Social Determinants of Health Amplify the Association Between Ethnicity and COVID19: A Retrospective-Cohort study

Nicholas Verdini,1 Jessica LeClair,2 Elizabeth Quinn,1 Amer El-Haddad.1

Abstract

Background: People in racial and ethnic minority groups have been shown to be at increased risk for a variety of diseases, including COVID-19. However, the role that social needs play in this increased risk has not yet been quantified. Investigating these roles can elicit a greater understanding of how social needs influence the manner in which this disease is contracted and spread. Methods: A retrospective analysis was conducted of 1,969 Lynn Community Health Center patients. Patients that visited the center between February 1st and July 1st, 2020, tested for COVID-19, and screened for social determinants of health (SDOH) risk factors. Demographics were compared between COVID-19 positive and negative patients. Confounding by age on the association between ethnicity and COVID-19 status was evaluated. A stratified analysis was performed to evaluate the effect modification of SDOH on the relationship between race, ethnicity, and COVID-19 status. Results: Hispanic patients had 2.93 times the odds of a positive COVID-19 test compared to non-Hispanics (95% CI: 2.37 - 3.64, p<0.0001). With at least one SDOH risk factor, Hispanics had 4.71 times the odds of a positive COVID-19 test relative to non-Hispanics (95% CI: 3.10 - 7.14). With no SDOH risk factors, Hispanics had 2.45 times the odds of a positive COVID-19 test relative to non-Hispanics (95% CI: 1.91 - 3.16). No significant associations were found for race. Conclusion: Ethnicity had a significant impact on COVID-19 status in our population, where the effect of ethnicity on COVID-19 status was amplified for those with SDOH risk factors.

Key Words: Social determinants of health; COVID-19; Healthcare disparities (Source: MeSH-NLM).

Introduction

The novel coronavirus, COVID-19, was first reported in Wuhan, China in December of 2019. The COVID-19 outbreak has since been declared a global pandemic, with the first United States case confirmed on January 20th, 2020 in Washington state. Transmission of the virus occurs primarily from person-to-person via respiratory droplets produced by coughing, sneezing, or talking. Within the United States, Massachusetts has been one of the states most severely affected, with one of the highest cumulative incidence rates of COVID-19.3 To this end, Massachusetts launched a “Stop the Spread” initiative on July 10th, 2020, to provide free testing, regardless of symptoms, to eight of the most affected towns in the state, many of which are economically disadvantaged. One of the cities included in this initiative was the city of Lynn.4 Lynn has a median household income of $56,181, compared to the national median of $68,703.5 Additionally, 16.6% of the city population lives in poverty, compared to 10.5% nationally.6 To understand why cities such as Lynn are particularly vulnerable to COVID-19, our study aimed to elucidate the influence of race, ethnicity, and social determinants of health on COVID-19 diagnosis.

It is known that essential worker status, congested housing, incarceration, lack of access to healthcare, and diseases like tuberculosis, HIV, and diabetes mellitus increase the risk of COVID-19 infection.4,7 These risk factors disproportionately affect racial and ethnic minority groups.8 According to the Center for Disease Control’s (CDC), as of February 28th, 2021, 21% of COVID-19 cases are of Hispanic ethnicity, 12.2% are Black, and 56% are White. However, Black persons accounted for 13% and 76.3% of the population, respectively.9 The CDC also found that racial and ethnic minority groups have four to five times higher rates of hospitalization from COVID-19 compared to non-Hispanic white persons, as well as increased rates of death.10 This suggests that minority populations are disproportionately affected by COVID-19. These disparities are likely due to long-standing systemic racism and social inequalities present in both society and the medical system.

Although the CDC has determined a relationship between racial and ethnic minorities with COVID-19 status, that research was limited in that the relationship of these minority groups and COVID-19 status was not evaluated with respect to social determinants of health (SDOH). Social determinants of health are defined by the U.S. Department of Health and Human Services as “the conditions in the environment where people are born, live, learn, work, play, worship, and age that affect a wide range of health, function, and quality-of-life outcomes and risks.”11 The relationship between SDOH and numerous illnesses is well documented.12-14 The purpose of this study is to evaluate the relationships between race, ethnicity, social risk factors, and COVID-19 in our population of Lynn Community Health Center (LCHC) patients.

