THE FEFFERMAN–STEIN TYPE INEQUALITIES FOR
THE MULTILINEAR STRONG MAXIMAL FUNCTIONS

JUAN ZHANG, HIROKI SAITO AND QINGYING XUE

Abstract. Let \(\vec{\omega} = (\omega_1, \ldots, \omega_m) \) be a multiple weight and \(\{\Psi_j\}_{j=1}^m \) be a sequence of Young functions. Let \(\mathcal{M}_{\vec{\omega}}^{\vec{\Psi}} \) be the multilinear strong maximal function with Orlicz norms which is defined by

\[
\mathcal{M}_{\vec{\omega}}^{\vec{\Psi}}(\vec{f})(x) = \sup_{R \ni x} \prod_{j=1}^m \|f_j\|_{\Psi_j,R},
\]

where the supremum is taken over all rectangles with sides parallel to the coordinate axes. If \(\Psi_j(t) = t \), then \(\mathcal{M}_{\vec{\omega}}^{\vec{\Psi}} \) coincides with the multilinear strong maximal function \(\mathcal{M}_{\vec{\omega}}^\vec{\psi} \) defined and studied by Grafakos et al. In this paper, we first investigated the Fefferman-Stein type inequality for \(\mathcal{M}_{\vec{\omega}}^{\vec{\Psi}} \) when \(\vec{\omega} \) satisfies the \(A_{\infty}^\mathbb{R} \) condition. Then, for arbitrary \(\vec{\omega} \geq 0 \) (each \(\omega_j \geq 0 \)), the Fefferman-Stein type inequality for the multilinear strong maximal function \(\mathcal{M}_{\vec{\omega}}^\vec{\psi} \) associated with rectangles will be given.

Mathematics subject classification (2010): 42B20, 47G10.

Keywords and phrases: Multilinear strong maximal function, Fefferman-Stein type inequality, Young function, multiple weights.

REFERENCES

[1] R. J. BAGBY, D. S. KURTZ, \(L(\log L) \) spaces and weights for the strong maximal function, J. Anal. Math. 44 (1984/1985), 21–31.
[2] O. N. CAPRI, C. E. GUTIÉRREZ, Weighted inequalities for a vector-valued strong maximal function, Rocky Mountain J. Math. 18 (1988), 565–570.
[3] N. FAVA, Weak type inequalities for product operators, Studia Math. 42, 3 (1972), 271–288.
[4] N. FAVA AND O. N. CAPRI, Strong differentiability with respect to product measures, Studia Math. 78, 2 (1984), 173–178.
[5] A. CÓRDOBA, AND R. FEFFERMAN, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102, 1 (1975), 95–100.
[6] C. FEFFERMAN AND E. M. STEIN, Some maximal inequalities, Amer. J. math. 93, 1 (1971), 107–115.
[7] L. GRAFAKOS, L. LIU, C. PÉREZ, R. H. TORRES, The Multilinear Strong Maximal Function, J. Geom. Anal. 21 (2011), 118–149.
[8] P. A. HAGELSTEIN, T. LUQUE, AND I. PARISSIS, Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases, Trans. Amer. Math. Soc. 367, 11 (2015), 7999–8032.
[9] P. A. HAGELSTEIN, AND I. PARISSIS, The endpoint Fefferman-Stein inequality for the strong maximal function, J. Funct. Anal. 266, 1 (2014), 199–212.
[10] B. JAWERTH, Weighted inequalities for maximal operators: linearization, localization, and factorization, Amer. J. Math. 108 (1986), 361–414.
[11] B. JESSEN, J. MARCINKIEWICZ, AND A. ZYGMUND, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217–234.
[12] L. LIU AND T. LUQUE, A \(B_p \) condition for the strong maximal function, Trans. Amer. Math. Soc. 366, 11 (2014), 5707–5726.

© Croatian Academy of Sciences and Arts. Published by Croatian Mathematical Society.
[13] A. K. Lerner, S. Ombros, C. Pérez, R. H. Torres, R. Trujillo-González, *New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory*, Adv. in Math. **220**, 4 (2009), 1222–1264.

[14] T. Luque and I. Parissis, *The endpoint Fefferman-Stein inequality for the strong maximal function*, J. Funct. Anal. **266**, 1 (2014), 199–212.

[15] T. Mitsis, *The weighted weak type inequality for the strong maximal function*, J. Fourier Anal. Appl. **12**, 6 (2006), 645–652.

[16] H. Saito, and H. Tanaka, *The Fefferman-Stein type inequality for strong and directional maximal operators in the plane*, arXiv:1610.03186v1.

[17] H. Tanaka, *The Fefferman-Stein type inequality for strong maximal operators in the higher dimensions*, arXiv:1611.01252v2.