New pole contribution to $P_{h\perp}$-weighted single-transverse spin asymmetry in semi-inclusive deep inelastic scattering

Shinsuke Yoshida1

1 Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

Abstract

In this paper, we discuss the new hard pole contribution to the $P_{h\perp}$-weighted single-transverse spin asymmetry in semi-inclusive deep inelastic scattering. We perform the complete next-to-leading order calculation of the $P_{h\perp}$-weighted cross section and show that the new hard pole contribution is required in order to obtain the complete evolution equation for the Qiu-Sterman function derived by different approaches.
1 Introduction

The origin of the single transverse-spin asymmetries (SSAs) in various hard processes has been a longstanding problem for almost 40 years since the unexpected large asymmetries were observed in mid-1970s [1, 2]. Many theoretical works in recent decades found that twist-3 framework in collinear factorization approach is a possible extended framework which can provide a systematic description of the large SSA in perturbative QCD. The twist-3 framework has been well developed in leading-order (LO) accuracy [3-17] in recent decades. Started with the pioneering work by Efremov and Teryaev [3], the more systematic calculation was presented by Qiu and Sterman [4-6]. While the formalism was applied to SSAs in other processes [7, 8, 9], the solid foundation was finally provided in [11] to provide the gauge-invariant twist-3 cross section formula in terms of the complete set of the twist-3 distribution functions. The phenomenological analysis [10, 18] showed that the twist-3 distribution effect of the transversely polarized proton can give a reasonable description of the experimental data and therefore it is widely believed that this effect is one of possible sources of the large SSA.

In usual perturbative QCD calculation, higher-order corrections are often not negligible compared to a leading order contribution. Those corrections bring the logarithmic energy-scale dependence of nonperturbative function which is described by the evolution equation. Systematic treatment of the scale dependence of the twist-3 functions is essential to a quantitative description of the SSA. The twist-3 distribution effect of the transversely polarized proton is embodied as the so-called Qiu-Sterman (QS) function in the spin-dependent cross section formula. The scale evolution equation of the QS function was discussed by using several different approaches so far [19-26]. One of the approaches is the next-to-leading-order (NLO) calculation of the transverse momentum $P_{h\perp}$-weighted cross section. Based on this approach, some part of the evolution equation was first derived in the study of the Drell-Yan process [21]. Subsequently the authors of [26] examined the so-called hard-pole (HP) contribution in the semi-inclusive deep inelastic scattering (SIDIS) and identified an extra term in the evolution equation which had been derived by other approaches [22, 23, 24, 25], while the complete agreement for the whole evolution equation was not yet achieved. In the meanwhile the authors of [27] found the new HP contribution in the study of the $P_{h\perp}$-differential cross section for SSA in SIDIS. In this paper, we include this new HP contribution for the NLO $P_{h\perp}$-weighted cross section. We shall show that this new HP contribution yields extra collinear singularity and its factorization reproduce the correct evolution of the QS function found in [22, 24, 25]. We shall also present the complete NLO cross section for the twist-3 $P_{h\perp}$-weighted cross section for SSA.

The remainder of the paper is organized as follows: in Sec. 2 we introduce the twist-3 distribution functions for the transversely polarized proton. Next, in Sec. 3 we discuss the contribution of the real-emission diagrams in NLO $P_{h\perp}$-weighted cross section. In Sec. 4 we introduce the LO and NLO virtual-correction contributions which were already calculated in the previous work and present the complete NLO cross section formula. Finally, in Sec. 5 we summarize our work.

2 Twist-3 distribution functions for transversely polarized proton

Here we introduce twist-3 functions relevant to our study. The F-type twist-3 functions are defined as

$$M_{F_{ij}}^{\alpha}(x_1, x_2) = \int \frac{d\lambda}{2\pi} \int \frac{d\mu}{2\pi} e^{i\lambda x_1} e^{i\mu(x_2-x_1)} \langle pS_\perp | \bar{\psi}_j(0) gF_\alpha^{\alpha n}(\mu n) \psi_i(\lambda n) | pS_\perp \rangle$$
where $F^{\alpha n}$ is a gluon's field strength tensor and we used the simplified notation $F^{\alpha \beta n}_{\beta}$ and $\epsilon^{\alpha \beta p n} \equiv \epsilon^{\alpha \beta \rho \sigma p} n_{\rho} n_{\sigma}$. The anti-symmetric tensor is defined as $\epsilon^{0123} = -1$. We introduced the nucleon mass M_N in order to define the dimensionless functions. From the Hermiticity and PT-invariance, one can show the following symmetry properties:

$$G_F(x_1, x_2) = G_F(x_2, x_1), \quad \tilde{G}_F(x_1, x_2) = -\tilde{G}_F(x_2, x_1).$$

In this paper, we discuss the evolution equation of the QS function $G_F(x_1, x_2)$ at $x_1 = x_2$.

3 Contribution of real-emission diagrams to next-leading order cross section

We consider the SSA for light-hadron production in SIDIS,

$$e(\ell) + p(p, S_\perp) \rightarrow e(\ell') + h(P_h) + X.$$

Within the collinear factorization framework, the SSA can be described by the twist-3 effects. In this process, the SSA receives two types of twist-3 contributions, the distribution effect of the transversely polarized proton and the fragmentation effect of the light-hadron. We focus on the former contribution in this study to derive the evolution equation of the Qiu-Sterman function $G_F(x, x)$. In the case of SIDIS, the cross section formula can be expressed in terms of the following Lorentz invariant variables,

$$S_{ep} = (p + \ell)^2, \quad Q^2 = -q^2, \quad x_B = \frac{Q^2}{2 p \cdot q}, \quad z_h = \frac{p \cdot P_h}{p \cdot q},$$

where $q = (\ell - \ell')$ is the momentum of the virtual photon. We choose the hadron frame [17] for the calculation,

$$\ell = \frac{Q}{2} (\cosh \psi, \sinh \psi \cos \phi, \sinh \psi \sin \phi, -1),$$

$$q = (0, 0, 0, -Q), \quad P^\mu = \left(\frac{Q}{2 x_B}, 0, 0, \frac{Q}{2 x_B} \right), \quad S_\perp^\mu = (0, \cos \Phi_S, \sin \Phi_S, 0)$$

$$P_h = \frac{z_h Q}{2} \left(1 + \frac{P^2_{\perp h}}{z_h Q^2} \cos \chi, \frac{2 P_{\perp h}}{z_h Q} \sin \chi, \frac{P^2_{\perp h}}{z_h Q^2} - 1 \right),$$

where $\cosh \psi = \frac{2 x_B S_{ep}}{Q^2} - 1$. In this paper, we discuss the NLO $P_{h \perp}$-weighted polarized cross section defined as

$$\frac{d^4 \langle P_{h \perp} \Delta \sigma \rangle}{dx_B dQ^2 dz_h d\phi} \equiv \int d^2 P_{h \perp} \epsilon^{S_\perp P_{h \perp} p n} \left(\frac{d^6 \Delta \sigma}{dx_B dQ^2 dz_h dP^2_{h \perp} d\phi d\chi} \right).$$

First we consider the real-emission diagrams in NLO contribution. The NLO real-emission diagrams in $P_{h \perp}$-weighted cross section are the same as the LO diagrams in $P_{h \perp}$-differential...
The calculation technique to derive a twist-3 cross section for 2 → 2 scattering has been well developed in recent decades and a systematic way to derive the gauge-invariant cross section was established in [11]. We briefly discuss the derivation below. The cross section for SIDIS was presented in [17, 28] as

$$\frac{d^6 \Delta \sigma}{dx_B dQ^2 dz_1 dP^2_\perp d\phi d\chi} = \frac{\alpha_{em}^2}{128\pi^4 z_2 x_B S_{em}^2 Q^2} L_{\mu\nu} W^{\mu\nu}.$$ \hspace{1cm} (9)

where \(\alpha_{em} = \frac{e^2}{4\pi}\) is the QED coupling constant and \(L_{\mu\nu} = 2(\ell_\mu \ell'_\nu + \ell_\nu \ell'_\mu) - Q^2 g_{\mu\nu}\) is the leptonic tensor. Since we are interested in the twist-3 effect of the transversely polarized proton, we introduce the usual twist-2 fragmentation function \(D(z)\) for fragmentation part as

$$W^{\mu\nu} = \int \frac{dz}{z^2} D(z) u^{\mu\nu}$$ \hspace{1cm} (10)

