Escherichia coli Flagellar Genes as Target Sites for Integration and Expression of Genetic Circuits

Mario Juhas*, Lewis D. B. Evans, Joe Frost, Peter W. Davenport, Orr Yarkoni, Gillian M. Fraser, James W. Ajioka

Department of Pathology, University of Cambridge, Cambridge, United Kingdom

Abstract

E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.

Introduction

The Gram-negative rod-shaped bacterium Escherichia coli K-12 is one of the most common microbes used for bioprocess manufacturing, metabolic engineering and as a chassis for Synthetic Biology devices [1–5]. Introduction of novel genes/genetic circuits into E. coli on plasmids has many disadvantages, such as increased metabolic burden, variable copy numbers and the necessity for constant antibiotic selection pressure to maintain plasmid-borne genes [6,7]. Placing constructs in the bacterial chromosome can mitigate against these problems; however, chromosomal integrations can be highly variable in terms of integration efficiency and expression [8]. Moreover, there is limited information on the background and characterisation of integration sites. Identifying and characterising target loci for chromosomal expression is critical for reliable and rapid testing of genetic circuits. Since the expression of a gene is affected by its position in the chromosome [9,10], we looked for loci containing non-essential genes with high expression under common laboratory conditions. We selected the flagellar regions as putative integration sites based on RNA-polymerase profiling (Figure 1 and Figure S1) and the observation that they are located in highly expressed genomic regions that are enriched for interactions with DNA-binding proteins (highly expressed extended protein occupancy domains, or heEPODs) [9]. To test the suitability of chromosomal loci for expression of genetic constructs, we chose to integrate a simple genetic construct consisting of the gene encoding the thermosensitive λ repressor cI857 and a constitutively active upstream promoter and ribosome binding site (RBS) elements from the Registry of Standard Biological Parts (Figure S2). The thermosensitive λ repressor carries a mutation that leads to denaturation of the repressor protein upon a temperature shift from 30°C to 42°C. At 30°C the repressor protein negatively regulates gene expression from the bacteriophage λ pR and pL promoters, but raising the temperature to 42°C relieves repression allowing transcription from pR and pL [11]. We integrated this small genetic device into four promising sub-loci within flagellar region 3a. We characterised the sub-loci for efficiency of integration, level of transcription and expression. Finally, we propose fliT as standard site for the integration and characterisation of genetic devices.

Results and Discussion

Red recombinase and Gibson Assembly-based chromosomal integration strategy using pSB1K3(FRTK)

In order to simplify and standardise our integration method, we modified the well-characterised high copy number plasmid pSB1K3 by introducing the kanamycin-resistance gene flanked by FRT sites from the original pKD13 plasmid [12] (Materials and Methods and Figure S2). The resulting plasmid pSB1K3(FRTK) can easily accept virtually any genetic circuit for integration in the E. coli genome. We tested the new vector by synthesising a 913 bp insert (Repr-ts-1) consisting of the thermosensitive λ repressor cI857, strong constitutive promoter (J23101), RBS (B0032) and double terminator (B0015) from the Registry of Standard
We employed the pKM208 plasmid-borne Red recombinase derived elements are used for engineering this bacterium [12–15].

Other target sites for reliable chromosomal integration would significantly aid progress. We chose the _E. coli_ K12 MG1655 flagellar gene region 3a (Figure 1) as a potentially suitable integration site for several reasons. First, the genes involved in flagella biogenesis and regulation are well-conserved in a wide variety of _E. coli_ strains [10,18]. Second, flagellar genes are considered to be non-essential for _E. coli_ [13], thus we hypothesized that integration into these loci would not be lethal for the cell. Third, the flagellar genes are well characterized and the interactions between them have been studied extensively [10,18]. Fourth, suitable chromosomal integration sites during exponential growth should be located in chromosomal regions that show constitutive and high expression. RNA-seq and RNAP binding data obtained by Kahramanoglou et al [10] show that the flagellar genes are among the top 0.5% most highly expressed during _E. coli_ exponential growth (Figure 1 and Figure S1). Fifth, the flagellar genes are found in heEPODs [9].

