NOTE ON PARITY AND THE IRREDUCIBLE CHARACTERS OF THE SYMMETRIC GROUP

ALEXANDER R. MILLER

Introduction

The object of this short note is to prove a theorem and present a conjecture for the number of even entries in the character table of the symmetric group S_n.

Theorem 1. The number of even entries in the character table of S_n is even.

Conjecture 1. The proportion of the character table of S_n covered by even entries tends to 1 as $n \to \infty$.

Theorem 1 is proved in Section 1. Conjecture 1 is discussed in Section 2. To support Conjecture 1 we write down in Table 1 the number of even entries and odd entries in the character table of S_n for $1 \leq n \leq 76$. See Figure 1. Another table (Table 3) in Section 2 suggest a more general phenomenon.

Conjecture 2. The proportion of the character table of S_n covered by entries divisible by a given prime number p tends to 1 as $n \to \infty$.

Figure 1. Proportion of the character table of the symmetric group S_n covered by even entries for $1 \leq n \leq 76$.

The author was supported in part by the Austrian Science Foundation FWF Special Research Program “Algorithmic and Enumerative Combinatorics” (SFB F50).
1. Proof of Theorem 1

Let p_n be the number of partitions of n. Here a partition of n is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_\ell$ and $\lambda_1 + \lambda_2 + \ldots + \lambda_\ell = n$. The conjugate of λ is the partition λ' whose parts are $\lambda'_i = \# \{ j : i \leq \lambda_j \}$ for $1 \leq i \leq \lambda_1$. Conjugation is the involution $\lambda \mapsto \lambda'$. The fixed points of this involution are self-conjugate partitions. Self-conjugate partitions λ of n are in one-to-one correspondence with partitions μ of n into odd distinct parts via $\lambda \mapsto \mu$ where $\mu_i = 2(\lambda_i - i) + 1$ for i such that $1 \leq i \leq \lambda_i$.

Proof of Theorem 1. Let O_n be the number of odd entries in the character table of S_n. Then

$$O_n \equiv \sum_g \sum_{\chi} \chi(g) \equiv \sum_g \sum_{\chi} \chi(g)^2 \pmod{2} \quad (1)$$

where the two outer sums run over a set of representatives g for the conjugacy classes and the two inner sums run over the irreducible characters χ. Moreover one of the orthogonality relations [1] tells us that

$$\sum_{\chi} \chi(g)^2 = 1^{m_1} m_1! 2^{m_2} m_2! \ldots n^{m_n} m_n! \quad (2)$$

for m_p the number of cycles of period p in the cycle decomposition of g. Together (1) and (2) imply

$$O_n \equiv OD_n \pmod{2} \quad (3)$$

where OD_n is the number of partitions of n into odd distinct parts. Let SC_n be the number of self-conjugate partitions of n so that $SC_n = OD_n$ and hence

$$O_n \equiv SC_n \pmod{2}. \quad (4)$$

Let E_n be the number of even entries in the character table of S_n. Then

$$O_n + E_n = p_n^2 \equiv p_n \pmod{2}. \quad (5)$$

Together (4) and (5) imply

$$E_n \equiv p_n - SC_n \pmod{2}. \quad (6)$$

But $p_n - SC_n \equiv 0 \pmod{2}$ because conjugation restricts to a fixed-point-free involution on the set of non-self-conjugate partitions of n. \qed

2. Remarks and some tables

This section contains some tables and remarks. The main object is Table 1 for the number of even entries in the character table of S_n.

2.1. Remarks. Let $\chi(\mu)$ be short for the constant value $\chi(g)$ of the irreducible character χ of S_n on the class consisting of all permutations $g \in S_n$ for which the periods of the disjoint cycles form the partition μ.

2.1.1. In terms of the probability that an entry $\chi(\mu)$ is even when chosen uniformly at random from the character table of the symmetric group S_n, Conjecture 1 says

$$\text{Prob}(\chi(\mu) \text{ is even}) \to 1 \text{ as } n \to \infty. \quad (7)$$

This parity bias becomes even more striking when compared with the distribution of signs in the character table of S_n (cf. [2, Question 3]). See Figure 2 and Table 2.

Conjecture 3. $\text{Prob}(\chi(\mu) > 0 \mid \chi(\mu) \neq 0) \to 1/2 \text{ as } n \to \infty.$

![Figure 2](image2.png)

Figure 2. The plot \bullet for $\text{Prob}(\chi(\mu) > 0 \mid \chi(\mu) \neq 0)$ and the plot \circ for $\text{Prob}(\chi(\mu) < 0 \mid \chi(\mu) \neq 0)$ where $1 \leq n \leq 38$.

2.1.2. Conjecture 2 implies that for any integer number d one has

$$\text{Prob}(\chi(\mu) \equiv 0 \text{ (mod } d)) \to 1 \text{ as } n \to \infty. \quad (8)$$

Figure 1 suggests that there is a sharper statement. See for example Figure 3.

