A new algorithm for Many to Many Matching with Demands and Capacities

Fatemeh Rajabi-Alni

*Department of Computer Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran.

Abstract

Let $A = \{a_1, a_2, \ldots, a_s\}$ and $\{b_1, b_2, \ldots, b_t\}$ with $s + r = n$, the many to many point matching with demands and capacities matches each point $a_i \in A$ to at least α_i and at most α_i' points in B, and each point $b_j \in B$ to at least β_j and at most β_j' points in A for all $1 \leq i \leq s$ and $1 \leq j \leq t$. In this paper, we present an $O(n^4)$ time and $O(n)$ space algorithm for this problem.

Keywords:
many to many matching, Hungarian method, bipartite graph, points with demands and capacities

1. Introduction

A matching between two sets defines a relationship between their elements. The matching is used in various fields such as computational biology [1], pattern recognition [2], computer vision [3], music information retrieval [4], and computational music theory [5]. A many-to-many matching between A and B assigns each point in A to one or more points in B, and vice versa.

Let A and B be two sets with $|A| + |B| = n$, Eiter and Mannila [6] proposed an $O(n^3)$ algorithm for the minimum many-to-many matching problem between A and B by reducing the problem to the minimum-weight perfect matching problem in a bipartite graph.

The minimum many-to-many matching with demands and capacities, here called MMDC matching, is a matching in which each point $a_i \in A$ is matched...
to at least α_i and at most α'_i points in B, and each point $b_j \in B$ is matched to at least β_j and at most β'_j points in A, such that sum of the matching costs is minimized. Schrijver [7] solved the MMDC matching problem in strongly polynomial time. In this paper, we present a new algorithm that computes an MMDC matching between A and B in $O(n^4)$ time using $O(n)$ space. In section 2, we review the basic Hungarian algorithm and some preliminary definitions. In section 3, we present our new algorithm.

2. Preliminaries

Given an undirected bipartite graph $G = (A \cup B, E)$, a maximum matching M is a matching that for any other matching M', we have $\text{Weight}(M') < \text{Weight}(M)$. A path with the edges alternating between M and $E - M$ is called an alternating path. Each vertex v that is incident to one edge in M is called a matched vertex; otherwise it is a free vertex. An alternating path that its both endpoints are free is called an augmenting path. Note that if the M edges of an augmenting path is replaced with the $E - M$ ones, its size increases by 1. Let $V = A \cup B$, a vertex labeling function $l: V \rightarrow \mathbb{R}$ assigns a label to each vertex $v \in V$. A vertex labeling that in which $l(a) + l(b) \geq \text{Weight}(a, b)$ for all $a \in A$ and $b \in B$ is called a feasible labeling. The equality graph of a feasible labeling l is a graph $G = (V, E_l)$ such that $E_l = \{(a, b)|l(a) + l(b) = \text{Weight}(a, b)\}$. The neighbors of a vertex $u \in V$ is defined as $N_l(u) = \{v|(v, u) \in E_l\}$. Consider a set of the vertices $S \subset V$, the neighbors of S is $N_l(S) = \bigcup_{u \in S} N_l(u)$.

Lemma 1. Consider a feasible labeling l of an undirected bipartite graph $G = (A \cup B, E)$ and $S \subset A$ with $T = N_l(S) \neq B$, let

$$\alpha_l = \min_{a_i \in S, b_j \notin T} \{l(a_i) + l(b_j) - \text{Weight}(a_i, b_j)\}.$$

If the labels of the vertices of G is updated such that:

$$l'(v) = \begin{cases}
 l(v) - \alpha_l & \text{if } v \in S \\
 l(v) + \alpha_l & \text{if } v \in T \\
 l(v) & \text{Otherwise}
\end{cases}$$

then, l' is also a feasible labeling.

Proof. Note that l is a feasible labeling, so we have $l(a) + l(b) \geq \text{Weight}(a, b)$ for each edge $(a, b) \in E$. After the update four cases arise:
• $a \in S$ and $b \in T$. In this case
\[l'(a) + l'(b) = l(a) - \alpha_l + l(b) + \alpha_l = l(a) + l(b) \geq \text{Weight}(a, b). \]

• $a \notin S$ and $b \notin T$. We have
\[l'(a) + l'(b) = l(a) + l(b) \geq \text{Weight}(a, b). \]

• $a \notin S$ and $b \in T$. We see that
\[l'(a) + l'(b) = l(a) + l(b) + \alpha_l > l(a) + l(b) \geq \text{Weight}(a, b). \]

