Importance of non-flow background on the chiral magnetic wave search

Hao-jie Xua,b, Jie Zhaob, Yicheng Fengb, Fuqiang Wanga,b

aSchool of Science, Huzhou University, Huzhou, Zhejiang 313000, China
bDepartment of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

Abstract

An observable sensitive to the chiral magnetic wave (CMW) is the charge asymmetry dependence of the \(\pi^-\) and \(\pi^+\) anisotropic flow difference, \(\Delta v_n(A_{ch})\). We show that, due to non-flow correlations, the flow measurements by the Q-cumulant method using all charged particles as reference introduce a trivial linear term to \(\Delta v_n(A_{ch})\). The trivial slope contribution to the triangle flow difference \(\Delta v_3(A_{ch})\) can be negative if the non-flow is dominated by back-to-back pairs. This can explain the observed negative \(\Delta v_3(A_{ch})\) slope in the preliminary STAR data. We further find that the non-flow correlations give rise to additional backgrounds to the slope of \(\Delta v_2(A_{ch})\) from the competition among different pion sources and from the larger multiplicity dilution to \(\pi^+\) (\(\pi^-\)) at positive (negative) \(A_{ch}\).

Keywords: heavy ion collisions, chiral magnetic wave, anisotropic flow, non-flow background

1. Introduction

The interplay between the chiral magnetic effect and the chiral separation effect can lead to a gapless collective excitation, a phenomenon called the chiral magnetic wave (CMW) \cite{1, 2}. The CMW could introduce an electric quadrupole moment, giving opposite contributions to the \(\pi^+\) and \(\pi^-\) elliptic flow anisotropies \((v_2)\) dependent of the charge asymmetry \((A_{ch} = \frac{N^+ - N^-}{N^+ + N^-})\) \cite{2}

\[v_2[\pi^\pm] = v_2^{base} \pm \frac{r[\pi^\pm]}{2} A_{ch}. \] (1)

The CMW-sensitive slope parameters \((r)\) measured by the STAR, ALICE and CMS collaborations qualitatively agree with the expectation from the CMW \cite{3, 4, 5}. The data can also be qualitatively explained by non-CMW mechanisms, such as the Local Charge Conservation (LCC) \cite{6} and the effect of isospin chemical potential \cite{7}. We will show in these proceedings that non-flow correlations can also cause \(A_{ch}\)-dependent \(\pi\) flows. We demonstrate \cite{8} that the non-flow correlations can give both trivial and non-trivial contributions to the slope parameters of \(\Delta v_n(A_{ch}) \equiv v_n^+(A_{ch}) - v_n^-(A_{ch})\), where \(n = 2\) (elliptic flow) and \(n = 3\) (triangle flow).
2. Trivial non-flow contributions to $v_2(A_{ch})$

Using the Q_i-vector $Q_i = \sum_{m=1,2} M_i^m w_i |q_i|^m$, the anisotropic flow of particles of interest (POI, π^\pm in this study) can be calculated by $v_2^\mp[2] = \frac{d_n[2; \pi^\pm h]}{\sqrt{n_\pi[2]}}$ with $d_n[2] \equiv \langle \langle 2' \rangle \rangle = \sum_{m=1,2} w_i M_i^m |q_i|^m$, and $\sqrt{n_\pi[2]}$ is the flow of reference particles (REF). Here $w_i = m_i M_i^m$, $(m_i, q_{n,i})$ and $(M_i, Q_{n,i})$ are the (multiplicity, Q-vector) of POI and REF, respectively.

With all charged hadrons as REF, as typically done in data analysis, the two-particle cumulant can be rewritten into [8]

$$d_n[2; \pi^\pm h] = \frac{d_n[2; \pi^+ h^+] + d_n[2; \pi^- h^-]}{2} + \frac{d_n[2; \pi^+ h^-] - d_n[2; \pi^- h^+]}{2} A_{ch}. \quad (2)$$

The second term on r.h.s of Eq. (2) is proportional to A_{ch} and opposite in sign for π^+ and π^-. This will directly give a trivial contribution to the CMW-sensitive slope parameter. It vanishes if the correlations are due to flow only because in this case $d_n[2; \pi^+ h^+] = d_n[2; \pi^- h^-]$. However, non-flow is present in experimental data and differs between like-sign and unlike-sign pairs, so the trivial term is finite.

