Original article

Assessment of the crop basket around the Egyptian Nile River; Eastern North Africa

Esraa E. Ammar *

Plant Ecology, Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt

A R T I C L E I N F O

Article history:
Received 12 May 2022
Revised 13 July 2022
Accepted 18 August 2022
Available online 24 August 2022

Keywords:
Egyptian crops
Economic values
Ecological benefits
Historical eras
Global phyto-geographic regions and biomes

A B S T R A C T

This assessment tends to evaluate the Egyptian crop basket around the Nile River, with a focus on their introduction history. A framework of growth forms, flowering time, sex forms, cultivation duration, propagation methods, economic values, and ecological benefits was used. A side from assessing were global phyto-geographic regions, continental distribution, and biomes.

Twenty-four field visits were conducted covering the study area (March 2021 - March 2022) to verify collected data from the Egyptian Ministry of Agriculture, and checking the herbarium of Agricultural Museum, Cairo (CAIM). One hundred and ninety-one crops were recorded, of them 170 crops, belonging 101 genera and 45 families, are currently surveyed, while 21 crops are considered a gap, belonging 7 families and 19 genera. The most evaluated family was Fabaceae, while Citrus was the most evaluated genus. Herbaceous plants were the most recorded growth form (66.5 %). Most crops were bisexual, propagated by seeds, and grown in winter (43.5 %). Their flowering activity gradually increases from December reaching a peak in June.

Most crops (48.2 %) return to the Pharaonic era, e.g., Aloe vera and Portulaca oleracea. The majority of crops evaluated as foods (80.7 %) and humidity tolerant species (56 %). The Mediterranean and Saharan-Arabian regions were the most represented (42.9 %). Most crops originated in Africa, then Asia. Temperate deciduous forest and subtropical evergreen forest were the major biomes. As the majority of the Egyptian crops return to the Pharaonic era, indicating the relative stability of the Egyptian climate over last years.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Egypt's agricultural land is limited to the Nile Valley and delta, with a few oases and arable land in Sinai. The total cultivated area is 7.2 million acres (1 acre equals 0.42 ha), accounting for only 3 % of the total land area. Except for some rain-fed areas on the Mediterranean coast, the entire crop area is irrigated. In addition, 900 000 acres of newly reclaimed land have been added to the agricultural area over the last four decades. The landholdings are dispersed, with farm units averaging in size about 2.5 acres. The total area cropped annually is approximately 11.5 million acres, representing a cropping ratio of approximately 2:1 (https://www.fao.org/3/v9978e/v9978e0e.htm).

Egypt, is in North Africa across temperate grassland, desert and semi-desert biomes, has an arid climate, with annual average rainfall ranging from 60 to 190 mm along the Mediterranean coast to 25 to 60 mm in the Nile delta and less than 25 mm in upper Egypt and surrounding areas. The weather is generally very consistent, with plenty of sunshine. Furthermore, the Nile is an exceptional source of water, and the soil near the Nile is generally of high quality (Lomolino et al., 2017), https://weather-and-climate.com and https://www.fao.org/3/v9978e/v9978e0e.htm. In the last decade, Egypt's total agricultural crop production has increased by >20 %. During the same time period, the rate of population growth has been slightly larger than the rate of crop production growth (https://www.fao.org/3/v9978e/v9978e0e.htm).

Cultivated plants are frequently planted in gardens or crop fields to satisfy human desires The Egyptians from the pharaonic era till now not only cultivated their required crops in fields, but also ornamental plants for their numerous benefits (e.g., decoration, wind-breaking, fruit and flower production, use in traditional
industry or shading and riverbank erosion control) in gardens, which were typically built in palace or house squares or established terraces on the banks of the river or its branches. In addition to medicinal and aromatic plants for folk meditation and manufacture of drugs (Ammar, 2021; Ammar et al., 2020; Ahmed et al., 2020; Manniche, 2006).

Hence, this assessment will discuss the crop basket assessment around the Egyptian Nile River; Nile Delta, Nile Fayium, and Nile Valley. In addition to, highlighting on floristic and botanical characters of the assessed crop species. Furthermore, an evaluation of historical era for the introduction of these crops to Egypt, in addition to their economic values and ecological benefits. Likewise, geographic overview is assessed such as global phytogeography regions, continental distribution and world biomes.

2. Material and methods

2.1. Study area

Egypt is located in northeastern Africa, with the Egyptian Nile region spanning temperate grassland, desert, and semi-desert biomes, according to the world biome map (Lomolino et al. 2017), with a length of about 1520 km (23 percent of the total length of the river), and housing an estimated population of 80 million people. The Nile Region in Egypt is made up of three parts: The Nile Delta, the Nile Fayium, and the Nile Valley. The Nile Delta is part of the Egyptian Mediterranean coast and stretches approximately 240 km from Alexandria at Abu Quir in the west to Port Said in the east; the Nile Fayium is a depression below the sea level formed by wind erosion 1.8 million years ago and covering approximately 12,000 km²; and the Nile Valley stretches approximately 800 km from Aswan to the outskirts of Cairo (El-Shabrawy and Dumont, 2009; Dumont, 2018). The Nile region of Egypt is divided into 20 governorates, each with approximately 185 administrative centers (Fig. 1).

The Egyptian climate ranges from arid to hyper-arid, with the northern part of the Nile Delta classified as arid and the Nile Valley and southern part of the Nile Delta classified as hyper-arid. From 2012 to 2018, annual rainfall ranged between 80 and 200 mm year⁻¹ (https://power.larc.nasa.gov/). The highest precipitation areas are found along the Mediterranean coast (e.g., around Alexandria).Summer’s hot, dry season lasts from May to October (https://weather-and-climate.com).

2.2. Raw data collection

Raw data were collected through a performed questionnaire about the cultivated crops in centres of each governorate by visiting the agricultural management in each governorate of the studied area. Then these dates were verified via the Egyptian annual agricultural newspapers that were publicized by the Ministry of Agriculture and Reclamation from 2011 to 2021 for 185 centres. In addition, 24 field visits were performed covering the study area (March 2021 - March 2022) to verify the collected data. In addition, checking herbarium sheets of Egyptian crops in the herbarium of the Agricultural Museum, Cairo (CAIM).

2.3. Floristic analysis and botanical characters

Crops were identified and their accepted names were verified by the author. The identification of some species was revised according to their kept herbaceous sheets in Agricultural Museum Herbarium (CAIM). Growth form, flowering times and sex forms of the surveyed species were determined in the field. The main detected sex forms are bisexual, unisexual (monoecious and dioecious) or polygamous (Shaltout et al., 2010). Flowering times represents the season of the flowering activity of each surveyed crop, and then these parameters were verified by these references (Ammar, 2015; Ahmed et al., 2020; Ammar, 2021; El-Beheiry et al., 2015). There were main four cultivation habitats of the studied crops regarding to agricultural duration: winter crop fields (yield at winter months from December to February), summer crop fields (yield at summer months from June to August), late summer or late winter crop fields (yield at spring months from March to May or Autumn months from September to November) and orchards (fruit or ornamental perennial trees). Crops propagated sexually by seeds, but they propagated asexually by one or more of these 10 methods: division (stolons and offsets), spores, plantlets, separation (bulbils, bulbs, suckers and corms), cutting, air layering, grafting, rhizomes, tissue culture and budding. Propagation methods of the surveyed species were identified and gathered by asking farmers and agricultural engineers, then verified by these reference: (Kumar, 2011; Ammar, 2015; https://resourcecentral.org/plant-propagation-methods/) and (https://www.mastergardenproducts.com).

2.4. Historical view

Ten era categories of introduction of crops to Egypt: Pharonic, Ancient Greek, Ptolemaic, Romanic, Islamic, in addition to Mohamed Ali Family period that divided into 3 intervals; 1800s-1850s, 1850s-1900s and 1900s-1950s. Also, Republic period which divided into 2 eras (1950s-2000s) and (>2000s) (Ammar, 2021). These eras are detected from references in Egyptian libraries such as the libraries of the Agriculture Museum in Cairo and the Min-
istry of Agriculture and Reclamation (Delchevalerie, 1871; Bedevian, 1935; Mosleeh, 1942; Täckholm and Drar, 1950; Nazer, 1968; Täckholm and Drar, 1954; Mareey, 1970; El-Shaieb and Gerad, 1978; Khatab, 1979; Hagras, 1996; Ministry of Agriculture and Land Reclamation, 2004; Manniche, 2006); and also from old plant sheets in the herbarium of the Agricultural Museum in Dokki, Cairo (CAIM) of pioneer herbalists such as Drar and Khattab, Sha-betai, Simpson, Takhlima.

