A Selective Review of Negative Control Methods in Epidemiology

Xu Shi*1, Wang Miao 2 and Eric Tchetgen Tchetgen3

1Department of Biostatistics, University of Michigan
2School of Mathematical Sciences, Peking University
3Statistics Department, The Wharton School, University of Pennsylvania

Abstract

Purpose of Review Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework.

Recent Findings We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject matter knowledge to perform negative control analyses. We also review existing statistical methodologies for detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double negative control design.

Summary There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.

Keywords: bias correction, bias detection, bias reduction, negative control, unmeasured confounding.

*Email: shixu@umich.edu. The authors have no conflicts to disclose. Human and Animal Rights: This article does not contain any studies with human or animal subjects performed by any of the authors.
1 Introduction

Despite ongoing efforts to improve study design and statistical analysis of epidemiological research, failure to rule out non-causal explanation of empirical findings has prompted substantial discussions in the health science [1, 2]. A powerful tool increasingly recognized to mitigate bias is negative control study design and analysis [3–5]. Negative controls have a long history in laboratory experiments and epidemiology [3, 6–8]. However, they have mainly been used to detect bias rather than to remove bias. More recent methodological advances that enable both bias detection and bias removal have not been fully recognized. As a result, the potential for valid and accurate causal inference leveraging contemporary healthcare data with abundant negative controls has to date not been fully realized. This paper aims to introduce negative controls to a broader audience and provide guidance on principled design and causal analysis based on a formal negative control framework. We focus on resolving bias due to unmeasured confounding in observational studies, although negative controls have recently also been used to tackle a variety of biases such as selection bias [3, 4, 9], measurement bias [3, 4], and homophily bias [10, 11] in both observational studies and randomized trials [5].

1.1 Definition and notation

A negative control outcome (NCO) is a variable known not to be causally affected by the treatment of interest. Likewise, a negative control exposure (NCE) is a variable known not to causally affect the outcome of interest. To the extent possible, both NCO and NCE should be selected such that they share a common confounding mechanism as the exposure and outcome variables of primary interest, although this is not always necessary [12, 13]. These known-null effects have been used to detect residual confounding bias: presence of an association between the NCE and the outcome (or between the NCO and the exposure) constitutes compelling evidence of residual confounding bias, while absence of such association implies no empirical evidence of such bias. For example, in a study about the effects of influenza vaccination on influenza hospitalization in the elderly (Figure 1), injury/trauma hospitalization was considered as an NCO as it cannot be causally affected by influenza vaccination, but may be subject to the same confounding mechanism mainly driven by health-seeking behavior [14]. The authors found that despite efforts to control for confounding, influenza vaccination not only appeared to reduce risk of influenza hospitalization after influenza season (risk ratio 0.82, 95% CI 0.73–0.92), but also appeared to reduce risk of injury/trauma hospitalization (risk ratio 0.83, 95% CI 0.75–0.91). This was interpreted as evidence of bias due to inadequately controlled confounding. Likewise, annual wellness visit history can be considered as an NCE as it is unlikely to cause flu-related hospitalization.

In the following, we adopt the potential outcome framework which we use to formally define causal effects as well as to articulate sufficient identification conditions to perform valid causal inferences from observational data. We proceed under the fundamental assumption that for each subject in the target population there exist a potential outcome variable $Y(a)$, that would be observed if possibly contrary to fact, the subject were exposed to treatment value a, for all possible treatment values of a in a set \mathcal{A}. In the common setting where the treatment is dichotomous $\mathcal{A} = \{0, 1\}$, the assumption states that each subject has a well
Figure 1: An illustrating example of different types of negative controls: consider studying the causal effect of flu shot (A) on influenza hospitalization (Y), subject to confounding by unmeasured health-seeking behavior (U). Annual wellness visit history (Z) is an NCE which does not causally affect Y. Injury/trauma hospitalization (W) is an NCO which is not causally affected by A. Both Z and W are proxies of health-seeking behavior. Physician’s prescribing preference (IV) is an instrumental variable which likely induces variation in the choice of treatment, and may not affect the outcome other than through its influence on the treatment. As discussed in Sections 1.1 and 3.1, both a valid instrumental variable and an invalid instrumental variable associated with U are valid NCE. All arguments are made implicitly conditional on measured covariates X. Independence between A and Z (or Y and W) conditional on U is not necessary. See more examples in Table A.1 of the Appendix.

defined pair of potential outcomes \((Y(0), Y(1))\) corresponding to their outcome under active treatment \(a = 1\) and control treatment \(a = 0\), respectively \([15, 16]\). In such setting, our goal is to make inferences about the population average treatment effect (ATE) defined as \(\text{ATE} = E[Y(1) - Y(0)]\). Now, consider an observational study in which one observes independent and identically distributed samples on \((Y, A, X)\), where \(A\) is a subject’s observed binary treatment assignment, \(Y\) is his/her observed outcome, and \(X\) are observed confounders of the association between \(A\) and \(Y\). We sometimes refer to \(A\) as primary treatment and \(Y\) as primary outcome. We assume that the treatment is defined with enough specificity such that among subjects with \(A = a\), the observed outcome \(Y\) is a realization of the potential outcome value \(Y(a)\), that is

Assumption 1 (Consistency). \(Y(a) = Y \text{ when } A = a\).

Much of the literature on causal inference in observational studies relies on the strong assumption of no unmeasured confounding for the purpose of identification, i.e., \(A \perp \perp Y(a) \mid X\), which is sometimes referred to as ignorability assumption. This assumption essentially rules out the existence of unmeasured common causes, denoted as \(U\), of the treatment and outcome variables – an untestable assumption which is often at the source of much skepticism about causal interpretation of associations found in observational data. We do not make such ignorability assumption to establish causation. Instead, we invoke the following assumption that describes the relationship between treatment and outcome in the presence of both measured and unmeasured confounding.

Assumption 2 (Latent ignorability). \(A \perp Y(a) \mid U, X\).
In addition to \((A, Y, X)\), suppose that one has also observed a secondary outcome \(W\) and/or a secondary exposure \(Z\), and let \(Y(a, z)\) and \(W(a, z)\) denote the corresponding counterfactual values that would be observed had the primary treatment and secondary exposure taken value \((a, z)\). \(W\) and \(Z\) are formally defined as negative control outcome and exposure variables provided that the following assumptions hold

Assumption 3 (Negative control outcome). \(W(a, z) = W\) and \(W \perp \perp A \mid U, X\).

Assumption 4 (Negative control exposure). \(Y(a, z) = Y(a)\) and \(Z \perp \perp (Y(a), W) \mid U, X\).

Assumptions 3 and 4 entail: (1) there is no remaining unmeasured common cause between \((A, Z)\) and \((Y, W)\) conditional on \((U, X)\); (2) there is no causal effect of \(Z\) on \(Y\) conditional on \(U, A\) and \(X\), and there is no causal effect of \(A\) and \(Z\) on \(W\) conditional on \(U\) and \(X\), which are referred to as the exclusion restrictions. We refer to a pair of \(W\) and \(Z\) as the double negative control. It is not necessary to have both NCO and NCE, although the double negative control will be sufficient for nonparametric identification of the ATE as detailed in Section 3.2.

Figure 1 illustrates a directed acyclic graph (DAG) encoding the above assumptions. Consider a study of the effectiveness of flu shot \((A)\) on influenza-related hospitalization \((Y)\). A major concern in such studies is potential hidden bias due to unmeasured health-seeking behavior \((U)\), a well-known common cause of flu shot status and influenza hospitalization. In such a study, routinely captured information on a person’s annual wellness visit history entails a good candidate NCE \((Z)\) satisfying Assumption 4, as it reflects a person’s tendency to engage in healthy behavior, and is unlikely to cause influenza hospitalization. Similarly, recorded data on a person’s injury/trauma hospitalization provides compelling candidate NCO\((W)\) satisfying Assumption 3, as it is likely associated with health-seeking behavior and unaffected by flu shot. In addition, we can view an instrumental variable (IV) as an NCE [12, 17]. An IV is a pre-treatment variable satisfying the following three core assumptions: (IV relevance) the IV must be associated with the treatment; (Exclusion restriction) the IV must not have a direct effect on the outcome that is not mediated by the treatment; (IV independence) the IV must be independent of unmeasured confounders. For example, physician’s prescribing preference is often taken as an IV in comparative effectiveness studies, because it likely induces variation in the choice of treatment, and may not affect the outcome other than through its influence on the treatment [18]. A valid IV satisfies Assumption 4 and hence is a valid NCE, which is further explained in Section 3.1. Besides the above three IV conditions, a forth condition is necessary to identify a causal effect, such as the monotonicity assumption or the no current treatment interaction assumption [19–22]. Alternatively, causal effect identification using IV is also made possible by further incorporating an NCO under a double negative control framework introduced in Section 3.2.

