P2Y12 Reaction Units and Clinical Outcomes in Acute Large Artery Atherosclerotic Stroke: A Multicenter Prospective Study

Kazuki Fukuma¹, Hiroshi Yamagami², Masafumi Ihara¹, Tomotaka Tanaka¹, Toshiyuki Miyata⁴, Shigeki Miyata⁶, Koichi Kokame⁶, Kunihiro Nishimura⁷, Yuriko Nakaoku⁷, Haruko Yamamoto⁸, Mikito Hayakawa⁴, Kenji Kamiyama⁹, Yukiko Enomoto¹⁰, Ryo Itabashi¹¹, Eisuke Furui¹¹, Yasuhiro Manabe¹², Masayuki Ezura¹³, Kenichi Todo¹⁴, Kazuo Hashikawa³, Shinichiro Uchiyama¹⁵, Kazunori Toyoda¹, Kazuyuki Nagatsuka¹ and the PRAISE Study Investigators

¹Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
²Division of Stroke Care Unit, National Cerebral and Cardiovascular Center, Osaka, Japan
³Department of Stroke Neurology, National Hospital Organization Osaka National Hospital, Osaka, Japan
⁴Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
⁵Department of Clinical Laboratory Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
⁶Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
⁷Departments of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
⁸Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, Osaka, Japan
⁹Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
¹⁰Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
¹¹Department of Stroke Neurology, Kohnan Hospital, Sendai, Japan
¹²Department of Neurology, National Hospital Organization Okayama Medical Center, Okayama, Japan
¹³Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan
¹⁴Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Japan
¹⁵Clinical Research Center for Medicine, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Hospital and Sanno Medical Center, Tokyo, Japan

Aims: We aimed to determine the association between acute platelet reactivity and clinical outcome in acute ischemic stroke (AIS) or transient ischemic attack (TIA) with large-artery atherosclerosis (LAA).

Methods: In this prospective, 16-multicenter study, we enrolled AIS/TIA patients with LAA receiving clopidogrel. We assessed the association of P2Y12 reaction units (PRU) 24 hours after initiation of antiplatelets with the CYP2C19 genotype and recurrent ischemic stroke within 90 days, and the difference between acute (≤ 7 days) and subacute (8–90 days) phases.

Results: Among the 230 AIS/TIA patients enrolled, 225 with complete outcome data and 194 with genetic results were analyzed. A higher PRU was significantly associated with recurrent ischemic stroke within 90 days, and the difference between acute (≤ 7 days) and subacute (8–90 days) phases.

Conclusions: Acute PRU evaluation possesses predictive value for recurrent ischemic stroke, especially within 7 days in AIS/TIA with LAA.

Key words: Atherosclerosis, Clopidogrel, CYP2C19, Platelet aggregation
Introduction

Clopidogrel, a platelet P2Y12 receptor antagonist, is commonly used with aspirin in patients undergoing acute ischemic stroke (AIS) or transient ischemic attack (TIA) with large artery atherosclerosis (LAA). Clopidogrel is also an inactive prodrug that must be converted to a biologically-active metabolite by hepatic cytochrome P450 (CYP) enzymes (particularly CYP2C19). Within CYP2C19 loss-of function variants, the prevalence of intermediate metabolizers (IM) or poor metabolizers (PM) is much higher in Asian than Caucasian populations. Furthermore, the LAA subtype, especially intracranial LAA, is common in Asian populations. Thus, the impact of CYP2C19 polymorphisms and platelet reactivity on clinical outcomes in AIS/TIA with LAA is an important concern, especially in Asian populations.

The impact of the CYP2C19 polymorphism on stroke prevention in AIS/TIA has been controversial. Recently, our paper reviewed a difference in the effect of the CYP2C19 PM genotype for cerebrovascular events between the acute and subacute-chronic stroke phase; 10 of 11 (91%) studies recruiting patients during the acute phase (within 1 week after the index stroke) demonstrated a positive effect but all three studies recruiting during the subacute-chronic phase (within >2 weeks) showed no significant effect. Thus, the effect of the CYP2C19 polymorphism on cerebrovascular events appears more pertinent during the acute than chronic stroke phase, an important finding given the difficulty in obtaining genetic testing results in the acute period.

P2Y12 reaction units (PRU), currently used as clinical indicators of responsiveness to P2Y12 receptor antagonists, are quickly measured, even in the acute stroke phase. PRU is an estimate of P2Y12 receptor-mediated platelet aggregation and influenced by genetic factors, including CYP2C19 polymorphisms. The impact of acute PRU evaluation on clinical outcomes in AIS/TIA with LAA has not been established. We therefore aimed to investigate the predictive value of acute PRU evaluation for recurrent ischemic stroke in patients with AIS/TIA with LAA, and the difference between acute (≤ 7 days) and subacute (8–90 days) phases.

Methods

Platelet Reactivity Monitoring in Acute Ischemic Stroke (PRAISE) is a prospective, open-label, multicenter (16 sites), observational study. The study protocol and data collection were approved by the ethics committee of the National Cerebral and Cardiovascular Center (ethical approval number M25-073-4) and all other study centers. All procedures were conducted within ethical standards of relevant national guidelines on human experimentation and the Helsinki Declaration of 1975 (revised, 2008). All participants, or their representatives, provided written consent before study enrollment.

Patients who developed AIS/TIA with symptomatic atherosclerotic stenosis (≥ 50%) or occlusion of ipsilateral intracranial or extracranial arteries within 7 days after onset and treated with oral clopidogrel, were enrolled between October 2013 and December 2015. Other inclusion criteria consisted of (1) age greater than 20 years, (2) National Institutes of Health Stroke Scale (NIHSS) score of 0 to 20 before treatment, and (3) intra/extracranial arterial stenosis/occlusion of internal carotid, anterior cerebral (A1 and A2 segment), middle cerebral (M1 and M2 segment), posterior cerebral (P1 and P2 segment), vertebral, or basilar, artery. Ischemic stroke was defined as a new neurological deficit of vascular origin lasting at least 24 hours, based on radiological evidence of stroke. TIA was defined as a transient episode of neurological dysfunction caused by focal brain ischemia, which improved within 24 hours.

This study included six visits: enrollment (baseline), 24 hours, 72 hours, 7 days, 30 days, and 90 days after the enrollment.
Acute Treatment

The Japanese Guidelines for the Management of Patients with AIS recommends the use of dual antiplatelet therapy and argatroban, an injectable direct thrombin inhibitor, in patients with large artery atherosclerosis. Clopidogrel and ticlopidine are P2Y12 receptor antagonists approved for use in stroke in Japan. In this study, the acute treatment protocol included the use of clopidogrel (ii) continued at 75 mg/day standard dose used before admission, (ii) newly administered at 75 mg/day standard dose, (iii) newly administered at 300 mg loading and followed by 75 mg/day standard dose), with or without other antiplatelet agents (including aspirin at 200 mg/day and cilostazol at 200 mg/day), anticoagulant agents (including argatroban injection), optionally used by specialist stroke neurologists and neurosurgeons at each study center, who were blinded to the patients’ genetic information and platelet reactivity (P2Y12 and aspirin reaction units), in line with the guidelines. Indications of thrombolysis with alteplase at 0.6 mg/kg, endovascular treatment (thrombectomy, angioplasty, intracranial and carotid artery stenting), and neurosurgical treatment (carotid endarterectomy and superficial temporal artery-middle cerebral artery bypass) were also in line with the guidelines.

