J.B. PROLLA
S. NAVARRO

Restricted range simultaneous approximation and interpolation with preservation of the norm

Annales mathématiques Blaise Pascal, tome 2, n° 1 (1995), p. 225-235

<http://www.numdam.org/item?id=AMBP_1995__2_1_225_0>
RESTRICTED RANGE SIMULTANEOUS APPROXIMATION AND
INTERPOLATION WITH PRESERVATION OF THE NORM

J.B. Prolla and S. Navarro

Abstract. Let $(F, | \cdot |)$ be a complete non-archimedean non-trivially valued division ring, with valuation ring V. Let X be a compact 0-dimensional Hausdorff space, and let $D(X)$ be the ring of all continuous functions f from X into V equipped with the supremum norm. Let $A \subseteq D(X)$. Assume that for every ordered pair (s, t) of distinct elements of X, there is some multiplier of A, say φ, such that $\varphi(s) = 1$ and $\varphi(t) = 0$. Assume that A contains the constants. We show that A is uniformly dense in $D(X)$, and when A is an interpolating family then simultaneous approximation and interpolation, with preservation of the norm, by elements of A is always possible. We apply this to the case of von Neumann subsets and to the case of restricted range polynomial algebras.

1991 Mathematics subject classification: 46S10.

1. Introduction

Throughout this paper X is a compact Hausdorff space which is 0-dimensional i.e., for any point x and any open set A containing x, there exists a closed and open set N with $x \in N \subseteq A$, and $(F, | \cdot |)$ is a complete, non-Archimedean non-trivially valued division ring. We denote by V the valuation ring of F, i.e., $V = \{t \in F : |t| \leq 1\}$, and by $D(X)$ the set of all continuous functions from the space X into V, equipped with the topology of uniform convergence on X, determined by the metric d defined by

$$d(f, g) = ||f - g|| = \sup\{|f(x) - g(x)| : x \in X\}$$

for every pair, f and g, of elements of $D(X)$.

Our aim is to use the idea of T.J. Ransford (see [7]), to prove results in $D(X)$ that are analogous to those in $C(X; [0, 1])$ and $C(X; F)$, which were proved in [5] and [6], respectively. To avoid trivialities we assume that X has at least two points.

Definition 1 A non-empty subset $A \subseteq D(X)$ is said to be a von Neumann subset if $\varphi \psi + (1 - \varphi) \eta$ belongs to A, whenever φ, ψ and η belong to A.
Clearly, if \(A \subseteq D(X) \) is a von Neumann subset containing the constant functions 0 and 1, then the following properties are true:

(i) if \(\varphi \in A \), then \(1 - \varphi \) belongs to \(A \);

(ii) if \(\varphi \) and \(\psi \) belong to \(A \), then \(\varphi \psi \) belongs to \(A \).

When \(A \subseteq D(X) \) has properties (i) and (ii), we say that \(A \) has property \(V \). This definition is motivated by the similar one introduced by R. I. Jewett, who in [1] proved the variation of the Weierstrass-Stone Theorem stated by von Neumann in [8].

Definition 2 Let \(A \subseteq D(X) \) be a non-empty subset. We say that \(\varphi \in D(X) \) is a multiplier of \(A \) if \(\varphi \psi + (1 - \varphi)g \in A \).

Clearly, if \(M \) is the set of all multipliers of \(A \), then \(M \) satisfies property (i) above. The identity

\[
\varphi \psi f + (1 - \varphi \psi)g = \varphi[\psi f + (1 - \psi)g] + (1 - \varphi)g
\]

shows that \(M \) satisfies condition (ii) as well. Hence \(M \) has property \(V \).

Definition 3 A subset \(A \subseteq D(X) \) is said to be strongly separating over \(X \), if given any ordered pair \((x, y) \in X \times X\), with \(x \neq y \), there exists a function \(\varphi \in A \) such that \(\varphi(x) = 1 \) and \(\varphi(y) = 0 \).

