Linear Rank-Width of Distance-Hereditary Graphs

Isolde Adler1*, Mamadou Moustapha Kanté2**, and O-joung Kwon3***

1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany.
iadler@informatik.uni-frankfurt.de

2 Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France.
mamadou.kante@isima.fr

3 Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu Daejeon, 305-701 South Korea.
ojoung@kaist.ac.kr

Abstract We present a characterization of the linear rank-width of distance-hereditary graphs. Using the characterization, we show that the linear rank-width of every \(n \)-vertex distance-hereditary graph can be computed in time \(O(n^2 \cdot \log(n)) \), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. For our characterization, we combine modifications of canonical split decompositions with an idea of [Megiddo, Hakimi, Garey, Johnson, Papadimitriou: The complexity of searching a graph. JACM 1988], used for computing the path-width of trees. We also provide a set of distance-hereditary graphs which contains the set of distance-hereditary vertex-minor obstructions for linear rank-width. The set given in [Jeong, Kwon, Oum: Excluded vertex-minors for graphs of linear rank-width at most k. STACS 2013: 221-232] is a subset of our obstruction set.

1 Introduction

Rank-width \cite{oum2006} is a graph parameter introduced by Oum and Seymour with the goal of efficient approximation of the clique-width \cite{bodlaender1998} of a graph. Linear rank-width can be seen as the linearized variant of rank-width, similar to path-width, which in turn can be seen as the linearized variant of tree-width. While path-width is a well-studied notion, much less is known about linear rank-width. Computing linear rank-width is NP-complete in general (this follows from \cite{garey1979}). Therefore it is natural to ask which graph classes allow for an efficient computation. Until now, the only (non-trivial) known such result is for forests \cite{adler2013}. A graph \(G \) is distance-hereditary, if for any two vertices \(u \) and \(v \) of \(G \), the distance between \(u \) and \(v \) in any connected, induced subgraph of \(G \) that contains both \(u \) and \(v \), is the same as the distance between \(u \) and \(v \) in \(G \). Distance-hereditary graphs are exactly the graphs of rank-width \(\leq 1 \) \cite{oum2006}. They include co-graphs (i.e. graphs of clique-width 2), complete (bipartite) graphs and forests.

We show that the linear rank-width of \(n \)-vertex distance-hereditary graphs can be computed in time \(O(n^2 \cdot \log(n)) \) (Theorem 4). Moreover, we show that a layout of the graph witnessing the linear rank-width can be computed with the same time complexity (Corollary 3). Given that computing the path-width of distance-hereditary graphs is NP-complete \cite{garey1979}, this is indeed surprising. We give a new characterization of linear rank-width of distance-hereditary graphs (Theorem 4).

* Supported by the German Research Council, Project GalA, AD 411/1-1.
** Supported by the French Agency for Research under the DORSO project.
*** Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011653).
2 Preliminaries

For a set A, we denote the power set of A by 2^A. We let $A \setminus B := \{x \in A \mid x \notin B\}$ denote the difference of two sets A and B. For a subset X of a ground set A, let $\overline{X} := A \setminus X$.

In this paper, graphs are finite, simple and undirected, unless stated otherwise. Our graph terminology is standard, see for instance [8]. Let G be a graph. We denote the vertex set of G by $V(G)$ and the edge set by $E(G)$. An edge between x and y is written xy (equivalently yx). If X is a subset of the vertex set of G, we denote the subgraph of G induced by X by $G[X]$, and we let $G \setminus X := G[V(G) \setminus X]$. For a vertex $x \in V(G)$ we let $N_G(x) := \{y \in V(G) \mid x \neq y, xy \in E(G)\}$ denote the set of neighbors of x (in G). The degree of x (in G) is $\deg_G(x) := |N_G(x)|$. A partition of $V(G)$ into two sets X and Y is called a cut in G. We denote it by (X,Y).

A tree is a connected, acyclic graph. A leaf of a tree is a vertex of degree one. A path is a tree where every vertex has degree at most two. The length of a path is the number of its edges. A rooted tree is a tree with a distinguished vertex r, called the root. A complete graph is the graph with all possible edges. A graph G is called distance-hereditary (or DH for short) if for every two vertices x and y of G the distance of x and y in G equals the distance of x and y in any connected induced subgraph containing both x and y [3]. A star is a tree with a distinguished vertex, called its center, adjacent to all other vertices.

2.1 Linear Rank-Width and Vertex-Minors

Linear rank-width. For sets R and C an (R,C)-matrix is a matrix where the rows are indexed by elements in R and columns indexed by elements in C. (Since we are only interested in the rank of matrices, it suffices to consider matrices up to permutations of rows and columns.) For an (R,C)-matrix M, if $X \subseteq R$ and $Y \subseteq C$,
we let $M[X,Y]$ be the submatrix of M where the rows and the columns are indexed by X and Y respectively.

Let A_G be the adjacency $(V(G),V(G))$-matrix of G over the binary field. For a graph G, let x_1,\ldots,x_n be a linear layout of $V(G)$. Every index $i \in \{1,\ldots,n\}$ induces a cut $(X_i,\overline{X_i})$, where $X_i := \{x_1,\ldots,x_i\}$ (and hence $\overline{X_i} = \{x_{i+1},\ldots,x_n\}$). The cutrank of the ordering x_1,\ldots,x_n is defined as

$$\text{cutrk}_G(x_1,\ldots,x_n) := \max\{\text{rank}(A_G[X_i,\overline{X_i}]) \mid i \in \{1,\ldots,n\}\}.$$

The linear rank-width of G is defined as

$$\text{lwr}(G) := \min\{\text{cutrk}_G(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \text{ is a linear layout of } V(G)\}.$$

Disjoint unions of caterpillars have linear rank-width ≤ 1. Ganian [11] gives an alternative characterization of the graphs of linear rank-width ≤ 1 as thread graphs. It is proved in [2] that linear rank-width and path-width coincide on trees. It is easy to see that the linear rank-width of a graph is the maximum over the linear rank-widths of its connected components.

Vertex-minors. For a graph G and a vertex x of G, the local complementation at x of G consists in replacing the subgraph induced on the neighbors of x by its complement. The resulting graph is denoted by $G \ast x$. If H can be obtained from G by a sequence of local complementations, then G and H are called locally equivalent. A graph H is called a vertex-minor of a graph G if H is a graph obtained from G by applying a sequence of local complementations and deletions of vertices.

For an edge xy of G, let $W_1 := N_G(x) \cap N_G(y)$, $W_2 = N_G(x) \setminus N_G(y) \setminus \{y\}$, and $W_3 = N_G(y) \setminus N_G(x) \setminus \{x\}$. Pivoting on xy of G, denoted by $G \triangle xy$, is the operation which consists in complementing the adjacencies between distinct sets W_i and W_j, and swapping the vertices x and y. It is known that $G \triangle xy = G \ast x \ast y \ast x = G \ast y \ast x \ast y$ [15].

Lemma 1 ([15]). Let G be a graph and let x be a vertex of G. Then for every subset X of $V(G)$, we have $\text{cutrk}_G(X) = \text{cutrk}_{G \ast x}(X)$. Therefore, every vertex-minor H of G satisfies $\text{lwr}(H) \leq \text{lwr}(G)$.

Lemma 2 ([15]). Let G be a graph and $xy, yz \in E(G)$. Then $G \triangle xy \triangle xz = G \triangle yz$.

2.2 Split Decompositions and Local Completions

Split decompositions. We will follow the definitions in [4]. Let G be a connected graph. A split in G is a cut (X,Y) in G such that $|X|,|Y| \geq 2$ and $\text{rank}(A_G[X,Y]) = 1$. In other words (X,Y) is a split in G if $|X|,|Y| \geq 2$ and there exist non-empty sets $X' \subseteq X$ and $Y' \subseteq Y$ such that $\{xy \in E(G) \mid x \in X, y \in Y\} = \{xy \in E(G) \mid x \in X', y \in Y'\}$. Notice that not all connected graphs have a split, and those that do not have a split are called prime graphs.

A marked graph D is a connected graph D with a distinguished set of edges $M(D)$, called marked edges, that form a matching, and such that every edge in $M(D)$ is an isthmus, i.e., its deletion increases the number of components. The ends of the marked edges are called marked vertices, and the components of $D \setminus M(D)$ are called bags of D. If (X,Y) is a split in G, we construct a marked graph D with vertex set $V(G) \cup \{x',y' \notin V(G)\}$ and edge set $E(G[X]) \cup E(G[Y]) \cup \{x'y'\} \cup E'$ where we define $x'y'$ as marked and

$$E' := \{x'x \mid x \in X \text{ and there exists } y \in Y \text{ such that } xy \in E(G)\} \cup \{y'y \mid y \in Y \text{ and there exists } x \in X \text{ such that } xy \in E(G)\}.$$
The marked graph D is called a **simple decomposition**. A **decomposition** of a connected graph G is a marked graph D defined inductively to be either G or a marked graph defined from a decomposition D' by replacing a component H of $D' \setminus M(D')$ by a simple decomposition of H. We call the transformation of D' into D a **refinement of D'**. Notice that in a decomposition of a connected graph G, the two ends of a marked edge do not have a common neighbor. For a marked edge xy in a decomposition D, the **recomposition of D along xy** is the decomposition $D' := D \setminus xy \setminus \{x, y\}$. For a decomposition D, we let \hat{D} denote the connected graph obtained from D by recomposing all marked edges. Since marked edges of a decomposition D are isthmuses and form a matching, if we contract all the unmarked edges in D, we obtain a tree called the **decomposition tree of G associated with D** and denoted by T_D. Obviously, the vertices of T_D are in bijection with the bags of D, and we will also call them bags.

A decomposition D of G is called a **canonical split decomposition** if each bag of D is either prime, or a star or a complete graph, and D is not the refinement of a decomposition with the same property. Shortly, we call it a **canonical decomposition**. The following is due to Cunningham and Edmonds [6], and Dahlhaus [7].

Theorem 1 ([6,7]). Every connected graph G has a unique canonical decomposition, up to isomorphism, that can be computed in time $O(|V(G)| + |E(G)|)$.

For a given connected graph G, by Theorem 1 we can talk about only one canonical decomposition of G because all canonical decompositions of G are isomorphic.

Let D be a decomposition of G with bags that are either primes, or complete graphs or stars (it is not necessarily a canonical decomposition). The **type of a bag** of D is either P, or K or S depending on whether it is a prime, or a complete graph or a star. The **type of a marked edge uv** is AB where A and B are the types of the bags containing u and v respectively. If $A = S$ or $B = S$, we can replace S by S_p or S_c depending on whether the end of the marked edge is a leaf or the center of the star.

Theorem 2 ([6]). Let D be a decomposition of a graph with bags of types P or K or S. Then D is a canonical decomposition if and only if it has no marked edge of type KK or S_pS_c.

We will use the following characterization of distance-hereditary graphs.

Theorem 3 ([4]). A connected graph is a distance-hereditary graph if and only if each bag of its canonical decomposition is of type K or S.

Local complementations in decompositions. We now relate the decompositions of a graph and the ones of its locally equivalent graphs. Let D be a decomposition. A vertex v of D **represents** an unmarked vertex x (or is a representative of x) if $v = x$ or there is a path from v to x in D starting with a marked edge such that marked edges and unmarked edges appear alternatively in the path. Two unmarked vertices x and y are **linked** in D if there is a path from x to y in D such that unmarked edges and marked edges appear alternatively in the path.

Lemma 3. Let D be a decomposition of a graph. Let v' and w' be two marked vertices in a same bag of D, and let v and w be two unmarked vertices of D represented by v' and w', respectively. Then v and w are linked in D if and only if $vw \in E(D')$ if and only if $v'w' \in E(D')$.

Proof. It is easy to show that v' and w' are adjacent in \hat{D} if and only if there is an alternating path from v' to w' in D. Now the proof follows from this and the definition of representativity.
A local complementation at an unmarked vertex v in a decomposition D, denoted by $D \ast v$, is the operation which consists in replacing each bag B containing a representative w of v with $B \ast w$. Observe that $M(D) = M(D \ast v)$.

Lemma 4 ([H]). Let D be a decomposition of a graph and let v be an unmarked vertex of D. Then $D \ast v$ is a decomposition of $D \ast v$.

Let v and w be linked unmarked vertices in a decomposition D, and let B_v and B_w be the bags containing v and w, respectively. Note that if B is a bag of type S in the path from B_v to B_w in T_D, then the center of B is a representative of either v or w. Pivoting on vw of D, denoted by $D \wedge vw$, is the decomposition obtained as follows: for each bag B on the path from B_v to B_w in T_D, if $v', w' \in V(B)$ represent v and w in D, respectively, then we replace B with $B \wedge v'w'$.