• $a \in S$ and $b \notin T$. In this situation we have
\[l'(a) + l'(b) = l(a) - \alpha_l + l(b). \]

Two cases arises:
- $l(a) + l(b) - \text{Weight}(a, b) = \alpha_l$. So
\[l'(a) + l'(b) = l(a) - \alpha_l + l(b) = l(a) - l(a) - l(b) + \text{Weight}(a, b) + l(b) = \text{Weight}(a, b). \]

Hence, $E_l \subset E_{l'}$.
- $l(a) + l(b) - \text{Weight}(a, b) > \alpha_l$. Obviously
\[l'(a) + l'(b) = l(a) - \alpha_l + l(b) > \text{Weight}(a, b). \]

\[\square \]

Theorem 1. If l is feasible labeling and M is a Perfect matching in E_l, then M is a max-weight matching \[8\].

Proof. Suppose that M' is a perfect matching in G, since each vertex is incident to exactly one edge of M' we have:

\[\text{Weight}(M') = \sum_{(a, b) \in M'} \text{Weight}(a, b) \leq \sum_{v \in (A \cup B)} l(v). \]
So $\sum_{v \in (A \cup B)} l(v)$ is an upper bound for each perfect matching. Now assume that M is a perfect matching in E_l:

$$Weight(M) = \sum_{e \in M} l(e) = \sum_{v \in (A \cup B)} l(v).$$

It is obvious that M is an optimal matching. \square

In the following, we briefly describe the basic Hungarian algorithm which computes the maximum many to many matching between two sets. The input bipartite graph $G = (A \cup B, E)$ is a complete bipartite graph that in which $|A| = |B| = n$.

Algorithm 1 The Basic Hungarian algorithm(A,B)

1: Initial \triangleright Find an initial feasible labeling l and a matching M in E_l
2: Let $l(b_j) = 0$, for all $1 \leq j \leq t$
3: $l(a_i) = \max_{j=1}^{t} Weight(a_i, b_j)$ for all $1 \leq i \leq s$
4: $M = \emptyset$
5: while M is not perfect do
6: Select a free vertex $a_i \in A$ and set $S = \{a_i\}$, $T = \emptyset$
7: repeat
8: while $N_l(S) = T$ do
9: Update the labels according to Lemma 1
10: Select $b_j \in N_l(S) - T$
11: if b_j is not free then $\triangleright (b_j$ is matched to the vertex z, extend the alternating tree) \triangleright
12: $S = S \cup z$, $T = T \cup b_j$
13: until b_j is free
14: Augment M
return M

In line 1, we label all points of B with zero and each point $a_i \in A$ with $\max_{j=1}^{n} Weight(a_i, b_j)$ to get an initial feasible labeling. Note that M can be empty. It is obvious that for computing the minimum cost many to many matching using the Hungarian algorithm we must weight the edge (a_i, b_j) by $1/Weight(a_i, b_j)$.
Lemma 2. Each augmenting path is a 4-vertex path.

Proof. Suppose that the lemma is false. Let \(p = a_1, b_1, a_2, b_2, \ldots, b_k \) be an augmenting path with more than four vertices, that is \(k > 2 \). Note that \(a_1 \) and \(b_k \) are free nodes. It is obvious that the first edge is in \(E - M \), so the second, third, and fourth edges of \(p \) are in \(M, E - M, \) and \(M \), respectively. Since the third edge \((a_2, b_2)\) is in \(E - M \), the fourth edge \((b_2, a_3)\) must be in \(M \). Note that \(b_2 \) is a free node. A contradiction. \(\square \)

3. The algorithm

In this section, we describe our new algorithm which is based on the well known Hungarian algorithm. Consider two point sets \(A = \{a_1, a_2, \ldots, a_s\} \) and \(B = \{b_1, b_2, \ldots, b_t\} \) with \(s + t = n \). Let \(D_A = \{\alpha_1, \alpha_2, \ldots, \alpha_s\} \) and \(D_B = \{\beta_1, \beta_2, \ldots, \beta_t\} \) denote the demand sets of \(A \) and \(B \), respectively. Let \(C_A = \{\alpha'_1, \alpha'_2, \ldots, \alpha'_s\} \) and \(C_B = \{\beta'_1, \beta'_2, \ldots, \beta'_t\} \) be the capacity sets of \(A \) and \(B \), respectively. Without loss of generality, we assume that \(\sum_{i=1}^{s} \alpha'_i > \sum_{j=1}^{t} \beta'_j \).