Lemma 1 Let \(M \subseteq D(X) \) be a subset which has property \(V \) and is strongly separating over \(X \). Let \(N \) be a clopen proper subset of \(X \). For each \(\delta > 0 \), there is \(\varphi \in M \) such that

\[
|\varphi(t) - 1| < \delta, \text{ for all } t \in N, \tag{1}
\]

\[
|\varphi(t)| < \delta, \text{ for all } t \notin N. \tag{2}
\]

Proof. This result is essentially Lemma 1 of Prolla [6]. For the sake of completeness we include here its proof. Fix \(y \in X \), \(y \notin N \). Since \(M \) is strongly separating, for each \(t \in N \), there is \(\varphi_t \in M \) such that \(\varphi_t(y) = 1 \), \(\varphi_t(t) = 0 \). By continuity there is a neighborhood \(V(t) \) of \(t \) such that \(|\varphi_t(s)| < \delta \) for all \(s \in V(t) \). By compactness of \(N \) there are \(t_1, ..., t_n \in N \) such that \(N \subseteq V(t_1) \cup ... \cup V(t_n) \). Consider the function \(\psi_y = 1 - \varphi_{t_1} \varphi_{t_2} ... \varphi_{t_n} \). Clearly \(\psi_y \in M \) and \(\psi_y(y) = 0 \), while \(|\psi_y(t) - 1| < \delta \) for all \(t \in N \). Indeed, if \(t \in N \), then \(t \in V(t_i) \) for some index \(i \in \{1, 2, ..., n\} \). Hence

\[
|\psi_y(t) - 1| = |\varphi_{t_i}(t)| \cdot \prod_{j \neq i} |\varphi_{t_j}(t)| < \delta.
\]

By continuity, there is a neighborhood \(W(y) \) of \(y \) such that \(|\psi_y(s)| < \delta \) for all \(s \in W(y) \). By compactness of \(K = X \setminus N \), there are \(y_1, ..., y_m \in K \) such that \(K \subseteq W(y_1) \cup ... \cup W(y_m) \). Let \(\varphi = \psi_{y_1} \psi_{y_2} ... \psi_{y_m} \). Clearly \(\varphi \in M \). We claim that for each \(1 \leq k \leq m \) we have

\[
|1 - \psi_{y_k}(t)| < \delta, \text{ for all } t \in N. \tag{3}
\]
We prove (3) by induction. For \(k = 1 \), (3) is clear, since \(|\psi_y(t) - 1| \leq \delta \) for all \(t \in N \) and all \(y \in K \). Assume (3) has been proved some \(k \). To simplify notation we write \(\psi_i = \psi_{y_i} \) for all \(1 \leq i \leq m \). Then, for each \(t \in N \)
\[
|1 - \psi_1(t) \cdots \psi_{k+1}(t)| = \\
|1 - \psi_{k+1}(t) + \psi_{k+1}(t) - \psi_1(t) \cdots \psi_k(t) \cdot \psi_{k+1}(t)| \\
\leq \max \{ |1 - \psi_{k+1}(t)|, |\psi_{k+1}(t)|, |1 - \psi_1(t) \cdots \psi_k(t)| \} < \delta
\]
because \(|1 - \psi_{k+1}(t)| < \delta, |\psi_{k+1}(t)| \leq 1, \) and \(|1 - \psi_1(t) \cdots \psi_k(t)| < \delta \) by the induction hypothesis. Hence (3) is valid for \(k + 1 \).

Clearly (1) follows from (3) by taking \(k = m \). It remains to prove (2). Now if \(t \in K \) then \(t \in W(y_i) \) for some \(1 \leq i \leq m \). Hence \(|\psi_i(t)| < \delta \), while \(|\psi_i(t)| \leq 1 \) for all \(j \neq i \). Therefore \(|\varphi(t)| < \delta \) and (2) is proved.

\[
\square
\]

Remark. If \(A \subset D(X) \) is a non-empty subset and \(f \in D(X) \), the distance of \(f \) from \(A \), denoted by \(\text{dist}(f,A) \), is defined as
\[
\text{dist} (f,A) = \inf \{ \| f - g \| : g \in A \}
\]

Clearly, \(f \) belongs to the uniform closure of \(A \) in \(D(X) \) if, and only if, \(\text{dist}(f;A) = 0 \).

