INTRODUCTION

Cancer

Cancer is a group of diseases characterized by abnormal cell growth with the potential to affect other parts of the body. Cancer is a condition that is related to an enormous cluster of diseases that disturb every region of the physique [1]. The World Health Organization (WHO) categorized cancer among the non-contagious disease which accounts for 63% of deaths globally [2]. Cancer is an intricate disease condition affecting millions of people all over the world [3].

Cancer epidemiology

Cancer is one of the principal reasons for fatality rate in the world, with roughly 14 million different events and also 8.2 million cancer-linked deaths in 2012 [4,5]. Death of individuals with cancer is increasing rapidly. The WHO reported that cancer accounted for 13% of world death that is about 7.6 million in 2005, and this percentage is expected to increase every year [6]. The number of new cases is likely to increase by 70% in the next two decades [2,7].

Breast cancer

Breast cancer is the most common cancer of women in Malaysia, with a prevalence of 86.2 per 100,000 women in 1996 [8]. Breast cancer comprised 30.4% of all female cancers in Malaysia, and this was higher compared to previous reports in Sabah with 18%, Kuala Lumpur (10.7–13.8%), and Singapore with 13% [9].

The WHO figured that, without abrupt action, the number of mortality caused by cancer would rise approximately 80% by 2030 with most occurring in low- and middle-income countries [10]. Siegel et al. [7] reported that 21.7 million cancer cases are expected to be diagnosed in 2030. In Malaysia, the second most communal source of death is cancer after heart-related diseases, and the dominant cancers are lung, breast, cervix, and leukemia [11]. It was estimated that yearly rate of cancer in Malaysia is 30,000. In 1998, the population of Malaysia was 21.4 million, and the number of cancer is projected to grow in aged population by 2020 [12].

Cancer chemotherapy

Cancer chemotherapy represents an option for patients with breast cancer when an indication for chemotherapy is given to weaken and destroy cancer cells in the body, including cells at the original cancer site and any cancer cells that may have spread to another part of the body [13]. Breast chemoprevention can be defined as the use of pharmacologic or natural agents that inhibit the development of invasive breast cancer either by blocking the DNA damage that initiates carcinogenesis or by arresting or reversing the progression of pre-malignant cells in which such damage has already occurred [14]. Unfortunately, this treatment has not been fortunate enough to impart significant improvement in the morbidity or mortality of breast cancer due to the severe side effects; this cancer is highly resistant to chemotherapy as no effective treatment exists for advanced disease conditions [15]. The most common drugs used in the treatment of breast cancer chemotherapy are tamoxifen [16], raloxifene [17], aromatase inhibitors [18], polymerase inhibitors [19], and trastuzumab [20]. Other drugs include anthracyclines, taxol, cyclophosphamide, carboplatin, docetaxel, paclitaxel, cisplatin, carboplatin, vinorelbine, capecitabine, dox, gemcitabine, mitoxantrone, and ixabepilone.

Cell cancer resistance to chemotherapy is still a heavy burden that impacts treatment of cancer patients. Both intrinsic and acquired resistance results from the numerous genetic and epigenetic occur in cancer cells. Most of the hallmarks of cancer cells provide general mechanisms to sustain stresses such as the ones induced by chemotherapeutic drugs. Moreover, specific changes in the target bring resistance to specific drugs such as modification in nucleotide synthesis enzymes on antimetabolite exposure, in microtubule composition on spindle poison treatment, in topoisomerase activity on topoisomerase inhibitor incubation, or intracellular signaling pathways when targeting tyrosine kinase receptors [21]. The first
cause of therapeutic failure results from genetic alterations existing before treatment; this is the primary or intrinsic resistance. The second one is induced by drug treatment and is called secondary or acquired resistance. Both are due to mutations in the genome of cancer cells and to epigenetic changes. Unfortunately, resistance appears not only to conventional chemotherapy but also to targeted therapies, the so-called smart drugs to standard chemotherapy such as kinase inhibitors and tamoxifen that binds to the estrogen receptor (ER) [21,22]. However, due to the shortcomings of modern treatment, nowadays, finding active complexes of the plant has been accelerated using modern techniques, and this has resulted in plants recycle. Thus, drugs that are produced from herbal plants are usually specialized in treating chronic disease like cancer [23]. Many plants with cancer-fighting properties were identified which have a high attraction to a biological target and their strength to inhibit the cancer metastasis is studied widely. Active components from some medicinal plants are yet to be identified, but crude extracts display cytotoxic action against most of the human cancer cell lines. Knowledge of these indigenous anticancer plants forms the platform for new, safe, and effective drug development [24].

Although the use of plants for cancer remedy has been traced for the past four decades with many of articles, but so far in the past 10 years, there were only 2 major reviews and other few mini-reviews that reviewed the medicinal plants use in the treatment of breast cancer in another part of the world. In 2012, Nagaprasanthi et al. [25] reviewed 56 important ethnomedical plants (indigenous system of medicine) evidenced for breast cancer by the scientific study [25]. They published a full-length paper on ethnobotanical survey and digitization of medicinal and aromatic plant-based foods for effective breast cancer treatment, by randomly administering semi-structured questionnaires to 70 physicians and interviewed 500 complementary and alternative medicine practitioners, and 78 plants were reviewed [26]. Lakshmi [27] and reviewed reports of anticancer activity of three traditional herbs, namely Zingiber officinale, Semecarpus anacardium, and Fagonia cretica. Another review by Islam et al., [28] published their review of herbal medicinal plant in the treatment of breast cancer and relationship between medicinal herbs, and some tumour suppressor molecules focused on gene expression and posttranslational modifications, and some tumor suppressor molecules focused on gene expression and post-translational modifications [26]. Dembitsky [29] published a review paper on anti-breast cancer agents derived from plants analyzing anti-breast cancer potencies of quite a few extracts from different plant sources and compared their anti-proliferative efficiency of crude extracts with actions of their purified ingredients [29]. A review by Elgadir et al. [30] highlighted ten anticancer plants particularly used for breast cancer and outlined some evidence for the success of using natural products as anticancer with selected in vitro and in vivo studies on anticancer plants with their anticancer compounds and their effects as anticancer. Jaikumar and Jasmine [31] considered 58 medicinal plants from various families that have inhibited cell growth at different IC₅₀ values against MCF-7 [31]. Another editorial titled “natural cures for breast cancer treatment,” focused on the biochemical properties of different types of plants that retain the immune stimulating and anti-tumour properties [32]. However, of the reviews above, only one review is from Malaysia and only ten medicinal plants were reviewed, that is, what motivate the writers to look back due to huge individual articles on breast cancer medicinal plants but yet review articles are lacking.

Mechanisms of ER action in breast cancer

Genomic activity of estrogen bound ER, crosstalk with growth factor receptor tyrosine kinases such as EGFR, HER2, and IGF1-R and with additional signaling and coactivator molecules activates multiple downstream kinase pathways (e.g., PI3K/AKT-mTOR and Ras/p42/44 MAPK) which in turn phosphorylate various transcription factors (TFs) and coregulators, including components of the ER pathway that enhances gene expression on ERs and other RE. The non-nuclear/nongenomic activity can also be activated by tamoxifen and enhanced in the presence of overexpression and hyperactivation of RTKs and can contribute to endocrine therapy resistance. Overall, the nuclear/genomic and non-nuclear/nongenomic ER activities work in concert to provide breast tumor cells with proliferation, survival, and invasion stimuli. Signaling from the microenvironment activates stress-related pathways, and members of the integrin family interact with downstream kinase pathways that can further modulate the transcriptional machinery including ER [36].

METHODS

Google Scholar, Web of Science, PubMed, Scopus, BioMed, ResearchGate, academia.edu, IEEE Xplore, ScienceDirect, and Ingenta databases were used for this review and paper selected between January 2010 and June 2016 (5 years). The search terms used are "cancer" and "breast cancer," "anticancer plants," "Medicinal Plants," "traditional medicine," "anti-breast cancer plants," or "herbs" without narrowing or limiting search. Reports with available abstracts, methods, discussion, and conclusion were reviewed.

RESULTS AND DISCUSSION

Malaysia is rich in biodiversity and has hundreds of flora that are used in traditional medicine and many more used in general folkloric medicine. The plants were shown to produce additional information such as their phytochemical constituents (bioactive compounds), pharmacological properties, and their mechanism of action. Majority of the plants screened for anticancer properties have been used in either traditional medicine or as food. The use of traditional medicine has expanded, and health supplement consisting of different types of herbal medicines has become very popular in Malaysia in the recent years. The widely consumed plants as food additive and medicine are believed to possess anticancer potentials [37].

Medicinal plants have played an important role in the treatment of breast cancer. In this review, 100 anti-breast cancer plants belonging to 54 families and 79 genera have been presented in scientific, common local, and family names. Part and solvent used, active component(s) identified, breast cancer cell line and mechanism of action were also presented (Table 1). From Table 1, 22 species representing 22% of the total plants demonstrates strong anticancer activities such as Annona squamosa with IC₅₀ value of 10 μg/mL, Bauhinia purpurea with IC₅₀ value of 9 μg/mL for MCF-7 and IC₅₀ value of 17 μg/mL for MDA-231, Coleus forskohlii extract with IC₅₀ value of 1.3 μg/mL for MCF-7 and IC₅₀ value of 3.3 μg/mL for MDA-231, Piper nigrum with IC₅₀ value of 13 μg/mL, Casearia capitellata with IC₅₀ value of 2 μg/mL in MCF-7, Hedystis

