An Exploratory Study of Critical Issues and Variables Affecting the Food Supply Chain Risk Iceberg

Papri Ray
PhD Scholar, Garden City University Bangalore, Karnataka, India
Assistant Professor, Department of Lean Operations & System
CHRIST (Deemed to be) University

Dr. R. Duraipandian
Professor, School of Commerce & Management
Garden City University, Bangalore, Karnataka

Ponnuru Ravi Chandra
Scholar, Department of Lean Operations & System
CHRIST (Deemed to be) University

Sravani Nandi
Scholar, Department of Lean Operations & System
CHRIST (Deemed to be) University

Abstract
The food supply chain ecosystem is critical, and a budding sector; this area has several challenges that shall be addressed and requires meticulous attention to detail and environment that are to be considered apart from the general issues that one entity experiences in a broad supply chain environment. It makes the Food Supply Chain Management a complex and precision-driven area towards quality and environmental factors to be dealt with recurrently. The critical aspects of the food supply chain are the cold chain, infrastructure, technology, knowledge, and post-harvest issues. These issues are analysed using statistical methods and interpretation to better understand food supply chain management.

Keywords: Food Supply Chain, Critical Issues, Risks, Food and Vegetable Supply Chain

Introduction
(Bautista et al., 2014) introduces us as food is the bedrock of life and the foundation of our physical, spiritual and emotional wellbeing, which is at the heart of many critical environmental, social and economic challenges we confront. Sustainability issues, climate changes, water scarcity, food security and sustainable nutrition, consumer attitude, demographic change, empowered producers, therapeutic approach, resilient value networks, sustainable market mechanisms, connected consumers are some of the challenges to name. To meet the globalised market demands, value chains are more complex, and this complexity carries with its opportunities for growth into new markets.
Methodology

Problem Statement
Huge losses in the food supply chain due to critical factors/variables. Identification of key issues in the food supply chain to find an innovative solution.

Objectives
• To explore the key issues affecting the iceberg of the food supply chain.
• To analyse the supply chain performance and its relationship with the critical threats.

Literature Review
There is a gap among the existing methods in managing the fruits and vegetables food supply chain. Uncoordinated information from downstream to upstream of the supply chain has created a lot of wastages and losses for most food processors. The recall of expired products justifies it due to excessive supply. The inaccurate information suggests that the processors work on unreliable improved (bullwhip effect) demand data, with profound cost implications (Lee, 2004; Ouyang and Daganzo, 2008). For instance, a facility that processes the fruits and vegetables visited had a recalled product of about 10 tons of tomato sauce; this was a massive loss for the company to recover. (Minegish and Thiel, 2000) the company has to incur labour costs, transportation costs, destruction costs, primary and secondary raw materials etc. One of the respondents from the brewing industry reported incurring inventory costs of about 2 to 3 % of their value, i.e. From rental, interest foregone, obsolescence/damage/expire, insurance, handling, security and stock valuation.
The unfamiliarity of inventory at wholesalers’ and retailers’ stores had the following impacts on the processors.

Table 1: Key Issues Assimilated by Researchers from Various Journal Articles
Issues
Cold Chain Issues: Cold Chain Facilities
Fragmentation Issues: Fragmented supply chain
Infrastructure Issues: Infrastructure Facilities
Technological Issues: Technological Facilities
Knowledge and Awareness Issues: Farmer’s Knowledge and Awareness
Quality Issues: Quality and Safety standards
Post-Harvest Issues: Supply chain losses and wastage of fresh produce
Transport Issues:
Transportation Facilities
- Unavailability or inefficient and costly transportation for the movement.
- Lack of Refrigerated vehicles for the transportation of F&V in the hilly and rural areas.
- Setting up state government or public-private partnership refrigerated F&V transportation systems

Information Issues:
Demand and market information
- The farmers lack market information, such as prices, demand, product flow, food processing unit, etc.
- Information on demand forecasting ITC initiative of e-choupal can be replicated in the state F&V sector.
- A government portal can be established showing daily prices of F&V.

