Slaughterhouse Study on the Prevalence and Pathological Lesions Caused by *Dictyocaulus Viviparus* Infection in Cattle and Water Buffaloes

Keivan Jamshidi1*, Afshin Zahedi1, Alireza Seidavi2, Mohammadreza Poorghasemi2

1. Department of Veterinary Pathology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
2. Department of Veterinary Pathology, Faculty of Veterinary Medicine, Rasht Branch, Islamic Azad University, Rasht, Iran
3. Department of Animal Science, Faculty of Agriculture, Rasht Branch, Islamic Azad University, Rasht, Iran

1.0.30699/ijmm.14.6.584

ABSTRACT

**Background:** *Dictyocaulus Viviparus* nematode is the cause of severe bronchitis in dairy animals which lead to significant economic losses in the industry of this type of livestock. The present study aimed to determine the incidence of *D. viviparous*, a highly endemic parasite in cattle and water buffaloes in Guilan province, Iran.

**Materials & Methods:** Stool samples from 212 cows and 189 buffaloes were tested using the Baermann technique. After slaughtering the animals, the lungs of all cows and buffaloes were isolated, sampled and carefully studied to determine *D. viviparus* in the lungs.

**Results:** In general, there was a significant difference in the prevalence of *D. viviparus* in the fecal samples of cows (22.64%) and buffaloes (26.32%). Macroscopic study revealed symptoms of severe pneumonia, nodular lesions, and hyperemia in lung tissues of 5 cows and 5 buffaloes. Microscopic (histopathological) studies showed lymphocytic bronchiolitis and multifocal eosinophilic with wide interalveolar walls in lungs infected with *D. viviparus*.

**Conclusion:** The prevalence of this parasite among cattle and buffaloes were 22.64% and 26.32%, respectively; but the difference between these two animal species was not significant. Overall, the prevalence of *D. viviparus* was higher among young animals in both species.

**Keywords:** Water Buffalo, Cattle, Nematode, *Dictyocaulus Viviparus*, Lung, Pathology

Received: 2020/04/25; Accepted: 2020/08/26; Published Online: 2020/09/26

**Corresponding Information:** Keivan Jamshidi, Department of Veterinary Pathology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran. Email: keivan_jamshidi@yahoo.com

**Copyright © 2020, This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International license which permits copy and redistribution of the material just in noncommercial usages with proper citation.**

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to: Mendeley | Zotero | RefWorks

Introduction

Livestock breeding plays an important role in the economy of villages in Guilan province in Iran and it is known as the only source of income for the rural middle class people in this province. Despite the existing problems, livestock breeding in this province is increasingly high and plays a significant role in the national economy [1]. The dairy industry always suffers from various diseases, and among them, parasitic diseases and infections are of special importance since they impede the development of the dairy industry [2].

In the livestock industry, under some circumstances, such as low production for unknown reasons, high cost of treatment and workforce, and various parasitic diseases, the extermination of animals is inevitable [3]. Control of various parasitic diseases is of the utmost importance in
Reducing costs and production-related disorders. Different parasitic infectious agents are known to be the cause of respiratory diseases in the livestock population. However, *Dictyocaulus Viviparous* has been identified as a potentially growing and costly problem (4) and the cause of parasitic pneumonia (5, 6, 7). Lungworm (*D. viviparous*) is a relatively common parasite in tropical and subtropical regions and is the cause of economic losses to the livestock industry. This parasite causes severe lung diseases in cattle, commonly referred to as parasitic bronchitis, *D. viviparous*, or husk (8). Infected herds, depending on the degree of pasture contamination, usually show a high incidence of disease and mortality (9). Clinical signs in naturally infected animals include decreased appetite and growth, increased respiration and cough (10).

*D. viviparous* is known as a parasite that causes high mortality in cattle (11). Healthy animals become infected by eating contaminated forage. Chronic inflammatory changes in the animal’s lungs include loss of ciliated epithelial cells, peribronchiolitis, eosinophilic bronchiolitis and atelectasis (12). In Iran, nematode infections in sheep and goats have been reported frequently (13, 14, 15). However, there is limited information on the natural occurrence of *D. viviparous* infection and its pathology in native cattle and buffaloes. Therefore, the present study was designed to identify the incidence and frequency of macroscopic lesions and histopathology of infection with *D. viviparous* in dairy cattle and buffaloes slaughtered in Rezvanshahr slaughterhouse in Iran.

