Simple, Qualities, Efficient and Secure Method to Encrypt Voice Signal

Mohammad S. Khrisat, PhD
Albalqa Applied University, Faculty of engineering Technology, Jordan

Hatim Ghazi Zaini, PhD
Taif University, Computer and Information Technology College, KSA

Ziad AlQadi
Albalqa Applied University, Faculty of engineering Technology, Jordan

ABSTRACT

Voice signal cryptography is needed process to protect the voice signal from any third party, because the wave file may be confidential or may contain valuable secret information. In this paper research we will introduce a method of voice signal encryption-decryption base on using a huge RGB color image as secret key, this image can be easily used to create encryption-decryption private key. It will be shown that the proposed method will be qualities by destroying the original file to generate the encrypting one, and recovering identical to the original decrypted file. The efficiency the proposed method will be calculated to show the productivity of this method.

Keywords

Voice signal, encryption, decryption, MSE, PSNR, throughput, RGB, YIQ, PK.

1. INTRODUCTION

Digital voice signal [14], [34] is a 1D matrix (mono speech) or 2D matrix (stereo speech), each element in the matrix represents the amplitude value of the voice sample at a given time (see figure 1), these values usually between -1 and 1. Voice signals some time require encryption-decryption, because they may contain secret information or may be private, so no other third party must not understand it [36-42].

Encryption means fully destruction of the original signal, amking the output of this process un understandable and useless information, while the decryption means recovering from the decrypted signal the original one without losing any piece of information, the recovered signal must be identical to the original one. Here the encryption-decryption process must have the following quantitative parameters [15-25]:

- Mean square error (MSE) between the original signal and the encrypted one must have a large value.
- Peak signal to noise ratio (PSNR) between the original signal and the encrypted one must have a very small value.
- Mean square error (MSE) between the original signal and the decrypted one must be closed to zero.

2. THE PROPOSED METHOD

The proposed method as shown in figure 3 can be implemented applying the following steps:

![Figure 2: Symmetric cryptography](image)

Digital RGB [1], [2], [3] color image usually represented by a 3D matrix, one 2D matrix for each color (red, green and blue), the value of each pixel is within the range 0 to 255, to make this image applicable for voice processing we can convert this image to YIQ image with three channels (YIQ), here the range of YIQ image will be between -1 and 1, [4-14] the process of conversion RGB image to YIQ image can be implemented applying equation 1:

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} =
\begin{bmatrix}
0.299 & 0.587 & 0.114 \\
0.596 & -0.274 & -0.322 \\
0.211 & -0.523 & 0.312
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

(1)
Encryption phase:
This phase can be implemented applying the following steps:

Step 1: Key preparation
Here we have to do the following:
- Select the secret image which is to be used as a secret key.
- Convert the image to YIQ image.
- Select the row, column and color channel, where to start extracting the key.
- Extract the key with length equal voice file length.
- Add the constant to the key.

Step 2: Encryption:
Add the key to the voice file to get the encrypted voice file.

The decryption phase can be implemented applying the following:

Decryption phase:
This phase can be implemented applying the following steps:

Step 1: Key preparation
Here we have to do the following:
- Select the secret image which is to be used as a secret key.
- Convert the image to YIQ image.
- Select the row, column and color channel, where to start extracting the key.
- Extract the key with length equal voice file length.
- Add the constant to the key.

Step 2: Decryption:
Subtract the key from the encrypted voice file to get the decrypted voice file.

3. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A big RGB color image shown in figure 4 was selected as a secret image to be used to extract the private key, figure 5 shows the YIQ version of the original image:

![Figure 5: YIQ image](image)

(Here we have to notice that it is easy to change the secret image by another image without adding any changes to the encryption-decryption process).

To test the qualitative parameters of the proposed method (Increasing MSE between the original and the encrypted signals and to decrease MSE between the original and decrypted signals) various voice signals were selected and they were encrypted-decrypted using the secret image shown in figure 4, table 1 shows the obtained experimental results:

Voice signal number	Original and encrypted signals	Original and decrypted signals		
	MSE	PSNR	MSE	PSNR
1	12.6121	4.7445	6.9191e-034	756.7127
2	12.6390	3.0727	5.5202e-035	762.4994
3	12.6356	3.2529	2.3583e-035	768.7798
4	12.6374	2.9669	1.1278e-035	776.2908
5	12.6398	3.3253	4.9982e-035	764.8114
6	12.6324	2.5131	1.1464e-036	778.3464
7	12.6270	2.3912	0	infinit
8	12.6366	2.4409	0	infinit
9	12.6394	2.5242	2.1721e-036	785.9859
10	12.6079	3.2120	4.5150e-035	765.9874

From table 1 we can see that the proposed method has a good qualitative parameters values, here the method provides a good values for MSE and PSNR in the encryption and decryption phases.

