A New Montgomery® Salivary Bypass Tube Placement Technique: Report of Procedures Performed on Patients With Tracheoesophageal Fistula or Pharyngoesophageal Stenosis

Antonio Gilardi, MD¹, Andrea Colizza, MD¹, Antonio Minni, MD¹, and Marco de Vincentiis, MD²

Significance Statement

Salivary Bypass Tube is an important tool to prevent or treat some complications of laryngeal and hypopharyngeal surgery and its placement may prove difficult. In this article, we propose a new technique to simplify its management by using an Oral/Nasal Tracheal Tube Cuffed-Reinforced that allowed us to reduce operating times, complications related to prolonged general anesthesia, and the traumas on the tissues incurred during the forced positioning of the device with standard techniques.

Surgical resection of laryngeal malignancies and reconstruction of the subsequent defects in the aerodigestive tract are among the most challenging of oncological procedures. Pharyngocutaneous fistula (PCF), tracheoesophageal fistula (TEF), and pharyngoesophageal stenosis (PES) are among the most common complications following total laryngectomy; they have adverse effects on post-operative rehabilitation, adjuvant therapy, and overall survival.¹ It is known the importance of preventative application of a salivary stent in selected patients at high risk of fistula development.²,³ Conservative treatment is considered in most of the cases as the first option; when these measures fail, surgical treatment and contextual use of salivary devices like the Montgomery® Salivary Bypass Tube (MSBT) is indicated. Sometimes, due to the flexibility and softness of the materials used, the positioning of the device can be particularly complex and risky, especially in patients suffering from the anatomical alterations described above. In this article, we propose a new technique to simplify the placement of a MSBT by using a Mallinckrodt™ Oral/Nasal Tracheal Tube Cuffed-Reinforced.

We tested this new technique in patients with history of squamous cell carcinoma of the larynx subjected to total laryngectomy who developed a TEF or a PES after surgery and cyclically undergoes device replacement. During the following replacements, the procedure proved to be rather difficult with the standard insertion technique due to a progressive formation of a fibrous ring with partial stenosis of the hypopharyngeal tissues. Therefore, we decided to attempt a new method using a MSBT (Boston Medical Products) with a Mallinckrodt™ Oral/Nasal Tracheal Tube Cuffed-Reinforced (Medtronic-Covidien) as introducer (Figure 1) to overcome resistance and to reduce the risk of incorrect positioning. The size of the tracheal tube was calibrated guaranteeing the possibility of easy introduction/removal from the device and the solidity of the anchorage by cuffing appropriately (Figure 2).

Figure 1. The figure shows a Montgomery® Salivary Bypass Tube n°12 (Boston Medical Products) and a n°4.0 Mallinckrodt™ Oral/Nasal Tracheal Tube Cuffed-Reinforced (Medtronic-Covidien).

¹ Department of Sense Organs, Sapienza University of Rome, Rome, Italy
² Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy

Received: March 7, 2021; revised: March 7, 2021; accepted: March 9, 2021

Corresponding Author:
Antonio Gilardi, MD, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00186, Italy.
Email: antonio.gilardi@uniroma1.it
The tool obtained is positioned under general anesthesia through direct laryngoscopy with visualization of the esophagus. The device is maneuvered as during a tracheal intubation using the bevel at the tip of the tube in order to reduce trauma and overcome stenosis.

In fact, one of the main positioning problems that prompted us to try this new technique is the need for compression of the device which can easily be solved by folding up the distal end and grasping it with alligator-type endoscopic forceps as described by Montgomery. However, this procedure assumes that the folded distal part must slide with the forceps into the esophagus, risking its rupture or enlargement of the TEF/PCF. On the other hand, if the distal part is released from the forceps first, the lower edge of the device could get stuck in the fistula and compromise the sliding of the device into the esophagus as well as risking again an enlargement of the fistula.

The advantages of the proposed insertion method, also in comparison with other techniques reported in the literature, are as follows:

- The Mallinckrodt™ Oral/Nasal Tracheal Tube is soft and flexible with a spiral-wound reinforcing wire which allows the operator to direct the salivary device into which it is inserted.
- Using the portion found at the tip of the tube and positioning the insufflated cuff astride the distal edge of the device, it is possible to overcome obstacles by blunt way.
Deflating the cuff, as we have inserted an endotracheal tube of a smaller caliber than the device, it will be simple to remove it from the device itself.

According to our experience with n°12 and n°14 MSBT, we can estimate the caliber couplings between endotracheal tubes and MSBT considering the difference between the external diameters of the tubes (OD), the cuff diameters, and the caliber of the salivary devices (Figure 3). The use of this new tool and the related device positioning technique allowed us to reduce operating times, the complications related to prolonged general anesthesia, and the traumas incurred during the standard techniques. Furthermore, we also verified the feasibility of this procedure avoiding general anesthesia by repositioning the device assisted by superficial sedation. The operation was in fact performed with the consent expressed by the patient, in a protected environment, using a slight hyperextension of the patient’s head and ensuring a prompt conversion to general anesthesia in case of complications. The procedure performed in this way required a few seconds of compliance by the patient, thus avoiding more serious anesthetic complications.

Authors’ Note
All the clinicopathologic investigations detailed in the manuscript have been conducted in accordance with the Declaration of Helsinki and its later amendments or comparable ethical standards.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Antonio Gilardi https://orcid.org/0000-0002-5145-3152
Andrea Colizza https://orcid.org/0000-0002-0639-806X

References
1. Kamhieh Y, Fox H, Hallett E, Berry S. Routine use of salivary bypass tubes in laryngectomy patients: systematic review. J Laryngol Otol. 2018;132(5):380-384.
2. Minni A, Ralli M, Di Cianni S, et al. Montgomery salivary bypass tube in head and neck cancer: the experience of our otolaryngology clinic. Ear Nose Throat J. 2020;145561320961754.
3. Bondi S, Giordano L, Limardo P, Bussi M. Role of Montgomery salivary stent placement during pharyngolaryngectomy, to prevent pharyngocutaneous fistula in high-risk patients. J Laryngol Otol. 2013;127(1):54-57.
4. Montgomery WW. Salivary bypass tube. Ann Otol Rhinol Laryngol. 1978;87(2 Pt 1):159-162.
5. Montgomery WW, Montgomery SK. Manual for use of Montgomery laryngeal, tracheal, and esophageal prostheses: update 1990. Ann Otol Rhinol Laryngol Suppl. 1990;150:2-28.
6. Tirelli G, Baruca R, Boscolo Nata F. Salivary bypass tube placement in esophageal strictures: a technical note and report of three cases. Auris Nasus Larynx. 2017;44(6):758-761.