The hadronic tensor \(u^{\mu\nu}\) describes a scattering of the virtual photon and the transversely polarized proton. We consider a “general” diagram given by

$$u^{\mu\nu} = \int d^4 \xi \int d^4 \eta \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} e^{i k_1 \cdot \xi} e^{i k_2 \cdot \eta} \langle PS_{\perp} | \bar{\psi}(0) g A_\alpha(\eta) \psi(x) | PS_{\perp} \rangle$$

$$\times \left(S_{ji}^\alpha(k_1, k_2) + \tilde{S}_{ji}^\alpha(k_1, k_2) \right),$$ \hspace{1cm} (11)

which represents the scattering of the virtual photon and the polarized proton graphically shown in Fig.1. We suppressed the Lorentz indices \(\mu\) and \(\nu\) of the hard parts \(S_{ji}^\alpha(k_1, k_2)\) and \(\tilde{S}_{ji}^\alpha(k_1, k_2)\) for simplicity. Within the collinear factorization framework, a complex phase required for the naively \(T\)-odd SSA can be provided by a pole contribution associated with a internal propagator. In SIDIS case, the pole contributions can be classified into four types as soft-gluon-pole(SGP), soft-fermion-pole(SFP), hard-pole(HP) and another hard-pole(HP2) which are respectively shown in Fig. 2-5. We would like to emphasize that the HP2 contribution was not considered in previous studies for the \(P_{h\perp}\)-weighted cross section and this contribution is essential to obtain the consistent evolution equation of \(G_F(x_1, x_2)\) with the results in different approaches [22, 24, 25]. We can check that the hard part \(S_{ji}^\alpha(k_1, k_2)\) with the pole contribution satisfies the Ward identity

\[(k_2 - k_1) \alpha S_{ji}^\alpha(k_1, k_2) = 0,\] \hspace{1cm} (12)

and associated relations

\[(x_2 - x_1) \frac{\partial}{\partial k_2^\nu} S_{ji}^\alpha p(k_1, k_2) \bigg|_{k_i = x_i p} = -S_{ji}^\alpha(x_1 p, x_2 p),\] \hspace{1cm} (13)

\[(x_2 - x_1) \frac{\partial}{\partial k_1^\mu} S_{ji}^\alpha p(k_1, k_2) \bigg|_{k_i = x_i p} = S_{ji}^\alpha(x_1 p, x_2 p).\] \hspace{1cm} (14)

For SFP and HP contributions, the above relations give

\[\frac{\partial}{\partial k_2^\nu} S_{ji}^\alpha p(k_1, k_2) \bigg|_{k_i = x_i p} = -\frac{\partial}{\partial k_1^\mu} S_{ji}^\alpha p(k_1, k_2) \bigg|_{k_i = x_i p},\] \hspace{1cm} (15)
Figure 1: Diagrammatic description for the hadronic tensor $w^{\mu\nu}$. The upper diagrams and the lower diagrams respectively represent $S_{ji}^\alpha(k_1,k_2)$ and $\tilde{S}_{ji}^\alpha(k_1,k_2)$.

and we can find the same relation for SGP contribution with a direct inspection. Another hard part $S_{ji}^{\text{pole}} p(k_1,k_2)$ also has the same relations. To extract the twist-3 $O(k_\perp)$ contribution from the general contribution (11), we perform the collinear expansion for the hard parts as

$$S_{ji}^{\text{pole}} \alpha(k_1,k_2) = S_{ji}^{\text{pole}} \alpha((k_1 \cdot n)p,(k_2 \cdot n)p) + \frac{\partial}{\partial k_1^\alpha} S_{ji}^{\text{pole}} p(k_1,k_2) \bigg|_{k_1=(k,n)p} \omega^\alpha k_1^\beta$$

$$+ \frac{\partial}{\partial k_2^\alpha} S_{ji}^{\text{pole}} p(k_1,k_2) \bigg|_{k_2=(k,n)p} \omega^\beta k_2^\beta$$

$$= S_{ji}^{\text{pole}} \alpha((k_1 \cdot n)p,(k_2 \cdot n)p) + \frac{\partial}{\partial k_1^\alpha} S_{ji}^{\text{pole}} p(k_1,k_2) \bigg|_{k_1=(k,n)p} \omega^\alpha (k_2^\beta - k_1^\beta), \quad (16)$$

where $\omega^\alpha = g^\alpha_\beta - p^\alpha n_\beta$ and we used the relation (15). And we separate the Lorentz components of the gluon field,

$$A^\alpha = A^n p^\alpha + \omega^\alpha A^\beta. \quad (17)$$

Then we pick up subleading contributions in (11) and construct the F-type correlator (1) as

$$w^{\mu\nu} = \int d^4 \xi \int d^4 \eta \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} e^{i k_1 \cdot \xi} e^{i (k_2 - k_1) \cdot \eta} \langle PS_\perp | \bar{\psi}_j(0) g A^n(\eta) \psi_i(\xi) | PS_\perp \rangle$$

5
We express the hard parts in terms of each pole contribution as

\[S_{ji}^{\text{pole} \alpha}(k_1, k_2) = \mathcal{H}_{L_{ji}}^{SGP \alpha}(k_1, k_2) \left\{ -i\pi \delta \left(\left(\frac{P_h}{z} - (k_2 - k_1) \right)^2 \right) \right\} (2\pi) \delta \left((k_2 + q - \frac{P_h}{z})^2 \right) \]

\[+ \mathcal{H}_{L_{ji}}^{HP \alpha}(k_1, k_2) \left\{ -i\pi \delta \left((k_1 + q)^2 \right) \right\} (2\pi) \delta \left((k_2 + q - \frac{P_h}{z})^2 \right) \]

\[+ \mathcal{H}_{L_{ji}}^{SFP \alpha}(k_1, k_2) \left\{ -i\pi \delta \left(\left(\frac{P_h}{z} - (k_2 - k_1) - q \right)^2 \right) \right\} (2\pi) \delta \left((k_2 + q - \frac{P_h}{z})^2 \right) \]

+ mirror diagrams

\[\tilde{S}_{ji}^{\text{pole} \alpha}(k_1, k_2) = \tilde{\mathcal{H}}_{L_{ji}}^{HP2 \alpha}(k_1, k_2) \left\{ i\pi \delta \left((k_2 + q)^2 \right) \right\} (2\pi) \delta \left((k_2 - k_1 + q - \frac{P_h}{z})^2 \right) \]
Figure 3: Diagrammatic description for HP diagrams $H_{\tiny Lji}^{HP\alpha}(k_1, k_2)$. The third gluon line with momentum $k_2 - k_1$ which comes from the transversely polarized proton attaches to one of the black dots in each diagram.

$$+\tilde{H}_{\tiny Lji}^{SFP\alpha}(k_1, k_2)\left\{i\pi\delta\left((\frac{P_h}{z} - k_2 - q)^2\right)\right\}(2\pi)\delta\left((k_2 - k_1 + q - \frac{P_h}{z})^2\right)$$

+ mirror diagrams

We can find that the SFP contributions $\tilde{H}_{\tiny ji}^{SFP\rho}(k_1, k_2)$ and $\tilde{H}_{\tiny ji}^{SFP\rho}(k_1, k_2)$ are the topologically same and then exactly cancel each other. After a little computation, we can obtain the formula for the hadronic tensor $W^{\mu\nu}$ as follows.

