Generalized Maximal Orders

Tim Neijens
University of Antwerp
tim.neijens@gmail.com

Freddy Van Oystaeyen
University of Antwerp
fred.vanoystaeyen@ua.ac.be

March 26, 2009

Abstract

Maximal Orders over an algebra are a generalization of the concept of a Dedekind domain. The definition given in Maximal Orders by Reiner, [11], assumes that the field over which the algebra is defined is in the center of the order. Since we want to define maximal orders over a Crystalline Graded Ring (defined in [10]), this concept needs to be generalized. In this paper, we will weaken the condition that the field needs to be in the center, and still retain many of the desired properties of a maximal order.

This paper is inspired by Maximal Orders, written by I. Reiner, [11].

1 Preliminaries

Definition 1.1 Pre-Crystalline Graded Ring
Let A be an associative ring with unit 1_A. Let G be an arbitrary group. Consider an injection $u : G \to A$ with $u_e = 1_A$, where e is the neutral element of G and $u_g \neq 0$, $\forall g \in G$. Let $R \subset A$ be an associative ring with $1_R = 1_A$. We consider the following properties:

(C1) $A = \bigoplus_{g \in G} Ru_g$.

(C2) $\forall g \in G$, $Ru_g = u_g R$ and this is a free left R-module of rank 1.

(C3) The direct sum $A = \bigoplus_{g \in G} Ru_g$ turns A into a G-graded ring with $R = A_e$.

We call a ring A fulfilling these properties a Pre-Crystalline Graded Ring.
Proposition 1.2 With conventions and notation as in Definition 1.1:

1. For every \(g \in G \), there is a set map \(\sigma_g : R \to R \) defined by: \(u_gr = \sigma_g(r)u_g \) for \(r \in R \). The map \(\sigma_g \) is in fact a surjective ring morphism. Moreover, \(\sigma_e = \text{Id}_R \).

2. There is a set map \(\alpha : G \times G \to R \) defined by \(u_gu_h = \alpha(g,h)u_{gh} \) for \(g,h \in G \). For any triple \(g,h,t \in G \) the following equalities hold:

\[
\alpha(g,h)\alpha(gh,t) = \sigma_g(\alpha(h,t))\alpha(g,ht), \quad (1)
\]
\[
\sigma_g(\sigma_h(r))\alpha(g,h) = \alpha(g,h)\sigma_{gh}(r). \quad (2)
\]

3. \(\forall g \in G \) we have the equalities \(\alpha(g,e) = \alpha(e,g) = 1 \) and \(\alpha(g,g^{-1}) = \sigma_g(\alpha(g^{-1},g)) \).

Proof

See [10].\(\square\)

Proposition 1.3 Notation as above, the following are equivalent:

1. \(R \) is \(S(G) \)-torsionfree.

2. \(A \) is \(S(G) \)-torsionfree.

3. \(\alpha(g,g^{-1})r = 0 \) for some \(g \in G \) implies \(r = 0 \).

4. \(\alpha(g,h)r = 0 \) for some \(g,h \in G \) implies \(r = 0 \).

5. \(Ru_g = u_gR \) is also free as a right \(R \)-module with basis \(u_g \) for every \(g \in G \).

6. for every \(g \in G \), \(\sigma_g \) is bijective hence a ring automorphism of \(R \).

Proof

See [10].\(\square\)

Definition 1.4 Any \(G \)-graded ring \(A \) with properties (C1),(C2),(C3), and which is \(G(S) \)-torsionfree is called a crystalline graded ring. In case \(\alpha(g,h) \in \mathbb{Z}(R) \), or equivalently \(\sigma_{gh} = \sigma_g\sigma_h \), for all \(g,h \in G \), then we say that \(A \) is centrally crystalline.
2 General Theory

2.1 Setting

For this section, we will use the following notation and conventions.

- R is a Noetherian commutative domain.
- $K = \mathbb{Q}(R)$ the quotient field of R.
- G is a finite group.
- There is a group action of G on R, denoted by $\sigma_g \in \text{Aut} R$, where $g \in G$.
- A is a ring, and a vectorspace over K. K is not necessarily a subset of the center of A.
- $R^G \subset Z(A)$, where R^G is the ring of invariant elements for the group action by G. Extending for all $g \in G \sigma_g$ to K, K^G is the set of invariant elements in K for the group action by G.
- For a set of generators X_A of A as a vectorspace over K, we have $Rx = xR, \forall x \in X_A$. From this also follows $KX_A = A = X_AK$.

2.2 Lattices

Definition 2.1 We call V a K-bivectorspace over K^G if V is a left and right K-vectorspace and $av = vra, \forall v \in V, a \in K^G, r \in K$. We define an R-bimodule over R^G in an analogous way.

Definition 2.2 Let V be a K-bivectorspace over K^G. We call $M \subset V$ an R-lattice if M is a left and right finitely generated R-torsionfree R-bimodule over R^G. We call an R-lattice M a full R-lattice if $KM = V = MK$.

Proposition 2.3 Let M be an R-lattice, and N be a full R-lattices in a K-bivectorspace over $K^G V$. Then $\exists r \neq 0 \in R^G$ such that $rM \subset N$, and $\exists s \neq 0 \in R^G$ such that $Ms \subset N$.

