A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space

Yunyan Yang, Xiaobao Zhu
Department of Mathematics, Renmin University of China, Beijing 100872, P. R. China

Abstract
In this note, we give a new proof of subcritical Trudinger-Moser inequality on \mathbb{R}^n. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.

Key words: Trudinger-Moser inequality, Adams inequality
2000 MSC: 46E30

1. Introduction
It was proved by Cao [4], Panda [9] and do´O [5] that

Theorem A Let $\alpha_n = n\omega_{n-1}^{1/n}$, where ω_{n-1} is the measure of the unit sphere in \mathbb{R}^n. Then for any $\alpha < \alpha_n$ there holds

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \|u\|_{W^{1,n}} \leq 1} \int_{\mathbb{R}^n} \left(e^{\alpha |u|^n} - \sum_{k=0}^{n-2} \frac{\alpha^k |u|^k}{k!} \right) dx < \infty. \quad (1.1)$$

This result has various extensions, among which we mention Adachi and Tanaka [1], Ruf [11], Li-Ruf [7], Adimurthi-Yang [3]. To the authors’ knowledge, all the existing proofs of such an inequality are based on rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(\mathbb{R}^n)$. The purpose of this short note is to provide a new method to reprove Theorem A. Namely, we use a technique of the analogy of unity decomposition. More precisely, for any $u \in W^{1,n}(\mathbb{R}^n)$, we first take a cut-off function $\phi_i \in C^\infty_0(B_{R}(x_i))$ such that $0 \leq \phi_i \leq 1$ on $B_{R}(x_i)$, $\phi_i \equiv 1$ on $B_{R/2}(x_i)$. Then, using the usual Trudinger-Moser inequality [8, 10, 13] for bounded domain, we prove a key estimate

$$\int_{\mathbb{R}^n} \left(e^{\alpha |\phi_i u|^n} - \sum_{k=0}^{n-2} \frac{\alpha^k |\phi_i u|^k}{k!} \right) dx \leq \int_{\mathbb{R}^n} |\nabla (\phi_i u)|^n dx \quad (1.2)$$

Email addresses: yunyanyang@ruc.edu.cn (Yunyan Yang), zhuxiaobao@ruc.edu.cn (Xiaobao Zhu)

Preprint submitted to *** May 3, 2014
under the condition that

$$\int_{\mathbb{R}^n} |\nabla (\phi_i u)|^p dx \leq 1.$$

The power of (1.2) is evident. It permits us to approximate u by $\sum \phi_i u$, where every ϕ_i is supported in $B_R(x_i)$, $\mathbb{R}^n = \cup_{i=1}^\infty B_{R/2}(x_i)$, and any fixed $x \in \mathbb{R}^n$ belongs to at most $c(n)$ balls $B_R(x_i)$ for some universal constant $c(n)$. If we further take ϕ_i such that $|\nabla \phi_i| \leq 4/R$. Note that for any $\epsilon > 0$ there exists a constant $C(\epsilon)$ such that

$$\int_{\mathbb{R}^n} |\nabla (\phi_i u)|^p dx \leq (1 + \epsilon) \int_{\mathbb{R}^n} |\nabla u|^p dx + \frac{C(\epsilon)}{R^n} \int_{\mathbb{R}^n} |u|^n dx.$$

Selecting $\epsilon > 0$ sufficiently small and $R > 0$ sufficiently large, we get the desired result.

Similar idea was used by the first named author to deal with similar problems on complete Riemannian manifolds [14] or the entire Heisenberg group [16]. Note that due to the complicated geometric structure, we have not obtained Theorem A on manifolds, but a weaker result. Namely

Theorem B Let (M, g) be a complete noncompact Riemannian n-manifold. Suppose that its Ricci curvature has lower bound, namely $\text{Rc}_{(M, g)} \geq Kg$ for some constant $K \in \mathbb{R}$, and its injectivity radius is strictly positive, namely $\text{inj}(M, g) \geq i_0$ for some constant $i_0 > 0$. Then we have

(i) for any $0 \leq \alpha < \alpha_0$ there exists positive constants τ and β depending only on n, α, K and i_0 such that

$$\sup_{u \in W^{1, n}(M), ||u||_1 \leq 1} \int_M \left(e^{\|u\|^\alpha} - \sum_{k=0}^{n-2} \frac{\alpha^k ||u||^\alpha}{k!} \right) dv \leq \beta,$$

(1.3)

where

$$||u||_{1, \tau} = \left(\int_M |\nabla u|^p dv \right)^{1/p} + \tau \left(\int_M |u|^n dv \right)^{1/n}.$$

(1.4)

As a consequence, $W^{1, n}(M)$ is embedded in $L^q(M)$ continuously for all $q \geq n$;

(ii) for any $\alpha > \alpha_0$ and any $\tau > 0$, the supremum in (1.3) is infinite;

(iii) for any $u \in W^{1, n}(M)$ and any $\alpha > 0$, the integrals in (1.3) are still finite.

