Антиматерия, анти-пространство, анти-время

Антонов Александр Александрович, почётн. докт., почётн. проф., проф.-исслед. независимый исследователь
Киев, Украина

Аннотация. В статье показано, что созданная в прошлом веке специальная теория относительности (СТО), которая из-за отсутствия необходимой экспериментальной информации базировалась на постулатах, оказалась неверной, так как принцип непревышения скорости света в ней в 21-м веке исследованиями специальных процессов в линейных электрических цепях был опровергнут. Поэтому предложена альтернативная версия СТО, из релятивистских формул которой следует существование многочисленных взаимно невидимых параллельных вселенных и антивселен. Объясняется, как их можно увидеть. И в этих антивселенных находится антиматерия, а также анти-пространство и анти-время.

Ключевые слова: мнимые числа, специальная теория относительности, невидимые вселенные, Мультивселенная, антиматерия, анти-пространство, анти-время.

Abstract. The article shows that the special theory of relativity (STR) created in the last century was based on postulates due to the lack of the required experimental information and turned out to be incorrect, as its principle of light speed non-exceedance was refuted by studies of special processes in linear electric circuits in the 21st century. Therefore, an alternative version of the STR has been proposed. Its relativistic formulas the existence of numerous mutually invisible parallel universes and antiverses. It is explained how they can be seen. There is anti-matter, as well as anti-space and anti-time in.

Keywords: imaginary numbers, special theory of relativity, invisible universes, Multiverse, antimatatter, anti-space, anti-time

1. Введение

Созданная в 20-м веке и ставшая общепризнанной версией специальной теории относительности (СТО) из-за отсутствия в то время экспериментальных знаний о метрике пространства физического мира, в котором мы живём [1], базировалась на постулатах, из которых принцип непревышения скорости света оказался неверен. Поэтому неверной оказалась и сама эта теория [2]. Неверными оказались полученные в ней релятивистские формулы, они были неверно объяснены, из них были сделаны неверные выводы о физической нереальности мнимых чисел и на этом основании о существовании в природе единственноной нашей видимой вселенной.

И это вполне нормально. В конце концов, все научные теории создаются в результате выявления и исправления ошибок ранее созданных теорий. А затем рано или поздно неизбежно сами опровергаются последующими ещё более новыми теориями. Иначе наука не смогла бы развиваться.

2. Релятивистские формулы общепризнанной и альтернативной версий СТО

Но так как принцип непревышения скорости света в общепризнанной версии СТО до сих пор всё ещё полагается верным, придётся объяснить, почему это не так. А также объяснить, почему этот принцип вообще оказался востребованным.

А потому, что полученные в общепризнанной версии СТО релятивистские формулы, её создатели не умели объяснить. Так, например, в формуле Лоренца–Эйнштейна

\[m = \frac{m_0}{\sqrt{1-(\frac{v}{c})^2}} \]

в которой \(m_0 \) — масса покоя движущегося тела (например, элементарной частицы);

\(m \) — релятивистская масса движущегося тела;

\(v \) — скорость движения физического тела;

\(c \) — скорость света;

как видно (см. рис. 1a), релятивистская масса \(m \) на гиперсветовых скоростях при \(v>c \) принимает мнимальные значения.

Рис. 1. Графики функций (1) и (2)

Но как такой результат объяснить, авторы СТО не знали. Так же как 400 лет до них физический смысл мнимых чисел тоже никто не мог объяснить. Как,
впрочем, и сейчас, это не сможет сделать никто. Действительно, что такое 2 кг знают все, а что такое 2 \(\sqrt[7]{i} \) кг, где \(i = \sqrt{-1} \), не знает никто.

Но даже если бы релятивистская масса \(m \) на гиперсветовых скоростях при \(v > c \) в функции (1) соответствовала действительным числам, то её график в этом диапазоне скоростей всётаки был бы необъяснимым, так как он соответствует физически неустойчивому процессу, который в природе не существует.

Однако сейчас физическая реальность мнимых чисел уже доказана и объясняется [3]. Ещё одним доказательством является тот факт, что хотя в соответствии с законом Ома в интерпретации Штейнмехца [4] индуктивные и ёмкостные сопротивления являются мнимыми числами, они могут быть измерены имеющимися в каждой радиотехнической лаборатории прибором, называемым тестером. Что также доказывает их физическую реальность. Ведь именно возможность зарегистрировать приборами наличие рентгеновского, радиоактивного, ультрафилетового и инфракрасного излучения, инфра- и ультразвука, магнитного поля, атомов и субатомных частиц, а также многих других физических сущностей, которые не регистрируются органами чувств людей, является доказательством их физической реальности.

