Restrictions of the Complementary Series of the Universal
Covering of the Symplectic Group

Hongyu He
Department of Mathematics,
Louisiana State University,
Baton Rouge, LA 70803, U.S.A.
email: livingstone@alum.mit.edu

Abstract

In this paper, we study the restrictions of the complementary series representation onto
a symplectic subgroup no bigger than half of the size of the original symplectic group.

1 Introduction

Let \(\widetilde{Sp}(n, \mathbb{R}) \) be the universal covering of \(Sp(n, \mathbb{R}) \). \(\widetilde{Sp}(n, \mathbb{R}) \) is a central extension of \(Sp(n, \mathbb{R}) \):

\[
1 \to C \to \widetilde{Sp}(n, \mathbb{R}) \to Sp(n, \mathbb{R}) \to 1,
\]

where \(C \cong \mathbb{Z} \). The unitary dual of \(C \) is parametrized by a torus \(T \). For each \(\kappa \in T \), denote the corresponding unitary character of \(C \) by \(\chi^\kappa \). We say that a representation \(\pi \) of \(\widetilde{Sp}(n, \mathbb{R}) \) is of class \(\kappa \) if \(\pi|_C = \chi^\kappa \). Since \(C \) commutes with \(\widetilde{Sp}(n, \mathbb{R}) \), for any irreducible representation \(\pi \) of \(\widetilde{Sp}(n, \mathbb{R}) \), \(\pi|_C = \chi^\kappa \) for some \(\kappa \).

Denote the projection \(\widetilde{Sp}(n, \mathbb{R}) \to Sp(n, \mathbb{R}) \) by \(p \). For any subgroup \(H \) of \(Sp(n, \mathbb{R}) \), denote the full inverse image \(p^{-1}(H) \) by \(\widetilde{H} \). We adopt the notation from [10]. Let \(P \) be the Siegel parabolic subgroup of \(Sp(n, \mathbb{R}) \). One dimensional characters of \(\widetilde{P} \) can be parametrized by \((\epsilon, t) \) where \(\epsilon \in T \) and \(t \in \mathbb{C} \). Let \(I(\epsilon, t) \) be the representation of \(\widetilde{Sp}(n, \mathbb{R}) \) induced from the one dimensional character parametrized by \((\epsilon, t) \) of \(\widetilde{P} \). If \(t \) is purely imaginary, \(I(\epsilon, t) \) is unitary and irreducible. If \(t \) is real, then \(I(\epsilon, t) \) has an invariant Hermitian form. Sahi gives a classification of all irreducible unitarizable \(I(\epsilon, t) \). Besides the unitary principal series, there are complementary series \(C(\epsilon, t) \) for \(t \) in a suitable interval ([10]).

Let \((Sp(p, \mathbb{R}), Sp(n-p, \mathbb{R})) \) be a pair of symplectic groups diagonally embedded in \(Sp(n, \mathbb{R}) \). Suppose that \(p \leq n - p \). Let \(U(n) \) be a maximal compact subgroup such that \(Sp(n-p, \mathbb{R}) \cap U(n) \) is a maximal compact subgroup of \(Sp(n-p, \mathbb{R}) \). Denote \(Sp(n-p, \mathbb{R}) \cap U(n) \) by \(U(p) \).

Theorem 1.1. Suppose that \(p \leq n - p \) and \(C(\epsilon, t) \) is unitary. Then

\[
C(\epsilon, t)|_{\widetilde{U}(n-p)} \cong I(\epsilon, 0),
\]

\[
C(\epsilon, t)|_{\widetilde{U}(n-p)} \cong I(\epsilon, i\lambda),
\]

\((\lambda \in \mathbb{R}) \).
p = [\frac{n}{2}] is the best possible value for such a statement. In particular, for \(\widetilde{Sp}(2m + 1, \mathbb{R}) \)

\[
I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})} \not\in C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})}.
\]

To see this, let \(L^2(\widetilde{Sp}(n, \mathbb{R}))_\kappa \) be the set of functions with

\[
f(zg) = \mu^\kappa(z)f(g) \quad (z \in C, g \in \widetilde{Sp}(n, \mathbb{R}));
\]

\[
\|f\|^2 = \int_{Sp(n, \mathbb{R})} |f(g)|^2 d|g| \quad (g \in \widetilde{Sp}(n, \mathbb{R}), \mu \in Sp(n, \mathbb{R})).
\]

We say that a representation of class \(\kappa \) is tempered if it is weakly contained in \(L^2(\widetilde{Sp}(n, \mathbb{R}))_\kappa \).

By studying the leading exponents of \(I(\epsilon, 0) \) and \(C(\epsilon, t) \), it can be shown that \(I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})} \) is “tempered” and \(C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})} \) is not “tempered”. Therefore

\[
I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})} \not\in C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})}.
\]

The author would like to thank G. Olafsson and J. Lawson for some very helpful discussions.

2 A Lemma on Friedrichs Extension

Let \(S \) be a semibounded densely defined symmetric operator on a Hilbert space \(H \). Suppose that \((Su, u) > 0 \) for every nonzero \(u \in D(S) \). We call \(S \) positive. For \(u, v \in D(S) \), define

\[
(u, v)_S = (u, Sv),
\]

\[
\|u\|_S = (u, Su).
\]

Let \(H_S \) be the completion of \(D(S) \) under the norm \(\| \cdot \|_S \).

The operator \(S + I \) has a unique Friedrichs extension \((S + I)_0 \) such that \(D((S + I)_0) \subseteq H_{S+I} \) and \((u, v)_{S+I} = (u, (S + I)_0 v) \) for all \(u \in H_{S+I} \) and \(v \in D((S + I)_0) \) (see Theorem in Page 335 [\S]). Here \(H_{S+I} \subseteq H \) and \((S + I)_0 \) is self-adjoint. Now consider \((S + I)_0 - I \). It is an self-adjoint extension of \(S \). It is nonnegative. By the spectral decomposition and functional calculus, \((S + I)_0 - I \) has unique square root \(T \) (See 127. 128. [\S]).

Lemma 2.1. Let \(S \) be a positive densely defined symmetric operator. Then the square root of \((S + I)_0 - I \) extends to an isometry from \(H_S \) into \(H \).

Proof: Clearly, the spectrum of \(T \) is contained in the nonnegative part of the real line. By spectral decomposition \(D((S + I)_0 - I) = D((S + I)_0) \subseteq D(T) \) and \(TT = (S + I)_0 - I \).

In addition for any \(u, v \in D(S) \subseteq D((S + I)_0)_0 \),

\[
(Tu, Tv) = (u, TTV) = (u, (S + I)_0 v - v) = (u, Sv) = (u, v)_S.
\]

So \(T \) is an isometry from \(D(S) \) into \(H \). Since \(D(S) \) is dense in \(H_S \), \(T \) extends to an isometry from \(H_S \) into \(H \). \(\Box \)

We denote the isometry by \(I_S \). It is canonical.
3 Complementary Series of \(\widetilde{Sp}(n, \mathbb{R}) \)

Fix the Lie algebra \(\mathfrak{sp}(n, \mathbb{R}) \):

\[
\left\{ \begin{pmatrix} X & Y & Z \\ Z & -X^t & -Y^t \end{pmatrix} \mid Y^t = Y, Z^t = Z \right\}
\]

and the Siegel parabolic algebra \(\mathfrak{p} \):

\[
\left\{ \begin{pmatrix} X & Y \\ 0 & -X^t \end{pmatrix} \mid Y^t = Y \right\}.
\]

Fix the Levi decomposition \(\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n} \) with

\[
\mathfrak{l} = \left\{ \begin{pmatrix} X & 0 & 0 \\ 0 & -X^t & 0 \end{pmatrix} \mid X \in \mathfrak{gl}(n, \mathbb{R}) \right\}
\]

and

\[
\mathfrak{n} = \left\{ \begin{pmatrix} 0 & Y \\ 0 & 0 \end{pmatrix} \mid Y^t = Y \right\}.
\]

Fix a Cartan subalgebra \(\mathfrak{a} = \{ \text{diag}(H_1, H_2, \ldots, H_n, -H_1, -H_2, \ldots, -H_n) \mid H_i \in \mathbb{R} \} \).

Let \(\text{Sp}(n, \mathbb{R}) \) be the symplectic group and \(P \) be the Siegel parabolic subgroup. Let \(LN \) be the Levi decomposition and \(A \) be the analytic group generated by the Lie algebra \(\mathfrak{a} \). Clearly, \(L \cong GL(n, \mathbb{R}) \) and \(L \cap U(n) \cong O(n) \). On the covering group, we have \(\widetilde{L} \cap \widetilde{U}(n) = \widetilde{O}(n) \).

Recall that

\[
\text{det}(g) = \pm 1.
\]

We have the following exact sequence

\[
1 \to SO(n) \to \tilde{O}(n) \to \frac{1}{2} \mathbb{Z} \to 1.
\]

Consequently, we have

\[
1 \to GL_0(n, \mathbb{R}) \to \tilde{L} \to \frac{1}{2} \mathbb{Z} \to 1.
\]

In fact,

\[
\tilde{L} = \{ (x, g) \mid g \in L, \exp 2\pi ix = \frac{\det g}{|\det g|}, x \in \mathbb{R} \}.
\]

The one dimensional unitary characters of \(\frac{1}{2} \mathbb{Z} \) are parametrized by the one dimensional torus \(T \). Identify \(T \) with \([0, 1)\). Let \(\mu^\epsilon \) be the character of \(\frac{1}{2} \mathbb{Z} \) corresponding to \(\epsilon \in [0, 1) \).

Now each character \(\mu^\epsilon \) yields a character of \(\tilde{L} \), which in turn, yields a character of \(\tilde{P} \). For simplicity, we retain \(\mu^\epsilon \) to denote the character on \(\tilde{L} \) and \(\tilde{P} \). Let \(\nu \) be the det-character on \(\tilde{L}_0 \), i.e.,

\[
\nu(x, g) = |\det g| \quad (x, g) \in \tilde{L}.
\]
Let
\[I(\epsilon, t) = \text{Ind}_{\tilde{P}}^{\tilde{\text{Sp}}(n, \mathbb{R})} \mu^\epsilon \otimes \nu^t \]
be the normalized induced representation with \(\epsilon \in [0, 1) \) and \(t \in \mathbb{C} \). This is Sahi’s notation applied to the universal covering of the symplectic group \([10]\). \(I(\epsilon, t) \) is a degenerate principal series representation. Clearly, \(I(\epsilon, t) \) is unitary when \(t \) is purely imaginary.

When \(t \) is real and \(I(\epsilon, t) \) is unitarizable, the unitary representation, often denoted by \(C(\epsilon, t) \), is called a complementary series representation. Various complementary series of \(\text{Sp}(n, \mathbb{R}) \) and its metaplectic covering was determined explicitly or implicitly by Kudla-Rallis, Ørsted-Zhang, Brason-Olafsson-Ørsted and others. See \([6], [2], [7]\) and the references therein.

The complete classification of the complementary series of the universal covering is due to Sahi (\([10]\)).

Theorem 3.1 (Thm A, \([10]\)). Suppose that \(t \) is real. For \(n \) even, \(I(\epsilon, t) \) is irreducible and unitarizable if and only if \(0 < |t| < \frac{1}{2} - |2\epsilon - 1| \). For \(n \) odd and \(n > 1 \), \(I(\epsilon, t) \) is irreducible and unitarizable if and only if \(0 < |t| < \frac{1}{2} - \frac{1}{2} - |2\epsilon - 1| \).

![Figure 1: Complementary Parameters \((E, t)\)](image)

One can easily check that the complementary series exist if \(\epsilon \neq 0, \frac{1}{2} \) for \(n \) odd and \(n > 1 \); if \(\epsilon \neq \frac{1}{2}, \frac{3}{4} \) for \(n \) even. It is interesting to note that complementary series always exist unless \(I(\epsilon, t) \) descends into a representation of the metaplectic group. For the metaplectic group \(Mp(2n+1, \mathbb{R}) \), there are two complementary series \(I(\frac{1}{4}, t)(0 < t < \frac{1}{2}) \) and \(I(\frac{3}{4}, t)(0 < t < \frac{1}{2}) \). For the metaplectic group \(Mp(2n, \mathbb{R}) \), there are two complementary series \(I(0, t)(0 < t < \frac{1}{2}) \) and \(I(\frac{1}{2}, t)(0 < t < \frac{1}{2}) \). These four complementary series are the “longest.”

For \(n = 1 \), the situation is quite different. The difference was pointed out in \([6]\). For example, there are Bargmann’s complementary series representation for \(I(0, t)(t \in (0, \frac{1}{2})) \). The classification of the complementary series of \(\tilde{\text{Sp}}(1, \mathbb{R}) \) can be found in \([1], [9], [5]\).

Since our restriction theorem only makes sense for \(n \geq 2 \). We will assume \(n \geq 2 \) from now on. The parameters for the complementary series of \(\tilde{\text{Sp}}(n, \mathbb{R}) \) are illustrated in fig. \([1]\).

