $P = 2.9 \times 10^{-10}$). Interestingly, the slope of the regression line was significantly steeper for G4+ than for motif-free windows (slope = 0.19, $P = 1.9 \times 10^{-12}$ for difference with motif-free), while G4− had a slope similar to motif-free windows (slope = 0.08, $P = 0.17$ for difference with motif-free). Thus, SMRT mismatch errors are positively associated with polymerase slowdown, and this association is particularly strong in G4+.

Polymerase speed and mutation occurrence

Mutation rates are known to be nonuniform across the genome; however, the mechanisms leading to such regional variation are not entirely understood (Hodgkinson and Eyre-Walker 2011). Our results on sequencing errors for the SMRT technology, as well as previous in vitro polymerase studies (Kang et al. 1995; Usdin and Woodford 1995; Delagoutte et al. 2008; Eddy et al. 2015) demonstrating the effects of non-B DNA on DNA synthesis by phage, prokaryotic and eukaryotic polymerases, raise an intriguing question: Are mutation rates in vivo also affected by these motifs via polymerase slowdown? Environmental influences apart, mutations are the net result of polymerase errors and the lack of repair in the cell. Here, we are making a simplifying assumption that mutations result primarily from polymerase errors (Makova and Li 2002). Examining the speed of polymerases at the nucleotide level in eukaryotic cells is a challenging endeavor, but can the polymerization kinetics and error profile of the phi29 enzyme provide us with a hint of how non-B DNA motifs might be affecting mutations? To address this question, we contrasted SMRT error rates and mean IPDs between G4+ motifs with high and low human germline mutation rates approximated by the level of human-orangutan divergence or by the level of

| Table 1. Error rates at non-B DNA motifs during SMRT sequencing |
|-------------------------|---------------|---------------|----------------|----------------|----------------|----------------|
| SMRT errors | A-phased repeats | Direct repeats | Inverted repeats | Mirror repeats | Z-DNA | G4+ | G4− |
| Mismatches | −1.018 | 1.089*** | 1.004 | 1.002** | −1.192*** | 1.790*** | 1.058 |
| Insertions | −1.032*** | −1.016 | −1.020*** | −1.023*** | 1.156*** | −1.037*** | −1.239*** |
| Deletions | −1.042*** | 1.018*** | −1.000*** | 1.004** | −1.150*** | 1.494*** | 1.106*** |

We contrasted rates of SMRT sequencing errors between the indicated motifs and motif-free regions. Numbers are fold differences; positive and negative signs indicate increase or decrease in error rates, respectively, for motifs compared with motif-free regions; significance is indicated by asterisks: (***$P \leq 0.001$; (**) $P \leq 0.01$; (*) $P \leq 0.05$; () $P \leq 0.10$. Significant values are shown in bold. Sample sizes are in Supplemental Table S7.

Figure 4. Errors are linked to kinetic variation. Sequencing through templates containing G-quadruplex motifs (G4+) increases the positive relationship between mismatches in SMRT sequencing and IPD values (corrected for sequence composition). This does not occur when sequencing through the reverse complement of G-quadruplex motifs (G4−). The regression model accounting for three groups of regions (G4+, G4−, and motif-free windows) has R^2 equal to 35.4%. Slopes are 0.26, 0.08, and 0.11 for G4+ motifs (N = 5937), G4− motifs (N = 5695), and motif-free windows (N = 11,632, which is the sum of samples sizes for G4+ and G4−), respectively.
intraspecific diversity inferred from the 1000 Genomes Project (1000 Genomes Project Consortium 2015). In more detail, we compared SMRT mismatch error rates and mean IPDs (corrected for single-nucleotide composition; see above) between G4+ motifs in the top 3% versus bottom 3% of human-orangutan divergence, as well as between G4+ motifs in the top 3% versus bottom 3% of diversity from the 1000 Genomes Project (Supplemental Table S9; Supplemental Note S3). Human and orangutan genomes (Locke et al. 2011) used for the divergence calculations were generated with the highly accurate Sanger technology. For the diversity calculation, we considered only variants with minor allele frequency equal to or above 0.05 in the 1000 Genomes Project; this minimizes false positive variants due to sequencing errors. Using simulations, we demonstrated that variants with such minor allele frequency are very unlikely to be generated by the increased error rate of Illumina sequencing at G4 motifs (Supplemental Note S4). Therefore, both the divergence and the diversity data used here are expected to be highly accurate.

