A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews

Praphula Kumar Jain1,** and Rajendra Pamula1

1 Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, JH, INDIA

Abstract

Consumer sentiment analysis is a recent fad for social media related applications such as healthcare, crime, finance, travel, and academics. Disentangling consumer perception to gain insight into the desired objective and reviews is significant. With the advancement of technology, a massive amount of social web-data increasing in terms of volume, subjectivity, and heterogeneity, becomes challenging to process it manually. Machine learning techniques have been utilized to handle this difficulty in real-life applications. This paper presents the study to find out the usefulness, scope, and applicability of this alliance of Machine Learning techniques for consumer sentiment analysis on online reviews in the domain of hospitality and tourism. We have shown a systematic literature review to compare, analyze, explore, and understand the attempts and direction in a proper way to find research gaps to illustrating the future scope of this pairing. This work is contributing to the extant literature in two ways; firstly, the primary objective is to read and analyze the use of machine learning techniques for consumer sentiment analysis on online reviews in the domain of hospitality and tourism. Secondly, in this work, we presented a systematic approach to identify, collect observational evidence, results from the analysis, and assimilate observations of all related high-quality research to address particular research

**Corresponding author

Email address: praphulajn1@gmail.com (Praphula Kumar Jain1,** and Rajendra Pamula1)
queries referring to the described research area.

Keywords: Machine Learning, Online Reviews, Sentiment Analysis, Fake Review, Recommendation Prediction, Hospitality and Tourism.

Contents

1 Introduction 4

2 CSA: Process, techniques, Challenges 8
 2.1 Consumer sentiment analysis (CSA) using online reviews 8
 2.2 Challenges for CSA . 9
 2.3 Machine learning techniques . 11

3 Systematic Literature Review (SLR) Methodology 14
 3.1 Review Planning (pre-operational stage) 14
 3.2 Conducting the Review (operational stage) 16
 3.2.1 Inclusion Criteria . 16
 3.2.2 Exclusion Criteria . 17
 3.3 Descriptive statistics . 19

4 Review findings and discussions 25
 4.1 Sentiment analysis . 25
 4.2 Predictive consumer recommendation decision 27
 4.3 Fake reviews detection . 29

5 Proposed framework and implications 30
 5.1 ML-CSA framework . 30
 5.1.1 Online reviews collection . 33
 5.1.2 Data Preprocessing and visualizations 35
 5.1.3 ML techniques . 35
 5.1.4 Decision making . 36

 5.2 Implications of SLR . 37
 5.2.1 Implications for researchers 37
5.2.2 Implications for service provider 41

6 Summery 41

Appendix A Journals description from which articles selected for SLR 43
1. Introduction

With the enhancement of information and communication technology (ICT), increasing the volume of consumer feedback data in terms of online reviews has become a recent research topic in the field of Consumer Sentiment Analysis (CSA) [80, 81]. Online review based CSA considered as a trend for many real-life applications which includes behaviour analysis, decision making, and getting insight information for organizational growth. Interestingly, the online reviews, which are probably found in the unstructured form [82] further, difficult to getting insight meaningful information manually. Natural Language Processing (NLP) and Text Mining (TM) models describe the transformational process and convert this unstructured data into structured one for Data Mining (DM). The use of Machine Learning (ML) techniques to brilliantly mine online reviews has been found broadly in literature [83, 84]. CSA, traditionally as a commonly DM and text classification task [87], is described as the computational understanding of consumers sentiments, opinions and attitude towards services or products [85, 86]. CSA provides a technological solution to sensing and understanding consumer experiences, views, and approach in online reviews available over the online platform.

In recent literature, many researchers focused their study in CSA using online reviews in many domains such as healthcare [88], business [89], tourism and hospitality [90], academics [91], etc. Hence, CSA using online reviews has escalated in the last few years with the enhancement of ICT. This Improved ICT providing facility to write reviews, comments, feedback, or blogs, over the various online platforms such as Twitter, Facebook, Skytrax, Yelp, and TripAdvisor, etc. These online platforms are also open and freely available to post reviewers’ experience regarding used services or products. These consumer provided reviews is helpful for both, service provider organizations and forthcoming consumer, organizations can use it in improving service quality and in making better consumer policies, and the forthcoming consumer can refer if before making their purchase decision. Hence, CSA has been introduced as an efficient way
to extract the information expressed in the online reviews, especially in the context of hospitality and tourism. CSA extracts the consumer sentiment, opinion, and demands from the online reviews in a particular domain and identifies their polarity [92]. Nowadays, the exchange of consumer feeling through the online platform is the main objective of the researcher in CSA.

Nowadays, if any consumer wants to buy a product or services, there is no need to ask their friends and family for previous consumers’ experience because of the availability of many user reviews and discussion platforms regarding any product or services. For any service provider organizations, there is no necessity to conduct consumer surveys, opinion polls, and group discussions in order to collect consumer experiences because of the abundance availability of such information in the form of online reviews over many websites. In the current scenario, we have found that providing online reviews publicly over the social media platform has helped and reshaped in business growth.

In recent research, few review studies were found on ML applications for sentiment analysis, these literature surveys have focused on ML applications in various domains such as twitter sentiment [93], scientific citations [94], business behaviour [95], reputation evaluation [96] etc. However, to the best of our knowledge, no such literature survey is conducted to review the current status of ML applications in CSA using online reviews in the domain of hospitality and tourism. The increasing amount of data available over the online platform offers the CSAs new possibilities to predict consumer sentiment and use it in business growth. The practitioners should be equipped with the recent information to confirm that their drawings are significant form online reviews. In this review paper, we included 68 articles on ML application in CSA, specifically in the domain of hospitality and tourism. We considered articles related to ML applications using online reviews in sentiment classification, predictive recommendation decision, fake reviews detection (Refer to Fig[1]). It is foreseen that in the future, the hospitality and tourism sector will continue to discover the many ML-based research articles and the observations provided in this study will help the researcher in sensing and understanding the current role of ML
Applications in CSA, which will direct them to apply ML to support their CSA-related findings.

![Diagram of Applications of Machine Learning in Hospitality and Tourism](image)

Figure 1: CSA using ML in the domain of Hospitality and tourism

The rest of the paper is structured as follows: For the readers’ comfortability, abbreviations utilized in this SLR are mentioned in Table 1. Section 2 describes a brief introduction to CSA and ML algorithms. Section 3 presents the SLR process implemented in this paper. Section 4 presents the findings of the SLR. An ML-CSA framework and implications based on the results of the review are discussed in Section 5. The conclusions and limitations of the study are described in details in Section 6.

Abbreviation	Description
ML	Machine Learning
NB	Naive Base
LR	Logistic Regression
SVM	Support Vector Machine

Table 1: Abbreviations

Continued on next page
Table 1 – continued from previous page

Abbreviation	Description
RF	Random Forest
DT	Decision Tree
NN	Neural Network
ANN	Artificial Neural Network
KNN	K-Nearest Neighbors
PCA	Principal Component Analysis
GB	Gradient Boosting
LSA	Latent Semantic Analysis
ANFIS	Adaptive Neuro-Fuzzy Inference System
CTK	Convolution Tree Kernel
CNN	Convolutional Neural Network
ADLM	Autoregressive Distributed Lag Model
RBFNN	Radial Basis Function Neural Network
MLP	Multi-Layer Perceptron
SVR	Support Vector Regression
BPNN	Backpropagation NN
TFM	Transfer Function Model
ARIMA	AutoRegressive Integrated Moving Average
AR-NN	Autoregressive Neural Network
LSTM	Long Short-term Memory
BiLSTM	Bidirectional LSTM
BBiLSTM	Bayesian Optimization BiLSTM
ADLM	Autoregressive Distributed Lag Model
GP	Gaussian Processes
DSA	Data-based Sensitivity Analysis
x_t	Actual
\hat{x}_t	Predicted

Continued on next page
Table 1 – continued from previous page

Abbreviation	Description
MdAPE	Median Absolute Percentage Error
RMSE	Root Mean Square Error
MAE	Mean Absolute Error
MAPE	Mean Absolute Percentage Error
RRMSE	Ratio of RMSE
TP	True Positive
TN	True Negative
FP	False Positive
FN	False Negative

2. CSA: Process, techniques, Challenges

2.1. Consumer sentiment analysis (CSA) using online reviews

CSA using online reviews is a process of extracting whether a part of online reviews (product/services reviews, tweets, online surveys, etc.) is negative, positive, or neutral. CSA may be used to identify the consumer’s attitude regarding service by the use of words such as opinion, tone, context, etc. Organizations may use CSA to collect previous consumer experiences of their services or products and may use their findings in service improvement [105]. Organizations may also utilize this analysis to collect valuable consumers’ experience about the issues in newly released products. CSA not only helps organizations to understand consumer satisfaction regarding their offerings, but it also provides a better understanding of how they lack form their competitors. CSA is also helpful for new consumers to gain knowledge about products or services before making purchase decisions.

A typical CSA process diagram is presented in Fig. 2, data processing steps
with descriptions are mentioned in Table 3 and various feature selection techniques with explanations are mentioned in the Table 2.

2.2. Challenges for CSA

Extracting and collecting consumer sentiment form online reviews is a part of information fusion or information extraction [105], whose objective is to identify the context of the used words. This needs a huge amount of data set to train the model and also required particular domain knowledge about the objective of the study. With the competitive era, there is also a possibility of fake reviews so before making consumer decision based on the online reviews need to be careful. For making the significant consumer sentiment decisions, it is difficult to discard the fake reviews, and unopinion content as these may confuse the proposed model while classifying sentiment. In this subsection, we are summarizing the CSA challenges.
Subjectivity Detection: The very first difficulty is that subjectivity identification itself is a subjective task, i.e., a part of the online reviews may be neutral to a few consumers but not to others. This can be seen because of the heterogeneity of the consumers on a single review subject but also because of various interpretations of a sentence in different languages. In some of the context, this may be related to the preferences by a particular one by their personality. In this context, before subjectivity detections, there is a need to perform user profiling such as personality detection [108], gender identification [106], and community detection [107] in advance.

