The effect of coal-fired power plant (CFPP) operations on food transfer Polonium-210 (210Po) in coastal ecosystem

C A Aryanti1*, Muslim2, H Suseno3 and W R Prihatiningsih3

1) Department of Marine Science – Diponegoro University, Semarang, Indonesia
2) Department of Oceanography – Diponegoro University, Semarang, Indonesia
3) Marine Radioecology Group – National Nuclear Energy Agency, Jakarta, Indonesia

Email: chairunannisa10@gmail.com

Abstract. A coal-fired power plant (CFPP) is an option to cover a requirement of supply electrical energy, but in the process of operating, it can release several radionuclides. One of the radionuclides is 210Po which is one of the most radiotoxic natural radionuclides. 210Po radionuclides can move into the food web in marine ecosystems. The transfer of 210Po to marine ecosystems can be determined using a method of impact radiation doses on components of marine ecosystems such as plankton, coral, fish, molluscs, and crustacea. The results show that external and internal doses of 210Po were still below the screening level determined by International Atomic Energy Agency (IAEA), thus does not have an impact on the marine organism ecosystem.

1. Introduction
The 10,000 MW Acceleration Program is one of the important in preparing for national energy availability in the future. Government regulation number:71/2006 became the basis for the construction of power plants in Indonesia known as the 10,000 MW Coal-Fired Power Plant (CFPP) acceleration project. The construction of the power plant project is to pursue electricity supply and support the energy diversification program of power plants using non-petroleum fuels by utilizing low-calorie coal whose reserves are abundantly available in the country [1].

The use of coal as a fuel power plant can produce loose in the form of fly ash and bottom ash containing natural radionuclides with a certain concentration of activity [2]. When coal-burning there will be cracking that causes natural radionuclide elements to come out along with other emission gases and have 10 times higher levels of radioactivity [3]. In the processing of coal, natural radioactive elements are concentrated and form radioactive concentrates called TENORM [2].

Fly ash that comes out alongside other gas emissions will fall into the environment around the power plant which is usually dominated by sea waters [4]. Natural radionuclides that are released into the ocean waters will generally spread through abiotic components (water and sediment) through these components also occur hoarding to biota tissues so that this occurrence can interfere with biota life and can interfere with the life of humans who consume marine biota [5].

One of the natural radionuclides produced in the processing of CFPP is 210Po [3]. 210Po is an element produced from the decay chain of 238U through 210Pb and 210Bi, but can also be produced by the activation of neutron 209Bi [6]. 210Po is an alpha transmitter radioactive element that delivers the highest dose to humans through the intake of marine biota consumed [6].

Studies on Naturally Occurring Radioactive Material (NORM) from CFPP release have been widely conducted, but only environmental monitoring [4]. Studies of its accumulation in several biotas...
have also been conducted in Indonesia [7], Malaysia [8], and Korea [9]. In addition, the impact of CFPP operations on their accumulation in marine biota based on an increase of 210Po has been carried out in Malaysia [3]. Similar research in Indonesia is very limited. 210Po research related to CFPP operations has never been conducted in Indonesia. This paper will discuss natural radioactive pollution due to the process of burning coal. In addition, it will discuss the activity of 210Po in biota, and its displacement in the food chain in marine ecosystems. Radionuclide data is obtained from existing publications.

2. Methodology
The activity of 210Po and NORM are obtained from existing publications. Determination of radiological doses in marine biota can be known by using the erica tool. Determination of the dose level of radiation exposure in marine biota is carried out because 210Po is assumed to present in the marine environment. The activity of 210Po in biota is used as a calculation in data input. The dose rate is set as 10 Gy/h [8].

3. Result and discussion
3.1. Natural radionuclides produced from power plants
Natural radioactive exposure of Coal-Fired Power Plants (CFPP) in general is greater than exposure to nuclear power plants [3]. This is contrary to the common assumption that only nuclear power plants can produce radioactive waste that is harmful to the environment.

