Comparison of some DNA extraction methods from monovarietal must and wines

Anca P. ONACHE, Adriana BĂDULESCU, Anamaria M. DUMITRU, Dorin I. SUMEDREA, Carmen F. POPESCU*

National Research and Development Institute for Biotechnology in Horticulture, Ștefănești, Calca București, Pitești, 37, Ștefănești, Argeș, Romania; anca27il@yahoo.com; badulescuadriana18@yahoo.com; anamaria.ilina@yahoo.com; dsumedrea@yahoo.com; carm3n_popescu@yahoo.com (*corresponding author)

Abstract

The methods applied for DNA extraction from must and wine samples with monovarietal origin are presented and discussed aiming to prove the quality of extracted DNA and its good properties for further use in molecular tests. In the present research were compared four different DNA extraction methods from must and wine samples obtained from eleven V. vinifera varieties (five grapevine varieties for white wines and six grapevine varieties for red wines, respectively). Taking into consideration the amounts of obtained DNA, the concentrations and purities of the final DNA extracts, were stood out two modified methods. For all must samples, very efficient was the second method, which allowed obtaining a mean value of 87.9 ng µl⁻¹ for the DNA concentration with 1.55 purity. Among the tested procedures, for monovarietal wine samples, the fourth method proved to be the most efficient which brought a mean value of 64.7 ng µl⁻¹ for DNA concentration with 1.66 purity. This method adequate for wine samples involves two CTAB solution treatments and the RNase treatment applied before DNA resuspension. The DNA from must and wine extracts and the DNA from leaves of the corresponding grapevine varieties were amplified with five specific microsatellite primers (VVS2, VMMD27, VMMD32, VrZAG79 and VrZAG62). The aspects of pattern profiles were analysed in parallel and proved that the extracted DNA was suitable for amplification with these specific V. vinifera primers. The two selected extraction procedures are considered good for research purposes and ensure obtaining of good-quality extracted DNA from musts and one-year old wines.

Keywords: DNA quality; grapevine; spectrophotometry; SSR markers; traceability

Introduction

In countries with tradition of grapevine growing, checking the quality of wines, proving their origin and authenticity before marketing are priority concerns. In accordance with Directive 2000/13/EC and up-to-date national legislation, all stages of the agri-food supply chain must be monitored through a traceability system. The quality of any food product first of all depends on its origin and the accurate identification of the variety / varieties from which that product was obtained (Siret et al., 2000). Reliable methods of traceability along the entire chain, from the vineyard plant to the wine in the bottle, have been improved during the last 20 years on
the base of new analysis methods development that meet the legislative requirements and respond to demands
for the wine market (Savazzini and Martinelli, 2006).

The need for molecular techniques to analyse the grapevine-derived products, such as musts and wines,
has been the subject of several studies (Nakamura et al., 2007; Drábek et al., 2008; Pereira et al., 2011; Bigliazzi
et al., 2012). In recent years, advances in the molecular analysis of residual amounts of nucleic acids obtained
from musts or wines, have brought information about the genotyping of wines or proof of their origin from a
particular variety (Gheorghe et al., 2010; Catalano et al., 2016; Pereira et al., 2017).

The first step for any molecular analysis is to obtain a good quality DNA. Progress has been made in
extracting DNA from must and wine samples, and various protocols have been developed by Faria et al. (2000),
Siret et al. (2000) and Garcia-Beneytez et al. (2002). Comparatively analysed to evaluate the quality of the
obtained extracts from grape juice, must, or experimental wines during and after fermentation were published
by Savazzini and Martinelli (2006), Baleiras-Couto and Eiras-Dias (2006), Drábek et al. (2008), Briciu et al.
(2010). After extraction, the DNA with good parameters of quality was used as template for grapevine varietal
identification. Genotyping with SSR (*simple sequence repeats*) markers allowed the identification of variety-
specific alleles in the case of mono-varietal musts/wines, or identification of possible grapevine varieties used
for experimental, or marketed wines (Baleiras-Couto and Eiras-Dias, 2006; Nakamura et al., 2007; Harta et al.,
2011; Scali et al., 2014). Analysis of chloroplast DNA and microsatellite loci (cpSSR), considered an alternative
approach to the varietal genetic identification of must and wine samples, was also attempted to prove their
origin from *Vitis vinifera* L. genotypes (Arroyo-Garcia et al., 2002; Agrimonti and Marmiroli, 2018;
Oganesyants et al., 2018).

