Mucin gene expression in bile of patients with and without gallstone disease, collected by endoscopic retrograde cholangiography

Alexander Vilkin, Alex Geller, Zohar Levi, Yaron Niv

Abstract

AIM: To investigate the pattern of mucin expression and concentration in bile obtained during endoscopic retrograde cholangiography (ERC) in relation to gallstone disease.

METHODS: Bile samples obtained at ERC from 29 consecutive patients, 17 with and 12 without gallstone disease were evaluated for mucin content by gel filtration on a Sepharose CL-4B column. Dot blot analysis for bile mucin apoproteins was performed with antibodies to Mucin 1 (MUC1), MUC2, MUC3, MUC5AC, MUC5B and MUC6. Staining intensity score (0-3) was used as a measure of antigen expression.

RESULTS: MUC1, MUC2, MUC3, MUC5AC, MUC5B and MUC6 were demonstrated in 34.4%, 34.4%, 51.7%, 51.7%, 55.1% and 27.5% of bile samples, respectively. The staining intensity scores were 0.62 ± 0.94, 0.58 ± 0.90, 0.79 ± 0.97, 1.06 ± 1.22, 1.20 ± 1.26 and 0.41 ± 0.73, respectively. Mean mucin concentration measured in bile by the Sepharose CL-4B method was 22.8 ± 24.0 mg/mL (range 3.4-89.0 mg/mL). Mean protein concentration was 8.1 ± 4.8 mg/mL (range 1.7-23.2 mg/mL).

CONCLUSION: High levels of MUC3, MUC5AC and MUC5B are expressed in bile aspirated during ERC examination. A specific pattern of mucin gene expression or change in mucin concentration was not found in gallstone disease.

INTRODUCTION

Mucins are high-molecular-weight glycoproteins containing oligosaccharide side-chains attached to serine or threonine residues of the apomucin backbone by O-glycosidic linkages\[1-4\]. Several mucin (MUC) genes located on different chromosomes have been sequenced and cloned\[5-14\]. These genes encode apoproteins with specific tandem repeats of amino acids. Antibodies have been developed against the tandem repeats, enabling the identification of specific mucins by immunohistochemistry.

Mucins can be divided into two classes: gel-forming and membrane-associated. Bile mucin has two main domains: one rich in serine, threonine and proline, which contains the majority of the covalently-bound carbohydrates; and another, nonglycosylated domain, enriched in serine, glutamic acid, glutamine and glycine, which binds hydrophobic ligands such as bilirubin. An increased expression of gel-forming mucin, such as MUC5AC and MUC2, was found in patients with hepatolithiasis\[15\]. Although bile-duct mucin production has been extensively studied in malignant diseases\[16-22\], little is known about mucin synthesis and expression in cholelithiasis, choledochoolithiasis and cholangitis.

The aim of the present study was to examine mucin concentration and specific expression in bile samples of patients undergoing endoscopic retrograde cholangiography (ERC) for the evaluation...
of symptomatic bile duct disease, and to investigate the possible association between mucin expression and the clinical states of gallstone disease.

MATERIALS AND METHODS

Sampling
Twenty-nine patients who underwent ERC due to symptomatic bile duct disease were included in the study. Background data and results for ultrasound examinations and liver function tests were obtained from the files. Bile was collected by aspiration, as completely as possible, after the papilla was cannulated and before proceeding to any other procedures, such as papillotomy or choledochal stone removal. The Institutional Review Board (Ethical Committee) of Rabin Medical Center approved the study.

Bile analysis
To determine mucin concentration in the bile, we used the gel-filtration technique, as previously described[23,24]. Briefly, after centrifugation to remove debris, samples of bile were subjected to gel filtration on Sepharose CL-4B columns (1 × 40 cm). We used the closed-column system of Pharmacia Biotech (Cambridge, MA, USA): peristaltic pump, P-1; columns and adapters, C10; fraction collector, Redifrac and Ultraspec 1000; VV/visible spectrophotometer, and chart reader, 80-2109-03. Samples of 2 mL were applied to the columns and eluted with 10 mmol/L Tris-HCl buffer at pH 8.0. Fractions of 1 mL were collected, and optical density was determined at a wavelength of 280 nm. Findings were correlated with a standard curve of readings of mucin purified from porcine stomach (1% bound sialic acid), purchased from Sigma (St. Louis, MO, USA). The amount of protein was estimated by the Laury method.

