Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO$_2$ Nanorod Arrays as Electron Transfer Layer

Zhen-Long Zhang1, Jun-Feng Li1, Xiao-Li Wang1, Jian-Qiang Qin1, Wen-Jia Shi1, Yue-Feng Liu1, Hui-Ping Gao1 and Yan-Li Mao1,2

Abstract

In this paper, N-doped TiO$_2$ (N-TiO$_2$) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO$_2$ with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO$_2$. To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO$_2$ nanorods. Absorption spectra showed higher absorption of visible light for N-TiO$_2$ than un-doped TiO$_2$. The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO$_2$ than to un-doped TiO$_2$. Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO$_2$ than that on un-doped TiO$_2$.

Keywords: Enhancement of efficiency, N-doped TiO$_2$ nanorod arrays, Electron transfer layer

Background

In recent years, extensive studies are focused on perovskite solar cells (PSCs) due to their outstanding properties, such as large absorption coefficient, electron-hole diffusion length, and high charge carrier mobility [1–5]. The power conversion efficiency (PCE) of perovskite solar cells has been over 22% [6]. Conventionally, perovskite solar cells consist of a perovskite layer sandwiched between an electron transfer material (ETM) layer and a hole transfer material (HTM) layer. Mesoporous TiO$_2$ has been used as the ETM in most of the perovskite solar cells [7, 8]. Compared with the mesoporous structure, one dimensional (1D) nanostructure has some advantages, such as easy pore filling of active layer or HTM, better electron transfer, and lower charge recombination [9, 10]. Therefore, TiO$_2$ nanorods (NRs) have been widely applied to perovskite solar cells [11, 12]. However, there are a mass of oxygen vacancies defects exist in pristine TiO$_2$ nanorods, which reduces the efficiency and stability of the perovskite solar cell [13].

In order to solve the issues, some methods have been adopted, such as metal doping [14, 15] and nonmetal doping [16]. It has been reported that N-doped TiO$_2$ as a photoanode of dye-sensitized solar cells (DSSCs) can improve the energy conversion efficiency due to the change of properties of TiO$_2$, such as electron lifetime prolongation, charge transfer resistance reduction, and visible light absorption extension [17, 18].

We wondered about the effect of N-doped TiO$_2$ on the performance of perovskite solar cells. Hence, in the present study, we synthesized N-doped TiO$_2$ (N-TiO$_2$) nanorod arrays with hydrothermal method and fabricated perovskite solar cells using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The PCE of solar cells based on N-TiO$_2$ with the N
doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO₂. The possible mechanisms of enhancement were discussed based on some investigations.

Methods

Growth of TiO₂ Nanorod Arrays

Patterned fluorine-doped tin oxide (FTO)-coated glass substrate was cleaned by sonication for 20 min in detergent, acetone, 2-propanol, and ethanol, respectively. A TiO₂ compact layer was deposited by dipping the substrate in a 0.2 M TiCl₄ aqueous solution at 70 °C for 30 min. TiO₂ NRs were grown on the treated FTO substrate by a hydrothermal method in our previous report [19]. A 0.7 mL of titanium(IV) n-butoxide was added to a mixture of hydrochloric acid and deionized water. Subsequently, the pre-calculated amount of CO(NH₂)₂ was added to the solution (the nominal N/Ti atomic ratio, 0.5, 1, 2, and 3%) and stirred until it was completely dissolved. The FTO substrate was put into the solution and sealed in an autoclave. The autoclave was heated to 170 °C for several hours. The obtained TiO₂ nanorods film was rinsed and annealed at 500 °C for 60 min.

Materials Preparation

Methylammonium iodide (CH₃NH₃I) was synthesized with a reported method [20]. The precursor solution for perovskite film formation was obtained by mixing PbCl₂ and CH₃NH₃I in anhydrous N,N-dimethylformamide (DMF) at a 1:3 molar ratio at 60 °C overnight.

Solar Cell Fabrication

The perovskite film was formed by spin coating at 2000 rpm for 60 s in a glove box, and drying on a hot-plate at 110 °C for 60 min. The HTM layer was obtained by spin coating a spiro-OMeTAD solution at 2000 rpm for 60 s. Finally, a gold layer was deposited on the top of the device by thermal evaporation.

