Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4

Chao Zhou, Feng-Zhen Ma, Xue-Jie Deng, Hong Yuan, Hong-Sheng Ma

AIM: To investigate the effect of *Lactobacillus bulgaricus* (LBG) on the Toll-like receptor 4 (TLR4) pathway and interleukin-8 (IL-8) production in SGC-7901 cells treated with *Helicobacter pylori* Sydney strain 1 lipopolysaccharide (*H. pylori*SS1-LPS).

METHODS: SGC-7901 cells were treated with *H. pylori*SS1-LPS in the presence or absence of pretreatment for 1 h with viable LBG or supernatant recovered from LBG culture MRS broth (LBG-s). Cellular lysates were prepared for Western blot with anti-TLR4, anti-phospho-TAK1, anti-nuclear factor κB (NF-κB), anti-p38 mitogen-activated protein kinase (p38MAPK), and anti-phospho-p38MAPK antibodies. The amount of IL-8 in cell culture medium was measured by ELISA.

RESULTS: *H. pylori*SS1-LPS up-regulated the expression of TLR4, stimulated the phosphorylation of TAK1, subsequently enhanced the activation of NF-κB and the phosphorylation of p38MAPK in a time-dependent manner, leading to augmentation of IL-8 production in SGC-7901 cells. Viable LBG or LBG-s pretreatment attenuated the expression of TLR4, inhibited the phosphorylation of TAK1 and p38MAPK, prevented the activation of NF-κB, and consequently blocked IL-8 production.

CONCLUSION: *H pylori*SS1-LPS induces IL-8 production through activating TLR4 signaling in SGC-7901 cells and viable LBG or LBG-s prevents *H pylori*SS1-LPS-mediated IL-8 production via inhibition of the TLR4 pathway.

Key words: Lactobacillus; Helicobacter pylori; Lipopolysaccharide; Toll-like receptor 4; Interleukin-8

INTRODUCTION

Infection with the human gastric pathogen *Helicobacter pylori* (*H. pylori*) can develop into chronic gastritis, peptic ulcer and gastric cancer. Some studies demonstrated that *H pylori* can stimulate interleukin-8 (IL-8) production in gastric mucosal epithelia, which induces accumulation of neutrophilic granulocytes in mucosa. Chemotactic response initiates inflammatory damage to gastric mucosa, which plays a crucial role in the pathogenesis of *H pylori*. However, signal transduction through which *H pylori* modulates IL-8 production from gastric epithelia is not fully understood.

The product of particular significance for the virulent action of *H pylori* is its cell wall lipopolysaccharide (LPS). The effects of *H pylori* lipopolysaccharide (*H pylori*-LPS) have been manifested by the marked increase of nitric oxide and proinflammatory cytokines including IL-8 in gastric mucosa, abrogation of proliferation and induction of apoptosis in gastric epithelia. Mammalian Toll-like receptors trigger the signaling pathways involved in innate immune responses to microbial challenge after recognizing pathogen-associated molecular patterns.
H pylori-LPS is the natural ligand for Toll-like receptor 4 (TLR4) in gastric epithelia. It has been proposed that H pylori-LPS induces IL-8 production in gastric epithelia through activating the TLR4 signaling pathway[7,9].

Probiotics are living microorganisms with no or low pathogenicity, which exert beneficial effects on the host. Lactobacillus bulgaricus (LBG), a bacterium used in the production of yogurt, is one of the best-studied probiotics. There is increasing evidence[10,11] that LBG has therapeutic effects on H pylori-related diseases, including enhanced eradication of H pylori; amelioration of resistance to antibiotics, down-regulated side effects of antibiotic-based therapy, decreased recurrence of H pylori infection, and inhibition of H pylori-induced apoptosis. The mechanisms underlying these effects include inhibition of H pylori growth and attachment to epithelial cells, inactivation of virulent factors such as urease, and decrease in production of H pylori-induced proinflammatory cytokines[12-16]. However, the signaling pathways which are modulated by LBG in gastric epithelia have not been well elucidated.

In this experiment, we demonstrated that viable LBG inhibited the activation of the TLR4 signaling pathway and IL-8 production induced by H pylori/Sydney strain 1 lipopolysaccharide (H pyloriSS1-LPS) in SGC-7901 cells. Furthermore, supernatant recovered from the LBG culture MRS broth (LBG\textsubscript{5}) also exerted these effects on SGC-7901 cells treated with H pyloriSS1-LPS. These observations provide the novel insight into the rationale for LBG as a potential treatment for H pylori-related diseases.

