Abundance, Relative Gelation Activity, and Distribution of the 95,000-dalton Actin-binding Protein from *Dictyostelium discoideum*

JONATHAN BRIER, MARCUS FECHHEIMER, JOEL SWANSON, and D. LANSING TAYLOR

Department of Biological Sciences and The Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

ABSTRACT We have studied the abundance, relative gelation activity, and distribution of the 95,000-dalton actin-binding protein in *Dictyostelium discoideum* amoebae. The 95,000-dalton protein was a prominent polypeptide as assessed using quantitative densitometry and radioimmunoassay. We estimated that this protein comprised ~1.2% of the protein in a soluble extract of amoebae. The molar ratio of the dimeric 95,000-dalton protein to actin in the soluble extract was 1:30. The apparent viscosities of actin mixtures with either the purified 95,000-dalton protein or the soluble extract were measured by falling ball viscometry in an attempt to assess the contribution of the 95,000-dalton protein to gelation of the soluble extract. The gelation of the soluble extract was significantly less than that expected from the contribution of the 95,000-dalton protein alone. Consequently, we questioned the validity of quantitative analyses of the contributions of specific actin-binding proteins to the gelation of cell extracts. The apparent distribution of the 95,000-dalton protein was observed in chemically fixed and extracted cells by immunofluorescence microscopy and compared with the distribution of cytoplasm and organelles visible using light microscopy. The 95,000-dalton protein was dispersed throughout the cytoplasm of fixed cells, was apparently excluded from prominent organelles, and displayed brightest fluorescence in regions of hyaline cytoplasm. These regions of hyaline cytoplasm that exhibited the brightest fluorescence were observed in the cortical region of rounded cells and in pseudopods of polarized cells. Thus, cell shape and polarity may also have influenced the apparent distribution of the 95,000-dalton protein observed by immunofluorescence microscopy. Study of the distribution of fluorescein-labeled ovalbumin injected into living cells supported the interpretation that the thickness of the cell and the distribution of organelles contributed to the apparent distribution of the 95,000-dalton protein observed in fixed cells using immunofluorescence microscopy. We suggest that the 95,000-dalton protein contributes to modulation of the consistency and contractility of the cytoplasm of *D. discoideum* amoebae, since it could cross-link actin filaments in vitro in a reversible process that was regulated by changes in the concentration of calcium and of protons, and since it was present in large quantity in the cytoplasm of these cells.
the structure and contractility of cytoplasm of \textit{D. discoideum} amoebae. Hellewell and Taylor (19) identified and partially purified a 95,000-dalton actin-binding protein that formed a gel when mixed with actin at low free [Ca\(^{++}\)] but not at elevated free [Ca\(^{++}\)]. This protein was subsequently purified and characterized as a calcium- and pH-sensitive actin-binding protein with some properties similar to those of muscle \(\alpha\)-actinin (15, 12). A 120,000-dalton protein has an actin-binding activity that is not affected by the free [Ca\(^{++}\)] (9).

Proteins that may regulate the activity of this described for actin filament capping proteins (20, 24). The activity of this \textit{D. discoideum} capping protein is not affected by micromolar calcium (39). Proteins that may regulate the number, length, and interactions of actin filaments are also present in many other cell types (31, 13, 22, 45).

The cellular functions of the various actin-binding proteins in the cytoplasm of \textit{D. discoideum} amoebae are not known. In this study, we assess the potential role of the 95,000-dalton actin-binding protein by investigating its abundance, relative gelation activity, and distribution in cells. In addition, experiments that address the problems inherent in interpreting immunofluorescence images, and in quantifying the relative gelation activity of actin-binding proteins are discussed. A preliminary report of these results has been presented (16).

