Conservation Status of Milkcaps (Basidiomycota, Russulales, Russulaceae), with Notes on Poorly Known Species

Marco Leonardi 1, Ornella Comandini 2, Enrico Sanjust 3 and Andrea C. Rinaldi 3,*

1 Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 Coppito, AQ, Italy; marcoleonardi@hotmail.com
2 Department of Life Sciences and the Environment, University of Cagliari, I-09042 Monserrato, CA, Italy; ocomandini@gmail.com
3 Department of Biomedical Sciences, University of Cagliari, I-09042 Monserrato, CA, Italy; sanjust@unica.it

* Correspondence: rinaldi@unica.it

Citation: Leonardi, M.; Comandini, O.; Sanjust, E.; Rinaldi, A.C. Conservation Status of Milkcaps (Basidiomycota, Russulales, Russulaceae), with Notes on Poorly Known Species. Sustainability 2021, 13, 10365. https://doi.org/10.3390/su131810365

Received: 3 July 2021; Accepted: 10 September 2021; Published: 16 September 2021

Abstract: Mycological conservation has finally come of age. The increasingly recognized crucial role played by fungi in ecosystem functioning has spurred a wave of attention toward the status of fungal populations across the world. Milkcaps (Lactarius and Lactifluus) are a large and widespread group of ectomycorrhizal basidiomycetes; besides their ecological relevance, many species of milkcaps are of socio-economic significance because of their edibility. We analysed the presence of milkcaps in fungal Red Lists worldwide, ending up with an impressive list of 265 species assessed in various threat categories. Lactarius species are disproportionally red-listed with respect to Lactifluus (241 versus 24 species). Two species of Lactarius (L. maruiensis and L. ogasawarashimensis) are currently considered extinct, and four more are regionally extinct; furthermore, 37 species are critically endangered at least in part of their distribution range. Several problems with the red-listing of milkcaps have been identified in this study, which overall originate from a poor understanding of the assessed species. Wrong or outdated nomenclature has been applied in many instances, and European names have been largely used to indicate taxa occurring in North America and Asia, sometimes without any supporting evidence. Moreover, several rarely recorded and poorly known species, for which virtually no data exist, have been included in Red Lists in some instances. We stress the importance of a detailed study of the species of milkcaps earmarked for insertion in Red Lists, either at national or international level, in order to avoid diminishing the value of this important conservation tool.

Keywords: Lactarius; Lactifluus; macrofungi; Red Lists; extinction; ectomycorrhizal fungi

1. Introduction

Milkcaps are mushroom-producing fungi within the basidiomycetous family Russulaceae. Traditionally comprised in the genus Lactarius, the group has undergone a deep taxonomic revision during the last decade or so. Studies based on multigene phylogenies have shown that Lactarius is not monophyletic, revealing the existence of two clades: the subgenera Piperites, Russularia, and Plinthogalus constituting the larger genus Lactarius sensu novo, and the subgenera Lactariopsis, Lactarius, Lactifluus, Russulopsis, Gerardii, and the former Lactarius sections Edules and Panuoidae making the newly erected genus Lactifluus [1–5].

Combined, Lactarius and Lactifluus form one of the most prominent groups of ectomycorrhizal (ECM) basidiomycetes [6–8]. With well over 650 species described worldwide, Lactarius + Lactifluus taxa play a key role as mycobionts of trees and shrubs in a vast range of ecosystems, from temperate Mediterranean-type vegetation to boreal coniferous forests, from rainforests of Southeast Asia to the Mesoamerican Neotropics, passing through tropical Africa with its miombo woodland and Eucalyptus and Nothofagus forests in Australia and New Zealand, respectively [9–21]. In Europe, about 110 Lactarius species are recognized, and nine Lactifluus taxa [22–24]. While Lactarius occurs mostly in temperate regions,
Lactifluus seems to have its center of diversification in tropical Africa, from where the largest number of species have been described, followed by tropical Asia and the Neotropical region [5,25].

Besides the importance of milkcaps in the health of forest ecosystems as ectomycorrhizal obligate symbionts, several species also have a considerable socio-economic value as appreciated edible mushrooms. Some 56 species have been reported as regularly collected and eaten in at least 17 countries (e.g., several European countries, Russia, China, Central and South America, Africa), although these figures are probably underestimated because little information is available for the local consumption of many African species [19,26]. Indeed, a very recent account of edible mushrooms species at the global scale lists some 100 edible milkcaps [27]. Lactarius deliciosus, commonly called saffron milkcap, is particularly popular, especially in Europe. It has been introduced with Pinus hosts in large areas outside its original range and is one of the few ectomycorrhizal mushrooms that has been successfully cultivated [28].

The significance of macrofungi conservation in virtue of their ecological role and their cultural and socio-economic importance, is increasingly appreciated. Although there is still a long way to go before these organisms receive the attention and protection they deserve, macrofungi are starting to be considered in several countries from Europe and other regions, and plans to protect and manage their diversity drafted (e.g., [29,30]). We focus on the conservation situation of milkcaps, particularly in European countries, discussing the status of those elements of knowledge on which any protection efforts must be based, i.e., taxonomy, ecology, and distribution.

2. Compilation of Data
2.1. Red Lists

Available fungal Red Lists—either officially adopted at national or international level or drafted but still considered ‘unofficial’—were browsed (see Supplementary Materials for details) and information regarding milkcaps extracted (see Table 1). Information on fungal Red Lists was retrieved from the dedicated pages of the European Council for the Conservation of Fungi (ECCF) website (http://www.eccf.eu/redlists-en.ehtml (accessed on 7 April 2021)) and the State of the World’s Fungi 2018 [31] (see https://stateoftheworldsfungi.org/, accessed on 12 April 2021), with a few updates and exceptions. Despite all efforts, we were not able to access the Red Lists of Belarus, Iran, Kazakhstan, and Moldova. On the other hand, several of the Red Lists we browsed contained no mention of milkcaps, and, thus, were not quoted. Relevant cases include Canada, Chile, Colombia, Italy, Latvia, Mexico, Russian Federation, United States, Uzbekistan. For each species, all occurrences in international and national Red Lists were reported, quoting the threat categories used in the original assessments. In the case of IUCN Red List categories, only categories (Critically Endangered, Endangered, etc.) were reported, excluding criteria (A to E), and subcriteria (1, 2, etc.; a, b, etc.; i, ii, etc.; for a complete description see [32]. This is because in most cases these further details are omitted in national Red Lists. In the case of the Global Fungal Red List Initiative (see below), we considered milkcap species at any stage of assessment, from simply ‘nominated’ or ‘proposed’, up to fully assessed and approved.
Table 1. Species of milkcaps in national and international Red Lists.

Species §	Distribution	List(s) *	Category #
Lactarius acatlanensis Bandala, Montoya, and Ramos	Mexico	GFRLI	EN
		ARL	NT
		BuRL	VU
		CRL	LC
		DRL	VU
		ECCF	LC
		ERL	VU
		FRL	CR
		FrRL	LC
		GRL	TH
		LRL	EN
		NBIC	EN
		NRL	TNB
		PRL	R
		SRL	VU
		SwRL	LC
Lactarius acerrimus Britzelm.	widely distributed in Europe, Russia, China (?), Colombia (?)	ARL, CRL, CrRL, CRRL, DRL, ECCF, FrRL, GRL, LRL, NBIC, NMRL, NRL, PRL, SRL, SwRL	NT/LC, TH, EKSP, NT, NT, VU
Lactarius acris ¹ (Bolton) Gray	widely distributed in Europe, Russia, Japan (?), China (?), India (?)	ARL, CRL, CrRL, CRRL, DRL, ECCF, FrRL, GRL, MRL, NBIC, NMRL, NRL, PRL, SRL, SwRL	LC, TH, EN, VU, NT, NT, VU, NT, NT, NT
Lactarius acrissimus Verbeken and Van Rooij	Benin	BeRL	VU
Lactarius aestivus Nuytinck and Ammirati	USA	GFRLI	LC
Lactarius afroscrobiculatus Verbeken and Van Rooij	Benin, Togo	BeRL	VU
Lactarius agglutinatus Burl.	Canada, USA, China (?)	CRL, GFRLI	DD, DD
Lactarius albivellus ² Romagn.	France, Belgium	FrRL	DD
Lactarius albocarneus ³ Britzelm.	widely distributed in Europe, Russia, USA (?)	ARL, CRL, CRRL, DRL, ECCF, FrRL, GRL, NMRL, PRL, SwRL	NA, NT, CR, LC, NT/LC/DD, NT, NT, R, ER
Lactarius alpinus Peck	Germany, Austria, Italy, France, Switzerland, Russia, Greenland, Alaska, USA, Canada, Ecuador (?), Argentina (?)	ARL, GRL	NT, ER
Species §	Distribution	List(s) *	Category #
-------------------------------	---	-----------	------------
Lactarius angustifolius	USA, China (?)	CRL	DD
Hesler and A.H. Sm.		ARL	EN
		DRL	CR
		ECCF	LC
		ERL	LC
		FRL	LC
		GRL	ER
		NBIC	NT
		SwRL	LC
Lactarius aquizonatus	central and more frequently northern Europe, Russia, USA	ARL	EN
Kytöv.		DRL	CR
		ECCF	LC
		ERL	LC
		FRL	LC
		GRL	ER
		NBIC	NT
		SwRL	LC
Lactarius areolatus	USA, Mexico, China (?)	CRL	DD
Hesler and A.H. Sm.		ARL	EN
		CRL	DD
		CRRL	EN
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC
		GRL	CR/EN/NT
		NBIC	HT
		NRL	KW
		PRL	V
		RRL	NT
		SRL	EN
		SwRL	LC
Lactarius atlanticus	southern Europe, up to northern Italy, southern France, Slovenia, Malta	ECCCF	LC
Bon		FrRL	NT/LC
Lactarius atro-olivaceus	USA, China (?)	CRL	DD
Hesler and A.H. Sm.		ARL	EN
		CRL	DD
Lactarius atrosquamulosus	China	CRL	DD
X. He		ARL	EN
		CRL	DD
Lactarius atroviridis	USA, Canada, Costa Rica, Colombia, China (?)	CRL	DD
Peck		ARL	EN
		CRL	DD
Lactarius aurantiacocharceus	Russia, China (?)	CRL	DD
4 Lar.N. Vassiljeva		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC
		GRL	NotT
		NBIC	LC
		NRL	KW
		SwRL	LC
Lactarius aurantiacus	widely distributed in Europe, Russia, Greenland, USA (?)	ARL	LC
5 (Pers.) Gray		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC/DG
		GRL	NotT
		NBIC	LC
		NRL	KW
		SwRL	LC
Lactarius aurantifolius	eastern Africa, Benin, Zambia, Burundi, Zimbabwe, Madagascar	CRL	DD
Verbeken		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC
		GRL	CR
		NBIC	NT
		SwRL	LC
Lactarius aurantiofulvus	central Europe	FrRL	LC
6 J. Blum ex Bon		ARL	EN
Lactarius aurantiosordidus	Canada, USA, China (?)	GFRLI	LC
Nuytinck and S.L. Mill.		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC
		GRL	CR
		NBIC	NT
		SwRL	LC
Table 1. Cont.

Species §	Distribution	List(s) *	Category #:
Lactarius auriolla			
Kytöv.	Norway, Finland, Sweden, Estonia, Russia	ERL, FRL, NBIC, SwRL	CR, LC, DD, LC
Lactarius austrostratus			
Wisitr. and Verbeken	China, Thailand	GFRLI	Proposed
Lactarius azonites			
(Bull.) Fr.	widely distributed in Europe, Russia, USA, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NBIC, NMRL, NRL, SRL, SwRL	LC, DD, LC, LC, NT/LC, VU, NT, GE, VU, LC
Lactarius badosanguineus			
Kühner and Romagn.	central and northern Europe, Russia, USA, Canada, China	ARL, CRL, CRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, SwRL	LC, DD, LC, LC, LC, LC/DD, TUE, LC
Lactarius bisporus			
Verbeken and F. Hampe	Thailand, China (?)	CRL	DD
Lactarius blemnii			
(Fr.) Fr.	widely distributed in Europe, Russia, China (?)	ARL, CRL, DRL, ECCF, FRL, FrRL, GRL, NBIC, SwRL	LC, LC, LC, LC, LC/DD, NotT, LC
Lactarius blumii			
Bon	Spain, Germany, Estonia, China (?)	CRL	DD
Lactarius borzianus			
(Cavara) Verbeken and Nuytinck	central and southern Europe	ARL, SRL	NT, NT
Lactarius bresadolanus			
Singer	Austria, Italy, Switzerland, Sweden, China (?)	CRL	DD
Lactarius Britannicus			
D.A. Reid	central and southern Europe, Great Britain	ARL, FrRL, GRL	LC, LC/DD, DD
Lactarius brunneohepaticus			
M.M. Moser	Germany, Austria, France, Poland, Greenland	ARL, GRL	LC, DD
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius brunneoviolaceus M.P. Christ.	central and northern Europe, Russia, Iceland, Svalbard,	ARL, FRL, NBIC, SwRL	VU
Lactarius californiensis Hesler and A.H. Sm.	USA	GFRLI	LC
Lactarius camphoratus (Bull.) Fr.	central and northern Europe, Russia, North America, Mexico, Costa Rica, Colombia, Korea (?), Japan (?), China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, SwRL	LC
Lactarius carbonicola A.H. Sm.	USA, Canada, China (?)	CRL	DD
Lactarius castaneus W.F. Chiu	China	CRL	LC
Lactarius castanopsidis Hongo	Japan, Malaysia, Korea (?), China (?)	CRL	DD
Lactarius chamaeleontinus R. Heim	central and eastern Africa, Benin, Togo, Democratic Republic of Congo, Zambia	BeRL	CR
Lactarius changbaiensis Y. Wang and Z.X. Xie	China	CRL	VU
Lactarius chelidonium Peck	USA, Canada, Haiti, China (?)	CRL	LC
Lactarius chiapanensis Montoya, Bandala, and Guzmán	Mexico	GFRLI	VU
Lactarius chichuensis W.F. Chiu	China, Thailand	CRL	LC
Lactarius chrysorrheus Fr.	widely distributed in Europe, Russia, North America, Mexico, Colombia, Japan (?), China (?)	ARL, CRL, DRL, ECCF, ERL, FrRL, GRL, NBIC, PRL, SwRL, URL	LC
Lactarius cinereus Peck	USA, Canada, China (?)	CRL	DD
Lactarius cinnamomeus W.F. Chiu	China, Korea, Thailand, Vietnam	CRL	DD
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius circellatus Fr.	central and northern Europe, Russia, North America, Japan (?), China (?)	ARL, CRL, DRL, ERL, FrRL, GRL, NBIC, SwRL	LC, NA, LC/DD, NotT, NA, LC
Lactarius cistophilus Bon and Trimbach	southern Europe, Mediterranean area	CrRL, ECCF	VU, LC
Lactarius citriolens Pouzar	central and northern Europe, Russia, Iceland, China (?)	ARL, CRRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NBIC, RRL, SRL, SwRL, NBIC	CR, DD, EN, DD, Relevant, NT, LC, EN/VU, HT, NT, VU, LC, NotT, VU, LC
Lactarius clethrophilus Romagnesi	France	FrRL	VU
Lactarius coccolobae O.K. Mill. and Lodge	British Virgin Islands, Puerto Rico	GFRLI	EN
Lactarius controversus Pers.	widely distributed in Europe, Great Britain, Russia, North America, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, MRL, NBIC, PRL, SRL, SwRL	LC, LC, LC, LC, NotT, EKSP, NT, E, VU, LC
Lactarius Cookei Z. Schaef.	Austria, Germany, Slovakia	GRL, SIRL	DD, DD
Lactarius cordovaensis Hesler and A.H. Sm.	USA	GFRLI, IUCN	DD, DD
Lactarius corrigis Peck	North America, Japan (?), China (?)	CRL	LC
Lactarius crassus (Singer and A.H. Sm.) Pierotti	USA	GFRLI	NE
Lactarius crenor Fr.	central and northern Europe, Russia (?)	CRRRL, FrRL	DD, NT/LC/DD
Lactarius croceus Burl.	USA, Canada, Costa Rica, China (?)	CRL	DD
Table 1. Cont.