VARIETAL authentication of wines using amplification of wine genomic residual DNA with SSR markers
is considered an important tool for Wine DNA Fingerprinting. Today, the use of resulted databases in
association with dedicated bioinformatics are considered essential tools on wine quality and its compositional
profile (Vignani et al., 2019).

Currently, advances in sequencing technologies have allowed the widespread use of SNP (*Single
Nucleotide Polymorphisms*) markers to identify differences among grapevine varieties (Cabezas et al., 2011).
Although is a relatively expensive technique, the use of such markers is suitable for determinations with low-
quality DNA (as is often obtained by DNA extraction from must and wine samples). The great advantage of
this molecular genetic approaches is the highlighting of *V. vinifera* genotypes in mono- or multi-varietal wine
samples, including the quantification of each variety in the mixture (Lazareva et al., 2020).

All these research articles emphasised on the difficulties encountered in extracting DNA from must,
young or aged wine samples. Although efficient methods have been established for the extraction of DNA from
the tissues of grapevine plants (Lodhi et al., 1994), the extraction of DNA from grapevine-derived products
need nevertheless be improved and simplified. The main aspects necessary to be overcome are the insufficient
quantity and quality of the final DNA extract and especially its interference with polysaccharides, polypeptides,
or polyphenols during the applied extracted protocols.

Aiming to contribute to overcome these undesired aspects, this study presents the methods tested for
DNA extraction from must and wine samples with monovarietal origins, selection of the most efficient
methods and the main properties of obtained DNA necessary for further PCR (*polymerase chain reaction*)
analyses-based on molecular markers. The described approach could be a part of the traceability methodology
possible useful to guarantee the origin from *Vitis vinifera* of winemaking products.

Materials and Methods

Different extraction methods were tested to obtain DNA from plant material (young leaves),
monovarietal must and one-year old monovarietal wines. Plant material, must and wines belonging to five
grapevine varieties for white wines (‘Sauvignon blanc’, ‘Italian Riesling’, ‘Fetească regală’, ‘Chardonnay’ and
‘Muscat Ottonel’) and six grapevine varieties for red wines (‘Blauer Zweigelt’, ‘Burgund’, ‘Fetească neagră’, ‘Merlot’, ‘Cabernet Sauvignon’ and ‘Pinot noir’) were selected to be analysed. The plant material was harvested from ex situ collection and used immediately for DNA extraction, while the samples of must and wine were stored in the refrigerator at 2 °C until DNA extraction.

Methods for DNA extraction from leaves, must and wine samples

Young leaves belonging to the eleven varieties were cut in small pieces and crushed with glass pistil against the tube walls. For cell lysis were added 750 µl lysis buffer, 25 µl of 20% sodium-dodecyl sulphate, 40 mg polyvinylpyrrolidone and 4 µl RNase, homogenized and incubated at 65 °C in water bath for 60 minutes. For precipitation of proteins and polysaccharides were used 400 µl of phenol:chloroform:isoamyl alcohol(25:24:1). After centrifugation the upper aqueous phase was collected into a new microfuge tube, added an equal volume of Tris EDTA, mixed gently by pipetting. After centrifugation it was repeated the removing of the impurities with Tris EDTA and ethanol. The deposited DNA was air dried at room temperature for 30 minutes and dissolved in elution buffer.

The must and wine samples were subjected to different procedures as shown in Table 1. The tested methods were selected from the literature, and the methodology applied was adapted according to the working possibilities in our laboratory. The four methods tested were:

- Method 1: Qiagen DNeasy Plant Kit, with adequate sample preparation for Vitis vinifera L.
- Method 2: based on Savazzini and Martinelli (2006) method with few modifications.
- Method 3 which is a combination of the two previous methods: preparation of samples and lysis according to the first method, while precipitation of proteins, polysaccharides and detergent, separation of DNA from other compounds and resuspension of DNA according to the second one.
- Method 4: based on Işçi et al. (2014) method with few modifications.

The modifications mentioned above refer to: the quantities/volumes of chemical compounds, their concentrations, centrifugal speeds-durations-temperatures at which the centrifugations were performed or added step in protocol.

DNA quantification and quality

The quantity and quality of the DNA obtained from each extraction approach (from leaves, must or wine) were determined with the BioPhotometer plus (Eppendorf, DE). All extractions were done in three repetitions. The differences among the four methods were analysed with Duncan test aiming to reveal the "significant" differences at the significant level of ≤ 0.05.

