Identifying Temporal Expression and its Syntactic Role Using FST and Lexical Data from Corpus

Juntae Yoon
jtyoon@daumcorp.com
Daum Communications Corp.
Kangnam-gu, Samsung-dong, 154-8
Seoul 135-090, Korea

Yoonkwan Kim Mansuk Song
{general,mssong}@december.yonsei.ac.kr
Dept. of Computer Science, Engineering College
Yonsei Univ.
Seoul 120-749, Korea

Abstract

Accurate analysis of the temporal expression is crucial for Korean text processing applications such as information extraction and chunking for efficient syntactic analysis. It is a complicated problem since temporal expressions often have the ambiguity of syntactic roles. This paper discusses two problems: (1) representing and identifying the temporal expression (2) distinguishing the syntactic function of the temporal expression in case it has a dual syntactic role. In this paper, temporal expressions and the context for disambiguation which is called local context are represented using lexical data extracted from corpus and the finite state transducer. By experiments, it turns out that the method is effective for temporal expression analysis. In particular, our approach shows the corpus-based work could make a promising result for the problem in a restricted domain in that we can effectively deal with a large size of lexical data.

1 Introduction

Accurate analysis of the temporal expression is crucial for text processing applications such as information extraction and for chunking for efficient syntactic analysis. In information extraction, a user might want to get a piece of information about an event. Typically, the event is related with time, which is represented by temporal expression. In chunking, the task is to divide sentences into non-overlapping segments. As a result of chunking, parsing would be a problem of analysis inside chunks and between chunks (Yoon, et al., 1999). Chunking prevents the parser from producing intermediate structures irrelevant to a final output, which makes the parser efficient without losing accuracy. Thus, it turns out that chunking is an essential stage for the application system like MT that should pursue both efficiency and precision.

Korean, an agglutinative language, has well-developed functional words such as postposition and ending by which the grammatical function of a phrase is decisively determined. Besides, because it is a head final language and so the head always follows its complement, the chunking is relatively easy. However, we are also faced with an ambiguity problem in chunking, which is often due to the temporal expression. This is because many temporal nouns are used as the modifier of noun and verb in a sentence. Let us consider the following examples:

[Example]

1a jinan(last) yeocum(summer) uiri-neun
(we/NOM) hangge(together) san-c(to mountain) gassda(went)
→ We went to the mountain together last summer.

1b jinan(last) yeocum(summer) banghay-c(in vacation) uiri-neun(we/NOM) hangge(together) san-c(to mountain) gassda(went)
→ We went to the mountain together in the last summer vacation.

2a 10 Wool(October) 9 il(9th) jeongung(evening)
7 si(7 o'clock) daetong'ryeong-yi (president/GEND) damhwa-ga(talk/NOM) issda(be)
→ The president will give a talk at 7:00pm in Oct. 7th.

2b 10 Wool(October) 9 il(9th) jeongung(evening)
7 si(7 o'clock) biahoeyippo-ren(ACC) yealgah su isssebenhag(can reserve)
→ Can I reserve the flight ticket for 7:00pm in Oct. 7?

In the examples, each temporal expression plays a syntactically different role used as noun phrase or adverbial phrase (The underlined is a phrase) although they comprise the same phrasal forms. The temporal expressions in 1a and 2a of the example serve as the temporal adverb to modify predicates. On the other hand, the temporal expressions in 1b and 2b are used as the modifier of other nouns. That is, as a temporal noun either contributes to construction of a noun compound or modifies a predicate, it causes a structural ambiguity.

One solution might be that the POS tagger assigns a different tag to each temporal noun e.g. NN
and ADV. However, since dependencies of temporal nouns are lexically decided, it does not seem that their syntactic tags could be accurately predicted with a relatively small size of POS tagged corpus. Also, the simple rule based approach cannot make satisfactory results without lexical information. As such, identification of temporal expression is a complicated problem in Korean text analysis.

