Somatic activating mutations in the phosphatidylinositol-3-kinase/AKT/mTOR pathway underlie heterogeneous segmental overgrowth phenotypes. Because of the extreme differences among patients, we sought to characterize the phenotypic spectrum associated with different genotypes and mutation burdens, including a better understanding of associated complications and natural history. Historically, the clinical diagnoses in patients with \textit{PIK3CA} activating mutations have included Fibroadipose hyperplasia or Overgrowth (FAO), Hemihyperplasia Multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular Malformations, Epidermal Nevi, Scoliosis/Skeletal and Spinal (CLOVES) syndrome, macrodactyly, Fibroadipose Infiltrating Lipomatosis, and the related megalencephaly syndromes, Mega-lencephaly-Capillary Malformation (MCAP or M-CM) and Dysplastic Megalencephaly (DMEG). A workshop was convened at the National Institutes of Health (NIH) to discuss and develop a consensus document regarding diagnosis and treatment of patients with \textit{PIK3CA}-associated somatic overgrowth disorders. Participants in the workshop included a group of researchers from several institutions who have been studying these disorders and have published their findings, as well as representatives from patient-advocacy and support groups. The umbrella term of “\textit{PIK3CA}-Related Overgrowth Spectrum (PROS)” was agreed upon to encompass both the known and emerging clinical entities associated with somatic \textit{PIK3CA} mutations including, macrodactyly, FAO, HHML, CLOVES, and related megalencephaly conditions. Key clinical diagnostic features and criteria for testing were proposed, and testing approaches summarized. Preliminary recommendations for a uniform approach to assessment of overgrowth and molecular diagnostic testing were determined. Future areas to address include the surgical management of overgrowth tissue and vascular anomalies, the optimal approach to thrombosis risk, and the testing of potential pharmacologic therapies.
INTRODUCTION

Over the past 15 years, substantial efforts have been invested in the clinical delineation of mosaic or segmental overgrowth disorders [Cohen et al., 2002]. The entity of macrodactyly and macrodystrophy lipomatosa has long been established in the clinical literature [Ho et al., 2007; Rios et al., 2012]. There has been confusion and controversy regarding the diagnosis of Proteus syndrome and PTEN-related overgrowth conditions [Biesecker et al., 1999; Eng, 2001, 2003]. Biesecker et al. [1998] described a segmental overgrowth condition termed hemihyperplasia with multiple lipomatosis (HHML). Sapp et al. [2007] delineated an apparently distinct recognizable entity called CLOVE syndrome (Congenital Lipomatous Overgrowth, Vascular Malformations, and Epidermal Nevi) as a distinct disorder from Proteus syndrome. Lindhurst et al. [2011] determined that the molecular defect in Proteus syndrome was a somatic mosaic gain-of-function mutation in AKT1, and Hussain et al. [2011] linked AKT2 activating mutations to overgrowth and hypoglycemia. In 2012, five papers were published linking the PIK3CA, PIKR2, AKT3, and other genes to somatic overgrowth and brain anomalies in humans [Lee et al., 2012; Lindhurst et al., 2012; Poduri et al., 2012; Rios et al., 2012; Rivière et al., 2012; Kurek et al., 2012] (Fig. 1).

The identification of PIK3CA somatic mutations was confirmed in patients with distinct, but partially overlapping clinical findings [Keppler-Noreuil et al., 2014], which have included Fibroadipose hyperplasia or Overgrowth (FAO) [Lindhurst et al., 2012], HHML [Biesecker et al., 1998], CLOVES syndrome [Sapp et al., 2007; Alomari, 2009; Kurek et al., 2012], macrodactyly and muscle hemihypertrophy [Rios et al., 2012], the related megalencephaly syndromes, Megalencephaly-Capillary Malformation (MCAP) [Rivière et al., 2012], and hemimegalencephaly [Lee et al., 2012], skin disorders including benign lichenoid keratosis (BLK) [Groesser et al., 2012], and epidermal nevi (EN) and seborrheic keratosis (SK) [Hafner et al., 2007], and Fibroadipose Infiltrating Lipomatosis [Maclellan et al., 2014] (Fig. 2). The distinct clinical focus of the investigators has led to ascertainment bias in the published literature, complicating a comprehensive assessment of genotype-phenotype correlation analysis. We set out to reconcile our current understanding of these phenotypes to provide a more clear understanding of the range in degree of severity of these mosaic disorders and their relationship to particular mutations within PIK3CA, and the level and anatomical distribution of mosaicism within this gene. It was our objective to resolve these apparently conflicting and overlapping designations to provide clarity in research endeavors and to give clinicians useful designations for management, prognostication, and the design of clinical trials of targeted therapies.