Microsatellite amplification

Analyses of microsatellite loci VVS2, VVMD27, VVMD32, VrZAG79 and VrZAG62 were carried out in a thermal cycler TC-512 (Techne, Duxford, Cambridge, UK). The PCR program for DNA samples were as follows: initial denaturation at 94 °C/3 min, followed by 35 cycles with denaturation at 95 °C for 20 s, or 30 s, annealing temperature of 55 °C, or 61 °C for 30 s, elongation at 72 °C for 30 s, and a final extension step at 72 °C for 6 min and kept at 4 °C. The PCR program for DNA samples of must and wines, was a two-step amplification (35 cycles followed by another 40 cycles) with the same programme, similar to the procedure recommended by Siret et al. (2000). For PCR reactions were used: 4 µl of 5x FirePol Master Mix Ready to load (Solis BioDyne, Estonia), 3 µl DNA template, 2 µl of forward and 2 µl reverse primer, and water to a total volume of 25 µl. In the case of two-step amplification, 5 µL of the first PCR amplification was transferred into the second PCR reaction mix.

The amplification products were visualized after horizontal electrophoresis in 3.0% agarose gel with TAE buffer, and stained with ethidium bromide. The gels were photographed with Gene Flash Syngene Bio Imaging system under UV light. GeneRuler of 100 bp DNA Ladder (Solis BioDyne) was used as a molecular weight marker.
Table 1. Methods for DNA extraction from must and wine samples

Method 1. Kit Qiagen	Method 2. Savazzini and Martinelli (2006) modified	Method 3. Combined method	Method 4. İşçi et al (2014) modified
Preparation of the must and wine samples			
100 ml of must/wine is centrifuged at 5,500 rpm, 15 min; the pellet is used further on.	45 ml of must/wine sample is homogenized with 5 ml of NaCl (5 M) and stored at +2 °C for 24-48 hours; the samples are centrifuged at 5,500 rpm, 30 min and 4 °C; the liquid phase is discarded.	10 ml of sample is centrifuged at 5,500 rpm, 15 min; the solid phase (pellet) is subsequently used.	45 ml of the sample is homogenized with 5 ml of NaCl (1.2 M) and stored at -20 °C for one week; the samples are centrifuged at 6,000 rpm, 30 min and 4 °C; the liquid phase is discarded.
Resuspension and homogenization			
Add: 4 µl RNase + 400 µl lysis buffer + 1 µl 2-mercaptoethanol + 50 mg polyvinylpyrrolidone.	Add: 4 µl RNase + 750 µl CTAB buffer [25 mM EDTA, 1 M Tris-HCl, 2 M NaCl, 3% CTAB, 8 pH] + 2 µl 2-mercaptoethanol + 80 mg polyvinylpyrrolidone.	Add: 4 µl RNase + 400 µl lysis buffer [20 mM EDTA+100 mM Tris-HCl, 1.4 M NaCl, 2% CTAB, 8 pH] + 1 µl 2-mercaptoethanol + 50 mg polyvinylpyrrolidone.	Add to the pellet: 750 µl CTAB buffer + 1.6 µl 2-mercaptoethanol + 80 mg polyvinylpyrrolidone + 1 µl proteinase K.
Cell lysis of the pellet by incubation			
The samples were mixed very well and incubated at 65 °C in water bath for 60 minutes; from time to time the samples were homogenized by vortex.	Precipitation of proteins, polysaccharides and detergent	Separation of DNA from other compounds	DNA resuspension
Add 130 µl of precipitation buffer to the lysate, vortex and incubate the samples for 5-15 min. on ice; centrifugation at 14,000 rpm, 5 min.	Add one volume of phenol-chloroform-isooamyl alcohol (25:24:1); mix the contents by inverting the tubes for ≈3 min; centrifugation at 14,000 rpm, 5 min.	The supernatant is transferred to a new tube; repeat the extraction with phenol-chloroform-isooamyl alcohol (25:24:1) in the same amount and centrifugation at 14,000 rpm, 5 min.	DNA precipitation
DNA washing			
Add 1.5 volumes of DNA binding buffer to the mixture lysate; stir by pipetting.	Add to the liquid phase 1 volume of cold 2-isopropanol and mix gently by pipetting.	Add to the liquid phase 0.6 volume of cold 2-isopropanol.	Elution of the DNA
DNA precipitation			
Pass the solution through the colourless column attached to the 2 ml collection tube; spin at 9,000 rpm, 1 min.	Incubate at -20 °C for 30 min; centrifugation at 14,000 rpm, 5 min.	Place the tubes at -20 °C for 60 min; centrifugation at 14,000 rpm, 5 min.	The deposited DNA is dissolved in 50-100 µl of elution buffer, or in double distilled water for further use (to evaluate the quantity and quality of the extracted DNA).
DNA washing			
The column is placed in a new collection tube; add 500 µl wash buffer, centrifugation at 9,000 rpm, 1 min; repeat the wash; centrifugation at 14,000 rpm, 2 min.	Discard the supernatant; the pellet is washed with 70% ethanol for 30 min. and centrifugation at 9,000 rpm, 1 min; repeat the wash with 70% ethanol of the pellet and centrifugation; leave the tubes uncovered for 30 min. to evaporate the alcohol or leave the tubes upside down on a filter paper until the next day.	The deposited DNA is dissolved in 50-100 µl of elution buffer, or in double distilled water for further use (to evaluate the quantity and quality of the extracted DNA).	
Results and Discussion

