ON A NORM INEQUALITY FOR A POSITIVE BLOCK-MATRIX.

TOMOHIRO HAYASHI

ABSTRACT. For a positive semidefinite matrix $H = \begin{bmatrix} A & X \\ X^* & B \end{bmatrix}$, we consider the norm inequality $||H|| \leq ||A + B||$. We show that this inequality holds under certain conditions. Some related topics are also investigated.

1. Introduction

In this paper we investigate the following problems posed by Minghua Lin [9].

Problem 1. Let $A > 0$, $B > 0$ and X be matrices satisfying $H = \begin{bmatrix} A & X \\ X^* & B \end{bmatrix} \geq 0$, or equivalently $B \geq X^*A^{-1}X$. Under what condition can we conclude $||H|| \leq ||A + B||$?

Problem 2. Let $A > 0$ and X be matrices. Under what condition can we conclude

$$||A + A^{-\frac{1}{2}}XX^*A^{-\frac{1}{2}}|| \leq ||A + X^*A^{-1}X||?$$

As explained later the problem 2 is a special case of the problem 1. It is shown in [3][10] that if $X = X^*$, then the inequality in the problem 1 holds. Hiroshima [7] showed that if we have both $\begin{bmatrix} A & X \\ X^* & B \end{bmatrix} \geq 0$ and $\begin{bmatrix} A & X^* \\ X & B \end{bmatrix} \geq 0$, then the inequality in the problem 1 is true. (See also [8] and [11] for more information on this topic.) Related to these problems, Lin conjectured the following.

Lin’s conjecture ([9] See also [4] Conjecture 2.14). If X is normal and all matrices are 2×2, then the inequality in the problem 1 is true.

Lin showed that this conjecture is OK in the case that $B = X^*A^{-1}X$. More generally it is shown in [12] that the inequality in the problem 1 is true in the case that the numerical range of X is a line segment. Here we should remark that in this case X must be normal. On the other hand if X is 2×2 and normal, then its numerical range is a line segment. Thus we know that Lin’s conjecture is true. In [5] Bourin and Mhanna generalized this theorem.

There are two main results in this paper. The first one is a partial answer to the problem 1. We show that if $||A + X^*A^{-1}X|| \geq ||A +XA^{-1}X^*||$ then the inequality $||H|| \leq ||A + B||$ is true. Moreover we show that if $||A + X^*A^{-1}X|| \leq ...
$$\|A + XA^{-1}X^*\|$$ then we have

$$\left\| \begin{bmatrix} A & X^* \\ X & C \end{bmatrix} \right\| \leq \|A + C\|$$

for any $C \geq XA^{-1}X^*$. The second main result is as follows. We expect that if the inequality in the problem 1 holds for any $A > 0$ and $B > 0$ with $B \geq X^*A^{-1}X$, then X must be normal. We show that this is true if the eigenvalues of XX^* are distinct.

The author wishes to express his hearty gratitude to Professor Minghua Lin for his kind explanation and advice. The author also would like to thank Professors J.-C. Bourin and Antoine Mhanna for valuable comments.

2. Main results.

Throughout this paper we consider $n \times n$-matrices acting on \mathbb{C}^n. We denote by $\|A\|$ the operator norm of the matrix A. That is, $\|A\|^2$ is the maximal eigenvalue of A^*A. For two vectors $\xi, \eta \in \mathbb{C}^n$ their inner product is denoted by $\langle \xi, \eta \rangle$. We define the norm of the vector $\xi \in \mathbb{C}^n$ by $\|\xi\| = \langle \xi, \xi \rangle^{\frac{1}{2}}$. The matrix A is called positive semidefinite if $\langle A\xi, \xi \rangle \geq 0$ for any $\xi \in \mathbb{C}^n$ and we use the notation $A \geq 0$. We also use the notation $A > 0$ if $A \geq 0$ and A is invertible. For two self-adjoint matrices A and B the order $A \leq B$ is defined by $B - A \geq 0$.

At first we give some remarks on the problems.

