Title
COVID-19 does not impact HLA antibody profile in a series of waitlisted renal transplant candidates.

Permalink
https://escholarship.org/uc/item/4297d5tx

Journal
Human immunology, 82(8)

ISSN
0198-8859

Authors
Roll, Garrett R
Lunow-Luke, Tyler
Braun, Hillary J
et al.

Publication Date
2021-08-01

DOI
10.1016/j.humimm.2021.04.002

Peer reviewed
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 does not impact HLA antibody profile in a series of waitlisted renal transplant candidates

Garrett R. Roll a, Tyler Lunow-Luke a, Hillary J. Braun a, Owen Buenaventura b, Mirelle Mallari b, Peter G. Stock a, Raja Rajalingam a,⇑

⇑Corresponding author at: Immunogenetics and Transplantation Laboratory, University of California San Francisco (Laurel Heights Campus), 3333 California Street, San Francisco, CA 94118, United States.

E-mail address: Rajalingam.Raja@ucsf.edu (R. Rajalingam).

Abbreviations: HLA, human leukocyte antigen; ESRD, end-stage renal disease; COVID-19, coronavirus disease 2019; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2.

1. Introduction

The presence of Human Leukocyte Antigen (HLA) antibodies delays access to transplantation and is a risk factor for allograft rejection following renal transplantation. Exposure to organ transplantation, pregnancies, and blood transfusions triggers HLA antibody production. Infection and vaccination can activate the immune system, which can induce the production of new HLA antibodies or enhance the level of existing HLA antibodies, which is of particular interest to patients awaiting renal transplantation [1,2]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells expressing angiotensin-converting enzyme 2 and Transmembrane Serine Protease 2 surface proteins, and patients awaiting kidney transplantation have a 10.2–15.0% risk of mortality if infected [3,4]. SARS-CoV-2 infection activates both an innate and adaptive immune response, resulting in a profound cytokine storm [5]. Kidney transplant recipients are shown to mount an effective anti-SARS-CoV-2 adaptive immune response, including potent humoral immune activity despite chronic immunosuppression [6]. Importantly, a recent report describes the presence of HLA antibodies in the convalescent serum of male patients without any known allosensitizing events who recovered from coronavirus disease 2019 (COVID-19), suggesting that infection with this virus could result in HLA antibody development [7]. Currently, no studies directly address the question of whether or not patients infected with SARS-CoV-2 develop HLA antibodies. As a result, there is no guidance for transplant providers regarding the need to repeat HLA antibody testing prior to kidney transplantation after COVID-19 infection or vaccination.

2. Materials and methods

2.1. Waitlisted renal transplant candidates

This is a single-center retrospective review of a prospectively maintained database of renal transplant candidates, performed with the approval of our institutional IRB (IRB Number: 20-31396). We routinely perform quarterly HLA antibody testing of all waitlisted patients approaching the top of the deceased donor
waiting list and use the virtual crossmatch as the final pretransplant crossmatch in the vast majority of deceased donor kidney transplants (currently >90%) [8]. Eighteen patients near the top of our waiting list were known to have contracted and recovered from COVID-19, one of whom also received a single dose of the COVID vaccine prior to repeating HLA testing.

2.2. SARS-CoV-2 RNA testing

Nasopharyngeal or oropharyngeal samples were collected using swabs immediately placed in a standard viral transport medium. Viral RNA was extracted from 400 μL of respiratory samples and eluted in 50 μL of elution buffer. Detection of SARS-CoV-2 RNA was performed by an adapted previously described real-time RT-PCR assay targeting regions of the virus nucleocapsid (N) gene and also targeting the human RNase P gene for sample quality control [9]. All 18 transplant candidates included in this study were positive for SARS-CoV-2 RNA testing.

2.3. HLA antibody testing

The HLA class I and class II antibodies were measured using the Luminex-based single antigen bead assay as previously described (One Lambda Inc., Canoga Park, CA) [8]. Serum samples are pre-treated with dithiothreitol (DTT) to prevent aggregation of high titer antibodies (termed prozone effect) and to increase the sensitivity of antibody detection. Moreover, we have re-tested pre- and post-COVID sera obtained from the highly sensitized patients with a CRPA value of >80% to confirm that no HLA antibody specificity was missed due to inhibitory effects commonly observed in sera of high cPRA patients. Based on the recommendation by Tambur et al. and baseline neat mean fluorescence intensity (MFI) values of four patients, we chose 1:16 dilution (with Phosphate buffered saline) for all >80% CPRA sera samples [10]. Antibody specificity is determined based on the known amino acid homologies and cross-reactivity patterns among core HLA allotypes. The MFI is used as an arbitrary unit of antibody quantity. If multiple beads have allelic variants of the same antigen (e.g., HLA-A*68:01, *68:02, *68:03) with similar MFI values, then the average MFI of all reactive beads is used to quantify HLA-A68 antibody MFI.