Materials or patients and methods

Patient Population

This study was conducted using data compiled from electronic health records of the Lynn Community Health Center (LCHC). Aggregate-level data was collected using the Slicer Dicer software in Epic, an electronic medical record software, and an IRB informed consent waiver was obtained from Lynn Community Health Center and Tufts University School of Medicine. We extracted all LCHC patient medical records that fit the following inclusion criteria: 1) the patient visited LCHC between...
Verdini N, et al.

February 1st, 2020, and July 1st, 2020, ii) the patient was tested for COVID-19, and iii) the patient was screened for the four social determinants of health (SDOH) risk factors (food access, transportation access, utility status, and housing status). 1,969 LCHC patients met the inclusion criteria and were included in the final analysis sample. All patients meeting this inclusion criteria were included. There were no exclusions or eliminations from this group. Demographics including age group, sex, race, ethnicity, zip code of residence, and SDOH status were also extracted, if available. Note that because we did not require nonmissing demographics as inclusion criteria, some patients in our analysis sample may be missing these demographics. For this reason, while we have a final analysis sample size of 1,969, this is not necessarily the number included in every analysis utilizing demographic data. Collection of human data was in accordance with guidelines within the Declaration of Helsinki.

SDOH Screening

We utilized Epic data from an SDOH questionnaire provided by Community Care Cooperative, a MassHealth Accountable Care Organization, provided in *Supplementary Materials*. The questionnaire consisted of eight questions (one of which was the date) regarding social determinants, including: housing status and adequacy, food insecurity, lack of access to transportation, risk of utilities being shut off, and job status. This questionnaire was derived from the 26 question Accountable Health Communities Health-Related Social Needs Screening Tool. The Centers for Medicare and Medicaid constructed the screening tool with a panel of national experts and review of existing screening instruments. The questionnaire was shortened to eight questions by a coordination between Community Care Cooperative, Massachusetts Medical-Legal Partnership of Boston, and Lynn Community Health Center in order to make this an appropriate over-the-phone screening tool. The screening was conducted after patients were tested for COVID-19 and was documented in their electronic medical records. Patients were flagged as at risk if they selected any option on any question that was not “I am not sure,” “None of the above,” “No,” or “Never true.”

Statistical Methods

The analysis sample included 1,969 LCHC patients who met the inclusion criteria. Distributions of patient demographics were descriptively compared between COVID-19 positive and negative patients. To assess any differences in these baseline demographics, chi-square tests and logistic regressions were performed. In addition to these bivariate tests of association, the intricate relationships between ethnicity, social determinants of health, and COVID-19 status were further investigated by evaluating possible confounding and effect modification. Namely, the extent of confounding by age on the association between ethnicity and COVID-19 status was evaluated by assessing whether the percent change in Cochran Mantel-Haenszel (CMH) odds ratio estimates was more than 10% from the unadjusted odds ratios. Additionally, to evaluate the possibility of effect modification by SDOH risk factors, a stratified analysis (Table 2). When at least one SDOH risk factor is present, Hispanics have 4.71 times the odds of testing positive for COVID-19 relative to non-Hispanics (95% CI: 3.10 - 7.14). Contrastingly, when there are no SDOH risk factors present, Hispanics have 2.45 times the odds of testing positive for COVID-19 relative to non-Hispanics (95% CI: 1.91 - 3.16). Given that these odds ratios are significantly different as evidenced by the Breslow-Day test (Table 3, p-value = 0.0083), there is evidence of effect modification by SDOH risk factors. Of note, a similar analysis first testing effect modification of SDOH, then confounding, was performed for the association between race and COVID status. However, we did not have evidence of effect modification by SDOH, nor confounding by SDOH (Table 4, Breslow-Day p-value = 0.9075, CMH p-value = 0.5783).

