Unexpected radiation pneumonitis after SIRT with significant decrease in DLCO with internal radiation exposure: a case report

Selin Kesim, Tunc Ones*, Emel Eryuksel, Feyyaz Baltacioglu, Derya Tureli, Salih Ozguven and Tanju Yusuf Erdil

Abstract

Background: In the last years, Selective Internal Radiation Therapy (SIRT), using biocompatible Yttrium-90 (90Y) labeled microspheres have emerged for the treatment of malignant hepatic tumors. Unfortunately, a significant part of 90Y-labeled microspheres may shunt to the lungs after intraarterial injection. It can be predictable by infusing technetium-99 m-labeled macro-aggregated albumin particles through a catheter placed in the proper hepatic artery depending on the lobe to be treated with performing a quantitative lung scintigraphy. Radiation pneumonitis (RP) can occur 1 to 6 months after the therapy, which is a rare but severe complication of SIRT. Prompt timing of steroid treatment is important due to its high mortality rate. On the other hand, pulmonary diffusion capacity measured by carbon monoxide (DLCO) is an excellent way to measure the diffusing capacity because carbon monoxide is present in minimal amount in venous blood and binds to hemoglobin in the same manner as oxygen. Some authors reported that the most consistent changes after radiation therapy (RT) are recorded with this quantitative reproducible test. The relationship between the proportional reductions in DLCO and the severity of RP developing after this therapy may prove to be clinically significant.

Case presentation: We herein present a patient who developed RP after SIRT that could be quantified using DLCO. To the best of our knowledge, this case is the first who developed unexpected RP after SIRT with significant decrease in DLCO with internal radiation exposure.

Conclusions: RP is a very rare complication and may lead to a fatal outcome. Decline in DLCO could be a valuable parameter for follow-up and to identify potential candidates for RP and could be also another trigger for administration of steroid therapy with prompt timing in this patient group.

Keywords: Selective internal radiation therapy, Radiation induced pneumonitis, Diffusion capacity of the lungs for carbon monoxide

Background

In last years, an alternative Selective Internal Radiation Therapy (SIRT), using Yttrium-90 (90Y) labeled microspheres which are infused directly into the hepatic arterial circulation have arisen for the treatment of malignant hepatic tumors. Unfortunately, a significant part of 90Y-labeled microspheres may shunt to the lungs after intraarterial injection. It can be predictable by simulating microsphere delivery and distribution by infusing [99 m] technetium-labeled (Tc-99 m) macro aggregated albumin (MAA) particles (5–50 μm in diameter) through a catheter placed in the right, left or proper hepatic artery depending on the lobe to be treated with performing a quantitative lung scintigraphy. The probability of
radiation induced pneumonitis (RP) increases when >
15% of the 90Y-labeled microspheres is shunted into the
lungs [1–3]. Therefore, SIRT is relatively contraindicated
where there is a hepatopulmonary shunt which would lead
to exposure of the lungs greater than 30 or 50 Gy, in a sin-
gle treatment or in multiple sessions respectively [4].

The pulmonary diffusing capacity for a gas provides an
estimate of the rate of transfer of that gas from the al-
veoli into capillary blood. Pulmonary diffusion capacity
measured by carbon monoxide (DLCO) is an excellent
way to measure the diffusing capacity because carbon
monoxide is present in minimal amount in venous blood
and binds to hemoglobin in the same manner as oxygen.
Some authors reported that the most consistent changes
after radiation therapy (RT) are recorded with this quan-
titative reproducible test [5–7].

Radiation pneumonitis (RP) can occur 1 to 6 months
after the therapy, is a rare but severe complication of
SIRT. Prompt timing of steroid treatment is important
due to its high mortality rate [8]. Lin et al. reported the
formation of interstitial pneumonia after SIRT in a pa-
tient who had a pulmonary shunt of 17% with the pres-
ence of resin microspheres in the histopathologic
specimen in 1994 [2]. After this case report, Leung et al.
stated the mortality rate of 60% in five patients who de-
veloped RP after the same treatment [3]. In 2015, an-
other asymptomatic patient who was diagnosed with RP
after SIRT as verified both by histopathologic exami-
nation and imaging findings was published by Dobrocky
et al. [9].

