Sleep deprivation results in diverse patterns of synaptic scaling across the *Drosophila* mushroom bodies

Highlights

- Amount of pre-synaptic BRP in mushroom bodies is inversely related to recent sleep
- Increased BRP after sleep loss is restricted specifically to Kenyon cells
- Outputs from KCs to different synaptic partners show varied changes with sleep loss

Authors

Jacqueline T. Weiss, Jeffrey M. Donlea

Correspondence

jdonlea@ucla.edu

In brief

Weiss and Donlea find that sleep loss increases pre-synaptic Bruchpilot across the *Drosophila* mushroom body (MB) due to plasticity in MB-intrinsic Kenyon cells. Contacts from Kenyon cells to post-synaptic targets show differing changes with sleep loss, indicating that sleep deprivation may differentially alter distinct classes of MB synapses.
Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies

Jacqueline T. Weiss1,2 and Jeffrey M. Donlea1,3,*

1Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
2Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
3Lead contact
*Correspondence: jdonlea@ucla.edu
https://doi.org/10.1016/j.cub.2021.05.018

SUMMARY

Sleep is essential for a variety of plastic processes, including learning and memory. However, the consequences of insufficient sleep on circuit connectivity remain poorly understood. To better appreciate the effects of sleep loss on synaptic connectivity across a memory-encoding circuit, we examined changes in the distribution of synaptic markers in the Drosophila mushroom body (MB). Protein-trap tags for active zone components indicate that recent sleep time is inversely correlated with Bruchpilot (BRP) abundance in the MB lobes; sleep loss elevates BRP while sleep induction reduces BRP across the MB. Overnight sleep deprivation also elevated levels of dSyd-1 and Cacophony, but not other pre-synaptic proteins. Cell-type-specific genetic reporters show that MB-intrinsic Kenyon cells (KCs) exhibit increased pre-synaptic BRP throughout the axonal lobes after sleep deprivation; similar increases were not detected in projections from large interneurons or dopaminergic neurons that innervate the MB. These results indicate that pre-synaptic plasticity in KCs is responsible for elevated levels of BRP in the MB lobes of sleep-deprived flies. Because KCs provide synaptic inputs to several classes of post-synaptic partners, we next used a fluorescent reporter for synaptic contacts to test whether each class of KC output connections is scaled uniformly by sleep loss. The KC output synapses that we observed here can be divided into three classes: KCs to MB interneurons; KCs to dopaminergic neurons; and KCs to MB output neurons. No single class showed uniform scaling across each constituent member, indicating that different rules may govern plasticity during sleep loss across cell types.

INTRODUCTION

In a variety of species, sleep supports the capacity for new learning and is vital for the consolidation of recently formed memories.1–4 In Drosophila melanogaster, overnight sleep loss is sufficient to impair acquisition of new associative memories that are encoded in the mushroom bodies (MBs),3 and sleep disruptions that follow learning can prevent memory consolidation.5,7 Interestingly, sleep is often elevated or intensified during conditions of heightened synaptic reorganization, including early development,6–8 recovery from neural injury,11,12 and memory consolidation.1,2 Together, these results indicate that sleep may support plastic remodeling in the brain. The consequences of sleep disruptions on synaptic connectivity, however, are not clearly understood. One hypothesis proposes that sleep permits the homeostatic downsampling of synapses throughout the brain, suggesting that sleep loss may impact cognition by saturating synaptic connections across plastic circuits.13–15 This model is supported by several studies that have found an increase in the size or number of synaptic processes after extended waking in both flies and mice.16–19 Additionally, sleep deprivation increases the overall abundance of several synaptic proteins in whole fly brains, suggesting a trend toward synaptic overgrowth during sleep loss.20,21 Conversely, acute sleep induction can result in a net decrease of synaptic protein21 and transcripts22 in fly brain homogenates. Other experiments, however, indicate that sleep deprivation may either weaken or prevent the expansion of synaptic connections in some circuits.15,23–25 These previous studies demonstrate that sleep disruption alters synaptic abundance or size in several neuronal cell types, but it is unclear whether sleep loss uniformly affects all classes of neurons or synapses within a given circuit.

The Drosophila MB provides an ideal structure to characterize how sleep loss may differentially impact distinct types of synaptic contacts within a plastic circuit. The MB is a core associative neuropil that is conserved across arthropod species and is required for the acquisition and encoding of olfactory memories.26–28 In the fruit fly, olfactory information is relayed to the MBs via secondary projection neurons, which synapse onto ~2,200 Kenyon cells (KCs) in each brain hemisphere.29–32 KC axons extend through fasciculated bundles that comprise five distinct MB lobes: α, β, γ, α’, and β’.33 Each axonal lobe of the MBs is divided into compartments that are each innervated by distinct dopaminergic neuron (DAN) types (~21 total) and connect to unique MB output neurons (~22 total types).29 Associative memories are encoded in the synaptic connections between...
 odor-encoding KCs and valence-encoding MB output neurons (MBONs), with reinforcement signals provided by compartment-specific DANs. DANs, as a result, encode unconditioned stimuli during learning, and MBONs mediate behavioral output. Additionally, two modulatory interneurons, APL and DPM, project throughout the MB lobes. Both neurons likely receive synaptic inputs from and provide recurrent connections back onto many KCs, but each plays a functionally distinct role in MB functions: APL facilitates sparse coding of odor cues and memory storage, while DPM supports recurrent activity during memory storage and promotes sleep. Because of the high degree of interconnectivity within and between cell types, the MB provides an optimal system to test whether sleep loss alters all circuit components to a similar degree, whether one particular connection type may be especially sensitive to sleep loss, or whether different constituents may exhibit distinct patterns of reorganization with insufficient sleep. Distinguishing between these models may open opportunities to understand how sleep loss degrades memory encoding in the MB and to develop interventions that maintain plasticity during prolonged waking. While KCs in the MB γ lobe individually exhibit increased pre-synaptic terminal volume with sleep deprivation, the effects of sleep loss on other cell types in the MB have not been systematically examined. Because activity within subpopulations of MB neurons can regulate sleep, understanding the effects of sleep loss on MB connectivity may inform our understanding not only of the cognitive consequences of sleep loss but also of mechanisms that encode sleep need. Here, we quantify the effects of sleep loss on the abundance of pre-synaptic proteins across neuron types in the MB. We observe a net increase following sleep loss in the abundance of protein-trap reporters for the pre-synaptic proteins Bruchpilot (BRP), dSYD-1, and Cacophony, but not other synaptic components. Using cell-type-specific genetic reporters, we find that the increase in BRP can be localized to MB-intrinsic KCs and not to other neuronal populations in the MB. Because KCs synapse upon many other cell types in the MB, we also tested the effect of sleep loss on the abundance of synaptic contacts between KCs and many of their post-synaptic partners. These experiments find an assortment of responses in synaptic contacts between KCs and different post-synaptic partners, suggesting that sleep deprivation does not uniformly scale all KC output synapses. Instead, sleep loss results in a variety of plastic effects on different classes of KC output synapses, with some increasing their contacts, others weakening their connections, and a final portion remaining unchanged. Our results indicate that different circuit motifs within the MB may be differentially affected by sleep loss and identify particularly plastic connections that may contribute to impaired memory and increased homeostatic sleep drive following prolonged waking.

RESULTS

BRP abundance in MB lobes is inversely related with recent sleep time

To examine the consequences of sleep loss on MB synaptic connections, we first observed the abundance of GFP-tagged BRP expressed from a MIMIC protein trap insertion into an intron of the Brp locus. Brp is a core component of pre-synaptic active zones, and pre-synaptic Brp protein levels correlate closely with active zone size and release probability. We mechanically deprived BRP and measured BRP fluorescence using confocal microscopy. The BRP::GFP signal increased by ~32%–46% in each MB lobe from sleep-deprived BRP::GFP/+ flies compared to controls (Figures 1A and 1B), supporting previous reports of increased pre-synaptic terminal size in MB neurons. We also tested the effects of acutely inducing sleep by activating sleep-promoting neurons in a dorsal stratum of the fan-shaped body. Flies expressing BRP along with the warm-sensitive cation channel TrpA1 under the control of R23E10-Gal4 were heated to 31°C for 6 h to acutely increase their sleep from ZT0 to ZT6 (Figure 1C). Sleep induction reduced BRP::GFP fluorescence in the MB γ, α, β, and β' lobes of experimental flies (R23E10-Gal4 > UAS-TRpA1/BRP::GFP) compared to siblings that were maintained at 25°C (Figures 1D and 1E). A 6-h exposure to 31°C did not significantly alter either sleep or BRP::GFP fluorescence in brp/brp controls relative to siblings housed at 25°C (Figures 1D and 1F). Together, these results support the hypothesis that prolonged waking results in a net synaptic expansion in the MBs and that sleep broadly facilitates the downscaling of these connections.