Highly divergent (or diverse) G4+ motifs had higher IPD values (i.e., experienced polymerase slowdown), compared with G4+ motifs having low divergence (or diversity; \(P=4 \times 10^{-4}\) and \(P=0.046\) for divergence and diversity, respectively; \(t\)-test for difference in means) (Supplemental Table S9). Moreover, highly divergent (or diverse) G4+ motifs had higher error rates than did G4+ motifs with low divergence (or diversity; \(P=0.040\) and \(P=0.014\) for divergence and diversity, respectively; \(t\)-test for difference in means) (Supplemental Table S9). Therefore, indeed, we found divergence (diversity) to be negatively related to polymerization speed and positively related to SMRT sequencing errors, suggesting that G-quadruplexes affect not only sequencing errors, but also germline mutations in vivo.

Discussion

SMRT sequencing polymerization kinetics data are produced during every SMRT sequencing experiment, but are rarely analyzed by researchers, except for studies of DNA modifications (e.g., Schadt et al. 2013). Our genome-wide study exemplifies the usefulness of such data in four additional scientific domains: (1) studies of polymerization kinetics; (2) discovery of novel non-B DNA structures; (3) analysis of sequencing errors; and (4) correlating polymerase kinetics with error rate. With the increasing popularity of SMRT sequencing and growing publicly available data, we expect an acceleration of progress in these areas.

Analyzing hundreds of thousands of non-B DNA motif occurrences genome-wide, we observed polymerization slowdown or acceleration during SMRT sequencing for the majority of motif types considered. Particularly striking patterns were noted for G4s and STRs, for which we found strong slowdown and periodic alterations in polymerization speed, respectively. Our study corroborates a previous analysis of 27 occurrences of \((CGG)_n\)—a motif capable of forming a G4 structure and a hairpin—which indicated polymerization speed alterations in the *E. coli* genome (Sawaya et al. 2015). It was suggested that non-B DNA acts as a polymerization speed modifier along the genome not only in a sequencer, but also under natural conditions, that is, in the cell (Sawaya et al. 2015). Backing of this hypothesis also comes from *ex vivo* analyses of a handful of loci capable of non-B DNA formation (Samadashwily et al. 1997; Krasilnikova and Mirkin 2004). Future experiments should examine this intriguing possibility on a genome-wide basis. Also, our results lend support to the hypothesis that periodic polymerization kinetics patterns at disease-associated STRs contribute to their instability (Loomis et al. 2013).

We demonstrate that analyzing polymerization kinetics data with FDA statistical techniques can enable discovery of novel motifs forming non-B DNA structures. We identified (GGT)$_n$ motifs as potentially forming a G4-like structure based on their polymerization speed patterns and used biophysical profiling to validate the formation of such structure. The genomic distribution and potential function of such newly identified non-B motifs should be studied further. Moreover, our study shows that statistical analyses of IPD patterns can characterize non-B DNA in a way that is orthogonal to conventional biophysical profiling.

Elevated SMRT sequencing errors in many non-B DNA motifs should be taken into account when evaluating sequencing results. Many such errors are likely corrected during circular sequencing, but biases might remain in the sequence consensus and when using the long sequencing read mode (as opposed to the circular consensus sequencing mode). Of particular interest is our result concerning the nonrandomness of insertions, which are the most common type of SMRT errors. We observe that insertions increase in Z-DNA, but in fact decrease in other non-B DNA motif types. In light of this, recalibrating base quality scores in SMRT sequencing reads should be considered in future work. Additionally, the effect of non-B DNA on the speed and error rates of other sequencing technologies, particularly the recently released Oxford Nanopore Sequencer, should be evaluated. The Nanopore sequencer uses an enzyme that controls movement through the nanopore and thus might also be affected by non-B DNA structures.

