Phylogenetic analysis reveals an ancient gene duplication as the origin of the MdtABC efflux pump.

Kamil Górecki¹, Megan M. McEvoy¹,²,³

¹Institute for Society & Genetics, ²Department of Microbiology, Immunology & Molecular Genetics, and ³Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America

Corresponding author: mcevoymm@ucla.edu (M.M.M.)
Abstract

The efflux pumps from the Resistance-Nodulation-Division family, RND, are main contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the MdtABC pump is unusual by having two inner membrane components. The two components, MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the MdtBC pumps in the context of other RNDs. We show that the individual inner membrane components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their existence is a result of a single gene duplication. We argue that this gene duplication was an ancient event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa share a close common ancestor, suggesting the MexMN pump arose by another gene duplication event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core bacterial efflux pump repertoires have been generally stable throughout the course of evolution.

Keywords: efflux pumps, RND efflux pumps, gene duplication, antibiotic resistance
Introduction

The resistance-nodulation-division efflux pumps (RNDs) comprise a large family of proteins, widely distributed among bacterial species [1,2]. Their main function is to extrude superfluous or harmful substances, such as metabolites, antibiotics, toxins, or metal ions. Some RNDs are also believed to be involved in export of siderophores and quorum sensing molecules [3,4], and there may be additional functions to be discovered, given the fact that the vast majority of RND pumps have not been characterized [5]. In general, the RNDs are divided into two groups depending on the substrates they transport: hydrophobic and amphiphilic efflux (HAE) and heavy metal efflux (HME).

Virtually all bacteria contain multiple RND assemblies with often at least partially overlapping functions. For instance, *Escherichia coli* contains six RNDs in its genome (five HAEs, transporting a broad range of substrates, and one HME, transporting Cu and Ag) [6], while the opportunistic pathogen *Pseudomonas aeruginosa* can contain up to 13 different RND systems, depending on the strain [7]. This abundance remains a puzzle. While in *E. coli* deletion of all RNDs results in drastic changes in the phenotype and seriously decreased ability to grow, deletion of one or two RND systems does not seem to have a strong effect (with the exception of the HME Cu-transporting Cus system, which is required for Cu-resistance) [6]. These results suggest functional overlap between the RND systems, and the pumps may be expressed depending on circumstances like exponential/stationary phase or aerobic/anaerobic conditions.

Classically, the efflux system is formed as a tripartite assembly [8]. Most RND systems share the same architecture, with an RND homotrimer in the inner membrane bound to six protomers of a membrane fusion protein (MFP) in the periplasm, which in turn connect the assembly with a trimer of outer membrane proteins (OMP). However, there are exceptions. In the
MdtABC (multidrug transport) system from *E. coli* the inner membrane part is formed by a heterotrimer of MdtB$_2$C$_1$ stoichiometry [9]. A similar system called MuxABC was described in *P. aeruginosa*, with the MuxA, MuxB and MuxC proteins being homologous to MdtA, MdtB and MdtC, respectively (40, 65 and 61% sequence identity, and 78, 91 and 88% sequence similarity between the corresponding proteins) [10,11]. Other homologous systems were found and characterized in *Salmonella enterica* Serovar Typhimurium [12], *Serratia marcescens* [13], *Erwinia amylovora* [14], *Pseudomonas putida* [15], and *Photorhabdus luminescens* [16].

There are conflicting reports in the literature in regard to functional flexibility between the two subunits. Kim et al. reported that deletion of MdtC, but not MdtB, completely abolished the function of the Mdt system [9], while Da Wang and Fierke showed the opposite to be true [17]. It is possible there is a partial functional overlap between the two proteins, yet both subunits are needed for full function. Interestingly, the Mdt system has been shown to be able to facilitate both heavy metal and hydrophobic and amphiphilic efflux, and the heterogeneity of the inner membrane components may be a source of this promiscuity [17].

The evolutionary history of the two-RND subunit systems such as MdtBC remains unknown. While it may be hypothesized they arose originally through a gene duplication of the progenitor Mdt gene, both due to their high sequence similarity (e.g. 50% between MdtB and MdtC, compared to 25-30% between MdtB and other RNDs in *E. coli*) and their adjacent positions in genomes, it is not known if this gene duplication happens commonly in bacterial genomes or if it is rather an older phenomenon. The two-RND subunit systems from *E. coli* and *P. aeruginosa* are quite similar to each other, with higher homology between MdtB and MuxB, and between MdtC and MuxC, than between the proteins from the same organisms. *This* observation suggests
that the original RND gene duplication might indeed be an infrequent older phenomenon, and not a widespread feature happening frequently in bacterial genomes.

Within the highly diverse Proteobacteria, Epsilonproteobacteria separated earliest from the rest, in an event placed at around 2.8 bln years ago by Battistuzzi and Hedges [25]. Subsequently, Deltaproteobacteria split from the rest of the lineage around 2.6 bln years ago, and Alphaproteobacteria around 2.4 bln years ago. The split between the two last groups, Beta- and Gammaproteobacteria, happened the latest, around 1.6 bln years ago. We set out to investigate how the phylogenetics of the Mdt proteins compares to the evolution of the phylum, in order to shed light on the evolutionary history of the Mdt systems. We thus performed a number of phylogenetic analyses and present the results in this paper.

Materials and Methods

Phylogenetic analyses

In order to place the Mdt proteins in the context of other RNDs, the RND sequences from the work of Godoy et al. were used [5]. Out of over 2000 sequences there, 1106 were identified in UniProt (a full list is provided in the Supporting information). These sequences were aligned with MAFFT using the default settings [18]. The alignment was then used to construct a phylogenetic tree based on all non-gapped positions and using neighborhood joining. The heterogeneity among sites was estimated by the MAFFT algorithm and the bootstrap values were calculated from 100 replicates.

The sequences that clustered together with *E. coli* MdtB and MdtC (and *E. coli* AcrB as an outgroup) were aligned with MAFFT using G-INS-i, an iterative refinement method, and a phylogenetic tree was constructed using neighborhood joining (NJ) of all of gap-free sites (JTT
substitution model, the heterogeneity among sites was estimated by MAFFT, and bootstrap of 100 was used) [18]. The tree was then rooted on AcrB.

Sequence similarity network and genomic neighborhood diagrams

The sequence similarity network (SSN) was generated with the Enzyme Similarity Tool (ESI-EST) and visualized with Cytoscape [20-24], with an alignment score of 200. The genomic neighborhoods of the genes in Fig 2 were investigated with the Gene Neighborhood Tool (ESI-GNT) [20-23], and visualized together with the phylogenetic trees in iTOL [19].

The sequences for membrane fusion proteins and outer membrane proteins were identified with the help of the ESI-GNT, and the further analysis was done in the same way as for RND proteins, using *E. coli* AcrA and TolC as outgroups, respectively. The phylogenetic trees were visualized with iTOL.

Results & Discussion

RNDs form a number of distinct clusters

The comparison of over 1000 sequences of RND proteins, previously identified by Godoy et al. [5], was performed in order to divide them into functional groups, and thus clarify their possible evolutionary origins. In particular, we were interested in how the Mdt system is placed in relation to the better characterized efflux pumps like Acr, Mex (HAE) or Cus (HME). Since constructing reliable sequence alignments of large proteins containing both transmembrane helices and large periplasmic domains can be difficult, we also generated a sequence similarity network (SSN), to visualize direct relationships between the sequences [20-24].

There was a high similarity between the results obtained with the traditional phylogenetic analysis and the SSN. As seen in Fig 1, most proteins formed several large branches and clusters,
with a smaller number remaining separated. The largest cluster (cluster 1) encompassed most of
the characterized RNDs (all HAEs from \textit{E. coli}). The less studied RNDs from \textit{P. aeruginosa}
clustered as MexI/W (cluster 2) and TriC/MexK (cluster 5). As expected, the HME proteins
clustered together, with a further subdivision into mono- and di- valent transporting RNDs (cluster
3).

\textbf{Fig 1. Analysis of >1000 RND sequences.} Left, an unrooted phylogenetic tree, with bootstrap
values represented as branch colors. Leaves are labelled with colors corresponding to their clusters
(black represents proteins not belonging to the colored clusters, or singletons). Right, sequence
similarity network. Clusters containing more than 10 sequences are colored and given a number.
\textit{P. aeruginosa} and \textit{E. coli} proteins are marked with thick circles, black and white, respectively. On
both panels \textit{P. aeruginosa} and \textit{E. coli} proteins are additionally marked with their abbreviations (\textit{E.
coli} proteins underlined).

The Mdt proteins formed a distinct cluster (cluster 4), with one of the longest branches
from the middle in the phylogenetic tree. The MdtB-like and MdtC-like proteins split early in the
phylogenetic tree. The MdtB-like proteins, which are always directly adjacent to their respective
MFPs, clustered together into one branch. The MdtC-like protein, which are never directly
adjacent to their respective MFPs (i.e. there is always an MdtB-like protein in between), also
clustered together into one branch. The fact that the gene organization has been preserved
corroborates the notion that this heteromeric RND system is a result of an ancient gene duplication.
This relationship seems to be very old, since Alpha-, Beta- and Gammaproteobacterial MdtBs and
MdtCs form separate clusters, so that would put this duplication event to be older than the split between the major groups of *Proteobacteria* (over 2 billion years ago [25]).

Surprisingly, the branch/cluster containing Mdt-like proteins also included other RNDs, notably the MexN from *P. aeruginosa* and its homologues from other *Pseudomonodales*, as well as a number of other proteins. To investigate if this was an artefact caused by aligning a large number of sequences, we performed a new multiple sequence alignment with these 126 sequences, with *E. coli* AcrB as an outgroup. The results are shown in Fig 2, together with their genomic neighborhoods.

Fig 2. A phylogenetic tree of the Mdt-like proteins. The bootstrap values are represented by a branch color as in Fig 1 (the branches with bootstrap support lower than 50 were not collapsed, in order to show the genomic neighborhood of these genes). The taxonomy of each organism is represented with shading of the labels. To the right of the protein and organism names the genomic context is presented. The actual protein at the leaf tip is represented with a filled symbol: a dark red star for “progenitor-like” RNDs, a red star for “true” MexN-like proteins, a blue star for MdtB-like proteins and an orange star for MdtC-like proteins). The open symbols provide the genomic context for the RNDs. For example, in the second row, *Thiobacillus denitrificans*, the lack of symbols under “MdtABC” means there are no proteins from this group present in this organism. Further to the right under “MexMN”, an open green square means there is an OMP present, followed by an MFP (an open purple triangle), and an RND (a closed star). Lack of symbols under “OMP” and “MFS” means there are no further proteins in this set of genes.
A closer look into the Mdt cluster reveals the evolutionary history of the subfamily

As observed in the analysis of all RNDs (Fig 1), the MexN-like proteins clustered together with MdtB- and MdtC-like proteins (Fig 2). However, an interesting observation was that the MexN-like proteins were divided into two distinct groups. The first group was formed by MexN-like proteins from strains that also contained an MdtBC system. These MexN-like proteins clustered together with MdtB-like proteins, suggesting their common evolutionary origin (i.e. these MexN-like proteins and MdtB-like proteins are descendant from one of the originally duplicated genes). The second group was formed by MexN-like proteins from strains that did not contain an MdtBC system, and these MexN-like proteins separated from the rest of the tree before the split between MdtB- and MdtC-like proteins. Because this second group of RNDs split earliest from the rest, it is likely that they are directly descendant from the progenitor single RND, and no gene duplication occurred during their evolution. Since this subset of MexN-like proteins never underwent the gene duplication event, we subsequently named them “progenitor-like” RNDs in order to distinguish them from the “true” MexN-like proteins, with “true” meaning here “clustering together with P. aeruginosa MexN and therefore having the same evolutionary history”.

The “progenitor-like” RND group contained all Deltaproteobacterial sequences represented in our analysis, as well as the only sequence from a non-Proteobacterium, Gloeobacter violaceus, a Cyanobacterium (Fig 2). The fact that these “progenitor-like” RNDs did not cluster together with known MdtB- and MdtC-like proteins suggests they are direct descendants of the ancient common ancestor of the whole Mdt cluster, the progenitor gene. We also performed searches for MdtB- and MdtC-like proteins (i.e. having sequence similarity at least 40%) in Deltaproteobacteria and found only three hits, suggesting the MdtBC-like systems are virtually
absent in these two groups. A number of Alpha- and Betaproteobacterial orders contained the “progenitor-like” RNDs, but no Gammaproteobacteria did. Interestingly, all the Alpha- and Betaproteobacterial representants can fix nitrogen and/or reduce nitrate, suggesting a common habitat [26]. The fact that all the older bacterial lineages appeared in this group suggests that the original gene duplication that produced MdtB- and MdtC-like proteins occurred in the common ancestor of the Alpha-, Beta- and Gammaproteobacteria, around the end of the Archean Eon [25], and the sporadic occurrence of a “progenitor-like” RND in Alpha- and Betaproteobacteria is more likely a result of a horizontal gene transfer.

The rest of the RNDs formed two groups, with all the MdtB-like proteins in one and all the MdtC-like proteins in the other. Noticeably, the “true” MexN-like proteins clustered together with the MdtB-like proteins. This observation suggested the MexN separation happened after the original gene duplication that formed MdtB and MdtC from the progenitor RND gene. In general, the branching of both MdtB and MdtC groups was similar: Alphaproteobacteria separated earliest (with the exception of Gluconobacter oxydans and Zymomonas mobilis, see below), and then Beta- and Gammaproteobacteria. Surprisingly, the Gammaproteobacterial order Xanthomonodales separated together with Alphaproteobacteria (both in the MdtB- and the MdtC-like groups, with moderate to low bootstrap support, however). In Alphaproteobacteria, homologs of MdtBC/MexN were numerously found only in orders Rhizobiales and Rhodospirillales, and sporadically in a few other orders. In Betaproteobacteria, homologs of MdtBC/MexN were widespread and found in all major orders, and in Gammaproteobacteria homologs of MdtBC/MexN were found in most orders. In all three major Proteobacterial families there were examples of closely related species and strains where one contained MdtBC, MexN or both, and the other with no MdtBC/MexN homologs. In many organisms it was also suspected the process of losing the RND pumps was
ongoing. For instance, in *Shigella flexneri, Serratia marcescens, Pseudomonas syringae pv tomato* and *Magnetospirillum magneticum* an MdtB was missing; in *Salmonella paratyphi A* an MFP was missing; and in *Burkholderia mallei* the whole MdtABC operon was absent (see Supporting Information for details).

The genomic neighborhoods provided additional insights into the evolutionary history of the Mdt systems. Among the MdtBC systems, many contained OMP components, and the architecture was conserved in the main groups: in Alphaproteobacteria the OMP preceded the MFP, and in Beta- and Gammaproteobacteria it followed the MdtC protein. It is likely that the OMP components were acquired after the original gene duplication and this acquisition happened separately, once in Alphaproteobacteria, and once in a common ancestor to Beta- and Gammaproteobacteria, and in many cases it was subsequently lost (see Supporting information for details). Moreover, all *Enterobacterales* possessed an additional inner membrane protein from the Major Facilitator Superfamily (MFS), called MdtD in *E. coli*, an iron and citrate exporter [27], and no outer membrane proteins. The order *Enterobacterales* is an example of how the outer membrane channel function had converged on just one protein (e.g. TolC in *E. coli*), and the redundant outer membrane components of RND systems are removed from the genomes (with the exception of specialized functions, e.g. *E. coli* CusC as an outer membrane component for the Cu-exporting Cus system). The outer membrane proteins were also missing in the order *Xanthomonodales* and sporadically in other organisms. Notably, the *Burkholderia* MexMNs also contained an MFS, not related to other MFSs observed here.

