Massive Protocluster of a Periodic Maser Source G188.95+0.89

M. M. Mutie1,2, * J. O. Chibueze3,4 †, K. El Bouchefy5, G. C. MacLeod6,7, J. Morgan3 and P. Baki1

1Department of Physics, Technical University of Kenya, P. O. Box 52428-00200, Nairobi, Kenya
2Department of Physical Sciences, Chuka University, P. O. Box 109-60400, Chuka, Kenya
3Centre for Space Research, Physics Department, North-West University, Potchefstroom 2520, South Africa
4Department of Physics and Astronomy, University of Nigeria, Carver Building, 1 University Road, Nsukka, 410001, Nigeria
5South African Radio Astronomy Observatory, Rouxhof, Johannesburg, South Africa
6The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
7Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp, 1741, South Africa

Accepted 2021 June 30. Received 2021 June 30; in original form 2021 March 30

ABSTRACT

We report the results of ongoing monitoring of the 6.7 GHz CH$_3$OH masers associated with G188.95+0.89. In these observations five features are periodically varying and at least two exhibit evidence of velocity drifts. It is not clear the cause of these velocity drifts. The spectra have varied significantly since detection in 1991. The 11.45 km s$^{-1}$ feature has decreased exponentially from 2003. Complementary ALMA 1.3 mm continuum and line observational results are also presented. Eight continuum cores (MM1 – MM8) were detected in G188.95+0.89. We derived the masses of the detected cores. G188.95+0.89 MM2 was resolved into 2 continuum cores (separated by 0.1 $''$) in ALMA band 7 observations. Also CH$_3$OH (4$_1^{12}$-3$_2^{13}$) thermal emission associated with MM2 is double peaked. We propose the presence of multiple (at least binary) young stellar objects in MM2. SiO emission exhibit a bow-shock morphology in MM2 while strong emission of 12CO at the east and west of MM2 suggest the presence of an east-west bipolar outflow.

Key words: ISM: individual objects (G188.95+0.89) -- radio lines:stars -- ISM:molecules -- masers -- stars:formation -- techniques:interferometric

1 INTRODUCTION

High mass star-forming regions (HMSFRs) is an ongoing topic of open debate as it relates to mass growth (Motte et al. 2018). The timescales of phases associated with this process they state are of the order of 10^4–10^5 years. Observation of such phases is very difficult. A unique property to HMSFRs is the presence of class II methanol CH$_3$OH masers in their early formative phases (Caswell et al. 1995a; Breen et al. 2013). These class II CH$_3$OH masers have proven to be a reliable signpost of the very early stages of high-mass star formation (Menten 1991; Caswell 1996). Recent results of monitoring related infra-red sources and class II methanol (CH$_3$OH) masers towards HMSFRs have identified significant accretion events. At present only four accretion events have been detected, they are: S255IR-NIRS3 (Fujisawa et al. 2015; Caratti o Garatti et al. 2017; Szymczak et al. 2018b), NGC6334I (Hunter et al. 2017; Hunter et al. 2018; MacLeod et al. 2018), G323.46-0.08 (Proven-Adzri et al. 2019; MacLeod et al. 2021b), and G358.93-0.03 (Sugiyama et al. 2019; MacLeod et al. 2019; Breen et al. 2019; MacLeod et al. 2019; Burns et al. 2020).

Another important phenomena associated with HMSFRs are periodic methanol masers discovered by Goedhart et al. (2003). Periodic masers are rare, there are only twenty-five known so far (Goedhart et al. 2003, 2004, 2009, 2014; Araya et al. 2010; Szymczak et al. 2011; Fujisawa et al. 2014; Maswanganye et al. 2015; Szymczak et al. 2015; Sugiyama et al. 2015; Maswanganye et al. 2016; Szymczak et al. 2016; Sugiyama et al. 2017; Szymczak et al. 2018a; Proven-Adzri et al. 2019; Olech et al. 2020). Only the HMSFR source G323.46-0.08 is periodic and has experienced an accretion event (Proven-Adzri et al. 2019; MacLeod et al. 2021b).

The HMSFR G188.95+0.89 (also known as S 252 or AFGL 5180) is well studied at multiple wavelengths. Oh et al. (2010) reported the parallax distance as 1.76± 0.11 kpc, Perseus spiral arm (Reid et al. 2009). The 6.7 GHz CH$_3$OH masers of this source were discovered by Menten (1991) and reported periodic, $\tau =395\pm8$ d, by Goedhart et al. (2004, 2014). Kurtz et al. (2000) report an associated unresolved UCH11 region. Minier et al. (2005) did not detect the continuum radio source, but reported that the masers are projected on a bright mm source with an estimated mass in MM1 of $50M_\odot$. They also detected the presence of CH$_3$CN and 13CO towards the G188.95+0.89 methanol maser site indicating that they are within hot molecular cores (HMCs) with a gas density $\geq 10^5$ cm$^{-3}$.

