Experimental and Statistical Study on Black Cotton Soil Modified with Cement–Iron Ore Tailings

1Paul Yohanna, 2Ianna M. Kanyi, 3Roland K. Etim, 4,6Oshioname A. Eberemu, and 5Kolawole J. Osinubi

1Department of Civil Engineering, University of Jos, Jos, Nigeria
2Department of Civil Engineering, University of Agriculture, Makurdi, Nigeria
3Department of Civil Engineering, Akwa Ibom State University, Ikt Akpaden, Nigeria
4Africa Centre of Excellence in New Pedagogies in Engineering Education, Ahmadu Bello University, Zaria, Nigeria
5Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria

Received: 06-SEP-2020; Reviewed: 23-NOV-2020; Accepted: 14-DEC-2020

Abstract- The investigation focused on the response of black cotton soil (BCS) treated with mixtures of iron ore tailings (IOT) and cement and to varying compaction effort (CE). Preliminary tests showed that the untreated soil is A-7-6 (22) on the basis of AASHTO protocols of classification while the USCS (Unified Soil Classification System) guidelines placed the soil in CH group. Laboratory tests carried out included cation exchange capacity, CEC, Specific gravity (Gs) and compaction test. Three compaction energy levels (i.e., British Standard heavy (BSH), West African Standard (WAS) and British Standard light (BSL)) were adopted for the compaction test. Test results showed that CEC decreased; Gs and MDD increased while OMC also decreased for all cement contents considered when admixed with the different IOT contents up to 10 % IOT by the soil dry weight. MDD values of 1.58, 1.59, 1.62, 1.64 and 1.66 Mg/m³ were noted for 1% cement and 0, 2, 4, 6, 8 and 10% IOT content compacted with BSL energy. Also, OMC values of 21.2, 20.8, 20.5, 20.3 and 20.2% were noted for 1% cement and 0, 2, 4, 6, 8 and 10% IOT content compacted with BSL energy. Same trend was noted for higher cement concentrations and compactive efforts. Regression models for MDD and OMC, considered as dependent variables while C (cemnet content), CE, IOT, Gs and PF (percentage of fine) as independent variables were developed using software (Mini-tab R15). The result of regression analysis shows that the dependent variables greatly influence the dependent variables. ANOVA (Analysis of variance) was use to establish the levels of contributions of cement and IOT to the improvements recorded. Therefore, black cotton soil optimally treated with 4% cement 10% IOT blend and compacted with BSH energy is recommended for soil remediation or geotechnical engineering applications.

Keywords- Compaction effort, iron ore tailings, black cotton soil (BCS), Analysis of Variance, regression analysis

1 INTRODUCTION

Environmental degradation triggered by industrial and agricultural waste has caused serious concern in pollution studies due to problems associated with the disposal of such wastes (Mangalpady, 2012). Wastes generated worldwide continued to increase apparently due to increase in global human population as well as increased industrial and socio-economic activities. One attractive and efficient way to diminish the effect of waste to the surroundings is to put in place a proper waste disposal system. Mining and mineral exploitation has profound benefits on society and the economy through income generation; however, it also generates huge overburden (waste) materials such as silt, mine tailings among others that may compromise the serenity of the environment. It has been shown through research that most industrial, agricultural and domestic wastes could be used in addressing some geotechnical problems (Ajay and Suneeet, 2016; Sharma et al., 2017; Etim et al., 2017; Rajbeer et al., 2018; Kanyi et al., 2019; Salahudeen et al., 2014; 2019; Ishola et al., 2019; Annafi et al., 2020; Ibrahim et al., 2020; Sae’ed and Augustine, 2020).