Variable effects of sleep loss on MB abundance of pre-synaptic proteins

While our above results focus on the effects of sleep loss on BRP levels, previous studies have found evidence for coordinated scaling of several synaptic proteins. Other studies, however, suggest that synaptic scaling can change the abundance of some, but not all, pre-synaptic components. To examine the effects of sleep loss on additional pre-synaptic machinery, we obtained protein trap reporters for six additional pre-synaptic proteins and measured their abundance in the MB after overnight sleep loss (see schematic in Figure 2A; sleep traces and representative images shown in Figures S1B–S1O). First, we observed the effects of sleep loss on dSyd1, an active zone component that interacts with BRP and is required for the organization of electron-dense T-bars. Fluorescence of dSyd1-MI02987-GFSTF increased by 32%–46% in each MB lobe compared to controls. We also quantified the effects of sleep loss on Rab3, which exhibits vesicle-like staining at the fly synapse in the MB. Sleep deprivation resulted in a significant increase in Rab3 staining in the MB lobes of experimental flies (Figure 2B). Next, we measured the effects of sleep loss on Cacophony (Cac), the primary voltage-gated calcium channel at the pre-synapse. Like reporters for BRP and dSyd1, abundance of a GFP-tagged reporter for Cac, CacGFSTF, showed a significant increase in MB signal after sleep deprivation (Figure 2C). Oven-induced sleep loss, however, did not broadly increase the abundance of a protein-trap reporter for Rab3-interacting molecule, Rim (Figure 2D), which influences synaptic accumulation of Cac. We also quantified the effects of sleep loss on Rab3, which exhibits vesicle-like staining at the fly active zone and shares the protein domains that are required for vesicle localization with its mammalian homolog. MBs from sleep-deprived flies exhibited a significantly reduced amount of Rab3::GFP, which showed a significant increase in MB signal after sleep deprivation (Figure 2E). Similarly, quantifications of reporters for two proteins that localize to synaptic vesicles, Syt1 and nSyb, found that sleep loss elevated Syt1 and nSyb::GFP abundance locally in the γ, β, and β' lobes of MBs (Figure 2F), while fluorescent intensity of nSyb::GFP was decreased in each MB lobe of sleep-deprived flies (Figure 2G).
While the diversity of post-synaptic receptors expressed in MB neurons complicates analysis of post-synaptic plasticity, abundance of the primarily post-synaptic Dlg in MB lobes of sleep-deprived flies was reduced below the levels observed in undisturbed controls (Figure 2E). Forty-eight hours of undisturbed recovery after overnight sleep deprivation restored abundance of Rab3Cherry back to control levels (Figure 2E, right), while dsYd-1 in previously sleep-deprived flies was reduced below the levels observed in undisturbed controls (Figure 2B, right). Together, these results indicate that sleep loss does not uniformly increase the amount of all pre-synaptic proteins across the MB. Instead, the MBs of sleep-deprived flies after 12 h of overnight sleep loss (green) normalized to rested controls (gray). Two-way ANOVA finds a significant effect of SD (F(1,108) = 20.62; p < 0.0001; n = 50–60 hemispheres/group). Pairwise comparisons using Sidak’s multiple comparisons test found significant increases in Brp::GFP in each MB lobe after sleep deprivation relative to rested siblings (p ≤ 0.002 for each test).

Pre-synaptic BRP is elevated in KCs, but not in other MB cell types

As described above, the abundance of BRP::GFP is significantly elevated across all MB lobes of sleep-deprived brpMI02987-GFSTF flies (Figures 1A and 1B). The use of a protein-trap reporter, however, does not provide information about which cell types within the MB contribute to the increase in BRP abundance that occurs after extended waking. To better identify the specific neuron classes that show elevated BRP levels after sleep loss, we used synaptically tagging with recombination (STaR), a flp-based reporter to press the effects of sleep loss on specific classes of MB neurons by labeling BRP in odor-encoding, MB-intrinsic KCs using the genetic driver R13F02-Gal4, and STaR labeling in KCs using R13F02-Gal4 increased significantly in all KC lobes after overnight sleep loss (Figures 3A, 3B, and S2A). Similar increases in KC expression of BRP were also found using a second broad KC driver, OK107-Gal4 (Figures 3C and S2B). The abundance of smFP_V5-tagged
Figure 2. Pre-synaptic proteins show variable responses to sleep loss in the MB lobes

(A) Schematic illustration of pre-synaptic active zone, including core protein components observed in these studies. Brp localizes in the electron-dense T-bar, where it physically interacts with Syd-1. Both contribute to the recruitment of other pre-synaptic proteins to the AZ. Rim is necessary for proper localization of the Ca2+ channel Cacophony in the pre-synaptic plasma membrane. Rab3 regulates priming of vesicles and organization of AZ proteins. Syt-1 is a Ca2+ sensor located on synaptic vesicles. Nsyb is localized to synaptic vesicles and mediates vesicle fusion. Dog is a scaffolding protein that is primarily located at the postsynaptic density.

(B) Abundance of dSyd-1::GFP throughout the MB after overnight sleep deprivation (red) compared to rested controls (gray) when flies were dissected either immediately following sleep deprivation (left) or allowed 48 h of ad libitum recovery sleep before dissection (right). dSyd-1::GFP intensity in all groups is normalized to rested controls. Two-way ANOVA finds a significant effect of SD (F(1,184) = 43.12; p < 0.0001; n = 42–131 hemispheres/group).

(C) Quantification of Cacophony::GFP intensity in MB axonal lobes following overnight sleep deprivation (green) normalized to rested controls (gray). Two-way ANOVA finds a significant effect of SD (F(1,134) = 18.51; p < 0.0001; n = 64–72 hemispheres/group).

(D) Quantification of Rim::GFP in the MB lobes of sleep-deprived RimM03470-GFSTF flies (green) and rested controls (gray). Two-way ANOVA finds a significant effect of SD (F(1,107) = 0.002567; p = 0.9597; n = 52–57 hemispheres/group).

(E) Fluorescent intensity of endogenous Rab3::mCherry in the MB lobes of sleep deprived Rab3RIM+Cherry/+ (light blue) compared to rested siblings (gray). Data from brains dissected immediately following sleep-deprivation are shown on left; right depicts quantification of brains dissected after 48 h of recovery from overnight sleep deprivation. Two-way ANOVA finds a significant lobe-by-SD interaction (F(4,272) = 7.94; p < 0.0001; n = 30–40 hemispheres/group); post hoc comparisons using Sidak’s multiple comparisons test find a significant increase in the γ lobes (p = 0.048), but not in α (p = 0.54), β (p = 0.38), α’ (p = 0.23), or β’ (p = 0.27).

(F) Fluorescent intensity of endogenous Rab3::mCherry in the MB lobes of sleep deprived Rab3RIM+Cherry/+ (light blue) compared to rested siblings (gray). Data from brains dissected immediately following sleep-deprivation are shown on left; right depicts quantification of brains dissected after 48 h of recovery from overnight sleep deprivation. Two-way ANOVA finds a significant lobe-by-SD interaction (F(4,272) = 7.94; p < 0.0001; n = 30–40 hemispheres/group); post hoc comparisons using Sidak’s multiple comparisons test find a significant increase in the γ lobes (p = 0.048), but not in α (p = 0.54), β (p = 0.38), α’ (p = 0.23), or β’ (p = 0.27).

See also Figure S1 for representative images and sleep traces from each experimental group and genotype. Scale bars depict 10 μm; error bars represent SEM for all panels.

BRP remains elevated in R13F02-positive KCs after 24 h of recovery after overnight sleep deprivation but returns to control levels within approximately 48 h of recovery (Figures 3D–3F, S2C, and S2D). Because starvation results in sleep loss without the accrual of sleep pressure or learning deficits, we tested whether KC active zones are altered after 24 h of starvation.76,77 R13F02-Gal4 > STaR flies fed only 2% agar in H\textsubscript{2}O slept 70% ± 4.73% less than their fed siblings (Figure 3G), but no significant increase in STaR signal was detected in starved flies (Figures 3H and 3I). These results suggest that the increased BRP abundance that we observe
Figure 3. Increased BRP abundance in Kenyon cell axons after sleep deprivation
(A) Representative images from R13F02-Gal4 > STaR flies after 12 h of rest (left) or 12 h of overnight SD (right). Presynapses labeled by STaR (BRP::V5) are in magenta.
(B) Quantification of BRP::V5 intensity in rested controls (gray) and after overnight SD (magenta) in KCs labeled by R13F02-Gal4. Two-way ANOVA finds a significant effect of SD (F (1,94) = 43.43; p < 0.0001; n = 42–54 hemispheres/group).