In this paper, we present the results of ongoing 6.7 GHz
2 M. M. Mutie et al.

Table 1. Summary of single-dish maser monitoring observations at HartRAO.

Parameter	Quantity
Receiver	4.5 cm
Maser Transition	J = 5_1 - 6_0 A +
Rest frequency	6.668518 GHz
System temperature	57 K
Beam width	7"
Correlator bandwidth	1.0 MHz
Observing mode	Frequency-switching
Number of spectral channels	512
Velocity range	22.5 km s^{-1}
Correlator resolution	0.044 km s^{-1}
Central velocity	+10.0 km s^{-1}
Sensitivity 3σ rms	-1.0 Jy
Monitoring period	2003 Jun 30 - 2021 Jan 18
Down time for repairs	2008 Sept - 2010 Dec

CH$_3$OH maser monitoring for G188.95+0.89. Significant variations of maser features are analysed. Also high-resolution mm-wavelength dust continuum and molecular line emission observations are presented.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Single-dish Observations

The radio observations were made using the 26-m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO1). The 4.5 cm receiver is comprised of dual, cryogenically cooled, RCP and LCP feeds. Each polarisation was calibrated independently relative to Hydra A and 3C123, assuming the flux scale of Ott et al. (1994).

All observations employed frequency-switching (FS) and within 2 hr of zenith. Observations completed with a 1 MHz bandwidth and recorded with a 1024-channel per polarisation spectrometer (in FS 512 channels are saved). The velocity resolution achieved is 0.044 km s$^{-1}$ and the typical 3σ root-mean-square (rms) noise per observation was ~1 Jy. This sensitivity is improved when across several channels, e.g. integration over ten channels improves the sensitivity to ~0.3 Jy km s$^{-1}$. For all the epochs, half-power beamwidth pointing correction observations were carried out. The rest frequency was corrected for the Local Standard of Rest (LSR) velocity v$_{LSR}$ =+10.0 km s$^{-1}$. Listed in Table 1 are the parameters of the telescope, receiver, and observation set-up for each epoch.

Observations were made between 2003 June 30 to 2021 January 18 with a cadence of between 10 to 20 d; the cadence varied during several flares. No spectroscopic observations were taken between 2008 September and 2010 December when the 26 m antenna underwent repairs (Gaylard 2010). The position employed at HartRAO is R.A. = 06° 08′ 53″ 3 and Dec. = +21° 38′ 30″ (J2000).

2.2 ALMA Observations

We obtained ALMA band 6 archival data on G188.95+0.89 (Project ID: 2015.1.01454.S) taken on 2016 April 23 (42 antennas of the 12-m main array), 2016 September 17 (38 antennas of the 12-m main array). Observations of G188.95+0.89 (phase tracking center at R.A. (J2000) = 06° 08′ 53″ 3 and Dec. (J2000) = +21° 38′ 30″) were carried out at 1.3 mm (230 GHz) with ALMA band 6 in 2015 using two different configurations. The total time on-source was 19 and 30 minutes respectively, and the projected baselines ranged from 15 - 2600 m. The ALMA correlator was configured to cover nine spectral windows (spws). The raw visibility data were calibrated using the Common Astronomy Software Applications (CASA 5.4) standard calibration and imaging tasks. Bandpass and flux calibration were conducted using the sources J0510–1800 and J0750–1231, respectively. J0603–21591 was used as the gain calibrator. The calibrated visibility data from the two observation blocks were combined using CASA task CONCAT, and CLEAN was used to produce the images of the continuum (rms of 2.2 mJy beam$^{-1}$). Also images of molecular line emission (typical rms of 2.2 mJy beam$^{-1}$) with spectral resolution of 1 km s$^{-1}$ are produced. In this paper, we will focus on the 12CO (2-1), CH$_3$OH (4_2,2-3_1,2), SiO (5-4) and C18O (2-1). For continuum subtraction, only line-free parts of the spectra were used. We used CASA to do all the calibration and imaging of the data cubes as well as self calibration to remove residual phase and flux calibration errors. The line data were then imaged with a robust weighting of 0.5.

3 RESULTS

3.1 6.7 GHz CH$_3$OH Masers Variability

In Fig. 1 we present selected spectra from the seventeen flare cycles (Fl1_n for n=5 to 21) in the 6.7 GHz methanol maser observations associated with G188.95+0.89 studied here (the original four are published in Goedhart et al. (2004)). The spectra presented are the maxima of three of these flare cycles (flame number Fl1_n for n=6, 13, and 20). In this image it can be seen the evolution of the spectral profile over the 18 years of observations presented. This profile is certainly comprised of many line blended masers, in particular for +10 < v$_{LSR}$ < +11.3 km s$^{-1}$.