P2Y12 and Aspirin Reaction Units

Platelet reactivity was measured by PRU and aspirin reaction units using the VerifyNow® system (Instrumentation Laboratory, Bedford, Massachusetts, USA) at 24 and 72 hours after initiation of antiplatelet therapy. The VerifyNow system is a clinically available, rapid, and easy-to-use point-of-care system, suitable for evaluating acute stroke patients, thereby holding advantages over other assays, such as light transmittance aggregometry. The VerifyNow system was used by qualified personnel in each study center. Platelet reaction units were measured in each study center, who were blinded to the patients’ genetic information and platelet reactivity (P2Y12 and aspirin reaction units), in line with the guidelines.

Genotyping

Among the several genetic variants of CYP2C19, the two most frequent variants 21, CYP2C19*2, and CYP2C19*3, are known as loss-of-function (LOF) variants; whereas, the gain-of-function variant, CYP2C19*17, is associated with increased CYP2C19 enzyme function.22 Genomic DNA was extracted from peripheral blood leukocytes. The genotype of the CYP2C19*2 (c.681G>A, rs4244285), *3 (c.636G>A, rs4986893), and *17 (c.-806C>T, rs12248560) variants was determined by the TaqMan genotype discrimination method (Applied Biosystems, Foster City, CA, USA) using commercially available primers and probes purchased from the Assay-on-Demand system. Patients were classified into three CYP2C19 metabolizer groups, according to genotype, as follows: (1) extensive metabolizer (EM) not bearing the genetic variants CYP2C19*2 or CYP2C19*3 (*1/*1); (2) intermediate metabolizer carrying one LOF allele (*1/*2, *1/*3); and (3) poor metabolizer carrying 2 LOF alleles (*2/*2, *2/*3, *3/*3). There has been controversy regarding the phenotype associated with the CYP2C19*2/*17 and *3/*17 genotypes, seldom found in Asian populations.23, 24 Therefore, patients with the CYP2C19*17 genotype (n=10) were excluded from the analysis. A single-nucleotide polymorphism of the ABCB1 gene (3435C>T, rs1045642) was genotyped. Participants were classified as homozygous for the C allele (CC), heterozygous (CT), or homozygous for the T allele (TT) for ABCB1 3435C>T SNP.

Imaging Protocol

Magnetic resonance angiography and magnetic resonance imaging studies, including diffusion-weighted imaging, fluid-attenuated inversion recovery, and T2*-weighted images sequences, were performed at baseline (before treatment), between 7–14 days after enrollment, and at the time of neurological worsening (follow-up MRI scan was performed after the neurological worsening if necessary). All magnetic resonance images were visually assessed independently by at least two local specialist stroke neurologists or neurosurgeons blinded to patient genetic information and laboratory assay results.

Clinical Outcomes

The prespecified primary outcome was recurrent ischemic stroke within 90 days. Additionally, we divided primary outcome into acute phase (within 7 days) and subacute phase (during 8–90 days) as we assumed the effect of the CYP2C19 polymorphism and clopidogrel reactivity on cerebrocardiovascular events appears more pertinent during the acute than subacute-chronic stroke phase, as noted above. Recurrent ischeamic stroke was defined as the following (i) or (ii) below: (i) neurological deterioration with new acute ischemic lesions on brain MRI at the time of worsening within 90 days after enrollment; (ii) apparent neurological deterioration (≥ 4-point increase in NIHSS score compared to the admission score) without new lesions on brain MRI at the time of worsening and subsequent delayed responsible ischemic lesions on follow-up brain MRI within 30 days after enrollment. Delayed ischemic
lesions were assessed as recurrent ischemic stroke sometimes occurs without new ischemic lesions at the time of worsening, and confirmed by detecting responsible lesions with a delayed appearance on follow-up imaging. Neurological deterioration due to symptomatic hemorrhagic transformation after cerebral infarction, hemorrhagic stroke, and other neurological deficits unrelated to ischemic stroke (e.g., infection) was excluded.

Secondary outcomes included all-cause death, major bleeding, and ST-elevated acute myocardial infarction. Major bleeding included intracranial hemorrhage, symptomatic bleeding (such as intraspinal, intraocular, retroperitoneal, intra-articular, pericardial or intramuscular bleeding with compartment syndrome), and episodes that caused ≥2 g/dL decline in hemoglobin level or required at least 280 ml of red cell transfusion.

All outcomes were assessed by at least two local expert stroke doctors, then verified by the events committee blinded to the patients’ genetic information and laboratory assay results, including PRU.

Statistical Analysis

Patient characteristics were collected at baseline. Smoking habit was defined as consumption of at least one cigarette per day for at least 1 year. Estimated glomerular filtration rate was calculated using the abbreviated Modification of Diet in Renal Disease equation. Continuous variables are presented using the mean, standard deviation (SD), and median with interquartile range, whereas categorical variables are expressed as frequencies and percentages. Categorical variables were compared using χ^2 or Fisher’s exact test. Continuous data were compared by Student-t or Wilcoxon rank-sum test. A probability value of less than 0.05 was considered significant.

The associations of recurrence with PRU, gene polymorphism, and other parameters were estimated using univariable analysis and multivariable logistic regression analysis adjusted for factors with a p value <0.05 in crude analysis or clinical significance in patients undergoing both PRU evaluation and genetic testing.

In the genetic testing population, the multivariable receiver operating characteristic curve (ROC) was used to evaluate the predictive performance of the P2Y12 assay for recurrence within 90 days and compared between the acute (within 7 days) and subacute phase (during 8–90 days). A scatter plot was created to show the association between PRU at 24 hours and the number of days to recurrence, comparing PM and IM/EM groups of CYP2C19. Risk prediction of high PRU and the CYP2C19 PM genotype for recurrence was quantified by comparison of area-under-the-curve (AUC) of multivariable ROC curves and by net reclassification improvement (NRI) analysis.

In selected patients who underwent genetic testing and clopidogrel loading dose administration, the associations of PRU at 24 hours with possible influencing factors of clopidogrel responsiveness, including gene polymorphism, combined drugs (cilostazol, statins, proton pump inhibitors), age, body-mass index, smoking habit, diabetes, renal failure, and platelet count, were analyzed by univariable and multiple logistic regression analysis. Statistical analysis was performed using JMP14 software (SAS Institute, Cary, NC, USA) and Stata version 15 (Stata Corp, Texas, USA).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Results

The study flow is shown in Fig. 1. We screened 237 patients diagnosed with AIS or TIA with LAA and treated with clopidogrel from 1 October 2013 to 31 December 2015. Seven patients not satisfying the inclusion/exclusion criteria were excluded, meaning 230 patients were enrolled in the PRAISE study. A further 5 patients were excluded due to being lost at follow-up ($n=4$) and inadequate PRU evaluation ($n=1$). 225 patients with complete outcome and PRU data were analyzed as the study population, with 194 patients also assessed as the genetic testing population.

Analysis of the Study Population

At baseline, the 225 patients had a median age of 72 years and comprised 31% females. The stroke subtype was composed of AIS (83%) and TIA (17%) cases. At registration, continued use of standard dose (75 mg), newly administered standard dose (75 mg), and newly administered loading dose (300 mg) of clopidogrel were identified in 11 (4.9%), 74 (33%), and 140 (62%) of patients, respectively. Recurrent ischemic stroke occurred in 36 patients (16%) within 90 days, and in 22 patients (10%) within 7 days. The secondary outcomes are shown in Table 1. All-cause death occurred in 1 patient and major bleeding in 4 patients; acute myocardial infarction did not occur in any patients. Details of primary and secondary outcomes and endovascular/neurosurgical treatment are shown in the Data Supplement.