Materials and Methods

Cells: \textit{D. discoideum} amoebae, strain NC-4 (haploid), were grown on 2% nutrient agar with \textit{Escherichia coli}, strain B/7, as a food supply. Cells were grown for 2 d, washed 3 times with Bonner's saline solution (BSS) to remove any remaining bacteria, and placed on glass slides coated with poly-l-lysine (Sigma Chemical Co., St. Louis, MO). To prepare cells for orientation, E. coli-free suspensions of \textit{D. discoideum} were developed on 2% non-nutrient agar for 8-12 h until aggregation streams were visible. These cells were then washed with BSS and placed on 24 x 15 mm poly-l-lysine-coated glass coverslips. Each coverslip was inverted and attached to a Zigmoid chemotaxis chamber (49) such that a clearly marked area (1 x 24 mm) containing cells was aligned with the first well of the chamber. One well was filled with BSS and the second well contained a 1 mM CaCl\(_2\), pH 6.1, and was allowed to attach to poly-l-lysine-coated slides. Preparations of labeled and unlabeled proteins were made as described previously (42, 44, 1). The distribution of fluorescence intensity was recorded with a silicon-intensified target camera (RCA 1030H, RCA Electro-Optics & Devices, RCA Solid State Div., Lancaster, PA) and a ~ 20 Hz videotape recorder (Nippon Electric Co., Elk Grove Village, IL). Observation of fluorescence distribution of this soluble protein reveals the effects of pathlength and accessible volume on the fluorescence of fluorescently-labeled functional proteins (41, 42, 44).

Viscometry: The apparent viscosity of various concentrations of the chromatographed extract of \textit{D. discoideum} was measured in the presence of 0.8 mg/ml of rabbit muscle F-actin using the falling ball technique (25, 15). The measurements were made in the presence of 20 mM PIPES, pH 6.8, 1 mM MgCl\(_2\), 1 mM ATP, 5 mM EGTA, 0.25 mM CaCl\(_2\), and 50 mM KCl. Actin was purified from an acetone powder of rabbit skeletal muscle (33), stored, and prepared as previously described (17) except that the actin was polymerized for 1 h in the presence of 2 mM MgCl\(_2\) and 50 mM KCl. The extract was mixed with F-actin on ice, drawn into 100-μl glass capillaries, and held at 28°C for 1 h before determining the apparent viscosity. Results are the average of triplicate determinations. Apparent viscosity was estimated using calibration curves generated by glycerol solutions of known viscosity as previously described (17). A semiquantitative characterization of the consistency of these non-Newtonian solutions was obtained using the falling ball technique.

Soluble extracts of \textit{D. discoideum} amoebae (strain AX-3) were prepared as previously described (15). To establish the ionic composition of the extract to be used for viscometry, 10 ml of extract was chromatographed on a column (2.6 x 10 cm) of Sephadex G-25 (Sigma Chemical Co.) equilibrated in 20 mM PIPES, 50 mM KCl, 5 mM EGTA, 0.25 mM CaCl\(_2\), 0.1 mM MgCl\(_2\), 1 mM ATP, and 0.02% sodium azide, pH 6.8. This solution maintains a free [Ca\(^{++}\)] of ~2 x 10\(^{-5}\) M, a K\(^{+}\)/Ca\(^{++}\) ratio of ~20:1, and is in videoelectric buffer (Ninhydrin Electrostatics, Inc., Elk Grove Village, IL). The apparent viscosity of various concentrations of the chromatographed extract of \textit{D. discoideum} was measured in the presence of 0.8 mg/ml of rabbit muscle F-actin using the falling ball technique (25, 15). The measurements were made in the presence of 20 mM PIPES, pH 6.8, 1 mM MgCl\(_2\), 1 mM ATP, 5 mM EGTA, 0.25 mM CaCl\(_2\), and 50 mM KCl. Actin was purified from an acetone powder of rabbit skeletal muscle (33), stored, and prepared as previously described (17) except that the actin was polymerized for 1 h in the presence of 2 mM MgCl\(_2\) and 50 mM KCl. The extract was mixed with F-actin on ice, drawn into 100-μl glass capillaries, and held at 28°C for 1 h before determining the apparent viscosity. Results are the average of triplicate determinations. Apparent viscosity was estimated using calibration curves generated by glycerol solutions of known viscosity as previously described (17). A semiquantitative characterization of the consistency of these non-Newtonian solutions was obtained using the falling ball technique.
RESULTS

