Canonical Left Cells and the Lowest Two-sided Cell in an Affine Weyl Group

Nanhua Xi*

ABSTRACT. In this paper we give some discussion to the relations between canonical left cells and the lowest two-sided cell of an affine Weyl group have closed relations. In particular, we use the relations to construct some one dimensional representations of affine Hecke algebras.

Canonical left cells of an affine Weyl group are interesting in understanding cells in affine Weyl group and have nice relations with structure and representations of algebraic groups. However, it is not easy to describe canonical left cells. In this paper we give some discussion to the relations between canonical left cells and the lowest two-sided cell of an affine Weyl group. In particular, we use the relations to construct some one dimensional representations of affine Hecke algebras. For convenience we work with an extend affine Weyl group. This work was partially motivated by [AB].

1. Canonical left cells

1.1. Let R be an irreducible root system and P the corresponding weight lattice. The Weyl group W_0 acts on X naturally and the semi-direct product $W = W_0 \ltimes P$ is an extended affine Weyl group, which contains the affine Weyl group $W_a = W_0 \ltimes \mathbb{Z}R$. Let S be the set of simple reflections of W_a. The partial order \leq and the length function l on W are well defined.

Let s_0 be the unique simple reflection of W_a out of W_0. Define $Y_0 = \{w \in W \mid ws_0 \leq w \text{ or } w = e\}$, where e is the neutral element of
2 N. XI

W. Then $Y_0 \cap \Omega$ is a left cell for any two-sided cell Ω of W, called a canonical left cell.

In general it is not easy to describe a canonical left cell. However, it is easy to describe the set Y_0. Let w_0 be the longest element of W_0. The set of anti-dominant weights in P is defined to be $P^- = \{x \in P \mid l(xw_0) = l(w_0) + l(x)\}$ and the set of dominant weights is $P^+ = \{x \in P \mid l(w_0x) = l(w_0) + l(x)\}$. For $w \in W$, set $L(w) = \{s \in S \mid sw \leq w\}$ and $R(w) = \{s \in S \mid ws \leq w\}$.

Proposition 1.2. $Y_0 = \{wx \mid w \in W_0, x \in P^-, R(w) \subseteq L(x)\}$.

Proof. Let $u \in W$. Then there exist unique $w, v \in W_0$ and $x \in P^-$ such that $R(w) \subseteq L(x)$ and $u = wxv$. Moreover, we have $l(u) = l(x) + l(v) - l(w)$. The proposition follows.

1.3. It would be interesting to see when two elements in Y_0 are in a left cell. Let ρ be the product of all fundamental dominant weights. Then the set $\{wx\rho \mid w \in W_0, x \in P^+, R(w) \subseteq L(x)\}$ is the canonical left cell in the lowest two-sided cell c_0 of W. In general, for any $x \in P^+$ there exists a positive integer a (depending on x) such that x^b and x^a are in a left cell if $b \geq a$ (see [X1, Lemma 3.2]). It seems that the number a is not big, in many cases, it is among 1,2,3.

Let $S_0 = S \cap W_0$ and denote by Γ_0 the left cell $\{w \in W \mid R(w) = S_0\}$, which is in the lowest two-sided cell c_0 of W. For $x \in P$, denote by n_x (resp. m_x) the unique shortest element in the coset xW_0 (resp. the double coset W_0xW_0). The map $x \to n_x$ defines a one-to-one correspondence from P to Y_0, and the map $n_x \to n_xw_0$ defines a one-to-one correspondence from Y_0 to Γ_0. Also the map $x \to m_x$ defines a one-to-one correspondence between P^+ and $Y_0 \cap Y_0^{-1}$. The sets P, Y_0 and Γ_0 produce naturally three modules of an affine Hecke algebras of (W, S). In next section we will see that the three modules are essentially the same.