Horizontal gene transfers

The exception to the observation that organisms containing a “progenitor-like” RND did not contain an MdtBC system occurred in *Cupriavidus pinatubonensis* (*Betaproteobacteria*, order
Burkholderiales, and one of two strains of *Rhodopseudomonas palustris*, namely strain HaA2 (Alphaproteobacteria, order Rhizobiales). These two organisms possessed both an MdtBC-like system, similar to other Proteobacteria in their respective groups, and a “progenitor-like” RND, likely a result of a horizontal gene transfer. The *C. pinatubonensis* RND showed close similarity to an RND from *Nitrosospira multiformis*, a distantly related Betaproteobacterium (order Nitrosomonadales), and their “progenitor-like” RNDs grouped together with other “progenitor-old” RNDs. The *R. palustris* HaA2 strain possibly lost the original MexN-like system and incorporated a “progenitor-like” RND, judging from its genomic contexts (see Supporting information). The other *R. palustris* strain, ATCC BAA-871, did not contain a “progenitor-like” RND system, and its other MdtBC- and MexN-like proteins behaved as its relatives in other Alphaproteobacteria.

A number of sequences originally clustering with other Mdts in Fig 1 did not align well and in consequence showed poor or unresolved phylogeny with low bootstrap values regardless of the methods used and were therefore removed from the analysis prior to the results shown in Fig 2. These sequences are described in the Supporting information.

Proteins from two Alphaproteobacteria, *Gluconobacter oxydans* and *Zymomonas mobilis*, did not cluster together with other Alphaproteobacterial Mdts, but were found closest to respective proteins from the order Burkholderia. While the long branches observed for all four proteins as well as moderate bootstrap values might render this clustering less reliable, it is possible those two organisms had lost their original Mdts and acquired new ones via horizontal gene transfer. Moreover, *G. oxydans* possesses a third protein with high sequence similarity to its own MdtC (not shown in Fig 2, see Supporting information). It is likely a result of a discrete gene duplication, particularly since this third gene does not possess an MFP.
As mentioned above, the order *Xanthomonadales* clustered somewhat reliably with Alphaproteobacteria, both in MdtB- and MdtC-like groups. They did not possess a third RND, either a “true” MexN-like protein or a “progenitor-like” RND. Since they separated the earliest from other Gammaproteobacteria, it is possible their ancestors lost both their original MdtABC and MexMN systems, and subsequently incorporated an MdtABC from an Alphaproteobacterium [28].

Reconstructing the MdtABC/MexMN evolution

The results described here, together with analysis of corresponding MFPs (see Supporting information) made it possible to propose an evolutionary scenario for the appearance of MdtBC and MexN pumps (Fig 3). The original RND progenitor gene underwent a duplication in the common ancestor to Alpha-, Beta- and Gammaproteobacteria, while remaining single in other bacterial groups (as “progenitor-like” RNDs). The MFP and the adjacent RND were duplicated, forming the “true” MexMN system. In the next step an OMP was acquired, and was inserted before the MFP in Alphaproteobacteria, or after the MdtC in the common ancestor to the Beta- and Gammaproteobacteria. From these points many organisms lost the MexMN system. In Alphaproteobacteria only two orders represented in Figs 1 and 2 retained the original genes. Many Betaproteobacteria retained the OMPs (occurring always after the MdtCs) but lost the duplicated MexMN, with the exception of the *Burkholderia* genus, which lost the OMPs, but retained the MexMN and also gained an MFS next to it. In Gammaproteobacteria the configuration was generally kept intact, with the exception of *Enterobacteriales*, which lost the MexMN and incorporated an MFS into its MdtABC operon.
Fig 3. The proposed evolutionary scenario. The evolution within the Alpha-, Beta- and Gamma-proteobacteria groups is shown, as deduced from the phylogenetic tree in Fig 2 and a timeline of evolution of Proteobacteria (Battistuzzi, Feijao and Hedges 2004). The cladograms lengths and timepoints of evolutionary events are not to scale. As an example of horizontal gene transfer, Cupriavidus pinatubonensis is also shown.
References

1. Nikaido H. RND transporters in the living world. Res Microbiol. 2018;169: 363–371. doi:10.1016/j.resmic.2018.03.001

2. Alvarez-Ortega C, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol. 2013;4. doi:10.3389/fmicb.2013.00007

3. Horiyama T, Nishino K. AcrB, AcrD, and MdtABC Multidrug Efflux Systems Are Involved in Enterobactin Export in *Escherichia coli*. PLoS ONE. 2014;9: e108642. doi:10.1371/journal.pone.0108642

4. Dou Y, Song F, Guo F, Zhou Z, Zhu C, Xiang J, et al. *Acinetobacter baumannii* quorum-sensing signalling molecule induces the expression of drug-resistance genes. Mol Med Rep. 2017;15: 4061–4068. doi:10.3892/mmr.2017.6528

5. Godoy P, Molina-Henares AJ, La Torre De J, Duque E, Ramos JL. Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups. Microb Biotechnol. 2010;3: 691–700. doi:10.1111/j.1751-7915.2010.00189.x

6. Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in *Escherichia coli*. Front Microbiol. 2015;6. doi:10.3389/fmicb.2015.00587

7. Poole K. *Pseudomonas aeruginosa*: Resistance to the Max. Front Microbiol. 2011;2. doi:10.3389/fmicb.2011.00065

8. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature. 2014;509: 512–515. doi:10.1038/nature13205

9. Kim H-S, Nagore D, Nikaido H. Multidrug efflux pump MdtBC of *Escherichia coli* is active only as a B2C heterotrimer. J Bacteriol. 2010;192: 1377–1386. doi:10.1128/JB.01448-09

10. Mima T, Kohira N, Li Y, Sekiya H, Ogawa W, Kuroda T, et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpnB possessing two RND components in *Pseudomonas aeruginosa*. Microbiology (Reading, Engl) 2009;155: 3509–3517. doi:10.1099/mic.0.031260-0

11. Yang L, Chen L, Shen L, Surette M, Duan K. Inactivation of MuxABC-OpnB Transporter System in *Pseudomonas aeruginosa* Leads to Increased Ampicillin and Carbenicillin Resistance and Decreased Virulence. J Microbiol. 2011;49: 107–114. doi:10.1007/s12275-011-0186-2
12. Nishino K, Nikaido E, Yamaguchi A. Regulation of Multidrug Efflux Systems Involved in Multidrug and Metal Resistance of *Salmonella enterica* Serovar Typhimurium. *J Bacteriol.* 2007;189: 9066–9075. doi:10.1128/JB.01045-07

13. Begic S, Worobec EA. Characterization of the *Serratia marcescens* SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. *Can J Microbiol.* 2008;54: 411–416. doi:10.1139/W08-019

14. Pletzer D, Weingart H. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen *Erwinia amylovora*. *BMC Microbiol.* 2014;14: 185. doi:10.1186/1471-2180-14-185

15. Henríquez T, Stein NV, Jung H. PvdRT–OpmQ and MdtABC–OpmB efflux systems are involved in pyoverdine secretion in *Pseudomonas putida* KT2440. *Environ Microbiol Rep.* 2018;33: 6391. doi:10.1111/1758-2229.12708

16. Khattar ZA, Lanois A, Hadchity L, Gaudiault S, Givaudan A. Spatiotemporal expression of the putative MdtABC efflux pump of *Photorhabdus luminescens* occurs in a protease-dependent manner during insect infection. *PLoS ONE* 2019;14: e0212077. doi:10.1371/journal.pone.0212077

17. Da Wang, Fierke CA. The BaeSR regulon is involved in defense against zinc toxicity in *E. coli*. *Metallomics*. The Royal Society of Chemistry 2013;5: 372–383. doi:10.1039/C3MT20217H

18. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief Bioinform.* 2019;20: 1160–1166. doi:10.1093/bib/bbx108

19. Letunic I, Bork P. Interactive Tree Of Life (iTOP) v4: recent updates and new developments. *Nucl Acids Res.* 2019;47: W256–W259. doi:10.1093/nar/gkz239

20. Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. *BBA - Proteins Proteom.* 2015;1854: 1019–1037. doi:10.1016/j.bbapap.2015.04.015

21. Gerlt JA. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions. *Biochemistry.* 2017;56: 4293–4308. doi:10.1021/acs.biochem.7b00614

22. Zallot R, Oberg NO, Gerlt JA. “Democratized” genomic enzymology web tools for functional assignment. *Curr Opin Chem Biol.* 2018;47: 77–85. doi:10.1016/j.cbpa.2018.09.009

23. Zallot R, Oberg N, Gerlt JA. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes
and Metabolic Pathways. Biochemistry. 2019;58: 4169–4182. doi:10.1021/acs.biochem.9b00735

24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11): 2498–2504. doi:/10.1101/gr.1239303

25. Battistuzzi FU, Hedges SB. A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Mol Biol Evol. 2009;26: 335–343. doi:10.1093/molbev/msn247

26. Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics. 2009;10: 1–23. doi:10.1186/1471-2164-10-351

27. Frawley ER, Crouch M-LV, Bingham-Ramos LK, Robbins HF, Wang W, Wright GD, et al. Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proc Natl Acad Sci USA. 2013;110: 12054–12059. doi:10.1073/pnas.1218274110

28. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, et al. Phylogeny of Gammaproteobacteria. J Bacteriol. 2010;192: 2305–2314. doi:10.1128/JB.01480-09

Supporting information

S1 File. Supporting information containing the list of used sequences, as well as detailed discussion, is available.
Figure 3
Supplementary material

Horizontal Gene Transfer

Rhodopseudomonas palustris strains

As described in the main text, the two *Rhodopseudomonas palustris* strains differ in their single subunit RND systems. The CGA009 strain looks like its close relatives from other Alphaproteobacteria (an MdtBC and an MexN), and the HaA2 strain contains a “progenitor-like” RND. The Supplementary Figure 1 below shows the two locations in their genomes where the corresponding deletion and insertion occurred.

Supplementary Figure 1. Alignment of genomes of the two strains of *Rhodopseudomonas palustris*. Upper panel, a spot where the MexN was lost in the strain HaA2. Lower panel, an insertion point of the “progenitor-like” RND.
Supplementary Figure 2. Sequence alignment of the translated DNA between the MdtA and MdtC in the P. aeruginosa strain lacking MdtB, and the MdtB from the most closely related P. aeruginosa (PSEU2).
Loss of MdtABC in Some Organisms

Some organisms are in the process of losing one of the Mdt components. As an example, in Supplementary Figure 2 we show the translated DNA from between the mdtA and mdtC from *Pseudomonas syringae pv tomato* strain ATCC BAA-87, compared to the MdtB sequence from the most closely related *Pseudomonas syringae pv syringae* strain B728a. Up until amino acid 318 the sequences are practically identical, and afterwards they differ radically. Interestingly, the lost component was always an MdtB, suggesting the MdtC alone can retain some of the function, as suggested in the literature.

Removed Sequences

Sequences that were removed prior to obtaining results shown in Figure 2 are: *Acinetobacter baylyi* Q6FD21, Q6FD22, Q6F786, Q6F787; *Gluconobacter oxydans* Q5FSC3; *Mesorhizobium japonicum* Q98B06; *Bradyrhizobium diaeofficiens* Q89XN1. They proved to be difficult to align to other RNDs, and thus their positions in the trees were highly sensitive to the methods used, and it is therefore possible these proteins are fusions of distantly related RNDs. Rerunning the analysis without these seven sequences significantly improved the bootstrap values of the tree, therefore we decided to exclude them from the main analysis.

Acinetobacter baylyi contains two sets of RND protein pairs, Q6FD21 & Q6FD22, and Q6F786 & Q6F787. Judging just by their genomic neighborhood they are both two RND subunit containing systems of similar architecture: MFP-RND1-RND2-OMP. The sequence identity and similarity values between the two systems in *A. baylyi* are low (52/69% and 40/57% for the corresponding B and C-like proteins), however, the Q6F786/Q6F787 system is most closely related to the MdtBC system from *Chromobacterium violaceum*, a Betaproteobacterium (67% and 63% sequence
identity and 79% and 76% sequence similarity between the corresponding B and C-like proteins). This observation, together with the fact that no close homologues of the Q6F786/Q6F787 system were found in other Acinetobacter while it is abundant in Chromobacteriaceae suggests a horizontal gene transfer from C. violaceum or a close relative. The other pair, Q6FD21/Q6FD22, clustered together with other Gammaproteobacteria, however its actual placement was strongly sensitive to even the smallest variations in the sequence alignments. The other two sequences (from M. japonicum and B. diazoefficiens) usually clustered together with “true” MexN-like proteins, yet with low bootstrap values and long branches. They are most likely results of a gene duplication of their respective “true” MexN-like proteins.

Outer Membrane Proteins

It is particularly difficult to do phylogenetic analyses of outer membrane proteins due to their unique architecture: the outwards facing transmembrane residues are never strongly conserved, seriously decreasing the number of residues available for alignment. Moreover, most outer membrane proteins have similar 3D structure despite high divergence in sequences. Nevertheless, our analysis of the outer membrane factors from the Mdt/Mex systems supports the evolutionary scenario proposed in Figure 3. As shown in Supplementary Figure 3, the OMFs of the “progenitor-like” RNDs separate first from the rest, followed by Alpha OMFs. The rest was Beta and Gammaproteobacteria, and the branching follows the one seen in Figure 2.
Supplementary Figure 3. A phylogenetic tree of outer membrane factors from the Mdt/Mex systems, rooted on distantly related TolC from E. coli.