4 The generalized compact model and The Intertwining Operator

Recall that
\[I^\infty(\epsilon, t) = \{ f \in C^\infty(\tilde{\text{Sp}}(n, \mathbb{R})) \mid f(gl_n) = (\mu^\epsilon \otimes \nu^{1+t})(l^{-1})f(l) (l \in \tilde{L}, n \in N) \} \]
where \(\rho = \frac{n+1}{2} \). Let \(X = \tilde{\text{Sp}}(n, \mathbb{R}) / \tilde{P} \). Then \(I^\infty(\epsilon, t) \) consists of smooth sections of the homogeneous vector bundle \(\mathcal{L}_{\epsilon, t} \)
\[\tilde{\text{Sp}}(n, \mathbb{R}) \times_{\tilde{P}} C_{\mu^\epsilon \otimes \nu^{1+t}} \rightarrow X. \]
Since \(X \cong Sp(n, \mathbb{R})/P \cong \tilde{U}(n)/\tilde{O}(n) \), \(\tilde{U}(n) \) acts transitively on \(X \). \(f \in I^\infty(\epsilon, t) \) is uniquely determined by \(f|_{\tilde{U}(n)} \) and vice versa. Moreover, the homogeneous vector bundle \(L_{\epsilon,t} \) can be identified with \(K_{\epsilon,t} \)

\[
\tilde{U}(n) \times _{\tilde{O}(n)} C_{\mu \otimes \epsilon + r}|_{\tilde{O}(n)} \to X
\]

naturally. Notice that the homogeneous vector bundle \(K_{\epsilon,t} \) does not depend on the parameter \(t \). We denote it by \(K_\epsilon \). The representation \(I(\epsilon, t) \) can then be modeled on smooth sections of \(K_\epsilon \). This model will be called the generalized compact model.

The generalized compact model provides much convenience. First, it equips the smooth sections of \(K_{\epsilon,t} \) with a pre-Hilbert structure

\[
(f_1, f_2)_X = \int_{[k] \in X} f_1(k)\overline{f_2(k)}d[k],
\]

where \(k \in \tilde{U}(n) \) and \([k] \in X\). It is easy to verify that \(f_1(k)\overline{f_2(k)} \) is a function of \([k]\) and it does not depend on any particular choice of \(k \). Notice that our situation is different from the compact model since \(\tilde{U}(n) \) is not compact. We denote the completion of \(I^\infty \) with respect to \((,)_X \) by \(I_X(\epsilon, t) \). Secondly, the action of \(\tilde{U}(n) \) on \(K_\epsilon \) induces an orthogonal decomposition of \(I_X(\epsilon, t) \):

\[
I_X(\epsilon, t) = \oplus_{\alpha \in \mathbb{Z}^n} V(\alpha + \epsilon(2, 2, \ldots, 2)),
\]

where \(V(\alpha + \epsilon(2, 2, \ldots, 2)) \) is an irreducible representation of \(\tilde{U}(n) \) with highest weight \(\alpha + \epsilon(2, 2, \ldots, 2) \). Let

\[
V(\epsilon, t) = \oplus_{\alpha \in \mathbb{Z}^n} V(\alpha + \epsilon(2, 2, \ldots, 2)).
\]

\(V(\epsilon, t) \) possesses an action of the Lie algebra \(sp(n, \mathbb{R}) \). It is called the Harish-Chandra module of \(I(\epsilon, t) \). Clearly, \(V(\epsilon, t) \subset I^\infty(\epsilon, t) \subset I_X(\epsilon, t) \).

For each \(t \), there is an \(\tilde{Sp}(n, \mathbb{R}) \)-invariant sesquilinear pairing of \(I(\epsilon, t) \) and \(I(\epsilon, -\bar{t}) \), namely,

\[
(f_1, f_2) = \int_X f_1(k)\overline{f_2(k)}d[k],
\]

where \(f_1 \in I(\epsilon, t) \) and \(f_2 \in I(\epsilon, -\bar{t}) \). If \(t \) is purely imaginary, we obtain a \(\tilde{Sp}(n, \mathbb{R}) \)-invariant Hermitian form which is exactly \((,)_X \). Since \((,)_X \) is positive definite, \(I(\epsilon, t) \) is unitary.

For each real \(t \), the form \((,)_X \) gives an \(\tilde{Sp}(n, \mathbb{R}) \)-invariant sesquilinear pairing of \(I(\epsilon, t) \) and \(I(\epsilon, -t) \). There is an intertwining operator

\[
A(\epsilon, t) : V(\epsilon, t) \to V(\epsilon, -t)
\]

which preserves the action of \(sp(n, \mathbb{R}) \) (see for example [2]). Define a Hermitian structure \((,)_e,t \) on \(V(\epsilon, t) \) by

\[
(u, v)_{e,t} = (A(\epsilon, t)u, v), \quad (u, v \in V(\epsilon, t)).
\]

Clearly, \((,)_e,t \) is \(sp(n, \mathbb{R}) \)-invariant. So \(A(\epsilon, t) \) induces an invariant Hermitian form on \(V(\epsilon, t) \).

Now \(A(\epsilon, t) \) can also be realized as an unbounded operator on \(I_X(\epsilon, t) \) as follows. For each \(f \in V(\epsilon, t) \), define \(A_X(\epsilon, t)f \) to be the unique section of \(L_{\epsilon,t} \) such that

\[
(A_X(\epsilon, t)f)|_{\tilde{U}(n)} = \left(A(\epsilon, t)f\right)|_{\tilde{U}(n)}.
\]
Notice that $A_X(\epsilon, t)f \in I(\epsilon, t)$ and $A(\epsilon, t)f \in I(\epsilon, -t)$. They differ by a multiplier.

Now $A_X(\epsilon, t)$ is an unbounded operator on the Hilbert space $I_X(\epsilon, t)$. The following fact is well-known in many different forms. I state it in a way that is convenient for later use.

Lemma 4.1. Let $t \in \mathbb{R}$. $I(\epsilon, t)$ is unitarizable if and only if $A_X(\epsilon, t)$ extends to a self-adjoint operator on $I_X(\epsilon, t)$ with spectrum on the nonnegative part of the real axis.

The spectrum of $A_X(\epsilon, t)$ was computed in [2] and [17] explicitly for special cases and in [10] implicitly. In particular, $A_X(\epsilon, t)$ restricted onto each $\widetilde{U}(n)$-type is a scalar multiplication and the scalar is bounded by a polynomial on the highest weight. We obtain

Lemma 4.2. $A_X(\epsilon, t)$ extends to an unbounded operator from $I^\infty(\epsilon, t)$ to $I^\infty(\epsilon, t)$.

This lemma follows from a standard argument that the norm of each $\tilde{U}(n)$-component in the Peter-Weyl expansion of any smooth section of K_ϵ decays rapidly with respect to the highest weight.

5 The Mixed Model

Suppose that $p + q = n$ and $p \leq q$. Fix a subgroup $Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R})$ in $Sp(n, \mathbb{R})$. Then we have a subgroup $\widetilde{Sp}(p, \mathbb{R})\tilde{Sp}(q, \mathbb{R})$ in $\tilde{Sp}(n, \mathbb{R})$. Notice that $\widetilde{Sp}(p, \mathbb{R}) \cap \tilde{Sp}(q, \mathbb{R}) \cong \mathbb{Z}$. So $\widetilde{Sp}(p, \mathbb{R})\tilde{Sp}(q, \mathbb{R})$ is not a direct product, but rather the product of the two groups as sets. Let $U(q) = \tilde{Sp}(q, \mathbb{R}) \cap U(n)$.

Theorem 5.1 (Main Theorem). Suppose that $p + q = n$ and $p \leq q$. Given a complementary series representation $C(\epsilon, t)$,

$$C(\epsilon, t)|_{\widetilde{Sp}(p, \mathbb{R})\tilde{U}(q)} \cong I(\epsilon, 0)|_{\tilde{Sp}(p, \mathbb{R})\tilde{U}(q)}.$$

In other words, there is an isometry between $C(\epsilon, t)$ and $I(\epsilon, 0)$ that intertwines the actions of $\tilde{U}(q)$ and of $\tilde{Sp}(p, \mathbb{R})$.

We begin by recall a result concerning the action of $Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R})$ on X (\[4\]).

Lemma 5.1. $Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R})$ acts on X with a unique open dense orbit X_0. Let $p \leq q$. Let $P_{p, 2q-2p}$ be a maximal parabolic subgroup of $Sp(q, \mathbb{R})$ preserving an $q - p$ dimensional isotropic subspace. Let $GL_{q-p}Sp(p, \mathbb{R})N_{p, 2q-2p}$ be the Langlands decomposition of $P_{p, 2q-2p}$. Let

$$H = \{(u, m_2 \, t^2 \, u^{-1} \, n_2) \mid m_2 \in GL(q - p, \mathbb{R}), u \in Sp(p, \mathbb{R}), n_2 \in N_{p, 2q-2p}\}.$$

Then $X_0 \cong Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R})/H$.

Notice that $H \cong P_{p, 2q-2p}$. But the $Sp(p, \mathbb{R})$ factor in P is diagonally embedded in $Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R})$. In particular, there is a principal fibration

$$Sp(p, \mathbb{R}) \to X_0 \to Sp(q, \mathbb{R})/P_{p, 2q-2p} \cong U(q)/O(q - p)U(p).$$

Here $O(q - p)U(p) = U(q) \cap P_{p, 2q-2p} \subset Sp(q, \mathbb{R})$. Let $M = Sp(p, \mathbb{R})U(q)$ and $\tilde{M} = \tilde{Sp}(p, \mathbb{R})\tilde{U}(q)$. Then $\mathcal{L}_{\epsilon, t}$ restricted onto X_0 becomes

$$\tilde{M} \times_{O(q-p)\tilde{U}(p)} C_{\mu^*} \to \tilde{M}/O(q-p)\tilde{U}(p) \cong X_0.$$
Let \(I^\infty_{c,X_0}(\epsilon,t) \) be the set of smooth section of \(\mathcal{L}_{c,t} \) that are compactly supported on \(X_0 \). Clearly
\[
I^\infty_{c,X_0}(\epsilon,t) \subset I^\infty(\epsilon,t).
\]
Consider the restriction of \((\cdot, \cdot)_X\) onto \(I^\infty_{c,X_0}(\epsilon,t) \). We are interested in expressing \((\cdot, \cdot)_X\) as an integral on \(\sim M/O(q-p)\sim U(p) \). This boils down to a change of variables from \(\sim U(n)/\sim O(n) \) to \(\sim M/O(q-p)\sim U(p) \).

Let \(dg_1 \) be the invariant measure on \(\sim Sp(p, \mathbb{R}) \) and \(d[k_2] \) be the invariant measure on \(\sim U(q)/O(q-p)\sim U(p) \). Every element in \(\sim Sp(n, \mathbb{R}) \) has a \(\sim U(n)\sim P_0 \) decomposition where \(P_0 \) is the identity component of \(\sim P \). For each \(g \in \sim Sp(n, \mathbb{R}) \), write \(g = u(g)p(g) \). For each \(g_1k_2 \in \sim M \), write \(g_1k_2 = u(g_1k_2)p(g_1k_2) \). Then \(u \) defines a map from \(\sim M \) to \(\sim \sim U(n) \). \(u \) induces a map from \(\sim M/O(q-p)\sim U(p) \) to \(\sim \sim U(n)/\sim O(n) \) which will be denoted by \(j \). Clearly, \(j \) is an injection from \(\sim M/O(q-p)\sim U(p) \) onto \(X_0 \). Change the variable on \(X \) from \(\sim M/O(q-p)\sim U(p) \) to \(\sim \sim U(n)/\sim O(n) \).

Let \(J([g_1], [k_2]) \) be the Jacobian:
\[
\frac{dj([g_1], [k_2])}{d[g_1]d[k_2]}
\]
We have

Lemma 5.2. Let
\[
\Delta_{\epsilon,t}(g_1, k_2) = \nu(p(g_1k_2))^{-t+2p}J([g_1], [k_2]).
\]
Then for every \(f_1, f_2 \in I^\infty(\epsilon,t) \) we have
\[
(f_1, f_2)_{X} = \int_{\sim M/O(q-p)\sim U(p)} f_1(g_1k_2)f_2(g_1k_2)\Delta_{\epsilon,t}(g_1, k_2)d[g_1]d[k_2]
\]
where \(g_1 \in \sim Sp(p, \mathbb{R}) \), \(k_2 \in \sim U(q) \), \([g_1] \in Sp(p, \mathbb{R}) \) and \([k_2] \in \sim U(q)/O(q-p)\sim U(p) \). Furthermore, \(\Delta_{\epsilon,t}(g_1, k_2) \) is a nonnegative right \(O(q-p)\sim U(p) \)-invariant function on \(\sim Sp(p, \mathbb{R}) \times \sim U(q) \).

