EMBEDDINGS OF HOMOGENEOUS SPACES INTO IRREDUCIBLE MODULES

IVAN V. LOSEV

Abstract. Let G be a connected reductive group. We find a necessary and sufficient condition for a quasiaffine homogeneous space of G/H to be embeddable into an irreducible G-module. If H is reductive we also find a necessary and sufficient condition for a closed embedding of G/H into an irreducible module to exist. These conditions are stated in terms of the group of central automorphisms of G/H.

1. Introduction

The base field is the field \mathbb{C} of complex numbers. Throughout the paper G denotes a connected reductive algebraic group, B its Borel subgroup and T a maximal torus of B.

The celebrated theorem of Chevalley states that any homogeneous space can be embedded (as a locally-closed subvariety) into the projectivization of a G-module. If H is an observable subgroup of G, that is, the homogeneous space G/H is quasiaffine, then G/H can be embedded even into a G-module itself, see, for example, [PV], Theorem 1.6. So it is natural to pose the following

Problem 1.1. Describe all observable subgroups H such that G/H can be embedded into an irreducible G-module.

To state the answer to that problem we need the definition of a central automorphism of a G-variety. Let X be an irreducible G-variety. A subspace $\mathbb{C}(X)^{\lambda} \subset \mathbb{C}(X)$ consisting of all B-semiinvariant functions of weight $\lambda \in \mathfrak{X}(B)$ is stable under every G-equivariant automorphism of X. The following definition belongs to Knop, [K2].

Definition 1.2. A G-equivariant automorphism of X is called central if it acts on $\mathbb{C}(X)^{\lambda}$ by the multiplication by a constant for any weight λ.

We denote the group of central automorphisms of X by $\mathfrak{A}_G(X)$. We write $\mathfrak{A}_{G,H}$ instead of $\mathfrak{A}_G(G/H)$. It was shown by Knop, [K2], Section 5, that $\mathfrak{A}_{G,H}$ is an algebraic quasi-torus, that is a closed subgroup of an algebraic torus.

Theorem 1.3. Let H be an observable subgroup of G. Then the following conditions are equivalent:

(a) G/H can be embedded into an irreducible G-module.
(b) $\mathfrak{A}_{G,H}$ is a finite cyclic group or a one-dimensional torus.

For a given subgroup $H \subset G$ the group $\mathfrak{A}_{G,H}$ can be computed using techniques from [L2]. Namely, $\mathfrak{A}_{G,H}$ is the quotient of the weight lattice of G/H by the root lattice of G/H. An algorithm for computing the weight lattice is the main result of [L2]. The computation of the root lattice can be reduced to that of the weight lattice by using [L2], Proposition 5.2.1.

Key words and phrases: reductive group, quasi-affine homogeneous space, irreducible module, embedding.

2000 Mathematics Subject Classification. 14M17, 14R20.
If H is a reductive subgroup of G or, equivalently, G/H is affine, then one may ask whether there exists a closed embedding of G/H into an irreducible G-module. Here is an answer.

Theorem 1.4. Let H be a reductive subgroup of G. Then the following conditions are equivalent.

(a) There is a closed equivariant embedding of G/H into a irreducible G-module.

(b) $\mathfrak{A}_{G,H}$ is a finite cyclic group.

We prove Theorems 1.3, 1.4 in Sections 3, 4. In Section 5 we present some examples of applications of our theorems.

Acknowledgements. I thank I.V. Arzhantsev, who communicated this problem to me, found a gap in the proof in the previous version of the paper and made some other useful remarks. The paper was partially written during my stay in the Fourier University, Grenoble, in June, 2006. I express my gratitude to this institution and especially to Prof. M. Brion for hospitality.

2. Notation and conventions

- $A_{\mu}^{(B)}$: the subspace of all B-semi-invariant functions of weight μ in a G-algebra A, where G is a connected reductive group.
- $[g, g]$: the commutant of a Lie algebra g.
- G°: the connected component of unit of an algebraic group G.
- $R_u(G)$: the unipotent radical of an algebraic group G.
- G_x: the stabilizer of a point $x \in X$ under an action $G : X$.
- $\text{Int}(g)$: the group of inner automorphisms of a Lie algebra g.
- $N_G(H)$: the normalizer of a subgroup H in a group G.
- $V^g = \{v \in V | g^\circ v = 0\}$, where g is a Lie algebra and V is a g-module.
- $V(\mu)$: the irreducible module with highest weight μ over a reductive algebraic group or a reductive Lie algebra.
- $\mathfrak{X}(G)$: the character lattice of an algebraic group G.
- X^G: the fixed-point set for an action of G on X.
- $\#X$: the cardinality of a set X.
- $Z(G)$ (resp., $Z_{\mathfrak{g}}$): the center of an algebraic group G (resp., of a Lie algebra \mathfrak{g}).
- $Z_G(h)$ (resp., $Z_{\mathfrak{g}}(\mathfrak{h})$): the centralizer of a subalgebra $h \subset \mathfrak{g}$ in an algebraic group G (resp., in its Lie algebra \mathfrak{g}).
- λ^*: the highest weight dual to λ.

If an algebraic group is denoted by a capital Latin letter, then we denote its Lie algebra by the corresponding small fraktur letter, for example, \hat{h} denotes the Lie algebra of \hat{H}. All topological terms refer to the Zariski topology.

3. Proof of Theorem 1.3

First, we fix some notation and recall some definitions from the theory of algebraic transformation groups.

In this section H denotes an observable subgroup of G. The group of G-equivariant automorphisms of G/H is identified with $N_G(H)/H$. We consider $\mathfrak{A}_{G,H}$ as a subgroup in $N_G(H)/H$. Denote by H^{sat} the inverse image of $\mathfrak{A}_{G,H}$ in $N_G(H)$.

