The future development of intensive care quality indicators – a methods paper

Abstract

Introduction: Medical quality indicators (QI) are important tools in the evaluation of medical quality. Their development is subject to specific methodological requirements, which include practical applicability. This is especially true for intensive care medicine with its complex processes and their interactions. This methods paper presents the status quo and shows necessary methodological developments for intensive care QI. For this purpose, a cooperation with the Association of the Scientific Medical Societies’ Institute for Medical Knowledge Management (AWMF-IMWi) was established.

Methodology: Review of published German manuals for QI development from guidelines and narrative review of quality indicators with a focus on evidence and consensus-based guideline recommendations. Future methodological adaptations of indicator development for improved operationalization, measurability and pilot testing are presented, and a development process is proposed.

Results: The development of intensive care quality indicators in Germany is based on an established process. In the future, additional evaluation criteria (QUALIFY criteria) will be applied to assess the evidence base. In addition, a continuous exchange between the national steering committee of the DIVI responsible for QI development and guideline development groups involved in intensive care medicine is planned.

Conclusion: Intensive care quality indicators will have to meet improved methodological requirements in the future by means of an improved development process. Future QI development is intended to improve the structure of the development process, with a focus on scientific evidence and a link to guideline projects. This is intended to achieve the goal of a broad application of QI and to further evaluate its relevance for patient outcome and performance of institutions.

1 Introduction

The development of intensive care quality indicators (QI) in Germany was initiated by a working group within the German Society for Anaesthesiology and Intensive Care Medicine (DGAI), which aimed to develop evaluation tools for the quality of intensive care. A selection of core processes out of existing Spanish QI seemed to be adequate for this purpose [1]. The selected 10 quality indicators were thought to be generally valid for all kinds of intensive care units, and at the same time provide a framework for all professional groups working there. Since 2009, the development of intensive care quality indicators has been carried out by the National Peer Review Steering Committee (NSPR) of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI). The QI and the voluntary peer review for intensive care medicine were developed as core elements of quality assurance [2], [3]. The QI developed in this process were based on the observation that there was relevant potential for improvement in intensive care processes that would have a significant effect on the quality of patient treatment. Therefore they were focused on these procedural problems. In a way, an existing problem was translated into an indicator. The achievement of a target value
Table 1: Comparison of different versions of the DIVI QI [14], [18], [19]

Version	1 (2010, [14])	2 (2013, [18])*	3 (2017, [19])*
QI I	Semirecumbent position in patients undergoing invasive mechanical ventilation	Daily multiprofessional ward rounds with the documentation of daily therapy goals	Daily multiprofessional and interdisciplinary clinical visits with documentation of daily goals
QI II	Monitoring sedation, analgesia, delirium	Monitoring sedation, analgesia, delirium	Management of sedation, analgesia, delirium
QI III	Lung-protective ventilation	Lung-protective ventilation	Patient-adapted ventilation
QI IV	Weaning protocols incorporating spontaneous breathing trials (SBT)	Weaning and other measures to prevent ventilator-associated pneumonias	Early weaning from invasive ventilation
QI V	Early and adequate initiation of antibiotic therapy	Early and adequate initiation of antibiotic therapy	Monitoring of infection prevention measures
QI VI	Therapeutic hypothermia after cardiac arrest (CA)	Therapeutic hypothermia after cardiac arrest (CA)	Measures for infection management
QI VII	Early enteral nutrition	Early enteral nutrition	Early enteral nutrition
QI VIII	Documentation of relative/next-of-kin communication	Structured documentation of relative/next-of-kin communication	Documentation of structured patient and family communication
QI IX	Hand disinfection consumption (BQS Indicator 2010)	Hand disinfectant consumption (BQS Indicator 2010)	Early mobilization
QI X	Intensive care unit (ICU) administration by an attending intensivist and provision of physical 24-hour ICU presence of at least one board-certified intensivist	Direction of the ICU by a specialist with additional qualification in intensive care, and with no other clinical duties in a department; presence of a specialist ICU physician during daytime and presence of experienced intensive care physicians and nurses over the course of 24 hours a day	Direction of the intensive care unit

*The rationale of the individual changes in the QI are presented in detail in the referenced publications (e.g.: upholding, withdrawal or introduction of a new indicator).

defined in the expert consensus, as far as possible in line with the current evidence, would correspond with good process quality, or otherwise could be used to measure improvement. The development of intensive care indicators followed a “bottom-up” principle, as they addressed practical problems perceived in daily clinical routine [2]. The rationale for a QI could thus be understood by medical professionals in intensive care directly involved in patient treatment.

This contrasts with the development of quality indicators, e.g. from treatment guidelines recommendations, in which the potential for quality improvement has to be determined beforehand ("top-down") [4], [5], [6].

In Germany, QI exist in different clinical settings. These are developed on a national level for external quality assurance by the Institute for Quality and Transparency in Health Care (IQTIG). Through legislation such as the Hospital Structure Act and through legal guidelines for quality assurance (G-BA directive), it is expected that QI become mandatory in intensive care medicine. It is evident that quality initiatives like the QI developed under the auspices of the DIVI should be integrated into this framework of external quality assurance. Since their first publication, these QI were perceived differently over time. At present, the recording of intensive care QI is voluntary, either through voluntary peer review or through institutional quality management. However, the importance of these QI is increasing, as they have already impacted structural directives for intensive care medicine, as can be seen from their influence on intensive care reimbursement rules [7]. The demand for “evidence-based medicine” as a basis for the correct implementation of treatment processes made the development of the DIVI QI in their revisions increasingly labor-intensive, as the indicators were predominantly process indicators for which the underlying evidence frequently changes; and thus updates are required [8]. This has resulted in three revisions so far, and there is already a need for changes for the next planned revision. A comparison of the different versions of the DIVI QI is shown in Table 1. The future QI will have to meet increased demands on their own quality. Therefore, the National Steering Committee of the DIVI is planning to have the future development process methodically accompanied by the AWMF-IMWI. In order to ensure transparency in this context, this manuscript describes a potential development process and at the same time would like to induce a discussion about this revised methodology for the DIVI QI. This article explicitly does not address the medical content of single quality indicators.
2 Methods

2.1 Current development process of QI in intensive care in Germany

The National Steering Committee Peer Review (NSPR) of the DIVI is responsible for the development of the QI. In a Delphi process, the medical societies united in the DIVI submit proposals for topics relevant to them, which are then evaluated in the NSPR. For the first development in 2010, the number of indicators was set at ten for reasons of practicability. In the development of the individual QI of the three previous versions, the criteria of the RUMBA system were applied (relevant, understandable, measurable, behaviorable, achievable) [9]. Topics were evaluated based on the following factors:

1. frequency of the process,
2. changeability of behavior,
3. magnitude of the potential for improvement,
4. (general) validity for all areas of adult intensive care.

Another important factor was the available evidence. If applicable, the existence of external regulations had to be taken into account. Too many changes in the topics would impair the QI implementation within individual institutions, as implementation and testing of these indicators may be associated with time and personnel costs [10]. When determining the formulas for indicators and their respective target values, they were primarily based on existing values in the literature. If no data were available, a decision was made by expert consensus in the NSPR. With regard to the target value, an achievement value of 70% appeared to be reasonable on the basis of existing examples [11]. Necessary revisions or modifications of the QI were based on feedback from the voluntary peer reviews that were part of intensive care unit (ICU) evaluations. Changes resulted from direct assessments of relevance or applicability [12]. Furthermore, a potential change in the evidence basis was taken into account for a given QI. In addition, the aforementioned RUMBA rules remained the key evaluation tools. When new quality indicators were selected, the focus was mainly on the relevance of the topic in terms of the expected impact on patient outcome. The RUMBA system was also applied here (Figure 1, Table 2). The evidence base for the indicator was then the focus of the second step, but the evidence was not formally evaluated. Possible sources of evidence were guidelines (GL), preferably valid for the German health care system and published by the AWMF – due to the structured method of their development [13]. When estimating the reliability of evidence, we assumed the best evidence from S3 guidelines, followed by recommendations from S2e guidelines and S2k guidelines. In the absence of guidelines in the AWMF register, systematic reviews or international evidence-based GL were used as a source of evidence. Finally, when no formal evidence was found, expert consensus within the steering committee was used to determine a QI based on primary literature known to the experts. As a part of the methodological framework of the DIVI peer review process, the measurement of the QI was more a random check of se-
Table 2: Comparison of evaluation criteria for quality indicators (RUMBA/QUALIFY criteria for guideline-based QI/original QUALIFY)

Evaluation category	RUMBA [9] DIVI QI (previous criteria)	QUALIFY (according to GLM [8]) (future planned criteria for the preparation of the DIVI QI)	Original QUALIFY [20]
Relevance	Relevant	Significance for the health care system; potential for improvement	Benefits
		Risks for undesirable effects	Consideration of potential risks/side effects
Scientific character	Understandable	Clarity of the definition	Clarity of the definitions (of the indicator and its application)
		Reliability	
		Statistical distinctness	
		Risk adjustment	
		Sensitivity	
		Specificity	
		Validity	
Practicability	Measurable	Data availability*	Data availability
		Survey effort*	Survey effort
		Implementation barriers considered*	Implementation barriers considered*
		Accuracy of data can be checked	Accuracy of data can be checked
		Compleness of data can be checked	Compleness of data can be checked
		Compleness of datasets can be checked	Compleness of datasets can be checked
		Influence of the assessed service providers	Ability to influence the indicator characteristics
Behavioral	Achievable	Ability to influence the indicator characteristics	
Achievable	Comprehensibility and interpretability for patients and the interested public	Comprehensibility for doctors and nurses	
Scientific evaluation	Not available	Available through evidence and consensus building (in guidelines)	Available through indicator evidence

*Only descriptive examination of the criteria in the NVL; mandatory criteria in the DIVI QI; GLM=guideline manual; NVL=Nationale Versorgungsleitlinie (national disease management guideline)

In the continuous development process of QI in intensive care, different aspects have to be considered. On the one hand, relevant literature for QI development shows that more diligent methodological criteria should be used in the development of QI [5], [15], [16]. In addition to these methodological requirements, fundamental quality dimensions such as safety, effectiveness, patient focus, timeliness, efficiency and equity should be considered as important focal points [17]. The importance of QI in quality assurance has already been mentioned, as well as the potential for the unwelcome instrumentalization of the DIVI QI for reimbursement schemes in the DRG system (definition of intensive care treatment complexity), among other things [7]. This goes beyond a strictly medical evaluation of processes in intensive care and needs to be addressed with improved methodological quality in their development. The development process used to date has been described in the publications on DIVI QI [18], [19]. The further development is based on various relevant publications, i.e. existing manuals for guideline development [4], [5] for German-speaking countries as well as the QUALIFY evaluation tool developed in recent years [20]. These serve as the basis of criteria used in guideline manuals. This method of the future development process of the DIVI QI thus includes an explicit scientific evaluation process and also takes into account requirements for quality thresholds [6], [16]. Similar to the development process of guidelines, the disclosure of conflicts of interest is also relevant in the process of QI development.
In the following sections, the steps for the development of the next edition of QI, which will be published in 2021, are described and presented for discussion. The evaluation of existing indicators, the development of new indicators including pilot testing, the definition of suitable key figures, and the cooperation in the development process will be addressed.