MATERIALS AND METHODS

H pyloriSS1 culture and H pyloriSS1-LPS preparation

H pyloriSS1 was kindly offered by Professor Qian Yu (School of Public Health, Sichuan University). H pyloriSS1 was incubated in Brucella broth (bioMérieux Corporate, La Balmes Grottes, France) supplemented with 10% fetal calf serum (FCS; Invitrogen GIBCO, Carlsbad, California, USA), 10 mg/L vancomycin, 10 mg/L amphotericin and 2500 U/L polymycin B in a shaking incubator (100 r/min) at 37°C in an atmosphere containing 50 mL/L CO\textsubscript{2} and 850 mL/L N\textsubscript{2} for 48 h. H pyloriSS1 was precipitated from Brucella broth by centrifuging at 10000 r/min for 10 min at 4°C and washed twice with PBS. Then the concentration of H pyloriSS1 in PBS was adjusted to 109 colony forming units (CFU)/mL with optical density determined as 1 at 600 nm. The H pyloriSS1-containing PBS was used to prepare H pyloriSS1-LPS with the LPS extraction kit (bioMérieux) following guidelines from its manufacturer. H pyloriSS1-LPS concentrations were determined with the kinetic Limulus amebocyte lysate assay kit (Cambrex, Walkersville, Maryland, USA) according to the manufacturer’s instructions.

LBG culture and LBG\textsubscript{5} preparation

LBG, kindly offered by Professor Qian Yu (School of Public Health, Sichuan University), was incubated in MRS broth (bioMérieux) in a candle jar at 37°C for 24-48 h, precipitated from MRS broth by centrifuging at 5000 r/min for 10 min and washed twice with PBS. Then the concentration of LBG in PBS was adjusted to 107 CFU/mL with optical density determined as 0.5 at 600 nm. LBG was precipitated from PBS by centrifuging at 5000 r/min for 10 min and resuspended with an equivalent volume of RPMI 1640 medium (Invitrogen GIBCO) for pretreatment of SGC-7901 cells.

LBG\textsubscript{5} was generated by centrifuging at 1000 x g for 15 min and filtering (0.2 μm) LBG culture MRS broth, then the filtrate was concentrated using Centricon Plus-20 (5-100 kDa; Millipore, Bedford, Massachusetts, USA) by centrifugation at 4000 x g for 1 h following guidelines from the manufacturer. Protein concentrations were determined with the Pierce protein assay kit (Pierce, Rockford, Illinois, USA) using MRS broth as the control.

Cell culture

SGC-7901 cell line was established from human gastric adenocarcinoma cells. Though the characteristics of cell apoptosis and proliferation are different from the cell line derived from normal gastric epithelia, SGC-7901 cells have been widely used as models for investigations on H pylori-induced gastric epithelial inflammatory responses because their inflammatory responsibility is similar to normal gastric epithelia. Therefore, SGC-7901 cells were used in our experiment. They were grown in RPMI 1640 medium supplemented with 10% FCS, 100 U/mL penicillin and 100 μg/mL streptomycin at 37°C in an atmosphere containing 50 mL/L CO\textsubscript{2}. After 3-4 times of passage, SGC-7901 cells were seeded to generate 1 x 106 cells per 6 cm culture dish and incubated in RPMI 1640 medium containing 10% FCS, 100 U/mL penicillin and 100 μg/mL streptomycin at 37°C in an atmosphere containing 50 mL/L CO\textsubscript{2} for 24 h. Then all cells were serum-starved (0.5% FCS) for 24 h before experimentation.

Treatment of cell line

SGC-7901 cells were treated with 25 endotoxin units (EU)/mL H pyloriSS1-LPS for 0, 30, 60 min or 120 min in the absence or presence of pretreatment for 1 h with 107 CFU/mL viable LBG or 105 mg/mL LBG\textsubscript{5}. At the end of each time point, cells were collected for Western blot, and RPMI 1640 medium was collected for ELISA. Each experiment was in triplicate.