Lemma 5. Let D be a decomposition of a distance-hereditary graph, and let $xy \in E(D)$. Then $D \wedge xy = D \ast x \ast y \ast x$.

Proof. Since $xy \in E(D)$, by Lemma 3, x and y are linked in D. It is easy to see that by the operation $D \ast x \ast y \ast x$, only the bags in the path from x to y are modified, and they are modified according to the definition of $D \wedge xy$. \qed

As a corollary of Lemmas 4 and 5 we get the following.

Corollary 1. Let D be a decomposition of a distance-hereditary graph and $xy \in E(D)$. Then $D \wedge xy$ is a decomposition of $D \wedge xy$.

3 Limbs in Canonical Decompositions

In this section we define the notion of limb that is the key ingredient in our characterization. Intuitively, a limb in the canonical decomposition of a distance-hereditary graph G is a subtree of the decomposition with the property that the linear rank-width of the graph obtained from the subtree by recomposing all marked edges is invariant under taking local complementations.

3.1 Definitions and Basic Properties

Let D be the canonical decomposition of a distance-hereditary graph. We recall from Theorem 2 that each bag of D is of type K or S, and marked edges of types KK or S_pS_c do not occur. Given a bag B of D, an unmarked vertex y of D represented by some marked vertex $w \in V(B)$, let T be the component of $D \setminus V(B)$ containing y and let $v \in V(T)$ be the neighbor of w in T. We define the limb $\mathcal{L} := \mathcal{L}[D, B, y]$ as follows:

1. if B is of type K, then $\mathcal{L} := T \ast v \setminus v$,
2. if B is of type S and w is a leaf, then $\mathcal{L} := T \setminus v$,
3. if B is of type S and w is the center, then $\mathcal{L} := T \wedge vy \setminus v$.

Note that in T, v becomes an unmarked vertex, so a limb is well-defined. While T is a canonical decomposition, \mathcal{L} may not be a canonical decomposition at all, because deleting v may create a bag of size 2. We let $\hat{\mathcal{L}} = \hat{\mathcal{L}}[D, B, y]$ denote the canonical decomposition obtained from $\mathcal{L}[D, B, y]$ by recomposing necessary marked edges to make it a canonical decomposition, and we let $\hat{\mathcal{L}} = \hat{\mathcal{L}}[D, B, y]$ denote the graph obtained from $\mathcal{L}[D, B, y]$ by recomposing all marked edges.

See Figure 1 for an example. If the original canonical decomposition D is clear from the context, we remove D in the notation $\mathcal{L}[D, B, y]$.

By the following lemma, all limbs are connected. We will use this fact implicitly in almost all the proofs.
Lemma 6. Let D be the canonical decomposition of some distance-hereditary graph and let B be a bag of D. If an unmarked vertex y is represented by a marked vertex $v \in V(B)$, then $\mathcal{L}[B, y]$ is connected.

Proof. Let T be the component of $D \setminus V(B)$ containing y. Let B' be the bag of T adjacent to B. Since local complementations maintain connectivity, it suffices to verify that $V(B')$ induces a connected subgraph in $\mathcal{L}[B, y]$. Using Theorem 1, this is not hard to see for each of the three cases. \hfill \Box

Figure 1. A distance-hereditary graph of linear rank-width 2 and its corresponding canonical decomposition D. If B is the central bag, for every limb of $D \setminus V(B)$, \mathcal{L} is isomorphic to an edge and hence has linear rank-width 1.

Lemma 7. Let D be the canonical decomposition of a distance-hereditary graph and let B be a bag of D. If two unmarked vertices x and y are represented by a marked vertex $w \in V(B)$, then $\mathcal{L}[B, x]$ is locally equivalent to $\mathcal{L}[B, y]$.

Proof. Since x and y are represented by the same vertex in D, they are contained in the same component of $D \setminus V(B)$, say T. If B is a complete bag or a star bag having w as a leaf, then by the definition, $\mathcal{L}[B, x] = \mathcal{L}[B, y]$. So, we may assume that w is the center of the star bag B. Let v be the marked vertex adjacent to w in D. Since v is linked to both x and y in T, by Lemma 2, $T \setminus vx \setminus xy = T \setminus vy$. So, we obtain that $(T \setminus vx \setminus v) \setminus xy = T \setminus vx \setminus vy \setminus v = T \setminus vy \setminus v$. Therefore $\mathcal{L}[B, x]$ is locally equivalent to $\mathcal{L}[B, y]$. \hfill \Box

For a bag B in the canonical decomposition D of a distance-hereditary graph and a component T of $D \setminus V(B)$, we define $f(D, B, T)$ as the linear rank-width of $\mathcal{L}[D, B, y]$ for some unmarked vertex $y \in V(T)$. In fact, by Lemma 4, $f(D, B, T)$ does not depend on the choice of y. As in the notation $\mathcal{L}[D, B, x]$, if the canonical decomposition D is clear from the context, we remove D in the notation $f(D, B, T)$.

Proposition 1. Let D be the canonical decomposition of a distance-hereditary graph and let B be a bag of D. Let $x \in V(D)$ and let y be an unmarked vertex represented in D by $v \in B$. If y' is represented by v in $D \ast x$, then $\mathcal{L}[D, B, y]$ is locally equivalent to $\mathcal{L}[D \ast x, B, y']$. Therefore, $f(D, B, T) = f(D \ast x, B, T_x)$ where T_x is the component of $(D \ast x) \setminus V(B)$ containing y.

Before proving the propositions, let us recall the following by Geelen and Oum.

Lemma 8 ([13]). Let G be a graph and let x, y be two distinct vertices in G. Let $xw \in E(G \ast y)$ and $xz \in E(G)$.

1. If $xy \notin E(G)$, then $(G \ast y) \setminus x$, $(G \ast y \ast x) \setminus x$, and $(G \ast y) \setminus xw \setminus x$ are locally equivalent to $G \setminus x$, $G \ast x \setminus x$, and $G \setminus xz \setminus x$, respectively.
2. If $xy \in E(G)$, then $(G * y) \setminus x$, $(G * y * x) \setminus x$, and $(G * y) \wedge xw \setminus x$ are locally equivalent to $G \setminus x$, $G \wedge xz \setminus x$, and $(G * x) \setminus x$, respectively.

Proof (of Proposition 7). We need only to prove the first statement because a local complementation preserves the linear rank-width of a graph. Let T be a component of $D \setminus V(B)$ containing y and let T_x be the component of $(D * x) \setminus V(B)$ containing y'. Note that $V(T) = V(T_x)$. By Lemma 8, it is sufficient to prove that $\widehat{L}[D, B, y]$ is locally equivalent to $\widehat{L}[D * x, B, y']$ for some $y' \in V(T_x)$ represented by v in $D * x$.

Let u be the vertex of T adjacent to v in D. Note that $u \neq x$ and we can obtain $\widehat{L}[D, B, y]$ from \widehat{T} by the three types in the definition of limbs.

First, suppose that $x \in V(T)$ and x is not linked to u in T. So $ux \notin E(\widehat{T})$ and u is still linked to y in $T * x$. In this case, we let $y' = y$. We observe the following cases.

B is of type S and v is a leaf of B. Since $ux \notin E(\widehat{T})$, by Lemma 8, $\widehat{T} \setminus u$ is locally equivalent to $\widehat{T} * x \setminus u$.

B is of type S and v is the center of B. Since x is not linked to u in T, after applying local complementation at x in T, y is still linked to u. Since $ux \notin E(\widehat{T})$, by Lemma 8, $\widehat{T} \setminus uy \setminus u$ is locally equivalent to $\widehat{T} * x \wedge uy \setminus u$.

B is of type K. Since $ux \notin E(\widehat{T})$, by Lemma 8, $\widehat{T} * u \setminus u$ is locally equivalent to $\widehat{T} * x * u \setminus u$.

Second, suppose that $x \in V(T)$ and x is linked to u in T. Because x is still linked to u in $T * x$, we let $y' = x$ in this case. Note that $uv \in E(\widehat{T})$.

B is of type S and v is a leaf of B. Applying local complementation at x does not change the type of the bag B. Since $ux \in E(\widehat{T})$, by Lemma 8, $\widehat{T} \setminus u$ is locally equivalent to $\widehat{T} * x \setminus u$.

B is of type S and v is the center of B. Applying local complementation at x changes the bag B into a bag of type K, and the component T into $T * x$. Since $ux \in E(\widehat{T})$, by Lemma 8, $\widehat{T} \setminus uy \setminus u$ is locally equivalent to $\widehat{T} * x \wedge uy \setminus u$.

B is of type K. Applying local complementation at x changes the bag B into a bag of type S such that the center of B is adjacent to u. Since $ux \in E(\widehat{T})$, by Lemma 8, $\widehat{T} * u \setminus u$ is locally equivalent to $\widehat{T} * x \wedge ux \setminus u$.

Now suppose that $x \notin V(T)$. If x has no representative in the bag B, then applying local complementation at x does not change the bag B and the component T. Therefore, we may assume that x is represented by some vertex in B, necessarily adjacent to v. In this case, u is still a representative of y in $D * x$, so we let $y' = y$.

B is of type S, v is a leaf of B, and x is represented by the center of B.

Originally, $\mathcal{L}[D, B, y] = T \setminus u$ because v is a leaf of B. Applying local complementation at x changes B into a complete bag, and the component T into $T * u$. So the limb of $D * x$ corresponding T is $(T * u) * u \setminus u = T \setminus u = \mathcal{L}[D, B, y]$.

B is of type S and v is the center of B. In this case, x is represented by a leaf of the bag B and $\mathcal{L}[D, B, y] = T \wedge uy \setminus u$. Note that applying local complementation does not change the bag B, but it changes T into $T * u$. So the limb of $D * x$ corresponding to T is $(T * u) \wedge uy \setminus u$. Since $((T * u) \wedge uy \setminus u) * y = T * y * v * y \setminus u = T \wedge uy \setminus u$, they are locally equivalent.

B is of type K. The limb $\mathcal{L}[D, B, y] = T * u \setminus u$. After applying local complementation at x in D, B becomes a star such that a leaf of it is adjacent to u, and T becomes $T * u$. Therefore, the limb of $D * x$ corresponding to T is also $(T * u) \setminus u$. }
Proposition 2. Let D be the canonical decomposition of a distance-hereditary graph and let B_1 and B_2 be two bags of D. Let T_1 be a component of $D \setminus V(B_1)$ such that T_1 does not contain the bag B_2, and let T_2 be the component of $D \setminus V(B_2)$ such that T_2 contains the bag B_1. Then $f(B_1, T_1) \leq f(B_2, T_2)$.

Proof. To prove Proposition 2 it is enough to prove the following lemma (Lemma 9) by Lemma 1.

Lemma 9. Let D be the canonical decomposition of a distance-hereditary graph and let B_1 and B_2 be two bags of D. Let T_1 be a component of $D \setminus V(B_1)$ such that T_1 does not contain the bag B_2, and T_2 be the component of $D \setminus V(B_2)$ such that T_2 contains the bag B_1. Let y_1 and y_2 be two unmarked vertices in T_1 and T_2 which are represented by some vertices in the bags B_1 and B_2, respectively. Then $\hat{\mathcal{L}}[B_1, y_1]$ is a vertex-minor of $\hat{\mathcal{L}}[B_2, y_2]$.

Proof. We use induction on the length of the path from B_1 to B_2 in T_D. We first assume that B_1 and B_2 are adjacent in T_D. Let u_1 and u_2 be the vertices of B_1 adjacent to T_1 and T_2, respectively, and let u_3 be a vertex of B_1 which is adjacent to neither B_2 nor T_1.

We choose a canonical decomposition D' which is locally equivalent to D such that the bag B_3 is the star having u_3 as the center. Let $T'_1 = D'[V(T_1)]$ and let y'_1 and y'_2 be two unmarked vertices in T'_1 and T'_2 which are represented by some vertices in the bags B_1 and B_2, respectively. Then, by Proposition 2, each $\hat{\mathcal{L}}[D, B_1, y_1]$ is locally equivalent to $\hat{\mathcal{L}}[D', B_1, y'_1]$, and therefore, it is sufficient to show that $\hat{\mathcal{L}}[D', B_1, y'_1]$ is a vertex-minor of $\hat{\mathcal{L}}[D', B_2, y'_2]$.

