Cancer Risk in HBV Patients With Statin and Metformin Use
A Population-Based Cohort Study

Chang-J. Chen, PhD, Ching-Feng Kuan, MS, Yu-Ann Fang, MS, Shing-Hwa Liu, PhD, Ju-Chi Liu, MD, PhD, Li-Li Wu, MD, Chun-Jen Chang, MD, Hsuan-Chia Yang, Jaulang Hwang, PhD, James S. Miser, MD, and Szu-Yuan Wu, MD, MPH

Abstract: Chronic infection with hepatitis B virus (HBV) often causes chronic inflammation of the liver with an increased incidence of hepatocellular carcinoma (HCC). HBV-infected individuals may also have an increased incidence of nonliver cancers. Taking statin or metformin may decrease inflammation and infiltration, which may, as a result, reduce the risk of liver cancer or other major cancers in patients with HBV infection. The purpose of this study was to evaluate the hypothesis that statin and metformin could reduce the incidence of liver cancer (HCC) or nonliver cancers in patients with HBV.

Using the Taiwan Longitudinal Health Insurance Database 2000 to 2008, this cohort study comprised patients with a recorded diagnosis of HBV (N = 71,847) between January 1, 2000 and December 31, 2008. Each patient was followed-up until the end of 2008. The occurrence of HCC or a nonliver cancer was evaluated in patients who either were or were not taking statin or metformin. Cox proportional hazard regressions were used to evaluate the cancer incidence after adjusting for known confounding factors.

In total, 71,824 HBV-infected patients comprised the study cohort. Our study showed that either metformin or statin use was associated with a reduction in the incidence of cancer. This was most prominent in patients taking both statin and metformin. The adjusted hazard ratios (HRs) for patients using only statin were 0.52 (95% confidence interval [CI], 0.48–0.57) for all cancers, 0.28 (95% CI, 0.23–0.35) for liver cancer, and 0.63 (95% CI, 0.57–0.70) for nonliver cancers. Patients taking only metformin had risk-adjusted HRs of 0.82 (95% CI, 0.75–0.90) for all cancers, 0.97 (95% CI, 0.84–1.14) for liver cancer, and 0.75 (95% CI, 0.67–0.84) for nonliver cancers. A dose-dependent effect of statin use for chemoprevention was observed for all cancers, including both liver cancer and nonliver cancers. A dose-dependent effect of metformin was also seen in liver cancer and nonliver cancers without stratification into different cumulative daily doses of statin use.

This population-based cohort study investigated the protective effect of statin and metformin against cancer events in patients with HBV infection. Our study demonstrated that either statin or metformin served as independent chemopreventive agents with a dose–response effect in reducing the incidence of cancer with a dose–response effect of the agents and an additive or synergistic effect of combining statin and metformin in reducing the incidence of many cancers.

(Medicine 94(6):e462)

Abbreviations: ACE = acetylcholinesterase, AMPK = AMP-activated protein kinase, CCI = Charlson Comorbidity Index, cDDD = cumulative defined daily dose, DM = diabetes mellitus, HBV = hepatitis B virus, HCC = hepatocellular carcinoma, HR = hazard ratio, mTOR = mammalian target of rapamycin, NHIRD = National Health Insurance (NHI) Research Database.

INTRODUCTION

Hepatitis B virus (HBV) infection is thought to play an important role in the pathophysiology of cancer. Possible reasons include a direct effect of HBV infection, changes in the host immune system as an effect of chronic infection, and behavioral factors associated with HBV infection. HBV results in not only hepatocellular carcinoma (HCC) but also nonliver cancers. Thus, chronically HBV-infected individuals may be at increased incidence of nonliver cancers. Medications that potentially reduce chronic inflammation, including statins and metformin, may reduce the risk of cancer in patients with chronic ongoing inflammation due to HBV.2–10 These alterations by statin or metformin use can affect the availability of structural lipids for the synthesis of membranes, the synthesis and degradation of lipids that contribute to energy homeostasis, and the abundance of lipids with signaling functions. Changes in lipid metabolism can affect numerous cancer cellular
processes, including cancer cell growth, proliferation, differentiation, and motility. Lipid metabolism in cancers like HCC, colorectal, breast, lung, pancreas, and prostate has been discussed in many articles. Some studies suggested that the incidence of HCC in patients with HBV can be reduced by administering a statin and metformin; however, the protective effect of a statin and metformin against developing HCC or nonliver cancers in patients with HBV was not clearly demonstrated by those studies.

The mechanism by which metformin use decreases the incidence of nonliver cancers in HBV infected patients is not well understood. Some potential mechanisms have been investigated. The mechanism by which statin use decreases liver and nonliver cancer risk in HBV-infected patients is also still not well understood. The synergistic effect of the combined use of metformin and statin in reducing the risk of cancer has only been briefly discussed in the literature and limited to some specific cancers (eg, prostate cancer). But based on our data in animal models, administration of metformin and statin might enhance the therapeutic effect of local tumor through apoptotic and antiangiogenesis pathways. These results also seemed as the synergistic effect of statin and metformin combined use in tumor control. The aim of this study is to clarify the potential protective benefit of these drugs on the incidence of liver cancers or nonliver cancers in Taiwanese patients with HBV. We conducted a population-based cohort study using reimbursement claims from Taiwan’s National Health Insurance (NHI) Research Database (NHIRD).

