Correlated X-ray/Ultraviolet/Optical Variability in NGC 6814

Jon Troyer1, David Starkey2, Edward M. Cackett1, Misty C. Bentz3, Michael R. Goad4, Keith Horne2, and James E. Seals3

1Department of Physics & Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201, USA
2SUPA, University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS
3Department of Physics & Astronomy, Georgia State University, Atlanta, GA 30303, USA
4Department of Physics & Astronomy, College of Science and Engineering, University of Leicester, University Road, Leicester LE1 7RH

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT
We present results of a 3-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the lightcurves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly under-predicted lags. If the majority of the reprocessing originates in the disc, then this implies the UV/optical emitting regions of the accretion disc are farther out than predicted by the standard thin disc model. Accounting for contributions from broad emission lines reduces the lags in B and V by approximately 25% (less than the uncertainty in the lag measurements), though additional contamination from the Balmer continuum may also contribute to the larger than expected lags. This discrepancy between the predicted and measured interband delays is now becoming common in AGN where wavelength-dependent lags are measured.

Key words: galaxies: active — galaxies: individual: NGC 6814 — galaxies: Seyfert — accretion, accretion discs

1 INTRODUCTION
The current standard model of an Active Galactic Nucleus (AGN) consists of a central supermassive black hole (SMBH) actively accreting matter (e.g., Rees 1984) which forms an accretion disc. As matter is drawn toward the black hole’s event horizon, gravitational potential energy is converted into kinetic and viscous internal energy. The accretion disc then radiates thermally with the majority of the flux in the UV/optical bands (e.g., Koratkar & Blandford 1999). X-rays from AGN are thought to be dominated by emission due to Compton up-scattering of the thermally emitted photons from the accretion disc by hot electrons in the disc’s corona. Recent measurements from X-ray reverberation and gravitational microlensing both independently imply that the X-ray emitting region is small (≤10 GM/c^2, e.g., Reis & Miller 2013; Cesqui et al. 2013; Cackett et al. 2014; Blackburne et al. 2015).

In order to probe the interior structure of AGN, a method known as reverberation mapping (RM) (Blandford & McKee 1982) is used extensively (see Peterson 2014, for a recent review). Reverberation mapping involves measuring the time delay associated with some variable luminosity source and the “echo” it produces as it interacts with matter. Most AGN host galaxies are at distances too far for the AGN to be be spatially resolved. In these cases, reverberation mapping provides the only direct method of probing the interior of an AGN. In addition, reverberation mapping translates spatial resolution for time resolution. Through reverberation mapping, the object’s size scale is resolved via a time delay, i.e., the light crossing time between the source and the echo (R = ct). In principle, reverberation mapping has few limitations with respect to AGN distance as long as sufficient signal-to-noise exists, the monitoring period is long enough to detect significant variability, and the sampling is dense enough to resolve time delays between different emission components.

It has long been established that AGN spectra possess inherent...
variability. A correlation between light curves of different wave-
lengths has been detected in many AGN (e.g., Krolik et al. 1991
Ulrich et al. 1997; Shappee et al. 2014; McHardy et al. 2014; Edel-
son et al. 2015; Fausnaugh et al. 2015). This suggests that the emis-

sion processes associated with different wavebands are related. If
such a correlation exists for a particular object, the time lag be-
tween the X-ray and UV/optical lightcurves can be calculated in
order to help understand the origin of the UV/optical variability.

There are two favored scenarios regarding the source of correlated
UV/optical variability (e.g., Alston et al. 2013; Shappee et al. 2014).
The first case is where the X-ray variability leads the UV/optical
variability. In this case it is thought that the X-ray flux heats the
accretion disc and thus produces a portion of the thermal emis-
tion - the thermal reprocessing scenario. The second case is where
the UV/optical variability leads the X-ray variability. In this case
it is thought that some intrinsic thermal variability in the accretion
disc exists that produces the UV/optical variability. The UV/optical
seed photons would carry their variability signature to the corona
and cause the X-ray variability via Compton up-scattering. In the
UV/optical leading scenario, time lags associated with the accretion
disc viscous time scale would be expected. This time scale quanti-
fies how rapidly a perturbation in the accretion flow can propagate
through the disc. For a typical AGN supermassive black hole, the
viscous timescale is of the order of months to years (Czerny 2006).

Of course, it is also possible that both these scenarios are
occurring simultaneously (likely on different timescales), or that
other mechanisms can contribute to the lags. For instance, obser-
vations of Mrk 79 (Breedt et al. 2009) show that on timescales of
days – weeks, the X-rays and optical bands are highly correlated,
and easily explained by reprocessing, while on timescales of years
there is variability in the optical not observed in X-rays, requir-
ing an additional mechanism to produce the variations. Similarly,
in NGC 4051, while there is strong evidence for X-rays driving
short timescale lags and lags that depend on wavelength are
short timescale lags, there is a need for
another mechanism (perhaps reflected optical continuum flux from
the dust torus) to account for all the optical variability observed
(Breedt et al. 2010). Long-term monitoring of NGC 5548 has also
shown that on long (~ 1 yr) timescales the optical variability, while
correlated with X-rays, has a higher variability amplitude. There-
fore the long-term optical variability cannot be caused by repro-
cessing in this case, and is more likely due to inward propagation
of accretion rate changes (Uttley et al. 2001). Finally, it is possible
that reprocessed emission in the Broad Region (BLR) may contam-
inate accretion disc lags (e.g., Korista & Goad 2001; Breedt et al.
2010).

