A note on Abelian varieties embedded in quadrics

Luis Fuentes García *

Abstract: We show that if A is a d-dimensional abelian variety in a smooth quadric of dimension $2d$ then $d = 1$ and A is an elliptic curve of bidegree $(2, 2)$ on a quadric. This extends a result of Van de Ven which says that A only can be embedded in \mathbb{P}^{2d} when $d = 1$ or 2.

Mathematics Subject Classifications (1991): Primary, 14K05; secondary, 14E25, 14C99.

Key Words: Abelian varieties, quadrics.

1 Introduction.

Let A be a d-dimensional abelian variety embedded in \mathbb{P}^{N}. It is well known that $2d \leq N$. Moreover, in [7] Van de Ven proved that the equality holds only when $d = 1$ or 2.

It is a natural question to study the possibilities for d when the abelian variety A is embedded in any other smooth $2d$-dimensional variety V. In particular, here we study the embedding in smooth quadrics. We obtain the following result:

Theorem 1.1 If A is a d-dimensional abelian variety in a smooth quadric of dimension $2d$ then $d = 1$ and A is an elliptic curve of bidegree $(2, 2)$ on a quadric.

We will use similar methods to Van de Ven’s proof. The calculation of the self intersection of A in the quadric and the Riemann-Roch theorem for abelian varieties allow only the cases $d = 1, 2, 3$.

The case $d = 1$ is the classical elliptic curve of type $(2, 2)$ contained in the smooth quadric of \mathbb{P}^{3}.

When $d = 2$, A is an abelian surface in \mathbb{P}^{5}. We see that is the projection of an abelian surface $A' \subset \mathbb{P}^{6}$ given by a $(1, 7)$ polarization. By a result [6] due

*Supported by EAGER.
to R. Lazarsfeld, this is projectively normal and it is not contained in quadrics. Therefore, A is not contained in quadrics either.

Finally, two results [4], [5] of J.N.Iyer allow us to discard the case $d = 3$.

2 Proof of the Theorem.

Let $j : A \hookrightarrow Q$ be an embedding of a d-dimensional abelian variety into a $2d$-dimensional smooth quadric, with $d > 1$. The Chow ring of the smooth quadric in codimension d is generated by cocycles α and β with the relations $\alpha^2 = \beta^2 = 1$, $\alpha\beta = 0$. Thus, A will be equivalent to $a\alpha + b\beta$ and

$$A.A = a^2 + b^2.$$ \hspace{1cm} (1)

On the other hand, by the self-intersection formula ([3], pag 431) we have $A.A = j^* c_d(N_{A,Q})$. To obtain $c_d(N_{A,Q})$, let us consider the normal bundle sequence:

$$0 \to T_A \to j^* T_Q \to N_{A,Q} \to 0$$

Since the tangent bundle of an abelian variety is trivial, we see that $c(T_Q) = (1 + H)^{n+2}(1 + 2H)^{-1}$, where $\overline{H} = i^* H$ and H is a hyperplane in \mathbb{P}^{n+1}. We compute the class of the tangent bundle of a quadric in the following lemma:

Lemma 2.1 Let $i : Q \hookrightarrow \mathbb{P}^{n+1}$ be an n-dimensional smooth quadric in \mathbb{P}^{n+1}. Then

$$c(T_Q) = (1 + \overline{H})^{n+2}(1 + 2\overline{H})^{-1}$$

where $\overline{H} = i^* H$ and H is a hyperplane in \mathbb{P}^{n+1}.

Proof: We have an exact sequence:

$$0 \to T_Q \to i^* T_{\mathbb{P}^{n+1}} \to N_{Q,\mathbb{P}^{n+1}} \to 0$$

Since Q is a hypersurface $N_{Q,\mathbb{P}^{n+1}} \cong \mathcal{O}_Q(Q) \cong \mathcal{O}_Q(2\overline{H})$ and the total class of the normal bundle is $c(N_{Q,\mathbb{P}^{n+1}}) = 1 + 2\overline{H}$. On the other hand, it is well known that $c(T_{\mathbb{P}^{n+1}}) = (1 + H)^{n+2}$. Now, from the splitting principle the claim follows.

Let us apply this lemma to the previous situation. We obtain

$$c(N_{A,Q}) = (1 + h)^{2d+2}(1 + 2h)^{-1} = \sum_{k=0}^{2d+2} \binom{2d+2}{k} h^k \sum_{l=0}^{\infty} (-2h)^{-l}$$