It is important to note that Figure 1 is not the only DAG satisfying the negative control assumptions. For example, a more general DAG would allow \(Z\) to affect \(A\), corresponding to the case where an annual wellness visit could result in flu vaccination during flu season. Moreover, physician preferences are not randomized and may be associated with \(U\) via physician-patient interactions, potentially violating the IV independence assumption. Such an invalid IV violating the IV independence assumption is still a valid NCE as long as the exclusion restriction holds, regardless of whether the IV relevance assumption holds. In this
case, an NCO can be used to repair an invalid IV for causal effect identification under a
double negative control framework [12, 17]. Additional DAGs illustrating settings in which
Assumptions 2-3 hold are provided in Table A.1 of the Appendix. As demonstrated in
[12] and [17], an NCE can be either pre- or post-treatment variable. Unmeasured common
causes of the Z-A association and Y-W association can also be present without necessarily
invalidating Assumptions 3-4. A key insight is that a valid NCO does not necessarily need
to be an outcome variable and may in fact precede the treatment in view, while a valid NCE
need not necessarily be a treatment and may in fact be ascertained either together with
primary outcome of interest or subsequently.

1.2 Inconsistent terminology in literature

In prior literature, NCO has been referred to as falsification outcome/end point [23–26],
control outcome [14, 27, 28], secondary outcome [29, 30], supplementary response [6] and
unaffected outcome [31]. NCE has been referred to as control exposure [27] and residual-
confounding indicator [32, 33]. Both NCO and NCE have been referred to as proxies of
unmeasured confounder [34–36]. In addition, an exposure-outcome pair known a priori to
be unrelated has also been referred to as a negative control pair [37–41].

The literature reviewed in the current paper is largely limited to papers that use afore-
mentioned nomenclature. Although [3] and [27] review negative control literature, to the
best of our knowledge, this paper is the first to systematically summarize both formal causal
and statistical methodology together with applications of negative controls. The rest of the
paper is organized as follows. Design and validation of negative controls are discussed in Sec-
tion 2. We then review both assumptions and methods for using negative controls to detect,
reduce, and remove unmeasured confounding bias in Section 3. We use a simple example to
illustrate double negative control adjustment (i.e., leveraging NCE and NCO when both are
available) of confounding bias in Section 3.2. We close with a summary in Section 4.

2 Review of applications

Existing applications of negative controls mainly focus on detection of uncontrolled con-
founding bias. We list in Table 1 selected studies that employed negative controls to detect
residual confounding and to strengthen causal conclusions. Among these studies, eight used
NCEs and nine used NCOs. Table 1 is by no means comprehensive, as hundreds of stud-
ies have leveraged negative control variables as evidenced by the number of recent articles
that have cited [3] as the foundational paper on the use of negative control exposures and
outcomes in Epidemiology, but rather a representative set of examples that help illustrate
strategies for identifying compelling candidate negative controls.

2.1 Examples of negative control designs

Effect of influenza vaccination on influenza hospitalization: using injury/trauma
hospitalization as an NCO As detailed in Section 1.1, to study the effects of influenza
vaccination on influenza hospitalization in the elderly, injury/trauma hospitalization was
taken as an NCO to detect confounding by unmeasured health-seeking behavior [14]. Influenza hospitalization before the flu season was also used as an NCO, because flu vaccine can not protect against influenza hospitalization when there is little flu virus circulation.

Effect of maternal exposure on offspring outcomes: using paternal exposure as an NCE

A number of publications have used paternal exposure as an NCE to study the intrauterine effect of maternal exposure on offspring outcome. Specifically, [42–46] studied the association between maternal smoking and offspring outcomes, and compared paternal and maternal associations to detect potential bias due to unmeasured confounding by family-level confounding factors or parental phenotypes. Similarly, [47] compared maternal and paternal distress and their associations with offspring asthma. Evaluation of the validity of paternal exposure as an NCE has also been considered in [48]. They found that cotinine level from exposure to partner smoking were low in non-smoking pregnant women, which suggests that using paternal smoking as an NCE for investigating intrauterine effects is valid.

Effect of air pollution on health outcomes: using future air pollution as an NCE

Besides use of paternal exposures, NCEs are also used in air pollution studies. For example, [32, 33, 49, 50] studied statistical methods that utilize future air pollution as an NCE for bias detection and bias reduction, because the future is not expected to causally affect the past. In addition, [51] studied the effect of air pollutant on asthma, and leveraged two different NCEs: air pollutant level in the future and air pollutant level in a distant city.

2.2 Summary of negative control designs

In addition to the above examples, various negative control designs are also summarized in Table 1. Rather than detailing each study in Table 1, we summarize these studies in terms of their respective strategy to identify negative control variables below. A commonly used strategy to select negative controls leverages temporal and spacial constraints that essentially guarantee the exclusion restrictions in Assumptions 3-4. Temporal ordering leverages the universal truth that the future cannot causally affect the past. For example, as detailed above, [32, 33, 49–51] specify future measurements of air pollution as an NCE to study the effect of current air pollution on health outcomes. Similarly, [46] proposed to look at maternal exposure before and after pregnancy in studying the intrauterine effect of maternal exposure on offspring outcome. An essential prerequisite for this design is that primary outcome does not cause subsequent exposure (at least in the short term), certainly a reasonable assumption in air pollution settings. Prior information about timing of exposure also sometimes allows one to leave out an essential ingredient [3]. For instance, [14] defined as NCO the number of hospitalizations prior to influenza season in order to estimate the effect of influenza vaccination on influenza hospitalization, as little to no flu circulates prior to flu season for influenza vaccination to be protective against. Spatial distancing has also been considered as an effective means to enforce exclusion restrictions in Assumptions 3-4. For instance, [51] took air pollutant level in a distant city as an NCE to study the effect of air pollutant on asthma. [52, 53] studied screening sigmoidoscopy and mortality from colon tumor, and selected tumor from proximal colon that is beyond the reach of the sigmoidoscopy.
Reference	Exposure	Outcome	Negative Control Exposure	Negative Control Outcome
42	Maternal smoking	Low birth weight	Paternal smoking	
43	Maternal smoking	Sudden infant death syndrome	Paternal smoking	
44	Maternal smoking	Offspring height, ponderal index, body mass index	Paternal smoking	
45	Maternal smoking	Offspring blood pressure	Paternal smoking	
47	Maternal distress	Offspring asthma	Paternal distress	
46, 48:	Maternal smoking, alcohol use or dietary patterns	Offspring development	Paternal smoking, alcohol use or dietary patterns	
51	Air pollutant	Asthma	Future air pollutant, air pollutant elsewhere	
54	Mammography-screening participation	Death from breast-cancer	Dental-care participation	Death from causes other than breast cancer and from external causes such as accidents, intentional self-harm and assaults
14	Influenza vaccination	Mortality and pneumonia/influenza hospitalization	Outcome before and after influenza season; injury/trauma hospitalization	
55	Air pollutant	Asthma hospitalization	Appendicitis hospitalization	
56–59	Smoking	Mortality from lung cancer	Other causes of death	
60	Psychological stress post earthquake	Deaths from cardiac events	Other causes of death, e.g. cancer	
52, 53	Screening sigmoidoscopy	Mortality from distal colon tumor	Mortality from proximal colon tumor (above the reach of the sigmoidoscopy)	

Table 1: Summary of selected applications using negative controls for detection of confounding bias.
2.3 Validation of negative controls by subject matter knowledge

Despite the various strategies in the literature to find candidate negative controls, researchers should rigorously validate the choice of negative controls and be aware of possible violations of negative control assumptions. Similar to the assumptions of no unmeasured confounding, negative control assumptions (Assumptions 3 and 4) are causal assumptions that can only be established by subject matter considerations and not by empirical test without additional assumptions. In practice, we recommend checking the following criteria in finding a candidate negative control.