Characterization of Anti-95,000-dalton IgG

Specific reaction of the immune IgG with the 95,000-dalton protein was demonstrated using immunodiffusion, immunoelectrophoresis, and the Western Transfer technique. A precipitin arc in a pattern of identity was observed when immune IgG was tested, using immunodiffusion, for reactivity with the purified 95,000-dalton protein and the soluble extract from D. discoideum amoebae (Fig. 1a). No precipitin lines were observed when preimmune IgG was tested with the same concentrations of purified antigen and whole extract (Fig. 1b). Precipitin arcs of identical electrophoretic mobility were observed when anti-95,000-dalton IgG was tested, using immunoelectrophoresis, for reactivity with purified 95,000-dalton protein and extract (Fig. 1c). In addition, immune IgG was reactive with a single polypeptide with an apparent molecular weight of 95,000 in a western blot of both cell homogenates and soluble extracts (Fig. 2).

Quantity of 95,000-dalton Protein in the Soluble Extract

The abundance of the 95,000-dalton actin-binding protein relative to other cytoplasmic proteins in D. discoideum amoebae was determined in two ways. First, quantitative densitometry (see Materials and Methods) was employed to demonstrate that 2.7% of the Coomassie Blue bound by the polypeptides of a soluble extract resolved, using electrophoresis, in a polyacrylamide gel in the presence of SDS was associated with a protein(s) having an apparent molecular mass of 95,000 daltons (data not shown). Actin comprised 8% of the protein in the extract as determined using the same method. Second, the Western Transfer technique was employed to devise a radiolimmonosassay for the 95,000-dalton protein as described in Materials and Methods. The specificity for the 95,000-dalton protein of the IgG fraction used, and a typical reaction using this technique.

Contribution of the 95,000-dalton Protein to the Gelation of the Soluble Extract

The apparent viscosity of a soluble extract of D. discoideum amoebae supplemented with 0.8 mg/ml of rabbit muscle F-actin was measured as a function of the concentration of extract protein, as described in Materials and Methods. In addition, we calculated the apparent viscosities of mixtures of 0.8 mg/ml of actin with the soluble extract that are expected from the contribution of the 95,000-dalton protein in the extract. The quantity of 95,000-dalton protein in an extract sample was calculated from its abundance (95,000-dalton protein comprised 1.2% of the protein in the extract; Fig. 2), and the apparent viscosities of mixtures of 0.8 mg/ml actin with various concentrations of the purified 95,000-dalton protein have been determined previously (15). The actual apparent viscosities were compared with the apparent viscosities predicted from the expected activity of the 95,000-dalton protein (Fig. 3). A solution of 5 mg/ml of extract protein supplemented with 0.8 mg/ml of actin contained 60 µg/ml of the 95,000-dalton protein and had an apparent viscosity of 10 cp. The apparent viscosity of 60 µg/ml of the purified 95,000-dalton protein with 0.8 mg/ml actin was >500 cp. Thus, increases in the apparent viscosity of the extract were less than predicted from the expected contribution of the 95,000-dalton protein alone.
the nonfluorescent domains contained numerous organelles except where organelles displaced the cytoplasm (Fig. 5, g and h). A filopod at the lower right of this cell was also stained.

prominent pseudopods exhibited more uniform fluorescence (Figs. 4a and 5, c and e). The tails of motile cells were sometimes fluorescent (4b and 5, d and f). Cells with less prominent pseudopods exhibited more uniform fluorescence except where organelles displaced the cytoplasm (Fig. 5, g and h). A filopod at the lower right of this cell was also stained.

Distribution of FTC-Ovalbumin in Living Cells

Cells microinjected with FTC-ovalbumin exhibited a non-uniform distribution of fluorescence. The pattern of fluorescence was affected by cell shape, organelle distribution and motility. The relatively organelle-free hyaline regions of extending pseudopods showed the brightest fluorescence. The organelle-rich central cytoplasm had the weakest fluorescence (Fig. 6, a and b).