There are some publications in the literature examin-
ing the relation between the reduction in DLCO and RP.
Based on the theory that reduction in pulmonary func-
tion in patients with symptomatic RP can be measured
by using DLCO, Guerra and colleagues researched the
relationship between the change in DLCO and RP after
external RT in 140 patients [10]. These researchers
found that patients who had showed higher proportional
reductions in DLCO were more likely to have high-
grade RP. Additionally, in a recent study Ones et al. ex-
amined the effect of internal radiation exposure of the
lungs in patients undergoing SIRT using DLCO, which
is a reliable indicator of lung function [11]. The most
important difference between this work and others lies
in the type of radiation exposure, which was internally
administered in the former. Notably, in this study none
of the patients developed RP during the follow-up and
no changes in DLCO were found both after the first and
second SIRT procedures [11].

The relationship between the proportional reductions
in DLCO and the severity of RP developing after this
therapy may prove to be clinically significant. We herein
present a patient who developed RP after SIRT that
could be quantified using DLCO.

Case presentation

A 54-year-old man who was diagnosed with HBV-related he-
patocellular carcinoma had successfully undergone left lateral
segmentectomy for a lesion measuring 5 cm in maximum
diameter. Four months after the surgery, whole-body 18-
fluorine-fluorodeoxyglucose positron-emission-tomography/
computed tomography (18F-FDG PET/CT) was performed
due to the increased alpha fetoprotein (AFP) levels revealed
malignant lesions mainly in the medial segment of the left
hepatic lobe. The patient was not eligible for liver transplan-
tation because of accompanying congestive heart failure. Add-
itionally, due to the lesion’s proximity to the nearby vessels,
radiofrequency ablation was not found to be appropriate.
Stereotactic ablative radiation therapy is not available in our
hospital and based on a multidisciplinary tumor board deci-
sion, the patient was referred to SIRT for the lesions in the
left hepatic lobe. 99mTc-MAA particles were administered
for liver-lung shunt calculation by planar imaging. It was
demonstrated a lung shunt fraction (LSF) of 5% (Fig. 1a).
Since there was no evidence that could interfere with the
therapy, transarterial 32 mCi 90Y resin micro-
spheres (SIR-Spheres, Sirtex Medical Limited, North
Sydney, Australia) delivered via hepatic artery. Post-
therapy bremsstrahlung planar images showed an un-
expected liver-lung shunt (Fig. 1b). The patient was
closely monitored by DLCO. The mean baseline
DLCO was 98% of predicted value (Fig. 2a).

Three weeks after the SIRT, there was a significant de-
crease in DLCO (79% of predicted), while the patient
was asymptomatic and the saturation of peripheral oxy-
gen (SpO2) level was 99%. Chest radiogram and com-
puted tomography (CT) of the thorax did not show any
evidence of RP (Fig. 1c).

Four weeks after the SIRT, DLCO reduction was more
remarkable (77% of predicted - Fig. 2b) and the SpO2
level was 97%. CT scan was assessed for the presence,
extent, and anatomic distribution of the areas with
ground-glass attenuation in the pulmonary parenchyma
(Fig. 1d). The patient had no fever or dyspnea, but re-
ported dry cough. Therefore, the patient was hospital-
ized and intravenous prednisone given at 1 mg/Kg/day
with antibiotic therapy.

Seven weeks after the SIRT, 18F-FDG PET/CT scan
was demonstrated 18F-FDG uptake in the multiple
ground-glass opacities in both lungs compatible with
RP (Fig. 1e). The patient was rehospitalized and
glucocorticoid treatment with modified antibiotherapy
continued.