DISCUSSION

Goals and Objectives

A two-day workshop was convened on the NIH campus in Bethesda, Maryland, on September 11 and 12, 2013 to discuss emerging clinical and molecular information on the phenotypes

FIG. 1. PI3K-AKT Pathway and associated clinical overgrowth disorders.
caused by somatic mutations in the \textit{PIK3CA} gene. The initial goals of the meeting are shown:

\begin{itemize}
 \item Aggregate clinical and molecular data from patients to summarize the spectrum and clinical delineation of PROS
 \item Develop consensus on clinical diagnostic categories, proper nomenclature for the entities and potential molecular correlations
 \item Propose an agenda for moving forward with considerations for both symptomatic and primary treatment
\end{itemize}

The participants included several researchers who have been studying this group of disorders and three parent representatives of patient-family support and advocacy organizations for individuals with these conditions. A representative participant from each research group presented data to address the objectives of the meeting [Table I].

\begin{table}[h]
\centering
\caption{Formal Presentations at the Workshop}
\begin{tabular}{|l|}
\hline
Biology of the \textit{PIK3CA} pathway and clinical report of pilot therapeutics: Robert Semple
Clinical data on 24 patients with \textit{PIK3CA} mutations from the NIH and Cambridge collaboration: Kim Keppler–Noreuil
CLOVES syndrome and \textit{PIK3CA} mutations: Matthew Warman
Macrodactyly and \textit{PIK3CA} mutations: Jonathan Rios
Asymmetric brain overgrowth in \textit{PIK3CA}: William Dobyns
\hline
\end{tabular}
\end{table}

Following these presentations, the objectives for the remainder of the workshop were agreed upon and included delineation of key diagnostic features to guide molecular/genetic analysis, eligibility criteria for molecular testing, and preliminary consideration of available technical approaches to testing. Preliminary recommendations for a uniform approach to a clinical evaluation of PROS were determined.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{\textit{PIK3CA}-Related Overgrowth Spectrum (PROS). \textit{PIK3CA} predicted protein mutations and associated clinical overgrowth disorders discovered to date. Oncogenic potency: *Hot spot mutations, **Strong mutations, and Intermediate [Gymnopoulos et al., 2007].}
\end{figure}

\section*{Clinical Diagnostic Criteria}

Because of the phenotypic variability of these disorders, the group considered, and then designated a diagnostic umbrella or syndrome family [Brunner and van, 2004] name for these disorders: \textit{PIK3CA}-Related Overgrowth Spectrum (PROS). The proposed clinical diagnostic criteria for PROS are shown in Table II. While there is a spectrum of findings, we designated required characteristics that we felt were relevant across all of the entities. The first indications were based on the known natural history of PROS, which is that they are congenital or have early childhood onset. To date, all patients with PROS have been sporadic (no family history) and all have had mosaic distribution. While most patients have a progressive course, this is not a mandatory finding, and patients may manifest a spectrum or isolated features as outlined in Table II. The diagnostic criteria were subdivided into two major categories: category A with a diverse mosaic spectrum involving two or more of the listed features, and category B with one isolated and more tissue specific feature. Affected individuals may have one or more findings from Category A. Individuals may have only one of the listed findings in Category B, but for these manifestations to satisfy this criterion, they must be congenital or early childhood in onset. These criteria are intended to aid clinicians evaluating patients and to support research and clinical studies. It was the consensus of the group that
the criteria should be simple, yet as comprehensive as possible given the current state of knowledge. The group acknowledged that these criteria may require revision as the gene mutations and clinical findings are further characterized.