A dynamic spectra is the best way to visualise variability of these 6.7 GHz methanol masers associated with G188.95+0.89, see Fig. 2. Features have weakened others strengthened, most appear periodic and variations in velocity, velocity drifts, are apparent. For the purpose of analysis of these observations five features, two at v$_{LSR}$ =+10.44 and +10.70 km s$^{-1}$ in the heavily line merged velocity regime, and others at v$_{LSR}$ =+8.42, +9.65, and +11.45 km s$^{-1}$ are selected. Note, the former two features are likely comprised of multiple masers; the others less likely.

Time series plots of the integrated flux density, F$_{int}$, for each selected feature are shown in Fig. 3. A time series plot of the total integrated flux density, F$_{int}$ (Total), is also shown. For each feature, in each epoch of observation, the velocity associated with the maximum flux density in the stated velocity extent is determined. Linear regression analysis is applied to each velocity time series to determine the velocity drift, and the results are included in this table. Two of the features have measurable velocity drifts, with "goodness of fit" values $R^2 > 50\%$. The apparent drift seen in the v$_{LSR}$ =+10.70 km s$^{-1}$ feature (see Fig. 1) may be the result of variations of heavily line merged masers contributing to the feature. The features at v$_{LSR}$ =+9.65 and +11.45 km s$^{-1}$ are best fit by a single Gaussian profile each; both possibly devoid of line merged features.

All five features are periodic though it is not obvious for the feature v$_{LSR}$ =+11.45 km s$^{-1}$ in Fig. 3. The period of each is determined using, firstly the programme Period04 developed by Lenz

1 See http://www.hartrao.ac.za/spectra/ for further information.
for each method is included and are within 3σ standard deviation of each other, t_{period/d} = 395 ± 1 d against t_{LS} = 397.6 ± 0.7 d.

The v_{LSR} = ± 8.42 km s^{-1} feature is decaying between 2003 and 2021 while the feature v_{LSR} = ± 10.70 km s^{-1} is increasing in this period. The v_{LSR} = ± 9.65 km s^{-1} feature appears flat in Fig. 3, however its associated flux density of the central velocity channel in the velocity range (not plotted) is rising. When first detected in 1991 (Menten 1991) the +10.44 km s^{-1} feature was the brightest feature, here it is second strongest and is decaying until MJD 5000, thereafter it is flat or slightly increasing. The increase is possibly caused by contributions from the +10.70 km s^{-1} feature. Finally, for v_{LSR} = ± 11.45 km s^{-1}, it is possible to fit an exponentially decaying function to the flux density time series, see Fig. 4. The fitted function is:

\[F_{\text{Int}_h} = a \times e^{MJD/b} + c, \]

where \(a = 150 \pm 4\) Jy km s^{-1}, \(b = -1380 \pm 20 \), and \(c = 1.74 \pm 0.05 \) Jy km s^{-1}. Goedhart et al. (2004) reported this feature reached a maximum on 2001 November 12 (MJD 2225). \(F_{\text{Int}} \sim 45 \) Jy km s^{-1}. From Eqn. 1, on MJD 2225, it is estimated \(F_{\text{Int}} \sim 30 \) Jy km s^{-1}. The projected value is significantly lower than the actual value; they are outside estimated errors. The difference in velocity resolution, here it is 0.044 km s^{-1} while in Goedhart et al. (2004) it is 0.056 km s^{-1}, may account for this difference. Line-merged features may also be a factor. Some other features varied linearly and did not require de-trending for analysis. The complex varying feature v_{LSR} = ± 10.70 km s^{-1} will be analysed more elsewhere.

After Eqn. 1 is subtracted from the original time series the remaining residual, also plotted in Fig. 4, reveals its possible periodic nature. Note the slight increase after MJD 7500; possibly resulting from variations in the v_{LSR} = ± 10.70 km s^{-1} feature. The total integrated flux density plotted in Fig. 3 is seen first falling prior to MJD 5000 then rising suggesting the features decaying dominate prior to MJD 5000 thereafter brightening of the +10.70 km s^{-1} feature dominates.

The relative amplitude variation of each flare can be determined using \(R_{\text{amp}} \):

\[R_{\text{amp}} = \frac{F_{\text{max}} - F_{\text{min}}}{F_{\text{min}}} = \frac{F_{\text{max}}}{F_{\text{min}}} - 1, \]

where \(F_{\text{min}} \) and \(F_{\text{max}} \) are the minimum and maximum flux densities for each flare cycle and each feature. The results of \(R_{\text{amp}} \) for each velocity feature are included in Table 2. This value ranges from 0.1 to 2.8 for the five features. Note that \(R_{\text{amp}} \sim 1 \) for the v_{LSR} = ± 11.45 km s^{-1} feature; the amplitude is decreasing approximately proportionately during the decay. No phase lags between maser features were found. This may infer that the periodic features are located such that when the cause of variations occur, it affects each nearly simultaneously. There may be lags shorter than our cadence that we cannot measure nor speculate about.

