CORRESPONDENCE OF DONALDSON-THOMAS AND GOPAKUMAR-VAFA INVARIANTS ON LOCAL CALABI-YAU 4-FOLDS OVER V_5 AND V_{22}

KIRYONG CHUNG, SANGHYEON LEE, AND JOONYEONG WON

ABSTRACT. We compute Gromov-Witten (GW) and Donaldson-Thomas (DT) invariants (and also descendant invariants) for local CY 4-folds over Fano 3-folds, V_5 and V_{22} up to degree 3. We use torus localization for GW invariants computation, and use classical results for Hilbert schemes on V_5 and V_{22} for DT invariants computation. From these computations, one can check correspondence between DT and Gopakumar-Vafa (GV) invariants conjectured by Cao-Maulik-Toda in genus 0. Also we can compute genus 1 GV invariants via the conjecture of Cao-Toda, which turned out to be 0. These fit into the fact that there are no smooth elliptic curves in V_5 and V_{22} up to degree 3.

1. INTRODUCTION

1.1. Motivation. Recently, Donaldson-Thomas (DT) invariants for Calabi-Yau 4-folds and the correspondence among related invariants, like stable pair (PT) and Gopakumar-Vafa invariants (GV or BPS) have been actively studied in [CL14, CMT21, CMT18, CK20, CK18, CKM21].

Virtual cycles of DT$_4$ moduli space has been developed by Borisov-Joyce [BJ17] and by Oh-Thomas [OT20]. For a CY 4-fold X and a curve class $\beta \in H_2(X, \mathbb{Z})$, we denote $M_\beta(X)$ the moduli space of 1-dimensional stable sheaves F on X, such that $[F] = \beta$ and $\chi(F) = 1$. Then DT$_4$ invariants are defined by integrations of cohomology insertions over virtual cycles $[M_\beta(X)]^{vir}$. Note that the virtual cycle is defined via some suitable choice of an orientation on the moduli space $M_\beta(X)$.

Insertions are defined by the following way. Consider the product space $M \times X$ and a (normalized)universal sheaf F over it. For a cohomology element $\gamma \in H^*(X, \mathbb{Z})$, let

$$\tau_i(\gamma) := (\pi_M)_*(\pi_X^*\gamma \cup ch_{dim(X)+i-1}(F)) \in H^{*+2(i-1)}(M, \mathbb{Z})$$

where M is an abbreviation of $M_\beta(X)$. DT$_4$ invariants and descendant invariants (with a single insertion) are defined by

$$\langle \tau_i(\gamma) \rangle_\beta := \int_{[M_\beta(X)]^{vir}} \tau_i(\gamma)$$

2010 Mathematics Subject Classification. 14N35, 14C05, 14C15, 14J45.

Key words and phrases. Gromov-Witten invariants, Gopakumar-Vafa invariants, Donaldson-Thomas invariants, Fano varieties.
via some suitable choice of orientation on the moduli space M_β. $\langle \tau_0(\gamma) \rangle_\beta$ is called DT$_4$ invariants, and we denote it by DT$_4(X)(\beta|\gamma)$. When $i \geq 1$, we call $\tau_i(\gamma)$ descendant insertions, and integrations of descendant insertions over the virtual class are called descendant invariants.

On the other hand, we can consider DT$_3$ invariants on Fano 3-folds. Note that DT$_3$ moduli space for a Fano 3-fold is isomorphic to the DT$_4$ moduli space of the corresponding local CY 4-fold [CL14, Theorem 6.5]. Moreover, DT$_3$ invariants for a Fano 3-fold is equal to the DT$_4$ invariant of the corresponding local CY 4-fold when we choose some suitable orientation in the DT$_4$ moduli space [Cao19a, Cao19b].

Now we review some famous conjectures between DT$_4$ and GV invariants. Let us denote $n_{0,\beta}(\gamma)$ (resp. $n_{1,\beta}$) be the genus 0 (resp. genus 1) Gopakumar-Vafa invariants on a CY 4-fold X defined in [KP08].

Conjecture 1.1. [CMT18, Conjecture 0.2] Via some suitable choice of orientation on the moduli space, we have

\[(1) \quad n_{0,\beta}(\gamma) = \text{DT}_4(\beta|\gamma), \quad \text{GW}(\gamma)_{0,\beta}^X = \sum_{k|\beta} \frac{1}{k^2} \text{DT}_4(X)(\beta/k|\gamma) \]

for all $\gamma \in H^4(X, \mathbb{Z})$.

Note that two equations in (1) are equivalent via the definition of $n_{0,\beta}(\gamma)$ in [KP08]. In [CMT18], Conjecture 1.1 is proven for some cases: CY 4-folds with a elliptic structure and local curves/surfaces. Also, in [CT21], the following conjecture is proposed which relates DT$_4$ descendent invariants and genus one GV invariants. Let m_{β_1,β_2} be the meeting invariants defined in Section 0.3 in [KP08] (for a detail, see Section 4).

Conjecture 1.2. [CT21, Conjecture 0.2] Via some suitable choice of orientation on the moduli space, we have

\[
\langle \tau_1(\gamma) \rangle_\beta = \frac{n_{0,\beta}(\gamma^2)}{2(\gamma \cdot \beta)} - \sum_{\beta_1 + \beta_2 = \beta} \frac{(\gamma \cdot \beta_1)(\gamma \cdot \beta_2)}{4(\gamma \cdot \beta)} m_{\beta_1,\beta_2} - \sum_{k \geq 1, k|\beta} \frac{(\gamma \cdot \beta)}{k} n_{1,\beta/k}
\]

for all $\gamma \in H^2(X, \mathbb{Z})$.

Here, the number m_{β_1,β_2} is a virtual count of degree β_1 curves in X which meets with degree β_2, called meeting invariants. We will compute these numbers in Section 4.

In [CT21], Conjecture 1.2 is proved in several cases: CY 4-folds with an elliptic fibration structure and local Fano 3-fold over \mathbb{P}^3. In this paper, as a continuation of the latter case, our study focus on the Fano 3-folds: V_5 and V_{22}. See Section 3.1.1 and 3.1.3 for definitions.
of V_5 and V_{22}. These Fano 3-folds arise as a minimal compactification of the complex 3-space \mathbb{C}^3. For detailed descriptions, see the beginning parts of Section 3.1.

1.2. Main results. In this paper, we compute some low degree DT3 invariants for Fano 3-folds V_5 and V_{22}. For the cases $\beta = d \cdot [\text{line}], 1 \leq d \leq 3$ where [line] is a class of \mathbb{P}^1 in their projective embedding via the very ample generators, we review some classical results on description of DT3 moduli space of V_5 and V_{22} and universal sheaves on them. Using this, we will compute DT3 invariants of these Fano 3-folds (equivalently DT4 invariants of corresponding local CY 4-fold) in Section 3.1.

On the other hand, in Section 2 we compute twisted Gromov-Witten (GW) invariants on V_5 and V_{22} for the cases $\beta = d \cdot [\text{line}], 1 \leq d \leq 3$, using quantum Lefschetz property [KKP03] and torus localization [GP99]. We will introduce some recipe for computing genus zero GW invariants on Grassmannian varieties, which is a direct analogue of the formula in [GP99, HTK+03] for genus zero GW invariants on projective spaces. From these calculations, we obtain the following main results of the paper.

Theorem 1.3 (Theorem 3.18). Using the choice of orientation as in [CT21, (0.7)] on DT4 moduli spaces on local CY 4-folds, the Conjecture 1.1 holds for V_5 and V_{22}, $\beta = d \cdot [\text{line}], 1 \leq d \leq 3$.

Theorem 1.4 (Theorem 4.2). Using the choice of orientation as in [CT21, (0.7)] on DT4 moduli spaces on local CY 4-folds, the Conjecture 1.2 holds for V_5 and V_{22}, $\beta = d \cdot [\text{line}], 1 \leq d \leq 3$ if and only if genus 1 GV invariants $n_{1, \beta} \equiv 0$.

From the fact that the degree of the defining equation of V_5 and V_{22} is ≤ 2 and the varieties does not contain plane, one can check that the smooth elliptic curves of the degree ≤ 3 in V_5 and V_{22} does not exist. Hence the vanishing of GV invariants $n_{1, \beta}$ is desirable.

We have posted all source codes we have used during the computation of GW invariants and their outputs at the second author’s website:

https://sites.google.com/view/sanghyeon-lee/reference?authuser=0

Acknowledgements. The authors gratefully acknowledge the many helpful suggestions of Yalong Cao and Young-Hoon Kiem during the preparation of the paper. The second named author thanks to Jeongseok Oh and Hyeonjun Park for much advice on Donaldson-Thomas invariants.