Accuracy improvement of subjectivity Detection: The next difficulty is the accuracy improvement of the subjectivity detection task in a short text. In some of the cases, collected data may have short sentences, and they may not have sufficient contextual information, so it is difficult to classify the sentences based on the short sentences. In some instances, due to missing details in the short text, regularisation is required. In these situations, false reviews are highly likely because of the lack of characteristics that describe good or negative behaviour. To this end, we need to build extra data samples using the standardization techniques, using generative adversarial networks.

Context dependency: The next difficulty is context dependency. There are few words present in the text that are objective, but in some cases, they are subjective e.g., the objective long is considered a positive in some domains, e.g., long battery, or considered as negative in some cases, e.g. long queue, actually word long do not show any behavior as positive or negative. The meaning of a word is often based on terms far away in the sentence and often beyond the neighboring word window. To identify the substructure of the word, parse tree models is essential in conjunction with word vectors.

Computational cost: The last challenges are computational cost reduction of the training attributes because it is difficult and time consuming to process
large vocabulary of words. With the help of traditional methods, feature identification, and subjectivity detection of sentences is difficult, so in this SLR, we have considered ML techniques in processing online reviews content.

2.3. Machine learning techniques

ML described as "the experimental study of algorithm and computational models over computer utilizing the previous experience for continuous performance improvements on a particular task or making prediction accurately" [97]. The word "experience" in the mentioned description refers to the previous data available to the practitioner for making a predictive or classification model. These datasets may be gathered from an online data source or from the conducting survey over the online or offline platform. ML related common terminology listed in Table 4.

A customarily configured ML architecture shown in Fig 3. For the ML systems, the input is the labelled or unlabelled training data gathered from various sources. The knowledge base is useful in deciding on appropriate ML technique for a particular task. In the ML system, previous findings or information are also helpful in validating the ML classification or predictions gained from the recent data for the accurate output and enhancing the decision making ability of the algorithms [98].

The ML algorithms have been divided into three major categories; supervised learning, unsupervised learning, and reinforcement learning. In the case of supervised learning, we have prior knowledge of input and required output, classification or prediction model developed based on the labelled dataset. The main objective of the supervised learning algorithms is to obtain the desired output based on the available inputs [99] [100]. Decision Tree (DT), Random Forst (RF), and regression analysis are categorized into the supervised learning algorithms. In unsupervised learning, classification or predictive model builds without any previous knowledge of input and output variables. The primary task of unsupervised learning is dimensionality reduction and exploratory analysis [101], includes Neural Network (NN), Deep Learning (DL), Clustering, and
optimization techniques. In reinforcement learning [102, 103], there is not any presence of supervisor and labelled dataset, the training and testing datasets are mixed, and the learner collects information by interacting with the environment. Deep-Q-learning, Q-learning, and robot navigation techniques come under reinforcement learning.

A short description of ML algorithms used in CSA shown in Table 5 and their classification is described in Fig 4.

Table 5: Description of Machine learning (ML) Algorithm

ML Algorithm	Description
DT	This technique classifies the data into smaller subgroups in which each subgroup includes (mostly) one-class responses, either "yes" or "no." [146, 147]

Continued on next page
Table 5 – continued from previous page

ML Algorithm	Description
Regression	This is a classical predictive model that represents the relationship between inputs and output variables in the form of an equation \[148, 149\]. There are many forms of regression studied in literature few of them are linear regression, ridge regression, logistic regression, lasso regression, and polynomial regression, etc.
SVM	This is a classification technique that determines multidimensional boundaries separating data points belonging to various classes \[150\].
Clustering	Clustering techniques like k-means divided the data points into k-clusters and by calculating k centroids \[151\].
NN	This is a computational and mathematical model influenced by the biological neurons, in NN weight adjusted to reduce error between real and predicted \[152, 153\]. NNs are further divided into multilayer perceptron, backpropagation NN, and Hopfield networks.
NB	This is a classification technique that predicts the output class by using Bayes theorem based on calculating conditional probability and prior probability \[154\].
RF	A classifier in which "forest" is built based on the ensemble of decision trees and typically trained with the process of "bagging" \[155\].
LSTM	This is a special type of recurrent neural network (RNN) that is capable of learning long term dependencies in data \[156\].
BiLSTM	This is a sequence processing model that consists of two LSTMs: one is taking input in a forward direction, and the other in a backwards direction \[157\].

Continued on next page
Table 5 – continued from previous page

ML Algorithm	Description
CNN	This is a deep neural network used in ML and deep learning [158].
LSA	This is a fundamental topic Modeling technique, in which words that are similar in meaning come in the same excerpt of the text [159].

3. Systematic Literature Review (SLR) Methodology

In this work, we used a systematic literature review (SLR) with a particular objective on surveying the published research article accurately and maintaining unbiasedness and purpose summary of the recent research era and future direction of ML applications in CSA. SLR influenced by a scientific methodology and motivated [73] for explaining and evaluating all the present research related to the query, topic, or paradox of passion [74]. SLRs can be a valuable contribution in drawing useful insights from the theoretical analysis of existing literature and finding possible flaws in the available research [75]. In this survey, we applied a three-stage SLR process (refer to Fig. 5) advised by the authors in [76], constituting the review planning, conducting the review, and reviews findings.

3.1. Review Planning (pre-operational stage)

The goal of this review was to study the applications of ML techniques in CSA. The focus was to study ML techniques, as mentioned in Table 5 on the CSA process depicted in Fig. 2. More specifically, we were sensing and understanding how the utilization of ML techniques helpful in making the CSA process efficiently. To restrict the conceptual boundaries, we utilize preferred
Step 1 • Online Reviews
Step 2 • Tokenizations
Step 3 • Stop Word Filtering
Step 4 • Stemming
Step 5 • Machine Learning Classifier
Step 6 • Reviews Class
Fake or Not Fake

Figure 4: ML techniques classification (refered from [104])

Figure 5: Three Phase SLR applied in CSA
keywords covering ML techniques such as Naive base (NB), Support Vector Machine (SVM), Neural Network (NN), and regression, etc. Not many restrictions were implemented to the keywords for consumer sentiment analysis and search applied based on broad terms such as "consumer sentiment", "consumer opinion", and "consumer views". All the selected research articles reviewed to test our objective of review and to evaluate whether CSA considered in the scope of the article or not.

3.2. Conducting the Review (operational stage)

We have initially searched CSA related articles over the online platform www.scholar.google.com, based on the search keywords formed in the first stage. This website database was selected because it consists of a variety of refereed journals from reputed publishers such as IEEE, Springer, Elsevier, Taylor and Francis, IET, and SAGE, etc. Later the search also carried on the Scopus database so that we can include more and more related articles to CSA. However, to restrict the number of articles for review, we adopted inclusion and exclusion criteria as mentioned:

3.2.1. Inclusion Criteria

- Articles published in SCI/SSCI/SCIE indexed journals or Q1/Q2 journals in hospitality and tourism.

- Articles published From January 2017 to July 2020, related to CSA based on online reviews specifically to hospitality and tourism.

- Articles related to CSA based on online reviews specifically to the hospitality and tourism.

- Articles are demonstrating CSA using ML techniques in hospitality and tourism.

- Articles are demonstrating CSA using Hybrid ML techniques in hospitality and tourism.
• Articles are demonstrating CSA using Deep Learning (DL techniques in hospitality and tourism.

• Articles are demonstrating the comparison of ML techniques in CSA in hospitality and tourism.

• Articles are demonstrating CSA of online reviews written in the English language only.

3.2.2. Exclusion Criteria

• Articles published in conferences. Articles published in Book Chapter/trade journals/book contributions.

• Articles that are without justifiable research contribution or benchmark comparisons.

• Articles using any other online reviews data like a business, healthcare, or academics, etc

• Articles with qualitative and quantitative data considered, other forms of data like image, video, and audio not considered.

• Articles that are reviews or surveys on CSA without any findings.

• Articles involving CSA on languages other than English, for example, languages Hindi, Portuguese, Chinese, Bengali, Arab, Spanish, etc. are not considered.

• Articles published before January 2017.

We have applied a Backward and forward search to confirm that the selected articles are extensive and significant research in CSA deploying ML techniques are included. A total of 253 articles were selected as an outcome by utilizing the mentioned keywords; machine learning or consumer sentiment analysis or consumer views or recommendation prediction or fake reviews or decision tree or support vector machine or consumer intention or neural network. The
search based on keywords was applied based on a pairwise combination form ML techniques and others from its application into hospitality and tourism.