According to [10], the most dominant radioactive pollutants in coal samples are radioactive elements such as 210Pb, 210Po, 231Pa, 226Ra, 238U, 232Th, 14C, 40K (Table 1). Radioactive pollutants number 1 to 6 belong to the group of heavy metals when it come in the human body will follow the level route that negatively impacts human health. Alpha radiation that comes out from 210Po to 238U is a danger of internal radiation, which is very dangerous if it enters the human body because it has a large ionization power [10].

Table 1. Dominant Radioactive Pollutants from Coal Burning [10].

Number	Pollutant	Symbol	Radiation	Half Life
1	Timbal-210	210Pb	Beta	19.4 Year
2	Polonium-210	210Po	Alpha	138 Days
3	Protactinium-231	231Pa	Alpha	3.43 x 104 Year
4	Radium-226	226Ra	Alpha	1620 Year
5	Thorium-232	232Th	Alpha	1.39 x 1010 Year
6	Uranium-238	238U	Alpha	4.5 x 10Year
7	Karbon-14	14C	Beta	5730 Year
8	Kalium-40	40K	Alpha	1.28 x 105 Year

Based on the data activity of radioactive elements resulting from coal burning in the research ACARP (Australian Coal Association Research Program) in [11], have been shown in Table 2.

Table 2 shows that the activity of each radionuclide from coal combustion is highly dependent on the mineral content of coal, the mining site, and the area from which the coal originated [11]. 210Po is one of the most dominant radioactive pollutants in coal samples and highly radiotoxic with a specific activity of 166 TBq/g [6].
Table 2. Natural Radionuclide Activities of Coal Burning Products (ACARP-Australian Coal Association Research Program [11])

Coal Description	U (mg/kg)	Th (mg/kg)	Th-232 (Bq/kg)	Po-210 (Bq/kg)	Rn-222 (Bq/kg)	Total of Radioactivity (Bq/kg)
USA 1	1.3	2.6	28	23	25	714
USA 2	1.2	3.2	32	48	33	1105
USA 3	1.3	3.0	27	23	23	850
South Afrika 1 A	1.7	7.3	46	42	42	986
South Afrika 1 B	2.3	6.7				
South Afrika 2 A	1.8	5.4	19	16	18	740
South Afrika 2 B	2.0	6.6				
South Afrika 3	1.8	6.6	62	55	56	1325
South Afrika 4	2.1	7.7				
Indonesia A	0.2	0.67	19	19	21	560
Indonesia B	0.1	0.5				
Colombia A	0.45	0.9	19	16	16	447
Colombia B	0.34	0.85				
China A	3.1	12.2	37	37	35	977
China B	2.4	10.6				
Venezuela 1	0.64	1.8	15	20	12	436
Polandia A	2.2	2.8	18	15	16	573
Polandia B	1.8	2.5				

Table 2 is coal ash containing total radioactivity with ranges (0.1 – 12.2) mg. kg⁻¹ and (15 - 62) Bq. kg⁻¹. The highest radioactivity content in becquerel units is found in African and the lowest in Venezuela; 62 Bq.kg⁻¹ and 15 Bq.kg⁻¹, respectively. Indonesian coal ash contains radioactivity with a total of 560 Bq.kg⁻¹.

Based on calculations by [12], at the CFPP Lestari Energi Banten, Indonesia. The result of setting voltage 40 KV DC, after performing the calculation process obtained particle migration speed 4 m/s, then the particle collection efficiency by ESP (Electrostatic Precipitator) 98.71%, this indicates that there is 1.29% of flying ash particles coming out into the environment around the power plant which is usually dominated by seawater. In addition [12], conducted a simulation of actual voltage and current for the determination of optimum voltage ESP, where the result of voltage setting performance if given input of 40KV DC, using calculations will be obtained particle collection efficiency by ESP only 81.98 %. These results indicate that 18.02% of flying ash which contains natural radioactive comes out into the environment and can contaminate the sea waters.