Membrane Fusion Proteins

As a complement to the analysis of the RND proteins, their corresponding MFPs were aligned, and phylogeny reconstructed (Supplementary Figure 4). However, due to their shorter lengths and lower conservation levels the results were less reliable and therefore excluded from the main text. Nevertheless, the general conclusion is similar to the one obtained by comparing RNDs: the “progenitor-like” RNDs separate earliest from the rest.
Supplementary Figure 4. A phylogenetic tree of membrane fusion proteins, rooted on distantly related E. coli AcrA. The annotations are the same as in Fig. 2.
Sequences used for the analysis

Name	Organism	Description			
A0A0F7RLT4	Bacillus anthracis.	Transporter	AcrB/AcrD/AcrF family		
A0A0H2UYQ5	Shigella flexnerii.	Efflux pump membrane transporter			
A0A0H2V123	Shigella flexnerii.	Efflux pump membrane transporter			
A0A0H2V4W9	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Efflux pump membrane transporter			
A0A0H2V703	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Efflux pump membrane transporter			
A0A0H2V9F8	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Efflux pump membrane transporter			
A0A0H2VBM4	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Efflux pump membrane transporter			
A0A0H2VIZ4	Staphylococcus epidermidis (strain ATCC 12228)	Acriflavin resistance protein			
A0A0H2W6E0	Yersinia pestis.	Efflux pump membrane transporter			
A0A0H2WBD9	Burkholderia mallei (strain ATCC 23344)	Heavy metal efflux pump CzcA			
A0A0H2WCV6	Burkholderia mallei (strain ATCC 23344)	Hydrophobe/amphiphile efflux family protein			
A0A0H2WD52	Burkholderia mallei (strain ATCC 23344)	Efflux pump membrane transporter			
A0A0H2WG76	Burkholderia mallei (strain ATCC 23344)	AcrB/AcrD/AcrF family protein			
A0A0H2WHE9	Burkholderia mallei (strain ATCC 23344)	Heavy metal efflux pump CzcA family			
A0A0H2WHU3	Burkholderia mallei (strain ATCC 23344)	Efflux pump membrane transporter			
A0A0H2WIU9	Burkholderia mallei (strain ATCC 23344)	AcrB/AcrD/AcrF family protein			
A0A0H2WN05	Salmonella paratyphi A (strain ATCC 9150 / SARB42)	Efflux pump membrane transporter			
A0A0H2WS58	Salmonella paratyphi A (strain ATCC 9150 / SARB42)	Efflux pump membrane transporter			
A0A0H2WTM3	Salmonella paratyphi A (strain ATCC 9150 / SARB42)	Efflux pump membrane transporter			
A0A0H2WW53	Staphylococcus aureus (strain COL)	AcrB/AcrD/AcrF family protein			
A0A0H2X3D6	Xanthomonas campestris pv. campestris (strain 8004)	Cation efflux system protein			
A0A0H2X4R2	Xanthomonas campestris pv. campestris (strain 8004)	Acriflavin resistance protein			
A0A0H2X699	Xanthomonas campestris pv. campestris (strain 8004)	Efflux pump membrane transporter			
A0A0H2X729	Xanthomonas campestris pv. campestris (strain 8004)	Transport protein			
A0A0H2X7G8	Xanthomonas campestris pv. campestris (strain 8004)	Efflux pump membrane transporter			
A0A0H2X8U8	Xanthomonas campestris pv. campestris (strain 8004)	Transport protein			
A0A0H2XAS3	Xanthomonas campestris pv. campestris (strain 8004)	Efflux pump membrane transporter			
Accession	Organism/Microorganism and Strain	Protein Description			
-----------	----------------------------------	---------------------			
A0A0H2XBS4	Xanthomonas campestris pv. campestris (strain 8004)	Acriflavin resistance protein			
A0A0H2XE02	Xanthomonas campestris pv. campestris (strain 8004)	Cation efflux system protein			
A0A0H3G1R6	Brucella suis biovar 1 (strain 1330)	AcrB/AcrD/AcrF multidrug efflux protein			
A0A0H3G714	Brucella suis biovar 1 (strain 1330)	AcrB/AcrD/AcrF multidrug efflux protein			
A0A0H3GFZ4	Brucella suis biovar 1 (strain 1330)	AcrB/AcrD/AcrF multidrug efflux protein			
A0A0H3JMN8	Escherichia coli O157:H7.	Efflux pump membrane transporter			
A0A0H3JN48	Staphylococcus aureus (strain N315)	SA2056 protein			
A0A0H3K0N2	Staphylococcus aureus (strain Mu50 / ATCC 700699)	Similar to acriflavin resistance protein			
A0A0H3K3Z1	Synechococcus sp. (strain ATCC 27144 / PCC 6301 / SAUG 1402/1)	RND multidrug efflux transporter			
A0A0H3K464	Staphylococcus aureus (strain MW2)	MW2179 protein			
A0A0H3K4S1	Synechococcus sp. (strain ATCC 27144 / PCC 6301 / SAUG 1402/1)	Probable cation efflux system protein			
A0A0H3LLX7	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	Efflux pump membrane transporter			
A0A0H3LQU0	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	Efflux pump membrane transporter			
A0A0H3LQV1	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	AcrB/AcrD/AcrF family protein			
A0A0H3LT18	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	Efflux pump membrane transporter			
A0A0H3LT9	Bartonella quintana (strain Toulouse)	Acriflavin resistance protein d			
A0A0H3LUJ4	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	Integral membrane component of multidrug efflux system			
A0A0H3LWT2	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	Probable membrane protein			
A0A0H3LZH6	Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50)	AcrB/AcrD/AcrF family protein			
A0A0H3M8G5	Ehrlichia ruminantium (strain Welgevonden)	Probable aminoglycoside efflux pump (Acriflavine resistance protein D)			
A0A0R4J7B3	Bartonella henselae (strain ATCC 49882 / DSM 28221 / Houston 1)	Acriflavin resistance protein d			
O06471	Burkholderia cepacia	Efflux pump membrane transporter			
O25328	Helicobacter pylori (strain ATCC 700392 / 26695)	Acriflavin resistance protein (AcrB)			
O25622	Helicobacter pylori (strain ATCC 700392 / 26695)	Cation efflux system protein (CzcA)			
O25887	Helicobacter pylori (strain ATCC 700392 / 26695)	Cation efflux system protein (CzcA)			
O31100	Pseudomonas putida	Solvent-resistant pump membrane transporter SrpB			
O31501	Bacillus subtilis (strain 168)	Swarming motility protein SwrC			
O52248	Pseudomonas putida (strain DOT-T1E)	Toluene efflux pump membrane transporter TtgB			
O66770	Aquifex aeolicus (strain VFS)	Cation efflux system (AcrB/AcrD/AcrF family)			
Accession	Organism	Description			
-----------	--	--			
O66916	Aquifex aeolicus (strain VF5)	Cation efflux system (AcrB/AcrD/AcrF family)			
O66977	Aquifex aeolicus (strain VF5)	Cation efflux (AcrB/AcrD/AcrF family)			
O68962	Helicobacter pylori	RND pump protein			
O87936	Burkholderia pseudomallei	Efflux pump membrane transporter			
POC070	Pseudomonas putida	Multidrug/solvent efflux pump membrane transporter MepB			
P13511	Cupriavidus metallidurans (strain ATCC 43123 / DSM 2839 / NBRC 102507/ CH34)	Cobalt-zinc-cadmium resistance protein CzcA			
P24177	Escherichia coli (strain K12)	Probable aminoglycoside efflux pump			
P24181	Escherichia coli (strain K12)	Multidrug export protein AcrF			
P25197	Rhizobium meliloti (strain 1021)	Nodulation protein NoL G			
P31224	Escherichia coli (strain K12)	Multidrug efflux pump subunit AcrB			
P37637	Escherichia coli (strain K12)	Multidrug resistance protein MdtF			
P37972	Cupriavidus metallidurans (strain ATCC 43123 / DSM 2839 / NBRC 102507/ CH34)	Nickel and cobalt resistance protein CnrA			
P38054	Escherichia coli (strain K12)	Cation efflux system protein CusA			
P52002	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 /JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Multidrug resistance protein MexB			
P69340	Shigella flexneri.	Multidrug resistance protein MdtB			
P73998	Synechocystis sp. (strain PCC 6803 / Kazusa)	Cation or drug efflux system protein			
P74461	Synechocystis sp. (strain PCC 6803 / Kazusa)	Cation or drug efflux system protein			
P76398	Escherichia coli (strain K12)	Multidrug resistance protein MdtB			
P76399	Escherichia coli (strain K12)	Multidrug resistance protein MdtC			
P94177	Alcaligenes sp. (strain CT14)	Cation efflux system protein CusA			
P95422	Pseudomonas aeruginosa.	Efflux pump membrane transporter			
Q2IGB6	Anaeromyxobacter dehalogenans (strain 2CP-C)	Heavy metal efflux pump CzcA			
Q2IGC8	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2IGK2	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2IHW6	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2JG5	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2IK25	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2IMH0	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2INB4	Anaeromyxobacter dehalogenans (strain 2CP-C)	Efflux pump membrane transporter			
Q2IPR5	Anaeromyxobacter dehalogenans (strain 2CP-C)	Heavy metal efflux pump CzcA			
Accession	Organism/Strain	Protein Function			
-----------	----------------	-----------------			
Q2IQ78	Anaeromyxobacter dehalogenans (strain 2CP-C)	Acriflavin resistance protein			
Q2IS23	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IS29	Rhodopseudomonas palustris (strain HaA2)	Heavy metal efflux pump CzcA			
Q2IS98	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2ISU1	Rhodopseudomonas palustris (strain HaA2)	Efflux pump membrane transporter			
Q2ITW6	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IU06	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IU55	Rhodopseudomonas palustris (strain HaA2)	Heavy metal efflux pump CzcA			
Q2IUUK7	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IW07	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IW08	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IWLF2	Rhodopseudomonas palustris (strain HaA2)	Acriflavin resistance protein			
Q2IWZ0	Rhodopseudomonas palustris (strain HaA2)	Efflux pump membrane transporter			
Q2IXW6	Rhodopseudomonas palustris (strain HaA2)	Efflux pump membrane transporter			
Q2J147	Rhodopseudomonas palustris (strain HaA2)	Heavy metal efflux pump CzcA			
Q2JZ12	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable efflux transporter protein	acriflavin resistance protein family		
Q2K1A4	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable efflux cation transporter protein			
Q2K3Z4	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable multidrug efflux transporter protein			
Q2K4R7	Rhizobium etli (strain CFN 42 / ATCC 51251)	Efflux pump membrane transporter			
Q2K4W2	Rhizobium etli (strain CFN 42 / ATCC 51251)	Efflux pump membrane transporter			
Q2K4X5	Rhizobium etli (strain CFN 42 / ATCC 51251)	Efflux pump membrane transporter			
Q2K6F6	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable acriflavin resistance (Multidrug efflux transporter) protein			
Q2K7A2	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable cation efflux system protein (Heavy metal efflux pump)	CzcA family		
Q2KAM7	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable multidrug efflux transporter protein	AcrB/AcrD/AcrF family		
Q2KCU0	Rhizobium etli (strain CFN 42 / ATCC 51251)	Probable cation/multidrug efflux transport protein			
Q2KUN1	Bordetella avium (strain 197N)	Multidrug efflux system transmembrane protein			
Q2KUN3	Bordetella avium (strain 197N)	Multidrug efflux system transmembrane protein			
Q2KV59	Bordetella avium (strain 197N)	Multidrug efflux system transmembrane protein			
Q2KKM0	Bordetella avium (strain 197N)	Efflux pump membrane transporter			
Q2K2R5	Bordetella avium (strain 197N)	Efflux pump membrane transporter			
Q2L1H0	Bordetella avium (strain 197N)	Efflux pump membrane transporter			
Q2LDR7	Syntrophus aciditrophicus (strain SB)	Efflux pump membrane transporter			
Q2LY61	Syntrophus aciditrophicus (strain SB)	Efflux pump membrane transporter			
Accession	Organism / Strain	Function			
-----------	-------------------	----------			
Q2NBE8	Erythrobacter litoralis (strain HTCC2594)	Heavy metal RND efflux transporter	CzcA family protein		
Q2NBG2	Erythrobacter litoralis (strain HTCC2594)	Metal ion efflux RND protein family protein			
Q2NV66	Sodalis glossinidius (strain morisitans)	Efflux pump membrane transporter			
Q2RFY8	Moorella thermoacetica (strain ATCC 39073 / JCM 9320)	Acriflavin resistance protein			
Q2RN02	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Acriflavin resistance protein			
Q2RQ71	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Acriflavin resistance protein			
Q2RSK1	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Acriflavin resistance protein			
Q2RSP4	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Efflux pump membrane transporter			
Q2RVC6	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Efflux pump membrane transporter			
Q2RW08	Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG4362 / NCIB 8255 / S1)	Efflux pump membrane transporter			
Q2RYR4	Salinibacter ruber (strain DSM 13855 / M31)	Cation efflux system protein czcA			
Q2S141	Salinibacter ruber (strain DSM 13855 / M31)	Transporter	AcrB/D/F family		
Q2S3C4	Salinibacter ruber (strain DSM 13855 / M31)	Acriflavine resistance protein (Cation efflux system)			
Q2S4L8	Salinibacter ruber (strain DSM 13855 / M31)	Multidrug resistance protein	putative		
Q2SSB3	Salinibacter ruber (strain DSM 13855 / M31)	Multidrug efflux transporter	AcrB/AcrD/AcrF family		
Q2SSQS	Salinibacter ruber (strain DSM 13855 / M31)	Cation-multidrug efflux pump			
Q2S6E3	Salinibacter ruber (strain DSM 13855 / M31)	Transporter	AcrB/D/F family		
Q2S716	Hahella chejuensis (strain KCTC 2396)	Efflux pump membrane transporter			
Q2S728	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SB32	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SET3	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SF27	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SFQ4	Hahella chejuensis (strain KCTC 2396)	Efflux pump membrane transporter			
Q2SFT2	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SHT7	Hahella chejuensis (strain KCTC 2396)	Putative silver efflux pump			
Q2SJY0	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SM00	Hahella chejuensis (strain KCTC 2396)	Cation-multidrug efflux pump			
Q2SUM0	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	AcrB/AcrD/AcrF family protein			
Accession	Organism	Protein Description			
-----------	---	--			
Q2S9T4	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Efflux pump membrane transporter			
Q2S9W90	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	AcrB/AcrD/AcrF family protein			
Q2S9X70	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	AcrB/AcrD/AcrF family protein			
Q2T9R2	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Efflux pump membrane transporter			
Q2T3F6	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Efflux pump membrane transporter			
Q2T5H8	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Heavy metal efflux pump CzcA			
Q2T5R6	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Hydrophobe/amphiphile efflux family protein			
Q2T618	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Heavy metal efflux pump CzcA	putative		
Q2T989	Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP106301 / E264)	Transporter	AcrB/D/F family		
Q2W1N8	Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)	Cation/multidrug efflux pump			
Q2W1P6	Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)	Efflux pump membrane transporter			
Q2W1Q9	Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)	Cation/multidrug efflux pump			
Q2W646	Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)	Efflux pump membrane transporter			
Q2W7X3	Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)	Putative silver efflux pump			
Q2Y770	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Cobalt-zinc-cadmium resistance protein CzcA			
Q2Y7K6	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Acriflavin resistance protein			
Q2Y896	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Efflux pump membrane transporter			
Q2Y8I2	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Cobalt-zinc-cadmium resistance protein CzcA			
Q2Y962	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Cu(I)/Ag(I) efflux system membrane protein CusA/SilA			
Q2Y9A05	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Cobalt-zinc-cadmium resistance protein CzcA			