2. Twisted GW invariants on Grassmannians

Let Y be a smooth Fano 3-fold embedded in the Grassmannian variety $G = \text{Gr}(r, d)$, which is a zero section of a bundle over G. In this subsection, we present an algorithm of the computation of GW invariants of $|K_Y|$, a total space of a canonical line bundle of Y. For any smooth projective variety X, we denote the moduli space of stable maps,
with k-marked points with degree $\beta \in \mathbb{H}^2(X, \mathbb{Z})$ by $M_{0,k}(X, \beta)$. When $X = G$, we will denote $M_{0,k}(G, d)$ the stable map space with degree $d \cdot |\text{line}|$. We will usually abbreviate $M_{0,k}(X, \beta)$ by $M(X)$ in the following. In this section, we will introduce classical methods to compute GW invariants, quantum Lefschetz principle and torus localization when the target variety is $|K_Y|$. If you are not interested in this part, you may skip the details and just see computational results in Section 2.4.

Consider the forgetful map $p : M = M_{0,k}(G, d) \to \mathcal{M}_{0,k}$ where $\mathcal{M}_{0,k}$ is the moduli space of prestable genus 0 curves with k marked points. We usually will abbreviate $\mathcal{M}_{0,k}$ by \mathcal{M}. There is a usual (relative) perfect obstruction theory [Beh96] $E_{M(X)/\mathcal{M}} \to L_{M(X)/\mathcal{M}}$ of $M(X) \to \mathcal{M}$, where

\begin{equation}
E_{M/\mathcal{M}} := [R\pi_* f^* T_G]^\vee \in D^b(M(X)).
\end{equation}

Also, as in [BF97] the virtual cycle correspond to this perfect obstruction theory is given by:

\begin{equation}
[M(X)]^{\text{vir}} := 0^!_{h^1/h^0(E_{M/\mathcal{M}})}(C_{M(X)/\mathcal{M}}) \in A_{\text{vdim}}(M(X))
\end{equation}

where $h^1/h^0(E_{M/\mathcal{M}})$ is a vector bundle stack correspond to $E_{M/\mathcal{M}}$, $C_{M(X)/\mathcal{M}}$ is the (relative) intrinsic normal cone defined in [BF97], and vdim is given by

$$\text{vdim} = (1 - g)(\dim(X) - 3) + k - \int c_1(K_X)$$

which is called virtual dimension.

2.1. Quantum Lefschetz principle. We will briefly review some aspect of famous quantum Lefschetz principle [KKP03] in this section. We consider a negative vector bundle E on G, so that $H^0(\mathcal{C}, f^* E) = 0$ for any non-constant morphism $f : \mathbb{P}^1 \to G$. Let $|E|$ be the total space of E and $p : |E| \to G$ be the projection. Consider a stable map $f : C \to |E|$. Then $p \circ f : C \to G$ is a stable map and f induces an element of $H^0(C, (p \circ f)^* E)$. But since E is a direct sum of negative degree line bundles, $H^0(C, (p \circ f)^* E) = 0$. Hence we have a natural isomorphism of moduli spaces of stable maps:

$$M_{0,k}(|E|, d) \cong M_{0,k}(G, d).$$

Note that $M_{0,k}(G, d)$ is well known to be smooth. Also, we have the short exact sequence:

$$0 \to p^* T_G \to T_{|E|} \to p^* E \to 0.$$

From the condition that E is negative and the fact that $R^1\pi_*(f^* p^* T_G) = 0$, we obtain the following by taking the higher direct image functor $R\pi_* f^*$ to the above short exact sequence.

$$E_{M(|E|)/\mathcal{M}}^\vee = R\pi_* T_{|E|} = \left[\pi_*(f^* T_G) \xrightarrow{0} R^1\pi_*(f^* p^* E) \right]$$
Note that $\pi_*(f^*p^*T_G) \cong T_M(G)$. We can easily check that the intrinsic normal cone $\mathcal{C}_{M(G)/\mathfrak{M}}$ is $[M(G)/T_M(G)/\mathfrak{M}]$ and $h^1/h^0(E^\vee) = [R^1\pi_*(f^*p^*E)/T_M(G)/\mathfrak{M}]$. From the definition of the virtual cycle in (3), we have

$$[M(G)]^{\text{vir}} = 0^!_{[R^1\pi_*(f^*p^*E)/T_M(G)/\mathfrak{M}]}[M(G)/T_M(G)/\mathfrak{M}] = 0^!_{R^1\pi_*(f^*p^*E)}[M(G)] = e(R^1\pi_*(f^*p^*E)) \cap [M(G)]$$

where the second identity comes from properties of Gysin pull-backs via bundle stacks in [Kre99]. We call this phenomenon **B-twist**. Note that this phenomenon also arises when we replace G by any projective variety. Using this, we define a **twisted GW invariants** of a Fano variety X by:

Definition 2.1 (Twisted GW invariant). The twisted Gromov-Witten invariant a Fano variety X is defined by the integration

$$\text{GW}_{0,\beta}^{\text{twist}}(X)(\gamma) := \int_{[M_{0,1}(X,\beta)]^{\text{vir}}} e(R^1\pi_*f^*K_X) \cup \text{ev}^*(\gamma) \in \mathbb{Q}$$

where $\text{ev} : M_{0,1}(X, \beta) \rightarrow X$ be the evaluation map.

Note that twisted GW invariants are usually considered as a definition of GW invariants of the total space $|K_X|$, because we cannot define it directly since $|K_X|$ is not compact.

Next we consider a complete intersection in $G = G(r,n)$. Let E be the vector bundle on G and let $Y \subset G$ be a zero section of the generic section $s : \mathcal{O}_G \rightarrow E$. Assume that E is convex, so that $H^1(G, \varphi^*E) = 0$ for any non-constant morphism $\varphi : \mathbb{P}^1 \rightarrow G$. For example, the direct sum $\bigoplus_i \mathcal{O}(a_i)$, $a_i > 0$ of line bundles on G is a convex vector bundle. From the convexity of E, π_*f^*E is locally free, where $\pi : \mathcal{C} \rightarrow M$ is the universal curve and $f : \mathcal{C} \rightarrow G$ is the universal morphism. Let $M(Y)$ denote the stable map space $M_{0,k}(Y,d)$. Then we have

$$E_{Y}^{\vee}_{M(Y)/\mathfrak{M}} = R\pi_*f^*T_Y = [\pi_*f^*T_G \rightarrow \pi_*f^*E] = [T_M \rightarrow \pi_*f^*E].$$

Consider the section $s : \mathcal{O}_G \rightarrow E$ and the induced section $\tilde{s} : M \rightarrow \pi_*f^*E$ defined by $\tilde{s}([C,f]) = (C, f^*s) \in H^0(C, f^*E).$ Then we have $Z(\tilde{s}) = M(Y) \subset M$. We can easily check that $\mathcal{C}_{M/\mathfrak{M}} = [C_{M(Y)}/M/T_M/\mathfrak{M}]$ and $h^1/h^0(E^\vee) = [\pi_*f^*E/T_M/\mathfrak{M}]$. Then by the definition of the virtual cycle, we have

$$[M(Y)]^{\text{vir}} = 0^!_{[\pi_*f^*E/T_M]}[C_{M(Y)/M}/T_M/\mathfrak{M}] = 0^!_{\pi_*f^*E}[C_{M(Y)/M}] \in A_*(M(Y)).$$

Also we have

$$\iota_*[M(Y)]^{\text{vir}} = e(\pi_*f^*E) \cap [M] \in A_*(M)$$

where $\iota : M(Y) \rightarrow M$ is the inclusion. See [KKP03] for the proof of the general case. We call this phenomenon **A-twist**.
2.2. Torus localization. We will briefly review some aspect of torus localization [GP99] in this section. Again we consider the Grassmannian variety $G = \text{Gr}(r, d)$ and the stable map space $M = M_{0,k}(G, d)$. We give a \mathbb{C}^*-action on \mathbb{C}^n with weights $-\alpha_1, \ldots, -\alpha_n$, which induces the \mathbb{C}^*-action on $\text{Gr}(r, n)$ and M. Let $M^F \subset M$ be the fixed locus of the action and let $M^F = \bigcup_i M_i^F$ be the irreducible decomposition. Note that $E^\vee_{M/\mathbb{R}}$ has an induced \mathbb{C}^*-action and we have a decomposition

$$E^\vee_{M/\mathbb{R}}|_{M_i^F} \cong N^\text{fix}_i \oplus N^\text{vir}_i$$

where N^fix_i has weight 0 under the \mathbb{C}^*-action and N^vir_i is a direct sum of vector bundles with non-zero weights.

