Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos

Maria Luz Alonso-Alonso 1 · Laura García-Posadas 1 · Yolanda Diebold 1,2

Accepted: 14 March 2021 / Published online: 26 April 2021
© The Author(s) 2021

Abstract
In recent years, the interest in adipose tissue mesenchymal cell–derived extracellular vesicles (AT-MSC-EVs) has increasingly grown. Numerous articles support the potential of human AT-MSC-EVs as a new therapeutic option for treatment of diverse diseases in the musculoskeletal and cardiovascular systems, kidney, skin, and immune system, among others. This approach makes use of the molecules transported inside of EVs, which play an important role in cell communication and in transmission of macromolecules. However, to our knowledge, there is no database where essential information about AT-MSC-EVs cargo molecules is gathered for easy reference. The aim of this study is to describe the different molecules reported so far in human AT-MSC-EVs, their main molecular functions, and biological processes in which they are involved. Recently, the presence of 591 proteins and 604 microRNAs (miRNAs) has been described in human AT-MSC-EVs. The main molecular function enabled by both proteins and miRNAs present in human AT-MSC-EVs is the binding function. Signal transduction and gene silencing are the biological processes in which a greater number of proteins and miRNAs from human AT-MSC-EVs are involved, respectively. In this review we highlight the therapeutics effects of AT-MSC-EVs related with their participation in relevant biological processes including inflammation, angiogenesis, cell proliferation, apoptosis and migration, among others.

Keywords Extracellular vesicles · Adipose-derived mesenchymal stem cells · miRNA · Proteomic · Exosome

Introduction

“Extracellular vesicle” (EV) is defined by the International Society for Extracellular Vesicles (ISEV) as the “generic term for particles naturally released from the cell that are delimited by a lipid bilayer and cannot replicate, i.e. do not contain a functional nucleus” [1, 2]. These particles contain a significant variety of proteins and RNAs that play important roles in cell-cell communication and in transmission of macromolecules between cells [3–6]. As this feature makes EVs a potential therapeutic approach for various diseases, interest in EV research has significantly increased over the last decade [4, 7]. Importantly, the profile of EV cargo depends on the cell type of origin [8]. In this sense, although a wide range of mammalian cells release EVs [4, 9], mesenchymal stem cells (MSC) are considered one of the most prolific producer cell types [10]. These vesicles are involved in the paracrine properties of MSCs [11–13].

MSCs can be harvested from different tissues, such as bone marrow (BM), adipose tissue (AT), dental pulp, and umbilical cord, among others [14, 15]. BM and AT are the most common sources of MSC for use in research [16–19]. Although BM-MSCs were the first identified MSC [20] type and have been extensively studied [21], AT-MSCs present remarkable advantages by comparison, including higher stability in culture conditions and lower senescence ratio [21]. In addition, the amount of MSC that can be obtained from this tissue, which is usually treated as waste material and discarded [22, 23], is significantly greater than that obtained from BM aspirates [21].

The interest in AT-MSC-EVs has increasingly grown, due to the wide range of AT sources and their relatively easy accessibility [9]. AT-MSC-EVs have been isolated not only from human cells, but also from mouse [24–32], rat [33, 34], pig [35–38], and rabbit [39, 40] cells. The main objective of
most published studies on AT-MSC-EVs was to evaluate their potential use as a new therapeutic approach to treat various diseases. Moreover, several of these publications did include an analysis of the molecules transported by the EVs, which is especially relevant to understanding their mechanism of action beyond their observable effects. Taken together, these studies have confirmed the presence of 591 proteins and 604 microRNA (miRNA) in the AT-MSC-EVs. Nevertheless, evaluation of effects of the molecules identified in the cargo focused solely on the disease or tissues under study. However, independent of the specific therapeutic use, the human AT-MSC-EVs are compositionally identical. Therefore, we anticipate that a review collecting together all available information about AT-MSC-EVs cargo and their function will be extremely useful for researchers working in this field.

ISEV recently published a guideline encouraging researchers to report their data to these field-specific databases to detect different studies describing the same molecules [1]. Thus, there is a great need for a well-organised review that collects all relevant information regarding molecules identified so far in AT-MSC-EVs cargo, and their biological activities. This will facilitate future research in this area. Currently, there are two online databases collecting the identified molecules in cargos of EVs derived from different cell types: http://microvesicles.org [41] (formerly http://www.exocarta.org [42]), and http://evpedia.info [43] (link currently unavailable). Both databases are good, reliable sources of information; however, the information available on AT-MSC-EVs cargo is still limited compared to that available on other cell types, such as T cells or prostate cancer cell EV cargos. Thus, this review will provide an updated source not only of identified AT-MSC-EVs cargo molecules, but also their functions and potential therapeutic applications.

Given the growing interest in the MSC-EVs, especially in those derived from AT, the purpose of this study is to provide the AT-MSC research community with a systematic review of publications reporting the cargo of AT-MSC-EVs, including an analysis of their molecular functions and the biological process in which they are involved.

Methods

A systematic literature search was conducted in the medical databases Pubmed and Web of Science, using the keywords “extracellular vesicles”, “exosome”, “adipose mesenchymal stem cells”, “cargo”, “protein” and “miRNA” without setting a time limit (last searched 6th September 2020). 112 articles published between 2006 and 2020 (inclusive) were reviewed. 48 of these articles were related to human AT-MSC-EV, and 17 to AT-MSC-EVs in other species. The remaining articles were about EVs in general and MSC-EVs from other sources. This study has included both articles that used the nomenclature recommended by ISEV (“EV”) [1] and those which used the terms “exosomes” and “microvesicles”. Given the number of publications that have used these terms during the past decades [2], we considered that the exclusion of them could lead to the loss of relevant information. In addition, although the isolation methods of EVs could have an impact on the cargo composition, it was not an exclusion criterion since there is no single optimal separation method [1].

Different nomenclatures such as adipose stem cells, adipose stromal cells, or adipose-derived stem cells, have been used to identify AT-MSCs. The keyword “adipose mesenchymal stem cells” allowed us to find articles in which authors used several of these nomenclatures. However, we may have missed some information due to this great variety of terms, and this may be a limitation of the present study.

Information regarding proteins (10 articles) and RNA (16 articles) detected in human AT-MSC-EVs was collected in two databases created in Excel (Microsoft Office Excel 2013; Microsoft Corporation, Redmond, WA, USA). Although an article was found in which the lipid content of human AT-MSC-ECs was measured, no more information about lipids was reported. Therefore, it was not possible to include a database of lipids in this review.

To standardise the data and facilitate the recognition of identified proteins, we used the recommended name and identifier code proposed by the Universal Protein Knowledgebase [44] (UniProtKB). This database includes additional information about the short and alternative names for some proteins, which allowed us to identify proteins described by certain authors with these terms. UniProtKB host institutions are the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of Bioinformatics, and the Protein Information Resource.

For RNA, we used the name of mature micro RNAs (miRNAs) and the code of identification recommended by the RNAcentral database [45] (https://rncentral.org/). This database is coordinated by EMBL-EBI and integrates information from 41 Expert Databases out of the 53 which constitute the RNAcentral Consortium. In addition, we used the miRBase database [46–51] to classify miRNAs by gene families. miRBase is one of the Expert Databases integrated in the RNAcentral database, and is managed by the University of Manchester. This database also includes information about the previous nomenclature of some miRNAs, which allowed us to correlate the previous mRNA name used by certain authors with the current recommended terminology.

Messenger RNA (mRNA) [52], transfer RNA (tRNA), small ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA) and small cytoplasmic RNA (scRNA) are also present in AT-MSC-EVs [53, 54]. However, there is less information available on these, therefore, it was possible to include the list of the main tRNAs and mRNA present in AT-MSC-EVs, but not the other types of RNA.
Finally, the web-based tool QuickGO [55] (https://www.ebi.ac.uk/QuickGO/), also managed by EMBL-EBI, was used to search the gene ontology (GO) terms of molecular functions and biological processes of detected proteins and miRNAs. An ontology consists of a set of specific concepts with well-defined relationships between them. The GO was developed by the GO Consortium, as a tool to unify the terminology used to describe the functions of genes and gene products [56].

Cargo of AT-MSC-EVs

Human AT-MSC-EVs transport different types of proteins [12, 52, 57–65], RNAs [11, 12, 53, 54, 59, 64–74] and lipids [58]. Due to this variety of cargo molecules, AT-MSC-EVs are involved in a wide range of biological functions including migration, immune regulation, cell proliferation, angiogenesis, osteocyte metabolism and nerve regeneration (for a comprehensive review see ref. 9) [9]. Their therapeutic potential is being tested for the treatment of diverse diseases in musculoskeletal [12, 52, 57, 65–67, 75–78] and cardiovascular systems [60, 72, 79–81], nephropathy [82, 83], skin [62, 68, 84–86] and immunology [71, 87], among others.

Surprisingly, we could only find one published study about the potential of human AT-MSC-EVs for the treatment of eye diseases [88], despite the fact that human AT-MSC and their conditioned media are being used in ophthalmology [89–99]. For instance, they are being used in 6 out of 403 registered clinical trials with these cells (ClinicalTrials.gov, NCT01808378, NCT02144103 and NCT02024269). In this study, human AT-MSC-EVs showed a protective effect both in vitro and in vivo in a mouse model of dry eye by suppressing the NLRP3 (NOD-like receptor family) inflammasome activation [88]. Moreover, the positive effects of mouse and rabbit AT-MSC-EVs have been demonstrated in in vivo models of laser-induced retinal injury [29] and diabetic retinopathy [40], respectively. In addition, rabbit AT-MSC-EVs seemed to take part in the viability regulation of cultured rabbit corneal stromal cells [39]. There are also several studies which have used human BM-MSC-EVs in ophthalmology, showing their beneficial effects in rat retinal and retinal ganglion cell cultures [100, 101] and in animal models of glaucoma [102, 103] and optic nerve crush [101]. As well as AT-MSC, BM-MSC have also been widely used in ophthalmology [104–113], including 8 out of 293 registered clinical trials with these cells (ClinicalTrials.gov, NCT01531348, NCT01562002, NCT01920867, NCT02325843, NCT02330978, NCT03011541, NCT03173638 and NCT03967275).

In the present review, we comprehensively describe the GO annotations of molecular functions and biological processes of each type of cargo reported in human AT-MSC-EVs.

Proteins

Proteomic analysis of EV cargo can enhance the knowledge of the functions and mechanisms of action in which these vesicles are involved [28]. To analyse AT-MSC-EV's protein content, researchers used a large variety of techniques such as mass spectrometry [12, 57, 59], antibody arrays [52, 60, 61, 65], Western Blotting [62, 63] and, to a lesser extent, rate immune nephelometry [58]. The EVs in those studies have been isolated by ultracentrifugation [12, 52, 57, 60, 65], filtration and ultracentrifugation [61, 63], commercial EV isolation kits [62], ultrafiltration [58], and affinity purification [59].

So far, 591 proteins have been identified (Table 1). Nevertheless, taking into account both the name and the gene or NCBI Reference Sequences mentioned in the articles, it was not possible to connect the proteins C-peptide, HCR/CRAM-A/B [52, 65], INSL3, macroglobulin [65], CA 19–9, MSHa, PPARg2, TGF-beta 5 and TRA-1-60/TRA-1-81, Pepsinogen I [52] with an UniprotKB code conclusively (Table 1). The presence of the protein families annexin, HSP 70 and HSP 90 has also been described [12] (Table 1). However, as the specific members of these three families were not reported, it was not possible to include them in the GO analyses.

The detailed molecular functions enabled by each protein are collected in Table 1S. The results showed that 577 proteins contribute to different molecular functions described by 710 GO terms. For the BMP-binding endothelial regulator protein, carcinoembryonic antigen-related cell adhesion molecule, coagulation factor XIII B chain and kremen protein 2, no GO annotations were found.

The main molecular functions enabled by the AT-MSC-EVs proteins are described by specific child terms (more specific terms) of binding: protein binding (80%), metal ion binding (20%), cytokine activity (18%), identical protein binding (17%), and signaling receptor binding (15%) (Fig. 1). Therefore, binding seems to be the most relevant molecular function of AT-MSC-EVs. The number of AT-MSC-EVs proteins involved in each molecular function is variable. Most described molecular functions are enabled by a limited number of proteins (less than 10), and only 11.6% of the functions are enabled by 10 or more proteins. They are related by specific terms of four molecular functions: binding, catalytic activity, structural molecular activity and molecular transducer activity (Fig. 2).

578 of the AT-MSC-EVs proteins identified play a role in different biological processes described by 3884 GO terms. For carcinoembryonic antigen-related cell adhesion molecule 7, layilin, and sex hormone-binding globulin, no GO annotations were found. The proteins involved in each process are...
Protein	Abbreviation	UniProtKB	Gene	Ref.
5'-AMP-activated protein kinase catalytic subunit alpha-1*	AAPK1_HUMAN	Q13131	PRKAA1	[65]
72 kDa type IV collagenase*	MMP2_HUMAN	P08253	MMP2	[52]
A disintegrin and metalloproteinas with thrombospondin motifs 1*	ATS1_HUMAN	Q9UH18	ADAMTS1	[65]
A disintegrin and metalloproteinas with thrombospondin motifs 2*	ATS2_HUMAN	O95450	ADAMTS2	[65]
A disintegrin and metalloproteinas with thrombospondin motifs 4*	ATS4_HUMAN	Q75173	ADAMTS4	[52, 65]
A disintegrin and metalloproteinas with thrombospondin motifs 17*	ATS17_HUMAN	Q8TE56	ADAMTS17	[52]
A disintegrin and metalloproteinas with thrombospondin motifs 18*	ATS18_HUMAN	Q8TE60	ADAMTS18	[65]
A disintegrin and metalloproteinas with thrombospondin motifs 19*	ATS19_HUMAN	Q8TE59	ADAMTS19	[52, 65]
Acidic fibroblast growth factor intracellular-binding protein	FIBP_HUMAN	O43427	FIBP	[57]
Activated CDC42 kinase 1*	ACK1_HUMAN	Q07912	TNK2	[52, 65]
Activin receptor type-1B*	ACV1B_HUMAN	P36896	ACVR1B	[65]
Activin receptor type-2B*	AVR2B_HUMAN	Q13705	ACVR2B	[65]
Adenomatous polyposis coli protein*	APC_HUMAN	P25054	APC	[52, 65]
Adhesion G protein-coupled receptor B1*	AGRB1_HUMAN	O14514	ADGRB1	[52]
Adhesion G protein-coupled receptor E5*	AGRE5_HUMAN	P48960	ADGRE5	[52]
ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1*	CD38_HUMAN	P28907	CD38	[65]
Agouti-related protein*	AGRP_HUMAN	O00253	AGRP	[52, 65]
Alkaline phosphatase, placental type*	PPB1_HUMAN	P05187	ALPP	[52]
Alpha-1-acid glycoprotein 1*	A1AG1_HUMAN	P02763	ORM1	[65]
Alpha-1-antitrypsin	A1AT_HUMAN	P01009	SERPINA1	[58]
Alpha-1B-glycoprotein*	A1BG_HUMAN	P04217	A1BG	[52, 65]
Alpha-fetoprotein*	FETA_HUMAN	P02771	AFP	[52, 59]
Alpha-lactalbumin	LALBA_HUMAN	P00709	LALBA	[52, 65]
Aminopeptidase N*	AMPN_HUMAN	P15144	ANPEP	[65]
Angiopoietin-1	ANGP1_HUMAN	Q15389	ANGPT1	[52, 65]
Angiopoietin-1 receptor*	TIE2_HUMAN	Q02763	TEK	[61]
Angiopoietin-4	ANGP4_HUMAN	Q9Y264	ANGPT4	[65]
Angiopoietin-related protein 1*	ANGL1_HUMAN	Q95841	ANGPTL1	[52]
Angiopoietin-related protein 2*	ANGL2_HUMAN	Q9UKU9	ANGPTL2	[65]
Angiopoietin-related protein 7*	ANGL7_HUMAN	O43827	ANGPTL7	[60]
Angiotatin (cleaved from plasminogen)	PLMN_HUMAN	P00747	PLG	[52, 60, 61]
Annexin*			–	[12]
Annexin A5	ANXA5_HUMAN	P08758	ANXA5	[59]
Annexin A7	ANXA7_HUMAN	P20073	ANXA7	[65]
Antileukoproteinase*	SLPI_HUMAN	P03973	SLPI	[52]
Apelin receptor*	APLIN_HUMAN	P35414	APLIN	[60]
Apolipoprotein A-IV*	APOA4_HUMAN	P06727	APOA4	[52, 65]
Apolipoprotein B-100*	APOB_HUMAN	P04114	APOB	[59, 65]
Apolipoprotein C-1*	APOC1_HUMAN	P02654	APOC1	[65]
Apolipoprotein C-2*	APOC2_HUMAN	P02655	APOC2	[65]
Apolipoprotein E*	APOE_HUMAN	P02649	APOE	[65]
Apolipoprotein M*	APM_HUMAN	O95445	APM	[65]
Apoptosis regulator BAX*	BAX_HUMAN	Q07812	BAX	[52]
Artemin	ARTN_HUMAN	Q5T4W7	ARTN	[52, 60, 65]

Table 1 Proteins detected in human AT-MSC-EVs in alphabetical order
Protein	Abbreviation	UniProtKB	Gene	Ref.	
Aspartyl/asparaginyl beta-hydroxylase*	ASPH_HUMAN	Q12797	ASPH	[52, 65]	
Basal cell adhesion molecule	BCAM_HUMAN	P50895	BCAM	[57]	
BCL2/adenovirus E1B 19 kDa protein-interacting protein 2*	BNIP2_HUMAN	Q12982	BNIP2	[52, 65]	
Beta-2-microglobulin*	B2MG_HUMAN	P61769	B2M	[65]	
Beta-Ala-His dipeptidase*	CNDP1_HUMAN	Q96KN2	CNDP1	[52, 65]	
Beta-defensin 1*	DEFB1_HUMAN	P60022	DEFB1	[52]	
Beta-defensin 4A	DEFB4A_HUMAN	O15263	DEFB4A	[65]	
Beta-endorphin (Pro-opiomelanocortin)*	COL1_HUMAN	P01189	POMC	[52, 65]	
BMP-binding endothelial regulator protein*	BMPER_HUMAN	Q8N8U9	BMPER	[52, 60, 65]	
Bone morphogenic protein 1	BMP1_HUMAN	P13497	BMP1	[57]	
Bone morphogenic protein 3*	BMP3_HUMAN	P12645	BMP3	[65]	
Bone morphogenic protein 4*	BMP4_HUMAN	P12644	BMP4	[52, 65]	
Bone morphogenic protein 5*	BMP5_HUMAN	P22003	BMP5	[52]	
Bone morphogenic protein 6*	BMP6_HUMAN	P22004	BMP6	[65]	
Bone morphogenic protein 7*	BMP7_HUMAN	P18075	BMP7	[52, 65]	
Bone morphogenic protein 8B*	BMP8B_HUMAN	P34820	BMP8B	[52]	
Bone morphogenic protein receptor type-1A	BMR1A_HUMAN	P36894	BMR1A	[57]	
Bone morphogenic protein receptor type-1B*	BMR1B_HUMAN	O00238	BMR1B	[65]	
Bone morphogenic protein receptor type-2	BMRP2_HUMAN	Q13873	BMRP2	[57]	
Brain-derived neurotrophic factor*	BDNF_HUMAN	P23560	BDNF	[65]	
CA 19–9	–	–	ST6GALNAC (partly synthesized by)	[52]	
Cadherin-1	CADH1_HUMAN	P12830	CDH1	[57]	
Cadherin-2	CADH2_HUMAN	P19022	CDH2	[57]	
Cadherin-5	CAD5_HUMAN	P33151	CDH5	[57]	
Cadherin-11	CAD11_HUMAN	P55287	CDH11	[57]	
Cadherin-13	CAD13_HUMAN	P55290	CDH13	[57]	
Cadherin-related family member 2	CDHR2_HUMAN	Q9BYE9	CDHR2	[57]	
Cadherin-related family member 5	CDHR5_HUMAN	Q9HBB8	CDHR5	[57]	
Calbindin	CALB1_HUMAN	P05937	CALB1	[52, 65]	
Calcitonin	CALC_HUMAN	P01258	CALCA	[52]	
Calreticulin	CALR_HUMAN	P27797	CALR	[65]	
Calsyntenin-1	CSTN1_HUMAN	Q9G985	CLSTN1	[65]	
Carboxypeptidase N subunit 2*	CPN2_HUMAN	P22792	CPN2	[52, 65]	
Carcinoembryonic antigen-related cell adhesion molecule 7*	CEAM7_HUMAN	Q14002	CEACAM7	[65]	
Caspase-3	CASP3_HUMAN	P42574	CASP3	[65]	
Caspase-8	CASP8_HUMAN	Q14790	CASP8	[52]	
Cathepsin B	CATB_HUMAN	P07858	CTSB	[65]	
Cathepsin D	CATD_HUMAN	P07339	CTSD	[65]	
C-C chemokine receptor type 1*	CCR1_HUMAN	P32246	CCR1	[52]	
C-C chemokine receptor type 2*	CCR2_HUMAN	P41597	CCR2	[65]	
C-C chemokine receptor type 3*	CCR3_HUMAN	P51677	CCR3	[52]	
C-C chemokine receptor type 4*	CCR4_HUMAN	P51679	CCR4	[65]	
C-C chemokine receptor type 5*	CCR5_HUMAN	P51681	CCR5	[65]	
C-C chemokine receptor type 6*	CCR6_HUMAN	P51684	CCR6	[65]	
C-C chemokine receptor type 7*	CCR7_HUMAN	P32248	CCR7	[65]	
C-C chemokine receptor type 9*	CCR9_HUMAN	P51686	CCR9	[65]	
C-C motif chemokine 1*	CCL1_HUMAN	P22362	CCL1	[61, 65]	
C-C motif chemokine 2*	CCL2_HUMAN	P13500	CCL2	[52]	
Protein	Abbreviation	UniProtKB	Gene	Ref.	
------------------------------------	------------------------	-----------	--------	-------	
C-C motif chemokine 3*	CCL3_HUMAN	P10147	CCL3	[65]	
C-C motif chemokine 4*	CCL4_HUMAN	P13236	CCL4	[52]	
C-C motif chemokine 5*	CCL5_HUMAN	P13501	CCL5	[65]	
C-C motif chemokine 7*	CCL7_HUMAN	P80098	CCL7	[61]	
C-C motif chemokine 8*	CCL8_HUMAN	P80075	CCL8	[61, 65]	
C-C motif chemokine 13*	CCL13_HUMAN	Q99616	CCL13	[61, 65]	
C-C motif chemokine 14*	CCL14_HUMAN	Q16627	CCL14	[52, 60, 65]	
C-C motif chemokine 16*	CCL16_HUMAN	O15467	CCL16	[65]	
C-C motif chemokine 18*	CCL18_HUMAN	P55774	CCL18	[52]	
C-C motif chemokine 19*	CCL19_HUMAN	Q99731	CCL19	[52]	
C-C motif chemokine 21*	CCL21_HUMAN	O00585	CCL21	[65]	
C-C motif chemokine 22*	CCL22_HUMAN	O00626	CCL22	[65]	
C-C motif chemokine 26*	CCL26_HUMAN	Q9Y258	CCL26	[65]	
C-C motif chemokine 27*	CCL27_HUMAN	Q9Y4X3	CCL27	[52]	
C-C motif chemokine 28*	CCL28_HUMAN	Q9NRJ3	CCL28	[52, 60]	
CD166 antigen	CD166_HUMAN	Q13740	ALCAM	[52, 65]	
CD27 antigen	CD27_HUMAN	P26842	CD27	[65]	
CD44 antigen	CD44_HUMAN	P16070	CD44	[12, 57, 65]	
CD59 glycoprotein*	CD59_HUMAN	P13987	CD59	[52]	
CD63 antigen	CD63_HUMAN	P08962	CD63	[12]	
Cdc42-interacting protein 4	CIP4_HUMAN	Q15642	TRIP10	[57]	
Cell division control protein 42 homolog	CDC42_HUMAN	P60953	CDC42	[57]	
Cerberus	CER1_HUMAN	O95813	CER1	[65]	
Ceruloplasmin	CERU_HUMAN	P00450	CP	[52, 65]	
Chitinase-3-like protein 1*	CH3L1_HUMAN	P36222	CH3L1	[52, 65]	
Chordin-like protein 2*	CRDL2_HUMAN	Q6WN34	CHRDL2	[52]	
Ciliary neurotrophic factor receptor subunit alpha*	CNTFR_HUMAN	P26992	CNTFR	[52]	
Ciliary neurotrophic factor*	CNTF_HUMAN	P26441	CNTF	[52, 65]	
Clusterin	CLUS_HUMAN	P10909	CLU	[52]	
Coagulation factor XIII A chain	F13A_HUMAN	P00488	F13A1	[52]	
Coagulation factor XIII B chain	F13B_HUMAN	P05160	F13B	[65]	
Collagen alpha-1(I) chain	CO1A1_HUMAN	P02452	COL1A1	[57]	
Collagen alpha-1(III) chain	CO3A1_HUMAN	P02461	COL3A1	[57]	
Collagen alpha-1(IV) chain	CO4A1_HUMAN	P02462	COL4A1	[57]	
Collagen alpha-1(V) chain	CO5A1_HUMAN	P20908	COL5A1	[57]	
Collagen alpha-1(VI) chain	CO6A1_HUMAN	P12109	COL6A1	[57]	
Collagen alpha-1(VII) chain	CO7A1_HUMAN	Q02388	COL7A1	[57]	
Collagen alpha-1(XII) chain	COCA1_HUMAN	Q99715	COL12A1	[57]	
Collagen alpha-1(XV) chain	COFA1_HUMAN	P39059	COL15A1	[57]	
Collagen alpha-2(2) chain	CO1A2_HUMAN	P08123	COL1A2	[57]	
Collagen alpha-2(IV) chain	CO4A2_HUMAN	P08572	COL4A2	[57]	
Collagen alpha-2(V) chain	CO5A2_HUMAN	P05997	COL5A2	[57]	
Collagen alpha-2(VI) chain	CO6A2_HUMAN	P12110	COL6A2	[57]	
Collagen alpha-3(3) chain	CO6A3_HUMAN	P12111	COL6A3	[57]	
Collagenase 3*	MMP13_HUMAN	P45452	MMP13	[65]	
Complement C2*	CO2_HUMAN	P06681	C2	[52, 65]	
Complement C3*	CO3_HUMAN	P01024	C3	[65]	
Complement C5*	CO5_HUMAN	P01031	C5	[65]	
Complement factor H-related protein 2*	FHR2_HUMAN	P36980	CFHR2	[65]	
Protein	Abbreviation	UniProtKB	Gene	Ref.	
--------------------------------------	--------------	-----------	------------	------	
Corticosteroid 11-beta-dehydrogenase isozyme 1*	DH11_HUMAN	P28845	HSD11B1	[65]	
Corticosteroid-binding globulin	CBG_HUMAN	P08185	SERPINA6	[52]	
C-peptide***	--	--	INS	[52, 65]	
C-reactive protein*	CRP_HUMAN	P02741	CRP	[65]	
Creatine kinase B-type*	KCRB_HUMAN	P12277	CKB	[52, 65]	
CREB-binding protein*	CBP_HUMAN	Q92793	CREBBP	[52]	
Cryptic protein	CFC1_HUMAN	P0CG37	CFC1	[52, 65]	
C-X-C chemokine receptor type 6*	CXCR6_HUMAN	O00574	CXCR6	[65]	
C-X-C motif chemokine 2*	CXCL2_HUMAN	P19875	CXCL2	[52, 60, 65]	
C-X-C motif chemokine 5*	CXCL5_HUMAN	P42830	CXCL5	[65]	
C-X-C motif chemokine 9*	CXCL9_HUMAN	Q07325	CXCL9	[52]	
C-X-C motif chemokine 10*	CXL10_HUMAN	P02778	CXL10	[65]	
C-X-C motif chemokine 11*	CXL11_HUMAN	O14625	CXL11	[61, 65]	
C-X-C motif chemokine 16*	CXL16_HUMAN	Q9H2A7	CXL16	[61, 65]	
Cyclin-dependent kinase inhibitor 1*	CDN1A_HUMAN	P38936	CDKN1A	[65]	
Cystatin A	CYTA_HUMAN	P01040	CSTA	[65]	
Cytokine receptor common subunit gamma*	IL2RG_HUMAN	P31785	IL2RG	[52, 65]	
Cytoplasmic tyrosine-protein kinase BMX*	BMX_HUMAN	P51813	BMX	[65]	
Cytoxic and regulatory T cell molecule*	CRTAM_HUMAN	O95727	CRTAM	[65]	
Cytotoxic T lymphocyte protein 4*	CTLA4_HUMAN	P16410	CTLA4	[52, 65]	
DAN domain family member 5*	DAND5_HUMAN	Q8N907	DAND5	[65]	
Decorin	PG52_HUMAN	P07585	DCN	[65]	
Dentin matrix acidic phosphoprotein 1*	DMP1_HUMAN	Q13316	DMP1	[65]	
Dermcidin	DCD_HUMAN	P81605	DCD	[59]	
Dickkopf-related protein 1*	DKK1_HUMAN	O94907	DKK1	[65]	
Dickkopf-related protein 3*	DKK3_HUMAN	Q9UBP4	DKK3	[65]	
Dickkopf-related protein 4*	DKK4_HUMAN	Q9UBT3	DKK4	[52]	
Discoidin domain-containing receptor 2*	DDR2_HUMAN	Q16832	DDR2	[52]	
Discoidin, CUB and LCCL domain-containing protein 2*	DCBD2_HUMAN	Q96PD2	DCBLD2	[65]	
Echinoderm microtubule-associated protein-like 2*	EMAL2_HUMAN	O95834	EML2	[52, 65]	
Ectodysplasin-A*	EDA_HUMAN	Q92838	EDA	[60, 65]	
Ectonucleotide pyrophosphatase/	ENPP2_HUMAN	Q13822	ENPP2	[52]	
phosphodiesterase family member 2*	ENIL3_HUMAN	O43854	ENIL3	[57]	
EGF-like repeat and discoidin 1-like domain-containing protein 3	EF1A1_HUMAN	P68104	EEF1A1	[12]	
Elongation factor 1-alpha 1	EF2_HUMAN	P13639	EEF2	[12]	
Elongation factor 2*	EE2_HUMAN	P13639	EEF2	[12]	
Embryonic growth/differentiation factor 1*	GDF1_HUMAN	P27539	GDF1	[52]	
Endoglin	EGNL_HUMAN	P17813	ENG	[52]	
Endostatin (cleaved from Collagen alpha-1(XVIII) chain)	COIA1_HUMAN	P39060	COL18A1	[52, 57, 60, 65]	
Endothelial cell-selective adhesion molecule*	ESAM_HUMAN	Q96AP7	ESAM	[65]	
Endothelin-1 receptor*	EDNRA_HUMAN	P25101	EDNRA	[52, 65]	
Eotaxin	ECL11_HUMAN	P51671	CCL11	[65]	
Ephrin type-A receptor 4*	EPHA4_HUMAN	P54764	EPHA4	[52]	
Ephrin type-A receptor 6*	EPHA6_HUMAN	Q9UF33	EPHA6	[65]	
Ephrin type-A receptor 8*	EPHA8_HUMAN	P29322	EPHA8	[65]	
Ephrin type-B receptor 4*	EPHB4_HUMAN	P54760	EPHB4	[65]	
Epidermal growth factor receptor*	EGFR_HUMAN	P00533	EGFR	[57, 65]	
Epidermal growth factor receptor substrate 15-like 1	EP15R_HUMAN	Q9UBC2	EPS15L1	[57]	