Q2YAR7	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Efflux pump membrane transporter			
Q2YB73	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Efflux pump membrane transporter			
Q2YB76	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Efflux pump membrane transporter			
Q2YD19	Nitrosospira multiformis (strain ATCC 25196 / NCIMB 11849 / C 71)	Efflux pump membrane transporter			
Q2YIU1	Brucella abortus (strain 2308)	Acriflavin resistance protein			
Q2YPC8	Brucella abortus (strain 2308)	Acriflavin resistance protein			
Accession	Organism/Genotype	Function/Description			
-----------	-------------------	---------------------			
Q2YPE6	Brucella abortus (strain 2308)	Efflux pump membrane transporter			
Q2YPZ1	Brucella abortus (strain 2308)	Acriflavin resistance protein			
Q2Z053	uncultured bacterium.	Heavy metal efflux pump			
Q30B59	Acinetobacter sp. 4365.	Efflux pump membrane transporter			
Q30NZ6	Sulfurimonas denitrificans (strain ATCC 33889 / DSM 1251)	Resistance-Nodulation-Cell Division Superfamily transporter			
Q30QL4	Sulfurimonas denitrificans (strain ATCC 33889 / DSM 1251)	Resistance-Nodulation-Cell Division Superfamily transporter			
Q30S70	Sulfurimonas denitrificans (strain ATCC 33889 / DSM 1251)	Resistance-Nodulation-Cell Division Superfamily transporter			
Q30T66	Sulfurimonas denitrificans (strain ATCC 33889 / DSM 1251)	Efflux pump membrane transporter			
Q311N6	Desulfovibrio alaskensis (strain G20)	Acriflavin resistance protein			
Q313Y0	Desulfovibrio alaskensis (strain G20)	Acriflavin resistance protein			
Q315C5	Desulfovibrio alaskensis (strain G20)	Acriflavin resistance protein			
Q315P7	Desulfovibrio alaskensis (strain G20)	Acriflavin resistance protein			
Q316E4	Desulfovibrio alaskensis (strain G20)	Efflux pump membrane transporter			
Q31DT9	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31E33	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31EH5	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31EQ3	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31EX8	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31FE9	Hydrogenovibrio crunogenus (strain XCL-2)	Efflux pump membrane transporter			
Q31FQ2	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31J34	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31JL9	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily transporter			
Q31JR8	Hydrogenovibrio crunogenus (strain XCL-2)	Resistance-Nodulation-Cell Division (RND) superfamily cation efflux transporter			
Q31KM0	Synechococcus elongatus (strain PCC 7942)	Hydrophobe/amphiphile efflux-1 HAE1			
Q31M20	Synechococcus elongatus (strain PCC 7942)	Probable cation efflux system protein			
Q31VB1	Shigella boydii serotype 4 (strain Sb227)	Efflux pump membrane transporter			
Q31W02	Shigella boydii serotype 4 (strain Sb227)	Efflux pump membrane transporter			
Q323D9	Shigella boydii serotype 4 (strain Sb227)	Multidrug resistance protein MdtC			
Q323E0	Shigella boydii serotype 4 (strain Sb227)	Multidrug resistance protein MdtB			
Q324W8	Shigella boydii serotype 4 (strain Sb227)	Putative inner membrane component for iron transport			
Q325D4	Shigella boydii serotype 4 (strain Sb227)	Efflux pump membrane transporter			
Accession	Organism & Strain	Function & Description			
-----------	------------------	-----------------------			
Q32AZ2	Shigella dysenteriae serotype 1 (strain Sd197)	Efflux pump membrane transporter			
Q32DA0	Shigella dysenteriae serotype 1 (strain Sd197)	Efflux pump membrane transporter			
Q32GN8	Shigella dysenteriae serotype 1 (strain Sd197)	Efflux pump membrane transporter			
Q32J42	Shigella dysenteriae serotype 1 (strain Sd197)	Efflux pump membrane transporter			
Q392S4	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Heavy metal efflux pump	CzcA family		
Q395M1	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Acriflavin resistance protein			
Q397Q3	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q398J2	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39AU9	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39DD3	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39FY6	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Acriflavin resistance protein			
Q39G27	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39GQ3	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39I14	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Acriflavin resistance protein			
Q39NU6	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39PF8	Burkholderia lata (strain ATCC 17760 / DSM 23089 / LMG 22485 / NCIMB9086 / R18194 / 383)	Efflux pump membrane transporter			
Q39PW0	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump	RND family	inner membrane protein	
Q39QY3	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump	RND family	inner membrane protein	
Q39SN5	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump	RND family	inner membrane protein	
Q39V29	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump membrane transporter			
Q39V41	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump	RND family	inner membrane protein	AcrB/AcrD/AcrF family
Q39VE3	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Metal ion efflux pump	RND family	inner membrane protein	
Q39XH2	Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210)	Efflux pump membrane transporter			
Q39X7	Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1)	Efflux pump membrane transporter			
Q3A2C4	Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1)	Efflux pump	RND family	inner membrane protein	AcrB/AcrD/AcrF family
Q3A5K8	Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1)	Efflux pump membrane transporter			
Q3A6S9	Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1)	Efflux pump membrane transporter			
Q3A7U6	Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1)	Efflux pump membrane transporter			
Q3AR80	Chlorobium chlorochromatii (strain CaD3)	Hydrophobe/amphiphile efflux-1 HAE1			
Q3ARZ1	Chlorobium chlorochromatii (strain CaD3)	NolG efflux transporter			
Q3AUC4	Chlorobium chlorochromatii (strain CaD3)	AcrB/AcrD/AcrF family protein			
Q3B1E0	Chlorobium luteolum (strain DSM 273 / 2530)	AcrB/AcrD/AcrF family protein			
Q3B4Q3	Chlorobium luteolum (strain DSM 273 / 2530)	Hydrophobe/amphiphile efflux-1 HAE1			
Q3B4Z4	Chlorobium luteolum (strain DSM 273 / 2530)	RND family efflux transporter			
Q3BMM3	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BNG5	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BPY9	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BR79	Xanthomonas campestris pv. vesicatoria (strain 85-10)	Efflux pump membrane transporter			
Q3BRC2	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BS5S	Xanthomonas campestris pv. vesicatoria (strain 85-10)	Efflux pump membrane transporter			
Q3BSU9	Xanthomonas campestris pv. vesicatoria (strain 85-10)	Efflux pump membrane transporter			
Q3BTF0	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BF01	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BTSS	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BVE1	Xanthomonas campestris pv. vesicatoria (strain 85-10)	Efflux pump membrane transporter			
Accession	Organism	Function			
-----------	---	---			
Q3BYG6	Xanthomonas campestris pv. vesicatoria (strain 85-10)	RND superfamily protein			
Q3BYU5	Xanthomonas campestris pv. vesicatoria (strain 85-10)	Efflux pump membrane transporter			
Q3ER77	Bacillus thuringiensis serovar israelensis ATCC 35646.	Acriflavin resistance plasma membrane protein			
Q3IBZ0	Pseudoalteromonas haloplanktis (strain TAC 125)	Efflux pump membrane transporter			
Q3IC20	Pseudoalteromonas haloplanktis (strain TAC 125)	Efflux pump membrane transporter			
Q3IC5	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative metabolite exporter	AcrB/D/F family		
Q3ICE4	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative metabolite exporter	AcrB/D/F family		
Q3IC5	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative acrB/acrD.acrF acriflavin resistance family protein			
Q3IK01	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative multidrug resistance protein	AcrB/AcrD/AcrF family		
Q3IK50	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative transport protein			
Q3ILD1	Pseudoalteromonas haloplanktis (strain TAC 125)	Cation efflux system protein cusA			
Q3ILG7	Pseudoalteromonas haloplanktis (strain TAC 125)	Cobalt-zinc-cadmium resistance protein czcA (Cation efflux system protein czcA)			
Q3ILI6	Pseudoalteromonas haloplanktis (strain TAC 125)	Putative multidrug resistance protein(AcrB/AcrD/AcrF family)			
Q3IX11	Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 / NCIB 8253 / DSM158)	Efflux pump membrane transporter			
Q3J0Q2	Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 / NCIB 8253 / DSM158)	AcrB/AcrD/AcrF family cation/multidrug efflux pump			
Q3J2H3	Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 / NCIB 8253 / DSM158)	Multidrug/cation efflux pump	RND superfamily		
Q3J2M9	Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 / NCIB 8253 / DSM158)	Cation/multidrug efflux pump	RND superfamily		
Q3J4A5	Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 / NCIB 8253 / DSM158)	AcrB/AcrD/AcrF multidrug efflux pump			
Q3J715	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Acriflavin resistance protein			
Q3J9P1	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Acriflavin resistance protein			
Q3J451	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Efflux pump membrane transporter			
Q3JX7	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Heavy metal efflux pump			
Q3JC12	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Efflux pump membrane transporter			
Q3JEC3	Nitrosococcus oceanii (strain ATCC 19707 / BCRC 17464 / NCIMB 11848 /C-107)	Heavy metal efflux pump			
Accession	Organism	Function/Description			
-----------	---	---			
Q3JEL4	Nitrosococcus oceani (strain ATCC 19707 /	Acriflavin resistance protein			
	BCRC 17464 / NCIMB 11848 / C-107)				
Q3JER0	Nitrosococcus oceani (strain ATCC 19707 /	Heavy metal efflux pump			
	BCRC 17464 / NCIMB 11848 / C-107)				
Q3JHF5	Burkholderia pseudomallei (strain 1710b)	Efflux pump membrane transporter			
Q3JMG5	Burkholderia pseudomallei (strain 1710b)	Hydrophobe/amphiphile efflux family protein			
Q3JML3	Burkholderia pseudomallei (strain 1710b)	Heavy metal efflux pump CzcA			
Q3JQU5	Burkholderia pseudomallei (strain 1710b)	AcrB/AcrD/AcrF family protein			
Q3JRW2	Burkholderia pseudomallei (strain 1710b)	AcrB/AcrD/AcrF family protein			
Q3JSK0	Burkholderia pseudomallei (strain 1710b)	Efflux pump membrane transporter			
Q3JU49	Burkholderia pseudomallei (strain 1710b)	AcrB/AcrD/AcrF family protein			
Q3JVH2	Burkholderia pseudomallei (strain 1710b)	Efflux pump membrane transporter			
Q3JWX5	Burkholderia pseudomallei (strain 1710b)	Heavy metal efflux pump	CzcA family		
Q3K755	Pseudomonas fluorescens (strain Pf0-1)	Putative AcrB/AcrD/AcrF family membrane protein			
Q3K7M4	Pseudomonas fluorescens (strain Pf0-1)	Integral membrane component of membrane efflux system			
Q3KA45	Pseudomonas fluorescens (strain Pf0-1)	Cobalt-zinc-cadmium resistance membrane protein			
Q3KC70	Pseudomonas fluorescens (strain Pf0-1)	Efflux pump membrane transporter			
Q3CK7	Pseudomonas fluorescens (strain Pf0-1)	Efflux pump membrane transporter			
Q3CV6	Pseudomonas fluorescens (strain Pf0-1)	Efflux pump membrane transporter			
Q3KD91	Pseudomonas fluorescens (strain Pf0-1)	Multidrug efflux system transmembrane protein			
Q3KD92	Pseudomonas fluorescens (strain Pf0-1)	Multidrug efflux system transmembrane protein			
Q3KDC9	Pseudomonas fluorescens (strain Pf0-1)	Putative efflux protein			
Q3KDL7	Pseudomonas fluorescens (strain Pf0-1)	Heavy metal RND efflux transporter	CzcA family		
Q3KGT4	Pseudomonas fluorescens (strain Pf0-1)	Efflux pump membrane transporter			
Q3KH3	Pseudomonas fluorescens (strain Pf0-1)	Putative transport-related membrane protein			
Q3KIF5	Pseudomonas fluorescens (strain Pf0-1)	Integral membrane component of multidrug efflux system			
Q3KJT0	Pseudomonas fluorescens (strain Pf0-1)	Putative transport-related membrane protein			
Q3M3V4	Anabaena variabilis (strain ATCC 29413 /	Acriflavin resistance protein			
	PCC 7937)				
Q3M6E3	Anabaena variabilis (strain ATCC 29413 /	Hydrophobe/amphiphile efflux-1 HAE1			
	PCC 7937)				
Q3MA27	Anabaena variabilis (strain ATCC 29413 /	Acriflavin resistance protein			
	PCC 7937)				
Q3RC69	Xylella fastidiosa Dixon.	Efflux pump membrane transporter			
Q3RC79	Xylella fastidiosa Dixon.	Acriflavin resistance protein			
Q3RDM8	Xylella fastidiosa Dixon.	Acriflavin resistance protein			
Q3SFX2	Thiobacillus denitrificans (strain ATCC 25259)	Probable transmembrane drug efflux protein			
Accession	Organism	Function	Remarks		
-----------	----------	----------	---------		
Q3SGA0	Thiobacillus denitrificans (strain ATCC 25259)	Acriflavin resistance protein			
Q3SGH8	Thiobacillus denitrificans (strain ATCC 25259)	Probable RND efflux transporter			
Q3SI34	Thiobacillus denitrificans (strain ATCC 25259)	Heavy metal efflux pump CzcA			
Q3SJ00	Thiobacillus denitrificans (strain ATCC 25259)	Efflux pump membrane transporter			
Q3SJ81	Thiobacillus denitrificans (strain ATCC 25259)	Heavy metal efflux pump CzcA			
Q3SJ87	Thiobacillus denitrificans (strain ATCC 25259)	Heavy metal efflux pump CzcA			
Q3SKD0	Thiobacillus denitrificans (strain ATCC 25259)	Heavy metal efflux pump CzcA			
Q3SJ81	Thiobacillus denitrificans (strain ATCC 25259)	Heavy metal efflux pump CzcA			
Q3SMW3	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Heavy metal efflux pump CzcA			
Q3SN60	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Acriflavin resistance protein			
Q3SNI0	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Heavy metal efflux pump CzcA			
Q3SNZ7	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Efflux pump membrane transporter			
Q3SQA4	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Acriflavin resistance protein			
Q3SSF8	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Acriflavin resistance protein			
Q3SSF9	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Acriflavin resistance protein			
Q3SSM3	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Heavy metal efflux pump CzcA			
Q3ST65	Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255)	Acriflavin resistance protein			
Q3YRZ9	Ehrlichia canis (strain Jake)	Acriflavin resistance protein			
Q3YWI8	Shigella sonnei (strain Ss046)	Efflux pump membrane transporter			
Q3YZ83	Shigella sonnei (strain Ss046)	Efflux pump membrane transporter			
Q3ZOC8	Shigella sonnei (strain Ss046)	Multidrug resistance protein MdtC			
Q3ZOC9	Shigella sonnei (strain Ss046)	Multidrug resistance protein MdtB			
Q3Z4L7	Shigella sonnei (strain Ss046)	Putative inner membrane component for iron transport			
Q3Z4T7	Shigella sonnei (strain Ss046)	Efflux pump membrane transporter			
Q44586	Alcaligenes xylosoxydans xylosoxydans	Nickel-cobalt-cadmium resistance protein NccA			
Q46MN5	Cupriavidus necator (strain JMP 134 / LMG 1197)	Efflux pump membrane transporter			
Accession	Organism	Protein Description			
-----------	-------------------------------	---			
Q46PD4	Cupriavidus necator (strain JMP 134 / LMG 1197)	Heavy metal efflux pump CzcA			
Q46PF0	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q46T47	Cupriavidus necator (strain JMP 134 / LMG 1197)	Efflux pump membrane transporter			
Q46TT9	Cupriavidus necator (strain JMP 134 / LMG 1197)	Efflux pump membrane transporter			
Q46U60	Cupriavidus necator (strain JMP 134 / LMG 1197)	Heavy metal efflux pump CzcA			
Q46UM2	Cupriavidus necator (strain JMP 134 / LMG 1197)	Heavy metal efflux pump CzcA			
Q46VH3	Cupriavidus necator (strain JMP 134 / LMG 1197)	Heavy metal efflux pump CzcA			
Q46VN5	Cupriavidus necator (strain JMP 134 / LMG 1197)	Efflux pump membrane transporter			
