A HOMOTOPY DECOMPOSITION OF THE FIBRE OF THE SQUARING MAP ON $\Omega^3 S^{17}$

STEVEN AMELOTTI

Abstract. We use Richter’s 2-primary proof of Gray’s conjecture to give a homotopy decomposition of the fibre $\Omega^3 S^{17}(2)$ of the H-space squaring map on the triple loop space of the 17-sphere. This induces a splitting of the mod-2 homotopy groups $\pi_*(S^{17};\mathbb{Z}/2)$ in terms of the integral homotopy groups of the fibre of the double suspension $E^2 : S^{2n-1} \to \Omega^2 S^{2n+1}$ and refines a result of Cohen and Selick, who gave similar decompositions for S^9 and S^{10}. We relate these decompositions to various Whitehead products in the homotopy groups of mod-2 Moore spaces and Stiefel manifolds to show that the Whitehead square $[i_{2n}, i_{2n}]$ of the inclusion of the bottom cell of the Moore space $P^{2n+1}(2)$ is divisible by 2 if and only if $2n = 2, 4, 8$ or 16.

1. Introduction

For a based loop space ΩX, let $\Omega X\{k\}$ denote the homotopy fibre of the k^{th} power map $k : \Omega X \to \Omega X$. In [14] and [15], Selick showed that after localizing at an odd prime p, there is a homotopy decomposition $\Omega^2 S^{2p+1}\{p\} \simeq \Omega^2 S^3(3) \times W_p$, where $S^3(3)$ is the 3-connected cover of S^3 and W_p is the homotopy fibre of the double suspension $E^2 : S^{2n-1} \to \Omega^2 S^{2n+1}$. Since $\Omega^2 S^{2p+1}\{p\}$ is homotopy equivalent to the pointed mapping space $\text{Map}_*(P^3(p), S^{2p+1})$ and the degree p map on the Moore space $P^3(p)$ is nullhomotopic, an immediate consequence is that p annihilates the p-torsion in $\pi_*(S^3)$ when p is odd. In [16], Ravenel’s solution to the odd primary Arf–Kervaire invariant problem [12] was used to show that, at least for $p \geq 5$, similar decompositions of $\Omega^2 S^{2n+1}\{p\}$ are not possible if $n \neq 1$ or p.

The 2-primary analogue of Selick’s decomposition, namely that there is a 2-local homotopy equivalence $\Omega^2 S^5\{2\} \simeq \Omega^2 S^3(3) \times W_2$, was later proved by Cohen [4]. Similarly, since $\Omega^2 S^5\{2\}$ is homotopy equivalent to $\text{Map}_*(P^3(2), S^5)$ and the degree 4 map on $P^3(2) \simeq \Sigma RP^2$ is nullhomotopic, this product decomposition gives a “geometric” proof of James’ classical result that 4 annihilates the 2-torsion in $\pi_*(S^3)$. Unlike the odd primary case however, for reasons related to the divisibility of the Whitehead square $[i_{2n-1}, i_{2n-1}] \in \pi_{4n-3}(S^{2n-1})$, the fibre of the squaring map on $\Omega^2 S^{2n+1}$ admits nontrivial product decompositions for some other values of n.

First, in their investigation of the homology of spaces of maps from mod-2 Moore spaces to spheres, Campbell, Cohen, Peterson and Selick [1] found that if $2n + 1 \neq 3, 5, 9$ or 17, then $\Omega^2 S^{2n+1}\{2\}$ is atomic and hence indecomposable. Following this, it was shown in [5] that after localization at the prime 2, there is a homotopy decomposition $\Omega^2 S^9\{2\} \simeq BW_2 \times W_4$ and W_4 is a retract of $\Omega^3 S^{17}\{2\}$. Here BW_n denotes the classifying space of W_n first constructed by Gray [6]. Since BW_1 is known to be homotopy equivalent to $\Omega^2 S^3(3)$, the pattern suggested by the decompositions of $\Omega^2 S^5\{2\}$ and $\Omega^2 S^9\{2\}$ led Cohen and Selick to conjecture that $\Omega^2 S^{17}\{2\} \simeq BW_4 \times W_8$.

In this note we prove this is true after looping once. (This weaker statement was also conjectured in [3].)

Theorem 1.1. There is a 2-local homotopy equivalence $\Omega^3 S^{17}\{2\} \simeq W_4 \times \Omega W_8$.

In addition to the exponent results mentioned above, decompositions of $\Omega^n S^{2n+1}(p)$ also give decompositions of homotopy groups of spheres with $\mathbb{Z}/p\mathbb{Z}$ coefficients. Recall that the mod-p homotopy groups of X are defined by $\pi_k(X; \mathbb{Z}/p\mathbb{Z}) = [P^k(p), X]$.

Corollary 1.2. $\pi_k(S^{17}; \mathbb{Z}/2\mathbb{Z}) \cong \pi_{k-4}(W_4) \oplus \pi_{k-3}(W_8)$ for all $k \geq 4$.

In section 3 we relate the problem of decomposing $\Omega^2 S^{2n+1}(2)$ to a problem considered by Mukai and Skopenkov in [11] of computing a certain summand in a homotopy group of the mod-2 Moore space $P^{2n+1}(2)$—more specifically, the problem of determining when the Whitehead square $[i_{2n}, i_{2n}] \in \pi_{4n-1}(P^{2n+1}(2))$ of the inclusion of the bottom cell $i_{2n} : S^{2n} \to P^{2n+1}(2)$ is divisible by 2. The indecomposability result for $\Omega^2 S^{2n+1}(2)$ in [11] (see also [2]) was proved by showing that for $n > 1$ the existence of a spherical homology class in $H_{4n-3}(\Omega^2 S^{2n+1}(2))$ imposed by a nontrivial product decomposition implies the existence of an element $\theta \in \pi_{2n-2}^S$ of Kervaire invariant one such that $\theta \eta$ is divisible by 2, where η is the generator of the stable 1-stem π_1^S. Such elements are known to exist only for $2n = 4, 8, 16$. We show that the divisibility of the Whitehead square $[i_{2n}, i_{2n}]$ similarly implies the existence of such Kervaire invariant elements to obtain the following.

Theorem 1.3. The Whitehead square $[i_{2n}, i_{2n}] \in \pi_{4n-1}(P^{2n+1}(2))$ is divisible by 2 if and only if $2n = 2, 4, 8$ or 16.

This will follow from a preliminary result (Proposition 3.1) equating the divisibility of $[i_{2n}, i_{2n}]$ with the vanishing of a Whitehead product in the mod-2 homotopy of the Stiefel manifold $V_{2n+1,2}$, i.e., the unit tangent bundle over S^{2n}. It is shown in [11] that there do not exist maps $S^{2n-1} \times P^{2n}(2) \to V_{2n+1,2}$ extending the inclusions of the bottom cell S^{2n-1} and bottom Moore space $P^{2n}(2)$ if $2n \neq 2, 4, 8$ or 16. When $2n = 2, 4$ or 8, the Whitehead product obstructing an extension is known to vanish for reasons related to Hopf invariant one, leaving only the boundary case $2n = 16$ unresolved. We find that the Whitehead product is also trivial in this case.

