Bi-rooted primary maxillary canines: a case report

Ali Assiry

Abstract

**Background:** Anomalies in primary teeth are comparatively fewer than in the permanent teeth. The presence of a primary canine with two roots is very rare. An unusual anomaly like this may lead to problems during extraction or exfoliation. Emphasis on the importance of anomalies is required for proper diagnosis and to facilitate a better treatment outcome.

**Case presentation:** The present case report describes a case of a bilateral bi-rooted primary maxillary canines diagnosed during a radiographic examination in a 9-year-old Saudi boy. To the best of our knowledge, this is the first case of bi-rooted primary maxillary canine reported from the region of Saudi Arabia.

**Conclusion:** This case report aims to increase awareness of the morphological alterations in primary canines and to emphasize the importance of diagnosis and radiographic examination using different angles. Clinicians should consider all the possible tooth variations during routine intra-oral and radiographic examinations to facilitate a better treatment outcome and to avoid unwanted complications.

**Keywords:** Case report, Dental anomaly, Bi-rooted primary canines, Saudi Arabia
(53 and 63) was indicated. Following extraction, the presence of two roots was confirmed by careful examination. The right primary maxillary canine had two separate roots (mesial and distal) (Fig. 2), whereas the left primary maxillary canine had two roots (mesial and distal) which were connected (Fig. 2). His parents were informed about the root anomaly and our patient was kept under careful observation to evaluate proper eruption of unerupted permanent lateral incisors (Table 1).

**Discussion and conclusion**

A bi-rooted primary canine is an extremely rare dental anomaly with high prevalence in maxilla rather than in the mandible and it occurs more frequently in male
children. To the best of our knowledge, this is the first reported case in an Arab child. A list of cases with bi-rooted primary maxillary canine from all over the world is presented in Table 2. The diagnosis and identification of tooth morphology are the main factors for an appropriate plan of treatment. A primary radiograph is significant as it helps in the identification or uncertainties of anatomical variations. Bifurcations in the roots can be seen when the X-ray has no superimposition of images [23]. In the present case, the two roots were evident in a radiograph. However, this may sometimes be difficult due to crowding of teeth. Hence, radiographic images must be cautiously analyzed to infer and recognize particulars that might propose the presence of bifurcations [24].

The standard morphology of the primary canine includes a slender, long, and tapering root which is double the size (in length) of the crown. It has been explained that during normal root formation, at the dental organ’s cervical loop, the outer and the inner enamel epithelia multiply in the form of a double layer of cells called Hertwig’s epithelial root sheath. The inner and outer epithelia of enamel turn at the future cementoenamel junction, producing the epithelial diaphragm. The primary apical foramen is enclosed by the rim of this sheath. An unknown aspect in multi-rooted teeth stimulates continued morphodifferentiation. Tongue-like

| Table 1 Timeline of case |
|--------------------------|
| Date               | Summary of visit                                    |
| 3 April 2017       | Clinical visit: A 9-year-old boy visits Department of Preventive Dental Science, Faculty of Dentistry, Najran University, Saudi Arabia |
| 15 April 2017      | Diagnostic visit and test: Clinical examination revealed:
|                    | • unerupted permanent maxillary lateral incisors
|                    | • decay in tooth numbers 54, 55, 62, 64, 65, 26, 84, 74, 75, and 85, and
|                    | • anterior crossbite between tooth numbers 53 and 83
| 25 April 2017      | Treatment plan:
|                    | • Pulpotomy and stainless steel crowns in tooth numbers 55, 74, and 75,
|                    | • extraction of 54, 62, 64, 65, and 85,
|                    | • composite restoration in 84,
|                    | • amalgam restoration in 26,
|                    | • and fissure sealant was placed on 16, 36, and 46.
| 5 May 2017         | After extraction, an examination was done to find anomaly:
|                    | • The presence of two roots was confirmed by careful examination.
| 20 May 2017        | Follow up and conclusion:
|                    | • The patient was kept under careful observation to evaluate proper eruption of unerupted permanent lateral incisors
|                    | • Clinicians should consider all the possible tooth variations during routine intra-oral and radiographic examinations to facilitate a better treatment outcome and to avoid unwanted complications