- “Irrelevant to Y (or A)”: The NCE should not cause the outcome of interest, while the NCO should not be caused by the treatment of interest nor the NCE. These conditions are formally implied by Assumptions 3 and 4.
- “Comparable to A (or Y)”: In most cases it is important to have the source of bias in mind before designing a negative control study although this is not always necessary [12, 13]. Unmeasured confounding mechanism of negative controls should be comparable to that of A and Y in the following sense: the NCE must be associated with unmeasured confounders conditional on measured confounders and primary treatment; the NCO must be associated with unmeasured confounders conditional on measured confounders. Hence the negative control variable is often viewed as a proxy of the unmeasured confounders. A variable completely irrelevant to all mechanisms under consideration would not provide any useful information. These conditions are formally required by Assumptions 5 and 7 in Section 3;
- “Adequate Negative Control Power”: The NCE and NCO are not exceedingly rare relative to primary treatment and outcome variables, respectively. For example, in the event that the negative control variable is a rare binary variable, or if the association between unmeasured confounder and negative control variable is weak, then large sample may be necessary to achieve sufficient power for detecting confounding bias [61, 62].

We list examples of possible violations of negative control assumptions in the Appendix.
3 Review of methods

3.1 Bias detection

Key assumption and rationale for bias detection Assumptions 3 and 4 give rise to formal statistical tests of the null hypothesis that adjustment for observed covariates suffices to control for confounding bias, rejection of which indicates presence of an unmeasured confounder \(U \). A key assumption for this bias detection strategy is that the negative control exposure or outcome is \(U \)-comparable to the primary exposure or outcome:

Assumption 5 (\(U \)-comparable). \(W \not\perp \perp U \mid X \) and \(Z \not\perp \perp U \mid A, X \).

The \(U \)-comparability assumption requires that unmeasured confounders \(U \) of \(A-Y \) association are identical to those of the \(A-W \) association and \(Z-Y \) association, such that a non-null \(A-W \) or \(Z-Y \) association can be attributed to \(U \). Therefore, presence of an association between primary and negative control variables implies residual confounding bias, while absence of such associations implies no empirical evidence of unmeasured confounding. It is important to note that when evaluating \(Z-Y \) association one must also adjust for \(A \) to rule out the potential association between \(Z \) and \(Y \) due to the pathway \(Z \rightarrow A \rightarrow Y \) (the arrow between \(Z \) and \(A \) could either be \(Z \rightarrow A \) or \(Z \leftarrow A \)). Examples of such relationships are listed in Table A.1 of the Appendix. Notably, conditional on \(X \), a valid IV independent of \(U \) and associated with \(A \) satisfies Assumption 5 because of conditioning on a collider \(A \) on the IV \(\rightarrow A \leftarrow U \) pathway [12, 17]; likewise an invalid IV that violates the IV independence assumption defined in Section 1.1 would also satisfy Assumption 5 regardless of whether IV and \(A \) are associated, as mentioned in Section 1.1.

Methods As detailed in Section 2, majority of existing applications used negative controls for bias detection, by testing for an association between primary and negative control variables. A review of bias detection methods is presented in Table 2. For example, [32] formalized bias detection as a Wald test of the coefficient of NCE in a regression model of the outcome on the primary and negative control exposures. Moreover, [63, 64] noted that an invalid NCE that violates the exclusion restriction but satisfies the \(U \)-comparable assumption can nevertheless validate a causal interpretation when it does not appear to be associated with the outcome adjusting for the treatment of interest.

3.2 Bias reduction and bias correction

Summary of literature Beyond bias detection, recent developments have made it possible to reduce and sometimes completely remove unmeasured confounding bias using negative controls. In air pollution studies, current and future pollutant levels are often positively correlated and are associated with unmeasured confounders in the same direction. In this setting, [33] showed that incorporating future air pollution, an NCE, in the outcome model can reduce confounding bias. Further bias attenuation was proposed in [49] by incorporating both past and future exposures. Bias reduction using an NCO was considered by [65] in estimation of standardized mortality ratio, where the standardized mortality ratio of the NCO was used to reduce bias in that of the primary outcome. In addition, [38, 40] considered
Reference and Setting	Main Assumptions Besides Assumptions 2-5	Methods				
D	[32]: Time-series study. Z = future air pollution A_{t+1}. (1) $A_{t+1} \perp Y_t \mid A_t, U_t, X_t$. (2) $\log[E(Y_t)] = \alpha + \beta A_t + \gamma X_t + \beta_f A_{t+1}$.	Bias detection by Wald-test on β_f.				
[63, 64]: invalid NCE Z.	(1) Violation of exclusion restriction $Y(a, z) \neq Y(a)$. (2) Z is U-comparable with A: $Z \not\perp A \mid U, X$.	No evidence of $Z-Y$ association adjusting for A implies no residual confounding of $A-Y$ association.				
R	[33, 49]: Time-series study. Z = future air pollution A_{t+1}. (1) $A_{t+1} \perp Y_t \mid A_t, U_t, X_t; A_t \perp \perp (A_t, U_t) \mid X_t$. (2) $Y_t(a_t, x_t, u_t) = \beta_0 + \beta_1 a_t + \beta_2 x_t + \beta_3 u_t + \varepsilon_t; E[\varepsilon_t \mid A_t = a_t, U_t = u_t, X_t = x_t] = 0$. (3) $E[U_t \mid A_t = a_t, A_{t+1} = a_{t+1}, X_{t-x}] = \alpha_0 + \alpha_1 a_t + \alpha_2 x_t + \alpha_3 a_{t+1}; \text{sign}(\alpha_1) = \text{sign}(\alpha_3)$. (4) $E[A_{t+1} \mid A_t = a_t, X_t = x_t] = \gamma_0 + \gamma_1 a_t + \gamma_2 x_t; \gamma_1 > 0$.	Bias reduction by fitting $E[Y_t \mid A_t, X_t, A_{t+1}]$ instead of fitting $E[Y_t \mid A_t, X_t]$. Further bias reduction considered in [49] by incorporating X_{t+1} or A_{t-1}. Identification of β_1 is possible with multiple future exposures under autoregressive model for exposure time series.				
[65]: Standardized mortality ratio in occupational cohort study.	(1) $E[Y(1) \mid X = k]/E[Y_{\text{ref}} \mid X = k] = \exp(\alpha_k - \delta_k)$ $E[W \mid X = k]/E[W_{\text{ref}} \mid X = k] = \exp(-\varepsilon_k)$. (2) $\text{sign}(\varepsilon_k) = \text{sign}(\delta_k)$ and $0 <	\varepsilon_k	< 2	\delta_k	$.	Adjust for bias δ_k via $E[Y(1) \mid X = k]/E[W_{\text{ref}} \mid X = k]$.
[38, 40]: Define negative controls as drug-outcome pairs where one believes no causal effect exists.	(1) For a negative control drug-outcome pair, the effect estimate $\hat{\beta}_i \sim N(\theta_i, \tau_i^2)$, $i = 1, \ldots, n$, where $\theta_i \sim N(\mu, \sigma^2)$ is the true bias. (2) Under the null of no treatment effect, the effect estimate $\hat{\beta}_{n+1} \sim N(\mu, \sigma^2 + \tau_{n+1}^2)$.	Estimate μ, σ by MLE with $L(\mu, \sigma \mid \theta, \tau) = \prod_{i=1}^n p(\hat{\beta}_i \mid \theta_i, \tau_i)p(\theta_i \mid \mu, \sigma)d\theta_i$. Confidence interval calibrated similarly using distribution generated by positive controls.				
C	[66, 67]: W, Y= Time-to-event outcome. (1) There exist monotonic functions that describe $U-Y$ and $U-W$ associations: $Y(0) = h_y(U, X), W = h_w(U, X)$. (2) Cox models for Y and W w/ hazard ratio e^{β_y} and e^{β_w}.	The hazard ratio measuring the causal effect of treatment is $e^{\beta_y - \beta_w}$.				
[13, 68]: Generalized difference-in-differences using NCO.	(1) There exist monotonic functions that describe $U-Y$ and $U-W$ associations: $Y(0) = h_y(U, X), W = h_w(U, X)$. (2) Positivity: if $0 < f_{W\mid A=1, X}(W^*)$ then $0 < \int f_{W\mid A=0, X}(W^*) < 1$, where $W^* = (W \mid A = 1, X)$ is distributed as W in the exposed group.	The average treatment effect on the treated is $E[Y(1) - Y(0) \mid A = 1] = E[Y \mid A = 1] - E[F_{Y\mid A=0, X}^{-1} \cdot F_{W\mid A=0, X}(W^*)]$. Generalized the difference-in-differences approach to the broader context of NCO.				
[69]: Calibration using NCO.	(1) $W \perp A \mid X, Y(1), Y(0)$ (2) Rank preservation: $Y = Y(0) + \Psi A$, and hence $W \perp A \mid X, Y(0)$ by (1). (3) $E[W \mid A, Y(0) = Y - \Psi A, X] = \beta_1 + \beta_2 X + \beta_3 Y(\Psi) + \beta_4 A$, where $\beta_3 = 0$ by (1).	The 95% CI for any Ψ q consists of all Ψ for which $\hat{\beta}_q(\Psi) \pm 1.96\text{s.e.}[\hat{\beta}_q(\Psi)]$ contains 0; Under (1)-(3), fit $E[W \mid A, Y, X] = \beta_1 + \beta_2 X + \beta_3 Y + \beta_q A$, then the causal effect $\Psi = -\beta_3/\beta_2$.				
[70–72]: Removing unwanted variation in gene-expression analysis.	(1) $Y_{1xp} = X_{1xp}^2 + U_{1xp}^2 + \varepsilon_{1xp}; p \geq r + 1$. (2) $W_{1xs} = U_{1xs}^2 + \Gamma_{1xs}^2 + \varepsilon_{1xs}; s \geq r$. $\text{Rank}(\Gamma_{1xs}^2) = r$. (3) $(\varepsilon, e^\Psi) \sim N(0, \text{diag}(\sigma_1^2, \ldots, \sigma_{p+s}^2))$. (4) $U_{1xr} = X_{q}\alpha_{qxr} + \varepsilon_{1xr}^U, e^U \sim N(0, I_r), e^U \perp X$.	Identify h in $E[Y \mid A, Z, X] = E[h(W, A, X) \mid A, Z, X]$, then $ATE = E[h(W, A = 1, X)] - E[h(W, A = 0, X)]$.				
[12, 17, 36]: Nonparametric identification.	Assumption 7					