Characterization

X-ray diffraction (XRD) patterns were measured using a diffractometer (DX-2700). Photocurrent–voltage (I–V) curves were carried out with a Keithley 2440 Source meter under AM 1.5 G illumination from a Newport Oriel Solar Simulator with an intensity of 100 mW/cm². A shadow mask was used to determine the active area of 0.1 cm². Morphologies and microstructures were performed using a scanning electron microscope (SEM, JEM-7001F, JEOL) equipped with an energy dispersive spectrometer (EDS). Absorption spectra were obtained with a UV–Vis spectrophotometer (Varian Cary 5000). Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra were collected with a fluorometer (FLS 980E, Edinburgh Photonics). An electrochemical workstation (CHI660e, Shanghai CHI Co., Ltd.) was used to collect the electrochemical impedance spectroscopy (EIS) with a bias of 0.6 V.

Results and Discussion

TiO₂ nanorod arrays with different N doping contents were prepared, and perovskite solar cells based on them were fabricated. The I–V measurements were performed by reverse scan (RS) and forward scan (FS). The photovoltaic parameters were obtained by the average of reverse scan and forward scan for each device. The Iₛₛ, Vₒᵣ, FF, and PCE of the solar cells in the study were obtained by an average of the data from 20 pieces of devices. Figure 1a shows the power conversion efficiency of solar cells dependence on nominal N doping contents. The PCE changes with the increase of N doping content, which reaches the maximum at the doping content of 1% (N/Ti, atomic ratio). Table 1 shows the photovoltaic parameters of the solar cells based on un-doped and 1% N-TiO₂ NRs. The Iₛₛ, Vₒᵣ, FF, and PCE of the solar cells
based on N-TiO₂ NRs are enhanced compared with those based on un-doped TiO₂ NRs. The PCE of solar cells based on N-TiO₂ NRs is 14.7% higher than that of solar cells based on un-doped TiO₂ NRs. Figure 1b shows the I–V curves of best performance solar cells based on un-doped TiO₂ and 1% N-TiO₂ NRs.

Figure 2 shows the IPCE of the perovskite solar cells based on un-doped TiO₂ NRs and 1% N-TiO₂ NRs. The IPCE at the entire wavelength range of the cells based on N-TiO₂ NRs are larger than those on the un-doped TiO₂ NRs, which agree with the I–V measurements.

To get an insight into the enhancement, some investigations were performed. Figure 3 shows the XRD patterns of un-doped TiO₂ and 1% N-TiO₂ NRs. The peaks labeled with stars were assigned to SnO₂ (JCPDS card, 41-1445) on FTO substrate. The peak at 36.1° was assigned to the (101) planes of rutile TiO₂ (JCPDS card, 21-1276) [21]. For the XRD patterns of N-TiO₂ NRs, the peaks on N element were not observed. This could be due to the homogeneous distribution of N with Ti in the samples [22] and small amount of doping contents.

Figure 4 shows the XPS spectra of 1% N-TiO₂ NRs. Figure 4a shows the survey XPS spectrum. The peaks at 458.8 and 464.8 eV in Fig. 4b are attributed to the binding energy of Ti 2p3/2 and Ti 2p1/2, respectively. The peak located at 400.1 eV in Fig. 4c is attributed to N 1s [23]. The peak at 530.1 eV in Fig. 4d could be from O 1s. The XPS spectra demonstrated the successful doping of N in the TiO₂ film, which was further confirmed by the EDS spectrum as shown in Additional file 1: Figure S1 (Supplementary Material).

Figure 5a, c shows the plane-view and cross-sectional SEM images of un-doped TiO₂ NRs, and Fig. 5b, d shows the plane-view and cross-sectional SEM images of 1% N-TiO₂ NRs. The diameter and length of the un-doped TiO₂ NRs were determined to be 48 ± 5 nm and 490 ± 15 nm, respectively. The diameter and length of the 1% N-TiO₂ NRs were determined to be 42 ± 6 nm and 480 ± 25 nm, respectively. The diameter of N-TiO₂ NRs is slightly decreased compared with that of un-doped TiO₂ NRs. The length distribution of N-TiO₂ NRs is more ununiform than that of un-doped TiO₂ NRs. From a view of large area (Additional file 1: Figure S2, Supplementary Material), there are some bluges on the sample surfaces due to the inhomogenous oritation. There are more bluges on the surfaces of N-TiO₂ NRs compared with those of un-doped TiO₂ NRs. This could be attributed to the effect of N doping. Additional file 1: Figure S3 (Supplementary Material) shows the cross-sectional SEM images of the whole solar cells based on TiO₂ NRs. The bottom is the FTO glass. Pores of nanorods are filled by MAPbI₃₋ₓClₓ, on which a capping layer of perovskite was formed. The Spiro-OMeTAD layer is separated by the capping layer from nanorod films. The top layer is a thin Au film.