Since B_3 is the star having u_3 as the center, $\hat{\mathcal{L}}[D', B_2, y'_2]$ is a limb of type 1 or 2 in the definition. Since u_1 is not adjacent to u_2, T_1 is an induced subgraph of $\hat{\mathcal{L}}[D', B_2, y'_2]$, and therefore, $\hat{\mathcal{L}}[D', B_1, y'_1]$ is a vertex-minor of $\hat{\mathcal{L}}[D', B_2, y'_2]$, as required.

Now suppose that B_1 is not adjacent to B_2 in T_2. We choose a bag B_3, which is adjacent to B_2, on the path from B_1 to B_2 in T_D. Let T_3 be the component of $D \setminus V(B_3)$ such that T_3 contains the bag B_1 and let y_3 be an unmarked vertex in T_3 which is represented by some vertex in the bag B_3. By induction hypothesis, $\hat{\mathcal{L}}[B_1, y_1]$ is a vertex-minor of $\hat{\mathcal{L}}[B_3, y_3]$ and $\hat{\mathcal{L}}[B_3, y_3]$ is a vertex-minor of $\hat{\mathcal{L}}[B_2, y_2]$. Therefore, $\hat{\mathcal{L}}[B_1, y_1]$ is a vertex-minor of $\hat{\mathcal{L}}[B_2, y_2]$.

4 Characterizing the Linear Rank-Width of DH Graphs

In this section, we prove the main theorem of the paper, which characterizes distance-hereditary graphs of linear rank-width k (cf. Figure 1).

Theorem 4 (Main Theorem). Let k be a positive integer and let D be the canonical decomposition of a distance-hereditary graph. Then $\text{lrw}(D) \leq k$ if and only if for each bag B of D, D has at most two components T of $D \setminus V(B)$ such that $f(B, T) = k$, and for all the other components T' of $D \setminus V(B)$, $f(B, T') \leq k - 1$.

Proposition 3. Let k be a positive integer. Let D be the canonical decomposition of a distance-hereditary graph and let B be a bag of D. If $D \setminus V(B)$ has at least three components T such that $f(B, T) = k$, then $\text{lrw}(D) \geq k + 1$.

Proof. We may assume that $D \setminus V(B)$ has exactly three components T_1, T_2 and T_3, where each component T_i satisfies $f(B, T_i) = k$. For each $1 \leq i \leq 3$,

- let $w_i \in V(T_i)$ be the marked vertex of D adjacent to B,
- let N_i be the set of the unmarked vertices in T_i linked to w_i,
- let $u_i \in N_i$ and $T_i' = L[D, B, u_i]$.

We will show that $\text{lrw}(\hat{D}) \geq k + 1$. Since removing a vertex from a graph does not increase the linear rank-width, we may assume that B consists of exactly three marked vertices which are adjacent to one of T_1, T_2 and T_3. Now, every unmarked vertex of D is contained in one of T_1, T_2 and T_3.

Note that for each T_i, $f(B, T_i)$ does not change when applying local complementations by Proposition 1. Moreover, by Lemmas 1 and 2 for any canonical decomposition D' obtained from D by applying local complementations, we have $\text{lrw}(\hat{D}) = \text{lrw}(\hat{D'})$. So we may assume that B is a complete bag.

We first claim that $L[D, B, u_2] = (D \ast u_1)[V(T_2) \setminus w_2]$. Since the bag B is complete, by definition, $L[D, B, u_2] = T_2 \ast w_2 \setminus w_2$. Since u_1 is linked to w_1 in T_1 and there is an alternating path from w_1 to w_2 in D, by concatenating alternating paths it is easy to see that

$$(D \ast u_1)[V(T_2) \setminus w_2] = T_2 \ast w_2 \setminus w_2 = L[D, B, u_2],$$

as claimed. See Figure 2.

Towards a contradiction, suppose that \hat{D} has a linear layout L of width k. Let a and b be the first vertex and the last vertex of L, respectively. Since B has no unmarked vertices, without loss of generality, we may assume that $a, b \in V(\hat{T}_1) \cup V(\hat{T}_3)$. With this assumption, we will prove that \hat{T}_2 has linear rank-width at most $k - 1$.

Let $v \in V(\hat{T}_2)$ and $S_v := \{x \in V(\hat{D}) \mid x \leq_L v\}$ and $T_v := V(\hat{D}) \setminus S_v$. Since v is arbitrary, it is sufficient to show that

$$\text{cutrk}_{\hat{T}_2}(S_v \cap V(\hat{T}_2)) \leq k - 1.$$

We have four cases. We recall that N_i is the set of vertices in $V(\hat{T}_i)$ which has a neighbor in $V(\hat{D}) \setminus V(\hat{T}_i)$.

1. There exist $x_1, x_2 \in N_1 \cup N_2$ such that $x_1 \in S_v$ and $x_2 \in T_v$.
2. $N_1 \cup N_2 \subseteq S_v$.
3. $N_1 \cup N_3 \subseteq T_v$.

For Case 1, we assume that there exist $x_1, x_2 \in N_1 \cup N_3$ such that $x_1 \in S_v$ and $x_2 \in T_v$. We claim that

$$\text{cutrk}_{\hat{T}_2}(S_v \cap V(\hat{T}_2)) = \text{cutrk}_{\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}]}((S_v \cap V(\hat{T}_2)) \cup \{x_1\}) - 1.$$

Because

$$\text{cutrk}_{\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}]}((S_v \cap V(\hat{T}_2)) \cup \{x_1\}) \leq \text{cutrk}_{\hat{D}}(S_v) \leq k,$$

the claim will imply that $\text{cutrk}_{\hat{T}_2}(S_v \cap V(\hat{T}_2)) \leq k - 1$. Note that x_1 and x_2 have the same neighbors on $V(\hat{T}_2)$ in D, they also have the same neighbors in $\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}]$. Since x_1 is adjacent to x_2 in $\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}]$, x_2 become a leaf in $\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}] \ast x_1$ having exactly one neighbor, x_1. We already observed that

$$(D \ast x_1)[V(T_2) \setminus w_2] = L[D, B, u_2],$$

and therefore, we have

$$\hat{D}[V(\hat{T}_2) \cup \{x_1, x_2\}] \ast x_1 \setminus x_1 \setminus x_2 = (\hat{D} \ast x_1)[V(\hat{T}_2)] = \hat{T}_2.$$
Therefore,
\[
\text{cutrk}_{\mathcal{D}}(V(T_2)) + 1 = \text{cutrk}_{\mathcal{D}}(V(T_2)) + 1,
\]
as claimed.

Now let us assume that \(N_1 \cup N_3 \subseteq S_v\) or \(N_1 \cup N_3 \subseteq T_v\). In both cases, the
sub-matrix of \(A_G[S_v, T_v]\) induced by the vertices in \(V(T_1') \cup V(T_3')\) will contribute
at least 1 to \(\text{cutrk}_{\mathcal{D}}(S_v)\). Indeed, this follows easily using the facts that \(a, b \in V(T_1') \cup V(T_3')\), that the graph \(\mathcal{D}[V(T_1') \cup V(T_3')]\) is connected, and that \(|V(T_1')| \geq 2\)
and \(|V(T_3')| \geq 2\). Therefore, we will have \(\text{cutrk}_{\mathcal{D}}(S_v) \leq k - 1\). Thus, \(T_2\)
has linear rank-width at most \(k - 1\), which is a contradiction. \(\square\)

![Figure 2](image_url)

Figure 2. Realize a limb without removing the bag in Proposition 3. Since \(B\) is a complete
bag, the limb \(\mathcal{L}[D, B, w_2] = (D * u_1)[V(T_2) \setminus w_2]\).

To prove the converse direction, we use the following technical lemmas.

Lemma 10. Let \(k\) be a positive integer. Let \(D\) be the canonical decomposition of a
distance-hereditary graph and let \(B\) be a bag of \(D\) of type \(S\) such that the center \(x\)
of \(B\) and a leaf \(y\) of \(B\) are unmarked vertices of \(D\).

If for every component \(T\) of \(D \setminus V(B)\), \(f(B, T) \leq k - 1\), then the graph \(\mathcal{D}\)
has a linear layout of width at most \(k\) such that the first vertex and the last vertex of it
are \(x\) and \(y\), respectively.

Proof. Let \(T_1, T_2, \ldots, T_{\ell}\) be the components of \(D \setminus V(B)\) and for each \(1 \leq i \leq \ell\), let \(w_i\) be the marked vertex of \(T_i\) adjacent to a vertex of \(B\). Since each \(w_i\) is adjacent
to a leaf of \(B\), \(T_i \setminus w_i\) is the limb of \(D\) with respect to \(B\) and \(T_i\).
Suppose that for every component T of $D \setminus V(B)$, $f(B, T) \leq k - 1$. We may assume without loss of generality that B has only two unmarked vertices x and y. For each $1 \leq i \leq \ell$, let L_i be a linear layout of $T_i \setminus w_i$ of width $k - 1$. We claim that $L := (x) \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_{\ell} \oplus (y)$ is a linear layout of \widehat{D} of width k. It is sufficient to prove that for all $w \in V(\widehat{D}) \setminus \{x, y\}$, $\text{cutrk}_{\widehat{D}}(\{v \mid v \leq_L w\}) \leq k$.

Let $w \in V(\widehat{D}) \setminus \{x, y\}$, and let $S_w := \{v : v \leq_L w\}$ and $T_w := V(\widehat{D}) \setminus S_w$. We assume that $w \in L_j$ for some $1 \leq j \leq \ell$. Note that

$$\text{cutrk}_{\widehat{D}}(S_w) = \text{rank} \left(\begin{array}{c|c|c|c} x & y T_w \cap V(\widehat{T}_j) & T_w \setminus \{y\} \setminus V(\widehat{T}_j) \\ \hline S_w \cap V(\widehat{T}_j) & 1 & * & 0 \\ S_w \setminus \{x\} \setminus V(\widehat{T}_j) & 0 & 0 & * \\ \end{array} \right)$$

$$= \text{rank} \left(\begin{array}{c|c|c} x & y T_w \cap V(\widehat{T}_j) & T_w \setminus \{y\} \setminus V(\widehat{T}_j) \\ \hline S_w \cap V(\widehat{T}_j) & 1 & 0 & 0 \\ S_w \setminus \{x\} \setminus V(\widehat{T}_j) & 0 & * & 0 \\ \end{array} \right)$$

$$= \text{cutrk}_{T_j \setminus w_j}(S_w \cap V(\widehat{T}_j)) + 1 \leq (k - 1) + 1 = k.$$

Therefore, L is a linear layout of \widehat{D} of width k such that the first vertex of it is x and the last vertex is y.

Lemma 11. Let k be a positive integer. Let D be the canonical decomposition of a distance-hereditary graph such that for each bag B of D, there are at most two components T of $D \setminus V(B)$ satisfying $f(B, T) = k$ and for all the other components T' of $D \setminus V(B)$, $f(B, T') \leq k - 1$. If P is the set of bags B in D such that exactly two components T of $D \setminus V(B)$ satisfy $f(B, T) = k$, then either $P = \emptyset$ or $T_D[P]$ is a path.

Proof. Suppose that $P \neq \emptyset$. If B_1 and B_2 are in P, then there exists a component T_1 of $D \setminus V(B_1)$ not containing $V(B_2)$ such that $f(B_1, T_1) = k$, and there exists a component T_2 of $D \setminus V(B_2)$ not containing $V(B_1)$ such that $f(B_2, T_2) = k$. So by Proposition 2, for all B on the path from B_1 to B_2 in T_D, B must be contained in P. So P forms a connected subtree in T_D. Suppose now that P has a vertex B of degree at least three, and let B_1, B_2, and B_3 be the neighbors of B in P. Then, again by Proposition 2, D must have three components T of $D \setminus V(B)$ such that $f(B, T) = k$, which contradicts the assumption. Therefore, P forms a path in T_D. \hfill \Box

Proposition 4. Let k be a positive integer. Let D be the canonical decomposition of a distance-hereditary graph and let B be a bag of D with two unmarked vertices x, y. If for every component T of $D \setminus V(B)$, $f(B, T) \leq k - 1$, then the graph \widehat{D} has a linear layout of width at most k such that the first vertex and the last vertex of it are x and y, respectively.

