NON-AUTONOMOUS ORNSTEIN-UHLENBECK EQUATIONS IN EXTERIOR DOMAINS

TOBIAS HANSEL AND ABDELAZIZ RHANDI

Abstract. In this paper, we consider non-autonomous Ornstein-Uhlenbeck operators in smooth exterior domains \(\Omega \subset \mathbb{R}^d \) subject to Dirichlet boundary conditions. Under suitable assumptions on the coefficients, the solution of the corresponding non-autonomous parabolic Cauchy problem is governed by an evolution system \(\{ P_{\Omega}(t, s) \}_{0 \leq s \leq t} \) on \(L^p(\Omega) \) for \(1 < p < \infty \). Furthermore, \(L^p \)-estimates for spatial derivatives and \(L^p-L^q \) smoothing properties of \(P_{\Omega}(t, s) \), \(0 \leq s \leq t \), are obtained.

1. Introduction

In recent years, parabolic equations with unbounded and time-independent coefficients were investigated intensively in various function spaces over the whole space \(\mathbb{R}^d \) or exterior domains; we refer e.g. to [6,8,9,13,15] and the monograph [5]. However, it is also interesting to consider parabolic equations with unbounded coefficients in the non-autonomous case. In particular, analytically there is a great interest in the prototype situation of time-dependent Ornstein-Uhlenbeck operators in exterior domains, as operators of this type arise e.g. in the study of the Navier-Stokes flow in the exterior of a rotating obstacle; see e.g. [12,16].

Therefore, in this paper we consider non-autonomous Cauchy problems with Dirichlet boundary condition of the type

\[
\begin{aligned}
 u_t(t, x) - L_{\Omega}(t)u(t, x) &= 0, \quad t \in (s, \infty), \ x \in \Omega, \\
 u(t, x) &= 0, \quad t \in (s, \infty), \ x \in \partial \Omega, \\
 u(s, x) &= f(x), \ x \in \Omega,
\end{aligned}
\]

(1.1)

where \(s \geq 0 \) is fixed, \(\Omega \subset \mathbb{R}^d \) is a domain and \(\{ L_{\Omega}(t) \}_{t \geq 0} \) is a family of time-dependent Ornstein-Uhlenbeck operators formally defined by

\[
L_{\Omega}(t)\varphi(x) = \frac{1}{2} \text{Tr} (Q(t)Q^*(t)D_x^2\varphi(x)) + \langle M(t)x + c(t), D_x\varphi(x) \rangle, \quad x \in \Omega, \quad t \geq 0.
\]

(1.2)

Throughout the paper we assume that \(Q, M \in C_\text{loc}^\alpha(\mathbb{R}_+, \mathbb{R}^{d \times d}), c \in C_\text{loc}^\alpha(\mathbb{R}_+, \mathbb{R}^d) \) for some \(\alpha \in (0, 1) \) and there is \(\mu > 0 \) such that

\[
|Q(t)x| \geq \mu|x|, \quad t \geq 0, \ x \in \mathbb{R}^d.
\]

The above assumption guarantees that the operators \(L_{\Omega}(t) \) are uniformly elliptic.

2000 Mathematics Subject Classification. Primary 35B45; Secondary 35B65, 35K10.

Key words and phrases. Non-autonomous PDE, evolution system, Ornstein-Uhlenbeck operator.
The main purpose of this paper is to consider problem (1.1) in the L^p-setting for the case of smooth exterior domains Ω. However, in the course of this paper we also consider the situation where Ω is \mathbb{R}^d and a smooth bounded domain.

In the following the L^p-realization of $L_\Omega(t)$ will be denoted by $L_\Omega(t)$ with an appropriate domain $\mathcal{D}(L_\Omega(t)) \subset L^p(\Omega)$, specified later. Then we can rewrite equation (1.1) as an abstract non-autonomous Cauchy problem
\[(nACP) \quad \begin{cases} u'(t) = L_\Omega(t)u(t), & 0 \leq s < t, \\ u(s) = f, \end{cases} \tag{1.3}\]
where $f \in L^p(\Omega)$.

Definition 1.1. A continuous function $u : [s, \infty) \to L^p(\Omega)$ is called a (classical) solution of (nACP) if $u \in C^1([s, \infty), L^p(\Omega))$, $u(s) = f$, and $u'(t) = L_\Omega(t)u(t)$ for $0 \leq s < t$.

Definition 1.2 (Well-posedness). We say that the Cauchy problem (nACP) is well-posed (on regularity spaces $\{Y_s\}_{s \geq 0}$) if the following statements are true.

(i) **(Existence and uniqueness)** There are dense subspaces $Y_s \subset \mathcal{D}(L_\Omega(s))$ of $L^p(\Omega)$ such that for $f \in Y_s$ there is a unique solution $t \mapsto u(t; s, f) \in Y_t$ of (nACP).

(ii) **(Continuous dependence)** The solution depends continuously on the data; i.e., for $s_n \to s$ and $Y_{s_n} \ni f_n \to f \in Y_s$, we have $\tilde{u}(t; s_n, f_n) \to \tilde{u}(t; s, f)$ uniformly for t in compact subsets of $[0, \infty)$, where we set $\tilde{u}(t; s, f) := u(t; s, f)$ for $t \geq s$ and $\tilde{u}(t; s, f) := f$ for $t < s$.

In order to discuss well-posedness of (nACP) we introduce the concept of strongly continuous evolution systems.

Definition system 1.3 (Evolution system). A two parameter family of linear, bounded operators $\{P_\Omega(t, s)\}_{0 \leq s \leq t}$ on $L^p(\Omega)$ is called a (strongly continuous) evolution system if

(i) $P_\Omega(s, s) = \text{Id}$ and $P_\Omega(t, s) = P_\Omega(t, r)P_\Omega(r, s)$ for $0 \leq s \leq r \leq t$,

(ii) for each $f \in L^p(\Omega)$, $(t, s) \mapsto P_\Omega(t, s)f$ is continuous on $0 \leq s \leq t$.

We say $\{P_\Omega(t, s)\}_{0 \leq s \leq t}$ solves the Cauchy problem (nACP) (on spaces $\{Y_s\}_{s \geq 0}$) if there are dense subspaces Y_s of $L^p(\Omega)$ such that $P_\Omega(t, s)Y_s \subset Y_t \subset \mathcal{D}(L_\Omega(t))$ for $0 \leq s \leq t$ and the function $u(t) := P_\Omega(t, s)f$ is a solution of (nACP) for $f \in Y_s$.

It is well-known that the Cauchy problem (nACP) is well-posed on $\{Y_s\}_{s \geq 0}$ if and only if there is an evolution system solving (nACP) on $\{Y_s\}_{s \geq 0}$ (see e.g. [20, Sect. 3.2]).

The main result of this paper (see Theorem 3.1) is to show that for smooth exterior domains $\Omega \subset \mathbb{R}^d$ problem (nACP) is solved by a strongly continuous evolution system $\{P_\Omega(t, s)\}_{0 \leq s \leq t}$ on $L^p(\Omega)$ and thus, is well-posed. Since in unbounded domains the operators $L_\Omega(t)$ have unbounded drift coefficients, the present situation does not fit into the well-studied framework of evolution systems of parabolic type (see e.g. the monograph by Lunardi [17, Chapter 6] or the fundamental papers by Tanabe [22, 24] and Acquistapace, Terreni [1, 3]). Therefore the well-posedness of (nACP) and regularity properties of the solution do not follow from abstract arguments. Here lies the major difficulty. In order to prove our result we proceed as follows: In Section 2 we consider (nACP) in the case
that Ω is the whole space \mathbb{R}^d or a smooth bounded domain. For the whole space case we use a representation formula for the evolution system as done in [10]. In the case of bounded domains we can apply the standard results for non-autonomous Cauchy problems of parabolic type. These auxiliary results are then applied in Section 3 to construct an evolution system $\{P_{\Omega}(t, s)\}_{0 \leq s \leq t}$ on $L^p(\Omega)$ for smooth exterior domains $\Omega \subset \mathbb{R}^d$, by some cut-off techniques. Moreover, our method allows us to prove L^p-L^q estimates and estimates for spatial derivatives of $\{P_{\Omega}(t, s)\}_{0 \leq s \leq t}$.

