The fractional derivative type identification for the modelling deformation and strength characteristics of polymer concrete

Ludmila Kirianova
Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia
E-mail: ludmilakirianova@yadex.ru

Abstract. The article contains the comparative use analysis of fractional derivative three types (Riemann-Liouville, Caputo and model) at the Begley-Torvik equation when modeling the deformation and strength characteristics of polymer concrete. We also consider how to obtain a solution to the Begley-Torvik equation initial value problem for the fractional derivative model using a recurrent kernels sequence. Further, the correctness is substantiated of establishing the type and the fractional derivative order at the Begley-Torvik equation initial value problem.

1. Introduction
Differential equations containing a fractional derivative are currently actively used to construct mathematical models at various fields of natural science. The work [1] is a unique comprehensive review on the fractional calculus theory and its application. It should be noted that both the study of solutions to equations and inverse problems are relevant - determining which kind of equation is the best mathematical model of the studied physical or other process.

Consider an initial value problem of the form:

\[u''(x) + cD^\alpha u(x) + \lambda u(x) = 0; \quad x \in [0; \infty); \]
\[u(0) = 0; \quad u'(0) = c \neq 0; \]

where \(D^\alpha u(x) \) is the fractional differentiation operator.

Depending on the process under study, the operator \(D^\alpha \) can be the fractional differentiation operator by the Caputo definition of order \(\alpha \), \(1 < \alpha \leq 2 \):

\[D^\alpha u(x) = \frac{1}{\Gamma(2-\alpha)} \int_0^x \frac{u''(\tau)d\tau}{(x-\tau)^{\alpha-1}}, \]

where \(\Gamma \) - gamma function; or the operator \(D^\alpha \) can be the fractional differentiation operator by the Riemann-Liouville definition, where \(1 < \alpha \leq 2 \):

\[D^\alpha u(x) = \frac{d^2}{dx^2} \left(\frac{1}{\Gamma(2-\alpha)} \int_0^x \frac{u(\tau)d\tau}{(x-\tau)^{\alpha-1}} \right). \]

or the operator \(D^\alpha \) can be a fractional differentiation model operator [2], where \(1 < \alpha \leq 2 \)

\[D^\alpha u(x) = \frac{d}{dx} \left(\frac{1}{\Gamma(2-\alpha)} \int_0^x \frac{u'(\tau)d\tau}{(x-\tau)^{\alpha-1}} \right). \]
The results of solving problem (1) - (2) are used to simulate changes in the deformation and strength characteristics of polymer concrete when subjected to loadings. Polymer concrete is the mineral filler granules set in a viscoelastic medium. In this case, the constants included at the equation have the following physical meaning: \(\varepsilon \) is the viscosity modulus of resin, \(\lambda \) is the rigidity modulus of resin, \(\alpha \) is the parameter of viscoelasticity of resin. From [3] it is known that for polymer concrete based on polyester resin (diane and dichloroanhydride - 1,1 - dichloro - 2,2 - diethylene), the values of the parameters of equation (1) are \(\varepsilon = 1.8; \lambda = 93 \).

2. Methods

The problem solution (1) - (2) can be found by the recurrent kernels sequence [4] and written at the form of a power series for the Riemann-Liouville fractional differentiation operator:

\[
u_{RL}(x) = c \left(x + \sum_{n=1}^{\infty} (-1)^n \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \frac{\lambda^n m^n}{\Gamma(2n+2m\alpha)} x^{2n+1-\alpha} \right)
\]

or for the Caputo fractional differentiation operator

\[
u_{C}(x) = c \left(x - \frac{\lambda x^3}{6} + \sum_{n=1}^{\infty} (-1)^n \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{\lambda^n}{\Gamma(n+1-k\alpha)} x^{2n+3-k\alpha} \right).
\]

Consider the initial value problem solution (1) - (2) for the model fractional derivative (5) using the recurrent kernels sequence. For this, we introduce into consideration the function

\[z(x) = u'(x).\]