Proof N contains a left K-basis for V. If $x \in M$, then we can choose $x = \sum a_i n_i$ for $n_i \in N$ and $a_i \in K$, $\forall i$. We can choose a_i so that the denominator is in R^G (multiplying by the rest of the orbit of the G-action). In other words $\exists r \in R^G$ such that $rx \in N$. Since M is finitely generated as an R-bimodule over R^G, we can choose $r \in R^G$ such that $rM \subset N$.

Since N also contains a right K-basis for V, the second statement follows. \square
2.3 Orders

Definition 2.4 We call a full R-lattice Λ in A, an **order in** Λ if it is a ring with the same identity element as A. A full R-lattice that is maximal with this property is called a maximal order.

Definition 2.5 Define for M a full R-lattice in A the **left order of** M $O_l(M)$ respectively the **right order of** M $O_r(M)$ as

$$O_l(M) = \{ x \in A | xM \subset M \},$$
$$O_r(M) = \{ x \in A | Mx \subset M \}.$$

Proposition 2.6 $O_l(M)$ and $O_r(M)$ as defined in Definition 2.5 are orders.

Proof $O_l(M)$ and $O_r(M)$ are obviously rings, so we need to prove they are full R-lattices.

It is obvious that $\forall y \in X_A$, yM is an R-lattice in A. Indeed, it is an R-bimodule since $yR = Ry$. So since yM is an R-lattice and M itself is full, we can use Proposition 2.3 to find an $r \in R^G$ such that $rM \subset M$, or in other words $ry = yr \in O_l(M)$. Since X generates A as a K-vector space, we find that $KO_l(M) = A = O_l(M)K$.

We still need to prove $O_l(M)$ is finitely generated. $\exists s \in R$ with $s \cdot 1_D \in M$. From this $O_l(M) \cdot (s \cdot 1_D) \subset O_l(M)M \subset M$. So $O_l(M)M \subset Ms^{-1}$, and thus $O_l(M)$ is finitely generated. Proving that $O_r(M)$ is a full R-lattice is analogous, using the second statement of Proposition 2.3. \qed

Definition 2.7 For any full R-lattice M in A, define

$$M^{-1} = \{ x \in A | MxM \subset M \}.$$

Proposition 2.8 M^{-1} defined as above is a full R-lattice.

Proof M^{-1} obviously is an R-bimodule over R^G. Clearly

$$L^{-1} = \{ x \in A | Mx \subset O_l(M) \} = \{ x \in A | xM \subset O_r(M) \}.$$

If $\Lambda = O_l(M)$, then Λ is a full lattice since M is (Proposition 2.6). Using Proposition 2.3 we find $\alpha, \beta \in R^G$ such that $\alpha \Lambda \subset M \subset \beta \Lambda$. Therefore $
 \alpha^{-1} \Lambda \supset M \supset \beta^{-1} \Lambda$, since

$$\alpha^{-1} \Lambda = \{ x \in A | \alpha \Lambda x \subset \Lambda \} \supset \{ x \in A | Lx \subset \Lambda \} = L^{-1},$$
and likewise for the other inclusion. Multiplying by K gives us the desired result. □

For a full R-lattice M_{ij} we define $\Lambda_i = O_l(M_{ij})$ and $\Lambda_j = O_r(M_{ij})$.

Lemma 2.9 With notation as above, $M_{ij} \subset \Lambda_i \Leftrightarrow M_{ij} \subset \Lambda_j$

Proof

$M_{ij} \subset \Lambda_i \Rightarrow M_{ij} \subset \Lambda_i M_{ij} = M_{ij} \Rightarrow M_{ij} \subset O_r(M_{ij}) = \Lambda_j$.

The other arrow is similar. □

Lemma 2.10 Let L be a full R-lattice. Then

$$O_r(L^{-1}) \supset O_l(L), \quad O_l(L^{-1}) \supset O_r(L).$$

Proof Let $x \in L^{-1}$. Then

$$LxL \subset L \Rightarrow Lx \subset O_l(L) \Rightarrow O_l(L)L \subset L \Rightarrow xO_l(L) \subset L^{-1}.$$

This implies that L^{-1} is a right $O_l(L)$-module. So $L^{-1}O_l(L) \subset L^{-1}$ and thus $O_l(L) \subset O_r(L^{-1})$. The other inclusion is similar. □

2.4 Ideals

Remark 2.11 All ideals M defined below are assumed to be full R-lattices in A and written "Ideal".

Definition 2.12 Call M a normal Ideal if $O_l(M)$ is a maximal R-order. An integral Ideal is a normal Ideal such that $M \subset O_l(M)$. A maximal integral Ideal is an integral Ideal M which is a maximal left Ideal in $O_l(M)$.

Definition 2.13 The normal Ideal M is two-sided if $O_l(M) = O_r(M)$.

We are now able to repeat the classical theory of maximal orders, in an extended set-up. The proofs are close or the same to those in [11].
Definition 2.14 A prime ideal of an R-order Λ is a proper two-sided ideal P in Λ such that for each pair of two-sided ideals S and T in Λ with $ST \subset P$ we have $S \subset P$ or $T \subset P$.

Proposition 2.15 With notations as in Definition 2.14, we can assume both S and T contain P and as such $J \cdot J' = 0$ in Λ/P, then $J = 0$ or $J' = 0$.

Proof Elementary.

Theorem 2.16 Let R be a Dedekind domain. The prime ideals in Λ coincide with the maximal two-sided ideals of Λ. If P is a prime ideal of Λ then $p = P \cap R^G$ is a nonzero prime in R^G and $\Lambda = \Lambda/P$ is a finite dimensional simple R^G/p-ring.

