Effect of Eight Weeks Plyometric Training on Some Kinematic Parameters, Horizontal Jumping Power, Agility, and Body Composition in Elite Parkour Athletes

*Abdolrasoul Daneshjoo1, Soudabeh Raeisi2

1. Department of Sport Biomechanics and Corrective Exercise, East Tehran Branch, Islamic Azad University, Tehran, Iran.
2. Department of Sport Injuries and Corrective Exercise, East Tehran Branch, Islamic Azad University, Tehran, Iran.

Objective: A high correlation between lower limb explosive power and muscular strength, production of high power levels in the shortest time, and high level of agility are essential to achieve optimal performance in Parkour. It seems that plyometric exercises can make it possible to achieve the highest performance. In this regard, the aim of the present study was to investigate the effect of an 8-week plyometric exercise program on knee kinematic parameters, body composition, agility and horizontal jumping power of Parkour athletes.

Method: In this quasi-experimental study with pre-test and post-test design, 20 elite Parkour athletes aged 19-26 years were selected and randomly divided into two groups of exercise (n=10) and control (n=10). The exercise group carried out the program for eight weeks, three sessions per week, each for one hour. Before and after exercise, measurements of kinematic parameters of knee, agility, and horizontal jumping power, and body composition in subjects were performed. The collected data were analyzed using t-test considering a significant level of P≤0.05.

Result: Plyometric exercise for eight weeks had a significant effect on knee kinematic parameters of Parkour athletes (P=0.003) and significantly improved their horizontal jump, agility and reduced body fat percentage (P≤0.05).

Conclusion: Plyometric exercise can significantly improve kinematic parameters of the knee, increase the jumping power and agility, and reduce body fat percentage in Parkour athletes; however, since Parkour movements are very similar to plyometric exercises, more study is needed.

Key words: Plyometric exercise, Agility, Kinematics, Horizontal jump, Parkour

Extended Abstract

1. Introduction

Parkour is an activity involving movement through obstacles in the fastest possible time using the easiest and simplest method with the least energy consumption from one point to other [1]. These plyometric exercises enable the muscles to reach their maximum strength in the shortest possible time. They put a lot of pressure on the athlete’s neuromuscular system and joints in a short period of time; if these exercises be performed without a proper and accurate program, they can cause severe damage to the joints and muscles [2].

Due to the high extrinsic contraction, which is a major component in plyometrics, Delayed Onset Muscle Sore-
NESS (DOMS) is experienced steadily, especially in the early stages of pre-adaptation program. However, plyometric exercises have become commonplace and have always been an important element of exercise programs to increase an athlete’s strength [2]. Other studies that have used plyometric exercises have also shown improvements in torque [3, 4]. The basis of parkour is jumping and running, and due to the ability of plyometric exercises to convert strength into explosive force, these exercises may be effective in parkour performance in [4]. This study aimed to examine the effects of an 8-week plyometric exercise program on kinematic parameters, body composition, agility and horizontal jump of elite parkour athletes in Tehran.

2. Methods

This is an applied quasi-experimental study using the field and laboratory tests. The study population consists of male parkour athletes in Tehran, Iran aged 19-26 years with at least 4 years of professional experience. Among the eligible volunteers, 20 who did not have any acute or chronic disease were selected as the study samples using G-Power software and were randomly assigned to training and control groups. Prior to the study, all subjects signed the consent form to participate in the tests and then, during a session, the subjects were explained how to perform the tests.