We identified _fliD_, _fliS_, _fliT_, and _fliY_ as putative chromosomal integration sites for our study. _fliD_ encodes the cap that promotes filament-assembly [19], _fliS_ and _fliT_ encode specific export chaperones [18,20], while _fliY_ encodes cystine-binding periplasmic protein [21]. BLAST search revealed that all four selected flagellar genes are conserved among commonly-used _E. coli_ strains, such as MG1655, W3110, DH10B and BL21-DE3. The location of the flagellar regions on the _E. coli_ MG1655 chromosome and the location of the four target genes are shown in Figure 1 and Figure S1. These four genes are located in flagellar region 3a, which shows the highest levels of RNA polymerase binding (of the flagellar regions) at mid-exponential growth phase (Figure 1 and Figure S1). This indicates that this region of the chromosome is easily accessed by RNA polymerase, suggesting that DNA integrated into _fliD_, _fliS_, _fliT_, and _fliY_ would be highly expressed. To confirm this, the relative expression of _fliD_, _fliS_, _fliT_, and _fliY_ was measured by RT-PCR (Figure 3A). The expression at all four target genes showed higher expression (2–5 fold) compared to the mean expression of the housekeeping genes _aroA_ and _rpoD_ [22,23]. Notably, the expression at _fliS_ was 2–3 fold higher than at _fliT_, _fliY_ (Figure 3A).

fliT supports high efficiency integration

We integrated our DNA construct Repr-ts-1 into each of four open reading frames of _fliD_, _fliS_, _fliT_, and _fliY_. Integration of Repr-ts-1 into the target loci and successful flipping out of the kanamycin resistance cassette was verified by diagnostic PCR and DNA sequencing (Figure S3). Interestingly, the integration efficiencies for Repr-ts-1 differed significantly for the four integration sites, despite their being located within the same
The integration of DNA into flagellar genes reduces motility but does not inhibit cell growth

For the purpose of characterising genetic constructs, target loci for chromosomal integration should typically not negatively impact growth rate. Essential genes should therefore be avoided [24–27]. Integration of the DNA fragment into all four flagellar genes yielded viable transformants whose growth was not inhibited relative to the wild type (Figure S4). The growth of the four engineered strains was impaired neither at the restrictive (37°C), nor permissive (30°C) temperatures for the cI857 repressor (Figure S4). Interestingly, strains with the integrated construct grew slightly better than the wild type strain (Figure S4 and Table S2). The engineered strains with Repr-ts-1 integrated in the flagellar genes had reduced motility when compared to the wild type (Figure S5). fliD and fliS mutants were most affected, while integration into fliT and fliY had only a minor effect on the motility (Figure S5). This could result in a lower metabolic burden to the cell due to the disruption of flagellar function. This experiment confirms that the flagellar region is suitable for the integration of DNA into the E. coli chromosome.

Expression of cI857 from fliD, fliS, fliT and fliY ORFs

The transcription of cI857 integrated into fliD (fliDi), fliS (fliSi), fliT (fliTi) and fliY (fliYi) was measured by RT-PCR. Transcription was high in all four target sites (Figure 3B). The highest transcription levels were observed from fliD and fliT, at 20 and 18-fold that of the housekeeping genes (Figure 3B). Despite fliT showing the lowest relative transcription (Figure 3A), transcription of the integrated cI857 was not significantly different than cI857 integrated at fliD and fliS (Figure 3B). Expression from Repr-ts-1 was assessed qualitatively via the repressive activity of cI857. We constructed plasmid pSB1A1(GFP) harboring a GFP-expressing gene under the control of the cI857-repressible pR promoter and electroporated it into the E. coli strain containing chromosomally integrated Repr-ts-1. At 30°C GFP expression was inhibited but a temperature shift to 42°C triggered GFP expression (Figure 3C and D). The GFP expression was confirmed both qualitatively by visual observation (Figure 3C) and quantitatively by measuring GFP fluorescence over time (Figure 3D). These experiments confirmed that functional cI857 was expressed from the integrated constructs. Notwithstanding the differences in transcription levels of cI857 integrated at the four flagellar loci (Figure 3B), the level of derepression of GFP expression did not seem to be affected (Figure 3D).

