Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Post-COVID syndrome. A case series and comprehensive review

Juan-Manuel Anaya a,b,*, Manuel Rojas a, Martha L. Salinas b, Yhojan Rodríguez a,b, Geraldine Roa a, Marcela Lozano a, Mónica Rodríguez-Jiménez a, Norma Montoya b, Elizabeth Zapata a, Post-COVID study group c, Diana M. Monsalve a, Yeny Acosta-Ampudia a, Carolina Ramírez-Santana a

a Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
b Clínica del Occidente, Bogotá, Colombia
c School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia

ARTICLE INFO

Keywords:
Post-COVID syndrome
Long COVID
Prolonged COVID
Post-acute COVID-19
anti-Sars-Cov-2 antibodies

ABSTRACT

The existence of a variety of symptoms with a duration beyond the acute phase of COVID-19, is referred to as post-COVID syndrome (PCS). We aimed to report a series of patients with PCS attending a Post-COVID Unit and offer a comprehensive review on the topic. Adult patients with previously confirmed SARS-CoV-2 infection and PCS were systematically assessed through a semi-structured and validated survey. Total IgG, IgA and IgM serum antibodies to SARS-CoV-2 were evaluated by an electrochemiluminescence immunoassay. A systematic review of the literature and meta-analysis were conducted, following PRISMA guidelines. Univariate and multivariate methods were used to analyze data. Out of a total of 100 consecutive patients, 53 were women, the median of age was 49 years (IQR: 37.8–55.3), the median of post-COVID time after the first symptoms was 219 days (IQR: 143–258), and 65 patients were hospitalized during acute COVID-19. Musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression (by Zung scale) were the most frequent observed in PCS patients. A previous hospitalization was not associated with PCS manifestation. Arthralgia and diarrhea persisted in more than 40% of PCS patients. The median of anti-SARS-CoV-2 antibodies was 866.2 U/mL (IQR: 238.2–1681). Despite this variability, 98 patients were seropositive. Based on autonomic symptoms (by COMPASS 31) two clusters were obtained with different clinical characteristics. Levels of anti-SARS-CoV-2 antibodies were not different between clusters. A total of 40 articles (11,196 patients) were included in the meta-analysis. Fatigue/muscle weakness, dyspnea, pain and discomfort, anxiety/depression and impaired concentration were presented in more than 20% of patients reported. In conclusion, PCS is mainly characterized by musculoskeletal, pulmonary, digestive and neurological involvement including depression. PCS is independent of severity of acute illness and humoral response. Long-term antibody responses to SARS-CoV-2 infection and a high inter-individual variability were confirmed. Future studies should evaluate the mechanisms by which SARS-CoV-2 may cause PCS and the best therapeutic options.

1. Introduction

During acute infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible of the coronavirus disease 2019 (COVID-19), symptoms vary from mild forms to critical and more severe cases [1–3]. Symptoms in the mildest forms include dry cough, fatigue, anosmia, and fever. On the other hand, in the most severe forms, the symptoms can progress to respiratory failure requiring invasive...
mechanical ventilation \([2,4,5]\). Although most of the COVID-19 patients recover completely, without sequelae, many patients may continue experiencing COVID-19 symptoms after infection recovery and others may even develop new symptoms \([6]\). Altogether, this clinical spectrum occurring after acute infection is called post-COVID syndrome (PCS) \([7]\). Some authors have defined PCS as the presence of signs and symptoms after acute COVID-19 infection for more than 4 weeks \([8,9]\).

Among the most frequently reported PCS symptoms are fatigue, headache, attention deficit, hair loss, dyspnea, myalgia, and arthralgia \([10]\). However, a wide variety of symptoms have been reported within the PCS involving multiple organs and systems demanding long-term follow-up \([8,9]\), and even rehospitalization due to severity of PCS. In addition, most of these patients have comorbidities such as cardiovascular diseases, diabetes mellitus, obesity, cancer, and chronic kidney diseases \([8,9]\). Therefore, it is crucial to understand the heterogeneity of PCS. The objective of this work was to describe the clinical and serological characteristics (i.e., antibodies anti-SARS-CoV-2) of the first 100 consecutive post-COVID patients attending a post-COVID Unit in Bogotá, Colombia. In addition, we conducted a systematic review and meta-analysis on the topic.

2. Methods

2.1. Study design

A cross-sectional study was conducted from March 18th to May 20th, 2021, at the post-COVID Unit lead by the Center for Autoimmune Diseases Research (CREA) at the Clínica del Occidente in Bogotá, Colombia. Patients older than 18 and previously confirmed SARS-CoV-2 by PCR in swab or sputum were invited to be admitted to the post-COVID unit. The first 116 consecutive patients attending the post-COVID unit were assessed. Then, patients with history of vaccination against SARS-CoV-2 (n: 10), autoimmune diseases prior acute COVID-19 (n: 2), and patients without confirmed COVID-19 (n: 4) were excluded. A final sample size of 100 patients was included in the analyses. Of these patients, seven were asymptomatic during acute COVID-19.

Patients were systematically evaluated for post-COVID manifestations (see below), including depression and autonomic symptoms by validated scales, as well as for clinical characteristics during the acute COVID-19. All patients were tested for total anti-SARS-CoV-2 antibodies (see below for details). This study was done in compliance with Act 008430/1993 of the Ministry of Health of the Republic of Colombia, which classified it as minimal-risk research. All the patients were asked for their consent and were informed about the Colombian data protection law (1581 of 2012).

2.2. Survey validation

A semi-structured survey was constructed based on internationally validated questionnaires that sought information during and after COVID-19 acute infection \([11-15]\). It was validated by a consensus of expert physicians. Once validation and approval were obtained, a pilot test was done in a group of 30 volunteers. The pilot phase allowed to identify additional questions to assess systemic compromise, to organize queries, and adapt them to guarantee its interpretability by the respondent.