Figure 6a shows the UV–Vis absorption spectra of un-doped TiO₂ and 1% N-TiO₂ NRs. The absorption intensity of N-TiO₂ is stronger than that of un-doped TiO₂. The energy band gap (Eg) can be calculated based on the absorption spectra using the Tauc equation [24]. The Tauc curve is shown in Fig. 6b, in which Eg can be estimated to be 3.03 and 2.74 eV for un-doped TiO₂ and N-TiO₂ NRs, respectively. Compared with that of un-doped TiO₂, the energy band gap of N-TiO₂ becomes smaller.

Table 1 Photovoltaic parameters of best performance solar cells based on the TiO₂ and N-TiO₂ NRs

Sample	Voc (V)	Jsc (mA/cm²)	FF	PCE (%)
TiO₂	0.80 ± 0.02	19.2 ± 0.06	0.62 ± 0.03	9.5 ± 0.3
1% N-TiO₂	0.82 ± 0.01	20.5 ± 0.7	0.65 ± 0.02	10.9 ± 0.2
This could be attributed to the substitution location of N in the TiO$_2$ lattice, in which an O (Ti) atom is replaced by an N atom [25]. The conduction band offset between N-doped TiO$_2$ and MAPbI$_{3-x}$Cl$_x$ is larger than that between undoped TiO$_2$ and MAPbI$_{3-x}$Cl$_x$ due to its narrow energy band gap, which might be one of the reasons to present a higher voltage for N-TiO$_2$-based solar cells [26].

PL is a suitable tool to study the efficiency of charge carrier trapping, migration, and transfer [27, 28]. Figure 7a shows the PL spectra of un-doped TiO$_2$/ZnO nanorods (NRs) and their N-doped counterparts.
MAPbI$_{3-x}$Cl$_x$ and 1% N-TiO$_2$/MAPbI$_{3-x}$Cl$_x$. The intensity of PL spectrum was decreased due to the electron transfer when the MAPbI$_{3-x}$Cl$_x$ film contacts with TiO$_2$ nanorod layer. The intensity decrease for N-TiO$_2$ is more significant than that for un-doped TiO$_2$, which indicates the electron transfer from MAPbI$_{3-x}$Cl$_x$ layer to N-TiO$_2$ is more effective than to un-doped TiO$_2$.

Figure 7b shows the TRPL spectra of un-doped TiO$_2$/MAPbI$_{3-x}$Cl$_x$ and 1% N-TiO$_2$/MAPbI$_{3-x}$Cl$_x$. The TRPL curves were analyzed with a bi-exponential decay function containing a fast decay (τ$_1$) component and a slow decay component (τ$_2$), and the detailed parameters are listed in Table 2. The fast decay component would be the result of free carrier transportation from MAPbI$_{3-x}$Cl$_x$ to TiO$_2$, and the slow decay component could be the result of radiative decay [29, 30]. In the case of un-doped TiO$_2$/MAPbI$_{3-x}$Cl$_x$, the fast decay time is 55.1 ns, and the slow decay time is 121.4 ns, while their weight fractions are 31.3 and 67.7%, respectively. Compared with those of un-doped TiO$_2$/MAPbI$_{3-x}$Cl$_x$, the fast decay lifetime of N-TiO$_2$/MAPbI$_{3-x}$Cl$_x$ is decreased to 36.4 from 55.1 ns, and the slow decay life time to 109.5 from 121.4 ns, while the weight fraction of fast decay is increased to 35.1 from 31.3%. This suggests that N-TiO$_2$/MAPbI$_{3-x}$Cl$_x$ interface presents a faster charge transfer and induced charge recombination than the un-doped TiO$_2$/MAPbI$_{3-x}$Cl$_x$ interface. The performance difference between the solar cells based on un-doped TiO$_2$ and N-doped TiO$_2$ NRs could be due to the property change of ETM, which affects the charge behavior in the interfaces [31, 32].

