1. 緒言

自動車をはじめとする輸送機器のエンジンや足回りに用いられる鉄造部品には、鉄造形成後に焼入れ・焼戻しを省略した非調質鋼が広く用いられているが、輸送効率向上のための部品軽量化等のニーズから、非調質鋼の高強度化が求められている。従来からパールサイト主体の非調質鋼に0.1-0.5%程度のバナジウム（V）を添加することで高強度化することが知られている1,2,3。

ところでこのV添加パールサイトの強化機構は、初析フェライトまたはパールサイト層間のフェライト中に相界面析出した微細なV炭化物（VC）による析出強化であると考えられている3。しかし、0.1%程度の極微量をV添加では、強化を担うVCの析出が、特にラメラフェライト中から明確に確認された報告例が少ない。従来見ても、0.1%のV添加パールサイト鋼におけるVC析出観察例は皆無ではないが4,5、透過型電子顕微鏡（TEM）による中高炭素鋼の具体的なVC観察例は、少なくとも0.2%以上Vを添加したものがある5,6,7,8。0.2%程度Vを添加しても他の合金成分やパールサイト変態温度によってはVCの析出が確認できない例もある9。また、強度上昇が確認されているにも関わらず、明確な析出物が観察されない場合には、析出の前駆体である微細な“クラスター”が形成されていると考えられることもある10。ところが、Orowan機構をはじめとする従来の析出（粒子分散）強化理論では、強化に有効な粒子サイズは小さくても数nm-10 nm程度と考えられているため11,12。なお、TEMで観察されないサブnm-1 nmオーダースイズの析出物（またはクラスター）が存在したとしても、同様の析出強化機構が作用しているとは不確実である。以上から、必ずしも明確なVC析出が観察できない、0.1%以下の極微量V添加パールサイト鋼の強化機構は、相界面析出VCによる析出強化（粒子分散強化）理論の延長で解釈できるかについては、検討が十分でない。

他方、パールサイトの力学特性に関しては、これまでの強化理論とは異なる組織因子が作用している可能性も示唆されている。Nakadaらは、パールサイト組織中に大きな弾性ひずみが蓄積されていることを電子線後方散乱（EBSD）やX線回折を用いた解析により示した13。この弾性ひずみは、フェ
ライ／セメントタイト相界面への格子ミスマッチに起因すると言われている[10]。またこの弾性ひずみは、X線回折測定時のフェライト回折ピークの半径幅をもとに定量化されており、降伏強度と一定の相関を持つことが確認されている[11-13]。そこでこの解析は、V添加鋼のようにラメラ間フェライトの析出強化を狙った成分系では、まだ試みられていない。

本研究では、初期フェライトを含まないマルバライートにおける微量V添加影響の基礎調査として、等温変態させた共析鋼マルバライートの強度特性に及ぼす0.1％V添加の影響を調査した。さらに、TEM観察およびナノスケールの原子分布状態を3次元で可視化することができる3次元アトムプローブ顕微鏡（3D-AP）を用いたVの存在状態の解析に加え、X線回折による格子ひずみの測定を行い、強度発現機構について考察を加えた。

2. 実験方法

共析鋼をベースに、微量V添加の有無に着目して、モデル鋼鋼種（V free, 0.1%V）を溶製した。供試鋼の化学成分をTable 1に示す。これらに対し、Fig.1に示すように、1223 Kでオーステナイト化後、マルバライート変態温度域で180～3600 sの間、等温保持する熱処理によりマルバライート鋼を調製した。等温保持温度は、V free鋼では823 Kおよび873 K、0.1 V鋼では873 Kとした。熱処理後のミクロ組織（マルバライトラメラ間隔）と強度を走査型電子顕微鏡（SEM）観察、ピッカース硬さ測定および引張試験によりそれぞれ評価した。

SEMではナイタル腐食組織を、マルバライトラメラが明瞭に識別できる倍率で各熱処理材とも8視野ずつ観察した。ラメラ間隔は、各観察視野内からラメラ状セメントタイト板が試料観察面とともに垂直に交わっていると思われる領域で評価し、8視野について平均して算出した。セメントタイトが一部で球状化している条件では、視野中の球状化領域を避け、ラメラ構造を維持している範囲でラメラ間隔を測定した。

さらに、V添加による強化機構を詳細に考慮するため、TEM観察、3D-AP、X線回折測定によるナノスケールの組織解析を試みた。TEMでは、V添加の有無に着目し、0.1 V鋼の熱処理材を機械研磨および電解研磨により薄膜化した試料で観察した。3D-APでも同様に、V添加の有無を確認するため、0.1 V鋼の熱処理材を用いて、Vの存在状態を解析した。解析用試料は収束イオンビームを用いて針状に加工した。AP測定にはCAMECA社製のLEAP-4000HRを用いて、電圧パルスモードで行った。試料温度は50 Kまたは80 K、パルス波形数は200 kHz、パルス分率は20%とした。X線回折ではフェライト回折ピークの半価幅測定を行い、V添加の影響を評価した。測定にはCu Kα線を発生するリガク製Ultima IIIを用い、X線出力は40 kV、40 mAとした。θ/2θ法で、回折角2θ：40～140°の範囲の回折強度を0.1％間隔で測定した。得られた回折強度プロファイルをLorentz関数によりフィッティングし、半価幅からフェライト中の格子ひずみを解析した。