Kinematic parameters of the knee were measured using Navicular Drop Test, Tibial Torsion Test, Q-angle test, an-

| Table 1. Comparing study variables before and after intervention in two study groups |

Variable	Time	Group	No.	Mean±SD	Group	t	df	P
Horizontal jumping power	Pre-test/post-	Control	10	254.5±12.34	Exercise	-4.498	9	0.001*
		Exercise	10	258.8±14.66	Control	0.341	9	0.741
	Pre-test/post-	Control	10	253.8±11.30	Exercise	3.186	9	0.011*
		Exercise	10	262.3±13	Control	-0.221	9	0.830
Agility	Pre-test/post-	Control	10	16.35±1.51	Exercise	2.277	9	0.049*
		Exercise	10	16.09±0.9	Control	-0.158	9	0.878
	Pre-test/post-	Control	10	16.39±0.98	Exercise	1.288	9	0.230
		Exercise	10	15.7±0.62	Control	-0.624	9	0.548
Body fat percentage	Pre-test/post-	Control	10	12.67±4.22	Exercise	1.116	9	0.293
		Exercise	10	11.58±2.36	Control	-0.532	9	0.608
	Pre-test/post-	Control	10	12.71±4.08	Exercise	1.288	9	0.230
		Exercise	10	11.09±1.86	Control	-0.624	9	0.548
Body weight	Pre-test/post-	Control	10	69.37±8.73	Exercise	1.116	9	0.293
		Exercise	10	70.45±8.26	Control	0.532	9	0.608
	Pre-test/post-	Control	10	69.65±8.39	Exercise	1.116	9	0.293
		Exercise	10	69.94±7.68	Control	-0.532	9	0.608

*P<0.05.
teversion angle test, internal and external hip rotation, and knee hyperextension; body composition was analyzed with bioelectrical impedance IN-BODY 230 analyzer (InBody Inc., USA) in the pre-test and post-test stages; and the Illinois agility test was used to evaluate their agility. Then, plyometric exercises were performed.

3. Results

According to the normality of data related to horizontal jumping power, agility, body fat percentage, body weight and Body Mass Index (BMI), which was determined by Kolmogorov-Smirnov test, paired t test was used to compare them. For comparing knee kinematic parameters, independent t-test was used. The results are presented in Table 1.

4. Conclusion

According to the sport of parkour, i.e. jumping through obstacles, the performance in parkour can exponentially be improved by increasing the jumping power. For this reason, the main goal of all exercises is to improve the jumping ability. Horizontal jumping power is measured by standing broad jump test and jumping is one of the main movements of parkour [5]. According to Ozbar et al., Ramírez-Campillo et al., and Imani et al., plyometric exercises can increase strength and agility, and Parkour exercise makes horizontal jumping better and more powerful [6-8]. Concentric strength and stiffness of the biceps muscles in the back of the hip, which are hip extensor and knee flexor, can increase the rate of concentric contraction during hip extension and knee flexion. This function, combined with the high eccentric power of the knee extensors which prevents excessive flexion and center of mass fall, can increase vertical velocity and decrease horizontal velocity, which is desirable for a successful jump. In our study, the 8-week plyometric exercise program significantly reduced body fat percentage.

Short limb length causes the pronation of the shortened limb. The difference in apparent length indicates the non-structural difference between the two sides. One common cause of this discrepancy is the apparent short length of the hip adductor and abductor muscles in one side. The apparent difference in the length of the legs over time is due to the repetitive performance of regular activities. Work or exercise habits make one side of the spine stronger than the other.

Ethical Considerations

Compliance with ethical guidelines

All subjects voluntarily participated in this study and signed an informed consent form. They were assured that the principle of confidentiality would be observed in the preservation of the data and that all information obtained would be purely investigative and that they could withdraw from the research at any time (Code: IR.IAUETB.98073).

Funding

This article was extracted from a research project in the Department of Physical Education and Sports Sciences East Tehran Branch, Islamic Azad University.

Authors' contributions

Writing-editing: Abdolrasoul Daneshjoo; Implementation, data analysis: Soudabeh Raeisi.

Conflicts of interest

The authors declared no conflict of interest.
تأثیر هجست هفته تمرینات پلیومتریک بر برخی شاخص‌های کینماتیکی، قدرت پرش افقی، چابکی و ترکیب بدن ورزشکاران نخبه پارکور

نویسنده مسئول
دکتر عبدالرسول دانشجو
تهران، واحد تهران شرق، دانشگاه آزاد اسلامی، گروه بیومکانیک و حرکات اصلاحی، تهران، ایران.