Then using (2):

\[u(x) = \int_0^x u'(\tau)d\tau + u(0) = \int_0^x z(\tau)d\tau\]

We obtain from (1) - (2) the initial value problem for the function \(z(x) \):

\[z'(x) + \frac{\varepsilon}{\Gamma(z-\alpha)} \int_0^x \frac{z(\tau)d\tau}{(x-\tau)^{\alpha}} + \lambda \int_0^x z(\tau)d\tau = 0; \quad x \in [0; \infty]; \quad z(0) = c.
\]

We have from (8) by integration:

\[z(\xi) - z(0) + \frac{\varepsilon}{\Gamma(z-\alpha)} \int_0^\xi \frac{z(\tau)d\tau}{(\xi-\tau)^{\alpha}} + \int_0^\xi \lambda(\xi - x)z(x)d\tau = \tilde{c}; \quad \xi \in [0; \infty].
\]

In the last equation, we change the order of integration, then

\[z(\xi) - z(0) + \frac{\varepsilon}{\Gamma(z-\alpha)} \int_0^\xi \frac{z(\tau)d\tau}{(\xi-\tau)^{\alpha}} + \int_0^\xi \lambda(\xi - x)z(x)d\tau = \tilde{c}; \quad \xi \in [0; \infty].
\]

Setting \(\xi = 0 \), we obtain that \(\tilde{c} = 0 \). We arrive, using (9), to the Volterra integral equation of the second kind (which we write using the variable \(x \)):

\[z(x) + \int_0^x \left\{ \frac{\varepsilon}{\Gamma(z-\alpha)} (x - \zeta)^{-\alpha} + \lambda(x - \zeta) \right\} z(\zeta)d\zeta = c; \quad x \in [0; \infty].
\]

The equation solution (10) is

\[z(x) = z_0(x) - z_1(x) + \cdots + (-1)^n z_n(x) + \cdots,
\]

where

\[z_0(x) = c;
\]

\[z_n(x) = \int_0^x \left\{ \frac{\varepsilon}{\Gamma(z-\alpha)} (x - \zeta)^{-\alpha} + \lambda(x - \zeta) \right\} z_{n-1}(x)d\zeta , n = 1; 2; \ldots
\]
We find the integrals, applying the mathematical induction method:

\[z_n(x) = c \sum_{k=0}^{n} \frac{n!}{k!} \lambda^{n-k} \frac{x^{2n-k}}{\Gamma(2n+1-k\alpha)} \]

Then

\[z(x) = c \left\{ 1 + \sum_{n=1}^{\infty} (-1)^n \sum_{k=0}^{n} \frac{n!}{k!} \lambda^{n-k} \frac{x^{2n-k}}{\Gamma(2n+1-k\alpha)} \right\} \]

We have:

\[u(x) = c \left\{ x + \sum_{n=1}^{\infty} (-1)^n \sum_{k=0}^{n} \frac{n!}{k!} \lambda^{n-k} \frac{x^{2n+1-k\alpha}}{\Gamma(2n+2-k\alpha)} \right\} \]

Thus, under conditions (2), the equation solution (1) with the model fractional derivative coincides with the equation solution (1) with the Riemann-Liouville fractional derivative.

Problem (1) - (2) consists in finding a solution \(u(x) \); \(x \in [0; \mathbb{R}] \) satisfying equation (1) with known parameters \(c, \lambda, \alpha \) and conditions (2) with a known constant value \(c \). The inverse problem can be formulated as follows: if the equation solution (1) with parameters \(\lambda \) and \(\varepsilon \) is known, then the function \(u(x) ; x \in [0; \mathbb{R}] \) for which conditions (2) are satisfied, then what is the order value of the fractional derivative \(\alpha \) and the constant \(c \)?

In [5], it was obtained by the least squares method that if we take the value \(c = 1 \) in (2) and use the fractional derivative according to Riemann-Liouville, then its order is \(\alpha = 1.47 \). The application of the least squares method is caused by the existence of an error during the experiment and the processing of its results.