* Denotes essential proteins.
| Protein | Abbreviation | UniProtKB | Gene | Ref. |
|--|----------------|-----------|--------|-------|
| Epithelial cell adhesion molecule* | EPCAM_HUMAN | P16422 | EPCAM | [65] |
| Erythropoietin | EPO_HUMAN | P01588 | EPO | [52] |
| Erythropoietin receptor | EPOR_HUMAN | P19235 | EPOR | [65] |
| E-Selectin | LYAM2_HUMAN | P16581 | SELE | [52] |
| EVI5-like protein | EVI5L_HUMAN | Q96CN4 | EVI5L | [52] |
| FAS-associated death domain protein* | FADD_HUMAN | Q13158 | FADD | [65] |
| Fatty acid-binding protein 5 | FABP5_HUMAN | Q01469 | FABP5 | [59] |
| Ferritin light chain* | FRIL_HUMAN | P02792 | FTL | [65] |
| Fetuin-B | FETUB_HUMAN | Q9UGM5 | FETUB | [65] |
| Fibrinogen-like protein 1* | FGL1_HUMAN | Q08830 | FGL1 | [52, 65] |
| Fibrinopeptide A (cleaved from Fibrinogen alpha chain) | FIBA_HUMAN | P02671 | FGA | [52] |
| Fibroblast growth factor 2* | FGF2_HUMAN | P09038 | FGF2 | [57, 65] |
| Fibroblast growth factor 4* | FGF4_HUMAN | P08620 | FGF4 | [61] |
| Fibroblast growth factor 5* | FGF5_HUMAN | P12034 | FGF5 | [52] |
| Fibroblast growth factor 6* | FGF6_HUMAN | P10767 | FGF6 | [65] |
| Fibroblast growth factor 8* | FGF8_HUMAN | P55075 | FGF8 | [65] |
| Fibroblast growth factor 10* | FGF10_HUMAN | O15520 | FGF10 | [52] |
| Fibroblast growth factor 11* | FGF11_HUMAN | Q92914 | FGF11 | [52] |
| Fibroblast growth factor 12* | FGF12_HUMAN | P61328 | FGF12 | [65] |
| Fibroblast growth factor 13* | FGF13_HUMAN | Q92913 | FGF13 | [52] |
| Fibroblast growth factor 16* | FGF16_HUMAN | O43320 | FGF16 | [52] |
| Fibroblast growth factor 17* | FGF17_HUMAN | O60258 | FGF17 | [52, 65] |
| Fibroblast growth factor 18* | FGF18_HUMAN | O76093 | FGF18 | [52, 65] |
| Fibroblast growth factor 20* | FGF20_HUMAN | Q9NP95 | FGF20 | [52, 65] |
| Fibroblast growth factor 21* | FGF21_HUMAN | Q9NSA1 | FGF21 | [65] |
| Fibroblast growth factor receptor 1 | FGFR1_HUMAN | P11362 | FGFR1 | [57] |
| Fibroblast growth factor receptor 3* | FGFR3_HUMAN | P22607 | FGFR3 | [65] |
| Fibroblast growth factor receptor 4 | FGFR4_HUMAN | P22455 | FGFR4 | [57] |
| Fibroblast growth factor-binding protein 1* | FGFP1_HUMAN | Q14512 | FGFBP1 | [65] |
| Fibronectin | FINC_HUMAN | P02751 | FN1 | [52, 57] |
| Filaggrin-2 | FILA2_HUMAN | Q5D862 | FLG2 | [59] |
| Follistatin | FST_HUMAN | P19883 | FST | [52, 61, 65] |
| Follistatin-related protein 3* | FSTL3_HUMAN | O95633 | FSTL3 | [65] |
| Forkhead box protein N3* | FOXN3_HUMAN | O00409 | FOXN3 | [52] |
| Frizzled-1 | FZD1_HUMAN | Q9UP38 | FZD1 | [52, 57, 65] |
| Frizzled-3 | FZD3_HUMAN | Q9NPG1 | FZD3 | [52, 65] |
| Frizzled-6 | FZD6_HUMAN | O60353 | FZD6 | [57] |
| Frizzled-7 | FZD7_HUMAN | O75084 | FZD7 | [65] |
| Fructose-bisphosphate aldolase A* | ALDOA_HUMAN | P04075 | ALDOA | [52] |
| Fructose-bisphosphate aldolase B | ALDOB_HUMAN | P05062 | ALDOB | [65] |
| Fructose-bisphosphate aldolase C* | ALDOC_HUMAN | P09972 | ALDOC | [52, 65] |
| Furin | FURIN_HUMAN | P09958 | FURIN | [65] |
| Galanin peptides | GALA_HUMAN | P22466 | GAL | [52] |
| Galectin-10* | LEG10_HUMAN | Q05315 | CLC | [52, 65] |
| Galectin-3 | LEG3_HUMAN | P17931 | LGALS3 | [52, 65] |
| Gamma-Thrombin (cleaved from prothrombin) | THR8_HUMAN | P00734 | F2 | [65] |
| GATA-type zinc finger protein 1* | ZGLP1_HUMAN | P0C6A0 | ZGLP1 | [52] |
| GDNF family receptor alpha-3* | GFRA3_HUMAN | O60609 | GFRA3 | [52] |
| Geminin* | GEMI_HUMAN | O75496 | GMNN | [65] |
| Protein | Abbreviation | UniProtKB | Gene | Ref. |
|--|--------------------|-----------|-------|--------|
| Glial cell line-derived neurotrophic factor* | GDNF_HUMAN | P39905 | GDNF | [65] |
| Glutathione peroxidase 1* | GPX1_HUMAN | P07203 | GPX1 | [65] |
| Glutathione peroxidase 3* | GPX3_HUMAN | P22352 | GPX3 | [65] |
| Glyceroldehyde 3-phosphate dehydrogenase | G3P_HUMAN | P04406 | GAPDH | [12] |
| Glycogen phosphorylase, brain form* | PYGB_HUMAN | P11216 | PYGB | [65] |
| Glycoprotein hormones alpha chain* | GLHA_HUMAN | P01215 | CGA | [52] |
| Glypican-3 | GPC3_HUMAN | P51654 | GPC3 | [60] |
| Glypican-5 | GPC5_HUMAN | P78333 | GPC5 | [65] |
| Granulocyte colony-stimulating factor* | CSF3_HUMAN | P09919 | CSF3 | [52, 60, 61, 65] |
| Granulocyte-macrophage colony-stimulating factor receptor subunit alpha* | CSF2R_HUMAN | P15509 | CSF2RA| [52, 65] |
| Granulocyte-macrophage colony-stimulating factor* | CSF2_HUMAN | P04141 | CSF2 | [52, 61] |
| Granzyme A | GRAA_HUMAN | P12544 | GZMA | [52, 65] |
| Gremlin-1 | GREM1_HUMAN | O60565 | GREM1 | [52] |
| Growth arrest and DNA damage-inducible protein GADD45 alpha* | GA45A_HUMAN | P24522 | GNG12 | [52] |
| Growth factor receptor-bound protein 2 | GRB2_HUMAN | P62993 | GRB2 | [57] |
| Growth/differentiation factor 2* | GDF2_HUMAN | Q9UK05 | GDF2 | [65] |
| Growth/differentiation factor 3* | GDF3_HUMAN | Q9NR23 | GDF3 | [52, 65] |
| Growth/differentiation factor 5* | GDF5_HUMAN | P43026 | GDF5 | [52, 65] |
| Growth/differentiation factor 8* | GDF8_HUMAN | O14793 | MISTN | [52] |
| Growth/differentiation factor 9* | GDF9_HUMAN | O60383 | GDF9 | [52, 65] |
| Growth/differentiation factor 11* | GDF11_HUMAN | O95390 | GDF11 | [52, 57, 65] |
| Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 | GBG12_HUMAN | Q9UB16 | GNG12 | [57] |
| Guanine nucleotide-binding protein subunit alpha-13 | GNA13_HUMAN | Q14344 | GNA13 | [57] |
| Haptoglobin | HPT_HUMAN | P00738 | HP | [52] |
| HCR / CRAM-A/B*** | – | – | CCHCR1| [52, 65] |
| Heat shock protein 70 kDa** | – | – | – | [12] |
| Heat shock protein 90 kDa** | – | – | – | [12] |
| Heat shock protein 105 kDa* | HS105_HUMAN | Q92598 | HSPH1 | [12] |
| Heat shock protein beta-1* | HSPB1_HUMAN | P04792 | HSPB1_HUMAN | [12, 52, 65] |
| Hepatocyte growth factor activator | HGFA_HUMAN | Q04756 | HGFAC | [57] |
| Hepatocyte growth factor receptor* | MET_HUMAN | P08581 | MET | [52] |
| Hepatocyte growth factor-like protein alpha chain (cleaved from hepatocyte growth factor-like protein)* | HGFL_HUMAN | P26927 | MST1 | [52] |
| Hepatocyte growth factor-regulated tyrosine kinase substrate | HGS_HUMAN | O14964 | HGS | [57] |
| Hepcidin | HEPC_HUMAN | P81172 | HAMP | [65] |
| Histone H4 | H4_HUMAN | P62805 | H4C1 | [59] |
| HLA class II histocompatibility antigen gamma chain* | HG2A_HUMAN | P04233 | CD74 | [65] |
| Homeobox protein NANOG* | NANOG_HUMAN | Q9H980 | NANOG | [65] |
| Homerin | HORN_HUMAN | Q86YZ3 | HRNR | [59] |
| Inhibin beta A chain* | INHBA_HUMAN | P08476 | INHBA | [65] |
| Inhibin beta B chain* | INHBB_HUMAN | P09529 | INHBB | [65] |
| Inhibin beta C chain* | INHBC_HUMAN | P55103 | INHBC | [60] |
| INSL3*** | – | – | – | [65] |
| Insulin receptor* | INSR_HUMAN | P06213 | INSR | [52, 65] |
| Insulin-degrading enzyme* | IDE_HUMAN | P14735 | IDE | [65] |
| Insulin-like growth factor 1 receptor | IGF1R_HUMAN | P08069 | IGF1R | [57] |
| Insulin-like growth factor 1* | IGF1_HUMAN | P05019 | IGF1 | [65] |
| Protein | Abbreviation | UniProtKB | Gene | Ref. |
|---|------------------|-----------|-----------------|-------|
| Insulin-like growth factor-binding protein 1* | IBP1_HUMAN | P08833 | IGFBP1 | [65] |
| Insulin-like growth factor-binding protein 3 | IBP3_HUMAN | P17936 | IGFBP3 | [57] |
| Insulin-like growth factor-binding protein 4* | IBP4_HUMAN | P22692 | IGFBP4 | [52] |
| Insulin-like growth factor-binding protein 5* | IBP5_HUMAN | P24593 | IGFBP5 | [65] |
| Insulin-like growth factor-binding protein 7* | IBP7_HUMAN | Q16270 | IGFBP7 | [60, 65]|
| Insulin-like growth factor-binding protein complex acid labile subunit | ALS_HUMAN | P35858 | IGFALS | [57] |
| Integrin alpha-1 | ITA1_HUMAN | P56199 | ITGA1 | [57] |
| Integrin alpha-2 | ITA2_HUMAN | P17301 | ITGA2 | [57] |
| Integrin alpha-3 | ITA3_HUMAN | P26006 | ITGA3 | [57] |
| Integrin alpha-4 | ITA4_HUMAN | P13612 | ITGA4 | [57] |
| Integrin alpha-5 | ITA5_HUMAN | P08648 | ITGA5 | [57] |
| Integrin alpha-6 | ITA6_HUMAN | P23229 | ITGA6 | [57] |
| Integrin alpha-7 | ITA7_HUMAN | Q13683 | ITGA7 | [57] |
| Integrin alpha-10 | ITA10_HUMAN | O75578 | ITGA10 | [57] |
| Integrin alpha-11 | ITA11_HUMAN | Q9UKX5 | ITGA11 | [57] |
| Integrin alpha-M* | ITAM_HUMAN | P11215 | ITGAM | [52] |
| Integrin alpha-V | ITAV_HUMAN | P06756 | ITGAV | [52, 57, 65]|
| Integrin beta-1 | ITB1_HUMAN | P05556 | ITGB1 | [57] |
| Integrin beta-1-binding protein 1 | ITBPI1_HUMAN | O14713 | ITGB1BP1 | [57] |
| Integrin beta-3 | ITB3_HUMAN | P05106 | ITGB3 | [57] |
| Integrin beta-5 | ITB5_HUMAN | P18084 | ITGB5 | [57] |
| Integrin-linked protein kinase | ILK_HUMAN | Q13418 | ILK | [57] |
| Inter-alpha-trypsin inhibitor heavy chain H2 | ITH2_HUMAN | P19823 | ITH2 | [59] |
| Intercellular adhesion molecule 1 | ICAM1_HUMAN | P05362 | ICAM1 | [57] |
| Intercellular adhesion molecule 2* | ICAM2_HUMAN | P13598 | ICAM2 | [57, 65]|
| Interferon beta* | IFNB_HUMAN | P01574 | IFNB1 | [65] |
| Interferon gamma* | IFNG_HUMAN | P01579 | IFNG | [52, 65]|
| Interferon lambda-1* | IFNLI1_HUMAN | Q8IU54 | IFNL1 | [65] |
| Interferon lambda-2* | IFNL2_HUMAN | Q8IZJ0 | IFNL2 | [65] |
| Interferon regulatory factor 6* | IRF6_HUMAN | Q14896 | IRF6 | [52] |
| Interleukin-1 alpha* | IL1A_HUMAN | P01583 | IL1A | [52, 60, 65]|
| Interleukin-1 beta* | IL1B_HUMAN | P01584 | IL1B | [61] |
| Interleukin-1 family member 10* | IL1FA_HUMAN | Q8WWZ1 | IL1F10 | [52, 65]|
| Interleukin-1 receptor accessory protein-like 1* | IRPL1_HUMAN | Q9NZN1 | IL1RPL1 | [52, 65]|
| Interleukin-1 receptor type 1* | IL1R1_HUMAN | P14778 | IL1R1 | [52] |
| Interleukin-1 receptor type 2* | IL1R2_HUMAN | P27930 | IL1R2 | [52] |
| Interleukin-1 receptor-like 1* | ILRL1_HUMAN | Q01638 | IL1RL1 | [52] |
| Interleukin-1 receptor-like 2* | ILRL2_HUMAN | Q9HB29 | IL1RL2 | [52] |
| Interleukin-2* | IL2_HUMAN | P60568 | IL2 | [52] |
| Interleukin-2 receptor subunit alpha* | IL2RA_HUMAN | P01589 | IL2RA | [65] |
| Interleukin-2 receptor subunit beta* | IL2RB_HUMAN | P14784 | IL2RB | [52] |
| Interleukin-4* | IL4_HUMAN | P05112 | IL4 | [61] |
| Interleukin-5* | IL5_HUMAN | P05113 | IL5 | [52] |
| Interleukin-6* | IL6_HUMAN | P05231 | IL6 | [52, 62]|
| Interleukin-7* | IL7_HUMAN | P13232 | IL7 | [52, 65]|
| Interleukin-7 receptor subunit alpha* | IL7RA_HUMAN | P16871 | IL7R | [65] |
| Interleukin-8* | IL8_HUMAN | P10145 | CXCL8 | [52, 65]|
| Interleukin-9* | IL9_HUMAN | P15248 | IL9 | [52, 65]|