2. Cell modules of affine Hecke algebras

2.1. Let H be the Hecke algebra of (W, S) over a field k with parameter q. Assume that k contains square roots of q. Let $\{T_w\}_{w \in W}$ be its standard basis. Let For any w in W, let $C_w = q^{l(w)} \sum_{y \leq w}(-1)^{l(w) - l(y)} p_{y,w}(q^{-1}) T_y$.
and $C'_w = q^{\frac{\ell(w)}{2}} \sum_{y \leq w} P_{y,w}(q) T_y$, where $P_{y,w}$ are the Kazhdan-Lusztig polynomials. Then the elements C_w, $w \in W$ form a basis of H, and the elements C'_w, $w \in W$ form a basis of H as well, see [KL1].

For any $x \in P$ there is a well defined element $\theta_x = q^{-\frac{\ell(y)}{2}} T_y q^{\frac{\ell(y)}{2}} T_z - 1$ where $y, z \in P^+$ such that $x = yz^{-1}$. Then $\theta_x \theta_y = \theta_y \theta_x$ for any $x, y \in P$ and the elements $w \theta_x$ (resp. $\theta_x w$), $w \in W_0$, $x \in P$, form a basis of H.

The group algebra $k[P]$ is isomorphic to the subalgebra Θ of H generated by all θ_x, $x \in P$. Lusztig defined several H-module structures on $k[P]$, see [L2, Section 7]. They are actually isomorphic to the modules provided by the cell Γ_0. Let M (resp. M') be the subspace of H spanned by all C_w, $w \in \Gamma_0$ (resp. C'_w, $w \in \Gamma_0$). Then M_0 and M'_0 are left ideals of H and generated by $C = C_{w_0}$ and $C' = C'_{w_0}$ respectively. The elements $\theta_x C$, $x \in P$, form a basis of M and the elements $\theta_x C'$, $x \in P$, form a basis of M'.

Let I (resp. I') be the subspace of H spanned by all C_w, $w \in W - Y_0$ (resp. C'_w, $w \in W - Y_0$). Then J and J' are left ideals of H. Let $N = H/J$ and $N' = H/J'$. Essentially the following result is due to Arkhipov and Bezrukavnikov (see [AB, 1.1.1]).

Lemma 2.2. As H-modules N is isomorphic to M', and N' is isomorphic to M.

Proof. Consider the surjective homomorphism $H \to M'$, $h \to hC'$. It is easy to check that the kernel is I. So N is isomorphic to M'. Similarly the surjective homomorphism $H \to M$, $h \to hC$ induces an isomorphism $N' \to M$ of H-module. The lemma is proved.

2.3. The geometric explanation of the isomorphism is that Thom isomorphism for a certain equivariant K-group of the cotangent bundle of flag variety is compatible with certain actions of the affine Hecke H, see [L2, Section 7].

Lemma 2.2 seems helpful in understanding the structure of H-modules M and M', and may be useful to understand canonical left cells. A natural question is to consider the submodule of M' (resp. M) generated by all $C_w C'$ (resp. $C'_w C$), $w \in c_0 \cap Y_0$. Modulo a central character of H, we can get a finite dimensional quotient algebra of H.
In next section we will give some discussion to the images in such quotient algebras of the modules. It seems possible that the images are either irreducible modules of H or 0 when k is algebraically closed and $\text{char} k = 0$.

3. A realization of one dimensional representations

3.1. Assume that k is algebraically closed. The center $Z(H)$ of H is in the subalgebra Θ of H and is isomorphic to $k \otimes \mathbb{Z} R_G$, where G is a simply connected simple algebraic group over k with root system R and R_G is the representation ring of G. Thus the set of k-algebra homomorphism from $Z(H)$ to k is in one-to-one correspondence to the set of semisimple classes of G. For each semisimple class \tilde{t} in G, let $\phi_t : Z(H) \to k$ be the corresponding homomorphism. Let T be a maximal torus of G and identify P with the character group $\text{Hom}(T, k^*)$ of T. For each semisimple element t in T, let I_t be the two-sided ideal of H generated by all $z - \phi_t(z)$, $z \in Z(H)$. Define $H_t = H/I_t$. Then $\dim H_t = |W_0|^2$.

