Abstract

Mushrooms are higher fungi having great taste and nutraceutical properties. They are one such dietary component that can help us in addressing the issues of quality food, health, and environmental sustainability. Due to the presence of a large number of secondary metabolites mushrooms can be used as a source for biotherapeutics which in turn can help in development of new drugs. There has been a recent upsurge of interest in mushrooms not only as a health food which is rich in protein but also due to the presence of biologically active compounds of medicinal value which possess anti-oxidative, anti-cancer, anti-viral, hepatoprotective, immunomodulating and hypocholesterolemic properties. Hence, mushrooms are used as a dietary supplements as well as therapeutic agents in complementary medicine. Edible items can be fortified with mushrooms owing to their high nutritive value and such food serve as a nutrient reservoir for malnourished populations. The potential therapeutic implications of mushrooms are enormous however; detailed mechanisms of various health benefits of mushrooms to humans still require intensive investigation, especially with the emergence of new evidence of their health benefit. The paper outlines the information on all such aspects of medicinal mushrooms along with their role in various diseases and in the area of clinical nutrition.

Keywords: Mushrooms; Neutraceuticals; Active Compounds; Medicines.

Introduction

India has witnessed an enormous change in its agricultural pattern due to the continuous increase in the population rate. Henceforth, rapid rise of the population brings forward the challenge of meeting the demands of quality food and achieving nutritional security. Wide spread malnutrition necessitated the search for alternative source of protein since the production of pulses has not kept pace with the requirement of the country [1]. The rising demand for functional food free from synthetic chemicals indicates the awareness of people on quality food. The excellent texture and unique flavour of edible and medicinal mushrooms makes them universally accepted by all age groups [2]. Due to the production of a large variety of secondary metabolites with exceptional chemical structures and interesting biological actions they are reservoir of valuable chemical resources [3]. However, there is very little awareness on mushrooms as a healthy food and as an important source of biological active substances with medicinal value [4].

For hundreds of years, medicinal mushrooms as medicinal extract and essences, and are applied as alternative medicine in Korea, China, Japan and eastern Russia [5]. According to current estimates, mushrooms constitute at least 12,000 species worldwide and out of that 2,000 species are reported as edible. About 35 edible mushroom species are commercially cultivated whereas nearly 200 wild species used for medicinal purposes [6]. The most cultivated mushroom worldwide is Agaricus bisporus, followed by Lentinula edodes, Pleurotus spp. and Flammulina velutipes [6, 7]. Mushrooms contain a high moisture percentage that ranges between 80 and 95 g/100 g, approximately. They are a rich source of protein, 200–250 g/kg of dry matter; leucine, valine, glutamine, glutamic and aspartic acids are the most abundant. They are low-calorie foods because of their low fat content, 20–30 g/kg of dry matter, being linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) the main fatty acids. Edible mushrooms contain high amounts of ash, 80–120 g/kg of dry matter and are rich in minerals like potassium, phosphorous, magnesium, calcium, copper, iron, and zinc. Carbohydrates present in them include chitin, glycopur, trehalose, and mannitol; besides, they contain fiber, beta- glucans, hemicelluloses, and pectic substances [8]. The nutritive value of some commonly known mushroom varieties is listed in Table 1.

Medicinal mushrooms have been demonstrated to produce ben-
Therapeutic Potential of Mushrooms

The knowledge of the relationship between diet and disease has led to the development of a new scientific discipline which is termed as “functional food science.” Functional foods can be anything like dietary supplements, medicinal foods, vita foods, phytochemicals, and mycochemicals and also pharmacofood, which could be used specifically to improve the health. Mushrooms fall very well into this category of functional foods as it has all the potential to ameliorate diseases. ‘Mushroom Nutraceuticals’ are the traditional preparations which were used in ancient times in the form of extracts, health tonics, concentrates, fermented beverages, tinctures, teas, soups, herbal formula, powders and arid healthful food dishes [16]. The term “Mushroom Nutraceuticals” has been coined by Chang and Buswell [17]. Due to their immunomodulatory action, they boosts the immune system [18] by the activation of dendritic cells, NK cells, T-cells, macrophages, and production of cytokines [19] and have curative actions against a lot of degenerative diseases without having any side effects; unlike the ones involved in the usage of synthetic drugs. Studies have shown that regular consumption of mushrooms or their products is effective both in preventing and treating specific diseases [7].