Materials and Methods

In Rezvanshahr city, cattle and buffaloes are mainly kept in small groups (less than 10 heads) in rural areas. Dairy cattle are usually fed in a closed system using straw and concentrate, while younger animals graze on newly harvested farmland, around water canals and roadsides. Manual feeding and grazing of animals often take place throughout the year.

This research was conducted in 2018 and the inclusion criterion was the presence of cows and buffaloes infected with *D. viviparous* in the slaughterhouse. First, 189 male bulls and 212 male cows in Rezvanshahr slaughterhouse were examined for the infection of *D. viviparous* parasite in the feces. Bulls (n=140) and cows (n = 95) were divided into 3 groups: less than 1 year old, 1-3 years old, and more than 3 years old. Similarly, all bulls (n=125) and cows (n=85) were classified into 3 age groups.

Stool Test

About 25 g of fresh feces were taken from the rectum of each animal before slaughter. The samples were stored at room temperature in the laboratory. Parasite eggs were identified using the Baermann technique and studied under a microscope (13).

Macroscopic and Histopathological Studies

After slaughter, all animals were studied one by one for the presence of lesions in the lungs. Finally, 5 lungs belonging to 5 buffaloes and 5 lungs belonging to 5 cows with symptoms of severe pneumonia, nodular lesions in the lung and hyperemia were identified and selected. The trachea, bronchi, and bronchioles of the animals were carefully dissected and examined for adult lungworms. Damaged lung tissue was treated with 10% stabilized neutral formalin buffer by conventional dewatering and immersion in paraffin. Then, tissue sections with a thickness of 4-5 microns were prepared and finally stained by hematoxylin and eosin (H&D) method and studied under a light microscope (16). Microscopic lesions were examined and scored using a method previously proposed by Jung et al. (2012) (17).

Data Analysis

The collected data in the present study were analyzed using Chi-square test method with about 95% confidence using SPSS software version 16 (SPSS Inc., Chicago, IL., USA).

## Results

In the present study, the overall prevalence and infection of *D. viviparous* was recorded as 20.2%, while the prevalence of this parasite among buffaloes and cows were 26.32% and 22.64%, respectively. However, the difference between the two animal species was not significant. Overall, the prevalence of *D. viviparous* was higher among young animals in both species. The results are presented in detail in Table 1.

### Table 1. Prevalence of *Dictyocaulus viviparous* infection in fecal samples of cows and buffaloes

| Age Group | Number of cattle | Number of positive | Pct. |
|-----------|------------------|--------------------|------|
| **Cow**   |                  |                    |      |
| Under 1 year | 102             | 28                 | 27.45 |
| Between 1-2 years | 48         | 8                  | 16.66 |
| Over 2 years | 62              | 12                 | 19.33 |
| **Buffalo** | 189             |                    |      |
| Under 1 year | 91              | 23                 | 25.27 |
| Between 1-2 years | 42        | 3                  | 7.14  |
| Over 2 years | 56              | 7                  | 12.5  |
| **Total**  | 401             | 81                 | 20.2  |
Under macroscopic examination, the lungs of infected cows and buffaloes showed nodular appearance, hyperemia, pleural adhesion, and purulent exudate (Table 2). Adult cylindrical worms were abundant within the upper posterior bronchi and within the terminal branches of the posterior bronchioles. The lungs were stiff and foamy exudates were visible in the bronchi.

Table 2. Periodicity of lung lesions due to Dictyocaulus Viviparus in cows and buffaloes

| Lesions                                | Buffalo | Cow   |
|----------------------------------------|---------|-------|
|                                        | Number  | Pct.  | Number | Pct.  |
| Macroscopic                            |         |       |        |       |
| Hyperemia                              | 3       | 60    | 2      | 66.6  |
| Foam in the trachea                    | 1       | 20    | 0      | 0     |
| Stiffness of lung                      | 2       | 40    | 1      | 33.33 |
| Nodular                                | 4       | 80    | 3      | 100   |
| Pleural adhesion                       | 0       | 0     | 1      | 33.33 |
| Pleural exudation                      | 1       | 20    | 1      | 33.33 |
| Parasites in the bronchioles           | 2       | 40    | 0      | 0     |
| Histopathological                      |         |       |        |       |
| Stages of parasitic growth and development (eggs / larval stage L1, adult) | 4 | 80 | 2 | 33.33 |
| Accumulation of mononuclear cells      | 5       | 100   | 3      | 0     |
| hyperemia                              | 3       | 60    | 2      | 66.66 |
| Peribronchial fibrosis                 | 4       | 80    | 0      | 0     |
| Alveolitis                             | 4       | 80    | 0      | 0     |
| Peribronchiolar cuffing                | 3       | 60    | 1      | 33.33 |