Notations. The euclidian norm of $x \in \mathbb{R}^d$ will be denoted by $|x|$. By $B(R)$ we denote the open ball in \mathbb{R}^d with centre at the origin and radius R. For $T > 0$ we use the notations:

$$\Lambda_T := \{(t, s) : 0 \leq s \leq t \leq T\}$$
$$\tilde{\Lambda}_T := \{(t, s) : 0 \leq s < t \leq T\}$$
$$\Lambda := \{(t, s) : 0 \leq s \leq t\}$$
$$\tilde{\Lambda} := \{(t, s) : 0 \leq s < t\}.$$

If $u : \Omega \to \mathbb{R}$, where $\Omega \subseteq \mathbb{R}^d$ is a domain, we use the following notation:

$$D_i u = \frac{\partial u}{\partial x_i}, \quad D_{ij} u = D_i D_j u, \quad D_x u = (D_1 u, \ldots, D_d u), \quad D_2 u = (D_{ij} u).$$

Let us come to notation for function spaces. For $1 \leq p < \infty$, $j \in \mathbb{N}$, $W^{j,p}(\Omega)$ denotes the classical Sobolev space of all $L^p(\Omega)$-functions having weak derivatives in $L^p(\Omega)$ up to the order j. Its usual norm is denoted by $\| \cdot \|_{j,p}$ and by $\| \cdot \|_p$ when $j = 0$. By $W_0^{1,p}(\mathbb{R}^d)$ we denote the closure of the space of test functions $C_c^\infty(\mathbb{R}^d)$ with respect to the norm of $W^{1,p}(\mathbb{R}^d)$. For $0 < \alpha < 1$ we denote by $C_0^{\alpha}(\mathbb{R}_+, \mathbb{R}^{d \times d})$ the space of all α-Hölder continuous functions in $[0, T]$ for all $T > 0$. The space of all bounded continuous functions $u : \Omega \to \mathbb{R}$ is denoted by $C_b(\Omega)$. For $k \in \mathbb{N}$, $C_b^k(\Omega)$ is the subspace of $C_b(\Omega)$ consisting of all functions which are differentiable up to the order k in Ω such that the derivatives are bounded.

Finally, we denote by $C^{1,2}(I \times \Omega)$ the space of all functions $u : I \times \Omega \to \mathbb{R}$ which are continuously differentiable with respect to $t \in I$ and C^2 with respect to the space variable $x \in \Omega$, where $I \subseteq [0, \infty)$ is an interval.

2. Auxiliary results: whole space and bounded domains

In this section we prove some auxiliary results concerning the evolution systems in the case of the whole space \mathbb{R}^d and smooth bounded domains. These results are needed in Section 3 for the construction of the evolution system in the case of exterior domains.

2.1. The evolution system in the whole space.

The realizations of $\{L_{\mathbb{R}^d}(t)\}_{t \geq 0}$ are defined by

$$\mathcal{D}(L_{\mathbb{R}^d}(t)) := \{u \in W^{2,p}(\mathbb{R}^d) : (M(t) x, D_x u(x)) \in L^p(\mathbb{R}^d)\},$$

$$L_{\mathbb{R}^d}(t) u := L_{\mathbb{R}^d}(t) u. \quad (2.1)$$
Here the domain of $L_{\Omega}(t)$ depends on the time parameter t. However, note that the subspace
\[
Y_{\mathbb{R}^d} := \{ u \in W^{2,p}(\mathbb{R}^d) : |x| \cdot D_j u(x) \in L^p(\mathbb{R}^d) \text{ for all } j = 1, \ldots, d \}
\]
is contained in $\mathcal{D}(L_{\Omega}(t))$ for all $t \geq 0$ and is dense in $L^p(\mathbb{R}^d)$. The space $Y_{\mathbb{R}^d}$ will serve as a regularity space in order to discuss well-posedness of (nACP).

It follows directly from [19] (see also [18]) that in the autonomous case (i.e. for fixed $s \geq 0$) the operator $(L_{\mathbb{R}^d}(s), \mathcal{D}(L_{\mathbb{R}^d}(s)))$ generates a strongly continuous semigroup, which is however not analytic. Second order elliptic operators in \mathbb{R}^d with more general unbounded and time-independent coefficients were considered e.g. in [21, 14].

In the following we denote by $\{U(t,s)\}_{t,s \geq 0}$ the evolution system in \mathbb{R}^d that satisfies
\[
\begin{cases}
\frac{\partial}{\partial t} U(t,s) = -M(t)U(t,s), \\
U(s,s) = \text{Id}.
\end{cases}
\]
The existence of $\{U(t,s)\}_{t,s \geq 0}$ follows directly from the Picard-Lindelöf theorem. Now for $f \in L^p(\mathbb{R}^d)$ and $s \geq 0$ we set $P_{\mathbb{R}^d}(s,s) = \text{Id}$ and for $(t,s) \in \tilde{\Lambda}$ we define
\[
P_{\mathbb{R}^d}(t,s)f(x) = (k(t,s,\cdot) \ast f)(U(t,s)x + g(t,s)), \quad x \in \mathbb{R}^d,
\]
where
\[
k(t,s,x) := \frac{1}{(2\pi)^{d/2}(\det Q_{t,s})^{\frac{d}{2}}} e^{-\frac{1}{2} \langle Q_{t,s}^{-1}x,x \rangle}, \quad x \in \mathbb{R}^d,
\]
\[
g(t,s) = \int_s^t U(s,r)c(r)dr \quad \text{and} \quad Q_{t,s} = \int_s^t U(s,r)Q(r)Q^*(r)U^*(s,r)dr.
\]
As in [7 Proposition 2.1] (see also [12 Proposition 2.1]) it can be shown that for initial value $f \in C_0^\infty(\mathbb{R}^d)$, the function $u(t,x) := P_{\mathbb{R}^d}(t,s)f(x)$ is a classical solution to
\[
\begin{cases}
\partial_t u(t,x) - L_{\mathbb{R}^d}(t)u(t,x) = 0, \quad (t,s) \in \tilde{\Lambda}, \ x \in \mathbb{R}^d, \\
u(s,x) = f(x), \quad x \in \mathbb{R}^d,
\end{cases}
\]
and $u \in C^{1,2}((s,\infty) \times \Omega)$ and u solves (2.7). Further, the two parameter family of operators $\{P_{\mathbb{R}^d}(t,s)\}_{(t,s) \in \Lambda}$ is a strongly continuous evolution system on $L^p(\mathbb{R}^d)$.

Proposition 2.1. Let $1 < p < \infty$. Then the family of operators $\{P_{\mathbb{R}^d}(t,s)\}_{(t,s) \in \Lambda}$ defined in (2.2) is a strongly continuous evolution system on $L^p(\mathbb{R}^d)$ with the following properties.

