Testing reflection features in 4U 1705–44 with \textit{XMM-Newton}, \textit{BeppoSAX} and \textit{RXTE} in the hard and soft state

E. Egron1*, T. Di Salvo2, S. Motta3,4, L. Burderi1, A. Papitto5, R. Duro6, A. D’Aì2, A. Riggio1,7, T. Belloni3, R. Iaria2, N. R. Robba2, S. Piraino6,9, and A. Santangelo9

1 Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu, KM 0.7, 09042 Monserrato, Italy
2 Dipartimento di Fisica, Università di Palermo, via Archirafi 36, 90123 Palermo, Italy
3 INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy
4 Università dell’ Insubria, Via Valleggio 11, I-22100 Como, Italy
5 Institut de Ciències de l’Espai (IEEC-CSIC), Campus UAB, Fac. de Ciències, Torre C5, parell, 2a planta, 08193 Barcelona, Spain
6 Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstraße 7, 96049 Bamberg, Germany
7 INAF - Osservatorio Astronomico di Cagliari, Poggio dei Pini, Strada 54, 09012 Capoterra (CA), Italy
8 INAF-IASP di Palermo, via Ugo La Malfa 153, 90146 Palermo, Italy
9 Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Sand 1, 72076 Tübingen Germany

Preprint online version: May 5, 2014

ABSTRACT

We use data of the bright atoll source 4U 1705–44 taken with \textit{XMM-Newton}, \textit{BeppoSAX} and \textit{RXTE} both in the hard and in the soft state to perform a self-consistent study of the reflection component in this source. Although the data from these X-ray observatories are not simultaneous, the spectral decomposition is shown to be consistent among the different observations, when the source flux is similar. We therefore select observations performed at similar flux levels in the hard and soft state in order to study the spectral shape in these two states in a broad band (0.1–200 keV) energy range, with good energy resolution, and using self-consistent reflection models. These reflection models provide a good fit for the X-ray spectrum both in the hard and in the soft state in the whole spectral range. We discuss the differences in the main spectral parameters we find in the hard and the soft state, respectively, providing evidence that the inner radius of the optically thick disk slightly recedes in the hard state.

Key words. line: formation — line: identification — stars: neutron — stars: individual: 4U 1705–44 — X-ray: binaries — X-ray: general

1. Introduction

The X-ray emission in low mass X-ray binaries (LMXBs) comes from the gravitational potential energy released from accretion processes onto black holes or neutron stars. The X-ray spectrum is generally well-described by a soft-thermal component such as a blackbody or a multicolor-disk blackbody, originating from the accretion disk, and a hard X-ray component which usually dominates the spectrum. This hard component can be fitted either by a power-law with a high energy cutoff or a saturated Comptonization spectrum, when the source is in the so-called hard state, or by a blackbody or a saturated Comptonization spectrum, when the source is in the soft state, where the temperature of the photons is very similar to the electron temperature. The hard component is generally explained in terms of inverse Compton scattering, where soft thermal photons get Compton up-scattered by hot electrons forming a corona or a boundary layer between the neutron star surface and the accretion disk, or forming the base of a jet (at least the hard state, Markoff & Nowak 2004; Markoff et al. 2005).

In addition to this, a broad iron line (associated to the Fe K\textalpha line at 6.4\,–\,7 keV) is often detected in the spectra of X-ray binaries. However, the nature of its large width and the (a)symmetric profile of the line are still debated. In analogy with systems containing stellar mass or supermassive black holes, which show a remarkably similar phenomenology (e.g. Martocchia & Matt 1996; Walton et al. 2012), it can be produced by reflection in the accretion disk (Reynolds & Nowak 2003; Fabian & Miniutti 2003; Matt 2006), or it can arise from an accretion disk corona (Kallman & White 1988; Vrtilek et al. 1993). The first scenario implies that the iron line is produced in the inner part of the accretion disk. Hard X-rays coming from the corona or from the base of the jet irradiate the relatively cold accretion disk. As a consequence, a broad and asymmetric line is expected due to Doppler and relativistic effects produced close to the compact object. Depending on the ionization state of the disk, this leads to the emission of several emission lines and absorption edges that are more or less strong in the spectrum, depending on the relative abundance of the corresponding ion and/or its fluorescence yield (Kaastra & Mewe 1993). The Fe K\textalpha line at 6.4–7 keV is the most prominent feature (Fabian et al. 2000). It results in a fluorescent line at 6.40 keV from Fe I-XVII, or recombination lines at 6.7 keV and 9.6 keV associated with highly ionized species of Fe XXV (He-like) and Fe XXVI (H-like), respectively. In this scenario other reflection signatures are also expected, such as the emission and/or absorption from several elements at lower energy, and a Compton reflection hump at higher energy (George & Fabian 1991; Ballantyne et al. 2001; Ross & Fabian 2007) if the X-ray continuum spectrum is sufficiently hard.
and to the large effective area of XMM-Newton and Suzaku, the number of significant detections of these lines is increasing, giving the possibility to study their profile in more detail. Recently, two studies were performed by Ng et al. (2010) and Cackett et al. (2010) in order to investigate the nature of the iron line using a large sample of neutron star LMXBs spectra. Using XMM-Newton observations of 16 neutron star LMXBs, Ng et al. (2010) conclude that there is no statistical evidence that the iron line profile is asymmetric and they propose that the observed large width of the line is caused by Compton scattering in the corona. It should be noted that, in order to eliminate the effects of photon pile-up in the Suzaku and XMM-Newton data, Ng et al. (2010) decided to reject up to 90% of the source photons for the brightest source. Conversely, by studying 10 neutron star LMXBs with Suzaku (which is less affected by photon pile-up because of a broad point spread function) and XMM-Newton, Cackett et al. (2010) confirm that the Fe line is asymmetric, relativistic, and produced by reflection in the inner part of the accretion disk. This result was achieved also comparing CCD-based spectra from Suzaku with Fe K line profiles from archival data taken with gas-based spectrometers Cackett et al. (2012). In general, they found a good consistency between the gas-based line profiles from EXOSAT, BeppoSAX, RXTE, and the CCD data from Suzaku, demonstrating that the broad profiles seen are intrinsic to the line and not broad due to instrumental issues.

1.1. The case of 4U 1705-44

4U 1705–44 is a low mass X-ray binary system containing a weakly magnetized neutron star. In such systems the accretion disk can extend down to the neutron star surface. This implies a similar configuration with respect to that envisaged for accreting black holes, since the radius of the neutron star is close to the size of the innermost stable circular orbit (ISCO) of matter around a black hole. Similarities have been observed between these systems (e.g. Maccarone 2012, and references therein), suggesting common physical processes producing X-ray emission and similar properties of the accretion flow around the compact object. Clear observational evidences exist that a neutron star has a solid surface, such as the observation of type I X-ray bursts, which are thermonuclear explosions in the surface layers of the neutron star, or of coherent pulsations, resulting from the magnetic field anchored on the neutron star surface. However not all systems containing a neutron star show one or more of these characteristics (Done et al. 2007).

4U 1705–44 is a persistent bright source that shows type I X-ray burst (Lanemeier et al. 1987) and kHz quasi-periodic oscillations (Ford et al. 1998, Olive et al. 2003). From some bursts that show photospheric radius expansion, its distance is estimated at 7.4 kpc, toward the Galactic ridge (Forman et al. 1978, Galloway et al. 2008). LMXBs containing a neutron star are divided into two categories (Hasinger & van der Klis 1989) according to the path the source describes in the X-ray color–color diagram (CD) or hardness-intensity diagram (HID): atoll sources (C-like, low luminosity, about 0.001–0.5 Ledd) or Z-sources (Z-like, high luminosity, close to the Eddington limit). 4U 1705–44 is classified as an atoll source. In the classical CD pattern of these sources, two branches are usually distinguished: the island and the banana. In the island branch, the source presents a low count rate, probably associated to a low mass accretion rate, and the source is in the low/hard state. In this state, it is thought that the accretion disk is truncated relatively far from the compact object. This results in a very hot corona and in a hard spectrum. On the other hand, when the source is in the banana branch, the accretion disk approaches the compact object, the temperature of the corona decreases due to Compton cooling, and the source is in the high/soft state (high is relative to the X-ray flux, and soft to the spectrum). The mass accretion rate therefore is expected to increase from the island to the banana branch. The Z-sources usually emit persistently at high luminosity and are thought to have a larger magnetic field and/or higher mass accretion rate than atoll sources.

4U 1705–44 has recently been studied thoroughly with the particular objective to understand the origin of its iron line. A broad Fe line was clearly visible with Chandra (Di Salvo et al. 2005), confirming previous studies performed at low energy resolution by White et al. (1986) and Barret & Olive (2002). The HETG on board Chandra excluded that the large width of the line could be caused by the blending of lines from iron at different ionization states, although it was not possible to discriminate between the two possible origins (relativistic smearing or Compton broadening) of the line width. The broad band BeppoSAX spectrum of 4U 1705–44 taken during a soft state again showed a broad iron line that could be well fitted by a diskline component with very reasonable smearing parameters Piraino et al. 2007, and the INTEGRAL spectrum showed clear evidence of a Compton reflection hump (Fiocchi et al. 2007), as well as the BeppoSAX spectrum taken during the hard state (Piraino et al. in preparation).

The observations with XMM-Newton and Suzaku were essential to study the iron line profile in detail because of their large effective area and good energy resolution. Indeed, Reis et al. (2009b) found a broad (skewed) and asymmetric Fe Kα emission line during a Suzaku observation of 4U 1705–44. Both Compton broadening and relativistic smearing were necessary to account for the large width of the iron line. The best fit value of the inner radius was $r_{in} \approx 10.5 \, R_{g}$, with R_{g} being gravitational radius ($R_{g} = GM/c^{2}$), and the corresponding inclination angle was $i \approx 30^\circ$. Using the observations from BeppoSAX and Suzaku, Lin et al. (2010) obtained constraints on the broad-band spectrum of 4U 1705–44 and found that the strength of the Fe line correlates well with the boundary layer emission in the soft state, while the Fe line is probably due to illumination of the accretion disk by the strong Comptonization emission in the hard state. An XMM-Newton observation performed in 2008 when the source was in a soft state confirmed the results obtained with Suzaku, showing a high-statistics Fe line profile and spec-
trum consistent with a disk-reflection scenario (Di Salvo et al. 2009; D’Ai et al. 2010). The best fit value of the inner disk radius was $R_i = 14 \, R_g$ and the corresponding inclination angle and index of the emissivity law profile were $i \sim 39^\circ$ and -2.3 respectively, in agreement with the Suzaku results. In addition, the XMM-Newton spectrum showed the presence of several emission lines from elements lighter than iron, such as S, Ar, and Ca at 2.62 keV, 3.31 keV and 3.90 keV, respectively, and an absorption edge at 8.5 keV probably from ionized iron. All these features were broad and consistent with being produced in the same region where the iron line was produced.

Here we present the spectral analysis of 4U 1705–44 using data from XMM-Newton, BeppoSAX, and RXTE when the source was in the hard state and in the soft state. Using the same spectral models to describe the source spectrum in both states, we aim at highlighting the differences in the spectral parameters finding that the accretion disk is truncated further (but not far) from the compact object in the hard state. Since in 4U 1705–44 several reflection features have been detected, we use self-consistent reflection models to fit the broad-band, multi-mission, X-ray spectrum of this source. We also discuss possible effects due to pile-up distortion in XMM-Newton spectrum during the high-luminosity, soft state.

2. Observation and data reduction

The light curve produced from the All-Sky Monitor on-board RXTE allows to follow the evolution of the source flux for a period of ~16 years. The source shows clear spectral transitions, from the hard (3 counts/s) to the soft state (25 counts/s). A total of four observations were performed with BeppoSAX (see Fig. 1) and XMM-Newton (see Fig. 2) when the source was in the hard and soft state. The spectral transitions are associated with variations in the X-ray flux, likely proportional to the accretion rate. We select RXTE observations, both in the hard and soft state, as shown in Fig. 2. In this way, the joint spectra from the three satellites cover the full 0.1 – 200 keV energy range. We explain in detail our methods in the following.