Short timescale lags and lags that depend on wavelength are
consistent with thermal reprocessing. Here, the X-ray photons are
thermally reprocessed in the accretion disc. The simplest geometry
for such a scenario is the “lamppost” model where the X-rays are
assumed to be emitted from a centrally located point source above
the plane of the accretion disc. Given the compact size of the X-ray
region compared to the UV/optical emitting region, this simplifi-
cation is generally agreed to be a reasonable assumption. In the
context of the lamppost model, X-ray flux is incident upon inner
regions of the accretion disc before the outer regions, due to the
shorter light crossing time. See Cackett et al. (2007) for a detailed
description of the application of the lamppost model to continuum
lags.

NGC 6814 has been part of a previous reverberation mapping
campaign (the LAMP project; Bentz et al. 2009a). Significant con-
tinuum variability was seen over the approximately 70 days of mon-
toring, with excess variance in the B band of $F_{\text{var}} = 0.18$. An Hβ
lag of $\tau_{\text{var}} = 6.6 \pm 0.9$ days (rest frame) was measured, which, with
the f-value from Grier et al. (2013) implies a black hole mass of
$(1.4 \pm 0.3) \times 10^7 M_\odot$ (Bentz & Katz 2015). Spectroscopic monitoring
from the LAMP campaign also led to measured lags in Hα, Hβ,
He II, and Hy (Bentz et al. 2010). Pancoast et al. (2014) perform
dynamical modeling of the LAMP data on NGC 6814, resulting in
a significantly lower black hole mass estimate of $(2.6^{+1.3}_{-1.1}) \times 10^7 M_\odot$.
Their modeling also provides an estimate of the inclination of the system of $i = 47^{\circ} \pm 2^\circ$ degrees.

In this paper, we present data from a combined monitor-
campaign showing short time scale (~1–3 days), wavelength-
dependent time lags between the X-ray and UV/optical bands for
NGC 6814 for the first time. Observations of NGC 6814 were
obtained in support of the AGN reverberation mapping campaign
STARFISH. In Section 2 we discuss the observations and data reduc-

In Section 3, the lightcurve analysis including computation
of time lags between the X-ray and various wave bands, and mod-
eling the lightcurve with a standard disc MCMC code. Finally, in
Section 4 we discuss the results of our time lag analysis and MCMC
lightcurve fitting analysis and possible physical interpretations.

2 OBSERVATIONS & DATA REDUCTION

NGC 6814 is a Seyfert 1.5, face-on spiral galaxy with a Hubble
classification of SBc and is located at $\delta_{2000}=+19h42m40.6s$ and
$\alpha_{2000}=110d19m25s$ and $z = 0.00521$. We use observed-frame
wavebands and flux densities in our analysis.

We used Swift (Gehrels et al. 2004) to monitor NGC 6814 in
the X-ray and UV bands. The campaign took place over a 3-month
period in 2012 resulting in 75 observations. We also obtained
optical images using the Liverpool Telescope (LT) (Steele et al. 2004)
located on the island of La Palma in the Canary Islands at the Ob-
servatorio del Roque de los Muchachos. Representative images in
each bandpass are shown in Fig. 1.1

2.1 Swift Monitoring

NGC 6814 was monitored by Swift for a 3-month period from June
8th, 2012 until September 12th, 2012. All dates here and through-
out are in UT. The length of the campaign and daily monitoring
were selected to overlap with the concurrent STARE campaign on
NGC 6814. Nearly daily observations of 1 ks were made with the
XRT instrument (Burrows et al. 2005) in the 0.3 – 10 keV energy
range and UVOT instrument (Poole et al. 2008), utilizing the
UVW1 (UV) filter, with central $\lambda = 2600$ Å and FWHM of 693
Å. The top two panels of Fig. 1 show the Swift X-ray and UVW1
lightcurves. Note that Swift did also obtain V–band images dur-
ing the monitoring, however, the photometric accuracy is signif-
icantly lower than the Liverpool Telescope data, and the shape of
the lightcurve was poorly constrained. We do not consider the Swift
V–band data further.

2.1.1 Swift X-ray Data

We reduce the Swift X-ray data using the online Build Swift XRT
Products tool developed by the UK Swift Science Center and de-

1 http://www.astro.gsu.edu/STARE/

- provided an additional op-
pportunity to study wavelength dependent lags of the accretion disc.

2 http://www.swift.ac.uk/user_objects

MNRAS 000, 1–11 (2015)
Correlated Variability in NGC 6814

Figure 1. Representative images of NGC 6814 in each waveband. (a) Swift/XRT image when the X-ray lightcurve peaks, ObsID=00032477003, MJD 56081, with a 954 s exposure time. For this observation, the count rate is 0.71 counts per second, corresponding to a 30 arcsec source extraction region shown in the figure. (b) Swift/UVW1 image, overlaid with the 4 arcsec source extraction region used in all the observations. This image is from ObsID=00032477024, MJD 56105, with a 663 s exposure time. (c) LT/B-band image from MJD 56092. Black numbered circles mark the four comparison stars used in the aperture differential photometry and the red circle indicates the 2.2 arcsec extraction region used on the AGN. The extraction region and comparison stars are common to all the LT observations. (d) LT/V-band image from MJD 56129.

We convert from the XRT count rate to flux by assuming an absorbed power law model using the best-fitting parameters from Walton et al. (2013), where they fit the broadband (0.5-50 keV) Suzaku X-ray spectrum of NGC 6814. Using this model as an input, we obtain a flux conversion factor for the 0.3 keV - 10 keV band from WebPIMMS of 1 cps = 5.0×10^{-11} erg cm^{-2} s^{-1}, where cps is counts per second.

