Introduction

A simple and highly sensitive method for the determination of hydrogen peroxide (H$_2$O$_2$) has broad analytical applications. It is applicable for the measurements of very low levels of H$_2$O$_2$ in foods, consumer products and environmental waters such as rainwater [1]–[3]. H$_2$O$_2$ is also present in a variety of biological foods, consumer products and environmental waters such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H$_2$O$_2$ and glucose using fluorescence correlation spectroscopy (FCS).

Many methods are now available for the assay of H$_2$O$_2$ in biological samples. They are spectrophotometry, fluorometry, chemiluminescence and electrochemistry [1]–[3][3]. Among these methods, horseradish peroxidase (HRP)-catalyzed color and fluorescence reactions have been widely used for the assay of H$_2$O$_2$ because of their simplicity and high selectivity [1], [2], [7]–[9]. Due to its low background fluorescence, HRP-catalyzed oxidation of 10-acetyl-3,7-dihydroxyphenoxazine (Amplex™ Red) with H$_2$O$_2$, which forms a highly fluorescent resorfin (λex = 563 nm; λem = 587 nm), has been extensively utilized for the assay of low concentration of H$_2$O$_2$ in biological samples. However, its detection limit for H$_2$O$_2$ is 50 nM [1], [10].

Recently, fluorescence correlation spectroscopy (FCS) has been applied to characterize and determine fluorescent components in aqueous solution at nanomolar concentrations [11], [12]. FCS measures the fluctuation in fluorescence intensity caused by diffusion of fluorescent components through a small light cavity with a confocal detection volume (0.25 fL), and analysis of the
fluorescence fluctuation offers information on mobility and concentration of fluorescent components in sample solution. When a fluorescent probe of low-molecular weight binds to protein in sample solution, slow-diffusing component (protein labeled with fluorescent probes) increases with the decrease in fast-diffusing component (fluorescent probe), which affects the fluorescence autocorrelation curve in FCS. The fluorescence autocorrelation curve is obtained after the fluctuations are recorded as a function of time and statistically analyzed by autocorrelation analysis. The average residence time (t_diff) and the absolute numbers of slow- and fast-diffusing components in the small volume can be deduced by the fluorescence autocorrelation function calculated from the fluorescence autocorrelation curve.

In order to develop a highly sensitive method for the assay of H$_2$O$_2$ by FCS, we used tyramide labeled with tetramethyl rhodamine (tyramide-TMR) as a fluorescent probe and bovine serum albumin (BSA) as a protein. Tyramide labeled with fluorescent probes have been utilized as reporter fluorescent substrate for HRP-catalyzed deposition (CARD) that is signal amplification technique in immunoassay and in situ hybridization of nucleic acids [13,14]. Similarly to tyramine and tyrosine [9], [15], [16], the tyramide gives 2,2'-dihydroxydiphenyl derivatives via tyramide radical, in the HRP-catalyzed oxidation with H$_2$O$_2$ when it is present at high concentrations. However, when applied at lower concentrations in the presence of BSA, tyramide radical binds to an electron-rich moiety of BSA such as a tyrosine residue, to give TMR-labeled BSA [14], as shown in Figure 1. Under the optimized conditions, TMR-labeled BSA (fraction of slow-diffusing component) measured by FCS was found to be proportional to H$_2$O$_2$ concentration of sample solution from 20 nM to 300 nM with a detection limit of 8 nM (S/N = 3).

Methods

Reaction solution for H$_2$O$_2$ determination

The reaction solution consisted of 0.001% P-10, 10 nM tyramide-TMR (Perkin Elmer, Waltham, MA, USA), 2 mg/mL BSA, and 3 U/mL HRP (Roche, Basel, Switzerland) in 100 mM Tris buffer (pH 7.5). Here, P-10 is a detergent for the suppression of binding between tyramide-TMR and reaction tubes. The P-10 was kindly provided by Tauns, Numazu, Japan. To the reaction solution of 480 μL, 20 μL of various concentrations of H$_2$O$_2$ solution (0, 0.2, 0.25, 0.5, 2.0, 2.5, 5.0, 7.5, and 12.5 μM) was added and incubated in a chambered coverslip (Lab-Tek 155411; Nalge Nunc International, Roskilde, Denmark) of FCS at room temperature for 20 min. For each concentration of the H$_2$O$_2$ solution, the measurements by FCS were performed 3 times.