Histopathological studies showed an abundance of exudates within the bronchioles, which mainly contained eosinophils, lymphocytes, macrophages, and giant cells. Degenerative and necrotic changes were observed in the epithelium of bronchioles. Some histopathological sections showed catarrhal bronchiolitis and atelectatic changes along with alveolitis granulomatosis and specific eosinophilic. Hyperplasia of goblet cells and lymphoid tissue around the bronchioles were also observed (Figures 1, 2, 3, and 4).
Egg clusters, freshly hatched larvae were observed in the alveoli, and rupture of the inter-alveolar wall in the lungs of cattle and buffaloes. The inter-alveolar walls were thickened due to inflammatory cell infiltration, mild fibroplasia, and proliferation of type II pneumonocytes (Figures 5 and 6).

Discussion

Previously, the prevalence and infection (34-8%) with *D. viviparus* parasite in various dairy herds and sheep in different climatic regions of different countries had been reported (18, 19, 20). Heavy rains during hot and humid seasons are suitable for the survival of infectious nematode larvae in green forage pastures that support the growth and development of these nematodes and the greater chance of being eaten by cattle and buffaloes.

Although infection with *D. viviparus* has been reported from tropical and sub-tropical countries such as Brazil (21), India (22), Malaysia (23), and Turkey (10), countries with a temperate climate, such as Ireland (24), Germany (25), the Netherlands (4), and Sweden (26) are not free of this parasite. Lungworm infection has also been reported among wildlife animals such as roe deer and cervids (27, 28).

In the present study, the prevalence of *D. viviparus* infection in young animals was insignificantly higher
The reason can be explained by the fact that older animals have grown immunity to the disease and do not repel nematode larvae (29, 30).

Different developmental stages of the parasite, including newly hatched larvae of *D. viviparus*, have also been reported in ruminants (31). In the present study, chronic inflammatory cells and increased connective tissue proliferation were observed in infected lungs. Loss of bronchial ciliated epithelial cells was observed along with inflammatory cells infiltration and formation of lymphoid follicles around the bronchioles. These pulmonary changes may be due to the proliferation of immunological cells in response to the proliferation of *D. viviparus* eggs and the migration of adult larvae into lung tissue (10).

Ploeger *et al.* (2002) reported that *D. viviparus*, the main etiologic cause of parasitic bronchitis in animals, is first swallowed as a larva and then penetrates the intestinal wall and then passes through the lymph nodes and migrates through the bloodstream to the lungs and becomes an adult worm (4). In the lungs, pathological changes occur due to the invasion and activation of eosinophils and mast cells, which lead to narrowing of the airways and cause edema, emphysema, and alveolar collapse (4). Similar changes have been reported in the lungs due to *D. viviparus* infection in cattle (25), sheep and goats (12), foal (32), deer calves (32), and Rocky Mountain elk (32).

**Conclusion**

There was no comprehensive study to determine the prevalence of *D. viviparus* infection in Iran’s climate. The findings of the present study include useful information about the prevalence of *D. viviparus* nematode infection and its pathological findings in cattle and buffaloes. Therefore, more epidemiological and molecular studies are needed to identify the characteristics of this parasite in Iran.

**Acknowledgment**

The authors of this study would like to thank the experts of Rezvanshahr slaughterhouse and the head of the Microbiology Laboratory of the Islamic Azad University, Rasht Branch, who helped us in performing this research.

**Ethical considerations**

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

**Funding and support**

This research resulted from an independent research without receiving any financial support.