The procedures for obtaining wines include multiple and different steps depending on the type of wine to be obtained. The main stages, common to all types of wines, are crushing, pressing, fermentation, filtration, finishing and aging. Each of these stages affects the quality and quantity of DNA from the plant material of origin, namely grapes. Numerous articles have shown the limits of DNA extraction methods depending on the composition of the wines; for example, in red wines are present tannins and polysaccharides that could be responsible for DNA impurity (Garcia-Beneytez et al., 2002, Siret et al., 2002).

The selected methods to be tested in our laboratory took into consideration the properties and roles of the reagents: CTAB (cetyl trimethylammonium bromide) which dissolve the membranes and increase the DNA precipitation; Tris-HCl and EDTA inhibit DNase; 2-mercapto-ethanol eliminates the polyphenols and facilitates protein denaturation; polyvinylpyrrolidone eliminates polysaccharides; proteinase K determines chromatin proteins separation; phenol-chloroform-isooamyl alcohol promotes the separation of lipids and cellular debris into the organic phase, and also separation of DNA into the aqueous phase.

Preparation of the must and wine samples

For the four DNA extraction tested methods, different amounts of samples (must/wine) were used. These initial amounts of sample and how the samples are treated during the applied procedures play an important role for the concentrations of DNA resulted at the end. According to our results presented in Table 2 and Table 3, a much lower concentration (ng μl⁻¹) of DNA is obtained if is started from a smaller amount of must/wine (method 3), or if the protocol involved the use of mini-filter columns (method 1).

Table 2. Comparison of the four tested DNA extraction methods for must samples: average values for DNA concentration and purity

Method	Must sample	Method 1	Method 2	Method 3	Method 4			
	DNA ng µl⁻¹	260/280 ratio						
Sauvignon blanc	22.3	1.58	49.5	1.49	18.3	1.21	55.6	1.46
'Riesling'	12.1	1.71	126.9	1.56	92.5	1.33	102.4	1.31
Feteasca regala	60.6	1.73	117.3	1.60	69.0	1.32	99.6	1.31
'Chardonnay'	36.2	1.43	72.6	1.40	28.3	1.27	68.9	1.31
Blauer Zweigelt	47.1	1.71	123.2	1.62	37.8	1.41	59.7	1.09
Burgund	15.5	1.44	76.8	1.47	44.3	1.23	78.9	1.09
Feteasca neagra	55.1	1.64	98.3	1.67	55.2	1.34	83.2	1.14
Merlot	26.7	1.68	54.3	1.62	33.7	1.37	65.0	1.18
Pinot noir	17.9	1.55	42.8	1.58	39.2	1.23	50.1	1.14
Cabernet Sauvignon	53.4	1.89	104.6	1.61	35.3	1.21	76.1	1.16
Muscat Ottonel	18.5	1.67	101.4	1.48	55.1	1.37	77.2	1.37
Mean	33.22 b	1.64 a	87.93 a	1.55 b	46.24 b	1.30 c	76.06 a	1.23 c

Based on the Duncan test (P ≤ 0.05), the mean values for each method (with eleven different samples, each one in three replicates) followed by different letters are significant different, while the values followed by the same letter are not statistically different.

Precipitation of the must and wine samples with 5 M sodium chloride at 2 °C for 24-48 h (method 2), or with 1.2 M sodium chloride at -20 °C for one week (method 4), seemed to have good influence for the DNA final concentration. In both cases, the mean registered values for all eleven samples were significant higher (between 74.06 and 87.93 ng μl⁻¹ for must samples and between 57.4 and 64.72 ng μl⁻¹ for wine samples) in comparison with the other two methods for which were used untreated must, or wine samples. Our results are similar and confirmed the previous conclusions stated by Savazzini and Martinelli (2006), Pereira et al. (2011)
and Oganesyants et al. (2018) regarding the importance of pretreatment of must and wine samples with sodium chloride before DNA extraction.

