Advanced study of ICF-energy direct conversion for Laser Fusion Rocket with quasi-dipole field in the laser-plasma experiments and PIC–simulations

Yu P Zakharov¹, K V Vchivkov¹, H Nakashima², E L Boyarintsev¹, A V Melekhov¹, V G Posukh¹, I F Shaikhislamov¹ and Y Kajimura²

¹Institute of Laser Physics (ILP), Russian Academy of Sciences (RAS), Novosibirsk, 630090, Russia
²Department of Advanced Energy Engineering Science, Kyushu University (KU), 816-8580, Japan

E-mail: zakharov@plasma.nsk.ru

Abstract. We had studied by the methods of numerical and laboratory simulations an important problem of direct inductive conversion of the ICF-plasma’ energy into electric one, under conditions of promising space propulsions with magnetic nozzle. For such kind of Laser Fusion Rocket, like a VISTA, with the strong and dipole-like magnetic field, a minimal 5%-level of conversion efficiency is required to supply a need power for laser system etc. As a result of calculations by 3D/PIC-code of KU a real opportunity to achieve this value was confirmed for the first time with taking into account a data of simulative experiments at KI-1 facility of ILP. A schemes and results of “VISTA-KI” experiments with Laser-Plasma clouds is discussed to verify this opportunity under real conditions of flute-like plasma instability and the geometry of plasma expansion (versus the main and pick-up coils) close to VISTA.

1. The problem of the efficiency of direct energy conversion in Laser Fusion Rocket schemes

VISTA is a well-developed design [1,2] of Laser Fusion Rocket (LFR) with the magnetic field’ nozzle [3] formed during asymmetrical expansion of plasma cloud along the X-axis of strong and dipole-like magnetic field supplied by SCM-coil, combined with the additional pick-up coil for EMF-generation of electric energy Eₐ spent to laser driver. Design of its nozzle’ part with a 10 m – scales and kinetic plasma energy E₀~ 500 MJ (per shot of ICF-microexplosion, see table 1) was explored by LLNL for ≤ 1 year roundtrip to Mars on the base of rather optimistic values of the conversion efficiencies both for energy ηₑ=Eₑ/E₀ ~ 5 % and momentum ηₚ=Pₚ/P₀ ~ 60 %. The latter value of ηₚ was successfully confirmed by the methods of numerical [4], laboratory [5] and joint [6] simulations in wide range of dimensionless parameters (criteria) of the problem: energetic – æ and ion magnetization – υ₀ (table 1).

But for the energy conversion efficiency ηₑ situation is not so clear [2], because nobody, except first LFR-project [3] never do its quantitative estimations (based on physical processes of direct inductive conversion of energy), while the result of this LLNL work on the level of ηₑ ~ 15% was obviously overestimated for the given geometry of LFR (with the pick-up coil suited along to X far away from plasma). For example, our special studies [7-11] of such kind maximum efficiency for more suitable case (of uniform field and more close plasma-coil geometry) show, that in this case nor
more than limit ~ 30% could not be obtained, even in absence of dissipation or any instabilities and with “good matching” in plasma/ pick-up coil system, that means not only evident condition of $\Delta = 0$ (see figure 1), but the optimal radius R_c of coil, comparable [8-10] with the maximal size R_c (~ R_b, see table 1) of plasma diamagnetic cavity. While indeed, due to effects of flute-like instabilities [11,12] at plasma boundary, the real value of energetic efficiency should be in two-fold lower [8] than this limit.

