ON HILBERT COEFFICIENTS AND SEQUENTIALLY GENERALIZED COHEN-MACAULAY MODULES

NGUYEN TU CUONG, NGUYEN TUAN LONG, AND HOANG LE TRUONG

Abstract. This paper shows that if R is a homomorphic image of a Cohen-Macaulay local ring, then R-module M is sequentially generalized Cohen-Macaulay if and only if the difference between Hilbert coefficients and arithmetic degrees for all distinguished parameter ideals of M are bounded.

1. Introduction

Let (R, \mathfrak{m}) be a commutative Noetherian local ring, where \mathfrak{m} is the maximal ideal. Let M be a finitely generated R-module of dimension d. For an \mathfrak{m}-primary ideal I of R, it is well-known that there are integers $\{e_i(I; M)\}_{i=0}^d$, called the Hilbert coefficients of M with respect to I, such that

$$\ell_R(M/I^{n+1}M) = e_0(I; M) \left(\frac{n+d}{d}\right) - e_1(I; M) \left(\frac{n+d-1}{d-1}\right) + \cdots + (-1)^d e_d(I; M)$$

for all $n \gg 0$. Here $\ell_R(N)$ denotes the length of an R-module N. In particular, the leading coefficient $e_0(I; M)$ is said to be the multiplicity of M with respect to I and $e_1(I; M)$ is called by Vasconcelos (27) the Chern coefficient of M with respect to I. In 2008, Vasconcelos posed the Vanishing Conjecture: M is Cohen-Macaulay if and only if $e_1(q; M) = 0$ for some parameter ideal q of M. It is shown that the relation between Cohen-Macaulayness and the Chern number of parameter ideals is quite surprising. Motivated by some profound results of [5, 20] and also by the fact that this is true for M is unmixed as shown in [10], it was asked whether the characterization of many classes of non-unmixed rings such as Buchsbaum rings, generalized Cohen-Macaulay rings, sequentially Cohen-Macaulay rings in terms of the Hilbert coefficients and other invariants of M (see [11, 6, 22, 23, 18, 24]). The aim of our paper is to continue this research direction.

To state the results of this paper, first of all let us fix our notation and terminology. First, a filtration $D : M = D_0 \supset D_1 \supset \ldots \supset D_t = W$ of R-submodules of M is called the dimension filtration of M, if for all $1 \leq i \leq \ell$, D_i is the largest submodule of D_{i-1} with $\dim_R D_i < \dim_R D_{i-1}$, where $\dim_R(0) = -\infty$ for convention. We say that M is sequentially (generalized) Cohen-Macaulay, if $C_i = D_i/D_{i+1}$ is (generalized) Cohen-Macaulay for all $0 \leq i \leq \ell - 1$. A system of parameters $\underline{x} = x_1, x_2, \ldots, x_d$ of M is said to be distinguished, if $(x_j \mid d_i < j \leq d)D_i = (0)$ for all $0 \leq i \leq \ell$, where $d_i = \dim_R D_i$ ([19 Definition 2.5]). A parameter

Key words and phrases: Hilbert coefficients, multiplicity, sequentially Cohen-Macaulay, sequentially generalized Cohen-Macaulay, Arithmetic degree, dimension filtration, distinguished parameter ideals.

2020 Mathematics Subject Classification: 13C14, 13D40, 13H15.

The first author was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2020.10. The last author was supported by B2022-TNA-25.
ideal \(q \) of \(M \) is called \textit{distinguished}, if there exists a distinguished system \(x_1, x_2, \ldots, x_d \) of parameters of \(M \) such that \(q = (x_1, x_2, \ldots, x_d) \). For each \(i = 1, \ldots, s \), set

\[
\Lambda_i(M) = \{(-1)^j e_i(q, M) - \text{adeg}_i(q; M) \mid q \text{ is a distinguished parameter ideal of } M\},
\]

where \(\text{adeg}_i(I; M) = \sum_{p \in \text{Ass}(M), \dim R/p = i} \ell_{R_p}(H^0_{pR_p}(M_p))e_0(I; R/p) \) is the \(i \)-th arithmetic degree of \(M \) with respect to \(I \) (see [1], [25], [26]). Then we have the following results as in Table 1. A symbol \((\text{\textbf{*}}) \) requires that the module \(M \) be unmixed.

\(\Lambda_1(M) \subseteq (\infty, 0] \)	\(M \)	5		
\(0 \in \Lambda_1(M), (\text{\textbf{*}}) \)	\(M \) is Cohen-Macaulay	10		
\(\Lambda_1(M)	< \infty, (\text{\textbf{*}}) \)	\(M \) is generalized Cohen-Macaulay	10 [11]
\(0 \in \Lambda_i(M) \text{ for all } i = 1, \ldots, d \)	\(M \) is sequentially Cohen-Macaulay	5		

Table 1. Properties of a finitely generated module \(M \) are carried by the behavior of the specific set. A symbol \((\text{\textbf{*}}) \) requires that the module \(M \) be unmixed.

This paper aims to extend these results in the sequentially generalized Cohen-Macaulay case. The answer is affirmative, which we are eager to report in the present writing.

\textbf{Theorem 1.1} \textbf{(Theorem 4.1).} Assume that \(R \) is a homomorphic image of a Cohen-Macaulay local ring. Then the following statements are equivalent.

i) \(M \) sequentially generalized Cohen-Macaulay.

ii) The set \(\Lambda_i(M) \) is finite for all \(1 \leq i \leq d \).

The paper is divided into four sections. The next section presents some preliminaries. In Section 3, we prove that if \(M \) is a sequentially generalized Cohen-Macaulay module, then the set \(\Lambda_i(M) \) is finite for all \(i = 1, \ldots, d \). A characterization of sequentially generalized Cohen-Macaulay modules by the finiteness of \(\Lambda_i(M) \) will be shown in the last section.

2. Preliminaries

In what follows, throughout this paper, let \((R, \mathfrak{m}, k) \) be a Noetherian local ring, where \(\mathfrak{m} \) is the maximal ideal and \(k = R/\mathfrak{m} \) is the infinite residue field of \(R \). Suppose that \(R \) is a homomorphic image of a Cohen-Macaulay local ring. Let \(M \) be a finitely generated \(R \)-module of dimension \(d \).

\textbf{Definition 2.1} \textbf{([7], [2], [19])}. \(i \) We say that a finite filtration of submodules of \(M \)

\[
\mathcal{F}: M = M_0 \supset M_1 \supset \ldots \supset M_s
\]

satisfies the dimension condition if \(\dim M_i > \dim M_{i+1} \), for all \(i = 0, \ldots, s-1 \) and we say this case that the filtration \(\mathcal{F} \) has the length \(s \).

\(ii \) A filtration

\[
\mathcal{D}: M = D_0 \supset D_1 \supset \ldots \supset D_t = W
\]
of submodules of M is said to be the dimension filtration if D_i is the largest submodule of D_{i-1} with $\dim D_i < \dim D_{i-1}$ for all $i = 1, \ldots, t$. Note that the dimension filtration always exists uniquely (see [7]).