$$W^{\mu\nu} = \frac{M_N\pi^2}{2} \int \frac{dz}{z} D(z) \int \frac{dx}{x} \delta\left((xp + q - \frac{P_h}{z})^2\right) \left[-2e^p \epsilon_p S_\perp \frac{d}{dx} G_F(x, x) \left(\hat{s} + Q^2 \right) \frac{t}{t\bar{u}} \text{Tr}[x\gamma H(xp)]\right]$$

$$-2e^p \epsilon_p S_\perp G_F(x, x) \left\{Q^2 \left(\frac{\partial}{\partial \hat{s}} - \frac{\partial}{\partial Q^2}\right) \text{Tr}[x\gamma H(xp)]\right\}$$

$$+ G_F(x, x_B) \frac{1}{\hat{x} - 1} \frac{\hat{x}}{Q^2} \epsilon_p S_\perp \left(\text{Tr}[x\gamma H_{\tiny L}^{HP\alpha}(x_Bp, xp)] + \text{Tr}[x\gamma H_{\tiny R}^{HP\alpha}(xp, x_Bp)]\right)$$

$$- \tilde{G}_F(x, x_B) \frac{1}{\hat{x} - 1} \frac{\hat{x}}{Q^2} i S_\perp \left(\text{Tr}[\gamma_5 x\gamma \hat{H}_{\tiny L}^{HP\alpha}(x_Bp, xp)] - \text{Tr}[\gamma_5 x\gamma \hat{H}_{\tiny R}^{HP\alpha}(xp, x_Bp)]\right)$$

$$+ G_F(x_B, x_B - x) \frac{\hat{x}}{Q^2} \epsilon_p S_\perp \left(\text{Tr}[x\gamma H_{\tiny L}^{HP2\alpha}((x_B - x)p, x_Bp)]\right)$$

$$+ \text{Tr}[x\gamma H_{\tiny R}^{HP2\alpha}(x_Bp, (x_B - x)p)]$$

$$- \tilde{G}_F(x_B, x_B - x) \frac{\hat{x}}{Q^2} i S_\perp \left(\text{Tr}[\gamma_5 x\gamma \hat{H}_{\tiny L}^{HP2\alpha}((x_B - x)p, x_Bp)]\right)$$

$$- \text{Tr}[\gamma_5 x\gamma \hat{H}_{\tiny R}^{HP2\alpha}(x_Bp, (x_B - x)p)]\right\],$$

where we used the Mandelstam variables

$$\hat{s} = (xp + q)^2 = \frac{1 - \frac{\hat{x}}{x}}{Q^2},$$

$$\hat{s} = (xp + q)^2 = \frac{1 - \frac{\hat{x}}{x}}{Q^2}, \quad (21)$$

$$\hat{s} = (xp + q)^2 = \frac{1 - \frac{\hat{x}}{x}}{Q^2}, \quad (22)$$
Figure 4: Diagrammatic description for SFP diagrams. The upper diagrams and the lower diagrams respectively represent $H^{SFP}_j(k_1,k_2)$ and $\tilde{H}^{SFP}_j(k_1,k_2)$.

\[\hat{t} = (p_c - q)^2 = \frac{1 - \hat{z}}{\hat{x}} Q^2, \]
\[\hat{u} = (xp - p_c)^2 = \frac{\hat{z}}{\hat{x}} Q^2, \]

where $p_c = \frac{P_h}{z}$. We used the Ward identity \(\text{(13)} \) for hard-pole contributions. For the SGP contribution, we used master formula \cite{28,29}

\[\frac{\partial}{\partial k_2^\beta} \text{Tr}[x_1 \psi S^{SGP}_j p(k_1,k_2)] \big|_{k_1 = x_1 p} = -i\pi \delta(x_1 - x_2) \frac{d}{dp_c^\beta} \text{Tr}[x_1 \psi S(x_1 p)] \]

\[= 2i\pi \delta(x_1 - x_2) \hat{s} + \frac{Q^2}{u} p_c^\beta \frac{\partial}{\partial t} \text{Tr}[x_1 \psi S(x_1 p)], \]

where $S(xp)$ is the $2 \rightarrow 2$ scattering cross section without the third gluon line comes from the transversely polarized proton (but the color factor is the same as S^{SGP}_j). In this paper, we consider the metric contribution,

\[L_{\mu\nu} W^{\mu\nu} \rightarrow (-g_{\mu\nu} W^{\mu\nu}), \]

\[\frac{d^4(P_{h\perp} \Delta \sigma)^{\text{real}}}{dx_B dQ^2 d\phi} = \frac{\alpha_{em}^2}{32\pi^2 z_h x_B^2 s_{p\perp}^2 Q^2} \int dzzD(z) \int \frac{d^2p_{\perp}}{(2\pi)^2} c s_{p\perp} s_{p\perp} \left(-g_{\mu\nu} w^{\mu\nu}\right), \]

and the metric should be normalized as $g_{\mu\nu} \rightarrow \frac{1}{1 - \epsilon} g_{\mu\nu}$ with $\epsilon = 2 - D/2$ in D-dimensional calculation. We can compute the $P_{h\perp}$-weighted cross section for NLO real-emission diagrams in
Figure 5: Diagrammatic description for HP2 diagrams $H_{L2}^{\alpha}(k_1, k_2)$. These diagrams were first found in [27] in the study of $P_{h\perp}$-differential SSA but was not considered in previous studies of the $P_{h\perp}$-weighted SSA.

D-dimension as follows.

$$
\frac{d^4\langle P_{h\perp}\Delta\sigma\rangle^{\text{real}}}{dx_BdQ^2dz_hd\phi}
= \pi M_N\alpha_s^2m_{\pi}\alpha_s\sum_q e_q^2 \int dz D^q(z)\mu^{2x} \int \frac{d^2-2\epsilon p_{c\perp}}{(2\pi)^{2-2\epsilon}} \left[\int \frac{dx}{x} \delta\left(p_{c\perp}^2 - \frac{(1 - \hat{x})(1 - \hat{z})\hat{z}}{\hat{x}}\right) Q^2 \right]
\times \frac{1}{1 - \epsilon} \left[\frac{d}{dx} G_F^q(x, x) H_D + G_F^q(x, x) H_{ND} + G_F^q(x, x_B) H_{HP} + \tilde{G}_F^q(x, x_B) H_{HPT}
+ G_F^q(x_B, x_B - x) H_{HP2} + \tilde{G}_F^q(x_B, x_B - x) H_{HPT2} \right],
$$

(28)

where q denotes the quark flavor, α_s is the QCD coupling constant and we used the symmetry for $p_{c\perp}$-integral

$$
\int d^2-2\epsilon p_{c\perp} p_{c\perp\alpha}p_{c\perp\beta}\epsilon^{S_{\perp}\alpha\perp\beta\perp\alpha} = - \int d^2-2\epsilon p_{c\perp} \frac{1}{2(1 - \epsilon)} p_{c\perp}^2 g_{\perp\alpha\beta} \epsilon^{S_{\perp}\alpha\perp\beta\perp\alpha}
= - \int d^2-2\epsilon p_{c\perp} \frac{1}{2(1 - \epsilon)} \frac{(1 - \hat{x})(1 - \hat{z})\hat{z}}{\hat{x}} Q^2,
$$

(29)

and the hard cross sections can be computed as

$$
H_D = \frac{1}{2N} \left\{ 1 - 2\hat{x} - \hat{z} + \epsilon(1 - 2\hat{x} + \hat{z}) + \frac{1 + \hat{x}^2 - \epsilon(1 - \hat{x})^2}{1 - \hat{z}} \right\}
$$

(30)

$$
H_{ND} = \frac{1}{2N} \left[- \frac{2}{(1 - \hat{x})(1 - \hat{z})} + \frac{1 + \hat{z} + \epsilon(1 - \hat{z})}{1 - \hat{x}}
+ \frac{(1 - \hat{x})(1 + 2\hat{x}) - \epsilon(1 - \hat{x})(2\hat{x} - 1)}{1 - \hat{z}} - 2(1 + \epsilon)(1 - \hat{x}) \right]
$$