Proof: We compute
\[
\int_{\sim M/O(q-p)\sim U(p)} f_1(g_1k_2)f_2(g_1k_2)\Delta_{\epsilon,t}(g_1, k_2)d[g_1]d[k_2]
\]
\[
= \int_{\sim M/O(q-p)\sim U(p)} f_1(\bar{u}(g_1k_2))f_2(\bar{u}(g_1k_2))\nu(p(g_1k_2))^{-t-2p}\Delta_{\epsilon,t}(g_1, k_2)d[\bar{u}]d[k_2]
\]
\[
= \int_{\sim M/O(q-p)\sim U(p)} f_1(\bar{u}(g_1k_2))f_2(\bar{u}(g_1k_2))\nu(p(g_1k_2))^{-t-2p}\Delta_{\epsilon,t}(g_1, k_2)J^{-1}(g_1, k_2)\nu(p(g_1k_2))^{-t-2p}d[\bar{u}]d[k_2]
\]
\[
= \int_{X_0} f_1(\bar{u})f_2(\bar{u})d[\bar{u}] = (f_1, f_2)_X.
\]
\[
(1)
\]
Since \(\nu(p(g_1k_2)) \) and \(J([g_1], [k_2]) \) remains the same when we multiply \(k_2 \) on the right by \(O(q-p)\sim U(p) \), \(\Delta_{\epsilon,t}(g_1, k_2) \) is a nonnegative right \(O(q-p)\sim U(p) \)-invariant function. \(\square \)

For each \(f_1, f_2 \in I^\infty_{c,M}(\epsilon,t) \), define
\[
(f_1, f_2)_{M,t} = \int_{M} f_1(g_1k_2)f_2(g_1k_2)\Delta_{\epsilon,t}(g_1k_2)d[g_1]d[k_2],
\]
\[(f_1, f_2)_M = \int_M f_1(g_1, k_2) \overline{f_2(g_1, k_2)} d[g_1] d[k_2]. \]

Let \(I_M(\epsilon, t) \) be the completion of \(I^\infty_{C_M}(\epsilon, t) \) under \((\cdot, \cdot)_M \). Clearly \(I_M(\epsilon, t) \cong I_X(\epsilon, t) \) as Hilbert representations of \(\widehat{Sp}(n, \mathbb{R}) \). \(I_M(\epsilon, t) \) is called the mixed model.

6 Mixed Model for Unitary Principal Series

Lemma 6.1. If \(t \) is purely imaginary, then \(\Delta_{\epsilon, t}(g_1, k_2) \) is a constant and \((\cdot, \cdot)_M \) is a constant multiple of \((\cdot, \cdot)_M \).

Proof: Let \(t \in i \mathbb{R} \). Let \(f_1, f_2 \in I^\infty(\epsilon, t) \) and \(h \in \widehat{Sp}(p, \mathbb{R}) \). We have

\[
(I(\epsilon, t)(h)f_1, I(\epsilon, t)(h)f_2)_X
= (I(\epsilon, t)(h)(f_1, f_2))_M
= \int_{M/O(\widetilde{q} - p)U(p)} f_1(h^{-1}g_1k_2) \overline{f_2(h^{-1}g_1k_2)} \Delta_{\epsilon, t}(g_1, k_2) d[g_1] d[k_2]
= \int_{M/O(\widetilde{q} - p)U(p)} f_1(g_1k_2) \overline{f_2(g_1k_2)} \Delta_{\epsilon, t}(h^gk_1k_2) d[g_1] d[k_2]
\]

Since \(I(\epsilon, t) \) is unitary,

\[
(I(\epsilon, t)(h)f_1, I(\epsilon, t)(h)f_2)_X = (f_1, f_2)_X.
\]

We have

\[
\int_{M/O(\widetilde{q} - p)U(p)} f_1(g_1k_2) \overline{f_2(g_1k_2)} \Delta_{\epsilon, t}(h^gk_1k_2) d[g_1] d[k_2] = \int_{M/O(\widetilde{q} - p)U(p)} f_1(g_1k_2) \overline{f_2(g_1k_2)} \Delta_{\epsilon, t}(g_1k_2) d[g_1] d[k_2].
\]

It follows that \(\Delta_{\epsilon, t}(h^gk_1k_2) = \Delta_{\epsilon, t}(g_1k_2) \) for any \(h \in \widehat{Sp}(p, \mathbb{R}) \). Similarly, we obtain \(\Delta_{\epsilon, t}(g_1k_2) = \Delta(g_1, k_2) \) for any \(k \in \tilde{U}(q) \). Hence, \(\Delta_{\epsilon, t}(g_1, k_2) \) is a constant for purely imaginary \(t \). \(\square \)

Corollary 6.1. \(J([g_1], [k_2]) = cv(p(g_1k_2))^{-2p} \) and \(\Delta_{\epsilon, t}(g_1, k_2) = cv(p(g_1k_2))^{t+\tau} \). Furthermore,

\[
I_M(\epsilon, t) \cong L^2(\tilde{M} \times O(\tilde{q} - p)U(p), \mu^t, \nu(p(g_1k_2))^{t+\tau}d[g_1] d[k_2]). \tag{3}
\]

From now on, identify \(L^2(M/O(q - p)U(p)) \) with \(I_M(\epsilon, t) \).

Corollary 6.2. \(\nu(p(g_1k_2))^{-p} \in L^2(M/O(q - p)U(p)) \) and \(\nu(p(g_1k_2))^{-1} \) is a bounded positive function.

Proof: Since \(X \) is compact, \(J([g_1], [k_2]) \in L^1(\tilde{M} / O(q - p)U(p)) \). Notice that \(\nu(p(g_1k_2))^{-2p} = cJ([g_1], [k_2]) \). It follows that \(\nu(p(g_1k_2))^{-p} \in L^2(\tilde{M} / O(q - p)U(p)) \). Since \(J([g_1], [k_2]) \) is continuous and \([k_2] \) is a compact manifold, it suffice to show that for each \(k_2 \), \(J([g_1], [k_2]) \) is bounded. This is true because \(j_{k_2}(\tilde{Sp}(p, \mathbb{R})) \) is an analytic compactification of \(\tilde{Sp}(p, \mathbb{R}) \) and the Jacobian can be easily computed just like the way it is done in \[\text{[3]} \] (see Theorem 2.3). In particular, it is always positive. By Cor. 6.1 \(\nu(p(g_1k_2))^{-1} \) is bounded and positive. \(\square \)

If \(f \in I_M(\epsilon, t_1) \) and \(h > 0 \), we have \(||f||_{M,t_1} \geq C ||f||_{M,t_1-h} \). So \(I_M(\epsilon, t_1) \subset I_M(\epsilon, t_1-h) \).
Lemma 7.1. Suppose that $h > 0$. Then $I_M(\epsilon, t_1) \subset I_M(\epsilon, t_1 - h)$ under the Equation [99x90]

Notice that in the mixed model, the actions of $\overline{Sp(p, \mathbb{R})}$ and $\tilde{U}(q)$ does not depend on the parameter t. We obtain

Theorem 6.1. Let t be purely imaginary. $I(\epsilon, t)$ can all be modeled on

$$L^2(\tilde{M} \times O(q-p)\tilde{U}(p)) \subset C_{\mu^*}, d[g_1|d[k_2]].$$

In particular, $I_M(\epsilon, t)|\overline{Sp(p, \mathbb{R})}\tilde{U}(q) \cong I_M(\epsilon, 0)|\overline{Sp(p, \mathbb{R})}\tilde{U}(q)$ and the identity operator intertwines $I_M(\epsilon, 0)|\overline{Sp(p, \mathbb{R})}\tilde{U}(q)$ with $I_M(\epsilon, t)|\overline{Sp(p, \mathbb{R})}\tilde{U}(q)$.

For t a nonzero real number, $\Delta_{\epsilon,t}(g, k)$ is not a constant. So Theorem 6.1 does not hold for real nonzero t.

7 “Square Root ” of the Intertwining Operator

Suppose from now on $t \in \mathbb{R}$. For $f \in I^\infty(\epsilon, t)|\tilde{M}$, define a function on \tilde{M},

$$(A_M(\epsilon, t)f)(g_1k_2) = A(\epsilon, t)f(g_1k_2) \quad (g_1 \in \overline{Sp(p, \mathbb{R})}, k_2 \in \tilde{U}(q)).$$

So $A_M(\epsilon, t)$ is the “restriction” of $A(\epsilon, t)$ onto \tilde{M}. $A_M(\epsilon, t)$ is not yet an unbounded operator on $I_M(\epsilon, t)$. In fact, for $t > 0$, $A_M(\epsilon, t)$ does not behave well. In this case, it is not clear whether $A_M(\epsilon, t)$ can be realized as an unbounded operator on $I_M(\epsilon, t)$. $A_M(\epsilon, t)f$ differs from $AX(\epsilon, t)f$ by a multiplier.

Lemma 7.1. For $t \in \mathbb{R}$ and $f \in I^\infty(\epsilon, t)$,

$$(A_M(\epsilon, t)f|\tilde{M})(g_1k_2) = (AX(\epsilon, t)f)(g_1k_2)\nu(p(g_1k_2))^{2t} = (AX(\epsilon, t)f)(g_1k_2)\Delta_{\epsilon,t}(g_1, k_2).$$

This Lemma is due to the fact that $AX(\epsilon, t)f \in I(\epsilon, t)$ but $A(\epsilon, t)f \notin I(\epsilon, t)$.

Let $f \in I^\infty(\epsilon, t)$. In terms of the mixed model, the invariant Hermitian form $(,)_{\epsilon,t}$ can be written as follows:

$$(f, f)_{\epsilon,t} = (AX(\epsilon, t)f, f)_{X} = \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} A_M(\epsilon, t) f|\tilde{M} \tilde{F}_{\tilde{M}} d[g_1|d[k_2]].$$

We obtain

Lemma 7.2. For $f_1, f_2 \in I^\infty(\epsilon, t)$, $(f_1, f_2)_{\epsilon,t} = (A_M(\epsilon, t)f_1|\tilde{M}, f_2|\tilde{M})_M$.

Theorem 7.1. If $t < 0$ and $C(\epsilon, t)$ is a complementary series representation, then $A_M(\epsilon, t)$ is positive and densely defined symmetric operator. Its self-adjoint-extension $(A_M(\epsilon, t) + I)_0 - I$ has a unique square root which extends to an isometry from $C(\epsilon, t)$ onto

$$L^2(\tilde{M} \times O(q-p)\tilde{U}(p)) \subset C_{\mu^*}, d[g_1|d[k_2]].$$
Proof: Let \(t < 0 \). Put

\[
\mathcal{H} = L^2(M \times O(q-p) U(p), C_{\mu^\varepsilon}, d[g_1]d[k_2]).
\]

Let \(f \in I^\infty(\varepsilon, t) \). Then

\[
A_M(\varepsilon, t)(f|_{\tilde{\mathcal{M}}}) = \nu(\rho(g_1k_2))^{2t}A_X(\varepsilon, t)f(g_1k_2).
\]

By Lemma 2.1, Cor. 6.2 and Lemma 5.2, we have

\[
\begin{align*}
\int_{\tilde{\mathcal{M}}/\tilde{\partial}(q-p)U(p)} A_M(\varepsilon, t)(f|_{\tilde{\mathcal{M}}})A_M(\varepsilon, t)(f|_{\tilde{\mathcal{M}}})d[g_1]d[k_2] \\
= \int_{\tilde{\mathcal{M}}/\tilde{\partial}(q-p)U(p)} \nu(\rho(g_1k_2))^{2t}|(A_X(\varepsilon, t)f)(g_1k_2)|^2 \Delta_{\varepsilon,t}(g_1, k_2)d[g_1]d[k_2] \\
\leq C \int_{\tilde{\mathcal{M}}/\tilde{\partial}(q-p)U(p)} |A_X(\varepsilon, t)f(g_1k_2)|^2 \Delta_{\varepsilon,t}(g_1, k_2)d[g_1]d[k_2] \\
= C(A_X(\varepsilon, t)f, A_X(\varepsilon, t)f)_X < \infty.
\end{align*}
\]

Therefore, \(A_M(\varepsilon, t)(f|_{\tilde{\mathcal{M}}}) \in \mathcal{H} \). Let \(\mathcal{D} = I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}} \). Clearly, \(\mathcal{D} \) is dense in \(\mathcal{H} \). So \(A_M(\varepsilon, t) \) is a densely defined unbounded operator. It is positive and symmetric by Lemma 2.1.

Now \((f, g)_{\varepsilon,t} = (A_M(\varepsilon, t)f|_{\tilde{\mathcal{M}}}, g|_{\tilde{\mathcal{M}}})_M \) for any \(f, g \in I^\infty(\varepsilon, t) \). So \(C(\varepsilon, t) = \mathcal{H}_{A_M(\varepsilon, t)} \). By Lemma 2.1, there exists an isometry \(I_{A_M(\varepsilon, t)} \) mapping from \(C(\varepsilon, t) \) into \(\mathcal{H} \).