Let X be an irreducible G-variety. An element $\lambda \in \mathfrak{X}(T)$ is said to be a *weight of X* if $\mathbb{C}(X)_{\lambda}^{(B)} \neq 0$. Clearly, all weights of X form a subgroup of $\mathfrak{X}(T)$ called the *weight lattice* of X and denoted by $\mathfrak{X}_{G,X}$. The rank of the weight lattice is called the *rank* of X and is denoted by $\text{rk}_G(X)$. We put $\mathfrak{a}_{G,X} = \mathfrak{X}_{G,X} \otimes \mathbb{Z}$. If $X = G/G_0$, then we write \mathfrak{X}_{G,G_0} instead of $\mathfrak{X}_{G,G/G_0}$. It is easy to see that the subspace $\mathfrak{a}_{G,G/G_0}$ depends only on the pair $(\mathfrak{g}, \mathfrak{g}_0)$. Thus we write $\mathfrak{a}_{\mathfrak{g}, \mathfrak{g}_0}$ instead of $\mathfrak{a}_{G,G/G_0}$. If \hat{G}_0 is a subgroup of G containing G_0, then there exists a dominant G-equivariant morphism $G/G_0 \to G/\hat{G}_0$ and hence $\mathfrak{X}_{G,\hat{G}_0} \subset \mathfrak{X}_{G,G_0}$.

The codimension of a general B-orbit in X is called the *complexity* of X and is denoted by $c_G(X)$. Again, we write $c_{\mathfrak{g}, \mathfrak{g}_0}$ instead of $c_G(G/G_0)$. Let us note that $c_{\mathfrak{g}, \mathfrak{g}_0} \leq c_{\mathfrak{g}, \mathfrak{g}_0}$ whenever $G_0 \subset \hat{G}_0$.

Proceed to the proof of Theorem 1.3. The implication $(a) \Rightarrow (b)$ is easy.

Proof of $(a) \Rightarrow (b)$. By the Frobenius reciprocity, there is an $N_G(H)$-equivariant isomorphism $V(\lambda)^H \cong \mathbb{C}[G/H]_{\lambda}^{(B)}$. Clearly, (a) implies that the action of $N_G(H)/H$ on $V(\lambda)^H$ is effective for some λ. Now (b) follows easily from the definition of the subgroup $\mathfrak{A}_{G,H} \subset N_G(H)/H$.

The implication $(b) \Rightarrow (a)$ will follow from the following

Proposition 3.1. Suppose $\mathfrak{A}_{G,H}$ is a cyclic finite group or a one-dimensional torus. Then there is a highest weight λ such that $V(\lambda)^H \neq \{0\}$ and the subset $\bigcap_{H \supseteq H'} V(\lambda)^{H'}$ is not dense in $V(\lambda)^H$.

The scheme of the proof of the proposition is, roughly speaking, as follows. On the first step we prove that for an appropriate highest weight λ the complexity $c_{\mathfrak{g}, \mathfrak{g}_0}$ for a point $v \in V(\lambda)^H$ in general position coincides with $c_{\mathfrak{g}, \mathfrak{g}_0}$. On the second step we check that one may choose λ such that $\mathfrak{g}_v = \mathfrak{h}$ for $v \in V(\lambda)^H$ in general position. At last, we show that $G_v = H$ for general $v \in V(\lambda)^H$.

We begin with some simple lemmas.

Lemma 3.2. $\dim V(\nu)^H \leq \dim V(\nu + \mu)^H$ for any highest weights μ, ν such that $V(\mu)^H \neq 0$.

Proof. By the Frobenius reciprocity, $V(\nu)^H \cong \mathbb{C}[G/H]_{\nu}^{(B)}$, $V(\nu + \mu)^H \cong \mathbb{C}[G/H]_{\nu + \mu}^{(B)}$. The map $f_1 \mapsto ff_1 : \mathbb{C}[G/H]_{\nu}^{(B)} \hookrightarrow \mathbb{C}[G/H]_{\nu + \mu}^{(B)}$ is injective for any $f \in \mathbb{C}[G/H]_{\nu}^{(B)}$, $f \neq 0$.

In the sequel we will need some properties of central automorphisms.

Lemma 3.3.
1. An element $n \in N_G(H)/H$ is central iff it acts trivially on $K(G/H)^{(B)}$.
2. $\mathfrak{A}_{G,H} \subset Z(N_G(H)/H)$.

Proof. Let X be an affine G-variety with open G-orbit G/H. Thanks to [PV], Theorem 3.3, to prove assertion 1 it is enough to check that n acts on $\mathbb{C}[X]_{\lambda}^{(B)}$ by the multiplication by a constant for any highest weight λ provided n acts trivially on $\mathbb{C}(G/H)^B$. Since X contains a dense G-orbit, we have $\mathbb{C}[X]^G = \mathbb{C}$. It follows from [PV], Theorem 3.24, that $\dim \mathbb{C}[X]_{\lambda}^{(B)} < \infty$. Now our claim is clear.

Assertion 2 follows from [K2], Corollary 5.6.

The following technical proposition is crucial in the proof of Proposition 3.1.

Proposition 3.4. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_k$ be proper subspaces of $\mathfrak{a}_{\mathfrak{g}, \mathfrak{g}_0}$ and $\mathfrak{X}_1, \ldots, \mathfrak{X}_l$ sublattices of $\mathfrak{X}_{G,H}$ such that $p_i := \#(\mathfrak{X}_{G,H}/\mathfrak{X}_i)$, $i = 1, \ldots, l$, are pairwise different primes. Put $c := c_{\mathfrak{g}, \mathfrak{g}_0}$. Then there exists a highest weight λ satisfying condition (1), when c is arbitrary, and conditions (2),(3), when $c > 0$.
Proof. Let \(\lambda^* \not\subset \bigcup_{i=1}^k a_i \cup \bigcup_{i=1}^l \mathfrak{x}_i \).

(2) The codimension of the closure of the subset \(Z := (\bigcup V(\hat{\mathfrak{h}})) \cap V(\lambda)^H \subset V(\lambda)^H \),

where the union is taken over all algebraic subalgebras \(\mathfrak{h} \subset \mathfrak{g} \) such that \(\mathfrak{h} \supset \mathfrak{h}, c_{\mathfrak{g}, \mathfrak{h}} < c \),

is strictly bigger than \(2 \dim G \).

(3) For any \(f \in \mathbb{C}(G/H)^B \) there exist \(f_1, f_2 \in \mathbb{C}[G/H]^B_{\lambda^*} \) such that \(f = \frac{f_1}{f_2} \).