2.1. XMM-Newton

4U 1705–44 was observed twice with XMM-Newton. The first observation was performed on 2006 August 26 for an effective exposure of 34.72 ks, when the source was in the hard state. The corresponding RXTE/ASM count rate was 1 c/s. The second time, the source was observed during the soft state (Target of Opportunity), on 2008 August 24 for a total on-source observing time of 45.17 ks (see Di Salvo et al. 2009, for more details on this observation). The RXTE/ASM was 19 c/s during this observation.

During both observations, the European Photon Imaging Camera pn (EPIC-pn; Struder et al. 2001) and the Reflection Grating Spectrometers (RGS1 and RGS2; den Herder et al. 2001) were used to observe the source. The EPIC-pn camera operated in timing mode to minimize photon pile-up and telemetry overload that may occur at high count rates, with a thick filter in place which further reduced the number of low-energy photons. In timing mode only the central CCD is read out with a time resolution of 30 μs. This provides a one-dimensional image of the source with the second spatial dimension being replaced by timing information. The EPIC-MOS and the optical Monitor were off during the second observation in order to avoid telemetry drop-outs in the EPIC-pn.

We produced a calibrated photon event file using the SAS processing tool epproc. Before extracting the spectra we checked for contamination from background solar flares by producing a light curve in the energy range 10–12 keV. No solar flare was registered. However, during the first observation (corresponding to the hard state), the EPIC-pn camera registered a type-I X-ray burst at about 11 ks after the start of the observation. We applied temporal filters by creating a good time interval (GTI) file with the task rtabfilt in order to remove the burst.

We used the task epfast to correct rate-dependent CTI effects in the event list. The source spectra were extracted from a rectangular area covering all the pixels in the Y direction and centered on the brightest RAWX column (36 in the hard state, and 38 in the soft state) with a width of 16 pixels, which corresponds to 65.6 arcsec. We selected only events with PATTERN ≤ 4 (single

\footnote{The XMM-Newton data were processed using the Science Analysis Software v.10, following the XMM-Newton ABC guide.}
and double pixel events) and FLAG=0 as a standard procedure to eliminate spurious events. We extracted the background spectra from a box similar to the one used to extract the source photons but in a region away from the source (RAWX = 47 – 63 and RAWX = 4 – 12 in the hard and soft state, respectively). During the first observation, the average count rate registered by EPIC-pn CCDs is around 48 c/s, and 19 c/s in the 2.4–11 keV range, excluding the burst interval. In the soft state, the count rate is much higher; the mean count rate is around 770 count/s, and 425 count/s in the 2.4–11 keV range, slightly increasing in time (by 5%). We also checked for the presence of pile-up using the task EPISPLT. While the first XMM-Newton observation of the source taken in the hard state does not show any significant pile-up, a few percent pile-up affects the second observation taken during a soft state. We discuss the pile-up issue concerning the soft state in the next section. We grouped the EPIC-pn energy channels by a factor of 4 in order to avoid oversampling of the energy resolution bin of the instrument.

The two RGS units were set in the standard spectroscopy mode. The RGS data were processed using the raspio pipeline to produce calibrated event list files, spectra and response matrices. The RGS data were rebinned to have at least 25 counts per energy channel.

2.2. BeppoSAX

BeppoSAX performed two observations of 4U 1705–44 in August and October 2000, for a total on-source observing time of 43.5 ks and 47 ks respectively. The count rate registered by the RXTE/ASM associated to these observations was 18 c/s and 3 c/s respectively.

The four BeppoSAX narrow field instruments were on during both the observations. The Low Energy Concentrator Spectrometer (LECS, 0.1–4 keV; Parmar et al. 1997) and the Medium Energy Concentrator Spectrometer (MECS, 1–10 keV; Boella et al. 1997) data were extracted in circular regions centered on the source position using radii of 8’ and 4’, respectively, corresponding to 95% of the source flux. Identical circular regions were used in blank field observations to produce the background spectra. The background spectra of the High Pressure Proportional Gas Scintillation Counter (HPGSPC, 8–50 keV; Manzo et al. 1997) and of the Phoswich Detection System (PDS, 15–200 keV; Frontera et al. 1997) were produced from Dark Earth data and during off-source intervals, respectively. The HPGSPC and PDS spectra were grouped using a logarithmic grid.

We did not use data from PDS during the first observation, which corresponds to the soft state, in order to avoid extra complication of the spectral fit caused by the presence of a hard (power-law) spectral component (see Piraino et al. 2007). During the low/hard observation, 6 X-ray bursts were removed from the data.

2.3. RXTE

There was no simultaneous observation performed by RXTE during the XMM-Newton and BeppoSAX observations. However, the archive provides us with hundreds of RXTE observations of 4U 1705–44 since RXTE was launched. Therefore, we considered all the observations of 4U 1705–44 collected since 2000 May (corresponding to the 5th epoch of RXTE) and selected RXTE observations during which the source showed the same spectral state of the two XMM-Newton observations mentioned above. To do so we produced a color–color diagram (CD) from all the RXTE observations and a time-resolved CD from the two XMM-Newton observations (we separated the XMM-Newton observations in intervals 512 s long, and for each of them, we produced a spectrum and measured the color) using the same energy bands for the two instruments (i.e. 2.47 – 3.68 keV and 3.68 – 5.31 keV for the soft color and, 5.31 – 7.76 keV, 7.76 – 10.22 keV for the hard color). Since from the RXTE data it is clear that the shape of the CD of 4U 1705–44 remains constant during the period considered, we could directly compare the CD coming from the two instruments. The CDs were normalized to the Crab colors, but an additional correction was necessary to precisely match the two diagrams, to take into account the differences in the gain of the two instruments. Fig. 5 shows the XMM-Newton CD corresponding to the two observations performed in the hard and in the soft state superposed to the RXTE CD. Starting from the two CDs we selected the RXTE observations that matched the XMM-Newton observations. The detail of the RXTE observations selected is given in Table 5.

The RXTE data were obtained in several simultaneous modes. STANDARD 2 and STANDARD mode for the PCA and HEXTE instruments, respectively, were used to create background and dead time corrected spectra. We extracted energy spectra from PCA and HEXTE for each observation using the standard RXTE software within HEASoft v.6.9 following the standard procedure described in the RXTE cookbook to produce source and background spectra as well as response matrices. Only Proportional Counter Unit 2 from the PCA was used since only this unit was on during all the observations. As regards HEXTE data, we used only data coming from HEXTE/Cluster B, which were correctly working in our period of interest.

Then we produced RXTE/PCA and RXTE/HEXTE spectra for each RXTE observation and we averaged them to obtain a PCA+HEXTE spectrum in the island state (matching XMM-Newton observation made in 2006 August 26) and a PCA spectrum in the banana-state (matching XMM-Newton observation made in 2008 August 24). In the soft state we did not use RXTE/HEXTE data due to the lack of counts in the HEXTE working energy range (20 – 200 keV). A systematic error of 0.6% was added to the PCA averaged spectra to account for residual uncertainties in the instrument calibration.

3. Spectral analysis

Data were fitted by using Xspec (Arnaud 1996) v.12.6. All uncertainties are given at the 90% confidence level ($\Delta$$\chi^2 = 2.706$).

The data analysis of the XMM/EPIC-pn spectrum was restricted to 2.4–11 keV to exclude the region around the detector Si K-edge (1.8 keV) and the mirror Au M-edge (2.3 keV) that could affect our analysis. This problem was already noticed for the EPIC-pn observations performed in timing mode (e.g., D’Ai et al. 2010; Papitto et al. 2011; Egron et al. 2011). The energy bands used for the other instruments are: 0.3–4 keV for the LECS, 1.8–10 keV for the MECS, 7–34 keV for HPGSPC,

2 We only considered data from the 5th epoch to avoid fluctuations due to the differences in the instrument gain that can be observed in data coming from different epochs.

3 http://www.universe.nasa.gov/xrays/programs/rxte/pcarmf/pcarmf-11.7 for a detailed discussion on the PCA calibration issues.
15–200 keV for PDS on-board BeppoSAX, and 4–22 keV for PCA and 15–100 keV for HEXTE on-board RXTE. The following sections concern the analysis of data associated to the soft and to the hard state of 4U 1705–44. In the first one, we investigate the pile-up effects on the XMM-Newton data of the soft state; we demonstrate that the iron line is always broad and gives consistent spectral parameters independent of the extraction region. Then we apply reflection models to fit the XMM-Newton data in this state, and finally we include the BeppoSAX and RXTE data to extend the analysis on the broadband, 0.1 – 200 keV, energy range. In the second one, we apply the same continuum and reflection models to the XMM-Newton, BeppoSAX and RXTE data in the hard state, in order to evaluate which spectral parameters change from one state to the other.

4. Soft state

4.1. Pile-up in XMM-Newton /EPIC-pn data?

Pile-up is an important issue for CCD data and may affect the spectral results. It occurs when more than one X-ray photon hits the same pixel or an adjacent one in the same read-out frame. If this happens the CCD will be unable to resolve the individual photon events and instead record a single event with an energy that is roughly the sum of the individual event energies. It results in a shift of the photons to higher energy, which produces an energy-dependent distortion of the spectrum. It is possible to assess the pile-up effects by checking the fraction of singles, doubles, triples and quadruples events (depending on how many pixels are involved) using the task \texttt{pparf} (see Appendix). \cite{DiSalvo2009, DAi2010, Ng2010} studied the iron line in 4U 1705–44 using the same XMM-Newton data in the soft state, but considering different extraction regions for the spectra and therefore accepting different pile-up fraction in their spectral analysis. \cite{DiSalvo2009} considered that pile-up effects on spectral results were negligible and hence decided to keep all the central columns of the CCD, whereas \cite{DAi2010} excluded the brightest CCD column, and \cite{Ng2010} excluded 7 central columns (corresponding to \(~90\% of the source counts). In all these cases, the iron line detected in the pn spectra of 4U 1705–44 remained consistently broad, with a Gaussian sigma \(~0.3 – 0.4\ \text{keV}. However, the conclusions coming from the spectral analysis differed. While \cite{DiSalvo2009} and \cite{DAi2010} deduced that the iron line is clearly asymmetric and compatible with a relativistic line, using the \texttt{diskline} \cite{Fabian1989} \texttt{and} the \texttt{reflection model reflbb} \cite{Ballantyne2004}, respectively, \cite{Ng2010} found that the iron line cannot be fitted equally well by a gaussian or using the \texttt{laor} model \cite{Laor1991}, concluding that there was no statistical evidence for an asymmetry of the line profile. It is thus important to assess the effects of pile-up in the EPIC-pn spectrum of 4U 1705–44 in the soft state, which shows the highest S/N ratio iron line profile ever detected to date in a neutron star LMXB.