(a) For $(t,s) \in \Lambda$, the operator $P_{\mathbb{R}^d}(t,s)$ maps $Y_{\mathbb{R}^d}$ into $Y_{\mathbb{R}^d}$.

(b) For every $f \in Y_{\mathbb{R}^d}$ and every $s \in [0, \infty)$, the map $t \mapsto P_{\mathbb{R}^d}(t,s)f$ is differentiable in (s,∞) and
\[
\frac{\partial}{\partial t} P_{\mathbb{R}^d}(t,s)f = L_{\mathbb{R}^d}(t)P_{\mathbb{R}^d}(t,s)f.
\]

(c) For every $f \in Y_{\mathbb{R}^d}$ and $t \in (0,\infty)$, the map $s \mapsto P_{\mathbb{R}^d}(t,s)f$ is differentiable in $[0,t)$ and
\[
\frac{\partial}{\partial s} P_{\mathbb{R}^d}(t,s)f = -P_{\mathbb{R}^d}(t,s)L_{\mathbb{R}^d}(s)f.
\]
Definition 1.3) holds for every \(f \in \mathcal{C}_c^\infty(\mathbb{R}^d) \). Since \(\mathcal{C}_c^\infty(\mathbb{R}^d) \) is dense in \(L^p(\mathbb{R}^d) \) the law of evolution holds even for all \(f \in L^p(\mathbb{R}^d) \). The strong continuity of the map \(\Lambda \ni (t, s) \mapsto P_{\mathbb{R}^d}(t, s) \) can be shown as in \([12\text{, Proposition 2.3}]\). Equalities \((2.6)\) and \((2.7)\) follow by differentiating the kernel \(k(t, s, x) \) with respect to \(t \) and \(s \), respectively.

Let us now show that the evolution system \(\{P_{\mathbb{R}^d}(t, s)\}_{(t, s)\in \Lambda} \) leaves the regularity space \(Y_{\mathbb{R}^d} \) invariant. Since \(k(t, s, \cdot) \in \mathcal{C}^\infty(\mathbb{R}^d) \) it follows that \(P_{\mathbb{R}^d}(t, s) f \in \mathcal{C}^\infty(\mathbb{R}^d) \) for all \(f \in L^p(\mathbb{R}^d) \) and \((t, s)\in \Lambda\). Moreover, we note that

\[
D_x P_{\mathbb{R}^d}(t, s) f = U^*(s, t) (k(t, s, \cdot) * D_x f) (U(s, t) x + g(t, s))
\]

holds for all \(f \in W^{1,p}(\mathbb{R}^d) \). Thus, it suffices to show that for all \(j = 1, \ldots, d \) we have

\[
|D_j f| (k(t, s, \cdot) * D_j f)(x) \in L^p(\mathbb{R}^d).
\]

So let \(h \in L^q(\mathbb{R}^d) \) with \(\frac{1}{p} + \frac{1}{q} = 1 \). Then we obtain

\[
\int_{\mathbb{R}^d} \left| (|x| \cdot (k(t, s, \cdot) * D_j f)(x)) h(x) \right| \, dx
\]

\[
\leq C \int_{\mathbb{R}^d} |x| |h(x)| \int_{\mathbb{R}^d} |D_j f(x - y)e^{-\frac{i}{2}Q^{-1}_{\xi}(y, y)}| \, dy \, dx
\]

\[
\leq C \left[\int_{\mathbb{R}^d} e^{-\frac{i}{2}Q^{-1}_{\xi}(y, y)} \int_{\mathbb{R}^d} \left| (|x| \cdot D_j f(x - y)) h(x) \right| \, dx \, dy + \int_{\mathbb{R}^d} |y| e^{-\frac{i}{2}Q^{-1}_{\xi}(y, y)} \int_{\mathbb{R}^d} |D_j f(x - y)| |h(x)| \, dx \, dy \right]
\]

\[
\leq C \left[\||x| D_j f\|_p \|h\|_q + \|D_j f\|_p \|h\|_q \right].
\]

Here the constant \(C \) may change from line to line. Thus

\[
\int_{\mathbb{R}^d} \left| (|x| \cdot (k(t, s, \cdot) * D_j f)(x)) h(x) \right| \, dx < \infty
\]

holds for all \(h \in L^q(\mathbb{R}^d) \) and this proves the assertion. \(\square\)

As a consequence of Proposition \([2.1]\) Cauchy problem (nACP) is well-posed in the case of \(\mathbb{R}^d \) with regularity space \(Y_{\mathbb{R}^d} \). Now we prove \(L^p - L^q \) estimates and estimates for higher order spatial derivatives of \(\{P_{\mathbb{R}^d}(t, s)\}_{(t, s)\in \Lambda} \). For this purpose we need the following estimates for the matrices \(Q_{t, s} \). For a proof we refer to \([10\text{, Lemma 3.2}]\) and \([12\text{, Lemma 2.4}]\).

Lemma 2.2. Let \(T > 0 \). Then there exists a constant \(C := C(T) > 0 \) such that

\[
\|Q_{t, s} \| \leq C(t - s)^{-\frac{1}{q}}, \quad (t, s) \in \bar{\Lambda}_T,
\]

\[
(\det Q_{t, s})^{\frac{1}{q}} \geq C(t - s)^{-\frac{1}{q}}, \quad (t, s) \in \Lambda_T. \tag{2.8}
\]

Proposition 2.3. Let \(T > 0 \), \(1 < p \leq q < \infty \) and \(\beta \in \mathbb{N}^d_0 \) be a multi-index. Then there exists a constant \(C := C(T) > 0 \) such that for every \(f \in L^p(\mathbb{R}^d) \)

\[
(a) \quad \|P_{\mathbb{R}^d}(t, s) f\|_q \leq C(t - s)^{-\frac{\beta}{q} \left(\frac{1}{p} - \frac{1}{q} \right)} \|f\|_p, \quad (t, s) \in \bar{\Lambda}_T,
\]

\[
(b) \quad \|D_x^\beta P_{\mathbb{R}^d}(t, s) f\|_p \leq C(t - s)^{-\frac{\beta}{p}} \|f\|_p, \quad (t, s) \in \bar{\Lambda}_T.
\]
Moreover,
\[\| P_{\mathbb{R}^d}(t, s)f \|_{k,p} \leq C \| f \|_{k,p}, \quad (t, s) \in \Lambda_T, \]
for all \(f \in W^{k,p}(\mathbb{R}^d) \), \(k = 1, 2, \) and
\[\| P_{\mathbb{R}^d}(t, s)f \|_{2,p} \leq C(t - s)^{-\frac{1}{2}} \| f \|_{1,p}, \quad (t, s) \in \tilde{\Lambda}_T, \]
for all \(f \in W^{1,p}(\mathbb{R}^d) \).

Proof. Let \(T > 0 \). By the change of variables \(\xi = U(s, t)x \) and by Young’s inequality we obtain
\[\| P_{\mathbb{R}^d}(t, s)f \|_q \leq | \det U(s, t) |^{\frac{1}{2}} \| k(t, s, \cdot) \|_r \| f \|_p, \]
where \(1 < r < \infty \) with \(\frac{1}{p} + \frac{1}{r} = 1 + \frac{1}{q} \). Moreover, by the change of variables \(y = Q_{t,s}^{1/2}z \) we obtain
\[\| k(t, s, \cdot) \|_r = \frac{(\det Q_{t,s})^{\frac{1}{2}(1-r)}}{(2\pi)^{\frac{1}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|z|^2}{2}} \, dz \leq C(\det Q_{t,s})^{\frac{1}{2}(1-r)}. \]
Now Lemma 2.2 yields (a).

