Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus encoding *Bymovirus* resistance in barley

Silke Stracke*, Thomas Presterl†, Nils Stein*, Dragan Perovic*,‡, Frank Ordon† and Andreas Graner*,†

* Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany

† University of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, D-70593 Stuttgart, Germany; present address: KWS SAAT AG, D-37574 Einbeck, Germany

‡ Institute of Epidemiology and Resistance Resources, Federal Center for Breeding Research on Cultivated Plants, D-06449 Aschersleben, Germany
Key words & phrases: linkage disequilibrium, population structure, association analysis,

rym4, rym5

1corresponding author:

Andreas Graner
Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)
Corrensstrasse 3
D-06466 Gatersleben
Germany
Tel : +49-39482-5521
Fax: +49-39482-5595
Email: graner@ipk-gatersleben.de
ABSTRACT
We present a detailed analysis of linkage disequilibrium (LD) in the physical and genetic context of the barley gene *Hv-eIF4E*, conferring resistance to the barley yellow mosaic virus (BYMV) complex. Eighty-three SNPs distributed over 132kb of *Hv-eIF4E*, and six additional fragments genetically mapped to its flanking region were used to derive haplotypes from 131 accessions. Three haplogroups were recognized, discriminating between the alleles *rym4* and *rym5*, which each encode for a spectrum of resistance to BYMV. With increasing map distance, haplotypes of susceptible genotypes displayed diverse patterns being mainly driven by recombination, whereas haplotype diversity within the subgroups resistant genotypes was limited. We conclude that the breakdown of LD within 1cM of the resistance gene was mainly generated by susceptible genotypes. Despite the LD decay, a significant association between haplotype and resistance to BYMV was detected up to a distance of 5.5cM from the resistance gene. The LD pattern and the haplotype structure of the target chromosomal region are the result of interplay between low recombination and recent breeding history.
INTRODUCTION

The ever increasing availability of nucleotide sequence, and the concomitant improvement that this allows in our understanding of the organization of complex crop plant genomes has created the opportunity to identify trait-related genes and to analyse their allelic diversity. The association between phenotype and genotype in diverse populations represents a powerful approach, but the applicability and design of such analyses depend critically on the extent and pattern of linkage disequilibrium (LD) present in the study population. Cultivated barley (Hordeum vulgare ssp. vulgare) has many of the hallmarks known to be associated with a high level of LD. Its effective recombination rate is dramatically reduced by its predominantly inbreeding habit, with an estimated out-crossing rate of about 5% in winter barley and less than 0.5% in spring barley (GILES et al. 1974; DOLL 1987; ABDEL-GHANI et al. 2005). Domestication and intensive selection have introduced major bottlenecks in genetic variation, and these are thought to be largely responsible for the perceived narrowness of the modern gene pool (BADR et al. 2000; RUSSELL et al. 2000; MATUS and HAYES 2002). LD in modern spring barley, as estimated from a whole genome survey, extends over distances of at least 10cM, indicative of an extensive conservation of the genetic identity of barley chromosomes (KRAAKMAN et al. 2004). However, estimates of genome-wide LD conceal localized variation, which as has been shown for a number of species, can be substantial and independent of mating system (GUPTA et al. 2005). In the self-pollinating species Arabidopsis thaliana LD varies from less than 10 kb in global (TIAN et al. 2002) to 50-250 kb in local populations (NORDBORG et al. 2002; ARANZANA et al. 2005; NORDBORG et al. 2005). Within a given set of maize (an out-breeding species) accessions, the extent of LD has been documented to vary widely around different genes and chromosomal regions (REMINGTON et al. 2001). On chromosome 1, for example, it has been shown to decline within 0.1 – 0.2kb
(TENAILLON et al. 2001), while in a region under high selection pressure, it can extend up to 600kb (PALAISA et al. 2004).

Little is known of the structure of LD in the physical and genetical vicinity of genes in cultivated barley (reviewed in GUPTA et al. 2005). As the success of association studies in this major crop species depends critically on this knowledge, we have set out to evaluate LD in a well-characterized region of chromosome 3H, which harbors Hv-eIF4E, a gene encoding an important virus resistance. Two recessive alleles - rym4 and rym5 - confer resistance to both soil-borne Bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) (KANYUKA et al. 2005; STEIN et al. 2005). This combination of pathogens is commonly referred to as the barley yellow mosaic virus complex (BYMV). Carriers of rym4 are resistant to BaMMV, BaMMV-Sil and BaYMV-1, but are susceptible to BaYMV-2; while those carrying rym5 are resistant to BaYMV-1, BaYMV-2 and BaMMV, but not to BaMMV-Sil (KANYUKA et al. 2004). Although at least seven independent loci conferring resistance to BYMV have been identified in barley to date (ORDON et al. 2005), European breeding has relied heavily on rym4 and rym5, both of which originate from single germplasm accessions. The Dalmatian landrace Ragusa is the source of rym4 (HUTH 1985), while rym5 derives from the Chinese landrace Mokusekko 3 (KONISHI et al. 1997; GRANER et al. 1999; FRIEDT et al. 2000).

The cloning of Hv-eIF4E (STEIN et al. 2005; WICKER et al. 2005) provides a focus for an LD analysis. Taking into consideration that breeding for resistance in Europe did not start until the 1980s, and that the Hv-eIF4E locus has been subjected to a high selection pressure over a short time scale, this case study reveals much of how genome structure and dynamics can be shaped by plant breeding.
MATERIALS AND METHODS

Plant Material: Included in the study were 127 cultivated barley cultivars and landraces originating from Europe, Asia and America, along with four accessions of wild barley (ssp. *spontaneum*) collected in either Turkey or Israel. Geographical origins, pedigrees (where available), and phenotype with respect to reaction to BYMV are tabulated in Table S1.

Accessions carrying *rym4* included Ragusa, 19 European cultivars, and four Asian landraces. With respect to *rym5*, five European and six Asian accessions, including the donor Mokusekko 3, were analysed. All these accessions were tested in the field and by mechanical inoculation to verify their *rym4/rym5* status (GÖTZ and FRIEDT 1993; ORDON *et al.* 1993; Table S1). The remaining resistant accessions have not been tested for allelism to *rym4* and *rym5* (*rym?*; Table S1). Nevertheless, their resistance is likely due to the presence of genes other than *rym4/rym5*, since their haplotypes differed markedly from those of the verified *rym4-* and *rym5* accessions. In the context of this study, these genotypes are referred to as non-carriers of *rym4/rym5* and were merged with the group of susceptible cultivars. Genomic DNA was extracted from a single plant per accession as described elsewhere (GRANER *et al.* 1991).