In order to evaluate the pile-up effects on the XMM-Newton/pn spectrum, we apply an empirical model, similar to the one used in \cite{DiSalvo2009}, to compare the results obtained when we consider different extraction regions in the CCD. In particular, we consider the extraction region described in Sec. 2, where we exclude from 0 up to 7 central brightest columns before extracting the pn spectrum. Fig. 4 shows the ratios of the data to the continuum obtained for three cases: excluding 0, 1, and 7 central brightest columns. The continuum model consists of a blackbody and a Comptonization component (\texttt{comptt}; Titarchuk 1994), modified at low energy by the photoelectric absorption (\texttt{phabs}; photoelectric cross-sections of \texttt{Balucinska-Church & McCammon} 1992 with a new He cross-section based on \texttt{Yan} \cite{Yan1998} \texttt{and standard abundances of} \texttt{Anders \& Grevesse} 1989)). This model is often used for atoll sources and gives a good fit for the continuum of this source \cite{Barret2002, DiSalvo2005, Piraino2007, DiSalvo2009}. Three emission lines are visible at low energy, at 2.62 keV, 3.31 keV and 3.90 keV, identified by \cite{DiSalvo2009} as highly ionized elements corresponding to S XVI, Ar XVIII and Ca XIX, respectively. In addition to these lines, an iron emission line and an absorption edge are present. The detection of the iron line is at about 10 \(\sigma\) above the continuum when all the columns are considered whereas it becomes only 5 \(\sigma\) when 7 columns are removed. In the three cases, the iron line appears broad and the shape is very similar. To fit these residuals we add four gaussians and an edge to the continuum model, all modified by the relativistic blurring (modellen with \texttt{kdblur}, the \texttt{diskline} kernel, in xspec) component to take into account the relativistic and/or Doppler effects produced by the motion in the inner disk close to the compact object. This model describes the relativistic effects due to the motion of plasma in a Keplerian accretion disk, immersed in the gravitational well of the compact object, in terms of the inner and the outer radius of the disk, \(R_a\) and \(R_o\) (in units of the gravitational radius, \(R_g = \frac{GM}{c^2}\), where \(M\) is the mass of the compact object), of the index of the assumed power-law dependence of the disk emissivity on the distance from the NS, and of the system inclination, \(i\). In this way, all the discrete features present in the model are smeared by the same disk parameters. The only difference with respect to the model used by \cite{DiSalvo2009} is that the \texttt{kdblur} component is now applied also to the iron edge, as it should be if the edge is also produced by reflection in the same disk region as the other emission lines.

As expected, we note a variation in the parameters of the continuum when we exclude the columns from 0 to 7, the most affected parameter being the interstellar absorption column density. Its value, and the associated error, progressively increase from \((1.8 \pm 0.1) \times 10^{22}\) cm\(^{-2}\) when 0 central columns are excluded.

Fig. 3. Color-color diagrams (CDs) of 4U 1705–44 produced by RXTE/PCA and XMM-Newton/EPIC-pn, in red and black respectively. The CDs were Crab normalized, and an additional correction was needed to precisely match the two diagrams. The RXTE observations have been selected in such way that they match with those of XMM-Newton, in the hard and soft state.
The continuum is quite stable, while some scattering is observed in the inclination angle is the parameter which is mostly a consequence increase significantly with the decreasing counts. The in-discrete features and the disk smearing parameters, all the val-

trom together with the pn spectrum. The uncertainties on the columns of the CCD has real e 6

t can see that the deviation of single and double events at the iron absorption. We first added 4 gaussians and an edge to the contin-

tuum considering all the rows of the CCD (black; Di Salvo et al. 2009), without the brightest CCD column (red; D’Ai et al. 2010), and excluding 7 central columns (green; Ng et al. 2010). The continuum model consists of a blackbody and a Comptonization model (comptt) modified by photoelectric absorption (phabs).

Table 1. Iron line complex fitted by 4 gaussians corresponding to the Fe XXV triplet and the Fe XXVI line in the XMM/EPIC-pn data. The energy and the σ associated with each transition are in keV.

Fe line	Transition	Energy	σ	Norm (10^{-3})
Fe XXV	F	6.64	$0.11^{+0.05}_{-0.09}$	$0.6^{+0.4}_{-0.1}$
	I_1	6.67	0.36 ± 0.06	2 ± 0.5
R	6.70	$0.09^{+0.09}_{-0.12}$	$0.2^{+0.5}_{-0.1}$	
Fe XXVI	Lyα_2	6.95	$0.14^{+0.09}_{-0.08}$	0.3 ± 0.2

Moreover, if we look at the plots presented in Appendix, we can see that the deviation of single and double events at the iron line energy has a minimum in correspondence of the pn-2 spectrum, and it increases again when we exclude more than 2 brightest central columns. This may be ascribed to a mismodeling of the instrumental response and, in particular, of the rate of double events (which involve more than one pixel, and probably more than one column) when too many central columns are excluded. Although most continuum parameters obtained for spectra pn-all to pn-2 are perfectly compatible to those previously obtained with BeppoSAX (Piraino et al. 2007), we adopt a conservative approach for the present analysis, to minimize any residual pile-up source of uncertainty. Hence we choose to work with spectrum pn-2.

We therefore considered the spectrum pn-2, whose continuum emission is fitted by a blackbody and a comptonized component (comptt), both modified at low energy by photoelectric absorption. We first added 4 gaussians and an edge to the continuum model to take into account the emission lines at low energy (S, Ca, Ar), the iron line and the iron edge at 8.6 keV. In this case, the iron line was found at 6.70 (± 0.02) keV and its equivalent width was 42 eV. The corresponding χ^2_{red} was 1.14 (408).

We also tried to fit the iron line at 6.7 keV, likely corresponding to the Kα transition of Fe XXV, with the single components of the triplet (that is composed of the forbidden line at 6.64 keV, the intercombination lines at 6.67 keV and 6.68 keV, and the resonance line at 6.70 keV). We also added a line at 6.95 keV associated with emission from Fe XXVI. To do so, we used 5 gaussians (instead of a single gaussian at 6.6 keV) whose centroid energies are fixed at the expected rest-frame energies. The lines at 6.67 keV and 6.68 keV are indistinguishable with XMM-Newton, since the difference in the centroid energies is comparable with the fitting errors on the line energy. We therefore considered only one gaussian at 6.67 keV to represent the intercombination lines. This line clearly dominates the triplet, although the lines at 6.64, 6.70 and 6.95 keV contribute slightly to the emission. The results are summarized in Table 1. Accordingly, we used a single gaussian to describe the Fe complex.

Then we added a smearing component to this model to take into account relativistic and/or Doppler effects close to the compact object, in the hypothesis of a disk origin of the iron line. This component was convolved with all the 4 gaussians (associated with S, Ar, Ca and Fe) and with the edge. We froze the width of the gaussians to zero and apply the same relativistic relativistic smearing parameters to all these features. The line width is found at 6.66$_{+0.06}^{−0.02}$ keV. The equivalent width is 57 eV. The inclination and the inner radius are $39^{+23}_{−11}$ and $14^{+13}_{−4} R_\odot$ respectively. The corresponding χ^2_{red} is 1.03 (409 degrees of freedom, hereafter dof), and the χ^2 decreases by $\Delta \chi^2 = 44$ for one parameter more with respect to the model without the smearing component. Therefore the addition of a mildly relativistic smearing improves the fit, favoring the interpretation of the discrete features in the pn spectrum of 4U 1705–44 as produced by reflection in the inner accretion disk. To give support to this interpretation, in the
next section we fit the broad band (0.3 – 200 keV) spectrum of 4U 1705–44 in the soft and in the hard state to self-consistent reflection models.

4.2. Reflection models on pn-2

In order to test if the iron line, the edge, and the 3 low-energy emission lines (S XVI, Ar XVIII and Ca XIX) are consistent with a reflection scenario, we apply the self-consistent reflection model REFLIONX on the XMM-Newton/pn spectrum. REFLIONX is a self-consistent model including both the reflection continuum and the corresponding discrete features (Ross & Fabian 2005). In addition to fully-ionized species, the following ions are included in the model: C III-VI, N III-VII, O III-VIII, Ne III-X, Mg III-XII, Si IV-XIV, S IV-XVI, and Fe VI-XXVI. However it does not include Ar XVIII and Ca XIX. We therefore add two gaussians to take into account the emission lines from these two elements. We multiply REFLIONX by a high energy cutoff (modeled with HIGHECUT in xspec), where the cutoff energy is frozen to 0.1 keV and the folding energy is fixed to 2.7 times the temperature of the electrons. In fact for a saturated Comptonization a Wien bump is formed at the electron temperature, whose peak is at about 3 times the electron temperature. We use nthcomp (Zdziarski et al. 1996; Zycki et al. 1999) to model the Comptonization continuum instead of comptt in order to have the photon index Γ as fitting parameter of the continuum. Its value is fixed to be equal to the photon index of the illuminating component in the reflection model. The χ²/dof obtained with this model is 577/413 (~ 1.40).

To take into account the smearing of the reflection component induced by Doppler and relativistic effects in the inner disk close to the compact object, we convolve the reflection model and the two gaussians with the same RBLUR component. This gives as best fit parameters the inclination of the system (38°±5°), the inner and outer radii of the accretion disk (R_in = 13R_g and R_out is fixed at 3500 R_g), and the index of the emissivity law profile (-2.2 ± 0.1). We freeze the width of the Gaussian lines at 0 keV to apply the same smearing parameters applied to the REFLIONX component. The χ²/dof is 523/412 (Δχ² ~ 54 for the addition of 1 parameter; the corresponding F-test probability of chance improvement is 2 × 10⁻¹⁰). This attests that the RBLUR component is statistically required to improve the fit. However, the reflection component does not seem to fit correctly the iron edge, since some features are still present in the residuals at about 8.5 keV. We add an edge to the model, also convolved with the same RBLUR component (under the assumption that the edge is also produced in the same region of the accretion disk as the reflection component). The edge is found at 8.7 keV and the associated depth is 0.06. The χ² decreases by 83 for the addition of two parameters, resulting in a χ²_red = 1.07 (410).

To check the consistency of the edge with the reflection continuum, we used another reflection model, PEXRIV (Magdziarz & Zdziarski 1995), which includes the iron edge and the Compton bump of the reflection model. This model consists in an exponentially cutoff power-law spectrum reflected by ionized material. However this model does not include any emission lines, so 4 gaussians (S, Ar, Ca and Fe) were added and convolved, together with the pexriv component, with the RBLUR component. The photon index of PEXRIV is fixed to the one obtained with the nthcomp model and the cutoff energy is 2.7 times the electron temperature obtained with nthcomp. The normalization of the pexriv model has been fixed to the one of the cutoff power-law model included in nthcomp. To do so, we applied a cutoff power-law model to the data and calculated the normalization in such way that the bolometric flux is the same than with nthcomp. The χ²_red obtained with this model is 1.06 (410 dof). The values of the smearing parameters are in agreement with the previous model and the features at about 8.5 keV are not visible anymore in the residuals. So the edge is well fitted by PEXRIV and is likely a reflection feature. However, it is not well fitted by the REFLIONX component.

4.3. Reflection models on the XMM-Newton, BeppoSAX and RXTE data

Considering separately the data of XMM-Newton and BeppoSAX, the continuum of these spectra is well fitted by a blackbody plus a thermal Comptonized model (comptt or nthcomp) modified at low energy by the interstellar photoelectric absorption (hbabs). In both cases, the fit is improved by adding a broad iron line, fitted by a Gaussian line or, even better, by a diskline. The best fit parameters, obtained fitting separately the spectra from the two different X-ray observatories, are similar to each other and are in agreement with previous results reported by Piraino et al. (2007) and Di Salvo et al. (2009) on 4U 1705–44. Regarding the BeppoSAX data, the absorption column density is N_H = 1.4 × 10²³ cm⁻², the blackbody temperature is 0.56 keV, the temperatures of the electrons and of the seed photons of the Comptonized component are 3.5 keV and 1.2 keV, respectively. A diskline is found at 6.8 keV, the inclination of the system is 28°±8° and the inner radius is about 8R_g. The χ²/dof corresponding to this fit is 584/503 (χ²_red ~ 1.16). This is better than using a Gaussian to fit the iron line (χ²/dof is 618/505). χ²_red ~ 1.23; an F-test gives a probability of chance improvement of about 10⁻⁷. These results are in perfect agreement with the results we obtain from the XMM-Newton spectrum, independently of the particular model we use to fit the reflection features. Note, however, that the uncertainties on the inner radius and on the inclination angle are larger than in the case of XMM-Newton. This can be explained by the quality of the data, which is better in the case of XMM-Newton due to its larger effective area and higher resolution capabilities. In Fig. 6 we show the ratio of the data to the best-fit continuum model in the energy range 5–8 keV to compare the residuals at the iron line as observed by the XMM-Newton/EPIC-pn and by the BeppoSAX/MECS. The iron line profile appears very similar in the two instruments, although the observations are not simultaneous.