3. 実験結果

3.1 ミクロ組織のSEM観察

Fig.2に各熱処理材のミクロ組織のSEM観察結果の一例を示す。いずれの条件でもマルバライートを呈しており、顕著な初期フェライトの発現は認められなかった。V free鋼においては低温（823 K）保持材の方が、マルバライトラメラ間隔が短い。また同一保持温度では、長時間保持するほどラメラセメントタイトが崩れる球状化している。

これらの観察像から、ラメラ間隔を算出した結果を等温保持時間に対してFig.3に示す。873 K保持材では保持時間の増大とともにラメラ間隔が増大した。これにより、等温保持中で微細なラメラ領域が優先的球状化し、比較的粗大なラメラ領域が分断されずに残ったためと推察される[14,15]。球状化の影響が小さい180 s保持材で比較すると、V free-823 K＜0.1 V-873 K＜V free-873 Kの順でラメラ間隔が大きくなった。

3.2 強度評価結果

Fig.4に各熱処理材のピッカース硬さを示す。Fig.4 (a) には、等温保持時間に対する硬さ変化を示す。これより等温保持温度が低いほど、保持時間が短いほど、硬くなることを確認した。また、同一保持温度（873 K）で比較すると、0.1 V鋼の方がHv50程度硬くなった。従来知見[11]でも、0.1％V添加により、873 K等温変態材でHv30-60程度硬さが増大することが報告されており、本結果はV添加強化量

| Table 1. Chemical composition of steels (mass%). |
|-------|-------|-------|-------|-------|-------|
|       | C     | Si    | Mn    | Cr    | V     |
| V free| 0.74  | 0.19  | 0.79  | 0.10  | <0.001|
| 0.1 V | 0.76  | 0.19  | 0.78  | 0.10  | 0.10  |

Fig. 1. Heat treatment conditions.
として妥当な範囲と考えられる。次に、ラメラ間隔を用いて硬さを整理した（Fig.4 (b)）。V free鋼の873 K保持材と823 K保持材を比較すると、ラメラ間隔が小さくなるに伴い、硬さが上昇している。Fig.4 (b) 中の曲線は、ラメラ間隔の逆数により硬さをフィッティングした場合の近似曲線である。これより、同程度のラメラ間隔で比較すると、V添加（0.1 V）の方がV free鋼よりもHv30程度硬くなることが明らかとなった。つまり、ラメラ間隔の変化による影響を差し引いても、V添加による明確な硬さ増大傾向が確認された。

Fig.5に引張試験結果を示す。Fig.5 (a) は、873 K等温保持材の応力ひずみ曲線をV添加の有無について比較したものである。保持時間180 sでは、V添加により強度が向上する一方、伸びはVの有無によらず同程度だった。一方、保持時間3600 sの時効材ではいずれも伸びが向上し、0.1 V-3600 s材は、V free-180 s材と比較して強度、伸びとも向上した。降伏強度（0.2%耐力）と引張強度最大値を等温保持時間に対してFig.5 (b), (d) にそれぞれ示す。各強度は、Fig.4 (a) の硬さ結果と同様に、等温保持温度が低いほど、保持時間が短いほど大きく、またV添加によっても増大した。Fig.5 (c) より、ラメラ間隔の影響を差し引いた0.2%耐力のV添加による増大はおよそ100 MPa程度だった。加工硬化挙動に関する指標として、引張強度（最大値）と0.2%耐力の差（降伏後の強度増大量）をFig.5 (e) に示す。これより、加工硬化量は等温保持温度が高いほど、保持時間が短いほど大きく、またV添加に対しては減少した。180 s保持材で比較すると、V free-823 K＜0.1 V-873 K＜V free-873 Kの順で大きく、ラメラ間隔と同様の傾向を示した。均一伸びの結果をFig.5 (f) に示す。Fig.5 (a) で認められた通り、180 sの短時間保持材では、等温保持温度やV添加の有無によらず同程度の伸びを示した一方、保持時間の増大に対しては、伸びが大幅に増大した。

Fig.2. SEM micrographs of V free/0.1 V steels after isothermal holding.

(a) V free (held at 873 K for 180 s)  (b) V free (held at 873 K for 3600 s)

(c) V free (held at 823 K for 180 s)  (d) 0.1V (held at 873 K for 180 s)

(e) 0.1V (held at 873 K for 3600 s)

Fig.3. Lamellar spacing of V free/0.1 V steels isothermally held in several temperature and time conditions.