The general mechanism of cancer therapy

The general mechanism of cancer therapy includes antiproliferation of cells directly by enhancing killer cell activity naturally and promoting macrophage phagocytosis, stimulating apoptotic cancer cells through the output of immunoglobulin, M1Leukin2, blood serum complement and interferon, necrosis enforcement of the tumor, preventing translocation of tumor, and disseminate by obstruction the tumor tissue source of blood, improving the quality of platelets and leukocytes through motivating the hemopoietic role, encouraging the opposite transformation from tumor cells into regular cells, helping metabolism and avverting carcinogenesis of regular cells and lastly appetite stimulation, relieving pain, improvement in sleeping quality, and hence benefiting patients’ well-being [33]. While the mechanism of breast cancer therapy is likely to be in connection with molecular mechanisms of antiestrogen therapy and endocrine resistance to treatment at all stages of breast cancer. Recent studies shows that tamoxifen and the new pure antiestrogens appear to have different mechanistic mechanisms of action: Tamoxifen and related compounds cause a change in the folding of the steroid binding domain that prevents gene activation, whereas the pure antiestrogens cause a reduced interaction at response elements (RE) and cause a rapid loss of receptor complexes. Tamoxifen treatment produces the changes in the cellular and circulating levels of growth factors that could influence both receptor-negative or receptor-positive tumor growth and the metabolic potential of a tumor [34,35].
Plant name/common name	Family	Local name (Malay)	Active compound	Experimental model	Mechanism of action	Source
Abrus precatorius/jequirity	Fabaceae	Saga	Lectin	MDA-MB-231. (in vitro)	Significant morphological changes such as shrinking of cytoplasm, condensation of nucleus, and formation of membrane-bound vesicles	[39,59,84]
Albizia zygia/Albizia	Leguminosae	Pukullima	Budmunchiamines A, B, and C	MCF-7 (in vitro)	Cytotoxic to MCF-7 at IC₅₀ values of 83.16 µg/mL and 57.54 µg/mL	[112,113]
Allium cepa (Onion)	Liliaceae	Bawang putih	Diallyl trisulfide	MCF-7 (in vitro)	Increase histone acetylation	[30]
Allium sativum/garlic	Liliaceae		Allicin, alliin, diallyl trisulfide	MCF-7 (in vitro)	Stimulating the lymphocytes and macrophages is that they kill the cancerous cells and interferes with tumor cells metabolism	[30,52,33,60]
Alpinia conchigera	Zingiberaceae	Lengkuas ranting	1'-(S)-1'-Acetoxychavicol acetate (ACA)	MCF-7 (in vitro)	ACA induced cell cycle arrest at the G0/G1 phase at IC₅₀ values 34.0 µM to 48.0 µM	[110]
Alpinia officinarum/lesser galangal	Zingiberaceae		Flavonol galangin	MCF-7. (in vitro)	Induced an increase in the proportion of cells in the S-phase in a dose-dependent manner. Particularly, the cell population in the S-phase was 12.90% in the untreated control group. After 48 h of incubation with 100 µg/mL extract, the S-phase population was significantly enhanced to 25.69%	[108,114]
Alternanthera tenella	Amaranthaceae		AgNPs	MCF-7. (in vitro)	AgNPs inhibited cell migration after 24 h of treatment. The IC₅₀ value of 42.51 g/mL. The AgNPs showed a significant reduction in the migration of MCF-7 cells Reduce the tumor multiplicity incidence, decline in the glutathione levels and increased the lipid peroxidation	[115]
Alistonia scholaris/blackboard/scholar tree	Apocynaceae	Pulalillin	Alstonine, ditamine, echitenine, and vilialstonine	EAC (in vitro)	Inhibiting peroxidation of phosphatidylincholine liposomes permased with Fe³⁺/ ascorbate to scavenge ABTS, DPPH and hydroxyl radicals, to lessen Fe (III) to Fe (II) and to chelate Fe (II)	[54,55]
Amaranthus lividus/slender amaranth	Amaranthaceae	Bayamhijau	β-carotene and amygdalin	MCF7 and MDA-MB-231 (in vitro)	Antiproliferation of MCF-7 at IC₅₀ values of 98.8 µg/mL	[58,87]
Amaranthus gangeticus/red spinach	Amaranthaceae	Ayam Merah	Carotenoids and ascorbic acid	MCF-7 (in vitro)	Inducing apoptosis in the mutant p53, MDA-MB-231 anti-proliferative activity by mitochondria-dependent caspase-mediated pathway. Cell cycle arrest at G2 and M	[81,88,116]
Andrographis paniculata/green chirayta	Acanthaceae	Hemptedu Bumi	Andrographolide, diterpene lactone	MDA-MB-231 (in vitro)	AC7-1 said to inhibit B16-F10 melanoma cell adhesion to only specific synthetic peptides including RGDS inhibited both COX-1 and COX-2	[117,118]
Ardisia crispa/Christmas berry	Myrsinaceae	Mata Ayam	Benzoquinonoid, α-β-amyrin, and Ardisiacrispin A	MCF7 (in vivo)		

Table: 1 List of medicinal plants traditionally used in the management of breast cancer

(Contd...)
Plant name/common name	Family	Active compound	Experimental model	Mechanism of action	Source	
Annona muricata/Soursop	Annonaceae	Anonaine, isolaureline, annonamine	MCF-7 (in vitro)	Anti-proliferation activity	[49,57]	
Annona squamosa/sugar apple	Annonaceae	Atisine, oxophoebine, and reticuline	MCF-7 (in vitro)	Anti-proliferation activity	[119,120]	
Ardisia brevicaulis/coralberry or marlberry	Myrsinaceae	Ardisiacrispins A and B	MCF-7 (in vitro)	Inhibiting proliferation of via the activation of caspase-3 and caspase-9, up-regulation of the ratio of Bax/Bcl-2 protein expression	[62]	
Argemone mexicana/Mexican poppy	Papaveraceae	Sanguinarine and dihydrosanguinarine	MCF-7 (in vitro)	Decreases histone methylation (H3K4 and H3R17); inhibits HMTi (G9a), HATi and decreases histone acetylation	[30]	
Artocarpus altilis/breadfruit	Moraceae	Pyranocycloartobiloxanthone A, and B dihydro-artoindonesianin C,	MCF-7 (in vitro)	Exhibiting strong free radical scavenger towards DPPH with IC₅₀ value of 2 µg/mL with prominent discoloration	[121,122]	
Artocarpus obtusus/breadfruit	Moraceae	Pyranocycloartobiloxanthone A	MCF-7 (in vitro)	Caspase-3 and caspase-9 enzymes activation and upregulation of the ratio of Bax/Bcl-2 protein expression	[50]	
Azadirachta indica/neem tree	Meliaceae	Azadirachtin, limonoid	MCF-7 (in vitro)	Organelle organization alteration, cellular plan, and differentiation degree, cellular metabolism and differentiation degree, cellular metabolism	[69]	
Bauhinia purpurea/butterfly tree	Fabaceae	Bauhiniastatins, lutein, and B-sitosterolbauhinoxepin	MCF-7 and MDA-MB 231 (in vitro)	Active against MCF-7 at (IC₅₀ ≈ 9 µg/mL), and MDA-MB 231 at IC₅₀ ≈ 17 µg/mL	[123,90]	
Brassica oleracea/cabbage	Brassicaceae	β-carotene, lutein, α-Tocopherol	MCF-7 (in vitro)	Apoptosis revealed that activated p53 caused up-regulation of Bax, Caspase-3 and downregulation of Bcl-2 proteins modulated signal transduction	[64,97,124]	
Boswellia serrata/Indian olibanum	Burseraceae	Boswellic acid	MCF-7 (in vitro)	Declined in polymorphonuclear leukocyte infiltration and migration, reduced primary antibody synthesis and nearly inhibited the classical complement pathway mediated signal transduction	[82,83]	
Clausena excavata	Rutaceae	Dentatin	MCF-7 (in vitro)	DTN treatment significantly arrested MCF-7 cells at the G0/G1 phase (p<0.05), and ROS was significantly elevated. Moreover, DTN significantly blocked the induced translocation of NF-κB from the cytoplasm to the nucleus	[125]	
Calotropis gigantea/crown flower	Apocynaceae	Calotropin, frugoside, calotoxin	MCF-7 and MDA-MB-231 (in vitro)	Inhibited MCF-7 and MDA MB-231 cells, IC₅₀ of DCM extract with IC₅₀ values ranging from 1.3 to 3.3 µg/mL	[126]	
Capsicum annuum/red chilli	Solanaceae	Capsaicin, myricetin; a bioflavonoid	MCF-7 (in vitro)	Hindering production in LPS-stimulated RAW 264.7 macrophages	[127,128]	
Plant name/common name	Family	Local name (Malay)	Active compound	Experimental model	Mechanism of action	Source
------------------------	--------------------	--------------------	--	---	--	--------
Carica papaya/pawpaw	Caricaceae	Betik	Ascorbic acid, carotenoids and glucosinolates	MCF-7 and MDA-MB-231	Induction of apoptosis on the proliferation of MCF-7 and MDA-MB-231 cancer cell lines after a 72 h treatment Exhibited by EA extract at IC_{50} value of 2 µg/mL on MCF-7 inhibiting the proliferation of the Jurkat cell line and promoting the growth of PBMCs	[129]
Casearia capillata	Flacourtiaceae	Similit Matangi	Genistein, glicistein, glycoside	MCF-7 (In vitro)	Induced apoptosis marked by cell size shrinkage, deformed cytoskeletal structure and DNA fragmentation Antioxidant enzymes were disturbed leading to H_{2}O_{2} rise; arrest made at the G2/M and apoptosis by the death receptor and mitochondrial pathways Induced mitochondrial and nuclear DNA damage in cells and apoptosis Decreases histone and protein acetylation increases histone acetylation, reduces expression of several HDACs sequence-specific demethylation at promoter regions of epigenetically silenced genes AgNPs inhibits the MCF-7 by the up-regulation of the p53 tumor suppressor gene expression and the subsequent rise in expressions of pro-apoptotic proteins like caspase-3, Bax and caspase-9 Overexpression of SOD and CAT inhibits tumor progression with less proliferation and migration of the cancer cells, reduction of oxidative stress-mediated DNA damage or mutations that induce carcinogenesis	[65]
Catharanthus roseus	Apocynaceae	KemuntingCina.	Vinblastine and vincristine	Jurkat cell line (In vitro)		[66,98]
Centratherum anthelminticum/black cumin	Asteraceae	Kalajiri, somraj.	Vernodalin	MCF-7 and MDA-MB-231 (In vitro)	Induced apoptosis marked by cell size shrinkage, deformed cytoskeletal structure and DNA fragmentation Antioxidant enzymes were disturbed leading to H_{2}O_{2} rise; arrest made at the G2/M and apoptosis by the death receptor and mitochondrial pathways Induced mitochondrial and nuclear DNA damage in cells and apoptosis Decreases histone and protein acetylation increases histone acetylation, reduces expression of several HDACs sequence-specific demethylation at promoter regions of epigenetically silenced genes AgNPs inhibits the MCF-7 by the up-regulation of the p53 tumor suppressor gene expression and the subsequent rise in expressions of pro-apoptotic proteins like caspase-3, Bax and caspase-9 Overexpression of SOD and CAT inhibits tumor progression with less proliferation and migration of the cancer cells, reduction of oxidative stress-mediated DNA damage or mutations that induce carcinogenesis	[105]
Coriandrum sativum	Apiaceae	Ketumbar	αpinene, limpene, γ-terpinene, p-cymene	MCF-7 (In vitro)	Antioxidant enzymes were disturbed leading to H_{2}O_{2} rise; arrest made at the G2/M and apoptosis by the death receptor and mitochondrial pathways Induced mitochondrial and nuclear DNA damage in cells and apoptosis Decreases histone and protein acetylation increases histone acetylation, reduces expression of several HDACs sequence-specific demethylation at promoter regions of epigenetically silenced genes AgNPs inhibits the MCF-7 by the up-regulation of the p53 tumor suppressor gene expression and the subsequent rise in expressions of pro-apoptotic proteins like caspase-3, Bax and caspase-9 Overexpression of SOD and CAT inhibits tumor progression with less proliferation and migration of the cancer cells, reduction of oxidative stress-mediated DNA damage or mutations that induce carcinogenesis	[67]
Curcuma longa/Turmeric	Zingiberaceae	Kunyit	α-Turmerone, curcuminoids and curcumin in curcumin	MCF-7 and MDA-MB-231 (In vitro)	Decreases histone and protein acetylation increases histone acetylation, reduces expression of several HDACs sequence-specific demethylation at promoter regions of epigenetically silenced genes AgNPs inhibits the MCF-7 by the up-regulation of the p53 tumor suppressor gene expression and the subsequent rise in expressions of pro-apoptotic proteins like caspase-3, Bax and caspase-9 Overexpression of SOD and CAT inhibits tumor progression with less proliferation and migration of the cancer cells, reduction of oxidative stress-mediated DNA damage or mutations that induce carcinogenesis	[30,33,37]
Coriandrum sativum/coriander	Apiaceae	Ketumbar	Flavonoids	MCF-7 (In vitro)		[95]
Cheilocostus speciosus/crepe ginger	Costaceae	SetawarHutan	Costunolide	MCF-7 AND MDA-MB-231 (In vitro)		[68,130]
Cymbopogon citratus/lemon grass	Poaceae	Seraimakan	N-methyl-N-nitrosourea	MCF-7 and MDA-MB-231 (In vitro)	DNA damage induced by MNU and a potential anticarcinogenic activity against mammary carcinogenesis in DDB-initiated female Balb/C mice Expression of hTERT mRNAs and not hTER were inhibited	[131-133]
Curcuma amada/mango ginger	Zingiberaceae	Manjellakua	Curcuminoids	MDA-MB-231 and MCF-7 (In vitro)	Expression of hTERT mRNAs and not hTER were inhibited	[39]
Curcuma xanthorrhiza/false turmeric	Zingiberaceae	Temulawak	Xanthorrhizol, curcumin	MCF-7 (In vitro)	Inducing apoptosis through the modulation of Bcl-2, p53 and PARP-1 protein levels. effect on MCF-7 cells with an IC_{50} value of 1.71±0.16 µg/mL Anti-proliferation in MCF-7, HCT-116 and Ca Ski	[40]
Curcuma zedoaria	Zingiberaceae	Temuhitam	Alismol and curzerenone	MCF-7 (In vitro)	Anti-proliferation in MCF-7, HCT-116 and Ca Ski	[134]

