Effect of different combinations of probiotic, chicory root powder and coriander seed powder on growth, carcass, immunity, serum parameters and economics of broilers

SRINIVAS GURRAM1, CHINNI PREETAM V1, VIJAYA LAKSHMI K1, RAJU M V L N1 and VENKATESWARLU M1

Poultry Research Station, PV Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana 500 030 India

Received: 22 December 2021; Accepted: 8 September 2022

ABSTRACT

The trial was undertaken in a completely randomized design to evaluate the synergistic effect of probiotic (Pro), chicory root powder (CRP) and coriander seed powder (CSP) on the performance of broiler chicken. A total of 240 day-old broiler chicks were randomly allotted to six dietary treatments with 8 replicates of 5 birds in each. Treatment groups included T1 as control, i.e. basal diet (BD) without any growth promoter and T2 - BD + antibiotic (BMD @ 500 gm/ton). In the remaining experimental diets, T3 - pro (@ 10 gm/100 kg) + CRP (@ 1.0%), T4 - pro (@ 10 gm/100 kg) + CSP (@ 1.5%), T5 - CRP (@ 1.0%) + CSP (@ 1.5%) and T6 - pro (@ 10 gm/100 kg) + CRP (@ 1.0%) + CSP (@ 1.5%). The results revealed that supplementation of pro + CRP significantly increased the body weight gain during prestarter, starter and finisher phase and improved the feed conversion ratio during finisher phase compared to other treatment groups. Supplementation of different dietary groups did not show any significant effect on feed intake and various slaughter parameters of broilers. Whereas, the humoral immune response to ND vaccine and immune organ weights were significantly higher in all the test diets (T3 to T6) compared to control and antibiotic groups. Supplementation of probiotic with chicory combination group significantly reduced the serum total cholesterol and recorded higher returns over feed cost compared to other treatment groups. It can be concluded that combination of probiotic (10 g) with chicory root powder (1.0%) proved more effective than combinations of other additives.

Keywords: Body weight, Coriander seed powder, Immunity, ND titers, Probiotic, Serum cholesterol

Antibiotics are being used as growth promoters in the poultry diets all over the world. However, in recent years, there has been rising demand to reduce or abolish the use of antibiotics as growth promoters due to the detrimental human health issue of antibiotic resistance (Dibner and Richards 2005). Consumers’ awareness of poultry products that do not contain antibiotic residues has increased, encouraging the use of suitable alternatives to antimicrobial compounds. Among the feed additives, probiotics, prebiotics, and enzymes have drawn more attention due to their prophylactic and growth promoting effects can be used as an alternative to antibiotics for achieving better performance (Huyghebaert et al. 2011).

Probiotics are single or mixed cultures of live microorganisms fed along with feed which beneficially affect the host by improving the balance of intestinal flora (Fuller 1989). Dried chicory root powder is a good source of inulin type fructans and oligofructose chains known for having prebiotic action without any toxicity (Barbara et al. 2007). Symbiotics are combination of probiotics and prebiotics that improves performance of broilers (Utami and Wahyono 2019). Prebiotics serve as a nutrient source for probiotic bacterial cultures for early colonization in the intestine. The advantage of the combination is that certain substrates are available for fermentation, increasing the viability of probiotic bacteria. Therefore, the body will more fully benefit from the combination of probiotics and prebiotics (Karwan et al. 2016). Coriander seed powder contains 0.5%–1.0% essential oil (carvone, geraniol, limonene, borneol, camphor, elemol and linalool) having antimicrobial properties against food borne pathogen such as Salmonella species (Silva et al. 2011). In addition, it has appetizing and stimulatory effects in the digestion process by increasing production of digestive enzymes and juices, which stimulates digestion and peristaltic motion, thus improves feed efficiency (Rajeshwari and Andallu 2011).

Although many previous studies showed various levels of probiotics, chicory root powder and coriander seed powder on performance of broilers, work done on effect of...
combination of the above feed additives is meager. Hence, this research trial was taken up with an aim to study the effect of different combination of the above feed additives on performance, immunity and serum parameters of broilers.