Spectrum of PIK3CA-Related Overgrowth

The PIK3CA-Related Overgrowth Spectrum (PROS) encompasses all the unique clinical entities, but highlights the continuum and overlap between the diagnoses, as illustrated in the Venn diagram in Figure 3. We anticipate that PROS will replace the previous overlap between the diagnoses, as illustrated in the Venn diagram in all the unique clinical entities, but highlights the continuum and overlap of the diagnoses. Indeed, PROS can be the result of somatic PIK3CA mutations, similar to, for example, the use of the term “22q11.2 deletion syndrome”, which encompasses and has replaced the previous clinical syndromes of DiGeorge syndrome, Velocardiofacial syndrome, Shprintzen syndrome, Cayler cardiofacial syndrome, and Conotruncal anomaly face syndrome. In PROS, there is varying severity in the clinical presentation of the patients, and some appear to have tissue-specific distribution, while others are more pleiotropic. Macrodactyly (type I macrodactyly or lipofibromatous hamartoma of nerve), also known as macrodystrobphilic lipomatosis, was characterized by fibrofatty tissue enlargement and bony overgrowth, typically within a ‘nerve territory’ with enlargement in circumference and length of the peripheral nerve [Ho et al., 2007; Rios et al., 2012]. There is also a subset of patients with macrodactyly who also have muscular hemihyperplasia. The original descriptions of HHML, FAO, and macrodactyly have significant overlap and are difficult to discriminate from one another. The HHML designation was originally described as moderate abnormalities of asymmetry and overgrowth with multiple subcutaneous lipomata, and the hemihyperplasia may be static or mildly progressive [Biesecker et al., 1998]. The major manifestation of FAO was segmental and progressive overgrowth of subcutaneous and visceral fibroadipose tissue, sometimes associated with skeletal and muscular overgrowth [Lindhurst et al., 2012]. Recently, patients with facial infiltrating lipomatosis, characterized by hemifacial soft-tissue and skeletal overgrowth, precocious dental development, macrodactyly, hemimacroglossia, and mucosal neuromas were diagnosed with PIK3CA activating mutations [Macellani et al., 2014]. There is also significant overlap of HHML and FAO findings with some cases of CLOVES syndrome. As described above, CLOVES syndrome was characterized by congenital lipomatous overgrowth, vascular malformations, EN, and skeletal/scoliosis and spinal abnormalities [Sapp et al., 2007; Alomari, 2009]. The MCAP syndrome was characterized by a core set of brain features including megalencephaly, ventriculomegaly that may progress to hydrocephalus, cerebellar tonsillar ectopia that may progress to Chiari malformation, and cortical brain abnormalities (specifically polymicrogyria or PMG). There are similarities in clinical findings to those seen in MPPH. The MCAP syndrome can be distinguished from MPPH syndrome based on somatic features typically recognized at birth, such as cutaneous vascular malformations, especially capillary malformations of the face and cutis marmorata; cutaneous syndactyly and postaxial polydactyly or polysyndactyly; connective tissue dysplasia; and focal or segmental body overgrowth [Riviere et al., 2012; Mirzaa et al., 2013]. It is clear that while there may be some unique features for each diagnosis, there exists considerable overlap between PROS. In addition, with further PIK3CA testing, the spectrum may widen to include other distinct but related phenotypes, such as Klippel-Trenaunay Syndrome (KTS) [Kurek et al., 2012].