Lemma 3.5. Let \(a_1, \ldots, a_k, \mathfrak{x}_1, \ldots, \mathfrak{x}_l \) be such as in Proposition 3.4. Let \(\mu' \in \Psi \) satisfy condition (1). Then there is \(n \in \mathbb{N} \) such that for any \(\lambda \in \Psi \) at least one of the weights \(\lambda + \mu', \lambda + 2\mu', \ldots, \lambda + n\mu' \) satisfies condition (1) of Proposition 3.4.

Proof. Set \(n := (k+1)p_1 \ldots p_l \). The proof is easy. \(\square \)

Proof of Proposition 3.4. Let us choose a norm \(| \cdot | \) on the space \(\mathfrak{a}_{\mathfrak{g}, \mathfrak{b}}(\mathbb{R}) := \mathfrak{X}_{G,H} \otimes \mathbb{R} \). It follows from Timashev’s theorem, \([T] \), that the following assertions hold:

- There exists \(A_0 \in \mathbb{R} \) such that \(\dim V(\lambda)^\mathfrak{h} < A_0|\lambda|^{c-1} \) for any subalgebra \(\hat{\mathfrak{h}} \subset \mathfrak{g} \) with \(c_{\mathfrak{g}, \mathfrak{h}} < c \) and any highest weight \(\lambda \).
- For any \(A \in \mathbb{R} \) there exists a highest weight \(\lambda \) such that \(\dim V(\lambda)^H > A|\lambda|^{c-1} \).

Denote by \(Y \) the subvariety of \(\prod_{i=\dim \mathfrak{h}} \text{Gr}_i(\mathfrak{g}) \) consisting of all subalgebras \(\hat{\mathfrak{h}} \subset \mathfrak{g} \) containing \(\mathfrak{h} \). \(Y_0 := \{ \hat{\mathfrak{h}} \in Y | c_{\mathfrak{g}, \mathfrak{h}} < c \} \) is an open subvariety of \(Y \), because \(c_{\mathfrak{g}, \mathfrak{h}} = \min_{g \in G} \dim \mathfrak{g}/(\text{Ad}(g)\mathfrak{b} + \hat{\mathfrak{h}}) \). Put \(V := V(\lambda)^H, \tilde{Z} := \{ (\hat{\mathfrak{h}}, v) \in Y_0 \times V | v \in V(\lambda)^{\mathfrak{h}} \} \). The latter is a closed subvariety in \(Y_0 \times V \) of dimension at most \(\dim Y_0 + \max_{\hat{\mathfrak{h}} \in Y_0} \dim V(\lambda)^\mathfrak{h} \).

Note that \(\tilde{Z} \) is just the image of \(\tilde{Z} \) under the projection \(Y_0 \times V \rightarrow V \). Thus if \(c > 0 \), then the dimension of the closure of \(\tilde{Z} \) does not exceed \(A_0|\lambda|^{c-1} + \dim Y_0 \).

Note that there exists a highest weight \(\lambda_1 \) satisfying condition (3). Indeed, the field \(\mathbb{C}(G/H)^B \) is finitely generated and let \(f_1, \ldots, f_s \) be its generators. Analogously to \([PV] \), Theorem 3.3, one proves that there are \(f_{i_1}, f_{i_2} \in \mathbb{C}(G/H)^{B}_{\nu_i}, i = 1, s \), such that \(f_i = \frac{f_{i_1}}{f_{i_2}} \). It is enough to take \(\sum_{i=1}^s \nu_i^* \) for \(\lambda_1 \). Note that for any highest weight \(\lambda_2 \) with \(\mathbb{C}(G/H)_{\lambda_2}^B \neq 0 \) the highest weight \(\lambda_2 + \lambda_1 \) also satisfies condition (3).

Note that there is a highest weight \(\lambda_2 \) satisfying condition (1) and such that \(V(\lambda_2)^H \neq \{0\} \). Indeed, otherwise \(\bigcup_{i=1}^k a_i \) contains an open cone in \(\mathfrak{a}_{\mathfrak{g}, \mathfrak{b}} \), which is absurd. So in case \(c = 0 \) we are done. Now suppose \(c > 0 \).

Let \(n \) be such as in Lemma 3.5. Choose \(A > 0 \) and a highest weight \(\nu \) such that \(\dim V(\nu)^H > A|\nu|^{c-1} \) and \(A|\nu|^{c-1} > A_0(|\nu| + |\lambda_1| + n|\lambda_2|)^{c-1} + \dim Y_0 + 2 \dim G \). Further, there is \(j \in \{1, \ldots, n\} \) such that \(\lambda := \nu + \lambda_1 + j\lambda_2 \) satisfies (1). For \(c > 0 \) it is easy to deduce from Lemma 3.2 that \(\lambda \) satisfies condition (2). Finally \(\lambda \) satisfies condition (3), for it is of the form \(\lambda_1 + \lambda_2 \) for some \(\lambda_2 \) with \(\mathbb{C}(G/H)_{\lambda_2}^B \neq 0 \). \(\square \)

The next proposition is used on the second step of the proof.

Proposition 3.6. The set \(\{ a_{\mathfrak{g}, \mathfrak{h}} | a_{\mathfrak{g}, \mathfrak{h}} = [\hat{\mathfrak{h}}, \mathfrak{h}] + R_u(\mathfrak{h}) + \hat{\mathfrak{h}}, \mathfrak{h} \text{ is algebraic} \} \) is finite.

Proof. Let \(\mathfrak{h} = \mathfrak{s} \oplus R_u(\mathfrak{h}), \hat{\mathfrak{h}} = \hat{\mathfrak{s}} \oplus R_u(\hat{\mathfrak{h}}) \) be Levi decompositions. We may assume that \(\mathfrak{s} \subset \hat{\mathfrak{s}} \). Denote by \(\hat{\mathfrak{H}}, \hat{\mathfrak{S}} \) the connected subgroups of \(G \) corresponding to \(\hat{\mathfrak{h}}, \hat{\mathfrak{s}} \). By the Weisfeller theorem, see \([W] \), there is a parabolic subgroup \(P \subset G \) and a Levi subgroup \(L \subset P \) such that \(P \subset L, R_u(\hat{\mathfrak{H}}) \subset R_u(P) \). Conjugating \(\mathfrak{h}, \mathfrak{h} \) by an element of \(G \), we may assume that
There is an inclusion of \mathcal{S}-modules $R_u(p)/R_u(h) \hookrightarrow \mathfrak{g}/\mathfrak{s}$. So the set $\{(L, R_u(p)/R_u(h))\}$ is finite. It remains to check that \mathfrak{s} belongs to \mathfrak{g} following well-known lemma (which stems, for example, from [V], Proposition 3) allows us to replace Int(I)-conjugacy in the previous statement by Int(\mathfrak{g})-conjugacy.