MATERIALS AND METHODS

The experiment was conducted from January 2020 to February 2020 at Department of Poultry Science and Poultry Experimental Station, College of Veterinary Science, Rajendranagar, Hyderabad. To conduct the study, 240 day old commercial (Vencobb 400) broiler chicks were procured, individually weighed and wing banded. The birds were distributed randomly into 6 dietary treatments, each with 8 replicates having 5 chicks in each replicate. The chicks were reared in battery brooders under standard managemental conditions. The experimental period was from day old to 42 d of age. The birds were fed with maize and soybean meal-based diets containing 2964, 3075 and 3167 kcal ME and 22.90, 21.65 and 19.65% crude protein, respectively during prestarter (0-14d), starter (15-28d) and finisher (28-42d) phases. Treatment groups included T1 as control, i.e. basal diet (BD) without any growth promoter and T2 - BD + antibiotic (Bacitracin Methylen Disalicylate at 500 gm/ton – manufacturer Zoetis). In the remaining experimental diets, T3 - probiotic (@ 10 gm/100 kg) + chicory root powder (@ 1.0%), T4 - probiotic (@ 10 gm /100 kg) + coriander seed powder (@ 1.5%), T5 - chicory root powder (@ 1.0%) + coriander seed powder (@ 1.5%) and T6 - probiotic (@ 10 gm/100 kg) + chicory root powder (@ 1.0%) + coriander seed powder (@ 1.5%). Probiotic contains lyophilized and microencapsulated Bacillus coagulans, Saccharomyces boulardii, Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus plantarum, Streptococcus thermophilus, Bacillus subtilis, Enterococcus faecium, Bifidobacterium bifidum (at the concentration of 32 billion CFU /100 g). The chemical composition of chicory root powder and coriander seed powder is given in Table 1.

Table 1. Chemical composition of Chicory root powder

Composition (%)	Chicory root powder	Coriander seed powder
Moisture	3.16	3.23
Crude protein	14.55	14.91
Fat	1.76	0.96
Ash	3.98	8.88
Crude fibre	30.01	34.21
Total carbohydrates	48.76	50.12
Inulin	46.89	-

Weekly body weight, feed intake and feed conversion ratios were calculated as feed intake per unit bodyweight gain at weekly intervals. The mortality rate was recorded throughout the experiment. On day 42, one bird from each replicate was sacrificed to estimate the various carcass parameters. The humoral immunity was estimated in birds by measuring antibody titer to Newcastle disease (ND) vaccine (antibody production against ND virus). Broilers were vaccinated against ND by ocular route at 7th and 28th day of age with LaSota strain (ND Lasota Vac-500; Indovax Pvt.Ltd. Hyderabad, India). At 42nd day of age blood was collected, and serum was separated. Haemagglutination inhibition (HI) activity of serum was estimated, and the antibody titers (log2) were measured by following the standard procedure (Wegmann and Smithies 1966).

On 42nd day, blood sample were collected aseptically from wing vein (one bird from each replicate) in vacutainers and kept in incubator at room temperature for serum collection. The serum is used for estimation of cholesterol, total protein, albumen globulin and antioxidant activity by using spectrophotometer with commercially available kits (ERBA diagnostic Mannheim-gmbh transasia bio-medicals Limited).

Data were analyzed for mean, standard errors, and analysis of variance using the Snedecor and Cochran (1989) method, and means were compared using Duncan test (1955) using the Statistical Package for Social Sciences (SPSS) 20.0 version software, with significance set at P<0.05.

