God (≡ Elohim),
the first small world network

Marcel Ausloos $^{a,b,c}\ast$

a Group of Researchers Applying Physics in Economy and Sociology (GRAPES), Beauvallon, rue de la Belle Jardinière, 483/0021 Sart Tilman, B-4031, Liège Angleur, Belgium, Europe
e-mail: marcel.ausloos@uliege.be

b School of Business, University of Leicester, Brookfield, Leicester, LE2 1RQ, UK
e-mail: ma683@leicester.ac.uk

c Department of Statistics and Econometrics, Bucharest University of Economic Studies, 15-17 Dorobanti Avenue, District 1, 010552, Bucharest, Romania,
e-mail: marcel.ausloos@ase.ro

August 3, 2022
Abstract

In this paper, the approach of network mapping of words in literary texts is extended to "textual factors": the network nodes are defined as "concepts"; the links are "community connexions". Thereafter, the text network properties are investigated along modern statistical physics approaches of networks, thereby relating network topology and algebraic properties, to literary texts contents. As a practical illustration, the first chapter of the Genesis in the Bible is mapped into a 10 node network, as in the Kabbalah approach, mentioning God (≡ Elohim). The characteristics of the network are studied starting from its adjacency matrix, and the corresponding Laplacian matrix. Triplets of nodes are particularly examined in order to emphasize the "textual (community) connexions" of each agent "emanation", through the so called clustering coefficients and the overlap index, whence measuring the "semantic flow" between the different nodes. It is concluded that this graph is a small-world network, weakly disassortative, because its average local clustering coefficient is significantly higher than a random graph constructed on the same vertex set.

Keywords: textual factors, clustering coefficients, semantic flow, Genesis, overlap index, Kabbalah,

1 Introduction

"Good Lord, it's a small world, isn't it?" [1]

An answer is intended here below:

"Yes, it is: the Good Lord is a small world network".

... It's even the first one. [2]

In modern statistical physics [3], networks [4], underlying opinion formation of agents located at nodes [5], with links defined from data pertaining to social aspects [6], have gathered much interest. Many cases can be found in the literature [7]. Among particularly interesting topics, one encounters the case of finite size networks in which agents have small connectivity values; such cases are known to be "sociologically more realistic" [1, 8].

On the other hand, texts carry messages; they are statistically studied much since Shannon’s introduction of the information entropy definition [9].
More recently, it has been discussed that texts can be transformed into trees \cite{10,11} or better into networks in order to study their structure beside finding word and idea correlations \cite{12}.

Thereafter, one may point to interesting quantitative considerations about network related analyses of the characteristics of literary texts; for example, see \cite{13} about the morphological complexity of a language, \cite{14} about word length frequencies, or about sequences in Ukrainian texts \cite{15,16,17}, and still more recently, enjoyable texts analyses of fables in Slovene as in \cite{18,19}.

There are many other papers reporting studies of word and sequences frequencies, or different language connections as on networks. However to quote all such papers would lead to a useless digression so far, but see the recent \cite{18} which can serve as a recent review, beside these papers: \cite{20}-\cite{28}.

In brief, the present study pertains to applications of statistical physics measures and models like those studied in language evolution and in linguistics \cite{20}-\cite{28}.

In all cases, relevant scientific questions pertain to the dynamics of collective properties, not only of agents on the network, but also by the network structure itself \cite{20}. An interesting structure is the "small world network" (SWN), introduced by Watts and Strogatz \cite{30}. In a SWN, the neighbors of any given node are both likely to be neighbors of each other and also be reached from every other node by a small number of linking "steps" \cite{31,32}.

I propose to discuss a 10 node network, as obtained from the first chapter of Genesis \cite{33}, the so called "Tree of Life", through the kabbalistic (yosher) tradition \cite{34}.

Notice that due to its size, this Genesis network might be also expected to become as useful as the karate club data (which has 44 nodes) \cite{35} or the acquaintance network of Mormons (which has 43 nodes) \cite{36}, both previously known in the literature for paradigmatic studies of SWNs \footnote{Other small networks, recently studied, are the Intelligent design-Darwin evolution controversy, or financial and geopolitical networks.}.

One might wonder why as "serious scientists", interested in social networks for describing communications between agents, we should care about the structure of such an \textit{a priori} "mystic network". Such a network is based on information flow between concepts, - not between words, as it should be emphasized. The matter seems not to have been studied from statistical physics points of view. Nevertheless, one may sort out \cite{37} for a thermodynamic approach. Thus, I hope to connect the network analysis methodology
with that followed in kabbalistic studies, - which are much tied to numerology. Moreover, the present work aims to contribute at introducing a quantitative approach to the analysis of the interaction between "agents", - here being called sephirot [38, 39, 40], in small networks.