(Contd...)
Plant name/common name	Family	Local name (Malay)	Active compound	Experimental model	Mechanism of action
Dendrophthoe falcata/carrot	Loranthaceae	Lobakmerah	Beta-amyrin, rutin acetate, beta-sitosterol	MCF-7 (in vitro)	Decreased in the viability of cells and exhibited an IC₅₀ value of 11.2 µg/mL on MCF-7 due to down-regulation of ER expression leading to Akt down-regulation, cell cycle arrest, and cell death
Dendrophthoe pentandra/mistletoe	Loranthaceae	Rambut putri	Quercitrin and flavonol glycoside	T47D human ductal breast epithelial tumour (in vitro)	Induction of ER II (ESR2 and ER-beta) by EA extract at IC₅₀ value of 112 µg/mL on MCF-7 and inhibition of cell proliferation
Dillenia suffruticosa/simpoh air	Dilleniaceae	Simpoh air	Betulinic acid	MCF-7, MDA-468 and MRC-5	Activation of JNK1 due to DS and down-regulation of ERK1, which in turn down-regulates BCL-2 to bring about the mitochondrial apoptotic pathway.
Dysoxylum cauliflorum/dedali, langgaayer, popo kparang	Meliaceae	Dedali, Langgaayer, Popo Kparang	Rohitukine	MCF-7, MDA-468 and MRC-5	The proliferation inhibited, and IL-2 discharge from, activated T lymphocytes, with little indication of toxicity to Jurkat E6
Echinacea angustifolia/coneflower	Asteraceae	Nenas	Alkamides	MCF-7 (in vitro)	Arrest of the cell cycle in the G1 phase
Etlingera elatior/torch ginger	Zingiberaceae	Bunga kantan	Quercetin	MCF-7 and MDA-MB-231 (in vitro)	Exhibited potent anticancer activity with IC₅₀ values of 173, 1562, and 1962 µg/mL against MCF-7 and MDA-MB-231.
Eucheuma cottonii/buaya	Solieriaceae	Buaya	Catechin, rutin and quercetin	MCF-7 (in vitro)	Hormonal modulation, apoptosis induction, and oxidative status modulation. Improve oxidative status and downregulate the endogenous active estrogen biosynthesis
Eurycoma longifolia/tongkat ali	Simaroubaceae	Tongkatali	Longilactone, a quassinoid	MCF-7 (in vitro)	Apoptotic nuclear morphology changes such as nuclear fragmentation, hyper nuclear condensation and nuclear shrinkage
Elephantopus scaber/tutup bumi	Asteraceae	Tutup bumi	Deoxyelephantopin	MCF-7 (in vitro)	Inhibiting growth and triggered time- and dosage-dependent cell death in the MCF-7 via p53 dependent apoptotic pathway.
Eupatorium odoratum/Siam weed	Asteraceae	Rumput Pahang, rumput	Triterpenoids, flavonoids	MDA-MB-231 (in vitro)	Inhibition of AKT pathway plays a role in inducing G2 arrest in MDA-MB-231 by bringing about the accumulation of inactive phospho-Cdc2 and phosphorylated G2 arrest markers, leading to subsequent G2 arrest
Euphorbia longifolia/tongkat ali	Asteraceae	Euphorbiomal, a quassiod	Triterpenoids, flavonoids	MCF-7 (in vitro)	Inhibitory activity towards MCF-7 and is less sensitive against MCF-10A, MDA-MB-231, and MDA-MB-468.
Fixea delavayi/mistleke Fig	Moraceae	Mas cotek	Methyl-3,4-dihydroxyphenylethanol	MCF-7 (in vitro)	Induced G2 arrest in MDA-MB-231 and MCF-7 by bringing about the accumulation of inactive phospho-Cdc2 and phospho-AKTAktC, leading to subsequent G2 arrest
Garcinia mangostana/mangosteen	Clusiaceae	Mangostin	Mangostin	3T3 and 4T1 cells (in vitro)	Lipid peroxidation inhibition

Table 1: (Continued)
Plant name/common name	Family	Local name (Malay)	Active compound	Experimental model	Mechanism of action	Source
Goniothalamus macrophyllus / airy	Thymelaeaceae	Selada, selayar	Styrylpyrone, goniothalaminβ-catenin	MCF-7 *(in vitro)*	Inhibited cell proliferation and markedly suppressed transcriptional activity induced by β-catenin in luciferase reporter gene assay DNA fragmentation, damage and caspase-9 activation, increase in the sub-G1 and S cell cycle phases	[72,73]
Glycine max, (soybean)	Fabaceae	Bean	Genistein and Daidzein	MCF-7 *(in vitro)*	Gen reactivation (p16, RARbeta, and MGMT), induces DNA demethylation	[30]
Gymnura procumbens / longevity spinach	Steraceae	Dewa raja, Akarsebiak, Kachamakar.	SN-F11/12	MDA-MB-231 *(in vitro)*	Inhibit the development of MDA-MB-231, at an EC₅₀ value of 3.8 mg/mL. The down-regulated expression of proliferation markers, Ki67 and PCNA, and invasion markers	[143]
Hedyotis corymbosa / diamond-flower	Rubiaceae	Siku-siku, LihabUlar, Rumpit Mutiara	Aspreuloside, Antimycin A3	YMB-1 breast cancer cell line	Inhibition of YMB-1 cell line with each IC₅₀ value is 6.51 and 2.75 µg/mL	[144]
Hevea brasiliensis / rubber tree	Euphorbiaceae	Getah	Latex B-serum	MCF-7 *(in vitro)*	Regulate intrinsic and extrinsic apoptotic path ways in MCF-7	[103]
Hydnophytum formicarum / Caudex	Rubiaceae	Simbag hutak	7, 3', 5'-trihydroxyflavanone (3HFD)	MCF-7 *(in vitro)*	Bring about apoptosis in MCF-7 by enhancing Bax expression stages similarly reducing the level of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic Bax	[145]
Hyptis suaveolens	Lamiaceae	Lerkuing or	(2E)-1- (2-hydroxy phenyl) pent-2-en-1-one (I)	MCF-7 and MDA-MB-231	Exerted inhibitory effect root extract that caused ₅₀% inhibition (IC₅₀) was 1.9 µg/mL and 100 µg/mL respectively, leaves and stem that caused ₅₀% inhibition (IC₅₀) of MDA-MB-231 was 100 µg/mL	[140,146]
Ipomoea quamoclit / morning-glory	Convolvulaceae	Kangkung	Flavonoids	MCF-7 and 3T3 cell line *(in vitro)*	Inhibit the proliferation, migration, and invasion of pro-metastatic and cyclooxygenase-2 (COX-2), Ipobscurine may also promote apoptosis by up-regulating pro- and also suppresses various TF, arrest at G1	[101]
Juglans regia / walnut	Juglandaceae	Melati, melor	Naphthoquinones	MDA-MB-231 *(in vitro)*	RBBR-inducing cell death by determining the appearance of Bcl-2, Bax, caspases, Tp53, Mdm-2 and TNF-a in MDA-MB-231 Expression level increase in pro-apoptotic protein Bax and p53 and reduction in level expression of antiapoptotic protein BCl-2 in HM3K0, straight donating to the rise in Bax/Bcl-2 fraction	[47]
Labisia pumila / Kacip Fatimah	Myrsinaceae	Kacip Fatima	Allkenylresorcinols	MCF-7; MDA-MB-231 *(in vitro)*	Expression level increase in pro-apoptotic protein Bax and p53 and reduction in level expression of antiapoptotic protein Bcl-2 in HM3K0, straight donating to the rise in Bax/Bcl-2 fraction	[93,147,74]
Lawsonia inermis	Lythraceae	Pacar Kuku, henna	Ixanthonone, coumarin and coumarin	MCF7 *(in vitro)*	Inhibition proliferation tumor cell with IC₅₀ value of 24.85 µg/mL	[56,75,76]