The same voice signals were treated using the proposed method, table 2 shows the efficiency parameters values obtained in this experiment:
be used to Convert a Gray Image to Color Image, International Journal of Computer Applications, vol. 153, issue 2, pp. 31-34, 2016.

[3] Qazem Jaber Ziad Alqadi, Jamil azza, Statistical analysis of methods used to enhance color image histogram, XX International scientific and technical conference, 2017.

[4] Bassam Subaih Ziad Alqadi, HamdanMazen, A Methodology to Analyze Objects in Digital Image using Matlab, International Journal of Computer Science & Mobile Computing, vol. 5, issue 11, pp. 21-28, 2016.

[5] Mazen A. Hamdan Bassam M. Subaih, Prof. Ziad A. Alqadi, Extracting Isolated Words from an Image of Text, International Journal of Computer Science & Mobile Computing, vol. 5, issue 11, pp. 29-36, 2016.

[6] Dr. Amjad Hindi, Dr. Majed Omar Dwairi, Prof. Ziad Alqadi, Analysis of Procedures used to build an Optimal Fingerprint Recognition System, International Journal of Computer Science and Mobile Computing, vol. 9, issue 2, pp. 21–37, 2020.

[7] Aws AlQaisi, Mokhiled AlTarawneh, Ziad A. Alqadi, Ahmad A. Sharaqdh, Analysis of Color Image Features Extraction using Texture Methods, TELKOMNIKA, vol. 17, issue 3, pp. 1220-1225, 2019.

[8] Ahmad Sharaqdh Naseem Asad, Ismail Shayeb, Qazem Jaber, Belal Ayyoub, Ziad Alqadi, Creating a Stable and Fixed Features Array for Digital Color Image, IJCSMC, vol. 8, issue 8, pp. 50-56, 2019.

[9] Ziad Alqadi, Dr. Mohammad S. Khraisat, Dr. Amjad Hindi, Dr. Majed Omar Dwairi, VALUABLE WAVELET PACKET INFORMATION TO ANALYZE COLOR IMAGES FEATURES, International Journal of Current Advanced Research, vol. 9, issue 2, pp. 2319,2020.

[10] Ziad AlQadi, M Elsayed Hussein, Window Averaging Method to Create a Feature Vector for RGB Color Image, International Journal of Computer Science and Mobile Computing, vol. 6, issue 2, pp. 60-66, 2017.

[11] Bilal Zahrani Belal Ayyoub, Jihad Nader, Ziad Al-Qadi, Suggested Method to Create Color Image Features Vector, Journal of Engineering and Applied Sciences, vol. 14, issue 1, pp. 2203-2207, 2019.

[12] Ahmad Sharaqdh Naseem Asad, Ismael Shayeb, Qazem Jaber, Belal Ayyoub, Ziad Alqadi, Creating a Stable and Fixed Features Array for Digital Color Image, IJCSMC, vol. 8, issue 8, pp. 50-56, 2019.

[13] Yousf Eltous Ziad A. Alqadi, Ghazi M. Qaryouti, Mohammad Abuzalata, ANALYSIS OF DIGITAL SIGNAL FEATURES EXTRACTION BASED ON KMEANS CLUSTERING, International Journal of Engineering Technology Research & Management, vol. 4, issue 1, pp. 66-75, 2020.

[14] Ziad A. Alqadi Amjad Y. Hindi, O Dwairi Majed, PROCEDURES FOR SPEECH RECOGNITION USING LPC AND ANN, International Journal of Engineering Technology Research & Management, vol. 4, issue 2, pp. 48-55, 2020.