2.3. Survey and data collection

A total of 177 questions were included in the semi-structured survey, and distributed in the following areas: identification and consent, 6; sociodemographic and epidemiological characteristics, 12; past medical history, 15; diagnosis and clinical presentation of acute COVID-19, 29; current general state of health, 4; constitutional symptoms, 4; neuropsychological (including the composite autonomic symptom score 31 [COMPASS 31] and Zung scales), 58; sense organs, 10; cardiovascular,
J.-M. Anaya et al.

Autoimmunity Reviews 20 (2021) 102947

ML) verified the extracted information. Any discrepancies or missing information were resolved by consensus.

Given the discrepancies across the studies regarding the reporting of clinical manifestations, several clinical features were gathered to improve the reliability and interpretability of meta-analysis. These clinical manifestations included: impaired concentration, cognitive impairment, asthenia, dementia, polyneuropathy, heat intolerance/flushing, dizziness, headache, dysautonomia, blurry vision, xerophthalmia/sicca symptoms, nasal congestion, sneezing/coryza, palpitations, diarrhea/vomiting, dyspepsia, fatigue, arthralgia/myalgia, dyspnea, pleuritic pain, myocarditis, anxiety/depression, burning feet pain, fever, insomnia/sleep disorders. Evaluation of quality of the eligible studies was not performed. The PRISMA flowchart for systematic reviews is presented in Fig. 1.

2.9. Statistical analysis

Univariate descriptive statistics were performed. Categorical variables were analyzed using frequencies, and quantitative continuous variables were expressed the median and interquartile range (IQR). The Kruskal–Wallis, Mann–Whitney U test, or Fisher exact tests were used based on the results. In addition, Bonferroni correction was used for multiple testing on acute and post-COVID clinical manifestations.

To summarize the diverse information of frequencies of post-COVID manifestations, a meta-analysis approach was employed using Metafor R package (http://www.jstatsoft.org/v36/i03/). The logit transformed proportion was used to derive the weighted proportion. The overall pooled prevalence and 95% confidence intervals (CIs) were obtained using a random effect model for each clinical manifestation. Statistical heterogeneity between studies was evaluated by Cochran’s Q-statistic, as well as Tau² and I² statistics. A P value >0.10 in Q-statistics or < 50% in I² statistic indicated a lack of heterogeneity.

Next, we aimed to evaluate the likely influence of autonomic symptoms in severity of PCS, and their association with clinical phenotypes. Thus, a K-means clustering analysis based on the algorithm of Hartigan and Wong on weighted COMPASS 31 domains was conducted [20]. Shortly, the K-means method, aims to partition the points into k groups such that the sum of squares from points to the assigned cluster centers is minimized. For this analysis, 25 random sets were used, and a final optimal number of clusters were obtained based on the average silhouette width. In addition, patients were evaluated based on their clinical status during acute COVID-19. The significance level of the study was set to 0.05. Statistical analyses were done using R software version 4.0.2.
Table 1
General characteristics of 100 post-COVID patients.

Variable	Post-COVID
n: 100	
Sex	
Female	53 (53.0%)
Male	47 (47.0%)
Age (Median -IQR)	49 (37.8–55.3)
Body mass index (Median -IQR)	28.1 (25.1–30.4)
Post-COVID time (days, Median -IQR)	219 days (143–258)
Comorbidities (Prior COVID-19)	
Hypertension	17 (17.0%)
Type 2 diabetes	15 (15.0%)
COPD	1 (1.0%)
Cancer	1 (1.0%)
Dyslipidemia	12 (12.0%)
Kidney disease	3 (3.0%)
Hypothyroidism	12 (12.0%)
Asthma	0 (0.0%)
Coronary artery disease	0 (0.0%)
Clinical management	
Hospitalization	65 (65.0%)
Days of hospitalization (Median -IQR)	11 (7.5–16.5)
ICU	24/65 (36.9%)
Days of ICU (Median -IQR)	10 (6.5–14)
Acute COVID-19 symptoms	
Fatigue	79 (79.0%)
Headache	67 (67.0%)
Myalgia	66 (66.0%)
Arthralgia	62 (62.0%)
Fever	62 (62.0%)
Dry cough	61 (61.0%)
Dyspnea	59 (59.0%)
Ageusia	53 (53.0%)
Anosmia	51 (51.0%)
Pharyngitis	48 (48.0%)
Diarrhea	40 (40.0%)
Dizziness	35 (35.0%)
Rhinorhea	34 (34.0%)
Confusion	23 (23.0%)
Vomiting	19 (19.0%)
Blurry vision	18 (18.0%)
Impaired visual acuity	13 (13.0%)
Edema	10 (10.0%)
Arthralgia manifestations	
Arthralgia	65 (65.0%)
Back pain	55 (55.0%)
Arms/legs heaviness	47 (47.0%)
Weakness	46 (46.0%)
Diarrhea	46 (46.0%)
Headache	45 (45.0%)
Myalgia	42 (42.0%)
Body pain	40 (40.0%)
Paresthesia	38 (38.0%)
Attention disorders	36 (36.0%)
Memory disorders	36 (36.0%)
Fatigue	34 (34.0%)
Depression	32 (32.0%)
Dizziness	31 (31.0%)
Chest tightness	30 (30.0%)
Tachycardia	29 (29.0%)
Chest pain	29 (29.0%)
Eye pain	27 (27.0%)
Anorexia	23 (23.0%)
Chills	19 (19.0%)
Weight loss	20 (20.0%)
Exanthema	26 (26.0%)
Blisters	8 (8.0%)
Skin sensitivity	15 (15.0%)
Sarcopenia	28 (28.0%)
Palpitations	27 (27.0%)
Xerostomia	26 (26.0%)
Abdominal pain	24 (24.0%)
Dypsnea	24 (24.0%)
Tinnitus	23 (23.0%)
Xerophthalmia	23 (23.0%)
Vision disorders	21 (21.0%)

Table 1 (continued)

