SOME HADAMARD-TYPE INEQUALITIES FOR COORDINATED P–CONVEX FUNCTIONS AND GODUNOVA-LEVIN FUNCTIONS

DOI: 1012.5880v2 [math.CA] 24 Mar 2011

A. OCAY AKDEMIR AND M. EMİN OZDEMİR

Abstract. In this paper we established new Hadamard-type inequalities for functions that co-ordinated Godunova-Levin functions and co-ordinated P–convex functions, therefore we proved a new inequality involving product of convex functions and P–functions on the co-ordinates.

1. INTRODUCTION

Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function and let \(a, b \in I \), with \(a < b \). The following inequality;

\[
\frac{f(a) + f(b)}{2} \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]

is known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction if \(f \) is concave.

In [1], E.K. Godunova and V.I. Levin introduced the following class of functions.

Definition 1. A function \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) is said to belong to the class of \(Q(I) \) if it is nonnegative and, for all \(x, y \in I \) and \(\lambda \in (0, 1) \) satisfies the inequality;

\[
f(\lambda x + (1-\lambda)y) \leq \frac{f(x)}{\lambda} + \frac{f(y)}{1-\lambda}
\]

In [2], S.S. Dragomir et.al., defined following new class of functions.

Definition 2. A function \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) is \(P \) function or that \(f \) belongs to the class of \(P(I) \), if it is nonnegative and for all \(x, y \in I \) and \(\lambda \in [0, 1] \), satisfies the following inequality;

\[
f(\lambda x + (1-\lambda)y) \leq f(x) + f(y)
\]

In [2], S.S. Dragomir et.al., proved two inequalities of Hadamard’s type for class of Godunova-Levin functions and \(P \)– functions.

Theorem 1. Let \(f \in Q(I), a, b \in I \), with \(a < b \) and \(f \in L_1[a, b] \). Then the following inequality holds.

\[
\frac{f(a) + f(b)}{2} \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]
\(f(\frac{a+b}{2}) \leq \frac{4}{b-a} \int_a^b f(x)dx \)

Theorem 2. Let \(f \in P(I), a, b \in I \), with \(a < b \) and \(f \in L_1[a,b] \). Then the following inequality holds.

\(f(\frac{a+b}{2}) \leq \frac{2}{b-a} \int_a^b f(x)dx \leq 2|f(a)+f(b)| \)

In [10], Tunc proved following theorem which containing product of convex functions and P–functions.

Theorem 3. Let \(a, b \in [0, \infty), a < b \), \(I = [a,b] \) with \(f, g : [a,b] \rightarrow \mathbb{R} \) be functions \(f, g \) and \(f, g \) are in \(L_1 ([a,b]) \). If \(f \) is convex and \(g \) belongs to the class of \(P(I) \) then,

\[
\frac{1}{b-a} \int_a^b f(x)g(x)dx \leq \frac{M(a,b) + N(a,b)}{2}
\]

where \(M(a,b) = f(a)g(a) + f(b)g(b) \) and \(N(a,b) = f(a)g(b) + f(b)g(a) \).

In [3], S.S. Dragomir defined convexity on the co-ordinates, as following:

Definition 3. Let us consider the bidimensional interval \(\Delta = [a,b] \times [c,d] \) in \(\mathbb{R}^2 \) with \(a < b, c < d \). A function \(f : \Delta \rightarrow \mathbb{R} \) will be called convex on the co-ordinates if the partial mappings \(f_y : [a,b] \rightarrow \mathbb{R}, f_y(u) = f(u, y) \) and \(f_x : [c,d] \rightarrow \mathbb{R}, f_x(v) = f(x, v) \) are convex where defined for all \(y \in [c,d] \) and \(x \in [a,b] \). Recall that the mapping \(f : \Delta \rightarrow \mathbb{R} \) is convex on \(\Delta \) if the following inequality holds,

\[
f(\lambda x + (1-\lambda)z, \lambda y + (1-\lambda)w) \leq \lambda f(x, y) + (1-\lambda)f(z, w)
\]

for all \((x, y), (z, w) \in \Delta \) and \(\lambda \in [0,1] \).