3.2 G188.95+0.89 Continuum Emission

In Fig. 5 (top panel), we show the composite image of G188.95+0.89 in WISE bands 1 (3.4μm: red), 2 (4.6 μm: green) and 3 (12 μm: blue) and ALMA 1.3 mm dust continuum emission. The WISE image show a central infrared source (bright in all 3 bands) corresponding to the 850 μm SCUBA MM1 object, and a green (4.6 μm) dominant object south of the central object corresponding to the 850 μm SCUBA MM2 object (Minier et al. 2005). G188.95+0.89 is resolved into eight 1.3 mm objects (MM1–MM8) with ALMA. MM1–MM4 and MM5–MM8 objects (Fig. 5, bottom panel) are associated with 850 μm SCUBA MM1 and MM2 objects of Minier et al. (2005), respectively.

ALMA 1.3 mm MM1 and MM2 are central objects (Fig. 5 bottom zoom-in) and MM1 (the brightest dust continuum object) is associated with the periodic 6.7 GHz CH_3OH maser source. Interestingly, a recent ALMA band 7 observations resolved the continuum core in MM1 into a single object but resolved MM2 into 2 continuum cores (gray contours of Fig. 5 bottom zoom-in). Details of the detected continuum sources and their masses are presented in Table 3.

The dust mass \(M_d \) in Table 3, can be estimated by assuming optically thin dust emission using Hildebrand (1983):

\[M_d = \frac{S_v \nu^2}{k_\nu B_\nu(T_d)} \]

The dust continuum flux density \(S_v \) is given in Table 3 at frequency, \(\nu \) with \(D \) the distance to the source which is 1.76 kpc and \(k_\nu \) the dust opacity per unit mass, \(k_\nu = 0.33 \) cm² g⁻¹ for 230 GHz (Weingartner & Draine 2001). \(B_\nu(T_d) \) is the Planck function at dust temperature, \(T_d \). The temperature used in the dust mass estimations were obtained from Minier et al. (2005), for cores MM1 to MM4 a temperature of 42 K is used and for cores MM5 to MM8, 50 K is used. To obtain the mass of the cores a gas-to-dust mass ratio 100 was used and the results are given in Table 3.

The integrated flux densities for MM5 to MM8, that were also used in the core mass estimates, are not primary beam corrected since MM5–MM8 are located close to the edge of the primary beam and will not be discussed in detail due to limited sensitivity.

3.3 G188.95+0.89 Millimeter Line Emission

A number of thermal molecular lines were detected towards the 8 millimeter continuum objects, however, in this paper we will focus only the CH_3OH (4_{2,2} – 3_{1,2}), SiO (J = 2 – 1), ^12CO (J = 2 – 1) and C^{18}O (J = 2 – 1).

CH_3OH 4_{2,2} – 3_{1,2}

Emission from the CH_3OH (4_{2,2} – 3_{1,2}) line was detected towards all 8 cores, see Fig. 6. The emission is strongest towards the southern MM5–MM8 and weakest towards MM4. The nature of the emission towards MM5–MM6 is contaminated by the effect of the decreased sensitivity towards the edge of the primary beam. Beyond detection or non-detection of an emission, no further discussions will be made for these objects.

One interesting feature of the CH_3OH (4_{2,2} – 3_{1,2}) emission towards MM2 is the presence of a double peak in the emission at the systemic velocity of MM2. There is CH_3OH (4_{2,2} – 3_{1,2}) emission associated with MM1. Minier et al. (2005) indicated the temperature of the dust of the clump hosting the 1.3 mm ALMA MM1–MM4 sources to be ~150 K.

SiO (J = 2 – 1)

Emission of SiO (J = 2 – 1) is known to trace shocks especially in star-forming regions. The dominant SiO emission is observed in the north-west region of MM2, see Fig. 7. The emission has a bow-shock morphology in the channel corresponding to the systemic velocity of MM2. There are SiO emission (in some cases, very faint emission) associated with each of MM3 to MM8.
Table 2. Information of individual 6.7 GHz maser features. Included are the feature central velocity of each, the velocity extent in which \(F_{\text{vel}} \) is determined, the velocity drift (1σ standard deviation in parenthesis), its goodness of fit (\(R^2 \)), the period determined from the Period04 and LS methods, and description of long-term variation. The average period for each method is presented (1σ standard deviation in parenthesis). Comments on velocity drift are given: uncertain (\(R^2 <0.5 \)), blue-shifting, and red-shifting. Comments on general trends of the flux density of each feature are given (each are periodic).

