Forward-backward systems of stochastic differential equations generated by Bernstein diffusions

Ana Bela Cruzeiro* and Pierre-A. Vuillermot**
Grupo de Física Matemática da Universidade de Lisboa*
UMR-CNRS 7502, Institut Élie Cartan de Lorraine, France**

Abstract

In this short article we present new results that bring about hitherto unknown relations between certain Bernstein diffusion's wandering in bounded convex domains of Euclidean space on the one hand, and processes which typically occur in forward-backward systems of stochastic differential equations on the other hand. A key point in establishing such relations is the fact that the Bernstein diffusions we consider are actually reversible Itô diffusions.

1 Statement of the main results

The theory of Bernstein processes goes back to [2] which elaborates on the seminal contribution that was set forth in the very last section of [17]. It was subsequently thoroughly developed in [11], and has ever since played an important rôle in probability theory and in various areas of mathematical physics as testified for instance by the works [4]-[7], [10], [16], [18], [19] and the many references therein. There are several equivalent ways to define a Bernstein process, but we settle here for a variant which is tailored to our needs. Let $D \subset \mathbb{R}^d$ be a bounded open convex subset whose smooth boundary ∂D is $C^{2+\alpha}$ with $\alpha \in (0,1)$; let us write $\overline{D} := D \cup \partial D$ and let $T \in (0, +\infty)$ be arbitrary.

Definition 1.1. We say the \overline{D}-valued process $Z_{\tau \in [0,T]}$ defined on the complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a Bernstein process if the following conditional expectations satisfy the relation

$$E \left(h(Z_r) \mid \mathcal{F}_s^+ \vee \mathcal{F}^-_t \right) = E \left(h(Z_r) \mid Z_s, Z_t \right)$$

(1)

for every Borel measurable function $h : \overline{D} \to \mathbb{R}$, and for all r, s, t satisfying $r \in (s, t) \subset [0, T]$. In (1), \mathcal{F}_s^+ denotes the σ-algebra generated by the Z_r's for all $r \in [0, s]$, while \mathcal{F}^-_t is that generated by the Z_r's for all $r \in [t, T]$.

1
According to [11] Bernstein processes are neither Markovian nor reversible in general, but there are special classes of them which are reversible Itô diffusions as we shall see below. Since this conveys the idea that such diffusions can evolve forward and backward in time while satisfying Itô equations for some suitably constructed Wiener processes, they constitute the bare minimum we need to establish relations with certain forward-backward systems of stochastic differential equations. Following [1, 3] and [14] which were written in the context of stochastic optimal control, the theory of such systems has been considerably developed in recent times and has led to various applications in mathematical finance and partial differential equations (see e.g. [8], [9], [12], [13], [15] and their references). In this Note we adopt the standard definition for them which can be found for instance in [8] or [13], up to the essential difference that the Wiener processes which occur in our context are not a priori given but rather determined a posteriori by the Bernstein diffusions themselves. This leads to the following notion, where

\[f, g : D \times \mathbb{R}^d \times [0, T] \to \mathbb{R}^d \]

are continuous functions, and where we write \(X = (X_1, \ldots, X_d) \) for any vector \(X \in \mathbb{R}^d \) with each \(X_i \in \mathbb{R}^d \) and \(|.| \) for the Euclidean norm in \(\mathbb{R}^d \) or \(\mathbb{R}^{d^2} \):

Definition 1.2. We say the \(D \times \mathbb{R}^d \times [0, T] \)-valued process \((A_\tau, B_\tau, C_\tau)_{\tau \in [0, T]}\) defined on \((\Omega, \mathcal{F}, \mathbb{P})\) is a solution to a forward-backward system of stochastic differential equations with initial condition \(\eta \) and final condition \(\kappa \) if the following four conditions hold:

(a) The process \(W_\tau \) defined by

\[W_\tau := A_\tau - A_0 - \int_0^\tau d\sigma f(A_\sigma, B_\sigma, \sigma) \]

is a Wiener process on \((\Omega, \mathcal{F}, \mathbb{P})\) relative to its natural increasing filtration \(\mathcal{F}_\tau \) and \((A_\tau, B_\tau, C_\tau)_{\tau \in [0, T]}\) is progressively measurable with respect to \(\mathcal{F}_\tau \).

(b) We have

\[A_t = \eta + \int_0^t d\tau f(A_\tau, B_\tau, \tau) + W_t \]

\(\mathbb{P} \)-a.s. for every \(t \in [0, T] \), where \(\eta : \Omega \to D \) is \(\mathcal{F}_0 \)-measurable and satisfies \(\mathbb{E} |\eta|^2 < +\infty \).