Thus, in this paper, the previous approaches on text structure studies through word correlations is extended to "textual factors". Indeed, the network nodes are defined as "concepts"; the links are "community connexions". The characteristics of the network are studied starting from its adjacency matrix, - its eigenvalues, whence providing a measure of the "semantic flows" between the different nodes. The network Laplacian matrix is also studied along the same lines. Together with Kirchhoff’s theorem, and Cheeger’s inequality, the "spectrum gap" (between the two smallest eigenvalues) can be used to calculate the number of spanning trees for a given graph [41]. Indeed, the sparest cut of a graph can be approximated through the second smallest eigenvalue of its Laplacian by Cheeger’s inequality. Furthermore, the spectral decomposition of the Laplacian matrix allows constructing low dimensional embeddings that appear in many machine learning applications and determines a spectral layout in graph drawing, as claimed in https://en.wikipedia.org/wiki/Laplacian_matrix (accessed on March 26, 2022).

In so doing, one adds a quantitative set of values for an answer to a question raised in [42] on the classes of SWN examined in the literature [43].

Besides, the present numerical approach might be in line with modern studies in Kabbalah research about numbering [44, 45], and quantitative studies on religious adhesion or religiosity aspects [46]-[53], as recently used in socio-physics for examining growth processes, opinion formation, and related topics. This paper is in line with such a frontiers in physics approach.

After introducing the data set, its origin, in Sect. 2 it seems rather appropriate to provide the whole adjacency matrix (10 x 10). Its construction goes in lines with studies on large-scale networks, like co-authorship networks [43, 54]. The present network structural aspects are first outlined, before searching for subsequent numerical and statistical aspects, through a few usual network characteristics in Sect. 3. A similar study is performed for the network Laplacian matrix.

Nevertheless, let it be here pointed out that triplets of nodes are particularly examined in order to emphasize the agent ("emanation") community connexions through the so called clustering coefficient [30] and the overlap index [55], in Sect. 4 and Sect. 5 respectively. The results prove the SWN
nature of the 10 sephirots network. For completeness, some other network characteristics, like the assortativity coefficient [56], are calculated and reported. A kabbalistic ”generalized point of view” is provided.

2 The data set

Let us consider as the demonstration of the approach a text in which concepts are somewhat hidden, - in the present case within some mystical concept, but without any loss of generality from a theoretical point of view. The data, downloaded from [34], emerges from the kabbalistic interpretation of the occurrence of ”spiritual principles” at the universe creation. In brief, the Kabbalah [38, 39, 40] seems to infer, from the Genesis first chapter, that ”The Infinite” (God) has ”emanations” which form a network of ten nodes, like on Fig. 1; the ”node names” are given for further reference in Table 1. The network so symmetrically displayed is made of 3 ”columns”. (Alternative configurations are given by different schools in the historical development of Kabbalah, with each articulating different spiritual aspects; to distinguish the variants is not very relevant for the present investigation [39]. The enumeration of the 10 nodes, as on Fig. 1 is stated in the Sefer Yetzirah [38, 39, 40] .) Notice that the Tree of Life nodes are arranged onto seven planes; 7 being a mystic (or sacred) number.

Between the 10 sephirots, run 22 channels, or paths [59]. These links are interpreted as the specific connections of (”spiritual”) information flow. In the present case, the flow of information goes according to the node number hierarchy; such a type of directed flow consideration has been recently studied in [60] in a different context.

In so doing, an adjacency matrix \(G = (g_{ij}) \in \mathbb{R}^{N \times N} \) can be built, with \(g_{ij} = 1 \) for an existing link between 2 connected nodes, \(\nu_i \) and \(\nu_j \), selected among the \(N = 10 \) nodes here, and \(g_{ij} = 0 \) otherwise, i.e.,

\[g_{ij} = \begin{cases} 1 & \text{if } (\nu_i, \nu_j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}\]

This paper is not intended to justify of infirm studies of the Bible through Kabbalah methods [57, 58]. However, it can be pointed out that the interaction of Kabbalah with modern physics has generated its own literature, up to including renaming the elementary particles with kabbalistic (Hebrew) names or developing kabbalistic approaches to debates on evolution.

For example, instead of a ”tree” with 3 ”columns”, the iggulim representation depicts the sefirot as a succession of concentric circles [34].
Figure 1: The network of 10 sephirots; notations of node labels are found in the main text.
\[g_{ij} = \begin{cases}
1 & \text{if } \nu_i \text{ and } \nu_j \text{ are connected nodes} \\
0 & \text{otherwise.}
\end{cases} \quad (1) \]

Thus, all diagonal terms are 0; the matrix is symmetric; it has 44 finite elements, i.e. \(2L\), the number of links. In this study, the links are neither directional nor weighted; the nodes have also no "strength".

For further reference, let us here introduce an alternative to the adjacency matrix, i.e. the so called Laplacian matrix of the network: \(\Lambda = (\lambda_{ij}) \in \mathbb{R}^{10 \times 10} \), with

\[\lambda_{ij} = \begin{cases}
-1 & \text{if } \nu_i \text{ and } \nu_j \text{ are connected nodes} \\
d_{\nu_i} & \text{if } \nu_i \equiv \nu_j \\
0 & \text{otherwise,}
\end{cases} \quad (2) \]

where \(d_{\nu_i}\) is the degree of the node \(\nu_i\), i.e. the number of links at the node.
In brief, the Laplacian matrix \(\Lambda\) is the difference between a diagonal matrix \(\Delta\) reporting the degree of the node and the adjacency matrix of the graph.