This paper discusses identification of temporal expressions and their syntactic roles. In this paper, we would deal with two problems: (1) representing and identifying the temporal expression (2) distinguishing its syntactic function in case it has a dual syntactic role. Actually, the two problems are closely related since the identification and disambiguation process would be done under the representation scheme of temporal expression. The process bases on lexical data extracted from corpus and the finite state transducer (FST). According to our observation of texts, we could see that a few words following a temporal noun have great effect on the syntactic function of the temporal noun. Therefore, we note that the structural ambiguity could be resolved in local contexts, and so obtain lexical information for the local contexts from corpus. The lexical data which contain contexts for disambiguation are represented with temporal word transition over the FST.

Briefly describing our methodology, we first extract concordance data of each temporal word using a concordance program. The co-occurrences represent relations between temporal words and also explain how temporal nouns and common nouns are combined to generate a compound noun. It would be the likelihood of word combination, which helps disambiguate the syntactic role if a temporal word have a syntactic duality. In particular, we classify temporal nouns into 26 classes in accordance with their meaning and function. Thus, the word co-occurrences become those among temporal classes or temporal classes and other nouns, which results in reducing the parameter space. Second, temporal expressions containing the co-occurrences of temporal classes and other nouns are represented with the FST to identify temporal expressions and assign their syntactic tags in a sentence. It has been shown that the FST presents a very efficient way for representing phrases with locality. The input of the FST is the result from morphological analysis and POS tagging (here, the temporal noun is tagged only as noun). Its output is the syntactic tag for each word in the sentence and temporal words are attached tags such as noun and adverb. Figure 1 shows the overall system from the morphological analyzer to the chunker. Therefore, the process attaches syntactic labels to the previous examples so that chunking would be safely executed from the results as follows:

Example

1a: [jiaan(last) yeoreum(summer)]_{T,4} arni-neum (we/NOM) hanmyeog(together) san-e(to mountain) gassalu(went)

→ We went to the mountain together last summer.

1b: [jiaan(last) yeoreum(summer)]_{TN} hanmyeog (in vacation) arni-neum(we/NOM) hanmyo (together) san-e(to mountain) gassalu(went)

→ We went to the mountain together in the last summer vacation.

2a: [10 won(October) 9 il(9th) jeonmyo(evening) 7 si(7 o'clock)]_{T,4} daechoomteong-yi (president/GEN) daehom-yeo(talk/NOM) issu(be)

→ The president will give a talk at 7:00pm in Oct. 7th.

2b: [10 won(October) 9 il(9th) jeonmyo(evening) 7 si(7 o'clock)]_{TN} bihaeempo-yeo(1st flight ticket/ACC) yeonpohal su sseonjubujji(can reserve)

→ Can I reserve the flight ticket for 7:00pm in Oct. 7th?

2 Related Works

Abney (1991) has proposed temporal chunking as a preliminary step to parsing on the basis of psychological evidence. In his work, the chunk was defined as a partitioned segment which corresponds in some way to prosodic patterns. In addition, complex attachment decisions as occurring in NP or VP analysis are postponed without being decided in chunking. Ramshaw and Marcus (1995) introduced a base-NP which is a non-recursive NP. They used transformation-based learning to identify non-recursive base-NPs in a sentence. Also, V-type chunk was introduced in their system, and so they tried to partition sentences into non-overlapping N-type and V-type chunks. Yoon, et al. (1999) have defined chunking in various ways for efficient analysis of Korean texts and shown that the method is very effective for practical application.