2.1.2 Swift UV Data

We reduce the Swift UVW1 data using NASA’s HEASoft data analysis package. We process the Swift UVOT image files with the uvotbadpix command to flag bad or damaged pixels. Exposure map images are created, the most recent Swift UVOT calibration is applied and images are converted to sky coordinates using the uvotexpmap command. Each Swift observation is often split into several shorter exposures, thus we add the various image files for...
each observation using the `uvotimsum` command. By using the exposure map associated with each observation, all the images can be correctly oriented and summed, producing the deepest possible image. We then use the `uvotdetect` command to locate any source above the detection threshold in the image. The following parameters are used: `threshold`=3 and `chatter`=5. Searching for sources within 0.001 degrees in both RA and DEC of the known AGN location, we identify the exact location of the AGN. We perform aperture photometry on the AGN via the `uvotsource` command using the `uvotdetect` source position. We take the source extraction region as a circle centered on the AGN, with a radius of 4″. This region is shown in Fig. 1 panel (b). We estimate the background rate from an annular region around the AGN with an inner radius of 6″ and an outer radius of 9″. We use the following parameters: `sigma`=3, `chatter`=1, `apertcorr`=CURVEOFGROWTH. We perform the same procedure for all Swift observations in order to create a lightcurve. Flux conversion for `UVW1` (Poole et al. 2008) is 1 cps = 4.3×10⁻¹⁶ erg cm⁻² s⁻¹ Å⁻¹.

2.2 Liverpool Telescope Observations
NGC 6814 was monitored by the Liverpool Telescope from May 12th, 2012 to July 20th 2012. The observations used the RATCam instrument, operated with 2×2 pixel binning, which leads to a pixel scale of 0.277″ per binned pixel, and 1024 × 1024 pixel images. Observations were taken in pairs of exposures for each of the two filters used, Bessel B and Bessel V, on a nearly daily basis. A total of 92 pairs were taken over the roughly 2-month campaign. Apart from the first 5 exposures which were single exposures, 45 seconds in length, the remaining pairs of exposures were 60 seconds per exposure (120s total).

2.2.1 Aperture Photometry
We perform aperture photometry on the AGN and comparison stars using a circular aperture with an 2.2″(8 pixel) radius, shown in Fig. 1 panel (c). The aperture size is based on the seeing values. The mean seeing (FWHM) during the observations is 1.45″(5.2 pixels), with 90% of the observations having seeing FWHM less than the...
aperture. The sky background is determined from the mode of values within an annulus with inner and outer radii of 4.2′′(15 pixels) and 5.5′′(20 pixels) respectively. The data are typically obtained as a pair of exposures taken sequentially. Thus, to maximize the signal-to-noise ratio we average the count rates between pairs of exposures.

We choose four comparison stars of comparable brightness to NGC 6814, shown in Fig. 1 panel (c). We perform differential photometry by calculating the average scale factor for each observation for the four comparison stars, assuming that they remain constant over time. We then apply this scale factor to NGC 6814 to recover the AGN lightcurve. We get standard deviations of 0.3%, 0.7%, 0.7% and 0.5% for the four comparison stars lightcurves in the B-band, and 0.4%, 0.3%, 0.6% and 0.8% in the V-band. We find that the AGN lightcurve has a standard deviation of 11% in the B-band and 6% in the V-band, indicating significant variability.

A lower limit to the fractional uncertainty on the AGN count rates is 0.8% from the highest standard deviation of the comparison stars. As another estimate of uncertainties in the AGN count rates, we look at the difference in rate between observations that are 1 day apart. We find the median difference to be 1.9% for the B-band, and 1.1% for the V-band, and we adopt these as the fractional uncertainties. This gives an upper limit on the uncertainty, since there will likely be some real variability on this timescale.

We convert from relative rates to flux by obtaining the B- and V-band magnitude of the brightest comparison star, Star 1 shown in Fig. 1 panel (c), by using HST photometry from data in Bentz et al. (2013) to calibrate the V-band photometry of our image. This yields a Star 1 magnitude of 14.4 in the V-band, which differs slightly from the SIMBAD value of 14.2. As a check, we verified that this method recovers the published magnitudes of reference stars in Doroshenko et al. (2005). For the B-band, where HST photometric calibration was unavailable, we used Doroshenko et al. (2005) stars to calibrate our B-band image, yielding a Star 1 magnitude of 15.1, which is in agreement with the the SIMBAD value.

We used the zero points for Vega fluxes from Colina et al. (1996).

2.2.2 Host Galaxy Flux

In order to accurately quantify the AGN variability and flux obtained from the aperture photometry, we carry out subtraction of host galaxy light in the visual bands using methods detailed in Bentz et al. (2006, 2009a). Using an HST image of NGC 6814 (WFC3, F547M filter), with the AGN PSF and the sky subtracted, we duplicate the circular aperture and its background annulus (which would include some host-galaxy light) and measure the amount of host flux. In the F547M filter, the host galaxy flux is 2.7×10^{-15} erg cm$^{-2}$ Å$^{-1}$

Assuming a typical bulge template (Kinney et al. 1996), and using Synphot to carry out synthetic photometry, we estimate a B-band host-galaxy contribution of 1.5 $\times 10^{-15}$ erg cm$^{-2}$ Å$^{-1}$ and a V-band host-galaxy contribution of 2.6 $\times 10^{-15}$ erg cm$^{-2}$ Å$^{-1}$.