RESULTS AND DISCUSSION

Performance parameters: The data on body weight gain, feed intake (FI) and feed conversion ratio (FCR) as influenced by different dietary treatments is shown in Table 2. During prestarter (0-14 d) phase, significantly (P<0.05) higher body weight gain was recorded in probiotic + chicory (T3) and chicory + coriander (T5) combination groups followed by probiotic + coriander (T4) group. However, no significant (P>0.05) difference was recorded among antibiotic (T2), control (T1), and probiotic + chicory + coriander (T6) combination groups. During starter (15-28 d) phase, there was no significant (P>0.05) difference among probiotic + coriander (T4), probiotic + chicory (T5), chicory + coriander (T6) and antibiotic (T2) groups, but they had significantly (P<0.05) higher body weight gain compared to probiotic + chicory + coriander (T5) and control (T1) groups. During finisher (29-42 d) phase, significantly (P<0.05) higher body weight gain was recorded in probiotic + chicory (T3) group followed by probiotic + chicory + coriander (T5), probiotic + coriander (T4), chicory + coriander (T6), antibiotic (T2) and control (T1) groups. In agreement with these results, Taherpour et al. (2009) indicated that supplementation of probiotic and prebiotic combination improved the body weight of broilers. Similarly, Kirkpinar et al. (2018) reported that probiotic + prebiotic and probiotic + enzyme combination increased body weight of broilers when compared with control. Similarly, Sanja et al. (2015) reported addition of synbiotics (Enterococcus faecium + fructooligosaccharides) improved the body weight of broilers. Supplementation of probiotics and inulin combinations significantly (P<0.05) improved body weight gain in broilers was reported by Karwan et al. (2016). The complimentary effect of probiotic
and chicory powder on body weight gain as observed in the present study might be due to better microbial environment in gut by competitive exclusion and antagonism (Nurmi and Rantala 1973). The fermentation activity of inulin inhibits the growth of Escherichia coli and Rantala 1973). The fermentation activity of inulin inhibits present study might be due to better microbial environment and chicory powder on body weight gain as observed in the results were reported by Szakacs et al. (2019) and Al-Khalaifa et al. (2019). Contrary to above results, Hofacre et al. (2003) and Al-Khalaifa et al. (2019) did not find positive effect on body weight in broilers fed with prebiotic + probiotic combination at 28 d of age.

The ANOVA revealed that there were no significant (P>0.05) differences in FI among different dietary treatments during pre-starter (0-14 d), starter (15-28 d), and finisher phase (29-42d). In line with the findings of the present study, Ashayerizadeh et al. (2009) and Al-Khalaifa et al. (2019) reported that supplementation of probiotic + prebiotic combination did not have significant (P>0.05) on FI of broilers. Similar results were also reported by Kirkpinar et al. (2018) and Utami and Wahyono (2019). These variations may be due to environmental factors and levels of the additives used in the experiment.

Statistical analysis on feed conversion ratio (FCR) values revealed that there was no significant (P>0.05) difference among different dietary treatments during pre-starter (0-14 d) and starter (15-28 d) phases. However, during finisher (29-42 d) phase, significantly (P<0.05) better feed conversion ratio was recorded in probiotic + chicory (T3) combination group compared to other treatments. However, no significant (P>0.05) difference was observed among probiotic + chicory + coriander (T4) group, antibiotic (T1), probiotic + coriander (T5) and chicory + coriander (T6) groups but they had better FCR than control group (T1). The increased FCR in probiotic + chicory (T3) combination group might be due to symbiotic relation between chicory inulin and probiotic. Chicory root powder inulin serves as a source of nutrient for the probiotic bacterial cultures for early establishing in the gut. Similar results were reported by Szakacs et al. (2015) and Sanja et al. (2015) who stated that probiotic + prebiotic combination improved feed efficiency in broilers. Ashayerizadeh et al. (2009) reported that addition of antibiotic, probiotic + prebiotic combination improved FCR compared to control. Improved feed efficiency with probiotic 0.4% + prebiotic 0.2% was also reported by Utami and Wahyono (2019). However, in contrary to our findings, Kirkpinar et al. (2018) and Al-Khalaifa et al. (2019) did not find positive effect of probiotic and prebiotic combination on FCR of broilers.