Proof. Choose a canonical decomposition D' which is locally equivalent to D such that the bag B is a star with the center x. By Proposition 11, for each component T of $D \setminus V(B)$, $f(D, B, T) = f(D', B, T')$ where T' is the component of $D'[\setminus V(D') \setminus V(B)]$ corresponding to T. Since D' is locally equivalent to D, by Lemma 10, we can easily check the statement. \hfill \Box

Lemma 12. Let k be a positive integer. Let D be the canonical decomposition of a distance-hereditary graph such that for each bag B of D, there are at most two
components T of $D \setminus V(B)$ satisfying $f(B, T) = k$ and for all the other components T' of $D \setminus V(B)$, $f(B, T') \leq k - 1$. Then T_D has a path P such that for each bag B in P and a component T of $D \setminus V(B)$ not containing a bag of P, $f(B, T) \leq k - 1$.

Proof. Let P' be the set of bags B in D such that exactly two components T of $D \setminus V(B)$ satisfy $f(B, T) = k$. By Lemma 11, either $P' = \emptyset$ or $T_D[P']$ is a path.

We first assume that $P' \neq \emptyset$. Let $T_D[P'] = B_1 - B_2 - \cdots - B_n$. By the definition, there exists a component T_1 of $D \setminus V(B_1)$ such that T_1 does not contain a bag of P' and $f(B_1, T_1) = k$. Let B_0 be the bag of T_1 which is adjacent to B_1 in D. Similarly, there exists a component T_n of $D \setminus V(B_n)$ such that T_n does not contain a bag of P' and $f(B_n, T_n) = k$. Let B_{n+1} be the bag of T_n which is adjacent to B_n in D. Then $P := B_0 - B_1 - B_2 - \cdots - B_n - B_{n+1}$ is the required path.

Now we assume that $P' = \emptyset$. We choose a bag B_0 in D. If D has no component T of $D \setminus V(B_0)$ such that $f(B_0, T) = k$, then $P := B_0$ satisfies the condition. If not, we take a maximal path $P := B_0 - B_1 - \cdots - B_{n+1}$ in T_D such that

1. for each $0 \leq i \leq n$, $D \setminus V(B_i)$ has one component T_i such that $f(B_i, T_i) = k$, and B_{i+1} is the bag of T_i adjacent to B_i in D,
2. every component T of $D \setminus V(B_{n+1})$ not containing a bag of P is such that $f(B_{n+1}, T) \leq k - 1$.

By the maximality, P is a path in T_D such that for each bag B in P and a component T of $D \setminus V(B)$ not containing a bag of P, $f(B, T) \leq k - 1$.

We are now ready to prove the converse direction of the proof of Theorem 4.

Proposition 5. Let k be a positive integer. Let D be the canonical decomposition of a distance-hereditary graph such that for each bag B of D, D has at most two components T of $D \setminus V(B)$ satisfying $f(B, T) = k$ and for all the other components T' of $D \setminus V(B)$, $f(B, T') \leq k - 1$. Then $\text{lrw}(\hat{D}) \leq k$.

Proof. Let $P := B_0 - B_1 - \cdots - B_n - B_{n+1}$ be the path in T_D such that for each bag B in P and a component T of $D \setminus V(B)$ not containing a bag of P, $f(B, T) \leq k - 1$ (such a path exists by Lemma 12). If B_0 does not have an unmarked vertex, then we add one unmarked vertex to B_0 and we call it a_0. Similarly for B_{n+1}, but the added unmarked vertex is called b_{n+1}.

Now for each $0 \leq i \leq n$, let b_i be the marked vertex of B_i adjacent to B_{i+1} and let a_{i+1} be the marked vertex of B_{i+1} adjacent to b_i. And for each $0 \leq i \leq n + 1$, let D_i be the subdecomposition of D induced on the bag B_i and the components of $D \setminus V(B_i)$ which do not contain a vertex of P. Notice that the vertices a_i and b_i are unmarked vertices in D_i. Since every component T of $D_i \setminus V(B_i)$ is such that $f(D_i, B_i, T) \leq k - 1$, by Proposition 4 D_i has a linear layout L_i' of width k such that the first vertex of it is a_i and the last vertex of it is b_i. For each $1 \leq i \leq n$, let L_i be the linear layout obtained from L_i' by removing a_i and b_i. Let L_1 and L_{n+1} be obtained from L_1' and L_{n+1}' by removing b_0 and a_{n+1}, respectively, and also the vertices a_0 and b_{n+1}, respectively, if they were added. Then we can easily check that $L := L_0 \oplus L_1 \oplus \cdots \oplus L_{n+1}$ is a linear layout of \hat{D} having width at most k. Therefore $\text{lrw}(\hat{D}) \leq k$.

5 Computing the Linear Rank-Width of DH Graphs

In this section, we describe an algorithm to compute the linear rank-width of distance-hereditary graphs. Since the linear rank-width of a graph is the maximum linear rank-width over all its connected components, we will focus on connected distance-hereditary graphs.
Whenever a merging operation on two bags B have to merge two bags to be able to turn a limb into a canonical decomposition, if they are incomparable, then we regard it as a new one.

Let G be the rooted canonical decomposition of a distance-hereditary graph with the root R. Let B be a non-root bag of D and let B' be the parent of B. We introduce the following notations.

1. Let $T_1(D, B)$ be the component of $D \setminus V(B')$ which contains the bag B, and $F_1(D, B) := f(D, B', T_1(D, B))$.
2. Let $U_1(D, B)$ be the set of unmarked vertices in $T_1(D, B)$ represented by a vertex of B' in D, and for $v \in U_1(D, B)$, let $SL_1(D, B, v) := \tilde{C}[D, B', v]$.
3. Let $T_2(D, B)$ be the component of $D \setminus V(B)$ which contains the bag B', and $F_2(D, B) := f(D, B, T_2(D, B))$.
4. Let $U_2(D, B)$ be the set of unmarked vertices in $T_2(D, B)$ represented by a vertex of B in D, and for $v \in U_2(D, B)$, let $SL_2(D, B, v) := \tilde{C}[D, B, v]$.

Below we will compute $SL_1(D, B, v)$ or $SL_2(D, B, v)$, and we will sometimes have to merge two bags to be able to turn a limb into a canonical decomposition. Whenever a merging operation on two bags B_1 and B_2 appears, if B_2 is a descendant of B_1 (or B_1 is a descendant of B_2), then we regard the merged bag as B_1 (or B_2), and if they are incomparable, then we regard it as a new one.

We define the root R' of $SL_1(D, B, v)$ or $SL_2(D, B, v)$ as follows. If the root R of D exists in $SL_1(D, B, v)$ or $SL_2(D, B, v)$, then let $R' := R$. Assume the root R does not exist in $SL_1(D, B, v)$ or $SL_2(D, B, v)$. If R was a bag, then R' is removed and either two children of R are merged or they are linked by a marked edge. If R was a marked edge, then one of the bags incident with R is removed and either two children of it are merged or linked by a marked edge. In both cases, if two children of the merged bag are merged, then let R' be the merged bag, and if otherwise, let R' be the marked edge between them. From the definition, we have the following.

Remark 1. Let D be the rooted canonical decomposition of a distance-hereditary graph and let B be a non-root bag of D. If B' is a non-root bag of $SL_i(D, B, v)$, then B' is a non-root bag of D (for $i = 1, 2$).

Our algorithm uses methods from the algorithm for the vertex separation of trees in [9]. Let D be the rooted canonical decomposition of a distance-hereditary graph G. Our algorithm works bottom-up on D, and computes $F_i(D, B)$ for all bags B in D using a dynamic programming. Let B be a bag of D, and let B_1, B_2, \ldots, B_m be the children of B in D. Let $k := \max_{1 \leq i \leq m} F_1(D, B_i)$. We can easily observe that $k \leq F_1(D, B) \leq k + 1$. We discuss now how to determine $F_1(D, B)$. A bag B of D is called k-critical if $F_1(D, B) = k$ and B has two children B_1 and B_2 such that $F_1(D, B_1) = F_1(D, B_2) = k$. We first observe the following which can be derived from Theorem 4 and Proposition 2.

Proposition 6. Let D be the rooted canonical decomposition of a distance-hereditary graph G such that $k = \max \{ F_1(D, B) \mid B \text{ is a non-root bag of } D \}$. Assume that D
has neither a bag B having at least three children B' such that $\mathcal{F}_1(D, B') = k$ nor it has two incomparable bags B_1 and B_2 with B_1 a k-critical bag and $\mathcal{F}_1(D, B_2) = k$. Let B be a k-critical bag of D. Then B is the unique k-critical bag of D. Moreover, $\text{lrw}(G) = k + 1$ if and only if $\mathcal{F}_2(D, B) = k$.

Proof. We first show that B is the unique k-critical bag of D. Let B' be a k-critical bag of D which is distinct from B. If two bags B and B' are comparable in D, then without loss of generality, we may assume that B is a descendant of B' in D. Then by the definition of k-criticality, B' has a child B_1' such that $\mathcal{F}_1(D, B_1') = k$ and B is not a descendant of B_1' in D. Thus, B is incomparable with B_1' in D and $\mathcal{F}_1(D, B_1') = k$, which contradicts the assumption.

Let B be the unique k-critical bag of D. Now we claim that $\text{lrw}(G) = k + 1$ if and only if $\mathcal{F}_2(D, B) = k$. Note that by the assumption on k, $\text{lrw}(G) \leq k + 1$. So, the converse direction is easy. For the forward direction, suppose that $\text{lwr}(G) = k + 1$. Since D has no bag B having at least three children B_1, B_2 and B_3 such that $\mathcal{F}_1(D, B_1) = \mathcal{F}_1(D, B_2) = \mathcal{F}_1(D, B_3) = k$, by Theorem 4 there should exist a k-critical bag B' of D such that $\mathcal{F}_2(D, B') \geq k$. If $\mathcal{F}_2(D, B) = k + 1$, then there must be a bag B' in D, which is incomparable to B, such that $\mathcal{F}_1(D, B') = k$. Thus, $\mathcal{F}_2(D, B) = k$. Since B is the unique k-critical bag of D, $\mathcal{F}_2(D, B) = \mathcal{F}_2(D, B') = k$, as required.

By Proposition 6, the computation of $\mathcal{F}_1(D, B)$ is reduced to the computation of $\mathcal{F}_2(\mathcal{SL}_1(D, B, v), B_c)$ when $\mathcal{SL}_1(D, B, v)$ has the unique k-critical bag B_c. In order to compute $\mathcal{F}_2(\mathcal{SL}_1(D, B, v), B_c)$, we can call recursively the algorithm computing the linear rank-width in $\mathcal{SL}_2(\mathcal{SL}_1(D, B, v), B_c)$. However, we will prove that these recursive calls are not needed if we compute more than the linear rank-width, and it is the key for the $O(n^2 \cdot \log(n))$ time algorithm.

j	$PD(B, j)$	$LD(B, j)$	Status
10	8	9	$D' \in D(B, 10)$ has no 10-critical bags.
9	8	9	$D' \in D(B, 9)$ has no 9-critical bags.
8	8	9	$D' \in D(B, 8)$ has the unique 8-critical bag B_c and the maximum \mathcal{F}_1 value over all bags B' except the root in $\mathcal{SL}_1(D', B_c, v)$ is 7.
7	7	8	$D' \in D(B, 7)$ has a bag having three children B' such that $\mathcal{F}_1(D', B') = 7$. Thus, $LD(B, 7) = 8$.
6	-	-	Once we have $LD(B, \ell) = \ell + 1$, it is unnecessary to compute $D(B, j)$ where $j < \ell$.

Table 1. Examples of $PD(B, j)$ and $LD(B, j)$.

For each bag B of D and $0 \leq j \leq \lfloor \log |V(G)| \rfloor$, we recursively define the set $D(B, j)$ of canonical decompositions and the positive integers $PD(B, j)$ and $LD(B, j)$. The integer j will not be larger than the linear rank-width of the distance-hereditary graph, and the inequality $j \leq \lfloor \log |V(G)| \rfloor$ came from the following fact.

Lemma 13. For a distance-hereditary graph G, $\text{lwr}(G) \leq \log |V(G)|$.

Proof. We can easily modify the proof of [17, Theorem 4.2] to show it.

Let $D(D, |\log |V(G)||) := \{\mathcal{SL}_1(D, B, v) : v \in U_{\ell}(D, B)\}$. Roughly, $D(B, j)$ consists of all canonical decompositions obtained from canonical decompositions in $D(B, |\log |V(G)||)$ by recursively removing the unique k-critical bag, for $k \geq j + 1$.

For each set $D(B,j)$ and $D' \in D(B,j)$, let $PD(B,j)$ be the maximum $F_1(D',B')$ over all non-root bags B' in D', and let $LD(B,j) := \text{lrw}(D')$. The essential cases are when $PD(B,j) = j$, and in these cases, we want to determine whether $LD(B,j) = j$ or $j + 1$. Now we define $D(B,j)$ precisely.