2.2.3 Difference Imaging Photometry

For comparison with the aperture photometry, we also derive the B- and V-band light curves by registering each set of images to a common alignment using Sexterm (Siverd et al. 2012) and then applying the image subtraction software package ISIS (Alard & Lupton 1998; Alard 2000). ISIS builds a reference frame from the images that have been defined by the user to have the best seeing and lowest background levels. This reference frame is then convolved with a spatially-variable kernel to match the point spread function of each individual image in the set. Subtraction of the frame from the convolved reference image results in a residual image where the only sources are regions of variable flux. The lightcurve is then derived from aperture photometry that is carried out on these residual images. All contributions from constant-flux components, such as an AGN host galaxy, are thus naturally removed.

To convert the image-subtraction lightcurves from units of residual counts to calibrated fluxes, it is necessary to know the magnitude of the source in the reference frame. We determine this by modelling the B- and V-band reference frames with Galfit (Peng et al. 2021, 2010). We first build a model point spread function for each frame by fitting three Gaussians to a non-saturated and well-isolated field star. We model the entire frame in each band with the host-galaxy geometric parameters held fixed to the values determined from a high-resolution HST image by Bentz et al. (2013), but scaled to the appropriate plate scale. This method results in a clean subtraction of the main host-galaxy features and allows us to accurately separate the host-galaxy flux from the AGN flux in the reference images. By including a field star with known magnitudes in the modelling, we are able to simultaneously solve for the photometric solution in each bandpass. Once we determine the reference AGN flux in each band, we then convert the lightcurves from residual counts to calibrated fluxes.

We found that the fluxes derived from difference imaging are in excellent agreement with the host galaxy subtracted aperture photometry results. We therefore use the aperture photometry results throughout the rest of the analysis.

3 DATA ANALYSIS

The time lags between wavebands are quantified by using the cross-correlation function (CCF) as described in White & Peterson (1994). We calculate three CCF(τ), one for each of the response bands: UV, B-band, and V-band. For each CCF(τ), we take the X-ray lightcurve to be the driving lightcurve and set the UV, B-band, and V-band lightcurves as the responding lightcurve. For each CCF calculation, we interpolate the two lightcurves in order to obtain regular sampling. In this fashion, the CCF values are computed twice. The first by interpolating the continuum lightcurve so as to pair up all the continuum data points with the data points of the responding lightcurve. The second CCF value is computed in the same way, except the responding lightcurve is interpolated as to pair up with the continuum lightcurve. The two CCF values are then averaged at each time, yielding CCF(τ). To avoid needing to extrapolate the lightcurve data, the CCF sum is restricted to the intersection of the time intervals covered by the driving lightcurve and the shifted echo (response) lightcurve. For our data, the centroid is calculated using points above 80% of the maximum value. The CCF(τ) plots are shown in Fig. 3. Additionally, we computed the auto-correlation function (ACF) for each lightcurve. The full width, half maximum values for the ACFs are 4.7 days for X-ray, 9.1 days for UV, 6.4 days for B-band, and 6.8 days for V-band. The ACFs are also shown in Fig. 3.

To determine confidence limits on the significance of the CCF values we follow the method of Breedt et al. (2009). We simulate...
we show in Fig. 4. We take the mean of the distribution of centroids allowing us to build a histogram of the centroid of the CCFs, which compute the CCF (some points were excluded. We repeat the random resampling and while keeping the same number of elements of the data set, i.e., the possibility of sampling a particular data point more than once data (Bootstrap) with the temporal ordering intact, but allow for rate measurement for that point. We then randomly resample the data points on each lightcurve. See Peterson et al. (1998) for Monte Carlo and Bootstrap techniques to resample and randomize the data points on each lightcurve. See Peterson et al. (1998) for an X-ray lightcurve 10 times the length of the observing campaign using the algorithm of Timmer & Koenig (1995). We assume a power-density spectrum with slope of \(-1\) breaking to a slope of \(-2\) at frequencies above the characteristic break frequency. We determine the break frequency by assuming it scales with mass and Eddington fraction, following McHardy et al. (2006), and assuming the black hole mass from Pancoast et al. (2014), and Eddington fraction of 0.01. We sample the simulated X-ray lightcurve at the same time intervals as the real Swift lightcurve, and add random Gaussian noise based on the fractional uncertainties of the real data. We then calculate the CCF between the simulated X-ray lightcurve and the \(UVW\), \(B\)–, and \(V\)–band lightcurves in turn. We perform this 1000 times and use the distribution of CCF values at each lag to determine the 95% and 99% confidence levels, shown as dotted and dashed lines in Fig. 3. The observed CCFs all peak above the 99% level, showing that the correlations are highly significant.

In order to quantify the uncertainty of our time lags we use Monte Carlo and Bootstrap techniques to resample and randomize the data points on each lightcurve. See Peterson et al. (1998) for a discussion of CCF uncertainties. For each point, we add random Gaussian noise based on the uncertainty associated with the count rate measurement for that point. We then randomly resample the data (Bootstrap) with the temporal ordering intact, but allow for the possibility of sampling a particular data point more than once while keeping the same number of elements of the data set, i.e., some points were excluded. We repeat the random resampling and compute the CCF(\(\tau\)) for each. This is done for 10000 realisations, allowing us to build a histogram of the centroid of the CCFs, which we show in Fig. 4. We take the mean of the distribution of centroids as the lag value (\(\tau\)). The uncertainty in the lag is taken at the 1\(\sigma\) value of the distribution. The values of time lags associated with \(UVW\), \(B\), and \(V\)–band lightcurves are shown in Table 1. These data show the time delay between the X-ray and longer wavelength lightcurves.

