Abstract

Background: Previous studies have analyzed factors associated with renal infarction so that patients can be provided with earlier diagnosis and treatment. However, the factors associated with development of chronic kidney disease (CKD) following renal infarction are unknown.

Methods: We retrospectively reviewed the records of patients with a diagnosis of renal infarction based on enhanced computed tomography. All patients were admitted to a single emergency department in Taiwan from 1999 to 2008. Univariate and multivariate analysis were used to assess the effect of different factors on development of CKD based on estimates of the glomerular filtration rate (eGFR) at admission and at 3–12 months after discharge.

Results: Univariate analysis indicated significantly increased risk of CKD in patients older than 50 years, with symptoms for 24 h or less before admission, lower eGFR at admission, APACHE II score greater than 7, SOFA score greater than 1, ASA score greater than 2, and SAPS II score greater than 15. Multivariate analysis indicated that only SOFA score greater than 1 was significantly and independently associated with CKD at follow-up ($p<0.001$).

Conclusions: A total of 32.5% of patients admitted for renal infarction over a ten-year period developed CKD at 3–12 months after discharge. A SOFA score greater than 1 was significantly and independently associated with development of CKD in these patients.

Introduction

Renal infarction is a rare but potentially serious condition that is typically characterized by unilateral flank or abdominal pain, hematuria, and proteinuria. Diagnosis can be difficult because these and other signs and symptoms are non-specific and are often consistent with pyelonephritis, tumor, urolithiasis, and other conditions [1]. Diagnosis is best made by contrast-enhanced computed tomography (CT) and/or renal angiography. CT results typically indicate the presence of a wedge-shaped hypodense area in the peripheral region [2,3]. Thrombosis, embolism, and arterial lesion are the main causes of renal infarction [4].

Prompt initiation of therapy with an anti-coagulant and/or a thrombolytic agent is often the preferred treatment for renal infarction. Catheter-directed intra-arterial thrombolysis may also be effective [5]. However, such treatments are not effective in all patients, possibly due to delays in diagnosis [2]. Patients can recover from renal infarction, but some patients develop irreversible chronic kidney disease (CKD). Many previous case studies and case series have investigated factors associated with renal infarction in order to allow earlier diagnosis [3–8]. However, the factors associated with development of CKD following renal infarction are not yet well-established.

In the present study, we identified factors associated with development of CKD following renal infarction by analysis of patients from a single institution in Taiwan who experienced renal infarction from 1999 to 2008.

Methods

Patient selection

All patients were admitted to the Emergency Department (ED) of Chang Gung Memorial Hospital (Taoyuan, Taiwan) from 1999 to 2008 due to a diagnosis of renal infarction based on enhanced computed tomography (CT). All patients received out-patient follow-up and had serum creatinine measured at admission. Variables were excluded if they were missing in more than 50% of patients, if all subjects had the same value, and if they were not numerically coded. Ultimately, 40 patients were enrolled. The Institutional Review Board of Chang Gung Memorial Hospital approved this retrospective study and the patients provided written informed consent.
Clinical and demographic data

Clinical and demographic data were obtained by retrospective chart review. Serum creatinine was measured by the Jaffe reaction with alkaline picrate. Prognostic scores were calculated upon ED admission (before treatment) based on APACHE II criteria [9], SOFA criteria [10], ASA criteria [11], and SAPS II criteria [12]. These scores were readily available, and although they were not designed to predict the risk of CKD after RI, we investigated their potential use in this new context. CKD was diagnosed based on K/DOQI guidelines [13] and an estimated glomerular filtration rate (eGFR) less than 60 mL/min/1.73 m² at ER admission and 3 months after discharge. The eGFR was calculated by the Cockcroft and Gault formula, which was developed in 1976 [14].

Data Analysis

Continuous variables are expressed as means ± SDs if the distribution was normal and as medians with interquartile ranges (IQRs) if the distribution was non-normal. Categorical variables are expressed as frequencies and percentages. The difference in

Table 1. Baseline characteristics of study subjects admitted to the emergency department for renal infarction (n = 40).