Every convex function is co-ordinated convex but the converse is not generally true.

In [3], S.S. Dragomir established the following inequalities of Hadamard’s type for co-ordinated convex functions on a rectangle from the plane \(\mathbb{R}^2 \).

Theorem 4. Suppose that \(f : \Delta = [a,b] \times [c,d] \rightarrow \mathbb{R} \) is convex on the co-ordinates on \(\Delta \). Then one has the inequalities;

\[
f(\frac{a+b}{2}, \frac{c+d}{2}) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_a^b f(x, \frac{c+d}{2})dx + \frac{1}{d-c} \int_c^d f(\frac{a+b}{2}, y)dy \right]
\]

\[
\leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)dxdy
\]

\[
\leq \frac{1}{4} \left[\frac{1}{b-a} \int_a^b f(x, c)dx + \frac{1}{b-a} \int_a^b f(x, d)dx + \frac{1}{d-c} \int_c^d f(a, y)dy + \frac{1}{d-c} \int_c^d f(b, y)dy \right]
\]

\[
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4}
\]
For recent results which similar to above inequalities see [5], [6], [7], [8] and [9].

In [4], M.E. Ozdemir et.al., established the following Hadamard’s type inequalities as above for co-ordinated m-convex and (α, m)-convex functions.

Theorem 5. Suppose that $f : \Delta = [0, b] \times [0, d] \to \mathbb{R}$ is m-convex on the co-ordinates on Δ. If $0 \leq a < b < \infty$ and $0 \leq c < d < \infty$ with $m \in (0, 1]$, then one has the inequality:

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)\,dx\,dy \\
\leq \frac{1}{4(b-a)} \min \{v_1, v_2\} + \frac{1}{4(d-c)} \min \{v_3, v_4\}
\]

where

\[
v_1 = \int_a^b f(x, c)\,dx + m \int_a^b f(x, \frac{d}{m})\,dx \\
v_2 = \int_a^b f(x, d)\,dx + m \int_a^b f(x, \frac{c}{m})\,dx \\
v_3 = \int_c^d f(a, y)\,dy + m \int_c^d f(\frac{b}{m}, y)\,dy \\
v_4 = \int_c^d f(b, y)\,dy + m \int_c^d f(\frac{a}{m}, y)\,dy.
\]

Theorem 6. Suppose that $f : \Delta = [0, b] \times [0, d] \to \mathbb{R}$ is m-convex on the co-ordinates on Δ. If $0 \leq a < b < \infty$ and $0 \leq c < d < \infty$, $m \in (0, 1]$ with $f_x \in L^1[0, d]$ and $f_y \in L^1[0, b]$, then one has the inequalities:

\[
\frac{1}{b-a} \int_a^b f(x, \frac{c+d}{2})\,dx + \frac{1}{d-c} \int_c^d f(\frac{a+b}{2}, y)\,dy \\
\leq \frac{1}{(b-a)(d-c)} \left[\int_a^b \int_c^d f(x, y) + m f(x, \frac{c}{m}) \right] \frac{dy\,dx}{2} \\
+ \int_c^d \int_a^b f(x, y) + m f(\frac{c}{m}, y) \frac{dx\,dy}{2}
\]

Similar results can be found for (α, m)-convex functions in [4]. In this paper we established new Hadamard-type inequalities for Godunova-Levin functions and P-functions on the co-ordinates on a rectangle from the plane \mathbb{R}^2 and we proved a new inequality involving product of co-ordinated convex functions and co-ordinated P-functions.

2. MAIN RESULTS

We define Godunova-Levin functions and P-functions on the co-ordinates as the following:

Definition 4. Let us consider the bidimensional interval $\Delta = [a, b] \times [c, d]$ in \mathbb{R}^2 with $a < b$, $c < d$. A function $f : \Delta \to \mathbb{R}$ is said to belong to the class of $Q(I)$ if it is nonnegative and for all $(x, y), (z, w) \in \Delta$ and $\lambda \in (0, 1)$ satisfies the following
Theorem 7. Levin functions on the co-ordinates.