Therefore, redeploying these wastes to other uses is helpful in terms of resources conservation, improved environment and also for sustained development (Mangalpady, 2012; Osinubi et al., 2015). With the ever increasing quest for cost-saving and safe engineering in modern technology, most materials for construction in their natural state may not meet up with all the minimum requirements provided for in the standard codes, thus necessitating the improvement of such materials to meet up with the desired intent. This is why conscious efforts are being channelled towards conversion of industrial materials and “bio-wastes” to engineering products and materials (Collins and Ciesielski, 1993). To achieve this, industrial manufactured additives (bitumen, lime, cement) and “industrial waste” such as iron ore tailings (IOT) had at various times been used to modify soils including black cotton soils that are deemed unstable and unfit for engineering use in its natural state.

IOT are industrial bye-products obtained from the beneficiation process of iron ore from the mining industry. The Agbaja and Itakpe iron ore deposits have generated significant number of impurities in Nigeria. The Agbaja ore deposit is acidic olite ore which has magnetite and goethite with silica, phosphorus and alumina as impurities while the Itakpe iron ore consist of haematite with silica and magnetite being its major impurity. The Itakpe ore deposit is estimated to be about 200 million tons (Adedeji and Sale, 1984).

Black cotton soil (BCS) is known to expand, swell or shrink in excess when there is variation in amount of moisture (Ola 1983). When civil infrastructures are built with or on these soils, it experiences the shrinkage or swell property depending on the level of stress it is exposed to. It is therefore quite tasking to carry out design and construction involving the use of this soil due to its un-usual behaviour. These soils mostly found in the hot environment in the semi – arid areas of the temperate and tropical climate zone with defined alternating dry and wet seasons and where evaporation exceeds precipitation (Chen, 1988). They are largely located on sedimentary plains as a result continuous erosion of the clay content out of nearby hills. BCS can likewise be found on low level areas and depressions.

*Corresponding Author
Available researches (NBRI, 1983 and Ola, 1983) indicated that deposits of BCS found in Nigeria were formed towards the end of Quaternary and Tertiary periods during Chad formations comprising of sands of Pleistocene age as well as a sequence of lacustrine and fluviatile clay. According to Ola (1983), montmorillonite (clay mineral) predominates BCS and it represents one of the most difficult soils to work with in Africa. BCS in Nigeria is estimated to cover an area of about 104,000 km², usually with little or no amount of organic content in the soil, and its black colouration is probably due to titanium or iron (Jha and Sinha, 1993). Osinubi (1995) reported that in regions where BCSs are located, most deposits have been found to cover large expanse areas that by-passing or avoiding them is not always feasible.

The research laboratory testing programs were tailored with the aim of evaluating the effect of compaction efforts and IOT on cement modified BCS. The objective was to investigate the behavioural alterations in the relevant geotechnical characteristics of the soil at different cement and IOT contents for application as a road construction material under different compaction energies.

2 MATERIALS AND METHODS

2.1 MATERIALS

Soil: The BCS samples were sourced at a location on Longitude 11° 30’E and Latitude 10° 19’N from Gombe state. The disturbed sampling method was used to obtain soil samples at a depth of 0.5 m and placed in bags while those for natural moisture content determination were placed in plastic bags to eliminate moisture escape during transit and conveyed to the laboratory. In the laboratory, the air dried and pulverized specimens were run through a standard sieve BS No. 4 sieve (4.76 mm).

Cement: The ordinary Portland cement (OPC) was purchased from a retail shop in the open market within Zaria.

Iron Ore Tailings: The IOT was sourced at the National Ore Mining Company located at Itakpe, Kogi state, Nigeria.

2.2 METHODS

Index Properties: Natural moisture content, Atterberg limits, particle gradation curve and specific gravity tests were performed in line with British Standards (BS 1377 (1990) and BS 1924 (1990)). Soil specimens were treated with 0, 2, 4, 6, 8, and 10 % IOT and 1, 2, 3 and 4 % cement of soil dry weight.

Cation Exchange Capacity: The test was performed in line with the techniques given by ISRIC (1998). Soil specimens were treated with 0, 2, 4, 6, 8, and 10 % IOT and 1, 2, 3 and 4 % cement of soil dry weight prior testing.