(a)  (b)  

Fig.4. Measured Vickers hardness of V free/0.1 V steels as a function of (a) isothermal holding time and (b) pearlite lamellar spacing.
3・3 TEMおよび3D-APによるV添加強化因子の解析結果

V添加による強度の増大は、一般にパライトメラ間フェライト部の析出強化（粒子分散強化）によると考えられている。そこで、V添加による強化と析出物分散状態の関係を明らかにするため、TEMおよび3D-APを用いた組織解析を試みた。

873 Kで180 sまたは3600 s等温保持した0.1 V鋼のTEM観察結果をFig.6に示す。観察の結果、180 s保持材ではVCの明瞭なコントラストは見られなかった。一方、3600 s保持材ではパライトメラ間のフェライト中に微細なVCの析出が観察された。VCのサイズは直径およそ3-4 nmであった。また観察されたVCは、フェライト母相とBaker-Nuttingの方位関係を有し、複数のバリアントを持って析出していることが確認された。一般に合金炭化物の相界面析出では、Baker-Nuttingの方位関係を満たして析出し得る3種類のバリアントの内、1つのバリアントのみが析出すると言われている。よって、3600 s保持材で観察された複数バリアントのVCは、相界面析出ではなく変態完了後の等温保持中にフェライトからの時効により形成された可能性が高い。

873 Kで180 sまたは3600 s保持した0.1 V鋼の3D-AP解析の結果の一例として、V, C原子の3Dマッピング像をFig.7に、フェライト中およびセメントサイト中のVの分配率をFig.8に示す。Fig.7 (a)より、180 s保持材ではTEM観察同様に、フェライト中での明瞭なVの偏析は認められず、本解析の限りではVはVC析出物ではなく固溶状態にあると推察される。Fig.7 (b)より、3600 s保持材では一部の視野でVCの析出が観察されたものの、相界面析出と思われる集中したVCは認められなかった。またFig.7 (b)より、Vはセメントサイトに濃化しており、時効（873 K保持時間の増大）に伴いセメントサイト中のV量は平均で約0.22 at%から0.51 at%に増大した。フェライト中の平均V量は、時効によるセメントサイト中への濃化に対応して、0.11 at%から0.07 at%程度向上し、わずかに減少した。なお、比較のため、V free鋼、0.1 V鋼においてフェライト相中のC量およびフェライト・セメントサイト両相中のMn, Cr, Si量についても測定を試みたが、V添加の有無による各元素の分配挙動に顕著な差は認められなかった。

以上から、本研究で試みたTEMおよび3D-APによる解析の範囲では、強化を担うと推測される相界面析出VCは確認されなかった。よってパライト鋼のV添加による強度上昇は、VC析出を必ずしも伴わない可能性がある。

4. 考察

4・1 降伏強度の支配因子について

TEMおよび3D-APによる解析では明確なVCの相界面析出が観察されず、特に短時間（180 s）の等温保持材では

Fig. 5. Tensile properties of V free/0.1 V steels isothermally held in several temperature and time conditions. (a) Examples of stress-strain curve, (b) (c) 0.2% proof stress, (d) ultimate tensile strength, (e) work-hardening (difference between tensile strength and proof stress), (f) uniform elongation.
VCの析出が全く観察されなかったことから、本供試材でのV添加による強度上昇には、TEM/3D-APで観察された3-4 nmよりも小さなスケールの組織因子が作用している可能性が考えられる。ここでは、Fig.5(c)で確認された0.1%V添加による降伏強度上昇量（Δσ0,2～100 MPa）について、以下の3つの強化因子が作用している可能性について考察する。

4・1・1 Vによるフェライト/セメントサイトの固溶強化
フェライト（α）相またはセメントサイト（θ）相にVが固溶することによる強化量を見積もり。ここでは、パラライの降伏強度が、フェライトの降伏強度σ0,2とセメントサイトの弾性変形による分担応力（セメントサイト弾性率Eθ×変形量0.2%）の単純混合則によって算出されるとする。Vによるフェライトの固溶強化量の文献値は降伏強度でΔσ0,2(θ) ∼ 20 MPa/at%程度、θの固溶強化量の文献値は弾性率でΔEθ(θ) ∼ 4 GPa/at%程度である。これらの文献値を用いて180 s等温保持材のV濃度、α中: 0.11 at%, θ中: 0.22 at%を参考にすると各相の固溶強化量は、

フェライト（α）:
\[ \Delta \sigma_{\alpha(\theta)} \cdot 0.11 \text{at%} + 2.2 \text{MPa} \]  

セメントサイト（θ）:
\[ \Delta E_{\theta(\theta)} \cdot 0.22 \text{at%} + 2.64 \text{MPa} \]

これらを共析鋼のフェライト/セメントサイトの体積分率\( f_\alpha = 89\% \)に応じて単純加算すると、

\[ \sigma_{\text{SS}} = 2.2 \text{MPa} \times 89\% + 2.64 \text{MPa} \times 11\% = 2.2 \text{MPa} \]

となり、極めて小さい。よって、Vの固溶強化はV添加強化の主因子とは考えづらい。

4・1・2 フェライト中のVC析出による粒子分散強化
組織解析では明瞭に析出が観察されなかったものの、

\[ f_\alpha = 89\% \]

\[ f_\theta = 11\% \]

Fig. 6. TEM micrographs of 0.1 V steels isothermally held at 873 K for (a) 180 s / (b) 3600 s.

Fig. 7. 3D elemental maps (carbon and vanadium) of 0.1 V steels isothermally held at 873 K for (a) 180 s / (b) 3600 s. (Online version in color.)

Fig. 8. Vanadium compositions of 0.1 V steels isothermally held at 873 K for 180 s and 3600 s. (a) Vanadium in ferrite, (b) Vanadium in cementite.
フェライト中に極微細なVCが生成していると仮定し、強化量を見積もり求めた。強化量の算出には、粒子分散強化理論で一般的なOrowan機構に基づきAshby-Orowanの式（式（3））を用いた21,22。

$$\sigma_p = 0.84M_t (1.2G_b / 2\pi L) \ln (x / 2b)$$  

(3)

ここで、$$M_t$$ はティラー因子（2.0）、$$G_b$$ はフェライト母相の剛性率（83100 MPa）、$$b$$ はバーガースペクトル（0.248 nm）である。$$L$$ は析出粒子のすべり面上における間隔、$$x$$ はすべり面上における粒子直径である。フェライト中に直径$$d$$の球状析出粒子がランダムに分散していると仮定すると、$$L, x$$ は以下の式で算出できることが知られている23）。

$$x = \sqrt{2/3} \times d$$  

(4)

$$L = \sqrt{\pi / 6f} \times d - x = \left( \sqrt{\pi / 6f} - \sqrt{2/3} \right) d$$  

(5)

式中の$$f$$ は析出粒子の体積率である。3D-APで測定されたフェライト中の$$V, C$$ の平均濃度はそれぞれ0.11 at%、0.07 at%であった。これらの値を参考にして、ここでは最 大量の$$V$$ が析出しているため、つまり$$V, C$$ それぞれ0.07 at%を仮定（原子数比1:1）で結合してVC析出粒子を形成していると仮定する。簡単のためにVC粒子以外は純鉄（αFe）のみで構成されていることを考えると、フェライト母相中のVC粒子の体積率$$f_{VC}$$ は、各元素の原子量（Fe：56, V：51, C：12）および各相の密度（αFe：7.9 g/cm³, VC：5.8 g/cm³）を用いた計算から0.107%と算出される。

この仮定をもとにAshby-Orowanモデルの式で見積もられたフェライト中の析出強化量の粒子径依存性をFig.9に示す。この系では、最大で降伏強度94 MPa, HV換算で29程度の析出強化が期待される。この時の粒子直径$$d$$ が1.4 nm, $$L$$ は式（5）より72 nmである。なおHV硬度への換算には、HVが引張強度の約3倍程度になるという仮定のもと、重力加速度を考慮して、$$\Delta HV = (\sigma_p / MPa) \times 3 \times 9.8$$の近似式を用いた。この強化量は、フェライト中の強化量のため、パラライト全体の強化への寄与は、パラライト中のフェライト体積分率$$f_T$$ 89%をかけることで確かめに目減りし、降伏強度上昇量は84 MPa程度、硬さ上昇量はHV 26程度と概算される。この値は本供試材（パラライト）のV添加強化量$$\Delta e_0$$ 100 MPa, HV 30と同程度の値である。よって、本 解析で観察されなかったVC粒子が、仮に1.4 nm程度の粒子直径で均一に分散していた場合、V添加強化量はAshby- Orowanモデルを用いてはほぼ説明できる。

Ashby-Orowanモデルでは、上述したように粒子径1.4 nm程度で析出強化量が最大値を示し、それ以下の粒子径では、微細化とともに減少していく傾向があり、この傾 村は析出粒子の体積分率によらない24）。これは、析出粒子径が小さくなった場合、粒子間で張り出した転位が引き 合って、析出粒子を通過しやすくなることを考慮した式（3）中のln項が減少するという考えである。本研究と同装置、同条件下で解析された3D-AP結果では、他の試料において直径1.2~1.3 nmを超えるサイズのV炭化物を検出することが できているため24），3D-AP測定でもVCが検出されていな いという結果（Fig.7）は本供試材では少なくとも1.4 nm 程度以上のVCは存在していないことを示している。従って、Ashby-Orowan機構が本供試材の強化の主因子として作用している可能性は低い。

一方、以前の研究において、相界面析出VCがラメラ フェライト中に明瞭に分散するパラライトを主組織とする 3.8%V添加炭素鋼では、析出強化量を評価したところ、式（3）中の$$x$$ を3倍にした修正Ashby-Orowanモデルを用いて V添加による硬度上昇が説明できることを著者らの1人は報告している。これは、元々のAshby-Orowanモデルから評価した析出強化量が、V添加による硬度上昇の実測値に比べて小さく見積もられることから、Ashby-Orowanモデルにおける転位エネルギー-評価の際のカットオフ距離の影響に原因があると考えて修正したものであり、VCの析 出強化が強度上昇の主要因であるという考えに基づいている25）。しかしながら、VCの相界面析出が明瞭に観察されているような合金においても、次項で議論するようにV添加 に伴いフェライト中に格子ひずみが生じて、その格子ひずみが強化に寄与することで、元々のAshby-Orowanモデルから評価した析出強化量よりも大きな硬化が実際には得られている可能性も考えられる。