Table 2: Summary of published methodologies using negative controls for detection (D), reduction (R), and correction (C) of confounding bias.
calibrating p-value and confidence intervals by deriving an empirical null distribution from the association between primary and negative control variables.

Several methods were developed to achieve full bias removal, under certain assumptions such as monotonicity [13, 66–68], rank preservation [69], and linear model for unmeasured confounding. Specifically, [66, 67] considered bias correction by using a negative control time-to-event outcome under a monotonicity assumption that describes the $U-Y$ and $U-W$ association. Under a similar monotonicity assumption, [13] generalized difference-in-difference method to NCO method, which is further extended by [68]. In addition, [69] developed an outcome calibration approach with a rank preservation assumption under which the counterfactual primary outcome can account for the unmeasured confounding between the $A-W$ association. Lastly, [70–72] assumed a linear model for the unmeasured confounder and proposed to estimate U by factor analysis.

Nonparametric identification in a double negative control design The above methods remove unmeasured confounding bias under relatively stringent assumptions. [36] established sufficient conditions under which the ATE can be nonparametrically identified leveraging an NCE and an NCO, i.e., via a double negative control design [17]. That is, the ATE can be uniquely expressed as a function of the observed data distribution without imposing any restriction on the observed data distribution, such that distinct data generating mechanisms are guaranteed to lead to distinct ATE values. Further method developments include semiparametric estimation under categorical negative controls and unmeasured confounding [17] and alternative strategies to identify the ATE via a so-called confounding bridge function [12].

Double negative controls are widely available in health sciences. For example, in air pollution studies, [12] used future air pollution level and past health outcome as negative control exposure and outcome, respectively. [17] took two routinely monitored control outcomes from administrative healthcare data in vaccine safety studies as double negative control, in the setting where both control outcomes are independent of the primary outcome and satisfy both Assumption 3 and Assumption 4. In influenza vaccine effectiveness research presented in Figure 1, annual wellness visit and injury/trauma hospitalization can serve as double negative control. In addition, when IV is available, identification is made possible by further incorporating an NCO such as a pretreatment measurement of the outcome.

Below we will first detail the identification conditions established in [36] and then introduce identification methods proposed in [36] and [12].

Assumption 6 (Positivity). $0 < P(A=a, Z=z \mid X) < 1$ for all a, z.

Assumption 7 (Completeness). (a) For all a, $W \not\perp Z \mid A=a, X$. (b) For any square integrable function g, if $E[g(W)\mid Z=z, A=a, X] = 0$ for almost all z, a, then $g(W) = 0$.

Assumption 6 is a regular positivity assumption ensuring that in all strata of X, there are always some individuals with $A=a, Z=z$ for all a, z. Assumption 7 is a commonly used completeness condition for identification [73]. Specifically, Assumption 7(a) essentially requires U-comparability. That is, both Z and W should be associated with U such that variation in U can be recovered from variation in Z and W. Assumption 7(b) aims to ensure that the underlying unmeasured confounding mechanism in $E[Y \mid A,U]$ can be identified.
using \(Z\) and \(W\). For example, suppose \(U\) is a binary variable. Then Assumption 7 further requires that \(Z\) and \(W\) have at least two categories, and \(E[W \mid A = a, Z = 1, X = x] - E[W \mid A = a, Z = 0, X = x]\) is not equal to zero for all \(a, x\).

Rationale In the presence of unmeasured confounding by a latent variable \(U\), an observed difference in the outcome between the treatment and control groups is a combination of the underlying causal effect and confounding bias. One cannot directly disentangle the variation in the outcome due to the treatment from the unwanted variation due to \(U\), as \(U\) is not measured. We seek to indirectly remove such unwanted variation, i.e., unmeasured confounding bias, by leveraging available proxies of \(U\). An important example of such proxy is an NCO chosen to be associated with \(U\) but not causally affected by the treatment (Figure 1). Therefore, any difference in the NCO, \(W\), between the treatment and control groups can only be attributed to \(U\). Such a difference can uncover the unwanted variation due to \(U\) assuming that \(U-Y\) and \(U-W\) associations are the same, and there is no \(U-A\) additive interaction on \(Y\). An example of such \(W\) is the pre-exposure baseline measure of the outcome, in which case bias adjustment reduces to the well-known difference-in-differences approach [13].

The above describes identification of the ATE under assumptions that are generally untenable, because the \(U-Y\) and \(U-W\) associations will often be on different scales, and there may be \(U-A\) interactions in the model for \(Y\). In order to nonparametrically identify unmeasured confounding bias, we make use of the NCE \(Z\). Because \(Z\) is associated with \(Y\) or \(W\) only through \(U\), the ratio of \(Z-Y\) and \(Z-W\) associations captures the ratio of \(U-Y\) and \(U-W\) associations, allowing for \(U-A\) interactions. In summary, leveraging a double negative control design one can nonparametrically identify the magnitude of unmeasured confounding bias via the following mechanism: The NCO uncovers the confounding bias up to a scale that reflects the difference between \(U-Y\) and \(U-W\) associations, while the NCE recovers the scale leveraging \(Z-Y\) and \(Z-W\) associations. This mechanism is further illustrated in an example below.

