Ruxolitinib attenuates secondary injury after traumatic spinal cord injury

Abstract

Excessive inflammation post-traumatic spinal cord injury (SCI) induces microglial activation, which leads to prolonged neurological dysfunction. However, the mechanism underlying microglial activation-induced neuroinflammation remains poorly understood. Ruxolitinib (RUX), a selective inhibitor of JAK1/2, was recently reported to inhibit inflammatory storms caused by SARS-CoV-2 in the lung. However, its role in disrupting inflammation post-SCI has not been confirmed. In this study, microglia were treated with RUX for 24 hours and then activated with interferon-γ for 6 hours. The results showed that interferon-γ-induced phosphorylation of JAK and STAT in microglia was inhibited, and the mRNA expression levels of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cell proliferation marker Ki67 were reduced. In further in vivo experiments, a mouse model of spinal cord injury was treated intragastrically with RUX for 3 successive days, and the findings suggest that RUX can inhibit microglial proliferation by inhibiting the interferon-γ/JAK/STAT pathway. Moreover, microglia treated with RUX centripetally migrated toward injured foci, remaining limited and compacted within the glial scar, which resulted in axon preservation and less demyelination. Moreover, the protein expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were reduced. The neuromotor function of SCI mice also recovered. These findings suggest that RUX can inhibit neuroinflammation through inhibiting the interferon-γ/JAK/STAT pathway, thereby reducing secondary injury after SCI and producing neuroprotective effects.

Key Words: functional recovery; glial scar; inflammation; interferon-γ; JAK/STAT signaling; microglia; Ruxolitinib; spinal cord injury

Introduction

Trauma causes acute mechanical spinal cord injury (SCI), which further elicits prominent pathological events post-SCI (Ahuja et al., 2017; Ren et al., 2018). The neuronal death, myelin destruction, and vascular disruption that occur after SCI promote inflammation and initiate a sequence of secondary neuropathological events, including scar formation, which impedes axonal regeneration and functional recovery (Silva et al., 2014; Zhou et al., 2019). Microglia, which are the resident immune cells in neurological tissue (Madore et al., 2020), respond to injury immediately after SCI and contribute to activation of neuroinflammation (David and Kroner, 2011; Saigo and Glass, 2011; Kroner and Rosas Almanza, 2019). Indeed, activated microglia secrete inflammatory cytokines that degrade enzymes, leading to the generation of myelin debris and the assembly of the glial scar, which not only promote inflammation but also cause axonal regeneration failure and axonal dysfunction (Aguzzi et al., 2013; Kroner and Rosas Almanza, 2019). Therefore, suppression of microglial activation is crucial for neuronal survival, myelin preservation, and resolution of inflammation.
Interferon-γ (IFN-γ), a biomarker of Th1 cells, is a pro-inflammatory cytokine that stimulates various immune effector cells, including macrophages, nature killer cells, cytotoxic T cells, and microglia, to activate inflammation (Kelchtermans et al., 2008; Too and Mitchell, 2021). During neuropathological events, IFN-γ enables brain dendritic cells to transform into effective antigen-presenting cells and exacerbates oligodendrocyte apoptosis, which leads to demyelination and enhanced microglia-induced neuronal dysfunction and death (Pouly et al., 2000; Gottfried-Blackmore et al., 2009; Papageorgiou et al., 2016). IFN-γ activation is dependent on the activation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) axis, which is a known inflammation-related signaling pathway (Delen and Doğanlar, 2020). Ruxolitinib (RUX), a selective JAK1 and JAK2 inhibitor, was approved for treatment of myelofibrosis by the U.S. Food and Drug Administration in 2011 and the European Medicines Agency in 2012 (Ajayi et al., 2018). Recent studies have shown that RUX is a strong inhibitor of the "cytokine storm" that occurs in patients with coronavirus disease 2019 (Cao et al., 2020; Huarte et al., 2021; Yan et al., 2021). Moreover, RUX has been demonstrated to reduce inflammation in innate immune colitis and lipopolysaccharide-induced ocular inflammation (Overstreet et al., 2018; Liang et al., 2020). Collectively, these above-mentioned studies have indicated that there is a link between RUX-mediated inhibition of inflammation and the IFN-γ/JAK/STAT signaling pathway in microglia; however, whether RUX can reduce inflammation after SCI remains to be elucidated.