| Table 2 A list of cases with bi-rooted primary maxillary canine |
|--------------------------|---------------------|---|---|---|
| Author and reference     | Year | Location of canine | Age | Sex | Ethnicity |
| Takano [5]               | 1941 | Mandibular right   | 9   | M   | Japanese |
| Kurosu et al. [6]        | 1968 | Maxillary right    | 8   | F   | Japanese |
|                         |      | Maxillary left     | 8   | M   | Japanese |
| Brown [2]                | 1975 | Bilateral maxillary | 4   | F   | Not reported |
| Yasunaga et al. [7]      | 1978 | Bilateral maxillary and mandibular | 6   | M | Japanese |
| Kelly [4]                | 1978 | Bilateral maxillary | 5   | F   | Black |
| Hata et al. [8]          | 1979 | Bilateral mandibular | 4   | M   | Japanese |
| Krolls and Donahue [9]   | 1980 | Bilateral maxillary | 5   | F   | Black |
| Chow [10]                | 1980 | Bilateral maxillary | 5   | M   | Black |
| Bryant and Bowers [11]   | 1982 | Bilateral maxillary and mandibular | 5   | M | White |
| Birnstein and Bystrom [12]| 1982 | Bilateral maxillary | 5   | M   | Black |
| Paulson et al. [13]      | 1985 | Bilateral maxillary | 9   | M   | Black |
| Jones and Hazeldigg [14] | 1987 | Bilateral maxillary | 5   | M   | Black |
| Saravia [3]              | 1991 | Bilateral maxillary | 4   | F   | Black |
| Hayutin and Ralstrom [15]| 1992 | Maxillary right     | 4   | F   | Black |
| Maxillary right          | 1   | M                   |
| Ott and Ball [16]        | 1996 | Bilateral maxillary | 8   | M   | Black |
|                         |      | Bilateral maxillary | 4   | M   | Black |
|                         |      | Bilateral mandibular | 8   | M | Black |
| Winkler and Ahmad [17]   | 1997 | Maxillary left      | 4   | F   | Pueblo |
| Mochizuki et al. [18]    | 2001 | Bilateral maxillary and mandibular | 6   | M | Japanese |
| Atac and Cetinguc [19]   | 2005 | Bilateral maxillary | 6   | M   | White |
|                         |      | Bilateral maxillary | 6   | M   | White |
| Orhan and Sari [20]      | 2006 | Maxillary left      | 11  | M   | White |
|                         |      | Maxillary right     | 4   | M   | White |
|                         |      | Bilateral maxillary | 6   | M   | White |
| Dhanpal and King [21]    | 2009 | Bilateral maxillary and mandibular | 15  | M | Chinese |
| Talebi et al. [1]        | 2010 | Bilateral maxillary | 6   | F   | Iranian |
| Guler [22]               | 2012 | Maxillary right     | 7   | M   | White |
| Present case             | 2017 | Bilateral maxillary | 9   | M   | Arab |
extensions of the horizontal diaphragm grow and extend toward each other, and fuse by differential growth. For every new secondary apical foramen, a root will be developed [25]. Although trauma and other disturbances may affect morphodifferentiation, improved expression of the gene starting the differential growth of Hertwig’s epithelial root sheath or a defect in the dental lamina through the initial stage of formation of the root is thought to develop double roots [20]. In the present case, the presence of two roots in primary canines bilaterally cannot be attributed to a specific cause. Hence, when an anomaly like this happens, difficulty during exfoliation or extraction may happen. The permanent canine has to reabsorb both the roots of the primary canine evenly to facilitate its normal eruption. During extraction, the clinician should confirm that the crown of the underlying permanent tooth is not trapped in order to prevent accidental removal of the underlying developing permanent tooth bud.

In conclusion, clinicians should consider all the possible tooth variations during routine intra-oral and radiographic examinations to facilitate a better treatment outcome and to avoid unwanted complications. Also, the presence of two roots in primary canines bilaterally cannot be attributed to a specific cause in the present report and further studies are needed for the proper treatment of this anomaly.

Acknowledgements
Not applicable.

Authors’ contributions
AA was involved in the diagnosis, clinical management, and treatment of the patient and also drafted the final manuscript. The author read and approved the final manuscript.

Funding
None to declare.

Availability of data and materials
Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
No ethical committee approval is required for the case report.

Consent for publication
Written informed consent was obtained from the patient’s parents for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The author declares that he has no competing interests.