DISCUSSION

Quantity of the 95,000-dalton Protein

The 95,000-dalton actin-binding protein comprises 1.2% of the protein in a soluble extract of vegetative D. discoideum.
amoebae. Furthermore, the mRNA coding for this protein is well represented in the total RNA obtained from these cells (unpublished observations). The molar ratio of dimeric 95,000-dalton protein to actin monomer in the extract is 1:30, assuming that 95,000-dalton protein and actin comprise 1.2 and 8.0% of the total soluble protein, respectively. This molar ratio of 95,000-dalton protein to actin in the extract is twice that required to form a gel in vitro in the presence of 0.8 mg/ml actin, as assessed using falling ball viscometry (15). Therefore, the activity of the 95,000-dalton protein in amoebae, which is predicted from its activity in vitro, is sufficient to cross-link all of the cellular actin into a network of filaments. However, the cytoplasm of amoebae is not rigidly and uniformly gelled to the extent implied by our in vitro experiments (35). We suggest that local variation in the consistency of cytoplasm in cells may be due to variations in (a) the extent of formation and length distribution of actin filaments; (b) the local concentrations of potential regulatory ions such as Ca++ and H+; and (c) the distribution of different types of actin-binding proteins.

Quantification of Gelation Activity

Quantitative analyses of gelation activity have been used previously to assess the significance of specific actin-binding proteins to gelation of extracts derived from *Acanthamoeba* (26), macrophages (5), *D. discoideum* (7), and Ehrlich tumour cells (27). We have estimated the relative contribution of the 95,000-dalton protein to gelation of the soluble extract from *D. discoideum* amoebae, since several actin-binding proteins have been identified in these cells (19, 7, 15, 12, 39, 9). Falling ball viscometry has been used as a semiquantitative measure of actin cross linking activity (25, 17), and as a method to determine the relative contributions of other actin-binding proteins from *D. discoideum* (7). We compared the apparent viscosities of mixtures of actin and purified 95,000-dalton protein with apparent viscosities of mixtures of actin and identical concentrations of the 95,000-dalton protein in the soluble extract. Our analysis indicates that the activity of the 95,000-dalton protein is sufficient to account for >100% of the activity. This result would not be substantially affected by a large (twofold) overestimate of the quantity of the 95,000-dalton protein present in the extract. It is difficult to reconcile our results with a previous report that 90% of the activity in the soluble extract from these same cells was due to a combination of the 250,000- and 120,000-dalton proteins (7).

Other studies also indicate that quantitative measurements of gelation activity in crude extracts may be inaccurate. It was reported that four low molecular weight proteins from *Acanthamoeba* accounted for 97% of the gelation activity of the soluble extract (26). Subsequently, a protein that inhibits gelation and an additional potent actin-binding protein were discovered in these cells (20, 29). In addition, the gelation activity present in two partially purified fractions from *D. discoideum* was greater than the gelation activity of the contracted pellet fraction from which they were isolated (19).

Quantitative comparisons of the gelation activity of soluble extracts with that of purified proteins are subject to two major sources of error. First, falling ball viscometry is not a quantitative assay for the formation of actin filament networks (48). Furthermore, no other assay has been described in which the formation of actin filament networks is directly proportional to the concentration of the actin-binding protein. Although it was reported that a sedimentation method did meet this criterion (5), we have observed that measurements with this method are not directly proportional to the concentration of the actin-binding protein (30). Thus, it is difficult to define a unit of gelation activity using these methods. Second, inhibitory, competitive, and/or synergistic interactions of actin-binding proteins may contribute to the total activity of crude extracts, as previously proposed (19). A number of proteins such as gelsolin (47), villin (28), severin (6), *Acanthamoeba*
capping protein (20), and acumenin (32) can modulate gelation by affecting the lengths or interactions of actin filaments.

We suggest that the 95,000-dalton protein contributes to gelation of soluble extracts of *D. discoideum* but that a quantitative evaluation awaits development of new approaches.