Let \(\nu \) be a convex function; which shows convexity of \(f \) \(\nu \) coordinated Godunova-Levin function if the partial mappings \(f_y : [a, b] \to \mathbb{R}, \), \(f_y(u) = f(u, y) \) and \(f_x : [c, d] \to \mathbb{R}, f_x(v) = f(x, v) \) are belong to the class of \(Q(I) \) where defined for all \(y \in [c, d] \) and \(x \in [a, b] \).

We denote this class of functions by \(Q(V \nu) \). If the inequality reversed then \(f \) is said to be concave on \(\Delta \) and we denote this class of functions by \(QV(f, \Delta) \).

Definition 5. Let \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) be a \(P \)-function with \(a \leq b, c \leq d \). If it is nonnegative and for all \((x, y), (z, w) \in \Delta \) and \(\lambda \in (0, 1) \) the following inequality holds:

\[
f(\lambda x + (1-\lambda)z) + (1-\lambda)w) \leq f(x, y) + f(z, w)
\]

A function \(f : \Delta \to \mathbb{R} \) is said to belong to the class \(Q(X \nu) \) if the partial mappings \(f_y : [a, b] \to \mathbb{R}, f_y(u) = f(u, y) \) and \(f_x : [c, d] \to \mathbb{R}, f_x(v) = f(x, v) \) are \(P \)-functions where defined for all \(y \in [c, d] \) and \(x \in [a, b] \).

We denote this class of functions by \(PX(f, \Delta) \). We need following lemma for our main theorem.

Lemma 1. Every \(f \) function that belongs to the class \(Q(I) \) is said to belongs to class \(Q(X \nu) \).

Proof. Suppose that \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said to belong to the class \(Q(I) \) on \(\Delta \). Consider the function \(f_x : [c, d] \to [0, \infty), f_x(v) = f(x, v) \). Then \(\lambda \in (0, 1) \) and \(v_1, v_2 \in [c, d] \), one has:

\[
f_x(\lambda v_1 + (1-\lambda)v_2) = f(x, \lambda v_1 + (1-\lambda)v_2) = f(\lambda x + (1-\lambda)x, \lambda v_1 + (1-\lambda)v_2) \leq \frac{f(x, v_1)}{\lambda} + \frac{f(x, v_2)}{1-\lambda} = f_x(v_1) + f_x(v_2) \frac{\lambda}{1-\lambda}
\]

which shows convexity of \(f_x \). The fact that \(f_y : [a, b] \to \mathbb{R}, f_y(u) = f(u, y) \) is also convex on \([a, b]\) for all \(y \in [c, d] \) goes likewise and we shall omit the details. \(\square \)

The following inequalities is considered the Hadamard-type inequalities for Godunova-Levin functions on the co-ordinates.

Theorem 7. Suppose that \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said to belong to the class \(Q(X \nu) \) on the co-ordinates on \(\Delta \) with \(f_x \in L_1[c, d] \) and \(f_y \in L_1[a, b] \), then one has the inequalities:

\[
(2.1) \quad \frac{1}{16} \left[\int_{\frac{a+b}{2}} f \frac{c+d}{2} \right] \leq \frac{1}{8} \left[\frac{1}{b-a} \int_a^b f \left(\frac{c+d}{2} \right) dx + \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2} , y \right) dy \right] \leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dy dx
\]
Proof. Since $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $QX(f, \Delta)$ on the co-ordinates it follows that the mapping $g_x : [c, d] \to \mathbb{R}$, $g_x(y) = f(x, y)$ is Godunova-Levin function on $[c, d]$ for all $x \in [a, b]$. Then by Hadamard’s inequality (1.1) one has:
\[
g_x \left(\frac{c + d}{2} \right) \leq \frac{4}{d - c} \int_c^d g_x(y) dy, \forall x \in [a, b].
\]
That is,
\[
f(x, \frac{c + d}{2}) \leq \frac{4}{d - c} \int_c^d f(x, y) dy, \forall x \in [a, b].
\]
Integrating this inequality on $[a, b]$, we have:
\[
\frac{1}{b - a} \int_a^b f(x, \frac{c + d}{2}) dx \leq \frac{4}{(b - a)(d - c)} \int_c^d \int_c^b f(x, y) dy dx.
\]
A similar argument applied for the mapping $g_y : [a, b] \to \mathbb{R}$, $g_y(x) = f(x, y)$, we get:
\[
\frac{1}{d - c} \int_c^d f \left(\frac{a + b}{2}, y \right) dy \leq \frac{4}{(b - a)(d - c)} \int_c^d \int_a^b f(x, y) dx dy.
\]
Summing the inequalities (2.2) and (2.3), we get the last inequality in (2.1).