Table 1: *(Continued)*
Plant name/common name	Active compound	Family	Local name	Experimental model	Mechanism of action	Source
Leea indica/Bandicoot berry	Palmitic acid, 1-eicosanol, solanesol	Vitaceae	Mali-mali, merbatipadang, jolok-jolok	MCF-7 and MDA-MB-231 cell lines	Inhibition of proliferation	[149]
Litsea garciae/Engkala	Alkaloid, flavonoids, chalcone	Lauraceae	Pengolaban	MCF-7 (in vitro)	Cytotoxicity activity was exhibited moderately with IC₅₀ value of 73 µg/ml in MCF-7 cell phase. For MDA-MB-231 induced strong arrest	[149]
Mangifera indica/Mango	Vimang, mangiferin	Anacardiaceae	Mangga	MCF-7 and MDA-MB-231 cell lines	Inhibiting NFjB target genes that are involved in inflammation, anti-apoptosis, metastasis, and angiogenesis	[44]
Muntingia calabura/Calabur tree	Flavonoids, tannins, saponins and steroid	Elaeocarpaceae	Cerkapung	MCF-7 (in vitro)	Inhibition of cell-survival kinase and the inflammatory TF, permeabilization of the mitochondrial membranes to cause necrotic cell death, induction of apoptosis and down-regulation of cell cycle proteins	[111]
Mangifera pajang	Naringin mangiferonic acid, stigmasterol and quercitrin	Anacardiaceae	Bambangan	MDA-MB-231 and MCF-7 (in vitro)	Induced cytotoxicity in the cells with IC₅₀ values of 23 and 30.5 µg/ml, in MCF-7 cell cycle arrest at sub-G1 (apoptosis) phase. For MDA-MB-231 induced strong arrest	[79,107,108]
Melastoma malabathricum/Rambutan	Malvidin-3,5-diglucoside	Melastomataceae	Senduduk Putih	MCF-7 (in vitro)	Inactivation of tumour suppressor genes such as p53	[151]
Morinda citrifolia/Cheese fruit	Damnacanthal,	Rubiaceae	Mengkudu	MCF-7 breast cancer cells	Induced apoptosis, and expression of caspase 7 activations of p21, leading to the transcription of p53 gene and the Bax gene in average at wavelength A570 nm	[46]
Moringa oleifera/Drumstick	Isoquercetin and astragalin	Moringaceae	Kacangkelo	MCF-7 (in vitro)	Inhibited MCF-7 cell line with 87.13% in average at wavelength A570 nm	[45,152]
Murraya koenigii/Curry tree	Mahenine, a carbazole alkaloid, girinimbine	Rutaceae	Daunkari, Pokok kar	MCF-7 (in vitro)	Induce apoptosis in HL-60 and MCF-7 by down regulating survival cell of factors and distracting the cell cycle progression	[153]
Murraya paniculata/Orange Jessamine	(E)-caryophyllene	Rutaceae	Kemuning	MCF-7 (in vitro)	Cytotoxicity activity against MCF-7 and MDA-MB-231 cell lines	[78]
Nephelium lappaceum/Rambutan	Trypsin and α-chymotrypsin, dithiothreitol	Sapindaceae	Rambutan	4T1 and 3T3 cell lines	Inhibition of proliferation and metastasis of tumors exhibited cytotoxicity (CV 40%) and 100% inhibition at a concentration of 8 µg/mL	[56,154]
Nigella sativa/Black cumin	Essential oil, thymoquinone	Ranunculaceae	Jintan hitam	MCF-7 (in vitro)	NSEO nano emulsion induced apoptosis in MCF-7 lessens viability of the cell and alteration of nuclear morphology in a dose- and time-dependent manner	[44]
Orthosiphon stamineus/"cat whisker"	Rosmarinic acid	Lamiaceae	Java tea/misaikucing	MCF-7 (in vitro)	Enhancing anti-proliferative activity of MSCE against MCF-7 and MDA-MB-231 cell lines	[155]
Pandanus amarylfolius/Pandan leaves	Propylene glycol	Pandanaceae	Pandan wangi	MCF-7 and MDA-MB-231 (in vitro)	Reduced viability by inhibiting proliferation in MCF-7 and MDA-MB-231	[41]
Plant name/common name	Family	Local name (Malay)	Active compound	Experimental model	Mechanism of action	Source
------------------------	-----------------------	--------------------	-----------------	--------------------	--	--------------
Persea declinata	Lauraceae	Medanginai	α-humulene	MCF-7 (in vitro)	Release of higher lactate dehydrogenase and raise in ROS making, resulting in mitochondrial membrane	[80]
					perturbation, porousness of cell, and motivation of caspases-3/7 inhibitory concentration (IC₅₀) of 10.4±0.06 µg/mL	
Peperomia pellucida /Pepper elder	Piperaceae	Keturumpang air	Carotol, dill apiole, pygmaein	(MCF-7) cell line	Cytotoxic activity against MCF-7 with IC₅₀ between 2.55 and 408 µg/mL	[156,157]
Phaleria macrocarpa/Crown of God	Thymelaceae	Mahkotadewa	Rutin, ferri thiocyanate and thiobarbituric acid	MCF-7 (in vitro)	Exhibited cytotoxic activity, h IC₅₀ values ranging 7.5-13.4 µg/mL (171-30.5 µM)	[158]
Phyllanthus pulcher/Weed	Phyllanthaceae	Kelurutanjong, nagabuana	Trriterpenoids (lupane)	MCF-7 (in vitro)	Anti-proliferation and Apoptotic DNA fragmentation of MCF7 were inhibited by all the extracts with IC₅₀ ranging from 90 to 120 µg/mL	[100]
Physalis minima/bladder cherry	Solanaceae	Letup-letup, rumputmeranti	Withanone A, stigmasterol and withaferin A	MCF 7 in vitro	Anti-proliferation of NCI-H23 by apoptosis. The initiation of apoptosis was proposed to be facilitated by caspase-3, p53 and c-myc-dependent apoptosis pathways	[52,96]
Piper nigrum/black pepper	Piperaceae	Lada Hitam	Pellitorine	MCF-7 cell lines	Cytotoxic with an IC₅₀ value of 13.0 µg/mL	[159]
Piper betle/betel	Piperaceae	Sirih, suruh, seureuh	Catechin, morin, and quercitin	(HL60 and MCF-7)	Increased in catalase activities and superoxide dismutase in the treated cells may alter the antioxidant defence system	[159]
Psidium guajava/guava	Myrtaceae.	Jambu Batu	Catechin, Rutin and Quercetin	MDA-MB-231 (in vitro)	Anti-proliferative activity in MDA showed the cytotoxicity of IC₅₀ of 4.23 µg/mL	[117,160]
Punica granatum/pomegranate	Lythraceae	Pokok Delima	Ellagittannins	MDA-MB-231 (in vitro)	Escalation of cancer cell adhesion and decline cancer cell migration of the MDA-MB-231 and MCF-7 also inhibit chemotaxis in cancer cell lines to SDF1α	[161]
Pueraria mirifica	Fabaceae	Daidzein		MCF-7 (in vitro)	Gene reactivation (p16, RARbeta, and MGMT), induces DNA demethylation	[30]
Pueraria lobata (Willdenow)	Fabaceae	Daidzein		MCF-7 (in vitro)	Gene reactivation (p16, RARbeta, and MGMT), induces NA demethylation	[30]
Raphanus sativus/white radish	Brassicaceae	Putih	Raphasativuside A B, phenylpropanoidesucrosides 1–7	MDA-MB-231 and MCF-7 (in vitro)	Cytotoxicity against all the tested cell lines, with IC₅₀ values from 6.71-27.92 µM	[162]
Rhodola rosea/golden root, rose root	Crassulaceae	Rhodioloside and salidroside		MDA-MB-231 and MCF-7 (in vitro)	Antiproliferation and inducing apoptotic cell death in ER-negative and ER-positive MCF-7 and MDA-MB-231	[94,86]
Plant name/common name	Local name (Malay)	Active compound	Experimental model	Mechanism of action	Source	
------------------------	-------------------	-----------------	-------------------	-------------------	--------	
Sandoricum koetjape (Santal or cottonfruit)	Sentieh, Sento	Terpenoids	MCF-7 (*in vitro*)	Colony formation properties of MCF-7 were inhibited, induction of apoptosis machineries; stimulation of caspase 3/7 actions and A mitochondrial apoptosis pathway	[89]	
Sanguinaria Canadensis (blood root)	Papaveracea	Sanguinarine	MCF-7 (*in vitro*)	Decreases histone methylation (H3K4 and H3R17); HMTi (G9a), *in vitro* HATi and decreases histone acetylation. Induction of apoptosis by morphological changes of apoptotic nuclei and DNA fragmentation and inhibited the migration and colony formation	[30]	
Scurrula ferruginea/Denser	Dapong-kahoi	Lectins	MCF-7 and MDA-MB-231 (*in vitro*)	Induction of apoptosis by morphological changes of apoptotic nuclei and DNA fragmentation and inhibited the migration and colony formation	[104,163]	
Silybum marianum (milk thistle)	Bungacingkeh	Silibinin	MCF-7 (*in vitro*)	Increases histone acetylation	[30]	
Syzygium aromaticum/ Cloves	Kaempferol	Betulinic acid	MCF-7 (*in vitro*)	Apoptotic activation of the cell death machinery by initiating caspases 3/7 and promote chromatin condensation and nuclear break-up in the MCF-7	[63]	
Sanchezia speciosa/Shrubby white vein	Quercetin		MCF-7 (*in vitro*)	Inhibition activity on HUVEC cells	[100]	
Schima wallichii/Chinese guger tree	Pecahbeling	Polyphenols, catechins, caffeine	MCF-7 and MDA-MB-231 (*in vitro*)	Stimulate apoptosis and DNA division through mitochondria-dependent p53 apoptosis pathway mRNA expression levels of apoptosis-related genes (caspase-3 and caspase-9) induced by Cisplatin were significantly decreased	[41,65,164]	
Strobilanthes crispus/black face genera	Columbin, tinospora acid					
Tinospora crispa/Heart-leaved, Batawali	MCF-7, MDA-MB-231, and 3T3 (*in vitro*)					
Trigonella foenum/Fenugreek	Diosgenin					
Vernonia amygdalina/Bitter leaf	Pokok South Africa	Terpenoids	MDA-MB-231, MCF-7 and 3T3 (*in vitro*)	Expression of pro-apoptotic genes caspase -3, caspase-8, caspase-9, p53, Fas, FADD, Bax and Bak in MCF7 were increased	[94,166]	
Thelesperma megapotamicum/Pampa tea	Pokok coklat	Triterpenes, flavonoids, alkaloids, Daukasterol	MCF-7 (*in vitro*)	Anticancer activity against MCF-7 cells at (IC₅₀ = 41.4±3.3 µg/mL) Cytotoxicity of RTE on T47D with IC₅₀ value of 632µg/mL antagonistic effect by Decreasing Sub-G1 RTE (63 µg/mL) and TAM 5 nM, separately from 53.19% and 44.50% to 35.86%	[167,168]	
Theobroma cacao/Cacao tree	KeladiTikus		T-47d (*in vitro*)		[169]	
Typhonium flagelliforme/Rodent tuber					[170,171]	