Besides, there have been many works based on the finite state machine. The finite state machine is often used for systems such as speech processing, pattern matching, POS tagging and so forth because of its efficiency of speed and space and its convenience of representation. As for parsing, it is not suitable for full parsing based on the grammar that has recurrent property, but for partial parsing requiring simple state transition. Roche and Schabes (1995) have transformed the Brill’s rule based tagger to the optimized deterministic FST and improved the speed and space of the tagger. A notable one related to this work is about **local grammar** presented in Gross (1993), which is suitable for representing...
3 Acquiring Co-occurrence of Temporal Expression

3.1 Categorizing Temporal Nouns

Since many words have in common a similar meaning and function, they can be categorized by their features. So do temporal nouns. That is, we say that 'Sunday' and 'Monday' have the same features and so would take the similar behavior patterns such as co-occurring with the similar words in a sentence or phrase. Hence, in the first place we categorize temporal nouns according to their meaning and function. We first select 259 temporal nouns and divide them into 26 classes as shown in Table 1. Among them, some temporal words have syntactic duality and others play one syntactic role. Thus, the disambiguation process would be applied only to the words with dual syntactic functions.

3.2 Acquisition of Temporal Expressions from Corpus

Temporal words would be combined with each other in order to be made reference to time, which is called temporal expression. Since a temporal expression is typically composed of one or a few temporal words, it seems to be possible to describe a grammar of the temporal expression with a simple model like finite automata. In the practical system, however, we are confronted with a complicated problem in treating temporal expressions since many temporal words have a functional ambiguity used as both a nominal and predicate modifier. For instance, a temporal noun oneul(today) could play a different role in the similar situation as shown in Figure 2. In the first and the second path, the words to follow oneul are all noun, but the roles (dependency relations) of oneul are different.

Accurate classification of their syntactic functions is crucial for the application system since great difference would be made according to accuracy of the dependency result. Practically, we therefore should take into consideration the structural ambiguity resolution as well as their representation itself in identi-
fying temporal expressions. The point that we note here is that we could predict the syntactic function of temporal words by looking ahead one or two words. Namely, looking at a few words that follows a temporal word we can figure out which word the temporal expression modifies, and call the following words local context for determining the syntactic function of each temporal word because they are lexically related. That is, it is wholly different from each word whether a temporal noun would modify other noun to form a compound noun or modify a predicate as an adverbial phrase. Our approach is to use corpus to acquire information about the local context. Since we could obtain from corpus as many examples as needed, rules for compound word generation can be constructed from the examples. In this paper, we use co-occurrence relations of temporal nouns extracted from large corpus to represent and construct rules for identification of temporal expressions.

As mentioned before, we would pay attention to two points here: (1) In what order a temporal expression would be represented with temporal words, i.e. description of the temporal expression network. (2) how the local context would be described to resolve the ambiguity of the syntactic function of temporal expressions. For this purpose, we first extract example sentences containing each of 259 temporal words from corpus using the KAIST concordance program1 (KAIST, 1998). The number of temporal words is small and so we could manually manipulate lexical data extracted from corpus. Figure 3 shows example sentences about yeoreum(summer) extracted by the concordance program.

Second, we select only the phrases related with temporal words from the examples (Table 4). As shown in Table 4, yeoreum is associated with varying words. Temporal words like temporal prefixes can come before it and common nouns can follow it. In this stage we describe contexts of each temporal word and the output (syntactic tag of the temporal word) under the given context. In particular, each temporal word is assigned a temporal class. Besides, other nouns serve as local contexts for disambiguation of syntactic function of temporal words.

From the examples, we can see that if ham(night), byeoljang(villa), banlag(vacation) and so on follows it, yeoreum serves as a component of a compound noun with the following word. On the other hand, the word naerae which means all the time is a temporal noun and forms a temporal adverbal phrase with other preceding temporal noun. Moreover, yeoreum(summer) might represent time-related expression with preceding temporal prefixes.