Proof Let P be a prime ideal in Λ and set $p = R^G \cap P$, $\Lambda = \Lambda/P$. P is a full R-lattice in Λ, so $p \neq 0$. p is a proper ideal of R^G since $1 \notin P$. Now if $\alpha, \beta \in R^G$ then

$$\alpha \beta \in p \implies \alpha \Lambda \beta \subset P \implies \alpha \subset P \text{ or } \beta \subset P.$$

so p is prime and Λ is finite dimensional over R^G/p. Since Λ is Artinian, $\text{rad} \Lambda$ is nilpotent and thus equal to 0 by Proposition 2.15. The simple components are two-sided ideals that annihilate each other, so again by Proposition 2.15 there is only one simple component. This means Λ is simple and P is maximal. The other way is trivial.

Lemma 2.17 Let M be an ideal in a maximal order Λ of A. Then $O_t(M) = O_r(M) = \Lambda$. This implies that M^{-1} is a Λ-ideal in A. Furthermore, if N is another ideal in Λ with $N \subset M$, then $M^{-1} \subset N^{-1}$.

Proof Remark that $\Lambda \subset O_t(M)$ and $\Lambda \subset O_r(M)$, and Λ is a maximal order. We have from Lemma 2.10 that $O_t(M^{-1}) \supset \Lambda$ and $O_r(M^{-1}) \supset \Lambda$. Suppose $N \subset M$, and take $x \in M^{-1}$. Then $MxM \subset M$ and thus $xM \subset O_r(M) = \Lambda$. So $NxN \subset NxM \subset NA \subset N$.

Remark 2.18 With notation as in Lemma 2.17 we find

$$M^{-1} = \{ x \in A | Mx \subset \Lambda \} = \{ x \in A | xM \subset \Lambda \}.$$
Lemma 2.19 Let M be a two-sided ideal in the maximal order Λ. If $M \neq \Lambda$, then $M^{-1} \neq \Lambda$.

Proof Suppose that $M^{-1} = \Lambda$. Since $M \neq \Lambda$, $\exists P$ prime in Λ such that $M \subset P \subset \Lambda$. Let α be a nonzero element in $R^G \cap P$. (This exists, since P is a full R-lattice (it contains M) in A and we can multiply each element in R with the other elements in the orbit under action of G to obtain an invariant element.) Since we are working in Noetherian rings, the two-sided ideal $\alpha \Lambda$ contains a product of prime ideals:

$$P \supset \alpha \Lambda \supset P_1 \cdot \ldots \cdot P_r,$$

where the P_i are prime ideals and r is minimal. Since P is prime, it follows that $P = P_j$ for some j. We may then write

$$P \supset \alpha \Lambda \supset BPC,$$

where B, C are two-sided ideals in Λ. Thus

$$\alpha^{-1} BPC \subset \Lambda \Rightarrow B\alpha^{-1}PCB \subset B \Rightarrow \alpha^{-1}PCB \subset \mathcal{O}_t(B) = \Lambda \Rightarrow P\alpha^{-1}CBP \subset P \Rightarrow \alpha^{-1}CB \subset P^{-1} \subset M^{-1} = \Lambda.$$

And this shows that $\alpha \Lambda$ contains a product of $r - 1$ primes, contradiction. \(\square\)

Theorem 2.20 Let M be a full R-lattice in A such that $\mathcal{O}_t(M)$ is a maximal order. Then

$$M \cdot M^{-1} = \mathcal{O}_t(M).$$

Proof

Let $\Lambda = \mathcal{O}_t(M)$ be maximal, set $B = MM^{-1}$. From Lemma 2.17 we find that B is a two-sided ideal in Λ. And so

$$BB^{-1} \subset \Lambda \Rightarrow MM^{-1}B^{-1} \subset \Lambda \Rightarrow M^{-1}B^{-1} \subset M^{-1} \rightarrow B^{-1} \subset \mathcal{O}_t(M^{-1}).$$

But $\mathcal{O}_t(M^{-1}) \supset \mathcal{O}_t(M) = \Lambda$ by Lemma 2.10. So from maximality, $\Lambda = \mathcal{O}_t(M^{-1})$. Therefore $B^{-1} \subset \Lambda$ and now $B = \Lambda$ from Lemma 2.19. \(\square\)
Theorem 2.21 Let Λ be a maximal order. For each two-sided ideal M in Λ we have

\[MM^{-1} = M^{-1}M = \Lambda, \]
\[(M^{-1})^{-1} = M. \]

Furthermore, every two-sided ideal in Λ is uniquely expressible as a product of prime ideals of Λ, and multiplication of prime ideals is commutative.

