Gate Tunable Parallel Double Quantum Dots in InAs Double-Nanowire Devices

S. Baba, S. Matsuo, H. Kamata, R.S. Deacon, A. Oiwa, K. Li, S. Jeppesen, L. Samuelson, H. Q. Xu and S. Tarucha

Applied Physics Letters 111, 233513 (2017)

Group Meeting - 02.02.2017
Fabrication and characterization of InAs double wires with quantum dots

- Maybe useful for
 - Spin qubits
 - Topological circuits of non-locally entangled electrons
 - Majorana- and Parafermions

- In our case: Tunneling between the wires
 - Direct measurement of the band structure
Devices

- Nanowires: $d = 60 – 80$ nm; Wurtzite, grown by CBE

- Device A:
 - Finger bottom gates (Ti/Au) with an insulating silicon nitride layer
 - Parallel nanowires deposited using a polymer technique
 - Alignment parallel to the finger bottom gates
 - Contacts: Ti/Au with $(\text{NH}_4)_2\text{S_x}$ etch
 - Wire length $L \sim 150$ nm

- Device B:
 - Common Al contact
 - Separate normal contacts
 - Sidegates
 - Wire length $L \sim 200$ nm
Measurements – Device A

- Differential conductance as a function of two finger bottom gates show resonance peaks with two different slopes
 - Two parallel quantum dots (QD1 and QD2) formed by Shottky barriers
 - Further hint: no background conductance

- Finger bottom gates uniformly change carrier density and aid the formation of potential barriers
 - Similar to a plunger gate
Measurements – Device A

- Differential conductance with one finger bottom gate fixed and varying source-drain bias (on both wires simultaneously)
 - Observation of (rough) Coulomb diamonds

- Tunnel couplings to normal contacts are strong -> Kondo ridge
 - Diamonds are not well shaped due to strong co-tunneling effect

- Addition energies
 - QD1: 4 – 5 meV
 - QD2: 5 – 7 meV
Measurements – Device A

- Addition energy is different in the two measurements

- Different gate capacitance due to missalignment with the finger bottom gates
 - Here: QD1 has a 7 times larger gate capacitance than QD2
 - But: Geometrical reasoning only allows a factor of 2
 - Discrepancy is probably due to the unevenness of the isolator between the gates and the wire
Measurements – Device A

- More negative voltage on both finger bottom gates
 - Regime with stronger tunnel or capacitive coupling between the wires

- "Honey-comb"-like pattern indicates parallel quantum dots with interdot electrostatic coupling (~0.4 to 0.6 meV)
 - One quantum dot reacts to the charge state of the other quantum dot

- However: No evidence of interdot tunneling due to surface oxide between the nanowires
• AC-bias voltage on the central superconducting electrode while measuring differential conductance of the respecting wires

• Both maps show resonance peaks due to formation of quantum dots
 ▪ Wires are seperately contacted with no inter-dot coupling (capacitive or tunneling under the superconductor)

• Adition energies:
 ▪ QD1: 2-3 meV
 ▪ QD2: 1-3 meV

• Smaller addition energies than device A due to larger length of the wires
- Gap features in both wires
 - Gap structure width: $\pm 0.20 - 0.32$ meV
- Poor transparency inhibits investigation of Andreev reflection
 - Better transparency of the Al contact would enable further studies with Cooper pair splitting
- Additionally, length (~ 500 nm) makes local Andreev reflection more favorable than Crossed Andreev reflection
Conclusion

- Fabrication of a device with parallel nanowires and parallel quantum dots
- Individually controllable charge states and tuneable interdot electrostatic coupling with finger bottom gates
- Fabrication of a device with a common superconducting contact
- No influence from the common parallel region on the formed quantum dot
- Superconducting proximity gap feature
- Fabrication technique enables devices for further studies in order to generate Majorana Kramer pairs or Parafermions