Distribution of the 95,000-dalton Actin-binding Protein

Molecular hypotheses of cell structure and cell movement must be based on accurate descriptions of the distribution of cytoskeletal and contractile proteins in living cells. Because of its sensitivity and specificity, immunofluorescence microscopy has been used to determine the distribution of specific contractile proteins in a wide variety of fixed and extracted cells (18). The apparent distribution of fluorescence intensity observed using immunofluorescence microscopy must be interpreted with caution, since it may be affected by many factors, including antigen concentration in the living cell, partial extraction of the antigen, cell thickness, and organelle distribution.

It has been stated or inferred in some studies employing immunofluorescence that the fluorescence intensity is directly related to the concentration of the antigen. Migrating *D. discoideum* amoebae stained with anti-actin antibody exhibited bright fluorescence in both the pseudopods and the tails. It was suggested that actin redistributed into these regions during the transition from rounded feeding cells into the more elongated migrating cells (14). Furthermore, selective localization of the 120,000-dalton actin-binding protein, of calmodulin, and of myosin in the cortex of spread cells has been proposed from interpretations of immunofluorescence images (10, 3).

We have studied the distribution of the 95,000-dalton actin-binding protein in *D. discoideum* amoebae that were either rounded or highly polarized. Our methods for fixation, staining, and observation have been selected to carefully compare fluorescence images with the organization of organelles and cytoplasm in the cells. Immunofluorescence images of the 95,000-dalton protein demonstrate that it is distributed throughout the cytoplasm and is largely excluded from the prominent organelles. Cell shape and polarity also influence the apparent distribution of the 95,000-dalton protein observed using immunofluorescence microscopy. The most intense fluorescence is often observed in the relatively organelle-
Free hyaline cytoplasm in the cortex of rounded cells and in the pseudopods of polarized cells. In contrast, the least intense fluorescence is detected in the central region of cells that contain large numbers of organelles (34).

Fluorescence images of molecules in any cell type cannot be interpreted in terms of the concentration of those molecules without some normalization method for pathlength and accessible volume (41, 44). For example, a cell of uniform thickness and protein distribution may show variations in fluorescence intensity due to the presence of organelles that displace or exclude contractile proteins and thus limit the accessible volume. Therefore, the apparent localization of a cytoplasmic protein, as judged by variations in fluorescence intensity, may not represent an actual variation of concentration in the cytoplasm of the living cell (44, 1). In addition, the possible artifacts due to extraction of antigens or steric hindrance of antibody binding make it even more difficult to interpret immunofluorescence images in terms of local concentrations of protein in the intact cells (1). Control experiments must be performed to determine whether spatial variations in fluorescence intensity are due to uneven distribution or redistribution of specific proteins in cells.

We have evaluated the possible effects of pathlength and accessible volume in *D. discoideum* amoebae by analyzing fluorescence images of living cells injected with FTC-ovalbumin. The fluorescence of labeled ovalbumin in a motile amoeba was brightest in the hyaline cytoplasm of the pseudopod (Fig. 7). The simplest interpretation of this result is that the relatively organelle-free hyaline cytoplasm contains the maximum accessible volume for any soluble protein. Therefore, the bright fluorescence observed in cells stained with anti-95,000-dalton IgG must be interpreted with caution. The apparent localization of the 95,000-dalton protein in the hyaline cytoplasm may be less dramatic than the images suggest and is not necessarily indicative of dramatic variation in the concentration of this protein in the cytoplasm. We are presently developing a general technique that will normalize images from fluorescent analog cytochemistry and immunofluorescence microscopy, in order to analyze quantitatively the distributions of specific proteins in cells.

Functional Implications

The abundance, activity, and distribution of the various classes of actin-binding proteins must be determined before assessing their relative contribution to the structure and contractility of cytoplasm. The 95,000-dalton actin-binding protein from *D. discoideum* is abundant, is regulated by changes in the concentration of H⁺ and Ca²⁺, and is present in areas of cytoplasm not occupied by organelles. Therefore, this protein could play a fundamental role in the regulation of both cytoplasmic structure and contractility as proposed in the solution-contraction coupling hypothesis (19, 40, 7, 38).