Received: 13 January 2019 Accepted: 25 June 2019
Published online: 07 August 2019

References
1. Talebi M, Parisay I, Khorakian F, Bagherian M. Bi-rooted primary maxillary canines: A case report. J Dent Res Dent Clin Dent Prospects. 2010;4(3):101.
2. Brown CK. Bilateral bifurcation of the maxillary deciduous cuspsids. Oral Surg Oral Med Oral Pathol Oral Radiol. 1975;40(6):817.
3. Saravia ME. Bilateral birooted maxillary primary canines: report of two cases. ASDC J Dent Child. 1991;58(2):154–5.
4. Kelly JR. Birooted primary canines. Oral Surg Oral Med Oral Pathol Oral Radiol. 1978;46(6):872.
5. Takano H. Supernumerary rooted primary mandibular right canine. Shika Geppo. 1941;21:48–50.
6. Kurosu K, Hattori R, Sugiyama J. Anomalies of the deciduous teeth. Shikai Tenbo. 1983;1:505–17.
7. Yasunaga M, Tagashira N, Miura K, Inoue T. A case report; bilateral bifurcation of the maxillary and mandibular deciduous cuspidus. Japanese J Pediatr Dent. 1987;16:224–9.
8. Hata Y, Itoh T, Nishimura Y, Udida N, Manjima M. An interesting case of lower bilateral bifurcated root canines in deciduous dentition. Kanagawa Shiokaku. 1979;14:177–83.
9. Krolls SO, Donahue AH. Double-rooted maxillary primary canines. Oral Surg Oral Med Oral Pathol. 1980;49:379.
10. Chow MW. Bilateral double-rooted primary maxillary maxillary canines an abbreviated case report. Oral Surg Oral Med Oral Pathol. 1980;50:219.
11. Bryant RHL, Bowens DF. Four birooted primary canines: report of case. ASDC J Dent Child. 1982;49:441–2.
12. Birnstein E, Bystrom EB. Birooted bilateral maxillary primary canines. ASDC J Dent Child. 1982;49:217–8.
13. Paulson RB, Gottlieb LI, Sculli PW, Schneider KN. Double-rooted maxillary primary canines. ASDC J Dent Child. 1985;52:195–8.
14. Jones JE, Hazelrigg CO. Birooted primary canines. Oral Surg Oral Med Oral Pathol. 1987;63:499–500.
15. Hayutin DJ, Raitston CS. Primary maxillary bilateral birooted canines: Report of two cases. ASDC J Dent Child. 1992;59:235–7.
16. Ott NW, Ball RN. Birooted primary canines: report of three cases. Pediatr Dent. 1996;18:328–30.
17. Winkler MP, Ahmad R. Multirooted anomalies in the primary dentition of Native Americans. J Am Dent Assoc. 1997;128:1009–11.
18. Mochizuki K, Ohtawa Y, Kubo S, Machida Y, Yukushji M. Bifurcation, birooted primary canines: a case report. Int J Paediatr Dent. 2001;11:380–1.
19. Atac AS, Cetinguc A. Primary maxillary bi-lateral birooted canines: Report of two cases. Hacettepe Dishekimi Fa-KultesiDergisi. 2005;29:24–8.
20. Ohan AI, Sari S. Double-rooted primary canines: A report of three cases. J Indian Soc Pedod Prev Dent. 2006;24(4):204.
21. Dhanpal PK, King NM. Bilateral bimaxillary bi-rooted primary canines: report of a case. J Clin Pediatr Dent. 2009;34(1):113–16.
22. Guler C. Inonu Universitesi Saglik Bilimleri Dergisi. 2012;57–9.
23. Shanna R, Pécora JD, Lumley PJ, Walmisley AD. The external and internal anatomy of human mandibular canine teeth with two roots. Dent Traumatol. 1998;14(2):88–92.
24. Victorino FR, Bernardes RA, Baldi JV, Mosaes IG, Bernardinelli N, Garcia RB, Bramante CM. Bilateral mandibular canines with two roots and two separate canals: case report. Braz Dent J. 2009;20(1):84–6.
25. Ten Cate AR. Oral Histology: Development, Structure and Function. 2nd ed. St. Louis: CV Mosby Co; 1985. p. 69–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.