Feature (km s\(^{-1}\))	Extent \(\times 10^{-3} \) km s\(^{-1}\) d\(^{-1}\)	Velocity (km s\(^{-1}\))	\(R^2 \)	Period \(\tau_{\text{Period04}} \) (d)	Period \(\tau_{\text{LS}} \) (d)	Relative Amplitude	Comments
+8.42	0.48	-1.18(7)	22.9	394.4	397.0	2.8	uncertain
+9.65	0.26	-2.38(3)	81.6	395.8	396.7	0.6	blue-shifting
+10.44	0.18	+0.42(4)	30.4	393.5	398.3	0.1	complex
+10.70	0.31	+0.39(5)	5.7	396.3	398.2	1.0	uncertain
+11.45	0.31	+1.88(4)	66.0	397.8	-1	-1	red-shifting

Average 395(1) 397.6(7)

Table 3. Parameters of the detected dust cores

Object-name	R.A. (h m s)	Dec. (° m s)	Peak flux \((\text{mJy beam}^{-1}) \)	Integrated flux \((\text{mJy}) \)	\(V_{\text{sys}} \) (km s\(^{-1}\))	Core mass \((M_\odot) \)
MM1	06 08 53.33	21 38 28.9	71.7	71.1	5.0	8.2
MM2	06 08 53.49	21 38 30.5	22.5	41.3	2.0	4.8
MM3	06 08 54.14	21 38 34.4	5.6	9.4	3.0	1.1
MM4	06 08 52.86	21 38 29.5	3.2	3.8	4.5	0.5
MM5*	06 08 53.35	21 38 11.6	8.3	14.2	2.0	1.4
MM6*	06 08 53.42	21 38 13.7	1.9	3.6	4.0	0.4
MM7*	06 08 53.23	21 38 09.7	9.8	16.7	-	1.6
MM8*	06 08 52.97	21 38 11.1	5.8	6.0	4.0	0.6

Table 4. Note. Columns are species, transition, rest frequency, energy of the upper level and number of atoms present.

Molecule	Transition	Rest frequency (GHz)	\(E_J \) (K)	\(E_{J'0} \) (K)
SiO	2-1	217.10498000	20.84	31.26
C\(^{18}\)O	2-1	219.56035410	5.27	15.81
CH\(_3\)OH	4(2,2)\(-3,1,2\)	218.4406300	34.50	45.46
C\(^3\)CO	2-1	230.53380000	5.53	16.60

however, no SiO emission is detected towards the MM1 object.

\(^{12}\)CO \((J = 2 - 1)\)
The \(^{12}\)CO \((J = 2 - 1)\) emission in G188.95+0.89 is complicated owing to the effect of the strongly self-absorbed features seen in the line emission. The other plausible reason for the observed complex distribution is that all the millimeter objects may be driving outflows. If the strong emission east of MM2 observed in the \(-3 \text{ km s}^{-1}\) channel and the emission west of MM2 in the \(9 \text{ km s}^{-1}\) channel are both associated with MM2, then they may demarcate an east-west bipolar outflow in MM2, see Fig. 8. There is also some emission north of MM2 and could signify a second outflow emanating from the object; suggestive of multiple YSOs in MM2. The other mm objects are all associated with \(^{12}\)CO \((J = 2 - 1)\) emission.

\(^{13}\)CO \((J = 2 - 1)\)
We detected high density tracer, \(^{13}\)CO \((J = 2 - 1)\), towards all MM1–MM8, see Fig. 9. MM1 and MM2 are the dominant sources of the C\(^{18}\)O \((J = 2 - 1)\) emission. Interestingly, the brightest C\(^{18}\)O \((J = 2 - 1)\) channel \((3 \text{ km s}^{-1}\) channel\) show a distribution of the C\(^{18}\)O \((J = 2 - 1)\) emission to lie in the interface between MM1 and MM2 cores. The possible implication of this to the observed variability in the 6.7 GHz CH\(_3\)OH masers will be discussed in Section 4.1.

4 DISCUSSION

4.1 Implications of the variability in the 6.7 GHz CH\(_3\)OH Masers

Originally, Goedhart et al. (2004) reported the period of G188.89+0.89 was 416 d; this was revised in Goedhart et al. (2014) to 395 d. Here, using the longer time series and from two separate methods, the shorter period is confirmed \((\tau_{\text{period04}} = 395 \pm 1 \text{ d})\) and \(T_L = 397.6 \pm 0.7 \text{ d}\). Durjaz et al. (2021) also confirm, though observing fewer flare cycles, the shorter period, \(\tau = 395 \pm 8 \text{ d}\).