Characteristic	Yes	No	Percentage
Age (years), mean ± SD			
Gender, n (%)			
Female	11	29	27.5
Male	39		72.5
Previous renal infarction, n (%)			
No	39		97.5
Yes	1		2.5
Current Medications			
Aspirin, n (%)			
No	26		65.0
Yes	14		35.0
Warfarin, n (%)			
No	34		85.0
Yes	6		15.0
Amiodarone, n (%)			
No	39		97.5
Yes	1		2.5
Clopidogrel, n (%)			
No	40		100.0
Yes	0		0.0
Steroid, n (%)			
No	39		97.5
Yes	1		2.5
Chinese herb, n (%)			
No	39		97.5
Yes	1		2.5
Hormone replacement therapy, n (%)			
No	38		95.0
Yes	2		5.0
Clinical symptoms			
Duration (h) of symptoms/signs before admission, median (IQR)	24.0 (12.0–84.0)		
Fever, n (%)			
No	34		85.0
Yes	6		15.0
Chills, n (%)			
No	39		97.5
Yes	1		2.5
Abdominal pain, n (%)			
No	6		15.0
Yes	34		85.0
Abdominal fullness, n (%)			
No	36		90.0
Yes	4		10.0
Dyspnea, n (%)			
No	36		90.0
Yes	4		10.0
Flank pain, n (%)			
No	23		57.5

Table 1. Cont.

Characteristic	Yes	No	Percentage
Back pain, n (%)			
No	37		92.5
Yes	3		7.5
Nausea, n (%)			
No	26		65.0
Yes	14		35.0
Vomiting, n (%)			
No	28		70.0
Yes	12		30.0
Hematuria, n (%)			
No	39		97.5
Yes	1		2.5
Oliguria, n (%)			
No	40		100.0
Yes	0		0.0
Anuria, n (%)			
No	40		100.0
Yes	0		0.0
Etiology, n (%)			
Cardiac or other embolism	18		45.0
Thrombosis or coagulation dysfunction	16		40.0
Spontaneous renal artery dissection	1		2.5
Idiopathic	5		12.5

Laboratory test

eGFR at admission (mL/min per 1.73 m²), median (IQR)	66.70 (63.03)	
ICU prognostic scores	APACHE II, median (IQR)	7.0 (4.0–10.0)
	SOFA, median (IQR)	1.0 (0.0–2.0)
	ASA, median (IQR)	2.0 (1.0–3.0)
	SAPS II, median (IQR)	15.0 (13.0–19.0)

doi:10.1371/journal.pone.0098880.t001
eGFR at two time points was assessed by a paired t-test. The differences in the presence of CKD in patients with different characteristics were assessed by a Chi-square test or Fisher’s exact test, as appropriate. For identification of risk factors associated with CKD, the point estimates and 95% confidence intervals (CIs) of odds ratios (ORs) were calculated by univariate and multivariate logistic regression models. All significant variables in the univariate analysis were used for backward selection in the multivariate logistic regression model; variables that did not improve model fit for a p-value less than 0.1 were discarded, but potential confounding variables (age and gender) were forced into the model. All statistical analyses were performed with SAS software version 9.2 (SAS Institute Inc., Cary, NC). A two-tailed p-value less than 0.05 was considered statistically significant.

Results

Baseline characteristics of study subjects
A total of 40 patients (29 males [72.5%] and 11 females [27.5%]) who were admitted to our ED for renal infarction, all of whom had eGFR measurements at admission and at 3–12 months after discharge, were included in the analysis (Table 1). The mean patient age was 53.18 ± 15.10 years and the age range was 20 to 78 years. One patient (2.5%) had a previous renal infarction. The most common medications were aspirin (35%) and warfarin (15%). The median (IQR) duration of symptoms/signs before admission was 24.0 h (12.0–84.0). The most common symptoms were abdominal pain (85%) and flank pain (42.5%). Eighteen patients (45%) had an embolism in the heart or other region. The median (IQR) of the APACHE II, SOFA, ASA, and SAPS II scores were 7.0 (4.0–10.0), 1.0 (0.0–2.0), 2.0 (1.0–3.0), and 15.0 (13.0–19.0), respectively. Based on a Kruskal-Wallis test, the distributions of ICU prognostic scores (APACHE II, SOFA, ASA, and SAPS II) did not differ significantly among patients with different etiologies (cardiac or other embolism, n = 18; thrombosis or coagulation dysfunction, n = 16; renal artery dissection, n = 1; idiopathic disease, n = 5).