(legend continued on next page)
in KCs after sleep loss may be correlated with cognitive impairments and increased sleep drive. To understand whether the increased BRP abundance that we observed is uniformly shared across subpopulations of KCs that innervate different regions of the MB lobes, we used more restricted genetic driver lines to label KCs that project into the α/β, α/β′, or γ lobes. 28 We found that not all KC subtypes exhibited similar increases in smFP_V5-tagged BRP. KCs with axons targeted to the α/β core, α/β posterior, and γ dorsal regions showed significant increases in pre-synaptic STAAR labeling after sleep deprivation, while there was no effect of sleep disruption on BRP abundance in α/β′ surface or α/β′ anterior or posterior KCs (Figure S3). Genetic mosaicism of flp expression using available driver lines prevented consistent measurements of BRP abundance in α/β′/γ′ medial and γ′ main KC subpopulations. Together, these data indicate that increased BRP abundance within subpopulations of KC neurons contributes significantly to the overall elevation of BRP that we observe in MB lobes following sleep deprivation.

Next, we tested whether increased BRP::V5 could also be observed after sleep deprivation (Figures S2E–S2H) in other cell types that innervate the MB lobes using STAAR. Two populations of dopaminergic neurons project into the MB: PPL1 neurons that project into compartments of the γ, α, and α′ lobes, which encode punishment and PAM neurons that terminate in γ, β, and β′/2 lobe zones, which activate in response to rewarding stimuli. 29, 35, 36, 39 When we quantified pre-synaptic STAAR labeling in PPL1 DANs using TH-Gal4, 79 a two-way ANOVA detected a significant effect for sleep deprivation. Pairwise comparisons within compartments of the γ, α, and α′/2 lobes, however, found significantly increases only in the α3 and α′3 compartments (Figure 5J). Similarly, we used R58E02-Gal4 to drive STAAR expression in PAM DANs projecting into the horizontal lobes of the MB. 26, 63 While a two-way ANOVA found a significant effect for sleep deprivation on STAAR fluorescence in PAM DANs, pairwise comparisons detect significant increases in labeled BRP only in the γ lobe and β′2 compartment and not in the β′3 lobe and β′1 compartment (Figure 3K). No increase in BRP::smFP_V5 intensity was detected when we drove STAAR in APL (GH146-Gal4) or DPM neurons (C316-Gal4), which are both large interneurons that project broadly across all MB lobes (Figures 3L and 3M). 34, 46 Based on these data, the broad increase in BRP that we observed in MB lobes (Figures 1A and 1B) after sleep deprivation can be attributed primarily to KCs, not to other MB cell types.

Divergent consequences of sleep loss on KC output synapse classes

Within the MB lobes, KCs synapse upon several classes of postsynaptic partners, opening the possibility that sleep loss may differentially alter contacts between KCs and each synaptic target. While connections between KCs and MBONs can encode associative memories and odor valence, KCs also provide synaptic inputs to APL and DPM interneurons and to DANs from both the PAM and PPL1 clusters (see Figure 4A for MB circuit schematic). 79 Each of these synaptic connections contributes to different aspects of olfactory processing and memory encoding. 29, 34–36, 38, 43–46 To understand how each type of output synapse from KCs might be influenced by sleep loss, we used GFP reconstitution across synaptic partners (GRASP) 30, 81 to observe synaptic contacts between KCs and their various synaptic targets in rested and sleep-deprived flies (sleep traces shown in Figures S5). GRASP has previously been used to identify patterns of synaptic contacts in worms, 82–84 flies, 85, 86–88 and mice 89, 90 using light microscopy. Here, we expressed an activity-dependent GRASP reporter to label recently active contacts in which KCs release neurotransmitter onto a synaptic partner of interest. 81 First, we observed the effects of sleep deprivation on connectivity from KCs to DANs, which is required for memory formation. 79 Interestingly, GRASP signal from KCs (MB-LexA) to PPL1 DANs (TH-Gal4) was significantly depressed in the brains of sleep-deprived flies (Figures 4B and 4C) while no effect of sleep loss could be detected on GRASP signal from KCs to DANs (Figure 4D).

(C) Quantification of BRP::V5 intensity in rested controls (gray) and after overnight SD (magenta) in KCs labeled by OK107-Gal4. Two-way ANOVA finds a significant effect of SD (F1,94 = 19.82; p < 0.0001; n = 42–54 hemispheres/group).

(D) Representative images from R13F02-Gal4 > STAAR flies following 24 (D) or 48 h (E) of recovery sleep from overnight SD.

(E) BRP::smFP_V5 intensity quantification for R13F02-Gal4 > STAAR flies permitted 24 or 48 h of ad lib recovery sleep following overnight sleep deprivation. Fluorescence intensity is normalized to time-matched rested controls for each SD group. Two-way ANOVA finds a significant effect of group (F(2,56) = 21.11; p < 0.0001; n = 18–24 hemispheres/group). *p < 0.05 by Sidak’s pairwise comparisons test for SD versus control at the matched time point.

(F) Hourly sleep time course from R13F02-Gal4 > STAAR flies that were provided 24 h of baseline sleep before either control handling (gray) or food deprivation (magenta). Two-way repeated-measures ANOVA finds a significant time-by-treatment interaction (F(17,3,760) = 20.51; p < 0.0001; n = 39–43 flies/group).

(H) Representative images from R13F02-Gal4 > STAAR flies after food deprivation (left) or 24 h of recovery sleep from SD (right).

(I) Quantification of BRP::smFP_V5 abundance in MB lobes of R13F02-Gal4 > STAAR flies that have been fed standard fly media (gray) or starved for 24 h (magenta). Two-way repeated-measures ANOVA finds no significant effect of starvation (F1,92,93 = 3.229; p = 0.0756; n = 41–53 hemispheres/group).

(J) Left panel depicts representative images from TH-Gal4 > STAAR flies after 12 h of rest (left) or 12 h of overnight SD (right). Presynapses labeled by STAAR (BRP::V5) are in red. Right panel shows quantification of BRP::smFP_V5 intensity in rested controls (gray) and after overnight SD (red) in PPL1 dopaminergic neurons labeled by TH-Gal4. Two-way ANOVA finds a significant sleep by MB compartment effect (F4,156) = 6.184; p < 0.0001; n = 69–72 hemispheres/group).

(K) Left: representative images from R58E02-Gal4 > STAAR flies labeling BRP in PAM dopaminergic neurons after 12 h of rest (left) or 12 h of overnight SD (right). Pre-synapses labeled by STAAR (BRP::V5) are in blue. On right, quantification of BRP::smFP_V5 intensity in rested controls (gray) and after overnight SD (blue) in PAM DANs labeled by R58E02-Gal4 are shown. Two-way ANOVA finds a significant effect of SD (F1,104 = 7.893; p = 0.0059; n = 50–56 hemispheres/group).

(L) Left: representative images from GH146-Gal4 > STAAR flies after 12 h of rest (left) or 12 h of overnight SD (right). Presynapses labeled by STAAR (BRP::V5) are in green. Right panel shows quantification of BRP::smFP_V5 intensity in rested controls (gray) and after overnight SD (green) in APL labeled by GH146-Gal4. Two-way ANOVA finds a significant lobe by sleep interaction (F4,148) = 6.672; p < 0.0001; n = 60–62 hemispheres/group)

(M) On left, representative images from C316-Gal4 > STAAR flies after 12 h of rest (left) or 12 h of overnight SD (right). Presynapses labeled by STAAR (BRP::smFP_V5) are in green. Right panel depicts quantification of BRP::V5 intensity in rested controls (gray) and after overnight SD (green) in PAM labeled by C316-Gal4. Two-way ANOVA finds no significant effect of SD (F1,79 = 0.04082; p = 0.84; n = 40–41 hemispheres/group).

