The cell wall represents a unique challenge for pathogens specializing in plants. Manipulation of the host, delivery of effectors and suppression of defense responses requires intimate contact between parasite and host. Cell wall polysaccharides – cellulose, pectin, and hemicelluloses such as xyloglucan and arabinoxylan – are potentially a major source of carbon but are difficult to access. Depending on their lifestyle, some pathogens extensively degrade cell walls, such as the macerating necrotrophs Erwinia and Botrytis, others puncture it with surgical precision, such as biotrophic fungal and oomycete pathogens during the formation of appressoria. Dissolving and rearranging cell walls is also part of the large-scale host manipulation undertaken by plant parasitic nematodes establishing feeding sites (Cheyse and Mitchell, 2011). It seems obvious that such breaches of cell wall integrity (CWI) should alert the host plant to the presence of invaders. Among the potential warning signals are changes in mechanical properties, interference with cell wall proteins or polysaccharides by the binding of effectors, and release of oligosaccharide fragments with DAMP (danger-associated molecular pattern) activity. However, the relative contribution made by each of these signals toward mounting efficient defense responses is still unclear. In the last few years, the concept of CWI signaling in plants has matured. While the close link of this pathway with innate immunity has been instrumental in its discovery, maintenance of mechanical CWI is also a necessary part of controlled cell expansion in healthy plants.

THE NEED FOR CELL WALL MAINTENANCE

Plant cell walls and the pressurized cells within them represent an economic solution for growing a multicellular organism: Without a proportional metabolic investment in cytoplasmic material, cells can grow simply by accumulating water and solutes in the vacuole and then driving expansion of the wall via turgor pressure. Cell walls need to remain strong throughout this expansion and yet yield in a controlled way (Cougoz, 2005). In some extreme cases, such as the expanding primary root tip or the hypocotyls of etiolating seedlings, this expansion increases the cell surface by an order of magnitude within hours (Beerster and Basak, 1998). Many other developmental programmes require irreversible cell wall weakening or dissolution, including the emergence of lateral roots and of the radicle from the seed coat; formation of vasculature, stomata, and aerenchyma; abscission, organ separation, and fertilization. The controlled yielding of cell walls during expansion requires a way of feeding back information about wall stability to the cytoplasm so that growth rates can be adjusted if necessary. Root cell elongation, for example, is known to be influenced by a wide range of environmental factors (De Cnooder et al., 2006), confirming that the developmental programme integrates external information rather than unfolding by default. The nature of this surveillance system and the postulated CWI sensors is actively debated (Romig, 2010; Seifert and Blaaskopf, 2010). It is already clear, however, that surveillance of plant cell wall structure and innate immunity are closely linked.

THE CELL WALL AS A BARRIER FOR PATHOGENS

Cell wall degrading enzymes are a major part of the weaponry used by necrotrophic and, to a lesser extent, biotrophic pathogens (Walton, 1994). The tightly packed crystalline arrangement of microfibrils makes cellulose an unattractive target for attack. In contrast, pectin and xylan, major components of type I cell walls in most dicots and type II walls in most grain crops respectively, are easier to access and break down. Enzymes degrading pectin (polygalacturonases, pectate lyases, and pectin methyl esterases) and xylan (endo-xylanases) are key virulence factors for pathogens. In turn, plants counter these attacks with an array of inhibitor proteins (Iuge, 2006). Interestingly, the function of polygalacturonase inhibitor proteins seems not primarily to block pectin degradation completely but to shift the breakdown process toward generating larger fragments that are DAMP active (Federici et al., 2006).
Nühse Cell wall integrity and immunity

Natural cell infection routes chosen by plant pathogens often reflect how the cell wall acts as a barrier. For example, soil borne fungi typically first colonize a root at the tip but can only invade the root in the elongation zone where walls are temporarily weakened and thinned (Guanawarden and Hawes, 2002). Fruit ripening is another example for easier pathogen entry in areas of developmentally regulated cell wall weakening. Polygalacturonases and pectate lyases contribute substantially to the softening of fruit. Suppression of these enzymes delays fruit softening and at the same time confers enhanced resistance to pathogens like Botrytis (summarized in Cantu et al., 2008). Similarly, promoting cell wall stiffness by overexpressing extensin in Arabidopsis enhanced resistance to Pseudomonas syringae (Wei and Shirsat, 2006). In other cases, changes in cell wall composition increase susceptibility to a pathogen in ways that are difficult to explain. The receptor-like kinase (RLK) ERECTA is a major determinant of resistance to the necrotrophic pathogens Botrytis cinerea and Plectosphaerella cucumerina. The erecta mutant has increased cellulose and uronic acid contents in the cell wall (Godiard et al., 2003; Llorente et al., 2005; Sanchez-Rodriguez et al., 2009). Similarly, mutants in the alpha and beta subunits of heterotrimeric G-proteins are more susceptible to P. cucumerina and have a subtly altered cell wall structure including less xylose (Llorente et al., 2005; Delgado-Cerezo et al., 2011). It is unclear how cell wall composition is controlled by these signaling proteins, but the positive correlation of increased uronic acid and decreased xylose with susceptibility to P. cucumerina has been confirmed in additional mutants (Sanchez-Rodriguez et al., 2009; Delgado-Cerezo et al., 2011).