Since the values of the parameters obtained by fitting the XMM-Newton and BeppoSAX spectra in the soft state are very similar, we fitted these data simultaneously, adding also the RXTE data. The different cross calibrations of the different instruments were taken into account by including normalizing factors in the model. This factor was fixed to 1 for pn and kept free for the other instruments. We use the self-consistent reflection model REFLIONX, and nthcomp instead of comptt to describe the thermal Comptonization component in order to have the photon index as a parameter of the fit. To take into account the disk smearing, which is necessary to obtain a good fit of the reflection component, we convolve the reflection model, the edge and the two Gaussians used to fit the Ar and Ca lines with the same RBLUR component.

Being the spectra not simultaneous, we find small differences in the best fit values of some parameters of the continuum model. We therefore let these parameters free to vary from one instrument to the other, when necessary (see Table 2). These
Table 2. Parameters left free to vary between XMM-Newton, BeppoSAX, and RXTE spectra in the soft state. The whole model applied to these data is presented in Table 7. The letter “B” indicates that the corresponding parameter has the same value as in the BeppoSAX spectrum.

Parameter	XMM	BeppoSAX	RXTE
\(N_H\) (\(10^{20}\text{cm}^{-2}\))	2.08 ± 0.02	1.96 ± 0.02	3.64 ± 0.02
\(\Gamma\)	2.6 ± 0.1	2.2 ± 0.1	2.4 ± 0.1
\(kT_e\) (keV)	3.0 ± 0.1	2.9 ± 0.1	B
\(kT_{\text{seed}}\) (keV)	1.30 ± 0.02	1.13 ± 0.02	B
\(N_{\text{dataComp}}\)	0.14 ± 0.01	0.19 ± 0.01	B

parameters are the column density, the parameters of nthcomp (the photon index, the temperature of the electrons, of the seed photons, and the normalization) and the fold energy of the high energy cutoff (that is fixed at 2.7 times the electron temperature in the soft state, according to the expectation for saturated Comptonization), which are slightly different for BeppoSAX and XMM-Newton. As regards RXTE, only the column density and the photon index are left free to vary. The other parameters coincide very well with those found for the BeppoSAX spectrum, so they are constrained to have the same values. All the other parameters are perfectly consistent with those obtained for XMM-Newton, and were forced to have the same values. The total \(\chi^2/\text{dof}\) obtained in this way is 1839/1573 (\(\chi^2_{\text{red}} \sim 1.17\)).

We note that the rdblur component is not statistically required to fit the whole dataset in this case. Indeed, if we delete this component from the model, we obtain \(\chi^2 = 1835/1574 \sim 1.17\), which is very similar to the one we get when the relativistic smearing is included in the model (\(\chi^2/\text{dof} = 1839/1573\)). However, if we exclude the relativistic smearing from the model, the ionization parameter gets an extremely high value, \(\sim 8000\) erg cm \(\text{s}^{-1}\), that appears to be unphysical. At such a high ionization parameter, Fe XXVI would be the most abundant Fe ion and this would produce a line at 6.97 keV. On the other hand, in the XMM-Newton spectrum the iron line is clearly detected at 6.7 keV, suggesting it is produced by Fe XXV. With the inclusion of the relativistic smearing described by the rdblur component, the ionization parameter attains a more reasonable value of 3500, fully consistent with the presence of an iron line at 6.6 keV produced by Fe XXV. Moreover, all the smearing parameters are perfectly coherent with those previously obtained (e.g. Di Salvo et al. 2009; D’Aì et al. 2010; Piraino et al. 2007). An additional iron edge is found at 8.7 keV with a significance of 11.6 \(\sigma\). Finally, we report here, for the first time, evidences of an iron overabundance by a factor 2.5 with respect to its solar abundances. The results of this model are presented in Table 7. In order to evaluate the statistical significance of the iron overabundance, we fixed this parameter to 1. The \(\chi^2\) increases by 48 for the addition of 1 d.o.f. (\(\chi^2_{\text{red}} \sim 1.20\)) and the associated probability of chance improvement is \(2 \times 10^{-10}\). So the iron overabundance is statistically significant.

The EPIC/pn absorbed flux obtained from the XMM-Newton best fit spectral parameters is \(6.19 \times 10^{-9}\) erg cm \(^{-2}\) s \(^{-1}\) and the unabsorbed flux is \(7.39 \times 10^{-9}\) erg cm \(^{-2}\) s \(^{-1}\) in the 2–10 keV band. We extrapolate this model in the 0.1–150 keV range to estimate the bolometric unabsorbed flux, \(F_X = 2.7(1) \times 10^{-8}\) erg cm \(^{-2}\) s \(^{-1}\). The bolometric luminosity associated to the soft state is \(L_X = 1.8 \times 10^{38}\) erg s \(^{-1}\) assuming a distance to the source of 7.4 kpc. This value is very close to the Eddington luminosity for a 1.4 M\(_\odot\) neutron star.

We also apply another reflection model, xillver (Garcia & Kallman 2010), to our dataset of 4U 1705–44 from the three satellites. This model includes Compton broadening, and the illumination spectrum is a power law with a photon index of 2, similar to reflionx. In this model, the redistribution of the photon energy is achieved by a Gaussian convolution, whose sigma is a function of the energy and the temperature of the gas. The gas temperature changes going deep inside the disk, and is calculated self-consistently by solving thermal and ionization balance. This model also includes emission lines from the same ions included in reflionx and, in addition, emission lines from Ar and Ca. It also allows to fit the abundances of these two elements with respect to the solar abundance. In this case,
to obtain a stable fit, we were forced to freeze the photon index \(\Gamma \) associated to the XMM-Newton data to the value obtained with reflonx (\(\Gamma = 2.6 \)). The addition of the edge at 8.5 keV is again necessary to improve the fit, with a significance of 11.1 \(\sigma \). The \(\chi^2_{\text{red}} \) associated to this fit is 1.26 for 1576 dof. The fit obtained with this model is a bit worse than that obtained with reflonx, but the values of the parameters are still consistent with those obtained with reflonx. We note a lower value of the inclination angle of the system \((i = 25 - 27^\circ) \), while the value of the inner disk radius \((R_{\text{in}} = 10 - 13 R_G) \) is perfectly consistent between the two cases. \(^4\) We find an overabundance by a factor 1.5–2 of Ar and Ca with respect to their solar abundance; a similar overabundance is also observed for iron (see Table 7). However, the statistical significance of the overabundance of Ar and Ca is not very well established. Indeed, fixing this parameter to 1, we find \(\chi^2/\text{dof} = 1992/1577 \), the corresponding probability of chance improvement is \(2 \times 10^{-2} \). In any case, this model allows to demonstrate that the Ar and Ca lines are likely produced by reflection.

As seen in the previous section, pexriv also gives a very good fit of the pn data. We apply this model plus 4 gaussians, all convolved with the same rdblur component, to the whole dataset. The results are very similar to reflonx, in particular the inclination of the system \((i = 38 - 41^\circ) \) and the inner radius of the accretion disk \((R_{\text{in}} = 12 - 17 R_G) \). The \(\chi^2_{\text{red}} \) associated is 1.16 for 1570 dof. The best fit parameters corresponding to this model are summarized in Table 7 and compared to reflonx and xillver.

5. Hard state

In this section we apply the same procedure used for the soft state to the 4U 1705–44 data in the hard state, using the three satellites: XMM-Newton, BeppoSAX and RXTE. Regarding the XMM-Newton data, we excluded a type-I X-ray burst before performing the spectral analysis. The study of the burst is described by D’Ai et al. (2010).

We use the same continuum model in order to determine the differences in the spectral parameters from one state to the other. The temperature of the electrons is about 14–16 keV, the temperature of the seed photons is 1.0–1.2 keV, the optical depth of the Comptonized component is 5–6 and the blackbody is found at 0.55–0.58 keV. The addition of a gaussian improves considerably the fit. A broad iron line is present in all the data at 6.4–6.6 keV (see Fig. 7). Using a diskline instead of a Gaussian profile to fit the iron line, we have to freeze the values of the outer radius to 3500 \(R_G \) and the inclination of the system to 37°, as in the soft state and in agreement with Di Salvo et al. (2009). The \(\chi^2 \) in this case is the same than using a simple Gaussian line. While for the XMM-Newton data, the \(\chi^2/\text{dof} = 407/419 \sim 0.97 \) using a gaussian, there are still some residuals at high energy \((> 10 \text{ keV}) \) in the case of BeppoSAX and RXTE. The associated \(\chi^2_{\text{red}} \) are 1.24 (484 dof) and 1.15 (65 dof) for the BeppoSAX and the RXTE spectra, respectively.

In order to fit this hard excess, probably ascribed to the Compton bump of the reflection component, we apply the self-"
state, and are consistent with being produced in the accretion disk. Since only the iron line is significantly detected, we did not add any other emission line, nor edge. To measure the significance of the Compton bump in these data, we replace the reflonx model with a simple gaussian line smeared by relativistic and/or Doppler effects, by using the rdblur component. The χ^2 is $1299/981 \sim 1.32$. We compare this result with the previous model where the reflection component is included instead of the simple gaussian associated to the iron line. The F-test gives a probability of chance improvement equals to 10^{-15}. This shows that there is a reflection signature in the spectrum beside the iron line in the hard state, meaning the Compton bump is significantly detected in these data.

We obtain a good fit of the whole dataset; the best fit parameters are listed in Table 8 where we just show those obtained for the BeppoSAX spectrum (there exist small differences in the best-fit parameters related to the fact that the observations are not simultaneous as described above). From all the instruments, we obtain a constraint on the inner disk radius, which appears to not simultaneous as described above). From all the instruments, we obtained good constraints on the continuum emission and on the reflection component, marking the most significant changes in the spectral parameters from the hard state to the soft state. The agreement between the results obtained with different instruments and the possibility to fit most of the reflection component with self-consistent models, provides further evidence that the broad iron line observed in 4U 1705–44 may be produced by reflection at the inner accretion disk, and indicates that the reported inner disk parameters are indeed reliable. In the following we discuss the main results we have obtained from this analysis.

6.1. The iron line

The origin of the iron line in neutron star LMXBs is still debated (Ng et al. 2010; Cackett et al. 2010, 2012). In this paper, we have compared the iron line profile observed by XMM-Newton with that observed by other instruments, and in particular by BeppoSAX. We find a perfect agreement between the results from these instruments, although the observations were not simultaneous, both in the soft and in the hard state of the source. We studied carefully the pile-up effects in the XMM/EPIC-pn spectrum of 4U 1705–44 during the soft state, when the count rate was the highest. We have demonstrated that the exclusion of the 2 central columns of the CCD is enough to get rid of pile-up effects, while excluding more CCD rows may underestimate the number of double events with respect to the expected value (see Appendix). In addition to this, we showed that the addition of the RGS data is important to well constrain the overall continuum shape. We find that the iron line parameters are not significantly affected by pile-up. This is in agreement with Cackett et al. (2010), who also conclude that the iron line profile is robust even if there was a small fraction of pile-up affecting the data, while the continuum may vary significantly. This is also in agreement with a comprehensive study performed by Miller et al. (2010) who found that severe pile-up may distort disk lines and the continuum shape whereas a modest pile-up fraction does not sensibly affect the line shape. This is probably the case of 4U 1705–44. The best fit parameters of the iron line profile we find in this way are perfectly in agreement with what has been previously found (see e.g. Piraino et al. 2007; Di Salvo et al. 2009; D’Aì et al. 2010), independently from the particular model used to fit the reflection component.