Compaction: Tests involving compaction were carried out in line with BS 1377 (1990) and BS 1924 (1990) procedures to compute the desired parameters. Three compaction energies were used which include; British Standard heavy (BSH) British Standard light (BSL), and West African Standard (WAS) energy levels.

Statistical Analysis: Laboratory tests on grading and compaction characteristics and the factors connected with grading and compaction characteristics were obtained via laboratory tests. Factors measured include; Maximum dry density (MDD) and Optimum moisture content (OMC) as dependent factors and Cement content (C), Iron ore tailings content (IOT), Sand content (Sa), Percentage fine (PF) and Specific gravity (Gs) as independent factors while Compactive effort (CE) is assumed to be a deterministic parameter with index values of –1, 0 and 1 assigned arbitrary for BSL, WAS and BSH compaction efforts respectively. The regression studies were done using Mini-tab R15 software. Analysis of variance was achieved with Microsoft Excel 2007.

3 RESULTS AND DISCUSSION

3.1. INDEX PROPERTIES

Characteristics of the un-treated soil sample (BCS) revealed through visual inspection a greyish black colour and laboratory tests values of 56%, 25% and 31% representing LL, PL and PI respectively. Further preliminary tests showed that it is an A-7-6 (22) soil on the basis of AASHTO protocols of classifying soil (AASHTO, 1986) while using the USCS (Unified Soil Classification System) guidelines (ASTM, 1992), the un-treated soil was found to be CH. The soil was also found to be of low plasticity and fell short of minimum standard recommendation for a lot of civil infrastructure most notably highway construction (Butcher and Sailie, 1984).

The summarized index tests result is as presented in Table 1. More on the index properties have been discussed extensively in previous researches (Yohanna, et. al., 2014). The natural soil particle gradation curve is also as presented in Fig 1. Grading properties of the natural soils shows 2.8% gravel, 23% sand and 74.2% fine (comprising of silt and clay). It is clear that more than 70% of the soil comprises of silt and clay particles which are not good for pavement applications as proposed by Nigerian General Specifications (1997) and hence the need for the soil improvement.

Table 1. Properties of the Natural Soil
percentage passing 0.075mm sieve
Natural moisture content %
Liquid limit %
Plastic limit %
Plasticity index %
Cation Exchange Capacity (CEC), Cmol/Kg
AASHTO classification
USCS
Maximum dry density Mg/m³
BSL
WAS
BSH
Optimum moisture content %
BSL
WAS
BSH

© 2021 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
Table 2. Oxide compositions of cement and iron ore tailings

Oxide	*Cement (%)	**Iron ore tailings (%)
Silica (SiO₂)	20.0	45.64
Iron Oxide (Fe₂O₃)	3.0	47.7
Alumina (Al₂O₃)	6.0	3.36
Lime (CaO)	63.0	0.607
Magnesium Oxide (MgO)	-	0.393
Manganese Oxide (MnO)	-	0.067
Nickel Oxide (NiO₂)	-	-
Tin Oxide (TiO₂)	-	-
Alkali (Na₂O)	1.0	0.405
Alkali (K₂O)	-	0.607
Sulphur Oxide (SO₃)	2.0	-
Vanadium Oxide (V₂O₅)	-	-
(Loss on Ignition)	2.0	-

*Czernin (1962), **Osinubi et al., (2015).

3.3. SPECIFIC GRAVITY

The specific gravity (G_s) of BCS-cement blended with different amount of IOT is presented in Fig 3. The G_s values show the tendency to increase when more quantity of IOT was used. The G_s value of un-treated soil increased from 2.46 to a highest value of 2.56 at 0% cement and 10% IOT blend. The observed behaviour could be tied to the high G_s value of IOT (3.29) relative to soil with a low G_s value of 2.46. Similar increasing tendency after treatment was also reported by Amadi, (2010).