Table 1. Main parameters of Laser Fusion Rocket VISTA and experiments for its simulations

Parameters and criteria	Project VISTA [1,2]	VISTA test, planned at NIF [4]	“Impulse” [5]	“VISTA-KI” (S)	
Plasma energy, MJ E_0	500±1000	4	(3±4) $\times 10^{-6}$	~ 30$\times 10^{-6}$	
Expansion velocity, km/s V_0	300	300	140	170	
Plasma ions, a.m.u. m_i	1	~ 10	2.5	2.5	
(m$_i$=m/m$_p$, in average) z	(H$_2$-expellant)	(Au-shell)	(CH-plastic)	(CH-plastic)	
Ejection point, m X_0	11	1	0.15	~ 0.057	
Current in main coil, MA J_t	17	4	~ 0.1 (MA-turn)	~ 0.05 (MA-turn)	
Coil radius, m R_t	13	1	~ 0.05	0.0675	
Dipole moment, G*cm3 μ	10^{13}	10^{10}	10^6	8×10^5	
Magnetic field (at X_0), kG B_d	4	9	1	2.25 (up to 5)	
Scale $(3E_0/B_d)^{1/3}$ of plasma deceleration by field B_d, m R_b	~ 11	~ 1	~ 0.05	~ 0.055	
Geometric factor $\alpha = X_0/R_t$	0.85		3	0.85	
Ion magnetization criterion $\varepsilon_0 = R_t/R_b$	~ 0.001	0.02	0.75 (< 1)		
for Larmor R_l=mcV_0/zeB_d ($<< \varepsilon_0 \sim 1$ / critical value)	(~ 1 for direct irradiation)	for $R_b \approx 4.7$ cm and $R_t \approx 3.5$ cm	0.34		
Energetic criterion $\alpha_0 = 3E_0X_0^3/\mu^2$	0.2~0.4	($\leq \alpha = 0.4$)	~ 1 ($\geq \alpha$)	~ 0.1	0.26

2. **Simulation of conversion processes in “VISTA-KI” experiment with Laser-Plasma clouds**

In figure 1 a general layout of “VISTA-KI” experiment is shown with the using of additional pulsed magnetic coil (1), inserting into the center of target chamber of KI-1 laser facility [11,12], and with applying of perlon filament. From such target, an axially-symmetrical plasma cloud is generated due to its irradiation by two laser beams of CO$_2$-laser with the 100 ns duration of pulses [12]. The angular distribution of the kinetic energy E_k in such Laser-Plasma Clouds (LPC) could be presented roughly by function like $dE_k/d\theta$: $vS\theta$ (for the usual angle $\theta \approx 90^\circ$ into direction of Z-axis in figure 1), so for the real total LPC-energy E_k near 20 J, its effective value $E_0=4\pi(dE_k/d\theta)_{max}$ could reach 30 J [12].

Therefore to estimate a maximal size R_c of the LPC diamagnetic cavity (into Z-direction) we need to use namely E_0 in both the general expression of R_c as $R_c \approx (3E_0/B_d)^{1/3}$ and to determine α-criterion, listed in the table 1 together with the main parameters of discussed cases of LFR and its simulations.

Figure 1. A scheme of “VISTA-KI” experiment:
1 – main coil; 2 – pick-up [7] coil at $\Delta = 4.5$ cm (with Rogowsky coil to register EMF-induced current J); 3 – two laser beams (near 300 J totally); 4 – Laser-Plasma cloud in a form of toroid in the absence of dipole field ($B_d^{max} \sim 5$ kG for $X_0 \approx 5.7$ cm); 5 – Langmuir and magnetic probes; 6 – target in a form of plastic filament $\varnothing 0.3$ mm (or spherical target $\varnothing 4$ mm); 7 – glass tube to support it. B_i is the field ~ 10 kG of main coil (near pick-up one)
Experimentally, the real efficiency of direct energy conversion is determined [8] as \(\eta_{ex} = E_e/E_k \), where \(E_e = L J^2/2 \) is the energy of electric current \(J \) (see figure 1) induced in pick-up coil (imitating Be-shield, of radius \(R_s \) for SCM-coil in VISTA) by rising LPC’ cavity at point \(X_0 \). The same data on current \(J(t) \) was used to control the efficiency (\(\eta_p > 50\% \)) of direct momentum transfer \(\Delta P_d \propto J x B_b \tau \) from ICF-plasma to VISTA via magnetic disturbances (with life-time \(\tau \)) outside of cavity [5,9,10].