Example To further illustrate the idea of identification using double negative control, consider a simple example where we assume the following linear structural equation models involving unmeasured confounding \(U\), although the nonparametric identification proposed in [36] does not rely on any restriction about the data generating models. We suppress measured confounders \(X\) to ease notation – all arguments are made implicitly conditional on \(X\).

Had \(U\) been measured, we could fit (1) and obtain the true causal effect which is \(\beta_{YA}\). When in fact \(U\) is not measured, to leverage double negative control, we additionally assume the \(U-W\) relationship in (2) and \(U-Z\) relationship in (3).

\[
E[Y \mid A, U] = \beta_{Y0} + \beta_{YA}A + \beta_{YU}U \tag{1}
\]
\[
E[W \mid U] = \beta_{W0} + \beta_{WU}U \tag{2}
\]
\[
E[U \mid A, Z] = \beta_{U0} + \beta_{UA}A + \beta_{UZ}Z. \tag{3}
\]

Models (1)–(3) indicate the following models that one could actually fit using the observed data \((Y, A, W, Z)\). These models are obtained by replacing \(U\) with \(E[U \mid A, Z]\) in the primary
and negative control outcome models (1) and (2).

\[
E[Y \mid A, Z] \overset{(1)}{=} \beta_{YV}A + \beta_{VU}E[U \mid A, Z]
\]

\[
E[W \mid A, Z] \overset{(2)}{=} \beta_{W0} + \beta_{WU}E[U \mid A, Z]
\]

\[
E[Z \mid A, Z] \overset{(3)}{=} \beta_{Z0} + \beta_{ZU}(\beta_{U0} + \beta_{UA}A + \beta_{UZ}Z)
\]

From (1) we know that the true causal effect is \(\beta_{YA} \). However, if one were to regress \(Y \) on \(A \) and \(Z \) without accounting for \(U \) such as in [33], then the coefficient of \(A \) would be equal to \(\beta_{YA} + \beta_{VU}\beta_{UA} \). Here \(\beta_{VU}\beta_{UA} \) is confounding bias, which arises when there exists a \(U \) that is associated with both \(Y \) and \(A \). One cannot directly separate the confounding bias from the true causal effect because \(U \) is not observed. Nevertheless, the coefficients in the observed models (5) and (7) allows us to infer \(\beta_{VU}\beta_{UA} \). To facilitate discussion, we introduce notation for the coefficients in models (5) and (7). Let \(\delta_{A}^Y = \beta_{YA} + \beta_{VU}\beta_{UA} \) and \(\delta_{Z}^Y = \beta_{VU}\beta_{UZ} \) denote the coefficients of \(A \) and \(Z \) in the primary outcome model (5), respectively, and let \(\delta_{A}^W = \beta_{WU}\beta_{UA} \) and \(\delta_{Z}^W = \beta_{WU}\beta_{UZ} \) denote the coefficients of \(A \) and \(Z \) in the negative control outcome model (7), respectively.

We detail three strategies to identify the unmeasured confounding bias \(\beta_{VU}\beta_{UA} \) leveraging a single NCO, a single NCE, or the double negative control. First, we note that coefficient of \(A \) in the primary outcome model, \(\delta_{A}^Y \), is a combination of both true causal effect and confounding bias, whereas coefficient of \(A \) in the negative control outcome model, \(\delta_{A}^W \), reflects pure confounding bias because \(A \) does not causally affect \(W \). In fact, if \(U-Y \) and \(U-W \) associations are equal on the additive scale, i.e., \(\beta_{WU} = \beta_{VU} \), then \(\delta_{A}^W \) matches the confounding bias \(\beta_{VU}\beta_{UA} \). That is, under the assumption of equal \(U-Y \) and \(U-W \) additive association, a form of “additive outcome equi-confounding” [13], the treatment effect on NCO is equal to the unmeasured confounding bias. Hence the causal effect can be recovered by backing out the association of the treatment with the NCO from the association of the treatment with the primary outcome. Note that in this scenario it is not necessary to have an NCE: one can fit the primary and negative control outcome on treatment without adjusting for the NCE, and then take the difference in treatment effects. When NCO is the baseline outcome, the above reduces to the difference-in-difference method [13].

Second, the coefficient of \(Z \) in the primary outcome model, \(\delta_{Z}^Y \), would be zero if there was no unmeasured confounding because \(Z \) does not causally affect \(Y \). Therefore, coefficient of \(Z \) in the outcome model reflects pure confounding bias. In fact, if \(U-A \) and \(U-Z \) associations are the equal on the additive scale, i.e., \(\beta_{UA} = \beta_{UZ} \), then \(\delta_{Z}^Y \) captures the bias \(\beta_{VU}\beta_{UA} \) due to unmeasured confounding. That is, under the assumption of equal \(U-A \) and \(U-Z \) additive association, a form of “additive treatment equi-confounding”, the NCE effect on the primary outcome is equal to the unmeasured confounding bias. Hence the causal effect is given by the difference in coefficients of treatment and NCE in the primary outcome model. Note that in this scenario it is not necessary to have an NCO: one can fit the primary outcome on treatment and NCE, and then take the difference in effects of treatment and NCE on \(Y \).

In both scenarios described above, the “additive outcome equi-confounding” or “additive treatment equi-confounding” is a rather strong assumption, as it requires \(Y \) and \(W \), or \(Z \).
and A, to operate on the same scale. To relax these assumptions, we can leverage the double negative control. Specifically, if $U-Y$ and $U-W$ associations are unequal, then δ^W_β reflects pure confounding bias up to a scale which is equal to β_{YU}/β_{WU}. Because $Z-Y$ ($Z-W$) association is a product of $U-Z$ and $U-Y$ ($U-W$) associations, the ratio of $Z-Y$ and $Z-W$ associations is equal to the ratio of $U-Y$ and $U-W$ associations. That is, $\beta_{YU}/\beta_{WU} = \delta^Y_Z/\delta^W_Z$. The confounding bias is thus equal to δ^W_β scaled by δ^Y_Z/δ^W_Z, and the true causal effect is given by $\delta^W_\beta \times \delta^Y_Z/\delta^W_Z$. It is important to note that the first two adjustment methods are a special case of the general adjustment method, in that the confounding bias is always equal to $\delta^W_\beta \delta^Y_Z/\delta^W_Z$ across all three scenarios.

To summarize, the confounding bias

$$
\beta_{YU} \beta_{UA} = \delta^W_\beta \delta^Y_Z/\delta^W_Z = \begin{cases}
\delta^W_\beta & \text{if } \beta_{WU} = \beta_{YU} \\
\delta^Y_Z & \text{if } \beta_{UA} = \beta_{UZ} \\
\delta^W_\beta \delta^Y_Z/\delta^W_Z & \text{if } \beta_{WU} \neq \beta_{YU} \text{ and } \beta_{UA} \neq \beta_{UZ}.
\end{cases}
$$

(8a) (8b) (8c)

Hence the true causal effect is identified as

$$
\beta_{YA} = \delta^Y_Z - \delta^W_\beta \delta^Y_Z/\delta^W_Z.
$$

(9)

It is important to note that equation (9) is only meaningful when δ^W_β is not equal to zero. If $\delta^W_\beta = 0$ then either there is no evidence of the presence of U and $\beta_{YU} \beta_{UA} = 0$, or a selected negative control variable is not sufficiently associated with U, violating Assumption 7. Similar arguments apply to δ^W_β and δ^Y_Z. In fact, as summarized in Table 2, many negative control methods detect, reduce, and remove unmeasured confounding bias using analogies of scenario (8a) [13, 65–67] and scenario (8b) [32, 33, 49].