Reaction solution for glucose determination

The reaction solution consisted of 0.001% P-10, 10 nM tyramide-TMR, 2 mg/mL BSA, 5 U/mL HRP, and 5 U/mL GOD (Roche) in 100 mM Tris buffer (pH 7.5). To the reaction solution (480 μL), 20 μL of various concentrations of glucose solution (0, 0.50, 0.75, 1.25, 2.50, 10.0, 25.0, 30.0, 37.5 and 50.0 μM) was added and incubated in a chambered coverslip of FCS at room temperature for 30 min. For each concentration of the glucose solution, the measurements by FCS were performed 3 times.

Determination of glucose in human blood plasma

The reaction solution was the same as that for glucose as described above. Human blood plasma was purchased from George King Bio-Medical (Cat No. 0020; Overland Park, KS, USA). The plasma solutions were prepared by dilution with distilled water by a factor of 200, 400, 500, 1000, 1600 and 2000. The reaction solution (480 μL) and the diluted plasma solution (20 μL) were mixed and incubated in a chambered coverslip of FCS at room temperature for 30 min. For each concentration of the plasma solution, the measurements by FCS were performed 3 times.

FCS measurement

The FCS used here was NovousGene Compact FCS (NG1532, Hamamatsu Photonics, Hamamatsu, Japan), which consisted of an LD-excitation solid-state laser (maximum power = 1 mW) and a water immersion objective (40×, NA = 1.15; Olympus, Tokyo, Japan). The excitation wavelength was 532 nm, and emissions were detected at 565 nm. The confocal pinhole diameter was adjusted to 25 μm. The sample volume was 500 μL. The diffusion time (t_{diff}) of tyramide-TMR was obtained from the experiments with 0 μM H$_2$O$_2$ solution or 0 μM glucose solution, and this diffusion time was fixed throughout the FCS measurements. The diffusion time (t_{bound}) of tyramide-TMR-BSA was obtained from the experiments with 12.5 μM H$_2$O$_2$ solution or 50.0 μM glucose solution, and this time was also fixed throughout the FCS measurements. For experiments with human plasma, both the diffusion time (t_{free}) of tyramide-TMR and the diffusion time (t_{bound}) of tyramide-TMR-BSA were set to be the same as the values for glucose solution. The FCS data were analyzed by software equipped with the FCS (Hamamatsu Photonics).
Colorimetric determination of H$_2$O$_2$ and glucose with Amplex$^\text{TM}$ Red

As a commercial available method for comparison with the present method, we used the Amplex$^\text{TM}$ Red glucose/glucose oxidase assay kit (A22189; Molecular Probes, Eugene, OR, USA) for measurements of H$_2$O$_2$ and glucose. The measurements were performed according to the manufacturer's manual. We measured the absorbance of 571 nm using a multimode microplate reader (SpectraMax M5TB, Molecular Devices, Sunnyvale, CA, USA). For each concentration of H$_2$O$_2$ solution or glucose solution, the measurements with Amplex$^\text{TM}$ Red were performed 3 times.

Detection limit and minimum value of determination

All the experimental data were obtained by subtracting the mean value of blank signals from each of the corresponding measured data. The limit of detection was obtained by $3 \times $ (standard deviation of blank signals)/(slope of a regression line for experimental data), and the minimum value of determination was obtained by $10 \times $(standard deviation of blank signals)/(slope of a regression line for experimental data).

Results

Determination of H$_2$O$_2$ concentrations

In the FCS experiments, when the H$_2$O$_2$ concentrations were increased, the existence ratio for tyramide-TMR decreased while that for tyramide-TMR-BSA increased. The former existence ratio was referred to as F1, and the latter was F2. The FCS curve proved that our FCS measurements were successful (Figure 2A). As shown in Figure 2B, a linear relation between H$_2$O$_2$ concentration and F2 was obtained in the range of 28–300 nM H$_2$O$_2$ with the detection limit of 8 nM. In a commercial available method using Amplex$^\text{TM}$ Red, we found that the detection limit was 19 nM and that the range of determination was 65 nM–1 mM (Figure 2C). That is, the detection limit and the minimum value of determination for H$_2$O$_2$ in our system were slightly more sensitive than by the commercial available method.