3.1 Cross-correlation Lag Results

In order to conduct accurate analysis of the time lags of the response bands, several factors are needed. First, the dense monitoring campaign we undertook gave us the well-sampled data quality required to limit the uncertainties associated with the time delay. Second, the intrinsic variability of the source lightcurve and the corresponding correlated response must also exist. This allows for the computation of the CCF(\(\tau\)) and the time lag. Indeed, the greater the variability, the more accurately we can compute the CCF(\(\tau\)). One measure of the intrinsic variability is the fractional root-mean-square variability amplitude or \(F_{\text{var}}\), which is described in Vaughan et al. (2003). This statistic is computed by subtracting the variance in the individual count rate measurement errors from the variance of the count rates themselves. This difference is called the excess variance.

\(F_{\text{var}}\) is the normalized expression of the excess variance. The

![Figure 3](image)

Figure 3. The auto-correlation function of the X-ray lightcurve is shown in the top panel. In the lower panels, the cross-correlation functions of each band with respect to the X-ray lightcurve and auto-correlation functions are shown in increasing wavelength order. Blue solid lines show the CCFs while the red dotted lines show the ACF of each band. The centroid of the lags are shown by the vertical solid blue lines. The centroid values are listed in Table 1. The 95% and 99% confidence limits in the CCF values are shown as black dotted and dashed lines respectively.

![Figure 4](image)

Figure 4. The histogram of lag centroids for each band. The lightcurve data were randomly resampled and the CCFs computed for 10000 realisations. This Monte Carlo method allows us to estimate the uncertainty in the lag calculation [Peterson et al. 1998].

Table 1. Time Lags

Response Band	Time Lag (days)
UV (2600 Å)	2.1 ± 0.7
B (4400 Å)	2.6 ± 0.5
V (5500 Å)	1.9 ± 0.2
errors in F_{env} are computed assuming errors only due to Poisson noise. See Appendix B of Vaughan et al. (2003) for a discussion. Values of F_{env} are listed in Table 2 and provide a metric for measuring variability. In the B– and V–bands, we calculate it using the host-galaxy subtracted fluxes.

Visual inspection of the lightcurves shown in Fig. 2 indicates good correlation of all bands, as is also apparent from the peak values of the CCFs. An initial large peak in the X-ray LC that is echoed in all the responding bands can be seen. Moreover, each of the longer wavelength responding bands shows a broader peak as expected if the continuum is thermally reprocessed – reprocessing on the near-side of the disc will be seen before reprocessing on the far-side of the disc – blurring out the sharp peak seen in X-rays.

Inspection of Fig. 3 reveals a moderately flat CCF(τ) for the B-band and V-band. The large uncertainties in these bands arise from lack of significant overlap of the Swift and LT data as well as a period of low variability in the flux across all bands shortly after the large rise seen at the beginning of the monitoring period. As a test, we also carried out the lag analysis with only the overlapping portion of the LCs. We found the differences in lag distributions to be negligible.

Our data support thermal reprocessing with an X-ray to UV lag of 2.1 $^{+0.7}_{-0.5}$ days, an X-ray to B-band lag of 2.6 $^{+1.3}_{-0.9}$ days, and an X-ray to V-band lag of 1.9 $^{+1.2}_{-0.8}$ days. Thermal reprocessing of the X-ray continuum would result in wavelength-dependent time lags:

$$\tau \propto \lambda^{-2}$$

(Collier et al. 1999). For a standard thin disc (Shakura & Sunyaev, 1973), the temperature profile is given by (e.g., Collier et al. 1999, Frank et al. 2002, Cackett et al. 2007):

$$T(R) = \left[\frac{3GM}{8\pi R^3 \sigma} + \frac{L_x h(1 - A)}{4\pi R^2 \sigma} \right]^{1/4}.$$

where G is Newton’s universal gravitational constant, M is the mass of the black hole, σ is the mass accretion rate, σ is the Stefan-Boltzmann constant, L_x is the luminosity of the continuum irradiating source, A is the disc albedo, R_x is the distance from the irradiating source to the disc element at distance R from the black hole, and H_x is the height of the irradiating continuum source above the disc. The first term in the temperature profile equation is the contribution of the viscous heating of the disc and is valid for $R \gg R_x$, where R_x is the innermost stable orbit of the blackhole. The second term is the contribution associated with radiative heating of the disc. In the same regime: $R \gg R_x$ and when $R \gg H_x$, the second term $\propto R^{-2}$. Overall, this suggests that $T(R) \propto R^{-\frac{3}{2}}$. If we assume a Wien’s Displacement Law relationship ($\lambda \propto T^{-1}$) for each disc element a distance R from the central black hole and considering the previous relationship $T(R) \propto R^{-\frac{3}{2}}$, we obtain the relationship $R^{-\frac{3}{2}} \propto \lambda^{-1}$. Assuming $R \propto \tau$, we obtain $\tau \propto \lambda^{\frac{3}{2}}$.

In Fig. 5 we plot time lag vs. wavelength for the UVW_1, B- and V-band wavebands relative to the X-ray band. Additionally, we plot the function:

$$\tau = \tau_0 \left[\frac{1}{\lambda_0} \right]^{\alpha} - 1.$$

Table 2. Fractional Variability

Band	F_{env}
X-ray (8.3 Å)	0.70±0.01
UV (2600 Å)	0.267±0.002
B (4400 Å)	0.323±0.008
V (5500 Å)	0.320±0.010

Figure 5. Time lags for the UVW_1, B- and V-band calculated with respect to the X-ray band as a function of wavelength. The red line is the best-fitting $\tau \propto \lambda^{3/2}$ relation, showing the data is broadly consistent with thermal reprocessing. The x-error bars indicate the filter bandpass FWHM, so together they show the FWHM.

where: λ_0 is the wavelength of the driving X-ray band (here we use a value of $\lambda_0 = 8.3$ Å), τ_0 is the continuum reference time, determined by fitting the data, and α is the characteristic exponent.

