Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- All common tests should be described solely by name; describe more complex techniques in the Methods section.

- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.

- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- For collection of whole genome and transcriptome data, sequencing was performed using one of: HiSeq2500 (HCS versions 2.0.10, 2.2.38, 2.2.58 and 2.2.68), HiSeqX (HCS versions 3.3.39, 3.3.76 and 3.4.0) and NextSeq500 (NCS version 2.0.2 and 2.1.2). Bases were called using the following software from Illumina: Illumina Off-line Basecaller v1.9.4, Illumina bcl2fastq v1.8.3, v1.8.4, and v2.17.1.14. Mass spectrometry-based proteomics were performed using the SP3-CTP pipeline. Thermo RAW files were converted to mzML by ThermoRawFileParser v1.3. Spectra were searched using the MSFragger search engine v3.3 in FragPipe computational platform v16.0 against the UniProt Human proteome. No custom computer code was used for data generation. The Moffitt PurIST algorithm v1 was used for Moffitt subtyping.

Data analysis

- All analyses were performed using previously published and open-source tools. DNA alignment was performed using BWA-mem (v0.7.6a) and salmon (v0.5.5). RNA alignment was performed using STAR (v2.7.3). PicardTools (v2.17.3) and Subread (v1.4.6). SVN/indels were called using Strelka (v2.9.10) and Manta (v1.5.0) and annotated using SnEff (v4.3). CNV and tumor ploidy were called using Facets (v0.6.0). Fusion events were identified using Vrniv (v1.2.0). Statistical analysis was performed using R v3.6.3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy.

Genomic data generated within the PanGen/POG and COMPASS studies are actively submitted to the European Genome-phenome Archive (EGA) under accession numbers EGA00001001159 (https://ega-archive.org/studies/EGA00001001159) and EGA00001002543 (https://ega-archive.org/studies/EGA00001002543), respectively. Data uploaded to EGA as part of the POG/PanGen study, including raw RNA and whole-genome sequencing files, will be made available to interested researchers while respecting patient privacy, and can be accessed through the BC Cancer Data Access Committee (https://ega-archive.org/dacs/EGAC00000000011; email address: tdoadmin@phsa.ca), which provides responses within three to five business days. Upon establishment and signing of the data transfer agreement, EGA data release can be expected within three business days. Once access has been granted, the period during which the data can be downloaded is flexible according to the downloader’s needs. Data access through EGA is on a limited use and project-specific basis. These data are available under restricted access in accordance with the ethical data regulations followed by the POG and PanGen trials. Hartwig data were accessed through the Hartwig Medical Foundation database (https://www.hartwigmedicalfoundation.nl/data/databank/). The UniProt Human proteome is available from https://www.uniprot.org/proteomes/UP000005640. Processed VTCN1 and PROX1 protein level data are included as Supplementary Data 7. Raw protein data are available in the Proteomics Identifications Database (PRIDE) under accession number PXD036632. Source data are provided in this paper. The remaining data are available within the Article, Supplementary Information or Source Data file.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
The PanGen cohort consisted of 63 patients with metastatic pancreatic ductal adenocarcinoma. No sample size calculation was performed, and sample size was determined by using the maximum number of samples available at the time of manuscript preparation.

Data exclusions
No data were excluded from any cohorts.

Replication
Validation cohorts consisted of COMPASS (n=195; metastatic PDAC), and Hartwig (n=113; metastatic PDAC) external datasets. Samples from patients enrolled in the POG trial were also used in the analysis, and included patients with metastatic colorectal adenocarcinoma (n=63) and metastatic cholangiocarcinoma (n=14). Cholangiocarcinoma samples from the Hartwig Foundation (n=25) were also used in validation analysis.

Randomization
Samples in this study were not randomized into individual groups. Randomization was not applicable to this study as the groups of interest were retrospective and based solely on the presence of an oncogenic KRAS mutation in the tumor.

Blinding
Blinding was not performed for this study. Blinding was not applicable to this study as the groups of interest were retrospective and based solely on the presence of an oncogenic KRAS mutation in the tumor.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).

Research sample
State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.

Sampling strategy
Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.

Data collection
Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
Timing

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.

Randomization

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.

Research sample

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.

Sampling strategy

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection

Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.

Data exclusions

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Reproducibility

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.

Blinding

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work?

- [] Yes
- [] No

Field work, collection and transport

Field conditions

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).