(i) The problem 2 is a special case of the problem 1. Indeed we have

$$\begin{bmatrix} A & X \\ X^* & X^*A^{-1}X \end{bmatrix} \succeq 0$$

and

$$\left\| \begin{bmatrix} A & X \\ X^* & X^*A^{-1}X \end{bmatrix} \right\| = \left\| \begin{bmatrix} A^\frac{1}{2} & \frac{A^\frac{1}{2}X}{X^*A^{-\frac{1}{2}}} \\ \frac{X^*A^{-\frac{1}{2}}}{A^\frac{1}{2}} & A^{-\frac{1}{2}} \end{bmatrix} \right\|

= \left\| \begin{bmatrix} A^\frac{1}{2} & \frac{A^\frac{1}{2}X}{X^*A^{-\frac{1}{2}}} \\ \frac{X^*A^{-\frac{1}{2}}}{A^\frac{1}{2}} & A^{-\frac{1}{2}} \end{bmatrix} \right\| = \|A + A^{-\frac{1}{2}}XX^*A^{-\frac{1}{2}}\|.$$

(ii) In general the inequality in the problem 2 does not hold. Assume that the inequality in the problem 2 is true for any matrices $A > 0$ and X. By this assumption we have

$$\|A + A^{-\frac{1}{2}}XX^*A^{-\frac{1}{2}}\| \leq \|A + X^*A^{-1}X\|$$

We also have

$$\|A + A^{-\frac{1}{2}}(A^\frac{1}{2}X^*A^{-\frac{1}{2}})(A^\frac{1}{2}X^*A^{-\frac{1}{2}})^{*}A^{-\frac{1}{2}}\|

\leq \|A + (A^\frac{1}{2}X^*A^{-\frac{1}{2}})^{*}A^{-1}(A^\frac{1}{2}X^*A^{-\frac{1}{2}})\|.$$
and hence
\[\| A + X^*A^{-1}X \| \leq \| A + A^{-\frac{1}{2}}XX^*A^{-\frac{1}{2}} \|. \]

Therefore we conclude that
\[\| A + A^{-\frac{1}{2}}XX^*A^{-\frac{1}{2}} \| = \| A + X^*A^{-1}X \|. \]

Consider the case \(X = U \) unitary. Then we have
\[\| A + A^{-1} \| = \| A + U^*A^{-1}U \|. \]

If \(A \) is a \(3 \times 3 \) diagonal matrix and \(U \) is a permutation matrix, then it is easy to construct a counterexample.

The following is a key lemma for our investigation.

Lemma 2.1. Let \(A > 0, \ B > 0 \) and \(X \) be matrices. (We don’t have to assume \(B \geq X^*A^{-1}X \).) If \(\begin{bmatrix} A & X \\ X^* & B \end{bmatrix} > \| A + B \| \), then we have
\[\| A + XA^{-1}X^* \| \geq \begin{bmatrix} A & X \\ X^* & B \end{bmatrix} > \| A + B \|. \]

In particular if \(B \geq X^*A^{-1}X \), then we have
\[\| A + XA^{-1}X^* \| > \| A + X^*A^{-1}X \|. \]

After finishing this paper the author learned that there is a similar result in [6] in the case \(B = k - A \) for some positive constant \(k \).

Proof. We set \(H = \begin{bmatrix} A & X \\ X^* & B \end{bmatrix} \) and \(\lambda = \| H \| \). By the assumption, we have \(\lambda > \| A + B \| \). We can find two vectors \(\xi \) and \(\eta \) such that \(||\xi||^2 + ||\eta||^2 \neq 0 \) and
\[\begin{bmatrix} A & X \\ X^* & B \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \lambda \begin{bmatrix} \xi \\ \eta \end{bmatrix}. \]

Then we get
\[A\xi + X\eta = \lambda \xi, \quad X^*\xi + B\eta = \lambda \eta. \]

Since \(\lambda > \| A + B \| \), both \(\lambda - A \) and \(\lambda - B \) are invertible. Then we can rewrite the above relations as
\[(\lambda - A)^{-1}X\eta = \xi, \quad (\lambda - B)^{-1}X^*\xi = \eta. \]

Therefore we get
\[(\lambda - A)^{-1}X(\lambda - B)^{-1}X^*\xi = \xi \]

and hence
\[X(\lambda - B)^{-1}X^*\xi = \lambda \xi - A\xi. \]

Thus we have
\[(A + X(\lambda - B)^{-1}X^*)\xi = \lambda \xi. \]
Here we remark that $\xi \neq 0$. Indeed recall the relation $(\lambda - B)^{-1}X^*\xi = \eta$. By this equality, if $\xi = 0$, then we must have $\eta = 0$. This contradicts the fact $||\xi||^2 + ||\eta||^2 \neq 0$. So we conclude

$$||A + X(\lambda - B)^{-1}X^*|| \geq \lambda > ||A + B||.$$

Since $A + B \leq \lambda$, we have $(\lambda - B)^{-1} \leq A^{-1}$. Thus we get

$$||A + XA^{-1}X^*|| \geq \lambda > ||A + B||.$$

By this lemma, we have the following.