4 Identifying Temporal Expressions and Chunking

4.1 Representing Temporal Expression Using FST

The co-occurrence data extracted by the way described in the previous section can be represented with a finite state machine (Figure 5). For syntactic function disambiguation and chunking, the automata should produce an output, which leads to a finite state transducer. In fact, individual description for each data could be integrated into one large FST and represented as the right-hand side in Figure 5. A finite state transducer is defined with a six-

word category	class #	temporal words	
temporal prefixes	modifier	1	of(this), jinna(last), ...
	number	2	number ...
temporal nouns	temporal unit	3-10	segi(entery), nyocon(year), ...
	era, age	11	gosangnymae(Palaeozoic), ...
	year	12	yeoreum(this year), saehac(new year), ...
	months	13	nacelal(next month), jeoongwu(January), ...
	weeks	14	yeoreum(this week), naeja(next week), ...
	days	15	ilgdil(Sunday), woyogil, ...
	time1	16-17	harnegwuni, chuseog(Thanksgiving day), ...
	time2	18	onegi(today), naeja(tomorrow), ...
	season	19	saebyeog(dawn), achim(morning), ...
	specific duration	20-21	yeonmal(year-end), ...
	edge	22	bong(spring), yeoreum(summer), ...
	specific duration	23	hwanjegoli(time of season changing), ...
	edge	24-25	chool(early time), jungbun(mid), ...
temporal suffixes	temporal suffixes	26	dongan(during), naeae(through), ...

Table 1: Categorization of temporal words
Figure 3: Example concordance data of *you'reum*(summer)

before	temporal noun	after	output freq
아침/122	밤(bam,night)	TN	2
아침/122	방학(banghag,vacation)	TN	7
아침/122	방학(byeoljang,villa)	TN	1
아침/122	주말(jumal,weekends)	TN	1
아침/122	잠자임(ganagi,flu)	TN	1
아침/122	밤/26(nacnae,all the time)	TA	1
아침/122	점심사(nacnae,1/TOP)	TA	1
아침/122	6.25, 마지막(majinang, the last)	TA	2
아침/122	오전(jeonmun,battle/TOP)	TA	1

Figure 4: Temporal expression phrases selected from examples

Figure 6: Deterministic FST resulted from Figure 5 that maps $Q \times \Sigma_1$ on Σ_2^*.
in a similar way. The subsequential FST for our system is defined as in Figure 6 and Figure 7 illustrates the transducer in Figure 6. In the figure, t_1 is a class to which the temporal word belongs in the temporal classification. w_i is a word other than temporal ones that has the preceding temporal word be its modifier, and w_j is not such a word to make a compound noun. TN, TA and NT are syntactic tags. A word tagged with TN would modify a succeeding noun like ban(night), $bangha$(vacation). A word attached with TA would modify a predicate and one with NT means it is not a temporal word. Actually, individual FSTs are combined into one and rules for tagging of temporal words are put over the FST. The rule is applied according to the priority by frequency in case more than one output are possible for a context. Namely, it is a rule-based system where the rules are extracted from corpus.

4.2 Chunking

After the FST of temporal expressions adds to words syntactic tags such as TN and TA, chunking is conducted with results from outputs by the FST. As we said earlier, chunking in Korean is relatively easy only if the temporal expression would be successfully recognized. Actually, our chunker is also based on the finite state machine. The following is an example for chunking rules.

\[
(NP_{bangha}) \rightarrow (NP) | (TNP)
\]

\[
(TN) \rightarrow (\langle N \rangle) (NP) | (\langle N \rangle) (TNP)
\]

\[
(TNP) \rightarrow (\langle TN \rangle) (\langle N \rangle)
\]

Here, N is a noun without any postposition, NP is a noun with a postposition, TN is a temporal noun recognized as modifying a succeeding noun, NU is a number and UN is a unit noun. After temporal tagging, the chunker transforms ‘NT’ into N, NP, etc. according to morphological constituents and their POS. Briefly, the rule says that an NP chunk is made from either NP or temporal NP. An NP would be constructed with one or more nouns and their modifiers or with a noun quantified. A TNP, which is related with time, is made from nouns modified by temporal words which would be identified by the FST. By identification of temporal expression and chunking, the following example sentence is chunked as below.