For completeness, let us mention the finite elements of \(\Delta = (d_{ij}) \in \mathbb{R}^{N \times N}\) through the degree list defined as \(D = (d_{\nu_1}, d_{\nu_2}, ..., d_{\nu_N})\), which reads here \(D = (3, 5, 5, 5, 8, 4, 4, 4, 1)\)

Thus, the adjacency matrix reads

\[
G = \begin{pmatrix}
-1 & 1 & 1 & - & - & 1 & - & - & - & - \\
1 & -1 & 1 & 1 & 1 & - & - & - & - & - \\
1 & 1 & - & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & - & - & 1 & 1 & 1 & - & - & - \\
-1 & 1 & - & 1 & 1 & 1 & - & - & - & - \\
-1 & 1 & 1 & - & 1 & 1 & 1 & - & - & - \\
1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & - \\
-1 & - & - & 1 & 1 & -1 & 1 & 1 & - & - \\
-1 & - & - & - & 1 & 1 & 1 & -1 & 1 & - \\
-1 & - & - & - & - & 1 & 1 & 1 & -1 & - \\
-1 & - & - & - & - & - & - & 1 & - & -
\end{pmatrix} \quad (3)
\]

in which each 0 is replaced by a - for better readability. The \(\Lambda\) matrix is written and analyzed below.

Anyone knows that when there is a matrix, one looks for eigenvalues and eigenvectors: the (necessarily real) eigenvalues are found to be equal to:

\[5.02314, 2.21045, 0.61803, 0.13191, 0.00000, -1.00000, -1.36550, -1.61803, -2.00000, -2.00000,\]
Table 1: Characteristics of the network matrix G, with hereby defined node (i) notations, (Hokm. = Hokmah; Geb. = Gebourah; Tiph. = Tiphereth; Malk. = Malkouth) in the first and second columns, and their corresponding number of links (d_{ν_i}). The values of usual structural information for networks are given: the probability p_i that a vertex ν_i has a degree d_{ν_i}; q_i is fully defined in Eq. (10) in terms of p_i and the i vertex degree d_{ν_i}; the possible maximum number of different wedges, $(d_{\nu_i}(d_{\nu_i} - 1)/2)$; the number of triads ($e_i$) associated to a given node (i) in G; VCC, the corresponding clustering coefficient (c_i) of a vertex i, - from which one deduces the global clustering coefficient (GCC) of the network; and Γ_i, the local clustering coefficient (LCC) of a vertex i, - from which one deduces the average local clustering coefficient for the network, see Sect. 4.2.

G matrix	node name	n.links	p_i (%)	q_i (%)²	$d_{\nu_i}(d_{\nu_i} - 1)/2$	n.triads	VCC	LCC	Γ_i
1Kt	Kether	3	6.82	9.21	3	3	1	6/6	
2Hk	Hokm.	5	11.4	25.6	10	6	0.6	13/15	
3Bn	Binah	5	11.4	25.6	10	7	0.7	12/15	
4Hs	Hesed	5	11.4	25.6	10	7	0.7	12/15	
5Gb	Geb.	5	11.4	25.6	10	7	0.7	12/15	
6Tph	Tiph.	8	18.2	65.5	28	13	0.464	21/36	
7Nt	Netsah	4	9.09	16.4	6	3	0.5	8/10	
8Hd	Hod	4	9.09	16.4	6	3	0.5	8/10	
9Ys	Yesod	4	9.09	16.4	6	3	0.5	7/10	
10Mlk	Malk.	1	2.27	1.02	0	0	0	1	
Table 2: The \((N_{i,j})\) number of different (undirected information flow) paths between two nearest neighbors \(i\) and \(j\), through a nearest neighbor \(k\).

They are distributed in a (quasi logarithmically) decreasing order: \(y = 4.503 - 6.865 \log(x)\), with \(R^2 = 0.977\).

Thereafter, one can look for the 10 eigenvectors; however, they are not shown for saving space, - their writing being irrelevant within the present aim. Nevertheless, the above suggests that a Principal Component Analysis can be a complementary valuable investigation for "community detection".

The network Laplacian matrix reads

\[
\Lambda = \begin{pmatrix}
3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & 5 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & 5 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 5 & -1 & -1 & 8 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & 4 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & 4 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & 4 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & 4 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 4 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1
\end{pmatrix}
\]

(4)

The eigenvalues are:

9.01939, 6.61803, 6.48072, 6.00000, 5.13659, 4.38197, 3.48940, 2.13004, 0.74387, 0.00000.

They are distributed according to: \(y \simeq 9.478 - 0.923 x\); with \(R^2 = 0.971\).
Together with Kirchhoff’s theorem, the Laplacian matrix eigenvalue spectrum can be used to calculate the number of spanning trees for a given graph, \(\eta \). The sparsest cut of a graph can be approximated through the second smallest eigenvalue of its Laplacian, i.e. \(\lambda_2 = 0.74387 \), here, by Cheeger’s inequality. Since the Laplacian matrix spectral gap is also obviously equal to 0.74387, one finds

\[
\frac{\lambda_2}{2} \leq \eta \sqrt{\lambda_2(2d_{v_j}^{(M)} - \lambda_2)}
\]

(5)

where \(d_{v_j}^{(M)} (= 8) \) is the largest node degree. Thus, \(0.372 \leq \eta \leq 3.369 \).