نشانی:
98 (2) 33585909
phdanes@yahoo.com

در پارکور همبستگی بالا بین قدرت انفجاری پایین تنه و قدرت عضلانی ورزشکاران و تولید سطوح بالای قدرت در کمترین بازه از زمان تولید انرژی مورد نیاز برای انجام حرکت‌های کوتاه و سریع، ضروری است. به نظر می‌رسد بهره‌گیری از تمرینات پلیومتریک توانایی رشد قدرت انفجاری وزنه‌برداران را افزایش می‌دهد و به بهبود عملکرد ورزشکاران بیشتری کمک می‌کند.

هدف تحقیق حاضر، بررسی اثر هشت هفته تمرینات پلیومتریک بر شاخص‌های کینماتیک، ترکیب بدن، چابکی و قدرت پرش افقی و آنالیز ترکیب بدن انجام شد.

در این مطالعه نیمه‌تجربی، با طرح پیش آزمون و پس آزمون با گروه کنترل، بیست نفر از ورزشکاران نخبه پارکور شهر تهران در سن هفت تا 16 سالگی، به صورت تصادفی در دو گروه آزمایش و کنترل قرار گرفتند. برنامه تمرینی شامل هشت هفته تمرین پلیومتریک در دو گروه کنترل و آزمایش طراحی شد. قبل و بعد از برنامه تمرینی، اندازه‌گیری‌های کینماتیک زانو، آزمون‌های ایلینویز و قدرت پرش افقی و آنالیز ترکیب بدن انجام شد. داده‌ها توسط آزمون‌های آماری تی مستقل و تی همبسته تجزیه و تحلیل شدند.

نتایج نشان‌دهنده شاخص‌های کینماتیک زانو، آزمون‌های ایلینویز و قدرت پرش افقی و آنالیز ترکیب بدن ورزشکاران نخبه پارکور را بهبود بخشید و همچنین قدرت پرش، P = 0.003 (انجام هشت هفته تمرینات پلیومتریک ارتباط معنی‌دار با شاخص‌های کینماتیک زانو داشت.

یافته‌ها نشان‌دهنده عوارض منفی از تمرینات پلیومتریک و اثرات مثبت آن بر توانایی ورزشکاران نخبه پارکور بود.

کلیدواژه‌ها:
پلیومتریک، پارکور، کینماتیک، پرش افقی

اطلاعات مقاله:
1398 اسفند: تاریخ دریافت
1399 اردیبهشت: تاریخ پذیرش
1399 خرداد: تاریخ انتشار

مقدمه
پارکور، به علت اینکه به عل
تحقیقات زیادی رابطه زاویه در این بررسی از ادامه شرکت در تحقیق منع شدند. قبل از شروع، نتایج داشته‌اند که نتایج وارطه‌بندی تأثیر معنی‌داری بر رابطه زاویه بوده (ال.).

آمار موفقیت‌جمله، به سرعت محاسبه می‌شود و نتایج کاهش ضعیف سه روز در هفته بودند. این محققو گزارش داده‌اند که این شرکت‌ها در سه روز در هفته بودند.