If \(S \subset X \) is a non-empty closed subset of \(X \), we denote by \(f_S \in D(S) \). Similarly, \(A_S = \{ \varphi_S : \varphi \in A \} \), for each \(A \subset D(X) \). When \(S \) is a singleton set, say \(S = \{ x \} \), we identify \(f_S \) with its value \(f(x) \), and \(A_S \) with \(\{ \varphi(x) : \varphi \in A \} = A(x) \).

Lemma 2 Let \(A \subset D(X) \) be a non-empty subset. For each \(f \in D(X) \), there exists a minimal closed and non-empty subset \(S \subset X \) such that
\[
\text{dist}(f_S;A_S) = \text{dist}(f;A)
\]

Proof. Since, for each \(x \in X \), we have
\[
\text{dist} (f(x); A(x)) \leq \text{dist} (f; A),
\]
we see that when \(\text{dist}(f;A) = 0 \), any singleton set \(S = \{ x \} \) satisfies
\[
\text{dist} (f_S; A_S) = \text{dist}(f;A)
\]

Assume now \(\text{dist}(f;A) > 0 \). Let us put \(d = \text{dist}(f;A) \). Define
\[
F(X) = \{ T \subset X ; \ T \text{ is closed and non-empty} \}
\]
and
\[\mathcal{F} = \{ T \in \mathcal{F}(X) : \text{dist} (f_T; A_T) = d \}. \]

Clearly \(\mathcal{F} \neq \emptyset \) because \(X \in \mathcal{F} \). Let us order \(\mathcal{F} \) by set inclusion. Let \(\mathcal{C} \) be a totally ordered non-empty subset of \(\mathcal{F} \).

Let \(S = \cap \{ T : T \in \mathcal{C} \} \). Clearly, \(S \) is closed. If \(J \) is a finite subset of \(\mathcal{C} \), there is some \(T_0 \in J \) such that \(T_0 \subseteq T \) for all \(T \in J \). Hence
\[T_0 = \cap \{ T : T \in J \}. \]

Now \(T_0 \neq \emptyset \) and by compactness \(S \neq \emptyset \). Hence \(S \in \mathcal{F}(X) \). We claim that \(S \in \mathcal{F} \). Clearly, \(\text{dist} (f_S; A_S) \leq d \). Suppose that \(\text{dist} (f_S; A_S) < d \) and choose a real number \(r \) such that \(\text{dist} (f_S; A_S) < r < d \). By definition of \(\text{dist} (f_S; A_S) \) there exists \(g \in A \) such that \(|f(x) - g(x)| < r \) for all \(x \in S \). Let
\[U = \{ t \in X : |f(t) - g(t)| < r \}. \]

Then \(U \) is open and contains \(S \). By compactness, there is finite subset \(J \subseteq C \) such that \(\cap \{ T : T \in J \} \subseteq U \). Let \(T_0 \in J \) be such that \(T_0 \subseteq T \) for all \(T \in J \). Then \(\cap \{ T : T \in J \} = T_0 \) and so \(T_0 \subseteq U \). Hence \(|f(t) - g(t)| < r \) for all \(t \in T_0 \), and so \(\text{dist} (f_{T_0}; A_{T_0}) \leq r < d \), which contradicts the fact that \(T_0 \in \mathcal{F} \). This contradiction establishes our claim that \(\text{dist} (f_S; A_S) = d \). Therefore \(S \) is a lower bound for \(\mathcal{C} \) in \(\mathcal{F} \). By Zorn's Lemma there exists a minimal element in \(\mathcal{F} \) and this element satisfies all our requirements.

\[\square \]