Table 2: The Research Journey for Studying the Several Key Papers Across Years on the Topic of Factors/Variables Affecting the Food Supply Chain

Year	Authors		
2000	Bowersox DJ, Closs DJ, Keller SB., Lokunarangodage, C. V. K, Wickramasinghe, I, & KKDS, R., Christopher, M.		
2001	Gunasekaran, A., Patel, C. and Tirtiroglu, E., Sheffi, Y., Tan, K. C., Lummus, R.R.,		
2002	Simatupang, T.M. & Sridharan, R.,		
2003	Salin, V., Jr, R. M. N., &Nagya, R. M., Basnet, C., Corner, J., Wisner, J. and Tan, K Brian, B.		
2004	Christopher, M, & Lee, H.,Gunasekaran, A., & Ngai, E., Gunasekaran, A., Patel, C., McGaughhey, R.E., Chopra, S. & Sodhi, M. S.,		
2005	Samaranayake P.,		
2006	Wu, T., Blackhurst, J., Chidambaram., V.; Ulbrich, F.,		
2007	Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B., Matopoulos, A., Vlachopoulos, M., Manthou, V., & Manos, B., Ruben, R., Boselie, D., & Lu, H.,		
2008	Wu, D., Olson, D.L.,Lummus, R.R., Vokurka, R.J. & Krumwiede, D.,Bhardwaj S, & Palaparthy, I.,		
2009	Tang, C.S., Zimmerman, J.D., & Nelson, J. J.; Trkman, P.; Goknur A., Akyuz & Turan E;		
2010	Hsiao, H., Vorst, J.V. & Kemp, R., Reddy, G., Murthy, M., & Meena, P., Green, D.P.		
2011	Tummala, V.M.R. and Schoenherr, T; Ahsan, D.A; Brandenburg M, Seuring S.; Halder, P, & Pati, S		
2012	Helena C, Susana G, Azevedo & V. Cruz-Machado., Diabat, A., Govindan, K., and Panicker, V. V.		
Year	Key Authors	Key Papers	Important FSCM Risks/Issues Identified
------	-------------	------------	--------------------------------------
2010	Reddy, G., Murthy, M., & Meena, P	Value Chains and Retailing of Fresh Vegetables and Traditional and Modern Retailing, Food Value Chain	
2011	Ahsan, D.A.	Farmer’s motivations, risk perceptions and risk management strategies in a developing economy: Bangladesh experience Risk perception, and risk strategies are discussed.	
2012	Diabat, A., Govindan, K., and Panicker, V. V.	Supply chain risk management and its mitigation in a food industry Classification and mitigation of risk in the food supply chain.	
2013	Bosona, T., & Gebresenbet, G.	Food traceability is an integral part of logistics management in the food and agricultural supply chain. Food traceability issues.	
2014	Ouabouch, L.& Paché, G.	Risk management in the supply chain: Characterization and empirical analysis Evaluating the impact of the risks concerning the functioning of a supply chain on its logistical performance.	
2015	Chang, W., Ellinger, A. E., & Blackhurst, J.	A contextual approach to supply chain risk mitigation. Focussed more on identifying, evaluation and management of sources of supply chain Risk.	
2016	Samaranayake, P., & Laosirihongthong, T.	Configuration of supply chain integration and delivery. A Conceptual framework of an integrated supply chain model can measure, evaluate and monitor operational performance under dynamic and uncertain conditions.	
Year	Authors	Title	Abstract
------	---------	-------	----------
2017	Agarwal, S	Issues in supply chain planning of Fruits and Vegetables in Agri-food supply chain: A review of certain aspects.	Inventory management, Agri-supply chain management, Strategy to respond to upstream-side demand and to absorb downstream-side risks.
2018	Göransson, M, Nilsson, F & Jevinger	Temperature performance and food shelf-life accuracy in cold food supply chains - insights from multiple field studies.	Food quality that evaluates the temperature performance of cold food supply chains in relation to dynamically predicted shelf life and printed shelf life.
2019	Zhao G., Shaofeng Liu, Carmen Lopez, Huilan Chen, Haiyan Lu, Sachin K.M., & Sebastian Elgueta	Risk analysis of the agri-food supply chain: A multi-method approach	Thematic analysis, Risk Identification for AFSC (Agri-food supply chain) practitioners.