(Contd...)
with IC\textsubscript{50} value of 6.51 µg/mL in MCF-7 and IC\textsubscript{50} value of 2.75 µg/mL in MDA-231. Nephelium lappaceum with 100% inhibition at IC\textsubscript{50} value of 8 µg/mL. *Psidium guajava* in MDA showed the cytotoxicity of IC\textsubscript{50} of 4.23 µg/mL. *Peperomia pellucida* with IC\textsubscript{50} value of 10.4 µg/mL. *Phaleria macrocarpa* with IC\textsubscript{50} value of 25.5–40.8 µg/mL. *Curcuma xanthorrhiza* IC\textsubscript{50} value of 1.71±0.1 µg/mL. *Mangifera pajang* with IC\textsubscript{50} value of 23 µg/mL in MCF-7 and IC\textsubscript{50} value of 30.5 µg/mL in MDA-231. *Phyllanthus acidus* with IC\textsubscript{50} value of 18.9±0.7 µg/mL while most of the lowest activities were found in *Etinglera elatior* with IC\textsubscript{50} value of 173.1 µg/mL in MCF-7 and IC\textsubscript{50} value of 196.2 µg/mL in MDA-231. *Albizia zygia* with IC\textsubscript{50} value of 83.16 µg/mL. *Litsea garciae* with IC\textsubscript{50} value of 75 µg/mL. *Phyla nodiflora* with IC\textsubscript{50} value of 90–120 µg/mL. *Moringa oleifera* with IC\textsubscript{50} value of 87.13 µg/mL. *Artocarpus altilis* exhibiting strong free radical scavenger towards DPPH with IC\textsubscript{50} value of 2 µg/mL. *Amaranthus gangeticus* with IC\textsubscript{50} value of 98.0 µg/mL. *Bendrothax pentandra* with IC\textsubscript{50} value of 107 µg/mL in MCF-7 and IC\textsubscript{50} value of 112 µg/mL in MDA-231. *Trigonella foenum* and *Theobroma cacao* with IC\textsubscript{50} value of 41.4 µg/mL.

Some of the bioactive compounds that were isolated and found to be responsible for the anticanter activities from these medicinal plants that exhibited good activity are pyran-cycloartobiliosanthe A (PA), dihydroartiodonesianin C, and pyranocycloartibolisanthe B isolated from *Artocarpus abatus* and shows strong cytotoxic activity against MCF-7 and MDA-MB-231 with IC\textsubscript{50} values of 5.0µg/mL. *Curcuma xanthorrhiza* in vitro concentration and IC\textsubscript{50} value of 2.0 µg/mL. *Withania somnifera* with IC\textsubscript{50} value of 1.71±0.1 µg/mL. Dentatin also isolated from *Clausena cava* arrest MCF-7 at 60/ G1 phase and ROS was significantly elevated. Moreover, dentatin (DTN) significantly blocked the induced translocation of NF-κB from the cytoplasm to the nucleus, silver nanoparticles (AgNPs) isolated from *Alternanthera tenella*, and *Coriandrum sativum* inhibited cell migration dose-dependently after 24 h of treatment. The IC\textsubscript{50} value of the AgNPs was calculated to be 42.5µg/mL and inhibits the MCF-7 by the upregulation of the p53 tumor suppressor gene expression and the subsequent rise in expressions of pro-apoptotic proteins such as caspase-3, Bax, and caspase-9, respectively. Benzoquinonoid fraction (BQ) isolated from *Alternanthera crispa* inhibited both COX-1 and COX-2. Amygdalin isolated from *Aranthasus lividus* activated a pro-apoptotic signalling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells and induces apoptosis and also inhibits adhesion of breast cancer cells. Andrographolide isolated from *Andrographis paniculata* Induced apoptosis in MDA-MB-231, anti-proliferative activity by mitochondria dependent caspase mediated pathway and cell cycle arrest at G2 and M. Damnacanthal isolated from *Morinda citrifolia* induced apoptosis, and expression of caspase 7 activation of p21, leading to the transcription of p53 and the Bax gene. Diallyltrisulfide isolated from *Allium sativum* stimulates the lymphocytes and macrophages that kills cancerous cells and interferes with tumor cells metabolism. Vernodalin isolated from *Centractrum anthemisicum* seeds inhibits cell growth of MCF-7 and MDA-MB-231 by induction of cell cycle arrest and apoptosis, increased of reactive oxygen species (ROS) production coupled with a downregulation of anti-apoptotic molecules (Bcl-2 and Bcl-xl) led to reduction of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol which triggered activation of caspase cascade, PARP cleavage, DNA damage and eventually cell death. Javanthren, coumarin and tacomanin isolated from *Lavesona inermis* Inhibites proliferation of tumor cell at IC\textsubscript{50} value of 2.485±0.5 µg/mL 1′-Acetoxychavicol acetae (ACGA) isolated from *Alpinia cngiuga* induced cell cycle arrest at G0/G1 phase with IC\textsubscript{50} values 34.0 µM to 48.0 µM. Xanthonrhizol isolated from the rizome of *Curcuma xanthorrhiza* inhibites proliferation of MCF-7 with an IC\textsubscript{50} value of 1.71 µg/mL and also revealed down-regulation of the anti-apoptotic bcl-2 protein expression. Loniglic tone isolated from *Eurycoma longifolia* exerts a strong cytotoxic activity on MCF-7 with IC\textsubscript{50} of 0.53 ± 0.19 µg/mL, also induced apoptosis as evidenced by nuclear condensation, fragmentation and margination, and also showsactivation of caspase-7, -9 and poly (ADP-ribose) polymerase. Eurycomanone isolated from *Eurycoma longifolia* shows cytotoxicity at IC\textsubscript{50} 15.2±6.2 µg/mL inMCF-7 but is less sensitive against MCF-10A with IC\textsubscript{50} 66.3±0.47 µg/
ml. Alkenylresorcorins, labisaquinone A and labisaquinone isolated from leaves of *Labisia pumila* exhibited strongest cytotoxic activity against MCF-7 cell line at IC₅₀ values < 10µm.

These plants contain other chemicals that are not isolated but rather suspected to be the principal agent for the anticancer activities these are apigenin, apigenin glycosides, luteolin, luteolin-7-glucosides, p-coumarin, lupeol, lectins, naringin, nodiflorin, β-sitosterol, mangiferonic acid, peltorine, kaempferol [38], curcumin, curcuminoids, α-tumerone, [33,37,39,40], queretin [41,42], catechin, rutin [43], xanthorrhizol [40], mangiferin [44], ferraricholic acid, thioharbarbituric acid, isoaquarine, astraquin [45], damacanthal [46], naphthoquinones [47], triterpenoids, flavonoids, gallic acid, gingerol [48] annonaine, isoaquarine, annonamine [49], xanthones [50], flavonoids, stigmaasterol, carotenoids, and ascorbic acid [51], among which many are reported for their cytotoxicity and chemopreventive activity against breast cancer cell that are promising anticancer agents and has been adapted for alternative cancer therapies. Many studied plants were shown to possess variable chemical compounds that possess a tumor suppressive activities and associated with potent anticancer responses, [37,40,44,51-53].

These compounds can be considered as promising candidates for the development of novel and effective pharmaceutical agents. Studies have shown that the chances for a plant to be bioactive are significantly higher when plants’ selection is done by ethnomedicinal practices and used against either MCF-7 or MDA-MB-231 or both.

Although the clinical trials showed that herbs were helpful against cancer, these outcomes require further confirmation with rigorously controlled trials, and many clinical trials focusing on the anticancer effects of herbal formulas have been conducted. Although many of them demonstrated that medicinal plants are helpful against cancer, especially useful in improving survival and quality of life in patients suffering from advanced cancer, the lack of controls and reporting bias have been severe flaws [33].