Proof The first formula is clear from Theorem 2.20. For the second formula, choose a nonzero $\alpha \in R^G$ such that $\alpha M^{-1} \subset \Lambda$. This is a two-sided ideal of Λ, so we have

\[(\alpha M^{-1})(\alpha M^{-1})^{-1} = \Lambda. \]

It is easily checked that

\[(\alpha M^{-1})^{-1} = \alpha^{-1}(M^{-1})^{-1}. \]

This implies

\[M^{-1}L = \Lambda \Rightarrow (M^{-1})^{-1} = \Lambda(M^{-1})^{-1} = MM^{-1}(M^{-1})^{-1} = M\Lambda = M. \]

We shall now prove that every two-sided ideal in Λ is a product of prime ideals, or an empty product, in which case the ideal is equal to Λ. Suppose this is false, and let N be a maximal counterexample, this itself is not prime. So there exists a prime ideal P with $N \subset P \subset \Lambda$ and $N \neq P$. So

\[N = N\Lambda \subset NP^{-1} \subset NN^{-1} = \Lambda. \]

If $N = NP^{-1}$ then $P^{-1} \subset O_r(N) = \Lambda$ and this is impossible by Lemma 2.19. So $NP^{-1} = P_1 \cdot \ldots \cdot P_r$. This implies $N = P_1 \cdot \ldots \cdot P_rP$ which is impossible. So every two-sided ideal is a product of prime ideals.

Now we want to establish commutativity. Let P, P' be distinct prime ideals of Λ. Then

\[P^{-1}P'P \subset P^{-1}P = \Lambda \]

and

\[P(P^{-1}P'P) = P'P \subset P'. \]

Thus P' contains the product $P(P^{-1}P'P)$ of a pair of two-sided ideals of Λ and primality gives us $P' \supset (P^{-1}P'P)$, or $PP' \supset P'P$. Since the reverse inclusion follows from symmetry, we obtain $PP' = P'P$.

We now prove the uniqueness in decomposition (up to the order of the factors). So let

\[P_1 \cdot \ldots \cdot P_r = Q_1 \cdot \ldots \cdot Q_s, \]
where the P_i and Q_j are prime ideals. Then $P_1 \supset \prod Q_j$ implies $P_1 = Q_k$ for some k. We then multiply both sides by $(P_1)^{-1}$ and repeat the process. □

From this we find that the set of two-sided Λ-ideals in A is the free abelian group generated by the prime ideals of Λ.

From now on, we suppose R is a Dedekind domain.

Corollary 2.22 If M is a proper left ideal of the maximal order Λ, then $M^{-1} \neq \Lambda$.

Proof Let N be a maximal left ideal of Λ, so we find $M \subseteq N \subseteq \Lambda$. Modifying the proof of Lemma 2.17, we find that $M^{-1} \supset N^{-1} \supset \Lambda$. It suffices to prove that $N^{-1} \neq \Lambda$. Set

$$P = \text{ann}_A \Lambda / N = \{x \in \Lambda | x\Lambda \subset N\}.$$

This is a two-sided ideal of Λ. Choose a nonzero $\alpha \in R^G$ such that $\alpha \Lambda \subset N$, then $\alpha \in P$, so we find $\alpha \Lambda \subset P$. So we see that Λ / P is an artinian ring. Now Λ / N is a faithful left (Λ / P)-module, and is simple as such. Therefore the ring $\bar{\Lambda} = \Lambda / P$ is a simple artinian ring and this makes P into a prime ideal. Hence N is the inverse image under the map $\Lambda \to \bar{\Lambda}$ of a maximal left ideal of $\bar{\Lambda}$. Such an ideal is of the form

$$\bar{\Lambda}(1 - f),$$

where f is a primitive idempotent in $\bar{\Lambda}$. So

$$N = \Lambda(1 - e) + P,$$

for some $e \in \Lambda$ which maps to f. Set $L = e\Lambda + P$, a right ideal in Λ. Since $(1 - e)e \in P$, $NL \subset P$. NL also is a two-sided ideal that contains P^2, so $NL = P^2$ or $NL = P$. If $NL = P^2$ then $Pe \subset P^2$ and multiplying by P^{-1} we see that $e \in P$, contradiction. This shows that $NL = P$.

Choose a nonzero $\alpha \in R^G \cap P$, and write $\alpha \Lambda$ as a product of prime ideals of Λ. Since $\alpha \Lambda \subset P$, one of the factors must be equal to P. Thus we can write, with Q some two-sided ideal of Λ

$$\alpha \Lambda = PQ = NLQ.$$

Suppose $N^{-1} = \Lambda$ then

$$\alpha^{-1}LQ \subset N^{-1} = \Lambda \Rightarrow LQ \subset \alpha \Lambda \Rightarrow \Lambda \subset \alpha \Lambda Q^{-1} = P \Rightarrow L \subset P.$$

But that last inclusion is impossible, so $N^{-1} \neq \Lambda$. □
Theorem 2.23 Let M be a full R-lattice in A. Then $O_l(M)$ is a maximal order if and only if $O_r(M)$ is a maximal order.

Proof Let $\Lambda = O_l(M)$ be maximal. Replacing M by αM with $\alpha \in R^G$ and nonzero, we may assume that $M \subset \Lambda$. We can assume that $M \neq \Lambda$, otherwise the result is trivial. Suppose that the theorem is false, take M a maximal counterexample. Choose a left ideal L of Λ such that $M \subset L \subset \Lambda$, $M \neq L$ and L/M is a simple left Λ-module. Then $O_l(L) = \Lambda$ and since M was a maximal counterexample, $O_r(L) = \Lambda'$ is maximal order. By Lemma 2.20 $LL^{-1} = \Lambda$. By the same Lemma, with a little modification, we find $L^{-1}L = \Lambda'$.