Table 1 (continued)
Protein	Abbreviation	UniProtKB	Gene	Ref.
Interleukin-10*	IL10_HUMAN	P22301	IL10	[52, 61]
Interleukin-10 receptor subunit alpha*	I10R1_HUMAN	Q13651	IL10RA	[52]
Interleukin-11*	IL11_HUMAN	P20809	IL11	[52]
Interleukin-12 subunit alpha*	IL12A_HUMAN	P29459	IL12A	[61]
Interleukin-12 subunit beta*	IL12B_HUMAN	P29460	IL12B	[61]
Interleukin-13 receptor subunit alpha-1*	I13R1_HUMAN	P78552	IL13RA1	[52, 65]
Interleukin-13 receptor subunit alpha-2*	I13R2_HUMAN	Q14627	IL13RA2	[65]
Interleukin-13*	IL13_HUMAN	P35225	IL13	[52]
Interleukin-15*	IL15_HUMAN	P40933	IL15	[52]
Interleukin-17 receptor B*	I17RB_HUMAN	Q9NRK6	IL17RB	[52, 65]
Interleukin-17 receptor C*	I17RC_HUMAN	Q8NAC3	IL17RC	[52]
Interleukin-17A*	IL17_HUMAN	Q16552	IL17A	[52, 65]
Interleukin-17C*	IL17C_HUMAN	Q9POF4	IL17C	[65]
Interleukin-19*	IL19_HUMAN	Q9UHD0	IL19	[65]
Interleukin-20 receptor subunit alpha*	I20RA_HUMAN	Q9UHF4	IL20RA	[52]
Interleukin-21 receptor*	I21R_HUMAN	Q9HBE5	IL21R	[65]
Interleukin-21*	IL21_HUMAN	Q9HBE4	IL21	[52, 65]
Interleukin-23 receptor*	I23R_HUMAN	Q5VWK5	IL23R	[65]
Interleukin-23 subunit alpha*	IL23A_HUMAN	Q9NPF7	IL23A	[52, 65]
Interleukin-24*	IL24_HUMAN	Q13007	IL24	[65]
Interleukin-27 subunit alpha*	IL27A_HUMAN	Q8NEV9	IL27	[65]
Interleukin-36 gamma*	IL36G_HUMAN	Q9NZH8	IL36G	[65]
Interleukin-36 receptor antagonist protein*	I36RA_HUMAN	Q9UBH0	IL36RN	[65]
Intestinal collagenase*	MMP1_HUMAN	P03956	MMP1	[52, 61]
Islet amyloid polypeptide*	IAPP_HUMAN	P10997	IAPP	[52, 65]
Junctional adhesion molecule C	JAM3_HUMAN	Q9BX67	JAM3	[57]
Junctional adhesion molecule-like*	JAML_HUMAN	Q86YT9	JAML	[65]
Kallikrein 2	KL2_HUMAN	P20151	KL2	[52]
Kallikrein 11	KLK11_HUMAN	Q9UBX7	KLK11	[65]
Keratin, type I cytoskeletal 19*	K1C19_HUMAN	P08727	KRT19	[52, 65]
Kremen protein 1*	KREM1_HUMAN	Q96MU8	KREMEN1	[52]
Kremen protein 2*	KREM2_HUMAN	Q8NCW0	KREMEN2	[60, 65]
Lactadherin*	MFGM_HUMAN	Q08431	MFGE8	[60]
Lactotransferrin*	TRFL_HUMAN	P02788	LTTF	[52, 59]
Lactoylglutathione lyase*	LGUL_HUMAN	Q04760	GLO1	[65]
Laminin subunit alpha-1	LAMA1_HUMAN	P25391	LAMA1	[57]
Laminin subunit alpha-2	LAMA2_HUMAN	P24043	LAMA2	[57]
Laminin subunit alpha-4	LAMA4_HUMAN	Q16363	LAMA4	[57]
Laminin subunit alpha-5	LAMA5_HUMAN	Q15230	LAMA5	[57]
Laminin subunit beta-1	LAMB1_HUMAN	P07942	LAMB1	[57]
Laminin subunit beta-2	LAMB2_HUMAN	P55268	LAMB2	[57]
Laminin subunit gamma-1	LAMC1_HUMAN	P11047	LAMC1	[57]
Latent-transforming growth factor beta-binding protein 1	LTBP1_HUMAN	Q14766	LTBP1	[57]
Layilin	LAYN_HUMAN	Q6UX15	LAYN	[65]
Leucine-rich alpha-2-glycoprotein*	A2GL_HUMAN	P02750	LRG1	[52, 65]
Leukocyte surface antigen CD47	CD47_HUMAN	Q08722	CD47	[57]
Lipoilysaccharide-binding protein*	LBP_HUMAN	P18428	LBP	[65]
L-lactate dehydrogenase A chain*	LDHA_HUMAN	P00338	LDHA	[12]
Low affinity immunoglobulin epsilon Fc receptor*	FCER2_HUMAN	P06734	FCER2	[65]
Protein	Abbreviation	UniProtKB	Gene	Ref.
--	--------------------	-------------	----------	--------
Low-density lipoprotein receptor*	LDLR_HUMAN	P01130	LDLR	[65]
Low-density lipoprotein receptor-related protein 6*	LRP6_HUMAN	O75581	LRP6	[60]
L-Selectin	LYAM1_HUMAN	P14151	SEL	[52]
Lutropin-choriogonadotropin hormone receptor*	LSHR_HUMAN	P22888	LHCGR	[52]
Lymphocyte activation gene 3 protein*	LAG3_HUMAN	P18627	LAG3	[52]
Lymphotoksin-alpha*	TNFB_HUMAN	P01374	LTA	[52]
Lymphotoksin-beta	TNFC_HUMAN	Q06643	LTB	[65]
Lysosome membrane protein 2*	SCR82_HUMAN	Q14108	SCARB2	[65]
Lysosome-associated membrane glycoprotein 2*	LAMP2_HUMAN	P13473	LAMP2	[12]
Macrophage migration inhibitory factor*	MIF_HUMAN	P14174	MIF	[65]
Mammaglobin A	SG2A2_HUMAN	Q13296	SCGB2A2	[52]
Mast/stem cell growth factor receptor Kit	KIT_HUMAN	P10721	KIT	[57]
Matriptisin	MMP7_HUMAN	P09237	MMP7	[65]
Matrix metalloproteinase-9*	MMP9_HUMAN	P14780	MMP9	[61, 65]
Matrix metalloproteinase-14*	MMP14_HUMAN	P50281	MMP14	[65]
Matrix metalloproteinase-19*	MMP19_HUMAN	Q99542	MMP19	[52]
Matrix metalloproteinase-20*	MMP20_HUMAN	O60882	MMP20	[52, 60, 65]
Matrix metalloproteinase-24*	MMP24_HUMAN	Q9Y5R2	MMP24	[52, 65]
Megakaryocyte-associated tyrosine-protein kinase*	MATK_HUMAN	P42679	MATK	[52]
Metalloproteinase inhibitor 2	TIMP2_HUMAN	P16035	TIMP2	[60]
Metalloproteinase inhibitor 3*	TIMP3_HUMAN	P35625	TIMP3	[65]
MHC class I polypeptide-related sequence A*	MICA_HUMAN	Q29983	MICA	[65]
Microglobulin***		–	–	[65]
Microtubule-associated tumor suppressor 1*	MTUS1_HUMAN	Q9ULD2	MTUS1	[65]
Mitogen-activated protein kinase 1	MK01_HUMAN	P28482	MAPK1	[57]
Mitogen-activated protein kinase 3	MK03_HUMAN	P27361	MAPK3	[57]
Monocyte differentiation antigen CD14*	CD14_HUMAN	P08571	CD14	[65]
MSHa***		–	–	[52]
Mucin-1*	MUC1_HUMAN	P15941	MUC1	[65]
Mucin-16*	MUC16_HUMAN	Q8WXI7	MUC16	[52, 65]
Mucosal addressin cell adhesion molecule 1	MADCA_HUMAN	Q13477	MADCAM1	[57]
Muscle, skeletal receptor tyrosine-protein kinase*	MUSK_HUMAN	O15146	MUSK	[52]
Myeloid-derived growth factor	MYDGF_HUMAN	Q969H8	MYDGF	[57]
Natriuretic peptides B*	ANFB_HUMAN	P16860	NPPB	[52]
Natural killer cell receptor 2B4*	CD244_HUMAN	Q9BZW8	CD244	[65]
Nephrilysin	NEP_HUMAN	P08473	MME	[63]
Netrin-1*	NET1_HUMAN	O95631	NTN1	[52]
Netrin-G2	NTNG2_HUMAN	Q96CW9	NTNG2	[52]
Neural cell adhesion molecule 1*	NCAM1_HUMAN	P13591	NCAM1	[65]
Neural cell adhesion molecule L1-like protein	NCHL1_HUMAN	O00533	CHL1	[57]
Neuregulin-1 (cleaved form pro-neuregulin-1, membrane-bound isof orm)	NRG1_HUMAN	Q02297	NRG1	[52]
Neuregulin-2 (cleaved pro-neuregulin-2, membrane-bound isof orm)*	NRG2_HUMAN	O14511	NRG2	[52]
Neuregulin-3 (cleaved pro-neuregulin-3, membrane-bound isof orm)*	NRG3_HUMAN	P56975	NRG3	[52]
Neurofibromin*	NF1_HUMAN	P21359	NF1	[52]
Neurogenic differentiation factor 1*	NDF1_HUMAN	Q13562	NEUROD1	[65]
Neuronal pentraxin-1	NPTX1_HUMAN	Q15818	NPTX1	[52]
Table 1 (continued)

Protein	Abbreviation	UniProtKB	Gene	Ref.
Neuropeptide Y (cleaved form pro-neuropeptide Y)	NPY_HUMAN	P01303	NPY	[65]
Neurosecretory protein VGF*	VGF_HUMAN	Q015240	VGF	[52]
Neuroserpin*	NEUS_HUMAN	Q99574	SERPIN1	[65]
Neurturin	NRTN_HUMAN	Q99748	NRTN	[65]
Neutrophil collagenase*	MMP8_HUMAN	P22894	MMP8	[52]
Neutrophil-activating peptide 2 (cleaved from Platelet basic protein)*	CXCL7_HUMAN	P02775	PPBP	[65]
Non-receptor tyrosine-protein kinase TYK2*	TYK2_HUMAN	P29597	TYK2	[65]
Nucleoside diphosphate kinase A	NDKA_HUMAN	P15531	NME1	[65]
Orexin receptor type 1*	OX1R_HUMAN	O43613	HCRTR1	[65]
OX-2 membrane glycoprotein*	OX2G_HUMAN	P41217	CD200	[65]
Pentraxin-related protein PTX3	PTX3_HUMAN	P26022	PTX3	[59, 60]
Peptide YY	PYH_HUMAN	P10082	PYY	[65]
Periostin	POSTN_HUMAN	Q15063	POSTN	[59]
Phosphatidylinositol 3-kinase regulatory subunit beta*	P85B_HUMAN	O00549	PIK3R2	[52]
Phosphoglycerate Kinase 1	PGK1_HUMAN	P00558	PGK1	[12]
Plakophilin-1	PKP1_HUMAN	Q13835	PKP1	[59]
Plasma protease C1 inhibitor*	SCI_HUMAN	P05155	SERPING1	[52]
Platelet endothelial cell adhesion molecule*	PECA1_HUMAN	P16284	PECAM1	[61]
Platelet glycoprotein 4*	CD36_HUMAN	P16671	CD36	[65]
Platelet-derived growth factor D*	PDGF_D_HUMAN	Q99ZP0	PDGF	[65]
Platelet-derived growth factor receptor alpha*	PGFRA_HUMAN	P16234	PDGFRA	[52, 57, 65]
Platelet-derived growth factor receptor beta*	PGFRB_HUMAN	P09619	PDGFRB	[52, 57]
Platelet-derived growth factor subunit B	PDGF_B_HUMAN	P01127	PDGFB	[57]
Polyubiquitin-B*	UBB_HUMAN	P0CG47	UBB	[52, 65]
PPARg2***	–	–	PPARG	[52]
Probetaclulin*	BTC_HUMAN	P35070	BTC	[52, 65]
Pro-epidermal growth factor*	EGF_HUMAN	P01133	EGF	[61]
Progesterone receptor	PRGR_HUMAN	P06401	PGR	[52]
pro-Glucagon	GLUC_HUMAN	P01275	GCG	[65]
Progranulin	GRN_HUMAN	P28799	GRN	[65]
Proheparin-binding EGF-like growth factor*	HBEGF_HUMAN	Q99075	HBEGF	[65]
Prokinetin-1*	PROK1_HUMAN	P58294	PROK1	[65]
ProSAAS	PCSN1_HUMAN	Q9UHG2	PCSK1N	[52]
Prostaglandin D2 receptor 2*	PD2R2_HUMAN	Q9Y5Y4	PTGDR2	[65]
Protein AMBP*	AMBP_HUMAN	P02760	AMBP	[65]
Protein FAM3B	FAM3B_HUMAN	P158499	FAM3B	[52, 65]
Protein S100-A6	S10A6_HUMAN	P06703	S100A6	[65]
Protein S100-A8	S10A8_HUMAN	P05109	S100A8	[65]
Protein S100-A10	S10AA_HUMAN	P60903	S100A10	[65]
Protein S100-A12	S10AC_HUMAN	P80511	S100A12	[65]
Protein Wnt-5a	WNT5A_HUMAN	P41221	WNT5A	[57]
Protein Wnt-5b	WNT5B_HUMAN	Q9H1J7	WNT5B	[57]
Protein wntless homolog	WLS_HUMAN	Q5T9L3	WLS	[57]
Protocadherin Fat 1	FAT1_HUMAN	Q14517	FAT1	[57]
Protocadherin Fat 4	FAT4_HUMAN	Q6V017	FAT4	[57]
Protocadherin gamma-C3	PCDGK_HUMAN	Q9UN70	PCDHG3C	[57]
Protocadherin-7	PCDH7_HUMAN	O60245	PCDH7	[57]
Protocadherin-9	PCDH9_HUMAN	Q9HC56	PCDH9	[57]

© Springer
Protein	Abbreviation	UniProtKB	Gene	Ref.
Protocadherin-18	PCD18_HUMAN	Q9HCL0	PCDH18	[57]
Proto-oncogene tyrosine-protein kinase Ret*	RET_HUMAN	P07949	RET	[65]
P-selectin	LYM3_HUMAN	P16109	SELP	[52]
Ras-related protein R-Ras	RRAS_HUMAN	P10301	RRAS	[57]
Ras-related protein R-Ras2	RRAS2_HUMAN	P62070	RRAS2	[57]
Receptor tyrosine-protein kinase erbB-2*	ERBB2_HUMAN	P04626	ERBB2	[65]
Receptor tyrosine-protein kinase erbB-4*	ERBB4_HUMAN	Q15303	ERBB4	[65]
Receptor-interacting serine/threonine-protein kinase 1a*	RIPK1_HUMAN	Q13546	RIPK1	[65]
Receptor-type tyrosine-protein kinase FLT3*	FLT3_HUMAN	P36888	FLT3	[65]
Receptor-type tyrosine-protein phosphatase delta*	PTPRD_HUMAN	P23468	PTPRD	[52]
Rho family-interacting cell polarization regulator 1	RIPR1_HUMAN	Q6ZS17	RIPOR1	[57]
Rho GTPase-activating protein 1	RHG01_HUMAN	Q07960	ARHGAP1	[57]
Rho guanine nucleotide exchange factor 1	ARHG1_HUMAN	Q92888	ARHGEF1	[57]
Rho guanine nucleotide exchange factor 7	ARHG7_HUMAN	Q14155	ARHGEF7	[57]
Rho-associated protein kinase 1a*	ROCK1_HUMAN	Q13464	ROCK1	[52, 57]
Rho-associated protein kinase 2	ROCK2_HUMAN	Q75116	ROCK2	[57]
Rho-related GTP-binding protein RhoB	RHOB_HUMAN	P62745	RHOB	[57]
Rho-related GTP-binding protein RhoE	RND3_HUMAN	P61587	RND3	[57]
Rho-related GTP-binding protein RhoG	RHOG_HUMAN	P84095	RHOG	[57]
Ribosomal oxygenase 2*	RIOX2_HUMAN	Q8IU8	RIOX2	[52]
Scavenger receptor cysteine-rich type 1 protein M130*	C163A_HUMAN	Q86V7B	CD163	[52]
Sclerostin*	SOST_HUMAN	Q9BQ84	SOST	[65]
Secreted frizzled-related protein 1*	SFRP1_HUMAN	Q8N474	SFRP1	[65]
Serum amyloid A-1 protein*	SAA1_HUMAN	P0DIJ8	SAA1	[52]
Secreted frizzled-related protein 3*	SFRP3_HUMAN	Q92765	FRZB	[65]
Secreted frizzled-related protein 4*	SFRP4_HUMAN	Q6FH7	SFRP4	[60]
Serine/threonine-protein kinase MRCK alpha	MRCKA_HUMAN	Q5VT25	CDC42BPA	[57]
Serine/threonine-protein kinase MRCK beta	MRCKB_HUMAN	Q9YS52	CDC42BBP	[57]
Serotransferrin	TRFE_HUMAN	P02787	TF	[59]
Sex hormone-binding globulin*	SHBG_HUMAN	P04278	SHBG	[52]
Sialic acid-binding Ig-like lectin 5*	SIGL5_HUMAN	Q15389	SIGLEC5	[65]
Sialic acid-binding Ig-like lectin 9a*	SIGL9_HUMAN	Q9Y336	SIGLEC9	[52]
Signal peptide, CUB and EGF-like domain-containing protein 3	SCUB3_HUMAN	Q8IX30	SCUBE3	[57]
Signal transducer CD24*	CD24_HUMAN	P25063	CD24	[65]
SLIT-ROBO Rho GTPase-activating protein 1	SRGP1_HUMAN	Q7Z6B7	SRGAP1	[57]
SLIT-ROBO Rho GTPase-activating protein 2	SRGP2_HUMAN	Q75044	SRGAP2	[57]
Solute carrier family 2, facilitated glucose transporter 1a*	GTR1_HUMAN	P11166	SLC2A1	[52, 65]
Solute carrier family 2, facilitated glucose transporter 2a*	GTR2_HUMAN	P11168	SLC2A2	[52]
Solute carrier family 2, facilitated glucose transporter 2b*	GTR3_HUMAN	P11169	SLC2A3	[65]
Solute carrier family 2, facilitated glucose transporter 3a*	GTR5_HUMAN	P22732	SLC2A5	[52, 65]
Somatotropin*	SOMA_HUMAN	P01241	GH1	[52]
Sonic hedgehog protein*	SHH_HUMAN	Q15465	SHH	[52]
SPARC	SPRC_HUMAN	P09486	SPARC	[60]
Sphingosine 1-phosphate receptor 1a*	S1PR1_HUMAN	P21453	S1PR1	[52, 65]

Stem Cell Rev and Rep (2022) 18:854–901

© Springer
Protein	Abbreviation	UniProtKB	Gene	Ref.
Stromal cell-derived factor 1*	SDF1_HUMAN	P48061	CXCL12	[52]
Stromelysin-2*	MMP10_HUMAN	P09238	MMP10	[65]
Stromelysin-3	MMP11_HUMAN	P24347	MMP11	[52, 65]
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1*	SMCE1_HUMAN	Q969G3	SMARCE1	[65]
TGF-beta 5***	–	–	TGFBR5	[52]
TGF-beta receptor type-2	TGFR2_HUMAN	P37173	TGFBR2	[57]
Thioredoxin-interacting protein*	TXNIP_HUMAN	Q9H3M7	TXNIP	[52, 65]
Thrombopoietin	TPO_HUMAN	P40225	TPO	[65]
Thrombospondin-1	TSP1_HUMAN	P07996	THBS1	[59, 60]
Thrombospondin-2	TSP2_HUMAN	P35442	THBS2	[52]
Thyroid peroxidase*	PERT_HUMAN	P07202	TPO	[52]
Thyrotropin subunit beta*	TSHB_HUMAN	P01222	TSHB	[52]
T lymphocyte activation antigen CD80*	CD80_HUMAN	P33681	CD80	[60, 65]
Toll-like receptor 2*	TLR2_HUMAN	O60603	TLR2	[65]
Toll-like receptor 4*	TLR4_HUMAN	O00206	TLR4	[65]
TRA-1-60 and TRA-1-81***	–	–	PODXL	[52]
Transcription factor SOX-2*	SOX2_HUMAN	P48431	SOX2	[65]
Transcription initiation factor TFIIID subunit 4*	TAF4_HUMAN	O00268	TAF4	[65]
Transferrin receptor protein 1*	TFR1_HUMAN	P02786	TFRC	[52, 65]
Transforming growth factor alpha (cleaved from Protransforming growth factor alpha)	TGFA_HUMAN	P01135	TGFA	[61]
Transforming growth factor beta receptor type 3*	TGBR3_HUMAN	Q03167	TGFBR3	[65]
Transforming growth factor beta-1 (cleaved from Transforming growth factor beta-1 proprotein)	TGBF1_HUMAN	P01137	TGFBR1	[52, 57, 65]
Transforming growth factor beta-3* (cleaved form Transforming growth factor beta-3 proprotein)	TGBF3_HUMAN	P10600	TGFBR3	[61]
Transforming growth factor-beta-induced protein ig-h3	BGH3_HUMAN	Q15582	TGFBI	[57, 59]
Transforming protein RhoA	RHOA_HUMAN	P61586	RHOA	[57]
Transient receptor potential cation channel subfamily M member 7*	TRPM7_HUMAN	Q96QT4	TRPM7	[65]
Triggering receptor expressed on myeloid cells 1*	TREM1_HUMAN	Q9NP99	TREM1	[61]
Troponin C, slow skeletal and cardiac muscles*	TNUNC1_HUMAN	P63316	TNNC1	[52]
Tumor necrosis factor ligand superfamily member 10*	TNF10_HUMAN	P5091	TNFSF10	[65]
Tumor necrosis factor ligand superfamily member 11*	TNF11_HUMAN	O14788	TNFSF11	[65]
Tumor necrosis factor ligand superfamily member 13*	TNF13_HUMAN	O75888	TNFSF13	[60]
Tumor necrosis factor ligand superfamily member 15*	TNF15_HUMAN	O95150	TNFSF15	[65]
Tumor necrosis factor ligand superfamily member 4*	TNFL4_HUMAN	P23510	TNFSF4	[65]
Tumor necrosis factor ligand superfamily member 6*	TNFL6_HUMAN	P48023	FASLG	[65]
Tumor necrosis factor ligand superfamily member 8*	TNFL8_HUMAN	P32971	TNFRSF8	[52, 65]
Tumor necrosis factor receptor superfamily member 10A*	TR10A_HUMAN	O00220	TNFRSF10A	[52]
Tumor necrosis factor receptor superfamily member 10B*	TR10B_HUMAN	O14763	TNFRSF10B	[52]
Tumor necrosis factor receptor superfamily member 11B*	TR11B_HUMAN	O00300	TNFRSF11B	[60]
Tumor necrosis factor receptor superfamily member 13B*	TR13B_HUMAN	O14836	TNFRSF13B	[52]
Tumor necrosis factor receptor superfamily member 13C*	TR13C_HUMAN	Q96JR3	TNFRSF13C	[52, 60, 65]
Tumor necrosis factor receptor superfamily member 6B*	TNF6B_HUMAN	O95407	TNFRSF6B	[65]
Tumor necrosis factor receptor superfamily member 14B*	TNR14_HUMAN	Q92956	TNFRSF14	[65]
Tumor necrosis factor receptor superfamily member 17B*	TNR17_HUMAN	Q02223	TNFRSF17	[65]
Tumor necrosis factor receptor superfamily member 19B*	TNR19_HUMAN	Q9NS68	TNFRSF19	[65]
Tumor necrosis factor receptor superfamily member 25B*	TNR25_HUMAN	Q93038	TNFRSF25	[52, 65]
Tumor necrosis factor receptor superfamily member 27B*	TNR27_HUMAN	Q9HAV5	EDA2R	[52, 65]
reported in Table 2S. The biological processes in which a relatively large number of proteins are involved are: developmental process, signaling and cell communication, cell adhesion, immune system process, cellular component organization, response to stimulus, regulation of cellular process, apoptotic process, cellular protein metabolic process, viral process, regulation of molecular function, locomotion, and positive regulation of cell population proliferation, immune system process (17% immune response) and developmental processes (17% multicellular organism development) (Fig. 4).

Therapeutic Approaches of AT-MSC-EV Proteins

These results illustrate the role of AT-MSC-EVs in cell-cell communication [3–6], and the promising therapeutic effects observed in different research fields. Regarding the musculoskeletal system, AT-MSC-EVs have shown protective effects against cartilage degeneration, promotion of cell proliferation and migration of osteoarthritis chondrocytes, and antisenescence effects in osteoarthritis osteoblasts in vitro and in vivo [66, 78]. They have also shown protective properties on muscle damage in an in vivo model of hindlimb...
ischemia and in an in vitro model of ischemia/reperfusion [52]. These effects may be a consequence of the presence of proteins such as lactotransferrin, C-X-C motif chemokine 16, protein Wnt-5a, and transforming protein RhoA, which are involved in positive regulation of chondrocyte proliferation, positive regulation of cell migration, regulation of inflammatory response and regulation of osteoblast proliferation, respectively. The complete list of proteins involved in these processes is reported in Table 2S.

With regard to cardiology and vascular system, AT-MSC-EVs are involved in a wide range of biological processes, including heart development, contraction and morphogenesis, positive regulation of cardiac muscle cell proliferation and hypertrophy, regulation of cardiac muscle cell apoptotic process and proliferation, blood vessel maturation, remodeling and morphogenesis, regulation of blood vessel diameter and angiogenesis, among others (Table 2S). Hence, numerous proteins detected in AT-MSC-EVs could account for the protective effects observed in cardiac function and cardiomyocytes after their injection in an in vivo model of myocardial infarction [79]. In addition, the effects of AT-MSC-EVs in angiogenesis have been also studied in vitro and in vivo [60, 72, 80]. Proteins detected in AT-MSC-EVs such as IL-1 alpha and apelin receptor are proangiogenic, while SPARC is antiangiogenic (Table 2S).