Q46VQ1	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q46WR1	Cupriavidus necator (strain JMP 134 / LMG 1197)	Efflux pump membrane transporter			
Q470K2	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q472E0	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q474Q1	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q475I0	Cupriavidus necator (strain JMP 134 / LMG 1197)	Acriflavin resistance protein			
Q479C5	Dechloromonas aromatica (strain RCB)	Efflux pump membrane transporter			
Q479J1	Dechloromonas aromatica (strain RCB)	Acriflavin resistance protein			
Q47AQ9	Dechloromonas aromatica (strain RCB)	Acriflavin resistance protein			
Q47BU3	Dechloromonas aromatica (strain RCB)	Acriflavin resistance protein			
Q47CA0	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47CS5	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47CT4	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47D66	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47DS9	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47DU2	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47E30	Dechloromonas aromatica (strain RCB)	Efflux pump membrane transporter			
Q47E0W	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47GU7	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47I6W	Dechloromonas aromatica (strain RCB)	Acriflavin resistance protein			
Q47IC6	Dechloromonas aromatica (strain RCB)	Heavy metal efflux pump CzcA			
Q47MJ1	Thermobifida fusca (strain YX)	Putative integral membrane efflux protein			
Q47U52	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Accession	Organism/Strain	Description			
-----------	---	--			
Q47UM5	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	Cation efflux system protein CusA			
Q47V77	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q47VA5	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q47VP1	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q47X86	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q480E7	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	Heavy metal efflux pump	CzcA family		
Q480Y8	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q483S5	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q483S7	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	Putative RND efflux system protein			
Q484D7	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q485I6	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	Efflux pump membrane transporter			
Q486B7	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	Efflux pump membrane transporter			
Q48815	Legionella pneumophila.	Protein HelA			
Q488L9	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q48A59	Colwellia psychrerythraea (strain 34H / ATCC BAA-681)	AcrB/AcrD/AcrF family protein			
Q48CG6	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Cation efflux family protein			
Q48EP3	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Efflux pump membrane transporter			
Q48HB1	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Transporter	AcrB/AcrD/AcrF family		
Q48HP4	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Efflux pump membrane transporter			
Q48IE8	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Multidrug RND efflux transporter	permease protein MdtC		
Q48IE9	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Multidrug RND efflux transporter	permease protein MdtB		
Q48J50	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Efflux pump membrane transporter			
Q48JE7	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	Efflux pump membrane transporter			
Q48MA9	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	RND efflux transporter	AcrB/AcrD/AcrF family		
Q48NJ4	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	RND efflux transporter	hydrophobe/amphiphile efflux-1 (HAE1) family		
Accession	Species	Description			
-----------	--	--			
Q48PN7	Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)	RND efflux transporter	hydrophobe/amphiphile efflux-1 (HAE1) family		
Q49ZH9	Staphylococcus saprophyticus subsp. saprophyticus (strain ATCC 15305 / DSM 20229 / NCIMB 8711 / NCTC 7292 / S-41)	Putative cation multidrug efflux pump			
Q4BYX0	Crocosphaera watsonii WH 8501.	Hydrophobe/amphiphile efflux-1 HAE1			
Q4C067	Crocosphaera watsonii WH 8501.	Hydrophobe/amphiphile efflux-1 HAE1			
Q4ECJ9	Wolbachia endosymbiont of Drosophila ananassae.	MMPL family protein			
Q4FP77	Pelagibacter ubique (strain HTCC1062)	RND superfamily multidrug efflux pump			
Q4FPX8	Psychrobacter arcticus (strain DSM 17307 / 273-4)	Efflux pump membrane transporter			
Q4FRD4	Psychrobacter arcticus (strain DSM 17307 / 273-4)	Efflux pump membrane transporter			
Q4K638	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Cobalt/zinc/cadmium resistance protein CzcA			
Q4K6K5	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	heavy metal efflux (HME) family	permease protein	
Q4KAL4	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	HAE1 family		
Q4KBK7	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Efflux pump membrane transporter			
Q4KBN7	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Efflux pump membrane transporter			
Q4KCR6	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Multidrug RND efflux transporter	permease protein MdtC		
Q4KCR7	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Multidrug RND efflux transporter	permease protein MdtB		
Q4KDL8	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	heavy metal efflux (HME) family	permease protein	
Q4KH23	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	Efflux pump membrane transporter			
Q4KHJ4	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	hydrophobe/amphiphile efflux-1 (HAE1) family	permease protein	
Q4KHX4	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	HAE1 family		
Q4KK49	Pseudomonas fluorescens (strain ATCC BAA-477 / NRRL B-23932 / PF-5)	RND transporter	hydrophobe/amphiphile efflux-1 (HAE1) family	permease protein	
Q4L8C5	Staphylococcus haemolyticus (strain JSC1435)	Uncharacterized protein			
Q4LDT6	Pseudomonas aeruginosa.	Efflux pump membrane transporter			
Q4LDT8	Pseudomonas aeruginosa.	RND multidrug efflux transporter MexN			
Q4QM13	Haemophilus influenzae (strain 86-028NP)	Predicted cation/multidrug efflux pump			
Q4UKH1	Rickettsia felis (strain ATCC VR-1525 / URRWxCal2)	Hydrophobe/amphiphile efflux-1 HAE1 family protein			
Q4VSJ4	Burkholderia glumae	Probable RND efflux transporter			
Accession	Species and Strain Information	Protein Type			
-----------	--------------------------------	--------------			
Q4ZLZ2	Pseudomonas syringae pv. syringae (strain B728a)	Heavy metal efflux pump CzcA			
Q4ZP84	Pseudomonas syringae pv. syringae (strain B728a)	Efflux pump membrane transporter			
Q4ZRQ8	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZS70	Pseudomonas syringae pv. syringae (strain B728a)	Efflux pump membrane transporter			
Q4ZSH1	Pseudomonas syringae pv. syringae (strain B728a)	Efflux pump membrane transporter			
Q4ZJ61	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZT99	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZTK0	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZU47	Pseudomonas syringae pv. syringae (strain B728a)	Efflux pump membrane transporter			
Q4ZUD5	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZXE0	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q4ZZK4	Pseudomonas syringae pv. syringae (strain B728a)	Acriflavin resistance protein			
Q51073	Neisseria gonorrhoeae.	Efflux pump membrane transporter			
Q51396	Pseudomonas aeruginosa.	Efflux pump membrane transporter			
Q55584	Synechocystis sp. (strain PCC 6803 / Kazusa)	Cation or drug efflux system protein			
Q55935	Synechocystis sp. (strain PCC 6803 / Kazusa)	Cation or drug efflux system protein			
Q57124	Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd)	Uncharacterized transporter HI_0895			
Q579D3	Brucella abortus biovar 1 (strain 9-941)	AcrB/AcrD/AcrF multidrug efflux protein			
Q57D49	Brucella abortus biovar 1 (strain 9-941)	AcrB/AcrD/AcrF multidrug efflux protein			
Q57F66	Brucella abortus biovar 1 (strain 9-941)	Efflux pump membrane transporter			
Q57F78	Brucella abortus biovar 1 (strain 9-941)	AcrB/AcrD/AcrF multidrug efflux protein			
Q57J78	Salmonella choleraesuis (strain SC-B67)	Efflux pump membrane transporter			
Q57LN0	Salmonella choleraesuis (strain SC-B67)	Efflux pump membrane transporter			
Q57MM4	Salmonella choleraesuis (strain SC-B67)	Multidrug resistance protein MdtC			
Q57MM5	Salmonella choleraesuis (strain SC-B67)	Multidrug resistance protein MdtB			
Q57S88	Salmonella choleraesuis (strain SC-B67)	Efflux pump membrane transporter			
Q58AF4	Cupriavidus metallidurans (strain ATCC 43123 / DSM 2839 / NBRC 102507/ CH34)	SilA	pump of the three components proton antiporter cation efflux system involved in silver	copper resistance	
Q58AG2	Cupriavidus metallidurans (strain ATCC 43123 / DSM 2839 / NBRC 102507/ CH34)	NccA	three components proton antiporter cation efflux system	cation efflux pump	
Q5DYC7	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Efflux pump membrane transporter			
Accession	Species	Description			
-----------	--	---			
QSDZ19	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Efflux pump membrane transporter			
QSE0D1	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Copper/silver efflux system	membrane component		
QSE0L9	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSE1S7	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSE2W9	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSE4H0	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSE5L7	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSE8S3	Aliivibrio fischeri (strain ATCC 700601 / ES114)	Acriflavin resistance plasma membrane protein			
QSF725	Neisseria gonorrhoeae (strain ATCC 700825 / FA 1090)	Efflux pump membrane transporter			
QSGFX1	Ehrlichia ruminantium (strain Gardel)	Probable aminoglycoside efflux pump (Acriflavine resistance protein D)			
QSGA83	Gluconobacter oxydans (strain 621H)	Cation efflux system protein CzcA			
QST29	Gluconobacter oxydans (strain 621H)	Efflux pump membrane transporter			
QSF7G4	Gluconobacter oxydans (strain 621H)	Heavy-metal ion transporter HelA			
QSTX0	Gluconobacter oxydans (strain 621H)	Putative transport transmembrane protein			
QSFU14	Gluconobacter oxydans (strain 621H)	Acriflavin resistance protein D			
QSG7J3	Rhizobium etli.	Efflux pump membrane transporter			
QSGV29	Xanthomonas oryzae pv. oryzae (strain KACC10331 / KX085)	Acriflavin resistance protein			
QSGC3	Xanthomonas oryzae pv. oryzae (strain KACC10331 / KX085)	Acriflavin resistance protein			
QSGZ12	Xanthomonas oryzae pv. oryzae (strain KACC10331 / KX085)	Acriflavin resistance protein			
QSH2K4	Xanthomonas oryzae pv. oryzae (strain KACC10331 / KX085)	Acriflavin resistance protein			
QSHLY7	Staphylococcus epidermidis (strain ATCC 35984 / RP62A)	AcrB/AcrD/AcrF family protein			
QSI5O2	Morganella morganii	Efflux pump membrane transporter			
QSKWT2	Geobacillus kaustophilus (strain HTA426)	Hypothetical conserved protein			
QSL7H0	Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343)	Putative transmembrane AcrB/D/F-family transporter			
QSL8F0	Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343)	Putative transmembrane Acr-type transport protein			
QSL8Q3	Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343)	Putative transport related membrane protein			
QSL990	Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343)	Putative transport-related membrane protein			
QSL9M7	Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343)	Putative metal resistance related transport membrane protein			
Accession	Organism	Strain Details	Function Description		
-----------	-----------------------------------	--	---		
Q5LA33	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative multidrug resistance/siderophore transport related	membrane protein	
Q5LA16	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative transport-related membrane protein		
Q5LB81	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative aminoglycoside efflux pump		
Q5LC18	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative drug resistance transport-related membrane protein		
Q5LD76	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative cation efflux-related membrane protein		
Q5LDG2	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative cation transport related membrane protein		
Q5LHM2	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative AcrB/AcrD/AcrF family efflux transporter		
Q5LIU3	Bacteroides fragilis	(strain ATCC 25285 / DSM 2151 / JCM 11019/ NCTC 9343)	Putative AcrB/AcrD family RND transport protein		
Q5LT89	Ruegeria pomeroyi	(strain ATCC 700808 / DSM 15171 / DSS-3)	Transporter	AcrB/AcrD/AcrF family	
Q5LTL7	Ruegeria pomeroyi	(strain ATCC 700808 / DSM 15171 / DSS-3)	Efflux pump membrane transporter		
Q5LUY1	Ruegeria pomeroyi	(strain ATCC 700808 / DSM 15171 / DSS-3)	Transporter	AcrB/AcrD/AcrF family	
Q5LX87	Ruegeria pomeroyi	(strain ATCC 700808 / DSM 15171 / DSS-3)	Transporter	AcrB/AcrD/AcrF family	
Q5NIG7	Francisella tularensis subsp. tularensis	(strain SCHU S4 / Schu 4)	Transporter AcrB/AcrD/AcrF family		
Q5NMA8	Zymomonas mobilis subsp. mobilis	(strain ATCC 31821 / ZM4 / CP4)	Acriflavin resistance protein		
Q5NQU7	Zymomonas mobilis subsp. mobilis	(strain ATCC 31821 / ZM4 / CP4)	Efflux pump membrane transporter		
Q5NXR2	Aromatoleum aromaticum	(strain EbN1)	Cation/multidrug efflux pump protein		
Q5P2W3	Aromatoleum aromaticum	(strain EbN1)	Probable cation efflux system protein CZCA		
Q5P2Z3	Aromatoleum aromaticum	(strain EbN1)	Predicted acriflavin resistance protein		
Q5P649	Aromatoleum aromaticum	(strain EbN1)	Cation efflux system protein		
Q5P6P0	Aromatoleum aromaticum	(strain EbN1)	Probable RND efflux transporter		
Q5PDW7	Salmonella paratyphi A	(strain ATCC 9150 / SARB42)	Multidrug resistance protein MdtB		
Q5PDW8	Salmonella paratyphi A	(strain ATCC 9150 / SARB42)	Multidrug resistance protein MdtC		
Q5QVF0	Idiomarina loihiensis	(strain ATCC BAA-735 / DSM 15497 / L2-TR)	Co/Zn/Cd efflux system membrane component		
Q5QV8	Idiomarina loihiensis	(strain ATCC BAA-735 / DSM 15497 / L2-TR)	RND family efflux transporter		
Q5WW28	Idiomarina loihiensis	(strain ATCC BAA-735 / DSM 15497 / L2-TR)	RND family efflux transporter		
Q5YY6	Idiomarina loihiensis	(strain ATCC BAA-735 / DSM 15497 / L2-TR)	RND family efflux transporter		
Q5R021	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	Probable Co/Zn/Cd efflux system membrane component			
Q5R024	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	RND family efflux transporter			
QSR0E7	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	Efflux pump membrane transporter			
QSR0R1	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	RND family efflux transporter			
QSR0W3	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	Metal efflux system membrane component (Silver efflux pump related)			
QSR0W8	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	Metal efflux system membrane component (Silver efflux pump related)			
QSR138	Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR)	Co/Zn/Cd efflux system membrane component			
QSWCH2	Bacillus clausii (strain KSM-K16)	AcrB/AcrD/AcrF family cation/multidrug efflux pump			
QSWTT9	Legionella pneumophila (strain Lens)	Efflux pump membrane transporter			
QSWU4	Legionella pneumophila (strain Lens)	Efflux pump membrane transporter			
QSWUV4	Legionella pneumophila (strain Lens)	Chemiosmotic efflux system protein A-like protein			
QSWXP7	Legionella pneumophila (strain Lens)	HeLa protein			
QSWYH9	Legionella pneumophila (strain Lens)	Uncharacterized protein			
QSZSK5	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Efflux pump membrane transporter			