In practice, identification via (9) relies on fitting the primary and negative control outcome models $E[Y \mid A, Z]$ and $E[W \mid A, Z]$. Alternatively, one could directly make assumption about the underlying unmeasured confounding mechanism $E[Y \mid A, U]$ which is proposed in [12]. To illustrate, consider again the example above. Let $\tilde{U}_W = \frac{W - \beta_{WU}}{\beta_{WU}}$, then by (2) \tilde{U}_W is a good proxy of U in the sense that $E[\tilde{U}_W \mid U] = U$. In particular, let $h(W, A) = \beta_{YU} + \beta_{YA} A + \beta_{VU} \tilde{U}_W$, then by (1) we have

$$
E[Y \mid A, U] = E[h(W, A) \mid A, U],
$$

(10)

$$
E[Y \mid A, Z] = E[h(W, A) \mid A, Z],
$$

(11)

where (11) is obtained by taking expectation on both sides of (10). The above equations indicate that h captures the relationship between $U-Y$ and $U-W$ associations via (10), which can be identified by the relationship between $Z-Y$ and $Z-W$ associations via (11). Because of this key observation, h is referred to as the confounding bridge function in [12]. The functional form of h is implied by (1) and (2). Once h is identified, we have that $E[Y(a)] = E_U \{E[Y \mid A = a, U]\} = E[h(W, A = a)]$. In practice, one may assume a familiar linear model about the functional form of h that satisfies (10), such as

$$
h(W, A; \theta) = \theta_0 + \theta_A A + \theta_W W.
$$

(12)
Then under Assumption 7, \(\theta \) can be identified by the population moment equation

\[
E[g(A, Z)|Y - h(W, A; \theta)] = 0
\]

using the generalized method of moments (GMM) method [74]. With \(\theta \) identified, the ATE is given by

\[
\text{ATE} = E[h(W, A = 1; \theta)] - E[h(W, A = 0; \theta)].
\] (13)

A simple version of the above GMM procedure can be realized via a simple two stage least squares procedure as followed [12]:

Stage I: regress \(W \) on \(A \) and \(Z \) (with intercept), and obtain the fitted value \(\hat{W} \) as a proxy of \(U \);
Stage II: regress \(Y \) on \(A \) (with intercept), adjusting for \(\hat{W} \),

then the coefficient of \(A \) is the true causal effect \(\beta_{yA} \) assuming (1) and (2). The two stage least squares approach given above provides a simple implementation of the NC method using existing and widely disseminated IV software packages such as the \texttt{ivregress}, \texttt{ivreg}, or \texttt{ivreg2} command in Stata, the \texttt{gmm}, \texttt{sem}, \texttt{ivpack}, or \texttt{AER} package in R, and the \texttt{SYSLIN} procedure in SAS.

4 Conclusions

Negative controls are innovative and important tools in observational studies. Development of negative control methods will encourage researchers to routinely check for evidence of confounding bias and rigorously adjust for residual confounding bias. Negative control variables are widely available in routinely collected healthcare data such as administrative claims and electronic health records data, because information on secondary treatments and outcomes beyond the primary treatment and outcome of interest are often recorded, and such secondary treatments and outcomes can potentially serve as negative controls. Therefore development of negative controls methods is critical to unlocking the full potential of contemporary healthcare data and ultimately improve the validity of research findings. It is important to note that other sources of bias, such as selection bias and misclassification bias, are typical in routinely collected healthcare data. Developing negative control methods accounting for bias beyond residual confounding is thus an important area of future research.

We have specified statistical assumptions, practical strategies, and validation criteria that can be combined with subject matter knowledge to design negative control studies in Section 2. We also illustrated identification of the ATE by either fitting the observed primary and negative control outcome models or through assumption on the unmeasured confounding mechanism followed by a simple two stage least squares procedure in Section 3. We believe that these examples can provide practical guidance on use of negative control methods to a broader audience.
Appendix

A.1 Examples of invalid negative controls that violates some assumption

Violation 1: no arrow between U and W There must be an arrow between \(U \) and \(W \), because an NCO is a proxy of unmeasured confounder. It recovers the confounding bias by reflecting variation due to \(U \).

Violation 2: no arrow between U and Z, and \(Z \not\rightarrow A \) The only scenario that \(Z \) does not need to be associated with \(U \) is when \(Z \) is an instrumental variable (see first cell of Table A.1). In this case, \(A \) is a collider between \(Z \) and \(U \), such that \(Z \) and \(U \) are marginally independent. Conditioning on a collider will create collider bias such that \(Z \) and \(U \) become conditionally dependent. The requirements about \(Z \) in Assumptions 5 and 7 are all made conditioning on \(A \). Therefore an instrumental variable is a valid NCE.

Violation 3: \(Y \rightarrow W \) If the outcome causes the NCO, then the treatment directly causes the NCO via the path \(A \rightarrow Y \rightarrow W \), which violates Assumption 3.

Violation 4: \(Z \rightarrow U \leftarrow W \) The direction of the arrow between \(U \) and the negative control doesn’t always matter. For example, we can have \(Z \rightarrow U \), \(U \rightarrow Z \), \(W \rightarrow U \), or \(U \rightarrow W \). However, if both \(Z \) and \(W \) cause \(U \), then \(U \) is a collider in the path \(Z \rightarrow U \leftarrow W \). In this case, conditional on \(U \), \(Z \) and \(W \) will become associated. This violates Assumption 4.

A.2 Example of causal graphs encoding the negative control assumptions

Below we enumerate the possible relationships among \(Z, A, U \) and among \(Y, W, U \) in Table A.1. These partial graphs can be combined into a directed acyclic graph that encodes the negative control assumptions. Grey colored graphs are invalid because of violation of key assumptions.
Table A.1: Examples of graphs for Z, A, U relationships and for W, Y, U relationships. The two pieces of graphs can be combined in to a directed acyclic graph that encodes the negative control assumptions. Grey colored graphs are invalid because of violation of key assumptions.

Examples of graphs for Z, A, U relationships	$Z \rightarrow A$ (pre-treatment)	$A \rightarrow Z$ (post-treatment)	$Z \perp \perp A$
No arrow between U and Z (may violate Assumption 5 and 7)	Instrumental variable (IV)	Violate Assumption 5 and 7	Violate Assumption 5 and 7
$U \rightarrow Z$	Invalid IV	Post-treatment proxy of U	Surrogate of U
$Z \rightarrow U$	May violate Assumption 4 if there is $W \rightarrow U$		

Examples of graphs for W, Y, U relationships	$W \rightarrow Y(a)$	$Y(a) \rightarrow W$ (violate Assumptions 3 and 4)	$Y(a) \perp \perp W \mid (U, X)$
No arrow between U and W (violate Assumption 5 and 7)	Violate Assumption 5 and 7	Violate Assumptions 3, 5, and 7	Violate Assumption 5 and 7
$U \rightarrow W$	Violate Assumption 3		
$W \rightarrow U$	May violate Assumption 4 if there is $Z \rightarrow U$		
	Violate Assumption 3		
References

[1] John PA Ioannidis. “Why most published research findings are false”. In: *PLOS Medicine* 2.8 (2005), pp. 696–701.

[2] Miguel A Hernán and James M Robins. “Using big data to emulate a target trial when a randomized trial is not available”. In: *American Journal of Epidemiology* 183.8 (2016), pp. 758–764.

[3] Marc Lipsitch, Eric J Tchetgen Tchetgen, and Ted Cohen. “Negative controls: a tool for detecting confounding and bias in observational studies”. In: *Epidemiology* 21.3 (2010), pp. 383–388. This paper is the first to formally define negative control exposure and outcome with conditions for bias detection as well as examples in epidemiology.

[4] Benjamin F Arnold, Ayse Ercumen, Jade Benjamin-Chung, and John M Colford Jr. “Brief report: negative controls to detect selection bias and measurement bias in epidemiologic studies”. In: *Epidemiology* 27.5 (2016), pp. 2597–2598.

[5] Benjamin Arnold and Ayse Ercumen. “Negative control outcomes: a tool to detect bias in randomized trials”. In: *Journal of the American Medical Association* 316.24 (2016), pp. 2597–2598.

[6] Paul R Rosenbaum. “The role of known effects in observational studies”. In: *Biometrics* 45.2 (1989), pp. 557–569.

[7] Noel S Weiss. “Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis?” In: *Epidemiology* 13.1 (2002), pp. 6–8.

[8] David J Glass. *Experimental Design for Biologists*. Cold Spring Harbor Laboratory Press, 2014.