DISEASE RESISTANCE TRIGGERED BY CELL WALL DEFECTS

There are many other cases of cell wall alterations or defects that—perhaps counterintuitively—enhance pathogen resistance. Some of these are subtle shifts in polysaccharide composition that may reduce the suitability of the host’s wall for pathogen attachment or ingress, i.e., may be susceptibility factors. Several of the powdery mildew resistant (pmr) mutants may fall into this category (Vogel et al., 2002, 2004). Both pmr5, mapped to one member of a large plant-specific gene family related to TRICHOME BIREFRINGENT (Bischoff et al., 2010) and pmr6, a pectate lyase mutant, have increased levels of unesterified pectin and activate enhanced resistance to the necrotrophic pathogens P. cucumerina and R. solanacearum in a pathway requiring ABA signaling but neither SA nor JA/ET (Hernandez-Blanco et al., 2007). Several other mutants in cell wall-related genes have since been discovered that also show variable degrees of resistance to pathogens or constitutive expression of defense-related genes (Ko et al., 2006; Vega-Sanchez et al., 2012). Drugs that interfere with cellulosic biosynthesis, such as isoxaben and thaxtomin, phenocopy this response (Bischoff et al., 2009; Hamann et al., 2009). These discoveries sparked the idea of cell wall feedback signaling: a dedicated signaling pathway that monitors the physical integrity and functioning of the cell wall and if necessary activates repair responses.

THE CELL WALL INTEGRITY PATHWAY IN PLANTS

Loss of CWI, triggered by genetic defects in polysaccharide biosynthesis or by drugs, reduces cell elongation in etiolated hypocotyls and root tips (Hausser et al., 1995; Desnos et al., 1996; Desprez et al., 2002). If this response is based on a signaling process rather than physical inability to elongate, it should be possible to uncouple cell wall damage from its effect on expansion by blocking the signaling pathway. Experimental evidence shows that this is indeed the case (Refregier et al., 2004; Hematy et al., 2007; Tsang et al., 2011; Wolf et al., 2012). Mutation of the receptor-like kinase THESEUS attenuates the cell expansion defect of procuste, a mutant in a primary wall cellulose synthase (Fagard et al., 2000; Hematy et al., 2007). Several other (though not all tested) cell wall-deficient mutants are also rescued in a the1 mutant background. In seedlings treated with isoxaben, the production of reactive oxygen species and lignin deposition is partially dependent on THE1 (Dennois et al., 2011). THESEUS is only one of a whole range of potential cell wall sensors. Many others have been suggested based largely on the predicted (and in a few cases demonstrated) ability to bind cell wall components and transmit a signal to the cytoplasm. The rationale follows the well-characterized CWI pathway in yeast (Levlin, 2011). Here, plasma membrane (PM) proteins including Wsc1 and Mid2 extend stiff hyper-glycosylated “antennae” into the wall and transmit signals with their short cytoplasmic domains. In the absence of obvious plant homologues of these sensors, the most attractive candidates are RLKs. In addition to THESEUS, several other members of the CIRK1-like (Catharanthus roseus RLK1-like) family of RLKs with an extracellular maitelin-like domain have well-documented cell wall-related functions (for review, see Boisson-Dernier et al., 2011): FERONIA and ANXUR are required in the female and male gametophyte, respectively, for successful fertilization. Pollen tube guidance by the synergid cells and sperm release fail in feronia while pollen tubes burst prematurely in anxur1/2 double mutants. FER, THL, and the related HERRULESI1 and 2 are brassinosteroid-inducible and have
The exact nature of the signal that communicates deficient cell wall is a matter of intense debate and may not be (exclusively) based on a direct polysaccharide sensor. Because of the turgor pressure, weakening cell walls will lead to unplanned proteolytic expansion and PM stretch. Some responses triggered by inhibition of cellulose biosynthesis do indeed depend on the osmosensors Cre1 and Mla1 (Wormit et al., 2012) while others do not. Oligosaccharide fragments released from wall polysaccharides may represent another damage or danger signal. Specifically in the context of pathogen attack, some of the cell wall degrading enzymes released by microbial parasites have endo-activity and will set free such fragments. Short oligogalacturonides (DP 6-16) have long been known to induce rapid and strong defense responses (Doares et al., 1995). Wall-associated protein kinases (WAKs) have now been identified as likely receptors (Kohorn et al., 2009; Brütis et al., 2010). The WAKs, a family of RLKs with extracellular fibronectin-type repeats, also play a role in cell wall maintenance in normal plant development (Vagner and Kohorn, 2001; Kohorn et al., 2006), and a differential affinity for low- and high-molecular weight lectins may allow for a dual role in pathogen detection versus cell wall maintenance during growth (Kohorn and Kohorn, 2012). A WAK-like kinase (WAKL22) is a major determinant of resistance to *Fusarium oxysporum* in Arabidopsis (Dieter and Ausabel, 2003). Specific detection systems for other types of endogenous wall fragments have been identified. Cellodextrins (i.e., β-1,4-linked glucose oligomers conceivably derived from cellulose) and β-1,3-glucan fragments trigger defense responses in grapevine cell cultures (Aziz et al., 2007). However, like oligogalacturonides they only do so in much higher concentrations than comparable “non-self” oligosaccharides such as chitin (Felix et al., 1993). It is likely that sensors for cross-linked cell wall polysaccharides as well as sensors for fragments derived from them play a part in plant CWI signaling, but relative contributions are still completely open.