Lemma 3.7. Let \mathfrak{g}_0 be a reductive subalgebra of \mathfrak{g} and \mathfrak{g}_1 a reductive subalgebra of \mathfrak{g}_0. The set of subalgebras of \mathfrak{g}_0 that are Int(\mathfrak{g})-conjugate to \mathfrak{g}_1, decomposes into finitely many classes of Int(\mathfrak{g}_0)-conjugacy.

The equality $\widehat{h} = [\hat{h}, \hat{h}] + R_u(\hat{h}) + h$ is equivalent to $\mathfrak{s} = [\widehat{\mathfrak{s}}, \widehat{\mathfrak{s}}] + \mathfrak{s}$. Therefore the statement on the finiteness of the set of Int(\mathfrak{g})-conjugacy classes stems from the following lemma

Lemma 3.8. Let \mathfrak{s} be a reductive subalgebra of \mathfrak{g}. The set of Int(\mathfrak{g})-conjugacy of reductive subalgebras $\mathfrak{s} \subset \mathfrak{g}$ such that $\mathfrak{s} = [\widehat{\mathfrak{s}}, \widehat{\mathfrak{s}}] + \mathfrak{s}$ is finite.

Proof of Lemma 3.8. We may replace \mathfrak{s} with its Cartan subalgebra and assume that $\mathfrak{s} \subset \mathfrak{t}$. In this case the proof is in three steps.

Step 1. Here we show that the set of subspaces of \mathfrak{t}, that are Cartan subalgebras of semisimple subalgebras of \mathfrak{g}, is finite. Note that there are finitely many conjugacy classes of semisimple subalgebras of \mathfrak{g}. Indeed, for $\mathfrak{g} = \mathfrak{gl}_n$ this is a consequence of the highest weight theory and in the general case one embeds \mathfrak{g} into some \mathfrak{gl}_n and uses Lemma 3.7. It follows that only finitely many subspaces of \mathfrak{t} are G-conjugate to a Cartan subalgebra of a semisimple Lie algebra. Now it remains to note that G-conjugate subspaces of \mathfrak{t} are W-conjugate. Here W denotes the Weyl group of \mathfrak{g}.

Step 2. Conjugating $\widehat{\mathfrak{s}}$ by an element of $Z_G(\mathfrak{s})$, one may assume that there is a Cartan subalgebra $\mathfrak{t}_0 \subset \widehat{\mathfrak{s}}$ contained in \mathfrak{t}. Since $\widehat{\mathfrak{s}} = [\widehat{\mathfrak{s}}, \widehat{\mathfrak{s}}] + \mathfrak{s}$, we see that \mathfrak{t}_0 is a sum of \mathfrak{s} and a Cartan subalgebra of a semisimple subalgebra of \mathfrak{g}. By step 1, there are only finitely many possibilities for \mathfrak{t}_0.

Step 3. Clearly, $\mathfrak{z}(\mathfrak{s}) = \mathfrak{t}_0 \cap (\mathfrak{t}_0 \cap [\widehat{\mathfrak{s}}, \widehat{\mathfrak{s}}])^\perp$, where the orthogonal complement is taken with respect to some invariant non-degenerate symmetric form on \mathfrak{g}. Thus, by the previous steps, there are only finitely many possibilities for $\mathfrak{z}(\mathfrak{s})$. Obviously, $\widehat{\mathfrak{s}}$ is a direct sum of $\mathfrak{z}(\mathfrak{s})$ and a semisimple subalgebra of $\mathfrak{z}(\mathfrak{s})$. Thence, $\widehat{\mathfrak{s}}$ belongs to one of finitely many $Z_G(\mathfrak{s})$-conjugacy classes of subalgebras. To complete the proof of the lemma it remains to apply Lemma 3.7 to $\mathfrak{g}_0 = \mathfrak{z}(\mathfrak{s})$.

Corollary 3.9. There are proper subspaces $a_1, \ldots, a_m \subset a_{\mathfrak{g}, \mathfrak{h}}$ satisfying the following condition: if $\hat{\mathfrak{h}}$ is a subalgebra of \mathfrak{g} containing \mathfrak{h} such that $c_{\mathfrak{g}, \mathfrak{h}} = c_{\mathfrak{g}, \mathfrak{h}}$ and $a_{\mathfrak{g}, \mathfrak{h}} \not\subset a_i$ for any i, then $\hat{\mathfrak{h}} \subset \mathfrak{h}_{\text{sat}}$.

Proof. For a_i we take elements of the set $\{a_{\mathfrak{g}, \mathfrak{h}}| = [\hat{\mathfrak{h}}, \hat{\mathfrak{h}}] + R_u(\hat{\mathfrak{h}}) + \mathfrak{h}, a_{\mathfrak{g}, \mathfrak{h}} \not\subset a_{\mathfrak{g}, \mathfrak{h}}\}$. Put $\hat{\mathfrak{h}}_0 = [\hat{\mathfrak{h}}, \hat{\mathfrak{h}}] + R_u(\hat{\mathfrak{h}}) + \mathfrak{h}$. Clearly, $\hat{\mathfrak{h}}_0 = [\hat{\mathfrak{h}}, \hat{\mathfrak{h}}] + R_u(\hat{\mathfrak{h}}) + \mathfrak{h}$. If $a_{\mathfrak{g}, \mathfrak{h}}$ is not contained in any a_i, then $a_{\mathfrak{g}, \mathfrak{h}} = a_{\mathfrak{g}, \mathfrak{h}}$. Moreover, since $\mathfrak{h} \subset \hat{\mathfrak{h}}_0 \subset \hat{\mathfrak{h}}$, we get $c_{\mathfrak{g}, \mathfrak{h}} = c_{\mathfrak{g}, \mathfrak{h}} \leq c_{\mathfrak{g}, \mathfrak{h}} \leq c_{\mathfrak{g}, \mathfrak{h}}$. Applying the following lemma to $\mathfrak{g}_0 = \hat{\mathfrak{h}}_0, \mathfrak{h}$, we get $\hat{\mathfrak{h}}_0 = \mathfrak{h}$.