Variable	Post-COVID
Pharyngitis	19 (19.0%)
Rhinorhea	19 (19.0%)
Sickness	19 (19.0%)
Dry cough	17 (17.0%)
Inability to walk	16 (16.0%)
Pleurisy	16 (16.0%)
Agenesis	15 (15.0%)
Alopecia	13 (13.0%)
Edema	12 (12.0%)
Anosmia	11 (11.0%)
Wet cough	10 (10.0%)
Erectile dysfunction	3 (3.0%)
Tooth Loss	2 (2.0%)
New onset AD	2 (2.0%)
Hemoptysis	1 (1.0%)
Seizures	1 (1.0%)
Insomnia	1 (1.0%)
COMPASS 31 score (Median -IQR)	9 (4–17)
Zung score (Median -IQR)	35.5 (30–41.5)
Thyroid stimulating hormone (μU/mL) (Median -IQR)	2.2 (1.5–3.3)
Total anti-SARS-CoV-2 antibodies (U/mL) (Median -IQR)	866.2 (238.2–1681)

IQR: Interquartile range; ICU: Intensive care unit; COPD: Chronic pulmonary obstructive disease; AD: Autoimmune disease; COMPASS 31: Composite Auto-nomic Symptom Score 31; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2. Thyroid stimulating hormone, by electroquimioluminiscence using the following thresholds: 0.3–4.5 μU/mL.

3. Results

3.1. General characteristics

General characteristics of patients are shown in Table 1. Out of a total of 100 patients, 53 were women, the median age was 49 years (IQR: 37.8–55.3), the median of post-COVID time was 219 days (IQR: 143–258), and 65 patients were hospitalized during the acute COVID-19. Constitutional symptoms, musculoskeletal and respiratory symptoms, ageusia and anosmia were the most frequent clinical manifestations registered during the acute illness (Table 1).

3.2. Post-COVID manifestations

Musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression (35%) were the most frequent observed during PCS (Table 1, Fig. 2A–B). One-third of PCS patients presented with at least one musculoskeletal, respiratory, gastrointestinal and neurological symptoms simultaneously (Fig. 2C). Interestingly, there were a reduction in the frequency of some acute symptoms reported by patients. However, arthralgia and diarrhea persisted in more than 40% of the patients during PCS (Fig. 2D).

A median of anti-SARS-CoV-2 antibodies of 866.2 U/mL (IQR: 238.2–1681) was observed, indicating large inter-individual variability (Table 1). Despite this variability, almost all patients (98.0%) presented positivity for anti-SARS-CoV-2 antibodies (value of ≥0.80 U/mL, Fig. 3), of whom 88 patients disclosed titles above 151.4 U/mL.

Evaluation of PCS based on severity of acute illness showed that hospitalized and critically ill patients were older, more likely to exhibit elevated body mass index, higher frequency of hypertension, fatigue, and fever on admission that ambulatory patients (Table 2). Noteworthy, during the PCS a previous hospitalization was not associated with any clinical manifestation. The levels of antibodies anti-SARS-CoV-2 were lower in patients who were not previously hospitalized (Table 2). However, ambulatory patients were evaluated in earlier phases of PCS than hospitalized and critically ill patients (Kruskal–Wallis test, P < 0.0001).

J.-M. Anaya et al.
Fig. 2. Acute and post-COVID symptoms. A. Frequency bar plot for clinical manifestations on acute COVID-19. B. Frequency bar plot for post-COVID clinical manifestations. Frequency of depression was estimated by Zung scale. C. Venn diagram with the superposition of the main PCS symptoms. Analysis included 91
patients, because 9 out of 100 patients did not exhibit any of the four main symptoms. D. Mirrored bar plot for symptoms on acute COVID-19 and post-COVID syndrome.

Fig. 3. Anti RBD SARS-CoV-2 antibodies (see Supplementary Material 1 for details). A. Correlation between IgG anti-SARS-CoV-2 by ELISA (Euroimmun) and total anti-SARS-CoV-2 antibodies by ECLIA (Roche). B. Correlation between neutralizing anti-SARS-CoV-2 antibodies (PRNT_50) and total anti-SARS-CoV-2 antibodies by ECLIA (Roche). C. Linear model for neutralizing antibodies based on ECLIA. D. ROC curve for the estimated cut-off value. The AUC represents the discrimination capacity of this threshold. E. Scatter plot for total anti-SARS-CoV-2 antibodies (by ECLIA, Roche) and post-COVID time. Line represents the locally estimated scatterplot smoothing with 95% confidence intervals.

3.3. Post-COVID systematic review

Initially, 1222 records were found through the database search. After duplicate studies were excluded, a total of 1208 studies were obtained. After the first records were screened by title and abstract, 42 articles were fully assessed for eligibility. Of these, 2 articles were excluded, since they reported PCS clinical manifestations but not patient data. This procedure left 40 articles (11,196 patients) that fulfilled the inclusion criteria, and they were included in the quantitative and qualitative synthesis (Fig. 1 and Supplementary Material 2).

3.4. Studies characteristics

Out of 40 studies included in the systematic review [7,10,21–58], 30 were cohort studies, 5 cross-sectional, 3 case series, and 2 case-control studies. No clinical trials were included in the systematic review and meta-analysis.

3.5. Post-COVID meta-analysis

Pooled prevalence of PCS manifestations is summarized in Table 3. Fatigue/muscle weakness, dyspnea, pain, and discomfort, anxiety/depression, and impaired concentration were presented in more than 20% of patients included in the meta-analysis (Fig. 4). These symptoms were reported in more than five manuscripts in the literature review. In addition, high methodological and statistical heterogeneity was found in this analysis, accounting for most of the imprecision detected by the Q and I² statistics.

3.6. Autonomic clusters in post-COVID syndrome

Based on autonomic symptoms (by COMPASS 31) two clusters were obtained (Table 4, Fig. 5A). Impaired visual acuity and blurry vision were more frequently registered during the acute phase in patients belonging to cluster 2 that cluster 1 (Fig. 5B), while depression, chills, weakness, diarrhea, musculoskeletal, palpitations/tachycardia, dryness, cognitive involvement, headache, dizziness, and tinnitus were more frequently observed in the post-COVID cluster 2 (Fig. 5C). As expected, COMPASS 31 score was higher in cluster 2 than in cluster 1, as were the median Zung scores. Levels of antibodies were not different between clusters (Table 4).