METHODS

The NHI program has existed since 1995 to provide comprehensive health insurance coverage for all of Taiwan’s residents. Currently, 98% of the >23 million people in Taiwan are covered under the NHI. This study used data from the NHIRD. There were no statistically significant differences in age, sex, or health care costs between the sample group and all enrollees. Data in the NHIRD that could be used to identify patients or care providers, including medical institutions and physicians, are scrambled before being sent to the National Health Research Institutes for database construction, and are further scrambled before being released to each researcher. Theoretically, it is impossible to query the data alone to identify individuals at any level using this database. All researchers who wish to use the NHIRD and its data subsets are required to sign a written agreement declaring that they have no intention of attempting to obtain information that could potentially violate the privacy of patients or care providers.

The study cohort comprised all patients who visited health care facilities in Taiwan with a diagnosis of HBV (International Classification of Disease, 9th Revision, Clinical Modification Codes 070.2, 070.3, and V02.61) over a 9-year period (n = 81,796) from January 1, 2000 to December 31, 2008. All subjects without a subsequent outpatient visit or emergency visit for the diagnosis of HBV within 12 months were excluded (n = 80,626) because they were considered not to have chronic hepatitis disease (Figure 1). All subjects <20 years old on the day of diagnosis were excluded. We also excluded individuals who previously had been diagnosed with cancer prior to the diagnosis of HBV (n = 9972). Our final study cohort consisted of 71,824 cases of HBV carriers between 2000 and 2008 in Taiwan; 8861 were taking a statin only, 4774 were taking metformin only, 5121 were taking both a statin and metformin combined; and 53,037 were nonusers of either drug during the 9-year follow-up period. Each patient was tracked for the 9-year follow-up period. Each patient was tracked for the 9-year follow-up period.

We identified patients who filled prescriptions for statins or metformin in the inpatient and ambulatory care order files between January 1, 1997, and 365 days before the index date for HCC. We collected dates of the prescriptions, the daily dose, the number of days supplied, and the number of pills per prescription. The defined daily dose recommended by the World Health Organization is a unit for measuring a prescribed amount of drug. It is the assumed average maintenance dose per day of a drug consumed for its main indication in adults. To examine the dose–effect relationship, we categorized statins and metformin into 4 groups in each cohort (<28, 28–90, 91–365, and >365 cumulative defined daily dose [cDDD]) because the duration of the refill card was 3 months. Patients who used statins for <28 cDDDs were defined as statin nonusers.

FIGURE 1. Flow chart of the selection of the cohort randomly sampled from a representative database from National Health Research Institute of Taiwan of 1,000,000 patients from the year 2005 registry of all NHI database for inclusion. HBV = hepatitis B virus.
TABLE 1. Characteristics of the Sample Population

Nonuser	Only-Metformin	Only-Statin	M + S					
(n = 53,037)	(n = 4,774)	(n = 8,861)	(n = 5,152)					
N	%	N	%	N	%	N	%	
---	---	---	---	---	---	---	---	
Diagnosis age								
20–29	10,855	20.47	135	2.83	309	3.48	98	1.91
30–39	13,735	25.90	472	9.89	1,146	12.93	392	7.61
40–49	13,085	24.67	1,142	23.92	2,282	25.75	1,185	23.00
50–59	7,877	14.85	1,297	27.17	2,422	27.33	1,613	31.31
≥60	7,485	14.11	1,728	36.20	2,742	30.94	1,864	36.18
Sex								
Female	22,311	42.07	1,954	40.93	399	45.05	1,114	25.02
Male	30,726	57.93	2,820	59.07	4,869	54.95	2,650	51.44
CCI index								
0	14,237	26.84	22	0.46	601	6.57	1,108	22.08
1	17,022	32.09	719	15.06	1,920	21.67	525	10.19
2	11,041	20.82	842	17.64	2,005	22.63	763	14.81
3	10,737	20.24	3,191	66.84	3,855	43.51	1,385	27.43
Nonstatin lipid-lowering drugs, cDDD								
0	49,523	93.37	3,606	75.53	5,379	60.70	1,235	25.79
1–27	1,524	2.87	303	6.35	793	8.95	427	8.29
28–90	1,171	2.21	349	7.31	1,063	12.00	685	13.30
91–365	628	1.18	318	6.66	1,129	12.74	931	18.07
>365	191	0.36	198	4.15	497	5.61	750	14.56
Aspirin, cDDD								
0	44,090	83.13	2,631	55.11	4,578	51.66	1,944	37.73
1–27	3,375	6.36	394	8.25	1,579	17.75	427	8.29
28–90	2,050	3.87	446	9.34	1,206	13.50	476	9.24
91–365	1,551	2.92	440	9.22	955	10.78	729	14.15
>365	1,971	3.72	863	18.08	1,806	20.38	1,643	31.89
ACE inhibitors, cDDD								
0	44,758	84.39	2,344	49.10	4,943	55.78	1,781	34.57
1–27	2,225	4.20	388	8.13	723	8.16	369	7.16
28–90	2,023	3.81	447	9.36	863	9.74	476	9.24
91–365	1,956	3.69	643	13.47	1,013	11.43	906	17.59
>365	2,075	3.91	952	20.04	1,351	15.25	1,565	30.38
Area								
North	23,193	43.73	1,820	38.12	420	47.49	2,176	42.24
Central	15,414	29.06	1,515	31.73	2,223	25.09	1,404	27.25
South	13,233	24.95	1,308	27.40	2,212	24.96	1,437	27.89
Eastern	1,197	2.26	131	2.74	218	2.46	135	2.62
Index year								
≤2001	17,639	33.26	1,811	37.93	312	35.31	2,067	40.12
2002–2004	19,118	36.05	1,692	35.44	310	35.77	1,909	37.05
≥2005	16,280	30.70	1,721	36.20	2,562	28.91	1,176	22.83
Anti-HBV drug								
No	52,175	98.37	4,964	98.32	8,808	99.40	5,121	99.40
Yes	862	1.63	80	1.68	53	0.60	31	0.60