**Conflict of Interest**

Authors declared no conflict of interests.
چکیده

رمز عرفانه انتقالی قابل توجهی بین دو گونه در بین دام و گاو میش بود که این تفاوت غیر معنی‌دار بود. در این مطالعه، نمونه برداری و در یک بافت ریه در این میان بیماری، افزایش در هزینه کارگری و بیماری

اطلاعات مقاله

نوبنده مسئول:
کیوان جمشیدی، بخش پاتوبولوژی دامپزشکی، دانشگاه آزاد اسلامی، واحد گرمسار، ایران

موضوع:
هزینه کارگری و بیماری‌های انگل‌داری، حذف حیوانات امری که انتقال‌داری خود را انجام نمی‌دهد (2). کنترل بیماری‌های انگل‌داری موجب گزارش از طرف ادمیتی به خود خود انگل‌داری خود را انجام نمی‌دهد (2). کنترل بیماری‌های انگل‌داری موجب گزارش از طرف بخش پاتوبولوژی و انگل‌داری خود را انجام نمی‌دهد (2). کنترل بیماری‌های انگل‌داری موجب گزارش از طرف بخش پاتوبولوژی و انگل‌داری خود را انجام نمی‌دهد (2). کنترل بیماری‌های انگل‌داری موجب گزارش از طرف بخش پاتوبولوژی و انگل‌داری خود را انجام نمی‌دهد (2).
آزمایش متفق

در حدود 25 گرم متفق تازه از رکتون حیوان پیش از ذبح
اخت شد. نمونه‌های اخت شد سپس از انثالال به آماده‌سازی در دان اتاق
شناسی Baermann تخم انگل با استفاده از تختخیک
و زیر میکروسکوپ مورد مطالعه قرار گرفت. (13)

مطالعات ماکروسکوپی و هیستوپاتولوژی

پس از ذبح تمام حیوانات (گاو و گاو = 212
رأس) به روش شناسی حضور حیوانات مبتلا به اسکوربندی قرار گرفتند. در نهایت بهره به روش گاو و گاو مربوط
به 5 رأس گاو با علائم توموئی شدید، ضایعات اندازه‌های ریه را
برخویشن شناسایی و انتخاب شدند. نای، برونیالا و برونشیول‌های
حیوانات با نوروز پیدا کرد. خونی ریوی با به فاصله شکافته و
مورد بررسی مطالعه قرار گرفت. باید به رابطه اسپید دیده در
فرمولیا به عنوان 1/10 تخم انگل ریوی غیر استو مافروخی گردیده و
در پس از بروز ریوی مافروخی گردیده (10-5 میکرون تهیه و در نهایت به روش هم‌یاکسیلین و اودوزین
زیر آمیزه شد و زیر میکروسکوپی نور مورد مطالعه قرار گرفت.
Jung (16) ضایعات ماکروسکوپی از استفاده از روشی که قابل تولید
و همکاران. (2012) آنالیز‌های بوی بررسی و اکسپردی شدند (17).

آنالیز‌های داده‌ها:

داده‌های جمع‌آوری شده در مطالعه حاضر با استفاده از روش
SPSS با نسخه 16 Chi-square test (SPSS Inc., Chicago, IL., USA)
تجارب و تحلیل شدند.

یافته‌ها

در مطالعه حاضر میزان کلوی شیوع و آندوزی به اکل (3) 20.03
است. دیکتوکوالنوزیس (Dicytocaal viviparous)
شک و آندوزی به اکل در دان اتاق با تبیپ
2/3/23
و 37/22
بود. این افتافات بین (Dicytocaal viviparous) در بین حیوانات جوان در
دو گونه دایی پیشتر با تاصل تعیین در حالی است
که نمونه‌های حیوانات دیگر یا ایکال‌ها، دیکتوکاوالنوزیس در
جوهر می‌باشد. با استفاده از دان اتاق در
2.1 دیکتوکاوالنوزیس در بین حیوانات جوان در
مورد متفق متفق و مطالعه قرار
viviparous گرفتند. گاو در 3 گروه سنی
نام (n=140) و ماده (n=85) در 3 گروه سنی
همین ترتیب تمام گاو (n=125) و ماده (n=95)
گروه سنی طبقه بندی شدند.