3. Estimations and PIC-simulations of the efficiency under real conditions of plasma and coils

For study real opportunity to achieve a necessary 5%-level of the efficiency \(\eta_e \) we had analysed earlier [10] a processes of inductive generation of current in pick-up coils by expanding blob of diamagnetic ICF-plasma in quasi-dipole magnetic field. So in the case of spherical cloud, expanding (with velocity \(V_0 \)) from the point at distance \(X_0 \) near dipole \(\mu \), the shape of boundary for plasma’ deceleration by field is described by energetic criterion \(\alpha = 3E_0X_0^3/\mu^2 \) of MHD-model (Nikitin S.A. and Ponomarenko A.G., 1994) and the ideal efficiency of one-turn pick-up coil could be estimated as \(\eta_{ex} (\%) \approx 13\alpha/\alpha^2 \) [10]. The only main geometric coil-factor \(\alpha = X_0/R_s \) is used, for the usual condition of VISTA case, that pick-up coil is almost coincided with the main \(\mu \)-coil, so \(\eta_e \) is “independent” upon \(X_0 \).

This \(\eta_e \)-relation was tested preliminary under the same condition in the “MHD” experiment at KI-1 [11,12] with \(E_0 \approx 15 J \) (of quasi-spherical LPC) and uniform field \(B_0 \approx 8 kG \) (but with a shift of main-shield, of radius \(R_s \), for SCM-coil in VISTA) by rising LPC’ cavity at point \(X_0 \). The same data on current \(J(t) \) was used to control the efficiency (\(\eta_p > 50\% \)) of direct momentum transfer \(\Delta P_d \propto J x B_b \tau \) from ICF-plasma to VISTA via magnetic disturbances (with life-time \(\tau \)) outside of cavity [5,9,10].

These advanced estimations of energy conversion efficiency were confirmed in preliminary 3D/PIC-calculations of ILP with the using of Hybrid code of KU [4], that were done especially for the conditions of a new simulative experiment “VISTA-KI”, in which all main conditions of VISTA design for plasma – field and field – pick-up coil interactions will be realized (see table 1) for the first time, due to using of both axial-symmetrical (A) and spherical (S) LPCs (see figure 1,2 and 3).

Figure 2. Data of PIC-runs for “VISTA-KI” case (A), demonstrating the moderate levels of flutes’ growth (b) and their influence (c) onto energy conversion, which could achieve here a value up to \(E_e = (\Delta\Phi)^2/2L \approx 0.32 J \) (and \(\eta_{ex} > 2\% \)), on the base of calculated from (c) flux \(\Delta\Phi \approx 3.6*10^4 G*cm^2 \) and real \(L_{min} \approx 200 cm \) of short-circuited-pick-up coil. At the right a first results are shown: on the relevant LPC generation (at d – with the second, slow plasma peak LPC-2 of small energy \(E_0 \approx 1.5 J \) at levels \(\alpha \approx 0.3 \) and \(\alpha_s \approx 0.8 \) (< critical 1) in the field \(B_0 = 0.5 kG \) and (a) on its induced current \(J \) in the same coil at \(\Delta = 4.5 \) cm (with the probable efficiency \(\eta_{ex} \) up to 2.5 % of main peak J).
The observed non-MHD flutes (figure 2b) arise under conditions of finite-level magnetization H_b of ions (see table 1), so they could be important at $\varepsilon_0 \sim 0.2$ for VISTA without expellant (around ICF-target), but not important – with it ($\varepsilon_0 \ll 1$). Nevertheless, even in the last MHD-case, during long-time plasma deceleration at $1.5R_0/V_0\sim 50\ \mu$s, a customary Rayleigh-Taylor flutes could develop and destroy plasma diamagnetizm. PIC-data at figure 2b show that when the non-MHD flutes are realized indeed by finer grid, than they could affect on plasma-field interaction, appearing in decreasing of R_α, ΔB and $\Delta \Phi$-values (figure 2c). Because the energy of LPC A-type was limited by few Joules in the first simulative experiments with fiber target (figure 2d) we did both additional PIC-runs and experiments with the quasi-spherical LPCs (S) in the near 10 J-range of their energy E_0, but with the using of just the same scheme (figure 1). Now it was usually $E_0 \sim 6.5\ J$ while in the nearest future we plan to increase it up to need 30 J (see table 1) or more by using a flat-type solid targets, e.g.