See also Figure S2 for sleep traces from experimental groups shown in (A)–(J) and Figure S3 for pre-synaptic BRP quantification from subsets of KC neurons. Scale bars depict 10 μm; error bars represent SEM for all panels.
Next, we used GRASP to measure synaptic contacts from KCs (MB-LexA) to the APL (GH146-Gal4) and DPM (C316-Gal4) interneurons. KC > APL GRASP signal was increased across the MBs of sleep-deprived flies (Figures 4F and 4G), while KC > DPM GRASP was significantly decreased in the γ, α', and β' lobes following overnight sleep loss (Figures 4H and 4I). These results suggest that KC output synapses are not all modulated uniformly during sleep loss, but rather that each KC > interneuron connection may be regulated independently. Interestingly, individual connection types show relatively consistent changes across compartments and lobes of the KC axons, indicating that subpopulations of KCs may share plasticity rules that influence which connections are altered during prolonged waking.

PAM DANs (R58E02-Gal4; Figures 4D and 4E). Next, we used GRASP to measure synaptic contacts from KCs (MB-LexA) to the PAM DANs (Figure 4D and 4E). These results suggest that KC output synapses are not all modulated uniformly during sleep loss, but rather that each KC > interneuron connection may be regulated independently. Interestingly, individual connection types show relatively consistent changes across compartments and lobes of the KC axons, indicating that subpopulations of KCs may share plasticity rules that influence which connections are altered during prolonged waking.
Figure 5. KC > MBON connections exhibit compartment-specific changes with SD
(A) Representative images of *nsyb* GRASP intensity between presynaptic KCs (MB-LexA) and postsynaptic MBON-α’1 (MB434B-Gal4) in rested controls (left) and in flies subjected to overnight SD (right).
(B) Quantification of relative KC > MBON-α’1 GRASP intensity after SD (orange), normalized to rested controls (gray). Two-tailed t test finds a significant effect of SD (t = 3.411; p = 0.0011; n = 34 hemispheres/group).
(C) Representative images of *nsyb* GRASP intensity between presynaptic KCs (MB-LexA) and postsynaptic MBON-α’1 (MB434B-Gal4) in rested controls (left) and in flies subjected to overnight SD (right).
(D) Quantification of relative KC > MBON-α’1 GRASP intensity after SD (orange), normalized to rested controls (gray). Two-tailed t test finds a significant effect of SD (t = 8.068; p < 0.0001; n = 54–66 hemispheres/group).
(E) Representative images of *nsyb* GRASP intensity between presynaptic KCs (MB-LexA) and postsynaptic MBON-β’2a (R66C08-Gal4) in rested controls (left) and in flies subjected to overnight SD (right).
(F) Quantification of relative KC > MBON-β’2a GRASP intensity in the γ5 compartment after SD (blue), normalized to rested controls (gray). Two-tailed t test finds a significant effect of SD (t = 3.411; p = 0.0011; n = 34 hemispheres/group).
(G) Representative images of *nsyb* GRASP intensity in the γ2 compartment between presynaptic KCs (MB-LexA) and postsynaptic MBON-γ5β’2a (R66C08-Gal4) in rested controls (left) and in flies subjected to overnight SD (right).
(H) Quantification of relative KC > MBON-γ5β’2a GRASP intensity in the γ5 compartment after SD (blue), normalized to rested controls (gray). Two-tailed t test finds a significant effect of SD (t = 8.068; p < 0.0001; n = 54–66 hemispheres/group).
(I) Quantification of relative KC > MBON-γ4 > γ1γ2 GRASP intensity in the γ4 compartment after SD (blue), normalized to rested controls (gray). Two-tailed t test finds no significant effect of SD (t = 0.1928; p = 0.8480; n = 22–26 hemispheres/group).
(J) Representative images of GRASP labeling from presynaptic KCs (MB-LexA) and postsynaptic MBON-γ1pedc (R12G04-Gal4) in rested controls (left) and flies dissected after overnight sleep loss (right).
(K) Representative images of GRASP labeling from presynaptic KCs (MB-LexA) and postsynaptic MBON-γ1pedc (R12G04-Gal4) in rested controls (left) and flies dissected after overnight sleep loss (right).
(L) Quantification of relative KC > MBON-γ1pedc GRASP intensity after SD (orange), normalized to rested controls (gray). Two-tailed t test finds no significant effect of SD (t = 0.1928; p = 0.8480; n = 22–26 hemispheres/group).
(M) Representative images of GRASP labeling from presynaptic KCs (MB-LexA) and postsynaptic MBON-γ1pedc (R12G04-Gal4) in rested controls (left) and flies dissected after overnight sleep loss (right).
(N) Quantification of relative KC > MBON-γ1pedc GRASP intensity after SD (orange), normalized to rested controls (gray). Two-tailed t test finds no significant effect of SD (t = 0.1928; p = 0.8480; n = 22–26 hemispheres/group).

(legend continued on next page)
Memories of associative conditioning are encoded within plastic connections between odor-coding KCs and MBONs that innervate individual MB lobe compartments.\(^3^4\)\(^3^8\) To test the effects of sleep loss on KC > MBON connections, we measured GRASP signal to quantify contacts between KCs (MB-lexA) and MBONs in several compartments. As shown in Figure 5, KC > MBON connections varied across different MB compartments. Sleep-deprived flies (sleep data shown in Figure S5) showed consistently elevated GRASP signal from KCs to MBON-\(\gamma 1\) (Figures 5A and S5B) and from MBONs to MBON-\(\gamma 2\) (Figures 5C and S5D) but decreased GRASP between KCs and MBON-\(\gamma 5\)\(\gamma 2\)a (Figures 5E and S5F) and from KCs and MBON-\(\gamma 2\)a\(\gamma 1\) (Figures 5G and S5H). Other KC to MBON synapses, including those to MBON-\(\gamma 4\) > \(\gamma 1\)\(\gamma 2\) (Figures 5I and S5J), MBON-\(\beta 2\)mp,\(\gamma 5\)\(\beta 2\)a (Figures 5K and S5L), and MBON-\(\gamma 1\)pedc (Figures 5M and S5N) are unchanged after overnight sleep deprivation. While discrete MBON subsets produce different neurotransmitters, the neurotransmitter identity of an MBON does not seem to determine pre-synaptic effects of sleep loss (Figure 5O). Orange groups denote cholinergic MBONs, dark blue shows glutamatergic, and light blue represents GABAergic.\(^2^9\) These results suggest that KC > MBON connections are altered during sleep deprivation in a compartment-by-compartment manner. Further studies will be required to understand the rules that govern the variations in plasticity across compartments, as they are not clearly predicted by the role of an MBON in encoding valence or by the neurotransmitters produced by individual MBONs. Connections from KCs to MBON-\(\gamma 5\)\(\beta 2\) and to MBON-\(\gamma 2\)a\(\gamma 1\), for instance, are both reduced after sleep deprivation, but each expresses a different neurotransmitter and activation of each MBON can result in opposing changes in sleep and behavioral valence.\(^3^4\)\(^3^5\) As shown in our experiments using Brp\(^\text{M}203987\text{G}^{\text{GFST}}\) (Figure 1, recent sleep history can bidirectionally influence active zone protein abundance in the MB lobes. To test whether acute sleep induction drives changes that are opposite to those observed after sleep deprivation, we pharmacologically increased sleep using the GABA-A receptor agonist THIP and imaged two pairs of KC > MBON connections. In both genotypes, 6 h of THIP administration yielded highly significant increases in sleep (Figures 5O and S5P, left panels). While sleep loss increased KC > MBON-\(\alpha 1\) GRASP and decreased KC > MBON-\(\gamma 5\)\(\gamma 2\) GRASP (Figures 5B and S5F), 6 h of sleep-promoting THIP treatment reduced GRASP signal in both KC > MBON connections (Figures 5O and S5P, right panels). Increased sleep, therefore, may not solely drive synaptic changes that are the converse to those that occur during sleep loss.