Edible mushrooms and their constitutive active compounds have been described to have beneficial effects on hyperglycemia and hypercholesterolemia [20, 21]. Several mushrooms have high content of acidic polysaccharides, dietary fiber, and antioxidants, including vitamins C, B12, and D; folate ergothioneine; and polyphenol [22] suggesting that the mushroom may have potential anti-inflammatory, hypoglycaemic and hypcholesterolemic effects (Table 3). The significant pharmacological effects and physiological properties of mushrooms are bio regulation (immune enhancement), maintenance of homeostasis and regulation of biorhythm, cure of various diseases and prevention and improvement from life threatening diseases such as cancer, cerebral stroke and heart diseases. Mushrooms are also known to have effective substances for antifungal, anti-inflammatory, antitumor, antiviral, antibacterial, hepatoprotective, anti-diabetic, hypolipidemic, anti-thrombotic and hypotensive activities [18].

Mushrooms are known to complement chemotherapy and radiation therapy by countering the side-effects of cancer, such as nausea, bone marrow suppression, anemia, and lowered resistance. Recently, a number of bioactive molecules, including anti-tumor agents have been identified from various mushrooms. Some of the identified molecules are β-glucan, proteoglycan, lectin, phe-nolic compounds, flavonoids, volatile oils, tocopherols, phenolics, flavonoids, carotenoids, fucoides, ascorbic acid enzymes, and organic acids [23], polysaccharides, triterpenoids, dietary fibre, lentinian, schizophyllan, lovastatin, pleuran, steroids, glycopeptidides, terpenes, saponins, xanthones, coumarins, alkaloids, kinon, fenil propanoid, kalvacin, porisin, AHCC, maitake D-fraction, ribonucleases, eringyolsin, and also have been effective against various types of diseases [24, 25].

The active components in mushrooms responsible for conferring anti-cancer potential are lentinian, krestin, hispolon, lectin, calcein, illudin S, psiloycin, Hericium polysaccharide A and B (HPA and HPB), ganoderic acid, schizophyllan, laccase, etc [26]. The bioactive compounds present in mushrooms can be classified into secondary metabolites, glycopeptides and polysaccharides. Out of all these, mushroom polysaccharides are the best known and most potent mushroom-derived substances with anti-tumor and immunomodulating properties. The mushroom polysaccharide i.e β-glucans are the most versatile bioactive molecule owing to its excellent therapeutic implications and broad spectrum biological activity. Since the β-Glucans are not amagulated by humans, so these compounds are recognized by our immune systems as non-self molecules that induces both innate and adaptive immune responses [8].

Novel Mushroom Biotech Products

Mushrooms produced are not only food but are raw material for development of functional food and dietary supplements (nutraceuticals) for health and quality life of humans. Inclusion of mushrooms as functional food can help in the early intervention of sub-healthy states in humans and it might prevent the consequences of life threatening diseases. Trametes versicolor contains proteoglycan constituents like Krestin (PSK) and polysaccharide peptide (PSP). Both of these glycans have been used in cancer therapy like gastric, colorectal lung cancer and breast cancer [27,
Table 2. Some commonly consumed mushrooms along with their bioactive molecules.

Biological name of mushroom	Active principle/constituents/extracts	Activity reported
Agaricus bisporus	Fibers, lectins	Hypocholesterolemic, Hypoglycemic
Boletus edulis Bull	Extracts of fruiting bodies	Antitumor
Flammulina velutipes (Curtis) Singer	Fibers, ethanolic extracts	Antioxidant, Hypocholesterolemic, Antiallergic
Grifola frondosa (Dick.) Gray	MD-fraction, ergosterol	Antioxidant, hypotensive, Hypoglycemic, Immunotherapy, Antiinflammatory activity
Ganoderma lucidum (Curtis) P. Karst	Ganoderan A and B, glucans, Triterpenes, ganosporeric acid A, ganopoly, the polysaccharide-containing preparation	Hypoglycemic, antioxidant and antinumor, antiviral (HIV-1), Antiallergic Anti-inflammatory antihepatotoxic, inhibit the biosynthesis of cholesterol, antioxidative and free radical scavenging effects.
Hypsizigus marmoreus	Ethanolic extracts	Antioxidant, Antiallergic
Lentinula edodes (Berk.) Pegler	Methanolic and water extracts, eritadenine, lentinan, oxalic acid, ethanolic mycelial extracts.	Antioxidant, Hypocholesterolemic, Immuno-therapy, Antimicrobial, antiprotozoal
Pleurotus ostreatus	Water and 30% ethanolic extract	Antioxidant, Hypocholesterolemic
Pleurotus eryngii	Ethanolic extracts	Antiallergic
Volvariella volvacea	Methanolic and water exopolysaccharides	Antioxidant, Hypocholesterolemic