2.3 Evaluation of the previous QI

As a first step in the development of the next version of intensive care QI, evaluation criteria were defined, which are based on the QI evaluation instrument QUALIFY [20]. They include the following aspects:

1. importance for the health care system/potential for improvement,
2. risks of undesirable effects,
3. clarity of definition,
4. evidence- and consensus-based (in guidelines),
5. potential to be influenced by health care providers.

These rules differ from the RUMBA system used to date (Table 2). The comparison with the QUALIFY criteria and the criteria modified for guideline development show that factors beyond applicability have to be taken into account. A suitable evidence base for indicator development is needed. Ideally, the use of the indicator itself has a positive effect on patient outcome [21], [22].

As described in section 2.1, the methodological basis for indicator modification was not rigidly defined. By applying the criteria listed in Table 2, a systematic approach has to be developed which allows a direct comparison of QI for a particular topic, or further assessment of QI results over longer periods of time [20]. The review of the QI may lead to their confirmation, modification or withdrawal. Modifications may also affect the reference value or reference range of the indicator measure. The QUALIFY instrument is also suitable for making changes of a QI or its withdrawal transparent and comprehensible, e.g., if the evidence basis is not consistent or an alternative indicator is available for a specific topic [5].

2.4 Development of new indicators

First a review is carried out in the NSPR on the basis of proposals for new indicator topics from the medical societies that are members of the DIVI. Figure 1 and Figure 2 show the steps of the indicator development. One important change is the focus on evidence-based criteria derived from the QUALIFY instrument. As shown in Table 2, there is a clear difference between the previous method using the RUMBA system and the new one. The new, more systematic evidence research will also include estimates of potential for improvement of a treatment process on patient outcome. We postulate that if there is a high level of evidence for process adherence and a demonstrable positive outcome, the level of indicator evidence is high (provided that the positive patient outcome is the end-point of the reviewed evidence). The available evidence is assessed as described above (guidelines, systematic reviews, meaningful primary literature) and largely follows the GRADE system (Grading of Recommendations Assessment, Development and Evaluation) [23], [24].

Based on the strength of the evidence, the indicator strength will mainly be determined by consensus. This makes sense, since a high level of indicator evidence may still be available if there is an obvious correlation...
between process fulfilment and outcome (e.g. if no direct studies are possible) [20].

2.5 Pilot testing

It is desirable that the aspects mentioned in sections 2.3 and 2.4 are pilot tested before a newly developed QI is generally applied. The test focuses on acceptance (by the user) and methodological suitability, including proof of validity, statistical aspects and indicator evidence [8]. The statistical requirements such as ability to discriminate between “good” and “poor” practice and sensitivity to change are discussed below. Due to the previous use of QI in the peer review process of the DIVI, the development of rate-based QI with numerator and denominator and adaption of calculation rules if required as well as statistical aspects have so far been secondary. Quantitative or qualitative assessments of individual indicators should be carried out (Figure 2) for that purpose. This is also necessary to check quality requirements for indicator function, i.e. relevance for outcome measures. Pilot testing can be obtained from existing data records. This is further explained in the following section.

2.6 Further development and use of suitable key figures

The definition of key figures and reference values has so far been based on expert consensus within the NSPR and was based on the existing literature or known indicators. Reference ranges (upper and lower limit values) were determined in a similar way. In the future, determination of indicator key figures and their limits is a central aspect for the development and use of indicators. Two aspects will be essential in this context:

1. collection of valid data to be able to calculate indicators,
2. evaluation of the indicators in relation to the established reference ranges.

As mentioned in the previous section, these questions are of particular importance when assessing QI in test phases. As shown in Table 2, comprehensively collected data are important in the implementation and application of QI in order to strengthen the credibility of the measurement results, e.g. within an institution [10], [16]. When the indicators are applied across institutions, further requirements such as content validity are added [6], [25]. Easily measurable indicators would facilitate their application in settings outside a peer review process. The automated collection of data for the calculation of key figures would be an important step in initiating and evaluating quality improvement measures within an institution and in quality assurance. Of note, the development of such key figures is also challenging from a statistical point of view, as it is difficult to verify accuracy or the scale level due to scarcely available empirical data. Therefore it is critical to show validity of measurement characteris-

2.7 Cooperation in indicator development

In the future, the evaluated indicators should be actively shared with guideline development groups working on intensive care topics (Figure 2). This should enable a faster and more efficient definition of the quality indicators for the use in guidelines relevant to intensive care medicine. In cooperation with the guideline developers under the auspices of the AWMF-IMWi, these QI will be evaluated and, if necessary, combined with GL recommendations. The adapted QUALIFY criteria will already be applied in the guideline groups. In the future, guideline developers will be able to share relevant new evidence or derived GL recommendations to the NSPR of the DIVI. Furthermore, new GL recommendations that are based on new evidence and might lead to new indicators or new topics relevant for QI development might be shared with the NSPR. Overall, this exchange between the NSPR and guideline development groups will result in synergy effects. It results in synergy effects which both sides will benefit from in the future. The guideline development groups should also examine the extent to which health care data generated by the use of the established indicators can be used in the development and evaluation of future indicators.

3 Results

The development and use of quality indicators aims to improve treatment processes and patient outcome. The QI for intensive care medicine of the DIVI meet these requirements. However, as is presented in this paper, there is potential for improvement in the development of the QI in some areas. These relate to the evidence basis of the QI at the patient level and the health care system level and also their definite operationalization to enable broad application. A considerable number of intensive care QI exist worldwide [26]. Their most common feature is to evaluate important treatment processes in intensive care. However, there are no methodological standards for their development or their application [27]. One main reason for this are context factors which have been taken into account when applying QI. This also applies to the intensive care quality indicators of DIVI, which were developed from the voluntary intensive care peer review process in order to identify potential for improvement in treatment processes on single sites in Germany.

3.1 Evidence-based approach

The postulated “lack of evidence basis” of QI mentioned in this paper is not intended to discredit the QI developed so far, but to emphasize that the transfer of guideline recommendations into QI is a very complex issue and
should therefore be done in a structured and comprehensible way. The following general rule applies: The higher the published evidence for the implementation of a treatment process, the stronger is the evidence for the use of an indicator that evaluates this process. This basically refers to the strength of evidence, especially of guideline recommendations, where this basic principle is based on evaluation criteria from the GRADE system such as accuracy, indirectness and inconsistency, as well as others. The evaluation of GL according to the GRADE system cannot be applied directly to QI. However, the described assessment criteria for the transferability of study results into actual treatment recommendations can have an influence on the QI, since GL are the basis of the QI as described, and problems with study safety (=certainty) affect the QI [28], [29]. It may be possible that studies are not feasible for certain aspects of care, in which case the indicator may still be useful and effective [15].

The selection of indicator topics for intensive care QI has not been based on the best evidence yet. It followed the approach of the DIVI NSPR described above on the basis of perceived quality deficits in daily patient care. A combination of the two strategies seems to make sense. In order to improve transparency and traceability of the development strategy, this must be justified and documented in a structured way as described by the QUALIFY method. There are various examples of the application of the QUALIFY method in the German-speaking countries for the preparation and assessment of QI [30], [31].

3.2 Operationalization

In Germany, the possibility of standardized data collection, ideally in a digital format, is not available across the country. For this reason, local measurability must currently be considered when developing indicators. The process indicators of the DIVI are well suited for this. However, in order to meet important statistical requirements for a broader application of QI, it is necessary to obtain sufficient data volumes. Here, the opportunities offered by digitalization must be used consistently. In a next step, questions of the statistical evaluability have to be focused on: the question of content validity – that the QI actually measures what it is intended for –, the ability to discriminate between institutions, and the sensitivity to measure change over time, e.g. to detect improvements or failure to improve. Finally, the data have to be consistent enough to evaluate an outcome effect of the indicator in use, since this effect should be as large as possible. The sufficient amount of data can only be collected through the broad implementation of patient data management systems (PDMS) in all ICUs. This would enable low-cost data collection and cross-sectoral data collection on patient-centred outcome parameters [7], [32]. However, as long as the technical prerequisites for recording these data are not in place, intersectoral indicators cannot be measured either [33]. In the long term, a comparison of institutions also on the basis of process indicators is a worthwhile goal. It seems reasonable to strive for these comparisons as well, if possible.

3.3 Outcome benefits of quality indicators

When a QI is implemented, it is necessary to evaluate whether the chosen indicator is reliable and valid, and whether its measurement can initiate a process of change within an institution or system, and how this is presented. Benefit assessments of QI have to state whether the conclusions drawn from the QI evaluation are reliable enough to prove a change in processes. For the use of QI – at least in intensive care medicine – a positive influence through the use of indicators on patient outcome has not been proven yet. It is also not known if QI can have a negative impact on patient outcome. For example, the application of sedation pauses, as is recommended, might increase the rate of self-extubation, which in itself might pose a risk to the patient. Valid data on this question do not exist. Therefore, a formal risk assessment should be integrated into the QI development process whenever possible. If necessary, an indicator must be withdrawn or amended in such a case.

The type of indicator used also plays a role in the benefit assessment. In intensive care, there are some arguments in favor of using process indicators, as they are easy to measure and do not require risk adjustment for disease severity. However, in the literature some indicators are referred to as “process indicators” even if they query a process [27]. This would mean that the VAP rate is exclusively or substantially influenced by the process hygiene behavior, which might not be true [34]. There is also a difference in measurement of process adherence, i.e. the process itself is recorded (example: regular measurement of a delirium score), or a key figure for process adherence (here: number of measurements in a defined period of time) is measured. No formal assessment of this has been examined for an effect on patient outcome. The need to prove an outcome benefit of process indicators should be examined carefully. If the underlying evidence shows a direct and strong correlation of process and outcome, the effort to show this benefit might not be necessary. Otherwise, to prove the usefulness of a process QI with regard to outcome is relevant, and there should be a scientific concept of how to define and measure this outcome effect.