DISCUSSION

In this study, we use genetic reporters to quantify the effects of sleep loss on pre-synaptic active zone markers and putative synaptic contacts in the Drosophila MB lobes. We find that abundance of Brp, dSyd-1, and Cacophony broadly increase across all MB lobes after overnight sleep deprivation and that acutely increasing sleep for 6 h is sufficient to reduce Brp levels across the \(\alpha\), \(\beta\), \(\gamma\), and \(\beta 1\) lobes. KCs strongly contribute to the increase in Brp across each MB lobe following sleep loss, while pre-synapses of other MB cell types are less sensitive to sleep disruption. Because release of Drosophila neuromodulators likely occurs through a combination of classical neurotransmission and extrasynaptic release,\(^3^1\) our studies do not rule out the possibility that BRP-independent secretion of dopaminergic dense core vesicles might be altered in the MB lobes by sleep loss. The elevated levels of Brp present in KCs of sleep-deprived flies return to control levels within 48 h of *ab libitum* recovery sleep. While associative learning can recover within only a few hours after sleep deprivation,\(^3\) our studies indicate that some synaptic consequences of prolonged waking may persist for at least 24 h of recovery. These findings parallel those from humans and rodents, suggesting that some measures of cognition and neurophysiology recover rapidly after acute sleep loss while others last much longer, even for several days in some cases.\(^9^2\)\(^9^6\) The tractability of *Drosophila* may provide opportunities for future studies to investigate the processes that mediate recovery from sleep loss and to test whether similar trends in plasticity occur in other neuropil regions across the brain.

Interestingly, sleep deprivation does not seem to increase other active zone components; RIM and SYT1 only show localized changes in some MB lobes, and the primarily post-synaptic marker DIG shows no significant changes across the MB after sleep loss. Additionally, we find that the abundance of vesicular proteins Rab3 and NSF decreases across all MB lobes following overnight sleep deprivation. The varying responses between pre-synaptic components may indicate that sleep deprivation may alter the abundance of some active zone constituents along differing time courses or that active zone release machinery may be regulated differently than synaptic vesicle pools. The varied responses of each synaptic reporter that we observe suggests that Brp, dSyd-1, and Cac levels may underlie the consequences of sleep loss on MB functioning, but the precise physiological consequences of these changes on KC neurotransmitter release are unclear. Previous work finds that increasing BRP gene copy number drives changes in other active zone proteins that recapitulate protein levels observed in short sleeping mutants and also increases sleep in a dose-dependent manner.\(^2^1\) It is tempting to speculate that increases in Brp with sleep loss may drive concomitant increases in some core active zone scaffolding components and compensatory decreases in some proteins regulating synaptic vesicle release. Experiments at the *Drosophila* larval NMJ indicate that elevated Brp levels increase synaptic plasticity to the extent that increased Brp reduces KR signal release.

\(^{(\text{N})}\) Relative quantification of KC > MBON-\(\gamma 1\)pedc GRASP intensity in the \(\gamma 1\) compartments of rested (gray) and sleep-deprived (light blue) brains. Two-tailed t test finds no significant effect of SD (\(t = 0.7659\); \(p = 0.4476\); \(n = 22-26\) hemispheres/group).

\(^{(\text{O})}\) Left: sleep totals for KC > MBON-\(\alpha 1\) GRASP flies either fed standard fly media (gray) or 0.1 mg/mL THIP (orange). Right: relative KC > MBON-\(\alpha 1\) GRASP intensity for groups shown in left panel (gray depicts vehicle controls; orange shows 6 h treatment with 0.1 mg/mL THIP). Two-tailed t tests find significant effects of THIP treatment on sleep (\(t = 12.95\); \(p < 0.0001\); \(n = 54-58\) and GRASP abundance (\(t = 3.906\); \(p = 0.0002\); \(n = 44-54\) hemispheres/group).

\(^{(\text{P})}\) Left: 6 h sleep amount for control (gray) and THIP-treated (blue; 0.1 mg/mL THIP) KC > MBON-\(\gamma 5\)\(\gamma 2\)a GRASP flies. Right: relative intensity of KC > MBON-\(\gamma 5\)\(\gamma 2\)a GRASP signal in control (gray) and flies fed THIP for 6 h prior to dissection is shown. Two-tailed t test finds a significant effect of THIP treatment on sleep (\(t = 10.14\); \(p < 0.0001\); \(n = 44-47\)) and on KC > MBON-\(\gamma 5\)\(\gamma 2\)a GRASP intensity (\(t = 5.492\); \(p < 0.0001\); \(n = 46-52\)). See also Figure S5 for sleep traces from experimental groups in (A)–(L). Scale bars depict 10 μm; error bars represent SEM for all panels.
the rate of spontaneous release and enhance facilitation with pairs of stimuli, while other markers of synapse strength, including the amplitudes of evoked and spontaneous junction potentials, remained unchanged.\(^2\) It is unclear whether acute changes in Brp with sleep loss induce the same physiological changes at MB-output synapses, and additional studies will be required to understand how plastic mechanisms that contribute to memory formation might be altered by the pre-synaptic changes described above. Recent work finds that pan-neuronal knockdown of dSyd-1 can reduce sleep and dampen homeostatic rebound, even in flies with elevated BRP.\(^2\) Consistent with the idea that dSyd-1 levels may influence sleep pressure, we observed decreased dSyd-1 abundance in previously sleep-deprived flies after 48 h of recovery.

While the MB contains several different cell types, pre-synapses in the axons of KCs appear to be uniquely plastic during sleep loss. Our use of an activity-dependent fluorescent GRASP reporter of synaptic contacts observed that sleep loss altered synaptic contacts between KCs and distinct post-synaptic partners in different ways.\(^1\) Among these changes, we found that GRASP fluorescence reporting contacts from KCs to PPL1 DANs is strongly decreased after sleep loss, indicating a weakening of the KC > PPL1 DAN contacts. Interestingly, these connections may be vital for recurrent activation within MB compartments during learning and could contribute to prediction error signals.\(^4\) While further studies will be required to examine the contribution of these particular connections to learning deficits after sleep loss, human subjects have been reported to exhibit impaired error prediction and affective evaluation in learning tasks following sleep loss.\(^5\) Because we observed reduced GRASP signal in KC > PPL1 DAN connections, which mediate aversive reinforcement,\(^6\) and not in KC > PAM DAN connections, which influence appetitive reinforcement,\(^7\) it is also possible that sleep loss may not equally degrade the encoding of reinforcement signals across all valences or modalities. Recent findings also suggest that not all forms of memory require sleep for consolidation; appetitive olfactory memories can be consolidated without sleep when flies are deprived of food, and sleep-dependent and independent memory traces in these conditions are stored in separate MB zones.\(^8\) We find that the KC > MBON connections that contribute to sleep-dependent memory (KC > γ2α'1) also show an overall decrease in GRASP signal with sleep loss, while those that are vital for sleep-independent memory (MBON-γ1p1dc) show no GRASP change after sleep deprivation. These compartment-specific variations in the effects of sleep on both memory and synaptic distribution further indicate that local MB zones may follow distinct plasticity rules under physiological stressors, including sleep loss.

Additionally, GRASP signal from KCs to APL is significantly elevated following sleep loss, suggesting a strengthening of KC > APL connections. KCs and APL form a negative feedback circuit, where KCs activate APL and APL inhibits KCs; this feedback inhibition maintains sparseness of odor coding and odor specificity of memories.\(^8\) It is possible that KCs compensate for increased synaptic abundance accumulated during sleep loss by recruiting inhibition from APL. While further experimentation is needed to examine the role of these connections in the regulation of net synaptic strength during sleep loss, sleep deprivation results in increased cortical excitability in humans and rodents,\(^9,10\) and hyperexcitability is often counteracted by increased synaptic inhibition.\(^10,11\) Conversely, sleep loss reduces connectivity between KCs and DPM, a second large interneuron that may facilitate recurrent activity in the MB lobes.\(^12,13\)

Our results also indicate that KC > MBON synaptic contacts exhibit a variety of changes in response to sleep deprivation. The specific KC > MBON connections that show significantly elevated or reduced GRASP signal here are not clearly assorted based on valence encoding, contribution to specific associative memory assays, or influence on sleep/wake regulation.\(^14,15\) Activity in several MB cell types, including γ2α'1 KCs, MBON-γ5β'2, MBON-γ2 α'1, DPM, and PAM DANs regulates sleep.\(^16,17,18\) The observation that KC > MBON-γ5β'2a labeling is reduced with sleep loss complements previous observations of reduced electrical activity in MBON-γ5β'2 following sleep deprivation.\(^19\) Other sleep-promoting MB neurons, however, such as DPM,\(^18\) do not show an overall increase in BRP abundance, suggesting either that other changes in excitability, synaptic drive, or postsynaptic adaptations might drive homeostatic sleep regulation in these cells or that distinct subsets of connections within the populations that we label here might be sleep regulatory. The compartment-to-compartment variance in KC > MBON responses to sleep loss also parallels previous findings that plasticity rules can vary between MBONs during heterosynaptic plasticity.\(^20\) While our GRASP results suggest diverse changes in putative synaptic contacts with sleep loss, the functional effects of these changes require further study. It is important to note that a significant portion of MB synapses are composed of connections between either pairs or groups of KCs.\(^21,22\) The genetic strategies that we have used in this study have prevented reliable visualization and quantification of these connections. As a result, the effect of sleep loss on KC > KC synapses has not been examined here but may comprise a portion of the increase in KC pre-synaptic abundance that we observe in Figure 3. While our studies identify synaptic classes that exhibit altered GRASP labeling across sleep loss, future studies using super resolution imaging and/or physiology could examine the structural and molecular changes that underlie this plasticity. Connections between neurons in the MB may be also influenced by non-neuronal cell types, including astrocytes. Astrocytic contact with KCs can be reduced by sleep loss\(^23\) and astrocytic calcium levels correlate with sleep pressure,\(^24\) which both suggest that astrocytic processes could be positioned to mediate sleep-dependent plasticity in the MB.

