Experimental reversion of the optimal quantum cloning and flipping processes

Fabio Sciarrino, Veronica Secondi, and Francesco De Martini

Abstract

The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and non-linear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication and feedforward. This significant teleportation-like method demonstrates how the information is preserved during the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multi-partite quantum cryptography.
The conservation of information can be assumed as a basic principle of physics [1]. Accordingly, since two perfect copies of an unknown arbitrary quantum state $|\phi\rangle$ carry more information than the latter one, it is impossible to realize a perfect quantum cloning machine [2]. On the same token, since more information about $|\phi\rangle$ can be extracted from a pair of two orthogonal qubits $|\phi\rangle |\phi^\perp\rangle$ than from two parallel ones $|\phi\rangle |\phi\rangle$ the impossibility argument holds for the spin flipping operation, i.e. the NOT gate [3]. Even if the cloning and flipping operations are unrealizable in their exact forms, they can be approximated ”optimally”, i.e. with the minimum added noise, by the corresponding universal quantum machines, i.e., the universal optimal quantum cloning machine (UOQCM) [4] and the universal-NOT (U-NOT) gate [3,5]. In the present paper we experimentally address the important problem whether, in spite of their fundamental limitation, these optimal machines do conserve all the information associated with any input qubit $|\phi\rangle$ and how this information can be fully retrieved by a teleportation-like scheme. More precisely, here the quantum information content of $|\phi\rangle$ is spread over the 3 qubits entangled state $|\Sigma(\phi)\rangle_{SAB}$ through the quantum cloner and then is fully retrieved on an output channel by implementing a Local Operation and Classical Communications (LOCC) method [6]. The spreading of the initial information over $|\Sigma(\phi)\rangle_{SAB}$ is obtained by a simultaneous implementation of the $1 \rightarrow 2$ UOQCM and the $1 \rightarrow 1$ U-NOT gate via a quantum injected optical parametric amplifier ($QI-OPA$) [7,8] or an all linear optics setup [9]. As shown in Figure 1, at the input of UOQCM the three modes S, A, B support respectively the qubit $|\phi\rangle$ and the two ancillas. The quantum reversion process is completed by application to the output of UOQCM of a Local Operation and Classical Communication (LOCC) procedure [10], indeed a modified teleportation protocol consisting of a Bell measurement on the modes S and A, a classical communication channel, and of a final unitary operation on the qubit B [11].

Let us consider the cloning machine (CM) which realizes simultaneously the $1 \rightarrow 2$ UOQCM and the $1 \rightarrow 1$ U-NOT gate. We start from the input qubit $|\phi\rangle \equiv |\phi\rangle_S = \alpha |0\rangle_S + \beta |1\rangle_S$ and the ancilla qubits A and B in the state $|0\rangle$. After the cloning process the overall output state $|\Sigma(\phi)\rangle_{SAB}$ reads
\[|\Sigma(\phi)\rangle_{SAB} = \sqrt{\frac{2}{3}} |\phi\rangle_S |\phi\rangle_A |\phi^{\perp}\rangle_B - \frac{1}{\sqrt{6}} \left(|\phi\rangle_S |\phi^{\perp}\rangle_A + |\phi^{\perp}\rangle_S |\phi\rangle_A \right) |\phi\rangle_B \]

(1)

The qubits \(S \) and \(A \) end up in the state \(\rho_S = \rho_A = \frac{5}{6} |\phi\rangle \langle \phi| + \frac{1}{6} |\phi^{\perp}\rangle \langle \phi^{\perp}| \) and are the optimal clones of the input qubit, while the qubit \(B \), the optimally flipped of \(|\phi\rangle \), is found in the output state \(\rho_B = \frac{1}{3} |\phi\rangle \langle \phi| + \frac{2}{3} |\phi^{\perp}\rangle \langle \phi^{\perp}| \). The state (1) can be interpreted as the quantum superposition of two three-qubit entangled states, which depends on the complex parameters \(\alpha \) and \(\beta \):

\[|\Sigma(\phi)\rangle_{SAB} = \alpha |\Sigma(0)\rangle_{SAB} + \beta |\Sigma(1)\rangle_{SAB} \]