□
Lemma 3.10. For any algebraic subgroup $G_0 \subset G$ we have
\[2(\dim \mathfrak{g} - \dim \mathfrak{g}_0) \geq 2c_{\mathfrak{g}, \mathfrak{g}_0} + 2 \dim \mathfrak{a}_{\mathfrak{g}, \mathfrak{g}_0} + \dim \mathfrak{g} - \dim \mathfrak{j}_\mathfrak{g}(\mathfrak{a}_{\mathfrak{g}, \mathfrak{g}_0}) \]
with the equality provided G_0 is observable.

Proof of Lemma 3.10. This follows from [K1], Sätze 7.1, 8.1, Korollar 8.2

It follows that \mathfrak{h} is an ideal of $\hat{\mathfrak{h}}$ and that $\hat{\mathfrak{h}}/\mathfrak{h}$ is a commutative reductive algebraic Lie algebra. Let \hat{H} denote the connected subgroup of G corresponding to $\hat{\mathfrak{h}}$. By Proposition 4.7 from [L1], \hat{H}/H^0 acts on G/H^0 by central automorphisms, equivalently, $\hat{\mathfrak{h}} \subset \mathfrak{h}_{sat}$.

The following lemma is used on step 3 of the proof of Proposition 3.1.

Lemma 3.11. Let a highest weight λ satisfy condition (3) of Proposition 3.4. Then

(3') Any subgroup $\hat{H} \subset G$ such that $H \subset \hat{H}$, $H^0 = \hat{H}^0$ and $V(\lambda)^H = V(\lambda)^{\hat{H}}$ is contained in H_{sat}.

Proof. By the Frobenius reciprocity, $\mathbb{C}[G/\hat{H}]^{(B)}_\lambda = \mathbb{C}[G/H]^{(B)}_\lambda$. By the choice of λ, $\mathbb{C}(G/H)^B = \mathbb{C}(G/\hat{H})^B$. Equivalently, $\mathbb{C}(G/B)^H = \mathbb{C}(G/B)^{\hat{H}}$. Applying the main theorem of the Galois theory to the field $\mathbb{C}(G/B)^H$, we see that the images of $H/H^0, \hat{H}/H^0$ in $\text{Aut}(\mathbb{C}(G/B)^H)$ (or, equivalently, $\text{Aut}(\mathbb{C}(G/H^0)^B)$) coincide. By assertion 1 of Lemma 3.3, $\hat{H}/H^0 = (H/H^0)\Gamma$, where $\Gamma \subset \mathfrak{a}_{G,H}$. Assertion 2 of Lemma 3.3 implies that H is a normal subgroup in \hat{H}. In virtue of the natural inclusion $\mathbb{C}(G/H)^B \hookrightarrow \mathbb{C}(G/H^0)^B$, the group \hat{H}/H acts trivially on $\mathbb{C}(G/H)^B$. It remains to apply assertion 1 of Lemma 3.3 one more time.

Now we define subspaces $a_1, \ldots, a_k \subset a_{\mathfrak{g}, \mathfrak{h}}$ and sublattices $\mathfrak{X}_1, \ldots, \mathfrak{X}_l \subset \mathfrak{X}_{G,H}$ satisfying the assumptions of Proposition 3.4.

Suppose that $\mathfrak{A}_{G,H}$ is a finite group. Take for $a_1, \ldots, a_k \subset a_{\mathfrak{g}, \mathfrak{h}}$ subspaces found in Corollary 3.9. Let $\mathfrak{A}_{G,H} \cong \bigoplus_{i=1}^l \mathbb{Z}/p_i^{n_i} \mathbb{Z}$, where p_1, \ldots, p_l are distinct primes. Take for \mathfrak{X}_i the lattice $\mathfrak{X}_{G,H}^{\tilde{H}_i}$, where \tilde{H}_i denotes a unique subgroup of \hat{H} such that $\#\tilde{H}_i/H = p_i$. Clearly, $\tilde{H}_i/H, i = 1, \ldots, l$ are all minimal proper subgroups of $\mathfrak{A}_{G,H}$.

Now suppose that $\mathfrak{A}_{G,H}$ is a one-dimensional torus. For a_1, \ldots, a_{k-1} we take subspaces found in Corollary 3.9 and for a_k we take the subspace $a_{\mathfrak{g}, \mathfrak{h}, sat}$.

Proposition 3.1 follows from Proposition 3.4, Lemma 3.11 and the following proposition.

Proposition 3.12. Let λ be a highest weight satisfying conditions (1), (2) of Proposition 3.4 for $a_1, \ldots, a_k, \mathfrak{X}_1, \ldots, \mathfrak{X}_l$ defined above and condition (3') of Lemma 3.11 (or only condition (1) if $c_{\mathfrak{g}, \mathfrak{h}} = 0$). Then λ has the properties indicated in Proposition 3.1.

Proof. Set $V := V(\lambda)^H$. By the choice of λ, $\mathfrak{g}_v = \mathfrak{h}$ and $G_v \cap H_{sat} = H$ for $v \in V$ in general position.

First of all, we consider the case $c_{\mathfrak{g}, \mathfrak{h}} = 0$. In this case $H_{sat} = N_G(H)$ (this stems directly from Definition 1.2 since $\dim \mathbb{C}(G/H)^B_\lambda = 1$ for any $\lambda \in \mathfrak{X}_{G,H}$). Further, $N_G(H^0)/H^0$ is commutative and thence $\hat{H} \subset N_G(H)$ for any \hat{H} with $\hat{H}^0 = H^0$. Thus $G_v \subset H_{sat}$ for a non-zero vector $v \in V$. It follows from the choice of λ that $G_v = \hat{H}$.