LABXpress Pipettor (One Lambda), a high throughput liquid handling system to aspirate and dispense precise volumes into test wells of a 96-well reaction plate, is used to minimize inter-assay variations. We compared the HLA antibody results before and after COVID-19 for each patient to assess HLA antibody formation.

3. Results

The patient characteristics are presented in Table 1. The average age was 51.5 years old at the time of COVID-19 diagnosis, and one patient was on immunosuppression (Prednisone 5 mg daily). Most patients were male (72%, n = 13). The majority of the patients (72%, n = 13) were Hispanic; 4 were Asians, and 1 was African American. Fourteen patients were unsensitized, and four were highly sensitized (2 with 100% CPRA, 1 with 98% CPRA, and 1 with 98% CPRA). Ten of the eighteen patients with a history of SARS-CoV-2 infection required hospitalization due to COVID-19, and the average length of hospital stay was 5.4 days. One patient required mechanical ventilation in the intensive care unit. Routine quarterly single antigen testing has been repeated an average of 53.2 days after the diagnosis of infection.

Table 1 depicts the pre-COVID and post-COVID single antigen test results for four highly sensitized patients. The HLA antibody specificities and MFI remain unchanged in post-COVID samples compared to respective pre-COVID samples. The cPRA was
Table 2
Specificity and mean fluorescence intensity (MFI) of HLA antibodies in four highly sensitized patients with a CPRA value of over 80%.

Pt-1: CPRA 100%	Pt-2: CPRA 100%	Pt-3: CPRA 98%	Pt-4: CPRA 89%					
Specificity	**Neat Serum**	**1:16 dilution**						
(CPRA)	(11/2020)	(02/2021)	(05/2019)	(06/2020)	(05/2019)	(06/2020)	(05/2019)	(06/2020)
Cw15	19,716	16,588	4328	4028	22,595	17,049	4049	4302
A33	19,331	19,482	9228	6981	21,315	19,231	3864	3928
A31	18,810	18,431	9925	7620	20,743	18,742	3609	3714
A29	18,736	18,325	11,083	8587	20,712	18,240	3676	3822
A80	18,627	18,045	14,259	11,264	18,927	17,109	7142	7207
A11	18,221	17,215	11,058	8744	18,287	17,375	8617	3585
A36	18,102	17,861	8398	6371	20,167	19,306	3107	3306
Cw5	17,944	14,683	3019	2696	20,153	19,140	3205	3363
A32	17,870	17,574	8643	6428	20,146	18,367	3470	3620
A3	17,782	17,310	4733	4104	20,014	19,258	3266	3329
A74	17,633	16,939	13,014	11,234	19,939	18,528	3137	3270
Cw2	17,035	14,063	4379	4086	19,918	18,592	3530	3770
B62	16,767	13,962	1911	1714	19,501	18,930	2925	3185
B50	15,885	12,845	1667	1408	19,873	19,212	2984	3137
B49	15,694	13,364	1801	1526	19,611	18,611	3021	3258
A30	14,547	14,617	4771	3566	19,481	18,707	3088	3351
B63	14,456	12,696	1776	1278	19,257	17,661	2774	2968
B57	13,854	11,939	1835	1674	18,736	18,499	3031	3184
Cw18	13,731	10,585	1664	1319	18,582	18,730	2776	2858
B56	12,892	10,058	1021	1065	18,115	18,460	2652	2685
B76	12,651	11,897	"	"	17,573	17,866	2570	2569
B7	12,622	9148	1136	"	17,468	17,317	2360	2579
B77	12,345	10,003	1055	"	17,375	17,506	2562	2652
B75	11,531	9007	1254	1145	17,127	17,139	2454	2550
Cw6	11,525	9237	"	"	15,352	15,214	1967	1997
A1	11,497	9506	"	"	14,949	15,621	1857	2029
A34	11,434	11,550	3523	2684	12,004	11,548	1331	1431
B71	10,570	8263	"	"	11,946	11,054	1199	1383
B45	8789	8262	1488	"	10,821	10,388	1159	1209
B46	8441	6162	"	"	10,159	10,500	1014	1085
Cw17	7603	5065	"	"	9504	9677	"	1058
B44	7086	8036	1195	"	9115	8313	1035	1141
B41	6086	4199	"	"	7976	7471	"	"
B13	5560	4666	"	"	6271	6346	"	"
B60	5199	3538	"	"	5839	6066	"	"
A43	5560	5085	"	"	5227	5060	"	"
B61	5464	3664	"	"	4825	5062	"	"
A66	5324	5204	"	"	4143	4422	"	"
A26	5249	4883	1211	"	2935	1935	"	"
Cw4	4650	3153	"	"	2831	1831	"	"
B47	4387	3034	"	"	2776	1776	"	"