با توجه به اینکه پرش و دویدن اساس و تکنیک را می‌طلبد که آن را به مسئله بهینه‌سازی چندمتغیره، با توجه به اینکه پرش و دویدن اساس و تکنیک را می‌طلبد که آن را به مسئله بهینه‌سازی چندمتغیره، با توجه به اینکه پرش و دویدن اساس و تکنیک را می‌طلبد که آن را به مسئله بهینه‌سازی چندمتغیره، با توجه به اینکه پرش و دویدن اساس و تکنیک را می‌طلبد که آن را به مسئله بهینه‌سازی چندمتغیره، با توجه به اینکه پرش و دویدن اساس و تکنیک را می‌طلبد که آن را به مسئله بهینه‌سازی چندمتغیره.
آغاز تحقیق. تمامی ازمون‌ها از قبیل پوشش نشانه، شنک و انجام شد. ازمون‌های مشخصات کیفیتی، ازمون‌های پیش‌آزمون و پس‌آزمون انجام گرفتند. ازمون‌های شناختی، ازمون‌های بدن‌آزمونی و آزمون‌های آزمون‌وپیوسته قبل و بعد از خدمت منظور از ازمون‌های کیفیتی قرار دارند. ازمون‌های آزمون‌وپیوسته قبل و بعد از شروع خدمت منظور از ازمون‌های بدن‌آزمونی می‌باشد.

به منظور از آزمون‌های کیفیتی و بدن‌آزمونی قبل و بعد از شروع خدمت منظور از ازمون‌های پیش‌آزمون و پس‌آزمون به شرح زیر بودند:

1. آزمون یکتایی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.

2. آزمون دوپنجمی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.

3. آزمون سه‌پنجمی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.

به منظور از آزمون‌های کیفیتی و بدن‌آزمونی قبل و بعد از شروع خدمت منظور از ازمون‌های پیش‌آزمون و پس‌آزمون به شرح زیر بودند:

1. آزمون یکتایی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.

2. آزمون دوپنجمی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.

3. آزمون سه‌پنجمی این ازمون هر دو پا را در مات دارد و هر پا را یک متر فاصله با دیگر پا بردارند. در حالی که از پا راست به سمت پا چپ بحرانده، فاصله مرداب روی کارت را اندازه‌گیری می‌کنند و دو پا را به نحوی درمی‌آورند که عضله راست و پا چپ را یکم متر باعث شود. هر دو پا را می‌چرخانند تا بتوانند به حالتی اتیکی برسند و باعث شوند که نقطه بازوی پا راست به نقطه بازوی پا چپ برسد. این ازمون به بلندی زنده و پا چپ را اندازه‌گیری می‌کند.
برای اندازه‌گیری زاویه انحراف‌های بدین نوع از آزمودنی، شکستن به شکم درجه 90 برداشته شد. در حالی که زانوی او در وضعیت فلکشن درجه 90 قرار گرفت، پژوهشگر بخش خلفی تروکانتر بزرگ ران آزمودنی را به ترتیب چپ و راست کشید و به صورت پاسیو ران آزمودنی را چرخش داد تا زمانی که برجسته‌ترین بخش تروکانتر بزرگ با میز معاینه موازی شود. در آنتروژن بین خط عمود و شفت درشت نی زاویه پای چپ و راست آزمودنی اندازه گیری شد. گونیامتر یونیورسال مورد استفاده قرار گرفت. برای اندازه‌گیری زاویه اتصال مورد استفاده قرار گرفته بود.

برای اندازه‌گیری چرخش خارجی از آزمودنی خواسته شد به روش اکتیو در حالت ترازکشیده به کمک گونیامتر، تصاویر دیجیتال توسط نرم‌افزار اتولوکد اندازه‌گیری و مقایسه شد.

برای اندازه‌گیری برخی از از آزمودنی در حالت فعال ترازکشیده، تصاویر دیجیتال توسط نرم‌افزار اتولوکد اندازه‌گیری و مقایسه شد.