Mortality: Mortality was not influenced by supplementation of different dietary groups at 42 d of age. However, mortality rate was within the acceptable range.

Carcass parameters: The dietary treatments did not show any significant (P>0.05) difference in slaughter parameters at 42 d of age (Table 3). In agreement with the results of this study, several researchers demonstrated that addition of probiotics (Ray et al. 2019), chicory root powder (Praveen et al. 2017) and coriander seed powder (Naeemasa et al. 2015 and Reddy et al. 2019) did not result in any significant (P>0.05) effect on slaughter parameters of broilers. On the contrary, few studies indicated significant (P<0.05) effect on slaughter parameters of broilers with probiotics (Panda et al. 1999), chicory powder (Izadi et al. 2013) and coriander seed powder (Taha et al. 2019).

Immunity: Significant difference (P<0.05) was observed in the relative weights of bursa and spleen at 42 d of age (Table 4). Probiotic + coriander combination (T6) had higher bursa and spleen weight among all the treatments. No significant (P>0.05) difference was observed among probiotic + chicory (T3), probiotic + coriander (T5) and probiotic + chicory + coriander (T6) groups but they had higher bursa and spleen weight compared to control (T1) and antibiotic (T1) groups indicating better immunity in all the test groups. However, there was no significant (P>0.05) difference in thymus weight among different dietary groups. However, supplementation of all the dietary treatments (T3 to T6) significantly (P<0.05) increased the antibody response to ND vaccine (HI activity) compared to control and antibiotic groups (Table 5). The increased antibody production against NDV in probiotics, coriander

Trt Diet	Body weight gain (g)	Feed intake (g)	Feed conversion ratio (FCR)						
	Pre-starter (0-14 d)	Starter (15-28 d)	Finisher (29-42 d)	Pre-starter (0-14 d)	Starter (15-28 d)	Finisher (29-42 d)	Pre-starter (0-14 d)	Starter (15-28 d)	Finisher (29-42 d)
T1 Control	216c	789c	969d	232	1119	2182	1.08	1.42	2.25d
T2 Antibiotic	215a	850ab	1041c	214	1173	2179	1.00	1.38	2.09c
T3 Probiotic + Chicory	229a	860ab	1096a	227	1163	2163	0.99	1.35	1.98a
T4 Probiotic + Coriander	223a	864a	1063bc	223	1169	2172	1.00	1.35	2.04bc
T5 Chicory + Coriander	232a	859ab	1053c	221	1167	2173	0.95	1.36	2.06c
T6 Probiotic + Chicory + Coriander	216a	843ab	1081ab	214	1158	2172	0.99	1.37	2.01ab

Values bearing different superscripts within a column are significantly (P<0.05) different. Trt, Treatment.
powder and chicory root powder might be due to enhanced macrophage activity and increased local antibodies (IgA) at mucosal surfaces (Huang et al. 2004). The weight of spleen, thymus and bursa is directly proportional to immune response in broilers (Kabir et al. 2004). The higher lymphoid organs weight (bursa, spleen and thymus) also supports the increased immune response in test groups. Probiotic bacteria are capable of enhancing both specific and nonspecific immune responses by activating macrophages, increasing cytokine production by intraepithelial lymphocytes, and increasing the levels of immunoglobulins (Huang et al., 2004).

Serobio-chemicals: Among all the treatment groups, probiotic + chicory combination group recorded significantly (P<0.05) lower cholesterol level at 42 days of age. However, serum cholesterol levels in other groups were intermediate and comparable with antibiotic group and lower than control group (Table 5). In agreement with the above results, Ashayerizadeh et al. (2009) observed decreased serum cholesterol and triglycerides concentration with probiotic + prebiotic combination in broilers. Similarly, Taherpour et al. (2009) reported that probiotic + prebiotic and prebiotic + butyric acid combination lowered the serum cholesterol compared to control. Similarly, Yousfi et al. (2017) reported that supplementation of chicory leaf extract + probiotic combination significantly (P<0.05) decreased serum HDL and cholesterol compared to control and antibiotic. They also stated that the decreased cholesterol level might be due to the properties of chicory leaf extract to stimulate lactic acid producing bacteria which secretes hydrolase enzyme and that in turn converts bile salts into deconjugated bile acids and ultimately resulted in the reduced serum cholesterol level.