We say more words about this method. For Sobolev inequalities on complete noncompact Riemannian manifolds, unity decomposition was employed by Hebey et al. [6]. In the case of Trudinger-Moser inequality, it is not evidently applicable. We are lucky to find its analogy ([14], Lemma 4.1).

2. Preliminary lemmas

We first give a local estimate concerning the Trudinger-Moser functional. Precisely we have

Lemma 1 For any $x_0 \in \mathbb{R}^n$ and any $u \in W^{1, n}_0(B_R(x_0))$, $\int_{B_R(x_0)} |\nabla u|^p dx \leq 1$, we have

$$\int_{B_R(x_0)} \left(e^{\|u\|^\alpha} - \sum_{k=0}^{n-2} \frac{\alpha^k ||u||^\alpha}{k!} \right) dx \leq C(n) R^n \int_{B_R(x_0)} |\nabla u|^p dx,$$

(2.1)
where \(C(n) \) is a constant depending only on \(n \).

Proof. Essentially this is the same as ([14], Lemma 4.1). For reader’s convenience we give the details here. It is well known \([8,10,13]\) that

\[
\sup_{u \in W^{1,m}_0(B(x_0)), \int_{B(x_0)} |\nabla u|^m dx \leq 1} \int_{B(x_0)} e^{a_0|u|^{m-1}} dx \leq C(n)R^n. \tag{2.2}
\]

Letting \(\bar{u} = \frac{u}{\|u\|_{L^m(B(x_0))}} \) for any \(u \in W^{1,m}_0(B(x_0)) \setminus \{0\} \), we have

\[
\int_{B(x_0)} \left(e^{a_0|\bar{u}|^{m-1}} - \sum_{k=0}^{n-2} \frac{a_k^k|\bar{u}|^{m-1}}{k!} \right) dx \geq \frac{1}{\|\nabla \bar{u}\|_{L^m(B(x_0))}} \int_{B(x_0)} \sum_{k=n-1}^{\infty} \frac{a_k^k|\bar{u}|^{m-1}}{k!} dx
\]

\[
= \frac{1}{\|\nabla \bar{u}\|_{L^m(B(x_0))}} \int_{B(x_0)} \left(e^{a_0|\bar{u}|^{m-1}} - \sum_{k=0}^{n-2} \frac{a_k^k|\bar{u}|^{m-1}}{k!} \right) dx. \tag{2.3}
\]

Combining (2.2) and (2.3), we get the desired result. \(\square \)

Also we need a covering lemma of \(\mathbb{R}^n \), see for example ([6], Lemma 1.6).

Lemma 2 For any \(R > 0 \), there exists a sequence \(\{x_i\}_{i=1}^{\infty} \subset \mathbb{R}^n \) such that

(i) \(\bigcup_{i=1}^{\infty} B_{R/2}(x_i) = \mathbb{R}^n \);

(ii) \(\forall i \neq j, B_{R/4}(x_i) \cap B_{R/4}(x_j) = \emptyset \);

(iii) \(\forall x \in \mathbb{R}^n, x \text{ belongs to at most } N \text{ balls } B_{R}(x_i) \text{ for some integer } N. \)

3. Proof of Theorem A

We shall obtain a global inequality (3.1) by gluing local estimates (2.1).

Proof of Theorem A. Let \(R > 0 \) to be determined later. Let \(\phi_i \) be the cut-off function satisfies the following conditions: (i) \(\phi_i \in C_0^\infty(B_R(x_i)) \); (ii) \(0 \leq \phi_i \leq 1 \) on \(B_R(x_i) \) and \(\phi_i \equiv 1 \) on \(B_{R/2}(x_i) \); (iii) \(|\nabla \phi_i(x)| \leq 4/R \). For \(u \in W^{1,m}(\mathbb{R}^n) \) satisfying

\[
\int_{\mathbb{R}^n} (|\nabla u|^m + |u|^m) dx \leq 1, \tag{3.1}
\]

we have \(\phi_i u \in W^{1,m}_0(B_R(x_i)) \), using Cauchy inequality with \(\epsilon \) term we obtain

\[
\int_{B_R(x_i)} |\nabla (\phi_i u)|^m dx \leq (1+\epsilon) \int_{B_R(x_i)} \phi_i^m |\nabla u|^m dx + C(\epsilon) \int_{B_R(x_i)} |\nabla \phi_i|^m |u|^m dx
\]

\[
\leq (1+\epsilon) \int_{B_R(x_i)} |\nabla u|^m dx + \frac{C(\epsilon)}{R^n} \int_{B_R(x_i)} |u|^m dx
\]

\[
\leq (1+\epsilon) \int_{B_R(x_i)} (|\nabla u|^m + |u|^m) dx, \tag{3.2}
\]
where in the last inequality we choose a sufficiently large \(R \) to make sure \(\frac{C(n)}{R^{n}} \leq (1 + \epsilon) \). Let \(\alpha_{\epsilon} = \frac{\alpha}{(1 + \epsilon)^{n-1}} \) and \(\phi_{\epsilon}u = \phi_{\epsilon} \). Noting that \(\phi_{\epsilon}u \in W^{1,1}_{0}(B_{R}(x_{i})) \), we have by (3.2) and Lemma 1