4. Discussion

This study indicates that a significant number of patients present with a clinical spectrum after SARS-CoV-2 infection recovery, affecting the quality of life and requiring interdisciplinary approach. Although the cases series do not evaluate incidence nor prevalence, musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression were the most frequent observed in our PCS patients. Arthralgia and diarrhea were the two more frequent acute clinical manifestations persisting during the PCS. Our results were consistent with the meta-analysis in which fatigue/muscle weakness, dyspnea, pain and discomfort, anxiety/depression and impaired concentration were presented in more than 20% of patients. Noteworthy, PCS was independent of severity of acute illness and the humoral response to RBD SARS-CoV-2.

The causes of PCS are under study, however the main hypotheses include a persisting chronic inflammatory process, an autoimmune phenomenon or even a hormonal imbalance as a consequence of an alteration in the hypothalamic-pituitary-adrenal axis [59]. In this line, a study on COVID-19 patients at 3–6 months of convalescence showed that patients with PCS exhibit high levels of CD27-IgD- B cells (which have been associated with autoimmune diseases such as multiple sclerosis [60]), CD8+ T cells, as well as elevated production of Th1 and
Table 2

General characteristics of post-COVID patients based on severity of acute disease.

Variable	Ambulatory (n=35)	Severe (n=41)	Critical (n=24)	P value
Sex				
Female	30 (85.7%)	15 (36.6%)	8 (33.3%)	<0.0001
Male	5 (14.3%)	26 (63.4%)	16 (66.7%)	
Age (Median -IQR)	41 (90.5–49.5)	51 (44–55)	52.5 ± 14.6	0.0020
Body mass index (Median -IQR)	25.4 (23.6–28.4)	28.8 (26–26.3)	28.3 ± 0.006	
Post-COVID time (days, Median -IQR)	108.5 (58.3–213.5)	277 (190–260)	250 (205–290)	<0.0001

Table 2 (continued)

Variable	Ambulatory (n=35)	Severe (n=41)	Critical (n=24)	P value
Dyspnea	11 (31.4%)	8 (19.5%)	5 (20.8%)	0.4587
Wet cough	3 (8.6%)	4 (9.8%)	3 (12.5%)	0.8373
Dry cough	4 (11.4%)	10 (24.4%)	3 (12.5%)	0.3186
Pleurisy	7 (20.0%)	6 (14.6%)	3 (12.5%)	0.7371
Rhinorrhea	3 (8.6%)	9 (22.0%)	7 (29.2%)	0.1036
Sickness	7 (20.0%)	10 (24.4%)	8 (33.3%)	0.2669
Abdominal pain	8 (22.9%)	11 (26.8%)	5 (20.8%)	0.8716
Paresthesia	11 (31.4%)	16 (39.0%)	11 (45.8%)	0.5271
Attention disorders	13 (37.1%)	9 (22.0%)	14 (58.3%)	0.0140
Memory disorders				
Seizures	1 (2.9%)	0 (0.0%)	0 (0.0%)	0.5900
Headache	15 (42.9%)	18 (43.9%)	12 (50.0%)	0.8734
Dizziness	11 (31.4%)	12 (29.3%)	8 (33.3%)	0.9616
Xerostomia	9 (25.7%)	8 (19.5%)	9 (37.5%)	0.2800
Arthralgia	20 (57.1%)	28 (68.3%)	14 (58.3%)	0.1071
Xerophthalmia	6 (17.1%)	6 (15.7%)	6 (25.0%)	0.5947
Tooth Loss	1 (2.9%)	1 (2.4%)	0 (0.0%)	1.0000
Tinnitus	10 (28.6%)	7 (17.1%)	6 (25.0%)	0.4914
Anosmia	7 (20.0%)	3 (7.3%)	1 (4.2%)	1.1589
Gastrointestinal disorders	10 (28.6%)	3 (7.3%)	2 (8.3%)	0.0358
Vision disorders	4 (11.4%)	10 (24.4%)	7 (29.2%)	0.1985
Eye pain	7 (20.0%)	13 (31.7%)	7 (29.2%)	0.5483
Pharyngitis	4 (11.4%)	7 (17.1%)	8 (33.3%)	0.1227
Alopecia	5 (14.3%)	5 (12.3%)	3 (12.5%)	1.0000
Erectile dysfunction	0 (0.0%)	0 (0.0%)	3 (12.5%)	0.0125
Insomnia	1 (2.9%)	0 (0.0%)	0 (0.0%)	0.5900
COMPASS-31 score (Median -IQR)	7 (2.5–16)	9 (5–17)	13 (6.5–17.5)	0.3221
Zung score	36 (29.9–45)	32 (29–38)	38.5 (32.8–44.3)	0.1506
Thyroid stimulating hormone (μIU/mL) (Median -IQR)	1.90 (1.1–2.5)	2.66 (2.0–4.0)	2.06 (1.3–3.5)	0.0130
Total anti-SARS-CoV-2 antibodies (U/mL) (Median -IQR)	200.2 (52.1–398.2)	1270 (911.5–1941)	1537.5 (789.9–2500)	<0.0001

IQR: Interquartile range; ICU: Intensive care unit; COPD: Chronic pulmonary obstructive disease; AD: Autoimmune disease; COMPASS 31: Composite Autoimmune Symptom Score 31; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; Thyroid stimulating hormone, by electroquimoluminiscence using the following thresholds: 0.3–4.5 μIU/mL.

a P values for categorical variables were obtained by Fisher’s exact test. Quantitative variables were analyzed by Kruskal-Wallis test.

b A linear regression model including total SARS-CoV-2 antibodies as dependent variable was conducted. Sex, age, body mass index, clinical management, and post-COVID time were included as covariates. Linear model confirmed that post-COVID time was a confounding factor for the difference of total SARS-CoV-2 antibodies among groups (β = 4.36, P = 0.0126). In addition, significant interactions for ICU management confirmed this result (β = −5.65, P = 0.0221).