The selected articles were validated before making the final selection for review. All the authors re-evaluated all chosen articles, and understanding was coded to form reliability. The same articles selected by all the authors were selected for the study, and rest articles re-evaluated. After re-evaluation of the articles’ final selection was made for the review process, any articles that do not find suitable for review excluded from the study \[78\]. The validation stage helps in including a quality article in a related area to the objective of the review, instead of believing in the journal quality rating. The mentioned selection process derived in a comprehensive 68 articles since it concludes the quality of articles published to CSA in the hospitality and tourism domain. The article selection process is shown in Fig. [9]

![Figure 6: Publication selection process for SLR](image)
3.3. Descriptive statistics

The final selection contains 68 articles (refer to Fig. 6). Reviews on the topic of hospitality and tourism were available in or after 2017 with the pace of research picking up from 2019-20, shows the increased interest of scholars in implementing ML techniques to solve CSA using online reviews in the field of hospitality and tourism challenge (refer Fig. 7). Further, it can be referred from Fig. 8 number of articles is increasing yearly; till July 2020, approximately published articles are the same as the completed the year of 2019. It is also found that high impact peer-reviewed journals like Tourism Management, Decision Support Systems, Journal of Hospitality and Tourism Management, Expert systems with applications, have published many articles in this area (refer to Appendix A.15 for journal quality and Table 6 for number of articles). Many researchers applying ML techniques in CSA is presented in Table 7. It is concluded that Regression, SVM, and NB, applied by many researchers in their result evaluations. Very few researchers applied hybrid ML techniques in their work (refer to Table 8). Fig. 1 shows the use of the applications of ML in CSA from online reviews. The consumer sentiment analysis has 39 papers, predictive recommendation decisions having 15 papers, and fake reviews detection have 14 papers. The findings show that the ML techniques applied in all the sub-areas of CSA using online reviews in hospitality and tourism.
Figure 7: Year wise article published on different sub-area of CSA

Figure 8: Year wise article published on CSA
Technique	Description
Wag of Words	Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus [160].
CountVectorizer	The CountVectorizer offers a simple way for both tokenizations of collection of text documents and creating a vocabulary for established words, but also for encoding new documents using that vocabulary [161].
Word Embeddings	This is a two-layer neural network that processes text by "vectorizing" words, where input is a text corpus, and output is a set of vectors: feature vectors representing words in that corpus. It converts text into a numerical form that neural networks can process [162].
GloVe	GloVe (Global Vectors for Word Representation) is used to get word representations of vectors. Training is carried out from a corpus on aggregated global word-word co-occurrence statistics, and the resulting observations reveal fascinating linear substructures of the word vector space [163].
Table 3: Text preprocessing steps with description

Step	Description
Tokenizations	Tokenization is a way of dividing textual statements into words called tokens [165].
Stop words removal	Stop word are the words that not have significance in search queries, and process of removing stop words (is, am, a, an, etc.) called as stop word removal [166].
Stemming	Process of reducing a word to its word stem that affixes to suffixes and prefixes or to the roots of words known as a lemma [164].
Lemmatization	Lemmatization, unlike Stemming, reduces the inflected words properly ensuring that the root word belongs to the language [164].

Table 4: Machine learning (ML) Technologies (refered from [97])

Word	Description
Example	Data instances used for learning
Feature	Collection of attribute(s) or vectors related with an instance.
Label	Value(s) assigned to the examples.
Test sample	Examples utilized for evaluating the performance of a learning algorithm.
Training Sample	Examples utilized for training a learning algorithm.
Validation Sample	Examples utilized for tuning the parameters of a learning sample.
Table 6: Article distribution in the regards to the respective journal

S.No.	Name of Journal	No. of Papers	Proportion (%)
1	Tourism Management	12	17.65
2	International Journal of Hospitality Management	7	10.29
3	Journal of Air Transport Management	5	7.35
4	Journal of Travel Research	4	5.88
5	Tourism Management Perspectives	3	4.41
6	International Journal of Information Management	3	4.41
7	Neurocomputing	3	4.41
8	Expert Systems	2	2.94
9	Expert Systems With Applications	2	2.94
10	Decision Support Systems	2	2.94
11	Journal of Hospitality and Tourism Management	2	2.94
12	Journal of Retailing and Consumer Services	2	2.94
13	Journal of Business Research	2	2.94
14	Information Processing and Management	2	2.94
15	Information & Management	2	2.94

Continued on next page
S.No.	Name of Journal	No. of Papers	Proportion (%)
16	Multimedia Tools and Applications	1	1.47
17	Sustainability	1	1.47
18	Knowledge-Based Systems	1	1.47
19	Journal of Computational Science	1	1.47
20	Annals of Tourism Research	1	1.47
21	Future Generation Computer Systems	1	1.47
22	Telematics and Informatics	1	1.47
23	Current Issues in Tourism	1	1.47
24	Journal of Supercomputing	1	1.47
25	Journal of Forecasting	1	1.47
26	International Journal of Contemporary Hospitality Management	1	1.47
27	International Journal of Intelligent Systems	1	1.47
28	Information Sciences	1	1.47
29	Neural Computing and Applications	1	1.47
30	Applied Intelligence	1	1.47
4. Review findings and discussions

In this section, we evaluate and present the conclusion of SLR in three sub-area. These sub-area represents the use of ML in CSA applications such as sentiment analysis [109], predictive recommendation [110], and fake reviews detection [111]. The use of ML in each sub-area serves a particular application for the CSA process. It is found from the SLR that ML is implemented in the consumer sentiment analysis in the field of hospitality and tourism management using online reviews (sub-area I).

Similarly, ML techniques are used in predictive consumer recommendation decisions based on the previous consumer experience regarding offered services (sub-area II). In this sub-area II, the use of ML is for overall consumer satisfaction and their recommendation for the forthcoming consumers. Fake review detection (sub-area III) is the major application of ML in identify reviews that are misleading new consumer before making their purchase decision.

4.1. Sentiment analysis

Sentiment analysis or opinion mining is the process of understanding and classifying consumer feelings or emotions (positive, negative, or neutral) within reviews using text analysis, ML, and NLP [112]. Sentiment analysis models allow organizations to identify consumer satisfaction towards their products, services, or offerings in online reviews. CSA is essential for forthcoming consumers and business organizations in making their decisions efficiently.

With the advancement of ICT, user-generated content on the online platform has made sentiment analysis an essential tool for disentangling consumer sentiment information about a product or service. Recent research focuses on sentiment analysis for two separate objectives; first is aspect extraction, and sentiment classification of offerings, and another is sentiment classification of targeted tweets. ML techniques have emerged as a prospect for obtaining such goals with their capability to capture the textual features without requirements of high-level feature extraction. Sherwin Shenwei & Lim, Aaron Tkaczynski [42]
Table 7: ML technique covered in the SLR applied in CSA

S. No.	ML Technique	#papers	Research references
1	Clustering	3	[1], [62], [67]
2	SVM	14	[2], [4], [5], [6], [7], [14], [18], [20]
			[29], [31], [34], [35], [58], [65]
3	DT	5	[2], [4], [5], [17], [41]
4	LR	11	[2], [4], [8], [10], [11], [17], [20], [54]
			[57], [64], [65]
5	LSTM	3	[3], [26], [28]
6	BiLSTM		[3], [28]
7	KNN	5	[18], [20], [30], [31], [58]
8	NB	11	[4], [6], [7], [15], [17], [18], [30], [31]
			[58], [67], [69]
9	Regression	16	[16], [19], [21], [25], [38], [42], [44]
			[45], [48], [49], [50], [53], [59], [60]
			[63], [65]
10	CNN	5	[24], [26], [28], [31], [50]
11	RF	6	[4], [5], [13], [17], [20], [29]
12	LDA	5	[28], [34], [40], [43], [65]
13	GB	2	[4], [20]
14	NN	8	[4], [5], [7], [13], [14], [23], [26], [72]

Table 8: Year Wise distribution of applied hybrid technique covered in the literature

S.No.	Hybrid Technique	Year	Research references
1	RBFNN	2020	[3]
2	ANN+ Firefly, ANN+ Bat	2018	[13]
3	PCA+LGR PCA+SVM	2018	[41]
4	PCA+Biplot Regression	2017	[44]
used regression in explaining the importance of origin and money in consumer expectations. Lee et al. [41] use DT, RF, PCA in the identification of online reviews helpfulness in consumer satisfaction. Similarly, many researchers implemented ML techniques over various data in finding their objectives. Different data set used in sentiment analysis shown in Table 9. Table 9 presents that most of the researchers are using hotel, airline, and tourism reviews in their study, and there is a future scope in airport and museum reviews analysis.

4.2. Predictive consumer recommendation decision

For any organization, consumer reviews are important, not only for identifying factors that are responsible for business growth and performance, but also for the improvement of offered services or products as well as for enhancement of consumer feeling or opinion. In most of the cases, organizational management trust on consumer reviews factors such as overall consumer satisfaction, percentages of consumer complaints, repurchasing of items as well as word-of-mouth like recommendations or promotions [113].

In predictive consumer recommendations, Reichheld [114] suggested the convention of the word of mouth recommendations for offerings, associated with the net promoter score (NPS). He advised that NPS is the most reliable parameter

S. No.	Dataset used	#papers	Research references
1	Hotel reviews	13	[32], [34], [35], [41], [54], [56], [57], [58], [59], [62], [63], [64], [65]
2	Airline reviews	12	[37], [38], [39], [40], [42], [43], [44], [45], [46], [49], [50], [51]
3	Restaurant Reviews	5	[53], [55], [58], [60], [66]
4	Airport Reviews	2	[48], [61]
5	Tourist Reviews	1	[52]
6	Art and museum Reviews	1	[58]
in the prediction of business growth in comparison with the other measurements of consumer satisfaction. NPS is calculated as the percentage difference of the promoters and detractors. In the past few years, many researchers included NPS as a consumer satisfaction measure in their study. They found that business growth is directly proportional to NPS. From the Reichheld finding, it can be concluded that NPS is the best measure of consumer satisfaction and predictive consumer recommendation decision. In organizations, NPS considered as a base for consumer satisfaction and drawing parameters for business growth. Hence, processes based on the NPS are particularly efficient in sensing and understanding the overall method of gaining to consumer and substantiating choice.

Given the significance of consumer involvement, consumer loyalty, and consumer reviews, as reflected in NPS, this is also important to understand the parameters that are responsible for positive word-of-mouth. Nowadays, consumers are expressing their feeling or opinion regarding their experience in online reviews; organizations need to understand the consumer preferences and factors influencing their predictive suggestions. Nonetheless, many organizations are not capable of using consumer reviews to convert it into business growth. This is due to that some of the reviews are not providing consumer recommendations directly, i.e., the issue of whether a consumer is suggesting a particular service for the forthcoming consumers or not. Thus, this is a research gap in automatically scrapping information from user-generated online reviews to accurately predicting drivers for consumer recommendations, understanding the advice to different services, and finally forming them into NPS.