Research Hypothesis

- **H1:** There is a significant direct negative relationship between Performance-related risks and supply chain performance
- **H2:** There is a significant direct negative relationship between information and knowledge asymmetry related risks and supply chain performance
- **H3:** There is a significant direct negative relationship between market-related risks and supply chain performance

Micro-level Hypothesis for subfactors

Micro-level Hypothesis	Description
H1.1	There is a direct positive relationship of in-transit storage conditions with overall supply chain performance
H1.2	There is a direct negative relationship of in-transit delays with overall supply chain performance
H1.3	There is a direct positive relationship of supplier reliability with overall supply chain performance
H1.4	There is a direct negative relationship of poor quality with overall supply chain performance
H1.5	There is a direct negative relationship between inventory fluctuations with overall supply chain performance
H1.6	There is a direct negative relationship of operations downtime due to process variability with overall supply chain performance
H2.1	There is a direct negative relationship between IT failures with overall supply chain performance
H2.2	There is a direct negative relationship of Data errors with overall supply chain performance
H3.1	There is a direct negative relationship of Credit risk with overall supply chain performance
H3.2	There is a direct negative relationship of Trade inflation with overall supply chain performance

Analysis

Industry Professional Survey: Survey done of key stakeholders (distributors, retailers, end customers, supply chain experts, industry operations managers)

A qualitative thematic study was done with inputs on risks practically faced in the food supply chain from experienced 50 industry experts. The product of the two coded parameters is expressed to design a prioritising factor herein. During a focus group discussion in a panel, the industry...
experts debated the challenges and conflicts in prioritising and identifying these in the supply chain and tabled the issues.

No.	Sub Factor	Importance Rating	Frequency of Occurrence in the Factor in the Survey	Degree of Intensity of Expression in the Survey - Mean Calculation	Prioritizing Code
A					
B					
C					

Table: Importance Rating

- **A**: This is the number of times this parameter or rather sub-factor was mentioned by the expert or stakeholder during the discussion. This tells about the number of times in the discussions by all 20 people.

Table: Degree of Intensity of Expression (in the Survey) - Mean Calculation

- **B**: Each time a respondent talks about or emphasises or writes about any of these parameters or sub-factors, there are degrees of intensity based on which the respondent does give that input, in the sense that on a Scale of 1 to 10 the intensity of that input is rated by the researcher as to whether the respondent was very impactful, effective and assertive about this sub-factor or not. The degree of this impact is gauged a psychometric analytic and a Score is given for each respondent’s response on these parameters. The Mean is the average of all these Response Intensities.
Risk or Threat factors identified

The table collates data through thematic study, industry experts, and literature review.

Table 4: Food Supply Chain Prioritization of Risks with Secondary and Primary Data

Risks or Threats affecting the Food supply chain	Main Risk variables for better understanding towards mitigation measures	Percentage of Secondary Data in Literature prioritising these	Rate of Industry Experts Prioritising these issues	Mean Response on Variables (from Field Survey - Likert Scale)	Response on Standard Deviation for Affirmation (from Field Survey - Likert Scale)
Performance Threats	Logistic Threats- In-Transit Storage Conditions	75	81	4.3	1.8
	Logistic Threats- In-Transit Delay & Inefficiencies	64	76	3.9	1.5
	Supply Threats- Supplier Reliability	42	62	4.1	2.2
	Supply Threats- Order Discrepancy	15	23	2.4	2.2
	Supply Threats- Poor Quality	62	56	4.2	1.9
	Demand Threats- Forecasting errors	38	28	2.3	1.9
	Demand Threats- Price Fluctuations	10	19	1.4	0.9
	Demand Threats- Inventory Fluctuations	82	78	4.65	2.8
	Process Threats- Operations Downtime (Process Variability)	72	76	3.99	2.2
Table 5: Food Supply Chain Risks Faced by Firms

Key factors	Strongly agree (%)	Agree (%)	Not sure (%)	Disagree (%)	Strongly disagree (%)	Mean	SD
Performance-related Risks	24	68	8	0.0	0.0	3.56	0.58
Information and Knowledge Risks	14	84	2	0.0	0.0	4.02	0.38
Market Risks	12	62	26	0.0	0.0	2.96	0.46

Source: Compiled from Primary Data from Pilot Survey

The Table highlights the critical issues based on the occurrences in the literature and information in the secondary sources, industry experts and field inputs. The majority of the respondents agreed that the organisation faces the following supply chain management risks: Information and Knowledge Risks are more prominent in the organisation 98%; Performance related Risks are common in the organisation 92%. Market Risks are more prevalent in the organisation 74%. There
seems to be a need to further analyse with primary data to precipitate and prioritise all conflicting issues in the present context of the disruption-prone food supply chain.