To prove (b) we first note that
\[| D_x^2 P_{\mathbb{R}^d}(t, s)f(x) | \leq | U^*(s, t)|^{[\beta]} |(D_x^2 k(t, s, \cdot) * f)(U(s, t)x + g(t, s)) | \]
holds. Thus, we have to estimate the norm of \(D_x^2 k(t, s, \cdot) \). Since
\[D_x k(t, s, x) = -k(t, s, x) \left(Q_{t,s}^{-1} x \right)^* \]
holds, we obtain by differentiating further
\[| D_x^2 k(t, s, x) | \leq C k(t, s, x) | Q_{t,s}^{-1} x |^{[\beta]} \]
for some constant \(C > 0 \). As above, by the change of variables \(y = Q_{t,s}^{1/2}z \), we obtain
\[\| D_x^2 k(t, s, \cdot) \|_1 \leq \frac{\| Q_{t,s}^{-1} \|^{[\beta]}}{(2\pi)^{\frac{1}{2}}} \int_{\mathbb{R}^d} |z|^{[\beta]} e^{-\frac{|z|^2}{2}} \, dz \leq C \| Q_{t,s}^{-\frac{1}{2}} \|^{[\beta]}. \]
Now Lemma 2.2 yields assertion (b). The last assertions follow by a direct computation. \(\square \)

Remark 2.4. If \(\{ U(t, s) \}_{t,s \geq 0} \) is uniformly bounded, i.e. \(\| U(t, s) \| \leq M \) for some constant \(M > 0 \) and all \(t, s \geq 0 \), then the estimates in Lemma 2.2 and Proposition 2.3 hold in \(\Lambda \) and \(\tilde{\Lambda} \) respectively. In particular, in this case the evolution system \(\{ P(t, s) \}_{(t,s) \in \Lambda} \) is uniformly bounded.

2.2. **The evolution system in bounded domains.** In this subsection we assume that \(D \subset \mathbb{R}^d \) is a bounded domain with \(C^{1,1} \)-boundary. For \(t \geq 0 \) we set
\[\mathcal{D}(L_D(t)) := \mathcal{D}(L_D) := W^{2,p}(D) \cap W_0^{1,p}(D), \]
\[L_D(t)u := L_D(t)u. \quad (2.9) \]
Note that in this situation the domain is independent of the time parameter \(t \), i.e. all the operators \(L_D(t) \) are defined on the same domain \(\mathcal{D}(L_D) \).
Lemma 2.5. Let $D \subset \mathbb{R}^d$ be a bounded domain with $C^{1,1}$-boundary and $1 < p < \infty$.

(a) For fixed $s \in [0, \infty)$, the operator $(L_D(s), \mathcal{D}(L_D))$ generates an analytic semigroup on $L^p(D)$.

(b) The map $t \mapsto L_D(t)$ belongs to $C_\text{loc}^0(\mathbb{R}_+, \mathcal{L}(\mathcal{D}(L_D), L^p(D)))$.

Proof. Assertion (a) follows from the classical theory of elliptic second order operators in bounded domains (see also [17, Lemma 2.4]). Assertion (b) follows from the assumptions on the coefficients of $L_D(\cdot)$.

The following proposition now follows directly from the theory of evolution systems of parabolic type; see [17, Chapter 6] and [11, Sect. 2.3]. See also [4, Sect. 7] for bounded domains of class C^2.

Proposition 2.6. Let $D \subset \mathbb{R}^d$ be a bounded domain with $C^{1,1}$-boundary and $1 < p < \infty$. Then there is a unique evolution system $\{P_D(t,s)\}_{(t,s) \in \Lambda}$ on $L^p(D)$ with the following properties.

(a) For $(t,s) \in \tilde{\Lambda}$, the operator $P_D(t,s)$ maps $L^p(D)$ into $\mathcal{D}(L_D)$.

(b) The map $t \mapsto P_D(t,s)$ is differentiable in (s, ∞) with values in $\mathcal{L}(L^p(D))$ and

$$\frac{\partial}{\partial t} P_D(t,s) = L_D(t) P_D(t,s). \quad (2.10)$$

(c) For every $f \in \mathcal{D}(L_D)$ and $t \in (0, \infty)$, the map $s \mapsto P_D(t,s)f$ is differentiable in $[0, t)$ and

$$\frac{\partial}{\partial s} P_D(t,s)f = -P_D(t,s)L_D(s)f. \quad (2.11)$$

(d) Let $T > 0$. Then there exists a constant $C := C(T) > 0$ such that

$$\| P_D(t,s)f \|_p \leq C \| f \|_p, \quad (2.12)$$

and

$$\| P_D(t,s)f \|_{2p} \leq C(t-s)^{-1} \| f \|_p. \quad (2.13)$$

for all $f \in L^p(D)$ and all $(t,s) \in \tilde{\Lambda}_T$.

The following estimates follow directly from the proposition above and simple interpolation.

Corollary 2.7. Let $T > 0$, $1 < p < \infty$ and $p \leq q < \infty$. Then there exists a constant $C := C(T) > 0$ such that for every $f \in L^p(D)$

(a) $\| P_D(t,s)f \|_q \leq C(t-s)^{-\frac{q}{2} \left(\frac{1}{p} - \frac{1}{2}\right)} \| f \|_p$, \quad $(t,s) \in \tilde{\Lambda}_T$,

(b) $\| \partial_s P_D(t,s)f \|_p \leq C(t-s)^{-\frac{1}{2}} \| f \|_p$, \quad $(t,s) \in \tilde{\Lambda}_T$.

Moreover,

$$\| P_D(t,s)f \|_{k,p} \leq C \| f \|_{k,p}, \quad (t,s) \in \Lambda_T,$$

for all $f \in W^{k,p}(D)$, $k = 1, 2$, and

$$\| P_D(t,s)f \|_{2,p} \leq C(t-s)^{-\frac{1}{2}} \| f \|_{1,p}, \quad (t,s) \in \tilde{\Lambda}_T,$$

for all $f \in W^{1,p}(D)$.

Proof. Let us start with the case \(q \geq p \geq d/2 \). Then, by the Gagliardo-Nierenberg inequality (cf. [25, Theorem 3.3]) and Proposition 2.6 (d), we immediately obtain
\[
\| P_D(t,s)f \|_q \leq C \| D_x^2 P_D(t,s)f \|_{p}^a \| P_D(t,s)f \|_{p}^{1-a} \leq C(t-s)^{-a} \| f \|_p, \quad (t,s) \in \tilde{\Lambda}_T,
\]
where \(a = \frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right) \). The case \(1 < p < \frac{d}{2} \) follows by iteration. Assertion (b) is also proved by the Gagliardo-Nierenberg inequality. By setting \(a = \frac{1}{2} \) and \(p = q \) we obtain
\[
\| D_x P_D(t,s)f \|_p \leq C \| D_x^2 P_D(t,s)f \|_{p}^\frac{1}{2} \| P_D(t,s)f \|_{p}^{\frac{1}{2}} \leq C(t-s)^{-\frac{d}{2}} \| f \|_p, \quad (t,s) \in \tilde{\Lambda}_T.
\]
For the last assertions we refer, for example, to [17, Corollary 6.1.8].

\[\square \]

