Abstract

The biota of the humid mountain ranges of the Brazilian semiarid is still poorly understood. In order to fill this scientific gap, we carried out an extensive survey along altitudinal ranges (400 m – 1,000 m) on both the windward and the leeward slopes of the Baturité Mountain Range, in the state of Ceará state. We registered 400 plant species and 92 families. The Myrtaceae (36 spp.), Fabaceae (25 spp.), Rubiaceae (20 spp.) and Bromeliaceae (15 spp.) families predominated on the windward slope; while Fabaceae (19 spp.), Myrtaceae (14 spp.) and Euphorbiaceae (11 spp.) were the most abundant on the leeward slope. As we expected, the species richness of trees, shrubs, subshrubs, epiphytes and terrestrial herbs was positively correlated with the altitude ($R^2 > 0.60$). Above 800 m, we registered 273 species exclusive to the windward slope, 81 exclusive to the leeward slope, and 46 shared species. Therefore, management actions must consider the spatial heterogeneity, distribution and taxa richness.

Keywords: Deciduous Tropical Forest, Evergreen Tropical Forest, Semideciduous Tropical Forest, Steppic Savanna.

1. INTRODUCTION AND OBJECTIVES

The mountain ranges in the semiarid domain of Northeastern Brazil stand out from the surrounding flattened landscape expressing a climatic exception (Mantovani et al., 2017; Moro et al., 2015). They occupy approximately 5% of the northeastern surface, being scattered throughout the states of Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas and Bahia (Souza & Oliveira, 2006). On windward slopes and at higher altitudes, the climate is cooler and wetter, whereas drier climates occur on leeward slopes and at lower altitudes (Nimer, 1989). This climatic variation leads to a spatially heterogeneous flora along the altitudinal gradient, consequently increasing the local species richness (Ferraz & Rodal, 2006; Homeier et al., 2010). Evergreen and Semideciduous Forests have been commonly reported along this altitudinal gradient (Rodal & Sales, 2008;
Silva & Figueirêdo, 2013). Since this flora is a remnant of the Brazilian Atlantic Rain Forest (Barbosa et al., 2004), these mountain ranges have been considered a priority for the conservation of Brazilian biodiversity (Lopes et al., 2017; MMA, 2000). Especially in the Brazilian Northeast, the mountainous areas are critically important for the preservation of regional ecosystems, because they represent natural refuges for biota (Silva et al., 2014).

Thirty-five percent (35%) of the mountain ranges are located within Ceará State (Sobrinho, 1971), but information on its biota composition is still incipient (Bétard et al., 2007; Kamimura et al., 2017; Lima & Mansano, 2011). Plant cover and soils of most local wetlands have suffered from intensive and chronic anthropogenic disturbances (Souza & Oliveira, 2006). Therefore, reports on floristic composition are crucial for implementing sustainable use actions, since the biodiversity degradation on the Baturité Mountain Range has been happening since the colonial period (Mantovani, 2006; Oliveira et al., 2006). Our study shows the need for registering, cataloguing and presenting the biodiversity of such peculiar environments. Thus, we aim to analyze the plant composition and species richness along the altitudinal gradient on the windward and leeward slopes of Baturité Mountain Range, in Ceará State. We also intend to spread information on the local flora and on the protected areas of Northeastern Brazil.

2. MATERIALS AND METHODS

2.1. Study site

The Baturité Mountain Range is a residual relief with an extension of 800 km² and moderate altitudes (800 – 1,115 m). It is a Precambrian crystalline complex located in the northeastern of Ceará State, 70 km from the coast (Bétard et al., 2007; Souza & Oliveira, 2006). From the elevation of 600 m up, the mountain range is a strict protected area, the APA de Baturité. The first protected area was established by state law no. 20,956, on September 18, 1990, which was later altered by state law no. 27,290, on December 15, 2003. Currently, it encompasses 32,690 hectares.

Both the altitude and the geographical position favor an orographic effect at the top and on the windward slope (north-eastward) of the mountain, whereby a humidity of > 1,000 mm × year⁻¹ is carried by South Atlantic trade winds. On the leeward slope (westward), the precipitation is below 1,000 mm × year⁻¹ (Mantovani, 2006; Santos et al., 2012; Souza & Oliveira, 2006). In order to register the local species composition and richness, we selected three well-conserved areas on each slope, at the following altitudinal ranges: 400 – 600 m a.s.l., 600 – 800 m a.s.l. and above 800 m a.s.l. We chose these areas in order to comprise the climatic and physiognomic variations along the altitudinal range on both slopes (Table 1).
The Forested Steppic Savanna (FSS; “Caatinga”) is composed of a thorny deciduous vegetation, predominant at lower altitudes. Along the altitudinal range, the FSS is gradually replaced by a forest vegetation along the altitudinal range. On the windward slope, there are: i) a Seasonal Semideciduous Submountain Forest (SSSF) 400 – 600 m; and ii) a Seasonal Evergreen Mountain Forest (SEMF) above 600 m. On the leeward slope, there are: i) a transition from the FSS to the SDSF (Seasonal Deciduous Submountain Forest) 400 – 600 m; ii) a Seasonal Deciduous Mountain Forest (SDMF) 600 – 800 m; and iii) a Seasonal Evergreen Mountain Forest (SEMF) above 800 m (see Table 1).

2.2. Data collection

In order to list the plants, we sampled 200 quadrants in each of the six areas, according to the procedures suggested by Araújo et al. (2006). In addition, we completed our list researching the samples of the EAC Herbarium of the Universidade Federal do Ceará. We also revised and updated the taxonomic identifications with the aid of specialists from the following herbaria: EAC, PEUFR, IPA and CEPEC. The taxonomic classification that we used follows the APG IV system (2016). The names of botanical families, genera, species and authorships were confirmed in the International Plant Names Index (Royal Botanic Gardens, Kew et al., 2015) and in the list of Brazilian Flora 2020 (JBRJ, 2016).

To categorize the vegetation physiognomy, we used Whittaker’s classification of plant growth forms (1975). The growth forms are adequate indicators of communities, since they can reflect global and local climatic conditions. We adjusted Whittaker’s (1975) system as following: i) trees: > 3 m-height woody plants; ii) shrubs: > 3 m-height woody plants with main branches developing at approximately 50 cm above ground; iii) subshrubs: < 2 m-height plants with a woody main stem and herbaceous secondary branching; iv) terrestrial herbs: land plants with herbaceous aerial stems; v) epiphytes: plants with herbaceous stems that use other plants as support; vi) vines: plants with prolonged stems that twine around a substrate; and vii) hemiparasites: photosynthetic plants that withdraw sap from their host plants.

We obtained precipitation data from the Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME, 2017), at the following local stations, close to our studied areas: Baturité-n22, Pacoti-n105, Guaramiranga-54, Mulungu-n98 and Caridade-n31. Data showed a seasonal rainfall regime with precipitation concentrated from January to May, driven by the Intertropical Convergence Zone. However, stations located at distinct altitudes and different mountain slopes showed remarkable differences in the annual rainfall regime. Greater precipitation was found in the northeastern slope and at higher portions of the mountain range. The soil classification of the studied areas followed that of Oliveira et al. (2006). Altitudinal ranges and coordinates were measured in the field with a GPS navigation device (Table 1).

2.3. Data analysis

We organized our list by family, species, vernacular name, growth form, altitudinal range, phytophysiognomy and collector number. Samples are deposited at EAC. We estimated the global richness, as well as the richness at family and species levels, and by phytophysiognomy. We analyzed the relationship between species richness, growth form (dependent variable), and altitude (independent or predictive variable) through a simple linear regression using the Bioestat 5.0 Software (Ayers et al., 2007).

3. RESULTS AND DISCUSSION

We registered 400 morphospecies distributed within 92 families. A total of 23 taxa (13%) were identified only to the genus due to the lack of or inadequacy of reproductive organs. The families with greatest species richness were Myrtaceae (43 spp.), Fabaceae (38 spp.), Euphorbiaceae (21 spp.), Rubiaceae (20 spp.), Melastomataceae (14 spp.), and Bromeliaceae, Erythroxylaceae and Orchidaceae, with 10 species each (Appendix A). The high richness of vascular plants confirms the documented pattern for mountainous areas of the Brazilian semi-arid: they are more diverse than the surrounding Caatinga, since they contain a mix of Caatinga and Atlantic Forest species (Carnaval et al., 2009; Leite et al., 2016; Lopes et al., 2017). In addition, the richness of 400 species of vascular plants, found on the Baturité Mountain Range, is higher than the species richness registered for other similar Brazilian forests, e.g., Pau-Ferro Ecological Reserve, with 309 species, in Paraíba State (Barbosa et al., 2004), Brejo Madre de Deus, with 293 species, in Pernambuco State (Nascimento et al., 2012) and Meruoca Sierra, with 100 species, in Ceará State (Silva & Figueiredo, 2013), highlighting the importance of this montane forests for the conservation of tropical biodiversity.