3 Data statistical analysis

Next, one proceeds performing some classical structural analysis as usual on such networks, i.e. an analysis of indicative coefficients: one obtains the network node in- and out-degree distributions, the network assortativity, the (Global and Local) Clustering Coefficients, and the Average Overlap Index.

In the present case, the matrix, or network, is symmetric, whence the number of links exiting from a node \(v_j \), i.e. the out − degree, is equal to the in − degree number. The largest degree (=8) is for node 6; the smallest (=1) is for node 10; the average degree, counting both out − degrees and in − degrees is easily found to be 4.4.

On Table 1, one also gives for each node, the degree, i.e. the number of links \(d_{v_i} \) exiting from or entering into each node \(v_i \). Table 1 also reports the possible maximum number of different wedges, \((d_{v_i}(d_{v_i} - 1)/2) \), and triads, \((e_i) \), associated to a given node \(v_i \) in \(G \).

In addition, we report he number \((N_{i,j}) \) of different paths going through a nearest neighbor \(k \) of two nearest neighbors \(i \) and \(j \) in Table 2. This number is equivalent to the number of triangles sharing the link \((i,j) \).

4 Clustering

The tendency of the network nodes to form local interconnected groups is a convincing arguments for describing social networks along the statistical physics modern formalism. Such a behavior is usually quantified by a measure referred to as the clustering coefficient [30]. The amount of studies on this
characteristic of networks has led to the particularization of the term in order to focus on different complex features of networks. Here, one considers the global clustering coefficient and the local clustering coefficient, together with the overlapping index, and the assortativity for a text mapped into a network.

Indeed, the most relevant elements of a heterogeneous agent interaction network can be identified by analyzing global and local connectivity properties. In the present case, this can be attempted by analyzing the number of triangles with agent (or "emanation") nodes belonging to the same "community" or not, depending on the type of connexions. The former number gives some hierarchy information; the latter some reciprocity measure, i.e. recognition of leadership or proof of some challenging conflict among the emanations.

4.1 Global Clustering Coefficient

The global clustering coefficient (GCC) of the network is defined as \(< c_i \rangle\), the average of \(c_i\) over all the vertices in the network, \(< c_i \rangle = \sum c_i / N\), where \(N\) is the number of nodes of the network, and where the clustering coefficient \(c_i\) of a vertex \(i\) is given by the ratio between the number \(e_i\) of triangles sharing that specific vertex \(i\), and the maximum number of triangles that the vertex could have. If a node \(i\) has \(d_{\nu_i}\) neighbors, then the so called clique, i.e. a complete graph in fact, would have \(d_{\nu_i}(d_{\nu_i} - 1)/2\) triangles at most, thus one has,

\[
c_i = \frac{2}{d_{\nu_i}(d_{\nu_i} - 1)} e_i
\]

The value of GCC is found to be \(< c_i \rangle = 0.5564\), from the raw data in Table 4.

4.2 Local Clustering Coefficient

In the literature \([43]\), the term 'clustering coefficient' refers to various quantities, relevant to understand the way in which nodes form communities, under some criterion. By definition, the "local clustering coefficient" (LCC) \(\Gamma_i\) for a node \(i\) is the number of links between the vertices within the nearest neighbourhood of \(i\) divided by the maximum number of links that could possibly exist between them. It is relevant to note that the above GCC is not trivially related to the LCC, e.g. the GCC is not the mean of LCC. In the former
case, triangles having common edges are emphasized, in the latter case only the number of links is relevant. This number of links common to triangles sharing the node \(i\) can vary much with the number of connected nearest neighbour nodes indeed. Basically, the GCC value quantifies how much the neighbors of \(i\) are close to being part of a complete graph. In contrast, LCC rather serves to determine whether a network is a SWN \([30]\) or not.

The LCC \((\Gamma_i)\) values are given in Table 1 under a ratio form in order to emphasize that the numerator of the fraction is the sum of \(d_{\nu_i}\) plus the number of links making triangles in the nearest neighborhood of \(i\), while the denominator is obviously \(d_{\nu_i}(d_{\nu_i} + 1)/2\). It is easily deduced that \(< \Gamma_i > = 0.8217\).

There is no drastic conclusion to draw from this specific value, since not many corresponding values are reported in the literature allowing a comparison with other networks \([61]\). Yet, let it be recalled that the lower the \(\Gamma_i\) values, the less "fully connected" appears to be the network. This is not the present case.

However, let it be emphasized that a graph is considered to be small-world, if its average local clustering coefficient is significantly higher than a random graph constructed on the same vertex set, i.e. here with \(N = 10\). Thus, one confirms that the present network looks like a SWN rather than either a random network (RN) or a complete graph (CG).

