Head Injury and Parkinson Disease: Updated Evidence from Meta-Analysis Studies

yanhu ji
Anhui Medical University
https://orcid.org/0000-0002-3973-4226

Junjun Xue
Anhui Medical University

Yuhuan Ling
Anhui Medical University

Chunhan Shen
Anhui Medical University

Niannian Li
Anhui Medical University

Heng Wang (wangheng1969@163.com)

Research

Keywords: Parkinson disease, head injury, meta-analysis, systematic review

DOI: https://doi.org/10.21203/rs.3.rs-31754/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background Published studies on head injury and Parkinson's risk (PD) were inconsistent. We performed a meta-analysis study to explore the association.

Methods We retrieved articles published in English from PubMed, Web of Science, Scopus and ScienceDirect between January 1, 1990 and December 31, 2019. The pooled effect of head injury and PD risk was calculated by a random effect model.

Results In the meta-analysis, there were 21 studies, including 214763 individuals and 39209 PD patients. The pooled OR estimates (ORs) showed an increased risk of PD was correlated with head injury (OR = 1.46, 95% CI 1.29–1.66). Considering the unconscious state, head injury with LOC showed significant association with PD (OR = 1.49, 95% CI 1.28–1.74). However, head injury without LOC had no significant association with PD (OR = 0.57, 95% CI 0.29–1.12). Sensitivity analysis showed that, when any one study was excluded, the results did not change significantly.

Conclusions Our research shows that head injury was associated with PD risk. This study provides a basis and reference for further study on head injury and PD.

Background

As a serious global public health problem, head injury have received great attention from various countries. Head injury had become the main cause of deaths and mutilations and more than 10 million people were affected each year, leading to death or hospitalization [1]. Parkinson's disease (PD) is a common neurodegenerative disease that can cause progressive dyskinesia, such as resting tremor, stiffness and bradykinesia, which were often reported in patients with head injury [2, 3]. A person with head injury will increase the risk of PD, this possibility has great social and medical significance.

Studies have shown that neuroinflammation is one of the pathogenesis of PD [4]. Head injury could cause neuroinflammation, which may be the most reasonable explanation for the correlation between them. Moreover, some researches show that head injury would damage the blood-brain barrier, leading to leukocyte infiltration and microglia activation [5] and could damage mitochondrial function, causing glutamate excitotoxicity, which are related to Neurodegenerative diseases, including PD [6–8]. To date, many studies related to head injury and PD have been published. Although some studies have reported head injury can increase the PD risk [9–11], there are also studies that cannot confirm the association [12–13]. In view of the inconsistency between the existing research literature, we conducted a meta-analysis to quantitatively evaluate the correlation.

Methods

We completed the meta-analysis following the guidelines published by the MOOSE group [14] (S1Table) and PRISMA group (S1Appendix) in this meta-analysis studies [36].
Literature Search

We retrieved relevant articles published in English from PubMed, Scopus, Web of Science and ScienceDirect between January 1, 1990 and December 31, 2019. The search terms include “head injury”, “head injuries”, “Parkinson disease”, “brain injury”, “Parkinson's disease”, “brain injuries”, “parkinsonism”, “head trauma”, “traumatic brain injury”, two reviewers (N.L. and J.X.) independently checked the full text articles to extract data on study characteristics. Only cohort studies and case-control studies were retrieved. We also retrieved a reference list of related studies. The flowchart of literature search was showed in Fig. 1.

Eligibility Criteria

If the following conditions were met, the study was eligible for inclusion: (1) head injury was taken as the target variable; (2) PD diagnosed by doctors was defined as the target result; and (3) provided ORs and corresponding 95% CIs or provided enough information to calculate.

Data Extraction and Quality Evaluation

We extracted the data included author, publication year, sample size, study design, PD definition, exposure variables or CI and adjustment factors. When multiple estimates were reported, adjusted estimates are included. If no other factors are adjusted, rough risk estimates were included.

The Newcastle-Ottawa Quality Assessment Scale [15] was used to evaluate the quality of studies. It included 9 questions and the full score was 9 points, each satisfied answer received 1 point. Only most questions are considered satisfactory (ie not less than 7 points), we considered the study as high methodological quality. There had two independent researchers (Y.L. and C.S.) performed the data extraction and quality assessment. Discrepancies between these results were resolved with a joint reassessment and a consensus was reached.