Population structure: Sixteen barley expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) were selected to characterize population structure (Table S2; THIEL *et al.* 2003). The selection of appropriate markers was based both on map position (to obtain an even distribution across the genome) and on informativeness (high polymorphic information content value - WEBER 1990; ANDERSON *et al.* 1993). The markers were organized into multiplex sets comprising between three and six different primer pairs. Amplicons were generated with the Multiplex PCR kit (QIAGEN), using an amplification program of 95°C/15min, followed by 40 cycles of 94°C/30s, 60°C/30s and 72°C/15s, and a final extension step of 72°C/10min. PCR products were separated on 6% polyacrylamide gels using...
the ABI377 system (Applied Biosystems/Claveria, Darmstadt, Germany), and profiles were analyzed with the software packages GeneScan 3.7.1 and Genotyper 3.7. The assessment of genetic population structure was performed within a Bayesian framework using a Markov chain Monte Carlo algorithm to sample from the joint posterior distribution of the subpopulation allele frequencies, and assignment of individuals to particular sub-groups was effected with STRUCTURE version 2.1 (Prìchtard et al. 2000a; http://pritch.bsd.uchicago.edu/structure.html). For a K setting of between two and six, ten independent simulations were performed, using the admixture model and a burn-in of 500,000 followed by 1,000,000 iterations.

In order to assess the applicability of an association analysis within modern breeding material, association tests were performed in 51 European winter barley cultivars, comprising 20 rym4 carriers and 31 susceptible accessions. To infer the population structure of this sample, the estimated individual membership coefficient in each subgroup was accounted for with a structured population association test (STRAT) (Prìchtard et al. 2000b). The test statistic is constructed by computing the likelihood ratio to test the null hypothesis that allele frequencies of sub-populations at the candidate locus are independent of phenotype. Phenotypic association was tested by treating single haplotypes as multiallelic marker loci, including only single polymorphic sites at which the minor allele occurred at a frequency of at least 0.05. Empirical p-values of the observed test statistic per marker locus and per polymorphic site were calculated using 100,000 permutations.

The variation in phenotype due to population structure was assessed by a multiple linear regression model (PLABSTAT version 2H, Utz 1993). The estimated membership fractions for each genotype in K clusters of K=3 to K=6 in the entire set and K=2 for the subset of European winter cultivars were considered. The coefficient of determination from the
regression (R^2) was applied to quantify the effect on the trait of the genetic background structure.

SNP discovery and genotyping: A number of mutations in *Hv-eIF4E* are known to confer resistance to BYMV. Thus the scan for polymorphic nucleotides within the set of 131 accessions was focused on an assembly of 12 genomic fragments within and surrounding *Hv-eIF4E* (Figure 1). The size of each fragment was between 175 and 1039bp, encompassing in total 6.9kb. This represents a genetic interval of about 5.5cM proximal to, and 0.9cM distal to *Hv-eIF4E* (Table 1). The LD structure in relation to physical distance was analysed on the basis of six fragments spanning the ~132kb BAC contig AY661558 established during the cloning of *Hv-eIF4E* (WICKER et al. 2005, STEIN et al. 2005). This included three genic fragments, covering all five exons (645bp) and flanking intron regions (1840bp), one fragment from the adjacent distally mapping gene *Hv-MLL* (marker No519; 1048bp upstream), and one non-coding fragment mapping both distally (No969) and proximally (No1134) to the target. The proximal fragments GBR1843, GBS0526 and GBS0419 have been previously mapped in the Oregon Wolfe mapping population (OWB, Dom x Rec, COSTA et al. 2001), which consists of 94 F1 derived doubled haploid progeny (PRASAD et al., unpublished data). The distal fragments GBR1845, GBR1851 and GBS1020 were mapped in 115 segmental recombinant inbred lines of Alraune x W122.37, a population genetically equivalent to >4800 F2-progeny (AW, PELLIO et al. 2005). Because of a lack of polymorphism between the parents of both these mapping populations, it was not possible to combine all the markers onto a single map. Therefore, for the LD analysis, genetic map distances were considered separately for the OWB and AW populations.

In preparation for sequencing, DNA fragments were amplified using fragment-specific PCR profiles, as given in Table S3. PCR products were purified (MinElute™ 96 UF PCR
Purification, QIAGEN) and 50 – 100ng of product was used as template for cycle-sequencing with DYEnamic ET Dye terminator chemistry (Amersham Bioscience, Freiburg, Germany) on a capillary automatic sequencing device (MegaBace 1000, Amersham). Alignments were compiled and analysed using Sequencher v4.1 (Gene Codes Corporation, Ann Arbor, USA) and Bioedit v4.7.8 (Tom Hall, North Carolina State University; http://www.mbio.ncsu.edu/BioEdit/bioedit.html). The data set describing all genotyped polymorphic sites is available on request.

Statistical analyses: For the purpose of statistical analyses, indels were regarded as single sites. Estimates for LD were obtained via the software package TASSEL (version 1.0.9, http://www.maizegenetics.net/bioinformatics/tasselindex.htm) applying the measurement r^2 (squared correlation coefficient, HILL AND ROBERTSON 1968). To estimate the strength of LD between haplotypes we used the measure D^\prime (LEWONTIN 1964) modified for multiple alleles by calculating a weighted average of D^\prime value where the weights are the products of the corresponding allele frequencies (HEDRICK 1968; FARNIR 2000). Significance of LD is determined by a two-sided Fisher’s exact test for biallelic sites, and by permutations (setting number 1,000) for multiallelic sites. To preclude bias of low frequency alleles on the LD calculation, polymorphic sites featuring allele(s) with a frequency of $= 0.05$ were excluded. Values of r^2 and D^\prime were either plotted as a function of the pairwise distance between the polymorphic sites, or displayed as an LD matrix as generated by TASSEL.

For the clustering of haplotypes across the 132 kb contig and the assignment to haplogroups, neighbor-joining trees (SAITOH et al. 2004) were constructed, based on Kimura two-parameter distances and pairwise deletions of gaps, applying MEGA version 2.1 (KUMAR et al. 1994). To test the robustness of derived tree topologies, 1,000 bootstraps were performed. To estimate gene genealogies, a haplotype network of *Hv-eIF4E* was obtained by statistical
parsimony (TEMPLETON et al. 1992), using the program TCS version 1.18 (CLEMENT et al. 2000). This program calculates the probability of parsimony for all pairwise differences, until the probability exceeds 0.95.