2.5. Economic values and Ecological benefits

Economic values are ordered into 6 key categories according to behavior of common Egyptians: food, medicine, decoration, grazing timber and others (e.g., fuel, industry, historical values and scientific studies). Fourteen ecological benefits were defined: humidity tolerant, cold tolerant, drought tolerant, shade source, heat tolerant, nitrogen fixers, animal tolerant, resistant to insects and pests, salinity tolerant, wind breakers, light tolerant, pH maintainers, sand accumulators and Air purifications. The checked references were (Makins et al., 1948; Boulos and El–Hadidi, 1994; Simpson and Ogorzaly, 1995; El–Hadidi, 1998; Burnie et al., 2004; Diwan et al., 2004; Shaltout and Ahmed, 2012; Shaltout and Ahmed, 2012; Ammar and Shaltout, 2013; El–Beheiry et al., 2015; Ammar, 2015; Ammar et al., 2020; Ammar, 2021), web site of The Food and Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#data), World Agricultural Production 2021 (https://www.fas.usda.gov/data/world-agricultural-production).

2.6. Global phyto-geographic regions, continental distribution and biomes

Crop flora was assessed according to Takhtajan’s system (1986) which divided the world into 35 biogeographic regions, world regions for the endemism of plant, based on the distribution of land plants (Lücking, 2003; Lomolino et al., 2017). Also, the crop distribution was evaluated in the 6 world continents; Asia, Africa, Europe, Australia and North America and South America as the crop origin (Lomolino et al., 2017). Crops were evaluated in relation to their biomes, the classification of the natural vegetation groups of the world according to the distribution of climatic regions and soil types. Biomes were classified into 9 regions; arctic tundra and ice, boreal forest, temperate deciduous forest and sub-tropical evergreen forest, temperate grasslands, temperate rainforest, desert and semi desert, tropical deciduous forest and savanna, tropical rainforest and alpine tundra (Lomolino et al., 2017).

3. Results

3.1. Floristic analysis and botanical characters

One hundred and ninety-one crop species, sub-species and varieties were recorded, from them 170 species were currently examined by the author, while 21 species were considered as a historical gap belonged to 7 families and 19 genera, they were found only as herbarium sheets in Herbarium of Agricultural Museum in Cairo (CAIM) or historical literatures (Table 1). The 170 crop species were surveyed, belonging to 101 genera and 45 families were documented in 185 field centers along the Nile River. The most represented families were Fabaceae (19 species and sub-species of the total), followed by Poaceae (18 species and sub-species). The most recorded genera are Citrus (7 species and sub-species of the total), followed by Brassica (6 species and sub-species) (Fig. 2a and b). The most recorded growth forms are herbaceous plants (113 species = 66.5 % of the total species), followed by trees-shrubs (39 species = 22.9 %). Agricultural habitats; winter crop field (74 species = 43.5 % from the total recorded crops), summer crop fields (58 species = 34.1 %), late summer or late winter crop fields (41 species = 66.5 % of the total species), followed by trees-shrubs (16 species = 9.6 %), then the period between 1850s and 1900s (1 species = 0.6 %) (Appendix).

Propagation methods are detected to only 167 recorded crop species. Crops were propagated by two ways: sexually by seeds (144 species of the total = 86.2 %), and asexually cutting (23 = 13.8 %). Rhizomes (11 = 6.6 %), offsets (10 = 6 %), grafting (8 = 4.8 %), bulbs (5 = 3 %), suckers, air-layering and corms (2.4 %), while each of buds, spores and stolons are represented by one species (0.6 %) (Appendix).

3.2. Historical view

One hundred sixty-six crop species had extracted date of introduction to cultivate in Nile Region, Egypt from other countries via previous literatures and historical herbarium sheets (98.8 % of the total recorded species). There was a highest record of the Egyptian crop plants’ age in the Pharaonic era (80 species = 48.2 % of the recorded species), while there was a slight crop plant introduction through the Ancient Greek civilization (7 species and sub-species), the Ptolemaic era (3 species and sub-species) and the Islamic era (6). There was a slightly increasing of plant introduction through the start of the era of Mohamed Ali Family; from 1800s to 1850s (16 species = 9.6 %), then the period between 1850s and 1900s

Table 1
Twenty-one crop species were recorded as historical gap; they were found only as herbarium sheets in Herbarium of Agricultural Museum in Cairo (CAIM) or historical literatures.

Family	Genus	Species, sub-species or variety
Apiaceae Lindl.	Arracacia	Arracacia xanthorrhiza Bancr.
(alt. Umbelliferae)	Bupleurum	Bupleurum semicompositum L.
Fabaceae Lindl.	Alhagi	Alhagi graecorum Boiss.
(alt. Leguminosae A. Juss.)	Indigofera	Indigofera macroacaulis Guill. & Perr.
Fabaceae Lindl.	Vigna	Vigna mungo (L.) Bepper
(alt. Labiatae)	Mentha	Mentha longifolia (L.) sub sp. longifolia
Lamiaceae	Origanum	Origanum vulgare L.
Martynov	Mentha	Mentha longifolia (L.) sub sp. longifolia
Malvaceae Juss	Corchorus	Corchorus capsularis L.
(alt. Labiatae)	Gossypium	Gossypium arboreum L.
Poaceae Barnhart	Sorghum	Sorghum virgatum (Hack.) Stapf.
(alt. Gramineae)	Zea	Zea luxurians (Dumerc & Asch.) R.M. Bean
Rosaceae A. Juss.	Rosa	Rosa clinoiphylia Thory

The most recorded growth forms are herbaceous plants (113 species = 66.5 % of the total species), followed by trees-shrubs (39 species = 22.9 %). Agricultural habitats; winter crop field (74 species = 43.5 % from the total recorded crops), summer crop fields (58 species = 34.1 %), late summer or late winter crop fields (41 species = 66.5 % of the total species), followed by trees-shrubs (16 species = 9.6 %), then the period between 1850s and 1900s (1 species = 0.6 %) (Appendix).

Some plants reproduce also asexually by spores. These recorded crop species are mainly bisexual (151 species = 88.8 % of the total), followed by monocious (14 = 8.2 %), while one species reproduce asexually by spores (0.6 %) (Appendix). There is an increase in the flowering activity of the recorded species gradually from December (28.3 % of the total species) till reaching a maximum value in June (40.1 %). The period from March to June is characterized by the highest flowering activity, while the period from September to November is characterized by the lowest activity (Appendix).

Propagation methods are detected to only 167 recorded crop species. Crops were propagated by two ways: sexually by seeds (144 species of the total = 86.2 %), and asexually cutting (23 = 13.8 %). Rhizomes (11 = 6.6 %), offsets (10 = 6 %), grafting (8 = 4.8 %), bulbs (5 = 3 %), suckers, air-layering and corms (2.4 %), while each of buds, spores and stolons are represented by one species (0.6 %) (Appendix).
(27 species = 16.3 %), followed by (19 species = 11.4 %) in the period between 1900s and 1950s. There was a slightly decreasing of the plant introducing via the modern era; (4 species = 2.4 %) in the period between 1950s and 2000s, and also (4 species = 2.4 %) via the period more than the year 2000 (Fig. 3, Appendix).

3.3. Economic values and Ecological benefits

The whole species in Nile region have at least one trait of the actual or potential economic values: 51 species have one use, 72 have 2 services, 33 have 3 services, 13 have 4 services and Annona cherimola has 5 services alone (Tables 1 and 2, Appendix). Recorded economic values are arranged as following: human food (137 species = 80.7 % of the total), medicinal purposes (78 = 45.9 %), decoration (58 = 34.1 %), and other uses (e.g., fat and oil industries, fuel and paintings, religious ceremonies, educational purposes, chemical industry) (57 = 33.5 %), grazing (12 = 7.1 %) and timber (9 = 5.3 %) (Table 2, Appendix).