1. Let $D(B, \lfloor \log|V(G)| \rfloor) := \{SL_1(D,B,v) : v \in U_1(D,B)\}$.
2. For all $1 \leq j \leq \lfloor \log|V(G)| \rfloor$, if $PD(B,j) \neq j$, let $D(B,j) := D(B,j)$. If $PD(B,j) = j$, then for $D' \in D(B,j)$,
 (a) if (D') has a bag with at least 3 children B_1 such that $LD(B_1,j) = j$ or $LD(B_2,j) = j$ or (D') has no j-critical bags, then let $D(B,j - 1) := D(B,j)$.
 (b) if D' has the unique j-critical bag B_c, then let $D(B,j - 1) := \{SL_2(D',B_c,v) : D' \in D(B,j), v \in U_2(D',B_c)\}$.

Note that all decompositions in $D(B,j)$ are locally equivalent. So, $PD(B,j)$ and $LD(B,j)$ are well-defined. We prove the following.

Proposition 7. Let D be the rooted canonical decomposition of a distance-hereditary graph G and let B be a non-root bag of D. Let i be an integer such that $0 \leq i \leq \lfloor \log|V(G)| \rfloor$ and $PD(B,i) \leq i$. Let $D' \in D(B,i)$ and let B' be a non-root bag of D'. Then B' is also a non-root bag of D and $PD(B',i) \leq i$. Moreover, for $v \in U_i(D',B')$ and $D'' \in D(B',i)$, $SL_1(D',B',v)$ is locally equivalent to D''. Therefore, $F_1(D',B') = LD(B',i)$.

To prove Proposition 7, we need the following technical lemma.

Lemma 14. Let D be the canonical decomposition of a distance-hereditary graph. Let B_1 and B_2 be two bags of D and let T_i be the component of $D \setminus V(B_i)$ containing the bag in $\{B_1,B_2\} \setminus \{B_i\}$ such that $V(T_1) \cap V(T_2)$ has at least one unmarked vertex in D, and let v_i be the marked vertex of B_i adjacent to T_i.

Then there exists a canonical decomposition D' locally equivalent to D such that for each $i \in \{1,2\}$, B_i is a star in D' and v_i is a leaf of B_i.

Proof. For one bag B_i, it is easy to make B_i into a bag having v_i as a leaf by applying local complementations. Without loss of generality, we may assume that v_1 is a leaf of B_1. If v_2 is a leaf of B_2, then we are done. If B_2 is a complete bag, then by applying one local complementation, we may change B_2 into a bag having v_2 as a leaf. This local complementation does not change the bag B_1, because already v_1 is a leaf of B_1 and $B_1 \ast v_1 = B_1$. So, we conclude the result. Therefore, we may assume that v_2 is the center of the star bag B_2.

Let $T = D[V(T_1) \cap V(T_2)]$ and let $w_2 \in V(T_2)$ be the marked vertex adjacent to v_2 in D. By the definition of a canonical decomposition, w_2 is not a leaf of a star bag in D. Therefore, there exists an unmarked vertex $y \in V(T)$ of D such that y is linked to w_2 in T. Let y' be an unmarked vertex of D represented by w_2 in D. Note that y is linked to y' in D and the paths from y to y' in D pass through B_2 but not B_1. Thus, each v_i is a leaf of B_i in $D \setminus yy'$, as required.

Proposition 8. Let D be the canonical decomposition of a distance-hereditary graph. Let B_1 and B_2 be two bags of D and let T_i be the component of $D \setminus V(B_i)$ containing the bag in $\{B_1,B_2\} \setminus \{B_i\}$ such that $V(T_1) \cap V(T_2)$ has at least two unmarked vertices in D. For $i = 1,2$, let v_i be the marked vertex of B_i adjacent to T_i, let y_i be an unmarked vertex represented in D by v_i and let y'_i be an unmarked vertex represented in $\hat{L}[D,B_i,y_i]$ by $\{v_1,v_2\} \setminus \{v_i\}$.

Then $\hat{L}[\hat{L}[D,B_1,y_1],B_2,y'_1]$ is locally equivalent to $\hat{L}[\hat{L}[D,B_2,y_2],B_1,y'_2]$.

Proof. For each $i = 1, 2$, let v_i be the marked vertex adjacent to v_i in D, and let $T = D[V(T_1) \cap V(T_2)]$.

We first assume that each v_i is a leaf of B_i in D. In this case, we can obtain both $\bar{L}[^{\bar{L}}[D, B_1, y_1], B_2, y_2]$ and $\bar{L}[\bar{D}, B_1, y_1]$ from the decomposition $T \setminus w_1 \setminus w_2$ by making it into a canonical decomposition. Thus $\bar{L}[\bar{L}[^{\bar{L}}[D, B_1, y_1], B_2, y_2]] = \bar{L}[^{\bar{L}}[D, B_2, y_2], B_1, y_2]$.

Now, we consider other cases. By Lemma [1], there exists a canonical decomposition \bar{D}' locally equivalent to D such that for each $i \in \{1, 2\}$, v_i is a leaf of B_i in \bar{D}'. Let z_i be an unmarked vertex represented in \bar{D}' by v_i and let z_i' be an unmarked vertex represented in $\bar{L}[\bar{D}', B_i, z_i]$ by $\{v_1, v_2\} \setminus \{v_1\}$.

Since D is locally equivalent to \bar{D}', by Proposition [1], $\bar{L}[\bar{D}, B_1, y_1]$ is locally equivalent to $\bar{L}[\bar{D}', B_1, z_1]$. Again, since $\bar{L}[\bar{D}, B_1, y_1]$ is locally equivalent to $\bar{L}[\bar{D}', B_1, z_1]$, by Proposition [1],

$$\bar{L}[\bar{L}[^{\bar{L}}[D, B_1, y_1], B_2, y_2]] = \bar{L}[\bar{L}[\bar{D}', B_1, z_1], B_2, z_2].$$

Similarly, we obtain that

$$\bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2'] = \bar{L}[\bar{L}[\bar{D}', B_2, z_2], B_1, z_2].$$

Since each v_i is a leaf of B_i in \bar{D}', from the earlier case we analyzed,

$$\bar{L}[\bar{L}[\bar{D}', B_1, z_1], B_2, z_2'] = \bar{L}[\bar{L}[\bar{D}', B_2, z_2], B_1, z_2].$$

Therefore,

$$\bar{L}[\bar{L}[^{\bar{L}}[D, B_1, y_1], B_2, y_2]] = \bar{L}[\bar{L}[\bar{D}', B_2, y_2], B_1, y_2'],$$

as required. \qed

Proposition 9. Let D be the canonical decomposition of a distance-hereditary graph. Let B_1 and B_2 be two bags of D. Let T_1 be a component of $D \setminus V(B_1)$ which does not contain B_2 and let T_2 be the component of $D \setminus V(B_2)$ containing the bag B_1. For $i = 1, 2$, let v_i be the marked vertex of B_i adjacent to T_i, and let y_i be an unmarked vertex represented by v_i in D. If B_1 is a bag of $\bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2]$, then $\bar{L}[\bar{L}[\bar{D}, B_1, y_1]]$ is locally equivalent to $\bar{L}[\bar{L}[\bar{D}'[D, B_2, y_2], B_1, y_2]$, where y_2' is an unmarked vertex represented in $\bar{L}[\bar{D}'[D, B_2, y_2], B_1, y_2]$.

Proof. Suppose B_1 is a bag of $\bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2']$ and y_2' is an unmarked vertex represented in $\bar{L}[\bar{L}[\bar{D}, B_2, y_2]]$ by v_1. If y_2 is a leaf of a star bag B_2, it is easy to show that $\bar{L}[\bar{L}[\bar{D}, B_1, y_1]] = \bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2']$ because B_1 and T_1 in D are not different with B_1 and T_1 in $\bar{L}[\bar{L}[\bar{D}, B_2, y_2]]$, respectively. Now, we consider other cases. Note that there exists a canonical decomposition \bar{D}' locally equivalent to D such that v_2 is a leaf of B_2 in \bar{D}'. Let z_i be an unmarked vertex represented by v_i in \bar{D}' and let z_i' be an unmarked vertex represented in $\bar{L}[\bar{D}', B_2, z_2]$ by v_1.

Since D is locally equivalent to \bar{D}', by Proposition [1], $\bar{L}[\bar{L}[\bar{D}, B_1, y_1]]$ is locally equivalent to $\bar{L}[\bar{L}[\bar{D}', B_1, z_1]]$. Similarly, we obtain that $\bar{L}[\bar{L}[\bar{D}, B_2, y_2]]$ is locally equivalent to $\bar{L}[\bar{L}[\bar{D}', B_2, z_2]]$. Since $\bar{L}[\bar{L}[\bar{D}, B_2, y_2]]$ is locally equivalent to $\bar{L}[\bar{L}[\bar{D}', B_2, z_2]]$, by Proposition [1],

$$\bar{L}[\bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2']] = \bar{L}[\bar{L}[\bar{L}[\bar{D}', B_2, z_2], B_1, z_2']].$$

Since v_2 is a leaf of B_2 in \bar{D}', from the earlier case we analyzed, $\bar{L}[\bar{L}[\bar{L}[\bar{D}, B_2, y_2], B_1, y_2']] = \bar{L}[\bar{L}[\bar{L}[\bar{D}', B_2, z_2], B_1, z_2']$, and therefore,

$$\bar{L}[\bar{L}[\bar{L}[\bar{D}, B_1, y_1]]] = \bar{L}[\bar{L}[\bar{L}[\bar{D}', B_2, y_2], B_1, y_2']],$$

as required. \qed
The following are needed to prove Proposition [7].

Lemma 15. Let D be the rooted canonical decomposition of a distance-hereditary graph G and let B be a non-root bag of D. Let i be an integer such that $0 \leq i < \lfloor \log |V(G)| \rfloor$.

If $PD(B, i) \leq i$, then $PD(B, i + 1) \leq i + 1$.

Proof. Suppose that $PD(B, i + 1) \geq i + 2$. By the definition of $D(B, i)$, $D(B, i) = D(B, i + 1)$ and therefore, $PD(B, i) \geq i + 2$, which is contradiction. \(\square\)

Lemma 16. Let D be the rooted canonical decomposition of a distance-hereditary graph G and let B be a non-root bag of D. Let $D' \in D(B, \lfloor \log |V(G)| \rfloor)$, and let B' be a non-root bag of D'. Then B' is a non-root bag of D. Moreover, for $v \in U_1(D', B')$ and $D'' \in D'(D', \lfloor \log |V(G)| \rfloor)$, $\mathcal{SL}_1(D', B', v)$ is locally equivalent to D''.

Proof. By Remark [1] B' is a non-root bag of D. Since B' is a bag of D', by Proposition [7], $\mathcal{SL}_1(D', B', v)$ is locally equivalent to D'' for all $D'' \in D'(D', \lfloor \log |V(G)| \rfloor)$.

Proof (of Proposition [7]). By Remark [1] B' is a non-root bag of each $D' \in D(B, j)$ where $i \leq j \leq \lfloor \log |V(G)| \rfloor$ and B' is also a non-root bag of D. Also, by Lemma [15], $PD(B, j) \leq j$ for all $i \leq j \leq \lfloor \log |V(G)| \rfloor$. Clearly $PD(B', i) \leq i$, otherwise, $PD(B, i) \geq i + 1$.

We show, by induction on $\lfloor \log |V(G)| \rfloor - i$, that for $v \in U_1(D', B')$ and $D'' \in D'(D', B', v)$ is locally equivalent to D''. If $i = \lfloor \log |V(G)| \rfloor$, then by Lemma [16] $\mathcal{SL}_1(D', B', v)$ is locally equivalent to D''.

Suppose that $i < \lfloor \log |V(G)| \rfloor$. Let $v \in U_1(D', B')$, $D'' \in D'(B', i + 1)$ and let $D_1 \in D(B, i + 1)$, $D_2 \in D(B', i + 1)$. Let $z \in U_1(D_1, B')$. By the induction hypothesis, $\mathcal{SL}_1(D_1, B', z)$ is locally equivalent to D_2. Note that $PD(B, i + 1) \leq i + 1$.