| Table 1. Association Between Demographics and COVID-19 Status |
|-----------------|-----------------|-----------------|
| **Variable** | **COVID Test Result** | **P-value** |
| **Age** | Positive (n=969) | Negative (n=1,000) |
| Under 18 | 63 (6.49%) | 33 (3.30%) | <0.0001 |
| 18-44 | 575 (59.34%) | 499 (49.90%) | |
| 45-64 | 274 (28.28%) | 382 (38.20%) | |
| 65+ | 57 (5.88%) | 86 (8.60%) | |
| **Race** | | | |
| Black | 198 (30.89%) | 244 (32.88%) | 0.5789 |
| White | 443 (59.11%) | 512 (57.72%) | |
| **Ethnicity** | | | |
| Hispanic | 792 (83.46%) | 619 (63.23%) | 0.0001 |
| Non-Hispanic | 175 (16.54%) | 360 (36.77%) | |
| **At least one SDOH Risk Factor** | Positive | 268 (27.56%) | 261 (26.10%) | 0.4357 |
| Negative | 701 (72.44%) | 739 (73.90%) | |
| **Zip Code** | | | |
| 1901 | 22 (2.48%) | 44 (5.54%) | |
| 1902 | 537 (60.54%) | 473 (59.57%) | 0.0102 |
| 1904 | 72 (8.12%) | 69 (8.69%) | |
| 1905 | 256 (28.86%) | 208 (26.20%) | |
| **Sex** | | | |
| Male | 432 (43.55%) | 332 (33.20%) | 0.0001 |
| Female | 547 (56.45%) | 668 (66.80%) | |
Table 2. Association Between Ethnicity and COVID-19, Before and After Adjusting for Age*

Ethnicity	Positive (N=949)	Negative (N=979)
Hispanic	792 (82.46%)	619 (63.23%)
Non-Hispanic	157 (16.54%)	360 (36.77%)

Unadjusted Odds Ratio (95% CI): 2.93 (2.37, 3.64)
Age-Adjusted Odds Ratio (95% CI): 2.81 (2.26, 3.49)

Legend: *While our study size was 1,969, due to missing data, this analysis sample only contained 1,928.

Table 3. Association Between Ethnicity and COVID-19 Status Stratified by SDOH Risk Factor

At least one SDOH Risk Factor

Breslow Day Test p-value: 0.0085
COVID Test Result
Ethnicity
Hispanic
Non-Hispanic
Odds ratio (95% CI): 4.71 (3.10, 7.14)

No SDOH Risk Factors

COVID Test Result
Ethnicity
Hispanic
Non-Hispanic
Odds ratio (95% CI): 2.45 (1.91, 3.16)

Legend: *While our study sample size was 1,969, due to missing data, this analysis sample only contained 1,928 patients.

Table 4. Association Between Race and COVID-19 Status Stratified by SDOH Risk Factor

At least one SDOH Risk Factor

Breslow Day Test p-value: 0.0075
COVID Test Result
Race
Black
White
Odds ratio (95% CI): 0.96 (0.61, 1.51)

No SDOH Risk Factors

COVID Test Result
Race
Black
White
Odds ratio (95% CI): 0.93 (0.72, 1.21)

Discussion

The COVID-19 pandemic has impacted the daily lives of all people. However, this pandemic has not affected all people equally. In our patient cohort, ethnicity had a significant impact on COVID-19 status, where being of Hispanic ethnicity (versus not being of Hispanic ethnicity) alone was a significant risk factor for COVID-19. This is consistent with the CDC’s national finding of higher rates of COVID-19 among the Hispanic population.10

Results Interpretation

This disparity in COVID-19 among ethnic groups in our cohort was amplified by the presence of SDOH risk factors. While the presence of an SDOH risk factor alone was not significantly associated with COVID-19 status, it proved to be a significant effect modifier on the ethnicity and COVID-19 relationship. In other words, our results show that those who are Hispanic are at an increased risk of COVID-19 infection and those who are Hispanic and have a SDOH risk factor are at an even greater risk. This increase in COVID-19 risk for Hispanics with a SDOH risk factor is disproportionate compared to non-Hispanics in our population. These findings may be due to a variety of systemic factors and inequities in social determinants of health that put racial and ethnic minorities at increased risk for disease. The Hispanic population has been shown to experience discrimination, inadequate healthcare access and utilization, inequities in education access, wealth gaps, and increased congested housing, all of which increase the risk of contracting COVID-19.10-26 In Lynn, MA where 42.8% of the population is Hispanic, addressing these discrepancies in health is of great importance in order to control COVID-19 and future health crises.