Rathee et al., 2012 [15]

Table 3. Nutraceutical potential of the some important mushrooms.

Mushroom Species	Active Constituents	Type of polysaccharides	Medicinal Properties
Agaricus bisporous	Lectins	Heteropolysaccharides	Enhance insulin secretion, anti-aging property.
A. auricula	Acidic Polysaccharides	Homopolysaccharides	Anti-tumour activities, lowers cholesterol, triglycerides, and lipid levels; decrease blood glucose, beneficial in coronary heart disease, immune tonic.
Cordyceps sinensis	Cordycepin	Heteropolysaccharides	Cure lung infections, hypoglycemic activity, cellular health properties, anti- depressant activity.
Flammulina velutipes	Polysaccharide, flammulin, FVP (Flammulina polysaccharide protein), peptide glycans, prolamin (active sugar protein), Proflamin (glycoprotein)	Heteropolysaccharides	Antioxidant, anti-cancer activity, anti-aging property; immuno-modulatory, anti-viral action.
Ganoderma lucidum	Polysaccharides, triterpenoids, germanium, nucleotides and nucleosides, Ganoderic acid, Beta-glucan,	Heteropolysaccharides	Augments immune system, liver protection, antibiotic properties, inhibits cholesterol synthesis; immunomodulatory, anticancerous properties.
Grifola frondosa	Grifloan, Lectins	Heteropolysaccharides	Increases insulin secretion, decrease blood glucose, improves ovulation.
Lentinula edodes	Eritadenine, Lentinan	Heteropolysaccharides	Lower cholesterol, anti-cancer activity.
P. florida		Homopolysaccharides	anti-hyperglycaemic; anti-hypercholesterolemia effect
Pleurotus sajor-caju	Lovastatin polysaccharide	Homopolysaccharides	Lower cholesterol, prevents cardiovascular disorders.
Trametes versicolor	Polysaccharide-K (Krestin), Coriolon and glycoproteins	Heteropolysaccharides	Decrease immune system depression, prevents cancer, inhibits growth of Candida albicans, anti-viral activity by inhibiting the replication of HIV, liver protective functions.
Volvariella volvacea	Glycoproteins	Heteropolysaccharides	Cardioprotective, lowers blood pressure.

Lakhanpal and Rana, 2005; [5]
Table 4. Overview of some mushroom dietary supplements.

Product	Content
Organic cordyceps	C.sinensis Alohaensis hybrid strain
Gano super	Concentrated Reishi extracts
Levolar Forte	Extract of C.sinensis, fraction of G.fremius, extract of Agaricus comatus, cinnamon extracts
Fine Agaricus Gold	Highly concentrated micropower active ingredients, protein bound polysaccharide of Agaricus
Fine Mesima	Micropulverized powder of dried Phellinus linteus mushroom
Breast Mate	Phellinus linteus fraction, Maitake PSX fraction, Glycoprotein SX fraction, Broccoli sprouts extract, Green Tea extract, Vitamin D_3
Shiitake Gold	Lentiana, Beta glucan polysaccharide

Acknowledgements

The authors thank University Grants Commission (UGC) for providing financial support for this work.