Species	Distribution	List(s)	Category
Lactarius cyathula	Great Britain, France, Germany, The Netherlands, China (?)	CRL	DD
(Fr.) Fr.		ARL	VU
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	VU/DD
		GRL	NotT
		NBIC	LC
		NMRL	DD
		SwRL	LC
Lactarius cyathuliformis	central and northern Europe, Great Britain, Ireland		
Bon		ARL	LC
		CRL	LC
		DRL	VU
		ECCF	LC
		FrRL	LC/DD
		GRL	NT
		NBIC	NA
		NMR	BE
		SwRL	NT
Lactarius decipiens	widespread in Europe, Great Britain, Russia, China (?)		
Quél		ARL	LC
		CRL	LC
		DRL	VU
		ECCF	LC
		FrRL	LC/DD
		GRL	NotT
		NBIC	NA
		NMR	LC
		SwRL	NT
Lactarius delicatus	USA, China (?)	CRL	DD
Burl.		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		GRL	LC
		NBIC	NA
		NMR	LC
		SwRL	NT
Lactarius delicicosus	Europe, Turkey, Morocco, Russia, North America, China, a cosmopolitan species, introduced in many areas together with its host plants (*Pinus* spp.). In some cases (e.g., Guatemala, North America), the name has been probably misapplied to indicate distinct, local taxa		
(L.) Gray		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	NT/LC/NA
		GRL	NotT
		GuRL	3
		HRL	4
		NBIC	LC
		NMR	LC
		NRL	TNB
		SwRL	LC
Lactarius deterrimus	widespread in Europe, Russia, Turkey, North America (?), China (?), Japan (?). In some cases, the name has been probably misapplied to indicate distinct, local taxa		
Gröger		ARL	LC
		CRL	LC
		DRL	LC
		ECCF	LC
		ERL	LC
		FRL	LC
		FrRL	LC/NA
		GRL	NotT
		NBIC	LC
		NMR	NT
		SwRL	LC
Lactarius dryadophilus	central and northern Europe, Russia, Iceland, Svalbard, Greenland, USA, Canada		
Kühner		ARL	VU
		ECCF	LC
		Fr	NT
		GRL	ER
		NBIC	LC
		SRL	EN
		SwRL	LC
Species §	Distribution	List(s) *	Category #
-----------	--	-----------	------------
Lactarius duplicatus A.H. Sm.	Sweden, Finland, Norway, Russia, Greenland, USA, Canada	SwRL	LC
Lactarius echinatus Thiers	USA, Mexico, China	CRL	DD
Lactarius edulis Verbeken and Buyck	Benin, Togo, Burundi, Democratic Republic of Congo, Malawi, Tanzania, Zambia, Zimbabwe, Madagascar	BeRL	VU
Lactarius evosmus Kühner and Romagn.	Italy, central and northern Europe, Great Britain	ARL, CRRL, DRL, ECCF, ERL, FrRL, GRL, NBJC, NRL, SwRL	VU, CR, EN, LC, NT, LC/DD, NT, TNB, LC
Lactarius fallax A.H. Sm. and Hesler	Canada, USA	GFRLI	DD
Lactarius fascinans (Fr.) Fr.	Switzerland, Austria, Germany, Slovenia, Finland, Alaska	ARL, FrRL, SRL	LC, CR/EN, CR
Lactarius favrei H. Jahn	France	FrRL	LC
Lactarius fennoscandicus Verbeken and Vesterh.	northern Europe, India (?)	ERL, FRL, SwRL	NT, LC, LC
Lactarius firmus Pacioni and Lalli	Italy, France, China (?)	CRL	DD
Lactarius flavidulus S. Imai	Japan, Korea, China (?)	CRL	DD
Lactarius flavidus Boud.	central and northern Europe, Great Britain, Italy, Greenland	ARL, DRL, ECCF, FrRL, GRL, HRL, PRL, SRL, SwRL	NT, CR, LC, NT/LC/DD, HT, 3, V, VU, NT
Lactarius flavospideus Kytöv.	Finland, Italy	FRL	LC
Lactarius flavopalustris Kytöv.	northern Europe, Great Britain, Austria	ARL, ERL, FrRL, SwRL	EN, NT, LC, NE
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius flexuosus²¹ (Pers.) Gray	central and northern Europe, Great Britain, Russia, Iceland, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, SRL, SwRL	NT, DD, DD, LC, LC, LC, LC/DD, VU/DD, TUE, 1, LC, VU, LC
Lactarius fluens Boud.	central and northern Europe, Great Britain, Russia, Spain, Italy	ARL, CRL, DRL, ECCF, FrRL, GRL, NIBC, NRL, SwRL	LC, DD, LC, LC, LC/DD, NotT, LC, TNB, LC
Lactarius foetens Verbeken and Van Rooij	Benin, Togo	BeRL	CR
Lactarius fraxineus Romagn.	France, Belgium, Italy, Turkey	FrRL	DD
Lactarius fuliginellus A.H. Sm. and Hesler	USA, Canada, Mexico	GFRLI	DD
Lactarius fuliginosus (Fr.:Fr.) Fr.	central and northern Europe, Great Britain, Russia, Spain, Italy, North America, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NIBC, NRL, SwRL	LC, DD, DD, LC, NT, LC, LC/DD, NotT, LC, BE, LC
Lactarius fulvissimus²² Romagn.	central and northern Europe, Great Britain, Spain, Italy, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NIBC, SwRL	LC, DD, LC, LC, NT, NT, LC/DD, NotT, NE, LC
Lactarius fuscomarginatus Montoya, Bandala, and I. Haug	Mexico	GFRLI	EN
Lactarius fusco-olivaceous Hesler and A.H. Sm.	USA, China (?)	CRL	DD
Lactarius fuscus²³ Rolland	central Europe, Greenland	FrRL	EN/VU/DD
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius gerardii Peck	North America, Costa Rica, Colombia, Japan (?), Malaysia (?), China (?)	CRL	LC
Lactarius glyeosmus Fr.	central and northern Europe, Great Britain, Russia, Iceland, Svalbard, Greenland, North America, China (?)	ARL, CRL, DRL, ERL, FRL, FrRL, GRL, NBIC, NBIC, SwRL	LC, LC, LC, LC, LC, LC, NotT, LC, LC
Lactarius gracilis Hongo	Japan, Korea, Thailand, China	CRL	LC
Lactarius grandisporus Lar.N. Vassiljeva	Russia, China (?)	CRL	DD
Lactarius griseus Peck	North America, Greenland, China (?)	CRL	DD
Lactarius hatsudake Nobuj. Tanaka	Japan, eastern Russia, Korea, Laos, Thailand, China	CRL	LC
Lactarius haugiae Bandala, Montoya, and Ramos	Mexico	GFRLI, IUCN	VU, VU
Lactarius helodes 24 A. Favre and Guichard	France	ECCF	DD
Lactarius helvus Plowr.	central and northern Europe, Great Britain, Russia, North America, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, SRL, SwRL	LC, LC, LC, LC, LC, LC, LC, NT/LC, 1, LC, TNB, VU, LC
Lactarius hepaticus Plowr.	widespread in Europe, Great Britain, Russia, Greenland, North America (?), China (?)	ARL, CRL, CRRL, DRL, ECCF, FrRL, GRL, NBIC, NRL, SRL, SwRL	EN/LC/DD/NA, NotT, LC, TNB, VU, LC
Lactarius hirtipes J.Z. Ying	China	CRL	DD
Lactarius hortensis 25 Velen.	Denmark, Germany, The Netherlands, Estonia, Finland, Sweden	GRL	NotT
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius hygrophoroides 26	North America, French Guiana (?), China (?)	CRL	LC
Berk and M.A. Curtis			
Lactarius hysginoides	central and northern Europe, Great Britain, Russia, Svalbard, Iceland, Greenland	ARL, FRL, GRL, NBIC, SwRL	DD
Korhonen and T. Ulvinen			
Lactarius hysginus (Fr.:Fr.) Fr.	central and northern Europe, Great Britain, Russia, Iceland, North America, China (?)	ARL, CRL, DRL, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, PRL, SRL, SwRL	LC
		FrRL, NRL	LC
		GRL	NT/LC/DD/NA
		ERL	HT
		HRL	1
		NBIC	BE
		NRL	V
		PRL	VU
		SRL	LC
		SwRL	
Lactarius ichoratus 27	Sweden, Denmark, The Netherlands, Germany, France, Austria, Switzerland	FrRL	LC
(Batsch) Fr.		NRL	KW
Lactarius ilicis	southern Europe, Spain, France, Italy, Croatia	FrRL	
Sarnari		NRL	VU/LC
Lactarius illyricus	Slovenia, Switzerland, Germany, Spain, Italy	ARL, FrRL, GRL	DD
Pilitaver			
Lactarius imbricatus	China	CRL	DD
M.X. Zhou and H.A. Wen			
Lactarius imperceptus	eastern USA, China (?)	CRL	DD
Beardslee and Burl.			
Lactarius indigo 28	eastern USA, Mexico, Belize, Guatemala, Costa Rica, central America, Colombia, Japan (?), China (?), India (?)	CRL	LC
(Schwein.) Fr.		GuRL	3
Lactarius inermis 29	France, Denmark	FrRL	DD
Kühnner			
Lactarius insulatus 30	central Europe, Sweden, USA (?), Japan (?)	GRL, NRL, PRL	DD
(Fr.) Fr.			TNB
			E
Lactarius intermedius	Germany, Austria, Switzerland, France, Spain, Italy	ARL, ECCF, FrRL, GRL	LC
(Krombh.) Berk. and Broome			
Lactarius kauffmanii	Canada, USA	GFRLI	LC
Hesler and A.H. Sm.			
Lactarius kesiyae	China, India, Korea, Thailand, Vietnam	GFRLI	Proposed
Verbeken and K.D. Hyde			
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius lacunarum Romagn. ex Hora	widespread in Europe, Russia, China (?)	ARL, CRL, CrRL, CRRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, PRL, SRL, SwRL	VU, DD, NT, LC, LC, LC, VU, DD, NT, LC, LC, LC, LC/DD, TUE, 2, E/E, VU, LC
Lactarius lanceolatus O.K. Mill. and Laursen	Norway, Sweden, Finland, Great Britain, Svalbard, Greenland, Russia, North America	FRL, NBIC, SwRL	DD, LC/NA
Lactarius lapponicus Harmaja	Norway, Sweden, Finland, Russia, Greenland	FRL, NBIC	LC, LC
Lactarius leonis Kytöv.	Norway, Sweden, Finland, Estonia, Germany, Austria, Switzerland, Italy, Russia	ARL, DRL, ERL, FRL, GRL, NBIC, SwRL	NT, DD, NT, LC, DD, DD, LC
Lactarius lepidotus Hesler and A.H. Sm.	Germany, Austria, France, Norway, Russia	ARL, FrRL, GRL, NBIC	NT, VU, DD, NE
Lactarius lignicola W.F. Chiu	China	CRL	LC
Lactarius lignyotus Fr.	widely distributed in Europe, Russia, Ukraine, North America (?), Colombia (?), Japan (?), China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, LRL, NBIC, SwRL, URL	LC, LC, LC, LC, LC, LC, VC/LC, VU, VU, LC, LC, R
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius lilacinus (Lasch:Fr.) Fr.	widely distributed in Europe, Russia, China (?)	ARL, CRL, CrRL, CRRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NMRL, NRL, PRL, SloRL, SIRL, SwRL	VU
			EN/VU/NT/LC
			TH
			1
			LC
Lactarius luculentus Burl.	western North America, China (?)	CRL	DD
Lactarius luridus (Pers.) Gray	widely distributed in Europe, Iceland	ARL, CRRRL, DRL, ECCF, ERL, FrRL, GRL, NBIC, SwRL	DD
			DD
			DD
			NT/LC/DD
			TUE
			NT
			EN
			LC
Lactarius lutecanus Hesler and A.H. Sm.	USA, China (?)	CRL	DD
Lactarius luteus 34 A. Blytt	Norway, Austria, France	NBIC	NE
Lactarius maculatus Peck	USA, Canada, China (?)	CRL	DD
Lactarius mairei 35 Malençon	mostly distributed in southern Europe, but present also in central and northern European countries, Great Britain, Russia, Svalbard	ARL, BRL, CrRL, CRRRL, DRL, ECCF, ERL, FrRL, GRL, MRL, NBIC, NRL, RRL, SRL, SwRL	EN
			NT
			EN
			NT
			NT
			EN
			VU
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius mammosus Fr.	central and northern Europe, Great Britain, Russia, Iceland, North America (?)	ARL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, SRL, SwRL	LC, LC, LC, LC, LC, VU/NT/LC, NotT, 1, LC, VU, LC
Lactarius maruiensis McNabb	New Zealand	GFRLI, NZTCS	EW, NC
Lactarius mediterranensis Listosella and Bellù	distributed in the Mediterranean area of southern Europe	FrRL	VU
Lactarius miniatescens Verbeken and Van Rooij	Benin, Togo, Ghana, Burkina Faso	BeRL	CR
Lactarius minimus	Great Britain, China (?)	CRL	EN
Lactarius mucidus Burl.	USA, Canada, China (?)	CRL	DD
Lactarius muscicola Hesler and A.H. Sm.	USA, China (?)	CRL	DD
Lactarius musteus Fr.	a mostly north European species, including Great Britain, present also in central Europe and Russia, China (?)	ARL, BRL, CRL, CRRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, NRL, SRL, SloRL, SRL, SwRL	EN, NT, LC, Relevant, NT, LC, EN/DD, HT, EKSP, LC, V, EN, NT
Lactarius mutabilis Peck	USA, Canada, China (?)	CRL	DD
Lactarius nanus J. Favre	linked to dwarf willows (e.g., *Salix herbacea* L., *S. arctica* Pall.) in artic and alpine areas of central and northern Europe; Great Britain, Iceland, Greenland, Svalbard, Russia, North America, China (?)	ARL, CRL, ECCF, GRL, NBIC, NRL, SIRL, SwRL	VU, DD, LC, ER, LC, DD, LC
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius necator 37 (Bull.) Pers.	widely distributed in Europe, Russia, Iceland, Greenland, North America, China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, SwRL	LC
Lactarius nigroviolascens 38 G.F. Atk.	USA, Canada, Japan (?), China (?)	CRL	DD
Lactarius nothofagi R. Heim (nom. inval.)	New Zealand	NZTCS	DD
Lactarius novae-zelandiae McNabb	New Zealand	GFRLI, IUCN	EN, EN
Lactarius obliquus 39 Fr.	China (?)	CRL	LC
Lactarius obscuratus 40 (Lasch) Fr.	widely distributed in Europe, Russia, Greenland, North America (?), Colombia (?), China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, SwRL	NT, DD, LC, DD, NT, 2, LC, LC
Lactarius occidentalis A.H. Sm.	Canada, USA, China (?)	CRL, GFRLI	DD, LC
Lactarius oedehyphosus 41 Izderda and Noordeloos	France	FrRL	DD
Lactarius oedematopus 42 (Scop.) Kuntze	Germany, Austria, Belgium, Slovakia, France, Bulgaria, Italy	GRL	DD
Lactarius ogasawarashimensis S. Ito and S. Imai	Japan	JRL	EX
Lactarius olivinus Kytöv.	Norway, Finland, Sweden, Estonia	ECCF, ERL, FRL, NBIC, SwRL	Relevant, LC, LC, DD, NT
Lactarius omeiensis W.F. Chiu	China	CRL	DD
Species §	Distribution	List(s) *	Category #
-----------	--------------	-----------	------------
Lactarius omphaliformis	central and northern Europe, Great Britain, Russia	ARL, CrRL, CRRRL, DRL, ECCF, FrRL, GRL, HRL, NBIC, NMRL, NRL, SRL, SwRL	VU, VU, DD, LC, LC, LC, NT, 1, LC, CR, KW, VU, LC
Lactarius pallescens	Canada, USA	GFRLI	LC
Lactarius pallidiolivaceus	USA	GFRLI	DD
Lactarius pallidus	widely distributed in Europe, Russia, Greenland, China (?)	ARL, CRL, DRL, ECCF, FrRL, GRL, NBIC, NRL, SwRL	LC, LC, LC, LC, LC, LC, NotT, LC, RC, BE, LC
Lactarius paludinellus	USA, China (?)	CRL	DD
Lactarius paradoxus	USA, Canada, Dominican Republic, Cuba	CuRL	CR
Lactarius parvus	USA, Canada, China (?)	CRL	DD
Lactarius paulus	USA	GFRLI	Proposed
Lactarius peckii	USA, Costa Rica, China (?)	CRL	DD
Lactarius pergamenus	central Europe, Great Britain, Ireland, Sweden, China (?)	CRL, FrRL	DD, LC/DD
Lactarius picinus	central and northern Europe, Great Britain, Russia, Iceland, China (?)	ARL, CRL, ECCF, FrRL, GRL, HRL, NBIC, PRL, RRL, SwRL	LC, LC, LC, LC, LC, LC, LC, NT, R, NT, LC
Lactarius pilatii	Czech Republic, Germany, Austria, Denmark, Finland, Sweden, Estonia, Norway, Greenland	ARL, CrRL, ERL, FRL, FRRL, GRL, NBIC, SwRL	CR, DD, NT, LC, DD, LC, LC
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius pinastri 44 Romagn.	France	FrRL	LC
Lactarius pinnckneyensis Hesler and A.H. Sm.	USA, China (?)	CRL	DD
Lactarius porinus 45 Rolland	Italy, central and northern Europe, Great Britain, Russia, Japan, China (?), strictly associated with *Larix*	ARL, CRL, CrRL, DRL, ECCF, FrRL, FrRL, GRL, NRL, SwRL	LC, EN, LC, NA, NotT, LC
Lactarius pseudomucidus Hesler and A.H. Sm.	Canada, USA	GFRLI	LC
Lactarius pseudoscrobiculatus Basso, Neville, and Poumarat	southern Europe, Mediterranean area, France, Spain, Italy	GFRLI	Proposed
Lactarius pseudouvidus Kühner	mostly northern Europe, Great Britain, France, Austria, Iceland, Russia, Svalbard, Faroe Islands, Greenland, Canada, USA	ARL, ECCF, FRL, NBIC, SwRL	VU, LC, LC, LC, LC, LC
Lactarius pterosporus Romagn.	widely distributed in Europe, Russia, Japan (?), China (?)	ARL, CRL, DRL, ECCF, FrRL, GRL, NRL, SwRL, HRL	LC, DD, LC, LC, LC, LC, LC, LC, LC
Lactarius pubescens (Schrad). Fr.	widely distributed in Europe, Russia, Iceland, Greenland, Canada, USA, China (?), Australia, New Zealand (introduced with its mycorrhizal host *Betula*)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, NBIC, SwRL	LC, LC, LC, LC, LC, LC, LC, LC, LC, LC
Lactarius pyrogalus (Bull.) Fr.	widely distributed in Europe, Russia, USA, Canada, China (?), linked to *Corylus*	ARL, CRL, DRL, ERL, FRL, FrRL, NBIC, SwRL	LC, LC, LC, LC, LC, LC, LC, LC