For the quality dimensions proposed by Donabedian, not only process indicators are considered useful to evaluate a quality problem, but also structure and outcome indicators [35]. In the DIVI QI, the existence of a process standard, i.e. a structure indicator, may be required in association with a process indicator. The definition of evidence-based structural indicators is certainly difficult in most cases, as they are often based on experience or tradition, rather than on comparative studies. They can sometimes only be defined by expert consensus [36]. In
principle, a process can be performed well even without a standard in place. A process evaluation would then indicate whether standards are followed in daily routine. Outcome indicators are used, for example, in cross-institutional benchmarking. One problem of their application is the need for risk adjustment due to heterogeneous patient groups. Outcome indicators are also only of limited value when evaluating the implementation of a process. In case of a deviation from the reference value of the indicator, processes have to be examined in retrospect. Nevertheless, comparisons of institutions tend to use outcome indicators due to better data availability. Other outcome indicators, such as mortality – even if they are standardized for risk factors (SMR) – are not able to record actual process adherence [37]. In addition, such indicators are at best only able to measure undesirable developments after longer periods of time (e.g. months), which may be due to incorrectly implemented processes or the failure to meet structural requirements [38]. However, the measure is slow and may tend to miss relevant quality problems.

4 Conclusion

The following statement by Califf et al. represents an “ideal state” in quality management and quality assurance: “In an ideal clinical world, for every clinical decision there would be an indicator based on a guideline based on evidence from randomized trials” [39]. It is unlikely that the costs and benefits of this approach can be reconciled. However, the sentence confirms that clinical decisions in a process-based approach can produce a positive treatment outcome in the patients’ interest. This is the basic principle of the QI in intensive care of the DIVI. The methodology for the future development of intensive care QI presented here shows that these indicators will have a robust basis for use within a single institution as well as for other applications. The planned synergistic approach through a cooperation with AWMF guideline groups and the use of the criteria from the QUALIFY instrument should further strengthen the scientific basis of QI. The coordinated development process is intended to simplify the work of the NSPR of the DIVI, as well as of the respective guideline development groups working according to the AWMF-iMWi rules, especially by avoiding redundant development steps such as literature research and development of the key figures. In particular, the use of guideline-based QI should bring the patient perspective to the forefront of indicator development. This will be one of the biggest challenges in the future [15]. The approach described also makes the intensive care indicators suitable for their use beyond single institutions, e.g. in external quality assurance. This would ensure that evaluation of intensive care treatment processes will remain under the control of their providers.

Abbreviations

- AWMF: Association of the Scientific Medical Societies
- DIVI: German Interdisciplinary Association for Intensive Care and Emergency Medicine
- GBA: Federal Joint Committee
- GL: guideline
- GRADE: Grading of Recommendations Assessment, Development and Evaluation
- IQTIG: Institute for Quality Assurance and Transparency in Health Care
- NSPR: National Steering Committee Peer Review
- NVL: national disease management guideline
- QI: quality indicator
- QS: quality assurance
- VAP: ventilator-associated pneumonia

Notes

Competing interests

The authors declare that they have no competing interests.

References

1. Delgado M, Pericas L, Moreno J, Torra L, Varela J, Suero F, Navarro P, Hinojosa F. Quality Indicators in Critically Ill Patients. Madrid: SEMICYUC; 2005.
2. Braun JP, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Mende H, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C; NeQuI (quality network in intensive care medicine). Peer reviewing critical care: a pragmatic approach to quality management. Ger Med Sci. 2010 Oct;8:Doc23. DOI: 10.3205/000112
3. Bause H, Braun J, Brinkmann A, Muhl E. Peer-Review Intensivmedizin und Qualitätsindikatoren der DIVI – eine historische Perspektive. DIVI. 2019;10(1):10-4.
4. Leitlinienprogramm Onkologie; Deutsche Krebshilfe; Deutsche Krebsgesellschaft; AWMF. Entwicklung von leitlinienbasierten Qualitätsindikatoren. Methodenpapier für das Leitlinienprogramm Onkologie. Version 2.1. 2017. Available from: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Methodik/QIEP_OL_2017_Version_2.1.pdf
5. Altenhofen L, Blumenstock G, Diel F, Döbler K, Geraedts M, Jäckel WH, Klakow-Franck R, Kleudgen S, Kopp I, Nothacker M, Ollenschläger G, Reiter A, Weinbrenner S, Zorn U. Qualitätsindikatoren – Manual für Autoren. Berlin: Ärztliches Zentrum für Qualität in der Medizin (ÄZQ); 2009. (Programm für Nationale Versorgungsleitlinien von BÄK, KBV und AWMF; 36). Available from: https://www.aezq.de/mdb/edocs/pdf/schriftenreihe/schriftenreihe36.pdf
6. Altenhofen L, Brech W, Brenner G, Geraedts M, Gramsch E, Kolkmann FW, Krumnaszky G, Lorenz W, Oesingmann U, Ollenschläger G, et al. Beurteilung klinischer Messgrößen des Qualitätsmanagements. Qualitätskriterien und -indikatoren in der Gesundheitsversorgung, Konsensuspapier von BÄK, KBV und AWMF; Z Arzt Fortbild Qualitätssich. 2002;96(5):2-15.
7. Riessen R, Hermes C, Bodmann KF, Janssens U, Markewitz A. Vergütung intensivmedizinischer Leistungen im DRG-System: Aktuelle Probleme und Lösungsvorschläge [Reimbursement of intensive care services in the German DRG system: Current problems and possible solutions]. Med Klin Intensivmed Notfmed. 2018 Feb;113(1):13-23. DOI: 10.1007/s00063-017-0390-x

8. Berenholtz SM, Dorman T, Ngo K, Pronovost PJ. Qualitative review of intensive care unit quality indicators. J Crit Care. 2002 Mar;17(1):1-12. DOI: 10.1067/jcrc.2002.33035

9. Wilson CRM. Hospital-wide Quality Assurance: Models for Implementation and Development. Toronto: Saunders; 1987.

10. van der Voort PH, van der Veer SN, de Vos ML. The use of indicators to improve the quality of intensive care: theoretical aspects and experiences from the Dutch intensive care registry. Acta Anaesthesiol Scand. 2012 Oct;56(10):1084-91. DOI: 10.1111/j.1399-6576.2012.02687.x

11. Nachtigall I, Tamarkin A, Tafelski S, Deja M, Halle E, Gastmeier P, Wernerke KD, Baurer T, Kastrup M, Spies C. Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med. 2009 Jan;37(1):159-66. DOI: 10.1097/CCM.0b013e3181934f1b

12. Kumpf O, Bloos F, Hause B, Brinkmann A, Deja M, Marx G, Kaltwasser A, Dubb R, Muhl E, Greim CA, Weiler N, Chop I, Jonitz G, Schaefer H, Felsenstein M, Leffskind U, Leffskind C, Jungbluth A, Waydhas C, Pronovost P, Spies C, Braun JP; NeQul-Group (Netzwerk Qualität in der Intensivmedizin). Voluntary peer review as innovative tool for quality improvement in the intensive care unit – a retrospective descriptive cohort study in German intensive care units. Ger Med Sci. 2014;12:Doc17. DOI: 10.3205/000202

13. Becker M, Breuing J, Nothackner M, Deckert S, Steuertner M, Schmitt J, Neugebauer E, Pieper D. Guideline-based quality indicators – a systematic comparison of German and international clinical practice guidelines: protocol for a systematic review. Syst Rev. 2018 Jan;7(1):5. DOI: 10.1186/s13643-017-0669-2

14. Braun JP, Mende H, Bause H, Bloos F, Geldner G, Kastrup M, Kuhlen R, Markewitz A, Martin J, Quintel M, Steinmeier-Bauer K, Waydhas C, Spies C; NeQul (quality network in intensive care medicine). Quality indicators in intensive care medicine: why? Use or burden for the intensivist. Ger Med Sci. 2010 Sep;8:Doc22. DOI: 10.3205/000111

15. Köttet T, Schaefer F, Blozik E, Scherer M. Die Entwicklung von Qualitätsindikatoren – Hintergrund, Methoden und Probleme [Developing quality indicators: background, methods and problems]. Z Evid Fortbild Qual Gesundhwes. 2011 Jan;105(1):7-12. DOI: 10.1016/j.zefq.2010.11.002

16. Campbell SM, Braspennning J, Hutchinson A, Marshall M. Research methods used in developing and applying quality indicators in primary care. Qual Saf Health Care. 2002 Dec;11(4):358-64. DOI: 10.1136/qhc.11.4.358

17. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington (DC): National Academies Press (US); 2001.

18. Braun JP, Kumpf O, Deja M, Brinkmann A, Marx G, Bloos F, Kaltwasser A, Dubb R, Muhl E, Greim C, Bause H, Weiler N, Chop I, Waydhas C, Spies C. The German quality indicators in intensive care medicine 2013 – second edition. Ger Med Sci. 2013;11:Doc09. DOI: 10.3205/000177

19. Kumpf O, Braun JP, Brinkmann A, Bause H, Bellgardt M, Bloos F, Dubb R, Greim C, Kaltwasser A, Marx G, Riessen R, Spies C, Weimann J, Wöbbler G, Muhl E, Waydhas C. Quality indicators in intensive care medicine for Germany – third edition 2017. Ger Med Sci. 2017;15:Doc10. DOI: 10.3205/000251

20. Reiter A, Fischer B, Kötting J, Geraedts M, Jackel WH, Döbler K. QUALIFY: Ein Instrument zur Bewertung von Qualitätsindikatoren [QUALIFY – a tool for assessing quality indicators]. Z Arzt Fortbild Qualitätsstr. 2007;101(10):683-8. DOI: 10.1016/j.zajfes.2007.11.003

21. Geraedts M, Seiblmann HK, Olenschläger G. Beurteilung der methodischen Qualität klinischer Messgrößen [Assessment of methodological quality of clinical performance measures]. Z Arzt Fortbild Qualitätsstr. 2002;96(2):51-6.