Conclusions

We set out to provide the Synthetic Biology community with well-characterised integration sites for expression of genetic circuits from the E. coli chromosome. The flagellar region appears to be a good target for the integration of genetic circuits into the E. coli chromosome. The integration of Repr-ts-1 into four genes of the flagellar region, namely fliD, fliS, fliT and fliY did not have

flagellar region. The integration into fliT yielded three times the number of recombinants per μg DNA than integration into either fliD or fliY, and six times more recombinants than integration into fliS (Figure 4). The integration efficiencies do not appear to be operon-specific since fliD, fliS, and fliT are all part of the same operon, while fliY is part of a separate operon (Figure S1). The differences in the DNA integration efficiency might be attributed to the variable secondary structures in the sequences adjacent to target loci; further explanation would require investigation of the local 3D architecture of the E. coli chromosome. This suggests that the integration efficiency for any given locus must be determined empirically.
any negative impact on growth. The mutants grew slightly better than the wild type strain, possibly as a result of the lower metabolic burden due to the disruption of the flagellar function. Notably, the four targeted genes of the flagellar region differed significantly in the efficiency of integration and level of transcription. Our results show that for the flagellar genes analysed, *fliT* is the best candidate site because of the high frequency of integration and high relative transcription. We also present a modified method for generating chromosomal integrations in *E. coli*. The method combines Isothermal Gibson Assembly of DNA fragments [28] with the Red

Figure 3. Expression of DNA integrated into flagellar region. (A) The relative expression levels of *fliD*, *fliS*, *fliT*, and *fliY* compared to the mean transcription of the two house-keeping genes *arcA* and *rpoD*, where each of the housekeeping genes was assayed in triplicate (H). Experiments were carried out in triplicate, error bars represent standard errors. (B) RT-PCR measured relative transcription of the thermosensitive λ repressor ci857 integrated into *fliD*, *fliS*, *fliT*, and *fliY*. These data show expression of the integrated DNA fragment compared to the mean transcription of the two house-keeping genes *arcA* and *rpoD*, where each of the housekeeping genes was assayed in triplicate (H). (C) Qualitative confirmation of the integration of Repr-ts-1 into the *E. coli* K12 MG1655 chromosome. At 30°C the λ repressor inhibits GFP expression and increasing the temperature to 42°C triggers GFP expression. (D) Quantitative confirmation of the integration of Repr-ts-1 into the *E. coli* strain K12 MG1655 chromosome by measuring GFP fluorescence over time with Fluostar Omega fluorimeter. Strains with integrations in *fliD*, *fliS*, *fliY*, and *fliT* expressed GFP after the temperature shift to 42°C after 3 hours of growth (indicated by dashed line). In the control strain without repressor the GFP fluorescence signal saturated the fluorimeter detector (260000) after 5 hours of growth. Figure also shows that the integration of the repressor in the four flagellar genes had similar effect on the GFP expression. The starting absorbance (OD600) of the investigated strains was 0.05. Wt (wild type), wt+GFP (wild type transformed with the plasmid with the GFP located downstream of ci857-regulated pR promoter), rep+GFP (strain with the chromosomally-integrated ci857 transformed with the plasmid harboring pR controlled GFP).

doi:10.1371/journal.pone.0111451.g003
system of the bacteriophage λ [12]. It is simpler and more flexible than the previously developed procedures of chromosomal integration employing Red recombinase, such as the I-SceI and KIKO vectors-based method. The transcriptional profile of flagellar genes [10] is better than that of phage attachment att sites utilized by the ‘clonetegration method’ [17]. Furthermore, whilst phage attachment sites [29] are often missing from some E. coli strains due to genotype changes, flagellar genes are well-conserved. BLAST search revealed that the four targeted flagellar genes are present in all commonly-used E. coli strains, including MG1655, W3110, DH10B and BL21-DE3. Our identification and characterisation of flagellar integration sites will facilitate rational design of Synthetic Biology devices in E. coli.

Materials and Methods

Bacterial strains, plasmids, and growth conditions

Plasmids and bacterial strains used in this study are listed in Table 1. Luria-Bertani broth (LB) was used for cultivating Escherichia coli strains. Chemically competent E. coli K12 MG1655 was transformed with pKM208, grown at 30°C, 37°C or 42°C, and incubated at 300 r.p.m. on a rotatory shaker at 30°C, 37°C or 42°C, depending on the requirements.

Table 1. Bacterial strains and plasmids used in this study.