In the present study, we hypothesized a previously unreported role for RUX-mediated inhibition of the post-SCI microglial-induced neuroinflammatory response. We investigated the effects of RUX on the pro-inflammatory cascades and microglial proliferation regulated by the IFN-γ/JAK1-2/STAT1 axis in an in vitro model of IFN-γ-induced microglial inflammation and clarified the pharmacological effects of RUX on inflammation-induced neuroinflammation, including myeloinclusion, neuronal loss, and glial scar formation, in a mouse model of SCI.

Materials and Methods
Cell lines and culture conditions
The microglia cell line BV2 (Cat# 0356; RRID: CVCL_0182), which has been short tandem repeat genotyped, was purchased from the Institute of Cell Research, Chinese Academy of Medical Sciences (Shanghai, China). Cells were cultured in Dulbecco’s modified Eagle medium (Cat# G4510; Servicebio, Wuhan, China) with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA) and 1% penicillin-streptomycin (Servicebio), as previously described (Hong et al., 2020). RUX (Cat# ab141356; Abcam, Cambridge, MA, USA) was dissolved in pH 3.5 citrate buffer according to a previous study (Das et al., 2016). Microglia were pretreated with 0.1, 0.5, or 1 mM RUX for 24 hours, followed by treatment with IFN-γ (20 ng/mL; Invitrogen) for 6 hours.

Animals
Human SCI prevalence is higher in men (~80%) than in women, according to the 2019 SCI Data Sheet from the National SCI Statistical Center (Li et al., 2020). Thus, a total of 30 male adult C57BL/6j mice (8 weeks old, 18–20 g) were purchased from the Experimental Animal Center of Nanjing Medical University (license No. SYXK2021-0002) and housed in a specific pathogen-free environment. This study was approved by the Institutional Animal Care and Use Committee of Southeast University (approval No. 20210302042; March 2, 2021). All experiments were designed and reported according to the Animal Research: Reporting of In vivo Experiments (ARRIVE) guidelines (Percie du Sert et al., 2020).

Mice were randomly divided into three groups (n = 6): (i) Sham group: mice underwent laminectomy; (ii) SCI group: mice with SCI and daily intragastric administration of an oral dose of citrate buffer (0.1M) that was equivalent to the RUX dose; (iii) SCI + RUX group: mice with SCI and intragastric administration of RUX at 50 mg/kg per day. RUX was initially administered 2 hours after SCI and continued for 3 days. The protocol for the SCI model was described in our previous report (Hong et al., 2020). Briefly, mice were anesthetized with ketamine (80 mg/kg; Hengrui Pharma, Lianyungang, China) and xylazine (4 mg/kg; MilliporeSigma, Burlington, MA, USA), after which a laminectomy was performed. A 5-g spinal cord impactor (60097; RWD, Shenzhen, China) at a height of 5 cm was used to create a SCI at T10.

Western blot assay
To detect the expression of inflammation-related signaling and mediators, protein was extracted from microglia using a total protein extraction kit (KeyGEN, Nanjing, China) after treatment with IFN-γ for 6 hours. After quantification using the bicinchoninic acid (BCA) method (Walker, 1985), equal amounts of protein from each group was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to a polyvinylidene fluoride membrane (Millipore, Billerica, MA, USA), which was then blocked in 5% skim milk at room temperature and incubated with primary antibodies overnight at 4°C and secondary antibodies for 1 hour at room temperature. The antibodies used were as follows: rabbit anti-phosphorylated (p)-Janus kinase (JAK) 1 (Cat# 741192; RRID:AB_2799851; 1:1000; Cell Signaling Technology, Danvers, MA, USA), rabbit anti-JAK1 (Cat# 3344; RRID:AB_2265054; 1:1000; Cell Signaling Technology), rabbit anti-p-JAK2 (Cat# 3771; RRID:AB_330403; 1:1000; Cell Signaling Technology), rabbit anti-JAK2 (Cat# 2320; RRID:AB_2182522; 1:1000; Cell Signaling Technology), rabbit anti-phospho-STAT1 (Cat# 9167; RRID:AB_561284; 1:1000; Cell Signaling Technology), rabbit anti-phospho-STAT3 (Cat# 9145; RRID:AB_2737027; 1:1000; Cell Signaling Technology), rabbit anti-phospho-JAK2 (Cat# ab15323; RRID:AB_301857; 1:250; Abcam), rabbit anti-junctional adhesion molecule-1 (JAM-1; Cat# ab179800; 1:1000; Abcam), mouse anti-glyceraldehyde-3-phosphate dehydrogenase (Cat# HRP-60004; RRID:AB_2737588; 1:10,000; Proteintech, Chicago, IL, USA), and horse radish peroxidase goat anti-rabbit or mouse conjugated secondary antibodies (Cat# Y5501; Cat# Y5502; 1:10,000; Invitrogen Biotech). An enhanced chemiluminescence detection system was used to detect bands (Millipore, Billerica, MA, USA). Western blot images were scanned and analyzed by ImageJ software (ImageJ Software [Ver. 1.3.8]) (Schneider et al., 2012).