[15] Majed O. Al-Dwairi, Amjad Y. Hindi, Mohamed S. Soliman, Ziad A.A. Alqadi, A new method for voice signal features creation, International Journal of

Table 2: Obtained results of efficiency parameters

Voice signal number	Size (samples)	Size (bytes)	Encryption time (seconds)	Throughput (samples per second)	Throughput (bytes per second)
1	32153	257228	0.4340	7.4087e+005	5.9269e+006
2	20070	160563	0.1940	1.0346e+006	8.2765e+006
3	22732	181862	0.1920	1.1840e+006	9.4720e+006
4	43008	344064	0.1960	2.1943e+006	1.7554e+007
5	43008	344064	0.2020	2.1291e+006	1.7033e+007
6	17203	137625	0.2410	1.7383e+005	5.7106e+006
7	13312	106496	0.1900	7.0063e+005	5.6051e+006
8	21299	170393	0.1940	1.0979e+006	8.7832e+006
9	27238	217907	0.1940	1.4040e+006	1.1232e+007
10	17472	139776	0.1910	9.1476e+004	7.3181e+005

From table 2 we can see that the proposed method has a good efficiency parameters values, here the method provides a good values for encryption time and the throughput in the encryption and decryption phases.

4. CONCLUSION
A simple and easy method of voice signal encryption-decryption was proposed, the method provides a high level of security by using a changeable secret RGB color image to generate a private key. The method was tested and implemented using various voice signals, the obtained experimental results showed that the proposed method is highly qualitative and efficient by providing a good value for the quality and efficiency parameters.

5. REFERENCES
[1] Majed O Al-Dwairi, Ziad A Alqadi, Amjad A Abujaizar, Rushdi Abu Zneit, Optimized true-color image processing, World Applied Sciences Journal, vol. 8, issue 10, pp. 1175-1182, 2010.

[2] Jamil Al Azzez, Hussein Alhatamleh, Ziad A Alqadi, Mohammad Khalil Abuzalata, Creating a Color Map to...
Electrical and Computer Engineering (IJCE), vol. 9, issue 5, pp. 4092-4098, 2019.

[16] Ziad Alqadi, Majid Oraiqat, Hisham Almujaef, Salah Al-Saleh, Hind Al Husban, Soubbi Al-Rimawi, A New Approach for Data Cryptography, International Journal of Computer Science and Mobile Computing, vol. 8, issue 8, pp. 30-48, 2019.

[17] Ayman Al-Rawashdeh, Ziad Al-Qadi, Using wave equation to extract digital signal features, Engineering, Technology & Applied Science Research, vol. 8, issue 4, pp. 1356-1359, 2018.

[18] Aws Al-Qaisi, Saleh A Khawatreh, Ahmad A Sharadqah, Ziad A Alqadi, Wave File Features Extraction Using Reduced LBP, International Journal of Electrical and Computer Engineering, vol. 8, issue 5, pp. 2780-2787, 2018.

[19] Jihad Nader Ismail Shayebe, Ziad Alqadi, Jihad Nader, Analysis of digital voice features extraction methods, International Journal of Educational Research and Development, vol. 1, issue 4, pp. 49-55, 2019.

[20] Ziad Alqadi, Bilal Zahran, Qazem Jaber, Belal Ayyoub, Jamil Al-Azzeh, Enhancing the Capacity of LSB Method by Introducing LSBZ Method, International Journal of Computer Science and Mobile Computing, vol. 8, issue 3, pp. 76-90, 2019.

[21] Ziad Alqadi, Ahmad Sharadqah, Naseem Asad, Ismail Shayebe, Jamil Al-Azzeh, Belal Ayyoub, A highly secure method of secret message encoding, International Journal of Research in Advanced Engineering and Technology, vol. 5, issue 3, pp. 82-87, 2019.

[22] Musbah Aqel Ziad A. Alqadi, Performance analysis of parallel matrix multiplication algorithms used in image processing, World Applied Sciences, vol. 6, issue 1, pp. 45-52, 2009.

[23] Jihad Nadir, Ashraf Abu Ein, Ziad Alqadi, A Technique to Encrypt-decrypt Stereo Wave File, International Journal of Computer and Information Technology, vol. 5, issue 5, pp. 465-470, 2016.

[24] Musbah J Aqel, Ziad ALQadi, Ammar Ahmed Abdullah, RGB Color Image Encryption-Decryption Using Image Segmentation and Matrix Multiplication, International Journal of Engineering and Technology, vol. 7, issue 3, pp. 104-107, 2018.

[25] Belal Zahran Rashad J Rasras, Ziad Alqadi, Mutaz Rasmi Abu Sara, B Zahrani, Developing new Multilevel security algorithm for data encryption-decryption (MLS_ED), International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, issue 6, pp. 3228-3235, 2019.

[26] Majed O Al-Dwairi, A Hendi, Z AlQadi, An efficient and highly secure technique to encrypt-decrypt color images, Engineering, Technology & Applied Science Research, vol. 9, issue 3, pp. 4165-4168, 2019.