\[
\int_{B_{R}(x_{i})} \left(e^{\alpha_{\epsilon}|u|_{R}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|u|_{R}^{-k}}{k!} \right) \, dx \leq \int_{B_{R}(x_{i})} \left(e^{\alpha_{\epsilon}|u|_{R}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|\phi_{\epsilon}u|_{R}^{-k}}{k!} \right) \, dx
\]

\[
= \int_{B_{R}(x_{i})} \left(e^{\alpha_{\epsilon}|u|_{R}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|\phi_{\epsilon}u|_{R}^{-k}}{k!} \right) \, dx
\]

\[
\leq C(n)R^{n} \int_{B_{R}(x_{i})} |\nabla (\phi_{\epsilon}u)|^{n} \, dx
\]

\[
\leq C(n)R^{n} \int_{B_{R}(x_{i})} (|\nabla u|^{n} + |u|^{n}) \, dx. \tag{3.3}
\]

By Lemma 2 and (3.3), we have

\[
\int_{\mathbb{R}^{n}} \left(e^{\alpha_{\epsilon}|u|_{\mathbb{R}^{n}}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|u|_{\mathbb{R}^{n}}^{-k}}{k!} \right) \, dx \leq \int_{\bigcup_{i=1}^{N} B_{R}(x_{i})} \left(e^{\alpha_{\epsilon}|u|_{R}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|\phi_{\epsilon}u|_{R}^{-k}}{k!} \right) \, dx
\]

\[
\leq \sum_{i=1}^{N} \int_{B_{R}(x_{i})} \left(e^{\alpha_{\epsilon}|u|_{R}^{-n}} - \sum_{k=0}^{n-2} \frac{\alpha_{\epsilon}^{k}|\phi_{\epsilon}u|_{R}^{-k}}{k!} \right) \, dx
\]

\[
\leq \sum_{i=1}^{N} C(n)R^{n} \int_{B_{R}(x_{i})} (|\nabla u|^{n} + |u|^{n}) \, dx
\]

\[
\leq C(n)R^{n}N \int_{\mathbb{R}^{n}} (|\nabla u|^{n} + |u|^{n}) \, dx
\]

\[
\leq C(n)R^{n}N. \tag{3.4}
\]

For any \(\alpha < \alpha_{\epsilon} \), we can choose \(\epsilon > 0 \) sufficiently small such that \(\alpha < \alpha_{\epsilon} \). This ends the proof of Theorem A.

\[\square\]

4. Concluding remarks

Using the same idea to prove Theorem A, we can also prove the subcritical Adams inequality in \(\mathbb{R}^{n} \) \([2,12,15]\), which strengthen ([14], Theorem 2.6). Since the proof is completely analogous to our proof of Theorem A, we leave it to the reader.

Acknowledgement. This work is supported by the NSFC 11171347.

References

[1] S. Adachi, K. Tanaka, Trudinger type inequalities in \(\mathbb{R}^{N} \) and their best exponents, Proc. Amer. Math. Soc. 128 (2000) 2051-2057.
[2] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math. 128 (1988) 385-398.
[3] Adimurthi, Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in \(\mathbb{R}^{N} \) and its applications, Internat. Mathematics Research Notices 13 (2010) 2394-2426.
[4] D. Cao, Nontrivial solution of semilinear elliptic equations with critical exponent in \(\mathbb{R}^{2} \), Commun. Partial Differential Equations 17 (1992) 407-435.
[5] J. M. do Ó, N-Laplacian equations in \mathbb{R}^N with critical growth, Abstr. Appl. Anal. 2 (1997) 301-315.
[6] E. Hebey, Sobolev spaces on Riemannian manifolds, Lecture notes in mathematics 1635, Springer, 1996.
[7] Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^N, Ind. Univ. Math. J. 57 (2008) 451-480.
[8] J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 20 (1971) 1077-1091.
[9] R. Panda, Nontrivial solution of a quasilinear elliptic equation with critical growth in \mathbb{R}^n, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 425-444.
[10] S. Pohozaev, The Sobolev embedding in the special case $pl = n$, Proceedings of the technical scientific conference on advances of scientific research 1964-1965, Mathematics sections, 158-170, Moscov. Energet. Inst., Moscow, 1965.
[11] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^2, J. Funct. Anal. 219 (2005) 340-367.
[12] B. Ruf, F. Sani, Sharp Adams-type inequalities in \mathbb{R}^n. Trans. Amer. Math. Soc. (In press).
[13] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473-484.
[14] Y. Yang, Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal. 263 (2012) 1894-1938.
[15] Y. Yang, Adams type inequalities and related elliptic partial differential equations in dimension four, J. Differ. Equations 252 (2012) 2266-2295.
[16] Y. Yang, Trudinger-Moser inequalities on the entire Heisenberg group, arXiv:1201.2993.