Let $(A^T)_*(M)$ (resp. $(A^T)^*(M)$) be the equivariant Chow group (resp. equivariant Chow cohomology group) of M and $e^T(E)$ be the equivariant Euler class of a locally free sheaf E. If E_M has locally free resolution $[E_0 \to E_1]$, we define the (equivariant) Euler class by

$$e^T(N^\text{vir}) = \frac{e^T(E^0_m)}{e^T(E^m_0)} \in (A^T)^*(M) \otimes \mathbb{Q}[t, 1/t].$$

By the virtual localization theorem in [GP99], we have

$$[M]^\text{vir} = \sum_i \frac{[M_i^F]^\text{vir}}{e^T(N^\text{vir})} \in A^T_*(M) \cong (A^T)_*(M) \otimes \mathbb{Q}[t, 1/t].$$

2.3. Computation of the virtual normal bundle. For $M = M_{0,k}(G, d)$, we can do more specific computation. In a similar manner as in [GP99] and [HTK+03], which dealt with the case $G = \mathbb{P}^n$, fixed loci M_i^F are indexed by decorated graphs Γ. We denote M_i^F by M_Γ for the corresponding decorated graph Γ. Note that M_Γ is smooth and thus $[M_\Gamma]^\text{vir} = [M_\Gamma]$. Also N^vir denotes the virtual normal bundle defined in [BF97].

For a stable map $[(C, x_1, \ldots, x_k, f)] \in M_\Gamma$, the fiber of the (K-theoretic) virtual normal bundle is given by the moving part of $\text{Ext}^1(\Omega_C(x_1 + \ldots, x_k), \mathcal{O}_C) = \text{Ext}^0(\Omega_C(x_1 + \ldots, x_k), \mathcal{O}_C) + (H^0 - H^1)(f^*T_G)$. By [GP99] and [HTK+03], we have

$$e^T(\text{Ext}^0(\Omega_C(x_1 + \ldots, x_k), \mathcal{O}_C)) = \prod_{v \in \text{Vertices}} \left(\omega_F - \text{val}(v) \right)$$

and

$$e^T(\text{Ext}^1(\Omega_C(x_1 + \ldots, x_k), \mathcal{O}_C)) = \prod_{F \in \text{Flags}} (\omega_F - e_F),$$

where $\omega_F := \frac{\alpha_{\text{fix}}(F) - \alpha_{\text{vir}}(F)}{\text{val}(i(F))} \geq 3$ and e_F is the ψ-class correspond to the flag F. Also, by [GP99] and [HTK+03], we have the following by using the normalization sequence of nodal curves.

$$H^0 - H^1(f^*T_G) = \bigoplus_{v \in \text{Vertices}} T_{p_v}G + \bigoplus_{e \in \text{Edges}} H^0(C_e, f^*T_G)$$

$$- \bigoplus_{F \in \text{Flags}} T_{p_i(F)}G - \bigoplus_{v \in \text{Vertices}} H^1(C_v, f^*T_G)$$

(4)
Then the equivariant Euler classes of their moving part are given by the followings. For the first term of (4), if \(p_v = x_{u_1, \ldots, u_r} = (e_{u_1}, \ldots, e_{u_r}) \in \text{Gr}(r, n) \), then

\[
e^T(T_{p_v}(G)) = \prod_{1 \leq j \leq r} \prod_{k \in [n] \setminus \{u_1, \ldots, u_r\}} (\alpha_{u_j} - \alpha_k).
\]

For the third term of (4), if \(p_i(F) = x_{u_1, \ldots, u_r} = (e_{u_1}, \ldots, e_{u_r}) \in \text{Gr}(r, n) \), then we have the same formula as above:

\[
T_{p_i(F)} = \prod_{1 \leq j \leq r} \prod_{k \in [n] \setminus \{u_1, \ldots, u_r\}} (\alpha_{u_j} - \alpha_k).
\]

For the fourth term of (4), by [HTK+03], we have the following. If valency(\(v \)) = 2 and there is no marking on \(v \), then

\[
e^T(H^1(C_v, f^*T_G)) = \omega_{F_{v,1}} + \omega_{F_{v,2}}.
\]

Otherwise, we have

\[
e^T(H^1(C_v, f^*T_G)) = 1.
\]

For the second term of (4), consider the Euler sequence:

\[
0 \to S' \otimes S \to S' \otimes O_G^{\oplus n} \to S' \otimes Q = T_G \to 0
\]

where \(S, Q \) are tautological bundle and universal quotient bundle on \(G \). Take pull-back via the map \(f : C_e \to G \). Let \(e = \{v_1, v_2\} \), \(p_{v_1} = x_{u_1, \ldots, u_{r-1}, u_a} \) and \(p_{v_2} = x_{u_1, \ldots, u_{r-1}, u_b} \). Note that \(u_a \neq u_b \). Then we have \(f^*(S') \cong O(\alpha_{u_1}) \oplus \ldots \oplus O(\alpha_{u_i}) \oplus O(d_e) \) where \(O(\alpha_i) \) is an equivariant trivial bundle where \((\mathbb{C}^*)^n\) acts on it with a weight \(\alpha_i \). Note that \(H^0(C_e, O(d_e)) \) has weights \(\frac{\alpha_a + \alpha_b}{d_e} \) for \(\alpha_a + \alpha_b = d_e \). Let \(f|_{C_e} = f_e \). By taking \(f_e^* \) and the cohomology in (5), we have the following exact sequence:

\[
0 \to H^0(f_e^*(S' \otimes S)) \to H^0((f_e^*S' \otimes O_G^{\oplus n})) \to H^0(f_e^*T_G) \to H^1((f_e^*S' \otimes S)) \to 0.
\]

By a direct calculation, we have

\[
e^T((H^1 - H^0)(f_e^*(S' \otimes S)))
= (-1)^{d_e-1} \prod_{1 \leq i \leq r-1} (\alpha_{u_i} - \alpha_{u_1}) (\alpha_{u_i} - \alpha_{u_r}) \prod_{1 \leq i < j \leq r-1} (\alpha_{u_i} - \alpha_{u_j})^2.
\]

Also we have,

\[
e^T((H^1 - H^0)(f_e^*S' \otimes O_G^{\oplus n})) = \prod_{1 \leq j \leq r} \prod_{k \in [n] \setminus \{u_1, \ldots, u_r\}} (\alpha_{u_j} - \alpha_k)
\times \prod_{k \in [n] \setminus \{u_1, \ldots, u_r\}} \prod_{c_1, c_2 \neq 0} \prod_{c_1 + c_2 = d_e} \prod_{(c_1, k) \neq (0, u_0), (d_e, u_a)} \left(\frac{c_1 \alpha_{u_a} + c_2 \alpha_{u_b}}{d_e} - \alpha_k \right).
\]
2.4. Computation of GW invariants on Fano 3-folds. Combining above arguments, we have expression of $e^T(N^{vir}|_{M_r})$. Next we represent A-twist and B-twist in section 2.1 in equivariant cohomology. Let $F_1 := \pi_* f^* \left(\bigoplus_i \mathcal{O}(a_i) \right)$ and $F_2 := R^1 \pi_* f^* \mathcal{O}(-b)$ where b is the Fano index of X, $\pi : \mathcal{C} \rightarrow M(X)$ is the universal curve and $f : \mathcal{C} \rightarrow X$ is the universal morphism. We have

\[
\iota_* [M(X)]^{vir} = \sum_{\Gamma} \frac{e^T(F_1|_{M_{r}\Gamma}) \cup e^T(F_2|_{M_{r}\Gamma})}{e^T(N^{vir})} [M_{r\Gamma}] \in (A^T)_*(M) \otimes \mathbb{Q}[t, 1/t] \tag{6}
\]

where $A_{r\Gamma}$ is the order of the automorphism group of a generic element in $M_{r\Gamma}$. We have $|A_{r\Gamma}| = |\text{Aut}(\Gamma)| \cdot \prod_{e \in \text{Edges}} d_e$ where $\text{Aut}(\Gamma)$ is the automorphism group of the decorated graph Γ. One can check more detail on the group $A_{r\Gamma}$ in [GP99]. Note that we can find specific expressions of $e^T(F_1|_{M_{r\Gamma}})$ and $e^T(F_2|_{M_{r\Gamma}})$ using the normalization sequence:

\[
0 \rightarrow \mathcal{O}_C \rightarrow \bigoplus_{v \in \text{Vertices}} \mathcal{O}_{C_v} \oplus \bigoplus_{e \in \text{Edges}} \mathcal{O}_{C_e} \rightarrow \bigoplus_{F \in \text{Flags}} \mathbb{C}_{x_F} \rightarrow 0. \tag{7}
\]

Combining arguments in section 2.2, 2.3, 2.1 and Hodge integrals computed in [FP00], we can express the right hand side terms of (6) by formal weights of \mathbb{C}^*-action. Therefore, we can compute genus 0 Gromov-Witten invariants of the total space of the canonical line bundle over the Fano 3-fold, which is a zero section of an equivariant vector bundle over a Grassmannian variety.