In the soft state, the Fe line at 6.7 keV is associated with highly ionized Fe XXV, which is a triplet consisting of the following components: at $r = 6.700$ keV, $i_3 = 6.682$ keV, $i_1 = 6.668$ keV, and $f = 6.637$ keV. We also included a gaussian to consider the H-like Fe XXVI contribution of the Lyα transitions at Lyα1 = 6.973 keV and Lyα2 = 6.952 keV. Unfortunately, the resolution of XMM-Newton and BeppoSAX does not allow us to resolve the structure of the resulting line, which appear to be dominated by the intercombination line of the triplet, and this is why a single Gaussian or a diskline has been used to take into
account all these components. These lines were resolved, for example, in the case of the bright Z-source Cyg X-2 observed with the High Energy Transmission Grating Spectrometer onboard of the Chandra satellite, that offers very high spectral resolution (Schulz et al. 2009). Also in that case the Fe complex was dominated by the intercombination line of the Fe XXV triplet and therefore the line was fitted by a single Gaussian. Note also that a red-skewed wing of the iron line was discovered in a Suzaku observation of Cyg X-2 (Shaposhnikov et al. 2009). It should be noted, however, that these lines are all included in the reflection models we used in our spectral analysis, and a further smearing was required to properly fit the line complex. Consequently the iron line is consistent with being produced in the inner part of the accretion disk where the line profile is distorted by Doppler and mildly relativistic effects relatively close to the compact object. At the inner disk radii we find, \(R_{\text{in}} \sim 10 - 17 R_g \), the Keplerian velocities become mildly relativistic and the Doppler boosting effect yields the blue-shifted horn (produced by matter coming in our direction) brighter than the red-shifted one (produced by receding matter).

In the hard state, the Fe emission line at 6.4 – 6.6 keV is related to a low ionized Fe fluorescence line. The line does not present a clear asymmetry anymore and is equally well fitted by a gaussian or with the diskline model. The apparent symmetry of the line may be due to the relativistic effects becoming less important further from the compact object, and/or to the lower statistics in the hard state. In both states, the broadening of the line is not as extreme as in the case of some black hole X-ray binaries or AGNs (see e.g. Reis et al. 2009a; Fabian et al. 2009). The Compton hump of the reflection component, however, is required with a very high confidence level to get a good fit of the data in the hard state.

6.2. Reflection models

We used data of 4U 1705–44 from three satellites (XMM-Newton, BeppoSAX, and RXTE) in order to test self-consistent reflection models on a broad-band range, from 0.3 to 200 keV. The reflection models we used are calculated for an optically-thick atmosphere (such as the surface of an accretion disk) of constant density illuminated by a power-law spectrum.

In the soft state, we conclude that the reflection model reflxrv is able to fit the iron edge with smearing parameters very similar to those obtained for the iron line profile; the reflxrv model is able to fit self-consistently the iron line profile and the S XVI line at 2.6 keV; the xillver model is able to fit the iron line profile self-consistently with the S XVI, the Ar XVII, and Ca XIX lines. The reflxrv model suggests an iron overabundance by a factor of about 2 with respect to its solar abundance. A mildly relativistic smearing of the reflection component, described with the rdblur component, is statistically required to fit the XMM-Newton data with the reflxrv model, these data having the best statistics at the iron line energy. Nevertheless, this component is not statistically required when we fit all our dataset with the reflxrv model. However, if we exclude the rdblur component from the model, we find that the ionization attains very high (unphysical) values. It should be noted here that both reflxrv and xillver include compton broadening, that is higher for higher ionization parameters (Reis et al. 2009b). This means that to adequately fit the width of the line with Compton broadening only, we have to increase dramatically the ionization parameter to values which appear too high to be compatible with the observed energy of the iron line. This is why we decided to include the relativistic smearing in the reflection model. The smearing parameters are well determined and appear very similar regardless of the particular reflection model adopted. They are consistent with previous results reported for this source (Piraino et al. 2007; Di Salvo et al. 2009; D’Ai et al. 2010), and are very similar for all the datasets used here (from XMM-Newton, BeppoSAX, and RXTE satellites).

In the hard state, we significantly detect the iron line at 6.4 keV and the Compton bump of the reflection component, while the other low-energy emission lines and the iron edge were not significantly detected. We just used the reflxrv model to fit self-consistently the reflection component (i.e. just the iron line and the Compton bump in this case). As before, we obtain a very good fit of the whole spectrum in the broad energy band between 0.4 and 200 keV. We note that the relativistic smearing is statistically required for the hard state. In fact the iron line is found to be broad also in this state (although not as broad as in the soft state), but in that case the ionization parameter has a particularly small value, Compton broadening is negligible and cannot explain the width of the line. Our results for the hard state of 4U 1705–44 are coinciding with the results obtained by Piraino et al. (in preparation); these authors fit the BeppoSAX data in the hard state with an alternative reflection model, where a PEXriv model (Portunus & Svensson 1996) is used to model the primary Comptonization spectrum. Their results are consistent with the disk-reflection scenario we favor in this paper.

Our results are in agreement with Reis et al. (2009b) who applied reflxrv on three datasets of 4U 1705–44 obtained by Suzaku at different periods. A relativistic broadening was also required to obtain a good fit, as in our analysis. Therefore different instruments get similar values for the reflection component in 4U 1705–44, indicating that the iron line shape as seen by these instruments is similar, and demonstrating that pile-up is not responsible of the observed iron line shape.

D’Ai et al. (2010) and Cackett et al. (2010) also applied a reflection model, refbb (Ballantyne 2004), to fit the spectrum of this source, restricted to the XMM-Newton data in the energy range 2–12 keV. In this model a blackbody component, likely associated to the boundary layer, provides the illuminating flux. In this energy band, the reflection model parameters are mainly determined by the shape of the iron line, and are perfectly compatible with the results described in this work. In other words, the inner disk parameters we obtain for this source under the hypothesis that the line is produced by reflection of the primary Comptonization spectrum on the inner accretion disk, are always compatible with each other, independently of the particular model used to fit the reflection component (such as disklines, refbb, pexriv, reflxrv, xillver).

To support this disk-reflection scenario, all the reflection component should be fitted by a self-consistent reflection model. Unfortunately no reflection model includes all the reflection features. In the case of reflxrv, two emission lines are necessary to reproduce Ar XVIII and Ca XIX emission lines detected in the soft state. We also needed to add an edge at \(~8.5\) keV. In order to check whether the edge was consistent with a disk origin, we used another reflection model: pexriv. The edge is well taken into account by this model, however this model does not include any emission line. The xillver model includes S, Ar, Ca and Fe lines but the addition of an edge at \(~8.5\) keV was again necessary to obtain a good fit.

As shown by our analysis, the quality reached by today’s observatories is such that it is now compelling to better calibrate the reflection broad band spectrum, as important features are clearly present (like emission lines from low Z-elements) and others are
not well accounted for (as absorption edges of highly ionized elements).

6.3. The continuum parameters

The main differences between the spectral parameters obtained from the soft and the hard state are discussed in the following. They concern the electron temperature and the seed photon temperature of the Comptonized component, the inner radius of the disk as derived from the smearing of the reflection component, and the ionization of the reflection component. We note here that we had to fix the parameters of the continuum of the reflection component used to represent the primary Comptonization spectrum. In this case, in order to obtain a good fit, we had to fix the folding energy parameter to 2.7 times the electron temperature in the soft state and to the electron temperature in the hard state, in agreement with the fact that the peak of a saturated Comptonization spectrum is at 2.7 kT_e, while the peak of a non saturated Comptonization spectrum is at kT_e.

We observe a clear difference in the spectral parameters from the soft to the hard state. The electron temperature increases (from $kT_e = 2 - 3$ keV in the soft state to $\sim 20 - 24$ keV in the hard state) whereas the power-law photon index and the temperature of the seed photons decrease (from $\Gamma = 2.2 - 2.8$ to $\Gamma = 1.8$ and from $kT_{seed} = 1.1 - 1.4$ keV to $0.7 - 0.8$ keV, respectively).

In order to evaluate the changes in the optical depth and the region of the seed photons from one state to the other, we use the parameters obtained by the nHComp model. This model specifies the Comptonization via the electron temperature in the corona kT_e, the temperature of photons injected in the corona kT_{seed}, and the spectral slope Γ. These parameters are related to the optical depth τ as

$$\Gamma = -\frac{1}{2} + \frac{9}{4} + \frac{1}{\frac{kT_e}{m_e c^2} \tau (1 + \frac{\Gamma}{4})^{1/2}}$$ \hspace{1cm} (1)$$

(Lightman & Zdziarski 1987). We use the values of the nHComp components reported in the first column of Tables 7 and Table 8 which correspond to the reflonx model for the reflection component in both states. The optical depth decreases from the soft to the hard state, from $\tau \sim 7$ to $\tau \sim 3$. Moreover we compute the Comptonization parameter y defined by

$$y = \frac{4 kT_e}{m_e c^2} \times \max (\tau, \tau^2)$$ \hspace{1cm} (2)$$

and we obtain $y \sim 1$ and $y \sim 2$ in the soft and hard state respectively. To estimate the radius of the emitting region of the seed photons which are Comptonized in the hot corona, we assume their emission as a blackbody and the bolometric Comptonized flux as $F_{Compt} = F_{seed} (1 + y)$ since we have to correct for energy gained by the photons in the inverse Compton scattering. Hence, F_{seed} is defined by

$$F_{seed} = \sigma T_{seed}^4 \frac{R_{seed}^2}{d}$$ \hspace{1cm} (3)$$

and so the region of the seed photons is obtained by

$$R_{seed} = 3 \times 10^4 d \left(\frac{F_{Compt} (1 + y)}{(kT_{seed})^2}\right)^{1/2} \text{km}$$ \hspace{1cm} (4)$$

(see in’t Zand et al. 1999) with d the distance in kpc, F_{Compt} in erg cm$^{-2}$ s$^{-1}$, and kT_{seed} in keV. By considering the F_{Compt} obtained with BeppoSAX that is 8.84×10^{-9} and 2.09×10^{-9} erg cm$^{-2}$ s$^{-1}$ in the soft and hard state, respectively, and a distance of 7.4 kpc, we obtain $R_{seed} \sim 9$ km in the soft state and $R_{seed} \sim 12$ km in the hard state. So the seed photons are compatible with coming from the neutron star surface in both states. These results are consistent with a corona above the disk and/or between the disk and the stellar surface which is hotter in the hard state than in the soft state. This is likely due to the interactions with the soft photons from the disk that are more or less intense depending upon the geometry of the disk-corona system. It can also be connected with the energetic balance between the Compton cooling provided by the soft photons (which acts as the photon number, so with the fourth power of the temperature) and the coronal heating (maybe through shock dissipation).

For what concerns the blackbody component, in the soft state kT_{bb} is 0.57 keV. Assuming a distance of 7.4 kpc, the region associated with the blackbody has an apparent radius $\sim R_{bb} = 30$ km, in agreement with the emission coming from the hottest part of the accretion disk, which corresponds to the inner part of the disk close to the neutron star. In the hard state, the blackbody temperature is $kT_{bb} = 0.25$ keV for all the instruments except for XMM-Newton for which $kT_{bb} = 0.57$ keV. The radius associated to the first value is $\sim R_{bb} = 160$ km, again compatible with a truncated accretion disk whereas the second one is $\sim R_{bb} = 30$ km. It is not clear whether the temperature of the blackbody component changes between the soft and the hard state, since for this parameter we find a value for the hard state very similar to what is found for the soft state for the XMM-Newton dataset, while the other instruments suggest a lower value. However, in the hard state, we note similar values of the blackbody normalization for different temperatures. The reason why XMM-Newton gives a much higher blackbody temperature with respect to BeppoSAX and RXTE may be due to a contamination from the boundary layer emission visible during the XMM-Newton observation and not during the other ones (of course the boundary layer emission may be directly visible when it is not completely comptonized in the corona).

6.4. The inclination of the system

The inclination angle of the system with respect to the line of sight, the inner radius of the disk, the emissivity index, and the centroid energy of the line are determined by the profile of the lines (Fabian et al. 1989). These parameters are mutually correlated and, it may result difficult to disentangle their contribution to the overall line shape. For example, as discussed by Cackett et al. (2010), the inclination and the emissivity index play a similar role in determining the line profile. A high value of these parameters makes the line broad and less peaked. So a high value of the inclination and a low value of the emissivity index will give a similar profile than a low value of the inclination and a high value of the emissivity index.

