Polybia Fasticiosuscula (Hymenoptera: Vespidae) Foraging Activity Patterns

Authors: Bruno Pandelo Brügger, Ricardo Alcántara-de la Cruz, Amélia Guimarães de Carvalho, Marcus Alvarenga Soares, Fábio Prezoto, et. al.

Source: Florida Entomologist, 102(1) : 264-265
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.102.0150
Polybia fasticiosuscula (Hymenoptera: Vespidae) foraging activity patterns

Bruno Pandelo Brügger¹, Ricardo Alcântara-de la Cruz², Amélia Guimarães de Carvalho³, Marcus Alvarenga Soares³, Fábio Prezoto⁴, and José Cola Zanuncio⁴

Social insects forage food resources (proteins, carbohydrates), material for nest construction (plant fibers, clay), and water (Begg 2001). Most social wasps (Vespidae) are generalist predators of agricultural pests; therefore, they are frequently found in agroecosystems (Auad et al. 2010; Brügger et al. 2011, 2017) controlling lepidopteran caterpillar populations (Saraiva et al. 2017).

The prey capture by social wasps consists of approaching the prey (generally by walking), antennation, attack, killing it by slicing pieces of flesh (Dejean et al. 2017), and transport of prey pieces to the nest (Brown et al. 2012).

Polybia fasticiosuscula Saussure (Hymenoptera: Vespidae) is a social wasp that is widely distributed in South America, and which constructs large nests (“fragmocitaro”) that are about 30 cm long (Saraiva et al. 2017). The foraging activity of these worker wasps covers a radius of approximately 81 m from their nest (Souza et al. 2010).

Behavioral aspects of social wasps, such as daily activity, diet, ecology, flight, and transport capacity (Moreyra et al. 2012; Brügger et al. 2017) should be studied to assess their potential for integrated pest management. The objective was to identify the prey captured and determine the foraging activity patterns of *P. fasticiosuscula* in an urban area.

A colony of *P. fasticiosuscula* (nest of 23 cm diam) in an experimental field of the Universidade Federal de Viçosa (UFV) in Viçosa, Minas Gerais, Brazil (20.764417°S, 42.868278°W) was evaluated. *Polybia fasticiosuscula* workers that were returning to the colony were intercepted in Jul 2015. Seven sampling sessions of 13 h each were conducted from 6:00 AM to 7:00 PM h, totaling 91 h of sampling effort. Wasps were counted during the observation period, with a return rate of 89.4% (288 arrivals). Of the 288 arrivals, 182 *P. fasticiosuscula* workers brought prey of Lepidoptera (caterpillars) (92.6%), Araneae (3.1%), Diptera (2.5%), or Orthoptera (1.8%) species. The other arrivals were wasps with material for nest building.

Mean (± SD) wasp weight and prey/flesh-pieces transported were 17.4 ± 3.3 mg (n = 288; ranging from 11.6 to 28.4 mg) and 5.2 ± 2.5 mg (n = 182; ranging from 1.1 to 13.1 mg), respectively. *Polybia fasticiosuscula* workers can carry a prey load up to 30% of their own body weight.

Data on foraging activity and prey capture by *P. fasticiosuscula* throughout the day were subjected to ANOVA using Statistix, Version 3.08 (Analytical Software, Oslo, Norway). Foraging by *P. fasticiosuscula* typically varied throughout the day. The peak foraging period of this wasp occurred from 12:00 Noon to 2:00 PM (Fig. 1). A total of 322 departures of *P. fasticiosuscula* workers were counted during the observation period, with a return rate of 89.4% (288 arrivals). Of the 288 arrivals, 182 *P. fasticiosuscula* workers brought prey of Lepidoptera (caterpillars) (92.6%), Araneae (3.1%), Diptera (2.5%), or Orthoptera (1.8%) species. The other arrivals were wasps with material for nest building.

Mean (± SD) wasp weight and prey/flesh-pieces transported were 17.4 ± 3.3 mg (n = 288; ranging from 11.6 to 28.4 mg) and 5.2 ± 2.5 mg (n = 182; ranging from 1.1 to 13.1 mg), respectively. *Polybia fasticiosuscula* workers can carry a prey load up to 30% of their own body weight.

¹Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-mail: brunopb2002@yahoo.com.br (B. P. B.); ricardo.la@ufv.br (R. A. C.); zanuncio@ufv.br (J. C. Z.)
²Departamento de Engenharia Florestal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil; E-mail: ameliacarvalho@gmail.com (A. G. C.)
³Programa de Pós-Graduação em Produção Vegetal, Universidade Federal dos Vales Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil; marcussoares@yahoo.com.br (M. A. S.)
⁴Departamento de Zoologia, Universidade Federal de Juiz de Fora, Campus Universitário-Martelos, 36.036-900, Juiz de Fora, Minas Gerais, Brazil; E-mail: fabio.prezoto@ufjf.edu.br (F. P.)

*Corresponding author; E-mail: brunopb2002@yahoo.com.br

Fig. 1. Typical *Polybia fasticiosuscula* foraging patterns. Means with the same letter at each evaluation time do not differ at 95% probability by the Tukey’s test. Vertical bars represent the standard error of the mean (n = 7).
weight; however, the weights of wasp vs. prey/flesh-piece transported were not correlated ($r = 0.0424; P = 0.5692$). The wasps had different behaviors at certain periods of the day. Peak activity occurred during the hottest periods of the day (Hernández et al. 2009; Santos et al. 2009).

The high return rate of $P. fastidiosuscula$ to the nest is due to their ability to locate themselves through visual signals during foraging up to a distance of 500 m from their colony (Souza et al. 2010). The Lepidoptera caterpillars were the principal prey of $P. fastidiosuscula$ workers; this is similar to the report by Pereira et al. (2013) of caterpillars being a major protein source for social wasps.