Differential Diagnosis

Various syndromes considered in the differential diagnosis of PROS have overlapping clinical findings, such as hemihyperplasia, overgrowth, vascular anomalies, skin abnormalities, tumors, scoliosis, and others. However, these other overgrowth syndromes have similar, but more distinguishing features and other identifiable genetic etiologies. They include Proteus syndrome (PS) [Biesecker et al., 1999; Lindhurst et al., 2011], PTEN Hamartoma Tumor Syndrome (PHTS) and Type II segmental Cowden syndrome [Nelen et al., 1996; Eng, 2000, 2001], Neurofibromatosis, type 1 (NF1) [Friedman, 1998; Ferner et al., 2007; Williams et al., 2009], and Epidermal Nevus syndrome [Laura, 2013]. For several of the participating research groups, the original referring diagnosis for many of their patients was described as PS, NF1, and KTS; however, the patients’ findings did not meet published diagnostic criteria for these disorders. In particular, for example, none of the patients had connective tissue nevi characteristic of Proteus syndrome. The KTS includes overgrowth and vascular malformations, which are seen in the PROS, and there is some debate about the extent of the diagnostic clinical findings. Indeed, PIK3CA mutations were identified in some individuals with a KTS-like phenotype [Kurek et al., 2012].
Figure 3. Phenotypic Spectrum of PROS: disorders have overlapping clinical features, some with tissue-specific, localized effects, some with pleiotropic and more severe manifestations; Abbreviations: FAO/HHML, Fibroadipose Overgrowth/Hemihyperplasia-Multiple Lipomatosis; ILM, Isolated Large Lymphatic Malformation; CLOVES, Congenital Lipomatous Overgrowth, Vascular Malformations, Epidermal Nevi, Scoliosis/Skeletal and Spinal; EN, Epidermal Nevi; SK, Seborrheic Keratoses; BLK, Benign Lichenoid Keratoses; MCAP, Megalencephaly-Capillary Malformation; HMEG, Hemimegalencephaly; DMEG, Dysplastic Megalencephaly
affected regions. In considering the diagnosis of mosaic disorders in
because it depends on gross visual assessment of overgrown or
determining the optimal tissue for biopsy is sometimes difficult
which patients with overgrowth should be tested for a
We have developed guidelines that clinicians can use in deciding
from some PROS patients had low levels of mosaicism
and specificity of available genetic testing technique(s). Biopsies
requires a biopsy. An exception to this is the testing for MCAP,
**Upper (UE) and Lower Extremity (LE) findings may include, UE: broad spade-like hands with
ulnar deviation of the digits, symmetrical overgrowth of 1 or more digits that does not usually
follow a nerve territory-oriented pattern, laxity of collateral ligaments, furrowed palms and soles.
LE: Overgrowth of the feet, which presents as a large "sandal" gap between great and second toes, large bulbous toes, lipomatous masses on both dorsal and plantar surfaces, broad forefoot with
wide gaps between the metatarsal heads; dislocated knees, leg length discrepancy, and patellar
chondromalacia [Bloom and Upton, 2013].

TABLE III. Testing Eligibility Criteria for Somatic PIK3CA Mutations

PIK3CA mutation analysis should be performed,
If a patient has one or more of:

Key Features:
- Congenital Spectrum (A) or Congenital Stand Alone (B)*
- Combined Vascular Malformation – Large Capillary, Lymphatic, or Venous malformation
- Congenital Musculoskeletal Overgrowth
- Patterning defect [e.g., Polydactyly, Sandal gap, Syndactyly]
- Congenital CNS (PMG/MEG/HC/Chiari/Syrinx)
- Congenital Epidermal Nevus (EN)
- Congenital soft doughy skin or joint hypermobility

+/– Functional features: Hydronephrosis/Hydroureter, Urinary Incontinence, Hematuria, Constipation, Gastrointestinal Bleeding, Intractable Epilepsy, Seizures, Intellectual Disability, Autism, Hypoglycemia.

Abbreviations: CNS, Central Nervous System; HC, hydrocephalus; MEG, megalencephaly; PMG, polymicrogyria.

*Refer to these specific findings in Table II.

**Upper (UE) and Lower Extremity (LE) findings may include, UE: broad spade-like hands with
ulnar deviation of the digits, symmetrical overgrowth of 1 or more digits that does not usually
follow a nerve territory-oriented pattern, laxity of collateral ligaments, furrowed palms and soles.
LE: Overgrowth of the feet, which presents as a large "sandal" gap between great and second toes, large bulbous toes, lipomatous masses on both dorsal and plantar surfaces, broad forefoot with
wide gaps between the metatarsal heads; dislocated knees, leg length discrepancy, and patellar
chondromalacia [Bloom and Upton, 2013].

