GEOGRAPHICAL DISTRIBUTION OF \textit{Ninia hudsoni} (SERPENTES: DIPSADIDAE) WITH NEW OCCURRENCE RECORDS

Vinícius de Avelar São-Pedro1*, Marco Antônio de Freitas2, Eliana Faria de Oliveira3, Nathocley Mendes Venâncio4 & Alexandre Pinheiro Zanotti5

1Universidade Federal do Rio Grande do Norte, Departamento de Fisiologia, Laboratório de Ecologia Sensorial, Centro de Biociências, Campus Lagoa Nova, Natal, RN, Brasil. CEP 59078-900
2Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Parque Nacional do Catimbau, Vila Catimbau, Buíque, PE, Brasil. CEP 56537-000
3Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Laboratório de Zoologia, Cidade Universitária, Campo Grande, MS, Brasil. CEP 79070-900
4META – FAMETA, Estrada Alberto Torres, 947, Bairro da Paz, Rio Branco, AC, Brasil. CEP 69919-230
5Serpentário Mata Sul, Rua 6 casa 25, Bairro Pedrinhas, Rio Formoso, PE, Brasil. CEP 55570-000
E-mails: vasaopedro@gmail.com, philodryas@hotmail.com, elianabio@gmail.com, nathocley@gmail.com, cobra_znt@yahoo.com.br

Keywords: biogeography; ecological niche; species distribution modeling; snakes

The Neotropical snake genus \textit{Ninia} (Dipsadidae, Dipsadinae, Dipsadini) currently comprises ten species: \textit{Ninia atrata} (Hallowell, 1845), \textit{Ninia celata} McCranie & Wilson, 1995, \textit{Ninia espinali} McCranie & Wilson, 1995, \textit{Ninia diademata} Baird & Girard, 1853, \textit{Ninia franciscoi} Angarita-Sierra 2014, \textit{Ninia hudsoni} Parker, 1940, \textit{Ninia maculata} (Peters, 1861), \textit{Ninia pavimentata} (Bocourt 1883), \textit{Ninia psephota} (Cope 1875), and \textit{Ninia sebae} (Duméril, Bibron & Duméril, 1854). These semifossorial snakes are typically Mesoamerican with few species (\textit{N. atrata}, \textit{N. hudsoni} and \textit{N. franciscoi}) occurring in northwestern South America (Angarita-Sierra 2014; van Wallach et al. 2014). They live in the forest litter or under logs and rocks and are rarely seen on the surface (Burger & Werler 1954). Despite some species are considered important components of the leaf-litter herpetofauna (Savage & Lahanas 1991) most of them lacks basic biological data.

\textit{Ninia hudsoni} is a small snake with dorsal scales keeled, dark gray dorsum and creamy white nuchal band and venter (Duellman 1978). Its known distribution range is based on scattered literature records from Brazil, Ecuador, Guyana and Peru. Here we present an updated distribution map of \textit{N. hudsoni} with two new records from southern Amazon and six unpublished records found in herpetological collections. We also implemented an ecological niche modeling (ENM) to predict climatically suitable areas for the occurrence of \textit{N. hudsoni} in northern South America.

In order to compile data on the known distribution of \textit{Ninia hudsoni} we searched occurrence records on the literature (papers, books and theses) and accessed some herpetological collections databases by contacting curators or through institutional websites (e.g. Torres-Carvajal et al. 2015; speciesLink 2016). When not available in original sources geographical coordinates were estimated with higher accuracy as possible based on spatial references and descriptions of the area mentioned by the authors.