The broad conservation of release machinery across active zones within and between cell types has simplified our examination of pre-synaptic plasticity during sleep loss. Assays of both Hebbian and homeostatic plasticity have also identified a variety of post-synaptic adaptations. Interestingly, post-synaptic densities isolated from rodent cortex show significant reorganization of post-synaptic Glur5 receptors, which depends upon the activity of Homer1\(^,15\) and sleep-dependent phosphorylation of CaMKII and GluR1 contribute to consolidation of visual cortex plasticity.\(^25\) Because MBONs exhibit post-synaptic plasticity during other contexts, including the formation of associative memories,\(^37\) sleep deprivation may also alter post-synaptic organization of MBONs or other cell types in the MB. Although the distribution of Dlg is not significantly changed by sleep loss, the rich variety of post-synaptic receptors for acetylcholine,
dopamine, GABA, and other signals in the MB requires development of additional reporters to examine these post-synaptic consequences of insufficient sleep in MB neurons. Additionally, while our data outline changes in pre-synaptic protein abundance and pre-synaptic KC contacts that result from sleep loss, the possibility that these synaptic changes may be accompanied by homeostatic compensation in neuronal excitability or firing patterns remains to be tested. Because sleep-deprived flies can recover the capacity to learn after only a brief nap, homeostatic adjustments in post-synaptic strength and/or excitability may permit MBs to compensate for pre-synaptic changes that appear to persist for at least 24 h after sleep deprivation (Figures 3D–3F). Further, recovery sleep or pharmacological sleep enhancement may not simply reverse the effects of sleep loss (Figures 2B, SO, and SP), and it is unclear how particular subsets of synaptic proteins or connections may be selected for removal during times of elevated sleep.

The consequences of sleep loss on synaptic connectivity are not clearly understood, but previous work has found net changes in synaptic abundance or size across brain regions. We characterize a diverse array of synaptic responses to sleep loss among different cell types within the same circuit. Our findings may suggest that distinct cell types and connections within the MB are governed by heterogeneous plasticity rules during sleep disruption. While previous studies have characterized the synaptic effects of sleep history on individual cell types within plastic circuits, our data provide a more comprehensive understanding of the consequences of sleep loss on MB circuits. While this project outlines the local effects of sleep loss on MB connectivity, it is unclear whether specific neural subsets also drive BRP increases within other neuropil compartments of sleep-deprived brains. Here, we find an overall increase in the abundance of reporters for some, but not all, pre-synaptic proteins. These pre-synaptic changes are not distributed equally across all cell types; they are most pronounced in MB-intrinsic KCs. Further, output connections from KCs to different classes of synaptic partners show varying patterns of plasticity in MB sub-circuits that contribute to encoding odor valence, comprise recurrent feedback loops, or relay reinforcement signals. Our results indicate that sleep loss may degrade MB-dependent memory by altering several different classes of synapses, but future studies will be required to test the specific roles of changes at individual synapse types and the mechanisms by which prolonged waking reorganizes MB connectivity.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Fly Strains and Environment
- **METHOD DETAILS**
 - Behavior
 - Immunohistochemistry and Confocal imaging

QUANTIFICATION AND STATISTICAL ANALYSIS

- Statistics

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cub.2021.05.018.

ACKNOWLEDGMENTS

We thank all members of the Donlea lab for helpful discussions and feedback during this project, especially Dr. Jaison Omoto and Prabhjit Singh for their technical assistance with histology protocols. Fly stocks were generously provided by Drs. Orkun Akin (UCLA), David Krantz (UCLA), and Kate O’Connor Giles (Brown University); the Bloomington Drosophila Stock Center; and the HHMI Janelia Research Campus. This project was supported by an Early Career Development Award from the Sleep Research Society Foundation to J.M.D., a Career Development Award from the Human Frontiers Science Program to J.M.D. (CA00026-2017-C), NIH grant NS105967 to J.M.D., and a Jessamine K. Hilliard UCLA Neurobiology Graduate Student Grant to J.T.W.

AUTHOR CONTRIBUTIONS

Conceptualization, J.T.W. and J.M.D.; methodology, J.T.W. and J.M.D.; investigation, J.T.W.; writing – original draft, J.M.D. and J.T.W.; writing – review & editing, J.T.W. and J.M.D.; funding acquisition, J.M.D.; supervision, J.M.D.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 13, 2020
Revised: March 22, 2021
Accepted: May 11, 2021
Published: June 8, 2021

REFERENCES

1. Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A., and Stickgold, R. (2002). Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211.
2. Ganguly-Fitzgerald, I., Donlea, J., and Shaw, P.J. (2006). Waking experience affects sleep need in Drosophila. Science 313, 1775–1781.
3. Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L., and Shaw, P.J. (2008). D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18, 1110–1117.
4. Graves, L.A., Heller, E.A., Pack, A.I., and Abel, T. (2003). Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn. Mem. 10, 168–176.
5. Krishnan, H.C., Gandour, C.E., Ramos, J.L., Wrinkle, M.C., Sanchez-Pacheco, J.J., and Lyons, L.C. (2016). Acute sleep deprivation blocks short- and long-term operant memory in Aplysia. Sleep (Basel) 39, 2161–2171.
6. McDermott, C.M., LaHoste, G.J., Chen, C., Musto, A., Bazan, N.G., and Magee, J.C. (2003). Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J. Neurosci. 23, 9687–9695.
7. Li, X., Yu, F., and Guo, A. (2009). Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424.
8. Roffwarg, H.P., Muzio, J.N., and Dement, W.C. (1966). Ontogenetic development of the human sleep-dream cycle. Science 152, 604–619.
9. Kaysen, M.S., Yue, Z., and Sehgal, A. (2014). A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 344, 269–274.
10. Shaw, P.J., Cirelli, C., Greenspan, R.J., and Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837.

11. Singh, P., and Donlea, J.M. (2020). Bidirectional regulation of sleep and synapse pruning after neural injury. Curr. Biol. 30, 1063–1076.e3.

12. Stanhope, B.A., Jaggart, J.B., Gratton, M., Brown, E.B., and Keene, A.C. (2020). Sleep regulates glial plasticity and expression of the engulfment receptor Draper following neural injury. Curr. Biol. 30, 1092–1101.e3.

13. Tononi, G., and Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150.

14. Tononi, G., and Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34.

15. Tononi, G., and Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62.

16. Bushey, D., Tononi, G., and Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332, 1576–1581.

17. de Vivo, L., Bellesi, M., Marshall, W., Bushong, E.A., Ellisman, M.H., Tononi, G., and Cirelli, C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510.

18. Spano, G.M., Banningh, S.W., Marshall, W., de Vivo, L., Bellesi, M., Loschky, S.S., Tononi, G., and Cirelli, C. (2019). Sleep deprivation by exposure to novel objects increases synapse density and axon-spine interface in the hippocampal CA1 region of adolescent mice. J. Neurosci. 39, 6613–6625.

19. Gisabella, B., Scammell, T., Bandaru, S.S., and Saper, C.B. (2020). Regulation of hippocampal dendritic spines following sleep deprivation. J. Comp. Neurol. 528, 380–388.

20. Gilestro, G.F., Tononi, G., and Cirelli, C. (2009). Widespread changes in synaptic and cellular homeostasis to memory consolidation and integration. Neuron 61, 454–466.

21. Huang, S., Piao, C., Beuschel, C.B., Götz, T., and Sigrist, S.J. (2020). Presynaptic active zone plasticity encodes sleep need in Drosophila. Curr. Biol. 30, 1077–1091.e5.