Table 3. Synergistic effect of probiotic, chicory root powder and coriander powder on slaughter parameters (% live weight) of broilers

Trt	Diet	Eviscerated yield	Liver	Heart	Gizzard	Giblet yield	Ready to cook yield	Abdominal fat
T1	Control	60.37	2.37	0.55	1.91	4.83	65.20	1.42
T2	Antibiotic	60.38	2.31	0.52	1.98	4.82	65.18	1.32
T3	Probiotic + Chicory	61.85	2.33	0.60	1.95	4.88	66.73	1.23
T4	Probiotic + Coriander	60.35	2.46	0.59	2.02	5.07	65.42	1.35
T5	Chicory + Coriander	61.90	2.14	0.56	1.94	4.64	66.54	1.28
T6	Probiotic + Chicory + Coriander	62.10	2.13	0.54	2.01	4.69	66.78	1.21
SEM		0.158	0.041	0.010	0.026	0.062	0.544	0.038
N		8	8	8	8	8	8	8
P-value		0.814	0.112	0.125	0.821	0.399	0.897	0.622

Table 4. Synergistic effect of probiotic, chicory root powder and coriander powder on Immune organ weights (% live weight) and NDV titers (log2) of broiler chicken

Trt	Diet	Bursa	Spleen	Thymus	NDV titers (log2)
T1	Control	0.076d	0.112c	0.812	2.85c
T2	Antibiotic	0.080e	0.105c	0.828	3.06c
T3	Probiotic + Chicory	0.092b	0.139b	0.907	3.26c
T4	Probiotic + Coriander	0.105a	0.176a	0.947	3.39a
T5	Chicory + Coriander	0.089ac	0.133ab	0.879	3.27a
T6	Probiotic + Chicory + Coriander	0.089ac	0.131ab	0.858	3.42a
SEM		0.0020	0.0039	0.0168	0.349
N		8	8	8	8
P-value		0.001	0.001	0.183	0.002

Table 5. Synergistic effect of probiotic, chicory root powder and coriander powder on serum biochemical parameters of broilers at 42 d of age

Trt	Diet	Serum total cholesterol (mg/dL)	Total Protein (g/dL)	Albumin (g/dL)	Globulin (g/dL)	A/G ratio
T1	Control	220b	4.94	2.04	2.05	1.02
T2	Antibiotic	189b	4.97	2.09	2.03	1.03
T3	Probiotic + Chicory	137b	5.04	2.11	2.08	1.06
T4	Probiotic + Coriander	179b	4.94	2.18	1.91	1.16
T5	Chicory + Coriander	181b	5.03	2.11	2.06	1.08
T6	Probiotic + Chicory + Coriander	182b	4.91	2.10	1.97	1.09
SEM		4.57	0.029	0.027	0.041	0.034
N		8	8	8	8	8
P-value		0.001	0.769	0.803	0.849	0.878

Values bearing different superscripts within a column are significantly (P<0.05) different. Trt, Treatment.
globulin and albumin/globulin ratio (A/G ratio). Similarly, Ashayerizadeh et al. (2009) did not find any significant (P>0.05) difference in serum total protein, albumin and globulin with probiotic + prebiotic supplementation in broilers. Alam and Ferdaushi (2018) reported that supplementation of probiotic did not have significant (P>0.05) on serum total protein, albumin, globulin, and A/G ratio.