А из-за доказанного экспериментально принципа физической реальности мнимых чисел в СТО отпадает необходимость в принципе непревышения скорости света и появляется необходимость в исправленных релятивистских формуллах, позволяющих объяснить СТО при скоростях \(v > c \). И в альтернативной версии СТО [5] вместо формулы (1) поэтому приведена исправленная релятивистская формула

\[
 m = \frac{m_0(i_j^0(i_j^1(i_j^2)))}{\sqrt{1 - \frac{v^2}{c^2} - (q + r + s)^2}} \quad (2)
\]

где \(q \) — общее количество параллельных вселенных, проникновение в которые по мере удаления от нашей тардионной вселенной осуществлено через порты, соответствующие мнимой единице \(i_j^1 \);

\(r \) — общее количество параллельных вселенных, проникновение в которые по мере удаления от нашей тардионной вселенной осуществлено через порты, соответствующие мнимой единице \(i_j^2 \);

\(s \) — общее количество параллельных вселенных, проникновение в которые по мере удаления от нашей тардионной вселенной осуществлено через порты, соответствующие мнимой единице \(i_j^3 \).

Аналогичным образом в альтернативной СТО исправлены и другие релятивистские формулы

\[
 \Delta t = \Delta t_0(i_j^0(i_j^1(i_j^2))) \quad (3)
\]

\[
 t_o = t_o(i_j^0(i_j^1(i_j^2))) \quad (4)
\]

в которых \(\Delta t_0 \) — время покоя движущегося тела; \(\Delta t \) — релятивистское время движущегося тела; \(t_o \) — длина покоя движущегося тела; \(l \) — релятивистская длина движущегося тела.

1. А в рассматриваемой ниже альтернативной версии СТО объясняется, что 2 \(\sqrt[7]{i} \) кг это 2 кг в невидимой тардионной вселенной, которая является соседней с нашей видимой тардионной вселенной.

3. Объяснение релятивистских формул альтернативной версии СТО

Из графика исправленной формулы Лоренца-Эйнштейна (2), приведённого на рис. 1б, следует [6], что в природе существует не одна, а множество взаимно невидимых вселенных, в совокупности образующих Мультивселенную, названную поэтому скрытой. Пример структуры такой скрытой Мультивселенной приведён на рис. 2. В ней, как видно, дрейфующие в дополнительных пространственных измерениях \(q, r, s \) вселенные связаны между собой через обозначенные единичными стрелками однородные и двунаправленные порты, которые возникают из-за неглубокого взаимного локального проникновения этих вселенных друг в друга.

В этой структуре вселенные, аналогичные нашей вселенной, в которой все физические величины согласно релятивистским формулам (2) — (4) измеряются действительными числами, для определённости названы тардионными, вселенные и антивселенные, в которых все физические величины согласно этим же формулам измеряются положительными и отрицательными мнимыми числами, названы тахионными, а вселенные, в которых все физические величины измеряются отрицательными действительными числами, названы тардионными антивселенными.

И в этой структуре, как объяснено в [7], соседние с нашей видимой вселенной невидимые вселенные порождают феномен тёмной материи, остальные невидимые вселенные скрытой Мультивселенной порождают феномен тёмной энергии, а невидимые вселенные, находящиеся за пределами скрытой Мультивселенной, порождают феномен тёмного пространства [8].

4. Антиподы в космосе: антиматерия, антипространство, антивремя

20-й век оказался богат на выдающиеся физические открытия — были созданы специальная и общая теория относительности, квантовая механика, радиоэлектроника, открывшие радиоактивность, рентгеновское излучение, тёплые материи, имевшие в своём составе и многое другое. Причём, если радиоактивность и рентгеновское излучение не только объясняются, то тёплые материи и тёмная энергия считаются необъяснимыми до сих пор.

Другим не менее непонятным астрофизическим объектом, чем тёплая материя и тёмная энергия, являлась антиматерия. Действительно, в настоящее время принято считать, что в результате большого взрыва (Big Bang) образовалась не только материя, но и антиматерия. Причём образовались они в равных количествах. Но в нашей видимой вселенной в сколь-нибудь заметных количествах антиматерия не обнаружена. Её удалось получить только в виде субатомных античастиц и некоторых антиатомов, а также обнаружить в природных явлениях в минеральных количествах на очень небольшое время. Например, в 1995 году CERN добился сенсационного по тем временам успеха, получив девять атомов антиводорода, кото-
рье просуществовали приблизительно 40 миллиардных долей секунды. Причём синтез такой антиматерии стоил чрезвычайно дорого. Так, один грамм антиворода стоил бы 662,5 триллиона долларов.