Cronbach Alpha

The Cronbach’s Alpha Test assesses the reliability or the internal consistency of all the test items. An alpha value greater than 0.70 indicates higher acceptable internal consistency. From the tests, it is understood that Performance Risks (alpha value – 0.905), Information and Knowledge Risks (alpha value – 0.801), and Market risks (alpha value – 0.886) imply that all their independent variables are closely related, respectively.

Factor Analysis

The tested sampling adequacy shows that the value of KMO to 0.775 (EFA-1) and 0.763(EFA-2), which is greater than 0.5. All the variables are accepted and can be taken forward for Confirmatory Analysis.

Confirmatory Factor Analysis (with field data) for Finalised Variables Path Diagram

The path diagram is considered for the initial input for the confirmatory factor analysis. The information is obtained from the data set prepared post data collection from the field study. Initial regression weights are allocated to non-observed variables. The variables considered for the confirmatory factor analysis have been considered for further research. The primary independent variables are network management, operational indicators and legal aspects which affect the performance of the non-fragmented food supply chain.

![Figure 1: Figure Path Diagram](http://www.shanlaxjournals.com)
Analysis of Variance (One Way ANOVA)

Table 6: Analysis of Variance (One Way ANOVA)

Dependent Variable	Independent Variable	p-value	Status of p
Logistics Threats (X1)	In Transit Storage Condition (X.1.1)	0.004	p<0.05
Supply Threats (X2)	In Transit Delay Inefficiency (X1.2)	0.002	p<0.05
	Supplier Reliability (X2.1)	0.000	p<0.05
	Order Discrepancy (X2.2)	0.125	p<0.05
	Poor Quality (X2.3)	0.002	p<0.05
Demand Threats (X3)	Forecasting errors (X3.1)	0.179	p>0.05
	Price Fluctuations (X3.2)	0.180	p>0.05
	Inventory Fluctuations (X3.3)	0.200	p<0.05
Process Threats (X4)	Operations Downtime (Process variability) (X4.1)	0.045	p<0.05
	Operations Downtime (Distribution breakdown) (X4.2)	0.210	p>0.05
Information and knowledge Risks (Y2)	IT Failure (X5)	0.004	p<0.05
	Data error (X6)	0.000	p<0.05
	Lack of IT infrastructure(X7)	0.156	p>0.05
	Training (X8)	0.135	p>0.05
	Credit Risk (X9)	0.006	p<0.05
Risks(Y3)	Trade Inflation(X10)	0.007	p<0.05
	Receivables Risk (X11)	0.000	p<0.05

Source: Computed from the data analysed from the Field Survey

Table 6 represents the output of the ANOVA analysis and shows the significant relationship between dependent and independent variables. The factors post the EFA1 EFA2 CFA. The funnelled variables are shown to be substantial since the p-value is less than 0.05.

Table 7: Regression Analysis of the Model

Supply Chain Management Performance related to the various factors of Performance risks, Information and Knowledge risks, Market risks.

Model	B	Std. Error	T-Statistic	Sig.	R-square	F-Statistics	P-Value
Constant	2.05	.057	7.400	.000	0.767	50.76	.000
Table 7 reveals the Food Supply Chain Management Performance Regression Analysis with various key impact factors. A regression result is given as R-Square = 0.767, F-Value = 50.76 and significance (P-Value <0.045) showing the positive significance relationship.

Discussion Solution

Several models and frameworks can be designed to address these variables and predict the risks. The applicability of the model framework would provide a sound approach to (i) identify the key variable and the related consequences that affect the food supply chain (ii) measure the performance of the supply chain and its relationship with the variables (iii) mitigating the risks by scheduling and strategizing (iv) monitor the different types of risks in the food supply chain system.

A risk iceberg approach is suggested so that seen and unseen variables can be analysed by the stakeholders. It is an essential framework to identify variables and work on the various techniques to look for easily ‘Seen Risks’ (visible and easily visible) versus the hidden ‘Unseen Risks’ (need to be discovered and identified through analysis) that erupt any disruption. Organisations’ managers can create a framework for better understanding operational risks and responding to and recovering from operational disruptions. Safeguard business by knowing the potential hidden risks.