- \textit{jinan(last) yeoruan(summer) bangha-(in}}
 \textit{vacation) uri-neum(nc/SUBJ) komppyuteo(computer) se(three) dac-reul(unit/OBJ) sassda(bought)}
 \rightarrow We bought three computers in the last summer vacation.

- \textit{jinanTN yeoruanTN bangha-cNP uri-neuanNP komppyuteoNU senu dac-reulNP sassday}

5 Experimental Results

For the experiment about temporal expression, we extracted 300 sentences containing temporal expressions from ETRI POS corpus. Table 2 shows the re-
in a similar way. The subsequential FST for our system is defined as in Figure 6 and Figure 7 illustrates the transducer in Figure 6. In the figure, t1 is a class to which the temporal word belongs in the temporal classification. w1 is a word other than temporal ones that has the preceding temporal word be its modifier, and w2 is not such a word to make a compound noun. TN, TA and NT are syntactic tags. A word tagged with TN would modify a succeeding noun like ban(night), banghaq(vacation). A word attached with TA would modify a predicate and one with NT means it is not a temporal word. Actually, individual FSTs are combined into one and rules for tagging of temporal words are put over the FST. The rule is applied according to the priority by frequency in case more than one output are possible for a context. Namely, it is a rule-based system where the rules are extracted from corpus.

4.2 Chunking

After the FST of temporal expressions adds to words syntactic tags such as TN and TA, chunking is conducted with results from outputs by the FST. As we said earlier, chunking in Korean is relatively easy only if the temporal expression would be successfully recognized. Actually, our chunker is also based on the finite state machine. The following is an example for chunking rules.

\[
\begin{align*}
\langle N \rangle_{\text{chunk}} & \rightarrow \langle N P \rangle \mid \langle \text{NTN} \rangle \\
\langle N P \rangle & \rightarrow \langle N \rangle^* \langle N P \rangle \mid \langle \text{NU} \rangle^* \langle N \rangle^* \langle \text{UN} \rangle \\
\langle \text{TN} \rangle & \rightarrow \langle \text{TN} \rangle^* \langle N \rangle^* \langle \text{UN} \rangle
\end{align*}
\]

Here, N is a noun without any postposition, NP is a noun with a postposition, TN is a temporal noun recognized as modifying a succeeding noun, NU is a number and UN is a unit noun. After temporal tagging, the chunker transforms ‘NT’ into N, NP, etc. according to morphological constituents and their POS. Briefly, the rule says that an NP chunk is made from either NP or temporal NP. An NP would be constructed with one or more nouns and their modifier or a noun quantified. A TNP, which is related with time, is made from nouns modified by temporal words which would be identified by the FST. By identification of temporal expression and chunking, the following example sentence is chunked as below.

- jinan(la$t) yeoreum(summer) banghaq-c(in vacation) uri-ncnu(sc/SUBJ) keompyute(c(computer)) se(three) dac-rcul(unit/OBJ) sasad(bought)
 → We bought three computers in the last summer vacation.

- jinanTN yeoreumTN banghaq-cNP uri-ncnuNP keompyuteTN senuNU dac-rculNP sasadNV
- [jimanYN yeoreumYN banghaq-cNP]NC [uri-ncnuNP]NC [keompyuteYN senuNU dac-rculNP]NC sasadNV

5 Experimental Results

For the experiment about temporal expression, we extracted 300 sentences containing temporal expressions from ETRI POS corpus. Table 2 shows the re-
Table 2: Results of identifying temporal expression

	precision	recall
rate (%)	97.5	90.56

Table 3: Reduction of candidates resulted from chunking

	no chunking	using chunking
avg. # of cand.	4.8	3.3

results from identifying temporal expressions and disambiguating their syntactic functions. From the result in the table we see that the method is very effective in that it very accurately identifies all the temporal expressions and assigns them syntactic tags.