(31)

$$
H_{HP} = \left(\hat{z}C_F + \frac{1}{2N} \right) \left[\frac{2}{(1 - \hat{x})(1 - \hat{z})} - \frac{1 + \hat{z} + \epsilon(1 - \hat{z})}{1 - \hat{x}} - \frac{1}{1 - \hat{z}} + (1 + \hat{z} + \epsilon) \right]
$$

(32)

9
\[H_{HPT} = \frac{1}{1 - \epsilon} \left(z C_F + \frac{1}{2N} \right) \left[- \frac{1 + \hat{z} - 2\epsilon + e^2(1 - \hat{z})}{1 - \hat{z}} - \frac{1 + \epsilon}{1 - \hat{z}} + (1 + \hat{z} + \epsilon \hat{z} + \epsilon^2) \right] \tag{33} \]

\[H_{HP2} = \frac{1}{2N} \left[\frac{1 - 2\hat{x}}{1 - \hat{z}} - (1 - 2\hat{x})(1 + \hat{z} + \epsilon) \right] + \frac{1}{1 - \epsilon/2} \left[(1 - 2\hat{x})(2\hat{z}^2 - 2\hat{z} + 1 - \epsilon) \right] \tag{34} \]

\[H_{HPT2} = \frac{1}{1 - \epsilon} \frac{1}{2N} \left[\frac{1 + \epsilon}{1 - \hat{z}} - (1 + \hat{z} + \epsilon \hat{z} + \epsilon^2) \right] - \frac{1}{1 - \epsilon/2} \left[1 - 2\hat{z} - \epsilon \right], \tag{35} \]

where \(N = 3 \) is a number of colors and \(C_F = \frac{N^2 - 1}{2N} \). The \(p_{c \perp} \)-integral can be calculated in \(D \)-dimension as

\[
\int \frac{d^2 p_{c \perp}}{(2\pi)^{2-2\epsilon}} \delta \left(p_{c \perp}^2 - \frac{(1 - \hat{x})(1 - \hat{z})\hat{z}}{\hat{x}} Q^2 \right) = \frac{1}{(2\pi)^{2-2\epsilon}} \int dp_{c \perp} \int d\Omega_{2-2\epsilon} (p_{c \perp})^{1-2\epsilon} \delta \left(p_{c \perp}^2 - \frac{(1 - \hat{x})(1 - \hat{z})\hat{z}}{\hat{x}} Q^2 \right) = \frac{1}{4\pi} \frac{4\pi}{Q^2} \frac{1}{\Gamma(1 - \epsilon)} \left(\frac{(1 - \hat{x})(1 - \hat{z})\hat{z}}{\hat{x}} \right)^{-\epsilon}, \tag{36} \]

where \(\Omega_{2-2\epsilon} \) is a solid angle

\[
\int d\Omega_{2-2\epsilon} = \frac{2\pi^{1-\epsilon}}{\Gamma(1 - \epsilon)}. \tag{37} \]

We carry out the \(\epsilon \)-expansion for the phase-space integral as follows.

\[
\hat{z}^{-\epsilon} \simeq 1 - \epsilon \ln \hat{z}, \quad \hat{x}^\epsilon \simeq 1 + \epsilon \ln \hat{x}, \tag{38} \]

\[
(1 - \hat{z})^{-1-\epsilon} \simeq -\frac{1}{\epsilon} \delta(1 - \hat{z}) + \frac{1}{(1 - \hat{z})_+} - \epsilon \left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}} \right)_+, \tag{39} \]

\[
(1 - \hat{x})^{-1-\epsilon} \simeq -\frac{1}{\epsilon} \delta(1 - \hat{x}) + \frac{1}{(1 - \hat{x})_+} - \epsilon \left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}} \right)_+, \tag{40} \]

Then the cross section formula reads

\[
\frac{d^4\langle P_{h \perp} \Delta \sigma \rangle_{\text{real}}}{dx_B dQ^2 d\hat{z}_h d\phi} = -\frac{\pi M_{Nqem}}{4x_B^2 S_{qF}^2 2\pi} \frac{\alpha_s}{Q^2} \frac{4\pi^2}{Q^2} \frac{1}{\Gamma(1 - \epsilon)} \sum_q e_q^2 \left[\int dz D^q(z) \int dx \frac{d}{dx} G_f^q(x, x) \hat{\sigma}_D + G_f^q(x, x) \hat{\sigma}_{ND} + G_f^q(x, x) \hat{\sigma}_{HP} + G_f^q(x, x) \hat{\sigma}_{HPT} + G_f^q(x, x) \hat{\sigma}_{HPT2} \right], \tag{41} \]

\[
\hat{\sigma}_D = \frac{1}{2N} \left[-\frac{1}{\epsilon} (1 + \hat{x}^2) \delta(1 - \hat{z}) + (1 - \hat{z}) + \frac{(1 - \hat{x})^2 + 2\hat{z} \hat{x}}{(1 - \hat{z})_+} \right]. \]
\[-\delta(1 - \hat{z})(1 + \hat{\delta}^2)\ln\frac{\hat{x}}{1 - \hat{x}} + 2\hat{x})\]

(42)

\[\hat{\sigma}_{ND} = \frac{1}{2N} \left[(-\frac{2}{\epsilon^2})\delta(1 - \hat{x})\delta(1 - \hat{z}) + \left(-\frac{1}{\epsilon}\right)(2\delta(1 - \hat{x})\delta(1 - \hat{z}) - \frac{1 + \hat{z}^2}{(1 - \hat{z})_+}\delta(1 - \hat{x}) \right.\]

\[+ \left. \frac{2\hat{x}^3 - 3\hat{x}^2 - 1}{(1 - \hat{x})_+}\delta(1 - \hat{z}) \right] - 2\delta(1 - \hat{x})\delta(1 - \hat{z}) + \frac{2\hat{x}^3 - 3\hat{x}^2 - 1}{(1 - \hat{x})_+}\delta(1 - \hat{z}) \]

\[+ \frac{1 + \hat{z}}{(1 - \hat{x})_+} - 2(1 - \hat{x}) + \delta(1 - \hat{z}) \left(-\delta(1 - \hat{x})(1 + 2\hat{x})\log\frac{\hat{x}}{1 - \hat{x}} - 2\left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}}\right)_+ \right.\]

\[+ \left. \frac{2}{(1 - \hat{x})_+} - 2(1 - \hat{x}) + \frac{2\ln\hat{x}}{(1 - \hat{x})_+} \right) + \delta(1 - \hat{x}) \left((1 + \hat{z})\ln\hat{z}(1 - \hat{z}) - 2\frac{\ln\hat{z}}{(1 - \hat{z})_+} \right) - 2\left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}}\right)_+ \]

(43)

\[\hat{\sigma}_{HP} = \left(\hat{\sigma}_C + \frac{1}{2N}\right) \left[\frac{2}{\epsilon^2}\delta(1 - \hat{x})\delta(1 - \hat{z}) + \frac{1}{\epsilon}(2\delta(1 - \hat{x})\delta(1 - \hat{z}) - \frac{1 + \hat{z}^2}{(1 - \hat{z})_+}\delta(1 - \hat{x}) \right.\]

\[+ \left. \frac{1 + \hat{z}}{(1 - \hat{x})_+}\delta(1 - \hat{z}) \right] + 2\delta(1 - \hat{x})\delta(1 - \hat{z}) + \frac{1 + \hat{z}^2}{(1 - \hat{x})_+}\delta(1 - \hat{z}) \]

\[+ \delta(1 - \hat{z}) \left(\log\frac{\hat{x}}{1 - \hat{x}} + 2\left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}}\right)_+ - \frac{2\ln\hat{x}}{(1 - \hat{x})_+} \right) + \left. \frac{1 + \hat{z}}{(1 - \hat{x})_+} \right) \]

\[+ \delta(1 - \hat{x}) \left(-(1 + \hat{z})\ln\hat{z}(1 - \hat{z}) + 2\left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}}\right)_+ + \frac{2\ln\hat{z}}{(1 - \hat{z})_+} - \frac{2\hat{z}}{(1 - \hat{z})_+} \right) \]

