Kotak, Jesal D.; Barma, Mustansir
Bias induced drift and trapping on random combs and the Bethe lattice: fluctuation regime and first order phase transitions. (English) Zbl 07515917
Physica A 597, Article ID 127311, 15 p. (2022)

Summary: We study the competition between field-induced transport and trapping in a disordered medium by studying biased random walks on random combs and the bond-diluted Bethe lattice above the percolation threshold. While it is known that the drift velocity vanishes above a critical threshold, here our focus is on fluctuations, characterized by the variance of the transit times. On the random comb, the variance is calculated exactly for a given realization of disorder using a ‘forward transport’ limit which prohibits backward movement along the backbone but allows an arbitrary number of excursions into random-length branches. The disorder-averaged variance diverges at an earlier threshold of the bias, implying a regime of anomalous fluctuations, although the velocity is nonzero. Our results are verified numerically using a Monte Carlo procedure that is adapted to account for ultra-slow returns from long branches. On the Bethe lattice, we derive an upper bound for the critical threshold bias for anomalous fluctuations of the mean transit time averaged over disorder realizations. Finally, as for the passage to the vanishing velocity regime, it is shown that the transition to the anomalous fluctuation regime can change from continuous to first order depending on the distribution of branch lengths.

MSC:
82-XX Statistical mechanics, structure of matter
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
65C05 Monte Carlo methods

Keywords:
disordered media; random combs; anomalous transport; first return time; Monte Carlo methods

Full Text: DOI

References:
[1] Alexander, S.; Bernasconi, J.; Schneider, W. R.; Orbach, R., Excitation dynamics in random one-dimensional systems, Rev. Modern Phys., 53, 175-198 (1981) · Zbl 0465.76083
[2] Havlin, S.; Ben-Avraham, D., Diffusion in disordered media, Adv. Phys., 36, 6, 695-798 (1987)
[3] Bouchaud, J.-P.; Georges, A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195, 4, 127-293 (1990)
[4] Böttger, H.; Bryksin, V. V., Hopping conductivity in ordered and disordered systems (III), Phys. Status Solidi (B), 113, 1, 9-49 (1982)
[5] Fischer, L.v.; Gordon, A. H.v., An Introduction to Gel Chromatography, 338 (1969), North-Holland: North-Holland Amsterdam
[6] De Vos, J.; Broeckhoven, K.; Eiltink, S., Advances in ultrahigh-pressure liquid chromatography technology and system design, Anal. Chem., 88, 1, 262-278 (2016)
[7] Ohktsuki, T.; Keyes, T., Mobility and linear response theory on percolation lattices, Phys. Rev. Lett., 52, 1177-1179 (1984)
[8] Odagaki, T.; Lax, M., Coherent-medium approximation in the stochastic transport theory of random media, Phys. Rev. B, 24, 5284-5294 (1981)
[9] Pury, P. A.; Cáceres, M. O., Survival and residence times in disordered chains with bias, Phys. Rev. E, 66, Article 021112 pp. (2002)
[10] Barma, M.; Dhar, D., Directed diffusion in a percolation network, J. Phys. C: Solid State Phys., 16, 8, 1451-1458 (1983)
[11] Derrida, B., Velocity and diffusion constant of a periodic one-dimensional hopping model, J. Stat. Phys., 31, 3, 433-450 (1983)
[12] Dhar, D., Diffusion and drift on percolation networks in an external field, J. Phys. A: Math. Gen., 17, 5, L257-L259 (1984)
[13] White, S. R.; Barma, M., Field-induced drift and trapping in percolation networks, J. Phys. A: Math. Gen., 17, 15, 2995-3008 (1984)
[14] Pottier, N., Diffusion on random comblike structures: field-induced trapping effects, Physica A, 216, 1, 1-19 (1995)
[15] Balakrishnan, V.; Van den Broeck, C., Transport properties on a random comb, Physica A, 217, 1, 1-21 (1995)
[16] Bustinduy, S.; Reyes, E. R.; Cáceres, M. O., Biased diffusion in anisotropic disordered systems, Phys. Rev. E, 62, 7664-7669 (2000)
[17] Damaerd, T.; Maes, C., Death and resurrection of a current by disorder, interaction or periodic driving, J. Stat. Phys., 173, 1, 99-119 (2018) · Zbl 1410.78006
[18] Dhar, D.; Stauffer, D., Drift and trapping in biased diffusion on disordered lattices, Internat. J. Modern Phys. C, 09, 02, 349-355 (1998)
[19] Kirsch, A., Phase transition in two-dimensional biased diffusion, Internat. J. Modern Phys. C, 09, 07, 1021-1024 (1998)
[20] Stauffer, D., New simulations on old biased diffusion, Physica A, 266, 1, 35-41 (1999)
[21] Aslangul, C.; Pottier, N.; Saint-James, D., Velocity and diffusion coefficient of a random asymmetric one-dimensional hopping model, J. de Phys., 50, 8, 899-921 (1989)
[22] Aslangul, C.; Bouchaud, J. P.; Georges, A.; Pottier, N.; Saint-James, D., Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice, J. Stat. Phys., 55, 1, 461-468 (1989)
[23] Weiss, G. H.; Havlin, S., Some properties of a random walk on a comb structure, Physica A, 134, 2, 474-482 (1986)
[24] Campanino, M.; Ioffe, D.; Louidor, O., Finite connections for supercritical Bernoulli bond percolation in 2D, Markov Process. Related Fields, 16, 225-266 (2010) · Zbl 1198.82031
[25] Campanino, M.; Gianfelice, M., On the Ornstein-Zernike behaviour for the Bernoulli bond percolation on \(\mathbb{Z}^d , d \geq 3 \), in the supercritical regime, J. Stat. Phys., 145, 1407-1422 (2011) · Zbl 1231.82028
[26] Campanino, M.; Gianfelice, M., Some results on the asymptotic behavior of finite connection probabilities in percolation, Math. Mech. Complex Syst., 4, 3-4, 311-325 (2016) · Zbl 1356.60162
[27] Aslangul, C.; Pottier, N.; Chvosta, P., Analytic study of a model of diffusion on a random comblike structure, Physica A, 203, 3, 533-565 (1994)
[28] Montroll, E. W.; Weiss, G. H., Random walks on lattices II, J. Math. Phys., 6, 2, 167-181 (1965) · Zbl 1342.60007
[29] Scher, H.; Lax, M., Stochastic transport in a disordered solid. I. Theory, Phys. Rev. B, 7, 4491-4502 (1973)
[30] Klafter, J.; Silbey, R., Derivation of the continuous-time random-walk equation, Phys. Rev. Lett., 44, 55-58 (1980)
[31] Hernández-García, E.; Cáceres, M. O.; San Miguel, M., Characterizing strong disorder by the divergence of a diffusion time, Phys. Rev. A, 41, 4562-4565 (1990)
[32] Kávdha, M.; Balakrishnan, V., First passage time distributions for finite one-dimensional random walks, Pramana, 21, 2, 111-122 (1983)
[33] Ramaswamy, R.; Barma, M., Transport in random networks in a field: interacting particles, J. Phys. A: Math. Gen., 20, 10, 2973-2987 (1987)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.