(2)

where \(|\Sigma(0)\rangle = (2/3)^{-1/2} |0\rangle_S |0\rangle_A |1\rangle_B - 6^{-1/2} (|0\rangle_S |1\rangle_A |0\rangle_B + |1\rangle_S |0\rangle_A |0\rangle_B) \) and \(|\Sigma(1)\rangle = (2/3)^{-1/2} |1\rangle_S |1\rangle_A |0\rangle_B - 6^{-1/2} (|1\rangle_S |0\rangle_A |1\rangle_B + |0\rangle_S |1\rangle_A |1\rangle_B) \). These are W three-qubit entangled states which are recognized to exhibit the highest robustness of bipartite entanglement against the loss of one qubit [12], [13], [14].

The procedure adopted to reverse the cloning and flipping processes consists of a LOCC approach similar to the quantum teleportation protocol, as said [15]. To understand how the restoring of the initial qubit is obtained, the state (1) can be re-expressed introducing the Bell states of the qubits \(S \) and \(A \): \(|\Phi^{\pm}\rangle_{SA} = 2^{-1/2} (|0\rangle_S |0\rangle_A \pm |1\rangle_S |1\rangle_A) \) and \(|\Psi^{\pm}\rangle_{SA} = 2^{-1/2} (|0\rangle_S |1\rangle_A \pm |1\rangle_S |0\rangle_A) \). The cloner output state can hence be recast as

\[|\Sigma(\phi)\rangle_{SAB} = \frac{1}{\sqrt{3}} \left[|\Phi^{+}\rangle_{SA} X \sigma |\phi\rangle_B + |\Phi^{-}\rangle_{SA} X \sigma |\phi\rangle_B + |\Psi^{+}\rangle_{SA} Z \sigma |\phi\rangle_B \right] \]

(3)

We note that only the symmetric Bell states of \(S \) and \(A \) appear since the two clones belong to the symmetric subspace.

Let us now describe the restoring machine (\(RM \)). For this purpose we introduce two partners: Alice (\(A \)) and Bob (\(B \)) (Fig.1). Alice holds the qubits \(S \) and \(A \) while Bob holds the qubit \(B \). Alice performs a Bell measurement on the qubits \(S \) and \(A \), that is in the basis \(\{|\Phi^{\pm}\rangle_{SA}, |\Psi^{\pm}\rangle_{SA}\} \), and communicates the measurement result to Bob sending a classical trit through a classical channel. Depending on Alice’s communication [16], Bob applies a suitable Pauli operator \(\sigma_i \) according to the following table:
As can be easily obtained from the expression (3), at the end of protocol the qubit B is found in the state $|\phi\rangle$: the initial state of the qubit has hence been restored deterministically. It is worth noting that the ancilla qubit B is necessary to restore the initial qubit state.