Human AT-MSC-EVs also have an inhibitory effect on vein graft neointima formation, as observed in a mouse model of vein grafting [81]. This effect correlated with decreased macrophage infiltration, attenuated inflammatory cytokine expression, and reduced activation of MAPK and phosphatidylinositol-3 kinase signaling pathways [81]. EV proteins potentially involved in these processes are thrombospondin-1 (inflammatory response), IL-4 (negative regulation of macrophage activation), growth factor receptor-bound protein 2 (regulation of MAPK cascade) and MAP kinase 1 (regulation of phosphatidylinositol 3-kinase signaling) (Table 2S).

The effects of AT-MSC-EVs proteins in the vascular system may also be related to the cardio-renal protection observed in a deoxycorticosterone acetate-salt hypertensive animal model [82]. Thus, the administration of AT-MSC-EVs in this in vivo model protected against renal damage, preserved renal function, reduced inflammatory response, prevented fibrosis in the kidney and in cardiac tissue, and conserved normal blood pressure [82]. The administration of AT-MSC-EVs also showed a renal protective effect in an in vivo model of acute kidney injury [83]. Proteins detected in AT-MSC-EVs such as integrin alpha-3, IL-4, IL-10, collagen alpha-2(I) chain or periostin could be implicated in these outcomes (Table 2S).

Finally, the action of AT-MSC-EVs in skin diseases has also been studied [62, 68, 84, 85]. Human AT-MSC-EVs enhanced cutaneous repair and regeneration, both in vitro and in vivo, by the promotion of cell migration and proliferation, the inhibition of cell apoptosis and the regulation of fibroblast differentiation during skin wound healing [68, 84, 85]. This is unsurprising, considering that the main biological
Fig. 2 Simplified outline of the main molecular functions enabled by proteins detected in EVs derived from human AT-MSC. For a complete review of the relationships between gene ontology terms see the chart view in the web-based tool QuickGO (https://www.ebi.ac.uk/QuickGO/).
processes of proteins described previously include response to stimulus (wound healing) and regulation of cellular processes (cell proliferation and migration) and apoptotic processes (Fig. 3, Table 2S). Proteins involved in these biological processes, along with those previously described in the vascular system, could support the protective effect of skin flaps against ischemia/reperfusion injury [62]. Although several proteins may be involved, in this study the observed effect was ascribed to the promotion of angiogenesis via IL-6, along with other mechanisms [62].

miRNA

AT-MSC-EVs cargo also contains several types of RNA, mainly miRNA, tRNA, mRNA, rRNA, snRNA, snoRNA and scRNA [53, 54]. AT-MSC-EVs are rich in miRNA [12, 54, 69, 70], which represents approximately 44% of all small, non-coding RNA detected in AT-MSC [53]. Currently, 604 miRNAs have been identified in AT-MSC-EVs (Table 2). The methods used for RNA analysis were sequencing systems [11, 53, 54, 59, 66, 67, 71, 74], quantitative real-time PCR [64, 65, 68, 72, 73], OpenArray systems [69, 70] and GeneChip RNA array [12], among others. The isolation methods of EVs used in those studies were centrifugation and/or ultracentrifugation [12, 64, 65, 67–69, 72, 74], commercial EV isolation kits [11, 53, 54, 59, 71, 73] and multi-filtration [66].

In this review, we present a comprehensive analysis of miRNAs currently identified in human AT-MSC-EVs. 489 miRNAs from 255 gene families were classified. The mir-515 and mir-10 families have the greatest numbers of miRNAs (Table 2). However, there was no information available about which gene families the other 115 miRNAs belonged to. In addition, hsa-miR-320a-3p and hsa-miR-375-3p were identified by the sequence and the precursor reported by Reza et al. [54], since the actual names used in the reference, hsa-miR-320a and hsa-miR-375, respectively, were not found for mature miRNA in any of the databases. Hsa-miR-1273a [54, 66] was included in the miRBase database as a dead miRNA entry. It was eventually removed due to lack of consistency between the patterns of mapped reads from RNA-sequencing experiments and the gene being processed as a miRNA. hsa-miR-1274a, hsa-miR-1274b, hsa-miR-1300 and hsa-miR-720 [65] were also included in the miRBase database as dead miRNA entries. They were removed because it is likely that they are fragments of tRNAs and mRNA. This could be the reason for their absence from
the RNAcentral database. 44 miRNAs were not found in any of the databases (Table 2). Other special cases included hsa-
mir-548aa and hsa-mir-548 t-3p [66] – there is a specific entry for each one in the miRBase database, however, both entries showed the same sequence and RNAcentral link. Therefore, in the present review they are treated as the same miRNA. The same applies to hsa-miR-199b-3p and hsa-miR-
199a-3p [53, 65, 66, 72].

The variety of miRNAs present in AT-MSC-EVs may play a role in the different therapeutic effects based on the paracrine properties of MSC [13]. Regardless, to confirm the involvement of miRNAs in these effects, it is necessary to take into consideration not only the presence of a specific miRNA, but also other factors such as concentration, structure, and availability of accessory proteins [13].

Only 199 miRNA showed GO annotations for molecular function when using the QuickGO database [55]. The molecular functions enabled by these miRNAs are mRNA binding involved in post-transcriptional gene silencing (95%), mRNA 3’-UTR binding (22%), RNA polymerase II complex binding (6%), single-stranded RNA binding and high-density lipoprotein particle binding (2% each), protein binding, transcription regulatory region sequence-specific DNA binding and sequence-specific single stranded DNA binding (1% each) (Fig. 5). All of these functions are specific child terms of the binding function (Fig. 6) which is also the most relevant molecular function of AT-MSC-EV proteins, as previously described. The specific molecular functions enabled by each miRNA are detailed in Table 3S.

The number of miRNAs with GO annotations of biological processes in QuickGO [55] was 212. These miRNAs take part in biological processes described by 577 different GO terms. The biological processes in which the greatest number of miRNA are involved are: negative regulation of gene expression, response to stimulus, regulation of cellular process, developmental process, locomotion, signaling, and cell communication (Fig. 7). The specific miRNAs involved in each process are detailed in Table 4S. 89% of these miRNAs are involved in gene silencing (Fig. 8). Other relevant GO terms in which a large number of miRNAs are included are mRNA mediated inhibition of translation (28%) negative regulation of gene expression (17%), negative regulation of angiogenesis (14%), negative regulation of inflammatory response (13%) and negative regulation of cell migration involved in sprouting angiogenesis (11%) (Fig. 8).

Therapeutic approaches of AT-MSC-EV miRNAs

Based on the data, miRNAs present in AT-MSC-EV cargo support their potential use as new treatments in various research fields. Similar to proteins, different miRNAs are involved in inflammatory response (hsa-let-7 g-5p, hsa-miR-16-5p, hsa-miR-92a-3p), negative regulation of macrophage activation (hsa-miR-124-3p), regulation of MAPK cascade...
Family	Name	RNAcental	Sequence	Ref.
let-7	hsa-let-7a-3p	URS000004F5D8_9606	CUAAUACAAUCUACUGUCUUUC	[53]
	hsa-let-7a-5p (hsa-let-7a)	URS0000416056_9606	UGAGGUAGGUAGGUAGUAAGUU	[11, 12, 53, 54, 65, 66, 69]
	hsa-let-7b-3p (hsa-let-7b)	URS00005918D5_9606	CUAAUACACCUACUGCUUCCCC	[53, 65]
	hsa-let-7b-5p (hsa-let-7b)	URS0000324096_9606	UGAGGUAGGUAGGUAGUGGUUGGGU	[12, 53, 54, 65]
	hsa-let-7c-3p	URS00000A07C1_9606	AGAGGUAGGUAGGUAGGCAUAGGGU	[54, 65]
	hsa-let-7c-5p (hsa-let-7c)	URS00004AFF8D_9606	UGAGGUAGUAGGUAGGUACAGUU	[54, 65]
	hsa-let-7g-3p (hsa-let-7g)	URS0000237CBD_9606	CUGCGCAAGCUACUGCCUUGCU	[65]
	hsa-let-7g-5p (hsa-let-7g)	URS00004023EA_9606	UGAGGUAGGUAGGUAGGUUGCGUUG	[53, 54, 72]
	hsa-let-7h-3p (hsa-let-7h)	URS00002F4762_9606	CAAGCUUGUAUCUAUAGGUAGA	[65]
	hsa-let-7h-5p (hsa-let-7h)	URS000016D2D4_9606	UACCCUGUAGAACCGAAUUUGUG	[11, 53, 54, 65, 67]
	hsa-let-7i-3p (hsa-let-7i)	URS00001C308D_9606	CCACCCGUAGAACCGACCUUGCGC	[65]
	hsa-let-7i-5p	URS00001925C1_9606	UCACAAGUCAGGCUCUUGGGGAC	[65]
	hsa-let-7j-3p (hsa-let-7j)	URS00001230A0_9606	UACCAUACUGUAUACUGUAGA	[54, 65, 69]
	hsa-let-7j-5p (hsa-let-7j)	URS0000476BE1_9606	AGCAGCAUUGUACAGGGCUAUGA	[54, 65, 69]
	hsa-let-7k-3p (hsa-let-7k)	URS0000209905_9606	UCCUGAGACCACUAACUGUGA	[12, 53, 54, 65, 66, 72]
	hsa-let-7k-5p (hsa-let-7k)	URS00005C62FC_9606	CAAGCUUCGUACUACGUAGGCG	[65]
	hsa-miR-98-3p (hsa-miR-98)	URS0000157026_9606	AACCCGUAGAUCCGAUCUUGUG	[54, 65]
	hsa-miR-98-5p (hsa-miR-98)	URS00001230A0_9606	UACCAUACUGUAUACUGUAGA	[54, 65, 69]
	hsa-miR-99a-3p (hsa-miR-99a*)	URS0000209905_9606	UCCUGAGACCACUAACUGUGA	[12, 53, 54, 65, 66, 72]
	hsa-miR-99a-5p (hsa-miR-99a)	URS00005C62FC_9606	CAAGCUUCGUACUACGUAGGCG	[65]
	hsa-miR-99b-3p (hsa-miR-99b*)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
	hsa-miR-99b-5p (hsa-miR-99b)	URS00001925C1_9606	UCACAAGUCAGGCUCUUGGGGAC	[65]
	hsa-miR-99c-3p (hsa-miR-99c)	URS000004AC389_9606	ACAGAUUCCGAUUCUGGAGAAU	[53, 65, 70]
	hsa-miR-99c-5p (hsa-miR-99c)	URS000058760A_9606	UACCUGUAGAACCGAAUUGUG	[11, 53, 54, 65, 67]
	hsa-miR-99d-3p (hsa-miR-99d)	URS00002F4762_9606	CAACUGUACUAGGGAAUA	[65]
	hsa-miR-99d-5p (hsa-miR-99d)	URS00001230A0_9606	UACCAUACUGUAUACUGUAGA	[54, 65, 69]
	hsa-miR-99e-3p (hsa-miR-99e)	URS00005C62FC_9606	CAAGCUUCGUACUACGUAGGCG	[65]
	hsa-miR-99e-5p (hsa-miR-99e)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
	hsa-miR-99f-3p (hsa-miR-99f)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
	hsa-miR-99f-5p (hsa-miR-99f)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
	hsa-miR-99g-3p (hsa-miR-99g)	URS0000476BE1_9606	AGCAGCAUUGUACAGGGCUAUGA	[12, 53, 54, 65, 69]
	hsa-miR-99g-5p (hsa-miR-99g)	URS00005C62FC_9606	CAAGCUUCGUACUACGUAGGCG	[65]
	hsa-miR-99h-3p (hsa-miR-99h)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
	hsa-miR-99h-5p (hsa-miR-99h)	URS0000157026_9606	UCCUGAGACCACUAACUGUGA	[54, 65]
Table 2 (continued)

Family	Name	RNAcentral	Sequence	Ref.
mir-122	hsa-miR-122-5p	URS00003380CC_9606	UGGAGUGUGACAAGUGUGUUG	[59, 65]
	(hsa-miR-122)			
mir-1225	hsa-miR-1225-3p	URS000075D62D_9606	UGAGGCGGCGGAGGCGGCGGAGG	[65]
	hsa-miR-1225-5p	URS000075D0F5_9606	GGAGGCGGCGGAGGCGGCGGAGG	[72]
mir-1226	hsa-miR-1226-5p	URS000075EAB0_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[65]
mir-1227	hsa-miR-1227-3p	URS000075CFA8_9606	CGUGCCACCCUUUCUCCAGCAGG	[65]
mir-1228	hsa-miR-1228-5p	URS00004F1E01_9606	GUGGGCCCGGCGGAGGCGGCGGAGG	[65, 67]
	(hsa-miR-1228*)			
mir-1233	hsa-miR-1233-3p	URS000075D36A_9606	UGAGGCGGCGGAGGCGGCGGAGG	[65]
mir-1238	hsa-miR-1238-3p	URS000075E57E_9606	UGAGGCGGCGGAGGCGGCGGAGG	[65]
mir-124	hsa-miR-124-3p	URS000075D0F5_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[72]
mir-1244	hsa-miR-1244	URS000075D0F5_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[65]
mir-1246	hsa-miR-1246-3p	URS000075D0F5_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[65]
mir-1247	hsa-miR-1247-3p	URS000075D0F5_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[65]
	(hsa-miR-1247)			
mir-1249	hsa-miR-1249-3p	URS000075D0F5_9606	GUGAGGCGGCGGAGGCGGCGGAGG	[65]
	(hsa-miR-1249)			
mir-1253	hsa-miR-1253	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1254	hsa-miR-1254	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1255	hsa-miR-1255b-5p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-1255b)			
mir-1256	hsa-miR-1256	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-126	hsa-miR-126-3p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-126)			
mir-1260a	hsa-miR-1260a	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1260b	hsa-miR-1260b	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1262	hsa-miR-1262	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1267	hsa-miR-1267	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1268	hsa-miR-1268a	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-127	hsa-miR-127-3p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-127)			
mir-1270	hsa-miR-1270	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1271	hsa-miR-1271-5p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-1271)			
mir-1272	hsa-miR-1272	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1273	hsa-miR-1273a	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	hsa-miR-1273d	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	hsa-miR-1273e	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	hsa-miR-1273f	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
mir-1275	hsa-miR-1275	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	hsa-miR-128-1-5p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-128a)			
mir-128	hsa-miR-128-3p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-128a)			
mir-1285	hsa-miR-1285-3p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-1285)			
mir-1285	hsa-miR-1285-5p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
	(hsa-miR-1285)			
mir-129	hsa-miR-129-2-3p	URS000075B58F_9606	GAAGGAUCAGUUAACUGAGCUACG	[65]
Family	Name	RNAcental	Sequence	Ref.
------------	-----------------------------	-----------	--	--------
hsa-miR-129-5p	URS00004E1410_9606	CUUUUUGGGCGUGGGCUGUUCGCU	[54]	
mir-1290	URS000043F369_9606	UGGAAUUUGGAUCAGGGGCG	[54, 65, 66]	
mir-1291	URS000047E28E_9606	UGGCUCUGCACGAGCGAGCCAGGCAU	[54, 65]	
mir-1292	URS000055860D_9606	UGGGAACGGGUGUGCCAGCGCGUUGGCU	[67]	
mir-130	URS0000315338_9606	CAGUGCAAGUGUUAAGGGCAU	[65]	
mir-1303	URS000032FC1A_9606	UUUAGAGACGGGCUUCUUCGCU	[54, 65]	
mir-1305	URS000040EC3B_9606	UUUUCAACUCUAUGGGAAGGA	[65]	
mir-1306	URS0000500449_9606	CCACCUCCCUGAAGACGCUCA	[67]	
mir-1307	URS00000EEF5F_9606	UCGACCGGACUCGCAGCGCU	[54]	
mir-132	URS00006054DA_9606	UAACAGUCUCAAGCCUAGUGCU	[65]	
mir-133	URS00001D6BAE_9606	UAACAGUCUCCAGUCCGACG	[65]	
mir-134	URS0000272A92_9606	UGUACUGUGUACAGUGACCGG	[65]	
mir-135	URS00000759B67_9606	UGGGGAGCGGCCCCGUGGGG	[67]	
mir-136	URS000000204177_9606	CAUCAUCUGUCUAAUGAGUCU	[54, 65]	
mir-137	URS00004EAB18_9606	ACUCCAUUGUUGUGUGAUGAG	[65]	
mir-138	URS000075AA94_9606	GCUGAUCAGCAGCAGUCGGU	[65]	
mir-139	URS000040780F_9606	AGUUGGGCGUAAGCGCAUGG	[54, 65]	
mir-140	URS0000023BE29_9606	UGAGACGGCGGCGUGUUGCUGG	[65]	
mir-142	URS00002620A7_9606	UGUUGAGGUUUCUCAUUUAUGGA	[65]	
mir-143	URS00001E0AEA_9606	CAUAAAGUUGAAGAAGCAGCUA	[65]	
mir-144	URS000005C2A6D_9606	UGAGAAGUGACUGACAGUGC	[11, 53, 54, 65]	
mir-145	URS0000037C5A8_9606	UACAGUAUAGAUGAUGUAC	[53, 54, 65]	
mir-146	URS000002E92A8_9606	GGAUAAUAUCAUAAUCAGUAAG	[65]	
mir-147	URS0000052F380_9606	GGAUUGUGGAUGAAUGUUCGUCU	[65]	
mir-148	URS0000052F89_9606	GUCCAGUUUUCCCAGGAUCCCU	[12, 65, 66]	
mir-149	URS000050B527_9606	UGAGAUCGAAUUUCAUGG	[11, 65, 69–71]	
mir-150	URS000050CCE0_9606	UGCCCGUGACUGACUGUUCG	[65]	
mir-151	URS000061B694_9606	UGAGAAGUAGUAUCUAGG	[11, 65]	
Family	Name	RNAcental	Sequence	Ref.
--------	------	-----------	----------	------
mir-1468	hsa-miR-1468-5p	URS00002ECEE4_9606	CUCGUUUUGCCUGUUUCGCU	[54]
mir-148	hsa-miR-148a-3p	URS00003BBF48_9606	UCAGUAGCUCAGAAGCUUUGU	[54, 64, 65, 74]
	(hsa-miR-148a)			[63, 64, 70]
	hsa-miR-148b-3p			[65]
	(hsa-miR-148b)			[65]
	hsa-miR-148b-5p			[65]
	(hsa-miR-148b*)			[65]
mir-149	hsa-miR-149-3p	URS00001C770D_9606	UUGCUUUCUUGCUUUCGCU	[65]
	hsa-miR-149-5p			[65]
mir-15	hsa-miR-15a-3p	URS00001C94E0_9606	CAGGCCAUAUAUUGCUUCUCA	[65]
	(hsa-miR-15a*)			[65]
	hsa-miR-15b-3p			[65]
	(hsa-miR-15b)			[65]
	hsa-miR-15b-5p			[65]
	(hsa-miR-15b)			[65]
	hsa-miR-16-1-3p			[65]
	(hsa-miR-16-1*)			[65]
	hsa-miR-16-2-3p			[65]
	(hsa-miR-16-2*)			[65]
	hsa-miR-16-5p			[65]
	(hsa-miR-16)			[65]
	hsa-miR-195-3p			[65]
	hsa-miR-195-5p			[65]
	(hsa-miR-195)			[65]
	hsa-miR-150-5p			[65]
	(hsa-miR-150)			[65]
	hsa-miR-153-3p			[54]
	hsa-miR-1538			[67]
	hsa-miR-154-3p			[65]
	(hsa-miR-154)			[65]
	hsa-miR-323a-3p			[65]
	(hsa-miR-323)			[65]
	hsa-miR-323b-5p			[65]
	(hsa-miR-453)			[65]
	hsa-miR-369-3p			[65]
	hsa-miR-369-5p			[65]
	(hsa-miR-377)			[65]
	hsa-miR-381-3p			[54]
	hsa-miR-382-5p			[65]
	(hsa-miR-382)			[65]
	hsa-miR-409-3p			[54]
	hsa-miR-409-5p			[54]
	hsa-miR-410-3p			[54]
	hsa-miR-539-5p			[65]
	(hsa-miR-539)			[65]
mir-155	hsa-miR-155-5p			[65]
	(hsa-miR-155)			[65]
mir-17	hsa-miR-106a-5p			[65]
	(hsa-miR-106a)			[65]
	hsa-miR-106b-3p			[65]
	(hsa-miR-106b*)			[65]
Table 2 (continued)