In current research work, many authors predicting consumer recommendations decision based on online reviews, Siering et al. used qualitative content from online reviews in explaining and predicting airline consumer recommendation decisions, whereas Chatterjee et al. utilized qualitative and quantitative content in predicting consumer recommendation decisions. Many researchers applied machine learning techniques in predicting consumer recommendations in various fields (refer to Table). Form Table we may refer
to that many scholars used regression and basic machine learning techniques in their study. For the future work, ensembling and optimization procedures may apply for getting predictive recommendation decisions.

Table 10: Widely used data sets for Predictive recommendation decision

Rank	Dataset used	#papers	Research references
1	Hotel Review	6	[1], [2], [4], [5], [14], [15]
2	Tourism Reviews	1	[3]
3	Airline reviews	5	[7], [8], [9], [11], [12]
4	Restaurant reviews	1	[10]
5	Trip reviews	1	[13]

4.3. Fake reviews detection

A fake review is a positive or negative review provided for a product or service by anyone who may not even experience the service or did not purchased any product, but (s)he is writing reviews. A fake reviewer may be a seller or any person on behalf of the seller, providing reviews using fake credentials, they are posting a fake image of the product and encouraging consumers to buy such products by advertising falsely. Fake reviewers are providing fake reviews for their own benefit by providing negative reviews for their competitors and positive reviews for their own products.

There might be many reasons providing fake reviews for products or services, but in short, the main goal is to sell more products or degrade the selling of products of competitors. Some reasons are mentioned here.

1. To improve the products ranking
2. To improve the sellers ranking
3. To boost sales of low-selling products
4. To boost the visibility of products which have just been listed
5. To balance negative reviews left for a product
Online consumer reviews regarding products or services are playing a vital role for consumers, creating a different type of Word-of-mouth information [121]. Form the current research, and it is found that 52% of online consumers are using online reviews to find product pieces of information, while 24% of them are using previous consumer reviews before making their purchase decision [122]. Consequently, online reviews have strong influences on consumers’ decision making in purchasing a product or services, there are many related areas affected by it, some of them are hospitality and tourism [123, 124], online purchase [125], and entertainment [126, 127, 128]. Moreover, many platforms are providing online reviews for the same service or product, which may be classified [129] as per the platform that is giving the word of mouth information.

Articles based on the fake reviews detection included in this SLR process shown in Table [11].

Table 11: Widely used data sets for Fake reviews detection

S.No.	Dataset used	#papers	Research references
1	Restaurant Reviews	11	[16, 18, 19, 21, 23, 24, 25, 26, 28, 29, 31]
2	Hotel Reviews	5	[18, 20, 24, 26, 28, 31]
3	Monuments reviews	1	[27]

5. Proposed framework and implications

5.1. ML-CSA framework

The SLR findings show that ML has a vast possibility for application in CSA using online reviews in hospitality and tourism. The data gathered from the various online platform in CSA is utilized for making classification and predictive recommendation decisions using ML techniques. The findings show that ML techniques improve the accuracy of CSA and address the various challenges faced during sentiment analysis, fake reviews detection, and predictive consumer.
recommendation decisions. The use of ML techniques also helps in drawing valuable aspects responsible for consumer sentiment. We utilized findings from the SLR to design an ML-CSA framework that may be helpful for researches in drawing their objective.

We proposed framework in Fig. 9 has four phases, online reviews collection, data preprocessing and visualizations, ML techniques, and CSA.
Online Reviews collection

Data Selection
- Airline Reviews
- Airport Reviews
- Hotel Reviews
- Restaurant Reviews
- Tourism Reviews
- Museum Reviews
- Online survey

Data Scraping
- www.airlinequality.com
- www.Tripadvisor.com
- www.twitter.com
- www.yelp.com
- www.Skytrax.com
- www.amazon.com
- www.stb.gov.sg
- www.Booking.com

Data Preprocessing & Visualization

ML Techniques
- Supervised Learning
- Unsupervised Learning

CSA
- Sentiment Classification
 - Positive
 - Negative
 - Neutral
- Predictive Recommendation
 - Recommended
 - Not Recommended
- Fake Review Detection
 - Fake
 - Not a Fake

Figure 9: A ML-CSA framework
5.1.1. Online reviews collection

Nowadays, consumers are increasingly relying on online reviews as an essential source of information before making their purchase decision [130]. In this case, many researchers found the importance of online reviews can be seen as a clue of information through the various phases of the purchase decision-making process [131] and that demand for the services that are reviewed by the previous consumers [132]. Further, online reviews are more significant for online retailers for attracting consumers, and next time they might purchase the reviewed item.

There are various domains of research focused on word of mouth within the online reviews. Existing literature represents a variety of research relating word of mouth to the sales. In contrast, this research finds a significant impact of online reviews on demand for particular items [133, 134]. In another field, researchers focused on the factors that are making online reviews effective and creditable. In this case, reviews writing style [138], reviews contents [135, 136, 137], and community membership [139] have been found most relevant. From an experimental point of view, drawing of the attributes impacting online reviews creditable may be used to improve consumer policies [140]. In another stream of research, researchers concentrated on the reviewers contribution and factors that are motivating consumers to write their reviews on the various available platform [141, 142].

Research mainly focusing on hospitality and tourism show that forthcoming consumer can consider online reviews as a source of information before making purchase decisions. Current surveys among tourists advises that a total of 20-45% of tourists are using online reviews provided by previous consumer to suggest or guide while making their decision-making process [143, 144]. An author [145] in, have listed the behaviour of hotel guest feeling mentioned in online reviews and explaining the role of hidden features of hotel guest sentiment in understanding guest satisfaction. Many of authors find the importance of online reviews in explaining and predicting consumer recommendation nature.

The first phase in this framework is data selection as per the research goal
such as airline reviews, airport reviews, hotel reviews, etc. A sufficient amount of
data gets collected by applying a data scraping procedure. Tripadvisor, Skytrax,
and yelp, etc. these are the various websites that are providing online reviews
data related to tourism and hospitality. We have mentioned different dataset
used in the existing literature in Table [12] with the data source. We have also
presented the percentage of the data source contribution to this SLR related
articles (refer to Fig. [10]).

Table 12: Widely used data sets and sources used for CSA

S. No.	Dataset used	Data source
1	Hotel reviews	www.booking.com, www.Tripadvisor.com, www.yelp.com, www.amazon.com
2	Airline reviews	www.airlinequality.com, www.Tripadvisor.com Online survey
3	Restaurant Reviews	www.Yelp.com, www.Tripadvisor.com Online survey
4	Airport Reviews	www.skytrax.com, www.twitter.com Online survey
5	Tourist Reviews	www.Tripadvisor.com, https://www.stb.gov.sg Online survey
6	Art and museum Reviews	London Art Museums reviews
5.1.2. Data Preprocessing and visualizations

Online reviews data collected from the websites are mostly in unstructured form, but the ML technique works efficiently with the structured data; therefore, there is a need to convert unstructured data into structured data. Processing of converting unstructured data into structured one with the help of Natural language processing and text mining approaches referred to as data preprocessing. This text mining process helps in extracting consumer sentiment form online reviews. There are many areas where text mining has been applied; some of them are topic modelling, sentiment or opinion analysis, text summarization etc.

Text preprocessing is an essential phase of data mining, in which data convert into a usable form for applying ML techniques. Text preprocessing task with their descriptions presented in Table 3.

5.1.3. ML techniques

The third phase in the proposed framework is the selection of various ML techniques that may be applied in CSA. The SLR has found applicability of supervised and unsupervised learning techniques is utilized with the focus of sen-
timent analysis, predictive recommendation, and fake reviews detection. There is a possibility of the applicability of reinforcement learning in CSA. Our recommended framework advises that the CSA and ML techniques have a bridge that mainly focused on utilizing the power of ML techniques to drawing the factors influencing consumer sentiment by applying appropriate ML techniques. Further it is also suggested that ML techniques have already been applied and in future work which ML techniques can be implemented in CSA.

5.1.4. Decision making

The SLR findings report that the objective of analyzing online reviews data by applying ML techniques is to draw the consumer sentiment in the field of hospitality and tourism. It was amusing to illustrate that the CSA utilizes ML techniques not only to classify consumer sentiment but also for predictive consumer recommendation decisions and fake reviews detection. Section 4 has presented the importance of ML techniques in enabling CSA in the field of hospitality and tourism. In the case of the purchase decision, the power of ML techniques in forecasting the previous consumer recommendations about products and services [13]. The hybrid ML models can help in predicting consumer sentiment accurately [19, 42]. Identifications of the theme shared in the user-generated online reviews by traveler and linking of that theme with the values of money are presented in [37]. The influences of the various aspects of airline service failures and the respective recovery action on consumer sentiment also studied in literature [38].