To implement the restoring machine we adopted polarization encoded qubits by exploiting the isomorphism between the qubit state $\alpha |0\rangle + \beta |1\rangle$ and the polarization state $|\phi\rangle_{in} = \alpha |H\rangle + \beta |V\rangle$ of a single photon. The cloning process has been realized adopting the Quantum Injected Optical Parametric Amplifier (QIOPA) as said: Figure 2 [7]. Alice’s site is placed on the k_1 mode, while Bob’s site is placed on the k_2 mode. Consider first the case of an input $\overrightarrow{\pi}$-encoded qubit $|\phi\rangle_{in}$ associated with a single photon with wavelength (wl) λ, injected on the input mode k_1 of the QIOPA, the other input mode k_2 being in the vacuum state. The photon was injected into a nonlinear (NL) BBO (β-barium-borate) 1.5 mm thick crystal slab, cut for Type II phase matching and excited by a sequence of UV mode-locked laser pulses having duration $\tau \approx 140 \text{ fs}$ and wl λ_p: Figure 2. The relevant modes of the NL 3-wave interaction driven by the UV pulses associated with mode k_p were the two spatial modes with wave-vector (wv) k_i, $i = 1, 2$, each supporting the two horizontal (H) and vertical (V) linear-$\overrightarrow{\pi}$’s of the interacting photons. The QIOPA was λ-degenerate, i.e. the interacting photons had the same wl’s $\lambda = \frac{1}{2} \lambda_p = 795nm$. The QIOPA apparatus was arranged in the self-injected configuration shown in Fig. 2 and described in Ref. [7]. The UV pump beam, back-reflected by a spherical mirror M_p with 100% reflectivity and μ–adjustable position Z, excited the NL crystal in both directions $-k_p$ and k_p, i.e., correspondingly oriented towards the right hand side and the left hand side of Fig.2. A Spontaneous Parametric Down Conversion (SPDC) process excited by the $-k_p$ UV mode created singlet-states of photon polarization ($\overrightarrow{\pi}$). The photon of each SPDC pair emitted
over \(-k_1\) was back-reflected by a spherical mirror \(M\) into the NL crystal and provided the \(N = 1\) quantum injection into the OPA excited by the UV beam associated with the back-reflected mode \(k_p\). The twin SPDC photon emitted over mode \(-k_2\), selected by the devices (Wave-Plate + Polarizing Beam Splitter: \(WP_T + PBS_T\)) and detected by \(D_T\), provided the "trigger" of the overall conditional experiment. Because of the EPR non-locality of the emitted singlet, the \(\pi\)-selection made on \(-k_2\) implied deterministically the selection of the input state \(|\phi\rangle_{in}\) on the injection mode \(k_1\). By adopting \(\lambda/2\) or \(\lambda/4\) wave-plates (WP) with different orientations of the optical axis, the following \(|\phi\rangle_{in}\) states were injected: \(|H\rangle\), \(2^{-1/2}(|H\rangle + |V\rangle) = |\pm\rangle\), and \(2^{-1/2}(|H\rangle + i|V\rangle) = |R\rangle\). The three fixed quartz plates \((Q)\) inserted on the modes \(k_1\), \(k_2\) and \(-k_2\) provided the compensation for the unwanted walk-off effects due to the birefringence of the NL crystal. An additional walk-off compensation into the BBO crystal was provided by the \(\lambda/4\) WP exchanging on mode \(-k_1\) the \(|H\rangle\) and \(|V\rangle\) \(\pi\)-components of the injected photon. All adopted photodetectors \((D)\) were equal SPCM-AQR14 Si-avalanche single photon units. One interference filter with bandwidth \(\Delta \lambda = 6nm\) was placed in front of each \(D\).

The reversion machine has been realized adopting linear optics and single-photon detectors (Fig.2). A complete Bell measurement can be realized adopting a deterministic C-NOT gate [17], while the four Bell state identification cannot be obtained by simple linear optics elements [18]. In the present experiment we have restricted our analysis to the detection of the state \(|\Psi^+\rangle_{SA}\) (3) realized by means of the polarizing beam splitter \(PBS_A\) and the detector \(D_A\) and \(D^*_A\) (the state \(|\Psi^-\rangle_{SA}\) is absent since the qubits \(S\) and \(A\) belongs to the symmetric subspace). Bob performed the \(\sigma_Z\) operation by means of a \(\lambda/2\) wave plate.

As first experimental step we have identified the position \(Z = 0\) corresponding to the overlap between the injected photon and the UV pump pulse (Fig.3-a). Let us consider the situation in which we inject the state \(|\phi\rangle\) and we detect the Bell state \(|\Psi^+\rangle_{SA}\). When there is a perfect matching between the UV pump and the injected photon, the polarization state of the photon over mode \(k_2\) should be \(\rho_B = |\phi\rangle \langle \phi|\), while for \(Z >> 0\) the cloning and restoring
machines are turned off and \(\rho_B = \frac{1}{2} \ket{\phi} \bra{\phi} + \frac{1}{2} \ket{\phi^\perp} \bra{\phi^\perp} \). We have injected the state \(|R\rangle_S \) and analyzed the output state over the mode \(k_2 \) with a \(\lambda/4 \) waveplate and a polarizing beam splitter \(PBS_2 \). The output state of the qubit \(B \) was analyzed adopting the couple of detectors \(\{D_2, D_2^*\} \); the states \(|R\rangle_B \) and \(|L\rangle_B = 2^{-1/2} (|H\rangle_B - i |V\rangle_B) \) were, respectively, detected by \(D_2 \) and \(D_2^* \). The detection of a photon from the detector \(DT \) ensured the injection of the state \(|\phi\rangle_S \) over the mode \(k_1 \). A coincidence between \(DA \) and \(D_A^* \) identified the state \(|\Psi^+\rangle_{SA} \). The coincidence counts \((DT, DA, D_A^*, D_2) \) and \((DT, DA, D_A^*, D_2^*) \) are reported in Fig.3-a versus the position \(Z \) of the UV mirror \(M_P \). The peak in the coincidence counts of \((DT, DA, D_A^*, D_2) \) and the dip in the coincidence counts of \((DT, DA, D_A^*, D_2^*) \) in correspondence of the matching between the injected qubit and the UV pump beam are a signature of the realization of the state \(|\phi\rangle_B \).