2. The Main Results

Theorem 1 Let \(A \subseteq D(X) \) be a non-empty subset, whose set of multipliers is strongly separating over \(X \). For each \(f \in D(X) \), there is some \(x \in X \) such that

\[(*) \quad \text{dist} (f(x); A(x)) = \text{dist} (f; A) \]

Proof. By Lemma 2 above, there is a minimal closed and non-empty subset \(S \subseteq X \) such that

\[\text{dist} (f_S; A_S) = \text{dist} (f; A) \]

We claim that \(S = \{ x \} \) for some \(x \in X \). Since for any \(x \in X \), \(\text{dist} (f(x); A(x)) \leq \text{dist} (f; A) \) we see that when \(\text{dist} (f; A) = 0 \), then \((*)\) is true for all \(x \in X \). Hence we may assume \(d = \text{dist} (f; A) \) is strictly positive.

Assume that \(S \) contains at least two distinct points, say \(y \) and \(z \). Let \(N \) be a clopen subset of \(X \) such that \(y \in N \), while \(z \notin N \). Define
\[Y = S \cap N, \]
$Z = S \cap K$,

where $K = X \setminus N$. Notice that both Y and Z are closed. $Y \cap Z = \emptyset$ and $Y \cup Z = S$. Since $y \in Y$ and $z \in Z$, both Y and Z are non-empty. Furthermore, $z \notin Y$ and $y \notin Z$. Hence both Y and Z are proper subsets of S. By the minimality of S we have

$$d_Y := \text{dist}(f_Y : A_Y) < d;$$

$$d_Z := \text{dist}(f_Z : A_Z) < d.$$

Choose a real number r such that

$$\max\{d_Y, d_Z\} < r < d.$$

Since $d_Y < r$, there is some $g \in A$ such that $|f(t) - g(t)| < r$, for all $t \in Y$. Similarly, since $d_Z < r$, there is some $h \in A$ such that $|f(t) - h(t)| < r$, for all $t \in Z$. Choose $0 < \delta < r$. By Lemma 1, there is a multiplier of A, say φ, such that

1. $|1 - \varphi(t)| < \delta$, for all $t \in N$.
2. $|\varphi(t)| < \delta$, for all $t \notin N$.

The function $k = \varphi g + (1 - \varphi)h$ belongs to A. We claim that $|f(t) - k(t)| < r$ for all $t \in S$. Let $t \in S$. There are two cases to consider, namely $t \in Y$ and $t \in Z$.

Case I. $t \in Y$

Let us write $g = \varphi g + (1 - \varphi)g$. Then

$$|k(t) - g(t)| = |1 - \varphi(t)| \cdot |h(t) - g(t)| \leq |1 - \varphi(t)| < \delta$$

because $Y \subset N$ implies, by (1), that $|1 - \varphi(t)| < \delta$, and $|h(t) - g(t)| \leq \max\{|h(t)|, |g(t)|\} \leq 1$. Hence

$$|f(t) - k(t)| = |f(t) - g(t) + g(t) - k(t)| \leq \max\{|f(t) - g(t)|, |g(t) - k(t)|\} < r$$

Case II. $t \in Z$

Let us write $h = \varphi h + (1 - \varphi)h$. Then

$$|k(t) - h(t)| = |\varphi(t)| \cdot |g(t) - h(t)| \leq |\varphi(t)| < \delta$$

because $Z \subset K = X \setminus N$ implies that $t \notin N$ and by (2), $|\varphi(t)| < \delta$. Hence

$$|f(t) - k(t)| = |f(t) - h(t) + h(t) - k(t)| \leq \max\{|f(t) - h(t)|, |h(t) - k(t)|\} < r.$$

Therefore $|f(t) - k(t)| < r$, for all $t \in S$ and dist $(f_S, A_S) \leq r < d$, a contradiction.
Remark. If $A \subset D(X)$ is as in Theorem 1 and $A(x) \supset \{0, 1\}$, for every $x \in X$, then it follows that the closure of A contains the characteristic function of each clopen subset of X. Indeed, let $S \subset X$ be a clopen subset of X and let f be its characteristic function. Let $x \in X$ be given by Theorem 1. Now $f(x)$ is either 0 or 1 and therefore $A(x)$ contains $f(x)$ and so dist $(f, A) = 0$.

