Preparation of the oxypnictides and studies on their superconductivity

Ayaka KAWABATA, Sang Chul LEE, Taketo MOYOSHII, Yoshiaki KOBAYASHI, and Masatoshi SATO

Department of Physics, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan

LaFe$_{1-x}$Co$_x$AsO$_{1-y}$F$_y$ ($x=0.11$) with various y values were prepared and their electrical resistivities, superconducting diamagnetisms and Hall coefficients have been measured. 75As- and 135La-NMR studies have also been carried out. In spite of the successful Co-doping, we have not found any meaningful correlation of T_c with y, which indicates that the T_c-suppression by Co-doping is considered not to be so significant as expected for superconductors with nodes. Even for superconductors without nodes, it may not be easy to expect this small effect on T_c if there are two different (disconnected) Fermi surfaces whose order parameters have opposite phases.

We also show that the spin component of the Knight shift of 135La is plotted as a function of the resistivity at 30 K, where 135La-NMR measurements were successfully carried out. In the main panel of Fig. 1, T_c is plotted against $\rho(30 \text{ K})$, where $100y$ values are attached to the corresponding data. Inset shows the lattice parameter c against $100y$.

Fig. 1. T_c is plotted against $\rho(30 \text{ K})$, where $100y$ values are attached to the corresponding data. Inset shows the lattice parameter c against $100y$.

was successfully carried out. In the main panel of Fig. 1, T_c is plotted as a function of the resistivity at 30 K, $\rho(30 \text{ K})$. While we can find the systematic T_c-decrease with increasing $\rho(30 \text{ K})$, we do not find any correlation of T_c with y, indicating that the T_c value is not primarily determined by the Co concentration y but by the electrical resistivity ρ. and therefore that T_c-suppression by impurity scattering is much smaller than expected for order parameters Δ with nodes on the Fermi surface. Even for superconductors without nodes, this small T_c-suppression

KEYWORDS: Fe pnictides, superconductivity, NMR, Knight shift, impurity effect

1. Introduction

Superconductivity in LaFeAsO$_{1-x}$F$_x$ found by Kamihara et al. 1) presented a remarkable example of $3d$ electron superconductors and a variety of superconducting compounds having FeAs layers of edge-sharing FeAs$_4$ tetrahedra with the transition temperature T_c higher than 50 K have been found. 2) Because the superconductivity primarily occurs in the $3d$-electrons of the FeAs layers, 3,4) the magnetic interaction cannot be ignored in the study of the origin of the superconductivity.

We have prepared LaFe$_{1-x}$Co$_x$AsO$_{1-y}$F$_y$ system ($x=0.11$) and measured their electrical resistivities ρ, magnetizations M, due to the superconducting diamagnetism M_c and Hall coefficients R_H. We have also carried out 75As- and 135La-NMR measurements.

Here, we present results of the above measurements and argue the symmetry/orient of the superconductivity and the electronic state. 5) The T_c-suppression by the Co-impurities is rather weak as compared with that observed for Cu oxides. 6) We also show that the spin component of the Knight shift of 135La is almost completely suppressed by the superconductivity, confirming our previous data that the system has singlet Cooper pairs. 5)

2. Experiments

Polycrystalline samples of LaFe$_{1-x}$Co$_x$AsO$_{1-y}$F$_y$ ($x=0.11; 0 \leq y \leq 0.3$) were prepared as described in ref. 5 from initial mixtures of La, La$_2$O$_3$, LaF$_3$ and FeAs with the nominal molar ratios. A SQUID magnetometer was used to measure M_c and ρ was measured by the four terminal method and their data are in ref. 5. From the M_c-T curves we determined the T_c values. R_H was measured for samples with $y \leq 0.03$ with the magnetic field $H=7 \text{ T}$ by rotating samples. The 75As- and 135La-NMR measurements were carried out by the standard coherent pulse method, where the nuclear spin-echo intensity I was recorded with the NMR frequency or applied magnetic field changed stepwise.