Statistically significant after Bonferroni correction. P value threshold for acute COVID-19 symptoms: 0.05/47 = 0.0028; P value threshold for post-COVID symptoms: 0.05/47 = 0.0011.

Th17 cytokines, thus favoring a hyperinflammatory milieu. In addition, patients showed B cell impaired response given by hIg-6/II-10 imbalance [61]. In a similar study, convalescent patients yielded high levels of tumor necrosis factor (TNF) and IL-1β [62]. Recovered patients showed high levels of endothelial activation markers and pro-inflammatory mediators such as growth factors platelet-derived growth factor, vascular endothelial growth factor, MIP-1β, eotaxin, IL-12p70, and IL-17A [63]. Thus, suggesting that clinical manifestations in PCS could be associated to persistence of a pro-inflammatory profile induced by
Table 3
Clinical features of post-COVID-19 patients (systematic review and meta-analysis).

Signs and symptoms	Number of articles	Cases/COVID-19 (%)
Demographics		
Male	40	5087/1116 (9.9%)
Age (years)	34	10,081/502 (20.3%)
Time to follow-up (days)	7	2849 (105.9 days)
Constitutional symptoms		
Fever	8	269/3064 (9.1%)
Anorexia	5	173/2183 (8.0%)
Weight loss	3	82/2414 (4.1%)
Night sweats	3	49/774 (5.10%)
Asthenia	2	49/126 (20.9%)
Heat intolerance/flushing	2	276/2140 (10.0%)
Neurological		
Headache	16	1365/5718 (23.2%)
Cognition	14	464/2991 (15.8%)
Dizziness	6	722/4912 (14.2%)
Dementia	3	89/405 (12.4%)
Polyneuropathy	3	5/69 (8.3%)
Dysautonomia	2	11/58 (16.9%)
Inability to walk	2	105/359 (26.3%)
Stroke	2	9/445 (1.8%)
Anomia aphasias	2	7/49 (4.9%)
Tremor	2	7/305 (2.3%)
Syncope	1	3/27 (11.1%)
Restless leg syndrome	1	2/355 (0.56%)
Ataxia	1	1/48 (2.1%)
Orthostatic headache	1	6/27 (22.2%)
Paresthesia	1	13/9 (26.5%)
Delirium	1	2/27 (7.4%)
Ophthalmological		
Blurry vision	4	86/746 (8.5%)
Xenophthalmia/Sicca symptoms	3	42/171 (14.1%)
Impaired visual acuity	2	41/802 (10.4%)
Conjunctivitis	1	2/102 (20.9%)
Eye tearing	1	2/64 (3.1%)
Macular detachment	1	55/87 (63.2%)
Ocular burning sensation	1	15/64 (23.4%)
Red eye	1	2/64 (3.1%)
COVID-19 during acute illness. In addition, this may suggest therapeutic targets for the specific management of PCS, including TNF blockade or immunomodulatory drugs.

Table 3 (continued)

Signs and symptoms	Number of articles	Cases/COVID-19 (% - mean, 95% CI)	Q (τ², p)
Genitourinary		1/27 (3.7%, 0.5–22.1)	
Urinary urgency	1	1/27 (3.7%, 0.5–22.1)	NA
Urinary hesitancy	1	1/27 (3.7%, 0.5–22.1)	NA
Musculoskeletal			
Fatigue/Muscle weakness	25	4872/8520 (46.1%, 32.9–59.8)	< 0.01 (1.9, 99.0%)
Arthralgia/Myalgia	13	1297/6279 (16.4%, 7.75–31.4)	< 0.01 (2.3, 99.2%)
Pain and discomfort	5	384/1179 (30.4%, 16.8–48.6)	95.9%
Burning feet pain	2	4/382 (2.0%, 0.1–45.5%)	< 0.01 (6.5, 90.4%)
Numbness	1	1/27 (3.7%, 0.5–22.1)	NA
Back pain	1	689/2113 (30.0%, 31.1–35.7)	NA
Sarcopenia	1	11/11 (95.8%, 57.5–99.7)	NA
Dermatological			
Alopecia	7	685/3622 (17.5%, 8.1–30.9)	< 0.01 (93.2%)
Rash	4	129/2690 (2.3%, 0.6–8.3)	NA
Allodynia	1	1/27 (3.7%, 0.5–22.1)	NA
Eczema	1	1/31 (3.2%, 0.5–19.6)	NA
Hyperhidrosis	1	3/27 (11.1%, 3.6–29.3)	NA
Hypohidrosis	1	1/27 (3.7%, 0.5–22.1)	NA
Red spots on toes	1	42/2113 (2.0%, 1.5–2.7)	NA
Psychiatric			
Insomnia/Sleep disorders	13	1367/5666 (19%, 10.6–32.6)	< 0.01 (1.6, 99.0%)
Anxiety/Depression	12	835/3861 (24.5%, 16.2–35.1)	< 0.01 (0.8, 97.3%)
Impaired concentration	5	252/1029 (22.8%, 7.1–53.4)	< 0.01 (2.2, 97.5%)
Attention deficit	3	26/183 (22.2%, 0.5–99.6)	90.6%
Post-traumatic stress	3	133/307 (42.5%, 30.0–56.1)	< 0.01 (0.2, 82.0%)
Adjustment disorder	1	5/255 (1.4%, 0.6–0.3)	NA
Obsessive compulsive disorder	1	14/287 (4.9%, 2.9–8.1)	NA
Panic attack	1	98/734 (13.4%, 11.1–16.0)	NA
Severe mood swings	1	2/18 (11.1%, 2.8–35.2)	NA

τ² is the variance of the effect size parameters across the population of studies, and it reflects the variance of the true effect size (i.e., heterogeneity among studies). p refers to the percentage of heterogenetic among the included studies.

Results were ordered according to the number of articles included in each meta-analysis.

COVID-19 represents the total of patients reported in selected articles.