Our results show that the richness increases towards the top of the mountain, and that it is greater on the windward slope at the Evergreen Forest. We registered a total of 255 species (64%) and 69 families (75%) at higher altitudes, above 800 m in the Baturité Mountain Range – joined data from Arvoredo and Lagoa sites. On the windward slope, below 800 m—on Sinimbu and Taveiras sites together—we registered 175 species (44%) and 62 families (67%); whereas, on the leeward slope,
below 800 m—on Jardim and Salva-Vidas sites together—we registered 127 species (32%) and 50 families (54%) (Appendix A). Such differences reflect the combined effects of ocean winds, altitudinal variation and position of the slope. These results also corroborate the pattern documented by Lopes et al. (2008), Lima et al. (2011), Kamimura et al. (2017) and BF (2015), that indicates dry forests have significantly less species and families compared to humid-forests.

In the Seasonal Evergreen Forest located both on the windward and leeward slopes—above 600 m and 800 m, respectively (Table 1)—, the most diverse families were Myrtaceae (36 spp.), Fabaceae (25 spp.), Rubiaceae (20 spp.), Bromeliaceae (15 spp.), Melastomataceae (14 spp.), Euphorbiaceae (13 spp.) and Orchidaceae (10 spp.). On the leeward slope, where a Seasonal Deciduous Forest and a Forested Steppic Savanna predominate, Fabaceae (19 spp.), Myrtaceae (14 spp.) and Euphorbiaceae (11 spp.) were the most diverse families. In the Fabaceae family, the subfamilies presented distinct species richness on windward and leeward slopes. In the former, Mimosoideae (8 spp.) and Faboideae (7 spp.) predominated, whereas in the latter the most representative were Mimosoideae (13 spp.) and Caesalpinioideae (11 spp.).

In the Baturité Mountain Range leeward slope, where Deciduous Forests and Forested Savannas were the most representative (see Alcoforado-Filho et al., 2003; Cestaro & Soares, 2004; Ferraz et al., 2004), the subfamilies Mimosoideae and Caesalpinioideae, predominated. Even though Myrtaceae was among the most diverse families on the leeward slope, its richness was higher on the windward slope. Furthermore, most of its species (84%) occur above 600 m, indicating that the richness of Myrtaceae in the Brazilian semi-arid is more associated with areas with higher water availability than with the surrounding Caatinga. The area of occurrence of Myrtaceae in the Evergreen Forest, both on the windward and on the leeward slopes, above 600 m and 800 m, respectively, confirms the pattern reported by Peixoto & Gentry (1990), also observed in the Atlantic Domain as a whole. Furthermore, Myrtaceae, Fabaceae, Rubiaceae, Bromeliaceae, Melastomataceae, Euphorbiaceae and Orchidaceae are abundant in Tropical Rainforests as well, including lowland and highland Seasonal Evergreen Forests in the States of Pernambuco and Paraíba (Rodal & Nascimento, 2002; Andrade & Rodal, 2004; Barbosa et al., 2004; Ferraz & Rodal, 2006; Nascimento et al., 2012; Rodal & Sales, 2008). Species and family similarities to this type of forest are likely associated with water availability on the soil, from rainfall or dew.

Aspidosperma pyrifolium Mart., Bauhinia chelanthana (Bong.) Steud., Cordia glazioviana (Taub.) Gottschling & J. S. Mill., Croton blanchetianus Baill., and Mimosa caesalpinifolia Bentham occurred below 600 m on the windward slope. These taxa are commonly found in the Caatinga. Some species are strictly distributed in wetter areas, above 800 m on the windward slope and above 600 m on the leeward slope, such as: Albizia polycephala (Benth.) Killip ex Record, Apeiba tibourbou Aubl., Byrsonima crispa A. Juss., Cassia ferruginea (Schrad.) Schrad. ex DC. var. ferruginea, Cupania racemosa (Vell.) Radlk., Guazuma ulmifolia Lam., Inga marginata Willd., Myrciaria ferruginea O.Berg, Ouratea polygyna Engl., Podocarpus sellowii Klotzsch ex. Endl., Pouteria macrophylla (Lam.) Eyma, Vismia guianensis (Aubl.) Choisy and Zanthoxylum rhoifolium Lam. We note that Podocarpus sellowii was found at one collecting site only (Arvoredo). At lower altitudes of the windward slope, some exclusive species occurred, such as: Alchornea glandulosa subsp. iceriana (Casar.) Secco, Attalea speciosa Mart. ex Spreng., Casearia grandiflora Cambess., Chrysothyllum gonocarpus (Mart. & Eichler ex Miq.) Engl., Coccoloba parimensis Benth., Coussarea contracta (Walp.) Müll.Arg. var. contracta, Oreopanax capitatus (Jacq.) Decne. & Planch., Parkia pendula (Willd.) Benth. ex Walp., Protium warmingianum Marchand., Pseudobombax marginatum (A.S.-Hil.) A. Robyns and Zizyphus undulata Reissek.

Concerning growth forms, the studied flora was composed of 214 trees (54%), 82 shrubs, 49 terrestrial herbs, 23 epiphytic herbs, 18 vines, 10 subshrubs and 4 hemiparasites. There was a positive correlation between altitude and richness of trees, shrubs, subshrubs, epiphytic herbs and terrestrial herbs ($R^2 > 0.60$ and $p < 0.05$). However, for vines and hemiparasites, the correlation was not statistically significant (Figure 1). The richness of tree species is one of the most striking characteristics of the Tropical Forest typologies, a pattern documented in other Brazilian Atlantic forests (BFG, 2015; Nascimento et al., 2012).

The species richness and composition found in our study showed that, on the windward slope above 600 m, and on the leeward slope above 800 m, the flora is more similar. In contrast, below these altitudinal levels, on both slopes, the flora differed. The positive correlation between diversity and altitude is likely a response to greater water availability in higher elevations of the altitudinal gradient. The mountains of Northeastern Brazil are relatively low, with some altitudes of approximately 1,000 m a.s.l. However, they have a more favorable water balance, milder temperatures, and lower rates of evapotranspiration and evening condensation than the lower area of the countryside depression (Mantovani et al., 2017; Moro et al., 2015; Souza & Oliveira, 2006). This may explain why the plant species richness in the semi-arid domain of Northeastern Brazil increases with higher altitudes.

It is also worth mentioning that the greater richness of epiphytic herbs (18 out of 23 species) at altitudes above 800 m reflects a higher humidity. According to Gentry (1988), there is a positive correlation between diversity and
precipitation in the Neotropical Region. In addition, our results are in accordance with those found in other studies on the Mountain Forests of Pernambuco State (Ferraz et al., 1998; Ferraz et al., 2003; Rodal & Nascimento, 2002). According to Ferraz et al. (2004) and Lopes et al. (2008), under similar climatic and edaphic regimes, the Evergreen and the Semideciduous Montane Forests can be found closely associated in Northeastern Brazil, but demonstrate different floristic and structural compositions. Thus, protection efforts must contemplate both humid and dry forest areas.

Figure 1. Linear regression of altitude and number of plants of each growth form [(a), (b), (c), (d), (e), (f), (g)] and dispersion diagrams (h) of plants.
shr: shrub; subshr: subshrub; vi: vine; th: terrestrial herb; eh: epiphytic herb; hm: hemiparasite; W: windward; L: leeward; T: top.
4. CONCLUSION

In conclusion, 273 species (68%) were found exclusively at the top of the mountain and on the windward slope; 81 species (20%) were exclusively found on the leeward slope; and 46 species (12%) were found on both slopes, with a total of 400 species on the Baturité Mountain Range, in Ceará State. Our results highlight that the management actions, the restoration of degraded areas and the establishment of integral conservation on the Baturité Mountain Range must consider the spatial heterogeneity described in our work; that is, the differential plant distribution and richness both along the altitudinal gradient and between slope positions. Adequate conservation efforts should consider the total richness and the local heterogeneity.

ACKNOWLEDGMENTS

We are grateful to the taxonomists who gently identified the botanical material; to the land owners for allowing the data collection (Arvoredo, Lagoa, Sinimbu, Labirinto dos Taveiras, Jardim and Salva-Vidas sites); and to the Companhia de Eletricidade do Estado do Ceará (COELCE) for funding this study. Special thanks to teacher Maria Angélica Figueiredo (in memory), idealizer of the studies referring to Flora of Ceara, in special of the mountain range of Baturite.