From the above discussion, we may conclude that the decision making the last step of the CSA process, so we have included it in our proposed ML-CSA framework. The various performance measures are described in Table [13] this table also shows the uses of performance measures applied in the articles selected for SLR.
Table 13: KPI Descriptions

S.No.	KPI	Equation	# Papers	Research References		
1	RMSE	$\sqrt{\frac{1}{N} \sum_{t=1}^{N} (x_t - \hat{x}_t)^2}$	6	[1], [3], [4], [6], [13], [64]		
2	MAE	$\frac{1}{N} \sum_{t=1}^{N}	x_t - \hat{x}_t	$	6	[1], [13], [14], [64], [72]
3	MAPE	$\frac{1}{N} \sum_{t=1}^{N} \frac{	x_t - \hat{x}_t	}{x_t}$	4	[3], [4], [13], [14]
4	R^2	$1 - \frac{1}{N} \sum_{t=1}^{N} (x_t - \hat{x}_t)^2$	3	[1], [10], [53]		
5	MdAPE	Median $\frac{	x_t - \hat{x}_t	}{x_t}$	2	[14], [72]
6	Precision	$\frac{TP}{TP + FP}$	14	[2], [5], [6], [7], [20], [26], [28], [29], [32], [41], [55], [58], [65], [69]		
7	Recall or Sensitivity	$\frac{TP}{TP + FN}$	14	[2], [5], [6], [7], [20], [26], [28], [29], [32], [41], [55], [58], [65], [69]		
8	F-Measure	$2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$	16	[2], [5], [6], [7], [18], [20], [23], [24], [26], [28], [29], [31], [41], [55], [56], [69]		
9	Accuracy	$\frac{TP + FP}{TP + FP + TN + FN}$	15	[4], [5], [6], [7], [16], [23], [24], [26], [28], [31], [41], [47], [55], [58], [69]		
10	AUC	$\frac{TN}{TN + FP}$	3	[5], [29], [30]		
11	Specificity	$\frac{TN}{TN + FP}$	2	[5], [41]		

5.2. Implications of SLR

5.2.1. Implications for researchers

We tried to answer all queries of researchers who are new or already working in the area of application of ML in tourism and hospitality (refer to Table 14).
Based on the analysis of this survey, we also present the mentioned future scope of CSA using ML in hospitality and tourism.

1. The SLR focuses on ML applications in the analysis of online reviews written in English, and no attention is paid to written reviews in another language; further work is required in the analysis of written reviews in different languages, such as Hindi, Parsi, Urdu, Bengali, etc.

2. The findings show that ML techniques help to improve the performance of the model applied in CSA. However, it would be impressive to draw the factors affecting the performance of the model. Future research should focus on measuring the influence of CSA and provide particular guidance on how CSA can be evaluated by applying ML techniques. The ML-CSA proposed framework in this SLR can be implemented as a guideline framework for this type of research work.

3. Future research should focus on first detecting fake reviews and then applying CSA to the remaining data.

4. CSA Software and tools are not available publicly; in the future, researchers can develop such intelligent and personalize CSA tools and softwares, by which users can analyze previous consumer’s sentiment before making their purchase decision.

5. Though many researchers are efficient in applying ML techniques, only few of them used technologies such as optimization algorithms, ensemble learning, deep learning, and neuro-fuzzy models in CSA; the researcher may include such techniques in their future work.

6. Analyzing CSA using Fuzzy Logic methods like Type 2 Fuzzy models is yet another novel direction that is open for further exploration.

7. Very few researchers considered museum reviews dataset in their analysis; in the future, this can also be scope for further study.

8. Due to the unavailability of online reviews on consumer experiences in various historical places, no article found yet on the application of ML in this area, researchers may analyze historical online reviews data using ML
techniques in finding consumer satisfaction and predictive recommendation decisions.

9. Most of the work included qualitative online reviews in their study, whereas qualitative and quantitative review content both added by a few researchers in their study.

10. Consumer choice of preferences as per their region and culture have been found in very few articles; this can also be a future direction of research.

11. The findings of this SLR indicate that researchers are using supervised and unsupervised ML techniques in analyzing CSA, reinforcement ML techniques can be implemented in future research.

12. The results of this SLR suggest that researchers are still using ML techniques to analyze consumer sentiment on online textual reviews of data only. There is potential scope for using ML techniques to analyze consumer sentiment on the online reviews data in the form of audio, image, and video, etc.
Table 14: Research Scholars queries and their solutions form SLR findings

S. No.	Research Scholars Queries	Response from findings	Reference section
1	What is sentiment analysis?	Drawing consumer experience from their reviews, consumer experience regarding services may be positive, negative, or neutral.	Subsection 2.1
2	What are the challenges of consumer sentiment analysis?	Few challenges are subjectivity detection, computational cost, context-dependency, and accuracy.	Subsection 2.2
3	How the study of consumer sentiment analysis can be useful for consumers.	Consumer can refer to previous consumer experience before making their purchase decisions.	Section 1
4	How the study of consumer sentiment analysis can be useful for organizations.	Organizations can refer to consumer experience in the making of consumer policy and product improvement.	Section 1
5	From where consumer reviews get collected?	There are many online platforms available for online reviews.	Table 12
6	How can online reviews be preprocessed?	Online reviews can be preprocessing with the help of text mining and natural language processing techniques.	Table 2 & Table 3
7	What are the techniques used in CSA?	Most of the researchers preferred ML techniques in their implementation.	Table 7
8	What are the performance measures used in CSA?	There are many performance matrices preferred by researchers such as precision, recall, and accuracy, etc.	Table 13
9	What is Future scope in CSA?	In future research work, the researcher can include culture variables while predicting consumer satisfaction. Some future direction is mentioned in implications for the researcher’s section.	Subsection 5.2.1
5.2.2. Implications for service provider

This SLR gives many managerial implications, which may be useful for any organization for serving its consumers in a better way. The primary findings of this SLR are the importance of the contents of online reviews in making consumer decisions. Our findings show that core service aspects have greater influences on consumer sentiments than augmented service aspects. We have also seen that consumer sentiment or emotion can also explain predictive consumer recommendations; this is providing valuable suggestions in designing service strategy for their consumers. A literature survey also represents that the consumer sentiment is context-dependent; whenever drawing consumer sentiment, Management has to be careful about the context. While designing the advertisement content, they have to be attentive regarding sentences they are using, such as sentimental words related to joy having much impact than surprises or trust. Consumer choices of services are dependent on various factors such as region and culture from which they belong to, cost, and facilities. Therefore, Management has to be attentive in designing service policies as per the consumers’ choice.

6. Summery

The current study is based on an SLR to determine the recent state studies on ML techniques in CSA. The SLR conducted on 68 research papers, which were based on sentiment classification, predictive recommendation decisions, and fake reviews detection in the field of hospitality and tourism. The SLR finds that supervised and unsupervised machine learning techniques are used in CSA based on online reviews. The novelty of this SLR is the proposed ML-CSA framework; this is providing valuable guidelines to new and experienced researchers. Our proposed framework is providing complete research information from topic selection to publications such as basic knowledge about CSA, data selection, data sources, data preprocessing, feature selection, applied ML techniques, current research objective, and future scope, etc. Under our knowledge,
no SLR providing guidelines about journal selection and required revision time by the selected journal. This SLR is also providing journal descriptions related to the area of SLR objective; this will be a great help for new researchers who start working in this area. The SLR reveals considerable importance to the CSA that has achieved by the power of ML techniques concludes that the implementation of ML in CSA is beneficial. Considering the online reviews and capability of ML techniques, the service provider can draw factors consumer satisfaction and utilize findings in their business growth. Additionally, the forthcoming consumer can also refer to previous consumer experience regarding services or products before making their purchase decisions.

Like other studies, our study also has some limitations. We tried to include all research articles in our SLR, but there is a possibility, we might missed a few important research articles. The SLR captured articles published in a timeframe from Jan 2017 to July 2020, i.e. current research articles. The list of articles included in SLR, as they are selected from top journals in this field or indexed by SSCI/SCI/SCIE, but the chance is there for any important article published in any conference might be excluded. Therefore, future studies can include articles from top conferences and from other databases. The proposed ML-CSA framework is based on the finding from the current research, which empirically has not been tested. Hence, validation of the proposed framework can be included in future work. Additionally, future research may also explore the power of ML to CSA in different domains such as academics, business, military surveillance, etc.
Appendix A. Journals description from which articles selected for SLR

Table A.15: Descriptions of Journals included in SLR

Quartile and Indexing as per JCR Web of Science 2020

Min(Minimum), Max(Maximum), and Avg (Average) represents the No. of days taken by that journal for the articles included in SLR

S.No.	Name of Journal	Quartile	Indexing	Min	Avg	Max
1	Tourism Management	Q1	SSCI	2	233.67	619
2	International Journal of Hospitality Management	Q1	SSCI	110	244	353
3	Journal of Air Transport Management	Q2	SSCI	132	180	218
4	Journal of Travel Research	Q1	SSCI	-	-	-
5	Tourism Management Perspectives	Q1	SSCI	45	122	219
6	International Journal of Information Management	Q1	SCIE	117	163	190
7	Neurocomputing	Q1	SCIE	180	334	428
8	Expert Systems	Q2	SCIE	152	320	488
9	Expert Systems With Applications	Q1	SCIE	81	128	174
10	Decision Support Systems	Q1	SCIE	108	161	214
11	Journal of Hospitality and Tourism Management	Q2	SSCI	222	238	253
12	Journal of Retailing and Consumer Services	Q2	SSCI	86	202	318

Continued on next page
S.No.	Name of Journal	Quartile	Indexing	Min	Avg.	Max
13	Journal of Business Research	Q1	SSCI	273	311	348
14	Information Processing and Management	Q1	SCIE	178	252	325
15	Information & Management	Q1	SCIE	211	314	416
16	Multimedia Tools and Applications	Q2	SCIE	-	236	-
17	Sustainability	Q2	SCIE	-	50	-
18	Knowledge-Based Systems	Q1	SCIE	-	270	-
19	Journal of Computational Science	Q2	SCIE	-	166	-
20	Annals of Tourism Research	Q1	SSCI	-	135	-
21	Future Generation Computer Systems	Q1	SCIE	-	382	-
22	Telematics and Informatics	Q1	SSCI	-	124	-
23	Current Issues in Tourism	Q1	SSCI	-	260	-
24	Journal of Supercomputing	Q2	SCIE	-	-	-
25	Journal of Forecasting	Q2	SSCI	-	251	-
26	International Journal of Contemporary Hospitality Management	Q1	SSCI	-	364	-
27	International Journal of Intelligent Systems	Q1	SCIE	-	-	-
28	Information Sciences	Q1	SCIE	-	299	-

Continued on next page
S.No.	Name of Journal	Quartile	Indexing	Min	Avg	Max
29	Neural Computing and Applications	Q1	SCIE	-	75	-
30	Applied Intelligence	Q2	SCIE	-	-	-
Author contribution
The author approves their contribution in this study as follows, study concept and design, data collection, literature review, proposed model; Praphula Kumar Jain, drafting the manuscript; Praphula Kumar Jain, edit and English corrections Rajendra Pamula. All authors went through the final version of the paper and approved this manuscript.