روش پژوهش

در شهرستان رضا شهر گاو و گویویش ضمومی داده‌ا قریک (کمتر از 10 ام) در نواحی روستایی در ایران
حیوانات شیوع معمولاً در یک دست سیستم و با استفاده از کاه و
کلش و کنسنتره تغذیه می‌شود، در حیوانات جوان و ویژه‌های کارا کازی شیوع
یافته‌ها کازی شیوع و در شاید در اطراف کازی آب و حاوی
شوا کازی شیوع در شاید در اطراف کازی آب و حاوی
با ترتیب اول در تمام

این تحقیق در سال 1397 انجام شد و معاصر و صرفاً وجود
گاو و گویویش هایی به اکل در دان اتاق D. viviparous و در این مطالعه نیز
اقدا و کالش (n=215) و ماده (n=140) در 3 گروه سنی
نام (n=125) و ماده (n=95) در 3 گروه سنی
همین ترتیب تمام گاو (n=125) و ماده (n=95)
گروه سنی طبقه بندی شدند.
جدول 1. میزان شیوع آلودگی به انگل Dictyocaulus viviparous در نمونه‌های مسطح مطالعه و ثبت شده در گاو و گاومیش

|  | گاو نر | گاومیش نر | گاومیش | گا | جمع |
|---|---|---|---|---|---|
| تعداد دام | 212 | 7 | 219 | 22 | 401 |
| زیر 1 سال | 47 | 13 | 163 | 10 | 230 |
| بین 1 تا 2 سال | 26 | 1 | 9 | 28 | 45 |
| بالای 2 سال | 46 | 9 | 18 | 67 | 91 |

جدول 2. تناوب ضایعات ریوی بدلیل Dictyocaulus viviparous در گاو و گاومیش

| ضایعات | گاو | گاومیش |
|---|---|---|
| ماکروسکوپی | 2 | 16 |
| پرخونی | 2 | 6 |
| کف درنای | 91 | 91 |
| سفت شدن قوام ریه | 0 | 75 |
| سطح ندولار | 3 | 100 |
| چسبندگی پلئور | 0 | 10 |
| اگزودایسیون پلئور | 0 | 20 |
| وجود اتانکل در برونشیول | 0 | 40 |
| ماکروسکوپی | 2 | 16 |
| تغییرات هیستوپاتولوژیک | 2 | 16 |
| مرحله L1 | 80 | 80 |
| مرحله L2 | 3 | 6 |
| مرحله L3 | 5 | 0 |
| مرحله L4 | 2 | 0 |
| مرحله L5 | 0 | 0 |
| مرحله L6 | 4 | 0 |
| تجمیع سلول های تک هسته ای | 0 | 0 |
| پرخونی | 2 | 16 |
| فیبروز بی پرخونی | 2 | 16 |
| برونشیول | 0 | 0 |
| Peribronchiolar cuffing | 3 | 6 |

در مطالعات هیستوپاتولوژیک اگزودای فراوانی درون پروسه‌ی درون پروسه‌ی مشاهده شد که عمداً حاوی اوزنی فیل ها و مارفازایه و ماکروفاژها و زبان مشاهده شد. تغییرات درون پروسه‌ی در اتیتیوم پروسه‌ی مشاهده شد. برخی مقاطع هیستوپاتولوژیک پروسه‌ی مشاهده نیز مشاهده شد (شکل‌های 1، 2، 3 و 4).
کیوان جمشیدی و همکاران
مطالعه کشتارگاهی میزان شیوع و ضایعات پاتولوژیک ناشی...

شکل ۲. ریه گاو. پرونشی. هیپرپلازی گابلت سل‌ها و سلول‌های H&E. بزرگ‌نمایی ۴×

شکل ۱. ریه گاو. پرونشی. هیپرپلازی گابلت سل‌ها و سلول‌های H&E. بزرگ‌نمایی ۴×

شکل ۳. ریه گاو. پرونشی. هیپرپلازی گابلت سل‌ها و سلول‌های H&E. بزرگ‌نمایی ۴×

شکل ۴. ریه گاو. پرونشی. هیپرپلازی گابلت سل‌ها و سلول‌های H&E. بزرگ‌نمایی ۴×

دستگاهی تخم. لاورهای تازه و شده در آلولهای پاره شده و پاره شدن دیواره آلولهای نارنجی در ریه‌های گاو و گاوگوش مانند ریه‌های گاو و گاوگوش مناسبت شده و دیواره‌های آلولهای پاره شده ارتشاح سلول‌های پتولوژیکی تیب II ضخیم شده. بودن (شکل‌های ۵ و ۶).