Cell viability assay
Microglia (1 × 10^5) were seeded in a 96-well plate and then with a concentration gradient of RUX (0.1–5 mM) for 24 hours. Then, the cells were washed twice and incubated with 100 μL Dulbecco’s modified Eagle medium containing 10% cell counting kit-8 (Cat# C0038; Beyotime, Shanghai, China) buffer for 2 hours at 37°C. Detection was carried out at 450 nm using a microplate reader (BioTek, Friedrichshall, Germany). Analysis was performed using ImageJ software (Schneider et al., 2012).

Quantitative polymerase chain reaction
To perform a preliminary investigation of the effect of RUX on microglial inflammation, RNA was extracted from microglia using Trizol (Yifeixue Biotech, Nanjing, China). The isolated RNA was reverse transcribed using a GoldenstarTM RT6 cDNA Synthesis Kit (Tiangen, Beijing, China), after which a quantitative polymerase chain reaction was performed to quantify the levels of target genes using SYBR Green Master (Tiangen). Briefly, RNA was denatured at 95°C for 2 minutes, then a total of 35 cycles were carried out, each of which included denaturation at 95°C for 15 seconds, annealing at 60°C for 15 seconds, and extension at 72°C for 30 seconds. The primer sequences are listed in Table 1. Expression levels were normalized to GAPDH using the 2−ΔΔCt method (Livak and Schmittgen, 2001).

Table 1 | Primers used for quantitative polymerase chain reaction

Gene	Sequence (5’–3’)
TNF-α	Forward: CAG GCG GTG CCT ATG TCT C Reverse: CGA TCA CCC CGA AGT TCA G
IL-1β	Forward: GCA ACT GTT CCT GAA CTC AAT Reverse: ATC TTT TGG GCG TCT ACA
IL-6	Forward: CTG CAA GAG ACT TCC AAT CAG Reverse: AGT GGT ATA GAC AGG TCT GGT
IL-10	Forward: CCT ACT GAT TCG CAT GAG CAT Reverse: GCA GCT CTA GGA GCA TGT G
IL-27	Forward: ATC TTC CCA ATG TTT CCC TGA C Reverse: CCG AAG TGT AGT GAC GAG G
GAPDH	Forward: AGG TCG GTG TTA ACG GAT TTG Reverse: TGT AGA CCA TTA AGT TGA GCA

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; IL-10: interleukin-10; IL-1β: interleukin-1β; IL-27: interleukin-27; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α.
Enzyme-linked immunosorbent assay
To measure cytokine levels, mice were sacrificed with excess ketamine/xylazine, and 2 cm of spinal cord tissue from the center of the lesion (weighing 0.03 g) was removed, homogenized, and centrifuged at 4°C. The samples were then stored at −80°C until further analysis. The concentrations of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and IL-27 were measured using the respective enzyme-linked immunosorbent assay kits (Invitrogen), following the manufacturer’s protocols. Absorbance was detected at 550 nm using a microplate reader.

5-Ethynyl-2′-deoxyuridine assay
To determine the proliferative potential, microglia (1 × 10⁴) were added to a 96-well plate and treated with RUX for 24 hours. Next, the cells were incubated with KFluor555-5-ethynyl-2′-deoxyuridine working buffer according to the manufacturer’s protocol (Cat# KGA337, KeyGen). The cells were then washed, fixed with 4% paraformaldehyde (PFA; Cat# G1101; Servicebio) for 15 minutes, washed again in 3% bovine serum albumin (Invitrogen), incubated with 0.5% Triton X-100 for 20 minutes, and probed with Click-IT mix in the dark for 30 minutes. Finally, the cells were stained with Hoechst 33342 (MedChemExpress, Shanghai, China) for 30 minutes, and the fluorescence was detected at 555 nm using a fluorescence microscope (Leica, Wetzlar, Germany).