For each simple H-module L, there exist some t in T such that $Z(H)$ acts on L through the homomorphism ϕ_t. So to study simple modules of H it is enough to study simple modules of the quotient algebras H_t for $t \in T$. We shall use the same notations $C_w, C'_w, C, C', \theta_x, ...$ for their images in H_t.

Theorem 3.2. Let $t \in T$. The following statements are equivalent.

(a) $CH_t C = 0$. (Recall that $C = C_{w_0}$ and $C' = C'_{w_0}$.)
(b) $CH_t C' = 0$.
(c) $C'H_t C = 0$.
(d) $C'H_t C' = 0$.
(e) For any simple $H_{t^{-1}}$-module L we have $CL = 0$.
(f) For any simple H_t-module L we have $C'L = 0$.

Proof. There is a unique involutive automorphism $h \to h^*$ of the k-algebra H such that $T_r^* = -qT_r^{-1} = q - 1 - T_r$ ($r \in S_0$), $\theta_{x^*} = \theta_{x^{-1}}$ ($x \in P$).
Noting that $C^* = (-1)^{l(w_0)} C'$, we see that (a) and (d) are equivalent, (e) and (f) are equivalent.

There is a unique involutive anti-automorphism $h \rightarrow \tilde{h}$ of the k-algebra H such that $\tilde{T}_r = T_r \ (r \in S_0)$, $\tilde{\theta}_x = \theta_x \ (x \in P)$ [KL2, 2.13(c)]. Noting that $\tilde{C} = C$ and $\tilde{C}' = C'$, we see that (b) and (c) are equivalent.

Since the two-sided ideal H_{c_0} of H spanned by all $C'w, \ w \in c_0$ is generated by C', using [X3, 7.7] we know that (d) and (f) are equivalent.

Now we show that (d) and (b) are equivalent. Since $T_w C' = C'T_w = q^{l(w)}$ if $w \in W$, we see that $C'H'C'$ is spanned by $C\theta_x C'$. The Weyl group W_0 acts on Θ by $w(\theta_x) = \theta_{w(x)}$. In H we have the Macdonald formula [NR, Theorem 2.22]

$$C'\theta_x C' = q^{l(w_0)} \sum_{w \in W_0} w(\theta_x \prod_{\alpha \in R^+} \frac{1 - q\theta_{\alpha}}{1 - \theta_{\alpha}})C'.$$

So we have

1. The condition $C'H'C' = 0$ is equivalent to

$$\phi_t(\sum_{w \in W_0} w(\theta_x \prod_{\alpha \in R^+} \frac{1 - q\theta_{\alpha}}{1 - \theta_{\alpha}})) = 0, \ \text{for all } x \in P.$$

Let Δ be the set of simple roots of R and denote x_α the fundamental dominant weight corresponding to a simple root α. Similar to [X2, Lemma 2.10], we see that HC' is spanned by all $T_w z \theta_I C'$, $w \in W_0, \ z \in Z(H), \ I \subseteq \Delta$ and $\theta_I = \prod_{\alpha \in I} \theta_{x_\alpha}$. Thus we get

2. The condition $C'H'C' = 0$ is equivalent to

$$\phi_t(\sum_{w \in W_0} w(\theta_I \prod_{\alpha \in R^+} \frac{1 - q\theta_{\alpha}}{1 - \theta_{\alpha}})) = 0, \ \text{for all } I \subseteq \Delta.$$

Since $CT_w = T_w C = (-1)^{l(w)}$ if $w \in W_0$ and $C\theta_IC' = 0$ if $I \neq \Delta$, as an $Z(H)$-module, CHC' is generated by $C\theta_\rho C'$, where $\rho = x_\Delta$ is the product of all fundamental dominant weights. According to [L1, p.222, Lemma 7.4 (iii)], we have

$$C\theta_\rho C' = (-1)^\nu q^{\frac{\nu}{2}} C' \sum_{I \subseteq R^+} (-q)^{|I|} \theta_{\rho}^{-1} \theta_{\alpha_I},$$

here $\nu = l(w_0) = |R^+|$, α_I is the sum of all roots in I and $|I|$ is the cardinality of I.