Dot blot analysis
Samples were subjected to dot blot analysis on nitrocellulose membranes. Membranes were incubated with monoclonal antibodies to Mucin 1 (MUC1), MUC2, MUC3, MUC5AC, MUC5B and MUC6 (all mouse), followed by incubation with anti-mouse and IgG labeled with biotin. Antibody binding was detected with streptavidin-horseradish peroxide and chemiluminescent reagents (EZ-ECL, Beit-Haemek, Israel). Monoclonal antibodies were purchased from Neomarkers (Fremont, CA, USA). Staining intensity was scored (0-3) as a measure of antigen expression.

Statistical analysis
All results are expressed as mean ± SD. The analyses included descriptive statistics, χ² test, Student’s t-test, and linear regression analysis. P < 0.05 was considered significant.

RESULTS

Study population
The study group consisted of 13 men and 16 women aged 64.5 ± 16.8 years (Table 1). A gallstone disease was diagnosed in 17 patients and excluded in 12 patients. The indications for ERC, abdominal ultrasound results, and liver function test results before ERC are presented in Table 1.

Clinical parameter	n (%) or mean ± SD
Age	64.5 ± 16.8
Range	24-86
Sex	
Men	13 (44.8)
Women	16 (55.2)
Main indication for ERC	
Cholelithiasis/choledocholithiasis/dilated CBD	16 (55.2)
Cholangitis	5 (17.2)
SOL of papilla	3 (10.3)
Unresolved pancreatitis	2 (6.9)
Abdominal ultrasound results	
Dilated CBD	15 (51.7)
Cholelithiasis	12 (41.4)
Dilated intrahepatic ducts	10 (34.5)
Cholelithiasis	3 (10.3)
Pancreatitis	1 (3.4)
CBD width (mm)	
mean ± SD	8.7 ± 3.7
Range	6-18
Liver function tests, mean ± SD (range)	
Total bilirubin (mg/dL)	4.5 ± 6.9 (0.3-32)
Direct bilirubin (mg/dL)	3.0 ± 4.9 (0.1-23)
Alanine aminotransferase (U/L)	206.5 ± 243.3 (12-895)
Aspartate aminotransferase (U/L)	156.4 ± 185.6 (15-812)
Gamma glutamyl transpeptidase (U/L)	369.4 ± 370.4 (13-1337)
Alkaline phosphatase (U/L)	291.0 ± 371.4 (56-1893)

ERC: Endoscopic retrograde cholangiography; CBD: Common bile duct; SOL: Space-occupying lesion.

ERC results
The ERC findings are shown in Table 2. Linear regression analysis revealed a positive correlation between the mean common bile duct (CBD) width measured on abdominal ultrasound and ERC. There was also a positive correlation between ultrasound findings of cholelithiasis and ERC findings of dilated CBD; between the presence of a clinical syndrome of cholangitis and ultrasound findings of pancreatitis; and between increased concentrations of serum direct bilirubin and ERC findings of CBD stricture. A wider CBD was demonstrated in patients with evidence of choledocholithiasis on ERC (10.90 ± 4.97 mm) than in patients without CBD stones (7.44 ± 1.98 mm). Information from the ultrasound studies and ERC results was used to stratify the patients into a group with gallstone related disease, and a group without gallstone disease.

Mucin concentration in bile
Mean ± SD mucin concentration in bile, measured by the Sepharose CL-4B method, was 22.8 ± 24.0 mg/mL (range 3.4-89.0 mg/mL). Mean protein concentration was 8.1 ± 4.8 mg/mL (range 1.7-23.2 mg/mL). Mucin concentration in bile was not significantly different between men and women (24.68 ± 27.29 mg/mL vs 21.38 ± 21.96 mg/mL), patients younger or older than 70
Mucin expression in bile

The expression of the mucin genes examined by dot blot analysis is shown in Table 3. Linear regression analysis revealed a positive correlation between MUC5AC and MUC5B expression [MUC5B = 0.273 + (0.874 × MUC5AC); R = 0.845]. There was also a positive correlation between MUC1 expression and papillary enlargement on ERC. The correlation between the expressions of the different MUC genes in bile is shown in Table 4.