Each left ideal X of Λ' maps onto a Λ-submodule LX of L, and the correspondence $X \leftrightarrow LX$ is one-to-one, since $X = L^{-1}LX$. Set $N = L^{-1}M$, then

$$N = L^{-1}M \subset L^{-1}L = \Lambda'.$$

Therefore N is a maximal left ideal of Λ' because M is a maximal Λ-submodule of L. By Lemma 2.20 and Corollary 2.22 we obtain

$$N^{-1} \supset \Lambda', \quad N^{-1} \neq \Lambda',$$

$$NN^{-1} = \Lambda',$$

$$N^{-1}N \subset O_r(N).$$

Let $x \in A$ then

$$Nx \subset N \Rightarrow LN x \subset LN \Rightarrow x \in O_r(M),$$

$$Mx \subset M \Rightarrow L^{-1}Mx \subset L^{-1}M \Rightarrow x \in O_r(N).$$

This implies $O_r(M) = O_r(N)$, and from the choice of M, this is not a maximal order. Thus there exists a maximal order Λ'' with $O_r(N) \subset \Lambda''$ and $O_r(N) \neq \Lambda''$. Since

$$N\Lambda''N^{-1} \cdot N\Lambda''N^{-1} \subset N\Lambda''O_r(N)\Lambda''N^{-1} \subset N\Lambda''N^{-1},$$

$N\Lambda''N^{-1}$ is an order. Also

$$N\Lambda''N^{-1} \supset NN^{-1} = \Lambda',$$

Λ' is maximal so $N\Lambda''N^{-1} = \Lambda'$. So we have the following chain of Λ' ideals

$$N \subset N\Lambda'' \subset N\Lambda''N^{-1} = \Lambda'.$$

Since N is a maximal left ideal in Λ' it follows that $N\Lambda''$ is either N or Λ'. If $N\Lambda'' = N$ then $\Lambda'' \subset O_r(N)$, contradiction. So $N\Lambda'' = \Lambda'$ and thus

$$\Lambda' = N\Lambda''N^{-1} = \Lambda'N^{-1},$$
so $N^{-1} = \Lambda'$ which is impossible. There is no counterexample. □

Definition 2.24 Let M, N be any pair of full R-lattices in A. We say that their product MN is **proper** if $O_r(M) = O_l(N)$. Likewise, a product $M_1 \cdot \ldots \cdot M_k$ is proper if $O_r(M_i) = O_l(M_{i+1})$, $\forall 1 \leq i \leq k - 1$.

Theorem 2.25 Let M be a left Ideal of the maximal R-order Λ in A. Suppose that the Λ-module Λ/M has composition length k. Then M is expressible as a proper product of k maximal left integral Ideals M_1, \ldots, M_k such that

$$O_l(M) = O_l(M_1), \quad O_r(M) = O_r(m_k).$$

Proof By induction on k. Result is trivial when $k = 1$, so assume $k > 1$, and suppose the theorem is true for the case $k - 1$. We can choose a maximal left Ideal N of Λ such that $M \subset N \subset \Lambda$, and then N/M has composition length $k - 1$ as a left Λ-module. Both M and N are normal Ideals with left order Λ. Using Theorem 2.20 we have

$$NN^{-1} = \Lambda, \quad N^{-1}N = O_r(N) = \Lambda'.$$

There is a bijection $W \mapsto N^{-1}W$ between the set of left Λ-submodules W of N and left Λ'-submodules $N^{-1}W$ of Λ', with inverse given by $N^{-1}W \mapsto N(N^{-1}W)$. Therefore $N^{-1}M$ is a left Ideal of Λ' and the quotient $\Lambda'/N^{-1}M$ has composition length $k - 1$ as a left Λ'-module. Using the induction hypothesis we may write

$$N^{-1}M = M_2 \cdot \ldots \cdot M_k$$

as a proper product of $k - 1$ maximal integral Ideals, with

$$O_l(M_2) = O_l(N^{-1}M) = \Lambda', \quad O_r(M_k) = O_r(N^{-1}M).$$

But then $M = NM_2 \cdot \ldots \cdot M_k$ is the desired proper product of k maximal integral Ideals. □
Theorem 2.26 With notations as in Lemma 2.9

1. A proper product of integral ideals is integral.

2. Let M_{12} and N_{34} be normal ideals. Then $M_{12} \subset N_{34}$ if and only if M_{12} is a proper product

$$M_{12} = B_{13}N_{34}C_{42},$$

for some integral ideals B_{13} and C_{42}.

3. Let M_{12} and N_{34} be normal ideals with the same left order Λ_1. Then $M_{12} \subset N_{14}$ if and only if $M_{12} = N_{14}C_{42}$ for some integral ideal C_{24}.

Proof

1. We show by induction on k that

$$M_{12}M_{23} \cdots M_{k,k+1} \subset \Lambda_{k+1},$$

if the M’s are integral ideals. This is clear for $k = 1$ so let $k > 1$ and assume that the result holds for $k - 1$ factors. So we find

$$M_{12} \cdots M_{k-1,k}M_{k,k+1} \subset \Lambda_k M_{k,k+1} \subset \Lambda_{k+1}.$$

2. First suppose that we have ideals B_{13} and C_{42} such that

$$M_{12} = B_{13}N_{34}C_{42},$$

then we see

$$M_{12} \subset \Lambda_3 N_{34} \Lambda_4 \subset N_{34}.$$

Conversely, suppose $M_{12} \subset N_{34}$, and set

$$B_{13} = M_{12}(\Lambda_3 M_{12})^{-1},$$

$$C_{42} = (N_{34})^{-1}M_{12}.$$

These ideals are normal and have the indicated left and right orders. We see that the normal ideals M_{12} and $\Lambda_3 M_{12}$ have the same right order, and $M \subset \Lambda_3 M$, so we obtain

$$(M_{12})^{-1} \supset (\Lambda_3 M_{12})^{-1}.$$

So

$$B_{13} \subset M_{12}(M_{12})^{-1} = \Lambda_1,$$
and this means B_{13} is integral. Further
\[C_{42} = N_{34}^{-1}M_{12} \subset N_{34}^{-1}N_{34} \subset \Lambda_4, \]
so C_{42} is an integral ideal.