Notation 2.2.
- t: the length of the dimension filtration of M,
- $\mathcal{D} = \{D_i\}_{i=0}^t$: the dimension filtration of M,
- $d_i = \dim D_i$ for all $i = 0, \ldots, t$,
- $\mathcal{F} = \{M_i\}_{i=0}^t$: a filtration of submodules of M of length s satisfying the dimension condition,
- $\mathcal{F}/x\mathcal{F} = \{(M_i + xM)/xM\}_{i=0}^k$: a filtration of submodules of M/xM, where x is a parameter element of M and $k = \{s - 1$ if $\dim (M_{s-1}) = 1,$
 s otherwise,
- $\mathcal{F}(M) = \{\mathcal{F} = \{M_i\}_{i=0}^t | \ell(D_i/M_i) < \infty$ for all $i = 0, \ldots, t\}$.

Definition 2.3.

1) A system of parameters x_1, \ldots, x_d of M is called a distinguished system of parameters with respect to \mathcal{F} if $(x_{\dim M_i+1}, \ldots, x_d)M_i = 0$ for all $i = 1, \ldots, s$. A distinguished system of parameters of M with respect to \mathcal{D} is simply called a distinguished system of parameters of M. An ideal q is said to be a distinguished parameter ideal of M with respect to \mathcal{F} if it is generated by a distinguished system of parameters of M with respect to \mathcal{F}. A distinguished parameter ideal of M with respect to \mathcal{D} is simply called a distinguished parameter ideal of M ([19]).

2) A system of parameters x_1, \ldots, x_d is called a good system of parameters of M if $(x_{d+1}, \ldots, x_d)M \cap D_i = 0$ for all $i = 1, \ldots, t$. An ideal q is said to be a good parameter ideal of M if it is generated by a good system of parameters of M (see [2]).

Recall that there always exists distinguished systems of parameters of M with respect to \mathcal{F} (see [19 Lemma 2.6]). Note that, if x_1, x_2, \ldots, x_d is a distinguished system of parameters of M with respect to \mathcal{F}, then x_2, \ldots, x_d is also a distinguished system of parameters of M/x_1M with respect to $\mathcal{F}/x_1\mathcal{F}$.

Clearly, a good system of parameters is a distinguished system of parameters.

Definition 2.4 ([17, 22, 26]). Let I be an m-primary ideal of R. The i-th arithmetic degree of M with respect to I is defined by

$$\text{adeg}_i(I; M) = \sum_{p \in \text{Ass}(M), \dim R/p = j} \ell(H^0_{pR_y}(M_p))c_0(I; R/p).$$

The following result is an immediate consequence of Proposition 3.2 in [5].

Lemma 2.5 (c.f. [5 Proposition 3.2]). Let I be an m-primary ideal of R and $\mathcal{F} \in \mathcal{F}(M)$. Then

$$\text{adeg}_i(I; M) = \begin{cases} \ell(H^0_{m}(M)) & \text{if } i = 0, \\ c_0(I; M_i) & \text{if } d_i = j \text{ for some } i = 0, \ldots, t - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.6. Let $\mathcal{F} \in \mathcal{F}(M)$ and q a parameter ideal of M. Suppose that there exists a filter regular element $x \in q$ of M such that $\mathcal{F}/xF \in \mathcal{F}(M/xM)$. We have

$$\text{adeg}_j(q; M/xM) = \text{adeg}_{j+1}(q; M),$$

where $j = 0, \ldots, t - 1$, $t = \dim M$, $m = \dim R$, and $\text{adeg}_i(q; M)$ is the arithmetic degree of M with respect to q. For $q = 0$, i.e., $x = 0$, we have $\text{adeg}_i(0; M) = 0$ for all $i = 0, \ldots, t$.
for all \(j \geq 1 \). Moreover, if \(q := (x := x_1, x_2, \ldots, x_d) \) is a distinguished parameter ideal of \(M \) with respect to \(F \), then \(\text{adeg}_0(q; M/xM) \geq \text{adeg}_1(q; M) \).

Proof. Since \(F/xF \in F(M/xM) \), we have \(D/xM \in F(M/xM) \). Moreover, the length of \(D/xM \) is \(t - 1 \) if \(d_{t-1} = 1 \) and \(t \) otherwise. Since \(x \) is a filter regular element of \(M \), \(x \) is a regular element of \(M/D_i \) for all \(i = 1, \ldots, t \). Thus we have \(xM \cap D_i = xD_i \). By Lemma 2.5 and \(D/xM \in F(M/xM) \), we have

\[
\text{adeg}_{d_i-1}(q; M/xM) = e_0(q; (D_i + xM)/xM) = e_0(q; D_i) = \text{adeg}_d(q; M)
\]

and \(\text{adeg}_j(q; M) = 0 = \text{adeg}_{j-1}(q; M/xM) \) for all \(i = 0, \ldots, t - 1 \) and \(2 \leq d_i < j < d_{i-1} \). Hence

\[
\text{adeg}_j(q; M/xM) = \text{adeg}_{j+1}(q; M),
\]

for all \(j \geq 1 \).

Now, if \(d_{t-1} > 1 \), then \(\text{adeg}_1(q; M) = 0 \leq \text{adeg}_0(q; M) \). So we can assume that \(d_{t-1} = 1 \). Since \(q = (x, x_2, \ldots, x_d) \) is a distinguished ideal of \(M \) with respect to \(F \in F(M) \), by Lemma 2.5 we get

\[
\text{adeg}_1(q; M) = e_0(q; M_{t-1}) = e_0(x; M_{t-1}) = e_0(x; D_{t-1}) \leq \ell(D_{t-1}/xD_{t-1}).
\]

Since \(H_0^0(M/xM) \supseteq (D_{t-1} + xM)/xM \cong D_{t-1}/(D_{t-1} \cap xM) = D_{t-1}/xD_{t-1} \), we have

\[
\text{adeg}_1(q; M) \leq \ell(D_{t-1}/xD_{t-1}) \leq \ell(H_0^0(M/xM)) = \text{adeg}_0(q; M/xM),
\]

as required. \(\square \)

The following lemma was proved by [3] Lemma 3.3, Lemma 3.4].

Lemma 2.7. The following statements are true.

(i) Assume that \(d \geq 2 \). Let \(x \) be a superficial element of \(M \) for a parameter ideal \(q \) of \(M \). Then

\[
e_i(q; M/xM) = e_i(q; M/xM)
\]

for all \(i = 0, \ldots, d - 2 \) and \((-1)^{d-1}e_{d-1}(q; M) = (-1)^{d-1}e_{d-1}(q; M/xM) + \ell(0 :_M x) \).