SUBMISSION STATUS

Received: 28 June 2018
Accepted: 7 Nov. 2018
Associate editor: Rodrigo Studart Corrêa
@ 0000-0002-9422-2629

CORRESPONDENCE TO
Andréa Pereira Silvera
Universidade Estadual do Ceará (UECE), Faculdade de Educação de Itapipoca, Av. da Universidade, s/n, Madalena, CEP 62205-090, Itapipoca, CE, Brasil
E-mail: andrea.silveira@uece.br

FINANCIAL SUPPORT
Companhia de Eletricidade do Estado do Ceará (COELCE).

REFERENCES

Alcoforado-Filho FG, Sampaio EVSB, Rodal MJN. Florística e fitossociologia de um remanescente de vegetação caducifólia espinhosa arbórea em Caruaru, Pernambuco. *Acta Botanica BrasIlica* 2003; 17(2): 287-303. 10.1590/S0102-33062003000200011

Andrade KVSA, Rodal MJN. Fisionomia e estrutura de um remanescente de floresta estacional semidecidual de terras baixas no nordeste do Brasil. *Revista Brasileira de Botânica* 2004; 27(3): 463-474. 10.1590/S0100-84042004000300007

Angiosperm Phylogeny Group – APG IV. An udpdate of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 2016; 181: 1-20. 10.1111/bol.12385

Araújo FS, Gomes VS, Silveira AP, Figueiredo MA, Oliveira RF, Bruno MMA et al. Efeito da variação topoclimática na fisionomia e estrutura da vegetação da serra de Baturité, Ceará. In: Oliveira TS, Araújo FS, editors. *Diversidade e conservação da Biotia na Serra de Baturité, Ceará*. Fortaleza: Edições UFC-COELCE; 2006. p. 75-136.

Ayres M, Ayres M Jr, Ayres DL, Santos ADA. *Bioestat 5.6: aplicações estatísticas nas áreas das ciências bio-médicas*. Belém: Instituto Mamirauá; 2007.

Barbosa MRDV, Agra MDF, Sampaio EVSB, Cunha JD, Andrade LD. *Diversidade florística na Mata do Pau-Ferro, Areia, Paraíba, Brasilia*. Ministério do Meio Ambiente, 2004 [cited 2019 Oct. 29]. p. 111-122. Available from: https://bit.ly/2WFhrMI

Bétard F, Peuvast JP, Claudino-Sales V. Caracterização morfopedológica de uma serra úmida no semi-árido do nordeste brasileiro: o caso do Maciço de Baturité-CE. *Mercator-Revista de Geografia da UFC* 2007; 6(12): 105-126.

Brazil Flora Group – BFG. Growing knowledge: an overview of seed plant diversity in Brazil. *Rodriguesia* 2015; 66: 1085-1113. 10.1590/2175-7860201566411

Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. *Science* 2009; 323(5915): 785-789. 10.1126/science.1166955

Cestaro LA, Soares JJ. Variações florística e estrutural e relações fitogeográficas de um fragmento de floresta decidua no Rio Grande do Norte, Brasil. *Acta Botanica BrasIlica* 2004; 18(2): 203-218. 10.1590/S0102-33062004000200001

Ferraz EMN, Rodal MJN, Sampaio EVSB, Pereira RDCA. *Florística e estrutura da vegetação da Serra de Baturité, Ceará*. In: Oliveira TS, Araújo FS, editors. *Flora e Ambiente 2020; 27(4): e20180320

Ferraz EMN, Araújo EL, Silva SL. Floristic similarities between lowland and montane areas of Atlantic Coastal Forest in Northeastern Brazil. *Plant Ecology* 2004; 174(1): 59-70.

Ferraz EMN, Rodal MJN. Caracterização fisionômica-estrutural de um remanescente de floresta ombrófila montana de Pernambuco, Brasil. *Acta Botanica BrasIlica* 2006; 20(4): 911-926. 10.1590/S0102-33062006004000015

Ferraz EMN, Rodal MJN, Sampaio EVSB, Pereira RDCA. Composição florística em trechos de vegetação de caatinga e brejo de altitude na região do Vale do Pajeú, Pernambuco. *Revista Brasileira de Botânica* 2004; 27(3): 111-122. Available from: https://bit.ly/2LzMrWm

Gentry AH. Changes in plant community diversity and floristic composition on environmental and geographical gradients. *Annals of the Missouri Botanical Garden* 1988; 75(1): 1-34. 10.2307/2399464
Homier J, Breckle SW, Gütner S, Rollenbeck RT, Leuschner C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. *Biotropica* 2010; 42(2): 140-148. 10.1111/j.1744-7429.2009.00547.x

Instituto Brasileiro de Geografia e Estatística – IBGE. *Manual técnico da vegetação brasileira*. Rio de Janeiro: IBGE; 2012.

Jardim Botânico do Rio De Janeiro – JBRJ. *Flora do Brasil 2020* em construção. Rio de Janeiro: Jardim Botânico do Rio de Janeiro; 2016 [cited 2019 Oct. 29]. Available from: http://floradobrasil.jbrj.gov.br

Kamimura VA, Moraes PLR, Ribeiro HL, Joly CA, Assis MA. Tree diversity and elevational gradient: the case of Lauraceae in the Atlantic Rainforest. *Flora* 2017; 234: 84-91. 10.1016/j.flora.2017.05.013

Leite YLR, Costa JP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC et al. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. *PNAS* 2016; 113(4): 1008-1013. 10.1073/pnas.1513062113

Lima JR, Mansano VDF. A família Leguminosae na Serra de Baturité, Ceará, uma área de Floresta Atlântica no semiárido brasileiro. *Rodriguésia* 2011; 62(3): 563-613. 10.1590/2175-7860201162309

Lima JR, Sampaio EVSB, Rodal MJN, Araújo FS. Physiognomy and structure of a seasonal deciduous forest the Ibiapaba plateau, Ceará, Brazil. *Rodriguésia* 2011; 62(2): 379-389. 10.1590/2175-7860201162212

Lopes CGR, Ferraz EMN, Araújo EL. Physiognomical-structural characterization of dry- and humid-forest fragments (Atlantic Coastal Forest) in Pernambuco State, NE Brazil. *Plant Ecology* 2008; 198(1): 1-18. 10.1007/s11258-007-9380-z

Lopes SDF, Ramos MB, Almeida GRD. The role of mountains as refugia for biodiversity in Brazilian Caatinga: conservationist implications. *Tropical Conservation Science* 2017; 10: 1-12. 10.1177/1940082917702651

Mantovani W. Conservação de biodiversidade: importância das serras úmidas no Nordeste semi-árido brasileiro. In: Oliveira TS, Araújo FS, editors. *Diversidade e conservação da biota na Serra de Baturité, Ceará*. Fortaleza: Edições UFC-COELCE; 2006. p. 3-15.

Mantovani W, Anjos L, Monteiro RF, Araújo FS. A conservação da biodiversidade no domínio caatinga. In: Mantovani W, Monteiro RF, Anjos L, Cariello MO, editors. *Pesquisas em unidades de conservação no domínio da Caatinga subsídios à gestão*. Fortaleza: Edições UFC; 2017. p. 81-122.

Ministério do Meio Ambiente – MMA. *Avaliação e ações prioritárias para a conservação da biodiversidade da floresta atlântica e campos sulinos*. Brasília: MMA/SBF; 2000.

Moro MF, Macedo MB, Moura-Fé MM, Castro AS, Costa RC. Vegetação, unidades fitoecológicas e diversidade paisagística do estado do Ceará. *Rodriguésia* 2015; 66(3): 717-743. 10.1590/2175-7860201566305

Nascimento LM, Rodal MJN, Silva AG. Florística de uma floresta estacional no Planalto da Borborema, nordeste do Brasil. *Rodriguésia* 2012; 63(2): 429-440. 10.1590/S2175-78602012000200015

Nimer E. *Climatologia do Brasil*. 2nd ed. Rio de Janeiro: IBGE-SUPREN; 1989.

Oliveira TS, Figueiredo MA, Nogueira RS, Sousa SC, Souza SSG, Romero RE. Histórico dos impactos antrópicos e aspectos geoambientais da serra de Baturité, Ceará. In: Oliveira TS, Araújo FS, editors. *Diversidade e conservação da biota na Serra de Baturité, Ceará*. Fortaleza: Edições UFC-COELEC; 2006. p. 19-70.

Peixoto AL, Gentry A. Diversidade e composição florística da mata de tabuleiro na Reserva Florestal de Linhares (Espírito Santo, Brasil). *Revista Brasileira de Botânica* 1990; 13(1): 19-25.

Rodal MJN, Sales MF. Panorama of the montane forests of Pernambuco, Brazil. In: Thomas WW, editor. *The Atlantic coastal forest of northeastern Brazil*. New York: Botanical Garden Press; 2008. p. 541-559.