To our knowledge, our analyses are the first to document an association between polymerization speed and accuracy on a genome-wide scale. We find that the phi29 polymerase makes more errors when the IPD is high, that is, when polymerization is slowed down. This effect is significant for B-DNA, and further magnified in G-quadruplexes, even after correcting for nucleotide composition. Thus, polymerase accuracy may be affected by DNA sequence and structural features that hinder processive synthesis. Consistent with our findings here, previous in vitro studies showed a positive correlation between DNA polymerase error rates and pausing during synthesis (e.g., slow synthesis). Notably, misincorporation errors by the replicative DNA polymerase alpha are associated with polymerase pausing (Fry and Loeb 1992), and polymerase alpha errors within STRs are positively correlated with polymerase pausing and non-B DNA formation (Hile and Eckert 2004).

Our study indicates a significant effect of non-B DNA on the fidelity of DNA synthesis. With a genome-wide analysis of data generated by a sequencing instrument, we substantially expanded prior knowledge of this phenomenon gained by examination of plasmid constructs, disease-associated genes, and human genetic diversity (Zhao et al. 2010; Bacolla et al. 2011; Inagaki et al. 2013; Du et al. 2014). Our most prominent observation, the high incidence of mismatches and deletion errors during sequencing of G4 motifs, is in line with these motifs harboring excessive disease-causing point mutations (Kamat et al. 2016) and nucleotide variants (point mutations and indels combined) (Du et al. 2014) based on 1000 Genomes Project data. Using the level of divergence (or diversity) as a proxy for germline mutation rates, we observed significantly larger SMRT polymerase slowdown and error rates within G4s with very high divergence compared to G4s with very low divergence (diversity). Selection is expected...
to decrease divergence and diversity levels; however, we have no reason to predict that G4s undergoing stronger selection should have faster rates of DNA synthesis and lower sequencing error rates. Thus, a link between polymerase accuracy and germline mutation rates is more plausible. Our results, taken together with previously published studies, argue for the pervasive role of G4s in affecting polymerase fidelity and germline mutation rates in the genome. It remains, however, a caveat of our study that selection may be affecting the levels of divergence (or diversity) in G4 motifs. Deconvoluting the effects of selection and mutation rates in living cells will be a challenging but important future study.

Compared with errors in sequencing instruments, mutations in the cell are the net result of DNA synthesis errors by more than 15 different polymerases and enzymes from numerous DNA repair pathways (Sweasy et al. 2006). Furthermore, mutation occurrence is influenced by additional factors (e.g., chromatin, etc.) (Makova and Hardison 2015). Notwithstanding all these caveats, our results, together with published results of Du and colleagues (Du et al. 2014), lend support to the notion that non-B DNA is one among the “local DNA environment” factors affecting mutation rates and patterns (Cooper et al. 2011). Future studies should specifically investigate what share of local variation in mutation rates along the genome can be explained by the presence of non-B DNA. Our findings, together with observations on the transient nature of non-B DNA conformations (Zhao et al. 2010), portray non-B DNA as an effective modulator of genome structure. This is particularly significant in view of recent evidence broadening the spectrum of mechanisms through which non-B DNA may modulate the cell, encompassing, for example, epigenetic instability (Valton and Prioleau 2016) and noncoding RNA regulation (Simone et al. 2015).

Methods

Non-B DB and STR annotations

Annotations of A-phased, direct, inverted and mirror repeats, G-quadruplexes, and Z-DNA motifs were downloaded from the non-B DataBase (DB) (https://nonb-abcc.ncifcrf.gov). Because this annotation was provided on the human reference hg19, we used that reference for the whole study. Additionally, we annotated STRs on the human reference (hg19) using STR-FM (Fungtammasan et al. 2015). We only considered mono-, di-, tri-, and tetranucleotide STRs with ≥8, ≥4, ≥3, and ≥3 repeats, respectively (Fungtammasan et al. 2015). We then collapsed STR motifs that could be matched by changing their reading frame (Supplemental Table S8). For instance, (AGC)$_n$ (CAG)$_n$ and (GCA)$_n$ were collapsed into the (AGC)$_n$ group. We restricted our attention to non-B motifs and STRs annotated on autosomes.