Immunofluorescence staining
Immunofluorescence staining was used to detect the expression of inflammatory mediators in vitro and injured cord tissue in vivo. Mice at 3, 7, and 28 days post-SCI were anesthetized with ketamine/xylazine, and the heart was perfused using normal saline and 4% PFA. Spinal cord tissues were then placed in 4% PFA for 2 days, dehydrated with an ethanol gradient, cleared with dimethylbenzene, embedded in paraffin, and sliced into 5-μm sections using a rotary microtome (Leica). Sections were then fixed in 4% PFA for 10 minutes at room temperature, immunostained with blocking and a blocking reagent, incubated with primary antibodies overnight at 4°C, and incubated with Alexa Fluor secondary antibodies for 1 hour at room temperature. The antibodies used included: rabbit-anti-p-STAT1 (Cat# 9167; RRID:AB_561284; 1:400; Cell Signaling Technology), mouse anti-glial fibrillary acidic protein (Cat# 3670, RRID: AB_561049, 1:600, Cell Signaling Technology), rabbit anti-ionized calcium-binding adaptor (IBA1) (1:500, Cat# ab178847, RRID: AB_2832244, Abcam), rabbit anti-iNOS (1:100, Cat# ab153232, RRID: AB_301857, Abcam), rabbit anti-neurofilament heavy polypeptide (1:200, Cat# ab207176, RRID: AB_2827968, Abcam), rabbit anti-Ki67 (1:500, Cat# ab15580, RRID: AB_443209, Abcam), rabbit anti-COX-2 (1:200, Cat# ab179800, Abcam), rabbit anti-TNF-α (1:200, Cat# GB11188, Servicebio), rabbit anti-IL-1β (1:500, Cat# GB11113, Servicebio), rabbit anti-IL-6 (1:500, Cat# GB11117, Servicebio), and Alexa Fluor 488-, 555-, and 647-conjugated secondary antibodies (1:500, Cat# 111587003, RRID: AB_2338071, goat anti-rabbit; Cat# 111547003, RRID: AB_2338058, goat anti-rabbit; Cat# 111607003, RRID: AB_2338084, goat anti-rabbit; Cat# 115586003, RRID: AB_2338490, goat anti-mouse). ImageJ software (Schneider et al., 2012) was used to collect images, and the fluorescence was detected at 555 nm using a fluorescence microscope (Leica). The number of positive cells was counted, and the fluorescence intensity was calculated using ImageJ software.

Histological staining
To visualize histological destruction within the injured spinal cord, 1-cm cord sections from the center of the lesion were stained with hematoxylin-eosin (H&E) at 3, 7, and 28 days post-SCI and Nissl at 7 and 28 days post-SCI in accordance with the respective manufacturers’ instructions (Cat# G1036 for Nissl, Cat# G1098 for H&E; Servicebio). For H&E staining, sections were stained with hematoxylin dye for 5 minutes, and then incubated with eosin dye for 5 minutes. For Nissl staining, sections were placed in Nissl dye for 3 minutes. After mounting with neutral balsam, sections were observed using an optical microscope (Leica). The number of neurons and tissue integrity were analyzed using ImageJ software (Schneider et al., 2012).

Behavioral tests
Hindlimb movement of SCI mice at 1, 3, 7, 14, and 28 days post-SCI was determined by the Basso mouse scale and Louisville Swim Scale (LSS). The procedures related to the Basso mouse scale and the LSS have been previously described (Kong et al., 2020). The Basso mouse scale ranges from 0 (no ankle movement) to 9 (complete motor function) points and rates motion according to joint movement, trunk stability, gait coordination, paw placement, and tail position. The 15 points possible on the LSS evaluate forelimb dependency and hindlimb movement and frequency, as well as the angle between the trunk and the water surface. A high score indicates good functional recovery, and a low score indicates poor recovery.

Statistical analysis
No statistical methods were used to predetermine sample sizes; however, our sample sizes are similar to those reported in a previous publication (Hu et al., 2021). No animals or data points were excluded from the analysis. The assessors were blinded to the animal groups. Data are presented as mean ± standard deviation (SD). One-way or two-way analysis of variance followed by Tukey’s post hoc test was employed to evaluate differences among more than two groups, and unpaired two-tailed Student’s t-test was used to assess differences between two groups. Differences were considered significant using GraphPad Prism 8.0 software (GraphPad Software Inc., San Diego, CA, USA). P-values < 0.05 were considered statistically significant.