(ii) Let \(N \) be a submodule of \(M \) with \(\dim N = s < d \) and \(I \) an \(m \)-primary ideal of \(R \). Then

\[
e_j(I; M) = \begin{cases} e_j(I; M/N), & \text{if } 0 \leq j \leq d - s - 1, \\ e_{d-s}(I; M/N) + (-1)^{d-s}e_0(I, N) & \text{if } j = d - s. \end{cases}
\]

3. The finiteness of the set \(\mathcal{P}_D(M) \)

Recall that the definition of a sequentially Cohen-Macaulay module was introduced first by LT. Nhan and the first author ([7]).

Definition 3.1. A filtration of submodules \(F = \{ M_i \}_{i=0}^t \) of \(M \) is called a **generalized Cohen-Macaulay filtration** if \(F \in F(M) \) and \(M_{i-1}/M_i \) are generalized Cohen-Macaulay modules for all \(i = 1, \ldots, t - 1 \). A module \(M \) is called **sequentially generalized Cohen-Macaulay** if it has a generalized Cohen-Macaulay filtration. In particular, \(F(M) \) is the set of all generalized Cohen-Macaulay filtrations of \(M \). If \(M \) is a sequentially Cohen-Macaulay module, then \(M \) is a sequentially generalized Cohen-Macaulay module.
Now, the function
\[
H_{I,M}^{ad}(n) = \ell(M/I^{n+1}M) - \sum_{i=0}^{d} \text{adeq}_i(I; M) \binom{n+i}{i}
\]
is called an adjusted Hilbert-Samuel function of \(M \) with respect to \(I \). It is well known that \(\ell(M/I^{n+1}M) \) becomes a polynomial for large enough \(n > 0 \). So the function \(H_{I,M}^{ad}(n) \) becomes a polynomial \(P_{q,M}^{ad}(n) \). Such polynomial is called adjusted Hilbert-Samuel polynomial and of the form
\[
P_{I,M}^{ad}(n) = \sum_{i=1}^{d} \left((-1)^i e_i(I; M) - \text{adeq}_{d-i}(I; M) \right) \binom{n+d-i}{d-i}.
\]
These integers \(a_i(I; M) = (-1)^i e_i(I; M) - \text{adeq}_{d-i}(I; M) \) are called adjusted Hilbert coefficients of \(M \) with respect to \(I \) for all \(i = 1, \ldots, d \). We denote by \(\mathcal{P}_F(M) \) the set of all adjusted Hilbert-Samuel polynomials \(P_{q,M}^{ad}(n) \), where \(q \) runs over the set of all distinguished parameter ideals of \(M \) with respect to \(F \).

Recall that a system \(x_1, \ldots, x_m \) in \(R \) is said to be \(d \)-sequence on \(M \) (see [13], [21]) if
\[
(x_1, \ldots, x_i)M : x_i x_k = (x_1, \ldots, x_i-1)M : x_k
\]
for all \(i = 1, \ldots, m \) and \(k \geq i \). The sequence \(\mathbf{e} \) is said to be \(\text{dd-sequence} \) on \(M \) (see [4]) if \(x_1^{n_1}, \ldots, x_s^{n_s} \) is a \(d \)-sequence on \(M \) and \(x_1^{n_1}, \ldots, x_i^{n_i} \) is a \(d \)-sequence on \(M/(x_1^{n_1+1}, \ldots, x_i^{n_i})M \) for all positive integers \(n_1, \ldots, n_s \) and all \(i = 1, \ldots, s - 1 \). According to D. T. Cuong and the first author, if the parameter ideal \(q \) is generated by a \(\text{dd-sequence} \) on \(M \), the adjusted Hilbert coefficients are described as follows.

Lemma 3.2 ([3] Theorem 6.2). Let \(M \) be a sequentially generalized Cohen-Macaulay module and \(q = (x_1, \ldots, x_d) \) a system of parameters of \(M \). Assume that \(x_1, \ldots, x_d \) is a \(d \)-sequence on \(M \). Then the adjusted Hilbert coefficients are of the form
\[
a_d - d_k(q; M) = \sum_{j=1}^{d_k} \frac{(d_k - 1)}{j - 1} \ell(H^1_m(M/D_k))
\]
for \(k = 0, \ldots, t - 1 \),
\[
a_d - i(q; M) = \sum_{j=1}^{i} \frac{(i - 1)}{j - 1} \ell(H^1_m(M/D_k))
\]
for \(d_k < i < d_{k-1} \) and \(a_d(q; M) = 0 \).

Now with the above notations, we have the main result in this section.

Theorem 3.3. Let \(M \) be a sequentially generalized Cohen-Macaulay module and \(F \in \mathcal{F}(M) \). Then the set \(\mathcal{P}_F(M) \) of adjusted Hilbert-Samuel polynomials is finite.

Setting 3.4. In this section, from now on, we assume that \(M \) is a sequentially generalized Cohen-Macaulay module. Set \(W = H^0_m(M), M = M/W, \text{ and } \overline{N} = (N + W)/W \) for all submodules \(N \) of \(M \). Let \(F \in \mathcal{F}(M), q := (x := x_1, x_2, \ldots, x_d) \) be a distinguished parameter ideal of \(M \) with respect to \(F \).

Set
\[
I(M) = \sup\{\ell(M/qM) - e_0(q; M) \mid q \text{ is a parameter ideal of } M\}.
\]
and \(I(\mathcal{F}, M) = \sum_{i=0}^{t-1} I(M_i/M_{i+1}) + \ell(M_i) \).

Fact 3.5. With this notation, we have

i) The filtration of submodules \(\mathcal{F} := \{ M_i \}_{i=0}^t \) of \(M \) is a generalized Cohen-Macaulay filtration of \(M \) and

\[
I(\mathcal{F}, M) = I(\mathcal{F}, M) + \ell(W)
\]

([6] Lemma 6).

ii) The module \(M/xM \) is sequentially generalized Cohen-Macaulay and \(\mathcal{F}/x\mathcal{F} \subseteq \mathcal{F}(M/xM) \) ([6], Corollary 2]). Moreover, we have

\[
I(\mathcal{F}/x\mathcal{F}, M/xM) \leq I(\mathcal{F}, M)
\]

([6] Lemma 4).

Now, let \(S = \bigoplus_{n \geq 0} S_n \) be a standard Noetherian graded ring and \(E = \bigoplus_{n \in \mathbb{Z}} E_n \) a finitely generated graded \(S \)-module. The *Castelnuovo-Mumford regularity* \(\text{reg}(E) \) of \(E \) is defined by

\[
\text{reg}(E) = \sup \{ n + i \mid [H^i_{S_+}(E)]_n \neq 0, i \geq 0 \}
\]

and simply called *regularity*, where \(S_+ = \bigoplus_{n \geq 0} S_n \). Let \(N \) be a finitely generated \(R \)-module and \(Q \) a parameter ideal of \(N \). We always denote the associate graded module of \(N \) with respect to \(Q \) by \(G_Q(N) \), i.e. \(G_Q(N) = \bigoplus_{n \geq 0} Q^n N/Q^{n+1} N \). With this notation, we have

Fact 3.6.

i) There is a constant \(C = C_\mathcal{F} \) such that

\[
\text{reg}(G_Q(M)) \leq C = (3I(\mathcal{F}, M))^d - 2I(\mathcal{F}, M),
\]

for all distinguished parameter ideals \(q \) of \(M \) with respect to \(\mathcal{F} \) ([6] Theorem 4]).

ii) We have \(H^d_{q,M}(n) \geq 0 \) for all

\[
n \geq \text{reg}(G_q(M)) + \left(\frac{\text{reg}(G_q(M)) + d - 1}{d - 1} \right) I(\mathcal{F}, M) + d,
\]

([15] Theorem 4.4]).