22. Rubin HR, Pronovost P, Diette GB. From a process of care to a measure: the development and testing of a quality indicator. Int J Qual Health Care. 2001 Dec;13(6):489-96. DOI: 10.1093/intqhc/13.6.489

23. Brozek JL, Kek EA, Alonso-Coello P, Lang D, Jaeschke R, Williams JW, Phillips B, Leigemann M, Lethaby A, Bousquet J, Guyatt GH, Schünemann HJ; GRADE Working Group. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 3 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy. 2009 May;64(5):669-77. DOI: 10.1111/j.1399-9016.2009.01973.x

24. Schünemann HJ, Langner G, Meerpohl JJ, Olenschläger G, Perleth M. Das GRADE-System: Ein Prolog zur Artikelserie in der ZEFQ [The GRADE system: a prelude to the article series in the ZEFQ]. Z Evid Fortbild Qual Gesundhwes. 2012;106(5):354-6. DOI: 10.1016/j.zefq.2012.05.018

25. Blumenstock G. Zur Qualität von Qualitätsindikatoren [Assessing the quality of quality indicators]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2011 Feb;54(2):154-9. DOI: 10.1007/s00033-010-0709-0

26. Kumpf O. Qualitätssicherheitsindikatoren in der Intensivmedizin: Hintergrund und praktischer Nutzen [Quality indicators in intensive care medicine: Background and practical use]. Med Klin Intensivmed Notfmed. 2019 Dec 10. DOI: 10.1007/s00063-019-00630-w

27. Valiani S, Rigal R, Steifos HT, Muscedere J, Martin CM, Dodek P, Lamontagne F, Fowler R, Ghesmy A, Cook DJ, Forster AJ, Hébert PC. An environmental scan of quality indicators in critical care. CMAJ Open. 2017 Jun;5(2):E488-95. DOI: 10.9778/cmajo.20150139

28. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Farkok-Ytter Y, Jaeschke R, Vist G, Aki EA, Post PN, Norris S, Meerpohl J, Shukla VK, Nasser M, Schünemann HJ; GRADE Working Group. GRADE guidelines: 8. Rating the quality of evidence – indirectness. J Clin Epidemiol. 2011 Dec;64(12):1303-10. DOI: 10.1016/j.jclinepi.2011.04.014

29. Schünemann HJ. Interpreting GRADE’s levels of certainty or quality of the evidence: for statisticians, considering review information size or less emphasis on imprecision? J Clin Epidemiol. 2016 Jul;75:6-15. DOI: 10.1016/j.jclinepi.2016.03.018

30. Bieler D, Hörster A, Lefering R, Franke A, Waydhas C, Huber-Wagner S, Baacke M, Paffrath T, Wnent J, Volland R, Jakobische N, Walcher F, Kulla M. Evaluation of new quality indicators for the TraumaRegister DGU using the systematic QUALIFY methodology. Eur J Trauma Emerg Surg. 2020 Jun;46(3):449-60. DOI: 10.1007/s00068-018-1055-z
33. Kastrup M, Tittmann B, Sawatzki T, Gersch M, Vogt C, Rosenthal M, Rosseau S, Spies C. Transition from in-hospital ventilation to home ventilation: process description and quality indicators. Ger Med Sci. 2017;15:Doc18. DOI: 10.3205/000259

34. Klopas M, Li L, Kleinman K, Szumita PM, Massaro AF. Associations Between Ventilator Bundle Components and Outcomes. JAMA Intern Med. 2016 Sep;176(9):1277-83. DOI: 10.1001/jamainternmed.2016.2427

35. Donabedian A. The quality of care. How can it be assessed? JAMA. 1988 Sep 23-30;260(12):1743-8. DOI: 10.1001/jama.260.12.1743

36. Kumpf O, Riessen R, Dubb R, Kaltwasser A. Medizinisches Qualitätsmanagement: Qualitätsindikatoren. Intensivmedup2date. 2018;14(3):247-59. DOI: 10.1055/s-0043-125108

37. Salluh JIF, Chiche JD, Reis CE, Soares M. New perspectives to improve critical care benchmarking. Ann Intensive Care. 2016 Feb;6(1):17. DOI: 10.1186/s13613-018-0363-0

38. Pilcher DV, Hoffman T, Thomas C, Ernest D, Hart GK. Risk-adjusted continuous outcome monitoring with an EWMA chart: could it have detected excess mortality among intensive care patients at Bundaberg Base Hospital? Crit Care Resusc. 2010 Mar;12(1):36-41.

39. Califf RM, Peterson ED, Gibbons RJ, Garson A Jr, Brindis RG, Beller GA, Smith SC Jr; American College of Cardiology; American Heart Association. Integrating quality into the cycle of therapeutic development. J Am Coll Cardiol. 2002 Dec;40(11):1895-901. DOI: 10.1016/s0735-1097(02)02537-8

Corresponding author:
Oliver Kumpf, MD
Department of Anaesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany, Phone: +49 30 450 631108
oliver.kumpf@charite.de

Please cite as
Kumpf O, Nothacker M, Braun J, Muhi E. The future development of intensive care quality indicators – a methods paper. GMS Ger Med Sci. 2020;18:Doc09. DOI: 10.3205/000285, URN: urn:nbn:de:0183-0002850

This article is freely available from https://www.egms.de/en/journals/gms/2020-18/000285.shtml

Received: 2020-01-31
Revised: 2020-04-29
Published: 2020-10-30

Copyright ©2020 Kumpf et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Die zukünftige Entwicklung intensivmedizinischer Qualitätsindikatoren – ein Methodenpapier

Zusammenfassung

Einleitung: Medizinische Qualitätsindikatoren (QI) stellen ein wichtiges Werkzeug bei der Betrachtung medizinischer Qualität dar. Ihre Entwicklung unterliegt methodischen Anforderungen, die auch ihre praktische Anwendbarkeit einschließen. Dies gilt insbesondere für die Intensivmedizin mit ihren komplexen Prozessen und Interaktionen. Dieses Methodenpapier dient der Darstellung des Status quo und zeigt erforderliche methodische Weiterentwicklungen intensivmedizinischer QI auf. Dazu erfolgte eine Kooperation mit dem Institut für Medizinisches Wissensmanagement der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF-IMWi).

Methodik: Rückgriff auf publizierte deutsche Manuale zur QI-Ableitung aus Leitlinien und narratives Review zu Qualitätsindikatoren mit Fokus auf die Beziehung zu evidenz- und konsensbasierten Leitlinienempfehlungen. Die notwendigen methodischen Anpassungen der Indikatorentwicklung wie Operationalisierbarkeit, Messbarkeit und Pilotierung werden dargestellt, und ein Vorschlag für einen Entwicklungsprozess wird erarbeitet.

Ergebnisse: Die Entwicklung intensivmedizinischer Qualitätsindikatoren in Deutschland geschieht in einem etablierten Verfahren. Dieses soll künftig durch die Aufnahme zusätzlicher Bewertungskriterien (QUALIFY-Kriterien) u.a. zur Beurteilung der Evidenzbasierung erweitert werden. Ergänzend ist ein kontinuierlicher Austausch der für die QI verantwortlichen nationalen Steuerungsgruppe der DIVI mit den Leitliniengruppen geplant, die intensivmedizinische Fragestellungen bearbeiten.

Schlussfolgerung: Intensivmedizinische Qualitätsindikatoren können durch einen verbesserten Entwicklungsprozess in Zukunft gestiegenen methodischen Anforderungen genügen. Die beschriebenen Weiterentwicklungen sollen den Erstellungsprozess besser strukturieren, wissenschaftlicher gestalten und in Zukunft mit Leitlinienprojekten vernetzen. Dadurch soll das Ziel einer flächendeckenden Anwendung der QI erreicht werden und schließlich ihre Relevanz für das Outcome bezogen auf Patienten und Einrichtungen geprüft werden.

1 Einleitung

Die Entwicklung der intensivmedizinischen Qualitätsindikatoren (QI) in Deutschland geht auf eine Arbeitsgruppe innerhalb der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) zurück, die sich mit Bewertungshilfen für die Qualität von Intensivstationen beschäftigte. Eine überschaubare Auswahl von Kernprozessen basierend auf einer Auswahl spanischer QI [1] erschien hierbei praktikabel. Die ausgewählten 10 Qualitätsindikatoren sollen Allgemeingültigkeit für alle fachlichen Ausprägungen von Intensivstationen besitzen und zugleich einen Orientierungsrahmen für alle Berufsgruppen auf Intensivstationen liefern. Seit 2009 wird die weitere Entwicklung der intensivmedizinischen Qualitätsindikatoren durch die Nationale Steuerungsgruppe Peer Review (NSPR) der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI) durchgeführt. Dabei werden die QI und das intensivmedizinische Peer Review als Kernelemente der Qualitätssicherung weiterentwickelt [2], [3]. Die aus diesem Prozess entwickelten QI basieren auf der Beobachtung, dass es bei intensivmedizinischen Prozessen, die eine hohe Bedeutung für die Behandlungsqualität der Patienten haben, relevante Verbesserungspotenziale

Oliver Kump1,2
Monika Nothacker3
Jan Braun2,4
Elke Muhl2,5

1 Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Deutschland
2 Nationale Steuerungsgruppe Peer Review, Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI), Berlin, Deutschland
3 AWMF-Institut für Medizinisches Wissensmanagement, c/o Philips-Universität, Marburg, Deutschland
4 Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Martin-Luther-Krankenhaus, Berlin, Deutschland
5 Groß Grönau, Deutschland
Tabelle 1: Die DIVI-QI und ihre Revisionen im Vergleich [14], [18], [19]

Version	1 (2010, [14])	2 (2013, [18])*	3 (2017, [19])*
QI I	Oberkörper-Hochlagerung	Tägliche multiprofessionelle, klinische Visite mit Dokumentation von Tageszielen	Tägliche multiprofessionelle und interdisziplinäre klinische Visite mit Dokumentation von Tageszielen
QI II	Monitoring von Sedierung, Analgesie und Delir	Monitoring von Sedierung, Analgesie und Delir	Management von Sedierung, Analgesie und Delir
QI III	Lungenprotective Beatmung	Lungenprotective Beatmung	Patientenadaptierte Beatmung
QI IV	Weaningprotokoll mit Spontanatmungsversuch	Weaning und andere Maßnahmen zur Vermeidung von Ventilator-assoziierten Pneumonien	Frühzeitige Entwöhnung von einer invasiven Beatmung (Weaning)
QI V	Frühzeitige und adäquate Antibiotikatherapie	Frühzeitige und adäquate Antibiotikatherapie	Überwachung der Maßnahmen zur Infektionsprävention
QI VI	Therapeutische Hypothermie nach Herzstillstand	Therapeutische Hypothermie nach Herzstillstand	Maßnahmen zum Infektionsmanagement
QI VII	Frühe enterale Ernährung	Frühe enterale Ernährung	Frühe enterale Ernährung
QI VIII	Dokumentation von Angehörigengesprächen	Dokumentation von strukturierten Angehörigengesprächen	Dokumentation einer strukturierten Patienten- und Angehörigennachrichtenkommunikation
QI IX	Händedesinfektionsmittelverbrauch (BQS Indikator 2010)	Händedesinfektionsmittelverbrauch (BQS Indikator 2010)	Frühmobilsation
QI X	24-stündige Besetzung der Intensivstation mit Experten	Leitung der Intensivstation durch einen Facharzt mit Zusatzbezeichnung Intensivmedizin, der keine anderen klinischen Aufgaben hat; Präsenz eines Facharztes mit Zusatzbezeichnung Intensivmedizin in der Kernarbeitszeit und Gewährleistung der Präsenz von intensivmedizinisch erfahrener ärztlicher und pflegerischem Personal über 24 Std.	Leitung der Intensivstation