Testing Eligibility Criteria

We have developed guidelines that clinicians can use in deciding which patients with overgrowth should be tested for a PIK3CA mutation. This determination is non-trivial as testing generally requires a biopsy. An exception to this is the testing for MCAP, which may be diagnosed by testing of a blood or saliva sample. Testing eligibility criteria (Table III) are based upon the clinical criteria described in Table II, but were less strict to include a wider range of conditions. While it is important to recognize and describe pre-existing disease entities, key criteria were described to prompt clinicians to obtain testing for non-descript and potentially as-yet undiagnosed syndromes with features described for PROS. Accompanying these diagnostic features, functional abnormalities may also prompt consideration of testing. These may include genitourinary abnormalities such as urinary incontinence, hydronephrosis, hydroureter, gastrointestinal abnormalities such as constipation, gastrointestinal bleeding, and neurologic abnormalities including, seizures, autism, and intellectual disability.

Diagnostic genetic testing for the PROS poses several challenges. A key challenge is to determine which tissue has the greatest likelihood of having a detectable mutation. This is related to technical challenges with genetic testing, particular the sensitivity and specificity of available genetic testing techniques. Biopsies from some PROS patients had low levels of mosaicism (<5%). Determining the optimal tissue for biopsy is sometimes difficult because it depends on gross visual assessment of overgrown or affected regions. In considering the diagnosis of mosaic disorders in general, detection of the causative mutation depends not only on the particular effects of the mutation (degree of overgrowth), but also on its load and distribution in the tissue. Identification of a low-level somatic mutation may therefore require new analytic methods.

In the experience of the workshop participants using current techniques, molecular genetic testing for the diagnosis of PROS requires clinically affected tissue samples, preferably freshly obtained from dermal biopsy overlying an affected area or from a surgical procedure of the overgrown tissue. This is because PIK3CA mutations can be detected in affected tissues or cultured cells at greatly varying levels [Kepler-Noreuil et al., 2014]. We agreed that testing of blood or DNA isolated from blood is not recommended based upon current techniques, as PIK3CA mutations have not been identified in the blood by any of the laboratories of the participating groups, except in 2 of 24 patients with MCAP, who had an apparent de novo germline mutation in PIK3CA [Rivière et al., 2012]. Testing can be performed using formalin-fixed paraffin-embedded (FFPE) tissue, but with varying degrees of success, and there is a need to ensure rigorous handling of the samples because of risk of contamination from the microtome. PIK3CA mutation detection in other tissues or fluids is currently being evaluated on a research basis including saliva, urine, lymph fluid, hair, and skin scrapings. Mutation analysis of saliva samples has not detected any mutations, except in many patients with MCAP and one reported patient with overgrowth of the salivary glands (unpublished data).