To completely characterize the output state of the \(CM + RM \) process we have positioned the mirror \(M_P \) in the position \(Z = 0 \) and we have carried out a single qubit quantum state tomography [19] on the \(k_2 \) mode for three different states of the input qubit \(|\phi\rangle = |H\rangle, |\phi\rangle = |+\rangle \) and \(|\phi\rangle = |R\rangle \) (Fig.3-b) with \(|\pm\rangle = 2^{-1/2} (|H\rangle \pm |V\rangle) \). This analysis is performed through a \(\lambda/4 \), a \(\lambda/2 \), \(PBS_2 \) and the detector \(D_2 \) and \(D_2^* \). The coincidence counts \((DT, DA, D_A^*, D_2) \) and \((DT, DA, D_A^*, D_2^*) \) are acquired for different settings of the waveplate positions in order to measure the different Stokes parameters of the \(k_2 \) mode. The density matrices \(\rho_{out} \) in Fig.3-b are represented in the basis \(\{ |\phi\rangle, |\phi^\perp\rangle \} \). In the ideal case \(\rho_B = |\phi\rangle \langle \phi| \), as said. To ensure a higher visibility of the overall process in the measurements, the different modes selection was assured by narrower pinhole. The experimental results confirms our theory; the fidelity \(F_{\phi} = \langle \phi | \rho_{out} | \phi \rangle \) of the overall process are found to be \(F_H = 0.98 \pm 0.01, F_+ = 0.78 \pm 0.01 \) and \(F_R = 0.76 \pm 0.01 \). The average experimental fidelity of the overall process has been found to be \(\bar{F} = 0.84 \). This value is found to be largely above the classical estimation bound achievable by measuring the input qubit, equal to \(0.67 \).

In conclusions, we have demonstrated experimentally the reversibility of the cloning-flipping processes by showing how the output of these processes can be exploited to non-
locally restore the input qubit $|\phi\rangle$ with unit fidelity. “This result, indeed a fundamental one in the domain of Quantum Information, is expected to represent a significant contribution in modern multipartite quantum cryptography protocols [20–22]. In particular, the adoption of W entangled states (2) for quantum secure communication [14,23] and secret sharing protocols belong to the most advanced issues raised recently in this field. Finally the present experimental realization is a significant step towards the adoption of the cloning process for optimal partial state estimation, as recently proposed by [24].

This work has been supported by the FET European Network on Quantum Information and Communication (Contract IST-2000-29681: ATESIT), by Istituto Nazionale per la Fisica della Materia (PRA "CLON") and by Ministero dell'Istruzione, dell'Università e della Ricerca (COFIN 2002).
REFERENCES

[1] M. Horodecki, R. Horodecki, A. Sen, and U. Sen, quant-ph/0407038.

[2] W.K. Wootters, and W.H. Zurek, Nature (London) 299, 802 (1982); D. Dieks, Phys. Lett. A 92, 271 (1982).

[3] H. Bechmann-Pasquinucci, and N. Gisin, Phys. Rev. A 59, 4238 (1999); N. Gisin, and S. Popescu, Phys. Rev. Lett. 83, 432 (1999).

[4] V. Bužek, and M. Hillery, Phys. Rev. A 54, 1844 (1996); D. Bruss, A. Ekert, and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998).

[5] V. Bužek, M. Hillery, and R.F. Werner, Phys. Rev. A 60, R2626 (1999).