To assess genomic variability across the entire target region and to measure and compare the diversity within and across the designated haplogroups, both nucleotide (pi) and haplotype (Hd) diversities were estimated using DnaSP (Version 3.51, ROZAS and ROZAS 1999; http://www.ub.es/dnasp/) software. For this purpose, indels were treated as single sites. Overall, 12 of the 127 $H. vulgare$ genotypes were excluded from the analysis because of missing data.
RESULTS

Population structure: The 16 EST-SSR loci revealed 77 alleles, with two to nine alleles per locus. The distribution of these alleles was in close accordance with the taxonomic and geographic subgroups defined in the germplasm collection, as illustrated by a Bayesian approach (Figure 1). However, it was difficult to fully determine the optimal number of subgroups, since the posterior probabilities for the number of clusters increased steadily. On the assumption of two subgroups ($K=2$), the population was divided into winter and spring types. A stepwise increase to $K=6$ led to the gradual separation of the Asian from the European accessions, of the two-row from the six-row spike types, and of the cultivated ($vulgare$) from the wild ($spontaneum$) types. The proportion of the variance in growth habit due to population structure was 72% ($K=3$) and 77% ($K=6$), while for origin, the proportions were 49% ($K=3$) and 73% ($K=6$). Importantly, all $rym4$- and all European $rym5$-carriers displayed allele frequencies similar to those of susceptible accessions belonging to different subgroups. Thus population structure could only account for 21% ($K=3$) – 29% ($K=6$) of the variation in BYMV resistance.

Structure of LD: The 12 genomic fragments encompassing the target region were re-sequenced across the collection of 131 accessions. A total of 83 polymorphic sites, comprising 78 SNPs and five indels, were identified. Five of the 83 sites were triallelic, and four of these, in addition to 14 of the biallelic sites, had an allele frequency of $=0.05$ and were excluded from the subsequent analysis. Across the entire collection, a considerable degree of LD was evident within the physical contig (Figure 3A), while at the genetic level, the r^2 value dropped sharply to below 0.3 within 1cM of the target (Figure 3B). Despite the diminishing r^2 value, a repeated increase of LD ($r^2 > 0.3$) was observed at a larger distance. This was not an artifact of population stratification, as the allele distribution of the corresponding pairs of polymorphic sites did not associate with population structure.
To compare the LD structure between *rym4*/*rym5* resistant and susceptible genotypes (including non-carriers of *rym4*/*rym5*), r^2 was determined separately for these two subgroups (Figure 4). The extended structure of LD observed for the 132kb contig was confirmed for all subgroups, but with varying strength. In the subgroup represented by the *rym4* (n=24) and the *rym5* (n=11) carriers, most pairs of polymorphic sites within the interval displayed complete LD ($r^2=1$), while the susceptible subgroup (n=96) showed fewer high r^2 values. LD within the susceptible group fell, as it did for the entire set, within 1cM of the target. On the other hand, the *rym4*/*rym5* subgroup was characterised by a significantly inflated LD across the entire genetic region, demonstrating a high degree of conservation within resistant genotypes.

Haplotype structure: Haplotypes were generated on the basis of the polymorphic sites, and their structure across the entire genetic interval was analysed. Considering each individual fragment, between three and seven haplotypes achieved a frequency over 2% (Table 1). LD strength between haplotypes of a single DNA fragment within subgroups of resistant (*rym4* and *rym5* carriers) and susceptible genotypes revealed remarkable differences (Figure S1). Compared to the susceptible group, resistant accessions had higher r^2 values across the entire region.

For the 132 kb contig 22 haplotypes were identified based on 54 polymorphic sites (Figure 5). The *rym4* carriers included two haplotypes (haplotype 1 *rym4*-A and haplotype 2 *rym4*-E) which matched the two broad geographical origins Asia (A) and Europe (E). All *rym5*-carriers shared the same haplotype (haplotype 4 *rym5*). Non-carriers of *rym4*/*rym5* were represented by 19 haplotypes. More than half of them (10/19) were singletons while more than 67% of those genotypes belonged to one of the three major haplotypes 3, 5a and 17. Using a neighbor-joining method, the haplotypes clustered into three major clades, hereafter referred
to as haplogroups I to III (Figure 6). The formation of these haplogroups appeared to be independent of BYMV resistance (Figure 5). Thus, haplogroup I included three haplotypes comprising the European and Asian *rym4* carriers (haplotypes 1 and 2) and a group of highly conserved susceptible two-row winter cultivars (haplotype 3). Only six out of the 54 scored sites varied within this haplogroup. Haplogroup II contained *rym5* carriers (haplotype 4) and geographically diverse accessions (haplotypes 5-12), which included both no, or as yet undetermined resistance alleles/genes. A clear dimorphism between haplogroups I and II was obtained for half of the polymorphic sites of the contig. Dimorphic sites were located mainly in non-coding sequences, while 15 out of the 16 polymorphic exon sites were shared between the two haplogroups. Only one cultivar (Posaune, haplotype 13) was intermediate between these groups, containing a signature of recombination both up- and downstream of *Hv-eIF4E* exon 1. Haplogroup III (haplotypes 14-20) had a composite structure with at least three origins. The sequence data of No1134 is closely related to haplogroup I, with only two polymorphic sites present (Figure 5, position 29084n and 29201n). Moreover, variation within *Hv-eIF4E* fragment 1 resulted in a sequence, which is clearly distinct from that present in haplogroups I and II. The pattern of polymorphic sites downstream of *Hv-eIF4E* fragment 1, however, resembled haplogroup II. This apparent patchwork on either side of fragment 1 may indicate the occurrence of several historical recombination events within *Hv-eIF4E*. The overwhelming reduction in haplotype and nucleotide diversity within the haplogroups, as compared to what is present across the entire collection validates the grouping (Table S4). A separate analysis indicates that, within a given haplogroup, less diversity is present in the non-coding than in coding sequence. Importantly, all sites within coding sequence of *Hv-eIF4E* generate an amino acid exchange(s) in the protein sequence.

A haplotype network for *Hv-eIF4E* (Figure 7), constructed with a statistical parsimony algorithm, illustrates the relationships between the haplotypes between and within the
haplogroups, and emphasises the genetic distance between the haplogroups I and II/III, with the presumed recombinant haplotype 13 representing the only link between them. Haplotypes 5 and 17 are central within the network, and have generated a number of descendant haplotypes. Both are present in a significant number of accessions, and are broadly distributed with respect to growth habit and origin. Thus they are probably the most ancient in the germplasm set. In contrast, based on the termini of the network, the two resistant haplotypes, \textit{rym4-E} and \textit{rym5}, must have emerged rather recently.

The genetic diversity within the European (n=80) and Asian (n=32) subgroups was compared across the physical contig. Despite the 2.5-fold excess of European material within the collection, the Asian accessions included a larger number of haplotypes. The more frequent occurrence of singletons in the latter set (seven vs four) is largely responsible for its apparent wider diversity. With respect to common haplotypes (frequency within a subgroup =0.05), six were represented in the European set (95.5\% of the total diversity) and seven in the Asian set (80.5\% of the total diversity). Four of these common haplotypes were shared between the subgroups (haplotypes 4, 5a, 17, 20 - Figure 5). As a result, Hd and p values were comparable between the European (Hd=0.806±0.022; pi=0.00484±0.00020) and Asian (Hd=0.910±0.025; pi=0.00441±0.00049) sets.