Based on autonomic symptoms (by COMPASS 31) two clusters were obtained with different clinical characteristics. Cluster 2 exhibited high scores of COMPASS 31. This accounted for the 31% of all patients included (median COMPASS 31 score 22), suggesting that one-third of patients with PCS may yield higher scores when compared with the general population [64]. Interestingly, patients with higher scores exhibited more clinical manifestations and depression. These clusters may have therapeutic implications since clinicians should be aware of particular manifestations during the follow-up, and early psychosocial intervention may reduce the burden of PCS.

Persistence of symptoms has been evaluated in PCS. Moreno-Perez et al. [65], reported that up to 50.9% of the patients considered “recovered” persisted with symptoms similar to those experienced during the acute phase. Moreover, other studies showed that the reported duration of musculoskeletal symptoms varies widely depending on duration of patients follow-up [35,66–68]. Different protocols and populations as well as the preexistence of musculoskeletal symptoms, which were not evaluated in all the studies, preclude a comparative analysis. Nevertheless, early identification would allow to focus the therapeutic management of these patients [69].

Persistent elevation of IL-6 levels, an increase of the angiotensin-converting enzyme 2 in the peripheral nervous system and mast cell participation have been considered to explain the musculoskeletal symptoms in PCS [70–72]. Similarly, over-activation of nociceptive neurons, secondary to neutropoism of the virus, may cause prolongation of symptoms [73]. It is possible that most of the inflammatory response caused by the virus affects the integrity of the central and peripheral nervous system, which promotes the perpetuation of pain after the acute illness [74]. On the other hand, inflammatory damage, triggered by acute infection, would cause psychiatric disorders in predisposed individuals. These symptoms include depression, anxiety and, in worse situations, suicidal behavior [75].

Autonomic dysfunction was confirmed in our study. Orthostatic symptoms and hyperhidrosis have been described [56]. To date, it is unknown if a pre-existing history of minor autonomic symptoms may have some type of relation with autonomic disorders in PCS [76]. These results are relevant since disorders such as postural orthostatic tachycardia syndrome (POTS) and other autonomic dysfunctions may emerge after infectious triggers such as SARS-CoV-2 [77–81].

The mechanisms behind autonomic dysfunction are not clear. However, autoimmune phenomena could be associated with its appearance [82]. Production of autoantibodies against α1, β1 and β2 receptors, angiotensin II receptor type 1, opioids 1, acetylcholine, M2 and M4S receptors are associated with development of POTS [36,83–85]. This immune mechanism, secondary to SARS-CoV2, could be triggered through molecular mimicry between antigens of autonomic nerve fibers, autonomic ganglia, and SARS-CoV2 antigens, as described in some autoimmune conditions.

Respiratory symptoms in PCS are common. The meta-analysis indicated that up to 48% of patients with PCS persisted with respiratory symptoms. Some studies have shown the persistence of pulmonary radiological and functional changes after acute infection [53]. Among the main respiratory functional changes, alteration in gas transfer measured by diffusing capacity for carbon monoxide (DLCO) has been documented up to 12 weeks of follow-up [13,86–88]. DLCO alteration could be associated with interstitial and vascular damage, secondary to acute infection [89,90]. These features may depend on the severity of the disease during the acute COVID-19 [91–93]. Pulmonary radiological alterations have been documented after 12 months post-infection [53].

Some symptoms during acute COVID-19 have been reported to be predictors of PCS, including diarrhea, anemia, dyspnea, pleurisy, skin sensitivity, and A blood type [15]. A lower SARS-CoV-2 IgG titer at the
beginning of the observation period was associated with a higher frequency of PCS [94]. Severity of acute COVID-19 suggests that convalescent critically ill patients commonly experience long-lasting mental health illness. Anxiety, depression, post-traumatic stress disorder, memory and attention disorders are common [95]. However, in our case series severity of acute disease was not associated with PCS.

As expected, the levels of anti-SARS-CoV2 antibodies were lower in patients who were not previously hospitalized [96]. Our results confirm the heterogeneous but long-lasting humoral response to SARS-CoV-2 infection [97,98]. Other mechanisms beyond the humoral immune response can influence the persistence and/or triggering of PCS, such as viral shedding, therapy, clinical management, immune response, social isolation, comorbidities, age, sex, among others [54]. In terms of viral shedding, some studies have shown that persistent fragments of viral genes, including in feces though not infectious, could induce a hyper-immune response that explaining the persistence of symptoms in post-COVID patients [99,100]. Moreover, even if the virus is cleared, and there are high neutralizing antibody titers, the immune system could continue to be overactive, thus inducing PCS [99].

5. Conclusions

PCS is mainly characterized by musculoskeletal, pulmonary, digestive and neurological involvement including depression. PCS is independent of severity of acute illness and humoral response. Our study confirms the long-term immunity for SARS-CoV-2 but also the inter-individual variability of the immune response. Future studies should evaluate the mechanisms by which SARS-CoV-2 may cause PCS and the best therapeutic options.

Post-COVID study group

Ana María Vargas Suaza, Andrés Mauricio Palomino Ríos, Carlos Andrés Moya Ortiz, Daniel Fernando Rangel Vera, Diana Carolina

Fig. 4. Frequency bar plot for pooled prevalence of post-COVID manifestations in meta-analysis. Error bar represents the estimated 95% confidence interval. Only those clinical manifestations reported in more than 4 articles were included in this graph.
Table 4 (continued)

