New mixed-dark soliton solutions to the hyperbolic generalization of the Burgers equation

Faruk DUSUNCELI*,1, Hacı Mehmet BASKONUS2, Alaattin ESEN3, Hasan BULUT4

1Mardin Artuklu University, Mardin, Turkey,
2 University of Harran, Faculty of Education, Sanliurfa, Turkey,
3 İnönü University, Faculty of Science, Malatya, Turkey
4 Firat University, Faculty of Science, Elazig, Turkey,

Geliş Tarihi (Received Date): 07.02.2019
Kabul Tarihi (Accepted Date): 31.05.2019

Abstract

In this paper, we apply the exponential function method to find mixed-dark, exponential and singular soliton solutions in the hyperbolic generalization of the Burgers equation. We obtain some entirely new mixed singular and dark soliton solutions. Under the suitable values of parameters, various dimensional simulations of results are plotted. Finally, we present a conclusion by giving novelties of paper.

Keywords: Exponential function method, Hyperbolic Generalization of the Burgers equation, mixed-dark and singular soliton solutions.

Genelleştirilmiş hiperbolik Burgers denkleminin yeni mixed-dark soliton çözümleri

Özet

Bu yazida, Burgers denkleminin hiperbolik genelleştirilmesinde mixed-dark, üstel ve tekil çözümü bulmak için üstel fonksiyon yöntemi kullanıyoruz. Tamamen yeni karışık tekil (mixed singular) ve dark soliton çözümleri elde ediyoruz._Parametrelerin uygun değerleri altında, sonuçların çeşitli boyutsal simülasyonları çizilmiştir. Son olarak, makalemizde yeni bir sonuç sunuyoruz.
1. Introduction

In recent several decades, nonlinear evolution equations (NLEEs) arising in optical fiber, applied sciences, plane of symmetry, nonsymmetry and antisymmetry, and nonlinear algebraic structures, supergravitational field have been used to symbolize real world problem in the point of mathematical views. For the last few years, many scientist have converted NLEEs, especially, real word problems, into nonlinear ordinary differential equations (NODEs) to find new soliton solutions [1-3]. Such as the improved Bernoulli sub-equation function method [4-7], the extended sinh-Gordon expansion method [8-11] the exponential function method[12], the modified exp (−ϕ(η))-expansion function [13], the implicit finite difference scheme and the Dufort–Frankel finite difference scheme methods [14] and the difference schemes method [15]. Therefore, papers conducted on travelling wave solutions along with important partial differential equations have attracted attention of researchers from all over the world. Moreover, these models symbolize the surfaces of wave from time to time. One of these models is the hyperbolic generalized Burgers equation (GBE) defined as [16]

$$\tau u_{tt} + u_t + uu_x + Bu_x - \kappa u_{xx} - \lambda u(u - s)(u + q) = 0, \quad (1)$$

where $\tau, B, \kappa, \lambda, s, q$ are real numbers with non-zero. Eq.(1) is hyperbolic model under the terms of $\kappa > 0$. Eq.(1) is used to describe interaction of the wave fronts [16]. V. A. Vladimirov et al have applied Hirota method and found exact solutions to the model. Moreover, some significant physical properties of the Burgers and its generalized versions have been presented by A. S. Makarenko and et al [17,18].

2. General properties of EFM

Here, we shortly give the main steps of the EFM. Let us consider the nonlinear partial differential equation (NPDE)

$$P(u, u_t, u_x, u^2, u^3, \cdots) = 0, \quad (2)$$

where $u = u(x, t)$ is the unknown function, and P is a polynomial in u.