(continued on next page)
Table 2 (continued)

Specificity	Pt-1: CPRA 100%	Pt-2: CPRA 100%	Pt-3: CPRA 98%	Pt-4: CPRA 89%
	Neat Serum 1:16 dilution			
Specificity	Pre-COVID (11/2020)	Post-COVID (02/2021)	Pre-COVID (05/2019)	Post-COVID (06/2020)
	Pre-COVID (05/2020)	Post-COVID (06/2020)	Pre-COVID (06/2020)	Post-COVID (07/2019)
	Pre-COVID (09/2020)	Post-COVID (10/2020)	Pre-COVID (09/2020)	Post-COVID (12/2019)
	Pre-COVID (12/2020)	Post-COVID (01/2021)	Pre-COVID (12/2020)	Post-COVID (12/2020)
A2	4038	3924	18,912	16,021
BS1	2940	1951	17,077	15,581
B35	2217	1321	8,650	7,907
DQ5	21,490	21,079	10,545	9,452
DQ6	20,189	21,090	9,841	8,881
DRS2	18,731	17,740	8,926	7,890
DR18	15,979	12,031	8,650	7,907
DR16	15,639	12,122	8,150	7,405
DR17	14,801	12,724	7,049	6,216
DR13	13,826	10,789	6,010	5,778
DR7	12,802	10,877	5,806	4,570
DR11	12,530	9,320	5,541	4,563
DR14	12,496	9,050	5,300	4,953
DQ9	12,183	9,986	4,257	3,044
DR12	8,084	5,500	3,594	2,326
DR8	7,147	5,216	3,390	2,600
DR7	2,116	1,104	1,288	988
DR9	1,890	1,167	3,186	2,206
DP6	2,688	2,417	2,374	1,326
DP5	2,770	1,506	2,688	1,988
DP9	2,734	1,326	2,699	2,015
DP15	2,375	1,843	2,228	1,066
DQ4	2,216	1,870	2,207	1,502
DP1	2,063	1,844	2,063	1,844
DP5	2,060	1,418	2,060	1,418

* <1000 MFI (negative).
unchanged in all patients, and there was no perceptible increase in the risk of rejection based on the HLA antibody profiles of the patients before and after COVID-19 infection. Moreover, re-testing of pre- and post-COVID sera obtained from four highly sensitized patients with a CPRA value of over 80% with 1:16 dilutions confirmed that no HLA antibody specificity was missed due to inhibitory effects commonly observed in sera of high cPRA patients (Table 2).

4. Discussion

Knowledge about the immune response in patients that recover from COVID-19 is evolving, but it is clear the virus can induce a relatively unique immune dysregulation [11]. Cytomegalovirus, influenza virus, herpes virus, and varicella virus infection have been shown to result in HLA antibody development through T-cell cross-reactivity [12–14], termed heterologous immunity. Notably, male patients without any known sensitizing events donating convalescent serum after COVID-19 infection were found to have HLA antibodies [7]. Therefore, it is essential for transplant providers to consider the possibility of the existence of either de novo HLA antibodies or increased MFI of existing antibodies after recovery from infection with COVID-19 in patients awaiting kidney transplantation.

Patients nearing the top of the waiting list undergo expensive quarterly monitoring for HLA antibodies to permit moving forward with transplant using a virtual crossmatch as the final pretransplant crossmatch. HLA antibody testing is time-consuming and therefore is usually not possible after an organ offer is received, and many centers are moving away from physical crossmatching for a majority of patients. There is no consensus to date about whether or not patients who have recovered from COVID-19 infection need repeat HLA antibody testing prior to moving forward with kidney transplantation if they receive an organ offer prior to the next quarterly single antigen testing. A larger body of published literature suggests that viral infection does not cause HLA antibody development [15–18] compared to the evidence viral infection can cause HLA antibodies [7,12–14]. Understandably, many transplant centers elect to perform a physical crossmatch at the time of transplant in a waitlisted patient who has recovered from COVID, increasing cost and potentially decreasing access to transplant.