Constructing genomic windows

Polymerization kinetics was studied in 100-bp windows (Fig. 1B). Motif-containing windows were centered at the middle coordinates of the annotated motifs in our list (Supplemental Fig. S1). The centers of STRs with different repeat numbers were shifted to ensure their alignment (Supplemental Table S8). Overlapping motif-containing windows (with motifs of the same or different type) were filtered out, leaving a total of 2,926,560 windows. All windows not containing motifs and not overlapping motif-containing windows were labeled as motif-free (a total of 3,649,152 windows).

IPDs

We used publicly available PacBio resequencing data (69×) from an individual male (HG002; NA24385) belonging to the Genome in a Bottle Ashkenazim trio (Zook et al. 2016). We analyzed 228 SMRT cells sequenced with P6-C4 chemistry in a mode maximizing the subread length and not the number of passes (Rhoads and Au 2015). On average, each molecule was sequenced in 2.12 passes, with the majority of the molecules sequenced only in a single pass resulting in a single subread (74.76% of the molecules). Sequencing reads were aligned to hg19 with pbalign (sramanaly-sis-2.3.0), resulting in an ~52× average read depth, and IPDs were computed at nucleotide resolution with ipdSummary.py (https://github.com/PacificBiosciences/kineticsTools/tree/master/kineticsTools)—this produces one IPD value per site averaging among at least three subreads, normalizing for intermolecule variability and trimming for outliers. The resulting IPDs, which are strand-specific (any observed slowdown or acceleration of the polymerization concerns the strand used as template), were then used to populate motif-containing and motif-free 100-bp windows according to their coordinates (Fig. 1B); each window thus contains an IPD curve comprising 100 values or less (if some nucleotides lack IPDs). All windows with no IPD values were filtered out, and only motifs with ≥15 windows with IPDs on both strands were retained for subsequent analyses. This left us with a total of 2,916,328 motif-containing and 2,524,489 motif-free windows on the reference strand, and 2,916,377 motif-containing and 2,524,612 motif-free windows on the reverse-complement strand. Next, for each motif type (Supplemental Tables S2, S3), and separately for each strand, we aligned the 100-bp windows. This resulted in strand-specific IPD curve distributions for each motif type. An IPD curve distribution was visualized plotting quantiles (5th, 25th, 50th, 75th, and 95th) of the IPD values at each of the 100 nt along the aligned windows (Figs. 1B, 2A–D; Supplemental Figs. S3, S4, S6–S10). IPD distributions were visually unaffected by variants between the sequenced and the reference genomes.

Interval-Wise Testing for differences in IPDs

To detect statistically significant differences between IPD curve distributions in motif-containing and motif-free windows, separately for each motif type and strand, we used the Interval-Wise Testing procedure for “omics” data implemented in the R Bioconductor package and Galaxy tool IWTomics (Campos-Sánchez et al. 2016; Pini and Vantini 2017; Cremona et al. 2018). IWT treats the IPD values in a 100-bp window as a curve (Fig. 1B) and assesses differences between two groups of curves (containing a given motif, and motif-free) performing a nonparametric (permutation) test at all possible scales, from the individual nucleotides to the whole 100 bp. When IWT detects a significant difference at a particular scale, it also identifies the locations (window coordinates) that lead to the rejection of the null hypothesis (for details, see Supplemental Text). Because IWT is computationally expensive, we ran it on a maximum of 10,000 curves for each motif type and strand (sample sizes are listed in Supplemental Tables S2, S3). For motif types with n ≥ 10,000 windows, we randomly subsampled 10,000 windows and tested against a random set of 10,000 motif-free windows; this was repeated 10 times to ensure robust results. For motif types with n ≤ 10,000 windows, we tested both against a random set of 10,000 motif-free windows and against a random set of n motif-free windows; in both cases we repeated the comparison against 10 random sets, again to ensure robust results. IWT was performed using three test statistics: the mean difference, the median difference, and the multiquantile difference (i.e., the sum of the 5th, 25th, 50th, 75th, and 95th quantile differences). Results for the latter, which most effectively
motif types in adjusted comparison (Supplemental Fig. S2). We summarized results for all one for each nucleotide, adjusted up to the selected scale) for each comparison (Supplemental Fig. S2). We summarized results for all motif types in adjusted P-value heat maps (Fig. 2E; Supplemental Fig. S11), multiquantile difference; Supplemental Fig. S11, mean and median). Red/blue indicate positive/negative observed differences and are shown only for significant locations (adjusted P-value ≤0.05 in each of the 10 repetitions).