Class II methanol masers are only found associated with high mass star-forming regions (Minier et al. 2003). Such regions experience accretion events (identified by flaring masers) such as those reported in S255IR-NIRS3 (Fujisawa et al. 2015; Szymczak et al. 2018b), NGC6334I (MacLeod et al. 2018), G323.46-0.08 (Proven-Adzri et al. 2019; MacLeod et al. 2021b), and G358.93-0.03 (Sugiyama et al. 2019; MacLeod et al. 2019). However, three of the features in Table 2 are decaying, in particular the \(v_L = +11.45 \text{ km s}^{-1}\) decays exponentially (Fig. 4). Interestingly, historical observations suggest the originally detected peak flux density feature, \(v_L = +10.5 \text{ km s}^{-1}\), has varied markedly since detection, less than 500 Jy before 1993 (Menten 1991; Caswell et al. 1995b), greater than 600 Jy before 2009 (Goedhart et al. 2004; Green et al. 2012) to ~500 Jy on average here. Note at present
the peak flux density is found at $v_{LSR} = +10.70 \text{ km s}^{-1}$ and not $+10.44 \text{ km s}^{-1}$. Caswell et al. (1995b) reported that the feature $v_{LSR} = +11.22 \text{ km s}^{-1}$ decreased slightly from 1991 (~250 Menten (1991)) to 1993 (~230 Jy). In 1999 August it was only ~100 Jy (Szymczak et al. 2000) while reaching a maximum, ~160 Jy, in 2001 November (Goedhart et al. 2004); thereafter the exponential decay is reported here. Above Eqn. 1 cannot describe these variations, nor does it fit the maximum reported in Goedhart et al. (2004). It appears a weak flaring event, increasing by a factor of ~2.6 in flux density, occurred between 1999 August and 2001 November in the periodic feature at $v_{LSR} = +11.45 \text{ km s}^{-1}$. This decaying periodic feature resembles that shown for decaying periodic maser features in G323.46–0.08 (MacLeod et al. 2021b). Further analysis of historical data, and data other transitions (e.g. 12.2 GHz CH$_3$OH and/or 22.2 GHz H$_2$O), are required to confirm.

Spot maps of the 6.7 GHz methanol masers are shown in Minier et al. (2000); Hu et al. (2016); all features reside in a 180x180 au box assuming a distance of 1.76 kpc (Oh et al. 2010) about the bright reference feature ($v_{LSR} = +10.33 \text{ km s}^{-1}$). The weakening features reside within ~50 au radius of the reference feature, $v_{LSR} = +8.42 \text{ km s}^{-1}$ slightly north while +11.45 km s$^{-1}$ is slightly south of the reference maser. The strengthening feature (+10.70 km s$^{-1}$) is found ~90 au to the South-East from the reference maser. The non-varying feature, $v_{LSR} = +9.65 \text{ km s}^{-1}$, is further South-East (~140 au). Minier et al. (2000) suggest that the masers separating the reference maser could be part of an outflow from the disk.

It is not clear whether velocity drifts, including those seen here, are caused by variability of spectrally blended masers (Szymczak et al. 2014) or by motion of the gas (Goddi et al. 2011). The accretion disks surrounding massive star-forming regions may experience infalling gas. Szymczak et al. (2014) report a velocity drifting feature in Cepheus A; they suggest it may be an artifact of variable line-merged features or the result of masers loosing infalling gas. Szymczak et al. (2014) or by motion of the gas (Goddi et al. 2011).

5 Conclusion

We presented results of 1.5 decades of monitoring observations of 6.7 GHz CH$_3$OH masers towards G188.95+0.89 and ALMA band 6 observational results and found the following:

(i) G188.95+0.89 protocloud is resolved into eight 1.3 mm objects (MM1-MM8). MM1 and MM2 are the central objects and MM1 (the brightest dust continuum object) is associated with the periodic 6.7 GHz CH$_3$OH maser source.

(ii) MM2 hosts more than one YSO, likely a binary system.

(iii) Strong emission of 12CO at the east and west of MM2 point to the presence of an east-west bipolar outflow in MM2. Emissions north of MM2 also suggest a second outflow emanating from the object, which could signal multiplicity of YSOs in MM2.

(iv) All five features are periodic, suggesting a common background source of seed photon. The light curve shape of the maser features are similar to those of Mira variable stars and could suggest pulsation of the protostar as the possible driver of the periodicity (Inayoshi et al. 2013).

(v) Two CH$_3$OH maser features are reported with measurable velocity drift.

(vi) Outflows are identified in 12CO (2-1) line emission. While no direct detection of accretion disks was possible with the current observations, the detected outflows suggest the presence of accretion disks in the source. Accretion disk may experience infalling gas and velocity drifts may be due to an artifact of variable line-merged features or by infalling gas.

Acknowledgements

MMM acknowledge the support of The Technical University of Kenya, NRF-South Africa, HartRAO-South Africa and the Newton Fund. This paper makes use of the following ALMA data: ADS/JAO.ALMA ALMA 2015.101454.S. ALMA is a partnership of ESO
M. M. Mutie et al.

(representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

DATA AVAILABILITY

- This paper makes use of the following ALMA data: ADS/JAO.ALMA 2015.101454.S and can be accessed on the ALMA Science portal.
- This publication makes use of data products HartRAO 26 maser monitoring project and will be made available on a reasonable request.
- The WISE data used in this publication can be access on the IRSA public data archive.