One hundred fifty species (87.7 % of the total) have at least one trait of the actual or potential environmental services. Thirty-nine species had one service, 58 have 2 services, 46 have 3 services and Ziziphus spina-christi has five services alone (Tables 2 and 3, Appendix). Recorded environmental services are arranged as following: humidity tolerant (84 species = 56 % of the total), cold tolerant (75 = 50.0 %), drought tolerant (40 = 26.7 %), shade sources (37 = 24.7 %), heat tolerant

Fig. 2. The most top families and genera of the recorded crop plants.
(29 = 19.3 %), nitrogen fixers (19 = 12.7 %), each of animal tolerant and resistant to pests and insects (10 = 6.7 %), salinity tolerant (7 = 4.7 %), wind breakers (2 = 1.3 %). In addition, pH maintainer and light tolerant are represented by *Matricaria chamomilla* alone, while *Ricinus communis* acts as sand accumulators and *Thymus vulgaris* makes air purification (0.7 % for each) (Table 2, Appendix).

3.4. Global phyto-geographic regions, continental distribution and biomes

About global phyto-geographic region; Mediterranean region and Saharan-Arabian region are the most represented (73 species = 42.9 %), then Sudano-Zambesian region (49 species = 28.2 %), while each of St. Helena and Ascension, Fernándezian, Subantarctic Islands and Neozeylandic regions is represented by one species only (0.6 %) (Table 4).

Nineteen species are endemic in one phytogeographic region (11.2 %), 42 species in two regions (24.7 %), 55 in three (32.4 %), 17 in four (10 %), 12 in five (7.1 %) and 25 in more than five regions (14.7 %) (Fig. 4).

As the continental distribution, 108 Egyptian crops were originated from Africa (63.5 %), 67 crops from Asia (39.7 %), 65 crops from Europe (38.2 %), 24 crops from South America (14.1 %), 22 from North America (12.9 %) and 8 from Australia (4.7 %). Eighty-eight species were originated from one continent (51.8 %), 48 species from two continents (28.2 %), 29 from 3 (17.1 %), 2 from 4 (1.2 %) and 3 from 5 (1.8 %) (Fig. 5a and b).

Regarding to biomes; 128 species are orginated in temperate deciduous forest and subtropical evergreen forest biomes, 119 species in temperate grasslands, 107 in desert and semi-desert, 87 in tropical rainforest, 70 in tropical deciduous forest and savanna, 40 in boreal forest, 28 in arctic tundra and ice, 24 in temperate rainforest and 25 in alpine tundra. Twenty-three species are originated in one biome (13.5 %), 26 in two biomes (15.3 %), 48 in three (28.2 %), 18 in four (10.6 %), 27 in five (15.9 %) and 27 in more than five biomes (15.9 %) (Fig. 6a and b).

4. Discussion

4.1. Floristic analysis and botanical characters

One hundred and ninety-one crop species, sub-species and varieties have been recorded throughout the Egyptian Nile region, with 170 species (89.0 percent) currently under investigation, belonging to 101 genera and 45 families. Whereas 21 species (11.0 percent) belonged to 7 families and 19 genera, they were only found as herbarium sheets in the Herbarium of the Agricultural Museum in Cairo (CAIM) or in historical literatures. (Ammar, 2015; El-Beheiry et al., 2015) recorded only 173 crops in Egypt’s Nile Delta, belonging to 44 families and 99 genera, regardless of whether these crops were widely cultivated or not. The majority of the 22 crops evaluated as historical gaps are wild species that are still used as medicinal plants or for other purposes, but are not widely cultivated as crops, e.g., *Origanum vulgare* and *Mentha longifolia* sub sp. *longifolia*. Fabaceae was the most represented families (11.2 percent from the current recorded species), followed by following Poaceae (10.6 percent). Citrus was the most commonly recorded genus (4.1 percent), followed by *Brassica* (3.5 percent).

According to (Ammar, 2015; El-Beheiry et al., 2015), Poaceae had the highest value (12.7 percent of total species), followed by Fabaceae (12.1 percent), and Cucumis had the highest value (4.6 percent), followed by *Brassica* and *Citrus* (4.0 percent for each). Herbaceous plants have the most recorded growth forms (66.5 percent), followed by trees and shrubs (22.9 percent). This result agreed with (Ammar, 2015; El-Beheiry et al., 2015), who found that herbaceous plants were the most abundant (71.1 percent), followed by trees and shrubs (23.9 percent). Agricultural habitats include winter crop fields (43.5 percent of all crops recorded), followed by summer crop fields (34.1 percent). According to (Ammar, 2015; El-Beheiry et al., 2015), the majority of species grow in the winter (68 percent), followed by the summer (18 percent).

The majority of crops reproduce bisexually (88.8 percent of the total). The predominance of hermaphrodites is a common feature of the world’s floras (e.g. 92 percent of the British flora is hermaphrodites; Lewis D, 1941). The flowering activity of the recorded species gradually increases from December (28.3 percent of the total species) to a maximum value in June (40.1 percent). The frequency of flowering time in the Nile Delta gradually increases from March to May, with the lowest frequency occurring from June to November (Shaltout et al., 2010). According to (El-Beheiry et al., 2015), the percentage of flowering species radually increases from 24.8 percent in December to 44.6 percent in May. Crops were propagated sexually (86.2 percent) by seeds and asexually mostly by cutting (13.8 percent). The majority of flowering plants are propagated sexually through seeds, but some crops are propagated through

![Figure 3](image-url)
Table 2
Features of the recorded crop species in the Nile Region.

Economic values	Agricultural habitats
FD	DE, FD, ME, TI, OT
MD	DE, FD, ME
OT	DU, ME, FD, OT, ME
ME	FD, ME, OT
DT	DU, ME, FD, OT, ME
SS	DU, ME, FD, OT, ME
TI	DU, ME, FD, OT, ME
PH	DU, ME, FD, OT, ME
SA	DU, ME, FD, OT, ME
AP	DU, ME, FD, OT, ME

Table 3
Crops offer multi-purpose economic values and ecological benefits; 15 multipurpose crops offer > 3 economic values, where FD: food, DE: decoration, MD: medicine, OT: other uses (e.g., Oil industries, paintings and timber). Six multi-purpose crops offer > 3 ecological benefits, where HT: humidity tolerant, CT: cold tolerant, DT: drought tolerant, NF: nitrogen fixers, PR: resistant to insects and pests, ST: salinity tolerant, WB: wind breakers, SA: sand accumulators and SS: Shade source.

Crop species	Economic values	Ecological benefits	
Ammonia cherimola	DE, FD, ME, TI, OT	Lathyrus olereaceus	DT, HT, CT, NF
Carica papaya	DE, FD, OT, ME	Opuntia ficus-indica	DT, ST, HT
Citrus aurantifolia	DE, FD, OT, ME	Phoenix dactylifera	SS, HT, DT, TT
Cymbopogon citratus	DE, FD, OT, ME	Psism sativum subsp. brevipedunculata	NF
Mentha piperita	DE, FD, OT, ME	Psism sativum var. macaron	NF
Morus alba	DE, FD, OT, ME	Ricinus communis	WB, SA, SS, PR
Ocimum basilicum	DE, FD, OT	Ziziphus spina-christi	SS, ST, WB, DT
Origanum majorana	DE, FD, OT	ME	
Salvia rosmarinus	DE, FD, OT	ME	
Syzygium cumini	DE, FD, OT	ME	
Vitis vinifera	DE, FD, OT, ME	ME	
Ziziphus spina-christi	FD, DE, TI, OT	ME	