2. The decomposition of $\Omega^3 S^{17}(2)$

The proof of Theorem 1.1 will make use of the 2-primary version of Richter’s proof of Gray’s conjecture, so we begin by reviewing this conjecture and spelling out some of its consequences. In his construction of a classifying space of the fibre W_n of the double suspension, Gray [6] introduced two p-local homotopy fibrations

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu} BW_n$$

$$BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\phi} S^{2np-1}$$

with the property that $j \circ \nu \simeq OH$, where $H : \Omega S^{2n+1} \to \Omega S^{2np+1}$ is the pth James–Hopf invariant. In addition, Gray showed that the composite $BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\nu} \Omega^2 S^{2np+1}$ is nullhomotopic and conjectured that the composite $\Omega^2 S^{2np+1} \xrightarrow{\phi_n} S^{2np-1} \xrightarrow{E^2} \Omega^2 S^{2np+1}$ is homotopic to the pth power map on $\Omega^2 S^{2np+1}$. This was recently proved by Richter in [14].

Theorem 2.1 ([14]). For any prime p, there is a homotopy fibration

$$BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\phi_n} S^{2np-1}$$

such that $E^2 \circ \phi_n \simeq p$.
For odd primes, it was shown in \cite{21} that there is a homotopy fibration $\Omega W_{np} \to BW_n \to \Omega^2 S^{2np+1} \{p\}$ based on the fact that a lift $\overline{S} : BW_n \to \Omega^2 S^{2np+1} \{p\}$ of j can be chosen to be an H-map when p is odd. One consequence of Theorem 2.1 is that this homotopy fibration exists for all primes and can be extended one step to the right by a map $\Omega^2 S^{2np+1} \{p\} \to W_{np}$.

Lemma 2.2. For any prime p, there is a homotopy fibration

$$BW_n \longrightarrow \Omega^2 S^{2np+1} \{p\} \longrightarrow W_{np}.$$

Proof. The homotopy pullback of ϕ_n and the fibre inclusion $W_{np} \to S^{2np-1}$ of the double suspension defines a map $\Omega^2 S^{2np+1} \{p\} \to W_{np}$ with homotopy fibre BW_n, which can be seen by comparing fibres in the homotopy pullback diagram

$$
\begin{array}{c}
\begin{array}{c}
BW_n \\
\downarrow j \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Omega^2 S^{2np+1} \\
\downarrow \phi_n \\
S^{2np-1} \\
\downarrow p \\
\Omega^2 S^{2np+1} \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
W_{np} \\
\downarrow \\
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Omega^2 S^{2np+1} \\
\downarrow \nu \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Omega^2 S^{4n+1} \\
\end{array}
\end{array}
\end{array}

\square

Looping once, we obtain a homotopy fibration

$$W_n \longrightarrow \Omega^3 S^{2np+1} \{p\} \longrightarrow \Omega W_{np}$$

which we will show is split when $p = 2$ and $n = 4$. We now fix $p = 2$ and localize all spaces and maps at the prime 2. Homology will be taken with mod-2 coefficients unless otherwise stated.

The next lemma describes a factorization of the looped second James–Hopf invariant, an odd primary version of which appears in \cite{21}. By a well-known result due to Barratt, $\Omega H : \Omega^2 S^{2n+1} \to \Omega^2 S^{4n+1}$ has order 2 in the group $[\Omega^2 S^{2n+1}, \Omega^2 S^{4n+1}]$ and hence lifts to a map $\Omega^2 S^{2n+1} \to \Omega^2 S^{4n+1} \{2\}$. Improving on this, a feature of Richter’s construction of the map ϕ_n is that the composite $\Omega^2 S^{2n+1} \to \Omega^2 S^{4n+1} \{2\}$ is nullhomotopic \cite{13} Lemma 4.2. This recovers Gray’s fibration $S^{2n-1} \to \Omega^2 S^{2n+1} \nu \to BW_n$ and the relation $j \circ \nu \simeq \Omega H$ since there then exists a lift $\nu : \Omega^2 S^{2n+1} \to BW_n$ making the diagram

$$
\begin{array}{c}

\begin{array}{c}
BW_n \\
\downarrow j \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Omega^2 S^{2n+1} \\
\downarrow \Omega H \\
\Omega^2 S^{4n+1} \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\nu \\
\end{array}
\end{array}
\end{array}

$$

 commute up to homotopy. Since j factors through $\Omega^2 S^{4n+1} \{2\}$, by composing the lift ν with the map $BW_n \to \Omega^2 S^{4n+1} \{2\}$ we obtain a choice of lift $S : \Omega^2 S^{2n+1} \to \Omega^2 S^{4n+1} \{2\}$ of the looped James–Hopf invariant. Hence we have the following consequence of Richter’s theorem.
Lemma 2.3. There is a homotopy commutative diagram

\[\Omega^2 S^{2n+1} \xrightarrow{S} \Omega^2 S^{4n+1} \{2\} \]

\[\downarrow \nu \quad \downarrow \]

\[BW_n \xrightarrow{\tau} \Omega^2 S^{4n+1} \{2\} \]

where \(S \) is a lift of the looped second James–Hopf invariant \(\Omega H : \Omega^2 S^{2n+1} \rightarrow \Omega^2 S^{4n+1} \) and the map \(BW_n \rightarrow \Omega^2 S^{4n+1} \{2\} \) has homotopy fibre \(\Omega W_{2n} \).

The following homological result was proved in [1] and used to obtain the homotopy decompositions of [4] and [5].

Lemma 2.4 ([1]). Let \(n \geq 2 \) and let \(f : X \rightarrow \Omega^2 S^{2n+1} \{2\} \) be a map which induces an isomorphism on the module of primitives in degrees \(2n-2 \) and \(4n-3 \). If the mod-2 homology of \(X \) is isomorphic to that of \(\Omega^2 S^{2n+1} \{2\} \) as a coalgebra over the Steenrod algebra, then \(f \) is a homology isomorphism.

Theorem 2.5. There is a homotopy equivalence \(\Omega^3 S^{17} \{2\} \simeq W_4 \times \Omega W_8 \).

Proof. Let \(\tau_n \) denote the map \(BW_n \rightarrow \Omega^2 S^{4n+1} \{2\} \) appearing in Lemma 2.2. By [1], \(\tau_n \) is a lift of \(j \), implying that \(\tau_n \) is nonzero in \(H_{4n-2} \{2\} \) by naturality of the Bockstein since \(j \) is nonzero in \(H_{4n-1} \{2\} \). We can therefore use the maps \(\tau_n \) in place of the (potentially different) maps \(\sigma_n \) used in [5] to obtain product decompositions of \(\Omega^2 S^{4n+1} \{2\} \) for \(n = 1 \) and \(2 \), the advantage being that \(\tau_n \) has fibre \(\Omega W_{2n} \). Explicitly, for \(n = 2 \) this is done as follows. By [5 Corollary 2.1], there exists a map \(g : \Omega^3 S^{17} \{2\} \rightarrow \Omega^2 S^9 \{2\} \) which is nonzero in \(H_{13} \{2\} \). Letting \(\mu \) denote the loop multiplication on \(\Omega^2 S^9 \{2\} \), it follows that the composite

\[\psi : BW_4 \times W_4 \xrightarrow{\tau_2 \times (g \circ \Omega f_4)} \Omega^2 S^9 \{2\} \times \Omega^2 S^9 \{2\} \xrightarrow{\mu} \Omega^2 S^9 \{2\} \]

induces an isomorphism on the module of primitives in degrees 6 and 13. Since \(H_* (BW_2 \times W_4) \) and \(H_* (\Omega^2 S^9 \{2\}) \) are isomorphic as coalgebras over the Steenrod algebra, the map above is a homology isomorphism by Lemma 2.4 and hence a homotopy equivalence.