Species § indicates the species name.
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius quieticolor⁴⁶ Romagn.	widely distributed in Europe, Brazil (introduced), China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NBIC, NRL, SRL, SwRL	NT/EN/LC/DD/NA
Lactarius quietus (Fr.) Fr.	widely distributed in Europe, Russia, USA, Canada, Japan (?), China (?)	ARL, CRL, DRL, ERL, FRL, FrRL, GRL, NBIC, SwRL	LC/NT
Lactarius repraesentaneus Britzelm.	central and northern Europe, Great Britain, Russia, Greenland, Iceland, North America, Japan, China (?)	ARL, BRL, CRL, CRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, LRL, NBIC, PRL, SIRL, SRL, SwRL	EN/VU/CR/TE/1/VU/NT
Lactarius resimus (Fr.) Fr.	widely distributed across Europe, more common in the northern part, Great Britain, Russia, North America, China (?)	ARL, BRL, CRL, CRRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, LRL, NBIC, NRL, PRL, SRL, SwRL	DD/TE/1/VU/NT/EB/E/EN/DD/TE/1/VU/NT
Lactarius rimosellus Peck	Canada, USA, Mexico, Guatemala, Costa Rica, Colombia, China (?)	CRL	DD
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactarius robertianus 47			
Bon	France, Spain, Germany, Italy, Russia, Svalbard, with *Salix* in alpine zones	GRL	DD
		ARL, CRL, CRRL, DRL, ECCF, FrRL, GRL, NBIC, SRL, SwRL	NT, DD, DD, LC, LC, LC/DD, TUE, LC, LC
Lactarius romagnesii 48			
Bon.	central and northern Europe, North America, China (?)	GRL	DD
		ARL, DRL, ECCF, FrRL, GRL, NBIC, SRL, SwRL	NT, DD, Relevant, NA, NA, NA, NE
Lactarius roseozonatus			
(H. Post) Britzelm.	France, Denmark, Finland, Sweden, Estonia, Russia	ECCF, FRL, NRL	DD, LC, VN
		ARL, DRL, ECCF, ERL, NBIC, SRL, SwRL	Relevant, NA, NA, VU, NE
Lactarius rostratus			
Heilmann-Clausen	Switzerland, Sweden, Estonia, Austria, Belgium, France, Germany, Denmark, Norway, Great Britain	ECCF, FrRL, GRL, HRL, NBIC, SRL, SwRL	LC, CR, LC, LC, EN/VU/LC, TUE, 1, NE, LC
Lactarius rubidus			
(Hesler and A.H. Sm.) Methven	USA, Canada, Colombia	GFRLI	LC, LC
		ARL, CRRL, DRL, ECCF, FrRL, GRL, HRL, NBIC, SwRL	LC, CR, LC, LC, LC, LC, LC, LC, LC, LC/DD, NotT, 3, 3, LC
Lactarius rubrilacteus			
Hesler and A.H. Sm.	Canada, USA	GFRLI	LC
		ARL, CRL, CRRL, DRL, ECCF, FrRL, GRL, HRL, NBIC, SwRL	LC, LC, LC, LC, LC, LC, LC, LC, LC, LC/DD, NotT, 3, 3, LC
Lactarius rubriviridis			
Desjardin, H.M. Saylor, and Thiers	USA	GFRLI	NE
		ARL, CRRL, DRL, ECCF, FrRL, GRL, HRL, NBIC, SwRL	LC, LC, LC, LC, LC, LC, LC, LC
Lactarius rubrocintus			
Fr.	central and northern Europe, Great Britain	ECCF, FrRL, GRL, HRL, NBIC, SwRL	LC, LC, LC, LC, LC, LC
		ARL, CRL, CRRL, DRL, ECCF, ERL, FrRL, GRL, HRL, NBIC	LD, LD, LD, LD, LD, LD, LC
Lactarius rufomarginatus			
Verbeken and Van Rooij	Benin	BeRL	CR
Lactarius rufulus 49			
Peck	USA, Mexico	GFRLI	LC
		ARL, CRL, CRRL, DRL, ECCF, ERL, FrRL, GRL, HRL, NBIC	LC, LC
Lactarius rufus			
(Scop.) Fr. | widespread in Europe, Russia, Iceland, Greenland, Svalbard, North America. Introduced in several distant areas (e.g., Brazil, New Zealand) with its host plants, *Pinus* and *Picea* | ECCF, FrRL, GFLRI, GRL, HRL, NBIC, NRL, SwRL | Prop, LC/DD, NotT, 3, LC, TNB, LC |

Note: *Species §* indicates the section where the species is introduced in the text. *List(s) * indicates the taxonomic lists used in the table. *Category #* indicates the category codes used in the table.
Species §	Distribution	List(s) *	Category #	
Lactarius ruginosus Romagn.	central and northern Europe, Great Britain, Russia	ARL, CRRL, DRL, ECCF, ERL, FrRL, GRL, NBIC, NRL, SRL, SwRL	NT	
Lactarius sakamotoi S. Imai	Japan, China	CRL,	DD	
Lactarius salicis-herbaceae Kühner	Norway, Sweden, Finland, alpine areas of France, Austria, Switzerland and Italy, Russia, Iceland, Greenland, Canada, Alaska, always linked to its host plants, dwarf and shrubby Salix	ARL, ECCF, FRL, NBIC, SRL, SwRL	VU	
Lactarius salicis-reticulatae Kühner	Norway, Sweden, Finland, alpine areas of France, Austria, Switzerland, Italy and Spain (Pyrenees), Great Britain, Poland, Russia, Svalbard, Greenland, USA, always linked to its host plants, dwarf and shrubby Salix or Dryas	ARL, BRL, ECCF, GRL, NBIC, SRL, SwRL	VU	
Lactarius salmonicolor 50 R. Heim and Leclaire	widely distributed in southern and central Europe, Great Britain, Russia, linked to Abies, reported from North America (?), Mexico (?), Guatemala (?), China (?)	ARL, BHRL, CRL, CRRL, ECCF, FrRL, GRL, GuRL, HRL, RRL	LC/NA	
Lactarius sanguifluus 51 (Paulet) Fr.	widely distributed in Europe, Great Britain, Russia, Malta, Algeria, Morocco, North America (?), Pakistan, Japan, China, Nepal	ARL, CRL, CRRL, ECCF, ERL, FrRL, GFRLI, GRL, MaRL, NMRL, NRL, PRL, SRL, SwRL, URL	EN/LC/NA	
Species §	Distribution	List(s) *	Category #	
------------------------	-------------------------------------	-----------	------------	
Lactarius sanguineus	Teng	FrRL	NA	
(Thiers) P. M. Kirk	USA	GFRLI	DD	
Lactarius scoticus	Berk. and Broome	central and northern Europe, Great Britain, Ireland, Iceland, Russia, China (?)	ARL, CRL, DRL, ECCF, ERL, FrRL, GRL, NBIC, NRL, SRL, SwRL	LC, CR, LC, LC, LC, LC, LC, LC, LC, LC, LC
Lactarius scrobiculatus	(Scop.) Fr.	widely distributed in Europe, Russia, North America (?), China (?), Japan (?)	CRL, ECCF, ERL, FrRL, GRL, NBIC, NRL, SRL, SwRL	DD, NT, DD, VU, VU, LC, NT, LC
Lactarius semisanguifluus	R. Heim and Leclair	widely distributed in Europe, Russia, China (?)	CRL, DRL, ECCF, ERL, FrRL, GRL, NMRL, NRL, SRL, SwRL	DD, NT, LC, BE, NT, LC
Lactarius serifluus	(DC.) Fr.	widely distributed in Europe, India (?), China (?)	CRL, DRL, ECCF, ERL, FrRL, GRL, NBIC, SRL, SwRL	LC, LC, CR, NT, NT, LC, VU, LC
Lactarius sordidus	see note 37	USA, Canada	CRL, DD	DD
Lactarius similissimus	A.H. Sm. and Hesler	USA, China (?)	CRL	DD
Lactarius silvae		USA, Canada, China (?)	CRL	DD
Species §	Distribution	List(s) *	Category #	
-----------	--------------	-----------	------------	
Lactarius sphagneti (Fr.) Neuhoff	mostly northern Europe, but distributed also in the central part of the continent, Russia. In GBIF, also records from Canada and USA	ARL BuRL CRRRL DRL ECCF ERL FRL FrRL GRL HRL NBIC NRL PRL SwRL	VU DD NT DD VU/NT TH I LC VN E LC	
Lactarius spinosulus Quel. and Le Bret.	central and northern Europe, Russia, Iceland, China (?)	ARL BuRL CRL CRRL DRL ECCF ERL FRL FrRL GRL HRL NBIC NRL PRL SwRL	VU EN DD EN VU LC	
Lactarius squamulosus 56 Z.S. Bi and T.H. Li	China	CRL	DD	
Lactarius stephensii 57 (Berk.) Verbeken and Walleyn	widely distributed in central and southern Europe, Great Britain	ARL SRL	VU	
Lactarius strigosipes Montoya and Bandala	Mexico	GFRLI	EN	
Lactarius subcircellatus Kühner	northern Europe, Russia, Iceland, Greenland, Alaska	FRL GRL NBIC SwRL	LC DD LC	
Lactarius subdulcis 58 (Pers.) Gray	widely distributed in Europe, Russia, Greenland, North America (?), China (?)	ARL CRL DRL ECCF FrRL GRL NBIC SwRL	LC LC LC LC	
Lactarius subflammeus 59 Hesler and A.H. Sm.	USA, Canada, China (?)	CRL	DD	
Lactarius subolivaceus Hesler and A.H. Sm.	USA, China (?)	CRL	DD	
Lactarius subplinthogalus Coker	USA, Japan, Thailand, Nepal, China	CRL	LC	
Lactarius subruginosus 59 J. Blum ex Bon	Austria, France, Spain	ARL FrRL	LC VU	
Species §	Distribution	List(s) *	Category #	
-----------	--------------	-----------	------------	
*Lactarius subsericeus*⁶⁰ Deenis, Orton, and Hora	France	FrRL	NA	
Lactarius subserifluus Longyear	USA, Malaysia (?), China (?)	CRL	DD	
*Lactarius subtomentosus*⁶¹ Z. Schaefer	Slovakia	SIRL	DD	
Lactarius subumbonatus Lindgr.	southern and central Europe, Great Britain, Denmark, Sweden	ARL, ECCF, FrRL, SRL	LC, LC, LC, EN	
Lactarius subvillosus Hesler and A.H. Sm.	USA	GFRLI	DD	
Lactarius subzonarius Hongo	Japan, China, Korea, Thailand	CRL	LC	
Lactarius sumstinei Peck	USA, Malaysia (?) China (?)	CRL	DD	
*Lactarius syringinus*⁶² Z. Schaeff.	very scattered distribution, with records from Norway, Sweden, Estonia, Russia, Great Britain, Austria, Czech Republic, Slovakia	ARL	LC	
Lactarius tabidus Fr.	widely distributed, especially in central and northern Europe, Iceland, Svalbard, Russia, Greenland, eastern North America, Korea, China (?)	ARL, CRL, DRL, ERL, FrRL, GRL, NBIC, SwRL	LC, DD, LC, LC, LC, LC, LC, LC	
*Lactarius terenopus*⁶³ Romagnesi	reported from France, Spain, Slovenia, Great Britain	FrRL	EN	
Lactarius tesquorum Malençon	a Mediterranean species, Portugal, Spain, France, Italy, Croatia, Malta, Morocco	CrRL, ECCF	NT, LC	
*Lactarius theiogalus*⁶⁴ (Bull.) Gray	central and northern Europe, Svalbard, Greenland, North America, China (?)	CRL, FrRL, HRL	DD, VU/LC, 2	
*Lactarius tithymalinus*⁶⁵ (Scop.) Fr.	reported from France, Spain, Germany, Austria, Denmark, Norway, China (?)	CRL, FrRL	DD, EN/DD	
Lactarius torminosulus Knudsen and T. Borgen	a northern European species, also reported from France, Austria, Germany, Russia, Iceland, Greenland, Svalbard, Canada	FRL, GRL, NBIC, SwRL	LC, DD, LC, LC	
Lactarius torminosus (Schaeff.) Gray	widely distributed in central and northern Europe, Russia, Iceland, Greenland, North America, Japan, China, Morocco, Australia, New Zealand, introduced in many areas with its host *Betula*	ARL, CRL, DRL, ECCF, ERL, FrRL, GFLRI, GRL, HRL, NBIC, NRL, SwRL	LC, Proposed, NotT, 4, KW, LC, LC, LC, LC	
Species §	Distribution	List(s) *	Category #	
-----------	--------------	-----------	------------	
Lactarius tristis 66 J. Blum	France	FrRL	DD	
		ARL	LC	
		CRL	DD	
		DRL	VU	
		ECCF	LC	
		ERL	LC	
		FRL	LC	
		FrRL	LC/DD	
		GFRLI	Proposed	
		GRL	TUE	
		NBIC	LC	
		NRL	KW	
		PRL	R	
		SwRL		
Lactarius trivialis (Fr.) Fr.	widely distributed in central and northern Europe, Russia, Svalbard, Greenland, North America, Japan, China	FrRL	LC/DD	
		GRL		
		NBIC	LC	
		NRL		
		PRL		
		SwRL	LC	
Lactarius tuomikoskii Kytöv.	Finland, Sweden, Norway, Germany, Austria, records also from northern Italy	ARL	LC	
		FRL	LC	
		GRL	ER	
		NBIC	LC	
		NRL	SwRL	LC
Lactarius umbrinus 67 (Paulet) Fr.	just a few, mostly very old reports from Germany, Sweden, Great Britain and Estonia	GRL	DD	
		ARL	LC	
		ECCF	LC	
		FrRL	LC	
			DD	
		ARL	LC	
		CRL	LC	
		CRRRL	EN	
		DRL	EN	
		ECCF	LC	
		ERL	LC	
		FRL	LC	
		FrRL	LC/DD	
		GRL	TH	
		HRL	3	
		NBIC	LC	
		NRL	EB	
		RRL	NT	
		SwRL	LC	
Lactarius uvidus 68 (Fr.:Fr.) Fr.	widely distributed in Europe, Russia, Iceland, Svalbard, Greenland, North America, Japan, China (?)	ARL	LC	
		CRL	LC	
		DRL	LC	
		ECCF	LC	
		ERL	LC	
		FRL	LC	
		FrRL	LC/DD	
		GRL	Th	
		HRL	3	
		NBIC	LC	
		NRL	EB	
		RRL	NT	
		SwRL	LC	
Lactarius vietus 69 (Fr.) Fr.	widely distributed in Europe, Russia, Iceland, Greenland, North America, Korea, China (?)	ARL	LC	
		CRL	LC	
		DRL	LC	
		ECCF	LC	
		ERL	LC	
		FRL	LC	
		FrRL	EN/NT/LC/DD	
		GRL	NotF	
		NBIC	LC	
		NRL	KW	
		SwRL	LC	
Lactarius vinaceorufescens A.H. Sm.	USA, Canada, China (?)	CRL	DD	
		EECF	LC	
		FrRL	EN/DD/NA	
Species §	Distribution	List(s) *	Category #	
-----------	--------------	-----------	------------	
Lactarius violascens (J. Otto) Fr.	widely distributed in Europe, Russia, Japan (?)	ARL CRL DRL ECCF ERL FRL FrRL GRL HRL NBIC NMRL NRL PRL SwRL	LC Relevant LC DD	
Lactarius waltersii Hesler and A.H. Sm	USA, China (?)	CRL	DD	
Lactarius wangii J.Z. Ying and H.A. Wen	China	CRL	DD	
Lactarius wenquanensis Y. Wang and Z.X. Xie	China, Russia (?)	CRL	DD	
Lactarius xanthogalactus Peck	USA, Mexico, reported also from Canada, Colombia, China (?)	GFRLI	LC	
Lactarius zonarioides Kühner and Romagn.	central and northern Europe, Russia, China (?)	ARL CRL CRRRL ECCF ERL FRL FrRL GRL NBIC PRL SwRL	LC DD EN LC LC	
Lactarius zonarius (Bull.) Fr.	widely distributed in Europe, Russia, North America, Japan, India, China (?), typically (but not exclusively) associated to *Quercus*	ARL CRL CRRRL DRL ECCF ERL FrRL GRL NBIC SRL SwRL	LC LC LC VU EN LC DD	
Lactifluus atrovelutinus (J.Z. Ying) X.H. Wang	China, Malaysia	CRL	DD	
Lactifluus bertillonii (Neuhoff ex Z. Schaeff.) Verbeken	widely distributed in Europe, Russia	ARL DRL ECCF FRL FrRL GRL NBIC SRL SwRL	LC LC LC LC DD EN LC LC	