Economics: Significantly (P<0.05) higher returns were recorded in probiotic + chicory (T3) followed by probiotic + coriander (T4), chicory + coriander (T5) and probiotic + chicory + coriander (T6) groups compared to control (T1) and antibiotic (T7) groups (Supplementary Table 1 and 2). The highest profit per bird was recorded with probiotic + chicory ($11.88 / bird) followed by probiotic + coriander ($8.60 / bird), chicory + coriander ($6.55 / bird) and probiotic + chicory + coriander ($6.36 / bird) groups. Similarly, Rout et al. (2016) reported that supplementation of broilers with probiotic, organic acid alone and combination increased the net return per kg live weight gain compared to control. Osfar et al. (2019) recorded highest income over feed cost in prebiotic supplemented diet compared to the control. Increase in the net profit of the broilers fed with probiotic + chicory (T11.88 / bird) combination might be attributed to synergic effect of probiotic and chicory root powder results in improved weight gain and better FCR leading to more returns over feed cost.

The results showed that combination of probiotic (10 g) with chicory root powder (1.0%) proved more effective than combinations of other additives in terms of body weight gain, FCR, lowered serum cholesterol and better returns over feed cost. However, supplementation of different feed additives did not show any influence on feed intake, carcass, total protein, albumin and globulin levels of broilers. Therefore, probiotic and chicory root powder combination can be used in place of antibiotic growth promoter in broilers.

ACKNOWLEDGEMENTS

The authors are thankful to Department of Poultry Science, CVSc, PV Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, India for providing research facilities.

REFERENCES

Alam and Ferdaushi. 2018. Use of probiotics instead of antibiotics in broiler production. *Progressive Agriculture 29*(4): 359–70.

Al-Khalaf B, Al-Nasser A, Al-Surayji T, Al-Kandari S, Al- Enzi N, Al-Sharhah T, Ragheb G, Al-Qalaf S and Mohammed A. 2019. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. *Poultry Science 10:* 1–15.

Ashayerizadeh A, Dabiri N, Ashayerizadeh O, Mirzadeh K H, Roshanfekr H and Mamoee M. 2009. Effect of dietary antibiotic, probiotic and prebiotic as a growth promoter, on growth performance, carcass characteristics and haematological indices of broiler chickens. *Pakistan Journal of Biological Sciences 12:* 52–57.

Barbara M S, Nebojsa I, Alexander P and Ilya R. 2007. Toxicological evaluation of a chicory root extract. *Food and Chemical Toxicology 45:* 1131–39.

Dibner J J and Richards J D. 2005. Antibiotic growth promoters in agriculture: History and mode of action. *Poultry Science 84:* 634–43.

Duncan B D. 1955. Multiple range and F-tests. *Biometrics 11:* 1–42.

Fuller R. 1989. Probiotics in man and animals. *Journal of Applied Bacteriology 66:* 365–78.

Hofacre C L, Beacorn T, Collet S and Mathis G. 2003. Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. *Journal of Applied Poultry Research 12:* 60–64.

Huang M K, Choi Y J, Houde R, Lee J W, Lee B and Zhao X. 2004. Effects of *Lactobacilli* and an acidophilic fungus on the production performance and immune responses in broiler chickens. *Poultry Science 83*(5): 788–95.

Heyndelaert G, Ducatelle R and Van Immerseel F. 2011. An update on alternatives to antimicrobial growth promoters for broilers. *Veterinary Journal 187:* 182–88.

Izadi H, Javad A, Golian A and Rajji M R. 2013. Effects of chicory root powder on growth performance and histomorphometry of jejunum in broiler chickens. *Veterinary Research Forum 4*(3): 169–74.

Kabir S M L, Rahman M M, Rahman, M B, Hosain M Z, Akand M S I and Das S K. 2005. Viability of probiotics in balancing intestinal flora and effecting histological changes of crop and caecal tissues of broilers. *Biotechnology 4:* 325–30.

Karwan Y K, Teck C L, Hooi L F, Henny A and Anjas A S. 2016. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. *Bio Medical Central Veterinary Research 12:* 163.