۱۹۲
بحث

پیش از این موارد شیوع و آلودگی (8 – 34%) به انگل Dictyocaulus viviparus درگله‌های مختلف شیری و در گوسفند در مناطق اب و هوایی مختلف کشورهای مختلف گزارش شده‌است (18، 19، 20). بارش باران‌های شدید در طول فصول گرم و مرطوب مناسب برای پدایش و رشد انگل‌های نماتود عفونی در مراتع با علوفه سبز بوده که رشد و تکامل این نماتودها و شانس بیشتر خوردگی شدن توسط گاو و گاومیش را حمایت می‌کند.

بیش از این موارد شیوع و آلودگی (8 – 34%) به انگل درگله‌های مختلف شیری و در گوسفند Dictyocaulus viviparus در مناطق اب و هوایی مختلف کشورهای مختلف گزارش شده‌است (18، 19، 20). بارش باران‌های شدید در طول فصول گرم و مرطوب مناسب برای پدایش و رشد انگل‌های نماتود عفونی در مراتع با علوفه سبز بوده که رشد و تکامل این نماتودها و شانس بیشتر خوردگی شدن توسط گاو و گاومیش را حمایت می‌کند.

کشورهایی که دارای آب و هوای temperate climate هستند: ایرلند (24)، آلمان (25)، هلند (4) و سوئد (26) علی‌الخصوص نیستند. آلودگی به Dictyocaulus viviparus از کشورهایی از کشورهای از کشورهای tropical و sub-tropical گزارش شده است، مانند برزیل (21)، هندوستان (22)، مالزی (23) و ترکیه (10).

در مطالعه حاضر میزان شیوع انگل Dictyocaulus viviparus در حیوانات جونه به شکل غیرمعنی‌داری (P=0.68) بالاتر بود (جدول 4). دلیل آن را می‌توان این‌گونه توجیه کرد که حیوانات مسن توانسته‌اند ایمنی پیدا کنند و لاروهای نماتود را به بیرون دفع نمی‌کنند (29، 30).

مراحل تکاملی متفاوت انگل شامل لاروهای تازه هچ شده Dictyocaulus viviparus درگله‌های مختلف شیری و در گوسفند Dictyocaulus viviparus در مناطق اب و هوایی مختلف کشورهای مختلف گزارش شده‌است (18، 19، 20). بارش باران‌های شدید در طول فصول گرم و مرطوب مناسب برای پدایش و رشد انگل‌های نماتود عفونی در مراتع با علوفه سبز بوده که رشد و تکامل این نماتودها و شانس بیشتر خوردگی شدن توسط گاو و گاومیش را حمایت می‌کند.

اگرچه آلودگی به Dictyocaulus viviparus برای حیوانات حیات وحشی نیز گزارش و ثبت شده است (27، 28).

در مطالعه حاضر میزان شیوع انگل Dictyocaulus viviparus در حیوانات جونه به شکل غیرمعنی‌داری (P=0.68) بالاتر بود (جدول 4). دلیل آن را می‌توان این‌گونه توجیه کرد که حیوانات مسن توانسته‌اند ایمنی پیدا کنند و لاروهای نماتود را به بیرون دفع نمی‌کنند (29، 30).

۵۹۳
سیاسگاری
بدین وسیله از کارشناسان محترم کشتارگاه رضوان شهر و مستند آزمایشگاه میکروپولیزی دانشگاه آزاد اسلامی اجرای این پژوهش یاری کردند. تقدیر و تشکر می‌شود.

تعارض در منافع
این مقاله پژوهشی مستقل است که بدون حمایت مالی بوده و با توجه به درک و اطلاعات معنوی و هیچ‌گونه تعارض در منافعی فراهم نکرده است. در انجام مطالعه حاضر، تلاش نشده است تا جامع در جهت تعیین و شناسایی عوامل مالی و هیچ‌گونه تعارض در منافعی فراهم نکرده است.

نتایج و گفتار
پیش از این مطالعه‌های جامع در جهت تعبیه و وکالتی Dictyocaulus viviparus میزان شیوع به‌همراه پاتولوژی دیگری به منابعی در شرایط آب و هوایی ایران صورت نگرفته بود. به‌این‌نحوی مطالعه‌های پیامدهای شیوع حاضر شامل اطلاعات دقیقی در خصوص میزان شیوع آلودگی به نماتود کرم روبوی Dictyocaulus viviparus و پاتولوژی آسیب‌شناسی آن در گاو و گاوگوش است. بنابراین، مطالعات ایپیدمیولوژیک و مکانولوژی جهت پشتیبانی خصوصیات این ایامگر در ایران ضروری به نظر می‌رسد.