Statistical Analysis

Considering the heterogeneity between studies, we performed a random-effect model to calculate the pooled ORs. Heterogeneity of the included studies between head injury and PD was quantified by I-squared (I^2) statistic and Q-statistic. When the I^2 value is 25%, 50% and 75%, it can represent low, medium and high heterogeneity levels. Prespecified subgroup analyses were conducted according to unconsciousness status, publication year (before 2005 versus after 2005(included)), study region (Europe, America and Asia) and study quality score (\geq 7 versus < 7). Sensitivity analyses were conducted by removing researches one by one. Funnel plots was used to assess the publication bias, a symmetric inverted funne-shaped or egger test ($P \geq 0.05$) indicated no publication bias. All the analyses were undertaken using Stata 12.0 software (StataCorp, College Station, TX).

Results
Study characteristics

After a full-text evaluation, a total of 21 case-control studies[2, 10–11, 16–33] met the inclusion criteria. Among these studies, 9 studies carried out in America[10, 11, 17, 18, 20, 21, 22, 26, 28], 9 studies in Europe[2, 16, 19, 23, 24, 25, 27, 31, 33] and 3 studies in Asia[29, 30, 32]. Eight studies were published before 2005[10, 11, 19, 22, 25, 31, 32, 33] and 13 afterwards[2, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 30]. The study quality scores of 15 studies were greater than or equal to 7[2, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 30, 31, 32] and the scores of 6 studies were less than 7[10, 19, 22, 28, 29, 33]. There were 21 studies, including 214763 individuals and 39209 PD patients. Table 1 shows the include studies characteristics. We evaluated the quality of the included studies, including those with a score of 7 or above [2, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 30, 31, 32] and those with a score of less than 7[10, 19, 22, 28, 29, 33]. Quality assessment was presented in the supplementary material (S2 Table).
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustment
Baldereschi et al., 2003	Italian	case-control	113 cases, 4383 controls	at least two of the four cardinal signs (rest tremor, rigidity, bradykinesia, and impaired postural reflexes)	head trauma with LOC	0.85 (0.45–1.66)	age, sex, years of schooling, smoking, pesticide use license
Bower et al., 2003	American	case-control	196 Cases, 196 controls	at least two of the four cardinal signs (rest tremor, rigidity, bradykinesia, and impaired postural reflexes)	any head trauma	4.3 (1.2–15.2)	Not-reported
					mild traumas without LOC	1.0 (0.1–7.1)	
					mild traumas with LOC	11.0 (1.4–85.2)	

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson’s disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
Dick et al., 2007	Scotland, Italy, Sweden, Romania and Malta	Case-control	Cases, 1989 controls	Cases were defined using the United Kingdom Parkinson's Disease Society Brain Bank criteria, and those with drug-induced or vascular parkinsonism or dementia were excluded	Ever knocked unconscious	1.35 (1.09 – 1.68)	Age, sex, country, ever having used tobacco, ever having been knocked unconscious and first degree family history of Parkinson's disease
Fang et al., 2012	Sweden	Nested case-control	18,648 cases, 93,240 controls	defined as hospitalization for head injury	Any head injury	1.42 (1.30 – 1.54)	Year of birth, sex
Goldman et al., 2006	American	Case-control	93 Twin pairs and Twenty-six of 93 discordant pairs had at least 1 head-injured twin	core assessment program for intracerebral transplants diagnostic criteria were used	Any head injury	3.8 (1.3 – 11)	Adjusted for respondent type (proxy, subject), cigarette pack-years quartile.
Goldman et al., 2006	American	Case-control	89 cases	Final diagnosis	Head injury	1.3 (0.9 – 1.8)	Age, gender,

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author et al., 2012	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
Kupio et al., 1999	Finland	case-control	123 Cases, 246 controls	Diagnostic criteria of the UK Parkinson's Disease Society	Head injury with unconsciousness	1.37 (0.8–2.33)	Not-reported
			314 controls	Diagnosed by consensus of two movement disorder specialists using all available information including medical records, applying NINDS/UK Brain Bank criteria.	Head injury with unconsciousness	0.53 (0.26–1.09)	
Lee et al., 2012	American	case-control	357 incident idiopathic PD cases and 754 population controls	Cases with a PD diagnosis	Head trauma	2.00 (1.28–3.14)	Age, gender, ever smoked, race, county, education (school years).