In this paper, we consider two cases: (a) $Y = V_5$ and (b) $Y = V_{22}$. In case (a), $F_1 = \pi_* f^* \mathcal{O}(1)^{\otimes 3}$ and $F_2 = R^1 \pi_* f^* \mathcal{O}(-2)$. In case (b), $F_1 = \pi_* f^* (\wedge^2 S^c)$ and $F_2 = R^1 \pi_* f^* \mathcal{O}(-1)$. The actual computation has been done by a computer program. Firstly we make a dataset of all possible decorated graphs Γ and their information. Secondly, using this dataset, we make a code computing the right hand side terms in (6) for each localization graph Γ and adding up them. As a result, we obtain the following table are twisted GW invariants.

Proposition 2.2 (Twisted GW invariants). The twisted GW invariants for $Y = V_5$ and V_{22} are given by the numbers of the following table.

d	$GW^{\text{twist}}_{0,d}(V_5)(h_2)$	$GW^{\text{twist}}_{0,d}(V_{22})(h_2)$
1	-5	2
2	$-36\frac{1}{4}$	$-6\frac{1}{2}$
3	$-490\frac{5}{9}$	$28\frac{2}{9}$

Here h_2 is the generator of $H^4(Y, \mathbb{Z}) \cong \mathbb{Z}$.

Remark 2.3. The degree 4 twisted GW invariant on V_5 is given by $GW^{\text{twist}}_{0,4}(V_5)(\gamma_2) = -8829\frac{1}{16}$. In principle we can compute GW invariants for higher degrees, but the time taken for the calculation super-exponentially increases.
In this section, we compute DT invariants and descendant invariants for some local Fano 3-folds $|K_{V_1}|$ and $|K_{V_2}|$ for degree $1 \leq d \cdot [\text{line}] \leq 3$. We will abbreviate $d \cdot [\text{line}]$ by d.

In these cases, M_β naturally isomorphic to moduli space of stable sheaves on $|K_Y|$.

Definition 3.1 (Twisted DT invariant). Let $M_\beta = M_\beta(Y)$ be the moduli space of stable sheaves F on Y with $[F] = \beta \in H_2(Y, \mathbb{Z})$ and $\chi(F) = 1$. Let

$$\tau_0 : H^4(Y, \mathbb{Z}) \to H^2(M_\beta, \mathbb{Z}), \quad \tau_0(\gamma) = \tau_{\bar{X}}(\pi_X^* \gamma \cup \text{ch}_2(F))$$

be the primary insertion of $\gamma \in H^4(Y, \mathbb{Z})$. Here \mathcal{F} is the universal sheaf and the maps $\tau_{\bar{X}}, \tau_Y$ are the canonical projection maps. The twisted genus zero DT invariant is defined by

$$DT^\text{twist}_3(Y)(\beta|\gamma) := (-1)^{c_1(Y) \cdot \beta - 1} \int_{[M_\beta(Y)]^\text{vir}} \tau_0(\gamma) \in \mathbb{Z}.$$

where $[M_\beta(Y)]^\text{vir}$ is the virtual class defined in [Tho00, Corollary 3.39].

Since DT_4 invariant of $|K_Y|$ is equal to DT_3 invariant of Y, it is enough to compute twisted DT_3 invariant.

Note that if the moduli space $M_\beta(Y)$ is smooth, the virtual cycle is the Poincaré dual of the top Chern class of the obstruction bundle. Combining computation of GW invariants in Section 2 and DT invariant computation in this section, we will check Conjecture 1.1 for $1 \leq d \leq 3$, which can be rewritten by

Conjecture 3.2. For the cohomology class $\gamma \in H^4(Y, \mathbb{Z})$,

$$n_{0,\beta}(\gamma) = DT_4(|K_Y|)(d|\gamma)$$

and

$$GW_{0,\beta}(Y)^\text{twist}(\gamma) = \sum_{k|\beta} \frac{1}{k^2} \cdot DT_4(|K_Y|)(d/k|\gamma).$$

On the other hand, Cao and Toda suggest genus one GV-type invariant on CY 4-fold X by using the descendent insertion in [CT21].

Definition 3.3 (Descendent insertion). For an integral class $\gamma \in H^2(X, \mathbb{Z})$, let us define the descendent insertion as

$$\tau_1 : H^2(X, \mathbb{Z}) \to H^2(M_\beta, \mathbb{Z}), \quad \tau_1(\gamma) = \pi_M^*(\pi_X^* \gamma \cup \text{ch}_4(\mathcal{F}_\text{norm})).$$

where $\mathcal{F}_\text{norm} := \mathcal{F} \otimes \pi_M^*(\pi_M\det(\mathcal{F}))^{-1}$ is the normalized universal sheaf of the universal sheaf $\mathcal{F} \in \text{Coh}(M_\beta \times X)$ and the maps π_M and π_X are the canonical projection maps from $M_\beta \times X$ into M_β and X respectively.
Descendant invariants from the *descendent insertions* are defined by

\[
\langle \tau_1(\gamma) \rangle_\beta := \int_{[M_\beta]_{\text{vir}}} \tau_1(\gamma).
\]

Remark 3.4. For \(\gamma \in H^{4-2i}(X, \mathbb{Z})\), the insertion becomes

\[
\tau_i(\gamma) = \pi_{\text{vir}}^* (\pi_Y^* \gamma \cup \{\text{ch}(\mathcal{F}_{\text{norm}}) \cdot \text{td}(K_Y)^{-1}\})_{2+i}
\]

by Grothendieck-Riemann-Roch theorem.

By computing descendant invariants, we can obtain genus 1 GV invariants \(n_{1,\beta}\) via Conjecture 1.2.

3.1. Computations on Fano 3-folds.

It is very well-known that the following list of smooth Fano 3-folds have the same Betti numbers of that of \(\mathbb{P}^3\):

\[\mathbb{P}^3, \ Q_2 \subset \mathbb{P}^4, \ V_5 \subset \mathbb{P}^6, \ V_{22} \subset \mathbb{P}^{13}.\]

In special, the odd cohomology of these varieties vanish. All of varieties are rigid except \(V_{22}\). The moduli of \(V_{22}\)'s is six-dimensional. The first two varieties in the list are homogeneous and the others are not. In this section, we compute the primary and descent invariants for non-homogeneous cases.

3.1.1. The case \(V_5\).

The Fano threefold \(V_5\) is defined by the linear intersection \(V_5 = \text{Gr}(2, \mathbb{C}^5) \cap H_1 \cap H_2 \cap H_3\) where \(H_i\) are the general hyperplane in \(\mathbb{P}(\wedge^2 \mathbb{C}^5) = \mathbb{P}^9\).

- \(\text{Pic}_\mathbb{Z}(V_5) \cong \mathbb{Z}\langle H \rangle, \deg(V_5) = 5, \ K_{V_5} = -2H.\)
- The cohomology ring of \(Y\) over \(\mathbb{Z}\) is isomorphic to
 \[H^*(V_5, \mathbb{Z}) \cong \mathbb{Z}[h_1, h_2, h_3]/\langle h_1^2 - 5h_2, h_1^3 - 5h_3, h_1h_2 - h_3, h_2^2 \rangle\]
 where \(\deg(h_i) = 2i, 1 \leq i \leq 3.\) Moreover, \(h_1 = c_1(O_Y(1))\) and \(h_i\) is the Poincaré dual of the linear space of dimension \(3 - i\) for \(i = 2, 3.\)
- Let \(S_Y\) and \(Q_Y\) be the restriction of the universal bundles \(S\) and \(Q\) on \(\text{Gr}(2, 5)\). The Chern classes are
 1. \(c(S_Y) = 1 - h_1 + 2h_2,\)
 2. \(c(Q_Y) = 1 + h_1 + 3h_2 + h_3,\)
 3. \(c(Y) = 1 + 2h_1 + 12h_2 + 4h_3.\)

Unless otherwise stated, we omit the subscription \(V_5\) in the universal bundles.