Eleven weeks after the SIRT, CT scan demonstrated
bilateral diffuse, patchy ground-glass attenuation/con-
solidation areas seemed to be progressed (Fig. 1f). Mean-
while, SpO2 decreased from 92 to 82%. The patient
was transferred to the intensive care unit, but one week after
he died due to pulmonary complications.
Discussion and conclusions

To the best of our knowledge, this case is the first who developed unexpected RP after SIRT with significant decrease in DLCO with internal radiation exposure.

The alveolar-capillary complex is the most radiosensitive subunit of the lung and after the radiation exposure, initial cytokine release occurs within 2 weeks with no symptoms [12]. The second phase of this condition is characterized by hypoxemia and lung hypoperfusion. This phase begins 4–6 weeks after the initial cytokine release [12]. Lung injury has also been notified in areas where not exposed to radiation in patients receiving external RT and CD4(+) lymphocytic alveolitis similar to hypersensitivity pneumonia was described regardless of radiation exposure [13]. The proportional reductions in DLCO is thought to mirror a limited reserve of gas exchange resulting from the potential toxicity of RT.

The incidence of RP may be different between internal and external beam radiotherapy. In a study including 46 patients who undergone endobronchial brachytherapy due to the airway obstruction by non-operable malignant obstructive endobronchial lesions, RP developed only in those who were treated with external beam radiotherapy [14]. In another paper, Leung et al. reported that only five of 80 patients developed RP who received SIRT alone [3]. Salem et al. reported that none of the 58 subjects had clinical RP who were treated with higher exposure doses than 30 Gy [4]. Additionally, Das and colleagues have also recently reported a study of 103 patients who had LSF > 15% and no patient had features of...
RP [15]. Dobrocky et al. published a case report without related DLCO values where an asymptomatic patient had RP as confirmed both by imaging modalities and histopathologic evaluation [9].

There are some reports in the literature researching the relationship between the reduction in DLCO and RP. Aforementioned in the introduction section, Guerra and colleagues researched the possible relation between the extent of change in DLCO after external RT and RP [10]. In another study with internal dose absorption of the lungs, none of the patients developed RP during the follow-up and no changes in DLCO were found [11]. The relationship between the proportional reductions in DLCO and the severity of RP that forms after SIRT may be clinically important. If the expected association between the measured percent reduction in DLCO and severity of RP proves to be valid, then DLCO monitoring may allow to identify possible candidates for RP. The detection of the reduction in DLCO may prove to have clinical utility in this patient group, especially when the high radiation exposure related to CT scans is taken into consideration as recommended in the literature [16].

Diagnosis of RP is challenging and clinically based on the presence of classic symptoms including cough, shortness of breath, wheezing, timing and history of RT or SIRT, imaging findings and exclusion of alternative causes. Radiologic imaging findings demonstrating consolidation and atelectasis with multiple ground glass opacities suggestive of RP may be seen within the treatment field. Occasionally, similar radiological findings on the outside of the treatment area may be seen probably due to the immunological response [8]. The first steroid treatment for RP was performed by Bluestein and Roemer in 1953 [17]. Since then, the mainstay of therapy consists of a long course of high-dose corticosteroid therapy. Oral prednisone is commonly administered in doses of 40–60 mg/day (or 1 mg/kg daily), slowly tapered over 8 to 12 weeks. Symptoms typically resolve within days. However, relapse of symptoms occurs in the majority of the patients during the taper of corticosteroids who require recurrent or continuous therapy with higher doses and a slower taper. Non-steroidal anti-inflammatory drugs or inhaled steroids can be used for patients who have milder symptoms [8]. Other immunosuppressive agents such as azathioprine and cyclosporine can be prescribed for patients who are refractory to steroids or cannot tolerate steroids; however, experience is limited to case reports [8, 18, 19]. In the literature, treatment is only advised for symptomatic patients [8]. Standard steroid treatment protocol was not effective in this case for the relief of any symptoms related to RP and no improvement in radiological findings was seen. Additionally, post-SIRT bremsstrahlung planar imaging findings were unique, showing unexpected liver-lung shunt compared to our experience. Decline in DLCO could be a valuable parameter for follow-up and to identify potential candidates for RP and could be also another trigger for administration of steroid therapy with prompt timing in this patient group.