References

[1]. Sharma PK, Gothalwal R (2010) Weed extract: Cheap source for better yield and biological efficiency of Pleurotus florida. Asian J Bio Sci 5(1): 10-12.
[2]. Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chemistry 73(3): 321-325.
[3]. Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (Polypore) fungi. J Nat Prod 67(2): 300-310.
[4]. Cheung LM, Cheung PC, Ooi VE (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry 81(2): 249-255.
[5]. Lakhani VN, Rana M (2005) Medicinal and nutraceutical genetic resources of mushrooms. Plant Genetic Resources: Characterization and Utilization 3(2): 288-303.
[6]. Beulah GH, Margret AA, Nelson J (2013) Marvelous medicinal mushrooms. Inter J Pharma Bio Sci 4(1): 611-615.
[7]. Chang ST, Miles PG (2004) Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact. (2nd edn), CRC Press, USA.
[8]. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible Mushrooms: Improving Human Health and Promoting Quality Life. Inter J Microbiol 1-14. http://dx.doi.org/10.1155/2015/376387.
[9]. Aida FMNA, Shuhaimi M, Yazid M, Maaruf AG (2009) Mushroom as a potential source of prebiotics: a review. Trends in Food Science and Technology 20(1): 567-575.
[10]. Ganeshpurkar A, Rai G, Jain AP (2010) Medicinal mushrooms: Towards a new horizon. Pharmacogn Rev 4(8): 127-135.
[11]. Carneiro AA, Ferreira IC, Dueñas M, Barros L, da Silva R, et al. (2013) Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem 138(4): 2168-2173.
[12]. Kalač P (2013) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 93(2): 209-218.
[13]. Phan CW, Wong WL, David P, Naidu M, David P, Naidu M, Sabaratnam V (2012) Pleurotus giganteus (Berk.) Karunaratna & K.D. Hyde: nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells. BMC Complementary and Alternative Medicine 12(102): 1-11.
[14]. Reis FS, Barros L, Martins A, Ferreira IC (2012) Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol 50(2): 191-197.
[15]. Sushila R, Dharmender R, Deepti R, Vikash K, Parmender R (2012) Mushrooms as therapeutic agents. Revista Brasileira de Farmacognosia 22(4): 459-474.
[16]. Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: Their thera-
... Medicinal Mushrooms as a Source of Novel Functional Food. Int J Food Sci Nutr Diet. 04(5), 221-225.
[17]. Chang ST, Buswell JA (1996) Mushroom Nutriceuticals. World J Microbiol Biotechnol 12(5): 473-476.
[18]. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: Current perspective (review). Int J Med Mush 1(1): 31-62.
[19]. Wasser SP (2014) Medicinal Mushroom Science: Current Perspectives, Advances, Evidences and Challenges. Biomed J 57(6): 345-356.
[20]. Tiwari AK (2004) Antioxidant: New generation therapeutic base for treatment of polygenic disorders. Curr Sci 86(8): 1092-1102.
[21]. Sharma JR (1995) Ecology and distribution of Hymenochaetaceae, in Hymenochaetaceae of India. Botanical Survey of India.
[22]. Leelavathy KM, Ganesh PN (2000) Polypores in Kerala. Daya Publishing House, India.
[23]. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2(1): 1-15.
[24]. Chihara G (1992) Immunopharmacology of Lentinan, a polysaccharide isolated from Lentinus edodes: its applications as a host defence potentiator. Int J Oriental Medicine 17(5): 57-77.
[25]. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19(1): 65-96.
[26]. Chen J, Seviour R (2007) Medicinal importance of fungal beta-(1->3) (1->6)-glucans. Mycol Res 111(Pt 6): 635-652.
[27]. Vikineswary S, Hui WK, Naidu M, David PR (2013) Neuronal Health – Can Culinary and Medicinal Mushrooms Help. J Tradit Complement Med 3(1): 62-68.
[28]. Maehara Y, Tsujitani S, Sacki H, Oki E, Yoshinaga K, et al. (2012) Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN): review of development and future perspectives. Surg Today 42(1): 8-28.
[29]. Standish LJ, Wenner CA, Sweet ES, Bridge C, Nelson A, et al. (2008) Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 6(3): 122-128.
[30]. Khan MA, Tania M, Liu R, Rahman MM (2013) Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med 10(1): 1-6.
[31]. Badalyan SM (2014) Potential of mushroom bioactive molecules to develop health care biotech products. Proceedings of the 8th International Conference on Mushroom biology and Mushroom Products.
[32]. Humberto JM, Llauradó G, Beltrán Y, Leboque Y, Bermúdez RC, et al. (2015) The use of mushrooms in the development of functional foods, drugs or nutraceuticals: Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications.