Geometry and symmetry in skyrmion dynamics

Citation for published version:
Kuchkin, VM, Chichay, K, Barton-Singer, B, Rybakov, FN, Blügel, S, Schroers, BJ & Kiselev, NS 2021, 'Geometry and symmetry in skyrmion dynamics', Physical Review B, vol. 104, no. 16, 165116.
https://doi.org/10.1103/PhysRevB.104.165116

Digital Object Identifier (DOI):
10.1103/PhysRevB.104.165116

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review B

Publisher Rights Statement:
©2021 American Physical Society
Vladyslav M. Kuchkin, Ksenia Chichay, Bruno Barton-Singer, Filipp N. Rybakov, Stefan Blügel, Bernd J. Schroers, and Nikolai S. Kiselev
Phys. Rev. B 104, 165116 – Published 8 October 2021

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Geometry and symmetry in skyrmion dynamics

Vladyslav M. Kuchkin1,2,*, Ksenia Chichay3, Bruno Barton-Singer2,4, Filipp N. Rybakov4, Stefan Blügel1, Bernd J. Schroers2,4, and Nikolai S. Kiselev1

1Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
2Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
3Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
4Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
5Department of Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden

(Received 23 April 2021; accepted 22 September 2021; published 8 October 2021)

The uniform motion of chiral magnetic skyrmions induced by a spin-transfer torque displays an intricate dependence on the skyrmions’ topological charge and shape. We reveal surprising patterns in this dependence through simulations of the Landau-Lifshitz-Gilbert equation with Zhang-Li torque and explain them through a geometric analysis of Thiele’s equation. Our results provide a universal geometrical understanding of the dependence of the skyrmion’s velocity and Hall angle on the skyrmion’s topological charge, shape, and orientation. The generality of our approach suggests the validity of our results for exchange-frustrated magnets, bubble materials, and other materials.

DOI: 10.1103/PhysRevB.104.165116

I. INTRODUCTION

Skyrmions are examples of topological solitons: stable, particlelike configurations in nonlinear field theories. Originally introduced in the context of nuclear physics by Skyrme [1], the term “skyrmion” is now widely used and has found applications in several distinct areas of physics. This paper is about the dynamics of magnetic skyrmions (Sks) to which we attribute all stable solutions of the static field equations, even when the topological charge is zero.

Since the pioneering works by Bogdanov and coauthors [2–5], both the static and dynamic properties of axisymmetric solutions representing vortexlike spin textures known as $k\pi$-Sks [Fig. 1(a)] have been studied extensively. However, as in the nuclear Skyrme model, removing the assumption of axisymmetry reveals an extraordinary diversity of solutions with arbitrary topological charge. Their static properties have only recently been studied [7–11], and very little is known about their dynamics [12–14].

In the nuclear Skyrme model, understanding static solutions provides only very limited insights into dynamical properties. By contrast, for magnetic Sks the static solutions allow one to deduce interesting features of their dynamics, for instance, in response to an applied current. This fact is explained and exploited in this paper. Drawing on the full range of recently discovered static Sks, we report a striking result: the distribution of the response velocities has a ringlike shape, as shown in Fig. 1(b). We provide a comprehensive analysis of this phenomenon which implies a geometric understanding of the Sk Hall angle valid for any Sk and irrespective of the stabilization mechanism and underlying Hamiltonian.
spin-orbit or spin-transfer torques [22–25]. Here we consider the particular case of the Zhang-Li STT [15]. The Landau-Lifshitz-Gilbert (LLG) equation [26] in this case has the form

$$\frac{dn}{dt} = -\gamma n \times H_{\text{eff}} + \alpha n \times \frac{dn}{dt} - T_{\text{ZL}},$$

where γ is the gyromagnetic ratio, α is the Gilbert damping, $H_{\text{eff}} = -\frac{1}{M_s} \frac{\partial E}{\partial n}$ is the effective field, and the last term is the Zhang-Li torque:

$$T_{\text{ZL}} = n \times [n \times (I \cdot V)n] + \xi n \times (I \cdot V)n,$$

where the vector $I = j \mu_B p (1 + \xi^2)^{-1} (eM_s)^{-1}$ is proportional to the current density j, ξ is the degree of nonadiabaticity [27], p is the polarization of the spin current, μ_B is the Bohr magneton, and e is the electron charge.

We study the solutions of Eq. (2) corresponding to uniform motion of magnetic SKs using different values for h and u in our micromagnetic simulations for a large diversity of SKs. The resulting velocity distribution is shown in Fig. 1(b). For details regarding the numerical simulations see Appendixes A–C. To explain the ringlike shape of this distribution we use analytical methods, to which we now turn.

The uniform motion of magnetic textures is well described by Thiele’s equation [28], which can be derived from (2) and has the following form [29]:

$$-Q e_z \times (V + I) - \Gamma (aV + \xi I) = 0,$$

where $V = (V_x, V_y)^T$ is the velocity vector of the SK moving as a rigid object, i.e., $n(r, t) = n_0(r - Vt)$. The two essential parameters in (4) are the topological charge [30]

$$Q = \frac{1}{4\pi} \int n \cdot (\partial_x n \times \partial_y n) \, dx \, dy$$

and the dissipation tensor Γ, whose components are [25,31]

$$\Gamma_{ij} = \frac{1}{4\pi} \int (\partial_{xy} n \cdot \partial_{xy} n) \, dx \, dy, \quad i, j = x, y.$$

Equation (4) has a simple algebraic form, but to solve it for V one has to find the SK profile n_0 [which, in general, should be consistent with the LLG equation (2)] and calculate the integrals in (5) and (6). Previous studies [29,32] showed that for low current density the uniform motion has only a secondary effect on the skyrmion profile. Therefore, the tensor Γ can be calculated with good accuracy from n_0 representing a static equilibrium configuration found by direct energy minimization. This semianalytical approach shows very good agreement with the results of direct micromagnetic simulations based on the LLG equation (2).

Note that we apply the fourth-order finite-difference scheme only to calculate the magnetization spatial derivatives in the Hamiltonian (1) and, consequently, in the effective field term in the LLG equation (2), while magnetization gradients in the STT term in MUMAX are calculated with only second-order accuracy. The latter may lead to small discrepancies between the LLG simulations and Thiele’s approach. Nevertheless, in our calculations, the difference never exceeds a few percent when we compare the velocity components.

III. SKYRMION SYMMETRY

As a symmetric and positive 2×2 matrix, Γ can be brought into diagonal form by conjugation with a rotation matrix. In terms of the real eigenvalues $\lambda_1 \geq \lambda_2 > 0$ and the rotation angle ψ, we have the parametrization of Γ as

$$\Gamma = R(\psi) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} R(-\psi),$$

where $R(\psi)$ is the 2×2 matrix for a (mathematically positive) rotation by ψ in the plane. The angle ψ is defined as existing only when $\lambda_1 > \lambda_2$ and takes values only in $[0, \pi)$. It parametrizes the unoriented direction of the eigenvector for λ_1 relative to the x axis (see Appendix D). Under the transformation representing the rotation of the whole spin texture about the axis normal to the plane,

$$n'(r) = R(\pm\psi) n(\mathcal{R}(-\psi) r),$$

the angle ψ shifts to $\psi + \varphi$ (see Appendix D). Here $\mathcal{R}(\varphi)$ is the 3×3 matrix for a rotation by φ about the z axis, and the \pm sign depends on the symmetry of the Lifshitz invariant used.
The transformation (8) represents a zero-energy mode for the Hamiltonian (1) and can be used to define the rotational symmetry of Sks. When the transformation (8) with $\varphi = 2\pi/k$ is trivial for some positive integers k, so that $n' = n$, we say that Sk has a rotational symmetry of order $k = \text{max}(k)$. For axially symmetric Sks the invariance holds for any k, and we write $k = \infty$ [Fig. 2(a)].

IV. GEOMETRY OF THE THIELE EQUATION

To reveal the geometry in Thiele’s equation, we introduce the parameters

$$\rho = 2\tan^{-1}\left(\frac{-Q}{\alpha\sqrt{\lambda_1\lambda_2}}\right), \quad \vartheta = \ln\sqrt{\frac{\lambda_1}{\lambda_2}},$$

and write the general solution of (4) in an orthonormal basis $(\mathbf{e}_\parallel, \mathbf{e}_\perp)$, where \mathbf{e}_\parallel is antiparallel to \mathbf{j},

$$\mathbf{v} = \mathbf{V}/V_0 = (v_h + R_b \cos \rho)\mathbf{e}_\parallel + R_b \sin \rho[\cosh \vartheta - \sinh \vartheta R(2\psi)P]\mathbf{e}_\perp,$$

where $V_0 = \xi |\mathbf{I}|/\alpha$ is the speed of the skyrmionium [29], P is the matrix for the reflection on the x axis, and the parameters $v_h = 1/(\xi + \alpha)/\xi$ and $R_b = 1/(\xi - \alpha)/\xi$ are determined by the Gilbert damping and the degree of nonadiabaticity. For the derivation of (10) and a general discussion of its geometry, see Appendixes E and F. The parameter ρ vanishes for any Sk with $Q = 0$, while necessarily $\vartheta = 0$ ($\lambda_1 = \lambda_2$) for Sks with $k > 2$ (see Appendix D). These facts motivate splitting all Sks into three classes: topologically trivial Sks (TTSks) with $Q = 0$, high-symmetry Sks (HSSks) with $k > 2$, and low-symmetry Sks (LSSks) with $k = 1$ or 2.

Formula (10) captures the geometry referred to in the title and provides the key to understanding the ringlike velocity distribution depicted in Fig. 1(b). For TTSks, the velocity takes the single value $\mathbf{v} = \mathbf{e}_\parallel$, regardless of k. The velocities of HSSks with $\vartheta = 0$ but different values of ρ lie on a circle with radius R_b and center $v_0\mathbf{e}_\parallel$ (Fig. 2). In terms of the components of \mathbf{v} with respect to the basis $(\mathbf{e}_\parallel, \mathbf{e}_\perp)$, we have

$$\lambda_1 = \lambda_2 \Rightarrow (v_1 - v_3)^2 + v_3^2 = R_b^2. \quad (11)$$

For fixed ξ/α, irrespective of the external magnetic field h and anisotropy u, which significantly change the shape and size of the Sks (Fig. S3(a) in the Supplemental Material [6]), the velocities of all HSSks are restricted to the same circle (11). Figure 2(b) illustrates the physical meaning of the parameter ρ, which defines the position of a HSSk on the circle. The angle ρ is linked to the experimentally measurable Sk Hall angle [25] $\beta = \arctan(v_\perp/v_0)$ via

$$\tan \beta = \frac{\sin \rho \sin \beta_{\text{max}}}{1 + \cos \rho \sin \beta_{\text{max}}}, \quad (12)$$

where $\beta_{\text{max}} = \arcsin(R_b/v_0)$ is the maximal Sk Hall angle for HSSks. This provides the promised geometrical interpretation of the Hall angle for HSSk. The velocities of HSSks with $Q < 0$ and $Q > 0$ occupy half of the circle in the upper or lower half plane depending on $\text{sgn}(\xi - \alpha)$ [Figs. 2(d) and 2(e)]. When $\xi = \alpha$, the velocity circle degenerates into a single point, meaning that all Sks move with the same velocity $V_0 = v_0\mathbf{e}_\parallel$. The sign for the Sk Hall angle is inverted for the cases $\xi < \alpha$ and $\xi > \alpha$, both experimentally achievable [33].

Rotating a LSSk with given $\vartheta > 0$ ($\lambda_1 > \lambda_2$) and a given value of ρ according to (8) generates a family of configurations with the same energy but with different spatial...
orientations, parametrized by the angle ψ. In our simulations we find that, after an initial transient stage, this orientation does not change when the LSSk is subjected to a Zhang-Li STT. Movie 1 in the Supplemental Material illustrates this fact for the skyrmion with $k_1 = 1$ and $Q = -1$ depicted in Fig. 1(a) and in the inset in Fig. 3(b). However, the steady-state response velocity itself does depend on the orientation and sweeps out a circle as ψ varies. Movie 2 in the Supplemental Material shows the steady motion of the antiskyrmion depicted in Fig. 3(a) for different orientations relative to the current direction indicated by red crosses on the corresponding circle [6]. For any LSSk, this circle is traversed twice when we rotate the configuration through 2π; it has center coordinates

$$v_s = (v_{s,1}, v_{s,\perp}) = (v_b + R_b \cos \rho, R_b \sin \rho \cosh \vartheta)$$

and radius

$$R_s = R_b |\sin \rho| \sinh \vartheta - R_b \frac{\alpha |Q| (\lambda_1 - \lambda_2)}{\alpha^2 \lambda_1 \lambda_2 + Q^2}.$$

These circles tend to have radii, R_s, smaller than R_b, so we refer to them as small circles in the following. The centers of the small circles are generally close to the big circle (11), so their collective effect is to generate the ringlike distribution which we see in Fig. 1(b). As follows from (13) and (14), the radius of a small circle and the position of its center are linked to the parameters of the big circle via $(v_{s,1} - v_b)^2 + (v_{s,\perp})^2 = R_s^2 + R_b^2$, which implies that (i) any small circle and the big circle intersect at right angles [Fig. 3(a)] and (ii) the position of the center of any small circle is always outside the big circle and approaches it with decreasing R_s. In the limit $R_s \to 0$, small circles degenerate into points on the big circle.

For LSSks, the velocity formula (10) has an interesting dependence on the Sk orientation, which was previously observed in the context of systems with frustrated exchange interactions [34]. It also implies a universal expression for the Sk Hall angle which generalizes (12) for LSSks irrespective of the underlying Hamiltonian and Sk stabilization mechanism. We discuss the general formula and the orientational dependence further in Appendix F.

We observe that the velocity of topologically nontrivial Sks depends on α and ξ in rather different ways. We illustrate this for the case of π-Sks using red circles in Figs. 2(d) and 2(e), respectively. When α is constant, the trace of $(v_\parallel (\xi), v_\perp (\xi))$ is a straight line, while keeping ξ constant but varying α produces yet another circle,

$$\left(v_\parallel - \frac{1}{2}\right)^2 + \left(v_\perp - \frac{Q}{2\alpha \xi}\right)^2 = \frac{1}{4} \left(1 + \frac{Q^2}{\lambda^2 \xi^2}\right),$$

where $\lambda = \lambda_1 = \lambda_2$.

It is natural to ask which Sks move the fastest at fixed dynamical parameters (I, α, ξ). For $\alpha < \xi$, TTSks move with speed $v = 1$, bounding the speed of HSSks. However, LSSks can exceed this speed if the radius R_s, (14) is sufficiently large and the Sk has a suitable orientation. Since R_s is directly proportional to the difference $\lambda_1 - \lambda_2$ of the eigenvalues of the dissipation tensor, elongated Sks with $\lambda_1 \gg \lambda_2$ are good candidates for high-speed motion. For the antiskyrmion, λ_1/λ_2 is of order 5; according to Thiele’s equation, its speed can exceed $v = 1$. This is illustrated in Fig. 3(a) and confirmed by numerical simulations of the LLG equation. Furthermore, it follows from (F1) that, when $\lambda_1 - \lambda_2 > 2|Q|/\alpha$, the longitudinal component of the LSSk velocity v_1 exceeds 1 for a suitably chosen orientation. For instance, for $\alpha = 0.9$, $\xi = 1.5$, $h = 0.3$, and $u = 0.55$, the antiskyrmion satisfies this condition and can travel with $v_1 > 1$. Therefore, contrary to what one might deduce from Fig. 3(a), the longitudinal velocity of the TTSk can be exceeded by that of LSSks which satisfy the condition above.

V. CONCLUSIONS

We showed that the Sk velocity distribution can be understood by splitting all Sks into high-symmetry, low-symmetry,
and topologically trivial ones. Irrespective of the magnetic field and anisotropy, the velocities of high-symmetry Sks all lie on the circle \((11)\). The radius \(R_0\) of that circle depends exclusively on the current density \(j\), Gilbert damping \(\alpha\), and the coefficient of nonadiabaticity of the electric current \(\xi\). The low-symmetry Sks exhibit an even more intriguing behavior: their velocities depend on the Sk orientation with respect to the current direction, and when we vary the orientation for a given Sk, the velocities sweep out a circle with a radius which is generally smaller than \(R_0\). The combination of small circles near the big circle \((11)\) produces the ringlike distribution [Fig. 1(b)]. The variation of \(\alpha\) and \(\xi\) can lead to the degeneration of all those circles into one point when all Sks move along one trajectory with the same velocity.

Due to the generality of our approach, the presented results are valid not only for chiral magnets of various symmetries but also for frustrated magnets and bubble domain materials (see Appendix G).

ACKNOWLEDGMENTS

The authors acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 856538, project “3D MAGiC”), Deutsche Forschungsgemeinschaft (DFG) through SPP 2137 “Skyrmionic” Grants No. KI 2078/1-1 and No. SB 444/16. B.-B.-S. acknowledges an EPSC-funded Ph.D. studentship. F.N.R. acknowledges support from Swedish Research Council Grants No. 642-2013-7837, No. 2016-06122, and No. 2018-03659 and the Göran Gustafsson Foundation for Research in Natural Sciences.

APPENDIX A: MICROMAGNETIC SIMULATIONS

Micromagnetic simulations were performed with the MUMAX code [35] on a rectangular domain with shape \(L_x \times L_y\) with periodic boundary conditions (PBCs). In general, the interaction between the skyrmion instances because of PBCs may change the dynamics of the skyrmions. This effect becomes especially pronounced when the domain of simulation is so small that it affects the shape and thus the symmetry of the skyrmion. To diminish this effect as much as possible we use large size domains, \(L_x, L_y \sim 10L_D\).

To improve the accuracy in the LLG simulations, instead of the second-order finite-difference scheme used by default in MUMAX, we implemented a fourth-order scheme in the spirit of the approach suggested by Donahue and McMichael [36]. For details, see Appendix B, where we discuss various aspects of the accuracy in micromagnetic simulations, and Appendix C, where we provide the MUMAX script with the fourth-order finite-difference scheme implemented.

The skyrmion position can be traced using the approach suggested in Ref. [37], which is based on the formula for the center of mass of a nonuniform rod, but with the topological density—the integrand in Eq. (5) or magnon density [38] as in Ref. [29]—playing the role of distributed mass. In long-time dynamics, when the skyrmion can cross the boundary of the simulated domain with PBCs multiple times, this approach needs to be adapted. In particular, when the skyrmion comes near the boundary of the simulation domain and part of it appears on the opposite side of the simulated domain, this formula suggests that the skyrmion slows down and starts to move in the opposite direction. We suggest an alternative approach to calculate the center of the skyrmion, which follows from the solution of the problem for the center of mass of a nonuniform ring. The skyrmion position, \((x_p, y_p)\) can be defined as follows:

\[
x_p = \frac{L_x}{2\pi} \tan^{-1} \left(\frac{\int N_y \sin (2\pi x/L_x) dx}{\int N_y \cos (2\pi x/L_x) dx} \right) + L_x l_x, \tag{A1}
\]

\[
y_p = \frac{L_y}{2\pi} \tan^{-1} \left(\frac{\int N_x \sin (2\pi y/L_y) dy}{\int N_x \cos (2\pi y/L_y) dy} \right) \pm L_y l_y, \tag{A2}
\]

where \(N_x \equiv N_x(y) = \int (1 - n_x) dy\) and \(N_y \equiv N_y(x) = \int (1 - n_y) dx\) are the magnon densities averaged along \(x\) and \(y\), respectively. The integer numbers \(l_x\) and \(l_y\) indicate how many times the skyrmion has crossed the domain boundary in the \(x\) and \(y\) directions, respectively. The sign in front of \(l_x\) depends on whether the skyrmion crosses the boundary in the positive or negative direction of the corresponding axis, which in turn depends on the sign for the deflection angle \(\beta\). Since, in our setup [Fig. 1(a)], the skyrmions move along the positive \(x\) axis, the sign in front of \(l_x\) is always positive. The approach to trace the position of the soliton presented here is similar to that for calculating the center of mass for a set of point masses that are distributed in the unbounded 2D environment presented in Ref. [39].

The initial spin configurations for various types of skyrmions were either manually crafted according to the method described in Ref. [7] or constructed through analytical functions as in Ref. [10].

APPENDIX B: ACCURACY OF MICROMAGNETIC SIMULATIONS

Insufficient accuracy in the numerical calculation of the magnetization spatial derivatives with finite-difference schemes may lead to artifacts in micromagnetic simulations and provide misleading or inconsistent results. This becomes especially important for skyrmions with a complex shape and large size. In Ref. [7] we showed that the second-order finite-difference scheme often used in micromagnetic calculations may lead to significant discrepancies with the exact solution even when quite dense meshes with \(\sim 100\) nodes per \(L_D\) are used. There, we also showed that the accuracy of energy calculations can be improved approximately by an order of magnitude in the case of the fourth-order scheme [36]. We found that in the case of LLG dynamics, the second-order scheme may provide artifacts that one can get rid of by employing a fourth-order discretization scheme. For better consistency of LLG simulations and numerical solutions of Thiele’s equation it is also advisable to use the fourth-order discretization scheme in the numerical calculations of integrals (6).

Two representative examples of the artifacts occur due to insufficient accuracy in the numerical calculations. The first one is the nonzero deflection angle of topologically trivial skyrmions. According to the general solution of Thiele’s equation [see Eq. (10)], for \(Q = 0\) (so \(\rho = 0\), the component of...
the soliton velocity transverse to the current must be zero irrespective of soliton symmetry [see, e.g., the skyrmionium and chiral droplet in Fig. 2(b)]. An axisymmetric soliton, for instance, skyrmionium, may lose its axial symmetry while in steady motion [29]. Nevertheless, in the case of $Q = 0$, after the transient stage is over and the skyrmion speed reaches saturation, its transverse velocity component must be zero. The nonzero transverse component of the velocity for solitons with $Q = 0$ indicates either inaccuracy of the numerical scheme or that the instantaneous velocity is estimated before steady-state motion is reached [12,40–43]. One can use the steady motion of topologically trivial solitons without deflection to test numerical scheme accuracy.

Another artifact which can be observed in LLG simulations is the rotation of the soliton with respect to its initial state at $t = 0$. With the second-order finite-difference scheme, low-symmetry skyrmions, during the transient state or even during the initial energy minimization, rotate such that their long axis coincides with one of the diagonals of the underlying rectangular mesh (see Fig. 4). A high mesh density and the fourth-order finite-difference scheme eliminate this effect and make the behavior of the solitons consistent with the general solution of Thiele’s equation (10).

APPENDIX C: MUMAX SCRIPT

```plaintext
/**Mumax script with the fourth-order finite difference scheme implemented for 2D with PBC*/
h := 0.3 // [ ] dimensionless external magnetic field
u := 0.55 // [ ] dimensionless anisotropy

 LD := 128.0e-9 // [ nm ]
 Ms := 384e3 // [ A/m ]
 A := 4.0e-12 // [ J/m ]
 D := D*D/(2*A*Ms) // [ T ]
 B := h*BD // [ T ]
 K := u*D*D/(2*A) // [ J/m^3 ]
 Ku1 = K // [ J/m^3 ]
 B Ext = vector(0,0,B) // [ T ] External field vector
 anisU = vector(0, 0, 1) // [ ] Anisotropy unit vector
 nx := 256; ny := 256; nz := 1;
 Lx := 2*LD; Ly := Lx; Lz := 1e-9;
 dx := Lx/nx; dy := Ly/ny; dz := Lz/nz;
 SetMesh(nx, ny, nz, dx, dy, dz, 1, 1, 0);

 l := 60; //size of Ask
 f := -pi/12; //rotation angle with respect to initial configuration

 for iy:=0; iy<ny; iy++ {
    for ix:=0; ix<nx; ix++ {
       rx := (ix - 0.5*nx)*Lx/LD;
       ry := (iy - 0.5*ny)*Ly/LD;
       rxp := (rx*cos(f-pi/4) + ry*sin(f-pi/4))/l;
       ryp := (ry*cos(f-pi/4) - rx*sin(f-pi/4))/l;
       gm := 5*(rxp*rxp + ryp*ryp)/4 - 2*rxp*ryp -1;
    }

    //do something
}
```

FIG. 4. (a) The initial configuration for an antiskyrmion with the rotation by $\varphi = -\pi/12$ and (b) the corresponding state after energy minimization. (c) and (d) The initial and relaxed states for an antiskyrmion with $\varphi = -\pi/4$. See Movie 2 in the Supplemental Material for steady motion of antiskyrmions with different φ.
\[\begin{align*}
g_p &= 1/(5*(r_{xp}*r_{xp} + r_{yp}*r_{yp})/4 - 2*r_{xp}*r_{yp} + 1); \\
m_1 &= g_p*(2*r_{xp} - r_{yp}); \\
m_2 &= g_p*(r_{xp} - 2*r_{yp}); \\
m_3 &= g_p*g_m; \\
m_{new} &= \text{vector}(m_1*\cos(f-pi/4) - m_2*\sin(f-pi/4), m_2*\cos(f-pi/4) + m_1*\sin(f-pi/4), m_3); \\
m.\text{SetCell}(ix, iy, 0, m_{new}); \\
\end{align*} \]

}\}
save(m) // see Fig. 4 a and c

/** The 2th order scheme ***/

// Msat = Ms
// Aex = A
// Dbulk = D

/** The 4th order scheme ***/

Msat = Ms
Aex = A*(4/3) // Exchange constant for nearest neighbor
Dbulk = D*(4/3) // DMI constant for nearest neighbor

/** Fourth order Exchange ***/

NewAex := A*(-1/12)
prefactorXA := Const((2 * NewAex) / (dx*dx*Msat.Average()))
prefactorYA := Const((2 * NewAex) / (dy*dy*Msat.Average()))
prefactorZA := Const((2 * NewAex) / (dz*dz*Msat.Average()))

/** Next-nearest-neighbor-X ***/

left := Mul(Add(Mul(Const(-1),m),Shifted(m, 2, 0, 0)),Shifted(Const(1), 2, 0, 0))
left = Add(left, Mul(Add(Mul(Const(-1),m),Shifted(m, 2-nx, 0, 0)),Shifted(Const(1),2-nx, 0, 0)))

/** Next-nearest-neighbor+X ***/
	right := Mul(Add(Mul(Const(-1),m),Shifted(m, -2, 0, 0)),Shifted(Const(1), -2, 0, 0))
right = Add(right,Mul(Add(Mul(Const(-1),m),Shifted(m,nx-2, 0, 0)),Shifted(Const(1),nx-2, 0, 0)))

/** Next-nearest-neighbor-Y ***/

backward := Mul(Add(Mul(Const(-1),m),Shifted(m, 0, 2, 0)),Shifted(Const(1), 0, 2-ny, 0))
backward = Add(backward,Mul(Add(Mul(Const(-1),m),Shifted(m,0,2-ny, 0)),Shifted(Const(1),0,2-ny, 0)))

/** Next-nearest-neighbor+Y ***/

forward := Mul(Add(Mul(Const(-1),m),Shifted(m, 0, -2, 0)),Shifted(Const(1), 0, -2, 0))
forward = Add(forward,Mul(Add(Mul(Const(-1),m),Shifted(m,0,nx-2, 0)),Shifted(Const(1),0,nx-2, 0)))

leftA := Mul(prefactorXA,left)
rightA := Mul(prefactorXA,right)
forwardA := Mul(prefactorYA,forward)
backwardA := Mul(prefactorYA,backward)

/** Exchange custom effective field next-nearest-neighbor *************/

BcA := Add(leftA,Add(rightA,Add(forwardA,backwardA)))
AddFieldTerm(BcA)
addEdensTerm(Mul(Const(-0.5),Dot(BcA,M_full)))

/** Fourth order DMI ***/

NewD := D*(-1/6)
prefactorXD := Const((2 * NewD) / (2*dx*Msat.Average()))
prefactorYD := Const((2 * NewD) / (2*dy*Msat.Average()))
prefactorZD := Const((2 * NewD) / (2*dz*Msat.Average()))

/** Next-nearest-neighbor X ***/

overx := Mul(prefactorXD,Add(Cross(left,constVector(-1,0,0)),Cross(right,constVector(1,0,0))))

/** Next-nearest-neighbor Y ***/

overy := Mul(prefactorYD, Add(Cross(backward,constVector(0,-1,0)),Cross(forward, constVector(0,1,0))))

/** DMI custom effective field next-nearest-neighbor *************/

BcDMI := Add(overx, overy) AddFieldTerm(BcDMI) addEdensTerm(Mul(Const(-0.5),Dot(BcDMI,M_full))))
APPENDIX D: SKYRMION ROTATION AND DISSIPATION TENSOR

The skyrmions possessing rotational symmetry of order $k_s > 2$ have the property that the response velocity determined by Thiele’s equation (4) is invariant under the rotation (8) of a skyrmion by an arbitrary angle φ, while for skyrmions with $k_s = 1$ or 2, the response velocity in general depends on the rotation angle. This statement can be proven as follows. Inserting (8) into (5) and (6), one can show that for any configuration localized in space, the topological charge Q is invariant under such rotations. On other hand, the dissipation tensor transforms according to $\Gamma' = R(\varphi) \Gamma R(-\varphi)$, where $R(\varphi)$ is the 2 x 2 matrix for a (mathematically positive) rotation by φ in the plane (Fig. 5). This transformation law has the more convenient representation

$$S' = R(2\varphi)S,$$

where S is a 2D vector, $S = (\Gamma_{xx} - \Gamma_{yy}, 2\Gamma_{xy})^T$. If the spin texture is invariant under rotations by angles $\varphi = 2\pi/k_s (n^x = n)$, it follows that $\Gamma' = \Gamma$ and $S' = S$ for those angles. For skyrmions with $k_s = 1$ or 2, this condition is satisfied automatically since $R(4\pi/k_s)$ is the identity matrix, $R = \text{id}$. For such spin configurations, the components of the vector S and Γ tensor may, strictly speaking, take any value. For skyrmions with rotational symmetry $k_s > 2$, on the other hand, it follows that S must be a zero vector, and thus, $\Gamma_{xx} = \Gamma_{yy}, \Gamma_{xy} = 0$, meaning that Γ is proportional to an identity matrix, $\Gamma = 1/2(\Gamma_{xx} + \Gamma_{yy})id = 1/2\text{Tr}(\Gamma)id$. It follows from (D1) that for such skyrmions the dissipation tensor and, as a result, the velocities determined by Thiele’s equation (4) are, indeed, invariant under rotations (8) by an arbitrary angle φ. Motivated by this proof, we distinguish topologically nontrivial skyrmions by their symmetry. We refer to skyrmions with $k_s = 1$ or 2 as low-symmetry skyrmions and to skyrmions with $k_s > 2$ as high-symmetry skyrmions.

APPENDIX E: THIELE’S EQUATION AND ITS GENERAL SOLUTION

To derive the general solution (10) of Thiele’s equation (4) we use the abbreviation

$$\Omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

for the $\pi/2$ rotation in the plane and write Thiele’s equation as

$$\left(\Gamma + \frac{Q}{\alpha} \Omega \right) \mathbf{v} = \left(\Gamma + \frac{Q}{\xi} \Omega \right) \left(-\frac{\xi}{\alpha} \mathbf{1} \right). \quad (E1)$$

![FIG. 5. Illustration of the rotational zero-energy mode. The spin texture of an antiskyrmion (a) before and (b) after the rotation by an angle φ according to (8). The spin textures in (a) and (b) are represented by the standard color code explained in Fig. 1(a). The ellipses in (c) and (d) are the geometrical representations of a 2×2 matrix of Γ computed for the spin textures depicted in (a) and (b), respectively.](image-url)
Then we deduce, with \(\tan \varphi\),

\[
\frac{\xi + \alpha}{2\xi} (\Gamma + \frac{Q}{\alpha} \Omega) + \frac{\xi - \alpha}{2\xi} (\Gamma - \frac{Q}{\alpha} \Omega).
\]

we deduce

\[
(\Gamma + \frac{Q}{\alpha} \Omega)^{-1} (\Gamma + \frac{Q}{\alpha} \Omega) = \frac{\xi + \alpha}{2\xi} + \frac{\xi - \alpha}{2\xi} (\Gamma - \frac{Q}{\alpha} \Omega)^{-1} (\Gamma - \frac{Q}{\alpha} \Omega).
\]

With \(\vartheta = \ln \sqrt{\lambda_1/\lambda_2}\) as in the main text, we introduce the diagonal matrix

\[
D(\vartheta) = \begin{pmatrix} e^\vartheta & 0 \\ 0 & e^{-\vartheta} \end{pmatrix}
\]

and the rotation matrix

\[
R(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}
\]

to write the dissipation tensor as

\[
\Gamma = R(\varphi) \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) R(-\varphi) = \sqrt{\lambda_1\lambda_2} R(\varphi) D(\vartheta) R(-\varphi).
\]

Then we deduce, with \(\tan \frac{\rho}{2} = -\frac{Q}{\alpha \sqrt{\lambda_1\lambda_2}}\) as in the main text, that

\[
(\Gamma + \frac{Q}{\alpha} \Omega)^{-1} (\Gamma - \frac{Q}{\alpha} \Omega) = R(\varphi) \left(\begin{array}{cc} \Omega^{-1} D(\vartheta) - \tan \frac{\rho}{2} \end{array} \right)^{-1} \times \left(\begin{array}{cc} \Omega^{-1} D(\vartheta) + \tan \frac{\rho}{2} \end{array} \right) R(-\varphi).
\]

Noting that \(\Omega^{-1} D(\vartheta) \Omega^{-1} D(\vartheta) = -1\) implies

\[
\cos^2 \frac{\rho}{2} \left(\Omega^{-1} D(\vartheta) - \tan \frac{\rho}{2} \right) \left(\Omega^{-1} D(\vartheta) + \tan \frac{\rho}{2} \right) = -1
\]

and using trigonometric identities, we conclude

\[
(\Gamma + \frac{Q}{\alpha} \Omega)^{-1} (\Gamma - \frac{Q}{\alpha} \Omega) = \cos \rho + \sin \rho \Omega R(\varphi) D(\vartheta) R(-\varphi).
\]

Now multiplying out matrices and using the matrix

\[
P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

for the reflection on the x axis, we arrive at the expression

\[
(\Gamma + \frac{Q}{\alpha} \Omega)^{-1} (\Gamma - \frac{Q}{\alpha} \Omega) = \cos \rho + \sin \rho \Omega [\cosh \vartheta \text{id} + \sin \vartheta \varphi (2\psi) P].
\]

Using this to solve (E1) for \(V\), switching to \(v\), and expressing it in terms of the orthonormal basis \((e_\parallel , e_\perp)\) and the cell parameters \(v_b\) and \(R_b\), one arrives at formula (10).

APPENDIX F: GEOMETRY IN VELOCITY SPACE

We prove the geometrical results related to circles and ellipses in velocity space stated in the main text. We write \(P_\varphi = R(2\varphi) P = R(\varphi) P R(-\varphi)\) for the reflection on the line with polar angle \(\varphi\). Denoting the polar coordinate of the direction \(e_\parallel\) by \(\varphi_1\), with \(\varphi' = \varphi - \varphi_1\), we then have

\[
P_\varphi e_\parallel = \sin(2\varphi') e_\parallel - \cos(2\varphi') e_\perp,
\]

so we can express the components of the velocity \(v\) in (10) also as

\[
v_\parallel - v_b = R_b [\cos \rho + \sin \vartheta \sin(2\varphi') \sin \varphi],
\]

\[
v_\perp = R_b \sin \varrho [\cosh \vartheta + \sinh \vartheta \cos(2\varphi')].
\]

We can use this formula to determine the orientation of a low-symmetry skyrmion relative to the current for which the response velocity \(v\) has the largest component \(v_\parallel\). This is interesting since the angle \(\varphi\) can be changed by physically rotating a skyrmion. From (F1), we deduce that, for \(Q > 0\), \(v_\parallel\) is maximal when \(\varphi' = \pi/4\), while for \(Q < 0\) it is maximal when \(\varphi' = 3\pi/4\).

The Sk Hall angle \(\beta\), defined via \(\tan \beta = v_\parallel / v_b\), can be calculated from (F1). Expressed in terms of the variables \(\lambda_1, \lambda_2, \varphi_1\), which parametrize the shape of the skyrmion and its orientation, it is

\[
\tan \beta = \frac{Q \left(\frac{1}{\xi} - \frac{1}{\Omega} \right) (\lambda_1 \cos^2 \varphi_1 + \lambda_2 \sin^2 \varphi_1)}{\lambda_1 \lambda_2 - \frac{Q}{\alpha} + (\lambda_2 - \lambda_1) Q \left(\frac{1}{\xi} - \frac{1}{\Omega} \right) \cos \varphi_1 \sin \varphi_1}.
\]

(F2)

This generalizes the result (12) for high-symmetry skyrmions given in the main text.

Finally, Eq. (F1) can be used to show that the response velocities of skyrmions with fixed \(\vartheta > 0\) and \(\varphi\) but different values of \(\rho\) necessarily lie on an ellipse. One checks that the velocity satisfies the equation of an ellipse,

\[
(v_\parallel - v_b, v_\perp) M \left(\begin{array}{c} v_\parallel - v_b \\ v_\perp \end{array} \right) = R_b^2,
\]

in terms of a symmetric and positive-definite matrix \(M\) which is determined by \(\vartheta\) and \(\varphi\) and is conveniently expressed in terms of its diagonal form as

\[
M = R(\varphi) \left(\begin{array}{cc} \lambda_+ & 0 \\ 0 & \lambda_- \end{array} \right) R(-\varphi),
\]

with eigenvalues proportional to those of \(\Gamma\). In terms of the proportionality factor \(\kappa = \lambda_1 \cos^2 \varphi_1 + \lambda_2 \sin^2 \varphi_1\), they are

\[
\lambda_+ = \lambda_1 / \kappa, \quad \lambda_- = \lambda_2 / \kappa.
\]

The lengths of the major and minor axes are therefore

\[
a = R_b / \sqrt{\lambda_-}, \quad b = R_b / \sqrt{\lambda_+},
\]

(F3)

giving the eccentricity

\[
e = \sqrt{a^2 - b^2} / a^2 = \sqrt{\lambda_1 - \lambda_2} / \lambda_1.
\]

(F4)
The directions of the axes of the ellipse are determined by the orthonormal basis, which also diagonalizes the dissipation tensor, namely,

\[e_a = \left(\begin{array}{c} -\sin \psi \\ \cos \psi \end{array}\right), \quad e_b = \left(\begin{array}{c} \cos \psi \\ \sin \psi \end{array}\right). \]

(F5)

Note that the major axis is in the direction of the eigenvector for the smaller eigenvalue. The ellipses with these axes and ellipse parameters \((F3)\) all go through the points \((a/\xi)e_i\) and \(e_i\), as can also be seen from \((F1)\).

We have seen that the apparently simple Thiele equation (4) captures surprising geometrical features of skyrmion dynamics. They are revealed by the general solution (10) and confirmed by numerical simulations. The geometrical features provide links to several themes in two-dimensional geometry even though the mathematics is superficially very different. The big circle of high-symmetry skyrmion velocities provides the most basic illustration of this point. The mapping of a line into a circle is a standard feature of Möbius transformations of the complex plane, and writing formula (10) for \(Q \neq 0\) and \(\vartheta = 0\) in terms of complex numbers gives just such a Möbius transformation of the scale parameter \(\lambda = \lambda_1 = \lambda_2\). The small circles generated by varying \(\psi\) in (10) when \(\vartheta > 0\) intersect the big circle at right angles. Circles with this property are geodesics in the Poincaré disk model of the hyperbolic plane. Identifying the boundary of the Poincaré disk with our big circle therefore leads to an unexpected connection between Thiele’s equation (4) and hyperbolic geometry. As a final example of an unforeseen geometrical fact, the velocities of low-symmetry skyrmions (with \(\vartheta \neq 0\)) trace out an ellipse in velocity space when their overall scale is varied. Remarkably, this ellipse has the same eccentricity and orientation as the ellipse defined by the dispersion tensor \(\Gamma\). While the big circle and the small circles can easily be seen in simulations of actual skyrmions and may be observable experimentally, the ellipses in velocity space are difficult to realize since they correspond to a special set of low-symmetry skyrmions whose dissipation tensors have a fixed rotation angle and eigenvalue ratio.

APPENDIX G: OTHER MAGNETIC SYSTEMS, INCLUDING CENTROSYMMETRIC ONES

Chiral magnets possess a lot of similarities with other magnetic materials, for example, frustrated magnets [44], hybrid systems [45–47] where chiral DMI accompanied by frustrated exchange interactions, and magnetic bubble materials [25] films of centrosymmetric magnets with strong easy-axis perpendicular anisotropy. Although the mechanism for stabilization of magnetic solitons in these systems is quite different, the ground state (spirals or stripe domains) and the behavior of the system in an external field (the transition to a skyrmion lattice or bubble domain lattice) are very similar. The analysis of Thiele’s equation presented here is independent of the underlying 2D Hamiltonian. As a result, our classification of skyrmions into high symmetry, low symmetry, and topologically trivial can be applied to predict the dynamics of any magnetic soliton responding to a current through the Zhang-Li torque.

Accordingly, in all such systems, topological solitons with high symmetry have velocities lying on a circle, while topologically trivial solitons all have the same velocity \(V_0\). The theory developed here predicts similar properties for low-symmetry solitons in other magnetic systems. In particular, when the underlying Hamiltonian is degenerate with respect to rotations, we expect that spatially rotating low-symmetry solitons generates circles in the velocity plane, similar to those presented here for low-symmetry skyrmions in an isotropic chiral magnet. The size of these circles will be proportional to the difference in eigenvalues of the dissipation tensor, which is a measure of the soliton’s elongation. Generally, stable configurations do not have strongly elongated shapes, so that their velocities lie close to the big circle (11). Therefore, we expect the velocity distribution to have the ringlike shape found here for most materials. Finally, we note that in the case of magnetic bubbles, three-dimensionality is crucial, and therefore, the theory proposed here may not cover cases where the magnetization is strongly inhomogeneous throughout the film thickness.

[1] T. H. R. Skyrme, A non-linear field theory, Proc. R. Soc. London, Ser. A 260, 127 (1961).
[2] A. N. Bogdanov and D. A. Yablonskii, Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP 68, 101 (1989).
[3] A. N. Bogdanov and A. Hubert, The properties of isolated magnetic vortices, Phys. Status Solidi B 186, 527 (1994).
[4] A. N. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater. 138, 255 (1994).
[5] A. N. Bogdanov and A. Hubert, The stability of vortex-like structures in uniaxial ferromagnets, J. Magn. Magn. Mater. 195, 182 (1999).
[6] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.104.165116 for two movies showing the motion of skyrmions with \(k_5 = 1\), \(Q = -1\) and antiskyrmions obtained in LLG simulations.
[7] F. N. Rybakov and N. S. Kiselev, Chiral magnetic skyrmions with arbitrary topological charge, Phys. Rev. B 99, 064437 (2019).
[8] D. Foster, C. Kind, P. J. Ackerman, J.-S. B. Tai, M. R. Dennis, and I. I. Smalyukh, Two-dimensional skyrmion bags in liquid crystals and ferromagnets, Nat. Phys. 15, 655 (2019).
[9] V. M. Kuchkin and N. S. Kiselev, Turning a chiral skyrmion inside out, Phys. Rev. B 101, 064408 (2020).
[10] V. M. Kuchkin, B. Barton-Singer, F. N. Rybakov, S. Blügel, B. J. Schroers, and N. S. Kiselev, Magnetic skyrmions, chiral kinks and holomorphic functions, Phys. Rev. B 102, 144422 (2020).
[11] B. Barton-Singer, C. Ross, and B. J. Schroers, Magnetic skyrmions at critical coupling, Commun. Math. Phys. 375, 2259 (2020).
[12] C. Kind and D. Foster, Magnetic skyrmion binning, Phys. Rev. B 103, L100413 (2021).
GEOMETRY AND SYMMETRY IN SKYRMION DYNAMICS

Z. Zeng, C. Zhang, C. Jin, J. Wang, C. Song, Y. Ma, Q. Liu, and J. Wang, Dynamics of skyrmion bags driven by the spin–orbit torque, Appl. Phys. Lett. 117, 172404 (2020).

J. Tang, Y. Wu, W. Wang, L. Kong, B. Lv, W. Wei, J. Zang, M. Tian, and H. Du, Magnetic skyrmion bundles and their current-driven dynamics, Nat. Nanotechnol. (2021), doi:10.1038/s41565-021-00954-9.

S. Zhang and Z. Li, Roles of Nonequilibrium Conduction Electrons on the Magnetization Dynamics of Ferromagnets, Phys. Rev. Lett. 93, 127204 (2004).

I. Dzyaloshinsky, A thermodynamic theory of ”weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958).

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960).

D. Gavoli, G. Di Fratta, D. Praetorius, and M. Ruggeri, Micromagnetics of thin films in the presence of Dzyaloshinskii-Moriya interaction, arXiv:2010.15541.

N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. Von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341, 364 (2013).

I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl, Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV$_4$S$_8$, Nat. Mater. 14, 1116 (2015).

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, Field-Dependent Size and Shape of Single Magnetic Skyrmions, Phys. Rev. Lett. 114, 177203 (2015).

F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgi, P. Böni, R. A. Duine, I. Dzyaloshinsky, A thermodynamic theory of ”weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 91 (1960).

M. Weißenhofer and U. Nowak, Orientation-dependent current-driven motion of skyrmions with various topologies, Phys. Rev. B 99, 224430 (2019).

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Vaeyenberghe, The design and verification of MuMax3, AIP Adv. 4, 10 (2014).

M. J. Donahue and R. D. McMichael, Exchange energy representations in computational micromagnetics, Phys. B (Amsterdam, Neth.) 223, 272 (1997).

N. Papanicolaou and T. N. Tomaras, Dynamics of magnetic vortices, Nucl. Phys. B 360, 425 (1991).

A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Magnetic solitons, Phys. Rep. 194, 117 (1990).

L. Bai and D. Breen, Calculating center of mass in an unbounded 2D environment, J. Graphics Tools 13, 53 (2008).

A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, Magnetic antiskyrmions above room temperature in tetragonal Heusler materials, Nature (London) 548, 561 (2017).

J. Wang, J. Xia, X. Zhang, X. Zheng, G. Li, L. Chen, Y. Zhou, J. Wu, H. Yin, R. Chantrell, and Y. Xu, Magnetic skyrmionium diode with a magnetic anisotropy voltage gating, Appl. Phys. Lett. 117, 202401 (2020).

Y. Ishida and K. Kondo, Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications, Jpn. J. Appl. Phys. 59, SGGI04 (2020).

N. Sisodia, P. K. Muduli, N. Papanicolaou, and S. Komineas, Chiral droplets and current-driven motion in ferromagnets, Phys. Rev. B 103, 024431 (2021).

A. O. Leonov and M. Mostovoy, Multiply periodic states and isolated skyrmions in an antiferromagnetic frustrated magnet, Nat. Commun. 6, 8275 (2015).

L. Rózsda, A. Deák, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, and U. Nowak, Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film, Phys. Rev. Lett. 117, 157205 (2016).

A. K. Nandy, N. S. Kiselev, and S. Blügel, Interlayer Exchange Coupling: A General Scheme Turning Chiral Magnets into Magnetic Multilayers Carrying Atomic-Scale Skyrmions, Phys. Rev. Lett. 116, 177202 (2016).

U. Ritzmann, S. von Malotki, J.-V. Kim, S. Heinze, J. Sinova, and B. Dupé, Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques, Nat. Electron. 1, 451 (2018).

C. Melcher, Chiral skyrmions in the plane, Proc. R. Soc. A 470, 20140394 (2014).