The following result give an upper bound for the adjusted Hilbert-Samuel function.

Lemma 3.7. We have

\[
H^d_{q,M}(n) \leq \sum_{i=0}^{t-1} \binom{n + d_i - 1}{d_i - 1} I(M_i/M_{i+1}) + \ell(M_i) - \ell(W),
\]

for all \(n \geq 0 \),

Proof. Note that from the following exact sequence

\[
0 \to (q^{n+1} M \cap M_1)/q^{n+1} M_1 \to M_1/q^{n+1} M_1 \to M/q^{n+1} M \to M/q^{n+1} M + M_1 \to 0,
\]

we get \(\ell(M/q^{n+1} M) \leq \ell(M/q^{n+1} M + M_1) + \ell(M_1/q^{n+1} M_1) \).
Now we argue by the induction on the length t of the dimension filtration of M. The case $t = 1$, it follows from $qM_1 = 0$ and Lemma 1.1 in [10] that we have
\[
\ell(M/q^{n+1}M) \leq \ell(M/q^{n+1}M + M_1) + \ell(M_1)
\]
\[
\leq \binom{n + d}{d} e_0(q; M) + \binom{n + d - 1}{d - 1} I(M/M_1) + \ell(M_1),
\]
for all $n \geq 0$.

Now, assume that $t > 1$ and that our assertion holds true for $t - 1$. By the inductive hypothesis, we have
\[
\ell(M/q^{n+1}M) \leq \ell(M/q^{n+1}M + M_1) + \ell(M_1/q^{n+1}M_1)
\]
\[
\leq \binom{n + d}{d} e_0(q; M_0) + \binom{n + d - 1}{d - 1} I(M/M_1) + \ell(M_1/q^{n+1}M_1)
\]
\[
\leq \sum_{i=0}^{t-1} \binom{n + d_i}{d_i} e_0(q; M_i) + \sum_{i=0}^{t-1} \binom{n + d_i - 1}{d_i - 1} I(M_i/M_{i+1}) + \ell(M_i),
\]
for all $n \geq 0$. By Lemma 3.5 we have
\[
H_{q,M}^{rd}(n) \leq \sum_{i=0}^{t-1} \binom{n + d_i - 1}{d_i - 1} I(M_i/M_{i+1}) + \ell(M_i) - \ell(W),
\]
for all $n \geq 0$, as requested. \qed

Theorem 3.8. Let $C = C_\mathcal{F} = (3I(\mathcal{F}, M))^{d_1} - 2I(\mathcal{F}, M)$ as in Fact 3.6 i). Then we have

1. $|e_1(q; M) + \text{adeg}_{d-1}(q; M)| \leq I(M/M_1)$.
2. $|(-1)^i e_i(q; M) - \text{adeg}_{d-i}(q; M)| \leq 2^{i-1} ((C + 1)^{d-1}I(\mathcal{F}, M) + d + C + 2)^{i-1} I(\mathcal{F}, M)$ for all $i = 2, \ldots, d - 1$.
3. $|e_d(q; M)| \leq 2^{d-1} ((C + 1)^{d-1}I(\mathcal{F}, M) + d + C + 2)^{d-1} I(\mathcal{F}, M)$.

Proof. i) By Fact 3.6 ii), we have $P_{q,M}^{rd}(n) = H_{q,M}^{rd}(n) \geq 0$ for all $n \geq 0$. Thus by Lemma 3.7 we have
\[
0 \leq P_{q,M}^{rd}(n) = \binom{n + d - 1}{d - 1}((-1)^{d-1}e_1(q; M) - \text{adeg}_{d-1}(q; M)) + \text{lower terms}
\]
\[
\leq \binom{n + d - 1}{d - 1} I(M/M_1) + \text{lower terms}.
\]
Therefore we have
\[
0 \leq (-1)e_1(q; M) - \text{adeg}_{d-1}(q; M) \leq I(M/M_1),
\]
as requested.

ii) and iii). Now we proceed by induction on d to show that ii) and iii). Set $r = \text{reg}(G_q(M))$. The case $d = 2$, we have
\[
e_2(q; M) = H_{q,M}^{rd}(n) + \ell(H_{q,M}^{rd}(M)) + (e_1(q; M) + \text{adeg}_1(q; M))\binom{n + 1}{1}
\]
for all $n \geq r + 1$. Thus by Lemma 3.7 and Theorem 3.6 we have
\[
|e_2(q; M)| \leq \sum_{i=0}^{t} \binom{n + d_i - 1}{d_i - 1} I(M_i/M_{i+1}) + I(M/M_1)(n + 1)
\]
\[
\leq 2(n + 1)^{r-1} I(\mathcal{F}, M).
\]
for all \(n \geq r + \binom{r+1}{1} I(\mathcal{F}, M) + d \).

Now choose \(n = (C + 1)^{2-1} I(\mathcal{F}, M) + d + C + 1 \). Then \(n \geq r + \binom{r+1}{1} I(\mathcal{F}, M) + d \) by Fact \(\text{3.4} \) i).

Therefore we have
\[
|e_2(q; M)| \leq 2^{2-1} \left((C + 1)^{2-1} I(\mathcal{F}, M) + d + C + 1 \right) I(\mathcal{F}, M)
= 2^{d-1} \left((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2 \right)^{d-1} I(\mathcal{F}, M),
\]
as required.