Royal Botanic Gardens, Kew; Harvard University Herbaria & Libraries; & Australian National Botanic Gardens. *International Plant Names Index* [Internet]. 2015 [cited 2019 Oct. 29]. Available from: http://www.ipni.org

Santos FLA, Medeiros EM, Souza MJS. Contexto hidroclimático do enclave úmido do maciço de Baturité-Ceará: potencialidades e limitações ao uso da terra. *Revista Geonorte* 2012; 3(9): 1056-1065.

Silva FKG, Lopes FS, Lopez LCS, Melo JIM, Trovão DMDBM. Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. *Journal of Arid Environments* 2014; 110, 47-52. 10.1016/j.jaridenv.2014.05.011

Silva MEF, Figueiredo MF. *Flora fanerógama de um enclave úmido no Ceará: Serra da Meruoca*. *Enciclopédia Biosfera* 2013; 9(17): 2811-2820.

Souza MJS, Oliveira VPV. Os enclaves úmidos e sub-úmidos do semi-árido do nordeste brasileiro. *Revista Mercator* 2006; 5(9): 85-102.

Vasconcelos Sobrinho J. *As regiões naturais do Nordeste, o meio a civilização*. Recife: Conselho do Desenvolvimento de Pernambuco; 1971.

Whittaker RH. *Communities and ecosystems*. 2nd ed. New York: Macmillan; 1975.
Appendix A. List of families and species registered at distinct altitudinal levels on the Baturité Mountain Range, Ceará, Brazil.

FAMILY/SPECIES/AUTHOR	ALTITUDE	WINDWARD	LEEWARD	C
1. Acanthaceae				
Dicliptera ciliaris Juss.	400-600		subshr	V. Gomes, 912.2
Justicia aequilabris (Nees) Lindau	600-800		x	V. Gomes, 562.2
Justicia sp.			x	V. Gomes, 2109-8
Ruellia bahiensis (Nees) Morong	> 800		x	V. Gomes, 398
2. Alstroemeriaceae				
Bomarea edulis (Tussac) Herb.	400-600		x	V. Gomes, 1271
3. Amaranthaceae				
Alternanthera brasiliana L.	400-600		x	V. Gomes, 2109-1
Cyathula achyranthoides (Kunth) Moq.	600-800		x	V. Gomes, 737
Iresine diffusa Humb. & Bonpl. ex Willd.	> 800B		x	V. Gomes, 744
4. Amaryllidaceae				
Hippeastrum stylosum Herb.	400-600		x	E. S. Araújo, 1612
5. Anacardiaceae				
Astronium fraxinifolium Schott	400-600		x	M.A. Figueiredo, 18463
Myracrodruon urundeuva Almão	600-800		x	L.W. Lima-Verde, 3526
Thyrsodium spruceanum Benth.	> 800		x	V. Gomes, 1113
6. Annonaceae				
Cymbopetalum brasiliense (Vell.) Benth. ex Baill.	400-600		x	V. Gomes, 766
Duguetia riedeliana R.E.Fr.	600-800		x	V. Gomes, 936
Guatteria pogonopus Mart.	> 800B		x	V. Gomes, 1274
Xylopia frutescens Aubl.	> 800S		x	A. Silveira, 470
Xylopia sericea A.St.-Hil.	> 800S		x	A. Silveira, 144
7. Apocynaceae				
Aspidosperma multiflorum A.DC.	400-600		x	V. Gomes, 61-3
Aspidosperma pyrifolium Mart.	600-800		x	V. Gomes, 2109-4
Aspidosperma ulei Markgr.	> 800S		x	V. Gomes, 5-32
Blepharodon bicolor Decne.	> 800		x	A. Silveira, 744
Condylodacron isthmicum (Vell.) A.DC.	> 800B		x	V. Gomes, 1029
Macoubea sp.			x	A. Silveira, 948
8. Aquifoliaceae				
Ilex sapoifolia Reissek	400-600		x	V. Gomes, 1011-03
9. Araceae				
Anthurium scandens (Aubl.) Engl.	400-600		x	V. Gomes, 1129
Anthurium sinuatum Benth. ex Schott	> 800S		x	V. Gomes, 1205-9
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	WINDWARD	ALTITUDE									
	FAMILY/SPECIES/AUTHOR	WINDWARD	ALTITUDE								
	V	GF	400-600	600-800	>800B	>800S	LAG	JAR	400-600	C	
9. Araceae	Monstera adansonii var. klotzchiana (Schott) Madison	th	x								V. Gomes, 2209-1
	Monstera praetermissa E.G.Gonç. & Temponi	eh	x								V. Gomes, 780
	Philodendron pedatum (Hook) Kunth	th	x								V. Gomes, 902-1
	Philodendron ornatum Schott	th	x								V. Gomes, 902-2
	Anthurium pentaphyllum (Aubl.) G.Don	th	x								V. Gomes, 1026
10. Araliaceae	Oreopanax capitatus (Jacq.) Decne. & Planch.	Piroá	tre	x							V. Gomes, 2704-2
	Schefflera morettoni (Aubl.) Maguire et al. var. morettoni	Garguuba	tre	x	x	x					V. Gomes, 1003
11. Arecaceae	Attalea speciosa Mart. ex Spreng.	Babaçu	tre	x							Lima, J. R., 1127
	Geonoma pohlina Mart.	Palmeirinha-da-serra, Guaricana	tre	x	x	x					V. Gomes, 663
	Syngrus comosa (Mart.) Mart.	Coco-babão, Catolé	tre	x	x						V. Gomes, 4-278
12. Asteraceae	Cyrtocymura scorpioides (Lam.) H.Rob.	Assa-peixe	subshr	x							L.W. Lima-Verde, 3479-8
	Gymnachemum amygdalimum (Delile) Sch.Bip. ex Walp.	Boldo	shr	x							A. Silveira, 388
	Trichogoniopsis adenantha (DC.) R.M.King & H. Rob.	th	x								A. Silveira, 969
	Vernonanthura brasiliana (L.) H.Rob.	Catirina	shr	x	x						A. Silveira, 459
	Wedelia alagoensis Baker	Camará-de-flecha	subshr	x							V. Gomes, 4-278
13. Balanophoraceae	Langsdorffia hypogaea Mart.	th	x								V. Gomes, 707-1
14. Begoniaceae	Begonia reniformis Dryand.	Begônia	th	x							A. Silveira, 300
15. Bignoniaceae	Handroanthus impetiginosus Mattos	Pau-d’arco-roxo	tre	x	x	x					A. Silveira, 863
	Handroanthus serratifolius (A.H.Gentry) S.Grose	Pau-d’arco-amarelo	tre	x	x	x					V. Gomes, 597
	Jacaranda brasiliana (Lam.) Pers.	Caroba	tre	x	x	x					A. Silveira, 219
	Lundia cordata (Vell.) DC.	Cipó-de-cesta vi	x								A. Silveira, 295
	Lundia sp. vi	x									V. Gomes, 894
16. Bixaceae	Cochlospermum vitifolium (Willd.) Spreng.	Pacotê	tre	x	x	x					L. W. Lima-Verde, 3515
17. Boraginaceae	Cordia alliodora (Ruiz & Pav.) Cham.	Freijó	tre	x							V. Gomes, 4-338
	Cordia anabaptista Cham.	Freijó	tre	x							V. Gomes, 495
	Cordia glazioliana (Taub.) Gottschling & J.S.Mill.	Pau-branco-louro	tre	x							L. W. Lima-Verde, 3492
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
WINDWARD			TAV	SIN	ARV	SRS	TAV	SIN	
TOP									
LEEWARD									
C									

17. Boraginaceae
- *Cordia rufescens* A.DC.
- *Cordia taguahyensis* Vell.
- *Cordia toqueve* Aubl.
- *Cordia trichotoma* (Vell.) Arrábia ex Steud.

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Trejó			x	x	x				

18. Bromeliaceae
- *Aechmea aquilega* (Salisb.) Griseb.
- *Aechmea bromeliifolia* (Rudge) Baker
- *Guazuma lingulata* (L.) Mez
- *Guazuma monostachia* (L.) Rusby ex Mez
- *Racinaea spiculosa* (Griseb.) M.A.Spencer & L.B.Sm.
- *Tillandsia juncea* (Ruiz & Pav.) Poiret.
- *Tillandsia recurvata* (L.) L.
- *Tillandsia stricta Sol. var. stricta*
- *Vriesea olesa* Leme
- *Vriesea rodigasiana* E. Morren

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Crocata			x	x	x				

19. Burseraceae
- *Commiphora leptophloeos* (Mart.) J. B. Gillett
- *Protium heptaphyllum* (Aubl.) Marchand subsp. *heptaphyllum*
- *Protium warmingianum* Marchand.