*Die Rationale der einzelnen Veränderungen in den QI sind in den referenzierten Publikationen detailliert dargestellt (z.B.: Beibehaltung, Streichung oder Neueinführung eines Indikators).

gab. Deshalb fokussieren sie auf diese prozessualen Probleme. Das bestehende Problem wurde in einen Indikator umgewandelt. Das Erreichen eines im Expertenkon- sens möglichst im Einklang mit der aktuellen Evidenz festgelegten Zielwerts sollte einer guten Prozessqualität entsprechen oder auch eine Verbesserung darstellen. Die Entwicklung der intensivmedizinischen Indikatoren folgte insofern einem „Bottom-up“-Prinzip, da sie in der Praxis wahrgenommene Versorgungsprobleme aufnahmen [2]. Die Rationale für einen QI konnte so von seinen An- wenderInnen nachvollzogen werden, da sie unmittelbar mit den Behandelnden zusammen bestimmt wurde. Dies steht im Gegensatz zur Entwicklung von Qualitäts- indikatoren z.B. aus Leitlinienempfehlungen, bei denen das Verbesserungspotenzial meist erst bestimmt werden muss (Top-down-Prinzip) [4], [5], [6]. QI existieren in Deutschland für unterschiedliche klinische Bereiche. Diese werden bundesweit für die externe ver- gleichende Qualitätssicherung durch das Institut für Qualitätssicherung und Transparenz im Gesundheitswe- sen (IQTIG) entwickelt. Da seitens des Gesetzgebers und der Selbstverwaltung hier bedeutende Festlegungen wie das Krankenhausstrukturgesetz und die QS-Richtlinie des GBA erfolgten, ist zu erwarten, dass über kurz oder lang auch eine Verpflichtung zur Erfassung intensivmedi- zinischer QI entsteht. Es ist naheliegend, dass Qualitäts- initiativen wie die QI der DIVI in das Konzept der externen Qualitätssicherung integriert werden. Die intensivmedizinischen QI haben seit ihrer ersten Veröffentlichung eine Wandlung ihrer Wahrnehmung erfahren. Momentan erfolgt die Erfassung der intensivmedizinischen QI überwiegend freiwillig im Rahmen von Peer Review oder im internen Qualitätsmanagement. Doch die Bedeutung der QI nimmt zu, da sie auch Einfluss z.B. auf strukturelle Vorgaben für die Intensivmedizin haben, wie an der Definition der intensivmedizinischen Komplexpa- schalen ersichtlich wird [7]. Die Forderung nach expliziter „evidence-based medicine“ als Grundlage für die korrekte Durchführung von Behand- lungsprozessen machte die Entwicklung der DIVI-QI in den Revisionen zunehmend arbeitsintensiver, da es sich bei den Indikatoren überwiegend um Prozessindikatoren handelte, bei denen sich häufig die zugrunde liegende Evidenz änderte und somit Aktualisierungsbedarf bestand [8]. Dies resultierte in bislang drei Revisionen, und auch für die nächste geplante Revision besteht jetzt schon Änderungsbedarf. Ein Vergleich der verschiedenen Fas- sungen der DIVI-QI ist in Tabelle 1 dargestellt.
Die zukünftigen QI werden den gestiegenen Ansprüchen an ihre eigene Qualität genügen müssen. Daher plante die Nationale Steuerungsgruppe der DIVI, die Erarbeitung des zukünftigen Entwicklungsprozesses methodisch durch das AWMF-IMWi begleiten zu lassen. Um eine angemesse ne Transparenz in diesem Zusammenhang zu gewährleisten, soll dieses Methodenpapier dazu beitragen, den vorgesehenen Entwicklungsprozess zu beschreiben und gleichzeitig eine Diskussion anzustoßen, die die abschließende Festlegung der überarbeiteten Methodik der neuen DIVI-QI unterstützen soll. In diesem Beitrag wird bewusst nicht auf konkrete medizinische Inhalte einzelner Indikatoren eingegangen.

2 Methode

2.1 Der bisherige Entwicklungsprozess der intensivmedizinischen QI in Deutschland

Die Entwicklung der QI obliegt der Nationalen Steuerungsgruppe Peer Review (NSPR) der DIVI. Dabei haben die in der DIVI zusammengeschlossenen Fachgesellschaften in einem Delphi-Verfahren Gelegenheit, für sie relevante Themenvorschläge vorzulegen, die dann in der NSPR geprüft wurden. Bei der ersten Entwicklung 2010 wurde die Zahl der Indikatoren aus Gründen der Praktikabilität auf zehn festgelegt. Bei der Entwicklung der einzelnen QI der bisherigen drei Versionen wurden die Kriterien der RUMBA-Systematik angewandt (relevant, verständlich, messbar, änderbar, erreichbar) [9]. Dabei wurden Themen anhand der folgenden Faktoren berücksichtigt:

1. Häufigkeit des Prozesses,
2. Änderbarkeit des Verhaltens,
3. Größenordnung des Verbesserungspotenzials und
4. (Allgemein-)Gültigkeit für alle Bereiche der Erwachsenen-Intensivmedizin.

Daneben war ein weiterer wesentlicher Faktor die vorliegende Evidenz. Gegebenenfalls musste das Vorliegen externer Regelungen berücksichtigt werden. Eine zu häufige Änderung der Themen wäre für die Implementierung der QI innerhalb der einzelnen Einrichtungen hinderlich, da die Umsetzung und die Prüfung der Indikatoren mit zeitlichem und personellem Aufwand verbunden ist [10].

Beider Festlegung der Formeln für die Kennzahlen und deren Zielwerte wurden primär durch Literatur belegte Ergebnisse bewertet, sofern vorhanden. Falls keine Daten verfügbar waren, wurde im Expertenkonsens der NSPR entschieden. In Bezug auf den Referenzbereich eines Zielwertes erschien anhand vorliegender Beispiele ein Erreichungswert von 70% prinzipiell sinnvoll [11].

Beider Revisionen der QI waren Kriterien zu deren Änderung Rückmeldungen aus den Peer Reviews. Änderungen ergaben sich hierbei aus unmittelbaren Bewertungen ihrer Relevanz und Anwendbarkeit [12]. Weiterhin war eine Änderung der Evidenz für den einzelnen QI relevant. Daneben blieben die genannten Faktoren der RUMBA-Regeln gültig.

Bei der Auswahl neuer Qualitätsindikatoren stand zunächst die Relevanz des Themas im Sinne des erwarteten Einflusses auf das Patienten-Outcome im Vordergrund. Auch hierbei wurde die RUMBA-Regel angewandt (Abbildung 1, Tabelle 2). Die Evidenzbasis für den Indikator war dann im zweiten Schritt im Fokus, diese wurde aber nicht formal bewertet. Mögliche Quellen der Evidenz waren Leitlinien (LL), bevorzugt für den deutschen Versorgungskontext gültige und über das AWMF-Leitlinienregister publizierte, aufgrund der strukturierten Erstellungsmethodik [13]. Bei der Einschätzung der Aussagesicherheit der Evidenz nahmen wir die beste Evidenz für S3-Leitlinien an, gefolgt von Empfehlungen aus S2e-Leitlinien und S2k-Leitlinien. Falls keine LL im AWMF-Register vorhanden waren, wurden internationalen evidenzbasierten LL systematische Reviews als Evidenzquelle genutzt. Schließlich war in der QI-Findung auch der Expertenkonsens innerhalb der Steuerungsgruppe notwendig und sinnvoll, der auf Basis von Primärliteratur gefunden wurde, die den Experten bekannt war.

Die Messbarkeit der QI wurde bei der Entwicklung im methodischen Rahmen des DIVI-Peer-Review-Verfahrens eher als stichprobenhafte Überprüfung gesehen, wobei in der Routine nur punktuelle Bewertungen an kleinen Fallzahlen (ein Tag, eine Station) vorlagen [12], [14]. Eine Operationalisierung im Sinne einer umfassenden quantitativen Erhebung außerhalb der Peer Reviews war nicht primäre Intention der DIVI-Indikatoren.

2.2 Anpassung des QI-Entwicklungsprozesses

Bei der Weiter- bzw. Neuentwicklung der intensivmedizinischen QI müssen unterschiedliche Aspekte berücksichtigt werden. Zum einen zeigt die relevante Literatur, dass bei der Entwicklung von QI differenziertere methodische Kriterien genutzt werden sollten [5], [15], [16]. Dabei sollten neben den methodischen Anforderungen auch die grundlegenden Qualitätsdimensionen wie Sicherheit, Effektivität, Patientenzentrierung, Zeitnähe, Effizienz und Gleichbehandlung beachtet werden [17]. Die Bedeutung der QI in der externen Qualitätssicherung sowie die ungezwollte Instrumentalisierung der DIVI-QI u.a. zur Klärung von Sachverhalten bei der Erlösicherung im DRG-System (Definition der aufwändigen intensivmedizinischen Komplexbehandlung) wurde bereits dargestellt [7]. Diese auch über eine rein medizinische Bewertung der intensivmedizinischen Prozessen hinausgehende Bedeutung macht es notwendig, mit besserer methodischer Qualität bei ihrer Entwicklung zu reagieren. Das bisherige Entwicklungsverfahren ist in den Publikationen zu den DIVI-QI dargestellt worden [18], [19]. Beider Weiterentwicklung des Verfahrens wird im Folgenden auf verschiedene relevante Publikationen Bezug genommen. Dabei
2.3 Bewertung der bisherigen QI

Als erster Schritt bei der Erarbeitung der nächsten Version der intensivmedizinischen QI wurden Bewertungskriterien festgelegt, die dem QI-Bewertungsinstrument QUALIFY entnommen sind [20] und die folgenden Aspekte umfassen:

1. **Bedeutung für das Versorgungssystem/Verbesserungspotenzial,**
2. **Risiken für unerwünschte Wirkungen,**
3. **Klarheit der Definition,**
4. **Evidenz- und Konsensbasierung (in Leitlinien),**
5. **Beeinflussbarkeit durch die beurteilten Leistungserbringer.**

Diese Regeln unterscheiden sich von der bislang genutzten RUMBA-Systematik (Tabelle 2). Der Vergleich mit den QUALIFY-Kriterien und den für die Leitlinienentwicklung modifizierten Kriterien zeigt, dass dabei über die Anwendbarkeit hinausgehende Faktoren bedacht werden. Es wird eine geeignete Evidenzbasis bei der Indikatorentwicklung gefordert. Idealweise bedeutet das, dass es durch den Einsatz des Indikators zu einem positiven Outcome-Effekt kommt [21], [22].