Preparation of cellular lysates and Western blot analysis

Nuclear and cytoplasmic extraction from SGC-7901 cells per 6 cm culture dish and incubated in RPMI 1640 medium containing 10% FCS, 100 U/mL penicillin and 100 μg/mL streptomycin at 37°C in an atmosphere containing 50 mL/L CO\textsubscript{2}. At the end of each time point, cells were collected for Western blot, and RPMI 1640 medium was collected for ELISA. Each experiment was in triplicate.
sulphate-polyacrylamide gels and electrotransferred to polyvinylidene difluoride membrane (1.2 mA/cm², 1 h). After blocked with 5% fat-free dried milk in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 1 h, the membrane was incubated overnight at 4°C with the following primary antibodies: anti-TLR4, anti-transforming growth factor β-activated kinase 1 (TAK1), anti-phospho-TAK1 (p-TAK1), anti-nuclear factor κB (NF-κB), anti-p38 mitogen-activated protein kinase (p38MAPK), anti-phospho-p38MAPK (p-p38MAPK; all at the dilution of 1:1000, Cell Signaling Technology). Anti-β-actin and anti-lamin B1 (both at the dilution of 1:1000, Santa Cruz Biotechnology, Santa Cruz, California, USA) were used for the control of equal protein loading. After washed three times in TBST, the membrane was incubated with horseradish peroxidase-conjugated IgG (1:5000, Santa Cruz Biotechnology) as the secondary antibody at room temperature for 1 h. The photographic film was exposed to bands visualized with the Supersignal West Pico chemiluminescent substrate kit (Pierce). The integrated optical density (I) of each band was quantified using Quantity One software 4.5.0 (Bio-Rad Laboratories, Hercules, California, USA). Each value for TLR4 band was normalized as the ratio of I of TLR4 band to that of β-actin band. Each value for p-TAK1 band was normalized as the ratio of I of p-TAK1 band to that of TAK1 band. Each value for p-p38MAPK band was normalized as the ratio of I of p38MAPK band to that of p38MAPK band. Each value for NF-κB band was normalized as the ratio of I of NF-κB band to that of lamin B1 band. Each Western blot analysis of extract samples was performed in triplicate.

Detection of IL-8 production
The concentration of IL-8 in RPMI 1640 medium was determined with a commercially available ELISA kit (R&D Systems, Minneapolis, Minnesota, USA) following guidelines from the manufacturer. Each sample was detected thrice.

Statistical analysis
The data were expressed as mean ± SD, and analyzed by SPSS13.0 software (SPSS, Chicago, Illinois, USA) for One-Way ANOVA test. P < 0.05 was considered statistically significant.

RESULTS
Viable LBG or LBG−12 inhibited H pyloriSS1-LPS-induced activation of TLR4 signaling pathway
Twenty-five EU/mL H pyloriSS1-LPS up-regulated the expression of TLR4, enhanced the phosphorylation of TAK1 and p38MAPK, and induced the translocation of NF-κB into nuclei in a time-dependent manner (Figure 1A and B, Table 1). These results demonstrate that H pyloriSS1-LPS could activate the TLR4 signaling pathway. Pretreatment for 1 h with 10⁵ CFU/mL viable LBG (Figure 1A) or 10² mg/mL LBG−12 (Figure 1B) significantly inhibited these effects of H pyloriSS1-LPS on the TLR4 pathway in SGC-7901 cells to a great extent (Table 1).