QSZTI4	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Efflux pump membrane transporter			
QSZTM7	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Chemiosmotic efflux system protein A (CzcA)			
QSZWI9	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Chemiosmotic efflux system B protein A			
QSZWQ6	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Chemiosmotic efflux system protein A-like protein			
QSZWR5	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Chemiosmotic efflux system B protein A			
QSZWS7	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Cobalt/zinc/cadmium efflux RND transporter	permease protein HeLa		
QSZXL1	Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 /ATCC 33152 / DSM 7513)	Multidrug resistance protein			
Q603J0	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q603S9	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Accession	Organism (strain)	Description			
-----------	------------------	-------------			
Q605G0	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q605L6	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q605P8	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Efflux pump membrane transporter			
Q605X2	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q605Z1	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q606T0	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q607J2	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q607N7	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q608A0	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Efflux pump membrane transporter			
Q608X6	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Efflux pump membrane transporter			
Q609D7	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q609J5	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q60A90	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	Heavy metal efflux pump	CzcA family		
Q60CD0	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q60CM7	Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath)	AcrB/AcrD/AcrF family protein			
Q630G7	Bacillus cereus (strain ZK / E33L)	Conserved transporter possible acriflavin resistance protein			
Q63FS7	Bacillus cereus (strain ZK / E33L)	Acriflavin resistance protein			
Q63L89	Burkholderia pseudomallei (strain K96243)	Putative RND efflux transporter			
Q63LH4	Burkholderia pseudomallei (strain K96243)	Putative cation efflux system protein			
Q63NK6	Burkholderia pseudomallei (strain K96243)	Efflux pump membrane transporter			
Q63ST6	Burkholderia pseudomallei (strain K96243)	Putative AcrB/AcrD/AcrF family membrane protein			
Q63U14	Burkholderia pseudomallei (strain K96243)	Efflux pump membrane transporter			
Q63UM9	Burkholderia pseudomallei (strain K96243)	Putative drug-resistance cell envelope-related protein			
Q63VH8	Burkholderia pseudomallei (strain K96243)	Putative transport system	membrane protein		
Q63WS7	Burkholderia pseudomallei (strain K96243)	Efflux pump membrane transporter			
Q63Y79	Burkholderia pseudomallei (strain K96243)	Putative cation efflux system protein			
Q64MM9	Bacteroides fragilis (strain YCH46)	AcrB/D/F family transporter			
Q64NQ0	Bacteroides fragilis (strain YCH46)	Putative cation efflux transporter			
Accession	Organism	Description			
-----------	---	--			
Q64PF1	*Bacteroides fragilis* (strain YCH46)	AcrB/AcrD/AcrF family cation efflux system protein			
Q64PW6	*Bacteroides fragilis* (strain YCH46)	AcrB/AcrD/AcrF family cation efflux system protein			
Q64QE5	*Bacteroides fragilis* (strain YCH46)	AcrB/AcrD family multidrug resistance protein			
Q64RM7	*Bacteroides fragilis* (strain YCH46)	Putative aminoglycoside efflux pump			
Q64TN7	*Bacteroides fragilis* (strain YCH46)	Putative cation efflux pump			
Q64U98	*Bacteroides fragilis* (strain YCH46)	Cation efflux system protein CzcA			
Q64YJ6	*Bacteroides fragilis* (strain YCH46)	Multidrug efflux membrane fusion protein			
Q64Z27	*Bacteroides fragilis* (strain YCH46)	AcrB/AcrD family multidrug resistance protein			
Q65MP2	*Bacillus licheniformis* (strain ATCC 14580 / DSM 13 / JCM 2505 / NBRC12200 / NCIMB 9375 / NRRL NRS-1264 / Gibson 46)	Swarming and motility protein SwrC			
Q65QR6	*Mannheimia succiniciproducens* (strain MBEL55E)	AcrB protein			
Q65VE8	*Mannheimia succiniciproducens* (strain MBEL55E)	AcrB protein			
Q662M2	*Borrelia bavariensis* (strain ATCC BAA-2496 / DSM 23469 / P8i)	Acriflavine resistance protein			
Q666F2	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Efflux pump membrane transporter			
Q668C5	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Multidrug resistance protein MdtC			
Q668C6	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Multidrug resistance protein MdtB			
Q668H5	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Efflux pump membrane transporter			
Q66DR0	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Efflux pump membrane transporter			
Q66EX5	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Putative heavy metal/multi-drug efflux protein	RND family		
Q66F48	*Yersinia pseudotuberculosis* serotype I (strain IP32953)	Efflux pump membrane transporter			
Q67J93	*Symbiobacterium thermophilum* (strain T / IAM 14863)	AcrB family membrane transport protein			
Q68XJ7	*Rickettsia typhi* (strain ATCC VR-144 / Wilmington)	Acriflavin resistance protein D			
Q69HW2	*Escherichia coli.*	Efflux pump membrane transporter			
Q6AJB4	*Desulfotalea psychrophila* (strain LSv54 / DSM 12343)	Related to cobalt-zinc-cadmium resistance protein (CzcA)			
Q6ALC4	*Desulfotalea psychrophila* (strain LSv54 / DSM 12343)	Related to multidrug-efflux transport protein			
Q6AMJ9	*Desulfotalea psychrophila* (strain LSv54 / DSM 12343)	Efflux pump membrane transporter			
Q6ARC4	*Desulfotalea psychrophila* (strain LSv54 / DSM 12343)	Probable cation efflux system protein (CzcA)			
Accession	Species/Microbial Name	Description			
-----------	-----------------------	-------------			
Q6CZM0	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Efflux pump membrane transporter			
Q6D1J9	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Efflux pump membrane transporter			
Q6D2B0	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Multidrug resistance protein MdtC			
Q6D2B1	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Multidrug resistance protein MdtB			
Q6D315	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Putative efflux protein			
Q6D7E2	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Cation efflux system protein			
Q6D806	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672)	Efflux pump membrane transporter			
Q6EMD9	Escherichia coli.	Cu(+)/Ag(+) efflux RND transporter permease subunit SilA			
Q6F6Q9	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Putative efflux transporter causing drug resistance (Acr family)			
Q6F786	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Multidrug transport protein (RND family)			
Q6F787	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Multidrug transport protein	outer membrane (RND family)		
Q6F7C5	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	RND divalent metal cation efflux transporter			
Q6F8F6	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Efflux pump membrane transporter			
Q6F8P8	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Efflux pump membrane transporter			
Q6FD21	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Putative multidrug transporter			
Q6FD22	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Putative RND efflux transporter			
Q6FE22	Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1)	Nodulation protein			
Q6HAK2	Bacillus thuringiensis subsp. konkukian (strain 97-27)	Conserved transporter possible acriflavin resistance protein			
Q6HN96	Bacillus thuringiensis subsp. konkukian (strain 97-27)	Acriflavin resistance protein			
Q6IVS4	uncultured gamma proteobacterium eBACHOT4E07.	Predicted cation efflux system			
Q6KAY1	Stenotrophomonas maltophilia	Efflux pump membrane transporter			
Q6KAZ0	Stenotrophomonas maltophilia	Efflux pump membrane transporter			
Q6KAZ6	Stenotrophomonas maltophilia	Efflux pump membrane transporter			
Q6LGP3	Photobacterium profundum (strain SS9)	Putative transporter	AcrB/D/F family		
Q6LGT2	Photobacterium profundum (strain SS9)	Efflux pump membrane transporter			
Q6LI4Y	Photobacterium profundum (strain SS9)	Efflux pump membrane transporter			
Q6LNK7	Photobacterium profundum (strain SS9)	Putative multidrug resistance protein			
Q6LPI6	Photobacterium profundum (strain SS9)	Putative AcrB	Cation/multidrug efflux pump		
Accession	Organism	Description			
-----------	---	---			
Q6LPS3	Photobacterium profundum (strain SS9)	Hypothetical transporter	AcrB/D/F family		
Q6LTG2	Photobacterium profundum (strain SS9)	Putative cation efflux system transmembrane protein			
Q6LV21	Photobacterium profundum (strain SS9)	Putative Cation/multidrug efflux pump			
Q6LVZ3	Photobacterium profundum (strain SS9)	Putative multidrug resistance protein			
Q6MDJ2	Protochlamydia amoebophila (strain UWE25)	Uncharacterized protein			
Q6MDS4	Protochlamydia amoebophila (strain UWE25)	Uncharacterized protein			
Q6MEI7	Protochlamydia amoebophila (strain UWE25)	Uncharacterized protein			
Q6MIU0	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	Efflux transporter			
Q6ML00	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	Cation efflux system protein	AcrB/AcrD/AcrF family protein		
Q6MM46	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	NoLG efflux transporter			
Q6MM88	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	NoLG efflux transporter			
Q6MNU1	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	Acriflavin resistance protein			
Q6MP63	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	Acriflavin resistance protein			
Q6MPG6	Bdellovibrio bacteriovorus (strain ATCC 15536 / DSM 50701 / NCIB 9529/ HD100)	Acriflavin resistance protein			
Q6MXQ0	Serratia marcescens.	Putative cation efflux system protein (Silver resistance)			
Q6N0T1	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Putative efflux transporter			
Q6N1C7	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Putative heavy metal cation efflux system protein			
Q6N1J1	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Putative RND efflux transporter			
Q6N2F5	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6N2Z4	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6N3B9	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Putative RND efflux transporter			
Q6N457	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	RND efflux transporter			
Q6N5L8	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6N682	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6N6N9	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Possible RND efflux transporter			
Q6N6P0	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Possible RND efflux transporter			
Q6N787	Rhodopseudmonas palustris (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Accession	Organism	Description			
-----------	----------	-------------			
Q6N848	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	RND divalent metal cation efflux transporter CzcA			
Q6N8D5	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	RND efflux transporter			
Q6N8E2	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	RND efflux transporter			
Q6N8U5	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Putative RND divalent metal cation efflux transporter CzcA			
Q6N8Z7	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Putative cation efflux system protein			
Q6N9P2	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6N9W6	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Putative inner membrane component for iron transport			
Q6NB09	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Putative transporter	AcrB/D/F family Cation efflux system protein		
Q6NK9	*Rhodopseudomonas palustris* (strain ATCC BAA-98 / CGA009)	Efflux pump membrane transporter			
Q6PKZ7	*Campylobacter coli.*	Efflux pump membrane transporter			
Q6Q918	uncultured marine gamma proteobacterium EBAC20E09	Predicted cation efflux system			
Q6SGZ1	uncultured marine bacterium 443.	Efflux transporter	RND family	outer membrane subunit	putative
Q6SH26	uncultured marine bacterium 442.	Multidrug efflux transporter	AcrB/AcrD/AcrF family		
Q6U5N9	*Klebsiella pneumoniae* CG43.	SlIA			
Q6V6X8	*Pseudomonas fluorescens.*	Efflux pump membrane transporter			
Q6VW68	*Burkholderia pseudomallei*	Efflux pump membrane transporter			
Q6W1F3	*Sinorhizobium fredii* (strain NBRC 101917 / NGR234)	Acriflavin resistance plasma membrane protein			
Q6YRW1	*Synechocystis sp.* (strain PCC 6803 / Kazusa)	Slr6043 protein			
Q71UZ6	*Pseudomonas stutzeri*	Efflux pump membrane transporter			
Q72S1	*Desulfovibrio vulgaris* (strain Hildenborough / ATCC 29579 / DSM 644 /NCIMB 8303)	Efflux pump membrane transporter			
Q727N9	*Desulfovibrio vulgaris* (strain Hildenborough / ATCC 29579 / DSM 644 /NCIMB 8303)	Efflux pump membrane transporter			
Q72EY0	*Desulfovibrio vulgaris* (strain Hildenborough / ATCC 29579 / DSM 644 /NCIMB 8303)	AcrB/AcrD/AcrF family protein			
Q72G02	*Desulfovibrio vulgaris* (strain Hildenborough / ATCC 29579 / DSM 644 /NCIMB 8303)	Efflux pump membrane transporter			
Q72MQ9	*Leptospira interrogans* serogroup Icterohaemorrhagiae serovarcopenhagenii (strain Fiocruz L1-130)	Acriflavin resistance			
Q72MU9	*Leptospira interrogans* serogroup Icterohaemorrhagiae serovarcopenhagenii (strain Fiocruz L1-130)	Acriflavin resistance			
Q72MW5	*Leptospira interrogans* serogroup Icterohaemorrhagiae serovarcopenhagenii (strain Fiocruz L1-130)	Acriflavin resistance			
ID	Organism	Protein/Transporter			
-----	--	--			
Q72Q8	Leptospira interrogans serogroup Icterohaemorrhagiae serovargopenhageni (strain Fiocruz L1-130)	Heavy metal efflux pump			
Q72V12	Leptospira interrogans serogroup Icterohaemorrhagiae serovargopenhageni (strain Fiocruz L1-130)	Acriflavin resistance			
Q72X10	Bacillus cereus (strain ATCC 10987 / NRS 248)	Transporter	AcrB/AcrD/AcrF family		
Q73DC5	Bacillus cereus (strain ATCC 10987 / NRS 248)	Transporter	AcrB/AcrD/AcrF family		
Q73FK8	Wolbachia pipiens wMel.	Multidrug resistance protein D			
Q746W8	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Heavy metal efflux pump	RND family	inner membrane protein	CzcA family
Q749G1	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner membrane protein	AcrB/AcrD/AcrF family
Q749P6	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump membrane transporter			
Q749S8	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner and outer membrane proteins	
Q748A6	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner membrane protein	
Q74CR1	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner membrane protein	AcrB/AcrD/AcrF family
Q74DI4	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Metal ion efflux pump	RND family	inner membrane protein	
Q74EX9	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner membrane protein	
Q74G55	Geobacter sulfurreducens (strain ATCC 51573 / DSM 12127 / PCA)	Efflux pump	RND family	inner membrane protein	
Q79MP3	Serratia marcescens subsp. marcescens.	Multidrug resistance protein MdtC			
Q7ACM1	Escherichia coli O157:H7.	Multidrug resistance protein MdtC			
Q7B054	Cupriavidus metallidurans.	CnrA protein			
Q7M912	Wolinella succinogenes (strain ATCC 29543 / DSM 1740 / LMG 7466 /NCTC 11488 / FDC 602W)	RND PUMP PROTEIN			
Q7M9I0	Wolinella succinogenes (strain ATCC 29543 / DSM 1740 / LMG 7466 /NCTC 11488 / FDC 602W)	Efflux pump membrane transporter			
Q7M9P9	Wolinella succinogenes (strain ATCC 29543 / DSM 1740 / LMG 7466 /NCTC 11488 / FDC 602W)	Efflux pump membrane transporter			
Q7MCH1	Vibrio vulnificus (strain YJ016)	Putative multidrug resistance protein			