List(s): ARL = American Red List, CRL = Chinese Red List, DRL = Danish Red List, ECCF = European Centre for Floristic Flora, ERL = European Red List, FRL = Finnish Red List, FrRL = French Red List, GRL = German Red List, NBIC = Netherlands Biotic Indicator Categories, NMRL = Nordic Red List, NRL = National Red List, PRL = Portuguese Red List, SwRL = Swedish Red List. Categories: LC = Lower Risk Category, DD = Data Deficient, EN = Endangered, LC = Lower Risk Category, VU = Vulnerable, LC = Lower Risk Category, TH = Threatened, LC = Lower Risk Category, NE = Near Threatened.
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactifluus glaucescens 76 (Crossl.) Verbeken	widely distributed in Europe, Russia, North America (?), Japan, China (?)	ARL CRL DRL ECCR FRL FrRL GRL GRNL NRRL SRL SwRL	LC DD DD LC LC LC/D/LC Not/T LC GE VU
Lactifluus hallingii Delgat and De Wilde	Costa Rica, Panama, Colombia	GFRLI	VU
Lactifluus luteolus 77 (Peck) Verbeken	Italy, Spain, France, Slovenia, Switzerland, Morocco, China (?)	CRL ECCF FrRL SRL	LC Relevant DD CR
Lactifluus ochregalactus (Hashiya) X.H. Wang	Japan, Korea, China India, Malaysia, Borneo. Records also from Australia (see GBIF)	CRL	DD
Lactifluus pilosus (Verbeken, H.T. Le and Lumyong) Verbeken	Thailand, Korea, France (?)	FrRL	DD
Lactifluus piperatus 78 (L.) Roussel	widely distributed in Europe, Russia, North America (?), China (?)	CRL DRL ECCF ERL FRL FrRL GRL GRNL NRRL SRL SwRL	LC LC LC LC NT LC LC Not/T LC EB LC
Lactifluus puberulus (H.A. Wen and J.Z. Ying) Nuytinck	China	CRL	DD
Lactifluus rugatus 79 (Kühn and Romagn.) Verbeken	a typical Mediterranean species, Portugal, Spain, Italy, France, Greece, Morocco, Germany (?), China (?)	CRL ECCF FrRL GRL	DD LC LC/D/LC DD
Lactifluus subgerardii (Hesler and A.H. Sm.) D. Stubbe	USA, Canada, China (?)	CRL	LC
Lactifluus subpiperatus (Hongo) Verbeken	Japan, Korea (?), China (?)	CRL	LC
Lactifluus subvellereus (Peck) Nuytinck	USA, Canada, Mexico, Japan (?), Korea (?), China (?)	CRL	LC
Lactifluus subvolemus Van de Putte & Verbeken	recorded from Italy, Austria, Slovenia, France, Belgium, Denmark, Sweden, Norway, Estonia, Bulgaria	DRL	DD
Lactifluus tenuicystidiatus (X.H. Wang and Verbeken) X.H. Wang	China, Laos	CRL	DD
Table 1. Cont.

Species §	Distribution	List(s) *	Category #
Lactifluus vellereus⁸⁰ (Fr.) Kuntze	widely distributed in Europe, Russia, Iceland, Nepal (?), China (?)	ARL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, NBIC, NRL, CBRL, ALRL	LC, LC, LC, LC, NT, LC, LC, NotT, LC, LC, LC, LC, NT, LC, LC, LC, NT
Lactifluus vitellinus⁸¹ (Van de Putte and Verbeken)	Thailand, China (?)	CRL	DD
Van de Putte			
Lactifluus volemus⁸¹ (Fr.) Kuntze	widely distributed in Europe, Russia, North America (?), China (?)	AIRL, CRL, DRL, ECCF, ERL, FRL, FrRL, GRL, HRL, LRL, NBIC, NMR, SR, SIRL, SwRL	NT, LC, LC, LC, NT, LC, LC

§ Names of taxa are those used in the quoted Red Lists, with noted exceptions. In case of invalidity and synonymy, reported in the notes, we followed Index Fungorum (http://www.indexfungorum.org/ (accessed on 3 September 2021)), MycoBank (http://www.mycobank.org (accessed on 3 September 2021)), and Russulales News (https://www2.muse.it/russulales-news/in_characteristics.asp (accessed on 3 September 2021)); ? indicates dubious/unconfirmed distribution records (see main text for further details); * AIRL: Albanian Red List, ARL: Austrian Red List, BRL: British Red List, BeRL: Benin Red List, BHRL: Bosnia Herzegovina Red List, BuRL: Bulgarian Red List, CRL: Chinese Red List, CrRL: Croatian Red List, CRRL: Czech Republic Red List, CuRL: Cuban Red List, DRL: Danish Red List, ECCF: European Council for the Conservation of Fungi, ERL: Estonian Red List, FRL: Finnish Red List, FrRL: French Red List, GFRLI: Global Fungal Red List Initiative, GRL: German Red List, GuRL: Guatemalan Red List, HRL: Hungarian Red List, JRL: Japanese Red List, LRL: Lithuanian Red List, MaRL: Maltese Red List, MRL: Montenegro Red List, NBIC: Norwegian Biodiversity Information Center, NMRL: North Macedonia Red List, NRL: The Netherlands Red List, NZTCS: New Zealand Threat Classification System, PRL: Polish Red List, RRL: Romanian Red List, SRL: Slovak Red List, SioRRL: Slovenian Red List, SwRL: Swedish Red List, URL: Ukrainian Red List; # for an explanation of IUCN threat categories (EW, EX, RE, CR, EN, VU, NT, LC, DD, NA, NE), see main text and www.iucn.org (accessed on 15 April 2021). In the case of the ECCF list of candidate species to enter the European Red List of endangered macrofungi, ‘Relevant’ stands for ‘Relevant for assessment’ (see http://www.eccf.eu/activities-en.ehtml (accessed on 7 April 2021)). ‘Proposed’ indicates that a species has been proposed for assessment and is awaiting more data or resources before getting under assessment by an assessor participating to the Global Fungal Red List Initiative. The German Red List has distinct threat categories, namely: Threatened with Extinction (TE, a species that is endangered to such a degree that it is likely to become extinct in the near future unless appropriate urgent action is taken), Highly Threatened (HT, a species showing a significant population decline or subject to substantial threat caused by continuous or anticipated human impact), Threatened (TH, a species showing a significant population decline or one that is probably threatened by human impact), Threat of Unknown Extent (TUE, species in this group are threatened; research has shown that the species is threatened, but the available information is not sufficient to allow a precise assignment to the previous three categories), Extremely Rare (ER, extremely rare species, often with very local populations; total number of populations or individuals within populations do not show a long-term or short-term decline), Near Threatened (NT, Species displaying a substantial population decline but not yet considered as threatened; if the current causes of threat persist, a re-classification into category ‘Threatened’ is likely in the near future), Data Deficient (DD), Not Threatened (NotT, species are considered as currently ‘Not Threatened’ if their populations have increased, are stable, or have decreased only slightly). See https://www.rote-liste-zentrum.de/en/Threat-Categories-1711.html (accessed on 8 April 2021) for further details. The criteria used for insertion of fungal species in the Guatemalan Red List are as follows: category 1, species that are in danger of extinction; category 2, species of distribution restricted to a single type of habitat (endemic); 3, species that although currently are not in danger of extinction, could become so if their use is not regulated. In the Hungarian Red List, the conservation status of macrofungi is categorized as follows: 1, critically endangered; 2, strongly endangered; 3, endangered species; 4, lower risk species to be preserved or potentially inclined to become
endangered. The Maltese Red List has the following categories: X, extinct from the Maltese Islands; E, endangered locally; V, vulnerable locally; R, rare locally; RR, very rare locally; I, taxon’s status in the Maltese Islands is not known. For Montenegro, the following categories apply: EKSP, very rare or rare species in Montenegro; RV, species confined to endangered or rare habitats in Montenegro; RS, very rare or rare species in Montenegro endangered because of exploitation. The Netherlands Red List applies the following categories that apply to milkcaps: VN, regionally extinct; EB, critically endangered; BE, threatened; KW, vulnerable; GE, sensitive; TNB, currently not threatened. The New Zealand Threat Classification System applies a special set of categories, of which only two concern milkcaps and are present in this list: NC, nationally critical, and DD, data deficient. For a complete view of the categories, see https://nztscs.org.nz/home (accessed on 6 April 2021). In the Polish Red List, hazard categories are defined as follows: Ex, extinct and lost, species whose presence in Poland, despite repeated searches, has not been confirmed at the sites where they were collected, or at other similar places; E, endangered, species threatened with extinction, the survival of which is unlikely if threat factors continue to act; V, vulnerable, species that are likely to move into declining categories in the near future if the threat factors persist; R, rare, species with limited geographical ranges, small habitat areas or widespread but highly dispersed species. In Slovenia, threat categories are: Ex, extinct; E?, supposedly extinct; E, affected; V, vulnerable; R, rare; O, non-endangered; I, unspecified; K, under-known. In the Ukrainian Red List, two conservation categories apply to milkcaps, namely Vulnerable (VU) and Rare (R). 1 as Lactarius acer (Bolton) Fr. in ARL; 2 generally considered a synonym of Lactifluus vellerius (Fr.) Kuntze (e.g., Index Fungorum and Russuallas News); 3 in PRL, also Lactarius glutinopollens E.H. Möller and J.E. Lange (R), now considered a synonym of Lactarius alboconus Britzelm. In FrRL, also as Lactarius alboconus var. glutinovinos (J. Blum) Bon (DD); 4 as Lactarius aurantico-ochraceus in CRL; 5 ARL lists also Lactarius mitissimus ss. Basso (LC), now considered a synonym of Lactarius aurantius. FrRL also lists Lactarius mitissimus (Fr.) Fr. (LC/DD), now considered a synonym of Lactarius aurantiacus. As Lactarius mitissimus in NRL (KW); 6 generally considered a synonym of Lactarius aurantiacus (e.g., [22,23]); 7 in SwRL, also Lactarius azonites. L. azonites (Bull.) Fr. (NE), also as Lactarius azonites f. virginea (J.E.) Verbeek (NA). In ARL, also Lactarius azonites f. virginea (J.E.) Verbeek (LC). In FrRL, also Lactarius azonites f. virginea (J.E.) Verbeek (NT); 8 in FrRL, also as Lactarius bennius var. virgineus (J.E.) Lange (LC) and Lactarius bennius var. albulopollens J.E. Lange (DD), sometimes considered a synonym of Lactarius flavus Boud. (e.g., Index Fungorum); 9 often considered a synonym of Lactarius rubescens (Schrad.) Fr. (i.e., Rusuallas News); 10 as Arcangeliella borziana Cava in SRL; 11 invalid name, recommended name Lactarius zonariosides Kühner and Romagn. (Russuallas News); 12 considered a synonym of Lactarius fulvissimus Romagn. by some authors (e.g., [22]). In FrRL, also as Lactarius britannicus f. pseudofulvissimus (Bon) Basso, 13 considered a synonym of Lactarius obscurus (Lasch) Fr. by some authors (e.g., [22]); 14 considered a synonym of Lactarius picinus Fr. by some authors (e.g., [23]); 15 current name Lactifluus corrugis (Peck) Kuntze; 16 a variously interpreted taxon, considered a synonym of Lactarius rostratus Heilmann-Clausen by some authors (e.g., [22]); 17 a variously interpreted taxon, sometimes considered a synonym of Lactarius illiacus (Lasch) Fr. Fr. (e.g., Russuallas News); 18 the species occurring in Guatemala and commonly reported as Lactarius deliciosus is actually a distinct, new taxon, whose description is currently underway (Roberto Flores-Arzú, pers. commun.). On the other hand, conspecificity has been proved between European and Asian samples (see [33]). In FrRL, also Lactarius deliciosus f. rubescens Aug. Schmitt (NT), 19 generally considered a synonym of Lactarius scoticus Berk. and Broome (e.g., [22,23]); 20 a poorly known species, very close to Lactarius fluenus Boud. (see [23]); 21 in SwRL, also Lactarius flexuosus var. flexuosus Gray (NE) and Lactarius flexuosus var. roseozonatus H. Post (NA). In ARL, also Lactarius flexuosus var. roseozonatus H. Post (NT). In DRL, as Lactarius flexuosus var. flexuosus Gray (DD) and Lactarius flexuosus var. roseozonatus (DD). In FrRL, also Lactarius flexuosus var. roseozonatus H. Post (VU/DD); 22 in SwRL, also as Lactarius subericatus Kühner and Romagn. ex Bon (NA), now considered a synonym of Lactarius fulvissimus Romagn.; 23 generally considered a synonym of Lactarius mambonnes Fr. (e.g., [23]); 24 a recently described, poorly known species, close to Lactarius fascinans (Fr.) Fr. and Lactarius utilis (Weinm.) Fr. (e.g., [34]); 25 considered a synonym of Lactarius pyrogalus (Bull.) Fr. by some authors (e.g., [22]); 26 current name Lactifluus hygrophoroides (Berk. and M.A. Curtis) Kuntze; 27 a variously interpreted taxon, either considered a synonym of Lactarius fulvissimus Romagn., Lactarius britannicus D.A. Reid, or Lactifluus volvens (Fr.) Kuntze (e.g., [22,23]); 28 the species occurring in Guatemala and commonly reported as Lactarius indigo is actually a distinct, new taxon, whose description is currently underway (Roberto Flores-Arzú, pers. commun.). More in general, it is highly probable that ‘Lactarius indigo’ is in reality a group of morphologically similar species. Asian collections classified as Lactarius indigo were shown to be Lactarius subindigo Verbeek and E. Horak [35]; 29 considered a synonym of Lactarius rubrocinctus Fr. [22]; 30 a variously interpreted taxon, either considered a synonym of Lactarius acerinus Britzelm., Lactarius zonariosides Kühner and Romagn., or Lactarius zonarius (Bull.) Fr. (e.g., [22,23]); 31 considered a synonym of Lactarius duplicatus A.H. Sm. by some authors (e.g., [22]); 32 sometimes synonymized with Lactarius griseus Peck (e.g., GBIF); 33 the molecular analysis of Asian and Northern American specimens has revealed a complex species group, with no conspecificity with European Lactarius ligyiatus (see [36]); 34 possibly a synonym of Lactarius salicis-herbaeae Kühner (e.g., [23]); 35 In FrRL, also Lactarius mairei var. zonatus A. Pearson (NT/DD); 36 a poorly known species. To the best of our knowledge, the Chinese collections of Lactarius minimus var. macrosporus C.Z. Bi and G.Y. Zheng have not been confirmed molecularly [37]; 37 as Lactarius turpis (Weinm.) Fr. in ARL, FrRL, GRRL, and HRL. In CRL, also Lactarius turpis (Weinm.) Fr. (DD). In North America, this species is often reported as Lactarius sarcoplus Fries, 38 considered a synonym of Lactarius nevator by some authors (e.g., [23]), as L. turpis. 39 treatment of the synonym of Lactarius ligyiatus var. nigrovirens (G.F. Atk.) Hesler and A.H. Sm. by some authors (e.g., [39]). See note 33 for a comment on the intercontinental conspecificity of members of the Lactarius ligyiatus group; 39 a poorly known species, virtually no information on distribution available; 40 in ARL, also Lactarius obscurus var. subalpinus Basso (NT). In FrRL, also as Lactarius obscurus var. radiatus (J.E. Lange) Romagn.; 41 considered a synonym of Lactarius theogalus (Bull.) Gray (see [39]); 42 current name Lactifluus oedematopus (Scop.) Kuntze (see [24,40]); 43 current name Lactifluus perganeanus (Sw.) Kuntze. Considered either a synonym of Lactifluus piperatus (L) Roussel or Lactifluus glaucoscens (Crols.) Verbeek, depending on the various interpretations of this taxon by authors in the past [41]. 44 generally considered a synonym of Lactarius quieticolor Romagn. (e.g., [22,23]); 45 in CRL, also Lactarius porinaceus Rolland (DD), an orthogon right variant of Lactarius porinaceus; 46 in NRL, also as Lactarius quieticolor f. seminaugueiscens Bon (DD) and Lactarius quieticolor var. heymacius (Romagn.) Basso (DD). In NRL also as L. heymacius (TNB). Introduced in Brazil (and probably elsewhere) with its host Pinus [42]; 47 considered a synonym of Lactarius brunneovidaceus M.P. Christ. by Heilmann-Clausen et al. [22]. 48 from North America, often recorded as Lactarius speciosus (J.E. Lange) Romagn. (GBIF); 49 an edible species, linked to Quercus spp.; 50 the species occurring in Guatemala and commonly reported as Lactarius salmonicolor is actually a distinct, new taxon, whose description is currently underway (Roberto Flores-Arzú, pers. commun.). Similarly, reports of Lactarius salmonicolor from North America and other areas of Central America have not been confirmed molecularly.
so intercontinental conspecificity is unclear (see [35]); 51 conspecificity has been proved between European and Asian samples, with the possible synonymy of Lactarius thalakorunus Bills and Cotter described from Nepal with Lactarius sanguifluus, while the status of North American records is uncertain (see [33,35]); 52 invalid name. A poorly known species: in GBIF just two old records, one from Austria and one from USA; 53 the presence of Lactarius scrobiculatus in North America has been questioned (see [43]); 54 in GBIF, as Gastrolobacteria campyloides (Singer and A.H. Sm.) J.M. Vidal; 55 a synonym of Lactarius gerardi var. subrubescens (Hesler and A.H. Sm.) Hesler and A.H. Sm. (see [44]); 56 a synonym of Lactarius gracilis Hongo [37]; 77 as Amanita stephensii (Berk.) Zeller et B.O. Dodge in SRL; 58 records from North America need confirmation. In GBIF, distribution includes records of Lactarius ceylanicus (Peck) Burt, sometimes considered a synonym of Lactarius subulatus (see Index Fungorum); 49 probably a synonym of either Lactarius petrosorius Romagn. or Lactarius rugosinus Romagn. (see [36]); 60 a synonym of Lactarius rubrostellatus Fr. [22]; 61 illegitimate name (non Lactarius submontosus Berk. and Ravenel), very close to Lactarius helvus [23]. 62 very close to Lactarius vietus [23]; 63 a poorly known species, whose position within the subgenus Plinthogalus remains uncertain (see [36]); 64 often spelled ‘thelgeius’. A variously interpreted taxon, often considered a synonym of Lactarius tabidus (see [22]); 65 a variously interpreted name, often misapplied for Lactarius rubrostellatus Fr. (see [22,23]); 66 invalid name (e.g., Russula News), a poorly known species; 67 considered a synonym of Lactarius flexuosus (Pers.) Gray (see Index Fungorum); 68 in FrRL, also as Lactarius vitius var. candidulus Neuhoff, and Lactarius vitius var. pallidus Bres. (DD); 69 in FrRL, also Lactarius vietus f. constans J.E. Lange (DD); 50 considered a synonym or variety of Lactarius sanguifluus (Paulet) Fr. by some authors (e.g., [23]) Basso 1999), but molecular data have confirmed the differentiation of the two species [45]; 71 a synonym of Lactifluus solennis (Fr) Kurtzne (see [37]); 72 possibly conspecific with Lactarius aurantioscruposus Lar.N. Vassiljeva (see [37]); 73 the occurrence reports from China [46] need confirmation; 74 in FrRL, also Lactarius var. thalictri (Kühner and Romagn.) Quadron. (LC); 75 as Lactarius bertolinii (Z. Schaef.) Bon in ECCF, FrRL, NRL, NBIC, SRL and SwRL. In FrRL, also as Lactarius bertolinii var. queletii J. Blum (DD); 76 as Lactarius gilvocinensis Coss. in ECCF, FrRL, NRL, NBIC, SRL and SwRL. Preliminary studies have shown that there is probably no conspecificity among European and both North American and Asian taxa (see [41]); 77 current name Lactifluus brunneostriscus (Bon) Verbeke. As Lactarius luteolus (Peck in ECCF, FrRL and SRL. Lactifluus luteolus Peck is the correct name for a North American species [4,47-48], 78 as Lactarius petrosorius (L.) Pers. in CRCF, ECCF, ERL, FrRL, NRL, NBIC, SRL, and SwRL. Preliminary studies have shown that there is probably no conspecificity among European and both North American and Asian taxa (see [41]); 79 as Lactarius rufus Kühner and Romagn. in ECCF, FrRL and NRL; 80 as Lactarius vellereus (Fr.) Fr. in CRCF, ECCF, ERL, NRL, NBIC, SRL, and SwRL. Lactarius vellereus var. albus (Gilles) Boud. (LC). In FrRL, also as Lactarius vellereus var. hometicus (Gilles) Boud. (LC); 81 as Lactarius solennis (Fr.) Fr. in ARL, CRCF, ECCF, ERL, FrRL, NRL, HRL, NRL, and NBIC. Once considered a cosmopolitan species, recent detailed molecular and morphological studies have revealed that it is actually a complex of species, several of which pseudo-cryptic or cryptic, and that there is no conspecificity among European taxa and those occurring in North America and several Asian countries (see [49]).