3.2. Polonium activity in marine biota
Based on research by [13] have been shown in Table 3. The results of the analysis showed that the highest activity of the \(^{210}\text{Po}\) in marine biotas was noted for green mussels and the lowest for tuna,
which represent different values among marine biota species. The highest activity of ^{210}Po in green mussels can be caused green mussels are bivalves that have habitats associated with sediment, their feeding habits as filter-feeders, and their ability to accumulate contaminants [14]. Its high bioaccumulation capability causes a previously undetectable concentration of pollutants in sea waters to be found in Bivalvia's [15].

Table 3. ^{210}Po activity in marine biotas from the Jakarta Bay [16].

Sample (Local Name)	Sample (Scientific Name)	Lokasi	^{210}Po Activity (Bq/Kg)
Tuna	*Thunnus albacares*	Jakarta Bay	9.05 ± 3.05
Mackerel	*Scomberomorus commerson*	Jakarta Bay	67.34 ± 13.82
Red Snapper	*Lutjanus campechanus*	Jakarta Bay	35.03 ± 12.41
Shrimp	*Litopenaeus setiferus*	Jakarta Bay	9.12 ± 2.80
Green Mussel	*Perna viridis*	Jakarta Bay	137.37 ± 25.49

3.3. Polonium activity in marine biotas from Korean coastal waters

Based on research by [9], polonium-210 was determined from twelve marine biota species, including two plankton, one planktivorous fish (anchovy, *Engraulis japonicus*), four pelagic carnivorous fish (chub mackerel, *Scomber japonicus*; largehead hairtail, *Trichiurus lepturus*; Japanese horse mackerel, *Trachurus japonicus*; and red tilefish, *Branchiostegus japonicus*), one demersal fish (olive flounder, *Paralichthys olivaceus*), one crustacean (red-banded lobster, *Metanephrops thomsoni*), four molluscs (Far eastern mussel, *Mytilus coruscus*; oyster, *Crassostrea gigas*; abalone, *Nordotis discus*; Japanese common squid, *Todarodes pacificus*). Results are presented by muscle in Table 4.

Polonium-210 concentration in the whole body of anchovy (*Engraulis japonicus*) collected in May 2014 was 392 ± 2 Bq kg$^{-1}$, several times higher than in the plankton that comprises their main diet. This value was the highest among the fish in this study. In 2015, ^{210}Po concentration in anchovy was determined for a sample collected in another location. Polonium-210 concentration in the whole body in June 2015 was 59.0 ± 4.6 Bq kg$^{-1}$, slightly higher than the values from plankton. The difference in ^{210}Po concentrations in anchovy collected in May 2014 and in June 2015 may be due to habitat differences. In anchovy studied from a single region of the Black Sea, the whole-body ^{210}Po concentration differed by a factor of two within the space of one month [16]. Assuming fish obtain most or all of their ^{210}Po burden from the plankton they ingest, the higher ^{210}Po concentrations in anchovy, compared to those in plankton, suggest that ^{210}Po is biomagnified up the food web to anchovy [9].

According to [17], the mechanism of absorption of ^{210}Po by fish depends on biological variables such as feeding habit and location, based on radionuclide research in some fish in Izmir, shows that measurable activity in fish species that prey on plankton such as anchovies has high radionuclide activity. According to [18], the larger biota the lower value of ^{210}Po, this can be caused by the metabolism of biota that has a larger body will be slower than small-bodied biota.
Table 4. 210Po activity in biota from Korean Coastal Waters [9].

Sample (Local Name)	Sample (Scientific Name)	Location	210Po Activity (Bq/Kg)
Anchovy	Engraulis japonicas	Korean Coastal	392 ± 2.2
Largehead hairtail	Trichiurus lepturus	Korean Coastal	5.56 ± 1.23
Chub mackerel	Scomber japonicas	Korean Coastal	0.8 ± 0.03
Japanese horse mackerel	Trachurus japonicas	Korean Coastal	5.26 ± 0.13
Red tilefish	Branchiostegus japonicas	Korean Coastal	3.08 ± 0.94
Olive Flounder	Paralichthys olivaceus	Korean Coastal	0.51 ± 0.12
Abalon	Nordotis discus	Korean Coastal	2.93 ± 0.86
Far eastern mussel	Mytilus coruscus	Korean Coastal	47.8 ± 5.9
Oyster	Crassostrea gigas	Korean Coastal	46.3 ± 7.1
Red-banded lobster	Metanephrops thomsoni	Korean Coastal	2.84 ± 0.23
Japanese common squid	Todarodes pacificus	Korean Coastal	8.61 ± 2.01
Plankton [20-300 mm]	-	Korean Coastal	137 ± 51
Plankton [>300 mm]	-	Korean Coastal	113 ± 2