The types of assays and their respective sensitivities were described and are shown in Table IV. The choice of method for somatic mutation detection in PIK3CA depends on several factors. Several manufacturers have developed PCR-based assays for detection of specific PIK3CA mutations commonly found in cancers, and many of these mutations have also been found in patients with PROS as well. The data to date suggest that while there are a number of mutational hotspots (e.g., PIK3CA codons 542, 545, and 1047) there are a substantial number of rare mutations (Fig. 2). The hot spot mutations have significantly elevated biological and biochemical activities (gain-of-function) above the rare mutations; these mutations may induce higher numbers of transformed cell foci suggesting more rapid cell proliferation or greater oncogenic potency. The other mutations may be grouped by oncogenic potency into strong, intermediate, and weak [Gymnopoulos et al., 2007]. The use of custom RFLP assays or digital droplet PCR are typically mutation-specific and pose a tradeoff of ease of use versus breadth of the test. Other assays are available for screening multiple sites with a single reaction either by pooling primer pairs or by using a multi-well format. These tests sacrifice sensitivity for the ability to assay multiple sites. In order to detect new or very rare mutations, sequencing entire exons is necessary. Sanger sequencing can be used for this only if the mutation level is relatively high (~20%). Lower levels of mosaicism can be detected using this method, but usually only at positions where multiple patients have varying levels of the mutation and sequence traces can be extensively compared to distinguish background peaks from low levels of a variant. Targeted capture of the entire PIK3CA coding region followed by next generation sequencing at very deep coverage may be better suited for somatic mutation detection, as it allows for detection of very low levels of mosaicism throughout the gene. Optimization of these assays is an active area of research.
It is important to interpret the result based upon the particular assay and the tissue sampled. The finding of a mosaic mutation can be very useful to establish a diagnosis of a PROS disorder; however, there is a poor correlation of the mutation level (in either tissues or cultured cells) to either the quality (nature) of the manifestations or the overall severity of the manifestations in the patient. Importantly, failure to detect a PIK3CA mutation does not necessarily exclude a clinical diagnosis of PROS in individuals meeting the clinical criteria described earlier, as this may be due to limitations in detecting mosaicism from sub-optimal tissue biopsies. We hypothesize that the overall lack of correlation of severity to mutation burden or lack of a genetic diagnosis emanates from the clinical sampling constraints. The ability to sample appropriate tissues is limited both by patient considerations and surgical constraints.

Future Directions

We discussed the importance of developing a collaborative and uniform phenotyping and clinical evaluation approach with the objectives of 1) compiling data on natural history and the extent of the associated complications of PROS, and 2) to provide useful outcome measures for use in therapeutic drug trials. The results of these evaluations may form the basis for assisting clinicians’ management of these patients, providing recommendations for surveillance for complications of these disorders. There have been reviews of the more commonly associated complications of this group of disorders, which forms a basis for the recommendations of clinical imaging [Alomari et al., 2010; Alomari et al., 2011; Kurek et al., 2012; Keppler-Noreuil et al., 2014]. We agreed that these evaluations (shown in Table V) should be based on the characteristic component clinical findings in the spectrum, including: somatic overgrowth (limb, trunk-spine, craniofacial), CNS overgrowth or dysplasia (brain and spine), vascular anomalies (in particular thrombosis), dermatologic, genitourinary, gastrointestinal, tumorigenesis, development, and endocrine/metabolism involvement. These current recommendations for tumor surveillance are based upon a reported Wilms tumor in a patient with CLOVES syndrome [Kurek et al., 2012] and of nephrogenic rests (a premalignant tumor) in one of the patients reported by Keppler-Noreuil et al. [2014]. Although the evidence is not sufficient to demonstrate high risk, it would be prudent to consider serial abdominal ultrasounds every 3–4 months until age 8 years in patients with a somatic PIK3CA mutation similar to the recommendations in isolated hemihyperplasia and Beckwith–Wiedemann syndrome. In addition, because of the finding of spinal root and major nerve neurofibromas, as well as vascular and lipomatous lesions involving the spine, neurological monitoring, and spinal MRI scan should be considered in patients with truncal involvement [Alomari et al., 2011; Keppler-Noreuil et al., 2014]. Finally, a reported risk of pulmonary embolism in patients with CLOVES syndrome having thoracic and central phlebectasia [Alomari et al., 2010] and in two separate patients with spinal thrombosis and neonatal cerebral infarcts [Keppler-Noreuil et al., 2014] suggest that it is important to be aware of the possible associated thrombosis risk in this group of patients. It is known that the related disorder, Proteus syndrome also has an increased risk of thrombosis, and consideration of anticoagulant prophylaxis is recommended in patients undergoing surgery or other procedures that may predispose to deep venous thrombosis or pulmonary embolism. These patients should be monitored for other potential associated complications, including vascular malformations and skeletal and spinal abnormalities. Future longitudinal studies of larger cohorts are needed to further our understanding of the extent of the findings and natural history of PROS. A consortium or registry to aggregate clinical and molecular data may facilitate future studies of genotype–phenotype correlations and improve