Strains	Characteristics	Reference
K12 MG1655	E. coli wild type	[36]
Plasmids		
pSB1K3	BioBrick assembly plasmid	Registry of St. Biological Parts
pSB1A3(GFP)	Amp⁺, lac promoter controlled GFP	This study
pKM208	Red recombinase controlled by lacZ	[16]
pCP20	FLPe recombinase helper plasmid	[12]
pSB1K3(FRTK)	kanamycin FRT cassette in pSB1K3	This study
pSB1K3(FRTKr)	DNA construct (λ repressor) in pSB1K3(FRTK)	This study

PCR amplification and DNA modification

Gel extraction and plasmid isolation were performed using standardized kits (Qiagen Gel Extraction Kit and Qiaquick Spin Miniprep kit, respectively) from Qiagen according to the manufacturer’s instructions. Oligonucleotide primers used in this study were synthesized by IDT. PCR amplifications were routinely performed in 50 μl volumes using Phusion DNA polymerase (Thermo Scientific) or Dream Taq master mix kit (Thermo Scientific) according to the supplier’s instructions. Recombinant plasmids were confirmed by PCR amplification and sequencing.

Gibson Isothermal Assembly of DNA fragments

A modified Gibson Isothermal Assembly method [28,30] was used to clone target sequences into the plasmids. Briefly, 0.3 μl of the vector and 0.9 μl of the insert were added to 4 μl of the 1.33× Assembly Master Mix consisting of ISO Buffer, T5 exonuclease, Phusion polymerase, Taq ligase, and H₂O to a final volume of 5.2 μl (http://www.srcf.ucam.org/~wac26/gibson/index.html). The assembly reaction was incubated at 50°C for 60 min and the whole volume was transferred into competent E. coli.

Construction of pSB1K3(FRT)

Plasmid pSB1K3(FRTK) was constructed by cloning the kanamycin resistance marker flanked by directly repeated FRT sites (originally from pKD13) [12] into pSB1K3. This was performed by joining DNA fragments with 40 to 60 bp overlapping sequences employing Isothermal Gibson Assembly. The first of the assembled fragments consisted of the kanamycin resistance gene flanked by FRT sites, while the second comprised the pSB1K3 backbone.

Preparation and transformation of parental E. coli

Chemically competent E. coli have been prepared by a variation of the Hannah protocol using CCMB80 buffer [31], while electrocompetent E. coli were generated using the modified method of Miller and Nickoloff [32]. Briefly, parental E. coli strain K12 MG1655 was transformed with pKM208, recovered and selected on ampicillin plates at 30°C. 500 ml of LB with ampicillin was inoculated with overnight incubation (1:100 dilution) of parental E. coli K12 MG1655 with pKM208, grown at 30°C to OD₆₀₀ 0.2 prior to addition of IPTG (1 mM), then grown to a final OD₆₀₀ of approximately 0.5. Cells were harvested by centrifugation, washed twice with 10% (v/v) glycerol and resuspended in a final volume of 100 μl of 10% glycerol per 100 ml of culture. 100 μl of the gel-purified PCR product was added to 4 μl of the 1.33× Assembly Master Mix consisting of ISO Buffer, T5 exonuclease, Phusion polymerase, Taq ligase, and H₂O to a final volume of 5.2 μl (http://www.srcf.ucam.org/~wac26/gibson/index.html). The assembly reaction was incubated at 50°C for 60 min and the whole volume was transferred into competent E. coli.

![Figure 4. Variable efficiency of integration into flagellar genes.](http://www.plosone.org/figure/10.1371/journal.pone.0111451.g004)

Figure 4 shows the numbers of colonies per μg of electroporated DNA with the DNA fragment integrated in fliD (fliDi), fliS (fliSi), fliY (fliYi), and fliT (fliTi) of the E. coli flagellar region. The bars and errors represent averages and standard deviation calculated from three independent replicates.

"replicates. averages and standard deviation calculated from three independent replicates."
(approximately 5 μg of DNA) was electroporated into 100 μl of prepared electro-competent cells carrying pKM208. Electroporation was performed on a Bio-Rad micropulser with the settings recommended for E. coli by the manufacturer.

Selection of transformants and removal of antibiotic resistance gene
Transformants were selected on kanamycin plates at 37°C overnight. Kanamycin resistant colonies were incubated on LB plates without antibiotic at 42°C overnight to cure pKM208 plasmid and subsequently screened for kanamycin resistance and ampicillin sensitivity. Chromosomal integration was confirmed by diagnostic PCR with the flanking primers. Competent cells of the successful transformants were prepared by the method described above and transformed with the temperature sensitive plasmid pCP20 harboring FLP recombinase and selected on ampicillin plates at 30°C, overnight. Transformants were grown again on LB plates without antibiotic at 42°C overnight to cure pCP20 plasmid, tested for loss of kanamycin and ampicillin resistance and confirmed by PCR.