2.2. Taxonomy and Nomenclature

Species were listed in Table 1 using the nomenclature adopted in the browsed Red Lists, noting divergence from current official nomenclature when appropriate. In case of invalidity and synonymy, reported in the notes, we followed (as for September 2021) Index Fungorum (http://www.indexfungorum.org/ (accessed on 3 September 2021)), MycoBank (http://www.mycobank.org (accessed on 3 September 2021)), and Russulae News (https://www2.muse.it/russulales-news/in_characteristics.asp (accessed on 3 September 2021)). Moreover, we discussed the validity of specific taxa in light of the most recent phylogenetic studies available. As in many instances Red Lists either do not mention authorship of taxa or use outdated versions, we followed Index Fungorum and MycoBank in all cases.

2.3. Distribution Data

Data on milkcaps distribution were collected from primary and secondary literature (taxonomic articles, checklists, review papers, monographs) and from the Global Biodiversity Information Facility database (https://www.gbf.org/ (accessed on 5 April 2021)), that contains many unpublished records of fungal species. Dubious and/or unconfirmed occurrence records were marked as such and discussed in some cases. For the names of geopolitical entities, we followed The World Factbook (https://www.cia.gov/the-world-factbook/ (accessed on 6 April 2021)). Although put together with care and considering all available records, the milkcaps distribution information reported in Table 1 is not intended as a comprehensive compilation of occurrence records for each single species, but rather as indicative of the geographic range of a species. The purpose is to offer the possibility of a rapid appreciation of the extension for which the conservation status assessment was carried out with respect to the distribution range of selected species.
3. Results and Discussion

3.1. Efforts in Macrofungi Conservation

The history of fungal conservation is by no means a long one. With a few noticeable exceptions—such as the attention raised by the decline of lichens and other groups of fungi caused by changes in land usage and pollution—it is not until 1985 that teams of researchers started to collaborate to pursue their work in this field in an internationally organized manner. In that year, the European Council for Conservation of Fungi (ECCF), the world’s oldest entity devoted specifically to fungal conservation was created (www.eccf.eu/ (accessed on 7 April 2021)). Mycological societies, in Europe and elsewhere, began to establish special committees dedicated to conservation, and seminal books appeared that mapped local experiences and strived to lighten the path for future action. “In different parts of the world there are several threats to fungi and fungal diversity that prompt thoughts of conservation. However, it is not self-evident whether and how fungi themselves can be conserved. Perhaps the emphasis should be placed on conservation of the site, or the habitat, or the host?” wrote the editors of Fungal Conservation, Issues and Solutions, the first comprehensive treatment on the subject, highlighting issues that are still very actual, indeed [50]. Importantly, at the end of the 1980s and then in the 1990s, several European countries started to set national Red Lists dedicated to macrofungi [29].

About twenty years ago, the International Union for Conservation of Nature (IUCN) established the first specialist groups dealing with the conservation of fungi in the framework of its Species Survival Commission (SSC). This was a most significant key development in fungal conservation because it raised awareness of the need to protect fungi at a new level, comparable to that devoted to plants and animals, something never achieved before. The IUCN Species Survival Commission has now five distinct fungal specialist groups: Chytrid, Zygomycete, Downy Mildew, and Slime Mold; Cup-fungus, Truffle, and Ally; Lichen; Mushroom, Bracket, and Puffball; Rust and Smut (https://www.iucn.org/commissions/ssc-groups/plants-fungi/fungi (accessed on 5 April 2021)). The SSC has also a Fungal Conservation Committee (FCC), that aims “to raise awareness of the importance of fungi and the need to conserve them, enhance coordination among the fungal and the broader conservation communities, and foster action,” (https://www.iucn.org/commissions/species-survival-commission/about/ssc-committees/fungal-conservation-committee (accessed on 5 April 2021)).

IUCN regularly evaluates the risk of extinction and other levels of threats different species of living organisms are facing. These assessments are conducted using a standardized platform of criteria [32], classifying each species into one of 11 categories (Extinct, Extinct in the Wild, Regionally Extinct, Critically Endangered, Endangered, Vulnerable, Near Threatened, Least Concern, Data Deficient, Not Applicable, Not Evaluated; see Figure 1). The suitability of the application of IUCN criteria to fungi has been subject to some discussion, as detailed below. The current (September 2021) Red List of Threatened Species has a total of 545 species, of which 424 are Agaricomycetes and 262 are classified as ‘threatened’ (i.e., CR, EN or VU) (https://www.iucnredlist.org/statistics (accessed on 13 September 2021)). The IUCN-sponsored Global Fungal Red List Initiative (http://iucn.ekoo.se/en/iucn/welcome (accessed on 13 September 2021)) is actively working to coordinate the inputs from the wider mycological community, including amateurs, in order to assess the largest possible number of fungi from all major taxonomic groups for publication in the IUCN Red List [51]. Over 2050 species of fungi have been ‘nominated’ to date (September 2021) from 219 countries, of which about 740 have been proposed for assessment, the first stage of the evaluation process of the conservation status of the selected fungal species.
3.2. Milkcaps Diversity: A Global Perspective

Currently, about 450 species of *Lactarius* (Figure 2) have been described, but the real number could be higher than 700 [52]. Not surprisingly, diversity in Europe and North America is fairly well known with respect to other areas, but even in these regions much remains to do. For example, several recent studies have shown the occurrence of cryptic or pseudocryptic species, depicting a more complex scenario in some instances. Moreover, intercontinental conspecificity is still an unresolved matter in many cases, as discussed more in detail below. While new species are occasionally being still described from Europe and North America [34,53], most of the novelties come from Southeast Asia, India, and China. Focused studies in these areas, often carried out by international teams, are revealing a host of new species, significantly expanding our understanding of the diversity of the genus, especially in tropical forests [54–58].

Over 200 species of *Lactifluus* (Figure 2) are known worldwide, with a net prevalence in tropical areas. For comparison, while just nine species are present in Europe [22–24], some 76 species have been described from sub-Saharan Africa. Another important center of diversification of the genus is Southeast Asia, China, and India, a vast area from which at least 58 species are known [47]. The new frontline of research on *Lactifluus* diversity, however, seems to be the Neotropics, where the exploration of new habitats like the Brazilian Atlantic Forest on one side, and the fresh assessment of material from areas such as the Caribbean and Central America with molecular tools on the other, is revealing a somewhat surprisingly elevated number of new species, sometimes belonging to new sections [5,59,60]. Moreover, phylogenetic studies suggest that the real number of *Lactifluus*
species could well surpass 500, indicating that most species still await discovery and description [52]. A new infrageneric classification of the genus, with four supported subgenera, namely Lactifluus, Lactariopsis, Gymnocarpi, and Pseudogymnocarpi, has been recently proposed on the basis of a multi-gene analysis [25]. Despite general acceptance of the new taxonomic organization of milkcaps, in several Red Data Lists species of Lactifluus continue to be listed as Lactarius, a fact due in part to the reality that Red Lists are updated and revised at intervals, sometimes of many years (see Table 1 and relevant notes). While the fact that numerous Lactifluus species are still present as Lactarius in some Red Lists does not have per se the smallest impact on the species conservation status, still, it is important for the sake of accuracy, reliability, and information utility to mention the current name according to internationally recognized nomenclature databases.

Figure 2. Some of the species of milkcaps assessed in various Red Lists of macrofungi. (A) Lactarius mairei; (B) Lactarius lilacinus; (C) Lactifluus vellerus; (D) Lactarius fennoscandicus; (E) Lactarius torminosus. (A–C), various locations in Sardinia, Italy. (D,E), different locations in central Sweden.