While this data does not describe why SDOH status and ethnicity cause such a significant change in COVID-19 status, it provides tangible evidence that these disparities do exist and that they affect health. This highlights the importance of recognizing, studying, and making changes to the inequalities that lead to these social disparities. SDOH have also proven to lead to disproportionate adverse health outcomes in many other instances, like premature mortality, mental illness, congenital anomalies, Type 2 Diabetes, and bacterial infections.27-30 Additionally, COVID-19 is not the first pandemic where SDOH have played a role in enlarging health disparities amongst minorities and those of lower socioeconomic status. For instance, the United States HIV epidemic has shown a greater overall illness burden amongst those at the lowest levels of socioeconomic status.31-34 Particularly of minority ethnicity and race. Even in the 1918 influenza pandemic, research has shown that those living in Chicago neighborhoods with higher illiteracy had increased risk of influenza mortality.35

Additionally, age was significantly associated with COVID-19 positivity. This is a well-known finding and many hypotheses have been published as to why age influences susceptibility to COVID-19. According to CDC data, age distribution for COVID-19 cases follows a bell-curve relationship, with those between the ages of 18 and 64 making up the greatest number of positive cases.36 While there are many biological reasons as to why this may be the case, i.e., ACE2 receptor density amongst different age groups, there are also proposed social reasons for this. Long-term care facilities for elderly, as well as daycare and public schools were amongst the first to institute COVID-19 restrictions. On March 1st, 2020, the Centers for Medicare & Medicaid Services issued a lockdown order, banning everyone but essential personnel from entering nursing homes.30 On March 16th, the Commonwealth of Massachusetts ordered the closure of all public and private elementary...
and secondary schools. This decrease in contact with other persons in these two age groups prevents transmission of COVID-19.

Limitations

Although this study highlighted the important relationship that SDOH plays in the COVID-19 pandemic in our cohort, it has limitations. In our patient cohort, we did not find the same result that the CDC and other publications had concerning race and COVID-19 status. This may be due to limitations within the questionnaire. Limitations include the lack of SDOH questions concerning specific housing conditions (e.g., congestion, ability to social distance), essential worker status, income, and medical insurance status. These limitations may have resulted in patients not being included in the study that had SDOH risk factors. These SDOH risk factors that were not included have been shown to be significantly related to COVID-19 cases. In particular, essential worker status is an important metric that was not assessed by this questionnaire. Essential worker status has been shown to be associated with greater COVID-19 infection and mortality. This association is not free from disparity. Research has shown that Non-Hispanic Blacks disproportionately occupy essential-worker positions compared with Non-Hispanic Whites. By not assessing essential-worker status, it is possible that Black patients who did have this SDOH were not included in the study.

The SDOH Questionnaire is also a limitation of the study in that the reliability and validity of this tool have yet to be investigated. While the tool was constructed by an experienced panel based on commonly used or evidence-based questions, the questionnaire has not been tested as a unit and therefore data on reliability and validity is not available. Additionally, patients may not feel comfortable disclosing these personal parts of their social environment and this will cause an underestimation of patients with SDOH risk. Our patient population was limited to those who were tested at Lynn Community Health Center and therefore, these results may not necessarily be generalizable to other populations. Finally, we did not evaluate whether there was an association between race and ethnicity in our sample, which if significant, would have indicated potential confounding by sex. Acknowledging these limitations, we nonetheless report an association between ethnicity, SDOH, and COVID-19 status.

