Microbiological Profile and Antibiogram of Blood Stream Isolates at a Referral Hospital in North Delhi: A One Year Study

Pragnya Paramita Jena, Renu Gur*, Shalini Dewan Duggal, Avinash Kumar and Sharon Rainy Rongpharpi

Department of Microbiology, Dr Baba Saheb Ambedkar Hospital, Rohini, Delhi, India

*Correspondence Info:
Dr. Renu Gur,
Senior Specialist and Head,
Department of Microbiology,
Dr Baba Saheb Ambedkar Hospital, Rohini, Delhi, India
E-mail: renugur@hotmail.com

Abstract

Introduction: Blood culture is the gold standard for diagnosis of bacteremia. It identifies the pathogen and allows susceptibility testing.

Objective: To identify Blood stream infections (BSI) which are critical and may prove fatal if not treated promptly.

Material and Methods: This was a retrospective study done at our institution to identify the prevalent microbial agents causing infections in hospitalized patients. A total of 1521 blood cultures were processed. Antimicrobial susceptibility was performed for clinically significant isolates.

Results: Of total cultures, 16.1% were positive for bacterial growth and 3.1% for fungal growth.

Conclusion: Local microbiological profile with antibiogram of frequently isolated organisms should be known to limit the severity of disease and initiate empiric treatment for blood stream infections.

Keywords: Bacteremia, infection, antibiotic susceptibility, resistance

1. Introduction

Bloodstream infections (BSIs) occur due to the failure of our immune system to restrict infection at a focal site; leading to widespread disease. It is a major cause of morbidity and mortality. The occurrence of these infections, their epidemiology, and the invading pathogens have altered in parallel with the evolution in medical care, particularly with emergence of increasingly ill and immunocompromised population of hospitalized patients who are often heavily reliant on medical support and indwelling devices. [1] The responsible bacteria are usually human pathogens. In contrast, many cases of severe sepsis that occur currently are associated with bacterial or fungal microbes that are members of the patient’s own microbial flora. [2] These commensal microbes include Coagulase negative Staphylococci (CoNS), enteric gram-negative bacilli, Enterococcus, Candida species, and other pathogens infrequently cause disease in humans who have normal innate immune defenses. Individuals who develop serious disease due to commensal bacteria generally have a significant immune defect, most often breach in the epithelium barrier or immunosuppression. [2] Prompt diagnosis of BSI and antibiotic susceptibility results helps the clinician for further management. [3] This aids in reducing complications and hospital stay, resulting in major financial saving for the institution as well as improved care of the patient. [4] Current study reports about the prevalence and antimicrobial susceptibility profile of blood culture isolates over a span of one year.

2. Material & Methods

This was a retrospective study conducted for a period of one year (January 2014 to December 2014) in a 530-bed tertiary care centre in North Delhi. A total of 1521 blood culture samples were analyzed. All non-duplicate blood culture isolates were processed by conventional blood culture method (brain heart infusion broth with 0.05% sodium polyanethole sulphonate). Kirby Bauer disc diffusion method was
used for sensitivity testing as per CLSI guidelines [5]. For Coagulase negative Staphylococcus (CoNS) & S. aureus; vancomycin (30 µg), clindamycin (2 µg), gentamicin (10 µg), erythromycin (15 µg), cefoxitin (30 µg) and ampicillin (10 µg) discs were used. For Enterococcus spp., vancomycin (30 µg), ampicillin (10 µg), ciprofloxacin (5 µg), ofloxacin (5 µg) and gentamicin (120 µg) discs were used. For Acinetobacter and Klebsiella spp., amikacin (30 µg), cefoperazone-sulbactum (75 µg/30 µg), ciprofloxacin (5 µg), gentamicin (10 µg) and meropenem (10 µg); and for Salmonella Typhi, ceftriaxone (30 µg), ampicillin (10 µg), ciprofloxacin (5 µg), nalidixic acid (30 µg), cotrimoxazole (25 µg) and chloramphenicol (30 µg) discs were used.