If $PD(B, i + 1) \leq i$, then it is easy to see that $PD(B', i + 1) \leq i$. Therefore, $D(B, i) = D(B, i + 1)$ and $D(B', i) = D(B', i + 1)$. Thus, $\mathcal{SL}_1(D', B', v)$ is locally equivalent to $\mathcal{SL}_1(D_1, B', z)$ and D'' is locally equivalent to D_2. By the induction hypothesis, we conclude that $\mathcal{SL}_1(D', B', v)$ is locally equivalent to D''.

Now we may assume that $PD(B, i + 1) = i + 1$. Since $PD(B, i + 1) = i + 1$ and $PD(B, i) \leq i$, by the definition of $D(B, i)$, neither D_1 has a bag having at least three children B_1 such that $F_1(D_1, B_1) = i + 1$, nor D_1 has two incomparable bags B_1 and B_2 with an $(i + 1)$-critical bag B_1 and $LD(B_2, i + 1) = i + 1$. So, either D_1 has no $(i + 1)$-critical bag, or D_1 has the unique $(i + 1)$-critical bag. If D_1 has no $(i + 1)$-critical bag, then D_2 also has no $(i + 1)$-critical bag. Thus, $D(B, i) = D(B, i + 1)$ and $D(B', i) = D(B', i + 1)$, and by the induction hypothesis, $\mathcal{SL}_1(D', B', v)$ is locally equivalent to D'', as required.

Suppose that D_1 has the unique $(i + 1)$-critical bag B_c. Let $w \in U_2(D_1, B_c)$ and let $w' \in U_1(\mathcal{SL}_2(D_1, B_c, w), B')$. From the definition of $D(B, i)$, D'' is locally equivalent to $\mathcal{SL}_2(D_1, B_c, w)$. Thus, $\mathcal{SL}_2(D_1, B_c, w)$ contains the bag B', and so, B' is not a descendant of B_c in D_1. Therefore, there are two cases:

1. B_c is incomparable to B' in D_1.
2. B_c is a descendant of B' in D_1.

First assume that B_c is incomparable to B' in D_1. Then there is no $(i + 1)$-critical bag in $\mathcal{SL}_1(D_1, B', z)$. So, D_2 has no $(i + 1)$-critical bag and therefore, $D(B', i) = D(B', i + 1)$. Therefore, D_2 is locally equivalent to D''. Moreover, by Proposition [9]

$\mathcal{SL}_1(D_1, B', z)$ is locally equivalent to $\mathcal{SL}_1(\mathcal{SL}_2(D_1, B_c, w), B', w')$.

Case 1: \(B_c \) is incomparable to \(B' \) in \(D_1 \).

\[
\begin{align*}
\mathcal{S}\mathcal{L}_1(D_1, B', z) & \quad \mathcal{S}\mathcal{L}_1(D_1, B', z) & \quad D_2 & \quad D'' \\
\sim & \quad \Rightarrow & \quad \Rightarrow & \quad \Rightarrow & \quad \Rightarrow & \quad \sim \\
\mathcal{S}\mathcal{L}_1(\mathcal{S}\mathcal{L}_2(D_1, B_c, w), B', w') & \quad \mathcal{S}\mathcal{L}_1(D', B', v) & \quad \mathcal{S}\mathcal{L}_2(D', B', v) & \quad \mathcal{S}\mathcal{L}_2(D', B', v) & \quad \mathcal{S}\mathcal{L}_1(D', B', v)
\end{align*}
\]

Case 2: \(B_c \) is a descendant of \(B' \) in \(D_1 \).

\[
\begin{align*}
\mathcal{S}\mathcal{L}_2(\mathcal{S}\mathcal{L}_1(D_1, B', z), B_c, z') & \quad \mathcal{S}\mathcal{L}_2(\mathcal{S}\mathcal{L}_1(D_1, B', z), B_c, z') & \quad \mathcal{S}\mathcal{L}_2(D_2, B_c, z') & \quad D'' \\
\sim & \quad \Rightarrow & \quad \Rightarrow & \quad \Rightarrow & \quad \sim & \quad \sim \\
\mathcal{S}\mathcal{L}_1(\mathcal{S}\mathcal{L}_2(D_1, B_c, w), B', w') & \quad \mathcal{S}\mathcal{L}_1(D', B', v) & \quad \mathcal{S}\mathcal{L}_1(D', B', v) & \quad \mathcal{S}\mathcal{L}_1(D', B', v) & \quad \mathcal{S}\mathcal{L}_1(D', B', v)
\end{align*}
\]

Figure 3. The two cases in the proof of Proposition 7.

Since \(D' \) is locally equivalent to \(\mathcal{S}\mathcal{L}_2(D_1, B_c, w) \),

\[
\mathcal{S}\mathcal{L}_1(D_1, B', z) \text{ is locally equivalent to } \mathcal{S}\mathcal{L}_1(D', B', v).
\]

Also, by the induction hypothesis, \(D_2 \) is locally equivalent to \(\mathcal{S}\mathcal{L}_1(D_1, B', z) \), and therefore, \(D_2 \) is locally equivalent to \(\mathcal{S}\mathcal{L}_1(D', B', v) \). Thus, we conclude that \(D'' \) is locally equivalent to \(\mathcal{S}\mathcal{L}_1(D', B', v) \), as required. See Figure 3.

Now suppose that \(B_c \) is a descendant of \(B' \) in \(D_1 \). Let \(T = D_1[V(T_1(D_1, B')) \cap V(T_2(D_1, B_c))] \). If \(V(T) \) has only one unmarked vertex in \(D_1 \), then \(B' \) is the parent of \(B_c \) and \(|B'| = 3 \). However, in this case, \(B' \) does not exist in \(\mathcal{S}\mathcal{L}_2(D_1, B_c, w) \in D(B, t) \), which contradicts the assumption. Therefore, we may assume that \(V(T) \) has at least two unmarked vertices in \(D_1 \).

Let \(z' \in U_2(\mathcal{S}\mathcal{L}_1(D_1, B', z), B_c) \). Since \(V(T) \) has at least two unmarked vertices in \(D_1 \), by Proposition 5

\[
\mathcal{S}\mathcal{L}_1(\mathcal{S}\mathcal{L}_2(D_1, B_c, w), B', w') \text{ is locally equivalent to } \mathcal{S}\mathcal{L}_2(\mathcal{S}\mathcal{L}_1(D_1, B', z), B_c, z').
\]

Since \(D' \) is locally equivalent to \(\mathcal{S}\mathcal{L}_2(D_1, B_c, w) \),

\[
\mathcal{S}\mathcal{L}_1(D', B', v) \text{ is locally equivalent to } \mathcal{S}\mathcal{L}_2(\mathcal{S}\mathcal{L}_1(D_1, B', z), B_c, z').
\]

Also, since \(\mathcal{S}\mathcal{L}_1(D_1, B', z) \) is locally equivalent to \(D_2 \)

\[
\mathcal{S}\mathcal{L}_1(D', B', v) \text{ is locally equivalent to } \mathcal{S}\mathcal{L}_2(D_2, B_c, z').
\]

At last, \(\mathcal{S}\mathcal{L}_2(D_2, B_c, z') \) is locally equivalent to \(D'' \), and therefore, we conclude that \(\mathcal{S}\mathcal{L}_1(D', B', v) \) is locally equivalent to \(D'' \). See Figure 3.

Now we describe the algorithm explicitly. To ease the understanding, we modify the given canonical decomposition as follows. For the canonical decomposition \(D' \) of a distance-hereditary graph \(G \), we modify \(D' \) into a canonical decomposition \(D \) by adding a bag \(R \) adjacent to a bag \(R' \) in \(D \) so that \(f(D, R, D') = \text{lrw}(G) \). So, if we regard \(R \) as the root bag of \(D \), then \(\mathcal{F}_1(D, R') = \text{lrw}(G) \), and therefore it is sufficient to compute \(LD(R', |\log|V(G)||) = \mathcal{F}_1(D, R') \). The basic strategy is to compute \(LD(B, i) \) for all non-root bags \(B \) of \(D \) and integers \(i \) such that \(PD(B, i) \leq i \). If \(B \) is a non-root leaf bag of \(D \), then clearly \(\mathcal{F}_1(D, B) = 1 \), so let \(LD(B, i) = 1 \) for all \(0 \leq i \leq |\log|V(G)|| \). For convenience, let \(t = |\log|V(G)|| \).

1. Compute the canonical decomposition \(D' \) of \(G \), and obtain a canonical decomposition \(D \) from \(D' \) by adding a root bag \(R \) adjacent to a bag \(R' \) in \(D \) so that \(\text{lrw}(G) = LD(R', t) \).
2. For all non-root leaf bags B in D, set $LD(B, j) := 1$ for all $0 \leq j \leq t$.
3. While (D has a non-root bag B such that $LD(B, t)$ is not computed.)
 (a) Choose a non-root bag B in D such that for every child B' of B, $LD(B', t)$
 is computed.
 (b) Choose some $v \in \mathcal{U}_t(D, B)$ and compute $D_i := SL_1(D, B, v) \in D(B, t)$.
 (c) Compute $k := PD(B, t)$ and set $D_k := D_i$ and $i := k$.
 (d) Let S be a stack.
 (e) While (true) do.
 i. If either (D_i has a bag with at least 3 children B_1 such that $LD(B_1, i) =$
 1 or (D_i has two incomparable bags B_1 and B_2 with B_1 an i-critical
 bag and $LD(B_2, i) = i$) or (D_i has no i-critical bags), then stop this
 loop.
 ii. Find the unique i-critical bag in D_i.
 iii. Compute $D_{i-1} \in D(B, i - 1)$ and push(S, i).
 iv. Set $j := i - 1$ and $i := PD(B, i - 1)$ and $D_i := D_j$.
 (f) If either (D_i has a bag with at least 3 children B_1 such that $LD(B_1, i) =$
 i or (D_i has two incomparable bags B_1 and B_2 with B_1 an i-critical
 bag and $LD(B_2, i) = i$), then set $LD(B, i) := i + 1$, else, $LD(B, i) := i$.
 (g) While ($S \neq \emptyset$) do.
 i. Set $j := pull(S)$.
 ii. If $LD(B, i) = j$, then $LD(B, j) := j + 1$, else $LD(B, j) := j$.
 iii. For $\ell = i + 1$ to $j - 1$, set $LD(B, \ell) := LD(B, i)$.
 iv. Set $i := j$.
 (h) Set $LD(B, j) := LD(B, k)$ for all $k < j \leq t$.
4. Return $LD(R', t)$.

Proof (of Theorem 5). We will show that for each bag B and each $0 \leq j \leq t =
\lfloor \log(n) \rfloor$ such that $PD(B, j) \leq j$, the algorithm computes $LD(B, j)$ correctly. For
each non-root leaf bag B, by Lemma 6, Step 2 correctly puts the values $LD(B, j)$.
(The limb $SL_1(D, B, v)$ is isomorphic to either a complete graph or a star and it has
at least two vertices.) Now we assume that B is not a leaf and for all its children B'
and integers $0 \leq \ell \leq t = \lfloor \log(n) \rfloor$ such that $PD(B', \ell) \leq \ell$, $LD(B', \ell)$ is computed.

We first observe the computation of a canonical decomposition in $D(B, j)$. Note
that by Lemma 15, $PD(B, i) \leq i$ for all $j \leq i \leq t$. Also, since 2(a) in the definition
of $D(B, j)$ occurs for some j, we have $PD(B, \ell) = j$ for all $\ell \leq j - 1$. In other words,
a canonical decomposition in $D(B, j)$ is obtained from a canonical decomposition
in $D_i \in D(B, t)$ by a sequence of operations which are either

1. $D_{i-1} = D_i$ when $PD(B, i) \leq i - 1$, or
2. $D_{i-1} = SL_1(D_i, B_i, v)$ where B_i is the unique i-critical bag of D_i and $v \in
\mathcal{U}_t(D_i, B_i)$ when $PD(B, i) = i$.

To skip the procedures taking $D_{i-1} = D_i$, it is sufficient to deal with D_j directly
instead of D_{i-1} if $j = PD(B, i - 1)$ for some i. Therefore, Step 3(d) correctly
compute D_j for all j such that $PD(B, j) = j$.

Now we verify the procedure of computing $LD(B, j)$. Let $0 \leq \ell \leq t$ be the
minimum integer such that $D_{i} = D_i$ is computed. If $\ell = 0$, then the linear rank-width of
D_0 must be 1 because D_0 must have at least two vertices. If $\ell \geq 1$, then since $D_{\ell-1}$
is not computed, by the definition,

1. $LD(B, \ell) = \ell + 1$ if either D_{ℓ} has a bag with at least 3 children B' such that
 $LD(B', \ell) = \ell$ or D_{ℓ} has two incomparable bags B_1 and B_2 with B_1 an i-critical
 bag and $LD(B_2, i) = i$,
2. $LD(B, \ell) = \ell$ if otherwise.
So, Step 3(f) correctly computes it.

