Non-Abelian strategies in quantum penny flip game

A Dept. of Complex Systems Science, Nagoya Univ.
H. Mishima

Meyer により考案された量子的コインフリップ・ゲーム [1] は「量子的プレイヤー」の「古典的プレイヤー」に対する圧倒的優位性を必勝戦略の存在によって示した。このゲームは次のように図示される。

\[
\begin{align*}
\text{始状態} & \xrightarrow{Q} \text{量子的な操作 (1)} \quad \text{中间状態 I} \quad \xrightarrow{P} \text{古典的な操作} \quad \text{中间状態 II} \quad \xrightarrow{Q} \text{量子的な操作 (2)} \quad \text{终状態}
\end{align*}
\]

\(Q\) は任意のユニタリー操作を扱える量子的プレイヤー、\(P\) は互いに可換な操作しか扱えないように制限された古典的プレイヤーとする。\(Q\) は「終状態」を始状態と直交するように行動を選択する。（\(Q\) は保持されるべき情報の管理者、\(P\) は外部から情報を改竄するハッカーと考えることもできる。）

Meyer が示した \(Q\) の必勝戦略は、\(Q\) の操作の同時固有状態になるような操作を行うことである。このとき \(P\) が複数の古典的な（可換な）操作を扱えたとしても、実質一つの操作と見なされ、\(Q\) は「中间状態 II」を事前に知ることができる。最後に、\(Q\) は「始状態」を終状態と直交するように行動を選択する。ただし、Meyer の示した解は数ある必勝戦略の一例である。完全な解析は Chappell らにより得られている [2]。しかし、\(Q\) の優位性がどこから来たのか決定的な議論はない。また [1] で言及されているが、もし \(P\) が \(Q\) と同じく任意のユニタリー操作を扱えるならば、このゲームにおいて両者は完全に互角である。

では、\(P\) がどのようなプレイヤーであれば \(Q\) の優位性は保証されるのだろうか？我々は、古典的プレイヤーの前提である操作の可換性を捨て、\(P\) が非可換な操作を扱える場合に \(Q\) の必勝戦略の存在を示した。またパラメータを含む非可換な操作を定義し、これを扱う \(P\) に対しても必勝戦略の存在を示すことで、\(P\) が扱うユニタリー操作の生成子の数は \(Q\) の優位性に必ずしも影響しないことを示した。さらに \(P\) の操作に、ある拡張を行うことで \(Q\) の優位性に迫る結果が示唆された。本講演ではこれらについて紹介する。

[1] David A. Meyer, Phys. Rev. Lett. 82, 1052-1055 (1999)
[2] James M. Chappell et al., J. Phys. Soc. Jpn. 78, 054801(4p) (2009)