Acknowledgments
This research work has completed at the Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, INDIA. We are thankful for the institutional support and providing a computer lab facility. We will also be thankful for esteemed reviewers and editors for their helpful suggestions in the improvement of this manuscript and getting published in a reputed journal.

Compliance with Ethical Standards

Conflict of interest All authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Funding Information This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

References

[1] Nilashi, Mehrbakhsh, et al. "Travelers decision making using online review in social network sites: A case on TripAdvisor." Journal of computational
[2] Ma, Yufeng, et al. "Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning." International Journal of Hospitality Management 71 (2018): 120-131.

[3] Kulshrestha, Anurag, Venkataraghavan Krishnaswamy, and Mayank Sharma. "Bayesian BILSTM approach for tourism demand forecasting." Annals of Tourism Research 83 (2020): 102925.

[4] Khorsand, Ramina, Majid Rafiee, and Vahid Kayvanfar. "Insights into TripAdvisor’s online reviews: The case of Tehran’s hotels." Tourism Management Perspectives 34 (2020): 100673.

[5] Sanchez-Medina, Agustín J., and C. Eleazar. "Using machine learning and big data for efficient forecasting of hotel booking cancellations." International Journal of Hospitality Management 89 (2020): 102546.

[6] Jain, Deepak Kumar, Akshi Kumar, and Vibhuti Sharma. "Tweet recommender model using adaptive neuro-fuzzy inference system." Future Generation Computer Systems (2020).

[7] Siering, Michael, Amit V. Deokar, and Christian Janze. "Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews." Decision Support Systems 107 (2018): 52-63.

[8] Chatterjee, Swagato. "Explaining customer ratings and recommendations by combining qualitative and quantitative user generated contents." Decision Support Systems 119 (2019): 14-22.

[9] Sezgen, Eren, Keith J. Mason, and Robert Mayer. "Voice of airline passenger: A text mining approach to understand customer satisfaction." Journal of Air Transport Management 77 (2019): 65-74.

[10] Guerreiro, Joo, and Paulo Rita. "How to predict explicit recommendations in online reviews using text mining and sentiment analysis." Journal of Hospitality and Tourism Management (2019).
[11] Chatterjee, Swagato, and Prasenjit Mandal. "Traveler preferences from online reviews: Role of travel goals, class and culture." Tourism Management 80 (2020): 104108.

[12] Punel, Aymeric, Lama Al Hajj Hassan, and Alireza Ermagun. "Variations in airline passenger expectation of service quality across the globe." Tourism Management 75 (2019): 491-508.

[13] Mostafaeipour, Ali, Alireza Goli, and Mojtaba Qolipour. "Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study." The Journal of Supercomputing 74.10 (2018): 5461-5484.

[14] Tsang, Wai Kit, and Dries F. Benoit. "Gaussian processes for daily demand prediction in tourism planning." Journal of Forecasting 39.3 (2020): 551-568.

[15] Zhao, Yabing, Xun Xu, and Mingshu Wang. "Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews." International Journal of Hospitality Management 76 (2019): 111-121.

[16] Plotkina, Daria, Andreas Munzel, and Jessie Pallud. "Illusions of truth: Experimental insights into human and algorithmic detections of fake online reviews." Journal of Business Research 109 (2020): 511-523.

[17] Barbado, Rodrigo, Oscar Araque, and Carlos A. Iglesias. "A framework for fake review detection in online consumer electronics retailers." Information Processing & Management 56.4 (2019): 1234-1244.

[18] Cardoso, Emerson F., Renato M. Silva, and Tiago A. Almeida. "Towards automatic filtering of fake reviews." Neurocomputing 309 (2018): 106-116.

[19] Li, Lin, et al. "Unveiling the cloak of deviance: Linguistic cues for psychological processes in fake online reviews." International Journal of Hospitality Management 87 (2020): 102468.
[20] Martinez-Torres, M. R., and S. L. Toral. "A machine learning approach for the identification of the deceptive reviews in the hospitality sector using unique attributes and sentiment orientation." Tourism Management 75 (2019): 393-403.

[21] Choi, Sungwoo, et al. "The role of power and incentives in inducing fake reviews in the tourism industry." Journal of Travel Research 56.8 (2017): 975-987.

[22] Li, Lin, et al. "Unveiling the cloak of deviance: Linguistic cues for psychological processes in fake online reviews." International Journal of Hospitality Management 87 (2020): 102468.

[23] Viviani, Marco, and Gabriella Pasi. "Quantifier guided aggregation for the veracity assessment of online reviews." International Journal of Intelligent Systems 32.5 (2017): 481-501.

[24] Ren, Yafeng, and Donghong Ji. "Neural networks for deceptive opinion spam detection: An empirical study." Information Sciences 385 (2017): 213-224.

[25] Kim, Minseong, and Jihye Kim. "The Influence of Authenticity of Online Reviews on Trust Formation among Travelers." Journal of Travel Research 59.5 (2020): 763-776.

[26] Li, Luyang, et al. "Document representation and feature combination for deceptive spam review detection." Neurocomputing 254 (2017): 33-41.

[27] Valdivia, Ana, et al. "Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods." Neurocomputing 353 (2019): 3-16.

[28] Cao, Ning, et al. "A Deceptive Review Detection Framework: Combination of Coarse and Fine-grained Features." Expert Systems with Applications (2020): 113465.
[29] Li, Neng, et al. "Fake reviews tell no tales? dissecting click farming in content-generated social networks." China Communications 15.4 (2018): 98-109.

[30] Gutierrez-Espinoza, Luis, et al. "Fake Reviews Detection through Ensemble Learning." arXiv preprint arXiv:2006.07912 (2020).

[31] Chang, Victor, et al. "An improved model for sentiment analysis on luxury hotel review." Expert Systems (2020): e12580.

[32] Chang, Victor, et al. "An improved model for sentiment analysis on luxury hotel review." Expert Systems (2020): e12580.

[33] Kumar, Sachin, and Mikhail Zymbler. "A machine learning approach to analyze customer satisfaction from airline tweets." Journal of Big Data 6.1 (2019): 62.

[34] Chen, Liang-Chu, Chia-Meng Lee, and Mu-Yen Chen. "Exploration of social media for sentiment analysis using deep learning." Soft Computing (2019): 1-11.

[35] Lee, Sung-Won, et al. "A difference of multimedia consumers rating and review through sentiment analysis." Multimedia Tools and Applications (2020): 1-18.

[36] Park, Eunil, et al. "Determinants of customer satisfaction with airline services: An analysis of customer feedback big data." Journal of Retailing and Consumer Services 51 (2019): 186-190.

[37] Brochado, Ana, et al. "Airline passengers perceptions of service quality: Themes in online reviews." International Journal of Contemporary Hospitality Management (2019).

[38] Xu, Xun, Wenhui Liu, and Dogan Gursoy. "The impacts of service failure and recovery efforts on airline customers emotions and satisfaction." Journal of Travel Research 58.6 (2019): 1034-1051.
[39] Hwang, Jinsoo, and Seong Ok Lyu. "Understanding first-class passengers’ luxury value perceptions in the US airline industry.” Tourism Management Perspectives 28 (2018): 29-40.

[40] Korfiatis, Nikolaos, et al. "Measuring service quality from unstructured data: A topic modeling application on airline passengers online reviews.” Expert Systems with Applications 116 (2019): 472-486.

[41] Lee, Pei-Ju, Ya-Han Hu, and Kuan-Ting Lu. "Assessing the helpfulness of online hotel reviews: A classification-based approach.” Telematics and Informatics 35.2 (2018): 436-445.

[42] Lim, Sherwin Shenwei, and Aaron Tkaczynski. "Origin and money matter: The airline service quality expectations of international students.” Journal of Hospitality and Tourism Management 31 (2017): 244-252.

[43] Lim, Juhwan, and Hyun Cheol Lee. "Comparisons of service quality perceptions between full service carriers and low cost carriers in airline travel.” Current Issues in Tourism 23.10 (2020): 1261-1276.

[44] Lu, Jin-Long. "Segmentation of passengers using full-service and low-cost carriersEvidence from Taiwan.” Journal of air transport management 62 (2017): 204-216.

[45] Lucini, Filipe R., et al. "Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews.” Journal of Air Transport Management 83 (2020): 101760.

[46] Martin-Domingo, Luis, Juan Carlos Martin, and Glen Mandsberg. "Social media as a resource for sentiment analysis of Airport Service Quality (ASQ).” Journal of Air Transport Management 78 (2019): 106-115.

[47] Pantano, Eleonora, Constantinos-Vasilios Priporas, and Nikolaos Stylos. "You will like it!using open data to predict tourists’ response to a tourist attraction.” Tourism Management 60 (2017): 430-438.

51
[48] Prentice, Catherine, and Mariam Kadan. "The role of airport service quality in airport and destination choice." Journal of Retailing and Consumer Services 47 (2019): 40-48.

[49] Stamolampros, Panagiotis, et al. "Flying to quality: Cultural influences on online reviews." Journal of Travel Research 58.3 (2019): 496-511.

[50] Ban, Hyun-Jeong, and Hak-Seon Kim. "Understanding customer experience and satisfaction through airline passengers online review." Sustainability 11.15 (2019): 4066.