Now the map \(\Omega f_4 \) fits in the homotopy fibration

\[W_4 \xrightarrow{\Omega f_4} \Omega^3 S^{17} \{2\} \longrightarrow \Omega W_8 \]

and has a left homotopy inverse given by \(\pi_2 \circ \psi^{-1} \circ g \) where \(\psi^{-1} \) is a homotopy inverse of \(\psi \) and \(\pi_2 : BW_2 \times W_4 \rightarrow W_4 \) is the projection onto the second factor. (Alternatively, composing \(g : \Omega^3 S^{17} \{2\} \rightarrow \Omega^2 S^9 \{2\} \) with the map \(\Omega^2 S^9 \{2\} \rightarrow W_4 \) of Lemma 2.2 yields a left homotopy inverse of \(\Omega f_4 \).) It follows that the homotopy fibration above is fibre homotopy equivalent to the trivial fibration \(W_4 \times \Omega W_8 \rightarrow \Omega W_8 \).

\[\square \]

Corollary 2.6. \(\pi_k (S^{17}; \mathbb{Z}/2\mathbb{Z}) \cong \pi_{k-4} (W_4) \oplus \pi_{k-3} (W_8) \) for all \(k \geq 4 \).

One consequence of the splitting of the fibration \(W_n \rightarrow \Omega^3 S^{4n+1} \{p\} \rightarrow \Omega W_{2n} \) when \(n \in \{1, 2, 4\} \) is a corresponding homotopy decomposition of the fibre of the map \(f \) appearing in Lemma 2.3. As in [18], we define the space \(Y \) and the map \(t \) by the homotopy fibration

\[Y \xrightarrow{t} \Omega^2 S^{2n+1} \xrightarrow{S} \Omega^2 S^{4n+1} \{2\} \]

This space and its odd primary analogue play a central role in the construction of Anick’s fibration in [18], [21] and the alternative proof given in [20] of Cohen, Moore and Neisendorfer’s determination
of the odd primary homotopy exponent of spheres. Unlike at odd primes, the lift S of ΩH cannot be chosen to be an H-map. Nevertheless, the corollary below shows that its fibre has the structure of an H-space in cases of Hopf invariant one.

Corollary 2.7. There is a homotopy fibration $S^{2n-1} \overset{f}{\to} Y \overset{g}{\to} \Omega W_{2n}$ with the property that the composite $S^{2n-1} \overset{f}{\to} Y \overset{g}{\to} \Omega E^2 S^{2n+1}$ is homotopic to the double suspension E^2. Moreover, if $n = 1, 2$ or 4 then the fibration splits, giving a homotopy equivalence

$$Y \simeq S^{2n-1} \times \Omega W_{2n}.$$

Proof. By Lemma 2.3, the homotopy fibration defining Y fits in a homotopy pullback diagram

$$
\begin{array}{ccc}
S^{2n-1} & \overset{f}{\longrightarrow} & S^{2n-1} \\
| & | & | \\
f \downarrow & \simeq & \downarrow E^2 \\
\scriptstyle Y \overset{t}{\longrightarrow} \Omega^2 S^{2n+1} & \overset{\nu}{\longrightarrow} & \Omega^2 S^{4n+1} \{2\} \\
| & | & | \\
g \downarrow & & \downarrow \\
\Omega W_{2n} & \longrightarrow & BW_n \longrightarrow \Omega^2 S^{4n+1} \{2\},
\end{array}
$$

which proves the first statement. Note that when $n = 1, 2$ or 4, the map $\Omega W_{2n} \to BW_n$ is nullhomotopic by Theorem 1.1, hence t lifts through the double suspension. Since any choice of a lift $Y \to S^{2n-1}$ is degree one in H_{2n-1}, it also serves as a left homotopy inverse of f, which implies the asserted splitting.

Remark 2.8. The first part of Corollary 2.7 and an odd primary version are proved by different means in [18] and [20], respectively (see Remark 6.2 of [18]). At odd primes, there is an analogous splitting for $n = 1$:

$$Y \simeq S^1 \times \Omega W_p \simeq S^1 \times \Omega^3 T^{2p^2+1}(p)$$

where $T^{2p^2+1}(p)$ is Anick’s space (see [19]).

3. Relations to Whitehead products in Moore spaces and Stiefel manifolds

The special homotopy decompositions of $\Omega^3 S^{2n+1} \{2\}$ discussed in the previous section are made possible by the existence of special elements in the stable homotopy groups of spheres, namely elements of Arf–Kervaire invariant one $\theta \in \pi_{2n-2}^s$ such that $\theta \eta$ is divisible by 2. In this section, we give several reformulations of the existence of such elements in terms of mod-2 Moore spaces and Stiefel manifolds.

Let $i_{n-1} : S^{n-1} \to P^n(2)$ be the inclusion of the bottom cell and let $j_n : P^n(2) \to P^n(2)$ be the identity map. Similarly, let $i'_{2n-1} : S^{2n-1} \to V_{2n+1,2}$ and $j'_{2n} : P^{2n}(2) \to V_{2n+1,2}$ denote the inclusions of the bottom cell and bottom Moore space, respectively.

Proposition 3.1. The Whitehead product $[i'_{2n-1}, j'_{2n}] \in \pi_{4n-2}(V_{2n+1,2} ; \mathbb{Z}/2\mathbb{Z})$ is trivial if and only if the Whitehead square $[i_{2n}, i_{2n}] \in \pi_{4n-1}(P^{2n+1}(2))$ is divisible by 2.

Proof. Let $\lambda : S^{4n-2} \to P^{2n}(2)$ denote the attaching map of the top cell in $V_{2n+1,2} \simeq P^{2n}(2) \cup e^{4n-1}$ and note that $[i'_{2n-1}, j'_{2n}] = j'_{2n} \circ [i_{2n-1}, j_{2n}]$ by naturality of the Whitehead product. The map $[i_{2n-1}, j_{2n}]$:

$\footnote{Note that we index these maps by the dimension of their source rather than their target, so the element of $\pi_{4n-1}(P^{2n+1}(2))$ we call $[i_{2n}, i_{2n}]$ is called $[i_{2n+1}, j_{2n+1}]$ in [17].}$
$P^{4n-2}(2) \to P^{2n}(2)$ is essential since its adjoint is a Samelson product with nontrivial Hurewicz image $[u, v] \in H_{4n-3}(\Omega P^{2n}(2))$, where $H_*(\Omega P^{2n}(2))$ is isomorphic as an algebra to the tensor algebra $T(u, v)$ with $|u| = 2n - 2$ and $|v| = 2n - 1$ by the Bott–Samelson theorem. Since the homotopy fibre of the inclusion $j_2^n : P^{2n}(2) \to V_{2n+1}$ has $(4n - 2)$-skeleton S^{4n-2} which maps into $P^{2n}(2)$ by the attaching map λ, it follows that $[i'_{2n-1}, j'_{2n}]$ is trivial if and only if $[i_{2n-1}, j_{2n}]$ is homotopic to the composite

\[P^{4n-2}(2) \xrightarrow{q'} S^{4n-2} \xrightarrow{\lambda} P^{2n}(2) \]

where q is the pinch map.