3.4. Polonium activity in marine biotas from peninsular Malaysia

Activity concentrations of 210Po in fishes collected from eight sampling stations situated along near shore the east and west coast of Peninsular Malaysia have been researched by [8], are summarized in Table 5.

The range activity concentrations of 210Po in the whole body of pelagic fishes i.e. Yellowtail scad, Indian mackerel, and Layang scad were 16.12 ± 0.72 – 50.13 ± 2.24 Bq.kg$^{-1}$ (Average: 30.87 Bq.kg$^{-1}$), 4.14 ± 0.18 – 10.21 ± 0.46 Bq.kg$^{-1}$. (Average: 7.18 Bq.kg$^{-1}$) and 20.38 ± 0.91 – 41.21 ± 1.84 Bq.kg$^{-1}$. (Average: 30.80 Bq.kg$^{-1}$), respectively. While for each demersal fish of Delagoa threadfin bream and Indian snapper, it was ranged between 4.16 ± 0.19 – 18.70 ± 0.84 Bq.kg$^{-1}$ (Average: 10.93 Bq.kg$^{-1}$) and 4.06 ± 0.18 – 27.41 ± 1.23 Bq.kg$^{-1}$ (average: 15.74 Bq.kg$^{-1}$) respectively. The ranges of 210Po concentration showed a significant difference between species it can be caused by different living habitats or geographical characteristics, environmental location and conditions, feeding habits, species habits and patterns, biological processes, size, and seasonal changes [3]. According to [17], the mechanism of absorption of 210Po by fish depends on biological variables such as diet, habitat, and location.

In general, the results showed that the concentration of 210Po in pelagic fish Yellowtail scad and Layang scad were relatively higher than those in demersal fishes. This suggests that pelagic fish live in water columns or sea pelagic zones that get more than 210Po of seawater because they move freely within the water column. In addition, pelagic fish also consume suspended substances and food particles available in the water column [19]. According to [18], the pelagic environment contributes significantly to 210Po accumulation that is aligned with these fishes which are accumulated high concentrations of 210Po. While demersal species is not so much accumulated of 210Po from seawater as this radionuclide is a strong particle reactive and tend to associate with a suspended particle which is easily and rapidly removed into the bottom water column by scavenging process and lastly deposited onto sediment in the seabed resulted in low accumulation of 210Po in demersal fish.
3.5. Total dose rate of 210Po in marine biota
Polonium activity in seawater and five species of fishes together with other of their physical data (size and weight) were used to estimate the total dose using ERICA Assessment Tool. The default value of 10 µGy/hr was used as the screening confidence level, below which radiological risks are negligible [20], for risk assessment to fish. Thus, the estimation of the total dose rate of 210Po per fish was presented in Table 5. The total dose rates of 210Po in the whole body of pelagic and demersal fishes were varied from 0.127 – 1.530 µGy/hr and 0.124 – 0.837 µGy/hr, respectively.

The results showed that the total dose level of 210Po in pelagic fish was greater when compared to demersal fish. Differences in these results related to the depth of the water column profile showed an increase of 210Po in the mid-water area where this area is pelagic fish habitat and there was a decreased activity of 210Po to a lower level at a deeper depth which is the habitat of demersal fish [21]. The feeding habit of a biota plays a major role in the accumulation of 210Po to the contribution of values such as the total dose rate for fish biota [22].

