THE CONDITIONAL CONVERGENCE OF THE DIRICHLET SERIES OF AN L-FUNCTION

M. O. RUBINSTEIN

PURE MATHEMATICS
UNIVERSITY OF WATERLOO
200 UNIVERSITY AVE W
WATERLOO, ON, CANADA
N2L 3G1

ABSTRACT. The Dirichlet divisor problem is used as a model to give a conjecture concerning the conditional convergence of the Dirichlet series of an L-function.

1. Introduction

Let

$$L(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s},$$

be a Dirichlet series and let $\Re s = \sigma$. A classical summation by parts gives

$$\sum_{n \leq X} \frac{b(n)}{n^s} = \frac{1}{X^s} \sum_{n \leq X} b(n) + s \int_{1}^{X} \sum_{n \leq x} b(n) \frac{dx}{x^{s+1}}.$$ \hfill (1.2)

Say that

$$\sum_{n \leq X} b(n) = O(X^{\sigma_0})$$

for some $\sigma_0 \in \mathbb{R}$. Then, for $\sigma > \sigma_0$, letting $X \to \infty$, (1.2) converges and becomes

$$\sum_{n=1}^{\infty} \frac{b(n)}{n^s} = s \int_{1}^{\infty} \sum_{n \leq x} b(n) \frac{dx}{x^{s+1}}.$$ \hfill (1.4)

Subtracting (1.2) from (1.4) and using (1.3) gives a rate of convergence:

$$\sum_{n > X} \frac{b(n)}{n^s} = -\frac{1}{X^s} \sum_{n \leq X} b(n) + s \int_{X}^{\infty} \sum_{n \leq x} b(n) \frac{dx}{x^{s+1}}$$

$$= O_s(X^{\sigma_0 - \sigma}).$$ \hfill (1.5)

It is therefore natural to ask, for a given $L(s)$, how small can we take σ_0, i.e. in what half-plane does the Dirichlet series for $L(s)$ converge.

1991 Mathematics Subject Classification. Primary L-functions.

Key words and phrases. L-functions, Dirichlet series, divisor problem.
In the case of the Riemann zeta function or Dirichlet L-functions, the answer is immediate. For the Riemann zeta function, $b(n) = 1$, and so $\sigma_0 = 1$ is the best possible.

However, a well known trick allows one to take $\sigma_0 = 0$ and evaluate $\zeta(s)$ in the half plane $\sigma > 0$ by writing
\[
\zeta(s) \left(1 - \frac{2}{2^s}\right) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \ldots
\] (1.6)
so that $b(n) = (-1)^{n-1}$ and $\sum_{n \leq X} b(n) = O(1)$.

For a non-trivial Dirichlet character, $\chi(n)$, of modulus q, we can take $\sigma_0 = 0$ for the Dirichlet series of $L(s, \chi)$ because $\sum_{n \leq X} \chi(n) = O(q(1))$.

For higher degree L-functions, however, the problem of obtaining a bound for the truncated sum of the Dirichlet coefficients is very difficult, and the best known bounds seem to be far from the truth. For example, let
\[
f(z) = \sum_{1}^{\infty} a(n)q^n, \quad q = \exp(2\pi iz)
\] (1.7)
be a cusp form of weight l and level N, and
\[
L(f)(s) = \sum_{1}^{\infty} \frac{a(n)}{n^{(l-1)/2}} \frac{1}{n^s}
\] (1.8)
be its corresponding L-function. Each $a(n)$ is normalized by $n^{(l-1)/2}$ so that the critical line is $\Re s = 1/2$. Hecke [H] proved that
\[
\sum_{n \leq X} \frac{a(n)}{n^{(l-1)/2}} = O_f(X^{1/2})
\] (1.9)
giving $\sigma_0 = 1/2$. This was improved to $\sigma_0 = 11/24 + \epsilon$ by Walfisz [W], and when combined with the Ramanujan conjecture proved by Deligne [D] one can get $\sigma_0 = 1/3 + \epsilon$.

However, this seems to be far from the truth. To see what might be a reasonable value for σ_0 we consider $\zeta(s)^k$, k a positive integer, which is, in some sense, the simplest degree k L-function. However, this is not a typical L-function in that its Dirichlet coefficients are all positive and no cancellation occurs when they are summed. This differs from the behaviour of entire L-function where one expects $\sum_{n \leq X} b(n)$ to cancel. Once one removes the contribution from the order k pole of $\zeta(s)^k$, we conjecture that the k-divisor problem provides a good model for entire L-functions of degree k.

Let $d_k(n)$ be the Dirichlet coefficients of
\[
\zeta(s)^k = \sum_{1}^{\infty} \frac{d_k(n)}{n^s},
\] (1.10)
and define
\[
D_k(X) = \sum_{n \leq X} d_k(n).
\] (1.11)

The Dirichlet coefficient $d_k(n)$ is equal to the number of ways of writing n as a product of k factors.
Assume now that, in (1.2), \(b(n) = O(n^\epsilon) \). Perron’s formula \([M][pg 67]\) states, that:
\[
\sum_{n<X} b(n) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} L(s) \frac{X^s}{s} ds + O\left(\frac{X^{c+\epsilon}}{T} \right),
\] (1.12)
where \(c > 1 \). In the case of \(L(s) = \zeta(s)^k \), one proceeds by shifting the line integral to the left and estimating the integral along the four sides of the resulting rectangle. This gives
\[
D_k(X) = X P_k(\log X) + \Delta_k(X)
\] (1.13)
with \(P_k \) being a polynomial of degree \(k-1 \) coming from the residue of the \(k \)-th order pole at \(s = 1 \), and \(\Delta_k(X) \) denoting the remainder term.