(44)

\[\hat{\sigma}_{HPT} = \left(\hat{\sigma}_C + \frac{1}{2N}\right) \left[\frac{\delta(1 - \hat{z})}{\epsilon^2} - \frac{1 - \hat{z}^2}{(1 - \hat{z})_+}\delta(1 - \hat{z}) \left(\ln\frac{\hat{x}}{1 - \hat{x}} + 3\right) \right] \]

(45)

\[\hat{\sigma}_{HP2} = \frac{1}{2N} \left[-\frac{1}{\epsilon}(1 - 2\hat{x})\delta(1 - \hat{z}) + \frac{1 - \hat{x}^2}{(1 - \hat{z})_+} - \delta(1 - \hat{z})(1 - 2\hat{x})(\ln\frac{\hat{x}}{1 - \hat{x}} + 1) \right] \]

\[+ \frac{1}{2}(1 - 2\hat{x})(1 - \hat{z}^2) + \hat{z}^2 \]

(46)

\[\hat{\sigma}_{HPT2} = \frac{1}{2N} \left[-\frac{1}{\epsilon}\delta(1 - \hat{z}) + \frac{\hat{z}^2}{(1 - \hat{z})_+} - \delta(1 - \hat{z})(\ln\frac{\hat{x}}{1 - \hat{x}} + 3) \right] - \frac{1}{2}(1 - 2\hat{z}) \]

(47)

where we used the antisymmetric property \(\tilde{G}_F(x, x_B)\delta(1 - \hat{x}) = \tilde{G}_F(x, x)\delta(1 - \hat{x}) = 0 \). Finally we can derive the contribution of real-emission diagrams as

\[
\frac{d^4\langle P_{h\perp}\Delta\sigma\rangle_{\text{real}}}{dx_BdQ^2dz_Hd\phi}
\]
\[-z_{h}M_{N} \alpha_{s}^{2} \frac{\alpha_{s}}{4 \pi^2} \frac{e^{4 \pi^2}}{2 \pi^2} \left(\frac{Q^2}{\hat{Q}^2} \right) \left(\frac{Q^2}{\hat{Q}^2} \right) \sum_{q} e_{q}^{2} \left(C_{F} \frac{2 \hat{G}_{q}^{q}(x_{B}, x_{B})}{e_{q}^{2}} D_{q}^{q}(z_{h}) \right) \]

\[+ \left(-\frac{1}{\epsilon} \right) \left\{ D_{q}^{q}(z_{h}) \left[\int_{x_{B}}^{1} \frac{dx}{x} \left[C_{F} \frac{1 + \hat{z}^{2}}{1 - \hat{x}^{2}} G_{q}^{q}(x, x) + N \frac{(1 + \hat{x}) G_{q}^{q}(x, x) - (1 + \hat{x}) G_{q}^{q}(x, x)}{(1 \cdots \hat{\delta}(1 - \hat{x}) \delta(1 - \hat{z}) \right. \right. \]

\[+ \delta(1 - \hat{z}) \left((1 + \hat{x}) \ln \hat{\gamma} + 2 \hat{x} \right) \left. \right] + G_{q}^{q}(x, x) D_{q}^{q}(z) \frac{1}{2N\hat{z}} \left[1 - \hat{z} + \frac{(1 - \hat{x})^{2} + 2\hat{x}\hat{z}}{(1 - \hat{z})_{+}} \right. \right. \]

\[-2 \left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}} \right) + \frac{2}{(1 - \hat{x})_{+}} - 2(1 - \hat{x}) + 2 \frac{\ln \hat{x}}{(1 - \hat{x})_{+}} \right) + \delta(1 - \hat{x}) \left(1 + \hat{z} \ln \hat{\gamma}(1 - \hat{z}) \right. \]

\[+ \frac{1 + \hat{x}^{2}}{(1 - \hat{z})_{+}} + \delta(1 - \hat{z}) \left[\log \frac{\hat{x}}{1 - \hat{x}} + 2 \frac{\ln(1 - \hat{x})}{1 - \hat{x}} \right. \right. \]

\[+ \frac{1 + \hat{x}}{(1 - \hat{x})_{+}} - 2(1 - \hat{x}) \left. \right] \left. \right] + G_{q}^{q}(x, x) D_{q}^{q}(z) \left(C_{F} + \frac{1}{2N\hat{z}} \right) \left[2\delta(1 - \hat{x}) \delta(1 - \hat{z}) \right. \]

\[+ \delta(1 - \hat{x}) \left. \right] \left. \right] + G_{q}^{q}(x, x) D_{q}^{q}(z) \left(C_{F} + \frac{1}{2N\hat{z}} \right) \left[\frac{1 - \hat{z}^{2}}{(1 - \hat{z})_{+}} + \delta(1 - \hat{z}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 3 \right) \right. \]

\[+ G_{q}^{q}(x, x B - x) D_{q}^{q}(z) \left. \right] \left. \right] + G_{q}^{q}(x, x B - x) D_{q}^{q}(z) \left[\frac{1}{2N\hat{z}} \left(\frac{(1 - 2\hat{x})^{2} + \hat{z}^{2}}{(1 - \hat{z})_{+}} - \delta(1 - \hat{z})(1 - 2\hat{x}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 1 \right) \right) \right. \]

\[+ \frac{1}{2\hat{z}} \left((1 - \hat{z})^{2} + \hat{z}^{2} \right) + G_{q}^{q}(x, x B - x) D_{q}^{q}(z) \left[\frac{1}{2N\hat{z}} \left(\frac{\hat{z}^{2}}{(1 - \hat{z})_{+}} \right) \right. \}

\[- \delta(1 - \hat{z}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 3 \right) - \frac{1}{2\hat{z}} \left(1 - 2\hat{x} \right) \right] \right\}, \quad (48)
where we performed partial integral,
\[
\int_{x_B}^{1} \frac{dx}{x} G_F(x, x)(1 + \hat{x}^2) = \int_{x_B}^{1} \frac{dx}{x} G_F(x, x)(2\hat{x}^2 - 2\delta(1 - \hat{x})),
\]
and we used \(G_F(x, x_B)\delta(1 - \hat{x}) = G_F(x, x)\delta(1 - \hat{x}) \). The boundary condition of the integrals is determined by the condition \(0 < P_{h\perp} < \sqrt{\frac{2^{2}(1-\hat{x})(1-\hat{x})^2}{x}} Q^2 < P_{h\perp}^{\max} \). The hard cross sections (45)-(47) associated with \(\tilde{G}(x, x_B), G(x_B, x_B - x) \) and \(\tilde{G}(x_B, x_B - x) \) are new results derived in this study and, in particular, the latter two contributions came from the HP2 contribution [27] which was not discussed in previous studies of the \(P_{h\perp} \)-weighted SSA. We should not neglect these new contributions to demonstrate the cancellation of the collinear singularities. Other contributions (42)-(44) agree with those derived in the previous study [26].