Theorem 2.2. Let $A > 0$ and X be matrices. We set

$$\alpha = ||A + X^*A^{-1}X||, \quad \beta = ||A + XA^{-1}X^*||$$

Then we have the following.

(i) If $\alpha > \beta$, then for any $B \geq X^*A^{-1}X$ we have

$$\left\|\begin{bmatrix} A & X \\ X^* & B \end{bmatrix}\right\| \leq ||A + B||.$$ \hspace{1cm} (1)

(ii) If $\alpha < \beta$, then for any $C \geq XA^{-1}X^*$ we have

$$\left\|\begin{bmatrix} A & X^* \\ X & C \end{bmatrix}\right\| \leq ||A + C||.$$ \hspace{1cm} (2)

(iii) If $\alpha = \beta$, then for any $B \geq X^*A^{-1}X$ and $C \geq XA^{-1}X^*$ we have

$$\left\|\begin{bmatrix} A & X \\ X^* & B \end{bmatrix}\right\| \leq ||A + B||, \quad \left\|\begin{bmatrix} A & X^* \\ X & C \end{bmatrix}\right\| \leq ||A + C||.$$

In particular either the inequality (1) or (2) is always true.

Proof. This immediately follows from the previous lemma. Indeed if $B \geq X^*A^{-1}X$ does not satisfy the inequality (1), then by the lemma we have $\alpha < \beta$. Similarly if $C \geq XA^{-1}X^*$ does not satisfy the inequality (2), then by the lemma we have $\alpha > \beta$. So we have shown both (i) and (ii). The statement (iii) is also obvious. \hspace{1cm} □

Next we want to consider a special case in which X is unitary.

Proposition 2.3. For any positive invertible matrix A and any unitary U, we have

$$||A + A^{-1}|| \leq ||A + U^*A^{-1}U||.$$

That is, the inequality in the problem 2 is true if X is unitary.
Proof. Let λ_{min} be the minimal inequality of A. Consider the function $f(t) = t + t^{-1}$. Then since $f'(t) = \frac{t^2 - 1}{t^2}$, the maximum of $f(t)$ on the interval $0 < a \leq t \leq b$ is given by $\max\{a + a^{-1}, b + b^{-1}\}$. Therefore we have

$$||A + A^{-1}|| = \max\{\lambda_{\text{min}} + \lambda_{\text{min}}^{-1}, ||A|| + ||A||^{-1}\}.$$

We may assume that

$$||A + A^{-1}|| = ||A|| + ||A||^{-1}.$$

Indeed, by setting $B = A^{-1}$, we see that $||A + A^{-1}|| = ||B + B^{-1}||$ and $||A + U^*A^{-1}U|| = ||B + UB^{-1}U^*||$. Moreover the spectrum of B is located in the interval $||A||^{-1} \leq t \leq \lambda_{\text{min}}^{-1} = ||B||$. Therefore if $||A + A^{-1}|| = \lambda_{\text{min}} + \lambda_{\text{min}}^{-1}$, then we have

$$||B + B^{-1}|| = ||A + A^{-1}|| = \lambda_{\text{min}} + \lambda_{\text{min}}^{-1} = ||B|| + ||B||^{-1}.$$

Now we have only to show

$$||A|| + ||A||^{-1} \leq ||A + U^*A^{-1}U||.$$

Since $A \leq ||A||$, we have $U^*A^{-1}U \geq ||A||^{-1}$. Thus we get

$$||A + U^*A^{-1}U|| \geq ||A + ||A||^{-1}|| = ||A|| + ||A||^{-1}.$$

\[\square\]

In the case that X is a unitary U, we can rewrite the problem 1 as follows.