Fixing, $\alpha = 4/3$, the relation fits the data well, but given the large uncertainties in the B– and V–bands, we cannot better constrain the exact wavelength dependence of the lags.

3.2 Monte Carlo Accretion Disc Lag Distribution Analysis

We now perform an additional analysis of the lightcurve lags. We use the accretion disc modelling code CREAM (Starkey et al. 2015) to fit a lamp-post model (e.g. Collier et al. 1999, Gaskell et al. 2007, Cheiolou et al. 2013) to the continuum emission; interpreting this as variable black body emission from a standard thin disc.

CREAM uses Markov Chain Monte Carlo (MCMC) methods to fit a simple irradiated disc model to the observed lightcurves. The driving (X-ray) lightcurve is modelled as a Fourier time series in log$_{10} F_x$, with a random walk prior on the Fourier amplitudes. Each echo (UV and optical) lightcurve is modelled as a constant flux plus variations obtained by convolving the driving lightcurve with the time delay distribution appropriate for a flat steady-state blackbody accretion disc irradiated by a variable point source just above the disc centre.

The MCMC fit samples the joint posterior probability distribution of the model parameters. The parameters of primary interest are MM, which controls the $T(\tau)$ profile of the disc, and the disc inclination i. The MM estimate maps directly onto a mean delay with a theoretical scaling of $(\tau) \propto (MM)^{1/3} \lambda^{3/2}$ (Collier et al., 1998), independent of i, and the shape of the delay distribution depends on i. The model has hundreds of nuisance parameters, including the Fourier amplitudes that define the X-ray lightcurve, and a mean and RMS amplitude and an error bar scale factor for each echo lightcurve. For further details see Starkey et al. (2015).

While CREAM can be used to simultaneously fit both MM and i, our data are too sparsely sampled with too little overlap between the X-ray and optical light curves to provide a simultaneous fit. To remedy this, we fix the inclination and allow the MM parameter to vary. We do this for inclinations 0 - 50 degrees in 10 degree...
Figure 6. CREAM fit for $i = 50^\circ$ to the X-ray (a), UVW1 and LT light curves (lower right, panels c, e and g). CREAM assumes the X-ray light curve drives the variability at the longer wavelengths and attempts to infer the disc response function (lower left, panels b, d and f). The vertical lines indicate the mean lag and 1-σ uncertainty envelope.

3.3 Multi-component spectral decomposition

We estimate the contribution of the broad lines to the B- and V-bands through fitting an archival spectrum of NGC 6814. We obtained the 6dF spectrum (Jones et al. 2009) of NGC 6814 from NED. We then follow the spectral decomposition method described in Barth et al. (2013) in order to determine the flux of individual components. We fit the spectrum with a model consisting of a power-law continuum, galaxy stellar template, Fe ii template and Gaussians for the broad and narrow emission lines. The model was convolved with a Gaussian to match the spectral resolution of 6dF. We use the Fe ii template of Véron-Cetty et al. (2004) convolved with a broad Gaussian, assuming it originates in the BLR. The best-fitting Gaussian width for the Fe ii complex is consistent with the widths of the broad lines (approximately the same as Hγ, but narrower than Hα or Hβ). For the galaxy stellar template we

Modelling of the $H\beta$ emission line in NGC 6814 by Pancoast et al. (2014) has allowed for a mass and inclination to be determined for this object, which, in turn allows us to determine the mass accretion rate implied by our best fitting model. For $i = 50^\circ$, and $M = 10^{6.42} M_\odot$, we get $M = 31.6 M_\odot$ yr$^{-1}$, which, assuming an accretion efficiency $\dot{\eta} = 0.1$ implies an Eddington fraction of $L_\text{bol}/L_\text{edd} = 546$. Additionally, standard reverberation analysis gives a black hole mass of $M_\text{BH} = 10^{7.04\pm0.06} M_\odot$ (Bentz & Katz 2015), using the weighted virial product of all broad lines from Bentz et al. (2009b) and the f-factor from Grier et al. (2013). For the updated Bentz et al. (2009b) mass, we get $M = 7.6 M_\odot$ yr$^{-1}$, and an Eddington fraction of $L_\text{bol}/L_\text{edd} = 31.8$.

6 https://ned.ipac.caltech.edu/
that decreases toward edge-on inclinations as $M_{\text{BH}} = M_{\odot}(\sin i)^{2}$.

Figure 7. MM parameters with uncertainties plotted vs. assumed inclination. Contours show constant Eddington ratios evaluated assuming a black hole mass from Pancoast et al. (2014). To calculate the Eddington luminosity for our inclinations, we assume a disc-like BLR with a black hole mass that decreases toward edge-on inclinations as $M_{\text{BH}} = M_{\odot}(\sin i)^{2}$.

Figure 8. The 6dF optical spectrum of NGC 6814 (black). Dotted and dashed black lines show the transmission curves for the Liverpool Telescope B and V filters. The best-fitting composite model is shown in red. Also shown is the galactic stellar template (purple), continuum power-law (blue), and broad emission lines (green).

