Pathways of bond topology transitions at the interface of silicon nanocrystals and amorphous silica matrix

D. E. Yılmaz† and C. Bulutay‡
Department of Physics, Bilkent University, Ankara, 06800, Turkey

T. Çağın‡
Texas A&M University, Artie McFerrin Department of Chemical Engineering, Jack E. Brown Engineering Building, 3122 TAMU, College Station, TX 77843-3122, USA

The interface chemistry of silicon nanocrystals (NCs) embedded in amorphous oxide matrix is studied through molecular dynamics simulations with the chemical environment described by the reactive force field model. Our results indicate that the Si NC-oxide interface is more involved than the previously proposed schemes which were based on solely simple bridge or double bonds. We identify different types of three-coordinated oxygen complexes, previously not noted. The abundance and the charge distribution of each oxygen complex is determined as a function of the NC size as well as the transitions among them. The oxidation at the surface of NC induces tensile strain to Si-Si bonds which become significant only around the interface, while the inner core remains unstrained. Unlike many earlier reports on the interface structure, we do not observe any double bonds. Furthermore, our simulations and analysis reveal that the interface bond topology evolves among different oxygen bridges through these three-coordinated oxygen complexes.

PACS numbers: 61.46.Hk, 68.35.Ct

I. INTRODUCTION

After a long arduous effort, photoluminescence from silicon has been achieved from its nanocrystalline form [1]. A critical debate, however, continues over the nature of the interface chemistry of silicon nanocrystals (Si-NCs) embedded in amorphous silica which has direct implications on the optical activity of the interface [2, 3, 4, 5]. Wolkin et al. reported that the oxidation of porous silicon quantum dots results in a red shift in the photoluminescence (PL) spectra which indicates the importance of oxygen-related interface bond topology [2]. Along this line, Puzder and co-workers compared PL calculations of nanoclusters with different passivants and surface configurations and proposed the main reason for the red shift to be double Si=O bonds [3]. Countering this, Luppi et al. reported excitonic luminescence features caused by Si-O-Si bridge bonds at the surface of silicon nanoclusters [4]. As a supporting evidence for the latter, Gatti et al. recently demonstrated that Si-O-Si is the most stable isomer configuration [5]. To reconcile, Vasiliev et al. claimed that bridge bonds and double bonds have similar effect on PL [6].

All of the work cited above represent density functional theory (DFT)-based calculations with small Si clusters of less than 100 atoms surrounded by either passivants like hydrogen [2, 3, 4, 5] or oxygen [2, 3]. But actual samples are profoundly different: the fabricated systems consist of Si-NC with a diameter larger than 1 nm, embedded in amorphous silica (a-SiO$_2$) matrix. Identifying this fact, Tu and Tersoff studied Si/a-SiO$_2$ interface using a bond order dependent empirical potential and proposed that Si-O-Si bridges are the main blocks at the interface lowering the surface energy [7]. Using the same model potential Hadjisavvas et al. studied Si-NCs embedded in a-SiO$_2$ and they also reported bridge bonds as the mechanism for lowering surface strain energy [8]. In our previous work on the formation and structure of Si NCs, we also observed that this model potential falls short to characterize the system accurately, especially the structure and chemistry at the interface [9]. As a rigorous approach to interface structure and dynamics, Pasquarello et al. used first-principles molecular dynamics (MD) technique to investigate planar Si/SiO$_2$ interface [10]. They observed that the oxygen atoms momentarily are bonded to three silicon atoms during oxidation process. The net effect of these threefold coordinated oxygen atoms during oxidation process was to expel silicon atoms out of interface. This is interpreted as a balancing process to decrease the increased density of Si/SiO$_2$ interface due to oxidation [10]. However, no substantial breakthrough was made over the last decade on this issue.

II. METHOD

In this work, we employ the reactive force field (ReaxFF) model developed by van Duin et al. which improves Brenner’s reactive bond order model [11] to a level of accuracy and validity allowing molecular dynamics simulations of the full reaction pathways in bulk [12]. The parameters for this force field were obtained from fitting to the results of ab initio calculations on relevant species as well as periodic boundary condition DFT-
Based calculations of various crystalline polymorphs of relevant materials. The ReaxFF calculates bond orders which is the measure of bond strength from local geometry. This allows realistic chemical environment such as over/under coordination and bond breaking/formation for large-scale (about 5000 atoms) MD simulations.