3. Results

A total of 343 isolates were recovered out of 1521 blood culture received in our laboratory over a period of one year, culture positivity 22.5%. Out of these 247 clinically significant blood stream infections were identified, showing a positivity of 16.2% during the study period. Out of these, 56.6% were from admitted patients and 43.3% from Intensive Care Units. Overall frequencies of isolation was 137 (39%) gram positive cocci, 109 (31%) gram negative bacilli and 8 (3.1%) Candida spp. The gram positive cocci were Staphylococcus aureus 20 (7.87%), Enterococcus spp. 8 (3.1%), Streptococcus spp. 3 (1.1%), Streptococcus pneumoniae 2 (0.7%) and a single isolate of Rhodococcus spp. Also 103 (40.5%) isolates of Coagulase negative Staphylococcus (Staphylococcus epidermidis, S. hemolyticus) were considered clinically significant. This was based on clinical correlation, repeated isolation of same isolate from blood culture and intravenous catheters, host factors like immunosuppression, extremes of age, prolonged use of indwelling devices. Of total blood cultures, 89 (5.85%) isolates were considered as contaminants. These included CoNS (47), diphtheroids (4), micrococcus (14) and Bacillus spp. (24). Among Gram negative bacilli, the most common isolate was Acinetobacter spp. 36 (14.1%) followed by Klebsiella spp.-21 (8.2%), Escherichia coli -15 (5.9%), Salmonella Typhi-19 (7.4%), Pseudomonas aeruginosa-10 (3.9%), Morganella morgani-2 (0.7%) and a single isolate of Proteus mirabilis. Five gram negative oxidase negative non-fermenters could not be identified. Out of 8 Candida spp., four were identified as Candida krusei during an outbreak in neonatal intensive care unit. The source of infection was traced to a suction bottle [6]. Antifungal susceptibility testing of Candida spp. isolates was not done. For coagulase negative Staphylococcus and Staphylococcus aureus isolates (Figure 1); ampicillin and erythromycin were resistant in 82% of isolates, while all isolates were susceptible to vancomycin. Methicillin resistance was higher (25%) in CoNS in contrast with S. aureus (20%). This was tested using cefoxitin disc. Among the Enterococcus spp. (Figure 2), ampicillin, gentamicin and ciprofloxacin displayed resistance in more than 62% isolates. Relatively high proportion of Acinetobacter spp. and Klebsiella spp. (Figure 3) displayed resistance to ciprofloxacin (61%, 55%) and amikacin (71%, 42%) respectively. Imipenem resistance was observed in 33% and 38% isolates of Acinetobacter spp. and Klebsiella spp. respectively. All Salmonella Typhi isolates were sensitive to ceftriaxone (Figure 4). Nalidixic acid resistance was observed in 89% isolates and a single isolate was also resistant to ampicillin, chloramphenicol and cotrimoxazole (ACCo).

Figure 1: Resistance pattern of antibiotics tested against Coagulase negative Staphylococci and Staphylococcus aureus
Figure 2: Resistance pattern of antibiotics tested against *Enterococcus* spp.

Figure 3: Resistance pattern of antibiotics tested against *Acinetobacter* spp. and *Klebsiella* spp.

Figure 4: Resistance pattern of antibiotics tested against *Salmonella Typhi*
Antimicrobial resistance pattern of *Salmonella Typhi* (n=19)
4. Discussion

Blood culture results provide useful information about the incriminating bacteria and their susceptibility patterns. Besides helping in treatment of the patient, profile of the isolated organisms provides useful adjuncts to choice of empiric therapy in a given set up. Comparison of the etiological profile of our blood cultures with various studies has been done in Table 1[1,7-20].

Table 1: Comparison of etiological data of the present study with other studies

Organisms	Present Study	Similar Studies	Other Studies
Coagulase negative Staphylococcus	40.5%	41.2%[7], 42%[8]	24.7%[9], 22%[10], 31%[11,12], 54.3%[13]
Acinetobacter spp.	14.1%	12.6%[14]	24%[15], 21.5%[16], 9.18%[17]
Klebsiella spp.	8.2%	7.3%[14]	4.8%[12], 18%[16], 3.6%[8], 6.4%[15]
Staphylococcus aureus	7.8%	9%[18]	28.96%[15], 14.5%[16], 16.5%[8]
Salmonella Typhi	7.4%	8.4%[15]	9.2%[20], 3.7%[19]
Enterococcus spp.	3.1%	3.7%[1,14]	7.31%[15], 9%[16], 9.4%[12]