4 DISCUSSION

We observed the AGN NGC 6814 for approximately 100 days with Swift and 70 days with the Liverpool Telescope, obtaining X-ray, UV and optical lightcurves. The lightcurves are all strongly correlated, with the X-ray lightcurve showing the sharpest variability features and highest variability amplitude. Cross-correlation analysis shows that the UV and optical bands lag behind the X-ray by approximately 2 days. The lags, variability amplitude and the smoothing of longer wavelength lightcurves are all consistent with a scenario where the X-rays irradiate, and are reprocessed in, the accretion disc to drive the UV/optical variability.

To investigate this scenario further, we fit the lightcurves using CREAM, a MCMC code that assumes a standard thin disc irradiated by the X-ray source. This model fits the data well, allowing us to constrain the product MM. Using two different estimates of black hole mass, we calculated mass accretion rates and corresponding Eddington fractions, finding highly super-Eddington fractions. Based on the observed flux from NGC 6814, such highly super-Eddington accretion is clearly not occurring. The average host-galaxy subtracted V-band flux density is approximately 5.9×10^{38} erg cm$^{-2}$ s$^{-1}$ A$^{-1}$. We use this to estimate the bolometric luminosity of NGC 6814 during our observations. We do this by assuming that the V-band flux density is approximately the flux density at 5100Å. We then apply an extinction correction assuming $E(B-V) = 0.1586$ (the Schlafly & Finkbeiner 2011 corrected value from Schlegel et al. 1998) and the extinction law of Cardelli et al. (1989). We calculate the luminosity distance assuming a cosmology of $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$. We then apply a bolometric correction assuming $L_{\text{bol}} = 9.4 L_V(5100\text{Å})$ (while there are more nuanced bolometric corrections, this is sufficient for our basic estimate here). Doing this gives an estimated $L_{\text{bol}} = 2.7 \times 10^{42}$ erg s$^{-1}$, which corresponds to $L_{\text{bol}}/L_{\text{Edd}} = 0.008$ for the Pancoast et al. (2014) mass, and 0.002 using the updated Benz et al. (2009b) mass. Since $\tau \propto M^{1/3}$, decreasing the mass accretion rate by a factor of 5/4/0.008 or 31.8/0.002 (depending on the mass assumed), would lead to predicted lags a factor of about 40 or 25 smaller, respectively. In other words, for realistic values of mass and mass accretion rate, the observed lags are significantly longer than predicted by the standard thin disc model and hence the UV/optical emitting region is further out.

This discrepancy between standard disc model and observed lags is common among AGN where wavelength-dependent lags have been observed. In Cackett et al. (2007), a standard thin-disc model was fit to the lags and fluxes of a sample of 14 AGN and used to estimate the distances to those objects. However, the measured distances implied $H_0 = 44 \pm 5$ km s$^{-1}$ Mpc$^{-1}$, a factor of 1.6 smaller than the generally accepted value. This is a different manifestation of the problem. The model used by Cackett et al. (2007) has $D \propto \tau^{3/2} T^{1/2}$. Since $H_0 \propto 1/D$, the discrepancy with H_0 implies that the observed lags are too large by a factor of 1.6 on average.

More recently, wavelength-dependent lags in NGC 5548 measured from long-term monitoring campaigns in 2013 and 2014 also show that while the lags follow the expected $\tau \propto T^{1/3}$ dependence, they are also larger than expected given reasonable values for mass and mass accretion rate (McHardy et al. 2014; Edelson et al. 2015; Fausnaugh et al. 2015). For instance, McHardy et al. (2014) have to increase MM by a factor of 3, as well as change other parameters in their model, in order to get good agreement with the lags. Edelson et al. (2015) compare both the wavelength-dependent lags in NGC 5548 and the lags in NGC 2617 measured by Shappee et al. (2014).
with predictions based on reasonable $M\dot{M}$ for those objects, again showing that both exhibit longer lags than expected. In MCG-6-30-15 [Lira et al. 2015] also find larger than expected lags, showing that only with an unreasonable increase in X-ray luminosity (a factor of 4 higher) will the measured lags be in good agreement with theory.

McHardy et al. [2014] and Edelson et al. [2015] note that this discrepancy with the standard thin disc model is consistent with the results from gravitational microlensing, which have also found that the UV and optical emitting regions seem to be further out than predicted by the standard thin disc model (see Mosquera et al. 2013; Blackburne et al. 2015 and references therein). One possible explanation for this difference is that the accretion disc is inhomogeneous, with many different zones whose temperatures vary independently [Dexter & Agol 2011]. In this model, the global time-averaged properties of the disc follow the standard thin disc temperature profile, however, instabilities in the disc can lead to local zones whose temperature varies. With a large enough number of zones and amplitude of temperature fluctuations, the half-light radius of the disc increases enough to match the observed microlensing results. This is just one of several scenarios discussed in the literature, and we refer the reader to other detailed discussions on this discrepancy (see Cackett et al. 2007; Dexter & Agol 2011; McHardy et al. 2014; Edelson et al. 2015; Lira et al. 2015; Fausnaugh et al. 2015 and references therein for detailed discussions).

The lags in NGC 5548 are the best constrained for any source thus far, so provide an interesting comparison to our results on NGC 6814. From the standard thin disc model, we would expect lags to scale like $(M \dot{M})^{1/3}$. The mass and mass accretion rate for NGC 6814 are both estimated to be smaller than for NGC 5548. Using the [Bentz et al. 2009b] and Pancoast et al. [2014] masses and the estimated mass accretion rates given above, we would expect the lags in NGC 6814 to be about a factor of $10 - 17$ smaller than NGC 5548, yet, the lags are comparable between the two sources. The reason for the difference is not clear, and our interpretation is limited by the fact that the B- and V- band lags are not well constrained in NGC 6814. Future monitoring utilizing more wavebands and achieving better constrained lags could help understand the differences.