The STAR preliminary results indicate a negative slope for $\Delta v_2(A_{ch})$ in central and peripheral collisions [9]. A negative trivial slope can easily arise from back-to-back pairs of particles. We illustrate this using a Monte Carlo model. We generate π^+ and π^- with Poisson multiplicity fluctuations in each event. The p_T spectra correspond to the measured data in the 30–40% centrality Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV [10,11]; The η spectra are parameterized as in Ref. [12]. The mean multiplicity of charged hadrons is set to 380 in $|y| < 1$ with $p_T > 0.15$ GeV/c. To introduce a non-flow correlation difference between like-sign and unlike-sign pairs, we force, on average, 20% of the multiplicity in a given event to come from $\pi^+\pi^-$ pairs with back-to-back azimuthal angles for the two pions. A constant elliptic flow $v_2 = 4\%$ (triangle flow $v_3 = 4\%$) is used to generate the azimuth angle of those pairs as well as the rest 80% π^+ and π^-. The results are shown in Fig. [1] The slope of the trivial term, dubbed the trivial slope r_{triv}, is calculated by $r_{triv}(\pi^\pm) = \frac{d_n[2; \pi^+ h^+] - d_n[2; \pi^- h^-]}{2 (\Delta v_2)^2}$ (c.f. Eq. (2)). The slope parameter without removing the trivial term is denoted as r_0. The back-to-back pairs contribute a positive trivial slope to $\Delta v_2(A_{ch})$ shown in Fig. [1]a) and a negative trivial slope to $\Delta v_2(A_{ch})$ shown in Fig. [1]b).

Non-flow differences are present between like-sign and unlike-sign pairs in real collisions, and not much can be done to eliminate these non-flow differences. In order to eliminate the trivial linear A_{ch} term, one can use hadrons of a single charge sign instead of all charged hadrons as REF. One may use positive and

Figure 1. (Color online) A Monte Carlo model demonstration of the trivial term, arising from back-to-back (B2B) unlike-sign pair non-flow correlations, due to the net effect of non-flow difference between like-sign and unlike-sign pairs and using all charged particles as REF: (a) $\Delta v_2(A_{ch})$, and (b) $\Delta v_2(A_{ch})$. Results before and after eliminating the trivial term are shown by open circles and filled stars, respectively.
n
v
STAR preliminary
r
non-zero slope. It is interesting to note, however, that the
and pions from resonance decays (denoted by ‘D’). We have
We now demonstrate this by using a two-component model, i.e., primordial pions (denoted by subscript ‘P’)
between two sources of pions, the paired pions and unpaired pions, to be discussed in the next section.
for back-to-back non-flow pairs, as shown in Fig. 1(b) by the red stars. The reason is due to a competition
slope following our methodology, the normalized

\[\Delta v_n = 2\epsilon(1-\epsilon)(A_D - A_P)(v_{n,P} - v_{n,D}) \]

Here we have assumed the event-by-event distributions of \(A_P \) and \(A_D \) are both normal distributions, i.e.,
\(\mathcal{N}(\mu_P, \sigma_P^2) \) and \(\mathcal{N}(\mu_D, \sigma_D^2) \) in a charge-neutral system.
The slope r^{2C} from the two-component (2C) model is clearly non-zero if $\sigma_P^2 \neq \sigma_D^2/(1 - \epsilon)$ and $v_{n,p} \neq v_{n,D}$. The root reason is that the relative fractions of pions from different sources depend on the event-by-event A_{ch} value (because they contribute to A_{ch} differently), therefore the average v_2 from multiple sources, which have different v_2’s, will depend on A_{ch}.