Family	Name	RNAcental	Sequence	Ref.
hsa-miR-106b-5p (hsa-miR-106b)	URS00004449AE_9606	UAAAGUGCUAGCAGACUGA	[65]	
hsa-miR-17-3p (hsa-miR-17*)	URS00004636A3_9606	ACUGCAGUGAACACUGCUAG	[65]	
hsa-miR-17-5p (hsa-miR-17)	URS00002075FA_9606	CAAAGUGCUAAGCAGAUG	[65]	
hsa-miR-18a-3p (hsa-miR-18a*)	URS00004311FE_9606	ACUGCCCUAAGCUCUCUUCUG	[65]	
hsa-miR-18a-5p (hsa-miR-18a)	URS000035CC3E_9606	UAAAGUGCUAUCAGACUGA	[65]	
hsa-miR-18b-5p (hsa-miR-18b)	URS00004565E5_9606	UAAAGUGCUAUCAGACUGA	[65]	
hsa-miR-20a-3p (hsa-miR-20a*)	URS0000042E1F_9606	UAAAGUGCUAUCAGACUGA	[65]	
hsa-miR-20a-5p (hsa-miR-20a)	URS00000754A2C_9606	UAAAGUGCUAUCAGACUGA	[65, 72]	
mir-17	hsa-miR-20b-5p (hsa-miR-20b)	URS000002B378_9606	CAAAGUGCUAUCAGACUGA	[65]
hsa-miR-93-3p (hsa-miR-93*)	URS0000149452_9606	AACAUUCAACGCUGUGGUG	[54, 59]	
hsa-miR-93-5p (hsa-miR-93)	URS00004565E5_9606	UAAAGUGCUAUCAGACUGA	[65]	
hsa-miR-181a-2-3p (hsa-miR-181a-2*)	URS000003F252_9606	ACCAUCGACCGUGUAACUAC	[65]	
mir-181	hsa-miR-181a-3p (hsa-miR-181a-1)	URS00003DA300_9606	AACAUUCAACGCUGUGGUG	[54, 65]
hsa-miR-181b-5p (hsa-miR-181b)	URS0000605E00_9606	AACAUUCAACGCUGUGGUG	[54]	
hsa-miR-181c-3p (hsa-miR-181c*)	URS0000244A71_9606	AACAUUCAACGCUGUGGUG	[65]	
hsa-miR-181c-5p (hsa-miR-181c)	URS000018C928_9606	AACAUUCAACGCUGUGGUG	[54, 65]	
mir-182	hsa-miR-182-5p (hsa-miR-182)	URS00001CC379_9606	UUUGCGAAAGUGUAGAACUCA	[65]
mir-1825	hsa-miR-1825	URS0000754A4A_9606	UCAGUCGUCCUCUCUCUCUC	[65]
hsa-miR-183-3p (hsa-miR-183)	URS0000528C96_9606	UAGCAUUCGAGAGGGGAUA	[65]	
hsa-miR-183-5p (hsa-miR-183)	URS0000528C96_9606	UAGCAUUCGAGAGGGGAUA	[65]	
mir-184	hsa-miR-184	URS0000543D82_9606	UGGACGAGAAACUGUAAAGGGG	[65]
hsa-miR-185-3p	URS00002367FA_9606	AGGGCGUUGCUUUCCUCUGUCG	[67]	
hsa-miR-185-5p (hsa-miR-185)	URS00004176D4_9606	UGGAGAGAAAGGCAGUUCCUG	[65, 70]	
mir-186	hsa-miR-186-5p (hsa-miR-186)	URS000040DCFF_9606	CAAAGAAUCUCCUUUUGGCU	[54, 65, 70]
hsa-miR-188-3p (hsa-miR-188)	URS00004B4B85_9606	CCUCACACACCCAGGCUUGCU	[65, 67]	
hsa-miR-332-3p (hsa-miR-332)	URS00004636A3_9606	ACUGCAGUGAACACUGCUAG	[65, 70]	
hsa-miR-660-5p (hsa-miR-660)	URS00000116A0_9606	UACCCAGUCAUGCAUGGAGGU	[65, 70]	
mir-19	hsa-miR-19a-3p (hsa-miR-19a)	URS000006FD4D_9606	UGGUGGAUUCAUAGCAAAACUGA	[65, 70]
hsa-miR-19b-1-5p (hsa-miR-19b-1)	URS000018C928_9606	AACAUUCAACGCUGUGGUG	[54, 65]	
hsa-miR-19b-3p (hsa-miR-19b)	URS000019D317_9606	UGGCAUACCUAGGAAAACUGA	[65, 66, 70, 72]	
mir-190	hsa-miR-190a-5p (hsa-miR-190)	URS0000520927_9606	UGGCAUACCUAGGAAAACUGA	[65]
mir-1908	hsa-miR-1908-3p	URS0000754A4A_9606	CCCGCGCGCGCGCGCGCGCGC	[54]
hsa-miR-1908-5p	URS00002373FD_9606	CGCGCGCGCGCGCGCAUG	[67]	
Family	Name	RCental	Sequence	Ref.
--------	------	---------	----------	------
mir-191	hsa-miR-191-3p (hsa-miR-191*)	URS00002B2B5C_9606	GCUUGCGCUUUGAUUUCGUCCCC	[65]
	hsa-miR-191-5p (hsa-miR-191)	URS00005C2E31_9606	CAACCGAAACCACAAAGCAGCUG	[11, 54, 65, 66, 70]
mir-1914	hsa-miR-1914-3p	URS000075E34C_9606	GAGGGGGUCGGCGACUGGGGAGG	[67]
mir-1915	hsa-miR-1915-3p (hsa-miR-192*)	URS000039BF2D_9606	CCCAGGGCGAGCGCGCGGGA	[12, 72]
mir-192	hsa-miR-192-3p (hsa-miR-192**)	URS00005B9A2_9606	UCGCAGAUUCCAGUGAGCACAG	[65]
	hsa-miR-192-5p (hsa-miR-192)	URS0000155642_9606	UGCAGAACUACAGGCAUGGU	[54, 65, 66]
mir-193	hsa-miR-193a-3p	URS00005DBAF3_9606	AACUGCCCUAAGAGCACUGGA	[54, 65]
	hsa-miR-193a-5p (hsa-miR-193b)	URS0000367985_9606	UGGGUCUUUGCGGGCGAGAUGA	[54, 65, 66]
	hsa-miR-193b-3p (hsa-miR-193b*)	URS00001E1DC5_9606	CGGGGUUUUGAGGGCGAGAUGA	[53, 65]
mir-194	hsa-miR-194-5p (hsa-miR-194)	URS000029C2DC_9606	UGUAAACGCAACUCAGUGGA	[65]
mir-196	hsa-miR-196a-5p	URS0000D6AAG7_9606	UAGGUAUUUGAAGACUGGGA	[53, 59]
	hsa-miR-196b-5p (hsa-miR-196b)	URS0000611746_9606	UAGGUAUUUGAAGACUGGGA	[53, 65]
mir-197	hsa-miR-197-3p (hsa-miR-197)	URS000061E740_9606	UUCACCACCUCCACCCGACG	[65]
	hsa-miR-197-5p (hsa-miR-197)	URS00002E2DD_9606	CGGGUGAAGAGGCACUGGGAGG	[67]
mir-1972	hsa-miR-1972	URS000042A1A2_9606	UACGGCCAGCAACAGUGGCUCA	[54, 66]
mir-198	hsa-miR-198	URS000075ACA3_9606	GUUGCAGAGGGGAGAUGGUUC	[65]
mir-199	hsa-miR-199a-5p (hsa-miR-199a)	URS0000554A4F_9606	CCCAGUGUUCAGAACCACUCAGC	[53, 54, 65]
	hsa-miR-199b-3p (hsa-miR-199b)	URS00003F2D94_9606	ACAGUAUGUCGCAUAGUGUUA	[53, 65, 66, 72]
	hsa-miR-199b-5p (hsa-miR-199b)	URS000029EBD_9606	CCCAGUGUUAAGACUACUGUCU	[53, 65, 67]
mir-203	hsa-miR-203a-3p (hsa-miR-203)	URS00004DA9DB_9606	GUGAAGUUGUUGAAGGACACUAG	[65]
mir-204	hsa-miR-204-3p (hsa-miR-204)	URS000059A01D_9606	GCUGGGAAGCGCAAGGAGCUG	[54]
	hsa-miR-204-5p (hsa-miR-204)	URS000029DF9F1_9606	UUCCGCUUGUGCAUCCAGCU	[54, 65]
mir-205	hsa-miR-205-3p (hsa-miR-205)	URS0000446722_9606	UCCUUCUUCACCCGAGACUCUG	[54, 65, 68]
	hsa-miR-205-5p (hsa-miR-205)	URS000009262D_9606	CAACACGUGACGUGUCGUGU	[54, 65]
mir-21	hsa-miR-21-3p (hsa-miR-21+)	URS000039ED8D_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
	hsa-miR-21-5p (hsa-miR-21)	URS000009262D_9606	CAACACGUGACGUGUCGUGU	[54, 65]
	hsa-miR-21 (hsa-miR-21)	URS000039ED8D_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
	hsa-miR-21 (hsa-miR-21)	URS000009262D_9606	CAACACGUGACGUGUCGUGU	[54, 65]
mir-210	hsa-miR-210-5p	URS000009262D_9606	CAACACGUGACGUGUCGUGU	[54, 65]
mir-214	hsa-miR-214-3p (hsa-miR-214)	URS000020DF8A_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
	hsa-miR-214-5p (hsa-miR-214)	URS000009262D_9606	CAACACGUGACGUGUCGUGU	[54, 65]
mir-216	hsa-miR-216a-5p (hsa-miR-216a)	URS0000318E24_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
mir-218	hsa-miR-218-2-3p (hsa-miR-218-2*)	URS00001F9A0F_9606	CAUGGCUUGUGCAAGCAGCAGCUG	[65]
	hsa-miR-218-5p (hsa-miR-218)	URS000020DF8A_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
mir-219	hsa-miR-219a-5p (hsa-miR-219)	URS0000568C8D_9606	UAGCUAAUCAGACUGAGUUGA	[53, 54, 65]
mir-22	hsa-miR-22-3p (hsa-miR-22)	URS0000096022_9606	AAGCUUGCGACUGAAGAAGCUG	[11, 12, 53, 54, 65]
Family	Name	RNAcental	Sequence	Ref.
--------	------	-----------	----------	------
		hsa-miR-22-5p	AGUUUCUUGAGGCAAGCUUUA	[65, 70]
mir-221		hsa-miR-22-3p *	AGCUCAUUGCUUGCUUGGG	[12, 54, 59, 65, 66, 69]
		hsa-miR-221-3p *	AGCUCAUUGCUUGCUUGGG	[11, 12, 54, 59, 64, 65, 70]
		hsa-miR-222-3p	AGCUCAUUGCUUGCUUGGG	[12, 54, 65]
mir-222		hsa-miR-222-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-223-3p	AGCUACAUUGCUUGCUUGGG	[65]
mir-223		hsa-miR-223-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-224-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-224-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-23		hsa-miR-23a-3p	AGCUACAUUGCUUGCUUGGG	[12, 54, 59, 66, 69, 72]
		hsa-miR-23b-3p	AGCUACAUUGCUUGCUUGGG	[12, 54, 66]
mir-24		hsa-miR-24-1-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-24-2-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-24-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-25-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-25-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-25		hsa-miR-25a-3p	AGCUACAUUGCUUGCUUGGG	[64, 65]
		hsa-miR-25a-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-25b-3p	AGCUACAUUGCUUGCUUGGG	[54, 65]
		hsa-miR-25b-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-26		hsa-miR-26a-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-26a-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-26b-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-26b-5p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-26a-1-3p	AGCUACAUUGCUUGCUUGGG	[65]
		hsa-miR-26a-1-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-27		hsa-miR-27a-3p	AGCUACAUUGCUUGCUUGGG	[12, 53, 65]
		hsa-miR-27a-5p	AGCUACAUUGCUUGCUUGGG	[65, 70]
		hsa-miR-27b-3p	AGCUACAUUGCUUGCUUGGG	[54, 65]
		hsa-miR-27b-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-28		hsa-miR-28a-3p	AGCUACAUUGCUUGCUUGGG	[11, 54, 65]
		hsa-miR-28a-5p	AGCUACAUUGCUUGCUUGGG	[54, 65]
		hsa-miR-28b-3p	AGCUACAUUGCUUGCUUGGG	[54, 65]
		hsa-miR-28b-5p	AGCUACAUUGCUUGCUUGGG	[65]
mir-2861		hsa-miR-2861	AGCUACAUUGCUUGCUUGGG	[72]
mir-29		hsa-miR-29a-3p	AGCUACAUUGCUUGCUUGGG	[54, 65]
Family	Name	RNAcentral	Sequence	Ref.
--------	------	------------	----------	-----
hsa-miR-29a-5p	URS0000076995_9606	ACUGAUUUUCUUGGGUGUGUCAG	[65, 70]	
hsa-miR-29b-1-5p	URS00001123BD_9606	GCUGUUUUCAUGGGUUGUUAAGA	[65]	
hsa-miR-29b-2-5p	URS0000403C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-29b-3p	URS000024463E_9606	UAGCACAAUUGAUAUGAGUUA	[54, 65]	
hsa-miR-29c-3p	URS000024463E_9606	UAGCACAAUUGAUAUGAGUUA	[54, 65]	
hsa-miR-296	URS00001C3AC1_9606	AGGGCCCCCUCAUCUCCUCUCAGU	[65, 67]	
hsa-miR-299	URS000003B1F5C_9606	UAUGUUGGAUGGUAACCCCUU	[54, 65]	
hsa-miR-30a-3p	URS000043D1A9_9606	UGUAAACAUCCUCAGUGAAG	[54, 65]	
hsa-miR-30a-5p	URS000017DBB8_9606	UGGUUUACCGUCCCACACAAU	[65]	
hsa-miR-30b-5p	URS00005165DA_9606	UGUAAACAUCCUACACUCAG	[65, 70]	
hsa-miR-30c-5p	URS000019907A_9606	UGUAAACAUCCUACACUCUCAG	[54, 65]	
hsa-miR-30d-3p	URS0000070CD2_9606	UAAGUGCUUCCAUGUUUUGGUGA	[65]	
hsa-miR-30d-5p	URS0000070CD2_9606	UAAGUGCUUCCAUGUUUUGGUGA	[65]	
hsa-miR-31	URS00002A291B_9606	AGGCAAGAUGCUGGCAUAGCU	[12, 59, 65]	
hsa-miR-320-3p	URS00004390F6_9606	ACUGCCACGUGUGCUGUG	[65, 70]	
hsa-miR-320-5p	URS00004390F6_9606	ACUGCCACGUGUGCUGUG	[65, 70]	
hsa-miR-320a-3p	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-320b	URS000058BF17_9606	UGUAAACAUCCUCAGUGAAG	[54, 65]	
hsa-miR-320c	URS0000010D30_9606	AAAACGUGGGUGAGGCUAAGC	[54]	
hsa-miR-320d	URS0000010D30_9606	AAAACGUGGGUGAGGCUAAGC	[54]	
hsa-miR-32	URS0000017DBB8_9606	UGGUUUACCGUCCCACACAAU	[65]	
hsa-miR-320a-5p	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-320b	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-320c	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-320d	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-324	URS00004390F6_9606	ACUGCCACGUGUGCUGUG	[65, 70]	
hsa-miR-326	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-329	URS000003C02_9606	CUGGUUUCACAGGUGGCUUAG	[65]	
hsa-miR-33	URS000017DBB8_9606	UGGUUUACCGUCCCACACAAU	[65]	
hsa-miR-330	URS0000070CD2_9606	UAAGUGCUUCCAUGUUUUGGUGA	[65]	
hsa-miR-330-3p	URS0000070CD2_9606	UAAGUGCUUCCAUGUUUUGGUGA	[65]	
Family	Name	RNAcentral	Sequence	Ref.
----------	----------------	------------	--	--------
miR-330	hsa-miR-330	URS00003380	UCUCUGGGCCUGUGCUUAGGC [65]	
miR-331	hsa-miR-331-3p	URS00003DDE	GCCCGUGGGCCUAUCCUGAGA [65]	
miR-335	hsa-miR-335-3p	URS00005092	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAGGAC [65]	
miR-337	hsa-miR-337-3p	URS0000564D	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-338	hsa-miR-338-3p	URS0000254A	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-339	hsa-miR-339-3p	URS0000306C	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-34	hsa-miR-34-3p	URS00000EED	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-340	hsa-miR-340-3p	URS00004852	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-341	hsa-miR-341	URS000007FA	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-342	hsa-miR-342-3p	URS0000148B	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-343	hsa-miR-343-3p	URS00005A80	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-344	hsa-miR-344-3p	URS000005D4	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-345	hsa-miR-345-3p	URS0000016E	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-346	hsa-miR-346-3p	URS00003E72	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-347	hsa-miR-347-3p	URS000032A9	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-348	hsa-miR-348-3p	URS00003AD2	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-349	hsa-miR-349-3p	URS00005E65	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-350	hsa-miR-350-3p	URS00004204	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-351	hsa-miR-351-3p	URS00003F30	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-352	hsa-miR-352-3p	URS000003EA	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-353	hsa-miR-353-3p	URS00004852	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-354	hsa-miR-354-3p	URS000007FA	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-355	hsa-miR-355-3p	URS0000148B	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-356	hsa-miR-356-3p	URS00003E72	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-357	hsa-miR-357-3p	URS000032A9	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-358	hsa-miR-358-3p	URS00005E65	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-359	hsa-miR-359-3p	URS00004204	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-360	hsa-miR-360-3p	URS00003F30	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-361	hsa-miR-361-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-362	hsa-miR-362-3p	URS0000148B	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-363	hsa-miR-363-3p	URS00003F30	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-364	hsa-miR-364-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-365	hsa-miR-365a-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-366	hsa-miR-366-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-367	hsa-miR-367-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-368	hsa-miR-368-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-369	hsa-miR-369-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-370	hsa-miR-370-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-371	hsa-miR-371-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-372	hsa-miR-372-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-373	hsa-miR-373-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-374	hsa-miR-374-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-375	hsa-miR-375-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-376	hsa-miR-376-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-377	hsa-miR-377-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	
miR-378	hsa-miR-378-3p	URS000003E7	CAGCUAGCGUAGAGUGGAGGAGGAGGAGGAGGAC [65]	

(continues)
Family	Name	RNAcentral	Sequence	Ref.
mir-379	hsa-miR-380-5p	URS000075BE5F_9606	UGGUUGACCAUAAGAACAUGGC	[65]
	hsa-miR-411-3p	URS000037DAEA_9606	UAUUGUACACGGUUCCACUAACC	[65]
(hsa-miR-411*)		URS00000C5BAA_9606	UAUUGACCAUAAGGCUAC ACC	[54, 65]
	hsa-miR-758-3p	URS000024B619_9606	UUGUGACCUCCACUACC	[65]
mir-384	hsa-miR-384	URS000075DD0E_9606	AUUUCAGAAGUUCUCAUA	[65]
mir-3934	hsa-miR-3934-5p	URS00003ACE11_9606	UCAGGCUCCACACCAGCGAC	[72]
	hsa-miR-411-5p	URS00001C8A86_9606	UGAAGGCCCCAGACAGAGACCUUU	[54, 65, 66, 69, 70]
mir-3940	hsa-miR-411*	URS000056B04E_9606	AUCGGGAAUGUCGUCGCCGCG	[65]
	hsa-miR-425-5p	URS00003CC245_9606	ACUGGACUUAGGGUCAGAAGGC	[65]
mir-425	hsa-miR-425-3p	URS00003CC245_9606	ACUGGACUUAGGGUCAGAAGGC	[65]
(hsa-miR-425*)		URS00001C8A86_9606	UGAAGGCCCCAGACAGAGACCUUU	[54, 65, 66, 69, 70]
mir-431	hsa-miR-431-5p	URS000043908D_9606	UGGCAGUCAGUACACCCCUUG	[65, 69]
mir-432	hsa-miR-432-5p	URS00001C406A_9606	UCUUUGAGAUAGAUAAGGUGG	[65]
	(hsa-miR-432)	URS00001C406A_9606	UCUUUGAGAUAGAUAAGGUGG	[65]
mir-4446	hsa-miR-4446-3p	URS00000EFOB_9606	CAGGGCUCCAGCAGACAGACAGG	[67]
mir-4449	hsa-miR-4449	URS00004DE2FC_9606	CGUCCGCCGUGCGCGCGCGCA	[54, 67]
mir-4488	hsa-miR-4488	URS00001C8A86_9606	UGAAGGCCCCAGACAGAGACCUUU	[54, 65, 66, 69, 70]
mir-449	hsa-miR-449a	URS0000477FED_9606	UAGUGCAAUAGUUGUAGCGGG	[65]
(hsa-miR-449)		URS0000477FED_9606	UAGUGCAAUAGUUGUAGCGGG	[65]
mir-450	hsa-miR-450-5p	URS00001F5B39_9606	UGGCAGUGUAUUGUGUAGCGG	[65]
(hsa-miR-449b)		URS00001F5B39_9606	UGGCAGUGUAUUGUGUAGCGG	[65]
mir-450	hsa-miR-450a-5p	URS00001BCACA5_9606	UUGAAAGGCUCUUUCUUUGGC	[65]
(hsa-miR-450b)		URS00001BCACA5_9606	UUGAAAGGCUCUUUCUUUGGC	[65]
mir-452	hsa-miR-452-5p	URS00004BF1DC_9606	UCCUGUACUGAGCUCGCCGAG	[65]
(hsa-miR-452*)		URS00004BF1DC_9606	UCCUGUACUGAGCUCGCCGAG	[65]
mir-454	hsa-miR-454-5p	URS000039A052_9606	GAGGCUCCGUCCACUACC	[65]
(hsa-miR-454*)		URS000039A052_9606	GAGGCUCCGUCCACUACC	[65]
mir-455	hsa-miR-455-5p	URS0000022A78C_9606	GCAGGUCCAGGCAUAUCAC	[65]
(hsa-miR-455)		URS0000022A78C_9606	GCAGGUCCAGGCAUAUCAC	[65]
mir-483	hsa-miR-483-3p	URS000000EA063_9606	UCACUCCUCUCUCUCUCCUCU	[65]
mir-484	hsa-miR-484	URS00003573B_9606	UAGACCGGGGAAAGAAGGGAG	[65]
mir-485	hsa-miR-485-3p	URS0000597BED_9606	UUGUGAAGCCACUCUCUCUCUCU	[54, 65, 67]
mir-485	hsa-miR-485-5p	URS00006372A_9606	GCACAUGAGCUCGGCUCUUCUCU	[65]
mir-486	hsa-miR-486-5p	URS00001935FA_9606	AGAGGCUGCGGCCUGAGUAAUC	[65]
(hsa-miR-486)		URS00001935FA_9606	AGAGGCUGCGGCCUGAGUAAUC	[65]
mir-488	hsa-miR-488-3p	URS000001BCAC5_9606	UUGAAAGGCUCUUUCUUUGGUC	[65]
(hsa-miR-488)		URS000001BCAC5_9606	UUGAAAGGCUCUUUCUUUGGUC	[65]
mir-492	hsa-miR-492	URS000032599B_9606	AGGACCUGGCGGAAAGAAGGAG	[65]
mir-493	hsa-miR-493-3p	URS00005E7CB2_9606	UUAAGGACUACUGUAGCCAGG	[65]
(hsa-miR-493)		URS00005E7CB2_9606	UUAAGGACUACUGUAGCCAGG	[65]
mir-497	hsa-miR-497-5p	URS00001BC212_9606	CAGCAGCACACUUGGGUUUGU	[65]
(hsa-miR-497)		URS00001BC212_9606	CAGCAGCACACUUGGGUUUGU	[65]
mir-500	hsa-miR-500a-5p	URS000039A052_9606	GAGGCUCCGUCCACUACC	[65]
	hsa-miR-500a-5p	URS000039A052_9606	GAGGCUCCGUCCACUACC	[65]
Family	Name	RNAcental	Sequence	Ref.
--------	------	-----------	----------	-----
(hsa-miR-500)	URS000000E35_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-501-3p	URS00001E2DBC_9606	AAUCCUUUGGCGCCUGGGAGGA	[65]	
(hsa-miR-501)	URS0000601CC4_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-502-3p	URS00000F6E49_9606	AAUCCUUUGGCGCCUGGGAGGA	[65]	
mir-503	hsa-miR-503-5p	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
hsa-miR-505-3p	URS00000E2E6A_9606	UGGUGGGCACAGAAUCUGGACU	[65]	
(hsa-miR-505)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-505-5p	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-505*	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
mir-506	hsa-miR-508-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
(hsa-miR-508)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-512-3p	URS00000E2E6A_9606	UGGUGGGCACAGAAUCUGGACU	[65]	
(hsa-miR-512)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-512-5p	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-513a-3p	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
(hsa-miR-513-5p)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
mir-515	hsa-miR-517c-3p	URS00001F8E9B_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
(hsa-miR-517c)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-518b	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-518d-3p	URS00001F8E9B_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
(hsa-miR-518d)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-518f-3p	URS00001F8E9B_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
(hsa-miR-518f)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
mir-541	hsa-miR-541-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
(hsa-miR-541)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-542-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
(hsa-miR-542)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
mir-548	hsa-miR-548a-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
(hsa-miR-548a)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
hsa-miR-548b-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
(hsa-miR-548b)	URS00001E2DBC_9606	AAUGCACCCGGGCAAGGAUUCU	[65]	
mir-549	hsa-miR-549a-3p	URS00000F6E49_9606	AAUGCACCCGGGCAAGGAUUCU	[65]
Family	Name	RNAcental	Sequence	Ref.
------------	-----------------------	-----------	--	-------
mir-550	(hsa-miR-549)	URS00003FFA6C_9606	AGUGCCUGAGGGAGUAAGAGCCC	[65]
mir-551	(hsa-miR-550a-5p)	URS00002E99CB_9606	GCGACCCACUCUUGGAGGUUCCA	[65]
mir-556	(hsa-miR-550)	URS00001D6605_9606	AUAAUACUAUGCUACACCUUU	[65]
mir-561	(hsa-miR-556-3p)	URS000075D1DD_9606	CAAAGUUAAAGAUCCUCUGAGAGAG	[65]
mir-564	(hsa-miR-551)	URS000075ED17_9606	AGGCAAGUGUGCCAGCAGGC	[65]
mir-571	(hsa-miR-551a)	URS000075C61C_9606	UGAGUUUUGCCACUAGUGAGAG	[65]
mir-572	(hsa-miR-552)	URS000075CEB8_9606	GUCUGCUGGCGGUGGCGCCA	[65]
mir-574	(hsa-miR-554-3p)	URS000075CF056_9606	CACGCUAUCAGCACACCACA	[65, 66, 72]
mir-582	(hsa-miR-554-5p)	URS000057466C_9606	UGAGUGUGUGAGUGAGAGAGG	[65, 66, 72]
mir-584	(hsa-miR-555-3p)	URS00002573C3_9606	UAACUGUGUAAACAACACGAC	[65]
mir-589	(hsa-miR-555-5p)	URS0000272039_9606	UAAUUAUAUGUAAGCUAGC	[65]
mir-590	(hsa-miR-556)	URS000025E3F32_9606	GAAGUGUGCCGUGGUGCAGG	[65]
mir-592	(hsa-miR-557)	URS00004F507C_9606	UUGGUGUAAUGCGAAGAGG	[65]
mir-593	(hsa-miR-557-3p)	URS000075D407_9606	UGUCUCUGGCGGUGGUGC	[65]
mir-595	(hsa-miR-558-3p)	URS000075B75E_9606	GAAAGUGUAGCAGCAGG	[65]
mir-596	(hsa-miR-558-5p)	URS000075B35F_9606	AACGCUCCGCGCGCUCUCGG	[65]
mir-6089	(hsa-miR-560-3p)	URS000075B63F_9606	GGGAGCGCGGGCGGCGGCGG	[12]
mir-615	(hsa-miR-561-3p)	URS00003D5391_9606	UCCAGGCGCCUGGUCUCUCUCUU	[53, 54]
mir-616	(hsa-miR-561-5p)	URS00004D8280_9606	GGGGCGCCGCGGUCGCAGG	[65, 67]
mir-618	(hsa-miR-562)	URS00005E3F32_9606	AGUCUAUGGAGGUGGUGAGC	[65]
mir-619	(hsa-miR-562-3p)	URS0000450P92_9606	AAAAAAAAAAAUCAUGCCAGAGG	[65]
mir-622	(hsa-miR-563)	URS000075B584_9606	GCUUGGAAUAAAAGCAGGACC	[54, 66]
mir-623	(hsa-miR-563-3p)	URS000075E944_9606	AAGCUAGCAGAGAGGUGGAGG	[65]
mir-625	(hsa-miR-563-5p)	URS000075DB1_9606	AUCCACUCGAGGCGGCGGCGG	[65]
mir-628	(hsa-miR-563-5p)	URS0000475E09_9606	GACUAUAGAAGCUUUCCCCCCCUCA	[65]
mir-629	(hsa-miR-564)	URS000061BE3B_9606	UCUAGUAAAGAGUGCGAGG	[65]
mir-636	(hsa-miR-564-3p)	URS00002F3336_9606	UGGGUGUGAGUUGGAGAACC	[65]
mir-638	(hsa-miR-565)	URS000075A79D_9606	UGUGCUUGCUUGGCGGCGGCGGCGG	[65]
mir-639	(hsa-miR-566)	URS000075DB2F_9606	AGAAGGCUAGGCGGCGGCGGCGG	[12, 65, 70, 72]
mir-641	(hsa-miR-567)	URS000075B8B8_9606	AUCGUCGAGGCGUGAAGGAGG	[65]
mir-642	(hsa-miR-567-3p)	URS00003D9790_9606	AAAGACAUAGAUAAGACAGC	[65]
mir-649	(hsa-miR-568)	URS000075B1CE_9606	GGUUCCCCUCUCAAUUGGAGC	[73]
mir-650	(hsa-miR-569)	URS000075D5BB_9606	AAACCUAUCUGGCAGG	[65]
mir-6511	(hsa-miR-570)	URS000075AO9C_9606	AAAAAACUGUGAGZCAGG	[65]
hsa-miR-571	(hsa-miR-570-3p)	URS000075C82B_9606	AAAAAACGGAAGGCGGCGGAGGAGG	[67]
hsa-miR-572	(hsa-miR-570-5p)	URS0000759CCE_9606	CCCCCCACCCCCUCCUCCGCGCGA	[67]
mir-652	(hsa-miR-571)	URS00001D3D8_9606	AAAAAACUGGAGCAGG	[64]
mir-654	(hsa-miR-571-3p)	URS00002F40E9_9606	UAAUUCGUAGUGACAGG	[65]
hsa-miR-572	(hsa-miR-571-5p)	URS00002B0B46_9606	UGGUGGGCGCAGAAGAAGGC	[65]
Table 2 (continued)