3. Results

e will determine which type of fractional derivative best describes the processes in polymer concrete under the action of loads. As initial data, we will use the values \(\{(x_j; U_j)\}_{j=1;2;...;6} \) for polymer concrete samples based on polyester resin (diane and dichloroanhydride - 1.1 - dichloro - 2.2 - diethylene) from work [5], which are presented in table.1.

\(x_j \)	\(U_j \)
0.25	0.05
0.5	-0.04
0.75	-0.01
1	0.02
1.25	-0.01
1.5	-0.01

For \(\alpha \in [1.01; 1.65] \) with the 0.001 step by the variable \(\alpha \), for \(x \in [0.01; 1.51] \) with the 0.01 step by the variable \(x \); for \(c \in [0.5; 1.5] \) with the 0.01 step by the variable \(c \), we calculate the functions values by the form:

\[u_{RL}(x, \alpha, c) = c \left\{ x + \sum_{n=1}^{100} (-1)^n \sum_{m=0}^{n} \frac{n!}{m!} (1.8)^{m} \alpha^{n-m} \frac{x^{2n+1-m\alpha}}{\Gamma(2n+2-m\alpha)} \right\} \] (11)
\[u_c(x, \alpha, c) = c \left(x - \frac{93x^3}{6} + \sum_{n=1}^{100} (-1)^{n+1} \sum_{k=0}^{n} \frac{(n \choose k)k3^{n+1-k}x^{2n+3-ko}}{(2n+4-ko)} \right) \]

(12)

Now we will compose the functions that characterize the deviations of the experimental data points \((x_j; U_j)\) from the points of the graphs of solutions to problem (1) - (2), calculated by formulas (11) and (12):

\[H_{RL}(\alpha, c) = \sum_{j=1}^{6} (u_{RL}(x_j, \alpha, c) - U_j)^2 \]

\[H_C(\alpha, c) = \sum_{j=1}^{6} (u_C(x_j, \alpha, c) - U_j)^2 \]

The minimum of the function \(H_{RL}(\alpha, c)\) is attained when \(\alpha = 1.472, c = 0.912\) and is

\[H_{RL}(1.472, 0.91) = 5 \cdot 10^{-5} \]

and the minimum of the function \(H_C(\alpha, c)\) is attained when \(\alpha = 1.422, c = 0.495\) and is

\[H_C(1.486, 0.92) = 10^{-3} \]

Accordingly the values of the parameters of initial value problem of the form (1) - (2) for polymer concrete based on polyester resin (diane and dichloroanhydride - 1,1 - dichloro - 2,2 - diethylene) are

\(\varepsilon = 1.8; \lambda = 93; \alpha = 1.472, c = 0.912. \)

Figure 1 shows the solutions graphs to problem (1) - (2) corresponding to those values of the fractional derivative order and the solution derivative at zero, at which the minimum of \(H_{RL}\) and \(H_C\) is reached, as well as data obtained as the experiment result.

![Graphs of the functions](image)

Figure 1. Graphs of the functions \(u_{RL}(x, 1.472, 0.912)\) and \(u_C(x, 1.422, 0.495)\) and experimental data.

The calculations show that the fractional derivative use the according to Riemann - Liouville is preferable when modeling the change in the deformation and strength characteristics of polymer concrete based on polyester resin (diane and dichloroanhydride - 1,1 - dichloro - 2,2 - diethylene) when subjected to loadings.