4.1.3 フェライトの弾性ひずみが強度に及ぼす影響

パラライト中フェライト相の弾性ひずみがV添加強化に及ぼす影響について考察するため、X線回折で測定されたフェライト回折強度プロファイルから解析される格子ひずみと強度の関係を、定性的に検討した。格子ひずみ$$e_0$$ の算出には、パラライト中フェライト相の回折ピーク幅から弾性ひずみの解析が試みられている文献13）に従って、Williamson-Hallの式21）（式（6））を用いた。

$$\beta(\cos \theta / \lambda_{220}) = 0.9 / D + 2e_0 (\sin \theta / \lambda_{220})$$  

(6)

![Fig. 9. Estimated strength increment based on Ashby-Orowan model.](image-url)
式中のβは、回折ピーク幅（半值幅：FWHM）である。
λ_{\text{FWHM}}はそれぞれX線の波長（0.154 nm）と結晶サイズ
である。解析にはフェライトの（110），（211），（220）回折
ピークを用い，各ピーク強度プロファイルのフィッティング
の結果得られた，回折角θ，ピーク幅βの関係式（6）で
線形回帰分析し，フィッティングパラメータとしてε_{\text{f}}, D
を算出した。

算出した格子ひずみε_{\text{f}}を，熱処理時の等温保持時間に対
してFig.10 (a) に示した。格子ひずみは，等温保持温度が
低いほど，保持時間が短いほど大きく，またV添加によっ
ても増大し，強度と全く同様の傾向を示した。長時間保持
に伴う格子ひずみの減少は，変態後から球状化過程にかけ
て起こるフェライト/セメントサイト界面付近の原子拡散
によるミスマッチの緩和を反映していると考えられている
[31]。格子ひずみε_{\text{f}}と0.2%耐力および引張強度最大値との
関係をFig.10 (b) に示す。これより特に0.2%耐力と格子
ひずみの間には，明確な正の関係が認められ，0.1 V鋼では
V free鋼と同一の相関上で，格子ひずみが増大しているこ
とが判明した。

そこでフェライトの格子ひずみε_{\text{f}}をラメラ間隔の逆数
1/Lで整理した（Fig.10 (c)）。V free鋼に着目すると1/2の増
大（つまりラメラ間隔の減少）に伴い，格子ひずみは単調
に増大している。従来知見でも，フェライト/セメントサイト
界面のミスマッチにより生じると考えられる格子ひず
みが，1/2に比例して増大する傾向を報告されており[31]。本
供試鋼でも同様にラメラ間隔の微細化にともなってミス
マッチが増大したと考えられる。一方，V添加の影響に
着目すると，V添加（0.1 V）鋼の方がV free鋼よりも格子
ひずみが大きい。これより，V添加鋼ではラメラ間隔微細
化以外の要因が作用し，格子ひずみが増大することで強化
に寄与していることが示唆される。

格子ひずみの発現要因としては軸位の存在も考えられ
る。しかしながら，パラライトラメラ間フェライト部では
軸位はほとんど確認されていないことから，パラライトで
観測される格子ひずみは塑性ひずみ（軸位）ではなく弾性
ひずみによるものの[31]と考えられる。

一方，フェライト/セメントサイト相界面でのVの分布が
格子ひずみ増大の一因になっている可能性も考えられる。
Fig.7. 8の3D-AP解析結果からは，セメントサイト中にVが
濃化していることが確認された。さらに，セメントサイト/
フェライトの界面近傍ではVの濃化が認められた。つまり,
873 K, 180 s保持材におけるセメントサイト中のV濃度測
定値は平均で0.22 at%であったが，変態直後は特にフェラ
イトとの界面近傍で，この平均値よりもV濃度が高くなる
と考えられる。よって，このVの濃化によりセメントサイト
の格子定数が変化すれば，V free材に比べてフェライト/
セメントサイト相界面での格子定数差が増大し，ミスマッ
チが増大する可能性がある。Nakada and Katoは，フェライト/
セメント間のミスマッチに起因する弾性ひずみ
量についてマイクロメカニクスを用いた計算により解析
し[28]，両相の結晶方位関係および合金元素分配を想定し
たフェライト/セメントサイト個々の格子定数変化に応じて，
弾性ひずみエネルギーが変化することを示している[30]。