Association analysis: Since BYMV resistance was most frequent among the European winter barleys, a test for association between the candidate locus and resistance was carried out for the subgroup of 51 European winter cultivars, of which 20 are \textit{rym4} carriers and the remainder are susceptible accessions. To ascertain the population structure within this group, a model-based clustering algorithm was applied. The average likelihood values from ten runs reached a maximum at $K=2$, and fell for higher values (data not shown). The population explained 65\% and 6\% of the variation in ear type (two row vs six row) and BYMV
resistance, respectively. Structured population association tests were carried out between BYMV resistance and haplotype, at both the twelve marker fragments and at 55 out of the 83 polymorphic sites (excluding those where the minimum allele frequency was <0.05). The association was significant ($P<0.01$) for all nine loci mapping between No1134 and GBS1020, comprising the physical contig across $Hv-eIF4E$ and the distal 1cM region (Table 2). At six loci in this interval (No1134, $Hv-eIF4E$ 1-3, No519, GBR1845M), $rym4$ carriers possessed haplotypes that were not observed in any susceptible accessions. Locus GBR1843, located 6.5cM proximally to the physical contig showed only a weak association ($P<0.05$) with resistance. Over 56% of the SNPs were significantly associated with the resistant phenotype ($P<0.01$), confirming the outcome of the haplotype test (Table S5).

As a control, association tests were carried out between BYMV resistance and alleles of the evenly distributed SSR markers across the genome (Table S5). Out of eleven polymorphic SSR markers in the European winter barleys set, ten were not associated to the phenotype and only one marker located on 6H showed a weak association (GBM1021; $P=0.035$).
DISCUSSION

We have described a detailed evaluation of LD and haplotype patterns surrounding the gene Hv-eIF4E, which encodes a heavily utilized virus resistance in European barley.

Population structure: Population structure has a major impact on patterns of LD and consequently, on the outcome of association studies (Pritchard et al. 2000b). The diverse collection of cultivars and landraces from Europe, Asia and America selected in this study could be clustered on the basis of growth habit, ear morphology, geographical origin and subspecies, and is similar in genetic breadth to those used in other genome-wide marker analyses in barley (Melchinger et al. 1994; Ordon et al. 1997; Thiel et al. 2003). Importantly, however, the population structure did not disturb the association between haplotype and BYMV resistance.

Linkage disequilibrium and genomic pattern: In self-pollinating species such as A. thaliana and rice, LD has been observed to extend several kb beyond a target gene (Hagenblad and Nordborg 2002; Nordborg et al. 2002; Garris et al. 2003; Hagenblad et al. 2004; Olsen et al. 2004), and can even reach the cM range (Nordborg et al. 2002; Zhu et al. 2003; Aranzana et al. 2005). Corresponding results apply at the Hv-eIF4E locus. The structure of the three conserved haplogroups in the physical vicinity of Hv-eIF4E reflected a high level of LD across the 132kb interval. Similarly, a sustained level of LD has been revealed over a 212kb stretch flanking the hardness locus in European elite barley cultivars (Caldwell et al. 2005). With respect to genetic distance, LD around Hv-eIF4E fell below the critical threshold of $r^2=0.3$ within less than 1cM. This result is inconsistent with a genome-wide estimate for LD of up to 10cM, as reported among modern spring barley cultivars (Kraakman et al. 2004). However, it has been conclusively established for both plants and human that LD is highly variable, reflecting the combined influences of population
structure, genomic region under consideration and the number of polymorphic sites available (AKEY et al. 2003; KE et al. 2004).

The drastic decay of LD at the genetic level, as it was observed in the present study, was mainly attributable to the susceptible accessions. While in both rym4 and rym5 resistant groups considerable haplotype conservation persisted, the haplotypes of susceptible accessions revealed a high level of recombination in the regions flanking the 132kb fragment. Various forces can contribute to haplotype conservation including (a) prior genetic bottlenecks resulting in a low effective population size, (b) introgression of rym4 and rym5 from a restricted number of sources, (c) a very recent history of intensive selection for resistance against BYMV, (d) a lack of recombination in the target region, and (e) gene function. While it is difficult to demonstrate a specific bottleneck affecting the accessions investigated in the present study, the effect of severe domestication-related bottlenecks on haplotype diversity between modern barley cultivars and wild ssp. spontaneum has been repeatedly described (BADR et al. 2000, MATUS and HAYES 2002, PIFFANELLI et al. 2004). A comparison between the diversity at Hv-eIF4E within wild and cultivated barley should provide more information regarding the history of this locus. Generally, modern breeding has narrowed the genetic base by altering allele frequencies. With the increased use of ssp. spontaneum as a donor for resistance genes, novel alleles have been introgressed into the gene pool of cultivated barley. The typical outcome of such introgressions has been analysed elsewhere (IVANDIC et al. 1998; PILLEN et al. 2004). While it initially generates a spike in genetic diversity, strong selection for the exotic allele will gradually erode the frequencies of the “old” alleles, even leading to their complete loss (RUSSELL et al. 2000, COLLINS et al. 2001; BUNDOCK and HENRY 2004). Such a scenario is likely to have occurred during breeding for resistance to BYMV. The analysis of pedigree and molecular marker data provides evidence that there was only a single source each of rym4 and rym5 in European elite germplasm (HUTH 1985; GRANER and BAUER 1993; FRIEDT et al. 2000). Thus, strong selection for resistance resulted in an enrichment of
the corresponding alleles in European winter barley. A similar situation applies to the
selection of yellow endosperm in maize, which started in the early 20th century, and has been
traced to two independent introgression events. As a result, genetic variation in the vicinity of
the target locus Y_l is very low (PALAISA et al. 2003; PALAISA et al. 2004).

The short time scale over which intensive selection for BYMV resistance has operated has
provided as yet only limited opportunities for recombination around the resistance gene.
However, targeted selection for rym4/rym5 is probably not the only reason for the observed
LD, as the pedigree triplets (parent1, parent2, offspring) formed by the susceptible cultivars
Ursel, Ultra, Villa, and Volla which are all represented in the collection, also showed no
recombination across the entire region genotyped. Since susceptible alleles of $Hv-eIF4E$ are
not likely to be subjected to selection pressure, the observed pattern is more probably an
outcome of related pedigrees and a limited number of meiotic events during the breeding
process.