![Figure 3](image-url)

Figure 3. Data (a,b,c) of PIC-run for “VISTA-KI” S (see Table), where at c – curve 1 is a total field’s change ΔB caused by LPC, 2 – ΔB due to its penetration (1 at 1) into coil and 3 is ΔB of LPC’s dipole $\mu_c=1.1*10^5\ G*cm^3$ in zero point (corresponding to η_{ex} up to 3±4 %). At the right– a first experimental data with LPC (S) of energy $E_0 \sim 6.5\ J$ is presented with η_{ex} up to 1.5 % (in the field $B_0=1.5\ kG$, in accordance with corresponding PIC-run at $z \sim 0.14$, $\varepsilon_0 \sim 0.6$ and grid 1,25 mm).

The data of PIC-modeling and first results of last “VISTA-KI” experiment (see figure 3) show that with these new schemes of simulative experiment we could confirm (at $z > 0.25$ and $\varepsilon_0 < 0.4\pm 0.5$) a possible real high level of energy conversion efficiency $\eta_{ex} \sim 4\%$ for the project of LFR VISTA [2].

* This work was supported in part by Russian Fund of Basic Research, Grant 05-08-50068.

References

[1] Hyde R A A 1983 LLNL Preprint, University of California/UCRL-88857
[2] Orth C D et al. 1987 AIAA Paper/87-1904 and 2003 LLNL Report “VISTA”/UCRL-LR-110500
[3] Hyde R, Wood L and Nuckolls J 1972 AIAA Paper/N72-1063
[4] Nagamine Y and Nakashima H 1999 Fusion Technology 35 62
[5] Zakharov Yu P, Melekhov A V, Posukh V G and Shaikhislamov I F 2007 Proc. Symp. on Current Trends Int. Fusion Res. (Washington, DC, 2001) ed C D Orth (Ottawa:NRC Press) pp 59-66
[6] Vehivkov K, Nakashima H, Zakharov Yu P, et al. 2003 Jpn. J. Appl. Phys. 42 6590
[7] Shoyama H, Nakashima H and Kanda Y 1993 J. of Plasma and Fusion. Res. 69 1250
[8] Zakharov Yu P, Melekhov A V and Posukh V G F 2001 J. Appl. Mech. and Techn. Phys. 42 185
[9] Zakharov Yu P and Nakashima H 2002 Proc. 11th Int. Conf. ICENES / Emerging Nuclear Energy Systems (Albuquerque, NM) ed B Daniels and G Cole (Univ. NM) pp 319-329
[10] Zakharov Yu P 2004 Proc. Int. Conf. on Inertial Fusion Sciences and Applications (Monterey, CA, 7-12 September 2003) ed. B A Hammel et al. (NY: American Nuclear Society) p 1106
[11] Zakharov Yu P, Antonov V M, Boyarintsev E L, Melekhov A V, Posukh V G and Shaikhislamov I F 2005 Trans. Fusion Science and Technology 41T 187
[12] Zakharov Yu P, Antonov V M, Boyarintsev E L, Melekhov A V, Posukh V G, Shaikhislamov I F and Pickalov V V 2006 Plasma Phys. Rep. 32183