[51] Tsafarakis, Stelios, Theodosios Kokotas, and Angelos Pantouvakis. "A multiple criteria approach for airline passenger satisfaction measurement and service quality improvement." Journal of Air Transport Management 68 (2018): 61-75.

[52] Liu, Yi, et al. "Listen to the voices from home: An analysis of Chinese tourists sentiments regarding Australian destinations." Tourism Management 71 (2019): 337-347.

[53] Mehraliyev, Fuad, Andrei P. Kirilenko, and Youngjoon Choi. "From measurement scale to sentiment scale: Examining the effect of sensory experiences on online review rating behavior." Tourism Management 79 (2020): 104096.

[54] Tsai, Chih-Fong, et al. "Improving text summarization of online hotel reviews with review helpfulness and sentiment." Tourism Management 80 (2020): 104122.

[55] Song, Chao, et al. "SACPC: A framework based on probabilistic linguistic terms for short text sentiment analysis." Knowledge-Based Systems (2020): 105572.

[56] Chang, Yung-Chun, Chih-Hao Ku, and Chien-Hung Chen. "Using deep learning and visual analytics to explore hotel reviews and responses." Tourism Management 80 (2020): 104129.
[57] Giglio, Simona, et al. "Branding luxury hotels: Evidence from the analysis of consumersbig visual data on TripAdvisor.” Journal of Business Research (2019).

[58] Afzaal, Muhammad, et al. "Multiaspectbased opinion classification model for tourist reviews.” Expert Systems 36.2 (2019): 12371.

[59] Mao, Zhenxing, Yang Yang, and Mingshu Wang. "Sleepless nights in hotels? Understanding factors that influence hotel sleep quality.” International Journal of Hospitality Management 74 (2018): 189-201.

[60] Yan, Qiang, Simin Zhou, and Sipeng Wu. "The influences of tourists emotions on the selection of electronic word of mouth platforms.” Tourism Management 66 (2018): 348-363.

[61] Gitto, Simone, and Paolo Mancuso. "Improving airport services using sentiment analysis of the websites.” Tourism management perspectives 22 (2017): 132-136.

[62] Ahani, Ali, et al. "Revealing customers satisfaction and preferences through online review analysis: The case of Canary Islands hotels.” Journal of Retailing and Consumer Services 51 (2019): 331-343.

[63] Chatterjee, Swagato. "Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach.” International Journal of Hospitality Management (2019): 102356.

[64] Hu, Ya-Han, Kuanchin Chen, and Pei-Ju Lee. "The effect of user-controllable filters on the prediction of online hotel reviews.” Information & Management 54.6 (2017): 728-744.

[65] Chang, Yung-Chun, Chih-Hao Ku, and Chun-Hung Chen. "Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor.” International Journal of Information Management 48 (2019): 263-279.
[66] Nakayama, Makoto, and Yun Wan. "The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews.” Information & Management 56.2 (2019): 271-279.

[67] Hu, Ya-Han, Yen-Liang Chen, and Hui-Ling Chou. "Opinion mining from online hotel reviews: text summarization approach.” Information Processing & Management 53.2 (2017): 436-449.

[68] Guo, Yue, Stuart J. Barnes, and Qiong Jia. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent Dirichlet allocation.” Tourism Management 59 (2017): 467-483.

[69] Chang, Yung-Chun, Chih-Hao Ku, and Chun-Hung Chen. "Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor.” International Journal of Information Management 48 (2019): 263-279.

[70] Liu, Yong, et al. "Big data for big insights: Investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews.” Tourism Management 59 (2017): 554-563.

[71] Peng, Hong-gang, Hong-yu Zhang, and Jian-qiang Wang. "Cloud decision support model for selecting hotels on TripAdvisor. com with probabilistic linguistic information.” International Journal of Hospitality Management 68 (2018): 124-138.

[72] Moro, Srgio, et al. "Can we trace back hotel online reviews characteristics using gamification features?.” International Journal of Information Management 44 (2019): 88-95.

[73] Cook, Deborah, et al. "Central venous catheter replacement strategies: a systematic review of the literature.” Critical care medicine 25.8 (1997): 1417-1424.

[74] Booth, Andrew, Anthea Sutton, and Diana Papaioannou. Systematic approaches to a successful literature review. Sage, 2016.
[75] Kamble, Sachin S., Angappa Gunasekaran, and Shradha A. Gawankar. "Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives." Process Safety and Environmental Protection 117 (2018): 408-425.

[76] Tranfield, David, David Denyer, and Palminder Smart. "Towards a methodology for developing evidence-informed management knowledge by means of systematic review." British Journal of Management 14.3 (2003): 207-222.

[77] Du, Cheng-Jin, and Da-Wen Sun. "Learning techniques used in computer vision for food quality evaluation: a review." Journal of Food Engineering 72.1 (2006): 39-55.

[78] Armstrong, David, et al. "The place of inter-rater reliability in qualitative research: An empirical study." Sociology 31.3 (1997): 597-606.

[79] Pezzuti, T., Pierce, M.E. and Leonhardt, J.M. (2018), "Does language homophily affect migrant consumers service usage intentions?", Journal of Services Marketing, Vol. 32 No. 5, pp. 581-591. https://doi.org/10.1108/JSM-07-2017-0252.

[80] Zhou, Qingyuan, Zheng Xu, and Neil Y. Yen. "User sentiment analysis based on social network information and its application in consumer reconstruction intention." Computers in Human Behavior 100 (2019): 177-183.

[81] Bansal, Barkha, and Sangeet Srivastava. "Hybrid attribute based sentiment classification of online reviews for consumer intelligence." Applied Intelligence 49.1 (2019): 137-149.

[82] Nithya, R., and D. Maheswari. "Sentiment analysis on unstructured review." 2014 International Conference on Intelligent Computing Applications. IEEE, 2014.

[83] Singh, Nikhil Kumar, Deepak Singh Tomar, and Arun Kumar Sangaiah. "Sentiment analysis: a review and comparative analysis over social media."
Journal of Ambient Intelligence and Humanized Computing 11.1 (2020): 97-117.

[84] Jagdale, Rajkumar S., Vishal S. Shirsat, and Sachin N. Deshmukh. "Sentiment analysis on product reviews using machine learning techniques." Cognitive Informatics and Soft Computing. Springer, Singapore, 2019. 639-647.

[85] Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis." Comput. Linguist 35.2 (2009): 311-312.

[86] Kumar, Akshi, and Teeja Mary Sebastian. "Sentiment analysis: A perspective on its past, present and future." International Journal of Intelligent Systems and Applications 4.10 (2012): 1-14.

[87] Vinodhini, G., and R. M. Chandrasekaran. "Sentiment analysis and opinion mining: a survey." International Journal 2.6 (2012): 282-292.

[88] Abirami, Ariyur Mahadevan, and Abdulkhader Askarunisa. "Sentiment analysis model to emphasize the impact of online reviews in healthcare industry." Online Information Review (2017).

[89] Fan, Zhi-Ping, Yu-Jie Che, and Zhen-Yu Chen. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis." Journal of Business Research 74 (2017): 90-100.

[90] Luo, Jiaqi, Songshan Huang, and Renwu Wang. "A fine-grained sentiment analysis of online guest reviews of economy hotels in China." Journal of Hospitality Marketing & Management (2020): 1-25.

[91] Sidhu, Simran, and Surinder Singh Khurana. "Method to Rank Academic Institutes by the Sentiment Analysis of Their Online Reviews." Handbook of Research on Emerging Trends and Applications of Machine Learning. IGI Global, 2020. 1-26.
[92] Al-Natour, Sameh, and Ozgur Turetken. "A comparative assessment of sentiment analysis and star ratings for consumer reviews." International Journal of Information Management 54 (2020): 102132.

[93] Kumar, Akshi, and Arunima Jaiswal. "Systematic literature review of sentiment analysis on Twitter using soft computing techniques." Concurrency and Computation: Practice and Experience 32.1 (2020): e5107.

[94] Yousif, Abdallah, et al. "A survey on sentiment analysis of scientific citations." Artificial Intelligence Review 52.3 (2019): 1805-1838.

[95] Zhong, Qiuyan, et al. "Using online reviews to explore consumer purchasing behaviour in different cultural settings." Kybernetes (2019).

[96] Chiranjeevi, P., D. Teja Santosh, and B. Vishnuvardhan. "Survey on sentiment analysis methods for reputation evaluation." Cognitive Informatics and Soft Computing. Springer, Singapore, 2019. 53-66.

[97] Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

[98] Du, Cheng-Jin, and Da-Wen Sun. "Learning techniques used in computer vision for food quality evaluation: a review." Journal of food engineering 72.1 (2006): 39-55.

[99] Zhu, Xiaojin, and Andrew B. Goldberg. "Introduction to semi-supervised learning." Synthesis lectures on artificial intelligence and machine learning 3.1 (2009): 1-130.

[100] Traore, Boukaye Boubacar, Bernard Kamsu-Foguem, and Fana Tangara. "Data mining techniques on satellite images for discovery of risk areas." Expert Systems with Applications 72 (2017): 443-456.

[101] Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349.6245 (2015): 255-260.
[102] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[103] Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

[104] Kumar, D. Praveen, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. "Machine learning algorithms for wireless sensor networks: A survey." Information Fusion 49 (2019): 1-25.

[105] Chaturvedi, Iti, et al. "Distinguishing between facts and opinions for sentiment analysis: Survey and challenges." Information Fusion 44 (2018): 65-77.

[106] Mihalcea, Rada, and Aparna Garimella. "What men say, what women hear: Finding gender-specific meaning shades." IEEE Intelligent Systems 31.4 (2016): 62-67.

[107] Cavallari, Sandro, et al. "Learning community embedding with community detection and node embedding on graphs." Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017.