In the soft state the observed emission lines, and especially the iron line profile, allow us to obtain a good constraint on the inclination angle of the system. Using reflonx, we found $i = 35 - 40^\circ$. Applying XILVER instead of reflonx to the data, we obtain $i = 25 - 27^\circ$ (the difference between the best fit values of the inclination angle and the ionization parameter obtained with XILVER and reflonx are caused by a different energy range used to extrapolate the illuminating flux in the two models, J. Garcia private comm.). However using other models on the XMM-Newton data, which are the best quality data obtained on 4U 1705–44, such as DISKLINE and PROKIV, the inclination is found at $38 - 41^\circ$, in agreement with reflonx. Because
the χ^2/dof is higher in the case of XSilver and because all the other models indicate the same range of values for the inclination, we conclude that the inclination of 4U 1705–44 is between 35 – 41° with respect to the line of sight.

6.5. Geometry of the accretion disk

In all the models, the reflbklr component was necessary to improve the fit. The mildly relativistic blurring was applied to the entire reflection spectrum, confirming the common origin of the reflection features in the inner part of the accretion disk, where strong relativistic effects broaden emission and absorption features. This component gives us information on the inner radius of the accretion disk, $R_{\text{in}} = 10 – 16 R_g$ in the soft state, and $R_{\text{in}} = 19 – 59 R_g$ ($R_{\text{in}} = 26 – 65 R_g$ for the inclination fixed at 39°) in the hard state. So we have an indication that the accretion disk is close to the neutron star surface in the soft state and truncated further from the compact object in the hard state. This is in agreement with Barret & Olive (2002) who interpreted the transitions from one state to the other one in this source with different truncation radii of the accretion disk. This is also a possible interpretation for black hole binaries that show clearer transitions from the soft to the hard state and vice versa (e.g. Done et al. 2007).

The spectral state transitions are also associated with variations in the overall X-ray luminosity. We calculated the accretion rate in both states using the typical value of the accretion efficiency $\eta = 0.2$, corresponding to a neutron star ($M_{\text{NS}} = 1.4 M_\odot$ and $R_{\text{NS}} = 10$ km), and to the bolometric luminosities inferred by our spectral modelling. In the soft state, $M_{\text{SS}} = 1.6 \times 10^{-8} M_\odot$ yr$^{-1}$, while in the hard state the accretion rate decreases, $M_{\text{HS}} = 2 \times 10^{-9} M_\odot$ yr$^{-1}$.

The inner radius of the accretion disk may lead to a truncated disk at low-mass accretion rates (e.g. Meyer et al. 2000).

So we infer a similar geometry to that proposed for black hole binaries where at low luminosity the accretion disk is truncated (Barrio et al. 2003, Done & Diaz Trigo 2010). However some differences should be observed between these systems, especially in the soft state, because of the presence of the boundary layer in the case of the neutron star binaries. And in fact we find that in 4U 1705–44 the disk is truncated relatively far from the compact object (at more than 10 R_g both in the soft and in the hard state) as it is inferred by the fact that the observed distortion of the iron line profile is never extreme.

6.6. The ionization parameter

Reflection models give an indication on the ionization state of the matter in the inner part of the accretion disk: $\xi = 4\pi F_X/n_H$, where F_X is the total illuminating flux (erg cm$^{-2}$ s$^{-1}$) and n_H is the hydrogen number density. We note that the matter is more highly ionized in the soft state, $\xi = 3600$ erg cm s$^{-1}$, in comparison with $\xi = 210$ erg cm s$^{-1}$ in the hard state. This is again in agreement with the disk-reflection scenario for a truncated disk and with a lower illuminating flux in the hard state. When the accretion rate is high, the disk penetrates into the hot flow, favoring the interactions between the inner disk and the illuminating flux and resulting in a high ionization of and the matter in the disk and, possibly, in a high reflection amplitude (e.g. Poutanen et al. 1997). On the contrary when the accretion rate is low, the disk is truncated further from the compact object, disk matter is less ionized, and the amount of reflection is intrinsically low (e.g. Barrio et al. 2003). This is consistent with the observed energy of the iron line found in the soft state, $E_{\text{Fe}} = 6.6 – 6.7$ keV, and in the hard state, $E_{\text{Fe}} = 6.4 – 6.5$ keV (see also Reis et al. 2009b, who emphasized the influence of the ionization state of the accretion disk on the iron line profile).

6.7. Overabundance of some elements

The determination of the abundances of heavy elements is important to infer how they have been originated. Most heavy elements from Si to Fe originate from explosive nucleosynthesis in supernovae. Type Ia supernovae, which correspond to the explosion of an accreting white dwarf in a binary system when its mass becomes superior to 1.4 M_\odot via mass transfer, provide mainly Fe whereas core collapse supernovae (SN II, Ib, Ic) associated to the gravitational collapse of the iron core of a massive star after successive stages of hydrostatic burning, provide intermediate elements, from Si to Ca.

In the soft state of 4U 1705–44, XMM-Newton detected emission lines corresponding to S, Ca, Ar and Fe. Using reflection models we have investigated a possible overabundance of some elements with respect to their solar abundance. Applying reflionx we have an indication of an iron overabundance by a factor 2–3, likely responsible for the apparent large edge observed in the soft state (Ross & Fabian 2003). This result is in agreement with D’Ai et al. (2010), who evaluated the iron overabundance by a factor ~ 3 by using reflbb, in addition to an overabundance of S with respect to the other elements (or solar abundance).

In the hard state, the lower statistics does not allow to detect other emission lines than Fe, so it is difficult to estimate any overabundance. Letting this parameter (Fe/sol) free to vary in reflionx, its value is close to 1 and the inner radius of the disk is found at about $R_g = 19 – 59 R_g$. When we fix the abundance of Fe to a factor 2 with respect to the solar abundance, the inner radius is found at a slightly larger distance from the neutron star $R_{\text{in}} = 24 – 79 R_g$, confirming the evidence of a truncated disk in the hard state. It is therefore important to obtain good constraints on the abundance of Fe, and other elements if possible, because this parameter has also a direct effect on the estimate of the inner radius of the disk.

6.8. Comparison with Cyg X-2 and GX 3+1

Both Cygnus X-2 and GX 3+1 are bright neutron star LMXBs showing spectral features similar to those observed in 4U 1705–44.

The Z-source Cyg X-2 is one of the rare persistent LMXB whose secondary star is easily observed. It appears to be a high inclination system ($i > 60°$) since short-duration dips were detected in its light curve (Vrtilek et al. 1988, Orosz & Kuulkers 1999). The width of the brightest spectral lines of Mg XII, Si XIV, S XVI, Fe XXV, and Fe XXVI resolved by Chandra indicate velocity dispersion of the order of 1 000 to 3 000 km/s (Schulz et al. 2009), and are consistent with a stationary, dense and hot accretion disk corona. Moreover, a Suzaku observation revealed the presence of a red-skewed wing of the Kz iron line in this source (Shaposhnikov et al. 2009), possibly explained by reflection of X-ray radiation from a cold accretion disk or by Compton down-scattering in a mildly relativistic wind outflow (Laurent & Titarchuk 2007). In the case of 4U 1705–44, the observed emission lines could not be resolved into blend-

ing of different lines, nor with XMM-Newton (Di Salvo et al. 2005), nor with the Chandra High Energy Transmission Grating (Di Salvo et al. 2005). We infer velocities associated with the different emission lines of \(\sim 10,000 \text{km/s} \) \((E_F = 6.69 \pm 0.01 \text{keV}, \sigma_{E_F} \sim 0.25 \text{keV}, E_{\text{Fe}} = 3.31 \pm 0.02 \text{keV}, \sigma_{E_{\text{Fe}}} \sim 0.13 \text{keV})\) and a red-skewed K\(\alpha\) iron line, with line width similar to the one observed in Cyg X-2 \((\sigma_{E_F} \sim 0.22 \sim 0.25 \text{keV})\). In both sources, intercombination line dominates the Fe XXV triplet. However, the line width measured in the EPIC-pn spectrum, in agreement with Miller et al. (2010). The profile does not depend upon the photon pile-up fraction in the inner parts of the accretion disk. As in 4U 1705–44, the line smeared profile and is thought to originate from reflection in the inner parts of the accretion disk. As in 4U 1705–44, the line profile does not depend upon the photon pile-up fraction in the EPIC-pn spectrum, in agreement with Miller et al. (2010). The parameters obtained from the line profile modeled with a gaussian or a diskline, such as the emission line width, the inclination of the system with respect to the line of sight, \(35^\circ < i < 44^\circ\), and the inner disk radius, are remarkably similar to those we find for 4U 1705–44, indicating similar geometry and physical parameters of the disk-corona system in these bright sources.

7. Conclusions

Reflection features present complex profiles which depend mainly on the relativistic blurring, caused by Doppler effects due to the high Keplerian velocities and, possibly, gravitational redshift at the inner disk radius, on the incident flux, on the ionization state of the matter in the disk, on the abundance of the elements and on the inclination of the system with respect to the line of sight. The study of these features gives invaluable information on the system. We have performed a broad band \((0.4 \sim 200 \text{keV})\) and moderately high energy resolution spectral analysis of the X-ray burster 4U 1705–44 both in the soft and in the hard states using data from XMM-Newton, BeppoSAX, and RXTE observatories. This source is particularly interesting since it shows several reflection features observed at a high signal-to-noise ratio. We have fitted these features with several self-consistent reflection models in order to test the common origin of all these features, which are all compatible with being produced by reflection of the primary Comptonization spectrum on the inner accretion disk. In this scenario we have inferred the main parameters of the inner accretion disk. In particular we find the inclination of the system with respect to the line of sight that is constrained in the range \(35 \sim 41^\circ\), the inner radius of the disk which increases from \(10 \sim 16 R_g\) in the soft state up to \(26 \sim 65 R_g\) in the hard state, the ionization parameter which decreases from \(\sim 3600 \text{erg cm s}^{-1}\) in the soft state to \(210 \text{erg cm s}^{-1}\) in the hard state. We also find an indication for an iron overabundance with respect to its solar abundance by a factor 2–3. All these results appear to be strong against the particular reflection model used to fit these features and against possible distortion caused by photon pile-up in the XMM-Newton/EPIC-pn CCDs.

We have also discussed the differences in the spectral parameters between the soft and the hard state. The results found are consistent with the following scenario. At low luminosity, the accretion disk is truncated further from the neutron star, so the interaction efficiency of the disk photons with the hot electrons of the corona is lower. The rate of photons coming from the disk is also lower because of the cooler temperature of the disk. This results in a hard spectrum and a low-ionization reflection. At higher luminosity, the mass accretion rate increases and the inner radius of the disk moves closer to the compact object. The soft photons from the disk are much more efficient in cooling the corona, resulting in a softer spectrum. In addition to this, reflection increases due to a stronger irradiation of the disk, and the matter becomes more ionized. Moreover, the emission lines are broadened by stronger Doppler effects as the disk approaches the compact object.

This scenario is generally well supported by the timing analysis through power density spectra where correlations are observed between the characteristic frequencies of the fast time variability and the position of the source in the CD or its spectral state (e.g., Olive et al. 2003), with characteristic frequencies increasing with increasing the inferred mass accretion rate.

Acknowledgements

This work was supported by the Initial Training Network ITN 215212: Black Hole Universe funded by the European Community. A. Papitto acknowledges the support by the grants AYA2009-07391 and SGR2009-811, as well as the Formosa program TW/2010005 and ILINK program 2011-1003. We thank the referee for valuable comments which helped in improving the manuscript.