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Imburana			x	x					

20. Cactaceae
- *Cereus jamacaru* DC. subsp. *jamacaru*
- *Epiphyllum phyllanthus* (L.) Haw.
- *Hylodorus setaceus* (Salm – Dyck) R. Bauer
- *Pereskia aculeata* Mill.
- *Pilosocereus catingicola subsp. salvadorensis* (Werderm.) Zappi
- *Rhipsalis baccifera* (J.M.Muell.) Stearn. subsp. *baccifera*

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Cardeiro, Mandacaru			x	x					

21. Capparaceae
- *Cynophalla flexuosa* (L.) J. Presl.

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Feijão-bravo			x	x					

22. Caricaceae
- *Jacaratia spinosa* (Aubl.) A.DC.

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Jacaratia			x	x					

23. Celastraceae
- *Maytenus distichophylla* Mart. ex Reissek
- *Maytenus erythroxylla* Reissek
- *Maytenus gonocloada* Mart.
- *Maytenus impressa* Reissek

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800B	>800S	600-800	400-600	C
Folha-dura			x	x					

Appendix A. Continued...

A. Silvera, 355
A. Silvera, 817
V. Gomes, 1235
A. Silvera, 1605
V. Gomes, 546
V. Gomes, 712
A. Silvera, 1029
V. Gomes, 307
V. Gomes, 607-15
V. Gomes, 899
V. Gomes, 2109-9
V. Gomes, 2209-11
V. Gomes, 726
V. Gomes, 376
V. Gomes, 947
V. Gomes, 1120
V. Gomes, 887
V. Gomes, 4-399
V. Gomes, 625
Lima-Verde, 3472
Lima-Verde, 3596
V. Gomes, 5-277
A. Silveira, 406
V. Gomes, 1160
A. Castro, 30996
V. Gomes, 442
A. Silvera, 851
V. Gomes, 912
V. Gomes, 2009
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	WINDWARD	ALTIMITUDE										
	FAMILY	SPECIES	AUTHOR	VN	GF	400-600	600-800	>800	>800B	>800S	600-800	400-600
FLORA OF BATURITÉ, CEARÁ...												
						TAV	SIN	ARV	LAG	JAR	SAL	C
23. Celastraceae												
Maytenus obtusifolia Mart.	Jerimum	tre	x	x	x	x	x	x	x	x	V. Gomes, 2704-5	
Maytenus schumamianiana Loes.	Jerimum	tre	x	x	x	x	x	x	x	x	V. Gomes, 1-273	
Maytenus sp.	Jerimum	tre	x	x	x	x	x	x	x	x	V. Gomes, 2704-5	
24. Chrysobalanaceae												
Hirtella racemosa var. *hexandra* (Wild. ex Roem. & Schult.) Prance	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 779	
Licaria sp.	tre	x	x	x	x	x	x	x	x	x	V. Gomes, 924	
25. Clusiaceae												
Clusia dardanoi G.Mariz & Maguire	Gitó-da-mata	tre	x	x	x	x	x	x	x	x	V. Gomes, 1144	
Clusia nemorosa G.Mey.	Orelha-de-burro	tre	x	x	x	x	x	x	x	x	V. Gomes, 815	
Garcinia gardneriana (Planch. & Triana) Zappi	Bacupari	tre	x	x	x	x	x	x	x	x	V. Gomes, 1014	
26. Combretaceae												
Buchenavia tetraphylla (Aubl.) R.A.Howard.	Amarelão	tre	x	x	x	x	x	x	x	x	A. Silveira, 182	
27. Commelinaceae												
Aneilema brasiliense C.B.Clarke	th	x	x	x	x	x	x	x	x	x	V. Gomes, 1305-9	
Commelina benghalensis L.	th	x	x	x	x	x	x	x	x	x	V. Gomes, 798	
Dichorisandra hexandra (Aubl.) Kuntze ex Hand.-Mazz.	th	x	x	x	x	x	x	x	x	x	V. Gomes, 1270	
28. Costaceae												
Costus spiralis (Jacq.) Roscoe	th	x	x	x	x	x	x	x	x	x	V. Gomes, 666	
29. Cyperaceae												
Becquerelia cymosa Brongn.	th	x	x	x	x	x	x	x	x	x	V. Gomes, 798	
Cyperus cf. ligularis L.	th	x	x	x	x	x	x	x	x	x	V. Gomes, 719	
Rhynchospora cephalotes (L.) Vahl	th	x	x	x	x	x	x	x	x	x	V. Gomes, 336	
Scleria latifolia Sw.	th	x	x	x	x	x	x	x	x	x	V. Gomes, 78	
30. Dilleniaceae												
Deliciocalyx dentatus (Aubl.) Standl. subsp. *dentatus*	vi	x	x	x	x	x	x	x	x	x	V. Gomes, 776	
31. Elaeocarpaceae												
Sloanea garckeana K.Schum.	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 883	
32. Erythroxylaceae												
Erythroxylum affine A.St.-Hil.	tre	x	x	x	x	x	x	x	x	x	A. Silveira, 809	
Erythroxylum citrifolium A.St.-Hil.	tre	x	x	x	x	x	x	x	x	x	A. Silveira, 418	
Erythroxylum macrochaetum Miq.	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 1002-1	
Erythroxylum mucronatum Benth.	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 112	
Erythroxylum pulchrum A.St.-Hil.	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 1093	
Erythroxylum simonis Plowman	shr	x	x	x	x	x	x	x	x	x	V. Gomes, 1095	
FAMILY/SPECIES/AUTHOR	WINDWARD	ALTITUDE	TOP	MID	DOWN	SHRN	SAL	C
32. Erythroxylaceae								
Erythroxylum squamatum Sw.	shr	x						
Erythroxylum subrotundum A.St.-Hil.	shr	x						
Erythroxylum sp.1	x	x						
33. Euphorbiaceae								
Acalypha sp.	x	x						
Acalypha villosa Jacq.	shr	x						
Actinostemon sp.	x	x						
Alchornea glandulosa subsp. iricurana (Casar.) Secco	shr	x						
Aparthenium concolor (Spreng.) Müll. Arg.	tre	tre						
Actinostemon klotzschii (Didr.) Pax	shr	x						
Actinostemon verticillatus (Klotzsch) Baill.	shr	x						
34. Fabaceae								
34.1 Caesalpinioideae								
Bauhinia cf. chilantia (Bong.) Steud.	shr	x						
Bauhinia sp.	x	x						
Cassia ferruginea (Schrad.) Spre. ex DC. var. ferruginea	shr	x						
Cassia grandis L.	x	x						

Appendix A. Continued...
34.1 Caesalpinioideae

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	> 800B	> 800S	600-800	400-600	C
Chamaecrista zygophylloides var. colligans (H.S.Irwin & Barneby) H.S.Irwin & Barneby	shr	x	x	x	x	J.R.Lima, 862			
Chamaecrista sp.	subshr	x	A. Silveira, 943						
Copaifera langsdorffii Desf.	Pau-d'óleo	tre	x	x	x	A. Silveira, 884			
Hymenaea eriogyne Benth.	Jetobá	tre	x	x	V. Gomes, 6-54				
Libidibia ferrae (Mart. ex Tul.) L.P. Queiroz var. ferrae	Jucá, Pau-ferro	tre	x	x	A. Silveira, 951				
Libidibia ferrae var. leiostachya (Benth.) L.P. Queiroz	Pau-ferro	tre	x	x	V. Gomes, 1162				
Poinciana bracteosa (Tul.) L.P. Queiroz	Catêgingueira	tre	x	x	V. Gomes, 5-411				
Senna quinquangulata (Rich.) H.S.Irwin & Barneby	Besouro	tre	x	x	A. Silveira, 362				
Senna splendida (Vogel) H.S.Irwin & Barneby	São-João	shr	x	M.A.Figueiredo, 8920					

34.2 Faboideae

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	> 800B	> 800S	600-800	400-600	C
Andira cf. nitida Mart. ex Benth.	tre	x	x	V. Gomes, 850					
Desmodium procumbens (Mill.) Hitchc.	th	x	x	M.A.Figueiredo, 17662					
Dioclea grandiflora Mart. ex Benth.	Mucuná	vi	x	x	V. Gomes, 0903-2				
Dioclea virgata (Rich.) Amshoff	Mucuná	vi	x	x	L.W. Lima-Verde, 110				
Lonchocarpus sericeus (Poir.) Kunth ex DC.	Ingá-brava	tre	x	x	M.A.Figueiredo, 15938				
Machaerium hirtum (Vell.) Stellfeld	Chifre-de-bode	tre	x	x	A. Silveira, 1001				
Myroxyylon peraferum L.f.	Bâlsamo	tre	x	x	V. Gomes, 4-778				
Ormosia sp.	tre	x	x	x	V. Gomes, 1-221				
Platymiscium floribundum Vogel	tre	x	x	x	V. Gomes, 907-1				