For \(w \in W_0 \) define
\[
e_w = w \left(\prod_{\alpha \in \Delta} x_\alpha \right).
\]
(Recall that here \(x_\alpha \) is the fundamental dominant weight corresponding to \(\alpha \in \Delta \).) Then \(\Theta \) is a free \(Z(H) \)-module with a basis \(\theta_{e_w}, \ w \in W_0 \).

For \(\theta, \theta' \in \Theta \), define
\[
(\theta, \theta') = \theta \rho \prod_{\alpha \in R^+} (1 - \theta_{\alpha})^{-1} \sum_{w \in W_0} (-1)^{l(w)} w(\theta \theta' \rho) \in Z(H).
\]
By [KL2, p.163] there exist \(\theta' u \in \Theta (u \in W_0) \) such that \((\theta_{e_w}, \theta' u) = \delta_{w,u} \) and the elements \(\theta' u \) form a \(Z(H) \)-basis of \(\Theta \).

Let \(A = \sum_{I \subseteq R^+} (-q)^{|I|} \rho^{-1} \theta_{\alpha_I} \). Note that \(A = \theta^{-1} \prod_{\alpha \in R^+} (1 - q \theta_{\alpha}) \).

Then
\[
(A, \theta_{e_w}) = (-1)^{|I|} \sum_{w \in W_0} w(\theta_{\rho w} \prod_{\alpha \in R^+} \frac{1 - q \theta_{\alpha}}{1 - \theta_{\alpha}}).
\]
Since \(A = \sum_{w \in W_0} (A, \theta_{e_w}) \theta' w \), we obtain
4 The condition \(CH_tC' = 0 \) is equivalent to
\[
\phi_t \left(\sum_{w \in W_0} w(\theta_{\rho w} \prod_{\alpha \in R^+} \frac{1 - q \theta_{\alpha}}{1 - \theta_{\alpha}}) = 0 \right) \ 	ext{for all} \ w \in W_0.
\]

Using (1) and (4) we see that (d) implies (b). For any \(I \) there exists \(w \in W_0 \) such that \(\rho w = \theta_I \). Using (2) and (4) we see that (b) implies (d). The theorem is proved.

Theorem 3.3. Let \(t \in T \) be such that \(\alpha(t) = q \) for all simple roots \(\alpha \) of \(R \). Then
(a) \(CH_tC' \) (resp. \(C'H_tC \)) is a two-sided ideal of \(H_t \) with dimension 1 if \(\sum_{w \in W_0} q^{l(w)} \neq 0 \).
(b) \(CH_tC' = 0 \) if \(\sum_{w \in W_0} q^{l(w)} = 0 \).

Proof. We have seen that \(CH_tC' \) is spanned by the image in \(H_t \) of \(C\theta_C' \). To see it is a two-sided ideal of \(H_t \) it suffices to prove that the images in \(H_t \) of \(C\theta_C' \theta_x \) and \(\theta_x C\theta_C' \) for all \(x \in \Theta \) are scalar multiples of the image in \(H_t \) of \(C\theta_C' \).