Effect of sequence composition on IPDs
To investigate whether differences in IPD values depend on incorporation of different nucleotides, we computed mean IPD, a single-nucleotide composition vector $p_i = (p_A, p_T, p_C, p_G)$ ($p_A + p_T + p_C + p_G = 100\%$), and a dinucleotide composition vector $P_{Di} = (P_{AA}, P_{AC}, P_{AG}, ..., P_{TT})$ ($P_{AA} + P_{AC} + P_{AG} + ... + P_{TT} = 100\%$) in each 100-bp window. We considered only motif-free windows and combined data from both strands. First, we measured the marginal effect of each nucleotide $j = A, C, G, T$ as the correlation between $\log(\text{mean IPD})$ and p_j. Next, we used compositional regression models (Aitchison 1986; Pawlowsky-Glahn et al. 2015) to quantitate the overall effect of single-nucleotide and dinucleotide composition on IPDs. The single-nucleotide sequence composition vector p_i was mapped to a three-dimensional Euclidean vector $x_{Di} = (x_{D1}, x_{D2}, x_{D3})$ using the isometric log-ratio transform, and a multiple regression model was fitted for $\log(\text{mean IPD})$ on x_{D1}, x_{D2}, x_{D3}. Model assumptions and validity were checked with standard multiple regression diagnostic plots and tests, and the R^2 was used to evaluate composition effect strength. Similarly, the dinucleotide composition vector P_{Di} was mapped to a 15-dimensional Euclidean vector $X_{Si} = (x_{S1}, x_{S2}, ..., x_{S15})$, and a multiple regression model was fitted for $\log(\text{mean IPD})$ on $x_{S1}, x_{S2}, ..., x_{S15}$. The dinucleotide compositional regression model fitted on motif-free windows, which had higher R^2 (Results), was then used to predict the mean IPD values of motif-containing windows based on their composition, separately on each strand. For each motif type, we computed differences between these predictions and observed mean IPDs (on logarithmic scale), created their box plots, and performed two-sided t-tests for the mean difference being equal to zero—using a Bonferroni correction to adjust for multiple motif testing (Fig. 2F; Supplemental Fig. S13).

Experimental characterization of G-quadruplexes
The 10 most common G-quadruplex motifs (Supplemental Table S5) from non-B dB annotations, as well as the (GGT)$_n$ motifs, were studied by circular dichroism (CD), native polyacrylamide gel electrophoresis (PAGE), and UV absorption melting profiles, as described previously (Kejnovská et al. 2017). Single-stranded oligos were used in structure characterization of G-quadruplexes for three reasons. First, G-quadruplexes often play a regulatory role in molecular processes where DNA is single-stranded, such as replication, transcription, and repair (Dolinnaya et al. 2016). Second, single-strandedness allows better characterization of quadruplex formation and thus is most often used in experimental studies (Dailey et al. 2010). Third, the analysis of single-stranded structures is most relevant for SMRT sequencing where, even though sequencing starts with a double-stranded template, the two strands are dissociated during sequencing process.

Initially, we considered only intramolecular G-quadruplexes, computed the mean IPD in each occurrence of the motifs, and fitted a simple regression for $\log(\text{mean IPD})$ on delta epsilon (for each motif, delta epsilon was measured once, and mean IPD was computed for hundreds or thousands of occurrences) (Supplemental Table S5; Fig. 3; Supplemental Fig. S15A). Next, we considered both intra- and intermolecular G-quadruplexes and fitted a multiple regression for $\log(\text{mean IPD})$ on delta epsilon, the molecularity of the G-quadruplexes (either intra or intermolecular; a binary predictor), and their interaction. We fitted similar single and multiple regressions (considering only intramolecular G-quadruplexes, and both intra- and intermolecular G-quadruplexes) replacing delta epsilon with melting temperature (TM) (Supplemental Fig. S15B). In both cases we identified final models with backward selection.