The baseline characteristics in patients with non-recurrence, and recurrence within 90 days and within 7 days are shown in Table 2. In univariable analysis,
Table 1. Secondary outcomes ($n=225$)

Secondary outcomes	N	Event details	PRU at 24h	PRU at 72h	ARU at 24h	ARU at 72h	CYP2C19 variants	Medication at events	Days to event
All-cause death	1	Obstructive hydrocephalus due to multiple infarctions including cerebellar hemisphere	317	247	527	538	EM	CLP 75 mg	9
Major bleeding	4	Lower gastrointestinal tract bleeding	145	128	493	491	PM	CLP 75 mg, ASA 100 mg	34
		Bleeding from gastric cancer	231	156	393	474	IM	CLP 75 mg, ASA 100 mg	22
		Intracerebral hemorrhage	244	230	579	541	NA	CLP 75 mg, ASA 200 mg	19
		Femoral hematoma after occurring after bruise	254	325	497	414	PM	CLP 75 mg, ASA 100 mg	4

Abbreviations: ARU, aspirin reaction units; ASA, aspirin; CLP, clopidogrel; EM, extensive metabolizer; h, hours; IM, intermediate metabolizer; NA, not assessed; N, number of patients; and PRU, P2Y12 reaction units.

Fig. 1. Flowchart of patient participation in the study
AIS/TIA, Acute ischemic stroke or transient ischemic attack; PRU, P2Y12 reaction units.
Table 2. Patient characteristics

Study population (n=225)	Non-recurrence	Recurrence within 90 days	Recurrence within 7 days		
	(n=189)	(n=36)	(n=22)		
Female	58 (31)	11 (31)	8 (36)		
Age, years	72 ± 11	73 ± 10	74 ± 9		
Body mass index, kg/m²	23 ± 4	22 ± 3	22 ± 3		
Smoking habit	54 (29)	10 (28)	7 (32)		
NIHSS on admission, median (IQR)	2 (0–4)	3.5 (1–6)	0.03	4 (1–7.25)	0.05
Medical history					
Hypertension	157 (83)	31 (86)	19 (86)		
Dyslipidemia	123 (65)	19 (53)	12 (55)		
Diabetes mellitus	66 (35)	9 (25)	6 (27)		
Past ischemic stroke	31 (16)	8 (22)	2 (9.1)		
Past coronary heart disease	25 (13)	4 (11)	0.73	2 (9.1)	0.75
Prior medication					
Anti-platelet drug	61 (32)	15 (42)	8 (36)		
- Clopidogrel	8 (4.2)	3 (8.3)	1 (4.5)		
Anti-coagulant drug	4 (2.1)	0 (0)	0 (0)		
Statin	49 (25)	8 (22)	4 (18)		
Proton pump inhibitor	37 (20)	8 (22)	3 (14)		
Acute medication					
Dual anti-platelet drug	150 (79)	32 (89)	20 (91)		
Loading of clopidogrel	112 (59)	28 (78)	18 (83)		
Anti-coagulant drug	143 (76)	29 (81)	19 (86)		
- Argatroban	137 (73)	28 (78)	18 (82)		
Thrombolysis	8 (4.2)	3 (8.3)	1 (4.5)		
Laboratory data					
PRU value at 24h	219 ± 70	251 ± 78	273 ± 77		
PRU value at 72h	204 ± 84	224 ± 72	242 ± 65		
ARU value at 24h	502 ± 96	505 ± 82	505 ± 76		
ARU value at 72h	498 ± 100	498 ± 79	511 ± 73		
Hemoglobin level, g/dL	13.8 ± 1.8	13.6 ± 1.9	13.3 ± 1.9		
Platelet count, 10³/μL	220 ± 76	198 ± 60	201 ± 64		
eGFR, ml/min	65 ± 20	67 ± 20	67 ± 23		
LDL-C level, mg/dL	124 ± 38	121 ± 35	119 ± 36		
HDL-C level, mg/dL	50 ± 13	50 ± 12	50 ± 14		
HbA1c, %	6.3 ± 1.1	6.4 ± 1.6	6.5 ± 1.6		
Imaging findings					
Large artery occlusion	38 (20)	12 (33)	12 (54)		
Severe stenosis	84 (44)	13 (36)	5 (23)		
Moderate stenosis	67 (35)	11 (31)	5 (23)		
Genetic testing population (n=194)					
Gene polymorphism	Non-recurrence	Recurrence within 90 days	Recurrence within 7 days		
	(n=163)	(n=31)	(n=18)		
CYP2C19 variants					
- PM	20 (12)	9 (29)	6 (33)		
- IM	94 (58)	16 (52)	7 (39)		
- EM	49 (30)	6 (19)	5 (28)		
CYP2C19*17 (C806T) (rs12248560)	2 (1.2)	0 (0)	0 (0)		
- CT (versus CC)					
ABCB1 (C3435T) (rs1045642)	24 (15)	6 (19)	0.81	4 (22)	0.69
- TT (versus CC/CT)					

Table comparing non-recurrence with recurrence in the study population within 90 days and 7 days groups, respectively (as shown in Fig. 1). Data are presented as n (%) or means ± standard deviation, unless otherwise indicated.

Abbreviations: ARU, aspirin reaction units; BMI, body mass index; eGFR, estimated glomerular filtration rate; EM, extensive metabolizer; h, hours; HDL-C, high-density lipoprotein-cholesterol; IM, intermediate metabolizer; IQR, interquartile range; LDL-C, low-density lipoprotein-cholesterol; NIHSS, National Institutes of Health stroke scale; PM, poor metabolizer; and PRU, P2Y12 reaction units.
Table 3. Multivariable logistic regression analysis of P2Y12 reaction units and clinical variables associated with recurrence (n=225)

PRU at 24 hours, 10 units	Unadjusted OR (95% CI)	P	Model 1\(^{\ddagger}\) OR (95% CI)	P	Model 2\(^{\dagger}\) OR (95% CI)	P
- Recurrence within 90 days	36 1.07 (1.01–1.13)	0.01	1.08 (1.02–1.15)	0.004	1.08 (1.02–1.15)	0.004
- Recurrence within 7 days	22 1.12 (1.05–1.21)	<0.001	1.14 (1.06–1.24)	<0.001	1.15 (1.07–1.25)	<0.001
- Recurrence during 8–90 days	14 1.00 (0.92–1.08)	0.90	1.00 (0.92–1.09)	0.97	NA\(^{\dagger}\)	NA\(^{\dagger}\)

\(^{\ddagger}\)Model 1: adjusted for NIHSS and clopidogrel loading.
\(^{\dagger}\)Model 2: adjusted for NIHSS, clopidogrel loading, and large artery occlusion.

Abbreviations: CI, confidence interval; N, number of patients; NA, not applicable; OR, odds ratio; and PRU, P2Y12 reaction units.

clopidogrel loading and higher PRU at 24 hours were significantly related to recurrence within 7 and 90 days. Large artery occlusion was significantly related to recurrence within 7, but not 90, days. NIHSS on admission was significantly related to recurrence within 90 days.

The results of multivariable logistic regression analysis for recurrence during the three time periods, are shown in Table 3. This was performed using two models: model 1 was adjusted for NIHSS and clopidogrel loading; model 2 was adjusted for NIHSS, clopidogrel loading, and large artery occlusion. A higher PRU at 24 hours was significantly associated with recurrence within 90 days (adjusted odds ratio (OR) per 10 units, 1.08; 95% CI, 1.02–1.15; \(p=0.01\)) and 7 days (adjusted OR per 10 units, 1.14; 95% CI, 1.06–1.24; \(p<0.001\)) for model 1, with similar associations observed for model 2. There was no significant association of PRU at 24 hours with recurrence during 8–90 days. Large artery occlusion was significantly associated with recurrence within 7 days in model 2 only (adjusted OR, 5.63; 95% CI, 2.03–15.62; \(p=0.001\)). The subgroup analysis of 140 patients receiving clopidogrel loading dose and 182 patients receiving dual antiplatelet therapy, including clopidogrel, revealed similar results (Supplemental Tables 1 and 2).

Analysis of the Genetic Testing Population

In the population of 194 patients undergoing genetic testing, the characteristics were similar to the entire study population (not shown). The genetic results are shown in Table 2. The distribution of the clopidogrel-metabolizing groups, according to CYP2C19 genotype, was as follows: 28%, 57%, and 15% for EM\(^{\ddagger}\) (n=55; *1/*1), IM (n=110; *1/*2, *1/*3), and PM (n=29; *2/*2, *2/*3, *3/*3) groups, respectively. The univariable and multivariable ROC analysis, adjusted for NIHSS and clopidogrel loading, found a PRU of 254 as the best cut-off value for predicting recurrence within 90 and 7 days. The multivariable ROC analysis showed the AUC for predicting recurrence within 7 days was greater, though non-significantly, than found during the 8–90-day period (AUC, 0.79; 95% CI, 0.69–0.88 versus AUC, 0.64; 95% CI, 0.50–0.77; \(p=0.08\)) (Fig. 2A, B, and C). Figure 2D shows a scatter plot of the 31 patients who experienced recurrence in the genetic testing population. High PRU (≥254) was identified in 13 of 18 patients (72%) who experienced recurrence within 7 days but in only 3 of 13 patients (23%) during 8–90 days. PM of CYP2C19 was shown in 6 of the 13 patients (46%) with high PRU (≥254) who experienced recurrence within 7 days.

Multivariable logistic regression analysis, adjusted for NIHSS and clopidogrel loading, showed recurrence within 7 days, and was significantly related to high PRU (≥254) (adjusted OR, 6.82; 95% CI, 2.23–20.9; \(p<0.001\)) and PM of CYP2C19 (adjusted OR, 5.84; 95% CI, 1.75–19.5; \(p=0.006\)). In the multivariable ROC curve adjusted for the same variables, the AUC of high PRU (≥254) for predicting recurrence within 7 days was greater (AUC, 0.79; 95% CI, 0.69–0.88 versus AUC, 0.71; 95% CI, 0.59–0.84; \(p=0.24\)), though not significantly, than PM of CYP2C19. NRI was also used to evaluate potential predictive improvement. The modified model, adding high PRU (≥254) to the basic model, including PM of CYP2C19, NIHSS, and clopidogrel loading, significantly improved the prediction of recurrence within 7 days: NRI, 0.83 (95% CI, 0.34–1.32; \(p<0.001\)) (Table 4).

In the subgroup of 121 patients receiving clopidogrel loading dose, multivariable logistic regression analysis showed high PRU (≥254) was significantly affected by the CYP2C19 PM genotype, older age, and proton pump inhibitors (Supplemental Fig. 1).
Fig. 2. Multivariable receiver operating characteristic curves and scatter plot showing the relationship between P2Y12 reaction units at 24 hours and recurrence (n = 194)

Multivariable receiver operating characteristic curves depicting predictive performance of the P2Y12 reaction units (PRU) assays for recurrence within 90 days (A), within 7 days (B), and during 8–90 days (C). Scatter plot showing correlation between PRU and the number of days to recurrence (D). Black squares show a value of PRU at 24 hours in the CYP2C19 poor metabolizer (PM) group. Empty circles show a value of PRU at 24 hours in the CYP2C19 extensive or intermediate metabolizer (EM/IM) group.

Table 4. Prediction performance of the P2Y12 assay and CYP2C19 genotyping for recurrence (n = 194)

	Recurrence within 7 days (n = 18)	Recurrence during 8–90 days (n = 13)
	Adjusted OR (95% CI) P	Adjusted OR (95% CI) P
PM of CYP2C19	5.84 (1.75–19.5) 0.006	2.94 (0.69–12.5) 0.23
PRU value ≥ 254	6.82 (2.23–20.9) < 0.001	1.34 (0.35–5.15) 0.67
Comparison of receiver operating characteristic	Adjusted AUC (95% CI) P	Adjusted AUC (95% CI) P
PM of CYP2C19 (Control)	0.71 (0.59–0.84) -	0.64 (0.49–0.79) -
PRU value ≥ 254	0.79 (0.70–0.88) 0.24	0.65 (0.49–0.80) 0.96
Assessment of risk reclassification	NRI (95% CI) P	NRI P
PM of CYP2C19	-	-
adjusted for NIHSS and CLP loading (Basic model)	Basic model + PRU value ≥ 254 0.83 (0.34–1.32) < 0.001	0.15 (-0.44–0.72) 0.60

Abbreviations: AUC, area-under-the-curve; CI, confidence interval; CLP, clopidogrel; h, hours; NIHSS, National Institutes of Health stroke scale; NRI, net reclassification improvement; OR, odds ratio; PM, poor metabolizer; PRU, P2Y12 reaction units; and ROC, receiver operating characteristic.
Discussion

This study yielded two main results in AIS or TIA with LAA. Firstly, high PRU (≥ 254) at 24 hours was significantly associated with recurrent ischemic stroke, especially in acute phase (within 7 days). Secondly, high PRU (≥ 254) had a comparable, or conditionally better, predictive performance for recurrence within 7 days, compared to PM of CYP2C19. To our knowledge, this is the first study to demonstrate the predictive performance of acute PRU evaluation for recurrence in AIS/TIA with LAA.

PRU is a predictive marker related to thromboembolic or hemorrhagic events in patients treated with P2Y12 receptor antagonists. Previous studies have shown acute thrombotic events are associated with high PRU measured early after percutaneous coronary intervention for coronary artery disease31) or endovascular therapy for cerebrovascular disorders32). In contrast, little is known about the association between clinical events and PRU in patients with AIS not undergoing endovascular therapy. A recent randomized clinical trial showed DAPT using ticagrelor/aspirin reduced the frequency of high PRU (>208) at 90 days (i.e. subacute PRU evaluation) and stroke recurrence within 90 days (i.e. during the acute and subacute stroke phase), compared with clopidogrel/aspirin, in patients with minor AIS or TIA, including patients with LAA33). This trial possesses similarities to the present study as the majority of study patients had mild neurological dysfunction at enrollment. The present study is relevant and complementary to the previous report, being the first to demonstrate the predictive value of acute PRU evaluation for recurrence in patients with high-risk AIS/TIA with LAA.

In this study, high PRU at 24 hours was independently significantly associated with recurrence, especially within 7 days. The ROC analysis showed a PRU of 254 as the best cut-off value for predicting recurrence, and greater AUC value for the PRU assay in predicting recurrence within 7 days compared to the 8–90-day period (AUC, 0.79 versus 0.64; $p=0.08$). Specifically, the association of recurrence with high PRU at 24 hours was affected by recurrence within 7, rather than 8–90, days. These results are consistent with our recent report10), which showed a difference in the effect of the CYP2C19 PM genotype for cerebrovascular events between the acute and subacute-chronic stroke phase, with a negative effect in the acute, but no significant effect in the chronic, stroke phase. In addition, a randomized clinical trial for AIS/TIA in Asian populations carrying the CYP2C19 PM genotype showed acute DAPT using a combination of aspirin and clopidogrel with loading dose was superior to aspirin alone for reducing the risk of recurrent stroke, which mainly occurred during the acute stroke phase19, 34), suggesting the clinical importance of adequate antiplatelet therapy in AIS/TIA. Thus, we predict the current and previous studies emphasize the importance of the antiplatelet effects of clopidogrel and the CYP2C19 gene polymorphism for antiplatelet therapy in AIS. The PRU assay findings might suggest effective antiplatelet therapy should be initiated and continued for at least 1 week after AIS/TIA with LAA onset.

The study also found high PRU at 24 hours (≥ 254) had a predictive performance for recurrence within 7 days (adjusted OR, 6.82; 95% CI, 2.23–20.9), which was comparable to PM of CYP2C19 (adjusted OR, 5.84; 95% CI, 1.75–19.5) (AUC, 0.79; 95% CI, 0.69–0.88 versus 0.71; 95% CI, 0.59–0.84; $p=0.24$). Furthermore, NRI analysis showed significantly improved risk prediction with the addition of PRU evaluation to the CYP2C19 genotyping model (0.83; 95% CI, 0.34–1.32; $p<0.001$). Influencing factors for platelet reactivity other than the CYP2C19 polymorphism could explain this effect. Our results showed not only PM of CYP2C19, but also PPIs and older age, were significantly associated with high PRU (≥ 254) at 24 hours. In addition, the administration of statins and cilostazol tended to be inversely associated with PRU at 24 hours in univariable analysis. PRU evaluation therefore appears favorable to genetic testing, as it allows a more rapid and direct measure of the consequent antiplatelet effect and how this is affected by influencing factors. In AIS/TIA with LAA, acute PRU evaluation directly measuring platelet reactivity is acceptable for clinical use as AIS/TIA patients are usually exposed to such influencing factors and may experience difficulty receiving genetic testing during the acute phase.

This study has several limitations. Firstly, it is an observational design, with the chosen antiplatelet and anticoagulant agents dependent on the discretion of the patient’s stroke neurologist or neurosurgeon. However, most patients received relatively uniform treatment with DAPT and argatroban through adherence to the Japanese Guidelines for AIS. In addition, the reason for the association between recurrence and clopidogrel loading may lie in the choice of high-risk AIS/TIA by physicians treating the patients. Secondly, the study had no data on novel P2Y12 receptor antagonists. Nevertheless, our results indicate that acute PRU evaluation can identify patients at high risk of recurrence who should be considered for change in P2Y12 receptor antagonists.
Conflicts of Interest/Competing Interests

Dr. Hiroshi Yamagami and Dr. Kazunori Toyoda have received speaker’s honoraria from Bayer and Daiichi Sankyo. Dr. Ryo Itabashi has received speaker’s honoraria from Daiichi Sankyo. Dr. Shigeki Miyata has received research support and speaker honoraria from Daiichi Sankyo Co., Ltd. and Mitsubishi Tanabe Pharma Corporation, both of whom manufacture argatroban, used in the treatment of patients with acute ischemic stroke in this study. Dr. Shigeki Miyata is currently working at the Central Blood Institute, Japanese Red Cross Society, which manufactures blood products related to the secondary outcome of this study. The other authors report no conflicts of interest in connection with this study.

Funding

by the Intramural Research Fund (22-1-1 and 26-4-4) for Cardiovascular Diseases of National Cerebral and Cardiovascular Center.

Authors’ Contributions

HY and KaN. conceived and designed the study, with additional input from KE, MI, TT, TM, SM, KK, HY, MH, KK, YE, RI, EF, YM, ME, KT, KH, SU, and KT. All authors contributed to data acquisition, analysis, and interpretation. TM, SM, and KK contributed to the experimental studies. KF and HY performed the statistical analysis. TM, SM, and HY contributed to drafting of text and preparation of figures. All authors reviewed and commented on the manuscript.

References

1) Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leonardi-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV and Tirschwell DL: Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2019; 50: e344-e418
2) Savi P, Herbert JM, Pfieger AM, Del F, Delebase D, Combalbert J, Defrey G and Maffrand JP: Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol, 1992; 44: 527-532
3) Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM and Taubert D: Impact of CYP2C19 variant genotype (e.g. clopidogrel to novel P2Y12 receptor antagonists) and concomitant drugs (e.g. PPIs to novel acid-inhibitory drugs, such as vonoprazan, whose metabolism is independent of CYP2C19 genotype). Further research is needed to confirm whether a change in P2Y12 receptor antagonists (i.e. clopidogrel to novel P2Y12 receptor antagonists) can reduce recurrence during the acute phase in ischemic stroke/TIA with LAA with high PRU. Thirdly, this study included participants from Asian populations only. Whilst limiting the study’s scope, this did provide advantages in obtaining evidence of acute PRU evaluation because of the high frequency of intracranial LAA and PM of CYP2C19 in Asian populations. In addition, our recent study demonstrated that the Asian-specific RNF213 p. R4810K variant partly explains the high frequency of the intracranial LAA subtype in Asian populations. A future treatment strategy for IS/TIA with LAA in Asian populations may be tailored to platelet reactivity monitoring and variants of the CYP2C19 and RNF213 genotype.

Conclusions

This study demonstrates acute PRU evaluation has predictive value for recurrent ischemic stroke, especially within 7 days in high-risk AIS/TIA with large artery stenosis/occlusion. High PRU (≥ 254) has greater reliability in predicting recurrence within 7 days than CYP2C19 genetic testing, as rapidly assessed PRU can monitor the antiplatelet effects of P2Y12 receptor antagonists affected not only by gene polymorphism but also environmental factors. This finding suggests potential for tailored treatments with novel P2Y12 receptor antagonists based on platelet reactivity monitoring in AIS/TIA with LAA.

Acknowledgements

We thank the PRAISE study investigators for their contribution to the study: Dr. Yoshikazu Uesaka (Toranomon Hospital), Dr. Yoshiomi Shimizu (Hoshigaoka Kouseinenkin Hospital), Dr. Manabu Sakaguchi (Osaka University hospital), Dr. Tatsuro Takada (St. Marianna University Toyoko Hospital), Dr. Kazuo Kitagawa (Tokyo Women’s Medical University School of Medicine), Dr. Yoshinari Nagakane (Kyoto Second Red Cross Hospital), Dr. Ichiro Nakahara (Kokura Memorial Hospital), and Kazumasa Arii (Ebara Hospital). We are grateful to all patients who participated in this study, Kana Ueda for the data management and Kazuyoshi Nakai for the platelet reactivity assays.

(e.g. clopidogrel to novel P2Y12 receptor antagonists) and concomitant drugs (e.g. PPIs to novel acid-inhibitory drugs, such as vonoprazan, whose metabolism is independent of CYP2C19 genotype). Further research is needed to confirm whether a change in P2Y12 receptor antagonists (i.e. clopidogrel to novel P2Y12 receptor antagonists) can reduce recurrence during the acute phase in ischemic stroke/TIA with LAA with high PRU. Thirdly, this study included participants from Asian populations only. Whilst limiting the study’s scope, this did provide advantages in obtaining evidence of acute PRU evaluation because of the high frequency of intracranial LAA and PM of CYP2C19 in Asian populations. In addition, our recent study demonstrated that the Asian-specific RNF213 p. R4810K variant partly explains the high frequency of the intracranial LAA subtype in Asian populations. A future treatment strategy for IS/TIA with LAA in Asian populations may be tailored to platelet reactivity monitoring and variants of the CYP2C19 and RNF213 genotype.

Conclusions

This study demonstrates acute PRU evaluation has predictive value for recurrent ischemic stroke, especially within 7 days in high-risk AIS/TIA with large artery stenosis/occlusion. High PRU (≥ 254) has greater reliability in predicting recurrence within 7 days than CYP2C19 genetic testing, as rapidly assessed PRU can monitor the antiplatelet effects of P2Y12 receptor antagonists affected not only by gene polymorphism but also environmental factors. This finding suggests potential for tailored treatments with novel P2Y12 receptor antagonists based on platelet reactivity monitoring in AIS/TIA with LAA.

Acknowledgements

We thank the PRAISE study investigators for their contribution to the study: Dr. Yoshikazu Uesaka (Toranomon Hospital), Dr. Yoshiomi Shimizu (Hoshigaoka Kouseinenkin Hospital), Dr. Manabu Sakaguchi (Osaka University hospital), Dr. Tatsuro Takada (St. Marianna University Toyoko Hospital), Dr. Kazuo Kitagawa (Tokyo Women’s Medical University School of Medicine), Dr. Yoshinari Nagakane (Kyoto Second Red Cross Hospital), Dr. Ichiro Nakahara (Kokura Memorial Hospital), and Kazumasa Arii (Ebara Hospital). We are grateful to all patients who participated in this study, Kana Ueda for the data management and Kazuyoshi Nakai for the platelet reactivity assays.
genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ, 2011; 343: d4588
4) Banerjee C and Chimowitz MI: Stroke Caused by Atherosclerosis of the Major Intracranial Arteries. Circ Res, 2017; 120: 502-513
5) Ormello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, Carolei A and Sacco S: Distribution and Temporal Trends From 1993 to 2015 of Ischemic Stroke Subtypes: A Systematic Review and Meta-Analysis. Stroke, 2018; 49: 814-819
6) Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, Li X, Huang L, Johnston SC, Zhao X, Liu L, Zhang Q, Wang G, Wang Y and Wang Y: Genetic Polymorphisms and Clopidogrel Efficacy for Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis. Circulation, 2017; 135: 21-33
7) Han Y, Lv HH, Liu X, Dong Q, Yang XL, Li SX, Wu S, Jiang JM, Luo Z, Zhu DS, Zhang Y, Zheng Y, Guan YT and Xu JF: Influence of Genetic Polymorphisms on Clopidogrel Response and Clinical Outcomes in Patients with Acute Ischemic Stroke CYP2C19 Genotype on Clopidogrel Response. CNS Neurosci Ther, 2015; 21: 692-697
8) McDonough CW, McClure LA, Mitchell BD, Gong Y, Horenstein RB, Lewis JP, Field TS, Talbert RL, Benavente OR, Johnson JA and Shuldiner AR: CYP2C19 metabolizer status and clopidogrel efficacy in the Secondary Prevention of Small Subcortical Strokes (SPS3) study. J Am Heart Assoc, 2015; 4: e001652
9) Hoh BL, Gong Y, McDonough CW, Waters MF, Royster AJ, Sheehan TO, Burkley B, Langaee TY, Mocco J, Zuckerman SL, Mummaeddin N, Stephens ML, 2nd, Ingram C, Shaffer CM, Denny JC, Brilliant MH, Kitchner TE, Linneman JG, Roden DM and Johnson JA: CYP2C19 and CES1 polymorphisms and efficacy of clopidogrel and aspirin dual antiplatelet therapy in patients with symptomatic intracranial atherosclerotic disease. J Neurosurg, 2016; 124: 1746-1751
10) Tanaka T, Yamagami H, Ihara M, Miyata T, Miyata S, Hamasaki T, Amano S, Fukuma K, Yamamoto H, Nagakawa J, Furui E, Uchiyama S, Hyun B, Yamamoto H, Manabe Y, Ito Y, Fukunaga R, Abumiya T, Yamasaki L, Kitagawa K, Toyoda K and Nagatsu K: Association of CYP2C19 Polymorphisms With Clopidogrel Reactivity and Clinical Outcomes in Chronic Ischemic Stroke. Circ J, 2019; 83: 1385-1393
11) Jia DM, Chen ZB, Zhang MJ, Yang WJ, Jin JL, Xia YQ, Zhang CL, Shao Y, Chen C and Xu Y: CYP2C19 polymorphisms and antiplatelet effects of clopidogrel in acute ischemic stroke in China. Stroke, 2013; 44: 1717-1719
12) Zhang S, Lai X, Li W, Xiong Z, Xu A, Xu A and Huang L: VASP phosphorylation and genetic polymorphism for clopidogrel resistance in Chinese patients with non-cardioembolic ischemic stroke. Thromb Res, 2014; 134: 1272-1277
13) Qiu LN, Sun Y, Wang L, Han RF, Xia XS, Liu J and Li X: Influence of CYP2C19 polymorphisms on platelet reactivity and clinical outcomes in ischemic stroke patients treated with clopidogrel. Eur J Pharmacol, 2015;
25) Oppenheim C, Stanescu R, Dormont D, Crozier S, Marro B, Samson Y, Rancurel G and Marsault C: False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol, 2000; 21: 1434-1440

26) Kaikita K, Yoshimura H, Ishii M, Kudoh T, Yamada Y, Yamamoto E, Izumiya Y, Kojima S, Shimomura H, Tsunoda R, Matsu K, Ogawa H, Tsujita K and Investigators C-G: Tailored Adjunctive Cilostazol Therapy Based on CYP2C19 Genotyping in Patients With Acute Myocardial Infarction- The CALDERA-GENE Study. Circ J, 2018; 82: 1517-1525

27) Suh JW, Cha MJ, Lee SP, Chae IH, Bae JH, Kwon TG, Bae JW, Cho MC, Rha SW and Kim HS: Relationship between statin type and responsiveness to clopidogrel in patients treated with percutaneous coronary intervention: a subgroup analysis of the CILON-T trial. J Atheroscler Thromb, 2014; 21: 140-150

28) Saiz-Rodriguez M, Romero-Palacian D, Villalobos-Vilda C, Caniego JL, Belmonte C, Koller D, Barcena E, Talegon M and Abad-Santos F: Influence of CYP2C19 Phenotype on the Effect of Clopidogrel in Patients Undergoing a Percutaneous Neurointervention Procedure. Clin Pharmacol Ther, 2019; 105: 661-671

29) Park SH, Kim W, Park CS, Kang WY, Hwang SH and Kim W: A comparison of clopidogrel responsiveness in patients with versus without chronic renal failure. Am J Cardiol, 2009; 104: 1292-1295

30) Giustino G, Kirtane AJ, Genereux P, Baber U, Witzenbichler B, Neumann FJ, Weisz G, Maehara A, Rinaldi MJ, Metzger C, Henry TD, Cox DA, Duffy PL, Mazzaferr E, Jr., Brodie BR, Stuckey TD, Dangas GD, Francese DP, Litherland C, Mehran R and Stone GW: Relation Between Platelet Count and Platelet Reactivity to Thrombotic and Bleeding Risk: From the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents Study. Am J Cardiol, 2016; 117: 1703-1713

31) Kirtane AJ, Parikh PB, Stuckey TD, Xu K, Witzenbichler B, Weisz G, Rinaldi MJ, Neumann FJ, Metzger DC, Henry TD, Cox DA, Duffy PL, Brodie BR, Mazzaferr E, Jr., Parvataneni R, Maehara A, Genereux P, Mehran R and Stone GW: Is There an Ideal Level of Platelet P2Y12-Receptor Inhibition in Patients Undergoing Percutaneous Coronary Intervention?: “Window” Analysis From the ADAPT-DES Study (Assessment of Dual AntiPlatelet Therapy With Drug-Eluting Stents). JACC Cardiovasc Interv, 2015; 8: 1978-1987

32) Kim BJ, Kwon JY, Jung JM, Lee DH, Kang DW, Kim JS and Kwon SU: Association between silent embolic cerebral infarction and continuous increase of P2Y12 reaction units after neurovascular stenting. J Neurosurg, 2014; 121: 891-898

33) Wang Y, Chen W, Lin Y, Meng X, Chen G, Wang Z, Wu J, Wang D, Li J, Cao Y, Xu Y, Zhang G, Li X, Pan Y, Li H, Zhao X, Liu L, Lin J, Dong K, Jing J, Johnston SC, Wang D, Wang Y and Group PPS: Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: open label, blinded endpoint, randomised controlled phase II trial. BMJ, 2019; 365: l2211

34) Wang Y, Yang Y, Zhao X, Liu L, Wang D, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC and Investigators C: Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med, 2013; 369: 11-19

35) Okazaki S, Morimoto T, Kamatani Y, Kamimura T, Kobayashi H, Harada K, Tomita T, Higashiyama A, Takahashi JC, Nakagawara J, Koga M, Toyokod, Washida K, Saito S, Takahashi A, Hirata M, Matsuda K, Mochizuki H, Chong M, Pare G, O’Donnell M, Aga T, Hata J, Ninomiya T, Dchia M, Debette S, Kubo M, Koizumi A and Ikara M: Moyamoya Disease Susceptibility Variant RNF213 p.R4810K Increases the Risk of Ischemic Stroke Attributable to Large-Artery Atherosclerosis. Circulation, 2019; 139: 295-298
Supplemental Results

Details of Primary Outcomes
Among the 32 patients with recurrent ischemic stroke, 30 patients presented neurological deterioration, with new acute ischemic lesions on brain MRI at the time of worsening within 90 days after enrollment. The remaining two patients presented apparent neurological deterioration (≥ 4-point increase in NIHSS score compared to the admission score), without new lesions on brain MRI at the time of worsening and subsequent delayed responsible ischemic lesions, referable to the large artery stenosis/occlusion, on follow-up brain MRI within 30 days after enrollment. The median (range, interquartile range) number of days to recurrence was 4.5 days (0–75 days, 1–31.75 days).

Details of Secondary Outcomes
All-cause death occurred in a patient who had obstructive hydrocephalus due to multiple infarctions, including in the cerebellar hemisphere. Major bleeding occurred in 4 patients treated with clopidogrel and aspirin; 2 of the 4 patients had a low PRU value at 72h (156 and 128, respectively), and no drugs and comorbidities affecting PRU reduction. Possible causes of serious bleeding may be low platelet reaction, dual antiplatelet therapy or organic cause/bruise injury. No patient had an acute myocardial infarction.

Endovascular/Neurosurgical Treatment
Fifty patients underwent endovascular/neurosurgical treatment: 3 for thrombectomy, 5 for angioplasty, 1 for intracranial artery stenting, 8 for carotid artery stenting, 27 for carotid endarterectomy, and 8 for superficial temporal artery-middle cerebral artery bypass. Two patients underwent two procedures: one in thrombectomy and angioplasty, the other in thrombectomy and intracranial stenting. In the 50 patients who underwent endovascular/neurosurgical treatment, all recurrence of ischemic stroke occurred before endovascular/neurosurgical treatment. The median number from recurrence to endovascular/neurosurgical treatment was 1 day (range, 0–56 days).

Subgroup Analysis of the Patients who Received Clopidogrel Loading Dose (n=140)
The results of multivariable logistic regression analysis for the primary outcomes divided by time period in the patients who received clopidogrel loading dose, are shown in Supplemental Table 1. This was performed using two models: model 1 was adjusted for NIHSS; model 2 was adjusted for NIHSS and large artery occlusion. A higher PRU at 24 hours was significantly associated with recurrence within 90 days (adjusted odds ratio (OR) per 10 units, 1.07; 95% CI, 1.01–1.14; p=0.03) and 7 days (adjusted OR per 10 units, 1.12; 95% CI, 1.03–1.21; p=0.003) for model 1, with similar associations observed for model 2. There was no significant association of PRU at 24 hours with recurrence during 8–90 days.

Subgroup Analysis of the Patients who Received Dual Antiplatelet Therapy including Clopidogrel (n=182)
The results of multivariable logistic regression analysis for the primary outcomes divided by time period in the patients who received dual antiplatelet therapy including clopidogrel, are shown in Supplemental Table 2. This was performed using two models: model 1 was adjusted for NIHSS; model 2 was adjusted for NIHSS and large artery occlusion. A higher PRU at 24 hours was significantly associated with recurrence within 90 days (adjusted OR per 10 units, 1.09; 95% CI, 1.02–1.16; p=0.004) and 7 days (adjusted OR per 10 units, 1.16; 95% CI, 1.07–1.26; p<0.001) for model 1, with similar associations observed for model 2. There was no significant association of PRU at 24 hours with recurrence during 8–90 days.

Association between PRU and Recurrent Ischemic Stroke according to the Severity of Stenosis of the Responsible Artery
The results of multivariable logistic regression analysis for the primary outcomes according to the severity of stenosis of the responsible artery, are shown in Supplemental Table 3. This model was adjusted for NIHSS and clopidogrel loading. Within the 147 patients with arterial occlusion or severe stenosis, a higher PRU at 24 hours was significantly associated with recurrence within 90 days (adjusted OR per 10 units, 1.09; 95% CI, 1.02–1.16; p=0.004) and 7 days (adjusted OR per 10 units, 1.16; 95% CI, 1.07–1.26; p<0.001); however, there was no significant association of PRU at 24 hours with recurrence during 8–90 days. In contrast, of the 78 patients with moderate arterial stenosis, there was no significant association of PRU at 24 hours with recurrence during any periods in multivariable analysis. Similar associations were obtained in univariable analysis.

Subgroup Analysis of Patients with Transient Ischemic Attack (n=39)
Thirty-nine patients with transient ischemic attack (TIA) were included in the present study. While
not collecting data on the ABCD2 score itself, three of five factors for the score (age, blood pressure, and diabetes) were compiled. Within the 39 TIA patients, there was no difference in: (i) age over 60 years (100% versus 79%, \(p=0.56 \)), (ii) blood pressure over 140/90 mmHg (100% versus 82%, \(p=0.57 \)), (iii) diabetes (40% versus 24%, \(p=0.59 \)) and (iv) subtotal score using the three factors (median, 2 (IQR, 2–3) versus median, 2 (IQR, 2–2)) between the patients with and without recurrence (shown in Supplemental Table 4). A subgroup analysis of the 39 TIA patients showed that administration types of clopidogrel were not different between those with and without severe stenosis/occlusion in terms of continued use of standard dose (12% versus 0%), newly administered standard dose (23% versus 0%), and newly administered loading dose (65% versus 100%) (\(\chi^2 \) test, \(p=0.054 \)).

References

1) Rothwell PM, Giles MF, Flossmann E, Lovelock CE, Redgrave JN, Warlow CP and Mehta Z: A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet, 2005; 366: 29-36
Supplemental Table 1. Multivariable logistic regression analysis of P2Y12 reaction units and clinical variables associated with recurrent ischemic stroke in patients receiving clopidogrel loading dose (n=140)

PRU at 24 hours, 10 units	N	Unadjusted OR (95% CI)	P	Model 1\(^8\) OR (95% CI)	P	Model 2\(^9\) OR (95% CI)	P
- Recurrence within 90 days	24	1.07 (1.01–1.14)	0.03	1.07 (1.00–1.14)	0.03	1.07 (1.00–1.14)	0.03
- Recurrence within 7 days	14	1.12 (1.03–1.21)	0.003	1.12 (1.03–1.21)	0.03	1.12 (1.04–1.22)	0.002
- Recurrence during 8–90 days	10	0.99 (0.90–1.09)	0.90	0.99 (0.90–1.09)	0.97	NA\(^8\)	NA\(^8\)

\(^8\)Model 1: Adjusted for NIHSS.
\(^9\)Model 2: Adjusted for NIHSS and large artery occlusion.
\(^\text{NA}\)The multivariable analysis using model 2 of recurrence during 8–90 days could not be performed as large artery occlusion perfectly predicted recurrence within 7 days.