The information presented in this review aim at providing a general outline or descriptions of what type of mechanisms do plant extracts to inhibit cancer and also deliver therapeutic prove for some of the conventionally utilized anticancer plants. The pharmacological report advocates that these traditional practices are connected to the presence of dynamic compounds with anticancer potentials. Dissimilar plants have been found fighting against diverse cell lines of cancer even though this review only targets BC, pure chemical constituents have likewise been separated from these plants and established very active, still few numbers of pharmacological, phytochemical, and ethnomedical, examinations have been fully recognized on majority of these plants. Evidently, it is the time to lay more emphasis on scientific investigations on medicinal plants.

Anticancer mechanism

1. Inhibition of lipid peroxidation as exhibited by *Garcinia mangostana* [54], *Alstonia scholaris* [55, 56] and *Annona muricata* [49, 57, 58].

2. Scavenging reactive oxygen species (ROS) as shown by *Abras agglutinin* and *Allium sativum* [59, 60] and normalizes in (APF) levels in *Allium sativum* [33].

3. Inhibiting proliferation via the activation of caspase-3 and caspase-9, up-regulation of the ratio of BD/bcl-2 protein expression in *Ardisia brevicaulis* [61], *Artocarpus obtusus* [50, 62], *Ardisia brevicaulis* [63], *Carica papaya* [64], *Catharanthus roseus* [118-119], *Costus speciosus* [121-122], *Cucumis melo* [65], *Dysosyrum ciliatum* [66], *Goniostolahus macrophyllus* [137-138], *Gymnura procumbens* [139], *Lawsonia inermis* [56, 146-147], *Leuca indica* [148-149], *Nepthelium lappaceum* [56, 156], *Pandanus amaryllifolius* [61], *Phyllanthus niruri* [67], *Physalis minima* [52, 78], *Rhodiol rosea* [68], *Vernonia amygdalina* [65] and *Schima wallichi* [68].

4. Induced mitochondrial and nuclear DNA damage like in *Curcuma longa* [33, 37].

5. Organelle organisation alteration, cellular plan and differentiation degree of cellular metabolism in *Azadirachta indica* [65].

6. Increase histone acetylation like in *Allium cepa* [60].

7. Declined in polymorphonuclear leukocyte infiltration and migration, reduced primary ant body synthesis and nearly inhibited the classical complement pathway like in *Boswellia serrata* [69, 70].

8. Cell morphological changes such as cyttoplasmic shrinkage, condensation of nucleus and formation of membrane-bound vesicles in *Abras precatorius* [59, 71] and *Scurrula ferruginea* [88, 166].

9. Expression levels of apoptosis-related genes (caspase-3 and caspase-9) *Tinospora crispa* [72], *Andrographis paniculata* [67, 101-102], *Brassica oleracea* [63, 80, 111], *Curcuma xanthorrhiza* [73], *Euphorbia cotinum* [66].

Anticancer drugs destroy cancer cells by stopping growth or multiplication at some point in their life cycle. This paper has shown that the cytotoxicity of plants that downregulate the anti-apoptotic genes such as Bax/Bcl2 (apoptosis inducing genes) that promote cell death, like in *Artocarpus obtusus* [50], rise in Bax/Bcl2 ratio to induce apoptotic pathway like in *Dillenia suffruticosus* [74] also in *Z. officinalis* [48], *Juglans regia* [47], *L. pumilla* [75] and *T. foenum* [76] and on the other hand, the use of pro-apoptotic genes like caspases, 3, 7, 8 and 9, and PS3 have made a clear expression in in *Artocarpus obtusus* [50], *C. sativum* [95], *G. macrophyllus* [91], *Persea declinata* [80], *P. minima* [96], *Sandoricum koetjape* [89], *T. foenum* [94], *S. wallichii* [38], and *Brassica oleracea* [97]. Apoptosis and cell proliferation were the major biological pathway in cell death, and plant with highest apoptosis were *A. sativum* [33,60], *C. sativum* [90], *Anisochilus carnosus*, *P. minima* [52,96], *Sandoricum koetjape* [89], *E. cotonii* [43], *C. xanthorrhiza* [40], *Nigella sativa* [99], *R. rosae* [94], *Sanchezia speciosa* [100], and *Ipomoea quamoclit* [101], and those with least apoptosis were *Phylla nodiflora* [102], *Brassica oleracea* [97], *Murraya koenigii* [42], and *Hyphophyton formicarum* [103] while those plant that shows apoptosis with morphological changes includes *E. longifolia* [85], *S. ferruginea* [104], *Syzygium aromaticum* [63], *C. longa* [33,77], *A. precatorius* [59], and *C. anthelminticum* [105], and in cell cycle arrest, *C. sativum*, *A. paniculata*, and *M. pajang* arrest was made at G2/M [81,98,106,107], respectively, while arrest at S-phase was seen in *Alpinia officinarum* [108], sub-G1/S in *Vernonia amygdalina* [109], and reduction in G0/G1 phase with earlier increase in S and G2/M was observed in *A. conchiígara* [110] and *Muntingia calabura* [111]. Finally, on the cell line used, almost all the plants were used against either MCF-7 or MDA-MB-231 or both.

Although the clinical trials showed that herbs were helpful against cancer, these outcomes require further confirmation with rigorously controlled trials, and many clinical trials focusing on the anticancer effects of herbal formulas have been conducted. Although many of them demonstrated that medicinal plants are helpful against cancer, especially useful in improving survival and quality of life in patients suffering from advanced cancer, the lack of controls and reporting bias have been severe flaws [33].

The information presented in this review aim at providing a general outline or descriptions of what type of mechanisms do plant extracts to inhibit cancer and also deliver therapeutic prove for some of the conventionally utilized anticancer plants. The pharmacological report advocates that these traditional practices are connected to the presence of dynamic compounds with anticancer potentials. Dissimilar plants have been found fighting against diverse cell lines of cancer even though this review only targets BC, pure chemical constituents have likewise been separated from these plants and established very active, still few numbers of pharmacological, phytochemical, and ethnomedical, examinations have been fully recognized on majority of these plants. Evidently, it is the time to lay more emphasis on scientific investigations on medicinal plants.

Anticancer drug suffers from generally inadequate efficacy and number of serious adverse effects in human health. These plants are commonly used in the conventional system of medicines in breast cancer remedies. Several reported works conclude that medicinal plants possess anticancer activities by the virtue of their active compounds, and in vivo and in vitro induced cancers are proved with scientific principles to ameliorate the cancers with use of these plant extracts. Introduction of apoptosis in cells in vitro can be done through different patterns. The typical systems are the disclosure of thymocytes to glucocorticoids. Other practices consist of DNA damage either by irradiation, exposure to drugs that prevent trypsin, topoisomerase, withdrawal of advance factors from growth media, cell cycle perturbation, exposure to inhibitors/activators of kinases or phosphatases, interloping with Ca²⁺ homoeostasis, over the appearance of p53 adherents of Ced-3/ICE and so on.

CONCLUSION

Throughout the world, especially developing and under-developing countries, plants have been exploited as medicine to meet primary healthcare needs. There has been a great switchover in the universal trend of medicine selection from synthetic to herbal medicine, which indicates “Return to Nature”. Medicinal plants have been best known for millenial and are highly important all over the world as a rich source of therapeutic agents. It is estimated that vast majority of the population
relies on medicinal plants for therapy against several diseases or disorders [174,175].

A large number of novel anticancer drugs have been discovered from natural products in the past, and new ones are continually being developed; many plant species are still used by herbalists and traditional practitioners healers in Malaysia for treating breast cancer, considering the number of new cases in breast cancer and rising epidemiology in Malaysia. This review reports the investigations of many researchers on natural plants in breast cancer medication in Malaysia that inhibited cell growth in both in vitro and in vivo anticancer activities. However, plants from a good number of families have never been investigated phytochemically to reveal their active compound as well as their mechanism of action. These include Zingiberaceae, Asteraceae, Fahlaceae, Loranthaceae, Malvaaceae, Moraceae, Amaryllidaceae, Araceae, Solanaceae, Acanthaceae, Apocynaceae, Liliaceae, Rubiaceae, Apliacae, Lauraceae, and Pipervaceae (in order of appearance) which have diverse uses in traditional medicine, some of the phytochemicals with potency includes Anonaine, Atisine, genistein, glistein, ritun, pymaein, antfincein, aspreuloside, calotoxin, caltopxin, bauhinioxin, bauhiniatatins, caratol, and xanthorrhizin, and apoptosis and cell proliferation were the major biological pathway in cell death [33,37,39,40] in MCF-7 and MDA-231 cell lines. The present study calls for further research aimed at isolating the bioactive compounds responsible for the observed activity, and also, toxicology of these plants also needs to be studied in details and also points out their clinical trials. These compounds could serve as novel supports in the treatment of breast cancer.

ACKNOWLEDGMENT

This research was supported by University Tun Hussein Onn Malaysia (UTHM) for providing internal research funding (GPPS, Vot:U608).

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

1. Sawadogo WR, Schumacher M, Teiten MH, Dictao M, Diederich M. Traditional west african pharmacopeia, plants and DERIVED compounds for cancer therapy. Biochem Pharmacol 2012;84:1225-40.

2. Dawson SJ, Makevtsov N, Blows FM, Driver KE, Provenzano E, Le Quene J, et al. BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer 2010;103:668-75.

3. Amin A, Mousa M. Merits of anti-cancer plants from the Arabian Gulf region. Cancer Ther 2007;5:55-66.

4. Kurman RJ. Cancer IARo, Organization WH: WHO Classification of Tumours of Female Reproductive Organs: International Agency for Research on Cancer; 2014.

5. Abu Bakar MF, Abdul Karim F, Sulaiman M, Isha A, Rahmat M. Phytochemical constituents, antioxidant and antiproliferative properties of a liverwort, lepidozia borneensis stephani from mount kinabalu, sabah, malaysia. Evid Based Complement Alternat Med 2015;2015:936215.

6. Mohanal S. Phytochemical Investigations on ‘Black Glumed’jivara (Oryza sativa L), the Medicinal Rice, as Compared to Staple Varieties and Evaluation of their Antioxidant, Anti-inflammatory and Anticancer Effects. Pennsylvania State University: Citeeseer; 2011.

7. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5-29.

8. Hussein R, Anwar H. Report of the Second National Health and Morbidity Survey Conference. Hospital Kuala Lumpur; 1997. p. 22.