3.4. COMPACTION CHARACTERISTICS

3.4.1. Maximum Dry Density

The alteration in MDD values of BCS - cement blended with varying amount of IOT is as presented in Fig 4 for BSH, WAS and BSL compactions. The results indicated a hike in MDD values with more cement and IOT contents for the three energy levels considered. MDD values also increased with an increase in compaction effort. Trends akin to the above were also noted by Phanikumar et al. (2004) Oriola and Moses (2010) and Kumar and Puri (2013). The observed increments in MDD values after treatment may be owed to IOT and cement taking up empty spaces inside the blended soil in addition to CEC reaction resulting to the agglomeration and flocculation of the clay particles. This is in the affirmative with the reported findings by Osinubi, (1999; 2000), Moses (2008), Jadhao and Nagarnaik (2008), Amadi (2010), Oriola and Moses (2011), Osinubi and Oyelakin (2012) and also Anafi et al., (2020). The noted increment in MDD values could also be tied to the high G_s of the additives replacing soil particles with lower G_s.
3.4.2. Optimum Moisture Content

The change in optimum moisture content (OMC) of BCS - cement mixture with IOT for the compaction energies considered is presented in Fig 5. It could be deduced from the plots that the OMC values decreased when cement and IOT contents were increased for all compactive efforts considered in the study. OMC values also decreased with an increase in compaction effort. This behaviour may be traced to self – desiccation of the resulting soil – additives blend, the process which used up all available moisture culminating in low hydration. When the movement of water is no longer permitted into or out of the resulting soil-IOT-cement matrix, the available moisture is used up during the hydration process till very small amount is left to moisten the solid surfaces thus ensuring low proportionate humidity in the paste (Osinubi, 2001; Moses et al., 2012). The consequence of the above process might likely have some effect on the reaction of cement-IOT treated BCS. Some reported findings that conform to this were those of Osinubi and Stephen (2007), Moses (2008), Kanyi et. al. (2017; 2019); Salahudeen and Sadeq (2019). The decrease in OMC is attributed to the added IOT content which is classified as silty sand to the parent material. This is in conformity with earlier research by Kumar and Puri (2013).

Generally, the correlation coefficient values (R^2) of 92.0% for MDD and 86.1% for OMC shows that the independent parameters are more correlated to the MDD than OMC. The regression equations are:

\[
\begin{align*}
MDD &= 0.735 + 0.00071C + 0.00857IOT + 0.00034s_S + 0.0001PF + 0.35G_s + 0.0939CE \\
R^2 &= 92.0 \\
OMC &= 40.9 + 0.276C - 0.283IOT - 0.0055s_S + 0.076PF - 10.7G_s - 0.62CE \\
R^2 &= 86.1
\end{align*}
\]

where MDD = Maximum dry density (Mg/m3), C = Cement content (%), IOT = Iron ore tailing content (%), s_S = Sand (%), G_s = Specific gravity, PF = Percentage fine (%), CE = Compactive effort and OMC = Optimum moisture content (%).

3.6. Two-Way Analysis of Variance for Black Cotton Soil – Cement – IOT Mixtures.

The two-way analysis of variance (ANOVA) test performed on compaction behaviours are given in Table 2. The analysis shows that the IOT ($F_{CAL} = 12.15174 > F_{CRIT} = 1.662901$) and Compactive effort ($F_{CAL} = 585.9843 > F_{CRIT} = 3.15932$) significantly affected MDD values of the modified soil. However, the effect of CE on the MDD of BCS was much more significant. For OMC the analysis shows that the IOT ($F_{CAL} = 11.63807 > F_{CRIT} = 1.662901$) and Compactive effort ($F_{CAL} = 361.7148 > F_{CRIT} = 3.15932$) significantly affected OMC values of the modified soil. However, the effect of CE on the OMC of BCS was much more significant.