22. Dissa, S., Angadi, V., Kirszenblat, L., Suzuki, Y., Donlea, J., Klose, M., Koch, Z., English, D., Wnisky-Sommerer, R., van Swinderen, B., and Shaw, P.J. (2015). Sleep restores behavioral plasticity to Drosophila mutants. Curr. Biol. 25, 1270–1281.

23. Aton, S.J., Seibt, J., Dumoulin, M., Jha, S.K., Steinmetz, N., Coleman, T., Naidoo, N., and Frank, M.G. (2009). Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61, 3101–3106.

24. Erber, J., Matsumura, T., and Menezel, R. (1980). Localization of short-term memory in the brain of the bee, Apis mellifera. Phsiol. Entomol. 5, 343–358.

25. Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., and O’Kane, C.J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107.

26. Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.-T., Dione, H., Abbott, L.F., Axel, R., Tanimoto, H., and Rubin, G.M. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3, e04577.

27. Marini, E.C., Jefferis, G.S.X.E., Komiyama, T., Zhu, H., and Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255.
51. Pittman, J.L., McGill, J.J., Keegan, K.P., and Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756.

52. Sitaraman, D., Aso, Y., Rubin, G.M., and Nitabach, M.N. (2015). Control of sleep by dopaminergic inputs to the Drosophila mushroom body. Front. Neural Circuits 9, 73.

53. Sitaraman, D., Aso, Y., Jin, X., Chen, N., Felix, M., Rubin, G.M., and Nitabach, M.N. (2015). Propagation of homeostatic sleep signals by segregated synaptic microcircuits of the Drosophila mushroom body. Curr. Biol. 25, 2915–2927.

54. Oswald, D., Fouquet, W., Schmidt, M., Wichmann, C., Mertel, S., Depner, H., Christiansen, F., Zube, C., Quentin, C., Körner, J., et al. (2010). A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579.

55. Kittel, R.J., Wichmann, C., Rasse, T.M., Fouquet, W., Schmidt, M., Aso, Y., Jin, X., Chen, N., Felix, M., Rubin, G.M., and Nitabach, M.N. (2015). Control of sleep by dopaminergic inputs to the Drosophila mushroom body. Front. Neural Circuits 9, 73.

56. Pitman, J.L., McGill, J.J., Keegan, K.P., and Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756.

57. Akbergenova, Y., Cunningham, K.L., Zhang, Y.V., Weiss, S., and Hobert, O. (2018). Weinberg, P., Berkseth, M., Zarkower, D., and Hobert, O. (2018). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature 561, 117–121.

58. Matkovic, T., Siebert, M., Knoche, E., Depner, H., Mertel, S., Owald, D., Schmidt, M., Aso, Y., Jin, X., Chen, N., Felix, M., Rubin, G.M., and Nitabach, M.N. (2015). Control of sleep by dopaminergic inputs to the Drosophila mushroom body. Front. Neural Circuits 9, 73.

59. Akbergenova, Y., Cunningham, K.L., Zhang, Y.V., Weiss, S., and Hobert, O. (2018). Weinberg, P., Berkseth, M., Zarkower, D., and Hobert, O. (2018). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature 561, 117–121.

60. Hong, H., Zhao, K., Huang, S., Huang, S., Yao, A., Jiang, Y., Signist, S., Zhao, L., and Zhang, Y.Q. (2020). Structural remodeling of active zones is associated with synaptic homeostasis. J. Neurosci. 40, 2817–2827.

61. Matkovic, T., Siebert, M., Knoche, E., Depner, H., Mertel, S., Owald, D., Schmidt, M., Aso, Y., Jin, X., Chen, N., Felix, M., Rubin, G.M., and Nitabach, M.N. (2015). Control of sleep by dopaminergic inputs to the Drosophila mushroom body. Front. Neural Circuits 9, 73.

62. Thimgan, M.S., Suzuki, Y., Gottschalk, L., and Shaw, P.J. (2010). The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss. PLoS Biol. 8, e1000466.

63. Keene, A.C., Duboué, E.R., McDonald, D.M., Dus, M., Suh, G.S.B., Waddell, S., and Blau, J. (2010). Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr. Biol. 20, 1209–1215.

64. Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., and Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627.

65. Takemura, S.Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., Rivlin, P.K., Hess, H., Zhao, T., Parag, T., et al. (2017). A connectome of a learning and memory center in the adult Drosophila brain. eLife 6, 26297.

66. Feinberg, E.H., Vanhoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., and Bargmann, C.I. (2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363.

67. Macpherson, L.J., Zarahieva, E.E., Kearney, P.J., Alpert, M.H., Lin, T.-Y., Turan, Z., Lee, C.-H., and Gallo, M. (2015). Dynamic labelling of neuronal connections in multiple colours by trans-synaptic fluorescence complementation. Nat. Commun. 6, 10024.

68. Graf, E.R., Valakh, V., Wright, C.M., Wu, C., Liu, Z., Zhang, Y.Q., and DiAntonio, A. (2012). RIM promotes synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 9, e55443.
87. Liu, C., Meng, Z., Wiggins, T.D., Yu, J., Reed, M.L., Guo, F., Zhang, Y., Rosbash, M., and Griffith, L.C. (2019). A serotonin-modulated circuit controls sleep architecture to regulate cognitive function independent of total sleep in Drosophila. Curr. Biol. 29, 3635–3646.e6.

88. Wu, S., Guo, C., Zhao, H., Sun, M., Chen, J., Han, C., Peng, Q., Giao, H., Peng, P., Liu, Y., et al. (2019). Drosulfakin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila. Nat. Commun. 10, 4770.

89. Kim, J., Zhao, T., Petralia, R.S., Yu, Y., Peng, H., Myers, E., and Magee, J.C. (2011). mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102.

90. Choi, J.-H., Sim, S.-E., Kim, J.-I., Choi, D.I., Oh, J., Ye, S., Lee, J., Kim, T., Ko, H.-G., Lim, C.-S., and Kang, B.K. (2018). Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435.

91. Grygoruk, A., Chen, A., Martin, C.A., Lawal, H.O., Fei, H., Gutierrez, G., Biedermann, T., Najibi, R., Hadi, R., Chouhan, N.S., et al. (2014). The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors. J. Neurosci. 34, 6924–6937.

92. Salekin, J.M., Goldstein-Piekarski, A.N., Greer, S.M., Stark, S., Stark, C.E., and Walker, M.P. (2016). Human hippocampal structure: a novel biomarker predicting mnemonic vulnerability to, and recovery from, sleep deprivation. J. Neurosci. 36, 2355–2363.

93. Xu, X., Atallah, B.V., and Scanziani, M. (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 517, 596–600.

94. Peng, Y.-R., Zeng, S.-Y., Song, H.-L., Li, M.-Y., Yamada, M.K., and Yu, X. (2010). Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling. J. Neurosci. 30, 16220–16231.

95. Krashes, M.J., Keene, A.C., Leung, B., Armstrong, J.D., and Waddell, S. (2007). Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53, 103–115.

96. Biedermann, T., Najibi, R., Hadi, R., Chouhan, A.K., et al. (2014). The availability of food determines the need for sleep in memory consolidation. Nature 589, 582–585.

97. Vyazovskiy, V.V., Olcese, U., Lazimy, Y.M., Faraguna, U., Esser, S.K., Williams, J.C., Cirelli, C., and Tononi, G. (2009). Cortical firing and sleep homeostasis. Neuron 63, 865–878.

98. Chouhan, N.S., Griffith, L.C., Haynes, P., and Sehgal, A. (2021). Sleep pressure regulates mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53, 103–115.

99. Shaw, P.J., Tononi, G., Greenspan, R.J., and Robinson, D.F. (2002). Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 596–600.

100. Chouhan, N.S., Griffith, L.C., Haynes, P., and Sehgal, A. (2021). Cortical firing and sleep homeostasis. Neuron 63, 865–878.

101. Donelson, N.C., Kim, E.Z., Slawson, J.B., Vecsey, C.G., Huber, R., and Griffith, L.C. (2012). High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7, e37250.

102. Vecsey, C.G., Baillie, G.S., Jaganath, D., Havekes, R., Daniels, A., Wimmer, M., Huang, T., Brown, K.M., Li, X.-Y., Descalzi, G., et al. (2009). Sleep deprivation impairs cAMP signalling in the hippocampus. Nat. Methods 6, 96–102.

103. Schell, I.L., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.Y., Hayworth, K.J., Huang, G.B., Shinomiya, K., Maltin-Storm, J., Berg, S., et al. (2020). A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443.