Suppose that \(I_{A_M(\varepsilon, t)} \) is not onto. Let \(f \in \mathcal{H} \) such that for any \(u \in \mathcal{D}(((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}) \),

\[
(f, ((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}u)_M = 0.
\]

Notice that

\[
I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}} \subset \mathcal{D}((A_M(\varepsilon, t)+I)_0 - I) \subset \mathcal{D}(((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}),
\]

and

\[
(A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}(A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}} = (A_M(\varepsilon, t)+I)_0 - I.
\]

In particular,

\[
((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}} \subset \mathcal{D}(((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}).
\]

It follows that

\[
(f, A_M(\varepsilon, t)I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}})_M \\
= (f, ((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}})_M \\
= (f, ((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}((A_M(\varepsilon, t)+I)_0 - I)^{\frac{1}{2}}I^\infty(\varepsilon, t)|_{\tilde{\mathcal{M}}})_M \\
= 0.
\]

Let \(f_{\varepsilon,t} \) be a function such that \(f_{\varepsilon,t}|_{\tilde{\mathcal{M}}} = f \) and

\[
f_{\varepsilon,t}(gln) = (\mu^\varepsilon \otimes \nu^{t+\rho})(l^{-1}) f_{\varepsilon,t}(g) \quad (l \in \tilde{L}, n \in N).
\]
The function \(f_{\epsilon,t} \) is not necessarily in \(I(\epsilon,t) \). By Lemma 7.2, \(\forall u \in V(\epsilon,t) \),

\[
0 = (f, A_M(\epsilon,t)(u|_{\tilde{M}}))_M = (f_{\epsilon,t}, u)_{\epsilon,t} = (f_{\epsilon,t}, A_X(\epsilon,t)u)_X.
\]

This equality is to be interpreted as an equality of integrals according to the definitions of \((\, , \,)_M \) and \((\, , \,)_X \). Since \(A_X(\epsilon,t) \) acts on \(\tilde{U}(n) \)-type in \(V(\epsilon,t) \) as a scalar, \(A_X(\epsilon,t)V(\epsilon,t) = V(\epsilon,t) \). We now have

\[
(f_{\epsilon,t}, V(\epsilon,t))_X = 0.
\]

In particular, \(f_{\epsilon,t}|_{\tilde{U}(n)} \in L^1(X) \). Therefore \(f_{\epsilon,t} = 0 \). We see that \(I_{AM(\epsilon,t)} \) is an isometry from \(C(\epsilon,t) \) onto

\[
L^2(\tilde{M} \times \tilde{O}(q,p)\tilde{U}(p) \tilde{C}_{\mu'}, d\tilde{g}d[k_2]).
\]

\(\Box \)

The Hilbert space

\[
L^2(\tilde{M} \times \tilde{O}(q,p)\tilde{U}(p) \tilde{C}_{\mu'}, d\tilde{g}d[k_2])
\]

is the mixed model for \(I(\epsilon,0) \). We now obtain an isometry from \(C(\epsilon,t) \) onto \(I(\epsilon,0) \). Denote this isometry by \(\tilde{U}(\epsilon,t) \). Now, with in the mixed model, the action of \(I(\epsilon,t)(g_1k_2) \) is simply the left regular action and it is independent of \(t \). We obtain

Lemma 7.3. Suppose \(\epsilon < 0 \). Let \(g \in \tilde{Sp}(p,\mathbb{R}) \) or \(g \in \tilde{U}(q) \). Let \(L(g) \) be the left regular action on

\[
L^2(\tilde{M} \times \tilde{O}(q,p)\tilde{U}(p) \tilde{C}_{\mu'}, d\tilde{g}d[k_2]).
\]

As a operator on \(I^\infty(\epsilon,t)|_{\tilde{M}} \), \(L(g) \) commutes with \(A_M(\epsilon,t) \). Furthermore, \(L(g) \) commutes with \((A_M(\epsilon,t) + I)_{0} - I \).

Proof: Let \(g \in \tilde{M} \). Both \(A_M(\epsilon,t) \) and \(L(g) \) are well-defined operator on \(I^\infty(\epsilon,t)|_{\tilde{M}} \). Restricting \(A(\epsilon,t)I(\epsilon,t)(g) = I(\epsilon,-t)(g)A(\epsilon,t) \) onto \(\tilde{M} \), we have

\[
A_M(\epsilon,t)L(g) = L(g)A_M(\epsilon,t).
\]

It follows that

\[
(A_M(\epsilon,t) + I)L(g) = L(g)(A_M(\epsilon,t) + I).
\]

Recall that \((A_M(\epsilon,t) + I)_0 \) can be defined as the inverse of \((A_M(\epsilon,t) + I)^{-1} \), which exists and is bounded. So \(L(g) \) commutes with both \((A_M(\epsilon,t) + I)^{-1} \) and \((A_M(\epsilon,t) + I)_0 \). \(\Box \)

Lemma 7.4. We have, for \(g \in \tilde{M} \), \(\tilde{U}(\epsilon,t)(I(\epsilon,t)(g) = I(\epsilon,0)(g)\tilde{U}(\epsilon,t) \).

Proof: It suffices to show that on the mixed model, \(((A_M(\epsilon,t) + I)_0 - I)^\frac{1}{2} \) commutes with \(L(g) \). This follows from Lemma 7.3. \(\Box \)

Our main theorem is proved.

References

[1] Bar V. Bargmann, “Irreducible unitary representations of the Lorentz group”, *Annals of Math.*, (Vol 48), 1947 (568-640).
[2] [BOO] T. Branson, G. Olafsson, B. Ørsted, “Spectrum Generating Operators and Intertwining Operators for Representations Induced from a Maximal Parabolic Subgroup”, *Journal of Functional Analysis*, (Vol. 135), 1996, (163-205).

[3] [He060] Hongyu He, *Functions on Symmetric Spaces and Oscillator Representation*, to appear in Journal of Functional Analysis, http://www.arxiv.org/math.RT/0605595, 2006

[4] [He06] Hongyu He, *Orbits on Lagrangian Grassmanian*, preprint, http://www.arxiv.org/math.GR/0608306, 2006.

[5] [Howe] R. Howe and E.-C. Tan *Non-Abelian Harmonic Analysis: Applications of $SL(2, \mathbb{R})$*, Springer-Verlag, 1992.

[6] [KR] S. Kudla and S. Rallis, “Degenerate Principal Series and Invariant Distribution”, *Israel Journal of Mathematics*, (Vol. 69, No. 1), 1990, (25-45).

[7] [OZ] B. Ørsted, G. Zhang, “Generalized Principal Series Representations and Tube Domain”, *Duke Math. Journal*, (Vol. 78), 1995 (335-357).

[8] [RS] F. Riesz, B. Sz.-Nagy, *Functional Analysis*, New York, Ungar 1955.

[9] [Puk] L. Pukánszky, “The Plancherel formula for the universal covering group of $SL(R, 2)$”, *Math. Ann*. 156 1964, (96–143).

[10] [Sahi] S. Sahi, “Unitary Representations on the Shilov Boundary of a Symmetric Tube Domain”, *Representation Theory of Groups and Algebras*, (275-286), *Comtemp. Math.* 145, Amer. Math. Soc., Providence, RI, 1993.
Restrictions of Certain Degenerate Principal Series of the Universal Covering of the Symplectic Group

Hongyu He*
Department of Mathematics,
Louisiana State University,
Baton Rouge, LA 70803, U.S.A.
email: livingstone@alum.mit.edu

Abstract

In this paper, we study the restrictions of degenerate unitary principal series \(I(\epsilon, t) \) of \(\widetilde{Sp}(n, \mathbb{R}) \), the universal covering of the symplectic group, onto \(\widetilde{Sp}(p, \mathbb{R}) \widetilde{Sp}(n-p, \mathbb{R}) \). We prove that if \(n \geq 2p \), \(I(\epsilon, t)\big|_{\widetilde{Sp}(p, \mathbb{R})\widetilde{Sp}(n-p, \mathbb{R})} \) is unitarily equivalent to an \(L^2 \)-space of a homogeneous line bundle \(L^2(\widetilde{Sp}(n-p, \mathbb{R}) \times \overline{GL(n-2p)} N \mathbb{C} \epsilon, t + \rho) \) (see Theorem 1.1). We further study the restriction of complementary series \(C(\epsilon, t) \) onto \(\widetilde{U}(n-p)\widetilde{Sp}(p, \mathbb{R}) \). We prove that this restriction is unitarily equivalent to \(I(\epsilon, t)\big|_{\widetilde{U}(n-p)\widetilde{Sp}(p, \mathbb{R})} \) for \(t \in i\mathbb{R} \). Our results suggest that the direct integral decomposition of \(C(\epsilon, t)\big|_{\widetilde{Sp}(p, \mathbb{R})\widetilde{Sp}(n-p, \mathbb{R})} \) will produce certain complementary series for \(\widetilde{Sp}(n-p, \mathbb{R}) \).

1 Introduction

Let \(\widetilde{Sp}(n, \mathbb{R}) \) be the universal covering of \(Sp(n, \mathbb{R}) \). \(\widetilde{Sp}(n, \mathbb{R}) \) is a central extension of \(Sp(n, \mathbb{R}) \):

\[1 \to C \to \widetilde{Sp}(n, \mathbb{R}) \to Sp(n, \mathbb{R}) \to 1, \]

where \(C \cong \mathbb{Z} \). The unitary dual of \(C \) is parametrized by a torus \(T \). For each \(\kappa \in T \), denote the corresponding unitary character of \(C \) by \(\chi^\kappa \). We say that a representation \(\pi \) of \(\widetilde{Sp}(n, \mathbb{R}) \) is of class \(\kappa \) if \(\pi|_C = \chi^\kappa \). Since \(C \) commutes with \(\widetilde{Sp}(n, \mathbb{R}) \), for any irreducible representation \(\pi \) of \(\widetilde{Sp}(n, \mathbb{R}) \), \(\pi|_C = \chi^\kappa \) for some \(\kappa \).

Denote the projection \(\widetilde{Sp}(n, \mathbb{R}) \to Sp(n, \mathbb{R}) \) by \(p \). For any subgroup \(H \) of \(Sp(n, \mathbb{R}) \), denote the full inverse image \(p^{-1}(H) \) by \(\hat{H} \). We adopt the notation from [14]. Let \(P \) be the Siegel parabolic subgroup of \(Sp(n, \mathbb{R}) \). One dimensional characters of \(\hat{P} \) can be parametrized by \((\epsilon, t) \) where \(\epsilon \in T \) and \(t \in \mathbb{C} \). Let \(I(\epsilon, t) \) be the representation of \(\widetilde{Sp}(n, \mathbb{R}) \) induced from the one dimensional character \(\mathbb{C} \epsilon, t \) parametrized by \((\epsilon, t) \) of \(\hat{P} \). If \(t \in i\mathbb{R} \) and \(t \neq 0 \), \(I(\epsilon, t) \) is unitary and irreducible. \(I(\epsilon, t) \) is called unitary degenerate principal series. If \(t \) is real, then

*This research is supported in part by the NSF grant DMS 0700809.
$I(\epsilon, t)$ has a nontrivial invariant Hermitian form. Sahi gives a classification of all irreducible unitarizable $I(\epsilon, t)$. If $I(\epsilon, 0)$ is irreducible, there are complementary series $C(\epsilon, t)$ for t in a suitable interval \((\Re)\). Let some of these complementary series are obtained by Kudla-Rallis \([9]\), Orsted-Zhang \([11]\), Branson-Orsted-Olafsson \([3]\), Lee \([10]\). Strictly speaking $C(\epsilon, t)$ should be called degenerate complementary series because there are complementary series associated with the principal series, which should be called complementary series \([8], [1]\). Throughout this paper, complementary series will mean $C(\epsilon, t)$.

Let \((Sp(p, \mathbb{R}), Sp(n - p, \mathbb{R}))\) be a pair of symplectic groups diagonally embedded in $Sp(n, \mathbb{R})$ (see Definition \([5.1]\). Let $U(n)$ be a maximal compact subgroup such that $Sp(n - p, \mathbb{R})$ and $Sp(p, \mathbb{R}) \cap U(n)$ are maximal compact subgroups of $Sp(n - p, \mathbb{R})$ and $Sp(p, \mathbb{R})$ respectively. Denote $Sp(n - p, \mathbb{R}) \cap U(n)$ by $U(n - p)$ and $Sp(p, \mathbb{R}) \cap U(n)$ by $U(p)$. The main results of this paper can be stated as follows.

Theorem 1.1. Suppose $p \leq n - p$ and $t \in i\mathbb{R}$. Let $P_{p,n-2p}$ be a maximal parabolic subgroup of $Sp(n - p, \mathbb{R})$ with Langlands decomposition $Sp(p, \mathbb{R})GL(n - 2p)N_{p,n-2p}$. Let $M_{\epsilon,t}$ be the homogeneous line bundle

$$\begin{align*}
\widetilde{Sp}(n - p, \mathbb{R}) \times_{GL(n - 2p)N_{p,n-2p}} C_{\epsilon,t+p} &\to Sp(n - p, \mathbb{R})/GL(n - 2p)N_{p,n-2p} \\
&\cong Sp(p, \mathbb{R})U(n - p)/U(p)O(n - 2p),
\end{align*}
$$

(1)

where $\rho = \frac{n+1}{2}$. Let $dg_1d[k_2]$ be an $Sp(p, \mathbb{R})U(n - p)$-invariant measure. Then

$$I(\epsilon, t)|_{\widetilde{Sp}(n - p, \mathbb{R})} \cong L^2(M_{\epsilon,t}, dg_1d[k_2]),$$

on which $\widetilde{Sp}(n - p, \mathbb{R})$ acts from the left and $\widetilde{Sp}(p, \mathbb{R})$ acts from the right.

Theorem 1.2. Let $C(\epsilon, t)$ be a complementary series representation. Suppose that $p \leq n - p$.

Then

$$C(\epsilon, t)|_{\widetilde{Sp}(n - p, \mathbb{R})} \cong I(\epsilon, 0)|_{\widetilde{Sp}(n - p, \mathbb{R})} \cong I(\epsilon, i\lambda)|_{\widetilde{Sp}(n - p, \mathbb{R})} \quad (\lambda \in \mathbb{R}).$$

$p = \left[\frac{n}{2}\right]$ is the best possible value for such a statement. In particular, for $\widetilde{Sp}(2m + 1, \mathbb{R})$

$$I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})} \neq C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})}.$$

To see this, let $L^2(\widetilde{Sp}(n, \mathbb{R}))_{\kappa}$ be the set of functions with

$$f(zg) = \chi^\kappa(z)f(g) \quad (z \in C, g \in \widetilde{Sp}(n, \mathbb{R}));$$

$$||f||^2 = \int_{\widetilde{Sp}(n, \mathbb{R})} |f(g)|^2 d[g] < \infty \quad (g \in \widetilde{Sp}(n, \mathbb{R}), [g] \in Sp(n, \mathbb{R})).$$

We say that a representation of class κ is tempered if it is weakly contained in $L^2(\widetilde{Sp}(n, \mathbb{R}))_{\kappa}$. By studying the leading exponents of $I(\epsilon, 0)$ and $C(\epsilon, t)$, it can be shown that $I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})}$ is “tempered” and $C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})}$ is not “tempered”. Therefore

$$I(\epsilon, 0)|_{\widetilde{Sp}(m+1, \mathbb{R})} \neq C(\epsilon, t)|_{\widetilde{Sp}(m+1, \mathbb{R})}.$$

The author would like to thank Professors G. Olafsson and J. Lawson for very helpful discussions.
2 A Lemma on Friedrichs Extension

Let S be a semibounded densely defined symmetric operator on a Hilbert space H. S is said to be positive if $(Su, u) > 0$ for every nonzero $u \in \mathcal{D}(S)$. Suppose that S is positive. For $u, v \in \mathcal{D}(S)$, define

$$(u, v)_S = (u, Sv),$$

$$\|u\|_S^2 = (u, Su).$$

Let H_S be the completion of $\mathcal{D}(S)$ under the norm $\| \cdot \|_S$. Clearly $H_{S+I} \subseteq H$ and $H_{S+I} \subseteq H_S$.