3. The Evolution system in exterior domains

In this section we come to the main part of this paper. In the sequel we always assume that \(\Omega \subset \mathbb{R}^d \) is an exterior domain with \(C^{1,1} \)-boundary, i.e., \(\Omega = \mathbb{R}^d \setminus K \), where \(K \subset \mathbb{R}^d \) is a compact set with \(C^{1,1} \)-boundary. For \(t \geq 0 \) we set
\[
\mathcal{D}(L_\Omega(t)) := \{ u \in W^{2,p}(\mathbb{R}^d) \cap W^{1,p}_0(\Omega) : (M(t)x, D_x u(x)) \in L^p(\Omega) \},
\]
\[
L_\Omega(t)u := L_\Omega(t)u.
\]
(3.1)
Here the domain of \(L_\Omega(t) \) depends on the time parameter \(t \), however the subspace
\[
Y_\Omega := \{ u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) : |x| \cdot D_j u(x) \in L^p(\Omega) \text{ for } j = 1, \ldots, d \}
\]
is contained in \(\mathcal{D}(L_\Omega(t)) \) for all \(t \geq 0 \) and is dense in \(L^p(\Omega) \). It follows from [9] that in the autonomous case (i.e. for fixed \(s \geq 0 \)) the operator \((L_\Omega(s), \mathcal{D}(L_\Omega(s))) \) generates a strongly continuous semigroup on \(L^p(\Omega) \). For more general second order elliptic operators with unbounded and time-independent coefficients in exterior domains we refer to [13]. Our main result is the existence of an evolution system in \(L^p(\Omega) \), \(1 < p < \infty \), associated to the operators \(L_\Omega(\cdot) \).

Theorem 3.1. Let \(\Omega \subset \mathbb{R}^d \) be an exterior domain with \(C^{1,1} \)-boundary and \(1 < p < \infty \). Then there exists a unique evolution system \(\{ P_\Omega(t,s) \}_{(t,s) \in \Lambda} \) on \(L^p(\Omega) \) with the following properties.

(a) For \((t,s) \in \Lambda \), the operator \(P_\Omega(t,s) \) maps \(Y_\Omega \) into \(Y_\Omega \).
(b) For every \(f \in Y_\Omega \) and \(s \geq 0 \), the map \(t \mapsto P_\Omega(t,s)f \) is differentiable in \((s, \infty) \) and
\[
\frac{\partial}{\partial t} P_\Omega(t,s)f = L_\Omega(t)P_\Omega(t,s)f.
\]
(3.2)
(c) For every \(f \in Y_\Omega \) and \(t > 0 \), the map \(s \mapsto P_\Omega(t,s)f \) is differentiable in \([0, t) \) and
\[
\frac{\partial}{\partial s} P_\Omega(t,s)f = -P_\Omega(t,s)L_\Omega(s)f.
\]
(3.3)

As a direct consequence we obtain well-posedness of the abstract non-autonomous Cauchy problem (nACP) on the regularity space \(Y_\Omega \).

Corollary 3.2. Let \(\Omega \) be an exterior \(C^{1,1} \)-domain. Then the Cauchy problem (nACP) is well-posed on \(Y_\Omega \).
In the following, we describe the construction of the evolution system \(\{ P_\Omega(t, s) \}_{(t, s) \in \Lambda} \) in detail. The general idea is to derive the result for exterior domains from the corresponding results in the case of \(\mathbb{R}^d \) and bounded domains. For this purpose let \(R > 0 \) be such that \(K \subset B(R) \). We set \(D := \Omega \cap B(R + 3) \). We denote by \(\{ P_\mathbb{R}^d(t, s) \}_{(t, s) \in \Lambda} \) the evolution system in \(L^p(\mathbb{R}^d) \) and by \(\{ P_D(t, s) \}_{(t, s) \in \Lambda} \) the evolution system in \(L^p(D) \) for the bounded domain \(D \). Next we choose cut-off functions \(\varphi, \eta \in C^\infty(\Omega) \) such that \(0 \leq \varphi, \eta \leq 1 \) and
\[
\varphi(x) := \begin{cases}
1, & |x| \geq R + 2, \\
0, & |x| \leq R + 1,
\end{cases}
\]
and
\[
\eta(x) := \begin{cases}
1, & |x| \leq R + 2, \\
0, & |x| \geq R + \frac{\delta}{2}.
\end{cases}
\]
For \(f \in L^p(\Omega) \) we define \(f_0 \in L^p(\mathbb{R}^d) \) and \(f_D \in L^p(D) \), respectively, by
\[
f_0(x) := \begin{cases}
f(x), & x \in \Omega, \\
0, & x \not\in \Omega,
\end{cases}
\quad\text{and}\quad f_D(x) = \eta(x) f(x).
\]
These definitions ensure that for every function \(f \in \mathcal{D}(L_0(t)) \) we have \(f_0 \in \mathcal{D}(L_{\mathbb{R}^d}(t)) \) and \(f_D \in \mathcal{D}(L_D(t)) \). Now for \((t, s) \in \Lambda \) and \(f \in L^p(\Omega) \) we set
\[
W(t, s) f = \varphi P_{\mathbb{R}^d}(t, s) f_0 + (1 - \varphi) P_D(t, s) f_D.
\] (3.4)

A short calculation yields
\[
D_x W(t, s) f = \varphi D_x P_{\mathbb{R}^d}(t, s) f_0 + (1 - \varphi) D_x P_D(t, s) f_D + D_x \varphi (P_{\mathbb{R}^d}(t, s) f_0 - P_D(t, s) f_D),
\]
and
\[
D_x^2 W(t, s) f = \varphi D_x^2 P_{\mathbb{R}^d}(t, s) f_0 + (1 - \varphi) D_x^2 P_D(t, s) f_D + 2 (D_x \varphi)^* \cdot (D_x P_{\mathbb{R}^d}(t, s) f_0 - D_x P_D(t, s) f_D) + D_x^2 \varphi (P_{\mathbb{R}^d}(t, s) f_0 - P_D(t, s) f_D).
\]

Thus, for \(f \in Y_\Omega \), we obtain
\[
\begin{cases}
\frac{\partial}{\partial t} W(t, s) f = L_\Omega(t) W(t, s) f - F(t, s) f, & (t, s) \in \Lambda, \\
W(s, s) f = f,
\end{cases}
\] (3.5)

with
\[
F(t, s) f = \text{Tr} [Q(t) Q^*(t) (D_x \varphi)^* \cdot (D_x P_{\mathbb{R}^d}(t, s) f_0 - D_x P_D(t, s) f_D)] + L_\Omega(t) \varphi (P_{\mathbb{R}^d}(t, s) f_0 - P_D(t, s) f_D).
\] (3.6)

From the properties of the evolution systems \(\{ P_{\mathbb{R}^d}(t, s) \}_{(t, s) \in \Lambda} \) and \(\{ P_D(t, s) \}_{(t, s) \in \Lambda} \) it follows that the function \(F(t, s) f \) in \(L^p(\Omega) \) is well-defined for every \(f \in L^p(\Omega) \) and \((t, s) \in \Lambda \).
Moreover, for every \(f \in L^p(\Omega) \), \(F(\cdot, \cdot) f \) is continuous in \(\tilde{\Lambda} \) with values in \(L^p(\Omega) \). By using Proposition 2.3 and Corollary 2.7 we obtain the estimate
\[
\| F(t, s) f \|_p \leq C \left(1 + (t - s)^{-\frac{1}{2}} \right) \| f \|_p, \quad (t, s) \in \tilde{\Lambda}_T, \tag{3.7}
\]
for any \(T > 0 \) and a suitable constant \(C := C(T) > 0 \).