[9] Zhihong Cai and Manabu Kuroki. “On identifying total effects in the presence of latent variables and selection bias”. In: *Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence*. 2008, pp. 62–69.

[10] Lan Liu and Eric Tchetgen Tchetgen. “Regression-based Negative Control of Homophily in Dyadic Peer Effect Analysis”. In: arXiv preprint arXiv:2002.06521 (2020).

[11] Naoki Egami. “Identification of Causal Diffusion Effects Under Structural Stationarity”. In: arXiv preprint arXiv:1810.07858 (2018).

[12] Wang Miao, Xu Shi, and Eric J Tchetgen Tchetgen. “A Confounding Bridge Approach for Double Negative Control Inference on Causal Effects”. In: (2020). In progress, a prior version can be found at https://arxiv.org/abs/1808.04945. This paper introduces the confounding bridge function that links primary and negative control outcome distributions for identification of the average treatment effect leveraging a negative control exposure.

[13] Tamar Sofer, David B Richardson, Elena Colicino, Joel Schwartz, and Eric J Tchetgen Tchetgen. “On negative outcome control of unobserved confounding as a generalization of difference-in-differences”. In: *Statistical Science* 31.3 (2016), pp. 348–361.
[14] Lisa A Jackson, Michael L Jackson, Jennifer C Nelson, Kathleen M Neuzil, and Noel S Weiss. “Evidence of bias in estimates of influenza vaccine effectiveness in seniors”. In: International Journal of Epidemiology 35.2 (2006), pp. 337–344.

[15] Jerzy Splawa-Neyman, Dorota M Dabrowska, and TP Speed. “On the application of probability theory to agricultural experiments. Essay on principles. Section 9.” In: Statistical Science (1990), pp. 465–472.

[16] Donald B Rubin. “Estimating causal effects of treatments in randomized and nonrandomized studies.” In: Journal of Educational Psychology 66.5 (1974), p. 688.

[17] Xu Shi, Wang Miao, and Eric J Tchetgen Tchetgen. “Multiply robust causal inference with double negative control adjustment for categorical unmeasured confounding”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82.2 (2020), pp. 521–540. This paper provides a general semiparametric framework for obtaining inferences about the average treatment effect under categorical unmeasured confounding and negative controls.

[18] M Alan Brookhart, Jeremy A Rassen, and Sebastian Schneeweiss. “Instrumental variable methods in comparative safety and effectiveness research”. In: Pharmacoepidemiology and Drug Safety 19.6 (2010), pp. 537–554.

[19] Joshua D Angrist, Guido W Imbens, and Donald B Rubin. “Identification of causal effects using instrumental variables”. In: Journal of the American Statistical Association 91.434 (1996), pp. 444–455.

[20] Miguel A Hernán and James M Robins. “Instruments for causal inference: an epidemiologist’s dream?” In: Epidemiology (2006), pp. 360–372.

[21] James M Robins. “Correcting for non-compliance in randomized trials using structural nested mean models”. In: Communications in Statistics-Theory and methods 23.8 (1994), pp. 2379–2412.

[22] Linbo Wang and Eric J Tchetgen Tchetgen. “Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80.3 (2018), pp. 531–550.

[23] Vinay Prasad and Anupam B Jena. “Prespecified falsification end points: can they validate true observational associations?” In: Journal of the American Medical Association 309.3 (2013), pp. 241–242.

[24] Adam A Markovitz, John M Hollingsworth, John Z Ayanian, Edward C Norton, Phyllis L Yan, and Andrew M Ryan. “Performance in the Medicare Shared Savings Program After Accounting for Nonrandom Exit: An Instrumental Variable Analysis”. In: Annals of Internal Medicine 171.1 (2019), pp. 27–36.

[25] Maarten J Bijlsma, Stijn Vansteelandt, Fanny Janssen, and Eelko Hak. “The effect of adherence to statin therapy on cardiovascular mortality: quantification of unmeasured bias using falsification end-points”. In: BMC Public Health 16.1 (2016), p. 303.
[26] Cheng-Kuan Lin, Ro-Ting Lin, Pi-Cheng Chen, Pu Wang, Nathalie De Marcellis-Warin, Corwin Zigler, and David C Christiani. “A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease”. In: *Scientific Reports* 8.1 (2018), pp. 1–9.

[27] Stacie B Dusetzina, M Alan Brookhart, and Matthew L Maciejewski. “Control outcomes and exposures for improving internal validity of nonrandomized studies”. In: *Health Services Research* 50.5 (2015), pp. 1432–1451.

[28] Paul R Rosenbaum. *Design of observational studies*. New York, NY: Springer-Verlag, 2010.

[29] Marcus R Munafò, Kate Tilling, Amy E Taylor, David M Evans, and George Davey Smith. “Collider scope: when selection bias can substantially influence observed associations”. In: *International Journal of Epidemiology* 47.1 (2018), pp. 226–235.

[30] Fabrizia Mealli and Barbara Pacini. “Using secondary outcomes to sharpen inference in randomized experiments with noncompliance”. In: *Journal of the American Statistical Association* 108.503 (2013), pp. 1120–1131.

[31] Paul R Rosenbaum. “Detecting bias with confidence in observational studies”. In: *Biometrika* 79.2 (1992), pp. 367–374.

[32] W Dana Flanders, Mitchel Klein, Lyndsey A Darrow, Matthew J Strickland, Stefanie E Sarnat, Jeremy A Sarnat, Lance A Waller, Andrea Winquist, and Paige E Tolbert. “A method for detection of residual confounding in time-series and other observational studies”. In: *Epidemiology* 22.1 (2011), p. 59.

[33] W Dana Flanders, Matthew J Strickland, and Mitchel Klein. “A new method for partial correction of residual confounding in time-series and other observational studies”. In: *American Journal of Epidemiology* 185.10 (2017), pp. 941–949. **This paper develops a regression-based method taking future air pollution as a negative control exposure to reduce residual confounding bias in a time-series study on air pollution effects.**

[34] Xavier de Luna, Philip Fowler, and Per Johansson. “Proxy variables and nonparametric identification of causal effects”. In: *Economics Letters* 150 (2017), pp. 152–154.

[35] Manabu Kuroki and Judea Pearl. “Measurement bias and effect restoration in causal inference”. In: *Biometrika* 101.2 (2014), pp. 423–437.

[36] Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. “Identifying causal effects with proxy variables of an unmeasured confounder”. In: *Biometrika* 105.4 (2018), pp. 987–993. **This paper establishes sufficient conditions for nonparametric identification of the average treatment effect using double negative control.**

[37] David Madigan, Paul E Stang, Jesse A Berlin, Martijn Schuemie, J Marc Overhage, Marc A Suchard, Bill Dumouchel, Abraham G Hartzema, and Patrick B Ryan. “A systematic statistical approach to evaluating evidence from observational studies”. In: *Annual Review of Statistics and Its Application* 1 (2014), pp. 11–39. **This paper provides a systematic review of challenges in observational studies and de-
scribes a data-driven approach to calculating calibrated p-values leveraging negative controls.

[38] Martijn J Schuemie, Patrick B Ryan, William DuMouchel, Marc A Suchard, and David Madigan. “Interpreting observational studies: why empirical calibration is needed to correct p-values”. In: Statistics in Medicine 33.2 (2014), pp. 209–218.

[39] Martijn J Schuemie, George Hripcsak, Patrick B Ryan, David Madigan, and Marc A Suchard. “Robust empirical calibration of p-values using observational data”. In: Statistics in Medicine 35.22 (2016), p. 3883.

[40] Martijn J Schuemie, George Hripcsak, Patrick B Ryan, David Madigan, and Marc A Suchard. “Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data”. In: Proceedings of the National Academy of Sciences 115.11 (2018), pp. 2571–2577.

[41] Martijn J Schuemie, Patrick B Ryan, George Hripcsak, David Madigan, and Marc A Suchard. “Improving reproducibility by using high-throughput observational studies with empirical calibration”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376.2128 (2018), p. 20170356.

[42] J Yerushalmy. “The relationship of parents’ cigarette smoking to outcome of pregnancy—implications as to the problem of inferring causation from observed associations”. In: American Journal of Epidemiology 93.6 (1971), pp. 443–456.