Station ID	Species of Fish	Occupancy	Individual Fresh Weight (g)	210Po Activity in Fish (Bq/Kg)	Total Dose Rate 210Po per Organisme (µGy/hr)
ML 01	Yellowtail scad (Atule mate)	Pelagic	72.28	50.13 ± 2.24	1.530
	Indian snapper (Lutjanus madras)	Demersal	60.62	4.06 ± 0.18	0.124
	Layang scad (Decapterus macrosoma)	Pelagic	41.80	41.21 ± 1.84	1.260
	Indian snapper (Lutjanus madras)	Demersal	51.52	27.41 ± 1.23	0.837
KT 02	Indian mackerel (Scombridae rastrelliger) Delagoa threadfin bream (Nimipterus delagoa)	Pelagic	77.95	10.21 ± 0.46	0.312
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	117.46	18.70 ± 0.84	0.571
MG03	Yellowtail scad (Atule mate)	Pelagic	102.1	24.48 ± 1.09	0.748
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	98.52	15.39 ± 0.69	0.470
CK01	Indian mackerel (Scombridae rastrelliger) Delagoa threadfin bream (Nimipterus delagoa)	Pelagic	80.00	4.14 ± 0.18	0.127
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	89.23	5.21 ± 0.23	0.159
TS03	Layang scad (Decapterus macrosoma)	Pelagic	68.34	20.38 ± 0.91	0.623
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	65.27	13.30 ± 0.59	0.406
PS01	Yellowtail scad (Atule mate)	Pelagic	39.71	32.76 ± 1.46	1.001
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	60.96	4.16 ± 0.19	0.127
PL01	Yellowtail scad (Atule mate)	Pelagic	120.44	16.12 ± 0.72	311.84
	Delagoa threadfin bream (Nimipterus delagoa)	Demersal	92.71	8.88 ± 0.40	171.78
Additionally, the result revealed a clear relationship between ^{210}Po accumulation in fishes and the ecological niche of fishes, where the accumulation decreases with depth [3], aligns to decrease the dose received by fish that live at the sea bottom. In another context, the low total dose rate of ^{210}Po in demersal fish may be a factor in the reported rapid depuration of ^{210}Po by this species. The lack of total dose rate of Delegoa threadfin bream is also due to their body size are relatively larger compared to pelagic fish (Yellowtail scad and Indian mackerel). According to [18], the larger biota the lower value of ^{210}Po, this can be caused by the metabolism of biota that has a larger body will be slower than small-bodied biota.

4. Conclusions

Based on the results of data collection and information related to coal-burning and its impact on the marine environment and biota, can be concluded that: Burning coal will produce natural radioactive, one of natural radioactive is ^{210}Po and will increase in the area and its surroundings. The activity of ^{210}Po in fish biota depends on biological variables such as diet, habitat, and location of each species. External and internal radiation from ^{210}Po is still below the screening level determined by the International Atomic Energy Agency (IAEA) than it does not have an impact on the marine ecosystem.

References

[1] Ministry of Energy and Mineral Resources 2008 Perkembangan Program Percepatan 10.000 MW. Kementerian Energi dan Sumber Daya Mineral, Jakarta.

[2] Ozden B E, Guler T, Vaasma M, Horvathand M, Kiisk 2017 Enrichment of Naturally Occurring Radionuclides and Trace Elements in Yatagan and Yenikoy Coal-Fired Thermal Power Plants, Turkey. *Journal of Environmental Radioactivity*, **188** 100-107

[3] Alam L and Mohamed C A R 2011 Natural radionuclide of Po210 in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia *Environmental Health: A Global Access Science Source*, **10**(1), 1–10

[4] Alviandini N B, Muslim, Prihatiningsih, W R, Wulandari, S. Y 2019 Aktivitas NORM pada Sedimen Dasar di Perairan PLTU Tanjung Jati Jepara dan Kaitannya dengan Ukuran Butir Sedimen serta TOC. *EKSPLORIUM*, **40**(2) 115

[5] Suseno H and Prihatiningsih W R 2014 Monitoring ^{137}Cs and ^{134}Cs at marine coasts in Indonesia between 2011 and 2013. *Marine Pollution Bulletin*. Volume **88**: 319-324

[6] Gjelsvik R, Brown J, Holm E, Roos P, Saxen R and Outola I 2012 Polonium-210 and Other Radionuclides in Terrestrial, Freshwater and Brackish Environments. *Norwegian Radiation Protection Authority*.