Qualitative verification of the integrated DNA construct
To confirm the integration of cI857 λ repressor, constructed E. coli K12 MG1655 strain with integrated Repr-ts-l was transformed with pSB1A1(GFP) which has GFP under the control of λ promoter (Figure 3C). Transformants were cultivated on plates at 30°C or 42°C.

Plate reader measurement of the GFP fluorescence and absorbance
The overnight cultures were diluted to OD$_{660}$ 0.05 in a total volume of 200 μl and transferred into flat-bottomed 96 well plates. Greiner BioOne black plates and Sterilin Sero-Well clear plates were used for the measurement of the GFP fluorescence and absorbance, respectively. The plates were incubated in a Fluostar Omega fluorimeter (BMG Labtech) at 37°C and 30°C for the measurement of absorbance and at 30°C and 42°C for the measurement of the GFP fluorescence with an automatically repeated protocol. Absorbance measurement was performed with the following parameters (600 nm absorbance filter, cycle time 30 min, number of cycles 48, double orbital shaking at 500 rpm). GFP fluorescence measurement was performed with the following parameters (excitation filter 483-12, emission filter EM520), gain 1400, cycle time 30 min, number of cycles: 6 at 30°C followed by 21 at 42°C, double orbital shaking at 200 rpm).

RT-PCR expression analysis
Total RNA was isolated from strains grown into mid-exponential phase (OD$_{660}$ = 0.7) using Isolate II RNA Mini Kit (Bioline) and purified from genomic DNA contamination with the help of a TURBO DNA-free Kit (Applied Biosystems). cDNA was prepared from 1 μg of total RNA employing SuperScript III Reverse Transcriptase (Invitrogen). Quantification of cDNA targets was performed with a QuantiTect SYBR Green PCR Kit (Qiagen). A 7500 Fast Real-Time PCR System (Applied Biosystems) was used to measure the expression levels of the target DNA sequences in MicroAmp Fast Optical 96-Well Reaction Plates (Applied Biosystems). Primers for RT-PCR were designed employing Primer3 Software. The relative expression levels were quantified with the help of REST9 Software (Qiagen) employing Pfaff method [33]. The experiments were carried out in triplicate and the means and standard errors were calculated.

Motility assay
Motility agar plates were prepared by pouring 100 ml of the motility agar (10 g tryptone, 5 g NaCl, 0.25% Bacto-Agar (Difco) in the 13 cm plate and let to set overnight. Motility plates were pre-warmed at 37°C before the experiment. Overnight cultures of the tested bacterial strains were normalized to an absorbance (OD600) of 1.0 prior to spotting 2 μl of the cultures into the middle of the motility plates. Plates were grown for 4–6 hours at 37°C.

Sequence analyses and databases
DNA sequences were compared with the help of the National Center for Biotechnology Information (NCBI) website (http://ncbi.nlm.nih.gov) using the BLASTN [34], TBLASTX algorithms and position-specific iterated BLAST (PSI-BLAST) [35]. The annotated E. coli K-12 genome was obtained from the E. coli K-12 project website (http://www.xbase.ac.uk/genome/escherichia coli-str-k-12-substr-mg1655). The DNA construct was designed from standard biological parts catalogued in the Registry of Standard Biological Parts (http://parts.igem.org/Main_Page). DNA sequencing was performed by Source Bioscience (Cambridge, UK).

Supporting Information
Figure S1 Expression of the E. coli flagellum regions 2 and 3. The E. coli K12 MG1655 genome showing RNA polymerase (RNA-POL) binding (green peaks; ChIP-seq data from cells at mid-exponential growth phase [10]). Figure was generated by uploading the RNA-Pol binding data (from Kahramanoglu et al. [10] to the UCSC microbial genome browser for E. coli K12 MG1655 (http://microbes.ucsc.edu/cgi-bin/hgGateway?db=eschColi_K12). Two regions (1962580–1978197 bp and 1999585–2023678 bp) are expanded to show the positions of the highly expressed genes of the E. coli flagellum regions 2 and 3. Integration target sites (fliD, S, T, Y) are located in the two highly expressed operons of the E. coli K12 MG1655 flagellar gene region 3a. (TIF)