5 Average Overlap Index

Finally, for characterizing members of communities, in another hierarchical way, let us also calculate the Average Overlap Index (AOI) \(O_{ij}\); its mathematical formulation and its properties are found in \([55]\) in the case of a unweighted network made of \(N\) nodes linked by \((ij)\) edges,

\[
O_{ij} = \frac{N_{ij} (d_{\nu_i} + d_{\nu_j})}{4 (N - 1) (N - 2)}, \quad i \neq j
\]

(7)

where \(N_{ij}\) is the measure of the common number of (connected) neighbors to the \(i\) and \(j\) nodes. In the present case: \(4(N - 1)(N - 2) = 288\) N.B. in a fully connected network, \(N_{ij} = N - 2\). Of course, \(O_{ii} = 0\) by definition.
Table 3: \(O_{i,j} \): the numerator of the overlap index, Eq. (7), of the neighboring \(\nu_i \) and \(\nu_j \) nodes; and \(\langle O_i \rangle \), the average overlap index, Eq. (8).

N.B. \(288 = 4(N - 1)(N - 2) \), while \(\sum_i \sum_j O_{i,j} = 1228 \).

The Average Overlap Index for the node \(i \) is defined as:

\[
\langle O_i \rangle = \frac{1}{N-1} \sum_{j=1}^{N} O_{ij}.
\]

(8)

The values are given in Table 3.

This measure, \(\langle O_i \rangle \), can be interpreted indeed as an other form of clustering attachment measure: the higher the number of nearest neighbors, the higher the \(\langle O_i \rangle \), the more so if the \(i \) node has a high degree \(d_{\nu_i} \). Since the summation is made over all possible \(j \) sites connected to \(i \) (over all sites in a fully connected graph), \(\langle O_i \rangle \) expresses a measure of the local (node) density near the \(i \) site.

Recall also that in magnetic networks, the links are like exchange integrals between spins located at \(i \) and \(j \). An average over the exchange integrals provides an estimate of the critical (Curie) temperature at which a spin system undergoes an order-disorder transition, and conversely. Therefore \(\langle O_i \rangle \) can also be interpreted, in a physics sense, as a measure of the stability of the node versus perturbations due to an external (for example, thermal) cause. In other words, in the present context, a high \(\langle O_i \rangle \) value reflects the \(i \) node strong attachment to its community: the main "textual factor" is
thereby emphasized. Here, for our illustrative example, the highest value (≈ 0.074) correspond to the 6th node ("emanation"), Tiphereth, - as should have been also visually expected from Fig. 1.

The average overlap index of each node, obtained according to Eq. (8), are given in Table 3. The order of magnitude of the $\langle O \rangle$ values are ~ 0.05, much smaller than in other investigated cases, like in [55] (or [62]). This is due to the low value of N_{ij}, in the present case.

For completeness, observe that $\sum_i \sum_j O_{ij} = 1228$, whence $1288/288 = 4.472$, which divided by N leads to ~ 0.4472, as another characteristic of the average overlap number of triangles throughout the network.

In order to indicate some aspect of the attachment process in a network, one can calculate its so called "assortativity" [56]. The term refers to a preference for a network node to be attached to others, depending on one out of many node properties [56]. Assortativity is most often measured after a (Pearson) node degree correlation coefficient r

$$r = \frac{\sum_{i,j=1}^{N} q_i q_j g_{ij} - [\sum_{i,j=1}^{N}(q_i + q_j)g_{ij}]^2 / L}{\sum_{i,j=1}^{N}((q_i^2 + q_j^2)g_{ij}) - [\sum_{i,j=1}^{N}(q_i + q_j)g_{ij}]^2 / L}$$

(9)

where

$$q_i = \frac{k_i p_i}{\sum_i k_i p_i},$$

(10)

where k_i is the i vertex (total) degree $d_{i\nu}$, in which p_i is the probability that a vertex i has a degree $d_{i\nu}$ (this can be here obtained/read from Fig. 1 or Table 1): L is the number of connecting channels ($= 22$, here); $r = 1$ indicates perfect assortativity, $r = -1$ indicates perfect "dis-assortativity", i.e. a perfectly negative correlation.

For the (text based) network of interest here, we have found, $r = -0.229$, a quite negative value for the assortativity notion, in most networks. The present finding is somewhat surprising, since according to [56], almost all "non-social networks" [56] seem to be quite dis-assortative, even though the "social networks" usually present significantly assortative mixing. However, the technological and biological networks usually are all dis-assortative: the hubs are (primarily) connected to less connected nodes, dixit Newman [56]. The present case is a weakly dis-assortative network.

In order to show a positive value of r, a network must have some specific additional structure that favors assortative mixing, i.e. a division into communities or groups; a contrario, to see significant dis-assortativity, the
highest degree vertices in the network need to have degree on the order of \(\sqrt{N} \), where \(N \) is the total number of vertices, so that there is a substantial probability of some vertex pairs sharing two or more edges. Here \(\sqrt{22} \approx 4.69 \); the highest degree which is for \(Tiphereth = 8 \) is (at once visually found from Fig. 1) the “knowledge transfer hub”, - the most important emanation.

One may consider the practical aspects resulting from the node characteristics, next those from links. In relation to a “generalized kabbalistic point of view”, one may make the following comments.