To understand the charge transfer behavior of the solar cells, electrochemical impedance spectrum (EIS) was measured. Figure 8a shows the Nyquist plots of solar cells that based on un-doped TiO$_2$ and 1% N-TiO$_2$ NRs. The EIS contains two RC arcs. The arc at high frequency is originated from the contact resistance of the interfaces and that at low frequency is attributed to recombination resistance (R$_{rec}$) and chemical capacitance (C$_{μ}$) of the device [33, 34]. Figure 8b shows an equivalent circuit which was applied to fit the EIS. Table 3 lists the fitting parameters. The solar cells based on N-TiO$_2$ present smaller series resistance and larger recombination resistance than those on un-doped TiO$_2$. This demonstrates that the charge transport ability was enhanced and the carrier recombination rate was induced for the device on N-TiO$_2$. There are many surface and
bulk trap states due to oxygen vacancies for TiO$_2$. It demonstrated that the incorporation of N atom into the lattice of TiO$_2$ can decrease the traps density probably due to oxygen vacancy reduction [18, 35]. The smaller series resistance of N-TiO$_2$ NRs could be due to the decreased traps density. The larger recombination resistance of N-TiO$_2$ NRs may be contributed to the inactive N element leading to the increase of surface resistance [36, 37].

Conclusions
In the present study, N-TiO$_2$ NRs were synthesized with hydrothermal method, and perovskite solar cells based on them were fabricated. Compared with the solar cells based on un-doped TiO$_2$, solar cells based on N-TiO$_2$ present an enhanced performance. The solar cell performance was optimized by changing the N doping contents. The PCE of solar cells based on N-TiO$_2$ with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of un-doped TiO$_2$-based solar cells. To explain this phenomenon, some investigations were performed. The results indicate that the larger V_{oc} could be due to the larger conduction band offset resulting from the smaller energy band gap for N-TiO$_2$, and the enlarged I_{sc} could be attributed to the faster electron transfer and reduced recombination rate for N-TiO$_2$ NRs. These induce the enhanced performance of the solar cells based on N-TiO$_2$ NRs.

Table 3 Fitting parameters of EIS date

Sample	R_s/Ω	R_{ee}/Ω	R_{rec}/Ω	CPE-T/F
TiO$_2$	34.8	59.3	12.7	6.3×10^{-6}
1% N-TiO$_2$	27.5	23.7	75.1	5.9×10^{-6}

doi: 10.1039/C6NR07076K

Additional file

Additional file 1: Supplementary Material. Figure S1. EDS spectrum of 1% N-TiO$_2$ NRs. Figure S2. Plane-view SEM images of un-doped TiO$_2$ (A), and 1% N-TiO$_2$ NRs (B). Figure S3. Cross-sectional SEM image of perovskite solar cells. (DOCX 826 kb)

Acknowledgements
This work is supported by the Science and Technology Development Project of Henan Province (No.142102210389), National Science Research Project of Education Department of Henan Province (No.17A140005), and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 13IRTSTHN017), and NSFC-Henan Province Joint Fund (U1604144).

Authors’ Contributions
Z-LZ, J-FL, and Y-LM carried out the main part of experiment and drafted the manuscript. The other authors provided assistance with the experimental measurements, data analysis, and the manuscript writing. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Received: 30 September 2016 Accepted: 26 December 2016 Published online: 17 January 2017

References
1. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Laura M, Herz M, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344
2. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Graetzel M, Mahalik S, Sum TC (2013) Long-range balanced electron and hole-transport lengths in organic-inorganic CH$_3$NH$_3$PbI$_3$. Science 342:344–347
3. Mei AY, Li K, Liu LF, Kui ZL, Liu TF, Rong YG, Chen JZ, Yang Y, Gratzel M, Han HW (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298
4. Wang YF, Li SB, Zhang P, Liu DT, Gu XL, Sarvari H, Ye ZW, Wu J, Wang ZM, Chen Z (2016) Solvent annealing of PbI$_2$ for high-quality crystallization of perovskite films for solar cells with efficiency exceeding 18%. Nanoscale. doi: http://dx.doi.org/10.1039/C6NR07076K
5. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237
6. National Renewable Energy Laboratory Best Research-Cell Efficiencies. http://www.nrel.gov/nrcpv/images/efficiency_chart.jpg. Accessed 17 May 2016.
7. Yang Y, Song J, Zhao YL, Zhou L, Gu HQ, Gu YQ, Che M, Qiang YH (2016) Ammonium-iodide-salt additives induced photocatalytic performance enhancement in one-step solution process for perovskite solar cells. J Alloy Compd 684:84–90
8. Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK, Gratzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:487–492
15. Song J, Li SP, Zhao YL, Yuan J, Zhu Y, Fang Y, Zhu L, Gu XQ, Qiang YH (2015) A modified sequential method used to prepare high quality perovskite on ZnO nanorods. Chem Phys Lett 639:283–288