Family	Name	RNAcental	Sequence	Ref.
(hsa-miR-654)	URS000075C4C7_9606	GGCAGGUUCCACCCUCUCUAGG	[65]	
mir-657	hsa-miR-657	URS00004929F1_9606	AGGCCGGCGCCGCCGCCGCCGCC	[54, 66, 67]
mir-661	hsa-miR-661	URS000075C3F6_9606	GGGUGGCCGCAGCCGUGUGGAG	[54, 65, 67]
mir-663	URS00004929F1_9606	AGGCCGGCGCCGCCGCCGCCGCC	[54, 66, 67]	
mir-664	hsa-miR-664a-3p	URS000029AE45_9606	UAUUCUAUUACCCCAAGCUACA	[65, 66]
mir-665	hsa-miR-665	URS0000572E11_9606	AGGAGCUUACCAUCUAGCUGG	[65]
mir-671	hsa-miR-671	URS00002FB368_9606	AGGAAGCCUCAGGAGGUGGAGG	[67]
mir-671-3p	hsa-miR-671	URS00002FB368_9606	AGGAAGCCUCAGGAGGUGGAGG	[67]
mir-6724	hsa-miR-6724-5p	URS00007777B8_9606	CUGGAGCCGGCGCCGGCGGGG	[67]
mir-675	hsa-miR-675-5p	URS00004E5112_9606	UGGUGCGGAGGGCCACAGUG	[67]
mir-760	hsa-miR-760	URS0000512C88_9606	CGGCUCUGGGUCUGUGGGGA	[67]
mir-761	hsa-miR-761	URS0000327AFF_9606	GGGGCGGGGCGGGCGGGCGGGG	[72]
mir-7641	hsa-miR-7641	URS000075B793_9606	UUGAACUCCGAGAAGCUAACG	[54, 66, 67]
mir-766	hsa-miR-766-3p	URS00001012BC_9606	ACUCAGCCCACAGCCUCAGC	[65]
mir-769	hsa-miR-769-5p	URS00004E008F_9606	UGAGACUCUCCGUGUCUGACG	[54, 65, 67]
mir-770	hsa-miR-770-5p	URS000075A169_9606	UCCAGUACCAGUUCUGAGGCCCA	[65]
mir-8	(hsa-miR-141-3p)	URS000003E1A9_9606	UAAACACUGUCCUGUAAGAGG	[65]
mir-8069	hsa-miR-8069	URS0000575E1C1_9606	GGAUGUUGGGGCGGCGGGCGGG	[12]
mir-874	(hsa-miR-874-3p)	URS00005609ED_9606	UCCGAGGGCCAGGAGGACC	[67]
mir-875	hsa-miR-875-5p	URS0000312ECD_9606	UGAAAGACUCCAGUUUAACAGGUG	[65]
mir-876	hsa-miR-876-5p	URS0000470305_9606	UGGAAUUUCCUGGUGAAUCACCA	[65]
mir-885	hsa-miR-885-5p	URS0000246356_9606	UCCAUUACAUCCUGUCCUCUC	[65]
mir-9	(hsa-miR-9-3p)	URS00004208C5_9606	UCUUUGUUUAACUUGAGCUAUGA	[54, 65, 67]
mir-R922	hsa-miR-9-3p	URS0000575D3F5_9606	GCAGCAGCAGAUAAGGCAUCAGUC	[65]
mir-R935	hsa-miR-9-3p	URS0000312ECD_9606	UGAUCUACUGUAUCAGC	[65]
mir-R937	hsa-miR-9-3p	URS0000553F81_9606	AUCCGGCCUGUCAUCUGUCC	[65]
mir-R938	hsa-miR-9-3p	URS000075DF80_9606	UCCGGCCAAAGGGAACCCAG	[65]
Table 2 (continued)

Family	Name	RNAcental	Sequence	Ref.
	hsa-miR-939-5p	URS00005A31EB_9606	UGGGGAGGCUGAGGCUUGGGGUGG	[65]
	(hsa-miR-939)			
mir-941	hsa-miR-941	URS000050E4BA_9606	CACCCGCGUGUGGACAGUG	[65]
mir-95	hsa-miR-545-3p	URS00002E1509_9606	UCAGAAAACUUAAUUGUGGU	[65]
	(hsa-miR-545)			
	hsa-miR-545-5p	URS00004C4520_9606	UCAGAUAAGUUAUUGAGAUG	[65]
	(hsa-miR-545*)			
	hsa-let-7c	–	–	[65]
	hsa-miR-1	–	–	[65]
	hsa-miR-10	URS00005D8C46_9606	UACCCUGUAAGAACCGAUUG	[74]
	hsa-miR-10395-3p	URS00005D2042_9606	AUGUAUUCGUACUGUGUCG	[59]
	hsa-miR-10395-5p	URS0000D53F1E_9606	GUGAUUGAGAGCAAUACC	[59]
	hsa-miR-1180	–	–	[65]
	hsa-miR-1234-5p	–	–	[72]
	hsa-miR-1274a	–	–	[65]
	hsa-miR-1274b	–	–	[65]
	hsa-miR-1298	–	–	[65]
	hsa-miR-1300	–	–	[65]
	hsa-miR-133a	–	–	[65]
	hsa-miR-152	–	–	[65]
	hsa-miR-190b	–	–	[65]
	hsa-miR-199	URS000027FB26_9606	CCCAGUGUUUAAGACUAUGC	[74]
	hsa-miR-210	–	–	[65]
	hsa-miR-215	–	–	[65]
	hsa-miR-219-2-3p	–	–	[65]
	hsa-miR-2277-5p	URS00000D6C3F_9606	AGCGCGGCGUGACGCGUCGCAGUC	[67]
	hsa-miR-23-3p	–	–	[73]
	hsa-miR-26	–	–	[74]
	hsa-miR-3178	URS0000365675_9606	GGGGCGCGGCGCCGGAUCG	[12]
	hsa-miR-3195	URS000004DB7E_9606	CGCGCGGCGCGCCGGUU	[54]
	hsa-miR-3196	URS000033B548_9606	CGGGCGCGACGGGCUCUC	[12]
	hsa-miR-328	–	–	[65]
	hsa-miR-329	–	–	[64, 65]
	hsa-miR-3614-5p	URS00003D4175_9606	CACUUUGAUCUGAGCUGCC	[54]
	hsa-miR-3653-3p	URS000009AF54_9606	CUAAGAUGUACUGAAG	[54]
	hsa-miR-3656	URS0000514CEC_9606	GGGCGGGUCCGCGGGUUG	[12, 72]
	hsa-miR-3665	URS000075AFFF_9606	AGCGUGUCGCGGGCGCG	[12]
	hsa-miR-370	–	–	[65]
	hsa-miR-375	–	–	[65]
	hsa-miR-378c	URS000025307A_9606	ACUGGACUUGAGUACAGAGAUGUG	[54]
	hsa-miR-383	–	–	[65]
	hsa-miR-3944-3p	URS0000446855_9606	UUCGGGCGUGGCUGCUCUCCCG	[67]
	hsa-miR-410	–	–	[65]
	hsa-miR-412	–	–	[65]
	hsa-miR-4284	URS00001FC26E_9606	GGGCUCACUACACCCCA	[72]
	hsa-miR-433	–	–	[65]
	hsa-miR-4443	URS00004D84DB_9606	UUGGAGCCGUGGGUUUUUU	[72]
	hsa-miR-4448	URS00005F305A_9606	GGGCUCUCUUGCUAGGGGUA	[54]
	hsa-miR-4454	URS00005D12AC_9606	GGAUCCGAGUCACGCACCA	[12, 54, 66]
	hsa-miR-4461	URS000028425A_9606	GAUUGAGACUAGUAGGGCUAGGC	[54]
Family	Name	RNAcentral	Sequence	Ref.
--------	------	------------	----------	-----
hsa-miR-4466	URS00001DC1D3_9606	GGGUGCGGCGCGCGCGG	[12, 54, 72]	
hsa-miR-4485-3p	URS000038446A_9606	UAACGGCAGCGAGCGAGC	[11]	
hsa-miR-4492	URS000045ED38_9606	GGGGUGCGGCGCGCGCGG	[54]	
hsa-miR-4497	URS00000A2C49_9606	CUGGGGAGAGCGAGCGGC	[12]	
hsa-miR-4505	URS000075EBEE_9606	AGGCCAGGCAGCGAGCGGA	[72]	
hsa-miR-4508	URS000045E78D3_9606	GGGGUGCGGCGCGCGCGG	[12, 54]	
hsa-miR-4516	URS00000BF7F9_9606	GGGGAGAAGGGUCGGGGC	[54, 66]	
hsa-miR-4532	URS000013A349_9606	CCCCGGGGAGCGCGCGG	[54, 66, 67]	
hsa-miR-4649-5p	URS000044FB51_9606	UGGGCGAGGGGUGGGCUCAGAG	[67]	
hsa-miR-4665-5p	URS00004E78D3_9606	CUGGGGAGAGCGAGCGGC	[67]	
hsa-miR-4668-5p	URS0000A17E7_9606	AGGGAAAGAAAAAGGAUUGGUC	[12]	
hsa-miR-4678-3p	URS000047996E_9606	GGGGAGAAGGGUCGGGGC	[72]	
hsa-miR-4707-5p	URS00003EB443_9606	GGGGAGAAGGGUCGGGGC	[12]	
hsa-miR-4708-3p	URS00004F4FFB_9606	AGCAAGGCGGCAUCUCUCUGAU	[73]	
hsa-miR-4722-5p	URS0000475996E_9606	GGCGAGGAGGGUCGAGCU	[67]	
hsa-miR-4741	URS0000547F6A_9606	CGGGCUGUCCGGAGGGUCGGCU	[67]	
hsa-miR-4763-3p	URS00004A40D8_9606	AGGCGAGGCGUGUCCGUGGGGCGG	[67, 72]	
hsa-miR-4787-5p	URS0000521832_9606	GGGGAGAAGGGUCGGGGC	[12, 54]	
hsa-miR-4792	URS00005B6542_9606	CUGUGAGCGCUCGUAGC	[54, 66]	
hsa-miR-487a	–	–	[65]	
hsa-miR-487b	–	–	[65]	
hsa-miR-489	–	–	[65]	
hsa-miR-494	–	–	[65]	
hsa-miR-5088-5p	URS00002F0130_9606	CAGGGCUCAGGAUGGAGTAGG	[67]	
hsa-miR-5095	URS00002E1785_9606	UUACAGGCGUGAACCACCGGC	[54]	
hsa-miR-5096	URS00001F8B82_9606	GUUUCACCAUGUUGGUCAGG	[54, 66]	
hsa-miR-5100	URS000007F978_9606	UUACAGAUCGCCACGGGUGCUCU	[12]	
hsa-miR-5191	URS000075CB1C_9606	AGGAUAGGAAGAAUGAAGUC	[54]	
hsa-miR-520b	–	–	[65]	
hsa-miR-520f	–	–	[65]	
hsa-miR-520g	–	–	[65]	
hsa-miR-5585-3p	URS00003E6EFA_9606	CUGAAUAGCGAGGAGCUACAGGU	[54, 66]	
hsa-miR-5566	URS00000FDSFE_9606	GGGGCGGCGUGUAACCCACGG	[65]	
hsa-miR-5787	URS000075CA3A_9606	GGCGUGGGGCAGCGGGAGG	[12, 72]	
hsa-miR-597	–	–	[65]	
hsa-miR-598	–	–	[65]	
hsa-miR-605	–	–	[65]	
hsa-miR-6068	URS000075E142_9606	CCUGCGAGUCUCGGCGGUGG	[72]	
hsa-miR-6087	URS000075EF8B_9606	UGAGCGCGCGGGCGGAGG	[12, 54, 66, 67]	
hsa-miR-6088	URS000075EC34_9606	AGAGAUCGAGGGGCGGAGG	[12, 72]	
hsa-miR-6090	URS000075F58_9606	GGAGCGAGGGGCGGAGG	[12]	
hsa-miR-6124	URS000075CC26_9606	GGAGAGGGAAGGGGAGG	[72]	
hsa-miR-6125	URS000075F0F0_9606	GCGGAAGGGCGAGCCGCGAGA	[12]	
hsa-miR-6126	URS000075D118_9606	GUGAGCCCGCGGCGGAGA	[66]	
hsa-miR-627	–	–	[65]	
hsa-miR-655	–	–	[65]	
hsa-miR-656	–	–	[65]	
hsa-miR-659-3p	URS000075C04A_9606	CUUGGUUCAGGGAGGGUCCCA	[65]	
Numerous miRNAs are involved in the positive regulation of angiogenesis, such as hsa-miR-126-3p, hsa-miR-143-3p, hsa-miR-1908-5p, hsa-miR-199a-5p, hsa-miR-199b-3p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-27b-3p, hsa-miR-29a-3p and hsa-miR-31-5p, among others (Table 4S). They may play a role in the promotion of angiogenesis, as observed both in vitro and in vivo [60, 72, 80]. However, it should be noted that there are also numerous miRNAs involved in the negative regulation of angiogenesis (see Table 4S for a complete list).

Finally, although there are less miRNAs than proteins involved in regulation of cellular processes such as proliferation (hsa-miR-155-5p) and proliferation (hsa-miR-199a-5p), and regulation of cardiac conduction (hsa-miR-19a-3p), among others (Table 4S). AT-MSC-EV proteins are also implicated in some of these biological processes. Therefore, both types of molecules, proteins and miRNAs, may present a synergistic action, supporting the cardioprotection observed in an in vivo model of myocardial infarction after the administration of AT-MSC-EVs [79].

Table 2 (continued)

Family	Name	RNAcental	Sequence	Ref.
(hsa-miR-659)	hsa-miR-668			[65]
hsa-miR-672	URS000075A9AA_9606 CUCGGGGCAGGCGGCUGGGAGCG	[12, 67]		
hsa-miR-6729-5p				[65]
hsa-miR-6739-5p				[66]
hsa-miR-6746-5p				[67]
hsa-miR-6789-5p				[67]
hsa-miR-6821-5p				[67]
hsa-miR-6858-5p				[67]
hsa-miR-6869-5p				[12]
hsa-miR-6891-5p				[67]
hsa-miR-720	URS000028F729_9606 CGGGGUCGGCGGCGACGUG	[12, 54, 66]		
hsa-miR-7704	URS000075A1F7_9606 UUCCCCAGCCAACCGACACCA	[12]		
hsa-miR-8061	URS000075E23B_9606 CUUAGAUUAGGAGAUUGUU	[54]		
hsa-miR-8845	URS000076B539_9606 CACACACACACACACACUA	[66]		
hsa-miR-874	URS000028F729_9606 CGGGGUCGGCGGCGACGUG	[12, 54, 66]		
hsa-miR-886-3p				[65]
hsa-miR-886-5p				[65]
hsa-miR-887				[65]
hsa-miR-889				[65]
hsa-miR-891a				[65]
hsa-miR-942				[65]
hsa-miR-95				[65]

The two names corresponded to the same sequence
Identified by the sequence and the precursor. The referred article uses a name not found in the databases

(hsa-miR-126-3p, hsa-miR-21-5p, hsa-miR-26a-5p, hsa-miR-29b-3p), regulation of phosphatidylinositol 3-kinase signaling (hsa-miR-126-3p, hsa-miR-20a-5p, hsa-miR-21-5p), and positive regulation of cell migration (hsa-miR-1290, hsa-miR-181b-5p, hsa-miR-21-5p, hsa-miR-29b-3p) (Table 4S). Therefore, they can also be implicated in the positive effects observed after the injection of human AT-MSC-EVs in animal model of osteoarthritis [66], and in osteoarthritis chondrocytes [66] and osteoblasts [78] in vitro.

Regarding the use of AT-MSC-EVs for cardiology and vascular diseases, the rationale may be the role of the detected miRNAs in negative regulation of heart rate (hsa-miR-26a-5p), regulation of heart contraction (hsa-miR-92a-3p), positive regulation of cardiac muscle cell proliferation (hsa-miR-199b-3p, hsa-miR-19b-3p, hsa-miR-204-5p, hsa-miR-222-3p, hsa-miR-23b-3p), negative regulation of cardiac muscle cell apoptotic process (hsa-miR-145-5p, hsa-miR-199b-3p, hsa-miR-19b-3p, hsa-miR-21-5p, hsa-miR-30e-5p), regulation of cardiac muscle hypertrophy (hsa-miR-20a-5p), cell differentiation (hsa-miR-155-5p) and proliferation (hsa-miR-199a-5p), and regulation of cardiac conduction (hsa-miR-19a-3p), among others (Table 4S). AT-MSC-EV proteins are also involved in some of these biological processes. Therefore, both types of molecules, proteins and miRNAs, may present a synergistic action, supporting the cardioprotection observed in an in vivo model of myocardial infarction after the administration of AT-MSC-EVs [79].
and apoptosis (Tables 2S and 4S), it should be noted that each miRNA targets more than one mRNA. Therefore, each one can show effects on numerous proteins.

tRNA, mRNA, rRNA, snRNA, snoRNA and scRNA

According to Kaur et al. [53], the detected tRNA in AT-MSC-EVs represents 47% of all small RNAs observed. Although this percentage is slightly higher than that of miRNA, the available information about the presence of this type of RNA [11, 53, 54] is significantly less. The main tRNAs, in order of quantity detected in AT-MSC-EVs, are tRNA GCC (Gly), tRNA CTC (Glu) and tRNA TTC (Glu). Surprisingly, in AT-MSC the tRNA CTC (Glu) is the most abundant, while tRNA GCC (Gly) makes up a significantly lower percentage than in AT-MSC-EVs [11]. Other tRNAs present in lesser amounts in AT-MSC-EVs are tRNA GTC (Asp), tRNA CCC (Gly), tRNA GTG (His), tRNA CTT (Lys), tRNA AAC (Val) and tRNA CAC (Val) [11].

84 different mRNAs were detected in the AT-MSC-EVs. Their corresponding gene symbols, in order of quantity detected, are FN1, COL4A3, PGF, MMP2, PLG, HGF, IGF1, TEK, FGFR2, HIF1A, VEGFA, EDN1, PF4, CXCL9, FGFI, TGBB2, ITGAV, PROK2, EGF, FLT1, IL8, IFNG, IGF1A, SERPINE1, FIGF, TIMP3, JAG1, CXCL10 ANGPT1, TIMP2, IL6, TIMP1, SERPINF2, AKT1, ANPEP, EFNB2, CXCL6, HPSE, THBS1, EPHB4, NRPI, THBS2, CCL11, TGFA, TIE1, TGBF1, COL18A1, PDGFA, KDR, TGFBR1, BAI1, NRP2, ANGPT2, MMP9, CXCL1 ANGPTL4, ANG, ENG, PTGS1, CCL2, VEGFC, EFNA1, TNF, CTGF, NOS3, VEGFB, CXCL5, LECT1, CDH5, LEP, ITGFI, MMP14, IL1B, SPHK1, PLAU, FGFR3, ID1, SIPRI, ERBB2, PECAM1, NOTCH4, TYMP and MDK [52].
Other types of small RNA, such as rRNA [54], snRNA, snoRNA [53, 54] and scRNA [53], are present in AT-MSC-EVs, but the available information about these is even less than that of tRNA.

Lipids

The third type of molecule transported by EVs is lipids [3, 4]. The lipid composition of EVs has been less studied than that of proteins or miRNAs [8]. Thus, the number of lipid entries (639) in the Vesiclepedia database [41] is notably lower than the number of protein and miRNA entries (349,988 and 10,520, respectively). None of these lipid entries are related to AT-MSC-EVs or any other MSC-EVs. The total lipid content of AT-MSC-EVs has been analysed by Bari et al. [58], using the Nile Red assay. However, to our knowledge, there is no detailed information about the different types of lipids present in AT-MSC-EVs.

Modification of Cargo Components to Improve their Potential Effects

Different cell culture conditions and pre-treatments have been used to modify the profile of human AT-MSC-EV cargo, with the aim to improve its effects in skin flap survival [59, 86], angiogenesis [60, 61, 64, 80], immune response [71, 87], bone regeneration [77] and cancer [118, 119]. To this purpose, human AT-MSCs have been exposed to oxidative stress [59, 86], hypoxic [61, 80] or inflammatory culture conditions [71, 87], stimulation with platelet-derived growth factor (PDGF) [60, 65] and basic fibroblast growth factor (bFGF)
and transfected with lentiviral particles with different miRNAs [77, 118, 119].

Under oxidative stress conditions (50 μM H₂O₂), AT-MSC-EVs showed an enhanced effect on skin flap survival after ischemic injury in vivo models [59, 86]. This improvement was associated with a promotion of angiogenesis, reduction of inflammation and apoptosis [86]. The proteomic analysis of these EVs showed an increase (>2-fold) of histone H4, beta ig-h3, ITI-HC2, FLG-2, periostin, thrombospondin-1, pentraxin-related protein PTX3 and annexin A5; and a decrease (>2-fold) of plakophilin-1, VDB, Apo B-100, lactotransferrin, serotransferrin, alpha-fetoprotein, fatty acid-binding protein 5, dermcidin, and hornerin [59]. The RNA sequencing analysis showed that hsa-miR-10,395-5p and hsa-miR-10,395-3p were increased in H₂O₂ AT-MSC-EVs, while hsa-miR-24-3p, hsa-miR-93-5p, hsa-miR-134-5p, hsa-miR-221-3p, hsa-miR-222-3p were decreased [59]. Finally, the peak size of EV from H₂O₂-stimulated AT-MSC was larger than that of unstimulated cells [59].

Hypoxic culture conditions also induce the release of larger EVs according to Han et al. [61], although other authors claim that there are no significant differences in size [80]. The EVs collected from AT-MSC cultured under hypoxic conditions (5% O₂) seemed to enhance angiogenic properties in cultured human umbilical vein endothelial cells and in an in vivo model of fat grafting [61, 80]. The results of these studies showed that the amount of the surface marker CD44 was significantly lower in hypoxic EVs [80], while VEGF-A, EGF, FGF-4, VEGFR-2, VEGFR-3, C-C motif chemokine 8 and 13 were increased under these culture conditions [61].