We have used all 26 localities gathered in this study (Table 1) to generate an ecological niche modeling (ENM). This analysis estimates the predicted geographic distribution of \textit{N. hudsoni} based on the climatically suitable regions for the species. We downloaded 19 climatic variables from the WorldClim database (see http://www.worldclim.org/ for variable descriptions) interpolated to 2.5 arc-min resolution (Hijmans et al. 2005) and elevation data from NASA website (www2.jpl.nasa.gov/srtm/). To avoid over-prediction and low specificity, we cropped the bioclimatic layers to span from latitude 13 to -20 and longitude -83 to -43 (values in decimal degrees). This background encompasses the Amazonian biome and adjacent areas. To avoid model overparameterization, we removed strongly correlated variables ($r > 0.80$)
based on their biological relevance for *N. hudsoni*. We built our model using nine out of 20 original environmental variables (Bio3, Bio4, Bio7, Bio11, Bio12, Bio15, Bio17, Bio18, and Bio19). We assessed the importance of each variable to the model through values of permutation importance (i.e. the loss of model predictive power when each variable is excluded). We implemented ENM in R platform vs. 3.2.3 (R Core Team, 2016) using the maximum entropy algorithm (Phillips & Dudik 2008) and 'dismo' package (Hijmans et al. 2013). First, we trained the model based on 75% of randomly selected presence records and used the remaining 25% to test the model in 20 bootstrap repetitions. We evaluated the model performance using the area under the curve (AUC) for the test data. AUC statistics assess the sensitivity (absence of omission error) and the specificity (absence of commission error) of a model (Fielding & Bell 1997). AUC value of 0.50 indicates model performance compared to null expectations (random prediction), while higher AUC values indicate better models, with maximum prediction being 1 (Hanley & Meneil 1982).

Our first new record was made on May 30th, 2011, in the municipality of Aripuanã, state of Mato Grosso, Brazil. An adult specimen of *N. hudsoni* (Figure 1a) was found and photographed by a biologist (Christopher Fernandes) working for the Dardanelos Hydroelectric Power Plant. The specimen was in an area of abandoned pasture (-10.1628°, -59.4831°) 180 meters straight from the closest lowland forest fragment and was released after being photographed. It was found during the day after the passage of a bulldozer that unearthed it from a depth of 20-30 cm. This unusual record suggests that *N. hudsoni* can inhabits altered habitats and exhibits authentic fossorial behavior.

Our second record is from the municipality of Assis Brasil, in the state of Acre, Brazil. An adult specimen (Figure 1b) was found on February 10th, 2016 during a herpetological survey in the Rio Acre Ecological Station. The snake was active at 8 pm above the leaf litter in an area of floodplain forest (-11.0239°, -70.2178°). This specimen was collected (license: ICMBio #48448-2) and deposited in the herpetological collection of the Universidade Federal Rural de Pernambuco (voucher number: CHPUF RPE 4425).

Silva et al. (2010) mentioned *N. hudsoni* as previously recorded in the state of Acre but they do not attribute a specific citation for this record. In her doctoral thesis about the snakes from Acre, Silva (2006) listed *N. hudsoni* citing the study of Peters & Orejas-Miranda (1970) as reference. However, the distribution of *N. hudsoni* in the work of Peters & Orejas-Miranda (1970) is referred solely as 'British Guiana; Amazonian Ecuador'. Vanzolini (1986) also refers to the occurrence of *N. hudsoni* in the state of Acre without referring to a voucher specimen. Moreover, after contacting some curators and check online databases...
we found no specimens from Acre deposited in the main herpetological collections in Brazil. Thus, the specimen that we found in Assis Brasil is the first confirmed record of *N. hudsoni* from the state of Acre.

Current records suggest that *N. hudsoni* is restricted to the north, south and west edges of the Amazon. A similar distribution pattern is known for some species of birds (Remsen *et al.* 1991) but, to our knowledge, is not a common pattern among the herpetofauna. This unusual distribution was corroborated by ENM, which did not predict the occurrence of *N. hudsoni* in core areas of Amazon (Figure 2). The average training AUC for the replicate runs was 0.954 (SD = 0.022; n = 20 replicate model runs), indicating a high performance model (Fielding & Bell 1997). Most part of the model was explained by only four variables, based on their permutation importance values: temperature seasonality (Bio4, 31.3%), mean temperature of coldest quarter (Bio11, 29.4%), annual precipitation (Bio12, 11.9%) and precipitation of driest quarter (Bio17, 10.5%). Despite many records of *N. hudsoni* close to the Andes, elevation does not seem to be a decisive factor to its occurrence. In fact, *N. hudsoni* occurs in a wide elevational range (from 84 to 2,294 m above sea level; see Table 1). Andean slopes do seem to harbor most of the climatically suitable regions for *N. hudsoni*, but adequate conditions also occurs in lower elevations.

The major climatically suitable regions that lack occurrence records of *N. hudsoni* are located in southern Venezuela and Andean slopes in northwestern Colombia. All known records of *N. hudsoni* are east of the Andes, which may indicate that this mountain range acts as a barrier to its dispersion, as for many other herpetofauna species (Duellman 1979). Thus, it is likely that *N. hudsoni* does not occur west of Andes, despite the suitable conditions predicted in western Colombia (Figure 2). However, we believe the lack of records in southern Venezuela is due to a sampling gap, since this is the least studied area for reptiles in the country (Rivas *et al.* 2012). Moreover, no evident barrier seems to prevent the occurrence of *N. hudsoni* in that region.