It is clear, that if an evolution system \(\{ \Pi(t, s) \}_{(t, s) \in \Lambda} \) exists on \(L^p(\Omega) \), then the solution \(u(t) \) to the inhomogeneous equation (3.5) is given by the variation of constant formula
\[
u(t) = \Pi(t, s) f - \int_s^t \Pi(t, r) F(r, s) f dr.
\]

This consideration suggests to consider the integral equation
\[
\Pi(t, s) f = W(t, s) f + \int_s^t \Pi(t, r) F(r, s) f dr, \quad (t, s) \in \Lambda, \ f \in L^p(\Omega). \tag{3.8}
\]

Let us state a lemma which will be very useful. Its proof is analogous to the proof in the case of one-parameter families (see [8, Lemma 4.6]). But for the sake of completeness we give here the details of the proof.

Lemma 3.3. Let \(X_1 \) and \(X_2 \) be two Banach spaces, \(T > 0 \) and let \(R : \tilde{\Lambda}_T \to \mathcal{L}(X_2, X_1) \) and \(S : \tilde{\Lambda}_T \to \mathcal{L}(X_2) \) be strongly continuous functions. Assume that
\[
\| R(t, s) \|_{\mathcal{L}(X_2, X_1)} \leq C_0 (t - s)^{\alpha}, \quad \| S(t, s) \|_{\mathcal{L}(X_2)} \leq C_0 (t - s)^{\beta}, \quad (t, s) \in \tilde{\Lambda}_T,
\]
holds for some \(C_0 := C_0(T) > 0 \) and \(\alpha, \beta > -1 \). For \(f \in X_2 \) and \((t, s) \in \tilde{\Lambda}_T \), set \(T_0(t, s) f := R(t, s) f \) and
\[
T_n(t, s) f := \int_s^t T_{n-1}(t, r) S(r, s) f dr, \quad n \in \mathbb{N}, \ (t, s) \in \tilde{\Lambda}_T.
\]

Then there exists a constant \(C > 0 \) such that
\[
\sum_{n=0}^{\infty} \| T_n(t, s) f \|_{X_1} \leq C (t - s)^{\alpha} \| f \|_{X_2}, \quad (t, s) \in \tilde{\Lambda}_T. \tag{3.9}
\]

Moreover, if \(\alpha \geq 0 \), the convergence of the series in (3.9) is uniform on \(\Lambda_T \).

Proof. For \(f \in X_2 \) and \((t, s) \in \tilde{\Lambda}_T \) we have
\[
\| T_1(t, s) f \|_{X_1} \leq C_0^2 \int_s^t (t - r)^{\alpha} (r - s)^{\beta} dr = C_0^2 (t - s)^{\alpha+\beta+1} B(\beta + 1, \alpha + 1) \| f \|_{X_2},
\]
where \(B(\cdot, \cdot) \) denotes the Beta function. So, by induction, we obtain
\[
\| T_n(t, s) f \|_{X_1}
\leq C_0^{n+1} (t - s)^{\alpha+n(\beta+1)} B(\beta + 1, \alpha + 1) \cdots B(\beta + 1, \alpha + 1 + (n - 1)(\beta + 1)) \| f \|_{X_2}
= C_0^{n+1} (t - s)^{\alpha+n(\beta+1)} \Gamma(\beta + 1)^n \Gamma(\alpha + 1 + n(\beta + 1)) \| f \|_{X_2}, \ n \in \mathbb{N}, \ (t, s) \in \tilde{\Lambda}_T,
\]
where \(\Gamma(\cdot) \) is the Gamma function.
where \(\Gamma \) denotes the Gamma function. Let us recall now the identity \(\Gamma(x+1) = x\Gamma(x) \), \(x \geq -1 \), and denotes by \([\cdot]\) the Gaussian brackets. Then, it follows that
\[
\frac{\Gamma(\alpha+1)}{\Gamma(\alpha+1+n(\beta+1))} \leq \frac{C_\alpha}{[n(\beta+1)]!}, \quad n \in \mathbb{N}
\]
for some \(C_\alpha > 0 \). Hence,
\[
\|T_n(t,s)f\|_{X_1} \leq C_\alpha C_0(t-s)^{\alpha} \Gamma(\beta+1)^n \frac{(t-s)^{n(\beta+1)}}{[n(\beta+1)]!} \|f\|_{X_2}
\leq C_\alpha C_0(t-s)^{\alpha} e^{t-s} \Gamma(\beta+1)^n \frac{(t-s)^{[n(\beta+1)]}}{[n(\beta+1)]!} \|f\|_{X_2}, \; n \in \mathbb{N}, \; (t,s) \in \tilde{\Lambda}_T.
\]

Since
\[
\sum_{n=0}^{\infty} (C_0 \Gamma(\beta+1))^n \frac{(t-s)^{[n(\beta+1)]}}{[n(\beta+1)]!} \leq C_\beta e^{\beta(t-s)} \leq C_\beta e^{\beta T} =: C_T, \quad (t,s) \in \Lambda_T
\]
for some constants \(C_\beta, c_\beta > 0 \), it follows that
\[
\sum_{n=0}^{\infty} \|T_n(t,s)f\|_{X_1} \leq C_T C_\alpha e^{T(t-s)} \|f\|_{X_2}, \quad (t,s) \in \tilde{\Lambda}_T.
\]

It is clear that if \(\alpha \geq 0 \) then the convergence of the above series is uniform on \(\Lambda_T \).

Proof of Theorem 3.1. Let \(T > 0 \). By using Proposition 2.3 and Corollary 2.7 we have
\[
\|W(t,s)f\|_p \leq C\|f\|_p, \quad \text{for } f \in L^p(\Omega), \; (t,s) \in \Lambda_T.
\]

So, by (3.7), we can apply Lemma 3.3 with \(R = W, \; S = F, \; \alpha = 0, \; \beta = -\frac{1}{2} \) and \(X_1 = X_2 = L^p(\Omega) \). Thus, for any \(f \in L^p(\Omega) \), the series \(\sum_{k=0}^{\infty} P_k(t,s)f \) converges uniformly in \(\Lambda_T \), where \(P_0(t,s)f = W(t,s)f \) and
\[
P_{k+1}(t,s)f = \int_s^t P_k(t,r)F(r,s)f \; dr, \; \quad (t,s) \in \Lambda_T, \; f \in L^p(\mathbb{R}^d). \quad (3.10)
\]

Since \(T > 0 \) is arbitrary,
\[
P_\Omega(t,s) := \sum_{k=0}^{\infty} P_k(t,s), \quad (t,s) \in \Lambda \quad (3.11)
\]
is well-defined. It is easy to check that \(P_\Omega(t,s) \) satisfies the integral equation \(\Box \). Moreover, from the strong continuity of \(W(\cdot, \cdot) \) and (3.7) we deduce inductively that \(P_k(\cdot, \cdot) \) is strongly continuous and hence, by the uniform convergence of the series we get the strong continuity of \(P_\Omega(\cdot, \cdot) \).