Conclusion

Investigating the underlying causes for the stark ethnic differences in COVID-19 infection rates can lead to a greater understanding of the virus spread and may help control it. Further research should be conducted, with a focus on a larger spectrum of demographics and social determinants of health to develop a greater understanding of the sociodemographic disparities in this pandemic and other health disparities. Additionally, measures should be taken to proactively record SDOH risk status as patients are tested for COVID-19 in order to provide a greater perspective of SDOH effects on acquisition and spread of the virus. Increased quantitative data linking SDOH and health outcomes would be influential in changing health policy. A lack of data on health equity outcomes, as well as methods that work to reduce disparities in said outcomes has been cited as a major obstacle to policy change. The number of studies that evaluating public policy and its impact on health equity continue to rise, but the number is still relatively small. A few states in the U.S., one example being Oregon, are utilizing systems incentivizing providers based on equity performance. It will be important to evaluate the effects this has on health equity outcomes.

References

1. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020; 382(5): 929-36.
2. Centers for Disease Control and Prevention. COVID-19 Overview and Infection Prevention and control priorities in non-US Healthcare Settings. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html. Last updated Feb 26, 2021; cited Apr 28, 2021
3. Rashedi J, Mahdavi Poor B, Asgharzadeh V, Pourostadi M, Samadi Kaff H, Vegari A, Tayebi-Khosroshahi H, Asgharzadeh M. Risk Factors for COVID-19. Infez Med. 2020 Dec 1;28(4):469-474.
4. Song H, McKenna R, Chen A, David G, & Smith McAllen, A. The impact of the non-essential business closure policy on COVID-19 infection rates. Int J Health Econ Manag. 2021 Dec;21(4):87-96.
5. Massachusetts Department of Public Health. COVID-19 Response Reporting. Available from: https://www.mass.gov/info-details/covid-19-response-reporting. Last updated: Daily; cited Apr 28, 2021.
6. Massachusetts Department of Public Health. Baker-Polio administration announces new initiatives to stop spread of COVID-19. Available from: https://www.mass.gov/news/baker-polito-administration-announces-new-initiatives-to-stop-spread-of-covid-19. Last updated: Aug 7, 2020; cited Apr 28, 2021.
7. Bureau USC. QuickFacts: Lynn, Massachusetts.
8. Turner-Musa J, Ayadi O, Kemp L. Examining Social Determinants of Health, Stigma, and COVID-19 Disparities. Healthcare (Basel). 2020; 8(2).
9. Centers for Disease Control and Prevention. CDC COVID Data Tracker. Available from: https://covid.cdc.gov/covid-data-tracker/#/demographics. Last updated: Aug 24, 2021; cited Apr 12, 2021.
10. Centers for Disease Control and Prevention. COVID-19 Hospitalizations and Death by Race/Ethnicity. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html. Last updated: Jul 16, 2021; cited Apr 6, 2021.
11. U.S. Department of Health and Human Services. Healthy People 2020. Available from: https://health.gov/healthypeople/objectives-and-data/social-determinants-health. Last updated: unavailable; cited Aug 25, 2021.
12. Song R, Hall HI, Harrison KM, Sharpe TT, Lin LS, Dean HD. Identifying the impact of social determinants of health on disease rates using correlation analysis of area-based summary information. Public Health Rep. 2011; 126 Suppl 3: 70-80.
13. Cockerham WC, Hamby BW, Dates GR. The Social Determinants of Chronic Disease. Am J Prev Med. 2017 Jan; 52(1 Suppl 1): S5-S12.
14. Butler-Jones D, Wong T. Infectious disease, social determinants and the need for intersectional action. Can Commun Dis Rep. 2016 Dec; 42(4):387-426.

Table 5: Evaluating the Association Between Age and Ethnicity to Evaluate Age as a Potential Confounder.