Let us denote by \(M_d := M_{\beta}(V_5)\) for \(\beta = d[\text{line}] \in H_2(V_5, \mathbb{Z}).\) For \(1 \leq d \leq 3,\) one can easily see that \(M_d(Y)\) is isomorphic to the Hilbert scheme \(H_d(V_5)\) of curves with Hilbert polynomial \(dm + 1\) (cf. [Chu19, Proposition 3.1]). Thus one can borrow the description of Hilbert scheme of rational curves in \(V_5.\)

Proposition 3.5 ([Fae05, FN89, Ili94, San14]). \(M_1 \cong \mathbb{P}^2, \ M_2 \cong \mathbb{P}^4, \ M_3 \cong \text{Gr}(2, 5).\)
Remark 3.6. By taking an explicit choice of the hyperplanes H_i, the results for $d = 1$ and 2 of Proposition 3.5 has been reproved by the birational-geometric method (For the detail, see [CHL18, Section 7]).

The universal sheaves over M_d were explicitly presented in Proposition 2.20, Proposition 2.32, and Proposition 2.46 of [San14]. Let $i : C_d \hookrightarrow M_d \times V_5$ be the universal curve in $M_d \times V_5$. The free resolutions of $i_*\mathcal{O}_{C_d}$ on $M_d \times V_5$ are

1. $(d = 1) 0 \to \mathcal{O}_{\mathbb{P}^2}(-3) \boxtimes S \to \mathcal{O}_{\mathbb{P}^2}(-2) \boxtimes \mathcal{O}^* \to \mathcal{O}_{\mathbb{P}^2 \times V_5} \to i_*\mathcal{O}_{C_1} \to 0$,
2. $(d = 2) 0 \to \mathcal{O}_{\mathbb{P}^4}(-2) \boxtimes \mathcal{O}_{V_5}(-1) \to \mathcal{O}_{\mathbb{P}^4}(-1) \boxtimes S \to \mathcal{O}_{\mathbb{P}^4 \times V_5} \to i_*\mathcal{O}_{C_2} \to 0$,
3. $(d = 3) 0 \to S(-1) \boxtimes \mathcal{O}_{V_5}(-1) \to \mathcal{O}_{\Gr(2,5)}(-1) \boxtimes \mathcal{O}(-1) \to \mathcal{O}_{\Gr(2,5) \times V_5} \to i_*\mathcal{O}_{C_3} \to 0$.

Note that each of the moduli spaces is smooth, and we can check that the virtual class $[M_d]_{\text{vir}}$ is the Euler class of a K-theoretic obstruction bundle ob_{M_d}. One can compute this K-theoretic obstruction bundle by the formula

$$[\text{ob}_{M_d}] = [T_{M_d}] + [R_{\pi_{M_d}} \mathcal{R}Hom_{M_d \times V_5}(i_*\mathcal{O}_{C_d}, i_*\mathcal{O}_{C_d})[1]] - [\mathcal{O}]$$

which appears in the proof of [CT21, Proposition 2.13].

d	$R_{\pi_{M_d}} \mathcal{R}Hom_{M_d \times V_5}(i_*\mathcal{O}_{C_d}, i_*\mathcal{O}_{C_d})[1]$	$[\text{ob}_{M_d}]$
1	$-3[\mathcal{O}_{\mathbb{P}^2}] + 3[\mathcal{O}_{\mathbb{P}^2}(1)] + 5[\mathcal{O}_{\mathbb{P}^2}(2)] - 5[\mathcal{O}_{\mathbb{P}^2}(3)]$	$[\mathcal{O}_{\mathbb{P}^2}] - 5[\mathcal{O}_{\mathbb{P}^2}(2)] + 5[\mathcal{O}_{\mathbb{P}^2}(3)]$
2	$-3[\mathcal{O}_{\mathbb{P}^4}] + 10[\mathcal{O}_{\mathbb{P}^4}(1)] - 7[\mathcal{O}_{\mathbb{P}^4}(2)]$	$[\mathcal{O}_{\mathbb{P}^4}] - 5[\mathcal{O}_{\mathbb{P}^4}(1)] + 7[\mathcal{O}_{\mathbb{P}^4}(2)]$
3	$-2[\mathcal{O}_{\Gr(2,5)}] + 10[\mathcal{O}_{\Gr(2,5)}(1)] - 7[S^*(1)] + 5[S^*] - [S^* \otimes S]$	$[\mathcal{O}_{\Gr(2,5)}] - 10[\mathcal{O}_{\Gr(2,5)}(1)] + 7[S^*(1)] - 5[S^*] + [S^* \otimes S] + [S^* \otimes \mathcal{O}]$

Here, the bundles S and Q in the fourth row are the universal sub-bundle and quotient bundle of $M_3 = \Gr(2,5)$. By using the computer algebra system, Macaulay2 ([GS]), we have

Proposition 3.7. The invariants $\langle \tau_i(h_{2-i}) \rangle_d$ are given by the numbers of the following table.

d	$i = 0$	$i = 1$
1	5	$\frac{35}{2}$
2	35	$\frac{35}{2}$
3	490	$-\frac{490}{2}$

Proof. Let us present the computation of the invariants for the degree $d = 3$ case. The other cases are more simple and thus we omit it. The cohomology ring structure of $\Gr(2,5)$ is very well-known as follow. Let $m_i := c_i(S)$ be the i-th Chern class of the universal sub-bundle S of Grassmannian $\Gr(2,5)$. The cohomology ring of $\Gr(2,5)$ is given by ([EH16, Theorem 5.26])

$$H^*(\Gr(2,5), \mathbb{Z}) = \mathbb{Z}[m_1, m_2]/(-m_1^5 + 4m_1^3m_2 - 3m_1m_2^2, m_1^4 - 3m_1^2m_2 + m_2^2).$$
Note that the dual of the point class is \([\text{point}]^* = m_2^3\). Then the Chern class of the obstruction bundle \(\text{ob}_{M_d}\) is
\[
c(\text{ob}_{M_d}) = 1 - 11m_1 + (48m_1^2 + 7m_2) + (-102m_1^3 - 56m_1m_2 + 451m_1^2m_2) - 78m_2^2 - 490m_1m_2^2.
\]
Thus the virtual class of \(M_3\) is \([M_3]^{\text{vir}} = -490m_1m_2^2\).

On the other hand, the insertion classes on \(H^*(M_3 \times V_3)\) are
\[
\tau_0(h_2) = m_1^2h_2 - m_2h_2 - m_1h_3,
\]
\[
\tau_1(h_1) = m_1^3h_1 - \frac{3}{2}m_1m_2h_1 - \frac{5}{2}m_1^2h_2 + \frac{1}{2}m_1h_3
\]
From these one, we have
\[
\int_{[M_3]^{\text{vir}}} \tau_0(h_2) = 490m_2^3h_3, \quad \int_{[M_3]^{\text{vir}}} \tau_1(h_1) = -245m_2^3h_3.
\]
\[\square\]

Remark 3.8. From the description of the universal curve \(C_1\) in [FN89, Lemma 2.1, 2.2], one can easily check that the obstruction bundle is isomorphic to \(\text{ob}_{M_1} \cong O_{M_1}(5)\) and thus its cohomology matches with our computation.

Remark 3.9. The universal curve \(C_2\) is a regular section of the vector bundle \(O_{\mathbb{P}^4}(1) \boxtimes S^*\) ([San14, Proposition 2.32]). Hence the Chern character is given by
\[
\text{ch}(i_*O_{C_2}) = c_2(O_{\mathbb{P}^4}(1) \boxtimes S^*) \cdot \text{td}(O_{\mathbb{P}^4}(1) \boxtimes S^*)^{-1},
\]
and thus its cohomology class matches with our computation. In the following subsection, we find the fundamental class of \(C_3\) by using Porteous’ formula.