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study Design	Sample Size	Definition of PD	Exposure Variable	OR (95% CI)	Adjustment
Tanner et al., 2009	North America	Case-control	119 cases and 99 controls	defined as 2 or more signs (resting tremor, bradykinesia, rigidity, and postural reflex impairment), 1 of which must be resting tremor or bradykinesia;	Head injury ever	1.25 (0.92 – 1.69)	Age, sex, race/ethnicity, smoking, caffeine use, alcohol use
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
---------------------	--------	--------------	-------------	------------------	-------------------	-------------	-------------
Werneck and Alvarenga, 1999	Brazil	case-control	92 PD and 110 controls	All subjects were examined at least more than once by the same neurologist. Subjects with atypical features suggesting other forms of secondary parkinsonism, severe dementia or any history of cerebrovascular disease were excluded	trauma	1.55 (0.67 – 3.62)	Not-reported

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR(95% CI)	Adjustment
Zorzon et al., 2002	Italy	case-control	136 cases, 272 controls	two or more of the following clinical features of PD: resting tremor, rigidity, bradykinesia, one of them starting asymmetrically and, in addition, history of chronic progression of symptoms, absence of obvious pyramidal, and/or supranuclear, and/or oculomotor, and/or autonomic, and/or amyotrophic, and/or cerebellar signs.	head trauma	1.6(0.8–2.5)	pack-years of smoking

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR(95% CI)	Adjustments
Nicoletti et al., 2017	Italy	case-control	492 patients and 459 controls	Severity of disease was investigated through both the Unified Parkinson Disease Rating Scale—Motor Evaluation (UPDRS-ME) and the Hoehn-Yahr (HY) scale	head trauma	1.5(1.04–2.17)	age, sex, family history, coffee smoking, and alcohol consumption
Kenborg Et al., 2015	Denmark	case-control	1,705 patients and 1,785 controls	ICD-8 code 342 and ICD-10 code G20	any head injury	0.99 (0.85–1.16)	sex, year of birth, age at first cardinal symptom, alcohol (continuous), pack-years of smoking (continuous), education, family history of Parkinson disease, and urbanisation

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
Taylor et al., 2016	American	case-control	379 patients and 230 controls	Case status was confirmed using U.K. Brain Bank criteria	Head injury with LOC	1.58 (0.85 – 2.95)	Gender, age, age squared, race, education, smoking status.
Taylor et al., 1999	American	case-control	100 patients and 147 controls	Patients had at least two of the following: tremor, rigidity, and bradykinesia. They also had one of the following: gait disturbance, postural instability, or hypomimia, and were levodopa responsive	Head injury	6.23 (2.58 – 15.07)	Birth cohort and sex.

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: Loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR(95% CI)	Adjustments
Harris et al., 2013	Canada	case-control	cases, 405 controls	the following clinical diagnostic criteria for PD were used: (1) two of the following symptoms present on examination: parkinsonian tremor, rigidity, bradykinesia, masked facies, micrographia or postural imbalance; (2) absence of specific signs of other diseases that would account for these findings	head injury with LOC	2.64 (1.39–5.03)	age, sex and smoking history

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
Georgiou et al., 2019	Cyprus	Case-control	255 PD patients and 464 controls	Severe head injury accompanied with fainting	Severe head injury accompanied with fainting	1.94 (1.28–2.94)	Not-reported

