complement to a standard echocardiographic text, such as the one as written by Dr. Harvey Feigenbaum.

SIEGFRIED KRA
Department of Internal Medicine
Yale University School of Medicine

REFERENCE

1. Feigenbaum H: Echocardiography. 4th Edition. St. Louis, MO, Mosby-Year Book, Inc, 1986

A PRACTICAL GUIDE TO CLINICAL VIROLOGY. Edited by G. Haukenes, L.R. Haaheim, and J.R. Pattison. New York, John Wiley & Sons, Inc., 1989. 200 pp. $20.00. Paperbound.

Recent advances in molecular biology that allow one to diagnose and study the pathogenesis of viruses along with current strides in rational drug design have provided the clinician with an abundance of facts relevant to the practice of clinical medicine. With so much information scattered throughout the literature or mired in the depths of large virology tomes, the publication of A Practical Guide to Clinical Virology, edited by G. Haukenes, L.R. Haaheim, and J.R. Pattison, is welcome as a concise reference handbook.

The book is designed in a systematic and concise form, providing four or five pages per virus. Information for each pathogen is carefully organized under the headings of Symptoms and Signs, Clinical Course, Complications, The Virus, Epidemiology, Therapy and Prophylaxis, and Laboratory Diagnosis. Furthermore, each virus section includes a brief summary page and a timeline graph showing incubation periods, infectivity periods, and the like. To help readers remember aspects of the virus and to lighten the seriousness of the topic, the sections begin with "cartoon mnemonics" pertaining to the virus under discussion.

The information summarized in this handbook is geared to clinical use. With consideration of symptoms and choice of laboratory tests, the book emphasizes its clinical service. Certainly this bent is easily illustrated by its scrutiny of differential diagnoses and by its short section on clinical syndromes.

The volume begins with several short "chapters" on general knowledge of clinical virology; one section, for example, pertains to classification and another to vaccines. Although the editors have placed emphasis on keeping the book concise, an elaboration on the discussion of antiviral pharmaceuticals would have been an enhancement. The description of antivirals was limited to a few select drugs, while elaboration of others, such as ribavirin, was left to mere mention. To further improve the section on antivirals, information as to the current legal status (FDA standing for American audiences) of the drugs should be provided.

Another minor shortcoming concerns the timeline graphs of each virus. In these, information concerning infectivity periods and antibody titers are provided; however, the graphs are often difficult to read, since they lack adequate legends. For instance, it is hard to tell what is the meaning of dotted bars and what the zero point on the timeline indicates.

With the exception of these few minor criticisms, A Practical Guide to Clinical Virology is an excellent source for quick and helpful information. Pertinent details
ranging from symptoms to therapy make this guide a useful reference of clinical virology.

STEPHEN SOLOMON
Medical Student
Yale University of Medicine

ATLAS OF HUMAN CROSS-SECTIONAL ANATOMY. 2nd Edition. By Donald R. Cahill, Matthew J. Orland, and Carl C. Reading. New York, John Wiley & Sons, Inc., 1990. 251 pp. $149.95.

Before the advent of computed tomograms (CT scans) and magnetic resonance images (MRI), cross-sectional anatomy was the domain primarily of the anatomist. Anatomy, for the medical student, with its altogether unfamiliar and expansive lexicon and complex, linear spatial relationships was sufficient challenge. To learn the cross-sectional organization of one's innards would be added hardship. It is clear, however, that today any serious student, practitioner, or scholar of medicine is in need of a cross-sectional (therefore, three-dimensional) knowledge of the human body. Furthermore, one is also in need of skills to interpret CT scans and MR images obtained in clinical medicine.

Atlas of Human Cross-Sectional Anatomy is in nearly all ways a perfect text. It is recommended to the radiologist, the anatomist, the internist, the surgeon, the student, and to all of the assorted paramedical personnel involved in the study and use of modern radiographic images. The Atlas is composed of ten chapters, covering all parts of the body: the thorax, the abdomen, the male pelvis, the female pelvis, the right lower limb, the right upper limb, the head at 20 degrees from orbitomeatal plane, the head and neck at 0 degrees from orbitomeatal plane, the head and neck in sagittal planes, and the head and neck in coronal planes. The book supplies a marvelous index that permits the reader rapidly to compare any anatomic structure in a number of perspectives, to look up the structure and then rapidly scan the various pages on which it is displayed. The second edition is a marked improvement upon the earlier edition in terms of both larger coverage and more refined, resolute images.

The outstanding features of this text is its format. All parts of the body are displayed as either a CT or MRI scan, with informative labels of most of the structures; in addition, above each image is a meticulous pen-and-ink drawing illustrating the very same anatomy. Furthermore, on the page opposite the scan, actual anatomic sections were frozen and photographed, enhancing and authenticating the scan. All in all, the reader is offered four versions of the anatomy from four complementary views: a harmonious and provocative collaboration.

Technically speaking, I am informed by several radiologists that the CTs and MRIs are at current optimal levels of clarity and resolution. The regions of the body that are better demonstrated by CT, i.e., the trunk, are depicted primarily by CT; head and limb images employ MRI. MRI is also used to depict anatomy from a variety of intersecting planes. MR images were produced on a 1.5 Tesla Superconducting Magnetic Resonance Imager (GE Signa) and the authors provide the repetition times (TR) and echo times (TE). The CT images were obtained from fourth-generation CT scanners (GE 9800 and Picker 1200) with intravenous and oral