Controlling inflammation: a fat chance?

Roderick J. Flower and Mauro Perretti

The inflammatory response protects the body against infection and injury but can itself become deregulated with deleterious consequences to the host. It is now clear that several endogenous biochemical pathways activated during defense reactions can counterregulate inflammation. New experimental evidence adds resolvin E1 to this group of endogenous inhibitors and provides further rationale for the beneficial effects of dietary supplementation with fish oils. It also highlights an unexpected twist in the pharmacology of aspirin.

Polyunsaturated fatty acids and diet

The discovery in the 1930s by George and Mildred Burr (1) that certain polyunsaturated fatty acids were “essential” to the health of mammals begged the question of why they were so crucial. Initially it was thought that their importance lay in their unique viscotropic effect on biological membranes, but the further discovery in the 1960s that all essential fatty acids were also substrates for prostaglandin synthesis by the cyclooxygenase enzymes (2) lead to the realization that, in addition to being important structural components of the cell, these lipids were the precursors of potent hormones with widespread effects on the cardiovascular and immune systems. The subsequent demonstration that other mediators such as the leukotrienes (derived from the 5′-lipoxygenase [3]) and, more recently, that the endocannabinoids (4) could also be derived from these same precursors, further highlighted this unusual property of these versatile lipids.

The essential fatty acids, which include arachidonic and eicosapentaenoic acids, cannot be synthesized by mammals de novo but must be supplied in the diet either as the native lipids or as immediate precursors, such as linoleic or α-linolenic acids, which are then converted by chain elongation and desaturation reactions into the required end product. Arachidonic acid is a 20-carbon fatty acid with 4 unsaturated double bonds located at positions (all cis) 5, 8, 11, and 14 in the hydrocarbon chain (counting from C1, the COOH terminal). Arachidonic acid belongs to a group of fatty acids sometimes known as ω-6 fatty acids, so called because of the location of the final double bond from C20. Since the main source of essential fatty acids is foodstuffs, it follows that the actual composition of essential fatty acids in the body reflects to a large extent the nature of the diet. Although arachidonic acid is abundant in the tissues of many land-dwelling animals, fish and marine mammals have a preponderance of the closely related eicosapentaenoic acid with five double bonds arranged at positions 5, 8, 11, 14, and 17 (thus belonging to the ω-3 group). It has been suggested (5) that mankind evolved on a diet where the ratio of ω-6:ω-3 fatty acids was ~1:1, as opposed to the prevailing ratio (at least in Western societies) of 10:20:1. The implication is that the onset and progress of many inflammatory and other diseases may be exacerbated by this shift in dietary habits.

When oxidized by the cyclooxygenase enzyme systems, arachidonic acid gives rise to the “2” series of prostaglandins such as PGE\(_2\), PGE\(_{2\alpha}\), and so on, because of the loss of two unsaturated bonds during the cyclooxygenase reaction, and to the “4” series of leukotrienes, such as LTB\(_4\). However the properties of eicosapentaenoic acid in this respect are quite different. To begin with, eicosapentaenoic acid is not a particularly good substrate for the cyclooxygenase and actually competitively inhibits arachidonic acid oxidation in vitro (6). PGE\(_1\) is produced from eicosapentaenoic acid by the cyclooxygenase but is less active than PGE\(_2\) in producing various biological effects relevant to inflammation (7). Eicosapentaenoic acid is, however, a good substrate for lipoxygenases, although LTB\(_4\) is ~30 times less active as an activator of neutrophils than LTB\(_4\) (8).

It had been deduced from epidemiological and dietary studies of different populations, such as the Greenland Eskimos (9), that a preponderance of fish in the diet was generally associated with a reduced incidence of inflammatory and cardiovascular disease. Over the years, a great number of studies have tested extracts of fish oil (which usually contain a mixture of eicosapentaenoic acid together with other associated fatty acids such as docosahexaenoic acid) as dietary supplements, finding a beneficial effect in a wide range of human inflammatory conditions including rheumatoid arthritis (10), cystic fibrosis (11), ulcerative colitis (12), UV-induced skin damage (13), septic shock (14), and asthma (15). Patients fed diets rich in eicosapentaenoic acid have been shown to express fewer inflammatory biomarkers (16), reduced leukocyte activation and mobility (17), and diminished production of prostaglandins and platelet-activating factor ex vivo (14); similar effects have been seen in many animal studies (18). Eicosapentaenoic acid is, therefore, one of the few “nutriceuticals” for which there is compelling evidence of efficacy, although the optimum dosage has perhaps yet to be established.