34.3 Mimosoideae

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	> 800B	> 800S	600-800	400-600	C
Abarema jupunba (Willd.) Britton & Killip var. jupunba	tre	x	x	x	x	J.R.Lima, 385			
Albizia polypephala (Benth.) Killip ex Record	Camuzé	tre	x	x	x	x	A. Silveira, 348		
Anadenanthera colubrina var. cebil (Griseb.) Altschul	Calumbi	tre	x	x	x	x	L.W.Lima-Verde, 3570		
Chloroleucon dumosum (Benth.) G.P. Lewis	Arapiraca	tre	x	x	x	x	A. Silveira, 867		
Inga bollandii Sprague & Sandwith	Ingá	tre	x	x	x	A. Silveira, 357			
Inga ingoides (Rich.) Willd.	Ingá	tre	x	x	x	V. Gomes, 4-751			
Inga laurina (Sw.) Willd.	Ingá	tre	x	x	V. Gomes, 4-778				
Inga marginata Willd.	Ingá	tre	x	M.R.Oliveira, 20976					
Mimosa arenosa (Willd.) Poir. var. arenosa	tre	x	x	L.W.Lima-Verde, 3621					
Mimosa caesalpinifolia Benth.	Sâbiá	tre	x	x	V. Gomes, 4				
Parkia pendula (Willd.) Benth. ex Walp.	Visqueiro	tre	x	A. Silveira, 379					
Piptadenia stipulacea (Benth.) Duke	Saia-velha	tre	x	V. Gomes, 436					
Senega tabulata (DC.) Britton & Rose	Espinheiro, Espinheiro-preto	tre	x	x	V. Gomes, 4-773				
Senega riparia (Kunth) Britton & Rose ex Britton & Killip	Unha-de-gato	shr	x	V. Gomes, 5-689					
FAMILY/SPECIES/AUTHOR	VN	GF	ALTITUDE	C					
-------------------------------	------	----	-------------------	------------					
			400-600 TAV	600-800 SIN	> 800B ARV	> 800S LAG	600-800 JAR	400-600 SAL	
FAMILY/SPECIES/AUTHOR			WINDWARD	TOP	LEEWARD				
34.3 Mimosoideae									
Stryphnodendron guianense									
(Aubl.) Benth. subsp. guianense		tre	x	x	x				
	Favinha								
35. Gentianaceae									
Chelonanthes purpurascens			shr	x					
Aubl.	sh								
Voyria flavescens Griseb.		th		x					
36. Heliconiaceae									
Heliconia spathocircinata		th		x	x				
Aristeg.	Cana-de-macaco								
Heliconia pendula Wawra		th		x					
Heliconia pittacorum L.f.		th		x	x				
	Pacavira								
37. Humiriaceae									
Sagotitis sp.		tre		x					
Folha-dura									
38. Hypericaceae									
Vismia guianensis (Aubl.)		tre	x	x	x				
Choisy	Lacre-vermelho	tre							
39. Hypoxidaceae		th		x					
Hypoxis decumbens L.		th		x					
40. Iridaceae		th		x					
Cipura paludos Aubl.									
41. Lamiaceae									
Aegiphila integrifolia		tre		x					
(Jacq.) Moldenke	Orelha-de-onça								
Hyptia pectinata (L.) Poit.		th		x					
Canela-de-juriti									
Vitex cf. capitata Vahl		tre		x					
Vitex flavescens Kunth		tre		x					
Vitex cf. panshiniiana Moldenke	Gargauba	tre		x					
Vitex triflora Vahl		tre		x					
Vitex sp.		tre		x					
Guabiraba									
42. Lauraceae									
Cinnamomum triplinerve (Ruiz & Pav.) Kosterm.	Louro-eucalipto	tre	x	x					
Endlicheria sp.		tre		x					
Nectandra cuspidata Nees	Louro	tre		x					
Ocotea daphnifolia (Meisn.) Mez	Louro	tre		x					
Ocotea glauca (Ness & Mart.) Mez	Louro	tre		x					
Ocotea glomerata (Nees) Mez	Louro	tre		x					
Ocotea longifolia Kunth	Louro	tre		x					
Ocotea paberula (Rich.) Nees	Jenipapo-bravo	tre		x					
Ocotea sp.	Louro	tre		x					