Corollary 1 Let $A \subset D(X)$ be a von Neumann subset which is strongly separating over X. For each $f \in D(X)$, there is some $x \in X$ such that

\[\text{dist } (f(x); A(x)) = \text{dist } (f; A) \]

Proof. Let M be the set of all multipliers of A. Since A is a von Neumann subset, we see that $A \subset M$. Hence M is strongly separating too, and the result follows from Theorem 1.

Theorem 2 Let $A \subset D(X)$ be a non-empty subset, whose set of multipliers is strongly separating over X. Let $f \in D(X)$ and $\varepsilon > 0$ be given. The following are equivalent:

1. there is some $g \in A$ such that $\|f - g\| < \varepsilon$.
2. for each $t \in X$, there is some $g_t \in A$ such that $|f(t) - g_t(t)| < \varepsilon$.

Proof. Clearly (1) \Rightarrow (2). Conversely, assume that (2) holds. Let $x \in X$ be given by Theorem 1, i.e.,

\[\text{dist } (f; A) = \text{dist } (f(x); A(x)). \]

By (2) applied to $t = x$, there is some $g_x \in A$ such that $|f(x) - g_x(x)| < \varepsilon$. Hence $\text{dist } (f(x); A(x)) < \varepsilon$. By (*) above, $\text{dist } (f; A) < \varepsilon$, and therefore some $g \in A$ such that $\|f - g\| < \varepsilon$ can be found. Hence (1) is valid.

Corollary 2 Let $A \subset D(X)$ be a von Neumann subset which is strongly separating over X. Let $f \in D(X)$ and $\varepsilon > 0$ be given. The following are equivalent:

1. there is some $g \in A$ such that $\|f - g\| < \varepsilon$.
2. for each $t \in X$, there is $g_t \in A$ such that $|f(t) - g_t| < \varepsilon$

Proof. Corollary 2 follows from Corollary 1 in the same way that Theorem 2 follows from Theorem 1. Or else, note that $A \subset M$ if M denotes the set of all multipliers of A and then apply Theorem 2 to A, since M is strongly separating over X because it contains A.
Theorem 3 Let $A \subset D(X)$ be a non-empty subset such that the set M of its multipliers is strongly separating, and for each $\lambda \in V$ and each $x \in X$, there is $\varphi \in A$ such that $\varphi(x) = \lambda$. Then A is uniformly dense in $D(X)$.

Proof. Let $f \in D(X)$. By Theorem 1, there is some $x \in X$ such that

$$\text{dist } (f; A) = \text{dist } (f(x); A(x)).$$

Now, by hypothesis, $A(x) = V$. Hence $f(x) \in A(x)$ and so $\text{dist } (f(x); A(x)) = 0$. Hence $\text{dist } (f; A) = 0$ for all $f \in D(X)$, and A is uniformly dense in $D(X)$.

Remark. If $A \subset D(X)$ is as in Theorem 1 and contains all the constant functions with values in V, then Theorem 3 applies trivially and A is uniformly dense in $D(X)$.

Corollary 3 Let $A \subset D(X)$ be a von Neumann subset which is strongly separating over X, and for each $\lambda \in V$ and $x \in X$ there is $\varphi \in A$ such that $\varphi(x) = \lambda$. Then A is uniformly dense in $D(X)$.

Corollary 4 Let W be a subring of $D(X)$ which is strongly separating over X and $W(x) = V$ for each $x \in V$. Then W is uniformly dense in $D(X)$.

Proof. Clearly, every subring of $D(X)$ is a von Neumann subset.