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR (95% CI)	Adjustments
Chen et al., 2017	China	case-control	1060 PD patients and 1240 controls	PD cases were identified from patients diagnosed with Parkinson's disease (ICD-9-CM: 322) in at least three outpatient visits within one year or in a one-time hospital admission.	head injury	1.77 (1.49–2.10)	urbanization levels and comorbid diseases
Tsai et al., 2002	China	case-control	60 PD patients, 30 YOPD patients and the same number of age- and sex-matched young controls were included.	at least two of the three cardinal parkinsonian features, including akinesia, rigidity, and tremor, must be present.	head injury	9.27 (1.02–84.10)	YOPD with family history of PD excluded; age and sex matched
Rugbjerg et al., 2008	Denmark	case-control	13,695 Patients, 68,445 controls	(ICD-8 code 342; ICD-10 code G20)	head injury with Concussion	1.5 (1.4–1.7)	age, sex

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.
Author	Region	Study design	Sample size	Definition of PD	Exposure variable	OR(95%CI)	Adjustments
Martyn et al 1995	England	case-control	172 cases, 343 controls	patients who had been seen by a consultant neurologist or geriatrician and given a definite diagnosis of Parkinson's disease were included.	Head injury	0.6(0.29–1.27)	Not-reported

OR = odds ratio. CI = confidence interval. YOPD = The young onset Parkinson's disease. PD = Parkinson's disease. ICD-9-CM = The International Classification of Diseases, Ninth Revision, Clinical Modification. ICD-8 = The International Classification of Diseases, Eighth Revision. ICD-10 = The International Classification of Diseases, Tenth Revision. NHIRD = The National Health Insurance Research Dataset. NINDS = National Institute of Neurological Disorders and Stroke. LOC: loss of consciousness.

Head injury and PD risk

In the results, the combined ORs for the PD risk was 1.46 (95% CI 1.29–1.66) (Fig. 2). The statistical value ($I^2 = 68.7\%, P < 0.001$) between the studies indicated that there was substantial heterogeneity. When considering the unconsciousness status, head injury with LOC was associated with the increased PD risk (OR = 1.49, 95%CI 1.28–1.74). The results of five studies did not adjust for other factors, when these five studies were excluded, the OR estimates were not changed (1.48, 95%CI 1.30–1.68), nor did the heterogeneity between studies be reduced ($I^2 = 70.9\%, P < 0.001$) (S1 Fig).

Subgroup analysis and Sensitivity analyses

We grouped the literature according to years of publication (before 2005 or after 2005 included), study region (America, Europe or Asia), and study quality scores (≥ 7 or < 7) to identify sources of heterogeneity. In the Post-2005 studies, the ORs of PD associated with head injury was 1.46(1.30–1.64), while in Pre-2005 studies, it was 1.62(0.98–2.7)(Fig. 3). When considering the study region, the ORs of PD associated with head injury in Europe, America and Asia were 1.24(1.07–1.44), 1.91(1.44–2.53) and 1.83(1.49–2.26), respectively (Fig. 5). The ORs of PD in study quality score ≥ 7 group was 1.43(1.27–1.62), while in study quality score < 7 group, it was 1.53(0.9–2.61) (Fig. 4). In addition, by removing a study take turns, the pooled OR of PD change from 1.43 (95% CI 1.27–1.61) to 1.51 (95% CI 1.34–1.70) and did not substantially change the positive correlation (S2 Fig). Sensitivity analysis showed that our research results were robust.
Publication bias

Visual evaluation of funnel chart display that the size distribution of the study was fairly symmetrical relative to the merger effect (Fig. 6), suggesting that our meta-analysis had little published bias. Furthermore, the Egger test ($P = 0.325$) and Begg’ test ($P = 0.154$) further proved that there did not have potential publication bias.

Discussion

Our meta-analysis include 21 case control studies, with more than two hundred thousand individuals and 39209 PD patients. Persons with head injury had a 46% increased risk of PD, compared to people without head injury. Tanner [21] found people who work in the agricultural field and agricultural industry have an increased PD risk, if they ever exposed to significant head injury. Goldman et al [17] found that people who are unconscious for more than 5 minutes were twice as likely to have PD as normal people. A recent study [18] explored the combined effects of a-synuclein gene polymorphism length and head injury on PD. In the study, persons with head injury were not correlated with PD, but they were significantly more at risk of PD compared to other groups. These results provide more evidence that head injury can cause Neurodegenerative diseases.