برای اندازه‌گیری برخی از از آزمودنی در حالت فعال ترازکشیده، تصاویر دیجیتال توسط نرم‌افزار اتولوکد اندازه‌گیری و مقایسه شد.
میانگین سنی در گروه آزمایش از 17/60 ± 0/54 سال و در گروه کنترل از 17/58 ± 0/51 سال می‌باشد. میانگین قد در گروه آزمایش از 18/0 ± 0/9 سانتی‌متر و در گروه کنترل از 18/1 ± 0/9 سانتی‌متر بود (جدول شماره 2). نتایج هشت هفته تمرینات پلیومتریک تأثیر معنی‌داری بر شاخص‌های کینماتیکی زانو داشت. همچنین قدرت پرش اسکیتی در مرحله پنجم تمرینات بهبود یافت. تکرار تمرینات در هر هفته 22 تکرار بود که در هفته پنجم و هفتم، تعداد تکرار در هر هفته به تعداد 25 تکرار افزایش یافت. در هفته چهارم، هفته پنجم و هفته ششم در مراحل پیش آزمون و پس آزمون از آزمون یکنوازه و برای مقایسه، شاخص‌های پرش اسکیتی، پرش اسکیتی در مرحله از پنجم تمرینات بهبود یافت. نتایج تمرینات بهبود معنی‌داری بر شاخص‌های کینماتیکی زانو داشت. همچنین قدرت پرش اسکیتی در مرحله پنجم تمرینات بهبود یافت. تکرار تمرینات در هر هفته 22 تکرار بود که در هفته پنجم و هفتم، تعداد تکرار در هر هفته به تعداد 25 تکرار افزایش یافت. در هفته چهارم، هفته بیست و هفتم و هفته ششم در مراحل پیش آزمون و پس آزمون از انجام تمرینات پلیومتریک بهبود یافت. نتایج تمرینات بهبود معنی‌داری بر شاخص‌های کینماتیکی زانو داشت. همچنین قدرت پرش اسکیتی در مرحله پنجم تمرینات بهبود یافت. تکرار تمرینات در هر هفته 22 تکرار بود که در هفته پنجم و هفتم، تعداد تکرار در هر هفته به تعداد 25 تکرار افزایش یافت.
مجله بومکاتیک ورزش

به‌شاید (جدول شماره ۱ و ۲)

پیش‌نمونه‌سازی

با توجه به اساس ورزش پارکور یعنی پریدن می‌توان با افزایش قدرت پرش، عملکرد در پارکور را به صورت تصاعدی افزایش داد.

به همین علت همه تمرینات انتخاب شده برای آزمایش، هدفشان افزایش پرش است.

قدت پرش افقی با آزمون پرش افقی به صورت ایستاده اندازه‌گیری می‌شود و پریدن یکی از حرکات اصلی پارکور است.

همچنین تمرین پارکور باعث می‌شود پرش افقی بهتر و با قدرت بیشتری انجام شود.

قدرت کانسنتریک و سافتی بالای عضلات دوم فصله پشت ران، که اکستنشور و اکسانتریک زانو هستند، می‌تواند موجب افزایش سرعت انقباض کانسنتریک در باز کردن مفصل ران و خم کردن زانو شود. این کارکرد می‌تواند موجب افزایش قدرت پرش کنترل‌کننده باشد. همین‌طور قدرت اکسنتریک بالای اکسنتروراکتورهای زانو، که می‌تواند موجب افزایش سرعت انقباض کانسنتریک و کاهش سرعت انقباض باشد، به دنبال افزایش قدرت پرش سبب می‌شود. همچنین نشان داده شد که می‌تواند باعث افزایش قدرت و چابکی شود.

بای کاربرد در سال ۲۰۱۷، گروه‌های پارکورکار در خانه و باعث شدن افزایش قدرت پرش سبب می‌شود. همچنین نشان داده شد که می‌تواند باعث افزایش قدرت و چابکی شود.

یکی از اصلی‌ترین آزمون‌های پارکوریکه برای ارزیابی قدرت پرش است، آزمون ایلینویز (ثانیه) می‌باشد.

در صورت انجام تمرینات پلیومتریک می‌تواند باعث افزایش قدرت و چابکی شود.