Comparison of patients with and without gallstone disease

Summarizing the clinical and imaging data allowed the patients to be stratified into a group with diagnosed gallstone disease (n = 17), and a group with no evidence of gallstone disease (n = 12). There were no significant differences in gender, age, laboratory results, ultrasound finding, indication and results of ERC, except in the presence of gallstone disease (Table 5). Mucin concentration in bile was similar in both groups (21.68 ± 7.87 mg/mL vs 24.54 ± 24.10 mg/mL, P = 0.759), as was mucin gene expression (Table 5).

DISCUSSION

Different mucin genes are expressed in bile, and the role of each is unclear. Bile mucin is derived from pure hepatic bile, gallbladder-concentrated bile, and mucin secreted by the bile duct epithelium. Ko et al. found that in patients with biliary sludge, mucin concentration was higher in bile collected by ERC than in gallbladder bile. They concluded that the biochemical composition of hepatic bile is modified during residence in the gallbladder, contributing to sludge formation, and that hepatic bile samples are therefore inappropriate for microscopic detection of microlithiasis. However, although the mucin concentration in hepatic bile in the present study was similar to that reported by Ko et al. [22.8 ± 24.0 mg/mL vs 20 ± 30 mg/mL], the concentration of mucin in gallbladder bile in our previous study was 17.5 ± 16.4 mg/mL, close to that of hepatic bile and much lower than the 450 ± 290 mg/mL found by Ko et al. Thus, our studies do not support the assumption of Ko et al., and this controversy requires further investigation.

We demonstrated a higher expression of two secretory mucin proteins, MUC5AC and MUC5B, and the membrane-bound protein, MUC3. MUC5AC and MUC5B are both gel-forming mucins that may increase the viscosity of bile in cases of symptomatic bile duct disease. Since we could not find a change in mucin concentration or in these specific genes expressions in bile derived from patients with or without gallstone disease, our findings do not support a role for MUC5AC or MUC5B in the etiopathogenesis of gallstones.

Zen and coworkers described a lipopolysaccharide-induced increase in MUC2 and MUC5AC expression in cultured murine biliary epithelial cells, which was mediated by tumor necrosis factor alpha. They concluded that since lipopolysaccharide is a bacterial component, bacterial infection may be involved in the altered mucin secretion in the intrahepatic biliary tree and, thereby, in the lithogenesis of hepatolithiasis. Wandenhaute and coworkers noted a strong mRNA expression of MUC5B, MUC3, and MUC6, and a weak expression of MUC1, MUC2, and MUC5AC, in biliary epithelial cells. Lee and Liu found that MUC3 and MUC5B were the main mucin genes expressed in the biliary epithelium of stone-containing intrahepatic bile ducts and normal controls. Mucin gene expression

Table 2 Results of ERC (n = 29)

Clinical parameter	n (%) or mean ± SD
Diagnosis	
CBD width (mm)	9.4 ± 4.0
Range	6-18
Cholelithiasis	11 (37.9)
Pigmented stones	4 (13.8)
Cholecystitis	5 (17.2)
Enlarged papilla	7 (24.1)
Dilated CBD	15 (51.7)
CBD stricture	4 (13.8)
Intrahepatic ducts dilation & stricture	3 (10.3)
Torn papilla	3 (10.3)
Bile leakage	1 (3.4)
Mirizzi syndrome	1 (3.4)
Treatment	
Sphincterotomy	16 (55.2)
Biopsy of the papilla	5 (17.2)
Stent insertion	2 (6.9)
Cholecystostomy	1 (3.4)

Table 3 Mucin gene expression in bile collected in ERC

Mucin gene	Score mean ± SD (range)	Cases (%)
MUC1	0.62 ± 0.94 (0-3)	34.4
MUC2	0.58 ± 0.90 (0-3)	34.4
MUC3	0.79 ± 0.97 (0-3)	51.7
MUC5AC	1.06 ± 1.22 (0-3)	51.7
MUC5B	1.20 ± 1.26 (0-3)	55.1
MUC6	0.41 ± 0.73 (0-2)	27.5