One study[34] performed a meta-analysis using the literature before 2012 and showed that head injury with LOC was associated with PD risk. Our meta-analysis results were partially consistent with that. Our analysis included six studies with high quality published since 2012. In addition, in this study, we took the unconscious state into consideration and performed a sensitivity analysis on more factors than the quality score. Compared with other studies, the summary estimate of PD risk was more accurate ($OR = 1.46, 95\% CI 1.29–1.66$).

Subgroup analysis showed that head injury with LOC was significantly associated with PD, while head injury without LOC had no significantly associated with PD. The results of five studies did not adjust for other factors, after removing them, head injury without LOC group did not contain any studies. Some studies failed to differentiate head injury with or without LOC, leading to few studies in the without LOC group and a low statistical power. The next phase of researches require to assess the odds ratios (ORs) of PD with and without LOC for head injury separately.

Different studies have different assessment methods for head injury. Some of the included studies about head injury assessment were mainly obtained through questionnaires and medical records, and there was a recall bias for PD patients. In addition, the current data does not explain whether a single or multiple head injury could increase the PD risk, and whether a recent or early head injury have different effects on PD. The current research data does not allow for a more accurate classification of head injury. The random effects method provides some heterogeneity allowance in addition to sampling error [34]. Using a random effects model, the impact of heterogeneity can be expected to be very limited, although it may not exclude the influence of inter-study heterogeneity. Sensitivity analysis was conducted through some
research-level factors to seek heterogeneity source. However, heterogeneity remained after sensitivity analysis.

Several limitations exist in the study. First, there have recall bias in case-control study participants, which may affect the quality of information. Second, different studies may have different definitions of head injury, leading to misclassification. Third, in our study, case-control studies from Europe and the Americas accounted for the largest proportion, so the meta-analysis results need to be interpreted cautiously, when they are extended to other populations and regions.

Conclusions

In conclusion, our research showed that head injury was association with an increasing PD risk. When the unconsciousness status was considered, head injury with LOC also showed significant correlated with PD risk. Furthermore, head injury would increase the PD risk, which was closely related to higher quality score studies, euramerica studies and papers published since 2005.

Declarations

Ethics approval and consent to participate Not applicable

Consent for publication Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Competing interests: The authors declare that they have no conflict of interest.

Funding: This research was supported by grants from the National Science Foundation of China (No. 71774001 Received by HW)

Author Contributions Conceptualization, Yanhu Ji and Heng Wang; Data curation, Junjun Xue and Niannian Li; Funding acquisition, Heng Wang; Methodology, Yanhu Ji and Junjun Xue; Resources, Chunhan Shen; Software, Junjun Xue, Yuhuan Ling and Chunhan Shen; Supervision, Heng Wang; Writing-original draft, Yanhu Ji; Writing-review & editing, Niannian Li.

Acknowledgements Not applicable

Author information

1 Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032,P.R. China. yhji2019@163.com(Y.J.)
2 School of Health Management, Anhui Medical University, Hefei, Anhui, 230032, P.R. China.

279208987@qq.com (J.X.); lyh017829@163.com (Y.L.); 944763064@qq.com (C.S.)

3 The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, P.R. China; 455942001@qq.com (N.L.)

* Correspondence: wangheng1969@163.com

References

1. Hyder AA, Wunderlich CA, Puvanachandra P, et al. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.

2. Rugbjerg K, Ritz B, Korbo L, et al. Risk of Parkinson's disease after hospital contact for head injury: population based case-control study. BMJ. 2008;337:a2494.

3. Nemetz PN, Leibson C, Naessens JM, et al. Traumatic brain injury and time to onset of Alzheimer’s disease: a population-based study. Am J Epidemiol. 1999;149(1):32–40.

4. Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. J Neural Transm. 2010;117:971–9.

5. Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87–113.

6. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30:33–48.

7. Frantseva M, Perez Velazquez JL, Tonkikh A, et al. Neurotrauma/neurodegeneration and mitochondrial dysfunction. Prog Brain Res. 2002;137:171–6.

8. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48:394–403.

9. Semchuk KM, Love EJ, Lee RG. Parkinson's disease: a test of the multifactorial etiologic hypothesis. Neurology. 1993;43:1173–80.