Based on this series of patients with end-stage renal failure awaiting a kidney transplant, we found no evidence of HLA antibody development resulting from COVID-19 infection. It is interesting to note that patients with COVID-19 display a complex immune dysregulation characterized by lymphopenia and down-regulation of HLA class II molecules, which could form defective antigen-presentation and thus impaired alloantibody response [11,19]. Additionally, the above-mentioned report by Juskewitch et al. [7] certainly deserves further investigation. One additional patient not described in Table 1 received both doses of the COVID-19 vaccine and then underwent deceased donor kidney transplantation. Similar to the patients described in Table 1, this additional patient who received both doses of vaccine did not have any HLA antibodies. The impact of mRNA vaccinations on sensitization will need to be determined, but our one patient that was vaccinated remained unsensitized.

The weakness of this study is the size of the series of patients. Despite the size of this study, we feel it is important to share these results because a final conclusion about this issue will not be possible until an extensive series of patients is available. This will likely take a multi-institutional effort. Therefore, in the intervening months to years, transplant providers will continue to be pressured to perform real-time risk-benefit decisions about patients at the time of organ offer. This series is the first step in assisting providers who are currently considering organ offers for patients that have recovered from COVID-19 without time for a physical crossmatch.

In summary, transplant providers need to continue to be vigilant about the possibility of HLA antibody development in patients infected with COVID-19. This series of patients has not identified de novo HLA antibodies or the presence of a memory response in highly sensitized patients awaiting kidney transplant undergoing serial single antigen testing after infection. Our institutional plan is to continue to treat COVID-19 infection as we do other infections in this population. Therefore, we do not delay transplant to perform a physical crossmatch or repeat single antigen testing after COVID-19 infection or vaccination with the goal of reducing barriers to transplantation, but other opinions are valid. We will continue to monitor the development of HLA antibodies following vaccination and COVID-19 infection to validate our current strategy. We look forward to a more comprehensive understanding of the immune response to COVID-19 infection and vaccination in patients awaiting transplant.

5. Disclosure

The authors of this manuscript have no conflicts of interest to disclose as described by Human Immunology.

6. Financial disclosure

The authors declare that no financial support was received to perform this study.

Author contributions

Garrett R. Roll: Participated in research design, performance of the research, writing of the paper.

Tyler Lunow-Luke: Participated in performance of the research.

Hillary J. Braun: Participated in performance of the research.

Owen Buenaventura: Performed HLA antibody testing.

Mirelle Mallari: Collected and managed the data.

Peter G. Stock: Participated in performance of the research, editing of the paper.

Raja Rajalingam: Participated in research design, performance of the research, writing of the paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] L’D’Orsogna, H. van den Heuvel, C. van Kooten, S. Heidt, F.H.J. Claas, Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms, Immunogenetics 69 (8–9) (2017) 631.

[2] I. Katerinis, K. Hadaya, R. Duquesnoy, S. Ferrari-Lacraz, S. Meier, C. van Delden, H1N1 and seasonal influenza immunization in kidney transplant recipients, Am. J. Transplant. 11 (8) (2011) 1727.

[3] Y. Azzi, R. Bartash, J. Scalea, P. Loarte-Campos, E. Akalin, COVID-19 and solid organ transplantation: A review article, Transplantation 105 (1) (2021) 37.

[4] P. Graved, S.S. Mothi, Y. Azzi, M. Haverly, S.S. Farouk, M.J. Perez-Saenz, M.D. Redondo-Pachon, B. Murphy, S. Florman, L.G. Cyrimo, M. Grafals, S. Venkataraman, X.S. Cheng, A.X. Wang, G. Zaza, A. Raghino, L. Furian, J. Manrique, U. Maggiore, I. Gandolfini, N. Agrawal, H. Patel, E. Akalin, L.V. Riella, COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium, Am. J. Transplant. 20 (11) (2020) 3140.

[5] J.L. McKechnie, C.A. Blish, The innate immune system: fighting on the front lines or fanning the flames of COVID-19?, Cell Host Microbe 27 (6) (2020) 863.
[6] S. Hartzell, S. Bin, C. Benedetti, M. Haverly, L. Gallon, G. Zaza, L.V. Riella, M.C. Menon, S. Florman, A.H. Rahman, J.M. Leech, P.S. Heeger, P. Cravedi, Evidence of potent humoral immune activity in COVID-19-infected kidney transplant recipients, Am. J. Transplant. 20 (11) (2020) 3149.

[7] J.E. Juskewitch, J.R. Stubbs, M.J. Gandhi, Elevated rate of HLA antibodies in male COVID-19 convalescent plasma donors: A risk factor for transfusion-related acute lung injury, Mayo Clin. Proc. 96 (2) (2021) 500.