\[B_{13}N_{34}C_{42} = M_{12}(\Lambda_3M_{12})^{-1} \cdot N_{34} \cdot N_{34}^{-1}M_{12} = M_{12}(\Lambda_3M_{12})^{-1} \cdot \Lambda_3M_{12} = M_{12} \Lambda_2 = M_{12}. \]

3. If we take $\Lambda_1 = \Lambda_3$ in 2. we obtain $B = M_{12}(\Lambda_1M_{12}) = \Lambda_1$. □

Lemma 2.27 Let M, N be normal ideals in A. Then $M \cdot N$ is a proper product if and only if replacing either factor by a larger R-lattice in A increases the product.

Proof In the notation of Lemma 2.9 write $M = M_{12}$ and $N = N_{34}$. Suppose that increasing either factor increases the product MN. Then
\[MN = MA_2N \Rightarrow N = A_2N, \]
since we increase the factor but the product does not change. Therefore $\Lambda_3 = A_2$. Conversely, suppose $A_2 = \Lambda_3$, and suppose $M'N = MN$ where M' is an R-lattice properly containing M. Then
\[M' \subset M'A_2 = M'NN^{-1} = MNN^{-1} = M, \]
which is impossible. □

Theorem 2.28 Let M be an ideal with $O_l(M)$ maximal order in A. Then M is a maximal left ideal in $O_l(M)$ if and only if M is a maximal right ideal in $O_r(M)$.

Proof We use notation as in Lemma 2.9. Let $M = M_{12}$ be a maximal left ideal in $O_l(M) = \Lambda_1$. Then $M \subset O_r(M) = \Lambda_2$ by Lemma 2.9. If $M = O_r(M)$, then $O_l(M) = O_r(M) = M$ which is impossible. Suppose that M is not a maximal right ideal of $O_r(M)$. Then there exists a normal ideal $N = N_{32}$ such that
\[M \subset N \subset O_r(M), \]
where all inclusions are strict. If $N = \Lambda_3$, then $\Lambda_2 = \Lambda_3 = N$, so we have a strict inclusion $N \subset \Lambda_3$. From Theorem 2.26 we may write $M_{12} = B_{13}N$ for
some integral Ideal $B = B_{13}$. The product BN is a proper product, so we find by Lemma 2.27:

$$M = BN \subset BA_3 = B \subset A_1,$$

and $BN \neq BA_3$. Then, since M is maximal, $B = A_1$. So $A_3 = O_r(B) = A_1$ which implies that $M = BN = A_3N_{32} = N$. Contradiction. \hfill \Box

Theorem 2.29 Let Λ_1, Λ_2 be a pair of maximal R-orders in A. Then there exists a normal Ideal $M = M_{12}$. If $I(\Lambda_j)$ the group of two-sided Λ_j-Ideals $j = 1, 2$ in A, there is an isomorphism

$$\phi_{12} : I(\Lambda_1) \to I(\Lambda_2) : X \mapsto M^{-1}XM.$$

The map ϕ_{12} is independent of the choice of M_{12}.

Proof The product $M = \Lambda_1 \cdot \Lambda_2$ is a normal Ideal with left order Λ_1 and right order Λ_2. It is clear that ϕ_{12} carries $I(\Lambda_1)$ onto $I(\Lambda_2)$. If N_{12} is another normal Ideal, then $MN^{-1} \in I(\Lambda_1)$. Since $I(\Lambda_1)$ is abelian, it follows that MN^{-1} commutes with each $X \in I(\Lambda_1)$, and hence $M^{-1}XM = N^{-1}XM$. Therefore ϕ_{12} does not depend on the choice of the normal Ideal M_{12} used to define ϕ_{12}. Finally, ϕ_{12} is an isomorphism since it has an inverse

$$\phi_{21} : I(\Lambda_2) \to I(\Lambda_1) : Y \mapsto MYM^{-1}.$$

This completes the proof. \hfill \Box

3 Graded Theory

3.1 Setting

For this section, we will use the following notation and conventions.

- R is a Noetherian domain.
- $K = \mathbb{Q}(R)$ the quotient field of R.
- G is a finite group.
- There is a group action of G on R, denoted by $\sigma_g \in \text{Aut}R$, where $g \in G$.
- A is crystalline graded, $A = K \otimes_{\sigma, \alpha} G$.

Remark that the generating set X_A (as used in Section 2.1) in this case is $\{u_g | g \in G\}$.
3 GRADED THEORY

3.2 Lattices

The definitions concerning lattices stay the same as in Section 2.1. We have the following however:

Definition 3.1 Let T be any subset of A. We call T graded (in A) if and only if for each $x = \sum_{g \in G} x_g u_g \in T$, $x_g u_g \in T$.

Proposition 3.2 Let L be a graded full R-lattice in A. Then L^{-1} as defined in Definition 2.7, i.e.

$$L^{-1} = \{x \in A | LxL \subset L\}$$

is graded.