Now suppose that \(d > 2 \) and that our assertion holds true for \(d - 1 \). We have by Lemma \(\text{2.7} \) ii) that
\[
e_i(q; M) = e_i(q; M/xM)
\]
for all \(i = 0, \ldots, d - 1 \) and \((-1)^d e_d(q; M) = (-1)^d e_d(q; M/xM) + \ell(W) \). Moreover, by Fact \(\text{3.5} \) i) we have
\[
I(\mathcal{F}, M/xM) + \ell(W) = I(\mathcal{F}, M).
\]
Consequently, \(C_\mathcal{F} \geq C_\mathcal{F} \). Therefore we can assume \(W = 0 \). Recall that \(x = x_1, \ldots, x_d \) is a distinguished system of parameters of \(M \) with respect to \(\mathcal{F} \) such that \(q = (x) \) and \(x = x_1 \) is a superficial element of \(M \) for \(q \). Hence \(x \) is a regular element of \(M \) since \(W = 0 \). So by Lemma \(\text{2.7} \) i),
\[
e_i(q; M) = e_i(q; M/xM)
\]
for all \(i = 0, \ldots, d - 1 \). On the other hand, it follows from Lemma \(\text{2.6} \) and Fact \(\text{3.5} \) ii) that we have
\[
\text{adeg}_{d-1}(q; M) = \text{adeg}_{d-2-i}(q; M/xM)
\]
for all \(i = 0, \ldots, d - 2 \) and
\[
I(\mathcal{F}/x\mathcal{F}, M/xM) \leq I(\mathcal{F}, M).
\]
Set \(C_x = C_{\mathcal{F}/x\mathcal{F}} \). It follows that
\[
C_x = C_{\mathcal{F}/x\mathcal{F}} \leq C_\mathcal{F} = C.
\]
Note that \(x_2, \ldots, x_d \) is a distinguished system of parameters of sequentially generalized Cohen-Macaulay \(M/xM \) with respect to \(\mathcal{F}/x\mathcal{F} \in \mathcal{F}(M/xM) \). Therefore it follows from the inductive hypothesis and (1) – (4) that we have
\[
|(-1)^i e_i(q; M) - \text{adeg}_{d-1}(q; M)|
= |(-1)^i e_i(q; M/xM) - \text{adeg}_{d-1-i}(q; M/xM)|
\leq 2^{i-1} \left((C_2 + 1)^{d-2} I(\mathcal{F}/x\mathcal{F}, M/xM) + (d - 1) + C_x + 2 \right)^{i-1} I(\mathcal{F}/x\mathcal{F}, M/xM)
\leq 2^{i-1} \left((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2 + I(\mathcal{F}, M) \right)^{i-1} I(\mathcal{F}, M)
\]
for all \(i = 2, \ldots, d - 2 \).

Fact, if \(d_{d-1} > 1 \) then \(\text{adeg}_1(q; M) = 0 \) by Lemma \(\text{2.5} \). So
\[
|(-1)^{d-1} e_{d-1}(q; M) - \text{adeg}_1(q; M)|
= |(-1)^{d-1} e_{d-1}(q; M/xM)|
\leq 2^{(d-1)-1} \left((C_2 + 1)^{d-2} I(\mathcal{F}/x\mathcal{F}, M/xM) + (d - 1) + C_x + 2 \right)^{(d-1)-1} I(\mathcal{F}/x\mathcal{F}, M/xM)
\leq 2^{d-1} \left((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2 \right)^{d-1} I(\mathcal{F}, M).
\]
The last inequality is followed by (3) and (4).
Now we can assume that $d_i = 1$. Set $\tilde{M} = M/D_{i-1}$ and $\tilde{N} = (N+D_{i-1})/D_{i-1}$ for all submodules N of M. Then \tilde{M} is sequentially generalized Cohen-Macaulay, $\tilde{F} = \{\tilde{M}_i\}_{i=0}^{t-1} \in \mathcal{F}(\tilde{M})$ and q is also a distinguished parameter ideal of \tilde{M} with respect to \tilde{F}. Note that x_1, \ldots, x_d is a distinguished system of parameters of sequentially generalized Cohen-Macaulay \tilde{M} with respect to \tilde{F}. Using similar above arguments, it follows from $H^0_{\mathfrak{m}}(\tilde{M}) = 0$ that we show that results 1) – 4) for module \tilde{M}.

By Fact 3.6 i), we have

$$\text{reg}(G_q(\tilde{M})) \leq \tilde{C} := (3I(\tilde{F}, \tilde{M}))^d - 2I(\tilde{F}, \tilde{M}).$$

Since $(M_i \cap D_{t-1})/(M_{i+1} \cap D_{t-1}) = (M_{i+1} + M_i \cap D_{t-1})/M_{i+1}$ is a submodule of the module D_{t-1}/M_{t-1} of finite length for all $i = 0, \ldots, t - 2$, we have

$$I(\mathcal{F}, M) = \sum_{i=0}^{t-2} I(M_i/M_{i+1}) + I(M_{t-2}/M_t) + l(M_t)
\geq \sum_{i=0}^{t-2} (I(M_i/M_{i+1}) - l((M_i \cap D_{t-1})/(M_{i+1} \cap D_{t-1}))) + I(M_{t-1})
= \sum_{i=0}^{t-2} I((M_i + D_{t-1})/(M_{i+1} + D_{t-1})) + I(M_{t-1})
= I(\mathcal{F}, \tilde{M}) + I(M_{t-1}).$$

This implies that $\tilde{C} \leq C$. We have by Lemma 2.7 ii) and Lemma 2.8 that

$$(-1)^{d-1}e_{d-1}(q, M) - \text{adeg}_1(q, M) = (-1)^{d-1}e_{d-1}(q, \tilde{M}).$$

Therefore it follows from the inductive hypothesis and similar results 1) – 4) for module \tilde{M} that we have

$$\left| (-1)^{d-1}e_{d-1}(q; M) - \text{adeg}_1(q; M) \right| = \left| (-1)^{d-1}e_{d-1}(q; \tilde{M}) \right| = \left| (-1)^{d-1}e_{d-1}(q; \tilde{M}/x\tilde{M}) \right| \leq 2^{d-2} \left((\tilde{C}_x + 1)^{d-1}I(\tilde{F}/x\tilde{F}, \tilde{M}/x\tilde{M}) + d - 1 + \tilde{C}_x + 2 \right)^{d-1} I(\tilde{F}/x\tilde{F}, \tilde{M}/x\tilde{M})
\leq 2^{d-1} \left((\tilde{C} + 1)^{d-1}I(\tilde{F}, \tilde{M}) + d + \tilde{C} + 2 \right)^{d-1} I(\tilde{F}, \tilde{M})
\leq 2^{d-1} \left((C + 1)^{d-1}I(\mathcal{F}, M) + d + C + 2 \right)^{d-1} I(\mathcal{F}, M)$$

where $\tilde{C}_x = C_{\tilde{F}/x\tilde{F}}$.