Therefore, by Hadamard’s inequality (1.1) we also have:
\[
f(\frac{a + b}{2}, \frac{c + d}{2}) \leq \frac{4}{d - c} \int_c^d f(\frac{a + b}{2}, y) dy
\]
and
\[
f(\frac{a + b}{2}, \frac{c + d}{2}) \leq \frac{4}{b - a} \int_a^b f(x, \frac{c + d}{2}) dx
\]
which give, by addition the first inequality in (2.1).

This completes the proof. \square

Corollary 1. Suppose that $f : \Delta = [a, b] \times [a, b] \to \mathbb{R}$ is said to belong to the class $QX(f, \Delta)$ on the co-ordinates, then one has the inequalities:
\[
(2.4) \frac{1}{16} \left[f(\frac{a + b}{2}, \frac{a + b}{2}) \right] \leq \frac{1}{8} \left[\frac{1}{b - a} \int_a^b \left\{ f(x, \frac{a + b}{2}) + f(\frac{a + b}{2}, x) \right\} dx \right]
\]
\[
\leq \frac{1}{(b - a)^2} \int_a^b \int_a^b f(x, y) dy dx.
\]

Corollary 2. In (2.7), under the assumptions Theorem 4 with $f(x, y) = f(y, x)$ for all $x \in [a, b] \times [a, b]$, we have:
\[
f(\frac{a + b}{2}, \frac{a + b}{2}) \leq \frac{1}{4} \left[\frac{1}{b - a} \int_a^b f(x, \frac{a + b}{2}) dx \right]
\]
\[
\leq \frac{1}{(b - a)^2} \int_a^b \int_a^b f(x, y) dy dx.
\]

Lemma 2. Every $P-$functions are coordinated on Δ or belong to the class of $PX(f, \Delta)$.
Proof. Let f be a P-function and defined by $f_x : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_z : [c, d] \to \mathbb{R}$, $f_z(v) = f(x, v)$ where $y \in [c, d]$, $x \in [a, b]$ and $\lambda \in [0, 1]$, $v_1, v_2 \in [a, b]$, then

\[f_z(\lambda v_1 + (1 - \lambda)v_2) = f(x, \lambda v_1 + (1 - \lambda)v_2) = f(\lambda x + (1 - \lambda)x, \lambda v_1 + (1 - \lambda)v_2) \leq f(x, v_1) + f(x, v_2) = f_z(v_1) + f_z(v_2) \]

which shows convexity of f_z. The fact that $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ is also convex on $[a, b]$ for all $y \in [c, d]$ goes likewise and we shall omit the details. \hfill \Box

The following inequalities is considered the Hadamard-type inequalities for P-functions on the co-ordinates.

Theorem 8. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $PX(f, \Delta)$ on the co-ordinates on Δ with $f_x \in L_1[a, b]$ and $f_y \in L_1[a, b]$, then one has the inequalities:

\[f\left(\frac{a + b}{2}, \frac{c + d}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x, \frac{c + d}{2})dx + \frac{1}{d - c} \int_c^d f\left(\frac{a + b}{2}, y\right)dy \leq \frac{4}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y)dydx \leq \frac{2}{b - a} \left[\int_a^b f(x, c)dx + \int_a^b f(x, d)dx \right] \]

\[+ \frac{2}{d - c} \left[\int_c^d f(a, y)dy + \int_c^d f(b, y)dy \right] \]