3.1.2. The universal cubic curves \(C_3\) via degeneracy loci.

Recall that the space \(M_3\) is isomorphic to \(\text{Gr}(2,V)\) such that \(\dim V = 5\). In this subsection, we describe the universal family \(C_3\) of cubic curves in a geometric way which confirms the calculation of previous subsection. Let us recall the isomorphism \(M_3 \cong \text{Gr}(2,V)\). Consider the Schubert variety
\[
\sigma_{2,0}(l) := \{[l'] \in \text{Gr}(2,V) | l \cap l' \neq \emptyset\}
\]
which is a degree 3 and 4-dimensional subvariety of \(\text{Gr}(2,V)\). By taking the hyperplane sections \(H_1 \cap H_2 \cap H_3\) with this \(\sigma_{2,0}(l)\), we obtain a twisted cubic curve
\[
C_l := \sigma_{2,0}(l) \cap H_1 \cap H_2 \cap H_3 \subset \text{Gr}(2,5) \cap H_1 \cap H_2 \cap H_3 = V_5,
\]
that is, \(\pi_{V_5}(\pi_{M_3}^{-1}([l])) = C_l\). Conversely, for a point \(p = [L] \in Y \subset \text{Gr}(2,V)\), the inverse image \(\pi_{V_5}^{-1}(p)\) consists of the twisted cubic curves \([C_l]\) such that \(l \cap L \neq \emptyset\). This implies that \(\pi_{M_3}(\pi_{V_5}^{-1}(p)) = \sigma_{2,0}(L) \cap \text{Gr}(2,V) = M_3\). Note that the Schubert variety \(\sigma_{2,0}\) is a cone of rational normal scroll \(\mathbb{P}(O_{\mathbb{P}^4}(1) \boxtimes \mathbb{P}^3) \cong \mathbb{P}^2 \times \mathbb{P}^1\) in \(\mathbb{P}^6\). Thus the universal cubic \(C_3\) is an irreducible variety of dimension 7. Also, it is well-known that the Schubert variety \(\sigma_{2,0}\) can be defined by a degeneracy loci of vector bundles over Grassmannian.
Example 3.10. Let \(i: W \subset V \) be one-dimensional subvector space of \(V \). For a line \(l = \mathbb{P}(W) \subset \mathbb{P}(V) \), let
\[
\phi: U \to (V/W) \otimes \mathcal{O}_{\Gr(2,V)}
\]
be the canonical morphism induced by the injection \(i \). Then one can check that the degeneracy locus \(D_{\leq 1}(\phi) \subset \Gr(2, V) \) of the map \(\phi \) whose rank is \(\leq 1 \) has the support \(\sigma_{2,0}(l) \). Also it has the expected dimension \(\dim \Gr(2,V) - (2 - 1) \cdot (3 - 1) = 4 \). Thus, by Porteous’ formula, the fundamental class of \(D_{\leq 1}(\phi) \) is given by
\[
[D_{\leq 1}(\phi)] = c_2([(V/W) \otimes \mathcal{O}_{\Gr(2,V)}] - U).
\]

In our case, by relativizing over \(V_5 \), we can find the fundamental form \([C_3]\) over \(M_3 \times V_5 \).

Proposition 3.11. Let \(S_{M_3} \) be the universal subbundle of \(M_3 \) and \(Q_{V_5} \) be the restriction of the universal quotient bundle \(V_5 \subset \Gr(2, V) \). Then the fundamental class of the universal cubic curves is given by
\[
[C_3] = c_2(Q_{V_5} - S_{M_3}) \in H^2(M_3 \times Y).
\]

Proof. Since \(V_5 \subset \Gr(2, V) \), we have an universal sequence
\[
0 \to S_{V_5} \to V \otimes \mathcal{O}_{V_5} \to Q_{V_5} \to 0.
\]

Let us consider the relative Grassmannian bundle \(\Gr(2, V \otimes \mathcal{O}_{V_5}) \to V_5 \) with the structure morphism \(\pi_{V_5} : \Gr(2, V \otimes \mathcal{O}_{V_5}) \to V_5 \). Here we denote the same notation with the projection map because \(\Gr(2, V \otimes \mathcal{O}_{V_5}) \cong \Gr(2, V) \times V_5 \). From the universal sequence,
\[
0 \to S_G \to \pi_Y^*(V \otimes \mathcal{O}_{V_5}) \to Q_G \to 0
\]
over \(G := \Gr(2, V \otimes \mathcal{O}_{V_5}) \) and the pull-back of the sequence (8), we obtain a bundle morphism
\[
\phi_G : S_G \to \pi_{V_5}^*Q_{V_5}
\]
over \(G \). Note that \(S_G = \pi_{M_3}^*S_{M_3} \) by its definition. The space \(C_3 \) is reduced because it is a generically reduced and Cohen–Macaulay space. Thus the degeneracy locus \(D_{\leq 1}(\phi_G) \) of the map \(\phi_G \) is \(C_3 \). By Porteous’ formula,
\[
[D_{\leq 1}(\phi_G)] = c_2(Q_{V_5} - S_{M_3}).
\]

\(\square \)

Remark 3.12. The Poincaré dual of the fundamental class of the universal cubic curves is
\[
[C_3] = m_1^2 - m_2 - m_1 h_1 + 3h_2 \in H^2(M_3 \times V_5),
\]
which matches our computation of Subsection 3.1.1.
The case V_{22}. Let us recall the definition of the variety V_{22}. Let S and Q be the universal bundles of $Gr(3,7)$. Then V_{22} is defined as a zero section of $\wedge^2 (S^*)^{\oplus 3}$. Alternatively, V_{22} can be regraded as a subvariety of the net of quadrics $N(4;2,3)$.

- $\text{Pic}_Z(V_{22}) \cong Z\langle H \rangle$, $\text{deg}(V_{22}) = 22$, $K_{V_{22}} = -H$.
- The cohomology ring of V_{22} over \mathbb{Z} is isomorphic to

$$H^*(V_{22}, \mathbb{Z}) \cong Z[h_1, h_2, h_3]/\langle h_1^2 - 22 h_2, h_1^3 - 22 h_3, h_1 h_2 - h_3, h_2^3\rangle$$

where $\text{deg}(h_i) = i$, $1 \leq i \leq 3$. Moreover, $h_1 = c_1(O_{V_{22}}(1))$ and h_i is the Poincaré dual of the linear space of dimension $3 - i$ for $i = 2, 3$.
- The Chern classes of tautological bundles on V_{22} are
 (1) $c(S_{V_{22}}) = 1 - h_1 + 10 h_2 - 2 h_3$,
 (2) $c(Q_{V_{22}}) = 1 + h_1 + 12 h_2 + 4 h_3$,
 (3) $c(V_{22}) = 1 + h_1 + 24 h_2 + 4 h_3$

where $S_{V_{22}}$ and $Q_{V_{22}}$ are the restriction of the universal bundles S and Q on $Gr(3,7)$. Unless otherwise stated, we omit the subscription V_{22} of the universal bundles.

By the same reason as in the case of V_5, the moduli space $M_d(V_{22})$ is isomorphic to the Hilbert scheme $H_d(V_{22})$ of curves with Hilbert polynomial $dm + 1$ for $1 \leq d \leq 3$. The later space $H_d(V_{22})$ has been studied by many authors.

Proposition 3.13 ([KPS18, Fae14, KS04]). $M_1 \cong Q$, $M_2 \cong \mathbb{P}^2$, $M_3 \cong \mathbb{P}^3$, where Q is a singular planar quartic curve.

Let us compute the degree $d = 1$ case by the result of Pirola ([Pir85]). By the Chern class computation, the virtual dimension of M_1 is $\text{virt. dim} M_1 = 1$ and the virtual fundamental class is given by the following.

Lemma 3.14.

$$[M_1]_{\text{vir}} = [M_1]$$

Proof. By the deformation invariance of DT invariants, we may assume that V_{22} is not Mukai-Umemura 3-folds. Then $M_1 \cong Q \subset \mathbb{P}^2$ is a regular embedding, hence the intrinsic normal cone C_{M_1} of M_1 is given by the bundle stack

$$C_{M_1} = [N_Q/\mathbb{P}^2/T_{\mathbb{P}^2}|_Q].$$

Let $E \rightarrow L_{M_1}$ be the usual perfect obstruction theory. Then by [BF97], we have the closed embedding

$$C_{M_1} \hookrightarrow h^1/h^0(E^\vee).$$

Since they are both bundle stacks with dimension 0 (as Artin stacks), we have $C_{M_1} = h^1/h^0(E^\vee)$. Hence, by the definition of the virtual cycle in [BF97], we have

$$[M_1]_{\text{vir}} = 0_{h^1/h^0(E^\vee)}[C_{M_1}] = 0_{h^1/h^0(E^\vee)}[h^1/h^0(E^\vee)] = [M_1].$$
Proposition 3.15. The degree $d = 1$ DT invariant and descendent invariant on V_{22} are given by

$$\langle \tau_0(h_2) \rangle_1 = 2 \text{ and } \langle \tau_1(h_1) \rangle_1 = 22$$

Proof. Let C_1 be the universal curve over $M_1 (= Q)$. We compute the invariants by using the degeneracy loci method. In [AF06, Lemma 3.1], the authors describe how to obtain lines in V_{22}. We relativize their construction. Let K be the vector bundle on V_{22} with data $\text{rk}(K) = 5$, $c_1(K) = -2$, $c_2(K) = 40$, $c_3(K) = -20$, and $\dim \text{Hom}(K, S) = 3$. Let $B^* = \text{Hom}(K, S)$. Note that $Q \subset \mathbb{P}(B^*)$. The universal curve $C_1 \subset \mathbb{P}(B^*) \times V_{22}$ is the degeneracy loci of the canonical homomorphism

$$\Phi : S^* \to K^* \otimes \mathcal{O}_{\mathbb{P}(B^*)}(1).$$

In fact, the map Φ is the dual of the composition of the pull-back of the evaluation map $\text{ev} : K \otimes \text{Hom}(K, S) \to S$ on V_{22} and the tautological map $\mathcal{O}_{\mathbb{P}(B^*)}(-1) \to B \otimes \mathcal{O}_{\mathbb{P}(B^*)}$ on $\mathbb{P}(B^*)$.