eGFR at admission and 3 to 12 months after discharge
The eGFRs of all enrolled patients were measured at admission and 3 to 12 months after discharge (Table 2). Eleven patients were evaluated at month-3, 2 at month-6, 6 at month-9, and 21 at month-12 (mean duration: 8.8 ± 3.9 months after discharge) (Figure 1). The results indicate slightly higher mean eGFR after discharge than at admission (66.7 ± 31.0 vs. 70.5 ± 28.5 mL/min/1.73 m², p = 0.035), but no significant change in Cr.

Factors associated with development of chronic kidney disease
A total of 13 patients (32.5%) developed CKD at the last follow-up. Table 3 shows a univariate analysis of risk factors associated with development of CKD. These results indicate significantly increased risk of CKD in patients with the following characteristics: older than 50 years (50.0% vs. 11.1%, p = 0.009), symptoms for 24 h or less before admission (45.8% vs. 12.5%, p = 0.027), lower eGFR at admission (per 1 mL/min/1.73 m², OR = 0.74, 95% CI: 0.56–0.98, p = 0.034), APACHE II score greater than 7 (50.0% vs. 18.2%, p = 0.033), SOFA score greater than 1 (90.9% vs. 10.3%, p < 0.001), ASA score greater than 2 (71.4% vs. 11.5%, p < 0.001), and SAPS II score greater than 15 (57.9% vs. 9.5%, p = 0.001).

The final multivariate model was chosen with backward selection for variables that were significant in the univariate analysis. Variables that did not improve model fit (p > 0.1) were discarded, except for age and gender, which were forced in the

Table 2. Mean (±SD) eGFR and Cr of patients at admission and at 3 to 12 months after discharge (n = 40).

Parameter	At admission	3 to 12 months after discharge	Difference	p-value
eGFR (mL/min/1.73 m²)	66.7±31.0	70.5±28.5	3.8±11.1	0.035
Cr (mg/dL)	1.35±0.64	1.23±0.38	-0.12±0.46	0.115

1Paired t-test.

doi:10.1371/journal.pone.0098880.t002
Table 3. Univariate analysis of risk factors associated with chronic kidney disease at follow-up among patients admitted for renal infarction.

Characteristic	CKD/Total (%)	p-value	OR (95% CI)	p-value
Age (years)				
≤ 50	2/18 (11.1)	0.009†	1.00 (reference)	
> 50	11/22 (50.0)	0.016	8.00 (1.48–43.40)	
Gender				
Female	3/11 (27.3)	1.000‡	1.00 (reference)	
Male	10/29 (34.5)	0.665	1.40 (0.30–6.49)	
Previous renal infarction				
No	13/39 (33.3)	1.000‡	1.00 (reference)	
Yes	0/1 (0.0)	NA	0.981	
Current Medications				
Aspirin				
No	6/26 (23.1)	0.155‡	1.00 (reference)	
Yes	7/14 (50.0)	0.089	3.33 (0.83–13.37)	
Warfarin				
No	11/34 (32.4)	1.000‡	1.00 (reference)	
Yes	2/6 (33.3)	0.962	1.05 (0.17–6.61)	
Amiodarone				
No	13/39 (33.3)	1.000‡	1.00 (reference)	
Yes	0/1 (0.0)	NA	0.981	
Steroid				
No	12/39 (30.8)	0.325‡	1.00 (reference)	
Yes	1/1 (100.0)	NA	0.982	
Chinese herb				
No	13/39 (33.3)	1.000‡	1.00 (reference)	
Yes	0/1 (0.0)	NA	0.981	
Hormone therapy				
No	12/38 (31.6)	1.000‡	1.00 (reference)	
Yes	1/2 (50.0)	0.596	2.17 (0.13–37.64)	
Clinical symptoms				
Duration (h) of symptoms/signs before admission				
≤ 24‡	11/24 (45.8)	0.027†	1.00 (reference)	
> 24	2/16 (12.5)	0.039	0.17 (0.03–0.91)	
Fever				
No	12/34 (35.3)	0.643‡	1.00 (reference)	
Yes	1/6 (16.7)	0.384	0.37 (0.04–3.51)	
Chills				
No	13/39 (33.3)	1.000‡	1.00 (reference)	
Yes	0/1 (0.0)	NA	0.981	
Abdominal pain				
No	0/6 (0.0)	0.952	1.00 (reference)	
Yes	13/34 (38.2)	NA	0.952	
Abdominal fullness				
No	12/36 (33.3)	1.000‡	1.00 (reference)	
Yes	1/4 (25.0)	0.737	0.67 (0.06–7.11)	
Dyspnea				
No	11/36 (30.6)	0.584‡	1.00 (reference)	
Yes	2/4 (50.0)	0.440	2.27 (0.28–18.27)	
Flank pain				
No	5/23 (21.7)	0.091†	1.00 (reference)	
Table 3. Cont.