Figure S2 pSB1K3(FRTKr) plasmid map. Figure shows the main features of the constructed plasmid pSB1K3(FRTKr). FRT (directly repeated FRT sites); Kan (kanamycin), Prom (promoter); RBS (ribosomal binding site); cI857 (thermosensitive λ repressor); Term (terminator). (TIF)

Figure S3 PCR verification of the chromosomal integration. Figure shows the result of confirmation of integration of the synthetic DNA construct in fliD (fliDi), fliS (fliSi), fliY (fliYi), and fliT (fliTi) of the E. coli strain K12 MG1655 chromosome using flanking primers. Wt (wild type), k (integrated DNA fragment with kanamycin resistance), ~k (integrated DNA fragment from which the kanamycin resistance was flipped out). HyperLadder 1kb (Bioline) has been used as the molecular weight marker. (TIF)

Figure S4 Growth rate of strains with integrated DNA. Growth curves of the wild type E. coli K12 MG1655 (wt) and strains harboring synthetic DNA fragment integrated in fliD (fliDi), fliS (fliSi), fliY (fliYi), and fliT (fliTi). Values are the means calculated from three independent experiments. Raw plate reader data, means and standard deviations are in the Table S1. (TIF)
Figure S5 Motility Assay. The engineered strains harboring integrated thermosensitive repressor in the flagellar genes had reduced motility when compared to the wild type (wt). Overnight cultures of the tested bacterial strains were normalized to an integrated thermosensitive repressor in the flagellar genes had 5 hours of incubation at 37°C into the middle of the motility plates. Picture was taken after 5 hours of incubation at 37°C.

Table S1 Primers used in this study.

Table S2 Growth rates of Escherichia coli strains with integrated DNA.

References

1. Julian M, Davernport PW, Brown JR, Yorklin O, Ajisoka JW (2013) Meeting report: The Cambridge BioDesign TechEvent - Synthetic Biology, a new “Age of Wonder”? Biotechnol J.
2. Chen X, Zhou L, Tian K, Kumar A, Singh S, et al. (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv. 31: 1200–1223.
3. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, et al. (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 91: 273–283.
4. Yim H, Hasbeck J, Niu W, Pujol-Baxley C, Burgard A, et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 6: 40–46.
5. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, et al. (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330: 70–74.
6. Cunningham DS, Koepsel RR, Ataai MM, Domach MM (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8: 27.
7. Marcellin E, Chen WY, Nielsen PK (2010) Understanding plasmid effect on hydrazic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus. Metab Eng 12: 60–67.
8. Das B, Bischot B, Val ME, Barre FX (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 107: 4377–4382.
9. Vora T, Hottes AK, Tavazoie S (2009) Protein occupancy landscape of a bacterial genome. Mol Cell 35: 247–253.
10. Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, et al. (2011) Direct and indirect effects of H-NS and Fis on global gene expression in Escherichia coli. Mol Microbiol 81: 6640–6645.
11. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
12. Fraser GM, Bennett JC, Hughes C (1999) Substrate-specific binding of hook-associated proteins by FimX and FimT, putative chaperones for flagellum assembly. Mol Microbiol 32: 569–580.
13. Ikeda T, Oosawa K, Hotani H (1996) Self-assembly of the filament capping protein, FimD, of bacterial flagella into an annular structure. J Mol Biol 259: 679–686.
14. Fraser GM, Bennett JC, Hughes C (2003) The Fls chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEBS Microbiol Lett 219: 219–224.
15. Vora T, Hottes AK, Tavazoie S, Niu W, Pujol-Baxley C, Burgard A, et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 6: 40–46.

Acknowledgments

We thank Dr. Kerstin Ewen for providing us with the plasmid pKM208, Dr. Des Jones for help with setting-up the RT-PCR experiment, and members of the Ajisoka and Fraser laboratories for helpful discussions.

Author Contributions

Conceived and designed the experiments: MJ LDBE GMF JWA. Performed the experiments: MJ JF. Analyzed the data: MJ LDBE JF PWD OY GMF JWA. Contributed reagents/materials/analysis tools: MJ LDBE JF PWD OY GMF JWA. Contributed to the writing of the manuscript: MJ GMF OY PWD JWA.