[27] Amjad Y Hendi, Majed O Dwairi, Ziad A AlQadi, Mohamed S Soliman, A novel simple and highly secure method for data encryption-decryption, International Journal of Communication Networks and Information Security, vol. 11, issue 1, pp. 232-238, 2019.

[28] Ziad AlQadi, Accurate Method for RGB Image Encryption, International Journal of Computer Science and Mobile Computing, vol. 9, issue 1, pp. 12-21, 2020.

[29] Ziad Alqadi, Majid Oraiqat, Hisham Almujaef, Salah Al-Saleh, Hind Al Husban, Soubbi Al-Rimawi, A New Approach for Data Cryptography, International Journal of Computer Science and Mobile Computing, vol. 8, issue 9, pp. 30-48, 2019.

[30] Jamil Al-Azzeh, Ziad Alqadi, Qazem Jaber, A Simple, Accurate and Highly Secure Method to Encrypt-Decrypt Digital Images, IJIV: International Journal on Informatics Visualization, vol. 3, issue 3, pp. 262-265, 2019.

[31] Dr Saleh A Khawatreh Dr Majed, Omar Dwairi, Prof. Ziad Alqadi, Dr. Mohammad S. Khraisat, Dr. Amjad Hindi, Digital color image encryption-decryption using segmentation and reordering, International Journal of Latest Research in Engineering and Technology (IJLRET), vol. 6, issue 5, pp. 6-12, 2020.

[32] Mutaz Rasmi Abu Sara Rashad J. Rasras, Ziad A. AlQadi, A Methodology Based on Steganography and Cryptography to Protect Highly Secure Messages, Engineering, Technology & Applied Science Research, vol. 9, issue 1, pp. 3681-3684, 2019.

[33] Bilal Zahran, Ziad Alqadi, Jihad Nader, Ashraf Abu Ein, A Comparison BETWEEN PARALLEL AND SEGMENTATION METHODS USED FOR IMAGE ENCRYPTION-DECRIPTION, International Journal of Computer Science & Information Technology (IJCSIT), vol. 8, issue 5, pp. 125-131, 2016.

[34] PROF. ZIAD A. ALQADI A SIMPLE METHOD TO ENCRYPT-DECRYPT SPEECH SIGNAL, International Journal of Engineering Technology & Management, vol. 5, issue 2, pp. 44-52, 2021.

[35] Ziad AlQadi, Analysis of stream cipher security algorithm, Journal of Information and Computing Science, vol. 2, Issue 4, pp. 288-298, 2007.

[36] Rashad J Rasras, Mohammed Abuzealata, Ziad Alqadi, Jamil Al-Azzeh, Qazem Jaber, Comparative Analysis of Color Image Encryption-Decryption Methods Based on Matrix Manipulation, International Journal of Computer Science and Mobile Computing, vol. 8, issue 3, pp. 14-26, 2019.

[37] Musbah Aqel, Ziad Al. Alqadi, Performance analysis of parallel matrix multiplication algorithms used in image processing, World Applied Sciences Journal, vol. 6, issue 1, pp. 45-52, 2009.

[38] Amjad Y Hindi, Majed O Dwairi, Ziad A AlQadi, A Novel Technique for Data Steganography, Engineering, Technology & Applied Science Research, vol. 9, issue 6, pp. 4942-4945, 2019.

[39] Majed O. Al-Dwairi, Amjad Y. Hindi, Mohamed S. Soliman, Ziad A.A. Alqadi, A new method for voice signal features creation, International Journal of Electrical and Computer Engineering (IEECE), vol. 9, issue 5, pp. 4092-4098, 2019.

[40] Bilal Zahran Belal Ayyoub, Jihad Nader, Ziad AlQadi, Suggested Method to Create Color Image Features Victor, Journal of Engineering and Applied Sciences, vol. 14, issue 1, pp. 2203-2207, 2019.
[41] Akram A Moustafa, Ziad A Alqadi, A Practical Approach of Selecting the Edge Detector Parameters to Achieve a Good Edge Map of the Gray Image, Journal of Computer Science, vol. 5, issue 5, pp. 355-362, 2009.

[42] Rushdi Abu Zneit, Jamil Al-Azzeh, Ziad Alqadi, Belal Ayyoub, Ahmad Sharadqh, Using Color Image as a Stego-Media to Hide Short Secret Messages, International Journal of Computer Science and Mobile Computing, vol. 8, issue 6, pp. 106-123, 2019.