And, Table 2 shows the reduction resulted from chunking after temporal expression identification. We take into consideration the average number of head candidates for each word since our parser is dependency based one. The test was conducted on the first file (about 800 sentences) of KAIST treebank (Choi et al., 1994). The number was reduced by 51% in candidates compared to the system with no chunking, which makes parsing efficient.

Most of errors were caused by the case where temporal words have different syntactic roles under the same context. In this case, the global context such as the whole sentence or intersentential information or sometimes very sophisticated processing is needed to resolve the problem. For instance, ‘82 nyom(year) hyeconjae-ji(now/GEN)’ could be used two-way. If the speech time is the year 1982, then h yeconjae-ji are combined with 82 nyom to represent time. Otherwise, 82 do not modify h yeconjae-ji, which cannot be recognized only with the local context. Nevertheless, the system is promising in that generally it can improve efficiency without losing accuracy which is crucial for the practical system.

6 Conclusions

In this paper, we presented a method for identification of temporal expressions and their syntactic functions based on FST and lexical data extracted from corpus. Since temporal words have the syntactic ambiguity when used in a sentence, it is important to identify the syntactic function as well as the temporal expression itself.

For the purpose, we manually extracted lexical co-occurrences from large corpus and it was possible as the number of temporal nouns is tractable enough to manipulate lexical data by hand. As shown in the result, lexical co-occurrences are crucial for disambiguating the syntactic function of the temporal expression. Besides, the finite state approach provided an efficient model for temporal expression processing. Combined with the chunker, it helped remarkably lessen, by pruning irrelevant candidates, intermediate structures generated while parsing.

References

Abney, S. 1991. Parsing By Chunks. In Berwick, Abney, and Tenny, editors, Principle-Based Parsing. Boston: Kluwer Academic Publishers.

Choi, K. S., Han, Y. S., Han, Y. G., and Kwon, O. W. 1994. KAIST Tree Bank Project for Korean: Present and Future Development. In Proceedings of the International Workshop on Sharable Natural Language Resources.

Ciravegna, F. and Lavelli, A. 1997. Controlling Bottom-Up Chart Parsers through Text Chunking. In Proceedings of the 5th International Workshop on Parsing Technology.

Collins, M. J. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In Proceedings of the 34th Annual Meeting of the ACL.

Elgot, C. C. and Mezei, J. E. 1965. On relations defined by generalized finite automata. IBM Journal of Research and Development, 9, 47-65.

Gross, M. 1993. Local Grammars and their Representation by Finite Automata. Data, Description, Discourse: Papers on the English language in honour of John McIl Sinclair, Michael Hoey (ed). London: HarperCollins Publishers.

KAIST. KAIST Concordance Program. URL http://csfive.kaist.ac.kr/kcp/.

Mohri, M. 1997. Finite-state Transducers in language and Speech Processing. Computational Linguistics, Vol 23, No (2).

Rameshwar, L. A. and Marcus, M. P. 1995. Text Chunking Using Transformation-Based Learning. In Proceedings of the ACL Workshop on Very Large Corpora.

Roche, E. and Schabes, Y. 1995. Deterministic Part-of-Speech Tagging with Finite-State Transducers. Computational Linguistics, Vol 21, No (2).

Roche, E. and Schabes, Y. 1997. Finite-State Language Processing. The MIT Press.

Skaft, W. and Brants, T. 1999. Chunk Tagger. In Proceedings of ESSLLI-98 Workshop on Automated Acquisition of Syntax and Parsing.

Sproat, R. W., Shih, W., Gale, W. and Chang, N. 1994. A Stochastic Finite-State Word-segmentation Algorithm for Chinese. In Proceedings of the 32nd Annual Meeting of ACL.

Yoon, J., Choi, K. S. and Song, M. 1999. Three Types of chunking in Korean and Dependency Analysis Based on Lexical Association. In Proceedings of ICCPOL '99.