Explaining the beneficial effects

The most widely accepted explanation for the efficacy of eicosapentaenoic acid was that increasing proportions of this fatty acid incorporated into the cellular phospholipid pool reduces the net fraction of arachidonic acid released during cell activation, leading to less arachi-
Serhan’s group has now placed the extending his observations into man, phase of murine inflammation (24). By to be present during the resolution pound previously found by the group transformed to resolvin E1, a com-
pany of a 15-epi product of eicos-
apentaenoic acid (5S, 12R, 18R-trihy-
droxy-6Z, 8E, 10E, 14Z, 16E-eicosapentaenoic acid (5S, 12R, 18R-trihy-
droxy-6Z, 8E, 10E, 14Z, 16E-eicosapentaenoic acid blocks the terminal stages of arachidonic acid synthesis from its precursors in vivo (21). But in this issue (page 713), Arita et al. have come up with another fascinating observation which relates directly to the efficacy of eicosapentaenoic acid as a potential antiinflammatory in man and, interestingly enough, implicates another popular therapeutic agent, aspirin, in a unique joint antiinflamm-
tory mechanism (22).

The work described by Arita et al. (22) follows earlier discoveries by this team, lead by Charlie Serhan, of other groups of potent lipid mediators derived from arachidonic acid, including the lipoxins, resolvins, docosatetraenes, and neuroprotectins (23). In this issue, Arita et al. describe the generation, by the aspirin-treated cyclooxygenase (COX)-2, of a 15-epi product of eicos-
apentaenoic acid (5S, 12R, 18R-trihy-
droxy-6Z, 8E, 10E, 14Z, 16E-eicosapentaenoic acid) which is subsequently transformed to resolvin E1, a compound previously found by the group to be present during the resolution phase of murine inflammation (24). By extending his observations into man, Serhan’s group has now placed the whole idea of antiinflammatory lipids on a new and more relevant therapeutic footing.

The mechanism described here is an interesting one for several reasons. In contrast to its action on COX-1, aspirin does not totally inhibit the oxidiza-
tion of arachidonic acid (or other poly-
unsaturated fatty acid substrates) by COX-2 (25), and although the aspirin- inhibited enzyme cannot produce pro-
staglandins it retains the ability to gener-
ate a monohydroxy fatty acid species. The most likely source of the COX-2 in this instance is the endothelial cell. In the presence of eicosapentaenoic acid and when “inhibited” by aspirin, COX-2 can release the 18R-hydroxy eicosapentaenoic acid precursor of re-
solvin E1. However, this moiety cannot be further metabolized by the endothelial cell itself, and its transfor-
mation to resolvin E1 depends on the presence of the 5-lipoxygenase enzyme in adjacent leukocytes that are presum-
ably adherent to the vessel wall (Fig. 1). The resolvin E1 product was measured in bioactive concentrations in the plasma of volunteers taking both eicosapentaenoic acid (1 g) and low dose aspirin (160 mg).

Versatility of G protein–coupled receptors

The striking antiinflammatory activity of lipoxin A\textsubscript{4} (LXA\textsubscript{4}) as an inhibitor of leukocyte activation, as earlier described by Serhan’s group (26), was rather surpris-
gingly manifested through interaction with a member of the formyl peptide receptor (FPR) family termed ALXR (or FPR-like 1). This finding was un-
expected, as this family of receptors, which comprises at least three subtypes in humans, is generally considered to be a promoter rather than an inhibitor of leukocyte chemotaxis and activation (27). However, the recent notion that another endogenous antiinflammatory protein, annexin 1, also acts through ALXR reinforces the concept that this receptor may also have a protective anti-
inflammatory function (28).

As in the case of LXA\textsubscript{4}, Serhan’s group has found that resolvin E1 exerts its antiinflammatory effects by acting through a G protein–coupled receptor to down-regulate NF-\kappaB activation (22). This receptor (subsequently re-
ferred to as ChemR23), which seems fairly widely distributed in human tis-
ues, is related to ALXR and was origi-
nally described as a receptor for a chemotactic peptide called chemerin. The promiscuity of the FPR family of seven-transmembrane G protein–coupled receptors may be gauged by the number and diversity of the ligands they recognize, which include lipids, peptides, proteins, bile acids, and even enzymes. It seems that Serhan’s group has uncovered another example of a series of lipids that exert their activities by binding to a receptor that might, under other circumstances, actually promote leukocyte chemotaxis (22). It is likely that receptors such as FPR, ALXR, and ChemR23 can assume ligand-specific conformations, hence transducing signals specific to each agonist. This concept has been advanced for several G protein–coupled receptors (29), including those of the FPR family (30).

The lure of endogenous antiinflammatory mediators

The notion that the inflammatory response generates its own regulators in tandem with the better known proinflammatory mediators such as prostaglandins and leukotrienes makes sense from the cybernetic viewpoint as it is easier to control a process with both positive and negative regulatory inputs. Indeed, several other instances of endogenous regulators of the inflammatory response (31) have been characterized recently (32), adding support to the idea that this is a widely employed mechanism. Clearly, disturbances in such counterregulatory circuits could lead to exacerbated inflammatory responses just as effectively (although perhaps less obviously) than excessive activation of the proinflammatory cascades.

Aspirin: more than one mechanism?

This study also throws into sharp relief why and how prostaglandins and leukotrienes makes sense from the cybernetic viewpoint as it is easier to control a process with both positive and negative regulatory inputs. Indeed, several other instances of endogenous mediators of the inflammatory response (31) have been characterized recently (32), adding support to the idea that this is a widely employed mechanism. Clearly, disturbances in such counterregulatory circuits could lead to exacerbated inflammatory responses just as effectively (although perhaps less obviously) than excessive activation of the proinflammatory cascades.

Clinical horizons

So where does this leave us in terms of practical therapeutics? It would seem that the antiinflammatory effects of eicosapentaenoic acid might be radically enhanced with low dose aspirin, and a priority should now be a formal clinical trial designed to test the additive action of these two agents in an inflammatory disease—perhaps rheumatoid arthritis—by monitoring plasma resolvin E1 levels and disease outcome. We also need to know whether resolvin E1 is found in vivo in the absence of aspirin treatment (and how) and whether other nonsteroidal antiinflammatory drugs such as indomethacin also promote its synthesis. But we should not overlook the cardiovascular implications of this work. Aspirin itself is, of course, used already in low doses for the prophylactic treatment of patients at risk from myocardial infarction and other cardiovascular pathologies, and eicosapentaenoic acid has been shown already to be beneficial in these conditions as well. For example, the data reported in the GISSI (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico) study (35), quoted by the authors, demonstrates a beneficial effect of eicosapentaenoic acid in patients at risk for myocardial infarct, many of whom were taking aspirin. In the light of the evidence presented by Serhan’s group (22), we should now also take a closer look at the aspirin–eicosapentaenoic acid interactions in the cardiovascular arena. We need to discover any direct effects resolvin E1 may have on platelet function and to investigate whether any beneficial effects that may be seen in cardiovascular disease depend on the antiinflammatory effects of this compound or on other actions.

REFERENCES

1. Burr, G., and M. Burr. 1930. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 86:587–621.
2. Bergstrom, S., H. Danielsson, and B. Samuelsson. 1964. The enzymatic formation of prostaglandin E2 from arachidonic acid. Biochim. Biophys. Acta. 90:207–210.
3. Samuelsson, B., and S. Hammarstrom. 1982. Leukotrienes: a novel group of biologically active compounds. Vitam. Horm. 39:1–30.
4. Devane, W.A., L. Hans, A. Breuer, R.G. Pertwee, I.A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, and R. Mechoulam. 1992. Isolation and structure of a brain constituent that binds to the cannabinoind receptor. Science. 258:1946–1949.
5. Simopoulos, A.P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438–463.
6. Lands, W., P. Le Tellier, L. Rome, and J. Vanderhoek. 1973. Inhibition of prostaglandin biosynthesis. In International Conference on Prostaglandins. S.B.a.s. Bernhard, editor. Pergamon Press Viewegg, Braun- schweig, Germany. 15–28.
7. Bagga, D., L. Wang, R. Faris-Eisner, J.A. Glasy, and S.T. Reddy. 2003. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA. 100:1751–1756.
8. Terano, T., J.A. Salton, and S. Moncada. 1984. Effect of orally administered eicosapentaenoic acid (EPA) on the formation of leukotriene B4 and leukotriene B5 by rat leukocytes. Biochem. Pharmacol. 33:3071–3076.
9. Das, U.N. 2000. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot. Essent. Fatty Acids. 63:351–362.
10. Adam, O. 2003. Dietary fatty acids and immune reactions in synovial tissue. Eur. J. Med. Res. 8:381–387.
11. De Vizia, R., V. Raia, C. Spano, C. Pavlidis, A. Coruzzo, and M. Alessio. 2003. Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. JPEN J. Parenter. Enteral Nutr. 27:52–57.
12. Stenson, W.F., D. Cort, J. Rodgers, R. Burkoff, K. DeSchryver-Keeskemeti, T.L. Granichl, and W. Breken. 1992. Dietary supplementation with fish oil in ulcerative colitis. Ann. Intern. Med. 116:699–714.
13. Rhodes, L.E., B.H. Durham, W.D. Fraser, and P.S. Friedman. 1995. Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphonuclear light eruption. J. Invest. Dermatol. 105:532–535.
14. Mayer, K., C. Fegbeutel, K. Hattar, U. Sibelius, H.J. Kramer, K.U. Heuer, B. Temmelsed-Wollbruck, S. Gokorsch, F. Grim, minger, and W. Seeger. 2003. Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med. 29:1472–1481.
Resolvin E1 in Inflammation | R.J. Flower and M. Perretti

15. Dry, J., and D. Vincent. 1991. Effect of a fish oil diet on asthma: results of a 1-year double-blind study. *Int. Arch. Allergy Appl. Immunol.* 95:156–157.