Results
Ruxolitinib inhibits IFN-γ-induced pro-inflammatory effects by targeting the JAK/STAT1 axis
The viability of microglia treated with different doses of RUX was determined by cell counting kit-8 assay at 24 hours post-SCI. The results indicated a dose-dependent decrease from 0.1 to 1 mM slowly decreased cell viability, while doses of 2 and 5 mM significantly reduced microglial viability (Figure 1A). Next, we determined the effect of RUX at 0.1 to 1 mM on microglia pretreated with IFN-γ for 6 hours. The western blot results indicated that the p-jAK1/JAK1 and p-STAT1 (P < 0.0001) mRNA levels were markedly decreased in an RUX concentration-dependent manner (Figure 1F–H); however, IL-10 (P = 0.5665) and IL-27 (P = 0.0574) mRNA levels showed no significant changes compared with the IFN-γ group (Figure 1I and J). Taken together, these data suggest that RUX mitigates IFN-γ-induced pro-inflammatory effects by inhibiting the JAK/STAT1 axis in microglia.

RUX reduces microglial activation and proliferation
To further ascertain the anti-inflammatory role of RUX in IFN-γ-stimulated microglia, we selected 1 mM RUX to examine its effect on polarization. Specifically, the inflammatory marker iNOS was detected in microglia by immunofluorescence, and the results indicated that IFN-γ increased iNOS expression in microglia, but that subsequent treatment with RUX decreased the IFN-γ-stimulated high expression level of iNOS (Figure 2A). IL-1β and IL-6 production also increased after IFN-γ stimulation, whereas RUX attenuated their expression in microglia (Figure 2B). Moreover, western blotting showed that iNOS (P = 0.0003) and COX-2 (P = 0.0001) mRNA levels were significantly decreased by treatment with RUX following IFN-γ stimulation (Figure 2C–E). Cell proliferation, as measured by the 5-ethynyl-2′-deoxyuridine assay, was clearly decreased after RUX treatment (Figure 2F). Consistent with this, expression of Ki67, a cell proliferation marker (Scholten and Gerdes, 2000), was also inhibited by RUX (Figure 2G).

Taken together, these results indicate that RUX inhibits IFN-γ–induced microglial inflammation and proliferation.

RUX alleviates inflammation in injured cords after SCI
In vivo, we used the activated microglial marker iNOS to assess microglial-induced neuroinflammation. The distribution of activated p-STAT1+ microglia was then assessed. Immunofluorescence staining showed that the number of IBA1+/iNOS+ microglia was increased post-SCI; however, administration of RUX reduced this amount (Figure 3A). In addition, the increase in the number of p-STAT1+ microglia was mitigated by treatment with RUX by day 3 post-SCI (Figure 3A). We also found that the increased expression of IL-1β, IL-6, TNF-α, and COX-2 post-SCI was significantly reduced by treatment with RUX by day 3 post-SCI (Figure 3B). Furthermore, enzyme-linked immunosorbent assays were used to measure the levels of TNF-α, IL-1β, and IL-6 at 1 and 3 days post-SCI. The results showed that high levels of TNF-α, IL-1β, and IL-6 were observed in the RUX-treated group, and that the levels slightly dropped at 3 days post-SCI. Strikingly, mice treated with RUX exhibited a marked decrease in expression of the
RUX mitigates IFN-γ-induced pro-inflammatory cytokines in microglia by targeting the JAK/STAT1 axis.

The experiments were repeated five times. *P < 0.05, **P < 0.01, ***P < 0.001, vs. IFN-γ group (one-way analysis of variance followed by Tukey’s post hoc test). GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; IFN-γ: interferon-γ; IL: interleukin; JAK: Janus kinase; p-JAK: phosphorylated Janus kinase; p-STAT1: phosphorylated signal transducer and activator of transcription 1; RUX: ruxolitinib; STAT1: signal transducer and activator of transcription 1; TNF-α: tumor necrosis factor-α.

RUX reduces microglial activation and proliferation.