Reference

1. Poorghasemi M, Chamani M, Mirhosseini SZ, Sadeghi AA, Seidavi A. Effect of probiotic and different sources of fat on performance, carcass characteristics, intestinal morphology and ghrelin expression on broiler chickens. Kafkas Univ Vet Fak Derg. 2017; 24(2): 169-178.
2. Alim MA, Das S, Roy K, Masuduzzaman M, Sikder S, Hassan MM, et al. Prevalence of hemoprotozoan diseases in cattle population of Chittagong division, Bangladesh. Pak Vet J. 2012; 32: 221-224.
3. Khan MN, Rehman TU, Sajid MS, Abbas RZ, Zaman MA, Sikandar A, et al. Determinants influencing prevalence of coccidiosis in Pakistani buffaloes. Pak Vet J. 2013; 33: 287-290.
4. Ploeger HW, Borgsteede FH, Sol J, Mirck MH, Huyben MW, Kooyman FN, et al. Cross sectional serological survey on gastrointestinal and lung nematode infections in first and second-year replacement stock in the Netherlands: relation with management practices and use of anthelmintics. Vet Parasitol. 2002; 90: 285-304. [DOI:10.1016/S0304-4017(00)00246-6]
5. Zaman MA, Iqbal Z, Khan MN, Muhammad G. Anthelmintic activity of a herbal formulation against gastrointestinal nematodes of sheep. Pak Vet J. 2012; 32: 117-121.
6. Laabs EM, Schnieder T, Strube C. Transcriptional differences between hypobiotic and non-hypobiotic preadult larvae of the bovine lungworm Dictyocaulus viviparivir. Parasitol Res. 2012; 110: 151-159. [DOI:10.1007/s00436-011-2464-7] [PMID]
7. Larsson A, Uggla A, Waller PJ, Höglund J. Performance of second-season grazing cattle following different levels of parasite control in their first grazing season. Vet Parasitol. 2011; 175: 135-140. [DOI:10.1016/j.parasite.2010.09.018] [PMID]
8. Taylor MA, Coop RL, Wall RL. Veterinary parasitology. 3rd ed. United Kingdom: Blackwell Publishing Ltd.; 2007.
9. Cantacessi C, Gasser RB, Strube C, Schnieder T, Jex AR, Hall RS, et al. Deep insights into Dictyocaulus viviparivir species transcriptomes provide unique prospects for new drug targets and disease intervention. Biotechnol Adv. 2011; 29: 261-271. [DOI:10.1016/j.biotechadv.2010.11.005] [PMID] [PMCID]
10. Verstegen MW, Boon JH, van der Hel W, Yildiz K. Prevalence of lungworm infection in sheep and cattle in the Kirikkale province. Türk Parazitol Derg. 2006; 30: 190-193.
11. Panuska C. Lungworms of ruminants. Vet Clin N Am Food A. 2006; 22: 583-593. [DOI:10.1016/j.cvfa.2006.06.002] [PMID]
12. Nashiruddullah N, Darzi MM, Shahardar RA, Kamil SA, Mir MS, Mansoor MM. Pathology of spontaneous Dictyocaulus sp. infection in hangul (Cervuselaphus hangal), sheep and goat. J Vet Parasitol. 2007; 21: 37-40.
13. Alipourazar M, Garehdagi Y, Hashemzadefarhang H. Prevalence of cattle and buffalo lung-worm infection in Tabriz city, Iran. Biol Forum. 2015; 7(1): 195-198.
14. Garehdagi Y, Rezaei saber AP, Naghizadeh A, Nazeri M. Survey on prevalence of sheep and goats lungworms in Tabriz abattoir, Iran. J Anim Vet Adv. 2011; 10(11): 1460-1461. [DOI:10.3923/java.2011.1460.1461]
15. Nematominlaih A, Moghadam G. A survey on annual infestation of sheep with lungworms based on fecal test and slaughter house study in Tabriz. J Vet Res. 2009; 64(4): 339-342.
16. Sikandar A, Cheema AH, Younus M, Aslam A, Zaman MA, Rehman T. Histopathological and serological studies

асپ (22)، گوساله گوزن قرمز (۳۲) و گزارش شده است.
on paratuberculosis in cattle and buffaloes. Pak Vet J. 2012; 32: 547-551.