Table 4 Correlation between the expression of the different mucin genes in bile collected by ERC

Mucin gene	Correlation with mucin gene	P value
MUC1	MUC2	0.0001
	MUC3	0.0001
	MUC5AC	0.00125
	MUC5B	0.049
	MUC6	0.0001
MUC2	MUC3	0.0001
	MUC5AC	0.0080
	MUC5B	0.0001
MUC3	MUC5AC	0.0003
	MUC5B	0.0003

years (18.87 ± 15.72 mg/mL vs 26.59 ± 30.07 mg/mL), and patients with or without cholelithiasis (22.46 ± 24.94 mg/mL vs 23.11 ± 24.29 mg/mL).
was altered in dysplastic preneoplastic cells.

The main weakness of our study is the absence of healthy controls. We could not compare mucin concentration and gene expression in the cholestatic situation with that of normal bile collected in ERC, since ERC is usually performed with therapeutic intent in symptomatic patients.

In the present study, we observed a positive correlation between MUC1 expression in bile and the expression of all the other mucin genes examined. Wang and coworkers reported a similar result in mice. They described a positive correlation between MUC1 and MUC5AC expression, indicating a gene-gene interaction that might affect the accumulation of mucin gel and cholesterol gallstone formation.

In summary, we could not demonstrate a change in mucin secretion and expression between patients with and without gallstone disease, or support the role of mucin in the etiopathogenesis of biliary sludge or stone formation.

Table 5 Comparison between patients with \((n = 17)\) and without \((n = 12)\) gallstones

Gallstones disease \(n\) (%)	No evidence for gallstones \(n\) (%)	\(P\) value	
Age, mean ± SD (years)	61.35 ± 20.13	69.00 ± 9.38	0.234
Sex (men)	8 (47.1)	5 (41.7)	0.927
Main indication for ERC			
Jaundice	7 (41.1)	9 (75)	0.153
Dilated CBD	4 (23.5)	1 (8.0)	0.554
Cholangitis	3 (20.0)	0	0.288
SOL of papilla	1 (6.0)	2 (17.0)	0.737
Unresolved pancreatitis	2 (12.0)	0	0.288
Abdominal ultrasound results			
Dilated CBD	10 (59.0)	5 (42)	0.599
Cholelithiasis	12 (70.6)	0	< 0.0001
Dilated intrahepatic ducts	6 (40)	4 (30)	0.873
Choledocholithiasis	3 (17.6)	0	0.360
Pancreatitis	1 (5.9)	0	0.861
CBD width (mm), mean ± SD	9.65 ± 4.39	7.50 ± 2.24	0.132
Liver function tests, mean ± SD			
Total bilirubin (mg/dL)	5.12 ± 7.83	3.68 ± 5.52	0.589
Direct bilirubin (mg/dL)	3.38 ± 5.53	2.55 ± 4.03	0.662
Alanine aminotransferase (U/L)	245.41 ± 270.76	151.58 ± 196.14	0.315
Aspartate aminotransferase (U/L)	167.29 ± 150.54	141.08 ± 233.11	0.715
Gamma glutamyl transpeptidase (U/L)	443.47 ± 388.13	264.50 ± 331.14	0.206
Alkaline phosphatase (U/L)	352.88 ± 449.95	185.08 ± 174.44	0.323
ERC diagnosis			
CBD width (mm), mean ± SD	9.59 ± 3.99	9.17 ± 4.37	0.790
Cholelithiasis	11 (64.7)	0	0.002
Pigmented stones	4 (24.0)	0	0.198
Cholelithiasis	5 (29.0)	0	0.122
Enlarged papilla	3 (16.0)	0	0.533
Dilated CBD	10 (60.0)	5 (40.0)	0.494
CBD stricture	1 (10.0)	3 (30.0)	0.376
Torn papilla	3 (17.6)	0	0.360
Treatment			
Sphincterotomy	12 (71.0)	4 (33.0)	0.099
Biopsy of the papilla	1 (10.0)	4 (33.0)	0.288
Mucin gene score, mean ± SD			
Mucin concentration (mg/mL)	21.68 ± 7.87	24.54 ± 24.1	0.759
Protein concentration (mg/mL)	7.87 ± 4.53	8.61 ± 5.48	0.694
MUC1	0.59 ± 0.87	0.66 ± 1.07	0.848
MUC2	0.53 ± 0.80	0.66 ± 1.07	0.711
MUC3	0.88 ± 0.93	0.66 ± 1.07	0.560
MUC5AC	0.47 ± 0.80	0.33 ± 0.65	0.621
MUC5B	1.23 ± 1.25	0.83 ± 1.19	0.394
MUC6	1.29 ± 1.26	1.08 ± 1.31	0.667