Problem 3. For any $A > 0$, any $C \geq A^{-1}$ and any unitary U, under what condition can we conclude

$$\left\| \begin{bmatrix} A & 1 \\ 1 & C \end{bmatrix} \right\| \leq ||A + U^*CU||?$$

Indeed if X is a unitary U in problem 1, we see that

$$\left\| \begin{bmatrix} A & U \\ U^* & B \end{bmatrix} \right\| = \left\| \begin{bmatrix} 1 & 0 \\ 0 & U^* \end{bmatrix} \begin{bmatrix} A & 1 \\ 1 & UB \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U \end{bmatrix} \right\| = \left\| \begin{bmatrix} A & 1 \\ 1 & UB \end{bmatrix} \right\|$$

and $||A + B|| = ||A + U^*(UBU^*)U||$. Thus by letting $C = UBU^*$ we obtain the problem 3.

In the previous proposition we have shown that the inequality in the problem 3 is true in the case $C = A^{-1}$. In the same way we can also show that the inequality in the problem 3 is true in the case $C = \alpha A^{-1}$ for any scalar $\alpha \geq 1$. These facts might suggest that the inequality in the problem 3 is true when $AC = CA$. However we can construct a counter example as follows.

Set

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$
Here we remark that
\[A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \leq C. \]

We observe
\[\| A + U^* C U \| = \left\| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \right\| = \frac{7}{2} \]

Next we compute the norm \(\| A \oplus I \| C \). We observe that
\[\| a 1 c \| = a + c + \sqrt{(a - c)^2 + 4} \]
for any positive numbers \(a \) and \(c \). Then we see that
\[\| A 1 C \| \geq \| 3 1 2 \| = \frac{5 + \sqrt{5}}{2} > \frac{7}{2} = \| A + U^* C U \|. \]

Recall the following theorem due to Ando.

Theorem 2.4 (Ando [1]). *The matrix \(B \) is fixed.*

If the implication
\[\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \geq 0 \implies \| A C \| \geq \| B \| \]
is true for any \(A \geq 0, C \geq 0 \), then we have \(\| B \| = r(B) \), where \(r(B) \) is the spectral radius of \(B \). (\(B \) is normaloid.)

Inspired by this theorem, we want to ask the following.

Problem 4. If the inequality in the problem 1 is true for any \(A > 0 \) and \(B \geq X^* A^{-1} X \), what can we say about \(X \)? Can we conclude that \(X \) is normal?

Next we will make some observation for the problem 4. We can rewrite the problem 4 as follows.

Problem 5. Let \(D \) be positive and let \(U \) be unitary. If \(\| \begin{bmatrix} A & D \\ D & C \end{bmatrix} \| \leq \| A + U^* C U \| \) for any \(A > 0 \) and \(C \geq DA^{-1} D \), can we conclude \(UD = DU \)?

Indeed, take a polar decomposition \(X = DU \) and set \(C = UBU^* \). Then we see that
\[\| A \oplus X \| = \| A \oplus D U \| = \| A \oplus D C \| \]
and \(\| A + B \| = \| A + U^* C U \| \). On the other hand we observe that the inequality \(B \geq X^* A^{-1} X = U^* DA^{-1} DU \) is equivalent to \(C = UBU^* \geq DA^{-1} D \). Therefore we conclude that the problem 4 is equivalent to the problem 5. Here we remark that \(D = (XX^*)^\frac{1}{2} \).
Lemma 2.5. Under the assumption in the problem 5, we have
\[||D + U^*DU|| = 2||D||. \]

Proof. Set \(A = C = D \). Here we remark that \(C = D = DA^{-1}D \). By the assumption we have
\[\left\| \begin{bmatrix} D & D \\ D & D \end{bmatrix} \right\| \leq ||D + U^*DU||. \]

Then since \(\left\| \begin{bmatrix} D & D \\ D & D \end{bmatrix} \right\| = 2||D|| \), we see that
\[2||D|| = \left\| \begin{bmatrix} D & D \\ D & D \end{bmatrix} \right\| \leq ||D + U^*DU|| \leq 2||D||. \]

So we are done. \(\square \)

Lemma 2.6. Under the assumption in the problem 5, we can find a unit vector \(\xi \) satisfying both \(D\xi = ||D||\xi \) and \(DU\xi = ||D||U\xi \).