4 LO cross section and virtual-correction contribution in NLO cross section

In this section, we introduce the results of the LO cross section and virtual-correction contribution in NLO cross section already derived in [26]. Both contributions can be represented with \(2 \rightarrow 1 \) scattering cross section. The phase-space integral should be changed from \(2 \rightarrow 2 \) scattering as follows.

\[
\frac{d^3p_c}{(2\pi)^3 2p_c^0} \frac{d^3p_d}{(2\pi)^3 2p_d^0} (2\pi)^4 \delta^4(xp + q - p_c - p_d) \\
= \frac{d^3p_c}{(2\pi)^3 2p_c^0} (2\pi)^4 \delta^4((xp + q - p_c)^2) \\
\rightarrow \frac{d^3p_c}{(2\pi)^3 2p_c^0} (2\pi)^4 \delta^4(xp + q - p_c)
\]

In this case, we perform \(P_{h\perp} \)-integration before the collinear expansion as

\[
\int d^2 P_{h\perp} \epsilon^{\alpha\beta\rho m} S_{\perp\alpha} P_{h\perp\beta} \left(S_{L\gamma}(k_1, k_2) \delta^2(k_{2\perp} - \frac{P_{h\perp}}{z}) + S_{R\gamma}(k_1, k_2) \delta^2(k_{1\perp} - \frac{P_{h\perp}}{z}) \right)
\]
\[e^{\alpha \beta m} S_{\perp \alpha} e^{\beta} \left(k_{2 \perp \beta} S_{L}(k_1, k_2) + k_{1 \perp \beta} S_{R}(k_1, k_2) \right), \tag{51} \]

where we used the fact the virtual photon doesn’t have transverse momentum in hadron frame. We can find the following relation for LO diagram shown in Fig. 6.

\[S_{Lp}(x_1 p, x_2 p) = -S_{Rp}(x_1 p, x_2 p) \equiv S_p(x_1 p, x_2 p). \tag{52} \]

Since the \(P_{\perp} \) integration brought \(O(k_\perp) \) term, the leading term of the collinear expansion gives twist-3 contribution. We can construct the gluon’s field strength tensor as follows.

\[
\int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} e^{ik_1 \cdot x} e^{i(k_2 - k_1) \cdot n} A(n)(k_2 - k_1) S_p((k_1 \cdot n)p, (k_2 \cdot n)p)
\]

\[= i \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} e^{ik_1 \cdot x} e^{i(k_2 - k_1) \cdot n} A(n)(k_2 - k_1) S_p((k_1 \cdot n)p, (k_2 \cdot n)p)
\]

\[+ \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} e^{ik_1 \cdot x} e^{i(k_2 - k_1) \cdot n} A(n)(k_2 - k_1) S_p((k_1 \cdot n)p, (k_2 \cdot n)p). \tag{53} \]

The last term vanishes due to the SGP delta function. Then we can use the following formula for LO contribution

\[
\frac{d^4 \langle P_{\perp} \Delta \sigma \rangle^{\text{LO}}}{dx_B dQ^2 dz_h d\phi} = \frac{\alpha^2_{em}}{2z_h x_B^2 S_{ep} Q^2} \int dz dD(z) \int dx_1 \int dx_2 \epsilon^\alpha \sum_{ij} F_{ij} \langle x_1, x_2 \rangle \times \left(-g_{\mu\nu} H_{ij}^{\mu\nu}(x_1, x_2) \right) \frac{2x_1}{u Q^2} \delta(x_1 - x_2) \delta(1 - x_2) \delta(1 - z), \tag{54} \]

which agrees with the corresponding formula in \[21, 26\]. LO and NLO contributions in SIDIS were already calculated in previous work \[26\]. We just introduce their results in our notation below.

\[
\frac{d^4 \langle P_{\perp} \Delta \sigma \rangle^{\text{LO}}}{dx_B dQ^2 dz_h d\phi} = -\frac{z_h \pi M N \alpha^2_{em}}{4 x_B^2 S_{ep} Q^2} \sum_q e_q^2 G_q(x_B, x_B) \frac{Q^2}{D^q(z_h)} \tag{55} \]

\[
\frac{d^4 \langle P_{\perp} \Delta \sigma \rangle^{\text{virtual}}}{dx_B dQ^2 dz_h d\phi} = -\frac{z_h \pi M N \alpha^2_{em}}{4 x_B^2 S_{ep} Q^2} \frac{\alpha_s}{2\pi} \sum_q e_q^2 G_q(x_B, x_B) \frac{Q^2}{D^q(z_h)} \times \left[C_F \left(\frac{4\pi \mu^2}{Q^2} \right) \frac{1}{\Gamma(1 - \epsilon)} \left(\frac{2}{\epsilon^2} \frac{3}{2} - 8 \right) \right] \tag{56} \]

Combining (48), (55) and (56), we obtain the following complete formula for NLO \(P_{\perp} \)-weighted cross section.

\[
\frac{d^4 \langle P_{\perp} \Delta \sigma \rangle^{\text{LO} + \text{NLO}}}{dx_B dQ^2 dz_h d\phi} = -\frac{z_h \pi M N \alpha^2_{em}}{4 x_B^2 S_{ep} Q^2} \sum_q e_q^2 \left[G_q^q(x_B, x_B) \frac{Q^2}{D^q(z_h)} + \frac{\alpha_s}{2\pi} \left(\frac{4\pi \mu^2}{Q^2} \right) \frac{1}{\Gamma(1 - \epsilon)} \left(\frac{1}{\epsilon} \right) \right] \]
\[
\times \left\{ D^q(\zeta) \left\{ \int_{x_B}^{x} \frac{dx}{x} \left[P_{qq}(\hat{x})G^q_F(x,x) + \frac{N}{2} \left(\frac{(1 + \hat{x})G^q_F(x_B,x) - (1 + \hat{x}^2)G^q_F(x,x)}{(1 - \hat{x})^+} + \tilde{G}^q_F(x_B,x) \right) \right] \right\} \\
- NG^q_F(x_B,x_B) + \frac{1}{2N} \int_{x_B}^{1} \frac{dx}{x} \left((1 - 2\hat{x})G^q_F(x_B,x_B - x) + \tilde{G}^q_F(x_B,x_B - x) \right) \right\} \\
+ G^q_F(x_B,x_B) \int_{z_h}^{1} \frac{dz}{z} P_{qq}(\hat{z})D^q(z) \right\} \\
\right. \\
+ \frac{\alpha_s(4\pi^2)\epsilon}{2\pi Q^2} \frac{1}{\Gamma(1 - \epsilon)} \int_{x_B}^{1} \frac{dx}{x} \int_{z_h}^{1} \frac{dz}{z} \left\{ \frac{dx}{x} \left[xG^q_F(x,x)D^q(z) \frac{1}{2Nz} \left[1 - \hat{z} + \frac{(1 + \hat{x})^2 + 2\hat{x}\hat{z}}{(1 - \hat{z})^+} \right] \right] \\
- \delta(1 - \hat{z}) \left((1 + \hat{x}^2) \ln \frac{\hat{x}}{1 - \hat{x}} + 2\hat{x} \right) \right\} + G^q_F(x,x)D^q(z) \frac{1}{2Nz} \left[-2\delta(1 - \hat{x})\delta(1 - \hat{z}) \right] \\
+ \frac{2\hat{x}^3 - 3\hat{x}^2 - 1}{(1 - \hat{x})^+(1 - \hat{z})^+} + \frac{1 + \hat{z}}{(1 - \hat{x})^+} - 2(1 - \hat{x}) + \delta(1 - \hat{z}) \left((1 - \hat{x})(1 + 2\hat{x}) \ln \frac{\hat{x}}{1 - \hat{x}} \right) \\
- 2\left(\ln \frac{1 - \hat{x}}{1 - \hat{z}} \right) + \frac{2}{(1 - \hat{x})^+} - 2(1 - \hat{x}) + 2\left(\ln \frac{\hat{x}}{1 - \hat{x}} \right) + \delta(1 - \hat{z}) \left((1 + \hat{x}) \ln \frac{\hat{x}}{1 - \hat{x}} \right) \\
- 2\left(\ln \frac{1 - \hat{x}}{1 - \hat{z}} \right) - 2\left(\ln \frac{1 - \hat{z}}{1 - \hat{z}^2} \right) + \frac{2\hat{z}}{(1 - \hat{z})^+} + G^q_F(x,x_B)D^q(z) \left(C_F + \frac{1}{2Nz} \right) \left(2\delta(1 - \hat{x})\delta(1 - \hat{z}) \right) \\
+ \frac{1 + \hat{x}^2}{(1 - \hat{x})^+(1 - \hat{z})^+} + \delta(1 - \hat{z}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 2\left(\ln \frac{1 - \hat{x}}{1 - \hat{z}} \right) + 2\left(\ln \frac{\hat{x}}{1 - \hat{x}} \right) + 2\left(\ln \frac{1 - \hat{z}}{1 - \hat{z}^2} \right) + \frac{2\hat{z}}{(1 - \hat{z})^+} \right) \right\} \\
+ G^q_F(x,x_B)D^q(z) \left(C_F + \frac{1}{2Nz} \right) \left(-\frac{1 - \hat{x}^2}{(1 - \hat{x})^+(1 - \hat{z})^+} + \delta(1 - \hat{z}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 3 \right) \right) \right\} \\
G^q_F(x_B,x_B - x)D^q(z) \left[\frac{1}{2Nz} \left(\frac{(1 - 2\hat{x})\hat{z}^2}{(1 - \hat{z})^+} - \delta(1 - \hat{z})(1 - 2\hat{x})(\ln \frac{\hat{x}}{1 - \hat{x}} + 1) \right) \right] \\
+ \frac{1}{2\hat{z}} (1 - 2\hat{x}) \left((1 - \hat{z})^2 + \hat{z}^2 \right) + G^q_F(x_B,x_B - x)D^q(z) \left[\frac{1}{2Nz} \left(\frac{\hat{z}^2}{(1 - \hat{z})^+} \right) \right] \\
- \delta(1 - \hat{z}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 3 \right) - \frac{1}{2\hat{z}} (1 - 2\hat{x}) \right] - 8C_F \delta(1 - \hat{x}) \delta(1 - \hat{z}) \right\} \right\},
\]
The double pole terms $\frac{2}{\epsilon} \delta(1-\hat{x})\delta(1-\hat{z})$ are cancelled between the real cross section and the virtual cross section. The single pole term in virtual cross section $2 \times \frac{3}{2} \delta(1-\hat{x})\delta(1-\hat{z})$ is incorporated into the splitting functions. The collinear singularities associated with the twist-3 functions can be subtracted with the following renormalization.