The operator $S + I$ has a unique self-adjoint extension $(S + I)_0$ in H, the Friedrichs extension. $(S + I)_0$ has the following properties

- $\mathcal{D}(S) \subseteq \mathcal{D}((S + I)_0) \subseteq H_{S+I} \subseteq H$;
- $(u, v)_{S+I} = (u, (S + I)v)$ for all $u \in H_{S+I}$ and $v \in \mathcal{D}((S + I)_0)$

(see Theorem in Page 335 [12]). Now consider $(S + I)_0 - I$. It is an self-adjoint extension of S. It is nonnegative. By the spectral decomposition and functional calculus, $(S + I)_0 - I$ has a unique square root T (See Pg. 127, 128 [12]).

Lemma 2.1. Let S be a positive densely defined symmetric operator. Then the square root of $(S + I)_0 - I$ extends to an isometry from H_S into H.

Proof: Clearly, the spectrum of T is contained in the nonnegative part of the real line. By spectral decomposition $\mathcal{D}((S + I)_0 - I) = \mathcal{D}((S + I)_0) \subseteq \mathcal{D}(T)$ and $TT = (S + I)_0 - I$. In addition for any $u, v \in \mathcal{D}(S) \subseteq \mathcal{D}((S + I)_0)$,

$$(Tu, Tv) = (u, TTv) = (u, (S + I)_0v - v) = (u, Sv) = (u, v)_S.$$

So T is an isometry from $\mathcal{D}(S)$ into H. Since $\mathcal{D}(S)$ is dense in H_S, T extends to an isometry from H_S into H. □

3 Degenerate Principal Series of $\tilde{Sp}(n, \mathbb{R})$

Fix the Lie algebra:

$$\mathfrak{sp}(n, \mathbb{R}) = \{ \begin{pmatrix} X & Y \\ Z & -X^t \end{pmatrix} \mid Y^t = Y, Z^t = Z \}$$

and the Siegel parabolic algebra:

$$\mathfrak{p} = \{ \begin{pmatrix} X & Y \\ 0 & -X^t \end{pmatrix} \mid Y^t = Y \}.$$

Fix the Levi decomposition $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ with

$$\mathfrak{l} = \{ \begin{pmatrix} X & 0 \\ 0 & -X^t \end{pmatrix} \mid X \in \mathfrak{gl}(n, \mathbb{R}) \}, \quad \mathfrak{n} = \{ \begin{pmatrix} 0 & Y \\ 0 & 0 \end{pmatrix} \mid Y^t = Y \}.$$

Fix a Cartan subalgebra

$$\mathfrak{a} = \{ \text{diag}(H_1, H_2, \ldots, H_n, -H_1, -H_2, \ldots, -H_n) \mid H_i \in \mathbb{R} \}.$$
Let $Sp(n, \mathbb{R})$ be the symplectic group and P be the Siegel parabolic subgroup. Set $U(n) = Sp(n, \mathbb{R}) \cap O(2n)$ where $O(2n)$ is the standard orthogonal group. Let LN be the Levi decomposition of P and A be the analytic group generated by the Lie algebra a. Clearly, $L \cong GL(n, \mathbb{R})$ and $L \cup U(n) \cong O(n)$. On the covering group, we have $\tilde{L} \cap \tilde{U}(n) = \tilde{O}(n)$.

Recall that

$$\tilde{U}(n) = \{(x, g) \mid g \in U(n), \exp 2\pi ix = \det g, x \in \mathbb{R}\}.$$

Therefore

$$\tilde{O}(n) = \{(x, g) \mid g \in O(n), \exp 2\pi ix = \det g, x \in \mathbb{R}\}.$$

Notice that for $g \in O(n)$, $\det g = \pm 1$ and $x \in \frac{1}{2}\mathbb{Z}$. We have the following exact sequence

$$1 \to SO(n) \to \tilde{O}(n) \to \frac{1}{2}\mathbb{Z} \to 1.$$

Consequently, we have

$$1 \to GL_0(n, \mathbb{R}) \to \tilde{L} \to \frac{1}{2}\mathbb{Z} \to 1.$$

In fact,

$$\tilde{L} = \{(x, g) \mid g \in L, \exp 2\pi ix = \frac{\det g}{|\det g|}, x \in \mathbb{R}\}.$$

The one dimensional unitary characters of $\frac{1}{2}\mathbb{Z}$ are parametrized by the one dimensional torus T. Identify T with $[0, 1)$. Let μ^ϵ be the character of $\frac{1}{2}\mathbb{Z}$ corresponding to $\epsilon \in [0, 1)$

Now each character μ^ϵ yields a character of \tilde{L}, which in turn, yields a character of \tilde{P}. For simplicity, we retain μ^ϵ to denote the character on \tilde{L} and \tilde{P}. Let ν be the det-character on L_0, i.e.,

$$\nu(x, g) = |\det g| \quad (x, g) \in \tilde{L}. \quad (2)$$

Let

$$I(\epsilon, t) = \text{Ind}_{\tilde{P}}^{\tilde{Sp}(n, \mathbb{R})} \mu^\epsilon \otimes \nu^t$$

be the normalized induced representation with $\epsilon \in [0, 1)$ and $t \in \mathbb{C}$. This is Sahi’s notation in the case of the universal covering of the symplectic group ([14]). $I(\epsilon, t)$ is a degenerate principal series representation. Clearly, $I(\epsilon, t)$ is unitary when $t \in i\mathbb{R}$.

When t is real and $I(\epsilon, t)$ is unitarizable, the unitary representation, often denoted by $C(\epsilon, t)$, is called a complementary series representation. Various complementary series of $Sp(n, \mathbb{R})$ and its metaplectic covering was determined explicitly or implicitly by Kudla-Rallis, Órsted-Zhang, Brason-Olafsson-Órsted and others. See [9], [3], [11] and the references therein. The complete classification of the complementary series of the universal covering is due to Sahi.

Theorem 3.1 (Thm A, [14]). Suppose that t is real. For n even, $I(\epsilon, t)$ is irreducible and unitarizable if and only if $0 < |t| < \frac{1}{2} - |2\epsilon - 1|$. For n odd and $n > 1$, $I(\epsilon, t)$ is irreducible and unitarizable if and only if $0 < |t| < \frac{1}{2} - \frac{1}{2} - |2\epsilon - 1|$.

One can easily check that the complementary series exist if $\epsilon \neq 0, \frac{1}{2}$ for n odd and $n > 1$; if $\epsilon \neq \frac{1}{4}, \frac{3}{4}$ for n even. It is interesting to note that complementary series always exist unless $I(\epsilon, t)$ descends into a representation of the metaplectic group. For the metaplectic group $Mp(2n+1, \mathbb{R})$, there are two complementary series $I(\frac{1}{4}, t)(0 < t < \frac{1}{2})$ and $I(\frac{3}{4}, t)(0 < t < \frac{1}{2})$.

For the metaplectic group $Mp(2n, \mathbb{R})$, there are two complementary series $I(0, t)(0 < t < \frac{1}{2})$ and $I(\frac{1}{2}, t)(0 < t < \frac{1}{2})$. These four complementary series are the “longest”.

4
For $n = 1$, the situation is quite different. The difference was pointed out in [9]. For example, there are Bargmann’s complementary series representation for $I(0, t)$ ($t \in (0, \frac{1}{2})$). The classification of the complementary series of $\tilde{Sp}(1, \mathbb{R})$ can be found in [2], [13], [7].

Since our restriction theorem only makes sense for $n \geq 2$, we will assume $n \geq 2$ from now on. The parameters for the complementary series of $\tilde{Sp}(n, \mathbb{R})$ are illustrated in fig.

4 The generalized compact model and The Intertwining Operator

Recall that

$$I^\infty(\epsilon, t) = \{ f \in C^\infty(\tilde{Sp}(n, \mathbb{R})) \mid f(gl_n) = (\mu^t \otimes \nu^t)(l^{-1})f(g), \quad (g \in \tilde{Sp}(n, \mathbb{R}), l \in \tilde{L}, n \in \mathbb{N}) \}$$

where $\rho = \frac{n+1}{2}$. Let $X = \tilde{Sp}(n, \mathbb{R})/\tilde{P}$. Then $I^\infty(\epsilon, t)$ consists of smooth sections of the homogeneous line bundle $L_{\epsilon, t}$

$$\tilde{Sp}(n, \mathbb{R}) \times \mathbb{C}_{\mu^t \otimes \nu^t} \to X.$$

Since $X \cong \tilde{U}(n)/\tilde{O}(n)$, $\tilde{U}(n)$ acts transitively on X. The function $f \in I^\infty(\epsilon, t)$ is uniquely determined by $f|_{\tilde{U}(n)}$ and vice versa. Moreover, the homogeneous vector bundle $L_{\epsilon, t}$ can be identified with $K_{\epsilon, t}$

$$\tilde{U}(n) \times \tilde{O}(n) \mathbb{C}_{\mu^t \otimes \nu^t}|_{\tilde{O}(n)} \to X$$

naturally. Notice that the homogeneous line bundle $K_{\epsilon, t}$ does not depend on the parameter t. We denote this line bundle by K_{ϵ}. The representation $I^\infty(\epsilon, t)$ can then be modeled on smooth sections of K_{ϵ}. This model will be called the generalized compact model.

Let $d[k]$ be the normalized $\tilde{U}(n)$-invariant measure on X. The generalized compact model equips the smooth sections of $K_{\epsilon, t}$ with a natural pre-Hilbert structure

$$(f_1, f_2)_{X} = \int_{[k] \in X} f_1(k)\overline{f}_2(k)d[k],$$

where $k \in \tilde{U}(n)$ and $[k] \in X$. It is easy to verify that $f_1(k)\overline{f}_2(k)$ is a function of $[k]$ and it does not depend on any particular choice of k. Notice that our situation is different from the compact model since $\tilde{U}(n)$ is not compact. We denote the completion of I^∞ with respect to $(,)_X$ by $I_X(\epsilon, t)$.

Secondly, the action of $\tilde{U}(n)$ on K_{ϵ} induces an orthogonal decomposition of $I_X(\epsilon, t)$:

$$I_X(\epsilon, t) = \oplus_{\alpha \in \mathbb{Z}^n} V(\alpha + \epsilon(2, 2, \ldots, 2)),$$

where $V(\alpha + \epsilon(2, 2, \ldots, 2))$ is an irreducible finite dimensional representation of $\tilde{U}(n)$ with highest weight $\alpha + \epsilon(2, 2, \ldots, 2)$ and α satisfies

$$\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n.$$
This is essentially a consequence of Helgason’s theorem. Let

\[V(\epsilon, t) = \bigoplus_{\alpha \in \mathbb{Z}^n} V(\alpha + \epsilon(2, 2, \ldots, 2)). \]

\(V(\epsilon, t) \) possesses an action of the Lie algebra \(\mathfrak{sp}(n, \mathbb{R}) \). It is the Harish-Chandra module of \(I(\epsilon, t) \). Clearly, \(V(\epsilon, t) \subset I^\infty(\epsilon, t) \subset I_X(\epsilon, t) \).

For each \(t \), there is an \(\tilde{Sp}(n, \mathbb{R}) \)-invariant sesquilinear pairing of \(I_X(\epsilon, t) \) and \(I_X(\epsilon, -\ell) \), namely,

\[(f_1, f_2) = \int_X f_1(k)f_2(k)d[k], \]

where \(f_1 \in I_X(\epsilon, t) \) and \(f_2 \in I_X(\epsilon, -\ell) \). If \(t \in i\mathbb{R} \), we obtain a \(\tilde{Sp}(n, \mathbb{R}) \)-invariant Hermitian form which is exactly \((,)_X \). Since \((,)_X \) is positive definite, \(I_X(\epsilon, t) \) is a unitary representation of \(\tilde{Sp}(n, \mathbb{R}) \).

For each real \(t \), the form \((,)_X\) gives an \(\mathfrak{sp}(n, \mathbb{R}) \)-invariant sesquilinear pairing of \(V(\epsilon, t) \) and \(V(\epsilon, -t) \). In addition, there is an intertwining operator

\[A(\epsilon, t) : V(\epsilon, t) \to V(\epsilon, -t) \]

which preserves the action of \(\mathfrak{sp}(n, \mathbb{R}) \) (see for example [8]). Define a Hermitian structure \((,)_\epsilon,t\) on \(V(\epsilon, t) \) by

\[(u, v)_\epsilon,t = (A(\epsilon, t)u, v), \quad (u, v \in V(\epsilon, t)). \]

Clearly, \((,)_\epsilon,t\) is \(\mathfrak{sp}(n, \mathbb{R}) \)-invariant. So \(A(\epsilon, t) \) induces an invariant Hermitian form on \(V(\epsilon, t) \).