Characteristic	CKD/Total (%)	p-value	OR (95% CI)	p-value
Yes	8/17 (47.1)	3.20 (0.81–12.65)	0.097	
Back pain				
No	12/37 (32.4)	1.000 ‡	1.00 (reference)	
Yes	1/3 (33.3)	1.04 (0.09–12.66)	0.974	
Nausea				
No	9/26 (34.6)	1.000 ‡	1.00 (reference)	
Yes	4/14 (28.6)	0.76 (0.18–3.11)	0.698	
Vomiting				
No	9/28 (32.1)	1.000 ‡	1.00 (reference)	
Yes	4/12 (33.3)	1.06 (0.25–4.45)	0.941	
Hematuria				
No	13/39 (33.3)	1.000 ‡	1.00 (reference)	
Yes	0/1 (0.0)	NA		0.981
Etiology				
Cardiac or other embolism	8/18 (44.4)	0.379 ‡	1.20 (0.16–9.01)	0.966
Thrombosis or coagulation dysfunction	3/16 (18.8)	0.35 (0.04–3.08)	0.980	
Spontaneous renal artery dissection	0/1 (0.0)	NA		0.971
Idiopathic	2/5 (40.0)	1.00 (reference)		
Laboratory test				
eGFR at admission, per 1 ml/min/1.73 m²	0.74 (0.56–0.98)	0.034		
ICU prognostic scores				
APACHE II				
≤ 7†	4/22 (18.2)	0.033 †	1.00 (reference)	0.038
>7	9/18 (50.0)	4.50 (1.08–18.69)		
SOFA				
≤ 1†	3/29 (10.3)	<0.001 ‡	1.00 (reference)	
>1	10/11 (90.9)	86.67 (8.04–934.35)	<0.001	
ASA				
≤ 2‡	3/26 (11.5)	<0.001 ‡	1.00 (reference)	
>2	10/14 (71.4)	19.17 (3.61–101.91)	0.001	
SAPS II				
≤ 15‡	2/21 (9.5)	0.001 †	1.00 (reference)	0.003
>15	11/19 (57.9)	13.06 (2.34–72.82)		
Treatments				
Drug therapy				
None	4/16 (25.0)	0.647 ‡	1.00 (reference)	0.958
coumadin	0/2 (0.0)	NA		
unfractioned heparin	4/9 (44.4)	2.40 (0.42–13.60)	0.936	
LMWH	4/9 (44.4)	2.40 (0.42–13.60)	0.936	
coumadin+UFH	0/1 (0.0)	NA		0.969
coumadin+LMWH	1/1 (100.0)	NA		0.932
coumadin+UFH+LMWH	0/1 (0.0)	NA		0.969
UFH+TPA (IV)	0/1 (0.0)	NA		0.969
Surgery				
No	13/36 (36.1)	0.284 ‡	1.00 (reference)	0.961
Yes	0/4 (0.0)	NA		
Blood pressure control				
No	10/32 (31.3)	1.000 ‡	1.00 (reference)	0.736
Yes	3/8 (37.5)	1.32 (0.26–6.64)		
model for adjustment (Table 4). The results of this analysis indicated that only SOFA score greater than 1 was significantly and independently associated with CKD at follow-up (adjusted OR = 75.60, 95% CI: 5.62–1016.99, \(p = 0.001\)). In addition, previous hypertension and diabetes mellitus were not significantly associated with CKD (data not shown).