SMRT sequencing errors
Data are again those from PacBio sequencing of HG002; NA24385 (Zook et al. 2016). Errors were analyzed restricting attention to motif occurrences (not motif-containing 100-bp windows). Due to potential misalignments at motifs in the repetitive parts of the genome, motifs and motif-free windows overlapping with RepeatMasker (Smit et al. 2004) annotations (rmsk track obtained at https://genome.ucsc.edu) were excluded from this analysis. To focus on errors and not on fixed differences, all motifs and motif-free windows overlapping variants between HG002 and hg19 were also excluded—we used high confidence calls from a benchmarking data set generated in Zook et al. (2016). For each motif type, control sets were constructed picking a filtered motif-free 100-bp window at random from within 0.5 Mb upstream of or downstream from each motif occurrence and trimming it to produce a motif-free region of the same length of the motif occurrence itself. This matches motif occurrences and motif-free regions in number and length (which guarantees the same measurement resolution for errors), as well as in broad genomic location. We note that results are virtually unchanged if we do not match broad genomic location and select controls completely at random from the genome.

Error rates (the number of mismatches, insertions, or deletions relative to hg19, divided by the total number of nucleotides from all subreads in a given region and expressed as a percentage) were calculated for the newly synthesized strand that used six non-STR motif types and corresponding motif-free regions as a template. Since our purpose was detecting polymerase errors, we calculated the error rates based on individual subreads by accessing the alignment files directly and considering also low-frequency variants, including those supported by a single subread.

Comparison of errors between motifs and motif-free regions
To compare error rates between motif occurrences and matching motif-free regions, we used a two-part test (Lachenbruch 1976; Taylor and Pollard 2009) that contrasts both the heights of spikes at error rate 0 (corresponding to regions without errors) and the distributions of positive error rates. The compound null hypothesis is that both the spike at 0 (proportion of 0 rates) and the distribution on positive values (continuous component on non-0 rates) are the same in the two groups, versus the two-sided alternative that either or both differ between the groups. We considered the two-part statistic, $V^2 = B^2 + T^2$, where B^2 is the continuity-corrected binomial test statistic (contrasting the proportions of 0 rates) and T^2 is the square of the test statistic (contrasting the non-0 rates). P-values were generated approximating the distribution of the test statistic V^2 under the null hypothesis with a $\chi^2(2)$, in order to
overcome the computational burden of estimating its distribution using permutations. For several cases, we also computed P-values based on 10,000 random permutations and obtained almost indistinguishable results. For robustness, each test was repeated 10 times, using separate sets of randomly generated matching motif-free regions, and significance was assessed based on the maximum P-value (maximum P-values ≤ 0.10 are coded by standard stars-and-dots representation in Table 1 (Extended Data File 1).

In addition to running the tests, we computed rate fold differences (the numbers in Table 1) as follows. For each motif type, we considered the whole portion of the genome covered by its occurrence. For comparison, we considered the portion of the genome covered by all nonrepetitive, without fixed differences 100-bp motif-free windows (note: not matching motif-free regions). SMRT error rates were estimated dividing the total number of errors by the total number of bases sequenced in the portion of the genome under consideration. Rate fold differences were then computed, for each motif type and each error type, as a ratio of motif-free rate over motif rate otherwise.

Effect of sequence composition on errors

To investigate whether differences in SMRT sequencing values depend on the presence of different nucleotides, we computed a single-nucleotide composition vector $P_{\text{SN}} = (p_A, p_T, p_C, p_G)$ ($p_A + p_T + p_C + p_G = 100\%$), and a dinucleotide composition vector $P_{\text{DN}} = (p_{AA}, p_{AC}, p_{AG}, \ldots, p_{TT})$ ($p_{AA} + p_{AC} + p_{AG} + \ldots + p_{TT} = 100\%$) in each nonrepetitive, without fixed differences 100-bp motif-free windows (note: not matching motif-free regions; this choice permits us to investigate sequence composition effect on the portion of the genome covered by all 100-bp motif-free windows). First, we measured the marginal effect of each nucleotide $j = A, C, G, T$ on SMRT mismatch error rates as the correlation between $\log(P_{\text{error Rate}})$ and p_j. Next, we used compositional regression models (Atchison 1986; Pawlowsky-Glahn et al. 2015) for $\log(P_{\text{error Rate}})$ to quantify the overall effect of single-nucleotide and dinucleotide composition on SMRT mismatch error rate. This analysis mirrored the one performed to study the effect of sequence composition on IPD values (see above). The single-nucleotide compositional regression model fitted on motif-free windows was then used to predict the SMRT error rates of motif occurrences based on their composition (some motifs are quite short; hence, the dinucleotide composition could not be accurately estimated). For each motif type, we computed the differences between these predictions and observed mean IPDs (on log scale) and residual IPD (on log scale) for the same sets of regions.