Let us observe two new integer numbers appearing through the study: 288 and 1228. Notice that

- 288: this number contains profound significance; in Kabbalah, it refers to the number of “sparks” that God had to remove in order to create the world; see https://www.biblegematria.com/288-holy-sparks.html (Accessed March 01, 2022)
- 1228: the Hebrew name of Simon Peter, Symehon Hacephi, is 1228 in Hebrew name numeration; ([63], p. 54).

Comments and suggestions on such a ”society structure” within formal texts can be thought to arise from similar numerical perspectives.

6 Conclusions

In frontiers science, prior to scientific excitations and paper avalanches, there are modest inter-connections, between authors and between fields. This is one of the underlying ideas for the present problem, not at the level of authors but at the semantic level, - justifying the study. Two apparently unrelated research fields are interconnected. One can study texts through network mappings, - nothing new. I recall that the Ukrainian language network used in the selected fables studied in [15] is a strongly correlated, scale-free, small world network. In the present case, one goes a little bit further: instead of another word correlation study, one examines textual concept distributions. Moreover, picking up a basic text with some mystic ingredient, one covers a wide gap between various disciplines, with a physics support.

\[^{4}\text{It is thought that the earth’s average surface temperature = 288 K, but that might neither be relevant, nor suggests further investigation.}\]
One has proposed to examine a theoretical question on applied linguistics, with a specific illustration, but in so doing also asked: do the sephirot, thus nodes and links of a mystic network, mean something from a statistical physics point of view, knowing their "esteem" or "sense" in kabbalistic work? Thus, in fact, the study has some similarity to other "social network" considerations: mutatis mutandis, in the present problem the agents are the sephirot, while the links carry the information flows between emanations.

Practically, the yosher kabbalistic mapping of a selection of concepts from the Genesis in the Bible produces a network [34]. In order to characterize the necessarily small network, based on its adjacency matrix, one has calculated a few specialisation coefficients. Surely, in future work, one could consider many other quantities of interest for networks [64]; the matter is left for the imagination of concerned researchers.

In particular, assortativity characteristics of the network have been examined, - in so doing searching whether there is a proof of any preference of a sephirot attachment to some sub-networks. Examining the whole network, through their communities and the inter-community links, it is found that the sephirots are neither perfectly assortative nor perfectly dis-assortative. From the values of the Pearson node degree correlation coefficient r it is asserted that the network is rather dis-assortative, - but weakly correlated in contrast to the fables in [15]. This is contrasted to fictional social networks [65, 66] which are found to be small-world, highly clustered, and hierarchical, which typically differ from real ones in connectivity and levels of assortativity [18].

According to [65], a clustering coefficient can (also) be defined by

$$C = \frac{1}{N} \frac{[<\kappa^2>-<\kappa>^2]}{<\kappa>^3},$$ \hspace{1cm} (11)

where κ is the excess degree; in the present text case, $<\kappa> = 3.4$. Thus, $C = 0.308$.

In order to characterize in greater detail the intercommunity structure complexity, - its "information flow", one can also consider elementary entities made of a few sephirots. The smallest (geometric) cluster to be examined is the triangle. In this respect the study of the local clustering coefficients indicates a low value for these inter-community sub-networks. The average overlap index (AOI) [55] allows to extract from the clusters those nodes which inside their community and with respect to the others are the centers of more
attention. One may claim that one gives some scientific (statistical physics) emphasis to one kabbalistic emanation.

From a fundamental statistical physics point of view, one may emphasize the "added value" of the present investigation. Return to Amaral et al. [42] who have proposed three classes of SWN: (i) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (ii) broad-scale networks, characterized by a connectivity distribution that has a power law regime followed by a sharp cutoff; and (iii) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. The analyses presented in the main text suggest that the network belongs to the third category. It should be of course of interest to find out if this conclusion holds for other "textual factors" in other literary texts.

Finally, let it be recalled that some time ago, "God is a mathematician", was concluded by Newman [67] and questioned by Livio [68]. Elsewhere, one may find the question: "Is God a geometer?" [69].

Apparently, according to the present text analysis of the Genesis, God (≡ Elohim) is also the (chronologically) first small world network, - for the monotheistic religions.

Acknowledgements: Thanks to Prof. Emmanuel E. Haven and Prof. Claudiu Herteliu, for numerous and encouraging comments. Thanks also to Prof. Roy Cerqueti and Prof. Krzysztof Kulakowski for comments on a previous version. Moreover, special thanks go to Rabbi Mark L. Solomon for his very kind highlighting comments.

Conflict of interest statement: The author declares that the research was conducted in the absence of any philosophical, commercial or financial relationships that could be construed as a potential conflict of interest.

Funding: Work partially supported by the Romanian National Authority for Scientific Research and Innovation, under UEFISCDI PN-III-P4-ID-PCCF-2016-0084 research grant.

Ethics: no animal, no human was mistreated during this study, to the best knowledge of the author.

• Studies involving animal subjects. Generated Statement: No animal studies are presented in this manuscript.
• **Studies involving human subjects. Generated Statement:** No human studies are presented in this manuscript.

• **Inclusion of identifiable human data. Generated Statement:** No potentially identifiable human images or data is presented in this study.

References

[1] Milgram, S. The small world problem. *Psychology Today* (1967) 2(1): 60-67.