(c) We have

\[B_{t,i} = \kappa_i - \int_t^T d\tau g_i(A_\tau, B_\tau, \tau) - \int_t^T (C_{\tau,i}, dW_\tau)_{\mathbb{R}^d} \]

\(\mathbb{P} \)-a.s. for every \(t \in [0, T] \) and every \(i \in \{1, \ldots, d\} \), where \(\kappa : \Omega \to \mathbb{R}^d \) is \(\mathcal{F}_T \)-measurable and satisfies \(\mathbb{E} |\kappa|^2 < +\infty \). In [4], \((\cdot, \cdot)_{\mathbb{R}^d} \) stands for the Euclidean
inner product in \mathbb{R}^d and the second integral is the forward Itô integral defined with respect to $\mathcal{F}_{\tau \in [0,T]}$, which we assume to be well-defined.

(d) We have
\[
\mathbb{E} \int_0^T d\tau \left(|A_{\tau}|^2 + |B_{\tau}|^2 + |C_{\tau}|^2\right) < +\infty.
\]

In order to show that there exist special classes of Bernstein processes which generate forward-backward systems in the above sense, we now consider parabolic initial-boundary value problems of the form
\[
\partial_t u(x,t) = \frac{1}{2} \Delta_x u(x,t) - (l(x,t), \nabla_x u(x,t))_{\mathbb{R}^d} - V(x,t)u(x,t),
\]
\[
(x,t) \in D \times (0,T],
\]
\[
u(x,0) = \varphi(x), \quad x \in D,
\]
\[
\frac{\partial u(x,t)}{\partial n(x)} = 0, \quad (x,t) \in \partial D \times (0,T].
\]
along with the corresponding adjoint final-boundary value problems
\[
-\partial_t v(x,t) = \frac{1}{2} \Delta_x v(x,t) + \text{div}_x (v(x,t)l(x,t)) - V(x,t)v(x,t),
\]
\[
(x,t) \in D \times [0,T],
\]
\[
v(x,T) = \psi(x), \quad x \in D,
\]
\[
\frac{\partial v(x,t)}{\partial n(x)} = 0, \quad (x,t) \in \partial D \times [0,T].
\]

In the preceding relations $u(x)$ denotes the unit outer normal vector at $x \in \partial D$, l is an \mathbb{R}^d-valued vector-field and V, φ, ψ are real-valued functions which satisfy the following hypotheses, respectively:

(L) For $l: \overline{D} \times [0,T] \rightarrow \mathbb{R}^d$ we have $l_i \in C^{2+\alpha}(\overline{D} \times [0,T])$ for every $i \in \{1, \ldots, d\}$.

(V) The function $V: \overline{D} \times [0,T] \rightarrow \mathbb{R}$ is such that $V \in C^1(\overline{D} \times [0,T])$.

(IF) We have $\varphi, \psi \in C^{2+\alpha}(\overline{D})$ with $\varphi > 0$ and $\psi > 0$ satisfying Neumann’s boundary condition, that is,
\[
\frac{\partial \varphi(x)}{\partial n(x)} = \frac{\partial \psi(x)}{\partial n(x)} = 0, \quad x \in \partial D.
\]

Under such conditions there exists a Bernstein process $Z_{\tau \in [0,T]}$ wandering in \overline{D} which turns out to be a reversible Itô diffusion according to the theory developed in [18], to which we refer the reader for details. What this means is that $Z_{\tau \in [0,T]}$ may be considered simultaneously either as a forward or as a
backward Markov diffusion on some probability space \((\Omega, \mathcal{F}, \mathbb{P}_\mu)\), where \(\mathbb{P}_\mu\) is uniquely determined by the positive function

\[
\mu(E \times F) := \int_{E \times F} dx dy \varphi(x) g(y; x, 0) \psi(y)
\]

(7)
defined for all \(E, F \in \mathcal{B}(D)\) with \(\mathcal{B}(D)\) the Borel \(\sigma\)-algebra on \(D\). In the preceding expression \(g\) stands for the parabolic Green function associated with (5), which is well-defined and positive for all \(x, y \in D\). In addition, (7) must satisfy

\[
\int_D dx dy \varphi(x) g(y; x, 0) \psi(y) = 1.
\]