Proof. Since $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $PX(f, \Delta)$ on the co-ordinates it follows that the mapping $g_x : [c, d] \to \mathbb{R}$, $g_x(x) = f(x, y)$ is P-function on $[c, d]$ for all $x \in [a, b]$. Then by Hadamard’s inequality (1.2) one has:

\[f\left(\frac{a + b}{2}, \frac{c + d}{2}\right) \leq \frac{2}{d - c} \int_c^d f(x, y)dy \leq 2 \left[f(x, c) + f(x, d) \right] \]

Integrating this inequality on $[a, b]$, we have:

\[\frac{1}{b - a} \int_a^b f(x, \frac{c + d}{2})dx \leq \frac{2}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y)dydx \leq \frac{2}{b - a} \left[\int_a^b f(x, c)dx + \int_a^b f(x, d)dx \right] \]

A similar argument applied for the mapping $g_y : [a, b] \to \mathbb{R}$, $g_y(x) = f(x, y)$, we get:

\[\frac{1}{d - c} \int_c^d f\left(\frac{a + b}{2}, y\right)dy \leq \frac{2}{(b - a)(d - c)} \int_c^d \int_a^b f(x, y)dydx \leq \frac{2}{d - c} \left[\int_c^d f(a, y)dy + \int_c^d f(b, y)dy \right] \]
Theorem 9. Let □ Which gives the first inequality in (2.5). This completes the proof.

\[\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y)dydx \leq \frac{1}{2(b-a)} \left[\int_a^b f(x,c)dx + \int_a^b f(x,d)dx \right] + \frac{1}{2(d-c)} \left[\int_c^d f(a,y)dy + \int_c^d f(b,y)dy \right] \]

Which gives the last inequality in (2.5). We also have:

\[\frac{1}{b-a} \int_a^b f(x, c + \frac{d}{2})dx + \frac{1}{d-c} \int_c^d f(\frac{a+b}{2}, y)dy \]

\[\leq \frac{4}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y)dydx \]

Which gives the mid inequality in (2.5). By Hadamard’s inequality we also have:

\[f(\frac{a+b}{2}, c + \frac{d}{2}) \leq \frac{2}{b-a} \int_a^b f(x, \frac{c+d}{2})dx \]

and

\[f(\frac{a+b}{2}, \frac{c+d}{2}) \leq \frac{2}{d-c} \int_c^d f(\frac{a+b}{2}, y)dy \]

Adding these inequalities we get,

\[f(\frac{a+b}{2}, \frac{c+d}{2}) \leq \frac{1}{b-a} \int_a^b f(x, c + \frac{d}{2})dx + \frac{1}{d-c} \int_c^d f(\frac{a+b}{2}, y)dy \]

Which gives the first inequality in (2.5). This completes the proof. \(\square \)

Theorem 9. Let a, b, c, d \(\in [0, \infty) \), a < b and c < d, \(\Delta = [a, b] \times [c, d] \) with \(f, g : \Delta \rightarrow \mathbb{R} \) be functions \(f, g \) and \(fg \) are in \(L_1 ([a, b] \times [c, d]) \). If \(f \) is co-ordinated convex and \(g \) belongs to the class of \(PX(f, \Delta) \), then one has the inequality;

\[\frac{1}{(d-c)(b-a)} \int_a^b \int_c^d f(x,y)g(x,y)dydx \leq L(a,b,c,d) + M(a,b,c,d) + N(a,b,c,d) \]

where

\[L(a,b,c,d) = f(a,c)g(a,c) + f(b,c)g(b,c) + f(a,d)g(a,d) + f(b,d)g(b,d) \]

\[M(a,b,c,d) = f(a,c)g(a,d) + f(a,d)g(a,c) + f(b,c)g(b,d) + f(b,d)g(b,c) \]

\[+ f(b,c)g(a,c) + f(b,d)g(a,d) + f(a,c)g(b,c) + f(a,d)g(b,d) \]

\[N(a,b,c,d) = f(b,c)g(a,c) + f(b,d)g(a,c) + f(a,c)g(b,d) + f(a,d)g(b,c) \]