Now, we have

$$(-1)^d e_d(q; M) = H_{q, d}^d(n) - \sum_{i=1}^{d-1} \left((-1)^i e_i(q; M) - \text{adeg}_{d-i}(q; M) \right) \binom{n + d - i}{d - i}.$$
Theorem 4.1. For all $n \geq r + 1$. Furthermore, for all $n \geq r + \binom{r+1}{1} I(\mathcal{F}, M) + d$, by Lemma 3.7 and Fact 3.6 we have

$$| e_d(q; M) | \leq t-1 \sum_{i=0}^{d-1} \left(\frac{n + d_i - 1}{d_i - 1} \right) I(M_i/M_{i+1}) + | (-1)^i e_i(q; M) - \text{adeg}_{d-i}(q; M) | \left(\frac{n + d - 1}{d - 1} \right)$$

$$+ \sum_{i=2}^{d-1} \left((-1)^i e_i(q; M) - \text{adeg}_{d-i}(q; M) \right) \left(\frac{n + d - 1}{d - i} \right)$$

$$\leq \sum_{i=0}^{d-1} (n + 1)^{d-1} I(M_i/M_{i+1}) + (n + 1)^{d-1} I(\mathcal{F}, M)$$

$$+ \sum_{i=2}^{d-1} 2^{d-i} ((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2)^{i-1} I(\mathcal{F}, M)(n + 1)^{d-i},$$

where the last inequality is followed by $i)$, $ii)$. Choose $n = (C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 1$ and note that $n \geq r + \binom{r+d-1}{d-1} I(\mathcal{F}, M) + d$. Then we have

$$| e_d(q; M) | \leq 2 ((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2)^{d-1} I(\mathcal{F}, M)$$

$$+ \sum_{i=2}^{d-1} 2^{d-1} ((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2)^{d-1} I(\mathcal{F}, M)$$

$$= 2^{d-1} ((C + 1)^{d-1} I(\mathcal{F}, M) + d + C + 2)^{d-1} I(\mathcal{F}, M).$$

as required. □

Now, we are in a position to prove the main theorem in this section.

Proof of Theorem 3.3. This is now immediately seen from Theorem 3.8 □

We close this section with the following example, which shows that the condition $\mathcal{F} \in \mathcal{F}(M)$ in Theorem 3.3 and 3.8 cannot be omitted whenever M is sequentially Cohen-Macaulay.

Example 3.9. Let $R = k[[X, Y, Z]]$ be the formal power series ring over a field k. Let $M = k[[X, Y, Z]] \oplus (k[[X, Y, Z]]/(Z^2))$ be R-module. For an integer $m \geq 1$, set $q_m = (X^m, Y^m, Z)$. Then we have the following.

i) M is sequentially Cohen-Macaulay of dimension 2.

ii) q is a parameter ideal of M but q is not a distinguished parameter ideal with respect to $F \in \mathcal{F}(M)$.

iii) $H^{ad}_{q_m, M}(n) = -m^2 \binom{n+1}{1}$ for all $m, n > 1$. Hence the set $\Lambda_1(M)$ is finite but the set $\mathcal{P}_\mathcal{F}(M)$ and $\Lambda_2(M)$ is infinite.

4. Characterization of the finiteness of the set $\mathcal{P}_\mathcal{D}(M)$

In this section, we give a characterization of sequentially generalized Cohen-Macaulay modules. In particular, we have

Theorem 4.1. Let R be a homomorphic image of a Cohen-Macaulay local ring. Then the following statements are equivalent:

i) M is sequentially generalized Cohen-Macaulay.

ii) The set $\mathcal{P}_\mathcal{F}(M)$ is finite for all $\mathcal{F} \in \mathcal{F}(M)$.

iii) The set $\mathcal{P}_\mathcal{F}(M)$ is finite for some $\mathcal{F} \in \mathcal{F}(M)$.
iv) The set $\mathcal{P}_D(M)$ is finite.

Setting 4.2. In this section, from now on, we assume that R is a homomorphic image of a Cohen-Macaulay local ring. Let $\mathcal{F} = \{M_i\}_{i=0}^t \in \mathcal{F}(M)$ and $\underline{a} = x_1, \ldots, x_d$ be a distinguished system of parameters of M.

Notation 4.3. \textbullet{} Set $\underline{q} := (\underline{x} := x_1, x_2, \ldots, x_d)$ and $q_i = (x_1, \ldots, x_i)$ for all $i = 1, \ldots, d$. Let $\underline{n} = (n_1, \ldots, n_d) \in \mathbb{N}^d$ and $\underline{d} = (d_{i,1}, \ldots, d_{i,d})$. We set

$$\mathcal{N}(\underline{a}; M) = \{n \in \mathbb{N}^d | \underline{d} = (d_{i,1}, \ldots, d_{i,d}) \text{ is a distinguished system of parameters of } M/n_i^M \text{ for all } 0 \leq i \leq d - 1\}.$$

\textbullet{} Let $d_{i+1} < k \leq d_i$ for some $i = 0, \ldots, t - 1$. Then $\mathcal{F}/q_k \mathcal{F} := \{(M_i + q_kM)/q_kM\}_{i=0}^t$ is a filtration of submodules of M satisfying the dimension condition. The length s of a filtration of submodules $\mathcal{F}/q_k \mathcal{F}$ of M is i, if $k = d_i$ and $i + 1$, otherwise. Furthermore, x_k+1, \ldots, x_d is a distinguished system of parameters of M/q_kM with respect to $\mathcal{F}/q_k \mathcal{F}$. Stipulating $x_0 = 0$ and $\mathcal{F}_0 = \mathcal{F}$.

Lemma 4.4. Suppose that $d \geq 2$ and \underline{a} is a distinguished system of parameters of M such that $\mathcal{N}(\underline{a}; M) \neq \emptyset$. Then we have

i) \underline{d} is a d-sequence on M for all $\underline{n} \in \mathcal{N}(\underline{a}; M)$.

ii) $(n_1, n_2m_2, \ldots, n_dm_d) \in \mathcal{N}(\underline{a}; M)$ for all $(m_2, \ldots, m_d) \in \mathcal{N}(\underline{a}; M)/x_1^M$.

iii) If M is a sequentially generalized Cohen-Macaulay module, then there is an $\underline{n} \in \mathcal{N}(\underline{a}; M)$ such that \underline{d} is a distinguished d-sequence on M.

Proof. i). Let $\underline{n} = (n_1, \ldots, n_d) \in \mathcal{N}(\underline{a}; M)$. Then $\underline{d}_{i-1}^{n_i}$ is a distinguished system of parameters of M/q_{i-1}^M. Thus $(\underline{d}_{i-1}^{n_i})H_0^M(M/q_{i-1}^M) = 0$. Therefore \underline{d} is a filter regular M-sequence. Moreover,

$$q_{i-1}^M : x_1^{n_i} = H_m^M(M/q_{i-1}^M) = \bigcup_{n=1}^\infty (q_{i-1}^M : (\underline{d}^n))$$

for all $i = 1, \ldots, d$. So \underline{d} is a d-sequence by [21] Theorem 1.1(vii).

ii). This is immediately seen from the definition of the distinguished system of parameters.

iii). By the Artin-Rees Lemma, there are positive integers m_1, \ldots, m_d such that $x_1^m_1, \ldots, x_d^m_d$ is a good system of parameters of M. We have by [3] Theorem 3.8, Corollary 3.9 that there are positive integers k_1, \ldots, k_d such that $x_1^{k_1}, \ldots, x_d^{k_d}$ is a d-sequence on M, where $n_i = m_ik_i$ for all $i = 1, \ldots, d$. We have $(n_1, \ldots, n_d) \in \mathcal{N}(\underline{a}; M)$ by [3] Corollary 3.7 and the definition of d-sequence. \hfill \square

Lemma 4.5. There is a distinguished system of parameters $\underline{a} = x_1, \ldots, x_d$ of M such that $\mathcal{F}/q_i \mathcal{F} \subseteq \mathcal{F}(M/q_iM)$ for all $\mathcal{F} \in \mathcal{F}(M)$ and $i = 1, \ldots, d$. Moreover, $\mathcal{N}(\underline{a}; M) \neq \emptyset$.