Method	Instrumentation needed	Maximum number of mutations assayed per test	Mutation specific	Detection Level(%)
custom RFLP	fluorescent sequencer	1	+	0.5–1
digital droplet PCR	digital PCR system	1	+	0.1–0.001
snapshot assay	fluorescent sequencer	10	+	5–10
qBiomarker array	qPCR instrument	93	+	1
MassARRAY system	MALDI-TOF mass spectrometer	200	+	5
Sanger sequencing	fluorescent sequencer	NA	–	5–20
next generation sequencing	next gen sequencer	NA	–	1–10^7

*Level of detection is dependent on depth of coverage at the mutant site; the lower the level of mutation, the greater the read depth needs to be for detection.

TABLE V. Clinical Imaging Studies

- Whole body MRI scan – if there is truncal overgrowth or involvement (spine curvature)
- For infants 6-12 months (earlier age if symptomatic): contrast-enhanced study is preferable
- For older patient: as a baseline study with contrast (contrast may not be required depending on experience)
- Cranial MRI scan – if there is facial or neurologic involvement
- Plain radiographs of affected areas
- Spine series – if there is curve on exam
- Spinal canal ultrasonography as baseline in neonates and young infants with truncal involvement for tethered cord and lipomeningomyelocele
- Renal ultrasonography at baseline, then every 3 months until age 8 years
treatment recommendations. The family support groups expressed interest in participating and playing a role in the governance of this registry.

The workshop participants are at once gratified by the progress that has been made to date and humbled by the challenges that lie ahead. With new found genetic understanding of PROS, sorting out diagnostic labels is relatively straightforward compared to the imperative to comprehensively understand the variable expressivity and natural history of patients with PROS. We are optimistic that the diagnostic criteria propose herein will reduce confusion among clinical professionals and patients and stimulate the research community to think broadly and comprehensively about these disorders. Most importantly, it is our primary objective to develop targeted effective treatments for patients with these disorders. We are extremely optimistic that this can be accomplished now that the door on the pathophysiology of these remarkable disorders has been opened.

ACKNOWLEDGMENTS

The authors are grateful to the patients and their families who participated in this research study. We also thank the CLOVES and MCAP support group representatives (Kristen Davis, Christy Collins, and, Adrienne Blankenship). We thank the participants of the workshop including Dr. Matthew Warman, Department of Orthopaedics, Boston Children’s Hospital and Harvard Medical School. The NCATS Office of Rare Disease Research and the Intramural Research Program of the National Human Genome Research Institute provided financial support for this workshop. The ideas and opinions expressed in this paper are those of the authors only and do not necessarily represent any position or policy of the National Institutes of Health or any other institution organization to which any of the authors are affiliated. LGB and MJL declare receipt of royalties from Genentech, and LGB declares receipt of royalties from Amgen and an honorarium from Wiley-Blackwell. RKS and VERP are supported by the Wellcome Trust (Senior Fellowship 104575/Z/14/Z). The workshop participants are at once gratified by the progress that has been made to date and humbled by the challenges that lie ahead.

REFERENCES

Alomari AI, Chaudry G, Rodesch G, Burrows PE, Mulliken JB, Smith ER, Fishman SJ, Orbach DB. 2011. Complex Spinal-Paraspinal Fast-Flow Lesions in CLOVES Syndrome: Analysis of Clinical and Imaging Findings in 6 Patients. AJNR 32:1812–1817.

Alomari AI, Spencer SA, Arnold RW, Chaudry G, Kasser JR, Burrows PE, Govender P, Padua HM, Dillon B, Upton J, Taghinia AH, Fishman SJ, Mulliken JB, Fervuly RD, Greene AK, Landrigan-Osarc M, Paltiel HJ, Trenor CC, Kozakewich HP. 2014. Fibro-adipose vascular anomaly: clinical-radiologic-pathologic features of a newly delineated disorder of the extremity. J Pediatr Orthop 34:109–117.