そこでVの分配による格子定数の変化が格子ひずみに
与える影響を考察するため，上記文献[27]に基づくミス

Fig. 10. Lattice strain of ferrite phase estimated by X-ray
diffraction analysis. Relation between the lattice strain
and (a) isothermal holding time / (b) tensile properties / (c) lamellar spacing.
フィットの主ひずみ量および弾性ひずみエネルギーの算出を試みた。計算にはRazumovskiy and Ghoshが第一原理計算により求めたセメンタイト（Mn,Cr）中のFeを合金元素で置換した構造の格子パラメータを参照した。ここでセメンタイトの格子定数を小さく順に、a_{Mn}, b_{Mn}とし、セメンタイト合金置換体の格子定数データおよび単位格子体積（V_{f} = a_{Fe}×b_{Fe}×c_{Fe}）の一例をTable 2に示す。これよりMn, Cr, VがFeを置換することにより、セメンタイトの格子定数a_{Mn}, b_{Mn}の2つ以上の値が増大する。結果、単位格子体積V_{f}は、Fe, Cr, Mn, Mn, Cr, Mn, Fe, Mn, Cr, Vの順で小くなる。Mn, CrよりもCr, Crの方が体積V_{f}が大きくなる傾向は、Table 2の中央に合わせて示した実験データの文献値もともに対応している。よって実験データのないV置換体でのV_{f}の計算結果が示す増大傾向も概ね妥当と認めることが示された、さらにV置換体ではMn, Crよりも格子定数の増大幅が大きくなると推測される。

Table 2に示す、セメンタイトの合金置換体の格子定数を用いて、ひずみを算出した。一般にマイクロ・カーボニックスを用いたひずみ量の計算では、均質な結晶構造を有する同一の混合を仮定するため、セメンタイト中のフェライト界面付近におけるVの濃化により局所的に格子定数が増大している場合、厳密な計算はできない。ここでは定性的な考察のため、セメンタイト全体で合金置換により格子定数が増大している仮想的な系を想定した。Nakada and Katoの文献30)に従い、ラメラーパーライトのフェライト/セメンタイト整合界面における2次元の格子対を前提に、ミスマッチの主ひずみ（ε_{11}, ε_{22}）およびこのひずみに起因する弾性ひずみエネルギーの大きさを示す指標であるM値（式（7））を算出した。

\[ M = \left( \varepsilon_{11}^2 + \varepsilon_{22}^2 \right)^2 + 2 \times 3 \times \varepsilon_{11}^2 \varepsilon_{22}^2 \]  


なお、パラライトのフェライト/セメンタイト相間の結晶方位関係として知られる3種類の内、ここでは、Fig.10（a）に示す格子ひずみは時効にともなわない。0.1 V鋼でV free鋼と同様に単調に減少しておらず、セメンタイト中へのVの濃化が格子ひずみを増大させるとする前述の考察とは、一見、逆傾向を示している。これは、セメンタイトの球状化やミスマッチ軸位の導入など、より大きなミスマッチの緩和機構が働いていることと、結果的には時効にともないV free鋼、0.1 V鋼とも同様に格子ひずみが単調に減少したと考えられる。

X線回折で観測される格子ひずみを生じさせるフェライト/セメンタイト間のミスマッチ以外の原因としては、固溶原子や析出物またはクラスター等の影響を考慮する必要がある。フェライト中に微細なクラスターが存在し、フェライトのクラスターの混合相析出が生成するとX線回折測定におけるフェライトビックの回折角度の変化やビック幅の増大が生じることが知られていている33,34)。本研究でも2D-APで観測できないよう微細なクラスターが存在し、フェライトとの整合性に起因して格子ひずみが生じし、強化に寄与している可能性を考えられる。しかしながら現時点では、格子ひずみを引き起こす因子の特定や、Orowan機構・Cutting機構といった強化機構および強化量の支配因子の明確化には至っていない。今後、微視的VC析出が認められる場合を含めてV添加量を幅広く変化させた成分系を用いて、析出量および格子ひずみの濃化に伴うフェライト中の固溶量の変化は相対的に小さかったため、固溶原子がa_{Mn}に及ぼす影響は考慮しなかった。算出された主ひずみおよびM値をTable 2中の右側に示す。Vに参考してM値を比較すると、Fe,Cの場合、Fe,C,VCは1.25倍、Fe,C,VCは1.4倍、V,VCでは5倍にまで増大することが明らかとなった。実際に観察されたV濃化量は、上記の計算で用いた置換体濃度よりもかなり小さいため、弾性ひずみエネルギー指標であるM値が、セメンタイトのV置換体で増大したことは、Vの濃化によりセメンタイトの格子定数が変化することで、格子ひずみが増大することを示唆している。またMn,Cr, Cr, Vで比較すると、V,VCが最もM値が大きくなることから、セメンタイトに固溶易いMn, Cr, Vのうち、最も格子ひずみを増大させやすいと考えられる。なお、Fig.8(b)で873 K、180 s保持材と3600 s保持材を比較すると、時効にともないセメンタイト中のV濃度が増大したにもかかわらず、Fig.10 (a)に示す格子ひずみは時効にともなわない。0.1 V鋼でV free鋼と同様に単調に減少しており、セメンタイト中へのVの濃化が格子ひずみを増大させるという現実の考察とは、一見、逆傾向を示している。これにより、セメンタイトの球状化やミスマッチ軸位の導入など、より大きなミスマッチの緩和機構が働いていることと、結果的には時効にともないV free鋼、0.1 V鋼と同様に格子ひずみが単調に減少したと考えられる。
と強度の相関性を系統的に調査すること、またより単純な低炭素フェライト鋼を用いた格子ひずみを考慮したクラスターや整合析出物による強化機構解明が必要と考えられる。