![Figure 2](image.png)

Figure 2. Predicted distribution of *Ninia hudsoni* based on climatic niche suitability. Occurrence localities are related to literature data (black circles), unpublished collection records (red circles) and new records for Brazilian Amazon (red squares). A list with all numbered localities can be found in Table 1.
Table 1. Locality records of *Ninia hudsoni*. Elev. – elevation in meters; Long. – longitude; Lat. – latitude.

Map	Country	State/Department	Locality/Municipality	Elev. (m)	Long.	Lat.	Source
1	Guyana	East Berbice-Corentyne	New River (type-locality)	197	-57.5793	3.2444	Parker 1940
2	Colombia	Caquetá	Florencia	728	-75.6486	1.7497	Angarita-Sierra 2014
3	Colombia	Putumayo	Centro Experimental Amazónico, Mocoa	596	-76.6422	1.0783	Betancour-Cundur & Gutiérrez 2010
4	Ecuador	Sucumbíos	Puerto Libre, Río Aguaro	297	-76.7528	0.0756	Duellman 1978
5	Ecuador	Sucumbíos	Santa Cecilia	321	-76.9667	0.0500	Fundación Puerto Rastrojo (speciesLink)
6	Ecuador	Sucumbíos	Estación Cayagama	753	-77.4389	0.0300	Valencia & Garzón 2011
7	Ecuador	Napo	Wildsumaco Wildlife Sanctuary	1,323	-77.6008	-0.6875	Camper 2015
8	Ecuador	Napo	Río Hollín	1,195	-77.7126	-0.7088	Torres-Carvajal *et al.* 2015
9	Ecuador	Orellana	Ávila Viejo	807	-77.4281	-0.6105	Torres-Carvajal *et al.* 2015
10	Ecuador	Pastaza	Arajuno	544	-77.7000	-1.2333	MZUSP \(^1\)
11	Ecuador	Napo	Estación Biológica Jatun Sacha	398	-77.6167	-1.0677	Vigle 2008
12	Ecuador	Pastaza	Alto Río Curaray	717	-77.6666	-1.4167	MZUSP \(^1\)
13	Ecuador	Pastaza	Río Siquiño, Río Villano	583	-77.5509	-1.5017	Angarita-Sierra 2014
14	Ecuador	Pastaza	Cantón Pastaza, Barrilí Bella Vista	2,294	-78.2725	-1.9686	Angarita-Sierra 2014
15	Ecuador	Morona-Santiago	Cantón Taisha	319	-77.4257	-2.3855	Valencia *et al.* 2009
16	Peru	Pasco	Pozuzo	1,143	-75.5563	-10.0681	Lehr & Lara 2002
17	Peru	Cusco	Parque Nacional del Manu	413	-71.7167	-11.8500	Catenazzi *et al.* 2013
18	Peru	Madre de Dios	Tambopata Research Center	236	-69.6128	-13.1381	Duellman 2005
19	Brazil	Acre	Estação Ecológica Rio Acre, Assis Brasil	331	-70.2178	-11.0239	this study
20	Brazil	Rondônia	Usina Hidrelétrica de Samuel	84	-63.3622	-8.8097	Silva Jr 1993
21	Brazil	Rondônia	Ribeirão Riachuelo, Ji-Paraná	158	-61.8333	-10.6667	Instituto Butantã (speciesLink)
22	Brazil	Rondônia	Fazenda Jaburi, Espigão do Oeste	332	-60.7308	-11.6339	Bemarde & Abe 2006
23	Brazil	Mato Grosso	Juruenia	333	-58.9333	-12.8500	MZUSP \(^1\)
24	Brazil	Mato Grosso	Fazenda Maraciá, Atipuanã	212	-59.4831	-10.1628	this study
25	Brazil	Mato Grosso	Fazenda São Nicolau, Cotriguaçu	230	-58.7258	-9.8450	Kawashita-Ribeiro *et al.* 2011
26	Brazil	Mato Grosso	Panamaitá	247	-56.6821	-9.5944	MZUSP \(^1\); UFMT \(^2\) (speciesLink)