Note that by Proposition 6, we can compute \(LD(B,j) \) for all \(\ell + 1 \leq j \leq t \). By the definition, if \(D_j \) has the unique \(j \)-critical bag and \(LD(B,j-1) = j \), then \(LD(B,j) = j + 1 \), and if either \(PD(B,j) \leq j - 1 \) or \(LD(B,j-1) \leq j - 1 \), then \(LD(B,j) = j \). In the loop 3(e) in the algorithm, we use a stack to pile up the integers \(j \) such that \(D_j \) has the unique \(j \)-critical bag. So, from the lower value in the stack we compute \(LD(B,j) \) recursively. Therefore, Steps 3(g-h) compute all \(LD(B,j) \) correctly where \(PD(B,j) \leq j \).

Now we analyze the time complexity. By Propositions 6 and 7 the steps of the algorithm outlined above computes the linear rank-width of every connected distance-hereditary graph \(G \). Let us now analyze its running time. Let \(n \) and \(m \) be the number of vertices and edges of \(G \). Its canonical decomposition \(D' \) can be computed in time \(O(n + m) \) by Theorem 1 and one can of course add a new bag to obtain a new canonical decomposition \(D \) and root it in constant time. The number of bags in \(D \) is bounded by \(O(n) \) (see [12, Lemma 2.2]). For each bag \(B, LD(B,j) \) for all \(0 \leq j \leq t \) can be computed in time \(O(n \cdot \log(n)) \). In fact, Steps 3(a-c) can be done in time \(O(n) \). The loop in 3(e) runs \(\log(n) \) times since \(k \leq \log(n) \), and all the steps in 3(e) can be implemented in time \(O(n) \). Since Steps 3(f-h) can be done in time \(O(n) \), we conclude that this algorithm runs in time \(O(n^2 \cdot \log(n)) \).

Corollary 2. For every connected distance-hereditary graph \(G \), we can compute in time \(O(n^2 \cdot \log(n)) \) a layout of the vertices of \(G \) witnessing \(\text{lrw}(G) \).

Proof. We follow the same proof as in [9] and establish a linear layout witnessing \(\text{lrw}(G) = k \). We first run the algorithm computing \(\text{lrw}(G) \). At the end, each bag \(B \) has a label \(\lambda_B = (a_1,a_2,\ldots,a_k) \) corresponding to the computed values \(LD(B,j) \). Then we search for the path depicted in Lemma 13 and this can be done in linear time. Now for all the subtrees pending on that path, the linear rank-width of the corresponding limbs are at most \(k - 1 \). So we apply recursively the same algorithm on each of them. We can therefore output an ordering witnessing \(\text{lrw}(G) = k \). Since the depth of the recursive calls is bounded by \(k \) and in each call, the path is found in \(O(n) \), we can compute optimal layout in time \(O(n \log(n)) \), once \(\lambda_B \) are computed, which can be done in \(O(n^2 \cdot \log(n)) \).

6 Obstructions

A graph \(H \) is a vertex-minor obstruction for (linear) rank-width \(k \) if it has (linear) rank-width \(k + 1 \) and every proper vertex-minor of \(H \) has (linear) rank-width at most \(k \). The set of pairwise locally non-equivalent vertex-minor obstructions for (linear) rank-width \(k \) is not known, but for rank-width \(k \) a bound on their size is known [15], which is not the case for linear rank-width \(k \). For \(k = 1 \), Adler, Farley, and Proskurowski [1] characterized the distance-hereditary vertex-minor obstructions for linear rank-width at most 1 by two pairwise locally non-equivalent graphs. For general \(k \), Jeong, Kwon, and Oum recently provided a \(2^{O(3^k)} \) lower bound on the number of pairwise locally non-equivalent distance-hereditary vertex-minor obstructions for linear rank-width at most \(k \) [16]. Using our characterization, we generalize the construction in [16] and conjecture a subset of the given set to be the set of distance-hereditary vertex-minor obstructions.

We will use the notion of one-vertex extension introduced in [14]. We call a graph \(G' \) an one-vertex extension of a distance-hereditary graph \(G \) if \(G' \) is a graph obtained from \(G \) by adding a new vertex \(v \) with some edges and \(G' \) is again distance-hereditary. For convenience, if \(D \) and \(D' \) are canonical decompositions of \(G \) and \(G' \), respectively, then \(D' \) is also called an one-vertex extension of \(D \). For examples, one might see that an one-vertex extension of \(K_2 \) is isomorphic to either \(K_3 \) or \(K_{1,2} \).
For each non-negative integer k, we construct the sets Ψ_k and Ψ_k' of canonical decompositions as follows.

1. Ψ_0 consists of the canonical decomposition of the graph K_2. (It is isomorphic to K_2.)
2. For $k \geq 0$, let Ψ_k' be the union of Ψ_k and the set all the one-vertex extensions of canonical decompositions in Ψ_k.
3. For $k \geq 1$, let Ψ_k be the set of all canonical decompositions D defined as follows. Choose three canonical decompositions D_1, D_2, D_3 in Ψ_{k-1} and take one-vertex extensions D_i' of D_i with new vertices v_i for each i. We introduce a new bag B of type K or S having three vertices v_1, v_2, v_3 and
 - (a) if v_i is in a complete bag, then $D_i'' = D_i' * v_i$,
 - (b) if v_i is the center of a star bag, then $D_i'' = D_i' \land w_i z_i$ for some z_i linked to w_i in D_i',
 - (c) if v_i is a leaf of a star bag, then $D_i'' = D_i'$.
We define D as the canonical decomposition obtained by the disjoint union of D_1', D_2', D_3' and B by adding the marked edges $v_1 v_2, v_2 v_3, v_3 v_1$.

It is worth noticing that if $k \geq 1$, then $D \in \Psi_k$ if and only if there exists a bag B in D such that the three limbs corresponding to B are contained in Ψ_{k-1}. We prove the following.

Theorem 6. Let $k \geq 0$ and let G be a distance-hereditary graph such that $\text{lrw}(G) \geq k + 1$. Then there exists a canonical decomposition D in Ψ_k such that G contains a vertex-minor isomorphic to \hat{D}.

Instead of showing Theorem 6 we will prove the following which implies it clearly since $\Psi_k \subseteq \Psi_k'$.

Theorem 7. Let $k \geq 0$ and let G be a distance-hereditary graph such that $\text{lrw}(G) \geq k + 1$. Then there exists a canonical decomposition D in Ψ_k' such that G contains a vertex-minor isomorphic to \hat{D}.

Lemma 17. Let D be the canonical decomposition of a distance-hereditary graph. Let B_1 and B_2 be two distinct bags of D and let y_1 be the vertex of B_1 such that the distance between y_1 to B_2 is minimum, and similarly we define y_2 such that

- y_1 is not a center of a star bag B_1, and
- B_2 is a star bag and y_2 is a leaf of B_2.

Let L_1 be the set of all bags B in D such that every path from B to B_2 in T_D contains B_1, and similarly we define L_2. Then D has a vertex-minor isomorphic to \hat{D}' where D' is a canonical decomposition such that

1. $D[\bigcup_{B \in L_1} V(B)] = D'[\bigcup_{B \in L_1} V(B)]$,
2. $D[\bigcup_{B \in L_2} V(B)] = D'[\bigcup_{B \in L_2} V(B)]$, and
3. either D' has no bags between B_1 and B_2, or D' has only one another bag B which is contained in neither L_1 nor L_2, and $|V(B)| = 3$, B is star, and two leaves are adjacent to y_1 and y_2 in D'.

Proof. If there is no bag between B_1 and B_2 in D, then there is no problem. Let $P = p_1 p_2 \ldots p_{\ell}$ be the shortest path from $y_1 = p_1$ to $y_2 = p_{\ell}$ in D and we assume $\ell \geq 3$.

For all bags C in D which contains only two vertices p_i, p_{i+1} of P, we remove C and add a marked edge $p_{i-1} p_{i+2}$. This corresponds to removing all vertices from \hat{D} which are represented by some vertices of C except p_i and p_{i+1} in D. By this procedure, we may assume that all bags except B_1 and B_2 contain three or no
vertices of P. Note that y_2 is a leaf of B_2 but y_1 is not a center of B_1. So, if there is no bag between B_1 and B_2 after modification, by Theorem 2 the resulting decomposition is again a canonical decomposition. If there is a bag between B_1 and B_2, then all marked edges on the path from B_1 to B_2 in the modified decomposition tree are not types of S_pS_c or KK, and therefore by Theorem 2 it is again a canonical decomposition.

If there exist two adjacent bags C_1 and C_2 in D such that $p_i, p_{i+1}, p_{i+2} \in V(C_1)$ and $p_{i+3}, p_{i+4}, p_{i+5} \in V(C_2)$. Then clearly, p_{i+1} and p_{i+4} are the centers of star bags C_1 and C_2, respectively. By pivoting two vertices represented by p_{i+1} and p_{i+4} in D, we can modify two bags C_1 and C_2 so that $p_ip_{i+2}p_{i+3}p_{i+5}$ become a path. By Lemma 3, this pivoting does not affect on any bag in L_1 and L_2, so we remove C_1 and C_2 from D, and add a marked edge $p_{i-1}p_{i+6}$. That is, we can reduce two such bags simultaneously. At the end, we have no bags between B_1 and B_2 or only one star bag whose two leaves are adjacent to y_1 and y_2, and we conclude the result. \[
\]

The next proposition says how we can replace limbs having linear rank-width $\geq k = 1$ into one-vertex extensions of canonical decompositions in Ψ^*_D using Lemma 17.

Proposition 10. Let D and A be canonical decompositions of distance-hereditary graphs and let B be a star bag of D. Let T be a component of $D \setminus V(B)$ such that a leaf v of B is adjacent to T, and let w be an unmarked vertex of D represented by v. If $\mathcal{L}[D, B, w]$ has a vertex-minor isomorphic to either \hat{A} or an one-vertex extension of \hat{A}, then there exists a canonical decomposition D' such that

1. \hat{D} has a vertex-minor isomorphic to \hat{D}',
2. either $D'[V(D) \setminus V(T)] = D[V(D) \setminus V(T)]$ or $D'[V(D) \setminus V(T)] = D[V(D) \setminus V(T)] \ast v$, and
3. the limb of D' with respect to the component of $D' \setminus V(B)$ which is adjacent to v is either A or an one-vertex extension of A.

Proof. Since $\mathcal{L}[D, B, w]$ has a vertex-minor isomorphic to either \hat{A} or an one-vertex extension of \hat{A}, there exists a sequence x_1, x_2, \ldots, x_m of vertices of $\mathcal{L}[D, B, w]$ and $S \subseteq V(\mathcal{L}[D, B, w])$ such that $\mathcal{L}[D, B, w] \ast x_1 \ast x_2 \ast \ldots \ast x_m \ast S$ is either \hat{A} or an one-vertex extension of \hat{A}. Note that since v is a leaf of B, $\mathcal{L}[D, B, w]$ is a limb of type 1 in the definition. Thus, $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$ also has a decomposition of either A or an one-vertex extension of A as an induced subgraph.

When we apply a local complementation at each x_j on D, the decomposition induced on $V(D) \setminus V(T)$ either is affected by a local complementation at y or is not changed. Therefore, $(D \ast x_1 \ast x_2 \ast \ldots \ast x_m)[V(D) \setminus V(T)]$ will be either $D[V(D) \setminus V(T)]$ or $D[V(D) \setminus V(T)] \ast y$. Note that if we remove S and unnecessary vertices from $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$, then it could be disconnected between the vertices of the part A and the bag B, so we should be careful.

We choose a bag B' in $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$ such that B' has at least two vertices represent unmarked vertices of A and the distance from B' to B in $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$ is minimum. Among the vertices of B', let y be the vertex such that the distance between y and B is minimum. By the definition, y does not represent any unmarked vertices of A in $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$. We remark one important fact that since A is connected and at least two vertices of B' represent the vertices of A, y is not the center of a star bag.