ACE = acetycholinesterase, aOR = adjusted odds ratio; CCI = Charlson Comorbidity Index, cDDD = cumulative defined daily use, HBV = hepatitis B virus, HR = hazard ratio, M = metformin, S = statin.

1 means statistical significance

1 CCl index.

Based on polytomous logistic regression with adjustment for diagnosis age, sex, comorbidity condition, nonstatin lipid-lowering drugs, aspirin, ACE inhibitors, area, index year, anti-HBV drug.

Statistical Analysis

Propensity scores are used as a statistical matching technique that attempts to estimate the effect of an intervention (statin/metformin) by accounting for the covariates (previously mentioned) that predict receiving the intervention (statin/metformin) and decrease selection bias. A polytomous logistic regression adjusted for the diagnosis age, sex, comorbidity condition, nonstatin lipid-lowering drugs, aspirin, acetycholinesterase (ACE) inhibitors, area, index year, and anti-HBV drug was used. Because statins and metformin showed positive chemopreventive
results, to examine potential effect modifiers, we conducted analyses stratified by groups with and without the use of statin or metformin. These sensitivity analyses were applied to evaluate the difference and consistency between the statins or metformin use and the risk of cancers.

RESULTS

In total, 71,824 HBV-infected patients were included in the study cohort. Table 1 lists the demographic characteristics, medical conditions, and statin or metformin use by patients. Men were more commonly infected with HBV than women. Medication use by patients was related to age. A lower CCI was seen only in statin users. The distribution of CCI was more homogenous in metformin-only users. There were fewer HBV-infected individuals from the eastern region than from other regions of Taiwan.

Table 2 shows the incidence of all cancers associated with HBV, both liver and nonliver cancers, related to statin or metformin use. Our results show that statin use reduced the incidence of a variety of cancers. The most prominent reduction in cancer was noted in patients taking both a statin and metformin. Reduction of hazard ratios (HRs) in our study may suggest a synergistic effect of metformin added to a statin in all cancers except liver cancers. The use of both a statin and metformin in combination resulted in HRs that were smaller than those in the statin-only group.

Data stratified by patient’s factors are shown in Tables 3 and 4. The adjusted HRs for female HBV patients with metformin-use only were 0.78 (95% confidence interval [CI], 0.65–0.95) for nonliver cancers and 0.64 (95% CI, 0.47–0.88) for other cancers; however, the adjusted HR for liver cancer in women with HBV using metformin did not show a significant reduction. Statin-only use by female HBV patients also reduced the incidence of all cancers and liver cancer. An increased protective effect was found in female patients with the combined use of a statin and metformin for colorectal, breast, and cervical cancers compared with statin-only or metformin-only use. This effect may be additive or synergistic. Lower HRs for all cancers, liver, nonliver, lung, and other cancers were also found in female patients with HBV infection.

For elderly patients with HBV infection, the combined use of metformin and statin resulted in lower HRs of total cancers, nonliver cancers, and other cancers. An additive or synergistic effect of the combined use of a statin and metformin was found for lung, stomach, and cervical cancers.

Sensitivity Analysis

The sensitivity analysis adjustments had an effect on estimates of the association of statin and metformin use with the incidence of all cancers, liver cancer, and nonliver cancers in different models. Table 5 shows that the effects of statins remained significant in subgroups of different cDDDs of metformin use. When the data were stratified according to all cancers, liver cancer, and nonliver cancers analyzed, we still found a trend in the subgroup analysis. Persistent decreasing HRs directly related to increasing cDDDs of statin use were seen in the different cDDD metformin subgroups. P values for the trend within each subgroup were also significant. The dose-dependent chemopreventive effect of statin use existed in the all-cancer, liver cancer, and nonliver cancer groups. Table 6 shows the sensitivity analysis of adjusted HRs of metformin use in risk reduction for total cancers, liver cancer, and nonliver cancers during the follow-up period. The dose-dependent chemopreventive effect of metformin use existed in the total cancer group and in nonliver cancers without stratification into different cDDDs of statin use. The dose-dependent chemopreventive effect of metformin use existed for nonliver cancers with low to middle cDDDs of statin use. When metformin use was >365 cDDDs,

TABLE 2. Risk of Overall and Individual Cancer With Statin or Metformin Use in HBV Patients