Determination of glucose concentrations

The determination of b-D-glucose is important in the area of industrial quality control and processing applications as well as in clinical diagnosis and treatment of diabetes [17]–[19]. Although various methods for the determination of glucose have been reported, enzymatic ones using GOD have been widely used due to their simplicity and selectivity. Therefore, we attempted to develop a highly sensitive method for the determination of glucose by coupling our FCS method with GOD-catalyzed oxidation of glucose (Figure 1). Under the optimized conditions, a linear relation between glucose concentrations and F2 (i.e. existence ratio for tyramide-TMR-BSA) was obtained in the range of 80 nM–1.5 mM glucose with the detection limit of 24 nM as shown in Figure 3A. In contrast, a commercial available method using Amplex$^\text{TM}$ Red showed a limit of detection of 2 mM and a range of determination of 6 mM–50 mM (Figure 3B). That is, the detection limit and the minimum value of determination for glucose in our system were at least 2 orders of magnitude more sensitive than in the commercial available method.

Determination of glucose concentrations in human blood plasma

The relation between dilution factor of plasma and F2 is shown in Figure 4. The limit of detection was obtained by use of the diluted plasma of 0.2×10$^{-4}$. The range of determination was...
between the diluted plasma of 0.4×10^{-4} and that of 2.0×10^{-4}. We thus applied the F2 values obtained from the diluted plasma of 0.4×10^{-4}, 1.0×10^{-4} and 2.0×10^{-4} to the calibration curve of Figure 3A, and calculated the glucose concentrations by taking account of dilution. As a result, the glucose concentrations in human blood plasma were estimated to be 4.0 mM, 5.4 mM and 5.4 mM for the diluted plasma of 0.4×10^{-4}, 1.0×10^{-4} and 2.0×10^{-4}, respectively. The average value of 4.9 mM is in good agreement with the data (3.9–6.1 mM) that are presented in a textbook of physiology [20]. Further, we asked a clinical laboratory examination company (Shikoku Chuken, Ayagawa, Kagawa, Japan) to measure the glucose concentration of our sample and obtained 4.6 mM, supporting that our data were reasonable. However, it is noteworthy that our method needs only 20 nL plasma for this determination. In contrast, when we used the Amplex™ Red method, the glucose concentrations were obtained to be 67 mM and 158 mM for the diluted plasma of 0.5×10^{-4} and that of 5.0×10^{-4}, respectively. The values seem incorrect (see Discussion).

Discussion

A current priority is the development of simple and rapid methods that facilitate reproducible determination of various species at low concentrations [21]. In the present study, we applied FCS to detect and determine H$_2$O$_2$ and glucose at low concentrations. Our developed system using FCS is versatile because of its use of a commercially available fluorescent probe, but not radio isotopes or other special chemicals. We thus succeeded in determining glucose concentrations by the detection of H$_2$O$_2$ generated from the GOD-catalyzed oxidation of glucose. The detection limit and the minimum value of determination for glucose were found to be at least 2 orders of magnitude more sensitive than with the commercial available method. We should note that not only BSA (2 mg/mL = 3.0×10^{-8} mol/mL) but also HRP (5 U/mL = 3.6×10^{-11} mol/mL) and GOD (5 U/mL = 1.6×10^{-10} mol/mL) were included in the reaction solution with tyramide-TMR for the FCS measurements. However, the reaction involved in both HRP and GOD can be neglected because the molar ratio of (HRP and GOD)/BSA was <0.0065. That is, the fluorescence signals detected by FCS were thought to mainly originate from free tyramide-TMR and tyramide-TMR-labeled BSA.

At present, Amplex™ Red is widely used for the detection of H$_2$O$_2$ [10]. However, the use of Amplex™ Red offered us the extraordinary data of glucose concentration in human blood plasma (e.g. $>\text{tens}$ of mM). This fact might be caused due to the reaction between Amplex™ Red and some molecules in blood plasma. For example, there seem to be some inhibition in the HRP reaction by reducing agents like ascorbate and cysteine in human blood. We do not know the exact reason but this inhibition is well canceled in our FCS method. Therefore, our developed method is completely superior to the measurement by use of Amplex™ Red. Moreover, our method is thought to be useful to detect the concentration of other molecules in organisms if the corresponding oxidase is available.