Since the lags are measured using broadband photometric filters, broad emission lines falling within the filter can increase the measured lag [Chelouche & Zucker 2013; Chelouche 2013]. We can do a simple estimate of this for NGC 6814 by considering the broad line contamination. If we assume a 1.5 day continuum lag, and a BLR lag of 7 days (the $H\beta$ lag for NGC 6814 is approximately this value; [Bentz et al. 2009b]), with 9% of the flux originating in the BLR implies an observed lag of: $\tau = 0.91 \times 1.5 \text{ days} + 0.09 \times 7 \text{ days} = 2.0 \text{ days}$. Hence, the contribution from broad emission lines may increase the observed lag by 0.5 days, and the lags in B and V could be 25% smaller than measured (though note that this is smaller than the size of the uncertainties in the lags). In addition to contamination from broad emission lines, diffuse continuum emission from broad-line clouds can also contaminate the lags. Korista & Goad [2001] show that reflected and thermal diffuse continuum can broadly mimic the $\tau \propto \lambda^{1.3}$ dependence, and may account for about one-third of the lag between 1350Å and 5100Å. UV and optical Fe \mathcal{II} pseudo-continuum emission from BLR clouds or an intermediate region between the accretion disc and the BLR may also contribute [Edelson et al. 2015]. Future spectroscopic measurements of wavelength-dependent lags to avoid BLR contamination in AGN will produce more accurately constrained continuum lags and help us further understand the structure of the accretion disc.

ACKNOWLEDGEMENTS

MCB and JES gratefully acknowledge support through NSF CAREER grant AST-1253702 to Georgia State University. We thank the Swift team for scheduling and performing the monitoring campaign. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council.

REFERENCES

Alard C., 2000, A&AS, 144, 563
Alard C., Lupton R. H., 1998, ApJ, 503, 325
Astyon W. N., Vaughan S., Urry P., 2013, MNRAS, 429, 75
Barth A. J., et al., 2013, ApJ, 769, 128
Bentz M. C., Katz S., 2015, PASP, 127, 77
Bentz M. C., Peterson B. M., Pogge R. W., Vestergaard M., Onken C. A., 2006, ApJ, 644, 133
Bentz M. C., Peterson B. M., Netzer H., Pogge R. W., Vestergaard M., 2009a, ApJ, 697, 160
Bentz M. C., Walsh J. L., Barth A. J., et al., 2009b, ApJ, 705, 199
Bentz M. C., Walsh J. L., Barth A. J., et al., 2010, ApJ, 716, 993
Bentz M. C., et al., 2013, ApJ, 767, 169
Blackburne J. A., Korchagin C. S., Chen B., Dai X., Chartas G., 2015, ApJ, 798, 95
Blandford R. D., McKeel C. F., 1982, ApJ, 255, 419
Breidt E., et al., 2009, MNRAS, 394, 427
Breidt E., et al., 2010, MNRAS, 403, 605
Burrows D. N., et al., 2005, Space Sci. Rev., 120, 165
Cackett E. M., Horne K., Winkler H., 2007, MNRAS, 380, 669
Cackett E. M., Zoghbi A., Reynolds C., Fabian A. C., Kara E., Urry P., Wilkins D. R., 2014, MNRAS, 438, 2980
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Chelouche D., 2013, ApJ, 772, 9
Chelouche D., Zucker S., 2013, ApJ, 769, 124
Colina L., Bohlin R., Castelli F., 1996, STScI Calibration Reports, OS-GCAL-96-01
Collier S. J., et al., 1998, ApJ, 500, 162
Collier S., Horne K., Wanders I., Peterson B. M., 1999, MNRAS, 302, L24
Czerny B., 2006, in Gaskell C. M., McHardy I. M., Peterson B. M., Sergeev S. G., eds, Astronomical Society of the Pacific Conference Series Vol. 360, Astronomical Society of the Pacific Conference Series. p. 265
De Marco B., Ponti G., Cappi M., Dadina M., Uttley P., Cackett E. M., Fabian A. C., Miniutti G., 2013, MNRAS, 431, 2441
Dexter J., Agol E., 2011, ApJ, 727, L24
Dosorshenko V. T., Sergeev S. G., Merkulova N. I., Sergeeva E. A., Golubinsky Y. Y., Pronik V. I., Okhmat N. N., 2005, Astrophysics, 48, 304
Edelson R., et al., 2015, ApJ, 806, 129
Evans P. A., et al., 2007, A&A, 469, 379
Evans P. A., et al., 2009, MNRAS, 397, 1177
Fausnaugh M. M., et al., 2015, preprint, (arXiv:1510.05648)
Frank J., King A., Raine D. J., 2002, Accretion Power in Astrophysics: Third Edition
Gehrels N., et al., 2004, ApJ, 611, 1095
Grier C. J., et al., 2013, ApJ, 773, 90
Jones D. H., et al., 2009, MNRAS, 399, 683
Kinney A. L., Calzetti D., Bohlin R. C., McQuade K., Storchi-Bergmann T., Schmitt H. R., 1996, ApJ, 467, 38
Koratkar A., Blaes O., 1999, PASP, 111, 1
Korista K. T., Goad M. R., 2001, ApJ, 553, 695