All Group (n = 71,824)	Nonuser (n = 53,037)	Only-Metformin (n = 4774)	Only-Statin (n = 8861)	M + S (n = 5152)	
No. of Patients	**Adjusted HR**	**Adjusted HR**	**Adjusted HR**	**Adjusted HR**	
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
Total cancer	5434	1.00	1.03 (0.94–1.14)	0.60 (0.55–0.66)**	0.46 (0.40–0.52)**
Liver cancer	1735	1.00	1.25 (1.06–1.47)**	0.34 (0.27–0.42)**	0.35 (0.27–0.45)**
Nonliver cancer	3699	1.00	0.94 (0.83–1.06)	0.72 (0.65–0.80)**	0.50 (0.44–0.58)**
Lung cancer	439	1.00	0.91 (0.66–1.26)	0.51 (0.37–0.70)**	0.49 (0.34–0.71)**
Stomach cancer	144	1.00	0.77 (0.42–1.42)	0.59 (0.35–1.00)*	0.31 (0.14–0.69)**
Colorectal cancer	572	1.00	1.14 (0.85–1.53)	0.84 (0.65–1.09)	0.51 (0.35–0.75)**
Esophagus cancer	93	1.00	1.19 (0.61–2.31)	0.38 (0.17–0.86)*	0.30 (0.11–0.87)*
Pancreatic cancer	127	1.00	1.33 (0.74–2.41)	0.73 (0.40–1.31)	0.70 (0.34–1.43)
Prostate cancer	225	1.00	0.94 (0.59–1.50)	0.77 (0.51–1.15)	0.63 (0.37–1.05)
Breast cancer	288	1.00	0.80 (0.47–1.32)	0.91 (0.63–1.33)	0.56 (0.33–0.95)*
Cervical cancer	105	1.00	0.70 (0.31–1.58)	0.67 (0.35–1.25)	0.28 (0.10–0.79)*
Other cancers	1706	1.00	0.91 (0.76–1.09)	0.51 (0.42–0.64)**	0.75 (0.65–0.88)**

CI = confidence interval, HBV = hepatitis B virus, HR = hazard ratio, M = metformin, S = statin.

† Adjusted for baseline propensity score.
‡ Adjusted for baseline propensity score.
§ Study cohort for male patients.
¶ Study cohort for female patients.
* P < 0.05.
** P < 0.01.
*** P < 0.001.

4 | www.md-journal.com

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
the chemopreventive effect existed in the total cancer group and the nonliver cancer group with low to middle cDDDs of statin use.

DISCUSSION

HBV is a very important medical and public health problem in Taiwan. HBV-related HCC was the second leading cause of death in Taiwan in 2008; however, HBV results in HCC and also nonliver cancers in endemic populations. Finding effective chemopreventive agents for this population is a major issue in Taiwan. HBV carrier status might play a role in chemopreventive effects. Here, we compared patients with HBV infection. The study by Lai et al. showed that after adjusting for sex, age, and comorbidities, patients with diabetes mellitus (DM), HBV, and HCV taking metformin had the lowest HCC HR at 0.49 (95% CI, 0.37–0.66), followed by patients taking thiazolidinedione (HR, 0.56; 95% CI, 0.37–0.84). Taking insulin, sulfonylurea, and α-glycosidase inhibitors also reduced the HCC risk; however, the reductions were not statistically significant. Prior studies showed that the high incidence of HCC in diabetic patients can be reduced by using metformin. In our study, metformin did not reduce the development of liver cancers (Table 6). Our data demonstrated that HBV carriers can be protected from developing liver cancer by statin use with a dose-dependent effect (Table 5). Further, metformin use can reduce the risk for nonliver cancers in HBV-infected patients. When stratified by cDDDs of metformin use, outcomes showed that high cDDDs of metformin use (>365 cDDDs) could significantly reduce the adjusted HR of nonliver cancers to 0.63 (95% CI, 0.55–0.72) (Table 6). Compared with previous studies, our data

TABLE 3. Risk of Overall and Individual Cancer With Statin or Metformin Use in HBV Patients Stratified by sex

	Nonuser (n = 22,311)	Only-Metformin (n = 1954)	Only-Statin (n = 3992)	M + S (n = 2502)
Female				
No. of Patients	30,759	22,311	19,542	22,311
Adjusted HR				
(95% CI)				
Total cancer	2326	0.89 (0.76–1.04)	0.62 (0.54–0.71)***	0.37 (0.30–0.45)***
Liver cancer	577	1.17 (0.89–1.53)	0.35 (0.25–0.49)***	0.24 (0.15–0.38)***
Nonliver cancer	1659	0.78 (0.65–0.95)*	0.72 (0.62–0.84)***	0.41 (0.33–0.51)***
Lung cancer	171	0.67 (0.38–1.18)	0.48 (0.29–0.79)**	0.44 (0.25–0.77)**
Stomach cancer	48	1.54 (0.59–4.02)	1.19 (0.52–2.70)	0.53 (0.15–1.89)
Colorectal cancer	234	1.11 (0.70–1.74)	0.80 (0.54–1.19)	0.39 (0.21–0.71)**
Esophageus cancer	32	1.09 (0.43–2.75)	0.76 (0.33–1.73)	0.25 (0.06–1.08)
Pancreatic cancer	55	1.00	—	—
Prostate cancer	0	1.00	—	—
Breast cancer	288	0.80 (0.47–1.32)	0.91 (0.63–1.33)	0.56 (0.33–0.95)*
Cervical cancer	105	0.70 (0.31–1.58)	0.67 (0.35–1.25)	0.28 (0.10–0.79)*
Other cancers	733	0.64 (0.47–0.88)**	0.69 (0.55–0.87)**	0.41 (0.30–0.57)**