4.2 加工硬化挙動の支配因子について

Fig.10では、降伏強度（0.2％耐力）と格子ひずみの間にある明確な相関が認められた一方、Fig.10（b）の引張強度最大値との相関については、わずかにばらつきが認められ、8.73 K保持材の中では低強度を示す長時間保持材で相関から逸脱しているようにも見える。このことは、降伏後の加工硬化挙動に、格子ひずみとは異なる因子が関与している可能性を示している。また、Fig.5（c）では加工硬化量等温保持時間の増大とともに低下する傾向が確認された。Kogaらの報告[11]では、パラライトの降伏挙動は弾性ひずみ（格子ひずみ）に支配されるのでに対し、加工硬化挙動はラメラ構造に強く依存し、特にセメントサイトが球状化した場合、加工硬化量が著しく低下することが示唆されている。よって、長時間保持に伴うラメラセメントサイトの球状化に、格子ひずみが示す傾向よりも加工硬化量が小さくなり、引張強度は低下したと考えられる。

次に、加工硬化量に及ぼす球状化以外の要因について考察するため、球状化の影響が小さい180 s保持材の加工硬化量についてラメラ間隔を利用して整理し、Fig.11に示した。わずか3点のデータのため精度は劣るもの、ラメラ間隔が大きいほど降伏後の加工硬化量は大きくなる傾向を示した。V添加による加工硬化量の増大幅は小さく、ラメラ間隔の影響を差し引くと10 MPa程度に留まった。この10 MPaのV添加強化量について、フェライト中のVC析出とセメントサイト中のV固溶の2つの観点から考察を試みた。

まず、降伏強度についての考察（4.1.2）と同様に、フェライト中に極微細なVCが生成していると仮定し、加工硬化量への寄与を検討した。中田らは、フェライト鋼中のナノ析出物による加工硬化が、変形時に粒子界面近傍に生じる転位（GN転位）の密度上昇によって起きるとするAshbyの理論[12]をもとに、加工硬化量を実験的に見積もっている[13]。これによると、若ひずみ3％までの加工硬化量（真ひずみ3％の流動応力と0.2％耐力の差）に及ぼすVC等の解析析出物の寄与は、

\[ \Delta \sigma_{\text{m}} = 4300 \times (f_c / (d / nm)) \text{MPa} \]

ここで、\( f_c \)として降伏強度の考察の際に用いたVCの体積分率、\( d \)としてAshby-Orowanの式で最大の析出強化量が得られた1.4 nmを仮定して代入すると,

\[ \Delta \sigma_{\text{m}} = 4300 \times (0.107 / 1.4 \text{nm}) = 119 \text{MPa} \]

となった。パラライト全体の加工硬化への寄与は、パラサイト中のフェライトの体積分率を89％に与えて、106 MPaとなった。この値は真ひずみ3％での推定値であり、引張強度が最大値に至る前の加工硬化量にもかかわらず、上記のV強化量の実験値10 MPaに対して0.15倍高い。よって本供試材中にVC析出物またはクラスターがあったとしても、それが加工硬化を担う変形転位の増殖に作用しているとは考えにくい。以上から加工硬化に関してもVC析出が本供試材の強度主因ではないと考えられる。

次に、V濃度に伴うセメントサイトの弾性率変化による加工硬化量への寄与を検討した。パラライト鋼の引張試験時の加工硬化については、マクロな降伏後もセメントサイトが弾性変形することで応力を分担していることが、Tomota and Suzukiにより示されている[14]。これに基づくと、マクロな降伏以降の引張強度も、セメントサイトの弾性率をもとに算出できると良いと考えられる[15]。引張強度が最大となる伸びが8％まで、セメントサイトが弾性変形を続けたと仮定すると、Vの固溶によるセメントサイト弾性変形応力への寄与は、前述の式（2）を参考にして、

\[ \Delta \varepsilon_{\text{eff}} = 0.22\% \times (\varepsilon_c - 0.2\%) = 103 \text{MPa} \]

と算出される。これに体積分率\( f_v = 11\% \)を乗じると11 MPaとなり、実験値と同程度である。よって、本研究で認められた加工硬化挙動に及ぼすVの寄与は、析出の影響を考慮しなくても説明できる程度と考えられる。このことは、パラライト鋼のV添加による降伏強度上昇に、VCの析出が必ずしも作用しないことを示唆する。本研究のこれまでの考察結果と矛盾しない。

