Benzaldehyde as a Soil Fumigant, and an Apparatus for Rapid Fumigant Evaluation

Charles L. Wilson, Jose M. Solar, and Ahmed El Ghaouth
U.S. Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 45 Wiltshire Road, Kearneysville, WV 25430

Deborah R. Fravel
U.S. Department of Agriculture, Agricultural Research Service, Biocontrol of Plant Disease Laboratory, Room 275, Building 011A, Beltsville Agricultural Research Center, Beltsville, MD 20705-2350

Additional index words. soil fumigation, methyl bromide, natural fungicides, natural fumigants

Abstract. An apparatus was developed for the rapid and facile evaluation of soil fumigants in a controlled manner using small volumes of soil. The apparatus consisted of a manifold to which were attached six canisters containing a loamy sand soil (adjusted to –100 kPa soil water potential). The soil was infested with either conidia of Fusarium oxysporum or Trichoderma harzianum; sclerotia of Sclerotinia minor; ascospores of Talaromyces flavus; vermiculite colonized with Pythium aphanidermatum; or beet (Beta vulgaris L., cv. Detroit Red) seed colonized with Rhizoctonia solani. Using nitrogen gas (N₂) as a carrier gas, either N₂ or N₂ plus benzaldehyde was passed continuously through the soil for 24, 48, or 72 hours. At all three exposure times, benzaldehyde + N₂ reduced viability of R. solani and S. minor, and reduced populations of P. aphanidermatum and T. harzianum. Populations of F. oxysporum were reduced after 48 and 72 hours of exposure to benzaldehyde, whereas populations of T. flavus were reduced only after 72 hours of exposure. Fumigation with benzaldehyde + N₂ for 24 hours did not affect soil pH 1 week after exposure, but fumigation for 48 or 72 hours temporarily lowered pH from an average of 6.86 to 5.57 and 5.32, respectively. The biocontrol fungus, T. flavus, was less sensitive to benzaldehyde than the pathogens or the biocontrol fungus, T. harzianum. Thus, combining T. flavus with benzaldehyde to enhance biocontrol may be possible.

Methyl bromide (MB) has played a major role in preplant soil treatments for certain high-value crops like strawberries and tomatoes. Growers fumigate soil with methyl bromide to rid it of various soilborne root pathogens, harmful nematodes, and weeds before planting. About 80% of the methyl bromide produced in the United States is used to ready fields before planting [U.S. Environmental Protection Agency (EPA), 1995].

The projected loss of MB as a soil fumigant in 2005 has underscored the need for reliable, environmentally and economically acceptable alternative methods for soil disinfection (United Nations: Environmental Program, 1992, 1994). Agriculture has also depended heavily on MB for quarantine treatments for the exportation of fruit and vegetables (EPA, 1995). A variety of alternatives to MB has been proposed, including other chemical fumigants (Canullo et al., 1992; Ohr et al., 1995), heat sterilization (Litshitz et al., 1983), irradiation (Luckey, 1980), and solarization (Katan and Devay, 1991). An additional alternative may be the use of naturally occurring plant volatiles (Wilson et al., 1987, 1997). Benzaldehyde is commonly found in fruit as a flavor compound and readily decomposes to benzoic acid and water (Do et al., 1969).

Benzaldehyde has been reported to have activity as a fumigant (Wilson et al., 1987) in vitro and as a nematicide in soil (Bauske et al., 1994).

Evaluation of the effectiveness of soil fumigants applied to planting beds or greenhouse containers to control pathogens, insects, and weed seeds is difficult. Present methodologies require that the soil be fumigated in situ. This involves the fumigation of large volumes of soil and elaborate evaluation procedures to determine the effectiveness of the fumigant. In the present investigation, we devised an apparatus to more conveniently and rapidly evaluate the effectiveness of fumigants for the control of soilborne pathogens.

We elected to test natural soil fumigants in a system that allowed the continuous flow of the fumigant through a container rather than placing the soil and fumigant together in a closed system. This was to prevent high CO₂ buildup that occurs in a closed system. Carbon dioxide is fungicidal to soilborne pathogens (data not shown) and its activity confounds the effects of potential fumigants when they are tested. Also, continuous flow of the fumigant through the soil provided a uniform concentration and distribution of the test fumigant.

This research was undertaken to 1) develop a system for the rapid and reliable evaluation of soil fumigants, and 2) evaluate the capacity of a naturally occurring product to kill plant pathogenic and biocontrol fungi in soil.