Variable	Cluster 1 (n: 69)	Cluster 2 (n: 31)	P value*
Rhinorrhea	9 (13.0%)	10 (32.3%)	0.0010
Sickness	10 (14.5%)	9 (29.0%)	0.1028
Abdominal pain	10 (14.5%)	14 (45.2%)	0.0019
Paresthesia	17 (24.6%)	21 (67.7%)	0.0001
Attention disorders	15 (21.7%)	21 (67.7%)	<0.0001
Memory disorders	12 (17.4%)	24 (77.4%)	<0.0001
Seizures	0 (0.0%)	1 (3.2%)	0.3100
Headache	20 (29.0%)	25 (80.6%)	<0.0001
Dizziness	11 (15.9%)	20 (64.5%)	<0.0001
Xerophthalmia	10 (14.5%)	13 (41.9%)	0.0043
Tooth loss	0 (0.0%)	2 (6.5%)	0.0939
Tinnitus	9 (13.0%)	14 (45.2%)	0.0008
Anosmia	6 (8.7%)	5 (16.1%)	0.3089
Agerusia	8 (11.6%)	7 (22.6%)	0.2243
Vision disorders	8 (11.6%)	13 (41.9%)	0.0011
Eye pain	11 (15.9%)	16 (51.6%)	0.0005
Pharyngitis	7 (10.1%)	12 (38.7%)	0.0017
Alopecia	7 (10.1%)	6 (19.4%)	0.2152
Erectile dysfunction	2 (2.9%)	1 (3.2%)	1.0000
Insomnia	0 (0.0%)	1 (3.2%)	0.3100
COMPASS score (Median -IQR)	6 (3-9)	22 (18-26)	<0.0001
Zang score (Median -IQR)	32 (26-37)	40 (36.5-47)	<0.0001
Thyroid stimulating hormone (μIU/mL) (Median -IQR)	2.14 (1.4-3.2)	2.4 (2.0-3.5)	0.2465
Total anti-SARS-CoV-2 antibodies (IU/mL) (Median -IQR)	701.6 (220.7-1481)	1258 (336.5-1945)	0.2395

IQR: Interquartile range; ICU: Intensive care unit; COPD: Chronic pulmonary obstructive disease; AD: Autoimmune disease; COMPASS 31: Composite Autoimmune Symptom Score 31; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2. Thyroid stimulating hormone, by electroquimiloluminescence using the following thresholds: 0.3–4.5 μIU/mL.

* P values for categorical variables were obtained by Fisher’s exact test. Quantitative variables were analyzed by Mann–Whitney U test.

Statistically significant after Bonferroni correction. P value threshold for acute COVID-19 symptoms: 0.05/47 = 0.0002; P value threshold for post-COVID symptoms: 0.05/47 = 0.0011.

Guzmán Núñez, Estefanía Sanabria Medina, Gloria Sofia Guerrero Álvarez, Isabella Casallas Gutiérrez, Isabella Gracia Concha, Isabella Hernández Duarte, Jaime Andrés Antolinez Báez, José Manuel Fernández Rengifo, Jose Manuel Palacio Cardona, Juan Sebastián Beltrán, Julián Francisco Mora Jácome, Laura Zárate Pinzón, María Alejandra Garzón Parra, María Alejandra Mol, María Alejandra Muñoz Bernal, María Camila Ayala, María Paula Casanova, María Paula Espitia Correa, Marian Andrea Ochoa Patarryo, Nicolás Aguirre Correal, Paola Saboya Galindo, Paula Andrea Monje, Santiago Norgia Ramírez, Sara Juliana Guerrero León, Sofia Ballesteros Barreto, Valentina Fragala.

Funding

The study was supported by grants from Universidad del Rosario (ABN-011).

Role of the Funder/Sponsor

The funders had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Declaration of competing interest

None.
Fig. 5. Autonomic clusters in post-COVID syndrome. A. Principal components of K-means clustering for weighted COMPASS 31 domains. COMPASS 31: composite autonomic symptom score 31. B. Mirrored bar plot for acute COVID-19 symptoms on cluster 1 and 2. C. Mirrored bar plot for post-COVID clinical manifestations on cluster 1 and 2.
Acknowledgments

The authors would like to thank all the members of the CREA and Elizabeth T. Cirulli for their contributions and fruitful discussions during the preparation of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.autrev.2021.102947.

References

[1] National Institute for Health and Care Excellence. COVID-19 rapid guideline: Managing the long-term effects of COVID-19. In: NICE Guid; 2021.

[2] Acosta-Ampudia Y, Monsalve DM, Rojas M, Rodríguez Y, Gallo JE, Salazar-Urribe JC, et al. COVID-19 convolseal plasma composition and immunological abnormalities in severe patients. J Autoimmun 2021;118:102958. https://doi.org/10.1016/j.jaut.2021.102958.

[3] Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. https://doi.org/10.1056/NEJMa2001348.

[4] Lopez-Leon Sandra, Wegman-Ostrosky Talia, Perelman Carol. Seprulveda Rosalinda, Rebollode Paulina A, Angelica Cuapio SV. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv 2020. https://doi.org/10.1101/2020.08.09.20176043.

[5] Goyal P, Choi JJ, Pinheiro LG, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020;382:2372–4. https://doi.org/10.1056/NEJMc2014191.

[6] Sadre C, Murray B, Varavsky T, Graham M, Penfold R, Bowrey R, et al. Attributes and predictors of Long-COVID: analysis of COVID cases and their symptoms collected by the Covid Symptoms Study App. BMJ 2020. https://doi.org/10.1136/bmj.m2696. In press.

[7] Garrigues E, Janvier P, Rherayi Y, Le Bot A, Hamon A, Gouze H, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect 2020;81:e4–6. https://doi.org/10.1016/j.jinf.2020.08.029.

[8] Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 registry. Blood 2021;137:2838–47. https://doi.org/10.1182/blood.2020010529.

[9] Kamal M, Abo Omirah M, Hussein A, Saeed H, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ 2021;11:1. https://doi.org/10.1136/bmjmnj.2021.048931.

[10] Fernández-de-las-Peñas C, Rodríguez-Jiménez J, Fuenalida-Novos S, Palacios-Cenia M, Gómez-Mayordomo V, Florence LL, et al. Myalgia as a symptom at hospital admission due to severe acute respiratory syndrome coronavirus 2 infection is associated with persistent musculoskeletal pain as long-term post-COVID syndrome. Pain 2021. https://doi.org/10.1016/j.pain.2020.08.026. In press.

[11] Vicente Herrero MT, Delgado Bueno S, Iandreas Moya F, de la Torre MV Ramirez, Izaguirre, Capdevila G, Garcia L. Valoracion del dolor. Revision Comparativa de Escalas y Cuestionarios. Rev Soc Esp Dolor 2018. https://doi.org/10.20986/jrpc.2018.03.01.6.