Appendix A. Continued...
FAMILY/SPECIES/AUTHOR	WINDWARD	ALTITUDE	C						
	FN	GF	400-600	600-800	> 800B	> 800S	600-800	400-600	
43. Lythraceae			TAV	SIN	ARV	LAG	JAR	SAL	
Lafoensia pacari A.St.-Hil.	tre	x	x	x					V. Gomes, 2009-13
44. Malpighiaceae									
Bunchiosia acuminata Dobson	tre	x	x	x					V. Gomes, 1303-5
Byronima crispa A. Juss.	tre	x	x	x					A. Silveira, 206
Byronima sericea DC.	tre	x	x	x					V. Gomes, 1112
Byronima stipulacea A. Juss.	tre	x	x						M. A. Figueiredo, 17050
Heteropterys tricanthera A. Juss.	vi	x							V. Gomes, 1102-3
Tetrapterys mucronata Cav.	Canela-brava	vi	x						A. Silveira 436
45. Malvaceae									
Apeiba tibourbou Aubl.	Jangada, Pau-de-jangada	tre	x	x	x				A. Silveira 861
Callianthe bezerra (Monteiro) Donnel	subshr	x							M. A. Figueiredo, 349
Ceiba glaziovii (Kuntze) K.Schum.	Barriguda	tre		x	x				V. Gomes, 508-3
Helicteres baruensis Jacq.	Maria-preta	shr	x						V. Gomes, 1102-5
Helicteres velutina K.Schum.	Maria-preta	shr		x	x				V. Gomes, 795
Helicteres sp.	shr		x		x				V. Gomes, 1102-6
Pseudobombax marginatum (A.St.-Hil)	Imbiratanha	tre	x		x				V. Gomes, 1103-6
Sida urens L.	th		x		x				M. A. Figueiredo, 15249
46. Marantaceae									
Calathea cylinndrica (Roscoe) K.Schum.	Bananinha	th	x						V. Gomes, 2604-4
Calathea sp.	Bananinha-de-salão	th	x		x				A. Silveira 972
Ischnosiphon puberulus Loes.	Taquari	th	x		x				V. Gomes 1119
Maranta leuconeura E. Morren	Baratinha	th		x	x				A. Silveira 971
47. Marcgraviaceae									
Norantea guianensis Aubl.	shr		x						V. Gomes, 903
48. Melastomataceae									
Aciotis sp.	th		x						V. Gomes, 778
Clidemia debilis Crueg.	Lava-mato	shr	x						V. Gomes, 2604-3
Clidemia dentata D. Don	Lacre-branco	shr		x					A. Silveira, 161
Clidemia hirta (L.) D. Don	shr		x						V. Gomes, 2704-2
Miconia affinis D.C.	shr	x	x	x					A. Silveira, 903
Miconia alata (Aubl.) DC.	Canela-de-veado	tre	x	x	x				A. Silveira, 404
Miconia aff. caudigera DC.	Lacre-branco	shr			x				A. Silveira, 353
Miconia holosericea (L.) DC.	tre	x	x						V. Gomes, 767
Miconia hypoleuca (Benth.) Triana	shr	x							V. Gomes, 1109
Miconia minutiflora (Bonpl.) DC.	Lacre-branco	shr	x	x					A. Silveira, 10
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	> 800B	> 800S	600-800	400-600	C
			TAV	SIN	ARV	LAG	JAR	SAL	
48. Melastomataceae									
Miconia nervosa (Sm.) Triana	Língua-de-vaca	shr	x						Silveira, 626
Miconia prasina (Sw.) DC.	Lacre-branco	tre	x	x	x	x			A. Silveira, 380
Miconia sp.	shr	x							V. Gomes, 2704-7
Tibouchina heteromalla (D.Don) Cogn.	shr	x							A. Silveira, 894
49. Meliaceae									
Cedrela odorata L.	Cedro	tre						x	A. Silveira, 635
Trichilia emarginata (Turcz.) C.DC.	tre	x						x	V. Gomes, 2009-18
Trichilia ralhloi Rizzini	tre							x	V. Gomes, 1068
50. Menispermaceae									
Cissampelos andromorpha DC.	vi	x							A. Silveira, 906
51. Moraceae									
Brosimum gaudichaudii Trécul	Inharé	tre	x	x	x				A. Silveira, 419
Ficus guianensis Desv.	Gamelaire	tre	x	x	x	x		x	V. Gomes, 797
52. Myrsinaceae									
Mysrine guianensis (Aubl.) Kuntze	Cajuéiro-bravo	tre						x	V. Gomes, 700
Myrsine umbellata Mart.	Coração-de-nego; Mium-de-sangue	tre	x	x	x	x			A. Silveira, 304
53. Myrtaceae									
Campomanesia aromatica (Aubl.) Griseb.	Guabiraba	tre	x	x	x	x			Silveira, 902
Campomanesia ilhoensis Mattos	Guabiraba	tre	x						V. Gomes, 1002-9
Campomanesia sp1.	Guabiraba	tre	x	x					V. Gomes, 609
Eugenia cf. piresii Mattos		tre	x						V. Gomes, 1140
Eugenia aurata O.Berg.	Café-bravo	tre						x	A. Silveira, 871
Eugenia cf. cacoërensis		tre	x	x					A. Silveira, 976
Eugenia cf. egensis DC.	Folha-miúda	tre						x	A. Silveira, 612
Eugenia cf. schottiana O. Berg	Folha-miúda	tre	x					x	A. Silveira, 924
Eugenia cf. uniflora L.	shr							x	V. Gomes, 598
Eugenia flavescens DC.	Folha-miúda	tre						x	V. Gomes, 586
Eugenia florida DC.	Café-bravo	tre	x	x					A. Silveira, 438
Eugenia ligustrina (Sw.) Willd.	Folha-miúda	tre	x	x	x	x			V. Gomes, 1079
Eugenia cf. paraensis O. Berg		tre						x	A. Silveira, 607
Eugenia piresii Mattos		tre		x		x			V. Gomes, 790
Eugenia punicifolia (Kunth) DC.	Folha-miúda	tre	x	x					V. Gomes, 49
Eugenia sp.1	Folha-miúda	tre	x						V. Gomes, 771-1
Eugenia sp. 2	Café-bravo	tre	x	x					A. Silveira, 949
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	WINDWARD	ALTIMETRY					
	FAMILY	ALTITUDE					
	SPECIES	TOP 600-800	LEEWARD 600-800				
	AUTHOR	TAV 400-600	JAR 400-600				
	GF	SIN 600-800	LAG 600-800				
	VN	ARV > 800B	SAL > 800S				
			C				
53. Myrtaceae							
Eugenia sp. 3	shr		x				
Marlieria sp1	tre		x				
Marlieria sp2	tre		x				
Myrcia alagoensis O. Berg	tre x x x x	V. Gomes, 1041					
Myrcia multiflora (Lam.) DC.	shr	x	x	V. Gomes, 935			
Myrcia pubiflora DC.	tre		x				
Myrcia rostrata DC.	tre		x				
Myrcia splendens (Sw.) DC.	Folha-miúda	tre	x	x	x	V. Gomes, 1147	
Myrcia sylvatica (G.Mey.) DC.	Folha-miúda-pretta	tre	x	x	x	A. Silveira, 458	
Myrcia tomentosa (Aubl.) DC.	Goiabinha	tre	x	x	A. Silveira, 387		
Myrcia sp. 1	shr		x				
Myrcia sp. 2	Cabacinha	tre	x	x			
Myrcia sp. 3	tre		x				
Myrcia sp. 4	tre		x				
Myrcia sp. 5	tre		x				
Myrcia sp. 6	tre		x				
Myriaria ferruginea O.Berg	tre	x	x	A. Silveira, 808			
Myriaria sp1	tre		x				
Myriaria sp2	tre		x				
Myriaria sp3	tre		x				
Myriaria tenella (DC) O. Berg	Sangue de boi	tre	x	A. Silveira, 1216			
Psidium guianense Sw.	tre		x				
Psidium sartorianum (O.Berg,) Nied.	tre	x	x	V. Gomes, 0206-15			
Siphoneugenia sp.	tre		x				
Syzygium jambos (L.) Alston	tre	x	A. Silveira 779				
54. Nyctaginaceae							
Guapira sp.	João-mole	tre	x	x	V. Gomes, 1-462		
Neea obovata Spruce ex. Heimerl	João-mole	tre	x	x	x	x	V. Gomes, 1153
55. Ochnaceae							
Ouratea hexasperma (A.St.-Hil.) Baill.	Cajuzinho	tre	x	x	x	A. Silveira, 399	
Ouratea polygyna Engl.	Cajuzinho	tre	x	x			
56. Olacaceae							
Heisteria blanchetiana (Engl.) Sleumer	Mium-de-sangue-branco	tre	x	A. Silveira, 973			
Heisteria perianthomega (Vell.) Sleumer	Mium-de-sangue-branco	tre	x	A. Silveira, 973			
Schoepfia obliquifolia Turcz.	Mium-de-sangue-branco	tre	x	A. Silveira, 973			
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	VN	GF	400-600	600-800	>800TAV	>800SIN	>800ARV	>800ARV	600-800	400-600	C
56. Olacaceae											
Ximenia americana L.	tre	x									V. Gomes, 4-449

| 57. Oleaceae | | | | | | | | | | | |
| Chionanthus sp. | tre| x | | | | | | | | | V. Gomes, 462 |

| 58. Opiliaceae | | | | | | | | | | | |
| Agonandra brasiliensis Miers. ex Benth. & Hook.f. | Juá-mirim | tre | x | | | | | | | | V. Gomes, 72 |

59. Orchidaceae											
Alatiglossum barbatum (Lindl.) Baptista	eh	x									V. Gomes, 523
Catasetum macrocarpum Rich. ex Kunth	eh	x	x								V. Gomes, 1009-1
Epidendrum armeniacum Lindl	eh	x									V. Gomes, 0607-3
Epidendrum nocturnum Jacq.	eh	x									V. Gomes, 299
Gongora quinquenervis Ruiz & Pav.	eh	x	x								V. Gomes, 3031
Notylia lyrata S. Moore	eh	x									V. Gomes, 2209-16
Polystachia concreta (Jacq.) Garay & Sweet	th	x	x	x							A. Silveira, 897
Preschottia stachyodes (Sw.) Lindl.	th	x	x	x							V. Gomes, 716
Specklinia trifida (Lindl.) F.Barros	th	x									V. Gomes, 621
Trichocentrum fuscum Lind.	th	x									V. Gomes, 716

| 60. Oxalidaceae | | | | | | | | | | | |
| Oxalis alstonii Loureng. | th | x | | | | | | | | | A. Silveira, 804 |

| 61. Passifloraceae | | | | | | | | | | | |
| Mitostemma brevifilis Gontsch. | Maracujá-suspiro | vi | x | | | | | | | | A. Silveira, 741 |

| 62. Peraceae | | | | | | | | | | | |
| Pera glabrata (Schott) Poepp. ex Baill. | Casquim | tre | x | | | | | | | | V. Gomes, 991 |

| 63. Phyllanthaceae | | | | | | | | | | | |
| Phyllanthus acutifolius Poir. ex Spreng. | subsh | x | | | | | | | | | A. Silveira, 855 |

| 64. Phytolaccaceae | | | | | | | | | | | |
| Hilleria latifolia (Lam.) H.Walter | th | x | | | | | | | | | A. Silveira, 829 |

65. Picramiaceae											
Picramnia gardneri Planch.	tre	x									V. Gomes, 488
Picramnia glaziioviana Engl.	tre	x									V. Gomes, 922