A low recombination rate in the target region has possibly also governed the size of the
introgression segment and the LD pattern. In this regard, a comparison of genetic and physical
distances in the region of $Hv-eIF4E$ revealed marked differences in recombinational activity,
and in particular a reduction proximal to the gene and an increase distal to it (STEIN et al.
2005). Except for marker fragment No1134, which borders an interval, characterised by a low
ratio of physical to genetic distance (0.8-2.3Mb/cM), the contig is located in a region with a
high ratio (30-50Mb/cM). The low recombination frequencies are consistent with the large
proportion of transposable element sequence present in the 439.7kb BAC contig, which
contains only one genic island of 10kb harboring $Hv-eIF4E$ and $Hv-MLL$ (WICKER et al.
2005). Meiotic recombination in eukaryotes is confined mainly to genes (THURIAUX 1977;
CIVARDI et al. 1994; DOONER and MARTINEZ-FEREZ 1997), and studies in maize have
confirmed that genes located close to retrotransposons have less recombinational activity than those present within gene clusters (Fu et al. 2002). A possible additional factor contributing to LD relates to selection pressure on genes located on either side of the BAC contig. The maintenance of LD across several genes has been demonstrated in maize, although it was largely restricted to gene-rich regions (Palaisa et al. 2004).

Further investigations are clearly needed to determine whether the genomic patterns observed can be attributed to a single factor such as limited sample size, limited effective population size, the small number of generations since introgression, or low recombination, or whether it is the result of a combination of some or all of these forces.

Haplotype network for the Hv-eIF4E locus: Based on the derived network model, it can be suggested that the resistant and susceptible alleles have descended relatively recently from a common ancestor. The separation between haplogroups I and II lends strength to the notion that both rym4 and rym5 have an independent evolutionary history. Evidence for a geographic pattern has been provided for several loci in wild barley (Morrell et al. 2003; Morrell et al. 2005), but the strong dimorphism associated with rym4 and rym5 did not correspond to any geographic subdivision. The fact that the germplasm has been subjected to breeding, material exchange and subsequent introgression events may of course obscure such a division. Thus to gain a better understanding of the evolution of the haplogroups, comprehensive allele genotyping within a set of geographically widely distributed landraces and wild barleys will be required.

Surprisingly, the strong clustering of haplotypes identified across Hv-eIF4E was exclusively attributable to polymorphic sites in non-coding sequence, while the genetic variation within each group was due mainly to amino acid replacement mutations in the exons. Why the dimorphism between the haplogroups is due largely to non-coding polymorphic sites remains
unexplained. In particular, the haplotype diversity within haplogroup II is mostly attributable to rare polymorphic sites present in single Asian genotypes (haplotypes 8-12). Ongoing tests for allelism will show whether these genotypes carry new resistance alleles at the \(Hv-eIF4E\) locus, or whether the resistant phenotype is conferred by an independent locus.

Consequences for association studies: The maintenance of the resistant haplotype blocks, resulting from recent, non-recombined introgression event(s), has resulted in the formation of significant associations between resistance and haplotypes up to a distance of at least 1cM from the resistance gene. Such a coarse level of resolution is inadequate for map-based gene cloning. On the other hand, it does imply that a fairly low marker density is sufficient to detect associations between a target region and resistance. If this is typical for other genes within breeding germplasm, the prospects are good for identifying chromosomal segments associated with traits of interest. Further resolution may be achievable by using populations, which have been intermated over many generations, thereby promoting the break-down of linkage blocks. This situation is not common in breeding material, and is more likely to be found in landraces and wild populations. For spp. *spontaneum*, levels of LD comparable to that of the outbreeding species maize has been reported (Lin et al. 2002; Caldwell et al. 2005; Morrell et al. 2005), and these should be sufficient to provide the genetic resolution necessary to identify the functional polymorphism associated with the trait variation.

ACKNOWLEDGEMENTS

We thank M. Koornneef for his critical review of the manuscript, S. Wiedemann and S. Jakob for helpful discussions and K. Trnka for technical assistance. We also acknowledge the linguistic advice of www.smartenglish.co.uk in preparation of this manuscript.
LITERATURE CITED

ABDEL-GHANI, A. H., H. K. PARZIES, S. CECCARELLI, S. GRANDO and H. H. GEIGER, 2005 Estimation of quantitative genetic parameters for outcrossing-related traits in barley. Crop Science 45: 98-105.

AKEY, J. M., K. ZHANG, M. M. XIONG and L. JIN, 2003 The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Molecular Biology and Evolution 20: 232-242.

ANDERSON, J. A., G. A. CHURCHILL, J. E. AUTRIQUE, S. D. TANKSLEY and M. E. SORRELLS, 1993 Optimizing parental selection for genetic-linkage maps. Genome 36: 181-186.

ARANZANA, M. J., S. KIM, K. ZHAO, E. BAKKER, M. HORTON et al., 2005 Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLOS Genetics 1: e60.

BADR, A., K. MULLER, R. SCHAFER-PREGL, H. EL RABEY, S. EFFGEN et al., 2000 On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution 17: 499-510.

BROWN, A., E. NEVO and D. ZOHARY, 1977 Association of alleles at esterase loci in wild barley Hordeum spontaneum L. Nature 268: 430-431.

BUNDOCK, P. C., and R. J. HENRY, 2004 Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theoretical and Applied Genetics 109: 543-551.

CALDWELL, K. S., J. R. RUSSELL, P. LANGRIDGE and W. POWELL, 2005 Extreme population dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics: genetics.104.038489.

CIVARDI, L., Y. J. XIA, K. J. EDWARDS, P. S. SCHNABLE and B. J. NIKOLAU, 1994 The relationship between genetic and physical distances in the cloned A1-Sh2 interval of the Zea mays L. genome. Proceedings of the National Academy of Sciences of the United States of America 91: 8268-8272.

CLEMENT, M., D. POSADA and K. A. CRANDALL, 2000 TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.

COLLINS, N. C., T. LAHAYE, C. PETERHANSEL, A. FREIALDENHOVEN, M. CORBITT et al., 2001 Sequence haplotypes revealed by sequence-tagged site fine mapping of the Ror1 gene in the centromeric region of barley chromosome 1H. Plant Physiology 125: 1236-1247.

COSTA, J. M., A. COREY, P. M. HAYES, C. JOBET, A. KLEINHOFS et al., 2001 Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics 103: 415-424.

DOLL, H., 1987 Outcrossing Rates in Autumn and Spring-Sown Barley. Plant Breeding 98: 339-341.

DOONER, H. K., and I. M. MARTINEZFEREZ, 1997 Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9: 1633-1646.