Materials and Methods

Fumigation apparatus. The soil fumigation apparatus (Figs. 1–3) consisted of a manifold (Figs. 1D, 2C) to which multiple gastight, cylinder-shaped canisters (Figs. 1H, 2A), each end of the soil-containing canisters to which was attached six canisters containing a loamy sand soil (adjusted to –100 kPa soil water potential). The soil was infested with either conidia of Fusarium oxysporum or Trichoderma harzianum; sclerotia of Sclerotinia minor; ascospores of Talaromyces flavus; vermiculite colonized with Pythium aphanidermatum; or beet (Beta vulgaris L., cv. Detroit Red) seed colonized with Rhizoctonia solani. Using nitrogen gas (N₂) as a carrier gas, either N₂ or N₂ plus benzaldehyde was passed continuously through the soil for 24, 48, or 72 hours. At all three exposure times, benzaldehyde + N₂ reduced viability of R. solani and S. minor, and reduced populations of P. aphanidermatum and T. harzianum. Populations of F. oxysporum were reduced after 48 and 72 hours of exposure to benzaldehyde, whereas populations of T. flavus were reduced only after 72 hours of exposure. Fumigation with benzaldehyde + N₂ for 24 hours did not affect soil pH 1 week after exposure, but fumigation for 48 or 72 hours temporarily lowered pH from an average of 6.86 to 5.57 and 5.32, respectively. The biocontrol fungus, T. flavus, was less sensitive to benzaldehyde than the pathogens or the biocontrol fungus, T. harzianum. Thus, combining T. flavus with benzaldehyde to enhance biocontrol may be possible.

Received for publication 1 July 1998. Accepted for publication 26 Oct. 1998. We gratefully acknowledge the excellent technical assistance of Brian Otto, Mat Brazier, Lynn Kennaly, and Charles Tate and helpful suggestions provided by Dr. William Connick, Jr., USDA–ARS, New Orleans, La. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

Fig. 1. Schematic of soil fumigation apparatus: (A) nitrogen tank and regulators; (B) stainless steel gastight container; (C) plastic container filled with charcoal loaded with fumigant; (D) stainless steel manifold to which gas flow regulator and soil-containing canisters are attached; (E) gas flow regulator; (F) quick coupler attachment for easy removal of soil-containing canisters; (G) soil-containing canisters; (H) pathogen- and antagonist-infested soil; and (I) outlet nipple to which flow meter is attached.
gas flowed from the manifold through each canister and the flow-rate was regulated with an adjustable gas-flow valve (Fig. 2C) between the manifold and the soil canister. A stainless steel gas pressure tank (Fig. 3A and B) was attached to a container that held the volatiles to be tested as soil fumigants. The container was also attached to the manifold through a gastight hose (Fig. 1). Gas pressure was released from the pressure tank, which pressurized the container with the volatiles to be tested. The volatile was then propelled through the manifold with N₂ gas, where it was distributed throughout the canisters containing the soil (Fig. 1H). To avoid microbial toxicity that occurs under anaerobic conditions and high CO₂ buildup, the fumigant flowed continuously through the canister rather than being retained in an airtight compartment. This system allowed uniform retention of the candidate fumigant in the soil within the canister for a defined period and the treatment of multiple replicates at the same time. Uniform fumigation of each canister was obtained by maintaining the same flow rate through each canister. Once soil samples were fumigated, the canisters were opened and soils destructively assayed for fungal activity after 24, 48, and 72 h.

Fumigant application. The fumigant benzaldehyde was impregnated onto a carbon support (Fig. 1C) by means of the incipient wetness method (i.e., the liquid fumigant was added to the carbon up to the point of saturation). One hundred milliliters of liquid benzaldehyde was added to 280 g of activated charcoal. The benzaldehyde-impregnated carbon was deposited in a 1-L aluminum container. This container (Fig. 1B) was equipped with a gas inlet, which reached almost to the bottom, and a gas outlet orifice on the top. Nitrogen gas (N₂) from a pressurized tank was connected to the fumigant container and manifold holding the soil-containing canisters. As N₂ flowed through the aluminum container, the fumigant, which was desorbed from the carbon support, was transported through the canisters containing soil (Fig. 1G). Each canister contained 100 g of soil and was subjected to a volumetric flow rate of 50 mL·min⁻¹ at ambient temperature (Fig. 2D).

For control treatments, soil was exposed to N₂ alone. Preliminary experiments indicated that exposure of the fungi to N₂ alone was equivalent to exposure to air.

To determine the amount of fumigant applied to the soil during the fumigation process, the weight of the fumigant container plus fumigant was recorded initially and again after 1-d intervals. This was then converted to milligrams of volatile per gram of soil, yielding values of 0.263, 0.109, and 0.470 for 24, 48, and 72 h, respectively.