Step 1: By taking the transformation as:

$$u(x, t) = U(\xi), \quad \xi = kx - ct, \quad (3)$$

from Eq.(2), we obtain the nonlinear ordinary differential equation (NODE)

$$N(U, U', U'', \cdots) = 0, \quad (4)$$

which N is a polynomial of U.
Step 2: Let us now assume the solution of equation (4) to have the form:

\[U = U(\xi) = \sum_{i=0}^{N} A_i \left[e^{\Omega_i(\xi)} \right], \quad (5) \]

where \(A_i, \quad (0 \leq i \leq N) \) are constants to be obtained later, such that \(A_n \neq 0 \), and \(\Omega = \Omega(\xi) \) solves the following ODE:

\[\Omega' = \exp(-\Omega) + \mu \exp(\Omega) + w. \quad (6) \]

Eq.(6) is of the following set of solutions;

Family-1: When \(\mu \neq 0, \ w^2 - 4\mu > 0 \),

\[\Omega(\xi) = \ln \left(-\frac{\sqrt{w^2 - 4\mu}}{2\mu} \tanh \left(\frac{\sqrt{w^2 - 4\mu}}{2}(\xi + E) \right) - \frac{w}{2\mu} \right), \quad (7) \]

Family-2: When \(\mu \neq 0, \ w^2 - 4\mu < 0 \),

\[\Omega(\xi) = \ln \left(\frac{\sqrt{-w^2 + 4\mu}}{2\mu} \tan \left(\frac{\sqrt{-w^2 + 4\mu}}{2}(\xi + E) \right) - \frac{w}{2\mu} \right), \quad (8) \]

Family-3: When \(\mu = 0, \ w \neq 0, \) and \(w^2 - 4\mu > 0 \),

\[\Omega(\xi) = -\ln \left(\frac{w}{\exp(w(\xi + E)) - 1} \right), \quad (9) \]

Family-4: When \(\mu \neq 0, \ \lambda \neq 0, \) and \(w^2 - 4\mu = 0 \),

\[\Omega(\xi) = \ln \left(-\frac{2w(\xi + E) + 4}{w^2(\xi + E)} \right), \quad (10) \]

Family-5: When \(\mu = 0, \ \lambda = 0, \) and \(w^2 - 4\mu = 0 \),

\[\Omega(\xi) = \ln(\xi + E), \quad (11) \]

\(A_i, \quad (0 \leq i \leq N), \ E, w, \mu \) are coefficients to be obtained later.

Step 3: Putting Eq.(5) along with its derivatives together with the Eq.(6) and simplifying, we find a polynomial of \(\exp(-\Omega(\xi)) \). When we solve this, we find the
values of the coefficients. By putting the values of the coefficients with one of Eqs. (7-11) into Eq.(5), we can obtain the new solitons to the NPDE equation (2).

3. Implementation of the EFM

In here, we use the EFM to gain various new mixed-dark, exponential and singular soliton solutions of equation (1). Substituting \(u(x,t) = U(\xi) \), \(\xi = kx - ct \) into equation (1), produces the following NODE;

\[
\left(\tau c^2 - \kappa k^2 \right) U'' + (kB - c) U' + kUU' - \lambda U^3 + (s\lambda - q\lambda) U^2 + s\lambda q U = 0,
\]

(12)

Considering the balance principle, the value of \(N \) can be found as

\[N = 1. \]

Using \(N = 1 \), along with Eq.(5), yields;

\[
U = A_0 + A_1 \exp\left(-\Omega(\xi)\right),
\]

(14)

\[
U' = -A_1 \exp\left(-\Omega(\xi)\right) \Omega',
\]

(15)

\[
U'' = \cdots
\]

(16)

where \(A_1 \neq 0 \). Using equations (14-16) into equation (12), produces a polynomial equation in \(e^{-\Omega(\xi)} \). We collect an algebraic equations from this polynomials by equating to zero. To obtain the solutions of Eq.(1), we put the values of the coefficients into Eq. (14) along with Family-I condition.