Kirkpinar F, Açikgöz Z, Mert S and Işık Ö. 2018. Effects of dietary probiotic, prebiotic and enzyme mixture supplementation on performance, carcass, organ, ileal pH and viscosity of broilers. *Journal of Animal Production 88*(1): 1–9.

Naeemasa M, Qotbi A A A, Seidavi A, Norri D, Brown D and Ginindza M. 2015. Effects of coriander (*Coriandrum sativum* L.) seed powder and extract on performance of broiler chickens. *South African Journal of Animal Science 45*(4): 125–31.

Nurmi E and Rantala M. 1973. New aspects of *Salmonella* infection in broiler production. *Nature 241:* 210–11.

Osfar S, Eko W, Halim N, Fatmaoctavia S and Riany G S. 2019. Effect of probiotic and immunowall® as feed additive in enzyme activity, intestinal characteristic, and broiler performance. *International Journal of Food Science and Agriculture 3*(4): 292–98.

Panda A K, Rao S V R, Reddy M R and Praharaj N K. 1999. Effect of dietary inclusion of probiotic on growth, carcass traits and immune response in broilers. *Indian Journal of Poultry Science 34:* 343–46.

Praveen T, Munegowda T, Indresh H C and Jayanaik. 2018. Use of probiotics instead of antibiotics in broiler production. *Progressive Agriculture 29*(4): 359–70.
Reddy N B C, Srinivas K D, Raja K K and Kumari N R K. 2019. Effect of dietary incorporation of coriander seed meal on production performance of Japanese quail. *Indian Journal of Animal Nutrition* 36(2):198-201.

Rout S K, Pradhan C R, Rath R, Panda N, Panigrahi, B and Pati, P K. 2016. Influence of probiotics and acidifier supplementation on growth, carcass characteristics and economics of feeding in broilers. *Indian Journal of Animal Nutrition* 33(1): 97–101.

Sanja J P, Ljiljana M K, Nikola M P, Jovanka D L, Olivera M D, Bojana M K, Ivana S C and Marina V V. 2015. Effect of synbiotic on growth and antioxidant status of blood in broiler chicken. *Food and Feed Research* 42(2): 163–69.

Silva F, Ferreira S, Queiroz J A and Fernanda C D. 2011. Coriander (*Coriandrum sativum* L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. *Journal of Medical Microbiology* 60: 1479–86.

Szakacs R A, Sorona M, Laura S, Rekha S and Andrian M. 2015. The impact of pre and probiotic on growing performance and haematological parameters in ross 708 broiler chickens. *Bulletin UASVM Veterinary Medicine* 72(2): 330–35.

Taha A E, Saber S H, Ramadan S S, Ahmed A E, Mohamed E A, Hussein E, Islam M S, Ayman A S and Mohamed A E. 2019. Effects of supplementing broiler diets with coriander seed powder on growth performance, blood haematology, ileum microflora and economic efficiency. *Journal of Animal Physiology and Animal Nutrition* 6: 1–10.

Taherpour K, Moravej H, Shivazad M, Adibmoradi M and Yakhchali B. 2009. Effects of dietary probiotic, prebiotic and butyric acid glycerides on performance and serum composition in broiler chickens. *African Journal of Biotechnology* 8(10): 2329–34.

Utami M M D and Wahyono N D. 2019. Supplementation of probiotic and prebiotic on the performance of broilers. *Earth and Environmental Science* 207: 1–6.

Wegmann T G and Smithies O. 1966. A simple hemagglutination system requiring small amounts of red cells and antibodies. *Transfusion* 6(1): 67–73.

Yousfi Z, Kazemi F M, Rezaei M and Ansari P Z. 2017. Effect of chicory extract and probiotic on performance, carcass characteristics, blood parameters, intestinal microflora and immune response of broiler chickens. *Iranian Journal of Animal Science Research* 2(9): 185–95.

Yusrizal and Chen T C. 2003. Effect of adding chicory fructans in feed on faecal and intestinal microflora and excretory volatile ammonia. *International Journal of Poultry Science* 2(3): 188–94.