Radiative leptogenesis in minimal seesaw models

F. R. Joaquim

Dipartimento di Fisica “G. Galilei”, Università di Padova and
INFN, Sezione di Padova,
Via Marzolo, 8 - I-35131 Padua - Italy

In the framework of seesaw models with only two heavy Majorana neutrinos, nonzero leptonic asymmetries can be radiatively generated when exact heavy neutrino mass degeneracy ($M_1 = M_2 = M$) is imposed at a scale $\Lambda_D > M$. For a specific case, we show that an acceptable value for the baryon asymmetry of the Universe can be obtained considering thermal leptogenesis.

Recently, a lot of attention has been payed to the study of a possible connection between thermal leptogenesis and neutrino masses [2], mixing and leptonic CP violation [3]. For instance, it is now known that an acceptable value for the baryon asymmetry of the Universe (BAU) can be obtained with heavy Majorana neutrinos. In this case, acceptable values for the BAU can be obtained with heavy Majorana neutrinos. In this case, acceptability for the BAU can be relaxed if one considers quasi-degenerate heavy masses as low as 1 TeV [6].

In supersymmetric theories, the above constraint on M_1 may be in conflict with the upper bound on the reheating temperature of the Universe, which can be as low as 10^6 GeV [5]. This tension between the bounds on M_1 and T_{RH} can be relaxed if one considers quasi-degenerate heavy Majorana neutrinos. In this case, acceptable values for the BAU can be obtained with heavy masses as low as 1 TeV [6].

In Ref. [1] we have studied the case where the small heavy Majorana neutrino mass-splitting, needed to enhance the CP-asymmetries, is generated radiatively. For simplicity, we have restricted ourselves to a seesaw model with only two heavy right-handed neutrinos [7]. We denote the Dirac neutrino and charged-lepton Yukawa coupling matrices respectively by Y and Y_t, while M_R will stand for the 2×2 symmetric mass matrix of the heavy right-handed neutrinos.

We start by considering that at a scale Λ_D the heavy neutrinos are degenerate, i.e. $M_1 = M_2 \equiv M$, with $M < \Lambda_D$. In this limit, CP is not necessarily conserved. Indeed, the non-vanishing of the weak-basis invariant $J_1 = M^{-6}T_r \left[Y T Y^T Y^T Y^T, Y_t T Y^T \right]$, which is not proportional to $M_2^2 - M_1^2$, would signal a violation of CP. On the other hand, a non-zero leptonic asymmetry can be generated if and only if the CP-odd invariant $J_2 = \text{Im} \left[T_r \left[H M_R^T M_R M_R^T H^T M_R \right] \right]$ does not vanish [6]. Since J_2 can be expressed in the form

$$J_2 = M_1 M_2 (M_2^2 - M_1^2) \text{Im} \left[H_{12}^2 \right], \quad H = Y^T Y,$$

$J_2 \neq 0$ requires not only $M_1 \neq M_2$ but also $\text{Im} \left[H_{12}^2 \right] \neq 0$, at the leptogenesis scale M. Although the first condition is easily guaranteed by the running of M_R from Λ_D to M, the second one requires the inclusion of quantum corrections to the Dirac neutrino Yukawa matrix Y. The renormalization group equation (RGE) for M_R is, for the extended standard (SM) and minimal supersymmetric standard (MSSM) models [8],

$$\frac{dM_R}{dt} = c (H^T M_R + M_R H), \quad t = \frac{\ln (\mu/\Lambda_D)}{16 \pi^2},$$

with $c_{SM} = 1$ and $c_{MSSM} = 2$.

*Based on the work done in collaboration with R. González Felipe and B. Nobre [4].

†This work was supported by Fundação para a Ciência e a Tecnologia under the grant SFRH/BPD/14473/2003 and by INFN.
In the basis where M_R is diagonal, and assuming that the charged-lepton Yukawa matrix Y_e is diagonal, the evolution of Y and the heavy Majorana masses M_i is given at one-loop by

$$\frac{dM_i}{dt} = 2c M_i H_{ii},$$ \hspace{0.5cm} (3)

$$\frac{dY}{dt} = k Y + \left[-a Y_e Y_e^\dagger - b Y Y^\dagger \right] Y + Y T,$$ \hspace{0.5cm} (4)

$$\frac{dH}{dt} = 2k H - 2b H^2 - 2a Y_e^\dagger Y_e^\dagger Y + [H, T],$$ \hspace{0.5cm} (5)

where k is a function of $\text{Tr}(Y_e Y_e^\dagger)$ and the gauge couplings α and δ. From Eq. (7) on can see that if $\delta_N = 0$, then

$$\text{Re}[H_{12}(t)] = 0.$$ \hspace{0.5cm} (6)