Theorem 2. Let \(A \) and \(B \) be two sets with \(|A| + |B| = n \), an MMDC matching between \(A \) and \(B \) can be computed in \(O(n^4) \) time.

Proof.

We first construct a bipartite graph as follows. Consider the complete bipartite graph \(G = (X \cup Y, E) \) where \(X = A \cup A' \) and \(Y = B \cup B' \cup C \) (see Figure 1). A complete connection between two sets is a connection that in which each element of one set is connected to all elements of the other set. We show each set of the vertices by a rectangle and the complete connection between them by a line connecting the two corresponding rectangles.

Given \(A = \{a_1, a_2, \ldots, a_s\} \) and \(B = \{b_1, b_2, \ldots, b_t\} \), there exists a complete connection between \(A \) and \(B \) such that the weight of \((a_i, b_j)\) is equal to the cost of matching the point \(a_i \) to \(b_j \) for all \(1 \leq i \leq s \) and \(1 \leq j \leq t \). Let \(B' = \{b'_1, b'_2, \ldots, b'_t\} \) and \(A' = \{a'_1, a'_2, \ldots, a'_s\} \), each point of \(A \) is connected to the all points of \(B' \) such that the weight of \((a_i, b'_j)\) is equal to the weight of \((a_i, b_j)\). There exists also a complete connection between the sets \(B \) and \(A' \) such that the weight of \((a'_i, b_j)\) is equal to the weight of \((a_i, b_j)\). We have a set \(C = \{c_1, c_2, \ldots, c_h\} \) that in which \(h = \sum_{i=1}^{s} \alpha'_i - \sum_{j=1}^{t} \beta'_j \). In fact, we use \(C \) to get \(|X| = |Y| \). Each vertex of \(A' \) is connected to all vertices of \(C \) with zero weighted edges.
Figure 1: Our constructed complete bipartite graph with $h = \sum_{i=1}^{s} \alpha'_i - \sum_{j=1}^{t} \beta'_j$.

Now we apply our new algorithm, Algorithm 2, on above bipartite graph G. Let $Cap(u)$ and $Dem(u)$ denote the capacity and the demand of the vertex u; so for all i, j we have $Dem(a_i) = \alpha_i$, $Dem(b_j) = \beta_j$, $Cap(a_i) = \alpha'_i$, and $Cap(b_j) = \beta'_j$.

In our algorithm, a vertex x is free to another vertex y if x is not matched with y in M and has at least one empty capacity. So $a_i \in A$ and $a'_i \in A'$ are called free vertices to a vertex b that are not matched with it in M, if $Num(a_i) < Dem(a_i)$ and $Num(a'_i) < Cap(a_i) - Dem(a_i)$, respectively. Also the vertices b_j and b'_j are free to another vertex that is not incident in M to them, when $Num(b_j) < Dem(b_j)$ and $Num(b'_j) < Cap(b_j) - Dem(b_j)$, respectively.

In fact, we save the current number of the vertices that are matched to the vertices of A, B, A', B' in the arrays $A[1 \ldots s]$, $B[1 \ldots t]$, $A'[1 \ldots s]$, and $B'[1 \ldots t]$, respectively; for example $A[i]$ shows the number of the nodes that are matched to a_i. The initial values of the arrays is 0; when a new point is matched to their representing node their values are increased by 1.

Assume that $Num(u)$ returns the number of the vertices that are matched to u so far. So $Num(a_i) = A[i]$, $Num(a'_i) = A'[i]$, $Num(b_j) = B[j]$, and finally $Num(b'_j) = B'[j]$. Note that the procedures $IsFree(u)$ and $IsMatched(u)$ return True if $Num(u) < Cap(u)$ and $Num(u) = Cap(u)$, respectively. So in the augmenting path a, b, c, d, a is free to b, b is matched to c, and d is free to c. Now we change the basic Hungarian algorithm as follows.