Q7MCR8	Vibrio vulnificus (strain YJ016)	Putative silver efflux pump			
Q7MDF8	Vibrio vulnificus (strain YJ016)	Efflux pump membrane transporter			
Q7MDY8	Vibrio vulnificus (strain YJ016)	Transporter	AcrB/D/F family		
Q7MEG9	Vibrio vulnificus (strain YJ016)	Transporter	AcrB/D/F family		
Q7MEY5	Vibrio vulnificus (strain YJ016)	Transporter	AcrB/D/F family		
Q7MG13	Vibrio vulnificus (strain YJ016)	Uncharacterized protein			
PDB ID	Organism	Function Description			
---------	--------------------------------------	--			
Q7MHZ2	Vibrio vulnificus (strain YJ016)	Putative multidrug resistance protein			
Q7MLN0	Vibrio vulnificus (strain YJ016)	Transporter	AcrB/D/F family		
Q7MME3	Vibrio vulnificus (strain YJ016)	Putative multidrug resistance protein			
Q7MQH1	Vibrio vulnificus (strain YJ016)	Putative multidrug resistance protein			
Q7MWQ6	Porphyromonas gingivalis (strain ATCC BAA-308 / W83)	AcrB/AcrD/AcrF family protein			
Q7MXU3	Porphyromonas gingivalis (strain ATCC BAA-308 / W83)	Heavy metal efflux pump	CzcA family		
Q7N0N0	Photorehbus luminescens subsp. laumondii (strain DSM 15139 / CIP105565 / TT01)	Efflux pump membrane transporter			
Q7N3E1	Photorehbus luminescens subsp. laumondii (strain DSM 15139 / CIP105565 / TT01)	Multidrug resistance protein MdtC			
Q7N3E2	Photorehbus luminescens subsp. laumondii (strain DSM 15139 / CIP105565 / TT01)	Multidrug resistance protein MdtB			
Q7N8G7	Photorehbus luminescens subsp. laumondii (strain DSM 15139 / CIP105565 / TT01)	Uncharacterized protein			
Q7NCY7	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	RND multidrug efflux transporter			
Q7NDR2	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Gll4170 protein			
Q7NE52	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Glr4028 protein			
Q7NE92	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	RND multidrug efflux transporter			
Q7NFA7	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Gll3619 protein			
Q7NHP1	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	AcrB/AcrD/AcrF family protein			
Q7NJ01	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Cation efflux system protein			
Q7NL29	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	AcrB/AcrD/AcrF family protein			
Q7NM91	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Gll0876 protein			
Q7NMG0	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	AcrB/AcrD/AcrF family protein			
Q7NNM9	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	Glr0382 protein			
Q7NNZ4	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	AcrB/AcrD/AcrF family protein			
Q7NP24	Gloeobacter violaceus (strain ATCC 29082 / PCC 7421)	AcrB/AcrD/AcrF family protein			
Q7NR60	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCMIB 9131 / NCTC 9757)	Probable transmembrane drug efflux protein			
Q7NRE6	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCMIB 9131 / NCTC 9757)	Probable multidrug efflux membrane protein			
Accession	Organism Description	Function			
-----------	---	---			
Q7NUG4	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	Probable drug efflux pump transmembrane protein			
Q7NUG5	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	Probable drug efflux pump transmembrane protein			
Q7NVV1	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	Efflux pump membrane transporter			
Q7NWL0	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	NolG efflux transporter			
Q7NXK0	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	Probable multidrug efflux protein			
Q7POY1	Chromobacterium violaceum (strain ATCC 12472 / DSM 30191 / JCM 1249 / NBRC 12614 / NCIMB 9131 / NCTC 9757)	Efflux pump membrane transporter			
Q7UDI0	Shigella flexneri.	Efflux pump membrane transporter			
Q7UEM8	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Cation efflux system protein CZCA			
Q7UH35	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Predicted cation efflux system (AcrB/AcrD/AcrF family)			
Q7UJP2	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Probable multidrug resistance protein			
Q7UJT6	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Acriflavine resistance protein B			
Q7ULF2	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	RND multidrug efflux transporter MexF			
Q7USF5	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Cation efflux system protein czcA-1			
Q7UZ48	Rhodopirellula baltica (strain DSM 10527 / NCIMB 13988 / SH1)	Cation efflux system	AcrB/AcrD/AcrF family		
Q7VII0	Helicobacter hepaticus (strain ATCC 51449 / 3B1)	Uncharacterized protein			
Q7VIM1	Helicobacter hepaticus (strain ATCC 51449 / 3B1)	SSD domain-containing protein			
Q7VJR9	Helicobacter hepaticus (strain ATCC 51449 / 3B1)	Efflux pump membrane transporter			
Q7VLE5	Haemophilus ducreyi (strain 35000HP / ATCC 700724)	Acriflavine resistance protein			
Q7VSV8	Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	AcrB/AcrD/AcrF family protein			
Q7VSV9	Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	AcrB/AcrD/AcrF family protein			
Q7VWW1	Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	Efflux pump membrane transporter			
Q7VZD3	Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	Efflux pump membrane transporter			
Q7VZR4	Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	Integral membrane component of multidrug efflux system			
Accession	Organism	Description			
-----------	---	---			
Q7W3S1	*Bordetella parapertussis* (strain 12822 / ATCC BAA-587 / NCTC 13253)	AcrB/AcrD/AcrF family protein			
Q7W3S2	*Bordetella parapertussis* (strain 12822 / ATCC BAA-587 / NCTC 13253)	AcrB/AcrD/AcrF family protein			
Q7W438	*Bordetella parapertussis* (strain 12822 / ATCC BAA-587 / NCTC 13253)	Probable membrane protein			
Q7WAC5	*Bordetella parapertussis* (strain 12822 / ATCC BAA-587 / NCTC 13253)	Efflux pump membrane transporter			
Q7WC93	*Bordetella parapertussis* (strain 12822 / ATCC BAA-587 / NCTC 13253)	Efflux pump membrane transporter			
Q7WSD5	*Serratia marcescens.*	Efflux pump membrane transporter			
Q7WTQ9	*Erwinia amylovora*	Efflux pump membrane transporter			
Q7X364	uncultured Acidobacteria bacterium.	Putative multidrug resistance pump			
Q814J5	*Bacillus cereus* (strain ATCC 14579 / DSM 31 / JCM 2152 / NBRC 15305 / NCIMB 9373 / NRRL B-3711)	Acriflavin resistance plasma membrane protein			
Q81HR8	*Bacillus cereus* (strain ATCC 14579 / DSM 31 / JCM 2152 / NBRC 15305 / NCIMB 9373 / NRRL B-3711)	Acriflavin resistance plasma membrane protein			
Q81JL8	*Bacillus anthracis.*	Transporter	AcrB/AcrD/AcrF family protein		
Q820K8	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Acriflavin resistance protein:Heavy metal efflux pump CzcA			
Q820R2	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Acriflavin resistance protein:Heavy metal efflux pump CzcA			
Q820R6	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Acriflavin resistance protein:Heavy metal efflux pump CzcA			
Q82AL7	*Streptomyces avermitilis* (strain ATCC 31267 / DSM 46492 / JCM 5070 / NBRC 14893 / NCIMB 12804 / NRRL 8165 / MA-4680)	Putative cation/multidrug efflux protein			
Q82T82	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Acriflavin resistance protein			
Q82VH6	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Efflux pump membrane transporter			
Q82WK5	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Acriflavin resistance protein			
Q82XT4	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Efflux pump membrane transporter			
Q82XU2	*Nitrosomonas europaea* (strain ATCC 19718 / CIP 103999 / KCTC 2705 / NBRC 14298)	Efflux pump membrane transporter			
Q83CM1	*Coxiella burnetii* (strain RSA 493 / Nine Mile phase I)	Acriflavin resistance plasma membrane protein			
Q83DD4	*Coxiella burnetii* (strain RSA 493 / Nine Mile phase I)	Acriflavin resistance plasma membrane protein			
Q83DH8	*Coxiella burnetii* (strain RSA 493 / Nine Mile phase I)	Acriflavin resistance plasma membrane protein			
Q83Ki4	*Shigella flexneri.*	Multidrug resistance protein MdtC			
Q83SC3	*Shigella flexneri.*	Putative inner membrane component for iron transport			
Q840D3	*Acinetobacter baumannii.*	Efflux pump membrane transporter			
ID	Organism	Description			
-----	---	---			
Q84R0	Pseudomonas putida (strain ATCC 700007 / DSM 6899 / BCRC 17059 / F1)	Probable efflux pump membrane transporter SepB			
Q84GI9	Serratia marcescens subsp. marcescens.	Efflux pump membrane transporter			
Q87BP4	Xylella fastidiosa (strain Temecula1 / ATCC 700964)	Acriflavin resistance protein			
Q87DA3	Xylella fastidiosa (strain Temecula1 / ATCC 700964)	Efflux pump membrane transporter			
Q87EU7	Xylella fastidiosa (strain Temecula1 / ATCC 700964)	Acriflavin resistance protein			
Q87GX5	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Efflux pump membrane transporter			
Q87HZ7	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Transporter AcrB/D/F family			
Q87IX6	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative cation efflux system transmembrane protein			
Q87IY5	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Efflux pump membrane transporter			
Q87J90	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative efflux protein			
Q87JA9	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative multidrug resistance protein			
Q87LY6	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative multidrug resistance protein			
Q87QH1	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Transporter AcrB/D/F family			
Q87QQ7	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Efflux pump membrane transporter			
Q87R57	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative multidrug resistance protein			
Q87TN1	Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633)	Putative multidrug resistance protein			
Q87UV1	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	AcrB/AcrD/AcrF family protein			
Q87X84	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	Efflux pump membrane transporter			
Q87ZX0	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	AcrB/AcrD/AcrF family protein			
Q880Q4	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	Efflux pump membrane transporter			
Q881X7	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	AcrB/AcrD/AcrF family protein			
Q882N4	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	Efflux pump membrane transporter			
Q887I4	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	AcrB/AcrD/AcrF family protein			
Q889D0	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	AcrB/AcrD/AcrF family protein			
Q88AL5	Pseudomonas syringae pv. tomato (strain ATCC BAA-871 / DC3000)	Cation efflux family protein			
Q88BZ6	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Probable copper efflux transporter CzcA family			
Accession	Organism (strain)	Function			
-----------	------------------	----------			
Q88CK7	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	RND efflux transporter			
Q88GY2	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Multidrug efflux transport system-membrane subunit			
Q88HA4	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Efflux pump membrane transporter			
Q88HD4	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Efflux pump membrane transporter			
Q88HQ1	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	RND efflux transporter			
Q88I31	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Efflux pump membrane transporter			
Q88K81	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Cation membrane transporter			
Q88L70	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Multidrug efflux RND transporter			
Q88MQ3	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	RND efflux transporter			
Q88N31	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Probable efflux pump membrane transporter TtgB			
Q88PE4	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Putative Multidrug efflux RND transporter			
Q88RT6	Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440)	Cation efflux system protein			
Q89DV7	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89DX5	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family protein			
Q89EQ3	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family protein			
Q89FH4	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89I68	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family cation efflux protein			
Q89K38	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89KG8	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Blr4937 protein			
Q89KH2	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Blr4933 protein			
Q89LT5	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Blr4458 protein			
Q89LT6	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family protein			
Q89M74	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Blr4319 protein			
Q89MT0	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Probable cation efflux system protein			
Q89NE0	Bradyrhizobium diazoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family protein			
Accession	Organism	Protein Description			
-----------	----------	---------------------			
Q89NG9	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89QU2	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Cation efflux system protein			
Q89R38	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	RagC protein			
Q89RB1	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Blr2861 protein			
Q89SH7	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Cation efflux system protein			
Q89TZ3	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Multidrug resistance protein			
Q89UA1	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89VP8	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Efflux pump membrane transporter			
Q89XF8	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Acr family transport protein			
Q89KK8	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	Cation efflux protein			
Q89YN1	Bradyrhizobium diaeoefficiens (strain JCM 10833 / IAM 13628 / NBRC14792 / USDA 110)	AcrB/AcrD/AcrF family protein			
Q89YN7	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Cation efflux system protein			
Q8AOQ2	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Cation efflux system protein	AcrB/AcrD/AcrF family protein		
Q8A2G7	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	AcrB/AcrD family multidrug resistance protein			
Q8A3L3	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Multidrug resistance protein mexB (Multidrug-efflux protein)			
Q8A4B7	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Putative cation efflux transporter			
Q8A5I7	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Multidrug efflux membrane fusion protein			
Q8A647	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Cation efflux system protein	AcrB/AcrD/AcrF family protein		
Q8A6B8	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Multidrug resistance protein	AcrB/AcrD family		
Q8A899	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Transporter	AcrB/D/F family		
Accession	Organism	Description			
-----------	--	--			
Q8A9C9	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Putative cation efflux pump			
Q8A9Y5	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Cation efflux system protein czcA			
Q8AB07	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Putative aminoglycoside efflux pump (Acriflavine resistance protein)			
Q8AB13	Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	Cation efflux system (AcrB/AcrD/AcrF family)			
Q8CK05	Streptomyces coelicolor (strain ATCC BAA-471 / A3(2))	Putative integral membrane efflux protein			
Q8CX78	Oceanobacillus iheyensis (strain DSM 14371 / CIP 107618 / JCM 11309 / KCTC 3954 / HTE831)	Acriflavine resistance protein (Cation efflux system)			
Q8DIH0	Thermosynechococcus elongatus (strain BP-1)	Multidrug efflux transporter			