Table 3. Comparison of the four tested DNA extraction methods for wine samples: average values for DNA concentration and purity

Wine sample	Method 1 DNA ng µl⁻¹	Method 1 260/280 ratio	Method 2 DNA ng µl⁻¹	Method 2 260/280 ratio	Method 3 DNA ng µl⁻¹	Method 3 260/280 ratio	Method 4 DNA ng µl⁻¹	Method 4 260/280 ratio
Sauvignon blanc	18.0	1.21	64.7	1.57	28.2	1.21	89.0	1.60
Riesling	4.0	1.13	42.6	1.45	14.3	1.13	15.3	1.57
Feteasca regala	16.2	1.48	15.1	1.38	16.5	1.48	67.9	1.56
Chardonnay	28.3	1.27	72.6	1.40	20.7	1.21	56.0	1.53
Blauer Zweigelt	7.7	1.58	101.5	1.56	33.4	1.31	115.5	1.66
Burgund	33.1	1.20	57.9	1.55	86.8	1.53	107.9	1.72
Feteasca neagra	96.2	1.61	96.0	1.61	77.3	1.58	119.3	1.85
Merlot	26.4	1.47	114.7	1.42	47.0	1.42	74.6	1.56
Pinot noir	6.2	1.54	10.7	1.56	7.3	1.43	10.2	1.78
Cabernet Sauvignon	26.4	1.53	46.3	1.65	32.5	1.41	49.9	1.71
Muscat Ottonel	85.6	1.51	27.5	1.65	22.4	1.25	26.5	1.72
Mean	38.0 ± 3.26	1.41 ± 0.17	57.4 ± 3.38	1.52 ± 0.09	35.13 ± 2.64	1.36 ± 0.15	64.72 ± 4.02	1.66 ± 0.10

Method 1: Kit Qiagen; Method 2: Savazzini and Martinelli (2006) modified; Method 3: Combined method; Method 4: Işçi et al. (2014) modified

Based on the Duncan test (P ≤ 0.05), the mean values for each method (with eleven different samples, each one in three replicates) followed by different letters are significant different, while the values followed by the same letter are not statistically different.

Quantity and purity of the extracted DNA from monovarietal must and wine samples

The data from spectrophotometric measurements gave us valuable information regarding the quantity and purity of the obtained DNA, and proved the possibility to obtain good genomic DNA, with high purity, from all extractions from monovarietal musts and wines. Besides the amount/concentration of the DNA in the final extract, it is very important the quality of this DNA, expressed by the ratio of absorbents A260/A280. If in the case of DNA extractions from plant tissues, the quantity and quality of DNA were very good (Table 4), in the case of must and wine samples such parameters were more difficult to be obtained and only after the application of some modifications in different stages of the extraction methods (Table 2 and Table 3). In general, the main cause that generate lower values for the 260/280 ratio (under 1.6) is the presence in the final extracts of some contaminants. If the phenol compounds are present in the final eluted DNA (due to an inefficient, or omission of the washing procedure), their maximum absorbance between 270-275 nm, very close to that of DNA, will generate higher values for absorbance at 260 nm, meaning misleading results (Akkurtt, 2012). Because in the tested protocols the phenol compounds were used only for protein precipitation and were not used for DNA precipitation, we considered that no phenol contamination occurred and the registered values of the absorbance were correct and not overexpressed.

The same inconvenient could be in the case of other contaminants (polysaccharides, proteins, solvents and salts) which have a maximum absorbance at 280, 270 and 230 nm respectively, close to that of DNA. These types of compounds could be present in the eluted solution due to their co-purification with DNA, or due their ligation to DNA during extraction protocol (Faria et al., 2000; Nazhad and Solouki, 2008). Often, the contaminants form stable bound with nucleic acid and affect the quality of gel migration bands. This could be a possible reason why with our DNA extracts, obtained at the end of the extraction protocols, were not visible low-weight DNA bands, or smear bands in the agarose gel.

The RNase treatment is an important step for DNA extraction and is used to remove the RNA from genomic DNA and to isolate a high-quality DNA. If the RNA would not be degraded by RNase, its presence in the final eluted DNA extract would generate a higher 260 nm absorbance value and would indicate an
overestimated quantity of DNA (Lee and Jain, 2017). In our experiments were applied RNase treatments either before lysis (methods 1, 2 and 3), or after precipitation and separation of proteins, polysaccharides and detergent (method 4). All values obtained for A260/A280 ratio of the eluted DNA were lower than 1.8, meaning efficient action of the RNase, and no detectable RNA contamination in the final extracts.