1 If \(w \) is not the neutral element of \(W_0 \), then there exists a positive root \(\beta \) such that \(w(\beta) = \alpha^{-1} \) for some simple root \(\alpha \). Thus \(w(1 - q \beta)(t) = 0 \).
Since

\[(A_{\theta x}, \theta_{w}) = (-1)^{\nu} \sum_{w \in W_0} w(\theta_{w}) \prod_{\alpha \in R^+} \frac{1 - q^{1+\langle \rho, \alpha \rangle}}{1 - q^{\langle \rho, \alpha \rangle}},\]

using (1) we get

\[(A_{\theta x}, \theta_{w})(t) = x(t)w(t) \prod_{\alpha \in R^+} \frac{1 - q^{1+\langle \rho, \alpha \rangle}}{1 - q^{\langle \rho, \alpha \rangle}},\]

if \(1 - q^{\langle \rho, \alpha \rangle} \neq 0\) for all positive roots \(\alpha\). Then [NR, Corollary 2.17]

\[\prod_{\alpha \in R^+} \frac{1 - q^{1+\langle \rho, \alpha \rangle}}{1 - q^{\langle \rho, \alpha \rangle}} = \sum_{w \in W_0} q^{l(w)},\]

if \(1 - q^{\langle \rho, \alpha \rangle} \neq 0\) for all positive roots \(\alpha\). Now \((A_{\theta x}, \theta_{w})\) is in \(Z(H)\), so \((A_{\theta x}, \theta_{w})(t)\) is a regular function in \(q \in k^*\). Thus we have \((A_{\theta x}, \theta_{w})(t) = x(t)w(t) \sum_{w \in W_0} q^{l(w)}\) for all \(q \in k^*\). So the images in \(H_t\) of \(C\theta_{\rho}C^\theta\) for all \(x \in \Theta\) are scalar multiples of the image in \(H_t\) of \(C\theta_{\rho}C^\theta\), and \(CH_tC^\theta\) is a right ideal of \(H_t\). Using the composition of involutions \(h \rightarrow h^*\) and \(h \rightarrow \tilde{h}\) of \(H\) we see that \(CH_tC^\theta\) is a right ideal of \(H_t\) implies that it is also a left ideal of \(H_t\). The theorem is proved.

It is easy to check that \(T_sCH_tC^\theta = -CH_tC^\theta\) and \(CH_tC^\theta T_s = qCH_tC^\theta\) for all simple reflections \(s\) if \(\alpha(t) = q\) for all simple roots \(\alpha\). So the ideals \(CH_tC^\theta\) and \(C^\theta H_tC\) give natural realizations of some one dimensional representations of \(H_q\).

References

[AB] Arkhipov, S., Bezrukavnikov, R.: Perverse sheaves on affine flags and Langlands dual groups, Israel J. Math. 170 (2009), 135-183.

[KL1] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.

[KL2] Kazhdan, D., Lusztig, G.: Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153–215.

[L1] Lusztig, G.: Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque 101-102 (1983), pp.208-227.

[L2] Lusztig, G.: Bases in equivariant K-theory, Represent. Theory 2 (1998), 298–369 (electronic).

[NR] Nelsen, K., Ram, A.: Kostka-Foulkes polynomials and Macdonald spherical functions, Surveys in Combinatorics 2003 , C. Wensley ed., London Math. Soc. Lect. Notes 307, Cambridge University Press, 2003, 325–370.

[X1] Xi, N.: An approach to the connectedness of the left cells in affine Weyl groups, Bull. London Math. Soc. 21 (1989), 577-561.

[X2] Xi, N.: The based ring of the lowest two-sided cell of an affine Weyl group, II, Ann. Sci. Éc. Norm. Sup. 27 (1994), 47-61.
[X3] Xi, N.: Representations of affine Hecke algebras, Lecture Notes in Mathematics, 1587. Springer-Verlag, Berlin, 1994.

* HUA LOO-KENG KEY LABORATORY OF MATHEMATICS AND INSTITUTE OF MATHEMATICS, CHINESE ACADEMY OF SCIENCES, BEIJING, 100190, CHINA
E-mail address: nanhua@math.ac.cn