Furthermore the drift of \(Z_{\tau \in [0, T]}\) is

\[
b^*(x, t) = l(x, t) + \nabla_x \ln v_\psi(x, t)
\]
in the forward case, and

\[
b(x, t) = l(x, t) - \nabla_x \ln u_\varphi(x, t)
\]
in the backward case, where \(u_\varphi\) is the unique positive classical solution to (4) and \(v_\psi\) the unique classical positive solution to (6). Finally \(Z_{\tau \in [0, T]}\) satisfies two It\(\hat{0}\) equations in the weak sense, namely, the forward equation

\[
Z_t = Z_0 + \int_0^t d\tau b^* (Z_\tau, \tau) + W^*_t
\]

(8)
and the backward equation

\[
Z_t = Z_T - \int_t^T d\tau b(Z_\tau, \tau) + W_t
\]

(9)
\(\mathbb{P}_\mu\)-a.s. for every \(t \in [0, T]\), for two suitably constructed \(d\)-dimensional Wiener processes \(W^*_{\tau \in [0, T]}\) and \(W_{\tau \in [0, T]}\).

It is precisely all these properties along with some more refinements that lead to the desired relations with forward-backward systems. For instance, let us choose the functions in (2) as

\[
f(x, y, t) = l(x, t) + y
\]

(10)
and

\[
g_i(x, y, t) = \partial_{x_i} (V(x, t) - \text{div}_x l(x, t)) - (y, \nabla_x l_i(x, t))_{\mathbb{R}^d}
\]

(11)
for every \(i \in \{1, ..., d\}\). One of our typical results is then the following:

Theorem. Let us assume that Hypotheses (L), (V) and (IF) hold, and that the vector-field \(l\) is conservative in \(D\). Then, there exist a probability measure \(\mu\) on \(\mathcal{B}(D) \times \mathcal{B}(D)\), a probability space \((\Omega, \mathcal{F}, \mathbb{P}_\mu)\) and a \(D \times \mathbb{R}^d \times \mathbb{R}^{d^2}\)-valued process \((\mathcal{A}_\tau, \mathcal{B}_\tau, \mathcal{C}_\tau)_{\tau \in [0, T]}\) on \((\Omega, \mathcal{F}, \mathbb{P}_\mu)\), such that the following properties hold:

4
(a) The process \((A_\tau, B_\tau, C_\tau)_{\tau \in [0,T]}\) is the unique solution to the forward-backward system whose stochastic differential equations are of the form (3) and (4) with \(f\) and \(g\) given by (10) and (11), respectively. The uniqueness is meant as uniqueness in law.

(b) The initial random vector \(\eta : \Omega \mapsto D\) has the distribution density \(x \mapsto \varphi(x)\psi(x,0)\) for all \(x \in D\), while \(\kappa : \Omega \mapsto \mathbb{R}^d\) is of the form
\[
\kappa = \nabla_x \ln \psi(A_T).
\]

(c) The process \(A_\tau \in [0,T]\) is a reversible Bernstein diffusion in \(\overline{D}\).

2 A brief sketch of the proof

We first consider the translated forward drift
\[
c^*(x,t) := b^*(x,t) - l(x,t) = \nabla_x \ln v(x,t)
\]
for all \((x,t) \in \overline{D} \times [0,T]\), and then rewrite (8) as
\[
Z_t = Z_0 + \int_0^t d\tau (c^*(Z_\tau,\tau) + l(Z_\tau,\tau)) + W^*_\tau.
\]

We can also verify that the process \(c^*(Z_\tau,\tau)_{\tau \in [0,T]}\) satisfies the backward Itô equation
\[
c^*_i(Z_t,t) = c^*_i(Z_T,T) - \int_t^T d\tau (\partial_{z_i}(V(Z_\tau,\tau) - \text{div}_x l(Z_\tau,\tau)) - (c^*(Z_\tau,\tau), \nabla_x l_i(Z_\tau,\tau))_{\mathbb{R}^d})
- \int_t^T (\nabla c^*_i(Z_\tau,\tau), d^\dagger W^*_\tau)_{\mathbb{R}^d}
\]
\(\mathbb{P}_\mu\)-a.s. for every \(t \in [0,T]\) and every \(i \in \{1,...,d\}\), where the second integral in (14) is the forward Itô integral defined with respect to \(W^*_\tau_{\tau \in [0,T]}\) and its natural increasing filtration \(\mathcal{F}^+_\tau_{\tau \in [0,T]}\). It is then sufficient to choose \((A_\tau, B_\tau, C_\tau)_{\tau \in [0,T]} = (Z_\tau, c^*(Z_\tau,\tau), \nabla c^*(Z_\tau,\tau))_{\tau \in [0,T]}\), where we have written
\[
\nabla c^*(Z_\tau,\tau)_{\tau \in [0,T]} := (\nabla_x c^*_1(Z_\tau,\tau),...,\nabla_x c^*_d(Z_\tau,\tau))_{\tau \in [0,T]}.
\]

This choice shows indeed that we can identify (3) and (4) with (13) and (14), respectively, if we take (10) and (11) into account. The remaining statements follow from simple considerations.