Wie in Abschnitt 2.1 dargestellt, waren die methodischen Grundlagen der Indikatoränderung nicht starr festgelegt. Unter Anwendung der in Tabelle 2 genannten Kriterien ergibt sich jetzt eine Systematik, die eine weitere Bewertung der QI im Vergleich auch über die Zeit ermöglicht [20]. Das Ergebnis der Überprüfung kann die Bestätigung, Modifizierung oder Streichung eines Indikators sein, wobei Änderungen z.B. auch den Referenzwert oder -bereich der Indikatorkennzahl betreffen können. Das QUALIFY-Instrument kann auch genutzt werden, um Änderungen oder Streichungen von QI transparent und nachvollziehbar machen, z.B. wenn die Evidenzlage zu uneinheitlich ist oder alternative Indikatoren für das Thema zur Verfügung stehen [5].

Tabelle 1: Methodik der Indikatorprüfung in einem konsensusbasierten strukturierten Evaluationsprozess; Unterschiede zwischen dem RUMBA-Instrument und dem QUALIFY-Instrument und ihr potenzieller Nutzungsansatz

RUMBA	QUALIFY
Relevant	**Bedeutung für das Versorgungssystem**
Verständlich	(Verbesserungspotential)
Messbar	**Risiken für unerwünschte Wirkungen**
Änderbar	**Klarheit der Definition**
Erreichbar	**Evidenz- und Konsensbasierung**
Aktualisierte QI*	**Beeinflussbarkeit durch die beurteilten**
	Leistungserbringer

QI=Qualitätsindikator

* Beispielhafte Darstellung
2.4 Neuentwicklung von Indikatoren

Bei der Neuentwicklung wird in der NSPR auf der Basis von Vorschlägen zu neuen Indikatorthemen aus den in der DIVI zusammengeschlossenen Fachgesellschaften eine Themenprüfung durchgeführt. In Abbildung 1 und Abbildung 2 sind die Schritte der Indikatorentwicklung dargestellt. Eine Veränderung ist die aus der QUALIFY-Systematik abgeleitete Fokussierung auf das Kriterium Evidenzbasierung. Wie in Tabelle 2 dargestellt, zeigt sich hier ein klarer Unterschied zwischen der bisherigen Methode und dem neuen Verfahren. Diese stärker systematisierte Evidenzbasierung beinhaltet dabei zusätzlich das Abschätzen von Verbesserungspotenzialen eines Prozesses auf das Patienten-Outcome, wobei postuliert wird, dass bei Vorliegen hoher Evidenzstärke für Prozessadhärenz und nachweislichem positivem Outcome auch eine hohe Indikatore evidenz besteht (sofern das positive Patienten-Outcome Endpunkt der Evidenzbasis ist). Die vorliegende Evidenz wird dabei wie in der oben beschriebenen Abstufung abgeschätzt (Leitlinien, systematische Reviews, aussagefähige Primärliteratur) und folgt dabei weitgehend der GRADE-Systematik (Grading of Recommendations Assessment, Development and Evaluation) [23, 24]. Auf Basis der Evidenzstärke wird dann die Indikatorstärke im Konsens festgelegt. Dies ist sinnvoll, da bei offensichtlichen Zusammenhängen zwischen Prozessorientierung und Outcome (wenn z.B. keine Studien möglich sind) dennoch eine hohe Indikatorevidenz vorliegen kann [20].

Übergeordnete Bewertungskategorie	RUMBA [9] DIVI-QI (bisherige Kriterien)	QUALIFY (nach LLM [5]) (zukünftig vorgesehene Kriterien für die Erstellung der DIVI-QI)	Original-QUALIFY [20]
Relevanz	Relevant	Bedeutung für das Versorgungssystem/Verbesserungspotenzial	Bedeutung des mit dem QI erfassten Qualitätsmerkmals für das Versorgungssystem
		Nutzen	
		Risiken für unerwünschte Wirkungen	Berücksichtigung potenzieller Risiken/Nebenwirkungen
Wissenschaftlichkeit	Verständlich	Klarheit der Definition	Klarheit der Definitionen (des Indikators und seiner Anwendung)
		Reliabilität	
		Statistische Unterscheidungsfähigkeit	
		Risikoadjustierung	
		Sensitivität	
		Spezifität	
		Validität	
Praktikabilität	Messbar	Datenverfügbarkeit*	Datenverfügbarkeit
		Erhebungsauflauf*	Erhebungsauflauf
		Implementationsbarrieren berücksichtigt*	Implementationsbarrieren berücksichtigt
		Richtigkeit der Daten kann überprüft werden	
		Vollständigkeit der Daten kann überprüft werden	
		Vollzähligkeit der Daten kann überprüft werden	
Änderbar	Beeinflussbarkeit durch die beurteilten Leistungserbringer	Beeinflussbarkeit der Indikatorausprägung	
Erreichbar	Verständlichkeit und Interpretierbarkeit für Patienten und interessierte Öffentlichkeit		
Wissenschaftliche Evaluation	Nicht strukturiert vorhanden	Vorhanden durch Evidenz- und Konsensbasierung (in Leitlinien)	Vorhanden durch Indikatorevidenz

*Nur deskriptive Prüfung der Kriterien in der NVL; in den DIVI-QI verpflichtende Kriterien; LLM=Leitlinien Manual; NVL=Nationale Versorgungsleitlinie
2.5 Pilotierung

Grundsätzlich ist bei der Neuentwicklung von QI zu wünschen, dass vor ihrer generellen Anwendung im Sinne eines Probelaufs die in Abschnitt 2.3 und 2.4 genannten Aspekte getestet werden. Im Fokus stehen dabei Prüfung auf Akzeptanz (vor allem der Anwender) und methodische Eignung inkl. Nachweis der Validität, statistische Aspekte und Indikatorevidenz. Validität bezieht sich hierbei wesentlich auf die Inhaltsvalidität. In den bisherigen QI ist diese nicht formalisiert geprüft worden, allerdings ist diese, da hauptsächlich Prozessindikatoren genutzt werden, sehr wahrscheinlich [8]. Die Anforderungen an statistische Aspekte wie Diskriminierungsfähigkeit und Änderungssensitivität werden in der Diskussion vertieft behandelt. Durch die bisherige Anwendung der QI im Peer-Review-Verfahren sind verhältnisbasierte QI (mathematische Formel inkl. Zähler und Nenner) und ggf. eine Anpassung der Berechnungsregeln ebenso wie statistische Aspekte bisher eher nachrangig gewesen. Prinzipiell ließen sich aus vorhandenen Datensätzen solche Nachweise führen. Anzustreben sind quantitative oder qualitativ Bewertungen zu einzelnen Indikatoren (Abbildung 2). Dies ist notwendig, um auch Qualitätsanforderungen an die Funktion der Indikatoren zu prüfen, d.h. relevant für das Behandlungsergebnis. Weitere Erläuterungen dazu sind im Folgeabschnitt beschrieben.

2.6 Weiterentwicklung und Nutzung geeigneter Messgrößen

Die Festlegung von Messgröße und Referenzwert ist bislang im Expertenkonsens innerhalb der NSPR erfolgt und orientierte sich soweit möglich an vorhandener bzw. bekannter Literatur oder an bekannten Qualitätsindikatoren. Ebenso wurde mit den Referenzbereichen (obere und untere Grenzwerte) verfahren.

Zukünftig wird die Festlegung geeigneter Zahlendefinitionen und ihrer Grenzwerte von zentraler Bedeutung bei der Entwicklung und Nutzung von Indikatoren sein. Dabei werden zwei Aspekte wesentlich sein:

1. Erhebung valider Daten zu Berechnung der Kennzahlen,
2. Bewertung der Kennzahlen bezüglich der festgelegten Referenzbereiche.

Wie im vorherigen Abschnitt angesprochen, sind gerade diese Fragen bei der Bewertung von QI im Rahmen von Pilotierungsphasen von Bedeutung. Wie in Tabelle 2 dargestellt, sind nachvollziehbar erhobene Daten bei der Implementierung und Anwendung von QI wichtig, um die Glaubwürdigkeit der Messergebnisse z.B. innerhalb einer Einrichtung zu stärken [10], [16]. Wenn die Indikatoren einrichtungsübergreifende Bedeutung erlangen, kommen weitere Anforderungen wie Inhaltsvalidität hinzu [6], [25]. Einfach messbare Kennzahlen würden die Nutzung von QI in Settings außerhalb des Peer-Review-Verfahrens erleichtern. Die automatisierte Erfassung von Daten zur Berechnung von Messgrößen wäre ein wichtiger Schritt, um innerhalb einer Einrichtung und im externen Vergleich qualitätsverbessernde Maßnahmen zu initiieren und zu evaluieren. Es gilt, dass die Entwicklung solcher Kennzahlen aus statistischer Sicht eine Herausforderung ist, da die Überprüfung der Messgenauigkeit oder des Skalenniveaus aufgrund kaum vorliegender empirischer Daten schwierig ist. Um die Validität der Messeigenschaften nachzuweisen, sind

Abbildung 2: Methodischer Ansatz der Neu- und Weiterentwicklung von intensivmedizinischen Qualitätsindikatoren unter Berücksichtigung vorhandener Leitlinien; strukturierter Prozess mit Bewertung anhand der QUALIFY-Methodik
Pilottestungen unerlässlich und jedes QI-Ergebniss muss mit methodischer und klinischer Expertise interpretiert werden.