The LSS scores in the SCI + RUX group were higher than those in the SCI group beginning at 14 days post-SCI (**P < 0.0001; Figure 5A–C). Notably, SCI mice exhibited dispersed distribution of activated microglia; however, we found that activated microglia (indicated with white arrows) gathered near the injured foci, and that other microglia (indicated with yellow arrows) remained distal to the foci (Figure 4A). SCI mice treated with RUX consistently showed a less dispersed and smaller glial scar at 28 days post-SCI compared with SCI mice (P < 0.0001; Figure 4D–F). Interestingly, RUX administration promoted a reduction in the area of the glial scar, to a point where it encompassed only the injured epicenter, potentially providing more space for axonal regeneration (Figure 4D). As expected, severe demyelination and axonal loss were evident at 7 days post-SCI and were significantly ameliorated after RUX treatment (Figure 4G–I). Therefore, RUX may protect against secondary neurological injury due to its potent anti-inflammatory properties.

RUX ameliorates inflammation-induced neuropathology post-SCI.

The glial scar, which is composed of microglia and astrocytes, was detected by immunofluorescence staining. At 7 days post-SCI, the initial glial scar had formed; however, the number of microglia and astrocytes was reduced markedly after RUX treatment in SCI mice (P < 0.0001; Figure 4A–C). Notably, SCI mice exhibited dispersed distribution of activated microglia; however, we found that activated microglia (indicated with white arrows) gathered near the injured foci, and that other microglia (indicated with yellow arrows) remained distal to the foci (Figure 4A). SCI mice treated with RUX consistently showed a less dispersed and smaller glial scar at 28 days post-SCI compared with SCI mice (P < 0.0001; Figure 4D–F). Interestingly, RUX administration promoted a reduction in the area of the glial scar, to a point where it encompassed only the injured epicenter, potentially providing more space for axonal regeneration (Figure 4D). As expected, severe demyelination and axonal loss were evident at 7 days post-SCI and were significantly ameliorated after RUX treatment (Figure 4G–I). Therefore, RUX may protect against secondary neurological injury due to its potent anti-inflammatory properties.

RUX relieves histological and functional disorder following SCI.

Given that formation of the glial scar was nearly complete at 28 days post-SCI, we compared histological staining of the injured spinal cord at 7 and 28 days post-SCI. H&E and toluidine blue staining at 7 days post-SCI showed that treatment with RUX resulted in a larger number of viable neurons compared with untreated mice (P < 0.0001; Figure 5A–C) and a reduction in SCI-induced tissue loss. In contrast, the number of neurons was unchanged both in RUX-treated and untreated mice at 28 days post-SCI (P > 0.0001; Figure 5D–F). In the swimming test, RUX-treated mice exhibited a smaller angle between their trunk and the water surface, as well as a higher frequency of hindlimb movements compared with SCI mice at 28 days post-SCI (Figure 5G). The LSS scores in the SCI + RUX group were higher than those in the SCI group beginning at 14 days post-SCI (P = 0.0109; Figure 5H). The Basso mouse scale tests also showed that RUX administration significantly improved locomotor scores beginning at 7 days post-SCI (P < 0.0001; Figure 5I). Taken together, these results indicate that treatment with RUX improves tissue protection and functional recovery post-SCI.
RUX alleviates inflammation in the spinal cords of SCI mice.

SCI: spinal cord injury.

Figure 3 | RUX alleviates inflammation in the spinal cords of SCI mice.

(A) Representative immunofluorescence images of IBA1+ (green, Alexa Fluor 488)/INOS+ (red, Alexa Fluor 594) and IBA1+ (green, Alexa Fluor 488)/p-STAT1+ (red, Alexa Fluor 594) microglia in the injured spinal cord at 3 days post-SCI (DPI) in RUX-treated or untreated mice. SCI caused an increase in IBA1+ microglia and promoted the expression of INOS and p-STAT1 in microglia compared with the sham group, while treatment with RUX reduced the number of IBA1+/INOS+p-STAT1+ microglia. (B) Representative immunofluorescence images of IL-1β+ (green, Alexa Fluor 488)/IL-6+ (red, Alexa Fluor 594) and COX-2+ (green, Alexa Fluor 488)/TNF-α+ (red, Alexa Fluor 594) microglia in the injured cord at 3 days post-SCI. SCI led to an increase in the numbers of IL-1β+/IL-6+ and COX-2+/TNF-α+ microglia in the injured spinal cord, but RUX-SCI mice exhibited lower expression of these inflammatory mediators after SCI compared with the SCI mice. (C) TNF-α IL-1β, and IL-6 expression levels as measured by enzyme-linked immunosorbent assay in the injured cord at 1 (C) and 3 (D) days post-SCI. (E) Representative hematoxylin-eosin staining of the injured spinal cord on day 3 post-SCI. SCI caused severe destruction of the spinal cord, but treatment with RUX mitigated the damaged area compared with that seen in the SCI mice. Scale bars: 100 μm in A and B, 200 μm in E. (F) Quantification of tissue integrity in SCI/RUX compared with SCI and Sham. Scale bars: 100 μm in A and B, 200 μm in E. (F) Quantification of tissue integrity in SCI/RUX compared with SCI and Sham.