9. Norsa’adah B, Rusli BN, Imran AK, Naing I, Wint T. Risk factors of breast cancer in women in kelantan, malaysia. Singapore Med J 2005;46:698-705.

10. Khazri J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett 2014;7:173-81.

11. Bhoo-Pathy N, Yip CH, Hartman M, Uiterwaal CS, Devi BC, Peeters PH, et al. Breast cancer research in asia: Adapt or adopt western knowledge? Eur J Cancer 2013;49:703-9.

12. Lim GC. Overview of cancer in Malaysia. Jpn J Clin Oncol 2002;32Suppl 1:S37-S42.

13. von Minckwitz G, Untch M, Blomher JU, Costa SD, Eichmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796-804.

14. Cazzaniga M, Bonanni B. Breast cancer chemoprevention: Old and new approaches. BioMed Res Int 2012;2012:985620.

15. Sinha D, Biswas J, Sung B, Aggarwal BB, Bisheh Y. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets 2012;13:1799-819.

16. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at five years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013;381:805-16.

17. Waters EA, McNeel TS, Stevens WM, Freedman AN. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat 2012;134:875-80.

18. Chumse M, Howes T, Bao T, Sabinis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011;125:13-22.

19. Tutt A, Robson M, Garber JE, Domchek SM, Audhe MW, Weitzel JN, et al. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial. Lancet 2010;376:235-44.

20. Gianni L, Dafihi U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: A 4-year follow-up of a randomised controlled trial. Lancet Oncol 2011;12:236-44.

21. Rebbuci M, Micheli C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 2013;85:1219-26.

22. Holohan C, Van Schaybroeck S, Longley DB, Johnston PG. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer 2013;13:714-26.

23. Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull 2014;4:421-7.

24. Aliya S, Devi YP, Uma A. Plants as potential resources of anticancer drugs. Curr Trends Biotechnol Pharm 2016;10:92-107.

25. Nagaprashanthi CH, Kannan M, Karthikeyan M, Aleemuddin MA. Ethnomedicinal plants for prevention and treatment of breast cancer: A review. Int J Pharm Sci Res 2012;3:756-65.

26. Omogbadegun ZO. Medicinal plants-based foods for breast cancer treatment: An ethnobotanical survey and digitization. Int J Med Plants 2013;1:137-63.

27. Sa L. Top 3 herbal drugs for breast cancer. Int J PharmTech Res 2013;5:1811-5.

28. Islam M, Akshari L, Ahmed A, Moududee SA, Hossain M, Rahman M, et al. Herbal medicinal plant in the treatment of breast cancer—an overview. Int J Pharm Life Sci 2014;5:531-16.

29. Elgardar MA, Salama M, Adam A. Anti-cancer breast from various natural sources-review. Int J Pharm Sci Pharrm 2015;4:1142-53.

30. Jaikumar B, Jasmine R: A natural sources-review. Int J Pharm Pharm Sci 2015;4:1142-53.

31. Nataru S, Pulicherla Y, Gaddala B. A review on medicinal plants as a natural sources-review. Int J Pharm Pharm Sci 2015;3:1811-5.

32. Nagaprashanthi CH, Kannan M, Karthikeyan M, Aleemuddin MA. Ethnomedicinal plants for prevention and treatment of breast cancer: A review. Int J Pharm Sci Res 2012;3:756-65.

33. Shareef M, Ashraf MA, Sarfraz M. Natural Cures for Breast Cancer Treatment. Mini Rev Med Chem 2016;16:596-604.

34. Natara S, Pulcheriya Y, Gadalla B. A review on medicinal plants as a potential source for cancer. Int J Pharm Sci Rev Res 2014;26:235-48.

35. Jordan VC. Molecular mechanisms of antiestrogen action in breast cancer. Breast Cancer Res Treat 1994;31:41-52.

36. Seery L, Gee J, Dewhurst O, Nicholson RI. Molecular mechanisms of antiestrogen action. In: Estrogens and Antiestrogens. 1st ed. New York: Springer; 1999. p. 201-20.

37. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011;62:233-47.

38. Yue GG, Chan BC, Hon PM, Lee MY, Fung KP, Leung PC, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol 2010;48:2011-20.

39. Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y, Supriyatiya, et al. Kaempferol-3-O-rhamnoside isolated from the leaves of schima wallichii korth. Inhibits MCF-7 breast cancer cell
proliferation through activation of the caspase cascade pathway. Oncol Lett 2012;3:1069-72.

39. Manoharan S, Kaur J. Anticancer, antiviral, antiidiabetic, antifungal and phytochemical constituents of medicinal plants. Am J Pharm Tech Res 2013;3:149-69.

40. Cheah YH, Azinamhol HL, Abdullah NR. Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction. Anticancer Res 2006;26:4527-34.

41. Zan CH, Rahmat A, Abdah MDA, Akin M, Alitheen NB, Othman F, et al. Anti-proliferative effects of pandan leaves (Pandanus amaryllifolius), kantan flower (Ellingiera elatior) and turmeric leaves (Curcuma longa). Nutr Food Sci 2011;41:238-41.

42. Ghasemzadeh A, Jaafar ZZ, Rahmat A, Ashkani S. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Ellingiera elatior (Jack) RM Sm grown in different locations of Malaysia. BMC Complement Altern Med 2015;15:1.

43. Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NB, et al. Polyphenol-rich seaweed (Eucheuma cottonii) is cytotoxic to Jurkat leukaemic T-cells but induces the proliferation of normal peripheral blood mononuclear cells. Trop Life Sci Res 2010;21:101.

44. Rajalakshmi M, Anitha R. In vitro and in silico evaluation of antioxidant activity of a sesquiterpene lactone, costunolide, isolated from costus speciosus rhizome on MCF-7 and MDA-mb-231 breast cancer cell lines. World J Pharm Sci 2014;3:1334-47.

45. El-Far AH, Badria FA, Shaheen HM. Possible anticancer mechanisms of some Costus species active ingredients concerning drug discovery. Curr Drug Discovery Technol 2016;13:123-43.

46. Andrade S, Alves LF, Physical, chemical and biochemical characterizations of leaves of sweetpot (Annona squamosa L.). and golden apple (Spondias cebuana soner) fruits during ripening. J Agric Sci Technol B 2012;2:1148.

47. Bakar MF, Mohamed M, Rahmat A, Fry J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Arctocarpus odoratissimus). Food Chem 2009;113:479-83.

48. Alabse AM, Ali R, Ali AM, Harun H, Al-Dubai SA, Ganasegeran K, et al. Induction of caspase-9, biochemical assessment and morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus. Asian Pac J Cancer Prev 2013;14:6273-80.

49. Seyed MA, Jantan I, Bukhari SN. Emerging anticancer potentials of Goniothalamus and its molecular mechanisms. BioMed Res Int 2014;2014:356308.

50. Hiew CS, Khoo BY, Gam LH. The anti-cancer property of proteins extracted from Gymnura punctata (Lour.) Merr. PLoS One 2013;8:e68524.

51. Singh DK, Luqman S. Lawsonia inermis (L.): A perspective on anticancer potential of melindhi/benna. Biomed Res Ther 2014;1:112-20.

52. El-Babili F, Bouajila J, Valentin A, Chatelain C. Antioxidant and anticancer properties. Pharm Glob (IJCP) 2012;4:1-16.

53. Boroojeny M, Chotpadhyay S, Choudhuri T, Bera R, Kumar S, Chakraborty B, et al. Cytoprotective and cell cycle arrest induced by androgrophilol lead to programmed cellular death in MDA-MB-231 breast cancer cell line. J Biomed Sci 2016;23:240.

54. Leong OK, Muhammad TS, Sulaiman SF. Cytotoxic activities of Physalis minima L. Chloriform extract on human lung adenocarcinoma NCI-H123 cell lines by induction of apoptosis. Evid Based Complement Altern Med 2011;2011:185064.

55. Suhail MM, Wu W, Cao A, Mondalek FG, Fung KM, Shih PT, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med 2011;11:289-90.
83. Sofi MS, Sateesh M, Bashir M, Harish G, Lakshmeesha T, Vedashree S, et al. Cytotoxic and pro-apoptotic effects of *Abras precatorius* L. on human metastatic breast cancer cell line, MDA-MB-231. Cancer Biology 2013;3:65-477.

84. Ibibah M, Wan-Nor J, Narimah A, Sar SN, Fronemang G. Anti-proliferative and antioxidant effects of *Tinospora crispa* (Batawali). Biomed Res Int 2012;22:57-62.

85. Marvibagi M, Amini N, Supriyanto E, Abdul Majid FA, Kumar Jaganathan S, Jamil S, et al. Antioxidant activity and ROS-dependent apoptotic effect of *Scurrula ferruginea* (Jack) danzer methanol extract in human breast cancer cell MDA-MB-231. PLoS One 2011;16:e105894.

86. Marvibagi M, Amini N, Supriyanto E, Jamil S, Majid FA, Khangholi S. Total phenolic content, antioxidant and antibacterial properties of *Scurrula ferruginea* extracts. J Teknol 2014;70:65-72.

87. Jadhao D, Thorat B. Purification (crystallization) of bioactive ingredient andrographolide from *Andrographis paniculata*. World J Pharm Sci 2014;3:477-63.

88. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Bakar MF, et al. Phytochemicals from *Mangifera pajan* kosterm and their biological activities. BMC Complement Altern Med 2015;15:111.

89. Ghal S. Antiproliferative activity of *Alpinia officinarum* extract in the human breast cancer cell line MCF-7. Mol Med Reports 2013;7:1288-92.

90. Wong FC, Woo CC, Hsu A, Tan BK. The anti-cancer activities of *Vernonia amygdalina* leaf in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS One 2013;8:e78021.

91. Awang K, Azmi MN, Aun LI, Aziz AN, Ibrahim H, Nagoor NH, et al. The apoptotic effect of 1's-1'-acetoxychavicol acetate from *Alpinia zerumbet* (broadleaf). BMC Comp Med 2013:70-3.

92. Zakaria ZA, Mohamed AM, Jamil NS, Roifie MS, Hassim MK, Sulaiman MR, et al. In vitro antiproliferative and antioxidant activities of the extracts of *Muntingia calabura* leaves. Am J Chin Med 2011;39:183-200.