FARNIR, F., W. COPPIETERS, J. J. ARRANZ, P. BERZI, N. CAMBISANO et al., 2000 Extensive genome-wide linkage disequilibrium in cattle. Genome Research 10: 220-227.

FRIEDT, W., K. WERNER and F. ORDON, 2000 Genetic progress as reflected in highly successful and productive modern barley cultivars, pp. 271-279 in Proc. 8th International Barley Genetics Symposium, Adelaide, Australia.

FU, H. H., Z. W. ZHENG and H. K. DOONER, 2002 Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proceedings of the National Academy of Sciences of the United States of America 99: 1082-1087.
GARRIS, A. J., S. R. MCCOUCH and S. KRESOVICH, 2003 Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165: 759-769.

GILES, R. J., G. MCCONNELL and J. L. FYFE, 1974 Frequency of Natural Cross-Fertilization in a Composite Cross of Barley Grown in Scotland. Journal of Agricultural Science 83: 447-450.

GÖTZ, R., and W. FRIEDT, 1993 Resistance to the Barley yellow mosaic-virus complex - Differential genotypic reactions and genetics of BaMMV-resistance of barley (Hordeum vulgare L.). Plant Breeding 111: 125-131.

GRANER, A., and E. BAUER, 1993 Rflp mapping of the ym4 virus-resistance gene in barley. Theoretical and Applied Genetics 86: 689-693.

GRANER, A., A. JAHOOR, J. SCHONDELMAIER, H. SIEDLER, K. PILLEN et al., 1991 Construction of an Rflp map of barley. Theoretical and Applied Genetics 83: 250-256.

GRANER, A., S. STRENG, A. KELLERMANN, A. SCHIEMANN, E. BAUER et al., 1999 Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley yellow mosaic virus complex. Theoretical and Applied Genetics 98: 285-290.

GUPTA, P. K., S. RUSTGI and P. L. KULWAL, 2005 Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology 57: 461-485.

HAGENBLAD, J., and M. NORDBORG, 2002 Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 161: 289-298.

HAGENBLAD, J., C. L. TANG, J. MOLITOR, J. WERNER, K. ZHAO et al., 2004 Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168: 1627-1638.

HEDRICK, P. W. 1987, Gametic disequilibrium measures: Proceed with caution. Genetics 117: 331-341.

HILL, W. G., and A. ROBERTSON, 1968 Linkage disequilibrium in finite population. Theoretical and Applied Genetics 33: 54-78.

HUTH, W., 1985 Versuche zur Virusdiagnose und Resistenzzäugerstellung in Gerste gegen Barley Yellow Mosaic Virus. Vorträge für Pflanzenzüchtung 9: 107-120.

IVANDIC, V., U. WALTHER and A. GRANER, 1998 Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theoretical and Applied Genetics 97: 1235-1239.

KANYUKA, K., A. DRUKA, D. G. CALDWELL, A. TYMON, N. MCCALLUM et al., 2005 Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Molecular Plant Pathology 6: 449-458.

KANYUKA, K., G. MCGRANN, K. ALHUDAIB, D. HARIRI and M. J. ADAMS, 2004 Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley rym5 resistance gene. Archives of Virology 149: 1469-1480.

KE, X. Y., S. HUNT, W. TAPPER, R. LAWRENCE, G. STAVRIDES et al., 2004 The impact of SNP density on fine-scale patterns of linkage disequilibrium. Human Molecular Genetics 13: 577-588.

KONISHI, T., T. BAN, Y. IIDA and R. YOSHIMI, 1997 Genetic analysis of disease resistance to all strains of BaYMV in a Chinese barley landrace, Mokusekko 3. Theoretical and Applied Genetics 94: 871-877.

KRAAKMAN, A. T. W., R. E. NIKS, P. VAN DEN BERG, P. STAM and F. A. VAN EEUWIJK, 2004 Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168: 435-446.
KUMAR, S., K. TAMURA and M. NEI, 1994 MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. 10.1093/bioinformatics/10.2.189. Comput. Appl. Biosci. 10: 189-191.

LEWONTIN, R. C., 1964 The interaction of selection and linkage. I. General considerations; het erotic models. Genetics 49: 49-67.

LIN, J.-Z., P. L. MORRELL and M. T. CLEGG, 2002 The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley (Hordeum vulgare ssp spontaneum). Genetics 162: 2007-2015.

MATUS, I. A., and P. M. HAYES, 2002 Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45: 1095-1106.

MELCHINGER, A. E., A. GRANER, M. SINGH and M. M. MESSMER, 1994 Relationships among European barley germplasm. 1. Genetic diversity among winter and spring cultivars revealed by Rflps. Crop Science 34: 1191-1199.

MORRELL, P. L., K. E. LUNDY and M. T. CLEGG, 2003 Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp spontaneum) despite migration. Proceedings of the National Academy of Sciences of the United States of America 100: 10812-10817.

MORRELL, P. L., D. M. TOLENO, K. E. LUNDY and M. T. CLEGG, 2005 Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp spontaneum) despite high rates of self-fertilization. Proceedings of the National Academy of Sciences of the United States of America 102: 2442-2447.

NORDBORG, M., J. O. BOREVITZ, J. BERGELSON, C. C. BERRY, J. CHORY et al., 2002 The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 30: 190-193.

NORDBORG, M., T. T. HU, Y. ISHINO, J. JHAVERI, C. TOOMAJIAN et al., 2005 The pattern of polymorphism in Arabidopsis thaliana. Plos Biology 3: 1289-1299.

OLSEN, K. M., S. S. HALLDORSDOTTIR, J. R. STINCHCOMBE, C. WEINIG, J. SCHMITT et al., 2004 Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167: 1361-1369.

ORDON, F., J. AHLEMEYER, K. WERNER, W. KÖHLER and W. FRIEDT, 2005 Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica (in press).

ORDON, F., R. GÖTZ and W. FRIEDT, 1993 Genetic stocks resistant to barley yellow mosaic viruses (BaMMV, BaYMV, BaYMV-2) in Germany. Barley Genetic Newsletter 22: 46-49.

ORDON, F., A. SCHIEMANN and W. FRIEDT, 1997 Assessment of the genetic relatedness of barley accessions (Hordeum vulgare sl) resistant to soil-borne mosaic-inducing viruses (BaMMV, BaYMV, BaYMV-2) using RAPDs. Theoretical and Applied Genetics 94: 325-330.

PALAISA, K., M. MORGANTE, S. TINGEY and A. RAFALSKI, 2004 Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proceedings of the National Academy of Sciences of the United States of America 101: 9885-9890.

PALAISA, K. A., M. MORGANTE, M. WILLIAMS and A. RAFALSKI, 2003 Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phyto gene synthase loci. Plant Cell 15: 1795-1806.