Age	Hispanic	Non-Hispanic	p-value
Under 18	76 (5.39%)	16 (3.09%)	
18-44	803 (56.91%)	246 (47.88%)	
45-64	448 (31.75%)	199 (38.43%)	
65+	84 (5.95%)	56 (10.83%)	

8. Turner-Musa J, Ayadi O, Kemp L. Examining Social Determinants of Health, Stigma, and COVID-19 Disparities. Healthcare (Basel). 2020; 8(2).
15. Singh GK, Daus GP, Allender M, Ramey CT, Martin EK, Perry C, et al. Social Determinants of Health in the United States: Addressing Major Health Inequality Trends for the Nation. 1935-2016. Int J MCH AIDS. 2017; 6(2): 139-64.

16. Lynn Community Health Center. Lynn Community Health Center General Information. Available from: https://www.lynncommunityhealthcenter.org/generalsearch. Last updated: unavailable; cited May 6, 2021.

17. Billoux A, Verlander, K., Anthony, S., Alley, D. Standardized screening for health-related social needs in clinical settings: The accountable health communities screening tool. Available from: https://innovation.cms.gov/files/worksheets/ahcm-screeningtool.pdf. Last updated: unavailable; cited Apr 29, 2021.

18. In: Smelley KD, Stith AV, Nelson AR, editors. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. Washington (DC): 2003.

19. Nelson CC. Using a Social Determinants of Health Summary Measure to Predict General Health Status in the BRFSS. American Journal of Health Promotion. 2021 Nov.

20. United States Bureau of Labor Statistics. Labor force characteristics by race and ethnicity 2018.

21. Cox R, Seva, R., Benjamin, H., Suzanne, W. Measuring population estimates of housing insecurity in the United States: A comprehensive approach. CESR - Schaeffer Working Paper. 2017.

22. Centers for Disease Control. Communities, Schools, Workplaces, & Events: 2020. Available from: https://www.cdc.gov/epiinfo/community/health-equity/race-ethnicity.html#CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fncov%2Fneed-extra-precautions%2Fracial-ethnic-minorities.html#CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-extra-precautions%2Fracial-ethnic-minorities.html. Last updated: Apr 19, 2021; cited Apr 8, 2021.

23. Macias Gil R, Marcellin JR, Zuniga-Blanco B, Marquez C, Mathew T, Piggott DA. COVID-19 Pandemic: Disparate Health Impact on the Hispanic/Latino Population in the United States. J Infect Dis. 2020 Oct 13;222(10):1592-1595.

24. Centers for Disease Control. Considerations for owners and operators of multifamily housing including populations at increased risk for complications from covid-19. Available from: https://www.cdc.gov/ncov/2019-ncov/multifamilyhousing.html. Last updated: May 5, 2021; cited: May 6, 2021.

25. Rogers TN, Rogers CR, VanSant-Webb E, Gu LY, Yan B, Geadan F. Racial Disparities in COVID-19 Mortality Among Essential Workers in the United States. Med West Health Policy. 2020 Aug 5;10.1002/wmh3.538.

26. Stringhini S, Carmeli C, Jokela M, Avendano M, Muenping P, Guida F, et al. Socioeconomic status and the 25 X 25 risk factors as determinants of premature mortality: a multicitychord study and meta-analysis of 1.7 million men and women. Lancet. 2017 Mar 25;389(10075):1229-1237.

27. Vukojicic M, Zovko A, Talic I, Tanovic M, Resic B, Vrdoljak I, et al. Parental mortality: a multicohort study and meta-analysis of 1.7 million men and women. Health Policy. 2020 Aug 5;10.1002/wmh3.358.

28. Vrijheid M, Dolk H, Stone D, Abramsky I, Alberman E, Scott JE. Socioeconomic inequalities in risk of congenital anomaly. Arch Dis Child. 2000 May;82(5):349-52.

29. Walker RJ, Smallis BL, Campbell JA, Stom Williams JL, Egede LE. Impact of social determinants of health on outcomes for type 2 diabetes: a systematic review. Endocrin. 2014 Sep;47(1):29-68.

30. Coffey PM, Ralph AP, Krause VL. The role of social determinants of health in the risk and prevention of group A streptococcal infection, acute rheumatic fever and rheumatic heart disease: A systematic review. PLoS Negl Trop Dis. 2018 Jun 13;12(6):e0006577.