Case 1

\[
A_0 = \frac{1}{2}(-q + wA_1), \quad s = -\frac{2c - 2Bk + q\lambda A_1}{2\lambda A_1}, \quad \tau = \frac{2k^2\kappa + (k + \lambda A_1) A_1}{2c^2}, \quad \mu = \frac{1}{4} \left(w^2 - \frac{q^2}{A_1^2} \right),
\]

with these coefficients, when \(\mu \neq 0, \quad w^2 - 4\mu > 0 \), Eq.(1.1) gives the following singular soliton solution

\[
u_i(x,t) = \frac{-q + wA_1}{2} + \frac{\left(q^2 - w^2A_i^2 \right) \coth \left(k\sigma x - \sigma ct + \sigma E \right)}{2q + 2wA_i \coth \left(k\sigma x - \sigma ct + \sigma E \right)},
\]

(17)

where \(q^2 / A_i^2 > 0 \) and \(\sigma = q / 2A_i \).
Case 2 When

\[A_0 = \frac{1}{2} \left(-q - \sqrt{q^2 + 4\mu A_i^2} \right), \quad w = -\frac{\sqrt{q^2 + 4\mu A_i^2}}{A_i}, \quad x = -\frac{2c - 2Bk + kq + q\lambda A_i}{2\lambda A_i}, \quad r = \frac{2k^2\kappa + (k + \lambda A_i)A_i}{2c^2}, \]

along with \(\mu \neq 0, \) \(w^2 - 4\mu > 0, \) Eq.(1.1) is of the following mixed dark soliton solution
\[u_2(x,t) = -\omega + \omega \tanh \left(\frac{k\sigma x - \sigma ct + \sigma E}{\nu - 2q \tanh(k\sigma x - \sigma ct + \sigma E)} \right), \] (18)

where \(-4\mu + (q^2 + 4\mu A_i^2)A_i > 0\) for validity condition of Eq.(18) and
\[\omega = q^2 + q\sqrt{q^2 + 4\mu A_i^2}, \quad \nu = 2\sqrt{q^2 + 4\mu A_i^2}, \quad \sigma = q/2A_i. \]

Figure 3. The 2D and 1D surfaces of Eq.(18) and \(t = 0.85\) for 1D graphics.

Figure 4. Contour graphs of Eq.(18).
Case 3

If

\[A_0 = \frac{1}{w}(q + 2A_0), s = -\frac{q}{2} - \frac{2cw - 2Bkw + kw}{2\lambda + 4\lambda A_0}, \kappa = -\frac{q(kw + q\lambda) - 2c^2 w^2 x + 2A_0 (kw + 2q\lambda + 2\lambda A_0)}{2k^2 w^2}, \]

\[\mu = \frac{w^2 A_0 (q + A_0)}{(q + 2A_0)^2}, \]

we find the following new exponential solution

\[u_3(x,t) = A_0 + \frac{2A_0 (q + A_0) (e^{2(k\alpha x - \omega x + \omega t)} + 1)}{2A_0 + (q + 2A_0) e^{2(k\alpha x - \omega x + \omega t)} + q e^{2(k\alpha x - \omega x + \omega t)}} \] \hspace{1cm} (19)

where \(w^2 - (4w^2 A_0 (q + A_0))/(q + 2A_0)^2 > 0 \) and \(\omega = (qw)/(2q + 2A_0) \).

Figure 5. The 2D and 1D surfaces of Eq.(19) and \(t = 0.85 \) for 1D graphics.

Figure 6. Contour graphs of Eq.(19).

4. Conclusion

In this paper, the EFM has been successfully used in finding mixed-dark, exponential and singular soliton results to the hyperbolic generalization of the Burgers equation (1). The constraint conditions for the existence of valid soliton solutions where necessary
are also given. The physical properties of the hyperbolic generalization of the Burgers model (1) are given as well. Solutions (17), (18) and (19) belong to mixed-dark, exponential and singular soliton solutions, respectively.

When it comes to the solution of Family-2 in Case-1 being $\mu \neq 0$, $-w^2 + 4\mu < 0$, is not satisfied the constraint conditions because it is always negative as $-w^2 + 4\mu = -q^2/\Delta_i^2 < 0$.