Soil infestation. Four pathogens were selected to represent unrelated taxonomic groups. They were *Fusarium oxysporum*, *Pythium aphanidermatum*, *Rhizoctonia solani*, and *Sclerotinia minor*. In addition, the effect of benzaldehyde was evaluated on two biocontrol fungi, *Trichoderma harzianum* and *Talaromyces flavus*.
Soil used in all experiments was Galestown gravelly loamy sand (pH 5.8, and 77.8% sand, 12.6% silt, 9.6% clay, 0.6% organic matter, cation exchange capacity 4.0) collected in Beltsville, Md. Soil was infested with fungi the day it was collected, passed through a 0.5-cm-pore-size screen, and sent by overnight mail to Kearneysville, W.Va., for fumigation.

All fungi used were from the collection of the Biocontrol of Plant Diseases Laboratory, U.S. Dept. of Agriculture, Agricultural Research Service, Beltsville, Md. F. oxysporum FGOR3 (Larkin et al., 1996) is an orange-colored mutant derived from F. oxysporum and is pathogenic on watermelon (Larkin et al., 1993). It is comparable to the wild-type F. oxysporum in growth, sporulation, and pathogenicity.

Inoculum of R. solani isolate Rs23A was prepared on sterile beet seed as previously described by Papavizas and Lewis (1986). To produce inoculum of Pythium aphanidermatum, 4L of vermiculite (grade 3; Schundler, Metuchen, N.J.) were mixed with 1.3 L V-8 vegetable juice (Campbell Soup Co., Camden, N.J.), 6.5 g CaCO₃, and 70 g potato dextrose broth (Difco, Detroit). This mixture and flasks were autoclaved for 1 h. After 4 to 8 weeks of incubation in the dark at 25 °C, cleistothecia were scraped from the agar and suspended in sterile distilled water (SDW), then disrupted in a blender for 2 min. The resulting suspension was adjusted to 10⁶ viable colony forming units (CFU)/g dry weight of soil. Soil infested with F. oxysporum or T. harzianum was incubated under constant fluorescent light at 25 °C, whereas plates from soil infested with T. flavus were incubated in the dark at 27 °C. Colonies of F. oxysporum, T. flavus, and T. harzianum were counted after 6, 10, and 7 d, respectively.

Beet seed infested with R. solani were recovered by wet sieving (2-mm pore size), washed 10 min under running tap water, and plated onto water agar (WA). Plates were examined after 24 h incubation in the dark under ambient conditions, and the number of beet seed from which R. solani had grown was recorded.

Soil containing P. aphanidermatum was serially diluted and plated onto corn meal agar plus antibiotics (CA) (Harris and Simmers, 1968). The number of CFU was recorded after 24 h of incubation under ambient conditions.

Sclerotia of S. minor were recovered by wet sieving through nylon mesh (0.18-mm pore size) as previously described (Adams, 1979). Sclerotia were plated onto WA amended with 0.0332 mg/L rose bengal (Fisher, Pittsburgh). After 5 and 10 d incubation in the dark at 25 °C, plates were examined, and hyphal growth was recorded.

Soil pH. For some experiments, after soil was recovered from the canisters and subsamples removed for enumeration of fungi, the remaining soil was again adjusted to ~100 kPa and soil pH was determined weekly for each replicate. Ten grams of soil was placed in 25 mL distilled water and mixed for 30 s. The soil suspension was kept under ambient conditions for 1 h, then mixed for 30 s, and the pH was recorded weekly for 4 weeks.

Experimental design and statistical analysis. Eighteen soil-containing canisters were fumigated during each experiment. Soil samples from each canister of the fumigator were considered one replicate. Means of population counts of soil pathogens and antagonists were compared using the analysis of variance procedure in the Statistical Analysis System.
Discussion

Any “out of bed” screening procedure for soil fumigants cannot fully emulate conditions in the field. When fumigants are tested in completely enclosed gastight containers, the buildup of CO₂ and decrease in O₂, through microbial respiration, produces conditions that are antimicrobial, which confounds the results from the fumigants being tested. Nitrogen gas was selected as a carrier for the fumigants because of its nonreactivity with the fumigant and the soil. When we fumigated with N₂ alone, the effect on soil pathogens was the same as fumigation with air.

Benzaldehyde + N₂ was an effective fumigant against the major soil pathogens *F. oxysporum*, *R. solani*, *P. aphanidermatum*, and *S. minor*. Benzaldehyde is a desirable alternative to MB since it is inexpensive, bio-degrades easily, and its eventual breakdown products (CO₂ and H₂O) are harmless to humans and the environment.