10. Taylor CA, Saint-Hilaire MH, Cupples LA, et al. Environmental, medical, and family history risk factors for Parkinson's disease: a New England-based case control study. Am J Med Genet. 1999;88:742–9.

11. Bower JH, Maraganore DM, Peterson BJ, et al. Head trauma preceding PD: a case-control study. Neurology. 2003;60:1610–5.

12. Williams DB, Annegers JF, Kokmen E, et al. Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology. 1991;41:1554–7.

13. Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany. Neurology. 1996;46:1275–84.

14. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.
15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

16. Fang F, Chen H, Feldman AL, et al. Head injury and Parkinson's disease: a population-based study. Mov Dis. 2012;27:1632–5.

17. Goldman SM, Tanner CM, Oakes D, et al. Head injury and Parkinson's disease risk in twins. Ann Neurol. 2006;60:65–72.

18. Goldman SM, Kamel F, Ross GW, et al. Head injury, a-synuclein Rep1, and Parkinson's disease. Ann Neurol. 2012;71:40–8.

19. Kuopio AM, Marttila RJ, Helenius H, Rinne UK. Environmental risk factors in Parkinson's disease. Mov Disord. 1999;14:928–39.

20. Lee PC, Bordelon Y, Bronstein J, Ritz B. Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology. 2012;79:2061–6.

21. Tanner CM, Ross GW, Jewell SA, et al. Occupation and risk of parkinsonism: a multicenter case-control study. Arch Neurol. 2009;66:1106–13.

22. Werneck AL, Alvarenga H. Genetics, drugs and environmental factors in Parkinson's disease. A case-control study. Arq Neuropsiquiatr. 1999;57:347–55.

23. Nicoletti A, Vasta R, Mostile G, et al. Head trauma and Parkinson's disease: results from an Italian case-control study. Neurol Sci. 2017;38(10):1835–9.

24. Kenborg L, Rugbjerg K, Lee PC, et al. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015;84(11):1098–103.

25. Zorzon M, Capus L, Pellegrino A, et al. Familial and environmental risk factors in Parkinson's disease: a case-control study in north-east Italy. Acta Neurol Scand. 2002;105:77–82.

26. Taylor KM, Saint-Hilaire MH, Sudarsky L, et al. Head injury at early ages is associated with risk of Parkinson's disease. Parkinsonism Relat Disord. 2016;23:57–61.

27. Dick FD, De Palma G, Ahmadi A, et al. Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup Environ Med. 2007;64:666–72.

28. Harris MA, Shen H, Marion SA, et al. Head injuries and Parkinson's disease in a case-control study. Occup Environ Med. 2013;70(12):839–44.

29. Georgiou A, Demetriou CA, Christou YP, et al. Genetic and Environmental Factors Contributing to Parkinson's Disease: A Case-Control Study in the Cypriot Population. Front Neurol. 2019;10:1047.

30. Chen CY, Hung HJ 1, Chang KH, et al. Long-term exposure to air pollution and the incidence of Parkinson's disease: A nested case-control study. PLoS One. 2017;12(8):e0182834.

31. Baldereschi M, Di Carlo A, Vanni P, et al. Lifestyle-related risk factors for Parkinson's disease: a population-based study. Acta Neurol Scand. 2003;108:239–44.

32. Tsai CH, Lo SK, See LC, et al. Environmental risk factors of young onset Parkinson's disease: a case-control study. Clin Neurol Neurosurg. 2002;104:328–33.
33. Martyn CN, Osmond C. Parkinson's disease and the environment in early life. J Neurol Sci. 1995;132:201–6.

34. Jafari S, Etminan M, Aminzadeh F, et al. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord. 2013;28(9):1222–9.

35. Li Y, Li Y, Li X, et al. Head Injury as a Risk Factor for Dementia and Alzheimer's Disease: A Systematic Review and Meta-Analysis of 32 Observational Studies. PLoS One. 2017;12(1):e0169650.

36. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339: b2700.