2.7 Kooperation bei der Indikatorentwicklung

Künftig sollen die bewerteten Indikatoren aktiv den Leitliniengruppen, die intensivmedizinische Themen bearbeiten, zur Verfügung gestellt werden (Abbildung 2). Dies soll gerade für diese intensivmedizinischen Versorgungsaspekte eine schnellere und effizientere Festlegung von Qualitätsindikatoren für intensivmedizinisch relevante Leitlinien im Register der AWMF ermöglichen. In Kooperation mit den Leitlinienerstellern unter dem Dach der AWMF sollen diese QI geprüft und ggf. mit (weiteren) LL-Empfehlungen hinterlegt werden. Dabei werden bereits in den Leitliniengruppen die adaptierten QUALIFY-Kriterien angewandt. Ebenfalls besteht künftig für Leitlinienersteller die Möglichkeit, relevante neue Evidenz bzw. darauf fußende neue relevante Empfehlungen anzuzeigen und diese der NSPR der DIVI als neue Themen für QI vorzuschlagen, wenn für die adressierten Inhalte Versorgungsprobleme wahrgenommen werden. Insgesamt ist ein Austausch zwischen der NSPR der DIVI und den Gruppen, die intensivmedizinisch relevante Leitlinien erstellen, sinnvoll. In diesem Rahmen ergeben sich Synergieeffekte, bei der beide Seiten von der bisherigen Entwicklungsarbeit der anderen profitieren. Dabei ist auch in den Leitliniengruppen zu prüfen, inwieweit Versorgungsdaten, die z.B. bei der Nutzung der bisher festgelegten Indikatoren anfallen, bei der Indikatorentwicklung und -bewertung herangezogen werden können.

3 Ergebnisse

Die Entwicklung und Nutzung von Qualitätsindikatoren hat das Ziel, Behandlungsprozesse im Sinne des Patienten-Outcome zu verbessern. Diesen Anforderungen genügen die intensivmedizinischen QI der DIVI, dennoch sind in einigen Bereichen Verbesserungspotenziale bei der Erstellung der QI in dieser Arbeit dargestellt. Diese beziehen sich auf die Evidenzbasisierung der QI auf Patientenebene und auf Systemebene sowie ihre eindeutige Operationalisierung, um eine breite Anwendung zu ermöglichen. Weltweit existiert eine Vielzahl intensivmedizinischer QI [26]. Ihnen ist gemein, dass sie wichtige Behandlungsprozesse abbilden. Allerdings gibt es weder für ihre Erstellung noch für ihre Anwendung einheitliche methodische Standards [27]. Dies liegt u.a. daran, dass bei der QI-Anwendung auch immer Kontextfaktoren zu berücksichtigen sein. Dies gilt für die intensivmedizinischen Qualitätsindikatoren der DIVI, die aus der Anwendung im intensivmedizinischen Peer Review entstanden sind, um vor Ort Verbesserungspotenziale in Behandlungsprozessen zu identifizieren.

3.1 Evidenzbasierung

Der Begriff Evidenzbasierung in dieser Arbeit soll nicht die bisher entwickelten QI diskreditieren, sondern aufzeigen, dass die Überführung von Leitlinienerempfehlungen in QI komplex ist und soweit möglich strukturiert und nachvollziehbar erfolgen soll. Es gilt: Je höherwertiger die publizierte Evidenz für die Durchführung eines Behandlungsprozesses ist, desto stärker ist die Evidenz für die Anwendung eines Indikators, der den Prozess evaluiert. Damit ist im Grunde die Evidenzstärke v.a. von Leitlinienerempfehlungen gemeint, bei denen dieses Grundprinzip anhand der Bewertung von Kriterien wie Ungenauigkeit, Indirektheit und Inkonstanz erfolgt. Diese in der GRADE-Systematik abgebildete Bewertung von Evidenz für Leitlinien kann nicht direkt auf QI angewandt werden. Die beschriebenen Bewertungskriterien der Übertragbarkeit von Studienergebnissen in konkrete Behandlungsempfehlungen können aber auf die QI Einfluss haben, da LL wie dargestellt die Basis der QI sind, und da sich Probleme bei der Studiensicherheit (=certainty) auf die QI auswirken [28], [29]. Es kann auch möglich sein, dass für bestimmte Versorgungsaspekte keine Studien durchführbar sind; dann kann der Indikator dennoch sinnvoll und effektiv sein [15]. Die Auswahl der Indikatorthemen der intensivmedizinischen QI wird bislang nicht anhand der besten Wahrgenommenener definitiver Versorgungsaspekte. Eine Kombination der beiden Strategien erscheint augenscheinlich sinnvoll. Zur Verbesserung von Transparenz und Nachvollziehbarkeit der Entwicklungsstrategie muss dies in einer strukturierten Weise begründet und dokumentiert werden, wie es die QUALIFY-Methode beschreibt. Für die Anwendung der QUALIFY-Methode gibt es für den deutschsprachigen Raum diverse Beispiele bei der QI-Erstellung und -Bewertung [30], [31].

3.2 Operationalisierung

In Deutschland ist die Möglichkeit der standardisierten Datenerfassung, idealerweise in digitaler Form, nicht flächendeckend gegeben. Daher muss momentan bei der Indikatorentwicklung die lokale Messbarkeit berücksichtigt sein. Die Prozessindikatoren der DIVI sind hierfür gut geeignet. Um wichtige statistische Anforderungen an QI zu erfüllen, ist das Vorhalten ausreichender Datenmengen notwendig. Hier müssen die Chancen der Digitalisierung konsequent genutzt werden. Danach spielen Fragen der statistischen Auswertbarkeit eine Rolle: die Frage nach Inhaltsvalidität – der QI tatsächlich misst, wofür er vorgesehen ist –, Diskriminationsfähigkeit zwischen den Einrichtungen und die Änderungssensitivität über die Zeit, um z.B. Verbesserungen detektieren zu können. Schließlich muss ein Outcome-Effekt der Indikatornutzung möglichst bewertet werden können, da dieser möglichst groß sein soll.
Die ausreichende Datenmenge kann erst durch die flächen deckende Anwendung von Patientendatenmanagementsystemen (PDMS) erhoben werden. Erst dies würde eine aufwandsarme Datenerfassung und auch sektorenübergreifende Datensammlung zu patientenzentrierten Outcome-Parametern für die Intensivmedizin ermöglichen [7], [32]. Ansätze intersektoraler Indikatoren existieren, aber solange technische Voraussetzungen für die Erfassung nicht gegeben sind, können sie nicht flächen deckend angewandt werden [33].

Es bleibt abzuwarten, ob die Evaluation von Prozessindikatoren z.B. durch digitale Datenerfassung einen Einrich tungsvergleich ermöglicht, wie es aktuell nur durch Ergebnisindikatoren im Rahmen der externen Qualitätssiche rung geschieht. Es erscheint sinnvoll, solche Vergleiche wenn möglich anzustreben.

3.3 Nutzennachweis der Qualitätsindikatoren

Bei der Bewertung anzuwendender QI muss der Frage nachgegangen werden, ob die gewählte Kennzahl reliabel und valide ist, ob deren Messung und Evaluation einen Veränderungsprozess innerhalb einer Einrichtung oder eines Systems in Gang setzen kann, und wie dies belegt wird. Es muss bei der Nutzenbewertung von QI gefragt werden, ob die Aussagen des QI-Ergebnisses sicher genug sind, um Rückschlüsse auf Veränderungen in Prozessen ziehen zu können. Insgesamt ist die Datenlage dafür, dass die Nutzung von QI – zumindest im intensivmedizinischen Bereich – das Outcome positiv beeinflusst, unzweideutig. Auch ist nicht bekannt, ob bestimmte Indikatoren einen negativen Einfluss auf das Outcome haben können, z.B. ob die empfohlene Durchführung von Sedierungspausen die Rate der Selbtextubationen erhöht, die das Patientenrisiko erhöhen. Valide Daten zu dieser Frage existieren nicht. Daher sollte eine formale Prüfung dieses Risikos nach Möglichkeit in den Entwicklungsprozess von QI integriert werden. Gegebenenfalls muss ein Indikator aus einem solchen Grund gestrichen oder geändert werden.

Bei der Nutzenbewertung spielt auch eine Rolle, welche Art eines Indikators angewandt wird. In der Intensivmedi zin sprechen einige Argumente für die Anwendung von Prozessindikatoren, da sie leicht zu erfassen sind und keine Risikoadjustierung benötigen. Im internationalen Sprachgebrauch werden Prozessindikatoren aber gelegentlich dann so genannt, wenn sie ein Ergebnis abfragen, z.B. die Rate von Ventilator-assoziierten Pneumonien (VAP) als Indikator für den Prozess der angemessenen Händehygiene [27]. Wie bereits ausgeführt, postuliert dies, dass diese Rate ausschließlich oder wesentlich durch den Prozess Hygieneverhalten beeinflusst ist, was nicht zutrifft [34]. Ob nur die Durchführung des Prozesses an sich erfasst wird (Beispiel: regelmäßige Messung eines Delir-Scores), oder ob dezidiert eine Kennzahl für die Prozessadhärenz (hier: Anzahl der Messungen in einem definierten Zeitraum) abgefragt wird, ist nicht auf einen Effekt für das Patienten-Outcome untersucht. Die Notwen
digkeit, den Outcome-Nutzen von Prozessindikatoren nachzuweisen, sollte sorgfältig geprüft werden. Wenn die zugrundeliegende Evidenz eine direkte und starke Korrelation zwischen Prozess und Ergebnis zeigt, ist der Auf wand, diesen Benefit erneut zu zeigen, gegebenenfalls nicht erforderlich. Andernfalls ist der Nutzennachweis eines Prozessindikators im Hinblick auf das Ergebnis relevant, und es sollte ein wissenschaftliches Konzept vorliegen, wie dieser definiert und gemessen werden kann. Für die von Donabedian vorgeschlagenen Qualitätsdimensionen sind neben Prozess- auch Struktur- und Ergebnisindikatoren vorgesehen [35]. In den DIVI-QI wird das Vorliegen eines Prozessstandards als Strukturindikator abgefragt, jedoch fast immer mit der gleichzeitigen Abfrage eines dazugehörigen Prozessindikators. Zuletzt ist die Definition evidenzbasiert Strukturindikatoren in den meisten Fällen schwierig, da diese häufig auf Erfahrung oder auch Tradition beruhen, weniger auf vergleichenden Studien. Sie können teilweise nur im Expertenkonsens definiert werden [36]. Prinzipiell kann ein Prozess auch ohne vorliegenden Standard gut ablaufen. Eine Prozessevaluation würde dann anzeigen, ob in der täglichen Routine Standards etabliert sind. Ergebnisindikatoren werden z.B. bei einrichtungsübergreifenden Bewertungen durch Benchmarking genutzt. Ein Problem ihrer Anwendung besteht in der Risikoadjustierung aufgrund heterogener Patientengruppen. Auch sind Ergebnisindikatoren nur bedingt geeignet, die Durchführung eines Prozesses konkret zu bewerten. Bei Abweichung vom Indikator müssen Prozesse retrospektiv auf ihre Wirksamkeit untersucht werden. Einrichtungsvergleiche nutzen aufgrund der besseren Datenverfügbarkeit dennoch eher Ergebnisindikatoren. Weitere Ergebnisindikatoren wie z.B. Mortalität – auch wenn sie auf Risikofaktoren standardisiert erfasst werden (standardized mortality ratio, SMR) – sind nicht in der Lage, tatsächliche Prozessadhärenz zu erfassen. Zudem sind solche Indikatoren im besten Falle erst nach Monaten in der Lage, Fehlentwicklungen anzuzeigen, die eventuell an falsch durchgeführten Prozessen oder auch an mangelnder Erfüllung von Strukturannahmen liegen [38].