Proof Let $x \in L^{-1}$, $x = \sum x_g u_g$. Then for each $a = \sum a_g u_g$ and $b = b_g u_g \in L$ we have

$$a_g u_g x_b h u_h \in L \; \forall g, h \in G \implies a_g u_g \left(\sum_{t \in G} x_t u_t \right) b_h u_h \in L \; \forall g, h \in G$$

$$\implies a_g u_g x_t u_t b_h u_h \in L \; \forall g, h, t \in G$$

$$\implies \sum_{g \in G} \sum_{h \in G} a_g u_g x_t u_t b_h u_h \in L \; \forall t \in G$$

$$\implies a(x_t u_t) b \in L \; \forall t \in G,$$

and this means L^{-1} is graded. □

3.3 Orders

Again we can use all definitions from Section 2.3 with the added condition of Definition 3.1

Definition 3.3 We call a graded full R-lattice Λ in A, a graded order or gr-order in A if it is a graded ring with the same identity element as A. A graded full R-lattice that is maximal with this property is called a gr-maximal order.

Proposition 3.4 If M is a graded full R-order in A, $O_l(M)$ and $O_r(M)$ are graded orders.

Proof That they are orders follows from Proposition 2.6. The fact that they are graded follows from a similar argument as in Proposition 3.2 □
Remark 3.5 To make a distinction between a maximal object with the additional property of being graded (universally maximal), and a graded object that is maximal with the properties of such an object (maximal in all graded objects), we call the last one a gr-maximal. This distinction makes sense, since there are gr-maximal orders which are not maximal and graded. See [4] for an example where a group ring is a gr-maximal order but not a maximal graded order.

3.4 Ideals

Definition 3.6 Call a graded Ideal M a graded normal Ideal if $O_1(M)$ is a gr-maximal R-order. An integral graded Ideal is a graded normal Ideal such that $M \subset O_1(M)$. A gr-maximal integral Ideal is a graded integral Ideal which is a gr-maximal left Ideal in $O_1(M)$.

Proposition 3.7 Suppose I is a graded ideal (not necessarily a full lattice) of A. Then I is an Ideal of A, in other words, it is a full lattice.

Proof Let $a_g u_g \in I$ for some $g \in G$. Then

$$\alpha^{-1}(g, g^{-1}) a_g u_g = a_g \alpha^{-1}(g, g^{-1}) u_g \in KI,$$

and $u_g^{-1} a_g \alpha^{-1}(g, g^{-1}) u_g \in AKI = KAI = KI$. This implies that

$$\sigma_g^{-1}(a_g) u_g^{-1} \alpha^{-1}(g, g^{-1}) u_g = \sigma_g^{-1}(a_g) \in KI.$$

Now $A \subset AKI = KI$.

Definition 3.8 A gr-prime Ideal of an R-order Λ is a proper two-sided graded Ideal P in Λ such that for each pair of two-sided graded Ideals S and T in Λ with $ST \subset P$ we have $S \subset P$ or $T \subset P$.

Proposition 3.9 With notations as in Definition 3.8 we can assume both S and T contain P and as such $J \cdot J' = 0$ in Λ/P, where both J and J' are graded, then $J = 0$ or $J' = 0$.

Proof Suppose S and T fulfill Definition 3.8. Then $(S + P)(T + P) \subset ST + P \subset P$ and thus $S + P \subset P$ or $T + P \subset P$ and this means $S \subset P$ or $T \subset P$. The other statement is now easy to prove.

For the rest of this section, we suppose R is a Dedekind domain.
Theorem 3.10 The gr-prime ideals in Λ coincide with the gr-maximal two-sided ideals of Λ. If P is a gr-prime ideal of Λ then $p = P \cap R^G = P_e$ is a nonzero prime in R^G and $\bar{\Lambda} = \Lambda/P$ is a finite dimensional gr-simple R^G/p-ring.

Proof Let P be a gr-prime ideal in Λ and set $p = R^G \cap P$, $\bar{\Lambda} = \Lambda/P$. P is a full R-lattice in Λ, so $p \neq 0$. p is proper since $1 \notin P$. Now if $\alpha, \beta \in R^G$ then $\alpha \Lambda$ and $\beta \Lambda$ are graded two-sided ideals of Λ. Then

$$\alpha \beta \in p \Rightarrow \alpha \Lambda \beta \subseteq P \Rightarrow \alpha \Lambda \subseteq P \text{ or } \beta \Lambda \subseteq P$$

so p is prime and $\bar{\Lambda}$ is finite dimensional over the field R^G/p. So $\bar{\Lambda}$ is artinian, so it is gr-artinian, and thus the graded radical $\text{rad}_{gr} \bar{\Lambda}$ is nilpotent. This means by Proposition 3.9 that $\text{rad}_{gr} \bar{\Lambda} = 0$. In other words, $\bar{\Lambda}$ is gr-semisimple. The gr-simple components are two-sided graded ideals that annihilate each other, so again by Proposition 3.9 there is only one gr-simple component. This means $\bar{\Lambda}$ is gr-simple and P is gr-maximal. The other way is trivial. □

Lemma 3.11 Let M be a graded ideal in in a gr-maximal order Λ of A. Then $O_l(M) = O_r(M) = \Lambda$. This implies that M^{-1} is a graded Λ-ideal in A. Furthermore, if N is another graded ideal in Λ with $N \subseteq M$, then $M^{-1} \subseteq N^{-1}$.