Proof. The first assertion is now immediately seen from Lemma 2.7 in [3].

Now we will prove that $\mathcal{N}(\underline{a}; M) \neq \emptyset$ by induction on d. The case $d = 1$ is obvious. Assume that $d > 1$. Then x_2, \ldots, x_d is a distinguished system of parameters of M/x_1M with respect to D/x_1D. Since $D/x_1D \in \mathcal{F}(M/x_1M)$, there are positive integers n_2, \ldots, n_d such that $x_2^{n_2}, \ldots, x_d^{n_d}$ is a distinguished system of parameters of M/x_1M. By the inductive hypothesis, we have $(m_2, \ldots, m_d) \in \mathcal{N}(x_2^{m_2}, \ldots, x_d^{m_d}; M/x_1M)$ for some m_i. Therefore we have $(1, n_2m_2, \ldots, n_dm_d) \in \mathcal{N}(\underline{a}; M)$, as requested. \hfill \square
Lemma 4.6. Assume that $d \geq 2$ and $\mathcal{F} = \{M_i\}_{i=0}^{t} \in \mathcal{F}(M)$. Then, $H^1_m(M/M_{i+1})$ are of finite length for $i = 0, 1, \ldots, t - 1$ and $d_i \geq 2$.

Proof. We first see that $\text{Ass}_R(M_i/M_{i+1}) = \text{Ass}_R(M_i/M_{i+1}) \cup \{m\}$. It follows by [12, Lemm 3.1] that $H^1_m(M_i/M_{i+1})$ are of finite length for all $i = 0, \ldots, t - 1$ and $d_i \geq 2$. Now we will prove by induction on i. If $i = 0$, clearly that $H^1_m(M/M_1)$ is of finite length. Assume that $i > 0$ and that assertion holds true for $i - 1$. Now the short exact sequence

$$0 \rightarrow M_i/M_{i+1} \rightarrow M/M_{i+1} \rightarrow M/M_i \rightarrow 0$$

induces the long exact sequence

$$\ldots \rightarrow H^1_m(M_i/M_{i+1}) \rightarrow H^1_m(M/M_{i+1}) \rightarrow H^1_m(M/M_i) \rightarrow \ldots.$$

If $d_i \geq 2$ then $d_{i-1} > d_i \geq 2$. Thus $H^1_m(M/M_i)$ is of finite length by induction. So $H^1_m(M/M_{i+1})$ is of finite length. \square

Theorem 4.7. Assume that $d \geq 2$. Suppose that there is an integer C and a distinguished parameter ideal $q = (x_1, \ldots, x_d)$ of M as in Lemma 4.6 such that

$$|a_i(q^\infty M)| \leq C$$

for all $n \in \mathcal{N}(q; M)$ and $i = 0, \ldots, d - 1$. Then we have

$$m^C H^1_m(M/D_{k+1}) = 0$$

for all $j = 1, \ldots, d_k - 1$, $d_k \geq 2$ and $k = 0, \ldots, t - 1$.

Proof. Let $n \in \mathcal{N}(q; M)$. We have by Lemma 2.7(ii) and Lemma 2.3(i) that

$$e_i(\hat{\mathfrak{m}}^n M) = e_i(\hat{\mathfrak{m}}^n M/W),$$

$$\text{adeg}_{d-i}(\hat{\mathfrak{m}}^n M) = \text{adeg}_{d-i}(\hat{\mathfrak{m}}^n M/W)$$

for all $i = 0, \ldots, d - 1$, where $W = H^1_m(M)$. Thus we can assume that $W = 0$.

Now we argue by the induction on the dimension d of M. In the case $d = 2$, M/D_1 is a generalized Cohen-Macaulay module by Lemma 4.6. Therefore M is sequentially generalized Cohen-Macaulay. By Lemma 4.4(iii), there is a $(n_1, n_2) \in \mathcal{N}(q; M)$ such that $x_1^{n_1}, x_2^{n_2}$ is a d-sequence on M. Therefore, by Lemma 3.2, we have

$$\ell(H^1_m(M/D_1)) = |(-1)e_1(x_1^{n_1}, x_2^{n_2}; M) - \text{adeg}_1(x_1^{n_1}, x_2^{n_2}; M)| \leq C.$$

Hence $m^C H^1_m(M/D_1) = 0$.

Fact, suppose that $d > 2$ and our assertion holds true for $d - 1$. Since $\mathfrak{m}' = (m_1, n_2m_2, \ldots, n_dm_d) \in \mathcal{N}(q; M)$ for all $\mathfrak{m} = (m_2, \ldots, m_d) \in \mathcal{N}(q^\infty M/x_1^{n_1} M)$ by Lemma 4.4(ii), $x_2^{n_1} = x_1^{n_1}, x_2^{n_2m_2}, \ldots, x_d^{n_dm_d}$ is a d-sequence on M because of Lemma 4.4(i). Set $y = x_1^{n_1}$ and $\mathfrak{m} = x_2^{n_2}, \ldots, x_d^{n_d}$. Therefore y is a
superficial of M for ideals (y, y^n) for all $m \in \mathcal{N}(y; M/yM)$. It follows by Lemma 2.7(i) and Lemma 2.6 that
\[
\left| (-1)^i e_i(y^n, M/yM) - \text{adeg}_{d-i}(y^n, M/yM) \right| = \left| (-1)^i e_i(y, y^n, M) - \text{adeg}_{d-i}(y, y^n, M) \right| \leq C,
\]
for all $i = 0, \ldots, d - 2$ and for all $m \in \mathcal{N}(y; M/yM)$.