THE ROLE OF PROTEOMICS IN DECIPHERING THE CWI PATHWAY

Analyzing the subcellular processes during pathogen invasion is difficult with proteomic tools—processes like cell polarization only occur in the attacked cells, and sampling only these is extremely challenging. However, just as the response to bacterial flagellin has been a useful model system for studying defense responses using proteomics and phosphoproteomics (Nühse et al., 2007), low molecular weight compounds can be used to induce cell wall defects (Harmann et al., 2009; Tsang et al., 2011) that phenocopy those observed in cell wall biosynthetic mutants (see above). Signaling proteins identified as differentially phosphorylated in such a setup are very likely to have roles both in normal plant growth and cell wall-based defense against pathogens.

Intriguing links between normal development, cell wall homeostasis and innate immunity have emerged with the discovery of novel roles for ERECTA and NDR1 (Sanchez-Rodriguez et al., 2009; Knueper et al., 2011). The identification of binding partners (Roux et al., 2011) of these and other proteins, especially putative cell wall sensors, will be a challenge—like mature WAKs, wall-associated proteins may have “the biochemistry of a rock”
ACKNOWLEDGMENT

Thomas S. Nühse was supported by a BBBSRC David Phillips fellowship (BB/D020093/1).

REFERENCES

(2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 806–816.
(2008). RESISTANCE TO FUSARIUM PLANT PATHOGENS. Annu. Rev. Phytopathol. 46, 307–339.
(2005). Analysis of cell division and establishment of a refractory state. Plant J. 4, 307–316.
(2011). Cytoskeleton and cellulose synthesis. Curr. Opin. Plant Biol. 14, 307–316.
(2007). High affinity RGD-bonding sites on the plasma membrane of Arabidopsis thaliana link the cell wall. Plant J. 51, 363–373.
(2008). Effect of a receptor-like kinase from Arabidopsis thaliana on fungal growth. Plant Physiol. 146, 1145–1155.
(2007). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 9409–9414.
(2001). A receptor-like kinase in Arabidopsis that is involved in the recognition of cell wall components. Proc. Natl. Acad. Sci. U.S.A. 98, 5046–5051.
(2009). Cellulose synthase isoform CESA6. J. Exp. Bot. 60, 1364–1374.
(2007). Cytoskeleton and cellulose synthesis. Curr. Opin. Plant Biol. 10, 342–348.
(2009). Cellulose and beta-1,3 glucans and alpha-1,4 mannosides. Front. Plant Sci. 3, 124–144.
(2012). Wall-loosening enzymes. Curr. Opin. Plant Biol. 15, 1015–1020.
(2001). Trans-membrane and cell wall function in penetration resistance. Curr. Opin. Plant Biol. 10, 1364–1374.
(2008). How nematodes manipulate plant developmental pathways for infection. Curr. Opin. Plant Biol. 11, 415–421.
(2009). Evolutionary conservation of MAP kinase and gene expression is required for MAP kinase-mediated cell wall defense responses in Arabidopsis thaliana. J. Exp. Bot. 60, 2529–2540.
(2007). Cytoskeleton and cellulose synthesis. Curr. Opin. Plant Biol. 10, 342–348.
(2005). Oligogalacturonides and chitosan activate plant signaling pathways and enhance resistance to pathogens. Plant Cell 15, 1025–1033.
(2006). Cellulose and beta-1,3 glucans and alpha-1,4 mannosides. Front. Plant Sci. 3, 124–144.
(2012). Cell wall integrity and immunity. Curr. Opin. Plant Biol. 15, 1015–1020.
(2005). Oligogalacturonides and chitosan activate plant signaling pathways and enhance resistance to pathogens. Plant Cell 15, 1025–1033.
(2011). Integration of cell wall stress as a house-leaf-dependent and osmosensitive regulator of plant responses. Plant J. 67, 1015–1028.
(2007). Cytoskeleton and cellulose synthesis. Curr. Opin. Plant Biol. 10, 342–348.
(2009). Evolutionary conservation of MAP kinase and gene expression is required for MAP kinase-mediated cell wall defense responses in Arabidopsis thaliana. J. Exp. Bot. 60, 2529–2539.
(2011). Wall-loosening enzymes. Curr. Opin. Plant Biol. 14, 307–316.
(2001). A receptor-like kinase in Arabidopsis that is involved in the recognition of cell wall components. Proc. Natl. Acad. Sci. U.S.A. 98, 5046–5051.
Nühse Cell wall integrity and immunity

