Effect of Monosodium \(n \)-Alkylsalicylates on Spores of \textit{Bacillus subtilis}

D. BUCKLEY AND J. THOMAS

\textit{Department of Pharmacy, University of Sydney, Sydney, N.S.W. 2006, Australia}

Received for publication 29 June 1971

The effects of several monosodium \(n \)-alkylsalicylates on washed spores of \textit{Bacillus subtilis} have been examined. None of the compounds was sporidical, but in general they prevented dormancy induced by incubating the spores in water. This effect was related to the position in the ring and size of the alkyl groups substituted on the salicylic acid nucleus.

A series of alkylsalicylic acids have been synthesized (1) because of their similarity to anacardic acid, a naturally occurring mixture of alkyl salicylic acids having the average constitution of 6-pentadecadienyl-salicylic acid (1, 8, 9). Monosodium anacardate possesses high in vitro activity against vegetative bacteria, but it has no significant sporidical action (4). Recently Buckley and Thomas (3) reported that monosodium \(n \)-alkylsalicylates also possess significant antimicrobial activities and that these activities are influenced by the size and position of the alkyl side chains in salicylic acid. The effects of monosodium \(n \)-alkylsalicylates against the spores of \textit{Bacillus subtilis} have now been examined to determine whether any compounds of the series have significant sporidical activity.

MATERIALS AND METHODS

\textbf{Preparation of spores.} Vegetative cells of \textit{B. subtilis} (supplied by Microbiology Department, University of Sydney; catalog no. 21.6) were grown from freeze-dried spores through two subcultures in Oxoid nutrient broth no. 2 (20 ml, pH 7.3; 37 C for 18 hr with shaking at 80 oscillations/min). Spores were produced by flooding the second vegetative culture onto the surface of sporulation medium A of the \textit{British Pharmacopoeia, 1963} ed., layered in 180-ml flat, screw-capped bottles. After 5 days at 37 C, the culture was virtually all spores which were harvested with sterile distilled water, centrifuged from water three times, suspended in sterile distilled water, and maintained at 80 C for 10 min. The heated suspension was diluted to about 4 \(\times \) 10\(^8\) spores/ml (viable count) and subsequently stored at 4 C.

\textbf{Drug-spore mixtures.} Drug solution prepared as previously described (3) was added aseptically to 1 ml of aqueous spore suspension, previously equilibrated to 37 C in a 5-ml McCartney bottle. If necessary, sterile distilled water was added to achieve a final volume of 2 ml, a maximum concentration of 10% (v/v) ethanol, and 10\(^4\) to 2 \(\times \) 10\(^4\) spores/ml (viable count). Spore concentrations in these suspensions were determined before (zero) and after 2 and 24 hr of incubation at 37 C from samples (0.1 ml) which were diluted in separate 50-ml volumes of sterile distilled water at room temperature. From each dilution, five samples (0.1 ml) were separately plated in nutrient agar (20 ml, 60 C). The plating medium (Oxoid nutrient broth no. 2, solidified with Oxoid agar no. 3, 1.2%; pH 7.3) was sterilized (121 C for 15 min) in 150-ml amounts in screw-capped bottles. Plates were dried (37 C for 2 hr) and incubated (32 C for 16 hr) before colony counts were made with an electric counter.

\textbf{RESULTS AND DISCUSSION}

The results are summarized in Table 1 from which it can be seen that none of the alkylsalicylates is sporidical but, in general, the compounds facilitate spore germination. This becomes evident when the reduced counts which followed incubation (2 to 24 hr) in water, dilute ethanol (10%, v/v), and phenol [0.5% (w/v); ethanol (10%, v/v)] are compared with the counts derived from the salicylate mixtures. These reduced counts are considered to be due to an induced dormancy rather than a sporidical effect since none of these agents would be sporidical in this test (14).

In the case of water, the observed effect may be related to that reported by Keynan et al. (5), who demonstrated a temperature-dependent reversal of heat activation in spores of \textit{B. cereus} incubated in water. In the present study, reduced germination levels were observed only after 2 hr of incubation at 37 C, although greater reductions were apparent after 24 hr. After 2 hr of incubation in the presence of salicylates, except in the case of monosodium 3-\(n \)-heptylsalicylate, the mean spore counts were similar to or higher than
Table 1. Effect of monosodium n-alkylsalicylates on spores of B. subtilis