\(^1\)Museu de Zoologia da Universidade de São Paulo; \(^2\)Universidade Federal de Mato Grosso.
Although some Mesoamerican species of *Ninia* are considered locally abundant (Savage & Lahanas 1991), *N. hudsoni* seems to be naturally rare all over its distribution. Most of its local records are based on a single or very few specimens (e.g. Duellman 1978; Silva-Jr 1993; Bernarde & Abe 2006; this study). Even mid to long-term inventories using complementary sampling methods recorded only one individual of *N. hudsoni* (e.g. Bernarde & Abe 2006; our record from Aripuana-MT). The same studies suggest that pitfall traps, despite being considered effective on sampling semifossorial snakes (Enge 2001; Ribeiro-Júnior et al. 2011), may do not succeed in capturing *N. hudsoni*, which is most often found in occasional encounters (e.g. Camper 2015; this study). Therefore, it is likely that there are still gaps in the distribution of *N. hudsoni*, which might be due to its cryptic habits and natural low abundance.

ACKNOWLEDGEMENTS

We thank Christopher Fernandes for providing pictures of the specimen from Aripuana-MT; Giuseppe Puerto (Instituto Butantã), Geraldo Moura (UFRPE) and Hussam Zaher (MZUSP) for allowing access to their collections under their trusteeship; and Aldalucia Carvalho, Anselmo Silva e Lincoln Schwarzbach from Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for providing logistical support during field work in the Estação Ecológica Rio Acre.

REFERENCES

Angarita-Sierra, T. 2014. Hemipenial morphology in the semifossorial snakes of the genus *Ninia* and a new species from Trinidad, West Indies (Serpentes: Dipsadidae). South American Journal of Herpetology, 9(2), 114-130. DOI: 10.2994/SAJH-D-12-00004.1

Bernarde, P. S., & Abe, A. S. 2006. A snake community at Espigão do Oeste, Rondônia, southwestern Amazon, Brazil. South American Journal of Herpetology, 1(2), 102-113. DOI: 10.2994/1808-9798(2006)[102:ASCASED]2.0.CO;2

Betancourth-Cundar, M., & Gutiérrez, A. 2010. Aspectos ecológicos de la herpetofauna del Centro Experimental Amazónico, Putumayo, Colombia. Ecotrópicos, 23, 61-78.

Burger, W. L., & Weiler, J. E. 1954. The subspecies of the ring-necked coffee snake, *Ninia diadema*, and a short biological and taxonomic account of the genus. The University of Kansas Science Bulletin, 36, 643-672.

Camper, J. D. 2015. *Ninia hudsoni* (Hudson's coffee snake) maximum size. Herpetological Review, 46 (3), 452-453.

Catenazzi, A., Lehr, E., & May, R. V. 2013. The amphibians and reptiles of Manu National Park and its buffer zone, Amazon basin and eastern slopes of the Andes, Peru. Biota Neotropica, 13(4), 269-283. DOI: 10.1590/S1676-06032013000400024

Duellman, W. E. 1978. The biology of an equatorial herpetofauna in Amazonian Ecuador. Miscellaneous Publications, Museum of Natural History, University of Kansas 65, 1-352.

Duellman, W. E. 1979. The herpetofauna of the Andes: patterns of distribution, origin, differentiation, and present communities. In: W. E. Duellman, (Ed.), The South American Herpetofauna: Its origin, evolution and dispersal. pp. 371-459. Monography Museum of Natural History University of Kansas 7.

Duellman, W. E. 2005. Cusco amazónico: The lives of amphibians and reptiles in an Amazonian rainforest. Ithaca, New York: Cornell University Press; p. 488.

Enge, K. M. 2001. The pitfalls of pitfall traps. Journal of Herpetology, 35(3), 467-478.

Fielding, A. H. & Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.

Hanley, J., & McNeil, B., 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29-36. DOI: http://dx.doi.org/10.1148/radiology.143.1.7063747

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. DOI: 10.1002/joc.1276

Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. 2013. dismo: Species distribution modeling. R package version 0.9-1. In: http://CRAN.R-project.org/package=dismo

Kawashita-Ribeiro, R. A., Silva, J. P., da Silva, A. F., Arruda, L. A. G., Mott, T., & Carvalho, M. A. 2011. Os répteis escamosos (Reptilia, Squamata) da Fazenda São Nicolau, Cotriguacu, Mato Grosso, Brasil, um estudo preliminar. In: Rodrigues, D. J., Izzo, T. J. & Battiorla, L. D. Descobrindo a Amazônia Meridional: Biodiversidade da Fazenda São Nicolau. pp. 147-167. Cuiabá, Brasil: Pau e Prosa Comunicações Ltda.