Molina, A. (2005). ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 45, 165–180.

Martinez, A., Goyat, P., Haino, C., and Ramira, I. (2011). Building bridges format Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 66, 574–583.

McKern, D. G., and Heath, M. C. (2001). Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13, 413–424.

Nishimura, M. T., Stein, M., Hou, B. H., Vegliò, J. P., Edwards, H., and Somerville, S. C. (2003). Loss of a callose synthase results in cytokinin-independent disease resistance. Science 301, 989–992.

Núñez, E. V., Bottrell, A. R., Jones, A. M. E., and Peck, S. C. (2007). Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 935–946.

Panek, T. J., Somerville, C. R., and Elhai, D. W. (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1481–1484.

Ratti, C., Pellerini, S., Julliard, D., and Hohl, H. (2004). Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells of Arabidopsis. Plant Physiol. 135, 959–968.

Braig, C. (2010). Monitoring the outside cell wall-sensing mechanisms. Plant Physiol. 153, 1445–1452.

Brenchley, M., Albracht, C., Chinchilla, D., Jones, A., Hollow, N., et al. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/ERESK and BKK1/ERESK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 25, 2460–2475.

Sanchez-Rodriguez, C., Estenes, J. M., Liletti, F., Hernandez-Blanco, C., Jordà, L., Pagan, I., et al. (2009). The ESR16 receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana. Mol. Plant Microbe Interact. 22, 955–963.

Seifert, G. J., and Blaszkopf, C. (2015). Irregular walls: the plant extracellular matrix and signaling. Plant Physiol. 155, 467–478.

Sánchez, V., Wistué, R., Carrasco, A., Boustie, H., Pont-Lezica, R., Gómez, F., et al. (2004). High affinity recognition of a Phytophthora protein by Arabidopsis via an RFG motif. Curr. Mol. Biol. 61, 502–509.

Sényando, D. B., and Cosgrove, D. J. (2009). Dynamic coordination of cytokinesis and cell wall synthesis during plant cell morphogenesis. Curr. Biol. 19, R800-R811.

Seymour, J., D. Liu, X., Qin, F., Falbo, G., Li, X. M., Reint, W. D., et al. (2008). Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petals, but not leaves. Plant J. 56, 691–703.

Szymanski, D. B., and Cosgrove, D. J. (2006). Deconstructing the cell wall: 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 141, 596–604.

Vega-Sanchez, M. R., Vekenbruggen, Y., Christensen, U., Chen, X. W., Sharma, V., Varanasi, P., et al. (2012). Loss of cellulose synthase-like E function affects mitoglin-linked glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 159, 56–69.

Vogel, J. P., Rad, T. K., Schöff, C., and Somerville, S. C. (2012). PMRE, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 24, 2095–2106.

Wagner, T. A., and Kohorn, B. D. (2005). Cell wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 17, 301–318.

Walton, J. D. (1994). Deconstructing the cell wall. Plant Physiol. 104, 1113–1119.

Wei, G., and Shaner, A. H. (2016). Extensive over-expression in Arabidopsis limits pathogen infection. Mol. Plant Pathol. 17, 579–592.

Wolff, S., Manzel, J., Geiman, S., Mouillé, G., and Hohs, H. (2012). Plant cell wall homeostasis is mediated by biased stereospecific feedback signaling. Curr. Biol. 22, 1732–1737.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 August 2012; paper pending publication: 29 September 2012; accepted: 26 November 2012; published online: 11 December 2012.

Citation: Nühse TS (2012) Cell wall integrity and immunity. Front. Plant Sci. 3:280. doi: 10.3389/fpls.2012.00280

This article was submitted to Frontiers in Plant Proteomics, a specialty of Frontiers in Plant Science.

Copyright © 2012 Nühse. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.