Figure 2: Iceberg View for Organizations

Source: Diagram created by Researcher (Suggested by the researcher to the Organizations)

Organisations like Big Basket and Nilgiris have started aligning this risk management step model in their strategic plan. The feasibility of handling disruptions is anticipated to increase threefold from the baseline as per their latest reviews.

Conclusion

This paper dealt with secondary and primary research contributing to the risk factors affecting the food supply chain system. The critical issues of the food supply chain risks are performance threats: storage conditions, forecasting errors, poor quality, price fluctuations, operations downtime, delay, and inefficiencies. Managers need to look at all the aspects of threats and how well the issues are addressed in their ongoing strategy. The model framework helps managers identify the iceberg risks and handle disruptions.
References

1. Dewan Ali Ahsan (2011) Farmers’ motivations, risk perceptions and risk management strategies in a developing economy: Bangladesh experience, Journal of Risk Research, 14:3, 325-349, DOI: 10.1080/13669877.2010.541558

2. Ali Diabat, Kannan Govindan & Vinay V. Panicker (2012) Supply chain risk management and its mitigation in a food industry, International Journal of Production Research, 50:11, 3039-3050, DOI:10.1080/00207543.2011.588619

3. Ouabouch, L., & Pache, G. (2014). Risk Management In The Supply Chain: Characterization And Empirical Analysis. Journal of Applied Business Research (JABR), 30(2), 329–340. https://doi.org/10.19030/jabr.v30i2.8401

4. Chang, W., Ellinger, A.E. and Blackhurst, J. (2015), “A contextual approach to supply chain risk mitigation”, The International Journal of Logistics Management, Vol. 26 No. 3, pp. 642-656. https://doi.org/10.1108/IJLM-02-2014-0026

5. Samaranayake, P. and Laosirihongthong, T. (2016), “Configuration of supply chain integration and delivery performance: Unitary structure model and fuzzy approach”, Journal of Modelling in Management, Vol. 11 No. 1, pp. 43-74. https://doi.org/10.1108/JMM-01-2014-0005

6. Gunasekaran, A., Patel, C. and Tirtiroglu, E. (2001), “Performance measures and metrics in a supply chain environment”, International Journal of Operations & Production Management, Vol. 21 No. 1/2, pp. 71-87. https://doi.org/10.1108/1443570110358468

7. Sheffi, Y. (2001), “Supply Chain Management under the Threat of International Terrorism”, The International Journal of Logistics Management, Vol. 12 No. 2, pp. 1-11. https://doi.org/10.1108/09574090110806262

8. Elock Son, C. (2018) Supply Chain Risk Management: A Review of Thirteen Years of Research. American Journal of Industrial and Business Management, 8, 2294-2320. doi: 10.4236/ajibm.2018.812154.

9. Djalma Araújo Rangel, Taiane Kamel de Oliveira & Maria Silene Alexandre Leite (2015) Supply chain risk classification: discussion and proposal, International Journal of Production Research, 53:22, 6868-6887, DOI: 10.1080/00207543.2014.910620

10. Techane Bosona, Girma Gebresenbet, Food traceability as an integral part of logistics management in food and agricultural supply chain, Food Control Volume 33, Issue 1,2013, Pages 32-48, ISSN 0956-7135, https://doi.org/10.1016/j.foodcont.2013.02.004

11. Cao,S., Bryceson, K., Hine, D., (2021), Collaborative risk management in decentralised multi-tier global food supply chains: an exploratory study, The International Journal of Logistics Management ,10.1108/IJLM-07-2020-0278

12. Lowe,M., Nadhanael,G.V., Roth, B.N.,(2021), India’s food supply chain during the pandemic, Food Policy , Vo 105, No.2, pp102162

13. Pullman, M., Wu, Z., (2021), Introduction to Food Supply Chain Management, Food Supply Chain Management, Routledge

14. Thome, K.M., Cappellesso, G., Ramos, E.L.A., Duarte, S., 2020, Food Supply Chains and Short Food Supply Chains: Coexistence Conceptual Framework, Journal of Cleaner Production , Vo. 278, No.123207

15. Attaran,M., 2020, Digital technology enablers and their implications for supply chain management, Supply Chain Forum , Vo 21, No. 1, pp158-172.