[2] Milgram could also have written: "Oh my god, what a small world". He did not. Could he? But we all can understand that "Good lord," \equiv "My god!".

[3] Stauffer, D. (2004). Introduction to statistical physics outside physics. *Physica A: Stat Mech its Appl* (2004) 336: 1-5.

[4] Pastor-Satorras R, Vespignani A. *Evolution and structure of the Internet: A statistical physics approach* Cambridge, UK: Cambridge University Press (2007).

[5] Lambiotte R, Ausloos M. Coexistence of opposite opinions in a network with communities. *J Stat Mech* (2007) 2007(08): P08026.

[6] Chakrabarti B, Chakraborti A, Chatterjee A. Econophysics and Socio- physics: Trends and Perspectives. Hoboken, NJ, USA: John Wiley & Sons (2006).

[7] da Fontoura Costa L, Oliveira Jr ON, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE. Analyzing and modeling real-world phenomena with complex networks: a survey of applications. *Adv Phys* (2011) 60(3): 329-412.

[8] Killworth PD, Johnsen EC, Bernard HR, Shelley GA, McCarty C. Estimating the size of personal networks. *Social Networks* (1990) 12(4): 289-312.
[9] Shannon CE. A mathematical theory of communication. *The Bell System Technical Journal* (1948) 27(3): 379-423.

[10] Benedetto D, Caglioti E, Loreto V. Language trees and zipping. *Phys Rev Lett* (2002) 88(4): 048702.

[11] Khmelev DV, Teahan WJ. Comment on “Language trees and zipping”. *Phys Rev Lett* (2003) 90(8): 089803.

[12] Masucci AP, Rodgers, G.J. Network properties of written human language. *Phys Rev E* (2006) 74(2): 026102.

[13] Liu H, Xu C. Can syntactic networks indicate morphological complexity of a language?. *Europhys Lett* (2011) 93: 28005.

[14] Smith R. Distinct word length frequencies: distributions and symbol entropies. *Glottometrics* (2012) 23: 7-22.

[15] Holovatch Y, Palchykov V. Complex networks of words in fables. Maths Meets Myths: Quantitative Approaches to Ancient Narratives (Kenna R, MacCarron M, MacCarron P. eds), Understanding Complex Systems. Cham: Springer, (2017) pp. 159-175

[16] Buk S, Krynytskyi Y, Rovenchak A. Properties of autosemantic word networks in Ukrainian texts. *Adv Compl Syst* (2019) 22(06), 1950016.

[17] Rovenchak A, Buk S. Part-of-speech sequences in literary text: Evidence from Ukrainian *J Quant Ling* (2018) 25(1): 1-21.

[18] Markovič R, Gosak M, Perc M, Marhl M, Grubelnik, V. Applying network theory to fables: complexity in Slovene belles-lettres for different age groups. *J Compl Netw* (2019) 7(1):114-127.

[19] Perc M. Beauty in artistic expressions through the eyes of networks and physics. *J R Soc Interface* (2020) 17(164): 20190686.

[20] da Fontoura Costa L, Sporns O, Antiqueira L, das Graças Volpe Nunes M, Oliveira Jr ON. Correlations between structure and random walk dynamics in directed complex networks. *Appl Phys Lett* (2007) 91(5): 054107.
[21] Antiqueira L, Nunes MDGV, Oliveira Jr ON, da Fontoura Costa L. Strong correlations between text quality and complex networks features. *Physica A: Stat Mech its Appl* (2007) 373: 811-820.

[22] Sheng L, Li C. English and Chinese languages as weighted complex network. *Physica A: Stat Mech its Appl* (2009) 388(12): 2561-2570.

[23] Mehri A, Darooneh AH. Keyword extraction by nonextensivity measure. *Phys Rev E* (2011) 83(5): 056106.

[24] Ausloos M. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. *Phys Rev E* (2012) 86(3): 031108.

[25] Ausloos M. Measuring complexity with multifractals in texts. Translation effects. *Chaos, Solitons & Fractals* (2012) 45(11): 1349-1357.

[26] Amancio DR. Probing the topological properties of complex networks modeling short written texts. *PLoS One* (2015) 10(2): e0118394.

[27] Kalimeri M, Constantoudis V, Papadimitriou C, Karamanos K, Diakonos FK, Papageorgiou H. Word-length entropies and correlations of natural language written texts. *J Quant Ling* (2015) 22(2): 101-118.

[28] Stanisz T, Kwapień J, Drożdż S. Linguistic data mining with complex networks: A stylometric-oriented approach. *Information Sciences* (2019) 482: 301-320.

[29] Lambiotte R, Panzarasa, P. Communities, knowledge creation, and information diffusion. *J Informetrics* (2009) 3(3): 180-190.

[30] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. *Nature* (1998) 393(6684): 440-442.

[31] Watts DJ. Small worlds: The dynamics of networks between order and randomness. Princeton: Princeton University Press (2000).

[32] Newman ME. Models of the small world. *J Stat Phys* (2000) 101(3): 819-841.
Available at: https://en.wikipedia.org/wiki/Sefirot. Accessed on Dec. 30, 2020.