Figures

1680 potentially relevant studies assessed by title and abstract

1590 studies excluded generally because the studies were not related to head injury and Parkinson's disease

90 studies retrieved for more detailed assessment

69 studies excluded
25 did not assess head injury as a risk factor
24 irrelevant reports, reviews or letters
20 did not provide enough data to calculate the OR value

21 studies included in the main analysis

Figure 1

Flowchart for the selection of eligible studies
Figure 1
Flowchart for the selection of eligible studies

1680 potentially relevant studies assessed by title and abstract

1590 studies excluded generally because the studies were not related to head injury and Parkinson's disease

90 studies retrieved for more detailed assessment

69 studies excluded
- 25 did not assess head injury as a risk factor
- 24 irrelevant reports, reviews or letters
- 20 did not provide enough data to calculate the OR value

21 studies included in the main analysis
Figure 2

The forest plot of head injury and PD
Figure 2

The forest plot of head injury and PD
Figure 3

Subgroup analysis of head injury and PD by publication year
Figure 3

Subgroup analysis of head injury and PD by publication year
Figure 4

Subgroup analysis of head injury and PD by study quality score
Figure 4

Subgroup analysis of head injury and PD by study quality score
Subgroup analysis of head injury and PD by study region

Figure 5

Study ID	OR (95% CI)	Weight
America		
Bower et al. (2003)	4.30 (1.30, 15.20)	0.009
Goldman et al. (2001)	3.69 (0.90, 1.23)	0.099
Lesikar et al. (2012)	2.00 (0.85, 3.14)	0.200
Tavani et al. (2003)	1.25 (0.56, 2.85)	0.192
Wexner et al. (2001a)	1.55 (0.87, 2.82)	0.191
Taylor et al. (1995)	1.55 (0.85, 2.82)	0.287
Tavani et al. (1996)	2.04 (0.85, 4.85)	0.274
Bower et al. (2003b)	1.02 (0.10, 1.10)	0.034
Goldman et al. (2012b)	1.30 (0.30, 2.30)	0.490
Overall (fixed-effects = 57.4%, p < 0.0007)	1.91 (0.44, 2.55)	32.92

Europe

Study ID	OR (95% CI)	Weight
Fang et al. (2012)	1.42 (0.30, 1.56)	0.313
Marky et al. (1995)	0.66 (0.26, 1.27)	0.223
Ho et al. (2017)	1.50 (0.30, 3.10)	0.680
Kebbel et al. (2015)	0.98 (0.35, 1.41)	0.246
Zemla et al. (2012)	1.60 (0.80, 2.50)	0.324
Highman et al. (2013)	1.50 (0.40, 5.10)	0.919
Enders et al. (2003)	0.85 (0.45, 1.65)	0.268
Elam et al. (2017)	1.35 (0.50, 3.65)	0.755
Koepke et al. (2019)	1.37 (0.30, 2.55)	0.562
Koepke et al. (2019b)	0.43 (0.25, 1.20)	2.233
Overall (fixed-effects = 73.4%, p < 0.0001)	1.24 (0.07, 1.44)	53.83

Asia

Study ID	OR (95% CI)	Weight
Tai et al. (2002)	0.27 (0.02, 0.44)	0.003
Clew et al. (2017)	1.17 (0.40, 2.10)	0.523
George et al. (2019)	1.24 (0.26, 2.24)	0.311
Overall (fixed-effects = 12.2%, p < 0.0001)	0.67 (0.42, 1.08)	10.765

NOTE: Weight is from random effects analysis.
Figure 5

Subgroup analysis of head injury and PD by study region
Figure 6

Funnel plot to explore publication bias in the estimates of head injury and PD
Figure 6

Funnel plot to explore publication bias in the estimates of head injury and PD

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- S1Fig.Afterexclusionofstudieswithresultsnotadjusted.doc
- S1Fig.Afterexclusionofstudieswithresultsnotadjusted.doc
- S2Table.Qualityassessmentoftheincludedstudies.pdf
- S2Table.Qualityassessmentoftheincludedstudies.pdf
- S2Fig.sensitivityanalysisofheadinjuryandPDrisk.pdf
- S2Fig.sensitivityanalysisofheadinjuryandPDrisk.pdf
- S1Appendix.PRISMA2009Checklist.doc
- S1Appendix.PRISMA2009Checklist.doc
- S1Table.MOOSEChecklist.doc
- S1Table.MOOSEChecklist.doc