PELLIO, B., S. STRENG, E. BAUER, N. STEIN, D. PEROVIC et al., 2005 High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp vulgare L.). Theoretical and Applied Genetics 110: 283-293.
PIFFANELLI, P., L. RAMSAY, R. WAUGH, A. BENABDELMOUNA, A. D'HONT et al., 2004 A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430: 887-891.

PILLEN, K., A. ZACHARIAS and J. LEON, 2004 Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp spontaneum. Theoretical and Applied Genetics 108: 1591-1601.

PRITCHARD, J. K., M. STEPHENS and P. DONNELLY, 2000a Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

PRITCHARD, J. K., M. STEPHENS, N. A. ROSENBERG and P. DONNELLY, 2000b Association mapping in structured populations. American Journal of Human Genetics 67: 170-181.

REMINGTON, D. L., J. M. THORNSBERRY, Y. MATSUOKA, L. M. WILSON, S. R. WHITT et al., 2001 Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the United States of America 98: 11479-11484.

ROZAS, J., and R. ROZAS, 1999 DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175.

RUSSELL, J. R., R. P. ELLIS, W. T. B. THOMAS, R. WAUGH, J. PROVAN et al., 2000 A retrospective analysis of spring barley germplasm development from 'foundation genotypes' to currently successful cultivars. Molecular Breeding 6: 553-568.

SAITOH, K., K. ONISHI, I. MIKAMI, K. THIDAR and Y. SANO, 2004 Allelic diversification at the C (OsC1) locus of wild and cultivated rice: Nucleotide changes associated with phenotypes. Genetics 168: 997-1007.

STEIN, N., D. PEROVIC, J. KUMLEHN, B. PELLIO, S. STRACKE et al., 2005 The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant Journal 42: 912-922.

TEMPLETON, A. R., K. A. CRANDALL and C. F. SING, 1992 A Cladistic Analysis of Phenotypic Associations With Haplotypes Inferred From Restriction Endonuclease Mapping and DNA Sequence Data. III. Cladogram Estimation. Genetics 132: 619-633.

TENAILLON, M. I., M. C. SAWKINS, A. D. LONG, R. L. GAUT, J. F. DOEBLEY et al., 2001 Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proceedings of the National Academy of Sciences of the United States of America 98: 9161-9166.

THIEL, T., W. MICHALEK, R. K. VARSHNEY and A. GRANER, 2003 Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411-422.

THURIAUX, P., 1977 Is recombination confined to structural genes on eukaryotic genome. Nature 268: 460-462.

TIAN, D. C., H. ARAKI, E. STAHL, J. BERGELSON and M. KREITMAN, 2002 Signature of balancing selection in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 99: 11525-11530.

UTZ, H. F., 1993 PLABSTAT Version 2H. Institute of Plant Breeding, Seed Science, and Population Genetics. University of Hohenheim, Stuttgart, Germany.

WEBER, J. L., 1990 Informativeness of human (Dc-Da)N.(Dg-Dt)N polymorphisms. Genomics 7: 524-530.

WICKER, T., W. ZIMMERMANN, D. PEROVIC, A. H. PATERSON, M. GANAL et al., 2005 A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant Journal 41: 184-194.

ZHU, Y. L., Q. J. SONG, D. L. HYTEN, C. P. VAN TASSELL, L. K. MATUKUMALLI et al., 2003 Single-nucleotide polymorphisms in soybean. Genetics 163: 1123-1134.
FIGURE LEGENDS

FIGURE 1. Combined genetic and physical map of the region surrounding *Hv-eIF4E* on chromosome 3H. Genetic distances in cM are indicated for markers flanking the locus in the OWB and the high-resolution AW maps. The arrow indicates the centromere (C). The schematic arrangement of marker fragments is depicted (not to scale) on the physical BAC contig (AY661558). *Hv-MLL*: barley MCT-1-like protein.

FIGURE 2. Estimated population structure based on 16 EST-SSRs. The population can be partitioned into *K* subpopulations, which are color-labeled. A bar, whose colored segments represent the individual’s estimated contribution to the individual subpopulations, represents each accession. Black, vertical lines separate accessions of different resistance phenotype, origin, and growth habit. Abbreviations: *U* = America, *Hs* = ssp. *spontaneum*.

FIGURE 3. LD structure at *Hv-eIF4E*. Plots show the pairwise LD measurement *r*² related to (A) physical, and (B) genetic distances. The data consists of 67 polymorphic sites with a minor allele frequency higher than 0.05 in the set of 131 accessions. Non-significant *r*² values (*P* > 0.05) are indicated by white dots. Mean values of *r*² are given by asterisks for (A) windows of 1 kb / 10 kb distance and (B) identical genetic distances.

FIGURE 4. Strength and extent of LD in different germplasm sets. Polymorphic sites in the investigated interval with a minor allele frequency above 5% were considered for a pairwise calculation of LD across (A) the entire collection of 131 accessions, (B) the non-*rym4*/*rym5* resistant subpopulation of 96 accessions, and (C) the set of 35 *rym4* or *rym5* carriers. Each point in the LD matrix represents a comparison between a pair of polymorphic sites, with the *r*² values displayed above the diagonal, and *P* values for Fisher’s Exact test below. Points on the diagonal correspond to comparisons of each site with itself. Polymorphic sites located within the fragments of the physical contig are indicated. Color codes for *r*² and *P* values are given.

FIGURE 5. Polymorphic sites in the *Hv-eIF4E* contig. Polymorphic sites located in coding (e1, e2 etc.) and non-coding regions are designated according to their position in the AY661558 sequence. Dots indicate sites identical to haplotype 1 (*rym4*-E). For all indels, the starting point is given (*1 = 108bp; *2 = 2bp; *3 = 1bp; *4 = 10bp). Considering all 54 polymorphic sites, haplotypes 1 through 20 can be identified. Haplotypes 5 and 7 were separated into ‘a’ and ‘b’, which, although sharing an identical haplotype for all three *Hv-eIF4E* genic fragments, differed at a site in the flanking region (haplotype 5 at No519; haplotype 7 at No969). Haplogroups I, II and III are indicated on the left. Growth habit (w = winter, s = spring) and origin (E = Europe, A = Asia, U = America) are given for each haplotype.

FIGURE 6. Haplotype relationships within 132kb interval. The midpoint-rooted neighbor-joining tree is based on the sequence of No1134, *Hv-eIF4E* fragments 1-3, No519, and No969 of the 22 haplotypes designated in Figure 5. The numbers on the branches indicate the frequency (%) with which a clade appeared in 1,000 bootstrap samples. Branch lengths are proportional to the probable number of substitutions per site using Kimura 2-parameter distances. Haplogroups I, II and III are indicated.