EVs contents are also different after AT-MSC exposure to inflammatory cytokines. In EVs secreted by INF-γ-stimulated AT-MSC, indoleamine 2,3-dioxygenase mRNA was detected, although its presence did not significantly improve their potential to control activated T cell proliferation, in comparison with those derived from unstimulated AT-MSC [87]. However, when AT-MSCs were pretreated with both INF-γ and TNF-α, the enriched EVs induced the polarization of macrophages to the M2 phenotype [71]. Under this proinflammatory culture condition, AT-MSC-EVs cause differences in the expression of 81 different miRNAs [71] (Table 3).

Other methods used to alter the expression of cargo components are stimulation with PDGF [60, 65], with bFGF [64], and lentiviral transfection with the miRNA of interest [77, 118, 119]. In the former case, PDGF stimulation increased release of smaller AT-MSC-EVs, and improved their angiogenic potential, both in cultured human microvascular endothelial cells and in an in vivo model of severe combined immunodeficiency [60]. This stimulation also improved the AT-MSC-EVs anti-inflammatory and immunomodulatory potential both in vitro and in vivo in peripheral blood mononuclear cell and in a murine model of hindlimb ischemia, respectively [65]. Regarding protein composition, these EVs contained several proteins not observed in unstimulated AT-MSC-EVs: C-C motif chemokine 21, IL-17RD, IL-20RA, inhibin A, tyrosine-protein kinase Lck, LIF, SL-2, SL-3, MMP-14,
Table 3 miRNA detected in EVs derived from human AT-MSC treated with IFN-γ and TNFα, PDGF and bFGF (Modified tables from Domenis et al., 2018 [71], Lopatina et al., 2014 and 2018, [64, 65])

Stimulation with IFN-γ and TNFα

miRNA over-expressed	miRNA under-expressed
has-let-7a-5p	has-miR-125a-5p
has-miR-10a-5p	has-miR-125b-5p
hsa-miR-16-5p	hsa-miR-125b-5p
hsa-miR-23a-3p	hsa-miR-125b-5p
hsa-miR-92a-3p	hsa-miR-92b-3p
miRNA over-expressed	miRNA under-expressed
has-let-7c-5p	has-miR-125b-5p
hsa-miR-10b-5p	hsa-miR-125b-5p
hsa-miR-191-5p	hsa-miR-125b-5p
hsa-miR-28-3p	hsa-miR-125b-5p
hsa-miR-941	hsa-miR-99b-5p

Lost miRNA

miRNA lost	miRNA over-expressed
hsa-let-7c-5p	hsa-miR-125b-5p
hsa-miR-150-5p	hsa-miR-125b-5p
hsa-miR-193b-3p	hsa-miR-125b-5p
hsa-miR-27b-3p	hsa-miR-125b-5p
hsa-miR-409-3p	hsa-miR-125b-5p
hsa-miR-671-3p	hsa-miR-7706

Gained miRNA

miRNA gained	miRNA over-expressed
hsa-miR-100-3p	hsa-miR-125b-5p
hsa-miR-155-3p	hsa-miR-125b-5p

Stimulation with PDGF

miRNA under-expressed	miRNA over-expressed
hsa-miR-1225-3p	hsa-miR-1226-5p
hsa-miR-125b	hsa-miR-1226-5p

miRNA over-expressed only in stimulated

miRNA over-expressed only in stimulated	miRNA over-expressed
has-let-7e	hsa-miR-125b-5p
has-miR-129	hsa-miR-125b-5p
has-miR-186	hsa-miR-125b-5p
has-miR-221	hsa-miR-125b-5p
has-miR-373	hsa-miR-125b-5p
has-miR-511	hsa-miR-125b-5p
has-miR-550	hsa-miR-125b-5p
has-miR-579	hsa-miR-125b-5p
has-miR-621	hsa-miR-125b-5p
has-miR-872	hsa-miR-125b-5p

Stimulation with bFGF

miRNA under-expressed	miRNA over-expressed
has-let-7a	hsa-miR-125b-5p
hsa-miR-100	hsa-miR-125b-5p
hsa-miR-10b	hsa-miR-125b-5p
hsa-miR-138	hsa-miR-125b-5p
hsa-miR-185	hsa-miR-125b-5p
hsa-miR-199a	hsa-miR-125b-5p
hsa-miR-210	hsa-miR-125b-5p
OSM, kit ligand, IL-6RB (soluble form), TGF-beta 5 (not found in UniProtKB), thrombopoietin, metalloproteinase inhibitor 1, and TNF receptor superfamily member 10D [60]. In addition, 65 proteins were up-regulated and 15 proteins were down-regulated (Table 4). The miRNA composition of stimulated AT-MSC-EVs also showed variations in the expression of 55 different miRNAs [65] (Table 3).

Table 3 (continued)

miRNA-expressed only in stimulated
hsa-miR-27b
hsa-let-7c
hsa-miR-199b
hsa-miR-340
hsa-miR-545

miRNA-expressed only in control
hsa-miR-130b
hsa-miR-223
hsa-miR-381
hsa-miR-579

Table 4
Protein detected in EVs derived from human AT-MSC treated with PDGF (Modified table from Lopatina et al., 2018, [65])

Stimulation with PDGF
Proteins up-regulated
Adenomatous polyposis coli protein*
Calsyntenin-1
C-C motif chemokine 1*
Coagulation factor XIII B chain
C-X-C motif chemokine 11*
Insulin-degrading enzyme*
Interleukin-23 subunit alpha*
Lymphotoxin beta
Matrix metalloproteinase-9*
Neurogenic differentiation factor 1*
Platelet-derived growth factor D*
Secreted frizzled-related protein 1*
Toll-like receptor 2*
Transforming growth factor beta-1
Tumor necrosis factor ligand superfamily member 15*
Vascular endothelial growth factor A*
Vascular endothelial growth factor receptor 2*

Proteins down-regulated
Activin receptor type-1*
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1*
Calbindin
Receptor-interacting serine/threonine-protein kinase 1*

*The referred article used alternative or short names

* Springer
The stimulation with bFGF did not affect the number or size of released AT-MSC-EVs but it reduced their antigenic properties, stimulating the stabilization of vessel growth, both in cultured human microvascular endothelial cells and in an in vivo model of severe combined immunodeficiency [64]. The analysis of these EVs showed that angiogenic and antiangiogenic proteins such as tumor necrosis factor ligand superfamily member 13, artemin, lactadherin, MMP-20, angiopoietin-related protein 7, thrombospondin, angiotatin and endostatin were lost, while new angiogenesis modulatory proteins, such as tumor necrosis factor ligand superfamily member 11 and matrilysin were gained. Regarding miRNA profile, differences in the expression of 55 different miRNAs were observed [64] (Table 3).

Finally, AT-MSC-EVs have been transfected with lentiviral particles to produce EVs enriched in miRNA 375 [77], miRNA-125b [119] and miRNA 101 [118]. The miRNA-375-enriched EVs promoted bone regeneration in an in vivo model of calvarial defects. AT-MSC-EVs enriched in miRNA-125b [119] and miRNA 101 [118] induced a reduction in cell proliferation of hepatocellular carcinoma cells and inhibited osteosarcoma cell invasion and migration in vitro, respectively. In addition, miRNA-101-enriched EVs also induced inhibition of osteosarcoma metastasis in a lung metastasis model in vivo [118].

Conclusions

There is an increasing interest in the study of EVs as new therapeutic options in several research fields, due to their role in different biological processes, including cell proliferation, apoptosis, angiogenesis, inflammation and immune response, among others. Their potential is based upon the molecules transported inside these particles. Therefore, both molecule identification and an understanding of the molecular functions and biological processes in which they are involved are essential to advance this area of research. To the best of our knowledge, the presence of 591 proteins and 604 miRNAs in human AT-MSC-EVs has been described. The most important molecular function enabled by them is the binding function, which supports their role in cell communication. Regarding the biological processes, the proteins detected are mainly involved in signal transduction, while most miRNAs take part in negative regulation of gene expression. The involvement of both molecules in essential biological processes such as inflammation, angiogenesis, cell proliferation, apoptosis and migration, supports the beneficial effects of human AT-MSC-EVs observed in both in vitro and in vivo studies, in diseases of the musculoskeletal and cardiovascular systems, kidney, and skin.

Interestingly, the contents of AT-MSC-EVs can be modified by cell stimulation and different cell culture conditions, such as oxidative stress or hypoxia, to engineer a cargo selection with improved antigenic, anti-inflammatory or immunosuppressive effects. Moreover, it is also possible to enrich specific miRNAs in the cargo via transfection of AT-MSC with lentiviral particles. These modifications have enhanced the positive effects in skin flap survival, immune response, bone regeneration and cancer treatment. This phenomenon opens new avenues to examine the therapeutic potential of AT-MSC-EVs.

Abbreviations

Apo B-100, apolipoprotein B-100; AT, adipose tissue; AT-MSC-EVs, adipose mesenchymal cell-derived extracellular vesicles; Beta ig-h3, transforming growth factor-beta-induced protein ig-h3; bFGF, basic fibroblast growth factor; BMP-1, bone morphogenetic protein 1; BMPR-1A, bone morphogenetic protein receptor type-1A; BMPR-2, bone morphogenetic protein receptor type-2; BM, bone marrow; BM-MSC, bone marrow mesenchymal stem cells; EF-1-alpha-1, elongation factor 1-alpha 1; EF-2, elongation factor 2; EQF, epidermal growth factor; EMBL-EBI, the European Bioinformatics Institute; EV, extracellular vesicle; FGF-4, fibroblast growth factor 4; FGF-R-1, fibroblast growth factor receptor 1; FGF-R-4, fibroblast growth factor receptor 4; FLG-2, filaggrin-2; G alpha-13, guanine nucleotide-binding protein subunit alpha-13; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GO, gene ontology; IBP-7, insulin-like growth factor-binding protein 7; IL-1 alpha, interleukin-1 alpha; IL-4, interleukin-4; IL-6, interleukin-6; IL-6RB, interleukin-6 receptor subunit beta; IL-10, interleukin-10; IL-17RD, interleukin-17 receptor D; IL-20RA, interleukin-20 receptor subunit alpha; ISEV, International Society for Extracellular Vesicles; ITI-HC2, inter-alpha-trypsin inhibitor heavy chain H2; LIF, leukemia inhibitory factor; LTBP-1, latent-transforming growth factor-beta-binding protein 1; MAP kinase 1, mitogen-activated protein kinase 1; MAP kinase 3, mitogen-activated protein kinase 3; miRNA, microRNA; MMP-9, matrix metalloproteinase-9; MMP-14, matrix metalloproteinase-14; MMP-20, matrix metalloproteinase-20; mRNA, messenger RNA; MSC, mesenchymal stem cells; OSM, oncostatin-M; PDGF, platelet-derived growth factor; PDGF-R alpha, platelet-derived growth factor receptor alpha.; PDGF-R beta, platelet-derived growth factor receptor beta; rRNA, small ribosomal RNA; SCFR, mast/stem cell growth factor receptor Kit; scRNA, small cytoplasmic RNA; SL-2, stromelysin-2; SL-3, stromelysin-3; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; TGFR-2, TGF-beta receptor type-2; IRNA, transfer RNA; UniProtKB, Universal Protein Knowledgebase; VDB, vitamin D binding protein; VEGF-A, vascular endothelial growth factor A; VEGF-R-2, vascular endothelial growth factor receptor 2; VEGF-R-3, vascular endothelial growth factor receptor

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s12155-021-10155-5. Acknowledgements

The authors acknowledge Dr. Teresa Nieto-Miguel and Dr. Sara Galindo for critical reading of the manuscript. English grammar and spelling of this manuscript have been professionally revised and corrected by Proof-Reading-Service (Hertfordshire, United Kingdom).

Availability of Data and Materials

The data used to support the findings of this review are available from the corresponding author upon request.

Author’s Contributions

All authors contributed to the study conception and design. Literature search and data analysis were performed by MLAA. The first draft of the manuscript was written by MLAA and MLAA, LGP and YD commented on previous versions of the manuscript. MLAA, LGP and YD read and approved the final manuscript.
Funding This work was supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), Grant number RTI2018–094071–B-C21.

Declarations

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Competing Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantistohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Balducko, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Bedina Zavec, A., Bemmoussa, A., Berard, A. C., Bergese, P., Bielska, E., Blenkiron, C., Bobis-Wozowicz, S., Bodard, E., Böreux, W., Bongiovanni, A., Borrias, F. E., Bosch, S., Boulanger, C. M., Breakfield, X., Breglio, A. M., Brennan, M. A., Briggstock, D. R., Brisson, A., Broekman, M. L. D., Bromberg, J. F., Bryl-Górecka, P., Buch, S., Buck, A. H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E. I., Byrd, J. B., Camussi, G., Carter, D. R. F., Caruso, S., Chamley, L. W., Chang, Y. T., Chen, C., Chen, S., Cheng, L., Chin, A. R., Clayton, A., Clerici, S. P., Coeks, A., Coccui, E., Coffey, R. J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F. A. W., Coyle, B., Cresciutelli, R., Criado, M. F., D’Souza-Schorey, C., Das, S., Datta Chaudhuri, A., de Candia, P., de Santana Jr., E. F., de Wever, O., del Portillo, H. A., Demaret, T., Deville, S., Devitt, A., Dhand, B., di Vizio, D., Dieterich, L. C., Dolo, V., Dominguez Rubio, A. P., Dominici, M., Dourado, M. R., Driedons, T. A. P., Duarte, F. V., Duncan, H. M., Eichenberger, R. M., Ekström, K., el Andaloussi, S., Elie-Caille, C., Erdbrügger, Ü., Falcón-Pérez, J. M., Fatima, F., Fish, J. E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Ghio, Y. S., Giebel, B., Gilbert, C., Gimona, M., Giusti, L., Goberdhan, D. C. I., Görgens, A., Gorski, S. M., Greening, D. W., Gross, J. C., Gualerzi, A., Gupta, G. N., Gustafson, D., Handberg, A., Haraszt, R. A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A. F., Hochberg, F. H., Hoffmann, K. F., Holder, B., Holthöfer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A. G. E., Ikezu, T., Inal, J. M., Isin, M., Ivanova, A., Jackson, H. K., Jacobsen, S., Jay, S. M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S. M., Jones, J. C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., Kano, S. I., Kaur, S., Kawamura, Y., Keller, E. T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K. P., Kislinger, T., Klingeborn, M., Klinke II, D. J., Korniek, M., Kosanović, M. M., Kovács, Á. F., Krámer-Albers, E. M., Krasemann, S., Krause, M., Kurochkin, I. V., Kusuma, G. D., Kuypers, S., Laitinen, S., Langevin, S. M., Languino, L. R., Lamigan, J., Lässer, C., Laurent, L. C., Lavie, G., Lázaro-Ibáñez, E., Le Lay, S., Lee, M. S., Lee, Y. F. X., Lemos, D. S., Lenassi, M., Leszczynska, A., Li, I. T. S., Liao, K., Libregts, S. F., Ligeti, E., Lim, R., Lim, S. K., Lin, Á., Linnemannstöns, K., Llorente, A., Lombard, C. A., Lorenzowicz, M. J., Lötvall, J. M., Lötvvall, J., Lovett, J., Lowry, M. C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T. R., Maas, S. L. N., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E. S., Martin-Jaural, L., Martinez, M. C., Martins, V. R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L. K., McVey, M. J., Meckes Jr., D. G., Meehan, K. L., Mertens, I., Minciachichi, V. R., Möller, A., Möller Jorgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D. C., Myburgh, K. H., Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwend, R., Nimrichter, L., Nolan, J. P., Nolte-'t Hoen, E. N. M., Noreen Hooten, N., O’Driscoll, L., O’Grady; T., O’Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L. A., Osteikoetxea, X., Østergaard, O., Ostrowski, M., Park, J., Pegtel, D. M., Peinado, H., Perut, F., Pfaffl, M. W., Phan, D. G., Pieters, B. C. H., Pink, R. C., Pisetsky, D. S., Poage von Strandmann, E., Polakovicova, I., Poon, I. K. H., Powell, B. H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R. L., Raimondi, S., Rak, J., Ramirez, M. I., Raposo, G., Rayyan, M. S., Regev-Rudzki, N., Rickles, F. L., Robbins, P. D., Roberts, D. D., Rodrigues, S. C., Rohde, E., Rome, S., Rouschop, K. M. A., Rughetti, A., Russell, A. E., Saa, P., Sahoo, S., Salas-Hueno, E., Sánchez, C., Saugstad, J. A., Saul, M. J., Schifferels, R. M., Schneider, R., Scheyon, T. H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Sheth, F., Shelle, G. V., Shetty, A. K., Shiba, K., Siljander, P. R. M., Silva, A. M., Skowronek, A., Snyder II, O. L., Soares, R. P., Söder, B. W., Sockmdaj, C., Sotillo, J., Stahl, P. D., Stoerrvogel, W., Stott, S. L., Strasser, E. F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M. Toh, W. S., Tomasi, R., Torrecillas, A. C., Tosar, J. P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B. W. M., van der Grein, S. G., van Deun, J., van Herwijnen, M. J. C., van Keuren-Jensen, K., van Niel, G., van Royen, M. E., van Wijnen, A. J., Vasconcelos, M. H., Vecchetti Jr., J. I., Veit, D. T., Vella, L. J., Velot, É., Verweij, F. J., Vestad, B., Viñas, J. L., Visnovitz, V., Vukan, K. V., Walhgren, J., Watson, D. C., Wauben, M. H. M., Weaver, A., Webster, J. P., Weber, V., Wehman, A. M., Weiss, D. J., Welsh, J. A., Wendt, S., Wheelock, A. M., Wiener, Z., Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yañez-Mó, M., Yin, H., Yuna, Y., Zappulli, V., Zarubova, J., Zékas, V., Zhang, J. Y., Zhao, Z., Zheng, L., Zheutlin, A. R., Zickler, A. M., Zimmermann, P., Zivkovic, A. M., Zocco, D., & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750.

2. Witwer, K. W., & Théry, C. (2019). Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of
1. Exosomes as a Nanodelivery system: A key to the future of Neuromedicine? Molecular Neurobiology, 53(2), 818–834. https://doi.org/10.1007/s12035-014-9054-5.

2. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Exosome biology and cellular vesicle for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. https://doi.org/10.1038/s41556-018-0250-9.

3. Aryani, A., & Denecke, B. (2016). Exosomes as a Nanodelivery system: A key to the future of Neuromedicine? Molecular Neurobiology, 53(2), 818–834. https://doi.org/10.1007/s12035-014-9054-5.

4. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Exosome biology and cellular vesicle for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. https://doi.org/10.1038/s41556-018-0250-9.

5. Rastegar, F., Shenaq, D., Huang, J., Zhang, W., Zhang, B., He, B., Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cellular vesicles. Transplantation, 6(2), 230–247 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5650888.

6. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Exosome biology and cellular vesicle for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. https://doi.org/10.1038/s41556-018-0250-9.

7. Lötjönen, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., et al. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 3(1), 26913. https://doi.org/10.3402/jev.v3.26913.

8. Comolli, M., Raposo, G., & Théry, C. (2019). Adipose-derived mesenchymal stem cells: A novel therapeutic strategy for tissue regeneration. Current Molecular Biology, 3(1), 255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326.

9. Hong, P., Yang, H., Wu, Y., Li, K., & Tang, Z. (2019). The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Research & Therapy, 10(1), 242. https://doi.org/10.1186/s13287-019-1358-y.

10. Yeo, R. W. Y., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. L., & Lim, S. K. (2013). Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341. https://doi.org/10.1016/j.addr.2012.07.001.

11. Baglio, S. R., Roodjers, K., Koppers-Lalic, D., Verweij, F. J., Lanzón, M. P., Zini, N., et al. (2015). Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinct miRNA and tRNA species. Stem Cell Research & Therapy, 6(2), 1–20. https://doi.org/10.1186/s13287-015-0116-z.

12. Mitchell, R., Mellows, B., Sheard, J., Antonioli, M., Kretz, O., Baglio, S. R., Rooijers, K., Koppers-Lalic, D., Verweij, F. J., Yeo, R. W. Y., Lai, R. C., Zhang, B., Tan, S. S., Jin, Y., He, B., Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cellular vesicles. Transplantation, 6(2), 230–247 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5650888.

13. Oh, S. W., Lai, R. C., Zhang, B., & Lim, S. K. (2018). MSC exosome works through a protein-based mechanism of action. Biochemical Society Transactions, 46(4), 843–853. https://doi.org/10.1042/BST20180079.

14. Rastegar, F., Shenaiq, D., Huang, J., Zhang, W., Zhang, B., He, B., Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cellular vesicles. Transplantation, 6(2), 230–247 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5650888.

15. Ng, T. K., Fortino, V. R., Pelaez, D., & Cheung, H. S. (2014). Progress of mesenchymal stem cell therapy for neural and retinal diseases. World Journal of Stem Cells, 6(2), 111–119. https://doi.org/10.4252/wjsc.v6.i2.111.

16. Kim, D. S., Lee, W. Y., Yoo, K. H., Lee, T.-H., Kim, H. J., Jung, I. K., Chun, Y. H., Kim, H. J., Park, S. J., Lee, S. H., Son, M. H., Jung, H. L., Sung, K. W., & Koo, H. H. (2014). Gene expression profiles of human adipose tissue-derived Mesenchymal stem cells are modified by cell culture density. PLoS One, 9(1), e83363. https://doi.org/10.1371/journal.pone.0083363.

17. Li, C., Wu, X., Tong, J., Yang, X., Zhao, J., Zheng, Q., Zhao, G. B., & Ma, Z. J. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xenofree conditions for cell therapy. Stem Cell Research & Therapy, 6(1), 55. https://doi.org/10.1186/s13287-015-0066-5.

18. Liu, L., Zhang, H., Mao, H., Li, X., & Hu, Y. (2019). Exosomal miR-320d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation (AF). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3976–3984. https://doi.org/10.1080/21691401.2019.1671432.

19. Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31. https://doi.org/10.1002/cyt.a.23242.

20. Friedenstein, A. J., Petrukova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6(2), 230–247 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5650888.

21. Liu, L., Zhang, H., Mao, H., Li, X., & Hu, Y. (2019). Exosomal miR-320d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation (AF). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3976–3984. https://doi.org/10.1080/21691401.2019.1671432.

22. Xing, X., Han, S., Cheng, G., Ni, Y., Li, Z., & Li, Z. (2020). Adipose-derived MSCs promote the neuroprotective effect of exosomal miR-181-5p on ischemic neuronal injury. Molecular Biology Reports, 47(9), 897–907. https://doi.org/10.1007/s11033-020-1711-y.

23. Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., & Lu, L. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502. https://doi.org/10.1111/jcmm.13170.

24. Shen, H., Yoneeda, S., Abu-Amer, Y., Guijak, F., & Gelberman, R. H. (2020). Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research, 38(1), 117–127. https://doi.org/10.1002/jor.24406.

25. Xing, X., Han, S., Cheng, G., Ni, Y., Li, Z., & Li, Z. (2020). Prognostic analysis of Exosomes from adipose-derived Mesenchymal stem cells: A novel therapeutic strategy for tissue injury. BioMed Research International, 2020, 6094562–6094562. https://doi.org/10.1155/2020/6094562.

26. Yu, B., Shao, H., Su, C., Jiang, Y., Chen, X., Bai, L., Zhang, Y., Li, Q., Zhang, X., & Li, X. (2016). Exosomes derived from MSCs...
ameliorete retinal laser injury partially by inhibition of MCP-1. Scientific Reports, 6(1), 34562. https://doi.org/10.1038/srep34562.

30. Kim, S.-D., Kang, S. A., Kim, Y.-W., Yu, H. S., Cho, K.-S., & Roh, H.-J. (2020). Screening and functional pathway analysis of pulmonary genes associated with suppression of allergic airway inflammation by adipose stem cell-derived extracellular vesicles. Stem Cells International, 2020, 1–11. https://doi.org/10.1155/2020/5864250.

31. Li, T., Zhou, X., Wang, J., Liu, Z., Han, S., Wan, L., Sun, X., & Chen, H. (2020). Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer. Pharmacological Research, 157, 104943. https://doi.org/10.1016/j.phrs.2020.104843.

32. Duan, Y., Luo, Q., Wang, Y., Ma, Y., Chen, F., Zhu, X., & Shi, J. (2020). Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. Journal of Biological Chemistry, 1–32. https://doi.org/10.1074/jbc.RA120.012522.

33. Chang, C.-L., Chen, C.-H., Chi, H.-Y., Sun, C.-K., Chen, Y.-L., Chen, K.-H., et al. (2019). Synergistic effect of combined metanephrine and adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes on amelioration of dextran sulfate sodium (DSS)-induced acute colitis. American journal of translational research, 11(5), 2706–2724 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31217848.