以上の考察から、微量V添加パラライト鋼の引張特性に及ぼす組織因子をFig.12に模式的に示した。①まず降伏強度は、主に格子ひずみによって支配される。この格子ひずみは、ラメラ間隔、セメントサイトの球状化度V添加の影響が含まれていると考えられる。②セメントサイトは弾性変形によりマクロな降伏強度を担う。Vはセメントサイト中に濃化した引張応力増大させ得る、変形量が小さくセメ
VC析出だけでなく、ラメラ内部の格子ずれ増大にも影響し、強度上昇には析出強化を必ずしも伴わない。

文 献
1）G.Miyamoto, R.Hori, B.Pooranji and T.Furuhara: ISIJ Int., 51(2011), 1733.
2）D.Daito, S.Torizuka and T.Hanamura: Tetsu-to-Hagané, 97(2011), 480.
3）S.A.Parsons and D.V.Edmonds: Mater. Sci. Technol., 3(1987), 894.
4）F.A.Khalid and D.V.Edmonds: Mater. Sci. Technol., 9(1993), 384.
5）中高炭素鋼の高強度化・傾斜機能化のための析出硬質メタラジー, 日本鉄鋼協会, 東京, (2010).
6）K.Han, G.D.W.Smith and D.V.Edmonds: Metall. Mater. Trans. A, 26A(1995), 1617.
7）宝野和博, 本間智之, 平徳海: 鉄鋼の析出制御メタラジー最前線2, 日本鉄鋼協会, 東京, (2003), 46.
8）高木雄輝: 鉄鋼の析出制御メタラジー最前線, 日本鉄鋼協会, 東京, (2001), 69.
9）N.Nakada, N.Koga, T.Tschiyama, S.Takaki: Scr. Mater., 61(2009), 133.
10）N.Koga, N.Nakada, T.Tschiyama, S.Takaki, M.Ojima and Y.Adachi: Scr. Mater., 67(2012), 400.
11）N.Koga, N.Nakada, T.Tschiyama, S.Takaki: CAMP-ISIJ, 25(2012), 1243, CD-ROM.
12）N.Nakada, N.Koga, T.Tschiyama and S.Takaki: Proc. 2nd Int. Symp. on Steel Science, ISIJ, Tokyo, (2009), 163.
13）N.Nakada, N.Koga, T.Tschiyama, S.Takaki and M.Ueda: ISIJ Int., 55(2015), 2036.
14）A.K.Gogia and A.M.Gokhale: Metall. Trans. A, 11A(1980), 1077.
15）O.E.Atasoy and S.Ozilien: J. Mater. Sci., 24(1989), 281.
16）A.T.Davenport and R.W.K.Honeycombe: Proc. R. Soc. Lond. A., 322(1971), 191.
17）紙川高也, 阿部吉朗, 宮本正徳, 古原忠: 鉄鋼材料の加工硬化特性への新たな要求と基礎研究, 日本鉄鋼協会, 東京, (2012), 200.
18）高木雄輝: 第191・192回西山記念技術講座, 日本鉄鋼協会, 東京, (2007), 17.
19）牧正志: 鉄鋼の組織制御, 内田老穂編, 東京, (2015), 110.
20）M.Umemoto and K.Tsuchiya: Tetsu-to-Hagané, 88(2002), 117.
21）T.Gladman: Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, (1997), 47.
22）T.Gladman: Mater. Sci. Technol., 30(1999), 30.
23）N.Karnikawa, G.Miyamoto and T.Furuhara: Materia Jpn., 54(2015), 3.
24）Y.-J.Zhang, G.Miyamoto, K.Shinbo, T.Furuhara, T.Ohmura, T.Suzuki and K.Tsuzaki: Acta Mater., 84(2015), 375.
25）G.K.Williamson and W.H.Hall: Acta Metall., 1(1953), 22.
26）Y.Tanaka, D.Akama, N.Nakada, T.Tschiyama and S.Takaki: Tetsu- to-Hagané, 100(2014), 1229.
27）N.Nakada and M.Kato: ISIJ Int., 56(2016), 1866.
28）N.Nakada and M.Kato: CAMP-ISIJ, 30(2017), 379, CD-ROM.
29）V.I.Razumovskiy and G.Ghosh: Comput. Mater. Sci., 110(2015), 169.
30）D.Frucht: J. Solid State Chem., 51(1984), 246.
31）W.Pitsch: Acta Metall., 10(1962), 79.
32）N.J.Petch: Acta Crystallogr., 6(1953), 96.
33）D.S.Rickerby, S.Henderson, A.Hendry and K.H.Jack: Acta Metall., 34(1986), 1687.
34）M.Akhlaghi, T.Steiner, S.R.Meki, A.Leineweber and E.J.Mittemeijer: Acta Mater., 98(2015), 254.
35）M.F.Ashby: Philos. Mag., 14(1966), 1157.
36）中山伸生, 写原聡宏, 高本雄輝: 鉄鋼材料の加工硬化特性への新たな要求と基礎研究, 日本鉄鋼協会, 東京, (2012), 194.
37）Y.Tomoto and T.Suzuki: Bull. Iron. Steel Inst. Jpn., 12(2007), 71.