REFERENCES

Araya E. D., Hofner P., Goss W. M., Kurtz S., Richards A. M. S., Linz H., Olmi L., Sewilo M., 2010, ApJ, 717, L133
Breen S. L., Ellingsen S. P., Contreras Y., Green J. A., Caswell J. L., Stevens J. B., Dawson J. R., Voronkov M. A., 2013, MNRAS, 435, L24
Breen S. L., Sobolev A. M., Kaczmarek J. F., Ellingsen S. P., McCarthy T. P., Voronkov M. A., 2019, ApJ, 876, L25
Burns R. A., et al., 2020, Nature Astronomy, 4, 506
Caratti o Garatti A., et al., 2017, Nature Physics, 13, 276
Caswell J. L., 1996, MNRAS, 279, 79
Caswell J. L., Vaile R. A., Ellingsen S. P., 1995a, Publ. Astron. Soc. Australia, 12, 37
Caswell J. L., Vaile R. A., Ellingsen S. P., Whiteoak J. B., Norris R. P., 1995b, MNRAS, 272, 96
Durajsz M., Szymczak M., Wolak P., Bartkiewicz A., 2021, A&A, 648, A118
Fujisawa K., et al., 2014, PASJ, 66, 78
Fujisawa K., Yonekura Y., Sugiyama K., Horuchi H., Hayashi T., Hachisuka K., Matsumoto N., Niinuma K., 2015, The Astronomer’s Telegram, 8286, 1
Gaylard M. J., 2010, Monthly Notes of the Astronomical Society of South Africa, 69, 168
Goddi C., Moscadelli L., Sanna A., 2011, A&A, 535, L8
Goedhart S., Gaylard M. J., van der Walt D. J., 2003, MNRAS, 339, L33
Goedhart S., Gaylard M. J., van der Walt D. J., 2004, MNRAS, 355, 553
Goedhart S., Langa M. C., Gaylard M. J., Van Der Walt D. J., 2009, MNRAS, 398, 995
Goedhart S., Maswanguy J. P., Gaylard M. J., van der Walt D. J., 2014, MNRAS, 437, 1808
Green J. A., et al., 2012, MNRAS, 420, 3108
Hildebrand R. H., 1983, Quarterly Journal of the royal astronomical Society, 24, 267
Hu B., Menten K. M., Wu Y., Bartkiewicz A., Rygl K., Reid M. J., Urquhart J. S., Zheng X., 2016, ApJ, 833, 18
Hunter T. R., et al., 2017, ApJ, 837, L29
Hunter T. R., et al., 2018, in American Astronomical Society Meeting Abstracts# 231. pp 342–21
Inayoshi K., Sugiyama K., Hosokawa T., Motogi K., Tanaka K. E. I., 2013, The Astrophysical Journal, 769, L20
Kurtz S., Cesaroni R., Churchwell E., Hofner P., Walmsley C. M., 2000, in Mannings V., Boss A. P., Russell S. S., eds, Protostars and Planets IV. pp 299–326
Lenz P., Breger M., 2004, Proceedings of the International Astronomical Union, 2004, 786
MacLeod G. C., et al., 2018, MNRAS, 478, 1077
MacLeod G. C., et al., 2019, MNRAS, 489, 3981
MacLeod G. C., Chibueze J. O., Sanna A., Paulsen J. D., Hsoue M., van den Heever S. P., Goedhart S., 2021a, MNRAS, 500, 3425
MacLeod G. C., Smits D. P., Green J. A., van den Heever S. P., 2021b, MNRAS, 502, 5658
Maswanguy J. P., Gaylard M. J., Goedhart S., Walt D. J. v. d., Booth R. S., 2015, MNRAS, 446, 2730
Maswanguy J. P., van der Walt D. J., Goedhart S., Gaylard M. J., 2016, MNRAS, 456, 4335
Menten K. M., 1991, ApJ, 380, L75
Minier V., Booth R. S., Conway J. E., 2000, A&A, 362, 1093
Minier V., Ellingsen S. P., Norris R. P., Booth R. S., 2003, A&A, 403, 1095
Minier V., Burton M. G., Hill T., Pestalozzi M. R., Purcell C. R., Garay G., Walsh A. J., Longmore S., 2005, A&A, 429, 945
Motte F., Bontemps S., Louvet F., 2018, ARA&A, 56, 41
Oh C. S., Kobayashi H., Honma M., Hirota T., Sato K., Ueno Y., 2010, PASJ, 62, 101
Olech M., Szymczak M., Wolak P., Gérard E., Bartkiewicz A., 2020, A&A, 634, A41
Ott M., Witzel A., Quirrenbach A., Reichbaum T. P., Standke K. J., Schalinski C. J., Hummel C. A., 1994, A&A, 284, 331
Proven-Adzri E., MacLeod G. C., Heever S. P. v. d., Hoare M. G., Kuditcher A., Goedhart S., 2019, MNRAS, 487, 2407
Reid M. J., Menten K. M., Brunthaler A., Zheng X. W., Moscadelli L., Xu Y., 2009, ApJ, 693, 397
Scargle J. D., 1982, ApJ, 263, 835
Sugiyama K., et al., 2015, Publication of Korean Astronomical Society, 30, 129
Sugiyama K., et al., 2017, PASJ, 69, 59
Sugiyama K., Saito Y., Yonekura Y., Momose M., 2019, The Astronomer’s Telegram, 12446, 1
Szymczak M., Hrynek G., Kus A. J., 2000, A&AS, 143, 269
Szymczak M., Wolak P., Bartkiewicz A., van Langevelde H. J., 2011, A&A, 531, L3
Szymczak M., Wolak P., Bartkiewicz A., 2014, MNRAS, 439, 407
Szymczak M., Wolak P., Bartkiewicz A., 2015, MNRAS, 448, 2264
Szymczak M., Olech M., Wolak P., Bartkiewicz A., Gawroński M., 2016, MNRAS, 459, L56
Szymczak M., Olech M., Sarniak R., Wolak P., Bartkiewicz A., 2018a, MNRAS, 474, 219
Szymczak M., Olech M., Wolak P., Gérard E., Bartkiewicz A., 2018b, A&A, 617, A80
Weingartner J. C., Draine B., 2001, The Astrophysical Journal, 548, 296