	Nonuser (n = 30,726)	Only-Metformin (n = 2820)	Only-Statin (n = 4869)	M + S (n = 2650)
No. of Patients	41,065	30,726	28,202	28,202
Adjusted HR				
(95% CI)				
Total cancer	3198	1.16 (1.02–1.31)*	0.59 (0.52–0.67)***	0.56 (0.48–0.66)***
Liver cancer	1158	1.29 (1.05–1.57)*	0.33 (0.25–0.43)***	0.45 (0.33–0.61)***
Nonliver cancer	2040	1.10 (0.94–1.28)	0.73 (0.63–0.85)***	0.61 (0.51–0.74)***
Lung cancer	268	1.12 (0.76–1.65)	0.55 (0.36–0.82)**	0.56 (0.34–0.91)*
Stomach cancer	96	0.55 (0.25–1.23)	0.41 (0.20–0.84)*	0.26 (0.09–0.73)*
Colorectal cancer	338	1.17 (0.79–1.73)	0.88 (0.62–1.25)	0.64 (0.39–1.05)
Esophageus cancer	61	1.13 (0.50–2.53)	0.32 (0.11–0.93)*	0.46 (0.16–1.37)
Pancreatic cancer	72	1.55 (0.71–3.35)	0.69 (0.30–1.59)	1.24 (0.53–2.90)
Prostate cancer	225	0.94 (0.59–1.50)	0.77 (0.51–1.15)	0.63 (0.37–1.05)
Breast cancer	0	—	—	—
Cervical cancer	0	1.00	—	—
Other cancers	973	1.16 (0.92–1.45)	0.82 (0.67–1.01)	0.64 (0.48–0.85)**

CI = confidence interval, HBV = hepatitis B virus, HR = hazard ratio, M = metformin, S = statin.

*Adjusted for baseline propensity score.

**P < 0.05.

***P < 0.001.
suggest that high cDDDSs of metformin use can result in a significant protective effect against nonliver cancers. An additive or synergistic protective effect of the combined use of statin and metformin against liver cancer was not seen in our study and will require randomized clinical trials to investigate the hypothesis that there is a synergistic protective effect of the combined statin and metformin use against liver cancer.

Among postulated mechanisms for such a benefit are the inhibition of cancer cell growth and suppression of human epidermal growth factor receptor 2 overexpression and inhibition of mammalian target of rapamycin (mTOR).33–35 Metformin activates the AMP-activated protein kinase (AMPK) pathway, a major sensor of the energy status of cells. Metformin is also an inhibitor of mTOR catalytic activity, inducing a decrease in blood glucose by decreasing hepatic gluconeogenesis and stimulating glucose uptake in muscles.36 Several other potential mechanisms for suppressing cancer growth by metformin in vitro and in vivo include inhibition of protein synthesis,37–40 reduction in circulating insulin levels,41–45 inhibition of the unfolded protein response,46,47 activation of the immune system,48,49 and eradication of cancer stem cells.50–54 Our study also confirmed that the protective effects of a statin in our study of liver cancer were similar to the outcomes seen by Tsan et al.55 Statin use among postulated mechanisms for such a benefit are the inhibition of cancer cell growth and suppression of human epidermal growth factor receptor 2 overexpression and inhibition of mammalian target of rapamycin (mTOR).33–35 Metformin activates the AMP-activated protein kinase (AMPK) pathway, a major sensor of the energy status of cells. Metformin is also an inhibitor of mTOR catalytic activity, inducing a decrease in blood glucose by decreasing hepatic gluconeogenesis and stimulating glucose uptake in muscles.36 Several other potential mechanisms

TABLE 4. Risk of Overall and Individual Cancer With Statin or Metformin Use in HBV Patients Stratified by Age

Age	No. of Patients	Nonuser (n = 37,675)	Only-Metformin (n = 1749)	Only-Statin (n = 3697)	M + S (n = 1675)
20–49	44,796				
Total cancer	2091	1.00	1.09 (0.88–1.35)	0.74 (0.62–0.88)***	0.52 (0.39–0.69)***
Liver cancer	706	1.00	1.29 (0.91–1.82)	0.49 (0.34–0.71)***	0.38 (0.21–0.70)***
Nonliver cancer	1385	1.00	1.00 (0.77–1.31)	0.86 (0.70–1.05)	0.58 (0.41–0.81)**
Lung cancer	94	1.00	0.43 (0.10–1.83)	0.41 (0.14–1.16)	0.78 (0.25–2.37)
Stomach cancer	35	1.00	—	—	—
Colorectal cancer	225	1.00	0.73 (0.35–1.54)	0.82 (0.49–1.36)	0.49 (0.21–1.17)
Esophageus cancer	42	1.00	0.76 (0.17–3.42)	0.36 (0.08–1.62)	0.31 (0.04–2.51)
Pancreatic cancer	51	1.00	2.21 (0.79–6.13)	1.47 (0.60–3.59)	1.14 (0.31–4.22)
Prostate cancer	22	1.00	—	—	—
Breast cancer	150	1.00	0.95 (0.38–2.36)	1.03 (0.55–1.95)	0.34 (0.08–1.39)
Cervical cancer	39	1.00	—	—	—
Other cancers	727	1.00	1.19 (0.85–1.67)	0.91 (0.69–1.20)	0.56 (0.35–0.89)*

CI = confidence interval, **HBV** = hepatitis B virus, **HR** = hazard ratio, **M** = metformin, **S** = statin.