همچنین برخی از شاخص‌های کینماتیکی، قدرت پرش افقی، چابکی و ترکیب بدنی و همگان‌یابی در حفظ و ارتقای آن ها است.
چندول 1. مقایسه میانگین معنی‌داری واکنشهای پیش آزمون و پس آزمون در دو گروه کنترل و آزمایش (هر گروه 20 نفر)

متغیر	پیش آزمون کنترل	پیش آزمون آزمایش	پس آزمون کنترل	پس آزمون آزمایش
تاریخ‌بندی بدنه (سانتی‌متر)	195/172	195/172	195/172	195/172
نامه‌بندی بدن (درجه)	115/105	115/105	115/105	115/105
زاویه ران (درجه)	115/105	115/105	115/105	115/105

میانگین تاریخ‌بندی بدنه (سانتی‌متر)

متغیر	پیش آزمون کنترل	پیش آزمون آزمایش	پس آزمون کنترل	پس آزمون آزمایش
تاریخ‌بندی بدنه (سانتی‌متر)	195/172	195/172	195/172	195/172
نامه‌بندی بدن (درجه)	115/105	115/105	115/105	115/105
زاویه ران (درجه)	115/105	115/105	115/105	115/105

میانگین تاریخ‌بندی بدنه (سانتی‌متر)
و همچنین در این تحقیق پیشنهاد شده است که با گذشت زمان تمرین پارکور پرش افقی در ورزشکاران پارکور بهتر می شود.

چکلی بکی از این پیشنهاد ها برای ورزشکاران پارکور بهتر است. این تحقیق نشان می دهد که ورزش پارکور باعث افزایش قدرت پرش و ساختار عضلانی مربوط به پریدن می شود.

چابکی یکی از قابلیت هایی است که در حیطه آمادگی حرکتی قرار دارد. فرد با توجه به سرعت و فرم بدن، جهت حرکت خود را به صورت قطعی دارد. سپس این به تمرین زیادی تغییر می یابد.

چابکی با عوامل دیگر آمادگی جسمانی در ارتباط است و به قدرت، استقامت، سرعت، تعادل و مهارت بستگی دارد. چابکی، یکی از عوامل مؤثر در اجرای فعالیت های ورزشی است، که گاهی در انجام برخی از آنها ضروری است. در مورد چابکی، با توجه به افزایش قدرت پریدن و ساختار عضلانی ورزشکاران پارکور در ورزشگاهان پارکور همچنین بر اثر تحقیق دیگری که در سال ۱۳۹۵ برنده محقق انجام داد نشان داد که ورزش پارکور باعث افزایش قدرت پرش و ساختار عضلانی مربوط به پریدن می شود.

نتیجه‌گیری نهایی

با توجه به مطالعات پیشین، در این تحقیق بررسی شد که تمرین پلیومتریک به طور معنی‌داری مقادیر مرتبط با چابکی را بهبود بخشید. با توجه به بهبود آزمون چابکی آزمودنی ها در گروه تمرین، مقایسه نتایج در گروه کنترل معنی‌دار نبود و این نتایج با یافته‌های رامیرز (۲۰۱۴) و اُزبار و همکاران (۲۰۱۶) همخوانی ندارد. طبق تحقیقی که چلی و همکاران (۲۰۱۶) انجام دادند تمرینات پلیومتریک بر چابکی تأثیرگذار است که دلیل همکنگی نبودن نتیجه تحقیق با تحقیقات اخیر را می‌توان مورد بررسی قرار داد.

محمدی، جهت سنجش تغییرات در بدن و ترکیب بدن باعث می‌شود که موضع و حالت بدن تغییر کند و به تلاش برای حفظ تعادل، سرعت و دقت زیادی تغییر می‌کند.

تمامی آزمودنی‌ها، متأسفانه در این پژوهش نیازمند تحقیقات بیشتری در این حوزه هستند.

ملاحظات اخلاقی

پیروی از اصول اخلاق بیولوژیک

تولید نتایج مرتبط به تحقیق مورد ارزیابی قرار گرفت و در این محیط اخلاقی، تحقیقات به طور مطمئن و مناسب انجام شده است.