4.2. Historical view

About 97.6% of the current crops had extracted their date of introducing to the Egyptian Nile Region. There was a highest record of the Egyptian crop plants' age in the Pharaonic era (48.2% of the recorded species). Agriculture was the backbone of the ancient Egyptian economy and was essential to the lives of the people who lived there. Agricultural practises began in the Predynastic Period in Egypt (c. 6000 - c. 3150 BCE) in the Delta Region of northern Egypt and the fertile basin known as the Faiyum, but there is evidence of agricultural use and overuse of the land dating back to 8000 BCE. Egyptians have continued to cultivate the basic strategic crops in their daily lives since the pharaohs' era until now, but they have sought to preserve their genetic origins through the ages primarily for food insurance and feeding their animals, such as Triticum aestivum, Hordeum vulgare, and Sorghum bicolor. In addition to other economic uses such as cloth and texture production (e.g., Gossypium barbadense and Linum usitatissimum) and oil extraction (e.g., Phoenix dactylifera; Manniche, 2006). According to the findings of this study, the majority of the Egyptian crop basket dates back to the Pharaonic era, indicating the relative stability of the Egyptian climate over time. As a result, eradicating poverty and hunger in Egypt is not as difficult as it is in countries where environmental and behavioural conditions are changing. B.C., when the people of the Prophet Moses asked him to replace their food with beans, onions, garlic, cucumbers, wheat and vegetables, he said to them, “Go
down to Egypt, for you will have what you asked for” (The Holy Quran, Surat Al-Baqarah: 61) (https://quranenc.com/). Wheat has existed in Egypt since the time of the Pharaohs, and this is what was mentioned in the story of the Prophet Joseph, who asked the ruler of Egypt at the time to manage the wheat silos in Egypt, and called them the earth’s reservoirs. for their abundant production (The Holy Quran, Surat Yusuf: 55). Figs and olives are mentioned in the Noble Qur’an, and the figs we eat, and the olives we eat, but I swear by figs because they are food, fruits and medicines. It opens the pores of the liver and spleen, and it is the best and most valuable fruit, and indeed: (cuts hemorrhoids, and helps gout). Likewise, olives, because they are a fruit, a spice and a medicine from which the oil is pressed, and it is the important oils and fats for the people of some countries, and it is included in many medicines. He mentioned that they are in Mount Al-Tur in Sinai. Sinai is located in Egypt (The Holy Quran, Surat Al-Teen: 1 and 2). The olive tree; a tree that emerges from Mount Sinai, and a tree erected in turn over the gardens. Mount Sinai means Mount El-Tur in Sinai, Egypt (he Holy Quran, Surat Al-Mu’min

Global phytogeographic regions	Region number	Species or variety	Percentage (%)
Circumboreal region	1	48	28.2
Eastern Asiatic region	2	19	11.2
North American Atlantic region	3	8	4.7
Rocky Mountain region	4	7	4.1
Macaronesian region	5	8	4.7
Mediterraneaean region	6	73	42.9
Saharan-Arabian region	7	73	42.9
Irano-Turanian region	8	38	22.4
Madrian region	9	12	7.1
Guineo-Congolian region	10	14	8.2
Uzambara-Zululand region	11	7	4.1
Sudano-Zambesian region	12	49	28.8
Karoo-Namib region	13	8	4.7
St. Helena and Ascension region	14	1	0.6
Madagascan region	15	10	5.9
Indian region	16	45	26.5
Indochinese region	17	30	17.6
Malesian region	18	27	15.9
Fijian region	19	9	4.7
Polynesian region	20	10	5.9
Hawaiian region	21	8	4.7
Neocaledonian region	22	2	1.2
Caribbean region	23	21	12.4
Guayana Highlands	24	12	7.1
Amazonian region	25	21	12.4
Brazilian region	26	16	9.4
Andean Region	27	19	11.2
Cape region	28	7	4.1
Northeast Australian region	29	8	4.7
Southwest Australian region	30	4	2.4
Central Australian or Eremacan region	31	5	2.9
Fernándezian region	32	1	0.6
Chile-Patagonian region	33	13	7.6
Subantarctic Islands	34	1	0.6
New Zealand region	35	1	0.6
Total	170	100.0	

For thousands of years, Egyptian culture has been associated with many famous popular dishes containing recorded Egyptian crops, such as falafel; which contains: *Vicia faba* (Egyptian bean), *Allium ampeloprasum* (Kurrat), *Allium cepa* (Bulb onion), *Allium sativum* (Garlic), *Petroselinum crispum* (Parley), *Coriandrum sativum* (Coriander) and *Cuminum cyminum* (Cumin). Furthermore, Egyptians are used to eat cooked *Vicia lens* (Lentil) and *Vicia faba* (Egyptian bean) as an inherited food (Abdennour, 2015; Leheta, 2015).

4.3. Economic values and Ecological benefits

For economic values; it is estimated that approximately 3,000 plant species have been used as human food throughout history, with approximately 200 having been domesticated as food crops (Simpson and Ogorzaly, 1995). In addition to the most common...
food crops (Oryza sativa, Triticum aestivum, Phaseolus vulgaris, Pisum sativa, Vicia faba, and Zea mays), fresh leaves and young shoots of Malva parviflora (Khubbayza) are cooked as a vegetable dish; fresh leaves and stems of Beta vulgaris (Salq) are eaten cooked as stew or as a soup mixed with lentil; and soft fresh pods of (Al-Eisw and Takruri, 1989). Certain fruit trees, particularly Morus alba, Vitis vinifera, Citrus aurantium, Dianthus sinensis, and Rosa pendulina var. hybrid tea roses, are used as ornamental decorative plants in the Nile Delta (Heneidy, 2010; Soliman and Amer, 2002; Ammar, 2015; Ammar, 2021)).

Citrus aurantifolia (Key lime) is used as a source of volatile oils (limonene and linalool), citric acid, gives tasty for food, medicinal purposes in folk medicine (Heneidy, 2010), while Citrus sinensis (Sweet orange) is used as a source of vitamin C., and Jasminum grandiflorum (Spanish jasmine) gives extracted oil from flowers, used as perfume, and flavor (Heneidy 2010). Citrus aurantium (Bigarade orange), a beta agonist-containing agent, has been reported to help with weight loss (Preuss HG et al., 2002). Citrullus colocynthis, Mentha longifolia, Thymus vulgaris, Moringa oleifera and etc. are used as medicinal plants in a herbal drug industry (Abdel-Azim et al., 2011). Zingiber officinale has been used for centuries in many traditional systems of medicine for its diverse medicinal properties such as antiemetic, stomachic, expectorant, anti-inflammatory, and aphrodisiac. It can be used to treat a variety of gastrointestinal, pulmonary, cardiovascular, and sexual disorders (Imtiyaz et al., 2013). Mentha longifolia and Punica granatum are used as anti-Helicobacter pylori medicinal plants (Hafez et al., 2020). Various bioactive components are capable of extraction from anti-parasitic medicinal plants; Vitis vinifera (Grape seed) eases the coccidiosis by lowering the regulation of oxidative stress, Olea europaea (Olive tree) enhances the anti-coccidial index. Aloe vera (Aloe leave) exhibits considerably intestinal lesions, while Moringa oleifera (Drumstick tree) lessens oocyst number (Jamil et al., 2022).

For ecological benefits; as a result, in cultivated fields, nitrogenous compound-rich fertilisers are frequently required. Because the bacteria convert atmospheric nitrogen into ammonia, plants with nodulating bacteria have overcome the problem of obtaining usable nitrogen (Simpson and Ogorzaly, 1995). Soybean (Glycine max L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.),...
and cowpea (*Vigna unguiculata* (L.) Walp.), improve soil quality as green manure when cycled or utilised as intercrops between cereals, depending on the region (Williams et al., 2014) and (Denton et al., 2017) and (Ma et al., 2022). Short high-temperature stress events that reduce photosynthesis and increase oxidative stress in *Glycine max* (soybean) resulted in non-significant losses to soybean production in the Midwest (Siebers et al., 2015).

Ten crop plant species were tested for insect and pest resistance in this study. Brassicaceae food crops, such as mustard and canola oil, share a pungent flavour that is imparted by a class of compounds known as mustard oil glycosides, or glucosinolates. While not toxic to humans in the amounts consumed, mustard oils have been shown to be toxic to insects (Simpson and Ogorzaly, 1995). Sand controllers, such as sand accumulation and windbreaks, have

Fig. 6. Frequency of the recorded crop species in the Nile Region in relation to their world terrestrial biomes and number of biomes. Biomes are; TEE: temperate deciduous forest and subtropical evergreen forest, TEG: temperate grasslands, DES: desert and semi-desert, TRR: tropical rainforest, TRD: tropical deciduous forest and savanna, BOF: boreal forest, ARI: arctic tundra and ice, TER: temperate rainforest and ALT: alpine tundra.

Panel a: Frequency of the recorded crop species in the Nile Region in relation to their world terrestrial biomes.