![Fig. 5: Change in OMC of BCS- cement mixtures with IOT content](image)

Property	Source of Variation	F_{CAL}	p-value	F_{CRIT}	Remark
MDD	IOT	12.15	1.41E-15	1.66	$F_{CAL} > F_{CRIT}$, SS
	CE	585.98	3.41E-39	3.16	$F_{CAL} > F_{CRIT}$, SS
OMC	IOT	11.64	3.8E-15	1.66	$F_{CAL} > F_{CRIT}$, SS
	CE	361.71	1.76E-33	3.16	$F_{CAL} > F_{CRIT}$, SS
4 CONCLUSION
Based on the results of the study the following conclusions were drawn. The natural soil is fine-grained soils and classified as A-7-6 (22) according to AASHTO classification protocols and CH using the Unified Soil Classification System, USCS guidelines. CEC decreased; Gs and MDD increased while OMC decreased for all cement contents considered when admixed with up to 10% IOT content by dry weight of soil. Regression analysis on the test results shows that the correlation coefficient values (R²) of 92.0% for MDD and 86.1% for OMC shows that the independent parameters considered are more correlated to the MDD than OMC.

The results of the laboratory tests and statistical analysis showed improvement in the geotechnical properties of the soil with cement-IOT blend. Therefore, an optimal blend of 4% cement and 10% IOT treated black cotton soil compacted with BSH energy is recommended for soil remediation or geotechnical engineering applications.

REFERENCES

ASHTO (1986). Standard Specification for Transportation, Material and Methods of Sampling and Testing, 14th Edition. Amsterdam Association of State Highway and transportation official Washington D.C.

Adeleji, F.A and Sale F.R. (1984). Characterization and Reducibility of Itakpe and Agbaja (Nigeria) Iron Ore. Publication of Delta Steel Complex, Warri, Nigeria. pp 843-856.

Ajay, U. and Suneet, K. (2016). Review on Soil Stabilization Using Ceramic Waste. International Research Journal of Engineering and Technology (IRJET) 3(7): 1748-1750.

Akinnma, O. B. (2008). Stabilization of Black Cotton Soil Using Locust Bean Waste Ash. Unpublished M.Sc. thesis, Civil Engineering Department, Ahmadu Bello University, Zaria.

Amadi, A. (2010). Evaluation of Changes in Index Properties of Lateritic Soil Stabilized with Fly Ash. Leonardo Electronic Journal of Practices and Technologies, 17: 69-78.

Annafi, Q. B., Eberemu, A.O., Yohanna, P. and Osinubi, K. J. (2020). Effect of Elapsed Time After Mixing on the Strength Properties of Lime – Iron Ore Tailings Treated Black Cotton Soil as a Road Construction Material. Journal of Infrastructure 5, 89; doi:10.3390/infrastructure5110089.

ASTM (1992). Annual Book of Standards. Vol. 04.08, American Society for Testing and Materials. Philadelphia.

BS 1377 (1990). Method of Testing Soils for Civil Engineering Purpose. British Standard Institute, BSI, London.

BS 1924 (1990). Method of Test for Stabilized Soils. British Standard Institute BSI London.

Butcher, F. and Sallie, E. L. (1984). “Swelling Behaviour of Tropical Black Clays.” Proceedings of the 8th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Harare. Pp 81 – 86.

Chen, F. H. (1988). Foundation on Expansive Soils. Elsevier Scientific Publication Company, Amsterdam.

Collins, R. J. and Ciesielski, S. K. (1993). “Recycling and use of waste materials or by-products in highway construction.” Vols 1 and 2, pp 1-20.

Czernin, W. (1962.) Cement chemistry and physics for civil engineers. London: Crosby Lockwood.

Etim, R. K., Eberemu, A. O. and Osinubi, K. J. (2017). Stabilization of Black Cotton Soil with Lime and Iron Ore Tailings Admixture. Transportation Geotechnics 10: 85 – 95.

Gidigasu, M.D (1976). Laterite Soil Engineering: Pedogenesis and Engineering Principles. Elsevier Scientific Publication Company, Amsterdam.