It should be remembered that RP is a very rare complication and may lead to a fatal outcome as radiation induced liver disease [20]. Prompt timing of steroid treatment is important in this clinical situation and closely monitoring the
high-risk group with DLCO values could be more appropriate for this life-saving medical treatment. Further large studies to definitively test and better delineate DLCO changes after SIRT should be performed with different protocols.

Abbreviations
SIRT: Selective internal radiation therapy; RP: Radiation pneumonitis; DLCO: Diffusion capacity of the lungs for carbon monoxide; 90Y: Yttrium-90; Tc: Technetium-99m; MAA: Macro-aggregated albumin; RT: Radiotherapy; 18F-FDG PET/CT: 18-fluorine-fluorodeoxyglucose positron-emission-tomography/computed tomography; AFP: Alpha fetoprotein; LSF: Lung shunt fraction; CT: Computed tomography

Acknowledgements
Not Applicable.

Authors’ contributions
SK, MD, Researched the literature, wrote the paper, designed the images, provided stylistic/grammatical revisions to the manuscript, data collection. TO, MD, Primary author (drafted the paper). EE, MD, Provided critical revision of the article. TYE, MD, Approving the final content of the manuscript. SK, MD, Researched the literature, wrote the paper, designed the images, provided stylistic/grammatical revisions to the manuscript. FB, MD, Substantial contributions to scientific content of the manuscript. TO, MD, Primary author (drafted the paper). EE, MD, Provided critical revision of the article. TYE, MD, Approving the final content of the manuscript. The author(s) read and approved the final manuscript.

Funding
None.

Availability of data and materials
All data generated or analysed during this case report are included in the manuscript and its supplementary information files.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Written informed consent was obtained from the patient for the publication of this case report and all accompanying images.

Competing interests
None.

Author details
1Department of Nuclear Medicine, Marmara University Istanbul Pendik Education and Research Hospital, Fevzi Çakmak Mah. Muhsin Yazicioglu Cad. No:10 Ust Kaynarca / Pendik, 34899 Istanbul, Turkey. 2Department of Pulmonary and Critical Care, Marmara University Istanbul Pendik Education and Research Hospital, Istanbul, Turkey. 3Department of Radiology, Marmara University Istanbul Pendik Education and Research Hospital, Istanbul, Turkey.