To ease notation let P^n denote the mod-2 Moore space $P^n(2)$ and consider the morphism of EHP sequences

\[
\begin{array}{ccccccc}
[S^{4n}, P^{2n+1}] & \xrightarrow{H} & [S^{4n}, \Sigma P^{2n} \land P^{2n}] & \xrightarrow{P} & [S^{4n-2}, P^{2n}] & \xrightarrow{E} & [S^{4n-1}, P^{2n+1}] \\
\downarrow q' & & \downarrow q' & & \downarrow q' & & \downarrow q' \\
[P^{4n}, P^{2n+1}] & \xrightarrow{H} & [P^{4n}, \Sigma P^{2n} \land P^{2n}] & \xrightarrow{P} & [P^{4n-2}, P^{2n}] & \xrightarrow{E} & [P^{4n-1}, P^{2n+1}]
\end{array}
\]

induced by the pinch map. A homology calculation shows that the $(4n)$-skeleton of $\Sigma P^{2n} \land P^{2n}$ is homotopy equivalent to $P^{4n} \vee S^{4n}$. Let $k_1 : P^{4n} \to \Sigma P^{2n} \land P^{2n}$ and $k_2 : S^{4n} \to \Sigma P^{2n} \land P^{2n}$ be the composites $P^{4n} \hookrightarrow P^{4n} \vee S^{4n} \simeq \text{sk}_4(S^{4n} \land P^{2n}) \hookrightarrow \Sigma P^{2n} \land P^{2n}$ and $S^{4n} \hookrightarrow P^{4n} \vee S^{4n} \simeq \text{sk}_4(S^{4n} \land P^{2n}) \hookrightarrow \Sigma P^{2n} \land P^{2n}$ defined by the left and right wedge summand inclusions, respectively. Then we have that $\pi_{4n}(\Sigma P^{2n} \land \Sigma P^{2n}) = \mathbb{Z}/4\mathbb{Z}\{k_2\}$ and $P(k_2) = \pm 2\lambda$ by [9] Lemma 12. It follows from the universal coefficient exact sequence

\[0 \to \pi_{4n}(\Sigma P^{2n} \land P^{2n}) \otimes \mathbb{Z}/2\mathbb{Z} \to \pi_{4n}(\Sigma P^{2n} \land P^{2n}; \mathbb{Z}/2\mathbb{Z}) \to \text{Tor}(\pi_{4n-1}(\Sigma P^{2n} \land P^{2n}), \mathbb{Z}/2\mathbb{Z}) \to 0 \]

that

\[\pi_{4n}(\Sigma P^{2n} \land P^{2n}; \mathbb{Z}/2\mathbb{Z}) = [P^{4n}, \Sigma P^{2n} \land P^{2n}] = \mathbb{Z}/2\mathbb{Z}\{k_1\} \oplus \mathbb{Z}/2\mathbb{Z}\{k_2 \circ q\} \]

and that the generator $k_2 \circ q$ is in the kernel of P since $P(k_2) = \pm 2\lambda$ implies

\[P(k_2 \circ q) = P(q^*(k_2)) = q^*(P(k_2)) = \pm \lambda \circ q = 0 \]

by the commutativity of the above diagram and the fact that $q : P^{4n-2} \to S^{4n-2}$ and $2 : S^{4n-2} \to S^{4n-2}$ are consecutive maps in a cofibration sequence. Therefore $[i_{2n-1}, j_{2n}] = P(k_1)$ since the suspension of a Whitehead product is trivial. On the other hand, $\Sigma \lambda$ is homotopic to the composite $S^{4n-1} \xrightarrow{[i_{2n}, j_{2n}]} S^{2n} \xrightarrow{2} P^{2n+1}$ by [9], which implies $E(\lambda \circ q) = i_{2n} \circ [i_{2n}, j_{2n}] \circ q = [i_{2n}, i_{2n}] \circ q$ is trivial in $[P^{4n-1}, P^{2n+1}]$ precisely when $[i_{2n}, i_{2n}]$ is divisible by 2. Hence $[i_{2n}, i_{2n}]$ is divisible by 2 if and only if $\lambda \circ q = P(k_1) = [i_{2n-1}, j_{2n}] \in [P^{4n-2}, P^{2n}]$, and the proposition follows.

We use Proposition 5.1 in two ways. First, since the calculation of $\pi_{31}(P^{17}(2))$ in [10] shows that $[i_{16}, i_{16}] = 2\tilde{\sigma}_{16}^2$ for a suitable choice of representative $\tilde{\sigma}_{16}$ of the Toda bracket $\{\sigma_{16}^2, 2i_{16}, i_{16}\}$, it follows
that the Whitehead product $[i_{15}, j_{16}] : P^{30}(2) \to V_{17,2}$ is nullhomotopic and hence there exists a map $S^{15} \times P^{16}(2) \to V_{17,2}$ extending the wedge of skeletal inclusions $S^{15} \vee P^{16}(2) \to V_{17,2}$. This resolves the only case left unsettled by Theorem 3.2 of [17].

In the other direction, note that such maps $S^{2n-1} \times P^{2n}(2) \to V_{2n+1,2}$ restrict to maps $S^{2n-1} \to V_{2n+1,2}$ which exist only in cases of Kervaire invariant one by [22], Proposition 2.27, so Proposition 3.1 shows that when $2n \neq 2^k$ for some $k \geq 1$ the Whitehead square $[i_{2n}, i_{2n}]$ cannot be divisible by 2 for the same reasons that the Whitehead square $[i_{2n-1}, i_{2n-1}] \in \pi_{4n-3}(S^{2n-1})$ cannot be divisible by 2. Moreover, since maps $S^{2n-1} \times P^{2n}(2) \to V_{2n+1,2}$ extending the inclusions of S^{2n-1} and $P^{2n}(2)$ are shown not to exist for $2n > 16$ in [17], Proposition 3.1 implies that the Whitehead square $[i_{2n}, i_{2n}]$ is divisible by 2 if and only if $2n = 2, 4, 8$ or 16. In all other cases it generates a $\mathbb{Z}/2\mathbb{Z}$ summand in $\pi_{4n-1}(P^{2n+1}(2))$. This improves on the main theorem of [11] which shows by other means that $[i_{2n}, i_{2n}]$ is not divisible by 2 when $2n$ is not a power of 2.

These results are summarized in Theorem 3.3 below. First we recall the following well-known equivalent formulations of the Kervaire invariant problem.

Theorem 3.2 ([2], [22]). The following are equivalent:

(a) The Whitehead square $[i_{2n-1}, i_{2n-1}] \in \pi_{4n-3}(S^{2n-1})$ is divisible by 2;
(b) There is a map $P^{4n-2}(2) \to \Omega S^{2n}$ which is nonzero in homology;
(c) There exists a space X with mod-2 cohomology $\tilde{H}^i(X) \cong \mathbb{Z}/2\mathbb{Z}$ for $i = 2n$, $4n - 1$, $4n$ and zero otherwise with $Sq^{2n} : H^{2n}(X) \to H^{2n+1}(X)$ and $Sq^1 : H^{4n+1}(X) \to H^{4n}(X)$ isomorphisms;
(d) There exists a map $f : S^{2n-1} \times S^{2n-1} \to V_{2n+1,2}$ such that $f|_{S^{2n-1} \times S^{2n-1}}$ is the inclusion of the bottom cell;
(e) $n = 1$ or there exists an element $\theta \in \pi_{2n-2}^S$ of Kervaire invariant one.