The matrix T is anti-Hermitian with $T_{ii} = 0$ and

$$T_{12} = \frac{\delta_N}{2} \text{Re}[H_{12}] + i \frac{\delta_N}{2} \text{Im}[H_{12}].$$ \hspace{0.5cm} (7)

The parameter $\delta_N \equiv M_2/M_1 - 1$ quantifies the degree of degeneracy between M_1 and M_2. From Eq. (7) on can see that if $\delta_N = 0$ at a given scale Λ_D, then the RGE in Eqs. (4) and (5) become singular, unless one imposes $\text{Re}[H_{12}] = 0$. This can be achieved by rotating the heavy fields by an orthogonal transformation O, being the rotation angle θ such that

$$\tan 2\theta = 2 \text{Re}[H_{12}]/(H_{22} - H_{11}).$$ \hspace{0.5cm} (8)

Under this transformation, $Y \rightarrow Y' = Y O$ and $H \rightarrow H' = Y_e^\dagger Y' = O^\dagger H O$. It is straightforward to show that

$$H' = \begin{pmatrix} H_{11} - \Delta & i \text{Im}[H_{12}] \\ -i \text{Im}[H_{12}] & H_{22} + \Delta \end{pmatrix},$$ \hspace{0.5cm} (9)

where $\Delta \equiv \tan \theta \text{Re}[H_{12}]$. From $\delta_N = M_2/M_1 - 1$ and Eq. (3) one has

$$\frac{d\delta_N}{dt} = 2c(\delta_N + 1)(H_{22} - H_{11}).$$ \hspace{0.5cm} (10)

In the limit $\delta_N \ll 1$, the leading-log approximation for $\delta_N(t)$ can be easily found to be

$$\delta_N(t) \simeq 2c(H_{22}' - H_{11}') t.$$ \hspace{0.5cm} (11)

For quasi-degenerate Majorana neutrinos the CP-asymmetries generated in their decays are approximately given by

$$\varepsilon_j = \frac{\text{Im}[H_{22}]}{16 \pi \delta_N H_{jj}^0} \left(1 + \frac{\Gamma^2}{4M^2\delta_N^2} \right)^{-1}, \quad j = 1, 2.$$ \hspace{0.5cm} (12)

Here, $\Gamma_j = H_{ij}' M_j/(8\pi)$ is the tree-level decay width of the heavy Majorana neutrino N_i. The above equation shows that

$$\varepsilon_i(t) \propto \text{Im}[H_{12}(t)] \text{Re}[H_{12}(t)], \quad i = 1, 2.$$ \hspace{0.5cm} (13)

Therefore, a necessary condition to have a nonzero CP-asymmetry at a given t is that $\text{Re}[H_{12}(t)] \neq 0$. Since $\text{Re}[H_{12}(0)] = 0$, one has to rely on running effects to generate a nonzero $\text{Re}[H_{12}]$. From Eqs. (7) and (12) we obtain

$$\frac{d\text{Re}[H_{12}]}{dt} \simeq \left\{ \frac{2c}{\delta_N} (H_{11}' - H_{22}') \text{Re}[H_{12}]
ight\} \cos 2\theta - 2a \text{Re}[(Y_e^\dagger Y_e^\dagger Y')_{12}].$$ \hspace{0.5cm} (14)

Taking into account that $\text{Re}[H_{12}(0)] = 0$, then

$$\text{Re}[H_{12}(t)] \simeq -\frac{a \eta^2}{16\pi^2} \text{Re}[Y_{31}^* Y_{32}^\dagger t],$$ \hspace{0.5cm} (15)

which, in terms of the Yukawa matrix Y, reads

$$\text{Re}[H_{12}(t)] \simeq -\frac{a \eta^2}{16\pi^2} \left\{ \text{Re}[Y_{31}^* Y_{32}] \cos 2\theta + \sin 2\theta \left(|Y_{31}|^2 - |Y_{32}|^2\right)/2 \right\}.$$ \hspace{0.5cm} (16)

The radiatively generated $\varepsilon_{1,2}$ can be computed from Eqs. (12) and (15).