* Adjusted for baseline propensity score.
† Study cohort for female patients.
‡ Study cohort for male patients.
§ Study cohort for male patients.
** P < 0.05.
*** P < 0.01.
**** P < 0.001.
Other uncommon cancers in HBV-infected patients.25 showed that statin use decreases the risk of nonliver cancers and cholesterol synthesis and HBV replication.56 Our study further suggests that statins and metformin may affect different pathways as and cervical cancers in older patients (age >20–49 years) patients (Table 4), and lung, stomach, and cervical cancers in older patients (age ≥50 years). Because statins and metformin may affect different pathways as chemopreventive agents, a synergistic effect may be seen; however, to prove this hypothesis, randomized studies with metabolic translational data are needed.

Our results showed that combined use of metformin and a statin had the greatest chemopreventive effect. Smaller HRs for different cDDDs of metformin use, and there were significant P values for the cDDD trend of statin use. In recent years, increasing evidence has suggested a strong association between DM and HCC.12,57–61 Our data suggested that middle to high cDDDs of statin use is necessary to reduce the risk of liver cancer.

We also analyzed the potential dose–response relationship of metformin use. When metformin use was >365 cDDDs, the chemopreventive effect was the strongest. Although high cDDDs of metformin use may mean poor control of DM and may result in a higher incidence of cancers,62–65 high cDDDs of metformin use (≥365 cDDDs) may still result in significant reductions in the risk of all cancers and nonliver cancers in patients with HBV infection. The data also suggest that statin and metformin were independent chemopreventive agents with dose–response effects in cancer prevention.

The strength of the present study is its large sample size. The results of our study suggest that the incidence of cancer in patients with HBV infection can be reduced by utilizing

Table 5. Sensitivity Analysis of Adjusted HRs of Statin Use in Risk Reduction of All Cancers, Liver Cancer, and Nonliver Cancers During the Follow-Up Period in the HBV-Infected Cohort

Statin Use	Adjusted HR (95% CI)	P for Trend			
	<28 cDDDs	28–90 cDDDs	91–365 cDDDs	>365 cDDDs	
Total cancer					
All patients	1.00	0.67 (0.59–0.77)**	0.50 (0.44–0.57)**	0.33 (0.27–0.40)**	<0.001
Metformin, cDDDs					
0–27	1.00	0.73 (0.63–0.85)**	0.52 (0.44–0.61)**	0.34 (0.26–0.43)**	<0.001
28–365	1.00	0.48 (0.33–0.72)**	0.53 (0.38–0.74)**	0.30 (0.17–0.53)**	<0.001
>365	1.00	0.53 (0.36–0.80)**	0.50 (0.37–0.69)**	0.42 (0.30–0.59)**	<0.001
Liver cancer					
All patients	1.00	0.47 (0.35–0.62)**	0.34 (0.26–0.46)**	0.18 (0.11–0.29)**	<0.001
Metformin, cDDDs					
0–27	1.00	0.48 (0.34–0.66)**	0.28 (0.18–0.42)**	0.18 (0.09–0.35)**	<0.001
28–365	1.00	0.25 (0.10–0.61)**	0.40 (0.21–0.76)**	0.14 (0.04–0.58)**	<0.001
>365	1.00	0.63 (0.33–1.23)	0.49 (0.28–0.85)	0.23 (0.11–0.51)	<0.001
Nonliver cancer					
All patients	1.00	0.76 (0.66–0.89)**	0.57 (0.49–0.66)**	0.39 (0.31–0.47)**	<0.001
Metformin, cDDDs					
0–27	1.00	0.84 (0.72–0.99)*	0.62 (0.52–0.74)**	0.39 (0.30–0.52)**	<0.001
28–365	1.00	0.61 (0.39–0.95)*	0.60 (0.41–0.89)*	0.38 (0.21–0.71)*	<0.001
>365	1.00	0.49 (0.30–0.81)**	0.51 (0.36–0.75)**	0.50 (0.34–0.73)**	<0.001

Based on Cox proportional regression with adjustment for propensity score. cDDD = cumulative defined daily dose; CI = confidence interval, HBV = hepatitis B virus, HR = hazard ratio.

* P < 0.05.
** P < 0.01.
*** P < 0.001.
TABLE 6. Sensitivity Analysis of Adjusted HRs of Metformin Use in Risk Reduction of All Cancers, Liver Cancer, and Nonliver Cancers During the Follow-Up Period in the HBV-Infected Cohort

Metformin Use	<28 cDDDs	28–90 cDDDs	91–365 cDDDs	>365 cDDDs	P for Trend		
	Adjusted HR (95% CI)						
Total cancer	All patients	1.00	1.17 (0.99–1.39)	0.98 (0.85–1.13)	0.70 (0.62–0.78)**	<0.001	
	Statin, cDDDs	0–27	1.00	1.32 (1.09–1.60)**	1.19 (1.01–1.41)**	0.87 (0.75–1.00)**	0.433
		28–365	1.00	0.81 (0.53–1.25)	0.85 (0.63–1.15)	0.62 (0.48–0.80)**	<0.001
		>365	1.00	1.09 (0.39–2.99)	0.75 (0.37–1.52)	0.92 (0.62–1.36)	0.581
Liver cancer	All patients	1.00	1.23 (0.89–1.69)	1.29 (1.02–1.65)	0.89 (0.72–1.09)	0.814	
	Statin, cDDDs	0–27	1.00	1.33 (0.94–1.88)	1.59 (1.22–2.06)**	1.04 (0.82–1.32)	0.091
		28–365	1.00	0.95 (0.34–2.63)	1.35 (0.72–2.54)	1.31 (0.80–2.16)	0.216
		>365	1.00	2.41 (0.30–19.34)	0.76 (0.09–6.08)	1.48 (0.52–4.23)	0.529
Nonliver cancer	All patients	1.00	1.15 (0.94–1.41)	0.86 (0.72–1.02)	0.63 (0.55–0.72)**	<0.001	
	Statin, cDDDs	0–27	1.00	1.31 (1.04–1.65)	1.02 (0.82–1.26)	0.79 (0.67–0.94)**	0.037
		28–365	1.00	0.78 (0.49–1.27)	0.76 (0.54–1.07)	0.49 (0.37–0.67)**	<0.001
		>365	1.00	0.92 (0.29–2.94)	0.75 (0.36–1.59)	0.85 (0.55–1.30)	0.407