Comparing the results obtained and presented in Table 2 for must samples, method 2 proved to be the most effective due to the concentration of DNA (87.9 ng μl⁻¹) and a relatively good purity (1.55) of the obtained extracts. In the case of monovarietal wine samples (Table 3), the method 4, with two steps of treatment with CTAB, was the most efficient (mean value for DNA concentration of 64.7 ng μl⁻¹ and mean value for DNA purity of 1.66). Among the varieties, more difficult was to obtain good-quality and enough quantities of DNA extracts with ‘Sauvignon blanc’, ‘Italian Riesling’, ‘Chardonnay’, ‘Merlot’ and ‘Pinot noir’.

When the protocol recommended by Qiagen was used with must samples, even if it resulted in obtaining the lowest concentration of DNA (33.22 ng μl⁻¹), its quality was the highest one (1.64). In contrast, in the case of wine samples, the results showed that this method is not appropriate.

Amplification with SSR markers of the genomic DNA from must and wine samples

The spectrophotometric measurements of the final eluted DNA from must and one-year-old wine samples (the quantity and purity of DNA) were the main criteria for the selection of the DNA samples used in analysis with microsatellite markers. Considering that for food-products a good-quality DNA, suitable for molecular analysis, has an A260/A280 ratio between 1.6 and 1.8, were selected and used further on only the samples with the highest purity values (among the samples of extracted DNA from the three replicates of each must and wine used in our experiments).

For grapevine, the basic characterization with nine ‘standard’ loci (VVS2, VVMD5, VVMD7, VVMD25, VVMD27, VVMD28, VVMD32, sσZAG62 and sσZAG79) proposed by the GrapeGen06 consortium and European Vitis Database (http://www.euvitis.de) is internationally accepted as tool for accessions’ identity. Five of these SSR markers were tested with the eleven must and wine samples aiming to confirm the grapevine DNA origin of the must and wine extracts. The residual grape DNA obtained with method 2 (for monovarietal must samples) and method 4 (for monovarietal wine samples) were tested simultaneous with leaves DNA samples for amplifying with SSR primers.

PCR amplification of DNA samples in the presence of SSR primers could fail due to the small amount of DNA in the eluted solution or its possible degradation during storage. For the DNA samples from must and wine, different PCR methods, or different types of markers have been tried to overcome these problems (Savazzini and Martinelli 2006; Drábek et al., 2008). Similar aspects were noticed with our tested samples. The low DNA quantity in the final extract could be the main reason of either the lack of visible bands in agarose gel
for the DNA samples obtained with the four methods, or the very weak, pale or blurred bands for most amplified products from must and wine samples after amplification with 35 cycles in the presence of SSR primers.

The two-step amplification (35 cycles followed by another 40 cycles) proved to be efficient for all DNA samples from monovarietal musts and wines. The amplicons generated with SSR primers were clearly visible in agarose gel (Figure 1) and was possible to compare the pattern profiles of must and wine with corresponding control cultivar (starting from DNA extracted from leaves). The images with amplification profiles for universal SSR primers proved that the DNA extraction methods and their PCR amplification were adequate, and the generated DNA fragments were specific for *V. vinifera*.

![Figure 1](image_url)

Figure 1. Amplified profiles with SSR primers: SSR2 (A), VVMD27 (B), and VrZAG62 (C), ‘Muscat Ottonel’ DNA amplified with VrZAG62 and VrZAG79 primers (D).

1 ‘Sauvignon blanc’, 2 ‘Riesling’, 3 ‘Fetească regală’, 4 ‘Chardonnay’, 5 ‘Blauer Zweigelt’, 7 ‘Fetească neagră’, 9 ‘Pinot noir’, 10 ‘Cabernet Sauvignon’, 11 ‘Muscat Ottonel’

p - leaf, m - must, w - wine
Conclusions

For the selection of the most efficient methods applied in DNA extraction from must and wine samples, the concentration of the final extract and its quality are major criteria. Our results with four different methods showed that an amount of 45 ml of must or wine and an initial precipitation with sodium chloride ensured a final extract with a good concentration of the residual DNA and in a sufficient amount for further investigations. Among the modified methods tested by us, in the case of monovarietal must samples the best results were obtained with modified Savazzini and Martinelli (2006) method, and in the case of monovarietal wine samples with the modified İşçi et al. (2014) method.