Q8DJR3	Thermosynechococcus elongatus (strain BP-1)	AcrB/AcrD/AcrF family protein			
Q8E808	Shewanella oneidensis (strain MR-1)	Copper/silver efflux pump permease component CusA			
Q8E8B2	Shewanella oneidensis (strain MR-1)	Efflux pump membrane transporter			
Q8E8R3	Shewanella oneidensis (strain MR-1)	Copper/silver efflux pump permease component CusA			
Q8EA94	Shewanella oneidensis (strain MR-1)	HAE1 family efflux pump permease component			
Q8EBL9	Shewanella oneidensis (strain MR-1)	Efflux pump membrane transporter			
Q8EBM6	Shewanella oneidensis (strain MR-1)	HAE1 family efflux pump permease component			
Q8EC65	Shewanella oneidensis (strain MR-1)	RND superfamily efflux pump permease component			
Q8ECN3	Shewanella oneidensis (strain MR-1)	Thiophosphate efflux pump permease component			
Q8EFP6	Shewanella oneidensis (strain MR-1)	RND superfamily efflux pump permease component 2			
Q8EFP7	Shewanella oneidensis (strain MR-1)	RND superfamily efflux pump permease component 1			
Q8EFT4	Shewanella oneidensis (strain MR-1)	HAE1 family efflux pump permease component			
Q8EI98	Shewanella oneidensis (strain MR-1)	RND superfamily efflux pump permease component			
Q8EJE7	Shewanella oneidensis (strain MR-1)	Heavy metal efflux pump permease component CzcA family			
Q8EYC8	Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601)	Cation/multidrug efflux pump			
Q8EZI2	Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601)	Acriflavine resistance protein			
Accession	Organism	Function			
------------	---	---			
Q8EZK7	Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601)	Cation/multidrug efflux pump			
Q8EZW3	Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601)	Acriflavine resistance protein			
Q8F5X3	Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601)	Heavy metal efflux pump			
Q8FC18	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Multidrug resistance protein MdtF			
Q8FG03	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Multidrug resistance protein MdtC			
Q8FG04	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Multidrug resistance protein MdtB			
Q8FK36	Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)	Cation efflux system protein CusA			
Q8FWVV9	Brucella suis biovar 1 (strain 1330)	Efflux pump membrane transporter BepG			
Q8G2M6	Brucella suis biovar 1 (strain 1330)	Efflux pump membrane transporter BepE			
Q8GC83	Klebsiella aerogenes	Efflux pump membrane transporter			
Q8GKU1	Acinetobacter sp. 4365.	Efflux pump membrane transporter			
Q8KAV4	Chlorobaculum tepidum (strain ATCC 49652 / DSM 12025 / NBRC 103806 /TLS)	AcrB/AcrD/AcrF family protein			
Q8KCX0	Chlorobaculum tepidum (strain ATCC 49652 / DSM 12025 / NBRC 103806 /TLS)	Multidrug resistance protein	AcrB/AcrD family		
Q8P3N5	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Cation efflux system protein			
Q8P4C1	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Acriflavin resistance protein			
Q8P613	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Acriflavin resistance protein			
Q8P7C9	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Efflux pump membrane transporter			
Q8P875	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Efflux pump membrane transporter			
Q8P8U2	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Transport protein			
Q8P8U3	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Transport protein			
Q8PAN9	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 /NCPPB 528 / LMG 568 / P 25)	Efflux pump membrane transporter			
Accession	Organism	Function			
------------	---	---------------------------------------			
Q8PDB8	Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 / NCPPB 528 / LMG 568 / P 25)	Cation efflux system protein			
Q8PF28	Xanthomonas axonopodis pv. citri (strain 306)	Cation efflux system protein			
Q8PFX2	Xanthomonas axonopodis pv. citri (strain 306)	Acriflavin resistance protein			
Q8PHD3	Xanthomonas axonopodis pv. citri (strain 306)	Acriflavin resistance protein			
Q8PIQ2	Xanthomonas axonopodis pv. citri (strain 306)	Efflux pump membrane transporter			
Q8PIU6	Xanthomonas axonopodis pv. citri (strain 306)	Acriflavin resistance protein			
Q8PJN1	Xanthomonas axonopodis pv. citri (strain 306)	Efflux pump membrane transporter			
Q8PKM4	Xanthomonas axonopodis pv. citri (strain 306)	Cation efflux system protein			
Q8PKU6	Xanthomonas axonopodis pv. citri (strain 306)	Transport protein			
Q8PKU7	Xanthomonas axonopodis pv. citri (strain 306)	Transport protein			
Q8PME6	Xanthomonas axonopodis pv. citri (strain 306)	Efflux pump membrane transporter			
Q8PQ89	Xanthomonas axonopodis pv. citri (strain 306)	Cation efflux system protein			
Q8PQJ5	Xanthomonas axonopodis pv. citri (strain 306)	Efflux pump membrane transporter			
Q8RE51	Fusobacterium nucleatum subsp. nucleatum (strain ATCC 25586 / CIP101130 / JCM 8532 / LMG 13131)	Acriflavin resistance protein B			
Q8RG07	Fusobacterium nucleatum subsp. nucleatum (strain ATCC 25586 / CIP101130 / JCM 8532 / LMG 13131)	Acriflavin resistance protein D			
Q8RG44	Fusobacterium nucleatum subsp. nucleatum (strain ATCC 25586 / CIP101130 / JCM 8532 / LMG 13131)	Acriflavin resistance protein B			
Q8RNP2	Legionella pneumophila.	Chemiosmotic efflux system B protein A			
Q8RNQ8	Legionella pneumophila.	AcrB/AcrD/AcrF family protein			
Q8RSM1	uncultured bacterium.	MexD protein			
Q8RTE4	Campylobacter jejuni.	Efflux pump membrane transporter			
Q8VPA8	Proteus mirabilis.	Efflux pump membrane transporter			
Q8X3J5	Escherichia coli O157:H7.	Multidrug resistance protein MdtF			
Q8X7E2	Escherichia coli O157:H7.	Efflux pump membrane transporter			
Q8X7J4	Escherichia coli O157:H7.	Multidrug resistance protein MdtB			
Q8XBY1	Escherichia coli O157:H7.	Cation efflux system protein CusA			
Q8XD55	Escherichia coli O157:H7.	Efflux pump membrane transporter			
Q8XEH2	Escherichia coli O157:H7.	Efflux pump membrane transporter			
Accession	Organism	Description			
-----------	---	---			
Q8XPP1	Ralstonia solanacearum (strain GMI1000)	Probable transport transmembrane protein			
Q8XQ28	Ralstonia solanacearum (strain GMI1000)	Probable transporter transmembrane protein			
Q8XQM3	Ralstonia solanacearum (strain GMI1000)	Probable drug efflux transmembrane protein			
Q8XQM4	Ralstonia solanacearum (strain GMI1000)	Probable drug efflux pump transmembrane protein			
Q8XQV5	Ralstonia solanacearum (strain GMI1000)	Efflux pump membrane transporter			
Q8XR28	Ralstonia solanacearum (strain GMI1000)	Putative cation efflux system transmembrane protein			
Q8XRD0	Ralstonia solanacearum (strain GMI1000)	Probable cation efflux system transmembrane protein			
Q8XR3L3	Ralstonia solanacearum (strain GMI1000)	Efflux pump membrane transporter			
Q8XSE6	Ralstonia solanacearum (strain GMI1000)	Putative cation efflux system transmembrane protein			
Q8XSI1	Ralstonia solanacearum (strain GMI1000)	Probable cation efflux system transmembrane protein			
Q8XT05	Ralstonia solanacearum (strain GMI1000)	Efflux pump membrane transporter			
Q8XUJ3	Ralstonia solanacearum (strain GMI1000)	Probable transmembrane drug efflux protein			
Q8XYV2	Ralstonia solanacearum (strain GMI1000)	Probable transmembrane drug efflux protein			
Q8Y3H0	Ralstonia solanacearum (strain GMI1000)	Efflux pump membrane transporter			
Q8YCW5	Brucella melitensis biotype 1 (strain 16M / ATCC 23456 / NCTC 10094)	Acriflavin resistance protein f			
Q8YCZ5	Brucella melitensis biotype 1 (strain 16M / ATCC 23456 / NCTC 10094)	Acriflavin resistance protein d			
Q8YF77	Brucella melitensis biotype 1 (strain 16M / ATCC 23456 / NCTC 10094)	Acriflavin resistance protein b			
Q8YF93	Brucella melitensis biotype 1 (strain 16M / ATCC 23456 / NCTC 10094)	Efflux pump membrane transporter			
Q8YHA9	Brucella melitensis biotype 1 (strain 16M / ATCC 23456 / NCTC 10094)	Acriflavin resistance protein b			
Q8YLK4	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	Alr5294 protein			
Q8YSE5	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	RND multidrug efflux transporter			
Q8YWF7	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	Alr1656 protein			
Q8Z4S4	Salmonella typhi.	Efflux pump membrane transporter			
Q8Z5F6	Salmonella typhi.	Multidrug resistance protein MdtC			
Q8Z5F7	Salmonella typhi.	Multidrug resistance protein MdtB			
Q8Z8T8	Salmonella typhi.	Efflux pump membrane transporter			
Q8ZCV9	Yersinia pestis.	Multidrug resistance protein MdtC			
Q8ZCW0	Yersinia pestis.	Multidrug resistance protein MdtB			
Q8ZLN4	Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	Efflux pump membrane transporter			
Q8ZN77	Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	Efflux pump membrane transporter			
Accession	Organism	Description			
------------	---	--			
Q8ZNQ1	*Salmonella typhimurium* (strain LT2 / SGSC1412 / ATCC 700720)	Multidrug resistance protein MdtC			
Q8ZNQ2	*Salmonella typhimurium* (strain LT2 / SGSC1412 / ATCC 700720)	Multidrug resistance protein MdtB			
Q8ZRA7	*Salmonella typhimurium* (strain LT2 / SGSC1412 / ATCC 700720)	Efflux pump membrane transporter			
Q8ZRG9	*Salmonella typhimurium* (strain LT2 / SGSC1412 / ATCC 700720)	Efflux pump membrane transporter			
Q8ZS81	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	Cation efflux system protein			
Q8ZS94	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	Cation efflux system protein			
Q92J58	*Rickettsia conorii* (strain ATCC VR-613 / Malish 7)	Acriflavin resistance protein D			
Q92M87	*Rhizobium meliloti* (strain 1021)	Efflux pump membrane transporter			
Q92NP7	*Rhizobium meliloti* (strain 1021)	Probable acriflavine resistance protein			
Q92SH0	*Rhizobium meliloti* (strain 1021)	Efflux pump membrane transporter			
Q92T03	*Rhizobium meliloti* (strain 1021)	Efflux pump membrane transporter			
Q92U15	*Rhizobium meliloti* (strain 1021)	Efflux pump membrane transporter			
Q92WK8	*Rhizobium meliloti* (strain 1021)	Probable acriflavine family protein			
Q92Y52	*Rhizobium meliloti* (strain 1021)	Cation/multidrug efflux protein			
Q92YH0	*Rhizobium meliloti* (strain 1021)	Efflux pump membrane transporter			
Q93E19	*Acinetobacter baumannii.*	Efflux pump membrane transporter			
Q93K40	*Klebsiella pneumoniae.*	Efflux pump membrane transporter			
Q93PU4	*Pseudomonas putida* (strain DOT-T1E)	Toluene efflux pump membrane transporter TtgH			
Q93SR9	*Pseudomonas putida*	Membrane-bound cation-proton-antiporter CzrA			
Q986H1	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Efflux pump membrane transporter			
Q986L9	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Component of multidrug efflux system			
Q988I4	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Efflux pump membrane transporter			
Q98B06	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	RND efflux transporter			
Q98BL7	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	RND efflux transporter			
Q98FD0	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Multidrug resistance protein			
Q98FR6	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	RND efflux transporter			
Q98GK4	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Efflux pump membrane transporter			
Q98IH3	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Probable RND efflux transporter			
Q98KL0	*Mesorhizobium japonicum* (strain LMG 29417 / CECT 9101 / MAFF 303099)	Probable RND efflux transporter			
Accession	Organism	Function			
-------------	-----------------------------------	---			
Q9A3K6	Caulobacter vibrioides (strain ATCC 19089 / CB15)	AcrB/AcrD/AcrF family protein			
Q9A4V1	Caulobacter vibrioides (strain ATCC 19089 / CB15)	Metal ion efflux RND protein family			
Q9A5Q7	Caulobacter vibrioides (strain ATCC 19089 / CB15)	AcrB/AcrD/AcrF family protein			
Q9A7D5	Caulobacter vibrioides (strain ATCC 19089 / CB15)	AcrB/AcrD/AcrF family protein			
Q9A8Z1	Caulobacter vibrioides (strain ATCC 19089 / CB15)	AcrB/AcrD/AcrF family protein			
Q9AA04	Caulobacter vibrioides (strain ATCC 19089 / CB15)	Efflux pump membrane transporter			
Q9AEG1	Klebsiella aerogenes	Efflux pump membrane transporter			
Q9AG05	Wolbachia sp. subsp. Drosophila simulans (strain wRi)	Multidrug resistance protein D			
Q9ALR2	Pseudomonas fluorescens.	CztA			
Q9CLS7	Pasteurella multocida (strain Pm70)	AcrB			
Q9F240	Stenotrophomonas maltophilia	Efflux pump membrane transporter			
Q9F7M0	Gamma-proteobacterium EBAC31A08.	Predicted cation efflux system (AcrB/AcrD/AcrF family)			
Q9F8V7	Rhizobium radiobacter	Efflux pump membrane transporter			
Q9HV9	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Efflux pump membrane transporter			
Q9HW27	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9HW4	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9HXW4	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9HY87	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Efflux pump membrane transporter			
Q9I0V6	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9I0V7	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9I0W2	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Resistance-Nodulation-Cell Division (RND) divalent metal cation efflux transporter CzcA			
Q9I0Y8	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Efflux pump membrane transporter			
Accession Number	Organism and Strain Information	Functional Description			
------------------	--	------------------------			
Q9I3R1	*Pseudomonas aeruginosa* (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9I6X4	*Pseudomonas aeruginosa* (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)	Probable Resistance-Nodulation-Cell Division (RND) efflux transporter			
Q9JY67	*Neisseria meningitidis* serogroup B (strain MC58)	Efflux pump membrane transporter			
Q9K6B3	*Bacillus halodurans* (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM9153 / C-125)	Cation efflux system			
Q9KJC2	*Pseudomonas putida*	Antibiotic efflux pump membrane transporter ArpB			
Q9KLV3	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Transporter	AcrB/D/F family		
Q9KR85	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Transporter	AcrB/D/F family		
Q9KRG9	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Transporter	AcrB/D/F family		
Q9KTI8	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Multidrug resistance protein	putative		
Q9KU94	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Multidrug resistance protein	putative		
Q9KV12	*Vibrio cholerae* serotype O1 (strain ATCC 39315 / El Tor Inaba N16961)	Multidrug resistance protein	putative		
Q9KW65	*Pseudomonas syringae*	ORFF protein			
Q9KWV4	*Pseudomonas putida* (strain DOT-T1E)	Toluene efflux pump membrane transporter TtgE			
Q9PAV9	*Xylella fastidiosa* (strain 9a5c)	Acriflavin resistance protein			
Q9PB6	*Xylella fastidiosa* (strain 9a5c)	Efflux pump membrane transporter			
Q9PBQ7	*Xylella fastidiosa* (strain 9a5c)	Cation efflux system protein			
Q9PGQ5	*Xylella fastidiosa* (strain 9a5c)	Acriflavin resistance protein			
Q9RBY8	*Stenotrophomonas maltophilia*	Efflux pump membrane transporter			
Q9RG59	*Pseudomonas aeruginosa*	Efflux pump membrane transporter			
Q9RLI8	*Pseudomonas aeruginosa*	CzrA protein			
Q9RQG6	*Staphylococcus aureus*	AcrB/AcrD/AcrF family protein			
Q9WYK5	*Thermotoga maritima* (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)	Cation efflux system protein	putative		
Q9ZDZ3	*Rickettsia prowazekii* (strain Madrid E)	ACRIFLAVIN RESISTANCE PROTEIN D (AcrD)			
Q9ZH24	*Pseudomonas aeruginosa*	Efflux pump membrane transporter			
Q9ZHC9	*Salmonella typhimurium*	Putative cation efflux system protein SilA			
Q9ZJO5	*Helicobacter pylori* (strain J99 / ATCC 700824)	CATION EFFLUX SYSTEM PROTEIN			
Q9ZKN2	*Helicobacter pylori* (strain J99 / ATCC 700824)	Putative cation efflux system protein			
Q9ZLM5	*Helicobacter pylori* (strain J99 / ATCC 700824)	Putative efflux transporter			
Q9ZNG8	*Pseudomonas aeruginosa*	Efflux pump membrane transporter			