Figure 4 | RUX ameliorates inflammation-induced neuropathology in SCI mice.

(A) Representative immunofluorescence images of IBA1+ (red, Alexa Fluor 594)/GFAP+ (green, Alexa Fluor 488) cells in the injured spinal cord at 7 days post-SCI (DPI). The white arrows indicate activated microglia, which have an amoeba-like shape; the yellow arrows indicate the resting branching microglia. The white dashed line separates the relatively proximal and distal injury foci. SCI caused widespread and scattered microglial activation and astrocyte assembly, but treatment with RUX confined the activated microglia to a region proximal to the lesion and reduced the accumulation of astrocytes. (B, C) Quantification of microglia (B) and astrocytes (C) at 7 days post-SCI. (D) Representative immunofluorescence images of IBA1+ (pink, Alexa Fluor 647)/GFAP+ (green, Alexa Fluor 488) cells in the injured spinal cord at day 28 post-SCI. The white dashed line separates tight and loose areas of the glial scar: the area below the line was proximal to lesion, and the area above the line was distal to the lesion. SCI caused widespread and scattered glial scar, but treatment with RUX compacted the glial scar structure closer toward the injury focus. (E, F) Quantification of microglia (E) and astrocytes (F) at 28 days post-SCI. (G) Representative immunofluorescence images of NF200+ (green, Alexa Fluor 488)/MBP+ (red, Alexa Fluor 594) cells in the injured spinal cord at 7 days post-SCI. SCI caused excess loss of myelin and neurofilaments compared with the sham mice, but treatment with RUX partly protected against these effects compared with the SCI mice. Scale bars: 200 μm in A, and 50 μm in B. (H, I) Quantification of myelin (H) and axons (I) in the injured spinal cord at 7 days post-SCI. Data are expressed as mean ± SD (n = 5 per group). **P < 0.01, ***P < 0.001, vs. sham group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs. SCI group (one-way analysis of variance followed by Tukey’s post hoc test). GFAP: Glial fibrillary acidic protein; IBA1: ionized calcium binding adaptor 1; MBP: myelin basic protein; NF200: neurofilament 200; RUX: ruxolitinib; SCI: spinal cord injury.
RUX reduces the degree of histological damage and functional disorder following SCI.

The activation of pro-inflammatory microglia that express iNOS and COX2 in the early stage of SCI plays a crucial role in neuroinflammation, and at the same time their morphology changes from a ramified shape to an amoeboid shape (Manivannan et al., 2013; Nguyen et al., 2020; Yao et al., 2020). Therefore, the presence of more amoeba-like microglia indicates more severe secondary damage and more intense neuroinflammation in the injured spinal cord after SCI. In our in vivo studies, we found that pro-inflammatory microglia with amoeboid-like morphologies were highly concentrated in the immediate vicinity of the injured foci, and that the number of microglia was proportional to the distance from the injury foci in RUX-treated mice. In contrast, extensive populations of microglia with amoeboid-like morphologies were observed in SCI mice at 7 days post-SCI, suggesting that inflammation was widespread in the injured spinal cords and likely caused increased pathology and neuronal loss. However, administration of RUX ameliorated the extent of the lesion. Indeed, at 28 days post-SCI RUX not only markedly reduced the area of the glial scar but also largely accelerated the progression of scar healing. In the acute inflammatory phase, activated microglia and infiltrating macrophages that contact axons can cause axonal retraction, resulting in long-distance axons withdrawing from their original location (Busch et al., 2009; Evans et al., 2014). Consequently, spontaneous axonal regeneration in the post-inflammatory phase is rare because of the inflammatory-driven glial scar. However, centrifugal migration of activated microglia has been shown to result in spontaneous healing after SCI (Kobayakawa et al., 2019; Deng et
al., 2021), which also reduces axonal retraction and neuronal death. In addition, activated microglia directly induce oligodenodendrocyte apoptosis and cause demyelination. Here, RUX administration was shown not to protect axons and myelin structure but also to promote centripetal migration of inflammatory microglia to the injury site, suggesting a potent neuroprotective effect in addition to its anti-inflammatory activities. Taken together, our results provide evidence that RUX attenuates inflammatory responses and microglial proliferation by inhibiting IFN-γ-mediated stimulation of the JAK/STAT signaling pathway. Administration of RUX to SCI mice reduced the size of the glial scar, protected neurons and axons, and induced hindlimb locomotor recovery. RUX inhibits inflammation and promoting centripetal migration of microglia. This preliminary study focused on the exact pharmacological activity of RUX in the context of post-SCI inflammatory and neuropathy; therefore, future studies are needed to determine the exact RUX dosage required and its potential side effects. A comprehensive evaluation of RUX may reveal its potential value in immunotherapy for SCI.