The above conditions hold for $2n = 2, 4, 8, 16, 32$ and 64, and the recent solution to the Kervaire invariant problem by Hill, Hopkins and Ravenel [8] implies that, with the possible exception of $2n = 128$, these are the only values for which the conditions hold. Mimicking the reformulations above we obtain the following.

Theorem 3.3. The following are equivalent:

(a) The Whitehead square $[i_{2n}, i_{2n}] \in \pi_{4n-1}(P^{2n+1}(2))$ is divisible by 2;
(b) There is a map $P^{4n}(2) \to \Omega P^{2n+2}(2)$ which is nonzero in homology;
(c) There exists a space X with mod-2 cohomology $\tilde{H}^i(X) \cong \mathbb{Z}/2\mathbb{Z}$ for $i = 2n + 1, 2n + 2, 4n + 1, 4n + 2$ and zero otherwise with $Sq^{2n} : H^{2n+1}(X) \to H^{2n+2}(X)$ and $Sq^1 : H^{4n+2}(X) \to H^{4n+1}(X)$ isomorphisms;
(d) There exists a map $f : S^{2n-1} \times P^{2n}(2) \to V_{2n+1,2}$ such that $f|_{S^{2n-1} \times P^{2n}(2)}$ are the skeletal inclusions of S^{2n-1} and $P^{2n}(2)$, respectively;
(e) $n = 1$ or there exists an element $\theta \in \pi_{2n-2}^S$ of Kervaire invariant one such that $\eta \theta$ is divisible by 2;
(f) $2n = 2, 4, 8$ or 16.

Proof. (a) is equivalent to (b). In the $n = 1$ case, $[i_2, i_2] = 2\eta_2$ implies $[i_2, i_2] = 0$, and since $\eta_3 \in \pi_4(S^3)$ has order 2 its adjoint $\tilde{\eta}_3 : S^3 \to \Omega S^3$ extends to a map $P^4(2) \to \Omega S^3$. If this map desuspends, then $\tilde{\eta}_3$ would be homotopic to a composite $S^3 \to P^4(2) \to S^2 \xrightarrow{E} \Omega S^3$, a contradiction since $\pi_3(S^3) \cong \mathbb{Z}$ implies...
that any map \(S^3 \to S^2 \) that factors through \(P^4(2) \) is nullhomotopic. Hence the map \(P^4(2) \to \Omega S^3 \) has nontrivial Hopf invariant in \([P^4(2), \Omega S^3]\) from which it follows that \(P^4(2) \to \Omega S^3 \) is nonzero in \(H_4(\cdot) \). Composing with the inclusion \(\Omega S^3 \to \Omega P^4(2) \) gives a map \(P^4(2) \to \Omega P^4(2) \) which is nonzero in \(H_4(\cdot) \).

Now suppose \(n > 1 \) and \([i_{2n}, i_{2n}]\) is a multiple of \(2\alpha \) for some \(\alpha \in \pi_{4n-1}(P^{2n+1}(2)) \). Then \(\Sigma \alpha \) has order 2 so there is an extension \(P^{2n+1}(2) \to P^{2n+2}(2) \) whose adjoint \(f : P^{4n}(2) \to \Omega P^{2n+2}(2) \) satisfies \(f|_{S^{4n-1}} = E \circ \alpha \). Since \(\Omega \Sigma(P^{2n+1}(2) \wedge P^{2n+2}(2)) \) has 4n-skeleton \(S^{4n} \), to show that \(f_* \) is nonzero on \(H_4n(P^{4n}(2)) \) it suffices to show that \(H_2 \circ f \) is nontrivial in \([P^{4n}(2), \Omega \Sigma(P^{2n+1}(2) \wedge P^{2n+2}(2))] \) where \(H_2 : \Omega P^{2n+2}(2) \to \Omega \Sigma(P^{2n+1}(2) \wedge P^{2n+2}(2)) \) is the second James–Hopf invariant. If \(H_2 \circ f \) is nullhomotopic, then there is a map \(g : P^{4n}(2) \to P^{2n+2}(2) \) making the diagram

\[
P^{2n+1}(2) \xrightarrow{E} \Omega P^{2n+2}(2) \xrightarrow{H_2} \Omega \Sigma(P^{2n+1}(2) \wedge P^{2n+2}(2))
\]

commute. But then \(\alpha - g|_{S^{4n-1}} \) is in the kernel of \(E_* : \pi_{4n-1}(P^{2n+1}(2)) \to \pi_{4n}(P^{2n+2}(2)) \) which is generated by \([i_{2n}, i_{2n}]\), so \(\alpha - g|_{S^{4n-1}} \) is a multiple of \([i_{2n}, i_{2n}]\). Since \([i_{2n}, i_{2n}]\) has order 2 and clearly \(2g|_{S^{4n-1}} = 0 \), it follows that \([i_{2n}, i_{2n}] = 2\alpha = 0 \), a contradiction. Therefore \(f_* \) is nonzero on \(H_{4n}(P^{4n}(2)) \).

Conversely, assume \(n > 1 \) and \(f : P^{4n}(2) \to \Omega P^{2n+2}(2) \) is nonzero in \(H_{4n}(\cdot) \). Since the restriction \(f|_{S^{4n-1}} \) lifts through the \((4n-1)\)-skeleton of \(\Omega P^{2n+2}(2) \), there is a homotopy commutative diagram

\[
\begin{array}{ccc}
S^{4n-1} & \xrightarrow{g} & P^{4n}(2) \\
\downarrow & & \downarrow \quad f \\
P^{2n+1}(2) & \xrightarrow{E} & \Omega P^{2n+2}(2)
\end{array}
\]

for some map \(g : S^{4n-1} \to P^{2n+1}(2) \). Since \(E \circ 2g \) is nullhomotopic, \(2g \) is a multiple of \([i_{2n}, i_{2n}]\). But if \(2g = 0 \), then \(g \) admits an extension \(e : P^{4n}(2) \to P^{2n+1}(2) \) and it follows that \(f - E \circ e \) factors through the pinch map \(g : P^{4n}(2) \to S^{4n} \). This makes the Pontrjagin square \(u^2 \in H_{4n}(\Omega P^{2n+2}(2)) \) a spherical homology class, and this is a contradiction which can be seen as follows. If \(u^2 \) is spherical, then the 4n-skeleton of \(\Omega P^{2n+2}(2) \) is homotopy equivalent to \(P^{2n+1}(2) \vee S^{4n} \). On the other hand, it is easy to see that the attaching map of the 4n-cell in \(\Omega P^{2n+2}(2) \) is given by the Whitehead square \([i_{2n}, i_{2n}]\) which is nontrivial as \(n > 1 \), whence \(P^{2n+1} \cup_{[i_{2n}, i_{2n}]} \mathbb{C}^4 \not\simeq P^{2n+1}(2) \vee S^{4n} \).

\([a]\) is equivalent to \([d]\). Since the Whitehead product \([i_{2n-1}', j_{2n}'] \in \pi_{4n-2}(V_{2n+1,2}; \mathbb{Z}/2\mathbb{Z}) \) is the obstruction to extending \(i_{2n-1}' \vee j_{2n}' : S^{2n-1} \vee P^{2n}(2) \to V_{2n+1,2} \) to \(S^{2n-1} \times P^{2n}(2) \), this follows immediately from Proposition 2.1.