Based on Cox proportional regression with adjustment for propensity score. cDDD = cumulative defined daily dose, CI = confidence interval, HBV = hepatitis B virus, HR = hazard ratio.
* P < 0.05.
** P < 0.01.
*** P < 0.001.

Preventive strategies. This is also the first article that suggests a dose–response effect and synergistic effect of statin and metformin use in reducing the incidence of all kinds of cancers.

Potential limitations of this study should be noted. First, in recent years, DM appears to be a significant risk factor for developing several malignancies, including cancers of the breast, endometrium, pancreas, and liver. This may obscure the true value of these drugs. Second, several unmeasured confounders, including body mass index, smoking, alcohol intake, and other over-the-counter drug use, which are associated with cancers, were not included in our database. Third, we were unable to contact patients directly about their use of statins or metformin because the database did not include identifying data. Thus, we presumed that all prescribed medications were actually taken by patients as prescribed, which may have overestimated the actual ingested dosage, as some degree of noncompliance is always expected. Finally, because data on drug prescriptions were not complete in 1996, we could only evaluate statin and metformin use after 1997 because the use of these drugs before 1997 could not be captured for our analysis. This could have underestimated the cDDD and dose–response effects.

CONCLUSIONS

This study is a population-based cohort study investigating the protective effect of statin and metformin against cancer events in patients with HBV infection. Our study further demonstrated that a statin and metformin were independent chemopreventive agents with dose–response effects in reducing the incidence of cancer. In addition to the dose–response effect, there appeared to be a synergistic chemopreventive effect of statin and metformin use for a number of different cancers. A prospective randomized trial evaluating the chemopreventive effect of a statin alone, metformin alone, and the combination is being developed.

REFERENCES

1. Chen G, Lin W, Shen F, et al. Chronic hepatitis B virus infection and mortality from non-liver causes: results from the Haimen City cohort study. Int J Epidemiol. 2003;34:132–137.
2. Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Cancer Res. 2003;9:10–19.
3. Wong WW, Dimitroulakos J, Minden MD, et al. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia. 2002;16:508–519.
4. Danesh FR, Sadeghi MM, Amro N, et al. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc Nat Acad Sci U S A. 2002;99:8301–8305.
5. Blanco-Colio LM, Manoz-Garcia B, Martin-Ventura JL, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors decrease Fas ligand expression and cytotoxicity in activated human T lymphocytes. Circulation. 2003;23:1506–1513.
6. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscl Thrombo Vascul Biol. 2001;21:1712–1719.

7. Shibata MA, Kavanagh C, Shibata E, et al. Comparative effects of lovastatin on mammary and prostate oncogenesis in transgenic mouse models. Carcinogenesis. 2003;24:453–459.

8. Rao S, Porter DC, Chen X, et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Nat Acad Sci U S A. 1999;96:7797–7802.

9. Mallat A, Preaux AM, Blazejewski S, et al. Effect of simvastatin, an HMG-CoA reductase inhibitor, on cancer cell growth and induction of apoptosis. Cancer Res. 1997;57:604–609.

10. Bost F, Sahra IB, Le Marchand-Brustel Y, et al. Metformin and cancer therapy. Curr Opin Oncol. 2012;24:103–108.

11. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–2623.

12. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–468.

13. Renehan AG, Frystyk J, Flyvbjerg A. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab. 2006;17:328–336.

14. Hess D, Chisholm JW, Igal RA. Inhibition of stearylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010;5:e11394.

15. Gray-Babil J, Rao S, Keyomarsi K. Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res. 1997;57:694–699.

16. Rao S, Lowe M, Herliuez TW, et al. Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene. 1998;17:2393–2402.

17. Furuta E, Pai SK, Zhan R, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 2008;68:1003–1011.

18. Ahern TP, Pedersen L, Tarp M, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Nat Cancer Inst. 2011;103:1461–1468.

19. Bardou M, Barkun A, Martel M. Effect of statin therapy on colorectal cancer. Gut. 2010;59:1572–1585.

20. Duke KM, Coleman CI, Henyan NN, et al. Statins and cancer risk: a meta-analysis. JAMA. 2006;295:74–80.

21. Bonovas S, Filoussi K, Flordellis CS, et al. Statins and the risk of colorectal cancer: a meta-analysis of 18 studies involving more than 1.5 million patients. J Clin Oncol. 2007;25:3462–3468.

22. Libby G, Donnelly LA, Donnan PT, et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32:1620–1625.

23. Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevent Res. 2010;3:1451–1461.