![Figure 3](image3.png)

Figure 3. The proportion of the character table of S_n covered by even entries for $2 \leq n \leq 76$ and the graph of $2\pi^{-1} \arctan(\sqrt{n/2} - 1)$ for $2 \leq n \leq 76.$
2.2. Tables.

TABLE 1. Number of even entries and number of odd entries in the character table of S_n for $1 \leq n \leq 76$.

n	no. of evens	no. of odds	n	no. of evens	no. of odds
1	0	1	39	799580980	172923245
2	0	4	40	1152977342	241148902
3	2	7	41	1644080076	343563813
4	6	19	42	2352923494	474550782
5	16	33	43	3324344208	677609913
6	44	77	44	4732761850	918518775
7	90	135	45	6639049122	1305820834
8	266	218	46	9351080036	1791411328
9	508	392	47	13067332410	2496282106
10	966	798	48	18309958344	3379378185
11	1824	1312	49	25390864566	4720061059
12	3548	2381	50	35331180090	6377078986
13	6094	4107	51	48786461562	8786181687
14	11586	6639	52	67367826002	11924538919
15	19254	11722	53	92571070272	16283394489
16	37492	15869	54	127268025536	21847658489
17	61876	26333	55	173744388742	29905639434
18	103110	45115	56	237567368138	39975105191
19	170932	69168	57	32002974632	54182161084
20	286916	106213	58	439208932802	72330715598
21	456554	170710	59	594363393060	97561119340
22	759962	244042	60	804101537262	129956924827
23	1190034	384991	61	1082902860136	174870604889
24	1887766	592859	62	1458789177232	231616447104
25	2937820	895944	63	1956705210484	309822028517
26	4608084	1326012	64	2625259647972	408015408928
27	7004646	2055454	65	3505898738012	54449063352
28	10938762	2884762	66	4679753246976	718991943424
29	16372732	4466493	67	6226771093726	953692042995
30	24851432	6553384	68	8285512851154	1248594579071
31	37101368	9798596	69	10979998587386	165336971639
32	56368810	13336991	70	14541318538948	2170163830076
33	82688102	20192347	71	19209876952108	2853857859917
34	122855526	28680574	72	25351409083192	3730699401897
35	179808396	41695293	73	33363529811282	4899218593439
36	263406424	59766105	74	43886589872232	6374420377768
37	381814902	86344867	75	57554118617836	8352091755860
38	557951490	118828735	76	75434276878574	10852934727707
TABLE 2. Number of positive entries and number of negative entries in the character table of S_n for $1 \leq n \leq 38$.

n	pos.	neg.
1	1	0
2	3	1
3	6	2
4	14	7
5	26	13
6	58	34
7	98	72
8	194	137
9	344	249
10	652	524
11	1165	953
12	2020	1679
13	3552	3106
14	6077	5270
15	10362	9398
16	17080	15666
17	28570	2787256
18	46836	43409
19	77045	72861

n	pos.	neg.
20	122013	115940
21	198461	189476
22	310602	297929
23	494008	476904
24	767237	743094
25	1205391	1174624
26	1828252	1782368
27	2846995	2787256
28	4277605	4196505
29	6520106	6413986
30	9795470	9645485
31	14738493	14553197
32	21750402	21483398
33	32582580	32243250
34	47614253	47163539
35	70213289	69606943
36	102477724	101689585
37	149340038	148321445
38	215267489	213892988

TABLE 3. Number of entries $\equiv 0 \pmod{d}$ in the character table of S_n for $3 \leq d \leq 7$ and $1 \leq n \leq 19$.

n	$d = 3$	$d = 4$	$d = 5$	$d = 6$	$d = 7$
1, 2	0	0	0	0	0
3	1	1	1	1	1
4	6	4	4	4	4
5	11	12	12	11	10
6	39	30	35	29	29
7	73	61	64	59	63
8	181	187	178	163	168
9	426	368	336	352	339
10	803	681	726	643	660
11	1456	1272	1219	1188	1147
12	3138	2722	2668	2542	2503
13	5289	4532	4359	4135	3989
14	9980	8443	8332	8088	8031
15	16935	14067	14173	13363	13108
16	29669	27733	25351	25171	24066
17	49768	45156	42136	42202	39316
18	88645	77206	72601	73047	68206
19	139983	126447	115972	116635	108050

References

1. G. Frobenius, Über die Charaktere der symmetrischen Gruppe. Sitzungsberichte Akad. Berlin (1900) 516–534.
2. A. R. Miller, The probability that a character value is zero for the symmetric group. *Math. Z.* 277 (2014) 1011–1015.

Fakultät für Mathematik, Universität Wien, Vienna, Austria