[8] G.R. Roll, A.B. Webber, D.H. Gae, Z. Laszik, M. Tavakol, L. Mayen, K. Cunniffe, S. Syed, R. Hirose, C. Freise, S. Feng, J.P. Roberts, N.L. Ascher, P.G. Stock, R. Rajalingam, A virtual crossmatch-based strategy facilitates sharing of deceased donor kidneys for highly sensitized recipients, Transplantation 104 (6) (2020) 1239.

[9] X. Lu, L. Wang, S.K. Sakhivel, B. Whitaker, J. Murray, S. Kamili, B. Lynch, L. Malapati, S.A. Burke, J. Harcourt, A. Tamin, N.J. Thornburg, J.M. Villanueva, S. Lindstrom, US CDC real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus 2, Emerg. Infect. Dis. 26 (8) (2020).

[10] A.R. Tambur, N.D. Herrera, K.M. Haarberg, M.F. Cusick, R.A. Gordon, J.R. Leventhal, J.J. Friedewald, D. Glotz, Assessing antibody strength: comparison of MFI, C1q, and titer information, Am. J. Transplant. 15 (9) (2015) 2421.

[11] E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou, A. Antoniadou, N. Antonakos, G. Damoraki, T. Gkavogianni, M.E. Adami, P. Katsaounou, M. Tzagkrou, M. Kyriakopoulou, G. Dimopoulos, I. Koutsodimitropoulos, D. Velissaris, P. Koufargyris, A. Karageorgos, K. Katrini, V. Lekakis, M. Lupse, A. Kotsaki, G. Reniers, D. Theodoulou, V. Panou, E. Kousakis, N. Koulouris, C. Gogos, A. Koutsoukou, Complex immune dysregulation in COVID-19 patients with severe respiratory failure, Cell Host Microbe 27 (6) (2020) 992.

[12] J.R. Topol, K.M. Heutinck, E.M.W. van der Meer-Prieto, S.L. Yong, P. van Miert, J.D.H. Anholts, M.E.I. Franke-van Dijk, X.Q. Zhang, D.L. Roelen, R.J.M. Ten Berge, F.H.J. Claas, Allo-HLA cross-reactivities of cytomegalovirus-, influenza-, and varicella zoster virus-specific memory T cells are shared by different healthy individuals, Am. J. Transplant. 17 (8) (2017) 2033.

[13] A.L. Amir, T.J. D’Orsogna, D.L. Roelen, M.M. van Loenen, R.S. Hagedoorn, R. de Boer, M.A. van der Hoorn, M.G. Kester, L. Doxiadis, J.H. Falkenburg, F.H. Claas, M.H. Heemskerk, Allo-HLA reactivity of virus-specific memory T cells is common, Blood 115 (15) (2010) 3146.

[14] A. Morice, B. Charreau, B. Neveu, S. Brouard, J.P. Soulillou, M. Bonneville, E. Houssaint, N. Degauque, Cross-reactivity of herpesvirus-specific CD8 T cell lines toward allogeneic class I MHC molecules, PLoS ONE 5 (8) (2010) e12120.

[15] M. Peghin, H.H. Hirsch, O. Len, G. Codina, C. Berastegui, B. Saez, J. Sole, E. Cabral, A. Sole, F. Zurhano, F. Lopez-Medrano, A. Roman, J. Gavalda, Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: A 5-year prospective study, Am. J. Transplant. 17 (5) (2017) 1304.

[16] C. Martin-Gandul, N.J. Mueller, M. Pascual, O. Manuel, The impact of infection on chronic allograft dysfunction and allograft survival after solid organ transplantation, Am. J. Transplant. 15 (12) (2015) 3024.

[17] R.B. Freeman Jr., The ‘indirect’ effects of cytomegalovirus infection, Am. J. Transplant. 9 (11) (2009) 2453.

[18] M. Gunasekaran, S. Bansal, R. Ravichandran, M. Sharma, S. Perincheri, F. Rodriguez, R. Hachem, C.E. Fisher, A.P. Limaye, A. Omar, M.A. Smith, R.M. Brenner, T. Mohanakumar, Respiratory viral infection in lung transplantation induces exosomes that trigger chronic rejection, J. Heart Lung Transplant. 39 (4) (2020) 379.

[19] A.J. Wilk, A. Rustagi, N.Q. Zhao, J. Roque, G.J. Martinez-Colon, J.L. McKechnie, G. T. Ivison, T. Ranganath, R. Vergara, T. Hollis, L.J. Simpson, P. Grant, A. Subramanian, A.J. Rogers, C.A. Blish, A single-cell atlas of the peripheral immune response in patients with severe COVID-19, Nat. Med. 26 (7) (2020) 1070.