Remark. The valuation ring V is a topological ring with unit, and has a fundamental system of neighborhoods of 0 which are ideals in V. Hence Theorem 32 of Kaplansky [2] applies, giving an alternate proof for Corollary 4.

3. Examples

Let us give some examples of von Neumann subsets of $D(X)$ which are strongly separating over X. Let us first remark that a separating subring of $D(X)$ is not necessarily strongly separating over X. The set $W = \{ f \in D(X); |f(x)| < 1, \text{ for all } x \in X \}$ is an example of a separating subring of $D(X)$; in fact, it is a closed two-sided ideal of $D(X)$, which is not strongly separating. Indeed no function in W can take the value 1 at any point in X. Further examples can be found. Indeed, for a fixed point $a \in X$ let us define $W_a = \{ f \in D(X); f(a) = 0 \}$. Clearly, W_a is a subring of $D(X)$. Now W_a is separating over X. Indeed, let $x \neq y$ be given in X. If $x = a$ or $y = a$, the function $\varphi \in D(X)$ which is zero at a and one at the other point is such that $\varphi(x) \neq \varphi(y)$ and $\varphi \in W_a$. In case $x \neq a$ and $y \neq a$, let $\varphi \in D(X)$ be such that $\varphi(a) = 0$ and $\varphi(y) = 1$, and let $\psi \in D(X)$ be such that $\psi(x) = 0$ and $\psi(y) = 1.$
Then $\eta = \varphi \psi \in W_a$ and $\eta(x) = 0$ while $\eta(y) = 1$. On the other hand, W_a is not strongly separating over X. For every ordered pair (a, x), with $a \neq x$, there is no function $\varphi \in W_a$ such that $\varphi(a) = 1$ and $\varphi(x) = 0$. Indeed, $\varphi \in W_a$ implies $\varphi(a) = 0$, and so W_a is not strongly separating over X.

Example 1 The collection A of the characteristic functions of all the clopen subsets of X is a von Neumann subset of $D(X)$, containing 0 and 1, and moreover, since X is a 0-dimensional compact Hausdorff space, A is strongly separating over X.

Example 2 Let $X = V = \{ t \in Q_p; |t|_p \leq 1 \}$, where $(Q_p, | \cdot |_p)$ is the p-adic field. Then the unitary subalgebra W of all polynomials $q : Q_p \to Q_p$ is separating over X. By Proposition 1, Prolla [6], $A = \{ q \in W; q(X) \subset V \}$ is strongly separating over X. Clearly, A is a von Neumann subset containing the constants in $D(X)$.

Example 3 Let $n \geq 1$ be an integer and let $V = \{ t \in F; |t| \leq 1 \}$ and assume that V is compact. Then the unitary subalgebra W of all polynomials $q : F^n \to F$ in n-variables is separating over $X = V^n$, because W contains all the n projections. By Proposition 1, Prolla [6], $A = \{ q \in W; q(V^n) \subset V \}$ is a strongly separating von Neumann subset of $D(V^n)$ containing all constant functions with values in V.

Example 4 Let $\{ S_i \}_{i \in I}$ be a finite partition of X into clopen subsets, i.e., the set I of indices is finite, each S_i is a clopen set, $S_i \cap S_j = \emptyset$ for all $i \neq j$ and $X = \bigcup_{i \in I} S_i$. For each $i \in I$, let φ_i be the characteristic function of S_i and let $\lambda_i \in V$. Consider the function $\varphi \in D(X)$ defined by

$$\varphi(x) = \sum_{i \in I} \lambda_i \varphi_i(x)$$

for all $x \in X$. Let $A \subset D(X)$ be the collection of all functions φ defined as above. Then A satisfies all the hypothesis of Theorem 3 and therefore is uniformly dense in $D(X)$.

Definition 4 A non-empty subset $A \subset D(X)$ is said to be a **restricted range polynomial algebra** if for every choice $\varphi_1, ..., \varphi_n \in A$ and $q : F^n \to F$ a polynomial in n-variables such that $|q(\varphi_1(x), \varphi_2(x), ..., \varphi_n(x))| \leq 1$ for all $x \in X$, the mapping $x \to q(\varphi_1(x), ..., \varphi_n(x))$ belongs to A.