References

Anders, E. & Grevesse, N. 1989, Geochem. Cosmochim. Acta, 53, 197
Arnaud, K. A. 1996, in ASP Conf. Ser. 101: Astronomical Data Analysis Software and Systems V, 17
Balbiante, D. R., Ross, R. R., & Fabian, A. C. 2001, MNRAS, 327, 10
Balucinska-Church, M. & McCammon, D. 1992, ApJ, 400, L699
Barret, D. & Oliver, J. F. 2002, ApJ, 576, 391
Barrio, F. E., Done, C., & Nayakshin, S. 2003, MNRAS, 342, 557
Cackett, E. M., Miller, J. M., Ballantyne, D. R., et al. 2010, ApJ, 720, L25
Cackett, E. M., Miller, J. M., Reis, R. C., Fabian, A. C., & Barret, D. 2012, ApJ, 755, 27
D’Ai, A., Di Salvo, T., Ballantyne, D. R., et al. 2010, A&A, 516, id.A36
D’Ai, A., Iaria, R., Di Salvo, T., Matt, G., & Roberts, N. R. 2009, ApJ, 693, L1
Di Salvo, T., D’Ai, A., Iaria, R., et al. 2009, MNRAS, 398, 222
Di Salvo, T., Iaria, R., Mendez, M., et al. 2005, ApJ, 623, L121
Done, C. & Diaz Trigo, M. 2010, mnras, 407, 2287
Done, C., Gierliński, M., & Kubota, A. 2007, A&A Rev., 15, 1
Egron, E., Di Salvo, T., Burden, L., et al. 2011, A&A, 530, 99
Fabian, A. C., Jiasawa, R., M., Reynolds, C. S., & Young, A. J. 2000, The Publications of the Astronomical Society of the Pacific
Fabian, A. C. & Miniutti, G. 2005, Cambridge Univ. Press
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 729
Fabian, A. C., Zoghbi, A., Ross, R. R., et al. 2009, Nature
Fiocchi, M., Bazzano, P., & Zdziarski, A. A. 2007, ApJ, 657, 448
Ford, E., van der Klis, M., & Kaaret, P. 1998, ApJ, 489, L41
Forman, W., Jones, C., Cominsky, L., et al. 1978, ApJ, 38, 357
Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJ, 179, 360
Garcia, J. & Kollman, T. R. 2010, ApJ, 718, 695
George, I. M. & Fabian, A. C. 1991, MNRAS, 249, 352
Hasinger, G. & van der Klis, M. 1989, A&A, 225, 79
Iaria, R. & D’Ai, A., di Salvo, T., Robba, R. N., et al. 2005, A&A, 505, 1143
Iaria, R., di Salvo, T., Robba, N. R., et al. 2009, A&A, 505, 1143
Kaaret, P. J. & Schreiber, J. 2015, A&A, 46, 354
Kallman, T. R., & White, N. E. 1989, ApJ, 341, 955
Langmeier, A., Sztajno, M., Hasinger, G., Truemper, J., & Gottwald, M. 1987, ApJ, 323, 288
Laor, A. 1981, ApJ, 376, 90
Laurent, P. & Titarchuk, L. 2007, ApJ, 656, 1056
Lightman, A. P. & Zdziarski, A. 1987, ApJ, 319, 643
Egron et al.: Testing reflection features in 4U 1705–44 with XMM-Newton, BeppoSAX and RXTE in the hard and soft state

Lin, D., Remillard, R. A., & Homan, J. 2010, ApJ, 719, 1350
Maccarone, T. J. 2012, Arxiv:1204.3154
Magdziarz, P. & Zdziarski, A. A. 1995, MNRAS, 273, 837
Markoff, S. & Nowak, M. 2004, ApJ, 609, 972
Markoff, S., Nowak, M., & Wilms, J. 2005, ApJ, 635, 1203
Martocchia, S. & Matt, G. 1996, MNRAS, 282, L53
Matt, G. 2006, AN, 327, A96
Meyer, F., Liu, B. F., & Meyer-Hofmeister, E. 2000, A&A, 361, 175
Miller, J. M., D’Ai, A., Bautz, M. W., et al. 2010, ApJ, 724, 1441
Ng, C., Daz Trigo, M., Cadolle Bel, M., & Migliari, S. 2010, A&A, 522, A96
Olive, J. F., Barret, D., & M., G. 2003, ApJ, 583, 416
Orosz, J. A. & Kuulkers, E. 1999, MNRAS, 305, 132
Papitto, A., Riggio, A., Di Salvo, T., et al. 2010, MNRAS, 407, 2575
Piraino, S., Santangelo, A., Di Salvo, T., et al. 2007, A&A, 471, L17
Piraino, S., Santangelo, A., Kaaret, P., et al. 2012, A&A, 542, L27
Poutanen, J., Krolik, J. H., & Ryder, F. 1997, MNRAS, 292, L21
Poutanen, J. & Svensson, R. 1996, ApJ, 470, 249
Reis, R. C., Fabian, A. C., Ross, R. R., & Miller, J. M. 2009a, MNRAS, 395, L1257
Reis, R. C., Fabian, A. C., & Young, A. J. 2009b, MNRAS, 399, L1
Reynolds, C. S. & Nowak, M. A. 2003, Phys. Rep., 377, 389
Ross, R. R. & Fabian, A. C. 2005, MNRAS, 358, 211
Ross, R. R. & Fabian, A. C. 2007, MNRAS, 381, 1697
Schulz, N. S., Huenemoerder, D. P., Ji, L., et al. 2009, ApJ, 692, L80
Shaposhnikov, N., Titarchuk, L., & Laurent, P. 2009, ApJ, 699, 1223
Titarchuk, L., Laurent, P., & Shaposhnikov, N. 2009, ApJ, 700, 1831
Vrtilek, S. D., Soker, N., & Raymond, J. C. 1993, ApJ, 404, 696
Vrtilek, S. D., Swank, J. H., Kelley, R. L., & Kahn, S. M. 1988, ApJ, 329, 276
Walton, D. J., Reis, R. C., Cackett, E. M., Fabian, A. C., & Miller, J. M. 2012, MNRAS
White, N. E. & Holt, S. S. 1982, ApJ, 257, 318
White, N. E., Peacock, A., Hasinger, G., et al. 1986, MNRAS, 218, 129
Yan, M., Sadeghpour, H. R., & Dalgarno, A. 1998, ApJ, 496, L1044
Zdziarski, A. A., Johnson, W. N., & Magdziarz, P. 1996, MNRAS, 283, 193
Zycki, P. T., Done, C., & Smith, D. A. 1999, MNRAS, 309, 561
Table 4. XMM-Newton and BeppoSAX observation details

Satellite	Obs. ID	Obs. date	Exp. time (ks)	Count rate ASM (c/s)	State source
XMM-Newton	04023000201	26/08/2006	34.72	1	Hard
	0551270201	24/08/2008	45.17	19	Soft
BeppoSAX	21292001	20/08/2000	43.5	18	Soft
		03/10/2000	48	3	Hard

Table 5. Selected RXTE observation details

Source state	Obs. ID	Obs. date (MJD)	Count rate (c/s)	Hardness
SS	93060-01-15-00	54332.3	642.4	0.613
	93060-01-16-00	54336.4	804.4	0.647
	93060-01-19-01	54348.7	1049.0	0.620
	93060-01-19-02	54349.0	1011.0	0.621
	93060-01-25-00	54372.5	834.5	0.630
	93060-01-76-00	54576.5	726.9	0.620
	93060-01-84-00	54608.5	833.7	0.628
	93060-01-91-00	54636.8	732.4	0.625
	93060-01-95-00	54652.6	785.0	0.617
	93060-01-01-10	54668.1	832.2	0.646
	93060-01-02-10	54672.3	849.8	0.637
	93060-01-07-10	54692.5	761.5	0.614
	93060-01-10-10	54704.4	768.4	0.632
	93060-01-12-10	54712.2	791.4	0.617
	93060-01-19-10	54740.3	782.5	0.631
	94060-01-20-00	54942.5	805.5	0.609
	94060-01-22-00	54950.6	834.7	0.622
	95060-01-71-00	55478.6	879.0	0.620
HS	91039-01-01-41	53541.0	79.7	0.760
	91039-01-01-42	53543.0	78.1	0.749
	91039-01-01-43	53544.8	82.6	0.751
	91039-01-01-50	53546.0	91.3	0.767
	91039-01-02-40	53658.3	64.9	0.736
	93060-01-07-00	54300.4	70.6	0.747
	93060-01-52-01	54480.6	67.1	0.746
	94060-01-08-00	54894.9	52.1	0.738
	95060-01-19-01	55270.5	69.6	0.749
	95060-01-33-00	55326.4	52.5	0.733
	95060-01-46-00	55378.7	57.7	0.750
Table 6. Evaluation of the pile-up effects on the *XMM-Newton* EPIC-pn data of 4U 1705–44 in the soft state, using the RGS and pn spectra. We compare the values of the parameters we obtain when we exclude 0, 1, 2, until 7 brightest central columns in the pn CCD, which correspond to spectra named pn-all, pn-1, pn-2 until pn-7, respectively, in the table. The model consists of const*phabs*rdblur*edge*(bbody+compTT+gauss+gauss+gauss). The σ of the 4 gaussians and the outer radius of the disk are frozen to 0 and 3500 R_g, respectively. We also include in the last column the results from *BeppoSAX* data in the soft state as reported by [Piraino et al. (2007)] to compare the values of the parameters obtained with *XMM-Newton* with those obtained with non-CCD instruments. The model used to fit the *BeppoSAX* spectrum consists of phabs*(bbody+compTT+powerlaw+diskline).