As described in [17], applying the Hopf construction to a map \(f : S^{2n-1} \times P^{2n}(2) \to V_{2n+1,2} \) as in \([d]\) yields a map \(H(f) : P^{4n}(2) \to \Sigma V_{2n+1,2} \) with \(S^q \) acting nontrivially on \(H^{2n}(C_{H(f)}) \). Since \(\Sigma^2 V_{2n+1,2} \simeq P^{2n+2}(2) \vee S^{2n-1} \), composing the suspension of the Hopf construction \(H(f) \) with a retract \(\Sigma^2 V_{2n+1,2} \to P^{2n+2}(2) \) defines a map \(g : P^{4n+1}(2) \to P^{2n+2}(2) \) with \(S^q \) acting nontrivially on \(H^{2n+1}(C_g) \), so \([d]\) implies \([e]\).

By the proof of [17] Theorem 3.1, \([e]\) implies \([e]\) and \([e]\) implies \([f]\). The triviality of the Whitehead product \([i_{2n-1}', j_{2n}'] \in \pi_{4n-2}(V_{2n+1,2}; \mathbb{Z}/2\mathbb{Z}) \) when \(n = 1, 2 \) or \(4 \) is implied by [17] Theorem 2.1, for
example, and Proposition 3.1 implies $[i'_1, i'_6] \in \pi_30(V_{17,2}; \mathbb{Z}/2\mathbb{Z})$ is trivial as well since $[i_1, i_6] \in \pi_31(P^{17}(2))$ is divisible by 2 by [10, Lemma 3.10]. Thus (f) implies (d) \hfill \Box

4. A LOOP SPACE DECOMPOSITION OF $J_3(S^2)$

In this section, we consider some relations between the fibre bundle $S^{4n-1} \rightarrow V_{4n+1,2} \rightarrow S^{4n}$ defined by projection onto the first vector of an orthonormal 2-frame in \mathbb{R}^{4n+1} (equivalently, the unit tangent bundle over S^{4n}) and the fibration $BW_n \rightarrow \Omega^2 S^{4n+1}\{2\} \rightarrow W_{2n}$ of Lemma 2.2. Letting $\partial : \Omega S^{4n} \rightarrow S^{4n-1}$ denote the connecting map of the first fibration, we will show that there is a morphism of homotopy fibrations

\[
\begin{array}{ccc}
\Omega^2 S^{4n} & \xrightarrow{\Omega \partial} & \Omega S^{4n-1} \\
| & | & |
\Omega W_{2n} & \xrightarrow{\partial} & \Omega^2 S^{4n+1}\{2\}
\end{array}
\]

(2)

from which it will follow that for $n = 1, 2$ or 4, $\Omega \partial$ lifts through $\Omega \phi_n : \Omega^3 S^{4n+1} \rightarrow \Omega^3 S^{4n-1}$. If this lift can be chosen to be $\Omega^2 E$, then it follows that there is a homotopy pullback diagram

\[
\begin{array}{ccc}
\Omega^2 V_{4n+1,2} & \xrightarrow{\Omega \partial} & \Omega^3 S^{4n} \\
| & | & | \\
W_n & \xrightarrow{\partial} & \Omega S^{4n-1}
\end{array}
\]

\[
\begin{array}{ccc}
& & \\
| & | & | \\
\Omega^3 S^{8n+1} & \xrightarrow{\Omega^2 H} & \Omega^3 S^{8n+1}
\end{array}
\]

(3)

which identifies $\Omega^2 V_{4n+1,2}$ with $\Omega M_3(n)$ where $\{ M_k(n) \}_{k \geq 1}$ is the filtration of BW_n studied in [7] beginning with the familiar spaces $M_1(n) \simeq \Omega S^{4n-1}$ and $M_2(n) \simeq S^{4n-1}\{2\}$. (Spaces are localized at an odd prime throughout [7] but the construction of the filtration works in the same way for $p = 2$.) We verify this (and deloop it) for $n = 1$ since it leads to an interesting loop space decomposition which gives isomorphisms $\pi_k(V_{5,2}) \cong \pi_k(J_3(S^2))$ for all $k \geq 3$.

In his factorization of the 4^th-power map on $\Omega^2 S^{2n+1}$ through the double suspension, Theriault constructs in [18] a space A and a map $\mathcal{E} : A \rightarrow \Omega S^{2n+1}\{2\}$ with the following properties:

(a) $H_4(A) \cong \Lambda (x_{2n-1}, x_{2n})$ with Bockstein $\beta x_{2n} = x_{2n-1}$;
(b) \mathcal{E} induces a monomorphism in homology;
(c) There is a homotopy fibration $S^{2n-1} \rightarrow A \rightarrow S^{2n}$ and a homotopy fibration diagram

\[
\begin{array}{ccc}
S^{2n-1} & \xrightarrow{E^2} & A \\
| & | & |
\Omega^2 S^{2n+1} & \xrightarrow{\mathcal{E}} & \Omega S^{2n+1}\{2\}
\end{array}
\]

\[
\begin{array}{ccc}
& & \\
| & | & | \\
\Omega^2 S^{2n+1} & \xrightarrow{\mathcal{E}} & \Omega S^{2n+1}\{2\}.
\end{array}
\]

Noting that the homology of A is isomorphic to the homology of the unit tangent bundle $\tau(S^{2n})$ as a coalgebra over the Steenrod algebra, Theriault raises the question of whether A is homotopy equivalent to $\tau(S^{2n}) = V_{2n+1,2}$. Our next proposition shows this is true for any space A with the properties above.
Proposition 4.1. There is a homotopy equivalence $A \simeq V_{2n+1,2}$.

Proof. First we show that A splits stably as $P^{2n} \vee S^{4n-1}$. As in [18], let Y denote the $(4n-1)$-skeleton of $\Omega S^{2n+1}\{2\}$. Consider the homotopy fibration

$$\Omega S^{2n+1}\{2\} \longrightarrow \Omega S^{2n+1} \overset{2}{\longrightarrow} \Omega S^{2n+1}$$

and recall that $H_*(\Omega S^{2n+1}\{2\}) \cong H_*(\Omega S^{2n+1}) \otimes H_*(\Omega^2 S^{2n+1})$. Restricting the fibre inclusion to Y and suspending once we obtain a homotopy commutative diagram

$$\begin{array}{cccc}
\Sigma Y & \longrightarrow & \Sigma \Omega S^{2n+1}\{2\} & \longrightarrow & \Sigma \Omega S^{2n+1} \\
\downarrow \ell & & \downarrow \Sigma \ell & & \downarrow \Sigma \ell \\
S^{2n+1} & \longrightarrow & \Sigma \Omega S^{2n+1}\{2\} & \longrightarrow & \Sigma \Omega S^{2n+1}
\end{array}$$