[6] D. Bruβ, J. Calsamiglia, and N. Lütkenhaus, Phys. Rev. A 63, 042308 (2001).

[7] F. De Martini, V. Bužek, F. Sciarrino, and C. Sias, Nature (London) 419, 815 (2002); F. De Martini, D. Pelliccia, and F. Sciarrino, Phys. Rev. Lett. 92, 067901(2004).

[8] A. Lamas-Linares, C. Simon, J.C. Howell, and D. Bouwmeester, Science 296, 712 (2002).

[9] M. Ricci, F. Sciarrino, C. Sias, and F. De Martini, Phys. Rev. Lett. 92, 047901 (2004); F. Sciarrino, C. Sias, M. Ricci, and F. De Martini, Phys. Rev. A 70, 052305 (2004).

[10] M. Gregoratti and R.F. Werner, J. Mod. Opt. 50, 915 (2003).

[11] C. Bennett, H. Bernstein, S. Popescu, B. Schumacher, Phys. Rev A. 53, 2046 (1996).

[12] W. Dur, G. Vidal, and J.I. Cirac, Phys. Rev. A 61, 062314 (2000).

[13] D. Bruβ, and M. Macchiavello, Found. Phys. 33, 1617 (2003).

[14] M. Eibl, et al., Phys. Rev. Lett. 92, 077901 (2004).

[15] C. Bennett, et al., Phys. Rev. Lett. 70, 1895 (1993).

[16] S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, Phys. Rev. A 66, 030302
[17] J.L. O’Brien, et al., Nature (London) 426, 264 (2003); T.B. Pittman, M.J. Fitch, B.C Jacobs, and J.D. Franson, Phys. Rev. A 68, 032316 (2003); S. Gasparoni, et al., Phys. Rev. Lett. 93, 020504 (2004).

[18] J. Calsamiglia and N. Lütkenhaus, Appl. Phys. B: Lasers Opt. 72, 67 (2001).

[19] D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, Phys. Rev. A 64, 052312 (2001).

[20] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

[21] R. Filip, J. Fiurasek, and P. Marek, Phys. Rev. A 69, 012314 (2004).

[22] Y.A. Chen, quant-ph/0502131.

[23] J. Joo, et al., New J. Phys. 5, 136 (2003).

[24] M. Ricci, F. Sciarrino, N. Cerf, J. Fiurasek, R. Filip and F. De Martini, (unpublished).

Figure Captions

Figure.1. General scheme for the cloning machine and the restoring machine. The restoration of the initial input qubit $|\phi\rangle$ is obtained by means of a Bell measurement on the clone qubits S and A at Alice’s site, classical communication, and feedforward operation σ_i on the qubit B at Bob’s site.

Figure.2. Schematic diagram of the self-injected Optimal Parametric Amplifier. The Bell measurement is performed on the cloning mode k_1 (Alice’s site). The photon on mode k_2 undergoes a σ_Z operation (Bob’s site). The output qubit S on mode k_2 is analyzed adopting single qubit tomography.

Figure.3. (a) Coincidence counts (D_T, D_A, D_A^*, D_2) and (D_T, D_A, D_A^*, D_2^*) versus the position Z of the UV mirror M_P. Each experimental point has been measured in a time of 2400s.
(b) Quantum state tomography of the output qubits B carried out by means of a $\lambda/4$, a $\lambda/2$, PBS_2, D_2 and D_2^* in the position $Z = 0$. For each injected state $|\phi\rangle$ the experimentally reconstructed density matrix is represented in the $\{|\phi\rangle, |\phi^\perp\rangle\}$ basis. The time required for each matrix reconstruction was ~ 24 h.
[\Sigma(\phi)]_{SAB}$

ALICE

BELL MEASUREMENT

\[\sigma_i\]

BOB
(a) Coincidence counts vs. mirror position Z (μm)

(b) Vector representations for $|\phi\rangle_{in}$
- $|\phi\rangle_{in} = |H\rangle$
- $|\phi\rangle_{in} = |+\rangle$
- $|\phi\rangle_{in} = |0\rangle$
- $|\phi\rangle_{in} = |R\rangle$