Disturbance

Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

Involved in the study	n/a
Antibodies	x
Eukaryotic cell lines	x
Palaeontology and archaeology	x
Animals and other organisms	x
Human research participants	x
Clinical data	x
Dual use research of concern	x

Methods

Involved in the study	n/a
ChIP-seq	x
Flow cytometry	x
MRI-based neuroimaging	x

Antibodies

Antibodies used

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation

Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

State the source of each cell line used.

Authentication

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination

Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and archaeology

Specimen provenance

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, export.

Specimen deposition

Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals

Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Human research participants

Policy information about studies involving human research participants

Population characteristics

The PanGen cohort comprises 63 patients with metastatic pancreatic ductal adenocarcinoma who had not yet received treatment for their metastatic disease. Median patient age was 51.4 years in the KRAS wildtype group and 60.9 years in the KRAS mutant group. 67% of patients in the KRAS wildtype group were male while 63% of patients in the KRAS mutant group were male.

Recruitment

Patients in Canada who were diagnosed with metastatic pancreatic ductal adenocarcinoma and had not yet received treatment for their metastatic disease were referred to the PanGen trial by their treating oncologist. For the POG trial, patients were recruited based on the POG trial inclusion criteria (NCT02155621) which differed from PanGen as patients were not required to have not yet received treatment for their metastatic disease. CRA in participating centers approached patients who were potentially eligible for this study and patients were enrolled after they provided written informed consent and the eligibility criteria were confirmed. Participants were enrolled from the patients treated at the participating institutions, or referred for participation in a clinical trial. While participants were enrolled in public cancer centers in a universally-funded healthcare system, those referred may not be representative of the broader patient population with metastatic PDAC.

Ethics oversight

This work was approved by and conducted under the University of British Columbia - BC Cancer research ethics board (H12-00137, H14-00681, H16-00291) and approved by the institutional review board and conducted in accordance with international ethical guidelines. Written informed consent was obtained from each patient upon study enrollment and prior to molecular profiling. All sequencing data were housed using a secure computing environment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

NCT02869802, NCT02155621

Study protocol

https://clinicaltrials.gov/ct2/show/NCT02869802, https://clinicaltrials.gov/ct2/show/NCT02155621

Data collection

Samples were sequenced, stored and analysed at the Canada’s Michael Smith Genome Sciences Centre. Data were collected by CRA at participating research centers. PanGen study patients were enrolled between October 2016 to May 2021. POG study patients were enrolled between June 2014 to May 2021.

Outcomes

In this manuscript, primary and secondary outcomes of the trial are not reported. Rather, outcome analyses were performed with a focus on specific genomic alterations present in a subset of patients.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to:

No	Yes	
☐	☐	Public health
☐	☐	National security
☐	☐	Crops and/or livestock
☐	☐	Ecosystems
☐	☐	Any other significant area
Experiments of concern

Does the work involve any of these experiments of concern:

	Yes	No
	Demonstrate how to render a vaccine ineffective	
	Confer resistance to therapeutically useful antibiotics or antiviral agents	
	Enhance the virulence of a pathogen or render a nonpathogen virulent	
	Increase transmissibility of a pathogen	
	Alter the host range of a pathogen	
	Enable evasion of diagnostic/detection modalities	
	Enable the weaponization of a biological agent or toxin	
	Any other potentially harmful combination of experiments and agents	

ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as GEO.
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.

Files in database submission

Provide a list of all files available in the database submission.

Genome browser session (e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates

Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.

Antibodies

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.

Peak calling parameters

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.

Data quality

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software

Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument

Identify the instrument used for data collection, specifying make and model number.
Software
Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance
Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy
Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type
Indicate task or resting state; event-related or block design.

Design specifications
Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.

Behavioral performance measures
State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).

Acquisition

Imaging type(s)
Specify: functional, structural, diffusion, perfusion.

Field strength
Specify in Tesla

Sequence & imaging parameters
Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.

Area of acquisition
State whether a whole brain scan was used or define the area of acquisition, describing how the region was determined.

Diffusion MRI
- Used
- Not used

Preprocessing

Preprocessing software
Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).

Normalization
If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation or indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template
Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) or indicate that the data were not normalized.

Noise and artifact removal
Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).

Volume censoring
Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings
Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested
Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.

Specify type of analysis
- Whole brain
- ROI-based
- Both

Statistic type for inference
(See: Eklund et al. 2016)
Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction
Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
Models & analysis

n/a	Involved in the study
☐ | Functional and/or effective connectivity
☐ | Graph analysis
☐ | Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).

Graph analysis

Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).

Multivariate modeling and predictive analysis

Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.