93. Appiah-opong R, Asem AO, Sante KE, Sofo DO, Tuffour I, Ofori-atteh E, Uto T, et al. Cytotoxic effects of *Albizia zygia* (dc) of macaeana, a ghanian medicinal plant, against human t-lymphoblast-like leukemia, prostate and breast cancer cell lines. Int J Pharm Sci 2016;8:392-6.

94. Kokila K, Priyadharsini SD, Sujatha V. Phytopharmacological properties of *Albizia* species: A review. Int J Pharm Sci 2013;7:50-3.

95. Ong H, Norzalina J. Malay herbal medicine in Gemencheh, Negri Sembilan, Malaysia. Fitoterapia 1999;70:10-4.

96. Sathishkumar P, Vennila K, Jayakumar R, Yusoff AR, Hadibarata T, Palvanman T. Phytochemicals of five selected medicinal plants having anti-oxidant, anti-inflammatory and cytotoxic activities of three varieties of labisia pumila benth: From microwave obtained extracts. BMC Complement Altern Med 2013;13:1.

97. Yassoul Malik A, Anan A, Arooj M, Quzi MH, Kamal MA, et al. Roles of natural compounds from medicinal plants in cancer treatment: Structure and mode of action at molecular level. Med Chem 2015;11:618-28.

98. Satishkumar P, Preeti J, Vijayan R, Mohd Yusoff AR, Armeen F, Suresh S, et al. Z-bean, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using *Coriandrum sativum* leaf extract. J Photochem Photobiol B 2016;166:69796.

99. Narrima P, Paydar M, Looi CY, Wong YL, Taha H, Wong WF, et al. *Persea declinata* (Bl.) kosterm bark crude extract induces apoptosis in MCF-7 cells. J Cell Cycle 2016;7:28/2/B (cell cycle pathway). Cancer Res 2013:5:70-3.

100. Nasser ZD, Aisha AA, Majid AM. The Pharmacological Properties of Terpenoids from *Sandoricum koetjape*; 2010.

101. Tang EL, Tan MS, Mohd J, Fang SY, Kanthimathi MS. Antioxidant activity of *Coriandrum sativum* and protection against DNA damage and cancer cell migration. BMC Complement Altern Med 2013;13:347.

102. Hasanazadeh G, Latifah AL, Hanachi P, Lajis NH. Effect of linoeleic acid of *Nigella sativa* on MDA-MB-231 human breast cancer cells. Iran J Cancer Prev 2011;4:65-70.

103. Paydar M, Wong YL, Moham BA, Wong WF, Looi CY. In vitro anti-oxidant and anti-cancer activity of methanolic extract from *Sanchezia speciosa* leaves. Pak J Biol Sci 2013;16:1212-5.

104. Ho KL, Chung WE, Choong KE, Cheah PL, Phua EY, Srinivasan R. Anti-proliferative activity and preliminary phytochemical screening of *Ipomoea quamoclit* leaf extracts. Res J Med Plant 2015;9:12734.

105. Teoch PL, Ali R, Cheong B. Potential anticancer effect of *Phylla nodiflora* extracts in breast cancer cell line, MCF7. World J Pharm Sci 2013;2:603-61.

106. Abdullah H, Phie AH, Hohmann J, Moharram J. A natural compound from *Hydnophytum formicarum* induces apoptosis of MCF-7 cells via up-regulation of Bax. Cancer Cell Int 2010;10:14.

107. Mahmar R, Phie AH, Latif J, Rha C, Sambrunia T. Induction of apoptosis in MCF-7 via the Caspase pathway by longiclane from *Eucymea longifolia* Jacq. Res Pharm Biotechnol 2011;3:1-10.

108. Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vermodinal isolated from *Centrarrhenum anthemideticum* (L.) seeds. PLoS One 2013;8:e56643.

109. Abu Bakar MF, Mohamed M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of *Mangifera pajan* (bambangan). Food Chem Toxicol 2010;48:1688-97.

110. Ahmed S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Bakar MF, et al. Phytochemicals from *Mangifera pajan* kosterm and their biological activities. BMC Complement Altern Med 2015;11:11.

111. Thoeness N, O’kelly J, Lu D, Iwanski G, La D, Bassi S, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and-negative breast cancer cells by modulating the EGF/HER-2 pathway. Oncogene 2010;29:285-96.
Cymbopogon citratus induces apoptosis Murraya koenigii latex B-serum on Thyphonium flagelliforme (L.) Jack. Med 144. 135. 134. 132. 129. 128. 145. 143. 138. 128. 182. 141. 140. 139. 138. 137. 136. 135. 134. 133. 132. 131. 130. 129. 128. 127. 126. 125. 124. 123. 122. 121. 120. 119. 118. 117. 116. 115. 114. 113. 112. 111. 110. 109. 108. 107. 106. 105. 104. 103. 102. 101. 100. 99. 98. 97. 96. 95. 94. 93. 92. 91. 90. 89. 88. 87. 86. 85. 84. 83. 82. 81. 80. 79. 78. 77. 76. 75. 74. 73. 72. 71. 70. 69. 68. 67. 66. 65. 64. 63. 62. 61. 60. 59. 58. 57. 56. 55. 54. 53. 52. 51. 50. 49. 48. 47. 46. 45. 44. 43. 42. 41. 40. 39. 38. 37. 36. 35. 34. 33. 32. 31. 30. 29. 28. 27. 26. 25. 24. 23. 22. 21. 20. 19. 18. 17. 16. 15. 14. 13. 12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1.

Halafi MF, Sheikh BY. Anti-proliferative effect and phytochemical analysis of Cymbopogon citratus extract. BioMed Res Int 2014;2014:906239.

Syed Abdul Rahman SN, Abdul Wahab N, Abul Malek S. Chemical composition, anti-angiogenic and cytotoxic activities of the essential oils of Cymbopogon citratus (lemon grass) against colorectal and breast carcinoma cell lines. J Essential Oil Res 2012;24:453-9.

Halabi MF, Kuntoi CJ, Yen KH, Seruji NM. Pharmacology evaluation of Labeo rohita extracts. J Appl Phycol 2011;23:536-44.

García-Rivera D, Delgado R, Bougarne N, Haegeman G, Bergh W. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. Bark in MDA-MB231 breast cancer cells. Cancer Lett 2011;305:21-31.

Roslen NA, Alewi NA, Ahamada H, Rasad MS. Cytotoxicity screening of Melastoma malabathricum extracts on human breast cancer cell lines in vitro. Asian Pac J Trop Biomed 2014;4:545-8.

Khalafalla MM, Abdelfatah E, Dafalla HM, Nassrallah AA, Abouelnem-EI KM, Lightfoot DA. Active principle from Moringa oleifera Lam leaves effective against two leishmanias and a hepatocarcinoma. Afr J Biotechnol 2010;9:8467.

Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T. Evaluation of bioactive compounds, pharmaceutical quality, and anticancer activity of curry leaf (Murraya koenigii). Evid Based Complement Altern Med 2014;2014:Article ID 873803.

Sayar K, Paydar M, Pingguan-Murphy B. Pharmacological properties and chemical constituents of Murraya paniculata (L.) Jack. Med Aromat Plants 2014;3:173.

Bashker MK, Majid MA. Medicinal Potentials of Orthosiphon stamineus Benth. WebmedCentral Cardio 2010;1:WMC0013621010.

Ooi DJ, Iqbal S, Ismail M. Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (Ketamupanga Air) grown in Malaysia. Molecules 2012;17:11139-45.

Wei LS, Wei W, Siong JY, Syamsunnur DM. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 2011;49:670.

Hendra R, Ahmad S, Oksoueian E, Sukari A, Shukor MY. Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) sheech fruit. BMC Complement Altern Med 2011;11:1.

Ee GC, Lim CM, Rahmani M, Shaari K, Bong CF. Peltorine, a potential anti-cancer lead compound against HL60 and MCF-7 cell lines and microbial transformation of pipeline from Piper nigrum. Molecules 2010;15:2398-404.

Balb/C mice. J Food Sci 2014;4:1-7.

Rosnah J, Khandaker M, Boyce A. Cytotoxicity activities in local plant extract towards selected breast cancer cell lines. Syst Rev Pharm 2016;7:46-56.

Masaud IA, Baig AA, Rohin MA, Mohamad N. Potential of therapeutic anticancer compounds from pomegranate as anti-cancer agent. J Chem Pharm Res 2014;6:427-33.

Kim KH, Kim CS, Park YJ, Moon E, Choi SU, Lee JH, et al. Anti-inflammatory and antitumor phenylpropanoid sucrosides from the seeds of Raphanus sativus. Biocurr Med Chem Lett 2015:25:96-9.

Ayob Z, Samad AA, Bohari SP. Cytotoxicity activities in local Justicia gendarussa crude extracts against human breast cancer cell lines. J Teknol 2013;64:45-52.

Kutuk CJ, Yen KH, Seruji NM. Pharmacology evaluation of Litsea garciae (Laureaceae). In: Business Engineering and Industrial Applications Colloquium (BIEAC). IEEE; 2012. p. 31-33.

Ling AL, Yasir S, Matanjan P, Bakar MF. Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J Appl Phycol 2015;27:1717-23.

Srisawat T, Chumkaew P, Heed-Chim W, Sukpondma Y, Kanokwiroon S. Pharmacological screening and cytotoxicity of crude
extracts of *Vatica diospyroides* symington type LS. Trop J Pharm Res 2013;12:71-6.

172. Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI. Effect of *Withania somnifera* (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther 2013;12:312-22.

173. Ghasemzadeh A, Jaafar HZ. Antioxidant potential and anticancer activity of young ginger (*Zingiber officinale* Roscoe) grown under different CO₂ concentration. J Med Plants Res 2011;5:3247-55.

174. Raghavendra L, PrashithKekuda R. Ethnobotanical uses, phytochemistry and pharmacological activities of *Peperomia pellucida* (L.) Kunth (piperaceae)-a review. Int J Pharm Pharm Sci 2018;10:1-8.

175. Shami T, Parveen R, Sajida A, Ahmad A, Fatima S. Assessing the therapeutic role of joshanda: Phytochemical, antioxidant, anti-inflammatory and antimicrobial activities. Int J Pharm Pharm Sci 2018;10:122-8.