Received: 9 January 2020 Accepted: 7 May 2020
Published online: 19 May 2020

References
1. Bilbao JJ, Reiser MF, editors. Liver Radioembolization with 90Y Microspheres. 2nd Medical Radiology. Springer Berlin Heidelberg. 2014p 172. doi:https://doi.org/10.1007/978-3-642-36473-0.
2. Lin M. Radiation pneumonitis caused by yttrium-90 microspheres: radiologic findings. AJR Am J Roentgenol. 1994;162:1300–2. doi:https://doi.org/10.2214/ajr.162.6.8191985.
3. Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS, et al. Radiation pneumonitis after selective internal radiation treatment with intraluminal 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995;33:919–24. doi:https://doi.org/10.1016/0360-3016(95)00039-3.
4. Salem R, Parikh P, Atassi B, Lewandowski RJ, Ryu RK, Sato KT, et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol. 2008;31:431–8. doi:https://doi.org/10.1097/JOC.0b013e318168ef65.
5. Takeda S, Wu EY, Epstein RH, Estrella AS, Hisa CC. In vivo assessment of changes in air and tissue volumes after pneumonectomy. J Appl Physiol. 1997;82:1340–8.
6. Gopal R, Starkschall G, Tucker SL, Cox JD, Liao Z, Hanus M, et al. Effects of radiotherapy and chemotherapy on lung function in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;56:114–20.
7. Cerfolio RJ, Talati A, Bryant AS. Changes in pulmonary function tests after neoadjuvant therapy predict postoperative complications. Ann Thorac Surg. 2009;88:930–5. doi:https://doi.org/10.1016/j.athoracsur.2009.06.013.
8. Bledsoe TJ, Nath SK, Decker RH. Radiation pneumonitis. Clin Chest Med. 2017;38:201–8. doi:https://doi.org/10.1016/j.ccm.2016.12.004.
9. Dobrocky T, Fuerstner M, Klaeser B, Lopez-Benitez R, Walti YB, Kara L. Regional radiation pneumonitis after SIRT of a subcapsular liver metastasis: what is the effect of direct beta irradiation? Cardiovasc Interv Radiol. 2013;36:1025–30. doi:https://doi.org/10.1007/s00270-014-1015-x.
10. Lopez Guerra JL, Gomez D, Zhuang Y, Levy LB, Eapen G, Liu H, et al. Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:1573–9. doi:https://doi.org/10.1016/j.ijrobp.2011.10.065.
11. Ones T, Eryukel S, Baltacigil F, Ceyhan B, Erdil TY. The effect of selective internal radiation therapy with yttrium-90 resin microspheres on lung carbon monoxide diffusion capacity. EINMMI Res. 2017;29;7(1):103 doi:https://doi.org/10.1186/s13550-017-0353-5.
12. Rube CE, Wilpert F, Palm J, Konig J, Burdak-Rothkamm S, Liu L, et al. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther Onkol. 2004;180:442–8. doi:https://doi.org/10.1007/s00066-004-1265-7.
13. Martin C, Romero S, Sanchez-Paya J, Massuti B, Arriero JM, Hernandez L. Bilateral lymphocytic alveolitis: a common reaction after unilateral thoracic irradiation. Eur Respir J. 1999;13:727–32.
14. Gustafson G, Vicini F, Freedman L, Johnston E, Edmundson G, Sherman S, et al. High dose rate endobronchial brachytherapy in the management of primary and recurrent bronchogenic malignancies. Cancer. 1995;75:2345–50.
15. Das A, Riaz A, Gabr A, Ali R, Mora R, Al Asadi A, et al. Safety and efficacy of radioembolization with glass microspheres in hepatocellular carcinoma patients with elevated lung shunt fraction: analysis of a 103-patient cohort. Eur J Nucl Med Mol Imaging. 2019. doi:https://doi.org/10.1007/s00259-019-04517-y.
16. Sangro B, Martinez-Uribondo D, Bester L, Bilbao JL, Coldwell DM, Flamien P, et al. Prevention and treatment of complications of selective internal radiation therapy: expert guidance and systematic review. Hepatology. 2017;66:969–82. doi:https://doi.org/10.1002/hep.29207. luestein.
17. Bluestein SG, Roemer J. The treatment of radiation pneumonitis with cortisone. J Med Soc N J. 1953;50:106–7.
18. McCarty MJ, Lillis P, Vukelja SJ. Azathioprine as a steroid-sparing agent in radiation pneumonitis. Chest. 1996;109:1397–400.
19. Muraoka T, Bando H, Fujita J, Horikae I, Ishii T, Tojo Y, et al. Corticosteroid refractory radiation pneumonitis that remarkably responded to cycloponor a. Intern Med. 2002;41:730–3. doi:https://doi.org/10.2169/internalmedicine.41.730.
20. Kim J, Jung Y. Radiation-induced liver disease: current understanding and future perspectives. Exp Mol Med. 2017;49:359. doi:https://doi.org/10.1038/emm.2017.85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.