We first label the vertices of our bipartite graph G using an initial feasible labeling in lines 2 - 4. Algorithm 2 has a while loop where $O(n^2)$ times iterates and $\sum_{i=1}^{s} \alpha_i + \sum_{j=1}^{t} \beta_j$ edges are selected. In each iteration of our algorithm $|M|$ increases by 1. Let

$$slack_y = \min_{x \in S} \{l(x) + l(y) - Weight(x, y)\}.$$
Algorithm 2 The MMDC Hungarian algorithm\((DA, CA, DB, CB)\)

1: Initialize \(\triangleright\) Find an initial feasible labeling \(l\) and a matching \(M\) in \(E_l\)
2: Let \(l(b_j), l(b'_j) = 0,\) for all \(1 \leq j \leq t\)
3: \(l(a_i) = \max_{j=1}^{t}(\max(Weight(a_i, b_j), Weight(a_i, b'_j)))\) for all \(1 \leq i \leq s\)
4: \(l(a'_i) = \max_{j=1}^{t}(Weight(a'_i, b_j))\) for all \(1 \leq i \leq s\)
5: Let \(M = \emptyset\)

6: while \(\{u \in A \cup A',\) with \(Is\)Free\((u)\}\) \(\neq \emptyset\) do
7: Select \(u \in A \cup A'\) with \(Is\)Free\((u)\)
8: Set \(S = \{u\}, T = \emptyset\)
9: repeat
10: while \(N_l(S) = T\) do
11: \(\triangleright\) Update the labels according to Lemma\([1]\)
12: Let \(\alpha_l = \min_{s_i \in S, t_j \in T}\{l(s_i) + l(t_j) - Weight(s_i, t_j)\}\)
13: Let \(l'(v) = \begin{cases} l(v) - \alpha_l & \text{if } v \in S \\ l(v) + \alpha_l & \text{if } v \in T \\ l(v) & \text{Otherwise} \end{cases}\)
14: Select \(y \in N_l(S) - T\)
15: if \(Is\)Matched\((y)\) then \(\triangleright (\text{Num}(y) = \text{Cap}(y))\)
16: \(\triangleright (y\ is\ matched\ to\ some\ vertices\ z)\)
17: \(S = S \cup \{z| (z, y) \in M\}, T = T \cup \{y\}\).
18: until \(Is\)Free\((y)\)
19: \(Augment(M)\)
In line 17 of Algorithm 2, the values of all slacks must be updated when a vertex is moved from \(\bar{S} \) to \(S \). This is done in \(O(n) \) time. During our algorithm \(s + t = n \) vertices are moved from \(\bar{S} \) to \(S \), so it takes the total time of \(O(n^2) \).

In lines 11, we can compute the value of \(\alpha_l \) by:

\[
\alpha_l = \min_{y \not\in T} \text{slack}_y,
\]

in \(O(n) \) time. After computing the value of \(\alpha_l \) and updating the labels of the vertices, we must also update the values of the slacks. This can be done using:

\[
\forall y \not\in T \text{slack}_y = \text{slack}_y - \alpha_l.
\]

In each iteration the value of \(\alpha_l \) may be computed at most \(O(n) \) times, that takes \(O(n) \) time each time, so running each iteration takes at most \(O(n^2) \) time. Our algorithm has \(O(n^2) \) iteration with \(O(n^2) \) time, so it runs in \(O(n^4) \) time.

\[\square\]

4. Conclusion

In this paper, we presented an \(O(n^4) \) time and \(O(n) \) space algorithm for computing an MMDC matching between \(A \) and \(B \) with total cardinality \(n \). In fact, we modified the basic Hungarian algorithm to get a new algorithm, called the MMDC matching algorithm. Then, we construct a bipartite graph \(G \) and apply our new algorithm on \(G \).

References

[1] A. Ben-Dor, R.M. Karp, B. Schwikowski, R. Shamir, The restriction scaffold problem, J. Comput. Biol. 10 (2003) 385-398.

[2] S.R. Buss, P.N. Yianilos, A bipartite matching approach to approximate string comparison and search, Technical report, NEC Research Institute, Princeton, New Jersey (1995).

[3] M.F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, S. Dickinson, Object recognition as many-to-many feature matching, Int. J. Comput. Vis. 69 (2006) 203-222.
[4] G.T. Toussaint, A comparison of rhythmic similarity measures, 5th International Conference on Music Information Retrieval, (2004) 242-245.

[5] G.T. Toussaint, The geometry of musical rhythm, Japan Conference on Discrete and Computational Geometry, Berlin-Heidelberg, (2005) 198-212.

[6] T. Eiter, H. Mannila, Distance measures for point sets and their computation, Acta Inform. 34 (1997) 109-133.

[7] A. Schrijver, Combinatorial optimization. polyhedra and efficiency, vol. A, Algorithms and Combinatorics, no. 24, Springer-Verlag, Berlin (2003).

[8] L. R. Foulds, Combinatorial Optimization for Undergraduates, Springer-Verlag, Berlin (1984).