Panel b: Frequency of the recorded crop species in the Nile Region in relation to number of biomes.
been observed to effectively deal with drift sand (Simpson, 1932). *Ricinus communis* and *Phoenix dactylifera* are two sand controllers that make effective wind breaks (Shaltout and Ahmed, 2012; El-Beheiry et al., 2015; Ammar, 2015; E. E. Ammar et al., 2020; Ammar, 2021).

4.4. Global phyto-geographic regions, continental distribution and biomes

For the world endemism and global phyto-geographic regions of the recorded plants; Mediterranean and Saharan-Arabian regions were the most represented (42.9 %), then Sudan-Zambebian region (28.8 %). About the continental distribution, 63.5 % of Egyptian crops were originated from Africa and 39.7 % from Asia. Egypt’s ecosystem is associated with distinct biotic regions of these continents due to its location at the crossroads of three continents (Africa, Asia and Europe). The biotic regions of the country’s north (Nile Delta and Mediterranean coasts) are associated with those of the Mediterranean Basin, while the eastern part is associated with the Levant and the Arabian Peninsula, and the southern (Nile Valley) is associated with the Sudanese and tropical Africa, implying that the majority of its natural flora originated in regions 6 and 7 (Ammar, 2021).

Regarding to biomes, 75.3 % species are originated in temperate deciduous forest and subtropical evergreen forest biomes, 70.0 % species in temperate grasslands, 62.9 % in desert and semi-desert. As Egypt is located in temperate grassland, desert and semi-desert biomes (Lomolino et al., 2017). Thus, it is suitable for the growth of a wide range of plants, especially drought and heat tolerant plants (e.g., *Carica papaya*, *Helianthus annuus* and *Phoenix dactylifera*) (El-Beheiry et al., 2015; Ammar, 2021).

5. Conclusion

According to this assessment, the majority of the Egyptian crop basket were originated in Asia, in addition the huge introduction of them back to the Pharaonic era. All these findings indicate to the relative stability of the Egyptian climate over time. As this result, eradicating poverty and hunger in Egypt is not as difficult as it is in countries where environmental and behavioural conditions are changing, so the ability of support the sustainable development goals of the United Nations is possible obviously e.g., the first goal (no hunger) and the second goal (zero hunger) (https://aer.eu/sustainable-development-goals-engaging-regions/).

6. Future prospective

The future prospective is how to join distribution and cultivated areas of crop species with climate features and population percentage in each area. This will be associated with the 13th goal of sustainable development (climate action) and the life on land (the 14th goal), and this studies exactly will support the food insurance. All these findings will indirectly enhance of crop productivity the educational level, the 4th goal (good education). As the study of diversity in one side, in addition to the nature and diversity of soil in Egypt will help determining the appropriate types of crops for each kind of soil in each region. This already will promote the cultivation of the appropriate crop in the appropriate area to obtain the highest crop productivity naturally, and then provide new job opportunities and raise the standard of living, which indirectly enhances gender equality, especially in education and work (the goal 5th) (https://aer.eu/sustainable-development-goals-engaging-regions/). Current and future scientific research will support more using the contemporary biotechnological techniques to increase the productivity of strategic crops, which increases their resilience to climatic change and emergency environments and enhances their plant and nutritional qualities, all of which will contribute to achieving the desired level of food security (Ammar et al., 2021). In addition to the use of bio-degradable fertilizers extracted from algae and harvested plant residues, it will help increase soil fertility and reduce its desertification, which supports healthy and safe plant growth for crops with high efficiency in the face of any emergency environmental and climatic changes, so this will support the introduction of new crops to the study area and elevation of its crop diversity (Ammar et al., 2022). Additionally, the majority of the world is now turning to the use of biodegradable materials in the cultivation of its strategic crops, such as bio herbicides, bio insecticides, and bio pesticides, which reduce soil stress and prevent the accumulation of toxic substances in the tissues of agricultural crops, particularly food, in order to achieve food security for humans and good health together within the framework of the United Nations’ sustainable development goals (Aioub et al., 2022) (https://aer.eu/sustainable-development-goals-engaging-regions/).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Sincere acknowledgements for my mother Dr./ Doaa A. El-Fayyar (Pharmacist) and my sister Nouran A. El-Shershaby (Undergraduate student, Faculty of Agriculture, Tanta University) for accompanying me in some field visits, in addition helping for collection of plant specimens and preparation of both herbarium sheets and seed specimens.

Appendix A

The current examined 170 crop species, sub-species or varieties around the Egyptian Nile River, Eastern North Africa. Growth forms: HP: herbaceous plants, TS: trees-shrubs, CC: climbers-creepers, CS: cacti-succulents, AQ: aquatic-semi aquatic plants, PP: palms-palm likes and CO: conifers. **Sex forms**: Bi: bisexual, Mono.: monococious, Di: dioecious, Poly: polymamous and Sp: spores. **Propagation methods**: SD: seeds, CT: cutting, RH: rhizomes, OF: offsets, GR: grafting, BB: bulbs, SU: suckers, CO: corms, AI: air-layering, ST: stolons, SP: spores and BD: buds. **Flowering time (months)**: 1: January, 2: February, 3: March, 4: April, 5: May, 6: June, 7: July, 8: August, 9: September, 10: October, 11: November and 12: December. **Ecological benefits**: HT: humidity tolerant, CT: cold tolerant, DT: drought tolerant, SS: shade source, TT: heat tolerant, NF: Nitrogen fixers, ...
AT: animal tolerant, PR: resistant to insects and pests, ST: salinity tolerant, WB: wind breakers, LT: light tolerant, PH: pH maintainers, SA: sand accumulators and AP: Air purifications. **Economic values:** FD: food, MD: medicine, DE: decoration, OT: other uses (e.g., industry, fuel, dyes and oils), GR: grazing and TI: timbers. **Agricultural Habitats:** Wf: winter crop fields, Sf: Summer crop fields, SS: Late summer or late winter crop fields and OR: orchards (fruit or ornamental trees).

Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
Actinidiaceae Gilg and Werderm.								
Actinidia chinensis Planch.	TS	Mono	SD	5, 6	SS	FD, ME	OR	1900s-1950s
Amaryllidaceae J.St.Hil.								
Allium ameloprasum L.	HP	Bi	SD, BB, Of	1, 2	HT, CT	FD, ME, WF	Pharaonic	
Allium fistulosum L.	HP	Bi	SD, BB, Of	2	HT, CT	ME, OT, WD	Pharaonic	
Allium sativum L.	HP	Bi	SD, BB, Of	2	HT, CT	ME, OT, WD	Pharaonic	
Allium schoenoprasum L.	HP	Bi	SD, BB, Of	2	HT, CT	FD, ME, WF	Ancient Greek	
Allium ursinum L.	HP	Bi	SD, BB, Of	2	HT, CT	DE, ME, WF	Ancient Greek	
Anacardiaceae R. Br.								
Mangifera indica L.	TS	Bi	SD	5, 6	SS	FD, TI, OR	Pharaonic	1800s-1850s
Annonaceae Juss.								
Annona cherimola Mill.	TS	Bi	SD, GR	5, 6	SS	FD, FD, ME, OT, TI, OR	Pharaonic	

Appendix. count. 1.

Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
Apiaceae Lindl.								
Ammi majus L.	Hp	Bi	SD	4, 5, 6, 7, 8, 9, 10, 11, 12	AT	ME, Sf, SS		
Anthemis graveolens L.	HP	Bi	SD	8, 9	AT	FD, ME, Sf	Pharaonic	
Anthriscus cerefolium (L) Hoffm.	HP	Bi	SD	3, 4, 5		FD, ME, SS	Pharaonic	
Apium graveolens L.	HP	Bi	SD	5, 6, 7, 8		FD, ME, Sf	Pharaonic	
Carum carvi L.	HP	Bi	SD	5, 6, 7, 8		FD, ME, Sf	Pharaonic	
Coriandrum sativum L.	HP	Bi	SD	3, 4, 5, 6	HT, CT	FD, OT, ME, WF	Pharaonic	
Cuminum cyminum L.	HP	Bi	SD	6, 7		FD, ME, Sf	Pharaonic	
Daucus carota L.	HP	Bi	SD	6, 7, 8		FD, OT, SS, Sf, WF, SS	Pharaonic	1850s-1900s
Foeniculum vulgare Mill.	HP	Bi	SD	6, 7	AT	FD, ME, Sf, WF, SS	Pharaonic	
Petroselinum crispum (Mill.) Fuss.	HP	Bi	SD	3, 4, 5	HT, CT	FD, ME, Sf, WF, SS	Pharaonic	
Pimpinella aromatic M. Bieb.	HP	Bi	SD	6, 7	NF	FD, ME, Sf, WF, SS	Pharaonic	
Araceae Juss.								
Colocasia esculenta (L.) Schott.	HP	Mono	OF CO	1, 2	HT, CT	FD	Pharaonic	
Arecaceae Schultz Sch.								
Phoenix dactylifera L.	P	Di	SD	3, 4, 5	SS, HT, DT, TT	FD, DE, ME, OR	Pharaonic	
Asteraceae Bercht. and J.Presl								
Calendula officinalis L.	HP	Bi	SD	1, 2		DE, ME	OR	1900s-1950s
Cichorium intybus L.	HP	Bi	SD	5, 6, 7, 8, 9, 10		ME, FD	SS	Pharaonic
Cynara cardunculus L.	HP	Bi	SD	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	DT	FD	WF, SS	1850s-1900s
Dahlia pinnata Cav.	HP	Bi	CO, SD, CT, RH	6, 7, 8, 12, 1, 2		DE, ME, Sf	Ancient Greek	

(continued on next page)
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
Helianthus annuus L.	HP	Bi	SD, RH, CT	6, 7, 8	TT, DT	DE, FD, OT	Sf, Wf, SF, SS	Pharaonic 1850s-1900s
Lactuca sativa L.	HP	Bi	SD	4, 5, 6, 7	LT, PH	DE, ME, OT	DE, ME	Pharaonic
Matricaria chamomilla L.	HP	Bi	SD, CT	6, 7, 8, 9, 10, 11	DE, FD, OT	DE, ME, OT	Sf, Wf, SF, SS	Pharaonic 1850s-1900s
Tagetes erecta L.	HP	Bi	SD	6, 7, 8, 9, 10, 11	LT, PH	DE, ME	Wf, SF, SS	Pharaonic 1850s-1900s

Appendix. count. 2.

Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)	
Brassica juncea (L.) Czern.	HP	Bi	SD	1, 2	PR	FD	Wf	1850s-1900s	
Brassica napus L.	HP	Bi	SD	1, 2	PR	FD	ME	Wf	1850s-1900s
Brassica nigra L.	HP	Bi	SD	1, 2	PR	FD	Wf	Pharaonic	
Brassica cretica subsp. *cretica*	HP	Bi	SD	1, 2	HT, CT, PR	FD	Wf, SF, SS	Pharaonic 1850s-1900s	
Brassicaoleracea L.	HP	Bi	SD	1, 2	HT, CT, PR	FD	ME, DE, SF	Wf, SF, SS	Pharaonic 1850s-1900s
Eruca pinnatifida (Desf.) Pomel	HP	Bi	SD	12, 1, 2	HT, CT, PR	ME, FD	SF, SS	Pharaonic 1900s-1950s	
Raphanus raphanistrum subsp. *sativus* (L.) Domin	HP	Bi	SD	12, 1, 2	HT, CT, PR	ME, FD	SF, SS	Pharaonic 1900s-1950s	
Sinapis alba L.	HP	Bi	SD	12, 1, 2	PR	FD, ME	Wf	Pharaonic	
Cactaceae Juss.	CS	Bi	CT	3, 4, 5	DT, ST, HT, TT	DE	OR	1900s-1950s	
Carica papaya L.	TS	Poly	SD	12, 1, 2	HT, CT	DE	OR	1800s-1850s	

Appendix. count. 3.

Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
Beta vulgaris L.	HP	Bi	SD	12, 1, 3	HT, CT	FD, ME	Wf	Pharaonic 1850s-1900s
Spinacia oleracea L.	HP	Bi	SD	12, 1, 2, 4, 5, 6	HT, CT	FD	Wf	1850s-1900s
Ipomoea batatas (L.) Lam.	HP	Bi	CO	3, 4, 5	TT, HT	FD	Wf, SF, SS	1800s-1850s
Cucumis sativus L.	CC	Bi	SD	3, 4, 5, 6, 7, 8, 9	TT, HT	FD	SF, SS	Pharaonic
Cucumis melo var. cantalupensis Naudin.	CC	Mono	SD	3, 4, 5, 6, 7, 8, 9	TT, HT	FD	SF, Wf, SS	1950s-2000s
Cucumis melo var. dudaim (L.) Naudin.	CC	Mono	SD	3, 4, 5, 6, 7, 8, 9	TT, HT	FD	SF	1800s-1850s
Cucumis melo var. flexuosus (L.) Naudin.	CC	Mono	SD	3, 4, 5, 6, 7, 8, 9	TT, HT	FD	SF, SS	1800s-1850s
Cucurbita moschata Duchesne ex Poir.	CC	Mono	SD	9, 10, 11	CT	FD, ME	Wf	Pharaonic
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
------------	-------------	----------	---------------------	-------------------------	---------------------	-----------------	-----------------------	-----------------------------
Cucurbita pepo L. **Luffa aegyptiaca** Mill.	CC CC	Mono Bi	SD SD	7, 8 9, 10, 11, 6, 7, 8	TT, HT, AT DT, TT	FD, ME OT, DE	SF, WF, SS WF	Pharaonic 1850s-1900s
Cupressaceae S. F. Gray	CF Sp	Sp	SP	DT, ST	TI, DE, OT OR	-	-	-
Callitris rhomboidea R.Br. ex Rich.	CF OWN	OWN OWN						
Appendix. count. 4. Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)
Cyperaceae Juss.	AQ Bi	RH	3, 4, 5, 9, 10, 11	CT	OT, ME SS	Pharaonic		
Cyperus papyrus L.	AQ Bi	OF, SD, RH	3, 4, 5, 9, 10, 11	TT, DT	DE, OT, ME SS	Pharaonic		
Ebenaceae Gürke	TS Di	SD, GR	3, 4, 5	HT, CT	DE, FD, ME OR	1900s-1950s		
Diospyros kaki Thunb.	TS	Di	SD, GR	3, 4, 5	HT, CT	DE, FD, ME OR	1900s-1950s	
Euphorbiaceae A. Juss.	TS Mono	SD	3, 4	WB, SA, SS PR	OT, ME, DE OR	Pharaonic		
Ricinus communis L.	TS	Mono	SD	3, 4	WB, SA, SS PR	OT, ME, DE OR	Pharaonic	
Fabaceae Lindl.	HP Bi	SD	5, 6, 7, 8	HT, CT, NF	FD, OT, TI, ME SF	Pharaonic		
Arachis hypogaea L.	HP Bi	SD	5, 6, 7, 8	HT, CT, NF	FD, OT, TI, ME SF	Pharaonic		
Cicer arietinum L.	HP Bi	SD	5, 6, 7, 8	HT, CT, NF	FD, OT, TI, ME SF	Pharaonic		
Glycine max (L.) Merr.	HP Bi	SD	5, 6, 7, 8	HT, CT, NF	FD, OT, TI, ME SF	Pharaonic		
Glycyrrhiza glabra L.	HP Bi	BD, CT	HT	ME, FD Wf, SS SF	Pharaonic 1850s-1900s			
Lupinus albus L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Medicago falcata L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Phaseolus acutifolius A. Gray	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Phaseolus lunatus L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Lathyrus oleraceus Lam.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Phaseolus vulgaris L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Cicer arietinum L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia faba L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia lens (L.) Coss. & Germ.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia sativa L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vigna unguiculata (L.) Walp.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Trifolium alexandrinum L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Trifolium repens L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Trigonella foenum-graecum L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Trigonella foenum-graecum L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia faba L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia lens (L.) Coss. & Germ.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vicia sativa L.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Vigna unguiculata (L.) Walp.	HP Bi	SD	12, 1, 2	HT	ME FD, ME WF	Pharaonic 1850s-1900s		
Geraniaceae A. Juss.	HP Bi	SD, CT	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	DE, OT OR	-	1850s-1900s		
Pelargonium graveolens L’Hérit.	HP Bi	SD, CT	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	DE, OT OR	-	1850s-1900s		