پیش‌بینی و تحقیق در زمینه ترکیب بدن سالم و تغییرات در این حوزه برای ورزشکاران پارکور بسیار حیاتی است.

عباسی، سعید و پوری‌مقدم، مهدی. تأثیر هشت هفته تمرینات پلیومتریک بر قابلیت‌های ورزشی و ترکیب بدنی ورزشکاران پارکور. مجله بهبودیک ورزشی. ۱۳۹۷. (۷). صفحه ۳۷-۴۳.

راجع به اظهار نویسندگان آینده تحقیق‌های منطقه‌ای بیشتر نیازمند است.

منابع:

۱. IR.IAU.ETB.98073
۲. جامعه مالی
۳. مقاله حاضر: گروه تریبون بی‌پون ساخته شده، که از آزمودنی‌ها در این مطالعه بدست آمده است.

مشارکت‌نامه‌نگاران

به عهده نشریه کارکرد شد و به عهده نشریه کارکرد شد و به عهده نشریه کارکرد شد.

تعارض منافع

به نظر می‌رسد وجود تفاوت معنی‌دار در برخی از برتری‌های کارکرد با توجه به تمرین پلیومتریک در ورزشکاران پارکور وجود دارد.

پاکر، محمد، و فرخزاد، مهدی. تأثیر هشت هفته تمرینات پلیومتریک بر قابلیت‌های ورزشی و ترکیب بدنی ورزشکاران پارکور. مجله بهبودیک ورزشی. ۱۳۹۷. (۷). صفحه ۳۷-۴۳.
References

[1] Contributors W. Parkour [Internet]. Wikipedia: The Free Encyclopedia; 2020 [Cited 2020 May 24]. Available from: https://en.wikipedia.org/w/index.php?title=Parkour&oldid=957673945.

[2] Ramezanpour MR, Moghaddam A, Alizadeh M. The effects of plyometric trainings on legs explosive power, velocity, agility and flexibility in taekwondo players [Persian]. J Sport Biomech Res. 2011; 1(1):63-71. https://www.sid.ir/en/journal/ViewPaper.aspx?id=343367

[3] Hewett TE, Stroope AL, Nance TA, Noyes FR. Plyometric training in female athletes: Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996; 24(6):765-73. [DOI:10.1177/036354659602400611] [PMID]

[4] Svantesson U, Grimby G, Thorne R. Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiol Scand. 1994; 152(3):287-93. [DOI:10.1111/j.1748-1716.1994.tb09808.x] [PMID]

[5] Kidd JR. Parkour and the city: Risk, masculinity, and meaning in a postmodern sport. New Brunswick: Rutgers University Press; 2017. [DOI:10.36019/9780813571980]

[6] Mojtaba I. The effect of 4 weeks resistance and plyometric training programs on the performance of male soccer players aged 15 to 17 [Persian]. Kermanshah: Razi University; 2011.

[7] Ozbar N, Ates S, Agopyan A. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. J Strength Cond Res. 2014; 28(10):2888-94. [DOI:10.1519/JSC.0000000000000541] [PMID]

[8] Ramirez-Camacho R, Gonzalez-Jurado JA, Martinez C, Nakamura FY, Penaullillo L, Meylan CMP, et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J Sci Med Sport. 2016; 19(8):682-7. [DOI:10.1016/j.jsams.2015.10.005] [PMID]

[9] Panoutsakopoulos V, Papaioannou GI, Katsikas FS, Kollias IA. 3D Biomechanical analysis of the preparation of the long jump take-off. New Stud Athl. 2010; 25(1):55-68.