[12] GeCo Group. Towards a cooperative construction of questionnaires for Covid-19 symptoms. MedRxiv 2020. https://doi.org/10.1101/2020.05.05.20073677.

[13] Arjmand P, Murtaza F, Eshtiaghi A, Popovic MM, Kertes PJ, Eng KT. Impact of the COVID-19 pandemic on characteristics of retrieval detachments: the Canadian experience. Can J Ophthalmol 2021;56:88–95. https://doi.org/10.1016/j.cjo.2021.01.013.

[14] Needham E, Newcombe V, Michell A, Thornton R, Grainger A, Anwar F, et al. Mononeuritis multiplex: an unexpectedly frequent feature of severe COVID-19. J Neurol 2020. https://doi.org/10.1007/s00415-020-09521-8. In press.

[15] Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, et al. Persistent COVID-19 symptoms 3 months after recovery. BMJ 2020. https://doi.org/10.1136/bmj.m1524.

[16] Ordinola Navarro A, Cervantes-Bojalil J, Colombo Queda O de J, Avila Martinez A, Hernández-Jimenez CA, Pérez Alvarez E, et al. Decreased quality of life and psychiatric alterations even after mild-moderate COVID-19. Respir Med 2021;181:106391. https://doi.org/10.1016/j.resmed.2021.106391.

[17] Malek M, Potting J, Siddiqi S, Ufer F, Hadjilouros A, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID symptoms. J Transl Autommun 2021;4:100100. https://doi.org/10.1016/j.jtauto.2021.100100.

[18] Wallakut G, Hohberger B, Wenzel K, Fünt J, Schulze-Rothe S, Wallakut A, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms. J Transl Autommun 2021;4:100100. https://doi.org/10.1016/j.jtauto.2021.100100.

[19] Skala M, Svboda M, Kopceky M, Kocova E, Hynrl M, Holomac M, et al. Heterogeneity of post-COVID impairment: interim analysis of a prospective study from Czechia. Virol J 2021;18:73. https://doi.org/10.1186/s12985-021-01546-6.

[20] Goel N, Goyal N, Kumar R. Clinico-radiological evaluation of post COVID-19 at a tertiary pulmonary care centre in Delhi, India. Monaldi Arch Chest Dis 2021. https://doi.org/10.1016/j.mondal.2021.10682.

[21] Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: a COVID-rehabilitation unit experiment. PloS One 2021;6:e0246590. https://doi.org/10.1371/journal.pone.0246590.

[22] Santos LV-D, Sobrino B, González GE, Ruiz-Mesa JD, Plata A, Martínez-Gomez I, et al. Clinical and immunomodulatory status 12 weeks after infection with COVID-19: A prospective observational study. MedRxiv 2020. https://doi.org/10.1101/2020.06.20.20126600.

[23] Atker F, Mannan A, Mebedi HMM, Rob MA, Ahmed S, Saladdin A, et al. Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes Metab Syndr Clin Res Rev 2020;14:2031–8. https://doi.org/10.1016/j.dsx.2020.10.016.

[24] Goel N, Goyal N, Kumar R. Clinicoradiological evaluation of post COVID-19 at a tertiary pulmonary care centre in Delhi, India. Monaldi Arch Chest Dis 2021. https://doi.org/10.1016/j.mondal.2021.10682.

[25] Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: a COVID-rehabilitation unit experiment. PloS One 2021;6:e0246590. https://doi.org/10.1371/journal.pone.0246590.

[26] Skala M, Svboda M, Kopceky M, Kocova E, Hynrl M, Holomac M, et al. Heterogeneity of post-COVID impairment: interim analysis of a prospective study from Czechia. Virol J 2021;18:73. https://doi.org/10.1186/s12985-021-01546-6.

[27] Goel N, Goyal N, Kumar R. Clinico-radiological evaluation of post COVID-19 at a tertiary pulmonary care centre in Delhi, India. Monaldi Arch Chest Dis 2021. https://doi.org/10.1016/j.mondal.2021.10682.
[90] Hanidziar D, Robson SC. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am J Physiol Lung Cell Mol Physiol 2021;320:L12–6. https://doi.org/10.1152/ajplung.00304.2020.

[91] Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol 2011;11:37. https://doi.org/10.1186/1471-2377-11-37.

[92] Hui DS. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 2005;60:401–9. https://doi.org/10.1136/thx.2004.030205.

[93] Hui DS, Wong KT, Ko FW, Chan DP, Woo J, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005;128:2247–61. https://doi.org/10.1378/chest.128.4.2247.

[94] Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Respir Med 2021;9:100122. https://doi.org/10.1016/S2213-2600(21)00122-7.

[95] Hosey MM, Needham DM. Survivorship after COVID-19 ICU stay. Nat Rev Dis Primers 2020;6:60. https://doi.org/10.1038/s41572-020-0201-1.

[96] Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 2020;26:1478–88. https://doi.org/10.3201/eid2607.200841.

[97] Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (80-) 2021;371. https://doi.org/10.1126/science.abf4063.

[98] Mazzoni A, Maggi L, Capone M, Vanni A, Spinicci M, Salvati L, et al. Heterogeneous magnitude of immunological memory to SARS-CoV-2 in recovered individuals. Clin Transl Immunol 2021;10:e1281. https://doi.org/10.1002/cti2.1281.

[99] Folgueira MD, Luczkowiak J, Lasala F, Pérez-Rivilla A, Delgado R. Prolonged SARS-CoV-2 cell culture replication in respiratory samples from patients with severe COVID-19. Clin Microbiol Infect 2021;27:886–91. https://doi.org/10.1016/j.cmi.2021.02.014.

[100] Salamanna F, Veronesi F, Martini I, Landini MP, Fini M. Post-COVID-19 syndrome: the persistent symptoms at the post-viral stage of the disease. A systematic review of the current data. Front Med 2021;8:653516. https://doi.org/10.3389/fmed.2021.653516.