Zachary WW. An information flow model for conflict and fission in small groups. *J Anthropol Res* (1977) 33(4): 452-473.

Bernard HR, Killworth PD, Evans MJ, McCarty C, Shelley GA. Studying social relations cross-culturally. *Ethnology* (1988) 27(2): 155-179.

Rovenchak A, Buk S. Defining thermodynamic parameters for texts from word rank-frequency distributions. *J Phys Stud* (2011) 15: 1005.

Idel M. The Early Kabbalah. Mahwah, NJ, USA: Paulist Press (1986).

Idel M. Absorbing perfectionss: Kabbalah and interpretation. New Haven, CT, USA: Yale University Press (2008).

Dan J. Kabbalah: A very short introduction. Oxford: Oxford University Press (2007).

Watanabe T, Masuda N. Enhancing the spectral gap of networks by node removal. *Phys Rev E* (2010) 82(4): 046102.

Amaral LAN, Scala A, Barthelemy M, Stanley H.E. Classes of small-world networks. *Proc Natl Acad Sci USA* (2000) 97(21): 11149-11152.

Newman ME. The structure of scientific collaboration networks. *Proc Natl Acad Sci USA* (2001) 98(2): 404-409.

Huss B. The new age of Kabbalah: Contemporary Kabbalah, the new age and postmodern spirituality. *J Modern Jewish Studies* (2007) 6(2): 107-125.

Garb J. The Modernization of Kabbalah: A Case Study. *Modern Judaism* (2010) 30(1): 1-22.

Ausloos M, Petroni F. Statistical dynamics of religions and adherents. *Europhys Lett* (2007) 7: 38002.
Ausloos M, Petroni F. Statistical dynamics of religion evolutions. *Physica A: Stat Mech its Appl* (2009) 388: 4438-4444.

Ausloos M, Herteliu C. Statistical Analysis of the Membership Management Indicators of the Church of England UK Dioceses during the Recent (XXth Century) “Decade of Evangelism”. *Stats* (2021) 4(4): 1069-1079.

Hayward J. Mathematical modeling of church growth *J Math Sociol* (1999) 23: 255-292.

Hayward J. A general model of church growth and decline *J Math Sociol* (2005) 29: 177-207.

Picoli Jr S, Mendes RS. Universal features in the growth dynamics of religious activities. *Phys Rev E* (2008) 77: 036105.

Rotundo G, Ausloos M. Organization of networks with tagged nodes and biased links: A priori distinct communities: The case of intelligent design proponents and Darwinian evolution defenders.” *Physica A: Stat Mech its Appl* (2010) 38: 5479-5494.

Herteliu C, Ileanu BV, Ausloos M, Rotundo G. Effect of religious rules on time of conception in Romania from 1905 to 2001. *Human Reproduction* (2015) 30(9): 2202-2214.

Hellsten I, Lambiotte R, Scharnhorst A, Ausloos M. Self-citations, co-authorships and keywords: A new approach to scientists’ field mobility?.. *Scientometrics* (2007) 72(3): 469-486.

Gligor M, Ausloos M. Clusters in weighted macroeconomic networks: the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations. *Eur Phys J B* (2008) 63(4): 533-539.

Newman ME. Assortative mixing in networks. *Phys Rev Lett* (2002) 89(20): 208701.

Ginzberg L, Kohler K. ”Cabala”. Jewish Encyclopedia. Philadelphia, PA: Kopelman Foundation (1906).

Dennis GW. ”What is Kabbalah?". ReformJudaism.org. (Union for Reform Judaism, New York, NY, 2014).
[59] Such a number of links can be associated with the 22 letters of the Hebrew alphabet.

[60] Suchecki K, Hołyst JA. Hierarchy Depth in Directed Networks. *Entropy* (2022) 24(2): 252.

[61] The clustering coefficient of a random graph is equal to $<k>/N$, i.e., $= 0.44$ in the present text case.

[62] Redelico FO, Proto AN, Ausloos M. Hierarchical structures in the Gross Domestic Product per capita fluctuation in Latin American countries. *Physica A: Stat Mech its Appl* (2009) 388(17): 3527-3535.

[63] Skinner S. *The Complete Magician’s Tables* (Golden Hoard Press, Singapore, 2006).

[64] Bernard HR, Johnsen EC, Killworth PD, McCarty C, Shelley GA., Robinson S. Comparing four different methods for measuring personal social networks. *Social Networks* (1990) 12(3): 179-215.

[65] Newman ME, Park J. Why social networks are different from other types of networks. *Phys Rev E* (2003) 68(3): 036122.

[66] Choi YM, Kim HJ. A directed network of Greek and Roman mythology. *Physica A: Stat Mech its Appl* (2007) 382(2): 665-671.

[67] Newman K. God is a Mathematician. Available at: http://www.biblebelievers.org.au/panin2.htm Accessed on Aug. 27, 2015.

[68] Livio, M. *Is God a mathematician?*. New York, NY, USA: Simon and Schuster (2010).

[69] Stewart I, Golubitsky M. *Fearful symmetry: Is God a geometer?*. Chelmsford, MA, USA: Courier Corporation. (2010).