COMMENTS

Background

Secretory mucins are gel-forming and may increase bile viscosity. The biochemical composition of hepatic bile is modified during residence in the gallbladder, contributing to sludge formation. An increased expression of gel-forming mucin, such as MUC5AC and MUC2, was found in patients with hepatolithiasis. Little is known about mucin synthesis and expression in cholelithiasis, choleodocholithiasis and cholangitis.

Innovations and breakthroughs

High levels of MUC3, MUC5AC and MUC5B are expressed in bile aspirated during endoscopic retrograde cholangiography examination. A specific pattern of mucin gene expression or change in mucin concentration was not found in gallstone disease.

Applications

Expression of other mucin genes or changes in concentration should be investigated in gallstone disease. The role of mucin synthesis and secretion in gallstone formation is still unknown.

Peer review

The manuscript by Vilkin et al describes the analysis of certain members of the Mucin gene family in the bile of patients with and without gallstone disease. The authors demonstrate the presence of Mucin 1 (MUC1), MUC2, MUC3, MUC5AC, MUC5B and MUC6 in the bile of all patients, but there was no correlation to
REFERENCES

1 Neutra MR, Forster JF. Gastrointestinal mucus: synthesis, secretion and function. In: Johnson DF, ed. Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press, 1987; 975-1009

2 Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DT, Kim YS. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem 1989; 264: 6480-6487

3 Gum JR, Hicks JW, Swallow DM, Lagace RL, Byrd JC, Lamport DT, Siddiki B, Kim YS. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun 1990; 171: 407-415

4 Kim YS. Mucin glycoprotein alterations in the gastrointestinal and metastasis. Eur J Gastroenterol Hepatol 1993; 5: 219-225

5 Abe M, Kufe D. Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated (MUC1) gene. Proc Natl Acad Sci USA 1993; 90: 282-286

6 Porchet N, Nguyen VC, Dufosse J, Audie JP, Guyonnet-Duperat V, Gross MS, Denis C, Degand P, Bernheim A, Aubert JP. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem Biophys Res Commun 1991; 175: 414-422

7 Meezaman D, Charles P, Daskal E, Polyméropoulos MH, Martin BM, Rose MC. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheo-bronchial mucin (MUC5). J Biol Chem 1994; 269: 12932-12939

8 Toribara NW, Robertson AM, Ho SB, Kuo WL, Gum E, Hicks JW, Gum Jr Jr, Byrd JC, Siddiki B, Kim YS. Human gastric mucin. Identification of a unique splice variant by expression cloning. J Biol Chem 1993; 268: 5879-5885

9 Bobek LA, Tsai H, Biesbrock AR, Levine MJ. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem 1993; 268: 20563-20569

10 D’Cruz OJ, Dunn TS, Pichan P, Hass GG Jr, Sachdev GP. Antigenic cross-reactivity of human tracheal mucin with human sperm and trophoblasts correlates with the expression of mucin 8 gene messenger ribonucleic acid in reproductive tract tissues. Fertil Steril 1996; 66: 316-326

11 Lapensée L, Paquette Y, Bleau G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil Steril 1997; 68: 702-708

12 Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem 2001; 276: 18327-18336

13 Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem 2001; 276: 27371-27375

14 Gum JR Jr, Crawley SC, Hicks JW, Zymkowski DE, Kim YS. MUC17, a novel membrane-tethered mucin. Biochem Biophys Res Commun 2002; 291: 466-475

15 Sasaki M, Nakamura Y, Kim YS. Expression of apomucins in the intrahepatic biliary tree in hepatolithiasis differs from that in normal liver and extrahepatic biliary obstruction. Hepatology 1998; 27: 54-61