where 2 is the degree 2 map, the vertical maps are inclusions of the bottom cell of $\Sigma \Omega S^{2n+1}$ and a lift ℓ inducing an isomorphism in $H_{2n+1}(\)$ exists since ΣY is a 4n-dimensional complex and $\text{sk}_{4n}(\Sigma \Omega S^{2n+1}) = S^{2n+1}$. It follows from the James splitting $\Sigma \Omega S^{2n+1} \cong \bigvee_{i=1}^\infty S^{2n+i+1}$ and the commutativity of the diagram that $2 \circ \ell$ is nullhomotopic, so in particular $\Sigma \ell$ lifts to the fibre $S^{2n+2}\{2\}$ of the degree 2 map on S^{2n+2}. Since $H_*(S^{2n+2}\{2\}) \cong \mathbb{Z}/2[\mu_{2n+1}] \otimes \Lambda(v_{2n+2})$ with $\beta v_{2n+2} = u_{2n+1}$, this implies $\Sigma \ell$ factors through a map $r : \Sigma^2 Y \rightarrow P^{2n+2}\{2\}$ which is an isomorphism in homology by naturality of the Bockstein, and hence $P^{2n+2}\{2\}$ is a retract of $\Sigma^2 Y$. (Alternatively, r can be obtained by suspending a lift $\Sigma Y \rightarrow S^{2n+1}\{2\}$ of ℓ and using the well-known fact that $\Sigma S^{2n+1}\{2\}$ splits as a wedge of Moore spaces.) Now since $\mathbb{F} : A \rightarrow \Omega S^{2n+1}\{2\}$ factors through Y and induces a monomorphism in homology, composing $\Sigma^2 A \rightarrow \Sigma^2 Y$ with the retraction r shows that $\Sigma^2 A \simeq \Sigma^2 (P^{2n}(2) \vee S^{4n-1})$.

Next, let $E^\infty : A \rightarrow QA$ denote the stabilization map and let F denote the homotopy fibre of a map $g : QP^{2n}(2) \rightarrow K(\mathbb{Z}/2, 4n-2)$ representing the mod-2 cohomology class $u_{2n-1}^2 \in H^{4n-2}(QP^{2n}(2))$. A homology calculation shows that the $(4n-1)$-skeleton of F is a three-cell complex with homology isomorphic to $A(x_{2n-1}, x_{2n})$ as a coalgebra. The splitting $\Sigma^2 A \cong \Sigma^2 (P^{2n}(2) \vee S^{4n-1})$ gives rise to a map $\pi_1 : QA \simeq QP^{2n}(2) \times QS^{4n-1} \rightarrow QP^{2n}(2)$ inducing isomorphisms in $H_{2n-1}(\)$ and $H_{2n}(\)$, and since the composite $g \circ \pi_1 = E^\infty : A \rightarrow K(\mathbb{Z}/2, 4n-2)$ is nullhomotopic, there is a lift $A \rightarrow F$ inducing isomorphisms in $H_{2n-1}(\)$ and $H_{2n}(\)$. The coalgebra structure of $H_*(A)$ then implies this lift is a $(4n-1)$-equivalence and the result follows as $V_{2n+1,2}$ can similarly be seen to be homotopy equivalent to the $(4n-1)$-skeleton of F.

The homotopy commutative diagram (2) is now obtained by noting that the composite $\Omega S^{4n-1} \rightarrow \Omega V_{4n+1,2} \overset{\Omega E^2}{\longrightarrow} \Omega^2 S^{4n+1}\{2\}$ is homotopic to $\Omega S^{4n-1} \overset{\Omega E^2}{\longrightarrow} \Omega^3 S^{4n+1} \rightarrow \Omega^2 S^{4n+1}\{2\}$, which in turn is homotopic to a composite $\Omega S^{4n-1} \rightarrow BW_n \rightarrow \Omega^2 S^{4n+1}\{2\}$ since by Theorem 2.1 there is a homotopy fibration diagram

$$\begin{array}{cccc}
\Omega S^{4n-1} & \longrightarrow & BW_n & \longrightarrow & \Omega^2 S^{4n+1} \\
\downarrow \Omega E^2 & & \downarrow \phi_n & & \downarrow 2 \\
\Omega^3 S^{4n+1} & \longrightarrow & \Omega^2 S^{4n+1}\{2\} & \longrightarrow & \Omega^2 S^{4n+1}
\end{array}$$
Specializing to the case \(n = 1 \), the proof of Proposition \(\ref{prop:homotopy-fibration} \) will show that \(\Omega V_{5,2} \) fits in a delooping of diagram \(\ref{fig:delooping} \) and hence that \(\Omega V_{5,2} \simeq M_{3}(1) \). We will need the following cohomological characterization of \(V_{5,2} \).

Lemma 4.2. Let \(E \) be the total space of a fibration \(S^{3} \to E \to S^{4} \). If \(E \) has integral cohomology group \(H^{1}(E; \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \) and mod-2 cohomology ring \(H^{*}(E) \) an exterior algebra \(\Lambda(u, v) \) with \(|u| = 3 \) and \(|v| = 4 \), then \(E \) is homotopy equivalent to the Stiefel manifold \(V_{5,2} \).

Proof. As shown in \([22, \text{Theorem 5.8}]\), the top row of the homotopy pullback diagram

\[
\begin{array}{ccc}
X^{4} & \longrightarrow & P^{4}(2) \longrightarrow BS^{3} \\
\downarrow & & \downarrow q \\
S^{7} & \longrightarrow & S^{4} \longrightarrow BS^{3}
\end{array}
\]

induces a split short exact sequence

\[
0 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow \pi_{6}(P^{4}(2)) \longrightarrow \pi_{5}(S^{3}) \longrightarrow 0
\]

from which it follows that \(\pi_{6}(P^{4}(2)) = \mathbb{Z}/4\mathbb{Z}\{\lambda\} \oplus \mathbb{Z}/2\mathbb{Z}\{\eta_{2}^{3}\} \) where \(\lambda \) is the attaching map of the top cell of \(V_{5,2} \) and \(\eta_{2}^{3} \) maps to the generator \(\eta_{2}^{3} \) of \(\pi_{5}(S^{3}) \). It follows from the cohomological assumptions that \(E \simeq P^{4}(2) \cup e^{7} \), where \(f = a\lambda + b\eta_{2}^{3} \) for some \(a \in \mathbb{Z}/4\mathbb{Z}, b \in \mathbb{Z}/2\mathbb{Z} \), and that \(H_{*}(\Omega E) \) is isomorphic to a polynomial algebra \(\mathbb{Z}/2\mathbb{Z}[u_{2}, v_{3}] \). Since the looped inclusion \(\Omega P^{4}(2) \to \Omega E \) induces the abelianization map \(T(u_{2}, v_{3}) \to \mathbb{Z}/2\mathbb{Z}[u_{2}, v_{3}] \) in homology, it is easy to see that the adjoint \(f : S^{5} \to \Omega P^{4}(2) \) of \(f \) has Hurewicz image \([u_{2}, v_{3}] = u_{2} \otimes v_{3} + v_{3} \otimes u_{2} \) and hence \(f \) is not divisible by 2. Moreover, since \(E \) is an \(S^{3} \)-fibration over \(S^{4} \), the pinch map \(q : P^{4}(2) \to S^{4} \) must extend over \(E \). This implies the composite \(S^{6} \xrightarrow{f} P^{4}(2) \xrightarrow{q} S^{4} \) is nullhomotopic and therefore \(b = 0 \) by the commutativity of the diagram above. It now follows that \(f = \pm \lambda \) which implies \(E \simeq V_{5,2} \). \(\square \)

Proposition 4.3. There is a homotopy fibration

\[
V_{5,2} \longrightarrow J_{3}(S^{2}) \longrightarrow K(\mathbb{Z}, 2)
\]

which is split after looping.