Let L be the set of all bags C in $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$ such that every path from C to B in $T_{D \ast x_1 \ast x_2 \ast \ldots \ast x_m}$ contains B'. Applying Lemma 17, the underlying graph of $D \ast x_1 \ast x_2 \ast \ldots \ast x_m$ has a vertex-minor isomorphic to \hat{D}' such that

1. $(D \ast x_1 \ast x_2 \ast \ldots \ast x_m)[\bigcup_{B \in L} V(B)] = D'[\bigcup_{B \in L} V(B)]$, and
2. $(D \ast x_1 \ast x_2 \ast \ldots \ast x_m)[V(D) \setminus V(T)] = D'[V(D) \setminus V(T)]$, and

3. either D' has no bags between B and B', or D' has only one another bag C which is contained in neither $\bigcup_{B \in L} V(B)$ nor $V(D) \setminus V(T)$, and $|V(C)| = 3$, C is star, and two leaves of C are adjacent to y and v in D'.

If D' has no bags between B and B', then the limb corresponding to B in D' is exactly $(D \ast x_1 \ast x_2 \ast \ldots \ast x_m) \setminus y$ whose underlying graph has A as an induced subgraph.

So we may assume that D' has one bag C between B and B' where $|V(C)| = 3$, C is star, and two leaves of C are adjacent to y and v in D'. Let c be the center of C. If $\mathcal{L}[D, B, w]$ has a vertex-minor isomorphic to \hat{A}, then we can regard A with the vertex c as an one-vertex extension of A. Therefore, we may assume that $\mathcal{L}[D, B, w]$ has a vertex-minor isomorphic to an one-vertex extension of A with a new vertex a. In this case, we first remove the remaining vertices of S except c and unnecessary vertices from D', and say D''.

If B' is star and the center of it is an unmarked vertex, then by applying local complementation at c and removing c, we can attach the part on $\bigcup_{B \in L} V(B)$ to $V(D) \setminus V(T)$ with applying one local complementation at v on $D''[V(D) \setminus V(T)]$. And if B' is complete and one vertex y' of it is an unmarked vertex, then by pivoting $y'c$ on D'' and removing c, we can attach the part on $\bigcup_{B \in L} V(B)$ to $V(D) \setminus V(T)$ without changing anything.

Thus, we may assume that all vertices of B' are marked vertices in D''. In this case, we can observe that $D'' \setminus a$ is still connected because $A \setminus a$ is connected and c is linked to at least two unmarked vertices of D'' contained in $V(A)$. Since the underlying graph of the limb of $D'' \setminus a$ corresponding to the component having c is $\hat{D}''[V(A) \setminus \{a\} \cup \{c\}]$, which is still a distance-hereditary graph, we prove the claim.

\begin{proof}[Proof of Theorem 7] If $k = 0$, then $\text{lrw}(G) \geq 1$ and G has an edge, so it has a vertex-minor isomorphic to K_2. Therefore, we may assume that $k \geq 1$.

Let D be the canonical decomposition of G. Since G has linear rank-width at least $k + 1$, by Theorem 4 there exists a bag B in D with three components T_1, T_2, T_3 of D corresponding to B such that for corresponding limbs D_i, \hat{D}_i of D has linear rank-width at least k. Let v_i be the vertex in B adjacent to T_i.

By Proposition 1, we may assume that B is a star with the center v_3. Then by Proposition 10 D has a vertex-minor isomorphic to a graph \hat{D}' where D' is obtained from $D \setminus V(T_1) \setminus V(T_2)$ by adding one-vertex extensions of two decompositions $T'_1, T'_2 \in \Psi_{k-1}$ with new vertices t_1, t_2, respectively, and adding marked edges t_1v_1, t_2v_2. Note that T_3 can be changed into either T_3 or $T_3 \ast w$ in D' where wv_3 is a marked edge in D, when apply Proposition 10. Let T_3' be the component of $D' \setminus V(B)$ corresponding to T_3.

For each i, choose an unmarked vertex z_i in $V(T'_i)$ such that z_i is represented by v_i in D', and let w_i be the vertex in T'_i adjacent to v_i. Note that if we apply local complementation at z_3 and z_2 subsequently in D', then

1. B is changed to a star with the center v_2,
2. T'_1 is the same as before,
3. T'_2 is changed to $T'_2 \ast w_2 \ast z_2$,
4. T'_3 is changed to $T'_3 \ast z_3 \ast w_3$.

Now, we apply Proposition 10 to the component $T'_3 \ast z_3 \ast w_3$, Then we have that the underlying graph of $D' \ast z_3 \ast z_2$ has a vertex-minor isomorphic to \hat{D}'' where D'' is obtained from $D' \ast z_3 \ast z_2 \setminus V(T'_3)$ by adding an one-vertex extension of a decomposition $T''_3 \in \Psi_{k-1}$ with a new vertex t_3 and adding a marked edge t_3v_3.

We have two cases. We first assume that the outside of T''_3 is not changed when we apply Proposition 10. Then D'' consists of
1. B is a star with the center v_2.
2. and three components of $D'' \setminus V(B)$ are T'_1, $T'_2 \ast w_2 \ast z_2$, and T''_3.

In this case, $D'' \ast z_2 \in \Psi_k$ because $D'' \ast z_2 \in \Psi_k$ consists of

1. B is complete,
2. and three components of $D'' \setminus V(B)$ are T'_1, $T'_2 \ast w_2$, and $T''_3 \ast w_3$.

and therefore, each limb of D'' with respect to B are contained in Ψ'_{k-1}.

Now we assume that the outside of T''_3 is affected by one local complementation. Then B is not changed, but T''_2 is affected by a local complementation. Then D'' consists of

1. B is a star with the center v_2,
2. and three components of $D'' \setminus V(B)$ are T'_1, $T'_2 \ast w_2 \ast z_2 \ast w_2$, and T''_3.

We can see that $D'' \in \Psi_k$ because each limb with respect to B are contained in Ψ'_{k-1}. Therefore, G has a vertex-minor isomorphic to D'' where $D'' \in \Psi_k \subseteq \Psi'_{k}$, as required.

In order to prove that Ψ_k is the set of canonical decompositions of distance-hereditary vertex-minor obstructions for linear rank-width at most k, we need to prove that for every $D \in \Psi_k$, D has linear rank-width $k+1$ and every of its proper vertex-minors has linear rank-width $\leq k$. However, we were not able to prove it. We will now identify a subset which satisfies this desired property. For each non-negative integer k, we define the set Φ_k of canonical decompositions as follows.

1. $\Phi_0 := \Psi_0$.
2. For $k \geq 1$, let Φ_k be the set of all canonical decompositions D defined as follows.

Choose three canonical decompositions D_1, D_2, D_3 in Φ_{k-1} and take one-vertex extensions D'_i of D_i with new vertices w_i for each i. We introduce a new bag B of type K or S having three vertices v_1, v_2, v_3 and (a) if v_i is in a complete bag, then $D''_i = D'_i \ast w_i$, (b) if v_i is the center of a star bag, then $D''_i = D'_i \setminus w_i$ for some z_i linked to w_i in D', (c) if v_i is a leaf of a star bag, then $D''_i = D'_i$.

We define D as the canonical decomposition obtained by the disjoint union of D'_1, D'_2, D'_3 and B by adding the marked edges $v_1 w_1, v_2 w_2, v_3 w_3$.

The set Φ_k is clearly a subset of Ψ_k. One also observes that the obstructions constructed in [11] and [16] are contained in Φ_k for all $k \geq 1$. We have moreover the following.

Proposition 11. Let $k \geq 0$ and let $D \in \Phi_k$. Then $\text{lrw}(\hat{D}) = k+1$ and every proper vertex-minor of \hat{D} has linear rank-width at most k.

To prove Proposition 11, we need some more lemmas.

Lemma 18. Let $D \in \Phi_k$ and let v be an unmarked vertex in D. Then $D \ast v \in \Phi_k$.

Proof. We proceed by induction on k. If $k = 0$, then D is the canonical decomposition of a graph isomorphic to K_2, clearly, $D \ast v \in \Phi_k$ for any unmarked vertex v in D. We assume that $k \geq 1$. By the construction, there exists a bag B of D such that the three limbs D_1, D_2, D_3 in D corresponding to the bag B are contained in Φ_{k-1}.

Let D'_1, D'_2, D'_3 be the three limbs of $D \ast v$ corresponding to the bag B such that D'_i and D_i came from the same component of $D \setminus V(B)$. Then by Proposition 11, D'_i is locally equivalent to D_i. So by the induction hypothesis, $D'_i \in \Phi_{k-1}$. And $D \ast v$ is the canonical decomposition obtained from D'_i following the construction of Φ_k. Therefore, $D \ast v \in \Phi_k$. \qed
Lemma 19 (Bouchet [4]). Let G be a graph, v be a vertex of G and w an arbitrary neighbor of v. Then every elementary vertex-minor obtained from G by deleting v is locally equivalent to either $G \setminus v$, $G * v \setminus v$, or $G \land vw \setminus v$.

Proof. By Lemma 18 and Lemma 19, it is sufficient to show that if $D \in \Phi_k$ and v is an unmarked vertex of D, then $D \setminus v$ has linear rank-width at most k. We use induction on k. We may assume that $k \geq 1$. Let B be the bag of D such that $D \setminus V(B)$ has exactly three limbs whose underlying graphs are contained in Φ_{k-1}. Clearly there is no other bag having the same property. Since B has no unmarked vertices, v is contained in one of the limbs D', and by induction hypothesis, $D' \setminus v$ has linear rank-width at most $k - 1$. Therefore, by Theorem 18, $D \setminus v$ has linear rank-width at most k. \square

We leave open the question to identify a set $\Phi_k \subset \Theta_k \subset \Psi_k$ that forms the set of canonical decompositions of distance-hereditary vertex-minor obstructions for linear rank-width k.

References

1. Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear rankwidth at most 1. *J. Discrete Applied Mathematics*, 2013. To appear.
2. Isolde Adler and Mamadou Moustapha Kanté. Linear rank-width and linear clique-width of trees. In Andreas Brandstädt and Rüdiger Reischuk, editors, *WG 2013*, LNCS. Springer, 2013.
3. Hans-Jürgen Bandelt and Henry Martyn Mulder. Distance-hereditary graphs. *J. Comb. Theory, Ser. B*, 41(2):182–208, 1986.
4. André Bouchet. Transforming trees by successive local complementations. *J. Graph Theory*, 12(2):195–207, 1988.
5. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. *Discrete Applied Mathematics*, 101(1-3):77–114, 2000.
6. William H. Cunningham and Jack Edmonds. A combinatorial decomposition theory. *Canadian Journal of Mathematics*, 32:734–765, 1980.
7. Elias Dahlhaus. Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition. *Journal of Graph Algorithms*, 36(2):205–240, 2000.
8. Reinhard Diestel. *Graph Theory*, 3rd Edition, volume 173 of *Graduate texts in mathematics*. Springer, 2005.
9. Jonathan A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. The vertex separation and search number of a graph. *Inf. Comput.*, 113(1):50–79, 1994.
10. Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-width is np-complete. *SIAM J. Discrete Math.*, 23(2):909–939, 2009.
11. Robert Ganian. Thread graphs, linear rank-width and their algorithmic applications. In Costas S. Iliopoulos and William F. Smyth, editors, *IWOCA*, volume 6460 of *Lecture Notes in Computer Science*, pages 38–42. Springer, 2010.
12. Cyril Gavoille and Christophe Paul. Distance labeling scheme and split decomposition. *Discrete Mathematics*, 273(1-3):115–130, 2003.
13. James F. Geelen and Sang-il Oum. Circle graph obstructions under pivoting. *Journal of Graph Theory*, 61(1):1–11, 2009.
14. Emeric Gioan and Christophe Paul. Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. *Discrete Appl. Math.*, 160(6):708–733, 2012.
15. Sang il Oum. Rank-width and vertex-minors. *J. Comb. Theory, Ser. B*, 95(1):79–100, 2005.
16. Jisu Jeong, O joung Kwon, and Sang il Oum. Excluded vertex-minors for graphs of linear rank-width at most k. In Natacha Portier and Thomas Wilke, editors, *STACS*, volume 20 of *LIPIcs*, pages 221–232. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
17. Öjvind Johansson. Graph decomposition using node labels. Ph.D. thesis, Royal Institute of Technology, 2001.
18. T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing treewidth and minimum fill-in: All you need are the minimal separators. In Thomas Lengauer, editor, Algorithms-ESA ’93, volume 726 of Lecture Notes in Computer Science, pages 260–271. Springer Berlin Heidelberg, 1993.
19. Nimrod Megiddo, S. Louis Hakimi, M. R. Garey, David S. Johnson, and Christos H. Papadimitriou. The complexity of searching a graph. J. ACM, 35(1):18–44, 1988.
20. Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb. Theory, Ser. B, 96(4):514–528, 2006.