$$G_F(x_B, x_B)$$

$$= G_F^{(0)}(x_B, x_B) + \frac{\alpha_s}{2\pi} \left(-\frac{1}{\epsilon} \right) \left\{ \int_{x_B}^{1} \frac{dx}{x} \left[P_{qq}(\hat{x})G_F(x, x) \right. \\
+ \frac{N}{2} \left(\frac{(1+\hat{x})G_F(x_B, x) - (1+\hat{x}^2)G_F(x, x)}{(1-\hat{x})_+} + \tilde{G}_F(x_B, x) \right) \right\} - NG_F(x_B, x_B)$$

$$+ \frac{1}{2N} \int_{x_B}^{1} \frac{dx}{x} \left((1-2\hat{x})G_F(x_B, x_B - x) + \tilde{G}_F(x_B, x_B - x) \right),$$

where we adopted the $\overline{\text{MS}}$-scheme

$$\frac{1}{\epsilon} = \frac{1}{\epsilon} - \gamma_E + \ln 4\pi.$$

(59)

These collinear singularities are the same as those in F-type correlator [11] at 1-loop order [22,24,25]. Then the collinear singularities are consistently subtracted and we can obtain the infrared-safe NLO cross section as follows.

$$\frac{d^4\langle P_{q\perp} \Delta\sigma \rangle_{\text{LO+NLO}}}{dx_B dQ^2 dz_B d\phi}$$

$$= -\frac{\pi\alpha_s}{4\pi} \frac{M_N}{S_{xy} Q^2} \sum_{q} e_q^2 \left[G_F^q(x_B, x_B, \mu)D^q(z_h, \mu) \right.$$

$$+ \frac{\alpha_s}{2\pi} \ln \left(\frac{Q^2}{\mu^2} \right) \left\{ D^q(z_h, \mu) \left\{ \int_{x_B}^{1} \frac{dx}{x} \left[P_{qq}(\hat{x})G_F^q(x, x, \mu) \right. \\
+ \frac{N}{2} \left(\frac{(1+\hat{x})G_F^q(x_B, x, \mu) - (1+\hat{x}^2)G_F^q(x, x, \mu)}{(1-\hat{x})_+} + \tilde{G}_F^q(x_B, x, \mu) \right) \right\} \\
- NG_F^q(x_B, x_B, \mu) + \frac{1}{2N} \int_{x_B}^{1} \frac{dx}{x} \left((1-2\hat{x})G_F^q(x_B, x_B - x, \mu) + \tilde{G}_F^q(x_B, x_B - x, \mu) \right) \right\}$$

$$+ G_F^q(x_B, x_B, \mu) \int_{x_B}^{1} \frac{dz}{z} P_{qq}(\hat{z})D^q(z, \mu) \right\}$$

$$+ \frac{\alpha_s}{2\pi} \int_{x_B}^{1} \frac{dx}{x} \int_{z_h}^{1} \frac{dz}{z} \left\{ \frac{dx}{x} G_F^q(x, x, \mu)D^q(z, \mu) \frac{1}{2N\hat{z}} \left[1 - \hat{z} + \frac{(1-\hat{x})^2 + 2\hat{x}\hat{z}}{(1-\hat{z})_+} \right. \\
\left. - \delta(1-\hat{z}) \left((1+\hat{x}^2) \ln \frac{\hat{x}}{1-\hat{x}} + 2\hat{x} \right) \right] + G_F^q(x, x, \mu)D^q(z, \mu) \frac{1}{2N\hat{z}} \left[-2\delta(1-\hat{x})\delta(1-\hat{z}) \right.$$
\[
+ \frac{2\hat{x}^3 - 3\hat{x}^2 - 1}{(1 - \hat{x})_+(1 - \hat{z})_+} + \frac{1 + \hat{z}}{1 - \hat{x}} + 2(1 - \hat{x}) + \delta(1 - \hat{z})(-(1 - \hat{x})(1 + 2\hat{x}) \log \frac{\hat{x}}{1 - \hat{x}} \\
- 2\left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}} + \frac{2}{(1 - \hat{x})_+} - 2(1 - \hat{x}) + 2\frac{\ln \hat{x}}{(1 - \hat{x})_+}\right) + \delta(1 - \hat{x})\left((1 + \hat{z}) \ln \hat{z}(1 - \hat{z})
ight) \\
- 2\frac{\ln \hat{z}}{(1 - \hat{z})_+} - 2\left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}} + \frac{2\hat{z}}{(1 - \hat{z})_+}\right)
\]

\[+G_F^q(x, x_B, \mu)D^q(z, \mu)\left(C_F + \frac{1}{2N} \right)\left[2\delta(1 - \hat{x}) \delta(1 - \hat{z}) + \frac{1 + \hat{x}\hat{z}^2}{(1 - \hat{x})_+(1 - \hat{z})_+} + \delta(1 - \hat{x})\left((1 + \hat{z}) \ln \hat{z}(1 - \hat{z})\right)\right] \\
+\delta(1 - \hat{z})\left(\ln \frac{\hat{x}}{1 - \hat{x}} + 2\left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}} + \frac{2\ln \hat{x}}{(1 - \hat{x})_+} - \frac{1 + \hat{z}}{(1 - \hat{z})_+}\right)\right) \\
+\delta(1 - \hat{x})\left(- (1 + \hat{z}) \ln \hat{z}(1 - \hat{z}) + 2\left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}} + \frac{2\ln \hat{z}}{(1 - \hat{z})_+} - \frac{2\hat{z}}{(1 - \hat{z})_+}\right)\right) \\
+G_F^q(x, x_B, \mu)D^q(z, \mu)\left(C_F + \frac{1}{2N}\right)\left[- \frac{1 - \hat{x}\hat{z}^2}{(1 - \hat{x})_+(1 - \hat{z})_+} + \delta(1 - \hat{z})\left(\ln \frac{\hat{x}}{1 - \hat{x}} + 3\right)\right] \\
+G_F^q(x_B, x_B - x, \mu)D^q(z, \mu)\left[\frac{1}{2N}\left(\frac{1 - 2\hat{x}}{(1 - \hat{z})_+} \delta(1 - \hat{z})(1 - 2\hat{x}) \left(\ln \frac{\hat{x}}{1 - \hat{x}} + 1\right)\right) \\
+\frac{1}{2\hat{z}}(1 - 2\hat{x})\{(1 - \hat{z})^2 + \hat{z}^2\}\right] + \hat{G}_F^q(x_B, x_B - x, \mu)D^q(z, \mu)\left[\frac{1}{2N}\left(\frac{\hat{z}^2}{(1 - \hat{z})_+}\right) \\
- \delta(1 - \hat{z})(\ln \frac{\hat{x}}{1 - \hat{x}} + 3) - \frac{1}{2\hat{z}}(1 - 2\hat{x})\right] - 8C_F\delta(1 - \hat{x})\delta(1 - \hat{z})\right\} + O(\alpha_s^2), \quad (61)
\]