16. Berstad, P., I. Seljeflot, M.B. Veierod, E.M. Hjerkin, H. Arnesen, and J.I. Pedersen. 2003. Supplementation with fish oil affects the association between very long-chain n-3 polyunsaturated fatty acids in serum non-esterified fatty acids and soluble vascular cell adhesion molecule-1. *Clin. Sci. (Lond.)* 105:13–20.

17. Lawrence, R., and T. Sorrell. 1993. Eicosapentaenoic acid in cystic fibrosis: evidence of a pathogenetic role for leukotriene B4. *Lancet.* 342:465–469.

18. Terrano, T., J.A. Salmon, G.A. Higgs, and S. Moncada. 1986. Eicosapentaenoic acid as a modulator of inflammation. Effect on prostaglandin and leukotriene synthesis. *Biochem. Pharmacol.* 35:779–785.

19. Adam, O., C. Berninger, T. Kless, C. Lemmen, A. Adam, M. Wiseman, P. Adam, R. Klimmek, and W. Forth. 2003. Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. *Rheumatol. Int.* 23:27–36.

20. Sethi, S. 2002. Inhibition of leukocyte-endothelial interactions by oxidized omega-3 fatty acids: a novel mechanism for the anti-inflammatory effects of omega-3 fatty acids in fish oil. *Redox Rep.* 7:369–378.

21. Barhan, J.B., M.B. Edens, A.N. Fonteh, M.M. Johnson, L. Easter, and F.H. Chilton. 2000. Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. *J. Nutr.* 130:1925–1931.

22. Arita, M., F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, and C.N. Serhan. 2005. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. *J. Exp. Med.* 201:713–722.

23. Serhan, C.N., K. Godinger, S. Hong, and M. Arita. 2004. Resolvins, docosatetraenes, and neutrophil protecins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. *Prostaglandins Other Lipid Med.* 73:155–172.

24. Serhan, C.N., C.B. Clish, J. Brannon, S.P. Colgan, N. Chiang, and K. Gronert. 2000. Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal anti-inflammatory drugs and transcellular processing. *J. Exp. Med.* 192:1197–1204.

25. Bhattacharyya, D.K., M. Lecomte, J. Dunn, M.M. Johnson, L. Easter, and F.H. Chilton. 2000. Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. *J. Nutr.* 130:1925–1931.

26. Perretti, M., N. Chiang, M. La, I.M. Fierro, S. Marullo, S.J. Getting, E. Solito, and C.N. Serhan. 2002. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. *Nat. Med.* 8:1396–1392.

27. Christopoulos, A., and T. Kenakin. 2002. G protein-coupled receptor allosterism and complexing. *Pharmacol. Rev.* 54:323–374.

28. Bae, Y.S., J.Y. Song, Y. Kim, R. He, R.D. Ye, J.Y. Kwak, P.G. Suh, and S.H. Ryu. 2003. Differential activation of formyl peptide receptor signaling by peptide ligands. *Mol. Pharmacol.* 64:841–847.

29. Perretti, M., and F.N. Gavins. 2003. Annexin 1: an endogenous anti-inflammatory protein. *News Physiol. Sci.* 18:60–64.

30. Gilroy, D.W., T. Lawrence, M. Perretti, and A.G. Rossi. 2004. Inflammatory resolution: new opportunities for drug discovery. *Nat. Rev. Drug Discov.* 3:401–416.

31. Serhan, C.N., and N. Chiang. 2002. Lipid-derived mediators in endogenous anti-inflammation and resolution: lipoxins and aspirin-triggered 15-epi-lipoxins. *Scientific-WorldJournal.* 2:169–204.

32. Paul-Clark, M.J., T. Van Cao, N. Moradi-Bidhendi, D. Cooper, and D.W. Gilroy. 2004. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. *J. Exp. Med.* 200:69–78.

33. Gruppo Italiano per lo Studio della Sopravvenienza nell’Infarto miocardico. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. *Gruppo Italiano per lo Studio della Sopravvenienza nell’Infarto miocardico. Lancet.* 354:447–455.