Now set $\overline{M} = M/yM$ and and $\overline{N} = (N + yM)/yM$ for all submodules N of M. Let $\mathcal{D} = \{ \mathcal{D}_i \}_{i=0}^3$ be the dimension filtration of \overline{M}, where s is t if $d_{t-1} > 1$ and $t - 1$, otherwise. By the inductive hypothesis, we have
\[
m^C H^j_m(\overline{M}/\mathcal{D}_{i+1}^t) = 0
\]
for all $d_i \geq 3$ and $j = 1, \ldots, d_i - 2$. Since $\mathcal{D}/\mathcal{D} \in \mathcal{F}(M/yM)$ by Lemma 2.6, we have $\ell(\mathcal{D}_{i+1}/\mathcal{D}_i) < \infty$ for all $i = 0, \ldots, s - 1$. Therefore we get $H^j_m(\overline{M}/\mathcal{D}_{i+1}^t) \cong H^j_m(\overline{M}/\mathcal{D}_{i+1}^s)$ for all $j \geq 1$ and $i = 0, \ldots, s - 1$. This implies that
\[
m^C H^j_m(M/(yM + \mathcal{D}_{i+1}^t)) = 0
\]
for all $d_i \geq 3$ and $j = 1, \ldots, d_i - 2$. Since y is M/\mathcal{D}_{i+1}-regular for all $i = 0, \ldots, t - 1$, it follows from short exact sequences
\[
0 \rightarrow \frac{M}{\mathcal{D}_{i+1}} \rightarrow \frac{M}{\mathcal{D}_{i+1}^t} \rightarrow \frac{M}{\mathcal{D}_{i+1}^t + y^n M} \rightarrow 0
\]
that long sequences
\[
\ldots \rightarrow H^j_m(\frac{M}{\mathcal{D}_{i+1}^t + y^n M}) \rightarrow H^j_m(\frac{M}{\mathcal{D}_{i+1}^s}) \rightarrow H^j_m(\frac{M}{\mathcal{D}_{i+1}^t}) \rightarrow \ldots
\]
are exact for all $n \geq 1$. Thus we have
\[
m^C(0 : H^j_m(M/\mathcal{D}_{i+1}^t) y^n) = 0
\]
for all $j = 2, \ldots, d_i - 1$, $d_i \geq 3$ and $n \geq 1$. Note that n and C are independent of each other. Hence
\[
m^C H^j_m(M/\mathcal{D}_{i+1}^t) = 0
\]
for all $j = 2, \ldots, d_i - 1$ and $d_i \geq 3$. Moreover, $\ell(H^j_m(M/\mathcal{D}_{i+1}^t)) < \infty$ by Lemma 4.6 for all $d_i \geq 2$. So M is a sequentially generalized Cohen-Macaulay module by [3, Proposition 3.5]. Therefore there is a $n = (n_1, \ldots, n_{d}) \in \mathcal{N}(x; M)$ such that x^n is a dd-sequence on M. By Lemma 3.2, we have $\ell(H^j_m(M/\mathcal{D}_{i+1}^t)) \leq C$ for all $d_i \geq 2$. The proof is completed.

Proof of Theorem 4.1. (i) \Rightarrow (ii) is followed by Theorem 3.3.

(ii) \Rightarrow (iii) is trivial.

(iii) \Rightarrow (iv) is followed by $\mathcal{P}_D(M) \subseteq \mathcal{P}_F(M)$ for all $F \in \mathcal{F}(M)$.

(iv) \Rightarrow (i). Let $x = x_1, \ldots, x_d$ be a distinguished system of parameters of M as in Lemma 4.5. Since $\mathcal{P}_D(M)$ is finite, so is $\{ P^d_D M(n) \mid n \in \mathcal{N}(x; M) \}$. We have by Theorem 4.7 and [3, Proposition 3.5] that M is sequentially generalized Cohen-Macaulay, as required. \Box
References

[1] D. Bayer and D. Mumford, What can be computed on algebraic geometry?, Computational Algebraic Geometry and Commutative algebra, Proceedings. Cortona 1991(D. Eisenbud and L. Robbiano, Eds), Cambridge University Press, 1993, pp. 1-48.

[2] N.T. Cuong, D.T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30 (2007) 409-428.

[3] N. T. Cuong and D. T. Cuong, On the structure of sequentially generalized Cohen-Macaulay modules, J. Algebra 317 (2007), 714-742.

[4] N. T. Cuong and D. T. Cuong dd-sequences and partial Euler-Poincaré characteristics of Koszul complex, Vietnam J. Math. 31 (2003), 353-358.

[5] N. T. Cuong, S. Goto and H. L. Truong, The Hilbert coefficients and sequentially Cohen-Macaulay module, J. Pure Appl. Algebra, 217 (2013), 470-480.

[6] N. T. Cuong, N. T. Long and H. L. Truong, Uniform bounds in Sequentially generalized Cohen-Macaulay Modules, Vietnam J. Math. 43 (2015), 343-356.

[7] N. T. Cuong and L. T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra, 267 (2003), 156-177.

[8] N. T. Cuong, P. Schenzel, N.V. Trung, Verallgemeinerte Cohen-Macaulay moduln, Math. Nachr. 85 (1978), 57-79.

[9] N. T. Cuong and H. L. Truong Parametric decomposition of powers of parameter ideals and sequentially Cohen-Macaulay modules, Proc. Am. Math. Soc. 137 (2009), 19-26.

[10] L. Ghezzi, S. Goto, J.-Y. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos. Cohen-Macaulayness versus vanishing of the first Hilbert coefficient of parameter ideals, J. London Math. Soc. 81 (2010), 679-695.

[11] S. Goto and K. Ozeki, Uniform bounds for Hilbert coefficients of parameters, Commutative algebra and its connections to geometry, Contemp. Math., 555, Am. Math. Soc., Providence, RI, (2011), 97-118.

[12] C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math. 46 (1982), 249-279.

[13] C. Huneke, I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Lecture Note Series, Vol. 336, Cambridge University Press, Cambridge (2006).

[14] N. T. Long, On adjusted Hilbert-Samuel function, Acta Math. Vietnamica. 40 (2015), 463-477.

[15] C. H. Linh and N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra 304 (2006), 1147-1159.

[16] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.

[17] K. Ozeki, H. L. Truong and H. N. Yen, On Hilbert coefficients and sequentially Cohen-Macaulay rings: Proc. Amer. Math. Soc., Vol. 150, no. 6, (2022) 2367-2383.

[18] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Van Oystaeyen, Freddy (ed.), Commutative algebra and algebraic geometry, New York: Marcel Dekker. Lect. Notes Pure Appl. Math., 206(1999), 245-264.

[19] H. L. Truong, Index of reducibility of parameter ideals and Cohen-Macaulay rings, J. Algebra 415 (2014), 35-49.

[20] H. L. Truong, Chern coefficients and Cohen-Macaulay rings, J. Algebra 490 (2017), 316-329.

[21] W. V. Vasconcelos, The degrees of graded modules, Lecture Notes in Summer School on Commutative Algebra, vol. 2, pp 141-196, Centre de Recerca Matematica, Bellaterra (Spain), 1996.

[22] W. V. Vasconcelos, Computational Methods in Commutative algebra and Algebraic Geometry, Springer-Verlag Berlin Heidelberg, 1998.

[23] W. V. Vasconcelos, The Chern coefficient of local rings, Michigan Math. J., 58, 2008, 725-713.

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Email address: ntculong@math.ac.vn

National Economics University, 207 Giai Phong Road, Hanoi, Vietnam

Email address: ntlong01@gmail.com

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam

Email address: hltruong@math.ac.vn, truonghoangle@gmail.com