Proof. By the previous lemma, we can take a unit vector \(\xi \) such that
\[(D + U^*DU)\xi = 2||D||\xi. \]

Then since
\[2||D|| = \left\| (D + U^*DU)\xi \right\| \leq ||D\xi|| + ||U^*DU\xi|| \leq 2||D||, \]
we have both \(||D\xi|| = ||D|| \) and \(||U^*DU\xi|| = ||D|| \). Since
\[\left\| (||D||^2 - D^2)^{1/2} \xi \right\|^2 = \left\langle (||D||^2 - D^2)\xi, \xi \right\rangle = ||D||^2 - ||D\xi||^2 = 0, \]
we have \(D\xi = ||D||\xi \). Similarly we get \(U^*DU\xi = ||D||\xi \). \(\square \)

We have the partial answer to the problem 5 as follows.

Theorem 2.7. Under the assumption in the problem 5, if the \(n \times n \)-matrix \(D \) has \(n \) distinct eigenvalues, then we have \(UD = DU \). That is, the problem 5 is true in this case.

Here recall that \(D = (XX^*)^{1/2} \) and that the problem 4 is equivalent to the problem 5. These mean that the problem 4 is true if \((XX^*)^{1/2}\) has \(n \) distinct eigenvalues.

For the proof we need some preparation.

Lemma 2.8. [2] Lemma 2.1 For two positive operators \(A \) and \(B \), if they satisfy
\[||A + B|| = ||A|| + ||B||, \]
then we have \(||\alpha A + \beta B|| = \alpha||A|| + \beta||B|| \) for any \(\alpha \geq 0 \) and \(\beta \geq 0 \).
Proof. We would like to include its proof for completeness. Without loss of generality we may assume that \(\alpha \geq \beta \geq 0 \). We see that
\[
||\alpha A + \beta B|| = ||\alpha (A + B) - (\alpha - \beta) B|| \geq \alpha||A + B|| - (\alpha - \beta)||B||
\]
\[
= \alpha(||A|| + ||B||) - (\alpha - \beta)||B|| = \alpha||A|| + \beta||B||.
\]
The reverse inequality follows from the triangle inequality. \(\square \)

Lemma 2.9. Consider the matrices as in the problem 5. Let \(q \) be a projection with \(Dq = qD \) and \(Uq = qU \) and we set \(p = 1 - q \). Then we have
\[
||Dp + U^* DpU|| = 2||Dp||.
\]
Proof. We set
\[
A = kDp + q
\]
where \(k \) is a positive constant. Later we will take \(k \) large enough. By the assumption we have
\[
\left\| \begin{bmatrix} A & D \\ D & DA^{-1}D \end{bmatrix} \right\| = \left\| A + A^{-\frac{1}{2}} D^2 A^{-\frac{1}{2}} \right\| \leq \|A + U^* DA^{-1}DU\|.
\]
We see that
\[
||A + A^{-\frac{1}{2}} D^2 A^{-\frac{1}{2}}|| \geq \|(A + A^{-\frac{1}{2}} D^2 A^{-\frac{1}{2}})p|| = \left(k + \frac{1}{k} \right)||Dp||.
\]
Thus we conclude that
\[
\left(k + \frac{1}{k} \right)||Dp|| \leq \|A + U^* DA^{-1}DU\|.
\]
On the other hand we observe
\[
||A + U^* DA^{-1}DU|| = ||kDp + \frac{1}{k} U^* DpU + (1 + U^* D^2 U)q||
\]
\[
= \max\{||kDp + \frac{1}{k} U^* DpU||, \ ||(1 + U^* D^2 U)q||\}
\]
because the operator \(kDp + \frac{1}{k} U^* DpU \) is orthogonal to \((1 + U^* D^2 U)q \). (Recall that both \(p \) and \(q \) commute with \(D \) and \(U \).) If \(Dp = 0 \), we have nothing to do. If \(Dp \neq 0 \), we can take the constant \(k > 0 \) large enough such that
\[
||kDp + \frac{1}{k} U^* DpU|| \geq k||Dp|| - \frac{1}{k}||U^* DpU|| \geq ||(1 + U^* D^2 U)q||
\]
and hence
\[
||A + U^* DA^{-1}DU|| = ||kDp + \frac{1}{k} U^* DpU||.
\]
Then we have
\[
\left(k + \frac{1}{k} \right)||Dp|| \leq ||kDp + \frac{1}{k} U^* DpU|| \leq ||kDp|| + ||\frac{1}{k} U^* DpU|| = (k + \frac{1}{k})||Dp||.
\]
That is, we get
\[||kDp + \frac{1}{k}U^*DpU|| = ||kDp|| + ||\frac{1}{k}U^*DpU||.\]