To facilitate our discussion regarding the surface-bonded oxygen complexes, we distinguish among three different types of silicon atoms. We label those silicon atoms with all silicon neighbors each with zero oxidation state as \(c \), to denote core silicon atom. Among the remaining (non-\(c \)) silicon atoms, those with at least one bond to \(c \) are labeled as \(s \), denoting as a surface silicon atom. For further investigation of NC, we separate core Si atoms into two sub-categories as inner-core and outer-core atoms: Among core Si atoms which have at least one surface Si neighbour categorized as outer-core Si atoms and rest of core Si atoms categorized as inner-core Si atoms. Finally, any other silicon atom is labeled as \(m \), denoting matrix silicon atom. Hence, a complex consisting of an oxygen atom bonded with two surface silicon atoms is labeled as \(ss \). The other oxygen complexes are \(sm \), \(ssm \), \(sss \), \(mms \) as sketched in Fig. 1 where the last three correspond to three-coordinated oxygen (3cO) atoms.

We use ReaxFF to represent the interactions in the model system. We start with a large simulation cell (box length 43 Å) of silica glass formed through a melting and quenching process used by one of us [13, 14] earlier to study silica glasses earlier. Next, similar to Hadjisavvas et al. [8], we delete all atoms within a predetermined radius to insert crystalline silicon to form NC. In this way, we create NCs with radii ranging from 5.5 Å to 16.7 Å. For the largest NC we insert 967 Si atoms into a spherical hole with radius 16.7 Å created in amorphous matrix. Even for this case, the minimum distance between NC surface to simulation box face is about 5 Å which can still accommodate the interface layer. We also pay special attention in the removal of spherical region so that the correct stoichiometry for the amorphous matrix is met. Thus, our amorphous matrix has two O atoms for every Si atom with a density of 2.17 g/cm\(^3\) which is the density of glass at room temperature and atmospheric pressure.

We set periodic boundary conditions in all directions and while keeping NC at 100 K, we employ simulated annealing process to SiO\(_2\) region to end up with an amorphous matrix free of artificial strain around the NC. Then we set whole systems’ temperature to room temperature (300 K) and continue performing MD simulation for 75 ps to have thermal equilibrium between the two regions. We set MD simulation time step to 0.25 fs for all simulations. For every 62.5 fs time interval, we have record the configurations to analyze the transitions taking place between different bond topologies. The numbers attached to each arrow in Fig. 1 indicate the total number of registered transitions during the simulation in that direction between the complexes for a representative NC of radius 13.4 Å. Almost balanced rates in opposite directions is an assurance of the attainment of the steady state in our simulation. Note that we do not observe any direct transition other than the paths indicated in Fig. 1. For instance, a direct transition of the complex \(ss \) to \(sm \) does not take place, but it is possible through an intermediate transition over the \(ssm \) which is a 3cO. We should also remark that the balanced transitions continue to take place after the steady state is attained which indicates that the interface bond topology is dynamics, i.e. not frozen.

To analyze Si-NC/a-SiO\(_2\) interface, we construct NC surface using Delaunay triangulation scheme (Fig. 2 inset [15]). In two dimensions a Delaunay triangulation of a set of points corresponds to defining triangles such that no point in the set is inside the circumcircle of any triangle. In three dimensions triangles extend to tetrahedra and circumspheres become circumspheres. Since our NCs are nearly spherical in shape, we triangulate projection points of surface Si atoms onto the unit sphere. Hence, we apply Delaunay triangulation over the two dimensional \(\theta-\phi \) plane. We can then create surfaces using this triangulation. This surface enables us to calculate every atoms’ distance to NC surface. By this means we plot various data such as charge, bond order etc. with respect to distance to the surface, to extract information about surface chemistry of Si-NC embedded in amorphous matrix.

III. RESULTS AND DISCUSSIONS

For different NC radii we observe similar trends in bond order distribution, average charges etc., therefore, we present only the figures of the system for a typical
NC of radius 13.4 Å. A useful data to elucidate the structure of these systems is the radial distribution function (RDF). In Fig. 2 we present RDF of NC atoms only, where the first broad peak centered around 2.34 Å with a 0.3 Å full width at half maximum value (FWHM), represents Si-Si bond length distribution in NC (Fig. 2 inset). The maximum extent of the NC can also be read from same plot at about 27 Å, where the RDF goes to zero. Observation of a broad first peak at Fig 2 demands further investigation of Si-Si RDF of NC atoms. For this purpose, in Fig. 3 we present bond length probability distributions (akin to RDF) for three categories of Si atoms: inner core (with no bonds to surface atoms), outer core (bonded to surface) and surface NC atoms. We observe from Fig. 3 that Si-Si bond lengths in the inner core are centered around the equilibrium value and have a narrow width due mainly to thermal vibrations, whereas the bond length distributions of outer core and surface atoms have increasing shift for the most probable bond length values and broader widths. These shifts and particularly the increase in distribution widths cannot be attributed to thermal broadening. Taken together these two observations is a clear indication of increasing strain as a function of distance from the center of the NC. To further investigate this deviation of Si-Si bonds from crystalline Si, in Fig. 4 we present bond length distribution with respect to distance to NC surface averaged over 2 ps of simulation time after the steady state is reached. This figure illustrates the gradual development of radial strain from the center to NC surface. These observations show clearly that oxidation at the surface of NC results in a tensile strain at Si-Si bonds which becomes significant only around the interface, while keeping the inner core almost unstrained. This tensile strain in the NC agrees with previous measurement of Hofmeister et al. 16.

Another consequence of this tensile strain is that the total bond orders of core-NC atoms are somewhat smaller than those of oxide-Si’s as seen in Fig. 5. In the same figure we also show the calculated net charges using electron equilibration method 17. Nearly zero net charges of the core-Si atoms reflects the covalent type of bonding well within the NC. The bonding becomes increasingly ionic away from the NC core as observed by the charges of Si atoms which reach the value of 1.3e at the oxide region (Fig. 5). As a result, the positive charges of surface-Si atoms form a shell at the surface of NC. This observation is similar with those obtained with DFT calculations 18, 19. On the other hand, negative charges of oxygen atoms bonded to surface form another shell that enclose NC and finally total average charges approach to zero within the oxide region. In Fig. 6 we also observe that the magnitude of average charges of oxygen atoms which are bonded to surface are greater than those in the matrix. But, the bond orders are nearly the same. This is due to existence of 3cO atoms bonded to surface. Note that the average bond order of oxygen atoms which are bonded to surface is about two (cf., Fig. 5). Thus, those oxygen atoms form three partial bonds, two strong and one weak bond. Finally, we would like to note that unlike many others 2, 3, 6, we do not observe any double bonds. The occurrence of 3cO has been noted by a number of groups. Pasquarello showed that the bistable E′1 defect of α-quartz structure may lead to 3cO as a metastable state as well as Si-Si dimer bond and calculated the energy of the former to be higher than the latter. Pasquarello proposed that 3cO acts as an intermediate metastable state during structural relaxations at the interface 20. Similarly Boero et al. observed 3cO atoms in their ab initio calculations 21 and reported this feature as a metastable state. In Table 1 we present the collected statistical data
TABLE I: Statistical results of atom charges and numbers, N, for all NC diameters, D_{NC} considered. Abbreviations for atom types are explained in Fig. 1. Charges are in the units of electronic charge and the angles θ, are in degrees.

D_{NC} (Å)	N_c	N_s	N_O	N_{ss} charge	θ_{ss}	N_{sm} charge	θ_{sm}	N_{ssm} charge	θ_{ssm}
11.0	10	25	32	2	-0.88	169.7	24	-0.76	
15.4	42	42	59	5	-0.77	136.1	51	-0.74	
18.0	83	62	77	11	-0.82	120.5	56	-0.74	
19.8	114	76	82	14	-0.82	139.3	49	-0.73	
26.8	353	143	170	20	-0.81	118.0	123	-0.74	
30.8	558	203	243	35	-0.83	123.9	159	-0.74	
33.4	718	238	268	44	-0.83	123.0	179	-0.75	

FIG. 4: (Color online) Variation of Si-Si bond length averages (calculated over 1 Å wide bins) as a function of distance from the NC surface -which is defined by Delaunay tessellation. The solid line is a fit to the data to guide the eye.

at the end of the simulation of 75 ps. For all oxygen complexes, the number of bridges, average charges of bridge oxygens, and the average bridge angles for s-O-s are tabulated. We observe in Table I that the number of sss complexes is very small due to narrow bond angle requirement of this configuration. For the remaining 3cO complexes, ssm and mms, their percentages are seen to increase with curvature. This can explain the fact that other studies [20, 21] which have identified the 3cO complexes as metastable were based on the planar Si/SiO$_2$ interfaces. So, this is an indication of the importance of curvature in the stability of 3cO complexes. Hence, as one would expect, there is a linear relation between the total number of bridges with surface area as indicated in Fig. 6. This finding is supported by Kroll et al. who reported 3 and 33 such bridges for Si-NC with radii 4.0 Å and 7.0 Å, respectively [18].

IV. CONCLUSIONS

In conclusion, the realistic chemical environment provided by reactive force field model enables us to understand the bond topology of Si-NC/a-SiO$_2$ interface and its internal dynamics. Particularly, it reveals that there are different types of oxygen complexes at the Si-NC surface some of which contain 3cO complexes whereas there are no double bonds. The curvature has a positive effect on the occurrence of 3cO. The relative abundance of different complexes and their charge and geometrical characteristics are extracted. The inner core is observed to be almost unstrained while the outer core and the interface region of the NC are under increasing strain up to about a few percents. In general, our work clearly shows that the Si NC-oxide interface is more complicated than the previously proposed schemes which were based on solely
FIG. 6: (Color online) The number of bridges at the Si-NC surface vs radius squared. The line is a linear fit to data.

Acknowledgments

This work has been supported by the European FP6 Project SEMINANO with the Contract No. NMP4 CT2004 505285, by the Turkish Scientific and Technical Council TÜBİTAK with the Project No. 106T048. The visit of Tahir Çağın to Bilkent University was facilitated by the TÜBİTAK BİDEB-2221 programme. The computational resources are supplied in part by TÜBİTAK through TR-Grid e-Infrastructure Project.

[1] T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
[2] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
[3] A. Puzder, A.J. Williamson, J. C. Grossman, and G. Galli, Phys. Rev. Lett. 88, 097401 (2002).
[4] E. Luppi, F. Iori, R. Magri, O. Pulci, S. Ossicini, E. Degoli, and V. Olevano, Phys. Rev. B 75, 033303 (2007).
[5] M. Gatti and G. Onida, Phys. Rev. B 72, 045442 (2005).
[6] I. Vasiliev, J. R. Chelikovsky and R. Martin, Phys. Rev. B 65, 121302 (2002).
[7] Y. Tu and J. Tersoff, Phys. Rev. Lett. 89, 086102 (2002).
[8] G. Hadjissavvas and P. C. Kelires, Phys. Rev. Lett. 93, 226104 (2004).
[9] D. E. Yılmaz, C. Bulutay, T. Çağın, J. Nanosci. Nanotechnol. in press.
[10] A. Pasquarello, M. S. Hybertsen, and R. Car, Nature (London) 395, 58 (1998).
[11] D. W. Brenner, Phys. Rev. B 42, 9458 (1990); D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnot, J. Phys. Condens. Matter 14, 783 (2002).
[12] A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard, III, J. Phys. Chem. A 107, 3803 (2003).
[13] E. Demiralp, T. Çağın, and W. A. Goddard, Phys. Rev. Lett. 82, 1708 (1999).
[14] N. T. Huff, E. Demiralp, T. Çağın, and W. A. Goddard, J. Noncrystal. Solids, 253, 133 (1999).
[15] R. J. Renka, ACM Trans. Math. Soft. (TOMS), 22, 1 (1996).
[16] H. Hofmeister, F. Huiskens, and B. Kohn, Eur. Phys. J. D, 9, 137 (1999).
[17] A. K. Rappe and W. A. Goddard, J. Phys. Chem. 95, 3358 (1991).
[18] P. Kroll and H. J. Schulte, Phys. Stat. Sol. (b) 243 R47-R49 (2006).
[19] P. Kroll and H. J. Schulte, Mater. Res. Soc. Symp. Proc. Vol. 958 0958L07-16 (2007).
[20] A. Pasquarello, App. Surf. Sci. 166, 451 (2000).
[21] M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami, Appl. Phys. Lett. 86, 201910 (2005).