34. Deng, S., Zhou, X., Ge, Z., Song, Y., Wang, H., Liu, X., & Zhang, D. (2019). Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/SIP1R1 signaling and promoting macrophage M2 polarization. The International Journal of Biochemistry & Cell Biology, 114, 105564. https://doi.org/10.1016/j.biocel.2019.105564.

35. Eirin, A., Riester, S. M., Zhu, X.-Y., Tang, H., Evans, J. M., O’Brien, D., et al. (2014). MicroRNA and miRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene, 551(1), 55–64. https://doi.org/10.1016/j.gene.2014.08.041.

36. Eirin, A., Zhu, X.-Y., Puranik, A. S., Woollard, J. T., Tang, H., Dasari, S., Lerman, A., van Wijnen, A. J., & Lerman, L. O. (2016). Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal/stromal cells. Scientific Reports, 6(1), 36120. https://doi.org/10.1038/srep36120.

37. Pavar, A. S., Eirin, A., Tang, H., Zhu, X.-Y., Lerman, A., & Lerman, L. O. (2020). Upregulated tumor necrosis factor-α transcriptome and proteome in adipose tissue-derived mesenchymal stem cells from pigs with metabolic syndrome. Cytokine, 130, 155080. https://doi.org/10.1016/j.cyto.2020.155080.

38. Eirin, A., Ferguson, C. M., Zhu, X.-Y., Saadq, I. M., Tang, H., Lerman, A., & Lerman, L. O. (2020). Extracellular vesicles released by adipose tissue-derived mesenchymal stromal/stem cells from obese pigs fail to repair the injured kidney. Stem Cell Research, 47, 101877. https://doi.org/10.1016/j.scr.2020.101877.

39. Shen, T., Zheng, Q.-Q., Shen, J., Li, Q.-S., Song, X.-H., Luo, H.-B., Hong, C. Y., & Yao, K. (2018). Effects of adipose-derived Mesenchymal stem cell Exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis. Chinese Medical Journal, 131(6), 704–712. https://doi.org/10.4103/0366-6999.226889.

40. Safwat, A., Sabry, D., Ragiae, A., Amer, E., Mahmoud, R., & Shamardan, R. (2018). Adipose mesenchymal stem cell-derived exosomes attenuate retinal degeneration of streptozotocin-induced diabetes in rabbits. Journal of Circulating Biomarkers, 7, 1–10. https://doi.org/10.1177/1849454418807827.

41. Kalra, H., Simpson, R. J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V. C., Borràs, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J. M., Gabriesson, S., Gho, Y. S., Gupta, D., Harsha, C. H., Hendrix, A., Hill, A. F., Inal, J. M., Jenster, G., Krämer-Albers, E. M., Lim, S. K., Llorente, A., Lötvall, J., Marcilla, A., Mincheva-Nilsson, L., Nazarenko, I., Nieuwland, R., Nolte-Jørgensen, E. M., Patel, T., Piper, M. G., Pluchino, S., Prasad, T. S. K., Rajendran, L., Raposo, G., Record, M., Reid, G. E., Sanchez-Madrid, F., Schifflers, R. M., Siljander, P., Stensballe, A., Stoorvogel, W., Taylor, D., Thery, C., Valadi, H., van Balkom, B. W. M., Vázquez, J., Vidal, M., Wanun, M. H., Yáñez-Mó, M., Zoeller, M., & Mathivanan, S. (2012). Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biology, 10(12), e1001450. https://doi.org/10.1371/journal.pbio.1001450.

42. Mathivanan, S., & Simpson, R. J. (2009). ExoCarta: A compendium of exosomal proteins and RNA. PROTEOMICS, 9(21), 4997–5000. https://doi.org/10.1002/pmic.200900351.

43. Kim, D.-K., Kang, B., Kim, O. Y., Choi, D., Lee, J., Kim, S. R., Go, G., Yoon, Y. J., Kim, J. H., Jang, S. C., Park, K. S., Choi, E. J., Kim, K. P., Desiderio, D. M., Kim, Y. K., Lötvall, J., Hwang, D., & Gho, Y. S. (2013). EVpedia: An integrated database of high-throughput data for systemic analyses of extracellular vesicles. Journal of Extracellular Vesicles, 2(1), 20384. https://doi.org/10.3402/jev.v2i1.20384.

44. Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boekmann, B., Ferro, S., et al. (2004). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 32(Database issue), D115–D119. https://doi.org/10.1093/nar/gkh131.

45. Sweeney, B. A., Petrov, A. I., Burkov, B., Finn, R. D., Bateman, A., Zhang, M., A., Szymanski, M., et al. (2019). RNAcentral: A hub of information for non-coding RNA sequences. Nucleic Acids Research, 47(D1), D221–D229. https://doi.org/10.1093/nar/gky1034.

46. Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32, D109–D111. https://doi.org/10.1093/nar/gkhb23.

47. Griffiths-Jones, S. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–D144. https://doi.org/10.1093/nar/gkj112.

48. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158. https://doi.org/10.1093/nar/gkm952.

49. Kozomara, A., & Griffiths-Jones, S. (2011). miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39, D152–D157. https://doi.org/10.1093/nar/gkt1027.

50. Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42, D68–D73. https://doi.org/10.1093/nar/gkt1181.
54. Reza, A. M. M. T., Choi, Y.-J., Yasuda, H., & Kim, J.-H. (2016). Human adipose mesenchymal stem cell-derived exosomal miRNAs are critical factors for inducing anti-proliferation signaling to A2780 and SKOV-3 ovarian cancer cells. *Scientific Reports, 6*(1), 538498. https://doi.org/10.1038/srep538498.

55. Binns, D., Dimmer, E., Huntley, R., Barrett, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: A web-based tool for gene ontology searching. *Bioinformatics, 25*(22), 3045–3046. https://doi.org/10.1093/bioinformatics/btp536.

56. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, A. M., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. *Nature Genetics, 25*(1), 21–29. https://doi.org/10.1038/75556.

57. Wang, X., Shah, F. A., Vazirian, F., Johansson, A., Palmquist, S., Occhipinti, S., Fallo, S., Buffolo, F., Gaykalova, D. A., Zanone, H., Chen, A., & Martin, T. M. (2016). Microvesicles (MIVs) secreted from adipose-derived stem/stromal cells enhance angiogenesis through VEGF/VEGF-R. *Cells, 8*(9), 965. https://doi.org/10.3390/cells8090965.

58. Mayo, J. S., Kurata, W. E., O’Connor, K. M., & Pierce, L. M. (2019). Oxidative stress alters Angiogenic and antimicrobial content of extracellular vesicles and improves flap survival. *Plastic and Reconstructive Surgery - Global Open, 7*(12), e2588. https://doi.org/10.1097/GOX.0000000000002588.

59. Lopatina, T., Bruno, S., Tetta, C., Karina, N., Porta, M., & Camussi, G. (2014). Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. *Cell Communication and Signaling, 12*(1), 26. https://doi.org/10.1186/1478-811X-12-26.

60. Han, Y., Ren, J., Bai, Y., Pei, X., & Han, Y. (2019). Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. *The International Journal of Biochemistry & Cell Biology, 109*, 59–68. https://doi.org/10.1016/j.biocel.2019.01.017.

61. Pu, C.-M., Liu, C.-W., Liang, C.-J., Yen, Y.-H., Chen, S.-H., Jiang-Shieh, Y.-F., Chien, C. L., Chen, Y. C., & Chen, Y. L. (2017). Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression. *Journal of Investigative Dermatology, 137*(6), 1533–1536. https://doi.org/10.1016/j.jid.2016.12.030.

62. Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takeshita, K., Sakai, Y., Kuroda, M., & Ochiya, T. (2013). Human adipose tissue-derived mesenchymal stem cells secrete functional neurilysin-bound exosomes. *Scientific Reports, 3*(1), 1197. https://doi.org/10.1038/srep01197.

63. Lopatina, T., Mazzeo, A., Bruno, S., Tetta, C., Karina, N., Romagnoli, R., et al. (2014). The Angiogenic potential of adipose Mesenchymal stem cell-derived extracellular vesicles is modulated by basic fibroblast growth factor. *Journal of Stem Cell Research & Therapy, 4*(10), 245. https://doi.org/10.4172/2157-7633.1000245.

64. Lopatina, T., Favarro, E., Grange, C., Cedrino, M., Ranghino, A., Occhii, S., Fallo, S., Buffolo, F., Gaykalova, D. A., Zanone, M. M., Romagnoli, R., & Camussi, G. (2018). PDGF enhances the protective effect of adipose stem cell-derived extracellular vesicles in a model of acute hindlimb ischemia. *Scientific Reports, 8*(1), 17458. https://doi.org/10.1038/s41598-018-36143-3.

65. Binns, D., Dimmer, E., Huntley, R., Barrett, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: A web-based tool for gene ontology searching. *Bioinformatics, 25*(22), 3045–3046. https://doi.org/10.1093/bioinformatics/btp536.

66. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, A. M., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. *Nature Genetics, 25*(1), 21–29. https://doi.org/10.1038/75556.

67. Binns, D., Dimmer, E., Huntley, R., Barrett, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: A web-based tool for gene ontology searching. *Bioinformatics, 25*(22), 3045–3046. https://doi.org/10.1093/bioinformatics/btp536.

68. Mayo, J. S., Kurata, W. E., O’Connor, K. M., & Pierce, L. M. (2019). Oxidative stress alters Angiogenic and antimicrobial content of extracellular vesicles and improves flap survival. *Plastic and Reconstructive Surgery - Global Open, 7*(12), e2588. https://doi.org/10.1097/GOX.0000000000002588.

69. Lopatina, T., Bruno, S., Tetta, C., Karina, N., Porta, M., & Camussi, G. (2014). Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. *Cell Communication and Signaling, 12*(1), 26. https://doi.org/10.1186/1478-811X-12-26.

70. Han, Y., Ren, J., Bai, Y., Pei, X., & Han, Y. (2019). Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. *The International Journal of Biochemistry & Cell Biology, 109*, 59–68. https://doi.org/10.1016/j.biocel.2019.01.017.

71. Pu, C.-M., Liu, C.-W., Liang, C.-J., Yen, Y.-H., Chen, S.-H., Jiang-Shieh, Y.-F., Chien, C. L., Chen, Y. C., & Chen, Y. L. (2017). Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression. *Journal of Investigative Dermatology, 137*(6), 1533–1536. https://doi.org/10.1016/j.jid.2016.12.030.

72. Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takeshita, K., Sakai, Y., Kuroda, M., & Ochiya, T. (2013). Human adipose tissue-derived mesenchymal stem cells secrete functional neurilysin-bound exosomes. *Scientific Reports, 3*(1), 1197. https://doi.org/10.1038/srep01197.

73. Lopatina, T., Mazzeo, A., Bruno, S., Tetta, C., Karina, N., Romagnoli, R., et al. (2014). The Angiogenic potential of adipose Mesenchymal stem cell-derived extracellular vesicles is modulated by basic fibroblast growth factor. *Journal of Stem Cell Research & Therapy, 4*(10), 245. https://doi.org/10.4172/2157-7633.1000245.

74. Lopatina, T., Favarro, E., Grange, C., Cedrino, M., Ranghino, A., Occhii, S., Fallo, S., Buffolo, F., Gaykalova, D. A., Zanone, M. M., Romagnoli, R., & Camussi, G. (2018). PDGF enhances the protective effect of adipose stem cell-derived extracellular vesicles in a model of acute hindlimb ischemia. *Scientific Reports, 8*(1), 17458. https://doi.org/10.1038/s41598-018-36143-3.
900

Prati, C., & Zavan, B. (2020). Mineral-doped poly(L-lactide) acid scaffolds enriched with Exosomes improve Osteogenic commitment of human adipose-derived Mesenchymal stem cells. Nanomaterials, 10(3), 432. https://doi.org/10.3390/nano10030432.

Chen, S., Tang, Y., Liu, Y., Zhang, P., Lv, L., Zhang, X., Jia, L., & Zhou, Y. (2019). Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Proliferation, 52(5), e12669. https://doi.org/10.1111/cpr.12669.

Tofino-Vian, M., Guillem, M. I., Pérez del Maz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular vesicles from adiposederived Mesenchymal stem cells Downregulate senescence features in osteoarthritic osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 7197598–7197512. https://doi.org/10.1155/2017/7197598.

Xu, H., Wang, Z., Liu, L., Zhang, B., & Li, B. (2020). Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. Journal of Cellular Biochemistry, 121(3), 2089–2102. https://doi.org/10.1002/jcb.27399.

Almeria, C., Weiss, R., Roy, M., Tripisciano, C., Kasper, C., Weber, V., & Egger, D. (2019). Hypoxia conditioned Mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Frontiers in Bioengineering and Biotechnology, 7, 292. https://doi.org/10.3389/fbioe.2019.00292.

Liu, R., Shen, H., Ma, J., Sun, L., & Wei, M. (2016). Extracellular vesicles derived from adipose Mesenchymal stem cells regulate the phenotype of smooth muscle cells to limit intimal hyperplasia. Cardiovascular Drugs and Therapy, 30(2), 111–118. https://doi.org/10.1007/s10557-015-6630-5.

Lindoño, R. S., Lopes, J. A., Binato, R., Abdelhay, E., Takiya, C. M., de Miranda, K. R., et al. (2020). Adipose Mesenchymal cells-derived EVs alleviate DOCA-salt-induced hypertension by promoting cardio-renal protection. Molecular Therapy - Methods & Clinical Development, 16, 63–77. https://doi.org/10.1016/j.omtm.2019.11.002.

Gao, F., Zuo, B., Wang, Y., Li, S., Yang, J., & Sun, D. (2020). Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sciences, 255, 117719. https://doi.org/10.1016/j.lfs.2020.117719.

Ma, T., Fu, B., Yang, X., Xiao, Y., & Pan, M. (2019). Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. Journal of Cellular Biochemistry, 120(6), 10847–10854. https://doi.org/10.1002/jcb.28376.

Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., Hu, B., Song, J., & Chen, L. (2017). Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Scientific Reports, 7(1), 13321. https://doi.org/10.1038/s41598-017-12919-x.

Bai, Y., Han, Y., Yan, X., Ren, J., Zeng, Q., Li, X., Pei, X. T., & Han, Y. (2018). Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochemical and Biophysical Research Communications, 500(2), 310–317. https://doi.org/10.1016/j.bbrc.2018.04.065.

Serejo, T. T., Silva-Carvalho, A. É., de Braga, L. D., C. F., de Neves, F. A. R., Pereira, R. W., de Carvalho, J. L., & Saldanha-Araujo, F. (2019). Assessment of the immunosuppressive potential of INF-γ licensed adipose Mesenchymal stem cells, their Secretome and extracellular vesicles. Cells, 8(1), 22. https://doi.org/10.3390/cells8100102.

Yu, C., Chen, P., Xu, J., Li, Y., Li, H., Wang, L., & Di, G. (2020). hADSCs derived extracellular vesicles inhibit NLRP3inflammasome activation and dry eye. Scientific Reports, 10(1), 14521. https://doi.org/10.1038/s41598-020-71337-8.

Rajashekar, G., Ramadan, A., Abburi, C., Callaghan, B., Traktuev, D. O., Evans-Molina, C., Maturi, R., Harris, A., Kern, T. S., & March, K. L. (2014). Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One, 9(1), e84671. https://doi.org/10.1371/journal.pone.0084671.

Sugitani, S., Tsuruma, K., Ohno, Y., Kuse, Y., Yamauuchi, M., Egashira, Y., Yoshimura, S., Shimazawa, M., Iwama, T., & Hara, H. (2013). The potential neuroprotective effect of human adipose stem cell conditioned medium against light-induced retinal damage. Experimental Eye Research, 116, 254–264. https://doi.org/10.1016/j.exer.2013.09.013.

Elshafey, S. L., Evans, W., Pentecost, M., Lenin, R., Periasamy, R., Jha, K. A., Alli, S., Gentry, J., Thomas, S. M., Sohl, N., & Gangaraju, R. (2018). Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Research & Therapy, 9(1), 322. https://doi.org/10.1186/s13287-018-1059-y.

Jha, K., Pentecost, M., Lenin, R., Klaic, L., Elshafey, S., Gentry, J., Russell, J., Beland, A., Reiner, A., Jotterand, V., Sohl, N., & Gangaraju, R. (2018). Concentrated conditioned media from adipose tissue derived Mesenchymal stem cells mitigates visual deficits and retinal inflammation following mild traumatic brain injury. International Journal of Molecular Sciences, 19(7), 2016. https://doi.org/10.3390/ijms19072016.

Zhang, M., Zhang, F., Sun, J., Sun, Y., Xu, L., Zhang, D., Wang, Z., & He, W. (2017). The condition medium of mesenchymal stem cells promotes proliferation, adhesion and neuronal differentiation of retinal progenitor cells. Neuroscience Letters, 657, 62–68. https://doi.org/10.1016/j.neulet.2017.07.053.

Haddad-Mashadrizeh, A., Bahrami, A. R., Matin, M. M., Edalatmanesh, A. M., Zomorodipour, A., Gardaneh, M., Farshchian, M., & Momeni-Moghaddam, M. (2013). Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation, 20(3), 165–176. https://doi.org/10.1111/xen.12033.

Galindo, S., Herreras, J. M., López-Paniagua, M., Rey, E., de la Mata, A., Plata-Cordero, M., Calonge, M., & Nieto-Miguel, T. (2017). Therapeutic effect of human adipose tissue-derived Mesenchymal stem cells in experimental corneal failure due to Limbal stem cell niche damage. Stem Cells, 35(10), 2160–2174. https://doi.org/10.1002/stem.2672.

Bandeira, F., Goh, T.-W., Setiawan, M., Yam, G. H.-F., & Mehta, J. S. (2020). Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Research & Therapy, 11(1), 14. https://doi.org/10.1186/s13287-019-1533-1.

Nieto-Miguel, T., Galindo, S., Reinoso, R., Corell, A., Martino, M., Pérez-Simón, J. A., & Calonge, M. (2013). In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue Mesenchymal stem cells. Current Eye Research, 38(9), 933–944. https://doi.org/10.3109/02713683.2013.802809.

Singh, A. K., Srivastava, G. K., García-Gutiérrez, M. T., & Pastor, J. C. (2013). Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition. Histology and Histopathology, 28(12), 1577–1583. https://doi.org/10.14670/HH-28.1577.
Mesenchymal stem cell Secretome enhancement by Nicotinamide and vasoactive intestinal peptide: A new therapeutic approach for retinal degenerative diseases. Stem Cells International, 2020, 1–14. https://doi.org/10.1155/2020/9463548.

Mead, B., Chamling, X., Zack, D. J., Ahmed, Z., & Tomarev, S. (2020). TNFα-mediated priming of Mesenchymal stem cells enhances their Neuroprotective effect on retinal ganglion cells. Investigative Ophthalmology & Visual Science, 61(2), 6. https://doi.org/10.1167/iovs.19-28450.

Mead, B., & Tomarev, S. (2018). Mesenchymal stem cell–derived small extracellular vesicles promote Neuroprotection in rodent models of glaucoma. Investigative Ophthalmology & Visual Science, 59(2), 702–714. https://doi.org/10.1167/iovs.17-22855.

Mead, B., Ahmed, Z., & Tomarev, S. (2018). Mesenchymal stem cell–derived small extracellular vesicles promote Neuroprotection in a genetic DBA/2J mouse model of glaucoma. Investigative Ophthalmology & Visual Science, 59(13), 5473–5480. https://doi.org/10.1167/iovs.18-25310.

Wang, J.-D., An, Y., Zhang, J.-S., Wan, X.-H., Jonas, J. B., Xu, L., & Zhang, W. (2017). Human bone marrow mesenchymal stem cells for retinal vascular injury. Acta Ophthalmologica, 95(6), e453–e461. https://doi.org/10.1111/aos.13154.

Tzameret, A., Sher, I., Belkin, M., Treves, A. J., Meir, A., Nagler, A., Levkovitch-Verbin, H., Rotenstrich, Y., & Solomon, A. S. (2015). Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Research, 15(2), 387–394. https://doi.org/10.1016/j.scr.2015.08.007.

Tzameret, A., Sher, I., Belkin, M., Treves, A. J., Meir, A., Nagler, A., Levkovitch-Verbin, H., Barshack, I., Rosner, M., & Rotenstrich, Y. (2014). Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal degeneration. Stem Cell Research, 15(2), 387–394. https://doi.org/10.1016/j.scr.2015.08.007.

Jeong, W.-Y., Kim, J.-H., & Kim, C.-W. (2018). Co-culture of human bone marrow mesenchymal stem cells and macrophages attenuates lipopolysaccharide-induced inflammation in human corneal epithelial cells. Bioscience, Biotechnology, and Biochemistry, 82(5), 800–809. https://doi.org/10.1002/ebc.2018143816.

Usategui-Martin, R., Puertas-Neyra, K., García-Gutiérrez, M.-T., Fuentes, M., Pastor, J. C., & Fernandez-Bueno, I. (2020). Human Mesenchymal stem cell Secretome exhibits a Neuroprotective effect over in vitro retinal photoreceptor degeneration. Molecular Therapy - Methods & Clinical Development, 17, 1155–1166. https://doi.org/10.1016/j.omtm.2020.05.003.

Labrador-Velandia, S., Alonso-Alonso, M. L., Di Lauro, S., García-Gutiérrez, M. T., Srivastava, G. K., Pastor, J. C., & Fernandez-Bueno, I. (2019). Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Experimental Eye Research, 185, 107671. https://doi.org/10.1016/j.exer.2019.05.011.

Labrador-Velandia, S., Di Lauro, S., Alonso-Alonso, M. L., Tabera Bartolomé, S., Srivastava, G. K., Pastor, J. C., & Fernandez-Bueno, I. (2018). Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256(1), 125–134. https://doi.org/10.1007/s00417-017-3842-3.

Gu, X., Yu, X., Zhao, C., Duan, P., Zhao, T., Liu, Y., Li, S., Yang, Z., Li, Y., Qian, C., Yin, Z., & Wang, Y. (2018). Efficacy and safety of autologous bone marrow Mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cellular Physiology and Biochemistry, 49(1), 40–52. https://doi.org/10.1159/000492838.

Nakahara, M., Okumura, N., Kay, E. P., Hagiya, M., Imagawa, K., Hosoda, Y., Kinoshita, S., & Koizumi, N. (2013). Corneal endothelial expansion promoted by human bone marrow Mesenchymal stem cell–derived conditioned medium. PLoS One, 8(7), e69009. https://doi.org/10.1371/journal.pone.0069009.

Fernandes-Cunha, G. M., Na, K., Putra, I., Lee, H. J., Hull, S., Cheng, Y., et al. (2019). Corneal wound healing effects of Mesenchymal stem cell Secretome delivered within a viscoelastic gel carrier. Stem Cells Translational Medicine, 8(5), 478–489. https://doi.org/10.1002/sctm.18-0178.

Calonge, M., Pérez, I., Galindo, S., Nieto-Miguel, T., López-Paniagua, M., Fernández, I., Alberca, M., García-Sanchez, J., Sánchez, A., & Herreras, J. M. (2019). A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational Research, 206, 18–40. https://doi.org/10.1016/j.trsl.2018.11.003.

Weiss, J., Levy, S., & Benes, S. (2016). Stem cell ophthalmology treatment study (SCOTS): Bone marrow-derived stem cells in the treatment of Leber’s hereditary optic neuropathy. Neural Regeneration Research, 11(10), 1685–1694. https://doi.org/10.4103/1673-5374.193251.

Weiss, J., Benes, S., & Levy, S. (2016). Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment. Neural Regeneration Research, 11(9), 1512–1516. https://doi.org/10.4103/1673-5374.191229.

Weiss, J. N., & Levy, S. (2019). Stem cell ophthalmology treatment study (SCOTS): Bone marrow derived stem cells in the treatment of dominant optic atrophy. Stem Cell Investigation, 6, 41–41. https://doi.org/10.21037/sci.2019.11.01.

Zhang, K., Dong, C., Chen, M., Yang, T., Wang, X., Gao, Y., Wang, L., Wen, Y., Chen, G., Wang, X., Yu, X., Zhang, Y., Wang, P., Shang, M., Han, K., & Zhou, Y. (2020). Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics, 10(1), 411–425. https://doi.org/10.7150/thno.33482.

Baldari, S., Di Rocco, G., Magenta, A., Picozza, M., & Toietta, G. (2019). Extracellular vesicles–encapsulated MicroRNA-125b produced in genetically modified Mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation. Cells, 8(12), 1560. https://doi.org/10.3390/cells8121560.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.