Relationship between errors and IPDs

We compared $\log(P_{\text{error Rate}})$ (the SMRT mismatch rates on logarithmic scale) and residual $\log(\text{mean IPD})$ (correcting for single-nucleotide composition, see above) between G4+ occurrences with divergence (diversity) levels smaller or equal to the 3rd percentile and larger or equal to the 97th. Since variants are rare events, a large proportion of motifs have null divergence (diversity), that is, no genetic variants. As a consequence, there were many more than 3% of the G4+ occurrences with divergence (diversity) equal to 0 (the 3rd percentile). In fact, such occurrences were much more abundant than those with divergence (diversity) above the 97th percentile. We subsampled the former 1000 times to a size equal to the number of the latter. A two-sample, two-sided t-test was performed each time to test for differences in mean between low and high divergence (diversity) G4+ occurrences. Median P-values (across 1000 tests) are reported in Table 1, together with median $\log(P_{\text{error Rate}})$ and median residual $\log(\text{mean IPD})$ for the same sets of G4+ occurrences.

Data and code availability

All scripts are available as Supplemental Code as well as in the public GitHub repository (https://github.com/makovalab-psu/nonBKinetics). The latest versions of the scripts may be downloaded directly from this repository.

Acknowledgments

We thank J. Korlach and S. Kingan (Pacific Biosciences Inc.) for comments on the manuscript, and B. Chen, R. Vegesna, F. Cumbo, M. Tomaszkiewicz, and M. Ferguson-Smith for assistance. Funding was provided by Penn State Eberly College of Sciences, The Huck Institute of Life Sciences at Penn State, and the Penn State Institute for CyberScience, as well as, in part, under grants from the Pennsylvania Department of Health using...
To the best of our knowledge, researchers generally agree that the human genome contains several non-B DNA structures. These structures are known to affect DNA replication and transcription, leading to potential health issues. In this narrative, we will present several research contributions that support this conclusion.

The large majority of studies have focused on G-quadruplexes found in the human genome. Grosveld and colleagues demonstrated that G-quadruplexes are more abundant in primate genomes compared to human ones. This finding suggests that G-quadruplexes could play a role in primate genome stability and evolution.

In addition to G-quadruplexes, other non-B DNA structures have also been identified in the human genome. For example, Kotelko et al. showed that non-B DNA is associated with higher rates of nucleotide mutations and expression variation in the human genome, which could contribute to human diseases.