Proof. Since \(f \) is co-ordinated convex and \(g \) belongs to the class of \(PX(f, \Delta) \), by using partial mappings and from inequality (2.5), we can write

\[\frac{1}{d-c} \int_c^d f_x(y)g_x(y)dy \leq \frac{f_x(c)g_x(c) + f_x(d)g_x(d) + f_x(c)g_x(d) + f_x(d)g_x(c)}{2} \]

That is

\[\frac{1}{d-c} \int_c^d f(x,y)g(x,y)dy \leq \frac{f(x,c)g(x,c) + f(x,d)g(x,d) + f(x,c)g(x,d) + f(x,d)g(x,c)}{2} \]
Dividing both sides of this inequality \((b - a)\) and integrating over \([a, b]\) respect to \(x\), we have

\[
\frac{1}{(d - c) (b - a)} \int_a^b \int_c^d f(x, y) g(x, y) \, dy \, dx \leq
\]

\[
\frac{1}{2 (b - a)} \int_a^b f(x, c) g(x, c) + \frac{1}{2 (b - a)} \int_a^b f(x, d) g(x, d)
\]

\[
+ \frac{1}{2 (b - a)} \int_a^b f(x, c) g(x, d) + \frac{1}{2 (b - a)} \int_a^b f(x, d) g(x, c)
\]

By applying (1.3) to each integral on right hand side of (2.10) and using these inequalities in (2.10), we get the required result as following

\[
\frac{1}{(d - c) (b - a)} \int_a^b \int_c^d f(x, y) g(x, y) \, dy \, dx
\]

\[
\leq \frac{4}{4} f(a, c) g(a, c) + \frac{4}{4} f(b, c) g(b, c) + \frac{4}{4} f(a, c) g(b, c) + \frac{4}{4} f(b, c) g(a, c)
\]

\[
+ \frac{4}{4} f(a, d) g(a, d) + \frac{4}{4} f(b, d) g(b, d) + \frac{4}{4} f(a, d) g(b, d) + \frac{4}{4} f(b, d) g(a, d)
\]

By a similar argument, if we apply (1.3) for \(f(y)g(x)\) on \([a, b]\), we get the same result.

References

[1] E.K. Godunova and V.I. Levin, Neravenstva dlja funkcii sirokogo klassa soderzascego vypuklye, monotomnye i nekotorye drugie vidy funkii, Vycislitel Mat. i Mt. Fiz., Mezvuzov Sh. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.

[2] S.S. Dragomir, J. Pecaric and L.E. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, Vol.21, No:3, pp. 335-341, July 1995.

[3] S.S. Dragomir, On Hadamard’s inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5(2001), 775-788.

[4] M.E. Ozdemir, E. Set, M. Z. Sarikaya, Some new Hadamard’s type inequalities for coordinated\(m\)–convex and \(\alpha, m\)–convex functions, Submitted.

[5] M. A. Latif, M. Alomari, On Hadamard-type inequalities for \(h\)–convex functions on the co-ordinates, International Journal of Math. Analysis, 3 (2009), no. 33, 1645-1656.

[6] M. A. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.

[7] M. Alomari, M. Darus, Hadamard-type inequalities for \(s\)–convex functions, International Mathematical Forum, 3 (2008), no. 40, 1965-1975.

[8] M. Alomari, M. Darus, Co-ordinated \(s\)–convex function in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sciences, 3 (2008), no. 32, 1557-1567.

[9] M. Alomari, M. Darus, The Hadamard’s inequality for \(s\)–convex function of \(2\)–variables on the co-ordinates, International Journal of Math. Analysis, 2 (2008), no. 13, 629-638.

[10] M. Tunc, On Some Hadamard Type Inequalities for Product of Different Kinds of Convex Functions, RGMIA, Res. Rep. Coll., 13 (2010), Article 5, ONLINE: http://ajmaa.org/RGMIA/v13n1.php
Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey

E-mail address: ahmetakdemir@agri.edu.tr

Current address: Atatürk University, K. K. Education Faculty, Department of Mathematics, 25640, Campus, Turkey

E-mail address: emos@atauni.edu.tr