Viable LBG or LBG−12 inhibited H pyloriSS1-LPS-induced IL-8 production
The production of IL-8 in SGC-7901 cells treated with 25 EU/mL H pyloriSS1-LPS for 0, 30 or 60 min in the absence or presence of pretreatment for 1 h with 10⁵ CFU/mL viable LBG or 10² mg/mL LBG−12 was almost undetectable (Table 2). No significant difference in these data was possibly attributed to their extremely small value. Thirty or 60 min of treatment with H pyloriSS1-LPS might be too short for SGC-7901 cells to produce enough IL-8 for ELISA, because cytokine production usually is posterior to the process of corresponding signal transduction. If we detected IL-8 mRNA in SGC-7901 cells using the retro-transcriptional polymerase chain reaction, results at 30 min or 60 min should have been significantly higher than those at 0 min. Only 120 min of treatment with 25 EU/mL H pyloriSS1-LPS augmented IL-8 production in SGC-7901 cells (Table 2), which was, however, down-regulated by pretreatment for 1 h with 10⁵ CFU/mL viable LBG or 10² mg/mL LBG−12 (Table 2).
of the gastric microecosystem. It was reported that administration of exogenous Lactobacilli has therapeutic effects on H pylori-associated diseases by interfering with the pathogenetic progress of H pylori[27-30]. Inhibition of H pylori-induced proinflammatory factor production by Lactobacilli is a very important aspect. It has been demonstrated that Lactobacilli abrogate H pylori-mediated IL-8 release in vitro and in vivo[31,32]. A large body of evidence has shown that H pylori-LPS-induced inflammation in gastric mucosa has nearly the same pathological characteristics as the mucosal inflammation initiated by H pylori infection[6,7]. Bhattacharyya et al[33] reported that pretreatment with LPS inhibitor greatly attenuated H pylori extract-mediated gastric mucosal inflammation, suggesting that H pylori-LPS may be a major virulent factor for H pylori-associated mucosal inflammation, which urged us to research the effect of Lactobacilli on H pylori-LPS-induced IL-8 production. It has been documented that H pylori-LPS induces mucosal inflammation including IL-8 production via TLR4 signaling. In brief, H pylori-LPS is recognized by TLR4 of the gastric epithelium, and then activates interleukin-1 receptor- associated kinase, tumor necrosis factor receptor-associated factor-6, TAK1 and TAK1-binding protein 1/2, p38MAPK and NF-kB at last in a cascade mechanism[7,9]. However, whether Lactobacilli have the capability of inhibiting H pylori-LPS-activated TLR4 pathway through interacting with gastric epithelia directly has not been extensively researched. Our findings demonstrate that viable LBG and LBG+ may prevent TLR4 signaling activation and IL-8 production mediated by H pylori-LPS in SGC-7901 cells, which strongly supports the hypothesis that some soluble proteins secreted by LBG and (or) somatic constituents of LBG exert inhibitory effects on the TLR4 pathways directly has not been extensively researched.

Table 1 Effects of viable LBG, LBG+ and H pyloriSS1-LPS on the expression of TLR4 and activation of TAK1, p38MAPK and NF-kB in SGC-7901 cells

LPS	TLR4/β-actin	p-TAK1/TAK1	p38MAPK	NF-κB/lamin B1
0 min	0.014±0.003	0.008±0.012	0.010±0.002	0.012±0.004
30 min	0.21±0.003	0.17±0.003	0.03±0.001	0.011±0.001
60 min	0.43±0.003	0.17±0.003	0.005±0.001	0.010±0.001
120 min	1.21±0.011	0.49±0.006	0.001±0.001	0.012±0.001
LBG+	0.016±0.003	0.025±0.003	0.003±0.003	0.012±0.003
LPS 0 min	0.08±0.013	0.05±0.010	0.013±0.002	0.012±0.002
LBG+ LPS 0 min	0.13±0.010	0.15±0.012	0.007±0.005	0.013±0.002
LPS 120 min	0.40±0.010	0.16±0.005	0.013±0.002	0.012±0.002
LBG+ LPS 120 min	0.19±0.010	0.18±0.012	0.029±0.002	0.012±0.002
LPS 120 min	0.18±0.010	0.17±0.012	0.031±0.002	0.012±0.002
LBG+ LPS 120 min	0.18±0.010	0.17±0.012	0.031±0.002	0.012±0.002

Table 2 Inhibitory effects of viable LBG or LBG+ on H pyloriSS1-LPS-induced IL-8 production (pg/mL)

H pyloriSS1-LPS	Viable LBG+LPS	LBG+LPS	
0 min	2.62±0.43	2.56±0.46	2.52±0.51
30 min	2.78±0.38	2.67±0.42	2.61±0.47
60 min	3.07±0.35	2.93±0.51	2.89±0.48
120 min	40.39±3.07	24.12±3.05	18.41±1.83
LBG+	0.012±0.002	0.018±0.002	0.016±0.002
LPS 0 min	0.18±0.003	0.17±0.003	0.16±0.003
LBG+ LPS 0 min	0.32±0.005	0.23±0.005	0.19±0.004
LPS 120 min	1.02±0.012	0.84±0.012	0.75±0.011
LBG+ LPS 120 min	1.02±0.012	0.84±0.012	0.75±0.011