[108] Majumder, Navonil, et al. "Deep learning-based document modeling for personality detection from text." IEEE Intelligent Systems 32.2 (2017): 74-79.

[109] Zhang, Wei, Sui-xi Kong, and Yan-chun Zhu. "Sentiment classification and computing for online reviews by a hybrid SVM and LSA based approach." Cluster Computing 22.5 (2019): 12619-12632.

[110] Schreiner, Timo, Alexandra Rese, and Daniel Baier. "Multichannel personalization: Identifying consumer preferences for product recommendations in advertisements across different media channels." Journal of Retailing and Consumer Services 48 (2019): 87-99.

[111] Wu, Yuanyuan, et al. "Fake online reviews: Literature review, synthesis, and directions for future research." Decision Support Systems (2020): 113280.
[112] Do, Hai Ha, et al. "Deep learning for aspect-based sentiment analysis: a comparative review." Expert Systems with Applications 118 (2019): 272-299.

[113] Morgan, Neil A., and Lopo Leotte Rego. "The value of different customer satisfaction and loyalty metrics in predicting business performance." Marketing science 25.5 (2006): 426-439.

[114] Reichheld, Frederick F. "The one number you need to grow." Harvard business review 82.6 (2004): 133-133.

[115] Marsden, Paul, Alain Samson, and Neville Upton. "Advocacy drives growth." Brand strategy 198 (2005): 45-47.

[116] De Haan, Evert, Peter C. Verhoef, and Thorsten Wiesel. "The predictive ability of different customer feedback metrics for retention." International Journal of Research in Marketing 32.2 (2015): 195-206.

[117] Reichheld, Fred. The ultimate question 2.0 (revised and expanded edition): how net promoter companies thrive in a customer-driven world. Harvard Business Review Press, 2011.

[118] He, Jiangning, Hongyan Liu, and Hui Xiong. "SocoTraveler: Travel-package recommendations leveraging social influence of different relationship types." Information & Management 53.8 (2016): 934-950.

[119] Siering, Michael, Amit V. Deokar, and Christian Janze. "Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews." Decision Support Systems 107 (2018): 52-63.

[120] Chatterjee, Swagato. "Explaining customer ratings and recommendations by combining qualitative and quantitative user generated contents." Decision Support Systems 119 (2019): 14-22.

[121] Chen, Yubo, and Jinhong Xie. "Online consumer review: Word-of-mouth as a new element of marketing communication mix." Management science 54.3 (2008): 477-491.
[122] Ha, Sung Ho, S. Y. Bae, and Lee Kyeong Son. "Impact of online consumer reviews on product sales: Quantitative analysis of the source effect." Applied Mathematics and Information Sciences 9.2 (2015): 373-387.

[123] Filieri, Raffaele, and Fraser McLeay. "E-WOM and accommodation: An analysis of the factors that influence travelers adoption of information from online reviews." Journal of Travel Research 53.1 (2014): 44-57.

[124] Sotiriadis, Marios D., and Cin Van Zyl. "Electronic word-of-mouth and online reviews in tourism services: the use of twitter by tourists." Electronic Commerce Research 13.1 (2013): 103-124.

[125] Awad, Neveen F., and Arik Ragowsky. "Establishing trust in electronic commerce through online word of mouth: An examination across genders." Journal of Management Information Systems 24.4 (2008): 101-121.

[126] Chevalier, Judith A., and Dina Mayzlin. "The effect of word of mouth on sales: Online book reviews." Journal of marketing research 43.3 (2006): 345-354.

[127] Dhar, Vasant, and Elaine A. Chang. "Does chatter matter? The impact of user-generated content on music sales." Journal of Interactive Marketing 23.4 (2009): 300-307.

[128] Zhu, Feng, and Xiaoquan Zhang. "The influence of online consumer reviews on the demand for experience goods: The case of video games." ICIS 2006 Proceedings (2006): 25.

[129] Park, JaeHong, Bin Gu, and HoonYoung Lee. "The relationship between retailer-hosted and third-party hosted WOM sources and their influence on retailer sales." Electronic Commerce Research and Applications 11.3 (2012): 253-261.

[130] Jang, Sungha, Ashutosh Prasad, and Brian T. Ratchford. "How consumers use product reviews in the purchase decision process." Marketing letters 23.3 (2012): 825-838.
[131] Dorner, Verena, Olga Ivanova, and Michael Scholz. "Think twice before you buy! How recommendations affect three-stage purchase decision processes." (2013).

[132] Chevalier, Judith A., and Dina Mayzlin. "The effect of word of mouth on sales: Online book reviews." Journal of marketing research 43.3 (2006): 345-354.

[133] Forman, Chris, Anindya Ghose, and Batia Wiesenfeld. "Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets." Information systems research 19.3 (2008): 291-313.

[134] Ghose, Anindya, and Panagiotis G. Ipeirotis. "Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics." IEEE transactions on knowledge and data engineering 23.10 (2010): 1498-1512.

[135] Ngo-Ye, Thomas L., and Atish P. Sinha. "The influence of reviewer engagement characteristics on online review helpfulness: A text regression model." Decision Support Systems 61 (2014): 47-58.

[136] Schindler, Robert M., and Barbara Bickart. "Perceived helpfulness of online consumer reviews: The role of message content and style." Journal of Consumer Behaviour 11.3 (2012): 234-243.

[137] Yin, Dezhi, Samuel D. Bond, and Han Zhang. "Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews." MIS quarterly 38.2 (2014): 539-560.

[138] Huang, Liqiang, et al. "Do we order product review information display? How?." Information & management 51.7 (2014): 883-894.

[139] Luo, Chuan, et al. "Examining the moderating role of sense of membership in online review evaluations." Information & Management 52.3 (2015): 305-316.
[140] Qi, Jiayin, et al. "Mining customer requirements from online reviews: A product improvement perspective." Information & Management 53.8 (2016): 951-963.

[141] Hennig-Thurau, Thorsten, et al. "Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet?." Journal of interactive marketing 18.1 (2004): 38-52.

[142] Siering, Michael, and Jan Muntermann. "How to Identify Tomorrow’s most active social commerce contributors? Inviting Starlets to the reviewer hall of fame." (2013).

[143] Chung, Namho, Heejeong Han, and Chulmo Koo. "Adoption of travel information in user-generated content on social media: the moderating effect of social presence." Behaviour & Information Technology 34.9 (2015): 902-919.

[144] Tilly, Roman, Kai Fischbach, and Detlef Schoder. "Mineable or messy? Assessing the quality of macro-level tourism information derived from social media." Electronic Markets 25.3 (2015): 227-241.

[145] Xiang, Zheng, et al. "What can big data and text analytics tell us about hotel guest experience and satisfaction?." International Journal of Hospitality Management 44 (2015): 120-130.

[146] Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349.6245 (2015): 255-260.

[147] Mullainathan, Sendhil, and Jann Spiess. "Machine learning: an applied econometric approach." Journal of Economic Perspectives 31.2 (2017): 87-106.

[148] Nasrabadi, Nasser M. "Pattern recognition and machine learning." Journal of electronic imaging 16.4 (2007): 049901.
[149] Huang, Guang-Bin, et al. "Extreme learning machine for regression and multiclass classification." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42.2 (2011): 513-529.

[150] Durgesh, K. SRIVASTAVA, and B. Lekha. "Data classification using support vector machine." Journal of theoretical and applied information technology 12.1 (2010): 1-7.

[151] Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

[152] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural networks 61 (2015): 85-117.

[153] Yang, Zhiguo, and Devanathan Sudharshan. "Examining multi-category cross purchases models with increasing dataset scaleAn artificial neural network approach." Expert Systems with Applications 120 (2019): 310-318.

[154] Nielsen, Thomas Dyhre, and Finn Verner Jensen. Bayesian networks and decision graphs. Springer Science & Business Media, 2009.

[155] Probst, Philipp, Marvin N. Wright, and AnneLaure Boulesteix. "Hyperparameters and tuning strategies for random forest." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9.3 (2019): e1301.

[156] Sherstinsky, Alex. "Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network." Physica D: Nonlinear Phenomena 404 (2020): 132306.

[157] Xu, Guixian, et al. "Sentiment analysis of comment texts based on BiLSTM." Ieee Access 7 (2019): 51522-51532.

[158] Liu, Tianyi, et al. "Implementation of training convolutional neural networks." arXiv preprint arXiv:1506.01195 (2015).

[159] Landauer, Thomas K., et al., eds. Handbook of latent semantic analysis. Psychology Press, 2013.

63
[160] Ramos, Juan. "Using tf-idf to determine word relevance in document queries." Proceedings of the first instructional conference on machine learning. Vol. 242. 2003.

[161] Chen, M. "TF-IDF, HashingTF and CountVectorizer.” (2015).

[162] Jang, Beakcheol, Inhwan Kim, and Jong Wook Kim. "Word2vec convolutional neural networks for classification of news articles and tweets." PloS one 14.8 (2019): e0220976.

[163] Sakketou, Flora, and Nicholas Ampazis. "A constrained optimization algorithm for learning GloVe embeddings with semantic lexicons.” Knowledge-Based Systems (2020): 105628.

[164] Zeroual, Imad, and Abdelhak Lakhouaja. "Arabic information retrieval: Stemming or lemmatization?.” 2017 Intelligent Systems and Computer Vision (ISCV). IEEE, 2017.

[165] Broder, Andrei Z., et al. "System, method and computer program product for performing unstructured information management and automatic text analysis, and providing multiple document views derived from different document tokenizations.” U.S. Patent No. 7,139,752. 21 Nov. 2006.

[166] Munkov, Daa, Michal Munk, and Martin Vozr. "Influence of stop-words removal on sequence patterns identification within comparable corpora.” International Conference on ICT Innovations. Springer, Heidelberg, 2013.