(continued on next page)
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)			
Iridaceae Juss.	Gladiolus abbreviatus Andrews	HP	Bi	CO	3, 4, 5	HT, CT	DE	OR	1850s-1900s		
Juglandaceae DC. ex Perleb	Carya illinoinensis (Wangenh.) K.Koch.	TS	Bi	SD	6, 7, 8	AT	ME	Sf	> 2000s		
Juncaceae Juss.	Juncus acutus L.	HP	Bi	SD, CT	3, 4, 5	HT, CT	DE, FD, OT, ME	OR	Pharaonic		
Lamiaceae Martynov	Melissa officinalis L.	HP	Bi	SD	6, 7, 8	TE, DT	ME	FD, DE	OR	Pharaonic	
	Mentha longifolia (L.) L.	HP	Bi	RH, ST	6, 7, 8	TE, DT	ME, DE, ME	FD, OT	Pharaonic		
	Mentha × piperita L.	HP	Bi	SD, CT	3, 4, 5	HT, CT	ME, DE, ME	FD, OT	Pharaonic		
	Ocimum basilicum L.	HP	Bi	SD, CT	3, 4, 5	HT, CT	ME, DE	FD, OT	Pharaonic		
Appendix. count. 6.											
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)			
-----------	-------------	----------	---------------------	-------------------------	---------------------	-----------------	----------------------	--------------------------			
	Origanum majorana L.	HP	Bi	SD	6, 7, 8	AT	ME	Sf	Pharaonic		
	Salvia rosmarinus Spenn.	HP	Bi	SD, CT	9, 10, 11	TT, DT	ME	FD, DE, TI	OR	1900s-1950s	
	Thymus vulgaris L.	HP	Bi	SD	5, 6	AT, DT, AP	ME	DE, ME	Sf	Pharaonic	
	Lauraceae Juss.	Persea americana Mill.	TS	Bi	SD	3, 4, 5	HT, CT, SS	ME, DE	FD	OR	Pharaonic
	Linaceae S. F. Gray	Linum usitatissimum L.	HP	Bi	SD	3, 4	HT, CT	ME, FD, OT	FD	OR	Pharaonic
	Lythraceae J.St.-Hil.	Lawsonia inermis L.	TS	Bi	SD, CT	6, 7, 8	SS	ME, DE	FD	OR	Pharaonic
	Punica granatum L.	TS	Bi	ND	6, 7, 8	SS	ME, DE	FD	OR	Pharaonic	
Malvaceae Juss.	Abelmoschus esculentus (L.) Moench	TS	Bi	SD	3, 4, 5, 6, 7, 8	SS	FD	Sf, SS	Pharaonic		
	Corchorus olitorius L.	HP	Bi	SD	3, 4, 5	12, 1, 2, 3, 4, 5	FD, ME	Sf, SS	Pharaonic		
	Glossostemon bruguieri Desf.	HP	Bi	SD	6, 7, 8	DT, CT	ME, FD	Sf, SS	Pharaonic		
	Gossypium herbaceum L.	HP	Bi	SD	6, 7, 8	DT, CT	ME, FD	Sf, SS	Pharaonic		
	Gossypium barbadense L.	HP	Bi	SD	8, 9, 10	DT, CT	ME, FD	Sf, SS	Pharaonic		
	Hibiscus sabdariffa L.	HS	Bi	SD	9, 10, 11, 12, 1	HT	FD, ME	Sf, SS	Pharaonic		
	Malva parviflora L.	HP	Bi	SD	9, 10, 11, 12, 1	HT	FD, ME	Sf, SS	Pharaonic		
Moraceae Link	Ficus carica L.	TS	Mono	CT	6, 7, 8, 2, 3, 4, 5	TE, DT, SS	FD, OT	OR	Pharaonic		
	Morus alba L.	TS	Di	CT, AL	2, 3, 4, 5	SS	FD, DE, OT, ME	OR	Pharaonic		
Appendix. count. 7.											
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)			
-----------	-------------	----------	---------------------	-------------------------	---------------------	-----------------	----------------------	--------------------------			
	Moringaceae R. Br.	Moringa oleifera Lam.	TS	Bi	SD	1, 2, 3, 4, 5,	DT, SS	FD, ME	WF, Sf, SS	1800s-1850s	
	Musaceae Juss.	Musa lutea R.V. Valmayor, L.D.Danh & Häkkine	HP	Mono	OF, SU	8, 9, 10	HT, TT, DT	FD, DE, OT	OR	Islamic	
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)			
------------	-------------	----------	---------------------	------------------------	-------------------	-----------------	---------------------	--------------------------			
Musa x paradisiaca L. Myristicaceae R.Br. Myristica fragrans Houtt. Myrtaceae Juss. Syzygium cumini (L.) Skeels Psidium guajava L. Oleaceae Hoffmannsegg and Link Jasminum grandiflorum L. Jasminum sambac (L.) Aiton Olea europaea L. Papaveraceae A. Juss. Papaver somniferum L. Pedaliaceae R.Br. Sesamum oleiferum Moench Appendix. count. 8. Latin name	HP	Mono	OF, SU	8, 9, 10	HT, TT, DT	FD, DE	OR	1800s-1850s			
Poaceae Barnhart Echinochloa crus-galli (L.) Beauv Echinochloa stagnina (Retz.) P. Beauv. Cenchrus setaceus (Forsk.) Morrone Cymbopogon citratus (DC. Ex Nees) Stapf. Hordeum marinum Huds. Hordeum × intermedium (Körn.) Carleton Hordeum vulgare L. Oryza sativa L. Saccharum officinarum L. Sorghum × drummondii (Nees ex Steud.) Millsp. & Chase Sorghum bicolor x S. bicolor var. sudanese Sorghum bicolor (L.) Moench Taeniatherum caput-medusae (L.) Nevski Triticum aestivum L. Triticum durum Desf. Triticum turgidum L. Zea mays L. Zizania aquatica L. Appendix. count. 9. Latin name	HP	Bi	SD	12, 1, 2	HT, CT	GR, OT	Wf	1900s-1950s			
(continued on next page)											
Latin name	Growth form	Sex form	Propagation methods	Flowering time (months)	Ecological benefits	Economic values	Agricultural Habitats	Date of introduction (eras)			
---------------------	-------------	----------	---------------------	-------------------------	---------------------	------------------	-----------------------	-----------------------------			
Portulacaceae A. Juss.											
Portulaca oleracea sub sp. sativa	HP	Bi	SD	6, 7, 8, 9, 10, 11	DT	FD, ME	SF, SS	Pharaonic			
Ranunculaceae A. Juss.											
Nigella sativa L.	HP	Bi	SD	5, 6	ME, FD, OT	SF	1850s-1900s				
Rhamnaceae Juss.											
Ziziphus jujuba Mill.	TS	Bi	SD	6, 7, 8, 9, 10	SS	FD, DE	SF	1850s-1900s			
Ziziphus spina-christi (L.) Desf. Willd.	TS	Bi	SD, CT	SS, SL, WB, DT, CT	FD, DE, Ti, OT	Pharaonic					
Rosaceae A. Juss.											
Rhaphiolepis bibas (Lour.) Galasso & Banfi	TS	Bi	SD, CT	12, 1, 2	HT, CT	DE, FD	OR	1850s-1900s			
Fragaria × ananassa Duchesne	HP	Bi	SU	3, 4, 6	HT, CT	FD	OR	1800s-1850s			
Fragaria vesca L.	HP	Bi	SU	3, 4, 5	HT, CT	FD	OR	1850s-1900s			
Prunus armeniaca L.	TS	Bi	SD	3, 4	HT, CT, SS	FD, DE	OR	Pharaonic			
Prunus cerasus L.	TS	Bi	SD	4	HT, CT, SS	FD	OR	1900s-1950s			
Prunus domestica L.	TS	Bi	SD	3, 4	HT, CT, SS	DE	OR	Pharaonic			
Prunus dulcis (Mill.) D.A. Webb.	TS	Bi	SD	3, 4	HT, CT, SS	FD, DE	OR	Pharaonic			
Prunus persica (L.) Batsch	TS	Bi	SD	3, 4, 5	HT, CT, SS	FD	OR	1900s-1950s			
Rutaceae A. Juss.											
Citrus × aurantiifolia (Christm.) Swingle	TS	Bi	SD, GR	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	SS	DE, ME, FD, OT	OR	Pharaonic			
Citrus × aurantium L.	TS	Bi	SD	SS	DE, FD, OT	OR	1900s-1950s				
Citrus × limon (L.) Osbeck	TS	Bi	SD	SS	DE, FD, OT	OR	1900s-1950s				
Citrus reticulata × sinensis	TS	Bi	SD, CT	3, 4	HT, CT, SS	DE, FD	OR	1900s-1950s			
Citrus reticulata Blanco Osbeck.	TS	Bi	SD, GR	3, 4	HT, CT, SS	DE, OT, FD	OR	Pharaonic			
Citrus sinensis (L.) Osbeck.	TS	Bi	SD, GR	3, 4	HT, CT, SS	DE, OT, FD	OR	Pharaonic			
Citrus x paradisi Macfad.	TS	Bi	SD	3, 4	HT, CT, SS	FD	OR	1900s-1950s			
Solanaceae Juss.											
Capsicum annuum L.	HP	Bi	SD	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	DT	ME, FD	WF, SF, SS	1850s-1900s			
Capsicum baccatum L.	HP	Bi	SD	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	DT	ME, FD	WF, SF, SS	1850s-1900s			
Datura stramonium L.	HP	Bi	SD	5, 6, 7	TT, DT	ME	SF	Pharaonic			
Solanum lycopersicum L.	HP	Bi	SD	9, 10, 11	TT, DT	FD	WF, SF, SS	1850s-1900s			
Solanum melongena L.	HP	Bi	SD	TT	FD, GR	WF, SF, SS	Pharaonic				
Solanum tuberosum L.	HP	Bi	CT	AT	FD	WF, SF, SS	1800s-1850s				
Strelitziaeae Hutch.											
Strelitzia reginae Aiton	TS	Bi	OF, SD, CT, RH	12, 1, 2, 3, 4, 5	HT, CT, SS	DE, OT	OR	1850s-1900s			
Theaceae D. Don.											
Camellia sinensis (L.) Kuntze	HP	Bi	SD	10, 11, 12	HT	ME, FD	OR	1800s-1850s			
References