A relatively small number of Lactarius-related sequestrate taxa are known. These were traditionally hosted in the genera Arcangelieilla Cavara and Zelleromyces Singer and Smith. About 15 accepted species (40 species in [61]) of Arcangelieilla are known from Europe, North America, Australasia, and Africa. As for Zelleromyces, some 25 species have been described (17 in [61]), distributed across North America, South America, Eurasia, and Australasia. More recently, Josep Vidal has synonymized Zelleromyces with Arcangelieilla, and proposed the new genus Gastrolactarius, with G. densus (R. Heim) J.M. Vidal as the type species, to include secatioid taxa [62]. However, all the sequestrate latex-bleeding forms mentioned above have been ultimately reconducted within Lactarius on the basis of molecular studies (see [1] and references therein), although the use of previous generic names continues in some instances (see Table 1 and relevant notes). In Europe, seven sequestrate Lactarius species are currently recognized [63]. A new species of hypogeous sequestrate milkcap, Lactarius taedae Silva-Filho, Sulzbacher, and Wartchow has been recently described from
Brazil, apparently linked to exotic Pinus spp., which raises intriguing questions about the natural ectomycorrhizal host range and/or the biogeographic origin of this species [64].

As for what concerns ectomycorrhizal host preferences, many Lactarius species display some level of host-specificity, forming ECMs with a single plant species, or with a single plant genus, or with plant genera belonging to the same family. Well known examples drawn from the European scenario comprise L. porninus with Larix decidua, L. pyrogalus with Corylus avellana, L. cistophilus and L. tesquorum with Cistus and Halimium (both in the Cistaceae family), L. controversus with Salicaceae (e.g., [13,65,66]). On the contrary, Lactifluus species seem to be more generalist in their ectomycorrhizal relationships, usually entering in symbiosis with a range of host plants. For example, in Europe, Lf. volemus is associated with both deciduous and coniferous hosts, while Lf. vellereus is known to be mycorrhizal on Quercus, Fagus, and Betula [67]. However, it should be noted that even in those cases where a ‘typical’ ectomycorrhizal association can be recognized, the possibility for a given milkcap to enter into mutualistic symbiosis with additional/diverse hosts cannot be ruled out a priori. A relevant, interesting case is L. hepaticus, usually reported as linked to Pinus, but recently shown to enter into shared mycorrhizal network between Pinus and understory Halimium shrubs (Cistaceae) [68], or to occur also in pure Halimium stands [48].

3.3. Milkcaps in Red Lists

Table 1 lists all species of Lactarius and Lactifluus quoted in Red Lists (35 in total) of macrofungi worldwide, either officially or unofficially published (with the possible exceptions of those species—presumably very few if any at all—present if the Red Lists we could not access, as described above). We admittedly lumped together data coming from global, national, and sometimes even regional (e.g., France) Red Lists. Although this might seem inappropriate, since species might be assessed differently depending on the geographical area covered by the specific Red List, we preferred at this stage to offer an overall view of how milkcaps are targeted for conservation measures, at any geographic level. The interested reader is referred to the Supplementary Materials to check specific assessments and their meaning. The total number of entries, 265, is rather impressive. Even subtracting some 40 species that are synonyms, illegitimate or poorly known/dubious taxa (see notes to Table 1), the remaining contingent makes over 30% of all described milkcaps, a rather significant percentage, indeed. A possible reason for this considerable attention towards milkcaps as for conservation enlisting, is the conspicuous appearance of these mushroom-forming basidiomycetes, and also their common use as popular edible products of the forest in many countries. For example, in Guatemala, out of a large number of milkcap species recorded in the country, only three, the edible and popular ones, are red-listed. Although the number of milkcap species assessed for conservation measures might seem elevated with respect to the overall number of known Lactarius/Lactifluus species, the level of consideration this important group of fungi is receiving is all but evenly distributed around the world, and even taxonomically. As shown in Figure 3, while a good share of European countries has an official or unofficial fungal Red List, large parts of the other continents still await the development of national red-listing projects. More in detail, no African country, with the exception of Benin, has a Red List devoted to fungi; in South America, only Chile and Colombia have carried out conservation assessments for at least some macrofungi. Other notably large countries, in some cases home to a rich biodiversity, that still lack a national Red List devoted to macrofungi are India, Brazil, the United States of America, and Australia. This bleak picture is somewhat mitigated by the fact that selected fungal species from these important areas are included in international Red Lists, such as that of IUCN and the Global Fungal Red List Initiative, or have been earmarked for assessment. Several North American milkcaps, listed in Table 1, for example, are included in the number (see [69]). Lactifluus species are severely underrepresented in Table 1. Since the center of diversification of the genus seems to be in tropical areas of Africa, America, and Asia, it is likely that the progress of conservation efforts is these areas will add more species to the global milkcap Red List (Table 1). Indeed, just 24 species of Lactifluus (including
Lf. albivellus, Lf. corrugis, Lf. hygrophoroides, Lf. oedematopus, Lf. pergamenus, Lf. wangii, erroneously listed as Lactarius in relevant Red Lists) have been assessed, versus 241 species of Lactarius. While in some cases the absence of a fungal Red List might be due to a lack of fungal inventories, reference collections, and taxonomical knowledge in a country or region, in many other cases the reason for it must be reconducted to a cultural factor, i.e., the failure to accept Red Lists of fungi as a suitable tool for conservation management and, more in general, in understanding the ecological role of fungi and their need for protection as a vital component of virtually each and every ecosystem [31,70]. Moreover, the shortage of funding to initiate and accomplish fungal red-listing is a major obstacle in many cases. As a consequence of this, Table 1 lists a disproportionate number of European taxa, with a virtually complete inventory of the species described in the continent.

Figure 3. Countries with published national fungal Red Lists. For more details, see https://stateoftheworldsfungi.org/ (accessed on 7 May 2021). Reprinted with permission from [31]. Copyright 2018 The Board of Trustees of the Royal Botanic Gardens, Kew.

National Red Lists generally use the international IUCN categories to reflect the levels of threats to fungi, but there are several exceptions. The German national Red List, for instance, includes distinct categories such as Threatened with Extinction (a species that is endangered to such a degree that it is likely to become extinct in the near future unless appropriate urgent action is taken) and Extremely Rare (extremely rare species, often with very local populations; total number of populations or individuals within populations do not show a long-term or short-term decline), which can easily be reconducted to corresponding IUCN threat categories in most cases (see Table 1 for further explanation). In other instances, a proper national Red List is still absent, being rather substituted by a host of regional lists, which collectively cover the entire national territory of a country. This is the case of France, for example (https://inpn.mnhn.fr/accueil/recherche-de-donnees/listes-rouges-especes (accessed on 20 April 2021)). Needless to say, the use of threat categories and criteria different from those officially adopted by IUCN makes comparison of the
status of a given species as assessed in national Red Lists not straightforward, although in most cases conversion of the description of the level of menace a given species is facing to IUCN standards is possible.

When milkcaps nomenclature used in Red Lists is concerned, it can be safely stated that it is neither accurate nor up to date. As mentioned above, some 40 of the listed species are synonyms or taxa with unclear status. Moreover, in many cases, Lactifluus species are still assigned to Lactarius (see notes to Table 1). One example is paradigmatic of the general confusion and lack of accuracy. Three European Red Lists (ECCF, France, Switzerland) plus the Chinese one mention Lactifluus luteolus. Of these, all European Red Lists quote it as Lactarius luteolus, and all four are wrong, because the current name of the European taxon is Lactifluus brunneoviolascens (Bon) Verbeken, being Lf. luteolus Peck the correct name for a North American species [4,47]. However, as mentioned above, this is due in part to the fact that Red Lists are updated and revised periodically, and the time span of the Red Lists we examined is considerably large (starting from Malta, published in 1989, see Supplementary Materials). For example, while the most recent Swiss Red List was published in 2007, Lf. brunneoviolascens was assigned to the new genus only in 2012. Thus, some of the inertia towards nomenclatural standard references found in fungal Red List is explicable and, to some extent, unavoidable.

Figure 4 depicts an overall view of milkcaps status of conservation, drafted on the basis of the data reported in Table 1. As most species are present in more than one Red List (up to 18 in the case of L. lilacinus), sometimes evaluated with very different risk categories, due to different status and trends that exists considering different zones and geographical level of distributions, in our analysis each species was assigned to the group corresponding to the highest level of threat (as indicated by IUCN categories, see Figure 1) among those mentioned in the relevant Red Lists. For example, L. aspideus is currently assessed as Critically Endangered (CR) in at least one region of France (see above for an explanation of the French Red List structure), Endangered (EN) in Albania and Switzerland, Vulnerable in The Netherlands (KW) and Poland (V), and Least Concern (LC) in several other European countries. In this case, we assigned L. aspideus to the CR overall category, without attempting to ‘average’ the level of risk on the basis for example of territory extension or similar considerations. This is admittedly an arbitrary decision, but the scope of the present study is not to independently evaluate the conservation status of milkcaps, but rather to offer a critical overview of the state-of-the-art. On the other hand, it should be noted that ECCF assessed L. aspideus among its list of candidate species to enter a European Red List of endangered macrofungi as LC. This fact highlights the distance that might exist between global and local assessment of the conservation status of given taxa and calls for the weighed co-existence of international and national (or even regional) Red Lists, at least in the case of widespread species. Indeed, the assessment of the conservation status of a species over a wide territory following current procedures and standards, might end up minimizing the level of threat faced by the same species in significant parts of its distribution, as the case of L. aspideus exemplifies. IUCN has emitted special guidelines for the drafting of regional and national Red Lists adopting standardized criteria [71].

The only two species that are listed as ‘Extinct’ (EX) at national level or proposed as ‘Extinct in the Wild’ (EW) in Table 1, are L. maruiaensis and L. ogasawarashimensis. Assessed as EW (preliminary category) for the Global Fungal Red List Initiative and as ‘Nationally Critical’ for the New Zealand Threat Classification System, L. maruiaensis was first collected in 1968 and described by McNabb in 1971, that studied material collected under Nothofagus at Spring Junction, in New Zealand’s South Island [72]; (Figure 5). In his assessment of the species status for the Global Fungal Red List Initiative, Patrick Leonard stated: “The area where it was originally found at Springs Junction has undergone rapid land use change with native forest and low intensity grazing being replaced by high intensity dairy farming”, and “The species has not been seen for 50 years and it is reasonable to suppose it is extinct,” (http://iucn.ekoo.se/iucn/species_view/316234/ (accessed on 13 September 2021)) However, the NYBG Steere Herbarium holds a sample (NY Barcode: 114109) collected
by Roy Halling in 1992, at the Kaimanawa Forest Park, in the North Island. It is, therefore, possible that the species, indisputably rare, might still exist in areas distant from the typical location. *L. ogasawarashimensis* is a really mysterious taxon. Currently, it is listed as ‘extinct’ in the Japanese Red List (see Supplementary Materials). Described by Seiya Ito and Sanshi Imai in 1940 on the basis of material collected in Chichijima Island, in the Japanese Ogasawara (Bonin) Islands, it has never been found again and is, therefore, considered extinct. No voucher specimens exist [73]. Reportedly in ectomycorrhizal association with *Pinus luchuensis*, introduced in the Ogasawara Islands, Ito and Imai noted that *L. ogasawarashimensis* occurs “in mixing with *L. sanguifluus* and it is closely related with the last one,” but it is easily distinguished by the scarce and blue-colored latex [74].

Another small group of species listed in Table 1 have a more or less ample European distribution, with various degrees of conservation status, but are considered extinct in part of their range (Regionally Extinct, RE, or equivalent). The group includes *L. acris*, *L. roseozonatus*, *L. sphagneti*, and *L. violascens*, all of which disappeared from The Netherlands (VN). Other relevant cases cited in literature but not considered in any Red Lists concern *L. scrobiculatus*, probably extinct in Great Britain [75], and *L. volemus*, reported as extinct in the Flanders [67]. On the other hand, the word ‘extinction’ (often applied nationally if a species has not been recorded in the last 50 years) not necessarily means that a fungus has disappeared for ever. *L. scoticus*, believed extinct in Britain three decades ago [76], is currently considered as ‘vulnerable’ on the basis of the last available assessment of the species in the country [77], being reported only rarely and just from Scotland [75]. Although the significance of local extinction or the establishment of severely fragmented ranges in fungi is still not well understood in terms of population dynamics and gene flow [70], the vanishing of a fungal species even at the peripheral part of its distribution is alarming and should be carefully studied, as it might be due to ecological changes that could extend, although unnoticed, beyond the area where extinction took place.

![Figure 4. Pie chart showing the number of species of milkcaps for each one of the IUCN categories (see main text and Table 1 for further details). Total number of species = 265, EX = 1 species, EW = 1 species, NA = 2 species.](image-url)
Figure 5. New Zealand’s threatened milkcaps. (A) *Lactarius novae-zelandiae* in habitat; (B) *L. novae-zelandiae*, preserved specimen (New Zealand Fungarium, PDD 106047); (C) *Lactarius maruiensis*, holotype (New Zealand Fungarium, PDD 26531); (D) *L. maruiensis*, drawing of holotype (New Zealand Fungarium, PDD 26531). Reproduced with permission. Copyright: (A,B,D), Jerry Cooper/Landcare Research New Zealand Limited; (C), Landcare Research New Zealand Limited.

Keeping the focus on threatened species, 37 milkcaps are listed as Critically Endangered (CR, or equivalent level of threat) and 41 as Endangered (EN), respectively (Figure 4). A group of five African species of *Lactarius* (*L. aurantifolius, L. chamaeleontinus, L. foetens, L. miniatescens, L. rufomarginatus*) have been assessed as CR when compiling the Benin Red List, published in 2011 [78]. Of these, *L. rufomarginatus* is apparently restricted to a few localities of Benin, where it occurs in riparian forests with *Berlinia, Lonchocarpus, Uapaca* and *Pterocarpus* [17]. Two other species, *L. foetens* and *L. miniatescens*, share the same habitat with *L. rufomarginatus* in Benin, occurring in the riverine forests of the Bassila region [78], but are also known from Togo [17]. Finally, *L. chamaeleontinus* and *L. aurantifolius* occupy a more widespread African range, although their distribution in Benin is punctiform, being reported only from the riparian gallery forest at Bassila and from the forest at the Kota waterfalls, respectively [78]. The conservation measures proposed for the CR Benin milkcaps hinge on the preservation of the fragile habitat where they occur, in particular the riparian forest ecosystems. “For their survival, they need improved legal protection of this already classified, but threatened forest,” underlined the authors of the Benin Red List [78].

Among the EN species, a special case is that of *Lactarius novae-zelandiae*. This striking milkcap is endemic of New Zealand, where it is apparently ectomycorrhizal with *Fuscospora truncata* (Colenso) Heenan and Smissen (*Nothofagus truncata* (Colenso) Cockayne is a synonym), growing in relatively mature forests (Figure 5). Two small populations have
been identified, one in Karamea on the west coast of South Island, and a second at Lower Hutt, North Island, for a total of five locations. The species was described by McNabb in 1971 from Karamea [72] and since then this mushroom was recorded only very rarely, and never more from the type locality, despite that it produces large and conspicuous sporocarps and has been extensively searched for. Three observations are present in iNaturalist (see below), from 2015 to 2018. It is currently believed that the range of *L. novae-zelandiae* might have shrunk, mostly because of habitat modification. “It appears that the appropriate habitat at the type locality in Karamea has been much reduced by bushland reclamation for dairy farming, both at Umere Road and at Granite Creek where McNabb made his original collections, however, some suitable habitat may remain in the more inaccessible areas of the Karamea gorge,” recently wrote Leonard and Cooper [21]. The species is currently assessed EN under IUCN criteria B, C and D, with less than 100 mature individuals estimated, while identified conservation actions include protecting mature *Fuscospora truncata* forests (http://www.iucnredlist.org/details/full/80188416/0 (accessed on 30 July 2021)).