17. Jung M, Jung BG, Cha SB, Shin MK, Lee WJ, Shin SW, et al. The effects of germanium biotite supplement as a prophylactic agent against respiratory infection in calves. Pak Vet J. 2012; 32: 319-324.

18. Alasaad S, Morondo P, Ducal-Rivas V, Soriguer RC, Granados JE, Serrano E, et al. Bronchopulmonary nematode infection of Capra pyrenaica in the Sierra Nevada massif, Spain. Vet Parasitol. 2009; 164: 340-343. [DOI:10.1016/j.vetpar.2009.06.019] [PMID]

19. Bennema SC, Vercruysse J, Morgan E, Stafford K, Hoglund J, Demeler J, et al. Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. Vet Parasitol. 2010; 173: 247-254. [DOI:10.1016/j.vetpar.2010.07.002] [PMID]

20. Addis M, Fromsa A, Ebuy Y. Study on the prevalence of lungworm infection in small ruminants in Gondar town, Ethiopia. Vet Res. 2011; 4: 85-89. [DOI:10.3923/vjaraa.2011.1683.1687]

21. Silva MCD, Barros RRD, Graca DL. Outbreak of dictyocaulosis in cattle in Santa Maria, RS, Brazil. Cienc Rural. 2005; 35: 629-632. [DOI:10.1590/S0103-84782005000300022]

22. Sharma RL, Dhar DN. Prevalence of Dictyocaulus viviparasinfection in Kashmir. Iranian J Parasitol. 1987; 11: 101-105.

23. Lat-Lat H, Sani RA, Hassan L, Sheikh-Omar AR, Jeyabalan S, Hishammfariz M, et al. Lungworm of cattle in Malaysia. Trop Biomed. 2010; 27: 236-240.

24. Murphy TM, Fahy KN, McAuliffe A, Forbes AB, Clegg TA, O'Brien DJ. A study of helminth parasites in culled cows from Ireland. Prev Vet Med. 2006; 76: 1-10. [DOI:10.1016/j.prevetmed.2006.04.005] [PMID]

25. Schnieder T, Kaup FJ, Drommer W. Morphological investigations on the pathology of Dictyocaulus viviparins infections in cattle. Parasitol Res. 1991; 77: 260-265. [DOI:10.1007/BF00930869] [PMID]

26. Hoglund J, Viring S, Tornqvist M. Seroprevalence of Dictyocaulus viviparins in first grazing season calves in Sweden. Vet Parasitol. 2004; 125: 343-345. [DOI:10.1016/j.vetpar.2004.07.018] [PMID]

27. Divina BP, Wilhelmsson E, Mattsson JG, Waller P, Hoglund J. Identification of Dictyocaulus spp. in ruminants by morphological and molecular analyses. Parasitol. 2000; 121: 193-201. [DOI:10.1017/S0031182099006162] [PMID]

28. Pybus MJ. Survey of hepatic and pulmonary helminths of wild cervids in Alberta. Canadian. J Wildlife Dis. 1990; 26: 453-459. [DOI:10.7589/0090-3558-26.4.453] [PMID]

29. Strube C. Parasitic bronchitis in cattle - new chances for prevention of a continuous problem? Tierarztl Umsch. 2012; 67: 387-394.

30. Holzhauer M, van Schaik G, Saatkamp HW, Ploeger HW. Lungworm outbreaks in adult dairy cows: estimating economic losses and lessons to be learned. Vet Rec. 2011; 169: 494-502. [DOI:10.1136/vr.d4736] [PMID]

31. Ranganathan S, Nagaraj SH, Hu M, Strube C, Schnieder T, Gasser RB. A transcriptomic analysis of the adult stage of the bovine lungworm, Dictyocaulus viviparus. BMC Genom. 2007; 8: 311-315. [DOI:10.1186/1471-2164-8-311] [PMID] [PMCID].

32. Bancroft JD, Marilyn G. Theory and practice of histological techniques. 6th ed. United Kingdom: Elsevier-Health Sciences Division; 2007.