System	Mean spore concn after incubation	Per cent change in mean spore concn after incubation	Standard error of mean spore concn	Limits of error of mean spore concn (t = 2.78, P = 0.05)*
	Zero 2 hr 24 hr 2 hr 24 hr	Zero 2 hr 24 hr	Zero 2 hr 24 hr	Zero 2 hr 24 hr
Water	1,944 1,503 1,060 –23 –45	13.73 38.26 127.34	1,906–1,982 1,397–1,609	706–1,414
Ethanol (10%, v/v)	1,955 1,183 620 –29 –63	35.36 37.80 13.51	1,557–1,753 1,078–1,288	588–658
Phenol (0.5%, w/v)c	1,531 1,048 832 –32 –46	52.57 69.81 26.58	1,385–1,677 854–1,242	758–906
Sodium salicylate (5%, w/v)c	852 686 547 –23 –36	57.11 32.69 21.13	693–1,011 596–777	488–606
Phenol (0.5%, w/v)c	1,223 965 608 –21 –51	65.15 18.64 16.70	1,042–1,404 913–1,017	561–655
Sodium salicylate (5%, w/v)c	1,684 1,241 856 –26 –49	34.76 23.04 25.96	1,587–1,781 1,177–1,305	784–928
3-n-Octylc (0.5%, w/v)c	1,749 1,399 1,727 –20 Nil	72.65 81.54 106.8	1,376–1,748 1,353–1,857	954–1,286
3-n-Octylc (0.5%, w/v)c	1,942 1,767 1,924 –9 Nil	56.34 69.47 55.41	1,547–1,951 1,172–1,626	1,387–2,067
5-n-Octylc (0.5%, w/v)c	1,414 1,898 1,575 +25 Nil	26.29 66.27 79.23	1,785–2,099 1,574–1,960	1,770–2,078
3-n-Dodecylc (0.25%, w/v)c	1,735 1,819 1,274 +5 –27	48.39 70.68 45.65	1,600–1,870 1,623–2,015	1,147–1,411
4-n-Dodecylc (0.25%, w/v)c	1,946 1,930 2,125 Nil +9	53.11 93.53 38.11	1,798–2,094 1,670–2,190	2,019–2,231
5-n-Dodecylc (0.25%, w/v)c	1,830 1,841 1,826 Nil	70.23 119.53 85.23	1,635–2,025 1,510–2,172	1,589–2,063
3-n-Tetradecylc (0.5%, w/v)c	1,617 1,823 1,432 +13 –12	73.9 99.72 25.38	1,412–1,822 1,546–2,100	1,361–1,503
3-n-Tetradecylc (0.5%, w/v)c	2,120 2,020 1,658 Nil –22	50.07 54.66 51.10	1,981–2,259 1,968–2,172	1,516–1,800

* Mean count derived from five plates.
† Values expressed × 10⁷/ml.
‡ Solution also contained ethanol (10%, v/v).
§ Nature of alkyl substituent in monosodium n-alkylsalicylate.
¶ Solution in water.
∥ Mean count derived from four plates.
* t = 3.18; P = 0.05, 3 degrees of freedom.
preincubation counts. After 24 hr of incubation, sodium salicylate, monosodium 5-n-octylsalicylate, and monosodium 3-n-tetradecylsalicylate were less effective in maintaining the spore count than after 2 hr of incubation. However, in none of these cases was the reduction in spore count as large as that which followed 24 hr of incubation in water, phenol, or dilute ethanol.

It is inferred from the 24-hr results that the effect of alkylsalicylates on spore germination may be influenced by the size and position of the alkyl substituents, since monosodium 5-n-octylsalicylate was less effective than its 3-n-isomer and, although the three dodecyl homologues were effective, there was a fall off in activity in the case of monosodium 3-n-tetradecylsalicylate. A similar pattern of activities has been observed previously in relation to the antibacterial activities of these compounds (3). Rode and Foster (12) have demonstrated that the length of the alkyl chain, in a group of primary alkylamines, has an influence on the germination stimulant activity of these compounds.

It is possible that the alkylsalicylates were acting as triggers of germination as defined by Sussmann and Halvorson (13). The alkylsalicylates have the chemical structure typical of anionic surface-active agents (6) and, as salicylates, are potential chelating agents (7). Since it is known that certain chelating agents and anionic surface-active agents promote spore germination (10, 12), it is suggested that the function of alkylsalicylates as germination triggers may be related to their surface activity and chelating ability.

LITERATURE CITED

1. Backer, H. J., and N. H. Haak. 1941. Components of the latex of Anacardium occidentale Linn. (Cashewnut). Rec. Trav. Chim. Pays Bas. 60:661–677.
2. Buckley, D., and J. Thomas. 1971. Synthesis of alkylsalicylic acids as antimicrobial agents. J. Med. Chem. 14:265.
3. Buckley, D., and J. Thomas. 1971. Antimicrobial activity of sodium n-alkylsalicylates. Appl. Microbiol. 21:565–568.
4. Eichbaum, F. 1946. Biological properties of anacardic acid (o-pentadecadienylsalicylic acid) and related compounds. Mens. Inst. Butantan. Sao Paulo 19:69–96.
5. Keynan, A., A. Evenckik, H. O. Halvorson, and J. W. Hastings. 1964. Activation of bacterial endospores. J. Bacteriol. 88:313–318.
6. Newton, B. A. 1958. Surface active bactericides p. 62–93. In Strategy of chemotherapy: 8th Symp. Soc. Gen. Microbiol. University Press, Cambridge.
7. Perrin, D. 1958. Stability of metal complexes with salicylic acid and related substances. Nature (London) 182:741–742.
8. Pillay, P. P. 1935. Anacardic acid. I. Anacardic acid and tetrahydroanacardic acid. J. Indian Chem. Soc. 12:226–231.
9. Pillay, P. P. 1935. Anacardic acid. II. The constitution of tetrahydroanacardic acid. J. Indian Chem. Soc. 12:231–236.
10. Riemann, H. 1960. Germination of spores with chelators, p. 24–58. In H. O. Halvorson (ed.). Spores II. Burgess, Minneapolis.
11. Rode, L. J., and J. W. Foster. 1960. The action of surfactants on bacterial spores. Arch. Mikrobiol. 36:67–94.
12. Rode, L. J., and J. W. Foster. 1961. Germination of bacterial spores with alkyl primary amines. J. Bacteriol. 81:766–779.
13. Sussmann, A. S., and H. O. Halvorson. 1966. Spores. Their dormancy and germination. Harper and Row, New York.
14. Sykes, G. 1970. Sporicidal properties of chemical disinfectants. J. Appl. Bacteriol. 33:147–156.