Ideally, a DNA isolation protocol should be fast, efficient, easy to perform, and yield sufficient high-quality DNA to be adequate in molecular analyses. Our results proved the possibility of obtaining DNA from musts and wines with methods involving 6 and 24 hours of work, respectively (excepting the sample precipitation treatments), which are acceptable for research purposes. The DNA was present in the eluted solution and analysed with the microsatellite technique. The amplified products for one or two alleles were obtained with five microsatellite loci (specific for Vitis vinifera), thus bringing certainty for the grapevine origin of the analysed must and wine samples. But, for consumer food safety and next-generation sequencing applications, which require large number of samples processed in a short time, continuous improvements are needed for more efficient DNA extraction protocols and more accurate detection techniques for authentication of grapevine derived products such as commercial wines.

Authors’ Contributions

CFP and APO: conceived and designed the experiments; CFP, APO and AMD: methodology; DIS: formal analysis; CFP, APO, AB, AMD and DIS: investigation; CFP, APO, AB and AMD: data curation; CFP: writing-review and editing; APO and AB: visualization; DIS: supervision; CFP: project administration; CFP, AOP and AB: funding acquisition. All authors read and approved the final manuscript.

Acknowledgements

This research article is based upon work from COST Action CA 17111 INTEGRAPE, supported by COST (European Cooperation in Science and Technology). This publication was financially supported by The Ministry of Agriculture and Rural Development through Projects ADER 7.2.6. and P.S.2.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Agrimonti C, Marmiroli N (2018). PCR analysis of experimental and commercial wines by means of nuclear and chloroplast SSRs. European Food Research and Technology 244:2127-2140. https://doi.org/10.1007/s00217-018-3121-5

Akkuş M (2012). Comparison between modified DNA extraction protocols and commercial isolation kits in grapevine (Vitis vinifera L.). Genetics and Molecular Research 11(3):2343-2351. https://doi.org/10.4238/2012.August.13.8
Arroyo-Garcia R, Lefort F, de Andres MT, Ibanez J, Borrego J, Jouve N, Cabello F, Martinez-Zapater JM (2002). Chloroplast microsatellite polymorphisms in Vitis species. Genome 45(6):1142-1149. https://doi.org/10.1139/g02-087

Baleiras-Couto MM, Eiras-Dias JE (2006). Detection and identification of grape varieties in must and wine using nuclear and chloroplast microsatellite markers. Analytica Chimica Acta 563:283-291. https://doi.org/10.1016/j.aca.2005.09.076

Bigiazzi J, Scalì M, Paolucci E, Cresti M, Vignani R (2012). DNA extracted with optimized protocols can be genotyped to reconstruct the varietal composition of monovarietal wines. American Journal of Enology and Viticulture 63(4):568-573. https://www.ajevonline.org/content/63/4/568

Briciu D, Pămfiîl D, Briciu A, Curticiu D, Balazs E, Taoutaou A, Pop I, Cota L (2010). Development of methods for DNA extraction from leaves and must grapes. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies 67(1):1843-1849. https://dx.doi.org/10.15835/buasvm-aib:67:1-2-5

Cabezas JA, Ibáñez J, Liáverezky D, Vélez D, Bravo G, Rodríquez V, ... Ruiz-García L (2011). A 48 SNP set for grapevine cultivar identification. BMC Plant Biology 11(153):1-12. https://doi.org/10.1186/1471-2229-11-153

Catalano V, Moreno-Sanz P, Lorenzi S, Grando MS (2016). Experimental review of DNA-based methods for wine traceability and development of a Single-Nucleotide Polymorphism (SNP) genotyping assay for quantitative varietal authentication. Journal of Agricultural and Food Chemistry 64(37):6969-6984. https://doi.org/10.1021/acs.jafc.6b02560

Drabek J, Stavek J, Jaluvkova M, Jurcek T, Frebort I (2008). Quantification of DNA during winemaking by fluorimetry and Vitis vinifera L. specific quantitative. PCR. European Food Research Technology 226:491-497. https://doi.org/10.1007/s00217-007-0561-8

Faria MA, Magalhaes R, Ferreira MA, Meredith CP, Ferreira Monteiro F (2000). Vitis vinifera must varietal authentication using microsatellite DNA analysis (SSR). Journal of Agricultural and Food Chemistry 48:1096-1100. https://doi.org/10.1021/jf990837h