4 Schlussfolgerung

Der folgende Satz von Califf et al. repräsentiert einen möglichen „Idealzustand“ des Qualitätsmanagements und der Qualitätssicherung: „In an ideal clinical world, for every clinical decision there would be an indicator based on a guideline based on evidence from randomized trials“ [39]. Allerdings ist es unwahrscheinlich, dass der Aufwand und der Nutzen, der aus diesem Ansatz spricht, in Übereinstimmung zu bringen sind. Der Satz begründet aber, dass es klinische Entscheidungen in einem prozessbasierten Ansatz sind, die im Sinne der Patienten ein positives Behandlungsergebnis bewirken. Dies ist das Grundprinzip der intensivmedizinischen QI.
Die hier dargestellte Methodik der zukünftigen Weiterentwicklung der intensivmedizinischen QI stellt diese Indikatoren für die Anwendung innerhalb einer einzelnen Einrichtung wie auch für andere Anwendungen auf eine robuste Basis.

Der synergistische Ansatz durch die Zusammenarbeit mit dem AWMF-IMWI und die Nutzung der Kriterien aus QUALIFY sollen die wissenschaftliche Basis der QI weiter stärken. Der koordinierte Entwicklungsprozess soll sowohl für die NSPR der DIVI als auch für die jeweiligen Leitliniengruppen, die nach dem Regelwerk des AWMS-IMWI arbeiten, den Entwicklungsprozess vereinfachen, insbesondere durch die Vermeidung redundanter Entwicklungs- schritte wie z.B. Literatursuche und Kennzahlenentwicklung. Insbesondere soll in der Zukunft mit der Nutzung leitlinienbasierter QI die Patientenperspektive stärker in den Vordergrund der Indikatorentwicklung rücken [15].

Durch diesen Ansatz werden die intensivmedizinischen Indikatoren auch für einen Einsatz über einzelne Einrichtungen hinaus einsetzbar, z.B. in der externen Qualitätssicherung. Dadurch wäre gewährleistet, dass die Bewertung intensivmedizinischer Prozesse in der Hand ihrer Anwender bleibt.

Abkürzungen

- **AWMF**: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften
- **DIVI**: Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin
- **GBA**: Gemeinsamer Bundesausschuss
- **GRADE**: Grading of Recommendations Assessment, Development and Evaluation
- **IQTIG**: Institut für Qualitätssicherung und Transparenz im Gesundheitswesen
- **LL**: Leitlinie
- **NSPR**: Nationale Steuerungsgruppe Peer Review
- **NVL**: Nationale Versorgungsleitlinie
- **Q**: Qualitätssicherung
- **QS**: Qualitätssicherung
- **VAP**: Ventilator-assoziierte Pneumonie
- **VAP**: Ventilator-assoziierte Pneumonie
- **VAP**: Ventilator-assoziierte Pneumonie

Anmerkungen

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Delgado M, Pericas L, Moreno J, Torra L, Varela J, Suero F, Navarro P, Hinojosa F. Quality Indicators in Critically Ill Patients. Madrid: SEMICYUC; 2005.
2. Braun JP, Bause H, Bloo F, Geldner G, Kastrup M, Kuhnen R, Markewitz A, Martin J, Mende H, Quintel M, Steinhuber-Bauer K, Waydhas C, Spies C; NeQui (quality network in intensive care medicine), Peer reviewing critical care: a pragmatic approach to quality management. Ger Med Sci. 2010 Oct;8:Doc23. DOI: 10.3205/000112
3. Bause H, Braun J, Brinkmann A, Muhl E. Peer-Review-Intensivmedizin und Qualitätssicherung der DIVI – eine historische Perspektive. DIVI. 2019;10(1):10-4.
4. Leitlinienprogramm Onkologie; Deutsche Krebsgesellschaft; Deutsche Krebshilfe; AWMF. Entwicklung von leitlinienbasierten Qualitätssicherung Indikatoren, Methodenpapier für das Leitlinienprogramm Onkologie, Version 2.1. 2017. Available from: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Methodik/QIEP_OL_2017_Version_2.1.pdf
5. Attenhofen L, Blumenstock G, Dief F, Döbler K, Geraedts M, Jäckel WH, Klakow-Franck R, Kleudgen S, Kopp I, Nothacker M, Oilenschläger G, Reiter A, Weinbrenner S, Zorn U. Qualitätssicherung – Manual für Autoren, Berlin: Ärztliches Zentrum für Qualität in der Medizin (ÄZQ); 2009. (Programm für Nationale Versorgungsleitlinienv BÄK, KBV und AWMF, 36).
6. Leitlinienprogramm Onkologie; Deutsche Krebsgesellschaft; Deutsche Krebshilfe; AWMF. Entwicklung von leitlinienbasierten Qualitätssicherung Indikatoren, Methodenpapier für das Leitlinienprogramm Onkologie, Version 2.1. 2017. Available from: https://www.awq.de/mdb/edocs/pdf/schriftenreihe/schriftenreihe36.pdf
7. Altenhofen L, Brech W, Brenner G, Geraedts M, Gramsch E, Kolkmann F, Kruppszky G, Lorenz W, Oesingmann U, Oilenschläger G, et al. Beurteilung klinischer Messgrößen des Qualitätsmanagements. Qualitätskriterien und -indikatoren in der Gesundheitsversorgung, Konsenspapier von BÄK, KBV und AWMF. Z Arzt Fortbild Qualitätssich. 2002;96(5):2-15.
8. Riessen R, Hermes C, Bodmann SF, Janssens U, Markewitz A. Vergütung intensivmedizinischer Leistungen im DRG-System: Aktuelle Probleme und Lösungsvorschläge [Reimbursement of intensive care services in the german DRG system: Current problems and possible solutions], Med Klin Intensivmed Notfallmed. 2018 Feb;113(1):13-23. DOI: 10.1007/s00063-017-0390-x
9. Berenholz SM, Dorman T, Ngo K, Pronovost PJ. Qualitative review of intensive care unit quality indicators. J Crit Care. 2002 Mar;17(1):1-12. DOI: 10.1053/jcrc.2002.33035
10. Wilson CRM. Hospital-wide Quality Assurance: Models for Implementation and Development. Toronto: Saunders; 1987.
11. Berenholz SM, Dorman T, Ngo K, Pronovost PJ. Qualitative review of intensive care unit quality indicators. J Crit Care. 2002 Mar;17(1):1-12. DOI: 10.1053/jcrc.2002.33035
12. van der Voort PH, van der Veer SN, de Vos ML. The use of indicators to improve the quality of intensive care: theoretical aspects and experiences from the Dutch intensive care registry, Acta Anaesthesiol Scand. 2012 Oct;56(9):1084-91. DOI: 10.1111/j.1399-6576.2012.02687.x
13. Nachtigall I, Tamarkin A, Tafelski S, Deja M, Häsele E, Gastmeier O, Ollenschläger G, et al. Beurteilung klinischer Messgrößen des Qualitätsmanagements. Qualitätskriterien und -indikatoren in der Gesundheitsversorgung, Konsenspapier von BÄK, KBV und AWMF. Z Arzt Fortbild Qualitätssich. 2002;96(5):2-15.
14. Riessen R, Hermes C, Bodmann SF, Janssens U, Markewitz A. Vergütung intensivmedizinischer Leistungen im DRG-System: Aktuelle Probleme und Lösungsvorschläge [Reimbursement of intensive care services in the german DRG system: Current problems and possible solutions], Med Klin Intensivmed Notfallmed. 2018 Feb;113(1):13-23. DOI: 10.1007/s00063-017-0390-x
15. Altenhofen L, Brech W, Brenner G, Geraedts M, Gramsch E, Kolkmann F, Kruppszky G, Lorenz W, Oesingmann U, Oilenschläger G, et al. Beurteilung klinischer Messgrößen des Qualitätsmanagements. Qualitätskriterien und -indikatoren in der Gesundheitsversorgung, Konsenspapier von BÄK, KBV und AWMF. Z Arzt Fortbild Qualitätssich. 2002;96(5):2-15.
16. Berenholz SM, Dorman T, Ngo K, Pronovost PJ. Qualitative review of intensive care unit quality indicators. J Crit Care. 2002 Mar;17(1):1-12. DOI: 10.1053/jcrc.2002.33035
17. Wilson CRM. Hospital-wide Quality Assurance: Models for Implementation and Development. Toronto: Saunders; 1987.
18. van der Voort PH, van der Veer SN, de Vos ML. The use of indicators to improve the quality of intensive care: theoretical aspects and experiences from the Dutch intensive care registry, Acta Anaesthesiol Scand. 2012 Oct;56(9):1084-91. DOI: 10.1111/j.1399-6576.2012.02687.x
19. Nachtigall I, Tamarkin A, Tafelski S, Deja M, Häsele E, Gastmeier O, Ollenschläger G, et al. Beurteilung klinischer Messgrößen des Qualitätsmanagements. Qualitätskriterien und -indikatoren in der Gesundheitsversorgung, Konsenspapier von BÄK, KBV und AWMF. Z Arzt Fortbild Qualitätssich. 2002;96(5):2-15.
20. Wilson CRM. Hospital-wide Quality Assurance: Models for Implementation and Development. Toronto: Saunders; 1987.
Kumpf et al.: Die zukünftige Entwicklung intensivmedizinischer Qualitätsindikatoren ...
Bitte zitieren als
Kumpf O, Nothacker M, Braun J, Muhl E. The future development of intensive care quality indicators – a methods paper. GMS Ger Med Sci. 2020;18:Doc09. DOI: 10.3205/000285, URN: urn:nbn:de:0183-0002850