We observed in our study, maximum number of isolates was Coagulase negative Staphylococcus (40.5%). Similar findings have been reported by other authors -41.2% by Lu et al [7], 42% by Karlosky et al [8] and 54.3% by Bharmare et al [13]. CoNS have been considered the most common blood culture contaminant but multiple positive cultures from the same patient are considered significant [21]. According to Souvenir et al, clinical significance of CoNS was defined as at least two blood cultures positive for CoNS within 5 days or one positive blood culture plus clinical evidence of infection, which includes abnormal leucocyte count and temperature or blood pressure [9]. Incidence of nosocomial bacteremia due to CoNS is increasing due to frequent use of vascular access devices. Coagulase negative Staphylococcus is the third most common cause of BSI [22] and the most common cause of nosocomial BSI [23]. Methicillin resistance rate was higher in CoNS as compared with S. aureus, which is similar to study by Mathur et al [16], Mir et al [24]. The methicillin resistance for CoNS was less in our study (25%) in comparison to study by Mathur et al [16] and Mir et al [23]. CoNS and Staphylococcus aureus isolates displayed maximum resistance to ampicillin, similar to study by Mathur et al [16] while all isolates were sensitive to vancomycin. Among gram negative bacteria, imipenem was the most effective agent against Acinetobacter spp. and Klebsiella spp. Maximum resistance was demonstrated by these bacteria to ciprofloxacin. The number of isolates of Salmonella Typhi in our study is in concordance with Duggal et al [15]. SalmonellaTyphi displayed zero resistance to ceftriaxone, similar to study by Madhubika et al [25], but highest resistance was observed for nalidixic acid (89%) followed by ciprofloxacin (42%). Multidrug resistance (MDR, ACCo resistance) was seen only in a single isolate of S. Typhi which is different from study by Jain et al [26]. According to WHO, the percentage of MDR(ACCo) resistance in India was 7% and nalidixic acid resistance was 57%. [27] The details of antimicrobial susceptibility of isolates are shown in figures 1-4.

The overall contamination rate in our blood cultures was 5.8%, which is higher than the published benchmark standards [28]. Contamination rate reported by other authors was 12.6% by Chraiti et al [29] and 18% by Malik et al [30]. In our study, contamination rate of blood cultures was higher than the permitted level (≤3%). We intend to take measures for reducing contamination. A method known as ISDT (Initial specimen diversion technique) can be implemented for the reduction of blood culture contamination as described by Binkhamis et al [21].

Even though a small number of patients receive care in intensive care units, majority of the nosocomial BSIs are reported from these units. An active infection prevention team can help in reducing nosocomial blood stream infections. The tracking and reporting of blood stream infection rates are both important activities that rely heavily on the accurate differentiation of contamination from true bacteremia. [28]

5. Conclusion

Blood culture remains the gold standard for the detection of bacteremia despite the limitations. The correct interpretation of blood culture including the clinical scenario will go a long way in the implementation of active control measures. Patterns of species distribution and drug susceptibilities in local patient populations, can guide empirical therapy of BSIs.

Declaration

The manuscript is original and is not published or communicated for publication elsewhere either in part or full.
References

[1] Karchmer AW, Nosocomial Bloodstream Infections: Organisms, Risk Factors and Implications. Clin Infect Dis 2000; 31 (4):S139-43.

[2] Murono K, Hirano Y, Koyano S, Ito K, Fujieda K. Molecular comparison of bacterial isolates from blood with strains colonizing pharynx and intestine in immunocompromised patients with sepsis. J Med Microbiol 2003; 52:527-530.

[3] Weinstein MP, Reeler LB, Murphy JR, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. II. Clinical observations, with special reference to factors influencing prognosis. Rev Infect Dis 1983; 5:54-70.

[4] Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G. Guidelines for the collection, transport, processing, analysis and reporting of cultures from specific specimen sources. In: Koneman's color atlas and textbook of diagnostic Microbiology, 6th edition Lippincott Williams and Wilkins, USA 2006: 68-111.

[5] ClinicalandLaboratoryStandardsInstitute. Performance standards for antimicrobial susceptibility testing:Twenty-ThirdInformationalSupplementJanuary 2013; M100-S23.

[6] Duggal SD, Jena PP, Gur R, Kumar A, Rongpharpi SR, Pandey M, Xess I, Wadhwa V. Recurring Events of Candida krusei Septicaemia: First Report from an ICU. J Mycology 2015; doi:10.1155/2015/721424.

[7] Lu B, Shi L,Zhu F, Zhao H. Clinical Utility of the Time-to-Positivity/ Procalcitonin Ratio to Predict Bloodstream Infection Due to Coagulase-Negative Staphylococci. Lab Medicine 2013; 44 (4): 313-318.

[8] Karlowsky JA, Jones ME, Draghi DC, Thornsberry C, Sahm DF,Volturo GA.Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002.Annals of Clinical Microbiology and Antimicrobials2004; 3(7):1-8.

[9] Souvenir D, Donald E, Anderson J, Palpant S, Mroch H,Askin S, Anderson J, Claridge J, Eiland J, Malone C, Garrison MW, Watson P, CampbellDM. Blood Cultures Positive for Coagulase-Negative Staphylococci: Antisepsis, Pseudobacteremia, and Therapy of Patients. J Clin Microbiol1998; 36 (7):1923-1926.