Garcia-Beneytez E, Maria VM, Joaquin B, Maria CP, Javier I (2002). Application of a DNA analysis method for the cultivar identification of grape musts and experimental and commercial wines of Vitis vinifera L. using microsatellite markers. Journal of Agricultural and Food Chemistry 50(21):6090-6096. https://doi.org/10.1021/jf0202077

Gheorghe RN, Popescu CF, Pămfiîl D, Ciocircian CN, Stestras R (2010). Genetic diversity of some Romanian grapevine cultivars as revealed by microsatellite markers. Romanian Biotechnological Letters 15(2):26-31. https://e-repository.org/rbl/vol.15/iss.2.s/5.pdf

Hârta MH, Pămfiîl D, Pop R, Vicăs S (2011). DNA fingerprinting used for testing some Romanian wine varieties. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Horticulture 68(1):143-148. https://doi.org/10.15835/buasvmn-hort:7041

İşçi B, Yıldırım H K, Altindisli A (2014). Evaluation of methods for DNA extraction. Journal of The Institute of Brewing 120:238-243. https://doi.org/10.1002/jib.129

Lazareva EG, Gilmanov KKh, Bigaeva AV, Mikhailova IYu, Semipyatny VK, Vafin RR (2020). DNA authentication technologies for product quality monitoring in the wine industry. Food Systems 3(4):11-14. https://doi.org/10.21323/2618–9771–2020–3–4–11–14

Lee A, Jain A (2017). DNA concentration measurement at 260 nm using Photopette Bio. Tip Biosystems. Application Note.1-3. AN-LS-001-DNA-Measurement. https://tipbiosystems.com/wp-content/uploads/2020/05/AN-LS-001-DNA-Measurement.pdf

Lodhi MA, Weeden N F, Reisch B I (1994). A Simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter 12(1):6-13. https://doi.org/10.1007/BF02668658

Nakamura S, Haraguchi K, Mitani N, Ohtsubo K (2007). Novel preparation method of template DNAs from wine for PCR to differentiate grape (Vitis vinifera L.) cultivar. Journal of Agricultural and Food Chemistry 55(25):10388-10395. https://doi.org/10.1021/jf072407u

Nazhad NR, Solouki M (2008). Separation of DNA for molecular markers analysis from leaves of the Vitis vinifera. Pakistan Journal of Biological Science 11(11):1436-1442. https://scialert.net/abstract?doi=pjhs.2008.1436.1442
Oganesyants LA, Vafin RR, Galstyan AG, Semipyatniy VK, Khurshudyan SA, Ryabova AE (2018). Prospects for DNA authentication in wine production monitoring. Foods and Raw Materials 6(2):438-448. http://doi.org/10.21603/2308-4057-2018-2-438-448

Pereira L, Guedes-Pinto H, Martins-Lopes P (2011). An enhanced method for *Vitis vinifera* L. DNA extraction from wines. American Journal of Enology and Viticulture 62(4):547-552. https://www.ajevonline.org/content/62/4/547

Pereira L, Gomes S, Castro C (2017). High Resolution Melting (HRM) applied to wine authenticity. Food Chemistry 216:80-86. https://doi.org/10.1016/j.foodchem.2016.07.185

Savazzini F, Martinelli L (2006). DNA analysis in wines: development of methods for enhanced extraction and real-time polymerase chain reaction quantification. Analytica Chimica Acta 563:274-282. https://doi.org/10.1016/j.aca.2005.10.078

Scali M, Elisa P, Jacopo B, Mauro C, Vignani R (2014). Vineyards genetic monitoring and Vernaccia di San Gimignano wine molecular fingerprinting. Advances in Bioscience and Biotechnology 5(2):142-154. https://doi.org/10.4236/abb.2014.52018

Siret R, Boursiquot JM, Merle MH, Cabanis JC, This P (2000). Toward the authentication of varietal wines by the analysis of grape (*Vitis vinifera* L.) residual DNA in must and wine using microsatellite markers. Journal of Agricultural and Food Chemistry 48(10):5035-5040. https://doi.org/10.1021/jf991168a

Siret R, Gigaud O, Rosec JP, This P. (2002) Analysis of grape *Vitis vinifera* L DNA in must mixtures and experimental mixed wines using microsatellite markers. Journal of Agricultural and Food Chemistry 50:3822-3827. https://doi.org/10.1021/jf011462e

Vignani R, Liò P, Scali M (2019). How to integrate wet lab and bioinformatics procedures for wine DNA admixture analysis and compositional profiling: case studies and perspectives. PLoS One 14(2):e0211962. https://doi.org/10.1371/journal.pone.0211962

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.