We should note that we need only a small amount of blood (i.e. tens of nano litter) to determine the glucose concentration in...
blood. This fact gives two advantages. The first one is that our method will offer the biopsy that reduces a burden to patients. For example, when using alcohol oxidase, we will detect the blood alcohol concentration. The use of ascorbate oxidase will detect the ascorbate concentration in foods; the use of cholesterol oxidase will detect the blood cholesterol concentration for medical checkup; the use of choline oxidase will detect the blood choline concentration for mental condition check; and the use of pyruvate oxidase will detect the blood pyruvate concentration for freshness check of preserved blood [1]–[3], [6]. The second one is that our method will contribute to facilitate medical and biological researches at a single-cell level. Because the contents in cells do not prevent from determination of a target molecule in our FCS method, the second advantage will be realized in the near future.

Author Contributions
Conceived and designed the experiments: SW TM EI. Performed the experiments: SW YS MM. Analyzed the data: SW YS MM RO. Wrote the paper: SW RO TM EI. Contributed to the writing of the paper: EI. Contributed to obtaining the grants: EI.

References
1. Zhou M, Dixu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorfin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxides. Anal Biochem 253: 162–168.
2. Nagaraja P, Shivakumar A, Shrestha AK (2009) Quantification of hydrogen peroxide and glucose using 3-methyl-2-benzothiazolinonehydrazone hydrochloride with 10.11-dihydro-3H-benz[h]azarine as chromogenic probe. Anal Biochem 395: 231–236.
3. Luo W, Li YS, Yuan J, Zhu L, Liu Z, et al. (2010) Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multi-ferroic BiFeO3 nanoparticles as a catalyst. Talanta 81: 901–907.
4. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26: 1–14.
5. Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxidase and thyroid diseases. Exp Biol Med (Maywood) 235: 421–433.
6. Hu Y, Zhang Z (2006) Determination of free cholesteral based on a novel flow-injection chemiluminescence method by immobilizing enzyme. Luminescence 23: 338–343.
7. Harpe JD, Nathan CF (1983) A semi-automated micro-assay for H2O2 release by human blood monocytes and mouse peritoneal macrophages. J Immunol Methods 78: 323–336.
8. Hwang H, Dasgupta PK (1985) Fluorometric determination of trace hydrogen peroxide in water with a flow injection system. Anal Chim Acta 170: 347–352.
9. Zaitou K, Okhura Y (1980) New fluorogenic substrates for horseradish peroxidase: rapid and sensitive assays for hydrogen peroxide and peroxidase. Anal Biochem 109: 109–113.
10. Serrano J, Jové M, Boada J, Bellmunt MJ, Pamploña R, et al. (2009) Dietary antioxidants interfere with AmpLex Red-coupled-fluorescence assays. Biochem Biophys Res Commun 388: 443–449.
11. Kim SA, Heimke KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nature Methods 4: 963–973.
12. Nomura Y, Nakamura T, Feng Z, Kinjo M (2007) Direct quantification of gene expression using fluorescence correlation spectroscopy. Curr Pharm Biotechnol 8: 286–290.
13. Belshaw MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125: 279–285.
14. Speel EJM, Hopman AHN, Kommichau P (1999) Amplification methods to increase the sensitivity of in situ hybridization: play CARD(S)? J Histochem Cytochem 47: 201–208.
15. Gross AJ, Sierr IW (1959) The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem 234: 1611–1614.
16. Tang B, Wang Y, Liang H, Chen Z, He X, et al. (2006) Studies on the oxidation reaction of tyrosine (Tyr) with H2O2-catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrophotometry and differential spectrophotometry. Spectrochimica Acta A 63: 609–613.
17. Pravda M, Adeyoju O, Iwuoha EI, Vos JG, Smyth MR, et al. (1995) Amperometric glucose biosensors based on an osmium (2+/3+) redox polymer-mediated electron transfer at carbon paste electrodes. Electroanalysis 7: 619–625.
18. Tonyushkina K, Nichols JH (2009) Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol 3: 971–980.
19. Boren SA, Clarke WL (2010) Analytical and clinical performance of blood glucose monitors. J Diabetes Sci Technol 4: 94–97.
20. Tortorella GJ, Derrickson B (2006) Appendix G3 In: Principles of Anatomy and Physiology 11th Ed. Hoboken NJ: John Wiley and Sons.
21. Kotzian P, Brázdilová P, Kalcher K, Vytřas K (2005) Determination of hydrogen peroxide, glucose and hypoxanthine using (bio) sensors based on ruthenium dioxide-modified screen-printed electrodes. Anal Lett 38: 1099–1113.