Let $H^*(\mathbb{P}(B^*), \mathbb{Z}) = \mathbb{Z}[m_1]/(m_1^3)$ with $\text{deg}(m_1) = 1$. By Proposition 3.14 in [Pir85], the Chern character of the structure sheaf \mathcal{O}_{C_1} over $\mathbb{P}(B^*) \times V_{22}$ is given by

$$\text{ch}(\mathcal{O}_{C_1}) = (2m_1^2 h_1 + 4m_1 h_2) + (-8m_1^2 h_2 + 2m_1 h_3) + (\text{the terms of higher degree}).$$

Thus, by the Grothendieck-Riemann-Roch theorem, the invariants are

$$\int_{[M_1]} \tau_0(h_2) = 2m_1^2 h_3 = 2[pt], \quad \int_{[M_1]} \tau_1(h_1) = 22m_1^2 h_3 = 22[pt].$$

□

Remark 3.16. By Porteous’ formula, the dual class of the fundamental class $[C_1]$ is

$$[C_1] = 2m_1^2 h_1 + 4m_1 h_2.$$

The intersection number of $[C_1]$ with the line class h_2 in V_{22} is $[C_1] \cdot h_2 = 2m_1^2 h_3$. This matches with the fact that the degree of the surface S sweeping out by lines in V_{22} is $\text{deg}(S) = 2$ ([Ame98, Section 3]).

For the degree $d = 2$ and 3 cases, the universal curves over M_d have been studied in [Fae14, Lemma 4.1] and [KS04, Theorem 2.4]. Let $i : C_d \to M_d \times V_{22}$ be the universal curve in $M_d \times V_{22}$. The free resolutions of $i_* \mathcal{O}_{C_d}$ on $M_d \times V_{22}$ are

1. $(d = 2) \quad 0 \to S \boxtimes \mathcal{O}_{\mathbb{P}^2}(-4) \to Q^* \boxtimes \mathcal{O}_{\mathbb{P}^2}(-3) \to \mathcal{O}_{V_{22} \times \mathbb{P}^2} \to i_* \mathcal{O}_{C_2} \to 0,$
2. $(d = 3) \quad 0 \to E \boxtimes \mathcal{O}_{\mathbb{P}^3}(-3) \to S \boxtimes \mathcal{O}_{\mathbb{P}^3}(-2) \to \mathcal{O}_{V_{22} \times \mathbb{P}^3} \to i_* \mathcal{O}_{C_3} \to 0,$

where $\text{rk}(E) = 2$, $c_1(E) = -1$, $c_2(E) = 7$. By the same method for the case V_5, one can find the (virtual) fundamental class $[M_d]$.

where the last equality comes from properties of Gysin pull-back via bundle stacks [Kre99].

□
Therefore we have

Proposition 3.17. The invariants \(\langle \tau_i (h_{2-i}) \rangle_d \) are given by the numbers of the following table.

\(d \)	\(i = 0 \)	\(i = 1 \)
1	2	22
2	7	28
3	28	28

By combining Proposition 2.2, Proposition 3.7 and Proposition 3.17, we have

Theorem 3.18. Conjecture 1.1 (which is equivalent to Conjecture 3.2) is true when \(X = V_5 \) and \(V_{22} \) up to the degree 3.

4. Proof of Conjecture 1.2

Let us recall the definition of meeting invariants \(m_{\beta_1, \beta_2} \in \mathbb{Z} \) for \(\beta_1, \beta_2 \in H_2(X, \mathbb{Z}) \) ([KP08, Section 0.3]). It is given by the following rules:

1. \(m_{\beta_1, \beta_2} = m_{\beta_2, \beta_1} \).
2. If either \(\deg(\beta_1) \leq 0 \) or \(\deg(\beta_2) \leq 0 \), then \(m_{\beta_1, \beta_2} = 0 \).

Let \(\{S_1, \cdots, S_k\} \) be the basis of the torsion free part of \(H^4(X, \mathbb{Z}) \). Let \((g_{ij}) \) be the inverse matrix of the intersection matrix \((g_{ij}) \), \(g_{ij} = \langle S_i, S_j \rangle \).
3. If \(\beta_1 \neq \beta_2 \),

\[
m_{\beta_1, \beta_2} = \sum_{i,j} n_{0, \beta_1}(S_i)g_{ij}n_{0, \beta_2}(S_j) + m_{\beta_1, \beta_2-\beta_1} + m_{\beta_1-\beta_2, \beta_2}.
\]

4. If \(\beta_1 = \beta_2 = \beta \), then

\[
m_{\beta, \beta} = n_{0, \beta}(c_2(X)) + \sum_{i,j} n_{0, \beta}(S_i)g_{ij}n_{0, \beta}(S_j) - \sum_{\beta_1+\beta_2=\beta, k \geq 1} m_{\beta_1, \beta_2}.\]

We recall Conjecture 1.2 here. For each \(\gamma \in H^2(X, \mathbb{Z}) \),

\[
\langle \tau_1 (\gamma) \rangle_{\beta} = \frac{n_{0, \gamma}(\gamma^2)}{2(\gamma \cdot \beta)} - \sum_{\beta_1+\beta_2=\beta} \frac{(\gamma \cdot \beta_1)(\gamma \cdot \beta_2)}{4(\gamma \cdot \beta)} m_{\beta_1, \beta_2} - \sum_{k \geq 1, k | \beta} \frac{(\gamma \cdot \beta)}{k} n_{1, \beta/k}.
\]

Remark 4.1. It is believed that the invariants \(n_{1,d} \) come from a space of elliptic curves in \(Y \) (cf. [KP08, Section 3 and 5]). The defining equations of \(V_5 \) and \(V_{22} \) can be generated by quadric equations and they does not contain planes. Thus the space of elliptic curves of degree \(d \leq 3 \) should be empty. This implies that the invariants are \(n_{1,d} = 0 \).
Therefore the suitable choice of sign for the conjecture should be -1.

Theorem 4.2. Conjecture 1.2 holds for $Y = V_5$ and V_{22} when we assume that $n_{1,d} = 0$ for $1 \leq d \leq 3$.

The remaining two subsections is devoted to the proof of Theorem 4.2.

4.1. The case V_5. Let $X = |K_Y|$, $\bar{X} = \mathbb{P}(K_Y \oplus O_Y)$ and $\pi : \bar{X} \to Y$ be the canonical projection map. By construction, we have

$$H^4(\bar{X}, \mathbb{Z}) = \langle T_1, T_2 \rangle,$$

where $T_1 = \text{PD}(H \cap Y)$, $T_2 = \pi^*(\text{PD}(L_1))$ for linear spaces L_i of dimension i. Since the normal bundle of $H \cap Y$ in X is $N_{H \cap Y,X} = \pi^*(O_Y(1) \oplus O_Y(-2))$, $T_1 \cdot T_1 = -2H^3 \cap Y = -10$. Hence the intersection matrix is given by

$$\begin{pmatrix}
T_1 & T_2 \\
T_1 & -10 & 1 \\
T_2 & 1 & 0
\end{pmatrix},
\quad
\begin{pmatrix}
g_{ij}
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
$$

From $T_X = \pi^*(T_Y \oplus O_Y(-2))$, we have $c(X) = \pi^*(c(Y) \cdot (1 - 2h_1))$. Hence $c_2(X) = -8T_2$. Also we have $T_1|_Y = (T_1 \cdot T_1)T_2|_Y = -10T_2|_Y$. Using the formula of meeting invariants, we have

$$m_{1,1} = n_{0,1}(-8T_2) + 2n_{0,1}(T_1)n_{0,1}(T_2) + 10n_{0,1}(T_2)^2
= 40 - 20 \times 5^2 + 10 \times 5^2 = -210,$n_{1,2} = n_{0,1}(T_1)n_{0,2}(T_2) + n_{0,1}(T_2)n_{0,2}(T_1) + 10n_{0,1}(T_2)n_{0,2}(T_2) + m_{1,1}
= -10n_{0,1}(T_2)n_{0,2}(T_2) - 210 = -1960.$$