Now \(A(\epsilon, t) \) can also be realized as an unbounded operator on \(I_X(\epsilon, t) \) as follows. For each \(f \in V(\epsilon, t) \), define \(A_X(\epsilon, t)f \) to be the unique section of \(\mathcal{L}_{\epsilon,t} \) such that

\[(A_X(\epsilon, t)f)|_{\tilde{U}(n)} = (A(\epsilon, t)f)|_{\tilde{U}(n)}. \]

Notice that \(A_X(\epsilon, t)f \in I(\epsilon, t) \) and \(A(\epsilon, t)f \in I(\epsilon, -t) \). They differ by a multiplier.

Now \(A_X(\epsilon, t) \) is an unbounded operator on the Hilbert space \(I_X(\epsilon, t) \). The following fact is well-known in many different forms. I state it in a way that is convenient for later use.

Lemma 4.1. Let \(\ell \in \mathbb{R} \). \(I(\epsilon, t) \) is unitarizable if and only if \(A_X(\epsilon, t) \) extends to a self-adjoint operator on \(I_X(\epsilon, t) \) with spectrum on the nonnegative part of the real axis.

The spectrum of \(A_X(\epsilon, t) \) was computed in [8] and [11] explicitly for special cases and in [14] implicitly. In particular, \(A_X(\epsilon, t) \) restricted onto each \(\tilde{U}(n) \)-type is a scalar multiplication and the scalar is bounded by a polynomial on the highest weight. We obtain

Lemma 4.2 ([15]). \(A_X(\epsilon, t) \) extends to an unbounded operator from \(I^\infty(\epsilon, t) \) to \(I^\infty(\epsilon, t) \).

This lemma follows from a standard argument that the norm of each \(\tilde{U}(n) \)-component in the Peter-Weyl expansion of any smooth section of \(\mathcal{K}_e \) decays rapidly with respect to the highest weight. It is true in general (see [15]).
5 Actions of \(\hat{Sp}(p, \mathbb{R})\hat{Sp}(q, \mathbb{R}) \)

Suppose that \(p + q = n \) and \(p \leq q \). Fix a standard basis
\[
\{e_1, e_2, \ldots, e_p; e_1^*, e_2^*, \ldots, e_p^*\}
\]
for the symplectic form \(\Omega_p \) on \(\mathbb{R}^{2p} \). Fix a standard basis
\[
\{f_1, f_2, \ldots, f_q; f_1^*, f_2^*, \ldots, f_q^*\}
\]
for the symplect form \(\Omega_q \) on \(\mathbb{R}^{2q} \).

Definition 5.1. Let \(Sp(p, \mathbb{R}) \) be the symplectic group preserving \(\Omega_p \) and \(Sp(q, \mathbb{R}) \) be the symplectic group preserving \(\Omega_q \). Let
\[
\Omega = \Omega_p - \Omega_q
\]
and \(Sp(n, \mathbb{R}) \) be the symplectic group preserving \(\Omega \). We say that \((Sp(p, \mathbb{R}), Sp(q, \mathbb{R})) \) is diagonally embedded in \(Sp(n, \mathbb{R}) \).

We shall make a remark here. In [6], \(\Omega = \Omega_p + \Omega_q \). \(Sp(p, \mathbb{R})Sp(q, \mathbb{R}) \) is embedded differently there. The effect of this difference is an involution \(\tau \) on the representation level.

Let \(P_{p,q-p} \) be the subgroup of \(Sp(q, \mathbb{R}) \) that preserves the linear span of \(\{f_{p+1}, \ldots, f_q\} \). Choose the Levi factor \(GL(q-p)Sp(p, \mathbb{R}) \) to be the subgroup of \(P_{p,q-p} \) that preserves the span of \(\{f_{p+1}^*, \ldots, f_q^*\} \). In particular the \(Sp(p, \mathbb{R}) \) factor can be identified with the symplectic group of
\[
\text{span}\{f_1, \ldots, f_p; f_1^*, \ldots, f_p^*\},
\]
which will be identified with the standard \(Sp(p, \mathbb{R}) \). More precisely, for \(x \in Sp(p, \mathbb{R}) \), by identify \(e_i \) with \(f_i \) and \(e_i^* \) with \(f_i^* \) and extending \(x \) trivially on \(f_{p+1}, \ldots, f_q; f_{p+1}^*, \ldots, f_q^* \), we obtain the identification
\[
x \in Sp(p, \mathbb{R}) \rightarrow \hat{x} \in Sp(q, \mathbb{R}). \tag{3}
\]

Now fix a Lagrangian Grassmanian
\[
x_0 = \text{span}\{e_1 + f_1, \ldots, e_p + f_p, e_1^* + f_1^*, \ldots, e_p^* + f_p^*, f_{p+1}, \ldots, f_q\}.
\]

Then the stabilizer \(Sp(q, \mathbb{R})_{x_0} = GL(q-p)N_{p,q-p} \) where \(N_{p,q-p} \) is the nilradical of \(P_{p,q-p} \). Put
\[
\Delta(Sp(p, \mathbb{R})) = \{ (u, \hat{u}) \mid u \in Sp(p, \mathbb{R}) \} \subseteq Sp(p, \mathbb{R})Sp(q, \mathbb{R})
\]
and
\[
H = \Delta(Sp(p, \mathbb{R}))GL(q-p)N_{p,q-p}.
\]

Lemma 5.1 ([6]). Let \(p \leq q \) and \(p + q = n \). Let \(X_0 \) be the \(Sp(p, \mathbb{R}) \times Sp(q, \mathbb{R}) \)-orbit generated by \(x_0 \). Then \(X_0 \) is open and dense in \(X \) and \([Sp(p, \mathbb{R})Sp(q, \mathbb{R})]_{x_0} = H \).

Notice here that \(X_0 \) depends on \((p,q) \). Let \(P = Sp(n, \mathbb{R})_{x_0} \). The smooth representation \(\mathcal{I}(\epsilon, t) \) consists of smooth sections of \(\mathcal{L}_{\epsilon,t} : \)
\[
\hat{Sp}(n, \mathbb{R}) \times P \mathcal{C}_\mu \circ \mathcal{O}_{\mu + \eta} \rightarrow X.
\]

Consider the subgroup \(\hat{Sp}(p, \mathbb{R})\hat{Sp}(q, \mathbb{R}) \) in \(\hat{Sp}(n, \mathbb{R}) \). Notice that \(\hat{Sp}(p, \mathbb{R}) \cap \hat{Sp}(q, \mathbb{R}) \cong \mathbb{Z} \). So \(\hat{Sp}(p, \mathbb{R})\hat{Sp}(q, \mathbb{R}) \) is not a direct product, but rather the product of the two groups as sets.

7
Definition 5.2. For any \(f \in I_X(\epsilon, t) \), define

\[I_{X_0} = f|_{\tilde{S}(p, \mathbb{R})} \tilde{S}(q, \mathbb{R}) \to \mathcal{L}_{\epsilon, t} \]

Let \(I_{\epsilon, X_0}(\epsilon, t) \) be the set of smooth sections of \(\mathcal{L}_{\epsilon, t} \) that are compactly supported in \(X_0 \).

Clearly \(f_{X_0} \) is a smooth section of

\[\tilde{S}(p, \mathbb{R}) \tilde{S}(q, \mathbb{R}) \times \tilde{H} \mathbb{C}_{\mu^* \otimes \nu^{t+p}} \to X_0. \]

Notice that \(\Delta(\tilde{S}(p, \mathbb{R})) \) sits inside of \(SL(n, \mathbb{R}) \subseteq GL(n, \mathbb{R}) \subseteq \mathbb{P} \). The universal covering of \(\tilde{S}(p, \mathbb{R}) \) splits over \(SL(n, \mathbb{R}) \subseteq \mathbb{P} \). Similarly the universal covering of \(\tilde{S}(q, \mathbb{R}) \) also splits over \(N_{p,q-p} \). So we have

\[\tilde{H} \cong \Delta(\tilde{S}(p, \mathbb{R})) \tilde{GL}(q-p)N_{p,q-p}, \]

where \(\tilde{GL}(q-p)N_{p,q-p} \subseteq \tilde{S}(q, \mathbb{R}) \). In particular, \(\mu^* \otimes \nu^{t+p}|_{\Delta(\tilde{S}(p, \mathbb{R}))N_{p,q-p}} \) is trivial and \(\mu^* \otimes \nu^{t+p}|_{\tilde{GL}(q-p)} \) is essentially the restriction from \(GL(p + q) \) to \(GL(q-p) \). If \(p = q \), then \(GL(0) \) will be the identity element. So \(\tilde{GL}(0) \) is just \(C \). We have

Lemma 5.2. The identification \[x \in S(p, \mathbb{R}) \to \tilde{x}S(q, \mathbb{R}) \]

lifts naturally to \(\tilde{S}(p, \mathbb{R}) \to \tilde{S}(q, \mathbb{R}) \). Let \(\phi \in I^\infty(\epsilon, t) \). Then

\[\phi(g_1, g_2) = \phi(1, g_2g_1^{-1}) \quad (g_1 \in \tilde{S}(q, \mathbb{R}), g_2 \in \tilde{S}(q, \mathbb{R})). \]

In addition

\[\phi(1, g_2h) = \mu^* \otimes \nu^{t+p}(h^{-1})\phi(1, g_2) \quad (h \in \tilde{GL}(q-p)N_{p,q-p}). \]

Now let us consider the action of \(\tilde{S}(p, \mathbb{R}) \) and \(\tilde{S}(q, \mathbb{R}) \) on \(I(\epsilon, t) \). By Lemma 5.2, we obtain

Lemma 5.3. Let \(\phi \in I^\infty(\epsilon, t) \) and \(h_1 \in \tilde{S}(p, \mathbb{R}) \) and \(g_2 \in \tilde{S}(p, \mathbb{R}) \). Then

\[[I(\epsilon, t)(h_1)\phi](1, g_2) = f(1, g_2h_1). \]

In particular the restriction map

\[\phi \in I^\infty(\epsilon, t) \to \phi|_{\tilde{S}(q, \mathbb{R})} \in C^\infty(\tilde{S}(q, \mathbb{R}) \times \tilde{GL}(q-p)N_{p,q-p} \mathbb{C}_{\mu^* \otimes \nu^{t+p}}) \]

intertwines the left regular action of \(\tilde{S}(p, \mathbb{R}) \) on \(I^\infty(\epsilon, t) \) with the right regular action of \(\tilde{S}(q, \mathbb{R}) \) on \(C^\infty(\tilde{S}(q, \mathbb{R}) \times \tilde{GL}(q-p)N_{p,q-p} \mathbb{C}_{\mu^* \otimes \nu^{t+p}}) \).

Obviously, the restriction map also intertwines the left regular actions of \(\tilde{S}(q, \mathbb{R}) \).
6 Mixed Model

Now fix complex structures on \mathbb{R}^{2p} and \mathbb{R}^{2q} and inner products $(\ ,)_p$, $(\ ,)_q$ such that

$$\Omega_p = \Im(\ ,)_p, \quad \Omega_q = -\Im(\ ,)_q.$$

Let $U(p)$ and $U(q)$ be the unitary groups preserving $(\ ,)_p$ and $(\ ,)_q$ respectively. $U(p)$ and $U(q)$ are maximal compact subgroups of $Sp(p, \mathbb{R})$ and $Sp(q, \mathbb{R})$. Let $U(n)$ be the unitary group preserving $(\ ,)_p + (\ ,)_q$. Then $U(n)$ is a maximal compact subgroup of $Sp(n, \mathbb{R})$. In addition,

$$U(p) = Sp(p, \mathbb{R}) \cap U(n) \quad U(q) = Sp(q, \mathbb{R}) \cap U(n).$$

Identify $U(q) \cap P_{p,q-p}$ with $O(q-p)U(p)$. Recall that $X_0 \cong Sp(q, \mathbb{R})/GL(q-p)N_{p,q-p}$. The group $Sp(p, \mathbb{R})$ acts on X_0 freely from the right. We obtain a principal fibration

$$Sp(p, \mathbb{R}) \to X_0 \to Sp(q, \mathbb{R})/P_{p,q-p} \cong U(q)/O(q-p)U(p).$$

Let dg_1 be a Haar measure on $Sp(p, \mathbb{R})$ and $d[k_2]$ be an invariant probability measure on $U(q)/O(q-p)U(p)$. Then $dg_1[d[k_2]]$ defines an $U(q)Sp(p, \mathbb{R})$ invariant measure on X_0.

Definition 6.1. Let $M = Sp(p, \mathbb{R})U(q) \subset Sp(p, \mathbb{R})Sp(q, \mathbb{R}) \subset Sp(n, \mathbb{R})$. Elements in X_0 are parametrized by a pair $(g_1, [k_2])$ for $(g_1, k_2) \in M$. For each $g \in \tilde{Sp}(n, \mathbb{R})$, write $g = \tilde{u}(q)p(g)$ where $\tilde{u}(g) \in \tilde{U}(n)$ and $p(g) \in P_0$, the identity component of P. For each $(g_1, k_2) \in (Sp(p, \mathbb{R}), U(q))$, we have

$$g_1k_2 = \tilde{u}(g_1k_2)p(g_1k_2) = k_2\tilde{u}(g_1)p(g_1).$$

The component \tilde{u} defines a map from \tilde{M} to $\tilde{U}(n)$. In particular, \tilde{u} induces a map from $\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)$ to $\tilde{U}(n)/\tilde{O}(n)$ which will be denoted by j. The map j parametrizes the open dense subset X_0 in X by

$$([g_1], [k_2]) \in \tilde{Sp}(p, \mathbb{R})/C \times \tilde{U}(q)/\tilde{O}(q-p)\tilde{U}(p).$$

Change the variables on X_0 from $\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)$ to $\tilde{U}(n)/\tilde{O}(n)$. Let $J([g_1], [k_2])$ be the Jacobian:

$$\frac{dj([g_1], [k_2])}{d[g_1]d[k_2]}.$$

J can be regarded as a function on $Sp(p, \mathbb{R})U(q)$ or $Sp(p, \mathbb{R})U(q)/U(p)O(q-p)$, even though it is defined as a function on the covering. Denote the line bundle

$$\tilde{Sp}(q, \mathbb{R}) \times_{GL(q-p)N_{p,q-p}} C_{\mu^* \otimes \mu^* + p} \to X_0.$$

by $\mathcal{M}_{\epsilon,t}$. Denote the line bundle

$$\tilde{M} \times_{\tilde{O}(q-p)\tilde{U}(p)} C_{\mu^*} \to \tilde{M}/\tilde{O}(q-p)\tilde{U}(p) \cong X_0.$$

by \mathcal{M}_ϵ.

Clearly, $I_{c,X_0}^\infty(\epsilon,t) \subset I^\infty(\epsilon,t)$. Consider the restriction of $(\ ,)_X$ onto $I_{c,X_0}^\infty(\epsilon,t)$. We are interested in expressing $(\ ,)_X$ as an integral on $\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)$. This boils down to a change of variables from $U(n)/\tilde{O}(n)$ to $\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)$. We have
Lemma 6.1. Let $\Delta_t(g_1, k_2) = \nu(p(g_1))^{t+1-\rho/2}J([g_1], [k_2])$ (see Equ. (2)). Then for every $f_1, f_2 \in I^\infty(\epsilon, t)$ we have

$$(f_1, f_2)_X = \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(g_1k_2)\overline{f_2(g_1k_2)}\Delta_t(g_1, k_2)d[g_1]d[k_2]$$

where $g_1 \in \tilde{S}p(p, \mathbb{R})$, $k_2 \in \tilde{U}(q)$, $[g_1] \in Sp(p, \mathbb{R})$ and $[k_2] \in \tilde{U}(q)/\tilde{O}(q-p)\tilde{U}(p)$. Furthermore, $\Delta_t(g_1, k_2)$ is a nonnegative right $\tilde{O}(q-p)\tilde{U}(p)$-invariant function on M.

Proof: We compute

$$
\int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(g_1k_2)\overline{f_2(g_1k_2)}\Delta_t(g_1, k_2)d[g_1]d[k_2]
= \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(\tilde{u}(g_1k_2))\overline{f_2(\tilde{u}(g_1k_2))}\nu(p(g_1))^{t-1-\rho/2}\Delta_t(g_1, k_2)d[g_1]d[k_2]
= \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(\tilde{u}(g_1k_2))\overline{f_2(\tilde{u}(g_1k_2))}\nu(p(g_1))^{t-1-\rho/2}\Delta_t(g_1, k_2)J^{-1}(g_1, k_2)J^{-1}([g_1], [k_2])
= \int_{X_\rho} f_1(\tilde{u})\overline{f_2(\tilde{u})}d[\tilde{u}] = (f_1, f_2)_X.
$$

Since $\nu(p(g_1))$ and $J([g_1], [k_2])$ remain the same when we multiply k_2 on the right by $\tilde{O}(q-p)\tilde{U}(p)$, $\Delta_t(g_1, k_2)$ is a nonnegative right $\tilde{O}(q-p)\tilde{U}(p)$-invariant function.

Combining with Lemma 5.3 we obtain

Corollary 6.1. As representations of $\tilde{S}p(p, \mathbb{R})\tilde{S}p(q, \mathbb{R})$,

$$I_X(\epsilon, t) \equiv L^2(\mathcal{M}_{\epsilon, t}, \Delta_t[d[g_1]d[k_2]]).$$

For each $f_1, f_2 \in I^\infty_{c, X_\rho}(\epsilon, t)$, define

$$(f_1, f_2)_{M, t} = \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(g_1k_2)\overline{f_2(g_1k_2)}\Delta_t(g_1, k_2)d[g_1]d[k_2],$$

$$(f_1, f_2)_M = \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} f_1(g_1k_2)\overline{f_2(g_1k_2)}d[g_1]d[k_2].$$

The completion of $I^\infty_{c, X_\rho}(\epsilon, t)$ under $(,)_M$ is $L^2(\mathcal{M}_{\epsilon, t}, \Delta_t[d[g_1]d[k_2]])$. We call $L^2(\mathcal{M}_{\epsilon, t}, \Delta_t[d[g_1]d[k_2]])$, the mixed model. We denote it by $I_M(\epsilon, t)$. On $I_M(\epsilon, t)$, the actions of $\tilde{S}p(p, \mathbb{R})$ and $\tilde{S}p(q, \mathbb{R})$ are easy to manipulate.

7 Mixed Model for Unitary Principal Series

Lemma 7.1. If $t \in i\mathbb{R}$, then $\Delta_t(g_1, k_2)$ is a constant and $(,)_M$ is a constant multiple of $(,)_M$.
Proof: Let \(t \in i \mathbb{R} \). Let \(f_1, f_2 \in L^\infty(\epsilon, t) \) and \(h \in \widetilde{Sp}(p, \mathbb{R}) \). Recall that \(X_0 \) is parametrized by a pair \([g_1] \in \widetilde{Sp}(p, \mathbb{R})/C\) and \([k_2] \in \tilde{U}(q)/\tilde{O}(q-p)\tilde{U}(p)\). By Lemma 6.1, we have

\[
(I(\epsilon, t)(h) f_1, I(\epsilon, t)(h) f_2)_X = \int_{X_0} f_1(h^{-1}g_1k_2)f_2(h^{-1}g_1k_2) \Delta_t(g_1, k_2)d[g_1]d[k_2]
\]

(5)

Since \(I(\epsilon, t) \) is unitary, \((I(\epsilon, t)(h) f_1, I(\epsilon, t)(h) f_2)_X = (f_1, f_2)_X\). We have

\[
\int_{X_0} f_1(g_1k_2)f_2(g_1k_2) \Delta_t(hg_1, k_2)d[g_1]d[k_2] = \int_{X_0} f_1(g_1k_2)f_2(g_1k_2) \Delta_t(g_1, k_2)d[g_1]d[k_2].
\]

It follows that \(\Delta_t(hg_1, k_2) = \Delta_t(g_1, k_2) \) for any \(h \in \widetilde{Sp}(p, \mathbb{R}) \). Similarly, we obtain \(\Delta_t(g_1, kk_2) = \Delta(g_1, k_2) \) for any \(k \in \tilde{U}(q) \). Hence, \(\Delta_t(g_1, k_2) \) is a constant for purely imaginary \(t \). \(\square \)

Combined with Cor. 6.1, we obtain

Theorem 7.1. Let \(t \in i \mathbb{R} \). The restriction map \(f \mapsto f_{X_0} \) induces an isometry between \(I(\epsilon, t) \) and \(L^2(M_{\epsilon, t}, d[g_1]d[k_2]) \). In addition, this isometry intertwines the actions of \(\widetilde{Sp}(p, \mathbb{R}) \) and \(\widetilde{Sp}(q, \mathbb{R}) \) representations,

\[I(\epsilon, t) \cong L^2(M_{\epsilon, t}, d[g_1]d[k_2]); \]

and as \(\widetilde{Sp}(p, \mathbb{R}) \tilde{U}(q) \) representations,

\[I(\epsilon, t) \cong L^2(M_{\epsilon, t}, d[g_1]d[k_2]). \]

Notice that \(L^2(M_{\epsilon, t}, d[g_1]d[k_2]) \) does not depend on the parameter \(t \). The following corollary is automatical.

Corollary 7.1. Suppose that \(p + q = n \) and \(p \leq q \). For \(t \) real,

\[I(\epsilon, it)|_{\widetilde{Sp}(p, \mathbb{R})\tilde{U}(q)} \cong I(\epsilon, 0)|_{\widetilde{Sp}(p, \mathbb{R})\tilde{U}(q)} \cong L^2(M_{\epsilon, t}, d[g_1]d[k_2]). \]

For \(t \) a nonzero real number, \(\Delta_t(q, k) \) is not a constant. So \(C(\epsilon, t) \) cannot be modeled naturally on \(L^2(M_{\epsilon, t}, d[g_1]d[k_2]) \). Nevertheless, we have

Theorem 7.2 (Main Theorem). Suppose that \(p + q = n \) and \(p \leq q \). Given a complementary series representation \(C(\epsilon, t) \),

\[C(\epsilon, t)|_{\widetilde{Sp}(p, \mathbb{R})\tilde{U}(q)} \cong I(\epsilon, 0)|_{\widetilde{Sp}(p, \mathbb{R})\tilde{U}(q)} \cong L^2(M_{\epsilon, t}, d[g_1]d[k_2]). \]

In other words, there is an isometry between \(C(\epsilon, t) \) and \(I(\epsilon, 0) \) that intertwines the actions of \(\tilde{U}(q) \) and of \(\widetilde{Sp}(p, \mathbb{R}) \).

We shall postpone the proof of this theorem to the next section. We will first derive some corollaries from Lemma 7.1 concerning \(\Delta \) and \(\nu(g_1) \).

Corollary 7.2. \(J([g_1], [k_2]) = cv(p(g_1))^{-2p} \) for a constant \(c \) and \(\Delta_t(g_1, k_2) = cv(p(g_1))^{t\nu}. \) So both \(\Delta_t \) and \(J([g_1], [k_2]) \) do not depend on \(k_2 \). Furthermore,

\[I(\epsilon, t) \cong L^2(M_{\epsilon, t}, \nu(p(g_1)))^{t\nu}d[g_1]d[k_2] = I_M(\epsilon, t). \]
\(\nu(p(g_1)) \) is a function on \(\widetilde{Sp}(p, \mathbb{R})/O \). So it can be regarded as a function on \(Sp(p, \mathbb{R}) \).

Corollary 7.3. \(\nu(p(g_1))^{-p} \in L^2(Sp(p, \mathbb{R})) \) and \(\nu(p(g_1))^{-1} \) is a bounded positive function.

Proof: Since \(X \) is compact, \(\int_{Sp(p, \mathbb{R})} \nu(p(g_1))^{-2p}dg_1 = C \int_{\tilde{M}/\tilde{O}(q-p)\tilde{U}(p)} J([g_1], [k_2])d[g_1]d[k_2] = C \int_{\tilde{U}(n)/\tilde{O}(n)} 1d[k] < \infty. \) So \(\nu(p(g_1))^{-p} \in L^2(Sp(p, \mathbb{R})) \). Now we need to compute \(\nu(g_1) \). Recall that \(P \) is defined to be the stabilizer of

\[x_0 = \text{span}\{e_1 + f_1, \ldots, e_p + f_p, e_1^* + f_1^*, \ldots, e_p^* + f_p^*, f_{p+1}, \ldots f_q\}. \]

So \(j(g_1, 1) \) is the following Lagrangian

\[\text{span}\{g_1e_1 + f_1, \ldots, g_1e_p + f_p, g_1e_1^* + f_1^*, \ldots, g_1e_p^* + f_p^*, f_{p+1}, \ldots f_q\}. \]

The action of \(\tilde{U}(n) \) will not change the volume of the \(n \)-dimensional cube spanned by the basis above. So \(\nu(p(g_1)) \), as the determinant character, is equal to the volume of the \(n \)-dimensional cube, up to a constant. Hence

\[\nu(p(g_1)) = [2^{-n} \det(g_1g_1^* + I)]^{1/2}. \]

Clearly, \(\nu(p(g_1))^{-1} \) is bounded and positive. \(\square \)

This corollary is easy to understand in terms of compactification. Notice that the map \(j \), without the covering,

\[Sp(p, \mathbb{R})U(q)/U(p)O(q-p) \rightarrow U(n)/O(n) \]

is an analytic compactification. Hence the Jacobian \(J(g_1, [k_2]) \) should be positive and bounded above. Since \(J(g_1, [k_2]) = c\nu(p(g_1))^{-2p} \), \(\nu(p(g_1))^{-1} \) must also be positive and bounded above. The situation here is similar to \([4]\) (see Appendix) and \([5]\) (Theorem 2.3). It is not clear that \(j(g_1, 1) \) gets mapped onto \(U(2p)/O(2p) \) though.

If \(f \in I_M(\epsilon, t_1) \) and \(h > 0 \), by Cor. \([7,3]\) and Equation \([8]\), we have \(\|f\|_{M,t_1-h} \leq C\|f\|_{M,t_1} \). So \(I_M(\epsilon, t_1) \subset I_M(\epsilon, t_1-h) \).

Corollary 7.4. Suppose that \(h > 0 \). Then \(I_M(\epsilon, t_1) \subset I_M(\epsilon, t_1-h) \).

8 "Square Root" of the Intertwining Operator

Suppose from now on \(t \in \mathbb{R} \). For \(f \in I^\infty(\epsilon, t)|_{\tilde{M}} \), define a function on \(\tilde{M} \),

\[(A_M(\epsilon, t)f)(g_1k_2) = A(\epsilon, t)f(g_1k_2) \quad (g_1 \in \widetilde{Sp}(p, \mathbb{R}), k_2 \in \tilde{U}(q)). \]

So \(A_M(\epsilon, t) \) is the “restriction” of \(A(\epsilon, t) \) onto \(\tilde{M} \). \(A_M(\epsilon, t) \) is not yet an unbounded operator on \(I_M(\epsilon, t) \). In fact, for \(t > 0 \), \(A_M(\epsilon, t) \) does not behave well and it is not clear whether \(A_M(\epsilon, t) \) can be realized as an unbounded operator on \(I_M(\epsilon, t) \). The function \(A_M(\epsilon, t)f \) differs from \(A_X(\epsilon, t)f \).
Lemma 8.1. For $t \in \mathbb{R}$ and $f \in I^{\infty}(\epsilon,t)$,

$$(A_M(\epsilon,t)f|_{\tilde{M}})(g_1 k_2) = (A_X(\epsilon,t)f)(g_1 k_2)\nu(p(g_1))^{2t} = (A_X(\epsilon,t)f)(g_1 k_2)\Delta_t(g_1, k_2).$$

This Lemma is due to the fact that $A_X(\epsilon,t)f \in I(\epsilon,t)$ but $A(\epsilon,t)f \in I(\epsilon, -t)$.

Let $f \in I^{\infty}(\epsilon,t)$. In terms of the mixed model, the invariant Hermitian form $(\cdot, \cdot)_{\epsilon,t}$ can be written as follows:

$$(f, f)_{\epsilon,t} = (Ax(\epsilon,t)f, f)_{X} = \int_{\tilde{M}/\bar{O}(\nu-p)U(p)} A_M(\epsilon,t)f|_{\tilde{M}} \tilde{\tau}_{\bar{M}} d[g_1]d[k_2].$$

This follows from Lemma 8.1 and Lemma 6.1. We obtain

Lemma 8.2. For $f_1, f_2 \in I^{\infty}(\epsilon,t)$, $(f_1, f_2)_{\epsilon,t} = (A_M(\epsilon,t)f_1|_{\tilde{M}}, f_2|_{\tilde{M}})_M$.

Theorem 8.1. If $t < 0$ and $C(\epsilon,t)$ is a complementary series representation, then $A_M(\epsilon,t)$ is a positive and densely defined symmetric operator. Its self-adjoint-extension $(A_M(\epsilon,t) + I)_0 - I$ has a unique square root which extends to an isometry from $C(\epsilon,t)$ onto

$L^2(M, d[g_1]d[k_2])$.

Proof: Let $t < 0$. Put

$$\mathcal{H} = L^2(M, d[g_1]d[k_2]).$$

Let $f \in I^{\infty}(\epsilon,t)$. Then $A_M(\epsilon,t)(f|_{\tilde{M}})(g_1 k_2) = \nu(p(g_1))^{2t}A_X(\epsilon,t)f(g_1 k_2)$. By Lemma 8.1 Cor. 7.3 and Lemma 6.1 we have

$$\int_{\tilde{M}/\bar{O}(\nu-p)U(p)} A_M(\epsilon,t)f|_{\tilde{M}}A_M(\epsilon,t)(f|_{\tilde{M}})d[g_1]d[k_2] = \int_{\tilde{M}/\bar{O}(\nu-p)U(p)} \nu(p(g_1))^{2t}||A_X(\epsilon,t)f)(g_1 k_2)||^2\nu(p(g_1))^{2t}d[g_1]d[k_2]
\geq C \int_{\tilde{M}/\bar{O}(\nu-p)U(p)} |A_X(\epsilon,t)f(g_1 k_2)|^2\Delta_t(g_1, k_2)d[g_1]d[k_2]
= C(A_X(\epsilon,t)f, A_X(\epsilon,t)f)_X < \infty.$$

Therefore, $A_M(\epsilon,t)(f|_{\tilde{M}}) \in \mathcal{H}$. Let $D = I^{\infty}(\epsilon,t)|_{\tilde{M}}$. Clearly, D is dense in \mathcal{H}. So $A_M(\epsilon,t)$ is a densely defined unbounded operator. It is positive and symmetric by Lemma 8.2.

Definition 8.1. Define $\mathcal{U}(\epsilon,t) = ((A_M(\epsilon,t) + I)_0 - I)^{\frac{1}{2}}$.

Now $(f, g)_{\epsilon,t} = (A_M(\epsilon,t)f|_{\tilde{M}}, g|_{\tilde{M}})_M$ for any $f, g \in I^{\infty}(\epsilon,t)$. So $C(\epsilon,t) = \mathcal{H}_{A_M(\epsilon,t)}$. By Lemma 2.1, $\mathcal{U}(\epsilon,t)$, mapping from $C(\epsilon,t)$ into \mathcal{H}, is an isometry.

Suppose that $\mathcal{U}(\epsilon,t)$ is not onto. Let $f \in \mathcal{H}$ such that for any $u \in D(\mathcal{U}(\epsilon,t))$,

$$(f, \mathcal{U}(\epsilon,t)u)_M = 0.$$

Notice that

$I^{\infty}(\epsilon,t)|_{\tilde{M}} \subset D((A_M(\epsilon,t) + I)_0 - I) \subset D(\mathcal{U}(\epsilon,t))$.
Since \(L \) can be defined as the inverse of \(\langle A \rangle \),

\[U(\epsilon, t) U(\epsilon, t) = (A_M(\epsilon, t) + I)_0 - I. \]

In particular,

\[U(\epsilon, t) I^\infty(\epsilon, t)|_{\tilde{M}} \subset D(U(\epsilon, t)). \]

It follows that

\[\langle f, A_M(\epsilon, t) I^\infty(\epsilon, t)|_{\tilde{M}} \rangle_M = \langle f, (A_M(\epsilon, t) + I)_0 - I I^\infty(\epsilon, t)|_{\tilde{M}} \rangle_M = \langle f, U(\epsilon, t) U(\epsilon, t) I^\infty(\epsilon, t)|_{\tilde{M}} \rangle_M = 0. \]

Let \(f_{\epsilon, t} \) be a function such that \(f_{\epsilon, t}|_{\tilde{M}} = f \) and

\[f_{\epsilon, t}(g l n) = (\mu^\epsilon \otimes \nu^l + r)(l^{-1}) f_{\epsilon, t}(g) \quad (l \in \tilde{L}, n \in N). \]

By Lemma 8.2, \(\forall u \in V(\epsilon, t) \),

\[0 = \langle f, A_M(\epsilon, t)(u|_{\tilde{M}}) \rangle_M = \langle f_{\epsilon, t}, A_X(\epsilon, t) u \rangle_X = \langle f_{\epsilon, t}, u \rangle_{\epsilon, t}. \]

This equality is to be interpreted as an equality of integrals according to the definitions of \(\langle , \rangle_M \) and \(\langle , \rangle_X \). Since \(A_X(\epsilon, t) \) acts on \(U(n) \)-types in \(V(\epsilon, t) \) as scalars, \(A_X(\epsilon, t)V(\epsilon, t) = V(\epsilon, t) \). We now have

\[\langle f_{\epsilon, t}, V(\epsilon, t) \rangle_X = 0. \]

In particular, \(f_{\epsilon, t}|_{U(n)} \in L^1(X) \). By Peter-Weyl Theorem, \(f_{\epsilon, t} = 0 \). We see that \(U(\epsilon, t) \) is an isometry from \(C(\epsilon, t) \) onto \(L^2(\mathcal{M}_c, d[g_1]d[k_2]) \). \(\Box \)

The Hilbert space \(L^2(\mathcal{M}_c, d[g_1]d[k_2]) \) is the mixed model for \(I(\epsilon, 0) \) restricted to \(\tilde{M} \). We now obtain an isometry from \(C(\epsilon, t) \) onto \(I(\epsilon, 0) \). Within the mixed model, the action of \(I(\epsilon, t)(g|_{k_1}k_2) \) is simply the left regular action and it is independent of \(t \). We obtain

Lemma 8.3. Suppose \(t < 0 \). Let \(g \in \tilde{U}(g) \). Let \(L(g) \) be the left regular action on \(L^2(\mathcal{M}_c, d[g_1]d[k_2]) \). As an operator on \(I^\infty(\epsilon, t)|_{\tilde{M}} \), \(L(g) \) commutes with \(A_M(\epsilon, t) \). Furthermore, \(L(g) \) commutes with \((A_M(\epsilon, t) + I)_0 - I \). Similar statement holds for \(g \in \tilde{Sp}(p, \mathbb{R}) \).

Proof: Let \(g \in \tilde{M} \). Both \(A_M(\epsilon, t) \) and \(L(g) \) are well-defined operator on \(I^\infty(\epsilon, t)|_{\tilde{M}} \). Regarding \(A(\epsilon, t)I(\epsilon, t)(g) = I(\epsilon, -t)(g)A(\epsilon, t) \) as operators on the mixed model \(L^2(\mathcal{M}_c, d[g_1]d[k_2]) \), we have

\[A_M(\epsilon, t)L(g) = L(g)A_M(\epsilon, t). \]

It follows that

\[L(g)^{-1}(A_M(\epsilon, t) + I)L(g) = (A_M(\epsilon, t) + I). \]

Since \(L(g) \) is unitary, \(L(g)^{-1}(A_M(\epsilon, t) + I)_0 L(g) = (A_M(\epsilon, t) + I)_0 \). In fact, \((A_M(\epsilon, t) + I)_0 \) can be defined as the inverse of \((A_M(\epsilon, t) + I)^{-1} \), which exists and is bounded. So \(L(g) \) commutes with both \((A_M(\epsilon, t) + I)^{-1} \) and \((A_M(\epsilon, t) + I)_0 \). \(\Box \)

Lemma 8.4. We have, for \(g \in \tilde{M} \), \(U(\epsilon, t)I(\epsilon, t)(g) = I(\epsilon, 0)(g)U(\epsilon, t) \).
Proof: Recall from Theorem 7.1 that the action of \tilde{M} on the mixed model is independent of t. It suffices to show that on the mixed model, $\mathcal{U}(\epsilon, t)$ commutes with $L(g)$ for any $g \in \tilde{M}$. By Lemma 8.3,

$$L(g)^{-1}[(A_M(\epsilon, t) + I) - I]L(g) = (A_M(\epsilon, t) + I) - I.$$

Since $L(g)$ is unitary on $L^2(\mathcal{M}_\epsilon, d[g_1]d[k_2])$, both sides are positive self-adjoint operators. Taking square roots, we obtain $L(g)^{-1}\mathcal{U}(\epsilon, t)L(g) = \mathcal{U}(\epsilon, t)$. \[\square\]

Theorem 7.1 is proved.

References

[1] [ABPTV] J. Adam, D. Barbasch, A. Paul, P. Trapa, D. Vogan “Unitary Shimura correspondences for split real groups”, J. Amer. Math. Soc. Vol. 20 2007, (701 - 751).

[2] [Bar] V. Bargmann, “Irreducible unitary representations of the Lorentz group”, Annals of Math. (Vol 48), 1947 (568-640).

[3] [BOO] T. Branson, G. Olafsson, B. Ørsted, “Spectrum Generating Operators and Intertwining Operators for Representations Induced from a Maximal Parabolic Subgroup”, Journal of Functional Analysis, (Vol. 135), 1996, (163-205).

[4] [He02] Hongyu He, “Compactification of Classical Groups”, Communications in Analysis and Geometry, Vol. 10, No.4, 2002, (709-740).

[5] [He06] Hongyu He, “Functions on Symmetric Spaces and Oscillator Representation”, Journal of Functional Analysis, Vol. 244, 2007, (536-564).

[6] [Henu] Hongyu He, Unipotent Representations and Quantum Induction, preprint, http://www.arxiv.org/math.GR/0210372, 2002.

[7] [Howe] R. Howe and E.-C. Tan Non-Abelian Harmonic Analysis: Applications of $SL(2, \mathbb{R})$, Springer-Verlag, 1992.

[8] [Kostant] B. Kostant “On the existence and irreducibility of certain series of representations”. Bull. Amer. Math. Soc. 75 (1969) 627-642.

[9] [KR] S. Kudla and S. Rallis, “Degenerate Principal Series and Invariant Distribution ”, Israel Journal of Mathematics, (Vol. 69, No. 1), 1990, (25-45).

[10] [Lee] S. T. Lee “Degenerate principal series representations of Sp(2n, R). ” Compositio Math. 103 (1996), no. 2, (123–151).

[11] [OZ] B. Ørsted, G. Zhang, “Generalized Principal Series Representations and Tube Domain”, Duke Math. Journal, (Vol. 78), 1995 (335-357).

[12] [RS] F. Riesz, B. Sz.-Nagy, Functional Analysis, New York, Ungar 1955.

[13] [Puk] L. Pukánszky, “The Plancherel formula for the universal covering group of $SL(R, 2)$ ”. Math. Ann. 156 1964, (96–143).

[14] [Sahi] S. Sahi, “Unitary Representations on the Shilov Boundary of a Symmetric Tube Domain ”, Representation Theory of Groups and Algebras, (275-286), Contemp. Math. 145, Amer. Math. Soc., Providence, RI, 1993.

[15] [WV] N. Wallach and D. Vogan, “Intertwining Operators for Real Reductive Groups ” Advances in Mathematics, Vol 82, 1990 (203-243).