Notice that the polynomials $(u_1, u_2) \to u_1 + u_2, (u_1, u_2) \to u_1 u_2$ and $(u_1, u_2) \to u_1 - u_2$ are such that $V \times V$ is mapped into V, and therefore any restricted range polynomial algebra is a subring of $D(X)$, and a fortiori a von Neumann subset. Notice that any restricted range polynomial algebra contains all the constant functions with values in V.

Proposition 1 Let $A \subset D(X)$ be a restricted range polynomial algebra which is separating over X. Then A is strongly separating over X.

Proof. Let (s, t) be an ordered pair of distinct elements of X. By hypothesis, there exists $\varphi \in A$ such that $\varphi(s) \neq \varphi(t)$.
Let \(q : F \to F \) be the linear function
\[
u \mapsto (\varphi(t) - \varphi(s))^{-1}(u - \varphi(s))
\]
Then \(q(\varphi(s)) = 0 \) and \(q((\varphi(t)) = 1. \) Since \(q \) is continuous, \(q(\varphi(X)) \) is a compact subset of \(F. \) By Kaplansky's Lemma (see Kaplansky [3] or Lemma 1.23, Prolla [4]) there is a polynomial \(p : F \to F \) such \(p(1) = 1 \) and \(p(0) = 0 \) and \(|p(t)| \leq 1 \) for all \(t \in q(\varphi(X)). \) Let \(r = p \circ q \) then \(r : F \to F \) is a polynomial such that \(r(\varphi(X)) \subset V. \) Hence \(r \circ \varphi = \psi \) belongs to \(A. \) Now \(\psi(s) = p(q(\varphi(s))) = p(0) = 0 \) and \(\varphi(t) = p(q(\varphi(t))) = p(1) = 1. \) Hence \(A \) is strongly separating.

Corollary 5 Let \(A \subset D(X) \) be a restricted range polynomial algebra which is separating over \(X. \) Then \(A \) is uniformly dense in \(D(X). \)

Proof. By Proposition 1, \(A \) is strongly separating. On the other hand \(A \) contains all the constant functions with values in \(V. \) Hence \(A(x) = V, \) for every \(x \in X. \) Since \(A \) is a von Neumann set, the result follows from Corollary 3. Or else, notice that \(A \) is a subring and then apply Corollary 4.

\[\square \]

4. Simultaneous Approximation and Interpolation

Definition 5 A non-empty subset \(A \subset D(X) \) is called an interpolating family for \(D(X) \) if, for every \(f \in D(X) \) and every finite subset \(S \subset X, \) there exists \(g \in A \) such that \(g(x) = f(x) \) for all \(x \in S. \)

Theorem 4 Let \(W \subset D(X) \) be an interpolating family for \(D(X), \) whose set of multipliers is strongly separating over \(X. \) Then, for every \(f \in D(X) \) every \(\varepsilon > 0 \) and every finite set \(S \subset X, \) there exists \(g \in A \) such that \(\|f - g\| < \varepsilon, \|g\| = \|f\| \) and \(g(t) = f(t) \) for all \(t \in S. \)

Proof. Let \(A = \{ g \in W; g(t) = f(t) \text{ for all } t \in S \}. \) Since \(W \) is an interpolating family for \(D(X), \) the set \(A \) is non-empty. It is easy to see that every multiplier of \(W \) is also a multiplier of \(A. \) Hence the set of multipliers of \(A \) is strongly separating over \(X. \) Consider the point \(x \in X \) given by Theorem 1, applied to \(A \) and \(f, \) i.e.,

\[
(*) \quad \text{dist} \, (f; A) = \text{dist} \, (f(x); A(x))
\]