3. Results and Discussion

In the inset of Fig. 1, the lattice parameter c of LaFe$_{1-x}$Co$_x$AsO$_{1-y}$F$_y$ ($x=0.11$) is plotted against y. The linear relationship between c and y guarantees that the Co doping

*corresponding author: e43247a@nucc.cc.nagoya-u.ac.jp

Fig. 2. (left) NMR intensities of 135La multiplied by T taken at a frequency $f=44.6 \text{ MHz}$ for the sample $y=0.02$ ($T_c<5 \text{ K}$) are shown at two temperatures. (right) T dependences of the NMR intensities multiplied by T at $H=7.4 \text{ T}$ and the initial spin-spin relaxation rate $1/\tau_0$ ($^\circ$). Effects of magnetic ordering can be seen at ~63 K.
rate may not be easily expected, if there are two different (disconnected) Fermi surfaces whose order parameters have opposite signs. Therefore, this smallness of the T_c suppression rate is important for arguments on the relative signs of Δ on two kinds of Fermi surfaces, and consistent with the superconductivity found in heavily Co-doped systems. As one of possible origins of the observed weak T_c-decrease with $p(30\,\text{K})$, the loss of the itinerant nature can be considered, though the intrinsic resistivity cannot be accurately estimated because of the grain-boundary effect (detailed discussion are in ref. 5). With increasing the resistivity, the behavior of the NMR spin-spin relaxation rate $1/\tau$ changes, and the initial relaxation rate $1/\tau_0$ increases, indicating that the spin fluctuation of the system increases. In Fig. 2, the T dependences of $1/\tau_0$ and spectral broadening at $T < T_N$ (left panel) are shown for the sample with $100y=2.0$ ($T_c < 5\,\text{K}$). Evidence for the antiferromagnetic (or SDW) transition at $T_N=63\,\text{K}$ found in the figure, is a further support of this idea.

Figure 3 shows the T dependence of R_{H} of the LaFe$_{1-x}$Co$_x$AsO$_{1-y}$F$_y$ ($x=0.11$) samples. While R_{H} does not exhibit any correlation with p, the behavior changes systematically with T_N, which resembles to that of high T_c Cu Oxides. If the magnetic fluctuation is relevant to the observed strong T dependence of R_{H} as in Cu oxides, the fact that the characteristic temperature of the R_{H}-T curves is smaller by a factor of 2 than that of Cu oxides is important for the consideration of T_N value.

Figure 4 shows NMR Knight shift of ^{75}As reported in our previous paper. Here, combining our new data taken up to $\sim 250\,\text{K}$ for ^{75}As and those of ^{19}F, we estimate the chemical shift of ^{75}As by the method shown in the inset and indicate it by the grey broken line. The results show that the contribution to the shift $^{75}\kappa_{\text{spin}}$ vanishes at low temperature in this system with singlet pairing. We also note that the T dependence of $^{75}\kappa$ does not exhibit the two gap nature and can roughly be explained by the simple Yosida function. It is different from the results of ref.14 for PrFeAsO$_{1-x}$F$_x$. We think that this discrepancy arises from that in PrFeAsO$_{1-x}$F$_x$, a possible influence of the Pr moments on the internal field becomes serious.

4. Summary

We have shown that the effect of Co impurities on T_c is weak, which restricts the symmetry and the possible origin of the superconductivity. The observed Knight shift indicates the singlet pairing and it roughly obeys the Yosida function.

1) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: J. Am. Chem. Soc. 130 (2008) 3296.
2) for example, Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou, and Zhong-Xian Zhao: Europhys. Lett. 82 (2008) 57002.
3) S. Ishibashi, K. Terakura, and H. Hosono: J. Phys. Soc. Jpn. 77 (2008) 053709.
4) K. Haule, J. H. Shim, and G. Kotliar: Phys. Rev. Lett. 100 (2008) 226402.
5) A. Kawabata, S. C. Lee, T. Moyoshi, Y. Kobayashi, and M. Sato: J. Phys. Soc. Jpn. 77 (2008) No.10.
6) H. Harashina, T. Nishikawa, T. Kiyokura, S. Shamoto, M. Sato, and K. Kakurai: Physica C 212 (1993) 142.
7) D. J. Singh, and M. –H. Du; Phys. Rev Lett. 100 (2008) 237003.
8) Cvetkovic, and Z. Tesanovic: arXiv:0804.467.
9) for example, A. S. Sefat, A. Huq, M. A. McGuire, R. Jin, B. C. Sales, and D. Mandrus; arXiv: 0807.0823.
10) T. Nishikawa, J. Takeda, and M. Sato: J. Phys. Soc. Jpn. 63 (1994) 1441.
11) J. Takeda, T. Nishikawa, and M. Sato: Physica C 231 (1994) 293-299.
12) H. Kontani, K. Kanki, and K. Ueda: Phys. Rev. B 59 (1999) 14723.
13) K. Ahilan, F.L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus: arXiv: 0804.4026v2.
14) K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G-Q. Zheng: Europhys. Lett. 83 (2008) 57001.