31. Pellowski JA, Kalichman SC, Matthews KA, Adler N. A pandemic of the poor: social disadvantage and the U.S. HIV epidemic. Am Psychol. May-Jun 2013;68(4):197-209.

32. Grantz KH, Rame MS, Salje H, Glass GE, Schachterle SE, Cummings DA. Disparities in influenza mortality and transmission related to sociodemographic factors within China in the pandemic of 1918. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13839-13844.

33. Centers for Disease Control. Demographic Trends of COVID-19 cases and deaths in the US reported to CDC. Available from: https://covid.cdc.gov/covid-data-tracker/#demographics. Last updated: Aug 24, 2021; cited Aug 25, 2021.

34. Centers for Medicare and Medicaid Services. Guidance for Infection Control and Prevention of Coronavirus Disease 2019 (COVID-19) in Nursing Homes. Available from: https://www.cms.gov/files/document/qso-20-14-nh-revised-revised.pdf. Last updated: Mar 13, 2021; cited Aug 25, 2021.

35. Commonwealth of Massachusetts. Order extending the temporary closure of all public and private elementary and secondary schools. Available from: https://www.mass.gov/doc/april-21-2020-school-closure-extension-order/download. Last updated: Apr 21, 2020; cited Aug 25, 2021.

36. Auger KA, Shah SS, Richardson T, et al. Association Between Statewide School Closure and COVID-19 Incidence and Mortality in the US. JAMA. 2020 Sep 1;324(9):839-870.

37. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Caveniak I, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021 Feb 19;371(6531):eabd9338.

38. Yang B, Huang AT, Garcia-Carreras B, Hart WE, Staid A, Hitchings MD, et al. Effect of specific non-pharmaceutical intervention policies on SARS-CoV-2 transmission in the counties of the United States. Nat Commun. 2021 Jun 11;12(1):3560.

39. Lee J, Schram A, Riley E, Harris P, Baum F, Fisher M, et al. Addressing Health Equity Through Action on the Social Determinants of Health: A Global Review of Policy Outcome Evaluation Methods. Int J Health Policy Manag. 2018 Jul 1;7(7):581-592.

40. Oregon leverages Medicaid to address social determinants of health and health equity. Center for Health Systems Effectiveness, Oregon Health & Science University; 2021.
Supplementary Material:

Social Determinants of Health Questionnaire

Name ________________________________
DOB ________________________________
Medical Record # ________________________________

Directions: Please fill out all the questions, whether you are answering for yourself or for a child, so that your care team has the most complete information to care for you.

1. Today’s Date: ______/______/_______

2. What is your housing situation today?
 - I do not have housing (staying with others, in a hotel, in a shelter, living outside on the street, on a beach, in a car, or in a park)
 - I have housing today, but I am worried about losing housing in the future
 - I have housing
 - I am not sure

3. Think about the place you live. Do you have problems with any of the following? (Check all that apply)
 - Pests such as bugs, ants, or mice
 - Mold
 - Lead paint or pipes
 - Inadequate heat
 - Oven or stove not working
 - No or not working smoke detectors
 - Water leaks
 - None of the above
 - I am not sure

4. Within the past 12 months, you worried that your food would run out before you got money to buy more.
 - Often true
 - Sometimes true
 - Never true

5. Within the past 12 months, the food you bought just didn’t last and you didn’t have enough money to get more.
 - Often true
 - Sometimes true
 - Never true

6. In the past 12 months, has lack of transportation kept you from medical appointments, meetings, work or from getting things needed for daily living? (Check all that apply)
 - Yes, it has kept me from medical appointments or getting medications
 - Yes, it has kept me from non-medical meetings, appointments, work, or getting things that I need
 - No
 - I am not sure

7. In the past 12 months has the electric, gas, oil, or water company threatened to shut off services in your home?
 - Yes
 - No
 - Already shut off
 - I am not sure

8. Do you want help finding or keeping work or a job?
 - Yes, help finding work
 - Yes, help keeping work
 - I do not need or want help
 - I am not sure

The International Journal of Medical Students