where $h = j^* \overline{H}$. In particular, the top class is

$$c_d = F_d h^d, \text{ with } F_d = \sum_{k=0}^{d} \binom{2d+2}{k} (-2)^{(d-k)}.$$
Substituting this into the self-intersection formula, we have:
\[A.A = F_d j_*(j^*H^d) = F_d H^d j_* A = F_d (a\alpha + b\beta).H^d = F_d (a + b). \]
Combining this expression with (1) we obtain the following relation
\[a^2 + b^2 = F_d (a + b) \tag{2} \]
or equivalently,
\[(a - \frac{F_d}{2})^2 + (b - \frac{F_d}{2})^2 = \frac{F_d^2}{2}. \]
We are interested in bounding the degree of \(A \), when \((a, b)\) satisfy this equation. Note that this is a circle of center \((\frac{F_d}{2}, \frac{F_d}{2})\) and radius \(\frac{F_d}{\sqrt{2}}\). Since \(\deg(A) = a + b \), it is clear that the maximal degree is reached when \((a, b) = (F_d, F_d)\), that is,
\[\deg(A) \leq 2F_d. \]
On the other hand, the abelian variety is embedded in \(Q \subset \mathbb{P}^{2d+1} \). When \(d > 2 \), by Van de Ven’s Theorem, it spans \(\mathbb{P}^{2d+1} \). Furthermore, by the Riemann-Roch theorem for abelian varieties, we know that \(h^0(\mathcal{O}_A(h)) = \frac{\deg(A)}{d!} \). Thus, we have the following inequality:
\[\deg(A) \geq 2(d + 1)! \]
Comparing the two bounds we see that a sufficient condition for the non-existence of the embedding \(j \) is \(F_d < (d + 1)! \). Now,
\[F_d = \sum_{k=0}^{d} \binom{2d+2}{k} (-2)^{d-k} \leq \sum_{k=0}^{d} \binom{2d+2}{k} (2)^d \leq 2^d 2^{2d+1} = 2^{3d+1}. \]
We see that \((d + 1)! > 2^{3d+1} \geq F_d \) when \(d = 17 \). A simple inductive argument shows that this holds if \(d \geq 17 \).

If \(d \leq 17 \), using the exact value of \(F_d \), we see that \((d + 1)! > F_d \) for any \(d > 3 \).

We conclude that the unique possibilities are \(d = 2 \) or \(d = 3 \).

First, suppose that \(A \) is an abelian surface contained in a quadric. \(F_2 = 7 \) and we can check that the unique positive integer solution of the equation (2) is \(a = b = 7 \). Thus \(A \) must be an abelian surface of degree 14 given by the polarization \((1, 7)\). Note that \(A \subset Q \subset \mathbb{P}^5 \) is not linearly normal, that is, it is the projection of a linearly normal abelian surface \(A' \subset \mathbb{P}^6 \). The quadric \(Q \) can be lifted to a quadric containing the surface \(A' \).

Lazarsfeld proved in [6] that a very ample divisor of type \((1, d)\) with \(d \geq 13 \) or \(d = 7, 8, 9 \) is projectively normal. From this the following sequence is exact:
\[0 \rightarrow H^0(I_{A'}).\mathbb{P}^6(2) \rightarrow H^0(\mathcal{O}_{\mathbb{P}^6}(2)) \rightarrow H^0(\mathcal{O}_{A'}(2)) \rightarrow 0 \]
Since $h^0(O_{P^\infty}(2)) = h^0(O_{A'}(2)) = 28$, there are not quadrics containing the abelian surface A' and we obtain a contradiction.

Finally, suppose that $d = 3$. Now, $F_3 = 24 = (3 + 1)!$, so the degree of the abelian variety is exactly $2F_3 = 48$. The line bundle $O_A(h)$ corresponds to a divisor of type $(1, 1, 8)$ or $(1, 2, 4)$. But J.N.Iyer prove in [4] that a line bundle of type $(1, \ldots, 1, 2d + 1)$ is never very ample. Moreover, in [5] she studies the map defined by a line bundle of type $(1, 2, 4)$ in a generic abelian threefold. She obtains that it is birational but not an isomorphism onto its image. Note that the very ampleness is an open condition for polarized abelian varieties (see [1]). It follows that a linear system of type $(1, 2, 4)$ cannot be very ample on any abelian threefold and this completes the proof.

Remark 2.2 The sequence $F_d = \sum_{k=0}^{d} \binom{2d+2}{k} (-2)^{(d-k)}$ is related to the Fine numbers. For a reference see [2].

Acknowledgement I thank K. Hulek for suggesting me this problem and for his advice and interest. I am grateful to the Institut für Mathematik of Hannover for its hospitality and especially to E. Schellhammer for his patience. I want also thank E. Deutsch for his remark about bounding F_d and its relation with the Fine numbers.

References

[1] Debarre, O.; Hulek, K.; Spandaw, J.: Very ample linear systems on abelian varieties. Math. Ann., 300, 181-202 (1994).

[2] Deutsch, E.; Shapiro, L. A survey of the Fine numbers. Discrete Math., 241, 241-265 (2001).

[3] Hartshorne, R. Algebraic Geometry. GTM, 52. Springer–Verlag, 1977.

[4] Iyer, J.N. Linear systems on abelian varieties of dimension $2g + 1$. Proc. Am. Math. Soc. 130, No.4, 959-962 (2002).

[5] Iyer, J.N. Line bundles of type $(1, \ldots, 1, 2, \ldots, 2, 4, \ldots, 4)$ on abelian varieties. Int. J. Math. 12, No.1, 125-142 (2001)

[6] Lazarsfeld, R. Projectivite normale des surface abeliennes. Redige par O. Debarre. Prepublication No. 14, Europroj–C.I.M.P.A., Nice (1990).

[7] Van de Ven, A. On the embedding of Abelian varieties in projective spaces. Ann. Mat. Pura Appl., IV. Ser. 103, 127-129 (1975).
E-mail: luisfg@usc.es

Luis Fuentes García. Institut für Mathematik. 30167 Hannover, Germany.