Abbreviations: CI, confidence interval; N, number of patients; NA, not applicable; OR, odds ratio; and PRU, P2Y12 reaction units.

Supplemental Table 2. Multivariable logistic regression analysis of P2Y12 reaction units and clinical variables associated with recurrent ischemic stroke in patients receiving dual antiplatelet therapy including clopidogrel (n=182)

PRU at 24 hours, 10 units	N	Unadjusted OR (95% CI)	P	Model 1\(^8\) OR (95% CI)	P	Model 2\(^9\) OR (95% CI)	P
- Recurrence within 90 days	32	1.09 (1.03–1.16)	0.003	1.09 (1.02–1.16)	0.004	1.09 (1.02–1.15)	0.005
- Recurrence within 7 days	20	1.16 (1.07–1.26)	0.004	1.16 (1.07–1.26)	<0.001	1.16 (1.06–1.26)	0.002
- Recurrence during 8–90 days	12	1.00 (0.92–1.10)	0.93	1.00 (0.92–1.09)	0.96	NA\(^8\)	NA\(^8\)

\(^8\)Model 1: Adjusted for NIHSS.
\(^9\)Model 2: Adjusted for NIHSS and large artery occlusion.
\(^\text{NA}\)The multivariable analysis using model 2 of recurrence during 8–90 days could not be performed as large artery occlusion perfectly predicted recurrence within 7 days.

Abbreviations: CI, confidence interval; N, number of patients; NA, not applicable; OR, odds ratio; and PRU, P2Y12 reaction units.
Supplemental Fig. 1. The association between P2Y12 reaction units and possible influencing factors of clopidogrel responsiveness in patients undergoing genetic testing and receiving clopidogrel loading dose (n = 121)

In the group of 121 patients undergoing genetic testing and receiving clopidogrel loading dose, the association between PRU and possible factors influencing platelet reactivity was analyzed. In univariable analysis, PRU at 24 hours was significantly higher in the patients treated with proton pump inhibitors (PPIs) on admission than those not (221.1 ± 59.9 versus 185.1 ± 80.4; \(p = 0.04 \)). There was no significant difference in PRU at 24 hours between the three types of PPIs: (i) rabeprazole, (ii) esomeprazole/omeprazole, and lansoprazole, (iii) (299.5 ± 0.71, 0.10, 228.6±62.7, versus 218.7±59.0). Furthermore, PRU at 24 hours tended to be higher in patients over 70 years (222.1 ± 65.3 versus 201.3±66.0; \(p = 0.09 \)) and in the order of PM, IM, and EM for CYP2C19 (242.9±77.2, 217.6±60.9, and 189.5±68.0, respectively). In multivariable logistic regression analysis adjusted for the possible influencing factors with a \(p \) value <0.05 in the crude analysis or clinical significance (PM of CYP2C19, age over 70 years, and PPIs at the treatment starting point), PM of CYP2C19 (adjusted OR, 3.77; 95% CI, 1.11–12.86; \(p = 0.034 \)), age over 70 years (adjusted OR, 2.46; 95% CI, 1.02–5.93; \(p = 0.045 \)), and PPIs (adjusted OR, 3.38; 95% CI, 1.0–11.22; \(p =0.04 \)) were significantly associated with high PRU (≥ 254) at 24 hours.

Possible influencing factors	n	Mean (SD)	\(p \) value	Multivariable logistic regression analysis for high PRU at 24h (≥254)
CYP2C19 variants				
- PM	14		0.08	
- IM	76			
- EM	31			
Age >70			0.09	
Present	70			
Absent	51			
Sex, female			0.2	
Present	88			
Absent	33			
BMI			0.34	
Present	86			
Absent	35			
Smoking habit			0.41	
Present	37			
Absent	84			
Diabetes mellitus			0.65	
Present	37			
Absent	84			
eGFR <60 mL/min			0.47	
Present	73			
Absent	48			
Platelet count <15 x10^9/μL			0.35	
Present	18			
Absent	103			
Medication				
Cilostazol			0.21	
Present	108			
Absent	13			
Statins			0.12	
Present	101			
Absent	20			
Proton pump inhibitors			0.04	
Present	95			
Absent	26			
- Rabeprazole			0.10	
Present	2			
Absent	80			
- Esomeprazole/omeprazole				
Present	13			
Absent	76			
- Lansoprazole				
Present	6			
Absent	60			

BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; EM, extensive metabolizer; h, hour; IM, intermediate metabolizer; OR, odds ratio; PM, poor metabolizer; PPIs, proton pump inhibitors; PRU, P2Y12 reaction units; SD, standard deviation.
Supplemental Table 3. Multivariable logistic regression analysis for recurrent ischemic stroke, according to the severity of the responsible artery

Severe stenosis/occlusion (n=147)	Moderate stenosis (n=78)					
	N	Adjusted OR (95% CI)	P	N	Adjusted OR (95% CI)	P
PRU at 24 hours, 10 units						
- Recurrence within 90 days	25	1.10 (1.03–1.18)	0.005	11	1.04 (0.92–1.17)	0.54
- Recurrence within 7 days	17	1.17 (1.07–1.28)	<0.001	5	1.05 (0.88–1.26)	0.61
- Recurrence during 8–90 days	8	0.99 (0.89–1.09)	0.79	6	1.03 (0.89–1.18)	0.71

The model was adjusted for NIHSS and clopidogrel loading.
Abbreviations: CI, confidence interval; N, number of patients; OR, odds ratio; and PRU, P2Y12 reaction units.

Supplemental Table 4. Subgroup analysis of the patients with transient ischemic attack (n=39)

Factors in the ABCD2 score	Non-recurrence (n=34)	Recurrence within 90 days (n=)	P	Recurrence within 7 days (n=2)	P
Age over 60 years	27 (79)	5 (100)	0.56	2 (100)	>0.99
Blood pressure over 140/90 mmHg	28 (82)	5 (100)	0.57	2 (100)	>0.99
Diabetes mellitus	8 (24)	2 (40)	0.59	1 (50)	0.44
Imaging findings for the responsible artery					
Severe stenosis/occlusion	23 (68)	3 (60)	>0.99	0 (0)	>0.99
Moderate stenosis	11 (32)	2 (40)		2 (100)	

Table comparing non-recurrence with recurrence in the study population within 90 days and 7 days groups, respectively (as shown in Fig. 1). Data are presented as n (%).

Supplemental Fig. 2. The association between P2Y12 reaction units and clopidogrel loading

In the group of 212 patients undergoing PRU evaluation at 24 and 72 hours after initiation of antiplatelet therapy and receiving newly administered loading dose (300 mg) or newly administered standard dose (75 mg) of clopidogrel, the association between PRU and clopidogrel loading was analyzed using Wilcoxon rank-sum test. Patients with clopidogrel loading showed a significantly higher mean value of PRU at 24 hours compared with those without clopidogrel loading (213.0±72.6 versus 235.3±65.1; P=0.008). In contrast, there was no significant difference in PRU at 72 hours between the two groups (201.1±79.0 versus 210.2±85.4; p=0.53).