In the sequel we assume that $c_{\mathfrak{g}, \mathfrak{h}} > 0$. Let us prove that the set
\[\bigcup_{\hat{H} \supseteq H, H^0 = H^0} V(\lambda)^{\hat{H}} \]
is not dense in V. Any subgroup $\tilde{H} \subset G$ with $\tilde{H}^\circ = H^\circ$ lies in $N_G(H^\circ)$. Denote by Y_n the subset of $N_G(H^\circ)/H^\circ$ consisting of all elements h such that h and H/H° generate a finite subgroup in $N_G(H)$, whose order divide n. For $h \in Y_n$ we denote by $\tilde{H}(h)$ the inverse image in $N_G(H^\circ)$ of the subgroup of $N_G(H^\circ)/H^\circ$ generated by h and H/H°.

Note that for every n the subset $Y_n \subset N_G(H^\circ)/H^\circ$ is closed. Put

$$Y_{n,i} = \{ h \in Y_n \mid \text{codim}_V V(\lambda)^{\tilde{H}(h)} = i \}.$$

This is a locally closed subvariety of Y_n. Taking into account Lemma 3.11, we see that $Y_{n,0} = \{1\} \text{ or } \emptyset$.

It is enough to show that for all $n, i > 0$ the subset

$$(3.1) \quad \bigcup_{h \in Y_{n,i}} V(\lambda)^{\tilde{H}(h)}$$

is not dense in V.

Assume the converse: let $n, i \in \mathbb{N}$ be such that the subset (3.1) is dense in V. Then (compare with the proof of Proposition 3.4) $\dim Y_{n,i} \geq i$. It follows that $i \leq \dim Y_{n,i} \leq \dim G$. For $h_1, h_2 \in Y_{n,i}$ the inequality

$$(3.2) \quad \dim V(\lambda)^{\tilde{H}(h_1)} \cap V(\lambda)^{\tilde{H}(h_2)} \geq \dim V - 2i \geq \dim V - 2 \dim G$$

holds. Let $\tilde{H}(h_1, h_2)$ denote the algebraic subgroup of G generated by $\tilde{H}(h_1), \tilde{H}(h_2)$. Note that $\dim V(\lambda)^{\tilde{H}(h_1, h_2)} = V(\lambda)^{\tilde{H}(h_1)} \cap V(\lambda)^{\tilde{H}(h_2)}$. In virtue of (3.2) and condition (2) of Proposition 3.4, $V(\lambda)^{\tilde{H}(h_1, h_2)} \neq 0$. By the choice of λ, $a_{g,\tilde{h}(h_1, h_2)} = a_{g,\tilde{h}}$. Therefore, see Lemma 3.10, if $\tilde{h}(h_1, h_2) \neq \tilde{h}$, then $c_{g,\tilde{h}(h_1, h_2)} < c_{g,\tilde{h}}$. But in this case (3.2) contradicts condition (2) of Proposition 3.4. So $\tilde{h}(h_1, h_2) = \tilde{h}$ for any $h_1, h_2 \in Y_{n,i}$. In particular, any $h_1, h_2 \in Y_{n,i}$ generate a finite subgroup in $N_G(H^\circ)/H^\circ$. Choose an irreducible component $Y' \subset Y_{n,i}$ of positive dimension. Consider the map $\rho : Y' \times Y' \to N_G(H^\circ)/H^\circ, (h_1, h_2) \mapsto h_1h_2^{-1}$. Its image is a non-discrete constructible set, whose elements have finite order in $N_G(H^\circ)/H^\circ$. Note that 1 is a nonisolated point in $\text{Im } \rho$. Thus there is a locally closed subvariety $Z \subset \text{Im } \rho$ of positive dimension, whose closure contains 1. The subsets $Z_j := \{ z \in Z| z^j = 1 \}$ are closed in Z. Thus $1 \in \overline{Z}_j$ for some j. However, 1 is an isolated point in $\{ g \in N_G(H^\circ)/H^\circ| g^j = 1 \}$. Contradiction.

4. Proof of Theorem 1.4

Again, one implication in Theorem 1.4 is almost trivial.

Proof of $(a) \Rightarrow (b)$. Let $V(\lambda)$ be such a simple module. By Theorem 1.3, $\mathfrak{A}_{G,H}$ is either a finite cyclic group or a one-dimensional torus. Suppose that $\mathfrak{A}_{G,H} \simeq \mathbb{C}^\times$. As we noted in the proof of the implication $(a) \Rightarrow (b)$, $\mathfrak{A}_{G,H}$ acts on $V(\lambda)^H$ by constants. If $\mathfrak{A}_{G,H} \simeq \mathbb{C}^\times$, then $0 \in \mathfrak{A}_{G,H} v$ for any $v \in V(\lambda)^H$. Thus $0 \in N_G(H)v$ whence $0 \in \overline{Gv}$. Contradiction.

The proof of the other implication is much more complicated. Below we assume that $\mathfrak{A}_{G,H}$ is cyclic. At first, we prove $(b) \Rightarrow (a)$ for reductive subgroups $H \subset G$ satisfying the following condition.

(*) The group $T_0 := (N_G(H)/H)^\circ$ is a torus, equivalently, the Lie algebra \mathfrak{g}^H is commutative.

The proof for H satisfying (*) is based on the following technical proposition, which is analogous to Proposition 3.4.

Proposition 4.1. Let H satisfy (*) and $a_1, \ldots, a_n, \bar{a}_1, \ldots, \bar{a}_l$ be such as in Proposition 3.4. Then there is a highest weight λ satisfying conditions (1)-(3) of Proposition 3.4 (only (1) for $c_{a,b} = 0$) and the following condition:

(4) The cone spanned by the weights of T_0 in $V(\lambda)^H$ coincides with the whole space $X(T_0) \otimes_{\mathbb{Z}} \mathbb{Q}$.

We note that if $c_{a,b} = 0$, then (4) holds automatically.

Proof of (b) ⇒ (a) for H satisfying (*). By Lemma 3.11 and Proposition 3.12, there is a dense subset $V^0 \subset V := V(\lambda)^H$ such that $G_v = H$ for any $v \in V^0$. By condition (4) of Proposition 4.1, a general orbit for the action $T_0 : V$ is closed. It follows that there is $v \in V$ such that $G_v = H$ and the orbit $N_G(H)v$ is closed. By the Luna theorem, see [PV], Theorem 6.17, Gv is also closed.