We can obtain so to speak a dual result when we consider the process \((A_\tau, B_\tau, C_\tau)_{\tau \in [0,T]} = (Z_\tau, c(Z_\tau,\tau), \nabla c(Z_\tau,\tau))_{\tau \in [0,T]}\), where
\[
c(x,t) := b(x,t) - l(x,t) = -\nabla_x \ln u(x,t)
\]
is the translated backward drift associated with $Z_{\tau \in [0,T]}$, which we consider this time as a backward Itô diffusion satisfying (9) or, equivalently,

$$Z_t = Z_T - \int_t^T d\tau \left(c(Z_\tau, \tau) + l(Z_\tau, \tau) \right) + W_t. \quad (17)$$

Indeed, in this case it is the process $c(Z_\tau, \tau)_{\tau \in [0,T]}$ that satisfies a forward Itô equation. We refer the reader to the forthcoming typescript [5] for details and complete proofs.

References

[1] A. Bensoussan, *Stochastic maximum principle for distributed parameter systems*, Journal of the Franklin Institute **315** (1983) 387-406.

[2] S. Bernstein, *Sur les liaisons entre les grandeurs aléatoires*, in: Verhandlungen des Internationalen Mathematikerkongress, 1 (1932) 288-309.

[3] J. M. Bismut, *Théorie probabiliste du contrôle des diffusions*, Memoirs of the AMS **176**, American Mathematical Society, Providence, 1973.

[4] E. A. Carlen, *Conservative diffusions*, Communications in Mathematical Physics **94** (1984) 293-315.

[5] A. B. Cruzeiro, P.-A. Vuillermot, *Bernstein diffusions and forward-backward stochastic differential equations*, (2013).

[6] A. B. Cruzeiro, L. Wu, J. C. Zambrini, *Bernstein processes associated with Markov processes*, In: Rebolledo, R. (ed.) Stochastic Analysis and Mathematical Physics, Birkhäuser, Basel (2000).

[7] A. B. Cruzeiro, J. C. Zambrini, *Malliavin calculus and Euclidean quantum mechanics, I. Functional Calculus*, Journal of Functional Analysis **96** (1991) 62-95.

[8] F. Delarue, *On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case*, Stochastic Processes and their Applications **99** (2002) 209-286.

[9] K. Du, S. Tang, *Strong solution of backward stochastic partial differential equations in C^2-domains*, Probability Theory and Related Fields **154** (2012) 255-285.

[10] A. Gulisashvili, J. A. van Casteren, *Non-Autonomous Kato Classes and Feynman-Kac Propagators*, World Scientific, Singapore (2000).

[11] B. Jamison, *Reciprocal processes*, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete **30** (1974) 65-86.
[12] J. Ma, J. Cvitanić, *Reflected forward-backward SDEs and obstacle problems with boundary conditions*, Journal of Applied Mathematics and Stochastic Analysis **14:2** (2001) 113-138.

[13] J. Ma, J. Yong, *Forward-Backward Stochastic Differential Equations and their Applications*, Lectures Notes in Mathematics **1702**, Springer, New York (2007).

[14] E. Pardoux, S. G. Peng, *Adapted solution of a backward stochastic differential equation*, Systems and Control Letters **14** (1990) 55-61.

[15] E. Pardoux, S. Zhang, *Generalized BSDEs and nonlinear Neumann boundary-value problems*, Probability Theory and Related Fields **110** (1998) 535-558.

[16] N. Privault, J. C. Zambrini, *Markovian bridges and reversible diffusion processes with jumps*, Annales de l’Institut Henri Poincaré PR **40** (2004) 599-633.

[17] E. Schrödinger, *Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique*, Annales de l’Institut Henri-Poincaré **2** (1932) 269-310.

[18] P.-A. Vuillermot, J. C. Zambrini, *Bernstein diffusions for a class of linear parabolic partial differential equations*, Journal of Theoretical Probability **DOI 10.1007/s10959-012-0426-3** (2012).

[19] J. C. Zambrini, *Variational processes and stochastic versions of mechanics*, Journal of Mathematical Physics **27** (1986) 2307-2330.