Ibrahim I. Abdulkarim and Sa’eed Y. Umar (2020) Performance Evaluation of the Effect of Sodium Hydroxide on Geotechnical Properties of Lateritic Soil for Rural Road Construction. FUOYE Journal of Engineering and Technology 5(2):213-216 http://dx.doi.org/10.46792/fuoyejet.v5i2.479

Ishola, K., Ifejoluwa C. A and Yohanna, P. (2019) Effect of Plantain Peel Ash on Gradation and Compaction Characteristics of Tropical Soil. FUOYE Journal of Engineering and Technology, 4(2): 28-33

ISRIC (1998) World soil information. International Soil and Reference Information Center.

Jadhao, P.D and Nagarnaik, P. B. (2008). Influence of Polypropylene Fibers on Engineering Behavior of Soil–Fly Ash Mixtures for Road Construction. Electronic Journal of Geotechnical Engineering, 13: 1-11

Jha, J. and Sinha, S.K. (1993). Construction and Foundation Engineering. 5th Edition Kanna Publishers, Delhi.

Kanyi, I. M., Yohanna, P. and Okpe, R. O. (2019) Index and Compaction Properties of Ceramic Tile Waste Dust Treated Sponge Soil. University of Ibadan, Department of Civil Engineering Conference. Theme: Sustainable Construction for National Development. 10 - 12th July, Ibadan, Nigeria, pp 25-34.

Kanyi, I. M., Eberemu, A. O. and Osinubi, K. J. (2017). Evaluation of the Plasticity and Compaction Characteristics of Lateritic Soil – Iron Ore Tailings Mixtures. Proceedings of Nigerian Building and Road Research Institute International Conference on Construction Materials and Technologies, Pp 270 - 285.

Kumar, B. and Puri, N. (2013). Stabilization of Weak Pavement Subgrades using Cement Kiln Dust International Journal of Civil Engineering and Technology, 4(1): 26-37.

Mangalpady, A. (2012) Utilization of Iron Ore Tailings in Manufacturing of Paving Blocks for Eco-friendly Mining. National Institute of Technology Karnataka, Surathkal Mangalore - 575 025, Karnataka, Ahmad Dahlain University, India. pp239-249.

Moses, G. (2008). “Stabilization of Black Cotton Soil with Ordinary Portland Cement Using Bagasse Ash as Admixture” IRJ Journal of Research in Engineering, 5(3): 107-115.

Moses, G., Saminu, A. and Oriola F.O.P. (2012). Influence of Compactive Efforts on Compacted Foundry Sand Treated with Cement Kiln Dust. Journal of Civil and Environmental Research, 2(5): 11-24.

NBRI (1983). “Engineering properties of black cotton soils of Nigeria and related pavement design.” Nigerian Building and Road Research Institute, Research Paper No L, p. 22”.

Nigerian General Specifications (1997). Roads and Bridges. Federal Ministry of Works, Abuja, Nigeria.

Ola, S. A. (1983). ‘The Geotechnical Properties of Black Cotton Soils of North Eastern Nigeria.’ In S. A. Ola (ed.) Tropical Soils of Nigeria in Engineering Practice. Balkama, Rotterdam, pp. 160-178.

Oriola, F. and Moses, G. (2010). “Groundnut Shell Ash Stabilization of Black Cotton Soil” Electronic Journal of Geotechnical Engineering, 15: 415-428.

Oriola, F. and Moses, G. (2011). Compacted black cotton soil treated with cement kiln dust as hydraulic barrier material. American Journal of Scientific and Industrial Research,2(4): 521-530

Osinubi, K. J. (1995). Lime modification of black cotton soils. Spectrum Journal, 2 (1 and 2): 112 – 122.

Osinubi, K. J. (1999). Evaluation of Admixture Stabilization of Nigerian Black Cotton Soil. Nigeria Society of Engineers Technical Transaction, 34(3): 88-96.

Osinubi, K. J. (2000). Stabilization of Tropical Black Clays with Cement and Pulverised Coal Bottom Ash Admixture. American Society of Civil Engineers Geotechnical Special Publication, (99): 298-302.