Component	Parameter	pn-all	pn-2	pn-3	pn-4	pn-5	pn-6	pn-7	BeppoSAX		
phabs	N_H ($\times 10^{24}$ cm$^{-2}$)	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.9 ± 0.1		
rdblur	E_{compTT} (keV)	0.57 ± 0.01	0.57 ± 0.01	0.57 ± 0.01	0.55 ± 0.02	0.55 ± 0.02	0.54 ± 0.01	0.54 ± 0.01	0.56 ± 0.01		
rdblur	R_t (GM/c2)	14 ± 2	14$^{+1}_{-1}$	14$^{+1}_{-1}$	15 ± 2	15$^{+1}_{-1}$	16 ± 3	16$^{+1}_{-1}$	17$^{+1}_{-1}$	8$^{+2}_{-1}$	28$^{+8}_{-8}$
rdblur	i ($^\circ$)	38 ± 1	39 ± 1	38$^{+1}_{-1}$	39 ± 2	41$^{+2}_{-1}$	42 ± 2	40$^{+3}_{-2}$	40$^{+6}_{-3}$	38$^{+8}_{-6}$	
edge	E (keV)	8.6 ± 0.1	8.6 ± 0.1	8.6 ± 0.1	8.6 ± 0.1	8.7 ± 0.1	8.7$^{+0.2}_{-0.3}$	8.8 ± 0.2	8.6$^{+0.3}_{-0.5}$	-	
edge	α (×10$^{-5}$)	51 ± 0.4	51 ± 0.4	7 ± 1	7 ± 1	8 ± 2	8 ± 2	7$^{+2}_{-2}$	5$^{+2}_{-2}$	-	
bbody	kT_{compTT} (keV)	1.3 ± 0.01	1.29 ± 0.02	1.30$^{+0.02}_{-0.03}$	1.34$^{+0.02}_{-0.05}$	1.33$^{+0.03}_{-0.03}$	1.35$^{+0.03}_{-0.03}$	1.36 ± 0.05	1.39$^{+0.06}_{-0.03}$	1.13$^{+0.02}_{-0.02}$	
bbody	E_{compTT} (keV)	6.7$^{+0}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	4$^{+3}_{-1}$	2.7 ± 0.1	
compTT	τ	4.7$^{+1}_{-1}$	6.8 ± 0.1	6.6$^{+0.1}_{-0.3}$	5.9 ± 0.3	6$^{+1}_{-1}$	5.2$^{+0.1}_{-0.3}$	5.1$^{+0.5}_{-0.5}$	4$^{+0}_{-0}$	11.0 ± 0.6	
compTT	Norm (×10$^{-3}$)	18 ± 0.2	29 ± 0.2	30 ± 1	30 ± 0.2	30 ± 0.2	30 ± 0.2	30 ± 0.2	32 ± 0.2	35 ± 2	
gauss	E (keV)	2.64 ± 0.03	2.67 ± 0.03	2.65 ± 0.03	2.65 ± 0.03	2.67 ± 0.05	2.66 ± 0.05	2.7$^{+0.1}_{-0.1}$	2.7$^{+0.2}_{-0.1}$	-	
gauss	Norm (×10$^{-3}$)	0.9 ± 0.2	1.3 ± 0.2	2.1 ± 0.3	2.1 ± 0.3	1.7 ± 0.6	1.8$^{+0.5}_{-0.5}$	1.8$^{+0.8}_{-0.9}$	1.3$^{+0.7}_{-0.7}$	-	
gauss	E (keV)	3.29 ± 0.01	3.29$^{+0.02}_{-0.02}$	3.29 ± 0.02	3.26 ± 0.03	3.30$^{+0.03}_{-0.02}$	3.30$^{+0.03}_{-0.02}$	3.27$^{+0.03}_{-0.02}$	3.27 ± 0.03	3.28$^{+0.03}_{-0.03}$	
gauss	Norm (×10$^{-3}$)	1.9 ± 0.2	2.1 ± 0.2	2.4 ± 0.2	2.6 ± 0.3	3.2$^{+0.5}_{-0.5}$	3.1 ± 0.6	3.4$^{+0.5}_{-0.5}$	2.8 ± 0.7	-	
gauss	E (keV)	3.89$^{+0.03}_{-0.03}$	3.87$^{+0.04}_{-0.04}$	3.89 ± 0.02	3.88 ± 0.02	3.88 ± 0.02	3.86 ± 0.03	3.84$^{+0.03}_{-0.03}$	3.87$^{+0.05}_{-0.05}$	-	
gauss	Norm (×10$^{-3}$)	1.7 ± 0.1	2.0 ± 0.1	2.1 ± 0.2	2.4 ± 0.2	2.9 ± 0.4	3.0$^{+0.5}_{-0.5}$	3.3 ± 0.6	3.1$^{+0.6}_{-0.6}$	-	
gauss	E (keV)	6.64 ± 0.01	6.64 ± 0.01	6.64 ± 0.01	6.62 ± 0.02	6.62$^{+0.02}_{-0.02}$	6.59$^{+0.02}_{-0.02}$	6.58 ± 0.04	6.58 ± 0.04	6.7$^{+0.2}_{-0.2}$	
gauss	Norm (×10$^{-3}$)	3.8$^{+0.1}_{-0.1}$	4.1 ± 0.2	4.3 ± 0.1	4.1$^{+0.3}_{-0.3}$	4.4 ± 0.4	4.7 ± 0.4	4.9$^{+0.3}_{-0.4}$	4.6 ± 0.6	4.7$^{+0.2}_{-0.2}$	
χ^2_{red} (d.o.f.)	1.20 (1024)	1.15 (1024)	1.14 (1024)	1.15 (1024)	1.13 (1024)	1.11 (1024)	1.13 (1024)	1.14 (1024)	1.18 (524)	-	
Fig. 9. Estimation of the pile-up fraction in the EPIC-pn through the epatplot tool at the 6-7 keV iron line energy range when all the columns of the CCD are considered. The plot represents the spectra of the single (red) and double (blue) events. Solid lines indicate the expected fraction from the model curves.

Appendix A: Pile-up

The task epatplot offers the possibility to check whether an observation suffers from pile-up. Here we compare the following different cases, when all the columns of the CCD are used (pn-all), when the brightest central column is excluded (pn-1), when the two brightest central columns are excluded (pn-2), and finally when the 7 brightest columns are excluded (pn-7, as proposed by Ng et al. (2010)) in order to determine if the 4U 1705–44 spectra were affected by significant pile-up during the XMM-Newton observation in the soft state. We note the presence of some pile-up below 2 keV and above 10 keV, unless 7 central columns are excluded. We specify that we have restricted our spectral analysis between 2.4 and 11 keV, which is the range of interest for the study of the iron Kα line complex. Moreover it is possible to quantify the amount of pile-up in a given energy range. By default this range is from 0.5 to 2 keV which corresponds to the softest part of the spectrum, the most sensitive to pile-up. We estimate the amount of pile-up in the energy band of the iron emission line (6–7 keV).

When we use all the columns of the CCD, we note a deviation between the observed and the expected distribution that testifies the presence of pile-up in the spectrum (Fig. 9). The observed to model fractions of the single and double are 0.98 and 1.11 respectively in the 6–7 keV band. If we exclude the central column, the deviation is less important, especially for the single events (Fig. 10). The observed to model fractions corresponding to the single and double events are 0.99 and 1.07. When we exclude 2 central columns, the single and double distributions follow the expected models meaning that the observation does not suffer anymore of pile-up (Fig. 11). The corresponding ratios are 1.00 and 1.04. Finally we exclude the 7 brightest columns. The single and double distributions are overestimated in comparison to the models (Fig. 12). The associated ratios are 1.03 and 0.91, respectively, in the 6–7 keV energy band. We therefore conclude that the best solution is to exclude 2 central columns of the CCD in order to avoid pile-up and to have the most correct distribution of single and double events at the iron line energy band. Note also that the range below 2 keV is covered by the RGS, and it is therefore not necessary to eliminate more central columns in the pn CCD with the aim to reduce the pile-up fraction below 2 keV.

In other words, we prefer to exclude from our spectral analysis the softer energy range in the pn spectrum, which is covered by the RGS, in order to maximize the statistics of the pn spectrum and the quality of the instrumental response reconstruction in the range of interest for iron line studies.
Table 7. Comparison of three different self-consistent, relativistically smeared reflection models (reflionx, xillver and pexriv) applied on the XMM-Newton, BeppoSAX and RXTE spectra of 4U 1705–44 in the soft state. Here we present the best fit parameters we obtain for the XMM-Newton spectrum. A few parameters of the continuum got different best fit values for the non-simultaneous BeppoSAX and RXTE spectra; these differences are detailed in Table 2. The model is const*phabs*rdblur*edge*(bbbody+nthcomp+gauss+gauss+gauss+highecut*reflection). For the pexriv model, we have fixed the disk inclination to cos i = 0.78 and the disk temperature to 10^6 K.

Component	Parameter	reflionx	xillver	pexriv
phabs	N_H (10^{22} cm^{-2})	2.08 ± 0.02	2.04 ± 0.01	1.91 ± 0.02
bbody	kTbb (keV)	0.56 ± 0.01	0.67^{+0.02}_{-0.01}	0.52 ± 0.01
nthComp	Γ	2.58 ± 0.01	1.7 ± 0.01	2.94 ± 0.01
nthComp	kT_c (keV)	3.0 ± 0.1	2.9 ± 0.1	2.6 ± 0.1
nthComp	kT_seed (keV)	1.30 ± 0.02	1.39^{+0.04}_{-0.01}	1.18^{+0.03}_{-0.02}
nthComp	Norm	0.14 ± 0.01	0.11 ± 0.01	0.17 ± 0.01
rdblur	R_H (GM/c^2)	13 ± 3	11^{+3}_{-2}	15^{+2}_{-3}
rdblur	R_out (GM/c^2)	3500 (frozen)	3500 (frozen)	3500 (frozen)
edge	E (keV)	8.7 ± 0.1	8.5 ± 0.1	-
edge	Max r (10^{-2})	4.2 ± 0.6	3.4 ± 0.5	-
gauss	E (keV)	-	-	2.6 (frozen)
gauss	Norm (10^{-3})	-	-	1.4 ± 0.2
gauss	E (keV)	3.31 ± 0.01	-	3.31^{+0.02}_{-0.03}
gauss	Norm (10^{-3})	1.4 ± 0.2	-	1.9 ± 0.2
gauss	E (keV)	3.92 ± 0.02	-	3.88^{+0.03}_{-0.01}
gauss	Norm (10^{-3})	1.4 ± 0.2	-	2.0 ± 0.2
gauss	E (keV)	-	-	6.63 ± 0.01
gauss	Norm (10^{-3})	-	-	4.1 ± 0.1
highecut	cutoffE (keV)	0.1 (frozen)	0.1 (frozen)	-
highecut	foldc (keV)	8.1 (2.7*kT_c of nthComp)	7.7 (2.7*kT_c of nthComp)	7.0 (2.7*kT_c of nthComp)
reflection	Γ	2.6 (= Γ of nthComp)	-	2.3 (= Γ of nthComp)
reflection	Fe/Solar	2.5^{+0.4}_{-0.5}	1 (frozen)	1.4^{+0.6}_{-0.1}
reflection	Ar, Ca Abund	1 (frozen)	1.8^{+2}_{-2}	1 (frozen)
reflection	ξ (erg cm s^{-1})	357^{+1184}_{-347}	1349^{+90}_{-95}	3081^{+2486}_{-1954}
pexriv	Rel-refl	-	-	-1^{+1.0}_{-0.02}
Total χ^2/red (d.o.f.)	1.17 (1573)	1.26 (1576)	1.16 (1570)	

Fig. 12. Same as in Fig. 9 for pn-7, in which the 7 brightest central columns of the CCD have been excluded.
Table 8. Self-consistent, relativistically smeared reflection model (reflionx) applied to the 4U 1705–44 spectra from the three satellites (XMM-Newton, BeppoSAX and RXTE) when the source was in the hard state; the complete model consists of \textit{const*phabs*(bbody + nthComp + rdblur*highecut*reflionx)}. Here we show the best fit parameters we obtain for the BeppoSAX spectrum. A few parameters of the continuum got different best fit values for the non-simultaneous XMM-Newton and RXTE spectra; these differences are detailed in Table 3. The inclination angle is fixed at 37°, while the Fe/sol ratio is left free to vary or is fixed to 2.

Component	Parameter	reflionx (Fe/sol = free)	reflionx (Fe/sol = 2)
phabs	\(N_\text{H} (\times 10^{22} \text{cm}^{-2}) \)	1.9 ± 0.1	1.9 ± 0.1
bbody	\(kT_{\text{bb}} \) (keV)	0.24\(^{+0.02}_{-0.03}\)	0.26 ± 0.02
bbody	\(\text{Norm} (\times 10^{-3}) \)	2.0 ± 0.4	1.7 ± 0.3
nthComp	\(\Gamma \)	1.84 ± 0.01	1.83 ± 0.01
nthComp	\(kT_e \) (keV)	22\(^{+2}_{-1}\)	21 ± 1
nthComp	\(kT_{\text{seed}} \) (keV)	0.69\(^{+0.02}_{-0.01}\)	0.70 ± 0.02
nthComp	\(\text{Norm} (\times 10^{-2}) \)	3.9\(^{+0.1}_{-0.2}\)	4.0 ± 0.2
rdblur	\(\text{Betor} \)	-3 (frozen)	-3 (frozen)
rdblur	\(R_{\text{in}} \) (GM/c\(^2\))	31\(^{+2}_{-2}\)	39\(^{+15}_{-15}\)
rdblur	\(R_{\text{out}} \) (GM/c\(^2\))	3500 (frozen)	3500 (frozen)
rdblur	\(i (\deg) \)	37 (frozen)	37 (frozen)
highecut	\(\text{cutoff}_f \) (keV)	0.1 (frozen)	0.1 (frozen)
highecut	\(\text{fold}_f \) (keV)	22 (= \(kT_e \) of nthComp)	21 (= \(kT_e \) of nthComp)
reflionx	\(\text{Fe/Solar} \)	1.1\(^{+0.5}_{-0.3}\)	2 (frozen)
reflionx	\(\Gamma \)	1.84 (= \(\Gamma \) of nthComp)	1.83 (= \(\Gamma \) of nthComp)
reflionx	\(\xi \) (erg cm s\(^{-1}\))	209\(^{+3}_{-4}\)	204\(^{+4}_{-4}\)
reflionx	\(\text{Norm} (\times 10^{-5}) \)	1.7 ± 0.3	1.8\(^{+0.3}_{-0.3}\)
Total \(\chi^2/\text{red} \) (d.o.f.)	1.12 (980)	1.13 (981)	