DISCUSSION

H pylori have recently been considered an indigenous biota of human stomach and a dominant niche in gastric microecology including Lactobacilli and Sacharomyces with the capability of cross-species communication[17-19]. There is evidence that Helicobacter species are ancient inhabitants of human stomachs for at least 60,000 years which have co-evolved with the host and developed their excellent adaption to humans[30,31]. Though the vast majority of people in developing countries carry H pylori, most of them have no clinical manifestations at all[22]. More and more observations are consistent with the hypothesis that H pylori have both pathogenic and symbiotic features, thus relatively balance their cost and benefit[23,24]. Changes in life style and sanitation conditions cause a probable disturbance of gastric microecology, which plays a more important role in the pathogenetic mechanism of H pylori in the modern era[25,26]. Therefore, eradication of H pylori does not seem justified for all individuals, especially children. These findings lead to the speculation that we are supposed to domesticate H pylori through restoring the homeostasis of the gastric microecosystem.
broth (LGG) ameliorated apoptosis of young adult mouse colon cells treated with tumor necrosis factor α (TNF-α), interferon-γ or interleukin-1α through blocking p38MAPK and stress-activated protein kinase/c-Jun amino-terminal kinase pathway. In addition, they have identified two proteins in LGG with molecular sizes of 80 and 42 kDa, which may be possible substantial effectors in LGG. In a recent study, they purified the two proteins from LGG again, ultimately determined their molecular weight as 75 and 40 kDa, and named them p75 and p40 respectively. Their results demonstrate that both p75 and p40 can inhibit TNF-α-induced apoptosis of intestinal epithelia and promote cell growth through activating Akt. In our experiment, LGG was found to contain the same or even same proteins, which could intervene in H pylori SS1-LPS-activated TLR4 signaling through modulating other pathways in SGC-7901 cells. Further study is needed to evaluate the hypothesis. In the purification and characterization of the aforementioned potential soluble proteins secreted by LBG, we also detected the effect of heat-killed LBG (hk-LBG) on H pylori SS1-LPS-activated TLR4 signaling for evaluating the presumption that some somatic constituents of LBG may inhibit the effect of H pylori SS1-LPS. The incomplete data indicate that hk-LBG could also disrupt the H pylori SS1-LPS-activated TLR4 pathway. Nevertheless, the effect of hk-LBG was obviously smaller than that of viable LBG at the same concentration.

In conclusion, our evaluation of LBG as a model probiotic organism reveals an important and novel relationship between H pylori-LPS-activated TLR4 signaling and selective microflora, and further our understanding of the signal pathways in gastric epithelia involved in inflammatory responses that are regulated by probiotics and pathogenic bacteria composing the gastric microecosystem.

ACKNOWLEDGMENTS

The authors thank Professor Qian Yu (School of Public Health, Sichuan University) for her kind donation of H pylori Sydney strain 1 and Lactobacillus bulgaricus as well as Drs. Xiang Liu, Ming-Jiang Bie and Jian Wang (Laboratory of Medical Laboratory Sciences, School of Public Health, Sichuan University) for their assistance in performing the experiments.

REFERENCES

1. Felty CP, Pignatielli B, Van Melle GD, Crabtree JE, Stolle M, Diezi J, Courtsey-Theulaz I, Michetti P, Bancel B, Patricot LM, Ohshima H, Felley-Bosco E. Oxidative stress in gastric mucosa of asymptomatic humans infected with Helicobacter pylori: effect of bacterial eradication. Helicobacter 2002; 7: 342-348.

2. Yoshimura N, Suzuki Y, Saito Y. Suppression of Helicobacter pylori-induced interleukin-8 production in gastric cancer cells line by an anti-ulcer drug, geranylgeranyacetone. J Gastroenterol Hepatol 2002; 17: 1153-1160.

3. Ismail S, Hampton MB, Keenan JL. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 2003; 71: 5670-5675.

4. Nozawa Y, Nishihara K, Akizawa Y, Orimoto N, Nakano M, Uji T, Ajioka H, Akiha K, Matsuura N, Kinwa M. Lafutidine inhibits Helicobacter pylori-induced interleukin-8 production in human gastric epithelial cells. J Gastroenterol Hepatol 2004; 19: 506-511.

5. Lopes AI, Quindin-Jarbrink M, Palha A, Ruivo J, Monteiro L, Oleastro M, Santos A, Fernandes A. Cytokine expression in pediatric Helicobacter pylori infection. Clin Diagn Lab Immunol 2005; 12: 994-1002.

6. Slomiany BL, Piotrowski J, Slomiany A. Up-regulation of endothelin-converting enzyme-1. In gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide. Biochim Biophys Acta 2000; 1061: 801-805.