Discussion

We examined the records of 40 patients who were admitted to the ED of Chang Gung Memorial Hospital from 1999 to 2008 with a diagnosis of renal infarction based on enhanced contrast CT. Measurements indicate slightly higher eGFR after discharge than at admission, suggesting a slight improvement in renal function after discharge. A total of 13 patients (32.5%) with renal infarction were diagnosed with CKD after discharge. Univariate analysis indicated that numerous factors were significantly associated with CKD (age \(\geq 50\) years, symptoms for 24 h or less before admission, low eGFR at admission, APACHE II score greater than 7, SOFA score greater than 1, ASA score greater than 2, and SAPS II score greater than 15. However, multivariate analysis indicated that only SOFA score greater than 1 was significantly and independently associated with a diagnosis of CKD. Although the SOFA score was not designed to predict the

Characteristic	CKD/Total (%)	\(p\)-value	OR (95% CI)	\(p\)-value
No	12/39 (30.8)	0.325\(^\dagger\)	1.00 (reference)	
Yes	1/1 (100.0)	NA		0.979
Poor response to opioid				
No	10/29 (34.5)	1.00\(^\dagger\)	1.00 (reference)	
Yes	3/11 (27.3)	0.71 (0.15–3.30)	0.665	
Pain subsided				
No	6/22 (27.3)	0.435\(^\dagger\)	1.00 (reference)	
Yes	7/18 (38.9)	1.70 (0.45–6.44)	0.437	
Type of renal infarction				
Left renal infarction				
No	9/21 (42.9)	0.142\(^\dagger\)	1.00 (reference)	
Yes	4/19 (21.1)	0.36 (0.09–1.44)	0.148	
Right renal infarction				
No	8/27 (29.6)	0.722\(^\dagger\)	1.00 (reference)	
Yes	5/13 (38.5)	1.48 (0.37–5.96)	0.577	
Bilateral renal infarction				
No	9/32 (28.1)	0.400\(^\dagger\)	1.00 (reference)	
Yes	4/8 (50.0)	2.56 (0.52–12.48)	0.246	
Splenic infarction				
No	11/34 (32.4)	1.000\(^\dagger\)	1.00 (reference)	
Yes	2/6 (33.3)	1.05 (0.17–6.61)	0.962	
Complications				
ESRD				
No	5/21 (23.8)	0.217\(^\dagger\)	1.00 (reference)	
Yes	8/19 (42.1)	2.33 (0.60–9.03)	0.222	
Hospital Stay (day)				
\(\leq 10\)	13/37 (35.1)	0.538\(^\dagger\)	1.00 (reference)	
\(>10\)	0/3 (0.0)	NA		0.967
ICU Stay (day)				
\(\leq 0\)	13/38 (34.2)	1.000\(^\dagger\)	1.00 (reference)	
\(>0\)	0/2 (0.0)	NA		0.973
Ventilator use				
No	2/18 (11.1)	0.009\(^\dagger\)	1.00 (reference)	
Yes	11/22 (50.0)	8.00 (1.48–43.40)	0.016	

Abbreviations: OR, odds ratio; CI, confidence interval; NA, non-available; CKD, chronic kidney disease; ESRD, end stage renal disease; LMWH, low molecular weight heparin; TPA, tissue plasminogen activator; UFH, unfractionated heparin.
\(^\dagger\)Chi-square test; \(^\dagger\)Fisher's exact test.
\(^\dagger\)Median served as the cutoff value.
doi:10.1371/journal.pone.0098880.t003
Our analysis indicated that the post-discharge eGFR was significantly higher than the eGFR at admission. However, it seems doubtful whether this small increase (3.8±11.1 mL/min/1.73 m²) was clinically significant. Nonetheless, these results indicate an improvement in kidney function, so this result is not surprising [17]. We find it encouraging that the SOFA score is the best predictor of CKD, because this score only requires measurement of 6 parameters (respiratory, cardiovascular, central nervous system, renal, coagulation, and liver). The APACHE II requires measurement of 34 variables and SAPS II requires measurement of 12 variables. We suggest that future studies of the development of CKD in patients admitted with RI consider use of the SOFA score to guide patient follow-up.