To confirm the statement correctness of the parametric identification problem with respect to the fractional derivative order, we numerically check the solution stability to a parameter \(\alpha\) variation. To do this, at the vicinity of the point \(\alpha\), consider the relative increment of this parameter by \(\Delta\alpha\) and define the deviation function at the \(L_2\) metric:
\[\rho(\alpha; \delta) = \int_0^{\delta} (u(x, \alpha) - u(x, \alpha + \alpha \cdot \delta))^2 \, dx. \]

In this case, the partial derivative \(\varepsilon(\alpha; \delta) = \frac{\partial \rho}{\partial \delta} \) of the introduced function will determine the sensitivity of the solution to a change by \(\alpha \). Figures 2 and 3 shows the sections of the graphs of the functions \(\varepsilon(\alpha; \delta) \) at values of the fractional derivative \(\alpha = 1.35; \alpha = 1.4; \alpha = 1.45; \alpha = 1.5 \) for fractional derivatives according to Riemann - Liouville (left) and Caputo (right). This figure demonstrates that the sensitivity \(\varepsilon(\alpha; \delta) \) increases linearly with increasing \(\delta \), and with the order increase of the fractional derivative \(\alpha \), the growth rate increases. The growth rate \(\varepsilon(\alpha; \delta) \) is higher for the Caputo fractional derivative.

Figure 2. Sections of the graphs of functions \(\varepsilon(\alpha; \delta) \) for Riemann - Liouville fractional derivatives for \(\alpha = 1.35; \alpha = 1.4; \alpha = 1.45; \alpha = 1.5 \).

Figure 3. Sections of the graphs of functions \(\varepsilon(\alpha; \delta) \) for Caputo fractional derivatives for \(\alpha = 1.35; \alpha = 1.4; \alpha = 1.45; \alpha = 1.5 \).

Table 2 contains the coefficients \(k \) (with an accuracy of 3 decimal places) of a linear function approximating the sensitivity \(\varepsilon(\alpha; \delta) \) at 4 values of \(\alpha \):

\[\varepsilon(\delta) = k \cdot \delta \]

The determination coefficient \(R^2 \) is from 0.992 to 0.996.

Table 2. Coefficients \(k \) of linear approximation of sensitivity \(\varepsilon(\alpha; \delta) \).

Fractional derivative according to Riemann - Liouville	Fractional derivative according to Caputo	
\(\alpha = 1.1 \)	0.012	0.019
\(\alpha = 1.3 \)	0.014	0.028
\(\alpha = 1.4 \)	0.015	0.038
\(\alpha = 1.5 \)	0.019	0.058
4. Conclusions

Thus:

- under conditions (2), the equation solution (1) with the model fractional derivative coincides with the equation solution (1) with the Riemann - Liouville fractional derivative;
- the calculations show that the fractional derivative use the according to Riemann - Liouville is preferable when modeling the change in the deformation and strength characteristics of polymer concrete based on polyester resin (dian and dichloroanhydride - 1,1 - dichlor - 2,2 - diethylene) when subjected to loadings;
- for polymer concrete based on polyester resin (diane and dichloroanhydride - 1,1 - dichloro - 2,2 - diethylene), the values of the parameters of initial value problem of the form (1) - (2) are $\varepsilon = 1.8; \lambda = 93; \alpha = 1.472; c = 0.912$;
- the correctness of establishing the type and order of the fractional derivative in problem (1) - (2) has been substantiated.

Acknowledgements

The author expresses his sincere gratitude to the professor of the Department of Applied Mathematics of the National Research Moscow State University of Civil Engineering, T.S. Aleroev, for setting the problem and constant assistance during the work.

References

[1] Handbook of Fractional Calculus with Applications. 2019 1 – 8 ed Tenreiro Machado J A (Berlin/Boston, De Gruyter GmbH)
[2] Aleroev T, Aleroeva H 2019 Fractional Differential Equations. ed Kochubei A, Luchko Y (Berlin, Boston: De Gruyter) pp 21–46.
[3] Kekharsaeva E R, Pirozhkov V G 2016 Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I.F. Obraztsova i Iu.G. Ianovskogo ”Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred” (Moskow IPRIM RAN) pp 104–9
[4] Erokhin S V, Aleroev T S, Frishter L Iu 2015 International Journal for Computational Civil and Structural Engineering 11 issue 3 pp 77-81
[5] Aleroev T S, Erokhin S V 2019 Math Models Comput Simul 11 p 219