Тогда где же антиматерия в виде антивселенных может находиться? И существует ли она в таком виде где-либо вообще? В нашей видимой вселенной, очевидно, находиться не может, так как в противном случае она бы аннигилировала с материи и вселенная была уничтожена. К слову сказать, этот факт является ещё одним опровержением общепризнанной версии СТО. Значит, только в другой вселенной. И скрытая Мультиселенная, в отличие от других гипотетических Мультиселенных, на эту роль вполне подходит, так как в ней имеются антивселенные. Более того, тардционные и тахионные вселенные и антивселенные в ней перемежаются таким образом, что гарантированно предотвращают их взаимную аннигиляцию. Таким образом, гипотеза скрытой Мультиселенной проблему существования антиматерии полностью решает.

Но самое интересное то, что подобно тому, как из формулы (2) следует существование в антивселенном антиматерии, из исправленных релятивистских формул (3), (4) столь же закономерно следует существование в антивселенных также анти-пространства и анти-времени (аналогично тому, как у антивтород на Земле направления силы тяжести противоположны друг другу). Причём в этих антивселенных, если бы люди туда попали, то они, как и антиподы на Земле, ничего не обнаружили, так как там действуют те же, что и в нашей видимой вселенной, физические, химические и иные законы природы.

На рис. 5 приведена довольно очевидная геометрическая интерпретация этих новых понятий. Как видно, время и анти-время, отличаются знаком фигурирующей в формуле (3) величины δt, а пространство и анти-пространство отличаются знаком фигурирующей в формуле (4) величины l.

Причём в этих антивселенных, если бы люди туда попали, то ничего необычного не обнаружили, так как там действуют те же, что и в нашей видимой вселенной, физические, химические и иные законы природы.

5. Как увидеть невидимые вселенные

Таким образом, скрытая Мультиселенная во многом весьма необычна. И это вызывает некоторое недоверие – а существует ли она в природе на самом
Поскольку карты звёздного неба невидимых параллельных вселенных предположительно экстремально различны, то созвездия на них от созвездий наблюдаемых на звёздном небе земными обсерваториями можно уверенно отличить. А в порталах на Земле между нашей видимой вселенной и соседними невидимыми вселенными при перемещении по ним карта звёздного неба одной вселенной будет постепенно замещаться картой звёздного неба соседней с ней другой вселенной. Следовательно, чтобы убедиться в существовании невидимых вселенных, нужно всего лишь зарегистрировать отличия созвездий на звёздном небе в порталах от созвездий, наблюдаемых на звёздном небе вне порталов. Так что, чтобы осуществить такой эксперимент, нужно найти портал и в нём такое астрономическое наблюдение выполнить.

Поэтому эксперимент по обнаружению невидимых вселенных оказывается очень простым и мало затратным. Он заключается в сопоставлении на компьютере изображений одного и того же участка звёздного неба, полученных в нескольких недалеко друг от друга размещённых обсерваториях, по меньшей мере одна из которых находится в аномальной зоне (см. рис. 4). И выявлении в этих изображениях различий во взаимном расположении звёзд. А в случае успеха такого эксперимента его значимость для человеческой цивилизации значительно превзойдёт значимость открытия Америки Колумбом.

6. Заключение
Таким образом, из вышеизложенного закономерен вывод, что общепринятая версия СТО устарела, поскольку не соответствует полученным в 21-м веке экспериментальным данным, и поэтому в настоящее время уже препятствует развитию физики.

Литература:

1. Antonov A.A. (2016) What Physical World do We Live in? Journal of Modern Physics, 7(14) 1933–1943. http://dx.doi.org/10.4236/jmp.2016.714170
2. Антонов А.А. (2019) Специальная теория относительности в 20-м веке не была и, более того, не могла быть создана. Журнал русского физико-химического общества. 9(1), 57 – 94.
3. Antonov A.A. (2016) Physical Reality and Nature of Imaginary, Complex and Hypercomplex Numbers. General Mathematics Notes. 35(2) 40–63 http://www.geman.in/yahoo_site_admin/assets/docs/4_GMN-10932-V35N2. 31895146.
4. Antonov A.A. (2020) Comparative Analysis of Existing and Alternative Version of the Special Theory of Relativity. Journal of Modern Physics. 11(2), 324 – 342. DOI: 10.4236/jmp.2020.112020
5. Steinmetz C.P. (2010) Theory and Calculation of Electric Circuit. Nabu Press., Charlstone, SC.
6. Antonov A.A. (2015) Hidden Multiverse. International Journal of Advanced Research in Physical Science. 2(1) 25–32. http://doi.org/10.17686/sced_rusnauka_2015–903
7. Antonov A.A. (2015) Hidden Multiverse: explanation of dark matter and dark energy phenomena. International Journal of Physics. 3(2) 84–87. doi:10.12691/ijp–3–2–6
8. Antonov A.A. (2018) Discovery of Dark Space. Journal of Modern Physics. 9, 14 – 34.
9. Antonov A.A. (2020) How to See Invisible Universes. Journal of Modern Physics. 11(05), 593 – 607. https://doi.org/10.4236/jmp.2020.115039