3.4. Protecting Milkcaps

To date, very few milkcaps are protected by law. Generally speaking, species that have been the focus of protection measures are edible, and regulations have been introduced to avoid excessive picking and/or alteration of habitat by means of destructive collection procedures, such as litter removal. For example, in Cyprus, *L. deliciosus* is eagerly searched in *Pinus* forests, where it is often buried under a thick layer of fallen pine needles; local Forest Law permits the collection of these mushrooms, “provided that no rake or other agricultural tool is used in the harvesting process” (http://www.moagov.cy/moa/fd/fd.nsf/fd67_en/fd67_en?OpenDocument (accessed on 15 June 2021)). In Croatia, a national law approved in 2002 declares as protected, among scores of other fungal species, *L. acris* (assessed as NT in the 2008 Croatian Red List), and *L. controversus* (not red-listed) (http://www.fao.org/faolex/results/details/en/c/LEX-FAOC113201 (accessed on 15 June 2021)). Moreover, the ordinance regulates the collection and trade of the following species: *L. deliciosus*, *L. deterrimus*, *L. hemicyaneus*, *L. quieticolor*, *L. salmonicolor*, *L. sanguifluus*, and *L. semisanguifluus* (none red-listed). Despite the fact that several studies have shown no long-term effects of intensive harvesting on sporocarp production by macrofungi (see [79]), it is obvious that mushroom foraging (a more and more popular practice in many areas of the world), it is inevitably associated with some negative impact on ecosystems, due to trampling and damage to soil profile, for example. More in general, protection of habitats were endangered milkcaps and other macrofungi are found is pivotal for the conservation of these key microorganisms.

3.5. Milkcaps Distribution Data: The Good, the Bad, the Weird

Macrofungi distribution data, either at the global, national, or regional level, are essential in order to correctly assess the level of threat and to plan appropriate conservation measures, setting priorities and allotting the necessary resources. It might sound redundant to stress, but the first type of information needed to map the distribution of any organism, is to know which species is which and to use an unambiguous manner to indicate it. In the case of milkcaps, and of many other macrofungi groups, this is not to be taken for granted. Traditionally, indeed, several European names of species have been used to indicate North American and, more recently, Asian taxa, generating the false belief that many species of *Lactarius* and *Lactifluus* might have an intercontinental, and in some case worldwide, distribution and, conversely, underestimating fungal diversity in many understudied areas. Relevant examples are too numerous to be listed, but studies conducted in the last decade or so, supported by the integration of molecular and morphological techniques, have shown that intercontinental distribution in milkcaps seems to be much rarer than previously believed. Broad intercontinental, sometimes circumboreal, distribution has indeed been verified for a number of arctic-alpine species associated with *Salix* spp. (L. lanceolatus, *L. nanus*, *L. salicis-recticulatae*) and *Betula* (*L. glycosmus, L. pubescens*), and also for some *Picea*
associates (like *L. badiosanguineus*, *L. reprezentaneus*), and for some species linked to a wider range of host plants (e.g., *L. controversus* with *Salicaceae*, *L. rufus* with *Pinus* and *Picea*) [80,81]. On the other hand, the worldwide survey of *Lactarius* section *Deliciosi* (that includes many edible species) performed by Nuytinck and colleagues has revealed that “intercontinental conspecificity in this section seems much lower than assumed so far” [35]. According to researchers, no overlap could be shown between North America and Eurasia, while conspecificity could be demonstrated for *L. deliciosus* and *L. sanguifluus* occurring in both Europe and Asia [35]. Conspecificity was proved to be absent also in the case of Asian and American members of the large *Lactarius* subgenus *Gerardii* [44,82]. North American records of *L. hepaticus* most likely refer to the superficially similar *L. badiosanguineus* [80]. A number of other reports await clarification, as for example the recent record of the north European *L. fennosindicicus* in India [83]. The occurrence of fungal species in areas that are apparently very distant from their home range is always possible, of course, but these unusual findings must be substantiated by an exhaustive study, as recently happened with the collection of the rare *L. flavaspideus*—so far known only from Finland—in Italy [84]. The nonchalant use of established names for the identification of milkcaps in poorly explored regions is clearly based on the lack of a thorough analysis and interpretation of fungal macro- and microscopical characters, and of an accompanying comprehensive phylogenetic study based on molecular data. Several researchers are currently working, following this modern approach, to disentangle the knots of misapplied *Lactarius* and *Lactifluus* names in Asia and elsewhere (e.g., [36,37,49]). Meanwhile, the effect of the wrong adoption of European, and to a minor extent American, names for Asian milkcaps becomes manifest if one browses the Chinese Red List, which is further overly polluted with a vast number of taxa for which no evidence of their presence in China could be traced in the literature whatsoever. It is not clear to us how this Red List has been compiled, and if the milkcaps species that are included in it have been ever assessed as for their conservation status. Likely, many taxa names have crept in proceeding from older, generalist publications, not focused on specific fungal groups but rather describing the mycoflora of entire provinces and regions (e.g., [85]). On a separate note, one should not forget that many ectomycorrhizal fungal species, including several milkcaps, have been introduced with their host plants outside their original range [86]. Some of these occurrences, which of course have relevance from the conservation point of view, are noted in Table 1 (e.g., *L. pubescens*, *L. rufus*, *L. torminosus*).

Citizen science is a potentially rich source of species occurrence data that could be used both to map the distribution of given fungal taxa, including milkcaps, and to monitor their conservation status [87,88]. A number of citizen science initiatives focus on or encompass macrofungi. iNaturalist (https://www.inaturalist.org/ (accessed on 13 September 2021)), for instance, is a large platform, with over 2.5 million registered users and some 47,000 milkcaps (*Lactarius* and *Lactifluus* combined) ‘observations’. On a smaller scale, other citizen science organizations are performing egregious work in fostering knowledge about macrofungi at a national level. Relevant examples of more or less long-running projects include Fungimap in Australia (https://fungimap.org.au/ (accessed on 18 May 2021)) and the Swedish Species Observation Centre (https://www.artportalen.se/ (accessed on 15 May 2021)). The contribution of citizen science to boost knowledge on macrofungi distribution and to promote their conservation is shown by the striking results of the Danish Fungal Atlas. Over a five year period, (2009–2013), the project generated over 235,000 records of Basidiomycota, adding 195,000 records to those from earlier periods; overall, 71 species of milkcaps, 197 fungal species new for Denmark and 15 species new to science were recorded [89]. Managed by the Royal Botanical Gardens at Kew, The Lost and Found Fungi (L AFF) project has run for six years, from mid 2014, aiming to “raising the profile of rare or potentially under-reported fungi” in the UK (http://fungi.myspecies.info/content/lost-and-found-fungi-project (accessed on 20 May 2021)). Focusing on little more than 100 species of Basidiomycota (no milkcaps, though), Ascomycota, rusts and lichens, L AFF resulted in a dataset of over 1500 records of 77 species, some of which (e.g., *Godronia fuliginosa* and *Sporomega degenerans*) have been...
rediscovered after a recording gap of over 50 years. Notwithstanding these virtuous examples, a recent analysis of the use of citizen science as a source of data for species distribution models has revealed “a notable under-use of plant, fungi, lichen and bryophyte public databases in the last decade in papers that model the distribution of species, as compared to the interest that they generate in CS [citizen science] programs”, a fact attributed by authors to the difficulty of identifying species of these taxonomic groups in the field [90]. For what concerns macrofungi, the best success stories mentioned above have clearly indicated that a strict collaboration between professional and amateur mycologists is paramount in order to build reliable datasets, to be used as a robust basis for conservation mycology initiatives (even iNaturalist has ‘identifiers’). More specifically, although milkcaps are not a particularly complex group as for species identification, the role of experts for the verification of collected specimens should remain pivotal. This, by no means, is to downplay the role of amateurs, that often are better than professional mycologists at identifying species, but it is a reality that in some cases morphological characters are not sufficient to discriminate between very close species, and only molecular tools can be resolutive. A relevant example is *Lactifluus subvolemus* Van de Putte & Verbeken, a recently described species occurring in Europe and very similar to *Lf. volemus*, with which intermediate forms exist [24]. The correct identification of cryptic species has significance also from the conservation point of view, of course. Given the endangered or vulnerable status of *Lf. volemus* in several European countries (Table 1), the fact that the species is actually a complex of related taxa (that includes *Lf. oedematopus*) with a still incompletely known distribution, poses conservation issues, as previously noticed [24]. More specifically, once further data are acquired on these and other cryptic milkcaps, conservation measures should be narrowed and made more focused.

3.6. Rare and Endangered, or Simply Poorly Known and Questionable?

A careful analysis of Table 1 reveals that several species of milkcaps whose validity or even existence is doubtful are listed in different national Red Data Books, under various conservation categories. Leaving aside established synonymsies and illegitimate names (that are also present), relevant examples of poorly known species nevertheless considered valid include *L. firmus*, *L. ogasawarashimensis* (see above), *L. obliquus*, *L. syringinus* and *L. terenopus*. From our point of view, the reasons that brought these taxa under the focus of Red List compilers are unclear, given the fact that documentation on key issues (e.g., distribution and population size) regarding these species is virtually nonexistent. If rarity is ‘the’ criterion for inclusion in the list (and, we believe, it should be just one of the considered criteria), then, even restricting the view to Mediterranean Europe, other milkcaps should have their accession to the guild granted. For example, *Lactarius castanopus* (later moved to *Lactifluus* by Schwab [91]), described by Mauro Sarnari from Tuscany, Italy, to the best of our mention has never been found again after its first mention [92]. *Lactarius purpureobadius* is another intriguing case. First described by Malençon from *Quercus* forests in Morocco, the species has been later characterised by Maria Teresa Basso on the basis of Malençon’s herbarium material and new collections attributed to this taxon from Sardinia, Italy [93]. More recently, *L. purpureobadius* has been reported also from Spain [94], one of the very few known records for this species. For both *L. castanopus* and *L. purpureobadius*, no molecular data exist. Is it useful, or even appropriate, to have all these taxa earmarked for conservation measures? Our opinion is no. Indeed, we believe that before making it to any list, a minimum level of knowledge of a given species should be reached. Otherwise, the risk of inflating Red Lists with a plethora of names that are scarcely grounded on real data becomes concrete.

On the other hand, initiatives such as LAFF, launched at either national or international level and hinging on the competent help of volunteers, should become more common, determining if these and other infrequently recorded species of macrofungi are genuinely rare, overlooked, or simply nonexistent. In other terms, a sort of filter should apply to poorly known species, striving to perform phylogenetic assessments and to establish baseline distribution datasets before admitting them to Red Lists. A species of *Lactarius*
living in the Mediterranean area that would deserve such attentions as potentially very localized and, thus, endangered, is *L. cyanopus* [95]. The status of this taxon remains unclear, despite that some work on it has been carried out (even molecularly), establishing that it might be a sister species of *L. sanguifluus* and *L. vinosus* [96]. *L. cyanopus* is known only from a few locations in Italy and Spain, and the type locality has been destroyed by a fire years ago; further collections are necessary to ascertain its phylogenetic position and ecology, and to gather information that could lead to an accurate assessment of its conservation status.

The correct path that should lead a rare species to be the focus of Red List assessment and eventually conservation measures, in our opinion, is that indicated by *Lactarius pseudoscrobiculatus*. This Mediterranean species is distributed from Spain to the East Aegean Islands in association with Mediterranean *Pinus* and *Cistaceae* (*Cistus* spp., *Halimium halimifolium*) [48,97], and has been rarely reported, although it might be locally common (Pierre-Arthur Moreau, personal communication). Detailed morphoanatomical study of new collections and their comparison with original description, integrated by molecular phylogenetic analysis, has recently permitted to expand our understanding of the relationships of *L. pseudoscrobiculatus* within the genus, and to acquire much needed information on the geographic distribution and ecology of this ectomycorrhizal species [98]. Accordingly, *L. pseudoscrobiculatus* is currently under assessment by the Global Fungal Red List Initiative (listed as ‘Proposed’; see Table 1), with the justification: “*Lactarius pseudoscrobiculatus* is a very rare species with fragmentary distribution that grows in endangered areas in the area Mediterranean” (http://iucn.ekoo.se/iucn/species_view/483610/ (accessed on 25 May 2021)).

4. Conclusions

As the result of a gradual development over the last 40 years, fungi, and especially macrofungi, are finally in the spotlight of conservation biologists and stakeholders worldwide, and this is good news [99–102]. Constituting a not marginal part of the Basidiomycota diversity, and given their role as ectomycorrhizal symbionts in vast forest ecosystems and scrublands and, for many species, as edible non-timber forest products for numerous human peoples, milkcaps are going to be an important component of this radical change of perspective. The large number of species included in Red Lists worldwide, as shown in this work, demonstrates that they are not a ‘neglected’ group of macromycetes, and gives hope as for their future protection, which will necessarily hinge on the preservation of the habitats where these fascinating fungi thrive [79].

However, our study revealed also some shortcomings in the current process of assessment of milkcaps for insertion in Red Lists, at least from our perspective. In many cases, the application of wrong or outdated nomenclature, the mention of poorly known and insufficiently documented species, and the widespread use of European names to indicate different taxa (in some cases probably still undescribed species) occurring in other continents, has resulted in a huge confusion as for a global view on the conservation status of the group. We understand that names of species in Red Lists cannot follow the rapid changes in nomenclature that we are witnessing nowadays in a prompt way (see examples above), and that keeping using names that have been around for decades might be easier when Red Lists are intended as conservation tools handled by a mix of stakeholders with different background. However, nomenclature is important, because it frames the way we call living things at the light of current scientific knowledge, and if we wish to identify the species we intend to conserve, we should always try to use their correct names, any times a Red List is drafted and/or revised. As a side line, since the global change we are experiencing poses extraordinary stresses on habitats and the species that live there, fungal Red Lists should be update more regularly, in order to keep the pace with a rapidly evolving situation.

We call for a more sober and professional approach, with the involvement of competent experts, when assessing milkcaps (and any other fungi) for insertion in Red Lists.
Despite the fact that specialists are in fact engaged in the drafting of many national and international Red Lists, the overall view reveals that this wise approach is not universally followed. Indeed, the risk of diminishing the inherent value of Red Lists—that make the first step towards the effective protection of any species—with the insertion of a plethora of names void of any taxonomic and/or ecological significance, is real. Another conservation challenge that will probably gain momentum in the following years, is the likely description of new cryptic taxa when complex species groups will be solved, presumably with the extensive use of molecular tools. In all these cases, the newly described species should not be inserted in Red Lists until sufficient data (for example, on distribution and population size) will be available to determine their status. Finally, although we have repeatedly stressed above the importance of reliable distribution data, one should not forget that these should be flanked by an estimate as accurate as possible of the status and trend of species, i.e., the assessment of the population size and how the size of the population is developing within the area being assessed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/su131810365/s1, Browsed fungal Red Lists: references and web links, Red-listed milkcaps, grouped by IUCN category of higher threat.