Osinubi, K. J. (2001). ‘Influence of compaction energy levels and delays on cement treated soil.’ The Nigerian Society of Engineers Technical Transactions, 36 (4): 1 – 13.
Osinubi, K. J. and Stephen, A. T. (2007). Influence of compactive efforts on bagasse ash treated black cotton soil. *Nigerian Journal of Soil and Environmental Research*, 7: 92 – 101.

Osinubi, K. J and Oyelakin M. A. (2012). ‘Optimising Soil-Cement-Ash Stabilization Mix for Maximum Compressive Strength: A Case Study of the Tropical Clay Sub-Base Material Stabilized with Cement-locust Bean Waste Ash.’ *Proceedings of West Africa Built Environment Research Conference (WABER 2012) Conference*. Nigeria. 2: 1207 – 1218.

Osinubi, K. J. Yohanna P. and Eberemu A. O. (2015). Cement Modification of Tropical Black Clay Using Iron Ore Tailings as Admixture. Transportation Geotechnics 35 – 49.

Phanikumar B.R., Radhey S. and Sharma (2004) Effect of flyash on Engineering properties of Expansive Soil. *Journal of Geotechnical and Geoenvironmental Engineering*: 130(7): 764-767.

Rajbeer, S., Deepak, P. and Sumit, S. (2018). Effect of Ceramic Waste on the Geotechnical Properties of Black Cotton Soil. *Internal Journal of Advance Research in Science and Engineering*, 7(2): 316-321.

Sa’eed Y. U. and Augustine U. E. (2020) Evaluation of the Hydraulic Conductivity of Compacted Laterite-Metakaolin Mixtures for Solid Waste Leachate Containment. *FUOYE Journal of Engineering and Technology* 5(2):119-124. http://dx.doi.org/10.46792/fuoyejet.v5i2.174.

Salaheddin, M. (2013) Effects of CEC on Atterberg limits and Plastic Index in Different Soil Textures. *International Journal of Agronomy and Plant Production*, 4 (9): 2111-2118.

Salahudeen, A. B., Eberemu, A. O. and Osinubi, K. J. (2014). “Assessment of Cement Kiln Dust-Treated Expansive Soil for the Construction of Flexible Pavements”, *Springer: Geotechnical and Geological Engineering*, 32(4), Pp. 923 - 931. https://doi.org/10.1007/s10706-014-9769-0

Salahudeen, A. B. and Sadeeq, J. A. (2019). Strength improvement of weak subgrade soil using cement and lime, *Federal University Oye-Ekiti Journal of Engineering and Technology (FUOYEJET)*, 4(1), Pp. 34 - 39. http://dx.doi.org/10.46792/fuoyejet.v4i1.249

Salahudeen, A. B., Eberemu, A. O. and Osinubi, K. J. (2019). Microanalysis and compactive efforts study of black cotton soil treated with cement kiln dust, *Federal University Oye-Ekiti Journal of Engineering and Technology (FUOYEJET)*, 4(1), Pp. 1 – 7. http://dx.doi.org/10.46792/fuoyejet.v4i1.227

Sharma, S., Parkash, V. and Kumar, V (2017). Soil Stabilization of Clayey Soil using Ceramic Dust and Cement. *International Journal for Research in Technological Studies* 4(10): 5-7.

Warrick, A. W (2002). *Soil physics companion (ed)*. CRC Press LLC. Boca Raton, London, New York Washington, D.C. 19.

Yohanna, P., Eberemu, A. O. and Osinubi, K. J. (2014) Effect of Cement – Iron Ore Tailing Blend on the Gradation and Compaction Characteristics of Black Cotton Soil. *Presented at the Biannual Conference of the Faculty of Engineering Ahmadu Bello University, Zaria, Kaduna State, Nigeria*.

Yohanna, P., Nwaiwu, C.M. C. and Oluremi, J. R. (2015) Effect of Sample Re-use on the Compaction Characteristics of Concretionary Lateritic Soil as Subgrade Material. *International Journal of Scientific & Engineering Research*, 6(5):513-523.