Biesecker LG, Peters KE, Darling TN, Choyke P, Hill S, Schimke N, Cunningham M, Melztter P, Cohen MM Jr. 1998. Clinical differentiation between Proteus syndrome and hemihyperplasia: description of a distinct form of hemihyperplasia. Am J Med Genet 79:311–319.

Biesecker LG, Happle R, Mulliken JB, Weksberg R, Graham JM, Viljoen DL, Cohen MM. 1999. Proteus syndrome: diagnostic criteria, differential diagnosis, and patient evaluation. Am J Med Genet 84:389–395.

Bloom J, Upton J III. 2013. CLOVES syndrome. J Hand Surg Am 38:2508–2512.

Brunner HG, van Driel MA. 2004. From syndrome families to functional genomics. Nat Rev Genet 5:545–551.

Cohen MM, Neri G, Weksberg R. 2002. Overgrowth syndromes. New York: Oxford University Press 1–7.

Dobyns WB. 2014 (unpublished data)

Eng C. 2000. Will the real Cowden syndrome please stand up: Revised diagnostic criteria. J Med Genet 37:828–830.

Eng C. 2001. PTEN Hamartoma Tumor Syndrome (PHTS) [Updated 2014 Jan 23]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet], Seattle (WA): University of Washington, 1993–2014. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1488/9

Eng C. 2003. PTEN: One gene, many syndromes. Hum Mutat. 22:183–198.

Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, Upadhaya M, Towers R, Gleeson M, Steiger C, Kirby A. 2007. Guidelines for the diagnosis and management of individuals with Neurofibromatosis 1 (NFI). J Med Genet. 44:81–88.

Friedman JM. 1998. Neurofibromatosis 1. [Updated 2012 May 3]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, 1993–2014. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1109/0

Groesser L, Herscherberger E, Landthaler M, Hafner C. 2012. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br J Dermatol 166:784–788.

Gymnopoulos M, Ekliger M-A, Vogt PK. 2007. Rare cancer-specific mutation in PIK3CA show gain of function. PNAS 104:5569–5574.

Hafner C, Lopez-Knowles E, Luis NM, Toll A, Baselga E, Fernandez-Casado A, Hernandez S, Ribe A, Mentzel T, Stoehr R, Hofstaedter F, Landthaler M, Vogt T, Pujol RM, Hartmann A, Real FX. 2007. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrhoeic keratoses with a characteristic mutation pattern. PNAS 104:13450–13454.

Ho CA, Herring JA, Ezaki M. 2007. Long-term follow-up of progressive macrodystrophia lipomatosa. A report of two cases. J. Bone Joint Surg. Am. 89:1097–1110.

Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJ, Savage DB, Ramaswami U, De Lonlay P, O’Rahilly S, Barroso I, Semple RK. 2011. An activating mutation of AKT2 and human hypoglycemia. Science. 334:474.

Kepler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, Tosi LL, Huson SM, Whitehouse RW, Jakkula E, Grant I,
Balasubramanian M, Chandler KE, Fraser JL, Gucev Z, Crow YJ, Brennan LM, Clark R, Sellars EA, Pena LD, Krishnamurthy V, Shuen A, Braverman N, Cunningham ML, Sutton VR, Tasic V, Graham JM Jr, Geer Jr Jr, Henderson A, Semple RK, Biesecker LG. 2014. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet 164:1713–1733.

Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP, Warman ML. 2012. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90:1108–1115.

Laura FS. 2013. Epidermal Nevus Syndrome. Handb Clin Neurol 111:349–368.

Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG. 2012. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941–945.

Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O’Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zaidi AK, Whitcomb C, Whitcomb J Jr, Whitcomb KM, Wilkins NL, Winder E, Winters K, Zerbe CE, Zerbe LW, Zoghbi HY, Zoghbi HJ. 2014. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Med Genet 163:122–130.

Sapp JC, Turner JT, van de Kamp JM, van Kijk FS, Lowry RB, Biesecker LG. 2007. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A 143A:2944–2958.

Williams VC, Lucas J, Babcock MA, Gutmann DH, Korfb, Maria BL. 2009. Neurofibromatosis type 1 revisited. Pediatrics 123:124–133.