The soliton solutions obtained in this manuscript might be physically beneficial in expressing how interaction of the wave fronts and also could be viewed from Figures (1-6). We observe that our result may be useful in detecting some soliton wave behaviors.

The results found in here are entirely new when comparing the results presented in [16]. Finally, one can be inferred from results that the $e^{\Omega(\xi)}$-exponential function method is a powerful and efficient mathematical tool that can be used to find many soliton solutions such as mixed-dark, exponential and singular soliton solutions to various nonlinear partial differential equations with high nonlinearity.

References

[1] Arshad, M., Seadawy, A. R., Lu, D., Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrödinger equation and its applications in optics, *Journal of Electromagnetic Waves and Applications* 31, 1711-1721, (2017).

[2] Yokus, A., Sulaiman, T. A., Bulut, H., On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation. *Optical and Quantum Electronics*, 50,1, 31, (2018).

[3] Arshad, M., Seadawy, A. R., Lu, D., Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability, *Optik* 138, 40-49, (2017).

[4] Baskonus, H. M., Bulut, H., New wave behaviors of the system of equations for the Ion Sound and Langmuir waves, *Waves in Random and Complex Media*, 26,4, 613-625, (2016).

[5] Dusunceli, F., Solutions for the Drinfeld-Sokolov equation using an ibsefm method, *MSU Journal of Science*, 6, 1, 505-510, (2018). doi : 10.18586/msufbd.403217

[6] Baskonus, H. M., Complex soliton solutions to the Gilson-Pickering model, *Axioms*, 8, 1, 18, (2019).

[7] Dusunceli, F., New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model, *Advances in Mathematical Physics*, 2019, Article ID 7801247, 9, (2019).

[8] Cattani, C., Sulaiman, T. A., Baskonus, H.M., Bulut, H., Solitons in an inhomogeneous Murnaghan's rod, *European Physical Journal Plus*, 133, 228, 1-12, (2018).

[9] Cattani, C., Sulaiman, T. A., Baskonus, H. M., Bulut, H., On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems, *Optical and Quantum Electronics*, 50, 3, 138, (2018).

[10] Ilhan, O. A., Sulaiman, T. A., Bulut, H., Baskonus, H. M., On the New Wave
Solutions to a Nonlinear Model Arising in Plasma Physics, European Physical Journal Plus, 133, 27, 1-6, (2018).

[11] Yel, G., Baskonus, H. M., Bulut, H., Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method, Optical and Quantum Electronics, 49, 285, 1-10, (2017).

[12] Ilhan, O. A., Esen, A., Bulut, H., Baskonus, H.M., Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results in Physics, 12, 1712–1715, (2019).

[13] Ciancio, A., Baskonus, H. M., Sulaiman, T. A., Bulut, H., New structural dynamics of isolated waves via the coupled nonlinear Maccari’s System with complex structure, Indian Journal of Physics, 92, 10, 1281–1290, (2018).

[14] Modanlı, M., Two numerical methods for fractional partial differential equation with nonlocal boundary value problem, Advances in Difference Equations, 2018, 333 (2018).

[15] Modanlı, M., Difference schemes methods for the fractional order differential equation sense of caputo derivative, International Journal of Innovative Engineering Applications, 2, 53-56, (2018).

[16] Vladimirov, V. A., Maczka, C., Exact solutions of generalized Burgers equation describing travelling fronts and their interaction, Reports on Mathematical Physics, 60, 2, 317-328, (2007).

[17] Makarenko, A. S., Moskalkov, A. S., Levkov, A. S., On blow-up solutions in turbulence, Physics Letters A, 235,4, 391-397, (1997).

[18] Makarenko, A. S., New differential equation model for hydrodynamics with memory effects, Reports on Mathematical Physics, 46, 183-190, (2000).