[43] EA Mitchell, RPK Ford, AW Stewart, BJ Taylor, DMO Becroft, JMD Thompson, R Scrugg, IB Hassall, DMJ Barry, EM Allen, et al. “Smoking and the sudden infant death syndrome”. In: Pediatrics 91.5 (1993), pp. 893–896.

[44] Laura D Howe, Alicia Matijasevich, Kate Tilling, Marie-Jo Brion, Sam D Leary, George Davey Smith, and Debbie A Lawlor. “Maternal smoking during pregnancy and offspring trajectories of height and adiposity: comparing maternal and paternal associations”. In: International Journal of Epidemiology 41.3 (2012), pp. 722–732.

[45] Marie-Jo A Brion, Sam D Leary, George Davey Smith, and Andy R Ness. “Similar associations of parental prenatal smoking suggest child blood pressure is not influenced by intrauterine effects”. In: Hypertension 49.6 (2007), pp. 1422–1428.

[46] George Davey Smith. “Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?” In: Basic & Clinical Pharmacology & Toxicology 102.2 (2008), pp. 245–256.

[47] Bronwyn K Brew, Tong Gong, Dylan M Williams, Henrik Larsson, and Catarina Almqvist. “Using fathers as a negative control exposure to test the Developmental Origins of Health and Disease Hypothesis: A case study on maternal distress and offspring asthma using Swedish register data”. In: Scandinavian Journal of Public Health 45.17_suppl (2017), pp. 36–40.

[48] Amy E Taylor, George Davey Smith, Cristina B Bares, Alexis C Edwards, and Marcus R Munafò. “Partner smoking and maternal cotinine during pregnancy: implications for negative control methods”. In: Drug and Alcohol Dependence 139 (2014), pp. 159–163.
[49] Wang Miao and Eric J Tchetgen Tchetgen. “Invited commentary: bias attenuation and identification of causal effects with multiple negative controls”. In: *American Journal of Epidemiology* 185.10 (2017), pp. 950–953.

[50] Yuanyuan Yu, Hongkai Li, Xiaoru Sun, Xinhui Liu, Fan Yang, Lei Hou, Lu Liu, Ran Yan, Yifan Yu, Ming Jing, et al. “Identification and Estimation of Causal Effects Using a Negative Control Exposure in Time-series Studies with Applications to Environmental Epidemiology”. In: *American Journal of Epidemiology* (2020).

[51] Thomas Lumley and Lianne Sheppard. “Assessing seasonal confounding and model selection bias in air pollution epidemiology using positive and negative control analyses”. In: *Environmetrics* 11.6 (2000), pp. 705–717.

[52] Joe V Selby, Gary D Friedman, Charles P Quesenberry Jr, and Noel S Weiss. “A case–control study of screening sigmoidoscopy and mortality from colorectal cancer”. In: *New England Journal of Medicine* 326.10 (1992), pp. 653–657.

[53] Ann G Zauber. “The impact of screening on colorectal cancer mortality and incidence: has it really made a difference?” In: *Digestive Diseases and Sciences* 60.3 (2015), pp. 681–691.

[54] Mette Lise Lousdal, Timothy L Lash, W Dana Flanders, M Alan Brookhart, Ivar Sønbø Kristiansen, Mette Kalager, and Henrik Støvring. “Negative controls to detect uncontrolled confounding in observational studies of mammographic screening comparing participants and non-participants”. In: *International Journal of Epidemiology* (2020). *This paper uses both negative control exposure and negative control outcome to detect residual confounding in an observational study of mammographic screening comparing participants and non-participants.*

[55] Lianne Sheppard, Drew Levy, Gary Norris, Timothy V Larson, and Jane Q Koenig. “Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994”. In: *Epidemiology* (1999), pp. 23–30.

[56] E Cuyler Hammond and Daniel Horn. “The relationship between human smoking habits and death rates: a follow-up study of 187,766 men”. In: *Journal of the American Medical Association* 155.15 (1954), pp. 1316–1328.

[57] Richard Doll and A Bradford Hill. “The mortality of doctors in relation to their smoking habits”. In: *British Medical Journal* 1.4877 (1954), pp. 1451–1455.

[58] Richard Doll and A Bradford Hill. “Lung cancer and other causes of death in relation to smoking”. In: *British Medical Journal* 2.5001 (1956), pp. 1071–1081.

[59] Jerome Cornfield, William Haenszel, E Cuyler Hammond, Abraham M Lilienfeld, Michael B Shimkin, and Ernst L Wynder. “Smoking and lung cancer: recent evidence and a discussion of some questions”. In: *Journal of the National Cancer Institute* 22.1 (1959), pp. 173–203.

[60] Dimitrios Trichopoulos, Xenophon Zavitsanos, Klea Katsouyanni, Anastasia Tzonou, and Panagiota Dalla-Vorgia. “Psychological stress and fatal heart attack: the Athens (1981) earthquake natural experiment”. In: *The Lancet* 321.8322 (1983), pp. 441–444.
[61] Johannes Hengelbrock and Heiko Becher. “Re: Negative Control Outcomes and the Analysis of Standardized Mortality Ratios”. In: Epidemiology 28.3 (2017), e29–e30.

[62] David B Richardson, Alexander P Keil, Eric J Tchetgen Tchetgen, and Glinda S Cooper. “Negative Control Outcomes and the Analysis of Standardized Mortality Ratios”. In: Epidemiology (Cambridge, Mass.) 28.3 (2017), e30.

[63] George Davey Smith. “Negative control exposures in epidemiologic studies. Comments on “Negative controls: a tool for detecting confounding and bias in observational studies””. In: Epidemiology 23.2 (2012), pp. 350–351.

[64] Marc G Weisskopf, Eric J Tchetgen Tchetgen, and Raanan Raz. “Commentary: on the use of imperfect negative control exposures in epidemiologic studies”. In: Epidemiology 27.3 (2016), pp. 365–367.

[65] David B Richardson, Alexander Keil, Eric J Tchetgen Tchetgen, and Glinda S Cooper. “Negative control outcomes and the analysis of standardized mortality ratios”. In: Epidemiology 26.5 (2015), pp. 727–732.

[66] David B Richardson, Dominique Laurier, Mary K Schubauer-Berigan, Eric J Tchetgen Tchetgen, and Stephen R Cole. “Assessment and indirect adjustment for confounding by smoking in cohort studies using relative hazards models”. In: American Journal of Epidemiology 180.9 (2014), pp. 933–940.

[67] Eric J Tchetgen Tchetgen, Tamar Sofer, and David Richardson. “Negative outcome control for unobserved confounding under a Cox proportional hazards model”. In: (2015). Available at https://biostats.bepress.com/harvardbiostat/paper192/.

[68] Adam Glynn and Nahomi Ichino. “Generalized Nonlinear Difference-in-Difference-in-Differences”. In: V-Dem Working Paper 90 (2019). Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3410888.

[69] Eric Tchetgen Tchetgen. “The control outcome calibration approach for causal inference with unobserved confounding”. In: American Journal of Epidemiology 179.5 (2014), pp. 633–640.

[70] Johann A Gagnon-Bartsch and Terence P Speed. “Using control genes to correct for unwanted variation in microarray data”. In: Biostatistics 13.3 (2012), pp. 539–552.

[71] Laurent Jacob, Johann A Gagnon-Bartsch, and Terence P Speed. “Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed”. In: Biostatistics 17.1 (2016), pp. 16–28.

[72] Jingshu Wang, Qingyuan Zhao, Trevor Hastie, and Art B Owen. “Confounder adjustment in multiple hypothesis testing”. In: Annals of Statistics 45.5 (2017), pp. 1863–1894. This paper unifies unmeasured confounding adjustment methods in multiple hypothesis testing and provides theoretical guarantees for these methods.

[73] Whitney K Newey and James L Powell. “Instrumental variable estimation of nonparametric models”. In: Econometrica 71.5 (2003), pp. 1565–1578.

[74] Lars Peter Hansen. “Large sample properties of generalized method of moments estimators”. In: Econometrica (1982), pp. 1029–1054.