Abdel-Azim, N.S., Shams, K.A., Shabat, A.A., El Missiry, M.M., Ismaiel, S.J., Hammouda, F.M., 2011. Egyptian herbal drug industry: challenges and future prospects. Res. J. Med. Plant 136–144 (2), 136–144.

Abdennour, S., 2015. Egyptian Cooking and Other Middle Eastern Recipes. AUC Press, Cairo, Egypt, p. 240.

Ahmed, D.A., Ammar, E., Svenning, J.C., Elbeheiry, M., Shaltout, K., 2020. Wild plant species in Egyptian gardens of the Nile region: Conservation viewpoint. Egypt. J. Bot. 60, 719–732. https://doi.org/10.21608/egjbot.2020.21523.1414.

Aioub, A.A.A., Elsewiy, A.E., Ammar, E.E., 2022. Plant growth promoting rhizobacteria (PGPR) and their role in plant parasitic nematodes control: a fresh look at an old issue. J. Plant Dis. Prot. https://doi.org/10.4314/jps.v2i2.2022.004.3-3.

Al-Eisw, D.M., Tarkuri, H.R., 1989. A checklist of wild edible plants in Jordan. Arab Gulf. J. Sci. Res. 8, 79–101.

Ammar, E.E., 2015. Current Situation of Agro-biodiversity in Nile Delta, Egypt. Faculty of Science, Tanta University, Egypt, pp. 284.

Ammar, E.E., Aioub, A.A.A., Elsewiy, A.E., Karkour, A.M., Mouhamed, M.S., Amer, A.A., El-Shershaby, N.A., 2022. Algae as Bio-fertilizers: Between Current situation and Future prospective. Saudi J. Biol. Sci. 29 (5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020.

Ammar, E.E., El ghandour, N.O., Mouhamed, M.S., El Kaliny, N.E., 2021. Crop productivity enhancement: Agricultural biotechnology viewpoint. Egypt. J. Exp. Biol. (Bot.) 17 (1), 173–188. https://doi.org/10.5455/egyebh.20211021042802.

Ammar, E., Shaltout, K. 2013. History and plant diversity of Andalusia Public Garden in Tanta. Delta J. Sci. 36, 313–319 (In Arabic).

Ammar, E., Shaltout, K., Ahmed, D., 2020. Agro-biodiversity in Nile Delta, Egypt: Current Situation of Agro-biodiversity in Nile Delta, Egypt. AP Lampert Academic Publishing, pp. 284.

Ammar, E.E., El ghandour, N.O., Mouhamed, M.S., El Kaliny, N.E., 2021. Crop productivity enhancement: Agricultural biotechnology viewpoint. Egypt. J. Exp. Biol. (Bot.) 17 (1), 173–188. https://doi.org/10.5455/egyebh.20211021042802.

Ammar, E.E., 2021. Garden plant diversity in the Egyptian Nile Region and effect of climate change on its conservation and ecosystem services. Yastoron Publishing Press, p. 359.

Bedevian, A.K., 1935. Illustrated polyglottic dictionary of plant names. Madbouly Bookshop, Cairo, p. 543.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.

Boulos, L., El-Hadidi, N., 1994. The weed flora of Egypt. American University in Cairo Press, Cairo, p. 361.
Mareey, S., 1970. Egyptian agriculture. Ministry of Agriculture and Land Reclamation, PP. 418 (In Arabic).
Kumar, G.N.M., 2011. Propagation of Plants by Grafting and Budding, A Pacific Northwest Extension Publication, Washington State University, pp. 18. https://doi.org/10.2307/4109234.
Ministry of Agriculture and Land Reclamation, 2004. Ancient Egyptian Agriculture. Ministry of Agriculture and Land Reclamation, pp. 475. (In Arabic).
Mosleeh, A., 1942. Mustard and its derivatives industries. Egypt, pp.65 (in Arabic).
Nazer, W., 1968. The plant revolution of the ancient Egyptians. Dar Al Maaref Press, p. 341 (In Arabic).
Patel Ellis, S., 2018. THE BOTANICAL BIBLE. US and Canada, pp. 416.
Preuss, H.C., DiFerdinando, D., Bagchi, M., Bagchi, D., 2002. Citrus aurantium as a thermogenic, weight-reduction replacement for ephedra: an overview. J. Med. 33 [1–4], 247–264.
Said, S.A., 1994. Flowering plants, Phenology, Development and Taxonomy. Dar Al Fikr Al Arabi, Cairo, pp. 663 (In Arabic).
Shaltout, K.H., Ahmed, D.A., 2012. Ecosystem Services of the Flora of Southern Mediterranean Desert of Egypt. Ethnobot. Res. Appl. 10, 403–422.
Shaltout, K., SharafELDin, A., Ahmed, D., 2010. Plant Life in the Nile Delta. Tanta Univ. Press, Tanta, Egypt, p. 231.
Siebers, M.H., Yendrek, C.R., Drag, D., Locke, A.M., Rios Acosta, L., Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Ort, D.R., 2015. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Chang. Biol. 21, 3114–3125. https://doi.org/10.1111/gcb.12935.
Simpson, N.D., 1932. A report on the weed flora of the irrigation channels in Egypt. Ministry of Public Works, Government Press, Cairo. p. 124.
Simpson, B., Ogorzaly, M., 1995. Economic Botany ‘Plants in Our World. McGraw-Hill, USA, p. 742.
Soliman, A., Amer, W., 2002. Atlas of trees and flowers in Maadi district. The Egyptian Book House, Cairo, p. 111 (in Arabic).
Täckholm, V., Drar, M., 1950. Flora of Egypt: volume II, volume II, ed. Bull. Fac. Sci. Fuoad University, no. 28, pp. 547.
Tackholm, V., Drar, M., 1954. Flora of Egypt. Bull. Fac. Sci., Cairo University no. 30. pp. 644.
Williams, C.M., King, J.R., Ross, S.M., Olson, M.A., Hoy, C.F., Lopetinsky, K.J., 2014. Effects of three pulse crops on subsequent barley, canola, and wheat. Agron. J. 106, 343–350. https://doi.org/10.2134/agronj2013.0274.