7. Ogawa T, Asai Y, Sakai Y, Oikawa M, Fukase K, Suda Y, Kusumoto S, Tamura T. Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1. FEMS Immunol Med Microbiol 2003; 36: 1-7.
Lactobacilli and Helicobacter pylori-LPS

Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K. Type 1 Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen-activated protein kinase 1 in gastric pit cells. *Infect Immun* 2001; 69: 4382-4389

Su B, Ceponis PJ, Lebel S, Huang H, Sherman PM. Helicobacter pylori activates toll-like receptor 4 expression in gastrointestinal epithelial cells. *Infect Immun* 2003; 71: 3496-3502

Johnson-Henry KC, Mitchell DJ, Avitzur Y, Galindo-Mata E, Jones NL, Sherman PM. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice. *Dig Dis Sci* 2004; 49: 1095-1102

Sheu BS, Wu JJ, Lo CY, Wu HW, Chen JH, Lin YS, Lin MD. Impact of supplement with Lactobacillus- and Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. *Aliment Pharmacol Ther* 2002; 16: 1669-1675

Mukai T, Asasaki T, Sato E, Mori K, Matsumoto M, Ohori H. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. *FEMS Immunol Med Microbiol* 2002; 32: 105-110

Oh Y, Osato MS, Han X, Bennett G, Hong WK. Folk yoghurt kills Helicobacter pylori. *J Appl Microbiol* 2002; 93: 1083-1088

Aiba Y, Suzuki N, Kabir AM, Takagi A, Koga Y. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. *Am J Gastroenterol* 1998; 93: 2097-2101

Michetti P, Dorta G, Wiesel PH, Brassart D, Verdu E, Herranz M, Felley C, Porta N, Rouvet M, Blum AL, Corthesy-Theulaz IE. GroEL of Lactobacillus johnsonii La1 is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. *J Biol Chem* 2002; 277: 177-183

Blaser MJ. Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. *J Infect Dis* 1999; 179: 1523-1530

Tovey FL, Hobsley M, Kaushik SP, Pandey R, Kurian G, Singh K, Sood A, Jehangir E. Duodenal gastric metaplasia and Helicobacter pylori infection in high and low duodenal ulcer-prevalent areas in India. *J Gastroenterol Hepatol* 2004; 19: 497-505

Sakamoto I, Igarashi M, Kimura K, Takagi A, Miwa T, Koga Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. *J Antimicrob Chemother* 2001; 47: 709-710

Shimizu T, Haruna H, Hisada K, Yamashiro Y. Effects of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in children. *J Antimicrob Chemother* 2002; 50: 617-618

Gotteland M, Cruchet S. Suppressive effect of frequent ingestion of Lactobacillus johnsonii La1 on Helicobacter pylori colonization in asymptomatic volunteers. *J Antimicrob Chemother* 2003; 51: 1317-1319

Armuzzi A, Cremonini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Antì M, De Lorenzo A, Pola P, Gasharrini G, Gasharrini A. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. *Aliment Pharmacol Ther* 2001; 15: 163-169

Sgouaras DN, Panayiotopoulou EG, Martinez-Gonzalez B, Petraki K, Michopoulos S, Mentis A. Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice. *Clin Diagn Lab Immunol* 2005; 12: 1378-1386

Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnica D, Cortesky-Thelaz IE. CroEL of Lactobacillus johnsonii La1 (NCC 353) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. *Infect Immun* 2006; 74: 425-434

Bhattacharyya A, Pathak S, Datta S, Chattopadhyay S, Basu J, Kundu M. Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. *Biochem J* 2002; 368: 121-129

Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. *J Biol Chem* 2002; 277: 50959-50965

Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. *Gastroenterology* 2007; 132: 562-575

Nature 2007; 445: 915-918

Go MF. Review article: natural history and epidemiology of Helicobacter pylori infection. *Aliment Pharmacol Ther* 2002; 16: Suppl 1: 3-15

Rajendra S, Ackroyd R, Robertson IK, Ho JJ, Karim N, Kutty KM. Helicobacter pylori, ethnicity, and the gastrosophageal reflux disease spectrum: a study from the East. *Helicobacter* 2007; 12: 177-183

Ackermann P, Kuipers EJ, Wolf C, Breumelhof R, Seldenrijk CA, Timmer R, Seregien KC, Kusters JG, Smout AJ. Colonization with cagA-positive Helicobacter pylori strains in intestinal metaplasia of the esophagus and the esophagogastrectomy junction. *Am J Gastroenterol* 2003; 98: 1719-1724

Blaser MJ. Helicobacter pylori and humans: implications for health and disease. *Infect Dis Clin North Am* 2007; 21: 545-563