The \(k \) divisor problem states that the true order of magnitude for \(\Delta_k(X) \) is:
\[
\Delta_k(X) = O\left(X^{(k-1)/2k+\epsilon} \right).
\] (1.14)
When \(k = 2 \), the traditional Dirichlet divisor problem is
\[
D_2(X) = X \log X + (2\gamma - 1)X + \Delta_2(X),
\] (1.15)
with a conjectured remainder
\[
\Delta_2(X) = O\left(X^{1/4+\epsilon} \right).
\] (1.16)

The estimate (1.14) for the remainder term \(\Delta_k(X) \) is based on expected cancelation in Voronoi-type formulas for \(\Delta_k(X) \) (such as (12.4.4) and (12.4.6) described in \([T]\)), and also on estimates for the mean square of \(\Delta_k \). For example, it is known for \(k = 2, 3 \) \([C]\) \([To]\) and conjectured for \(k \geq 4 \), that
\[
\frac{1}{X} \int_0^X \Delta_k^2(y) dy \sim c_k X^{(k-1)/k}
\] (1.17)
where \(c_k > 0 \) is constant. For \(k = 4 \), Heath-Brown obtained a slightly weaker upper bound, \(O(X^{3/4+\epsilon}) \) rather than the asymptotic \([HB]\). This asymptotic is known to be equivalent to the Lindelöf hypothesis. For a discussion on the Dirichlet divisor problem, see Titchmarsh \([T]\)[Chapters XII,XIII].

By analogy with the \(k \) divisor problem, it seems reasonable to conjecture:

Conjecture 1.1. Let \(L(s) = \sum b(n)/n^s \) be an entire \(L \)-function of degree \(k \), normalized so the critical line is through \(\Re s = 1/2 \). Then
\[
\sum_{n \leq X} b(n) = O\left(X^{(k-1)/2k+\epsilon} \right).
\] (1.18)

More generally, let \(L(s) \) be meromorphic with its only pole being at \(s = 1 \) of order \(r \). Then
\[
\sum_{n \leq X} b(n) = XP_L(\log X) + O\left(X^{(k-1)/2k+\epsilon} \right)
\] (1.19)
where \(P_L \) is a polynomial of degree \(r - 1 \).

This conjecture has been stated in various specific cases \([IMT][F]\), but the author could not find a reference that mentions this conjecture for a general \(L \)-function.

Notice that \((k-1)/2k < 1/2 \), hence, if this conjecture is true, then the Dirichlet series of an entire \(L \)-function can be used to evaluate it at any \(s \in \mathbb{C} \), by summing the terms for \(\sigma \geq 1/2 \), and by applying the functional equation for \(\sigma < 1/2 \).
To mention just two examples, the Dirichlet series of a cusp form, $L_f(s)$ in (1.8), is expected to converge for $\sigma > 1/4$, and the Dirichlet series of its symmetric square L-function, which has degree 3, should converge for $\sigma > 1/3$.

The rate of convergence, however, makes this not very practical for smaller values of σ. For instance, when $k = 3$, summing 10^6 terms of the Dirichlet series gives, using (1.5), less than four decimal places accuracy at $s = 1$, while at $s = 1 + 100i$ one expects about two digits accuracy. To get 16 digits at $s = 1$ would be impossible from a practical point of view, requiring roughly 10^{24} terms of the Dirichlet series.

Nonetheless, it is interesting to know, in principle and also as a way to double check more sophisticated algorithms for computing L-functions, that the Dirichlet series of an entire L-function does converge up to and slightly beyond its critical line.

Acknowledgment. I would like to thank Aleksandar Ivić for comments on this paper. This work is supported by an NSERC Discovery grant and also by NSF FRG grant DMS-0757627.

References

C. H. Cramer, Über zwei Sätze von Herrn G.H. Hardy, Math. Zeit., 15 (1922), 201–210.
D. P. Deligne, La conjecture de Weil, I, II, Publ. Math. IHES 48 (1974), 273–308, 52 (1981), 313–428.
F. O.M. Fomenko, Mean value theorems for automorphic L-functions, St. Petersburg Math. J., 19 (2008), 853–866.
HB. D. R. Heath-Brown, Mean values of the zeta function and divisor problems, Recent progress in analytic number theory, Vol I, Academic Press, London, 1981, 115–119.
E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199–224.
IMT. A. Ivić, K. Matsumoto, and Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Proc, Camb. Phil. Soc, 127 (1999), 117–131.
M. R. Murty, Problems in analytic number theory, Springer, New York, 2008.
T. Titchmarsh, E. C. The Theory of the Riemann Zeta-Function, second edition, Revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986.
To. K.C. Tong, On divisor problems III, Acta. Math. Sinica, 6 (1956), 515–541.
W. A. Walfisz, Über die Koeffizientensummen einiger Modulformen, Math. Ann. 108 (1933), 75–90.