[10] Tomiu H, Best TM, Martin A, Poumarat G. Muscle plasticity after weight and combined (weight + jump) training. Med Sci Sports Exerc. 2004; 36(9):1580-8. [DOI:10.1249/00005768-199105000-00003] [PMID]

[11] Wilson JM, Fitch PJ, Campbell B, Wilson GI, Zanchi N, Taylor L, et al. International Society of Sports Nutrition position stand: Beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr. 2013; 10(1):6. [DOI:10.1186/1550-2783-10-6] [PMID] [PMCID]

[12] Kyröläinen H, Avela J, Komi PV. The effects of power training on mechanical efficiency in jumping. Eur J Appl Physiol 2004; 91(2-3):155-9. [DOI:10.1007/s00421-003-0934-2] [PMID]

[13] Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury basketball players. Med Sci Sports Exerc. 1991; 23(5):522-7. [DOI:10.1249/00005768-199105000-00003] [PMID]

[14] Marriott BM, Grumstrup-Scott J. Body composition and physical performance: Applications for the military services. Washington, D.C.: National Academies Press; 1992. https://books.google.com/books/about/Body_Composition_and_Physical_Performance.html?id=h1eAAAAAYAAJ

[15] Wood R. Standing Long Jump Test. Topend Sports Website; 2008. [https://www.topendsports.com/testing/tests/longjump.htm, Accessed 12/18/2020]

[16] Wood R. Illinois Agility Test (IAT). Topend Sports Website; 2008. https://www.topendsports.com/testing/tests/illinois.htm, Accessed 12/18/2020

[17] Leetun DT, Ireland ML, Wilson JD, Ballantine BT, DAVIS IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004; 36(6):926-34. [DOI:10.1249/01.MSS.0000128145.75199.C3] [PMID]

[18] Heerspink FDL, Hoogeslag RA, Dieckes RL, van Eerden PI, van den Akker-Scheek I, van Raay JJ. Clinical and radiological outcome of conservative vs. Surgical treatment of traumatic degenerative rotator cuff rupture: Design of a randomized controlled trial. BMC Musculoskelet Disord. 2011; 12:25. [DOI:10.1186/1471-2474-12-25] [PMID] [PMCID]

[19] Daneshmandi H, Alizadeh MH, Shadman B. [The effect of a training program on the position of the scapular bone [Persian]]. Scientific Information Database. 2007; 4(11):93-107. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=63004

[20] Beaudrel J, Bardin T, Orcel P, Goutallier D. Natural history or outcome with conservative treatment of degenerative rotator cuff tears. Joint Bone Spine. 2007; 74(6):527. [DOI:10.1016/j.jbspin.2007.07.009] [PMID]

[21] Shoja Aldin SSAD, Sadeghi H, Bayat Tork M. [The relationship between trunk muscle strength and anthropometric characteristics with the Lumbar pain in athletes with lordosis (Persian)]. J Mov Sci Sport. 2009; 6(12):23-33. https://www.sid.ir/en/journal/ViewPaper.aspx?id=131531

[22] Alijani E. Exercise science. Tehran: Hatmi Publication; 2018. https://behtarinketab.com/practicing-science-alijani

[23] Haley A. 3 Unbreakable plyometric training rules [Internet]. 2017 [Updated 15 August 2017]. Available from: https://www.stack.com/a/how-often-should-you-perform-physos

[24] Gospresë S, Ufland P, Jecker D. The adaptation to standing long jump distance in parkour is performed by the modulation of specific variables prior and during take-off. Mov Sport Sci Motricité. 2018; (100):27-37. [DOI:10.1051/sj/2017022]

[25] Gospresë S, Lepers R. Performance characteristics of Parkour practitioners: Who are the traces? Eur J Sport Sci. 2016; 16(5):526-35. [DOI:10.1080/17461391.2015.1060263] [PMID]

[26] Contributors W. Agility [Internet]. Wikipedia: The Free Encyclopedia; 2020 [Cited 2020 May 24]. Available from: https://en.wikipedia.org/w/index.php?title=Agility&oldid=950271129

[27] Dvorak M, Eves N, Bunc V, Balas J. Effects of parkour training on health-related physical fitness in male adolescents. Open Sports Sci J. 2017; 10(1):132-40. [DOI:10.2174/1875399X01710010132]