In summary, non-B DNA structures are widespread in the human genome and have been linked to various health issues. Continued research is needed to fully understand the impact of non-B DNA on human health.
Makova KD, Hardison RC. 2015. The effects of chromatin organization on variation in mutation rates in the genome. Nat Rev Genet 16: 213–223. doi:10.1038/nrg3890
Makova KD, Li WH. 2002. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416: 624–626. doi:10.1038/416624a
Mirkin SM. 2007. Expanded DNA repeats and human disease. Nature 447: 932–940. doi:10.1038/nature05977
Mirkin SM. 2008. Discovery of alternative DNA structures: a heroic decade (1979–1989). Front Biosci 13: 1064–1071. doi:10.2741/2744
Mirkin EV, Mirkin SM. 2007. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71: 13–35. doi:10.1128/MMBR.00030-06
Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenskii MD. 1987. DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330: 495–497. doi:10.1038/330495a0
Nadel Y, Weisman-Shomer P, Fry M. 1995. The fragile X syndrome single strand d(CG)n nucleotide repeats readily fold back to form unimolecular hairpin structures. J Biol Chem 270: 28970–28977. doi:10.1074/jbc.270.48.28970
Neidle S, Balasubramanian S. 2006. Quadruplex nucleic acids. Royal Society of Chemistry, London.
Parkinson GN, Lee MP, Neidle S. 2002. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417: 876–880. doi:10.1038/nature755
Pawlowsky-Glahn V, Egozcue JJ. 2015. Analysis of compositional data. John Wiley & Sons, Chichester, UK.
Pini A, Vantini S. 2017. Interval-wise testing for functional data. J Nonparametr Stat 29: 407–424.
Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Parkin DM, Kwiatkowski D, Renton AL, Hardy J, et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257–268. doi:10.1016/j.neuron.2011.09.010
Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13: 278–289. doi:10.1016/j.gpb.2015.08.002
Samadashwily GM, Raca G, Mirkin SM. 1997. Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17: 298–304. doi:10.1038/ng1197-298
Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. 2013. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 8: e84710. doi:10.1371/journal.pone.0084710
Sawaya S, Boocock J, Black MA, Gemmell NJ. 2015. Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencing data. BMC Biotechnol 16: 21. doi:10.1186/s12898-014-0049-0
Schadt EE, Banerjee O, Fang G, Feng Z, Wong WH, Zhang X, Kishlyuk A, Clark TA, Luong K, Keren-Paz A, et al. 2013. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res 23: 129–141. doi:10.1101/gr.136739.113
Sen D, Gilbert W. 1988. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334: 364–366. doi:10.1038/334364a0
Siddiqui-Jain A, Grand CL, Beass DJ, Hurley LH. 2002. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci 99: 11593–11598. doi:10.1073/pnas.182256799
Simone R, Fratta P, Neide S, Parkinson GN, Isaacs AM. 2015. G-quadruplexes: emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 589: 1653–1668. doi:10.1016/j.febslet.2015.05.003
Sinden RR, Pyttlos-Sinden MJ, Potamian KV. 2007. Slipped strand DNA structures. Front Biosci 12: 4788–4799. doi:10.2741/2427
Smit AFA, Hubley R, Green P. 2004. RepeatMasker Open-3.0. http://www.repeatmask.org
Sweasy JB, Lauper JM, Eckert KA. 2006. DNA polymerases and human diseases. Radut Res 166: 693–714. doi:10.1667/RR0706.1
Taylor S, Pollard K. 2009. Hypothesis tests for point-mass mixture data with application to ‘omics data with many zero values. Stat Appl Genet Mol Biol 8: Article 8. doi:10.2202/1544-6115.1425
Turner S, Kuse R, Kearns G, Monadgemi P, Foquet M, Martinez D. 2017. Nanoscale apertures having islands of functionality. U.S. patent no. US9637380. https://www.google.com/patents/US9637380
Usdin K, Woodford KJ. 1995. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 23: 4202–4209. doi:10.1093/nar/23.20.4202
Van Allen AL, Prieoule MN. 2016. G-Quadruplexes in DNA replication: a problem or a necessity? Trends Genet 32: 697–706. doi:10.1016/j.tig.2016.09.004
Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci 105: 9936–9941. doi:10.1073/pnas.0804510105
Wang G, Vasquez KM. 2007. Z-DNA, an active element in the genome. Front Biosci 12: 4424–4438. doi:10.2741/2399
Wang G, Carbajal S, Vijg J, DiGiovanni J, Vasquez KM. 2008. DNA structure-induced genomic instability in vivo. J Nat Cancer Inst 100: 1815–1817. doi:10.1093/jnci/djn385
Watson JD, Crick FHC. 1953. Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964–967. doi:10.1038/171964b0
Wittig R, Dobric T, Rich A. 1991. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc Natl Acad Sci USA 88: 2259–2263. doi:10.1073/pnas.88.6.2259
Zhao J, Bacolla A, Wang G, Vasquez KM. 2010. Z-DNA structure induced genetic instability and evolution. Cell Mol Life Sci 67: 43–62. doi:10.1007/s00018-009-0131-2
Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y, Mason CE, Alexander N, et al. 2016. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data 3: 160025. doi:10.1038/sdata.2016.25

Received June 29, 2018; accepted in revised form October 30, 2018.