We are grateful to Karen Lawley and Dan Branton for help with the Western Transfer technique, and to Bob Entin and Will McClure for help with quantitative densitometry. We acknowledge the excellent typing of Yvonne Francescon. We also appreciate critical comments of the following members of our laboratory group: Philip A. Amato, Gary Bright, James Meigs, Kate Luby-Phelps, Paul L. McNeil, Mark Rockwell, and Lerson Tanasugarn. This work was supported by grant AM18111 from the National Institutes of Health. M. Fechheimer was supported by a postdoctoral fellowship from the Muscular Dystrophy Association.

Received for publication 11 November 1982, and in revised form 14 March 1983.

REFERENCES

1. Amato, P. A., E. R. Unanue, and D. L. Taylor. 1982. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. *J. Cell Biol.* 96:750-761.

2. Amos, W. B., L. M. Knottedge, T. Weis-Fogh, and F. P. Yew. 1976. The spontaneous and calcium-dependent contraction in connection with specific calcium binding proteins. *J. Biol. Chem.* 251:471-482.

3. Bresch, E. A., J. H. Harwig, and T. P. Stossel. 1978. The gelation of actin by actin-binding protein. *J. Biol. Chem.* 253:8984-8993.

4. Condeelis, J., S. K. Yamamoto, and J. A. Spudich. 1982. A 40,000-dalton protein from *Dictyostelium discoideum* affects assembly properties of actin in a Ca²⁺-dependent manner. *J. Cell Biol.* 93:205-210.

5. Condeelis, J. S. 1981. Reciprocal interactions between the actin lattice and cell membrane. *Neurosci. Res. Program Bull.* 19:83-99.

6. Condeelis, J. S. 1981. Microfilament-Membrane Interactions in Cell Shape and Motility. In *International Cell Biology.* 1980-1981. H. G. Schenker, editor. Springer-Verlag, Berlin.

7. Condeelis, J. S., O. Gonsky, and M. Vahey. 1982. Isolation of a new actin-binding protein from *Dictyostelium discoideum*. *Cell Motility.* 2:273-285.

8. Condeelis, J., J. Salisbury, and K. Fujiwara. 1981. A new protein that gels F actin in the cortex of *Dictyostelium discoideum*. *Nature (Lond.)* 292:161-106.

9. Condeelis, J. S., and D. L. Taylor. 1977. The contractile basis of amoeboid movement. *J. Cell Biol.* 74:901-927.

10. Condeelis, J., and M. Vahey. 1982. Calcium- and pH-regulated protein from *Dictyostelium discoideum* that cross-links actin filaments. *J. Cell Biol.* 94:466-471.

11. Craig, S. W., and T. D. Pollard. 1982. Actin-binding proteins. *Trends Biochem. Sci.* 7:88-92.

12. Eckert, B. S., and E. Lazarides. 1978. Localization of actin in *Dictyostelium ameboas* by immunofluorescence. *J. Cell Biol.* 77:14-121.

13. Fechheimer, M., J. Brier, and M. Rockwell. 1982. Calcium and pH regulated actin binding protein from *Dictyostelium discoideum*. *Cell Motility.* 2:287-308.

14. Fechheimer, M., J. Brier, and D. L. Taylor. 1982. Contractility, biosynthesis, and distribution of the 95,000 dalton actin-binding protein from *Dictyostelium discoideum*. *J. Cell Biol.* 95:901-927.

15. Fechheimer, M., J. Brier, and D. L. Taylor. 1982. The control of gelation, solation, and contraction in extracts from *Dictyostelium discoideum*. *J. Cell Biol.* 95:901-927.

16. Fechheimer, M., and D. L. Taylor. 1980. Spectrum plus band 41 cross-linking actin. Regulation by microconical calcium. *J. Cell Biol.* 85:361-376.

17. Fischchen-Stewart, U. 1980. Immunocytochemistry of cytoplasmic contractile proteins. *Int. Rev. Cytol.* 65:193-254.

18. Hesketh, G. U., J. A. Aebi, and T. D. Pollard. 1980. An actin-binding protein from *Acanthamoeba castellanii* regulates actin filament polymerization and interactions. *Nature (Lond.)* 288:455-459.