In order to show that \(\{P_\Omega(t,s)\}_{(t,s) \in \Lambda} \) leaves \(Y_\Omega \) invariant, we consider the Banach space \(X_1 := \{f \in W_0^{1,p}(\Omega) : |x| \cdot D_x f(x) \in L^p(\Omega) \; \text{for} \; j = 1, \ldots, d\} \) endowed with the norm
\[
\|f\|_{X_1} := \|f\|_{1,p} + \|x| \cdot D_x f\|_p, \quad f \in X_1.
\]
Proposition [2.3, Corollary 2.7] and the last part of the proof of Proposition [2.1] permit us to apply Lemma 3.3 with Proposition 2.3, Corollary 2.7 and the last part of the proof of Proposition 2.1. Moreover, by taking \(X_1 = W^{2,p}(\Omega) \), \(X_2 = W^{1,p}(\Omega) \), \(R = W \), \(S = F \), \(\alpha = 0 \) and \(\beta = -\frac{1}{2} \). So, we obtain that \(\Lambda(\Omega) \) leaves \(Y_\Omega \) invariant and

\[
\sum_{n=0}^\infty [\|P_k(t,s)f\|_{2,p} + \|x|D_x P(t,s)f\|_p] < C_T(1 + (t-s)^{-\frac{1}{2}})(\|f\|_{1,p} + \|x| \cdot D_x f\|_p), \quad (t,s) \in \Lambda_T, \ f \in Y_\Omega. \tag{3.12}
\]

Let us now prove Equation (3.2). For \(f \in Y_\Omega \) we compute

\[
\begin{align*}
\frac{\partial}{\partial t} P_0(t,s)f &= L_\Omega(t) P_0(t,s)f - F(t,s)f \\
\frac{\partial}{\partial t} P_1(t,s)f &= L_\Omega(t) P_1(t,s)f + F(t,s)f - \int_s^t F(t,r) F(r,s) fdr \\
\frac{\partial}{\partial t} P_2(t,s)f &= L_\Omega(t) P_2(t,s)f + \int_s^t F(t,r) F(r,s) fdr \\
&\quad - \int_s^t \int_{r_1}^t F(t,r_2) F(r_2, r_1) F(r_1, s) fdr_2 dr_1.
\end{align*}
\]

Inductively we see that

\[
\frac{\partial}{\partial t} \sum_{k=0}^n P_k(t,s)f = L_\Omega(t) \sum_{k=0}^n P_k(t,s)f - R_n(t,s)f \tag{3.13}
\]

holds for \(n \in \mathbb{N} \), where

\[
R_n(t,s)f := \int_s^t \int_{r_1}^t \ldots \int_{r_{n-1}}^t F(t,r_n) F(r_n, r_{n-1}) \ldots F(r_1, s) fdr_n \ldots dr_2 dr_1.
\]

Now, we estimate the norm of \(R_n(t,s)f \). Estimate (3.6) yields

\[
\begin{align*}
\|R_1(t,s)f\|_p &\leq C^2 \int_s^t (t-r)^{-\frac{1}{2}} (r-s)^{-\frac{1}{2}} dr \|f\|_p = C^2 B(1/2, 1/2) \|f\|_p, \\
\|R_2(t,s)f\|_p &\leq C^3 B(1/2, 1/2) \int_s^t (r-s)^{-\frac{1}{2}} dr \|f\|_p \\
&= C^3 B(1/2, 1/2) B(1/2, 1/2) (t-s)^{\frac{1}{2}} \|f\|_p.
\end{align*}
\]

Inductively, we see that

\[
\|R_n(t,s)f\|_p \leq C^{n+1} B(1/2, 1/2) B(1/2, 1) \ldots B(1/2, n/2) (t-s)^{\frac{n-1}{2}} \|f\|_p \leq \frac{C^{n+1} \Gamma(1/2)^n}{[\Gamma(n-1)/2]} (t-s)^{\frac{n-1}{2}} \|f\|_p \tag{3.14}
\]
holds for \(n \in \mathbb{N}\). Here the constant \(C\) may change from line to line. From estimate (3.14), it follows that \(\|R_n\|_p\) tends to zero as \(n \to \infty\). So, by (3.12) and the closedness of \(L_\Omega(t)\), we can conclude that
\[
\frac{\partial}{\partial t} P_\Omega(t, s) f = L_\Omega(t) \sum_{k=0}^{\infty} P_k(t, s) f, \quad t > s, \ f \in Y_\Omega,
\]
holds and this proves (3.2).

Let us now show Equation (3.3). For \(f \in Y_\Omega\) we have
\[
L_D(s)(\eta f) = \eta L_\Omega(s)f + \text{Tr}[Q(t)Q^*(t)(D_x\eta)^* \cdot D_x f] + (L_\Omega(s)\eta)f
\]
holds. Thus,
\[
W(t, s)L_\Omega(s)f = \varphi P_{\mathbb{R}^d}(t, s)(L_\Omega(s)f)_0 + (1 - \varphi) P_D(t, s)(L_\Omega(s)f)_D
\]
\[
= \varphi P_{\mathbb{R}^d}(t, s)L_{\mathbb{R}^d}(s)f_0 + (1 - \varphi) P_D(t, s)L_D(s)f_D - G(t, s)f,
\]
where
\[
G(t, s)f := (1 - \varphi) P_D(t, s) \left(\text{Tr}[Q(t)Q^*(t)(D_x\eta)^* \cdot D_x f] + (L_\Omega(s)\eta)f \right)
\]
and \(f \in Y_\Omega\). This yields
\[
\frac{\partial}{\partial s} W(t, s)f = -W(t, s)L_\Omega(s)f - G(t, s)f
\]
for \((t, s) \in \Lambda\) and \(f \in Y_\Omega\).

Now, let \(T > 0\) be arbitrary but fixed. Then, from the definition of \(G\) and Corollary 2.7, it follows that we can apply Lemma 3.3 with \(X_1 = X_2 = W^{1, p}(\Omega), R = S = G\) and \(\alpha = \beta = -\frac{1}{2}\). So, the series
\[
T(t, s)f := \sum_{k=0}^{\infty} T_k(t, s)f, \quad (t, s) \in \bar{\Lambda}_T,
\]
is well-defined and
\[
\|T(t, s)f\|_{1, p} \leq C(t - s)^{-\frac{1}{2}}\|f\|_{1, p}, \quad (t, s) \in \bar{\Lambda}_T,
\]
for \(f \in W^{1, p}(\Omega)\). On the other hand, \(T(\cdot, \cdot)\) satisfies the integral equation
\[
T(t, s)f = G(t, s)f + \int_s^t T(t, r)G(r, s)f \, dr, \quad (t, s) \in \Lambda_T, \ f \in W^{1, p}(\Omega).
\]
In particular \(T(t, \cdot)f\) is continuous on \([0, t]\) with respect to the \(L^p\)-norm for any \(f \in W^{1, p}(\Omega)\) and \(t \geq 0\). Now, for \(f \in L^p(\Omega)\) and \((t, s) \in \Lambda_T\) we set
\[
S(t, s)f := W(t, s)f + \int_s^t T(t, r)W(r, s)f \, dr.
\]
It follows from the continuity of \(T(t, \cdot)W(\cdot, s)f\) on \([s, t]\), Proposition 2.3 and Corollary 2.7 that the above integral is well-defined for any \(f \in L^p(\Omega)\). Computing the derivative with
respect to s yields
\[
\frac{\partial}{\partial s} S(t,s)f = -W(t,s)L_\Omega(s)f - G(t,s)f + T(t,s)f - \int_s^t T(t,r)W(r,s)L_\Omega(s)f\,dr \\
- \int_s^t T(t,r)G(r,s)f\,dr
\]
for all $f \in Y_\Omega$, due to (3.10). From this equality together with (3.2) and since $P_\Omega(t,s)Y_\Omega \subset Y_\Omega$, $(t,s) \in \Lambda$, we can conclude that
\[
\frac{\partial}{\partial t}(S(t,r)P_\Omega(r,s)f) = 0
\]
holds for all $f \in Y_\Omega$. This yields that for $f \in Y_\Omega$, the function $S(t,r)P_\Omega(r,s)f$ is constant on Λ_T and thus, by the density of Y_Ω in $L^p(\Omega)$ and by the fact that $T > 0$ was arbitrary, it follows that $S(t,s)f = P_\Omega(t,s)f$ holds for all $f \in L^p(\Omega)$ and all $(t,s) \in \Lambda$. This proves (3.3).