[10] Beekmann SE, Diekema DJ, Doern GV. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures.Infect Control Hosp Epidemiol 2005 Jun; 26(6):559-66.

[11] Fadel HJ, Patel R, Vetter EA, Baddour LM. Clinical Significance of a single Staphylococcus lugdunensis – Positive Blood Culture. J Clin Microbiol 2011; 1697–1699.

[12] Wisplinghoff H, Bischoff T, Sandra M, Seifert TH, Wenzel RP, Edmond MB. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin Infect Dis2004; 39:309–317.

[13] Bharambe S, Karmarkar A, Dohe V, Rajput AG, Bhardwaj A , Kagal A. Study of sources of Coagulase Negative Staphylococci infection from NICU environment. International J of Healthcare & Biomedical Research2013; 1(2): 26-31.

[14] Garg A, Anuprabha S, Garg J, Goyal RK, Sen MR. Bacteriological Profile and Antimicrobial Resistance of Blood Culture Isolates from a University Hospital. J Indian Acad Clin Med2007; 8(2): 139-143.

[15] Duggal S, Rongpharpi SR, Gur R, Nayar R, Arora VM, Etiology and Susceptibility of Blood Stream Infections in a Referral Hospital in North Delhi: A One Year Study. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014; 5(2):1859-1864.

[16] Mathur P, Varghese P,Tak V, Gunjiyal J, Lalwani S, Kumar S, Misra MC. Epidemiology of blood stream infections at a level-1 trauma care center of India. JLab Physicians2014; 6(1):22-27.

[17] Rathi MR, De AS, Mathur MM. Neonatal septicaemia due Acinetobacter species and their Antimicrobial susceptibility Pattern. Indian Medical Gazette 2011:391-393.

[18] Lorente L, Henry C, Martin MM, Jimnez A, Mora ML. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Criti Care 2005; 9 (6):R631-R635.

[19] Gupta A, Sharma S, Arora A, Gupta A. Changing trends of in vitro antimicrobial resistance patterns in blood isolates in a tertiary care hospital over a period of 4 years. Ind JMed Sciences 2010; 64(11):485-492.

[20] Gaur V, Gupta NK, Chaudhary U, Arora DR. Sensitivity Pattern of Salmonella serotypes in Northern India. Braz J Infect Dis. 2002; 6(6):281-287.
[21] Binkhamis K, Forward K. Effect of the Initial Specimen Diversion Technique on Blood Culture Contamination Rates. *J Clin Microbiol* 2014 March 52 (3):980–981.
[22] Pfaller MA, Jones RN, Doern GV, Sader HS, Kugler KC. Survey of blood stream infections attributable to gram-positive cocci: frequency of occurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada and Latin America from the SENTRY Antimicrobial Surveillance Program, SENTRY Participants Group. *Diagn Microbiol Infect Dis* 1999; 33:283-297.
[23] Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. *J Antimicrob Chemother* 1992; 29 Suppl F: 19-24.
[24] Mir AB, Srikant. Prevalence and antimicrobial susceptibility of methicillin resistant *Staphylococcus aureus* and coagulase negative *Staphylococci* in a tertiary care hospital. *Asian J Pharm Clin Res* 2013; 6(3):231-134.
[25] Madhulika U, Harish BN, Parija SC. Current pattern in antimicrobial susceptibility of *Salmonella* Typhi isolates in Pondicherry. *Indian J Med Res* 2004; 120:111-114.
[26] Jain S, Chugh TD. Antimicrobial resistance among blood culture isolates of *Salmonella enterica* in New Delhi. *J Infect Dev Ctries* 2013; 7(11):788-795.
[27] Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, *et al.*. A study of typhoid fever in five Asian countries: disease burden and implications for controls. *Bulletin of World Health Organization* 2008; 86(4): 241-320.
[28] Hall KK, Lyman JA. Updated Review of Blood Culture Contamination. *Clin Microbiol Rev* 2006; 788–802.
[29] Chraiti MN, Zingg W, Gavet AA, Pittet D. Blood culture contamination as an indicator of hand hygiene compliance. *Antimicrobial Resistance and Infection Control* 2013; 2(1):P216.
[30] Malik S, Ravishekhar K. Significance of Coagulase Negative *Staphylococcus* Species in Blood Culture. *J Clin Diagn Res* 2012 May (Suppl-2); 6(4):632-635.