19. Hesketh, G., and T. D. Pollard. 1982. The solution-contraction coupling hypothesis. *J. Cell Biol.* 83:633-648.

20. Isenberg, G., U. Aebi, and T. D. Pollard. 1980. An actin-binding protein from *Dictyostelium discoideum*. *J. Cell Biol.* 74:287-308.

21. Klinman, N. R., and R. B. Taylor. 1969. General methods for the study of cells and serum during the immune response: the response to diphtheria in mice. *Clin. Exp. Immunol.* 4:673-687.

22. Kon, E. D. 1982. Actin polymerization and its regulation by proteins from nonmuscle cells. *Physiol. Rev.* 62:872-873.

23. Lammerle, S., and T. D. Pollard. 1980. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature (Lond.)* 227:680-685.

24. Lin, S., D. H. Chiba, J. A. Wilkins, J. F. Castella, W. W. Magarey, and D. C. Lin. 1982. The capactin, a class of proteins that cap the ends of actin filaments. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 299:263-273.

25. MacLean-Fletcher, S. D., and T. D. Pollard. 1980. Viscometric analysis of the gelation of *Acanthamoeba* extracts and purification of two gelation factors. *J. Cell Biol.* 85:414-428.

26. Mansa, H., and E. D. Kon. 1977. Purification from *Acanthamoeba castellanii* of proteins that induce gelation and synerysis of F-actin. *J. Biol. Chem.* 252:399-402.

27. Mignola, N., and A. Asano. 1982. Characterization and localization of actinogen, a
Ca²⁺-sensitive actin accessory protein, in nonmuscle cells. J. Cell Biol. 93:899–909.

28. NunnaUy, M. H., L. D. Powell, and S. W. Craig. 1981. Reconstitution and regulation of actin gel-sol transformation with purified filamin and villin. J. Biol. Chem. 256:2083–2086.

29. Pollard, T. D. 1981. Purification of a calcium-sensitive actin gelation protein from Acanthamoeba. J. Biol. Chem. 256:1666–1670.

30. Rockwell, M. A., M. Fechheimer, and D. L. Taylor. 1982. A comparison of falling ball viscometry and the meniscus depletion assay for measurement of the interaction of actin and actin-binding proteins. J. Cell Biol. 95(2, Pt. 2): 298a. (Abstr.)

31. Schiwa, M. 1981. Proteins associated with cytoplasmic actin. Cell. 25:587–590.

32. Southwick, F. S., and J. H. Hartwig. 1982. Acumentin, a protein in macrophages which caps the "pointed" end of actin filaments. Nature (Lond.). 297:303–307.

33. Spudich, J. A., and S. Watt. 1971. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the protolytic fragments of myosin. J. Biol. Chem. 246:4866–4871.

34. Swanson, J. A. 1982. The spatial organization of cytoplasm during amoeboid chemotaxis. Ph.D. Thesis, Princeton University.

35. Taylor, D. L., and J. S. Condeelis. 1979. Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol. 56:57–144.

36. Townhill, H., T. Stachelein, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.

37. Towbin, H., T. Staebelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.

38. Wang, Y.-L., J. M. Heiple, and D. L. Taylor. 1982. Fluorescent analog cytochemistry of contractile proteins. In Methods in Cell Biology. L. Wilson, editor. Academic Press, New York. 25:1–11.

39. Weeds, A. 1982. Actin-binding proteins-regulators of cell architecture and motility. Nature (Lond.). 296:811–816.

40. Williams, C. A., and M. W. Chase, editors. 1981. Methods in Immunology and Immunocytochemistry. Academic Press, New York. 3.

41. Yin, H. L., K. S. Zaner, and T. P. Stossel. 1980. Ca²⁺ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J. Biol. Chem. 255:4904–4900.

42. Zaner, K. S., and T. P. Stossel. 1982. Some perspectives on the viscosity of actin filaments. J. Cell Biol. 93:987–991.

43. Zigmond, S. H. 1977. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 77:606–616.