16. Zhang XQ, Wu YP, Huang Y, Zhou ZH, Shen S (2016) Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J Alloys Compd 671:191–196

17. Shiva S, Raheleh M, Azam I, Nima T (2015) A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Mater Res Bull 72:64–69

18. Xie Y, Huang N, Liu Y, Sun W, Mehnane HF, You S, Wang L, Liu W, Guo S, Zhao XZ (2013) Photoelectrodes modification by N doping for dye-sensitized solar cells. Electrochim Acta 93:202–206

19. Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL (2015) Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. J Mater Chem A 3:19476–19482

20. Lee MM, Teuscher J, Miyasaka M, Azam I, Nima T (2015) A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Nano Energy 11:409

21. Ito S, Zakeeruddin SM, Baker RH, Liska P, Chavet R, Comte P, Nazeeruddin MK, Peçey P, Takata M, Murua H, Uchida S, Grätzel M (2006) High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

22. Bineesh KV, Kim DK, Park DW (2010) Synthesis and characterization of zirconium-doped mesoporous nano-crystalline TiO2. Nanoscale 2:1222–1228

23. Zhang M, Yu XL, Lu DD, Yang JJ (2013) Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors. Nano Res Lett 8:543–550

24. Liu YY, Zheng HW, Zhang ZL, Liu XS, Wan RQ, Zhang WF (2011) Effect of energy level matching on the enhancement of photovoltaic response about oxide/Zn2SnO4 composites. J Mater Chem 21:4108–4116

25. Yao XJ, Wang XD, Su L, Yan H, Yao M (2011) Band structure and photocatalytic properties of N/Zr co-doped anatase TiO2 from first-principles study. J Mol Catal A 351:11–16

26. Li YL, Sun WH, Yan WB, Ye SY, Peng HT, Liu ZW, Bian QZ, Huang CH (2015) High-performance planar solar cells based on CH3NH3PbI3–Cl perovskites with determined chlorine mole fraction. Adv Funct Mater 25:4867–4873

27. Archana PS, Gupta A, Yusoff MM, Jose R (2014) Charge transport in zirconium doped anatase nanowires dye-sensitized solar cells: trade-off between lattice strain and photovoltaic parameters. Appl Phys Lett 105:53901

28. Shi Y, Wang K, Du Y, Zhang H, Gu J, Zhu C, Wang L, Guo W, Hagfeldt A, Wang N, Ma T (2013) Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%. Adv Mater 25:4413–4419

29. Wang HH, Chen Q, Zhou H, Song L, Luo S, Louis ZS, Marco ND, Fang Y, Sun P, Song TB, Chen H, Yang Y (2015) Improving the TiO2 electron transport layer in perovskite solar cells using acrylacononate-based additives. J Mater Chem A 3:9108–9115

30. Zhong D, Cai B, Wang XL, Yang Z, Xing YD, Miao S, Zhang WH, Li C (2015) A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. Nano Energy 11:409–418

31. Wang MJ, Li SB, Zhang P, Wang YF, Li HQ, Chen Z (2015) A modified sequential method used to prepare high quality perovskite on ZnO nanorods. Chem Phys Lett 639:283–288

32. Li HQ, Li SB, Wang YF, Sarvari H, Zhang P, Wang MJ, Chen ZD (2016) A modified sequential deposition method for fabrication of perovskite solar cells. Solar Energy 126:243–251

33. Liu DY, Yang JL, Kelly TL (2014) Compact layer free perovskite solar cells with 13.5% efficiency. J Am Chem Soc 136:17116–17122

34. Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13:2412–2417

35. Shogh S, Mohammadpour R, Iraj zad A, Taghavinia N (2015) A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Mater Res Bull 72:64–69

36. Chen YJ, Zhang B, Feng YQ (2016) N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells. Res Chem Intermed 42:6705–6718

37. Guo W, Shen YH, Wu LQ, Gao YR, Ma TL (2011) Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J Phys Chem C 115:21494–21499

Submit your next manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com