By the previous lemma we have the desired statement. \(\square\)

Proof of Theorem 2.7. Since each eigenvalue of \(D\) has multiplicity 1, by lemma 2.6 there exists a rank one projection \(q_1\) such that \(Dq_1 = q_1D = ||D||q_1\) and \(Uq_1 = q_1U\). We set \(p_1 = 1 - q_1\). Then applying lemma 2.9 to \(q_1\) and \(p_1\), we obtain
\[||Dp_1 + U^*Dp_1U|| = 2||Dp_1||.\]

Then by the proof of lemma 2.6, we can find a unit vector \(\xi = p_1\xi\) such that \(D\xi = ||Dp_1||\xi\) and \(DU\xi = ||Dp_1||U\xi\). Since the eigenvalue \(||Dp_1||\) of \(D\) has multiplicity 1, we can find a rank 1 projection \(q_2 \leq p_1\) such that \(Dq_2 = q_2D = ||Dp_1||q_2\) and \(Uq_2 = q_2U\). We set \(p_2 = 1 - (q_1 + q_2)\). By applying lemma 2.9 again, we get
\[||Dp_2 + U^*Dp_2U|| = 2||Dp_2||.\]

By continuing this procedure, we can construct mutually orthogonal rank 1 projections \(q_1, q_2, \ldots, q_n\) such that \(Uq_j = q_jU\) and \(D = \lambda_1q_1 + \cdots + \lambda_nq_n\), \((\lambda_1 > \lambda_2 > \cdots > \lambda_n)\). Then we conclude that \(UD = DU\). \(\square\)

References

[1] T. Ando, *Geometric mean and norm Schwarz inequality*. Ann. Funct. Anal. 7 (2016), no. 1, 1–8.

[2] Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw, *The Daugavet equation in uniformly convex Banach spaces*. J. Funct. Anal. 97 (1991), no. 1, 215–230.

[3] J-C. Bourin and E-Y. Lee, *Decomposition and partial trace of positive matrices with Hermitian blocks*. Internat. J. Math. 24 (2013), no.1, 1350010, 13 pp.

[4] J-C. Bourin, E-Y. Lee and M. Lin, *On a decomposition lemma for positive semi-definite block-matrices*. Linear Algebra Appl. 437 (2012), no. 7, 1906–1912.

[5] J-C. Bourin and A. Mhanna, *Positive block matrices and numerical ranges*. C. R. Math. Acad. Sci. Paris 355 (2017), no.10, 1077–1081.

[6] M. Gumus, J. Liu, S. Raouafi and T-Y. Tam, *Positive semi-definite 2 × 2 block matrices and norm inequalities*. Linear Algebra Appl. 551 (2018), 83-91.

[7] T. Hiroshima, *Majorization criterion for distillability of a bipartite quantum state*. Phys. Rev. Lett. 91 (2003) no. 5 057902, 4 pp.

[8] M Lin, *Some applications of a majorization inequality due to Bapat and Sunder*. Linear Algebra Appl. 469 (2015), 510–517.

[9] , private communication.

[10] M. Lin and H. Wołkowicz, *An eigenvalue majorization inequality for positive semidefinite block matrices*. Linear Multilinear Algebra 60 (2012), no. 11-12, 1365–1368.

[11] , *Hiroshima’s theorem and matrix norm inequalities*. Acta Sci. Math. (Szeged) 81 (2015), no. 1-2, 45–53.

[12] A. Mhanna, *On symmetric norm inequalities and positive definite block-matrices*. Math. Inequal. Appl. 21 (2018), no. 1, 133–138.
Tomohiro Hayashi
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
E-mail address, Tomohiro Hayashi: hayashi.tomohiro@nitech.ac.jp