Proof The proof is identical to that of Lemma 2.17, while noting that $O_r(M)$ and $O_l(M)$ are graded. □

Lemma 3.12 Let M be a two-sided graded ideal in the gr-maximal order Λ. If $M \neq \Lambda$ then $M^{-1} \neq \Lambda$.

Proof The proof is similar to that of Lemma 2.19. We note that in a gr-noetherian ring every graded ideal contains a finite product of gr-prime ideals. □

The following theorems, propositions and lemma’s use nearly the same proofs as their nongraded counterparts. We state them here without proof.

Theorem 3.13 Let M be a full graded R-lattice in A such that $O_l(M)$ is a gr-maximal order. Then

$$M \cdot M^{-1} = O_l(M).$$
Theorem 3.14 Let Λ be a gr-maximal order. For each two-sided graded Ideal M in Λ we have

\[MM^{-1} = M^{-1}M = \Lambda, \]

\[(M^{-1})^{-1} = M. \]

Furthermore, every two-sided graded Ideal in Λ is uniquely expressible as a product of gr-prime Ideals of Λ, and multiplication of gr-prime Ideals is commutative.

Corollary 3.15 If M is a proper left graded Ideal of the gr-maximal order Λ, then $M^{-1} \neq \Lambda$.

Theorem 3.16 Let M be a full graded R-lattice in A. Then $O_l(M)$ is a gr-maximal order if and only if $O_r(M)$ is a gr-maximal order.

Definition 3.17 Let M, N be any pair of full graded R-lattices in A. We say that their product MN is proper if $O_r(M) = O_l(N)$. Likewise, a product $M_1 \cdots \cdot M_k$ is proper if $O_r(M_i) = O_l(M_{i+1}), \forall 1 \leq i \leq k-1$.

Theorem 3.18 Let M be a graded left Ideal of the gr-maximal R-order Λ in A. Suppose that the Λ-module Λ/M has composition length k. Then M is expressible as a proper product of k gr-maximal left integral Ideals M_1, \ldots, M_k such that

\[O_l(M) = O_l(M_1), \quad O_r(M) = O_r(m_k). \]

Theorem 3.19 With notations as in Lemma 2.9

1. A proper product of graded integral Ideals is graded integral.

2. Let M_{12} and N_{34} be graded normal Ideals. Then $M_{12} \subset N_{34}$ if and only if M_{12} is a proper product

\[M_{12} = B_{13}N_{34}C_{42}, \]

for some graded integral Ideals B_{13} and C_{42}.
3. Let M_{12} and N_{34} be graded normal ideals with the same graded left order Λ_1. Then $M_{12} \subset N_{14}$ if and only if $M_{12} = N_{14}C_{42}$ for some graded integral ideal C_{24}.

Lemma 3.20 Let M,N be graded normal ideals in A. Then $M \cdot N$ is a proper product if and only if replacing either factor by a larger graded R-lattice in A increases the product.

Theorem 3.21 Let M be a graded ideal with $O_1(M)$ a gr-maximal order in A. Then M is a gr-maximal left ideal in $O_1(M)$ if and only if M is a gr-maximal right ideal in $O_r(M)$.

Theorem 3.22 Let Λ_1, Λ_2 be a pair of gr-maximal R-orders in A. Then there exists a graded normal ideal $M = M_{12}$. If $I(\Lambda_j)$ the group of two-sided graded Λ_j-ideals $j = 1, 2$ in A, there is an isomorphism

$$\phi_{12} : I(\Lambda_1) \rightarrow I(\Lambda_2) : X \mapsto M^{-1}XM.$$

The map ϕ_{12} is independent of the choice of M_{12}.

References

[1] Bass, H., *Algebraic K-theory*, W. A. Benjamin, Inc. (1968), New York-Amsterdam.

[2] Herstein, I.N., *Noncommutative rings*, Mathematical Association of America (1968), Washington.

[3] Le Bruyn, L.; Van den Bergh, M.; Van Oystaeyen, F., *Graded orders*, Birkhäuser (1988), Boston.

[4] Farahat, A.; Van Oystaeyen, F., *Hopf filtrations and Larson-type orders in Hopf algebras*, J. Algebra 265 (2003), no. 2, 756–772.

[5] McConnell, J.C.; Robson, J.C., *Noncommutative Noetherian rings*, John Wiley and Sons Ltd (1987), Brisbane.

[6] Nastăsescu, C.; Van Oystaeyen, F., *Graded ring theory*, Math. Library vol. 28, North-Holland (1982).
[7] Năstăescu, C.; Van Oystaeyen, F., *Methods of graded rings*, Lecture Notes in Mathematics, vol. 1836, Springer Verlag (2003), Berlin.

[8] Nauwelaerts, E., *Generalized 2-cocycles of finite groups and maximal orders*, J. of Algebra 210 (1998), 225–241.

[9] Nauwelaerts, E.; Van Oystaeyen, F., *Finite generalized crossed products over tame and maximal orders*, J. of Algebra 101 (1986), 61–68.

[10] Nauwelaerts, E.; Van Oystaeyen, F., *Introducing crystalline graded algebras*, Algebras and Representation Theory vol 11(2008), no. 2, 133–148.

[11] Reiner, I., *Maximal orders*, Academic Press (1975), London.

[12] Rowen, L., *Ring theory*, Vol. I, Academic Press (1988), New York.