66. Piperaceae											
Piper aduncum L.	shr	x									A. Silveira, 463
Piper arboreum Aubl.	shr	x									A. Silveira, 390
Piper ovatum Vahl.	subsh	x									V. Gomes, 0707-3
Peperomia circinnata Link	th	x									V. Gomes, 0707-2
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	WINDWARD	ALTITUDE	ALPITUDE	C
Plumbaginaceae				
Plumbago scandens L.	subshr	x	V. Gomes, 735	
Poaceae				
Merochrys sp.	Taquara	th	x	V. Gomes, 1124
Olyra latifolia L.	th	x	V. Gomes, 15-3	
Parodiolyra micrantha (Kunth) Davidse & Zuloaga	th	x	V. Gomes, 545	
Podocarpaceae				
Podocarpus sellowii Klotzsch ex. Endl.	tre	x	A. Silveira, 239	
Polygalaceae				
Acanthocladus albicans A.W.Benn.	Ameixa	shr	x	V. Gomes, 793
Polygala paniculata L.	Vique	th	x	A. Silveira, 447
Polygonaceae				
Coccoloba parimensis Benth.	tre	x	A. Silveira, 729	
Coccoloba sp.1.	tre	x	V. Gomes, 1197	
Coccoloba sp. 2	shr	x	A. Silveira, 494	
Ruprechtia laxiflora Meisn.	Tubibeira	tre	x	A. Silveira, 924
Portulacaceae				
Talinum paniculatum (Jacq.) Gaertn.	th	x	A. Silveira, 953	
Proteaceae				
Roupala sp.	Carne-de-vaca; Rabugem	tre	x	A. Silveira, 729
Rhamnaceae				
Colubrina glandulosa Perkins	Sabiaquaba	shr	x	V. Gomes, 1205-1
Ziziphus undulata Reissek	Juá-mirim	tre	x	V. Gomes, 6-26
Rosaceae				
Prunus myrtifolia (L.) Urb.	Pau-de-soinho	tre	x	V. Gomes, 2209-3
Rubiaceae				
Alseis floribunda Schott	Guabiraba	tre	x	A. Silveira, 850
Amaioua intermedia Mart. ex Schult. & Schult. f	Casquim	tre	x	V. Gomes, 1087
Chiococca alba (L.) Hitchc.	shr	x	M.A. Figueiredo, 16670	
Coussarea contracta (Walp.) Müll.Arg. var. *contracta*	Folha-dura	tre	x	V. Gomes, 6-42
Coutarea hexandra (Jacq.) K.Schum.	Quina-quiña	tre	x	A. Silveira, 909
Faramea hyacinthina Mart.	Folha-dua	tre	x	V. Gomes, 1003-5
Faramea sp. 1	Violeta, Folha-dura	tre	x	V. Gomes, 916
Faramea sp. 2	Folha-dua	tre	x	A. Silveira, 774
Gonzalagunia dicoca Cham. & Schltdl.	Canela-de-juriti	th	x	V. Gomes, 1048
Guettarda angelica Mart. ex Müll.Arg.	Espinho-branco	shr	x	A. Silveira, 721
Windward

FAMILY/SPECIES/AUTHOR	VN	GF	ALTITUDE					
			0.400-0.800	> 0.800				
			TAV	SIN	ARV	LAG	JAR	SAL
76. Rubiaceae								
Hamelia patens Jacq.*	th	x	x	x	A. Silveira, 827			
Palicourea guianensis Aubl.	shr	x	x	x	V. Gomes 1103			
Palicourea maragravii A.St.-Hil.	shr	x	A. Silveira, 1205-7					
Psychotria bracteocardia (DC.) Müll. Arg.	th	x	x	x	V. Gomes, 0902-1			
Psychotria capitata Ruiz & Pav.	shr	x	x	x	A. Silveira, 759			
Psychotria carthagenensis Jacq.	shr	x	x	x	A. Silveira, 767			
Psychotria colorata (Willd. ex Schult.) Müll. Arg.	shr	x	A. Silveira, 734					
Psychotria deflexa DC.	shr	x	A. Silveira, 733					
Psychotria hoffmannseggiana (Willd. ex Schult.) Müll. Arg	shr	x	A. Silveira, 742					
Randia armata (Sw.) DC.	Veludo-preto	tre	x	x	x	x	V. Gomes, 1102-4	
77. Rutaceae								
Esenbeckia grandiflora Mart.	tre	x	x	x	A. Silveira, 811			
Pilocarpus spicatus A.St.-Hil.	tre	x	A. Silveira, 845					
Rauia sp.	tre	x	V. Gomes, 772					
Zanthoxylum petiolaris A.St.-Hil & Tul.	Limãozinho	tre	x	x	V. Gomes, 466			
Zanthoxylum rhoifolium Lam.	Limãozinho	tre	x	V. Gomes, 908				
78. Salicaceae								
Banara guianensis Aubl.	Farinha-seca	tre	x	x	x	x	V. Gomes, 1125	
Casearia commersoniana Cambess.	shr	x		V. Gomes, 0607-1				
Casearia grandiflora Cambess.	shr	x	V. Gomes, 1114					
Casearia sylvestris Sw.	shr	x	x	x	A. Silveira, 826			
Casearia sp. 1	shr	x	V. Gomes, 2-753					
Casearia sp. 2	shr	x	V. Gomes, 6-263					
Prockia crucis P. Browne ex L.	shr	x	A. Silveira, 726					
Xylosma ciliatifolia (Clos) Eichler	Espinho-de-judeu	shr	x	x	V. Gomes, 0306-1			
79. Santalaceae								
Phoradendron crassifolium (Pohl ex DC.) Eichler	hm	x	x	V. Gomes, 727				
Phoradendron mucronatum (DC.) Krug & Urb.	hm	x	V. Gomes, 2009-14					
Phoradendron sp. 1	hm	x	V. Gomes, 1130					
Phoradendron sp. 2	hm	x	A. Silveira, 975					
80. Sapindaceae								
Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl.	shr	x	A. Silveira, 822					
Aparisthmium cordatum (A.Juss.) Baill.	Piroá	tre	x	V. Gomes, 774				
Cupania impressinervia Acev.-Rodr.	tre	x	Araújo, F. S. 1604					
Cupania racemosa (Vell.) Radlk.	Cajueiro-bravo	tre	x	V. Gomes, 736				
Appendix A. Continued...

WINDWARD

FAMILY/SPECIES/AUTHOR	FN	GF	200-600	600-800	> 800B	> 800S	600-800	400-600	C
80. Sapindaceae									
Cupania longifolia Benth.	tre	x	x						
Paullinia uloptera Radlk.	vi								
Serjania hebecarpa Benth.	vi								
81. Sapotaceae									
Chrysophyllum flexuosum Mart.	tre	x							
Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl.	Jitó	tre	x						
Chrysophyllum sp.	Fólia-dura	tre	x	x	x	x	x		
Manilkara rufula (Miq.) H.J.Lam	Andarilho	tre	x	x	x	x	x		
Micropholis aff. guyanensis (A.DC.) Pierre	Presunto	tre	x	x					
Pouteria bangii (Rusby) T.D.Penn.	Engasga-vaca	tre	x						
Pouteria macrophylla (Lam.) Eyma									
Pouteria peduncularis (Mart. & Eichler ex Miq.) Baehni									
Pouteria venosa (Mart.) Baehni subsp. venosa	tre	x							
82. Schoepfiaceae									
Schoepfia brasiliensis A.D.C.	tre	x	x						
83. Simaroubaceae									
Simarouba amara Aubl.	Paraíba	tre	x	x	x	x			
84. Siparunaceae									
Siparuna guianensis Aubl.	Sabonete	shr	x						
85. Smilacaceae									
Smilax sp.	Japecanga	vi	x	x					
86. Solanaceae									
Acnistus arborescens (L.) Schltdl.	shr	x							
Brunfelsia uniflora (Pohl) D.Don	shr	x	x						
Cestrum axillare Vell.	Dominguinho	shr	x						
Cestrum schlechtendalli G.Don.	Dominguinho	shr	x						
Solanum caudatum Vell.	shr	x	x						
Solanum campaniforme Roem. & Schult.	Caninana	shr	x						
Solanum paniculatum L.	shr	x							
Solanum rhytidandra Sendtn.	Boldo, Jurubeba-preta	shr	x	x					
87. Sterculiaceae									
Basiloxylon brasiliensis (All.) K. Schum.	Piroá	tre	x	x					
Guazuma ulmifolia Lam.	Mutamba-brava	tre	x						
88. Symplocaceae									
Symplocos nitens (Pohl) Benth.	tre	x							

Note: The table continues with similar entries for other families.
Appendix A. Continued...

FAMILY/SPECIES/AUTHOR	VN	GF	ALTITUDE	ALTITUDE				
			400-600	600-800				
			TAV	SIN				
			800B	ARV				
			> 800S	LAG				
			600-800	JAR				
			400-600	SAL				
WINDWARD								
LEEWARD								
TOP								
89. Thymelaeaceae	Daphnopsis racemosa Griseb.	Embira-branca	shr	x	x	x	x	V. Gomes, 1106
90. Urticaceae	Cecropia palmata Willd.	Embaúba, Torém	tre	x	x	x	V. Gomes, 1203-5	
	Urera bacifera (L.) Gaudich. ex Wedd.	Urtiga	tre	x	x	x	V. Gomes, 1203-5	
91. Verbenaceae	Lantana camara L.	Camará	shr	x	A. Silveira, 732			
Lantana radula Sw.	Camará	shr	x	V. Gomes, 2109-5				
92. Zingiberaceae	Renealmia chrysotricha Petersen	Colônia-brava	th	x	A. Silveira, 455			

VN: vernacular name; GF: growth form; ter: tree; shrub: shrub; subshrub: subshrub; vi: vine; th: terrestrial herb; eh: epiphytic herb; hm: hemiparasite; C: main collector's name and number; x: present species. Surveyed sites: TAV: Taveiras; SIN: Sinimbu; ARV: Arvoredo; LAG: Lagoa; JAR: Jardim; SAL: Salva-Vidas.