In the proof of Proposition 4.1 we will need several lemmas. We may and will assume that $c_{a,b} > 0$.

Let us introduce some notation. Set $L := X(T_0) \otimes_{\mathbb{Z}} \mathbb{Q}$. Let Ψ (resp., Ψ^0) denote the set of highest weights λ with $V(\lambda)^H \neq 0$ (resp., satisfying condition (3)). By Lemma 3.2, Ψ is a monoid. For $\lambda \in \Psi$ by $S(\lambda)$ we denote the set of weights of T_0 in $V(\lambda)^H$. Since $\mathbb{C}[G/H]_{\lambda}^B \subset \mathbb{C}[G/H]_{\mu}^{(B)} \subset \mathbb{C}[G/H]_{\lambda^* + \mu^*}^{(B)}$, we have $S(\lambda) + S(\mu) \subset S(\lambda + \mu)$. Finally, we denote by \tilde{H} the inverse image of T_0 in $N_G(H)$ under the natural epimorphism $N_G(H) \twoheadrightarrow N_G(H)/H$.

Lemma 4.2. There is a highest weight ν satisfying conditions (1), (3), (4).

Proof. Step 1. Let us check that $a_{\bar{a},b} = a_{a,b}$. Since $\mathfrak{A}_{G,H}$ is finite, Lemma 3.3 implies that the action $T_0 : \mathbb{C}(G/H)^B$ is locally effective. It follows that $c_{a,b} = c_{a,b} - \dim T_0$. The required equality follows from the inclusion $a_{\bar{a},b} = a_{a,b}$ and Lemma 3.10.

Step 2. By step 1, elements λ_0^\star with $\lambda_0 \in \Psi, 0 \in S(\lambda_0)$, span $a_{a,b}$. Clearly, Ψ^0 is an ideal in Ψ. Therefore even λ_0^\star with $\lambda_0 \in \Psi_0 := \{\lambda_0 \in \Psi^0 | 0 \in S(\lambda_0)\}$ span $a_{a,b}$. Fix $\lambda_0 \in \Psi_0$. We claim that $S(\lambda_0)$ spans L. Indeed, otherwise there is a subgroup $\tilde{H}_0 \subset \tilde{H}$ such that $\dim \tilde{H}_0/H > 0$ and \tilde{H}_0 acts trivially on $V(\lambda)^H$. By (3), \tilde{H}_0 acts trivially on $C(G/H)^B$, which contradicts $\# \mathfrak{A}_{G,H} < \infty$.

Step 3. Set $\nu_0 := \lambda_0 + \lambda_0^\star$. Clearly, $V(\lambda_0)^H \cong (V(\lambda_0^\star))^*$. Thus $S(\lambda_0) = -S(\lambda_0^\star)$. It follows that $S(\nu_0) \supset S(\lambda_0), -S(\lambda_0)$ whence the cone spanned by $S(\nu_0)$ coincides with L.

Step 4. Let μ, n be such as in Lemma 3.5. For sufficiently large m the cone spanned by $mS(\nu_0) + iS(\mu)$ coincides with L for any $i = 1, n$. Thus for appropriate μ' the weight $\nu := m\nu_0 + i\mu'$ satisfies (1), (3), (4).

Proof of Proposition 4.1. Let ν be such as in Lemma 4.2, n be such as in Lemma 3.5. We fix a norm $| \cdot |$ on $\mathfrak{a}_{a,b}(\mathbb{R})$ such that $|\lambda| = |\lambda^*|$ for any $\lambda \in \mathfrak{a}_{a,b}$. Let A_0, Y_0 be such as in the proof of Proposition 3.4.

We choose $\lambda \in \Psi$ and $A \in \mathbb{R}$ such that $\dim V(\lambda)^H > A|\lambda|^{-1}$, where $c := c_{a,b}$, and

$$A|\lambda|^{-1} > A_0(2|\lambda| + |\nu|n)^{c-1} + 2 \dim G + \dim Y_0.$$

By Lemma 3.5 there is $i = 1, n$ such that $\tilde{\lambda} := \lambda + \lambda^* + i\mu$ satisfies (1) and automatically (3). As in the proof of Proposition 3.4, $\tilde{\lambda}$ satisfies (2). Finally, note that $S(\lambda) = -S(\lambda^*)$.

It follows that $S(\nu) \subset S(\tilde{\lambda})$ whence $\tilde{\lambda}$ satisfies (4).
Proof of Theorem 1.4 in the general case. Now H is a subgroup of G such that $\mathfrak{A}_{G,H}$ is a finite cyclic group and the algebra \mathfrak{g}^H is not commutative.

There is a finite cyclic subgroup $\Gamma \subset N_G(H)/H$ of such that $Z_{N_G(H)/H}(\Gamma)^{0}$ is a maximal torus of $N_G(H)/H$, $\#\Gamma$ is prime and does not divide $\#H/\Gamma^{0}$. Let \overline{H} denote the inverse image of Γ in $N_G(H)$. Clearly, $\overline{H} \cap H^{sat} = H$. Moreover, $(N_G(\overline{H})/\overline{H})^{0}$ is a torus. Choose a highest weight λ satisfying conditions (1)-(4) of Propositions 3.4,4.1 (for H instead of H). Let us check that $V(\lambda)$ has the required properties.