where the scale dependence of $G_F(x, x, \mu^2)$ was introduced so that the cross section doesn’t depend on the artificial scale μ. Then we can derive the scale evolution equation of $G_F(x, x, \mu^2)$ as

\[
\frac{\partial}{\partial \ln \mu^2} \frac{d^4(P_{h+1}\Delta \sigma)^{\text{LO+NLO}}}{dx_B dQ^2 d\eta d\phi} = 0
\]

\[
\rightarrow \frac{\partial}{\partial \ln \mu^2} G_F(x_B, x_B, \mu^2) = \frac{\alpha_s}{2\pi} \left\{ \int_{x_B}^1 \frac{dx}{x} \left[P_{qq}(\hat{x}) G_F(x, x, \mu^2) \right. \right. \\
+ \frac{N}{2} \left(\frac{(1 + \hat{x})G_F(x_B, x, \mu^2) - (1 + \hat{x})^2G_F(x_B, x, \mu^2)}{(1 - \hat{x})_+} + \hat{G}_F(x_B, x, \mu^2) \right) \left. \right. \\
+ \frac{1}{2N} \int_{x_B}^1 \frac{dx}{x} \left((1 - 2\hat{x})G_F(x_B, x_B - x, \mu^2) + \hat{G}_F(x_B, x_B - x, \mu^2) \right) \left. \right\} + O(\alpha_s^2), \quad (62)
\]

which completely agrees with the results in [22, 24, 25].
5 Summary

We added the new hard pole contribution to the $P_{h\perp}$-weighted single-spin asymmetry in semi-inclusive deep inelastic scattering. Since the new pole contribution brings some collinear singularities at one-loop order, we should not neglect it for the exact cancellation of the collinear singularities. Our result showed that the NLO $P_{h\perp}$-weighted cross section has the same collinear singularities with the F-type correlator at one-loop order and then the singularities can be subtracted consistently. In addition, our calculation provided the scale evolution equation of the Qiu-Sterman function which completely agrees with the corresponding results in different approaches.

Acknowledgments

First the author would like to thank Zhong-Bo Kang for bringing his attention to their recent work [26]. He also thanks Yuji Koike, Yoshitaka Hatta and Bo-Wen Xiao for helpful discussions and carefully reading his manuscript. This work is supported in part by the NSFC under Grant No. 11575070.

References

[1] R. D. Klem, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Ruddick and W. H. Dragoset et al., Phys. Rev. Lett. 36, 929 (1976).

[2] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).

[3] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982) [Yad. Fiz. 36, 242 (1982)]; Phys. Lett. B 150, 383 (1985).

[4] J.-w. Qiu and G. F. Sterman, Phys. Rev. Lett. 67, 2264 (1991).

[5] J.-w. Qiu and G. F. Sterman, Nucl. Phys. B 378, 52 (1992).

[6] J.-w. Qiu and G. F. Sterman, Phys. Rev. D 59, 014004 (1999) [hep-ph/9806356].

[7] Y. Kanazawa and Y. Koike, Phys. Rev. D 64, 034019 (2001) [hep-ph/0012225].

[8] X. Ji, J.-w. Qiu, W. Vogelsang and F. Yuan, Phys. Rev. D 73, 094017 (2006) [hep-ph/0604023].

[9] X. Ji, J.-w. Qiu, W. Vogelsang and F. Yuan, Phys. Lett. B 638, 178 (2006) [hep-ph/0604128].

[10] C. Kouvaris, J. W. Qiu, W. Vogelsang and F. Yuan, Phys. Rev. D 74, 114013 (2006) [arXiv:hep-ph/0609238].

[11] H. Eguchi, Y. Koike and K. Tanaka, Nucl. Phys. B 763, 198-227 (2007) [arXiv:hep-ph/0610314].

[12] Z. B. Kang and J. W. Qiu, Phys. Rev. D 78, 034005 (2008) [arXiv:hep-ph/0806.1970]; Z. B. Kang, J. W. Qiu, W. Vogelsang and F. Yuan, Phys. Rev. D 78, 114013 (2008) [arXiv:hep-ph/0810.3333]
[13] F. Yuan and J. Zhou, Phys. Rev. Lett. 103, 052001 (2009) [arXiv:0903.4680 [hep-ph]].

[14] Z. B. Kang, F. Yuan and J. Zhou, Phys. Lett. B 691, 243 (2010) [arXiv:1002.0399 [hep-ph]].

[15] H. Beppu, Y. Koike, K. Tanaka and S. Yoshida, Phys. Rev. D 82, 054005 (2010) [arXiv:1007.2034 [hep-ph]].

[16] A. Metz and D. Pitonyak, Phys. Lett. B 723, 365 (2013) [arXiv:1212.5037 [hep-ph]].

[17] K. Kanazawa and Y. Koike, Phys. Rev. D 88, 074022 (2013) [arXiv:1309.1215 [hep-ph]].

[18] K. Kanazawa and Y. Koike, Phys. Rev. D 82, 034009 (2010) [arXiv:1005.1468 [hep-ph]]; Phys. Rev. D 83, 114024 (2011) [arXiv:1104.0117 [hep-ph]].

[19] Z. B. Kang and J. W. Qiu, Phys. Rev. D 79, 016003 (2009) [arXiv:0811.3101 [hep-ph]].

[20] J. Zhou, F. Yuan and Z. T. Liang, Phys. Rev. D 79, 114022 (2009) [arXiv:0812.4484 [hep-ph]].

[21] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009) [arXiv:0904.0410 [hep-ph]].

[22] V. M. Braun, A. N. Manashov and B. Pirnay, Phys. Rev. D 80, 114002 (2009) [arXiv:0909.3410 [hep-ph]].

[23] A. Schafer and J. Zhou, Phys. Rev. D 85, 117501 (2012) [arXiv:1203.5293 [hep-ph]].

[24] J. P. Ma and Q. Wang, Phys. Lett. B 715, 157 (2012) [arXiv:1205.0611 [hep-ph]].

[25] Z. B. Kang and J. W. Qiu, Phys. Lett. B 713, 273 (2012) [arXiv:1205.1019 [hep-ph]].

[26] Z. B. Kang, I. Vitev and H. Xing, Phys. Rev. D 87, 034024 (2013) [arXiv:1212.1221 [hep-ph]].

[27] Y. Koike and K. Tanaka, [arXiv:0907.2797 [hep-ph]].

[28] Y. Koike, K. Tanaka and S. Yoshida, Phys. Rev. D 83, 114014 (2011) [arXiv:1104.0798 [hep-ph]].

[29] Y. Koike and K. Tanaka, Phys. Lett. B 646, 232 (2007) [Erratum-ibid. B 668, 458 (2008)] [hep-ph/0612117].