Let us now show the uniqueness of the solution $P_\Omega(t,s)f$ of (nACP) for initial value $f \in Y_\Omega$. For this purpose we assume that there exists another solution $t \mapsto u(t) \in Y_\Omega$. Since $u(r) \in Y_\Omega$ for all $r \in [s, \infty)$ it follows from equality (3.3) that the map $r \mapsto P_\Omega(t,r)u(r)$ is differentiable for $0 \leq s < r < t$ and
\[
\frac{\partial}{\partial r}(P_\Omega(t,r)u(r)) = -P_\Omega(t,r)L_\Omega(r)u(r) + P_\Omega(t,r)L_\Omega(r)u(r) = 0.
\]
Therefore $P_\Omega(t,r)u(r)$ is constant on $0 \leq s < r < t$. Thus, by letting $r \to s$ and $r \to t$ we obtain $P_\Omega(t,s)f = u(t)$. The uniqueness now directly implies that the law of evolution (Property (i) of Definition 1.3) holds.

To conclude this section we prove L^p-L^q smoothing properties of the evolution system \{P_\Omega(t,s)\}_{(t,s) \in \Lambda}$ and L^p-estimates for its spatial derivatives. The following estimates follow basically directly via the representation (3.11) from Lemma 3.3, Proposition 2.3 and Corollary 2.7.

Proposition 3.4. Let $T > 0$, $1 < p < \infty$ and $p \leq q < \infty$. Then there exists a constant $C := C(T) > 0$ such that
\[
(i) \quad \|P_\Omega(t,s)f\|_q \leq C(t-s)^{-\frac{d}{2}(\frac{1}{q} - \frac{1}{p})}\|f\|_p, \\
(ii) \quad \|D_x P_\Omega(t,s)f\|_p \leq C(t-s)^{-\frac{d}{2}}\|f\|_p
\]
for $(t,s) \in \tilde{\Lambda}_T$ and $f \in L^p(\Omega)$. Moreover, for $1 < p < q < \infty$ and $f \in L^p(\Omega)$
\[
\lim_{t \to s}\|((t-s)^{\frac{d}{2}(\frac{1}{q} - \frac{1}{p})}P_\Omega(t,s)f\|_q + \|(t-s)^{\frac{d}{2}}D_x P_\Omega(t,s)f\|_p = 0.
\]

Proof. To obtain (i) we apply Lemma 3.3 with $X_1 = L^q(\Omega)$, $X_2 = L^p(\Omega)$, $R = W$, $S = F$, $\alpha = -\frac{d}{2}\left(\frac{1}{p} - \frac{1}{q}\right)$, $\beta = -\frac{1}{2}$, Proposition 2.3 and Corollary 2.7 in the case where $q \geq p \geq \frac{d}{2}$. By iteration (i) holds also for $1 < p < \frac{d}{2}$.
The second assertion follows by applying Lemma 3.3 with $X_1 = W^{1,p}(\Omega)$, $X_2 = L^p(\Omega)$, $R = W$, $S = F$, $\alpha = \beta = -\frac{1}{2}$, Proposition 2.3 and Corollary 2.7. Finally, the last assertion can be obtained as in [15, Proposition 3.4]. □

REFERENCES

[1] P. Acquistapace: Some existence and regularity results for abstract nonautonomous parabolic equations, J. Math. Anal. Appl. 99 (1984), 9-64.
[2] P. Acquistapace, B. Terreni: On fundamental solutions for abstract parabolic equations, in Differential equations in Banach spaces (Bologna, 1985), volume 1223 of Lecture Notes in Math., pages 1-11. Springer, Berlin, 1986.
[3] P. Acquistapace, B. Terreni: A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47-107.
[4] H. Amann: On abstract parabolic fundamental solutions, J. Math. Soc. Japan 39 (1987), 93-116.
[5] M. Bertoldi, L. Lorenzi: Analytical methods for Markov semigroups. Pure and Applied Mathematics. 283. Chapman & Hall/CRC, Boca Raton, 2007.
[6] G. Da Prato and A. Lunardi: On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114.
[7] G. Da Prato and A. Lunardi: Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ. 7 (2007), 587-614.
[8] M. Geissert, H. Heck, M. Hieber: L^p-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Augew. Math. 596 (2006), 45-62.
[9] M. Geissert, H. Heck, M. Hieber, I. Wood: The Ornstein-Uhlenbeck semigroup in exterior domains, Arch. Math. 85 (2005), 554-562.
[10] M. Geissert, A. Lunardi: Invariant measures and maximal L^2 regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc. (2) 77 (2008), 719-740.
[11] P. Grisvard: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston-London-Melbourne 1985.
[12] T. Hansel: On the Navier-Stokes equations with rotating effect and prescribed outflow velocity, J. Math. Fluid Mech., to appear.
[13] M. Hieber, L. Lorenzi, A. Rhandi: Uniform and L^p estimates for parabolic equations with unbounded coefficients in exterior domains, Diff. Integr. Equat. 20 (2007), 1253-1284.
[14] M. Hieber, L. Lorenzi, J. Prüss, A. Rhandi, R. Schnaubelt: Global properties of generalized Ornstein-Uhlenbeck operators on $L^p(\mathbb{R}^N, \mathbb{R}^N)$ with more than linearly growing coefficients, J. Math. Anal. Appl. 350 (2009), 100-121.
[15] M. Hieber, O. Sawada: The Navier-Stokes equations in \mathbb{R}^n with linearly growing initial data, Arch. Rat. Mech. Anal. 175 (2005), 269-285.
[16] T. Hishida: On the Navier-Stokes flow around a rigid body with a prescribed rotation, in Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000), 47 (2001), 4217-4231.
[17] A. Lunardi: Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
[18] G. Metafune: L^p-spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 97-124.
[19] G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt: The domain of the Ornstein-Uhlenbeck operator on an L^p-space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 471-485.
[20] G. Nickel: On Evolution Semigroups and Wellposedness of Nonautonomous Cauchy Problem. Ph.D. thesis, University of Tübingen, 1996.
[21] J. Prüss, A. Rhandi, R. Schnaubelt: *The domain of elliptic operators on* $L^p(\mathbb{R}^d)$ *with unbounded drift coefficients*, Houston J. Math. 32 (2006), 563-576.

[22] H. Tanabe: *A class of the equations of evolution in a Banach space*, Osaka Math. J. 11 (1959), 121-145.

[23] H. Tanabe: *Remarks on the equations of evolution in a Banach space*, Osaka Math. J. 12 (1960), 145-166.

[24] H. Tanabe: *On the equations of evolution in a Banach space*, Osaka Math. J. 12 (1960), 363-376.

[25] H. Tanabe: *Functional Analytic Methods for Partial Differential Equations*. Volume 204 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1997.

Technische Universität Darmstadt, Department of Mathematics, 64289 Darmstadt, Germany

E-mail address: hansel@mathematik.tu-darmstadt.de

Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy

E-mail address: rhandi@diima.unisa.it