We have used two “flow” sources in the above derivation. However, this also applies to the competition between flow and non-flow contributions to the observed $\Delta v_2(A_{ch})$. This is the reason for the non-zero slope in Fig. 3(b) even after eliminating the trivial term, because the “v_1” from the back-to-back pairs is by definition zero, which differs from the single pion v_1, even though the back-to-back pairs are generated with the same v_2 modulation. Such a problem is not present for v_2. We have tested v_2 using two different input v_2’s for single and paired pions, and also found a non-zero slope parameter.

3.2. Like-sign non-flow correlations

The non-flow correlations from like-sign pairs can also introduce a non-zero slope parameter. We modify our non-flow Monte Carlo model to generate like-sign pairs by forcing 20% of π^+ and π^- to be paired as $\pi^+\pi^+$ (and $\pi^-\pi^-$) with the same azimuth. All other parameters of the model are unchanged. The resulting $\Delta v_2(A_{ch})$ has a positive slope $r = 1.63\%$. This is due to the dilution effect: when more π^+ are counted resulting in a positive A_{ch}, the $\pi^+\pi^+$ non-flow correlation is more diluted while the $\pi^-\pi^-$ non-flow is less diluted, resulting in a large v_2 for π^- than for π^+. This is different in the unlike-sign case, where the dilution effect is identical for π^+ and π^-.

4. Summary

The charge asymmetry (A_{ch}) dependent pion elliptic flow difference $\Delta v_2(A_{ch})$ is a sensitive observable to the chiral magnetic wave (CMW). In these proceedings, we first demonstrate that the flow measurements can automatically introduce a trivial linear-A_{ch} dependence if (1) there exists non-flow difference between like-sign and unlike-sign pairs and (2) hadrons or both charge sinds are used as reference particles in the two-particle cumulant flow measurements. Using a Monte Carlo model, we find that back-to-back unlike-sign pair non-flow correlations contribute a positive trivial slope to $\Delta v_2(A_{ch})$ and a negative trivial slope to $\Delta v_3(A_{ch})$. New data analysis indicates that the trivial contribution is the dominate reason for the large negative slope of $\Delta v_3(A_{ch})$ in the previous STAR preliminary results (see Fig. 2).

We further find that the competition among multiple π sources can introduce a non-trivial linear-A_{ch} term. This effect is sensitive to the differences in multiplicity fluctuations and anisotropic flows of those sources, and arises from the A_{ch}-dependent relative contributions of pions from those sources. We also find that the non-flow between like-sign pairs gives a positive slope to $\Delta v_2(A_{ch})$ because of the larger multiplicity dilution effect to π^+ (π^-) at positive (negative) A_{ch}.

Acknowledgments: This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11905059, 11847315, 11947410) and the U.S. Department of Energy (Grant No. de-sc0012910). HX acknowledges financial support from the China Scholarship Council.

References

[1] D. E. Kharchev and H. U. Yee, Phys. Rev. D **83** (2011) 085007
[2] Y. Burnier, D. E. Kharchev, J. Liao and H.-U. Yee, [arXiv:1208.2537](https://arxiv.org/abs/1208.2537) [hep-ph]
[3] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. **114** (2015) 252302
[4] J. Adam et al. [ALICE Collaboration], Phys. Rev. C **93** (2016) 044903
[5] A. M. Sirunyan et al. [CMS Collaboration], Phys. Rev. C **100** (2019) 064908
[6] A. Bzdak and P. Bozek, Phys. Lett. B **726** (2013) 239
[7] Y. Hatta, A. Monnai and B. W. Xiao, Nucl. Phys. A **947** (2016) 155
[8] H. j. Xu, J. Zhao, Y. Feng and F. Wang, Phys. Rev. C **101** (2020) 014913
[9] Q. Y. Shou [STAR Collaboration], Nucl. Phys. A **982** (2019) 555
[10] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C **92** (2015) 024912
[11] J. Zhao, H. Li and F. Wang, Eur. Phys. J. C **79** (2019) 168
[12] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C **83** (2011) 024913
[13] H. j. Xu [STAR Collaboration], Quark Matter 2019 poster presentation