This study had several limitations. First, we focused on only part of the pathobiology of SCI and did not investigate the importance of the anti-inflammatory activity of RUX, but its effects on other important consequences of SCI were not investigated. Second, the effects of RUX in other neural cells like neurons, astrocytes and oligodendrocytes were not investigated. Thus, our further researches are needed to systematically trace the role of RUX in neurological pathophysiology post-SCI.

In summary, RUX attenuates inflammatory responses and cell proliferation by selectively inhibiting the JAK/STAT signaling pathway in microglia, leading to inhibition of glial scar formation, decreased demyelination, and reduced axonal retraction and neuronal cell death.

Acknowledgments: We thank the technology support from the Central Laboratory of the College of Medicine, China. The authors contributed to this study in the following ways: Conceptualization and methodology: JC, YC; Formal analysis: YC, HY; Investigation: JC, YC; Resources: JC, YC; Writing—original draft: JC, YC; Writing—review and editing: YC, HY, HL, XR, SS, JS.

References

Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 341:154-161.

Ahn JS, Wilson JR, Norris S, Kotter MR, Druschel C, Curt A, Feinberg MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:1-10.

Akiyama H, Barger KW, Berliner N, Braak H, De Calignon A, Estes A, Beyreuther K, Terry RD (2000) The Spielmeyer-von-Weikersthal disease: a neuronal-glial tauopathy. Brain Pathol 10:15-28.

Alvarez de Lugo N, Wang X, Ventura A, Azcoiti I, de la Torre JU, Wiegand G, Mora M, Caicedo A, Echeverria E, de la Torre JU (2013) JAK-STAT pathway: from cell biology to disease treatment. J Neuroimmunol 253:1-12.

Almeida A, Borges P, Oliaro A, Ribeiro S, Lopes A, Gomes C, Zappulla C, Da Costa J, Sousa C, Zanoni P (2013) A balance between reactive microglia and macrophages mediates human oligodendrocyte responsiveness to Fas-mediated apoptosis. J Neurochem 127:739-748.

Ammar RH, Verma S, Datta SR, Li X, Rice T, Huang X, Dasgupta P, Bell GW, Zeng Y, Pasi J, Shenolikar S, Dong Y, Chanda KA (2018) JAK1/2 inhibition promotes M2 macrophage polarization in tumors and reduces tumor growth in vivo. Cancer Res 78:171-181.

Anderson DE, Deininger ML, Kantarjian H, Verma S, Cortes JJ, G Pages G, Meyer S, Fader AN, O'Brien S, Cortes J, Issa JP, Hehlmann R, Reaman GH, Estrov Z (2004) A phase II trial of the JAK2 inhibitor AG-490 in chronic myelogenous leukemia. Blood 103:540-542.

Anderson J, Swanson EL, Strohbehn JD, Wroblewski GM, Grabowski J, Chicheportiche J, Szer IS, Gurney J, Loken M, Colby T, Nolan J, Worton GR, Miller LG, Todd ED, Keating M, Krivtsov AV, Zhang J, Kipps TJ (2011) Chronic myeloid leukemia: beyond BCR-ABL1 inhibition. Nat Rev Cancer 11:585-597.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.

Anzolin LB, Hauschka PV, Heidrich MR, Fishman MC, Hascall VC, Cohen AM (2000) Osteoblastic regulation of bone formation in vivo depends on the JAK/STAT signaling pathway in osteoblasts. J Biol Chem 275:32819-32825.