16 Goto M, Shibahara H, Tamada S, Hamada T, Oda K, Nagino M, Nagasaka T, Imai K, Nimura Y, Yonezawa S. Abrerrant expression of pyloric gland-type mucin in mucin-producing biliary duct carcinomas: a clear difference between the core peptide and the carbohydrate moiety. Pathol Int 2005; 55: 464-470

17 Yamamoto K, Ueno T, Kawaoka T, Hazama S, Fukui M, Suehiro Y, Hanamaka Y, Ikematsu Y, Imai K, Oka M, Hinoda Y. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res 2005; 25: 3575-3579

18 Sasaki M, Nakamura Y, Ho SB, Kim YS. Cholangiocarcinomas arising in cirrhosis and combined hepatocellular-cholangiocarcinoma share apomucin profiles. Am J Clin Pathol 1998; 109: 302-308

19 Amaya S, Sasaki M, Watanabe Y, Tsui WM, Tsuneyama K, Harada K, Nakamura Y. Expression of MUC1 and MUC2 and carbohydrate antigen Tn change during malignant transformation of biliary papillomatosis. Histopathology 2001; 38: 550-560

20 Wongkham S, Sheehan JK, Boonla C, Patrakittjomjorn S, Howard M, Kirkham S, Sripa B, Wongkham C, Bhdhisawasdi V. Serum MUC5AC mucin as a potential marker for cholangiocarcinoma. Cancer Lett 2003; 195: 93-99

21 Boonla C, Wongkham S, Sheehan JK, Wongkham C, Bhdhisawasdi V, Tepsiri N, Patrakittjomjorn S. Prognostic value of serum MUC5AC mucin in patients with cholangiocarcinoma. Cancer 2003; 98: 1438-1443

22 Ishikawa A, Sasaki M, Ohira S, Ohta T, Oda K, Nimura Y, Chen MF, Jan YY, Yeh TS, Nakamura Y. Abrerrant expression of CDX2 is closely related to the intestinal metaplasia and MUC2 expression in intraductal papillary neoplasm of the liver in hepatolithiasis. Lab Invest 2004; 84: 629-638

23 Morgenstern S, Koren R, Moss SF, Fraser G, Okon E, Niv Y. Does Helicobacter pylori affect gastric mucin expression? Relationship between gastric antral mucin expression and H. pylori colonization. Eur J Gastroenterol Hepatol 2001; 13: 19-23

24 Niv Y, Hardy B, Koren R, Rodionov G, Fraser GM. Association between gastric acid and mucin secretion in dyspeptic patients. Digestion 2002; 65: 141-148

25 Ko CW, Schulte SJ, Lee SP. Biliary sludge is formed by modification of hepatic bile by the gallbladder mucosa. Clin Gastroenterol Hepatol 2003; 3: 672-678

26 Vilkin A, Nudelman I, Morgenstern S, Geller A, Bar Dayan Y, Levi Z, Rodionov G, Hardy B, Konikoff F, Gobbic D, Niv Y. Gallbladder inflammation is associated with increase in mucin expression and pigmented stone formation. Dig Dis Sci 2007; 52: 1613-1620

27 Zen Y, Harada K, Sasaki M, Tsuneyama K, Katayangi K, Yamamoto Y, Nakamura Y. Lipopolysaccharide induces overexpression of MUC2 and MUC5AC in cultured biliary epithelial cells: possible key phenomenon of hepatolithiasis. Am J Pathol 2002; 161: 1475-1484

28 Vandenhoute B, Buisine MF, Debailleul V, Clément B, Moniaux N, Dieu MC, Degand P, Porchet N, Aubert JP. Mucin gene expression in biliary epithelial cells. J Hepatol 1997; 27: 1057-1066

29 Lee KT, Liu TS. Altered mucin gene expression in stone-containing intrahepatic bile ducts and cholangiocarcinomas. Dig Dis Sci 2001; 46: 2166-2172

30 Wang HH, Afdhal NH, Gendler SJ, Wang DQ. Targeted disruption of the murine mucin gene 1 decreases susceptibility to cholesterol gallstone formation. J Lipid Res 2004; 45: 438-447