Our study had several limitations. First, our sample size was relatively small and all patients were from a single institution. Second, all patients were admitted to the ED and exclusion of out-patients with renal infarction may have provided a biased view of factors associated with development of CKD.

Conclusions

Our retrospective study of patients admitted to a single ED with renal infarction indicated that 32.5% of patients developed CKD within 3 months of discharge. Elevation of serum creatinine at admission and a SOFA score greater than 1 was the factor significantly and independently associated with development of CKD at follow-up.

Author Contributions

Conceived and designed the experiments: CJS. Analyzed the data: WLL. Contributed analysis tools: JYW. Conceived and designed the experiments: CJS. Analyzed the data: WLL. Contributed materials: YMW. Wrote the paper: WLL. Contributed analysis tools: JYW. Contributed materials: YMW.

References

1. Korzets Z, Plotkin E, Bernheim J, Zissin R (2002) The clinical spectrum of acute renal infarction. IMAJ 4: 781–784.
2. Huang CC, Lo HC, Huang HH, Kao WF, Yen DH, et al. (2007) ED presentations of acute renal infarction. Am J Emerg Med 25: 164–169.
3. Szerer O, Shirkhoda A, Zafar Jafri S, Madrazo BL, Bis KG, et al. (2002) CT features of renal infarction. Eur J Radiol 44: 59–64.
4. Tsai SH, Chu SJ, Chen SJ, Fan YM, Chang WC, et al. (2006) Acute renal infarction: a 10-year experience. Int J Clin Pract 61: 62–67.
5. Pirfarette G, Riva F, Tozzi M, Lonazzi C, Rivolta N, et al. (2006) Catheter-directed thrombolysis for acute renal artery thrombotic report of 4 cases. Vasc Endovascular Surg 42: 375–379.
6. Bolderman R, Oyen R, Verheijen A, Knockaert D, Vandercruysen S (2006) Idiopathic renal infarction. Am J Med 2006, 119: 356.e9–12.
7. Domanovits H, Niklardjam M, Meron G, Kukriyian I, et al. (1999) Acute renal infarction. Clinical characteristics of 17 patients. Medicine (Baltimore) 78: 396–394.
8. Korzets Z, Plotkin E, Bernheim J, Zissin R (2002) The clinical spectrum of acute renal infarction. IMAJ 4: 781–784.
9. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829.
10. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286: 1754–1758.
11. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829.
12. Le Gall JR, Lemeshow S, Saulnier F (1995) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270: 2957–2963.

Table 4. Multivariate analysis of risk factors associated with chronic kidney disease at follow-up among patients admitted for renal infarction.

Characteristic	Adjusted OR (95% CI)	p-value
Age (years)		
≤ 50	1.00 (reference)	
> 50	7.12 (0.54–93.40)	0.135
Gender		
Female	1.00 (reference)	
Male	1.23 (0.11–14.23)	0.868
SOFA		
≤ 1*	1.00 (reference)	
> 1	75.60 (5.62–1016.99)	0.001

OR: odds ratio; CI: confidence interval.
*Median served as the cutoff value.
13. NKF KDOQI Guidelines. Available: http://www.kidney.org/professionals/KDOQI/guidelines_ckd/toc.htm.
14. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41.
15. Minne L, Abu-Hanna A, de Jonge E (2008) Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review. Crit Care 12:R161
16. Lemeshow S, Klar J, Teres D (1995) Outcome prediction for individual intensive care patients: useful, misused, or abused? Intensive Care Med 21: 770–776.
17. Ceriotti F, Boyd JC, Klein G, Henny J, Queralto J, et al. (2008) Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem 54: 559–566.