[7] Makmur M, Prihatiningsih W R and Yahya M N 2020 Baseline concentration of Polonium-210 (^{210}Po) in several biota from Jakarta Bay. *IOP Conference Series: Earth and Environmental Science*, **429**(1)

[8] Mahmood Z O W, Wo Y M, Mohamed N, Abdullah N, Sanusi M Z M, Asyikeen N, Samудing K 2021 Potential Radiological Dose Of ^{210}Po To Marine Fishes and Their Consumer In Peninsular Malaysia. *Global Scientific Journal*. Volume **9**:1

[9] Kim S H, Hong G H, Lee H M and Cho B E 2016 ^{210}Po in the marine biota of Korean coastal waters and the effective dose from seafood consumption. *Journal of Environmental Radioactivity* **174**: 30–37

[10] Valkovic V 2000 Radioactivity in The Environment. *Elsevier. Amsterdam*.1st Ed

[11] Susiati 2000 Studi Peningkatan Paparan Unsur Radioaktif Alam Akibat Pembakaran Batubara. *Jurnal Pengembangan Energi Nuklir*. (7): 2

[12] Fitrianto A 2018 Analisa Kinerja Electrostatic Precipitator (Esp) Berdasarkan Hasil Dari Perubahan Emisi Pada Power Boiler Pembangkit Listrik Tenaga Uap (Studi Kasus Di Pltu Lestari Banten Energy) *[Tugas Akhir]. Universitas Teknologi Yogyakarta*

[13] Makmur M, Prihatiningsih W R and Yahya M N 2020 Baseline concentration of Polonium-210
(210Po) in several biota from Jakarta Bay. *IOP Conference Series: Earth and Environmental Science, 429*(1)

[14] Zuykov M, Pelletier E and Harper D A T 2013 Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. *Chemosphere 93* (2): 201-208

[15] Purbonegoro O T 2018 Potensi Bivalvia sebagai Bioindikator Pencemaran Logam di Wilayah Pesisir. *LIPI Oseana XLIII*, 61–71

[16] Lazorenko G E, Polikarpov G G, Boltachev A R 2002 Natural radioelement polonium in primary ecological groups of Black Sea Fishes Russ. *J Mar Biol 28* (1) 52-56

[17] Aközcan S and Uğur A 2013 Activity levels of 210Po and 210Pb in some fish species of the Izmir Bay, (Aegean Sea) *Marine Pollution Bulletin, 66*:234-238

[18] Štrok M and Smodiš B 2010 Levels of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population. *Chemosphere, 82*(7) 970-976

[19] Kulsawat W and Porntepkasemsan B 2016 Distribution of 210Po in some marine biota of a Samut-Sakhon region: evaluation of dose to consumers. *KKU Engineering Journal 43*(x): xx-xx

[20] Anderson P, Garnier-Laplace, Beresford NA, Copplestone D, Howard B J, Howe P, Oughton D and Whitehouse P 2009 Protection of the environment from ionizing radiation in a regulatory context (protection): proposed numerical benchmark values. *Journal of Environmental Radioactivity 100*: 1100-1108

[21] Fowler S W 2011 210Po in the marine environment with emphasis on its behavior within the biosphere. *Journal of Environmental Radioactivity 102*: 448-461

[22] Carvalho FP and Fowler S W 1993 An experimental study on the bioaccumulation and turnover of polonium-210 and lead-210 in marine shrimp. *Marine Ecology Progress Series 102*: 125-133

Acknowledgments

All the authors are the main contributor to this paper. This study was a research collaboration between Marine Radioecology - National Nuclear Energy Agency and Diponegoro University.