The differential effect of benzaldehyde + N₂ on soil pathogens and antagonists may be fortuitous and could provide a way of promoting biological control through fumigation. By selecting natural fumigants that inhibit pathogens and promote antagonists, a favorable environment could be created in the soil for antagonist development and subsequent disease suppression. Canullo et al. (1992) found that repeated treatments of soil with furfuraldehyde significantly increased populations of *Trichoderma* sp. and bacteria.

Although fumigation with benzaldehyde + N₂ significantly lowered soil pH values initially, within 2 weeks the pH returned to the control level. Thus, the changes in soil pH are temporary and should not interfere with agricultural production requirements.

Some fungitoxic plant volatiles may provide alternatives to MB for the fumigation of fruit, as several have been shown to have fungicidal activity (Wilson et al., 1987, 1997). Exploration has only begun of the rich reservoir of natural fungicides produced by plants as alternatives to MB. Combinations of such compounds could yield synergistic fungicidal effects. The screening apparatus that we have described should accelerate exploration of natural volatiles as soil fumigants.

The banning of methyl bromide as a preplant treatment for horticultural crops in the year 2005 will cause major problems in the culture of strawberries, tomatoes, and other vegetables. Among the efforts to find effective alternatives to methyl bromide for soil fumigation, the use of natural plant-derived volatiles is promising.

Literature Cited

Adams, P.B. 1979. A rapid method for quantitative isolation of sclerotia of *Sclerotinia minor* and *Sclerotium cepivorum* from soil. Plant Dis. Res. 63:349–351.

Bauske, E.M., R. Rodriguez-Kabana, V. Estuan, J.W. Kloepper, D.G. Robertson, C.F. Weaver, and P.S. King. 1994. Management of *Meloidogyne incognita* on cotton by the use of botanical

Fig. 5. Effects of benzaldehyde + nitrogen gas on populations of the pathogens (A) *F. oxysporum*, and (B) *P. aphanidermatum* and on the biocontrol fungi (C) *T. flavus* and (D) *T. harzianum* in soil. Control treatments received the carrier gas (nitrogen) only. Vertical bars represent standard errors of the means.
aromatic compounds. Nematropica 24:143–150.
Canullo, G.H., R. Rodriguez-Kabana, and J.W. Kloepper. 1992. Changes in soil microflora associated with control of Sclerotium rolfsii by furfuraldehyde. Biocontrol Sci. Technol. 2:159–169.
Do, J.Y., D.K. Salunkhe, and L.E. Olson. 1969. Isolation, identification and comparison of the volatiles of peach fruit as related to harvest maturity and artificial ripening. J. Food Sci. 34:618–621.
Harris, R.F. and L.E. Simmers. 1968. Plate dilution frequency technique for assay of microbial ecology. Appl. Microbiol. 16:330–334.
Katan, J. and J. DeVay. 1991. Soil solarization. CRC Press, Boca Raton, Fla.
Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soils. Rev. Plant Prot. Res. 8:114–125.
Larkin, R.P., D.L. Hopkins, and F.N. Martin. 1993. Ecology of Fusarium oxysporum f. sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83:1105–1116.
Larkin, R.P., D.L. Hopkins, and F.N. Martin. 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819.
Litshitz, R., M. Tabachnik, J. Katan, and I. Chet. 1983. The effect of sublethal heating on sclerotia of Sclerotium rolfsii. Can. J. Microbiol. 29:1607–1610.
Luckey, T.D. 1980. Hormesis with ionizing radiation. CRC Press, Boca Raton, Fla.
Marois, J.J., D.R. Fravel, and G.C. Papavizas. 1984. Ability of Talaromyces flavus to colonize the rhizosphere and its interaction with Verticillium dahliae. Soil Biol. Biochem. 16:387–390.
Ohr, H.D., J.J. Sims, N.M. Grench, J.O. Becker, and M.E. McGriffen. 1995. Methyl iodide, an ozone safe alternative for methyl bromide as a soil fumigant. Plant Dis. 80:731–735.
Papavizas, G.C., M.T. Dunn, J.A. Lewis, and J. Beagle-Ristaino. 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171–1175.
Papavizas, G.C. and J.A. Lewis. 1986. Methods for isolating, identifying, and producing inoculum of Rhizoctonia solani, p. 50–53. In: K.D. Hickey (ed.). Methods for evaluating pesticides for control of plant pathogens. Amer. Phytopathol. Soc., St. Paul, Minn.