104. Blum, I.D., Keles, M.F., Baz, E.S., Han, E., Park, K., Luu, S., Issa, H., Brown, M., Ho, M.C.W., Tabuchi, M., et al. (2021). Astroglial calcium signaling encodes sleep need in Drosophila. Curr. Biol. 31, 150–162.e7.

105. Diering, G.H., Nirujogi, R.S., Roth, R.H., Worley, P.F., Pandey, A., and Huganir, R.L. (2017). Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515.

106. Shaw, P.J., Tononi, G., Greenspan, R.J., and Robinson, D.F. (2002). Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291.

107. Donelson, N.C., Kim, E.Z., Slawson, J.B., Vecsey, C.G., Huber, R., and Griffith, L.C. (2012). High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7, e37250.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Chicken anti-GFP	ThermoFisher	A10262; RRID: AB_2534023
Anti-chicken Alexa488	ThermoFisher	A11039; RRID: AB_142924
Mouse anti-V5 DyLight550	BioRad	MCA1360GA; RRID: AB_567249
Mouse anti-GFP	Sigma	G6539-100UL; RRID: AB_259941
Anti-mouse Alexa488	ThermoFisher	A11001; RRID: AB_2534069
Chemicals, peptides, and recombinant proteins		
THIP hydrochloride (4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride)	Sigma-Aldrich	T101-100MG
Phosphate buffered saline tablets	Sigma-Aldrich	P4417-100TAB
Triton X-100	Sigma-Aldrich	X100-100ML
VECTASHIELD Mounting Medium	Vector Laboratories	H-1000
Glyoxal 3% Fixative	Electron Microscopy Sciences	16525
Paraformaldehyde 16% Solution	Electron Microscopy Sciences	15710-S
Experimental models: Organisms/strains		
Canton-S	Gero Miesenböck (University of Oxford)	N/A
bnpM02987-GFSTF	Bloomington Drosophila Stock Center	RRID: BDSC_59292
R23E10-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_49032
UAS-TrpAT (II)	Bloomington Drosophila Stock Center	RRID: BDSC_26263
dSyd1M05387-GFSTF	Bloomington Drosophila Stock Center	RRID: BDSC_59414
cacophonyKGP	Kate O’Connor-Giles (Brown University)	N/A
RimM002197-GFSTF	Bloomington Drosophila Stock Center	RRID: BDSC_60200
Syt1M03470-GFSTF	Bloomington Drosophila Stock Center	RRID: BDSC_59788
Rab3Cherry	Bloomington Drosophila Stock Center	RRID: BDSC_81509
nSybGFP	Troy Littleton (MIT)	N/A
dglM06533-GFSTF	Bloomington Drosophila Stock Center	RRID: BDSC_59417
STaR effector: w'; 20xUAS-RSR.PEST, 79C235-RSRT-STOP-RSRT-smGFP_V5-2A-LexA/cyo	Orkun Akin (UCLA)	N/A
R13F02-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_48571
OK107-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_854
TH-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_8848
R58E02-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_41347
GH146-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_30026
C316-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_30830
MB5948 split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68255
MB1858 split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68267
MB371B split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68383
MB463B split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68370
MB607B split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68256
GRASP Effector: w'; P[w]+mC] = lexAop-nSyb-spGFP, p[w]+mC] = UAS-CD4-spGFP, p[w]+mC] = MKRS/TM6B	Bloomington Drosophila Stock Center	RRID: BDSC_64315
MB-LexA	Scott Waddell (University of Oxford)	N/A
MB5438 split-Gal4	HHMI Janelia Research Campus	RRID: BDSC_68335
R71D08-Gal4	Bloomington Drosophila Stock Center	RRID: BDSC_61645

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeffrey Donlea (jdonlea@ucla.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The published article includes all datasets generated during this study. This study did not generate any novel code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly Strains and Environment
Fly stocks were fed standard cornmeal media (per 1L H2O: 12 g agar, 29 g Red Star yeast, 71 g cornmeal, 92 g molasses, 16mL methyl paraben 10% in EtOH, 10mL propionic acid 50% in H2O) at 25°C with 60% relative humidity and entrained to a daily 12hr light, 12hr dark schedule.

All flies were reared in environmentally-controlled chambers at 25°C and 60% relative humidity on a 12hr light:12hr dark schedule.

BrpMI2978-GFSTF, dSyd-1MI05387-GFSTF, RimMI03470-GFSTF, Syt1MI02197-GFSTF, OK107-Gal4, R13F02-Gal4, R19B03-Gal4, R58E02-Gal4, GH146-Gal4, C316-Gal4, R12G04-Gal4, R25D01-Gal4, R66C08-Gal4, R71D08-Gal4, R23E10-Gal4, UAS-TrpA1, nsyb GRASP effectors (w*; P{w +mC = lexAop-nsyb-spGFP1-10}2, P{w +mC = UAS-CD4-spGFP 11}2; MKRS/TM6B) and rab3mCherry were obtained from the Bloomington Drosophila Stock Center, TH-Gal4 was provided by Dr. David Krantz (UCLA), STaR effector flies (w-; 20xUAS-RSR.PEST, 79C23S-RSRT-STOP-RSRT-smGFP_V5-2A-LexA/cyo) were provided by Dr. Orkun Akin (UCLA), and cacsfGFP was a gift from Dr. Kate O’Connor-Giles (Brown University). All MB split-Gal4 fly stocks (MB011B, MB185B, MB371B, MB434B, MB463B, MB543B, MB594B, and MB607B) were generated by the lab of Dr. Gerald Rubin and generously provided by the HHMI Janelia Research Campus (https://splitGal4.janelia.org/cgi-bin/splitGal4.cgi).

METHOD DETAILS

Behavior
Sleep was measured as previously described. 3-7 day old adult female flies were housed individually in 65mm borosilicate glass tubes (5mm diameter) containing fly food coated with paraffin wax on one end and a foam plug in the other. Locomotor activity was measured using Drosophila Activity Monitors from Trikinetics (Waltham MA, USA) and sleep was analyzed using Visual Basic macros in Microsoft Excel or SCAMP analysis scripts in MATLAB. Baseline sleep was monitored in all groups, and sleep deprivation was performed using mechanical stimulation via the SNAP method. For starvation experiments, flies either remained on standard fly media for control treatment or were transferred into fresh tubes containing 2% agar in H2O at ZT0, 24h prior to dissection.

Immunohistochemistry and Confocal imaging
Flies were anesthetized on ice, then brains were dissected in PBS and fixed in either 4% paraformaldehyde in PBS for 30 minutes or in 3% glyoxal for 25 minutes (all brains from an individual experiment were treated identically). Following fixation, brains were washed in PBS and PBTX (PBS + 0.3% Triton-x100) and incubated in 3% Normal Goat Serum in PBTX for one hour. For GFP and mCherry
immunostaining, brains were incubated in primary antibody overnight followed by secondary antibody for roughly 24 hours. Immunostaining for V5 used a 48-hour incubation period in mouse anti-V5 conjugated with DyLight550 (Bio-Rad). After antibody incubation, brains were washed in PBS and mounted on slides using Vectashield fluorescence mounting medium from Electron Microscopy Services (Burlingame CA, USA). All specimens were imaged on a Zeiss 880 laser scanning confocal microscope using a 40x water immersion objective. Matching imaging settings were used for each brain within individual experiments.

Primary antibodies used: chicken anti-GFP at 1:1000 (Molecular Probes), rabbit anti-DsRed at 1:1000 (Clontech), mouse anti-GFP at 1:100 (Sigma), mouse anti-V5 conjugated with DyLight550 at 1:400 (Bio-Rad).

Secondary antibodies used: goat anti-chicken Alexa 488, goat anti-rabbit Alexa 546, goat anti-mouse Alexa 488 (Molecular Probes). All secondary antibodies were used at a 1:1000 dilution.

Quantification of mushroom body fluorescent signal intensity used an average intensity projection over 4 z-slices of the lobe of interest, followed by manual outlining of the labeled lobe to measure mean GFP or anti-V5 intensity in Fiji.110

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics

Statistical comparisons were made using t-Tests or One- or Two-Way ANOVAs as appropriate; figure legends describe the statistical tests used for each panel. Where needed, post hoc pairwise analysis measured the effect of sleep manipulations on each MB lobe using Sidak’s multiple comparisons tests. All statistical comparisons were conducted using GraphPad Prism 8 (San Diego CA, USA). Sample sizes for each experiment are depicted in figure panel or in the appropriate figure legend. All group averages shown in data panels depict mean ± SEM.