In the following we will illustrate how the mechanism described above works for a specific example. It is convenient to define the 3×3 seesaw operator κ at Λ_D, $\kappa = Y Y^T/M$, where $Y_{ij} = y_0 y_{ij}$ is a 3×2 complex matrix. In order to reconstruct the high energy neutrino sector in terms of the low energy parameters, we choose $y_{12} = 0$. The effective neutrino mass matrix \mathcal{M} is

$$\mathcal{M} = m_3 U \text{diag}(0, \rho e^{i\alpha}, 1) U^T, \quad \rho \equiv m_2/m_3,$$ \hspace{0.5cm} (17)

where m_3 is the mass of the heaviest neutrino and α is a Majorana phase. In the present case
m_2 = \sqrt{\Delta m^2_2} \text{ and } m_3 = \sqrt{\Delta m^2_3}, \text{ where } \Delta m^2_2 \text{ and } \Delta m^2_3 \text{ are the solar and atmospheric neutrino mass-squared differences measured by neutrino oscillation experiments. When necessary, we will use the best-fit values } \Delta m^2_2 = 8.1 \times 10^{-5} \text{ eV}^2 \text{ and } \Delta m^2_3 = 2.2 \times 10^{-3} \text{ eV}^2. \text{ From these, one can determine } \\
p = \sqrt{\Delta m^2_2/\Delta m^2_3}.

The matrix \(\mathbf{U} \) is the leptonic mixing matrix which can be parameterized, as usual, in terms of three mixing angles \(\theta_{ij} \) and a Dirac-type CP-violating phase \(\delta \). The best-fit values for \(\theta_{ij} \) are \(\sin^2 \theta_{12} = 0.3 \) and \(\sin^2 \theta_{23} = 0.5 \), where \(\theta_{12} \) and \(\theta_{23} \) denote the atmospheric and solar mixing angles, respectively. For \(\theta_{13} \) we take the 3σ bound \(\sin^2 \theta_{13} < 0.047 \).

Since the radiative corrections to \(M \) are negligible in the case where its eigenvalues are hierarchical, one has \(M \approx v^2 \mathbf{Y} \mathbf{Y}^T/M \) which implies \(y_0^2 = M \sqrt{\Delta m^2_3/v^2} \). In terms of the low-energy neutrino parameters, \(\varepsilon_{1,2} \) take the approximate form

\[
\varepsilon_1 \approx -\frac{3y_0^2}{16\pi} \frac{x}{(1 - \rho)(\rho + x^2 - \Delta)} \varepsilon_1 \cos(\delta - \alpha/2)
+ \frac{3y_0^2}{16\pi} \frac{x}{(1 - \rho)(\rho + x^2 - \Delta)} \varepsilon_1 \cos(\alpha/2),
\]

where \(x = \tan \theta_{13}/(\sqrt{\rho} s_{12}) \) and

\[
\Delta = \frac{1}{2} \left[1 - \rho \right] \left[-1 + x^2 + \sqrt{1 + 2x^2 \cos \alpha + x^2} \right].
\]

We use the notation \(s_{ij} \equiv \sin \theta_{ij} \) and \(c_{ij} \equiv \cos \theta_{ij} \). Taking for instance \(\alpha \approx \pi \) and \(\delta \approx \pi/2 \), the CP asymmetry \(\varepsilon_1 \) reaches its maximum value for \(x = \sqrt{\rho} \), as can be readily seen from Eq. (19). This corresponds to \(s_{13} = \rho s_{12} \approx 0.1 \) and

\[
\varepsilon_1^{\text{max}} \approx -\frac{3y_0^2}{16\pi} \frac{x}{(1 - \rho)} \varepsilon_1 \cos(\alpha/2) \approx -10^{-6}. \tag{19}
\]

The accuracy of these approximate expressions is shown in Fig. 1a, where the CP asymmetries \(\varepsilon_1 \) are plotted as functions of \(s_{13} \) taking \(\Lambda_D = 10^{16} \text{ GeV}, M = 10^6 \text{ GeV}, \delta = \pi/2, \alpha = \pi \) and assuming \(y_\tau = 0.01 \) in the analytical estimates. The solid lines correspond to the full numerical integration of the RGE, while the dashed ones refer to the approximations given in Eq. (13). The comparison of the curves shows that, for values of \(s_{13} \lesssim 0.1, \varepsilon_2 \) is suppressed with respect to \(\varepsilon_1 \), in accordance with Eq. (13). Also, the true value of \(\varepsilon_1^{\text{max}} \) agrees with Eq. (19).