24. Noto H, Goto A, Tsujiyotomo T, et al. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7:e43411.

25. Lehman DM, Lorenzo C, Hernandez J, et al. Statin use as a moderator of metformin effect on risk for prostate cancer among type 2 diabetic patients. Diabetes Care. 2012;35:1002–1007.

26. Wu SY, Lin KC, Chiu JF, et al. Combination of metformin and statins significantly enhanced the local radio therapeutic effect and attenuated the lung metastasis of Lewis lung carcinoma (LLC) animal model. Int J Rad Oncol Biol Phys. 2014;90:S800–S801.

27. Darwish Murad S, Kim WR, Harnois DM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for periportal cholangiocarcinoma at 12 US centers. Gastroenterology. 2012;143:88–98.

28. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–1305.

29. Donadon V, Balbi M, Gheretti M, et al. Antiangiogenic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol. 2009;15:2506–2511.

30. Donadon V, Balbi M, Mas MD, et al. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010;30:750–758.

31. Hassan MM, Curley SA, Li D, et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer. 2010;116:1938–1946.

32. Lai SW, Chen PC, Liao KF, et al. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with antiangiogenic therapy: a population-based cohort study. Am J Gastroenterol. 2012;107:46–52.

33. Alimova IN, Liu B, Fan Z, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell cycle. 2009;8:909–915.

34. Vazquez-Martín A, Oliveras-Ferraro C, Menendez JA. The antidiabetic drug metformin suppresses HER2 oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast cancer cells. Cell cycle. 2009;8:88–96.

35. Vazquez-Martín A, Oliveras-Ferraro C, del Barco S, et al. Menendez JA. mTOR inhibitors and the antidiabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb). Clin Translational Oncol. 2009;11:455–459.

36. Belda-Iniesta C, Pernia O, Simo R. Metformin: a new option in cancer treatment. Clin Translational Oncol. 2011;13:363–367.

37. Browne GJ, Finn SG, Proud CG. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chemistry. 2004;279:12220–12231.

38. Schmelze T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–262.

39. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–590.

40. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–226.

41. Wolf I, Sadetzki S, Catane R, et al. Diabetes mellitus and breast cancer. Lancet Oncol. 2005;6:103–111.

42. Huxley R,Ansary-Moghaddam A, Berrington de Gonzalez A, et al. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–2083.

43. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Nat Cancer Inst. 2005;97:1679–1687.

44. Friberg E, Orsini N, Mantzoros CS, et al. Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia. 2007;50:1365–1374.

45. Becker S, Dossus L, Kaaks R. Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arc Physiol Biochem. 2009;115:86–96.

46. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Ann Rev Biochem. 2005;74:739–789.
47. Saito S, Furuno A, Sakurai J, et al. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. *Cancer Res.* 2009;69:4225–4234.

48. Dilman VM, Berstein LM, Ostroumova MN, et al. Metabolic immunodepression and metabolic immunotherapy: an attempt of improvement in immunologic response in breast cancer patients by correction of metabolic disturbances. *Oncology.* 1982;39:13–19.

49. Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature.* 2009;460:103–107.

50. Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. *Cancer Res.* 2009;69:7507–7511.

51. Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. *Breast Cancer Res Treat.* 2011;126:355–364.

52. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, et al. Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. *Cell Cycle.* 2010;9:3807–3814.

53. Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. *Cell.* 2008;133:704–715.

54. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, et al. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. *Cell Cycle.* 2010;9:4461–4468.

55. Tsan YT, Lee CH, Wang JD, et al. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. *J Clin Oncol.* 2012;30:623–630.

56. Ikeda M, Abe K, Yamada M, et al. Different anti-HCV profiles of statins and their potential for combination therapy with interferon. *HEPATOLOGY.* 2006;44:117–125.

57. Wang C, Wang X, Gong G, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. *Int J Cancer.* 2012;130:1639–1648.

58. Inoue M, Iwasaki M, Otani T, et al. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. *Arch Intern Med.* 2006;166:1871–1877.

59. Lai MS, Hsieh MS, Chiu YH, et al. Type 2 diabetes and hepatocellular carcinoma: a cohort study in high prevalence area of hepatitis virus infection. *Hepatology.* 2006;43:1305–1302.

60. Torisu Y, Ikeda K, Kobayashi M, et al. Diabetes mellitus increases the risk of hepatocarcinogenesis in patients with alcoholic cirrhosis: a preliminary report. *Hepatol Res.* 2007;37:517–523.

61. Tazawa J, Maeda M, Nakagawa M, et al. Diabetes mellitus may be associated with hepatocarcinogenesis in patients with chronic hepatitis C. *Dig Dis Sci.* 2002;47:710–715.

62. Ben Q, Cai Q, Li Z, et al. The relationship between new-onset diabetes mellitus and pancreatic cancer risk: a case-control study. *Eur J Cancer.* 2011;47:248–254.

63. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. *Clin Gastroenterol Hepatol.* 2006;4:369–380.

64. Heidemann C, Boeing H, Pischon T, et al. Association of a diabetes risk score with risk of myocardial infarction, stroke, specific types of cancer, and mortality: a prospective study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. *Eur J Epidemiol.* 2009;24:281–288.

65. Saltzman BS, Doherty JA, Hill DA, et al. Diabetes and endometrial cancer: an evaluation of the modifying effects of other known risk factors. *Am J Epidemiol.* 2008;167:607–614.