FIGURE 7. The *Hv-eIF4E* haplotype network. Numbers correspond to the haplotype designations in Figure 5. Lines represent mutational changes and solid circles indicate intermediate haplotypes. The 95% confidential interval is 13 steps. Haplotypes shared
between more than one genotype are indicated by squares. Grey shaded squares correspond to
$rym4$-E (1), $rym4$-A (2) and $rym5$ (4) haplotypes, respectively. Haplotypes showing strong
independence from growth habit and origin are marked with a hashed pattern. Haplogroups I,
II and III are indicated.
Figure 1

Genetic map

```
rym4 / rym5
Bmac29
OWB
Genetic map

GBR1843   GBS0526   GBS0419   No1134  1  2           3 No519  No969    GBR1845  GBR1851 GBS1020
```

Physical contig

```
Hv-eIF4E
Hv-MLL
132 kb
```
Figure 2

Genotypes	European winter 2-rowed 6-rowed		U	Asian	Hs
rym5					
rym4	spring				

- $K = 2$
 - $\ln P(D) = -1894.0$
 - $a = 0.056$

- $K = 3$
 - $\ln P(D) = -1646.9$
 - $a = 0.042$

- $K = 4$
 - $\ln P(D) = -1562.0$
 - $a = 0.036$

- $K = 5$
 - $\ln P(D) = -1588.3$
 - $a = 0.034$

- $K = 6$
 - $\ln P(D) = -1535.2$
 - $a = 0.035$
Figure 4

A

B

C
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
|----|
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |
| H | A | N | M | L | O | R | P | E | Q | R | P | F | G | C | A | T | A | C | G | C | A | T | A | C |

Figure 5

No1134	Hv-elf4E	No519	No969
	fragment 1		
	fragment 2		
	fragment 3		
H	H	R	F
A	A	R	E
N	N	M	L
M	M	L	O
L	L	O	R
O	O	R	P
R	R	P	E
P	P	E	Q
E	E	Q	R
Q	Q	R	P
R	R	P	F
P	P	F	G
F	F	G	C
G	G	C	A
C	C	A	T
A	A	T	A
T	T	A	C
A	A	C	G
C	C	G	C
G	G	C	A
C	C	A	T
A	A	T	A
T	T	A	C
A	A	C	G
C	C	G	C
G	G	C	A
C	C	A	T
A	A	T	A
T	T	A	C
A	A	C	G
C	C	G	C
G	G	C	A

Table 1

Hym5E	Hym5-A
R	E
P	E
T	T

Table 2

Hym5	7b	8b
	1	2
	3	4
	5	6

Table 3

Hym5	8b	9b
	1	2
	3	4
	5	6

Table 4

Hym5	8b	9b
	1	2
	3	4
	5	6
Figure 6

Haplogroup I

Haplogroup II

Haplogroup III

haplotype 16
haplotype 18
haplotype 17
haplotype 14
haplotype 15
haplotype 19
haplotype 20
haplotype 4 rym5
haplotype 9
haplotype 8
haplotype 6
haplotype 11
haplotype 12
haplotype 10
haplotype 5b
haplotype 5a
haplotype 7a
haplotype 7b
haplotype 13
haplotype 1 rym4E
haplotype 2 rym4A
haplotype 3

substitutions/site
0.001
FIGURE 7

Haplogroup I

Haplogroup II

Haplogroup III
TABLE 1. Summary of all sampled marker fragments.

Marker	Distance in cM	Position on contig in bp	Fragment size in bp	Polymorphic sites	Haplotypes	Best BLASTx hit	Score
GBR1843	5.5	OWB	347	4	4	unknown protein P0458E05.14 (Oryza sativa BAC05614)	233 1.0E-60
GBS0526	4.5	OWB	930	9	4	putative 60S ribosomal protein L38 (Oryza sativa BAC79676)	132 1.0E-30
GBS0419	2.2	OWB	371	4	3	putative beta-fructofuranosidase (Oryza sativa BAC05626)	354 9.0E-97
No1134	0.02	AW	28973 29373	401	11	6	None
							AY661558
Hv-eIF4E fragment 1	0	101606 102484	879	12	6	Eukaryotic initiation factor of translation 4E (Hv-eIF4E)	AY661558
Hv-eIF4E fragment 2	0	103313 104351	1039	15	7	Eukaryotic initiation factor of translation 4E (Hv-eIF4E)	AY661558
Hv-eIF4E fragment 3	0	106146 106710	565	12	6	Eukaryotic initiation factor of translation 4E (Hv-eIF4E)	AY661558
No519	0	107786 108284	499	2	3	Monocarboxylic acid transporter-like (Hv-MLL)	AY661558
No969	0	161182 161356	175	2	3	None	AY661558
GBR1845	0.4	AW	265	5	4	putative cytochrome B5 (Oryza sativa BAB63673)	110 8.0E-31
GBR1851	0.7	AW	424	5	4	unknown protein P0518C01.5 (Oryza sativa BAB63668)	75 8.0E-13
GBS1020	1.0	AW	1011	2	3	putative cell cycle switch protein (Oryza sativa BAB63690)	312 4.0E-89

1) relative to ATG of Hv-eIF4E
2) start and end position of the corresponding fragment based on contig AY661558
3) number of haplotypes with a frequency >0.02 in the entire collection
TABLE 3. Structured population association tests between haplotype frequency at single marker loci and *rym4*-encoded BYMV resistance.

Marker locus	Distance in cM	chisq	df	TS	P-value	K = 1	P-value	K = 2	P-value
GBR1834	5.5	11.40	4	6.41	0.0134	*	7.39	0.0427	*
GBS0526	4.5	1.89	1	0.95	0.1670		1.55	0.2288	
GBS0419	2.2	7.39	1	3.99	0.0051	**	2.66	0.0812	
No1134	0.02	31.18	3	16.29	<0.0001	***	17.00	<0.0001	***
Hv-eIF4E-1	0	31.34	3	16.44	<0.0001	***	16.92	<0.0001	***
Hv-eIF4E-2	0	31.04	3	16.19	<0.0001	***	16.94	<0.0001	***
Hv-eIF4E-3	0	31.04	3	16.19	<0.0001	***	16.94	<0.0001	***
No519	0	31.00	2	16.00	<0.0001	***	17.27	<0.0001	***
No969	0	7.64	2	4.04	0.0209	*	6.97	0.0066	**
GBR1845	0.4	30.58	1	15.80	<0.0001	***	16.78	<0.0001	***
GBR1851	0.7	20.93	2	10.84	<0.0001	***	11.79	<0.0001	***
GBR1020	1.0	16.20	1	8.35	<0.0001	***	9.27	<0.0001	***

1) relative to ATG of *Hv-eIF4E*, 2) test statistic of STRAT (TS)
* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001