The out-of-equilibrium Majorana decays are controlled by the parameters \(K_i = \Gamma_i/H(T = M_i) \) where \(H(T) = 1.66g_*^{1/2}T^2/M_P \) is the Hubble parameter, \(g_* \approx 107 \) is the number of relativistic degrees of freedom and \(M_P = 1.2 \times 10^{19} \text{ GeV} \) is the Planck mass. Considering that the entropy remains constant while the universe cools down from \(T \approx M \) to the recombination epoch, the baryon-to-photon ratio \(\eta_B \) can be estimated using \(\eta_B \approx -10^{-2} (d_1 \varepsilon_1 + d_2 \varepsilon_2) \), where \(d_i \lesssim 1 \) are efficiency factors which account for the washout effects. In our case, it can be shown that \(|\varepsilon_2/K_2| \ll |\varepsilon_1/K_1| \) which leads to \(\eta_B \approx -10^{-2} d_1 \varepsilon_1 \).

A simple estimate of the dilution factor
d_1 can be obtained from the fit $d_1 \simeq 0.6 \left[\ln(K_1/2) \right]^{-0.6} / K_1$ [11], where K_1 is, in this case, independent of M and given by

$$K_1 \simeq \frac{44(\rho + x^2 - \Delta)}{\sqrt{1 + 2x^2 \cos \alpha + x^4}}.$$

(20)

For $\alpha \simeq \pi$, $\delta \simeq \pi/2$, the maximal value of the baryon asymmetry is then attained for $x \simeq 10^{3/5}(1 + \rho)^3 / 3 \simeq 0.23$ and $s_\tau \simeq 0.05$. From Eq. (18) we find $\varepsilon_1 \simeq -8 \times 10^{-7}$. Moreover, since Eq. (20) implies $K_1 \simeq 11$, then $d_1 \simeq 4 \times 10^{-2}$ and $\eta_B^{\text{max}} \simeq 3 \times 10^{-10}$, which is by a factor of two smaller than the observed baryon asymmetry $\eta_B = 6.1_{-0.3}^{+0.3} \times 10^{-10}$ [12]. It is worth noticing that this result is weakly dependent (apart from renormalization effects on y_τ^2) on the heavy Majorana neutrino mass scale M, as can be seen from the approximate expressions given in Eq. (18). In Fig. 1b we present the computation of η_B as a function of s_{13}. The dashed line refers to the result using only the decay of N_1 and considering an approximation for the efficiency factor, while the solid line has been obtained solving the full set of Boltzmann equations, considering both the decays of N_1 and N_2.

In Fig. 1c, η_B is computed for the MSSM case. Regarding the computation of the CP-asymmetries, a factor of two has to be included in Eq. (12) due to the presence of supersymmetric particles in the decays. Moreover, since $\varepsilon_{1,2} \propto y_\tau^2$, we expect an extra enhancement factor of $(1 + \tan^2 \beta)$ in the MSSM respective to the SM case (see also Ref. [13]). At the end, this leads to an increase of the value of η_B. The dotted and solid lines refer to the calculation where the CP-asymmetries were computed using the RGE at one and two-loop orders, respectively, for $\tan \beta = 5, 10$. The results show that the two-loop running effects can be perfectly neglected. Moreover, the maximum of η_B can be far above the experimental value, which indicates that in the MSSM there is some freedom in the choice of the CP-violating phases and s_{13}. As in the SM case, the result based on an approximation equivalent to the one in Eq. (18) (dashed-lines) agree with the exact result.

To conclude, it is worth noting that if the above mechanism is extended to models with three heavy Majorana neutrinos, then one can obtain values for η_B compatible with the experiment even in the SM case [14].

REFERENCES

1. R. González Felipe, F. R. Joaquim and B. M. Nobre, Phys. Rev. D 70 (2004) 085009.
2. G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685, 89 (2004); W. Buchmüller, P. Di Bari and M. Plümacher, arXiv:hep-ph/0406014.
3. T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Nucl. Phys. B 695 (2004) 169.
4. S. Davidson and A. Ibarra, Phys. Lett. B 535 (2002) 25.
5. M. Kawasaki, K. Kohri and T. Moroi, arXiv:astro-ph/0402490.
6. For a recent work see A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004).
7. P. H. Frampton, S. L. Glashow and T. Yanagida, Phys. Lett. B 548, 119 (2002).
8. J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B 556, 3 (1999).
9. See for example: P. H. Chankowski and S. Pokorski, Int. J. Mod. Phys. A 17, 575 (2002); S. Antusch, J. Kersten, M. Lindner and M. Ratz, Phys. Lett. B 538 (2002) 87.
10. M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6 (2004) 122.
11. E. W. Kolb and M. S. Turner, The Early Universe, (Addison-Wesley, Reading, MA, 1990).
12. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
13. K. Turzynski, Phys. Lett. B 589 (2004) 135.
14. G. C. Branco, R. González Felipe, F. R. Joaquim and B. M. Nobre, in preparation.