Lehr, E., & Lara, J. 2002. Die schlangenfauna von Pozuzo (Peru) (Reptilia: Serpentes). Faunistische Abhandlungen Museum für Tierkunde Dresden, 22(2), 353-359.

Parker H. W. 1940. Undescribed anatomical structures and new species of reptiles and amphibians. Annals and Magazine of Natural History, 5, 257-274.

Peters, J. A., & Orejas-Miranda, B. 1970. Catalogue of the Neotropical Squamata Part I. Snakes. United States National Museum Bulletin, 297, 1-347.

Phillips, S. J., & Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. DOI: 10.1111/j.0906-7590.2008.05203.x

R Development Core Team. 2016. R: Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Remsen, J. V., Rocha, O., Schmitt, C. G., & Schmitt, D. C. 1991. Zoogeography and geographic variation of *Platyrrinchus mystaceus* in Bolivia and Peru, and the circum-Amazonian distribution pattern. Ornitología Neotropical, 2, 77-83.

Ribeiro-Júnior, M. A., Rossi, R. V., Miranda, C. L., & Ávila-
Pires, T. C. 2011. Influence of pitfall trap size and design on herpetofauna and small mammal studies in a Neotropical Forest. Zoologia, 28(1), 80-91. DOI: 10.1590/S1984-46702011000100012

Rivas, G. A., Molina, C. R., Ugüeto, G. N., Barros, T. R., Barrio-Amorós, C. L., & Kok, P. J. 2012. Reptiles of Venezuela: an updated and commented checklist. Zootaxa, 3211, 1-64.

Savage, J. M., & Lahanas, P. N. 1991. On the species of the colubrid snake genus Ninia in Costa Rica and western Panama. Herpetologica, 47, 37-53.

Silva Jr, N. J. 1993. The snakes from Samuel hydroelectric power plant and vicinity, Rondônia, Brazil. Herpetological Natural History, 1(1), 37-86.

Silva, M. V. 2006. Serpentes do Estado do Acre: riqueza, dieta, etno-conhecimento e acidentes ofídicos. Programa de Pós-graduação em Ecologia e Manejo de Recursos Naturais. Universidade Federal do Acre. p. 81. Available at http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=145013.

Silva, M. V., de Souza, M. B., & Bernarde, P. S. 2010. Riqueza e dieta de serpentes do Estado do Acre, Brasil. Revista Brasileira de Zootecniás, 12(2), 165-176.

SpeciesLink. 2016. Rede SpeciesLink. Centro de Referência em Informação Ambiental (CRIA), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Available at http://splink.cria.org.br/.

Torres-Carvajal, O., Salazar-Valenzuela, D., Merino-Viteri, A. & Nicolalde, D. A. 2015. ReptiliaWebEcuador. Versión 2015.0. Museo de Zoología QCAZ, Pontificia Universidad Católica del Ecuador. http://zooologia.puce.edu.ec/Vertebrados/reptiles/reptilesEcuador, accessed at May 25th 2016.

Valencia, J. H., Alcoser-Villagómez, M., Garzón, K. & Holmes, D. 2009. Albinism in Ninia hudsoni Parker, 1940 from Ecuador. Herpetozoa, 21(3/4), 190-192.

Valencia, J. H., & Garzón, K. 2011. Guía de anfibios y reptiles en ambientes cercanos a las estaciones del OCP. Quito: Fundación Herpetológica Gustavo Orcés, p. 268.

van Wallach, V., Williams, K. L., & Boundy, J. 2014. Snakes of the World: A catalogue of living and extinct species. Boca Raton: CRC Press: p. 1237.

Vanzolini, P. E. 1986. Addenda and corrigenda to the Catalogue of the Neotropical Squamata. Smithsonian Herpetological Information Service, 70, 1-26.

Vigle, G. O. 2008. The amphibians and reptiles of the Estación Biológica Jatun Sacha in the lowland rainforest of Amazonian Ecuador: A 20-year record. Breviora, 514, 1-30.

Submitted: 06 July 2016
Accepted: 09 September 2016