Author Contributions: Conceptualization, A.C.R.; methodology, E.S., A.C.R.; formal analysis, O.C., M.L., E.S., A.C.R.; data curation, A.C.R.; writing—original draft preparation, A.C.R.; writing—review and editing, O.C., M.L., E.S.; visualization, O.C., M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data supporting reported results are published either in the main article or as Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Buyck, B.; Hofstetter, V.; Verbeken, A.; Walleyn, R. 1919 Proposal to conserve Lactarius nom. cons. (Basidiomycota) with a conserved type. Taxon 2010, 59, 295–296. [CrossRef]
2. Stubbe, D.; Wang, X.-H.; Verbeken, A. New combinations in Lactifluus. 2. L. subgen. Gerardii. Mycotaxon 2012, 119, 483–485. [CrossRef]
3. Verbeken, A.; Nuytinck, J.; Buyck, B. New combinations in Lactifluus. 1. L. subgenera Edules, Lactariopsis and Russulopsis. Mycotaxon 2011, 118, 447–453. [CrossRef]
4. Verbeken, A.; Van de Putte, K.; De Crop, E. New combinations in Lactifluus. 3. L. subgenera Lactifluus and Piperati. Mycotaxon 2012, 120, 443–450. [CrossRef]
5. Delgat, L.; Courtecuisse, R.; De Crop, E.; Hampe, F.; Hofmann, T.A.; Manz, C.; Piepenbring, M.; Roy, M.; Verbeken, A. Lactifluus (Russulaceae) diversity in Central America and the Caribbean: Melting pot between realms. Persoonia 2020, 44, 278–300. [CrossRef] [PubMed]
6. Hutchinson, L.J. Lactarius. In Ectomycorrhizal Fungi. Key Genera in Profile; Cairney, J.W.G., Chambers, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 269–285.
7. Rinaldi, A.C.; Comandini, O.; Kuyper, T.W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 2008, 33, 1–45.
8. Comandini, O.; Rinaldi, A.C.; Kuyper, T.W. Measuring and estimating ectomycorrhizal fungal diversity: A continuous challenge. In Mycorrhiza: Occurrence in Natural and Restored Environments; Pagano, M., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 165–200.
9. Homola, R.L.; Czapowskyj, M.M. Ectomycorrhizae of Maine 2. A listing of Lactarius with the associated hosts (with additional information on edibility). Life Sci. Agric. Exp. Stn. Bull. 1981, 779, 1–19.
10. Dell, B.; Havel, J.J.; Malajczuk, N. The Jarrah Forest: A Complex Mediterranean Ecosystem; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989.
11. Comandini, O.; Pacioni, G.; Rinaldi, A.C. Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 1998, 7, 323–328. [CrossRef]
41. De Crop, E.; Nuytinck, J.; Van de Putte, K.; Lecomte, M.; Eberhardt, U.; Verbeke, A. *Lactifluus piperatus* (Russulales, Basidiomycota) and allied species in Western Europe and a preliminary overview of the group worldwide. *Mycol. Prog.* 2014, 13, 493–511. [CrossRef]

42. Silva-Filho, A.G.S.; Sulzbacher, M.A.; Ferreira, R.J.; Baseia, I.G.; Wartchow, F. *Lactarius taedae* (Russulales): An unexpected new gastroid fungus from Brazil. *Phytotaxa* 2018, 379, 234–246. [CrossRef]

43. Methven, A.S. North American and European Species of *Lactarius*. *Scr. Bot. Belgica* 2013, 51, 91–105.

44. Luo, X.; Karunarathna, S.C.; Luo, Y.H.; Xu, K.; Xu, J.C.; Chamyuang, S.; Mortimer, P.E. Drivers of macrofungal composition and distribution in Yulong Snow Mountain, southwest China. *Mycosphere* 2016, 7, 727–740. [CrossRef]

45. De Crop, E.; Delgat, L.; Nuytinck, J.; Halling, R.E.; Verbeke, A. A short story of nearly everything in *Lactifluus* (Russulaceae). *Fungal Syst. Evol.* 2021, 7, 133–164. [CrossRef]

46. Luo, X.; Karunarathna, S.C.; Luo, Y.H.; Xu, K.; Xu, J.C.; Chamyuang, S.; Mortimer, P.E. Drivers of macrofungal composition and distribution in Yulong Snow Mountain, southwest China. *Mycosphere* 2016, 7, 727–740. [CrossRef]

47. De Crop, E.; Delgat, L.; Nuytinck, J.; Halling, R.E.; Verbeken, A. A short story of nearly everything in *Lactifluus* (Russulaceae). *Fungal Syst. Evol.* 2021, 7, 133–164. [CrossRef]

48. Leonardi, M.; Furtado, A.N.M.; Comandini, O.; Geml, J.; Rinaldi, A.C. An overview of *Lactarius* sect. *Deliciosi* (Russulales). *Cryptogam. Mycol.* 2015, 36, 279–335. [CrossRef]

49. Luo, X.; Karunaratna, S.C.; Luo, Y.H.; Xu, K.; Xu, J.C.; Chamyuang, S.; Mortimer, P.E. Drivers of macrofungal composition and distribution in Yulong Snow Mountain, southwest China. *Mycosphere* 2016, 7, 727–740. [CrossRef]

50. Moore, D.; Nauta, M.M.; Evans, S.E.; Rotheroe, M. *Fungal Conservation, Issues and Solutions*; Cambridge University Press: Cambridge, UK, 2001.

51. Mueller, G.M.M. Progress in conserving fungi. *BG J.* 2017, 14, 30–33.

52. De Crop, E.; Delgat, L.; Bafort, O.; Rivas Ferreiro, M.; Verbeke, A.; Wang, X.-H. Recent insights in the phylogeny, species diversity and culinary uses of milkcap genera *Lactarius* and *Lactifluus*. In *Mushrooms, Humans and Nature in a Changing World: Perspectives from Ecological, Agricultural and Social Sciences*; Pérez-Moreno, J., Guerin-Laguet, A., Flores Arzú, R., Yu, F., Eds.; Springer: Cham, Switzerland, 2020; pp. 273–286.

53. De Crop, E.; Delgat, L.; Nuytinck, J.; Halling, R.E.; Verbeke, A. A short story of nearly everything in *Lactifluus* (Russulaceae). *Fungal Syst. Evol.* 2021, 7, 133–164. [CrossRef]

54. Das, K.; Verbeke, A.; Nuytinck, J. Morphology and phylogeny of four new *Lactarius* species from Himalayan India. *Mycotaxon* 2015, 130, 105–130. [CrossRef]

55. Wang, X.-H.; Nuytinck, J.; Verbeke, A. *Lactarius vividus* sp. nov. (Russulaceae, Russulales), a widely distributed edible mushroom in central and southern China. *Phytotaxa* 2015, 231, 63–72. [CrossRef]

56. Wisitrassameewong, K.; Nuytinck, J.; Thanh Le, H.; De Crop, E.; Hampe, F.; Hyde, K.D.; Verbeke, A. *Lactarius subgenus Russularia* (Russulaceae) in South-East Asia, 3: New diversity in Thailand and Vietnam. *Phytotaxa* 2015, 207, 215–241. [CrossRef]

57. Wang, X.-H. Three new species of *Lactarius* sect. *Deliciosi* from subalpine-alpine regions of central and southwestern China. *Cryptogam. Mycol.* 2016, 37, 493–508. [CrossRef]

58. Lee, H.; Wisitrassameewong, K.; Park, M.S.; Verbeke, A.; Eimes, J.; Lim, Y.W. Taxonomic revision of the genus *Lactarius* (Russulales, Basidiomycota) in Korea. *Mycol. Divers.* 2019, 95, 275–335. [CrossRef]

59. Delgat, L.; Dierickx, G.; De Wilde, S.; Angelini, C.; De Crop, E.; De Lange, R.; Halling, R.; Manz, C.; Nuytinck, J.; Verbeke, A. Looks can be deceiving: The deceptive milkcaps (*Lactifluus, Russulaceae*) exhibit low morphological variance but harbour high genetic diversity. *IMA Fungus* 2019, 10, 14. [CrossRef]

60. Duque Barbosa, J.A.; Delgat, L.; Elias, S.G.; Verbeke, A.; Neves, M.A.; de Carvalho, A.A., Jr. A new section, *Lactifluus* section *Neotropici* (Russulaceae), and two new *Lactifluus* species from the Atlantic Forest, Brazil. *System. Biodivers.* 2020, 18, 347–361. [CrossRef]

61. Kirk, P.M.; Cannon, P.F.; David, J.C.; Stalpers, J.A. (Eds.) *Ainsworth and Bisby’s Dictionary of the Fungi*, 10th ed.; CABI Publishing: Wallingford, UK, 2008.

62. Silva-Filho, A.G.S.; Sulzbacher, M.A.; Grebenc, T.; Wartchow, F. Not every edible orange milkcap is *Lactarius deliciosus*: First record of *Lactarius queticolor* (sect. *Deliciosi*) from Brazil. *J. Appl. Bot. Food Qual.* 2020, 93, 289–299. [CrossRef]

63. Comandini, O.; Contu, M.; Rinaldi, A.C. An overview of *Cistus* ectomycorrhizal fungi. *Mycorrhiza* 2006, 16, 381–395. [CrossRef]

64. Verbeke, A.; Nuytinck, J.; Noordeloos, M.E. *Russulaceae*, part I. In *Flora Agaricina Noerlandica*; Noordeloos, M.E., Kuypers, T.W., Somborst, L., Vellinga, E.C., Eds.; Candusso Editrice: Origgio, Italy, 2018; Volume 7, pp. 226–356.

65. Buscardo, E.; Rodriguez-Echeverria, S.; Barrico, L.; García, M.A.; Freitas, H.; Martin, M.P.; De Angelis, P.; Muller, L.A.H. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? *Soil Biol. Biochem.* 2012, 46, 136–144. [CrossRef]
Sustainability 2021, 13, 10365

69. Vellinga, E.C.; Bérubé, J.; Castellano, M.; Mueller, G.M. Adding North American mushrooms to the IUCN Global Red List. *Inoculum* 2015, 66, 3–4.

70. Dahlberg, A.; Mueller, G.M. Applying IUCN red-listing criteria for assessing and reporting on the conservation status of fungal species. *Fungal Ecol.* 2011, 4, 147–162. [CrossRef]

71. IUCN. *Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0*; IUCN: Gland, Switzerland; Cambridge, UK, 2012.

72. McNabb, R.F.R. The Russulaceae of New Zealand 1. *Lactarius* DC ex S. F. Gray. *N. Z. J. Bot.* 1971, 9, 46–66.

73. Hosaka, K.; Kobayashi, T.; Castellano, M.A.; Orihara, T. The status of voucher specimens of mushroom species thought to be extinct from Japan. *Bull. Natl. Mus. Nat. Sci. (Ser. B)* 2018, 44, 53–66.

74. Basso, M.T. Revisione "Lactaires du Maroc". In *Recherche sur les champignons supérieurs de la région méditerranéenne*. Services des Fiscaux des Comptes de la Région de l’Aquitaine et du Midi-Pyrénées, Paris, France, 1998, pp. 1–45.

75. Kibby, G. British Milkcaps *Lactarius* & *Lactifluus*. Privately Published. 2014.

76. Ing, B. A Provisional Red Data List of British Fungi. *Mycologist* 1992, 6, 124–128. [CrossRef]

77. Evans, S.; Henrici, A.; Ing, B. Preliminary Assessment: Red Data List of threatened British Fungi. British Mycological Society. 2006. Available online: https://www.britmycolsoc.org.uk/application/files/2013/3537/5755/RDL_of_Threatened_British_Fungi.pdf (accessed on 25 March 2021).

78. Yorou, N.S.; De Kesel, A. Champignons supérieurs/Larger fungi. In *Protection de la Nature en Afrique de l’Ouest: Une Liste Rouge pour le Bénin/Nature Conservation in West Africa: Red List for Benin*; Neuwenschwander, P., Sinsin, B., Goergen, G., Eds.; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2011; pp. 47–60.

79. Dahlberg, A.; Genney, D.R.; Heilmann-Clausen, J. Developing a comprehensive strategy for fungal conservation in Europe: Current status and future needs. *Fungal Ecol.* 2010, 3, 50–64. [CrossRef]

80. Barge, E.G.; Cripps, C.L. New reports, phylogenetic analysis, and a key to *Lactarius* Pers. in the Greater Yellowstone Ecosystem informed by molecular data. *MycoKeys* 2016, 108, 1–58. [CrossRef]

81. Barge, E.G.; Cripps, C.L.; Osmundson, T.W. Systematics of the ectomycorrhizal genus *Lactarius* in the Rocky Mountain alpine zone. *Mycologia* 2016, 108, 414–440. [CrossRef]

82. Stubbe, D.; Le, H.T.; Wang, X.-H.; Nuytinck, J.; Van de Putte, K.; Verbeken, A. The Australasian species of *Lactarius fennoscandicus* species. In *Current status and future needs*. *Fungal Ecol.* 2010, 4, 341–359. [CrossRef]

83. Das, K. *Lactarius* fennoscandicus (Russulaceae), a new record for India. *Nelumbo* 2013, 55, 214–218.

84. Calledda, F.; Boerio, G.; Cartabia, M.; Carbone, M. Studio del genere *Lactarius*. I° contributo. *Lactarius flavospaides* e prima segnalazione per l'Italia. Studio e tipificazione di *Lactarius aspideus*. Prime evidenze genetiche di *Lactarius flavusidus*. *Micol. Toscana* 2020, 2, 9–46.

85. Zhishu, B.; Guoyang, Z.; Taihui, L. *The Macrogfusus flora of China’s Guangdong Province*; Chinese University Press: Hong Kong, China, 1993.

86. Vellinga, E.C.; Wolfe, B.E.; Pringle, A. Global patterns of ectomycorrhizal introductions. *New Phytol.* 2009, 181, 960–973. [CrossRef] [PubMed]

87. Gryzenhout, M. The need to engage with citizen scientists to study the rich fungal biodiversity in South Africa. *IMA Fungus* 2015, 6, A58–A64. [CrossRef] [PubMed]

88. Irga, P.J.; Barker, K.; Torpy, F.R. Conservation mycology in Australia and the potential role of citizen science. *Conserv. Biol.* 2018, 32, 1031–1037. [CrossRef] [PubMed]

89. Heilmann-Clausen, J.; Bruun, H.H.; Ejrnæs, R.; Froslev, T.G.; Lassøe, T.; Petersen, J.H. How citizen science boosted primary knowledge on fungal biodiversity in Denmark. *Biol. Conserv.* 2019, 237, 366–372. [CrossRef]

90. Feldman, M.J.; Imbeau, L.; Marchand, P.; Mazerolle, M.J.; Darveau, M.; Fenton, N.J. Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. *PLoS ONE* 2021, 16, e0234587. [CrossRef]

91. Schwab, N. Nomenclatural novelties. *Index Fungorum* 2019, 409, 1.

92. Samara, M. Una nuova specie di *Lactarius* dell’area mediterranea *Lactarius castanopus* sp. nov. *Riv. Microl.* 1992, 35, 229–232.

93. Basso, M.T. Revisione "Lactaires du Maroc". In *Compléments à la Flore des Champignons Supérieurs du Maroc de G. Malençon et R. Bertault*; Maire, J.C., Moreau, P.-A., Robich, G., Eds.; CEMM: Nice, France, 2009; pp. 653–688.

94. Pérez-De Gregorio, M.A.; Campos, J.C.; Illescas, T. *Lactarius purpureobadius* Malençon ex Basso, en España. *Rev. Catalana Micol.* 2012, 34, 81–86.

95. Basso, M.T. *Lactarius cyanopus* une nouvelle espèce de la sect. *Dapetes* Fries. *Bull. Trimest. Soc. Mycol. Fr.* 1998, 114, 67.

96. Nuytinck, J.; Verbeken, A. Species delimitation and phylogenetic relationships in *Lactarius* section *Deliciosi* in Europe. *Mycol. Res.* 2007, 111, 1285–1297. [CrossRef] [PubMed]

97. Basso, M.T. Contributo allo studio dei *Lactarius* mediterranei: *L. cyanopus* e *L. pseudocricibilicatus*. *Micol. Veg. Mediterr.* 2001, 16, 97–104.

98. Polemis, E.; Nuytinck, J.; Fryssouli, V.; Pera, U.; Zervakis, G.I. Phylogeny, ecology and distribution of the rare Mediterranean species *Lactarius pseudocricibilicatus* (Basidiomycota, Russulales). *Plant Syst. Evol.* 2019, 305, 755–764. [CrossRef]

99. Buchanan, P.K.; May, T.W. Conservation of New Zealand and Australian fungi. *N. Z. J. Bot.* 2003, 41, 407–421. [CrossRef]

100. Zotti, M.; Persiani, A.M.; Ambrosio, E.; Vizzini, A.; Venturella, G.; Donnini, D.; Angelini, P.; Di Piazza, S.; Pavarino, M.; Lunghini, D.; et al. Macrogfus as ecosystem resources: Conservation versus exploitation. *Plant Biosyst.* 2013, 147, 219–225. [CrossRef]
101. May, T.W.; Cooper, J.A.; Dahlberg, A.; Furci, G.; Minter, D.W.; Mueller, G.M.; Pouliot, A.; Yang, Z. Recognition of the discipline of conservation mycology. *Conserv. Biol.* **2019**, *33*, 733–736. [CrossRef] [PubMed]

102. Wei, T.; Wang, K.; Yu, X.; Li, Y.; Wu, H.; Wu, H.; Wang, Y.; Wei, X.; Li, B.; Jiang, L.; et al. Assessment of the threatened status of macro-basidiomycetes in China. *Biodivers. Sci.* **2020**, *28*, 41–53.