Consider the finite set \(S \cup \{ x \}. \) Since \(W \) is an interpolating family for \(D(X), \) there is some \(g_x \in W \) such that \(g_x(t) = f(t) \) for all \(t \in S \cup \{ x \}. \) In particular, \(g_x(t) = f(t) \) for all \(t \in S \) and therefore \(g_x \in A. \) On the other hand \(g_x(x) = f(x) \) implies that \(f \{ x \} \in A(x). \) By (\(* \)), \(\text{dist} \, (f; A) = 0. \) Choose \(0 < \delta \) such that \(\delta < \varepsilon \) and \(\delta < \|f\|. \)

There is some \(g \in A \) such that \(\|f - g\| < \delta. \) From the definition of \(A, \) it follows that \(g \in W \) and \(g(t) = f(t) \) for all \(t \in S. \) Moreover, \(\|f - g\| < \varepsilon \) and \(\|g\| = \|g - f + f\| = \|f\|, \) because \(\|g - f\| < \delta < \|f\|. \)
Corollary 6 Let $W \subset D(X)$ be an interpolating family for $D(X)$ which is a von Neumann subset and which is strongly separating over X. Then, for every $f \in D(X)$, every $\varepsilon > 0$ and every finite set $S \subset X$, there exists $g \in W$ such that $\|f - g\| < \varepsilon$, $\|g\| = \|f\|$, and $g(t) = f(t)$ for all $t \in S$.

Proof. The set W is contained in the set M of its multipliers and Corollary 6 follows from Theorem 4.

Remark. If $W \subset D(X)$ is an interpolating family for $D(X)$ which is strongly separating over X and which is a subring of $D(X)$, then Corollary 6 applies to it.

Corollary 7 Let $W \subset D(X)$ be an interpolating family for $D(X)$ which is a restricted range polynomial algebra and which is separating over X. Then, for every $f \in D(X)$, every $\varepsilon > 0$, and every finite set $S \subset X$, there exists $g \in W$ such that $\|f - g\| < \varepsilon$, $\|g\| = \|f\|$ and $g(t) = f(t)$ for all $t \in S$.

Proof. We know that every restricted range polynomial algebra is a von Neumann subset. By Proposition 1, W is strongly separating. The result now follows from the previous Corollary.

Acknowledgements

This paper was written while the first author was visiting the University of Santiago of Chile, July 1993, and the second author was partially supported by grant FONDECYT 91-0471, and DICYT - USACH.

References

[1] R.I. Jewett, A variation on the Stone-Weierstrass theorem, *Proc. Amer.Math Soc.* 14 (1963), 690-693.

[2] I. Kaplansky, Topological rings, *Amer. J. Math* 69 (1947), 153-183.

[3] I. Kaplansky, The Weierstrass theorem in fields with valuations, *Proc. Amer. Math. Soc.* 1 (1950), 356-357.

[4] J.B. Prolla, Topics in Functional Analysis over valued division rings, *North-Holland Math. Studies* 77 (Notas de Matemática 89), North-Holland Publ. Co., Amsterdam, 1982.

[5] J.B. Prolla, On von Neumann's variation of the Weierstrass-Stone theorem, *Numer. Funct. Anal. and Optimiz.* 13 (1992), 349-353.
[6] J.B. Prolla. The Weierstrass-Stone theorem in absolute valued division rings, *Indag. Mathem.*, N.S. **4** (1993), 71-78.

[7] T.J. Ransford. A short elementary proof of the Bishop-Stone-Weierstrass theorem. *Math. Proc. Camb. Phil. Soc.* **96** (1984), 309-311.

[8] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. *In Automata Studies*, C.E. Shannon, J. Mc Carthy, eds, *Annals of Math. Studies* **34**, Princeton Univ. Press, Princeton N.J., 1956, pp. 43-98.

João B. Prolla
IMECC-UNICAMP
Caixa Postal 6065
13081 CAMPINAS. SP
BRAZIL.

Samuel Navarro
Departamento de Matemática
Universidad de Santiago
SANTIAGO DE CHILE
CHILE.