Motivated from the fact that the spaces of genus one curves on Y with degree $d = 1, 2, 3$ are empty sets, let us assume that $n_{1,1} = n_{1,2} = n_{1,3} = 0$. Then Conjecture 1.2 has been written as

$$\langle \tau_1(H) \rangle_d = \frac{n_{0,d}(H^2)}{2d} - \sum_{d_1 + d_2 = d} \frac{d_1 \cdot d_2}{4d} m_{d_1,d_2}.$$

Note that we need to choose some suitable orientation of the moduli space. Here we use the orientation in [CT21, (0.7)]. By a direction calculation, one can check the identity as follows.

$$-\langle \tau_1(H) \rangle_1 = \frac{5n_{0,1}(T_2)}{2},
-\langle \tau_1(H) \rangle_2 = \frac{5n_{0,2}(T_2)}{4} - \frac{1}{8}m_{1,1},
-\langle \tau_1(H) \rangle_3 = \frac{5n_{0,3}(T_2)}{6} - \frac{1}{3}m_{1,2}.$$

Therefore the suitable choice of sign for the conjecture should be -1.
4.2. The case V_{22}. Let $Y = V_{22}$, $X = |K_{V_{22}}|$, and $\tilde{X} = \mathbb{P}(K_Y \oplus \mathcal{O}_Y)$ and $\pi : \tilde{X} \to Y$ be the canonical projection map. Let T_1 and T_2 be generators of the cohomology group $H^2(X, \mathbb{Z})$, defined by

$$T_1 := PD(H \cap Y), T_2 := \pi^*(PD(L_1))$$

where L_1 is a class of line, equal to $(H^2/22) \cap Y$. Then the intersection matrix is computed by:

$$\begin{pmatrix}
 g_{ij} \\
\end{pmatrix} = \begin{pmatrix}
 T_1 & T_2 \\
 T_1 & -22 & 1 \\
 T_2 & 1 & 0 \\
\end{pmatrix}, \quad g^{ij} = (g_{ij})^{-1} = \begin{pmatrix}
 0 & 1 \\
 1 & 22 \\
\end{pmatrix}$$

Note that we can check $c_2(X) = 2T_2$ by direct calculation. Also, by the same manner as did in the case $Y = Y_5$, the meeting invariants are

$$m_{1,1} = -84, m_{1,2} = 224.$$

Under the assumption $n_{1,1} = n_{1,2} = n_{1,3} = 0$, we have the identities:

$$\langle \tau_1(H) \rangle_1 = \frac{22n_{0,1}(T_2)}{2}, -\langle \tau_1(H) \rangle_2 = \frac{22n_{0,2}(T_2)}{4} - \frac{1}{8}m_{1,1},$$

$$\langle \tau_1(H) \rangle_3 = \frac{22n_{0,3}(T_2)}{6} - \frac{1}{3}m_{1,2},$$

which confirms Theorem 4.2.

REFERENCES

[AF06] Enrique Arrondo and Daniele Faenzi. Vector bundles with no intermediate cohomology on Fano threefolds of type V_{22}. Pacific Journal of Mathematics, 225(2):201–220, 2006. 15

[Ame98] E. Amerik. On a problem of Noether Lefschetz type. Compositio Mathematica, 112:255–271, 1998. 15

[Beh96] K. Behrend. Gromov-Witten invariants in algebraic geometry. arXiv preprint arXiv:alg-geom/9601011, 1996. 4

[BF97] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997. 4, 6, 14

[BJ17] Dennis Borisov and Dominic Joyce. Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds. Geometry & Topology, 21(6):3231–3311, 2017. 1

[Cao19a] Yalong Cao. Counting conics on sextic 4-folds. Mathematical Research Letters, 26(5):1343–1357, 2019. 2

[Cao19b] Yalong Cao. Genus zero-gopakumar-vafa type invariants for calabi-yau 4-folds ii: Fano 3-folds. Commun. Contemp. Math., 1950060:1–25, 2019. 2

[CHL18] Kiryong Chung, Jaehyun Hong, and SangHyeon Lee. Geometry of moduli spaces of rational curves in linear sections of Grassmannian $Gr(2,5)$. Journal of Pure and Applied Algebra, 222(4):868–888, 2018. 11

[Chu19] Kiryong Chung. A desingularization of Kontsevich’s compactification of twisted cubics in V_5. arXiv:1902.01658, 2019. 10

[CK18] Yalong Cao and Martijn Kool. Zero-dimensional Donaldson-Thomas invariants of Calabi-Yau 4-folds. Advances in Mathematics, 338:601–648, 2018. 1
[CK20] Yalong Cao and Martijn Kool. Curve counting and DT/PT correspondence for Calabi-Yau 4-folds. *Advances in Mathematics*, 375:107371, 2020.

[CKM21] Yalong Cao, Martijn Kool, and Sergej Monavari. Stable pair invariants of local Calabi-Yau 4-folds. *International Mathematics Research Notices*, 04 2021. rnab061.

[CL14] Yalong Cao and N. C. Leung. Donaldson-Thomas theory for Calabi-Yau 4-folds. *arXiv:1407.7659*, 2014.

[CMT18] Yalong Cao, Davesh Maulik, and Yukinobu Toda. Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds. *Advances in Mathematics*, 338:41–92, 2018.

[CMT21] Yalong Cao, Davesh Maulik, and Yukinobu Toda. Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds. *Journal of the European Mathematical Society*, 2021.

[CT21] Yalong Cao and Yukinobu Toda. Gopakumar-Vafa type invariants on Calabi-Yau 4-folds via descendant insertions. *Communications in Mathematical Physics*, 383(1):281–310, 2021.

[EH16] David Eisenbud and Joseph Harris. *3264 and All That: A Second Course in Algebraic Geometry*. Cambridge: Cambridge University Press, 2016.

[Fae05] Daniele Faenzi. Bundles on the Fano threefold V_5. *Commun. Algebra*, 33(9):3061–3080, 2005.

[Fae14] Daniele Faenzi. Even and odd instanton bundles on Fano threefolds of Picard number one. *manuscripta math.*, 144:199–239, 2014.

[FN89] Mikio Furushima and Noboru Nakayama. The family of lines on the Fano threefold V_5. *Nagoya Mathematical Journal*, 116:111–122, 1989.

[FP00] Carel Faber and Rahul Pandharipande. Hodge integrals and Gromov-Witten theory. *Inventiones mathematicae*, 139(1):173–199, 2000.

[GP99] T. Graber and R. Pandharipande. Localization of virtual classes. *Invent. Math.*, 135(2):487–518, 1999.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[HTK+03] Kentaro Hori, Richard Thomas, Sheldon Katz, Cumrun Vafa, Rahul Pandharipande, Albrecht Klemm, Ravi Vakil, and Eric Zaslow. *Mirror symmetry*, volume 1. American Mathematical Soc., 2003.

[KS04] J. Kollár and F.-O. Schreyer., editors. *Real Fano 3-folds of type V_22*, volume 62. Dipartimento di Matematica dell’Università di Torino, 2004.

[Ili94] Atanas Iliev. The fano surface of the Gushel threefold. *Compositio Mathematica*, 94(1):81–107, 1994.

[KPS18] Alexander G. Kuznetsov, Yuri G. Prokhorov, and Constantin A. Shramov. Hilbert schemes of lines and conics and automorphism groups of Fano threefolds. *Japan. J. Math.*, pages 685–789, 2018.

[Kre99] Andrew Kresch. Cycle groups for Artin stacks. *Invent. Math.*, 138(3):495–536, 1999.

[KS04] J. Kollár and F-O. Schreyer., editors. *Real Fano 3-folds of type V_22*, volume 62. Dipartimento di Matematica dell’Università di Torino, 2004.

[OT20] Jeongseok Oh and Richard P Thomas. Counting sheaves on Calabi-Yau 4-folds, i. *arXiv preprint arXiv:2009.05542*, 2020.

[Pir85] Gian Pietro Pirola. Chern character of degeneracy loci and curves of special divisors. *Annali di Matematica Pura ed Applicata*, 142(1):77–90, 1985.

[San14] Giangiacomo Sanna. Rational curves and instantons on the Fano threefold V_5. *arXiv:1411.7994*, 2014.
[Tho00] R. P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. *Journal of Differential Geometry*, 54(2):367–438, 2000.

Department of Mathematics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea

Email address: krchung@knu.ac.kr

School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea

Email address: sanghyeon@kias.re.kr

Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea

Email address: leonwon@kias.re.kr