Raloxifene inhibits hepatitis C virus infection and replication

Midori Takeda, Masanori Ikeda, Kyoko Mori, Masahiko Yano, Yasuo Ariumi, Hiromichi Dansako, Takaji Wakita, Nobuyuki Kato

1 Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
2 Department of Virology II, National Institute of Infectious Disease, Tokyo 162-8640, Japan

ARTICLE INFO

Article history:
Received 21 May 2012
Received in revised form 27 July 2012
Accepted 8 August 2012

Keywords:
Hepatitis C virus
Raloxifene
Estrogen
Osteoporosis
Statin

1. Introduction

Hepatitis C virus (HCV) belongs to the Flaviviridae family and contains a positive single-stranded RNA genome of 9.6 kb. The HCV genome encodes a single polyprotein precursor of approximately 3000 amino acid residues, which is cleaved by the host and viral proteases into at least 10 proteins in the following order: Core, envelope 1 (E1), E2, p7, nonstructural 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B [1–3].

The virological study and screening of antiviral reagents for HCV was difficult until the replicon system was developed [4–7]. In 2005, an infectious HCV production system was developed using genotype 2a HCV JFH-1 and hepatoma-derived HuH-7 cells, and the HCV life cycle was reproduced in a cell culture system [8]. We previously developed genome-length HCV reporter assay systems using HuH-7-derived OR6 cells [4]. In OR6 cells, the genotype 1b HCV-O with renilla luciferase (RL) replicates robustly. We also developed an HCV JFH-1 reporter infection assay system [9].

HCV infection frequently causes chronic hepatitis (CH) and leads to serious liver cirrhosis and hepatocellular carcinoma. Therefore, HCV infection is a major health problem worldwide. The elimination of HCV by antiviral reagents seems to be the most efficient therapy for preventing the fatal state of the disease. Pegylated-interferon (PEG-IFN) with ribavirin (RBV) is the current standard therapy for CH–C, but its sustained virological response (SVR) rate has remained 40–50%. Recently, a protease inhibitor, telaprevir, improved the SVR rate by up to 60–70% in combination with PEG-IFN/RBV [10]. The response to PEG-IFN/RBV therapy depends on host factors as well as viral factors. Among the host factors, age and gender are known to be associated with the outcome of IFN/RBV therapy [11,12]. Postmenopausal women with CH–C exhibited a poor response to IFN therapy compared to premenopausal women [11]. The decrease in estrogen may affect the response to IFN therapy. Dyslipidemia and osteoporosis are the typical complications in postmenopausal women. We and other groups reported that statins, which are dyslipidemia reagents, inhibited HCV proliferation in vitro and in vivo [13–17]. Recently it was reported that vitamin D3, an osteoporotic reagent, exhibited anti-HCV activity in vitro [18–21]. It was also reported that 17β-estradiol inhibited the production of infectious HCV [22]. Taken together, these reports suggest an association between hepatitis C and complications due to the decrease of estrogen.

Raloxifene and tamoxifen are synthetic selective estrogen receptor modulators (SERMs) and are used for breast cancer and osteoporosis, respectively, in clinical settings. The responses of SERMs are mediated by estrogen receptors (ERs), either ERα or ERβ. SERMs exhibit agonistic actions in some tissues but antagonistic actions in others. Both raloxifene and tamoxifen are antagonists in breast and agonists in bone. However, only tamoxifen, and not raloxifene, exhibited agonistic activity in the uterus. It was reported that tamoxifen inhibited HCV RNA replication [23]. However, tamoxifen’s agonist action leads to uterine cancer. Raloxifene belongs to an antiosteoporotic reagent and offers the advantage of safety without uterine cancer. Therefore, we decided to investigate whether or not raloxifene would exhibit anti-HCV activity in our developed cell culture systems.
2. Materials and methods

2.1. Reagents and antibodies

Raloxifene was purchased from LKT Laboratories, Inc. (St. Paul, MN). IFN-α and tamoxifen were purchased from Sigma–Aldrich (St. Louis, MO). Pitavastatin (PTV) was purchased from Kowa Company (Nagoya, Japan). The antibodies used in this study were those specific to HCV Core (CP11, Institute of Immunology, Tokyo, Japan), NS3 (Novocastra Laboratories, Newcastle, UK), and β-actin (Sigma).

2.2. Cell culture and HCV RNAs

HuH-7 cells were cultured in Dulbecco’s modified Eagle’s medium (Gibco-BRL, Invitrogen Life Technology, Carlsbad, CA) supplemented with 10% fetal bovine serum, penicillin, and streptomycin. HuH-7-derived OR6 and sOR cells were genome-length and subgenome HCV (O strain of genotype 1b) RNA harboring cells, respectively and cultured in the above medium supplemented with G418 (0.3 mg/ml; Geneticin, Invitrogen) [4]. HCVs replicating in OR6 and sOR cells contain RL and neomycin phosphotransferase (NPT) genes after 5′-untranslated region (UTR). HuH-7-derived RSc cells are cured cells, in which HCV RNA was eliminated by IFN-α; they are used for HCV JFH-1 infection [9]. RSc cells are also used for subgenomic JFH-1 RNA (JRN/35B) replication. JRN/3SB contains RL and NPT genes after 5′-UTR.

2.3. RL assay

For the RL assay, 1.5 × 10⁴ OR6 were plated onto 24-well plates in triplicate and cultured for 24 h. The cells were treated with each reagent for 72 h. Then the cells were harvested with RSc cell lysis reagent (Promega, Madison, WI) and subjected to RL assay according to the manufacturer’s protocol.

2.4. WST-1 cell proliferation assay

The cells (2 × 10³ cells) were plated onto a 96-well plate in triplicate at 24 h before treatment with each reagent. At 72 h after treatment, the cells were subjected to a WST-1 cell proliferation assay (Takara Bio, Otsu, Japan) according to the manufacturer’s protocol.

2.5. Western blot analysis

For Western blot analysis, 4 × 10⁴ cells were plated onto 6-well plates, cultured for 24 h, and then treated with reagent(s) for 72 h and 120 h. Preparation of the cell lysates, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and immunoblotting were then performed as previously described [24]. Immunocomplexes on the membranes were detected by enhanced chemiluminescence assay (Renaissance; Perkin Elmer Life Science, Wellesley, MA).

2.6. HCV infection

RSc cells (1.5 × 10⁴ cells) were plated onto a 24-well plate 24 h before infection. To evaluate the effect of the treatment prior to infection, the cells were first treated with raloxifene for 24 h, then inoculated with reporter JFH-1 (JR/C5B/BX-2) supernatant at a multiplicity of infection (MOI) of 0.2, cultured for 48 h, and subjected to RL assay as described previously [9]. The JR/C5B/BX-2 contains the RL gene in the first cistron following the encephalomyocarditis virus internal ribosomal entry site (EMCV-IRES) gene and the open reading frame (ORF) of JFH-1 in the second cistron. To evaluate the effect of the treatment after infection, the cells were inoculated with reporter JFH-1 supernatant at MOI of 0.2, cultured for 72 h, and subjected to RL assay.

3. Results

3.1. Raloxifene inhibited HCV RNA replication

The HCV RNA that replicated in HuH-7-derived OR6 cells was a genome-length HCV with RL, NPT, and EMCV-IRES in the first cistron and the ORF of HCV (O strain of genotype 1b) in the second cistron [4]. OR6 cells could not produce infectious HCV. Therefore, we can monitor the replication step in the HCV life cycle using OR6 cells. Raloxifene inhibited HCV RNA replication in a dose-dependent manner, and its 50% effective concentration (EC₅₀) was 1 μM (Fig. 1A). Raloxifene did not exhibit cytotoxicity to OR6 cells until 2.5 μM (Fig. 1B). Raloxifene also inhibited intracellular Core and NS3 production in a dose- and time-dependent manner (Fig. 1C). The intensities of Core and NS3 in OR6 cells treated with 2.5 μM of raloxifene decreased to almost the level of cells treated with 10 IU/ml of IFN-α at 120 h after treatment. We also examined anti-HCV activity of raloxifene using subgenomic HCV replicon harboring sOR cells. Raloxifene exhibited weak anti-HCV activity to sOR cells as compared with OR6 cells (Supplementary Figs. 1A and 1B). These results suggest that raloxifene exhibits anti-HCV activity and decreased the expression levels of HCV proteins more slowly compared to IFN-α.

3.2. Raloxifene enhanced anti-HCV activity of IFN-α

We investigated the anti-HCV activity of raloxifene in combination with a representative anti-HCV reagent, IFN-α. HCV RNA replication decreased in a dose-dependent manner after co-treatment with IFN-α and raloxifene (Fig. 2A). The results were almost similar to the expected effect of raloxifene in combination with IFN-α calculated from the anti-HCV activity of each reagent (Fig. 2B). These results indicate that the anti-HCV activity of raloxifene and IFN-α exhibited additive effect. We also examined the anti-HCV activity of previously reported SERM, tamoxifen. Tamoxifen also exhibited additive anti-HCV activity on HCV RNA replication in combination with IFN-α (Supplementary Figs. 2A–C). These results indicate that raloxifene as well as tamoxifen enhanced the anti-HCV activity of IFN-α. As both raloxifene and IFN-α are clinically used reagents, raloxifene seemed to be a candidate reagent as an add-on treatment to IFN-α in patients with CH–C.

3.3. Raloxifene antagonized anti-HCV activity of statin

We previously reported that statins exhibited anti-HCV activity using the OR6 assay system [14]. Statin is the first-choice reagent for dyslipidemia. As dyslipidemia and osteoporosis are major complications in postmenopausal women, we investigated the effect of raloxifene on the anti-HCV activity of PTV. Raloxifene did not enhance the anti-HCV activity of PTV (Fig. 3A). Fig. 3B exhibits the expected anti-HCV activity of co-treatment with raloxifene and PTV calculated from the anti-HCV effect of either raloxifene or PTV alone. Raloxifene exhibited an antagonistic effect on PTV’s anti-HCV activity. Raloxifene’s antagonistic effect on PTV increased dose-dependently. The co-treatment with raloxifene and PTV (2.5 μM and PTV (0.25, 0.5, and 1 μM) resulted in lower anti-HCV activity than did treatment with raloxifene alone (2.5 μM). These results suggest that we should be careful in the administration of statins with raloxifene to postmenopausal woman with CH–C.

3.4. Raloxifene inhibited infection of genotype 2a HCV

To further investigate the anti-HCV activity of raloxifene, we examined whether or not raloxifene could inhibit HCV infection. For this purpose, we used our recently developed JFH-1 reporter infection assay system [9]. HuH-7-derived RSc’s are highly HCV-permissive cell lines. Raloxifene was pretreated at 24 h before HCV infection. The cells were inoculated with HCV JFH-1 virion with RL (JR/C5B/BX-2), and
Fig. 1. Raloxifene inhibited HCV RNA replication. (A) Anti-HCV activity of raloxifene in OR6 cells. OR6 cells were treated with raloxifene (0, 0.625, 1.25, and 2.5 μM) for 72 h. Relative RL activity (relative light unit: RLU) for HCV RNA replication is expressed as a percentage of control. Each bar represents the average with standard deviations of triplicate data points. (B) Effect of raloxifene on OR6 cell viability. Cell viability at 72 h after raloxifene treatment (0.15, 0.31, 0.625, 1.25, 2.5, 5, and 10 μM) was determined using WST-1 cell proliferation assay and is expressed as a percentage of control. (C) Raloxifene inhibited HCV proteins. OR6 cells were treated with IFN-α (10 IU/ml) or raloxifene (0, 0.625, 1.25, and 2.5 μM). After 72 or 120 h treatment, the production of Core and that of NS3 were analyzed by immunoblotting using anti-Core and anti-NS3 antibodies, respectively. OR6c cells were cured cells in which HCV RNA was eliminated using IFN-α, and were used as a negative control. β-actin was used as a control for the amount of protein loaded per lane.

As shown in Fig. 4A, raloxifene inhibited HCV infection in RSc cells in a dose-dependent manner. Next we examined the effect of raloxifene after HCV infection. RSc cells were inoculated with HCV JFH-1 virion with R. After HCV infection, the cells were treated with raloxifene for 72 h and raloxifene’s inhibitory effect on post-infection was assessed using the RL assay. Raloxifene inhibited HCV proliferation in a dose-dependent manner when it was added to the cells after infection in RSc cells, although inhibitory effect of raloxifene on JFH-1 HCV RNA replication seemed to be weak compared to the genotype 1b HCV-O RNA replication (Fig. 4B). Raloxifene did not exhibit cytotoxicity to RSc cells until 2.5 μM (Fig. 4C). We found that raloxifene could not inhibit subgenomic JFH-1 HCV (JRN/35B) RNA replication (Fig. 4D). We further examined the inhibitory action of raloxifene around infection step. RSc cells were treated for short time with raloxifene around infection step: for 1, 4, and 4 h before, during, and after inoculation, respectively (Fig. 4E). Raloxifene inhibited JFH-1 infection, when it was treated during inoculation but not just before or after inoculation. In case of genotype 2a JFH-1, raloxifene’s anti-HCV activity is mainly due to the inhibition of infection. These results indicate that raloxifene inhibits JFH-1 infection but not its RNA replication.

4. Discussion

In this study, we demonstrated that raloxifene, an osteoporotic reagent, inhibited the replication of genotypes 1b HCV RNA replication and inhibited genotype 2a HCV JFH-1 infection. Raloxifene additively enhanced the anti-HCV activity of IFN-α. On the other hand, raloxifene exhibited an antagonistic effect on statins.
Raloxifene and tamoxifen are SERMs for osteoporosis and breast cancer, respectively. Tamoxifen is used for estrogen receptor-positive breast cancer, and it inhibits HCV RNA replication in cell culture [23]. Tamoxifen’s anti-HCV activity is associated with ERβ. In our study, raloxifene inhibited HCV infection as well as replication. To clarify the multi-potential effects of raloxifene, further study is needed. The incidence of side effects including uterine cancer is lower in raloxifene therapy than in tamoxifen therapy [25]. This is another advantage of raloxifene in clinical use for patients with CH–C.

As for the precise role of ERα or ERβ on the HCV life cycle, we could not reach a clear conclusion because microarray analysis revealed an absence of expression for both ERα and ERβ in OR6 cells (data not shown). Hayashida et al. [22] reported that the most potent physiological estrogen, 17-β-estradiol, inhibited infectious HCV production using HuH-7.5 cells, and that ERα-selective agonist inhibited infectious HCV production whereas ERβ-selective agonist did not. Watashi et al. [23] reported that RNA interference-mediated knock-down of ERα reduced HCV RNA replication. In our study, the anti-HCV activity of raloxifene in infection and replication did not seem attributable to ERα or ERβ. It is not clear why our HuH-7-derived OR6 cells did not express ERα or ERβ. HuH-7 cells were developed in 1982 at Okayama University and distributed worldwide [26]. Recently, Bensadoun et al. [27] reported that the genetic background of the IL28B genotype of HuH-7 cells differed among different laboratories. This may be a consequence of the polyploidal nature of hepatoma cells. A similar mechanism might cause the different expression levels of ERα and ERβ in OR6 cells. This may be a consequence of the polyploidal nature of hepatoma cells. A similar mechanism might cause the different expression levels of ERα and ERβ in OR6 cells.

In conclusion, we found that raloxifene inhibited HCV RNA replication in genotype 1b and infection in genotype 2a. Raloxifene additively enhanced the anti-HCV activity of IFN-α. The antagonistic effects of statins and raloxifene will yield information on the clinical use of these reagents. Our results, as well as the reports of vitamin D3’s anti-HCV activity, will open new fields of treatment for both osteoporosis and HCV infection.

Acknowledgments

The authors would like to thank Masayo Takemoto for her technical assistance. This work was supported by a Grant-In-Aid for Research on Hepatitis from the Ministry of Health, Labor and Welfare of Japan.

Supplementary Material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.fob.2012.08.003.
References

[1] Kato N. (2001) Molecular virology of hepatitis C virus. Acta Med. Okayama. 55, 133–159.

[2] Kato N., Hikijata M., Ootsuyama Y., Nakagawa M., Ohkoshi S., Sugimura T. et al. (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl. Acad. Sci. USA. 87, 9524–9528.

[3] Tanaka T., Kato N., Cho M.J., Sugiyama K., Shimotohno K. (1996) Structure of the 3' terminus of the hepatitis C virus genome. J. Virol. 70, 3307–3312.

[4] Ikeda M., Abe K., Dansako H., Nakamura T., Naka K., Kato N. (2005) Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochem. Biophys. Res. Commun. 329, 1350–1359.

[5] Ikeda M., Mi M., Li K., Lemon S.M. (2002) Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76, 2997–3006.

[6] Lohmann V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 285, 110–113.

[7] Pietschmann T., Lohmann V., Kaul A., Rinck G., Rutter G. et al. (2002) Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J. Virol. 76, 4008–4021.

[8] Wakita T. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796.

[9] Ikeda M., Yi M., Lemon S.M. (2002) Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76, 2997–3006.

[10] McHutchison J.G. (2009) Telaprevir with peginterferon and ribavirin for chronic hepatitis C virus infection. Arch. Int. Med. 159, 43–48.

[11] Sezaki H. (2009) An open pilot study exploring the efficacy of fluvastatin, pegylated interferon and ribavirin in patients with hepatitis C virus genotype 1b in high viral loads. Intervirology. 52, 43–48.

[12] Abu-Mouch S., Fireman Z., Jarchovsky J., Zeina A.R., Assay N. (2011) Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naïve patients. World J. Gastroenterol. 17, 5184–5190.

[13] Bensadoun P., Rodriguez C., Soulier A., Higgs M., Chevaliez S., Pawlotsky J.M. et al. (2011) Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology. 54, 1570–1579.

[14] Ikeda M., Abe K., Yamada M., Dansako H., Naka K., Kato N. (2006) Different anti-HCV profiles of statins and their potential for combination therapy with interferon. Hepatology. 44, 117–125.

[15] Ikeda M., Kato N. (2007) Life-style-related diseases of the digestive system: cell culture system for the screening of anti-hepatitis C virus (HCV) reagents: suppression of HCV replication by statins and synergistic action with interferon. J. Pharmacol. Sci. 105, 145–150.

[16] Sezaki H. (2009) An open pilot study exploring the efficacy of fluvastatin, pegylated interferon and ribavirin in patients with hepatitis C virus genotype 1b in high viral loads. Intervirology. 52, 43–48.

[17] McHutchison J.G. (2009) Telaprevir with peginterferon and ribavirin for chronic hepatitis C virus infection. Arch. Int. Med. 159, 43–48.

[18] Sezaki H. (2009) An open pilot study exploring the efficacy of fluvastatin, pegylated interferon and ribavirin in patients with hepatitis C virus genotype 1b in high viral loads. Intervirology. 52, 43–48.

[19] Gal-Tanamy M., Bachmetov L., Ravid A., Koren R., Erman A., Tur-Kaspa R. et al. (2011) Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology. 54, 1570–1579.

[20] Matsumura, T., Kato, T., Sugiyama, N., Tasaka-Fujita, M., Murayama, A., Masaki, T., Wakita, T., Inamori, M. 25-hydroxyvitamin D(3) suppresses hepatitis C virus production. Hepatology, in press.

[21] Hayashida K., Shoji I., Deng L., Jiang D.P., Ide Y.H., Hotta H. (2010) 17beta-estradiol inhibits the production of infectious particles of hepatitis C virus. Microbiol. Immunol. 54, 684–690.

[22] Taoka N. (2003) Establishment of a hepatitis C virus subgenomic replicon derived from human hepatocytes infected in vitro. Biochem. Biophys. Res. Commun. 306, 756–766.

[23] Runowicz C.D., Costantino J.P., Wickerham D.L., Cecchini R.S., Cronin W.M., Ford L.G. et al. (2011) Gynecologic conditions in participants in the NSABP breast cancer prevention study of tamoxifen and raloxifene (STAR). Am. J. Obstet. Gynecol. 205, 535e1–535e5.

[24] Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. (2011) Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology. 54, 1570–1579.

[25] Revankar C.M., Cimino D.F., Sklar L.A., Artzeburn J.B., Prossnitz E.R. (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 307, 1625–1630.