The weight of the wasp and its prey was found to vary considerably for $P. fastidiosuscula$ workers returning with a prey load. The prey weight was about 30% of their own body weight, which is lower than that of $Polybia occidentalis$ (Olivier) (39%) (Hernández et al. 2009), but similar to $Polybia rejecta$ (F.) (30.7%) (Dejean et al. 2017), and higher than that for $Polybia platycephala$ Richards (all Hymenoptera: Eumenidae) (13.4%) (Prezoto et al. 2005). This weight variation of the prey captured and transported by $P. fastidiosuscula$ may be related to the opportunistic and generalist behavior of social wasps, which capture the first prey regardless of size (Raveret-Richter 2000). In addition, wasps divide the large prey into small pieces of different weights (Raveret-Richter 2000; Dejean et al. 2017).

The $P. fastidiosuscula$ preference for foraging caterpillars demonstrates the importance of this wasp to reduce Lepidopteran populations in agroecosystems. Chemical pest control, when necessary, should be conducted before 9:00 AM or after 4:00 PM, when the foraging activity of $P. fastidiosuscula$ is reduced.

Acknowledgments

We express our appreciation to the Brazilian agencies “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/ PELD), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG),” and “Programa Cooperativo sobre Proteção Florestal/PROTEF” of the “Instituto de Pesquisas e Estudos Florestais/IPEF” for scholarships and financial support.

Summary

Prey identification expands our knowledge on social wasps and their interactions as predators of herbivorous insects. The objective was to characterize the Polybia fastidiosuscula Saussure (Hymenoptera: Vespidae) foraging pattern in Jul 2015. Polybia fastidiosuscula workers returning to the nest were intercepted and captured with an entomological net at the Universidade Federal de Viçosa in Viçosa, Minas Gerais State, Brazil. Seven sampling sessions of 13 h each, from 6:00 AM to 7:00 PM, were carried out, totaling 91 sampling h. The prey collected (182 insects) were Lepidoptera (92.6%), Araneae (3.1%), Diptera (2.5%), and Orthoptera (nymphs, 1.8%). Mean (\pm SD) wasp weight was 17.4 \pm 3.3 mg, and mean weight of prey transported was 5.2 \pm 2.5 mg. A $P. fastidiosuscula$ worker can carry a load of about 30% of their own body weight. The foraging preference, principally of lepidopteran caterpillars, suggests that $P. fastidiosuscula$ has potential as a natural enemy in integrated pest management programs.

Key Words: biological control; feeding behavior; natural enemy; social wasps

References Cited

Auaud AM, Carvalho CA, Clemente MA, Prezoto F. 2010. Diversity of social wasps (Hymenoptera) in a silvopastoral system. Sociobiology 55: 627–636.

Beggs J. 2001. The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biological Conservation 99: 17–28.

Brown R, Payne A, Graham KK, Starks PT. 2012. Prey capture and caste-specific payload capacities in the European paper wasp Polistes dominulus. Insectes Sociaux 59: 519–525.

Brügger BP, Araújo LS, De Souza AR, Prezoto F. 2011. Social wasps (Synoeca cyanea) damaging Psidium sp. (Myrtaceae) fruits in Minas Gerais state, Brazil. Sociobiology 57: 533–535.

Brügger BP, Castro BM, Prezoto F, Serrão JE, Zanuncio JC. 2017. Feeding by the social wasp Polybia scutellaris (Hymenoptera: Vespidae) on Syzygium jambos (Myrtaceae) fruits in Minas Gerais, Brazil. Florida Entomologist 100: 172–173.

Dejean A, Rodríguez-Pérez H, Carpenter JM, Azméara F, Corbarae B. 2017. The predatory behavior of the Neotropical social wasp Polybia rejecta. Behavioural Processes 140: 161–168.

Hernández DJ, Sarmiento CE, Fernández HC. 2009. Foraging activity of Polybia occidentalis venezuelana (Hymenoptera, Vespidae). Revista Colombiana de Entomología 35: 230–234.

Moreyra S, D’Adamo P, Lozada M. 2012. Cognitive processes in Vespula germanica wasps (Hymenoptera: Vespidae) when relocating a food source. Annals of the Entomological Society of America 105: 128–133.

Pereira AJ, Masciocchi M, Bruzone O, Corley JC. 2013. Field preferences of the social wasp Vespula germanica (Hymenoptera: Vespidae) for protein-rich baits. Journal of Insect Behavior 26: 730–739.

Prezoto F, Lima MA, Machado VL. 2005. Survey of preys captured and used by Polistes dominulus (Richards) (Hymenoptera: Vespidae) foraging an ecosystem that has an abundant carbohydrate resource. Biological Conservation 99: 17–28.

Raveret-Richter M. 2000. Social wasp (Hymenoptera: Vespidae) foraging by returning to the nest. Annual Review of Entomology 45: 121–150.

Santos GP, Zanuncio JC, Pires EM, Prezoto F, Milagres Pereira JM, Serrão J. 2009. Foraging of Parachartergus fraternus (Hymenoptera: Vespidae: Epiponini) on cloudy and sunny days. Sociobiology 53: 431–441.

Saraiva NB, Prezoto F, Fonseca MG, Blassioli-Moraes MC, Borges M, Laumann RA, Auaud AM. 2017. The social wasp Polybia fastidiosuscula Saussure (Hymenoptera: Vespidae) uses herbivore-induced maize plant volatiles to locate its prey. Journal of Applied Entomology 141: 620–629.

Souza AR, Rocha M, Netto P, Venâncio D, Prezoto F. 2010. Preliminary homing ability study of Polybia fastidiosuscula (Hymenoptera: Vespidae) workers. Sociobiology 56: 133–136.