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Massive Protocluster of a Periodic Maser Source G188.95+0.89

Figure 1. Spectra of the 6.7 GHz methanol masers associated with G188.95+0.89 observed at the maxima of Fl_6, Fl_13, and Fl_20. Arrows mark the selected velocity features studied here.

Figure 2. The dynamic spectrum of the 6.7 GHz methanol masers associated with G188.95+0.89. Dashed lines demarcate the spectra of the maximum in Fl_6, Fl_13, and Fl_20 and plotted in Fig. 1. No observations were taken between 2008 September and 2010 December during repairs.
Figure 3. Time series plots of F_{Int_6} for five maser features identified in Fig. 1 and labelled in each panel. In (d) the total integrated flux density of all masers associated with G188.95+0.85 is plotted. Note the x-axis in (b) through (e) denote the estimated maxima of each flare, F_{n} for $n=5$ to 21 (for $\tau \sim 395$ d).
Massive Protocluster of a Periodic Maser Source G188.95+0.89

Figure 4. (a) Time series plot of $F_{\text{Int}_{6.7}}$ for the $v_{\text{LSR}} = +11.45$ km s$^{-1}$ feature. The fitted exponentially decaying function (black dashed line) is included. (b) The residual of the integrated flux density, raw data less the fitted exponentially decaying function, is plotted. Note the secondary x-axis in (b) denotes the estimated maxima of each flare, F_{MAX}, for n=5 to 21 (for $\tau \sim 395$ d).
Figure 5. (top) Composite 3-color WISE image of G188.95+0.89. WISE band 1 (3.4 \(\mu m\)), 2, (4.6 \(\mu m\)) and 3 (12 \(\mu m\)) are represented red, green and blue. (bottom) ALMA band 6 (black contour, levels = [2, 4, 10, 20, 50] mJy beam\(^{-1}\)) and in the zoom-in, band 7 (gray contour, levels = [2, 4, 20, 60, 80] mJy beam\(^{-1}\)) dust continuum emission of G188.95+0.89. The filled ellipses on the bottom left corner beams of the band 6 (larger ellipse) and band 7 (smaller ellipse). The open circle near MM1 peak indicates the position of the periodic 6.7 GHz CH\(_3\)OH masers.
Figure 6. CH$_3$OH 4(2,2)-3(1,2) thermal line channel map with dust continuum overlaid (black contour, levels = [0.002, 0.004, 0.02, 0.06, 0.08] Jy beam$^{-1}$) dust continuum emission of G188.95+0.89. The color scale is the intensity in Jy beam$^{-1}$.
Figure 7. SiO ($J = 2 - 1$) thermal line channel map with dust continuum overlaid (black contour, levels = [0.002, 0.004, 0.02, 0.06, 0.08] Jy beam$^{-1}$) dust continuum emission of G188.95+0.89. The color scale is the intensity in Jy beam$^{-1}$.
Figure 8. 12CO ($J = 2 - 1$) channel map with dust continuum overlaid (black contour, levels = [0.002, 0.004, 0.02, 0.06, 0.08] Jy beam$^{-1}$) dust continuum emission of G188.95+0.89. The color scale is the intensity in Jy beam$^{-1}$.

Massive Protocluster of a Periodic Maser Source G188.95+0.89
Figure 9. C18O ($J = 2 \rightarrow 1$) channel map with dust continuum overlaid (black contour, levels = [0.002, 0.004, 0.02, 0.06, 0.08] Jy beam$^{-1}$) dust continuum emission of G188.95+0.89. The color scale is the intensity in Jy beam$^{-1}$.
Figure 10. 12CO (solid lines) and CH$_3$OH (dashed lines) spectra (of G188.95+0.89 extracted with an ellipse of size ~4'' centred on MM2. The vertical lines indicate the observed absorption features in 12CO line. The multiple absorption features in the 12CO emission and the double peak feature in the CH$_3$OH line point to multiplicity (or at least binary) of driving sources in MM2. Band 7 ALMA dust continuum detected 2 cores in MM2.