Choose $a_1, \ldots, a_k, x_1, \ldots, x_i$ as in Proposition 3.12 for \overline{H} instead of H. Let us check that λ satisfies conditions (1),(2) of Proposition 3.4 and condition (3') of Lemma 3.11 for H. Condition (1) is follows from the equality $\mathfrak{A}_{G,H} = \mathfrak{A}_{G,\overline{H}}$, which, in turn, stems from [K2], Theorem 6.3, and the choice of Γ. To check condition (2) it is enough to check that the subset $Z \subset V(\lambda)$ defined there is closed. This will follow if we check that $c_{\mathfrak{g},\mathfrak{h}} < c_{\mathfrak{g},\mathfrak{h}}$ for any algebraic subalgebra $\mathfrak{h} \subset \mathfrak{g}$ such that $\mathfrak{h} \subset \mathfrak{h}, V(\lambda)^{\mathfrak{h}} \neq \{0\}$. At first, suppose that $\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}] + R_{\mathfrak{h}}(\mathfrak{h}) + \mathfrak{h}$. Then, by the choice of a_i, we see that $a_{\mathfrak{g},\mathfrak{h}} = a_{\mathfrak{g},\mathfrak{h}}$. Contradiction with Lemma 3.10. Now let \mathfrak{s} denote a maximal reductive subalgebra of \mathfrak{h} containing \mathfrak{h}. Then $\mathfrak{s} \subset \mathfrak{s}_0 := \mathfrak{h} + 3(\mathfrak{s}) \nsubseteq \mathfrak{h}$. It follows that $c_{\mathfrak{s}_0,\mathfrak{h}} = c_{\mathfrak{g},\mathfrak{h}}$. Thanks to Lemma 3.3, the last equality contradicts $\#\mathfrak{A}_{G,H} < \infty$. So conditions (1),(2) for λ and H are checked.

Let us check condition (3'). Let \tilde{H} be such a subgroup of G strictly containing H such that $H^{\circ} = \tilde{H}^{\circ}, V(\lambda)^{H} = V(\lambda)^{\tilde{H}}$. Let \tilde{H} denote the algebraic subgroup of G generated by \overline{H}, \tilde{H}. Then $V(\lambda)^{\tilde{H}} = V(\lambda)^{\overline{H}} \cap V(\lambda)^{\tilde{H}} = V(\lambda)^{\overline{H}}$. Thanks to Lemma 3.11, $\tilde{H} \subset \overline{H}^{sat}$. From the choice of x_j it follows that $\tilde{H} \subset \overline{H} = \overline{H}$. By the choice of Γ, $\overline{H} = \tilde{H}$. So $V(\lambda)^{\overline{H}} = V(\lambda)^{\overline{H}}$. Choose a nilpotent element $\xi \in \mathfrak{g}^{\overline{H}}$. Then $exp(t\xi)\overline{H} exp(t\xi)^{-1} \neq \overline{H}$ but $exp(t\xi)V(\lambda)^{\overline{H}} = V(\lambda)^{\overline{H}}$. But, by the proof of Proposition 3.4, there is $v \in V(\lambda)^{\overline{H}}$ with $G_{\overline{H}} = G_{\overline{H}}$. However, $exp(t\xi)v \notin V(\lambda)^{\overline{H}}$. Contradiction. So condition (3') holds for λ, H. By Proposition 3.12, there is a dense open subset $V^{0} \subset V(\lambda)^{\overline{H}}$ such that $G_{\overline{H}} = H$ for any $v \in V^{0}$.

It remains to prove that there is $v \in V^{0}$ with closed G-orbit or, equivalently (by the Luna theorem, [PV], Theorem 6.17), $N_G(H)$-orbit. Let $u \in V(\lambda)^{\overline{H}}$ be such that $G_u = \overline{H}$ and $N_G(\overline{H})u$ is closed. Since $\#\Gamma$ does not divide $\#H/\Gamma^{0}$, we have $N_G(\overline{H}) \subset N_G(H)$. By the Luna theorem, $N_G(H)u$ is closed. Since there is a closed $N_G(H)$-orbit in $V(\lambda)^{H}$ of dimension $\dim N_G(H)/H$, a general orbit is also closed. \[\Box\]

5. Some examples

In Introduction we have noted that the group $\mathfrak{A}_{G,H}$ can be computed for any algebraic subgroup $H \subset G$. However, in general, the computation algorithm is rather involved. In this section we give examples when the application of our theorems is easy.

Example 5.1. Let H be a spherical observable subgroup of G (the former means that G/H is spherical). In this case every automorphism of G/H is central, so $\mathfrak{A}_{G,H} = N_G(H)/H$. The classification of reductive spherical subgroups is known and in this case groups $N_G(H)/H$ are easy to compute. Note also that G/H can be embedded to any module $V(\lambda)$ provided $\lambda \notin \mathfrak{X}_{G,H}^{sat}$ for any subgroup $\tilde{H} \subset G$ containing H. For example, let $G = \text{SL}_{2n+1}, H = \text{Sp}_{2n}$. In this case $N_G(H)/H$ is a one-dimensional torus. In fact, G/H can be embedded into $\wedge^3 \mathbb{C}^{2n+1}$ provided $n \geq 3$.

Example 5.2. Let H be a finite subgroup of G. It follows from results of [K2] that in this case $\mathfrak{z}_{G,H} \cong Z(G)/Z(G) \cap H$. So any homogeneous space G/H, where $Z(G)$ is a cyclic group or a one-dimensional torus, can be embedded into a simple module as a closed subvariety.

References

[K1] F. Knop. Weylgruppe und Momentabbildung. Invent. Math. 1990. V. 99. p. 1-23.
[K2] F. Knop. Automorphisms, root systems and compactifications. J. Amer. Math. Soc., 9(1996), n.1, p.153-174.
[L1] I.V. Losev. Computation of the Cartan spaces of affine homogeneous spaces. Preprint (2006), arXiv:math.AG/0606101. To appear in Mat. Sbornik.
[L2] I.V. Losev. Computation of weight lattices of G-varieties. Preprint (2007), arXiv:math.AG/0709.0667v1, 29 pages.
[Pa] D.I. Panyushev. Complexity and rank of nilpotent orbits. Manuscripta Math., 83(1994), p.223-237.
[PV] V.L. Popov, E.B. Vinberg. Invariant theory. Itogi nauki i techniki. Sovr. probl. matem. Fund. napr., v. 55. Moscow, VINITI, 1989, 137-309 (in Russian). English translation in: Algebraic geometry 4, Encyclopaedia of Math. Sciences, vol. 55, Springer Verlag, Berlin, 1994.
[T] D.A. Timashev. Complexity of a homogeneous spaces and growth of multiplicities. Transform. Groups, 9(2004), p.65-72.
[V] E.B. Vinberg. On invariants of a set of matrices. J. Lie Theory, v.6(1996), p. 249-269.
[W] B.Yu. Weisfeller. On a class of unipotent subgroups in semisimple algebraic groups. UMN v.22(1966), no.2, pp. 222-223 (in Russian).

Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State University.
E-mail address: ivanlosev@yandex.ru