Proof. Let \(h \) denote the composite \(\Omega S^{3}(3) \to \Omega S^{3} \xrightarrow{H} \Omega S^{5} \) and consider the pullback

\[
\begin{array}{ccc}
P & \longrightarrow & S^{4} \\
\downarrow & & \downarrow E \\
\Omega S^{3}(3) & \xrightarrow{h} & \Omega S^{5}.
\end{array}
\]

Since \(h \) has homotopy fibre \(S^{3} \), so does the map \(P \to S^{4} \). Next, observe that \(P \) is the homotopy fibre of the composite \(\Omega S^{3}(3) \xrightarrow{h} \Omega S^{5} \xrightarrow{H} \Omega S^{9} \) and since \(\Omega S^{9} \) is 7-connected, the inclusion of the 7-skeleton of \(\Omega S^{3}(3) \) lifts to a map \(\text{sk}_{7}(\Omega S^{3}(3)) \to P \). Recalling that \(H^{1}(\Omega S^{3}(3); \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \) and \(H_{*}(\Omega S^{3}(3)) \cong \Lambda(u_{3}) \otimes \mathbb{Z}/2\mathbb{Z}[v_{4}] \) with generators in degrees \(|u_{3}| = 3 \) and \(|v_{4}| = 4 \), it follows that this lift must be a homology isomorphism and hence a homotopy equivalence. So \(P \) is homotopy equivalent to the total space of a fibration satisfying the hypotheses of Lemma \(\ref{lem:homotopy-equivalence} \) and there is a homotopy equivalence \(P \simeq V_{5,2} \).
It is well known that the iterated composite of the \(p \)-th James-Hopf invariant \(H^{ok} : \Omega S^{2n+1} \to \Omega S^{2np+1} \) has homotopy fibre \(J_{p^k - 1}(S^{2n}) \), the \((p^k - 1)^{st} \) stage of the James construction on \(S^{2n} \). The argument above identifies \(V_{5,2} \) with the homotopy fibre of the composite
\[
\Omega S^3(3) \longrightarrow \Omega S^3 \xrightarrow{H^2} \Omega S^5 \xrightarrow{H} \Omega S^9,
\]
so there is a homotopy pullback diagram
\[
\begin{array}{ccc}
V_{5,2} & \longrightarrow & J_3(S^2) \longrightarrow K(\mathbb{Z}, 2) \\
\downarrow & & \downarrow \\
\Omega S^3(3) & \longrightarrow & \Omega S^3 \longrightarrow K(\mathbb{Z}, 2) \\
\downarrow & & \downarrow \\
\Omega S^9 & \longrightarrow & \Omega S^9 \\
\end{array}
\]
where the maps into \(K(\mathbb{Z}, 2) \) represent generators of \(H^2(J_3(S^2); \mathbb{Z}) \cong \mathbb{Z} \) and \(H^2(\Omega S^3; \mathbb{Z}) \cong \mathbb{Z} \). To see that the homotopy fibration along the top row splits after looping, note that the connecting map \(\Omega K(\mathbb{Z}, 2) = S^1 \to V_{5,2} \) is nullhomotopic since \(V_{5,2} \) is simply-connected. Therefore the looped projection map \(\Omega J_3(S^2) \to S^1 \) has a right homotopy inverse producing a splitting \(\Omega J_3(S^2) \simeq S^1 \times \Omega V_{5,2} \). \(\square \)

Corollary 4.4. \(\pi_k(J_3(S^2)) \cong \pi_k(V_{5,2}) \) for all \(k \geq 3 \).

References

[1] H. E. A. Campbell, F. R. Cohen, F. P. Peterson and P. S. Selick, *The space of maps of Moore spaces into spheres*, Proc. of John Moore Conf. on Alg. Top. and Alg. K-Theory, Ann. of Math. Studies vol. 113, Princeton Univ. Press, Princeton (1987), 72–100.

[2] F. R. Cohen, *A course in some aspects of classical homotopy theory*, Alg. Top., Proc. Seattle 1985 (H. Miller and D. Ravenel, eds.), Lec. Notes in Math., vol. 1286, Springer, 1987, pp. 1–92.

[3] F. R. Cohen, *Fibration and product decompositions*, Handbook of Algebraic Topology, Ed. I. James, Elsevier Science B.V., 1995, 1175–1208.

[4] F. R. Cohen, *Two-primary analogues of Selick’s theorem and the Kahn-Priddy theorem for the 3-sphere*, Topology 23 (1984), 401–421.

[5] F. R. Cohen and P. S. Selick, *Splittings of two function spaces*, Quart. J. Math. Oxford 41 (1990), 145–153.

[6] B. Gray, *On the iterated suspension*, Topology 27 (1988), 301–310.

[7] J. Grbić, S. Theriault and H. Zhao, *Properties of Selick’s filtration of the double suspension E^2*, J. Topol. Anal. 06 (2014), 421–440.

[8] M. A. Hill, M. J. Hopkins and D. C. Ravenel, *On the nonexistence of elements of Kervaire invariant one*, Ann. Math. 184 (2016), 1–262.

[9] J. Mukai, *On the attaching map in the Stiefel manifold of 2-frames*, Math. J. Okayama Univ. 33 (1991), 177–188.

[10] J. Mukai and T. Shinpo, *Some homotopy groups of the mod 4 Moore space*, J. Fac. Sci. Shinshu Univ. 34 (1999), 1–14.

[11] J. Mukai and A. Skopenkov, *A direct summand in a homotopy group of the mod 2 Moore space*, Kyushu J. Math. 58 (2004), 203–209.

[12] D. C. Ravenel, *The non-existence of odd primary Arf invariant elements in stable homotopy theory*, Math. Proc. Cambridge Philos. Soc. 83 (1978), 429–443.

[13] W. Richter, *A conjecture of Gray and the \(p \)-th power map on \(\Omega^2 S^{2np+1} \)*, Proc. Amer. Math. Soc. 142 (2014), 2151–2160.

[14] P. S. Selick, *Odd primary torsion in \(\pi_k(S^3) \)*, Topology 17 (1978), 407–412.

[15] P. S. Selick, *A decomposition of \(\pi_*(S^{2p+1}; \mathbb{Z}/p\mathbb{Z}) \)*, Topology 20 (1981), 175–177.
[16] P. S. Selick, A reformulation of the Arf invariant one mod p problem and applications to atomic spaces, Pac. J. Math. 108 (1983), 431–450.

[17] P. S. Selick, Indecomposability of the Stiefel manifolds $V_{m,3}$, Topology 27 (1988), 479–485.

[18] S. Theriault, 2-primary Anick fibrations, Journal of Topology 4 (2011), 479–503.

[19] S. Theriault, A case when the fibre of the double suspension is the double loops on Anick’s space, Can. Math. Bull. 53 (2010), 730–736.

[20] S. Theriault, A new proof of the odd primary homotopy exponent of spheres, Manuscripta Math. 139 (2012), 137–151.

[21] S. Theriault, Anick’s fibration and the odd primary homotopy exponent of spheres, [arXiv:0803.3205](http://arxiv.org/abs/0803.3205).

[22] J. Wu, Homotopy theory of the suspensions of the projective plane, Memoirs AMS 162 (2003), No. 769.